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Symbols and Notations

FEATURES OF THE COURSE

The relevance of Mathematics can be recognized in the extensive use of its basic
concepts in various areas of knowledge and in the application of its techniques to
solve several problems facing the mankind. These concepts anc techniques derive their
strength from certain underlying principles. For example, in most of the Calculus
courses, the emphasis is on learning the methods of differentiation and integration
rather than on the underlying principles that provide these methods. The study of
such principles has been identified as an interesting field of Mathematics in the name
of Mathematical Analysis of which Real Analysis is considered to be the most
beautiful branch. The reason for this is that almost all areas of Modern Mathematics
have their roots in Real Analysis because many .abstract notiens (concepts) are
explained in terms of the real number system.

W

The present course on Real Analysis is designed for those who have a working
knowledge of the Calculus of one variable and are ready for a more systematic
treatment. However, the material in this course does require a certain amount of
essential knowledge of Algebra, Geometry and Trigonometry. The major objectives,
therefore, of this course are the following:

i) To bridge the gap between Calculus and Advanced Calculus

ii)  To have a rigorous and sophisticated knowledge of the methods and concepts
related to Calculus as well as other relevant areas of Mathematics. 5

iii) To provide adequate knowledge of conceptual mathematics for those who wish
to specialise in mathematics and pursue a career in mathematics.

The unifying theme of the course is concerned with the limiting processes on the real
line wlhich forms the heart of Mathematics. It is, therefore, an esscntial_part of the
training of any student of Mathematics. The syllabus of the course-has been
distributed in five blocks covered in 16 units. The logical order of development of the
material is as follows:

The first topic of study is the system of numbers. Since this is the first course in
Analysis, we have, therefore, kept the discussion of the numbers as simple as we can,
so long it gives a firm foundation for the structure of later definitions and concepts.
The first block having four units is, therefore, devoted to a study of the structure of
real number system and its subsystems of natural numbers, integers and rational
numbers. In this block, we discuss the Arithmetical, Geometrical, Algzbraical and
Topological structure of the system of real numbers. Also, we study some functions
and discuss a few special functions which we need at a later stage.

Sequences and Series of numbers are introduced and discussed in Block 2 which
consists of three units. The main aim of this block is to unify the presentation of the
course material. One of the most fundamental concepts in Real Analysis is that of a
Cauchy Sequence. We shall explain the meaning and significance of a Cauchy
Sequence. In fact, in this block, we begin to study the limit process as applied to
sequences which are. in fact, a special class of real functions.

In Block 3, we discuss the general notion of the limit of a real functions. It has 3 units.
The notion of limit of a reai function is fundamental to all further ideas in Real
Analysis. We shall develop this notion m this block and then use it to define the
continuous functions. We also discuss some important properties of continuous
functions as well as Uniform continuity.




Block 4 also contains three units. It is devoted to the notion of differentiability of a
function. The mean value theorems dnd higher order derivatives have been discussed
in this block.

Block 5 deals with the integrability of a function. We intioduce the integral of a

function in a formal way and discuss some of its important'properties. Integral of a
_function is introduced as a limit of a sum and thus removes the common
misconception that integration is always a reverse process of differentiation. The
Fundamental Theorem of Integral Calculus is, then, established. Finally, we discuss
the sequences and series of functions in the last unit.

The block-wise description of the course is as follows:

Real Analysis

I. Block I * Real Numbers and Functions (4 units)
2. Block 2 : Sequences and Series (3 units)
3. Block 3 : Limit and Continuity (3 units)
4. Block 4 : Differentiability (3 units)
5. Block 5 : Integrability (3 units)
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. TO THE COUNSELLOR

This course is mainly designed for those who have some working knowledge of
Calculus and who wish to take more advanced courses in Mathgmatics. It provides a
gradual transition from the mechanical type of Mathematics to a rigorous and
sophisticated material in the post Calculus courses. The main concern is to acquaint
our students with the language and conceptual aspects of Mathematics. Since this
cannot be done in vacuum, we have chosen to present this material in the shape of
Real Analysis. There is no prerequisite for this course except the competence in
precalculus Mathematics and a computational skill of the basic techniques of
differentiation and integration. Therefore, it is desirable that the students have
completed our course on Calculus (MTE-01).

In addition to the general guidance and counselling which will be available to our
learners at the Study Centres, we have to request you for something more in
Mathematics. The counselling in an open learning system is an important component
of distance teaching. It is challenging when we come to counselling in a subject like
Mathematics. There are certain dogmas and misconceptions about Mathematics
which can be eliminated if it is presented to the students in a simple and interesting
way. Therefore, the main empbhasis in the counselling sessions in Mathematics will
have to be on the clarity of the basic concepts and definitions as well as on the
removal of the difficulties of the learners in problem solving. We have tried to present
the course material with this view in mind and recalled, wherever necessary, the
congepts which are essential for the discussion of the main text. The first unit has
been mainly devoted to the review of the basic concepts of sets, functions and-
numbers. The rigour starts in Unit 2 and is slowly built through Unit 3 and Unit 4. It
is continued throughout the subsequent units.

There are concepts in Mathematics which can be clearly understood just by reading
the printed material. Yet there are few which require some face-to-face conversation
with the learner. It is, therefore, desirable that such concepts and situations should be
identified and discussed in the counselling sessions. Wherever necessary, we have
given brief historical references. The purpose for this is to break the monotony and

generate interest in the learning of the material.
i

Finaliy, we would like to invite your expert comments and suggestions for
improvement, particularly with regard to the course contents, designing of the
syllabus and the presentation of the test of the course material. For this, you may also
seek the reactions and the opinions of the learners. This feedback from you as well as
from the learners through you will help us a great deal to improve upon the learning
matenials.

TO THE LEARNER .

Mathematics is generally viewed as the study of numbers (Algebra) and shapes

(Geometry). However, this perception about Mathematics 1s somewhat insufficient.

The study of Algebra and Geometry is only a part of the mathematical enterprise. The

true concern of Mathematics is the study of its abstract nature in general. Your

previous experience with Mathematics. may have been with the courses iike Calculus,

Algebra, Geometry and Trigonometry. In these courses, Jou are required {0 tnemorize
. formulas and methods and then apply them to solving problems The material in the
present course, however, is a departure from this approach. You will find in this
course that it has the rigour of Mathematics. Indeed you will be learning the language
and grammar used by the mathematicians in communicating their ideas and
discussions. To appreciate these ideas and the rigour in Mathematics, you will do well
if you adopt the following guidelines:

1.  Try to understand every word in every sentence in every paragraph in every
section of the units and blocks. New ideas usually depend upon the previously
known concepts. Therefore, a lack of understanding of the earlier material often
interferes with the learning of the later ideas. Since you may not be able to grasp
everything at the first reading, we recommend that you repeatedly recall earlier
ideas and acquire a better notion of where they lead to. Then apply these
notions to the new ideas.

2.  In reading the materials (in fact for that matter in studying Mathematics in
general), it is imperative that you have a pencil (pen) and paper at hand. You




must write out the definitigns and the concepts, the theorems and key ideas that
you encounter as you go along. This way doing Mathematics by writing along
will focus your attention. Considerable effort is required to learn Mathematics
and it is not proper to do so by sitting in an easy chair and reading your block
as if it were a novel or a popular film magazine or a newspaper.

Draw pictures and diagrams wherever possible to illustrate the concepts under
consideration. This will make you visualise the concepts clearly.

The exercises given after definitions and examples are closely related to these
concepts. Working them out will enhance your grasp of the material. Answers,
hints and solutions provided at the end of the unit should be seen only if you fail
to do the exercise even after several attempts. You should verify your solutions
with the ones given in the unit. Also, there are some short intext questions. You
should be able to provide their answers if you have thoroughly grasped the key
ideas in the discussion. In each block, there is a review containing some self-test
questions. This will enable you to assess for yourself the conceptual knowledge
of the material you have acquired in the block.

In working out the problems (in fact in writing Mathematics in general),
cultivate the habit of writing complete sentences and full solutions. As isolated
expression such as x’ + 4 x + 3 means very little. What about it? Do you want
.0 find the values of x tor which the expression is zero? If so, then say so in clear
words. Are you writing this as an example of a polynomial with integer
coefficients? If so, then say so.

Every mathematical concept has to be understood in two interrelated ways; the
intuitive way and the formal way. An intuitive grasp of a mathematical concept
generally develops only after you have dealt with the concept over a period of
time. To build your intuition, you may collect a few relevant examples of the
concept. Use the concept in different examples and see how it is related to other
ideas and see how it helps to clarify the ideas that otherwise might be hazy. To
understand the concept in the formal way, you need to know its mathematical
definition and to connect it with the intuitive idea.

Sometimes.you will find it difficult to grasp the mathematical concept as given
in the text. Go to your Study Centre, copsuit the relevant books availabie, try to
discuss your problem with the Counsellor or with your other colleagues who
have probably understood it clearly. Once you have understood the idea, try to
explain it to others so that you can reassure yourself that what you have
understood is correct. If need be, collect pertinent examples, exercises,
illustrations, remarks, historical notes etc. and make a note of all that is relevant
to the idea. In this way you will automatically learn considerably more
Mathematics than you might expect.

The course material is divided into 5 blocks and 16 units. Each unit is further
divided into sections and subsections. The number 2.3.4, for instance refers to
subsection 4 of section 3 of Unit 2. Thus, the first digit from the left indicates the
unit number, the second digit tells the number of the section and the last digit
stands for the subsections, if any. All the definitions, properties, theorems,
examples, exercises, figures etc. have been serially numbered throughout a unit
and their statements have been printed in bold face letters. The parts of a
definition or of an example or of an exercise etc. have been labelled with small
Roman numbers (i), (ii), (iii), etc.



NOTATIONS AND SYMBOLS
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n=1
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1s equal to

is not equal to

is greater than

is less than

is not less than

is not greater than

is a member of (belongs to)

is not a member of (does not belong to)
is a subset of (is contained in)
is not a subset of (is not contained in)
is a superset

Union

intersection

empty set

implies

implied by

if and only if

equivalence relation

for all

there exists

multiplication

addition

subtraction

supremum

infimum

minimum

maximum

composition

derivative of f

inverse of a function f
exponential

logarithm

natural logarithm

signum

greatest integer not exceeding x
absolute value of x or Modulus of x
set of positive real numbers

set of real numbers

Set of irrational numbers

set of rational numbers

set of integers

set of natural numbers

field '

set of complex numbers

closed interval

open interval

semi-open interval (open at left)—semi-closed interval
semi-open interval (open at right)—semi-closed interval
infinity

minus infinity

sum

infinite series

sequence
complement of S
derived set of S
closure of S




Greek Alphabets
Alpha
Beta
Gama
Deita
Epsilon
Zeta
Eta
Theta
Iota
Lambda
Mu

Nu

exi

Pi
(capital Pi)
Rho
(%) Sigma (capital Sigma)
Tou

Phi

Chi

Psi
Omega
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We have discussed the course material in the course on Real Analysis in a completg
form. We believe that the discussion is quite exhaustive in each unit. Nevertheless,
you may like to refer to some books for some more understanding of the concepts or
may be you need some additional readings. For this, we give below a list of books
which may be available at your Study Centre or in a nearby institution.

1.  Real Analysis by S.C. Malik, Wiley Eastern Limited.
2. Elements of Real Analysis by Shanti Narayan, S. Chand & Company Ltd.

3. Foundations of Analysis the Theosy of Limits by Herbert S. GasPill P.P.
Narayanaswami .

4.  Introduction to Mathematical Analysis by C.R.J. Claphan, Routldge & Kegan
Paul (London).

S.  Mathematical Analysis by M.D. Hattan, Hodder and Stonghton (London).



'BLOCK1 REAL NUMBERS AND

FUNCTIONS

PREVIEW

This is the first block on Real Analysis. The purpose of this block is to lay a logical
and axiomatic foundation on which Real Analysis is built. It is devoted to the study
of the system of real numbers, its arithmetical development, geometrical framework
and algebraic structure. Also, its basic topological features are discussed. The block
contains four units.

In Unit 1, we have recalled the basic concepts of sets and functions. Also, in this unit,
we have discussed the development of real numbers from the rational numbers which,
in turn have been constructed from the integers with the latter having been built from
the natural numbers. Then, we have also described the real numbers as points on a
line and conversely. In view of this, the set of real numbers is called the real line.

We continue this discussion in Unit 2, and showed that the set R of real numbers
forms an algebraic structure called the Field. We shall discuss the order completeness
property of the set-of real numbers which distinguishes them from Q, the set of
rational numbers in the sense that the set of rational numbers is not a complete
ordered field.

The Unit 3 deals with the topology of the real line. In this unit, we talk of the
neighbourhood of a point on the real line, open sets, limit point of a set, closed sets
and compact sets. These concepts, though confined to the real line, are presented in
such a way that they provide an insight into their applicability to two-dimensional

'(even higher dimensional) spaces.

Finally, in Unit 4, we discuss the real functions and its various classes. Algebraic
functions such as polynomial functions, rational functions etc. are described.
Transcendental functions viz. trigonometric, logarithmic and exponential functions
have been studied. Some special functions such as monotonic functions, modulus
function, signum function and bounded functions have also been discussed.

The Unitwise relationship of this block is given in the following picture:

Sets and
Numbers
Y
Structure 0! RFEAL NUMBERS T.pology of
Real Numbers AND FUNCTIONS The Real Line
Y

Real Functions
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UNIT1 SETS AND NUMBERS

STRUCTURE
1.1 Introduction
- Objectives
1.2 Sets and Functions
Sets,
Functions

1.3 System of Real Numbers
Natural Numbers Integers Rational Numbers
1.4 (e Real Line
1.5 The Complex Numbers
1.6 Mathematical Induction
1.7 Summary

1.8  Answers/ Hints/Solutions

1.1 INTRODUCTION

One of the main features of Mathematics is the identification of the subject matter, its.
analysis and its presentation in a satisfactory manner. For this, we need a simple
language— a language that admits minimum vocabulary and an easy grammar— a
language that is precise and has clear meanings. In other words, the language should
be a vehicle which carries ideas through the mind without affecting their meaning in
any way. Set Theory comes closest to being such a language. Introduced between 1873
and 1895 by a famous German mathematician, George Cantor (1845-1918), Set
Theory became the foundation of almost all the branches of Mathematics. Besides iis
universal appeal, it is quite amazing in its simplicity and elegance.

A rigorous presentation of Set Theory is not the purpose here because we believe that
you are already familiar with it. Yet, we shall briefly recall some of its basic concepts
which are essential for a-systematic study of Real Analysis. Closely linked with the
sets, is the notion of a function, which also you have learnt in your previous studies.
In this unit, we shall review this as well as other related concepts which are necessary
for our discussion.

‘Real Analysis” is an important branch of Mathematics which mainly deals with the
study of real numbers. What is, then, the system of the real numbers? We shall try to
find an answer to this question as well as some other related questions in this unit.
Also, we shall give the geometrical representation of the real numbers.' This will help
us in discussing the algebraic structure of real numbers in Unit 2 and some related
aspects in Unit 3 and Unit 4.

X7 OBJECTIVES

In this unit, therefore, you should be able to
~> recall the basic concepts of sets and functions,
= discuss the development of the system of real numbers,

—>describe the geometrical representation of real numbers.

1.2 SETS AND FUNCTIONS

Most of modern Mathematics is based on the ideas that are expressed'in the language
of sets and functions. In this section, we shall give a brjef review of certain basic
concepts of Set Theory which are quite familiar to you. These concepts will also serve
an important purpose of recalling certain notations and terms that will be used
throughout our discussion with you. Also, this will be useful as a background material
for what is going to be discussed in the subsequent units and blocks.

1.2.1 SETS

You are used to the phrases like the ‘team’ of cricket players, the ‘army’ of a country,
the ‘commiittee’ on the education policy, the ‘panchayat’ of a village, etc. The terms



Real Numbers and Functions ‘team’, ‘army’, ‘committee’, panchayat’, etc. indicate the notion of a ‘collection’ or
‘totality’ or ‘aggregate’ of objects. These are well-known examples of a set.

Therefore, our starting point is an informal description of the term ‘set’. A set is
treated as an undefined term just as a point in Geometry is undefined. However, for
our purpose we say that a set is a well-defined collection of objects. A collection is
well-defined if it is possible to say whether a given object belongs to the collection or
not.

The following are some examples of sets:

i)  The collection of all students registered in Indira Gandhi National Open
University.

ii)  The collection of the planets namely Jupiter, Saturn, Earth, Pluto, Venus,
Mercury, Mars, Uranus and Neptune.

‘iii)  The collection of all the countries in the world. (Do you know how many
countries are there in the world?)

iv)  The collection of numbers 1, 2,3, 4 .....

If we consider the collection of tall persons or beautiful ladies or popular leaders, then
these collections are not well-defined and hence none of them forms a set. The reason
is that the words ‘tall’, ‘beautiful’ or ‘popular’ are not well-defined. The objects
constituting a set are called its elements or members or points of the set. Generally,
sets are denoted by the capital letters A, B, C etc. and the elements are denoted by the ’
small letters a, b, c, etc. If S is any set and X is an element of S, we express it by
writing that x € S, where the symbol € means ‘belongs to’ or ‘is a member of”. If x is
not an element of a set S, we write x €S. For example, if S is the set containing I, 2,
3,40nly,then2ES and 5S¢ S. !

You know that there are two methods of describing a set. One is known as the
Tabular method and the other is the Set-Builder method. In the tabular method we
describe a set by actually listing all the elements belonging to it. For example, if S is
the set consisting of all small letters of English alphabet, then we write
S={a,b,c, .. xvy,z}

If N is the set of all natural numbers, then we write

N={1,28..}
This is also called an explicit representation of a set.

In the set-builder method, a set is described by stating the property which determines
the set as a well-defined collection. Suppose p denotes this property and x is an
element of a set S. Then

S = { x: x satisfies p}. '

For gxample, the two sets S and N can be written as

S = { x: x is a small letter of English alphabet}

N = {n: n is a natural number}.

This is also called an implicit representation of a set.

Note that in the representation of sets, the elements of a set are not repeated. Also,
the elements may be listed in any nanner.

EXAMPLE 1: Write the set.S whose elements are all naturai numbers between 7 and
12 including both 7 and 12 in the tabular as well as in the set-builder forms.

SOLUTION : Tabular formis S=1{7,8,9, 10, 11, 12, }.
Set = builder formis S={nEN: 7<n < 12}.

EXERCISE 1)
(i) Write the following in the set-builder from :
A=1{2,4,6,..}.
A={L3,5 ...}
A = { Dr Rajinder Prasad, Dr Radha Krishnan, Dr Zakir Hussain,

Sh. V.V. Giri, Dr Fakhruddin Ali Ahmed, Dr Sanjiva Reddy,
12 Giani Zail Singh, Sh. R. Venkataraman. }



(n) erte the following in the tabular form:
=1 x: x is a factor of 15}.
A { x: x is a natural number between 20 and 30}.
A ={ x: x is a negative integer}.

- The following standard notations are used for the sets of numbers :

N = Set of all natural numbers
={1,23,..}
= {n: n is a natural number}
= Set of all positive integers.

Z = Set of all integers
={...—3,-2,—-1,0,1,2,3, ... }
={p:pisaninteger}.

Q = Set of all rational numbers

=.{x:x= Ep: pEZ,q€Z,q#0}.

R = Set of real numbers
= { x: X is a real number},

- 'We shall, however, discuss the development of the system of real numbers in Section
- L3,

; A set is said to be finite if it has a finite number of elements. A set is said to be infinite
- if it is not finite. We shall, however, give a mathematical definition of finite and

infinite sets in Unit 2.

Note that an element of a set must be carefully distinguished from the set consisting of
this element. Thus, for instance, you must distinguish

x, {x}, {{x} }

- from each other.

We talk of equality of numbers, equality of objects etc.

The question, therefore, arises: What is the notion of the equality of sets?
DEFINITION 1: EQUALITY OF SETS

Any two sets are equal if they are identical. Thus the two sets S and T are equal,
written as S = T if they consist of exactly the same numbers. When the two sets S and
T are unequal, we write ' ’

| 3

S#T.

It follows from the definition that S = T if and only if x € S implies x € Tand y €T

. implies y €S. Also S is different from T (S # T) if there is at least one element in one
" of them which is not in the other.

If every member of a given set S is also a member of T, then we say that S is a subset
of T or “S is contained in T, and write: ‘

SCT

or equivalently we say that “T contains S” or T is a superset of S, and Wwrite
TDOS

The relation
SCT

means that S is not a subset of T i.e. there is at least one element in T which is not in
S.

Thus, you can easily see that any two sets S and T are equal if and only if S is a subset
of T and T is a subset of S i.e.

S=T<=>SCTand TCS.

Sets and Numbers

13



Real Numbers and Functions
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HSCTbut TS, then we say that S is a proper subset of T. Note that SCSie.
every set is a subset of itself.

Another important concept is that of a set having no elements. Such a set, as you
know, is called an empty set or a null set or a void set and is denoted by ¢.

You can easily see that there is only one empty set i. e. ¢ is unique. Further ¢ is a
subset of every set.

Now why don’t you try an exercise?

EXERCISE 2)

Justify the following statements:

(i) ThesetNisa proper subset of Z.
(ii) The set R is not a subset of Q.

(iii) IfA,B, Care any three sets such that A C B,and BC C, then A C C.

So far, we have talked about the elements and subsets of a given set. Let us now recall
‘the method of constructing new sets from the given sets.

While studying subsets, we generally fix a set and consider the subsets of this set
throughout our discussion. This set is usually called the Universal set. This Universal
set may vary from situations to situations. For example, when we consider the subsets*
of R, then R is the Universal set. When we consider the set of points in the Eulidean
plane, then the set of all points in the Eulidean plane is the Universal set. We shall
denote the Universal set by X.

Now, suppose that the Universal set X is given as
X=1{1,2,3,4,5}
and
S={l1,2,3} £
is a subset of X. Consider a subset of X whose elements do not belong to S. This set is
{4, 5.
Such a set, as you know, is called the complement of S.

We define the complement of a set as follows-

DEFINITION 2: COMPLEMENT OF A SET

Let X be the Universal sct and S be a subset of X. The complement af the set S is the
set of all those elements of the Universal set X which do not belong 1o 8. It is denoted
by SCA

Thus, if S is an arbitrary set contained in the Universal Set X, then the complement of
S is the set '

S¢ = {x: x g 8},

Associated with each set S is the Power set P (S) of S consisting of all the subsets of
S. It is written as

P(S)={A:ACS).

Now try the following exercise:

EXERCISE 3)

Let X be a universal set and let S be a subset of X.
Then justify the following by suitably choosing X and S.

(i) P(o)={o}.
(i) (S°°=s.




Let us consider the sets S and T given as
$§={1,2,3,4,5}T=1{3,4,5,6,7}.

Construct a new set {1, 2, 3, 4, 5, 6, 7}. Note that all the elements of this set have been
taken from S or T such that no element of S and T is left out. This new set is called
the union of the sets S and T and is denoted by SU T.

Thus

SUT={1,2,3,4,5,6,7}. _
Again let us construct another set {3, 4, 5} . This set consists of the elements that are

common to both S and T i.e. a set whose elements are in both S and T. This set is
called the intersection of S and T. It is denoted by S M T. Thus

SNT={3,4,5).
These notions of Union and Intersection of two sets can be generalized for any

abstract sets in the following way: Note that all the sets under discussion will be
treated as subsets of the Universal set X.

DEFINITION 3: UNION OF SETS

Let S and T be given sets. The collection of all elements which belong to Sor to T is
called the Union of S and T. It is expressed as
SUT={x:x€SorxcT}

Note that when we say that x €S or x € T, then it means that x belongs to S or x
belongs to T or x belongs to both S and T.

DEFINITION 4: INTERSECTION OF SETS

The intersection S N T of the seis S and T is defined to be the set of all those elements
which belong to both S and T i.e.
SNT={x:x&S and x& T}.

Note that the sets are disjoint or mutually exclusive when S N T = ¢ i.c. when their
intersection is empty.

You can now verify (or even prove) by means of examples the following laws of union
and intersection of sets given in the next exercise.

EXERCISE 4) :

Let A, B and C be any three sets. Then justify the following:

(i) AUB=BUA, ANB=BMN A (Commutative laws).

(i) AUBUC)=(AUB)UC, AN (BN C)=(ANB)N C (Associative laws).

(i) AUBNC)=(AUB)(AUC) o
ANBUC)=(ANB)UANC) }(DlStl'lblltlve laws).

(iv) (AUB) = AN B (ANB) =A°U B (De Morgan laws).

Also, you can easily see that ‘
AUA=AANA=AAUG=A,ANG=¢. v

Given any two sets S and T, we can construct a new set in such a wa: that it contains
only those elements of one of the sets which do not belong to the other. Such a set is
called the difference of the given sets. There will be two such sets denoted by S—T
and T—S. For example, let .
$=1{2,4,8,10,11}, T={1, 2,3, 4}.
Then
S—T=18,10,11}, T-S={1, 3}

Thus, we can define the difference of two sets in the following way:

DEFINITION 5: DIFFERENCE OF TWO SETS

Given: two sets S and T, the difference S-T is a set consisting of precisely those
members of S which are not in T.
Thus

S—TZ{x’:XESandXET}.

Similarly, we can define T—S.

Sets and Numbers
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Consider a collection of sets S;, where i varies over some index set J. This simply
means that to each element i € J, there is a corresponding set S;. For example, the
collection {S,, S2, S; ....} could beé expressed as {Si} €N, where N js the index set.

With the introduction of an index set, the notions of the Unidn and the Intersection
of sets can be extended to an arbitrary collection of sets. For etample

() lg, Si = {x: xES, for at least one i € J}.
(ii) ﬁ] Si = {x: xES; for all i € J}.
- 1€

(iii) (us‘):e;J = Q, s

1.2.2 FUNCTIONS

Let S be the set of all books in'IGNOU library and let N be the set of all natural
numbers. Assign to each book the number of pages the book contains. Here each
book corresponds to a unique natural number. In other words, there is a
correspondence between the books and the natural numbers i.e. there is arule or a
mechanism by which we can associate to each book one and only one-natural number.
Such a rule or correspondence is named as a function or a mapping andl is denoted by
) i

DEFINITION 6: FUNCTION

Let S and T be any two non-empty sets. A function f from S to T denoted as

f:S= Tis a rule which assigns to each element of the set S, a unique element ip the
set T.

The set S is called the domain of the function f and T is called its Co-domain. If an
element x in S corresponds to an element y in T under the function f, then y is called
the image of x under f. This is expressed by writingy = { (x). The set {f(x): xES}
which is a subset of T is called the -range of f. If Range of f = Co-domain of f,
then f is called onto or surjective function; otherwise f is called an inta fyhction.

Thus, a function f: S— T is said to be onto if the range of S is equal g0 its
codomain T.

Suppose S =1{1,2,3,4,}and T={1, 2, 3, 4, 5, 6} and f:S— T is defined by
f(n)=n+1¥n€ES. Then the range of f = {2, 3, 4, 5}. This shows hat f is an into
function. On the other hand if S = {1, 2, 3,4}, T = {1,4,9, 16} and 4 £: S— T is
defined by f(n) = n? then f is onto. You can verify that the range of f is, in fact, equal
toT.

Refer back to the example on the books in IGNOU. It 15 just piossible that two books
may have the same number of pages. If it is so, then urder this function, two different
books shall have the same natural number as their image. However if for a function
apy two distinct elements in the domain thave distinct images in the co-domain, then
the function is called one-one or injective.

Thus a function f is said to be ohe-one ifdistinét elements in the domain of f have
distinct images or in other words, if f(x1) = f(x)=>x1=x
for any x;, x; in the domain of f.

A function which is one-one and onto, is called a bijection or a 1-1 correspondence.

EXAMPLE 2: (i) Let S={1,2,3} and T = {a, b, c} and a, let f: S= T be defined as
(1) = f(2) = b, £(3) = ¢. Then f is one-one and onto.

(ii) Let N={1,2,3,4 ...} and f: N— N is defined as f(n) = n + 1. As 1 does not
belong to the range of {, therefore f is not onto. However, f is one-one.

(ifi) LetS ={1,—1,2,3,—3}and let T =1, 4,‘ 9}. Define f: S— T by f (n) = n”
Vn € S. Then f is not one-one as (1) = ft—1) = 1, however { is onto.

DEFINITION 7: IDENTITY FUNCTION

Let S be any non-empty set. A function f: S— S defined by f(x) = x for each x in S is
called the identity function. )

It is generally denoted by 'S. It is easy to see that 'S is one-one and onto.



DEFINITION 8: CONSTANT FUNCTION

Let S and T be any two non-empty sets. A function f: S— T defined by f(x) = c for
each x in S, where c is a fixed element of T, is called a constant function.

For example f: SR defined as f(x) = 2, for every x in S, is a constant function. Is this
function one-one and onto? Verify it.

DEFINITION 9 : EQUALITY OF FUNCTIONS

Any two functions with the same domain are said to be equal if for each point of their
domain, they have the same image. Thus if f and g are any two functions defined on
an non-empty set S, then

f=gif {(x) = g(x), ¥ xiES.

In other words, f =g if/f and /g are identical.

Let us now discuss another important concept-in this section. This is about the
composition or combination of any two functions. Consider the following situation:

Let 8={1,2,3,4}, T=1{1,4,9,16}, N=1{l, 2, 3, 4 ...} be any three sets. Letf:S— T
be defined by |f(x) = x> ¥ x/ES and'g: T— N be defined by g(x)=x + 1, |I¥x ET.
Then, by the function f, an element x €S is mapped to f(x) = x’. Further by the
function g the element f(x) is mapped to f(x) + 1 = x> + 1. Denote this as g(K(x)).
Define a function h: $— N by h(x) = g (f(x)). This function h maps each x in S to
some unique element g(f(x)) = x*+1 of N. The function h is called the composition or
the composite of the functions f and g. Thus, we have the following definition:

DEFINITION 10: COMPOSITE OF FUNCTIONS

Let f: S~ T and g: T~ V be any two functions. A function h: S— V denoted as h =
‘g o I and defined by

h(x) = (g - ) (x) =(f(x)),'¥ xE S
is called the composite of f and g.

Note that the domain of the composite function is the set S and its Co 7231 is .
set V.The set T which contains the range of f is equal to the domain of g.

But in general, the composition of the two functions is meaningful whenever the range
of the first is contained in the domain of the second. P
EXAMPLE3: LetS=T=V-{1,2,3,4..}. Define

f(x = 2x and g(x) = x + 5. Then

‘gof” is defined as (gof) (x) = g(f(x)) = g(2x) = 2x + 5.

Note that we can also define fog the composite of g and f.
Here (fog) (x) = f(g(x)) = f (x+5) = 2 (x+5) = 2x + 10.
Also (fog) (1) = 12 and (gef) (1) = 7.

This shows that ‘fog’ need not be equal to ‘gof".

LetS={1,2,3,}and T=1{a, b,c}. Let f: S~ T be f(1) = a, f (2) = b, f(3) = c. Define
a function g: T S as g(a) = 1, g(b) = 2 and g (c) = 3. Under the function g, the
element f(x) in T is taken back to the element x in' S. This mapping g is:called the
inverse of f and is given by g(f(x)) = x for each x in S. ¥5: may : ~te that f(g (a)) = a,
f (g(b)) = b and f(g)c)) = c. Thus, we have the following definitio..

DEFINITION 11: INVERSE OF A FUNCTION

Let S and T be two non-empty sets. A function f: S — T is said to bi. “.av .rtible if
there exists a function g: T — S such that
(gef)(x)=xforeachxinS

and
(fog)(x)=xTforeachxinT.

In this case g is said to be the inverse of f and we write itas g =1 ™'
You may ask: Do all functions possess inverses?
No, all functions do not posses: inverses. For example, let S = {1, 2, 3} and
T=1{a,bl. Iff: S — T is defined as f{1) = f(2)= a and f(3) = b, then f is not
invertible. For if g: S — T is inverse of 1, then

(- D()=gf1))= ga)
and (& * D (2) 2(2)) = g(a).

Therefore
1 =2=g(a).
which is absurd.

Sets and Numbers



Real Numbers and Functions This raises another question : Under what conditions a function has an inverse? If a
functionf: S — Tis one-one and onto, then it is invertible. Conversely, if f is
invertible, then f is both one-one and onto. Thus if a function is one-one and onto,
then it must have an inverse.

1.3 SYSTEM O-F REAL NUMBERS

You are quite familiar with some number systems and some of their propemes You
will, perhaps recall the followmg propemes

(i) Any number multiplied by zero is equal to zero,

(i) the product of a positive number with a negative number is negative,

(iii) the product of a negative number with a negative number is positive
among others.

To illustrate these properties, you will most likely use the natural numbers or integers
or even rational numbers. The questions, which begin to arise are: What are these
various types of numbers? What properties characterise the distinction between these
various sets of numbers?

In this section, we shall try to provide answers to these and many other related
questions. Since we are dealirig with the course on Real Analysis, therefore we confine
our discussion to the systgm of real numbers. Nevertheless, we shall make you peep
into the realm of a still larger class of numbers, the so called complex numbers.

The system of real numbers has been evolved in different ways by different
mathematicians. In the late 19th Century, the two famous German mathematicians
Richard Dedekind [1815-1897] and George Cantor [1845-1918] gave two independent
approaches for the construction of real numbers. During the same time, an Italian
mathematician, G. Peano [1858-1932] defined the natural numbers by the well-known
Peano Axioms. However, we start with the set of natural numbers as the foundation
and build up the integers. From integers, we construct the rational numbers and then
through the set of rational numbers, we reach the stage of real numbers. This
development of number system culminates ipto the set of complex numbers. A
detailed study of the system of numbers leads us to a beautiful branch of Mathematics
-namely The Number Theory, which is beyond the scope of this course. However, we
shall outline the general development of the system of the real numbers in this section.
This is crucial to understand the characterization of the real numbers in terms of the
algebraic structure to be discussed in Unit 2. Let us start our discussion with the
natural numbers.

1.3.1 NATURAL NUMBERS

The notion of a number and its counting is so old that it is difficult to trace its origin.
It developed much before the time of even the recorded history that its manner of
development is based on conjectures and guesses. The mankind, even'in the most
primitive times had some number sense. The man, at least, had the sense of
recognizing ‘more’ and ‘less’, when some objects were added to or taken out from a
small collection. Studies have shown that even some animals possess such a sense.
With the gradual evolution of society, simple counting became imperative. A tribe
had to count how many members it had, how many enemies and how many friends. A
shephard or a cowboy found it necessary to know if his flock of sheep or cows was
decreasing or increasing in size. Various ways were evolved to keep such a count.
Stones, pebbles, scratches on the ground, notches on a big piece of wood, small sticks,
knots in a string or the fingers of hands were used for this purpose. As a result of
se¥eral refinements of these counting methods, the numbers were expressed in the
written. symbols of various types called the digits. These digits were written differently
according to the different languagues and cultures of the societies. In the ultimate
development, the numbers denoted by the digits 1, 2, 3, ... became universally
acceptable and were named as natural numbers.

Different theories have been advanced about the origin and evolution of natural
numbers. An axiomatic approach, as evolved by G. Peano, is often used to define the

Leopold Kronecker natural numbers. Some mathematicians like L. Kronecker [1823-1891] have remarked
18 that the natural numbers are a creation of God whiie all else is the work of man.
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However, we shall not go into the origin of the natural numbers. In fact, we accept - Sets and Numbers
that the natural numbers are a gift of nature to the mankind.

We denote the set of all natural numbers as
={1,213,..}

One of the basic properties of these numbers is that there is a starting number J Then
for each number there is a next number. This nextness property is an important idea
that you may find fascinating with the natural numbers. You may think of any big
natural number. Yet, you can always tell its next number. What’s the next number
after-forty nine? After seventy seven? After one hundred twenty three? After three
thousand and ninety nine? Thus you have an endless chain of natural numbers.

Some of the basic properties of the natural numbers are concerning the well-known
fundamental operations of addition, multiplication, subtraction and division. You
know that the symbol ‘+” is used for addition and the symbol *." is used for
multiplication. If we add or multiply any two natural numbers, we again get natural
numbers. We express it by saying that the set of natural numbers is closed with
respect to these operations.

However, if you subtract 2 from 2, then what you get is not a natural number. It is a
number which we call zero denoted as ‘0°. The word zero in fact is a translation of the
Sanskrit ‘shunya’. It is universally accepted that the concept of the number zero was
given by the ancient Hindu mathematicians. You come across with certain concrete
situations indicating the meaning of zero. For example the temperature of zero
degrees is certainly not an absence of temperature.

After having fixed the idea of the number zero, it should not be difficult for you to
understand the notion of negative natural numbers. You must have heard the weather
experts saying that the temperature on the top of the hills is minus 5 degrees written
as —5°. What does it mean? The simple and straight explanation is that —5 is the
negative of 5 i.e. —5 is a number such that 5+ (—5) = 0. Hence —5 is a negative
natural number. Thus for each natural n, there is a unique number —n, called the
negative of n such that

n- (—n)=0
1.3.2 INTEGERS ,

You have seen that in the set N of natural numbers, if we subtract 2 from 2 or 3 from
2, we do not get back natural numbers. Thus set of natural numbers is not closed with
respect to the operation of subtraction. After the operation of subtraction is
introduced, the need to include 0 and negative numbers becomes apparent. To make
this operation valid, we must enlarge the system of natural numbers, by including in it
the number 0 and all the negative natural numbers. This eniarged set consisting of all
the natural numbers, zero and the negatives of natural numbers, is called the set of
integers. It is denoted as

Z={. 10123....}.

Now you can easxly venfy that the set of integers is closed with respect to the
operations of addition, multiplication and subtraction.

The integers 1. 2, 3 .... are also called positive integers which are in fa:.t aatniral
numbers. The integers —1, —2, —3,.... are called negative integers which aie actually
the negative natural numbers. The number 0, however, is neither a posit.ve integer nor
a negative one. The set consisting of all the positive integers and 0 is called the set of -
non-negative integers. Similarly we talk of the set of non-positive integers. Can you
describe it?

1.3.3 RATIONAL NUMBERS

If you add or multiply the integers 2 and 3, then the result is, of course, an integer in
each case. Also if you subtract 2 from 2 or 2 from 3, the result once again in each
case, is an integer. What do you get, when you divide 2 by 3?7 Obviously, the result is
not an integer. Thus if you divide an integer by a non-zero integer, you may not get
an integer always. You may get the numbers of the form

1 1 -2 -4 5

-5 —» =, =, = _..soon

2 3 3 5 6

Such numbers are called rational numbers. 19
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A rational number of
form —2 or -2 is equivalently
- q —q
written as q—p where p and q

are both positive integers.

Indeed, if p were odd, then p would
be of the form p = 2k+1 for some
integer k . Accordingly, then p? = 4k’
+ 4k+1 which is obviously odd.
This contradicts the fact that p? is
even. Hence p must be even.

20

Thus the set Z of integers is inadequate when the operation of division is introduced.
Therefore, we enlarge the set Z to that of all rational numbers. Accordingly, we get a
bigger set which includes all integers and in which division by non-zero integers is

possible. Such a set is called the set of rational numbers. Thus a rational number is a

number of the form —E »q # 0, where p and q are integers. We shall denote the set of

all rational numbers by Q. Thus,

0={x= -P:pez,qez,q=0}
q

-EXERCISE 5)

Justify that
(i) Nis a proper subset of Z.
(ii) Z is a proper subset of Q.

Now if you add or multiply any two rational numbers you again get a rational

number. Also if you subtract one rational number from another or if you divide one
rational number by a non-zero rational, you again get a rational numbers in each

case. Thus the set Q of rational numbers looks to be a highly satisfactory system of
numbers in the sense that the basic operations of addition, multiplication, subtraction
and division are defined on it. However, Q is also inadequate in many ways. Let us '
now examine this aspect of Q.

Consider the equation x* = 2. We shall show that there is no rational number which
satisfy this equation. In other words, we have to show that there is no rational
number whose square is 2. We discuss this question in the form of the following
example:

EXAMPLE 4 : Prove that there is no rational number whose square is 2.

SOLUTION :If possible, suppose that there is a rational number x such that x> = 2. Sinc
X is a rational number, therefore x must be of the form

X = —R’pEZ,qEZ,q?éO.
q

. . 3 .
Note that the integers p and q may or may not have a common factor. We assume
that p and q have no common factor except 1.

Squaring both sides, we get

Then we have

) p2 =2 qz‘ '
This means that p® is even and hence.p is.even (verify it). Therefore, we can write
p = 2k for some integer k. Ac¢ordingly, we will have
p’ =4k’ =2¢’
or

q> = 2k%. -

Thus p and q are both even. In other words, p and q have 2 as a common factor. This
contradicts our supposition that p and q have no common factor.

Hence there is no rational number whose square is 2.
Why don’t you try the following similar exercises?

EXERCISE 6)
Show that there is no rational number whose square is 3.

EXERCISE 7)

There is no rational number x such that x’=5
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EXERCISE 8) Sets and Numbers

Use the argument of Example 6 to show that there is no rational number whose square
is 4 and show where does the proof fail.

Thus you have seen that there are numbers which are not rationals. Such numbers are
called irrational. In other words, a number is irrational if it cannot be expressed as
P/q, pEZ,qEZ, q#0. In this way, \/2, \/3. V5 etc. are irrational numbers. In fact,
such numbers are infinite.: Rather, you will see in Unit 2 that such numbers are even
uncountable. Also you should not conclude that all irrational numbers can be
obtained in this way. For example, the irrational numbers e and 7 are not of this
form. We denote by I, the set of all irrational numbers.

Thus we have seen that the set Q is inadequate in the sense that there are numbers
which are not rationals. :

A number which is either rational or irrational is called a real number. The set of real
numbers is denoted by R. Thus the set R is the disjoint Union of the sets of rational
and irrational numbersi.e. R=QU L, QNI = ¢.

Now in order to visualise a clear picture of the relationship between the rationals and
irrationals, their geometrical representation as points on a line is of great help. We
discuss this in the next section.

1.4 THE REAL LINE

Draw a straight line L as shown in the Figure 1.
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Choose a point O on L and another point P, to the right of O. Associate the number
0 (zero) to the point O and the number 1 to the point P,. We take the distagce
between the points O and P, as a unit length. We mark a succession of points P,, Ps,
... to the right of P, each at a unit distance from the preceding one. Then associate
the integers 2, 3, .... to the points P,, Ps, respectively. Similarly, mark the points P-,,
P, ... to the left of the point O. Associate the integers — 1, — 2, .... to the points P-j,
P-, ... Thus corresponding to each integer, you have associated a unique point of the
line L.

Now associate every rational number to a unige point of L. Suppose you want to

associate the rational number % to a point on the line L. Then % =2X % i.e. one

unit is divided into seven parts, out of which 2 are to be taken. Let uz sée how you can
do it geometrically 4

|

Fig. 2 21
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Through O, draw a line O M inclined to the line L. Mark the points A1, A; .... A7 on
the line OM at equal distances. Join P, A;. Now if you draw a line through A,
paraliel to P, A; to meet the line L in H. Then H corresponds to the rational

number -_2,— ie. OH = 2/7.

You can do likewise for a negative rational number. Such points, then, will be to the
left of O.

EXERCISE 9) 3
Give the geometrical representation of =

By having any line through O, you can see that the point P does not depend upon

chosen line OM. Thus you have associated every rational number to a unique point
on the line L.

. Now arises the important question:

Have you used all the points of the line L while representing rational numbers on it?

The answer to this question is No. But how? Let us examine this.

At the point P, draw a line perpendicular to the line and mark A such that P, A =1
unit. Cut off OB = OA on the line as shown in the Figure 3.

A

P P 0 P, B P,
—

Fig. 3

Then B is a point which correspond to a number whos~ square is 2. You have already
seen that there is no rational number whose square is 2. In fact, the length OA = /2
by Pythagorus Theorem. In other words, the irrational number /2 is associated with
the point B on the line L. In this way, it can be shown that every irrational number
can be associated to a unique point on the line L.

Thus, it can be shown that to every real number, there corresponds a unique point on
the line L. In other words, all the real numbers are represented as points on a line. Is
the converse true? That is to say, does every point on the line correspond to a unique
real number? The very assumption that this happens i.e. every point on the line
corresponds to a unique real number is known as the Continuoum Hypothesis or
Hypothesis of the Continuoum. Therefore, hence onwards, we shall say that every real
number corresponds to a unique point on the line and conversely every point on the
line corresponds to a unique real number. In this sense, the line is called the Real
Line.

Now let L be the real line.

[} r+s

]
< >
H \ | '
o B A C
=
] ]
< - —!

Fig. 4



We may define addition (+) and multiplication (.) of real numbers geometrically as ,Sets and Numbers
follows:

Suppose A represents a real number r and B represents a real number s so that OA =
r and OB = s. Shift OB so that O coincides with A. The point C which is the new
position of B is defined to.represent r+s. See the Figure 4.

The construction is valid for positive as well as negative values of r and s. A real
number r is said to be positive if r corresponds to a point on the line L on the right of
the point O. It is written as r > 0. Similarly, r is said to be negative if it corresponds
to a pnint on the left of the point O and is written as r < 0. Thus if r is a real number,
then either r is zero or r is positive or r is negative i.e. eitherr=0orr >0 or r <0.
You should try the following exercise:

EXERCISE 10) .
Construct r—s, r+ s and —r—s on the real line.

What about the product r s of two real numbers r and s? We shall consider the case
when r and s are both positive real numbers. M

Dj

o _Q A P t
¢ ‘ Fig.§

Lo ST —>
Though O draw some other line OM. On L, let A répresent the real number s. On
OM take a point D so that OD = r. Let Q be a point on L so that OQ =1 unit. Join
Q D. Through A draw a straight line parallel to Q D to meet OM at C. Cut off OP on
the line equal to OC. Then P represents the real number r.s.

Suppose s is a positive real number and r is a negative real number. Then, there exists
a number r such that r = —r’ where r’ is a positive real numbers. Therefore, the
product rs can be defined on L as

ts = (— r)s = —(r's).

Similarly you can state that rs = r(*~s") = —(rs’) where s is negative and s = —s’ for
some positive s’, while r is positive,

If both r and s are negative and r = —r’ and s = —-s’ where r’ and s’ are positive real
numbers, then we define ‘
1s =r1's’= (—r1) (—s).

We can also similarly define 0. r = r. 0 = 0 for each real number r.

1.5 COMPLEX NUMBERS

So far, we have discussed the system of real numbers. We have, yet, another system of
numbers. For example, if you have to find the square root of a negative real number
say —5, then you will write at as \/_—T . \/5— You know that \/3— is a real number but
what about \/—1? Again you can verify that a simple equation x>+ 1 = 0 does not
have a solution in the set of real numbers because the solution involves the square
root of a negative real number. As a matter of fact, the problem is to investigate the
nature of the number \/_—_l which we denote by such that i* = —1. Let us discuss the
following example to know the nature of i.
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EXAMPLE 5: Show that i is not a real number.

We claim that i is not a real number. If it is so, then eitheri =0 ori >0 or i < Q.

If i = 0, then i* = 0. This implies that —1 = 0 which is absurd. If i > 0, then i >0
which implies that — 1 > 0. This is also absurd. Finally, if i <0, then againi* >0
which implies that — 1> 0. This again is certainly absurd. Thus i is not a reai
number. This number i’ is called the imaginary number. The symbol ‘i’ is called ‘iota’
in Greek language. This.generates another class of numbers, the so called complex
numbers.

The basic idea of extending the system of real numbers to the system of complex
numbers arose due to the necessity of finding the solutions of the equations. like x* +
=0 or x’ + 2 =0 and so on. The first contribution to the notion of such a number
was made by the most celebrated Indian Mathematician of the 9th century, Mahavira,
who showed that a negative real number does not have a square root in the set of real

numbers. But.it was an Italian mathematician, G. Cardon [1501-1576] who used
imaginary numbers in his work without bothering about their existence. Due to
notable contributions made by a large number of mathematicians, the system of
complex numbers came into existence in the 18th century. Since we are dealing with
real numbers, therefore, we shall not go into the detailed discussion of complex
numbers. However, We shall give a brief introduction to the system of complex
numbers. We denote the set of complex numbers as

C={z=a+i b, a and b real numbers}
In a complex number, z=a + i b, a is called its real part and b is called its imaginary
part.

Any two complex numbers z; = a, + i by and z; = a, + i b; are equal if only if their
corresponding real and imaginary parts are equal.

Ifzi=a +ibiandz;=a>+ib, are any two complex numbers, then we define
addition (+) and multiplication (.) as follows:
Zi +12’——(a| +az)+l(b1+b2)

1.2 = (a;az - blbz) +i (alb: + azbz)-

The real numbers represent points on a line whjle complex numbers are identified as
points on the plane.

EXERCISE 11)
Justify that R is a subset of C.

Before concluding this section, we would like to mention yet another classification of
numbers as enunciated by some mathematicians. Consider the number V2. This is an.
example’of what is called an Algebraic Mumber because it satisfies the equation

X’ —2=0.

A number is called an Algebraic Number if it satisfies a polyncmial equation
ax"+ax""'+ L ta- x+a+a =0

where the coefficients aq, ay, a,, .... a, are integers, a, # 0 and n > 1. The rational
numbers are always algebraic numbers. Thé numbers defined in terms of the square
root etc. are also treated as algebraic numbers. But there are some réal numbers which
are not algebraic. Such numbers are called the Transcendental numbers. The numbers
m and e are transcendental numbers.

You may think that the operations of algebraic operations viz. addition,
multiplication, etc. are the only aspects to be discussed about the set of real numbers.
But certainly there are some more important aspects of the set of real numbers as
points on the real line. We shall discuss these aspects in Unit 3 namely the point sets
of the real line called also the topology of the real line. But prior to that, we shall
discuss the structure of real numbers in Unit 2.

We conclude this unit by talking briefly about an important hypothesis-closely linked
with the system of natural numbers. This is called the Principle of Induction.



1.6 MATHEMATICAL INDUCTION

The Principle of Induction and the natural numbers are inseparable. In Mathematics.
we often deal with the proofs of various theorems and formulas. Some of these are
derived by the direct proofs, while some others can be proved by certain indirect
methods. Consider, for example, the validity of the following two statements:

(i) The number 4 divides 5" — 1 for every natural number n.

(i) The sum of the first n natural numbers is nnt ) le.

n(n+ 1)
2

In fact, you can provide most of the verifications for both statements in the following
way:

1+2+3+...+n=

For (i), if n = 1, then 5" — 1 = 5 —1 = 4 which is obviously divisible by 4;
if n = 2, then 5 —1 = 24, which is also divisible by 4;
if n = 6, then 5* —1 = 15624, which is indeed divisible by 4.
Similarly for (i) if n = 10 then 142+ .... +10 = 55, while the formula
‘ M = 55 whenn = 10.

Again, if n = 100, then also you can verify that in each way, the sum of the
first hundred natural numbers is 5050 i.e.
_0+D 5050 for n = 100.

What do these statements have in common and what do they indicate? The answer is
obvious that each statement is valid for every natural number.

Thus to a great extent, a large number of theorems, formulas, results etc. whose
statement involves the phrase, “for every natural number n” are those for which an
indirect proof is most appropriate. In such indirect proofs, clearly a criterion giving a
general approach is applied. One such criterion is known as the criterion of
Mathematical Induction. The principle of Mathematical Induction is stated (without
proof) as follows: '

Principle of Mathematical Induction

Suppose that, for each n€ N, P (n) is a statement about the natural number n. Also,
suppose that

(i) P(1)is true, _

(i) if P(n) is true, then P(n+1) is also true.

Then P(n) is true for every n €N.
Let us illustrate this principle by an example:
EXAMPLE 6: The sum of the first n natural numbers is _n(ntl)

SOLUTION: In other words, we have 1o show that for each n €N,

1+2+3+..+n= L‘%ﬂ)_
Se=1+2+3+...+n
= Xk
k=1
Let P(n) be the statement that

g = _n@tl)

We, then, have S; = 1 and

1(12+l) = 1. Hence P(1) is true.

This proves part (i) of the Principle of Mathematical Induction. Now for (ii), we have

‘Sets and Numbers
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Real Numbers and Functions to verify that if P(¥) is true, then P(n+1) is also true. For this, let us assume that P(n)
is true and establisn that P(n+1) is also true. Indeed, if we assume that

S, = m{n+1) )
2

then we claim thay

Spy = (n+1) (N=2)
2
Indeed
Sent =1 +2+3+....+n+(n+l)
=Sn + (n+])

l

% n(n+1) + (n+1)
(n+1) (n+2)
2
Thus P(n + 1) is also true.

By using the Prin¢iple of: Induction, you can prove that
(i) the sum of the squares of the first n natural numbers is

é n(n+1)(2n+ 1),
(i)  the sum of the cubes of the first n natural numbers is

| 2
-n"(n+1).
2 ( )

1.7 SUMMARY

We have recalled some of the basic concepts of Sets and Functions in section 1.2. A
set is a well-defined collection of objects. Each object is an element or a member of
the set. Sets are generally designated by capital letters and the members by small
letters enclosed with braces. There are two ways to indicate the members of a set. Thy:
tabular method or listing method in which we list each element of a set individually
and the set-builder method which gives a verbal description of the elements or a
property that is common to all the ¢lements of a set.

A set with a limited number of elements is a finite set. A set with an unlimited number
of elements is an infinite set. A set with no elements is ¢ nuil-set. A set S is a subset of
aset T if every element of S is in T. The set S is said to he a proper subset of T if
every elemen. of S is in T and there is at-least one element of T which does not belong
to S. The sets S and T are equal if S is a subset of ¥ and T is a subsét of S. The null
set is a subset of every set and every set is a subset of itself.

The Union of two sets S and T, written as S U T, includes all the elements of S, T or
both S and T. The intersection of S and T, written as S N T, includes all the elements
that are common to both S and T. The con'lplement of aset S in a Universal set X is
the set denoted as S° and it consists of all those elements of X which do not belong to
S. The laws with respect to Union. Intersection and Complement have been asked in
the form of exercises. Also, these notigns have been extended to an arbitrary family of
sets.

A function f: S~ T is a rule by which you can associate to each element of S, a
unique element of T. The set S is the domain and the set T is the co-domain of f. The
set {f(x): XE€ S} is the Range of f where f(x) is an image of x under f. The function f is
one-one if f(x,) = f(x;) => x, = x, for any xi, Xz in the domain of f. It is said to be
onto if the range of f is equal to the domain of f. A function f is said to be a one-one
correspondence if it is both one-one and onto. A function i: § — S defined by
A(X)=x, ¥ x € Sis called an identity function, while a function f: § — T is said to be
constant if f(x) = ¢ ¥ x € S, ¢ being a fixed element of T.

Any two functions with the same domain are said to be equal if they have the same

image for each point of-the domain. The composite of the functions f:.S — T and

g: T — Vs a function denoted as ‘g0 S — V and defined by (g o f) (x) = g (f(x)).
26 The function f: S — T is said to be invertible if there exists a function g: T —> S such

‘e



that both ‘g o " and ‘f o g’ are identity functions. Also, a function is invertible if it is
both one-one and onto. The inverse of fexists if fis invertible and it is denoted as ',

In Section 1.3, we have discussed the development of the system of numbers starting
from the set of natural numbers. These are the following:

Natural Numbers (Positive Integers): N =1{1,2 4. .}

Integers: Z =1{...3,—2,-1,0,1,2,3 ..}

Rational Numbers: Q = {Ep i pE1z,q€Z, q # 0}

Irrational Numbers |

Real Numbers: R = Disjoint Union of Rational and Irrational Numbers
R=QUIL QNI=¢ ‘

Complex Numbers C={z=x+iy: x €ER,yER}, i=v/—1I.

A mathematical development of the number systems is depicted in Figure 6:

Complex Numbers

Real Numbers

Rational Numbers

Integers

Naturals

A mathematical development of numbers systems
Fig. 6
I Section 1.4, we have discussed the geometrical representation of the real numbers
and stated the continuum Hypothesis. According to this, every real number can be
represented by a unique point on the line and every point on the line corresponds to a
unique real number. In view of this, we call this line as the Real Line.

1.8 ANSWERS/HINTS/SOLUTIONS

ED (@) A={nn€&N,niseven}.
A={n:n€EN, nis odd}.
A = {x: x is a president of India}.

Sets and Numbers
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Gi) A={l,3,5).
A=1{21,22,23,24 ... 29,).
A={-1,-2,-3 ... ;.

E2) () Eachn&N =>n E€Z but not conversely.
(i)  There exist at least one x € R such that x does not belong to Qe.g.
x=V2,
(iii) A C B implies that x €A => x €B.
B C C implies that x EB => x,€C.
which shows that x € A=>>x€ C and hence A C C.

E 3) (i)  Since ¢ is a subset of everyset, therefore, ¢ is a subset of itself and hence
P (¢) ={¢}.

(i) Any choice of S and X will serve the purpose.
E 4) Choose any three sets (say finite sets) A, B, C. You can justify the required laws.

E 5) Itis true because every natural is an integer, every integer is a rational but not
conversely i.e. every rational may not be an integer and every integer may not be
a positive integer. Give an example in each case.

E6) (i) If possible, suppose that there is a rational x such that x* = 3.

Then x> = p_; where p ©Z, q €Z, q # 0. Suppose p and q have no
common fac?or. Then

p'=3q’
which implies that p’ is divisible by 3 and hence p is divisible by 3. Indeed
if p = 3k+1, then p’ = 9k* + 6k+1 which is not divisible by 3. Hence p
must be divisible by 3 i.e. p = 3k. Then

p’ = 9K’
or

q* = 3K

Thus both p and q are divisible by 3 which contradicts the assumption that
p and q have no common factors. Hence the result.

E 7) Prove it in the same way.

2 ;
E 8) In this case p_z =4=p'= 4q2" == p’ is cven => p=2k (say) for
q

some integer k ==> 4q” = 4k’ => gz = k’. Proof fails. Give suitable arguments.

E 9)

28
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E 10)

E 11)

pa TS N
Y 7
':' r—s E
D C (6] —> B A
+s
pd N
. — > ~ r i
pi N
< T rd
pd ~N
) -r-s 4
Fig. 8
BA =r—s
CB= —r1+s
DO = —r—s

Every real number X can be expressed as a complex number e.g. z = x+iy. But
every complex number z need not be a real number. Give an example. Think of

i=+v-1
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UNIT2 STRUCTURE OF REAL
NUMBERS

STRUCTURE

2.1 Introduction
‘ Objectives, .

2.2 Order Relations in Real Numbers
Intervals

Extended Real Numbers

2.3 Algebraic Structure

Ordered Field
Complete Ordered Field

2.4 Countability

Countable Sets
Countability of Real Numbers

2.5 Summary
2.6 Answers/Hints/Solutions

2.1 INTRODUCTION

In Unit 1 we have discussed the construction of real numbers from the rational
numbers which, in turn, were constructed from integers. In this unit, we show that the’
set of real numbers has an additional property which the set of rational numbers does
not have, namely it is a complete ordered field. The questions, therefore, that arise
are: What is a field? What is an ordered field? What does it mean for an ordered field
to be complete? In order to answers these questions we need a few concepts and
definitions e.g. those of order inequalities and intervals in R. We shall discuss these
concepts in Section 2.2. Also in this section, we shall explain the extended real

number system.
i

You know that a given set is either finite or infinite. In fact a set is finite, if it contains
just n elements where n is some natural number. A set which is not finite is called an
infinite set. The elements of a finite set can be counted as one, two, three and so on,
while those of an infinite set can not be counted in this way. Can you count the
elements of the set of natural numbers? Try it. In Secticon 2.4, we shall show that this
notion of counting can be extended in certain sense to even infinite sets.

XZZ OBJECTIVES

In this unit, you should, therefore, be able to
—> identify the order relation in the set. of real numbers and extended real number
system,

—> describe the field structure of the set of real numbers,

—> discuss the order-completeness of the set of real numbers
apply the notion of countability to various infinite sets.

2.2 ORDER RELATIONS IN REAL NUMBERS

In Section 1.3, we have demonstrated that every real number can be represented as a
unique point on a line and every point on a line represents a unique real number. This
helps us to introduce the notion of inequalities and intervals on the real line which we
shall frequently use in our subsequent discussion through out the course.

You know that a real number x is said to be pesitive if it lies on the right side of O,
the point which corresponds to the number 0 (zero) on the real line. We write it as

x > 0. Similarly, a real number x is negative, if it lies on the left side of O. This is
written as x < 0. If x = 0, then x is a non-negative real number. The real number x is
said to be non-positive if x < 0.



Let x and y be any two real numbers. Then, we say that x is greater than yif x—y>0.
We express this by writing x > y. Similarly x is less than y if x — y <0 and we write
x<y. Also x is greater than or equal toy (x = y) if x — y > 0. Accordingly, x is less
than or equal to y (x <y) if x — y < 0. Given any two real numbers x and y, exactly
one of the following can hold: :

- either () x>y
or (i) x<y
or (iii) x =y.

This is called the law of trichotomy. The order relation < has the following
properties:

PROPERTY 1:Foranyx,y,zinR,
() Hx<yandy<x,thenx=y,
(ii) fx<yany=<z thenx<z
(iii) fx<ythenx+z<y+z,

(ivy ¥x<yando<z,thenxz<yz.

The relation satisfying (i) is called anti-symmetric. It is calied transitive if it satisfies
(ii). The property (iii), shows that the inequality remains unchanged under addition of
a real number. The property (iv) implies that the inequality also remains unchanged
under multiplication by a non-negative real number. However, in this case the
inequality gets reversed under multiplication by a non-positive real number. Thus, if
x<yand z<0, then x z = yz. For instance, if z = —1, we see that

—2=24=>2(—1)=24(-1) =>-2=>—4.

EXERCISE 1)

State the properties of order relation in the set R of real numbers with respect to the
relation = (is greater than or equal to) and illustrate the inequality under
multiplication by a negative real number.

We state the following results without proof:

There lie an infinite number of rational numbers between any two distinct rational
numbers.

As a matter of fact, something more is true. 5

Between any two real numbers, there lie infinitely many rational (irrational) numbers.
Thus there lie an infinite number or real numbers between any two given real
numbers,

2.2.1 INTERVALS

Now that the notion of an order has been introduced in R, we can talk of some
special subsets of R defined in terms of the order relation. Before we formally define
subset, we first introduce the notion of “betweenness’, which we have already used
intuitively in the previous results. If 1, 2, 3 are three real numbers, then we say that 2
lies between 1 and 3. Thus, in general, if a, b and ¢ are any three real numbers such
that a < b < c then we say that b lies ‘between’ a and c. Closely related to notion of
betweeness is the concept of an interval. : :

DEFINITION 1: INTERVAL

An interval in R is an nonempty subset of R which has the property that, whenever
two numbers a and b belong to it, all numbers between a and b also belong to it.

The set N of natural numbers is not an interval because while 1 and 2 belong to N,
but 1.5 which lies between 1 and 2, does not belong to N.

We now discuss various forms of an interval.

Leta,bER witha<b.

(i) Consider the set {x €R: a < x < b}. This set is denoted by [a, b], and is called
a closed interval. Note that the end points a and b are included in it.

(i) Consider theset {xER:a < x < b}. This set is denoted by Ja, b[, and is called an
open interval. In this case thé end points a and b are not included in it.

Structure of Real Numbers
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Real Numbers and Functions (iii) The interval xER:a<x< b} is denoted by [a, b{.

(iv) The interval {x €R : a < x < b} is denoted by Ja, b).
You can see the graph of all the four intervals in the Figure 1.

i
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-

Y
/11117777777

[
S R

- —

T
/11171717777 |

- .

Fig. 1
Intervals of these types are called bounded intervals. Some authors also call them

finite intervals. But remember that these are not finite sets. In fact these are infinite
sets except for the case [a, a] = {a}. s

You can easily verify that an open interval Ja, b{ as well as ]Ja, b] and [é, b[ are alway
contained in the closed interval | [a, b].

EXAMPLE 1: Test whether or not the union of any twe intervals is an interval.

SOLUTION : Let {2, 5] and [7, 12] be two intervals. Then [2,5]U[7, 12]is not an
interval as can be seen on the line in Figure 2.

B S Y
S I S I

1
T ]

Fig. 2

4

However, if you take the intervals which are not disjoint, then the union is an interval
For example, the union of [2, 5] and [3, 6] is [2, 6] which is an interval. Thus the
union of any two intervals is an interval provided the intervals are not disjoint.

32 . Now try the following exercise:



EXERCISE 2)

Give examples to show that the intersection of any two intervals may not be an
interval. What happens, if the two intervals are not disjoint? Justify your answer b+
an example.

2.2.2 EXTENDED REAL NUMBERS

The notion of the extended real number system is important since we need it in this
unit as well as in the subsequent units.

You ar¢ quite familiar with the symbols + ¢¢ and —°. You often call these symbols as
‘plus infinity’ and ‘minus infinity’ respectively. The symbols +o° and —° are extremely
useful. Note that these are not real numbers.

Let us construct a new set R by adjoixﬁng —oo and +<° to the set R and write it as
R=RU {—oo, +fo}.

Let us extend the order structure to R by a relation < as —oo < x < + % for every

x € R. Since the symbols —° and +o° do not represent any real numbers, you
should, therefore, not apply any result stated for real numbsers, to the symbols + «
and —. The only purpose of using these symbols is that it becomes convenient to
extend the notion of (bounded) intervals to unbounded intervals which are as follows:

Let a and b be any two real numbers. Then we adopt the following notations:

[, o = {x €|R: x = a}

Ja, o[ ={xER: x> 1a}

}=, bl ={xER: x < b}

T}, b =x €ER: x < b}

], 09 = xER: —o0 < x < o0},

You can see the geometric representation of these intervals in Figure 3.

aja<x + o

— o — oo << X< 0o o
Fig. 3 -
All these unbounded intervals are also sometimes called infinite intervals.

You can perform the operations of addition and multiplication involving —e° and +°
in the following way: For any x ER, we have

X+ (+®) =+,
x+(—oo)=—co,
X.(+®)=+0o, ifx>0
X.(te)=—00 jfx<0
X.(—®)=—0, ifx>0

Structure of Real Numbers
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Richard Dedekind

o TEE "

X.(—°) =+ fx<0
00+ = 400, 00 —00 = —o0

oo, (-—co) = —o0, (—oo) (-—co) =4 oo,

Note that the operations o —co, (.00, =z are not defined.
- -}

2.3 ALGEBRAIC STRUCTURE

During the 19th Century, a new trend emerged in Mathematics to use algebraic
structures in order to piovide a solid foundation for Calculus and Analysis. In this
quest, several methods were used to characterise the real numbers. One of the
methods was related to the least upper bound principle used by Richard Dedekind
which we discuss in this section.

This leads us to the description of the real numbers as a complete ordered field. In
order to define a complete ordered field. we need some definitions and concepts.

- You are quite familiar with the operations of addition and multiplication on numbers,

union and intersection on the subsets of a universal set. For example if you add or
multiply any two natural numbers, the sum or the product is a natural number. These
operations of addition or multiplications on.the sets of numbers are examples of a
binary operadon on a set. In general, we can define a binary operation on a set in the
following way:

DEFINITION 2: BINARY OPERATION

Given a non-empty set S, a binary operation on S is a rule which associates with each
pair of elements of S, a unique element of S.

We denote this rule by symbols such as . *, +. etc.

By an Algebraic Structure, we mear, a non-empty set together with one or more

binary operations defined on it. A field is an algebraic structure which we define as
follows:

DEFINITION 3: FIELD STRUCTURE

A field consists of a non-empty set F together with two binary operations defined on
it, denoted by the symbols ‘+’ (addition) and i.’ (multiplication) and satisfying the
following axioms for any elements x, y, z of the set F.,

A x+y€F (Additive Closure)
Az xt(y+D) = (x+y) +z (Addition is Associative)
Az x+ty=y+x (Addition is Commuuative)
A4 There exists an element in F, denoted by ‘0’ and (Additive Identity)

called the zero or the zero element of F
such that x+ 0 =0+x=x ¥ x €F.
As: For each x €F, there exists an element -x € F with (Additive Inverse)
the property '
xH(—x) = (—x)+x =0 o
The element —x is called additive inverse of x.

M, xy€F ; (Multiplicative Closure)
M: (xy)z=x (y.z) (Multiplication is Associative)
M; xy=yx (Multiplication is Commutative)
M4 There exists an element 1 different from .
0 called the unity of F, such that : (Muitiplicative Identity)
lLx=x.1=x¥xEF
Ms Foreach x €F, x # 0, there (Multiplicative Inverse)
exists an element x' € F such that
xx'=x'x=1

The element x™' is called the multiplicative inverse of x.
D: x.(ytz)=xy+xz
(Multiplication is distributive over Addition).
(x+y) .z = x.z+y.z.

Since the unity is not equal to the zero i.e. 1 3 0 in a field, therefore any field must
contain at least two elements. Note that the axioms A\ (closure under addition) and



M, (closure under multiplication) are unnecessary because the closures are implied in
the definition of a binary operation. However, we include them, for the sake of
emphasis. Now try the following exercises:

EXERCISE 3)
Show that the set {0, 1} forms a field under the operations ‘+* and °.’ defined by the
following tables:

+ e 1 .o 1
0 ) | 0 0 0
1 1 0 1 0 1
EXERCISE 4)

Show that the zero and the unity are unique in a field.

Now, you can casily verify that all the eleven axioms are satisfied by the set of
rational numbers with respect to the ardinary addition and multiplication. Thus, the
set Q forms a field under the operations of addition and multiplication, and so does,
the set R of all the real numbers.

EXERCISE 5)
Do the sets N (of natural numbers) and Z (set of integers) form fields? Justify your
answers. Also verify that the set C of complex numbers is a field.

We state (without proof) some important properties satisfied by a field. They follow
from the field axioms. Can you try?

PROPERTY 1

Foranyx,y,zinF,

xtz=ytz=>x=y,

x.0=0=0.x,

- (0x).y=—xy =x.(-y)

- (0x). (-y) = xy,

XZ=y.2, 2 # 0 =>>x =Yy,

Xy =0=2>citherx=00ry=20. s £

Thus by now you know that the sets Q, R-and C form fields under the operations of
addition and multiplication.

2.3.1 ORDERED FIELD

In Section 2:2, we defined the order relation < in R. It is easy to see that this order
relation satisfies the following properties:

PROPERTIES 2
Let x, y, z be any elements of R. Then

SawP =

O:: For any two elements x and y of R, one and only of the following holds:
(i) x<y, () y<x, (iii) x =y, '

O x<y,y<x=>x=<1z,

05 x <y => x+z < y+z,

Oux<y,0<z=>x2<y.z

We express this observation by saying that the field R is an ordered field (i.c. it
satisfies the properties 0, —-04). It is easy to see that these properties are also satisfied
by the field Q of rational numbers. Therefore, Q is also an ordered field. What about
the field C of Complex numbers? Try it yourself as an exercise.

EXERCISE 6)
Show that the field C of Complex numbers is not an ordered field.

2.3.2 COMPLETE ORDERED FIELD

Although R and Q are both ordered fields, yet there is a property associated with the
order relation which is satisfied by R but not by Q. This property is known as the
Order-Completeness, introduced for the first time by Richard Dedekind. To explain
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this situation more precisely, we need a few more mathematical concepts which are
discussed as follows:

Consider set S = {1, 3, 5, 7}. You can see that each element of S is less than or equal
to 7. That is x < 7 for each x € S. Take another set S, where § = {XER:x < |6}
Once again, you sce that each element of S is less than 18. That 1s, x < 18 for each

x € S. In both the examples, the sets have a special property namely that every
element of the set is less than or equal to some number. This number is called an

upper bound of the corresponding set and such a set is said to be bounded above.
Thus, we have the following definition:
DEFINITION 4: UPPER BOUND OF A SET

Let S C R. If there is a number u € R such that x < u for every X € S, then S is said
to be bounded above. The number u is called an upper bound of S.

EXAMPLE 2: Verify whether the following sets are bounded above: Find an upper
bound of the set, if it exists.
(i)  The set of negative integers
{—1,—2,-3,...}.
(ii) The set N of natural numbers.
(iii) The sets Z, Q and R.

SOLUTION : (i) The set is bounded above with —1 as an upper bound.
(ii) The set N is not bounded above
(iii) All the sets are not bounded above.

EXERCISE 7)

(i)  Define a set which is bounded below. Also define a lower bound of a set.

(i)  Give at least two examples of a set (one of an infinite set) which is bounded
below and mention a lower bound in each case.

(iii) Is the set of negative integers bounded below? Justify your answer.

Now consider aset S =1{2, 3,4, 5,6, 7). You can easily see that this set is bounded
above because 7 is an upper bound of S. Again this set is also bounded below because
2is a lower bound of S. Thus S is both bounded above as well as bounded below.
Such a set is called a bounded set. Consider the following sets:

Si={..—3,-2,-1,0,1,2, ...},
S:=1{0, 1,2, -},
$;=1{0,1,2,...}.

You can easily see that S, is neither bounded above nor bounded below. The set S:is

not bounded above while S; is not bounded below. Such sets are known as
Unbounded Sets. i

Thus, we can have the following definition:

DEFINITION 5: BOUNDED SETS ‘
A set S is bounded if it is both bounded ;lbove and bounded below.

In other words, S has an upper bound as well as a lower bound. Thus if S is bounded,
then, there exist numbers u (an upper bound) and v (a lower bound) such that
v=x=uforevery x €S.

If a set S is not bounded then S is called an unbounded set. Thus S is unbounded if
either it is not bounded above or it is not-bounded below.

EXAMPLE 3 : (i) Any finite set is bounded.
(ii) The set Q of rational numbers is unbounded
(iii) The set R of real numbers is unbounded
(iv) The set P = {sin x, sin 2 x, sin 3 x, .eesy SiN DX, ....} is bounded
because —1 < sin n x < 1 for every n and x.

EXERCISE 8)

Test which of the following sets are bounded above, bounded below, bounded and
unbounded.

(i)  The intervals ]a, b, [a, b], ]a, b] and [a, b{, where a and b are any two real
‘numbers.



(ii) The intervals {2, oof, }—oo, ¥, 15, [ and }—=2, 4]. Structure of Real Numbers
(ifi) The set {cos 6,cos26,cos 3 4, ......... 1
(iv) S={xER: ~a<x<a}forsomeaER.

You can easily verify that a subset of a bounded set is always bounded since the
bounds of the given set will become the bounds of the subset.

Now consider any two bounded sets say S={1,2,5,7}and T =1{2, 3,4, 6, 7, 8}.
Their union and intersection are given by

SUT={1,2,3,4,5,6,7, 8}

and
SNT=1{2,7}

Obviously S U T and S N T are both bounded sets. Yol can prove this assertion in

general for any two bounded sets.

" EXERCISE 9)

Prove that the union and the intersection of any two bounded sets are bounded.

Now consider the set of negative integers namely
S={-1,-3,—2,—4, ...}

You know that —1 is an upper bound of S. Is it the only upper bound of S? Can you
think of some other upper bound of S? Yes, certainly, you can. What about 0? The
number 0is also an upper bound of S. Rather, any real number greater than —1 is an
upper bound of S. You can find infinitely many upper bounds of S. However, you can
not find an upper bound less than —1. Thus —1 is the least upper bound of S.

It is quite obvious that if a set S is bounded above, then it has an infinite number of
upper bounds. Choose the least of these upper bounds. This is called the least upper
bound of the set S and is known as the Supremum of the set S. (The word
‘Supremum’ is a Latin word). We formulate the definition of the Supremum of a set
in the following way:

i

DEFINITION 6: THE SUPREMUM OF A SET

Let S be a set bounded above. The least of all the upper bounds of S is called the least
upper bound or the Supremum of S. Thus, if a set S is bounded above, then a real
number m is the supremum of S if the following two conditions are satisfied:

(i) mis an upper bound of S,
(ii) if k is another upper bound of S, then m = k.

EXERCISE 10)

Give an example of an infinite set which is bounded below. Show *hat it has an
infinite number of lower bourids and hence develop the concept of the greatest lower
bound of the set. : ‘

S

The greatest lower bound, in Latin terminology, is called the Infimum of a set.

Let us now discuss a few examples of sets having the supremum and the infimum:

EXAMPLE 4: Each of the intervals ]a, b{, {a, b] ]a, b], [a, b{ has both the supremum
and the infimum. The number a is the infimum and b is the supremum in each case.
In case of [a, b] the supremum and the infimum both belong to the set whereas this is
not the case for the set Ja, b{. In case of the set ]a, b}, the infimum does not belong to
it and the supremum belongs to it. Similarly, the infimum belongs to [a, b[ but the
supremum does not belong to it.

Very often in our discussion, we have used the expressions ‘the supremum’, rather

than a supremum. What does it mean? It simply means that the supremum of a set, if
it exists, is unique i.e. a set can not have more than one supremum. Let us prove it in
the form of the following theorem: r
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THEOREM 1: Prove that the supremum of a set, if it exists, is unique.
PROOF : If possible, let there be two supremums (Suprema) say m and m’ of a set S

Since m is the least upper bound of S, therefore by definition, we have
m<m’

Similarly, since m’ the least upper bound of S, therefore, we must have
m <m.

This shows that m = m’ which proves the theorem.
You can now similarly prove the following result:

EXERCISE 11)
Prove that the infimum of a set, if it exists, is unique.

In example 3, you have seen that supremum or the infimum of a set may or may not
belong to the set. If the supremum of a set belongs to the set, then it is called the
greatest member of the set. Similarly, if the infimum of a set belongs to it, then it is
called the least member of the set.

EXAMPLE S5: (i) Every finite set has the greatest as well as the least member.

(ii) ThemNhstheleutmenberMnoﬂhepaM.Determine
that number.

(iii) The set of negative integers has the greatest member but not the
least member. What is that number?

Try the following exercise:

EXERCISE 12)
Check which of the following sets have the greatest and the least member:

(i) {(x:a<x<b}.
(i) {x:a<x=<h).
(iii) {x:a < x <b}. 5
(iv) {x:a<x<b).
(V) [a,%, ] a, .
(vi) }—o0, b], ]—s, bj.

You have seen that whenever a set S is bounded above, then S has the supremum. In
fact, this is true in general. Thus, we have the following preperty of R without proof:

PROPERTY 3: COMPLETENESS PROPERTY

Every non empty subset S of R which is bohnded above, has the supremum.

Similarly, we have

Every non-empty subset S of R that is bounded below, has the infimum
In fact, it can be easily shown that the above two statements are equivalent.

Now, if you consider a non-empty subset S of Q, then S considered as a subset of R
must have, by property 2, a supremum. However, this supreraum may not be in Q.
This fact is expressed by saying that Q considered as a field in its own right is not
Order-Complete. We illustrate this observation as follows:;

Construct a subset S of Q consisting of all those positive rational numbers whose
squares are less than 2 i.e. ‘

S={x€Q:x>0,x*<2}.

Since the number I €S, therefore S is non empty. Also, 2 is an upper bound of S
because every element of S is less than 2. Thus the set S is non-empty and bounded
above. According to the Axiom of Completeness of R, the subset S must have the
supremum in R. We claim that this supremum does not belong to Q.

Suppose m is the supremum of the set S. If possible, et m belong to Q. Obviously,
then m > 0. Now either m* < 2orm’=2orm?> 2.



Case (i) When m’ < 2. Then a number y defined as

— 4+3m
34+2m
is a positive rational number and
y—m= 2@-m)
3+ 2m
Since m® < 2, therefore 2 — m”> > 0. Hence
y—m= ______3(2_m2) >0
3+2m
which implies that y > m.
Again, :
2= ( 4+ 3m )2 _y
3+ 2m
_ m’—2 )
3+ 2m)

Since m’ < 2, therefore
y—2<0ie y' <2

This shows that y € S and also it is greater than m (the supremum of ). This is
absurd. Thus the case m’ < 2 is not possible.

Case (ii) When m*> = 2.

This means there exists a rational number whose square is equal to 2 which is again
not possible, since you have already proved this in Section 1.3.

Case (iii) When m” > 2

In this case consider the positive rational number y defined in case (G). Accordingly,
we have

a2
y—m= i(—2———51--)—-<0(checkyourself)

3+2m 5
rLe.y<m.
—?
Also 2 —y* =2— (_i_+3_m ’ 2 = _i_m_z
3+2m 3+2m)

ie.2—y'<Oory’>2,
which shows that y is an upper bound of S.

Thus y is an upper bound of S which does not belong to S. At the same time y is less
than the supremum of S. This is 4gain absurd. Thus m’ > 2 is also not possible.
Hence none of three possibilities is true. This means there is something wrong with
our supposition. In other words, our supposition is false and therefore the sct S does
not possess the supremum in Q. '

This justifies that the field Q of rational numbers is not order-compite.

Now you can also try a similar exercise.

EXERCISE 13)
Let S be a subset of all those positive rational sumbers whose squares are less than 3
e S={xEQ:x >0amd X’ < 3}.

Show that S is nonempty and bounded sbove but it does not have the least upper
bound in Q.

24 COUNTABILITY

In Section 1.2, we recalied the notion of a set and certain related concepts.
Subsequently, we discussed certain propertics of the sets of numhers N, 7., Q. R and

Structure of Real Number



Real Numbers and Functions C. A few more important properties and related aspects concerning these sets are yet .
to be examined. One such significant aspect is the countability of these sets. The
concept of Countability of sets was introduced by George Cantor which, forms a
corner stone of Modern Mathematics.

2.4.1 COUNTABLE SETS

You can easily count the elements of a finite set. For example, you very frequently use
the term ‘one hundred rupees’ or ‘fifty boxes’, ‘two dozen eggs’, etc. These figures
pertain to the number of elements of a set. Denote the number of elements in a finite
set Sby n (S). If S = {a, b, ¢, d}, then n (S) = 4. Similarly n (S) = 26, if S is the set of
the letters of English alphabet. Obviously, then n (¢) = 0, where ¢ is the null set.

You can make another interesting observation when you count the number of
elements of a finite set. While you are counting these elements, you are indirectly and
perhaps ‘unconsciously, using a very important concept of the one-one correspondence
between two sets. Recall the concept of one-one correspondence from Section 1.2,
Here one of the sets is a finite subset of the set of natural numbers and the other set is
the set consisting of the articles/ objects like rupees, boxes, eggs, etc. Suppose you
have a basket of oranges. While counting the oranges, you are associating a natural
number to each of the oranges. This, as you know, is a one-one correspondence
between the set of oranges and a subset of natural members. Similarly, when you
count the fingers of your hands, you are in fact showing a one-one correspondence
George Cantor, between the set of the fingers with a subset, say Nio = (1, 2, .... 10) of N.

Although, we have an intuitive idea of finite and infinite sets, yet we give a
mathematical definition of these sets in the following way:

DEFINITION 7: FINITE AND INFINITE SETS

A set S is said to be finite if it is empty or if there is a positive integer k such that
there is one-one correspondence between the elements of the set S and the set Nx =
{1, 2,3 ..., k}]. A set is said to be infinite if it is not finite.

The advantage of using the concept of one-one correspondence is that it helps in
studying the countability of infinite sets. Let E = {2, 4,6, ....} be the set of even
natural numbers. If we define a mapping f: N — E as

f(n) =2n, ¥ nE€N, s
then we find that f is a one-one correspondence between N and E.

Consider another example. Suppose S = {1, 2, ... n}and T = {x,, Xy, .... X,}. Define a
mapping f: S — T as

fn)=x,¥n € S.
Then again f is a one-one correspondence between S and 7.

Such sets are known as equivalent sets. We define the equivalent sets in the following
way:

DEFINITION 8: EQUIVALENT SETS

Any two sets are equivalent if there is oné-one correspondence between them.

Thus if two sets S and T are equivalent, we write asS~T

You can easily show that S, T and P are any three sets such that S~ Tand T ~ P,
then S ~ P. ’

The notion of the equivalent sets is very important because it forms the basis of the
‘counting’ of the infinite sets.

Now, consider any two line segments AB and CD.

40



Let M denote the set of points on AB and N the set of points on CD. Let us check
whether M and N are equivalent.

Join CA and DB to meet in the point P. Let a line through P meet AB in E and CD

in F. Define f: M — N as f(x) = y where x is any point on AB and y is any point on

CD. In fact, as an example you can write as f (E) = F. The construction shows that f
is a one-one correspondence. Thus M and N are equivalent sets.

The following are some examples of equivalent sets:

(i) Ja.bland]c,dl.
(i) 10,1]and]0, If.
(i) [0, 13,10, I{, 10, I{ and J0, 1]

(iv) ]0, I[and ] 1, of.

In fact, all the intervals are equivalent to one another.

Now, we introduce the following definition:
DEFINITION 9: DENUMERABLE AND COUNTABLE SETS

A set which is equivalent to the set of natural numbers is called a denumerable set.
Any set which is either finite or denumerable, is called a Countable set.

Any set which is not countable is said to be an uncountable set.

EXAMPLE 6: (i) A mapping f: Z — N defined by
f(n) = — 2n if n is a negative integer
= 2n + 1 if n is non-negative integer,
is a one-one correspondence. Hence Z ~ N. Thus the set of integers is a denumerable
set and hence a countable set.

(i) Let E denote the set of all even natura) numbers. Then the mapping : N = E
defined as f(n) = 2n is a one-one correspondence. Hence the set E of even natural
numbers is a denumerabie set and hence a countable set.

(iii) Let D denote the set of all odd integers and E the set of even integers. Then the
mapping f: E= D, defined as f(n) = n + 1 is a one-one correspondence. Thus E ~ D.
But, E ~ N, therefgre D ~ N. Hence D is a denumerable set and hence a countable
set.

We observe that a set S is denumerable if and only if it is of the form { a, a;, as....}
for distinct elefnents a;, az, a3 ..... For, in this case the mapping f (a,) = n is one-one
mapping of S onto N i.e. the sets {ai, a;, a3 -—} and the set N are equivalent.

If we consider the set S; = {2, 3 4 ....}, we find that the mapping f: N = S; defined as
f (n) = n+1 is one-one and onto. Thus S; is denumerable. Similarly if we consider S;
=1{3,4 ...} or Sy = [k, k+1 ....], then we find that all these are denumerable sets and

hence are countable sets. '

We have seen that the set of integers is countable.

Now we discuss the countability of the rational and real numbers. Here is an
interesting theorem:

THEOREM 2: Every infinite subset of a denumerable set is denumerable.

PROOF : Let S be a denumerable set. Then S can be written as
S= {a., az, a3 }
Let A be an infinite subset of S. We want to show that A is also denumerable.
You can sec that the elements of S are designated by subscripts 1, 2, 3, .... Let n, be

the smallest subscript for which a, , € A. Then consider the set A— {a, } Again, in
this new set, let n, be the smallest subscript such that a, € A— {anl}.

Let n, be the smallest subscript such that
a, €EA—{a,,a,, ... ,‘ank_l}. Note that such an clement a,

always exists for each k € N as Ais infinite. For, then
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- {anl, a,, .. ank} # ¢

for each k €N. Thus, we can write

A={a,,a,,3,, .., a,, ..}

Define f: N ™ A byf (k)= a, . Then it can be verified that f is a one-one
correspondence. Hence A is denumerablc This completes the proof of the theorem.

EXERCISE 14)
Every subset of a countable set is countable.

Now consider the sets S =[6, 8, 10, 12 ....]Jand T = {3, 5, 7, 9, 11, ....}, which are both

_denumerable. Their union SU T ={3,5,6, 7, 8,9 ....} is an infinite subset of N and

“hence is denumerable. Againif S ={— 1,0, I, 2} and T = {20, 40, 60, 80, ....}, then we

seethat SUT = {— 1,0,1,2, 20, 40, 60, ....} is a denumerable set. Note that in each

case SN T = ¢ . In fact, you can prove the following general results in the next
exercise.

EXERCISE 14)

(i) If S and T are two denumerable sets, such that SN T = ¢, thenSU T is
denumerable.

(ii) If S is denumerable and T is finite such that S N\ T = ¢, then also
S U T is denumerable.

(iii) The condition S N T = ¢ can be relaxed in (i) and (ii).

Thus, it follows, that the union of any two countable sets is countable.

Indeed, let S and T be any two countable sets. Then S and T are either fintie or
denumerable.

If S and T are both finite, then S U T is also a finite set and hence S U T is countable.

If S is denumerable and T is finite, then also we know that S U T is denumerable.
Hence S U T is countable. Again, if S is finite and T is denumerable then again
S U T is denumerable and countable.

Finally, if both S and T are denumerable, then S U T is also denumerable and hence
countable.

In fact, this result can be extended to countably many countable sets and we prove the
following theorem:
THEOREM 3 : The union of a countable number of countable sets is countable.
PROOF : Let the given sets be A, Ay, A ... .
Denote the elements of these sets, using diouble st ncripts as follows:

A =f{an, ain, an, ...}

A; =f{ax, axy, ax, ...}

Az = {as, as, ap, ..}

B T N

Note that the double subscripts have been used for the sake of convenience only. Thus
a; is the jth element in the set A;. Now let us try to form a single list of all elements of
the union of these given sets.

re method for doing this is indicated in the following way:
Ay:an an an an ...
A;:axn axp ap aum...
A} . a3 &3z A3y aAsza....



b S

Relist the elements as indicated through the arrows. This is a scheme for making a
single list of all the elements.
Following the arrows, you can easily arrive at the new single list:

an, ai, axn, an, ax, an, a, 423 ...
Note that whilc doing so, vou must omit the duplicates, if any.

Now, if any of the sets A,, A,, .... are finite, then this will merely shorten the final list.
Thus, we have

Ui Ai=ia, a:, ... }i=1,23, ...
in which each element appears only once This set is countable which completes the
proof of the theorem. '

e are now in a position to discuss the countability of the sets of rational and real
numbers.

2.4.2 COUNTABILITY OF REAL NUMBERS

We have already established that the sets N and Z are countable. Let us now consider
the case of the set Q of raticnal numbers. For this we need the following theorems:

THEOREM 4 : The set of all rational numbers between [0, 1] is countable.

PROOF : Make a systematic scheme in an order for listing the rational numbers-.
x where. 0 < x < 1, (without duplicates) of ihe following sets

A;= {0,1}
A= L, L Ly
2 3 4 5
- 2 2 .
A = -8 = =
= 2 gl
A= 12, 3,33, }
4 5 7 8

......................................................................................................................................

..................................................................................................................................

*You can see that each ct ‘he above sets is countable. Their union is given by

vua=pl.1 2,13 12
i 2737370375

which is countable by Theorem 3.

3 4 1
,-,—,——a....,=0,l,
5.5 6 .1

THEOREM S : The set of all positive rational numbers is countable.

PROOF : Let Q. denote the set of all positive rational numbers. To prove that Q. is
countable, consider the following sets : -

Ar= 02, 3 }
2

A= 1 L.2)3 !
2.2 2
1 2 4

A= (s, 2.4
3 3 3° }

A= {1-3‘»2,._..}
4 4 4

...............................................................................................................................

Relist the elements of these sets ir a manner as vou hut sone in theorem 3 or as
shown below: ‘

Structure of Real Number
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R

o I el

Ao 1, 2, 3 4,
Az:lz 2’,,—3)!5'5.

22772 2.2
A:Ll, 2,3 4 .

3 3 3 13 ¢

2 :

a1, 23 4

4 4 4 4
As 1: 3’ 2) i,

5 5 5§ 5.

You may follow the method of indicating by arrows for making a single list or you
may follow another path as indicated here. Accordingly, write down the elements of
Q. as they appear in the figure by the arrows, while omifting those numbers which are
already listed to avoid the duplicates. We wik have the following list:

1 1 2 1 3 4
+= l,—’z,—r—’3,—r—’—v4,....
Q { 2 3 3 4 4 3 :

= U A@(=1,23,..)
which is countable by theorem 3. Thus Q- is countable.

Now let Q- denote the set of all negative rational numbers. But Q. and Q- are
equivalent sets because there is one-one correspondence between Q. and Q- given by
f:C —Q-as
. f(x)=—x, ¥x €Q.
Therefore Q is also countable. Further {0} being a finite set is countable. Hence,
Q=Q.U{o}UQ-

is a countable set. Thus, in fact, we have proved the following theorem:

THEOREM 6: The set Q of all rational numbers is countable.

You may start thinking that perhaps every infinite set is denumerable. This is not true.
We have not yet discussed the countability of the set of real numbers or of the set of
irrational numbers. To do so, we first discuss the countability of the set of real
numbers in an interval ( 0, 1) which may be losed or op=>n or semi-closed.

Consider the real numbers in the interval 0, 1).

Each real number in (0, 1) can be expressed in the decimal expansion. This expansion
may be-non-terminating or may be terminating e.g.
o333
3 ’

is an example of non-terminating decimal expansion, whereas

1 1

- =25 -=.5 ..

4 2

are terminating decimal expansions, Eventhe terminating-expansion can also be
expressed as non-terminating expansion in the sense that you can write

L = 5= 24999
4

Thus, we agree to say that each real number (rational or irrational) in the (0, 1) can be
expressed as a non-terminating decimal expansion in terms of the digits from 0 to 9.

Suppose x €(0, 1). Then it can be written as

[X=.ci1¢03....
where c;, c..... take their values from the set {0,1,2,3,4,5,6,7,8,9} of ten digits.
Similarly, let y be another real number in (0, 1). Then y can also be expressed as

y=.did2ds....
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We say that x = y iff the digits in their corresponding positions in the expansions of x
and y are identical. Thus, if there is cven a single decimal place, say, 10th palce such
that dio ¥ c10, then x ¥ y.

We now discuss the following result due to Georg Cantor.
THEOREM 7: The set of real numbers in the interval (0, 1) is not countable.

PROOF: Since the set of real numbers in (0, 1) is an infinite set, therefore, it is
enough to show that the set of real numbers in (0, 1) is not denumerable

If possible, suppose that the set of real numbers in (0, 1) is denumerable. Then there is
a onc-one correspondence between N and the elements of (0, 1) i.e. there is a frnction
f: N = (0, 1) which is one-one and onto. Thus, if

f(1) = x, f(2) = xa, ...... JK) = xg, ...
then (0, 1) = {x1, X2, coeey Xic oot}

We shall show that there is at least one real number in (0, 1) which is not an image of
any element of N under f. In other words, there is an element of (0, 1) which is not in
the list x;, Xz .....

Let xy, X3, .... be written as

X3 =0. an a2 a13 a4 ...
X2 =0, a2 a2 a2 am ....
x3 =0. a3; 232 233 834 ....
X4 = 0. 841 242 843 844 ...

-------------------------------------------------------------------------
--------------------------------------------------------------------------

--------------------------------------------------------------------------

From this we construct a real number
z2=.bib2bibs....

where by, b, .... can take any digits from { 0, 1, 2, .... 9} in such a way that b, # ai,
b2 # axn, b; ¥ a, ... Thus

z2=.bi1 babs -

&

is a real number in (0, 1) such that z # x, because b; # a1, z 7 X2 because b2 # az. In
general z# X, because aq, # by, Therefore z is not in the list {x;, X3, x, e

Hence (0, 1) is not countable.

We have alrcady mentioned that the intervals [0, 1], [0, 1[, 10, 1] and )0, I[ are .
equivalent sets. Since the set of real numbers in (0, 1) is not countable, therefore none
of the intervals is a countable set of real numbers.

Now you can easily conciude that the sct of irrational numbers in (9, 1) is not
countable; If possible, suppose that the set of irrational numbers in-(0, 1) is countable.
Also you know that the set of rational numbers in (0, 1) is countabl and that the
union of two countable sets is countable. Therefore, the union of the sct of rational
numbers and the set of irrational numbers in (0, 1) is countable i.c. the sct of all real
numbers in (0, 1) is countable which is not so. Hence the set of irrational numbers in
(0, 1) is not countable. :

In fact, every interval (a, b) or [a, b}, (a,b}, [a, b) 13 an uncountable set of real
numbers.

Now what about the countability of the set R of real numbers?

Suppose that R is countable. Then an interval (0, 1), being an infinite subset of R,
must be countable. But then, we have already proved that the set (0, 1) is not
countable. Hence R can not be countable.

Ihusevenbythemethodofoqum&iﬁtyofm,wehavemm-ﬂm
MMQﬂlhﬁgmMth&MRhmm
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Also, we observe that although R is not countable, yet it contains subsets which are
countable. For example R has subsets as Q, Z and N which are countable. At the
same time R is an infinite set. We sum up this observation in the form of the
following theorem:

THEOREM 8 : Every infinite set contains a denumerable set.

PROOF: Let S be an infinite set. Consider some element of S. Denote it by a,.
Consider the set S — {a;}. Now pick up an clement from the new set and denote it by
a.

‘Consider the set

S — {ai, a2}.

Proceeding in this way, having chosen a,_,, you can have the set

S —{a., a .... aH}.

This set is always non-empty because S is an infinite set. Hence, we can choose an
clement in this set. Denote the element by a,. This can be done for each k € N. Thus
the set-

{a,, &, ...., a ...}

18 a denumerable subset of S and hence a countable subset of S. This proves the
theorem.

The importance of this theorem is that it leads us to an interesting area of ‘Cardinality
of sets by which we can determine and compare the relative sizes of various infinite
sets.

‘This, however, is beyond the scope of this course.

2.5 SUMMARY

In Section 2.2, we have discussed the order-relations (inequalities) in the set R of real
numbers. Given any two real numbers x and y, either x >y orx =y or x < y.

This is known as the law of Trichotomy. Then we have stated a few properties with
respect to the inequality * <". The first property states that the inequality < is
antisymmetric. The second states the transitivity of <. The third allows us to add or
subtract across the inequality, while preserving the inequality. The last property gives
the situation in which the inequality is preserved if multiplied by a positive real
numbser, while it is reversed if multiplied by - negative real number.

We have also defined the bounded and unbounded intervais. The bounded intervals
are classified as open intervals, closed interval, semi-open or semi-closed intervals.
The unbeunded intervals are introduced with the help of the extended real number
system R U {— o, %) using the symbols + o° (called plus infinity and — e (called
minus infinity). ‘

Section 2.3 deals with three important aspeéts of the real numbers; algebraic, order
and the completeness. To describe these aspects, we have specified a number of
axioms in each case. In the algebraic aspect, an algebraic structure called the field is
used. A field is a non-empty set F having at least two distinct elements 0 and 1
together with two binary operations + (addition) and. (multiplication) defined on F
such that both + and. are commulative, associative, 0 is the additive identity, 1 is the
multiplicative identity, additive inverse exists for each element of F, multiplicative
inverse exists for each element other than 0 and multiplication is distributive over
addition. The second aspect is concerned with the Order Structure in which, we use
the axioms of the law of trichotomy, the transitivity property, the property that
preserve the inequality under addition and the property that preserve the inequality
under multiplication by a positive real number.

In the completeness aspect, we introduce the notions of the supremum (or infimum)
of a set and state the axiom of completeness. We find that both Q and R are ordered
fields but the axiom of completeness distinguishes Q from R in the sense that Q does
-not satisfy the axiom of completeness. Thus, we conclude that R is a complete-
ordered Field whereas Q is not a complete-ordered field.



Finally in Section 2.4, we introduce the notion of the countability of sets. A set is said
to be denumerable if it is in one-one correspondence with the set of natural numbers.
Any set which is either finite or denumerable is called a countable set. We have shown
that the sets N, Z Q are countable sets but the sets 1 (set of irrational numbers) and R
are not countable.

Thus in this unit, we have discussed the algebraic structure, the order structure and
the countability of the real numbers.

2.6 ANSWERS/HINTS/SOLUTIONS

El) Change < into = in the Property 1.
Choose x, y and z to describe this property.
Ifx=yandz<0,thenxz<yz

E2) Take (2, 5) and (7, 12) as the intervals. Then (2, 5N (@, 12) = ¢ which is not an
interval. However, if you take (2,5) and (3, 6) as the intervals, then
2,5)N(3,6)=(3,5)

which is an interval. Note that the intervals (2, 5) and (7, 12) are disjoint but
(2, 5) and (3, 6) are not disjoint. Thus you may conclude that the intersection of
the intervals is an interval provided the intervals are not disjoint.

E3) Verify that all the axioms of a field are satisfied by the elements of the set {0, 1}
with respect to binary operation + and. as defined in the given tables.

E4) Suppose there are two zeros of a Field F namely 0 and 0’. Then by definition we
have

0+x=x,¥x€EF

In particular, if x = 0, then we have
0+0 =0

Again by definition we have
0+x=x,¥x€EF

Choose x = 0. Then we get
0+0=0.

It follows that 0 = (.
Similarly you can prove the uniqueness of the unity.

E5) The set N does not form a field because its elements do not satisfy the axiom of
additive inverse.
The set Z is not a field because the axiom of multiplicative inverse does not hold
for Z. : ‘

The set C={z =x + iy: xE R, y €R} forms a field under -
and . defined as z) + 2 = (x; + iy1) + (x2 + iy2) = [(xi + x2) + i (y: + y2)] =z
+2,=€Cforanyz, z EC. :
Again z;. ; = (x1 + y1) . (x2 + iy2)
= (X1x2 = yiy2) + i (xay2 + yay1)

Now you can verify that all the axioms of a field are satisfied.

E6) The set C of complex numbers is a field but is not an ordered field, because
order cannot be defined on C. Give an illustration. In Unit 1, we have already
shown that the number i = \/—1 is neither positive nor negativeand also
i # 0, because it is not a real number.

ED (i) AsetS(SCR)issaid to be bounded below if it has a lower bound. A
number v €S is said to be a lower bound of S if
vsx v ES.
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Real Numbers and Functions (ii) Let S = N. Then N is bounded below. The number 1 is a lower bound of N.
Any finite set is bounded below. You can name a lower bound of this set
depending upon the choice of the set.

(iii) No. Because it has no lower bound.

E8) (i) All are bounded sets

(i1) [2, o7 and ]5, o°[ are bounded below with 2 and 5 as their respective lower
bounds, whereas ]—oc, 3[ and ]—o°, 4] are bounded above, with 3 and 4 as
their respective upper bounds. Therefore, all the sets in this case are
unbounded.

(ili) It is a bounded set with lower bound —1 and upper bound + 1.
(iv) S = {a}, is a bounded set.

E9) Let S and T be any two bounded sets. Then by using definition of a bounded
set, you can have the following: S is bounded means S has both a lower bound
and an upper bound i.e. there exist vi. (lower bound) and u,. (upper bound)
such that

ViSx<u,VxES.

Similarly since T is bounded, therefore, there exists v, and u; such that

vEXx=SuwVxeT
Now you know that
xESUT=>x&SorxeT
= viSx=gorv:<xsw
Choose v = minimum of (vi, v2), u = maximum of (u,, uz).
Then
xESUT==>v=x<u
== S U T is a bounded set, because x is an arbitrary element of
SUT.

As an illustration of this example Let S = (1, 5) and T = (2, 7). Obviously both
S and T are bounded because both are open intervals i.e.
S=x1=x=5§,, T={x:2<x=<7}
Obviously, then
SUT={x:1=x=7}
which is a bounded set.

Similarly, if you take the intersection of S and T, th.n you will have
SNT={x:2<x<5}

.which is obviously a bounded set. Note that 2 is the maximum of the two lower
bounds and 5 is the minimum of the upper bonds of S and T

You can similarly, prove that the intersection of any two bounded sets is a
bounded set. Ty

E10) The set N is bounded below only. The number 0 and negative integers are all
- lower bounds of N i.e. all the non-positive integers are lower bounds of N.
Complete the solution.

E11) Proof is exactly similar to the pro'of for the uniqueness of the supremum. Do it
yourself. '
E12) (i) has both greatest and least
(i1) has the greatest
(ii1) has the least
(iv) has none
(v) a as the least
(iv) b as the greatest.
E13) The set S is obvicusly non-empty and bounded above. We claim S has no least
upper bound in Q.

If possible, suppose u is the least upper bound of S in Q.
48 Then either u’ < 3 or u’ >3 or u> = 3.
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(i) Suppose u” < 3. Define a rational number y as
y=u+ % 3—vd)

Then it can be verified that y > u and y* < 3. This shows that there exists a
rational number y which belongs to S and is greater than the least upper bound
of S. This is absurd. Hence u” < 3 is not possible.

(ii) Now suppose u’ > 3. Define a rational number z as
u’+3
2u

Then it can be verified that z < u and z is an upper bound of S which is again a
contradiction. Thus u® < 3 is also not possible.

(iii) Finally suppose u? = 3. This means there exists a rational number whose
square is 3 which is not possible.

E14) Suppose S is a countable set. Then either S is finite or S is denumerable. Let A

be a subset of S.

If S is finite, then A is also finite and hence A is countable.

If S is denumerable, then A is also denumerable as proved in theorem 2. Thus A
is also countable. This completes the proof.

E15) (i) LetS = {a), a, a3, ....} and T = {b,, bz, ....} be any two denumerable sets

such that SN'T = ¢.

Define a function f: SU T — N by
f(ax) = 2n
f(bn) = 2n-;.

Then f is a one-one correspondence. Hence S U T is denumerable.

Alternatively, you can actually Nst the elements of S U T as a1, by, az, by, a3,
bi....

which is obviously a denumerable set.

Incase SN T ¢ i.e. S and T have any elements in common, thén the
duplicates of any element already listed would simply be omitted when the
same element is encountered again in the combined list.

(i) Now let S = {ay, a3, ....} and T = {by, by, .... b} (a finite set) be any two
sets. Define f: SUT — N by
f(b)=iforl<i<k
and
f(as) = n + k, for each n.

Then, you can verify that f is one-one and onto i.c. f is a one-one
correspondence. Hence S U T is denumerable.

(iii) You may note that since.
SUT=(S—T)U(T — S) U (SNT), therefore, you can, in fact, relax the
condition S N T = ¢ in both the cases (i) and (ii).
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UNIT3 TOPOLOGY OF THE REAL LINE

STRUCTURE
3.1 Introduction
Objectives

3.2 Modulus of a Real Number
Properties of the Modulus of a Real Number

3.3 Neighbourhood of a Point

3.4 Open Sets
3.5 Limit Point of a Set
Bulzano-Weiertrass Theorem

3.6 Closed Sets

3.7 Compact Sets
Heine-Borel Theorem

3.8 Summary
3.9 Answers/Hints/Solutions

3.1 INTRODUCTION

You are quite familiar with an elastic string or a rubber tube or a spring. Suppose you -
have an elastic string. If you first stretch it and then release the pressure, then the
string will come back to its original length. This is a physical phenomenon but in
Mathematizs, we interpret it differently. According to Geometry, the unstreched
string and the stretched string are different since there is a change in the length. But
you will be surprised to know that according to another branch of Mathematics, the
two positions of the string are identical and there is no change. This branch is known
as Topology, one of the most exciting areas of Mathematics.

The word ‘topology’ is a combination of the t“;o Greek words ‘topos’ and ‘logos’. The
term ‘topos’ means the top or the surface of an object and ‘logos’ means the study.
Thus ‘topology’ means the study of surfaces. Since the surfaces are directly related to
geometrical objects, therefore there is a close link between Geometry and Topology.
In Geometry, we deal with shapes like lines, circles, spheres, cubes, cuboids etc. and
their geometrical propert:es like lengths, areas, volumes, congruences etc. In
Topology, we study the surfaces of these geometrical objscts and certain related
properties which are called topological properties. What are these topological
properties of the surfaces of a geometrical figure? We shall not answer this question at
this stage. However, since our discussion is.confined to the real line, therefoye, we
shall discuss this question pertaining to the topological properties of the real line.
These properties are related to the points and subsets of the real line such as
neighbourhood of a point, open sets, closed sets, limit points of a set of the real line
etc. We shall, therefore, discuss these notions and concepts in this unit. However,
prior to all these, we discuss the modulus of a real number and its relationship with
the order relations or inequalities in Section 2.2.

XZ"OBJECTIVES

After reading this unit, you should, therefore, be able to

= define the modulus of a real number and its connection with the order relations in
the real numbers

—> describe the notion of a neighbourhood of a point on the line
—> define an open set and give examples

= find the limit points of a set

—> define a closed set and establish its relation with an open set

=~ explain the meaning of an open covering of a subset of real numbers and that of a
compact set.



3.2 MODULUS OF A REAL NUMBER

You know that a real number x is said to be positive if x is greater than 0.
Equivalently, if 0 represents a unique point O on the real line, then a positive real
number x lies on the right side of O. Accordingly, we defined the inequality x > y (in
terms of this positivity of real numbers) if x— y > 0. You will recall from Section 2.2
that for the validity of the properties of order relations or the inequalities, such as the
one concerning the multiplication of inequalities, it is essential to specify that some of
the numbers involved should be positive. For example, it is necessary that z > 0 so
that x > y implies xz > yz. Again, the fractional power of a number will not be real if
the number is negative, for instance x'> when x = —4. Many of the fundamental
inequalities, which you may come across in higher Mathematics, will involve such
fractional powers of numbers. In this context, the concept of the absolute value or the
modulus of a real member is important to which you are already familiar.
Nevertheless, in this section, we recall the notion of the modulus of a real number and
its related properties which we need for our subsequent discussion.

DEFINITION 1: MODULUS OF A REAL NUMBER

Let x be any real number. The absolute value or the modulus.of x denoted by |x|. is
defined as follows :
Ix!=xif x>0

=—xifx<0

=0ifx=0.
You can easily see that

‘ |-x} = |x|,"¥ xER.

Note that |— x| is different from — |x].

3.2.1 PROPERTIES OF THE MODULUS OF A REAL NUMBER

Since the modulus of a real number is essentially a non-negative real number,
therefore the operations of usual addition, subtraction, multiplication and division
can be performed on these numbers. The properties of the modulus are mostly related
to these operations.

PROPERTY 1: For any real number x, |x| = Maximum of {x, — x} =

PROOF: Since x is any real number, therefore either x = 0 or x < 0. If x = 0, then by
definition, we have
x| = x.
Also, x = 0 iraplies that — x < 0. Therefore,
maximum of {x, —x} = x = |x]|
Again x < 0, implies that —x > 0. Therefore again
maximum of {x, —x} = — x = |x].

Thus
Max. {x, — x} = |x|
Now you can solve the following exercise :

EXERCISE 1)
Prove that —|x| = Min. {x, — x} for any x €R. Deduce that — |x| < x, for every

“X.E€R. llustrate it with an example.

Now consider the numbers |5|%, |— 4.5}, lgl It is easy to see that
I517=15 |5/ =55=5"=|- 5’
{—4.5] = |— 20| =20 Also |— 4/. |5]| =4.5=20
ie. |—4.5|=|—4].|5]
and '
'i' = 1 and _'_l :.4_ 1.e
5 5 51 5
5 ]

All this leads us to the following properties:
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PROPERTY 2: For any real number x

Ix|*=x=|—x/|®
PROOF: We know that |x| = x for x 2 0. Thus
Ix1*= x| |x| = x.x=x% forx =0
Again for x <0, we know that |{x| = —x. Therefore
|x*| = |x] |x¢ =—x. — x=1x

Therefore, it follows that
ix|* = x* for any xER.

Now vou should try the other part as an exercise.

EXERCISE 2)
Prove that |—x|> = x’, for any xER.

PROPERTY 3 : For any two real numbers x and y, prove that
Ix.yl = Ix| .|yl

PROOF: Since x and y are any two real numbers, therefore, either both are positive
or one is positive and the other is negative or both are negative i.c.
either x=0,y=00orx=20,y<0orx<0,y=20o0orx<0,y<0. We
discuss the proof for all the four possible cases separately.

Case (i): Whenx =0, y = 0.

Since x = 0, therefore, we have, by definition,

Ix| =x, |yl =y

Also x =2 0, y = 0 imply that xy = 0 and hence
|xyl = xy = |x] |yl

which proves the property.

Case (ii): When x = 0, y < 0. Then obviously x y < 0. Consequently by definition, it
follows that '

Ix| =x, |yl =—y, [xy| =—xy
Hence g

Ixyl =—xy=x(=y)=Ix]| lyl
which proves the property.
Case (iif): When x<0,y=0.
Interchange x and y in (ii).

Case (iv): When x <0, y <0, Then x y = 0. Accordingly, we have

o I ==xdyl =y, Ixyl = xy.
Hence ‘

Ixyl = xy = (—x) (—y) = |x] |yl

using the field properties stated in Scctién 3.3.
This concludes the proof of the property.

Alternatively, the proof can be given by using property 2 in following way:
Ixyl> = (xy)’ = x"y* = |x|”. IyI*
= (Ixl. lyly’

Therefore
Ixyl =+ (Il 1y])

Since |xy|, |x| and |y| are non-negative, therefore we take the positive sign only and
we have

Ixyl = Ix| Iyl
which proves the property.

You can use any of the two methods to try the following exercise.
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EXERCISE 3)
For any two real numbers x and y (y # 8), prove that

1| = =l
y iyl

The next property is related to the modulus of the sum of two real members. Thls is

one of the most important properties and is known as Triangular Inequality:

PROPERTY 4: TRIANGULAR INEQUALITY

lf'or any two real numbers x and y, prove that
Ix+y| < Ixi+ Iyl

PROOF : For any t;vo real numbers x and y, the number x + y =6 or x +y <0.

If x + y =0, then by definition
x+yl=x+y.

. Also, we know that

X} = x ¥xER .
lyl=y VyER.
Therefore

x| +lyl=x+y
or ’ ,
x+y< x|+ Iyl

From (1) and (2), it follows that
Ix+yl<Ix| + 1yl

Now,if x +y < 0, then again by definition, we have
x+yl=—(x+y

or
Ix+yl=(=x)+ ()

Also we know that (see property 1)
—x<|x|and —y < |yl|.

Consequently, we get

Ex+tEy=ix+lyl

0+ =ix+lyl

From (3) and (4), we get
Ix+yl=ix| +lyl

or

This concludes the proof of the property.

You can try the tollowing exercise similar to this property.

O

2

3)

4)

EXERCISE 4)
Prove that

Ix—yl =1 Ix| — iyl
for any real numbers x and y.

Now let us see another interesting relationship between the inequalities and the

modulus of a real number.

By definition, |x| is a non-negative real number for any x€ R. Therefore, there

always exists a non-negative real number u suc. that
either |x] <uor |x| >uor |{x| =u.

Suppose |x| <u. Let us choose u = 2. Then
1x] < 2| =>Max. {—x,x} <2
= —x<2,x<2
=>x>—~2,x<2
= -2, x<2
= —2<x<2.
ie x| <2—~—2<x<2

Topology of the Real Line
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2L x <L 2= -2 <x. x <2
= 2>—x.x<2
= —x <2, x<2
== Max. {~—x, x} < 2
= |x! <2,

2 X< 2=k <L 2
Thus. we nave shown that

PIRWRc—rB YRS O
This can be generaiised as the foliowing property.
PROPERTY 5: Let x and u be any two real numpers.

X <SuE=D —y<x <y

PROOF : ix! <u <> Max. {—x,x}<u
<> —x<u,x<u
= =y, x<u
< —usxx<u
<> —u<sx<u

which proves the desired property.

The property S can be generalized in the form of the following exercise:

EXERCISE 5)
For any real numbers x, a and d,

ix—alSd=>a-d<x<a+d.

EXAMPLE 1: Write the inequality 3 < x < 5 in the modulus form.

SOLUTION : Suppose that there exists real numbers a and b such that
a—b=3a+b=25.
Solving these equations for a-and b, we get
a=4 b=1.
Accordingly, ) H
J<x<S5<>4—-1<x<4+1
< —-1<x—-4<1
<=>|x—4| <1 .

Now you can also try the following exercise.

EXERCISE 6) ‘
(i) Write the inequality 2 < x < 7 in the modulus form
(ii) Convert |x — 2| < 3 into the corresponding inequality.

33 NEIGHBOURHOODS '

You are quite familiar with the word ‘neighbourhood’. You use this word frequently
in your daily life. Loosely speaking, a neighbourhood of a given point .. on the real line
15 a set of all those points which are close to <. This s ihe notion ' .ict needs a precise
meaning. The term ‘close to' is s1: “icctve and therefore miust be quantified. We should
clearly say how much ‘close tc’.’T o elaborate this. let u« ¢-yst discuss the notion of a
neighbourhood of a point with respect to a (smali! positive real number 8.

Let ¢ be any point on the real line and let & >> 0 be a real number. A set consisting of
al! those points on the real line which are at a distance of 8 from c is called a
neighbourhood of c. This set is given by
' xER: |x —¢| <8}
={xER:c—86<x<c+ 6}
=Jk—6ct+§

which is an open interval. Since this set depeads upon the choice of the positive real
54 number §, we call it a §-neighbourhood of the point c.
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Thus, a §-neighbourhood of a point ¢ on the real line is an open interval Jc — 8, ¢ + &
8 > 0 while ¢ is the mid point of this neighbourhood. We can give the general
definition of neighbourhood of a point in the following way:

DEFINITION 2: NEIGHBOURHOOD OF A POINT

A set P is said to be a Neighbourhood (NBD) of a point ‘¢’ if there exists an open
interval which contains c and is contained in p.

‘This is equivalent to saying that there exists an open interval of the form Jc—8, c+8[
for some & > 0 such that
Ic—8,c+ofiCP.

EXAMPLE 2: (i) Every Open-interval Ja, b{ is a NBD of each of its points.

(i) A closed interva! [a, b] is a NBD of each of its points except the end point i.e.
[a, b] is not a NBD of the points a and b, because it is not possible to find an open
interval containing a or b which is contained in [a, b). For instance, consider the
closed interval [0, 1]. It is a NBD of every point in [0, 1]. But, it is not a NBD of 0
‘because for every 5 > 0,1 —6,5 [ C[0, 1]. Similarly [0, 1] is not a NBD of 1.

(iii) The null set ¢ is a NBD of each of its point in the sense there is no point in ¢ of
which it is not a NBD.

(iv) The set R of real numbers is a NBD of each real number x because for every
6 > 0, the open interval ] x — §, x + 4{ is eontained in R.

(v) The set Q of rational numbers is not a NBD of any of its points x because any

open interval containing x will also contains an infinite number of irrational numbers -

and hence the open interval can not be a subset of Q.

Now try the following exercise corresponding to the example.

EXERCISE 7)
Examine the validity of the following statements. Justify your answer in each case.

(i) The interval [a, b{ is a neighbourhood of each of points.

(ii) The unit interval ]0, 1] is the neighbourhood of only its correspondipg
end points.

(iii) The set {x € R: x = a} is not a neighbourhood of any of points.
(iv) The set {x € R: x < a} is a neighbourhood of each of points.

(v) The singleton {x} for an x € R is a neighbourhood of x.

(vi) A finite subset of R is not a neighbourhood of any of its points.

Now consider any two neighbourhoods of the point 0 say ] — {6 s _l% [
and ]-— %, %[ as shown in the Figure 1. '

510 %105 |
The intersection of these two neighbourhoods is

-1 -1 11 '

1 1 1 1 1 1
—_——, - n -, = = —_ e,

J0 10 LR S 5 L=1 10 10 L
which is again a NBD of 0.

The union of these two neighbourhoods is ] — é , % [.
which is also a NBD of 0

Let us now examine these results in general.

EXAMPLE 3: The intersection of any two neighbourhoods of a point is a
neighbourhood of the point.

SOLUTION: Let A and B be any two NBDS of a point ¢ in R. Then there exist open
intervals Jc —8;, ¢ + 8 and ] ¢ —&;, ¢ + &) such that

Je— 6, ¢t [ C A, for some & >0

ke — 61, ¢t &[ C B, for some 8, >0
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Real Numbers and Functions Let 8 = Min. {8, 8:) = minimum of .61, 82,
This implies that Jc —8,c + { C AN B
which shows that AN B is a NBD of c.

EXAMPLE 4: Show that the superset of a NBD of a point is also a NBD of the
point.

SOLUTION: Let A be a NBD of a point ¢. Then there exists an-open interval
Jc =8, c+ &, for some 8 > 0 such that
Je—6,c+ 8 CA.

Now let S be a super set which contains A. Then obviously
ACS=>[c—§,c+dCS
which shows that S is also a NBD of c.

For instance, if ]ll—0 , %[ is a NBD of the point 0.

1 .
Then ] —g -;- [ is also a NBD of 0 as can be seen

] Vsl I
J _r///.o //l_ l_

= =t L
5 10 10 5
Fig. 1

Is a subset of a NBD of a point also a NBD of the point? Justify your answer.

Now you can try the following exercise.

EXERCISE 8)
Prove that the Union of any two NBDS of a point is a NBD of the point.

i3
The conclusion of the Exercise 8, in fact, can be extended to a finite or an infinite or
an arbitrary number of the NBDS of a point. ‘

However, the situation is not the same in the case of intersection of the NBDS. It is
true that the intersection of a finite number of NBDS of a point is a NBD of the
point. But the intersection of an infinite collection of NBDS of a point may not be a
NBD of the point. For example, consider the class of NBDS given by a family of
open intervals of the form

11 11
I= —_171[’]:]_ = = I: T T
1=1] | 2 5 2‘[ =] 3 3[
1
L=}- - [.. :
n n
which are NBDS of the point 0.
Then you can easily verify that
INLNLENLN . NLN_.
A L=1{0}

or

n=1

which is not a NBD of 0.

3.4 OPEN SETS

You have seen from the previous examples and exercises that a given set may or may
not be a NBD of a point. Also, a set may be a NBD of some of its points and not of
its other points. A set may even be a NBD of each of its points as in the case of the
interval Ja, b[. Such a set is called an open set.
DEFINITION 3: A SET SIS SAID TO BE OPEN IF IT IS A NEIGHBOURHOOD
OF EACH OF ITS POINTS.
Thus, a set S is open if for each x in S, there exists an open interval ]x — 8, x + &,
6 > 0 such that

56 x€lx—48,x+ 4§ CS.




It follows at once that a set S is not open if it is not a NBD of even one of its points.
EXAMPLE §: An open interval is an open set.

SOLUTION: Let Ja, b{ be an open interval. Then a<b. Let c € Ja, b{. Thena <c <
b and therefore
c—a>0andb—c>0.

Choose
6 = Minimum of {b —c, ¢ — a}
=Min(b—c,c—a).
Note that b — ¢ > 0, ¢ — a > 0. Therefore § > 0.
Nowd<=c—a=—>a<c-6
andd<b—c=>c+8=<b.
1.e.

Therefore, Jc — 8, ¢ + 8{ C Ja, b[ and hence Ja, b{ is a NBD of c.

EXAMPLE 6: (i) The set R of real numbers is an open set
(ii) The null set ¢ is an open set
(iii) A finite set is not an open set
(iv) The interval Ja, b] is not an open set.

You can solve the following exercise easily:

EXERCISE 9)
Test which of the following are open sets:

(i) Aninterval[a,b]foracR,bcR,a<b

(ii) The intervals [0, 1[and ]0, 1]

(iii) The set Q of rational numbers

(iv) Theset N of natural numbers and the set Z of integers.
(v) The set {—- : n&N}

(vi) The intervals ]a, >>[and [a, < [for a €R.

EXAMPLE 7: Prove thet the intersection of any two open sets is an open set.

SOLUTION: Let A and B be any two open sets. Then we have to show that A N B is
also an open set. If AN B = ¢, then obviously A N B is an open set. Suppose A N B
# ¢.

Let x be an arbitrary element of AN B. Then x € ANB=—>x€ A and x €B.

Since A and B are open sets, therefore A and B are both NBDS of x. Hence A N B is
a NBD of x. But x& A N B is chosen arbitrarily. Therefore A N B is a NBD of each
of its points and hence A N B is an open set. This proves the result.

In fact, you can prove that the intérsection of a finite number of open sets is an open
set. However, the intersection of an infinite number of open sets may not be an open
set. Try the following exercises:

EXERCISE 10)

Give an example to show that intersection of an infinite number of open sets need not
be an open set.
EXERCISE 11)

Prove that the union of any two open sets is an open set.

In fact, you can show that the union of an arbitrary family of open sets is an open set.

3.5 LIMIT POINT OF A SET

You have seen that the concept of an open set is linked with that of a neighbourhood
of a point on the real line. Another closely related concept with the notion of
neighbourhood is that of a limit point of a set. Before we explain the meaning of limit
point of a set, let us study the following situations:

(i) Consider a set S =[1, 2. Obviously the number 1 belongs to S. In any NBD of the
point 1, we can always find points of S which are different from 1. For instance J0.5,
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1.1] is a NBD of 1. In this NBD, we can find the point 1.05 which is in S but at the
same time we note that 1.05 # 1.

(i) Consider another set S = | 1 :n € N.}. The number 0 does not belong to this set.
n

Take any NBD of 0 say, ]—0.1, 0.1{. The number 1= 0.05 of S is in this NBD of 0.
Note that 0.05 # 0. 20

(iii) Again consider the same set S of (ii) in which the number 1 obviously belongs to
S. We can find a NBD of 1, say 0.9, 1.1{ in which we can not find a point of S
different from 1.

In the light of the three situations, we are in a position to define the following:

DEFINITION 4: LIMIT POINT OF A SET

A number p is said to be a limit point of a set S of real numbers if every
neighbourhood of p contains at least one point of the set S different from p.

EXAMPLE 8: (i) In the set S = [1,2[, the number 1 is a limit point of S. This limit

pointbelolgstos.'l\esels={—l—: n € N} has only one limit point 0. You may note
that § does not belong to S. n

(ii) Every poimt in (, (the set of rational numbers), is a limit point of Q, because for
every rational number r and 6 > 0, i.e.J r — §, r + § [ has at least one rational number
different from r. This is because of the reason that there are infinite rationals between
any two real mumbers. Now, you can easily see that every irrational number is also a -
limit point of the set Q for the same reason.

(iii) The set N of natural numbers has no limit point because for every real number a,
you can always find 8 > 0 such that }Ja — 6, n+6[_doesnolconuinlpointoftheset
N other than a.

(iv) Every point of the interval ]a, b] is its limit point. The end points a and b are also
the Eamit points of Ja, b]. But the limit point a does not belong to it whereas the limit
point b belongs to it.

(v) Every point of the set [a, o9 is a limit point of the sets. This is also true for

b=, o

Now try the following exercise and justify your answer.

EXERCISE 12)
(i) Does the set Z possess a limit point?

(ii) Every point of R, the set of real numbers is a limit point of R. Is it true?
@i#) Is every point of an open interval }a, b[ a limit point of ]a, b{? What about the

«nd points a and b?
{iv) Is every point of a closed interval [a, b] is its limit point? what about the end
- points a and b?
{v) Is every point of the sets ]a, o[ and }— o, a] a limit point of the set?
EXERCISE 13) '

Show that a given point p is a limit point of a set S if and only if every
neighbourhood of p contains an infinite number of members of S.

‘From the foregoing examples and exercises, you can easily observe that

(i) A limit point of set may or may not belong to the set,
(ii) A set may have no limit point,

(iii) A set may have only one limit point.

(iv) A set may have more than one limit point.

The question, therefore, arises: “How to know whether or not a set has a limit point?”
One obvious fact is that a finite set can not have a limit point. Can you give a rcason
for it? Try it. But then there are examples where even an infinite set may not have a
limit point e.g. the sets N and Z do not have a limit point even though they are
infinite sets. However, it is certainly clear that a set which has a limit point, must
necessarily be an infinite set. Thus our question takes the following form:

“What are the conditions for a set to have a limit point?”

bl
A



This question was first studied by a Czechoslovakian Mathematician, Beﬁihard
Bulzano (1781-1848] in 1817 and he gave some ideas.

Unfortunately, his ideas were so far ahead of their time that the world could not
appreciate the full significance of his work. It was only much later that Bulzano's
work was extended by Karl Weierstrass [1815-1897], a great German Mathematician,
who is known as the “father of analysis”. It was in the year 1860 that Weierstrass
proved a fundamental: result, now known as Buzano-Weierstrass Theorem for the
existence of the limit points of a set. We state and prove this theorem as follows:

3.5.1. BOLZANO—WEIERSTRASS THEOREM
THEOREM 1I: Every infinite bounded subset of R set has a limit point in R.

PROOF: Let S be an infinite and bounded subset of R. Since A is bounded, therefore A
has both a lower bound as well as an upper bound. (Recall the definition of a
bounded set from Section 2.3.)

Let m be a lower bound and M be an upper bound of A. Then obviously
mSxSM ¥ xEA,

Construct a set S in the following way:

S = {x €R: x exceeds at most finite number of the elements of A}. Now, let us
examine the following two questions:

(i) Is S a non-empty set?

(i1) Is S also a bounded set?

Indeed S i non-empty because m € S since m < x, ¥ x €A. Also M is an upper
bound of S because no number greater than or equal to M can belong to S. Note that
M can not belong to S because it exceeds an infinite number of elements of A.

Since the set S is non-empty and bounded above, therefore by the axiom of
completeness (see Section 2.3), S has the supremum in R. Let p be the supremum of
S. We claim that p is a limit point of the set A.

In order to show that p is a limit point of A, we must establish that every IGBD of p
has at least one point of the set A other than p. In other words, we have to show that
every NBD of p has an infinite number of elements of A. For this, it is enough to
show that any open interval Jp — 6, p + 8 [, for an 6 > 0 contains an infinite number
of members of set A. For this, we proceed as follows:

Since p is the supremum of S, therefore, by the definition of the Supremum of a set
(see Section 2.3), there is at least one element y in S such that y > p —8§ for some
8>0. Also y is a member of S, therefore y exceeds at the most a finite number of the
elements of A. In other words, if you visualise it on the line as shown in the figure 2,
the number of elements of A lying on the left of p — & is finite at the most. But

b e
T

Y
T

p—3d P p+d

Fig. 2

certainly, the number of etements of A lying on the right side of the point p —8is
infinite.

Again since p is the supremum of S, thérefore by definition p + & can not belong to S.
In other words, p + 8 exceeds an infinite number of elements of A. This means that
there lic an infinite number of elements of A on the left side of the point p + & .

Thus we have shown that there lies an i~finite number of elements of A on the right
side of p — 8 and also there is an infinite number of slements of A on the left side of
p + 8. What do you conclude from this? In other words, what is the number of
clements of A in between (within) the interval ] p — §, p + 8[? Indeed, this number is
iafinite i.c. there is an infinite number of elements of A in the open interval
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Jp — 8, p + 8 [. Hence the interval ] p — 8, p + 6 [ contains an infinite number of
elements of A for some 8 > 0. Since 8 > 0 is chosen arbitrarily, therefore every interval
Jp — 8, p +8 [ has an infinite number of elements of A. Thus.every NBD of p contains
an infinite number of elements of A. Hence p is a limit point of the set A.

This completes the proof of the theorem.

EXAMPLE 9 (i) The intervals [0, 11, 10, 1[, ] 0, 1], [0, 1 [ are all infinite and bounded
sets. Therefore each of these intervals aas a limit point. In fact, each of these intervals
has an infinite nuiaber of limit points because every point in each interval is a limit
point of the interval.

(i) The set [a, oo is infinite and unbounded set but has every point as a limit point.
This shows that the condition of boundedness of an infinite set is only sufficient in the
theorem. )

EXERCISE 14)
Give examples of the following:

(i) At least four infinite bounded sets indicating their corresponding limit points.
(ii) At least three unbounded (and infinite) sets each having a limit point.
(iii) An infinite and unbounded set having no limit point.

From the previous examples and exercises, it is clear that it is not necessary for an
infinite set to be bounded to possess a limit point. In other words, a set may be
unbounded and still may have a limit point. However for a set to have a limit point, it
is necessary that it is infinite.

Another obvious fact is that a limit point of a set may or may not belong to the set
and a set may have more than one limit point. In the next section, we shall further
study how sets can be characterized in terms of their limit points.

3.6 CLOSED SETS

+

In Section 3.5, you have seen that a limit point of a sct may or may not belong to the
set. For example, consider the set S = { x €R : 0 < x < 1]. In this set, 1 is a limit
point of S but it does not belong to S. But if you take S = {x: 0 = x =< 1}, then all the
limit points of S belong to S. Such a set is called a closed set. We define a closed set
as follows: '

DEFINITION 5: CLOSED SET
A set is said to be closed if it contains all its limit points.

EXAMPLE 1€: .
(i) Every closed and bounded interval such as [a, b] and [0, 1] is a closed set.
(i) An opén interval is not a closed set. Check Why? ‘

(ili) The set R is a closed set because every real number is a limit point of R and it
belongs to R. .

(iv) The null set ¢ is a closed set.

(v) ThesetS= { 1 : n €N} is not a closed set. Why?
n

(vi)  he set Ja, o is not a closed set, but ]—<0, a] is a closed set.

You can try the following exercise:

EXERCISE 15)
Check whether or not the following sets are closed sets:

(i) The set Q of rational numbers
(ii) The set N of natural numbers



(iii) The set Z of integers

(iv) A finite set of real numbers

(v) ThesetS={xER:a<x<bh}
(vi) The sets [a, [ and ]-—°, a[

You may be thinking that the word open and closed should be having some link. If
you are guessing some relation between the two terms, then you are hundred per cent
correct. Indeed, there is a fundamental connection between open and closed sets.

What exactly is the relation between the two? Can you try to find out? Consider, the
following subsets or R:

(i) 10,4
() [—2,5]
(i) 10, o[
(iv) ]—ee, 6]

The sets (i) and (iii) are open while (ii) and (iv) are closed. If you consider their
complements, then the complements of the open sets are closed while those of the

closed sets are open. In fact, we have the following concrete situation in the form of
theorem 2: :

THEOREM 2: A set is closed if and only if its comlement is open.

PROOF: We assume that S is a closed set. Then we prove that its complement S° is
open.

To show that S° is open, we have to prove that S°is a NBD of each of its points. Let
x €S°. Then xE€S*=>x &S. This means x is not a limit point of S because S is given
to be a closed set. Therefore there exists a § > 0 such that ]x — 8, x + 8 [ contains no
points of S. This means that ]x —8, x +6 [is contained in S°. This further implies that
S°is a NBD of x. In other words, S is an open set, which proves the assertion.

Conversely, let a set S be such that its complement S° is open. Then we prove that S is
closed.

To show that S is closed, we have to prove that every iimit point x of S bi:longs to S.
Suppose x €S. Then x € §°

This implies that S° is a NBD of x because S° is open. This means that theré exists an
open interval Jx —8, x + §[, for some & > 0 such that

x—8,x+6[CS

In other words, ]x —6, x + 6[ contains no point of S. Thus x is not-a limit point of S
which is a contradiction. Thus our supposition is wrong and hence x-€ S is not
possible. In other words, the limit'point x belongs to S and thus S is a closed set.

Note that the notions of open and closed sets are not mutually exclusive. In other
words, if a set is open, then it is not necessary that it can not be closed. Similarly, if a
set is closed, then it does not exclude the possibility of its being open. In fact there are
sets which are both open and closed and there are sets which are neither open nor
closed as you must have noticed in the various examples we have given in our
discussion. For example the set R of all the real numbers is both an open set as well
as a closed set. Can you give another example? What about the null set. Agdm Q, the
set of rational numbers is neither open nor closed.

EXERCISE 16)
Give examples of two sets which are neither closed nor open.

In Section 3.4, we have discussed the behaviour of the union and intersection of open
sets. Since closed sets are closely connected with open sets, therefore, it is quite
natural that we snould say something about the union and intersection of closed sets.
In tact, we have the following results,

EXAMPLE 11 : Prove that the union of two closed sets is a closed set.
SOLUTION : Let A and B be any two closed sets. Let S = A U B. We have to show
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Real Numbers and Functions that S is a closed set. For this, it is enough to prove that the complement S’ is open.
Now

S =(AUBF=BNA=A'NB
Since A and B are closed sets, therefore A and B are open sets. Also, we have proved

in Section 3.4 that the intersection of any two open sets is open. Therefore A° N B is
an open set and hence S° is open.

This result can be extended to a finite number of closed sets. You can easily verify
that the union of a finite number of closed sets is a closed set. But note that the union
of an arbitrary family of closed sets may not be closed.

For example, consider the family of closed sets given as

S =[1,2], 8= [1,2,],53= [1,2]
. 3
and in general

Se=[1.2) . forn=1,23 ..
Then, o

o0

U] S, =S, US; US; ... US, U ...

=10, 2]
which is not a closed sei.

Now try the following exercise:

EXERCISE 17)
Prove that the intersection of an arbitrary family of closed sets is closed.

DEFINITION 6 : DERIVED SET

The set of all limit points of a given set S is called the derived set and is denoted by S’.

EXAMPLE 12 : (i) Let S be a finite set. Then S’ = ¢
() S={ L :nEN}, the derived set 5’ = {0}
n

(iii) The derived set of R is given by R’ = R
(iv) The derived set of Q is given by Q' =R
We defire another set connected with the notion of the limit point of a set. This is
called the closure of a set.
DEFINITION 7: CLOSURE QF A SET

Let S be any set of real numbers (S CR). The closure of S is defined as the union of
the set S and its derived set S. It is denoted by S. Thus

S=suUs’ ,
In other words, the closure of a set is oblaihed by the combination of the elements of
a given set S and its derived set S’.

For example, Sof S ={ 1 :nEN} s giyen by
n

S=( L, neNnjuiy=g0,1, L. 1,
n
Similarly, you can verify that

Q=QU Q’=QUR=R
R=RUR'=RUR=R

; 3.7 COMPACT SETS

We discuss yet another concept of the so called compactness of a set. The concept of
62 compactness is formulated in terms of the notion of an open cover of a set.




DEFINITION 8: OPEN COVER OF A SET

Let S be a set and {G,} be a collection of some open subsets of R such that SC U G,.
Then {G_} is called an open cover of S.

EXAMPLE 13: Verify that the collection G, = {Ga}n where G, =] —n, n[ is an open
cover of the set R.

SOLUTION: =] D B

- -
-1 S—

. [
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Fig. 3
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As shown in the Figure 3, we see that every real number belongs to some G.. Hence

R=UG,
EXAMPLE 14: Examine whether or not the following collections are opén covers of
the interval [1, 2].

R R EE AR
MG =1{] Z’;’[’]4 2 [’]3 2 {}

De=( L5032
WG={] 2> 3112 =0}

SOLUTION: (i) Plot the subsets of G, on the real line as shown in the Figure 4.

(=N 3

e

Fig. 4

From the figure, it follows that every element of the set S =[1,2] = f{u: | < x < 2]

belongs to at least one of the subsets of G,. Since each of the subsets in G, is an open
set, therefore /3, is an open cover of S.

94
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(ii) Again plot the subsets of G; on the real line as done in the case of (i).
You will find that none of the points in the interval [ % ) % » ] belongs to any of the

subsets of G, Therefore G is not an open cover of S.

Now try the following exercise:

EXERCISE 18)
Verify whether the following collections are open covers of the corresponding sets
mentioned in each case :

@ Gi=(nn+2:neZiofR
i) G:={mn+1[ :”nem of R

(iif) G’—{]n+2 ,[ nEN} of 10, 1].

Now consider the set [0, 1] and two classes of open covers of this set namely G, and
G; given as

EPRSEIS VD DS S PV §
Gi={1= 1=, 1+~ [} G={1-1-- 1+2n[n}l

You can see that G, C G;. In this case, we say that G: is a subcover of G,. In general,
we have the following definition:
DEFINITION 9: SUBCOVER AND FINITE SUBCOVER OF A SET

Let G be an open cover of a set S. A subcollection E of G is called a subcover of S if
E too is a cover of S. Further, if there are only a finite number of sets in E, then we
say that E is called a finite subcover of the open cover G of S. Thus if G is an open
cover of a set S, then a collection E is a finite subcover of the open cover G of S
provided the following conditions hold:

(i) Eis contained in D
(ii) E is a finite collection

(iii) E is itself also a cover of S.

EXERCISE 19)
Give an example of an infinite set S such that there is an open cover G of S which
admits of a finite subcover of G

From the forgoing example and exercise, it follows that an open cover of a set may or
may not admit of a finite subcover. Also, there may be a set whose every open cover
contains a finite subcover. Such a set is called a compact set. We define a compact set
in the followmg way:

DEFINITION 10: COMPACT SET

A set is said to be compact if every open cover of the set admits of a finite subcover of
the set.

For example, consider the finite set S = {1, 2, 3 } and an open cover {G Jof S. Let G,
G, G, be the sets in G which contain 1, 2, 3 respectively. Then {G', G?, G*} is a finite
subcover of {G_}. Thus S is a compact set. In fact, you can show that every finite set
in R is a compact set. ‘

The collection G = { J— n, n[ : n € N} is an open cover of R but does not admit of a
finite subcover of R. Therefore the set R is not a compact set.

Thus you have seen that every finite set is always compact. But an infinite set may not
may not be a compact set. The question, therefore, arises, “What is the criteria to
determine whether a given set is compact?” This question has been settled by a
beautiful theorem known as Heine-Borel Theorem named in the honour of the
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German mathematician H.E. Heine [1821-1881] and the French mathematician Topology of the Real Line’
F. E.E. Borel [1871-1956], both of whom were pioneers in the development of -
Mathematical Analysis.

We state this theorem without proof.

THEOREM 3: Heine-Borel Theorem

Every closed and bounded subset of R is compact.
The immediate consequence of this theorem is that every bounded and closed interval
is compact.

3.8 SUMMARY

In Section 3.2, we have defined the absolute value or the modulus of a real number
and discussed certain related properties. The modulus of real number x is defined

as
Ixj=x ifx=0
=—x ifx<0.

Also, we have shown.that

[x—a|<d <> a—-d<x<atd

. In Section 3.3, we have discussed the fundamental notion of NBD of a pomt on the

real line i.e. first we have defined it as a & — nelghbourhood and then, in general,
as a set containing an open interval with the point in it.

. With the help of NBD of a point we have defined, in Seetion 3.4, an open set in the

sense that a set is open if it is a NBD of each of its points.

. We have introduced the notion of the limit point of a set in Section 3.4. A point p

is said to be a limit point of a set S if every NBD of p contaigs a point of S
different from p. This is equivalent to saying.that a point p is a limit point of S if
every NBD of p contains an infinite numbér of the members of S. Also, we have
discussed Bulzano-Weiresstrass theorem which gives a sufficient condition for a set
to possess a limit point. It states that an infinite and bounded set must have a limit

point. This condition is not necessary in the sense that an unbounded set may have
a limit point.

. The limit points of a set may or may not belong to the set. However, if a set is such

that every limit point of the set belongs to it, then the set is said to be a closed set.
The concept of a closed set has been discussed in Section 3.6. Here, we have also
shown a relationship between a closed set and an open set in the sense that a set is

- closed if and only if its complement is open. Further, we have also defined the

Derived set of a set S as the set which consists of all the limit points of the set S.
The Union of a given set and its Derived set is called the closure of the set. Note
the distinction between a closed set and the closure of a set S.

Finaily, we have introduced angther topological notion in Section 3.7. It is about
the open cover of a given set. Given a set S, a collection of open sets such that their
Union contains the set S is said to an open cover of S. A set S is said to be compact
if every open cover of S admits of a finite subcover. The criteria te determine
whether a glven set is compact or not, is given by a theorem named Heine-Borel
Theorem which states that every closed and bounded subset of R is compact. An

immediate consequence of this theorem is that every bounded and closed interval is
compact.

3.9 ANSWERS/HINTS/SOLUTIONS

E1l) Ifx=0,then-x<0

Min (x, —x) = —x

Also |x| = x. Hence

—|x| = —x = Min (x,— x).

If x <0, —x > 0. Hence

Min (x, —x) = x. Also

|x| = —x. Therefore ,

— |x] = x = Min (x, — x). 65
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E 2) Follow the method as explained in property 2)

E3) (%=(2% {By property 2).
y y
_ x _ |x| (Again by property 2)
y yl
y
= XY=+ X - ﬁl.why?
y lyl lyl

E 4) |x—¥13=(x—y)2=x3+y:—2xy
= IxIT+ lyl + 2 (= |xy)l ’
= XAy =2 0xl yl = x| = 1y =1 |x| = |yl [}
Therefore
Ix =yl =% | x| —ly| ‘
Hence [x —y| = | x| — |yl. Why?

E5) Follow the procedure explained in the property S.
[x—a|=d<E=>>—-d=(x—a)<d
<> a—d<x<a+d

E6) (i) Chooseaandbsuchthata+b= 7,a—b=2.

Then2a=9ora=%and2b= Sorb= %

Hence
2<x<Te> 223 948
2 2 2 2
e 3oy 95
2 22

*

<> —5<2Xx-9<5 = [2x —9|<5
i) [x=21<3 < <3<x-2<3
S 2-3<x<342
<= —1<x<5.

E7) (i) [a b[isaNBD of each of its points except the point b.
(i) Easy to solve.
(iit) Each of these is a NBD of each of its points except the point a.
(iv) Same as (iii)
(v) Itis not a NBD. Explain why?
(vi) It is also not a NBD of any of.its points. Why?

E8) LetSand T be any two NBD:s of a point c.
We have to show that SU Tisa NBD of c. Now ¢ ESU T=>c¢E€T. If

cE€ S, thensince Sisa NBD of cand S C SU T, therefore SU T is also a
NBD of c. ‘

E9) (i) [a b]isnotan open set. Why?
(i)  J0, 1 [ is open while [0, 1 [ is not open. Give reasons.
(iii) It is not an open set because it is not'a NBD of any of its points.
(iv) Neither N nor Z is an open set.
(v) lItis not open
(vi) ]Ja, o[is open but{ a, oo is not open.
E 10) Example is given after E 8). Look for it.
E 11) Use the method of E 8).
E12) (i) No. Give reasons.

(i) Every NBD of an arbitrary real number contains an infinite number of
real numbers.



E 13)

E 14)

E 15)

E 16)

E17)

E 18)

E 19)

(iii) Yes the end points are also the limit points but they do not belong to it.

(iv) Yes. The end points, in this case, are also the limit points but they belong
to the interval.

(v) Yes. Elaborate it.
(i) Any four bounded intervals
(i) The sets Q, R, and the set

(L.nen
n

(i) Z A
Let p be a limit point of a set S. We have to prove that

(i) if every NBD of p contains at least one member of S different from p,
then every NBD of p contains an infinite number of the members 8f S.

(ii) If every NBD of p contains an infinite number of members of S, then it
must have at least one member of S other than p.

The result (ii) is obvious. Therefore it is enough to prove (i).

Since every NBD of p contains atieast one member of S different from p,
therefore let Jp —~ &, p + &:, [ be a NBD such that it has a member x, of
S and x; # p. Suppose |x; — p| = 8; where 6; < 8,. Consider the NBD
]Jp—82, p + 82 { of p. Then by definition, Jp — 82, p + 6: [ must have an
element say x. of S such that x, 7 p. But since é; < 8, therefore Jp — &1,
p + 81 [contains two elements x,, x2 of S which are different from p.
Continuing like this, you can show that the NBD Jp — 6, p + 8
contains an infinite number of the members of S.

() Not closed.

(ii) Closed

(iif) Closed

(iv) Closed ' .
(v) Both are closed sets

(vi) First is closed and the second is not closed.

. 11

(l) Sz{l,—)g’ .}

@ [0, 1.

Consider an arbitrary family of closed sets such that their intersection is

nonempty. Let x be a limit point of this intersection. Then every NBD ]x;é, n
+ &f for some & > 0, of x contains an infinite numbers of this intersection and
hence of each member of the given family. Therefore x is a limit point of each
member of this family of closed sets. Hence x belongs to each member of the
family and therefore x belongs to the intersection. Hence the intersection is
also a closed set.

OD={..,1-3,-1,1-2,0(,1— 1,1, 10,2 ....... }

Since every x € R belongs to at least of the subsets of D, therefore D is an
open cover of R,

Similarly verify (ii) and (iil).

Any suitable example will be acceptable.

Topology of the Real Line
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4.1 INTRODUCTION

Real Analysis is often referred to as the Theory of Real Functions. The word
‘function’ was first introduyced in 1694 by L.G. Leibniz [1646-1716}, a famous German
mathematician, who is also credited along with Isacc Newton for the invention of
Calculus. Leibniz used the term function to denote a quantity connected with a curve.
A Swiss mathematician, L. Euler [1707-1783] treated function as an expression made
up of a variable and some constants. Euler’s idea of a function was later generalized
by an eminent French mathematician J. Fourier [1768-1830]. Another German
mathematician, L. Dirichlet (1805-1859) defined function as a relationship between a
variable (called an independent variable) and another variable (called the dependent
variable). This is the definition which, you know, is now used in Calculus. l

The concept of a function has undergone m.ny refinements. With the advent of Set
Theory in 1895, this concept was modified as a correspondence between any two non-
empty sets. Given any two non-empty sets S and T, a function f from S into T,
denoted as f: S — T, defines a rule which assigns to each x €S, a unique clement

y € T. This is expressed by writing as y =.f (x). This definition, as you will recall, was
given in Section 1.2. A functionf: S — Tissaid tobe a

(i) Complex-valued function of a compiex variable if both S and T are sets of
complex numbers;

(ii) Complek-valued function of a real variable if S is a set of real numbers and T is
a set of complex numbers;

(iii) Real-valued function of a complex variable if S is a set of complex numbers and
T is a set of real numbers; _

(iv) Real-valued function of a real variable if both S and T are some sets of real
numbers.

Since we are deaung wish the course on Real Analysis, we shall confine our discussion
to those functions whose donains ‘as well as co-domains are some subsets of the set of
real numbers. We shall call such functions as Real Functions.

In this unit, we shali deal with the algebraic and transcendental functions. Among the
transcendental functions, we shall define the trigonometric functions, the exponential
and logarithmic functions. Also, we shall talk about some special real functions
including the bounded and monotonic functions. We shall frequently use these
functions to illustrate various concepts in Blocks 3 and 4.



MOBJECTIVES ‘ Real Functions

After going through this unit, you should be able to
—>identify various types of algebraic functions
—>define the trigonometric and the inverse trigonometric functions
—>describe the exponential and logarithmic functions

—>discuss some special functions including the bounded and monotonic functions.

4.2 ALGEBRAIC FUNCTIONS

In Unit 1, we identified the set of natural numbers and built up various sets of
numbers with the help of the algebraic operations of addition, subtraction,
multiplication, division etc. In the same way, let us construct new functions from the
real functions which we have chosen for our discussion. Before we do so. let us
review the algebraic combinations of the functions under the operations of addition,
subtraction, multiplication and division on the real-functions.

4.2.1 ALGEBRAIC COMBINATIONS OF FUNCTIONS

Let f and g be any two real functions with the same domain S C R and their co-
domain as the set R of real numbers. Then we have the following definitions:
DEFINITION 1: SUM AND DIFFERENCE OF TWO FUNCTIONS

(i) The Sum of f and g, denoted as f + g, is a function defined from S into R such
that

(f+ g) (x) = f(x) + g(x), ¥ xES.

(i) The Difference of f and g, denoted as f — g, is a function defined from S to R
such that

(f—8) (x) = f(x) — g(x), ¥xES.
Note that both f(x) and g (x) are elements of R. Hence each of their sum and
difference is again a unique member of R.

DEFINITION 2: PRODUCT OF TWO FUNCTIONS L

Letf: S — R and g: S — R be any two functions. The product of f and g, denoted as
f.g, is defined as a function f. g: S — R by

(f. ) (x) = f(x) . g(x), ¥ x ES.
DEFINITION 3: SCALAR MULTIPLE OF A FUNCTION

Let f: S — R be a function and

k be some fixed real number. Then the scalar multiple of ‘f’is a function
kS — R defined by '

(kf (x) = k. f(x), ¥ xES.
This is also called the scalar multiplication.
DEFINITION 4: QUOTIENT OF TWO FUNCTIONS

Letf:S ™ Rand g: S — R be any two functions such that g(x) # 0 for each

xinS, Then a funclion—f: S = R defined by
g .

(—[) (x):—f(i)s\'fa(GS
g g(x)
is called the quotient of the two functions.

EXERCISE 1)
Let f, g, h be any three functions, defined on S and taking values in R, as

f (x) = ax’, g(x) = bx for every x in S, where a, b, are fixed real numbers. Find f + '
f—g,f.g,f/g and kf, when k is a constant.

4.2.2 NOTION OF AN ALGEBRAIC FUNCTION

You are quite familiar with the equations ax + b=0and ax> + bx + ¢ = 0, where
a,b. c€R, a # 0. These equations, as you know are, called linear (or first degree) and 69
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quadratic (or second degree) equations, respectively. The expressions ax + b and

ax’ + bx + c are, respectively, called the first and second degree polynomials in x. In
the same way an expression of the form ax® + bx? + cx + d (a#0,a,b,c,dER)is
called a third degrée polynomial (cubic polynomial) in x. In general, an expression of
the form ao x" + a) x™' + a, x"? + ... + a, where a, # 0, ,, ER, i =0, 1, 2, vy D, 0§
called an nth degree polynomial in x.

A function which is expressed in the form of such a polynomial is called a polynomial
function. Thus, we have the following definition:

DEFINITION 5: POLYNOMIAL FUNCTION

Leta, (i=0, 1, ...., n) be fixed real numbers where n is some fixed non-negative
integer. Let S be a subset of R. A function f: S — R defined by

f(x) = aoi'+ ax"'ta x4+ ...+ an, ¥ x€ES, ao'#.O

is called a polynomial function of degree n.

Let us consider some particular cases of a polynomial function on R:

Suppose f: S = R is such that

(i) f(x) = k, ¥x €S (k is a fixed real number). This is a polynomial function. This is
generally called a constant function on S.

For example,
f(x) = 2, f(x) = — 3,f(x)= m, ¥ x R, are all constant functions.
(ii) One special case of a constant function is, obtained by taking

k=0i.e. when
f(x) =0, ¥ xeS.

This is called the zero function on S

EXERCISE 2)
Draw the-graph of a constant function. Draw the graph of the zero function.

F 4

Let f: S — R be such that
(i) f(x) = a. x+ a;, ¥xES, a, #0.

This is a polynomial function and is called a linear function on S. For example,
f(x) =2x + 3, f(x) = — 2 x+3, »
f(x) = 2x — 3, f(x) = —2x — 3, f(x) = 2x ' for every
x € Sare all linear functions
(iv) The function f: S — R defined by
f(x)=x,#x €S
s called the identity function on S.
v) :S—R given as
f(x) = ap.x* + a, x+a,¥xER, a #0.
is a polynomial function of degree two and is called a quadratic function on S.
For example, f(x) = 2x* + 3x — 4, f(x) = x* + 3, f(x) = x> + 2x,
f(x) = — 37,
for every x €8 are all quadratic functions.
DEFINITION 6: RATIONAL FUNCTION

A function which can be expressed as the quotient of two polynomial functions is
called a rational function.

Thus a function f: S — R defined by
aox"+a x"' +.... +a,
box™ + b x™ "' +.... + bn

is called a rational function.

.

f(x)= ,¥x€ES.



Here ag # 0 by # 0, a;, b; € R where i, j are some fixed real numbers and the Real Functions
polynomial function in the denominator is never zero.

EXAMPLE 1: The following are all rational functions on R.

x+3 4’ +3x+1 3x+5
xX+1 Ix—4 x—4
The functions which are not rational are known as irrational functions. A typical

example of an irrational function is the square root function which we define as
follows:

DEFINITION 7: SQUARE ROOT FUNCTION
Let S be the set of non-negative real numbers. A function f: S — R defined by
f(x)=\/x, ¥xE€S

is called the square root function.

(x # ;) and (x* 4).

You may recall that \/x is the non-negative real number whose square is x. Also it is
defined for all x > 0.

EXERCISE 3)
Draw the graph of the function f(x) = /x for x=0.

Polynomial functions, rational functions and the square root function are some of the
examples of what are known as algebraic functions. An algebraic function, in general,
is defined as follows

DEFINITION 8: ALGEBRAIC FUNCTION

An algebraic function f: S — R is a function defined by y = f(x) if it satisfies
identically an equation of the form

, Po()y' +pr(X)y e+ pai(x) y + pa(x) =0
where p . (x), pi (), .... po-1 (X), P« (x) are Polynomials in x for all xin S and n is a
positive integer.

EXAMPLE 2: Show that f: R — R defined by

2_
f(x) = \/x 3x+2
x—1

is an algebraic function.
Solution

2~

Viéx — 1
Then (4 x—1) y'— (x*-3x +2) =0

Hence f(x) is an algebraic function.

In fact, any function constructed by a finite number of algebraic operations (addition,
subtraction, multiplication, division and root extraction) on the identity function and
the constant function, is an algebraic function.

EXAMPLE 3: The functions f : R — R defined by
2 —
0 o= &+ 22) Vx—1
x + 4
P—2x
orf(x)= 2—2%
) vx. (3x! +5)

are algebraic functions.

EXAMPLE 4: Prove that every rational function is an algebraic function.

SOLUTION : Let f: R — R be given as

f(l)= ﬁ’ ¥ x €R, 71
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where p(x) andg(x) are some polynomial functions such that q (x) # 0 for any x €R.
Then we have

q(x) y—p(x) =0

which shows that y = f(x) can be obtained by solving the equation

q(x) y — p(x) = 0.
Hence f(x) is an algebraic function.

EXERCISE 4)

Verify that a function f: R — R defined by
f(x) = Vx+y/ x

is an algebraic function.

A function which is not algebraic is called a Transcendental Function. Examples of
elementary transcendental functions are the trigonometric functions, the exponential
functions and the logarithmic functions, which we discuss in the next section.

4.3 TRANSCENDENTAL FUNCTIONS

In Unit 1, we gave a brief introduction to the algebraic and transcendental numbers.
Recall that a number is said to be an algebraic if it is a root of an equation of the
form

a°x°+gl x“"+....x+a..1x+a.;—"0

with integral coefficients and a, # 0, where n is a positive integes. A number which is
not algebraic is called a transcendental number. For example the numbers ¢ and  are
transcendental numbers. In fact, the set of transcendental numbers is uncountable.

Based on the same analogy, we have the tr@nscendental functions. In Section 4.2, we
have discussed algebraic functions. The functions that are non-algebraic are called
transcendental functions. In this section, we discuss some of these functions.

4.3.1 TRIGONOMETRIC FUNCTIONS

You are quite familiar with the trigonometric functions from the study of Geometry
and ‘Trigonometry. The study of Trigonometry is concerned with the measurement of
the angles and the ratio of the measures of the sides of a triangle. In Calculus, the
trigonometric functions have an importance much greater than simply their use in
relating sides and angles of a triangle. Let us review the definitions of the
trigonometric functions sin x, cos x and some of their properties. These functions
form an important class of real functions.

Consider a circle x* + y* = r* with radius r and centre at O. Let P be a point on the
ciscumference of this circle. If @ is the radian measure of a central angle at the centre
of the circle as shown in the Figure 1. '




then you know that the length of the arc AP = s is given by
s=60r.

You also know that the trigonometric ratios sin 6, cos 8 were defined for an angle 6
measured in degrees or radions. We now, define, sin 8, cos 6 for a real number 6.

It we put r = I, then we got § = s. Also the equation of circle becomes x>+ y* = 1.
This, as you know, is known as the Unit Circle. Let C represent this circle with centre
O and radius 1. Suppose the circle meets the X-Axis at a point A as shown in the
Figure 2. YA

Fig. 2

Take a point P on the circumference of this Circle. Then the length AP = s.= 6 where
0=6=2 m. Also corresponding to any angle § € [0, 2 ], there lies a point P on the
unit circle such that the length of AP is equal to 6.

Now let x be any real number, then corresponding to each x, there exists an fnteger k
such that

x=2km+6,0<0<2m.
Corresponding to @ there exists a unique point P on the unit circle. We, define
sin x = PQ
cos x = 0Q.
Then, it follows that

sin (2 m + x) =sin x
cos (2m + x) = cos x

for each x € R. It also follows that

sin0=0,sing=l,sinn—=0,sin3_”=_|
and
cos 0 =1, cos 7i=0, cos T = — 1, cos T =o.
2 » 2
In general,

Sin n 7 =0, and cos ( (2n+1) T—Tz
for every integer n.

You can easily see that as 6 increases from o to m 2, P Q increases from 0 to | and O

Q decreases from 1 to 0. Further as 8

Real Functions
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increases from g to m, P Q decreases from 1 to 0 and O Q decreases from 0to — 1.
Again as @ increases from = to im , PQ decreases from0to— 1 and 0 Q
increases from — | to 0. As 8 increases from 37" to 27, O Q increases

from 0 to 1 and .P Q increases from — 1 to (. Since Sin (2 7 4+ x) = Sin x and
Cos (2 + x) = Cos x for each real x, the graphs of these functions take the shapes as
shown in figure 3.

Yp
Y = sin X
14
0.54
—47 =37 |-27m |-« ™ 27 In 4w
, + X
0
—0.5
L1
Y4
V = cos X
.
—711’: a
2 2
Fig. 3.

Thus, we define sin x and cos x as follows:
DEFINITION 9: SINE FUNCTION
A function f: R — R defined by

f(x) = sinx, ¥xER
is called the sine of x. We often write y = sin X.

DEFINITION 10: COSINE FUNCTION

A function f: R — R defined by
f(x) =cos x, ¥ XER

is called the cosine of x and we write
y = cOS X.



Note that the range of each of the sine and cosine, is [~ 1, 1]. In terms of the real Real Functions
functions sine and cosine, the other four trigonometric functions can be defined as
follows:

(i) A function f: S —> R defined by

sin x
f(x) =tanx =

is called the cos X

,cosx¢0,Vx€S=R—{(2n+l)%}

Tangent Function. The range of the tangent function is ] — o, + o[ = R and
the

domainisS=R —{(2n+1) %} , where n is a non-negative integer.

(ii) A functicn f: S —>» R defined by

cos X
f(x) = cot x = —
sin X

»sin x#0, ¥xES=R—{nn},

is said to be the Cotangent Function. Its range is also same as its co-domain i.e.
range = ] — %, % [ = R and the domain is S = R — {n}, where n is a non-
negative integer.

(iii) A function f: S == R defined by

f(x) = sec x = , cosx#O,VxES'—‘S—{zn-{—l)g—}.

€os X
is called the Secant Function. Its range is the set
S =1]-%,—1] U[l, [ and domainis S =R —{2n+ 1) %},
(iv) A function f: S —> R defined by

f(x) = cosec x =

,sin x#0,xES=R —{nr},

sin x
is called the Cosecant function. Its range is also the set S =] — o0, — IJU[1, [ and
domainisS=R—{nw} £

The graphs of these functions are shown in the Figure 4 on pages 76-77.

EXAMPLE 5: LetS=[ — % , 7—;- ]- Show that the function f: S———>> R defined by
f(x) =sin x, ¥ xES

is one-one. When is f only onto? Under what conditions f is both one-one and onto?

SOLUTION: Recall from Unit 1 that a function f is one-one if
f(xl) - f(Xz) = X| = X2

for every X, X, in the domain of f.

Therefore, here we have for any x;, X2 €S, Recali the trigonometric identities

which you have learnt in your
previous study of Trigonometry.

f(x1) = f(x;) = sin x; = sin x2

=>> sinx; —sinx:=0

=> 2sin x|2—x; cos x:f_—_)g =0

2
=3 Either sin X 0, or cos X1t % = 0.
sin 2 =0 then 22 =0 + 7 +2nm, ...
fcos X% =g then XX =y T 4 3T
2 2

. L .
Since xi. x: ¢ [~ 5 5]. therefore we can only have
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2 2 2
and
oo mtm o ow
2 2 T2
Thus L Oie. x)'= x,. Also, if *LTX txo_ g %
ie. then x; + x; = + 7.
Since xi, x2e[- =, T, 1,
2 2
s

T
therefore x; = x; = 5 OrX; =x;==— —

Hence f(x,) = f(x;) ‘=}> X1 = X2, which proves that f is one-one. Then function
f(x) = sin x defined as such, is not onto because you know that the range of sin x is |

— 1, 1]#R. TY
y = tan x
' [
: ! : '
{ t i 1
' ! 1 [
1 ' 1 !
! t 1 |
! { ' {
) 1 1 |
! ' ' !
! ! !
' ' '
+ T T ¥ —P» X
—2m =3nf-n 1-m /|0 1= 0 (37 f2n
' 2 t 2 2 2
| I 1 : i
I | :
l | | !
1 ! } I
1 I |
1
1 | 1
! 1 1 i
! ' 1 !
' ' ' 1
Fig.4 (i)
Y4
1
: 24 I Vo= cot x
1 1
l
! 1.5 4 h
i l
! 14 |
1 I
I 0.54 :
: 1
~ ' t —> X
D 3w | —m\ O R 3n
2 12 F_os \2 1 2
1 !
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I |
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) !
! -2 1
! |

76 Fig. 4 (ii)
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If you defipe f: R——>[—1, 1] as
f(x) = sin x, ¥ x €ER.

Then f is certainly onto. But then it is not one-one. However the function.

f: [_g 'ﬂ-—>[—l,l]deﬁned by

]

19

f(x) =sinx. ¥ xe[— %

is both one-one and onto.

Real Functions
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Be careful about the notation
used. The superscript — 1 that
appears in y = sin”' is not an
exponent, but is the symbol f ™'
used to denote the inverse of a
function {. To avoid this, notation
y = arcsin, x instead of y = sin "' x
is used sometimes.
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EXERCISE 5)

Two functions g and h are defined as follows :
(i) £ S—> R defined by

g(x) = cos x, x€S = [0, 7]
(ii) h: S—> defined by

h(x) = tan x, x€S =12, 7[

2°2

Show that the functions are one-one. Under what conditions the functions are one-one
and onto?

4.3.2 INVERSE TRIGONOMETRIC FUNCTIONS

In Section 1.2 we discussed 1nverse functions. You know that if a function is one-one
and onto, then it will have an inverse. If a function is not one-one and onto, then
sometimes it is possible to restrict its domain in some suitable manner such that the
restricted function is one-one and onto. Let us use these ideas to define the inverse
trigonometric functions. We begin with the inverse of the sine function.

Refer to the graph of f(x)= sin x in figure 3. The X-Axis cuts the curve y = sin x at
the points = 0 x = m, x = 2, .... This shows that function f(x) = x is not one—one.
However, we have already shown in example 5 that if we restrict the domain of

f(x) = sin x to the interval [ — w/2, w/2], then the function
f: [— z g —~[—1,1] defined by
2 2
f(x) = sin x, — T<x<T
2 2

is one-to-one as well as onto. Hence it will have the inverse. The inverse function is
called the inverse sine of x and is denoted as sin™' x. In other words,

y=sin"' x means x =siny
T
2
Tbus, we have the following definition:

where — l <y=< and—1<x<1] ¢

DEFINITION 11: INVERSE SINE FUNCTION

s

i] defined by

Afunctiong:[—1,1]—>[— %r,
g(x) =sin' x, ¥ x€ [-1, 1]
is called the inverse sine function.

Again refer back to the graph of f(x) = cos x in figure 3. You can easily see that
posine function is also not one-one. However, if you restrict the domain of
f(x) =-cos x to the interval [0, ], then the functicn f: [0, 7] —= [ ~ 1, 1] defined by

fx)=cosx.0<x<m

is one-one and onto. Hence it will have the inverse. The inverse function is called the
inverse cosine of x and is denoted by cos 'x (or by arc cosx). In other words,

y = cos'x means x = cos y

where 0<y<mand—1<x<1

Thus, we have the following definition:

DEFINITION 12: A function g: [0,_ m] —=[—1, 1] defined by
g(x) = cos ' x, ¥ x€[0. 7}

is called the inverse cosine function.
You can easily see from Figure 4 that the tangent function, in general, is not one-one.

However, again if we restrict the domain of f (x) = tan x to the interval }—m/2, n/ 2,
then the function



¢ (_E . !’2_) — R defined by Real Functions
T ™

x)=tanx,— - <x< -
f(x) T 3 3
is one-one and onto. Hence it has an inverse. The inverse function is called the inverse

tanget of x and is denoted by tan™' x (or by arctan x). In other words,
y=tan"' x means x = tany
where — 1-2[<y< ’é and — 0 < x < + .

Thus, we have the following definition:

DEFINITION 13: Inverse Tangent Function
A function g: (— ’; ’i) — R defined by

=tan"' x, ¥ -, T
g(x)=tan" x, ¥x€[ 3 2]

is called the inverse tangent function.

" Now you can try the following exercise to define the remaining three inverse

trigonometric functions:

EXERCISE 6)
Define the inverse contangent, inverse secant and inverse cosecant function. State
their domains and ranges. ‘

Now, before we proceed to define the logarithmic and exponential functions, we need
the concept of the monotonic functions. We discuss these functions as follows:

4.3.3 MONOTONIC FUNCTIONS

Consider the following functions:

(i) f(x)=x, ¥xER. :
(i) f(x)=sinx, ¥x&[—7/2, n/2].

(i) f(x)=—x V¥ xE[0, .

(iv) f(x)=cosx ¥x€[0, m].

Out of these functions, (i) and (ii} are such that for any x,, x; in their domains,

x1 < x; = f(x1) < f(x2)
where as (iii) and (iv) are such that for any xi, X, in their domains,

X1 < X; = f(x;) = f(Xz).

The functions given in (i) and (ii) are called monotonically increasing while those of
(iii) and (iv) are called monotonically decreasing. We define these functions as follows:

Let f: S = R (S C R) be a function.

(i) It is said to be a monotonically increasing function on S if
x; < x; = f(x)) < f(x;) for any x,, X2 €S

(i) It is said to be a monotonically decreasing function on S if
x; < x; = f(x;) = f(x:) for any xi, x> €S.

(iii) The function f is said to be a monotonic function on S if it is either
monotonically increasing or monotonically decreasing.

(iv) the function f is said to be strictly increasing on S if
x; < x; = f(x)) < f(x2), for x), x; ES.

(v) It is said to be strictly decreasing on S if

x1 < x2 ==> f(x1) > f(x,), for xi, x2 €S. 79
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You can notice immediately that if f is monotonically increasing then — f j.e.

— f: R = R defined by (—Hx)=—f(x), ¥x ER

is monotonically decreasing and vice-versa. ’

EXAMPLE 6: Test the monotonic character of the function f: R — R defined as

xL,x<0

fx) = -x5L x>0

SOLUTION: For any x;, XER, x; <0, x, <0
X1 <x2 = x> x% = f(x,) > f(x,)
which shows that { is strictly decreasing.

Againif x, >0, x, > 0, then

X1 <x; =>x{ < xj =>— x}>— x3 = (x1) > f (x2)

which shows that f is strictly decreasing for x > 0. Thus f is strictly decreasing for
every x ER.

Now, we discuss an interesting property of a strictly increasing function in the form of
the following theorem:

THEOREM 1: Prove that a strictly increasing function is always one-one.

PROOF: Letf:S — Tbea strictly increasing function. Since f is strictly increasing,
therefore, .
X1 < x2 ==> f(x1) < f(x) for any x;, x; €S.

" Now to show thatf: S — T is one-one, it is enough to show that

f(x1) = f(x;) => x, = x,.

Equivalently, it is enough to show that distinct elements in S have distinct imagesin T
e X # x; => f(x1) # f (x2), for x,, x, €S.

Indeed,
xl#X2=>x1<Xzorx1>xz
= f(x,;) < f(x;) or f(x1) > f(x,)
== f(X]) # f(Xz)
which proves the theorem. 5

EXAMPLE 7: Letf:S — Thea strictly increasing function such that f(S) = T. Then
prove that f is invertible and f': T — S s aiso strictly increasing.

SOLUTION: Since f: S — T is strictly increasing, therefore, f is one-one. Further,
since f (S) = T, therefore f is onto. Thus f is on=-one and onto. Hence f is invertible,
In other words, f '; T —§ exists,

Now, for any y,, y, €T, we have y,= f(x,), Y2 = f(x2). If y) < y,, then we claim X < x:.'

Indeed if x; = x,, then f (x1) = f(x2) (why?).

This implies that y, > y, which contradicts.that y, < y,.
Hence y, <y, = x; <ty =17 () <1 (y2)
which shows that { ' is strictly increasing, -

You can similarly solve the following exercise for a strictly decreasing function:

EXERCISE 7)
Letf:S— Tbea strictly decreasing function such that f(S) = T. Show that f is
invertible and f ': T — S is also strictly decreasing.

4.3.4 LOGARITHMIC FUNCTION

You know that a definite integral of a function represents the area enclosed between
the curve of the function, X-Axis and the two Ordinates. You will now see that this
can be used to define logarithmic function and then the exponential function.

We consider the function f(x) = 1 for x > 0. We find that the graph of the
X

function is as shown in the Figure 5.
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DEFINITION 14: LOGARITHMIC FUNCTION

For x = 1, we define the natural logarithmic function log x as

log x = ]fx-l-t dt
In the Figure 5, log x represents the area between the curve f(t) = lt » X — Axis and
the two ordinates at 1 and at x. For 0 < x < I, we define

log x =‘_—fllt dt

This means that for 0 < x < 1, log x is the negative of the area under the graph of

f(t) = 1 > X - Axis and the two ordinates at x and at 1

gt

NN

O X

¥

Fig 6 :
We also see by this definition that

logx<0if0<x<1

logl =0
and

logx>0ifx> 1.

" It also follows by definition that if

X1 > X2 > 0, then log x; > log x2. This shows that log x is strictly increasing. The
reason for this is quite clear if we realise by log x; as the area under the graph as
shown in the Figure 7.

The logarithmic function defined here is called the Natural logarithmic function. For
any x > 0, and for any positive real number a # 1, we can define
]og_'x = 1&
T log a
This function is called the logarithmic function with respect to the base a.

If a ='10, then this function is called the common logarithmic function.

Real Functions
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Logarithmic function to the base a has the following properties
(i) log. (X1 x2) = log, X, + log, x>

(i) log. [ﬁ] = log. x; — log. x:
X2
(iii) log. x™ = m log. x for every integer m.
(iv) log.* = 1.
(v) log.' =0

By the definition of log x, we see that log 1 = 0 and as x becomes larg=r and larger,

1 . .
the area covered by the curve f(t) = -, X — axis and the ordinates at 1 and x,
¢ S

becomes larger and larger. Its graph is as shown in the Figure 8.
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You ailready know what is meant by inverse of a function. You had also seen in Unit 1
that if fis | — I and onto, then f is invertible. Let us apply that study to logarithmic
function. .

4.3.5 EXPONENTIAL FUNCTION
We now come to define exponential function. We have seen that
log x: 0, =™ R ‘
is strictly inéreasing function. The graph of the logarithmic function also shows that
' Iog x: 10, %[ = R
is also onto. Therefore this function admits of inverse function. Its inverse function,
called the Exponential function, Exp (x) has domain as the set R of all real numbers

and range as )0, of. If
82 log x =y, then Exp (y) = x.



The graph of this function is the mirror image of logarithmic function as shown in the Real Functions
Figure 9.

<« } ,T ! > x
—2 -1y (1.0) 2 3 _
r'4
S+
’
’ -
’ I
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Fig. 9

The Exp (x) satisfies the following properties
(i) Exp(x+y)=ExpxExpy
(ii) Exp(x—y)=Expx/Expy
(i) (Exp x)" = Exp (nx)
(iv) Exp(0)=1
We now come to define a” for a > 0 and x any real number. We write
a' = Exp (x log a) s
If x is any rational number, then we know that log a* = x log. a. Hence
- Exp (x log a) = Exp (log a") = a”. Thus our definition agrees with the already known

definition of a in case x is a rational number. The function a" satisfies the following
‘properties

x
a ”-
—_ ="
y

(iii) (2 =a” ;

(iv) a"b*=(ab),a>0,b>0.

(i)

%)

Denote E (1) = e, so that log e = 1. The number ¢ is an irrational number and its
approximation say upto five places of decimals is 2.71828. Thus

e = Exp (x log e) = Exp (x).
Thus Exp (x) is also denoted as e* and we write foreacha>0,a"=¢" loga

EXAMPLE 8: Plot the graph of the function f: R — R defined by f(x) = 2"
SOLUTION: X —2 -1 0 I 2

2 - — 1 2 4
4 2

The required graph takes the shape as shown in the Figure 10.
. {
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EXERCISE 8) 1
Show the graph of f: R — R defined by F(x) = (E )2

44 SOME SPECIAL FUNCTIONS

So far, we have discussed two main classes of real functions—Algebraic and
Transcendental. Some functions have been designated as special functions because of
their special nature and behaviour. Some of these special functions are of great
interest to us. We shall frequently use these functions in our discussion in the
subsequent units and blocks.

1. Identity Function

We have already discussed some of the special functions in Section 4.2. For example,
the Identity function i : R — R, defined as i (x) = x, ¥ x €R has already been
discussed as an algebraic function. However, this function is sometimes, referred to as
a special function because of its special cliaracteristics, which are as follows:

i) domain of i = Range of i = Codoméin of i

.. . P . . -1 . .
(i) The function i is one-one and onto. Hence it has an inverse i ' which is also one-
one and onto. ’

(iii) The function i is invertible and its inverse i | =

(iv) The graph of the identity function is a straight line through the origin which
forms an angle of 45° along the positive direction of X-Axis as shown in the
Figure 11. '
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2. Periodic Function

You know that
sin 27 + x) = sin (47 + X) = sin X,
tan (r + x) = tan 2 + x) = tan X.

This leads us to define a special class of functions, known as Periodic functions. All
trigonometric functions belong to this class.

A function f: S — R is said to be periodic if there exists a positive real number k such
that

f(x + k) =1f(x), ¥ xES
where S CR.

The smallest such positive number k is called the period of the function.

You can verify that the functions sine, cosine, secant and cosecant are periodic each
with a period 27 while tangent and cotangent are periodic functions each with 2
period .

EXERCISE 9)
Find the period of the function f where f(x) = |sin’ x|

3. Modulus Function
The modulus or the absolute (numerical) value of a real number has already been
defined in Unit 1. Here we define the modulus (absolute value) function as follows:”

Let S be a subset of R. A function f: S — R defined by
f(x) = |x|, ¥ xES
is called the modulus function.

' In short, it is written as Mod function.

You can easily see the following properties of this function:

(i) The domain of the Modulus function may be a subset of R or the set R itself.
(i) The range of this function is a subset of the set of non-negative real numbers.
(iii) The Modulus function f: R — R is not an onto function. (Check why?).

(iv) The Modulus function f: R — R is not one-one. For instance, both 2 and — 2 in
the domain have the same image 2 in the range.

(v) The modulus furction f: R = R does not have an inverse functign (why)?
(vi) The graph of the Modulus function is R — R given in the Figure 12. 8%
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It consists of two straight lines:
@) y=x(y=0)
and (i) y = —x (y=0)

through 0, the origin, making an angle of n/4 and 3m/4 with the poditive direction of

X-axis.

4. Signum Function
A function f: R — R defined by

x|
l(x)'—"-{ X whenx#0 .
X whenx=20:
or equivalently by:
—1ix<0
f(x)=l 0ifx=¢0
1ifx>0.

is called the signum function. It is generally written as sgn (x).

Its ringe set is {—1, 0, 1}. Obviously sgn x is neither one-one nor onto. The graph of

sgn x is shown in the Figure 13.
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Fig. 13
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5. Greatest Imteger Function Real Functions

Consider the number 4.01. Can you find the greatest integer which is less than or
equal to this number? Obviously, the required integer-is 4 and we write it as
[4.01)=4.

Similarly, if the symbol [x] denotes the greatest integer contained in x then we have
[3/4]1=0,{5.01)=35,

[—.005] = —1 and [—3.96] = —4.

Based on these, the Greatest integer function is defined as follows:
A function f: R = R defined by
f(x)=[x], ¥ xER

where [x] is the largest integer less than or equal to x is called the greatest integer
function:
The following properties of this function are quite obvious:

(i) The domain is R and the range is the set Z of all integers.
(ii) The function is neither one-one nor onto

(iti) If n is any integer and x is any real number such that x is greater than or equal
to n but less than n + 1 i.e. if n < x <n + | (for some integer n)
then [x] = ni.e.

The graph of the greatest integer function is shown in the Figure 14.
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EXAMPLE 6: Prove that
' [(x+ml=[x]+m¥xER,mcZ.

SOLUTION: You know that for every x € R, there exists an integer n such that

n<x<n+1l.
Therefore
ntmEx+m<n+l+m
and hence
(x+m]=n+m=[x]+m
which proves the result. . 87
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EXERCISE 10)

_ Test whether or not the function f: R = R defined by f(x) = x—[x] ¥ x& R, is

periodic. If it is 50, find its period.

6. Even and Odd Functions

Consider a function f: R — R defined as
"fix)=2x,¥x ER.
If you change x to —x, then you have
f{—x) = 2 (—x) = —2x —{ (x).

~ Such a function is called an odd function.

Now, consider a function f:R = R defined as
f(x)=x*¥x ER
Then changing x to —x we get
f(—x) = (—x)’ =x’ = 1(x)
Such a function is called an even function.
The definitions of even and odd functions are as follows:
A function f: R — R is called even if f( — x) = f(x), ¥ xER.
It is called odd if f(— x) = — f(x), ¥ xER

EXAMPLE 7: Verify whether the function f: R — R defined by
@) f(x)=Sin’x + Cos’ 2x

f(x\=\/az+ax+xz—— a’—ax+x’

are even or odd.
SOLUTION: (i) f(x) = sin’ x + cos’ 2x. ¥ x ER
=> (—x) = sin’ (—x) + cos’ 2 (—x)
= sin’ x + cos’ 2x = f(x), ¥ xER
=> { is an even function.

(ii) f(x)=\/a2+ax+x2 - \/az—ax+x2, ¥xER
=—'>f(—-x)=\’lz—ax+x2 —\/§2+ax+x’

=-x), ¥xER

=>> {is an odd function.

EXERCISE 11)
Determine which of the following functions are even or odd or nelibher:

®» fK)=x (i) a comstant function
(iii) sim x, cos x, tan X,

v = 2—4 vxemxC{-3,3)
x—9 '

7. Bounaed Functions
In Unit 2, you were introduced to the notion of a bounded set, upper and lower
bounds of a set. Let us now extend these notions to a function.

You know that if f: S — R is a function, (S C R), then
{f(x) : x €8},

is called the range set or simply the range of the function f.
A function is said to be bounded if its range is bounded.

Let f: S — R be a function. It is said to be bounded sbove if {here exists a real
number K such that
f(ix)<K.¥x€ES

The number K is called an upper bound of f. The function f is said to be bounded
below if there exists a number k such that

.Ax)2kVvxES
The number k is called a lowe: oound of f.



A function f: S — R, which is bounded above as well as bounded below, is said to be
bounded. This implies that there exist two real numbers k and K such that
k<f(x)<KV¥xES.

This is equivalent to say that a function f: S — R is bounded if there exists a real
number M such that

f(x)] <M, ¥x€ES.

A function may be bounded above only or may be bounded below only or neither
bounded above nor bounded below.

Recall that sin x and cos x are both bounded functions. Can you say why? It is
because of the reason that the range of each of these functions is [—1, 1].

EXAMPLE 8: A function f: R = R defined by
(i) f(x)=— x*, ¥ x ER is bounded above with 0 as an upper bound
(i) f(x) = x, ¥ x =0 is bounded below with 0 as a lower bound

(iii) f(x)= \/l —x*  for |x] <1 is bounded because |f(x)| <1 for |x| < |.

Try the following exercise.

EXERCISE 12)
Test which of the following functions with domain and co-domain as R are bounded
and unbounded:

(i) f(x)=tanx
G) f(x) = [x]
(iii) f(x) = ¢
(iv) f(x)=logx

EXERCISE 13
Suppose f: S —> Rand g: S —> R are any bounded functions on S. Prove that f
+ g and f. g are also bounded functionson S. 5

4.5 SUMMARY

In this unit, we have discussed various types of real functions. We shall frequently use.
these functions in the concepts and examples to be discussed in the subsequent units
throughout the course.

In Section 4.2, we have introduced the notion of an algebraic function and its various
types. A function f: S =—> R (S C R) defined as y = f(x), ¥ x €S is said to be
algebraic if it satisfies identically an equation of the form -

po(X)Y +p(X) Yy +p(x)y 7+ ... +px) y+ pa (x)=0,

where po (x), p1 (X), ...., P (X) are polynomials in x for all

x € S and n is a positive integer. In fact, any function constructed by a finite number
of algebraic operations—addition, subtraction, multiplication, division and root
extraction—is an algebraic function. Some of the examples of algebraic functions are
the polynomial functions, rational functions and irrational functions.

But not all functions are algebraic. The functions which are not algebraic, are called
transcendental functions. These have been discussed in Section 4.3..Some important
examples of the transcendental functions are trigonometric functions, logarithmic
functions and exponential functions which have been defined in this section. We have
defined the monotonic functions also in this section.

In Section 4.4, we have discussed some special functions. These are the identity
function, the periodic functions, the modulus function, the signum function, the
greatest integer functior, even and odd functions. Lastly, we have introduced the
bounded functions and discussed a few examples.

Real Functions
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4.6 ANSWERS/HINTS/SOLUTIONS

El)

E2)

E3)
E4)

ES)

(f+g) (x) = ax* + bx
(f — g) (x) = ax* — bx
(2:8) (x) = ax’. bx = abx’

2
/)= 2% = % provided b # 0, x % 0.

kf =k ax? bx
c | fix)=c S0 ] fx)=0

constant function Zero function (X—Axis)
y=f(x) = Vx @_ ryz = x. Now draw the graph.

y=f(x) =>y=vx+vx
= y'=x+Vx
_%yz—x=\/x_
= (y' —x)' =x
yV-2yx+x*—x=0

which shows that y = f(x) is an algebraic function.

(i) Letx), x2€]0, n{. Then
f(x)) = f(x2) =>> cos x| = cos X
=3 tos x; —cos X, =0

(2 sin Xt ) sin Je=x) o 0

=> either sin (% ) =0 or sin X2 '; X1 _

sin —"2-5‘-’51 =0 => “—;"1 =0,+ m, & 2m ...

cos . TX _g = —x'+x2=i %', +
XZ_—__J_(I=0 $x1=x2
X2

XXy ==t 2r+x

which is not possible.

X2 —

Hence 22_X! =+ rrisnot possible.

Thus, the only possibility is
X2 — X; .

= 0 which means x; = x;

Again the only possibility is that

X|+Kz=:t ™
2 2
= 2xi=+7w =-;>xl=¢’E'

- = xntxx=xnw

== xx==% ?‘” = Xx1=Xxz
Hence f(x)) = f(x2) = X1 = X2

In other words f(x) = cos x is one-one in [0, =].



Now, the range of cos x is [ — 1, 1 ] # R. Therefore cos x, defined from - Real Functions
[0, 7] to R is not onto. But, if cos x is defined from [0, 7] to [ — 1, 1],
then it is certainly one-one and onto.

(1) Do it yourself.

E6) (i) Cotangent Inverse.
y = cot”' means x = coty
where 0 <y<mand —and —o<x <+,

(ii) Secant Inverse
y =-sec’' X means X = sec y

T
where 0<y<n,y# - and |x| =|.
: 2
(i) Cosecant inverse
y = cosec”' X means X = cosec y

m
—>

where—%SyS y# 0and |[x| =].

N

"E7) (i) Letf:S——>T be astrictly decreasing function.
Let X1, X, be any two distinct elements of S. Then
X1 #x;, = x1 < X2, X1>> X2
= f(X|) > f(X2), f(x,) < f(x:)
=> f(x1) # f(x2)

which shows that f is one-one.

Since f(S) = T, therefore f is onto. Thus f is one-one and onto and hence f is )
invertible. In other words f ' existsi.e. f "1 T ——> S is-defined.

Fory:, y2E€ T, we have y; = f(x: ), y2 = f(xz) for some x, ,x,in S. If y; <y,

we claim that x; > x,. If not, then x; < x, which implies that f(x;) > f(x,) i.e.,

yl > y2 This is a contradiction. Hence y1 <y, =2 x1 > x2 ;"> £ y)>f
'(y2)

Thus, f "' is also strictly increasing,
E8) Follow the method of example. 8.

E9) Since f(r + x) = [sin’ (w + x) |=] — sin’ x | = sin’ x,
therefore m is the period of f. You may note that 7 is the least such number
satisfying the above relation.

E10) The function f(x) = x — [x] is periodic with period 1 because 1 is the only least
number such that

fx+1)= (x+ )—[x+l]'—(x+l)-—[x]—l—x—[x]
= f(x).
El11) (i) odd (ii) even

(iii) sin x 1s odd, cos x is even, tan x is odd

(O406f(—x) = ((_x))z_‘; = X 2_ : which shows that f is neither even
—x)°— x‘— J
nor odd

. E12) (i) [Itis unbounded because its range is ] — o, + o[
A (i) - |x is bounded below with 0 as a lower bound.

(iil) ex is bounded below because its range is ]0, & [
(iv) log x is unbounded.

E13) Since f and g are given to be bounded functions, therefore there exist numbers
i ki, K, and k;, K; such that
k=f(x) <K, V__XE S
k: < g(x) < K: ¥ xES.

(i) Since (f+g) (x) = f(x) + g(x), ¥ x ES

therefore k;+ k: < f(x) + g(x) = K, + K;, ¥ x €S 91
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(i)

= k<(f+g(x)SKV¥xES

where k = ki + k;, K = K, + K; are some real numbers
Thus f(x) + g(x) is a bounded function.

We know (f.g) (x) = f(x). g(x) ¥ x €S. Since f and g are bounded,
therefore, we can find m,, m; such that
f(x) | <m |, |g(x)]| <m ¥xES.
Then
I(f.8) (x) | = | f(x). g(x)|
= 1(x) | |g(x)|
=Sm.mV¥xES
which shows that f.g is bounded.



REVIEW

Attempt the following self-assessment questions and verify your answers given at the
end:

I.  Test whether the following are rational numbers:
(i) V17 (i) V8 (iii) 3+ V2

2. The inequality x* — 5x + 6 < 0 holds for
MHx<2,x<3 (i)x>2,x<3
() x<2,x>3 (ii)x>2,x>3

3. lf a, b, c, d are real numbers such that
a +b2—l c+di=1,
then show that ac+bd < 1.

4. Provethatja+b+c|<|a| + |bI + Ic|
for all a, b, ¢, ER.

5. Show that
lart+a; + ...+ a. < |a)| + laz] + ... + ja,]
for a), a,, .... a, ER.

6. Which of the following sets are bounded above? Write the supremum of the set
if it exists. v

i) [m e} (u)U [2n, 20 + 1]

(i) [n+ (_l)n:nEN} (V) (x EQ: X< 2}
n

(v) {x€R:x<0} (vi){~:nEN and nis prime}

1
n
(vii) {x*:xER} (viii){Cos(n—;f) ‘nEN

(ix) 2n:n€Z) (x){xER:x<2}U {xER: x>2}

7. Find which of the sets in question 6 are bounded below. Write the infergum if it
exists.

8. Which of the sets in question 6 are bounded and unbounded.

9. Test whether the foliowing statements are true or false
()  The set Z of integers is not a NBD of any of its points.
(i) The interval 10, 1]is a NBD of each of its points
(iii) Theset J1,3[U]4, 5[ is open.
(iv) The set[a,oo[ U]J—20, a]is ot open.
(v) Nis aclosed set.
(vi) The derived set of Z is non-empty.
(vii) Every real number is a limit point of the set Q of rational num.bers
(viii) A finite bounded set has a limit point.
(ix) [4, 51U {7, 8]is a closed set.
(x) Every infinite set is closed. -

10.  Justify the following statements:
(i)  The identity function is an odd function.
(i) The absolute value function is an even function.
(iii) The greatest integer function is not onto.
(iv) The tangent function is periodic with period .
(v)  The function f(x) = |x| for — 2 < x < 3 is bounded.
(vi) The function f(x) = e* is not bounded
(vii) The function f(x) = sin x, for xE [— % , %] is monotonically increasing.

(viii) The function f(x) =cos x for0 < x < 7 is monotonically decreasing.

(ix) The function f(X) = tan X is strictly increasing for x €[0, 7_2r_]_

x) fx)= \/2x§—3x+2

3 is an algebraic function
X—

Real Functions
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ANSWERS

{. None is a rational number

2. For (ii) only since 2 < x < 3.

3. (b—dy'=0 =>b+d’=2d =>bd<
o 2 => actbd < |
(a—c)’=0 => a’+c’=2ac => ac< 5

4. Use the triangle inequality.

5. Use the principle of Induction.

6. (1) m (iv) 2
v 0 (v % (vii)) 1
(ix) and (x) are unbounded.

7. G) e
)y 2
(i) ©
(vi) 0
(viii) — 1

8. All the sets are unbounded except the (i)

(i)  True (ii) False (iit) True (iv) False (v) True (vi) False (vii} True (viii) False
(ix) True (x) False.

N
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NOTATIONS AND SYMBOLS
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inf

is equal to

is not equal to

is greater than

is less than

is not less than

is not greater than

is a member of (belongs to)

is not a member of (does not belong to)
is a subset of (is contained in)
is not a subset of (is not contained in)
is a superset '
Union

intersection

empty set

implies

implied by

if and only if

equivalence relation

for all

there exists

multiplication

addition

subtraction

supremum

infimum

minimum

maximum

composition

derivative of f

inverse of a function f
exponential

logarithm

natural logarithm

signum

greatest integer not exceeding x
absolute value of x or Modulus of x
set of positive real numbers

set of real numbers

Set of irrational numbers

set of rational numbers

set of integers

set of natural numbers

field ~
set of complex numbers

closed interval

open interval

semi-open interval (open at left)—semi-closed interval
semi-open interval (open at right)—semi-closed interval .

infinity
minus infinity
sum

infinite series

sequence
complement of S
derived set of S
closure of S

-



Greek Alphabets
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Alpha
Beta
Gama
Delta
Epsilon
Zeta

Eta

Theta

Iota
Lambda
Mu

Nu

exi

Pi

(capital Pi)
Rho
Sigma (capital Sigma
Tou ‘
Phi

Chi

Psi

Omega
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| BLOCK 2 SEQUENCES AND SERIES

PREVIEW

| In Block 1, you were introduced to the system of real numbers and real functions. The main

| purpose at that stage was to build the foundation for a careful study of Real Analysis. At this
level, we shall begin this study with the process of limits. For this, we shall follow the
paths of a few 18th and 19th century mathematicians who were mainly concerned with the

: ‘ notion of a limit — the basic tool of Analysis. We shall, therefore, in the first instance, deal
with the notion of a limit in the context of the convergence of sequences and series. Having
absorbed the basic idea in this relatively simple situation, you will, then, be in a position to
appreciate more rigorous forms of limit. .

Although sequences and series are usually introduced in elementary Calculus and Algebra
Courses, it is not possible at that stage to pay much attention to the rigorous discussion of
the definitions and the proofs of the statements/theorems. In this block, therefore, we shall

discuss these topics with emphasis on the mathematical rigor. The block has three units
namely Units 5, 6 and 7.

In Unit 5, (the first unit of this block) you will be introduced to the notion of a sequence, a
sub-sequence, bounded and monotonic sequences. Thereafter, the concept of the limit of a
| sequence and hence a convergent sequence is discussed.

NIRRT s R

A . After having understood the concept of the convergence of a sequence, you will learn the
: criteria to test the convergence of a given sequence. This criteria is popularly known as
l' Cauchy’s Criteria for the convergence of sequences. Then, we-discuss the algebra of the

| convergent sequences.

? Unit 6, (the second unit of this block) begins with the introduction of an infinite series and
{ its convergence. In this unit, we confine our discussion to the convergence of the infinite
| series of positive termé and a few tests of their convergence.

In Unit 7, (the last unit of the block), we deal with the convergence of the general series — -

| the series with both positive and negative terms. You will learn a few methods of testing the
! convergence of such series. Finally, we talk of the absolute convergence and the conditional

! convergence of the general series.

‘ The following figure depicts how the notion of limit is a common link among the three
‘units of this block.

Unit §

Sequences

e RS R TTO TR SN

Unit 6 Unit 7

Positive toerm Series General Series







UNIT 5 SEQUENCES

Structure

5.1 Introduction
Objectives
5.2 Real Sequences
Bounded Sequences
Monotonic Sequences
5.3 Convergent Sequences
5.4 Criteria for the Convergence of Sequences
Cauchy Sequences :
5.5 Algebra of Convergent Sequences

5.6 Summary
5.7 Answers/Hints/Solutions

S.1 INTRQDUCTION

In Unit 2, you were introduced to the structure of the real numbers. In Unit 3, some
interesting properties of the system of real numbers were discussed. In addition to these
perties, there are several other fascinating features of the real numbers. In this unit, we

scuss one such feature. This is related to the problem of obtaining the sum of an infinite
umber of real numbers.

You know that it is easy to find the sum of a finite number of real numbers. The addition ~f
pn infinite number of real numbers, however, poses some problem. Apparently, you may
Fonclude that it is not possible to add an infinite number of real numbers. But an infinite
pum i.e. the sum of an infinite number of real numbers is not artificial. Under certain
Jimiting processes, it is possible to give a meaning to an infinite sum of the form
l+l+l+l+

2 AT gt e, Corrrrerterneennans SEUTR o

Recall that this is the infinite sum of a Geometrical Progreision with first term 1 and

.1
fommon rat:oE.

Fo obtain the infinite sums, we need the notion of & sequence of real numbers,
nd its convergence to a limit. What is, then, a sequence? What is the
eaning of the convergence of a sequence? What is the criteria to
termine the convergence of a sequence? We shall try to find answers for these
uestions. Also we shall discuss a few related concepts such as boundedness and monotoncity

f sequences. We shall frequently use these concepts in the Units 6 and 7 as well as later on
Blocks 3 and 5.

bjectives

fter studying this unit, you should, therefore, be able to
define a sequence and its subsequence
discuss a bounded and a monotonic sequence
find the limit of a sequence, if it exists
verify whether a given sequence is convergent or not
use the criteria for the convergence of a sequence and define the Cauchy sequence.

*.2 REAL SEQUENCES

ery often you use the word ‘sequence’ in your daily life in several ways. You talk of ‘a
uence of events’ or ‘arranging the library books in a sequence’ and so on. Intuitively the

RO PR Shel S0
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Sequences and Series

idea of a sequence is that of a progression or succession of numbers, e.g. the first, the

second, the third and so on. For example, if you want to evaluate V2 up to many decimal
places, you can arrange its approximate values as 1.4, 1.4 1, 1.414, 1.4142, ... and so on.
Thus, intuitively, a sequence of real numbers would mean a succession of real numbers X;s
Xy cvereuene ; Where x, is the first element, X, being the second element, ..... and so on. Hence
you may say that a sequence is an ordered collection of numbers. But in Mathematics, we
define a sequence as a special type of function in the following way:

Recall from unit 1 that f is a function from a nonempty set A to a nonempty set B, if to
each element x € A, there is assigned a unique element f(x) € B.

I a function s has its domain as the set N of natural numbers and range in B, then s is called
a sequence. Let us study the following two examples:

EXAMPLE 1: Let a function s: N — R be defined as
s(n) = 2n-1.

Then s(1) = 1, 8(2)=3, s(3) = 5,.........., and so on.

This function s: N- R is called a sequence.

Let us write s(n) =s, Vn e N. Then obviously,

sy =15 =3,5, =5 ... and so on.

The set (s, . s,, ......... s 8p eevnnes } forms the range of the sequence s: N—R. The values
515 Spperennes are called the terms of the sequence. The sequence is generally written as
(phnen Or (5,)pa; OF simply (s,).

EXAMPLE 2: Let a function 8: N— R be defined as

Then §, = % y S = i—, $; = i-, 8, = ll_l s eeeeeeee 8nd SO oON.

i

The sequence s, is given by

1 11 1
(8158 weeend) = ( 2 5 81D e ).

EXAMPLE 3: Let s: N— R be defined by

s(n) =1 '
In this case, s, =1,s, = 1, S3 = 1, wuee.
where 1 is the first element of N, 2 is the sevond element of N, 3 is the
third element of N, and so on. Thus in -this case the sequence (8y)ne N I
such that $; = s(1) = 1, is the first term of the sequence, 5,=82) =1is
the second term of the sequence, $3=8 (3) = 1 is the third term of the
sequence, and so on.

In all these examples, we have taken the range as a subset of real numbers. Such sequences
are called Real Sequences. A formal definition of a Real Sequence is as follows:

DEFINITION 1: REAL SEQUENCE

A real sequence is a function s from the set N of natural numbers to the
set R of real numbers whose .-values are denoted by (s, 8§35 wesvees ) or by

(8 )nen » Or by s(n), where s(n) = s, for n.= 1, 2, 3, ....... The number s,
is called the nth term of the sequence.

We shall use the notation (8,) throughout our discussion. Thus, the sequence in Example 1
is (2n~1), the sequence in Example 2 is (KI—T) and the sequence in Example 3 is (I or

(1,1, .. ). It is important to distinguish between a sequence and its set of values since
the validity of many results depends on whether we are working with a sequence or a set. We
shall always use parentheses ( ) to denote a sequence and the braces [ } to signify a set. The
sequence (s;, sy, §3, ..... ) should not be confused with the set {8}, 8, $3,..... }. For instance
at, 1. ) is a sequence whose first term is 1, second term is 1, third term is 1, and so

[



on, whereas the set {1, 1, 1, ...... } is just the singleton {1}. Hence to make the distinction

clear, we sometimes write this sequence as (1™) or (1) heN

Let us look at a few more examples of Real Sequences.

EXAMPLE 4: (i) The expression (1, 2, 3, 4, ........ ) is a sequence. This
is the sequence (n),_ y or (n).

(if) A sequence such as (c, ¢, ¢, C, ....... ) where every term is the same
number c, is called a constant sequence. This is the sequence (c),.y -

(iii) The sequence (-1) has terms (-1, 1, -1, 1, -1, 1, ....... ).
EXAMPLE 5: Let a sequence (s,) be given as

s, =1,8, =1,s _,=5s +5s _, for n=2,3, 4, 5, .......

In this case (s,) becomes (1, 1, 2, 3, 4, 5, 8 ...... m, n, M+N ..ceeeee ).

This sequence is called the Fibonacci Sequence given by an eminent Italian
mathematician 1. Fibonacci [1175-1250].

It has many fascinating and interesting properties. Also, it has lot of applications
particularly in puzzies and riddles in Mathematics. In fact, Fibonacci, was inspired by Hindu-
Arabic methods of calculation. He found this sequence when he was trying to solve the
following problem:

“How many bairs of rabbits can be produced from a single pair in a year if
every month each pair begets a new pair which from the second month on
becomes productive?”

We shall, however, not go into the detailed discussion on Fibonacci Sequences at this stage:.

Note that not merely the numbers which occur but the order in which thes
occur is vital in defining a sequence. For example, the sequences (1, 2, 3, 4, ..... )
and (2,1,3,4, ....... ) are two different sequences although their sets of values are same.

Now consider the sequence (s,) given by

=(-1)"nl.
n I3
Form a sequence (t, ) whose terms are the positive terms of the sequence ( 8, )-
Then the terms of (s ) are (-1, 4, -9, 16, 25, 36, 49, 64, ........... )
and the terms of ( t, ) are (4, 16, 36, 64. ........... ).

Obviously ( ¢ ) is obtained by selecting, in order, an infinite number of the terms of (s) .
In such a case, we say that ( t, } is a subsequence of the sequence (s ).

Now, we are ready to formulate the concept of a subsequence in the form of the following
definition: '

DEFINITION 2: SUBSEQUENCE

Let ( s ) be a sequence. Let n,, n,, n,, ... be natural ~umbers such
that 0, < n,< n; < ........ Then a sequence ‘
B A ) = (snk) =(t) _ or(t)

{

is called a subsequence of (s ).

In other words, a subsequence of a sequence is a sequence obtained by omitting some terms
of the original sequence and not disturbing the relative positions of the remaining terms. For

Instance, (8, S35 Sg5 cooeereee ) and ( 8,, 84, S <eevene ) are subsequences of the sequence ( s,,
$2» 83, 845 cree ) - But (s,, 8, 84 83 eeernnn. ) is not a subsequence of ( s, §,, §3,5,....... ).
The sequence (~1)" has two subsequence namely (1, 1, 1, ......... ) and (-1, -1, 51, ........ ).
Note that

n, <n,<n<.... <n_ <0< Ny <o defines an infinite subset of N, namely,
{n,, n,. n, ........ }. Conversely, you can say that every infinite subset of N can be described
by

Thus, a subsequence of (s, ) is a sequence obtained by selecting, in order, an infinite subset
of the terms of the sequence. Now try the following exercise:

Sequeances

Leonardo Fibomacci
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EXERCISE 1

Which of the fbuowiu sequences are subsequences of the sequence (1, 2,
3, " s900000p )?

H (1,61,09 1,0, ...... )
i) 1,3 6 10, 18, ... )
i) (4, 1, 1,2, 1,3, 1,4 1,5 ... ).

Since 8 sequence is a function from N to R and N has the natural order, it makes sense to
talk abous » sequence being bounded and a sequence being monotonic. Recall from Unit 4,
the definitions of bounded and monotonic functions. You can easily deduce the definition of a
bounded sequence because a sequence, as you know, is a special type of function.

DEFINITION 3: BOUNDED SEQUENCE

A sequence s: N — R is said to be bounded if its range is bounded in R.

'In other words, a sequence ( S, ) is bounded if there exists a number K > 0

such that

| s, |sSKform =1, 2 3 ...

For instance, the sequéncc in example 1 is not bounded whereas the sequence in example 3 is
bounded. What about the sequence in example 2 7. Is it bounded or not? Verify it yourself.

Again, the sequence in Exercise 1 (i) is bounded, while the sequence in Exercise 1 (ii) is not .
bounded. What about the sequence in Exercise 1 (iii) ?

Just as, in Unit 4, we defined a function which is bounded below only or bounded above
only, you can similarly define a sequence which is bounded below only or bounded above
only or both bounded below and bounded above i.e. bounded.

EXERCISE 2

Define a sequence which is bounded beiow only or bounded above only.
Give an example for each. Verify whether an Arithmetical Sequence ( a,
a+d, a+2d, ......... ), d # 0 is bounded or bounded below only or bounded
above only.

You know that a function is said to be unbounded if it is bounded below only or bounded
above only or none of the two. Similarly, you car define an u: bounded sequence.

EXERCISE 3

Examine Which of the sequence in exercise 1 are bounded and unbounded.

-Again, we discussed the monotonic functions in Unit 4. Since a sequence 1S a special type of
function, therefore, we can say something about a monotonic sequence. First, let us study
the following examples:

Consider the sequence ( % ,
- _1 _< 23 Ly ‘
Here.sl = s(l) = > S = s(2) = 38 = s(3) = & and so on. You can see that

3; < §; <8 <§y <, , that is, s(1) <s§(2) < s(3) <........ In other words, the

sequence preserves the order in N. Such a sequence is called a Monotonically
Increasing Sequence.

Apain consider the sequence ( 1, % . % ST e ). Here, the inequalities are reversed
1>

> >‘1'> ;
g 7 e )

8
(SR

that is,

s(1) > s(2) > s(3) > s(@) > ...........



In this case the sequence reverses the order in N. Such a sequence is called a " Sequences
Monotonically Decreasing Sequence.

11 i
Alsolookatthesequence(l.—-z, 30 g )

You can see that this sequence neither preserves nor reverses the order in N. Such a sequence
is neither monotonically increasing nor monotonically decreasing.

A sequence which is either monotonically increasing or monotonically decreasing is called a
Monotonic Sequence. We have the formal definition as follows:

DEFINITION 4: MONOTONIC SEQUENCE

A sequence ( Sy, Sy, weseees ) is called a monotonic sequence if either s, <
S, S S35 cevenens y OF §; 2 852 832 weeeeens .. In the first case, the sequence

is called a monotonically increasing sequence, while in the second case it
is called a monotonically decreasing sequence.

Try the following exercises:

EXERCISE 4

Which of the following sequences are monotonic?
i) ( sin n)
ii) (tan m)

i) (le'n_Z)

iv) (2n+ (-1)").
EXERCISE §

i)‘ Show that a subsequence of a monotonic sequence is also monetonic.

ii) Do there exist sequences which are both monotonically increasing and
monotonically decreasing?

We state a theorem (without proof) which we shall use in the next section:

T

THEOREM 1: Every Sequence has a Monotonic Subsequence.

For example, the sequence (%) has a subsequence

111
(5040 g0 )

which is monotonic. Verify it yourself. Is it monotonically increasing or decreasing?

53 CONVERGENT SEQUENCES

The basic tool of Analysis is the notion of a limit and the simplest form of a limit is that of
the limit of a sequence. A real number s is called the limit of a sequence . s ) if a large
number of values of (s, ) are close to s.

For example, consider the sequence ( % ). It is intuitively clear that the terms of the sequence

“approach” the number 0 as n becomes larger and larger. In other words, we caﬁ say that the
nth term of the sequence is ‘as close t0 0" as you prescribe for “sufficiently large n”. See

1
figure 1 for the limit of the sequence (=)
n

Q9

Y \ . \
o 8 Z

_can be

1 P
Alternatively, we can say that the seqmence ( H ) approaches the limit 0if ﬁ -0

made as small as possible for larger and larger values of n. Note that such a behaviour is not
rrue of the sequence (n). Check why? _ 1



SmwmmMm
the choice of € > 0. Therefore,
someiimes the mumber m is denoted
sm,

Thus, we have the following definition of the limit of a sequence:
DEFINITION 5: LIMIT OF A SEQUENCE

A real number s is said to be a limit of a real sequence is,) if for every
€ > 0, there exists a number m € N such that: for every integer n € N,

sn—sl<£ for n > m
or

n>m=>}sn —sl < €.
The condition that a sequence ( s, ) has a limit s is often expressed by saying that the
sequence ( s, ) tends to a limit,
We say also that a sequence ( s, ) is said to be convergent if there exists a number s (called
the limit of the sequence) such that s, - s! can be made “as small as possible” for “ali

sufficiently large values of n”. Note, however, that it is not always possible to guess the
behaviour for a given sequence. For instance, our intuition is not sharp enough to tell if the

sequence (n sin % ) converges. We therefore, need a precise definition of the convergence of a

sequence, and also some criteria to determine whether a given sequence converges or not. We
shall first define convergence of sequences in this section, and later on take up the criteria of -
convergence of sequences in the next section.

DEFINITION 6: CONVERGENCE OF A SEQUENCE

A real sequence ( s, ) is said to converge to a real number s (called the

limit of the sequence) if for a given € > 0, there exists a positive integer
m such that

'sn - s‘<ef0rn>m
or

n>m=>]sn - s‘/<£.
s
We express the above fact in several ways. We say that

i)  the sequence ( s, ) is convergent to a real number s.
or

ii) .1,'_’1,‘., s, =5,

or

iii) s, =»sasn— oo,

The number s is called the limit of the sequence ( s_ ).
Here, we emphasize the existence a real numb"ers.

The convergence of ( 8, ) to s can be reviewed'in the language of neighbourhood (Unit 3)as
follows: -

We say that 313}0 s, =sif ahd only if the sequence is in every neighbourhood of s.

To say it differently, ( S, ) converges to s if, given any € > 0, all the elements of the
sequence, possibly omitting a finite number of elements of the sequence, must be at a
distance less than € from s. Geometrically, (s,) —s if, given € > 0, you should be able to
cut off an initial segment of the sequence,

[sl,sz,...sm]

such that, every member of the ‘tail’ Smals Sqaz eeeeeee is in the interval | s—g, s+€ |. The

initial segment that must be cut off depends on € i.e. how close to s are the tail elements.
See the figure 2,

N

Figure 2 illustrate the limit concept graphically. Consider the horizontal strip of width 2¢
generated by the lines, y = s — ¢ and Y = s+€. A given term, s, of the sequence, (s, ), lies
inside this strip exactly if the inequality lsn - s[ < €. Thus, for the number s, to be the



limit cf the sequence, (s, ). we must be able to specify a point, m, on the X-axis, such

dlatfornllnlymgtotlwngtuofm.d\ecomspondmgtem, . gets trapped within the
horizontal strip.

es;
[ ]
y=5+&.
o e . e °
® oo o
y=s ° o ry 'YX I
®s, (] ,‘Sn
y=H" ------------ -
[ 17
* L J
s, i
®
o—t+—t+—+—+—+—
m | 1 J
1 3 4 5 6 g
2 n>m
Fe 2
Thus, if (s, ) is a sequence having the number ¢ as a limit, we write
fim s, =s

(or simply lim 5, = s) and say the limit as n fends to infinity of s, is s or the sequence (3, |
converges to the limit s.

Let us lookatsomeexamples.
EXAMPLE 6: Discus the convergence of the sequence ( ) ¢
SOLUTION : Intuitively, you can see that

lim L =0.

A—pac 2
Mfmﬂwseqm(;%—) converges 1o the limit 0,

Let us demonstrate the application of the definition 6.

For this, our task 1s&mdammmwc>0mmmm:mmamm
(depmdmgupone)mm

-0

<E.

Therefore, we expect our proof to start with “Let £> 0" and to end with someshing like

<E£.

“Hencen>m1mplwsl - -0

lnbe(weenmcpmofshouldspeclfyanmmmenspecifymatmhasmedoskadmy.
namely n > m does indeed imply ’ #—0 <€

As you know that quite often {for example in the proof of the trigenometric identities), we
use the if methed i.e. we initially work backward from our desired conclusion, Hut in the
formal proc{ we must make sure that our steps are reversible. In the preseni example, we

|
want | 2 Q < g and we want to know how big n must be. 8o, we will operate osi this
P2 |

inequality algebraically and try to solve it for n. Thus we want # <E.
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By multiplying both sides by n? and dividing both sides by &, we find that we want

1
- <n?
€

1
r ——< n
" Ve

If our steps are reversible, then we can see that

\ o> L implies that ‘;1-2—— 0| <e.
. Ve
This suggests that we should put
1
m= ——.
Ve
Thus, we proceed as follows
Lete >0:Letm= —= . Then
Ve
1
n>m=n> ——
Ve
2 1 1
=n > "= |—35- 0| <¢
€  n

which proves that the sequence ( # ) converges to the limit 0.

EXERCISE 6

Use definition 6 to prove that the sequence ( ;1| ) converges to the limit 0.

EXAMPLE 7: Test the convergence of the following sequences

i) (s,) where sn=i !

ii) (1, -1, 1, -1, ... )
SOLUTION: Look at the sequence s, = (n). This sequence cannot converge. For, suppose
the sequence converges to a limit s. Taking € = % , all but finitely many elements of s

, S+ 15 [. But this is clearly not so. Thus the sequence (n)

N =

should lie in the interval } s

does nof converge.

ii) Suppose the sequence [ (-1)" ] converg:es to some number‘s. Taking € = % all but
finitely many elements of this sequence muét lie in the interval ] s — % .S+ 15 [. That means
that both land -1 arein}s —% , S+ % (. But that is impossible because the distance
between 1 and -1 is 2, while the length of tt.le interval | s -—% , S+ % [ is 1. Thus the
sequence ( 1,-1,1, -1, ........... ) does not converge.

In example 7, we have come across two sequences which are not convergent. Such sequences
are called divergent sequences.

Thus a sequence is said to be divergent if it is not convergent. Can a
sequence converge( to two different limits? We answer this question in the
following theorem:

THEOREM 2: If a sequence is convergent, then its limit is unique.

PROOF: Suppose that a sequence ( s, ) has two distinct limits s and s’. Then s # 5", Let
-— sl
3

. . S
us assume, without loss of generality that s > s". Take ¢ =




Since (s,) - 8, all but finitely many elements of the sequence are in the interval Sequences

] s~¢, s+€ [. For the same reason, all but finitely many elements of the sequence are in the

interval
] s—€, s+¢ [. Look at the figure 3. L
=8 "l"+§ &6 !"'_8
- C 7 .
f ~ | ol L
Fig 3

The two intervals ] 8" — ¢, s+€ [ and ] s—¢, s+¢ [ are disjoint, and a tail of the sequence
cannot be contained in both the intervals. Hence, it is not possible for the sequence (s, ) to
converge to twe different limits. This proves the theorem.

Having defined convergence of sequence, the question that remains to be settled is: How to
test the convergence of a given sequence? Let us, first, obtain necessary conditions
for the convergence of a sequence. We state and prove the following theorem:

THEOREM 3: Every convergent sequence is bounded.

PROOF: Let ( s, ) be a sequence which converges to s. Then, there is a number m ¢ N
such that

lsn—s! <e¢ forn>m. .
With € = i, we obtain m in N so that

n>m=&|‘sn-s| <l

Using triangle inequality (Unit 3), we see that

Isas| 2{lsa |~ s I
’ “sn ! —l s IIS‘ls,,—si<l
f Sllsal =15 ] <1 g

=:»|s,,!<| S l+1
Thus

n>m=>|sn |.< l S i+1

ChooseK:Max.{isl+l, ‘sl s e 1sm’ .

$

’
Then, we have

s,| <K.

‘ for all n € N. Hence (s, ) is bounded.

| Our choice of € = 1 was just arbitrary. You can, in fact, try the proof for some other value of €.

. From this theorm, it follows that if a sequence is convergent, then it is

! always bounded. Is the converse true? That is to say that if a sequence is
. bounded, then, is it convergent? The answer is No. For exampie the sequence
Po(=L1,-1, 0,10 ) is bounded but not convergent. Thus boundedness is a
necessary condition for the convergence of a sequence. Tt is not a sufficient condition.

i However, for a monotonic sequence, boundedness is both necessary and sufficient. We prove
! this in the form of the following theorem:

THEOREM 4: A monotonic sequence converges if and only if it‘is
bounded

PROOF: We already know that every convergent sequence is bounded. Thus, it is enough
to prove that a monotonic and bounded sequence is convergent

We shall prove this assertion for a monotonically increasing sequence. Let (s ) be a
monotonically increasing sequence which is bounded above. _ 15




Sequences and Series Let S denote the set { s,:ne N} ={s,, 8, «on.. }.

This means that s;<s, < 55 S......... Since ( 8, ) is bounded above, therefore, there exists

an upper bound for the sequence ( s, s;, $; ........ ). Thus ( s, ) has the least upper bound,
u (say). We claim that the sequence (s,) converges to u.

Indeed, let £> 0 be some real number. Since u - ¢ is not an upper bound for S, therefore
u-g<u.
This means that there exists some integer m such that
Sy > U-€
Since (s, ) is an increasing sequence, therefore
§np < 8, Vn>m
But s, < u for all n. Therefore
n>m = s >s
= 8 >u-€
= | S, —-u’ <e
which shows that (s, ) converges to the limit u.

Now you can similarly prove the theorem for a monotonically decreasing sequence as the
following exercise:

EXERCISE 7

Let ( s,) be a monotonic deéreaslng sequence which is bounded below.
Show that the sequence converges to its greatest lower bound.

EXERCISE 8

i) Suppose that the sequence ( 8,) converges to s and s, < A for every n.
Show that s < A.

ii) Suppose the sequence ( S, ) converges to s and s, > a for every n.
Show that s > a. . '
EXERCISE 9

i) Suppose that the sequence ( S,) converges to s. Show that every
subsequence of ( s, ) also converges to s.

i) ‘If a sequence does not converge, then no sub:ieguence of it can
converge’. Is the statement true? Justify your answer.

In fact, it'can be shown that a sequence ( s, ) converges to s if and only if each
of its subsequence converges to the same limit s. However, if a s.quence is such
that its subsequences converge to different iimits, then the sequence will not be convergent.
For example, let ' :

(s,)bea sequéncevwith 8, =(-1).

Then it has two subsequences namely ( -1, -1, -1 ........ Jand (1, 1,1 ... 3 which
converge to -1 and 1 respectively.'But the sequence itself is not convergent.

EXERCISE 10

Suppose the sequence ( s, ) converges to s. Show that the sequence ]
(|8, ) converges to |s|. Give an example to show that the converse is not
true.

We now state the following theorem (without proof) which is also sometimes referred to as
the Bolzano-Weirstrass Theorem:

THEOREM 5: Every bounded sequence of real numbers contains a

~ convergent subsequence.
16




We have already talked about the divergent sequences. Sequences

You have encountered two examples of divergent sequences namely ( 1, 2, 3, 4, ........ } and
(1,-1,1,-1, ... ). The sequence ( 1, 2, 3, 4, ........ ) is said to be divergent sequence
because its terms become “too big”, whereas (1, -1, 1, -1, ...... ) is divergent because it has
two limits namely 1 and -1.

We now give a formal definition of a divergent sequence.
DEFINITION 7: DIVERGENT SEQUENCE

A sequence is said to be divergent if it is not convergent. A sequence (s, )
diverges to + o if given any real number ¢ > 0, there is a positive integer
m such that s, > ¢ for all n > m.

. In this case, we also write lim s, = o or §,—> % asn — o, Such a sequence
. is said to be divergent sequence. You can similarly define the divergence of a
| sequence (s, ) to —o.

| We can write this as lim 8, =—oo,
n—pee

EXAMPLE 8: Show that the sequence ( Vn ) diverges to + oo,

SOLUTION: Let € > 0 be given. Then Vn > ¢ for all n >€2. - -
This shows that the sequence Vi = + e asn — oo,

Hence the sequence ( \I—r; ) dive;ges 0 400,

You can easily see that if a sequence ( s, ) diverges to +o or —o, then the sequence is
unbounded.

Some divergent later diverge to +co; while some other diverge to — oo,
EXAMPLE 9: Show that the sequence (1 + (-1)") is divergent.
SOLUTION: This sequence has two limits namely 0 and 2. Therefore it is divergent.

i
To end this section, let us look at a very important sequence, which will be frequently used
in the later sections: 7
EXAMPLE 10: i) If 0 < x < 1, then ( x") converges to 0
fi) If x = 1, then ( x" ) converges to 1
iii) If x > 1, then ( x" ) diverges to +oo,

SOLUTION: i) If x =0, then the sequence ( x") is the constant sequénce
©,0,0...... )- Hence it convergesto zero. Let 0 < x < 1. Then

XM= x, XM < XN,

"Hence the sequence ( x" ) is a monotonic decreasing sequence which is bounded below'by 0.
Hence the sequence converges to its greatest lower bound. Therefore, it 1s enough to show
that 0 is the greatest lower bound of (x!, x2, x3,........ ).

We know that O is a lower bound of the sequence. Therefore it is enough to show that if
1> 0, then r is not a lower bound of the sequence. Let r > 0. We wish to show that, for
some n € N. x"<r. That is, for some n € N, n log x < log r. (Recall from Unit 4 that log

. . . . . . . log r
x is an increasing function). This is equivalent to finding n € N such thatn > R;L;'

Surely there are infinitely many such n’s. That shows that, when 0 < x < 1, lim x* = 0.
Thus, when 0 < x < 1, the sequence ( x" ) converges t0o0.

(i) If x = 1, the sequence ( x" ) is the constant seqhence (1, 1,1, ... ) and ihus
. ‘ :  convergesto 1. '

iii) Let x > 1. Then, since x™! > x" the sequence ( x" ) is 2 monotonic increasing
. sequence. To show that the sequence diverges to +oo, it is sufficient to show that the
| sequence is unbounded.

Let M > 0 be any number. Then
x">M 17




= log x" > log M (why ?)

= n log x> log M

= n)___g___lo M
log x

Which shows that the sequence ( x™ ) is unbounaed and hence diverges to +eo,

EXERCISE 11

i) Show that if — 1 < x < 0, then ( x*) converges to 0.

ii) Discuss the nature of tlie sequence ( x") when x = -1, and x < -1.
EXERCISE 12

Suppose ( s,) and (t,) are monotonic increasing bounded sequences such
that s, < t, for each n. Prove that

l!»'-'-' Sa s nlil;l} t"

We conclude this section by discussing a very important example of a convergent sequence.

i
EXAMPLE 13: Let s, = n". Show that Jims, =1,

L
that is, lim n" = 1,
R-—Yoo
L
SOLUTION: Write s, = n"= 1+ x,. Then x_2 0.

By using Binomial theorem, we have
n (n-1

2 n
n=(1+xn)"_1+nxn+ 2 X o +x
SOl 24,50
2 n

This implies x> < 2 forn2>2.
n n-]

i
Hence x, < ‘\’ ﬁfor nz2.

Let € > O be given. Then

2 2
Ix |=x <A/ —"<e? for,n>= + 1.
n n n-1 €2

Let m € N such that m > 22- + 1. Then, x; <€ for alln > 1n
. €

hence I Xp—1 ’ <¢gfor alln > m. That is, ( x,,") converges to 1.

54 CRITERIA FOR THE CONVERGENCE OF
SEQUENCES

In section 5.3, we have defined a sequence ( Sn ) to be'convergent if we are able to find a
number s such that s, — s as n — oo, In some cases, it may be easy enough to guess the
existence of such a number s. But, quite often, it is not easy to do so. For example, consider

1 . I .
the sequence (; sin n ). Does this sequence converge? We cannot say anything unless we

know the limit of this sequence. What we really need is a criterion for the convergence of a
sequence (s, ) which uses only the terms of the given sequence -— and not to search for a
possible limit of the sequence from among the infinite set R. That is precisely what we
intend to do in this section. In fact, we shall obtain a necessary and sufficient condition for
the convergence of a sequence in this section.

We state, first, a necessary condition for a sequence to converge. You will see later that the

condition is also sufficient for a sequence to converge but under certain additional
restrictions.



THEOREM 6: A sequence (.s,) is said to be convergent, if for a giveil Sequences
€ > 0, there exists a (natural) number m € N such that

| Sa —Skl <Eg
whenever n > m, k > m (n > k).
PROOF: Let the sequence ( s, ) converge to a number s (say). Let € > O be given.

€ . € .
Then 2 > 0. Since s, — s as n — oo, therefore for 2 there exists a natural number m such
that

£ .
lsn —sl <3 whenever n > m.

Now, suppose n, k > m. Then

|sn—se| =|(sa -8) = (s -9)|.
Slsn—s| +|sk—s]<% +

Thus, | Sp —skl <gforalln, k>m. ' Use Triangle Incquality as discussed
in Unit 3

The theorem says that if the terms of the sequence ( s, ) get close to some number, then they

get close to each other. Motivated by the above theorem, we have the following definition

due to A.L. Cauchy, an eminent French mathematician.

DEFINITION 9: CAUCHY SEQUENCE:

A sequence ( s, ) of real numbers is called a Cauchy sequence or a
fundamental sequence, if, for each € > 0, there exists a natural number m
such that

ls;,—sk‘<e for alln > m, k > m (n > k).

We state and prove the following theorem:
THEOREM 7: Every Cauchy Sequence is bounded.

PROOF: Let ( s,) be a Cauchy Sequence. Then by definition, it follows that fpor a number
€ say € = 1, there is a positive integer m such that
1sn —sk| <1 whenever n > m, k > m.
In particular
|sn ‘Sm+1‘ <1 forall n > m,
In other words (Unit 3)
| Sq ISI Sm+1 ’ + 1 for all n > m.
Thus if
A = Max {l St | , l S,
then
| Sn l <Aforallne N.

A.L. Cauchy

o s | Lsman 21},

This concludes that the Sequence is bounded.

THEOREM 8: Every Cauchy Sequence is convergent

PROOF: Let ( s, ) be a Cauchy Sequence. Then by theorem 7, it follows that ( s, ) is

- bounded. Using Bolzano-Weirstrass theorem (theorem 5), we can conclude that the sequenc;

(s, ) must have a convergent subsequence say ( Sn. ). Suppose that
Sy —>Ppasr— o,
r
We claim that

. Sy D pasn-— oo,

Indeed, let € > 0 be any real number. Then % £ > 0. Hence, there exists a natural number g

such that for any r > q we have 19
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Again since (s, ) is a Cauchy Sequence, therefore there exists a natural number k such that
for k > m, and any n > m,

wehan

Sn - pl <le

1
|s., -skl <3e
Now for an n > m, choose r so large that n, > m and r > q. Then

1
Sn = p' <3 &

is satisfied. Also
1.1
lsn - p| < 5 €.
is satisfied with k = n,. Thus, for n > m,

Isn' p| =

Sy~ Snr+ Snr— P ’

< +

Sp-— Sy
T

S~ p‘ (Triangle Inequality)

<leilece
2 2"

Thus, given an € > 0, we have found an m such that for any n > m,
lsa- p| <e.
This shows that s, — p as n — e which concludes the proof.

Theorems 6, 7 and 8 are sometimes combined into one theorem which is popularly known
as Cauchy’s General Principle of Convergence or Cauchy’s Criteria for the
Convergence of sequences:

This is stated in the following way:
THEOREM 9: Cauchy’s General Principle of Convergence

A necessary and sufficient condition for the convergence of a sequence
('s,) is that for every € > 0 , there exists a positive integer m such that

|s., -sk| < ¢ whenever n, k > m (n > k)
or
n>m k>m(n> k) imply that ls_,, —sk| < €.

Thus a sequence of real numbers converges if and only if it is a Cauchy
Sequence.

Let us illustrate this by the following example:

EXAMPLE 10: Show that the sequence ( ;ll_') is a Cauchy Sequence. What

about ( n2)?

SOLUTION: For any two integers n and k such that n > m, k > m, we have

1 1| |ka| 1
Frﬂ=n-ﬂ=;r<;

If € > O be given, then by taking k > 1 , we see that -
€

=-<E




In other words Sequences

1_1
n

K < ¢ whenevern>m,k>m

which shows that the sequence ( i ) is convergent.

The sequence ( n? ), however, is not a Cauchy Sequence.
For, if n and k be any two integers, then

nzaef =] @ (0| > |2k > 1,

- whatever m may be. Choose € = 1. Then you can easily see that there does not exist a
! positive integer m such that

, -k? <e.
+ whenever n > m, k > m. Thus the sequence ( n?) is not convergent,
" The Cauchy’s Criteria is sometimes described in the following way:

- A sequence ( s, ) is said to be a Cauchy Sequence if for any &€ > 0, there
is a positive integer m such that

|s,.‘k —sn| < ¢, whenever k > 0.

- The advantage of the Cauchy Criteria is that we are able to test the convergence of a
© sequence without necessarily knowing the value of its limit. Example 10 has justified the
utility of Cauchy Criteria. To further elaborate this assertion, consider a sequence € 1, ) of

rational numbers which converges to V2.1t (r,) is treated as a sequence of real numbers,

then we have a real number ‘5 as the limit of the sequence (r, ). Thus the sequence (1, )
satisfies the definition of convergence. However, if we treat ( r, ) as a sequence of rational
numbers and if our definition of convergence requires us to find a rational number which is

the limit of (1, ), then ( r, ) is no longer convergent since \f-2- is not a rational number. Th
lack of convergence has arisen not due to the change of the sequence in any way. In fact we

" have merely modified the context in which we are considering the sequence by changing the
underlying field in which the sequence is being discussed. By changing the context in which
the sequence is considered has no effect on whether the sequence is Cauchy or not Thus, it

~ also implies that there is no difference between convergent sequences of real numbers and
Cauchy Sequences of real numbers. This is true because of the axiom of completeness of R,
. the set of real numbers. But then this is not the case if we confine our sequences to the field
of rational numbers. In view of this, the completeness of R is also described by saying that
the system of real numbers is complete if every Cauchy Sequence in R has
a limit in R.

55 ALGEBRA OF CONVERGENT SEQUENCES

In this section, we shall discuss the behaviour of convergent sequences with respect to

- algebraic operations like addition, multiplication, and so on. Recall that a sequence of real
numbers is a function s : N — R. Since, the sura, product, etc. of re«!-valued functions are
© defined, you can easily define the sum, product etc. of sequences.

DEFINITION 10: COMPOSITION OF CONVERGENT SE(UENCES

Let (s, ) and (t, ) be two convergent sequences of real numbe's. Let a €.
R. Then, '

i) (sg)+(t)=(s + t,)

i) (s )(t ) (sn tn)

i) a (s, )=(0 s, )

we shall show that convergence and limits are preserved under these operations.
THEOREM 10: If nljm s, = s and nl_i}_nt.. = t, then

lm (sn+t)

s+t

PROOF: Let € > 0 be given. Then £/2 > 0.
Since lim s, =s, there is m, € N such that
21
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l Sy — s,<§ whenever n 2 m,.
Since lim t, =t there is m; € N such that
N—des
€
l t, - t,<5 whenever n 2 m,.

Let m = max (m,, m,),
Then, for all n'> m, we have

| Y A PY PR S S

Thus (s, +1, ) converges to s + t,
The next theorem is easier to prove.

THEOREM 11:If limg, - g and o € R, then

Jim(as,)=as
PROOF: The theorem is obvious if a=0.
So, let us consider the case when a 0.
Let € > 0 be given. 'I'imen ﬁ> 0, because ,a, >0.
Since (s, ) converges to s, there is m e N such that

l Sp — sl <ﬁwhenevern2m.

'I'hus,ifan,thenwehave,a S —a s ,:’a ,vs,,—s, <,a,ﬁ =€
That is, gi_x)n“(as,,)=a.s.

Now you can easily solve following exercise: *

EXERCISE 13
Let lims, =sand lim t, =t. Let a,f € R. Show that
N~>00 N~o0 -

lim(as, +p8 th)=a s+ Bt.

R—3co

Deduce that l.l_i)l‘g('s,, -t) = llil_’lcl} 'Sy - L!E tn .

Now to prove that the limit of the product of two convergent sequences is the product of
their limits, we need the following theorem: :

THEOREM 12: If  lim (s,)=s, then lim g =52
. B—yco N—)co
PROOF: Lete > 0 be given. We have to find m € N such that

,s}f - §2 ' <& for all n > m, that is,

lsn—s l l S, + S , <& foralln>m.

Since (s, ) converges, therefore it is bounded. Hence there exists a real number K such that
Sa_| SK foralln, |

Since lim - s, =5, we have , s,sK. Hence
N—rco
, Sy + s’ S, Sn , +l s lsZKforalln.
Since lim Sp =s,thereisanme N
N—>oo

£

suchthat, Sp — 8 ‘<2K for ail n > m.



Hence, whenever n > m, we have
h‘ s2‘=ts,‘—s| Isn+s‘<-— K =¢.
a2
This proves that '1,1_1'1_1’ g' s°,
Now we are ready to prove the following theorem:
THEOREM 13:Let lim s, asand lim ¢,
R—poe A—Foe

m (8, . 8;) = s.t.

t. Then |

PROOF: we use the well-known algebraic identity ab = % [(a + b)2 - (a-1b)?]

Now, as n—o, s, + t, —3 s + t, therefore using theorem 12, we get
(St 1, P> (s+t)

Also s, —t, = s — t. Therefore again using theorem 12, we have
(8-ta > (s~t)

Hence, (Sp+ 1ty 2= (Sp—ty )2 > (s+t )2 ~(s-1)%

Finally, using the algebraic identity, we get

sn’tn=i'»[(sn+tn )2 - (sp—t, )2] —)i[(s+t)2—(s—t)2] = st.

Verify that all the steps are justified. Notice that this proof uses no €. The technique of using
the algebraic identity to deal with the product is called polarization.

Finally, we turn our attention to the quotient of convergent sequences. For this, we again
need the following theorem:

THEOREM 14:1If lim s = s and s # 0, then

. 1 1
lim — ==,
o= §

PROOF: To prove the theorem, we need s # 0 so that -sl-can be defined. But what about

¥
si ? It some s, = 0, then ;l- is not defined. To overcome this difficulty we may assume,
n n

without loss of generality, that all the s, ‘s are non-zero.

We shal} discuss the proof for the case s > 0. The case s < 0 can be discussed by applying
the case for s > O to the sequence ( —s, ).

Let £> 0 be given. We must find m € N such that

< € whehever n > m.

1 1
Sy S

Since ll|1_r’n s, = s, therefore there exists m, € N such that

‘ Sh—S$ l < £
2
whenever n > m;.
P . S
This implies that s, > 3 foralln>m, .
Similarly, there exists m; € N such that

[ s? g
{Sa =S| <5~ whenever n > my,
Let m = max ( m;, my).
If n > m, then we have
!
il lsp-sh <2 L oo
J - e T
lsas| lsnllsi 27
. tim L !
This proves that 1M — =~
S, S

Seguences
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(Divide the numerator and the
denominator by n’ )

Now, you can prove the following theorem;
THEOREM 18:1f lim 5 agand lim ¢ o ¢

~ lim %
then -

”la

2nd + 5n 1
EXAMPLE 11: Prove that lim (m) -1

SOLUTION: You have seen earlier that lim i = 0. Consequently,

- 3
lim 22450 W0 2+ 5
n-4n3+n3'l. 4 1, 4
Al (4+ )

[ Rl

What we have proved is that, if rl‘n_m s, =sand 'l‘m t =t, then it is true that

lim (s,+t,) = s + t. In other words, convergence of the sequences (s,) and (t,) is sufficient

for the convergence of ( Sn + ty ). Itis possible for (s, + t, ) to be convergent even if
('sy ) and (t,) do not converge. -

Similar remarks are true for sequence (s, ) and ( s, t,). Now try the following exercises:

EXERCISE 14

i) Given an example of divergent sequences ( Sx ) and (t, ) such that
(8, +t,) converges.

il) Given an example of a divergent sequence ( s, ) and a convergent
sequence ( t, ) such that ( s, t, ) converges.

EXERCISE 15

Show that if (s, ) is a bounded sequence and if ( t, ) converges to 0, then
( sy t, ) converges to 0. !

We have discussed the algebra of convergent sequences. Is there an algebra of divergent
sequences? The following results do Justify that there is algebra of divergent sequences also.

K lim s, =+ coand lim t, = +oo, then

I l!.l_!’!'l. (8y + 1ty ) = +oo,

I 'lll_l;ll (8y ty )= 4o,

Il If (s, ) diverges to +oo and if () coﬁverges. then (s, + t,, ) diverges to + oo,

You can similariy try to formulate some similar resuilts for the sequences diverging to minus
infinity,

5.6 SUMMARY

In this unit, we have initiated the study of the limiting process by introducing the notion of
a sequence and other related concepts. In section 5.2, we have defined a sequence, a
subsequence and a few types of sequences such as bounded and monotonic sequences etc, We
have confined our discussion to the real sequences. A real sequence is a special type of real
function whose domain is the set N of natural numbers and the range is a subset of the set R
of real numbers. If s, NoRisa sequence, then its values are denoted by 8, 53, cevenee.
The sequence is generﬂly denoted by ( s, ) where the values 811825 verrcaerann are known as
its terms. A sequence ( ty ) is called a subsequence of the sequence (s, ) if all terms of t, are
taken in order from those of (84 ). A sequence ( s, ) is said to be bounded if there exists a



real number K such that | Sp |S K for every n € N. A sequence ( s, ) is said to be | Sequences

monotonically increasing if s, < s, ,, for every n € N and it is said to be monotonically
decreasing if s, 2 s, . for every n € N. The sequence ( s, ) is said to b strictly increasing
if s, < s, 41 (strict inequality) for every n € N and strictly decreasing if s, > s,,; for every

ne N. A sequence which is either increasing or decreasing is said to be a monotonic sequence.

Section 5.3 deals with the convergence of a sequence. When a sequence ( s, ) possesses a

limit as n— oo, then it is said to be convergent. In other words, we say that a sequence (s, )
converges to a limit s if for a given &> 0, there exists a positive integer m such that

|sII —s|<eV n>m

A sequence which is not convergent 1s said to be a divergent sequence. This is due to the
reason that ( s, ) is unbounded or because ( s, ) does not have a unique limiting value.

We have proved that a convergent sequence is always bounded. According to Bolzano-
Weirstrass Theorem every bounded sequence has a convergent subsequence. Similarly a
bounded and monotonic sequence is convergent.

In Section 5.4, we have discussed Cauchy’s Criteria to test the convergence of a sequence
without taking the botheration of finding the limit of the sequence. This criteria states that a
sequence ( s, ) is convergent if and only if for an € > 0, there exists a positive integer m
such that

|sn )" |<e,foralln,k>m(n>k).

Finally in section 5.5, we have discussed the algebra of convergent sequences i.e. the sum,
difference, product and the quotient of two convergent sequences is a sequence which is
convergent under certain necessary restrictions. .

577 ANSWERS/HINTS/SOLUTIONS

E1) i) is asubsequence of (n) while (i) and (iii) are not subsequence of (m).

E2) Since d # 0, either d > 0 or d < 0. Let us consider the case d > 0. The case d < 0 is
similar and can be proved in an analogous way. £

You have to show that ( a, a+d, a+2d, .......... ) is unbounded.
Clearly it is bounded below by a. We show that it cannot have an upper bound.

Suppose m > 0 is any number. Then, there is a number a+nd such that a+nd > m
for some neN. Thus there are infinitely sunch positive integers. Hence (a, a+d,
a+2d .......... ) is unbounded.

E3) i) (1,0,1,0..... ) is bounded, 1 is an upper bound and 0 is a lower bound.
ii) (1, 3,6, 10, 15, ........ ) is not bounded above.
iii) (1,1,2,1,3, 1,4, 1,5,........ ) is not bounded above.

E4) i) is not monotonic.

ii) is also not monotonic.

R . s 1 1 1
iii) is monotonically decreasing since 1+12 > 1422 > 1432 >

iv) The sequence is monotonically increasing.
The sequence is {1,5,5,7,7,9,9, ... }
ES) i) Suppose (s, ) isamonotonic increasing sequence. That is,
$1S 5 €853S e
Let (s, . ) be a subsequence. This means that
n;< Ny € N3 .eeeeees

Hence s, < s; < s,,3$ ........
1 2

Iri other words ( s, ) is monotonically in-reasing.

(38
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E6)
‘E7)

E8) i)

i)

E9 i)

i)

E10)

—

Yes. Suppose (s, ) is both an increasing and a decreasing sequence. This means
that 8y 2 8,2 85 2 ....... and ;€ 8, S 538 ........ By the law of
trichotomy ( do you recall it ), this can happen if and only if s, = s, = 83 =....
In other words constant sequences are the only sequences which are both
increasing and decreasing,

Proof is similar to that of example 6.
Wehaves, 2 8,2 552....... and we are given that the sequence is bounded.
Hence, by the completeness axiom, the set { s, , 5; ......... ) has the greatest

lower bound. Let a be the greatest lower bound.
Hence s, > a foreveryneN.
Let &> 0 be given. Then a + € is not a lower bound of the sequence. Hence

Spy<a+e forsomeme N.Butthena+e >sy 285, > ... But then
8-€ > 8y 2 Sme1 2 8y e 2 & That is, s, lies in the interval

] a-¢&, a+e[ foralln>m. In other words limg, =a,
We prove this by contradiction.
If possible, let s > A,

Take ¢ = s-A.

Since (s, ) converges to s, there exists m € N such that 's - s,,l < ¢ for all
n>m

Hence s,> s ~ &= M, for all n > m which is a contradiction of the hypothesis -
that s, < A for all n.

Hence s S A, )

This is entirely analogous to Part (i). You have merely to reverse the
inequalities.

Given that ( s, ) converges 10 s.

Let ( s,,r\) =( s,,l, s,,2, s,,s, ........ ) be a subsequence of (s, ).

This means, by definition, that n; < n; < ny <..........
To show that ( s, ) convergestos, lete > 0 be given.
X ,

Since (s, ) converges to s, there exists m € N such that |s —sn| < € whenever
n2m.

Since n; < n; <nj <........ is an increasing sequence of natural numbers, there
is an integer.i € N such that n;, n;,y, Diyy ... e - @re all 2 m,

v

Hence ‘ $ -8, | <& wheneverr 2i.

r

That is, (s, ) convergestos. .
. r "

The statement is false. For instance, consider the sequence (1,0, 1,0 ....\.. ).
This sequence does not converge. However (1, 1, 1, ........ ) is a subsequence
which converges to 1. : ‘

Given that ( s, ) converges to s.
To show that (I Sp I )converges to |s|
Let € > 0 be given

Since Isn - s| < & whenevern >m,

then,

|s,,l -—i s | ‘S lsn—sl - [Refer to Unit 3).

ls,,l - |s|l<s whenever n > m.

Hence,

Hence ( I sn| ) converges to I sl .



E1l)

E 12)

ii)

E12)

E 13)

E 14) i)

ii)

Bitaeaenn, ol R

The converse is not true, as you can see by considering the non-convergent
sequence ( 1, -1, 1, -1 .....c.e.. ).

A sequence ( s, ) is said to diverge to — e if, given any real number k <0, there
isme Nsuchthats, Skforalln2m.

Let -1 <x<0. Then, 0 < |x| < 1.
Let € > 0 be given. Then

o xe| =[x,

|x|"<¢gifn log |x| <10g e.

Remembering that log |x|<0since0< |x| <1

n>‘loga .

) loglxl |

Heme|0—x“| <e foralln> o8¢
log'x‘

Hence ( x") converges to 0.

If x = -1, then the sequence becomes

(-1,1,-1, %1, ....... ), which we know, oscillates finitely.

If x < ~1, then ( x* ) oscillates infinitely.

Let A{_lg s,=sand !.'_".l L=t

Since ( t, ) is an increasing sequence, therefore let t be the l.u.b. of the
set { ty, gy ceoene }. That is t 2 t, for every n. Hence t 2 t; 2 s,.

s

for every n. Thus t is an upper bound for { s;, 83, ....... }.

Since { s, ) is an increasing sequence, therefore s is the L.u.b. of the set

Hences <t.

}lgn_(asn)=asby Theorem 11.

Similarly lim (Pty ) =P tby Theorem 11.

lim (os, +Bt)=lim (as,)+lin (B 1,) by Theorem 10
=as + pt | |
Il‘l_l"ll (—t,,)=—!|i_r’r.1° sp = -t by Theorem 11.

Hence fim (s, ta) = im, s+ [im (<t ) =5t

Let s, =nand t, =-n.

Then ( s, ) diverges, (t, ) diverges, but

( sy + 1 ) is the constant sequence ( 0, 0, O, ... ) which converges to 0.

Let s, =nand t,,=§.

Then ( s, ) diverges, while (s, t; ) is the constant sequence (L, L, 1,..... )
which converges to 1.

Sequenc2s
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Sequences and Series E 15) betl Sp | <k, for all n.
Let € < 0 be given.

Since ( t, ) converges to O, there ism € Nsuchthatl t, isl ta, - 0 |<-:E
for all n > m.

Hence, for all n > m,
st —0l= s tal=]sllta sk E=e

Hence ( s, t, ) converges to 0.
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UNIT 6 POSITIVE TERM SERIES

Structure

6.1 Introduction
Objectives

6.2 Infinite Series

6.3 Series of Positive Terms:

6.4 General Tests of Convergence
Comparison Tests

p-test
6.5 Some Special Tests of Convergence
D’Alembert’s Ratio Test
Cauchy’s Root Test
Cauchy's Integral Test
Rasbe’s Test
Gauss's Tess
6.6 Summary
6.7 Answers/Hints/Solutions

6.1 INTRODUCTION

In the Unit 5, you were introduced to the notion of a real sequence and its convergence to a
limit. It was also stated that one of the main aims of discussing the real sequences and its
convergence was to find a method of obtaining the sum of an infinite number of real
numbers. In other words, we have to give a meaning to the infinite sums of the forms

1,111
l+2+3+4+5+ ............

14+2+34+44+5+ .............

where the  .................. " is interpreted to indicate the remaining infinite number of
additions which have to be performed. The clear explanation of this concept will, then, lead
us to conclude that it is possible to achieve the addition of an infinite number of real
numbers, by using the limiting process of the real sequences. :

To give a satisfactory meaning to the summation of the infinite number of the terms of a
sequence, we have to degne a summation which is popularly known as an infinite series.
The infinite series have been classified mainly into two categories — the positive term
series and the general series. What are, then, the positive term series and
the general series? We shall try to find answers for these questions. The
summation of an infinite series of real numbers is directly connected with the convergence of
the associated real sequences. We shall, therefore, give a meaning to the term
associated sequence for an infinite series and hence its convergence which
will lead us ultimately to find the sum of an infinite series. '

Although the famous Greek philosopher and mathematician, Archimedes had summed up the
well-known Geometric Series, yet other results on infinite series did not appear in Europe
until the 14th century when Nicole Oresme [1330-1382] showed that the ‘Harmonic series
diverges. Since then, a lot of work has been going on in this direction. There is evidence that
this type of work was known in India also as early as in 1550. Indeed, even modem work has
shown evidence of the discovery of a number of mathematical ideas pertaining to the infinite
series in China, India and Persia much before they came to be known in Europe. In the 1 7th
century, there seemed to be little concern for the convergence of the infinite series. But
during the 18th century, two French mathematicians D’ Alembert and Cauchy devised
remarkable tests for the convergence of infinite series under certain conditions which we shall
discuss in this unit. Also, we shall discuss, in this unit, a few more tests for the




Sequences and Serles ‘convergence of the infinite series when these two basic tests fail to help us in knowing the
convergence of the Infinite Series.

Objectives

Therefore, after studying this unit, you should be able to
w define an infinite series as well as a positive term series

- deﬁnetheassocmtedsequemeofpamalsumsassocmedwnhanmﬁnmleriumd
hence its convergence

@ use the Ratio and Root Tests to determine the convergence of infinite leries
@ apply Integral Test and few more tests to discuss convergence of positive term series.

!

62 INFINITE SERIES

[ ]
Cmiderﬂ\esequence(i). Its terms as you know, are

which is nothing but a summation of the infinite number of terms of (). Such an
expression is known as an infinite series.

In general, we define an infinite series as follows:

DEFINITION 1: INFINITE SERIES

If (u, ) be a sequence of real numbers, then the expression
Uy + Uy + U3+ cccccssencencssencenaeee oo
is called an infinite series of real numbers.

o0

The series is generally written in the form ) u_ or simply ¥ u, , where
n=1

Uy, Uy, eeees s Wy gesssene are requctively called the first term, the second
term,. ..cceeeenees the nth term ......... , of the series. We shall write just
“infinite series” or “series” in place of “infinite series of real numbers”.

EXAMPLE 1:i) The series a +: (a+d) + (a+42d) + ..cconeeee is an infinite
seriles.

You are familiar with it. It is an Arithmetic Series with ‘a° as the first term and “d" as the

common difference.

ii) The series a+ar+ar? + ... 'is an infinite. serles.

You know that it is a Geometric Series with ‘a’ as the first term and ‘r’ as the common

ratio.

iii) The expression 1 -1 + 1 -1 ....... is an infinite series.

It has been formed by using the terms of sequence (1, -1, 1, -1
1.1.1

1+ 2*tats

We find the sum of first term, first two terms, first three terms, ........... , first n terms of the
series and denote them by s, s,, 85, ........ s, respectively. Then, we have

10 s, =1 (sum ofﬂ\eﬁfsttenn)



s, =1+ -12- (sum of the first two terms) Positive Term Serles
8;=1+ -;' + :l,'- (sum of the first three terms)
=l 5+ 1; L ‘(sum of the first n terms)
1
1=-(5)r
1
1-3
!
=2(1-(,)]
From the series, we get a sequence ( 8,, 85, 8y ...ccvno. )= (8,).

The sequence ( s;,) is called sequence of partial sums of the series or the sequence associated
with the series. In general, we define the associated sequence of any series as follows:

DEFINITION 2: SEQUENCE OF PARTIAL SUMS
(ASSOCIATED SEQUENCE)

Consider the series X u, . We form the sums s;, §;, Sy yecceecerceens as
follows:

s, =4,
S, = U + 1,
Sy = U + Uy + Uy

--------------------------------

Sy, = Up o+ U4 e + u,
i
Form the sequence ( S, ) = (S;, S; «evvenneenns s, ) where
Sis Spy S3s erecerseciannes s, are respectively called the first partial sum,
the 2nd partial sum, the 3rd partial sum, ............. , the nth partial sum.

The sequence (s,) is called sequence of partial sums of the series X, u, or
the associated sequence of the series X u, .

FXERCISE 1

Find the sequence of partial sums of the following nrles:‘,

i) l+2+%+lll.'0".l'l'.lll..0.l!Ol

H) 142434 covvversrnreeonirneesons
) 1=14l=lo.cririnrarisncrnornrnnnane

Having associated a sequence to a series, we are in a position to define convergence of a
series and then, give a meaning to an infinite sum.

DEFINITION 3: CONVERGENCE OF A SERIES

Let Y u, be an infinite series with associated sequence (s,) of partial

n=1
sums where s = U, + t; + ceeinnnen u,. If the sequence (s, ) converges
to s. == say that the series 2. u, converges to s and we write Y u, =S
n=1

and call ‘s’ the sum of the series Y wu, .
n=1
31
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o0

If the sequence ( s, ) diverges, we say that the series ) u, diverges. If the
n=1
sequence ( s,) diverges to +c or —o, we write Y, u = +oo or 21 u, = -0
= e
respectively.

Note that when 3, u, converges, the symbol Y, u,, is used to denote not only the infinite
n=1 n=l

series, but also its sum.

EXAMPLE 2: Examine the convergence of the following infinite series:

v L
b nzs'l 2"
ii) i n

n=l

i) il [1+(=1)"+1]

SOLUTION: Consider the series Z L Here

E)
N =
N

s,=1- e
Since ( s, ) converges to 1, the series Z -21,; converges to 1 and g -12;
ii) Consider the series 1 +2 +3 + ......... . In this case,
$;=1+2+3+...... +n=n_(n;_1).

3
The sequence (s, ) is divergent, thus the series is divergent.

iii) Consider the series Y, [1+ (-1)™1]
=l
Here ( s, ) is 2 or 0 according as n is odd or even. In this case ( $,)=(2,0,2,0,

divergent. Therefore, the series is divergent.

Note that the following results follow 1mmed1ately from the definition of convergence of the
series.

I.  The addition, omission or change of a ﬁmte number of terms of a series does not affect
its behaviour regarding its convergence or divergence.

II.  Multiplying the terms of a series by a non-zero number does not affect its behaviour as
regards its convergence or divergence.

EXERCISE 2

i) Let a+ (a+d) + (@+2d) + .cccvrreeee = i (a+ (n-1)d) be an arithmetic

series. Prove that the series diverges to 400 OF =00 according as d>0
or d < 0. What can you say if d = 0?

ii) If a series u; + u, + Uy + .eueenene converges to s, then prove that
U, + Uy + Uy + ceeeeeeeeess CONVErges to s-u,.

. . 1
iii) Prove that the series El n (nel) converges to the sum 1.

The following theorem are immeédiate consequence of the theorems on sequences wkich you
have studied in Unit 5.
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THEOREM 1: If ¥ u, converges to s and 2 v, converges to t, then
n=1

n=1
i) X (u, +v,) converges to s+t.
n=1

and

ii) Y cu, ctonverges to cs for ¢ € R.
n=1

PROOF: Let ( s, ) and (t, ) be the sequences of partial sums of

g u, and g,l Vv, respectively. Then the n' partial sum of g (u, +v,)
(u1+v,)+(u2+v2)+ .......... + (u
= (U + Uyt ... qp)+(v1+v2+ ......... V)= s+t
We know that lim (s +¢ )= lim ¢ 4 lim ¢ = g4t

Hence 3 (u, + v, ) converges to s+t. This proves (i).
n=|

For (ii), the n™ partial sum of ¥ cu, is
=1

cy+cuy+..cu =c(u +u,+ ... U, )= cs,.

ince li =clhi = i
Since [IM (cs )=c 32}] s, =cs, therefore the series El cu, converges to cs.

With the same method you can easily prove that

i (u, —v, ) =s-t.
n=1

In the following theorem, we have shown that if the series is convergent, thenall the terms
after some stage must become arbitrary small. What about the converse? We shall answer
this question also at the end of the theorem:

THEOREM 2:If ¥ u, is a convergent series, then lim y =,

n=l
PROOF: Suppose I u, =s. Thenlims =5,
n=1

where (s, ) is the sequence of partial sums of 3 u

ne
=]

Since im s =, therefore lim 5 =,

Since u, = s, —s, _, therefore _

i = li - =lim g _li =s-§=
1111»“3 un_.l\l_l:.l (s, sn—l)_le-. Sn n_lll Sp1=8-8=0.

Thus, im y =0 is a necessary condition for 2’1 u, to converge.
et

The contrapositive form of the theorem states that if lllgn u, #0, then 3, u, cannot
* =]

converge. This is used as a simple test for convergence of a series. The converse of the above

- theorem is not true i.e. the condition 'l‘l_f:l u, =0, is not a sufficient condition for the

convergence of Y, u,. In other words, there are divergent series 3 u,, with l{f}} u, =0.
n=1 n=l
. 1. im L _
For example, the series ¥, o 1s not convergent, although .1.12.1 a = 0.

In Unit 5, you have learnt the Cauchy criterion for the convergence of a sequence. Closely
connected with this, is a theorem which is known as Cauchy’s Prisciple of convergence of

infinite series. We state and prove this theorem as follows: 1
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THEOREM 3: CAUCHY PRINCIPLE OF CONVERGENCE.,

The serfes Y u, converges if, and only if, given € > 0, there exists
=l

2 u,

r zkel

m £ N such that < ¢ whenever n, k > m (n > k)

PROOF: Let ( s, ) be the sequence of partial sums of the series X u,. By Cauchy’s
Principle of convergence of sequences, (s, ) is convergent iff given € > 0, there exists me N
suchthatls,,- skl <gforn,k>m,(n >k)
‘ o - ' N . i .
Buts, -8 = Yy u, and since convergence of the sequence ( s, ) implies the convergence of
=]
X u,, it follows that T u_is convergent iff given € > 0, there exists m € N such that

<gfor n,k>m. (n>k)

]

3,
=
You can use Cauchy’s Principle of convérgence as a test for convergence of a series. See the
following example: R '

EXAMPLE 3: Tgst the. convergence. .of the series 1 + 1 + Tt eeeeenes

SOLUTION : You know that this series is called an Harmonic Series. Suppose the series
converges. By Cauchy’s Principle of convergence, given € >0, 3 m, € N such that

n
X u,
pokct]

<e forn,k>m, (n>Kk)

Take k = m and n = 2m where m > m,. Then

|um+,+um+2+ .......... +u,,l<e
ie — + L + L <Eg
m+1 m+2 ...... 2m 3
CHS. > b4l L
But LHS. > 2t om e +om
I
" 2m T2
This is a contradiction, if € <% say %, % etc: Hence, the series does not converge.
EXERCISE 3
i) Find the sum of the series 1 — 1 + L _L1 R R
_ L - % 16 ~ 64 T e .

: < f(n+l
l’
ii) Does E,l n12) converge ?

iii) Prove that if Y u, converges and Y, v, diverges, then Y (u, +v,)
n=1 n=1 n=1

diverges.
iv) Give an example of a series Y, u, such that
. . n=1
(u; + ) + (uy +u) + .eeeeeneenni. CORVerges,
but u, + u, + Uy + U o, does not converge.

The infinite series have been divided into two major classes: The positive term series and the
series with arbitrary terms both positive and negative terms, called the general series.

The easiest series to deal with are those with positive terms and most of the tests for
convergence of a series are for series of positive terms. We shail study the positive term
series in this unit while the series with arbitrary terms (general series) will be discussed in
Unit 7.



6.3 SERIES OF POSITIVE TERMS

AmmZu ‘where u_ >0Mullnkulledumlnofpodﬂuumor
a positive term uries.

Recalltﬂatmebchavnourofauene:udefuwdlntermsofiumhtedwqmofpuun
sums. ﬁewqueme(sn)nuoc’wwdwnhamzu,ofmmksm
mcreasmgsequence.smces ey —Sn T Uy, >0, Weknowduumonotomcseqm

converges if it is bounded, and dnverges to + oo if it is unbounded. Thus, we have the
following theorem:

THEOREM 4:Let T u, be a serics of positive terms with assoclated
p) ‘

sequence ( s, ). Then i‘ ., eollmgu “4(-..'.. ) is T -‘£~
tiverges to + if (s, ) is unbounded.

Forexamplc consndcrdwﬂanmmcSmsZ .Let (s, )bedwnqmofpuﬁalﬂm
of the series. We claim that the sequence (8, )uunboundeq Indeed

=1

s4=l+%+%+i>32-+%+%=2.

8|=S4+'5'+lg+},’+,%>2+1§' % %+!§,§2_,

In general, 1tcanbeshownthats2>n—;—z’mlssm that ( s, ) s itself unbounded. Hence

3 L divergers to =.
ml I ‘

Let us consider another important example of the well-known Geometric Series:
EXAMPLE 4: (Geometric Series)

The series Y, x* converges to I_L; if0<xcil
azl -

and 21 x* diverges to = if x 2 1.
Rx
¢

:(Thc series Y x* is called the Geometric Series)

n=1

SOLUTION: If x 2 1, then the sequence ( s, ) associated with the senes

3, x" of positive terms is unbounded. Indeed
=]

= 14X4%2 4+ ..o, +x1 2 1414 4]l =

But (n) is unbounded and hence divergent. Therefore (s, ) is divergent and hence the given
series is divergent for x 2 1.

For the case 0 < x < 1, we have s, = 1+x+x2 ........... + xm1

1 —x®

= 1-x

<—1— forn=1,23, e
1-x

Therefore ( s, ) is bounded and hence 3, x* is convergent.
’ o=l

Positive Term Series
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EXERCISE 4
i) Show that if u, + u, +...... converges to s, then so does u, + 0 + u, +
0+u; +0 +...... More gencrally, show _that any number of zero terms

may be inserted anywhere ( or removed from anywhere) in a convergent
series without affecting its convergence or its sum.

-
oo

ii) Determine the convergence or divergence of the series Y log (1 + 1; ).
n=1

From Exercise 4 (i), it follows that the behaviour of a series of non-negative terms is
determined by that of a series of positive terms. In other words, the convergence or
divergence of the positive term series and the non-negative term series is.same.

Now, let us study some tests of convergence of the positive term series. In Section 6.4, we
discuss some general tests and in Section 6.5, we shall study some special tests of
convergence.

64 GENERAL TESTS OF CONVERGENCE

So far, you have seen the convergence of a series. It is defined in terms of convergence of its
associated sequence of partial sums. Ho'wever, it is not always easy to find the sequence (s, )
and its convergence. Then, how to test the convergence of such series? For this, we state and
prove some general tests for the convergence of series of positive terms.

COMPARISON TEST

The most common tests of convergence of the positive term series are the comparison tests.
In these tests, we compare the series X, u, with a series X v, with known behaviour.
Accordingly, we decide whether the series 3. u, is convergent or divergent. This is
sometimes, reworded by saying that the behaviour of the series X u, in terms of its
convergence or divergence is dominated by the behaviour of the series ¥ v, . In other words,
we say that if a positive term series 3. u, is dominated by a positive term series X v, which
is convergent, then X u, is also convergent. Similarly, if a positive term series 3, u_
dominates another positive term series X v, and ¥ u, is divergent, then X, v, is also
divergent.

We discuss the comparison tests in the form of the following theorem:
THEOREM 5: Let Y u, and 3 v, be any two series of positive terms.
n=1 n=1 !

I) Suppose there exists a positive real number k such that u, <k v,V n.
Then if Yv_is convergent, Yu_is convergent and if Yu_is divergent,
v, is divergent. '

I1) Suppose lim = A, where A is a finite non-zero real number.

n
Then Yu, and Xv, converge or.diverge together.

u Vo

IIT) Suppose there exists a positive integer m such that- ~L > v for
n+l n+l

n 2 m. Then if v is convergent, Yu_ is convergent and if Xu, is
divergent, Zvn is divergent.

PROOF: L Since u, < kv, for all n, therefore |

w4y, u <k(v+vy,... 4V )V

Suppose X v, is convergent.

Since ¥ v, converges, there must exist a positive number A such that

Vi o+ VL + V. <A Vn

36 Consequently, u+u, +.... .. +u,<kA Vn




—

This means the sequence of partial sums of the series Y, u_ is bounded above by kA and Positive Term Serl
bounded below by 0, i.e. the sequence of partial sums of . u, is bounded and al. -
monotonic. Hence ~

2 u, is convergent.
Similarly you can show that 3 u_is divergent implies that . v, is divergent.

I) Since ¥ u, and 3, v, are two series of positive terms, therefore i

LY >0,V n,
v

n

. . u

which implies that Im —=%- > 0. -

In other words, A 2 0.

But by our assumption A # U, therefore A > 0.

Now let us choose an € > 0 (however small) such that A —e > 0.

n

. : u . e .
Since lim = A, therefore there exists a positive integer m
n—oe  y

n

such that
uI‘l
- Al<eg Yn>m
Vn
ul‘l
orA-g< < A+¢g Vao>m
n
or(A-g)v <u <(A+g)v, VYn>m
Consider ,
u, <(A+g)v, . ¥Yas>m

Using (1), it follows that if Z‘vn converges, 3. u, also converges. Further if ¥, u,, diverges,
then 3. v, also diverges.

Now consider the inequality
(A-¢g)v, <u, Vn>m

Then

v <—-ﬂ.———

p <TERTug ¥Vn>m
(A-€)

Thus, again it follows that if 3, u, converges, then X v, also converges and if ¥ v diverges,
then X u, diverges. Hence X u, and ¥ v, converge or diverge together.

You may note that in the case when convergence of ¥ u, follows from the convergence of
3 v, , then A may or may not be zero. But conversely when the convergence of L v,
follows from the convergence of X u_, then A must not be zero ( A # 0).

M) Putting n=m, m+1, m+2, m+3, .... n-2, n—1 in the given inequality, we get

o Yo

um+1 vm+l

Uy Vm+|

Up,2 vm+2

Uy Vit

—>

u v

37
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¥

-+ Multiplying the corresponding sides of the above inequalities, we get

\/ AR
_um_> Yo ‘Ynsm
ull vﬂ
v
i.e. —u"—< — Yan>m
ulﬂ Vm
Uy <2y, “¥nsm,

Since m is a fixed integer, u,, and v, both are positive, therefore

%"m is a positive fixed number. Let %’“ =k, where k is a fixed positive number. Then

obviously, by using I, it follows that if ¥ v, converges, then ¥ u, converges

and if X u, diverges, then T v, diverges.

“This completes the proof of the theorem.

EXAMPLE 5: Test the convergence of the following series:

1 . 1 1
i) 2 v 3t g e * i,y tee .
if) —l- 1 + -+*—-l- +

TR n
1
iil)l+—l!7+%+sl—!+ ..... R IS .
SOLUTION: (i) Consider the series
1. 1.1 1
2 * 3 +5 L S gt
Compare the series with the convergent geometric series
1.1 1 1
TR AR M= IR R ‘
1 1

Clearly e 1 < o for each n. That is, each term of the first series is less than the

corresponding term of the second series. Hence, by the Comparison Test (I) the given series
converges.

i) Consider the series | + L + Lo +

2Vt

- Let us compare this series with the Harmonic Series

You have seen earlier that the Harmonic Scxjes divérges.
Now, for each n..% 2 'l. In other words, each term of the given Series is greater than the
n

corresponding term of the harmonic series. Hence, by the Companson Test (I) the series
diverges.

iii) In the series
1 1 1 1
1+F+§+§T+ ......... +E+ .....

you know that n! is *n factorial'. That is n! = n(n-1) ... 3:2.1.
Does this converge? With which series shall we compare it? Let us examine it.

We know that deletion of a finite number of terms does not alter the convergence or

divergence of a series. So, let us consider the terms of the above series from the third term
onwards.

L1 __t 1
31T3x2 2x2 22




B et e e~

[ 1 1
1 < -
4 4x3x2 2x2x2 2

Positive Term Series

L
3

1. L < ! - and so on.
moa@-1..32 S2x2x ..o.x 2 2
We also know that % + 2% + 513— + ... converges. Hence, by Comparison Test (1), the given
. This series 1+ L 1.1 1 .
series converges. This series 1+ 17 + 5 LT + oot is a very -

important series. The number to which it converges, is denotedv by e, which, as you know,
is called the exponential number or transcendental number.

You would have noted that, in order to use the Comparison Test I, you must have a large
number of known convergent and divergent series.

Let us now discuss important series which is frequently used for the Comparison Tests.

This is known as the p-series namely Tl‘; + % + 3—1,,- + e + -r-:; + cereerens ,
where p is a positive real number. Let us investigate the behaviour of the p-series for
different values of p.

The p-series is one of most important series. Its behaviour changes from divergence to
convergence as we go from p=1 top > 1.

We state and prove the following theorem known as p-test for its convergence which depends
upon the values of p.

THEOREM 5 : ( p-Test)

A positive term series Y ‘:—p p > 0 is convergent if p >.1 and is
=1

divergent if p < 1.

PROOF: There are three cases namelyp=1,p<1landp> 1. We discuss these cases as
follows:

Case 1: Let p = 1. The series is just the Harmonic Series, wi ich has already been shown to
be divergent.

Case 2: Letp< 1.
Since p < 1, n° < n and hence # 2 %for each n. In other words, each term of the series is

greater than the corresponding term of the divergent series 1 + % + 13 + o+ l; +....

Hence, in this case also, p-series diverges.

Case 3 : Letp> 1.

To consider this case, we use the following series for comparison::'
o101 111,11 |
F+§+? +Z’+F+;1T’+:t—p - R

(The pattern should be clear).

It is clear that each term of the p-series is less than or equal to the corresponding term of this
series. We claim that this series converges. Indeed, it is clear that

Lo(L Ly (L, L
lP+ - +2p + P 4p+4p+4p L PR
1

PPt

. . . . . 2
which is a geometric series with common ratio 3 < 1.

*

Thus this series converges. Hence by Comparison Test 1, the p-series also converges.

This completes the proof of the theorem. 39
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EXERCISE 5

In the proof of theorem 5, we have grouped svme terms of the series of
positive terms. Prove that such grouping does not affect the nature of the
series.

oo

EXAMPLE 6: Show that the series D nTn-u-_l diverges.
n=1
SOLUTION: For large values of n, nznﬁ behaves like n% ie. i .

oo

. . . 1 . .
For comparison, take the harmonic series Y 0’ which, you know, diverges.
=1

1

Now, u = v, ==

Thon241" v g
li Uy _ n? _ .
m =1m — =1 which is non-zero and finite.
Aoy 0 nl 41

n
Hence by the Comparison Test (1), it follows that the given series diverges.

Try the following exercises.

EXERCISE 6
Determine whether . the following series are convergent?
i 1,1 1 1

s t7 10 F e Yo 3nal e

Vn

LD M

EXERCISE 7

Show that if the series py u, of positive terms converges, then
n=1
&

M3

2
u also converges.

n=1

6.5 SOME SPECIAL TESTS OF CONVERGENCE

In Section 6.4, we discussed some general tests to know the convergence or divergence of
infinite series. These tests enable us to deal with a fairly large number of positive term
series. However, the scope is really quite limited and we are forced to look for other tests to
handle a few more series. In this section, we shall develop some special tests which can be
used to test the convergence of a still a larger number of infinite series. We begin our
discussion with the two basic tests which are more useful and frequently employed.

The first test, called the Ratio Test, is due to J. D’Alembert [1717-1783] and the other cailed
the Root Test is due to Cauchy, both eminent Fre:nch Mathematicians.

In the Ratio Test, we discuss the convergence of a given series by étudying the sequence of
the ratios of the consecutive terms. Comparison Test needs another series with known
behaviour for the purpose of comparison but in ratio test we use only the terms of the given
series. We now state and prove D’ Alembert’s Ratio Test.

THEOREM 6: D’ALEMBERT’S RATIO TEST

Let Y u, be a series of positive terms such that
n=1

Up,t
lim 2+ _
H . = L

i) IfL <1,then Y u, converges.
n=1



Positive Term Series

ii) L >1,then Y u, diverges.
n=1
iii) If L = 1, the test fails to give any define information about the
convergence of the series.

uM
PROOF: Case (i) Let lim "T,,l =L<1.

Let r be a real number such that L < r < 1. Choose a number &> O such that L+e =r.

. uml
Since 'l‘llj_l —‘-1;- = L, there exists a positive integer m such that

<gforn2m

Uy,
l———L
u,

un«l
ie. L~ < -;n— <L+egforn2m

But L +¢€ <, therefore

uml .
— <rforn2m
u,

ieu, <ru forn2m.

Thus,

U, <ru forn=m
2 =
Up o <rug,, <rf U, forn=m+l
3 =
Upe3 <T U, <P U, forn=m+2.

In general, u,,, < U _fork=1,2,3,.....

Hence, by Comparison Test, up,,; + Up,;......... CONVEIges, siu & it is dominated by the
convergent geometric series '
k
u, T+ u ... + u,r

Therefore, the series Y. u, also converges.
n=l

ul\#
Case (ii) Let lim :' =L>1.

Choose a number € > 0 such that L-€ > 1.

u

. n+1 .
Since 'l‘g[} = L, there exists a positive integer m such that
i}

uml
— - L
Uy

<gforn2m '

. un+|
1.e.L—e<: <L+egforn>m

Thus

uml

— >L-e>1forn2m.
u,

That is, u_,, > u, for all n > m. This means that lim u_ 0.
i N-dae n

oo oo

Hence Y, u, caanot converge. Thus Y. u, is divergent to eo.
n=l n=|

Case (iii) L = 1. The test fails because the series may converge or may diverge. The reason is
that there are convergent series of positive terms with 41
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u
Him — =L

N=poe uﬂ

; u,,
and there are divergent series of positive terms with lim t‘ =L,

For instance, Y, L diverges, Here u, = L. so that
m 0 n

u
. Note that if, in the statement of the D’ Alembert’s Test, had we.taken lim — =z L then

n
Unst

L > 1 would imply convergence, and L < 1 would imply divergence of Su,.
ns]

b,
You may also note that if lim I‘ = co then the series I u, is divergent. You may prove it

by applying the procedure of the case (ii).
EXAMPLE 7: Test the convergence of the series

1.3 .35 2n-1
2 + 2’ + 2’ + 'l.lll.l.l'+ 2' + s0ssPRRRIRITY
SOLUTION: Here u, = 251, So that uy,, « 2l
1
1+ -
u
Hm 2 om 204120 1 g 20 1
Lo BTN = 201 (2n-1) 2 0= 12
. 2n ¢
Upst i ,
Since lim — =< 1, the series converges.
EXERCISE 8
i) Show, using the Ratio Test, that the series e=1+% + % +-3!;+ ...........
comverges, |

if) For what positive values of x does the serles Z‘ ’-‘-n: converge?
ns

iti) Find all positive values of x for which the series 1 + 2x + 3x2 4 4x}
+ weeee  CODVerges, '

- sn
fv) Test for convergence the series nz-,l i

You have seen that D' Alembert’s Ratio Test fails to give any definite information about the
convergence or divergence or the series in some situations. In such cases, sometimes
Cane*v's Root Test is heipful, But mastiy Cauchy’s Root Test is more suitable for those
serics ~hose nth term contains n, n? etc. in the exponent. In the Root Test, the convergence
»f a given series is based on the behavi~-~ of the sequence formed by taking the nth root of
the terms of the given series. Let us state and pro- ‘nis 4t a8 the following th: ~rem;

"HEOREM 7: CAUCHY’S ROOT TEST

Let Y u, be a seies of positive terms such that lim y tn =L



i) IfL <1, then Y u, converges.

Positive Term Series

ii) If L > 1, then Y u, diverges.
K=l
iii) If L

1, the test fails and the series may converge or diverge.

PROOF: Case (i) Let L < 1.

Choose a real number r such that L <r< 1. :

Let € > 0 be a number such that L+e =r.

Since limy im =L, there exists m € N such that

u,'™ -Li<e forn2m
ie. L-e<u,!" <L+e forn2m
u, ' <r forn2m

iie. u, <r" fornam

Since X r* is a geometric series with common ratio r which is less than 1, therefore it is
convergent. Thus by Comparison Test, it follows that ¥ u, is Convergent.

Case (ii) Let L > 1. Choose a real number s such that L > s> I

Let € > 0 be a number such that L-e = s,

Since limu, —= =L, there exists m € N such that

1
n
u,'/™ - Li<e forn2m

ie L-e<uy, ™ <L+eforn2m.
s<u, ' forn2m

ji.e.s" <u, forn2m,

Since ¥, s" is a geometric series with common ratio s which is greater than 1, therefore it is
divergent. Hence by Comparison Test, ¥ u,, is divergent.

Case (iii) Let L = 1. In this case, the test fails to furnish any definite information about the
convergence or divergence of the series. For example, consider the convergent series

1 . | . :
Y =5 and the divergent seriesY, = . In both the cases 1im y 1=,
i N =t N n—ee '

EXAMPLE 8: Test for Convergence the Series
2 3

3 3 2 4 .3 n +1 .,
l-0-(3)-0-(5) +"""+(2n-l)

SOLUTION: Here u, = ‘E“B{T] .

Since n occurs in the exponent of u, , so we apply Cauchy’s Root Test. Here

I = ﬂ_ﬂ ,
n 2n-1

Therefore

lim g th=tim R*L_L
n—pes 0 no= 2n-1 2

<l

Hence the series converges.

In the abovc example, if you wish to apply the Ratio Test, you will have to evaluate

li un +1 .
m . i.e.
n-—oe u“
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lim [( n+2 \n+l 2n-l)n]

Db 2n+1 n+1

which is certainly not easy. Now we take an example where the Ratio Test fails, but the
Root Test gives a definite answer.

EXAMPLE 9: Consider the series Z! u, where )
A=
2-*V" it n is odd
u =

2-*+V% it n {5 even

SOLUTION: Let us try the Ratio Test.

Uy 2

. Uy
Hence :f_"“_ _u;- =0,

el T”““‘J‘”‘",z,u_m-m

e r2ne Lo B WO e
On the other hand. .~ = —2--~ms = 1 2 Vi

lim 22
Hence n_."_‘.-u; = oo*

U,
In other words, the sequence-u:l— does not have a limit.

Thus, the ratio test is not applicable in this case. However, the root test is applicable as is
evident from the following:

L L _ 1
For (up Y= 2 "Via so that lim (uzh)"=z

1 _l+__l_ . —L
and(“z.»l P+ =27 Vapsl go that !,'_'E_(uzn.n)z'“l =

D ==

: 1
Thus, |l|l_"“_ (u)n =5 <L

Hence the series converges. ,
You may note that whatever the ratio test determines the nature of a series, so does the root

. U, . : L
test. In other words, if }"_?_[I-'=Lthen it is true that !"-."-'. u, " = L. But converse may

not be true as is clear from the above example. Thus the root test is more powerful than the
ratio test.

EXERCISE 9

Test the following series for convergence:
- 1

.2.:‘1 (log n)*

« L
2 7y

i)

i)

Sometimes to discuss the nature of a series, we associate an integral to the series and discuss

its convergence which is easier. This method is given by Cauchy’s Integral Test which we
now discuss.

Before introducing the integral test, you may recall some preliminaries regarding the Integral
Calculus which you have already done in your previous studies.



Let f be a real valued function with domain [a, ¢ (.
t
Suppose that f(x) is sucn that j'f(x) dx has a meaning for every t2 a.
)

Then we write

}
P = .]f(x)dx.

If l‘gﬂ ¢ (t) exists, then we say that the integral .!;(x) dx is convergent or that it exists. In
that case, we write

- t

ljf(x)clx = lim i[f(x) dx.

if ll_l"_': ®(t) does not exist, then it follows that [f(x) dx does not exist.
a8

If lim ¢ (t) = o, then the integral f f(x) dx is said to be divergent.
&

For example, let f(x) = ;}73- be a function defined on the interval [1, oo [. Then, we have

dx x23 |t 3
¢(0=JW= 2 = 3 [#P-1].
3 11

Since .ll,".: ¢ (1) = oo, therefore the integral ]j f(x) dx is not convergent.

Let f(x) = IF be another function defined on the interval [1, oof.

Then, we have
t
dx x3 [t
o= <= =
1 x* -3 |4
1 1
Hence lim ¢(1)= 1
t—to0 3
. o0
In this case, we say that I f(x) dx is convergent and that its value is %
' a

- THEOREM 8: CAUCHY’S INTEGRAL TEST

Let f be a real valued function with domain [ 1, « [ such that
i) f(x) 20,V x 21 (f is non-negative)

it) x<y= f(x) > f (y), (f is a monotonically decreasing function)

iii) f(x) be integrable for x > 1 such that f(n) = u, i.e. f (n) is associated
with the series I u,.

Positive Term Series

45



Then X f(n) is convergent if and only if j'f(x)dx is convergent and ¥ f(n)
a
is divergent if and only if

j#(x) dx is divergent,
-1

f.e. If(x) dx and Zl u, converge or diverge together.
a e

PROOF: Since f is a decreasing function on [1, e[, we have
f(n) < f(x) S f(n-1) for n-1 £ x < n, n=2, 3 ........... .

Consequentl&.

jlf(n) dx € {f(x) dx. < _|;f(n—l) dx

i.e. f(n) € ]‘f(x) dx <f(n-1)forn=2,3 ........

Thus,

n n k n
Y ftk) s Y, |l_Lf(x)dx < ‘}_:z fk-1),

k=2 ka2

But,

n k n n n-1

Ez in_jlf(x)dx = Jf(x)dxan‘d Ez fx-1) = E,lf(k).

Therefore, forn 2 2,

n n pl - n .
Ez uks‘Jf(x)dxs E‘n““ ie. s, a—u,# ([f(x) dx<s, -u,

where (s, ) denotes the sequence of partial sums of the series X u,. Therefore,

ySs, - Jf(x)deu,
n
If we write A, = s,-Jf(x)dx.wehave

e+l n '
A -A, =(sm|-s_..)—(jf(x) dX.-Jf(X)dx)

n+l

Cmugy - Jf(x)dxso

Therefore, Ay, S A, V n. Thus the sequence '(A,.) is monotonically decreasing sequence.
Also A, 2 u, 2 0 V n, therefore the sequence (A,) is bounded below. Consequently (A,) is
convergent.

Now-

Sy = A+ r[t‘(x)dx

n
_The convergence of ( A, ) implies that ( s, ) and (‘{[ f(x) dx ) converge or diverge together.

Hence X u, and J f(x) dx converge or diverge together.

b



The idea underlying the Cauchy’s Integral Test and its proof is self-explanatory from the Positive Term Serie
Figure 1.

AY f(x)

f(2)=u, 4

- f(n)=up L
f(n+1)=u,,,
f(n+2)=un+z n

T

Fig. 1

You may note that if the conditions of Cauchy’s Integral Test are satisfied for x 2k ( a

positive integer), then Yu, and j' f(x) dx converge or diverge together. This can be seen
n=k [ 4

from the following example:

EXAMPLE 10: Discuss the Convergence of the p-series Y, #’ P> 0by
n=1

using the Integrai Test.

SOLUTION : Here u, = #

1
Let f(x) = " ‘ -
For p > 0, f is a decreasing, positive integrable function. So by Cauchy’s Integral Test,

i

p) ;l;;, and J f(x) dx converge or diverge together.
el

X
X .dx
1'“()‘) dx = 3 _
o i
log xifp=1
T ) x-Pol
1-p

wif0<psl

ifp=1

- 1
E_"l‘lfp>l

as X-—)oo

Therefore

J f(x) dx converges for p > 1 and diverges for0<p <1 and hence the series'

yl converges for p > 1 and diverges for O<p < 1.
p
=t I ' 47
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EXAMPLE 11: Test the convergence of the seriesz — L
ax2 0 (log n)?P
where p > 0.

SOLUTION: Let f(x) = E&l;_x)T forx > 2.

If p > 0, then f is a positive, decreasing, integrable function on [2, e[. Hence by Cauchy’s

ot 1 1 . )
Integral Test, 5 oz mVP (log ny? and J‘ ~———— converge or diverge together.

x (log x)?
2
We have, forp>0
x (log (log x) - log (log 2) if p =1
&
J x(log x)’ 1 dog x)!-P - (log 2) !-* if p21
L 1-p
(o0 if p< 1
—<

(og 2)'P .. p>1
L p-1
as x—yoo

This shows that J f(x) dx converges if p > 1 and diverges if 0 < p < 1. Therefore the given

. - 1 . . .
series Ez———n (log 0¥ converges if p > 1 and diverges if 0 <p < 1.

EXERCISE 10

Discuss the convergence of the series

¥
-

1
z
”311 log n (log log m)?

P >0).

In general, it is difficult to determine whether an arbitrary positive term series is covergent or
divergent. There is no single universal test or method that will deal with all possible cases.
We have discussed several useful tests including the popular ones like the Ratio Test and the
Root Test. Most of these tests have been derived in some way from one of the forms of the
comparison test. We now discuss some more tests which may be applied when all the
earliest tests fail. In particular, some of these new tests will be helpful when the Ratio Test
and the Root Test fail. We have sglected only two tests to be discussed in our course. These
are Raabe’s Test and Gauss’s Test.

Raabe (1801- 1859) was Professor at Zunch He made lot of important contributions to
Geometry and Analysis. He gave a test for the convergence of a series of positive terms,
which is often decisive when the D’ Alembert’s Test fails. We state the test, without proof
and discuss examples to illustrate its use.

THEOREM 9: RAABE’S TEST

oo

Let 3 u, be a series of positive numbers such that
n=1l ‘

. ull
limn[—— -1] =L
Bpee un+l
Then i) Y u, converges if I. > 1
n=1

ii) Y wu, diverges, if L <1
n=1



tii) the test is inconclusive, if L = 1.

Let us look at an example.

EXAMPLE 12 : Test the convergence of the series
2.4 2.4.6 2.4.6.8

3.5 Y3.867 Y3579 * e

246........ (2n+2)
35.7... (2n+3)

SOLUTION : Here u, =

u,
" 2n+5
Hence o = oned and
u, ‘
lim — _ lim 2048 _
noee 4 0w 2n4d

Thus, the ratio test fails. But

. U,
lim n
N—yoe u.

n+1

~1)= tim-n__1
1)_ tim a2 a1,

Hence, by Raabe’s Test Y, u_ diverges.
n=1

EXERCISE 11

- Test the eonvergence of the series

113 135,
3 X + 3.4 X + 246" +eritrsenisenenn ( X > 0)

We end this section by discussing Gauss's Test.

Gauss (1777-1855) an eminent German mathematician, gave a very powerftl test for
convergence which is applicable if Raabe's Test fails. It is not essential that first we apply
Ratio Test, then Raabe’s Test (if Ratio Test fails) and finally Gauss’s Test (if Raabe's Test
also fails). We can straightaway apply Gauss Test. Both D’ Alembert’s Ratio Test and

Raabe’s Test are included in this test. We only state this test and then illustrate it by an
example.

THEOREM 10: GAUSS’S TEST

Let > u, be a series of positive terms. Suppose
n=1

where a, b, peR,a>0,p > 1 and (r,) is a bounded sequence.

Then:

) X u,converges,ifa> 1
=i

i) u, diverges,ifa<1

iMs

iii) 3 u, converges,ifa=1,b>1
"=

iv)

iMs

u, diverges,ifa=1,b<1

Positive Term Seri

Note that the cases L= + e and L »
~eo are also included in (i) and (i) i
the test,

49
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EXAMPLE 13: Test the convergence of the series
22 22,42 22,4262

3 Y3 st 3t szt

SOLUTION: In this case,

= 22.'42.62 ......... (2n)2
n T 32 §2.72...... (2n+v1)2.

Thus

e O )

u,, (n+27° 2n n
_(.,+L+:s_)/(1_z'+§_ 4 )
- 4n2 n n n2 " n3 ----------
=1+ 4L (J3/4 4+ powers of 1)
" Tn n? po n

Herer, = —% + powers of ﬁ Therefore, (1, ) is a bounded sequence. Since the coefficiert of

1. , . L
5 s 1, by Gauss’s Test, the given series is divergent.

EXERCISE 12
Discuss the convergence of the series

I+ a.p +,cz(a+1) B(B+1) <2+ a{a+l) (a+2) B(B+1) (B+2) X3
1ty 2! y(y+1) 31 y(y+1) (7+2) Horeeeenes _

where x, 0, B, Y are positive numbers.

6.6 SUMMARY g

In this unit, you have been introduced to the notion of an infinite series and the concept of
convergence of an infinite series. Series of positive terms were taken up for consideration,
and various tests of convergence of series of positive terms were discussed.

In Section 6.2 we gave the definition of an infinite series and gave a meaning of the infinite
sum as its convergence. Although an infinite Summation seems to be artificial, yet by using
the powerful tools of the limit concept, we are able to give a very concrete meaning to an
infinite sum. The convergence of an infinite series is shown in terms of the convergence of
the associated (corresponding) sequence of partial sums of its terms. The basic technique is to
find an explicit formula for the nth term of the'sequence of partial sums. The convergence of
this sequence implies the convergence of the corresponding series.

Infinite series have been divided into two major classes — the one with positive terms and
the other consisting of the arbitary terms. In Section 6.3, we deal with the positive term
series. The notion of convergence of these series has been introduced. General tests of
convergence such as the comparison tests under different conditions and the p-test have been
discussed in Section 6.4.

In 6.5, we have discussed some special tests. Notable among these are the two basic tests —
D’Alembert’s Ratio Test and Cauchy’s Root Test. We also studied another important test—
Cauchy’s Integral Test. Finally, we have discussed two more useful tests namely Raabe’s
Test and Gauss’s Test for the convergence of the positive term series.

6.7 ANSWERS/HINTS/SOLUTIONS

El i) (l+l+—+ ..... +1*)



Positive T Seri
ii) (ngn+1 [) ositive Term Series
2
ii) (1,0,1,0,...... )
E 2) i) For the series a+(a+d) + (a+2d) + ............ , the n™ partial sum is
Sp=p 22+ @-Ddn=1,2,3 .

Ifd=0,then s, =na.
If a # 0, then (s,) = (na) is divergent.
If a=0, then (s,)) = (0) and it converges to 0.
If d = 0. the series divergesifa# 0
and converges if a=0.

Now suppose d > 0. Let k > 0 be given.
sy > kif 5 [2a+m-1)d] > k

Hence s, >kif2a+ (n-1)d>k.

This happens whenever (n—1) d > k —2a,
that is, whenever n > k+d-2a.

Let m € N sucn that m > k+d-2a.

Then s, >k whenevern 2 m.

Hence ( s, ) diverges to +co. Therefore, by definition, the series
Y [a+(n—1)d] diverges to +oo. £
n=1
You should be able to take care of the case d < 0.
ii) Let (s, ) be the sequence associated with u,+u, + ........
and (t, ) the sequencé associated with u,+u; + ............
Clearlyt, , =s,—u,.(n22)

i =lim g _y = s
Hence lim ¢ , = S, —U; = S—U,,

N—joc :
Therefore, u, +u; +.......... converges to s—u,. '
1 1 ' 1
iii) Hence s = T35+ e e
1,11 Lo, 1
= (1) +G =3+ s *(o - )=
Thus, lim s =lim q-—-y= .
N—ee n—yoo n+

Hence, the series Y, - converges to 1.

-~ n{n+1)
E3) i) For the geometric sm’iesl—l +—1——-— +
: g 2 T l6 6a teee
‘ 1 1 1 1
Sn=l—z+l—6—-6—4+ .......... +(—1)"‘14Tl‘
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i)

iii)

iv)

E4) i)

ii)

L L.,
1_(_4)“ l_(—4) é_ 1
= = Tsm S5 [-Gr)

1= (%)

s, = 5 [1- Ymr] =4

. 1. 1 1 4
Hence the series 1 - at16 68 e converges to .

[Recall from Unit § that :1_131 X" =0if -1 <x<1].

eu =M o4 limy = lim 2L _
Here u, =+ and o Un = Mo =1=0

Hence, 3, u, does not converge.
n=l

If (s,) and (t, ) are sequences of partial sums of Tu, and
2v, respectively, then sequence of partial sums of 3 (u, +v,)is (s +t) which
is divergent, since (s,) is convergent and (t,) is divergent,
Hence 3, (u, +v,) is divergent,
nal
Consider the series 1-1+1-14+1 <1+ ............
1if nis odd
Herey =
~1 if n is even,

You can see that the n™" partial sum s, is given by

{l if n is odd g
S, = '
0 if n is even.
Hence (s,) is not convergent. Thus the series 1-1+1-1+ .......... is not convergent
However the series (1—1) + (1-1) + (1=1) + .......... is the series 0+0+0+ ...........
which, clearly, coverges to 0.
If (s, ) and (t, ) are the sequences associated with the series u, + u, +.......... , and
U+ 0+u, +0 +.......... ) ‘

Spifn=2m

you can see that tn={ .
‘ Sm if n =2m-1

That is, the sequence (t;, &, , ty yeeeerveeneene ) is
(812 8} 830 8,83, §3eecuvnnnes ). It is easy to see that

(814 814 83, 83,835 S3peennninenes ) also converges to s.

Here, s, =log (1+1) + log (l+%) + + log (l+:—1)

= log(2)+log(%)+log(4§)+ ........ log (_n:_l)

= log [2.%.% ............ Ly jog (me).

N s, = (08 (n+1) = o

Hence the series Y, log ( 1+% ) diverges to oo,
ne=l



-+

ES) InE 3 (iv) you saw that grouping terms of a series attered its behaviour. Positive Term Series

However, such a thing will not happen in case of a series of positive terms. That is
the purpose of this exercise.

Suppose Zl u, is a convergent series of positive terms. Hence (s, ) is an increasing
n=!

sequence of positive terins bounded above, where

If the terms of 2, u, are grouped, and if (t, ) is the sequence associated with the new
=l

series, then, it is easy to see that (t, ) is a subsequence of (s;) and hence converges to
the same limit as that of (s;).

To show that a divergent series ot positive terms remains divergent under grouping is
easier to prove. Try it.

. . 1 1
E6) i) Hereu, = Inel Take v, = o
Then lim %2 - lim-1— _3
n—e v newe 3n+]

Also Y v, = Y 1;diverges.

n=1 n=1

Hence, El It diverges. )

ii) Hereu, = ﬁ . Take v = ;gﬁ

. . 2
lim % _ im0 -
N Vo n—xo n2-4

AlsoY, n__31/2 is the p-series will p = 3/2 > 1, and hence converges.
n=t .
3

- Nn
Thus )}, ——converges.
E] n2 4 g

1 lim -
E7)  Since El u, converges, liM y =0.

Hence, there is M €N such thatu, <1forn2 M.
2

So,fornz2 M, u” <u,. *
. ,

. < 2
Hence, by Comparison TestI, Y, u“converges.
n
n=1

1 f

» E8) i) Here un=L u,

n! "n+1 T (n4]))
Hence lim E: llm—-l—]-'—-_- llm—1—=0< 1
7 Do n—es (n+1)! neont ] o

‘ 1
Hence, Y = converges.
n=l T

ii) Let us first use the ratio test. Here

" _&n' " __X""'l
n n’ n+l"'n+1'

... u . n+l .
Hence lim _n_-H: lim x~n )-_— X lim A = X.
n—ee U > = \n+] x" n—eo i+

N

X
Thus, whenx < 1, Y, | converges, and
n=1
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when x > 1, 3, 7 diverges.
e I
It remains to consider the case x = 1 because then ratio test fails. When x =1, the

. < | . . . .
series becomes Y, e the harmonic series, which diverges.
n=1

3

x" .
Thus, finally, Y, o converges if0<x<1
=l

and diverges if x 2 1.

iii) Here’ u, =nx™1, u = (n+l) X"

Hence llm Uns =X llm(n‘..1

oo

Y. nx™! converges when x < 1 and diverges when x > 1 by
. n=1

D’Alembert Ratio Test and test fails for x = 1.

However, when x = 1, the series becomes

1424344+ ... ..., which obviously diverges.
' . 5“ 5n+1
iv) Hereu, =n +l)' )

fim Yl _ Jjm > 2o+t
Hence bt nom 2n43) 5"

- 1
_shim L _
5 e Gned) o) 0t

Hence the series converges.

. __ 1 L | 5
E9) i) u“_(logn)"'so(u“)n_logn
hmun£=lim 1 =0<l.
n—o0 n-elog n
Hence E 1 L - converges.
| (log n)
. _1 L1
i1) un—nn-unn-n
lim y & im 1
n-—»ou““_n-mn_o'

« 1
Hence, Y, — converges.
=l

1
x log x [log log x)P

E10) Letf(x)=

f(x) is a decreasing, positive, integrable function of x and

1 .
fm)= n log n [log (log m)}? forn 23

1
, B log n [log (log n)}? and

Hence Y,

n=

oo

dx
x log x {log (log x)J?
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converge or diverge together.
log (log (log x) )~ log (log (log 3))
X
dx ‘ ifp=1
Jx log x [log (log x)IP ~
[log (log x)]'® - [log (log ) 1P ..,
1o if p#l.

Hence the integral converges when p > 1 and diverges when p<1. Hence, also, the
given series converges when p > 1 and diverges whenp < 1.

E1D) Here b, =58 ¢
Y _2042 1
u,, 2n+l x

By Ratio Test, the series converges if x < 1 and diverges if x > 1.

If x = 1, Ratio Test fails.

u
When x = 1, —2— = 2042
U, 2n+l

so that

. u
lim ( b l): 1 and so the series diverges by Raabe’s Test.

nee \Upyy 2
Hence the series is convergent for x > 1 and divergent for x 2 1.

o (a+1) ... (o+n=1) B(B+1) ... (B+n-1)
1.2 .ooeeeee. nr(r+1).... (r +n-1)

E 12) Here u =

n2+ (r+)n+r 1 £
n?+(o+p) n+o p X

My _ (n+1) (r+n)
Uy (@ +n)(B+n)

> |-

i U . . .
}g‘l —::L = x and so by Ratio Tesl, series converges for x < | and diverges for
x> 1:

For x =1, L SN (y+1-o-B) n+ (y-0f)
-~ U n2+ (o+f)n +afP

1-0-
1+ (—t—n—ﬁ + —;"‘2- for some bounded sequence s,.

By Gauss’ Test, the given series converges if
wi-o-f>1lie y> 0.-0-— B and diverges when y+1-0-B<1.
Cie.ySotp. .
Hence (i) if x <1, series converges for all positive value of o, 8,y
i) .if x> 1, series diverges for all positive values of o, B,y

iin) if x = 1, series converges for r > o + 3 and diverges for y< o+P.

Positive Term Series
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UNIT 7 GENERAL SERIES

Structure

7.1 Introduction
Objectives
7.2 Alternating Series
Leibnitz's Test
7.3 Absolute and Conditional Convergence
7.4 Rearrangement of Series
7.5 Summary
7.6 Answers/Hints/Solutions

7.1 INTRODUCTION

In Unit 6, we dealt with the positive term series. Accordingly, we developed the convergence
tests which are applicable only to the positive term series. But, as you are aware that, an
infinite series need not be always a positive term series. In fact, an infinite series, in
general, can have both an infinite number of negative terms as well as an infinite number of
positive terms. The series which have both negative and positive terms may be classified
into two major categories. The first category consists of those infinite series whose terms are
alternately positive and-hegative. Such series are called Alternating Series. The other
category is one in which terms need not necessarily be alternately positive and negative that
is to say, the infinite series whose terms are mixed and do not follow any pattern of being
positive or negative.

For example, the infinite series

L L1
23 4
has alternately positive and negative terms, whereds the infinite series

JLl ol L 11
TS B B L —

does not follow any specific pattern.

i F oo

1

The question, therefore, arises: How to test the convergence of such infinite
series? The convergence tests discussed in Unit 6 are not suitable enough for the purpose
because these tests in their present form cannot be applied to these series. Hence, we have to
either modify these tests or devise new tests of convergence for such series.

We shall discuss an important test applicable to the series with terms alternately positive and
negative. This test is known as Leibnitz test.

To determine the convergence of other infinite series having no pattern of positive and
negative terms, we shall introduce the notions of Absolute and Conditional
Convergence of the infinite series. Finally,.we shall have a brief discussion on the
method of Rearrangement of series. There are a few more cdtegories of general series viz.
Power-Series which we intend to discuss in some other advanced level course in Analysis at
a later stage.

Objectives

Therefore, after studying this unit, you should be able to

@ recognize an Alternating Series

& apoly the Leibnitz Test to know the convergence of an Alternating Series

& identify an absolutely convergent series and a conditionally Convergent Series
-

have an idea about the method of rearrangement of the terms of an infirite series to
know its convergence or divergence.




General Series

7.2 ALTERNATING SERIES

In this section, we shall consider series whose terms are alternately positive and negative.
Such series are called ‘Alternating Series'.
For example, the infinite series
PR S B W §
2¥3 gty e
and
1 42-344-5+ .iivnns

are alternating series. Formally, we define an aiternating series in the following way :

oo

DEFINITION 1 : An infinite series) u  is called an Alternating Series if

n=1.
any two consecutive terms of the series are of opposite sign.

An Alternating Series may, thus, be written as E,l (D™ = u Uy F Uy U

where, each u, > 0.

If the first term is negative, then it can be written as

Y D u =y Uy Uy Ut
=l

The second series can be obtained from the first if you multiply each term of the first series
by —1. Therefore, it is enough to discuss the convergence of the first series.

There is a very simple test for the convergence of an Alternating Series provided there isa
sequence (sy) of partial sums of U, , Uy, which is monotonically decreasing and
convergent to 0. This test is known as Leibnitz Test after the name of Leibnitz, the eminent
German mathematician,

THEOREM 1: (Leibnitz Test). Goufried Withelm Leibnitz
Let Y (~1)"*! upbe an Alternating Series such that
n=1
i
B w>0Vi=123, ...
(i) u,; 2 uy, 2 Uy 2 e i.e.(up) is a monotonically

decreasing sequence

(iii) limu = 0.

oo

Then the series Y, (-1) "*! up is convergent.
n=1 .

PROOF : Note that we are assuming that the odd terms of thc alternating series are
positive and the even terms are negative.
Let (sp) be the sequence associated with the series

Uy —Up+ Uy Uy o
Let us first consider the partial sums with odd index namely those ending in positive terms
i.e.
S1s 53, 885 rervrverrrenens
Then, we have
s;i=u; >0
$3 = U} — Uy + U3 = §; —(Up —Ui3) < §; since u; 2 u.
Similarly, we have
S5 =Uj; — Uy + U3 —lUy + Us
= 8s3+Us—Ug
$s =83 ug — ug <0
ji.e ss Ss3 S8,
In general,

Sone1 ™ S2p-1 T (uln - u2n+l) s Son-t.
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Thus 8,283 2 .00 2 83012 $2p41 Zeccricnnnns

This shows that (s,,_, ) is a monotonic decreasing sequence. Also
8201 = (Ug =U) + (U3 =Uy ) Fuuverrtr (Ugng =Uz03) + Uge 2 0.

This shows that (s, ;) is bounded below with 0 as the lower bound.

Therefore (s,,.,) is a monotonic decreasing sequence which is bounded below. Hence it is
convergent.

Suppose (82,..1) vonverges to-a limit s,

Then lim g, , u s,

In the same way, you can compute for the sequence of even partial sums and show that
$20¢2 2 82

i.e. the sequence (s,,) ot even partial sums is monotonically increasing.

Also

Szﬂ - ul - l(U2-u3) + (04-95) + ... e + ( 112"_2—“2"" ) + UZ"]

Butu, SyVi=2373 ...
Therefore u,-u, 20

u,-uy 20
Hence
83, = U, — some positive quantity (number) which, shows that
$,<u, V.
Thus (s,,) is bounded above.

Hence (s,,) is convergent. Suppose it converges 1o a limit t. Then
lim

n-pe

1 3

$3, = L.
Since uy, = sy, —~ 8541, We have, therefore, by the condition (ii)
21 20 20-1
lim y, = lim -~ lim '
0= fopee J20 = 700 S20 M‘,Szn_ﬁs‘t-
Thuss = t.

Thus both (s, ) and (s, ;) converge to the same limit s.
Hence

lim g, =
n_’”SQn S.

Finally, we shall show that the sequence ( 5, ) converges to s. Let € > 0 be given. Since the
sequence (sz, ) converges to s, therefore there exists a positive integer m; such that

l szn—s| <eV (2n)>m

Similarly, given € > 0, there exists a positive integer m, such that

| $2p-1 -S| <&V (2n~1)>m,

Thus it follows that

|s,,~s| <€V n>max. (my, my)

This implies that.( s, ) converges to s or

lim g =
nosee 0 =5



Therefore it follows that the alternating series
Uy ~ Uz 4+ Uy =Ug + cneniiinnnnn,

converges to the limit s, which, in fact, 18 the sum of the series.

EXERCISE 1

Prove Theorem 1 for the Alternating Series of the form

3. (~1)" u, [that is, where the odd terms are negative and even terms are
n=l ’

positive].

From Unit 6, you know that the condition i u, = 0 is necessary for the convergence of

every infinite series 3 u,. But according to Leibnitz Test, if the given infinite series is an
]

alternating series decreasing in absolute values, then the condition Al_ﬂ u, = 0 is also

sufficient for the convergence. Let us now study some examples and exercises:

EXAMPLE 1: Test the convergence of the Alternating Series
bl P +1
glenmt 1111

2 + 3 4 + 5 csscssencan

n=l
SOLUTION: This series is known as the Alternating Harmonic Series.
In this series the conditions of the Leibnitz Test are satisfied.
Here (i) eachuy,>0i=1,2,.....

(i) u;>u; >uy> U

iipy lim = limlz
(iii) o, Un P U.

Hence, the series is convergent. The limit or sumn of this series is well-known and is equal to
log 2.

(See Example 6 in this section). ) P

EXERCISE 2

< ~1)n+1 n
Show that El. 6S)) Ine2

diverges.

EXAMPLE 2: Test the convergence of the Alternating Series
1 L L 1 .
3-324+33-34 435

L ! ‘
SOLUTION: Here since 3 > 32> 33>.......... , therefore first aud second conditions of the
Leibnitz test are satisfied. \

. . 1 .
However,-lim y = lim 3n = | % 0. (Recall from Unit 6).
n—yeo Ny

Since the third condition of the Leibnitz test is not satisified, therefore the given series is
divergent. ‘

EXERCISE 3

For what values of p does the series

11 .1 1
ThRED + P +  ceerecressrcens converge?

Now consider once again the Harmonic Series

Generul Serles
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You know that this series diverges. But the Alternating Harmonic Series (as discussed in
Exampie 1) namely

- 1 . 1
S LS
E,‘(l)*n 1 5+

W |-
-

converges. Thus, we have a series that converges only because some of its terms are
negative. If all the negative terms are replaced by the corresponding positive terms, then the
convergence is demolished. To study this phenomenon in a2 more general way, we introduce
the notions of absolute convergence and conditional convergence in the next section.

73 ABSOLUTE AND CONDITIONAL
CONVERGENCE

Consider the following two series:

1
- —

. 1
iy 1- 8% 16

and
i) 1-

By the Leibnitz Test, both series converge.

Again consider the two series

]
i) 1+ -+

. L 11 :
iv) l~v-2+3+4+5 .................

obtained from (i) and (ii) by replacing each term by its positive value.
The series (iii) converges, while the series (iv) diverges.

This leads us to divide the convergent series into two classes, namely, the absolutely
convergent series and the conditionally convergent series, which we define as follows:

DEFINITION 2: et 3 u, be an infinite series of real numbers.
n=1

i) If Y lun] converges, then we say -that the series Y u_, converges
n=1 ’ n=}
absolutely.

u“f diverges, we szfy that nz='|u" converges

ii) If 3 u, converges but Y
n=1 n=1
conditionally.

Thus the series (i) converges absolutely, waile series (ii) converges conditionally,
Note that in (ii) we have defined z u, to be conditionally convergent if Yy u;‘ is convergent
=l =t
but ¥ f uni is divergent. In (i) we have defined Y. u_ to be absolutely convergent if p
1=l n=l o=l

I unl is convergent. but we have not said anything about the behaviour of 3 u, itself.
n=)

el N RY X3 ¢
EXAMPLE 3: (i) the series Z('—lzz_ is absolutely convergent.
: n:‘




(ii) The series General Series

z(iL__

(Alternating Harmonic Series)
n=l .

and
i (-1 2 ns+l
n=] n
are conditionally convergent.

The following theorem provides that we can produce examples of absolutely convergent
series by changing algebraic signs of some or all of the terms of a convergent series of
positive terms.

: THEOREM 2: If an infinite series is absolutely convergent, then it is
convergent.

PROOF: Let X u, be an absolutely convergent series i.e. Y Iunl is convergent. Then we
have to prove that ¥ u, is convergent.

Let ('s,) be the sequence of partial sums of ¥, u,,. Then

It is enough to show that (s, ) is a Cauchy sequence.

Let (t;) be the sequence associated with the series Y. i u, ‘ Since X, i u, 1 is convergent,

therefore (t,) is also convergent. Thus (1,) is a Cauchy sequence. In other words, for an
€ > 0, there exists a positive integer m such that

itn -ty ‘<eforn>m,k>m.

Suppose n > k. Then

!S" — Sk | = luk+| + U+l +u,

< |uk+,| +| ukﬂi F o + 'u,,l (Recall from Unit 3).

Which sirows that (s, ) is a Cauchy sequence. This completes the proof of the theorem.

Thus every absolutely convergent series is convergent. The converse, however is not true.
That is to say that if a series is convergent, then it may not be absolulely convergent. Can
you give an example ? Try it.

EXAMPLE 4: Test the absolute and conditional convergencei of the series

e (_1)n+l
) n2=‘l 2n+1
s
, SOLUTION: Here ¥ 3 = T ori
Letvn=[ll~ forn=1,23.......

Then the series Z vy —Z — is divergent.

n=l|
Also,
u
lim L2 pim—n__ L
NV e 2n+] 2

Hence by comparison test, it follows that
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+

| u,.i is divergent, Thus

iMs

Z 2m is not absolutely convergent.

S S
However, since It > 3hl Yn

lim._l__._. thni < (_-_12‘.‘_‘ : :
and AT T 0, therefore by Leibnitz test, E‘ el 8 convergent. In other words, it

is a case of conditional convergence.

Now try the following exercises.

EXERCISE 4

1) Test the convergence and’ absolute convergence of the series

-1 ,.L 1

1) Determine the values of p for which the series

1 1 1 1

1 —;6 + 3p - 4, +§; serrasesresssne

converges conditionally.

All the tests of convergence of infinite series discussed in Unit 6 for series of positive terms
can be used to decide absolute convergence of general series.

COBI‘IX

EXAMPLE §: Test the series Z »x e R, for convergence.

SOLUTION: Here u, =20

Since lcos n x| € 1, we obtain || 5515

Butz‘ # converges, (Recall from Unit 6, why it s0?)

o

This means that the series 2, u, is absolutely convergent.
=l

CcOs ﬂ

Henge, the series Z u, ie. Z is convergent.

-
cos n x
Therefore Y,

n=1

converges absolutely for all x € R.

EXERCISE §

i) Let ) u, be absolutely convergent and (s;) be a bounded sequence.
nsl

Prove that 2 s, u, is also absolutely convergent.
n=1

i1) Can a series of positive terms be conditionally convergent?

74 REARRANGEMENT OF SERIES

You know that to find the sum of a finite number of real numbers, the order in which they
are added does not matter, But this is not the case when you have to find the sum of infinite
series of numbers. The order in which the terms occur in an infinite series may affect its
nature and the sum i.e. the convergence of the series.




In this section, we shall discuss this aspect of the infinite series. This is, also, sometimes
referred to as the Rearrangement Convergence, where every rearrangement of the series
converges. We first have the following definition:

DEFINITION 3: Let Y u, be an infinite series. Let = be a one-to-one
n=1

oo

function from N onto N. Then Y un(n) is said to be a rearrangement of

n=1
u,.
n=1
For example 1 + Lol + L, L 1*+ ............ is a rearrangement of the series
3 2 5 7 4
ol L
23Ty e

We state two results (without proof) which will indicate the effect on the convergence of a
series due to the order in which the terms occur in the series.

I If 3 u, is an absolutely convergent series converging to s, then

every rearrangemen,t of Z u, also converges to s.
' n=l

Thus, the order in which the terms occur is immaterial in absolutely convergent series.

What of conditionally convergent series? To answer this question, we state the
following result:

II Let Y u, be a conditionally convergent series. Given any o € R,
n=l

there is a rearrangement of the series 3 u, which converges to a,
n=1

Let us give an illustration of 4 Rearrangement and show how the sum or the convergence is
altered:
EXAMPLE 6: Show that

111 =
1—2+3—4+ ............ = log 2.

Evaluate the sum of the rearranged series
1 1 1 1 1

H

1 + -3— - i- + g + 5 —_Z +  criessececnens
SOLUTION: Set a number r, as’
r,=1 + L + L + L + + - -1
0 = 5 3 g T — logn

{t is a well-known result that the sequence (r,) converges to a limit r. Let us, therefore,
assume that .

lim ; =
Jm o=
Let ( s, ) denote the sequence of the partial sum of the series
1 i 1

I - T - +

2 3 4

and (1,,) denote the sequence of the partial sum of the rearrangement of the series namely

R R S B N SN
3 2 5 7 e 4 ............
Then, we have
1 — -l- + -]— + _1_ __!-
o2n -_— 2 3 ........................ 2n_1 2n
L 1 1.1 1
_(1+ F o +2n)—2 2+4+ ............ 2n]

General Series

63



Sequences and Series 1 1 1 L
(1+2+ .......... +2n)—[1+2+ ............ + 5

= [ryn + log 2n] - [r, + log n]
=[ryn ~r,] + log 2n - log n
2n
=[120 - 1] + log 22
=[rzn - 1,] + log 2

Since (r,,) is convergent, therefore (r,) is a Cauchy Sequenc::. Consequently, there exists
me N such that ’rzn -1, ‘ < e for n2 m where £>0 is any number.

This implies that

lim =

oM sy, = log 2.

Now, it is easy to show that
Iim ¢ =

.n}% S, = log 2.

For thg sequence t ., we have
: _(1 . Lo 1_) . (1+1__1_)+ P G P U
in < 3 2 577 4) 7 4n-3 4n-1 2n

RN CLE TN ) Iy (L S
5 7 4) ¢ 4n-3  4n-|  2n
L
3

H
~~
+

Wi
I
o=

| +_1_
4n-1 4n

]
o
+
[ Yo
+

Thus,

3, = (14 + logdn) —% (12, + log2n) —% (ry % log n)
= (r4n - lirz,, - lirn)ﬁ- %log 2

Again since (r,) is a Cauchy Sequencé, therefore,
lim t3n=% log 2.

+—'L“‘ 1 puli
dn+1 " 4n+3

1 .
Since t, ., =t + dnsl and t; ., =t .

Therefore

R—poo

lim t,.:% log 2.

This shows that the arrangement of a conditional convergent series may
change its sum.

EXERCISE 6

Suppose ) u, is a series of positive terms diverging to +c. Show that
=1

every rearrangement of Y u, also diverges to + oo,
n=1

7.5 SUMMARY

This unit has been mainly concerned with series of arbitrary real numbers. A very important
example of such a series is an Alternating Series. To test convergence of an Alternating
64 Series, we apply the most useful test known as Leibnitz Test, which we have discussed in




Section 7.2. In Section 7.3, we dealt with another category, the series of arbitrary terms, the
one which does not follow any pattern of its terms. Such series may be Absolutely
Convergent Series and conditionally convergent series. Absolutely Convergent Series
are stable under any rearrangement, in the sense, that no rearrangement can disturb the
convergence or sum of an absolutely convergent series. On the other hand, you can make a
conditionally convergent series behave as you wish by a suitable rearrangement which we
defined and demonstrated in Section 7.4.

Precisely speaking, in this unit we have studied three notions related to the infinite series of
arbitrary terms namely

i)  the convergence of the Alternating Series
ii) the absolute and conditional convergence of the series

iii) the rearrangement convergence, where every rearrangement of the series converge.

76 ANSWERS/HINTS/SOLUTIONS

E 1) 'The alternating series is —
U + Uy Uy F U

Where u,, uy, Uy, cooveenninnnas are positive numbers satisfying
U2 Uy 2 Uy 2 s i

and
lim y =0,
N—boo

Let ( t, ) be the sequence of the partial sums of this series. Also, let ( Sy ) be the
sequence of the partial sums of the series

Uy = Uy + U3~ U+ e
It is obvious that t, = —s, for each n.

By Theorem 1, (s, ) converges. Hence (t, ) = (-8, ) also converges. '

= (11 D

E2) Hereu, =)™ 2
llm lim - _1,
Therefomlun| 342 +2 - Also Iu,.l nl Ine2 =3

Since lim y_ is not equal 0, therefore the series is divergent.
N—joo

E3) Case (i) Letp> 0. Then

ﬁ>—— >§> ................
and

limL_g

n—o NP

Hence the series converges.

Case (i1) Let p = 0. Then the series is
I=1+1-1+

But 'l,l_fg u, = '111_'2 (-=1)" does not exist.
Therefore, the series diverges.

Case (iii) Let p < 0. Again

lim u, = lim ()i

n—co n—e P

does not exist. Hence the scries diverges.

General Series
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REVIEW

In this Block, you have studied the notion of a sequence and its convergence. Also, you have
been introduced to the infinite series and their convergence. The infinite series have been
classified into two types of series namely positives term series i.e. the series with positive
terms only and the series with a mix of both positive as well as negative terms.
Accordingly, various tests for the convergence of the corresponding series have been
discussed. You should now attempt the following self-test questions to ascertain whether or
not you have achieved the main objectives of learning the material in this block. You may
compare your solutions/ answers with the ones given at the end.

1 Given below are the sequences whose nth term is given. Write the
range of each of these sequences and determine which of these are
bounded and unbounded.

(i) (1)
1
(i) n°

(iv) cos 237-‘

1
W (1+2)

2 For each of the following sequences determine whether it converges or
not. If it converges, then give its limit.

(i) s, =75 ;

(iii) s, =2 :
(iv) s, =3+ Iy

SR ).

V) s;= n
3 Determine which of the following sequences are monotonic ?

. 3n+2
@ 2n-5

n? + 1

.....

V) n+ e

KFind the sum of the first n terms of the following series and hence
decide whether each series converges or dlverges. if the series
converges, find its sum :

1) l+2+_‘l +
) ( 3tg t7 F o

vy log 2 + log 3

+ lo 4 +
> B3 o

" General Seri
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In this Block, you have studied the notion of a sequence and its convergence. Also, you have
been introduced to the infinite series and their convergence. The infinite series have been
classified into two types of series namely positives term series i.e. the series with positive
terms only and the series with a mix of both positive as well as negative terms.
Accordingly, various tests for the convergence of the corresponding series have been
discussed. You should now attempt the following self-test questions to ascertain whether or
not you have achieved the main objectives of learning the material in this block. You may
compare your solutions/ answers with the ones given at the end.

1 Given below are the sequences whose nth term is given. Write the
range of each of these sequences and determine which of these are
bounded and unbounded.

. 1
O 2
(1) 1y
1
(iii) n"

. nr
(iv) cos —

3

Lo
W A+

2  For each of the following sequences determine whether it converges or
not. If it converges, then give its limit.

i) s, =75
(iii) s, =2 ‘
(v) s, =3+ (1)

W 5=

3 Determine which of the following sequences are monotonic ?

3n+2
2n-5

nz +1

.....

: 1
siv) 1+ 2

V) n+(-nH"

Find the sum of the first n terms of the following series and hence
decide whether each series converges or diverges. iIf the series
converges, find its sum : ' '
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Sequences and Serles 1 2
T AT AT

3
™ 32 *56 *78

5 Test the convergence of the following series by using various tests of

convergence:

O EHT

@) 2"n.lﬁl“

i) = 2

(iv) 2—% +% —% S

6 Discuss the convergence of the following series :

i 3 1 ) > . Ln
(l) nz=] n(n + 1) (n + 2) (“) ngl sSin ( > )

(i) Y L tan %

n=1Yn

7 Test each of the following series for convergence :

. nd 1
i ng' u,. where u_ = 57+ 10
(i) i l
=1 n?logn
- \/n + 1 —‘/;
(i) Y >
n=1 n

l‘ln+l

8 Give an example of a series Y u, of positive terms such that <1
3

n=1
for each n, but the series diverges. Why does your example not
contradict the Ratio Test ?

9 Show that, for any p > 0, the series Y converges.

p nP¥l4 g

10 Discuss the convergence of the series } n e by using Cauchy’s
. n=1

Integral Test.

ANSWERS/HINTS 1
1 @ {! % R % ........ } unbounded ‘

(ii) {—l, 1} bounded

(i) {1,V2, 33,44} unbounded

R}
(iv) X 2,—1,1}bounded

™ 12.(372)%2, 43, (5/4)%, .......... ) unbounded
2 (i) convergestol

(i) converges to 1

(iii) convergesto 0

(iv) does not converge

68 (v) convergesto0




3 (i) decreasing forn>3 ' General Series
(i) increasing
(iii) increasing
(iv) decreasing

(v) not monotonic
. 2
4 (1) 1-( 5 )™; converges to 1

(i) sy, =2n,s,, =-2n; infinite oscillation

(i) 1 - S ; converges to 1

(iv) log (n+ 1) ; diverges

n
2n+1)Y(2n +2)

1
, converges to 4

)
5 (i) use Comparison Test

(ii) use Cauchy’s Root Test

(iii) use D’Alembert’s Ratio Test

(iv) use D’Alembert’s Ratio Test

(v) divergent

6 (i) convergent

.. . . . nn .
(ii) divergentaslim sin 2 does not exist.
n-—»oce

1 .
(iii) convergent. Take v, = 7] and use the comparison test.

7 @ S"il 0 < gln— and ¥ ? =Y ( %)" which is a Geometric series with common ratio

1 .. H
§ < 1. Hence, the series is convergent.

——— — > —— i
(ll) Since 2) < ) forn=> 3, therefore 2 2 1S convergent by comparison

test.

(iii) rationalise and then use Comparison Test. The series is convergent.

8 LetZu,I:Z%,then
U
S L A <1V n.
u n+1

. 1. .
But the series %, o s divergent.

This does not contradict the Ratio Test because when we take the limits as n — oo, we
find that

9  Use Integral Test.

10 Convergent.
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BLOCK 3 LIMIT AND CONTINUITY

PREVIEW

In Block 1, you were introduced to the system of real numbers and the limit point
of a set of real numbers. Also, you were introduced to some real functions in this
Block. In Block 2, we considered a special function called the sequence and began

the study of limiting processes with the notion of convergence of infinite sequences
and series.

In this block, we shall study the limit concept as applied to arbitrary rea)
functions. The limit of a function, in general, is au abstract notion in the sense
that the function never attains its value -at a point but tries to approach a value
called the limiting value. This limiting value of the function f(x) serves as an
approximate value of the function f(x) for values of x near a (if the limit is
obtained as x tends to a) or for large values of x (if the limit is obtained as x tends
to infinity). In short, the precise notion of a limit covers the vague notions of
approximate values.

The limit concept is fundamental to all further ideas in Real Analysis. Therefore,
we shall develop it in this block and then use it to discuss the differentiability of
functions in Block 4. This block contains three units. In the first unit of this block
i.e. in Unit 8, we have reviewed the notion of the limit of a function to which you
are already familiar from your study of Calculus. We have tried to illustrate
cértain basic facts about limits through a number of examples. We have also
attempted to help you to appreciate the rigorous notion of epsilon-delta defimition
of the limit of a function and its geometrical meaning. Closely related :c the limit
of a function is the notion of sequential limits which also we shall introduce in this
Unit. Finally, we discuss the algebra of limits.

In Unit 9, we introduce the notion of the continuity of a function at a point and
extend it to the continuity of a function on an interval or on a non-empty set of
real numbers. Also, we discuss some continuous and discontinuous functions as
well as the algebra of continuous functions. £

We use the results of Unit 9 to discuss the properties of continuous functions in
Unit 10. Also, in Unit 10, we shall introduce the notion of uniform continuity of a
function. ’

Unit 8
Limit

Unit 9 Unit 10




NOTATIONS AND SYMBOLS

is equal to

is greater than

is less than

is not less than

is not greater than

is a member of (belongs to)

is not a member of (does not belong to)
is a subset of (is contained in)

is not a subset of (is not contained in)
is a superset

EEXS9AD IAMTE > DI CMOHIWR

EE§I+.m<30ﬂU&3CUQnﬁMVAAV1n

Union -
intersection
empty set
implies
implied by
if and only if
equivalence relation
for all (2)
there exists
multiplication
addition
subtraction
supremum
infimum
minimum
max maximum
° composition
f’ derivative of f
f! inverse of a function f
exp exponential
log logarithm
In natural logarithm £
sgn signum
[x] greatest integer not exceeding x
Ix| absolute value of x or Modulus of x
R’ set of positive real numbers
R set of real numbers
I Set of irrational numbers
Q set of rational numbers
A set of integers
N set of natural numbers
F field
C set of complex numbers v
{a, b] closed interval
la, b open interval - ‘ :
]a, b] semi-open interval (open at left)—semi-closed interval
[a, b semi-open interval (open at right)—semi-closed interval
+ o infinity '
— o minus ihfinity
) sum
o0
E__;" infinite series
. (3) sequence
s complement of S
s’ derived set of S
s closure of S

is not equal to . Greek Alphabets

Alpha
Beta
Gama
Delta
Epsilon
Zeta

Eta
Theta
Iota
Lambda
Mu

Nu

exi

Pi
(capital Pi)
Rho
Sigma (capital Sigma)
Tou

Phi

Chi

Psi
Omega



UNIT 8 LIMIT OF A FUNCTION

STRUCTURE

8.1 Introduction
Objectives
8.2 Notion of Limit
Finite Limits
Infinite Limits
8.3 Sequential Limits
8.4 Algebra of Limits
8.5 Summary
8.6 Answers/Hints/Solutions

8.1 INTRODUCTION

In Unit 5, we dealt with sequences and their limits. As you know, sequences are
functions whose domain is the set of natural numbers. In this unit, we discuss the
limiting process for the real functions with domains as subsets of the set R of real
numbers and range also a subset of R. What is the precise meaning for the
intuitive idea of the values f(x) of a function f tending to or approaching a number
A as x approaches the number a? The search for an answer to this question shall
enable you to understand the concept of the limit which you have used in calculus.
We shall give a rigorous meaning to the intuitive idea of the limit of a function ir
Section 8.2. The relation between the limit of a function and the limit of a
sequence is established in Section 8.3. The effect of algebraic operations of
addition, subtraction, multiplication and division on the limits of functions is
examined in Section 8.4. It will then be extended to study the effect of these
dlgebraic operations on the continuity of a function in Unit 9.

L

Objectives

Thus after studying this unit, you should be able to

® define limit of a function at a point and find its value

® know sequential approach to limit of a function

| .. . . .
@ find the limit of sum, difference, product and quotient of functions.

8.2 NOTION OF LIMIT

The intuitive idea of limit was used both by Newton and Leibnitz in their
independent invention of Differential Calculus around 1675. Later this notion of
limit was also developed by D’Alembert. ‘“When the successive values attributed to
a variable approach indefinitely a fixed value so as to end by differing from it by
ils little as one wishes, this last is called the limit of all the others.”’

Consider a simple example in which a function f is defined as

f(x) = 2x + 3, Vx ER, x # 1.
bive x the values which are near to 1 in the following way:
%When x = 1.5, 1.4, 1.3, 1.2, 1.1, 1.01, 1.001
- fx) =6, 5.8, 5.6, 5.4, 5.2, 5.02, 5.002
When x = .5, .6, .7, .8, .9, .99, .999

f(x) = 4, 4.2, 4.4, 4.6, 4.8, 4.98, 4.998




You can form a table for these values as follows:

X |s{6]7 [ 8|9 |99 |99 [ro0t [101 | L1 [12]13] 14 1S
f(x) |4 |42|44|46|4s|49s|499s|5002 |5.oz|5.2|5.4| s.6|5.8| 6

You see that as the values of x approach 1, the values of f(x) approach 5. This is
expressed by saying that limit of f(x) is 5 as x approaches 1. You may note that
when we consider the limit of f(x) as x approaches 1, we do not consider the value
of f(x)atx = 1.

Thus, in general, we can say as follows:
Let f be a real function defined in a neighbourhood of a point x = a except
possibly at a. Suppose that as x approaches a, the values taken by f approach
more and more closely a value A. In other words, suppose that the numerical
difference between A and the values taken by f can be made as small as we please
by taking values of x sufficiently close to a. Then we say that f tends to the limit
A as x tends to a. We write
fx) ~ Aasx — a

or

lm f(x) =

X—a

This intuitive idea of the limit of a function can be expressed mathematically as
formulated by the German mathematician Karl Weierstrass in the late 18th
Century. Thus, we have the following definition:

DEFINITION 1 : Limit of a Function

Let a function f be defined in a neighbourhood of a point ‘a’ except possibly at
‘a’. The function f is said to tend to or approach a number A as x tends to or
approaches a pumber ‘a’ if given a number & > 0, there exists a number § > 0
such that

f(x) - A] < & for0< Ix - a] < é.
We write it as
lim f(x) =

X—a

You may note that
If(x) - A] < & for0 < |x-a|] <.

can be equivalently written as (see Unit 3) ‘
fx) €EJA-8, A + & [forx €]a—6 a+ dé[andx # a.

This is shown geometrically in Fig. 1. The mequallty 0 < |x-a| <é determmes
the interval ] a - 8, a + & [ minus the pomt a’ along the X-axis and the mequahty
|f(x) - A] < & determines the interval ] A - §, A + & [ along the Y-axis.

Y
The horizontal ¢ band
from A-gto A+e
ATE ’ The vertical 8 band from
y=A * ) a-oto a+d
A-¢
5 Px
a-é a+d

X=a
EXAMPLE 1 : Let a function f: R — R be defined as
f = x3, ¥x €ER.



Find its limit when x — 2. , Limit of a Fuaction

SOLUTION : By intuition, it follows that
Lim f(x) = Lim x? = 4.

x — 2 X -2

Let us verify this with the help of & - § definition. In other words, we have to
show that for a given & > 0, there exists a § > 0 such that

0< |x-2] <& = |f(x) -4]E&.

Suppose that an & > 0 is fixed. Then consider the quantity |f(x) - 4.

If(x) - 4] = [x*-4] = |(x-2) (x + 2)|
Note that the term |x - 2| is exactly the same that appears in the $-inequality in
ﬁle definition. Therefore this term should be less than 8. In other words,

x-2] <&
22-5<x<2+5b
= x€]2-6,2+51[

We restrict 5 to a value 2 so that x lies in the interval ] 2-6,2 + 6 [ C 10, 4.
Accordingly, then |x + 2| < 6. Thus, if § < 2, then

x-2l<2=20<|x+2] <6
and further that

[x-2] <éd=2=|x+2]|x-2]<6|x-2] <65

If & is small then so is 6 8. In fact it can be made less than £ by choosing §
suitably.
Let us, therefore, select 8 such that § = min. (2, £/6). Then

0<|x-2] <8= |fx) -4 <6|x-2| <6.6=6.86 =8,

This completes the solution.

Note that the first step is to manipulate the term-|f(x) - A| by using algebra. The
second step is to use a suitable strategy to manipulate {f(x) - A| into the,form

|x - a] (trash)

where the ‘trash’ is some expression which has the property that it is bounded
provided that & is sufficiently small. Why we use the term ‘trash’ for the
expression as a multiplc of |x - a|? The reason is that once we know that it is
bounded, we can replace it by a number and forget about it.

In example 1, the number 6 arose by virtue of this ‘trash’. If you take § < 3
(instead of & < 2), you can still show that 6 will be replaced by 7. In that case
you can set 6 as :

é = min. (3, £/7)

and the proof will be complete. Thus, there is nothing special about 6 The only
thing is that such a number (whether 6 or 7) has to be evaluated by the restriction
placed on 4.

jl-‘inally, note that in general, § will depend upon &.
tNow you should be able to solve the following exercises:

[
L
v

EXERCISE 1

ll"or a function f: R — R defined by f(x) = x?, find its limit when x tends to1 by
the § - & spproach.

EXERCISE 2

2 -
Show that Lim "3—"’;1—8 = 4 using the & - & definition.
x -2 X - K




* Limit and Continuity

-] S,

N
X

Fig. 2(b)

In Unit 5, we proved that a convergent sequence cannot have more than one limit.
In the same way, a function cannot have more than one limit at a single point of
its domain. We prove it in the following theorem;

THEOREM 1 : If lim f(x) = A, lim f(x) = B, then A = B.
PROOF : In short, we have to show that if lim f(x) has two values say A and B,
X —a
then A = B. Since lim f(x) = A, lim f(x) = B, given a number & > 0, there
X -~ a X —-a

exists numbers §;, 8, > 0 such that

If(x) - A] < &/2 whenever 0 < Ix - al < §
and

[f(x) - B] < &/2 whenever 0 < |x - al < é,.
If we take & equal to minimum of 8, and §,, then we have

If(x) - A| < &/2 and [f(x) - B| < &/2 whenever 0 < |x - al < 4.
Choose an x, such that 0 < |x, - a| < 6. Then

|A-B| = |A - f(x0) + f(x) - B| < |A - f(xo)] + |f(xp) - B|

< &/2 + &/2 = &.

§ is arbitrary while A and B are fixed. Hence |A - BJ is less than every positive
number & which implies that |A - B| = 0 and hence A = B. (For otherwise, if

A#BthenA-B =C %0 (say). We can choose § < |C] which will be a
contradiction to the fact that |A - B| < & for every & > 0.)

In the example considered before defining limit of a function, we allowed x to
assume values both greater and smaller than 1. If we consider values of x greater
than 1 that is on the right of 1, we see that values of f(x) approaches 5. We say
that f(x) tends to 5 as x tends to 1 from the right. Similarly you see that values of
f(x) approach 5 as x tends to 1 from the left i.e. through values smaller than 1.
This leads us to define right hand and left hand limits as under :

DEFINITION 2 : Right hand limits and Left hand limits
Let a function f be defined in a neighboushood of a point ‘a’ ecept possibly at
‘a’. It is said to tend to a number A as x tends to a number ‘a’ from the right or
through values greater than ‘a’ if given a number & > 0, there exists a number
& > 0 such that

[f(x) - Al < & fora < x < a + 6.
We write. it as

lim f(x) = A or lim f(x) = Aorf(a+) = A.

x—a+ x—a+0 '
See figure 2(a) . '
The function f is said to tend to a number A as x tends to ‘a’ from the left or
through values smaller than ‘a’ if given a number & > 0, there exists a number
& > 0 such that "

[f(x) - A] < §fora-6 < x < a
We write it as’
lim f(x) = Aor lim f(x) = A or fa-) = A.

X—a- x—a-0

See figure 2(b). -

Since the definition of limit of a function employs only values of x different from
‘a’ it is totally immaterial what the value of the function is at x = a or whether f
is defined at x = a at all. Also jt is obvious that lim f(x) = A'if and only if
fla+) = A, f(a-) = A. *x—a

This we prove in the next theorem. First we consider the following example to
illustrate it.

EXAMPLE 2 : Find the limit of the function f defined by
2
+ 3x
f(x) = r+x forx = 0
2x
when x — (

SOLUTION : The given function is not defined at x = 0 since f(0) =,
which is meaningless.

Slo



X+ 3

If x # 0, then f(x) = . Therefore

Right Hand Limit = lim f(x)
x—~0+0

lim ©+h+3
h~0
3/72.

lim f(x)
x—-0-0

th >0

Left Hand Limit

lim fo) = O-W *+3
h-0 2

= 3/2.

th >0

Since both the right hand and left hand limits exist and are equal,
lim f(x) = 3/2.

x—0

You can similarly solve the following exercise.

EXERCISE 3
Find the limit of the function f defined as

2
fx) = Lsf—x, x # 0 when x tends to 0.
X

We, now, discuss the theorem concerning the existence of limit and that of right
and the left hand limits. . :

THEOREM 2 : Let. f be a real function. Then
lim f(x) = Aif and only if lim f(x) and lim f(x)

X—a X—a+ X—8a-

both exist and are equal to A.

~

Xx—a+

PROOF : If lim f(x) = A, then corresponding to any & > 0, there{exist.s a

8 > 0 such that . |
|f(x) - A] < & whenever 0 < |x-a] < &

ie. |f(x) - A] < Ewhenevera-d<x<a+ 6, x #a

This implies that |f(x) - A|] < & whenever a'- d<x<a

and |f(x) - A| < & whenever a < x < a + 6.

Hence both the left hand and right hand limits exist and are equal to A.
Conversely, if f(a+) and f(a-) exist and are equal to A say, then corresponding to
€ > 0, there exist positive numbers 8, and §, such that

|f(x) - A] < & whenever a < x < a + §;
and
|f(x) - A] < & whenever a - 8, < x < a.
Let & be the minimum of 8, and §,. Then
{f(x) ~ Al < S whenevera-d < x<a+6,x #a
ie. |fx)-A| <Eif0< |x-a] <&
which proves that

lim f(x) exists and lim f(x) = A.
X—a X—a

Limit of s Function
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EXAMPLE 3': Consider the function f defined by

x:-1

f(x) = l,xER,x;él

x_
Find its limit as x — 1.

SOLUTION : Note that f(x) is not defined-at x = 1. (Why ?).

x2-1

For any x # 1, f(x) = " =x + 1.
x_

lim f(x) = lm (x + 1) =2

x—1+ x—1+

lim f(x) = lm (x + 1) =2

x—1- x—-1-

Since lim f(x) = lim f(x), by Theorem 2, lim f(x) = 2
x—1

x—1+ x—1-

lim f(x) = 2 can be seen by §-8 definition as follows :

x—1

Corresponding to any number & > 0, we can choose § = & itself.
Then, it is clear that

O0<ix-1} <8=§&=
x2-1

x-1

1fx) - 2] = | “2]=|x+1-2=|x-1] <&,

From Theorem 2, it follows that f(1+) and f(1-) also exist and are both equal to
2.

EXAMPLE 4 : Let f: R — R be defined as

[x}, x # 0

f(x) ={
. 3, x=0.

Find its limit when x — 0.

SOLUTION : You are familiar with the gréph of f as given in Unit 4. It is easy to
see that lxl—rﬂ) f(x) = 0 = f(0+) = f(0-). The fact that f(0) = 3 has ncither any

bearing on the existence of the limit of f(x) as x tends to 0 nor on the value of the
lim f(x).

x—0

Now try the following exercise:

EXERCISE 4
Find, if possible, the limit of the following functions.

' -2
0 fx) = L I,x¢2
-2
when x tends to 2.
el/x_l
i) (@ = ——,x #0
@ f(x) et

_ when x tends to 0.

EXAMPLE 5 : Define { on the whole of the real line as follows:

1 fx>0
f(x) = 0 ifx=20

-1 ifx<O.



Find its limit when x tends to 0. . Limit of a Function

SOLUTION : Since f(x) = 1 for all x > 0,
f0+) = lim f(x) = + 1.

x—~0+
Similarly f (0-) = -1.
Since lim f(x) # lim f(x),

‘ X—-1+ x—1-

1im f(x) does not exist.

x—-0

iWe give another proof using & - & definition.

If lim f(x) = A, for a given & > 0, there must exist some § > 0,
x—0

:such that |f(x) - A} < &.

Choose, X; > 8, x, < 0 such that |x;| < é and |x;] < 4. Then

2 = |Jf(x) - fx| = [f(x)) - Al+|A-flx)| <28

for every & which is clearly impossible if & < 1. Non-existence of lim f(x) also
‘follows from Theorem 2, since f (0+) # £(0-). x—0

“The above example shows clearly that the existence of both f(a+) and f(a-) alone
is not sufficient for the existence of lim f(x).

x—-0
They should also be equal for lim f(x) to exist.

X —-a

1
Now consider, the function f defined by f(x) = — for x # 0.
X

No graph of f loaks as shown in the Figure 3. You know that it is a rectangular
hyperbola. Here none of the lim f(x) and lim f(x) exists. Hence fim f(x) does
- not exist. x=1+ x=l- x~0
' Y

Fig. 3

This can be easily seen from the fact that 1/x becomes very large numerically as x

approaches 0 either from the left or from the right. If x is positive and takes up

. ‘larger and larger values, then value of 1/x i.e. f(x) is positive and becomes smaller

. and smaller. This is expressed by saying that f(x) approaches 0 as x tends to oo.

Similarly if x is negative and numerically takes up larger and larger values, the

values of f(x) is negative and numerically becomes smaller and smaller and we say

that f(x) approaches 0 as x tends to -oo. These two observations are related to the

notion of the limit of a function at infinity. 11
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Let us now discuss the behaviour of a function f when x tends to .

Let a function f be defined for all values of x greater than a fixed number c. That

.is to say that f is defined for all sufficiently large values of x. Suppose that as x

increases indefinitly, f(x) takes a succession of values which approach more and
more closely a value A. Further suppose that the numerical difference between A
and the values f(x) taken by the function can be made as small as we please by
taking values of x sufficiently large. Then we say f tends to"the limit A as x tends
to infinity. More precisely, we have the following definition:

DEFINITION 3 : A function f tends to a limit A, as x tends to infinity if having chosen
a positive number €, there exists a positive number k such that

| fx— A)| <€ Vx 2k . .

The number & can be made as small as we like. Indeed, however small & we may
take, we can always find a number k for which the above inequality holds. We
rewrite this definition in the following way:

A function f(x) — ‘A as x — oo if for every & > 0, there exists k > 0 such that
[f(x) - A] < §forallx = k

We write it as

Lim f(x) =

X —
This notion of the limit of a function needs a slight modificaiion when x tends to
~-oo, This is as follows:

We say that Lim f(x) = A, if for a given & .> 0, there exists a number k < 0
such that *—

{f(x) - A| < & whenever x < k.

We write it as lim f(x) =

X — -00
Instead of f(x) approaching a real number A as x tends to + oo or -, we may
also have f(x) approachmg + 00 or - as x ‘tends to a real number ‘a’. For
example, if f(x) = 1/x2, x # 0 and x takes values near 0, the values of f(x)
becomes larger and larger. Then we say that f(x) is tending to + o as x tends to 0.
We can also have f(x) tending to + o or -o as x tends to + o or —oo. For
example f(x) = x tends to + o or - as x tends to + o or -co, Again, the
function f(x) = -x tends to + o or - as x tends to ~o» or +oo. We formulate
the following definition to cover all such cases of infinite limits.

DEFINITION 4 : Infinite Limits of a Function
Suppose a is a real number. We say that a function f tends to + o when x tends

to a, if for a given positive real number M there exists a positive number § such
that g

f(x) > M whenever 0 < |x - a] <‘<6.
We write it as
lim f(x) =

X —~a

In this case we say that the function becomes unbounded and tends to + o as x
tends to a.

In the same way, f is said to —oo as x tends to a if for every real number -M,
there is a positive number 6 such that

f(x) < - M whenever 0 < |x - a] < 6.
We write it as

lim f(x) = -

X - a

In this case also f(x) is unbounded and tends to -o as x tends to a. You can give
similar definitions for f(a+) = +oo, f(a-) = +oo, fla+) = -, f(a-) = -co.



Now we define lim f(x) = oo.

X — ®

f is said to tend to o as x tends to oo if given a number M > 0, there exists a
number k > 0 such that

f(x) > M for x = k.

We may similarly define
lim f(x) = +o, lim f(x) = -0, lim f(x) = -co.

X— - X— 4o X— -0

In all such cases we say that the function f becomes unbounded as x tends to + o
or -co as the case may be.

It is easy to see from the definition of limit of a function that the limit of a

constant function at any point in its domain is the constant itself. Similarly

if lim f(x) = A, then lim cf(x) = cA for any constant ¢ where ¢ is a real number.
x—a X—a

‘EXAMPLE 6 : Justify that

. 1
lim — = o
-2 (x-2)?

SOLUTION : You have to verify that corresponding to a given positive number

‘M, there exists a positive number §, such that

1
x - 2)?
Indeed for x # 2,

1 1
—_— > M=(x-2?*< —
x-2)* x-2 M

> M whenever 0 < |x - 2| < 6.

1
= |x -2 < =—.
| | M

Take 6 = . Then you can see that :

- g

_(—E)T> M whenever 0 < |x - 2| < 4.
X_

Hence

—

lim ————— = o
x -2 (x = 2)?

Now try the following exercise.

EXERCISE 5§ .
() Consider f(x) = |x|, x € R. Show that lim f(x) = +co.
and lim f(x) = +o X— 4o
and f(0+) = £(0-) = 0 = £(0)
Gi) Let f(x) = - |x|, x € R. Prove that lim f(x) = -
and lim f(x) = 4o X— + @
X—-00

and f(0) = f(0+) = f(0-) = 0.

_ We have already stated that if a function f is defined by f(x) = 1/x, x # 0, then

. the limits f(0+) and f(0-) and lim f(x) do not exist. It simply means that these
x—~0

limits do not exist as real numbers. In other words, there is no (finite) real number

A such that f (0+) = A f(0-) = A, or lim f(x) = A.

x—0

* You can easily solve the following exercise:

Limit of a Function
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EXERCISE 6
@ Letf(x) = —1—, X # 0. Show that lim f(x) = +o, lm f(x) =
ix| x—-0+ x -6
and lim f(x) = +oo,
x—0
(i) Let f(x) = 1 ——, X # 0. Show that LEm f(x) = -oo, lim f(X) = -
lxl x—~0+ "x—0-
and lim f(x) = -
x~0
@) Let fx) = —, x = 0. Prove that lim f(x) = + o, Hm f(x) = -
X x—0+ x—0-

1 :
(iv) Let f(x) = - —, x # 0. Prove that lim f(x) = -, lim f(x) =
, X

x—~0+ x—~0-

8.3 SEQUENTIAL LIMITS

In Unit 5, you studied the notion of the limit of a sequence. You also know that a
sequence is also a function but a special type of function. What is special about a
sequence? Do you remember it? Recall it from Unit 5. Naturally, you would like to
know the relationship of a sequence and an arbitrary real function in terms of their
limit concepts. Both require us to find a fixed number A as a first step. Both assume a
small positive number & as a test for closeness. For functions we need a positive number
4 corresponding to the given positive number § and for sequences we need a positive
integer m which depends on &. So, then what is the difference between the two notions?
The only difference is in their domains in the sense that the domain of a sequence is the
set of natural numbers whereas the domain of an arbitrary function is any subset of the
set of real numbers. In the case of a sequence, there are natural numbers only which
exceed any choice of m. But for a function with a domain as an arbitrary set of real
numbers, this is not necessary the case. Thus in a way, the notion of the limit of a
function at infinity is a generalization of that of limit of a sequence.

Let us now, therefore, examine the connection between the limit of a function and the
limit of a sequence called the sequential limit. We state and prove the following theorem
for this purpose:

THEOREM 3 : Let a function f be defined in a neighhourhood of a point ‘a’ except
possibly at ‘a’. Then f(x) tends to a limit A as x tends to ‘a’ if and orly if for every
sequence (x,), X, # a for any natural numbe;‘ n, converging to ‘a’, f(x,) converges to A.

PROOF : Let llm f(x) = A. Then for a number & > 0, there exists a § > 0 such
that for 0 < |x - a] < 6 we have
[f(x) - A] < &

Let (x,) be a sequence (x, # a for any n € N) such, that (x,) converges to a i. €.
X, — a.

Then corresponding to 6 > 0, there exists a natural number m such that for all
n=m

|x, - al < 6.
Consequently, we have
) -Al <&, Von=m
This implies that f(x,) converges to A.

Conversely, let f(x,) converge to A for every sequence x, which converges to a,
X, # a for any n.



Suppose )1(1_12 f(x) = A.
Then there exists at least one &, say & = &, such that for any 5 > O we have an x;
such that ' ’

0<|ixs-al <o
and
If(xs) - A| = &.

[

Letd = —,n=1,23......

=]

If(xy) - Al = &,

0 < |x, - a| = x, # a for any n.
. 1 |
Since — — 0 and |x, - a] < —, it follows that x, — a.
n n

But |f(x,) - Al = & = f(x,) + A i.e. f(x,) does not tend to A.

Therefore x, # a V n and x, tends to a as n tends to o whereas f(x,) does not
‘converge to A, contradicting our hypothesis. This completes the proof of the
theorem.

You may note that the above theorem is true even when either a or A is infinite or
both a and A are infinite (i.e. +o0 or ~o).

By applying this theorem, we can decide about the existence or non-existence of
limit of a function at a point. Consider the following examples:

0 if x is rational
‘EXAMPLE 7 : Let f(x) = {

1 if x is irrational 5

Show that at no point a in the real line R lim f(x) exists.
Xx—a

SOLUTION : Consider any point ‘a’ of the real line. Let (p,) be a sequence of
rational numbers converging to the point ‘a’. Since p, is a rational number,

f(p,) = O for all n and consequently lim f(p,) = 0. Now consider a sequence (q,)
.of irrational numbers converging to ‘a’. Since q, is an irrational number,

f(g,) = 1 for all n and consequently lim f(q,) = 1. So for two sequences (pPn) and
-(g,) converging to ‘a’, sequences (f(p,)) and (f(q,)) do not converge to the same
limit. Therefore lim f(x) cannot exist for if it exists and is equal to A, then

X—=a
‘both (f(p,)) and (f(q,)) would have converged to the same limit A.

"EXAMPLE 8 : Show that for the function f: R — R defined by
fx) = xVx €ER, "lim‘i f(x) exists for every a € R.

. SOLUTION : Consider any point a € R. Let (x,) be a sequence of 'points of R

- converging to ‘a’. Then f(x,) = x, and consequently lim f(x,) = lim (x;) = a. So
for every sequence <x,> converging to ‘a’ (f(x,)) converges to ‘a’. So by

. Theorem 3, xlima f(x) = a. Consequently Xlima f(x) exists for every a € R.

' Now try the following exercises.

- EXERCISE 7

' Show that for the function f: R — R defined by
f(x) = x3, :

Ixm: f(x) exists for every a € R.

Limit of a Panetion

15



Limit and Continuity

is

EXERCISE 8

Show that hm 2™ = 2 by proving that for any sequence (x,), X, # 1, converging
to 1, 2% converges to 2.

8.4 ALGEBRA OF LIMITS

We discussed the algebra of limits of sequences in Unit 5. In this section we apply
the same algebraic operations to limits of functions. This will enable us to solve
the problem of finding limits of functions. In other words we discuss limits of
sum, difference, product and quotient of functions. Before we do this, let us first
recall the meanings of the sum, difference, product, quotient of two functions

.which you have studied in Unit 4.

DEFINITION 5 : Algebraic Operations on Functions
Let f and g be two functions with domain D C R. Then the sum, difference,

product, quotient of f and g denoted by f + g, f - g, fg, f/g are functions with
domain D defined by

f + 2 (x =fkx) + gx)
@ -g x) = f(x) - g(x)
fg) ) = f(x). g(x)

(#/g) x) = f(x)/g(x)

provided in the last case g(x) = 0 for all x in D.

Now we prove the theorem.

THEOREM 4
1f lin: f(x) = A and lim g(x) = B, where A and B are real numbers,
X— Xx—a

@ lim ¢+ ® =A+B-=limix+ lim g®),
@ lm (f-g)(0 =A-B= limf()- lim g,

Gi lim f - ggx)=A-B = ’l‘l_il: f(x) - ’l:l_l:l‘: g,

X—8
(iv) If further )l(ll'l: g(x) # 0, then ’I(ml f/g (x) exists and
Em f(x) -

lim g(x)

X—a

f
lim — (x) = A/B =
x—-2 g

PROOF : Since ’1(1_‘3"11 f(x) = A and ’l‘x_rg g(x) = B, corresponding to a number
& > 0. There exist numbers
8; > 0 and 8, > 0 such that -
0< |x-a] <& = |fx)-A] < &2 )
0<ix-al <6, = jgx)-B| < &2 )
Let 5 = minimum (3;, §,). Then from (1) and (2) we have that
0<|x-al <= [fx) + g0 - (A + B)| = [f(x) - A| + |g(x) - B|
< &/2 + &/2 = §.
Which shows that lx_rg f+pK = ){l_l:l’; fx) + gx) = A+ B
This proves part (i).
The proof of (ii) is exactly similar. Try it yourself.
(i) |f(x) g(x) - AB| = [(f(x) - A) g(x) + A (g(x) - B)|
= |[fx) - Al [gx)| + |A]. |(g(0) - B)| 3)
Since }(1_12 g(x) = B corresponding to 1, there exists a number ag > 0



such that Limit of a Function
0< |x-a] < oy = |gx)-B| < 1.
which implies that |g(x)] = |g(x) - B|] + |B] < 1 + |B| = K (say) )

Since lim f(x) = A, corresponding to & > 0, there exists a

X—a

number §, > 0 such that

O0<|x-a| <§ = |fx)- A|] < 8/2K )
Since ’1‘1_1_1; f(x) = B, corresponding to a number & > 0, there exists a number
83 > 0 such that

&
0<|x-a] <& = [f(x) -B|] < —————— 6
|x-a| <& = [f(x) |,2(IAI+1) ©)

Let & = min (g, 8;, 6;). Then using (4), (5) and (6) in (3),
we have for 0 < |x - a] < §,

If(x) g(x) - AB| = [f(x) - A| |(g(x)| + |A] |g(x) - B|
lgx) - Al. K + |A| {(g(x) - B)|
L ok+ 5
2K 2(JA}+1)

A

< |Al < &/2 + &/2 = &.

Therefore ’1(1113‘ g(x) = AB i.e. )1(1113‘ (fg) x) = AB = ,1‘1_12 f(x). ’l‘i_r'rillvg(x),
which proves part (iii) of the theorem.
(iv) First we show that g does not vanish in a neighbourhood of a.

liH; g(x) = B and B # 0. Therefore |B| > 0. Then corresponding to
pra
|B

TI we have a number g > 0 such that for 0 < |x - a|] < p,
|B| '
X) -B| < —.
le(x) - B| >
Now by triangle inequality, we have
|Bj ;
Hegx)| - B[] < [gx) -~ B| < -
. |B| |B|
ie. |B] - — < |g(x)| < |B|] + —.
B - —= < ls@) < IB| + —
|B|
In other words 0 < |x - a] < pu = |g(x)| > 5 @)

Again since lim g(x) = B, for a given number & > 0, we have a number
X—a .
p’ > Osuch that 0 < |x - a}] < p* implies that

B 2
809 - BI < 2. | ®
Let 5 = min (4, u’). Then if 0 < |x - a] < &, from (7) and (8)
we have .
i __1“ _B-gx| _ 2[B-gl _ 2(B]> _
gx) B |8(x)1|B| |B|? 2|BJ?

1
This proves that lim = —.
=2 g(x) B

Now by part (iii) of this theorem, we get that
f(x)

lim = lim f(x) . —1— = lim f(x) . lim
x—~a. g(x) x—a g(x) x—a x—a g(x)
= A. 1 A/B.
B . .
£ lim f(x)
X—a
ie. lim —) )= A/B = —
x—=a \ g/ h{g g(x)

This completes the proof of the theorem. You may note the theorem is true even
when a = + o. You may also see that while proving (iv), we have proved that if 17
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” - lim g(x) = B # 0, then lim —— = ——
o =3 g(x) B

Before we solve some examples, we prove two more theoreins.

THEOREM 5 : Let f and g be defined in the domain D and let f(x) < g(x) for all
x in D. Then if li_!l: f(x) and ’l‘iﬂ g(x) exist,

lim f(x) < lim g(x).

PROOF : Let )1(1_1’2 f(x) = A, ’l‘m; g(x) = B. If possible, let A > B.

A-B
for & = 5 there exist 3,, 8, > 0 such that

0<|x-al <8 = |fx)-A] <&
and 0 < |x -a] < §, = |gx) - B} < &.
If & = min. (8, 8,), then for 0 < |x - a| < &, g(x) E1B - &, B + &

A B
and f(x) E1A-6 A + E[.ButB + § = A-& = ;—l Therefore
g(x) < f(x) for 0 < |x - a] < & which contradicts the given hypothesis. Thus
A =< B.

THEOGREM 6 : Let S and T be non-empty subsets of the real set R, and let

f: S —T be a function of S ento T. Let g: U — R be 2 function whose

domain U C R contains T. Let us assume that lim f(x) exists and is equal to b
X —-n

and limb g(y) exists and is equal to c. Then km g(f(x)) exists and is equal fo c.
y— X —a

PROOF : Since limb g(y) = c, given a number & > 0, there exists a number
et
op > 0 such that

0<|y-bl <a = |gy -c| <&
Since lim f(x) = b, corresponding to oy > 0, there exists & > 0 such that
X —a

0< |x-a] <& = [f(x) -b] < a.

Hence taking y = f(x) and combining the two we get that for
0 < |x-a| <3, [gf(x) -c| = |g) -¢c|] <&
(since {f(x) - b] < ).

This completes the proof of the theorem. Finally we give one more result without
proof.

RESULT : If lim f(x) = A, A > 0 and lim g(x) = B where A and B are finite
X — a ' X - a
real numbers then

Iim f(x)2® = AB,

X —a

Now we discuss some examples. You will sce how the abcve results help us in
reducing the problem of finding limit of complicated functions to that of finding
limits of simple functions.

EXAMPLE 9

. ) 2x + DG3x -1 4x + 5
Find tim
X = o X+ x -1

SOLUTION
. (2x + N C3x-11) (4x + 5)
, lim - 3
X - e 4’ + x -1

e 62 2)
-5)

= lim

X — >

g x? (4+

LS}

A




- We divide the numerator and denominator by x> since x? is neither zero nor o.
@x + ) Bx - 11) (4x + 5)

= lim
X~ ax® + x -1
7 11 5
(- D622
= lim x X X/ _ 2x3x4
X = o ‘s 1 1 : )
x2 x3
. x:-9
EXAMPLE 10: Find lim —_
x-3 x‘-4x+3
2- -
SOLUTION: lim -~ "2  _ jjp &-9&+3
x—=3 xX“-4x + 3 x-3 x-3)(x-1)
2_
“Hence lim _2"_9__= . x+3
x=3 x“-4x + 3 x-3 x-1
)l(lt_l.ls x + 3) —3_3
= Im x-1) 2
x—-3
. x2-9
The function f{x) = —————— is not defined at x = 3. But we are
X“-4x +3

considering only the values of the function at those pointé x in a neighbourhood of
3 for which x = 3 and hence we can cancel x - 3 factor

12 _
'EXAMPLE 11 : Evaluate lim &+ * % -1
-0 1+ x-1
L
SOLUTION : To make the problem easier, we make a substitution which enables
us to get rid of fractional powers 1/2 and 1/3. L.C.M. of 2 and 3 is 6. So, we put
1 +x=y*

“Then we have

a+x2- . y’-1 G-D*+y+ 1
x-0 (1 + x)}3-1 y=-0 y2_1 y—1 O-Dy+ 1

Try the following exercises:

"EXERCISE 9
Find ‘

. ‘@2x + 3)% 3x - 2)?
® ’l‘i'PQ x>+ 5

@ im Er 07
: - x4+ 1

'EXERCISE 10

; 2x for0<x<1
If g(x) = 4 4 forx = 1
5-3x forl < x < 2.

find lim _g(x)
’ x—-1

Limit of a Function
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EXERCISE 11
Find
V-2 x-1\*
i lim — B Bl
® x—-4 x_ ¢ ® ‘El“' X + 1)
3x2-x-10
s o N sin 2x 1+x
(ﬂ) Find l“_'_lz xl + 5x - 14 (Vi) li!_l‘lo < X >
1-c¢osx
(iit) lim —_—— X + 1\*
x—-0 X (vii) lim 2 +—1—)
- - X —~ X
. lim sin x - sin a
x—-a X-a

8.5 SUMMARY

In this unit, you have been introduced to the concept of a limit of a function. In
Section 8.2, we started with the intuitive idea of a limit of a function. Then we
derived the rigorous definition of the limit of a function, popularly called & - §
definition of a limit. Further, we gave the notion of right and left hand limits of a
function. It has been proved that xli_x_na f(x) = A if and only if both right hand
and left hand limits are equal to A i.e. xl_i.xr; . f(x) = xl-iﬂ- f(x) = A. In the same
section we discussed the limit of a function as x tends to + o or -0, Also we
discussed the infinite limit of a function. In Section 8.3, we studied the idea of
sequential limit of a function by connecting the idea of limit of an arbitrary
function with the limit of a sequence. It has been shown how this relationship
helps in finding the limits of functions. In Section 8.4, we defined the algebraic
operations of sum, difference, product, quotient of two functions. We proved that
the limit of the sum, difference, product and quotient of two functions at a point
is equal to the sum, difference, product and quotient of the limits of the functions
at the point provided in the case of quotient, the limit of the function in the
denominator is non-zero. Finally in the same section, the usefulness of the algebra
of limits in finding the limits of complicated functions has been illustrated.

8.6 ANSWERS/HINTS/SOLUTIONS .

El) We claim that li_x.nl f(x) = 1. To verify this, let & > 0 be a fixed real
number. Then * ‘

fx) - 1} = |x2-1] = Ix - 1] |x + 1j.

Suppose 0 < § < 1. Then |x-l|t< I = 0< [x+ 1] <3 and also
Ix-I < 1= |x + 1. [x-1f < 3. [x - 1].

Choose 6 = Min {1, &/3). Then
0<|x-1]<6= [fx)-1] = [x*- 1

<3 Ix-1f
<334
<3E&/3=¢§
' which proves the claim.
E2) x2-x + 18 4= x? - 13x + 22 - (x-2) x -1
3x-1 3x-1 3x-1

If x“is near 2 then (x - 2) is near zero. If x is near 2 and away from 1/3,

then

is not very large. If 5 < 1 and 0 < ix - 2| < 6 then

3x -



E3)

E4)

Es)

2-6<x<24+8,x#2ie.1<x<3, x5 2 Then-10 < x - 11 Limit of a Function
< -8and2 < 3x -1 < 8sothat [x-11] < 10and |3x - 1| > 2

- 11

X
Thus ~~———i—| < 5. Now if & > 0 is given and if simultanecusly

2
-x + 18
22X 4 <.
3x-1

_x-ll

ix - 2] < &€/5 and I ' < 5 then

x -
Hence we can choose § = min (£/5, 1)

Then for 0 < |x - 2| < § we have

2

Xx“-x + 18

AL 4’ <&

3x -1

In fact, in this problem, f(2) is defined and takes the va.lﬁe 4.

2% + 1
When x # 0, f(x) = — ;- Therefore

Right hand limit = lim f(x)
x — 0+

= lim, 20 + 31’)—‘:—1 ( > 0)
1
)
Left hand limit = ’l(irllo f(x)
- lim i@_—‘g) *1h>o
B
-5

Since both the right hand and left hand limits exist and are equal, therefore

lim f ! !
xu_z}o x) = ?

. . . . 0+h-2
(1) Right hand limit = f2+) = }Iu_x}o —|—2—1h—_2|— th >0
=1,
Similarly left hand limit = -1
)l(illlz f(x) does not exiSt.
/h _ 4
(i) f(o+) = }‘ir_r.lo W(h > 0)
1
-,
L+ =5
f(0-) = lim e——lu = -1

h—o0 e/h 4
Since f(0+) # £(0-), ’l‘imo f(x) does not exist.
(i) When x is positive or zero f(x) = x, and when x is negative, f(x) = - x.
f0+) = lim x =0andf(0-) = lim -x = 0. Also f(0) = 0
x - 0+ x - 0
lim f(x) = lim [x| = lim x = oo, In fact forany M > 0,
X —~ oo X — G X =~
fx) > Mifx =z kwithk =M + 1.

Similarly xlirlL=° f(x) = xlin}m Ix] = xl_i.mia -X = oo,

- (i) It is similar to (i).

21
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E6) (i} Leth >0

1
lim f(x) = lim —————-—l = lm - — = oo,
X — 0+ h~0 |0 + hj h—-0 h
. . X i
im f(x) = lim = lim — = oo,
x — 0- h~0 |0 - hj h—-0 h

Hence it follows that lit_r}o f(x) = oo. It can also be proved as follows:

1 1
If M > 0 is any number, f(x) = Tl— >Mif0 < |x]| < ﬁthat is
X

I
f(x) > Mif 0 < |x|] < 6 where § = M
Hence )l‘irjxo f(x) = oo.

(i) is similar to (i). : l
(iii) xgm f(x) = rlll% K = oo and x_l}(r)x_l f(x) = Il1l—r‘% —h = -

(iv) is similar to (iii).
E7) If (x,) be a sequence converging to ‘a’, f(x,) = x2—a? and so by
Theorem 3,
lim f(x) = al,

E8) Let (x,) be any sequence belonging to the domain of definition of f
converging to 1 and such that x, # 1 for any n. Given & > 0 we want to
find an M such that foralln = M

2-8< 2% <2+ 8

Choose &, = log, (1 + &/2). 1t is clear that §, > 0.
Since lim, x, = 1, therefore corresponding to &, > 0, there exists a positive
integer M such that

1-& <x, <1+ § forn = M,

Thus for n = M, we have 5
2% < 2148 = 228 = g oloel1+E/)) _ 5 (1 + 82) =2 + 8.
2 2 4
X, -8, _ ~& - -

md2E > 2T =220 = ey L+ 82 2+68

4 - 82

=2-8.
2+ &

SL2-8<2% <2+ Eforn =M
ie. |25 -2 < §forn = M.
This proves that 2* tends to 2. From theorem 3, it follows that

lim 2* = 2,
x—1

@x + 3P Gx-2)?

E9) () lim
) @ lim S
2 3/ 3 _ 2 »3. 2
=lim(+ x)(3s2/x) =A3 Y
X—o 1 + 5/x% 1
. WX+ ) VT + 1/%3
g) lim ——— = lim ——— = 1.
x—=» x4+ 1 x—o I + 1/x

2x for0 s x <1
El10) gix) = 4 ifx =1
S-3xforl < x < 2.

o

lim g(x) = lim (5-3x) = 5~ lim 3x = 5- 3 =
X—i+ X1+ x~1+

and Iin} g} = lim 2Zx = 2
ross

Yo i

Hence lun g(x; = 2.
X3



I - J -
. . VX i VK -~ 2) (v 4 g
Eil) (i) m - _‘.,_2_{\
A =4 (-8 (W o+ T
{i1)
Sy
. 1 -coe x| 2sint x/2 ,
(i) lim Iim 2 = |un
x—~0 -0 4.x</4 X2
1. . sin?x/2 . i
= —, since lim ———— = lm
2 0 (x/2) x—=0 x/
X
. ) sin X - sin a . 2 cos
(iv) Im ———m— = lim
X—a X—a
X-a
. X-a
sin
] X+ a
= lim cos$ ——— lim ___ 2
e 2 T X ~-a
2
= COs a.
. X - N
v lim { ———
x= \X + 1,
. X - 1-1/x
lim ——— U ARGEN I
x—=® x 4+ ] x—o |+ |/x
x - | ‘ i x- 1
Iim ( —-— lim I+ =
x=® \X + i e | X + 1
lim il + | ———
oo (] x + 1
-
lim Trx = ¢
h.Ead -]
_2 _xtd
since lim — ] 2 =
x—o x+ 1/1

or

lim
x—.

vi) lim
{vi} 1

x -1

lim (1 - 1/x)*

X--00

°°<x+1

i ‘x‘] i
lim [ 1 - __>
e 1< X !

w1+ 1/%)°

l{{n (1 + 1/x)*

e £ . RS-
L T

-t
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UNIT 9 CONTINUITY

STRUCTURE
9.1 Introduction
Objectives

9.2 Continuous Functions

9.3 Algebra of Continuous Functions
9.4 Non-continuous Functions

9.5 Summary

9.6 Answers/Hints/Solutions

9.1 INTRODUCTION

Suppose that you have functions which are defined on an interval, either open or
closed. If you draw the graph of these functions, you will observe that some of

" these can be sketched down in one smooth ‘continuous’ sweep of your pen, while

others have many breaks or jumps. For example, draw the graphs of the following
two functions:

(@ fx) =x%x€[-2,2]
1

® ) = {}"”‘6“2 2 x 0
0, x

You will see that the graphs are as shown in figures 1(a) and 1(b).

> =<
—_—

N

7

+
~
.\,J.t

Fig. 1(a) . Fig. 1(b)

You can see that while the graph of the first function can be drawn in one
‘continuous’ motion without lifting the pen from the paper while the graph of the

- other function cannot be drawn in this manner. This is an interesting property of
. the first function which is not possessed by the second function. It is, therefore,

' natural to wonder if it can be given some mathematical meaning. In fact,
 mathematicians of the past several centuries did confront this question, namely:

“‘Is there a way to specify those curves which can be drawn with a single stroke of
one’s pen?”’

25
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The answer is yes and the functions representing such curves are given the names
as Coatinuous Functions. What is, then, the mathematical meaning of a
continnous function? What are the functions such as the one in figare 1(b)? We
shall try to answer these questions and a few more in this unit.

In Unit 8, we made clear our intuitive idea of the values of a function f(x)
approaching a number A as the variable x approaches. a given point a. In
continuous graphs of functions, as you have seen in the figures 1(a) and (b) that as
x approaches a, the functional values approach f(a). When there is break (or jump)
in the graph, then this property fails at that point. This idea of continuity is,
therefore, connected with the value of hm f(x) and the value of the function f

at the point a. We define in this unit the contmulty of a function at a given point
a in precise mathematical language. Therefore extend it to the continuity of a
function on a non-empty subset of the domain of f which could be the whole of
the domain of f also. We study the effect of the algebraic operations of addition,
subtraction, multiplication and division on continuous: functions.

We shall use these results in Unit 10 to discuss the properties of continuous
functions and the concept of uniform continuity.

Objectives
After studying this unit, you should be able to:

@ define the continuity of a function at a point of its domain,
® determine whether a given function is continuous or not,
@ construct new continuous functions from a given class of continuous functlons.

9.2 CONTINUOUS FUNCTIONS

We have seen that the limit of a function f as the variable x approaches a given
point a in the domain of a function f does not depend at all on the value of the
function at that point a but it depends only on the values of the function at the
points near a. In fact, even if the function f is not defined at a then hm f(x)
may exist.

For example liu} f(x) exists when
X

2_

1
f(x) = though f is not defined at x = !.

We have also seen that lim f(x) may exist, still it need not be the same as f(a)
X—a i

when it exists (see example 2, Unit 8). Naturaily, we would like to examine the
special case when both )l(m; f(x) and f(a) exist and are equal. If a function

has these properties, then it is called a continuous function at the point a. We give
the precise definition as follows:

DEFINITION 1 : Couatinuity of a Fupction at a Point

A function f defined on a subset S of the set R is said to be connnuous at a point
a €8, if

i) lli‘l: f(x) exists and is finite
X

ii) ’l‘igl; f(x) = f(a).

Note that in this definition, we assume that S. contains some open interval
containing the point a. If we assume that there exists a half open (semi-open)
interval [a, c[ contained in S for some ¢ € R, then in the above definition , we
can replace ’l(l_l'g f(x) by xl_i‘r:l+ f(x) and say that the function is continuous from

the right of a or f is right continuous at a.

Similarly, you can define left continuity at a, replacing the role of hm f(x)
by hm f(x). Thus, f is continuous from the right at a if and only 1f

f(a+) = f(a)



It is continuous from the left at a if and only if Countinaity
f(a-) = f(a).

From the definition of continuity of a function f at a point a and properties of

limits it follows that f(a+) = f(a-) = f(a) if and only if, f is continuous at a. If a

function is both continuous from the right and continuous from the left at a point
a, then it is continuous at a and conversely.

The definition 1 is-popularly known as the Limit-Definition of Continuity.

Since lim f(x) is also defined in terms of & and &, we have an equivalent
X—a

formulation of the definition 1 in terms of & and 6. Note that whenever we talk of
continuity of a function f at a in S, we always assume that S contains a
neighbourhood containing a. Also remember that if there is one such
neighbourhood there are infinitely many such neighbourhoods. An equivalent
definition of continuity in terms of & and § is given as follows:

DEFINITION 2 : (G, §)-Definition of Continuity
A function f is continuous at x = a if f is defired in a neighbourhood of a and
corresponding to a given number & > 0, there exists some number é > 0 such
that |x - al < 6 implies |f(x) - f(a)] < &.
Note that unlike in the definition of limit, we should have

|f(x) ~ f(a)] < & for |x - a|] < 4.

The two definitions are equivalent. Though this fact is almost obvious, it will be
appropriate to prove it.

THEOREM 1 : The limit definition of continuity and the (&, §)-definition of

" continuity are equivalent. -

PROOF : Suppose f is continuous at a point a in the sense of the limit definition.
Then give & > 0, we have a & > 0 such that 0 < |x - a| < & implies |f(x) - f(a)|
< &. When x = a, we trivially have

If(x) - fa)] = 0 < &.

Hence, |x - a}] < & = |[f(x) - f(a)] < &
which is th:e (&, §)-definition.

Conversely we now assume that { is continuous in the sense of (&, §)-definition.
Then for every & > 0 there exists 4 5 > 0 such that

Ix - a] < & = |f(x) - f@)] < &.
Leaving the point ‘a’, we can write it as
0 < |x-2a] <8 = [f(x)-f(a)} < &.

Thi.s implies the existence of lim f(x) and that lim f(x) = f(a):
X—a X—a .

Note that § in the definition 2, in general, depends on the given function f, & and
the point a. Also |x ~a|] < §ifandonlyifa-6 < x < a + & and

Ja - 8, a + 8[ is an open interval containing a. Similarly [f(x) - f(a)} < & if and
only if .

f(a) ~ & < f(x) < f(a) + €. .

We see that f is continuous at a point a, if corresponding to a given (open)

&-neighbourhood U of f(a) rhere exists a (open) é-neighbourhood V of a such that

f(V) C U. Observe that this is the same as x € V = f(x) € U. This formulation

of the continuity at a is more useful to generalise this definition to more general

situations in Higher Mathematics. ot

A function f is said to be continuous on a set S if it is continuous at every point
of the set S. It is clear that a constant function defined on S is continuous on S.

Let us, now, study some examples and exercises:
EXAMPLE 1 : Examine the continuity of the following functions:

i) The absoviute value (Modulus) function,

i) The signuwm f:ciion. 27
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SOLUTION

i) You know from Unit 4, that the absolute value function
f: R — R is defined as f(x) = |x}, Vx €R.
The function is continuous at every point x € R. For given & > 0, we can
choose & = & itself. If a € R be any point them |x - a| < § = & implies that

If() - f@] = | Ix] - |a] | <= |x-a] <&
ii) The signum function, as you know from Unit 4, is a function f : R — R
defined as
fx) =1 ifx>0
=0 ifx=20
=-1 ifx<0

This function is not continuous at the point x = 0. We have aiready seen in Unit
8 that f(0+) = 1, f(0-) = - 1. Since f(0+) = f(0-), lim0 f(x) does not exist and
X -
consequently the function is not continuous at x = 0. For every point x # 0 the
function f is continuous. This is easily seen from the graph of the function f as
described in Unit 4. There is a jump at the point x = 0 in the values of f(x)
defined in a neighbourhood of 0.
Note that if f : R — R is defined as,
fx) =1 ifx=0.
=-1 ifx <0
then, it is easy to see that this function is continuous from the right at x = 0 but
not from the left. It is continuous at every point x = 0.
Similarly, if f is defined by f(x) = 1 ifx > 0
=-1ifx =<0

then f is continuous from the left at x = 0 but not from the right.

EXERCISE 1
Examine the continuity of the following functions:

i) The function f: R ~ {0} — R defined as
X
fx) = —l—l—,
X
at the point x = 0
ii) The function f: R ~ {1} — R det’ing‘d as

2 '
x“ -1
fx) = ———, :
) x-1
iii) The function f: R ~ {0} — R defined as

fx) = l
B

EXAMPLE 2 : Discuss the continuity of the function sin x on the real line R.

SOLUTION : Let i(x) = Sinx Vx €R.
We show by the (&, 8)-definition that f is continuous at every point of R.
Consider an arbitrary point a € R. We have

. X-a X + a
2 sin cos
2 2

|f(x) - f(a)] = |sin x - sin a| =

= 2 |Sin

X-a X + a
Ccos -




Y. .

.o x-al [/, X + a Continuity
< 2 iSin since |cos =<1
2 l 2
From Trigonometry, you know that |Sin 6| = |6}.
X-a X-a X-a
Therefore |Sin = l———l—
2 2
Consequently |f(x) - f(a)] = [x - a|
< &if |x -~ al < 6 where 6 = &.

So f is continuous at the point a. But a is any point of R. Hence Sin x is
continuous on the real line R.

EXERCISE 2
Discuss the continuity of cos x on the real line R.

In Unit 8, we have connected the limit of a function with the limit of a sequence
of real numbers. In the same way, we can discuss the continuity of a function in
the language of the sequence of real numbers in the domain of the function. This
is explained in the following theorem.

THEOREM 2 : A function f : S — R is continuous at point a in S if and only if
for every sequence (x,), (x, € S) converging to a, f(x,) converges to f(a).

PROOF : Let us suppose that f is continuous at a. Then lim f(x) = f(a).
X —~ a

Given g > 0, there exists a 6 > 0 such that
Ix -a] < 8 = |f(x) - f(a)l < &.
If x, is a sequence converging to ‘a’, then corresponding to & > 0, there exists a
positive integer M such that
Ix, -a] < §forn = M.
Thus, for n = M, we have |x, - a] < & which, in turn, implies that
If(xo) - f@)] < &,
proving thereby f(x;) converges to f(aj.
Conversely, let us suppose that whenever x, converges to a, f(x,) converges to f(a).

Then we have to prove that f is continuous at a. For this, we have to show that
corresponding to an & > 0, there exists some 8 > 0 such that

If(x) - f(a)| < &, whenever {x - al < é.
If not, i.c., if f is not continuous at a, then there exists an & >0 such that
whatever § > 0 we take there exists an x, such that
Ixs - a] < & but |f(xs) - f(@)] = &.

By taking 6 = 1, 1/2, /3, ....in succession we get a sequence {x,}, where

X, = X for '~ 1/n, such that |f(x,) - f(a)| = &. The sequence {x,} converges to
a. For, if m > 0, these exists M such that 1/n < m for n = M and therefore

|x, - a] < m for n = M. But f(x,) does not converge to f(a), a contradiction to
our hypothesis. This completes the proof of the theorem.

Theorem 2 is sometimes used as a definition of the continuity of a function in
terms of the convergent sequences. This is popularly known as the Sequential
Definition of Continuity which we state as follows:

DEFINITION 3 : Sequential Continuity of a Function

Let £ be a real-valued function whose domain is a subset of the set R. The
function f is said to be continuous at a point a if, for every sequence (x,) in the
domain of f converging to a, we have,

nﬁ_@m f(x,) = f(a)

The next example illustrates this definition. 2
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If infinite number of x.’s are
such that g(x,) = 0, then
8(x,) — g(a) implies that
8(®) = 0, a contradiction.
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EXAMPLE 3 : Let f : R -+ R be defined as
fx) =2x*+ ,vx ER

Prove that f is continuons on R by ustny the sequential definition of the continuity
of a function.

SOLUTION : Suppose {Xat s 9 sequence v hich cvaverges to a point ‘a’ of R.
Then, we have

m fq) = Hm (Zxg + 1= 20bms® + 0 = 222 4+ 1 = f(a)
n—oo n--co Beetn
This shows that f is continusus = woint a € R, Sin-» 2 is an arbitrary element

of R, therefore, f is continuon: evervwhere on R,

EXERCISE 3

Prove by sequeniis! definition of confiruity that the function f: R — R defined by
f(x) = Vx is continuous at x = 0,

9.3 ALGEBRA OF CONTINUOUS FUNCTIONS

As, in Unit 8, we proved limit theorems for sum, difference, product etc. of two
functions, we have similar results for continuous functions also. These algebraic
operations on the class of continuous functions can be deduced from the
corresponding theorems on limits of functions in Unit 8, using the limit definition
of continuity. We leave this deduction as an exercise for you. However, we give a
formal proof of these algebraic operations by another method which illustrates the
use of Theorem 2. We prove the following theorem:

THEORTM 3 : Let f and g be any real functisns both continuous at a1 point
8 € R. Then,

i) of defined by (of) (x) = af(x), is continuous for any real number qo,
ii) T+ g-defined by (f + g (x) = f(x) + g(x) is continuous at a,
iii) f - g defined by (f - g) (x) = f(x) - g(x) is continuous at a,

iv) fg defined by (fg) (x) = f(x) g(x) is continuous at a,

v) f/g defined by (f/g) (x) = _ft_x;_’ is continuous at a provided g(@) # 0.
g(x '

PROOF : Let x, be an arbitrary sequence’ converging to a. Then the continuity of
f and g imply that the sequences f(xn) and g(x,) converge to f(a) and g(a)
respectively. In other words, lim f(x)) = f(a), lim g(x,) = g(a).

Using the algebra' of sequences discussed in Unit 5, we can conclude that
lim af(x)) = af(a),
lim (f + g) (x) = lim f(x) + lim g(x) = f() + g(a),
lim (f - g) (xp) = lim f(x,) - lim g(xy) = f(a) - g(a),
lim (f - g) (xp) = lim f(x;) lim g(x,) = f(a) g(a).

This proves the parts (i), (ii), (iii) and (iv). To prove the part (v) we proceed as
follows: ‘

Since g(a) # 0, we can find & > 0 such that the interval 18(a) - o, ga) + of is
efther entirely to the right or to the left of zero depending on whether g(a) > 0 or
g(a@) < 0. Corresponding to « > 0, there exists a 8; > O such that |x - a| < §,
implies |g(x) - g(a)] < q, i.c., g(a) ~a < 8(X) < g(a) + «a. Thus, for x such that
Ix - a] < §), g(x) = 0. If (x,) converges to a, omitting a finite number of terms
of the sequence if necessary, then we can assume that g(x,) # 0, for all n. Hence,

f f(a f . .
- ) converges to —(—l and so — is continuous at a. This completes the proot of
8(x.) g(@) g

the theorem.




In part (v) if we define f by f(x) = 1, then it follows that if g is continuous at ‘a’
and g(a) # 0, then its reciprocal function 1/g is continuous at ‘a’.

Now, we prove another theorem, which shows that a continuous function of a
continuous function is continuous. -

THEOREM 4 : Let f and g be two real functions such that the range of g is
contained in the domain of f. If g is continuous at x = a, f is continuous at
b = g(a) and h(x) = f(g(x)) for x in the domain of g, then h is continuous at a.

PKOOF : Given &§ > 0, the continuity of f at y = b = g(a) implies the existence
of an v > 0 such that for

ly -bl <9, [f(y) - f(b)] < & (1)
Corresponding to 5 > 0, from the continuity of g at x = a, we get a § > 0 such
that

|x - aj < 6 implies |g(x) - g(a)] < 7 ...(2)

Combining (1) and (2) we get that .
Jx - a] < 6 implies that |h(x) - h{a)} = f(g(x)) ~ f(g(a)}|
= f(y) - f(b)| < &

where we have taken y = g(x).
Hence h is continuous at a which proves the theorem.

Let us now study the following example:

EXAMPLE 4 : Examine for continuity the following functions:

i) The polynomial function (Refer to Unit 4) f: R — R defined by
£(x) = a9 + aX + ax’ + ..... + ax

ii) The rational function (Refer to Unit4) f: R —+ R defined as

f(x) = L:%— Y x for which q(x) # 0.

q(x
SOLUTION

i) It is obvious that the function f(x) = x, x € R, is continuous on the whole of
the real line. It follows from theorem 3(iv) that the functions x2, x3, .... are ail
continuous. Again from theorem 3(i) and 3(ii) and the fact that constant
functions are continuous, we get that any polynomial f(x) in x, i.e., the

function f defined by
f(x) = ag + a;x + a; x> + ... + a, x",
is continuous on R.
if) It follows from theorem 3(v) that a rational function f, defined by,
fx) = p(x) _ 3 + alx.+ eee + ap X" '
q(x) b + bix + ... + byx™
is continuous at every point 2 € R for which g(a) # 0.

Try the following exercise.

EXERCISE 4
Examine the continuity of the function f: R — R defined as,

i) f(x) = x3at apointa ER

2
-4
) =X if x 5 2
i) f(x) Xx-2
= 1 ifx =2

Continuity

31
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9.4 NON-CONTINUOUS FUNCTIONS

You have seen that a functicn may or may not be continuous at a point of the
domain of the function. Let us now examine why a function fails to be
continuous.

A function f: S — R fails to be continuous on its domain S if it is not continnous
at a particular point of S. This means that there exists a point a € S such that,
cither

i) lim f(x) does not exist
X —-a
or i) lim f(x) exists but is not equal to f(a).
X —-a

But you know that a function f is continuous at a point a if and only if
fla+) = f(a-) = f(a).

Thus, if f is not continuous at a, then one of the following will happen:

i) either f(a+) or f(a-) does not exist (this includes the case when both fta+) and
f(a-) do not exist).

i) both f(a+) and f(a-) exist but f(a+) # f(a-).
iii) both f(a+) and f(a-) exist and f(a+) = f(a-) but they are not equal to f(a).
If a function f: S — R is discontinuous for each b € S, then we say that f is

totally discontinuous on S. Functions which are totally discontinuous are not often
encountered but by no means rare. We give an example.

EXAMPLE 5 : Examine whether or not the function f: R — R defined as,
1, if x is irrational
f(x) =
0, if x is rational

is totally discontinuous. .

SOLUTION : Let b be an arbitrary but fixed real number. Choose § = 1/2.
Let 8 > 0 be fixed. Then the interval defined by

x-b] <6
is [x:b-d<x<DbH + §)
or Ib-6,b + 9§

This interyal contains both rational as well as irrational numbers. Why? (Refer to
Unit 2 for the answer.)

If b is rational, then choose x in the interval to be irrational. If b is irrational then
choose x in the interval to be rational. In gither case,

0<|x-b] <3
and

f(x) - fd)| = 1 > &.

Thus, f is not continuous at b. Since b is an arbitrary element of S, f is not
continuous at any point of S and hence is totally discontinuous.

Now you should be able to try the following exercise:

EXERCISE 5
Show that the function f: R — R defined by

1, if x is rational
f(x) =
0, if x is irrational
is totally discoptinuous. Does f(a+) and f(a-) exist at any point a € R?




There are certain discontinuities which can be removed. These are known as
removable discontinuities, A discontinuity a of a given fuaction f : § — R is said
to be removable if the limit of f(x) as x tends to a exists and that

xli_:_n' f(x) # f(a)

In other words, f has removable discontinuity at x = a if fa+) = f(a-y but none
is equal to f(a).

The removable discontinuities of a function can be r‘emoved simply by changing
the value of the function at the point a of discontinuity. For this a function with
removable discontinuities can be thought of as being almost continuous. We
discuss the following example to illustrate a few cases of removable discontinuities.

EXAMPLE 6 : Discuss the nature of the discontinuities of the following functions:

z_
D f = 21 X %2
x-2
=1 x=2
atx = 2.
i) f(x) = 3, #3
=1 =3
at x = 3.
iii) f(x) = x2, XxX€E€]1-2,001)0,2][
=1 x=10
at x = 0.
SOLUTION

i) This function is discontinuous at x = 2. This is a removable discontinuity, for
if we redefine f(x) = 4, then we can restore the continuity of fatx = 2.

ii) This is again a case of removable discontinuity at 3. Therefore, if f is defined
by f(x) = 3 V¥ x € R, then it is continuous at x = 3.

iii) This function is discontinuous at x = 0. Why? This is a case of discontinuity
which is removable. To remove the discontinuity, set f(0) = 0. In other words,
define f as

fx) = x4, x €1-2,0[U]0, 2 [
=0, x=0

This is continuous at x = 0. Verify it.

EXAMPLE 7 : Let a function f: R — R be defined as,

1
) fix) = —, x # 0
b
= 0, x=0
” 1
i) Ix) = —, ifx>0
X
=1, ifx<9
1 .
iii) f(x) = —, ifx <0
X

= 1, ifx>0
Test the continuity of the function. Determine the type of discontinuity if it exists.

SOLUTION

i) Here f(0+) and f(0-) both do not exist (as finite real numbers) and so
function is discontinuous. This is not a case of removable discontinuity.

ii) In this case, f(0) does not exist whereas f(0+) exists and f(0-) = f(0) = 1.
This is not a case of removable discontinuity.
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Now try the following exercises:

EXERCISE 6

Prove that the function f defined by f(x) = x sin 1/x if x # 0 and £f(0) = 1 has a
removable discontinuity at x = 0.

EXERCISE 7

Prove that the function |f| defined by |f| (x) = |f(x)| for every real x is
continuous on R whenever f is continpous on R.

EXERCISE 8

i) Find the type of discontinuity at x = 0 of the function f defined by
f(x) = x + 1ifx > 0,f(x) = - (x + 1) if x < 0 and £f(0) = 0.

i) The function f is defined by
1
f(x) = sin —, x #0
X

= 0, x=90
Is f continuous at 0?

9.5 SUMMARY

In this unit you have been introduced to the concept of the continuity of a
function at a point of its domain and on a subset of its domain. The limit
definition and (&, - 8)-definition of continuity have been given in Section 9.2. It
has been proved that both the definitions are equivalent. In the same section,
sequential definition of continuity has been discussed and illustrations regarding its
use for solving problems have been given. In Section 9.3, the algebra of
continuous functions is considered and it has been proved that the sum, difference,
product and quotient of two continuous functions at a point is also continuous at
the point provided in the case of quotient, the function occurring in the
denominator is not zero at the point. In the same section, we have proved that a
continuous function of a continuous function is continuous. Finally in Section 9.4,
discontinuous and totally discontinuous functions are discussed. Also in this
section, one kind of discontinuity that is removable discontinuity has been studied.

9.6 ANSWERS/HINTS/ SOLiJTlONS

El) i) The function f is not defined at x = 0. Therefore, f is not continuous at
x =0.

ii) This function is continuous at every point x # 1, since f(a) is defined at
every point a # 1 and lim f(x) = f(a). It is not defined at x = 1 and
X—~a

so not continuous at x = 1. If we define f(1) = 2, then the function is
continuous at x = 1.

iii) In this case again, f is continuous at all x # 0. See the graph in the

figure 1(b). Justify it by (8, 8)-definition. f is not defined at 0 and so
not continuous at 0.

. X+a , a-x
E2) |cos x -cos al] = {25sin sin
2 2

., X+ a , x-a

= 2 |sin sin
2 2

. X + . X-a

= 2 |sim sin

|




E3)

E4)

ES)

E6)

ET)

ES)

X-a

szlsin

= |x—a|.

Then proceed as in example 2.
Hence cos x is continuous on R.

Suppose (x,) is a sequence which converges to 0. Then,
lim f(x,) = lim (Vx,)
= Jh_m_xn = V0 = 0 = f(0)

which shows that f is continuous at x = 0.

i) The function f(x) = x? is continuous at x = a, for if (x,) is a sequence
which converges to a, then lim f(x,) = lim x} = (lim x)* = a’ = f(a)
which shows that f is continuous at a.

ii) This function is not continuous at x = 2 because hn% f(x) = 4 whereas
f2) = 1. *

Let a be rational in R. Then f(a) = 1. We have irrationals x as close to a as
we want, i.e., there exist points x in every neighbourhood of a such that

If(x) - f(a)] = 1 and so if & < 1, we cannot find a & > 0 such that for

[x - a] < §, |f(x) - f(a)] < §&, i.e., the function is not continuous at a.
Similar argument holds good when a is irrational. Hence, the function f is
discontinuous everywhere. It is clear from the above argument that f(a+) and
f(a-) also do not exist at any point a.

f(x) = x sin 1I/x if x # 0 and f(0) = 1

[f(x)] = |xsin 1/x| < |x|

since sine function is a bounded function with absolute value bounded by 1.
For &€ > 0, if'B =8§,0< |x] <6 =|fx)] < &, i.e., ’l(l_x}a ix) = 0.
Hence, f(0+) = f(0-) = ’1‘1_1_1(1) f(x) = 0. P

If we redefine f(0) = O instead of 1, we see that f is continuous at 0. Hence
0 is a removable discontinuity.

Since f is given to be a continuous function on R, f is continuous at any
point a in R. Hence, given & > 0, there exists a 6 > 0 such that,

|x - a| < b implies {f(x) - f(a)] < 8.
Now by triangle inequality for | |we get,
L) - 1f@)] [s [f(x) - f@)] < &

which proves that |f| : x — [f(x)| is continuous at a. a being hrbitraw, If| is
continuous on R. \

i) ’1(1_{%+ f(x) = ’l‘x_.mé x+ 1) =ie f0+) =1
lim f(x) = lim (- (x + 1)) = - 1i.e. f(0-) = -1
x—~0 x—0
f(0+) = £(0-)
Hence, 0 is a discontinuity which is not a removable discontinuity.

ii) The function f(x) = sin 1/x for x 0, £(0) = 0 has an jrremovable
discontinuity at x = 0 since neither f(0+) nor f(0-) exists. /

K})
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UNIT 10 PROPERTIES OF CONTINUOUS
FUNCTIONS |

STRUCTURE

10.1 Introduction
Objectives
10.2 Continuity on Bounded Closed Intervals
10.3 Pointwise Continuity and Uniform Continuity
10.4 Summary
10.5 Solutions/Hints/Answers

10.1 INTRODUCTION

Having studied in the last two units limit and continuity of a function at a point,
algebra of limits and continuous functions, the connection between limits and
continuity etc., we now take up the study of the behaviour of continuous functions
on bounded clos¢d intervals on the real line. In Section 10.2 you will learn that
continuous functions on such intervals are bounded and attain their bounds; they
take all values in between any two values taken at points of such intervals. In
Section 10.3 you will also be introduced to the concept of uniform continuity and
further you will see that a continuous function on a bounded closed interval is
uniformly continuous. This means that continuous functions are weli-behaved on
bounded closed intervals. Thus, we will see that bounded closed intervals form an
important subclass of the class of subsets of the real line which are known as
compact subsets of the real line. You will study more about this in higher
mathematics at a later stage. We will henceforth call bounded closed intervals of R
as ccmpact intervals.

The results of this unit play an important and crucial role in Real Analysis and so
for further study in analysis, you must understand clearly the various theorems
given in this unit. Some of the deep theorems of Block 3 are contained in this
unit.

It may be noted that an interval of R will not be a compact interval if it is not a
bounded or closed interval.

Objectives

After the completion of the study of this unit, you should be able to
o distinguish between the properties of continucus functions on bounded closed
intervals and those on intervals which are not closed or bounded.

" e@understand the important role played by bounded closed intervals in Real

Analysis.
@ know the concept of uniform continuity and its relationship with continuity.

10.2 CONTINUITY ON BOUNDED CLOSED
INTERVALS

We now consider functicns continuous on bounded closed intervals. They have
properties which fail to be true when the intervals are not bounded or closed.
Firstly, we prove the properties and then with the help of examples we will show
the failures of these properties. To prove these properties, we need an important
property of the real line that was discussed in Unit 1. This property called the
completeness property of R states as follows:

Any non-empty subset of the Real line R which is bounded above has the least
upper bound. Or eguivalently, any non-empty subset of R which is bounded below
has the greatest lower bound. .



In the following theorems we prove the properties of functions continuous on ° Properties of Continuous-
bounded closed intervals. In the first two theorems we show that a continuous Functions
function on.a bounded closed interval is bounded and attains its bounds in the

interval. Recall that f is bounded on a set S, if there exists a constant M > 0 such

that |f(x)] < M for all x € S. Note also that a real function f defined on a

domain D (whether bounded or not) is bounded if and only if its range f(D) is a
bounded subset of R.

THEOREM 1 : A function f continuous on a bounded and closed interval [a, b] is

necessarily a bounded function.

PROOF : Let S be the collection of all real numbers ¢ in the interval [a, b] such
that f is bounded on the interval [a, c]. That is, a real number ¢, in [a, b} belongs
to S if and only if there exists a constant M, such that [fx)| = M for all x in
[a, c]. Clearly, S # ¢ since 2 € S and b is an upper bound for S. Hence, by
completeness property of R, there exists a least upper bound for S. Let it be k
(say). Clearly, k = b. W prove that k € S and k = b which will complete the
proof of the theorgm..

Cprrespondi‘ng to & = 1, by the continuity of f at k(= b) there existsad > 0
such that

[f(x)- f(k)! < & = 1 whenever |x - k| < d, x € [a, b].
By the triangle inequality we have
| 0] - )] | <) - f)] <1
Hence, for all x in [a. b)-for which |x - k| <d, we haye that
If ) < [f)] + 1 ‘ (D)

Since k is the least upper bound of S, k~d is not an upper bound of S. Therefore,
there is a number ¢ € S such that

k-d<c=k

Consider any t such (hat k = t < k + d. If x belongs to the interval [e, t] then
|x -k} < d. For,

xE[c,t]=>c5xst=k—d‘<c3x.<_t<k+d ...(2)
Now ¢ € S implies that there exists M, > 0 such that for all
X € [a, c}, |f(x)] = M, ...(3)
x €[a, t] = [a, c] U [c, t] = either x € [a, c] or x € [c, t].
If x € [a, c], by (3) we have ’
x| = M < M, + (k)| + 1.
If, however, x € [c, t] then by (1) and (2) we have
G <|f@] + 1 < Mc + {fR)] + 1
In any case we get that x € [a, t] implies that _ )
Ifx) < M. + [fk)] + 1

This shows that f is bounded in the interval {a, t] thus proving thatt € S
whenever k = t < k + d. In particular k € S. In such a case k=b. For
otherwise we can choose a ‘t’ such that k < t < k + d and t € S which will
contradict the fact that k is an upper bound. This completes the proof of the
theorem.

Having proved the boundedness of the function continuous on a bounded closed
interval, we now prove that the function attains its bounds that is it has the
greatest and the smallest values.

THEOREM 2 : If f is a continuous function on the bounded closed interval [a, b}
then there exists points x; and x; in [, b] such that f(x;) < f(x) s f(x;) for all
X < {a, b]-@.e. f attains its bounds). . 37



Limit neid Contiumity m:FmMunl,wehmwthtfisboundedon[a,b].
Thueforeﬂ:eleu’stsanhthtlﬂx)l sMVxE[a,b].
Hﬂee.theeﬂauion[f(x):asxsb}hasanupperbound,
since f(x) < |f(x)] s MV x € [a, b].

So by the completeness property of R, the set {f(x) : a < x < b} has a least
upper bound.

'Letusdenotebyl(theleastupperboundof'(f(x):asxsb].
Thenf(x)storal]xsuchthatasxsb.Weclaimthatthcrecxistsxzin
[a,b]suchthatf(xz)=K.Ifthereisnosuchxz,thenK-f(x)>Oforall

a < x < b. Hence, the function g given by,

1
K - f(x)
i8 defined for all x in [a, b} and g is continuous since f is continuous (Refer
Unit 9). Therefore by Theorem 1, there exists a constant M’ > 0 such that
|gx)| = M’ Vx € [a, b)
Thus, we get

8(x) =

1 1 )
lgx)| = K-t - K- 1o =M

ie., fx) = K - —1;14— YV x € [a, b].

But this contradicts the choice of K as the least upper bound of the set

{f(x) : a = x =< b}. This contradiction, therefore, proves the existence of an X, in
[a,b] such that f(x;) = K = f(x) fora < x < b. The existence of x, in [a,b] such
that f(x;) < f(x) fora < x < b can be proved on exactly similar lines by taking
the g.L.b. of {f(x) : a < x < b} instead of the L.u.b. or else by considering -f
instead of f. (Try it).

Theorems 1 and 2 are usually proved using what is called the Heine-Borel property
on the real line or other equivalent properties. The proofs given in this unit
straightaway appeal to the completeness propgrty of the real line (Unit 2) namely
that any subset of the real line bounded above has least upper bound. These
proofs may be slightly longer than the conventional ones but it does not make use
of any other theorem except the property of the real line stated above.

As remarked earlier, the properties of continuous functions fail if the intervals are
not bounded or closed, that is, the intervals of the type

]a) b[a ]a) b]) [a’ b[9 [aa °°[: ]a) °°[’ ] -0, a]1 ] -, a[ or ] —oo,oo[.
We illustrate them with the help of the foilowing examples and exercises.

EXAMPLE 1 : Show that the function f defined by f(x) = x2 V x € [0, o[ is
continonous but not bounded. ;

SOLUTION : The function f being a polynomial function is continuous in {0, oof.
The domain of the function is an unbounded closed interval. The function is not
bounded since the set of values of the function that is the range of the function is
{x2:x €[0, o[} = [0, o[ which is not bounded.

' 1
EXAMPLE 2 : Show that the function f defined by f(x) = — V x €]0, 1] is
continuous but not bounded. X

SOLUTION : The function f is continuous being the quotient of continuous
functions F(x) = 1 and G(x) = x with ‘
G(x) # 0, x €10, 1] (Refer Unit 9).

Domain of f is bounded but not a closed interval. The function is not bounded
since its range is {1/x : x €10, 1[} = 11, oof which is not a bounded set.

EXERCISE 1
v Show that the function f defined by f(x) = x V x € ]-o, =[ is coatinnous but
38 ' not bounded.
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EXERCISE 2 : Show that the fanction f given by 1(x) =
V x €12, 3] is continuous but not bounded.

EXAMPLE 3 : Show that the fanction f such that f(x) = x Vx € 10, 1[
is continuous but does mot attain its bounds.

SOLUTION : As mentioned in Example 2, the identity function f is continuous in
10, 1[. Here the domain of f is bounded but is not a closed interval. The function
f is bounded with least upper bound (l.u.b) = 1 and greatest lower bound (&.1.b)
= 0 and both the bounds are not atfained by the function, since range of

f=1]o, 11

EXAMPLE 4 : Show that the function f such that

1 .
@ =5 Vx €], 1L
x
is continuous but does not attain its g.l.b.

SOLUTION : The function G given by G(x) = x2V x € 10, 1[ is continuous and
G(x) # 0V x € ]0, 1[ therefore its reciprocal function f(x) = 1/x? is continuous
in ]0, 1{ (Refer Unit 9). Here the domain f is bounded but is not a closed interval.
Further L.u.b. of f does not exist whereas its g.L.b. is 1 which is not attained by f.

EXERCISE 3
Show that the function f given by f(x) = sin x, x € 10, %/2[ is continuous but
does not attain any of its bounds.

EXERCISE 4
Prove that the function f given by f(x) = x2 ¥ x € ]-o0, O[ is continuous but does
not attain its g.1.b.

rs

We next prove another important property known as the intermediate value
property of a continuous function on an interval I. We do not need the
assumption that I is bounded and closed. This property justifies our intuitive idea
of a continuous function namely as a function f which cannot jump from one
value to another since it takes on between any two values f(a) and f(b) all values
lying between f(a) and f(b).-

THEOREM 3 : (Intermediate Value.Theorem). Let f be a continuoué function on
an interval containing a and b. If K is any number between f(a) and f(b) then
tilere is a number ¢, 8 < ¢ < b such that f(c) = K.

PROOF : Either f(a) = f(b) or f(a) < f(b) or f(b) < f(a). If f(a) = ‘f(b) then
K = f(a) = f(b) and so™c can be taken to be either a or b. We will assume that
f(a) < f(b). (The other case can be dealt with similarly.) We can, therefore,
assume that f(a) < K < f(b).

Let S denote the coliection of all real numbers x in fa, b} such that f(x) < K.
Clearly S contains a, s0 S # ¢ 2rd b is an upper bound for S. Hence, by
complecteness property of R, S has least upner bound and let us denote this least
upper bound by ¢. Then a < ¢ < b. We want to show that fc) = K.

Since f is continuous on [a, b], f is continuous at c. Therefore, given & > 0, there
exists a § > 0 such that whenever x is in [a, bl and {x - ¢| < 3, |f(x) - f(c)] < §,

e, fc) - & < f(x) < f(c) + &. ...(4)

If ¢ # b, we can clearly assume that ¢ + § < b. Now c is the least upper bound
of S. So ¢ - § is not an upper bound of S. Hence, there exists a y in S such that
€-8 <y = c. Clearly |y - ¢c|] < & and so by (4) above, we have

flc) - & < f(y) < f(c) + &.

Since y is in S, therefore f(y) < K. Thus, we get

)-8 <K 39
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Ifnowc = bthenK - & < K < f(b) = f(0), i.e., K < f(c) + & If ¢ # b, then

€ < b; then there exists an x suchthat c < x < ¢ + 8, ¢ + §, x € [a, b] and for

this x, f(x) < f(c) + & by (4) above. Since x > ¢, K =< f(x), for otherwise x
would be in S which will imply that c is not an upper bound of S. Thus, again we
have K =< f(x) < f(c) + €.
In any case,

K< fc) + & ...(6)
Combining (5) and (6), we get for every & > 0

fc)-&E <K < f(c) + &
which proves that K = f(c), since € is arbitrary while K, f(c) are fixed. In fact,
when f(a) < K < f(b) and f(c) = K, thena < ¢ < b.

COROLLARY 1 : If f is a continuous function on the closed interval [a, b] and if
f(a) and f(b) have opposite signs (i.e., f(a) f(b) < 0), then there is a point x, in
]a, b{ at which f vanishes. (i.e., f(xg) = 0).

Corollary follows by taking K = 0 in the theorem.

COROLLARY 2 : Let f be a continuous function defined on a bounded closed
interval [a, b] with values in [a, b]. Then there exists a point ¢ in [a, b] such that
f(c) = c. (i.e., there exists a fixed point c for the function f on [a, b]).

PROOF : If f(a) = a or f(b) = b then there is nothing to prove. Hence, we
assume that f(a) # a and f(b) # b.

Consider the function g defined by g(x) = f(x) - x, x € [a, b]. The function g,
being the difference of two continuous functions, is continuous on [a, b]. Further,
since f(a), f(b) are in [a, b], f(a) > a (since f(a) # a, f(a) € [a, b)) and f(b) < b.
(Since f(b) = b, f(b) € [a, b]). So, g(a) > 0 and g(b) < 0. Hence, by Corollary
1, there exists a ¢ in ]a, b[ such that g(c) = 0, i.e., f(c) = c. Hence, there exists a
¢ in-[a, b} such that f(c) = c.

The above Corollary 1 helps us sometimes to Jocate some of the roots of
polynomials. We illustrate this with the following example.

EXAMPLE 5 : The equation x* + 2x - 11 = 0 has a real root lying between
1 and 2.

SOLUTION : The function f(x) = x* + 2x - 11 is a continuous function on the
closed interval [1, 2], f(1) = -8 and f(2) = 7. Hence, by Corollary i, there exists
an Xy € ]1, 2[ such that f(xg) = 0, i.e., xg is a real root of the equation

x* 4+ 2x - 11 = 0 lying in the interval ]1, 2[.

Try the following exercises:

EXERCISE § :

Show that the equation 16x* + 64x> - 32x* - 117 = 0 has a real root > 1.
EXERCISE 6

Prove that the equation cos x - x = 0 possesses a root lying in the interval
10, = [. i

EXERCISE 7 .

Prove that any polynomial of odd power with real coefficients has at least one real
root.

EXERCISE 8 '

Show that the equation 4x> — 9x2 - 6x + 2 = 0 has a real root in each of the
intervals ] -1, 0 [, ] 0,1 [and ]2, 3[.

10.3 POINTWISE CONTINUITY AND UNIFORM
CONTINUITY

In this section, you will be introduced with the concept of uniform continuity of a
function. The-concept of uniform-continuity is given in the whole domain of the
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function whereas the concept of continuity is pointwise that is it is given at a Properties of Continnons
point of the domain of the function. If a function f is continuous at a point a in a Functions
set A, then corresponding to a number & > 0, there exists a positive number §(a)

(we are denoting & as 6{(a) to stress that § in general depends on the point a

chosen) such that |{x - a | < 8(a) implies that |f(x) - f(a)] < &. The number & (a)

also depends on & When the point a varies 8(a) also varies. We may or may not

have a & which serves for all points a in A. If we have such a 6 common to all

points a in A, then we say that f is uniformly continuous on A. Thus, we have the

following definition of uniform continuity.

DEFINITION : Uniform Continuity of a Function
Let f be a function defined on a subset A contained in the set R of all reals It

corresponding to any number € > 0, there exists a number 0 > 0 (depending only on
€) such that )

| x-yl <d,x,yeA = fx)-fy)l <€
then we say that f is uniformly continuous on the subset A.

An immediate consequence of the definition of uniform continuity is that yniform
continuity in a set A implies pointwise continuity in A. This is proved in the
following theorem.

THEOREM 4 : If a function f is uniformly continuous in a set A, then it is
continuous in A.

PROOF : Since f is uniformly continuous in A, given a positive number &, there
corresponds a positive number é such that

[x -yl <&x,y €A = |f(x)-f(y)] < & (7
Let a be any point of A, In the above result (1), take y = a. Then we get,
jx-a]l <& x EA = |f(x)-f@)] < &

which shows that f is continuous at ‘a’. Since ‘a’ is any point of A, it follows that
f is continuous in A.

Now we consider some examples.

EXAMPLE 6 : Show that the function f: R — R given by
fx) = xVx €R.
is uniformly continuous on R-
SOLUTION : For a given & > 0, 6 can be chosen to be & itself so that
x-yl <8 =28= |- f») = [x-y| <& '
EXAMPLE 7 : Show that the function f: R — R given by
fx) = x2¥x ER

is not uniformly continueus on R.

SOLUTION : Let & be any positive number. Let 8 > 0 be any arbitrary positive
number. Choose x > &/6and y = x + 6/2. Then . -

: o
X - = — < 4.
Ix -yl 5

[x* -~y = |x + y] Ix -yl

(- (2

s /28 b 52
>—<"“"‘+—>=8+T>8.

[£(x) - f(y)

I

2x + —

2\ 2

That is whatever § > 0 we choose, there exist real numbers x, y such that
Ix - y] < & but [f(x) - f(y)}]. > & which proves that f is not uniformly continuous.
But we know that f is a continuous function on R. 41
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EXAMPLE 8 : In the above example if we restrict the domain of f to be the
closed interval [-1, 1), then show that { is uniformly continuous on (-1, 1].

SOLUTION : Given & > 0, choose 6 < 12— If|x-y| < 6andx, y € [-1, 1],
then using the triangle inequality for | {we get,
Ifx) - f0)] = x> -y3 = Ix + y| x -yl
< 8 (Ix} + iyD
< 26 (since |x| < L, |yl = 1)
< §&.

You should be able to solve the following exercises:

EXERCISE 9

_Show that f(x) = x° n > 1 is not uniformly continuous on R even though for

each n > 1, it is a continuous function on R.

EXERCISE 10

1
Show that the function f(x) = — for 0 < x < 1 is continuous for every x but not
uniformly on 10, 1[. X

EXERCISE 11 1

Show that the function f(x) = sin — is not uniformly continuous on the interval
, X

]0, 1[ even though it is continuous in that interval.

EXERCISE 12

S_how that f(x) = cx where ¢ is a fixed non-zero real number is 2 uniformly
continuous function on R.

We have seen in Exercise 10 that the functior) defined by f(x) = 1/x on the open
interval 10, 1[ is not uniformly continuous on }0, 1[ even though it is a continuous
function on J0, 1[. Similarly, in Example 7, the function f defined as f(x) = x2is

- continuous on the entire real line R but is not uniformly continuous on R.
. However, if we restrict the domain of this function to the bounded closed interval

[-1, 1], 'then it is uniformly contihuous. Tuis property is not a special property of
the function f, where f(x) = x2 but is common to all continuous functions defined
on bounded closed intervals of the real line. We prove it in the following theorem.

THEOREM 5 : If f is a continuous funcﬁon on a bounded and closed interval
[a, b] then f is uniformly continuous on [a, b].

PROOF : Let f be a continuous function defined on the bounded closed interval

. [a, b]. Let S be the set of all real numbers c in the interval [a, b} such that for a

given & > 0, there exists positive number d. such that for points x,;, X, belonging
to closed interval [a, c],
|f(xy) - f(xp)| < & whenever |x; - %;| < d..

(In other words f is uniformly continuous on the interval {a, c]. Clearly a € S so
that S is non-empty. Also b is an upper bound of S. From completeness property
of the real line S has least upper bound which we denote by k. k < b.

f is continuous at k. Hence given & > 0, there exists positive real number dy such
that ‘

jf(x) - f(k)] < &/2 whenever |x - k| < dx ...(8)

1
Since k is the least upper bound of S, k - —i— d, is not an upper bound of S.

Therefore there exists a point ¢ € S such that

k-1/2d <c sk ‘ ...(9)
Since ¢ € S, from the definition of S we see that there exists d. such that
1f(x)) - f(x)] < & whenever [x; ~ x| < d, X5, X2 € [a, ¢] ...(10)



Let ¢ = min ((1/2) dy, d;) and b’ = min. (k + (1/2) dy, b).

Now let x;, X € [a, b’] and |x; - x;| < d. Then if xj, x; € [a, c], |x; - %z] < d
< d, by the choice of d and d,, then |f(x,) - f(x;)| < & by (10). If one of x,, x; is
not in [a, c], then both x,, X, belong to the interval Jk - dy, k + dy[. For x, ¢

[a, c], implies b’ = x; > ¢ > k - (1/2) dy > k - dy by (9) above. This means

Xx; < b’ implies x; < k + (1/2) dy < k + d, by the choice of b’. i.e.

k-d, <k-(172)dy < x; <k + (172) dy < k + dy ..(11)
|x; - X;] < d implies that x; - (1/2) dy < x; < x; + (1/2) dy since d < (1/2) dy
by the choice of d. Thus we get from (11) above that 1 )

k-d < x,-(1/2)dy < x3 < x1+(1/2) d, < k+<?> dy+— dy=k+d;

) ...(12
Then (11) and (12) show that x,, x, € ]k - d;, k+d;|. @
Thus we get that |x; -k| < dy and }x; - k| < dy, which in turn implies, by (8)
above, that {f(x;) - f(k)| < &/2 and [f(xy) - f(k)| < &/2.

Thus |f(x;) - f(x)| = |f(x;) - (k)] + |f(k) - f(x))] < &/2+8&/2 = &. In other
words, if |x; - X5| < d and x,, X, are in [a,U] then |f(x)) - f(x;)] < & which

_proves that b’ € Si.e. b’ < k. But k < b’ by the choice of b’ since k <

k+(1/2) dy and k < b. Thus we get that k = b’. This can happen only when

k = b. Forif k < b.i.e. k = b’ = min (k+(1/2) di, b) < b, then it implies
that min (k+(1/2) dy, b) = (k+(1/2) d, = b’, where b’ € Si.e. k+ (1/2) dy is
in S and is greater than k which is a contradiction to the fact that k is the l.u.b of
S. Thus we have shown that k = b € S. In other words there exists a positive
number d, (corresponding to b) such that |x; - X;| < dyp, X;, X € [a, b] implies
|f(x;) - f(x3})| < &. Therefore f is uniformly continuous in [a, b}.

. You may note that uniform continuity always implies continuity but not conversely

(see Exercise 10). Converse is true when continuity is in the bounded closed
interval.

Before we end this unit, we state a theorem without proof regarding the continuity

of the inverse function of a continuous function. :

THEOREM 6 : Inverse Function Theorem
Let f: I — J be a function which is both one-one and onto. If f is continuous on
I, then f! : J — I is continuous on J.
For example the function
-r

f: [ - ﬂ — [-1, 1] defined b?'

f(x) = sin x,

. —T !
is both one-one and onto. Besides f is continuous on [ N — 1] - Therefore, by
Theorem 6, the function 2 2

fh[-1,1] — [—-_51, %] defined by

f-(x) = sin’!x '
is continuous on [-1, 1].

16.4 SUMMARY

In this unit you have been introduced to the properties of continuous functions on
bounded closed intervals and you have seen the failure of these properties if the
intervals are not bounded and closed. In Section 10.2, these properties have been
studied. It has been proved that if a function f is continuous on a bounded and
closed interval, then it is bounded and it also attains its bounds. In the same
section we proved the Intermediate Value Theorem that is if f is continuous on an
interval containing two points a and b, then f takes every value between f(a) and

- f(b). In Section 10.3, the notion of uniform continuity is discussed. We have

proved that if a function f is uniformly continuous in a set A, then it is

-
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continuous in A. But converse is not true. It has been proved that if a function is
continuous on a bounded and closed interval, then it is uniformly continuous in

the interval. These properties fail if the intervals are not bounded and closed. This
has been illustrated with a few examples.

10.5 SOLUTIONS/HINTS/ANSWERS

El)

E2)

E3)

E4)

ES)

E6)

E7)

E8)

Continuity at any point ¢ of ]-co, o[ follows easily |f(x) -f(c)] = |x - c|
< 8if|x -c| < 5 where § = .
Range of f=]-o, oo[ which is not bounded and so f is not bounded.

The functions F and G given by F(x) = 1 and G(x) = (x-2)2V x €] 2, 3[
are continuous and G(x) = 0 in ]2, 3[ and so

g((—’;)) = (x_-l?.;{ i.e. f(x) = 2)? is ‘continuous in 12, 3{. Its range ]1,00[

is not bounded.

Continuity of f is proved in Unit 9.

Range of f = ]0, 1[.
g.1.b. f=0 & L.u.b. f=1 and they are not attained.

Continuity of f can be proved easily, (Refer Unit 9) g;l'.b. of f is 0 which
is not attained by f.

f(x) = 16x* + 64x* - 32x? - 117

being a polynomial is a continuous function on the interval
[1,2). f(1) = 16 + 64 - 32 -117 = 69 < 0.

f(2) = 256 + 512 - 128 - 117 = 523 > 0

Hence by Corollary 1 of Theorem 3 there exists an Xo in 11, 2[ such that
f(xo) = 0. i.e. there exists a root xy, 1 & Xp < 2 of the equation

16x* + 64x> - 32x% - 117 = 0.

Let f(x) = cos x -x. Then f is a continuous function on {0, «].

f(0) = 1 > 0 and f(x) = -(1+x) < 0. Hence there exists an x in 10, x{
such that f(x) = 0. i.e. there exists a real root for cos x-x = 0 between 0
and «.

Let f(x) = a3 x™*! + ... + a, be a polynomial of odd degree, ay,, |
# 0.1t is a continuous function on the whole of the real line R. We will
suppose without loss of generality that a,,,; > 0.

o f® f
Then lxlina ‘ ;—ﬁ = a4 > 0.

Hence we can find a real number b large enough so that f(b) > 0.
fT??T = + ax{; > 0. Hence we can find a real

X—0 X

(Justify this) lim

number a such that f(a) < 0 (when x is negative, x2**! is negative). f is
continuous on the interval [a, b), f(a) < 0 and f(b) > 0. Hence, by .
Corollary 1 of Theorem 3, there exists a real number Xo in ] a, b[ such that
f(x)) = 0. xo is then a real root of the polynomial f.

If f(x) = 4x3 - 9x% - 6x + 2,

then f is a continuous function on the whole real line R and hence on the
intervals [-1, 0}, [0, 1] and [2, 3] also.

f(-1) = -4-9 + 6+2 < O 2nd f(0) = 2 > 0.

Hence there exists a root x, in the interval -1, O
f0) =2>0
f) =4-9-6 + 2 < 0.



E9)

E10)

E11)

E12)

Hence there exists a root x; in the interval 0, 1|

f2) =32-36-12 +2<0

f(3) = 108 - 81 -18 + 2 < 0.

Therefore again there exists a root x, in the interval ]2, 3 [.

f(x) = x*, n > 1. Already we have proved in Example 7, that f(x) = x2 is
continuous on R but not uniformly continuous.

The proof for a general n > 1 is very much similar.

Let now f(x) = x", § > 0 be arbitrarily chosen and kept fixed. Let £ be
any positive number. Choose x > 1, where

28 1/n-1
1> —
(&)

ie.n > —%;—;— Takey = x + 6/2, then |x-y| = 6/2 <-8and x,y > 1.
Ifx) - f() | = [x" - y9 = |x-y [x*! + x"2y. 4+ x*3y2 4+ ... xy"‘2+y""|

> (6/2) n > (8/2) —ZGE = &.

Therefore f is not uniformly continuous.

1
fx) = —for0 < x < 1.
X

Let a be fixed such that 0 < a < 1. Then x, (0 < x, < 1) converges to a

.. 1 1 . . .

implies that — converges to —, hence f is continuous at a. a being

a
n

arbitrary, f is continuous on ] 0, 1[. Let & > 0 be given. Let § > 0 be an
arbitrarily chosen positive number and kept fixed. Choose M large enough
so that

1
M > (6/5) (1+8). Takeaysuchthat 0 < y < V

) 1
Putx=y+—.Thenx<—+i=L(l+B)
M M M M
Hence
1 1 - d M Mé
o - f)f = |[—- L] =P S8y M > &
X y Xy M 1+6 1+6

by the choice of M, whereas |[x-y| = 6/M < .
This proves that f is not uniformly continuous.

f(x) =sinl/x,0 < x < 1.

1 .
The function g(x) = — is a continuous function on ]0, 1[ and also
X

h(x) = sinxis a continuous function on ]0, 1[. Hence f(x) = h(g(x)) is a
continuous function on }0, 1[. We will now prove that it is not uniformly
continuous on ]0, 1[. Let 0 < § < 2 and & > 0 be any positive number.
Take :

2 2

T @+ T @ken

Let k be chosen large enough so that
|x-y| < 6. Then

£60- )| = an @K T @kt Da|

1 D |
sin — - sin — 2> 8.
X

y
Hence f is not uniformly continuous.

Let & > 0. Choose 6 < &/ c|. Then whenever | x-y| < 8, we have
[fx) - ()| = |ex-cyl =|c||x-y| <|c| & < & and so f is uniformly
continuous.

Properties of Continuous
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REVIEW

In this block, you have been introduced to the concept of the limit of a funiction
f(x) as x tends to a point ‘a’. You were also acquainted with the notion of the
sequential limit. Subsequently, the notion of continuity and uniform continuity of
a function has been discussed. Further the properties of functions continuous on
bounded closed intervals have been proved. You have also seen the failure of these
properties if the functions are continuous on intervals which are not bounded or
closed. You should now attempt the following self-test questions to ascertain
whether or not you have achieved the main objectives of learning the material in
this block. You may compare your solutions/answers with those given at the end.

1. Find the limits of the following functions:

(i) f(x)=xcosl,x¢0,asx—’0.
X
(ii) f(x)=-—|i,x#0,asx—°°o
x
i) ) = 22 x %0, a5 x —

2. For the following functions, find the limit, if it exists:

) f(x)=Mforx#bwhereb>0,asx-*b
x_

.. 1 . .

(ii) f(x)=—lmtorx¢0,asx-00

o 1 -xwhenx <1

(i) f(X)=[ , asx — 1.
2x when x > 1.

3. Test whether or not the limit exists for the following:
3-xwhenx > 1 P

(i fx) = lwhenx =1, asx — 1.
2x whenx < 1.
2—
G f)= ~=% xeRasx— 1.
X+ 4 i
i) f) = 2 F X2 o 0asx -0
X < ‘
1 1 2 )
iv) f(x) = - Yasx — 1.
) ftx) x—1<x+3 3x+5>a”

4. Discuss the continuity of the followirig functions at the points noted against

each, :

. . x? for x # 1.
@) fx) = {
0 forx = 1.
asx — 1.
. lfor0 = x<1
(i) fx) = {
: 0 otherwise
asx — 1.
2 -
i) f) = 2 whenx # 1.
f) = 2

as x — 1.



10.

1/x ; " Mevisw.
@) 1) = {(1 + x)"*ifx %0
1 ifx =0
asx — 0.

© o) = {xzsin—;—ifx #0
1 ifx =0
asx — 0.
Show that the function f : R — R defined as
1
1 + |x|
does not attain its infimum.

f(x) =

Show that the function f : R — R such that
f(x) = x is not bounded but is continuous in [1, oof.

Which of the following functions are uniformly continuous in the interval
noted against each? Give reasons.

@ f(x) = tanx, x € [0, x/4]

i) f) = ‘3 on [1, 4].

Xz—

Which of the following functions have removable discontinuity at x = 07

. (1 + x)" forx = 0
@) f(x) = {
1 forx =0
. ﬂ for x # 0
(i) fx) = X
2 forx =20
. i
Sin x forx # 0
(iii) f(x) = X
2 forx=0
. 3‘x2lfor x %0
(iv) fx) = ¢ x| + x
1 ‘forx = 0

Give an example of the following:

(i) A function which is nowhere continuous but its absolute value is
everywhere continuous. '

(ii) A function which is continuous at- one point only.

(iii) A linear function which is continuous and satisfies the equation
fix + y) = fx) + f(y). .

(iv) Two uniform continuous functions whose product is not uniformly
continuous.

State whether or not the following are true or false.

(i A polynomial function is continuous at every point of its domain.

(i) A rational function is continuous at every point at which it is defined.
(iii) If a function is continuous, then it is always uniformly continuous.

(iv) The functions e* and log x are inverse functions for x > 0 and both are
continuous for each x > 0.

(v) The functions cos x and cos~'x are continuous for all real x.

(vi) Every continuous function is bounded. 47



(vii) A continuous function is always monotonic.
(viii) The function sin x is monotonic as well as continuous for x € [0, —T].

(ix) The function cos x is continuous as well as monotonic for every
x € R. :

(x) The function {x|, x € R is continuous.

ANSWERS/HINTS

1.

2.

48 9.

(i) Limit is zero, since

1
x cos —| < |x|
S

and limit of |x} as x tends to 0 is zero.

@ lm f = lim X0

X-~0o X
(iii) X s—forx¢0andhm—l——
I x> |x|
So lim f(x) = 0.
X— 0o
. 1
i) ——.
@ e
(ii) 1.
(iii) lim f(x) = 0 and lim f(x) = 2. So lim f(x) does not exist.
x—1- X1+ x—1
(i lim 1(x) = 2and lim f(x) = 2.
x—1- x—1+

;. lim f(x) exists and is 2.
x=-1
.. 3
i) - —.
(i1) P
oo
iii) —.
(iii) a
) 1
iv) —.
() — |
(i) Lim f(x) = 1 but f(1) = 0. So fis discontinuous at 1.
x-—1 vl
(i) Lim f(x) = 1 and Lim f(x) = 0. So Lim f(x) does not exist.

x—1+ x—1- x—1

So f is discontinuous at x = 1.

(iii) Lim f(x) does not exist. So f is discontinuous.

x—1

(iv) Lim f(x) = e but f(0) = 1. So f is discontinuous at 0.

x—0

(v) Lim f(x) = 0 but f(0) = 1. So f is discontinuous at 0.

x—0
Inf. f = 0 which is not attained by f.

Range of f = [1, oo] which is not bounded.

Both the functions are uniformly continuous since they are continuous in
bounded closed intervals.

(i) and (ii).

o) { e

1 if x is rational

-1 if x is irrational



(i) { fx) = «x if x is rational

=-X if x is irrational
the only point of continuity is 0.
(iii) f(x) = Cx, ¥ x € R where C is a fixed constant.
(iv) f(x) = x, g(x) = sinx, Vx ER
Both f(x) and g(x) are uniformly continuous but their product
f(x) g(x) = x sin x
is not uniformly continuous on R.

10. (i) True
@) True
(iii) False
(iv) True
(v) True
(vi) False
(vii) False
(viii) True
(ix) False
(x) True
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BLOCK 4 DIFFERENTIABILITY

PREVIEW

‘We live in a world of change. Our values, ideals, policies, hopes, institutions etc. are -
‘undergoing a constant change. Certain changes are happening too rapidly, while other changes
.are slow. Although the idea of change is important, yet it is the rate of change that is more
relevant. For example, in the study of population growth of India, it is not enough to know
that the population is increased to double than what it was 30 years before. It is equally
important to know the rate at which this increase took place because several aspects of the
icountry’s development are linked with it. One of the important mathematical tools that is used
‘to measure such rates is given by Calculus — one of the most beautiful areas of Mathematics.

{Calculus, even since its discovery in the late 17th century, has been dominating the study of
Mathematics because of its wide applications. Historically, as you know that, Calculus has
been divided into two branches — Differential Calculus and Integral Calculus. The
Diﬂ’erentialCalculusis~usedtoﬁndmtmofchangeandslopsofungentstoctnrvwwhile
lntegmlCalaﬂmisusedtoﬁndareasofﬂwmgionswhichmboundedbythccuw&.ﬂe
basic idea of Différential Calculus is the differeatiation of a function and that of Integral
Calculus is the integration of a function. The differentiation and integration are two
’ tal limiting processes of Calculus which are closely related to the study of Real
E?ysis

the

. Isolated instances of these processes in Calculus were considered in the ancient times

systematic development of calculus was started in 17th century by the two great
j Newton and Leibniz. The key to this systematic development is the intimate inverse

ionship between the two concepts. Many persons such as Fermat, Galileo, Kepler

contributed to the foundations of Calculus. In the 19th Century, with the careful formulation
of the concept of limit and with the analysis of nuniber system, the notions of the derivative
and integral of a function were strongly founded. The explicit formulation of continuity and
‘Hiffercntiability in terms of limits was the main contributions by Cauchy. This set the pattern
for the subsequent expositions of the subject by Rolle and Lagrange among others.

In this block, we shall deal with the notion of the derivative of a function and certain basic
results given by Rolle, Lagrange and Cauchy. We shall conclude this block by discifssing some
spplications of the derivative of a function. There are three units in this block namely Unit 11,
Unit 12 snd Unit 13 as depicted in the following picture.

Unit 11
Derivatives
Limit
Unit 12 ‘ Unit 13 .
Mean-Value > Higher-Order
Theorems Derivatives

Itll Unit 11, we introduce the notion of the derivative of a function and give its geometrical
terpretation. Also, we discuss its relationship with the continuity of a function and then we
ine the algebraic operations of addition, subtraction, multiplication and division on the

-fferentiable functions.

‘l.!nit 12 deals with the important contributions made by Rolle, Lagrange and Cauchy in the

form of mean-value theorems. We also discuss the generalized mean-value theorem,

itermediate-value theorem and Darboux theorem.

In Unit 13, we confine our discussion to Taylor’s and Maclaurin’s theorems and discuss

:}plicaﬁons of differentiability to evaluate some indeterminate forms of the functions as well
their extreme-values.



NOTATIONS AND SYMBOLS

is equal to

is not equal to

is greater than

is less than

is not less than

is not greater than

is a member of (belongs to)
is not a member of (does not belong to)
is a subset of (is contained in)
is not a subset of (is not contained in)
is a superset

Union

intersection

empty set’

implies

implied by

if and only if

equivalence relation

for all

there exists

multiplication

addition

subtraction

supremum

infimum

minimum

maximum

composition

derivative of {

inverse of a function f

- oggaé 4 moag ) 0ﬂu$DCUﬂﬁ~mmVA/\V1 [

exp exponential

log logarithm

In natural logarithm

sgn signum

(x] greatest integer not exceeding x

absolute value of x or Modulus of x
set of positive real numbers
set of real numbers

Set of irrational numbers
set of rational numbers

set of integers

set of natural numbers
field

set of complex numbers
closed interval

open  nterval

OMZNO™ RN

&

M|+ FFET
&

Greek Alphahes
Adphia
Heta
Gama
Delta
Epsilon
Zeta
Eta
Theta
lota
Lambda
Mu
Nu
exi
Pi
(capital Pi)
Rho

(X) Sigma (capital Sigma)
Tou
Phi
Chi
Psi
Omega

E e~ 20D JYIMYE > dITMOI TR

semi-open interval (open at left)—semi-clos~d interval

, b semi-open interval (open at right)—semi-closed interval
L mfinity
oo minus infinity
sum
o0
E;lu . infinite series
(sa) sequence
s complement of S
s’ derived set of S

3 closure of S



Sttt A . SR 24

ST R A TR TR

UNIT 11 DERIVATIVES

Structure

11.1  Introduction
Objectives

11.2  Derivative of a Function’
Geometrical Interpretation

11.3  Differentiability and Continuity

11.4  Algebra of Derivatives

11.5 Sign of a Derivative

11.6  Summary

11.7 Answers/Hints/Solutions

11.1 INTRODUCTION

You hawe been introduced to the limiting process in various ways. In Block I, this process was
discussed in terms of the limit point of a set. The limit concept as applied to sequences was
studied in Block 2. In Block 3, the limit concept was formalized for any function in general. It
was used to define the continuity of a function. We now consider another important aspect of
the limiting process. This is in relation to the development of the derivative of a function.

You may think for a while that perhaps there is some chronological order in the historical
development of the limiting process. However, this is, perhaps not the case. As a matter of fact
historically Differential Calculus was created by Newton and Leibnitz long before the structure
of real members was put on the firm foundation.

Moreover, the concept of limit as discussed in Unit 8 was framed much later by Cauchy in
1821.How,ﬂlen,kﬂ\eﬁmitcmceptusedhthedevelopmentofﬂ\edeﬂliﬁmofdle
derivative of a function? This is the first and the foremost question, we have to tackle in this
unit. Besides, we have to answer a few more related questions viz. What is the geometrical
neanhgofﬂledeﬁvativeofaﬁmcﬁon?’meanswertothisquesﬁonwillhelpyouin
appreciating the geometrical significance of some important theorems to be discussed in

Unit 12.

The limit concept is common to both continuity and differentiability of a function. Does it
hdimtesomecmnecﬁmbetweenﬂlenoﬁomofcmﬂmitymdiﬂerenﬂab&y?lfw,
then what is the refationship between the two notions? We shall find suitable answers to
these questions. Also, we shall discuss the tharacterization of the monotonic functions (refer to
Unit 4) with the help of the derivative of the function '

OBJECTIVES

Therefore, after studying this unit, you should be able to

® define the derivative of a function at a point and give its geometrical meaning

® apply the algebraic operations of addition, subtraction, multiplication and division on the
derivatives of functions ,

® obtain a relationship between the continuity and differentiability of a function

® characterise the monotonic functions with the help of their derivatives.

11.2 | DERIVATIVE OF A FUNCTION

The well-known British Mathematician Issac Newton (1642-1727) and the eminent German
mathematician G.W. Leibnitz (1646-1716) share the credit of initiating Calculus towards the
end of seventeenth century. To some extent, it was an attempt to answer problems already

tackled by ancient Greeks but primarily Calculns was created to treat some major problems
viz.

i) To find the velocity and acceleration at any instant of a moving object, given a function
describing the position of the object with respect to time.
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ii) To find the tangent to a curve at a given point.

iii) To find the maximum or minimum value of a function.

These were some of the problems among others which led to the development of the
derivative of a function at a point. We define it in the following way :

DEFINITION 1 : DERIVATIVE AT A POINT

Let f be a real function defined on an open interval Ja, b[. Let ¢ be a point of this interval so
that a << ¢ <b. The function f is said to be differentiable at the point x = c if

lim f(x) — f(0)

et x —¢

exists and is finite.

We denote it by f'(c) and say that 'f is derivable at x = ¢’ or ‘f has derivative at x = ¢’ or
simply that f’(c) exists. Further £°(c) is called the derivative or the differential co-efficient of
the function f at the point c.

f(x) — f(c)
) X—¢

at the point c, the expression must be defined in a NBD of the point c. In other words, the
function f must be defined in a NBD of the point c. It is because of this reason that we have to
define the derivative of a function at a point ¢ in an open interval ]a, b[.

If
lim f(x) f(c)

x—=c+ X—cC

exists and is finite, thenwesaythathsdenvablefromdlenghtatc It is denoted by f'(c +)
or R f(c). Also it is called the right hand derivative of f at .

Note that in the definition of the derivative, to evaluate the limit of the expression

Similarly, if
f(x) — f(c)
l-—c— X—C

exists and is finite, then we say that f is derivable from the left at c. It is denoted by f*(c —)
or Lf’(c). It is also called the left hand derivative df f at c.

From the definition of limits in Unit 8, if follows that f’(c) exists if and only if Lf’(c) and
Rf’(c) exist ana

Lf*(c) = Rf"(c)

ie.

f*(c) exists<<=> Lf’(c) & Rf’(c) exist and Lf’(c) = Rf’(c).

For example, consider the function f defined on Ja, ¥ as

fix) = x*V x €, b.
lztcbeanmtenorpomtof]a,b[nea<c<bThen
= i f®) — f©)
Lf(c) x—c+ X—cC
— . fc —h) —fic)
=i >0
— lim c—h —(©’ — 2%
b0 —h
Similarly, you can calculate Rf’(c) and obtain
Rf’(c) = 2

This shows that Lf’(c) = Rf’(c) = 2c. Hence f’(c) exists and is equal to 2c.

We have taken the point ¢ as a point of the interval Ja, b{. What happens if { is defined in a_
closed interval [a, b] and either ¢ = a or ¢ = b or ¢ takes any value in the interval? To answer
these questions, we give the following definitions :

DEFINITION 2 : DERIVATIVE IN AN INTERVAL
Let the function f be defined on the closed interval [a, b]. Then

(1) fissaid to be derivable at the end point a i.e. f’(a) exists, if



lim —fg)—(l:—;(alexists. In other words

x—~a+ X

) = lim Q1@

x—~a+ X—a

(i) Likewise we say f is derivable at the end point b

. f(x) — f(b)
1111:_ x—b
exists and
F(o) = tim DO

x—~b— x—b

(tii) If the function f is derivable at each point of the interval Ja, b[, then it is said to be
derivable in the'open interval ]a, b[.

(iv) If f is derivable at each point of the open interval Ja, b[ and also at the end points a and b,
then f is said to be derivable in the closed interval [a, b).

“We can similarly define the derivability in [a, b[ or Ja, b]or ] — oo, a[ or ] — oo, af or Ja, f or
[a, [ or R =] — oo, o]
Note that for finding lim “—’2—:@

x—c+

, generally we write x = ¢ + h,so that x —c is

“equivalent to h — 0. Accordingly, then we have

lim (O =f0) _ (. St —fo
x—~c+ X —C b0 h
and f'(c) = !,LT i(E_"'_hz_"_f(_C)_

Now let us discuss the following examples :
EXAMPLE 1: Let f: R — R be a function defined as

0 fx)=x"¥x€eR
where n is a fixed positive integer, and i

(i) f(x) =k, ¥ x€R
where k is any fixed real number.

Discuss the differentiability of f at any point x €R.
SOLUTION : (i) Let ¢ be any point of R. Then

o —fe) .. x"—¢

lim ———————=1lim ———

x—=¢ X—C x—¢ X—¢C
= lim "+ e+ x4 L)
=nc""'

= f'(c) = nc""'

Since c is any point of R, therefore f*(x) exists for all x € R. It is given by
f(x) = nx"", ¥ x €R.

(ii) If ¢ is any point of R, then

im 19 _ KTk
x—¢ X—¢C v X ™ C
= f(c) = 0.

" Since c is any point of R, this means that
f'x) =0¥ x€R.

' EXAMPLE 2 : Let a function, f : [0, 5] — R be defined as
| 2x X 1 when 0 < x < 3
xX’ —2when3<x<$

" Is f derivable at x = 3?

f(x) =




Differentiability

f(x) — £(3)
x—3
_ (2§(+l)—(9—2)
-_x-3— x—3
2x — 3) ~>

=lim ——5—=
x=-3— X 3

, _ o f(x) — f(3)
and f’(3 +) = P—%&ﬁ
I ¢ S ) Rl
x—=3+ x—3
= ligh(x +3)=6
f{3—-)#f3+)
= f’(3) does not exist i.e. f is not derivable at x = 3,

SOLUTION : f'(3 —) = li_r_x;n_,

Now, you should try the following exercises :

EXERCISE 1

Let f: R — R be defined as
_(x fx<0

) {o if x = 0.

show that /(0 + ) # /(0 —)

EXERCISE 2

(i) Find the points at which the function f: R — R defined by

fx)=|x—1|+|x—2}|,¥x€R
~ is not derivable.
(ii) Prove that f : R — R defined by

f(x) =x |x|,¥ x€ER
is derivable at the origin.

EXAMPLE 3 : Let f : R — R be defined as
f(x) = x’cos (1/x) if x * 0 and f (0) = 0.
Find the derivgtive at x = 0, if it exists.

—_— 2
SOLUTION : fim X~ O _ . xcos(1/x) _
=0 - X 0 x—0 X,

0,

1
= limx cos (—)
x—0 . X ]

1 : ) ) |
Also cos ) takes values between — 1 and I and thus is bounded i.e. |cos -x—l < 1. Hence

. f(x) — f(0)
lim————

. 1
= limx cos — = 0.
x—0 X—O x—0 X -

So that £(0) exists ﬁnd is equal to 0.

EXERCISE 3
Let f: R — R be defined as

f(x)=xsin%,ifx#—'0

=0, ifx=0
Isf derivable at x = 07

EXAMPLE 4 : For the function, f defined by
f(x) = |log x| (x > 0),
determine £ (1 +) and " (1 —).



f(x) — f(1)

x—1

. a1 +h) =)
=lm ——y—

SOLUTION : f’(1 +) = lim_

flog (1 +h)| — |log 1|
h=0+ h

= lim log (1 +h)
N0+ h

S R e T TN e T e

I/h

; = lim log(1+h)

z =loge = 1.

. —h
Aror(1-) = lim PEET D=y
;

“ " EXERCISE 4

. (i) Given:

: s e-l/x . .
f(x)?x.mlfx#Oandlff(O)=0.
Determine f’ (0 +) and f (0 —).

- (id) Let { be a function defined by

X
f(x) = i—:F-T;]',\f x€R.

Show that f is differentiable everywhere.
(i) If the function given by
_ ax’ +b;x <0
f(x)—‘x’logx >0
poneueldcrivaﬁveatx=0,thenﬁndaandb. ;
(iv)wfbeanevenﬁmcﬁondeﬁnedonk.
" If £°(0) exists, then find its value.

11.2.1 Geometrical Interpretation of the Derivative

’ One of the important problems of Geometry is that of finding or drawing the tangent at any

f point on a given curve. The tangent describes the direction of the curve at the point and to

‘ define it, we have to use the notion of fimit. A convenient measure of the direction of the
curve is provided by the gradient or the slope of the tangent. This slope varies from point to
point on the curve. You will sec that the problem of finding the tangent and its gradient
(slope) at any point on the curve is equivalent 1o the problem of finding the derivative of the
function y = f(x) which represents the curve. Thus, the tangent to the curve y = f(x) at the
point with abscissa x exists if the function has a derivative at the point x and the tangent
slope = £’(x). This is what is called the geometrical interpretation of the derivative of a
function at a point of the domain of the function. We explain it is follows :.

Y

4\

Fig. }
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Let f be a differentiable function on an interval I. The graph of f is the set
{x y)/y = f(x),x €1},
Letc,’c + h €1, so that P(c, f(c)) and Q(c + h, f(c + h)) are two points on the graph of f.

Therefore, the slope of the line PQ is the number

fic+h)—flc) . f(c+h)—fc)
c+h—hn " b

Alsoash —0,Q — P.

By definition, the derivative of f at ¢ is

flo)= m] fic + h)h— f(c)

= Lrg (slope of PQ)
= g_!!} (slope of PQ)

In the limit when Q — P, the line PQ becomes the tangent at P. Therefore
f(c) = gr_l;, (slope of PQ)

= slope of the tangent to the curve, y = f(x) at P. Thus when { “(c) exists, it gives the
slope of the tangent line to the graph of f at the point (c, f(c)).

That is f’(c) is the tangent of the angle which this tangent line at (c, f(c)) makes with the
positive direction of the axis of x.

If f(c) = 0 the tangent line to the graph of fat x = c is parallel to the axis of x and if f’(c)
exists and does not have finite value, then the tangent line is parallel to the axis of y.

11.3 DIFFERENTIABILITY AND CONTINUITY

You have seen that the notion of limit is essential and common for both the continuity and the
differentiability of a function at a point. Obviously then there should be some relation between
the continuity of a function and its derivative. This relation is same as the one between the
curve, the graph of the function and the existence of a tangent to the curve. A curve may have
tangents at all poiuts on it. It may have no tangent at some points on it. For instance in the
Figure 2(a), the curve has tangents at points on it while the cvrve in Figure 2(b) has a point P,
a sharp point where no tangent exists.

\y X | j A\

Fig. 2(a) Fig. 2(b)

The fact that a curve is continuous does not necessarily imply that a tangent exists at all points
on the curve. However, intuitively it follows that if a curve has a tangent at a point, then the
curve must be continuous at that point. Thus, it follows that the existence of a derivative
(tangent to a curve) of a function at a point implies that the function is continuous at that



im f(x) — f(c)

- point. Hence differentiability of a function implies the continuity of the function. However, a
 continuous function may not be always differentiable. For example, the absolute value
“function f : R — R defined o< f(x) = |x | % x €R is continuous at every point of its domain
“but it is not differentiable at the point x = 0. This is evident from the graph of this function

which you can easily see in Unit 4.

Now we prove it in the form of the following theorem.

THEOREM 1 : Let a function f be defined on an interval L. If f is derivable at a point
¢ €1, then it is continuous at c.

PROOF : Since f is derivable at x = ¢, therefore,

exists and is equal to f’(c).’

x—c -

Now f(x) — f(c) = fo‘%—g—ﬁl.(x —c)forx #c.

lim [£(x) — )] = lim f(i:—:—? “lim(x — ¢)

X=C

=f)0=0

=>lim f(x) = f(¢)

=> f is continuous at x = c.

We have given the proof for the case when ¢ is not an end point of the interval I. If ¢ is an end

‘point of the interval, then lim is to be replaced by lim or lim according as c is left end

point or the right end point of the interval.

Thus, it follows that continuity is a necessary condition for derivability at a point. However it
is not sufficient. Many functions are readily available which are continuous at a point but noi
derivable there at. We give below examples of two such functions.

EXAMPLE 5: Left f : R — R be the function given by
f(x) = |x| ¥ xER. ‘
Then f is continuous at x = 0 but it is not derivable there at.
SOLUTION : Recall from Unit 4 that f(x) is of the form
xifx=20
- x ifx <0

We claim that f is continuous at x = 0, for

f(x) =

.li_r.rg+ f(x) = li_l_l(l’_ f(x) = 0 = £(0). (See the graph in Unit 4).

Now

oW, i MO x=0_
f(0+)~=l—t-%+ x—0 _!.l—‘-‘(lw X =1
, . —x—0

and (0 —) = }'l_l:lg—-ﬁ' =-1

Thus f is not derivable at x = 0.

. EXERCISE 5
 Justify that f: R — R defined as

(@ f(x)=|x| + |x — 1} is continuous but not derivable at x = O and x = 1.
(i) f(x) = |x}+ [x — 1| + |x — 2| is continuous but not derivable at x = 0, 1, 2.

EXAMPLE 6: Let f: R — R be defined as

fix) =
) forx=>1.



Then f is not derivable at x = 1 but it is continuous at x = 1.
SOLUTION : C]wly'li_r_l})rif(x) —':'jlll‘l‘l_ f(x) =1 = f(1).
This shows that f is continuous at x = 1.

rQ+) = 1i9:+———f(x:_§()

-1+ X — 1

x—1
and (1 =) = lim ~ 1

x--l--_x'-—l=

ie f'(1 +)# (1 -),
which shows that f is not derivable at x = 1.

From the above exampim, it is clear that derivability is a more restrictive property than
continuity. One might visualise that if a function is continuous on an interval, then it might fail
to be derivable at finitely many points at the most in the said interval. This, however, is not
true; there exists functions which are continuous on R but which are not derivable at any point
whatsoever. In 1872, German Mathematician, K. Weierstrass, first gave an example of such a
function. Here we mention an example due to Van der Waerden. The function is defined as

_ « [10°x — [10°x + a}|
f(x) =3 1 On
where a = 1/2 or — 1/2 according as x = 0 or x < 0. This function is known to be
continuous everywhere but derivable nowhere.

Now try the following exercise.

EXERCISE 6
Prove that a function f* R — R defined as

f(x)=xsin%vx¢0 F

=0 x=90
is continuous but not derivable at the origin.

11.4 ALGEBRA OF DERIVATIVES

You have seen that whenever we have a new limit-definition a natural question arises. How
does it behave with respect to the algebraic operations of addition, subtraction, multiplication
and division? We discussed the algebra of convergent sequenices in Unit 5. We also discussed
algebra of limits and continuous functions in Biock 3.

In this section, we shall discuss some theorems regarding the derivability of the sum, product,
quotient and composite of a pair of derivable functions.

1 SUM OF TWO DERIVABLE FUNCTIONS

Let f and g be two functions both defined on an interval L. If these are derivable at
¢ € I then f + g is also derivable 4t x = c and

(f+g)y ©=f()+gE).

PROOF : By definition, we.have
lim f(?‘) —fo _

b i x - C f’(C)

. g(x) —gle) _

!‘LT x—c & (C‘)' -
Then

lim (f+e)x) — (f+g)c) _ lim f(x) + g(x) — f(c) — g(c)

PR X—¢C x—¢ X—C



{f(x) — f(c) } + { g(x) — 8(c) }

=}(‘—T X—¢C

i WO i, B0 8O
x~=C X—¢C x—c Cc

= f(c) + g(©).

=> (f + g)(c) = f'(c) + g(c).
Thus f + g is derivable at x = c.

In the same way you can also prove that f — g is also derivable at x = c and
(f - gy(c) = (c) — 8.

11 PRODUCT OF TWO DERIVABLE FUNCTIONS

Let f and g be two functions both defined on an interval L If these are derivable at ¢ €1, then
fg. is also derivable at x = c and

() (¢) = f'(c).g(c) + f(c)g'(c).
PROOF : By definition, you have

fim O =1 _
X X—¢C
and lim — g( X~ g(c) g'(c)
x—~c+ X —
Now (fg)(x) — (fS)(C) f(X) g(x) — f(c) g(c)
X—¢C X—¢C
_ {fex) — f(c) } g(x) +(c) { g(x) — g(c) }.
X—C
_ ) — ) r(c) 8(x) — g(c)
T 80 +10)- e

By using the above two defiriitions of f*(c) and g’ (c) as well as the algebra of limits (rgfer to
unit 8), we have / '

(fg) (X) — (fs) () ) exists and is equal to

X”t

f'(c) . g(c) + f(c) . g(c).
= (fg) (c) = f'(c) . g(0) + f(c) . £(c)
Hence {g is derivable at x = c.

If a function f is derivable at a pomt ¢, then for each real number k, the function kf is also
derivable at c and

&) (c) =k .f'(0)

For the proof, take f = k, g = f in Result II and use the fact that derivative of a constant
function is zero everywhere.

11 QUOTIENT OF TWC DERIVABLE FUNCTIONS
l.ctfandgbetwoﬁmctnonsbothdeﬁnedonanmtervall.lffandgarcdmvab&caupom
¢ €1 and g(c) # 0, then the function f/g is also derivable at c and

£(©) . f'(c) — flc) . g'©)

(/8) () =
{80 ]
PROOF : By definitions, we have
lim _____f(x: — ffc) = f(c)
and
. g(x) —glo) _
!lT x—c ¢ ©
Now
(f7g) (x) — (/g) (c) _ f(x)/g(x) — f(c)/g(c)

x—c¢c ° X —C

13
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_ f(x) g(c) — 8(x) f(c)

(x — <) g(x) g(c)
_ 8@ {f(x) — f(c) } — fc) { (x) — g(c) }
(x —¢) g(x) g(c)

8(0)[£(x—)-:—g—c)]—f(c){3_(")_"5(ﬂ}

X - X—C

g(x) g(c)

Proceeding to limits as x — ¢, keeping in mind that fand g are derivable and g(c) # 0, we get
, ¢) f(c) — f(c) g'(c)
(/2) (c)=8() ( g'(
{g(0)}

which proves the result.

Let f be derivable at ¢ and let f(c) # 0, then the function fL is derivable at ¢ and
/8 © = — £/ o) V.
This is known as the Reciprocal Rule for Derivatives. For its proof,

take f(x) = 1 g = f in result III and use the fact that derivative of a constant function is zero
everywhere. ’

IV CHAIN RULE o
Let f and g be two functions such that the range of f is contained in the dJomain of g. If f
is derivable at c and g is derivable at f(c), then gof is derivable at ¢ and

®ofy (c) = ¢ (). f'(c).

PROOF : The range of f is contained in the domain of g. This implies that the domain of g o f
is the domain of f.

(gof)(c+h)—(gohH(c)
h
. '3
exists and is equal to g'(f(c)) . f*(c), let us define a new function ¢ : R -~ R‘ as

g(f(c + h)) — g(f(c))
flc + h) — f(c)

g (f(c)) ,ifflc +h) —flc) =0

Also let ¢ : R — R be a function defined as

“h)=(got)(c+h)h— (gof)(c)

= ¢ (h) M—'%:ﬁ it h % . (How?) ()

To show that lim
h—0

,ifflc +h) —f(c) # &
¢ ()=

Since f is derivable at ¢, therefore

l‘_‘? flc + h; — flc)

exists and is equal to f’(c).

This, along with (1) implies that the proof of the theorem will be complete if we can show
that 1119 o (h) exists and is equal to g’(c) for if this is shown, then from (1), we find that,
lim ¥ (h) exists and equal g'(c)) . () |

Thus we have to show that {1_\_13 ¥ (h) = g'(f(c)).

As g is derivable at f(c),
1\53 gfc) + klz — g(fe) exists and equals g’(f(c)).

which implies that given € >> 0,3 6 > 0, such that



0< k<o = HEOTH 8D ) < @
f is derivable at ¢ k

= { is continuous at ¢

=> 3§ > 0 such that

M <& =>|flc+h)—fc)| <6 3)

Let us consider a number h such that [h| < &. We have two cases :
() fic + h) = flc) W) fic + h) # f(c).

In case (i),
| & (h) —g(f(c)) | <€ ' )
In case (ii), let us write
flc+h)—flc)=k#*0
and by (1).
_ 8(f(c + h)) ~ g(f(c))
*® = T 1o

- 8(f©) + k) — g(f(c)
k

&)

Now by (3),

| <& =>|fc+h)—1(c)| <6
=> 0 < |k} < 8, by definition of k
=> | ¢ (h) — g(f(c)) | <€, ©

by using (2) and (5). By (4) and (6), we get

<& => o) —glc) | <€
=> lim ¢ (h) = g ().

This completes the proof.

* Alternately, we can say that if
y = g(u) and u = f(x),

and if both 4 and _d_:_ exist, then :—:exists and is given by

du d
dy _dy du
dx ~ du dx

Recall that this form of chain rule is génerally used in problems of Calculus.
For example, to find the derivative of the function

f(xy = (< + x* + 2)®

lety = h(u) = u® where u = x* + x* + 2. Then

dy _ 2
du 25u
=25(x" + x* + 2y,
and
L 3x* + 2
d dy dy du
Therefore, {'(x) = el vl

=25(x" +x* + 2. 3x* + 2x).

We now show how to differentiate the inverse of a differentiable function. Let f be a one-one
differentiable function on an open interval I. Then f is strictly increasing or decreasing and the
range f(I) of { is an interval J. Then the inverse function g = f™' has the domain J and

fog=1i,g0f=i

where i, and i; are the identity functions on I and J respectively. Then you know that
fx) =y =>gy)=x¥x€l,yel. 15



16

Consider any point ¢ of I. We have assumed that f is derivable at ¢.'A natural question arises;
Is it possibie for g to be derivable at f(c)? If it is so, then under what conditions? We
discuss this question as follows.:

Now f is derivable at c. If g is derivable at f(c), then by the chain rule for derivatives, g o f is
derivable at c and

®of) (c) =g (fe) '(c)

But (g o f) (x) = g(f(x)) = x ¥ x €I, Therefore

@gofy (x)=1¥xe€l

In particular for x = ¢, we get

@BodH (©=1

= g'(f(c)) . '(c) = 1
=> f'(c) # 0

Thus for g to be derivable it is necessary that f*(c) # 0 i.e. the condition for the inverse of f to
be derivable at a point ¢ is that its derivative must not be zero at that point i.e. £°(c) #0.In
other words, we can say that, if f(c) = 0, then the inverse of f is not derivable at c. Thus we
find that a necessary condition for the derivability of the inverse function of f at c is that

£*(c) # 0. Is this condition sufficient also? To answer is question, we state and prove the
following theorem :

THEOREM 2 : INVERSE FUNCTION THEOREM
Suppacfhme-oneconﬁnmmmneﬁononmopeninmdlndleu=mlfﬁs
differentiable at Xo € 1 and if £'(xs) % 0, then ™ is differeatiable at yo = f(xo) € J and

~lye = _.l_— . .
€Y 09 = T
PROOF : Note that J is also an open interval.

Sir.ce f is differentiable at xo ¢ 1, therefore
tim SRR _

X=Xn X Xo
Since f'(xo) # 0 and f being one-one, f(x) # f(x,) for x # Xo, we have

1 1
li =
e ) = fx)  f'(xo)
X — Xo
x—x _ |

ie. lim

o f(x) — fX0) ~ f*(Xo)
So given € 0, there exists § > 0 such that
x—x _ |1

fx) — fxo) ~ £'(x0)

< € for0< |x — x| <6 )

Let g = f™. Since f is one-one continuous function on I, therefore by inverse function theorem
For continuous functions, the inverse function g is continuous on J. In particular, g is
continuous at yo. Also g is one-one. Hence there exists n > 0 such that

0<|gy) 8y | <ofor0<|y—=yo| <n

e 0<|gy) — x| <éfor0<|y—y| <n (8)‘
From (1) and (2), we get
g(y) — Xo 1
- < €for0 < -
fgy) — fx0)  £(x0) or0<iy=yol<n
It follows that
lim S =X 1

Yy f(gy)) — f(xi) h f'(xo)

Now y, = KXQ) o T Q(YO) and f(!()')) =Yy

Therefore lim gy) — 8 _ I
¥y Y=Y f'(X(i)

Hence g is differentiable at y, and g’ (yo) =

1
f'(X())
Replacing g by ™', we can say that f™ is differentiable at vo and



- 1
f Iys _ .
Y (y0) o)

To illustrate the above theorem, consider the following example.

EXAMPLE 7 : Find the derivative at a point y; of the domain of the inverse function of the
functionfwheref(x)=sinx,x€]— /2, w/2][.

SOLUTION : You know that the inverse function g of fis ¢znoted by sin"'. Domain of g is
1= 1, I[. Since f is one-6ne continuous function on 1= w/2, n/2{ and it is differentiable at

all points of ] — /2, 7/2[, using the above theorem, you can see that g is differentiable in

1= 1, 1[ and if yo = sin x, be any pt. of ] — 1, 1[ where xo €] — n/2, #/2[, we have
W T

gy f'(xo) ©Os Xo

COSXo = V1 ~sin’xo = V1 — y3

1

’ P 1 : s iy —
Hence g (yo) - m 1. (sin ) (Y()) = —1\/_*_—‘,(2)

Try the following exercise.

EXERCISE 7
Find the derivative at a point y, of the domain of the inverse function of the function f where

f(x) = log x, x €]0, [.

11.5 SIGN OF A DERIVATIVE

In this section, we shall discuss the meaning of the derivative of a function at a point being
positive or negative. For this, we have to recall the idea of monotonic or monotone functions
which functions have already been discussed in Unit 4. But here we require the concept of
increasing or decreasing function at a point of the domain of the function. So we give all these
concepts in the following definition.

DEFINITION 3 : MONOTONIC FUNCTIONS

Let f be a function with domain as interval [ and let ¢ € I. We say that f is an increasing
function at x = ¢ if 3 6 > 0 such that

x€Jec ~ 8, + 5[ =>fic — 8) < f(x) < f(c + 9).

Again we say that f is a decreasing function at x = ¢ if 3 & > 0 such that
x€Jlc—6,¢c+ 8] = flc — 8) = f(x) = (c + 9). :
Further f is said to be an increasing (or a decreasing) function 1n the ingcrval | if for x;, x; €1,
X1 <xx = f(x1) = f(xz) (or f(x,) = f(x2)).

Also f is said to be strictly increasing (or decreasing) in I, if

for x;, x; €1
xi <x2 = f(x:) < f(x2) (or f(x)) > f(x2)).

f is said to be monotone o1 monotonic in T if either it is increasing in [ or it is decreasing in 1.
"We can similaly define surictly monotone {or monotonic) functions.

Obviously the funciion f gefined by
fixy = -~ in[0, 1]

15 an ncreasing funciion.

and the functing { defined by
fix)= 1/xwmi{i 2

15 a decreasing function.

Now we give the significance of the sign of the derivative of a function at a point.



MEANING OF THE SIGN OF THE DERIVATIVE AT A POINT
It is often possible to obtain valuable information about a function from the knowledge of the
sign of the derivative of a function.

We discuss the two according as the derivative is positive or negative i.e.
“f/(x) > 0 and f’(x) < 0.
for some x in the domain of f.

Case (i) Let ¢ be any interior point of the domain [a, b} of a function f.

Let £'(c) exist. Suppose f’(c) > 0
f(X) — f(c) _
— =

which means lim

i £(c) > 0.
Thus for a given €, (0 <e<f (c),’316 > 0 such that
0<|x—c| <8 = f(") f(°) ~ f(c)

f(x) — f(C)
X —
> 0, by the choice of € which is less than f'(c).

ie.x€lc—dctdx#*c =f(c)—€<
f(X) - f(C)
X —
Therefore for all x €]c, ¢ + 81, f(x) > f(c)
and for all x € J¢ — 6, c[, f(x) < f(c).

Thus f is increasing at x = c.
Now let f'(c) < 0.

<f'(c) + €

Define a function.¢ as
¢ (x) = —f(x) V x €[a, b]
So ¢’(c) = — f'(c) > 0.

Therefore using the above proved result, there exists & > 0 such that
¥ x €]c, ¢ + 8], ¢(x) > o(c) = f(x) < f(c).
and x €]c — 6, cf, &(x) < p(c) = f(x) > ftk).
Thus f is decreasing at x = c.
- We now consider the end points of the interval, [a, b).
Case (ii) Consider the end point ‘a’. You can show as in case (1),
if f'(a) exists, there exists § > 0 such that
f'(a) > 0 => f(x) > f(a) for x €]a, a + §[
and f'(a) < 0 => f(x) <f(a) for x €]a, a + 6]

Case jii) Consider the end point ‘b’. You can show that there exist 8§ > 0 such that
f'(b) >0 = f(x) < f(b)forx € 1b— §, b[
and f'(b) <0 = f(x) > f(x) > f(b) for x €]b — 6, b[

Consider the following examples to make the idea clear.

EXAMPLE 8 : Show that the function f, defined.on R by
fx)=x"—3x*+3x—5Vx€ER
is increasing in every interval.
SOLUTION : Now f(x) = x* — 3x* + 3x — 5 .
L) =3x —6x+ 3
=3(x — 1).
=2 f’(x) > 0 when x # i.
Let ¢ be any real number less than 1. Then f is continuous in [c, 1] and f’(x) > 0in ]c, l[,
= fis mcreasmg in [c, 1].

Similarly f is increasing in every interval [1, d], where d is any real number greater than 1.
We find that f is increasing in every interval.



- EXAMPLE 9 : Separate the intervals in-which the function f defined on R by

f(x) = 2x> — 15x* + 36x + 5 x ER. is increasing or decreasing.
SOLUTION : Now f(x) = 2x* — 15x* + 36x + 5
o f7(x) = 6x* — 30x + 36
= 6(x* — 5x + 6)
=6(x—2)(x—3)
so that f'(x) > 0, whenever x > 3 orx < 2.
thus f is increasing in the intervals,
] — ©°, 2] and [3, o°[.
Also f'(x) <O0for2<x<3
Therefore f is decreasing in the interval {2, 3].

Now try the following exercises.

EXERCISE 8 .
Separate the intervals in which the function, f, defined on R by
fx)=x"—6x>+9x +4¥ xER

is increasing or decreasing.

EXERCISE 9

Show that the function, f, detined on R by

fix) =9 — 12x + 6x* —xX’¥xER

is decreasing in every interval.

Let f be a function with domain as an interval I C R

Let I, = { xo € I/f"(x0) exists }. If I; # ¢, we get a function f* with domain I,. We call f* the:
derivative or the first derivative of f. We also denote the first derivative of f by f,, or DE.

If we write y = f(x), x €1, then the first derivative offoryiéalsowritt&:nas:x—ywyi or Dy.

AgainletI, = {t €1, | (f°) (1) exists }. H I, # ¢, we get a function (f*)" with domain I
which we call second order derivative of f and denote it by f” or f,. We can define higher

_order derivative of f in the same way. We shall discuss higher order derivatives in Unit 13. In

the meantime, you should study the following example:

EXAMPLE 10 : Let f: R — R be defined as
x‘ain(-!—)ifxaéo

fx) = X
0ifx=0

Show that f(0) exists. Find its value.
SOLUTION : For x # 0, clearly

’, —_ 3 . L S _l_
f'(x) = 4x sm(x) X cos(x)

while
(0) = 1119@-5%0-) ‘

e Ly

—lx_lex sm(x)——O.
Thus we get
£4x) = 4x’ sin (%)— xzoos(—,l(-), ifx#0
f(0) = 0.

0 = £0)

Now 10) = lig

19
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_ Iil“«’sin(l/x) — x cos (1/x)

0 X
= 52[4:6 sin (1/x) — x cos (1/x)] = 0.

EXERCISE 10
Kf:R — R is defined s
fx) = sia G 1)V X ER,

. thea show that

(x) + tea x f'(x) + cos’x f(x) = 0.

11.6 SUMMARY

In this unit, we have discussed the differentiability of a function. In Section 11.2, we defined
the derivative of a function f at a point ¢ of its domain, an open interval ]a, b[. If

limf(l))(—;—fc(—c)- exists, then the limit is called the derivative of f at ‘C’ and is denoted by f'(c). If

Xx—C

f(x) — f . . : .
(—xi—_cﬁ and it exists, then it is called the right hand

we consider the right hand limit, lim

f(x) — fi e
derivative of f at ‘¢’ and is denoted by Rf’(c). Likewise lim %:—ég, if it exists, is called

the teft hand derivative of f at ¢ and is denote s L f’(c). From the definition of limit it
follows that f’(c) exists <=> Lf’(c) and Rf’(c, hoth exist and Lf’(c) = Rf’(c). If f is derivable
at each point of the open interval Ja, b[, then it is -1id to be derivable in Ja, b[. If the function fis
defined in the closed interval [a, b], then f is said ¢ be derivable at the left end

f(x) — fi :
point ‘a’ if lin;_ —(EH)— exists and the limit is « 1lled derivative of f at ‘a” and denoted by
f’(a).

f(x) — f(b o
Similarly, if hf’g:(_xz_—_b(—) exists, that f is said to be derivable at ‘b" and the limit is denoted

by £°(b) and is called the derivative of f at ‘'b’. The function f is said to be derivable in [a, b] if
it is derivable in the open interval la, b[ and also at the end points ‘a’ and ‘b’. In the same
s=ction, geometrical interpretation of the derivative is discussed and you have seen that the
derivative f’(c) of a function { at a point ‘c’ of it domain represents the slope of the tangent at
the point (¢, f(c)) on the graph of the function f. In Section 11 3, the relntionship between the
differentiability and continuity is discussed. We have proved that a function which is derivable
at &’ point is continuous these at and illustrated that the converse is not true always. In Section
11.4, the algebra of derivatives was considered. It has been proved that if f and g are derivable
at a point ¢, then f + g, fg are derivable at ‘¢’ and (f £ g)’ (¢) = f'(c) & g'(c),

{fgy (¢} = f(c) g'(c) + f'(c) glc). Further if g(c) # 0, then /g is also derivable at ¢ and

gle) f'(¢c) — f(¢) g'(c)r
le(o))

(f7g) (cy =

Also in this section the chan rule for differentiation is proved, that is, if f and g are two
functions such that the range of f is contained in the domain of g and [, g, are derivable
respectively at ¢, f(c) then g o f derivable at ¢ and (gof)'(¢) = g'(f(c)). {'(c). Result concerning
the differentiation of inverse function is discussed in the same section. If f is one-one
continuous functic on an open interval [ and f(l) = J and if f is differentiable at

xo C 1L £(x0) 7 O, then £ ' is differentiable at y, = f(x4) € J and (f v = ?—. Finally
) '(Xn)

in Section 11.5, you have seen that a function f is increasing or decreasing at a point °c’ of its

domain if its derivative £7(¢) at the point is positive or negative.
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11.7 ANSWERS/HINTS/SOLUTIONS

fx) — 10)

. X -

By (0= tim B=G0 =i 2=ty 1=
, im X (0 | . _
f(o+)=,..o+f(:—o) }“—'!Ol‘f';—!m—ﬂﬁ-o-o

So (0 —) # /(0 +)
E2) (i) The given function, f is

- x+3ifx<1
1f1<x<2
2x—-3ifx=>2
critical points are 1 and 2. At other points f is derivable. Show that
fd-)=-2f14+H=02-)=0,12+H =2
The only points, where f is not derivable are x = 1 and 2.
(i1) The given function is
; -xifx<0
x =
=) { xXifx=>0.
f' o+ = hmézlimi=lin;(x)=0

0 X ¥

f(x) =

2

x—.' — —_—
=l 9=0

Since {(0 +) = /(0 —), therefore f is desivable at 0.

0 -) = lim

0
E3) f(0)= 3._:3“:_5 )

1 i
= msin —
0 X

Hence f is not derivable at x = 0.
E49) () FO+H) =100 -)=-—1L
() The given function is

«x):—‘—: fl x>0
1+ Ix| €x<0
bl--x
Sime (x >0)*-d (x<0)hnmmopof"mmﬁhhwr

mnmhymw-hmdum& ; kdimwyar
x = 0 and find that

fOH=10—-)=1.
Sofis derivable V' x S R.

(iii) Given that f kas derivative at x = 0
Therefore £(0 +) = £(0 —)
uﬁglxlkg:-b =h(uz+b)—b

0 )

- m:(ax) =a.0
Since f is derivabie a: 0.
therefore f is continuous at x = (.
Then f(0 +) = 0 —)

= lim x’logx = b
x—~

9



e S It is known that lim x’log x = On
Sob=0. =0
Then from (1),
2.0 = limx log x
=0

= 0, which holds ¥ a €R.
Hence a is arbitrary real number and b = 0.

(iv) Since f is an even function,
fi— x) =f(x)¥ xER.
Also *(0) exists implies
£°(0 +) = (0 —) = £°(0)

Therefore £0) = lim 02>
= ll_lgl!(-:—xx)_——o'{('—) (f is an even function f(x) = f(— x))
I G s Rk ()
==l S =g = O

which gives 2f°(0) =0 =>{'(0) =0

ES) @ xifx=0
Now|x|=[ .
-xifx<0
x—1ifx=1
andlx—l|=[ )
1 —xifx<1

f(x) can be written as

ifo<x<1
2x—1ifx=1

1—22xifx<0
T {
}‘i_r_la+ fix) = lx_t.r&+ 1 =1and }li_l_la_f(x) = li’r‘%_(l -2)=1
Thus 1i3+ f(x) = 1i113_ f(x)
Therefore f is continuous at 0.
Now lim f(x) = lin}){ (2x — 1) =1 and lif'}... f(x) = “_‘?.‘_, 1 =1
Thus h_r-nv f(x) = llll’ll+ f(x) = f('l)

Therefore f is continuous at 1.

f 0 0
f‘(°+)=li, (x) :)() 3"3 =0
=) = M -2x—-1__
f(0 )— l‘l_li%— x—0 = hzlg‘ X - 2

£°(0 +) # £*(0) which implies that f is not derivable at 0.
f'a+)= li§1+————f(x) :f(l) = lim ____Zx -1-1

=1+ X—1 Py
(0 -y =iy WOy 121

\x—-l~ x—1

' +)# (1 +) whxch implies that f is not derivable at 1
(i) Proceed as in (i). |
E6) 5{!51&)&) = lnj})\x sin —i— =0
(sin -’l(— is bounded and ll_lgx =0)

g 22 So f is continuous at x = 0
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:
:

3
:

E7)

E 8)

E9)

E 10)

£(0) = lim f(x) — 0) _ I
-0 X

.1 . .
=0 imsin — which does not exist.
x=-0 X

The inverse function g of f is given by g(y) = ¢’. Domain of g is R, the set of real
numbers. Since f is one-one continuous function on ]0, °o[ and it is differentiable at all
points of ]0, o[, so g is differentiable in R and if yo = log xo be any point of R where
xo€ ]0, o°[, we have
11
fxo) /%
Now yo = log xo = xo = ¢'°
Hence g'(yo) = €".

g(yo) =

=xo‘

Here f(x) = x’ — 6x* + 9x + 4% x €ER
Lf(x) = 3(x* — 4x + 3)

=3(x— 1)(x—3)
So that f’(x) > 0, whenever x > 3orx < 1

Therefore f is increasing in the intervals, ] — ©°, 1] and [3, o[
Also f'(x) < Oforl <x<3.

Therefore f is decreasing in the interval [1, 3].

f(x) =9 — 12x + 6x* — x’
Therefore f'(x) = — 12 + 12x — 3%’
=—3(x*—4x +4)
=—3(x—2)’<0,forx #2.
Let c be any member less than 2.
Then f'(x) < 0in]c, 2.
Therefore f is decreasing in [c, 2].
Similarly f is decreasing in [2, d], where d is any real number greater than 2.
Hence we get that f is decreasing in every interval.

f’(x) = cos (sin x) cos X,

f~(x) = — sin (sin x) cos’x — cos (sin x) . sinx
fl
= — f(x) cos’x — o sinx
cos X
Hence it follows that

f£~(x) + tan x f*(x) + cos’x f(x) = 0.
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12.1 INTRODUCTION ;

In Unit 11, you were introduced to the notion of derivable functions. Some interesting and
very useful properties are associated with the functions that are continuous on a closed interval
and derivable in the interval except possibly at the end points. These properties are formulated
intheformofsomelheaemmﬂedMunVﬂncneommswhichwepmposemdiscusin
th'sunitMunvalmlheaemmvuyimpo:}mtinAmlysisbeausemany useful and
significant results are deducible from them. First we shall discuss the well-known Rolle’s
theorem. This theorem is one of the simplest, yet the most fundamental theorem of real
analyss. It is used to establish the mean-valwe theorems. Finally, we shall illustrate the use of
these theorems in solving certain problems of Analysis.

Objectives

After studying this unit, you should be able to

® know Rolle’s theorem and its geometrical meaning

deduce the mean value theorems of differentiability by using Rolle’s Theorem

give the geometrical interpretation of the mean vatue theorems

apply Mean Value Theorems to various problems of Analysis

understand the Intermediate Value Theorem for derivatives and the related Darboux
Theorem.

122 ROLLE’S THEOREM . .

The first theorem which you are going to study in this unit is Rolle’s theorem given by
Michael Rolle (1652-1719), a French mathematician. This theorem is the foundation stone for
all the mean value theorems. First we discuss this theorem and give its geometrical
interpretation. In the subsequent sections you will see its application to various types of
problems. We state and prove the theorem as follows :

THEOREM 1 : (ROLLE'S THEOREM)
K a function f: [a,b] ~ R is

(i) continwous oa [a, b)

(ii) derivable on Ja, b[,

and (iii) a) = Rb),

thean there exists at least one real number ¢ € Ja, b such that f*(c) = 0.

PROOF : Since the function f is continuous on thc. closed interval {a, b}, it is bounded and
auains its bounds (refer to Unit 10). Let sup. f = M and inf. f = m. Then there are points c,
d €[a, b] such that

fc) = Mand f{d) = m.

Only two possibilities arise :

Either M =morM # m.

Case (i) When M = m.



Then M = m = fis constant over [, b] Mosa-Valus Thoovems
=> f(r) = k'V x €[a, b}, for some fixed real number k.
= f(x) = 0V xE€[a,b)

' Case(ii):WhenM#m.Thenwepmceedasfoﬂows:
" Since f{a) = f{b), therefore at least one of the numbers M and m, is different from f{a) (and

also different from f(b)).

Suppose that M is different from f(a) i.e. M # f(a). Then it follows that f{c) # f(a) which
implies that ¢ # a.

Also M # [(b). This implies that f(c) # f(b) which meansc # b. Sincec # aandc # b,
therefore ¢ € Ja, b{. '

Again, f(c) is the supremum of f on {a, b}. Therefore

f(x) < f(c) ¥ x E[a, b]

= fc —h) =Kc), *

for any positive real numbers h such that ¢ — h € [a, b]. Thus

fic “E)h" fo) 0,

for a positive real number h such thatc — h €[a, b).

Taking limit as h — 0 and observing that {*(x) exists at each point x of ]a, bf, in particular at

X = ¢, we have

flc—)=0

Again f(x) < f(c) also implies that

f(c+h)—f(C)'So
h

for a positive real number h such that ¢ + h €[a, b}. Again on taking limits as h — J, we get

fic +)<0.

But

f'(c -) =1 +) =)

Therefore f'(c —) = 0 and f'(c +) < 0 imply that i

f(c)<0andf'(c) =0

which gives f’(c) = 0, where ¢ € Ja, b].

You can discuss the case, m # f(a) and m # f(b) in a similar manner.

Note that under the conditions stated, Rolle’s theorem guarantees the existence of at least one
¢ in Ja, b such that f’(c) = 0. It does not say anything about the existence or otherwise of
more than one such number. As we shall see in problems, for a given f, there may exist several
numbers ¢ such that f’(c) = 0. ‘

Next we give the geometrical significance of the theorem.

Geometrical Interpretation of Rolle’s Theorem
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kanowthatf’(c)isthcslopeoﬂhetangmnothegmphoffatx=-c'l‘husthelheorem
simylysmcslhatbetwemtwoendpoimswithequalordinatmonthegnphoff,thereexists
athstonepointwherethetangentispamlleltotbeaxisofx,asshownintheFigur(sI.

After the geometrical mtcrpretanon, we now give you the algebraic interpretation of the
theorem.

Algebraic Interpretation of Rolle’s Theorem

You have seen that the third condition of the hypothesis of Rolle’s theorem is that f(a) = f(b).
lfforaﬁmctionf,bothf(a)andf(b)amzerothatisaandbaretherootsoftheequation
f(x)=O,thenbythetheoiemthereisapoinlcof]a,b[,wheref’(c)=0whichmumsthalc
is a root of the equation f’(x) = 0.

Thus Rolle’s tneorem implies that between two roots a and b of f(x) =0, there always exists
at least one root ¢ of f’(x) = 0 where a < ¢ < b. This is the algebraic interpretation of the
theorem.

Before we take up problems to illustrate the use of Rolle’s theorem you may note that the
hypothesis of Rolle’s theorem cannot be weakened. To see this, we consider the following
three cases :

Case (i) Rolle’s theorem does not hold if f is not continuous in [a, b).

For example, consider f where
- xif0<x<1
x =
{0ifx= 1.

Thus f 15 contnuous everywhere between 0 and 1 except at x = 1. So f is not continuous in
[0, 1]. Also it is derivative in ]0, 1{and f(0) = f(1) = 0. But f’'(x) = I ¥ x € 10 1fie
f(x) # 0V x €]0.VH.

Case (ii) The theorem no more remains true if f* does not exist even at one point in ]a, bl.
Consider f where
f(x)=I|x|V¥xel—-1,1I. i
f
Here f is continuous in [ 1, 1], f(— D =1(1),
but fis derivable V- x € - 1, I[ except at x = 0.

, ~1,-1<x<0
A= Lo<x<t

Hence there is not point ¢ € J= 1, 1] such that f’(c) = 0.

Case (iii) The theorem does not hold if f(a) # f(b). For exxmple if f is the function such that
f(x) = x in[1, 2], then :
(y=1+#1~2=f2).

Also f'(x) = 1% x €]1, 2{ ie. there is no point ¢ € J1, 2[ such that f'(c) = 0,
Now we consider one example which illustrates the theorem :

EXAMPLE 1 : Verify Rolle’s theorem for the function f defined by

() fx)=x"—6x+ 11x— 6¥ x €[1, 3],

i) fx)=(x—a)"(x—b)'"¥xe (a, b] where m and n are positive integers.
SOLUTION : (i) Being a polynomial function, f is continuous on [1, 3] and derivable in
1, 3.

Also f(1) = f(3) = 0.

Now f'(x) =3x"— 12x + 11 = 0

o,

V3 V3

Clearly both of them lie in ]I, [.

==x=2+

(i) f(x) = (x — a)" (x — b)"

Obviously f is continuous in [a, b] and derivable in ]a, b[.
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Also f(a) = f(b) = 0. M- Yhihe: isnnunn
Now f'(x) = m(x — a)""' (x —~ b)" + n(x — a)" (x — b)"" = 0 implies that

(x—a)"' (x —b)""'[m(x—b)+n(x —a)] =0

ie.m(x —b)+ n(x —a=0.

(Asx # a or b : we want those points which are in ]a, b[).

na + mb
s x = "p
This is point ¢ and it clearly lies in ]a, b[. You may note from Example 1(i) that point ¢ is not
unique.

Now you should be able to try the following exercises :

EXERCISE 1
Verify Rolle’s Theorem for the function f where
f(x) = sin x, x €[~ 2, 27).

EXERCISE 2 .
Examine the validity of the hypothesis and the conclusion of Rolle’s theorem for the function £
defined by

(@) f(x) =cosxV x €[~ n/2, n/2
® fx) =1+ x-1)"*¥x€[0,2).

Next we give an example which shows application of Rolle’s Theorems to the theory of
equations.

EXAMPLE 2 : Show that there is no real number A for which the equation
X —=2x+A= 0 has two distinct roots in [0, 2].

SOLUTION : Let f(x) = x’ — 27x + A.
Suppose for some value of A, f(x) = 0 has two distinct roof « and B that is f has two zeros’ o

and 8, a # Bin [0, 2].
Without any loss of generafity, we can suppose, o < .

3

Therefore [a, 8] C [0, 2].
Now f is clearly continuous on [a, 8], derivable in Ja, B[ and f(a) = f(B) =

Therefore by Rolle’s theorem, 3 ¢ € Ja, B such that
f'(c) =

=3c"-27=0

= -9=0=>c=1+3.

Clearly none of 3 or — 3 lies in ]0, 2[, whence
~3or3¢]a, Bl

Thus we arrive at a contradiction. Hence the result.

EXERCISE 3

Prove that between any two real roots of ¢* sin x = 1, there is at least one real root of
e‘cosx +1=0.

l ~ EXERCISE 4
Prove that if a, aj, ..., 3, € R be such that
. T :_o T+ t—' + o+ % + a. = 0, then there exists at least one real number x between 0
~ and 1 such that

ax"+ax"'+ .. +a =0

- Next examples show how Rolle’s Theorem helps in solving some difficult problems.
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EXAMPLE 3 : If f and g are continuous in {a, b] and derivable in

Ja, b[ with g'(x) # 0V x € ]a, b[; prove that there exists ¢ € ]a, b[ such that
f'c) _ fc) — f(a)

g) gb)— ge)

. SOLUTION : The result to be proved can be written as

f(c) g'(c) + f'(c) g(c) — f(a) g'(c) — g(b) f'(c) = 0 ‘

the left hand side of which is the derivative of the function f(x) g(x) — f(a) g(x) — g(b) f(x) at
x = c. This suggests that we should apply Rolle’s Theorem to the function ¢ where

&(x) = f(x) g(x) — f(a) g(x) — g(b) f(x), ¥ x E[a, b}.

Since f and g are continuous in [a, b] and derivable in }a, t';t, therefore ¢ is continuous in [a, b}
and derivable in Ja, b{. Also ¢ (a) = — g(b) f(a) = d)(b)(c So ¢ satisfies all the conditions of
Rolle’s Theorem. Thus there is a point ¢ in }a, b[ such that ¢’(c) = O that is

fc) g'(c) + f'(c) g(c) — f(a) g'(c) — g(b)f (c) = 0

o JO) —fa) _ fc)

" gb) —gle)  glo)

which proves the result.

EXAMPLE 4 : If a function f is such that its derivative, f* is continuous on [a, b] and
derivable on ]a, b, then show that there exists a number ¢ € Ja, b[ such that

1
f®) = fa) + (b — a) @) + 5 (b — 8)* ().
SOLUTION : Clearly the functions f and {* are continuous and derivable on [a, b].

Consider the function ¢ where

&(x) = f(b) — f(x) — (b — x) f'(x) — (b — x)" A, ¥ x € [a, b] where A is a constant to be
determined such that

¢ (a) = ¢ (b).

. f(b) — f(a) — (b — a)f’(a) — (b — a)’A =0 nH

Now ¢, being the sum of continuous and derivable functions, is itself continuous on [a,b]and
derivable on ]a, b[ and also ¢ (a) = ¢ (b).

Thus ¢ satisfies all the conditions of Rolle’s theorem.
Therefore there exists ¢ € ]a, b[ such that ¢’(c) = 0.

Now @'(x) = — i"(x) -+ £(x) — (b — x) £”(x) + 2(b — x)A
This gives 0 = ¢'(c) = — (b — ¢) f”(c) + 2(b—c)A

which means A = -é— f"(c) since b # c.

Putting the value of A in (1), you will get

f(b) = f(a) + (b — a) f(a) + %(b —a) o)

EXERCISE 5 )
Assuming f” to be continuous on [a, b}, show that

b— - 1 '
fie) = fla) g — ) p—= = 5 (e — 8) (c — b (@)
where both ¢ and d lie in [a, b).

Note that the key to our proof of the above examples 3 and 4 and Exercise S and many more
such situations, is the judicious choice of the function, ¢, and many students compare it with

tae magician’s trick of pulling a rabbit from a hat. If one can hit at a proper choice of . the
problems are more than half done.

123 MEAN VALUE THEOREM

In this section, we discuss some of the most useful results in Differential Calcutus known as the
mean-value theorems given again by the two famous French mathematicians Cuuchy and



- Lagrange’s Mean-Value Theorem. You will see later that Lagrange’s theorem is a particular of

- (This is also known as the-First Mean Value Theorem of Differential Calculus.)

A=

 fAe) =

Lagran_ge., Lagrange proved a result only by using the first two conditions of Rolle’s theorem. Mean-Value Thoorems
- Hence it is called Lagrange’s Mean-Value Theorem. Cauchy gave another mean-value theorem

in which he used two functions instead of one function as in the case of Rolle’s theorem and

Cauchy’s Mean Value Theorem. Finally, we discuss the generalized form of these two
theorems. We begin with Mean-Value Theorem given by J.L. Lagrange [1736-1813]

THEOREM 2: LAGRAN‘GE’S MEAN YALUE THEOREM

If a function £:[a, b} = R is
(1) continuous on [a, b]
and (ii) derivable on ]a, b[,
then there exists at lea§t one point ¢ € ]a, b[ such that
f(b) — fla) ‘
b-—a

f'(c) =

PROOF : We define a new function ¢ as follows :
o(x) = f(x) + AxV x € [a, b]

- where A is a constant to be chosen such that ¢(a) = ¢(b).

¢(a) = f(a) + Aa and ¢(b) = f(b) + Ab.
@(a) = @(b) gives
_ fib) — f(a)
b—a
Now the function ¢, being the sum of two continuous and derivable functions is itself

(i) continuous on [a, b]
(ii) derivable on 1la, b{,

- and (iii) ¢(a) = ¢(b).
. Therefore by Rolle’s theorem 3a real number ¢ € Ja, bf

such that ¢’(c) = 0.

" But¢p'(x)=f(x) + A

So0=¢(c)y=f(c)+ A
f(b) — f(a)
A=——
b—a
In the statement of the above theorem, sometimes b is replaced by a + h, so that the number ¢

between a and b can be taken as a + 6h where 0 < 8 < 1. Accordingly then, the theorem can
be restated as follows :

which means that f’(c) = —

Let f be defined and continuous on [a, a + h] and derivable on Ja, a + h[, then there exists

- 8, 0 <6< 1 such that

f(a + h) = f(a) + hf’ (a + 6h).
Certain important and useful results can be deduced from Lagrange Mean-Value Theorem.

: We state and prove these results as follows :

You already know that derivative of a constant function is zero. Converse'y if the derivative of
a function is zero, then it is a constant function. This can be formalized in the . 2llowing way :

L. If a function f is continuous on [a, b}, derivable on ja, b[ and f’(x)v =04 =x€ Ja, b,

. then f(x) = k¥ x € [a, b), where k is some fixed real number.
To prove it, let A be any point of [a, b].
. Then [a, A] C [a, b}.

Thus f is

i) continuous on [a, A]

. i) derivable on Ja, A[

Therefore, by Lagrange’s mean value theorem, 3 ¢ € Ja, A[ such that
f(A) — f(a)
A—a : 29



v.a

Now f(x) = 0¥ x € Ja, b
=Mx)=0V¥x€ h A

=) =0
=2 KA =fa)V A €[a, b)
But A is any arbitrary point of [a, b]. Therefore
fx) = Ka) = k (say) ¥ x € [a, b).

Note that if the derivatives of two functions are equal, then they differ by a constant. We have
the following formal result :

. M two fumctions f and g are (i) continuous in [a, b}, (ii) derivable in Ja, b{ and
@ ') = g'(x) ¥ x € |, b, then f — g is a constant function.

PROOF : Define a function ¢ as

#x) = {x) - g(x) ¥x € [a, b)

Therefore ¢°(x)'= 0¥ x € Ja, b because it is given that
f(x) = g’(x) for cach x in Ja, b ,

Ako ¢ is continuous in [a, b, therefore,

&(x) =k, ¥ x€[a b}

where k is sume fixed real number. This means that

Kx) —gx) =kV x€[ab)
ie(f—g)(x)=kVx€[ab)

Thus f — g is a constant function in [a, b}

The next two results give us method to test whether the given function is increasing or
decreasing.

UL If a function £ is (i) continuous on [a, b} (ii) derivaule on }a, b{ and
@) f'(x) > 0¥ x € Ja, b, then f is strictly increasing on [a, b).

For the proof, let x), x> (x; < x;) be any two points of {a, b]. Then f is continuous in [x1, x2)
and derivable in Jxi, x.{, so by Lagrange’s mean value theorem,

fix;) — f(x)) =f(c) >0 forx, <c<x;
X2 — X

which implies that

fix2) — f(x)) > 0 = f{x;) > f(xy) for x; > x,

Thus f(x;) > f(x)) for x; > x,.

Therefore f is strictly increasing on [a, b).

If the condition (i) is replaced by £/(x) = 0% x € [a, b), then fis increasing in [a, b] since
you will get f(x;) = f{x,) for x; > xu.

lV.lfaﬁllcdonfk(i)conﬁnmson[mb](ﬁ)derivableonh.b[md
(@) £(x) <0 x € Ja, b then i strictly decreasing oa [a, b}

Proof is similar (o that of 111, Prove it yourself. If condition (iii) in IV is replaced by.
'(x) = 0¥ x € |a, b, then f is decreasing in [a, b]. ‘

~ The result 11 and IV remain true if instead of [a, b] we have ihe intervals [a, %, )~ =, b},

]_ ”9#9]"%'}_&»“,“&

Note' that the conditions of Lagrange’s mean valug theorem cannot be weakened. To see this,
consider the following examples :

(1) Let f be the fanction defined on [1, 2] as follows :

lifx =1
() ={x"if1<x<?
2ifx =2

Clearly f is coqt'nums on [1, 2[ and derivable on 1, 2[, it is not continuous only at x = 2 ie.
'the first condition of Lagrange’s Mean Value Theorem is violated.

f(2) - (1
Also —%t(Tl =2-1=1



3
g,
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.

and f(x) = 2xfor 1 <x < 2.
If this theorem is to be true then
f(x) = 1 ie. 2x = lie. x = 1/2 must lic in ]1, 2, which is clearly faise.

(2) Let f be the function defined on [— 1, 2] as
fx) = | x|. |
Here f is continuous on [— 1, 2] and derivable at all point of }— 1, 2 except at x = 0, so that '
the second condition of Lagrange’s Mean Value Theorem is violated.
As
_ xif0=x<2
“’)_l —xif - 1<x<0
1f0<x<2
-1f-1<x<0
-K-H_2-¢H _1
2—-(1) 2 3
-1 _ . .
————-—2_(_ T #f(x)foranyxin}— 1, 2.

We may remark that the conditions of Lagrange's mean value theorem ase only sufficient.
They are not necessary for the conclusion. This can be seea by considering the function on
[0, 2] defined as : '

= f(x) = {

Also

so that

1
(0if0 < —
()lf()_x<4
1 1
= if — < —_—
fix) xlf4_x<2
x 1
= f—<x<
L2+I£2_x_2
for L < e Lori =1 :
e T2 :
In particular, £(3/8) = 1.
£2)—-10) _2-0_
Ao =5 — = =3 =1=F(%8)

cven though f is ncither continuous ia the interval [0, 2] sor i is desivable o 10, 2, sisac f is
peither continuous nor derivabie at 1/4 aad 1/2.

Now you will sec the geometrical significance of Lagrange’s Mcan Value Thoorem.
Geometrical Interpretation of Lagrange’s Mean Vaiue theorem :

Y
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anthegraphofthefunaionfbetweenthetwopoimsA(a,f(a))andB(b,f(b)).The

number Rbl Ra )gnvstheslopeofthechordAB Also f(c) gives the slope of the tangent

to the graph, at thc point P(c, f(c)). Thus the geometrical meaning of Lagrange’s Mean Value
theorem is stated as above :

If the graph of f is continuous between two points A and B and possesses a unique tangent at
cach point of the curve between A and B, then there is at least one point on the graph lying
between A and B, where the tangent is parallel to the chord AB.

Before considering example, we have another interpretation of the theorem.

We know that f(b) — f(a) is the change in the function f as x changes from a to b so that
{b) — (a)}/(d — a)

is the average rate of change of the function over the interval {a, b]. Also f*(c) is the actual
rate of change of the function for x = c. Thus, the Lagrange’s mean value theorem states that

the average rate of change of a function over an interval is also the actual rate of change of the
function at some point of the interval.

This interpretation of the theorem Justifies the name ‘Mean Value’® for the theorem.
Now we consider an example which verifies Lagrange’s Mean Value Theorem.

EXAMPLE § : Verily the hypothesis and conclusion of Lagrange’s mean value theorem
for the functions defined as : .

D W)= ¥req

i) K0 = logx¥x € [1,1+4]

SOLUTION : (i) Here f(x) = 1/x; x €1, 4).

Clearly f is continuous in [1, 4] and derivable in 1, 4f. So f satisfies the hypothesis of
Lagrange’s mean value theorem. Hence there exists a point ¢ € ]1, 4{ satisfying

. — R4) — (1)

Fo=""¢gT

Putting the values of f and f*, you get
1_wa-1
¢ 3

which gives ¢ = die.c =+ 2

Of these two values of ¢, ¢ = 2 lies in )1, 4.

(ii) Here f{x) = log x; x € {1, ]+e"}
Cleulyfsoontmuousm[l 1+e ]anddenvablem]l 1+e[

Therefore the hypothesis of Lagrange’s mean value theorem is satisfied by {. Therefore there
€xists a point
cE€ L, 1 + ¢ '[ such that
+e')—
o= e_? ()
(l1+e)—1
Putting the values of f and f°, you get
1. log(l+e’)—logl

c e’
which givesc = [elog(l + ¢ )]

You can use the inequality

l+ T <log(l +0<x(x>bioseethatc< JI. 1 +¢’ [
Now try the following exercises.



EXERCISE 6

Verify Lagrange’s Mean Value theorem for the function f defined in [0, 7/2) where
f(x) = cos x¥ x € [0, 7/2). '

EXERCISE 7

Find ‘¢’ of the Lagrange’s Mean Value Theorem for the function f defined as
f(x) = x(x — 1) (x — 2)¥ x €0, 3].

Now you will be given examples showing the use of Lagrange’s Mean Value Theorem in
solving different types of problems.

EXAMPLE 6 : Prove that for any quadratic function, Ix* + mx + n, the value of 6 in

Lagrange’s Mean Value theorem is always —;— » whatever 1, m, n, 8 and h may be.

SOLUTION : Let f(x) = Ix’ + mx + n; x € [a,a + h].
f being a polynomial function is continuous in [a, a + h] and derivable in Ja, a -+ h[. Thus {
satisfies the conditions of Lagrange’s Mean Value theorem.

Therefore there exists 8 (0 < 6 < 1) such that
f(a + h) = f(a) + hf’(a + 6h)

Putting the values of f and f* you will get

l(a+h)2+m(a+h)+n=la2+ma+n+h[21(a+0h)+m]
ie. => 1h* =216K’
which gives § = 1/2, whatever a, h, |, m, n may be.

EXAMPLE 7 : If a and b (a < b) are real numbers, then there exists a real number ¢ between
a and b such that

= -;— (8’ + ab + b%).

SOLUTION : Consider the function, f, defined by
f(x) = x’ ¥ x € [a, b]. :

Clearly f satisfies the hypothesis of Lagrange’s mean value theorem. Therefore there exists
¢ € Ja, b[ such that

f(b) — f
f(c) = ( )b_ia)
which gives

3 _- 3

3c’=b—b:: =b + ba +a’

ie.cl= %— @+ ab + b?)where a < ¢ < b.

EXERCISE 8

Show that on the curve, y = ax +bx+c,(a,b,cGRa#0),thechord;omugthepomB
whoseamusaearex—mandx—n,mpamﬂeltothetangentatthepmmwhoueubamu
given by x = (m + n)/2.

EXERCISE 9
Let f be defined and coatinuous on [a — h, a -+ h] and derivable on Ja — h, a + h{. Prove
th;tthcmex'stsarenlnumbere(0<0<l)fmwhich

f(a + b) + f(a — h) — 2fa) = b{f’(a + 6b) — f'(a — 6h)}.

With the help of Lagrange’s Mean Value Theorem we can prove some inequalities in Analysis.
We consider the following example.

EXAMPLE 8 : Prove thatsin x < x for 0 < x < n/2,

.SOLUTION : Let f(x) = x —sinx; 0 < x < m/2.

fis continuous in [0, /2] and derivable in J0, m/2[.

Mean-Value Theorems
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Alsof'(x) =1 —cosx > 0for0 < x < 7/2.

Therefore f is strictly increasing in [0, /2] which means that

f(x) > (0) for 0 < x < m/2 (Using corollary I of Lagranige’s Mean Value Theorem)
Le.x —sinx > 0for0 < x < 7/2.

ie.sinx < xfor0 <x < #/2.

We can aiso start with the function g(x) = sin x — x for 0 < x < /2. Then we have to use
corollary IV of Lagrange’s Mean Value Theorem to arrive at the desired result.

EXAMPLE 9 : Prove that x > x, whenever 0 < x < 7/2.

SOLUTION : Let ¢ be any real number such that 0 < ¢ < /2. Consider the function, f,
defined by -

f(x) = tanx — xV x € [0, c].

The function f is continuous as well as derivable on [0, c}.
Also, f'(x) = sec’x — 1 = tan’ x > 0¥ x € 10, ([

Thus f is strictly increasing in [0, c}.

Consequently f(0) < f(c) => 0 < f(c)

which shows that 0 < tan x — x, when x = ¢
=>tanx > x,whenx = ¢

since c is any real number such that 0 < ¢ < 7/2, therefore
tan x > x whenever 0 < x < #/2.

EXAMPLE 10 : Show thatl—:_—x <log(l +x) < x¥ x>0.
SOLUTION : Let f(x) = x — log (1 + x),x = 0.

D S
Therefforef(x)—l T+ x 1 +x
Clearly f'(x) > 0 for x > 0.
Therefore f is strictly increasing in [0, o9[.
LX) > f0)= 0% x >0
ie.x>log(1 +x)¥ x>0 ‘
ielog(l +x)<x¥ x>0

Again, let g(x) = log (1 + x) —

X
>
1ni_x,x_O.Then
o=t L _ 1
8 I+x (d+x° d+x°

Clearly g'(x) > 0¥ x > 0
X

g 1_{_"J\7‘x>0
i.e.l—+—x<10g(l‘ +X)'V'X>0

ie. log (1 + x) >

X
Hence-lT;<log(I +x)<xV¥x>0

Now try the following exercises .

EXERCISE 10
Prove that

1) x—xX<tn'xifx>0

i) e*>1—xifx>0

Cauchy generalized Lagrange’s Mean Value Theorem by using two functions.

THEOREM 3 : GAUCHY’S MEAN VALUE THEOREM
Let f and g be two functions defined on [a, b} such that

1) fand g are continuous on [a, b],



i) fand g are derivable on ]Ja, bf, and | Mean-Value Theorem
i) g'(x)# 0% x € ]a, b,

then there exists at least one real number ¢ € ]a, b[ such that

f'c) _ f(b) — f(a)

g') gb)—g@)

(This is also known as Second Mean Value Theorem of Differential Calculus.)
PROOF : Let us first observe that the hypothesis implies g(a) # g(b)

(Since g(a) = g(b), combined with the other two conditions g has, means g satisfies the
hypothesis of Rolle’s Theorem. Thus there exists ¢ € Ja, b[ such that g’(c) = 0, which violates
condition (iii})). ,

Let a function ¢ be defined by

d(x) =f(x) + Agx)V xE[a,b), .
where A is a constant to be chosen such that
i &(a) = d(b)
i.e. f(a) + Ag(a) = f(b) + Ag(b)
which gives
A = = {f(b) — f(a)} / {g(b) — g(a)}.
(As proved above, g(b) — g(a) # 0).
Now (1) ¢ is continuous on [a, b}, since f and g are so,
(2) ¢ is derived on ]a, b[, since f and g are so,
and (3) ¢(a) = @(b). : .

Thus ¢ satisfies the conditions of Rolle’s Theorem. Therefore there is a point ¢ € ]a, b[ such
that ¢’(c) = 0
which means that f’(c) + Ag’(c) = 0

f f(c) _ _ fo) — fa)
“TO g(b) — g(a)
Alternative statement of Cauchy’s Mean Value Theorem i

If in the statement of above theorem, b is replaced by a + h, then the number ¢ € ]a, b[ can
be written as a + 6h where 0 < 8 < 1. The above theorem then can be restated as :

Let f and g be defined and continuous on [a, a + h}, derivable on Ja, a + h[ and g'(x) # 0
¥x € Ja, a + h[, then there exists a real number 6(0 < 6 < 1) such that
fa + 6h) _ f(a +h) — f(a)
g+ 6h) ga+h)—g@)
As remarked earlier, Lagrange’s Mean Value Theorem can be deduced from Cauchy’s
Mean Value Theorem in the following way
In Cauchy’s mean value theorem, take g(x) = x. Then g’'(x) =1 and have g'(c) = 1. Also
g(a) = a, g(b) = b. Result of Cauchy’s mean value theorem becomes ‘
fb) = @) _ 1)

b—a
This holds if (i) f is continuous in [a, b] and (ii) f is derivable in Ja, b[ Whl( a .5 nothing but
Lagrange s mean value theorem.

Note that you might be tempted to prove Cauchy’s mean value theorem by applying
" Lagrange’s mean value theorem to the two functions f and g separately and then dividing. The
desired result cannot be obtained in this manner. In fact, we will obtain

f (c) _ f(b) — f(a) ,
f'(c) gb)— g
. where ¢, € Ja, b[ and c; € Ja, b[. Note that here c, is not necessarily equal to cz.

As in the case of Rolle’s Theorem and Lagrange’s Mean Value Theorem we give geometrical
significance of Cauchy’s Mean Theorem

Geometrical Interpretation of Cauchy’s Mean Value Theorem

The conclusion of Cauchy’s mean value theorem may be written as
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{ &b) - fa) } /{ g(b) — g(2) ] _f©
i b- a b—a g (©
s means

sinoe of the chord joining (a, f(a)) and (b, f(b))
.\k‘lic of the chord joining (a g(a)) and (b, g(b))

_stope of the tangent to y = f(x) at (c, f(c))

- slope of the tangent to y = g(x) at (<, g(c))

Suppose. that two curves y = f(x) and y.= g(x) are continuously drawn between the two
ordinates x = a and x = b as shown in the Figure 3. Suppose further that the tangent can be
drawn to each of the curves at each point lying between these abscissae and no where does the
tangent to the curve, y = g(x), between these abscissae become parallel to the X-axis. Then
there exists a point ¢ between a and b such that the ratio of the slopes of the chords joining the
end points of the curves is equal to ratio of the slopes of the tangents to the curves at the points
obtained by the intersection of the curves and the ordinate at c.

Fig. 3

As in the case of Rolle’s Theorem and Lagrange’s Mean Value Theorem, we now give
examples concerhing the verification and gpplication of Cauchy’s Mean Value Theorem. .

EXAMPLE 11: Venfy Cauchy’s Mean Value Theorem for the functions f and g deﬁned as
fx)=x% gx) = x* ¥ x €2, 4],

SOLUTION : The function f and g, being polynomial functions, are continuous in [2, 4] and
derivable in ]2, 4[ Also g’(x) = 4x’ # 0V x € ]2, 4[. All the conditions of Cauchy’s Mean
Value Theorem are satisfied. Therefore there exists a point ¢ € ]2, 4[ such that

f4) —f2) _ f'(¢

g4) — g2 g©

o 12 _ 2
YT
i.e.c—i\/ﬁ)

¢ = +/101lies in ]2, 4[
So Cauchy’s Mean Value Theorem is verified.
EXAMPLE 12 : Apply Cauchy’s Mean Value Theorem to the functions f and g defined as
f(x) = x’, g(x) = x ¥ x € [a, b},
and show that ‘c’ is the arithmatic mean of ‘a’ and ‘b’.



SOLUTION : Clearly the function f and g satisfy the hypothesis of Cauchy’s Mean Value Mesa-Valne Theoram
Theorem. Therefore

I ¢ € Ja, b such that

f'c) _ f(b) — f(a)

g g(b) - g(a)

Putting the values of f, g, f*, g we get

2% _ b ~a’
1 b—a
=c= % (a+b).

which shows that ¢ is the arithmetic mean of ‘a’ and b’.

EXAMPLE 13 : Show that ~=2 _ 508 _ s
CcOs - COS «

=b+a

where0 < a <8< B8 < 7/2.
SOLUTION : Let f(x) = sin x and g(x) = cos x.
where x € [a, 8] C )0, % L

Now f(x) = cos x and g’(x) = — sin x

Functions f and g are both continuous on (a, B], derivable on ]a, B[, and
EXx)# 0V x € Ja, AL

By Cauchy’s mean value theorem, there exists 6 € ], 8{ such that
sinB—~sina _ cos 6

cosB—cosa  —sin@

sina —sin B
cos B — cos o
Try the following exercise.

= cot 6.

EXERCISE 11
VeﬁfytheCauchy’smeanvaluctheoremforthemncﬁons,f(x) = sin x, g(x) = cos X in the
interval [— #/2, 0].

EXERCISE 12

Let the functions f and g be defined as :
fix) =¢"andg(x) =e*¥x € [a, b].

Show that ‘c’ obtained from 'Cauchy’s mean value theorem is the arithmetic mean of a and b.

EXERCISE 13 .
Let fix) = Vx and g(x) = 1/vx ¥ x € [a, b] given that 0 ¢ [a, b]. Verify Cauchy’s mean
value theorem and show that ¢ obtained thus is the geometric mean of a and b.

EXERCISE 14
Two functions f and g are defined as : '
f(x) = x™' and g(x) = x> ¥ x € [a, b}, given that 0 ¢ [a, b).

Ap‘ply Cauchy’s mean value theorem and show that ¢ thus obtained is the hu:nomc mean
between a and b,

The following theorem generalises both Lagrange’s and Cauchy’s mean value theorems, In this
theorem, three functions f, g, h are involved. Both Lagrange's and Cauchy’s mean value

* theorems are its special cases.

THEOREM 4 : GENERALISED MEAN VALUE THEOREM
If three functions, f, g and h are continuous in [a, b] and derivable in ja, b{, then there exists a
real number ¢ € la, b{ such that

flo) g r

f(a) g@a) h(a} ’ = Q.
fib) gb) hiby |



38

PROOF : Define the function, ¢ , as

f)  gx)  h(x)
(x) = fa) g h(a) ‘
f(b) gbd) hb)
for all x in [a, b].

Since each of the functions f, g and h is continuous on [a, b] and derivable on ]a, b[, therefore
¢ is also continuous on [a, b] and derivable on Ja, b{.

fla) gd h(a)
&a) = ‘ f(a) g(a)  h(a)
f(lb) gb) hd)

Similarly ¢(b) = 0.
Thus ¢(a) = @(b)-

Therefore ¢ satisfies all the conditions of Rolle’s theorem.

= 0, since two rows of the determinant are identical.

So there exists ¢ € Ja, b such that

flby gb) hd)
which proves the theorem.

¢'(c) =0.
') g W)
()= fa)  g@) hQ) l Y x€a b
f(b) gb) hd)
f'c) . g W)
So ¢'(c)= fla)  g(a) h(a) \ =0

Now we show that Lagrange’s and Cauchy’s mean value theorems are deducible from this
theorem by choosing the functions f and g specially.

i) First we deduce Lagrange’s Mean Value Theorém from the Generalized Mean Value
Theorem. :

Take g(x) = xand h(x) = 1 ¥ x € [a, b},

so that "
f(x) X 1
(x) = f(a) a 1
f(b) b 1
f'(x) 1 0
=> ¢'(x) = f(a) a 1 = {'(x) (@ — b) — [f(a) — f(b)]
f(b) b 1
f(b) — f(a)

Now ¢’(c) = 0 gives f'(c) = which is Lagrange’s mean value theorem.

b —_
i) Next we deduce Cauchy’s mean value theorem from the Generalized Mean-Value
Theorem : A

Take h(x) = 1 ¥ x € [a, b}.

f(x) B(x) 1
So that ¢(x) = f(a) g(a) I
f(b) g(b) 1
f'x)  g'(x) 0
= ¢'(x)= f(a) g(a) 1 = f(x) [g(a) — g(b)] ~ g'(x) [f(a) — f(b)]
filb)  g(b) 1

Now ¢'(c) = 0 = f'(c) [g(a) — g(b)] — g'(c) [f(a) — f(b)] = 0
_ o) _ ) — f@)

g'c) glb)—g@)

which is the Cauchy’s mean value theorem.

provided g'(x) # 0 for x € ]a, b{.



124 INTERMEDIATE VALUE THEOREM

We end this unit by discussing Intermediate Value Theorem for derivatives. Just as you
studied Intermediate Value Theorem for continuous functions in Unit 10, there is an
Intermediate value theorem for derivable functions which we now state and prove.

THEOREM 5 : INTERMEDIATE VALUE THEOREM FOR DERIVATIVES -

If a function f is derivable on [a, b] and f’(a) # {'(b), then for each k lying between f’(a) and

f’(b), there exists a point ¢ € Ja, b[ such that f*(c) = k.

PROOF : Consider a function, g : [a, bf — R defined as

g(x) = f(x) — kx ¥ x € [a, b]. ‘

Then g'(x) = {'(x) — k ¥ x € [a, b}.

5 ga) =f’(a) — kand g'(b) = f'(b) — k.

Since k lies between f’(a) and f’(b), we get that

g'(a) and g’(b) are of opposite signs.

Assume : g’(a) > 0 and g'(b) < 0

ga +h) — ga)

h

g(b — h) — g(b)

—h

which means that g'(a) = Lig}). > 0and

g(b) = lim <0.

This implies that there exist 8,, 8, > 0 such that

0<h< 8 =:>l gath —g@ h}z 8D )| < gt
— o< g(a + h) — g(a) < 2¢(a)

h
= g(a) < g(a + h),
g(b —h) — g(b

i _% “)—gwﬂ«<—gw)

— o) < X0 — 80 - B®)

and0 <h<é:. =

<0
= g(b) <g(b — h).

Since g is derivable on [a, b}, therefore it is continuous on [a, b] and it attains its supremum on
[a, b].

But the supremum is not attained at.a or b because
g@) < g(a + h)
and g(b) < g(b — h).

Hence, there exists ¢ € Ja, b[ such that g(c) = Sup. g.
We shall show that g’(c) = O i.e. f’(c) = k.
If possible, suppose g'(c) # 0. Then eithet gc)>0or g; (c) <.

Suppose g'(c) > 0.

 Since g is derivable at ¢, for € = g'(c) > 0, there exists some 8; > 0

such that

glc +h) —glc)

0<h< = b

g | <g(
=> g(c) <g(c T h)
~. g(c) # Sup. g. which is a contradiction.

Therefore g'(c) 3> 0.
Simiiarly g'(c) < 0.
Hence g'(c) = Oie. f(c) = k

-

Mean-Vakie Theorems
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In case, g'(a) < 0 and g'(b) > 0, then
—g@>0and —g(b)<0

Therefore at some point ¢ € Ja, b,
—g)=0or—f(c)+k=0o0rf’c) =k

Another French mathematician, J.G. Darboux [1842-1917], gave a the_orem which is useful in
determining the maximum or minimum values of a function. This is popularly known as -
Darboux Theorem. This is infact a particular case of Intermediate Value Theorem.

THEOREM 6 : DARBOUX’S THEOREM :
Let f be derivable [a, b]. If *(a) and f’(b) are of opposite signs, then there exists a point
€ € Ja, bf such that f’(c) = 0.

PROOF : Since ’(a) and ’(b) are of opposite signs, therefore one of f ‘(a), f'(b) is positive
and other is negative. Take k = 0 in the Intermediate Value Theorem. You get a point
¢ € Ja, b such that f’(c) = 0.

A deduction from Darboux theorem is that if the derivative of a function does not vanish for
any point X in Ja, bf, then the derivative has the same sign for all x in Ja, b{.
This is proved in the following example.

EXAMPLE 14 : If f is derivable in Ja, b{ and f*(x) % 0 ¥ x € Ja, b, then f'(x) retains the
same sign, positive or negative for all x in Ja, b[.
SOLUTION : If possible, suppose xi, x: € Ja, bf, x| < xa, suich that f(x,), f’(x:) have

opposite signs. By Darboux Theorem there exists a point ¢ € x;, x,{ Cla, b[ such that
f’(c) = O which is » contradiction. Hence f’(x) retains the same sign for all x in Ja, bl.

126 SUMMARY

In this umit mean value theorems of differentiability have been proved. In Section 12.2. Rolle’s
theorem. the fundamental theorem of Real Analysis is proved. According to this theorem if

f: [a. b] — R is a function, continuous in [a, b}, derivable in Ja. b{ and f(a) = f(b). then there
is at least one point ¢ € Ja, b{ such that f'(c) = 0. The geometric significance of the theorem is
also given. Geometrically, on the graph of the function f, there is atleast one poiat between the
end points, where the tangent is parallel to the x-axis. Using Rolle’s theorem. Lagrange's Mean
Value Theorem is proved in Section 12.3. It states that if a function f : [a,b]~Ris
continuous in [a, b] and derivable in Ja, b[, there is atleast one point ¢ in Ja, b[ such that

f(b}— fi .
%—_a(i) = f’(c). An important consequence of the theorem is that if f is continuous on

[a, b] and derivable on Ja, b[ with f’(x) = 0 on Ja, b[, then f is a constant function on [a. b].
A.nother important deduction from the theorem:is that if  is continuous in {a, b] and derivable
in Ja, b then (i) f is increasing or decreasing on {a, b] according as f’(x) = 0¥ x € Ja. bl or
f(x) < 0V x € Ja, b (ii) f is strictly increasing or strictly decreasing in [a, b] according as
f'(x) > 0¥ x€Ja, bl or {(x) <OV x € Ja, . Applying these results, some inequalities in
real analysis are established. With the help of Rolle’s theorem, Cauchy’s theorem is proved in
Section 12.4. It states that if f and g be two functions from {a, b] to R such that they are
continuous in [a, b], derivable in Ja, b[ and g'(x) # 0V x € ]a, bf. then there exists at least
f(b) ~ fa) _ f(c)
gb) —ga) g
particular case of Cauchy’s mean value theorem if we choose the function g as

g(x) = xV x € [a, b]. A more general theorem, known as generalised mean value theorem is
given in Section 12.5. You have seen *hat it is also established with the help of Rolle’s
Theorem. According to this theorem, if f, g, h be three functions from (a, b] to R such that
they are continuous in [a, b] derivable in Ja, b[, then there exists at least one point ¢ € Ja, b[
such that '

one point ¢ in Ja, b[ such that ' Lagrange’s Mean Value Theorem is a

f'lc) g h(e)
f(a) g(a) h(a) =0.
f(b) g(b) h(b)



Both Lagrange’s and Cauchy’s theorem are particular cases of this theorem. If you take

8(x) = x and h(x) = 1 ¥ x € [a, b}, then you get Lagrange’s theorem from it. Cauchy’s mean
value theorem follows from this general theorem if you ake only h(x) = 14 x € [a, b].
Finally, in this section, Intermediate Value Theorem for derivatives is given according to

which if f is derivable in [a, b}, f(a) # f(b) and & is any number lying between f’(a) and f*(b),

then there exists a point ¢ € Ja, b[ such that f’(c) = k. From this follows Darboux Theorem
namely if f is derivable in [a, b] and f*(a). f'(b) < 0, then there is a point c in Ja, b{ such that
f(c)y=0.

12.6 ANSWERS/HINTS/SOLUTIONS

El)

E2)

E3)

E 4)

ES)

f is continuous in [— 2, 2] and derivable in ]— 2, 2.
f(— 2m) = f(2m) = 0. All conditions of Rolle’s Theorem are satisfied. Therefore there
exists a point ¢ in ]— 2, 2x{ such that

f'cy=20

=cosc=0

=c= t n/2

Both the points + 7/2 € }— 2m,27].

(a) Clearly f(x) = cos x satisfies the hypothesis of Rolle’s theorem over
[— 7/2, #/2]. So conclusion of the theorem will also be true.

Thus there is point ¢ € ]— 7/2, 7/2] such that f’(c) = 0
Here f’(x) = — sin x and f(x) = 0 implies
x=0. Soc=0€]- n/2, n/2.

(b) Conditions of Rolle’s Theorem are not satisfied, as f'(x) = %— x—1)"

for x # 1 and f is not derivable at x = 1 a point of ]0, 2[. So f is not derivable in
10, 2[. So hypothesis of Rolle’s theorem is not valid. As f'(x) # 0 for any x in
10, 2, so conclusion of the theorem is not true.

Let a and b, a 7 b, be any two roots of
e'sinx =1 <>sinx =™

<> e —sinx=0.
. e*—sina=0ande®—sinb=0

Letf(x) = e™ —sinx ¥V x € [a, b].
Clearly f is continuous in [a, b] and derivable in Ja, b{. Also f(a) = f(b) = 0.
Therefore the hypothesis of Rolle’s Theorem is satisfied by f over [a, b}

Therefore there exists ¢ € Ja, b{such that (c) = 0 whigh implies
—e‘—cosc=0 =>e‘cosc+1=0.
Soe* cos x + 1 = 0 has a root ¢ for some c € Ja, by.

Consider the function, f, defined as :
aoxnﬂ alxn

anX
= 4 2T ... fodiaiel

f(x) n+l+ " + N v x€[0,1]

Here f is continuous on [0, 1], derivable on 10, 1[ and f(0) = 0

9 a

f 1) = ———nuo —_—t e n = ¥ it

§)) . + - + + a, = 0 (given condition)

-~ f(0) =,1(1)

So f satisfies the hypothesis of Rolle’s theorem and therefore there is.a point ¢ € 10, 1]

such that f°(c) = O that is there is x € J0, 1[ such that f’(x) = O that is

aox" +ax"'+..... anx = 0,

We have to show that i

(b —a)f(c) — (b — c) f(a) — (c — a) f(b) = Y (b — a) (c — a) f"(d) for some

¢, d, € [a, b).
Consider the function. ¢, defined by

Meea-Valne Theorems
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E 6)

ET7)

E8)

E9)

Px) = —a)fx) — (b—x)fa)— (x —a)f(b) —(b—a)(x —a)(x —H) A
where the constant A is to be determined such that ¢(c) = 0. _

This implies

(b—a)fc)—(b—c)f(a) —(c —a)f(b) —(b—a)(c —a)(c—b)yA=0. 2)
It is given that £” is continuous on [a, b] which implies that f;, f’, {” are continuous on
[a, b).

#(a) = ¢(b) = 0 and ¢ is differentiable in [a, b). So ¢ satisfies all the conditions of
Rolle’s theorem on each of the intervals [a, c] and [c, b}
Thas there exists two numbers ¢, ¢; respectively in Ja, [ and Ic, b such that

¢’'(c;) = 0 and @'(c2) = 0.
Again ¢'(x) = (b — a) f(x) + f(a) — f(b) — (b — a) [2x — (a + b)] A which is
continuous and derivable in [a, b] and in particular on [c,, c2]. Also
¢'(ci) = ¢(c2) = 0.
By Rolle’s theorem, 3 d € Jc 1, ¢ such that
¢"(d) =0
Now ¢"(x) = (b — a) f"(x) — (b — a). 2A
1
" d=0b—a)yf’"d)—(b—a)2A=0 = A= T»f”(d) 3)
where a < ¢; < d < ¢z < b and the result follows from (2) and (3).
Here f(x) = cos x, x € [0, 7/2]. f is continuous in [0, w/2] and derivable in 0, 7/2[.

By Lagrange’s Mean Value Theorem, there exists a pt, ¢ in J0, w/2[ such that
f(w/2) — (0)

P ="—"72=0
o 2
1e.—smmc—=— —

m

L 2
ie.sinc=—
T

g 2 B
ie.c=sin"’ — €10, 7/2 ‘
Here f(x) = x* — 3x* + 2x
Therefore f’(x) = 3x” — 6x + 2

Let us solve the equation () = Q1@ _ £3) — 10)

b—a 3—0
ie.3c’—6c+2=2

ie.3—6c=0

ie.c=0,2

Since 0 does not lie in )0, 3[, this value of c is rejected. So the required value of
¢ which lies in 10, 3[ isc = 2. ;

Apply Lagrange’s Mean Value thedrem to the function f, given by

f(x) = ax’ + bx + d¥ € [m, n].

You will getac € Jm, nf satisfying

— fi

f’(c)zﬁfz—_-—é:—nl(Assume:n>m)
2 - 2
s 920+ b = (an° + bn + d) — (am° + bm + d)
n—m

=a(n+m)+b

+
=">c:m 2nandc€]m,n[

+
which implies that at x = m_i_n

chord joining the points whose abscissae are x = m and x = n.

, the tangent to the given curve is parallel to the

Define a function, ¢, by setting
@(x) = f(a + hx) + f(a — hx) Vv x € [0, 1}.



As x varies over [0, 1], a — hx varies over [a — h, a] and a + hx varies over Mesn-Value Theorems
a,a + h]. \

Therefore ¢ is continuous in [0, 1] and derivable in 10, 1[. By Lagrange’s mean value
theorem 3 6(0 < 6 < 1) such that

1) — &0
sy - K200

=> f(a + h) + Ka — h) — 2f(a) = h[f"(a + 6h) — f'(a — OM)].
E10) i) Consider F(x) =tan™' x — (x — x'/3),x = 0.
l 4
oy — — (1 -x)=—
Fo=1re 797 75¢
Thus F is strictly increasing in [0, %[
5 F(x) > F0) forx >0
3

>0forx>0.

jie tan ' x — (x —%)>0forx>0
je.tan' x > x — x/3forx > 0.
i) Consider F(x) = e — (I — x) forx = 0 and proceed as in (i).
E 11) The given functions satisfy the hypothesis of Cauchy’s mean value theorcm.
= A /2, O[ such that
(6 _ f(— =/2) — f(0)
g0 &(— m/2) — g0)
cos 0 __ 1 — 0
—-sin 6 0—1
which clearly lies in — #/2, 0[.
E 12) We find c from
f'(c) _ f(b) — f(a)
g©  gb)—g@)
) ec eb _ ea
ie. =

_ e-c efb _ e‘a

=cot§=—1=>60=—n/4

ieef=¢.e"=¢"
Thus2c=a+b = c=(a+ b)/2
which means that c is the arithmetic mean of a & b.
E 13) We find ¢ from
f’(c)y _ f(b) — f(a)
g gb)— g
R Ve Wb a
128V (/b)) — (1),
which gives ¢ = \/5 ﬁ = \/a—b

‘ Thus ¢ is the geometric mean of a and b.

1.

E 14) We find ¢ from
‘s f(c) _ f(b) — f(a)
gic)y gb)—gla)

, ' o e (—tlf)_(%)
B

hich gi C ab 2 1 n 1
w ves — = == —=—+ —
1ch give 2 b+a c a b
thus ¢ is the harmonic mean between a and b

43




UNIT 13 HIGHER ORDER DERIVATIVES

Structure

13:1 Introduction
Objectives

13.2 Taylor’s Theorem
Maclaurin's Expansion

13.3 Indeterminate Forms

13.4 Extreme Values

13.5 Summary

13.6 Answers/Hints/Solutions

13.1 INTRODUCTION

In Unit 12, you have learnt Rolle’s theorem and have seen how to apply this theorem in
proving mean value theorems. In these theorems only the first derivative of the functions are
involved. In thi$ unit, you will study the application of Rolle’s Theorem in proving theorems
involving the’ higher order derivatives of functions.

Given a real function f(x), can we find an infinite series of real-numbers say of the form
wtaxtax+ax’+... ...

whose sum is precisely the given function? .
To answer this question we have to approximate a function with an infinite series of the above
form which is also known as the infinite polynomial or power series. This approach of
approximating a function was known to Newton around 1676 but it was developed late by
the two British mathematicians Brook Taylor [1685-1731] and S.C. Maclaurin [1698-1746).
The functions which can be represented as_infinite series of the above form are some of the
very special functions.

Such a representation of a function requires a number of derivatives of the function i.e. the
derivatives of higher orders particularly at x = 0 which we intend to discuss in this Unit.
Some work done by Taylor in this direction has found recent applications in the mathematical
treatment of Photogrammetry—»he science of surveying by means of Pphotographs taken from
an aeroplane.

Besides, we shall also demonstrate the use of cerivatives for finding the limits of indeterminate
forms and the maximum and minimum values of functions in this unit. '

Objectives

After studying this unit, you should, therefore, be able to

® know theorems involving higher order defivatives viz. Taylor's Theorem
® expand functions in a power series viz. Maclaurin’s series

® evaluate the limits of indeterminate forms ‘

® find the maximum and minimum values of functions.

13.2 TAYLOR’S THEOREM

In- this section, we shall discuss the use of Rolle’s theorem in proving theorems involving
higher order derivatives of functions. Before proving these theorems, you will be introduced to
the idea of higher derivatives through the following definition :

DEFiNlTlON 1 : HIGHER DERIVATIVES

Let f be a function with domain D as a subset of R. Let D; # ¢ be the set of points of D at
which f is derivable. We get another function with domain D, such that its value at any point
c of D, is f'(c). We call this function the derivative of f or first derivative of f and denote it by
f. If the derivative of f* at any point c of its domain D, exists, then it is called second
derivative of f at ¢ and is denoted by f” (c). If D, # ¢ be the set of all those points of D, at
which f” is derivable, we get a function with domain D such that its value at any point ¢ of



D, is f” (c). We call this function second derivative of f and denote it by {”. Similarly we can Higher Order Dorivatives
define 3rd derivative f*’ and in general, the nth derivative f” of the function f.

The following example will make the definition clear :

EXAMPLE 1 : Find the nth derivative f* of the function f: R — R defined by
f(x)=|x|¥x€ R

SOLUTION : You already know that this function f is derivable everywhere in R except at

x=0.
xifx=0
NOWf(X):{ ~xifx <0
, 1ifx>0
a"df(x)z{ ~1ifz <0

So the first derivative f’ is a function with domain R ~ {0}. Since f’(x) = 1 forx > 0,{ is a
constant function on ]0, °[. Since derivative of a constant function is 0, therefore f" is
derivable at all points in ]0, *f and f”(x) = 0¥ x € ' ]0, .

Likewise f"(x) = 0¥ x € ] — o, 0[.

So the second derivative {” is a function with domain R ~ {0}. Continuing like this, you will
get

f"(x) = 0 and in general forn > 1, f"(x) = 0¥ x &€ R~ {0}.

So you find-that f* and in general for n > 1, f" is a function with domain R ~ {0}.

Try the following exercise.

EXERCISE 1
Find the nth derivative f" of the function f : R— [— 1, 1] defined by
f(x) = sin x.

Now we give a theorem known as Taylor’s theorem which involves the higher derivatives of 4
function.

THEOREM 1 : TAYLOR’S THEOREM WITH SCHLOMILCH AND ROCHE FORM
OF REMAINDER :
If a function f ; [a, b] — R is such that
i) its (n — 1)th derivative, """ is continuous on [a, b}
ii) its (n — 1)th derivative is derivable on Ja, bj,
then there exists atleast one real number ¢ € ] a, b [ such that
b—

2
f(b) = f(a) + (b — a) £'(a) + _i'L) @) +.....

G et G- ®—0""
+ 2 f

(@ — 1)l @+ @ -
p being a positive integer. ‘

£ ),

T.y‘“

PROOF : By hypothesis, f, ', .. ......., """ are all continuous in [a, b} and derivable
n Ja, b[. ' .
We define a function, ¢, on [a, b] as follows :

, (b — )()2
¢(x) = f(b) — f(x) — (b — x)f'(») —~ T

_ n-1 — P
...... S Gl AT PN Ui

=1 ®—ay, &

where A is a constant to be determined such that

@(a) = ¢(b). It is obvious from (1) that
#(b) = 0. Now (i‘» ~ a)?
®(a) = f(h) — fla) — (b — a)f () — =,

i (b _ a:)nfl fn-l (a) A
(n— 1! 4




Therefore, ¢(a) = d(b) =

e
A = f(b) — f(a) — (b — a)f’ (a) — & 5 %) @)~ .....
_ (b— a)n—l (n-1)
..... yremaliC | @
Now
i) ¢ is continuous in [a, b], since f, f, .. .. ,f"" and (b — x)", for all positive integers p,

are all continuous in [a, b].

ii) ¢ is derivable in Ja, bf, since f, f’,.. .., f"" and (b — x)", for all positive integers p, are
all derivable in Ja, bf. -

iii) ¢ (a) = o (b).
Therefore by Rolle’s theorem, 3 ¢ € la, b such that ¢’ (c) = 0.

AU (-t IS ®—x"
Now ¢’ (x) = —-——-——(n_ 1 " (x) + Ap ® = ay

’ _ (b — c)n ! (n) (b — c)p-

¢ ©= =" @+ Ap e =0
L _b-9""b—a) ,
which gives A = Py e— £ (c).
Substituting this value of A in (2), we obtain,
_ O ki R A
f(b) = f(a) + (b — a) " (@) + ——— T f” (a) + .. (n—l)! £ (a)
b—a’®b—9"" '

e e | ®)
This completes the proof of the theorem.
The expression,
R, = (b — a)p (b — c)n—p £ (C) s (4)

p.(n— 1)
which occurs in (3), after n terms, is called Taylor’s remainder after n terms. The form @) is
called Schlomilch and Roche form of remainder.

From this we deduce two special forms of remainder after n terms.
i) Takep = nin (4),
R, = (b - ) f(n)( o).
This is ca]led.Lagrange s form of remainder.
i) Takep = 1in (4),
b-—ayb—0o""
(n — 1)

This is called Cauchy’s form of remainder.

R, =

™ (c).

The Taylor’s theorem with Lagrange’s form of remainder states :

If a function f defined on [a, b] be such that f™" is continuous on [a, b] and derivable on
Ja, bf then 3 a real number ¢ € Ja, b satisfying

m)«n+w—nnn+““”

2 f"()+ .....

®—a)"
+..... + ——
(-1
Alternative form of Taylor’s theorem with Lagrange s form of remainder is obtained if instead
of interval [a, b], we have the interval [a, a + h].

ti + 8= g ©

If we put b = a + h then we can write ¢ = a + 6 h for some 8 between 0 and 1 and the
theorem can be restated as :

If £ is continuous on [a, a + h] and derivable on Ja, a < h{, then



f(a + h) = f(a) + hf’(a) + % f"@+.....

h*!
(n n
for some real 6 satisfying 0 < 6 < 1.

£ @) + :—:f"(a + 6h), ©)

Now let x be any point of [a, b). If f satisfies the condition of Taylor’s theorem on [a, b}, then
it also satisfies the conditions of Taylor’s theorem on [a, x] where x > a. _
Therefore, from (5)

2
ﬂn=ﬂm+u—anuy+g3ﬁlva+ .....
(x — a)" (n—1) (x — a)
..... Ty @ T ) %)

where c is some real number in Ja, x[.
Note that (7) also holds when x = a because, then (7) reduces to the identity f(a) = f(a) as
the remaining terms on the right hand side of (7) vanish.

You may note that we can have forms similar to (5), (6), (7) for Taylor’s theorem with
Cauchy’s form of Remainder.

If in Taylor’s theorem, we take a = 0, then we get a theorem known as Maclaurin’s theorem,
We give below Maclaurin’s theorem with Lagrange’s and Cauchy’s form of remainder. You
can also write Schlomilch and Roche form of remainder.

THEOREM 2 : MACLAURIN’S THEOREM WITH LAGRANGE’S FORM OF
REMAINDER

If f be a function defined on [0, b] such that f") is continuous on {0, b] and derivable on
10, b, then for each x in [0 b] there exists a real number ¢ (0 < ¢ < x) such that

f(x) = f(0) + xf"(0) + 7O+

n—-1
X
+—— f‘"'” ©) + f‘“’ c). :
PROOF : Take a = 0 in (7) above.
We can similarly write Maclaurin’s theorem with Cauchy’s form of remainder as :

7

fix) = f(0) + xf’(0) + f” o+.....

n-1

f(n*l) (0) + X (X - c)n;l

X (n)
T w—1n = ©

You may note that R, (x) = :_' £ (0)

=:‘1—,f"(0x)(0<0<1)

in case of Lagrange’s form of Remainder and

ox{x— o
Rn(x) - (n,_ l)' f (C)
n _ n-l
X020 wgno0<a<,
(n — 1)

in case of Cauchy’s form of Remainder.

By applying Taylor’s theorem or Maclaurin’s theorem also we can prove some inequalities of
real analysis. Earlier, in the last unit, you were given a method of proving the inequalities by
examining the sign of derivative of some function. Consider the following example :

EXAMPLE 2 : Using Taylor’s theorem, prove that

<2
costl——z—VxER

SOLUTION : For x = 0, result is obvious. Now let x > 0 and consider f(t) = cos t. f has_
derivatives of all orders for all t in R. By Taylor’s theorem (or Maclaurin’s theorem) with

Higher Order Derivatives
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— a)?
) =fa) + (x — 8) ' (a) + ("T“)—f" (a) +

remainder after two terms applied to f in [0, x],
f(x) = f(0) + x £*(0) + ;—' £~ (6x) where 0 < 6 < 1.

Putting the values of f, f*, f* we have
2

oosx=1—x7cos(0x).

2 2 x2
Nowcos9x < landsol —x?cosexZI—x—i.e.oostI——i—

I x <0, then — x > 0 and therefore cos (— x) = 1 — (1— x)’

2 2
thatiscosx?_l—%.Hencecosle—%—‘V‘xeR.

You should be able to solve the following exercise.

EXERCISE 2

Using Taylor’s theorem, show that
3 3 ]
x

. x X
X == SsmxSx——+—'forx20,

3! 3 S5
3 3 5

x . X x _
andx—-gl-zsanZx §+5! for x. < 0.

MACLAURIN’S EXPANSION .
Now you will see how to find the Maclaurin’s expansion of certain ¢lementary {unctions of the
type, €, sin x, cos x, (1 + x)™ and log (1 + x) in jerms of an infinite series (power series) as

ataxtaxi+.....

with the help of Taylor’s and Yaclaurin’s theorems.

We have seen betore that

(x— ‘)n-l (n=1)
+ —_(n — l)! f (a) + Rn(.X)
where R.(x) is the Taylor's remainder after n terms.
Puts, = o) + (x— ) o) + ST pr gy 44 B 0y
" 2 U (=)
Then f(}() = Sa + Ru(x) : ®
‘ A natural question arises as to whether we can express f(x) in the form of the infinite series

—a)f ="

fla) +(x —a)f(a)+..... + @ =1 @+ ... 9

and if so under what ooﬁd_itions? This qucstioh can be split up in the following situations:
i)  Under what conditions on f is each term of the series defined?
ii) Under what conditions does the series (§) converge?

iii) Under what conditions is the sum of the series 9), f(x)?
We examine these now one by one.
i) * Each term of the series (2) is defined iff f" (a) exists for all positive integers n.

i) Assuming f"(a) exists ¥ n, we have from (8),
S = f(x) — R«(x) (assuming the conditions for Taylor's theorem are satisfied in
some interval [a, a + h])
From this, it follows that <'S, > converges iff hﬂ_ Rq(x) exists and the series (9) converges
iff !‘lﬂ Ra(x) exists.
iif) Assuming the series (9) converges, we find from above that its sum is f(x) — lm.x‘ Ra(x).

Now f(x) — ll_rg Ra(x) = f(x) iff !‘l_l_‘ll Ru(x) = 0,



T

showing that the series (9) converges to f(x) iff lim R(x) = 0. Higher Order Derivatives
Summing up the above discussion, we have the following results.
THEOREM 3 :Iff:[a, a + h] — R be a function such that

i) f‘“’(x)existsforewhpositiveintegcrn,forallxe[a,a+h].
ii) !iER.,(x)=0Vx€[a,a+h],

then
_— 2 — n-1
f(x)=f(a)+(x—a)f'(a)+(’——‘4‘-)—f'(a) PR .ok AR
- 2! (m— )

for every x € [a, a + h).
This is called Taylor’s infinite series expansion of f(x). We also sometimes call it the expression
for f(x) as a power series in (x — a).

We give an example to illustrate Taylor’s series for a function.
EXAMPLE 3 : Assuming the validity of expansion, show that

AT /) mx— w/4)
4 1+ 2716 41 + #/16) .

tan”' x = tan

SOLUTION : Let f(x) = tan"'x

=tan"' (7/4 + x — 7/4)
Herea = w/4,h = x — n/4.
£°(x) exists ¥ x and V' n.

Now f’(x) — n :_ . 7 (x) = — (]h_f_xx)?-, .....

, - . m

f" (n/4) = T+ 716 7 (w/4) = — —m)z yeneen
By Taylor’s series,

hZ

fla+h)y=1fa)+ hf (a) + Ef’(a) + ...

Putting the yalum off, ', 1" .. .. we obtain

am x—nw/4  w(x— w/4)
4 1+4/16 41+ n/16)

tan”' x = tan s+ ... (x ER)

EXERCISE 3 .
Assuming the validity of expansion expand cos x in powers of (x — #/4).

i you put a = 0 in the Taylor’s series you get thg following result:
THEOREM 4 : Let f: [0, h] — R be a function such that
i) £°(x) exists for every positive integer n and for each x € [0, b
it) !iERn(x)=0foreachx€[0,hL
Theﬂ 2 n
fx) = £0) + xf'(0) + % =0 +.. ... + 3";'— f60) +..... for every x € [0, b]
This series is called the Maciaurin’s infinite series expansion of f(x). ‘

Note that Taylor’s series remains valid in the interval {a — h, a + h] and Maclaunin’s series

remains valid in the interval [— h, h] also provided the requirements of the expansion are
satisfied in the intervals.

You may also note that one may consider any form of remainder R.(x) in the above
discussion. We shall now consider Maclaurin’s series expansions of the functions €*, cos x and

log (1 + x).

EXAMPLE4:FindtheM:danrinwi6expamionofe',oosxmdlog(l+x). 4



SOLUTION 1 ; Expansion of ¢*
Letf(x) =€ V x€ R
Then f™(x) = & ¥ x €[~ h,h},h >0
and for all positive integers, n. In other words, £°(x) exists for each n and for all x in R.

Let us now consider the limt of the remainder, Rq(x). Taking Lagrange’s form of remainder,
we have

Ra(x) = —f‘“’(ox) -—e r0<6<1)

lim R, (R) = lim ’;“— "

lim = = 0 as shown below:

o~ n!
Lctu..=———|x|
n!
Vot _ i 2= 0ifx#0.
e Uy —~n+1

So by Ratio m&, 3, | ua| is convergent and therefore, Zu, is convergent and consequently
hmu..—hm-—-=01fx¢0

lfx—O,thenalso},nﬂ—n-‘-—O
- P—l}-‘- Ra(x) = 0

Thus the conditions of Maclaurin’s infinite expansion are satisfied.
Also f(0) = 1and " (0) = 1 n=12.....

5 f(x) = K0) + xI’ (0) + ——f ©+....

2
=>e"'l+xf’(0)+—-+...;..+-+ ..... , ¥ x€R

2. EXPANSION OF cos x
Let f(x) = cos x V¥ x € R.

Then f™ (x) = cos (x + —2-- yn=12.....
Therefore f(0) = 1 and ' (0) = cos (nm/2) ¥ n.
Ciearly f and all its derivatives exists for z;ll real x.
Taking Lagrange’s form of the remainder,

R () = (00
x" nw
= ;“‘ cos (0x + T )

Therefore | Ra (%) | =\ %\ \ cos(9x.+ 1‘5"—)‘

<

—~Qasn—>,Vx€ER (Proved in the expansion of e").

—

n!
which implies llm Ro{x) =0V x € R.

Thus the condmons of Maclaurin’s infinite expansion are satisfied.

From {"(0) = cos ( 12”— \L we get
/

2m + 1 _ L — = — (=1
§0) cos(2m+l) —-Oandf(o) cos (2m) /2 = cos mm — D"

Substituting th&se values in the expansion, we have

4 6 n
cosx=1-— XX X4 (=) e ¥+ x€ER

2 A 6! (2n)!



3. EXPANSION OF log (1 + x) Higher Order Derivatives

- Letf(x)=log(1 +x)for — 1 <x<1.

(="' —1)
1+ x)"

We shall consider the following cases:

i)y 0=x<1.
Taking Lagrange’s form of remainder after n terms, we have

Then f"(x) = , x> — 1.

R, (x) = ';T £ (6%)

_X )@=
Tt (1 + 6w

=(—l)"".( x )..
n 1+6x )

Since 0 = x < 1,0 < 6 < 1, therefore
X
0= — . L
l-+-0x<1
X

(l+0x) —~0asn—o

Also L Oasn—o0
n
Hence lim R, (x) = 0.
So the conditions of Maclaurin’s infinite expansion are satisfied for 0 < x < 1.
i) —1<x<0.

In this case, x may or may not be numerically less than 1 + 6x; so that nothing can be said

aboutthelimitof( 1 -:Ox )“asn—-ao_ Thus Lagrange’s form of remainder does not help to
draw any definite conclusion. We now take the help of Cauchy’s form of remaindq, which is

_xa—eyt ’
Ra (x) ——(n =) ' (6x)

_ (_' l)n->l xn(l/_ a)n-l

a+ ex™
— 1\l n 1 -0 1
D7 x '(1+ox T+6x

Now0<l—0<l+0x(for—l<.x<0;0<0<l)
-0
'I‘herefore(l

1+ 6x
Alsox"—-Oasn-°°,

1 1
mdl+0x<l—'|‘XI and it is independent of n.
Thus'l.i_x‘r_nnR..(x)=0.

Hence the conditions of Maclaurin’s series expansion are satisfied also when — 1 < x < 0.

n—1
—0asn— oo

Thus substituting f(0) = 0, f*™ (0) = (— 1) (n — 1)! in the expansion, we get

2 3 4

x x x
=y -3 2 X - <
g+ =x—F+T— .. for—1<x<1.
. EXERCISE 4
< X - 1)-1 = o
1 = — B + ....VXER.
Prove that sin x = x 3!+5!+ @ =1
EXERCISE 5
Pr0vethat(l+x)"=l+mx+m(L{—l—)-xz+ ..... s
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for all integers m and when |x] < 1.

EXERCISE 6

Assuming the validity of expansion, expand log (1 + sin x) in powers of x, upto 4th power of
X.

13.3 INDETERMINATE FORMS

We have proved in Unit 8 (Block 3) that
lim fi
f(x) = x)

=1 g limg()
provided 5111} f(x) and lig} g(x) both exist and iig}_g(x) # 0. It may sometimes happen that
lig} { f(x)/g(x) } exists even though 11113 g(x) = 0. One can easily see that if ll_l}': g(x) = 0, then
a necessary condition for ’l(l_[l"l Efixx—;to exist and be finite is that liP} f(x) = 0.
In fact, if ll_r_r: { f(x)/g(x) } =k,
then 11_1:!} f(x) = ’1(19: [ f(x)/g(x) . g(x) ]
= lim { £x/g(x) } . 1im g(x)
=k.0=0.

In this section we propose to discuss the method of evaluatingJiEn { f(x)/g(x) } when both lim f(x)

. N fi . . .
and lim g(x) are zero or infinite. In these cases g%))—are said to assume indeterminate forms
0/0 or =o/oe respectively as x — a.
0

DEFINITION 2 : INDETERMINATE FORM 16~

. . fix) . . . . 0 ,
Iflim f(x) = 0, limg(x) = 0 then ??% is said to assume the indeterminate form o as x tends to ‘a’

DEFINITION 3 : INDETERMINATE FORM ;

If ’l‘m} f(x) = oo, ,1(111} g(x) = oo, then ;—X is said to assume the indeterminate form 2 as x
tends to ‘a’. Other indeterminate forms are 0 x %, 0 — oo, 0°, 1~ and °° which can be
similarly defined. Ordinary methods of evaluating the limits are of little help. Some special
methods are required to evaluate these peculiar limits. This $pecial method, generally called, L,
Hopital’s Rule is due to the French mathematician, L Hopital (1 661-1704). In fact, this
method is due to J. Bernoulli, who happened to be a teacher of L’ Hopital and his
(Bernoulli’s) lectures were published by the latter in the-book form in 1696, but subsequently

Bernoulli’s name almost disappeared. Let us consider the indeteiminate from Y and discuss

some related theorems. Note the differences in the hypothesis of these theorems and the line of
proof should be very carefully noted.

THEOREM 5 : Let f and g be two functions such that
i) lim f(x) = 0, lim g(x) = 0,

ii) f’(a) and g’ (a) exist, and (iii) g'(a) # 0. Then
. f(x) _f'(a)
lim ——= ——.
e g(x) g
PROOF : By hypothesis, f and g are derivable at x = a
= they are continuous at x = a
= li_x}} f(x) = f(a),



and 1111} g(x) = g(a).

Therefore by condition (i), f(a) = 0 = g(a).
Also f’ (a) = lim fx) ~ fa) _ lim fx
-1 X —a x-ax —a
(x) 8(3) E(X)
X l X - a
' (a) . f(x) / (x - a) ] f(x)
. =1 = lim
g@ g/ (x—a) g
We may remark that condition (i) in the above theorem can be replaoed by f(a) = g(a) =

and g’ (a) = lim

THEOREM 6 : (L’ Hopital’s rule for % form)

If f and g are two functions such that
1) ‘Iiln f(x) = liln gx) =0,
i) f (x)and g’ (x) exist and g’ (x) # O for all x in

]a—6 a + 6, 6 > 0, except possibly at a, and -
f (x)

ii) lim

. f(x) . )
then lim = lim .
cag(x) e gl (x)
PROOF : Define two functions ¢ and i such that
fx)¥xEla—8,a+ Handx # a
o = | [0 VxETa- i
lim f(x) at x = a,
and,

gx)vVx€la—b,at+ fandx+#a
lim g(x)atx = a,

Since f" (x) anc g’ (x) exist ¥ x €E]a — 5,2 + §[ except possibly at a, ¢ and »,ll are
continuous and derivable on ] a — &, a + 8 [ except.possibly at a.

Also since ll_x_t} ;x) = lim f(x) = ¢ (a)
-and Lim y(x) = lim g(x) = 4. (a),
therefore ¢ and  are continuous at x = a, as well.

Let x be a point of ]a — 6, a + & [ such'that x # a.

For x > a, ¢ and i satisfy the conditions of Cauchy’s mean value theorem on [a, x] so that
&(x) — #(a) _ ¢ (©
Wx)— ¥(a) ¥ (©)
But ¢(a) = liIn f(x)=0& ¢ (a) = ll_nz g(x) =

forsomec € ]a, x [.

9™ _¢©.
TR A0
Proceeding to limits
L9 ) dX
Move myo My
o W L)

et B(X) xmar B(X)
For x < a, we can similarly prove that

i f(x) f(x)
g Am g

P® e _ . X
B T~ Im e T im |

0 _ i £
Hence 10 e 8(x) o g (x)
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. o T (x . , 0
You may note that if the expression lim — EX; fepresents the indeterminate form ) and the

X—~a g
functions f’(x) and g'(x) satisfy the conditions of the above theorem, then

I (€ ¢S T L 0}
g m gy = lim & ()

In fact the above rule can be generalised as follows :

If f and g are two functions such that

) ™ (x), g™ (x) exist and gl )#0¢r=1,2,... . »mforany xinja~8,a+ 6]
except possibly at x = a,

iy 00 =tmf ()= =limf™) (x=0 asx —a
limgx) =limg (x)=. ... =limg" " (x)=0 ;
(n)
iii) lim —=—"= exists, then
=gt (x)

This is known as Generalised L’ Hopital’s Rule for % form.

Note that L’ Hopital’s Rule is valid even if x — oo,
In fact, we have

1
f(;)

lim —2 = lim where x = x =
x—oo g(X) -0+
8(7)

.1 1
) Rl

b

N |-

(by L Hopital’s Rule)

-0+ l 1
g(—) 7

— £ (x
e g (%)
Now we give exampies to illustrate the use of L’ Hopitals’s rule in evaluating the limits of

0
indeterminate form o

EXAMPLE 5 : Evaluste each of the following limits :
i h.m\/i—Zoos(w/4+x) ~

x~0 b 4
i) lim 22X X
x~0 Xx“sin x
—log (1
i) ﬁﬂxoosx x?g( + x)

SOLUTION :
\/5—2cos(n/4+x)= f(x)
X 8(x)
where f(x) = \/2 = 2 cos (n/4 + x) and g(x) = x,

i) Let us write

lim f(x) = \/2 — 2 cos /4 = 0 and lim g(x) = 0.
f(x)/g(x) is, therefore, of the form 0/0asx —~ 0.
Applying L’ Hopital’s rule,

i V2 ~ 2.c05 (/4 + x) = [y 280 (/4 + x)

x—0 X x=0 1

.m
—25m-4—-— V2



i) Writing Higher Order Derivatives

fanx — x'_ tanx—x x
x* sin x x sin x
we find that
. tanx —x . tanx —x | X
lim ——— = lim T lim —
=0 x°sinx 10 X x—0 sin X

. tanx—x O

=lim ————( —f
lim N (0 orm)

2

= lim %—-(By L’ Hopital's Rule)

i) i XSS X — log (1 +X)(£form)
x—0 X 0

COS X — X Sinx —

) 1+x
= 1@(1) a (again Fform)
1 ——sinx—(sinx~f—xcosx)+1/(1*I-x)2
= —-lim :

2 x—0 1
1 1
215y

EXAMPLE 6 : Determine the values of a and b for which
lim { x (8 —cosx) + bsinx } / x*

1 6.
exists and equals 1/ 7

SOLUTION : The given function is of the form (0/0) for all values of a and b when x — 0.

. 4. X(a — cos x) + bsin x
M 1111(1) 3

= lim (a —cosx)+xzsmx + b cos-x
x—0 3x

The denominator tends to 0 as x tends to 0, the fraction will tend to a finite limit dnly if the
numerator also tends to zero as x — 0. ;
This requires

a—1+b=0 : 10y
Supposing (10) is satisfied, we have

a+(b— 1)cosx + xsinx

1‘1‘(‘: 3x’
. —(—=1)sinx + x cos x + sin x
= lim
x=0 6X
=.1im X COS X +(2—b)smx(gform)
x—=0 6X 0
. —xsinx + cos x + (2 — b) cos x
= lim
x—0 6
-—~*——-—3“?b = %(given)
=b=2

From (10),a = — |.

Now you should be able to solve the following exercises. s



EXERCISE 7

Evaluate the following limits :
sin 3x*

) fim——

D g oos (2% — %)

. sinhx—sinx

ii) Lim

=0  xtan’x

1 1
(A+x)x—et+ex

e 1 2
ii) llf‘l, <
EXERCISE 8
. . sindx + asin2x s ..
If the limit = as x — 0 is finite, find the value of ‘a’ and the limit.
EXERCISE 9
What is wrong with the following application of L’ Hopital’s rule :
3 2
L, x—4x+3 . 3x—4 ..  6x_
b T x—2 WMumri >
Find also the correct limit.

- -]
Next we consider the indeterminate form = L’ Hopital’s rule for z form is similar to that

for 0/0 form. We only state the result for % form without proof.
THEOREM 7 : (L’ Hopital's rule for — form)
: If f and g he two functions such that
D limfx) = lim g(x) = o0,
ii) f'(z)andg/(x)exist,g'(i)'#o, ¥ x€ Ja— 8,8+ 8], 5> 0 except possibly at a,
an
e 1 (X)),
iii) lim ———= exists; then
- g (x)
. fx) . f1(x)
0 R Y®
The above theorem tells us that li_r.r: —f(*) , when f(x) and g(x) both tend to infinity as x — a,

g(x)
0 , 0 )
can be dealt with in the same way as ( —b—,);form. In fact forms ( —6—) and ( ;—) can be

interchanged and care should be taken to sélect the form which would enable us to evaluate
the limit quickly.

The above theorem also holds in the case of infinite limits.

Now we consider examples to illustrate the application of L’ Hopital’s rule for finding the limi

[- -}
of indeterminate form —.

- EXAMPLE 7
Evaluate the following limits :
) i B0
D }Etl)’logunx

i) tm —2 (@>0)
logtan2x=f(x) ,
logtanx _  g(x)

SOLUTION : (i) Writing



where f(x) = log tan 2x and g(x) = log tan x, we find that the given expression is of the form

Sl +
—asx—0.
- -]
logtan2x _ . 2 cot 2x sec’ 2x
-0+ logtanx  *79*  cotxsec’ x
1 2 sinx cosx _
=Im — = IIm =1

x=0+ sin 2x cos 2x | *~0+ cos 2x

ii) lim 8% 3> 0)is = form
x—=o X o0

a-—l_'

Therefore its value is equal to lim
1= o X

1
= lim — =0,
x—o . X

EXERCISE 10
Evaluate the following limits :

log(x— )
i)

lim
x—~w/2+ tan x

.. .. logsinx
) lim =

Now we consider the indeterminate forms 0. e and % — . These can be converted to 0/0 or
oo/c0 forms as shown below :

1) liEn f(x) = 0 and lim g(x) = o, then
lim f(x) . g(x) is 0 . o form.
We can write ¢

_ _fx) 8x)
() 800 = {0 " Tt

. 0 oo .
which are respectively o or — forms and hence can be evaluated by L’ Hopital’s rule.

i) 1If lim f(x) = lim g(x) = oo, then
lim { f(x) — g(x) } is © — oo form. .
0
This can be reduced to Y form by writing
1 1

B )
() — gx) = ~————

f(x) g(x) .

and then we can apply L’Hopital’s rule.
The following example will clarify the procedure. First we consider 0.2 form

EXAMPLE 8

" Evaluate:

1) ’lliixg+xlogx
U, X
Dy

SOLUTION :
i) Take f(x) = x and g(x) = log x.
Then li"‘},, f(x) = 0 and lin(} g(x) = — o<,
L3 x—~0+

log (1/x).

so that the given form is 0 X oo,
We can write it as
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x=~0+ xlog x‘-r-%+ 1/x " o©
. 1/x
=1 =—1 =0.
Xl't‘%+ p— l/x il..l:rol.",x 0

ii) Taking f(x) = log (1/x) and g(x) = sec (7x/2),
We get that the given form is 0 X ccasx — 1.
* lim sec (7x/2) log (1/x)
— . log(l/x) O
lim s (mer2) (0 o™
~= lim — 1/x
x=1 — sin (mx/2) . w/2
=2/m.

EXERCISE 11
Evaluate the following limits :

) lim sinxlog x’
i) lim (1 - x) tan (%/2).

Now we consider example for e — oo form,

EXAMPLE 9 : Evaluate

D Pﬂ log(xl—B)_xi4

D tm, (seor- 1= )

SOLUTION

D Letfly) = oy and g0 = L.

Both these tend to % as x — 4.

Thus the given limit is % — o form.

We can write it as
(x—4)—log(x—3) 0

I d
= 9 lg(x —3) 0 f°""°
1

. l‘-x-—3

=P—’H x—4
log(x—3)+-x—_-3-

. : x—4 -0

=] —
i Tl — ) F =9 o o™

1
y
AT+ log(x—3) + 1

=1,
2

. . 1 . :
ii) 115!1" " (sec x — T snx ) (it is & — oo form)
_ — cos x + sin x
= lm ; : 3
x=m2 — sin x (1 — sin x) — cos’x
. = — o0
EXERCISE 12
Evaluate the following limits :

; S 1 L)




oo (11 Higher Order Derivatives
9 P_‘}},(;!‘ tnn!x)'

Finally we consider the Indeterminate forms 1%, e°, 0°,
For all these forms we have to evaluate

lim [ f(x) P,

where liIn f(x) = 1, o or 0 and 5@3 g(x) = e or 0, O (respectively).

We can write

y = [feo)P™

Therefore log y = g(x) log f(x)

lim log y = lim [ g(x) log f(x) ] (11)

In each of these three cases, right hand side is 0 . % form which can be evaluated.
Let lim [ g(x) log f(x) ] = 1.
Therefore limlogy = 1

which implies
log[limy]=1

=>limy = e
=>lim [ f(x) P =¢'.

The following example discusses these indeterminate forms.

EXAMPLE 10 : Evaluate

12
D lim ( tan x )"
X

) lim, (o0
iii) lim (1 — x?)os ti-n)
x=1"

SOLUTION :

i) Itis of the form 1~

tan x \1/x
Lety = (T)

|
Therefore log y = x—zlog (

log (
11{1(1) logy = 11_{1(1) — (—0- form)

xsec"’x —tanx O
= lim —————- (— form)
) 2x* tan x (0 orm

m 2x sec’x tan x
1
x-02[2xtanx + x*sec* x ]

- lim sec’ X tan x
x=0 2 tan x + X sec’ x
tan x 0
= lim —————(— fi
Tosin2x +x 0 O™
= lim sec’ x =1
x=02cos2x +1 3
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:

which gives lim y = e’
ii) It is of the form =°.

wyz(mx)cotx
So log y = cot x log sec x.

. og sec X
Therefore 1i ! = lim form
:lxlglr/z- g8y x=7/2=  tan x ( © )
1
—— - Sec X tan x
— lim ﬁ’_‘___z____
X=mw/2— sec” x

=lim (sinxcosx)=0.

x—~x/2~

which implies log =lim _y =0 => lim y=¢" =1,

x—=m/2—

iii) It is of the form 0°.
Lety = (1 — x) ¥ {1-x)

Sology = log (1 — x%)

2
log (1 —x)
=210g(1—-x2)

" log(1—x)
. . log(1— %
P—l}ll-logyzz'llﬂ_l—(:)‘;%-_-_xi)_(oo
—2x/(1 — x%)
Tx-1- = 1/(1—x)

- -]
— form)

(By L’ Hopital’s Rule)

—A21: X __
21@}1+x 2

which gives lim y = .

EXERCISE 13
Evaluate the following limits :

o ()] =2

x~0 2 —ax 2—Dbx

ii) }i_§g+(WX)'“‘
iii) Jim  (cos x)™ *.

‘X~ w/2—~

134 EXTREME VALUES

In this section, we shall be concerned with the applications of derivatives and Mean Value
theorems to the determination of the values of a function which are greatest or least in their
immediate neighbourhoods; generally known as local or relative maximum and minimum
values. The interest in finding the maximum or the minimum values of a function, arose from
many diverse directions. During the war period, the cannon operators wanted to know if they
could somehow maximize (and if so, to what extent) the distance travelled horizontally ie. the
range, when a cannon-ball is shot from the cannon. The position of the angle at which the
cannon was inclinded to the ground mattered the most in such cases. Another direction was
the study of motion of planets. It involved maxima and minima problems such as finding the
greatest and the least distances of the planets from the sun at a particular time and so on.

We shall find below the necessary and sufficient conditions for the existence of maxima or
minima. First we define extreme values of a function.

DEFINITION 4 : EXTREME VALUE OF A FUNCTION.
Let f be a function defined on an interval 1 and let ¢ be any interior point of L.



1) fis said to have a local or relative maximum value (a local or relative maxiraum) at Higher Order Derivatives
~ x=cif 3 a number 8 > 0 such that

Y xE€Jc—8c+8x#Ec = f(x) <f(c)

ie. f(c) is the greatest value of the function in tne interval }c — 8, ¢ + o[
ie. f(c)nsaloca]maxnmumvalueofthefunctxonfxf36>0suchthat
fc) > f(c + h)<=f(c + h) — f(c) <O for 0 < |h| < 6.

2) fis said to have a local or relative minimum value (a local or relative minimum) at x = ¢
if 3 a number & > 0 such that
Y x€lc—8c+8[x7#c = f(x)>f(c)
or equivalently f(c + h) — f(c) >0for 0 < |h| < 8.
or f(c) is the least value of the function f in the interval ] ¢ — 8, ¢ + 8.

3) fissaid to have an extreme value (an extremum or a turning value) at x = c, if it has
either a local maximum or a local minimum at x = ¢.

The following simple examples will clarify your ideas about maximum and minimum values,

EXAMPLE 11 : Let f be a function defined on R as

f(x) =XV x ER,

then f has a local minimum at x = 0. From the graph (Fig. 1), the values it the
neighbourhood of the value at x = 0 is greater than 0.

\
— f(x)=x?
) > X
Fig. 1

EXAMPIE 12 : Let £ be a function defined on R as
f(x) =sinx ¥ x €R; :
then f has a local minimum at x = — 7/2 and a local maximum at x = /2. In fact, fhas a

minimum at x = 2n7 — 7/2 and a maximum at x = 2nw + 7/2; n being any integer as is
evident from the following Figure 2:

Fig. 2 61



EXAMPLE 13 : Let f be a function f defined as :

fx)=xXVx€ER

thehfhasneitheramaximumnoraminimum at x = 0. At x = 0 f(0) = 0. If we take any
interval ] — d, d about the point 0, then it contains points x,, x; such that x, > 0 and x, <C.
Now f(x;) > f0) = 0 and f(x;) < f(0) = 0. »

Note that while ascertaining whether a value f(c) is an extreme value of f or not, we compare

f(c) with the values of f in any small neighbourhood of ¢, so that the values of the function
outside the neighbourhood do not come in question.

Y
A
- @=x
X = >X
Y
Fig.3
Y
4\
P,
"’\ /\’\
o '\‘ ' >X

Fig. 4
Thus a local maximum (minimum) value of a function may not be the greatest (least) of all
the values of the function in a finite interval. In fact, a fuaction can have several local
maximum and minimum values and a local minimum value may even be greater than a
maximum value. A glance at the above Figure 4 shows that the ordinates of the points P, P,
Ps are the local maximum and the ordinates of the points P>, P, are the local minimum values
*of the corresponding function and that the ordinate of P, which is a local minimum is greater
than the ordinate of Py, which is a local maximum. x

Further you must have noticed that the tangents at the points Py, P,, P3, P4 Ps in the above
figure are parallel to the axis of x, so that if ¢i, 2, €3, Cs, Cs are the abscissae of these points,
then each of £°(c.), £°(c2), £°(Cs), £(c4), £°(cs) is zero.

We proceed to establish the truth of this resuit below :

THEOREM 8 : A necessary condition for f(c) to be an extreme value of a function f is
that f°(c) = 0, in case it exists.



PROOF : Here, we assume f is derivable at c. Let, further, f(c) be a local maximum value of f. m.udun-m
Thus there exists a real number § > 0 such that
Yx€]c—§c+ 8, x*c = f(x) <fc)
ieVh€E]—6,8[h#0 =>f(c + h) < f(c).
f(c + h) — f(c)

Now for h > 0, we have I =r (12)
and forh<0weha</e§°+$fﬁzo (13)
From (12) and (13), we have

li%wso and mf(—cwzo

which gives

f'(c)<0and f'(c) = 0.

Therefore f'(c) = 0
It can be similarly shown that f’(c) = 0, if f(c) is a local minimum vajue of f.

The vanishing of £'(c) is only a necessary but not a sufficient condition for f(c) to be uu
extreme value as we now show with the help of the following example.

Consider a function, f, defined by

fx) =x’¥ xER

Then

f'(x) = 3x%,

£°(0) = 0. Also f(0) =

Clearly for x > 0, f(x) > 0 = f(0)

and for x < 0, f(x) < 0 = f(0)

thus £(0) is not a local extreme value even though f(0) = 0

Fursher you can note that a function may have a local maximum or a local minimum value at
a point without being derivable at that point. For example, if f(x) = | x | ¥ x € R, then f is
not derivable at x = 0, but has local minimum at x = 0.

i

= f(x) = |x|

Fig.5

We may remark that in view of the apove theorem, we find that if a function f has a local
extreme value at a point x = ¢, then either f 1s not derivable at x = ¢ or f'(c) = 0. Thus in
order to investigate the local maxima and minima of a function f, we have to first find out the
values of x for which f’(x) does not exist or if f'(x) exists, then it vanishes. (These values are
generally called the critical values of f.) We then examine for which of these values, does the
function actually have a local maximum or a local minimum. The points where first derivative
of a function vanish are called stationary points.

DEFINITION 5 : STATIONARY VALUE OF A FUNCTION
x = c is called a stationary point for the function f if f’(c) = 0. Also f (c) is then called the
stationary value.

You have seen that if a function f is derivable at an interior point c of its domain and '
f’(c) = 0, then f may not have an extreme value at c. To decide whether f has an extreme ' 63



value ornot at such a point, we need some method. By knowing the sign of the derivative on
the left and right of the point we can decide whether f has a local maximum or local minimum
at the point. This is the purpose of the next theorem. _

THEOREM 9 (FIRST DERIVATIVE TEST)

Lctahnctionfbedetivableona.ninterval]c—6,c+6[,6>0,andlctf’(c)=0.lf

) FE)>0Vx€ Jc—4,clandf’(x)<0 ¥ x€ Jc, ¢ + 81, then f has a local
maximum-at x = c,

i) f(x)<0v¥xe le—8c[andf'(x)>0 ¥ x € 1¢,c + 8, then f has a local
minimum at x = c,

PROOF :
i)  Letb be an arbitrary point of ] ¢ — &, ¢ [ Then f satisfies the conditions of Lagrange’s
mean value theorem in [b, c], so that

f(c) — f(b) = (c - b) f*(a) for some o € 1b,cf.

Since f'(x) >0V xE€]c— §,¢|,

therefore f’(a) > 0,

.and so f(c) — f(b) > 0.

Now b is any point of ] ¢ — a, ¢, -
~ o) —fx) >0V x€Jc—4,¢c[. , (19)

Let now d be an arbitrary point of 1¢, ¢ + 8[. Then f satisfies the conditions of
Lagrange’s mean value theorem in [c, d], so that

fid) —fic)=(@—¢) f’(ﬂ)forsomeﬂe]c,d[.
fF(x) <0V x€ Je,c+ 8]
~ f(B) <0.

So f(d) — f(c) <.
Now d is any point of ] ¢, ¢ + d [,
therefore f(x) — f(c) <0V x € ]c,c + al (15)

From (14) and (15), we find that

Vx€k—8c+d[x#c => f(x) < f(c)
== f has a local maximum at x = ¢

i) You can similarly prove it.
If 38 > 0 such that
x€lc—§c[ =f'(x)>0
andx€jlc,c+é6[ =f'(x)<0, ,
then we say that f*(x) changes sign from positive to negative as x passes through c.
Similarly, if 3-8 > 0 such that
x€lc—dc[ =f(x)<0
andx€jJc,c+ 8] = f'(x) >0,
then we say that f*(x) changes sign from negative to positive as x passes through c.
In view of this terminology, the above theorem can be stated as follows :

Let f be derivable on an open interval I and let "(c) = 0 at some point ¢ € I. If f'() changes
sign from positive to negative (negative to positive) as x passes through c, then f has a local
maximum (minimum) at x = c.

You may note that the conditions of the above theorem are sificient but not necessary. For
example, consider the function f, defined by

fx) = x* (2 + sin % ) when x # 0,
and f(0) = 0.

This function f is derivable everywhere, '(x) does not change sign from negative to positive as
X passes through 0 and yet f has a loca! minimum at x = 0.

You may further note that if f’(x) does not change sign i.e. it has the same sign throughout the
interval J¢ — 8, ¢ + & [, for some & > 0, then f is either strictly increasing or strictly decreasing
throughout this neighbourhood f(c) is not an extreme value of f. o



N

Geometrically interpreted, the above theorem states that the tangent to a curve at every point
in a certain left handed neighbourhood of the point P whose ordinate is a local maximum
(minimum) makes an acute (obtuse) angle and the tangent at any point in a certain right
handed neighbourhood of P makes an obtuse (acute) angle with the axis of X. In case the

tangent on either side of P makes an acute angle (or abtuse angle, the ordinate of P is neither a
local maximum nor a local minimum.

The following example shows the application of the above theorem for finding extreme values
of a function.

EXAMPLE 14 : Examine the function f given by
fix) =(x—2)'@x+ 1%V xER,
for.ext'reme values.

SOLUTION : Here f(x) = (x — 2)° (x + 1)’ B
Thus f'(x) = 4x — 2’ x + 1) + 5(x — 2)* (x + 1)
=x—-2'(x+1)'09x—6)
Sof'(x) =0forx=—1,2/3,2

Thus we expect the function to have extreme values for these values of x.
Now f’(x) > 0 forx<— 1,

and f’(x) > O when x is slightly greater than - 1.

Therefore f has neither maximum nor minimum atx = — L

Next f*(x) changes sign from positive to negative at x = 2/3, therefore f has a local maximum
atx = 2/3.

Also f*(x) changes sign from negative to positive at x = 2 and therefore it has a local
minimum thereat.

EXERCISE 14 : Examine the polynomial function given by
10x® — 24x® + 15x* — 40x’ + 108 ¥ x€R
for local maximum and minimum values.

We can also decide about the maximum and minimum values of a function ata point ¢ from
the sign of second derivative at c. This, you will see, in the next theorem, called the second
derivative test.

THEOREM 19 : (SECOND DERIVATIVE TEST)
Let f be derivable on an interval }¢ — 8, ¢ + 6 [ and f'(c) = 0.
i) Iff"(c).<O, then f has a local maximum atx = c.
i) Iff"(c) > O, then f has a local minimum at x = c.

PROOF : The existence of £*(c) implies that f and f* exist and are continuous at X = C.
Continuity at ¢ implies the existence of f and fin a certain neighbourhood, ] ¢ — &1, ¢ + 4 {,
0<6, <.

(i) Let f*(c) <O0.
This implies that f* is a strictly decreasing function at x = c.

Thus there exists &: (0 < 8> < &) such that

f(x) <fc) =0¥% x€Jcct+ o[ (16)
and F'(x) > () =0V xE€Jc— d,¢| a7

Now (16) gives '(x) <O¥ x € Jc,c + & which implies that f is a decreasing function in
[c ¢+ 8:]and (2) gives f/(x) >0V x € J¢ — &, c[ which implies that f is an increasing
function in [ ¢ — &2, ¢ ], so that at x = ¢ f has a local maximum.

(ii) You can similarly work out the proof.

We may remark that the above theorem ceases to be helpful if for some ¢, both f'(c) and f"(c)
are zero. To provide for this deficiency, we need to consider higher order derivatives. We
make use of the Higher Mean Value theorem i.e. Taylor's theorem to obtain generalisation of
this resuit after the following remark.

Higher Order Derivatives



Differentiability

1t 1s not possible to draw any conclusion regarding extrem.: values of a function at a poum
x=ciff’(c)=0.

i) Let the function, be defined by
fix)=x, ¥ x€R

Here £/(0) = 0 = £7(0) and the function f has neither a local maximum uor a local minimum
atx = Q.

if) Let the function be defined by
f(x) =x', ¥ x ER.
Here f'(0) = 0=f" (0) and f has a local minimum at x = 0.
Similarly f(x) = — x*, % x € R has a local maximum at x = 0.
Now we give general criteria for finding extreme values and the second derivative test is also
special case of this.
THEOREM 11 : (GENERAL CRITERIA)
Let f be a function defined on an interval I and let c.be an interior point of 1. Let
O frEe=t"e=....@c=0

and (ii) £°(c) exist and be different from zero, '
then if n is even, f(c) is a local minimum or a local maximum value of f according as £*(c) > 0
or £(c) < 0; if n is odd, f(c) is not an extreme value of f.

PROOF : Since f"(c) exists, we have that

f £ £”,....,f"" all exist and are continuous at x = c.

-Also continuity at x = ¢ implies the existence of f; f’,£",...f"" in a certain neighbourhood

Jc = 8, ¢ + & [ of c (81 >0).

As f"(c)'# 0, aanelghbourhood]c- 8,¢c+ 8§[(0 <8< &) such that
for £°(c) > 0,

) <) =0% xEJc— 5 ¢

and f"'(x) > " '(c) = 0% x E]c,c + 8 i (18)
and for f'(c) <0, .
X)) > ) =0% xE]c— 8¢ (19)

“and ') <) = 0% xE ke, c + 5

Again for any real number &, where | h | < 5, we have by Tayior’s theorem with Lagrange ]
form of remainder after (n — 1) terms,

2 n-1
fc+h)= f(c) + hf’(c) + E— f"(c) +.. (—hﬁl—f“' c+6h)O<o]).
From which we get
n~1
fic + h) — f(c) = a=1) f"'(c + 6h) i (20)

where ¢ + 6he]ec— 6,c+ 6[ (Putting f’ (c), "), ..... £ (c) equal to zero).

Let n be odd

Clearly h™"' > 0 for any real number h and further, when f"(c) > 0, we deduce from (18) that
for h negative ¢ + 6h € Jc — &, ¢ [ and f""'(c + 6h) <0 and for h positive,

f"'(c + 6n) > 0.

So from (20), f(c + h) <f(c) ¥ c+h € Je—6,¢c[

andfic + ) >flc)Vc+he€]lcc+6{
which shows that f(c) is not an extreme value.

When "(c) < 0, it may similarly be shown that f(c) is not an extreme value.

Let n be even::

In this case, h™™' is positive or negative according as h is positive or negative, we deduce from
(18) and (20) as before that if £"(c) > 0, then for every point
c+h€Jc—8,c+8[flc+h)>fc)

which means that f has a local minimum at x = c.




It may similarly be shown from (19) and (20) that f has a local maximum at x = cif f () <0,

The second derivative test can be deduced from this general criteria by taking n = 2. From
this theorem, we see that extreme values exist only if the first non-vanishing derivative is of
even order. In the following example, you will see the application of this general criteria.

EXAMPLE 15 : Examine the function (x — 3)* (x + 1)* for extreme values.
SOLUTION : Let f(x) = (x — 3)° (x + 1)*
Then f'(x) = (x — 3)* (x + 1)’ 9x — 7),

£°(x) = 8(x — 3)’ (x + 1)* (9x* — 14x + 1),

£(x) = 24 (x = 3)* (x + 1) (21x* — 49x* + 7x + 13),

£(x) = 24 (x — 3) (3x — 1) 21x* — 49% + 7x + 13)

+ 168 (x = 3)" (x + 1) 9x* —14x + 1),

and f* (x) = 48(3x — 5) (21x* — 49x* + 7x + 13)
+336(x—3)Bx—1)9* - 14x + 1)
+336(x—3) x+1)9x —7),

Now f’ vanishes for x = — 1, % s 3.

Let us now test these for extreme values.

Atx = — 1, f™is the first non-vanishing derivative and
f'(— 1) = — 24.44.64 <0,
Therefore x = — 1 is a point of local mexima.

Atx = -;— » £* is the first non-vanishing derivative

1) 2g )16 4
andf(g)—&(g) 9 9>0.

Sox = —;— is a point of local minima.

At x = 3, the first non-vanishing derivative is f*, and it is of odd order.
Thus x = 3 is neither a point of local maxima nor a point of local minima for the function.

EXAMPLE 16 : Show that the function sin x (% + cos x) has a local maxima at x = /3,
O=<x=2m.

SOLUTION : Let f(x) = sin x (1 + cos x) ¥ x € [0,27]

Then f’(x) = COs X (l -+ COS X) —_— Sinz X = COS$ X + cos 2x
and
f"(x) = — sin x — 2 sin 2x.

. 3
Atx = n/3,€ (r/3) =0, f” (m/3) ="—- % <0.
Therefore f has a local naxima at x = —375- .

Try the following exercises.

EXERCISE 15 )
Find the local maximum and minimum values of the function f defined by

) fx)=4x'—(x—1)"¥x&R - {0, 1}.

ii) f(x)=sinx+%sin2x+-%-sin3x‘\fx€[0,1r]

- EXERCISE 16

Show that the function f defined by

fix) =x"(1 —x)"V¥ x€R,

where m and n are positive integers has a local maximum value at some pcint of its
domain, whatever the values of m and n may be.

EXERCISE 17 s
Show that the local maximum value of ( —) is e'’®

Higbe: Order Derivatives
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We end this section by giving a method of finding greatest and least values of a function in an
interval provided the function is derivable at all interior points of the interval.

The greatest and the least values of a function are also its extreme values in case they are
attaired at points within the interval so that the derivatives must be zero at the corresponding
points.

The greatest value of a function is also called global or absolute maximum. Similarly the least
value of a function is also known as global or absolute minimum.

Ifcy, ca . - - - , C be the roots of the equation, f’(x) = 0 which belong to Ja, bf; then tke
greatest and the least values of the function f in [a, b] are the greaicst and the least members
respectively of the finite set

{f(@), f(=1), f(c2), - - - - » f(cx), f(b)}-

Consider the following example.

EXAMPLE 17 : Find the greatest and the least values of the function f defined by
fx)=3x'— 2’ —6x’ + 6x + 1
in the interval [0, 2].

SOLUTION : We have

=3 —20—6x +6x+1

Therefore £'(x) = 12x* — 6x* — 125+ 6
=6(x -1+ nHDEx—1
=>f(x)=0forx=1,—1,+ 1/2.

The number — 1 does not belong to the interval [0, 2] and is not to be considered. Now
f1)=2, f_( —;—) = 5:-:-_, f(0) = 1 and f(2) = 21.

Thus the greatest value of f in [0, 2] is 21 and the Jeast value is 1.

Try the following exercise.

EXERCISE 18
Find the lezst and the greatest value of the funetion  defined by :

fix) =x' —4x’ — 2%’ +12x + 1
in the interval [ — 2,5}

13.5 SUMMARY

In this unit, some theorems involving higher order derivatives of a function have been proved
and also the application cf derivatives for finding the limits of indeterminate forms and finding
the extreme values of a functior. has been discussed.

In Section 13.2, Taylor’s Theorem has been proved with the help of Rolle's Theorem.

According to this theorem, if f : {a, b] =~ R is a function such that its (n — 1)th derivative f "

is continuous in [a, b] and derivable on Ja, b, then there is at least one real number ¢ € Ja, b

such that

(b—a)
2!

(b —a)"
(n — 1)

fb) = fla) + (b — a) () + (@) + ... + £""'(a)

b—a"®—0" .
- e

p being any positive integer.

b _a\P b . n-p
The term ( pd()n (_ D ©) f"(c) is called Taylor’s Remainder after n terms and denoted

by R, and this form of remainder in due to Schlomilch and Roche. By putting p = n and
p = 1, we get respectively Lagrange’s and Cauchy’s form of remainder. If we puta = 0'is



alet)

Taylor’s theorem, we obtain Maclaurin’s theorem. In the same section, you have seen hqw to
obtain Maclaurin’s series expansion of a function. If f: [a, b] — R is a function such that f"(x)
exists for any positive integer n and for each x € [0, h] and li_rg Ra(x) = 0 for each x €0, h]},.
then for all x in [0, h], !

2 n
f(x) = f(0) + xf*(0) + % £70) + .. + % £70) + ....

which is Maclaurin’s series for f(x). Using this result, Maclaurin’s series expansions of €”, sin x,
cos x, log (1 + x), (1 + x)™ have been obtained as :
2

@=1+x+ 5+ .+t FXER

38 I
Slnx—’x—ﬁ'f'"s'!— ..... +(—l)m+ ..... ¥ x€R,

XZ x4 xZn
COSXZI—E+4—!+ ..... +(—1 m+....,‘V‘X€R

X X
log(l+x)"—fx—7+-3— ..... —1<x=1
-1

Qor=1+m+20-D ey ki<

2!

In Section 13.3, methods for finding limits of Indeterminate forms 0, 9, © — oo, 1%,

0 oo

F’ ;’
0 .

°, 0° have been given. All these are based on L’Hopital’s Rule for o form. If lim f(x) = 0,

fi . . 0
lim g(x) = 0, theng% is said to assume the indeterminate forms o X tends to ‘a’.
x=—a

L"Hopital’s Rule for % form states that if lim f(x) = lim g(x) = 0, f'(x), g(x) exist and

£ fi £
gx)#O0forallxinja — 6,a + 8 (8 > 0) and lim () exists, then lim——(—x-)— = h’mﬂ

’

= g/(x) g o g

L’Hopital’s rule for = form to similar.
f==]

In Section 13.4, application of derivatives for finding extreme values of a function is given. If f
is a function defined on an open interval I and c is any interior point of I, then f is said to have

alocal or relative maximum at ¢ if there exists a number 8> 0 such that x € Jc-5.c + of,
x # ¢ = f(x) < f(c). Likewise, f is said to have a local or relative minimum at ¢ if there

exists a number 8 > O such that x € Jc — 8, ¢ + &, x # ¢ => f(x) > f(c). f is said to have
an extreme value at c if it is either a local maximum or a local minimum at c. You have seen
that the necessary condition for f to have an extreme value at ¢ is that f ’(c) = 0 provided it
exists. The condition f’(c) = 0 is not sufficient for f to have an extreme value at c. For
example the function f defined by f(x) = |x| ¥ x €ERithasa local minimum at x = 0 but
f°(0) does not exist. For deciding whether a function f has an extreme value at a point ¢, we
have the following general test. ' ’

Suppose that f is a function defined on an interval I and ¢ is an interior point of I such that
f’(c) = f”(c) = ....f"'(c) = 0 and f"(c) # 0. Then if n is odd, then f does not have an

extreme value at ¢ and if n is even, then f has a lc_)cal maximum or local minimum at ¢
according as f"(c) < 0 or f"(c) > 0.

13.6 ANSWERS/HINTS/ SOLUTIONS

E 1) fisderivableforall xinR and f'(x) = cosx¥ x €R. So the firsi derivative f* has domain

R. The function cos x is also derivable at all points of R. So the second derivative f” has
also the domain R and

f’(x) = —sinx ¥ x€ER.

In general the ntht dé?ivaﬁve f" has also domain R. We can write f*(x) = sin (x + 7/2),
f”(x) = sin (x + 2. 7/2) and in general.

f°%(x) = sin (x + n -%),V x €R.
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E2)

E3)

@®

®

If x = 0, the statemeant is trivially true,
consider x > 0.
By applying Taylor’s Theorem to the function f defin.d by f(t) = sin tin [0, x] and
writing the remainder after 3 terms, we get
3

f(x) = f(0) + x f'(0) + X f”(O) + —f"(0 x) where 0 < 6 < 1)

3
ie.sinx =x— % cos (6x) (putting the values of f, f*, £, ). Sinc.e cos 6x < 1,

whatever 6x may be and x > 0,

3
x3

Tl = - 3 cos @x
x x
=>x—-§T_x—3—'cos0x=smx 1)
Again, applying Taylor’s theorem to the function fin [0, x] and writing the remainder
after 5 terms, we get
3 3

sinx=x—%'-+§7cos(01 x), where 0 < 8, < 1.

Since cos (81 x) < 1, whatever 6, x may be and since x > 0, therefore

x X X x
3+5'cos(0|x)_x 3+5'
3 xS .
=t>sinx$x—§T+-§-!- (22)
From (21) and (22) we have
x3 3 xS
x—3!-SsinxSx——3—!+§-wheneverx>0 (23)

Letnow x < 0.Sety = — x, theny > 0.

From (23), we have
3
-y _ )'
Fssnysy-3 Lk )

Put y = —x in it and simplify. You will get
x’>‘ - X
x—-ﬁ_smx_x—ﬁ+-§-l-forx<0.

Let f{x) = cos x

L L
—OOS(T'!‘x—T) |
Herea = n/4,h=x — n/4..

(n) _ nmr,_ .
Now f (x)—cos(x+T)-
ks 4n1r
G+
Putn =1, 2,3, ... we get

Therefore { ""(—}) = cos

(n/4) =~ sin -, () = = cos -, (/4 = sin

Assuming the possibility of expansion, we have by Taylor’s Series,
2

f(a + h) = f(a) + hf’(a) + h— f "(a) +

i
l.e.oosx——cos7+(x~-a—){—sm-4- }+-i‘-(x—-j:—)2{-c03-}}

T, w
+§!-(x—z-)sm—4- .....

A G A R

which is the required expansion of cos .



E4)

ES)

Procied as in the expansion of cos x, in Example 4 by taking
f(x) = sin x, f"(x) = sin (x + nTn).
Two cas&s arise :
(i) mis a positive integer.
Letf(x) = (1 + x)" ¥ x €R.
We find that ¥ n €N,

f')(x) exists v x ER and f"(x) = 0¥ n > mand ¥ x ER.
Therefore Ry(x) = 0 for all n > m.

Which implies li_rg Ri(x) =0 and, we have
f(x) = £(0) + x£°(0) + ... + ;—,t""’(O),v X ER,

since the other terms all vanish. Substituting the values of
f(x), (0), £°(0), .... {™(0), we have

(l+x)’“=l+mx+—m(mz+l)x

(ii) m is not a positive integer.
In this case, we find that if we write
f(x) = (1 + x)”, wheneverm # — 1,
then f(x) = m(m — 1)...(m —n + 1) (1 + x)™™
Thus for each positive integer n, I is defined in [— h, h] for each h € J0, I[.

If Ri(x) denotes Cauchy’s form of Taylor remainder after n terms we have

_ xn(l — B)n—l . ]
R"(x)__(n—l)! f6x);0<8<1
x(1 — o)™’ e
=—%l——_——1))!—.m(m—l) ..... (m—n+ 1)+ 6)""
_mm—D.(m~-n+1) ./ 1—6 \" -
- (m— 1! (1+8x) 1+ 6x)
We know that for |x | < 1,
m(m—1)..(m—n+1) o - .
@ — 1) Oasn e
6
Also 0 < 1+ex<1for0<0<landfor—l<x<l
Therefore

) 1_0 n-l—
!‘.'2( 1+0x) =0

Next (1 +6x)™' < (1 + |x)™'ifm>1a0<0< 1,
1 1
1-m < 1-m
(1+ 6x) (1 —=1x)
Thus R(x) = 0asn — o for |x| < 1.

and (1 + 6x)™' =

whenm < |.

Hence the conditions of Maclaurin’s infinite expansion are satisfied. Making the
substitutions,

f(0) = 1, £°(0) = m, f(0) = m(m — 1), .....

ffO)=m(m — 1)...(m —n + 1),

we get

m(m — 1) 2 m(m — 1)}m — 2)

I+x)"=1+mx+ T 3

for |x| < 1.

Note that when m is not a positive integer, the expansion is not possnble if
[x | > 1, for then as n — oo,

x" and so R.(x), does not tend to zero.

Higher Order Derivatives
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E6) Letf(x) =log(l +sinx)"

COos X
Teea ) = T+ sinx
1
P =~ THsnx

f’l' p— m x
® =T Fsoxy

_ _ sinx +sin’x + 2 cos’x

fiv
@ (A +sinxy
Putting x = 0, we get
(0) = 0, f’(0) = 1, £*(0) = — 1,£(0) = 1, f"(0) = — 2,
Substituting these values in
-2
fx) = 0) + x'(0) + -% £(0) + ..., we get
2 3 "
og(1 +sinx)=x—or+3 =27
_ x2 x3 X‘ .
=x- 3 + € 1
. s 0
ED I o ad =0 0
) 6x cos 3x°
i 2 -x)@éx—1)
x(2x — 1) 1

......................................................

=—61i_l_1(1,oos3x2.

x(2x — 1)

wn@x—x) x—1D@x—1)

"= — 6 lim cos 3x*. lim
x—0

= — 6] ———
=-sEhED

w . siphx—sinx O
if) 11_:_1% et x ( ) ‘t'orm)

=lm = Gax’
_ . _smhx—sinx 0,
—11_{% x; (O'fOI’HI)

X
(tanx lasx—0)

= im SRX 008X Do)
x-0 3x 0 ‘

_ . sinhx +sinx 0
—Pﬂ 6x (0 form)‘

__l.mcoshx+oosx =\l +1 =L.
2-0 6 6 3

(1 +x)'/"—e+—;-ex

jii) li_r_x(1) " is (0/0) form as

lim (1 + ) =e.

Lety = (1 + x)"*

x=0 tanx(2x—1) i x—-1N@x=1



Therefore log y - 1 log (1'+ x)-

X
1 x  x
R I T
2
X , x
X X
y=el"2t3 )
X xz
=eel 773" )
ox X 1 x , x 2
Sell+(-g g =)ttt

X 11
_+___ 2 3
2 24x+0(x)],

=e[l —
where 0 (x’) stands for those terms of x containing x* or higher powers.
Thus the given limit becomes

_x 1 W= e+ L
.e[l 2-+-24x+0(x)] e+2ex
= lim Vi
x=0 X

i AL _ e,
—}‘111(1)[ 74 e+ 0(x)] = 2
E8) Now

m sin 4x +3a sin 2x ( _g_ form)

x—0 X

. 4 cos 4x + 2a cos 2x
= lim 5 ’
x=0 3x

its denominator tends to zero for x — 0, the fraction will tend to a finite limit only if

the numerator also tends to zero as x — 0. This requires
4+2a=0=>a=—-2

0 )
When this is satisfied, we have Fform and the given limit

- lim = 16 sin 4x — 4a sin 2x (g form)
x—0 6x 0

. — 64 cos 4x — 8a cos 2x
=l 6

— 64 — 8a .
=——T—§3‘:—8(a=—2).

2

3

E9) The i
) e'expression 1 2
3x°—4 )

Therefore it is not correct to apply L’ Hopital’s rule to evaluate lim 1
x—=1 X

- is not of the form 0/0 as x — 1.

@@#—@

In fact lim ' —4 = S
x=1 2x + 1 lim (2x + 1) )
log (x — -21 ) "
E10) i : —
) D bm . tan x (5 form)

73



Differentiability 1

—fim = w/2
xl-vr/2+ sec2 X

OOSZX

) 0
= lim =" (- form)

Y — —

2

2 cos x (— sin x) _
x=m/2+ i

0.
i) Itis z form. Apply L” Hopital’s Rule. The limit is 0.

E11) i) Given form is 0.0,
li_r_lzl sin x log x’

z [~ -]

= lim log x ( — form)
x~0 coseC X =
) -2

= lim ———
x=0 X Cosec X cot x

= lim — 2 = #0 %
x—0

=0.

ii) The given form is 0.e°, Convert it to % form and then find the limit. The limit is-
2,
m

1
E 12) i) The limitis 5

.. . 1 1
. ii) 113(7"m)(”—”f0m)
tan’x—x* 0
=1 —_
jm X tan ( 0 form)
— tan’ x — x’ ( X )2
-0 x' tan x
tan’ x — x> x 2
T Gy
. tan’x—x’ 0
= 119‘1’ 2 (—()—fom?
. tanx.sec’x — f ,
= lim =2 %€ X = X (By L’ Hopital's Rule)
x—=0 2X .
= lim tanx+tan’x—-x(_2fo_rm)
x~0 2%’ 0
.. Sec’x+3tan’xsec’x — 1
x—0 6x
=lim(tanx)2 1 +3sec2x__2_
L ¢ 6 3

E13) ) lim[sin® (5= —) ] sec (50-)

2—Dbx
is 1% form.
T 14
ty = ] 2
Lety = [sin’ (=) Jsec’ (7—-)
Then
— 2 L . L)
74 log y ZSec(z_bx)logsm(z_ax)



- E14)

E 1I5)

E 16)

E17)

mw

2logsin(2_ax) 0

ll[!(l] logy = !m}) ( o form)

2 T
cos (2—bx)

2 t ( m ) . ma
o) @ = ax)
= lim

»=0 — sin 2T mb
S " ox ) 2~ bw)!
)

2a cOt(Z—ax

b x-0 27
2 — bx

i 200’
=0 (2 — ax)’

N s ma

(2 — ax)?

b x-0 27 ) 27b
2 —bx (2 — bx)?

= lin(l) y = e 2/,
-

) 1. iii) 1.

f'(x) = 60 x’(x + 1)’ (x — 2). Apply first derivative test and show that at x =0, f

has neither local maxima nor local minima and at x = 2, f has local minima.
1

i) f(x)=;-~ ¥x€ER-{0,1}

x—1
—4 1
— = + ——
o x’ x = 1)
Now f'(x) =0 = x =2, 2/3.
8 2
Also f"(x) = 5 —
so f*(x) x x—1y

Clearly then f has local maximum at x = 2 and local minimum at x =2/3.

i) Maximum at x = 7/4 and 37/4, minimum at x = 27/3.

‘Here f(x) = x" (1 — x)" ¥x€R

Therefore f'(x) = mx™ "' (1 — x)" — nx™ (1 — x)""
=x""'(1 —x)"" (m— mx — nx)
Ifbothm=n=1,

1
thenf'(x)=1—-2x=0 =i>x=7’

and f"(x) = — 2 <0 ie. f has a local maximum at x = 1/2 in this case.
Therefore we can assume eitherm > 1orn> 1. |

In any case, f’(x) = 0 yields x = m/(m + n) and f'(x)

changes sign from positive to negative at this point.

Thus f has a local maximum at x = m/(m + n).

|
LeUI:(Y)

i
Thereforelogy = xlog (— ) = — x log x
X
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|
=—‘>—d—y =—logx — 1
y dx

d .
For extreme values, ?i%( = (, which means

logx+1=0 =>x=¢"

Now (24) =
dy
=2 = +
ix y(logx + 1)
dy dy y
= —J=— 2 (logx +1)— =
o dx? Hi(ogx ) X
2!
Atx=¢"', wehave —r = —¢'* . e <0

dx
Therefore atx = e”', y has a local maximum and the maximum value of y

29



REVIEW

In this block, you have been introduced to the rigorous notion of the derivative of a function.
Also, the relationship between the continuity and differentiability have been explained.
Further, the algebra of the derivatives has been discussed. All these have been dealt with in
Unit 11. In Unit 12, certain mean-value theorems have been discussed while in Unit 13, the
tesults of these theorems have been extended to higher derivatives in the form of Taylor’s
theorem and Maclaurin’s series. Further, these theorems have been used to give the power
series expansions of some algebraic and transcendental functions as well as evaluating the
limits of indeterminate forms and extreme values of some functions. Now try the following
questions so as to test for yourself your conceptual understanding of the material.

1) Give an example of each of the following :
a) A function which is not differentiable at one point of its domain.
b) A function which is not differentiable at two points of its domain.
¢) A function which is not differentiable at three points of its domain,

2) State whether the following statements are true Or false.
a) A continuous function is always differentiable.
b) A differentiable function is always continuous.
¢) Every monotonic function is differentiable.
d) Every differentiable function is monotonic.

3) Give an example of each of the following :

a) Two functions f and g such that f + g is derivable but f and g may not be derivable

b) Two functions f and g such that f . g is differentiable butJ and g may not be
differentiable.

¢) Two functions f and g such that f — g is differentiable but f and g may not be
differentiable.

d) Two functions f and g such that /g is defined and differentiable but f and g may not
be differentiable.

4) Give an example of a function f such that it is not derivable but | f | is derivable at every
point of the domain.

5) Give an example of each of the following :
a) A function f to which Rolle’s theorem is applicable.
b) A function f to which Rolle’s theorem is not applicable.

6) Using the Maclaurin series expansions of sin x and vos x, find the power series expansion
of cos 2x and sin x £os 2x.

7) Is stationary value of a function necessarily an extreme value? Justify your answer.

8) Prove that ‘
i) if f-is continuous in [a, %[ and f'(x) > 0¥ x € Ja, [, then f s strictly increasing in

(a, . ,
ii) if fis continuous in [a, wf and f’(x) <0 ¥ x € ] a, % [, then f is strictly decreasing in
[a, = .
9) What is wrong with the following use of L’Hopital’s Rule
- ¥’ — 4x — lim 3x’ — 8x X84
B oI = 2x  +h 18x —2. 0 18 9

_— . o 1 1
10) Which indeterminate form is lim [ (4 + —) — ——— ]. Find the limit.
X0 X sin x

" ANSWERS/HINTS

1) a) f(x) = | x; ¥x € R. fis not differentiable at one point ‘0’ of its domain.
b) f(x) = | x i + | x + 1 | ¥x € R. Differentiable except at the points — 1 and 0 of
the domain.
¢) f(x)=1x|+|x+1}i+|x— 1]|¥x€ER. Differentiable except at the
points -~ 1, 0 and 1 of the domain

2) a) False. The function f given by f(x) = | x — 1 | ¥x € R is continuous but not
differentiable at 1 ‘



‘Differentisbility b) True.
¢) False. The function £ : R — R defined by
1whenx>0
f(x)=1—1whenx<0
Owhenx=0

is monotonic but not differentiable at 0.

d) Faise. The function f : R — R defined by
3

f(x)=x?—4xVx€R

is differentiable in R but it is monotonic because =X —4=(x— D(x+2
which is positive if x > 2 or x < — 2 and is negative for — 2 < x < 2 and
consequently f is mOfiotonically increasing for x < — 2and x >2and fis
monotonically decreasing in [ — 2,2 .

3) a) Takef(x)=|x[andg(x)=— | x| ¥x€R.

b) Take f(x) = g(x) = | x | ¥x ER.

1 when x is rational

— 1 when x is irrational

So f is not derivable at any point of R but | f | is derivable and [f17x) =0¥x ER.

4) Consider f(x) = {

5) a) Takef(x) =x*,a=—1,b=1
b) Take f(x) = sinx;a = — 7/2,b = /2.
1 + cos 4x

2
6)cost( :

)=71l-[3/2+200s4x+—;-0058x]

. | .
sin x cos 2x = > (sin 3x — sin x)
Now expand cos 4x, cos 8x, sin 3x, sin x in power series.

7) Consider the function f(x) = (x — 1)’ ¥x €R.
f°(1) = 0 and so f(1) is a stationary value. But f(x) > f(1) forx > 1 and f(x) < f(1) for
x < 1 and consequently (1) is not an extreme value.

8) Proceed exactly in the same way as that for the finite interval [a, b].

o 3x*—8x . 0 - .
9) l‘ﬂ‘) Tex—2 not of ny form. L Hopital's rufe cannot be applied.

10) It is % — oo form. The given limit can be written as

. 4xsinx +sinx — x .. 0 Tt 1 ,
'l‘l‘% mpre Now it is i) form. Apply L’Hopital's rule and you will get
the limit as 4.
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BLOCK 5 INTEGRABILITY

PREVIEW

You know that Calculus deals with two fundamental problems. The first is related to
the slope of a curve at a point while the second is about the area of a region under a
curve. These problems, as you know, can be easily handled by the geometric methods
when the graph of a curve is either a straight line or it consists of several line
segments. Calculus is needed when graph of a curve is neither straight line nor it
consists of line segments. You have seen in Block 4 that the slope problem can be
settled with the notion of the derivative of a function which represents the curve. Thus
the slope-problem and other related material are covered under the branch of
Calculus called the Differential Calculus. The area problem is connected with the
integral of a function representing a curve which we intend to discuss in this block.
You know that the branch of Calculus that deals with the integrability of a function is
called the Integral Calculus.

Both the problems namely the slope-problem and the area problem were studied for
special cases. But it was only in the 17th Century that the close link between the two
problems was discovered in the sense that finding a derivative and finding an integral
are inverse processes. Therefore in this block, we also intend to show that differential
and integral calculus are connected by a relationship called the fundamental theorem
of calculus.

This is the last block and has three units namelyUnits 14, 15 and 16. The Unit 14 deals
with the notion of the integrability of a function. In Unit 15, we discuss the mean-
value theorems of integrability including the fundamental theorem of calculus. Finally
in the last unit, we discuss the sequences and series of functions. This topic has
important applications in engineering and the physical sciences since these areas of
study involve the differentiation and integration of a function which can be described
by an infinite sum of a series of functions. The pictorial representation of the block in
terms of its units in relation with the limiting process is given in the following
diagram.

Unit 14
Integrability
Limit
Unit 15 ' Unit 16
Properties of > Sequences &
Integrability Series of
functions.
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NOTATIONS AND SYMBOLS
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is equal to

is not equal to Greek Alphabets

is greater than a Alpha

is less than B Beta

is not less than Y Gama

is not greater than é Delt.a

is a member of (belongs to) £ Epsilon

is not a member of (does not belong to) { Zeta

is a subset of (is contained in) n Eta

is not a subset of (is not contained in) 9 Theta

is a superset i Iota

Union A Lambda

intersection B Mu

empty set v N\?

implies £ ;)_u

impli T i

;;ﬂ ali::‘lec(ln:’l))" if n (l::pital Pi)
-« . , o

:;l:lla‘;l&lence Felation a(Z) Sigrma (capital Sigma)

there exists T Toy

multiplication ¢ Phi

addition X Ch.1

subtraction ¥ Psi

supremum w Omega

infimum

minimum

maximum .

composition

derivative of f

inverse of a function f

exponential

logarithm

natural logarithm

signum

greatest integer not exceeding x
absolute value of x or Modulus of x

set of positive real numbers

set of real numbers

Set of ‘irrational numbers

set of rational numbers

set of integers

set of natural numbers

field

set of complex numbers

closed interval

open interval ‘
semi-open interval (open at left)—semi-closed interval
semi-open interval (open at right)—semi-closed interval
infinity

minus infinity

sum

infinite series

sequence
complement of S
derived set of S
closure of S



UNIT 14 THE RIEMANN INTEGRATION

Structure

14.1 Introduction
Objectives
14.2° Riemann Integrability
14.3 Riemann Integrable Functions
14.4  Algebra of Integrable Functions
14.5 Computing an Integral
14.6 Summary
14.7  Answers/Hints/Solutions -

14.1 INTRODUCTION

You are quite familiar with the words ‘differentiation’ and ‘integration’. You know
that in ordinary language, differentiation refers to separating or distinguishing things
while integration means putting things together. In Mathematics, particularly in
Calculus and Analysis, differentiation and integration are considered as some kind of
operations on functions. You have used these operations in your study of Calculus.
You have also studied differentiation in a rigorous way in Unit 11. In this unit, you
will be introduced to the operation of integration in a rigorous manner.

There are essentially two ways of describing the operation of integration. One way is
to view it as the inverse operation of differentiation. The other way is to treat it as
some sort of limit of a sum.

The first view gives rise to an integral which is the result of revérsing the process of
differentiation. This is the view which was generally considered during the eighteenth
century.

Accordingly, the method is to obtain, from a given function, another function which
has the first function as its derivative. This second function, if it be obtained, is called
the indefinite integral of the first function. This is also called the ‘primitive’ or
anti-derivative of the first function. Thus, the integral of a function f(x) is obtained by
finding an anti-derivative or primitive function F(x) such that F(x) = f(x). The
}ndeﬁnite integral of f(x), is symbolized by the notation

f(x) dx.

The second view is related to the limiting process. It gives rise to an intégral which is
the limit of all the values of a function in an interval. This is the integral of a function
f(x) over an interval [a,b,]. It is called the definite integral and is denoted by

b
- J fx) dx.

The definite integral is a number since geometrically it corrésponds to an area of a
region enclosed by the graph of a function.

Although both the notions of integration are closely related, yet, you will see later, the
definite integral turns out to be a more fundamental concept. In fact, it is the starting
point for some important generalizations like the double integrals, triple integrals, line
integrals etc. which you may study in the Course MTE on Advanced Calculus.

- The integral in the anti-derivative sense was given by Newton. This notion was found
to be adequate so long as the functions to be integrated were continuous. But in the
early 19th century, Fourier brought to light the need for making integration
meaningful for the functions that are not continuous. He came across such functions in
applied problems. Cauchy formulated rigorous definition of the integral of a function.
He essentially provided a general theory of integration but only for continuous
functions. Cauchy’s theory of Integration for continuous functions is sufficient for
piece-wise continuous functions as well as for the functions having isolated



discontinuities. However, it was G.B.F. Riemann ‘[1826-1866] a German
mathematician who extended Cauchy’s integral to the discontinuous functions also.
Riemann answered the question “what is the meaning of f f(x) dx?”

The concept of definite integral was given by Riemann in the middle of the nineteenth
century. That is why, it is called Riemann Integral. Towards the end of 19th Century,
T.J. Stieltjes [1856-1894] of Holland, introduced a broader concept of integration
replacing certain linear functions used in Riemann Integral by functiqns of more
general forms. In the beginning of this century, the notion of the measure of a set of
real numbers paved the way to the foundation of modern theory of Lebesgue Integral
by an eminent French Mathematician H. Lebesgue [1875-1941], a beautiful
generalisation of Riemann Integral which you may study in some advanced courses of
Mathematics. In this unit, the Riemann Integral will be defined without bringing in
the idea of differentiation. In unit 12, you will see the usual connection between the
Integration and Differentiation. Just by applying the definition, it is not always easy
to test the integrability of a function. Therefore, condition of integrability will be
derived with the help of which it becomes easier to discuss the integrability of
functions. Then just as in the case of continuity and derivability, we will also consider
algebra of integrable functions. Finally, in this unit, second definition of integral as
the limit of a:sum will be given to you and you will be shown the equivalence of the-
two definitions.

Objectives

After the study of this unit, you should, therefore, be able to

— define the Riemann Integral of a function

— derive the conditions of Integrability and determine the class of functions which
are always integrable

discuss the algebra of integrable functions

compute the integral as a limit of a sum.

|

l

14.2 RIEMANN INTEGRATION

The study of the integral began with the geometrical consideration of calculating areas
of plane figures. You know that the well-known formula for computing the area of a
rectangle is equal to the product of the length and breadth of the rectangle. The
question that arises from this formula is th-t of finding the correct modification of
this formula which we can apply to other plane figures. To do so, consider a function v
defined on a closed interval [a,b] of the real line, which assumes a constant value

K = O throughout the interval. The graph of such a function gives rise to a
rectangular region bounded by the X-axis and the ordinates x = a, x = b as shown in
the Figure 1.
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Fig. 1




Obviously, the area enclosed is k (b—a). Now, suppose that (a,b) is further divided The Riemann Integration
into smaller intervals by inserting points of division say

AT XX <x<x35x4=b

and the function f is defined so as to take a constant value at each of the resulting
sub-intervals say

f(x) = ki, if x €%, xif
= k‘z, ifx € [X], X2[
= k3, if x € [Xz, X3[
= ka, if X &€ [x3, X4,

and
f(b) = ka.

Further suppose that d; = length of the ith interval = (xi — x-1) 1.e.
dr = |X1—Xo|, d2 = X2 x1|, ds = |x3—Xa|, de = |X4—X3]

Then we get 4 rectangular regions and the area of each region is
A, = kidi, Az = kada, As = kads, As = Kads as shown in the figure 2.

Y Coy
A \

+i,

ky

A, A, Tke A, A,

Xo=4 ' X, Xy 0 . b=x,

Fig. 2

The total area enclosed by the graph of the function, X-axis and the ordinates x=a,
x=b is equal to the sum of these areas i.e.

Area= A, + A+ Az + As
= kid; + kzd2.+ kids + k4(1.;. '

Note that in the last equation, we have generalized the notion of area. In other werds,
we are able to compute the area of a region which is not of rectangular shape. How
did we get it? By breaking up the region into a series of non-overlapping rectangles
which include the totality of the figure and summing up their respective areas. This is
simply a slight obstraction of the same process which is used in Geometry.

Since the graph of the function in figure 2 consists of 4 different steps, such a
function, as you know from unit 4, is called a step function. What we have obtained is
the area of a region bounded by :

i)  anon-negative step function
ii)  the vertical lines defined by x=a and x=b
iti) the X-axis. '

This area is just the sum of the areas of a finite number of non-overlapping rectangles
resulting from the graph of the given function. The area is nothing but a real number.

Now suppose that the graph of a given function is as'shown in the figure 3.

Does it make any sense to obtain the area of the region under the graph of f?If so,
how can we compute its value? To answer this question, we introduce the notion of
the integral of a function as given by Riemann. vi




Integrability
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. Fig. 3
To introduce the notion of an integral of a function, we will require such a real
number which results from applying the function and which represents the area of the.
region bounded by the graph of f, the vertical lines x=a, x=b and the X-axis. This can
be achieved by approximating the given function by suitable step functions. The area
of the region will, then, be approximated by the areas enclosed by these step
functions, which in turn are obtained as sum of the areas of non-overlapping
rectangles as we have computed for the figure 2. This is precisely the idea behind the
formal treatment of the integral which we discuss in this section. First, we introduce
some terminology and basic notionswhich will be used throughout the discussion.

Let f be a real function defined and bounded on a closed interval [a,b].

Recall that a real function f is said to be bounded if the range of f is a bounded subset
of R, that is, if there exist numbers m and M such that m < f(x) < M foreach x €
[a,b]. M is an upper bound and m is a lower bound of f in {a,b). You also know that
when f is bounded, its supremum and infimum exist. We introduce the concept of a
partition of [a,b] and other related definitions:

DEFINITION 1: PARTITION
Let [a,b] be a given interval. By a partition P of [a,b] we mean a finite set of points

{Xoy, X1 veueee X,} where
A=< <..<x-<xa=h

We write Ax; = x; — xi-1, (i=1, 2, ......n), So Ax; is the length of the ith sub-interval
given by the partition P.

DEFINITION 2: NORM OF A PARTITION
Norm of a partition P, denoted by |P|, is defined by [P| = max Ax,. Namely, the
' ' 1<i<n
norm of P is the length of largest subinterval of [a;b] induced by P. Norm of P is also
denoted by u(P).

DEFINITION 3: REFINEMENT OF A PARTITION
Let P, and P: be two partitions of [a,b]. We say that P, is finer than P, or P: refines

“Pior P is a refinement of P, if P, C P», that is, every point of P, is a point of P:.

You may note that, if P, and P: are any two partitions of [a,b], then P, U P, is a
common refinement of P, and P..

_ o el 11 SO R I B I .
For example, if P, —{Q, ; 5 R 5 l}and P; I{O, g R g R Zg, 5 l}are partitions of
[0,1] such that Py C P.. Then P: is a refinement of Prand P,UP,= {Oll,lll )]
6 4 32

is their common refinement.



‘We now introduce the notions of upper sums and lower sums of a bounded function f The Riemann Integration
‘on an interval [a,b], as given by Darboux. These are sometimes referred to as
:Darboux Sums.

.DEFINITION 4: UPPER AND LOWER SUMS
Let f: [a,b] — R be a bounded function, and let P = {xq, X, ... x.} be a partition of
‘la,bl. Fori=1,2 ..., n, let M; and m, be defined by
M = lub {f(x): xi-+ < x < x;}
omy = glb {f(x) : xi = x < xi}
‘i.e. Mi and m; be the supremum and infimum of f in the sub-interval [x.-1, x;}.

:Then, the upper (Riemann) sum of f corréesponding to the partition P, denoted by
(U (P,f), is defined by

n
U@PH= s M Ax
i=l
. The lower (Riemann) sum of f corresponding to the partition P, denoted by L(P, f), is'
.defined by

n
L (P,f) = 3 m AXi,
i=1
Before we pass on to the definition of upper and lower integrals, it is good for you to
Lhave the geometrical meaning of the upper and lower sums and to visualize the above
definitions pictorially. You would, then, have a feeling for what is going on, and why
such definitions are made. Refer to figures 4(1), 4(i1), 4(iii).

’ Y
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A S S,

( Fb | y;ﬁ

|
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o] Xg X, X, Xn-|  Xn o xolxI X, Xn'y Xn 7

Fig. 4

In figure 4(i), the graph of f: [a,b} — R is drawn. The partition P = {xo, xi, ..., Xa}
Hivides the interval [a,b] into sub-intervals [Xo, xi], {Xi, X2], -... [Xa-1, X»]. Consider the
. hrea S under the graph of f. In the first sub-interval [xo, x1], m; is the g.1.b. of the set of
values f(x) for x in [xo, x1]. Thus m, Ax, is the area of the small rectangle with sides

m; and Ax, as shown in the figure 4(ii). Similarly m; A x; ... ma A x, are areas of such

n
$mall rectangles and 3 m; Ax; i.e. lower sum L (P,f) is the area S, which is the sum of
i=1 9

N TR




~imegnbility areas of such small rectangles. The area S, is less than the area S under the graph of f.
In the same way M, A x, is the area of the large rectangle with sides M, and A x,

n

and S M; A x; i.e. the upper sum U (P,f) is the area S, which is the sum of areas of
=1

such large rectangles as shown in figure 4(iii). The area S; is more than the area S

under the graph of f. If the points in the partition P are increased, the areas Siand S:

approach the area S.

We claim that the sets of upper and lower sums corresponding to different partitions
of [a,b] are bounded. Indeed, let m and M be the infimum and supremum of f in [a,b].
Then m <m; = Mi <M and so

mAx,SmiAxiSMiAxiSMAxi

Puttingi=1,2, ........ n and adding, we get

n n
mys Ax<LPHZUPH<M 3 Axi.

n n
AT 3 (Xi—X-)TXn— X=b—a
i=1 i=1

Thus m (b—a) < L(P,f) < U(P,f) = M (b—a)

For every partition P, there is a lower sum and there is an upper sum. The above ‘
inequalities show that the set of lower sums and the set of upper sums are bounded, so

that their supremum and infimum exist. In particular, the set of upper sums have an
infimum and the set of lower sums have a supremum. This leads us to concepts of

upper and lower integrals as given by Riemann and popularly known as Upper and
Lower Riemann Integrals. )
DEFINITION 5: UPPER AND LOWER RIEMANN INTEGRAL

Let f: [a,b] —> R be a bounded function. The infimum or the greatest lower bound of
the set of all upper sums is called the upper (Riemann) integral of f on |a,b] and is
denoted by '

3
[ f(x) dx.

.e.
fb f(x) dx. = g.Lb. {U(P,f): P is a partition of [a,b]].

The supremum or the least upper bound of the set of all lower sums is called the lower
(Riemann) integral of f on [a,b] and is denoted by

b
f f(x) dx
) ie
b v
[ f(x) dx = Lub {L(P,):Pisa partition of [a,b]}.
Now we consider some examples where we calculate upper and lower integrals.

EXAMPLE 1: Calculate the upper and lower integrals of the function f defined in
[a.b] as follows: ‘ : .

(0 = 1 when x is rational
x) = 0 when x is irrational

SOLUTION: Let P = {xo, Xj ...... Xa} be any partition of [a,b]. Let Mi and m; be
respectively the sup. f andinf. f in [xi-1, X]J. You know that every interval contains
infinitely many rational as well as irrational numbers. Therefore, m; = 0 and M =1
fori=1,2...n. Let us find U(P,f) and L(P,f).

n n
UPH= 3 MiAx,= 3 Ax;=b—a

i=1 i=1

n
LPf)= 3 mAx,=0

CTEYUAERI ST
.
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i"herefore U(P,f) = b—a and L(P,f) = 0 for every partition P of [a,b]. Hence : The Riemann Integration
b

f(x) dx = g.1.b. {U(P,f): P is a partition of [a,b]}

=glb.{b—a}=b—a

| f(x) dx = Lu.b. {L(P,f): P is a partition of [a,b]}
L

=lu.b. {0} =

EXAMPLE 2: Let f be a constant function defined in [a,b]. Let f(x) = k ¥ x € [a,b].
Find the upper and lower integrals of f.

SOLUTION With the same notation as in example 1, Mi =k and m; =k ¥ 1i.

So U(P,f) = z M A x = k z A x = k (b—a)

i=1 =l

and L (P,f)= rzl; m,Ax.:k; A x;=k (b—a)

i=1 i1

Therefore u(p, f) k(b—a) and L(P,f) = k (b—a) for every partition P of [a,b].
Eonsequently f f(x) dx = k (b—a) and j f(x) dx = k (b—a)

Now try the following exercise.

+
'EXERCISE 1
ind the upper and lower Riemann integrals of the function f defined in [a,b] as )
llows
;‘ f(x) = .1 when x is rational
—1 when x is irrational
k
!

You have seen that sometimes the upper and lower integrals are equal (as in Example
tZ) and sometimes they are not equal (as in Example 1). Whenever they are equal, the
Function is said to be integrable. So integrability is defined as follows:

EFINITION 6: RIEMANN INTEGRAL

.2t f: [a,b] — R be a bounded function. The function f is sald to.be Rlemann
|
‘ntegrable or simply integrable or R-integrable over [a,b] |f f f(x)dx = f f(x) dx and
ﬁ f is Riemann integrable, we denote the common value by j" f(x) dx. This is called the

#(lemann mtegral ar simply the integral of f on [a,b].

XAMPLE 3 Show that the function f considered in Example 1 is not Rlemann
tegrable.

OLUTION : As shown in Example l ff(x) dx b—a and
f f(x) dx = 0 and sof f(x) dx #f f(x) dx and consequemly f is not
Riemann integrable.
XAMPLE 4: Show that a constant function is Riemann integrable
ver [a,b] and ﬁndf f(x) dx. _
SOLUTION: As proved in Example 2, f f(x) dx = k(b—a) —f f(x) dx

Therefore, f is Riemann integrable on [a,b] andf f(x) dx = k (b—a).

EXERCISE 2

$how that the function f defined in Exercise 1 is not integrable. 0




Integrability

It is not always easy to find. the upper and lower Riemann integrals of a given
bounded function f and thereby decide whether the function is integrable over the
given interval or not. For this, we discuss some conditions of integrability with the
help of which we can decide integrability of a function without finding upper and
lower integrals. For proving these conditions of integrability we require some results
which we give below in the form of theorems. Some are proved while others are given
without proof.

THEOREM 1. If the partition P, is a refinement of the partition P, of [a,b], then
L(P.,f) < L(P,, f) and U(P,,f) < U(P.,f), ’

PROOF: Suppose P, contains one point more than P;. Let this extra point be c. Let
P = {Xo, X1 ........ Xn} and x1—1 < ¢ < x;. Let M, and m; be respectively the sup. f and
inf. f in [Xi-1, x;]. Suppose sup. f and inf. f in [xi-1; ¢] are p; and q; and those in [e.xi]
are p; and qa.
Then L(Pz,f)“ L(P],f) =qi (c—xi'l) + q: (Xi_C) —m; A X;
= (@—m) (c—x-1) + (q2—m) (xi—c)

{since A x; = (xi—c) + (c—xi)).
Similarly U (Pz,f) - U(Pl,f) = (pl - Mi) (C_Xi—l) + (pz_Mi) (Xi'—-C)
Nowm; < q1 < p1S M;

m; < q:2 < p2 =M
Therefore _
L(P, ) —L(P,,)=0and U (P, ) — U (P, ) <0
Therefore
L(PL < L(P2, hand U (P, h < U (P, ),

If P2 contains p points more than P, then adding these extra points one by one to P,
and using the above results, the theorem is proved. We can also write the theorem as

- L(P,0) = L(P,f) < U(P,,0) < U(P,,f)
from which it follows that U(P,,f) — L(P2,f) < U(P.,f) — L(P.,). As an illustration of
theorem-1, we consider the following example.

EXAMPLE 5: Verify Theorem 1 for the funcjion f(x) = x + 1 defined over [0,1] and

thepartitionP|='{ 111 2’1} andl’:z={0,-1-‘1 1123 l},

,493’2’4 6’4’3,2’3,4"
SOLUTION: For partition P, n = §, x, = 0,x = l X; = i, X3 = 1, X4 = —3—, Xs = |
4 3 2 4
, . _ 1 _ 1. _1 1 o
dndsoAx.——,sz——,AX3——,AX4=—,Axs:—.
4 12 4
Further M.-=f(xi)&m;=f(x,--|)fori=l,(A2, 3,4, 5 and therefore MxZE,Mzzﬁ,
. 4 3
3 .
M3=—,M4=Z,'M5=2,m.=l,mz=§,,m3=i,m4=§,mszz.Wehave
2 4 4 3 2 4
5 25 -5
L(P.) = ¥ midx,= == and U(P,,f) = 3 MiAx = —22 Similarly L(P.,f) = ﬁ
o 18 i=1 18 12
19
U(Pz,f)z—.
12

Hence L(P,,f) < L(P.,f) and U(P.,f) < U(P,,f).
Do the following exercise yourself.

EXERCISE 3 :
Verify Theorem | for the function f(x) = sin x defined over the interval [ 0, %] and

the partitions P; = { 0, 141~ g}

and




v

By applying Theorem 1, it is easily proved that lower integral of a function is less than
or equal to upper integral of the function. It is proved in the next theorem. From
Examples 3 and 4, you can see the truth of this result.

b b
THEOREM 2: [ f(x) dx <[ f(x) dx

PROOF: If Py & P, be two partitions of [a,b] and P = P, U P; be their common
refinement, then using Theorem 1,.we have L(P,,f) < L(P,f) < U(P,H) < U(P.,f)
and

L(P.,f) = L(P,f) < U(P,f) S U(P,,f).
Therefore, L(Py,f) < U(P,,f)
Keeping P, fixed and taking L.u.b. over all Py, we get

b

,] f(x) dx < U(Py, )
Now taking g.1.b. over all P, we obtain A

f f(x) dx s‘fb f(x) dx
This proves the ;esult.

In Theorem [, we have compared the lower and upper sums for a partition P, with
those for a finer partition P,. Next theorem, which we state without proof, gives the
estimate of the difference of these sums.

THEOREM 3: If a refinement P, of P, contains p more points and
[f(x)| < k ¥ x €[a,b] then
L(P,f) S L(P,H) = L(P.,f) + 2pk &
and U(P,,f) = U(P.,f) = U(P,f) — 2p k &
where 8 is the norm of P;.
This theorem helps us in proving Darboux’s theorem which will enable us to derive
conditions of integrability. Firstly we give Darboux’s Theorem.

THEOREM 4: (DARBOUX’S THEOREM)
If f: [a,b] —> R is a bounded function, then to every € > 0, there corresponds 6 > 0
such that

(i) UP,9) <_f f(x) dx + €
(i) L(P.H> [ f(x) dx — ¢
for every pa:tition P of [a,b] with [P| <.
PROOF: We consider (i). As f is bounded, there exists a positive number k such thrat
H(x)| <k ¥x €& [a,b]. Asjf f(x) dx is the infimum of the set of upper sufns, therefore
to each € >0, there is a partition P; of [a,b] such that

U(P.,0) <f f(x) dx + = '; (1)

Let P = {xo, X1, oiuee. Xp} and 8 be a positive number such that 2 k (p—-1) 8§ = € /2.
Let P be a partition of [a,b] with |P| < 8. Consider the common refinement
P; = PUP, of P and P,. Each partition has the same end points ‘a’ and ‘b”. So P, is a

_tefinement of P having at the most (p—1) more points than P. Consequently by -

Theorem 3,
| U(P.0) — 2 (p—1) k 8 < U(P.,0)

| S U(P.LD

i b

| <[ f(x)dx + € ;2 (Using (1))
. Thus b € .

UP.O< [ f(x) dx + 5 +2(p—Nk$

b
= [ f(x)dx + ¢ with |P| <

The Riemann Integration
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EXERCISE 4
Write down the proof of part (ii) of Darboux’s Theorem.

As mentioned earlier, Darboux’s Theorem immediatley leads us to the conditions of
integrability. We discuss this in the form of the following theorem:

THEOREM 5: (CONDITION OF INTEGRABILITY)
FIRST FORM: The necessary and sufficient condition for a bounded functlon f to be
integrable over [a.b] is that to every number & > 0 there corresponds § > 0 such that

U(P,f) — L(P,f) < 5 ¥ P with [P| <&

PROOF: (i) Condition is necessary :
Since the bounded function f is integrable on [a,b],

b b b
[ fx)dx = f(x)dx = [ f(x)dx
a 3 a
Let € > 0 be any number. By Darboux Theorem, there is a number 8 > 0 such that
b

UPPD <[ f(x)dx + ¢/2
b a

=[ f(x) dx + ¢/2 ¥ P with |P| < & %)
Also, b b ’
L(P,H> [ f(x)dx — ¢/2=[ f(x) dx — ¢/2
b 2 )
ie.— L(P,H)<— [ f(x)dx + ¢/2 ¥ P with |[P| <& 3

Atlding (2) and (3), we get
U(P,f) — L(P,f) < e ¥P with |P| <.

(ii) Condition is sufficient:

It is given that for each number € > 0, there is a number & > 0 such that

U(P,f) — L(P,f) < e ¥ P with |P] < é.
Let P be a fixed partition with |P} < 6 Then

L(P, t)<j f(x) dx <f f(x) dx < U(P,).

Thereforef f(x) dx< f fex) dx < U(P,f) — L(P,) < e.
Smce €is arbltrary, therefore the non-negative number

f f(x) dx — f f(x) dx

is less than every positive number. Hence it must be equal to zero that is f f(x) dx
= f f(x) dx and consequently f is mtegrable over [a,b].

Second Form: The necessary and sufﬁclent condition for a bounded function f to be
integrable over [a,b] is that to every number ¢ > 0, there corresponds a partition P of
[a,b] such that

U (P,H) — L(P,H < e.

The proof is left as an exercise.

EXERCISE 5
Estal ish the condition of integrability in the second form.

14.3 RIEMANN INTEGRABLE FUNCTIONS |

Having derived the necessary and sufficient conditions for the integrability of a
function, we can now decide whether a function is Riemann integrable without
finding the upper and lower integrals of the function. By using the sufficient part of




the conditions, we test the integrability of the functions. In this section we discuss The Riemann Integration
functions which are always integrable. We will show that a contihuous function is

always Riemann integrable. The integrability is not affected even when there are finites

number of points of discontinuity or the set of points of discontinuity of the function

has a finite number of limit points. It will also be shown that a monotonic function is

also always Riemann integrable. ’

We shall denote by R [a,b], the family of all Riemann integrable functions on [4,b].
First we discuss results pertaining to continuous functions in the form of the following
theorems:

THEOREM 6: If f: (a,b) — R is a continuous function, then { is integrable over
{a,b], that is f € R [a,b].

PROOF: Recall from unit 10 that if f is a continuous function on [a,b] then f is
bounded and is also uniformly continuous.

To show that f € R [a,b] you have to show that to each number ¢ > 0, there is a
partition P for which
UP.H) — L(P,f)<e

Let € > 0 be given. Since f is uniformly continuous on [a,b], there is a number 6 > 0
such that [f(x) — f(y)| < ;e— whenever|x—y| < é. Let P be any partition of [a,b] with
|P| < 8. We show that, for such a partition P, U (p,f) — L(p,f) <e.

. n n
Now, UP,) —L(PH=3 MiAxi— 5 m A

i=1 i=1

— ; (M. - m;) A Xi (4)‘
i=1

where
A Xi = Xi — Xi-1,
M; = sup. {f(x)} = f (&) for some & € [xi-1, xi]

Xi-1 <x< Xi ) . ’
(Remember that a continuous function f attaing its bounds on [x;.1, x].
Similarly m; = inf. {f(x)} = f(m;) for some n; € [x:-1, xi]. Hence

Xel X< x4
Mi — mi = f(£) — f(n) =< (£) — f(n)] <e/b—a,
Since |&—m) = A x; < 4.
Substituting in (4) we obtain

UPH - LPH= 3 (M—m) A x

=1

€ ,n
< —(zAxi)

b—a i=)
= £ (b-a=-
b—a
- This proves the theorem.

Thus, every continuous function' is Riemann integrable.

But as remarked earlier, even when there are discontinuities of the function. it is
integrable. This is given in the next two theorems which we state without proof.

THEOREM 7: Let the bounded function {: [a,b] — R have a finite number of
discontinuities. Then f & R (a.b).

THEOREM 8: Let the set of points of discontinuity of a bounded function
f: [a,b] —> R has a finite number of limit points. Then f & R (a,b). . IS




Integrability

We illustrate these theorems with the help of examples.

EXAMPLE 6: Show that the function f where f(x) = x? is integrable in every interval
[a,b}.

SOLUTION: You know that the function f(x) = x* is continuous. Therefore it is
integrable in every interval [a,b].

EXAMPLE 7: Show that the function f where f(x) = [x] is integrable in [0,2] where
[x] denotes the greatest integer not greater than x.

0if0<x<1
SOLUTION: [x]={ 1if1sx<2
2ifx=2

The points of discontinuity of f in [0,2] are 1 and 2 which are finite in number and so
itis integrable in [0,2].

EXAMPLE 8: Show that-thq function F-defined in the interval [0,1] by

r+l r

F(x) = { 2rx when 1 <x< 1 where .r is a positive integer
o elsewhere,

is Riemann integrable.

SOLUTION: The function F is discontinuous at the points 0, 1, 12 s % ,.... . The set of

points of discontinuity has 0 as the only limit point. So the limit points are finite in
number and hence the function F is integrable in [0,1]. :

You should now try the following exercises.

EXERCISE 6 )
Show that the function f where f(x) = x [x] is integrable in [0,2].
EXERCISE 7
Show that the function f defined in {0,2] such that f(x) = 0 when
X= . , nﬂ (n=1,2,3...) and f(x) = 1 elsewhere, is integrable.
n+1 n
EXERCISE 8
Prove that the function f defined in [0,1] by the condition that if r is a positive integer,

f(x) = (—1)" when —L <x <1
rt+1 r
= o elsewhere

is integrable

There is one more class of integrable functions and this class is that of monotonic
functions. This we prove in the followirlg theorem.

THEOREM 9: Every monotonic function is iniegrable.

PROOF: We shall prove the theorem for the case where f: [a,b] => R is a
monotonically increasing function. The function is bounded, f(a) and f(b) being g.1.b.
and Lu.b. Let € > 0 be given number. Let n be a positive integer such that

s () [f(b) — f(a)]

€

Divide the interval [a,b] into n equal subintervals by the partition P = {x, X1 .., Xa} of

[a,b]. ThenU (P) — L (P,) = 3. (M, — m) (Ax)

=1




‘when

= "l: 3 T0) — (xin)]

i=1
= 3 o) fa<e
n

This proves that f is integrable. Discuss the case of monotonically decreasing function
as an exercise.

EXERCISE 9
Show that a monotonically decreasing function is integrable.

Now we give example to illustrate the theorem.

EXAMPLE 9: Show that the function f defined by the condition f(x) = —217

I <x52in,n=o,1,2

2n+l

=0,
is integrable in [0,1]

SOLUTION: Here we have f (0) =0,

f(x) = 1 when %<x£l

1 1.2
f(x)= — when (=) <x<
(x) 5 (2)

RO |

Clearly f is monotonically increasing in [0,1]. Hence it is integrable.

EXERCISE 10

Show that the function f defined in [0,1] by f(x) = Tll when Lr< X< Tln for
‘ a a a
r=123, ... , f(0)=0,

where a is an integer greater than 2 is integrable.

144 ALGEBRA OF INTEGRABLE F UNCTIONS

In unit 11,we discussed the algebra of the derivable functions. Likewise, we shall now
study the algebra of the integrable functions. In the previous sections, you have seen
hat there are integrable as well as non-integrable functions. In this section you will
ee that the set of all integrable functions on [a,b] is closed under addition and
ultiplication by real numbers, and that the integral of a sum equals the sum of the
tegrals. You will also see that difference, product and quotient of two integrable
nctions is also integrable. All these results are given in the following theorems.

i‘HEOREM 10: If f € R [a,b], and A is any real number, then

b b
g AfER[abland [ A f(x)dx = A [ f(x) dx.
iROOF: Let P = {xq, x1, ...... »Xn} be a partition of [a,b]. Let M; and m; be the
spective Lu.b. and g.Lb. of f in [xi-, x;]. Then A M, and A.; are the respective Lu.b,
and g.L.b. of Af in [x;-1, x;] if A = 0 and Am; and AM; are the respective L.u.b. and
gLlb. of Afin [xi-1, x;]if A <0.

i=1 =]

[ n n
\’when A 20, then UPA) = 5 AM;Axi= 5 M; Axi= A U(P,0)
> [ M(x)dx = A [ f(x) dx

i

The Riemann Integration
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Similarly L(P,Af) = A 'L(P,f).

=> Ib M(x) dx = A f f(x) dx

If A <0, UG, Af) = 21)‘ m; Ax; = A L(P,f).
=> f AM(x) dx = A f f(x) dx

Similarly L(P,Af) = AU L(P,D. .

b b
=> [ M(x) dx =\ [ f(x) dx

Since f is integrable in [a,b], therefore
f f(x) dx = f f(x) dx = f f(x) dx

Hence j M(x) dx = f M(x) dx = A f f(x) dx
whether A=0o0r A > 0.

b b ’
Hence A f € R[a,b] and [ A f(x) dx = A [ f(x) dx.
Now suppose that A = —1. In this case the theorem says that if f € R [a,b], then
b b
(—N) ER[a,b] and [ [—f(x)] dx = — [ f(x) dx.

THEOREM 11: If f € R [a,b], g € R{a,b],. then f + g € R [a,b] and

b b b
J ¢+ (x) dx= f(x) dx + [ g(x) dx.

PROOF : We first show that f+g € R [a,b). Let € > 0 be a given number. Since {
€ R [a,b], g € R [a,b], there exist partitions»P and Q of [a,b] such that

UP,f) — L(P,f) <e/2 and U (Q,8) — L (Q,g) < ¢/2
If T is a partition of [a,b] which refines both P and Q, then

Similarly,

U(T,g) — L(T,g) <¢/2 (5)
Also note that, if Mi = sup {f(x) : xi-1 < x < x}

~and

N = sup {g(x): xi-1 = x < x}

then,

sup {f(x)+ g(x): xn1 S xS x} <M + N
Using this, it readily follows that

U(T, f+g) < U(T,f) + U(T,g)

for every partition T of [a,b]. Similarly
L(T,f+g) = L(T.H + L(T,g)

for every partition T of [a,b].
Thus U (T,f+g) — L (T,f+g) < [U(T,f) + U(T,g) —~ L [(T.0) + L(T,g)]

= (U0 ~ LT0)+ [U(T.g) ~ LT.@] < 2+ = for
T occurring in (5). This shows that f +‘g € R(a,b) ‘
b b b
It remains to show thatf [f(x) + g (x)] dx =f [f(x) dx +f g(x)

Now

b b :
af f+gx dx=f (f+g) (x) dx < U(P, f + g) < U(P,0) + U(P,g) e (6)

for any partition P of [a,b]. Given any € > 0 we can find a partmon P of [a, b]
such that




b
UP,H <[ f(x) (x) dx + € /2
a b -
U(P.g) </ g(x) dx+ € /2 (D

Substituting (7) in (6), we obtain

b b b

f(f+ 2 (%) dx<f f(x) dx +f gx)dx + e . (8)
Since (8) holds for arbitrary e > 0, we obtain )

f f+g(xdx< f f(x) dx + f g(x) dx )

Replacing f and g by —f and —g in (9) we obtain

f —f—g) X dx<f i} dax +f {~g(®)} dx
or

- f (f+g)(x)dx<—f f(x) dx — f g(x) dx

This is equivalent to ,

fh (f+g) (%) dx >. fb f(x) dx +_fb g(x) dx ... (10)
Combining (9) and (10), we get

f (f+g)(x) dx = f f(x) dxf g(x) dx

Which proves the theorem.

THEOREM 12 : If f € R [a,b) and g € R [a,b] then f — g € R {a,b] and
f(f—g)(x)dx‘—‘ff(x)dx g (x) dx
'PROOF: Since gé R (a8} therefore —g € R {2, and
f —[eldx= —f g(x) dx
Now f € R [a,b] and —g € R [a,b] 1mphes that f + (—g) € R[a,b] and
therefore,
b b b
J i+ el dx= [ f(x) dx + [ [~ (x)] dx
that is (f—g) € R [a,b] and
fb (f—g) (x) dx =aflj f(x) dx —.fb g (x) dx.
For the product and quotient of two functions, we state the theorems without proof.
THEOREM 13: f f € R [a,b] and g € R [a,b] then f g € R [a,b]. ’

THEOREM 14: f f € R {a,b], g € R [a,b] and there exists a number t"> 0 such that
lg(x)] =t ¥ x € [a,b], then {/g € R [a,b]. Now we give some examples.

EXAMPLE 10: Show thatthe function f where f(x) = x.+ [x] is integrable is [0,2].

SOLUTION : The function F(x) = x, being continuous is integrable in [0,2] and the
function G(x) = [x] is integrable as it has only two points namely 1 and 2 as points of
discontinuity. So their sum i.e. {(x) is integrable in{0,2].

EXAMPLE 11: Give an example of functions f and g such that f + g is mtegrable but
f and g are not integrable in [a,b].

SOLUTION: Let f and g be defined in [a,b] such that

f(x) = 0 when x is rational
1 when x is irrational

The Riemann Integration
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2(x) =. 1 when x is rational
0 when Xx is irrational -

f and g are no‘tkint'egrable but (f + g) = 1 ¥ x € [a,b], being a constant function, is
integrable.

EXERCISE 11 »
Give example of functions f and g such that f—g, fg, f/g are integrable but f and g
may not be integrable over [a,b]. ' :

Example 11 and Exercise 11 show that converse of each of Theorems 11 to 14 may
not be true.

145 COMPUTING AN INTEGRAL

So far, we have discussed several theorems for testing whether a given function is
integrable on a closed interval [a,b]. For example, we can see that a function f(x) = x*,
¥ x € [0,2] is continuous as well as monotonic on the given interval and hence it is
integrable over [0,2]. But this information does not give us a method for finding the .
value of the integral of this function. In practice, this is not so casy as we might think
of. The reason is that there are some functions which are integrable by conditions of
integrability but it is difficult to find the values of their integrals. For example,
suppose a function is given by f(x) = ¢*". This is continuous over every closed interval
and hence it is integrable. But we cannot find its integral by our usual method of
antiderivative since there is no furiction for which ¢*" is the derivative. If possible, try
to find the antiderivative for this function!

In such situations, to find the integral of a given function, we use the basic definition
of the integral to evaluate its integral. Indeed, the definition of integral as a limit of
sum helps us in such situations.

In this section, we demonstrate this method by means of certain examples. We have

b «
found the integral f f(x) dx via the sums U(P,f) and L(P,f). The numbers M; and m;

which appear in these sums are not pecessarily the values of f(x), if f is not

continuous. In fact, we shall now show that f f(x) dx can be considered as limit of sums
in which M and m; are replaced by values of . This approach gives us a lot of latitude in

b
evaluating f f(x) dx, as we shall see in'several examples. /

Let f: [a,b] —> R be a bounded functii(m. Let
fa=x<x<.... Xo = b}

be a partition P of [a,b). Let us choose points t,, .... ta, such that

%Xi-1 < t; < xi (i = 1, ... n). Consider the sum

n n

S(P)= 3 f(t) Axi= 3, f(t) (xi—xi-1).
=1 . i=1 .

Notice that, instead of M; in U(P,f) and m; in L(P,f), we have f(t;)) in S(P,f). Since t; ’s

are arbitrary points in [xi-1, xi], S(P,f) is not quite well-defined. However, this will not

cause any trouble in case of integrable functions.

S(P,f) is called Riemann Sum corresbondingzto the partition P.
We say that lim S(P,f) = A
|P| =0

or S(P,f) —> A as |P| —> 0 if for every number ¢ <0 3 § > 0 such that
IS(P,f) —A| < €for P with |P| < 4.

We give a theorem which expresses the integral as the limit of S(P,f).




THEOREM 15: If lim S(P,f) exists, then f CR [a,b]- The Riemann Integration
|P| =0
and

b
lim S(P,f) =/ f(x) dx
P =0 :

PROOF: Let lim S(P,f) = A. Then give.n a number € > 0, there exists

P —~0

a number 6 > 0 such that
IS(P,f) —A| < ¢/4 for P with |P| < 8.
ie. A— €/4<S(PH<A+ € /4 for P with [P| < 8. (11) 1D

Let P = {xq, xi,...., Xa}. Suppose the points t;, sreep ta VATY N [Xo, Xi], ...... [Xn-1, Xa}.The
Lu.b. of the numbers S(P, f) are given by

n
L.u.b. S(P,f) = Lu.b. 3 fit)Ax = ; MiAx = U(P,f)

. i=1 i=1
Similarly g.1L.b. S(P,f) = L (P,f).
Then from (11), we get

A= e/A<L(PH) < UP,N)< A+ ¢/4 (12)
Therefore )
UP.D) — L(P,D < (A + ¢/4) — (a — ¢/4)
=¢f2
<e.

In other words,

~ fE€R[a,b]
Thus

» b b
! f(x) dx =.f f(x) dx =.f f(x) dx
b.
Since L(P,f) < f f(x) dx S f f(x) dx < U(P,f), therefore

: 7 .

L(P,0) <[ f(x) dx < U(P,f) (13)
From (12) and (13), we get

b

A—e/d<[f(x)dx< A +¢/4.

or
b .
i fx)dx—A|<e2<e
a b

$Since e is arbitrary, therefore f f(x) dx = A = 0, that is,

b
f f(x) dx = A = lim S(P,f)
a IPI—~0

To illustrate this theorem, we give two examples.
: b b
EXAMPLE 12: Showthatf dx=/ | dx=b—a,

SOLUTION: Here, the function f: {a,b} —> R is the constant function f(x)=1.
Clearly, for any partition P = (xo, xi, ....... + Xn) of [a,b] S(P.f) = (x; — xo) f(t:;) +

(k2 —x) f(t2) +........ (Xo — Xn-1) f(ta) = (X1, X0) 1 + (X2 — x1) 1 + ... X (Xn ™ Xo-1)
I=b—a

b C R
Since S(P,f) = b—a for all partitions, f 1dx =1lim S(P,f) =b—a.
: * {P =0

b’ — a’

2 ' S

‘ ) b
BXAMPLE 13: Show that | xdx =




‘Integrability ' SOLUTION: The function f: [a,b] — R in this example is the identity function
f(x) =x

Let P = (a = xo, X1, -......, Xa = b) be any partition of [a,b]. Then
S(P,) = (x1 — Xo) f(t) + (X2 — x1) f(t2) + ...... Xa = Xo1) f(ta) Where tic[X1 — o}, ,
t2& (X1— X2) ...... ta&[Xn-1 — Xa] are arbitrary.

Let us choose

= mtm o omtm L xitx
2 ' 2 2
ThenSPH=(u—x) T +(u—x) R 4
+ (X0 — Xo-1) Xn X1
2
= % [ =x) + (G —xDh) + ..+ (= X))
= % (x2 — xb
= % (b’ — a%).

Here again S(P,f) = 1/2 (b® — a%), no matter what the partition P is.
Hence [ f(x) dx = lim S(P,f) = 1.2 (b® — a?)
2 |P| =0
The converse of theorem 15is also true which we state as the next theorem without
proof.

THEOREM 16: If a function f is Riemann integrable on a closed interval [a,b], then
Lim S(P,f) exists and

|B| —>®
Lim S(P,f) = [ (fx) dx.
IP|~0

Theorem 16 is used for computing the limit of sums of some series. For that, let us
consider a partition P of [a,b] having n sub-intervals, each of length h so that
nh = b — a. Then P can be written as

. P=(a,a+h,a+2h,....a+nh=bp)
Lett=a+ih,i=1,2,.... n. Then
n .
SPH= 5 f(t) Ax; = hiftat+h)+f@+2h)+ ... + f(a + nh)]
i=l ;
when Lim S(P,f) exists, then '
Pl =0
: _ b
limh[f(a+ h)y+f(a+2h)+ ... + f(a + nh)] =f f(x) dx
h—0 .
We can change the limits of integration from a, b to0,1. Changing h to b~a .
you see that n

n b-
(b — a) lim ! 5 f[a+(b-—a)£]=f f(x) dx
=1 n a k

n
n—>oc
.1 1 . r l '
Butlim = 3 f[a-i-(b—a)—]:Off[a+(b~a)x]dx .. (14)
n =1 n
n—>o¢
b 1
: Thereforef f(x) dx=(b—a)0f fla+ (b — a) x] dx (15)
22 a .
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Iri (14), put a = 0, b = 1. We get the following result: ' The Riemunn Integration

If f is integrable in [0 1], then

Jtim Z - f(—) ff(x)dx

n— ® =1 I
This gives you the following method for finding the limit of sum of n terms of a series:

"1 Write the general rth term of the series.

II Express it as I f(z), the product of 1 and a function of = .
n n n n

III Change I toxand 1 to dx and integrate between the limits 0 and 1. The value of
n n

the integral gives the limit of the sum of n terms of the series.

- Since each term of the series tends to 0, the addition or deletion of a finite number of

terms of the series does not affect the value of the limit.
Similarly you can verify that’

lim z[ ¢ (£ )] f¢(x)dx

.n— o

3
and lim z ¢ (- )]=of &(x) dx.

n—® -

" As an illustration of these results, consider the following examples:

EXAMPLE 14: Find the limit, when n tends to infinity of .the series
I + 1 + 1 + n 1

n+1 n+2 n+3 n+n
n

SOLUTION: General (rth) term of the series is 3, l—.l-
T =t ongg4 !

n
n ‘ !
Hence lim 3 L =/ l,dx
n=x<pop nyper O 1+x
n

which can be easily evaluated.

EXAMPLE 15: Find the limit, when n tends to infinity, of the series.

SOLUTION: Here the rth term = - ————no,
V== 1)’

- Since it contains (r—l) some consxder (r+1) th term i.e.

1.

| 1
(r+Dthterm = =z = - ——
S Ve \/1—( )

. Therefore lim n ! 1

= [ —= dx

n—® z _T=n l ( ) o _]__—_,x

" Which can be evaluated dnd its value is /2.

3n n’
EXAMPLE 16: Findlim 3 .
j n== 2 (3n+r)
' SOLUTION: We have ,
R R
+1)’ 3
(3n _r) n G 4T )
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Integrability Since the number of terms in the summation is 3n, the resulting definite integral will
' have the limits 0 and 3.

: . n n’ . 3n 1
Therefore lim 5 Py = lim 3 - . ,
n—>o00 r=| (3n r) n—=>0 =) n(3+£)
n .
f dx
o (3+x)’

This you can evaluate easily. »
Now try the following exercises yourself:

EXFRCISE 12,
Find the limit, when n tends to infinity, of the series

Vo, VA L A 4V

Vinta@m-nr

+
NS V(n + 4y V(n+8y

EXERCISE 14
Find the limit, when n tends to infinity, of the series

S T T

n n+1 n+2 3n

14.6 SUMMARY

In this unit, you have been introduced to the concept of integration without bringing
in the idea of differentiation. In section 14.2, upper and lower sums and integrals of a
bounded function f over closed interval [a,b] have been defined. You have seen that
-upper and lower Riemann integrals of a bounded function always exist. Only when
the upper and lower Riemann integrals are equal, the function f is said to be Riemann
integrable or simply integrable over [a,b] and we write it as f € R [a,b] and the value -

b
of the integral of f over [a,b] is denoted by f f(x) d¥. The definition of Riemann

integral is given in this section, Also in this section, it has been shown that in passing
from a partition P, to a finer partition P,, the upper sum does not increase and the
lower sum does not decrease. Further you have seen that the lower integrable of a
function is less than or equal to the upper integral. Further condition of integrability has
been derived with the help of which the integrability of a function can be decided
without finding the upper and lower integrals, Using the condition of integrability, it has
been shown in section 14.3 that a function f is integrable on [a,b] if it is continuous or
it has a finite number of points of discontinuities or the set of points of discontinuities
have finite number of limit points. Also in this section you have seen that a
monotonic function is integrable. As in the case of continuous and derivable
functions, the sum, difference, product and quotient of integrable functions is
integrable. This has been discussed in section 14.4. Finally in section 14.5, Riemann

o sum S(P,f) of a function f for a partition P has been defined and you have been shown

‘b
that lim S(P,f) exists if and only if f € R [a,b] andf f(x) dx = lim S(P,f). Using this
Pt —¢ - a Pl =0

idea a number of problems can be solved.

14.7 ANSWERS/HINTS/SOLUTIONS

El) IfP = {Xo, X1 .... Xn} be any partition of [a,b] and M;, m; be Lu.b. and g.lb. of f
[ infx-1, x], then Mi = I, m, = —|
24 Y¥e=1,2,....n.

"‘h’.’d‘f-‘.
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’ b

U(P,f) = b—a and L(P,f) = a—b. Therefore f f(x) dx = b—a and
b a

[ f(x) dx = a—~b.

- b b .
E 2) In Exercise 1, you see that [ fxydx = J 1(x) dx and therefore f ‘isnot
integrable in {a,b). )

E 3) ForP,,n=3,xo=0,x.;1r/4,x;=1r/2;
So Ax, = 7/4, Az =mw/4. M, = —l- ,Mz=1,,m|=0,mz=L

V2 V2

2 P .
U‘P, = M; Ax, = — + 1) and
(P = 3 p (75‘ )

i=1

o
LPLO= 3 miAxizéi -

i=1
ForP;,,n=4,x,=0, x;, = /6, X3 = 1r/4; X3 =m[2
1
V2
1

| ™ I
=0,m=-,m= 1. SoUPH= = 4+ L )and
m, 2 2 3 \/5 . (zf) 12( \/"i

Ax|=,ﬂ/6,AXz=£,AX3=1|’/4,M|=%,Mz= ,Mi=1

L(P..f) = 2—: a+ 765 ). So L(Py, ) < L(P:, 1) and U(P»,f) < U(P, f)

E 4) Asfis bounded, there exists a positive number k such that

b
If(x)] <k ¥ x € [a,b]. As f f(x) dx is the supremum of the set of lower sums,

foreach € > 0, there exists a partition P, of [a,b] such that

b
L(PLO> [ f(x) dx — ¢/2

Taking P-l = {xo, Xi, ...... » Xp}'and a positive number & defined by 2 k(p-1) 6 =

€ /2 and proceeding as in (i) part of Darboux Theorem with P, = P, UP,

L(P.f) = L(P.,) =2 (p—1) k 6 (Using Theorem 3).
ZLPH—-2(p~-1ks
b

> [ f(x) dx — ¢/2 — ¢/2 (Using (16)
2y
=/ f(x) dx — ¢ ¥ P with |P| < 5.

E 5) Condition is necessary: .
't Proceeding as in First Form, you will get
- UP) — L(Pf)<e¥ P with |P| < 5.
Now fix a partition P having |P| < 6. So far this partition P,
UPf) — L(P,H) <e. . _ "
Condition is sufficient: For e >0, 3 a partition P of {a,b] such that

U(P,f) — L(P,f) < e. Then proceeding as in first form, you will get that f is

integrable in [a,b,].

E§) 0if0<x<1
fx) = { xif 1 <x<2
4ifx = 2

This function has 1,2, as the only points of discontinuity and so it is integrable

in [0,2].
E 7) The function f has the following points of discontinuity:
1, I , 223 34 and this set of points of discontinuity has | as the only

2717372747377
limit point and so the function f is integrable by Theorem 8.

The Riemann Iivegraticn-
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4
This set has 0 as the only limit point and hence f is integrable on [0,1]

E 8) The function f has the following points of discontinuity: 0, 1, 1

y T

o | =

9 eressriesnan

E9) In this case f(a) is the Lu.b. and f(b) is the g.L.b. of f. If € > 0 be any number,

you have to choose a positive integer n > (b~a) [f(a) ~(b)] . Proceed

€
as in theorem 9 by taking M; = f(x;-1) and m; = f(x;)

E 10)Here £(0) =0, f(x) = | when L < x<1.
a

f(x) = l,whenl—2,<xsl,
a a a

f is monotonically increasing in [0,1] and so by Theorem 9, it is integrable in
10,13 '

E 11)Consider the functions f and g.defined in [a,b] as follows:

— oy .} 1 when x is rational
f(x) = gx) = {—l when x is irrational
f and g are not integrable (Proved in Ex. 1).

f(x) —g(x) =0 ¥x.E[a,b] and so it is a constant function and hence integrable
in [a,b].

f(x) g(x) = 1 ¥ x € [a,b] and also

I~ vxeqap

g(x) A
Both fg and f/g are constant functions and so they are integrable.
1
E 12)(r+1) th term = \/; =
;; (n+4r)3 n ar 3
I+ —)
n

So the required limit = o , which is easy to evaluate. -
4 J (1 +4x)»

E 13)(r + Dth term =

n+r

. n
Given series = 3

=1

2
Since the number of terms in the series is 2n, the required limit is [ !
. . 0

I+ x

dx.
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15.1 INTRODUCTION

“In unit 14, the notion of the integral of a function was developed as a limit of sums of

the series. Nowhere, the concept of differentiation was used. Apparently, you may
conclude as if there is no relation between the integration and differentiation. But this
is not true in all cases. No doubt, the notion of integral as a limit of sums allows us to
compute the integrals in some simple cases which you have seen in section 14.5.
Nevertheless, it is not convenient for a-large number of cases. We do require the
process of differentiation to compute the integrals for a certain class of functions. This
means there must be some relationship between differentiability and integrability of a

. function. What is that relationship between the two notions? We shall bring forth this

intimate connection between the notions of differentiation and integration for a

certain class of functions. In the case of continuous functions, this relationship is

expressed in the form of an important theorem called the Fundamental Theorem of
Calculus, which we discuss in section 15.3. Prior to this, we need a few important
properties of the definite integral which you have studied in your previous course on
Calculus. We shall review these properties in section 15.2. In section 15.3, we shall

: study two additional theorems of integrability which use the process of differentiation.

These theorems are known as the Mean-value Theorems of integrability analogous to
the mean-value theorems of differentiability.

Chijectives

" After the study of this unit you sheould, therefore, be able to

—~  know some important properties of the Riemann Integral
-~ establish the inverse rejationship between integration and differentiation

.-~ apply Fundamenta! theorems of calculus to evaluate large number of integrals

—  learn the mean value thcorems of integrability and their applications.

'15.2 PROPERTIES OF RIEMANN INTEGRAL

In section 14.4, you were introduced to some methods which enabled you to associate -
- with each integrable function f defined on [a,b], a unique real number called the

‘ mtegral f f(x) dx in the sense of Riemann. In section 14.5, a method of computing

i' this mtegral as a limit of a sum was explained. All this leads us to consider some nice

propemes which are presented as follows:

_ PROPERTY I: If f and g are integrable on [a,b] and ii

f(x) < g(x) ¥ x €[a,b],
then

b
f f(x) dxs_j g(x) dx

27
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PROOF: Define a function h: [a,b] — R as
h=g-f. ‘
Since f and g are a integrable on [a,b], therefore the difference h is integrable on [a,b].
Since
f(x) < g(x) =>g(x) — f(x) =0,
therefore h(x) = 0 for all x € [a,b].

Cohsequcntly If P = {xo, X1, ... Xa} be any partition of [a,b]
and m; be the inf. of h in [xi-1, ], then
m=0¥i=12,...n
T
=3 mAx=0
i1

=> L(P,h)=0

Thus for every: partition P, the lower sum L(P,h) = 0.
In other words, Sup. {L(P,h): P is a partition of [a,b}} = 0

or b
[ f(x)dx=0

Since h is integrable in [a,b], therefore

-b b b
‘f h(x) dx = | h(x) dx = [ h(x) dx.

Thus 4
b
f h(x)dx=0
or
b
J @ Dmax=0
b b
= [ g(x) dx = f(x) dx
which proves the property

PROPERTY II: If f is integrable on [a,b] then |f] is also integrable on
b b
[,6] and | [ f(x) dx| </ |f(x)} dx

PROOF : The inequality follows at once from Property I provided it is known that |f]
is integrable on [a,b]. Indeed, you know that — |{] <f<|f|.
Therefore, '

b b ' b
—J 1)) dx <[ f(x) dx <[ f(x)| dx
which proves the required result. Thus‘, it remains to show that |f] is integrable.

Let € >0 be any number. There exists a partition P of [a,b]
such that

UP,)— L(PH< € .

Let P = {xo, X1, X2, -...,;Xn}.
Let M! and m! denote the supremum and infimum of |f| and M; and m: denote the
supremum and infimum of f in {xi-, x.']
You can easily check that
M;—miZMﬁ—mi.

n n
This impliesthat § Mi—m)Axi= 35 Mi—m)Ax

=1 i=1
ie. UP.If) - LEPIHND<UPH-LEPH<e.
This shows that || is integrable on [a,b].



Note that the inequality established in Property II may be thought of as a Integrability and Differentiability
generalization of the well-known triangle inequality

la+ b} <|a| + |b|
discussed in Unit 3. In other words. the absolute va_lue of the limit of a sum never
exceeds the limit of the sum of the absolute values.

b
You know that in the integral | f(x) dx, the lower limit a is less than the upper limit

b. It is not always necessary. In fact the next property deals with the integral in which
the lower limit a may be less than or equal to or greater than the upper limit b.

For that, we have the following definition:

DEFINITION 1: Let f be integrable on [a,b], that is,f f(x) dx exists
-when b > a. Then *

b

[ f(x)dx=0,ifa=b

=—{ f(x)dx,ifa>b.
b

Now have the following property.

PROPERTY III: If a function f is integrable in [a,bland |f(x)| < k ¥ x € [a,b], then
b
| f(x) dx| <k |b—al.

- PROOF: There are only three possibilities namely eithera<<bora>bora=b. We !
discuss the cases as follows:

Case (i) a<b:
- Since [f(x)| <k ¥ x €[a,b], therefore
—k<fx)<k ¥x€[ab]
b b b
=>[ —kdx <[ f(x) dx < [ k dx (why?)
a a b a
=> —k (b—a) <[ f(x) dx < k(b—a)
b
1 fx)dx| <k (b —a) =k |b—al -

- which completes the proof of the theorem.
. Case (ii)a>b:

| In this case, interchanging a and b in the Case (i), you will get ,
|bf‘ f(x) dx| < k (a—b) ‘ ‘
el —_fb f(x) dx| < k (a—b) |
©Le. |fbf(x) dx| <k (a—b) =k |b—a].
5 Case.(iii) a=b:

In this case also, the result holds,

b
since [ f(x) dx =0 for a=b and klb—'af =0 fora=b.
" Let [a,b] be a-fixed interval. Let R [a,b] denote the set of all Riemann integrable
3 i functions on this interval. We have shown in Unit 14 that:if f,g C R [a,b], thenf+ g
v i f.g and A for A ER belong to R {a,b]. Combining these.with Property Il, we can say
' i that the set R [a,b] of Riemann integrable functions is closed under addition,
multiplication, scalar multiplication and the formation of the absolute value.

| 1f we consider the integral as a function Int: R[a,b] ~ R defined by

b
Int (f) =f f(x) dx




i !

 Integrabliiey with domain R [a,b] and range contained in R, then this function has the following
properties:
Int (f-+g) = Int (f) + Int (g), Int Af) =N Int (f)
In other words, the function Int preserves ‘Vector sums’ and the scalar products. In
the language of Linear Algebra, the function Int acts as.a linear transformation. This

: function also has an additional interesting property such as
3 Int (f) < Int(g)
3 whenever

f<g.

We state yet another interesting property (without proof) which shows that the
Riemann Integral is additive on an interval.

PROPERTY 1IV: Iff is integrable on [a,b] and c € [a,b], then f is integfable on [a,c]
~ and [¢,b] and conversely. Further in either case :

b < b
Jfx) dx = [ f(x) dx + [ f(x) dx.

According to this property, if we split the interval over which we are integrating into
two parts, the value of the integral over the whole will be the sum of the two integrals
over the subintervals. This amounts to dividing the region whose area must be found
into two separate parts while the total area is the sum of the areas of the separate
portions.

B Al o IR AP S L

' N b .
: We now state a few more properties of the definite integral f f(x) dx which you ought
. to have studied in the course on Calculus (MTE-01).

6)) f f(x) dx = f' f(a—x) dx.
| 021 ° a a
! " (i) { f(x) dx = [ f(x) dx. + [ f(2a—x) dx.
' .' 2 f f(x) dx if f is an even function

Gi) | fx) dx={ °

v 0 if f is an odd function.
! (iv) f f(x)dx=n f f(x) dx if f is periodic with period ‘a’and n is a positive integer

provided the integrals exist.

15.3 FUNDAMENTAL THEOREM OF CALCULUS

In section 15.1, we raised a question, “What is the relationship between the two notions

of differentiation and integration? Now we shall try to find an answer to this question,

In fact, we shall show that differentiation and Integration are intimately related in the
1 sense that they are inverse operations of ‘each other.

Let us begin by asking ourselves the follbwing question: “When is a function f: [a,b]
—> R, the derivative of some function F: [a,b] —> R?”
For example consider the function f: [~ L 1] —> R defined by

f(x)={0if-—l =x<0

lifo=x<1

This function is not the derivative of any function F: [—1, 1] —> R. Indeed if f is the
derivative of a function F: [—1, 1] —> R then (Refer to Unit 12 for the intermediate
value property of derivatives) f must have the intermediate value property. But
clearly, the function f given above does not have the intermediate value property.
Hence f cannot be the derivative of any function F: [—1, 1]—>R.

3 However if f: [—1,1] —> R is continuous, then { is the derivative of a function
: ' F:[—1, I]—> R. This leads us to the following general theorem:

:10 THEOREM 1: Let f be integrable on [5,b]. Define a function F on [a,b] as




N

A

F(x)=[ f(t) dt, ¥ x € [a,b].

Then F is continuous on {a,b]. Furthermore, if f is continuous at a point xo of [a,b],
then F is differentiable at xo and F'(xo) = f(x0).

PROOF: Since f is integrable on [a,b] it is bounded. In other words, there exists a

_positive number M such that

If(x)] <M ¥x € [a,b].
Let ¢ > 0 be any number.
Choose x,y ¢ [a,b] where x <y such that

€
|x—yl| <~—l-\—'1 .
Then
Fo —Foo 1 =1/ 1 ae~f oy a
= I‘fx f(t) dt.-f-“)‘v f(t) dt —j f(t) dt|
=Jmm|
Sxfy () | dt
= f Mdt = M(y—x) < ¢
Similarly you can discuss the case when y < x. This shows that F is continuous on

{a,b]. In fact this proves the uniform continuity of F.
Now, suppose f is continuous at a point xo of [a,b]

We can choose some suitable h # 0 such that xo + h & [a,b].

Then
xo*+h X,
F(xo+h) — F(xo) = | f(t) dt — | f(y) dt
X R yth LIy x_+h
=“] fwdt+ [ 1w dw —Jiwa=f" far
Thus
. x_+h
Flxot h)— F(xo) =/ f(t) dt ... )
*0
Now
F(xo + h) — F(xo) gy 1t et
. —f =l -/ fwyd—-=f
. (%o) I l hx{ (1) dt hx{ f(xo) dt
|t
= — " [f(t) — f(xo)] dt.
Ih|%

Since f is continuous at Xo, given a number € > 0. 3 a number 6 > 0 such that

[f(x) — f(x0)| <E/2 whenever |x—x%0) < 8, x € [a,b]. .
So if |h| < §, then |f(t) — f(x0)] < ¢/2 fort € [xo0, X0 +h] and consequently

Xoth

0 .
[ i) — f(xo)] dt I <€ 2 |h|. Therefore
x“

<€2<if |h| <.

l . .F(Xo + h) - F(Xo) . f(Xo)

h

- Jim, X+ h) = F(xg) _
h—0" h

f(x0)

i.e. F' (xo0) = f(x0).

Integrability and Differentiabilie;
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Integrability - Which shows that F is differentiable at xo and F’(xo) = f(x0) From Theorem 1, you
: can easily deduce the following theorem:

THEOREM 2: Let f: [a,b] — R be a continuous function. Let F: [a,b] = R be a
function defined by

F(x) =/ f(t) dt, x € [a,b).
Then F(x) =f(x),a<x<b.

This is the first result which links the concepts-of integral and derivative. It says that,
if f is continuous on [a,b] then there is a function F on [a,b] such that
F (x) = f(x), ¥ x € [a,b].

You have seen that if f: [a,b] —> R is continuous, then there is a function F:{a,b] — R
such that F’ (x) = f(x) on [a,b]. Is such a function F unique? Clearly the answer is
‘no’. For, if you add a constant to the function F, the derivative is not altered. In

other words, if G(x) =c + f f(t) dt for a< x < b then also G’ (x) = f(x) or: [a,b].

Such a function F or G is called primitive of f. We have the formal definition as
follows:

DEFINITION 2: PRIMITIVE OF A FUNCTION
If f and F are functions defined on [a,b] such that F'(x) = f(x) for x €[a,b] then F is
called a ‘primitive’ or an ‘antiderivative’ of f on [a,b].

Thus from Theorem: 1, you can see that every continuous function on [a,b] has a
primitive. Also there are infinitely many primitives, in the sense that adding a
constant to a primitive gives another primitive.

“Is it true that any two primitives differ by a constant?”
The answer to this question is yes. Indeed if F and G are two primitives of f in [a,b],

then F'(x) = G'(x) = f(x) ¥x €[a,b] and therefore [F(x) — G(x)]’ = 0. Thus
F(x)—G(x) = k (constant), for x € [a,b]. :

Let us consider an example.
EXAMPLE 1 What is the primitive of f(x) = log x in [1,2]
SOLUTION: Since g— (x log x —x) = log x ¥ x €[1,2], therefore F (x) = x log x—x

is a primitive of f in [1,2].
Also G(x) = x log x —x + k, k being a constant isa pnmmve of f.
Try the following exercise yourself.

: EXERCISE 1
' Find the primitive of the function { deﬁned in [0,2] by

_ (xifxe0I
i) = {1 if x €[1.2)

According to this theorem, differentiation and integration are inverse operations.

We now discuss a theorem which establishes the required relationship between
differentiation and integration. This is called the Fundamental Theroem of Calculus.

It states that the integral of the derivative of a function is given by the function itself.

The Fundamental Theorem of Calculus was given by an English mathematician Isaac
Barrow [1630-1677], the teacher of great Isaac Newton.

THEOREM 3: (FUNDAMENTAL THEOREM OF CALCULUS)

If f is integrable on [a,b] and F is a primitive of f on [a,b], then _[ f(x) dx = F(b)—
B2 F(a).




b Integrability and Differentiability
PROOF: Since f € R [a,b], therefore lim  S(P.,f) = f f(x) dx
P =0 8

where P = {xo, X1, X2,,..., Xa} is a partition of [a,b]. The Riemann sum S(P,f) is given by

n n
SPH= 3 ft) Axi= 3 f(t) (X —%X1); Xt St = Xi.
=1 i=1

Since F is the primitive of f on [a,b], therefore F’ (x) = f(x), x € [a,b].

n
Hence S(P,f) = 5 F’ (t) (xi—xi-1). We choose the points t; as follows:
i=1

By Lagrange’s Mean Value thearem of Differentiability (Unit 12), there is a point t; in
]xi-1, Xi [such that

F(xi) — F(xi-1) = F (t) (xi — Xi-1)
n
Therefore S(P,f) = 3 [F(x) — F(xi — 1)] = F(x.) — F(x0) = F(b) — F(a).
i=1
Take the limit as |P| — 0. Then f f(x) dx = F(b) — F(a). This completes the proof.

Alternatively, the Fundamental Theorem of Calculus is also interpreted by stating
that the derivative of the integral of a continuous function is the function itself.

If the derivative f’ of a function f is integrable on [a,b],
b
then [ b(x) dx = f(b) — f(a).

Applying this theorem, we can find the integral of various functions very easily.
Consider the following example:

t
EXAMPLE 2: Show that f sinxdx=1—cost.

SOLUTION: Since g(x) = — cos X is the primitive of f(x) = sin x in the interval [0,t],
therefore

t
f sin x dx = g(t) — g(o) = 1 — cost.

Try the following exercises.

EXERCISE 2

2
Find [ f(x) dx where { is the function given in Exercise 1.
EXERCISE 3

b
Evaluate f x" dx where n is a positive integer,
a

. b
We have, thus, reduced the problem of evaluating f f(x) dx to that of finding
a b

primitive of f on [a,b]. Once the primitive is known, the value of f i'(x) dx is easily -
given by the Fundamental Theorem of Calculus.

You may note that any suitable primitive will serve the purpose because when the
primitive is known, then the process described by the Fundamental Theorem 1s much
simpler than other methods. However, it is just possible that the primitive may not
exist ' hile you may keep on trying to find it. It is, therefore, essential to formulate
some . nditions which can ensure the existence of a primitive. Thus now the next step
is to find the conditions on the integrand (function to be integrated) which will ensure
the existence of a primitive. One such condition is provided by the theorem 2.

According to theorem 2 if f is continuous in [a,b], then the function F given by 3.
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F (x) =af f(t) dt, x € [a,b] is:differentiable in [a,B] and F(x) = f(x) ¥ x €{a,b] -
Le. F is the primitive of f in [a,b]

The following observations are obvious from the theorems 1 and 2.

(i) Iffis integrable on [a,b], then there is a function F which is associated with f
through the process of integration and the domain of F is the same as the
interval [a,b] over which f is integrated.

(i) F is continuous. In other words, the process of integration generates continuous
function.

(iii) If the function f is continuous on [a,b] then F is differentiable on [a,b]). Thus, the
process of integration generates differentiable functions.

(iv) At any point of continuity of f, we will have f'(c) = f(c) for ¢ € [a,b[.
This means that if f is continuous on the whole of [4,b], then F will be a member
of the family of primitives of f on [a,b].

In the case of continuous functions, this leads us to the notion
[ f(x) dx

for the family of primitives of f. Such an inte; ral, as you know, is called an Indefinite
integral of {. It does not simply denote one function, but it denotes a family of
functions. Thus, a member of the indefinite integral of f will always be an anti-
derivative for f.

Theorem 3 gives us a condition on the function to be integrated which ensures the
existence of a primitive. But how to obtain the primitives once this conditicn is

-satisfied. In the next section, we look for the two most important techniques for

finding the primitives. Before we do so, we need to study two important mean-values
theorems of integrability.

154 MEAN VALUE THEOREMS

In Unit 12, we discussed some mean-value theorems concerning the differentiability of
a function. Quite analogous, we have two mean value theorems of integrability which
we intend to discuss in this section. You are quite familiar with the two well-known
techniques of integration namely the integiation by parts and integration by
substitution which you must have studied in your study of Calculus. How these
methods were devised? We shall discuss this question also in this section.

"THEOREM 3 : FIRST MEAN VALUE THEOREM
Let f: [a,b] — R be a continuous function. Then there exists ¢ € [4,b] such that

f f(x) dx = (b—a) f(c).

PROOF: Let m = g.L.b. {f(x): x €[a,b}} and
M = Lu.b {f(x): x €[a,b]}.
If P is any partition of [a,b], then

m(b—a) < L(P,f) < U(P, f) < M(b a).
Also we know that

L(P.f) sf f(x) dx sfb f(x) dx < U(P,f).

Smce f, bemg a contmuous function, is mtegrable in [a,b],
f f(x) dx —f f(x) dx = f f(x) dx

and hence -

m(b—a) <f f(x) dx = M (b—a).

Thus there is a number u € [m,M] such thatf f(x) dx = u (b—a)




Since f is continuous in {a,b], it attains its bounds and it also attains every value Integrability and Differentiabibity
between the bounds. Consequently, there is a point ¢ € [a,b] such that f (c) =
Hence

b
[ f(x) dx = f(c) (b—a)
or equivalently can be written as
b
f)= — [ fx)dx
b—a 2

This theorem is usually referred to as the Mean: Value theorem for integrals. The
Geometrical interpretation of the theorem is that for a non-negative continuous
function f, the area between f, the lines x = a, x = b and the X-Axis can be taken as
the area of a rectangle having one side of length (b—a) and the other f(c) for some

¢ € [a,b] as shown in the figure 1. )

1T -

i)

Fig. 1
We now discuss the generalised form of the first mean: value theorem.

THEOREM 4: THE GENERALISED FIRST MEAN VALUE THEOREM

Let fand g be any two functions integrable in [3,b]. Suppose g(x) keeps the same sign for
all x &[a,b]. Then there exlsts a pumber u lying between the bounds of f such that

I f(x) g(x) dx = #f g(x) dx.
PROOF: Let us assume that g(x) is positive over [a,b]. Since f and g are both

integrable in [a,b], therefore both are bounded. Suppose that m and M are the g.1.b.
and Lu.b. of fin [a,b].

Then

m = f(x) = M ¥ xEfa,b].
Consequently :

mg(x) = f(x) g(x) =< Mg(x) ¥ x'€[a,b].
Therefore

b b b
m [ g(x) dx <[ f(x) gx) dx < M [ g(x) dx
It follows that there is a number x4 € [m,M] such that
b b
J 100 g0 dx = p[ g(x) dx.

Now suppose further that f is continuous on [a,b]. Then there exists a point ¢ € [a,b]
such that

b b ‘
uf f(x) g(x) dx = f(c) [ f(x) dx

35
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We use the first Fundamental Theorem of Calculus for integration by parts. We
discuss it in the form of the following theorem:

THEOREM 5: If f and g are differentiable functions on [a,b] such that the derivatives
f’ and g’ are both mtegrable on [a,b], then

af fg' = f(b) g(b) — (a) g(a) — fre

PROOF: Since f and g are given to be differentiable on [a,b], therefore both f and g
are continuous on [a,b]. Consequently both f and g are Riemann integrable on [a,b].
Hence both fg’ as well as " g are integrable.

fg' + f'g = (fg).
Therefore (fg)’ is alsc integrable and consequently, we have

b b b
Jder=J g+ re
By Fundamental Theorem of Calculus, we can write
b
J (tey = Ifgli= 1(b) g(®) — f(a) g(a)

Hence, we have
b

J 12/ =1(6) gb) — (@) g(2) — [ fe. g
ie
b b
J 100 g () dx =L £(x) gx) &~ £(x) gx) dx.

This theorem is a formula for writing the integral of the product of two functions.
What we need to know is that the primitive of one of the two functions should be
expressible in a simple form and that the derivative of the other should also be simple
so that the product of these two is easily integrable. You may note here that the
source of the theorem is the well-known product rule for differentiation.

The Fundamental Theorem of Calculus gives yet another useful technique of
integration. This is known as method by Substitution also named as the change of
variable method. Infact this is the reverse of the well-known chain Rule for
differentiation. In this method, we use the law of composition of functions which you
have studied in Unit 1. In other words, we compose the given function f with another
function g so that the composite f.g admits an easy integral. We deduce this method
in the form of the following theorem:

THEOREM 6: Let f be a function defined and continuous on the range of a function
g. If g’ is integrable on [¢,d], then

b d -
J 1) ax =] (tg) (x) g'(x) dx
Where a = g(c) and b = g(d).

) b
PROOF: Let F(x) = f f(t) dt be a primitive of the function f.
Note that the function F is defined on thé range of g.

Since f is continuous, therefore by theorem 2 it follows that F is differentiable and
F’(t) = f(t) for any t. Denote G(x) = (Fog) (x).

Then clearly G is defined on [c,d] and it is differentiable because both F and g are
differentiable. By the Chain Rule for differentiation, it follows that

G'(x) = (Fog) (x) g'(x) = (fsg) (x) g’ (x).
Also fog is continuous since both f and g are continuous. Therefore fog is integrable.
Since g’ is integrable, therefore (f,g) g’ is also integrable.- Hence -

d d
J e g mdx=J G dx
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= G(d) — G(c) (Why?)
= F(g (d)) — F(g ()
= F(b) — F(a)

b
=/ f(x) dx.

You have seen that the proof of the theorem is based on the Chain Rule for
differentiation. In fact, this theorem is sometimes treated as a Chain Rule for
Integration except that it is used exactly the opposite way from the Chain Rule for
differentiation. The Chain Rule for differentiation tells us how to differentiate a
composite function while the Chain Rule for Integration or.the change of variable
method tells us how to simplify an integral by rewriting it as a composite function.
Thus, we are using the equalities in the opposite directions.

We conclude this section by a theorem (without Proof) known as the Second Mean
Value Theorem for Integrals. Only the outlines of the proof are given. ’

THEOREM 7: SECOND MEAN VALUE THEOREM
Let f and g be any two functions integrable in [a,b] and g be monotonic in [a,b] then
here exists ¢ € [a,b] such that

J 1) g(x) dx = g(a) [ 1(x) dx + g(b) ] £(x) dx

PROOF: The proof is based on the following result (without proof) known as
Bonnet's Mean Value Theorem, given by a French methematician 0. Bonnet
[1819—-1892].

Let f and g be integrable functions in [a,b]. If g is any monotonically decreasing
function and positive in [a,b], then there exists a point ¢ € [a,b] such that
b .

J 10 & (x) dx = p(a) [ g(x) dx

Let g be monotonically decreasing so that ¢ where ¢(x) = g(x) — g(b), is non-negative . e
and monotonically decreasing in [a,b]. Then there exists a humber ¢ € [a,b] such that

J 10 [200) — g(0)] dx = [g(a) — g(b)] [ f(x) dx
ie.

b - c b
J 10 800 dx = g(a) [ 1(x) dx + g(b) [ f(x) dx.

Now let g be monotonically increasing so that —g is monotonically decreasmg Then
there exists a number c&{a,b] such that

f f(x) [—g(x)] dx = —g(a>f f(x) dx — g(b)f f(x) dx |
1.€. b < b
J 10 g0 dx = g(@) [ 1(x) dx + g(b) [ fx) dx.

This completes the proof of the theorem.

There are several applications of the Second Mean Value Theorem. It is sometimes
used to develop the trigonometric functions and their inverses which you may find in’
higher Mathematics. Here, we consider a few examples concerning the verification
and application of the two Mean-Value theorems.

EXAMPLE 3: Verify the two Mean Value Theorems for the functiops
f(x) = x, g(x) = €' in the interval [—1, 1].
SOLUTION : VERIFICATION OF FIRST MEAN YALUE THEOREM:

Since { and g are continuous in [—1, 1], so they are integrable in {—1,1]. Also g(x) is
positive in [—1, 1]. By first Mean Value Theorem, there is a number u between the
hounds of fsuch that 37
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’ 1 t 1
_.]f fx)g(x)dx=p _lf g(x) dx i.e. _lf xetdx=p f e" dx.

1 1 i
x 1
[ xerdx=|xe}hi — [ edx= 2andf gfdx=e2—-. .
-1 -1 e -1 e

=pl—-)iep= =

52 Lyi 2 .2 _ 2
e e e’—1 Q.71 6.29

glbf=—1&Lubf=1andsop &[—1,1]. First Mean
Value Theorem is verified. =~

VERIFICATION OF SECOND MEAN VALUE THEOREM:

As shown above, f and g are integrable in [—1,1]. Also g is monotonically increasing
in [—1,1]. By second mean value theorem there is a points ¢ € [~1,1] such that

f f(x) g0 dx = g~ by f(x)dx+g(1)f f(x) dx

=> fxe dx = —[ xdx+efxdx
- 2_1 ., 2
=> ———(0/2_1/2)+C(1/2—C/2)
e e
2

{

Therefore ¢* = & = 22 ie.c=* 2.2 €e—1,1]
e —1 6.29 V 6.29

Thus second mean value theorem is verified.

EXERCISE 4
Show that the second mean value theorem does not hold good in the interval [—1,1]
for f(x) = g(x) = x*.

What do you say about the validity of the first mean value theorem.

Now we show the use of mean value theorems to prove some inequalities.

EXAMPLE 4: By applying the first mean value theorem of Integral calculus, prove
that '

& 1 m ]
r6<] dx< ©

0 VIQ—x%) (1=k’x)] 6 V(1—Y% k%)

1
\/-(l—k'x‘)

, X € [0, %]. Being continuous functions, f and g are integrable in

SOLUTION: In the first mean value thedrem, take f(x) =

1

gx) =

[0-]

1—x

By the first mean value theorem, there is a numbér. u € [m M] such that

172 12

dx

0 3 l —— dx:l“of e :#Tr/6
VII—x) (1=k*x)] ‘ Vi-x
wherem=glb.fand M=T.ub. L. Nowm=1& M = —
| Vi=1/4 K
1
lSps ——— e L<um/6sT ———
Vi-174K 6 6 V1-1/4%
r " ! dx< T 1
and so — - — X= ~ —_
6°f VIU—x7) (1-k°x%)] 6 J1-1 4k
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EXAMPLE 5: Prove that | AN X
P X

dxng-ifq>p>0
p

SOLUTION: Let {(x) = sin X, ¢(x), = ! . x C [p.gq]- Being continuous, these
X

functions are integrable in [p.q]. By Bonnet form of second mean value theorem, there
Is a point { € [p.q] such that

4 {
J f(x) d(x) dx = ¢(p) [ f(x) dx

q

i.ef n X dx = ~fsmxdx— —(cosp—cosé)
P X pe P
; sin X I 2
Hence | f ——— dx | =-{|cos p|] + |cos{|}=-
P X p p
EXERCISE §

’ b
Showlhatlfsinxzdxli\ ifb>a>0.

:ul—

EXERCISE 6 Prove the Bonnet’s Mean-Value Theorem.

15.5 SUMMARY

The main thrust of this unit has been to cstablish the relationship between
differentiation and integration with the help of the Fundamental Theorem of
Calculus.

In section 15.2. we have discussed some important properties of the Riemann
Integral. We have shown that the inequality between any two functions is prescrved
by their corresponding Riemanmintegrals; the modulus of the limit of a sum never
exceeds the limit of the sum of their modulie and if we split the interval over which we
are integrating a function into’two parts, then the value of the integral over the whole
will be the sum of the two integrals over the subintervals:

In section 15.3, primitive ol a function has been defined. It has been proved that a
continuous function has a primitive. Using the idea of a primitive, Fundamental
Theorem of Calculus has been proved which shows that dl(fcummnon and
integration are inverse process.

In section 5.4, indefinite integral also called the integral function ol an integrable
function is defined and you have seen that this function is continuous. This function is
differentiable whenever the integrable function is continuous. Finally in this scction
the First and Second Mean Value theorem have been discussed. The First Mcean -
Value theorem states that if f is'a continuous function in [a,b], then the value of the

b
imegralf f(x) dx is (b—a) times f(c) where ¢ € [a,b].According to Generalised. First
Mean Value Theorem if { and g arc integrable in [a, b] and g(x) keeps the same sign,

then the value off f(x) g(x) dx lsf flx) g(x)dx = /.zf g(x) dx where u lies

between the’ bounds of f. Butin the second mean value theorem, if out
of the integrable functions  and g. g is monotonic in

[a.b], then the value off f(x) g(x) dx is g(a) [ f(x) dx + g(b)f f(x) dx where c is
point of [a,b].

Imegrabilit; and Differentiability
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15.6 ANSWERS/HINTS/SOLUTIONS

E 1) If we consider the function F defined in [0,2] by
2
"—2 fxE[0,1

x—-;—ifxe[l,Z]

T f(x) =

then F’ (x) = f(x) ¥ x € [0,2]. It is obviously true for all x # 1. At x = 1,
calculate R " (1) & L {’ (1) and show that both are equal to 1.

2
E 2) By Fundamental Theorem of Calculus,0 f f(x) dx = F(2) — F(0) where F is given
in E (1). Put the values of F (2) & F(0) and you get the values of the integral.

n+l n+l
] = x" and therefore
n+1 n

n

E 3) Since 4 [ is a primitive of f inJa,b] and
dx

by the Fundamental Theorem of Calculus,

f . _ bnﬂ anﬂ
x"dx= - .
D n+1 n+1

E 4) “Functions f and g being continuous are integrable in [—1, 1]. The function g is
not monotonic in [—1, 1], since in [—1,0], it is monotonically decreasing and in
{0,1] it is monotonically increasing. So second mean value theorem does not
hold good.

Now the function g is +ve in [—1, 1]. So first mean theorem holds good and by
the theorem, there is a number u € [m,M] such that‘ { l f(x) g(x) = u_[ l g(x) dx
where m = g lb. f& M = Lu.b. fi.e._[1 x* ;'lx =u _[l x* dx and so =%.
Nowm=0,M = 1. So u €[0,1] and first mean value theorem is verified.

ES5) Sinx’= El; (2x sin x°) for x # 0. Take f(x) = 2x sin x* and g (x) = zl—x and
apply Bonnet Form of Second Mean Value Theorem as in Example 6.

E 6) To prove it, consider any partition P = {x,, xi,......,Xa} of [a,b]. Let M; and m; be
the bounds of f in [xi-1, xi]. Let t, = a and t; (i#1) be any point of [x:-1, x;]

we have m; A x; < fi f(x) dx < M; A x; and

li.‘l
m; Ax<fW)Ax =M AX
Putting i =12.. p where p<n and adding we get

S maxs/ xdx<% M ax

i=1 i=1

g‘,miAxiS% f(t;)AxiS%(Mi—mi)Axi.

i=1 it i=t

’p P P n
Thus | [ f()dx—3ft)Ax|<S Mrm)Ax <3 (Mi—m) A x;

=1 i=1 i<l

x n X n
AL -3 0 ANS S ) ARS [ ) dx+ 3 M A x
: i1 o8 '

i=1 i=1

where 0; = M; — m;.

t
Now the indefinite integral f f(x) dx is continuous and so it is’bounded. Let C &




D be its g.1.b. and Lu.b.
n n n
ThenC— 3 0 AXi< 3 ft)Axi=<D+ 3 0: A xi.

i=1 i=1 i=1

Now we use Abel’s Lemma which states that if (i) {a;, ...... a,} is a monotonically
decreasing set of any numbers (iii) k, K are two numbers such that

k<=vitwv:+ ... +ve=Kforp=12,..,n,
then

n
a.kSz a; V;Sa,k.

i=1

n ; n
In this lemma, takek=C— 3 0 Ax, K=D+ 3 0i A X;

i=1 =l

a=g (ti), vi= f(ti) A x;.
n n n
g@I[C— 3 0Ax]< sfit)gt)Axi=g@[D+ 3 o Ax]

i=1 i=1 i=1

Let |P} — 0. Then, it follows that
Ceg(a Sj f(x) g(x) dx = D g(a)
Thusafb f(x) g(x) dx = u g(a) where p € [C,D].
Nowafl f(x) dx being continuous, there exists cE[a,b] such that

u =/ f(x)dx. Therefore

b [3
f f(x) g(x) dx = g(a) f f(x) dx which proves the result.

Integrability and Differentiability
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UNIT 16 SEQUENCES AND SERIES OF
FUNCTIONS

Structure

16.1 Introduction
Objectives

16.2  Sequences of Functions
Pointwise Convergence

16.3  Uniform Convergence
Cauchy’s Criterion

16.4  Series of Functions
16.5 Summary
16.6 Answers/ Hints/Solutions

16.1 INTRODUCTION

In unit 5, you were introduced to the notion of sequences of real numbers and their
convergence. In units 6 and 7, convergence of the infinite series of real numbers was
considered. In this unit, we want to discuss sequences and series whose members are
functions defined on a subset of the set of real numbers. Such sequences or series are
known as sequences or series of real functions. You will be introduced to the concepts
of pointwise and uniform convergence of sequences and series of functions. Whenever
they are convergent, their limit is a function called limit function. The ‘Question arises
‘whether the properties of continuity, differentiability, integrability of the members of a
sequence or series of functions are preserved by the limit function. We shall discuss
this question also in this unit and show that these properties are preserved by the
Uniform convergence and not by the pointwise convergence.

Objectives

After the study of this unit, you should be able to

—  define sequence and series of functions

—  distinguish between the pointwise and uniform convergence of sequences and
series of functions

—  know the relationship of uniform convergence with the notions of continuity,
differentiability, and integrability.

16.2 SEQUENCES OF FUNCTIONS

In unit 5, you have studied that a sequence is a function from the set N of natural
numbers to a set B. In that unit, sequences of real numbers have been considered in
detail. You may recall that for sequences of real numbers, the set B is a sub-set of real
numbers. If the set B is the set of real functions defined on a sub-set A of R, we get a
sequence called sequence of functions. W¢é define it in the following way:

DEFINITION 1: SEQUENCE OF FUNCTIONS .

Let A be a non-empty sub-set of R and let B be the set of all real functions each
defined on A. A mapping from the set N of natural numbers to the set B of real
functions is called a sequerice of functions.

The sequences of functions are denoted by (fn), (g.) etc. It (f) is a sequence ot
functions defined on A, then its members f}, f, KT are real functions with domain
as the set A. These are also called the terms of the sequence (fy,).

For-example, let

Lh(x)=x""n=1,23.... , where X € A {x: 0 = x =< 1}. Then (f.) is a sequence of
functjons defined on the closed interval [0,1].

Similarly consider (f.) where f, (x) =sinnx,n=1, 2, 3,......, x € R.Then {f.}, isa
sequence of functicns defined on the set R of real numbers.




Suppose (fa) is a sequence of functions defined on a set A and we fix a point x of A, Sequences and Series of Functions
then the sequence (fu(x)), formed by the values of the members of (f.), is a sequence of
real numbers. This sequence of real numbers may be convergent or divergent. For

example suppose that f, (x) = x", x € [—1, 1]. If we consider the point x = % , then the
sequence (f, (x)) is (( %)n) which converges to 0. If we take the point x = 1, the

sequence (f, (x)) is the constant sequence (1,1,1.....) which converges to 1.
If x = —1, the sequence (fa (x)) is (—1, 1, —1, 1, ....) which is divergent.

Thus, you have seen that the sequence (f, (x)) may or may not be convergent. If for a
sequence (fn) of functions defined on a set A, the sequence of numbers £ (x))
converges for each x in A, we get a function f with domain A whose value f(x) at any
point x of A is lim f, (x). In this case (f.) is said to be pointwise convergent to f. We

n - oo

define it in the tfollowing way:

DEFINITION 2: POINTWISE CONVERGENCE
A sequence of functions (f,) defined on a set A is said to be convergent pointwise to f if
for each x in A, we have lim f. (x) = f(x).Generally, we write f, — f (pointwise) on A

n—oc

or lim f, (x) = f(x) pointwise on A. Also f is called pointwise limit or limit function of

n— o

‘@) on A.

Equivalently, we say that a sequence {f.} converges to f pointwise on the set A if for
each € > 0 and each x € A, there exists a positive integer depending both € and x such
that

{fa (x) — f(x)| < € whenever n = m.
Now we consider some examples.
EXAMPLE 1: Show that the sequence (f,) where f, (x) = x", x € [0,1] is pointwise
convergent. Also find the limit. :
SOI;UTION: If 0 = x <1, then lim f; (x) = lim x" = 0. (Recall unit 5).

n -+oo n—oco

If x =1, then lim f(x) = limr 1 = 1,

n— oo n - %

Thus (f,) is pointwise convergent to the limit function f where
f(x) =0for0<x<1andf(x)=1forx= .

EXERCISE 1

Show that the sequence of functions (f,) where f, (x) = x", for x €[—1,.1] is not
pointwise convergent. ‘ '

EXAMPLE 2: Define the functions fon=1,2..... as follows
Oifx=90
' xif0<x<1/2n
f" x) =" 2. 1
2n=2n°xif l/2n<x<-
n
Oifl/n<x<1

‘Show that the sequence (f,) is pointwise convergent.

SOLUTION: The graph of function f, looks as shown in the figure 1.

Whenx=0,f, (x)=0forn=1,2, ..... Therefore, the sequence (f.(0)) tends to 0.

If x is fixed such that 0 < x < I; then choose m large enough so that I <xor
m

m > 1 .Then fn (x) = fme1 (x) = .... = 0. Consequently the sequence (fn (x)) —> 0 as
X
n—> o, 43
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Thus we see that f, (x) tends to 0 for every x in 0 < x < 1 and consequently (f,) tends
pointwise to f where f(x) =0 ¥ x €[0,1].

EXAMPLE 3: Consider the sequence of functions f, defined by f, (x) = cos nx for
—o0 < x < % ie.x €R. Show that the sequence is not convergent pointwise for every
. real x.

SOLUTION: If x = 7r/4 then (f, (x)) is the sequence
(1/\/2, 0, —1/\/2, -1, —1/\/2, 0,.... ) which is not convergent.

You should be able to solve the following exercises,

EXERCISE 2

Show that the sequence (f,) where f, (x) = . smnx

Vn

, X € R, is pointwise

convergent. Also find the pointwise limit.

EXERCISE 3
I xamin& which of the following sequences of functions converge pointwise

(1) fa(X) =sin nx, —o0 < x < + o0,

.. . nx
i) fx)= —/—— . ,—o]lx<+>
@ e T1+n’x?

If the sequence of functions (f,) converges pointwise to a function f on a subset A of
R, then the following question arises? “If each member of (f.) is continuous,
differentiable or integrable, is the limit function f also continuous, differentiable or
integrable?”. The answer is no if the convergence is only pointwise. For instance in
example 1, each of the functions f, is continuous (in fact uniformly continuous) but
the sequence of these functions converges to a limit function f(x)

t(x)—{o for0<=x<1
1, forx =1

which is not continuous. Thus, the pointwise convergence does not preserve the
property of continuity. To ensure the passage of the properties of continuity,

! differentiability or integrability to the limit function, we need the notion of uniform
44 convergence which we introduce in the next section.
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' 16.3 UNIFORM CONVERGENCE

. From the definition of the convergence of the sequence or real numbers, it follows
- ' ~ that the sequences (f.) of functions converges pointwise to the function f on A if and
" only if for each x € A and for every number € > 0, there exists a positive integer n
such that

| fa (x) — f(x)| < € whenever n = m.

Clearly for a given sequence (f.) of functions, this m will, in general, depend on the
given ¢ and the point x under consideration. Therefore it is, sometimes, written as
m (¢,X).. The following example illustrates this point.

EXAMPLE 5: Defing f, (x) = X for —o < x < 0.
n

For each fixed x the sequence (f(x)) clearly converges to zero. For a given ¢ > 0, we
must show the existence of an m, such that for all n = m,

-t =1%-01= Xl <o
n n

x|

This can be achieved by choosing m = [ 1+ 1 where [‘—lﬂ ] denotes the

€

integral part of Ixl (i.e. the integer m is next to' @ in the real line). Clearly

this choice of m depends both on € and x.

For :xample let € = l_'ls_ fx= 1—013— then LS 1 and so m can be chosen
€

tobe 2. If x =1 then ‘—’f—l— = 10’ and therefore m should be larger than 10°.

If x = 10%, then Il = 10° and so m should be larger than 10%. Note that it is
€ :

impossible to find an m that serve for all x. For, if it were, then |x| m < € for all x.
Consequently |x| is smaller than (em), which is not possible. Geometrically the fi's
can be described as shown in the figure 2:

N

f,

| > )
| 0 }
i &
I\
i Fig. 2
!
i By putting y = f, (x), we see thaty = ! x is the line with slope ! . fi is the line
n n 45
| ‘ o
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y = x with slope 1, f; is the line with slope % and so on. As n tends to ¢, the lines

approach the X-axis. But if we take any strip of breadth 2 € around X- axis, parallel
to the X- axis as shown in the figure 2, it is impossible to find a stage m such that all
the lines after the stage m, i.e. fm, fme1 ... lie entirely in this strip’ ~

If it is possible to find m which depends only on € but is independent of the point x
under consideration, we say that (f,) is uniformly convergent to f. We define uniform
convergence as follows:

DEFINITION 3: UNIFORM CONVERGENCE

A sequence of functions (f,) defined on a set A is said to be uniformly cenvergent to :
function f on A if given a number ¢ > 0, there exists a positive integer m depending
only on ¢ such that

We write it as f, — f uniformly on A or lim {, (x) = f(x) uniformly on A. Also f is
called the uniform limit of f on A ‘

Note that if f, — f uniformly on the set A, for a given ¢ > 0, there exists m such that
f(x) —e<fa(x) <f(x)t+e

for all x € A and n = m. In other words, for n = m, the graph of f, lies in the strip

between the graphs of f — e and f + € . As shown in the figure 3, the graphs of f, for

n = m will all lie between the dotted lines.

Fig. 3

From the definition of uniform convergence, it follows that uniform convergence of a
sequence of functions implies its pointwise convergence and uniform limit is equal to

the pointwise limit. We will show below by suitable examples that the converse is not
true. .

.

EXAMPLE 6: Show that the sequence (f.;) where f, (x) = X , X € R is pointwise but
n

not uniformly convergent in R.

SOLUTION: In example 5, you have seen that (f,) is pointwise convergent to f where
f(x) =0 ¥ x € R. In the same example, at the end, it is remarked that given ¢ > 0, it

is not possible to find a positive integer m such that x| < e€eforn=m & ¥xER
: n

le. [fa(x) —fx)| < €eforn=m & ¥xER. Cohsequently (fa) is not uniformly

convergent in R.

EXAMPLE 7: Show that the sequence (fa) where f, (x) = x" is convergent pointwise
but not uniformly on [0,1].

SOLUTION: In example 2, you have been shown that (f,) is pointwise convergent to
f on [0,1] where




f(x)=0 ¥x&[0,1 [ & (D) =1 Sequences and Series of Functions

Let € > 0 be any number. For x =0 or x = 1, |fa(x) — f(x)| < € forn=1.

For 0< x < 1, |fu(x) — f(x)] < eif X" < e ic.nlogx <logeien> L€

log x

since log x is negative for 0 < x < 1. If we choose m = [?g_e ] + 1,
og X

then |fa (x) — f(x)] <e for n = m. Clearly m depends upon € and x.

We will now prove that the convergence is not uniform by showing that it is not
possible to find an m independent of x.

Let us suppose that 0 < e <. If there exists m independent of x in [0,1] so that

Ifa (x) = f(x)| < eforalln=m,
then x" < ¢ for all n = m, whatever may be x in 0 <x <1.
if the same m serves for all x for a given e > 0 then x™ < e for all x, 0 <x <. This

unplles that m > l log ¢ (since log x is negative). This is not possible since log x
og x

decreases to zero as x tends to 1 and so log ¢/log x is unbounded.

Thus we have shown that the sequence (f.) does not converge to the function f
uniformly in[0,1] even though it converges pointwise.

EXAMPLE 8: Show that the sequence (g.) where gu(x) = 1—;—(—— , X €[0, o is
nx

uniformly convergent in [0, = [.

SOLUTION: lim g, (x) = 0 for all x in the interval [0, *° [. Thus (gn) is pointwise

n— %

convergeu. .o f where f(x) = 0 ¥x € [0, =[.

Now |gs (x) — f(x)] =—— < I forall x in [0, * [.
: 1+ nx n
Since lim 4 l = 0, therefore given ¢ > 0, there exists a positive integcr m such that

n—oo

;l<eforn2m.
n

‘Thus m depends only on e. Therefore,

lga (x) — f(x)] <eforn=m & ¥ x € [0, [.
Therefore (g.) —> f uniformly in [0, *° [.

EXERClSE 4 :
.Test the uniform convergence of the followmz, sequence of functions in the specified
tdomains

i(i) fa (x) = 1 ino<x<eo

| nx

S nx -
i) fh(x)= ,—eLlx<L oo
: | +n x°

L) fa(x) = X 0<x<I

: i+ x"

(V) fn(x)zle"“. 0<=x<o®
i n

¥
- Just as you have studied Cauchy's Criterion for convergence of sequence of real
| numbers, we have Cauchy’s Criterion for uniform convergence of sequence of
| functions which we now state and prove.

47
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THEOREM 1: CAUCHY’S PRINCIPLE OF UNIFORM CONVERGENCE

The necessary and sufficient condition for a sequence of functions (f.) defined on A to
converge uniformly on A is that for every ¢ > 0, there exists a positive integer m such
that

Ha(xX)— i (x)) <eforn>k=Zm&V¥xEA

PROOF: Condition is Necessary. It is given that (f,) is uniformly convergent on A.
Let f. — funiformly on A. Then given e > 0, there exists a positive integer m such
that
a(x) — f(x)] <e/2forn=m & ¥x EA.
LX) = f(x)] = () — 1(x)] + f(x) — f(x)]
‘ < |fu(x) — f(x)] + |f(x) — fu(x)| (By triangular
inequality)

<§ +§forn>k2mande€A=6'

This proves the ‘necessary part. Now we prove the sufficient part.

Condition is sufficient : It is given that for every € > 0, there exists a positive integer m
such that |f,(x) — fk (x)| < e for n >k = m and for all x in A. But by Cauchy’s
principle of convergence of sequence of real numbers, for each fixed point x of A, the
sequence of numbers (f, (x)) converges. In other words, (f;) is pointwise convergent
say to f on A. Now for eacn ¢ > 0, there exists a positive integer m such that

Ifa (x) — f(x)} <—;-f0r n>k>m.
Fix h and let n — . Then f, (x) — f(x) and we get
1f(x) — fi (x)] S; e fi(x) — f(x)] <e

This is true for h = m and for all x in A. This shows that (f,) is uniformly convergent
1o f on A which proves the sufficient part.

As remarked in the introduction, uniform convergence is the form of convergence of
the sequence of function (fs) which preserves the continuity, differentiability and
integrability of each term f, of the sequence when passing to the limit function {. In
sther words if each member of the sequence of functions (f,) defined on a set A is
continuous on A, then the limit function f is also continuous provided the
convergence is uniform. The result may not be true if the convergence is only
pointwise. Similar results hold for the differentiability and integrability of the limit
function f. Before giving the theorems in which these results are proved, we discr'ss
some examples to illustrate the results.

EXAMPLE 9: Discuss for continuity the convergence of a sequence of functions (fn).
where fo (x) = 1 — [1=x}[* x € {x: |I—x*] € 1} =[v/2,/2).

SOLUTION: Here lim f(x) = {  when |1=x} <1
0 when |l—x2| =11ex=0,t V2.

n— %

Therefore the sequence (f,) is pointwise convergent to f where.

—x <1
fi ={lwhen|lx
) Owhen | 1-x 1 =1

Now each member of the sequence (f,) is continuqus at 0 but f is discontinuous at 0.
Here (f.) is not uniformly convergent in [—\/5, /2] as shown below.
Suppose (f,) is uniformly convergent in [-—\/’2-, \[2-], so that f is its uniform limit.

. 1 . . \
Taking € = 5 there exists an.integer m such that

Ifa (%) — £X)) <%forn2m&v % € [-/2, 32}




In particular |fn (x) — f(x)| < El): for x € [—\/5, \/—2-] Sequences and Series. of Functions

Now |fm (x) — 1(X)] = { |1—x’|™ when | 1—x}| < 1
0 when | 1-x*| =1

Since lim |1—x*|™ =1, 3 a + v no. & such that
x—>0
H=—x3"— 1] < 1/4 for 0 < |x| <8
ie 3/4<|1—x*|"<5/4for |x| <é.

So [1=x*m> % for |x| < 8, which is a contradiction.

Consequently (f,) is not uniformly convergent in [—\/5, \/5].

EXAMPI.E 10: Discuss, for continuity, the convergence of the sequence (f») where

fn (x) = X € [0, oof.

n x
SOLUTION: In example 8, you have seen that (f.) — f uniformly in [0, o[ where
f(x)=0, x €[0,°9 .

Here each f, is continuous in [, [ and also the uniform limit is continuous in [0, oo[.

'EXAMPLE 11: Discuss for differentiability the sequence (f.) where

% sin nx

I(fa) (x) = , ¥VXxER.

. v/n

%SOLUTION: Here (f.) — f uniformly where f(x) = 0¥ x € R. You can see that
:each f, and f are differentiable in R and

|

| f7(x)=+/ncosnx &' (x) =0 ¥ x ER,
: f2(0) = \/n- — % whereas f’ (0) =

lim f*, (0) # " (0)

2

i.c. limit of the derivatives is not equal to the derivative of the limit.

As you will see in the theorem for the differentiability of f and the equality of the limit
of the derivatives and the derivative of the limit, we require the uniform coi:vergence
of the sequence ().

EXAMPLE 12: Discuss for'integrability the sequence (f.) where

G =nxe™, xEO.1]

|
“SOLUTION: If x =10, thenf, (0)=0
| and lim f, (0) = 0. if x # 0, lim f, (x) = lim

nx S %
~ which is of the form - .
- oC

n-— o n—oo _Nx

i

i €
2 Applying L Hopital's Rule, we have

lim 0% = i —— 2 =0

''n— oo

nx” ny .
n— oo C‘ X~

: So (fa) — fpomtmse where f(x) 0¥xE [0 1. .

{ You may find thatf fu (x) dx = — (I—e’") &f fix) dx =

v
1

Therefore hmf fo(x)= —;éf f(x) dx —f f(x) dx —f llm fn (x) dx

that is, the integral of the limit is not equal to the limit of the sequence of integrals. In
fact, (f.) is not uniformly convergent to f in [0,1]. This. we prove by the contradiction
method. If possible, let the sequence be uniformly gonvergent in (0,1]. Then

for € = l there exists a positive integer m such that
Ifa (x) — f(x)| 1j4forn=m & ¥ x€[0,1]

':x <i—f0rn2m&Vx€[O,lr].

49
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Choose a + ve integer M = m such that — € {0,1].
M

1
Taken=Mand x= — We get
A
L <. £
e 4 16

which is a contradiction. Hence (f.) is not uniformly convergent in [0,1].
Now try the following exercises.

EXERCISE 5§ X
Show that the limit.function of the sequence (f.) where (fu) (x) =—, x €R, is
continuous-in R while (f,) is not uniformly convergent. n

EXERCISE 6.
Show that for the sequence (f.) where (f,) (x) = n x (1—x)", x € [0,1], the integral of
the limit is not equal to the limit of the sequence of integrals.

Now we give the theorems without proof which relate uniform convergence with
continuity, differentiability and integrability of the limit function of a sequence of
functions.

THEOREM 2: (UNIFORM CONVERGENCE AND CONTINUITY)
If (f.) be a sequence of continuous functions defined on [a,b] and (f.) — f uniformly
on [a,b], then { is continuous on [a,b].

THEOREM 3: (UNIFORM CONVERGENCE AND DIFFERENTIATION)

" Let (f.) be a sequence of functions, each differentiable on [a,b] such that (fx(x.))
converges for some point x, of [a,b]. If (f2) converges uniformly on [a,b] then (f;)
converges uniformly on [a,b] to a function f such that
f(x) = lim f; (x); x € [a,b].

n—™,

THEQREM 4: (UNIFORM CONVERGENCE AND INTEGRATION)
If a sequence (f;) converges uniformly to f on [a,b] and each function f, is integrable
on [a,b], then f is integrable on [a,b] and

b

b
[ f(x) dx = lim | £, (x) dx

n— o

16.4 SERIES OF FUNCTIONS

Just as we have studied series of real numbers, we can study series formed by a
sequence of functions defined on a given set A. The ideas of pointwise convergence
and uniform convergence of sequence of functions can be extended to series of
functions.

DEFINITION 4: (SERIES OF FUNCTIONS)

A series of the form f, + f2 + B . + f, + .... where the £ s are real functions
defined on a given set ACR is called a series of functions and is denoted by. °: f..
The function f. is called nth term of the series. o

Foreach x in A, fi (x) + f2 (x) + {3 (x) +...... + is a series of real numbers. We put

ll N
Sa(x)= 5 fi(x). Then we get a sequence (S») of real functions defined on A. We

k=1 '
say that the given series f; + fi + ...... ++ ... of functions converges to a function
pointwise if the sequence (S») associated to the given series of functions converges’
5P _pointwise to the function f. i.e. (Sa (x)) converges to f(x) for every x in A.




We aiso say that f is the pointwise sum of the series L. f, on A. ' Sequences and Series of Functions
If the sequence (S,) of functions converges uniformly to the function f, then we say

.udt the given series f; + f; +.......4+-f. +......... of functions converges unifarmly to

n
the function f on A and { is called uniform sum of 5 f, on A. The function S, is

!
called the sum of n terms of the given series or the n” partial sum of the series and

. . . n
the sequence (S.) 1s called the sequence of partial sums of the series 3 f.. To make the

ideas clear, we consider some examplcs. !

EXAMPLE 13: Let f, (x) = x" ' where x" =1 and — r < x < r where 0 <r < 1.
" Then the associated seriesis 1 +x + x* + ......

In this case, S ‘X) =1+ x+x* +........ + x™', It is clear that S, (x) = 1-x

1—x
This sequence (S, (x)} of functions is easily seen to converge pointwise to the function
fx)= A ,since X" —>0asn —>>0 since | x | < r <1 but the

convergence is not uniform as shown below:

Let € > 0 be given.

1S, 0—fx) | =20 = T e eq—n
[1—x] 1—r1 .
l —
e, n> ogle(—m)
log't

' log(e(l—r
m=[ 28T hen
log r-
[ sa(x) —fix) [ <<eifn=Zmandfor —r<x<r,
Therefore (Sa) converges uniformly in [—r, r]. Thus the geometric series 1 + x + x° +

l .
! —-x
EXAMPLE14: Letf, () =nxe™ —(n— ) xe ™ x& [0,1].

e converges uniformly in [T, r] to the sum function f(x) =

Consider the series 3 f, (x).

=k

In this case S, (x) = 3 (k X~ (k—Dxe fe-t? ) =nx e
k=1
- In example 12, you have seen that this sequence (S.,) is pointwise but not uniformly
+ convergent to the function f where f(x) = 0.x € (0, 1). Thus the series = f, (x) is
pointwise convergent but not uniformly to the function f where f(x) =0, x € [0, 1.
Try the following exercises. :

EXERCISE 7
Show that the series
I S — X 4. .. isuniformly
. x+1 x+D2x+1) RxPNGEx+1) :

convergent in Jk, [ where k is a positive number.

EXERCISE 8

Show that the series 5 is uniformly convergent in [0,k] where k is any .

ni{n+1)

positive - number but it does not converge uniformly in [(,]. 51
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There is a very useful method to test the uniform convergence of a series of functions.
In this method, we relate the terms of the series with those a series with constant
terms. This method is popularly called Weierstrass’s M-test given by the German
mathematician K.W.T. Weierstrass (1815-1897). We state this test in the form of the
following theorem (without proof) and illustrate the method by an example.

THEOREM 5: WEIERSTRASS M-TEST

Let > {. be a series of functions defined on a set ACR and let (M,) be a sequence of
real numbers such that 3 M, is convergent and | f. (x) <M ynand ¥ x € A,
Then 3. {, is uniformly and absolutely convergent on A.

Consider the following example and the exercise.

EXAMPLE 14 : Test the uniform convergence of the series

oo

5 -

=1 X (n+1)

1) |= — ,<—X vnand vxe[ok]

X (n+1) ’ n’
Now the series X My = K 3, — is convergent
n

Therefore by Weierstrass M-test, the given series is uniformly convergent.

EXERCISE 9

o0
Show that 3 TR converges uniformly ¥ x € R.

n=1 - n X

165 SUMMARY

In this unit you have learnt how to discuss the pointwise and uniform convergence of
sequences and series of functions. In section 16.2, sequence of functions is defined and
pointwise convergence of the sequence of functions has been discussed. We say that a
sequence of functions (f.) is pointwise convergent to f on a set A if given a number

€ > 0, there is a positive integer m such that

e (x) — f(x)] <eforn=m, x € A.
m in general depends on € and the point x under consideration. If it is possible to find
m which depends only on e and not the point x under consideration, then (f,) is said
to be uniformly convergent to f on A. Uniform convergence has been defined in
section 16.3. Further in this section, Cauchy’s criteria for uniform convergence is
discussed. Also in this section you have seen that if the sequence of functions (fy) is -
uniformly convergent to a function f on [a,b] and each f, is continuous or integrable,
then f is also continuous or integrable on [a,b]. Further it has been discussed that if
(f.) is a sequence of functions, differentiable on [a,b] such that (f. (x0)) converges for
some point xo of [a,b] and if (f7) converges uniformly on [a,b], then (f,) converges
uniformly to a differentiable function f such that ff(x) = lim 7 (x); x € [a,b].

n—x

Finally in section 16.4, pointwise and uniform convergence of series of functions is
given. The series of functions is said to be pointwise or umformly convergent on a set

A according as the sequence of partial sums (s,) ot the series is pointwise or uniformly
convergent on A.

16.6 ANSWERS/HINTS/SOLUTIONS TO EXERCISES

E 1) When x = — 1, lim x" does not exist. When x=1, lim x" = 1.




E?2)

E 3)

When |x| <1, lim x" = 0. Therefore (f«(x)) converges at all points of [—1. 11
except x = —1. Since the sequence (fo(x)) does not converges at each point of
[—1,1], it is not pointwise convergent in[—1,1]. However it is pointwise
convergent in ]—1,1].

Sequences and Series of Functions

) . . 1 sin nx
Since sin n X 1s bounded, and — : )

A Vn
converges to 0 for every fixed value of x in R and so lim f«(x) = 0, x € R.

n-—oc

converges to 0. therefore (

Therefore (f,) is pointwsie convergent to the limit function f where f(x) =0 ¥ x €R.
(i) For any value of x # 0, the sequence of numbers (sin n x) is not convergent.
For example for x = /2, the sequence is'(sin—llg )ie(1,0,—1,0,...) which is
not convergent. Thus sequence (f,) is not pointwise convergent.

(i) For x =0, (fa(x)) = (0, 0, 0, ....) which is convergent. For x # 0,

x/n

fa =
) 1/n* + x?

= 0 as n —> %, So (f,) is pointwise convergent to f where

" f(x) =0 for —oo < x <%0, -

E 4)

(1) lim fa (x) =0, 0 < x <o, So (fu) is pointwise convergent to f where f (x) = 0,

n—o0

0 <x < oo Lete>0be given.

lfa() — )] = — (0< x < )
nx 1

<eifnx>li.e.n>—
€ €X

If m=[ Ly + 1, then for n = m,| fa () — f(x)| <e.
‘eX

m depends upon € & x. L is unbounded for 0 < x < %, s0 it is not possible to
(34

find m which serves for all x. If such a m exists, then we have

L <eforn=mand ¥xinj0, [.
nx

1 .
L — <ele.m> L which is not possible,
mx €X

since—— — o0 a5 x — 0+.
X
so (fu) is not uniformly convergent in J0,°9[.
(i) (f.) is pointwise convergent to f where f(x) = 0 for —o0 < x < %_ It is not

uniformly convergent. If it is, then for X = " there is a positive integer m such

1. )
that [fu(x) ~f()| < = ice. | "X | <X forn>m & for — o0 < x < 0" Take
4 1+n’x* 4

,n=mandx=—l.

m
nx 1 1
———-—-—l:..<_
! 1+n0’x* 2 4

which is a contradiction. So (f,) is not uniformly convergent in — % < x < oo,

(iii) For0=x<1, —£= —~(0asn— oo, since x"— 0.

X

Forx =1,

L
1+ x" 2




lntejnbiliiy

i (fa) — f pointwise where f¢x) = 0 for 0 < x < 1 and f(x) = -;—for x=1

let € >Obeg1ven A
Forx—Oorl Ha(x) — f(x)| =0< € forn=|.

xll

For0<x<1, If.,(x)—f(x)l— < e€if
X <€(l+x)
e x" (1—€e)<e
e x"< ¢
1—e€
o €
ie.nlogx< log . —
. T— e
_€
: logl
ie.n< (log X is negatlve)

ES)

E6)

log X,

Take m = [‘0-"’_1__ 1+ 1. Then
© logx
1fi(x) — f(x)| < e for n = m.
m depends ypon ¢ and x. Since log x — 0 as x tends to 1, it is not possnble to find
same m for all x.

Therefore, the convergence is not uniform.

(iv) () —> f pomthse where f(x) = 0 for 0 < x < oo, since lim 1 e =0.
n—ee I

Lete> 0 be_g'iven.

lfu(x) — ] = —5
ne

<!torosx<e
n
Since 1 —> 0, so there exists a positive integer m such that 1 <eforn=m.
n n -
Ther(fqre Ifa (x) — f(x)] < € for n = m and for 0 < x < *° and consequently
f, —'f uniformly for 0 < x <.

im := 0, so (f.) —> f pointwise in R where f(x) = 0¥x € R. Obviously each
n— oo n »
f,, being a polynomlal function, is ‘continuous and also f being a constant
funcnon is continuous in R. (f,) is not uniformly convergent, since if it were, for

a given € > 0, there is a positive integer m such that

, lfn‘(x)—f(-x)l<eforn2m&V)§€R.

i.e.§—<eforn2mand ¥x€R

n

Takee=%.Then§<%forn2m&Vx€R.
n )

Taken=m & x=m, then 1 < % which is a contr;adiction. So (fa) is not

uniformly convergent in R.

£.(0) = 0 = fa (1).
For0<x<1,lim f()=xlm —D"—r (=)
"n—o n— (1-x)"
= x lim L (L’ Hopital Rule)
n—o (1=x) ™" log (1— x%)
=0

Therefore, (f) — f pointwise where f(x) =0 ¥ x €0, 1}




ff(x)dx—O&f f, (x) dx = n - _l.asn__. oo, Sequences and Series of Functions
2 (n+1) 2
1 1\
Thus lim of fo (%) dx # [ f(x)dx = f lim f,(x)dx.
‘n o0 0 n-occ

E 7) If S«(x) denotes the sum of n terms of the series,

Sa(x) = X + o upto n terms
x+1 (x+1 (2x+1)

=(1-—L }+ Lo Loy —t 1
x+1 x+1 2x+1 \n—lx+l nx + 1

1
nx + 1
(s») is pointwise convergent to f where
f(xX)=1¥x€]k,|[.

1

| Sa(x) —f(x) | =
nx + 1
1
nk +1
< — ¥ x€Jk, o
nk
il-( — 0 an so for given ¢ > 0, there is an integer m such that l—k <eforn=m. )
n n
Consequently

| Sa(x) — f(x)| <eforn=m& ¥x€ Jk, .
Therefore (S.) is uniformly convergent and so is the given series in ]k, °°[ e

E 8) If S, (x) is the sum of n terms of the series, then

Sux)= —~ +-X 4+ +
1.2 2.3 n(n+ 1)’

x(l+l T (L Ay (L
1 2 “\2 3 n n+1].
x(l— l )

n+ 1
Six) - xasn — oo

Therefore (S,) —> f pointwise ‘where
f(x)=xfor0=x<e

X
+1

: '
In[0,k], ISa(x) = f(x)| < —— and —— — Qasn— oo,
n+1 n+1

For given € >0, there is a positive integer m such that
ISa(x) — f(x) | <eforn=m & ¥x €[V, k].

1Sa(x) — f(x)] =

F ol

Therer re (S,) is uniformly convergent in [0, k].
If (sn) is uniformiy convergent in {0, *[, then for ¢ = 1/2 there is a positive
integer m such that

X

[Sa(x) — f(x)} = <%forn2m&x€[0,°°[
Take n = m & x = m + | and then there is a contradiction. So (S,) is
not uniformly convergent in [0, of.
Hence the ceries is uniformly convergent in [0, k] but is not uniformly
convergent in [0, °[.
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E9) fux)= —41—

n*+x’
=<l—4 foreveryn=1and ¥ x €ER.

n .

But X —l; is a convergent series. Therefore, by Weierstrass M-test the series
n
1
Sfh(x)=% —
n‘+x

is uniformly convergent in R.




REVIEW
This is the fifth and the last block in the course 6n Real Analysis.

It consists of three units namely the Units 14, 15 and 16. In Unit 14, you have been
introduced to the fundamental notion of the integral of a function, popularly known
as the Riemann Integral. This is introduced through the supremum principle and is
defined as the limit of a set of suitable sums thus ruling out the common
misconception that integration is merely the reverse of differentiation. Also, the
criteriafor the integrability of a function have been given.

Some important properties of integrable functions have been discussed in Unit 15.
The Fundamental Theorem of Calculus is, then, established which brings forth the
relationship between differential and Integral Calculus. It turns out that for a certain
class of functions, integration is indeed a reverse process of differentiation. Two
mean-value theorems and the well-known basic techniques of integration namely
integration by parts and integration by substitution (change of variables) have been
deduced with the help of the Fundamental Theorem of Calculus. Finally, Unit 16
deals with sequences and series of functions which is a generalization of the notions of
the sequences and series of real numbers discussed in block 2. The notion of pointwise
and uniform convergence has been introduced as well as their relevance to the notions
of continuity, differentiability and integrability of functions has been discussed.

You will do well if you try to attempt the following questions as a self-test to know
whether or not you have actually grasped the material giver: in this block. You may
check your answers with the o1es given at the end.

. Iff(y,x) = 1 + 2x for y rational and F(y,x) = 0 for y irrational. Calculate
1
F(y) = [ f(y,x) dx.
0
2. By applying the generalised first mean theorem of integral calculus, show that

<f __dx <m— 2

m
270 JxrQ =X NE
4

3. Show by means of an example that the product of two non-integrable functions
may be integrable,

4. If f(x) = 0 ¥ x € [a,b], then show that

[ f(x) dx = 0.

5. Give an example to show that f js integrable in {a,b] but has (i) finite number of
points of discontinuity (ii) infinite number of points of discontinuity.

: 4
' 6. Show that [ [x]dx =6 v
0 .

7. Does the First Mean Value Theorem of Integral Calculus apply to the function
(W) f(x)=|x|if0<x<?2 ' '
() fx)=2if2<x<3.

8. Let (f.) be a sequence such that
o lifx#1
f"(")_{2ifx: I
Show that the limit function f is discontinuous in [ 0, 1]

9. Using Weierstrass M-Test, show that the following series converge uniformly:

i) 3 n’x" xe[— 1

n=|

1
2

N | =

‘oo
() 3 e cosnx, x€ [w, 27]

n=|
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Integrability 10.

Test the convergence of the following series:
(i) X r"convergesand X r'sinn@ v¥ 6E€ Rand r€ [0,1]
2

(i) 2n, xE[l +a <[(a>0)

ANSWERS/HINTS

1.

2.

=)}
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F(y) = 2 if y is rational and F(y) = 0 if y is irrational
Apply generalised first mean value theorem by taking
: 1 1
f(x)= — and g(x)
V1-4% V1=x
Take f(x) = g(x) = { 1 when x is rational

— 1 when x is irrational, x € '[a,b].
Then (fg) (x) = 1 ¥x €[a,b].

. b
A constant function f(x) = k ¥ x € [a,b] is integrable in [a,b] andf f(x)dx =

k (b—a) (Recall unit 14)
Take k =.0.

(i) Take f(x) = {1 when 1 < x <2
3when2=x<3.

<x< 4Ln,nzo,l,z....

(i) f(x) = — when
4"

4n+l

f(0)=0
a=0,b=1

Of [x] dx =0f [x] dx +1f [x] dx2f3 [x] dx +3f [x] dx

1 2 3 4
=0f dx+1f fdx+2f 2dx+3f 3dx

Yes, since the functions are continuous
f(x)z{nfx;el

2ifx=1
It is discontinuous at 1.

1

’

@) Inx"| = n|x|" < nz(%)“ ¥x€E[—

[ SR
N |-

n’ .
2 > is convergent.

(ii) €™ cos nx| < e™ < e™™¥x € [, 2n]
3 e is a G.P. with common ration less than unity and so it is convergent.

.@)|r"sinng =r". Zr'"isaG.P. With common ratio r which is less than 1 and

80 it is convergent.

e 1 1
@)1= — = —

n'Ha s convergent.

¥x€E[l + o, and X
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