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DISCRETE MATHEMATICS

technologically. For inslance, to thprove the efficiency of a Computer programme
We need (o study its speed and logical structure. This can be done by using the
theory of combinatorics and graph theory, two major areas of discrete mathematics.

Discrete mathematics has vast applicability, which is why we have created this 4.
credit course for you. In this coursé we have chosen to introduce you to only a few

arca of mathematics. The areas are symbolic logic, Boolean algebra, combinatorics
and graph theory, which we coverin 4 blocks. )

In Block 1, we show you how to differemiate between a sentence and a statement
(or proposition), Then we ook at various ways of com bining propositions, and of
finding whether these statements are true or not. Afier ths we talk about 2 theory
first studied by Aristotle (384-322 B.C.), and later evolved mathematically b}y the
19" century mathematicians Boole, De Morgan, Schroder and Frege. This is’the

In the final urit of Block | we look at an important application of logic, namely,
Boolean algebras and circuits.

In Blocks 2 and 3, we discuss combinatorics, or different ways of enumerating
without actually counting. This theory was {irst developed by Pascal (1623-1 662)
and fakab Bernoulli(164 5-1705). We shal| fntroduce you to various aspects of
combinatorial reasoning, which underljcs 4] analysis of computer systems, discrete
operations rescarch problems and finite probability. More specifically, you will
study permutations and com binations, partitions of numbers, the pigeonhole
prineiple, recurreice relations and gencerating funcrions, Of course, all these would
be presented from an application-oriented point of view,

In Block 4, we rake up clementary graph theory. The word "graph" is used to
describe road maps, circuit diagrams, flow charts, cic, ie., any structure that
nvolves inter-connections between various parts of it_ In the first unj of this block
ve introduce vou to (he basics ol graph theory, Then, in the rest of the units, we
liscuss certain special graphs and colouring of graphs. The staring point of thig
heory is the solution of the Konig,sbcrg:I seven-bridge problem, by Euler (1707-
783). Other mathematicians who have dane a great deal towards developing and
pplying this theory are Iamiftan (1805-1865), Arthur Cavley (| 821-1893),

circholT (1824-1595). and, more recently, Appel and Haken (who proved the four-
olour theorem)

oW aword about our notation, Each unit is divided into sections, which may be
trther divided ingo sub-sections, Thege seclions/sub-sections are numbered
quentially, as are the exercises and important tquations in a unit. Since the
aterial in the different units is heavily interlinked, we will be doing a lot of cross-
ferencing. For this we will be using (he notation Sec. x.y to mean Section y of
it x. In each upit you will find several exercises (numbered El, E2, .. )and



cxamples (also numbered sequentially). We show the end of an example by ***
afterit. : :

Another compulsory component of this course are its assignments — Assignment |
is based on Blocks 1 and 2, Assignment 2 is based on Blocks 3 and 4. Your >
academic counsellor will evaluate them and return them to you with detailed

comments. Thus, (he assignments are meant to be a teaching as well as an
assessment aid.

As you can see from the introduction, the course is very elementary. Its oniv pre-

requisite is the first-level course "Elementary Algebra®” (MTE-04). Therefore, we
are offering it at the second-level.

We hope you enjoy studying this course. [f you have a problem in understanding
any portion of it, pleasc ask your academic counsellor for help. Also, if you feel
like studying any topic in greater detail, you may consult;

1. Elemerits of Discrete Mathematics, by C.L. Liu, McGraw-Hill, 1985
2. Graph Theory, by F. Harary, Narosa, 1995,

These books are available at your study cenlre.



'BLOCK 1 ELEMENTARY LOGIC

"Contrariwise. “continued Tweedledee, “if it was so, it might be;and if it were S0, it would
be: but as it isn't, it ain't, That's logic,” .
From Alice in Wonderland'
by Lewis Carroll

Logic is the study and analysis of the nature of the valid argument, the reasoning tool by
which valid inferences can be drawn from a given set of facts and premtises. It is the basis

introduce );ou to proposifions that contain the quantifiers 'for every' and ‘there exists'. In
symbolic logic, the goal is to determine which propositions are true and which are false. A
tool for finding this out is the truth table, which we shall aiso discuss in Unig 1.

In Unit 2 we look at paths of reasoning by which we can show that certain statements are
true. Such arguments are called ‘proofs”. In this unit we try to Bive you an understanding
of why a proof is written the way it is. We expose you to several patterns of reasoning that
make up different proofs. In this unit we also discuss mathematical induction, a
fundamental tool for proving many propositions involving natural numbers.

Ths last unit of the block, Unit 3, is closely linked with Unit 1. In this uni¢ you will see that
the set of propositions along with certain operations, forms an algebraic structure called a

gates and circuits,

Now, a few words about how we have presented the material, As you go through the unis,
you will find several examples, numbered sequentially through the unit. We end each

exercises (E1, E2,.....). The best way to absorb the material in the units is to try these
exercises as and when you get to them.

After going through the unit, you must come back to the introduction, and check if vou
have achieved the objectives. Doing this will help you confirm that you are ready to go
further.



NOTATIONS AND SYMBOLS

N the set of natural numbers
R the sct of real numbers
PVq P or q (p, q being statements)
Poq either p or q, but nat both.
PAg p and ¢
~p not p
[ p implies q
p—q ) p is suilicient [or q

| ponlyifq
[ pif and only if q

pPe—q P is necessary and sufficient for q
| p implies and is implied by q

pP=1 if p is true, then q is true

p +—¥q p is true if and only if q is true.
P=q P is equivalent to q

therefore

HE il and only if

v for all )

3 - . there exists

3! - : - there exists one aund only one

P(X) ' set of all subsets of 2 set X
B tivo-clement Boolean algebra

B"- S - BxBx...xB(ntimes)

X{xp,. .. xi) "~ DBoolean expression in k-variables.
5.v, ) state value -

aparb - . parallel connections of switches a and b
aserb : series connections of switches a and b
CNTF conjunctive normal form

DNIP - - disjunctive normal lorm



UNIT 1_PROPOSITIONAL CALCULUS

Structure ‘ -~ Page No.
1.1 Introduction .o 7
Objectives
1.2 Propositions ' 8
1.3 Logical Connectives _ 10
Disjunction ~
Conjunction .
Negation '

Conditional Connectives
Precedence Rule

1.4 Logical Equivalence : " 16
1.5 Logical Quantifiers- 19
1.6 Summary _ )
1.7 -Solutions/ﬁ_mswers i 22

1.1 INTRODUCTION

According to the theory of evolution, human beings have evolved from the
lower species over many millenia. The chiel asset that made humans
“superior” to their ancestors was the ability to reason. How well this ability
has been used for scientific and technological development is common
knowledge. But no systematic study of logical reasoning seems to have been
done for 2 long time. At least, the first such study that has been found is by
the Greek philosapher Aristotle (384-322 BC). In a modified form, this type
of logic seems to have been taught through the Middle Ages.

Then came a major development in the study of logic, its formalisation in
-ertns of mathematics. It was mainly Leibniz (1646-1716) and George Boole
1815-1864) who seriously studied and developed this theory, called
symbolic logic. It is the basics of this theory that we aim to introduce you
.0 in this unit and the next one.

n the introduction to the black you have read about what symbolic logic is.
Jsing it we can formalise our arguments and logical reasoning in a manner
hal can easily show il the reasoning is valid, or is a fallacy. How we
ymbolise the reasoning is what is presented in this unit.

Aore precisely, in Section 1.2 (i.e., Sce.1.2,1n brief} we talk about what kind
[ senlences are acceptable in mathematical logic. We call such sentences
talements or propositions. You will also sce thai a statement can either be
rue ar false. Accordingly, as you will sce, we will give the statement a truth
alue T or F.

n_Sec.1.3 we begin our study of the logical relationship between
ropositions. This is called propositional calculus. In this we look at some
rays of connecting simple propositions to obtain more complex ones. To do
3, we use logical connectives l.i_.ke"“and"f and “or”. We also introduce you to
ther connectives like “not”, “implies” and “implies and is implied by". At

[T e - e
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the same time we construct tables that allow us to find the truth values Of
the compound statements that we get.

InSec. 1.4 we consider the conditions untder which two statements are “the
same”. In such a situation we can safely replace one by the other.

And finally, in Sec.1.5, we talk about some common terminology and
sy

notation which is useful for quantilying the objects we are dealing witk in a
statement.

It is important for you to sturdy this unit carefully, becanse Lthe other 1:-:its in
this block are based on it. Please be sure to do the excrcises as you coine Lo
them. Only then will you be able to achieve the following abjectives.

Objectives

Alter reading this unit you should be able to
e distinguish between propositions and non-propositions;

identily and use logical connectives;

¢ construct the truth table of any compound proposition;

identify and use logically equivalent statements:

* identily and use logical guantifiers.

Let us now begin our discussion on mathematical logic. -

1.2 PROPOSITIONS S e

Consider the sentence “The President of India is 2 woman.' When you read
this declarative sentence, you can immediately decide whether it is true or
false. And so can anyone clse. Also, it wouldn’t happen that some people say
thal the staternent is true and some others say that it is false. Everybody
would have the same answer. So, this sentcncc is either universally true or
universally false. : - -

Sinilarly. ‘An elephant werg,lls more than a human being.l isa (Ir'(,ldramre

sentence which is cither true or [alse, but not both. In mathematical logic we --

call sneh sentencoes statements or propositions.

On the other hand, consider the declarative sentence ‘Women are more
intelligent than men.”. Some people may think it is true while others may

disagree. So, it is neither universally true not universally false. Such a -

sentence is nol acceplable as a stalement or proposition in mathematical
logic. :

Nole that a proposition should be eitlier umformly true or
uniformly false. For example, ‘An egg has protein in it.’, and *The Prime

‘Minister of Iudia has to be a man.” are hoth propositions, the first oné Lrue

andd Lhe second one {alse.
Wouid vou say that the following are propositions?

“Wateh the Glin.'
‘How wonderul!®
“What did you say !’

. Actually, noue of thein are declarative sentences. {The.first one is an order,

the second an etc[amatlon and the tlmd is 2 questlon ) And thelefo:e none
of them are proposmons- iy - _ . -



Now for sorne mathematica.l propositions! -Youl must have studied'apd : ‘ Propositioﬁﬂ:
created many of them while doing mathematics, Some examples are o Calculus

Two plus two equals four.

Two plus two equals five.
Xxty>0forx>0andy > 0.

A set with n elements has 2" subsets.

Of these statements, three are true and one false (which one?).

Now consider the algebraic sentence X +y >0\ Is this a proposition? Are
we in a position to determine whether jt is true or false? Not unless we know
the values that x and v can take. For example, it is false for
x=1,y=-~2and true if x = 1,y = 0. Therefore,

‘x+y >0 isnot a Proposition, while

‘x+y>0forx>0,y>0isa proposition.

Why don’t you try this short exercise now?

El} Which of the following sentences are statements? What are the reasons
for your answer?
i) The sun rises in the West.
i)  How far is Delhi from here? ’
iii) Smoking is.injurious to healt],.
iv) _There is no rain without clouds.
v)  What a beautiful day!
vi) Sheis an engineering gradiate.
vii) 2" 4+ 1 is an even number for infinitely many n.
viil) x + ¥y = y 4+ x for all X,y € R.
ix) Mathematics is fun,
x) 2" =n2 )

Usually, when dealing with propositions, we shall denote them by lower case
letters like p, q, etc. So, for example, we may denote

‘Ice is always cold.’ by p, or

‘cos? @ +sin6=11or g e [0, 27)" by q.
We shall sometimes show tlijs by saying
p: Ice is always cold., or

q: cos?8 4-5in?0 = 1 for ¢ € [0, 2.

Now, given a proposition, we know that it js either true or false, but not Sometimes, as in the

both. If it is true, we will allot it the truth value T. If it js false, its contez of logic circuits

truth value will be F. So, for example, the truth vaiue of {sce Unit 3), we will use
. instead of T and 0

‘Ice melts at 30°C.7 is F, while that of ‘x? Z0forxeR’is T. instend of T,

Here are some exercises for ¥OUu row.

12} Give the truth values of the propositions in F1.

E3) Give two propositions each, the trutl; valucs of which are T and F,
respectively. Also give twe exanples of sentences that are not,
propositions.

set us now look at ways of connecting simple propositions to obtfain
ompound statements.
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1.3 LOGICAL CONNECTIVES

When you're talking to someone, do you use very simple sentences only?

Don't you use more complicated ones which ar

‘or’, etc.? In the saine way, most statements in mathematical logic are
words and phrases like ‘and’,
‘if and only if’, etc. These words and phrases are called

logical connectives. There are § such connectives, which we shall discuss

combinations of simpler statements Jjoined by
‘or’, 'if ... then’,

one by one.

1.3.1 Disjunction

¢ joined by words like 'and’,

Consider the sentence ‘Alice or the mouse veent to the market.’. This can be
written as *Alice went to the market or the mouse went to the market.” So,
this statement is actually made up of two simple statements connected by
‘or’. We have a term for such a compound statement.

Definition: The disj_li'nction of two propositions p and q s the compound
statement p or q, denoted by p v q-
For example, ‘Zarina has written a book or Singh has written a book.*

disjunction of p and q, where

p : Zarina has written a book, and

q : Singh has written a book.

is the

Similarly, i p denotes *2 > Q' and q denotes 2 < 57, then p V.q denotes the
Statement ‘2 is greater than 0 or 2 is less than 5.

Let us now look at how the truth valye of PV q depends upon the truth
_values of p and q. For doing so, let us look at the example of Zarina and
Singh, given above. If even one of them has written a book, then the
compound statement p V q is true. Also, if both have written books, the

- compound statement p Vq is again true. Thus, if the truth value of even one
out of p and q is T, then that of ‘p v q’ is T. Otherwise, the truth value of
pVqis . Thisholds for any pair of propositions p and q. To see the
relation between the truth values of p.q and p V q casily, we put this in the
form of a table (Table 1), which we call a truth table.

"Table 1 : Truth table for disjunction

Piga|pVvag W
T!T T
T T
T T
F|F F

How da we form this table? \We consider the trutl values that p can take —
T or I."Now, when p is true, q can be true or [alse. Similarly, when pis
false, ¢ can be true or false. Tn this way there are 4.possibililies lor the ~

compound proposition p v ¢. Given any of these possibilitios, we ¢uiy find the -

fruth vahue of pvg.

For instance, considerlhe third possibility, i.e., p is f2lse

and ¢ is true. Then, by deéfinition, M is true. In the same way, you can
! , by . PV _ \

check that the other rows afe consistent.

Lel us consider an example.

Lxample 1: Obiain the truth value of the disjunction of “The carth is flat.’ -

and ‘l_3 +5=2.



Solution: Let p denote “The earth is fat.” and q dencte ‘3 +.5.= 2'. Then

Propositional
we know that the truth values of both_' p and q are F. Therefore, the truth

Calculus

value of p Vg is F.
e P

Try an exercise now.

4) Write down the disjunction of the following propositions, and give its
truth value.

)y 24+3=7,
ii) Radha is an ergineer.

We also use the term ‘inclusive or’ for the connective we have just
discussed. This is because pVq is true even when both p and q are true. N

But, what happens when we want to ensure that only one of them should be
true? Then we have the following connective. .

Definition: The exclusive disjunction of two propositions p and q is the

statement “Bither p is true or q is true, but both are not true.’. We
denote this by p @ q.

30, for example, if p is ‘2 +3 = 5' and q the statement given in E4(ii), then
> @ qis the statement ‘Either 2 + 3 = 5 or Radha. is an engineer.’, This will
>¢ true only if Radha is not an engineer.

1 general, how is the truth valye of p & q related to the truth values ofp
wtd q? This is what the following exercise is about. -

i5) Write down the truth table for @. Remember that p @ q is not true if
both p and q are true.’ e

low Iet us look at the logical analogue of the coordinating conjunction ‘and’.
3.2 Conjunction

5 in ordinary language, we usc ‘and’ to combine simple propositions to make
xmpound ones. For instance, ‘1 44 # b and Prof. Rao teaches Chemistry.’
formed by Jjoining ‘¥ +4 # ' and ‘Prof. Rao teaches Chemistry’ by ‘and’.
2t us define the formal terminology for such 2 compound statement.

efinition: We call the compound statement ‘P and q’ the conjunciion
“the statements p and Q. We denote this by p A q.

rinstance, ‘341 #7A2> 0 is the conjunction of ‘3 + 1 #£ 7' and '2 > (.
milarly, ‘24+1=3A3 =5 is the conjunction ol ‘2+4+1=3" and '3 = 5.

w, when would p A g be true? Do you agree that this could happen only Table 2 : :Hu“_‘ table
ten both p and q are’true, and not otherwise? For instance, for conjunction
+1=3A3 =5 is nat true because ‘3 = 5' is false. plqlpa q
» the truth table for conjunction would be as in Table 2 alongside., T|T f T
+ see how we can-use the truth table above, consider an cxamntple. TF i 3

. . . . FIT!D F
cample 2:  Obtain the truth value of the conjunction of ‘2 - 5 = 1’ and
idma is in Bangalore.’. FIF F |

lution: Let p: 2 +5=1, and
Padra is in Bangalore. 11'
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. B8} Write dowrr the truth table of negation.

‘Then the truth value of p is F. Therefore, from 'Ihble 2 you will find that thc
truth valucof pAq is F. :

* % W

Why don’t you try an exercise now?

E6) Give the set of those real numbers x for which the truth value of pAqQ
is T, where

p:x>—2,andq:x+3#7

If you look at Tables 1 and 2, do you see a relationship belween the truth
values in their last columns? You would be able to formalise this relationship
after studying the next connective,

«1.3.3 Negation

You must have come across young children who, when asked to do
sbmething, go ahead and do exactly the opposite. Or, when asked if they
would like to eat, say rice and curry, will say ‘No’, the ‘nepation’ of yes!
Now, if p denotes the statement ‘I will cat rice.’, how can we denote ‘I will
not cat rice.’? Let us define the connective that will help us do so.

Definition: The negation of a proposition p is ‘not p', denoted by ~ p.

For example, if p is ‘Dolly is at the study centre.’, then ~ p is ‘Dolly is not
at the study centre.’. Similarly, if p is ‘No person can live without oxygen.’,
~ p is ‘At least one person can llve without oxygen.’

- Now, regarding the truth value of ~ p, you would agree that it “ould be T if

that of p is ', and vice versa. chpmg this in mind you can try the following
cxercises.

[57) Write down ~ p, where p is
) 0-5#5 :
- 1)) n>2 forevery n € N.
iii) - Most Indian children study till Class 5.

Let us now discuss the conditional conncectives, representing 'If -+ - then --°
and ‘if and only-if".

1.3.4 Conditional Connectives

Consider the proposition ‘If Ayesha gets 75% or more in the cxamination,

" then she will get an A grade for the course.”. We can write this statement as

‘If p, then q’, where -
» Ayesha gets 75% or more in the e:xammatlon and
q: Ayesha will get an A grade lor Lhe course.
This compound statement is an example ol Lthe implication of g by p.

Definition: Given any two propositions p_and q. we denote the statement
‘If p, then ' by p —.q. We also rcad this as ‘p implies ¢, or ‘p is
sufficient {or @', or ‘p only if q’. We also call p the bypothesis and q the
conclusion. Further, a statement of the form p — q is ealled a ca..ditional
statement or a conditional proposition. -

- So,-for example, in the conditional proposition * If m is in Z, then m-belongs

to Q." the hypothesis is ‘m € Z? and the conclusion is'm e Q. -



Mathematically, we can write this statement as - : ' : Propositiodal
meZ—-meqQ. ' : T o . ) Calculus
Let us analyse the statement p = q for its truth value. Do-yo'u agree with

the truth table we've given below (Table 3)? You may like to check it out

while keeping an example from your surroundings in mind.,

Table 3 : Truth table for implication .

pla[p—q
TI{T| T
T{F|. T
FIT| T
FIF| T,

You may wonder about the third row in Table 3. But, consider the example
‘3 <0— 5> 0" Here the conclusion is true regardless of what the
hypothesis is. And therefore, the conditional statement remains true. In such
a situation we say that the conclusion is vacuously true.

Why don’t you try this exercise now?

E9) Write down the proposition corresponding to p —+ q, and determine the
- values of x for which it is false, where )

P:X+7¥ = xy where xYER
q:x #£ 0 for-every x € 2.

Néw, consider the implication ‘If Jahanara goes to Baroda, then she doesn’t
participate in the conference at Delhi.'. What would its converse be? To find
it, the following definition may be useful.

Definition: The converse of P — qis g — p. In this case we also say ‘p is
necessary for ', or ‘p if q".

So, in the example above, the converse of the statement would be ‘If
Jahanara doesn’t participate in the conference at Delhi, then she goes to
Baroda.”. This ineans that Jahanara’s non-participation in the conference at
Delhi is necessary for her going to Baroda.

Now, what happens when we combine an implication and its converse? To
show ‘p -+ q and q — p’, we introduce a shorter notation.

Definition: Let p and q be two propositions. The compound statement

(p =+ a) A (q — p)
is the biconditional of p and ¢. We denote it by p +—— Q, and read it as ‘p Tlhe two connectives —

tf and only if ", We usually shorten ‘if and enly if* to i, and ——— are called the
We also say that implies and is implied LY ', or °p is necessary and C‘J“dl“O_”al
sufficient for . connectives.

For example, *Sudha will gain weight il and only il she cals reguiarly.’ means
Lthat ‘Sudha will gain weight il she cats regularly and Sudha will eat
regularly if she gains weight.’, )

One point that may come Lo your mind here is whether there’s any (liﬁ'e;ence
n the two statements p «— q and q +—— p. When you study Sec. 1.4 you
vill realise why they are inter-changeable.

set us now consider the truth table of the bicondij:ipna.l, i.e., of the two-way _ _ .-
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implication. To oblain its truth values, we need to use Tables 2 and 3, as
you will see in Table 4. This is because, to find the value of (p—=qrig—p)
we nced to know the values of each of the simpler statements involved.

Table 4 : Truth table for two-way implication

Pijaip—2qla-p i 4

TT] T T T :
T F| T T | F
FlT: T F @ F i
FIF| T T | 1

As you can sce from the last column of the table (and from your own
experience), p +— q is truc only when both p and q are true or bok: p and q
are false. In other words, p +— q is true only when p and q have tk2 same
truth values. Thus, for example, ‘Parimala is in America iff 2 +3 = 3’ is true
only if ‘Parimala is in America.’ is true.

Here are some related exercises.

- .

E£10) For each of the following sompound statements, first identify the simple

propositicns p, q,r, etc., thal are combined to make it. Then write it in

symbols, using the connectives, and give its truth value.

i) If triangle ABC is equilateral,.then it is isosceles. )

i) aandb are integers if and only if ab is a rational number.

iii) If Raza has five glasses of water and Sudha has four cups of tea,
. then Shyam will not pass the math examination.

iv) Mariam is in Class 1 or in Class 2.

E1l) Write down two propositions p and q for which q — p is true but
p — q is false,

Now, how would you determine the truth value of a proposition-whics has
more Lhan one connective in it? TFor instance, does ~ p Vqmean (~p)Vqor -
~ (pVq)? We discuss some rules for this below.

1.3.5 Prccedence Rule -

While dealing with operations on numbers, you would have realised the need
for applying the BODMAS rule. According to this rule, when calculating the
value of an arithmetic expression, we first calculate the value of the
Bracketed portion, then apply Of, Division, Multiplication, Addition and
Subtraction, in Lhis order. \Vhile calculating the truth valuc of compound
propositions involving maore than ouc connective. we have a similar rule
which tells us which connective to apply first.

Why do we need such a rule? ﬁSuppos-e we didn't have an order of preference,
aud wanl (o find7lhe iruti value of, say, ~ p vV q. Soine of us may consider
the value of (~ p) V q, and some may consider ~ (p Vv q). The truth valucs
can be different in these cases. For instance, if p and q are both truz. then
{~ ) Vaistruc, but ~ (p V q) is false. So, for the purpose of. unambwmty
we agree to'such an order or rule. Let us see what it is.

The_ rule of pr_eéedence: The order of preference in which the
cennectives are applied in a formula of propositions that has no brackets is



i} ~

i) A - N
iif) Vand @

iv) — and +—

Note that the ‘inclusive or' and ‘exclusive or’ are both third in the order of
preference. This means that You can apply either of them first, with the
same end result. So, for instance, the truth values of (P ®q) Vr are the same
as those of p® (q V).

Similarly; the ‘implication’ and the ‘biconditional’ are both fou;tll in the
order of preference.

To clearly understand how this rule works, let us consider an example,
Example 3: : Write down the tsuth table of p — qA~re—rdgq

Solution: We want to find the required truth value when we are given the

~ truth values of p, q and r. According to the rule of precedence given above,
we need to first find the trueh value of ~ r, then that of (Q A ~r), then that
of (r ®q), and then that of either p = (q A ~ r), orof {q A ~r) +— rédq,
and finally the truth value of the remaining one. (We choose to apply ‘&’
before ‘") : /

So, for instance, Suppose p and q are true, and r is false. Then ~ r will have
value T,q A ~ r will be T, r & q will be T,p=(qA~ r) will be T, and
hence, p = qA ~r o T q will be T.

You can check that the rest of the values are as-given in Table 5. Note that
we have 8 possibilities (= 2°) because there are 3 simple propositions
tnvolved here, :

Table 5 : Truth table for P2 qA~r+ —r@q

Plafri~r|qgA~r rédq p—agqA~r p—}ql\wl’(—+r$q—’
T[T|T| F F F o T
T(TIF| T T T T T
T[F|T| F F T F r
TIF|[F]| T F F F T
Frrle! p I F T F
FITIF| T T T T T
FIF|T] F F T T T
FIFIF| T F__I r T F ]

+ %k %

You may now like to lry some exercises on the same lines.

1) In Example 3, how wiil the truth values of Lhe compound stateinent
change if you first apply ¢«— and thep —? ’

:13) In Example 3, if we replace @ by A, what is the new truth table?

'14) Form the truth tables oflpAgV~rand (P AQ)V{~r1) and see where
they differ.

15) How would you b;'jal_:ket the fol-lowing- formulae to correctly interpret

- them [For'instance, p V'~ qAT would be bracketed as PV((~q)Ar)]

Propbsitionﬁ_l
Calculus

15



Elementary ‘ ) ~pvaq,
Logic .. i} ~q—=~p,
i) p—qé¢— ~pvq,
iv) POAAT 3 ~pVqéea pAT.

So far we have considered different ways of making new stalemenis from old
ones. But, arc all these new ones distinct? Or are some of thein the saine?
And “same” in what way? This is what we shall now consider.

1.4 LOGICAL EQUIVALENCE

Then you should say what you mean', the March Hare went on.

1 do,’ Alice hastily replied, ‘at lcast ... al least | mean what I say —
thet's the same thing you know.’

‘Not the same thing a bit!’ said the Haiter. ‘Why, you might just as well
say that “f sec what I eat” is the same thing as “I eat what | see”V’

~from ‘Alice in Wondertand’
by Lewis Carroll

In mathemotics, as in ordinary language, there can be several ways of saying
the same thing. In this scction we shall discuss what this means in the
context of logical statements. '

Consider the statements ‘If Lala is rich, then he must own a car.’, and ‘If
~q— ~ pis the Lala doesn't own a car, then he is not rich.”. Do these statements mean the
. contrapasitive of the same thing? If we write the first one as p — g, then the second one will be
proposition p —+ q. (~ q) = (~ p). How do the truth values of both these statements compare?
We find out in the following table.- )

Table 6
Pig|~pl~q|p=q|~q—=~p
T(T| T | F T T
TIF! B | T r F
- F|T| T | F T T
rlr| ! 1 T T

Consider the last two columns of Table 6. You-will find that ‘D = q’ and -
‘~q = ~ p' have the same truth value for every choice of truth values of p

and q. When this happens, we call them equivalent statements. ,

Definition: We call two pr-opositions 1 and s logically equivalent provided
they have the same truth value for every choice of truth values of Lh_e-simplc_
propositions involved in them. We denote this fact by r=s. ~ -

So, [rom Table 6 we find that (p — q) = (~q=-~np) - -

You can also check that {p «— ql = (q == p) for_any pair of propositions
poand a. ) -

As another exanple,_ consider (he [(3]10\'.'ing cquivalanze that is often used in
mathematics. You could also apply it to obtain statements cquivaleat to
‘Neilher a borrower, nor a lender be.*! .

Example 4: Tor any twa propositions p and q, show that
-16' - N(pvq)ENPANq_. T -



" Solution: Consideér the following truth table. - Co oo ' Propositional

Table 7 ] SR Calculus’
Pla|~P|~q|pVq|~(pVq) |~pA~g
T(T|F|{F | T | F F
T|F|F|T]| T F F
FlT!iT|Fr | T F F
FIF| T |T]| F T T

You can sce that the last two columns of Table 7 are identical. Thus, the
truth values of ~ (pV q) and ~ p A ~ q agree for every choice of truth values
of p and q. :

Therefore, ~(pvVal=~pA~ E[

Jrxs

The equivalence you have just seen is one of De Morgan's laws. You have

already come across these faws in the context of set operations in MTE-04. Fig. 1: Augustus
The other law due to De Morgan is similar : ~ (pAq)=~pV ~q. 3;;;3?:3 _
In fact, there are several such laws about equivalent propositions. Sorde of was born in
them are the following, where, as usual, p,q and r denote _propasitions. Madurai.
a) Double negation law: ~ (~p})=p
b) Idempotent laws: PAP=p, .
"PVP=p

¢) Commutativity: pvq=qVp

PAQ=qAp
d) Associativity: (pvq)Vr=pV {(qvr)

(PAQ)AT=pA(qAr)
e} Distributivity: pv{qAr) = (p vg)a(pvr).
' PAQVI)=(pAQ) V(pAT) .

We ask you to prove these laws now. -

216} Show thal the laws given in {a)-(e) above hold true.
217} Prove that the relation of ‘logical equivalenze’ is an equivalence relation.

[£18) Check whether (~ p Vv q) and (p = q) are logically equivalent.

Tlie laws given above and the equivalence you have checked in E18 are
commonly used, and therefore, useful to remember. You will also be
applying them in Uuit 3 in the context of switching circuils.

Let us now consider some proposilional formulae which are always true or
always false. Take, for instance, the statement ‘If Bano is sleeping and
Pappu likes ice-creaw, then Bano is siceping.’. You can draw up Lhe trulh
table of this compound proposition and see Lhal it is always true. This leads
us to the following definition.

Definition: A compound proposition that is true for all possible truth
values of the simiple propositions involved in it is cailed a tautology.
Similarly, a proposition that is false for all possible truth values of the simple
propositions that-constitute it is called a contradiction.

1

‘Let us look at some examples-of such propositions. . 17
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Complementation Iaw:

GA~agisa

o ~gAp~r) - S

Example 5: Verify tkat p A q A ~ p is a contradiction. and
P = q+— ~pVqis a tautology. co

Solution: Let us sirnulta.neously draw up the truth tables of these two
propositions below.

Table B
P19 ~PIPAQ|PAQA~D |P2q|~pVq|p—qée— ~pVq
T|T| F T F T T T
T|F| F F F F 10 T
FIT| T F F T T T
FIF{ T F F T T T

Looking at the fifth column of the table, you can see that pA g A ~ pisa
contradiction. This should not be surprising since pAqQA ~p = (p A ~ PIAqQ
(check this by using the various laws given above).

And what does the last column of the table show? Precisely that
P~ q+— ~pVqis a tautology.

LE I

Why don’t you try an exercise now?

E19) Let T denote a tautology (i.c., a statement whese truth value is always
T) and ¥ a contradiction. Then, for any statement p, show that

0 pvT=T o '
i) pAT=p

i) pvFf=p

iv) pAF=TF - o

Another way of proving that a proposition is a tautology is to use the
properties of logical equivalence. Let us look at the following example.

Example 6r Show that {{p.— @) A ~ ql S P is & tantology:
Solution:{(p = q} A ~q) =+ ~p - :

- {~pva Aa~ag —=~p, using E18, and S}';nrhctricit}‘ of ="
= [(~pArgV(gA~ q)] = ~p, by De Morgan's laws. -

I

[(~pA~q)VF) = ~p, since qn~aqis always false.
= {(~pA~q}— ~p, using £18. -

which is a tautology. _

And therefore the proposition we started with is a tautology.

* & 4 . -

The laws of logical equivalence can also e used to prove some other lozical
cquivalences, without using truth tables. Let us consider an example.

Txample 7: Sl_w.mi' that p=~agAp= ~1)=~]pA(qVr)

Solution: We shall start with the statement on the lelt hand side of the -
equivalence that we liave to prove. Then, we shall apply the laws we have
listed above, or the equivalence in E18, to obtain logically equivalent-
statements. We shall continue this process till we-obtain the statement on
the right hand side of the equivalence given above. Now

= (~pVQ) A(~pV~i), ByEI8 - . oo



~P V(~qA~r), by distributivity ; . Propositional
~p V[~ (qVr1)], by De Morgan’s laws - - - Calculus’
~ [pA{qVr)], by De Morgan’s laws ‘

i

S0 we have proved the equivalence that we wanted to.
* ¥ %

You may now like to try the following exercises on the same lines.

:20) Use the laws given in this section to show that
~(~pAQA(pVq) =p.

E21) Write down the statemen, ‘If it is raining and if rain implies that no
onec can go to see a film, then no one can go to see a film.” as a
compound proposition. Show that this proposition is a tautology, by
using the properties of logical equivalence. -

E22) Give an example, with justification, of a compound proposition that is
neither a tautology nor a contradiction. :

Let 'us now consider proposition-valued functions.

1.5 LOGICAL QUANTIFIERS

In Sec.1.2, you read that a sentence like ‘She has gone to Patna’ is not a
proposition, unless who ‘she’ is is clearly specified.

Similarly, ‘x > 5' is not a proposition unless we know the values of x that we
are considering. Such sentences are examples of ‘propositional functions’.

Definition: A propositional ftinction, or a predicate, mn a variable x is a
sentence p(x) involving x that becomes a proposition when we give x a
definite value from the set of values it can take. We usnally denote such
functions by p(x),q(x}, etc. The set of values x can take is called the
universe of discourse.

So, if p(x) is ‘x > 5, then p(x) is not a proposition. But when we Five x
particular values, say x = 6 or x = 0, then we get propositions. Here, p(6) is
a true proposition and p(0) is a false proposition.

Similarly, if q(x) is ‘x has gone fo Patna.’, then replacing x by ‘Taj Mahal’
gives us a false proposition.

Note that a predicate is usually not a proposition. But, of course, every
proposition is 2 propositional function in the same way that every real
number is a real-valued {unction, namely, the constant function.

Now, can all sentences be written in symbolic form by using onty the logical
connectives? Whal about sentences like *x is primne and x 4 1 is prime for
some x.’? How would you symbolise the phrase ‘for some x', which we can
rephrase as ‘there exists an x'? You must have come across this terin often
while studying mathematics. We use the sywmbol ‘3’ to denote this

quantifier,‘there exists’. The way we usc it 1s, for instance, Lo rewrite 3 is called the
- ‘There is at least one child in the class.’ as existential quantifier.

Y3 xin Ukp(x)’, -
where p(x) is the sentence “x is in the class.” and U is the set of all children,

Now'suppdse-we'-ta.ke the negative of the proposition we have just stated.

Wouldn’t it be “There is no child in the class.’? We could symbolise this as 19
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¥V is called the universal
quantifier.

A predicate can be a
function in two or more
variables,

‘for all x in U, q(x)’ where x ranges over all children and q(x) denotes the
sentence ‘x is not in the class.’, ie., q(x) = ~ (x). '
We have a mathematical symbol for the quantifier ‘for all’, which i
V. So the proposition above can be written as

‘(Vx € Uq(x)', or ‘q(x),¥ x € U

An example of the use of the existential quantifier is (he true statement

(Ix € R){x + 1 > 0), which is read as ‘There exists an x in R for which
x+1-> 00

Another exampla is the false statement
(Ix e N)(x - 3 = 0), which is read as *There exists an » in N for which

x—%zO.’.

An example of the use of the unjversal quaniifier is

{Vx ¢ N)(x? > x), whicl is read as ‘for every x not in N, x? > x.'.
Of course, this is a false statement, because there is at least one

x ¢ N,x € R, for which it is false.

We often use both quantifiers together, as in the statement called
Bertrand’s postulate:

("neN\{I1(3xeN) (xisa prime number and n < x < 2n).

In words, this is ‘for every integer n > [ there is a prime number lying
strictly between n and 2n.!

As you have alrcady read in the example of a child in the ¢lass,

(Vx € U)p(x) is logically equivalent_to ~ (3 x € U)(~ p(x)). Therefore,
~(VxEUp(x) = ~~ (Ix e U)(~p(x) = (3x € U)(~ p(x)).

This is one of the rules for negation Lhat relaté ¥ and 3. The two rules arc.
~ (Y% € Up(x) = (@ x € U)(~ p(x)), and

~(3%€ U)p(x) = (¥ x € U)(~ p(x))-

where U is the set of values that x can.take.

Now, consider the proposition

‘There is a criminal who has committed every crime.’

We could write this in symbols as i

(e € A){(¥x € B){c has committed %) -

where, of-course, A -is the set of-criminals and B is the sct of crimes
(determined by law). . - ] - )

What would its negation be? Tt would be - o -
~ (3¢ € A){VY x € B){c has cotnmitted x) -

= (Vc€ A){~ (Vx € B)(c has committed x)

= (¥ c € A)(3 x € Bj(c has not committed x).

We can interpret this as “For every criminal, there is a crime that this person
has not committed.’. ) -

These are only some examples in which the quantifiers occur singly, or
together. Sometimes you May come across situations (as in £22) where you
would use 3 or ¥ twice or more in a statement. It 1s in situations like this or
worse [SIZ_].)', (Vxre U3xcU){3xz e U )(Vx; €Uy (3x, € Uy)p]
where our rule for negaiion comes in useful. Iy fact, applying it, in a trice we
can say that the negation of Lhis scemingly complicated example is

(Sx1 € U ){Vxo € Un)(Vxy € Us){(Fxq € Ugk . (Vx, € 0, )(~ p).

\‘.-"hy don't you try some--cxcrcises_ now?

E23) How v.lropld you present the following pfdpositiéns and their negations
using logical quantifiers? ‘Also interpret the negations in words.



i)  The politician can fool all the people all the time. ) : Propositional
ii) Every real number is the square of some real number. Calculus
iii) There is a lawyer who never tells lies.

[£24) Write down suitable mathematical statements that can be represented
by the following symbolic propositions. Also write down their
negations. What is the truth value of vour propusitions?

iy (Yx)3yp
i) (3x)3y)(¥z)p.

And finally, let us look at a very useful quantifier, which is very closely
linked to 3. You would need it for writing, for example, “There is one and
only one key that fits the desk’s,lock.” in svmbols. The symbol is 3! x which
stands for ‘there is one and only one x’ (which is the same as ‘there is a
unique x' or ‘there is exactly one x’).

So, the statement above would be (31 x € A){x fits the desk’s lock}, where A
is the set of keys.

For other examples, try and recall the statements of uniqueness in the
mathematics that you've studied so far. Whar about ‘There is a unique
circle that passes through three non-collinear points in a plane.’? How would
you represent this in symbols? If x denotes a circle, and y denotes a set of 3
non-collinear points in a plane, then the proposition is

(¥ y € P){2! x € C)(x passes through y).

Herr_,- C denotes the set of circies. and P the st of sets of 3 non-collinear
points.

And now, some short exercices for vou!

E25) Which of the following propositions ars true (where x. v are in R})?
) (x20) = By =x)
i) (Y E ) =
i) (Ix)(3 y)(xy = 0)
iv) ~(SxHIy}x +v=0.

Before ending the unit, let us take a quick i3k at what we have covered in
il.

1.6 SUMMARY

In this unit we have considerad the following points.
L. What a mathematicaliy acceptable statement (or proposition) is.
2 The definition and use of logical connevtives:

Given propaositions p and g,

1} their disjunction is 'p or q', denoted by pva:

i) their exclusive disjunction is ‘cither b or ', denated by p@ q;

iii} their conjunction is *p and q’, deroted Ly p A q:

iv) the negation of p is ‘nat p', denoted by ~ £

v) ‘il p, then q' is denoted by p — g

vi) ‘'pif and only if q" is denoted by p +—+.q; -
3. The truth tables corresponding to the 6 logical connectives.

- - . 21



Elementary.

Logic

4. Ruje of precedence : In any compound statement involving more than
one connective, we first apply ‘~’, then ‘A’ then ‘v’ and ‘@’, and last of
all ‘“—’ and ‘",

'The meaning and use of logical! equivalence, denoted by ‘=’

o

6. The following laws about equivalent propositions:
i) De Morgan’s laws: ~ (pAgQl=~pV ~gq
~{pval=~pAn~gq
ii) Double negation law : ~ {~p)=p
iii) Idempatent laws: pAp=p.

pvp=np
iv) Commutativity: pvq=qVvp
PAGE=qgAD

v) Associativity: (pvg)Vr=pv(qVvr)
(pAq}Ar=pA(qAT)
vi) Distributivity: pv(qAr)=(pVa)lA{pVr)
pA(qVI)=(pAq)V(pAT)
vii) (~pVq)=p— q(ref. E18).
Logical quantifiers : ‘For every’ denoted by “¥*, ‘there exists’ denoted by
‘F, and ‘there-is one and only one’ denoted by *3°°.

8. The rule of negation related to the quantifiers:
~ (Vx € U)p(x) = (3x € U){~ p(x))

~(3x € Ulp(x) = (¥ x € U)(~ p(x))

Now we have come to the end of this unil. You should Lave tried all the
exercises as you came 1o them. You may like to check your solutions with the

ones we have.given below.

1.7 'SOLUTIONS/ANSWERS

E1) (i), (ii1), (3v), (vii), (viii) are statements because each of them is
universally true or universally false.
(i) is & question. _
(v) is an exclamation. - - - -
The truth or [alsity of {vi} depends upon who ‘she’ is.
(ix) is a subjective sentence. -
{x} will ouly be a stalement if the valve(s) n takes is/are given.
Therelore, (i1), (v). (vi), (ix) and (x) are not statements.

122)  The trath value of (i) is I, and of ali the others is T.

1) The disjunction is
‘243 = 7 or Radha is an engineer.”.
Since ‘243 = 7" is always [alse, the truth value 01' this disjunction
“depends on Lhe truth value of *Radha is an engineer.’. If this is T, then
we use the Lhird row of Table 1 to get the required truth value as T. If
Nadha is not an engincer, then we get the required truth value as F.

DG I Table 9: Iruth table lor ‘exclusive or’
) Plalpeq
T|T F
T |F T
FAT T
FIF] F.




E6) p will be a true proposgition for x € ] — 2 oo[
q will be a true proposition for x #.4.
Therefore p A q will be true for every x such that x € ] -2 oo[ and
x#4,ie,forx€]—24[U]4, 00

E7) i) 0-5=35
ii) 'nis not greater than 2 for every n € N7, or *There is at least one
n & N for which n = 2"
iii) There are some Indian children who do not study till Class 5.

E8}) Table 10: Truth table for negation
P|~P
T| F
F] T |

E9) p — qis the statement H x+y=xy forx,y € R, then x £ 0 for every
x €z,
In this case, q is false. Therefore, the conditional statement will be true
if p is false also, and it will be false for those values of x and y that
make p true, .

, where

S0, p — q is false for all those real numbers x of the form — -

y € R\{1}. This is because if x = —
y —
x +y = xy, i.e., p will be true.

] for some y € R\{1}, then

E10) i} p-—q, wherep:£4BCis equilateral, and q : AABC is isosceles.
If q is true, then p — q is true. If q is false, then p — q is tree only
when p is false. So, if AABC is an isosceles triangle, the given
statement is alwavs true. Also, if AABC is not isosceles, then it
can't be equilaterz! either. So the given statement is 15 again tnze,

i} p:aisan integer.
g : b is an integer.
I:ab is a rational number.
The given statemen: is {(p Aq) « 1.
Now, if p is true and q is true, then r will be true.
If pAqis false, it can happen that r is still true.
S0, (p A q) « r will be true if pAqistrue, or whea p A g is false
and r is {alse.
In all the other cases (p A q) +— r will be false.
iii) p: Raza has 5 glasses of water.
q : Sudha has 4 cups of tea.
I : Shyam will pass the math exam.
The given statement is {(pAq} = ~ 1. .
This is true when ~ rix true, or when r is true and pAqis [abee
In alt the other cases it is false.
iv) : Mariam is in Class L.
q : Marnam is in Class 2.
The given statement is p@ q.
This is true only when p is true or when q is true.

E11) There are infinitely wmany such examples. You need to give one in
which p is true but q is false.

L‘12) Obtain the truth table. The last columns of your table and Table 5 will
" coincide.

- Propositional
. Cidleulus
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Elementary F13) Accordmg to the rule of precedence, given the truth values of p,q,r you
-Logle should first find those of ~ r,thenofgqA~r,andr Aq, and
POgQA~T, andﬁnallyof(p—rq/\ﬁ:r)-e—rrf\q
Referring to Table 5, the values in the sixth and -eighth columns will be
replaced by

p—t+qA~TC{i—TAqQ

r/.g
T F
F F
F T
F and T
T T
F rF
F F
F F

E14) They should both be the same, viz.,

plaflr|~t)pAagi{pAgV(~r)
T|T|T| F T T
T|T|F|T ]| T T
TIF|T| F F r
T|F|F| T F T
F(T|T| F F F
- FlT|F|T | F T
F|F|T|F | F F
‘ ] F|F|F|T| F T
E1§) 1) (~p)Vvaq
i) {~q) = (~p)
: i) p=qe—[(~p)Vq
iv [p@®(qAD)] = [(~p)Vq < (pAT)
- E16) a) -
L P _N-p ~ {(~p) The ﬁlb[, and third columns _prove
T r T “the double negation lasw.
I T I
c) plalpvglavp
- T|T T T The third and fourth coltumns
T |F T T prove the commutativity of v.
F|T{ T T | L )
FlF| F | F - R

The other laws can be similarly proved. -

£17) Por auny three propositions p,q, . - -
- 1) p=pis trivially true, - T .
ii) - il p =q, then g = p (10 p Las the same_truth value as g for all
: chrices of truth values of p and q, then-clearly q has the same
- - denotes. ‘becausc’. truth values as p in all the cases.) _- :
- ' iii} if p=q and q =1, then p.= r (reason-as-in- (ii) above). -

- Thus, = is reflexive, symmetric and transitive.
24 - . : ) : - e - : -



E18)

Pla|~p|[~pva]p=q] =~ _ . Propositional
T|T| F T T - : Calculus
T|F| F F F
FlT| T T T
FIF| T T T

The last two columns show that ((~p)Vai=(p =+ q).

E19) i)

iv)

P|T|pvT The second and third columns of
T|T T this table show that pv 7T = 7
FlT| T .

PIFipnAF The second and third columns of the
TIF r adjoining table show that PAF =F.
FIF F ’ '

You can similarly check (ii) and (ii).

E20) ~{(~pAg)A(pVq)
=(~(~plv~ga {p Vv q), by De Morgan’s laws . /
-={V~qgA(pVq), by the double negation law,
=pV(~qAq), by distributivity
=pV F, where F denotes a contradiction
=p, using £ 19 .

E21) p: 1t is raining.
q: Nobody can go to sez a film.
Then the given proposition is
PAP—q)—q
=pPA(~pVaq)—q,since (p=q)=(~pvq)

it mo

(PA~D)V(pAQ) = q, by De Morgan’s law
FV(PAQ)—q sincepA~pisa contradiction
(FVP)A(Fvq)=q, by De Morgan’s law

S=pAQ—q, since FVp=p.
which is a tautology.

E22) There arc infinitely many cxamples. One such is:
‘If Venkat is on leave, then Shabnam will work on the computer.’,
This is of the form p — q. Its truth values will be T or F, depending on
those of p and q. '

E23) i)

iii)

(¥t € [0,00() (¥ x € H)p(x, t} is the given statement

where p{x, t} is the predicate ‘The politician can fool x at time ¢
seconds.’, and H is the set of human beings.

Its negation is (3 t € [0, co[}{3 x € Hj (~ p(x, t)), i-e., there is
somehody who is not fooled by-the politician at least for one
maoment.

The given statement js

(VxeR)3By eR)(x = ¥3).

Its negation is

(3x € R)(Yy € R)(x # 52), ic.,

there is a real number which is not the square of any real number.
The given statement is

BxeL)vtelo, oof)p(x,t), where L is the set of lawyers and o5
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p(x, t) : x does nét lic at time ¢
The negation is

(Yx€L)(3t e [0, cof)(~ p)

ie., every lawyer tells a lic at some time.

E24) i)  For example,
(VxeEN)(3ye2) (}- € Q) 1s a true statement.
v

E

2

5

Its negation is
BxeNwren(Xeq)

You can try (ii) similarly.

) (i), (i} are true.
(ii) is false (c.g., for x = —1 there is
(iv) is equivalent to (¥ x € R}{~ (3!
there is no unique y such that x + y
for every x there is a unique y(= —

no ¥ such that y? = x3).
yER)x+y=0)),ie. for every x

= 0. This is clearly false, becausc )

x) such that x +y = 0.



"UNIT 2 METHODS OF PROOF

Structure Page No.
2.1 Intraoduction 27
Objectives
2.2 What is 1 Proof? 27
2.3 Dilferenl Methods of Proof KY)
Direct Proof
Indirect Proofs
Counterexamples ,
2.4 Principle of Induction 36
2.5 Summary ' 21
12

2.6 Solutions/Answers

2.1 INTRODUCTION !

In the previous unit you studied about stzse—ernts and their t:ik vzlees. In
this unit, we shall discuss waxs in which sz222mzencs can be Link=? 15 form a

logically valid argument. Trroughout your mzrhematical studizss wou would

have come across the tenms “theorem' and “podo®. In Sec. 2.2, == s=z2it 1alk

about what a theorem is and what constizzies 2 mathematicz®i zamepiable

proof.

—~

In Sec.2.3, we shall expose you to the difement methods used Zoo Tooviug or
disproving a stztement. When vou go thro=z= the different s ol vahd
arguments, you will see how mathematiciz=s tkink and Luild moame
mathemalics on the basis of certain assumotions. The ideas in 1332 section
were formalised by the English mathematizizn Boole and the German
logician Frege (1848-1925).

The principle of mathematical induction 2s z ver special placs i
mathematics because of its simplicity and vas: applicability. You will study
this tool [or proving statemen:s in Sec.2.2.

Please go through Lhis unit carefully, Not aalv is it Importam 57 sudying
this course, but its contenis are part of the fvindation on whick =0
mathematical knowledge is built.

Objectives

After reading this unit you shoald be able 1a

¢ eaplain the terms ‘theoem’, prool” awd “disprool™:
* describe the direet method and some indireet methods of prowi:

e state and apply both forms of the principle of induction.

2.2 WHAT IS A PROOF?

Suppose 1 tell somebody, “I am stronger than you” The person is quite

Fig.1: George Boole
(1815 —-1864)
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likely to turn around, look menacingly at me, and say," “Prove it!” What she
or he really wants is to be convinced of my statement by sorme ewdence (In
this case it would probably be a big physical push!)

Convincing evidence is also what the world asks for before accepting a
scientist’s predictions, or a historian’s claims.

In the same way, if you want a mathematical statement to be accepted as
true, you would need to provide mathematically acceptable evidence to
support it. This mecans that you would need to show that the statement is

universally true. And this would be done in the form of a logically wvalid
argument. '

Definition: An argument (in mathematics or logic} is a finite sequence of
statements py,-+- ,p,, p such that {p, Ap, A---Ap,) — p.

Each statement in the sequence, except the last one, {i.e., pj for i = -+ ,u)
is called 2 premise (or an assumption, or a hypothesis). The final
statement p is called the conciusion.

Let's consider an example of an argument that shows that a given statement
is true.

Example 1: Give an argument to show that the mathematical statement
‘For any two sets A and B, ANB C A’ is true.

Solution: One argument could be the following.
Let x be an arbitrary clement of AN B.
Then x € A and x € BB, b_v definition of ‘N’
Therefore, x € A. ,

This is true for every x in A N B.
Therefore, AN B C A, by definition of ‘C".

¥ % X

The argument in Example 1 has a peculiar nature. The truth of each of the
4 premises and of its conclusion follows from the truth of the earlier premises
in it. Of course, we start by assuming that the first statement is true. Then,
assuming the definition of ‘intersection’, the second statement is true. The
third onc is true, whenever the second one is true because of the properties
of logical implication. The fourth statement is true whenever the first three
arc true, because of the definition and properties of the term~[or all’. And
finally, the last statement is true whenever all the earlier ones are. In this
way we have shown that the given statement is true. In other words, we have
proved the given statement, as the lollowing definitions show.

Definitions: We say that a proposition p follows legically from
propositions (s Pg,--- and p, il p must be true whenever py, py, -+ -, p, are
true, i.e., (p;, Apy A+ Ap,) = p- . _

[Here, note the use of the implication arrow ‘=’. For auy two propesitions r
and s, ‘c = s’-denotes ‘s is true whenever r is true.” Nate that, using
the contrapositivc this.also-denotes ‘r 13 false whenever s 1s false’. Thus

r =5 and r = ¢’ are dlﬂ'elent. excepl when both r and s are true or both

are l’dlk(.} - - -

l‘\ [)J.‘OO[ of o I)IOI}OSILIOII It is o om: !.L}I("ln'].l.lc al arguiment (‘Ol‘l‘-‘ai“itiﬂ” of a

sequence of stateinenls PyiPay- oo, Dy from which p logically follows . So, pis ]

Uz conclusion of this argument.
The statement thal is proved to be true is called a theorem.

Sdrl}etimcs, as yo_u will sce in Sec.2.3.3, instead of showing that a statement
P is true, we try-to prove that it is false, i.c., that ~ p is true. Such a proof is



called a disproof of p. In the next section you will read. about some ways.of
disproving a statement. : .

Sometimes it happens that we feel a certain staternent is true, but we don't

statements are called conjectures. If and when a conjecture is proved, it
would be called a theorem, If it js disproved, then its negative will be a
theorem!

In this context, there's a very famous conjecture which was made by a
mathematician Goldbach in 1742, He stated that -
For every n € N, if n is even and n > 2, then n is the sum of two primes.

To this day, no one has been able to prove it or disprove it. To disprove it
several people have been hunting for an example for which £he statement is
not true, i.e., an even number n,> 2 such that n cannot be written as the
sum of two prime numbers. “

Now, as you have seen, a mathematical proof of a statement consists of one

Or more premises. These premises could be of four types: ’

i) a proposition that has been proved earlier (e.g., to prove that the
complex roots of 2 polynomial in R[x] occur in pairs, we use the division
algarithm): or ) s

ii} a proposition that follows logically from the earlier propositions glven in
the proof (as you have seen in Example 1); or ’

iit) a mathematical fact that has never been proved, but is universally
accepted as true (e.g., two points determine a line). Such a fact is called
an axiom (or a postulate);

iv) the definition of 2 mathematical term (eg., assuming the definition of
‘C' in the proofofAﬂBgA). .

You will come across more examples of each type while doing the following

exercises, and while going through proofs in this course and other courses.

EI) Write down an example of a theorem, and its proof (of at least 4 sleps),
taken from school-level algebra. At each Step, indicate which of the
four types of premise it is,

E2) Is cvery statement theorem? Wiy?

So [ar we Lave spoken about valid. or acceplable, arguments. Now lot us see
an example of a sequence of staterients that wili not forin a valid argument.
Consider the following sequence.

If Maya sees the movie, she won't finish lier liomework.

Maya won't finish her homework.

Therefore, Maya sces the Iovie,
Looking at the argument, can you say whether it is valid op not? Intuitively
you may feel that the argument isn’t valid, Bul, is there 4 lormal logical tool
that you can apply Lo cheek if your intuition is correct? What about truely
tables? Let's see.r

The given argunient is of the form
[P = a)Agl=p

where )

p: Maya sces the movie, and

q: Maya won’t finish her homework.

Methoc‘ls of Proof
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‘Modus ponens’ is a
Latin term which means
‘method of affirmation’,

*. denaotes ‘therefore’.

30 .

Let us ;ook at the truth table related to this a.rgument (sce ’I‘cxble 1).

| Table 1
plalpsalboq ap
TiT| 'T T
TIF| F r
FIT| T T

{FIF| T F

The last column gives the truth values of the premises. The first column
gives the corresponding truth values of the conclusion. Now, the argument
will only be valid if whenever both the premises are true, the
conclusion is true. This happens in the first row, but not in tke third row.
Therefore, the argument is not valid.

Why don't you check an argument for validity now?

E3) Check whether the following argument is valid.
(P=+qV~r)A(q=p)= (p—+r)

You have seen that a proof is a logical argument that verifies the truth of a
theorem. There are sov eral ways of proving a theofem, as you will see in the
next section. All of them are based on one or more rules of inference,
which are different forms of arguments. We shall now present four of the
most commonly used rules.

i) Law of detachment {or modus ponens)
Consider the following argument:

If Kali can draw, she will get a job. -
Kali can draw.
Therefore, she will gat a job.

To study the form of the. argument, let us take p to be the proposition
- ‘Kali can drav=’ and q to be the proposition ‘Kali will get a job.”. Then
the premises are (p — q} and p. The conclusnon is q.
So, the form of the argument is

P—q

b e, [(p=q)Ap]=q

. q
Is this argument valid? To find out, let’s construct its truth table (sce
Table 2).

Table 2: Truth table for [(p — gq) A-p]l=q

Plalp=al{p—=q Ap

TIT|- T T )
ATlr|oF F - )
FlTi T | - F -

{F Rl T oo

In the table; look at the second column (the conclusion) and the fourth
column (the premises). Wiienever_the premises are frue, i.e., in Row 1,



the conclusion is true. Therefore, the argument is valid. .' ' Methods 6f Proof

Th:s form of valid argument is called the law of detachment because t-he
conclusion q is detached from a premise (namely, p — q). It js also
called the law of direct inference.

i) Law of contraposition (or modus toliens)
To understand this law, consider the following argument. ‘Modus 10liens’ meang

If Kali can draw, then she will get a job, nethod of denial.

Kali will not get a job.
Therefore, Kali can't draw.

Taking p and q as in (i) above, you can see that the premises are pP—q
and ~ q. The conclusion is ~p.
So the argument is '

P—q

T . e, [(p=aq)A~q)s~p.

So~D

Il you check, you'll find that this is a valid torm of argument.

There are two more rules of inference that most commonly form the basic of

several proofs. The following exercise is about them.

E4) You will find three arguments below. Convert cach of them 1nto the
language of symbols, and check if they are valid.

. i) Either the craser is white or oxygen is a metal.
The eraser is black.
Therefore, OXygen is a metal.

) If Madhu is a ‘satpanch’, she will head the ‘panchayat?.
If Madhu heads the ‘panchayat’, she will decide Ol property
disputes. :
Therefore, if Madhu is 4 ‘sarpanch’, she will decide Cll proporiy
dispuies.

i) LEither Muima wili cook or Munni will Practise Karate.
If Munni practises Kavate, then Munna studies.
Munna does not study,

Thercfore, Munni will practise Karate,

E5)  Write down one example cach of modus ponens and madus tollens.

As you must have discovered, the Arguments in L4(i) and (i) are valid. The
first one is an example of a disjunctive syllogism. Tlhe second one s an
example of a hypothetical syllogism,

Thus, a disjunctive syllogisie is of the form

pVy
"\./I)

. q
And, a hypothetical syllogism is of the form

P q _

17, e, (P>aa@—1)=(po),

» Le, [([PVa)A~p] =g

.'.p—)_r 31

fmm——— - -
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Let us now sece how different forms of arguments can be put together to
prove or disprove a statement.

2.3 DIFFERENT METHODS OF PROOF

It this section we shall consider Lhree different strategics for proving a
statement. We will also discuss « method that is used only for disproving a
statement.

Let us start with = proof strategy based o the first rule of infzrence that we
discussed in the previous section.

2.3.1 Direct Proof

This form of proof is based entirely on modus ponens. Let us formally spell
out the strategy.

Definition : A direct proof of P = q is a logically valid argument that
begins with the assumption that, P is true and, in one or more z2pplications of
the law of detachment, concludes that g must be true.

S0, to construct a direct proofl of I = q, we start by assuming that p is true.
Then, in one or more steps of the form P=q,4=qy...,q, = q, we
conclude that q is true. Consider Lhe following examples.

Example 2: Give 2 direct proof of the statement “The product of two odd
integers is odd.". -

Solution: Let us clearly analyse what our hypotheses arc, and what we have
Lo prove. _ T -

We start by considering any two odd.integers x dand y. So our hypotlesis is
P x and y are odd. ’
The conclusion we want to redch is

q : xy is odd.

Let us first prove that p = q.

Since x is odd, x = 2m + 1 for some integer m.
Similacly, vy = 2n + 1 for some integer n. -

Then xy = (2m + 1)(2n + 1).= 2{2imn 4- m + n)+ 1. - -

Therefore, xy is odd. - - - T - -

"So we lave shown that p=q. : --

Now we can_apply modus ponens to PA (D= q) to get the required
conclusion,

Note that the essence of this direct proof lies in showing p =-q.

¥ 4 = -

Example 3: Give a direct proof of the theorem ‘The square of an even
iteger is an ¢ven integer.’. S ’

Solution: First of all, let us write the given statement symbolically, as
{(Vx € Z)px) = q(x) ]

where px) : x is even, and
. - . . ro
a{=) x? is evan, i, q(x} is tie same as pix?).

Tle direel proof; then goes as follows:

Let x be an even number (i.c., we assume pix) is true).
Then x = 2u, for some integer n (we apply the definition ol an even number).

Then x? ~ (202 = 452 = 2(2n?).
n . =
" x"Is even (ie., q(x) is true). .

Note that we have proved the stateiment for every x-_s_incc we have treated x



as an arbitrary even number and not 2 particular value.

¥+ ¥

Why don't you try an exercise now?

E6) Give a direct proof of the statement ‘If x is a real mimber such that
x? =9, then either x = 3 or x = —3.".

Let us now consider another proof strategy.
2.3.2 Indirect Proofs

It this sub-section we shall consider two roundabout methess 2 nroving
p=q.

Proof by contrapositive: !l"l the first method, we use the “2r thar the
proposition p = q is logically equivalent to its contrapositive
{(~q=~p),ic.

(P=q)=(~q=~p).

For instance, ‘If Ammu does not agree with communalisis. 12
orthodox.” is the same as ‘If Ammu is orthodox, then ske 2
communalists.’.

Because of this equivalence. to prove p = q, we can, instez:. trovs

~q =~ p. This means that we can assume thar ~ g iz triz, 22 then v 1o
prove that ~ p is true. In other words. what we do to prove m=qin
this method is to assume that q 1s false and then show that p is
false. Let us consider an example.

Example 4: Prove that “If x. ¥ € 2 such that xy is 04, 1hor fomh oy g v
are odd.”, by proving its contrapositive.

Solution: Let us name the statements involved as below.
P xv iz odd

q: both x and v are odd.

So.

~ NV IS even, and

e - = e 'y - T T . a3
TN IS OVen oar v ogw CAVUTL OU vl ane oven.

We want 1o prove D= ds by proving thas ~ g = ~ [ SRRt
assuming that ~ g is true. i.e.. wo fuppose that x is pver,
Then x = 20 fur some n e N,

Therefore, xy = Iy,

Therelore, xyv is even. by definition.

That is. ~ pis tue.
Soewe have showin that -~ (=~ Therelore, p= (.
LA I |

Why dan’t you tev somn related exvreises now?

57} Write down the coutraposilive of the statement *If { iz a -1 function
from a finite set X into itself, then  must be surjective,”.

E8} Prove the statement “If x is an integer and x? is even, then x is also
even.’ by proving its contrapositive.

And now let us consider the other way of proving a statement indivectly.

Methods of Proof
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exanplen -

Proof by contradiction: In this method, to prove q is true, we start by
assuming that q is false (i.c., ~ q is true). Then, by a logical argument we’
arrive at 2 situation where a statement is true as well as false, i.e., we reach a
contradiction r A ~ r for some statement r. This means that the truth of ~ q
implies a contradiclion, a statement that is always false. This can only
happen when ~ q is false also. Therefore, g must be true.

This method is called proof by contradiction. It is also czlled reductio
ad absurdum (a Latin phrase) because it relies on reducing 2 given
assumption to an absurdity.

Let us consider an example of the use of this method.
Example 5: Show that /5 is irrational.

Solution: Let us try and prove the given staiement by contradiction. For
this, we begin by assuming that +/5 is rational. This means that there exist
positive integers a and b such that /5 = %, where a and b have no common
factors.

This implies a = V5b = a2 = 5b2 = 5[a? = 5/a.

Therefore, by definition, a = 5¢ for some c € Z,

Thercfore, a? = 235¢2.

But a? = 5b? algo.

So 25¢% = 5b2 = 5¢? = b2 = 5|b? = 5{b.

But now we find that § divides both a and b, which contradicts our earlier
assumnption that a and b have no common factor. -
Therefore, we conclude that our assumption that /5 is rational is false, ic.,
V35 is irrational. -

A %

We can also use the method of contradiction to prove an implication r = s.
Here we can use the equivalencé ~ (r — s$)=r A ~s. So, to prover = s,
we can begin by assuming that r = s is false, 1.e., r ic true and s is falsc.

- Then we can present a valid argument to arrive at 2 contradiction.

Consider Lhe following example from plane geometry.

Example 6: Prove the following: -
Il two distinet lines Ly and Lo interscct, then Llicir intersection consists of
exactly one point. :

Solution: To prove the given naplication by contradiction, let us begin by
assuming that the two distiuct lines Ly aid Ly intersect jn more than one
point. Let us eall two of these distinct points A and B. Then, both Ly and
La contain A #nd B. This contradicts the axiom from geometry that says
‘Given two distinct points, there is exactly one line containing themn.',

Therefore, if Ly and. Ly intersect, then they must intersect in onlx ona point.

. 3 F - -

“The contradiction rule is alse dsed (or solving many logical puzzles by

discarding all solutions that roduce to contradictions. Cousider the following

Example 7: There is a village that consists of two types of peonle - - thuse
who always tell the truth, and those who always lie. Suppose that vou visil
the village and two villagers A and B comn up Lo you. Further, supposc

© A says, “B always tells the troth,” and

B says, “A and I arc of opposite types.” .
What types arc A and B? : : _ _

. -



Solution: Let us start by assuming A is a truth-telier, _ Methads of Proof

. What A says is true.

- B is a truth-teller.

.. What B says is true.

. A and B are of opposite types. _

This is a contradiction, because our premises say that A and B ar Lath
truth-tellers. )

.. The assumption we started with is false.

. A always tells lies.

.. What A has told you is a lie.

.. B always tells lies.

.. A and B are of the same type, i.e, both of them always lic.

ik
]

Here are a few exercises for you now. While duing them you would rezli
that there are situations in which all the three methods of proof w« =u-r
discussed so far can be used.

S

E9) Use the method of proof by contradiction to show that
i} V3 is irrational,

1) Forx €R,ifx®+4x =0, then x = 0. -

EIO)IPrm'c E 9(ii) directly as well as by the method of COntrapesisive. There caz be several wars

of DITVILE B slatemeny.

E11) Suppose you are visiting the village described in Example 7 25 2wz
Another two villagets C and D approach you. C tells vou. "Bz of us
always tell the truth,” and D says, “C always lies." What Lo zme C
and D7

Let us now consider the problem of showing that a statemens is falss
2.3.3 Counterexamples

Suppose I make the statement ‘All human beings are 5 feot call.”. Voo 2o
quite likely to show me an cxample of a human being standing nearty ar
whom the statement is not {rue. And, as you know, the momep: =
even one example for which the statement (¥x)p{x) is false Hol Sno~ s
is Lrue], then the statement is false.

L]
-

An example that shows that a statement is falsc is a counterexample o
such a statement, The name itself suggests that it is an example to couter a
given statement.

A common situalion in which we look for counterexamples is to disprove
statements of the form p — q. From Unit L, you know thal ~ {p — o=
P A~ q. Thereflore, a counterexample to p —+ q needs to be an example
where p A~ q is true. Le., pis lrue and ~ ¢ is true, i.e., the hypothesis o
holds but the canclusion q does not hold.

For instance, to disprove the statement s an odd integer. then n s

' ! 5
prime.’, we need Lo look for an odd integer which is not » prime mauber, 15
1s aue such integer. So, n = 15 is a counterexamplc to the given statenwit.,

NOtiCC that a counterexample to a statement P proves that nis falsy,
I | :
i.e., ~ D is true.

Let us consider another example.

Example 8: Disprove the following statement:
(VaeR)VbeR)[(a2=b2) = (a= b)]-
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Solution: A good way of disproving it is to look lor a counterexample, that
is, a pair of real numbers a and b for which a? = b2 but a # L. Can you think
of such a pair? What about a = l and b = ~'1? They scrve the purposc,

In fact, there are infinitely many counterexamples. (Why?)

Now, an exercise!

E12) Disprove the following statement- by providing a suitablr,
rountercxample,

i) VxeZ.xcN.

) (x+y)"=x"1yivne N.xyeZ

) [N —= Nis 1-1 il [ is onte,

(Hint: To disprove P & q it is enough Lo prove that P = q is false
or q =+ pis false)) -

There are some other strategies ol proof, like a constructive proaf, which
you will come across in the aopendix to Unit 11 and in other mathematics
coirses. We shall not discuss this metlod hiero.

Other proof-related adjectives that you will come across are vacuous and
trivial.

A vacuous proof makes use ol the fact that if pis false, then p — q is true,
regardless of the truth value of a- So, to vacuously prove p - q. all we need
to do is to show that p is false. #or Instance, suppose we want to prove thal
Mo >n+1 for ne Z, thien n? = 0. Since 'n >.n 41" is false for every

n € Z. the given stafement is vacuously true. or true by default.

Sunilarly, a trivial proof of p — ¢ is one based on the fact that if q is true,
then p — q is tfue, regardless of the teutl value of p. Sa, for example. *If
u>n+lforn€Z, thenn=1> LT trivially true since n +1l>n¥ne?
The truth value of the hypothesis (which is false in this example) does not
come inte the picture av all. ©

Here's achiance lor vou ta think up such pranfs pow! )

LR Give one example cacl of A vacuons prool and i trivial proof,

And iow ot us study a very hnportant. Lechnigue of proof for statements
that are ol the for pu),u e N,

2.4 PRINCIPLE OF INDUCTION

Dt o diseussion @ith some students Uhe other day. one of Lhem told e Tery
evnieadly that all Indinn poliiicians are corrupt. | asked lim e he had -
reachied such o conclusinn, s n argunient he gave meinstances of several
neliticihns, all af whom were Ruowin wo by corrept. AWhat he lnd done wis 1o
tormutate bis general opinion of politicians on the basis of several pariicular
instances. This is an example of inductive logic, o process of ressoning by
wlich general riies are discovered by the observation of several individia!
cases. Indnelive reasouning isused in all the sclences, including mathernatics.
But in mathematics we use a more precise form. ; T -



Precision is required in mathematical induction because, as you know, a

statement of the form (V n € N)p(n) is true only if it can be shown to be
true for each n in N. {In the example above, even if the student is given an
example of one clean politician. he is not likely to change his general

opinion.)

How can == ke sure (hha our siatement p(n) is true for cacl n thal we are

interestec -
Supposc w-

neEN, [

Vot Lo prove

weocall pn) the prodicate 1 4+ 2 doee 4=

= To answer this, et us consider an exainnlo.

nin + 1
-l—]—;——) [or eacl)

11(11 4 1) .

P24 34 =

. Now, wo

can verify 1izs it is true for a fow values, say, n= [, n = 9. n=10,n = |00,

and so on. B we stiil cal'l

thai we hzvien™r tried.

be sure that it will be true for some value of 1

But now, «:7n0se we can show that if p(u) is true for some m,n =k say, then

it will be tris far n = k& £

Then we are in a very good position because we

alrcady kn<ae that p(l) is true. And, since (1) is true. so is p{1 + 1), ie.,
p(2), and = = I this way we cau show that p(n) is srue for every n € N,
S0, our proa? beils down to Lwo steps, namely,

i) Checkin= thai pll) is 1rue: .

i} Proviae
This Is (he
Principle of Mathematic
involving a

1} plrm) is v 2= for some m g

socple that we

al Induction (PMI): Let n(n} be a predicate
matural number n. Suppose the foliowing two conditious hold:

“Lat whenever p(k) is rue. then p{k + 17 ix true, where k € N.
will now stare formally, i 2" more general furm,

N;

i) If p(k) is ¢, then plk = 1} is rrue, where k(> 1) is any natural nutnber.

Then p(n} is :rue for every n > .

Looking al 1 two conditions in the principle, can you make out why jt

works? (As = Ling put m =

L in our example above.)

Well, (1) tells =iz that P} is true. Then Pulting k = m in (i), we find that
plm 4 1) s 12 Again, since p(in—1) is true, p(m + 2} is true, and SO On:

Going back . :iw exaunple above, let us_complete the second step. We know

that plk) Is - e, j 42 2

L R

SOl plk 41y < e,

Le for evess @ .2 N

ANt e 03

BN St

il at e

witlle any distooce 1 soued

Solet us fud

R FE L S PR IR RIS TPRR U

bk o+ I° )
~k = -(—-)—-—J We want Lo check ir

(] F2 5 k) (k4 1)

And o, by o seinaple of tnathemzniond tuductinng, we =ronw that pong s

Prinipie rendie s T saes Hiad o8 yorrean walk o fose g0y,

stepl Lhiers von ey

very simples bul yon iy B surprised fo e

that tlie tochieiue o Lhis prnciple was first nsed by Buropeans ouly iy lare

as Lhe ]g_jr,h vz by Lhe Voot F AMauvroeclus (1492 - 1573) - Tle used i

to show thas @~ 5 4.0 (20 = Th= 1% Picrre de Fermat {1601 1665

mproved on o teclmique and proved that Lhis principle is cquivalent to (he ]
Mollowing ofteni-used principle of mathematics. ’

Methods of Proof
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The term ‘mathematical
induction’ was first used
by De Morgan.

Note that p(n) is a
predicate, not a
statement, unless we
know the value of n.
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The Well-ordering Principle: Any non-einpty subset of N contains a
smallest clement.

You may be able to see the relationship between the two principles if we
reword the PMIJ in the following form.

Principle of Mathematical Induction (Equivalent form): Let $ C N be
such that

i) me§

ii)  Tor each k ¢ N,k > m, the following implication is true:
keS=»k+1e8. T
Then S = {mm+1,m+2,--. }.

Can you see the equivalence of the two forms of the PMI? If you take
S={neN|p(n)is true },

then you can sec that the way we have written the principle above is a mere
rewrite of the carlier form.

Now, let us consider an example of proof using PMI.
Example 9: Use mathematical induction to prove that

12+22+32+---+112=g(n+1}(2n+1)\fnEN.

Solution: We cal} p(n) the predicate _
1
4224324 2= lE(n+ 1}{(2n+1).
Since we want to prove it for every n € N, we take m = 1.

] 1 S
tep It p(l)is12= 6{1 +1)(2 + 1}, which is true.
Step 2: Suppose, for an arbitrary k € N, p(k) is true, i.e.,
12422 4o 42 2 E'('k+ 1)(2k + 1) is true.

Step 3: To check if the assumplion in Step 2 implies that p(k + 1) is true.

Lct‘sscq. k41
- p(k+1)is12+22+---+k2+(k+1)2=_‘-é__(k+2)(2k+3)
_r,:>(124_22+_.,+k2)+(k+1)2=}i%__l[k+2)(2k+3)

: ., k
= g(k UKk 1) 4+ (k+1)% = _'é'_l(k +2)(2k +- 3),
since p(k) is true.

= k—:—l[k(m; + 1) +6(k+ 1)) = k—zl{k +‘2}(2k + 3)

k+1
= 2P+ Tk +6 = (k+ 2{(zk 4 3), dividing throughout by —E—:

which is (rue.
So, p(k) is true implies that p(k + 1) is true.
So, both the couditions of the principle of mathematical induction hold.
Therelore, its conclusion must hold, i.c., p(n) is Lrue for every n € N,
* &

Have you gone through Example 9 carefully? If so, you would have noticed
that the proof consists of three steps:

Step 1 (called the basis of induction): Checking if p(m) is true for some
m € N.

PR B—



Step 2 (called the induction hypothesis): Assuming that p{k) is true for
an arbitrary k € N,k > m.

Step 3 (called the induction step): Showing that p(k + 1) is true, by a
direct or an indirect proof.

Now let us consider an example in which m # 1.
Example 10: Show that 2" > n3 for n = 10,
Solution: We write p(n) for the predicaie 2" > %'

Step 1: For n = 10,2!" = 1024, which is greater that 103, Therefore, {10}
1S true.

Step 2: We assume that p(k) is true for an arbitrary k > 10. Thus, 2% > k3.
Step 3: Now, we want to prove that 2k+1 » (k + 1)°. Note that

ok+l — 9ok 2.k by our assumption

BE _
> (1 + E) k3, since 2 > (l -~ f—)
133
> (1 + i) K3, since k > 10
= (k+1)* .
Thus, p(k + 1) is true if p(k) is true for k > 10.
Therefore. by the principle of mathematical induction, p(n) is true ¥ n > 10.

L

Why don’t you try to apply the principle now?

E14} Use mathematical induction to prové that

1 1 1 I
l+sd -4+ = <2— <Y N. :
4 9+ _,_112 - n nE_ _ e
o S 1 1 ' 1
E15) Show that for auny integer n > 1, e — > V.

- AL Vv
" (Hint : Thc basis of induction:is p(2). ). -

Before going further a note of v drmngl To prove rnat p{n) is true ¥ n >,
both the basis of induction as well as the induecsion step must hold.

I[f even one of these conditions doss nol hold, wo cannot dnwe al the
couclusion that p(n) is true ¥ u > m.

For example, suppose p(n) is (x + y)? < x* +¥y* T x.y € R Then p(l) is
true. But Steps 2 and 3 do uot hold. Th(lmo:v pin} s nol Lrae for evers
n € N. {Can you find a value of u for-which p{u} is inizo?)

As anothier example, take p(n) 10 be the staremens 1+ 21 ... +n<in
Then, if pfk) is true, so is p{k = 1) {prove it]). But e basis sLep does nut
hotd fur anv 0 € N, And. as ol can see, pind e ke

Now let us look ab a situnfion b which we may expeen the prineiple of
inchuction (o work, but i doesn't. Cousider the sequance of numbers

" 1,1,2,3,5,8,---. These are the Fibonacci numbers, namned aller the

. Italian mathematician Fibonacel. Fach term-in the sequence, fram the thivd
term on, 1s obtained by adding the previous 2 terms. So, ifa  is the nih
term, then a; = 1,a, =1, and a, =a, ,*+a, Y>3 &
Supposc we want to show that a,< 2" ¥ n € N using the PMI. Tllen, 1[ pin)

Methods of Proof
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In using the strong form
we often need to check
Step 1 for more thap one
value of 1.

40

is the predicate 4,< 2%, we know that p(1) is true.

Now suppose we know that p{k) is true for an arbitrary k € N, i.c., a < 2%,
We want to show that ay, | < 2k e, ay +ak—1 < 2%, But we don't know
anything about a,. ;. So, how can we apply the principle of induction in the
form that we have stated it? In such a situation, a stronger, more powerful,

version of the principle of induction comes in handy. Let's see what this 18.

Principle of Strong Mathematical Induction: Let p(n) be a predicate

that involves a natural number n. Suppose we can show that

i) p(m) is true for some m € N, and

i}  whenever p(m).p(m +1),--. Pk} are true, Lhen plk 4- 1} is true, where
k > m.

Then we can conclude that p(n) is true for all natural numbers n > m.

Why do we call this principle stronger than the earlier one? This is because,
in the induction step we are making more assumptions, i.e., thal p(n) is
true for every n lying between m and k, not just that p(k) is true.

Let us now go back to the Fibonacci sequence. To use the strong form of Lhe
PMI, we take m = 1. We have seen that p(1) is true. We also need to see if
p(2} is true. This is because we have Lo use the relation G =a, ;+a,_,,
which is valid for n > 3.

Now that we know that botl p(1) and (2) are true, let us go Lo the next
step. In Step 2, for an arbitrary k > 2, we assume that p(n} is true for every
nsuch that 1 <n <k, he,a, <2"for1<n <k

Finally, in Step 3. we must show that p(k + 1) is true, i.e, ay ., < 241 Now

Arr = yota

< 264 '2“"', Iy our assumption in Step 2.
= 28124

< 9k=l 92

_ d)T\'J.-|

Cop(k - 1) s true.
sop{n)istue Y e N,

Though the “strong™ forn: of (he PMI appears to be different. from Lse
“weak™ form, the two are actually equivalent. This is hecause each can
be obrained from Lhe olher. So, we e use cither form of mathewmticn]
mduciion. In a given Problen we use the form that js more suitable. Ior
mstance, in the following cxample, as in the case of the one above, you wonld
agree Lhat it is betier 1o use the strong form of Lhe PMI.

Example 11: Usc induction Lo prove that any integer n > 2 js cither »
prime or a product of primes.

Solution: Heve p(u) is the predicate ‘n is a prime or n s a praduct of

prines.’,

Step 1 (basis of induction) : Since 2 is » prime, p{2} is Lruce,

Step 2 (induction hypothesis): Assiume that p(n) is true for any incee
n such Lt 2 = u K, e, p(3),pa), - - (k) are Lrue,

Step 3 (induction step): Now consider p{k+1). ik +1 is a prime, then
plk+ 1} is true. If k4 1 is not a prime, then k + 1 =1y, where
2<r<kand2<s <k But, by our induction hypothesis, p(r) is

! true and p(s) is true. Therefore, r and s are cither primes or products

&of primes. And therefore, k+1isa product of primes. So, p(k + 1)
is true.



Therefore, p(n) is true V n > 2.
R

Why don't you try some exercises now?

E16) If 2,,a,.-- are the terms in the Fibonace seguence, use the weak as
vell as the stroug forms of the principle of mz:nematical induction o

3 . , .
show that a, > o) ¥ 1 2 3. Which form did 55 %nd more convenien:”

E17) Consider the following “proof” by induclion of the statement “Any
marbles are of the same size.”, and say wliy it is wrong.
Basis of induction : For n = 1, the statemen: is clearly true.
Induction hypothesis : Assume that the statement is teue for n=k

Induction step : Now consider any k + 1 marbles L2+ k+1. By
the induction hypothesis the k marbles 2,3, k+1
are of the same size. Therelore, all the k + 1 nmarbles
are of the same size,

Therefore, the given statement is true for cvery n.

E18) Prove that the following result is equivalent ro the principle of /
mathematical induction (trong form):
Let S € N such that

i) meS§

i) Ifmm+1l,m+2,--- .k are in S, thenk +1€8.
Then S = {n € N|n > m}.

n -
1
. -E19) To prove that E — < 2v/n— 1V n €N, which fornr of the principle
- - = VI ’
- of mathematical induction would you use, and why? Also, prove Lthe

inequality,

With this we come to the end of our discussion on various techniques of
proviug or cisproving mathematical stalements, Let us take a briel look at
wlhal you have read in this unit.

2.5 SUMMARY

In this unit vou have studied the following poinls.

1. What coustitutes a proof of a mathemalical stateinent, wchiding 4
cominonly used rules of inference, namely, ) )
i) law ol detachment—{or modus poucns) : ilp = g} Apl=q

i) law ol contraposition {or modus tollens) © {{p = a) A~ gl =~

i) disjunctive syllogism = [(pv ) A ~ b =+ q . :
v} hivpothetical syllogism @ {(p -3 ) Ay = r}: = {p —rr}
20 The desceription and exangies of o diteci prool. which is based on

- moedus panens. - .

3. _Two types of ndirect prools : prool by r:r-JnLr;'Lpositi\'é and proof by
comraciction. _ o - = )

4. The use of counterexamples for disprdving a statuinent.

5. The “strong” and “weak” forns of the principle of mathematical -

induction, and their equivalence with the well-ordering principle.

' Mecthods of Pro
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2.6 SOLUTIONS/ANSWER

E1) For example, . )
Theorem: {x + y)? = x2 +2xy + y? for xyeR.
Proof: For x,y € R, (x +¥)? = (x+y)(x +¥) (by definition of ‘square’)
(X +y)x+y) = X(x+y) +y{x+ ¥) (by distributivity, which has been
proved earlier) ,
(x+y)+ y(x + y)=x*+ 2xy + y? (again by distributivity, and by
definition of addition and multiplication .of algebraic terms).

Therefore, (x +y)2 = x2 4 2xy +y? (using an earlier proved statement
thata=band b=¢ implies that a = ¢},

E2) No, not unless it has been proved to be true. -

E3) premises  conclusion
i 1 1
Plq|r|~1r|gqV~r P=2qV~r|qgqap|por
T(TIT!| F T T T T
TI{T(F[| T T T T F
T|F|T| F F F T T
TIF{F] T T T T F f
FIT{T{ F T T F T
FIT|F| T T T F T
FIF|T| F I T T T
3 FI{F{F| T T T T T

The premises are true in Roys 1,2, 4,7, 8. So, the argument will be
valid if the conclusion is also true in these rows. Buc this does not
happen in Row 2, for instance. Therefore, the arguinent is invalid.

4) 1) Letp: The craser js white, <:0nclesior1/I’me55C’5

q : Oxygen is a metal. f = i —

Then the argument is plagi~p pVq
bVa T|T|F | T
S T|F!F | T
. q

Its truth table is given alongside. FlTi T T

Fir|{ T | F

All the premises are true only in the third row. Since the
conclusion in this row is also true, the argument is valid.

i) The argument is (p — AArlg—=1) = (p— r)
whiere p: Madhu is o ‘sarpancly’,
q : Madhu heads the ‘Panchayat’,
r : Madhu decides on property disputes.
This is valid because, whenever botii the premises are true, so is
the conclusion (see the following table.)

42



premises  .conclusion

Methods of Proof

Plalr[p=agla—-r|p—
T|T{T| T T T '
T{T|F| T F
TIF|T| F T T
TIF{F| F T F
FiT|T| T T T
F|IT|F| T F T
FIF|T]| T T T
FIF|F| T T T

iii) The argument is
[(PVa)A(q—=1) A~ =g
where p: Munna will cook.
q: Munni will practise Karate.
.t Munna studies.
This is not valid, as you can sec from Row - of the followi: ng
truth table. . -

conclusion l—premtses _I

Plalr PVqigq—r
TIT{T|F | T | . T

T|T FlT | 7 F

T|F|T]F | T T

T F{F|T | T T o - )
FlT|T|# | 7. | 7 - -
FIT|FIT ]| T F -

FI{F|T{F | T T | _ -
FIF|F| T | F T

EG) We need to prove p = q, where
"~ p: x € R such that x2 = 9, and
q x=3orx=-3.
_VO\VY‘_9=>\/—*+\/_:‘-R=i3 .
Therefore, p is true (anl (p = q] is true, allows us to conclnde that ¢
. 13 Lrue,

ET) I fis not surjective. then Tis not a_l-1 function from N into sell

E8) We wint (0 prove ~ g =3 P, where
pr 2 €7 su (l' thial =% is aven, ’ ) -
g: X Is eves.
Now, w: start by assuming that q is false, e, X s odd.
Then x == 2m + | for soue n € Z. _ .
Therefore, x* =4m® + 4m + 1 = 2(2mn? + 2mn) + 1 -
Therefore, x? is odd, i.e. p is false. . - __ - -
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Thus, ~q = . P, and hence, p =— q.

ES) i)  Thisis on the lines'of Example 5.
ii}  Let us assume that x? + 4x =0 and x 0. Then x{x® + 4) = 0 and
x 70, Therefore, %2 4 4 - 0, ie, x®2 = —4. Byt X € R and
x*=—qisa contradiction, Therelore, our assumplion is falge,
Therefore, the given statement is true,

510} Direct proof: x? +Ax =0 = x(x? + =0
= x=0o0rx?+4=0
= x=0,sincex?# -4YxecR.
Proof by contrapositive: Suppose x # 0. Then x(x2 4+ 4) £ 0 for any
xeR.
Soxd - dx 3£ 0 for every x € R.
So we have proved that ‘For XERx #£0 == x3 4 4 # 0.,
That is, ‘For x e R, x% + 4x = ¢ = x={.

Therefore, C always lies, whic js a contradiction, Therefore, C can’t
be a truth-teller, i.e., Cis a ljar. Therefore, D is a truth-teller,

El12) i)  What about x = 0,0orx=-1,0r-..7
ii) Taken = 2,x=1and y = —1, for instance.
iit) Here we can find an example f such that fis 1-] but not onto, or
such that [ is onto Lut not 1-1. . ]
Consider { : N 3 N - f(x) = x + 10. Show that this is 1-1, but not
surjective.

E13}i) Theorem:- The arca of every equilateral triangle of side a.and
perimeter 2a is divisible by 3.
Proof: Since there is no equilateral triangle that salisfies the
hypothesis, the proposition is vacuously true.

i) Theorem: If 2 natural number ¢ is divisibla by §, then the

perimeter of the cquilateral triangle of side ¢ is 3c.
Proof: Since the conclusion is always true, the proposition is
trivially true.

-~

E14) Let p(n) be the given predicate.
Step 1: p(1) : 1 < 2~ 1, which is trye,
Step 2: Assume that (k) is true for some k > 1, ie., assumie that

1
I SRR A S
titotms .

Step 3: To show Lhat p{k + 1) is true, consider

1 1 1 1 1 1
It S © e i SRR ) [ S
Ittt 1 k2) (F+1)?

1
<{2-2) % ——— by Siep 2.
= k)+(k+IJ2 g
1 )

ow, (2-Z )4 1 9 1
“"“‘( k) T ErE S (k+ 1)

_ 1 1
T = z S —

(k4 1)< k k1
PRk < k1) whicls is true,

[ i H
Therelor — et o __ '
hecefore, {2 C ‘T‘(k+1}2_ &+ D)

Therefore, p(k + 1) is Lrue.

. Thus, by _Lhe PMIL, p(n) is true¥ n e N,



E15) p(2): \/— \/— > V2, which is true. o Methods of Proof”

Now, assume that p(k) is true ior some k > 2. Then

1
.+_+

1 1
4 — 4 - ——— > Vk + ———, since p(k) is true.
At 7 v — T ince p(k) is true
 Vk(E+T1) 41
T VEk+1
> vk 41, sinee vk +1 > vk
Hence p(k <+ 1) is true.
- p{n) is true Vn > 2.
E16) We shali apply Lhe strong lorm of the PMI here.
3
Let p(n) : 2, > 7"
Step 1: p{3) and p(4) are true.

Step 2: Assume now that fork € N,k > 3, p(n} is true for-every n such
that 3 <n <k

Step 3: We want to show that p(k 4+ 1) is true. Now
3
ag1] = ai +ax_1 > = 2 by Step 2

>

| Ce L S Y g L}
S

" p(k + 1) is true.

Thus, p(n) is true ¥ n > 3.
In this case, you will be able to use the weak form conveniently too

3
since ay _> 5 is cnough for showing that p(k= 1) is true.

Thus, in this case the weak form is more approgriate since fewer
assumptions give you the same result. )

E17) The problem is at the induction step. The first _'ma.rble may be a
different size from the other k marbles. So, we have not sho“r n that
p(k + 1) is true whencver p(k)is true. ;

EIS) "With refercnee t6 the statement of the strong form of the PMI, let
S = {n € Nip{n) is true}. .. - -
Then you can show how the formn in this problen is the same as the
statement of the strong formiof the PMIL -

J219) Let p(n) : L— <d\!’_—l

The weak form sulfices herc since the assumpl.lon that p(k) is Lrue is
enough to prove that p(k 4 1) s truc. We don’t need to assume that
p(1), p(2),--- , p(k ~ 1) wre also true to show that p(k + 1) is Lrue. Let’
prove that p(n) is true ¥ n & N.

Now, p{1} : | €2 — 1, whiclis frne.

Next, assume thal p(l-.) is trus 1n: some k € N,
1

]
L 1 J. i .
hepg — 4+ —= 8 - b iR — 1) - ——asinea plk)
e AT VEVETT T ST A
is true. . -
— i ;
Now 2k — 1 + —== < 2vk+ 1 =1 . . _ -
) k-1
1 B}
= VK + 1 - VX >
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| 4= 12> 0, which is true.
~op(k + 1) is true.
.. p(n) is true Vo e M.
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3.1 INTRODUCTION

In the previous two upits you have read about the clementary aspects of
symbolic logic. C.E.Shannon, the founder of inforniation theory, observed an
analogy between the functioning of switching circuits and certain operations
of logical connectives. In 1938 he gave a techrique based on this analogy to
express and manipulate simple switching circuits algebraically. Later, thie k:
discovery of some new solid state devices (called electronic switches or . Nk
logic gates) helped to modify these algebraic Lechniques and, thereby, paved &= @ REPAAE
a way to solve numerous problems related to digital systeins algcbraically. Fig. 1: Claude

In this unit, we shall discuss ¢} botic logic techni hich ar ired  oranuen, who made
n this uni . W2 S '!a ISCUSS Lhe Symbolic Ogl(. eC InlunS WICh are require the ficst IIIFIJIDI'

for the algebraic understauding of circuits and computer logic. In Sec.3.2, we contribution ins
shall introduce you to Boolean algebras wiih the help of certain exanples applied Boolean
based on objects you are already familiar witly, You will see that sucli algebra in 1948,
algebras are apt for describing operations of logical circuits used in -

computers. -

In Sec.3.3, we lave discussed Boolean expressions. in Sec.3.4, we look at
the linkages that they have with logic circuits.

In Sec:3.5, you will read about low to express the overall functioning of a

circuit mathematically in terms of certain suitably delined funclions c:'llle(_l
Boolean functions. In this section we shall also consider a siinple circuit
design problem Lo illustrate the applications of the relationship hetween

Boolean function and circuits. - _ -

Let ns now cansider the ohjectives of ihis unit. - -

Objeclives - Tl

Alter reading Lhis unit. yvéu should be ible Lo

@ define and give examples of Boolean algebras, expressions aned. funciions;

* obhtain the disjunctive normal form (DNF) and the cbnjunctivc_nqrmal form

- {CNF}of a Boolc:an e)ipression; ) o . . ‘7 -
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Elementary Logic ® give mathematical interpretations of the functioning of logic gafes; |
* obtain and simplify the Boolean expression representing a circuit;

* construct 2 circuit for a Boolean expression;

* design and simplify some simple circuits using Boolean algebra techniques.

3.2 BOOLEAN ALGEBRAS

How do you react to the questions: Is it possible to design an
electric/electronic circuit without actually using switches (or logic gates) and
wires? Can a circuit be redesigned, without defeating its purpose, to get a
simpler circuit with the help of pen and paper only?

Relax! The answer to both these questions is ‘Yes', What allows us to give
this reply is the concept of Boolean algebras. Before we start a formal
discussion on these type of algebras, let us take another look at the objects
treated in Unit 1.

As before, let the letters P; Q. I,... denote statements (or propositions). We
write § for the set of all propositions. As you may recall, a tautology 7 (or a
contradiction F) is any proposition which is always true (or always false,
respectively); 'By abuse of notation, we shall let 7 denote the set of all
tautologies and * denote the set of all contradictions. Thus,
TCS,*CS.

You already know fromn Unit 1 that, given two propositions p and q, both
A binary operationon pA q and pV q are again propositions. And 50, by the definition of a binary
a non-empty set X is a operation, you can see that both A (conjunction) and v {disjunctian) are
function f : X x X - X. binary operations on the set S, where we are writing A(p,q) as p Aq and

V(p,q) aspvaq, Yp,qes.

Again, since ~ p is also a proposition, the operation ~ (negation) defines a
unary [unction ~: S = §. Thus, the set of propositions S, with these
opcralions, acquires an algebraic structure.

As is clear from Sec.1.3 of Unit I, under these three operations, the elements
of § salisfy associative laws, commutative laws, distributive laws and
complementation laws. .

Also, by E19 of Unit 1, you know that pVF=pandpAT =p, lorany
proposition p. These are called the identity laws,

The set § with the three operations and properties listed above is 2
particular case of an algebraic structure which we shall now define.

Definition: A Boolean algebra B is an algebraic structure which consists
of a set X (# ¢) having two binary operations {denoted by v and A}, one
unary operation (denoted ly ') and two specially defined clements G and T
{say), which sa.iisl'y the following live laws for all X, vzEX.

B1. Asscciative Laws: xV{yvz)=(xvy)ve,
xA{yAz)=(xAy) Az
' B2. Commutative Laws: XVy=yVx,
XAy=yAx :
B3. Distributive Laws: XV (yAz) = (xVy) A (xva),-

48 : x_-_(\_(‘y Viz) = (x /\y) V,_(x'/\ z) K

= - . -



B4. Identity Laws: . xVO=x, ‘ Boolean Algebra and

xAl=x Circuits
B5. Complementation Laws: xAx' = Q,
xvx' =1

We write this algebraic structure as B = (X, v, A, ., O. I), or simply B, if the
context makes the meaning of the other terms clr-ar The two operations v
and # are called the Jom operation and meet operation, respectively.
The unary operation ’ is called the complementation.

From our discussion precedling the definition above, you would agree that the
set S of propositions is a Boolean algebra, where 7 and F will do the job of
I and O, respectively. Thus, (S, A,V, ~, F, 7T) is an example of a Boolean
algebra. ‘

We give another example of a Boolean algebra below.

Example 1: Let X be a non-empty set, and P(X) denote its power set, i.e.,
P(X) is the set consisting of all.the subsets of the set X. Show that P(X)isa
Boolean algebra.

Solution: We take the usual set-theoretic operations of intersection (N,
union (U}, and complementation (¢) in P(X) as the threc required
operations. Let ¢ and X play the roles of O and I, respectively. Then, from
MTE-04 you can verily that all the conditions for ('P()\) u,n, % ¢, X) to be .
& Booiean algebra hold good. - -

For instance, ‘the identity laws (B4) follow from two set-theoretic faccs .
namely. “the intersection of any subsct with the wliole set is the sel itself”
and ‘the union of any set with the empty set is the set itself’. On the other
hand, the complementation laws (B5) follow from another set of facts from
set theory, namely, ‘the intersection of any subset with its complement -is the
empty set’ and ‘the union of any set with its complement is the whole sat’,

ok ok
Yel another example of a Boolean algebra is based on switching circuits. - -
For this. we first need to elaborate on the functioning of ordinary switches in -
A mathematical way. In fact, we will present the basic idea which helped the'- -

American. C.I5.Shaunon, to detect_the connection between the functlomnb of -
switches and Boole’s syinbolic logic. -

You may be aware of the functiouing of a simple on-off switeh which js- : x=1

commoniy used as an essential component in the clectric {or electronic)

nebworking syskems. A switch is a device which allows the current to 8ow —"'”'”O'— -
X =

only whew it is placed in the ON positiou, i.c.. when the zap is closed by a

conducting rod. Thus, the ON position of qw:trh 15 one state of a switcl. Fig.2: OFF-ON
called a closed state. The otlier state of a switch is the-open state, wlien  tion

it s placed inthe OFF position. So. a1 switeh has two stable stales. - -

“There s another way Lo talk about (he Mncltioninge of a switell. We can
- denote a switeh by x, sl use Che vabues O and 1o depict s Lwo stages. ie.,
Lo convey thal x is.open we write x = . and {o convey that x is clasad we

write x = 1 {see Fig.2). - -

These vatues which denote 1he state of a swileh % are called Lhe
state-vatues (s.v., i short) ol that switcl. - - . -

We shall also write x' for a switch which is always i a atatc opposite Lo x.
So that - .

x is open = x' is closed- and x is closed = x' is open. -
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‘inversion(’) instead of ~ as the three required operations in the definition of

The switch x is called the invert of the switch x. For example, the switch a’
shown in Fig.3 is an invert of the switch a. .

T 1.

Fig. 3: a' is the invert of a.

~ Table 1 alongside gives the state value of x’ for a given state value of the %

switch x. These values are derived from the definition of x" and our
preceding discussion. "

Note that the variable x that denotes a switch can only take on 2 values, 0
and 1. Such a variable (which can only take on two values) is called a
Boolean variable. Thus, if x is a Boolean variable, so is x'.

Now, in order to design a circuit consisting of several switches, there are two
ways in which two switches can be connected: parallel connections and
series connections (see Fig.4).

a
e e
— S . 2 b—
"h
(i) Parallel connection ) (i) Series connection

Fig. 4: Two ways of connecting switclhes.

From Fig.4(i) above, you can see that in case of a parallel connection of
switches a and b (say), current will {low from the left to the right extreme if
at least one of the two switches is closed. Note that ‘parallel’ does not
mean that both the switches are in the same state.

On the other hand, current can flow in a series connection of switches only
when both the switches a and b are closed (sce Fig.4(ii) ).

Given two switches a and b, we write a par b and a ser b for these two
types of connections, respectively.

In view of these definitions and the preceding discussion, you can sce that
Lhe state values of the connections a par b and a, ser b, for ditferent pairs of
state values of switches a and b, are as given in the tables below.

Table 2: State values of a par b and a ser b.

s.v. | s.v. | s.ov. of s.v. | s.v. | sy, of
ofa [ofb | aparb : ofa |of b |aserb
0 0 0 0 0 0
0 1 1 0 L 0
1 0 1 H U 0
1 1 i 1 i i

We have now developed 2 sullicient background to give you the example of 2
Boolean algebra which is based on switching circuits.

Example 2: The set S = {0,1} is a Boolean algebra.

Solution: Take ser and par in place of A and v, respectively, and

a Boolean algebra,. Also take 0 for the element O and 1 for the element I in



this definition. \ Boolean Algebra and
Now, using Tables 1 and 2, you can _check that the five laws B1-B5 hold Circuits
good. Thus, (S, par, ser, 7,0,1) is a Boolean algebra.

¥ ox

A Boolean algebra whose underlying setl has only two elements is very
important in the study of circuits. We call such an algebra a two-element
Boolean algebra. Throughout the unit, we denote this algebra by B. From
this Boolean algebra we can build many more, as in the following example.

Lxample 3: Let B =BxBx---xB = {{er,e2.... ,e4) | eache; =0 or 1},

for n > 1, be the Cartesian product of n copies of B. For iy, jx € {0,1}
(I <k <n), define : -

(i'l:igl"' |ill)/\(_il:j'2|"' Ijl‘l) = (i'l AjlinA_iZ,--- :inAjn)l
(h.do,-in) V/(Gndze- - 0dn) = (0 Vini2 Vier... in Via), and
(ilii'zr-':in)’ = (111131:1:1)

Then 5" is a Boolean algebra, for all n > 1.
Solution: Firstly observe that the case n = 1 is the Boolean algebra B.

Now, let us writz 0 = {0,0,... .0) and I = (1,1,...,1), for the two clements
of B" consisting ol n-tuples of 0s and 1's, respectively. Using the fant that 3
is a Boolean algebra, you can check that 8", with operations as defined
above, is a Boolean algebra for every n > L.

k3

The Boolean algebras-B", n > 1, (ca-lled switching algc_abras) are very
useful for the study of the hardware and soltware of digital computers.

We shall now state, ivit}}out probf_, some other properties of Boolean
algebras, which canbe deduced from the five laws-(B1-BS).

Theorem 1: Let B = (S,v, A,/ O,I) be a Boolean algebra. Then the
following laws hold ¥ x,y € S. - )

a) Idempotent laws:. xvx = X, XAX = x. )
"b) Absorption laws:  xV(xAy)=x, xA (xVy)==x -
c) Involution law: () = x :

d) De Morgan's laws®  (x Vi) =xtay (xay) =x" vyl -

In [act; vou have already come across some of Uese properties lor the
Boolean algebra S of propositions i Unit 1. I -the following exercise we ask
you ta verify them. o :

B1) a} Verify the identity laws and absorption laws for the Boolean : a
algebra (S, A, V. ~.T.F) of propositious. -

L) Verily the aIJ.:;orpLiuﬁ laws for the Boolean algebra
(P(X),U,ﬂ, (-l(r';J:YJ' - -

In Theorem 1, you way live noticed thaz for each statement ivGlving v oand —
A there is du analogous statemeni with A {instead of V) and v {instcad of - '
A}, This is not a coincidenze, as the [ollowing delinition aud resuit shows.

Dcfnition : If pisa [:rupositi_onLim'o]ving ~, A and V, the dual of p,
denoted by pY, is the proposition obtained by replacing each occurrence of A
(and/or V)-in p by v-(and/or A, respectively) in pd. _ '

For example, x V{(x A ¥) = x is the dual of x A (xvy)=x. ST

51
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‘Recursive’ meuans
defining elements of a set
in terms of previousely
defined elements of the
set.

- 52 B

Now, the following principle tells us that if a statement, is proved true, then
we have simultaneously proved that its dual is trye.

Theorem 2 (The principle of duality): If s is a theorem about a
Boolean algebra, then so is its dual s9.

It is because of this principle that the statements in Theorem 1 look so
similar.

Let us now see how to apply Boolean algebra methods to circuit design. For
this purpose we shall introduce the necessary mathematical terminology and
ideas in the following section.

3.3 BOOLEAN EXPRESSIONS

In Unit 2, you learnt how a compound statement can be formed by
combining some propositions p;,ps,... ,pn (say) with the help of logical
conncctives A,V and ~.

Analogously, while expressing circuits mathematically, Wwe identify each
circuit in terms of some Boolean variables. Kach of these variables represents
either a simple switch or an input to some electronic switcl.

Definition : Let B = (X,V,A/,0,1) be a Boolean algebra. A Boolean

expression in variables x;,xz,... ,x (say), each taking their values in the

set X, is defined recursively as follows:

i}  Each of the variables x;, x5, . .. Xk, as well as the elements O and I of
the Boolean algebra B are Boolean expressions.

ii) X, and X, a.re’pi:gviously defined Boolean expressions, then
"Xy AX2, X1 V Xy, and X are also Boolean expressions.

For instance, x; A X, is a Boolean expression because so are x; and X5.
Similarly, because x; V x5 is 2 Boolean expression, 5o is (x) V xa) A {x, Ax5).
IT X is a Boolean expression in n variables x1,X2,... , X, (say), we write this
as X = X(xy,... ,x,)
Each varialle x; and its complement x{,1 < i< k, is called a literal. For
example, in the Boolean expression
[

X{xi,x2,%3) = (31 V x2) A (31 A x5),

there are three literals, namely, X1, Xg, and xj.

In the context of designing a circuit or redesigning a circuit with fewer
electronic switches, we need to consider techniques for-minimising Boolean
expressions. In the process, we shall be using the concepts defined below.

Definition : A Boolean expression in k variables Xy, Xa,... X is called
i) aminterm ifitis of the form YIAY2 A Ay

ii) a maxterm ilitisof the form y; Vya V.- vy,
where cach yj is a literal {j.e. it is cilher an X; or an x7), for 1 <1i <k, and

yiFZyjforig].

Thus, a minterm {or a maxterm) in k variables is a meet (or a join,
respectively) of exactly k distinct varizbles. For example,

x1 Ay (and x| Vxp) is a minterm {a maxterm, respectively) in the two
variables X3 and x;.

Definition : A Boolean expression involving k variables is in disjunctive
-normal form ( DNF, in short) if it is a join of distinct minterms, each one

~



involving exactly k variables.

For instance, the Boolean expression in 2 variables
K(xa,x2) = (x] Axh}V (x A x5) V {x] A x32)
is in DNF because it is a join of three minterms, namely, x) A x5, x; Ax).
and xj A x2, where cach one of these involves exactly two variables.
Observe that each minterm in a DNI should involve all the k variables in
the expression X{xy,x2,... ,x.), k 2 2. For instance, the Boolean expression
Xx1,x2,%3) = (X} Axz) Vv (x1 A xh A xz)

is not in DNF because x| A x2 is not a2 minterm of all the thicee variables.
However, since we can write '

(x] Ax2) = (x| Axz) AT : (by Identity law)
= (x] Ax2) A (x3 VX {(by Complementation law)

1 3
= (X} Axa Ax3) V(x| ixp AXE), - (by Distributive law)

and so, the expression X{x, X2.x3) with this change for x] A xz is in the
disjunctive normal form.

Indeed, using similar techniques, any Boolcan expression (# O) can be
written in disjunctive normal form. Let us work out an example to illustrate
this technique. ) /

Example 4: Obtain a disjunctive normal form for the expression
X(x,, XQ,.‘(3) = (x'l /\XQ) vV (){1 /\X;]). ’

Solution: We can write

xjAxg = (x{Axa) AT : (Identity law)
= (x] Axa} A (x3 v x§) (Complementation law)
i = {x]Ax2 Ax3)V(x] Axa A x3) (Distributive law)
Also, i _ . - o -
XLAX3 = {x; Ax3) Al - {by Identity law)
= (x1 Ax3z) A(xa v x5) (by Complementation law}
= (X1 Axg Axa) V (x; Axz AX) (by Distributive law)

= (X1 Axg Axz)V {x; A x5 Axz).  (by commutativity of A }
Hence the required disjunctive normal form of the given expression
X(x1, x2.x3) in three variables is given by ’

s A V(L Axa AXE) V(%) Axg A x3) V {x; A X, A x3).

PR -
Why don’t you lry an cxercise now?

E2) Obt_ain the disjunctive normal form of Lthe Boolean elxprcssiOn
X0, x2,x3}) = (%] Vo) v (x] A x3).

The conjunclive nonmal form is another important type of expression wlich
is analogouns-to the €ancept of DNF. - h '

Definition : A Boolean expression in k variables is said to Lbe in

“conjunctive normal formn (CINF, iu short) if it is a meel of maxterms,
cach of which involves all the & variables.

o+ For instaduce, the Boolean expression

X(xy, X2=_X3j = (x} Vo V x3) Al VL v A {(xLV 32 V),
is i1 CNF Dbecause it is the ;nect.bfhlaxter:q_s (x’l VX Vx3), (x] Vx'2 V x3) and

(x| v X2 V x3). Note that all 3 variables are involved in each maxterm.

Boolean Algebra and
Circuits
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Let us consider an example of how to obtain the CNF of a Boolean -
expression. 7

Example 5:, Obtain the CNF of the Boolean expression
X(XI,XQ,Xg) = (x1 A XQ)’ A (X; /\x;;)'

Solution: We have

(x1Ax) =xjv x5 ., (De Morgan's Law)
=(xjvx)vo (Identity law)
= (x] Vx5) V (x3 A x5) (Complementation law)
=(x]Vxy Vxg) A () v x5 V x5) (Distributive law)

Similarly, you can check that
(x{ Axs) =(x; v x5 Vx5) A (){1 Vxz V x3).

Thus, the required CNF of the expression X(x1,%2,%3} given here is
(x1 Vx5 Vx3) A (x] Vxp Vx3) A (x) V x VX3) A (%1 V3 V x).
* % ¥

Try the foliowing exercise now.

E3) Obtain the ONT of the Boolean expression
X{xi%2,%3) = ((x1 Axh) v (x} Axz)).

As we have said carlier,-in the context of simplifying circuits, we need to
reduce Boolean expressions to simpler ones. ‘Simple’ means that the
cxpression has fewer connectives, and all the literals involved are distinct.
We illustrate this technique riow.

Example 6: Reduce the following Boolean expressions to a simpler {orm.
(2) X(x1,%3) = (x; Axz) A (g A x5 )i
{b) X(X],x:z,xa) = (x; A Xg) \' (xl A Xf-z /\.\‘.3) vV (}q /\):3).

Solution: (a) Here we can write

(x1 Axa) A (g A Xp) = ((x1 Axg) A x1) Axb (Associative law)
= (x1 Axp) AX) {Absarption law)
= X1 A (x2 A X)) (Associative law)
= x1A0 (Complementation law)
= 0. (Identity law)

Thus, in its simplified form, the expression given in (a).above is O, e, a
null expression.

(b) We can write
(x1 A x2) V (x; AxHAXZ)V (%) A x3)

=[xy A {xa v (2, A 3 AR A xs) (Distributive taw)
=iA{(x2a V) A (xq v xa)H A (A x3) (Distributive law)
=[x A{IA(xeVxa)} A (x1 A x3) (Complementation law)
=l A (o V)] A(xg A X3) (Identity law)
= [{x1 Axz) V {x; A X3} A (x1 A x3) (Distributive law)
=[{x1 A xa) A {x) Ay)] v [(x1 Axs) A (g a x3)]  (Distributive law)
={x1Axe Axz)V (x; A x3) (Idemp.,& assoc. laws)
=X A[(x2 Axs) Vv x3] _ (Distributive law)-
=X] AX3 (Absorption Jaw)

Thus, the simplified form of the expression given in (b) is (x1 '/\'xa).— o

¥ ox ¥



Now you should find it easy to solve the following exercjse. Boolean Algebra and

Circuits

E4) Simplify the Boolean expression
X{x1,x2,%3) = (x; Axa) V ((x; A X2) A x3) V(X2 A x3).

With this we conclude this section. In the next section we shall give an
important application of the concepts discussed here.

3.4 LOGIC CIRCUITS

l, you would notice many electric or electronic appliances
of daily use. Some of them nced a simple switching circuit to control the
auto-stop (such as in a stereo system). Some would yse an auto-power off
system used in transformers to control voltage fluctuations. Each circuit is
usually a combination of on-off switches, wired together in some specific
configuration. Nowadays certain types of electronic blocks (i.c., solid state
devices such as transistors, resistors and capacitors) are more in use. \We call
these electronic blocks logic gates, or simply, gates. In Fig. 5 we havc!
shown a box which consists of some electronic switches (or logic gates), wired
together in a specific manner. Each line which is entering the box from the :
left represents an independent power source {called input), where all of _ : -
them need not supply voltage to the box at a given moment. A single line
coming out of the box gives the final output of the circuit box. The output
depends on the type of inpit.

If you look around

—_
Input _ )] : ’
;;;)—-.-.:sr : Cireuit Output lead
“ Box
e o

_ Fig. 5: A logic circuit. -
This sort of arrangement of input power lincs, a circuil_box and ouiput

- lead is basic to all electronic circuics, Throughout the unit, any such
interconnected assemblage of logic gates is referred Lo as a logic circuit.

As you may know, computer i dwares are designed to liindle only two
levels of voltage, both as inputs as well as outputs. Thicse two levels, denoted
“by Gand 1, are called bits (an acronym for binary digits). When the bits
are applied to the logic gates by means of one or two wires (input leads),
Lhe output is again in the form of voltages 0 and 1. Roughly si;eakingﬁ. you
may think of a gate to bé on or off according to whetlier the oul;put"vc;lt;lgc
is at level'l or 0,_1'cspef:l.iw:l_3'.__ = | .

Table 3: Qutput of
AND-gate.

Xy X9 ]
0 !

. . . . - |
U'hiree basic types of Togic maies are un AND-gate, an OR-gale and a | (i
= a G : ; i
NOT-gate. Weshall Gow define them one by one. G
s ' - L . L i
Decfinition : Let the Boolean vartables xp and xp represent any two bits. An

AND-gate receives inputs x; and 2 and produces the output, denoted by
Xy A Xg, as g_ivé:: in-Table 3 alongsida. The stindarg ;iictoriai representalion
of en AND-galc is shown in Fig.6 . From the first three rows of Table 3,

-you can see that whenever Lhe voltage in any one of the input wires of the -

AND-gate is at level 0, then the output voltage of the gate is also at level 0. . -
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Table 4: - OQutput  of
OR-gate.

X1 V Xa

R
tad
)

H o= DO

Ll e B
— e

Table 5: Qutput of

NOT-gate
x| x
011
1[0

.56

—_—] Xy A Xy !
Xy )——>
T

Fig. 6: Diagramﬁlatic i—epresentation of an AND-gate

You have already encountered such a situation in Unit 1. In the following .
exercise we ask you to draw an analogy between the two situations.

ES5) Compare Table 3 with Table 2 of Unit 1. How would you relaté X1 A Xg
with p A q, where p and q denote propositions?
(Hint: Take T for 1 and F for 0 in Table 3 above.)

Let us now consider another elementary logic gate.

Definition : An OR-gate receives inputs x; and x, and produces the
output, denoted by x; V x2, as given in Table 4. The standard pictorial
representation used for the OR-gate is as shown in Fig.7.

X
' X9

X; v Xa

Fig. 7: Diagrammatic representation of an OR-gate
From Table 4 you can see that the situation is tke otl;er way around from
that in Table 3, i.c., the output voltage of an OR-gate is at level 1 whenever
the level of voltage in ¢ven one of the input wires is 1. What is the analogous
situation in the context of propositions? The following exercise is about this.

E6) Compare Table 4 with Table 1 of Unit 1. How would you relate x; V x;
with p V q, where p and q are propositions?

And now we will discuss an electronic realisation of the invert of a simple
switch about which you read in Sec.3.2.

Definition : A NOT-gate receives bit x as input, and produces an output
denoted by x', as given in Table 5. The standard pictorial representation of a
NOT-gate is shown in Fig.8 below.

e

I'ig. 8: Diagrammatic representation of a NOT-gate

If vou have solved E5 and E6, you would have noticed that Tables 3 and 4
are the same as the truth tables for the logic connectives A {conjunction)
and V (disjunction). Also Table 3 of Unit 1, after replacing T by 1 and F by
G, gives Table 5. This is why the output tables for the three elementary gates
are called logic tables. You may find it uselul to remember these logic
tables because they are neecled very often for computmg the logic tables of
logic circuits. : - : :

Another important fact tha.t these loglc tables w:ll help you piove is gwen in-

the followmgexerc:se L R P



E?) Let B = {0,1} consist of the bits 0 and 1. Show that B is a Boolean
algebra, i.e., that the bits 0 and 1 form a two-clemnent Boolean algebra.

As said belore. & logic circuit can be designed using elementary gates, where
the vutput from an AND-gate, or an OR-gate, or a NOT-gate is used as an
input to other sueh gates in the circuitry. The different levals of voltage in

these circuits. stzriing from the input lines, move only in the direction of the
arrows as showr in all the figures given below. For instznce, one
combination oI 1L three elementary gates is shown in Fiz.9,

v

k4

l
9

Fig. 9: A logic circuit of clementary gates.

Now let us try 1o sce the connection belween logic circuits and Boolean 4
expressions. \We first consider the elementary gates. For a given pair of
inputs x; and x2. the output in the case of each of these gates is an -
expression of the form x; Axp or x; V x; or ¥': -

Next, let vs look at larger circuits. Is it possible to fitd an expression
associated with a logic circuil, using the symbols A, Vand ' Yes, it is. We
will illustrate the technique of {inding a Boolean expression for a given logic
circuit with the help of some examples. But {irst, note that the output of a -
gate in a circuit may serve as an input to some other gate in the circuit, as in
Fig. 9. So, to get an expression for a logic circuit the process always moves
in the dircction of the arrows in the circuttry. With this in mind, let us
consider some citcuits. ' -

—

Example 7: Find the Boolean cxpression for the logic circuit given in Fig.:

above.- ~ - -

Solution: In Fig.9, therec-are four mput terminals. Let us call them
X, xa,x3 and x;i. So, x1 and x3 are inpuls to an OR-gate, which gives
X1V xz as an output expression (see Fig. 9(a) ). -

Stnilarly, the other Lwo inputls x3 and x,, are inputs to an AN_D~gaLe: They
will give x3 A x4 as an output expression. This is, in turn, an Tnput for a
NOT-gate in the circuit. Sa, this yields (x3 A x4)" as the output expression.
Now, both the expressions x; V x» and (x3 Axq) are.inputs to the extreme
tight AND-gate in the circuil. So, they give (x) Vxp) A (x5 A xy) as the
final output expression, whicl) represents the logic dreuit.

X
__v_l_"_‘\‘hhq“\‘ }[1 W )(:,
- Mo | ; _ i
Y P - Y
. I g _ " ':-‘ﬂ - '\_'_’);('\3 e J\_:}
P e
- _ F—-—’- A -
X3

Boolean Algebra ancd
Circuits
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You have just seen how to find a Boolean expression for a logic circuit. For
more practice, let us find it for another logic circuit, *

Example 8: Find the Boo]e.an expression C for the logic circixit glven in
Fig. 10. - )

X1

Why don't you try to find the Boolean expressions for some more logic
circuits now?

E8) Find the Boolean expression for the output of the Iogi;. circuits -giveu
below. :

(b)

So far, you have seen how to obtain a Boolean expression that represents a
given circuit. Can You do the converse? That IS, can you construct a lozic
circuit corresponding to a given Boolean expression? In fact, this is done
when a circuit designing problem has to be solved. The procedure is quite
simple. We illustrate it with the help of some examples.

Example g: Construct the logic circuit represented by the Boolean
expression (xj Axp) v (x1 V x3), where x(I<i< 3) are assumed to be
inputs to thay circuitry, '

Solution: Let us first see what the portion (x] A x3) of the given expression
contributes to Lhe complete circuit. In this expression the literals Xy and x;
are cennected by the connective A (AND). Thus tle circuit corresponding to
it is as shown in Fig.11{a), by the definitions of NOT-gate and AND-gate.

Similarly, the Eate corresponding to the expression x; V x3 is as shown in
Fig.11(b) above. Finally, noie that the Blven expression has two parts,
namely, x| Ax, and X1 V x3, which are connected by the connective v (OR).

1 So, the two logic circuits given in Fig.11 | when connacted by an OIt-gate,
wiil give us the circuit shown in Fig.12 .
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x
1 xl W x:l

(a) (b)

Fig. 11: Logic circuits for the expressions xj Ax2 and x; V x3.
X
1

(xl’ A Xg) v (xl v xa) R
X3 ) v i

Fig. 12: Circuitry for the expression (x| A x2) V (x; V x3)

X v Xg

This i the required logic circuit which is represented by the given expression,
* & ox

Example 10: Given the expression (x| V (x3 Ax})) A (xz V x}), find the

corresponding circuit, where x; (1 <i < 4) are assumed to be inputs to thé
circuitry.

Solution: We-first consider the circuits representing the e\pressmns Xz A x5
and xz V x;. They are as shown in Fig.13(a).

Y
T \enx ——>x3 >D°
'_3;+_/ >
X
2 Xy v,
)C: xﬂ :
4 — >o——)1

(a) - (b} (c)
Fig. 13 Construction of a logic cu'cultry

ylso you know that the literals x5 and x} are outputs of the NOT-gate. So
hese can be represented by logic gates as shown in Pig.13(b). Then the -
ircuit for the part x| V (x2 A %%) of the given expression is as ‘shown in -
“ig-13(c). You already know how to construct a logic circuit for the
IXPIEsSIOn Xp V %),

“inaily,-the two expressions (x] V (xa2 Ax3)) and (xs V xy) being connected by . -
he conneclive A (AND), give the required circuil for the given expression
s shown in Fig.14,

X X/ ) T
1 ’ 1 _ s . \ R
F\ll hd (\2 al \3
> - ] -—-\ (kl v(:x.,zm\z oA (:\2\/\ y _
X ’ £ - -
P 2 s Xg A Xy —/
_3_,,\/_0-\3 ] _ -
: 4
L ‘ i )
L_ A -
*3 x) > D A 1 | _
— s 4 .
e

Fig. 14 Cu cuitry for the expressmn (xl V{x2 Axg)} A (xa V ;\4)

I 4 4
Vhy don’t you try to solve s some exercis.’cs__nbw? ) : T
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ading to the expression x] A (x3 V x5).

.+ lobtain the logic table for the

N . i~ correspondence between logic circuits

NUTTH IS - . der about the utility of this. The
Lt = us understand the overall

S - -ud how, consider the circuit given in
il L outs bits xg, ¥z, and x3 as three

T 1+ 1 have two values only, namely, O or I,

: :: ¢ inputs have at any moment of
i .xpression (x; V x2)’ A x3, which
- values of the 3-tuple (x1,%2,x3).

~. lerstand the functioning of the
-..in which the settings of x;, x, and
: o _ .. X} =Xx3 =0 and x5 = 1. Then we

know vial x) Vxg =0V 1 = 1 (ses the second row of Table 3 given earlier).
Furtf:er, vsing e gic table of & ING i gate, we get (x; V x) =1'=0.
i Ly, from Tabl: 3, we get (xz V'xa) Axs =0A L = 0. Thus, the expression
(x1 V¥ x2)" Axz has value 0 for = sei of values (0,1,0) of input bits
(x1,%2,%3). Thus, if x; and x5 aze clased, while x; is open, the circuit
remains closed.

Using stmilar armuments, vou czz iy 2asily calculate the other vatues of the
expression (X3 Vo) Axg in the so

{3,13° = {{x. xy.34) Ixi =001, 1 €1<3)
af wrdues of input Lite. We liave rornrded them in Table 6.

w'Luerve that the © oo entries in the {ist three columns of Table 6 represent
the different values which the innme bits (x1,%2,%3) may take. Each entry in
the last colutim of Lie (able gives 15 output of the circuit represented by the
expiession (X3 V xn}' Axg for o} comeponding set of values of {x1,%2,%3).
For example, if (5,500,910, 4, i1 . (Lon the level of voltage in the output
bied s zy adevel O (see vie (Lird 2w of Table 6).

Yoo hocld verify that the values iz the other rows are correct.
+tavie 6: Logic tuble fo— the expression {3y VY Axy.
r Pan Ty |- N L VXe) | (k1 Vixe) A xg

o I 0

Lo o oo~
o T o T e B S o e

wuit given in E8(b) above.

et expression representing a circuit
~een the state (or level) of voltage in
.-ut lead of that logic circuitry. This



leads us the concept of Boolean functions, which we will now discuss. Boolean Algebra and

Circuits

3.5 BOOLEAN FUNCTIONS

In the last section you studied that an output expression is not merely a
device for representing an interconnection of gates. It also defines output
values as a function of input bits. This provides information aboul the
overall functioning of the corresponding logic circuit. So, this function gives
us a relation between the inputs to the circuit and its final output .

This is what helps us to understand control over the functioning of logic
circuits from a mathematical point of view. To explain what this means, let
us reformulate the logic tables in terms of functions of the input bits.

Let us first consider the Boolean expression
X(Xl,XQ) = X1 A X’z,
where x; and x; take values in 8 = {0,1}. You know that all the values of
this expression, for different pairs of values of the variables x1 and xq, can be
calculated by using propertics of the Boolean algebra B. For example,
0Al=0A0=0 = X(0.1)=0.
Similarly, you can calculate the other values of X{x1,x2) = x| Ax} over 5.

In this way we have obtained a function f : 52 — B, defined as follows: .
l-(el,02) = X(Cl,ez) = g /\Oé, where e, e; € {0, 1} ) -

So f is obtained by replacing x; with ¢; in the expression X(xy, xs). For

example, when e, =1, e; =0, we get £(1,0) =1 A0 = 1.

More generally, each Boolean expression X(x1,%2,... ,xx) in k variables,
where each variable cantake values from- the-two-element Boolean algebra B,
defines a function {: B¥ = B :f(ey,... ,e) = X(ey,... ,e).-

Any such function is called 2 Boolean function.

Thus, each Boolean expression over B = {0,1} gives rise to a Beolean
[unction. In particular, corresponding to each circuit, we get a Boolean -
function. Therefore, the logic table of a circuit is just another way of
representing the Boolean function corresponding to it.- ~

For example, the logic table of an AND-gate can be obtained using the
Mnetion A B2 — 7: Aler,c) =¢ Ac,.

To make matters more clear, let us work out an example.

Example 11: Let {: 5% = B denote the function which is defined by the
Boolean expression X(x),x2) = x| Ax5. Write the values of [ in tabular form.

Solution: [is defined by ftclr”ﬂ =cl Ach fore,e € {0, 1}. Using Tables 3,
4 and §, we have - .

(0,0) =0'A0 = 1AL =1s (0,1} =0'Al'=1A0=0," ' -
(10 =1A0 =0AT =T (L) = l'Al"=0A0=0.
Wewrite this lnformation in Table 7

- Table 7: Doolean function for the expression Xy axh.

L1 | Co ic’l 1 | e, e — c) A
ojof1la IATl=1
[ I U O T Y I 1AD—0
1|00 1 f OA1=0
111100l ono=o
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Why don’t you try an exercise now?

E12) Find all the values of the Boolean function f : 52 — B defined by the.,
Boolean expression (x; Axy) V (%; A x3). - : T

Let us now consider the Boolean function g : B? = B, defined by the
expression X(x1,xz) = (x1 V xz).
Then gler, e2) = (e; Vo), er,e0 € B.
So, the different values that g will take are SR
g(0,0) =(0vVO) =¢ =1, g0, 1} =(0v1)y=1=0p,
g(1,0) =(1v0) =1"=0, sL)=(1v1) =1=0.
In tabular form, the values of g can be presented as in Table 8.

Table 8: Boolean function of the expression (x; V x,)'.

e1 e | e Ver | gle,e) =
(er Vep)

00 0 I

011 "1 0

1|0 -1 0

1 1 1 0

By comparing Tables 7 and 8, you can see that {(e;,e2) = g(ey, e3), for all
(e1,e2) € B%. So fand g are the same function. S

What you have just seen is that €wo (seemingly) different Boolean
expressions can have the same Boolean function specifying them.
Note that if we replace the input bits by propositions in the two expressions
involved, then we get logically equivalent statements. This may give you _
some idea of how the two Boolean expressions are related. We give a formal
definition below. -

Definition : Let X = X(xp,x2,... ,x) and Y = Y(x1,%z,... ,%) be two
Boolean expressions in the k variables X1y.-- ,Xg- We say X is equivalent
to ¥ over the Boolean algebra B, and write X = Y, if both the expressions
X and Y define the same Boolean function over B, ie.,

X{er,e2,.-. ,ex) = Y(ey, €2, ... .ex), for all ¢; € {0,1}.

S0, the expressions to which f and & {given by Tables 7 and 8) correspond
are equivalent. .

Why don’t you try an exercise now?

E13) Show that Boolean expressions
XK=xAx) V(i Ax}) and Y=x A (x2 V x3)

are cquivalent over the two-clement Boolean algebra B = {0,1}.

S0 far you have scen that given a circuit, we can deline a Boolean function
corresponding to it. You also know thal given a Boolean expression over I3,
there is a circuit corresponding to it. Now, you may ask:

Given a Boolean function f : 50 — B, is it always possible to get a Boolean
expression whiclt will specf[_v f over B? The answer is ‘yes’, i.e., for every
function  : B" — B (n 3 2) there is a Boolean expression {(in'n variables)
whose Boolean function-is f itself. R



In fact, the disjunctive (and conjunctive) normal foring described in Sec.3.3 Boolean Algebra and
are precisely the expressions which will come in handy hcre. Circuits

To help you understand the underlying procedure, consider the following
examples.

Example 12: Let {: 5% — B be a function which is defined by
_ f(0.0; =1, f£(1,0)=0, f(0,1)=1, [(1,1) = 1.
Iind the Boolean expression (in DNF) specilying the function [.

Solution: The procedure involved for the coustruction of = Boeleun
expression (in DNF} which will specify the given function { is given in the
following three steps.

Step-I: Collect all the pairs of values v; = (i1, ¢jz) for which fleir,ei2) =1,
where (ej1,¢;2) € B2 Vi, In this case these are

v = (O,U), Va3 = (0,1) and V3 = (1, 1).

Step-II:  Write a minterm m; = yj; Ayjz for each pair v; of these values,
namely, {0,0), (0,1) and (1,1), where, for 1 <1<3,1<j<2,
xj, ifej =1,
Yy =
xj it Cij = 0. s
Now, because v; = (0,0) i.c. e;; = 0 and ¢19 = 0. s0, we have

My =y Ay2 = x) AXS, )
by the definition of yy; and vy, given above.
Similarly, you can see that

Mz =X]AXs and -m3 =x, A Xp.

Step-III: The join of the three minterms m;,my and mj gives the expres-
sion of the type ) : ’ -

X{x1,x2) =m; Vmy Vmy = (:lc'l Axg)V{x] AXa) V (3 A X2),

which is the required Boolean expression (in DNF) whose Boolean
function is the same as the given function [ (see the excrcise given

belowl.. - ) - - -

o+ v -
{ou can complete Example 12, by doing the following exercise. -

:14) Tn the previous example, show that X(er, ep) = fler, ea). V_(:l,c-z- cB.

n Example 12, you saw how to obtain an expression (in DNT) for a given
unction [ : 8% — 5. In the next example, you will see how 1o obtain the
xpression in CNI. - _
xample 13: Let «: 8% — 3 e a funclion which is defined by
£(0.0) = 0. g(1L0) =1, {0, 1)}=0. g 1} =1
‘ind the Boolean expression in CNF which specifies the funetion o,
olution: The procedurs to obiain a Boolewn expression in ONE specifvine
e Funclion ¢ is given in the following three steps. .
tep-I: Collect "all pair of values v, = (50, e2) such that w{y) = 0.
' where {e,6;0) € B V i Here two sucls pairs.are given by
Vo= l(} 0) ane Vo = {U‘ l) .

tep-11: \-'\’ritc a maxterm M; = y;; V¥ for cach pair v; = {ei, ¢u) of these
. two, where, for 1 <1i,j < 2, )

63
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E _ -Xj, if €j=1,"
Y= {-x;, if & = 0.
Now, because v; =~ (0,0) i.e. e;; =0 and €12 =0, we have
M| =yn Vy=x Vx5,
using the definition of Y1 and yys given above.
Similarly, M, = X} Vxg,
Step-III: Finally, the meet of these two maxterms M) and M, give the
expression
X{x1,X2} = M; A My = {x] Vi) A (x] V x3),
which is the required Boolean expression in CNF specifying the
function g .(Verify this!)

* ¥ &

The following theorems are simple gencralisations of the procedures
illustrated in the previous two examples. (We shall not prove them here.)

Theorem 3: Let f: gn -y (n > 1) be a function and
vi = {ei1, ¢y, . . . vein) (1 <i < k) be those elements of the Boolean algebra B°
for which f{vi) = 1. For each such v;, set m; = y;; A - - A ¥in, where

X, ife;=1, .
Yij = x}‘, ife,-;=0. forj=1,... ,n
Then X(x;,x,,. .. 2Xn) =my Vmy V.-.y my is 2 Boolean expression (in
DNF) whose Boolean function is the same as the {unction f

Theorem 4: Let &: 8" = B be a function and

Vi = (ei1, €9, . .. 1€in), (I <1< k) be those elements of the Boolean algebra

B for which f(v;) = 0. For each such v;, set M; =y;, v - .. V ¥in, where
o X, il Cjj = 1, -

yu—-{xj, 1fe1:=0 for_]—-l,..-,n,

Then X(x1,x%a,... Xe) =M AMyA .- A My is a Boolean expression (in

CNF) whose Boolean function is the same as the function g

Remark: To get a Boolean expression for g Boolean function h (say), we
should first see how many v;'s there are at which h(vi} = 0, and for how
many vi’s hiv;) = 1. If the number of values for which the function h
is 0 is less than the number of values at which h is 1, then we shall
choose to obtain the expression in CNF, and not in DNF. This will
give us a shorter Boolean expression, and hence, a simpler cireuit. For similar
reasons, we will prefer DNF if the number of values at which h is 0 is more.

Why don't you apply Theor_ems 3 and 4 now?

El5 ) Find the Boolean expressions, in DNF or in CNJ? (keeping in mind the
remark made above), for the Munctions defined in tabular form below,

EE_}@_ r(XI,Xg,X;;J [Tz X2 | X3 | B(xlgxg,_}gil_
17713 1 11711 1
11179 0 110 i
1ol 0 1161 0

()11 {0/{g I ®!'1]o]o 1

0111 0 011 0
0l11lg 0. ol1]o0 0
001 0 001 1.
0]oio 1] 0|00 T




Boolean functions tell us about the functioning of the corresponding circuit. Boolean Algebra and

Therefore, circuits represented by two equivalent expressions should
essentially do the same job. We use this fact while redesigning a circuit to
create a simpler one. In fact, in such a simplification process of a circuit, we
write an expression for the circuit and then evaluate the same {over
two-clement Boolean algebra B) to get the Boolean function, Next, we
proceed to get an equivalent, simpler expression. Finally. the process
lerminates with the construction of the circuit for this simpler expression,
Note that, as the two expressions are equivalent, the circuit
represented by the simpler expression will do exactly the same job
as the circuit represented by the original expression.

Let us illustraie this process by an example in some detail.

Example 14: Design a logic circuit capable of operating a central light
bulb in a hall by three switches X1,%2,%3 (say) placed at the three entrances
to that hall.

Solution:Let us consider the procedure stepwise.

Step 1: To obtain the function corresponding to the unspecified
circuit. .

To start with, we may assume that the bulb is off when all the switches are”
ofl. Mathematically, this demands a situation where Xt =xp=x3=0
implies [(0,0,0) = 0, where {15 the function which depicts the functional
utility of the circuit to be designed,

Let us now sce how to obtain the other values of { Note that every change in
the state of a switch should alternately put the light bulb on or off. Using
this fact repeatedly, we obtain the other values of the function f.

Now, il we assign the value (1,0,0) to (x|, x2,x3), it brings a single change in
the state of the switch x; only. So, the light bulb must be on. This can be
written mathematically in the form f(1,0,0) = 1. Here the value 1 of {
stands for the on state of the light bulb.

Then, we must have {(1,1,0) = 0, because there is yet another change, now
in the state of switch xo. ’ - :

You can verify that the other values of [{x1, x2,x3) are given as in Table 9.

" Table 9: Funétion of a cireuitry far a three-point functional bulb.

b1 ‘.‘Cg Xa f(x1 . ;?,;(?])_
0] 0 [0 0

1|01} 0 1

1] 1140 0.

111 1

0110 1 -

0l 1 ]1] - 0 _
0|01 ] - )
Lol 0 . -

Step 2: To obtain o Boolean expression which will speeily thé .
function £ Firsilv, nale that the munber of 1 in the last coliimn of Tl
9 are fewer than"the nnmber of 0's. So we shall abtain the_expression in-DNIY
{instead of CNF). ~ i ' i

By fUllowing Lhe stepwise procedure of Exaniple 12, and wsing Theorem 3,
you can see that the required Boolean expression is given by
T X{xy,%0,x3) = (x1 AXSAXzIV(x] Axg A XV (xpAXE A 5(3)V(JE1 AXg AX3).

Circuits
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At this stage we can directly jump into the construction of the circuit for

“this expression (using methods discussed_ii: Sec.3.3). But why not try to get

a simpler circuit?

Step 3 : To simplify the expression X(x1,%2,%x3) given above. -Firstly,

observe that '
(xlf/_\f)_crz AX3) V(x1 Axg Axi) = x1 A [(x'z Ax3)V (xg A x3)]

x1 A {(x5 Vxa) A X3]

x1A (LA X3)

= X1 AXg

I

il

by using distributive, complementation and identity laws (in that order).
Similarly, you can see that
| (xyAxhAxz) v (x1 Axa) = (xf Vx1) Ax.
We thus have obtained a simpler (and equivalent) expression, namely,
X(x1,%2,%3) = (x) Axa Axg) V[(x Vx) Axg],
whose Boolean function is same as the function f. (Verify this!)

Step 4: To design a circuit for the expression obtained in Step 3.
Now, the logic circuit corresponding to the simpler (and cquivalent)
cxpression obtained in Step 3 is as shown in Fig.15.

C >~D—'m3—

Fig. 15: A circuit for the expression (1 Ax2 AXE)V((xh Vx1) A X3).
30, in 4 steps we have designed a 3-switch circuit for the hall.

- - + ¥ ¥
We can’t claim that the circuit designed in the example above is the simplest

caircuit. How to get that is a different Story and is beyond the scope of the
presenl course.

Why don’t you try an exercise now?

E16) Design a logic circuit to operate a fight bulb by two switches, x; and x,
(say). | ‘ |

We have now come to the end of our discussion on applications of logic. Let
us briefly recapitulate what we have discussed here.

In this unit we have considered the following points.

1.~ The definition and examples of a Boolean algebra. In particular, we
have discussed the two-clement Boolean algebra B = {0,1}, and the
switching algebras B° n > 2. .

2. The definition aﬁc_l examples of a Boolean expression.

3., _H:wg to-write a Boolean expression in disjunctive horma_l form (DNF) or

ra
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10.

in conjunctive norinal form (CNF).

The three elementary logic gates, namely, AND-gate, OR-gate and
NOT-gate; and the analogy between their functioning and operitions of
logical connectives.

The method of construction of a logic circuit corresponding Lo a given
Boolean expression, and vice-versa.

How ta obizin the logic table of a Boolean expression, and its utility in
the understanding of the overall functioning of a circuit.

The method of simplifying a Boolean expression.

The method of construction of a Boolean [unction { : B® — 5,
corresponding to a Boolean expression, and the concept of equivalent
Boolean expressions.

The method of obtaining a Boolean expression (in CNF or DNF) for a
given lunction {: B" — B, n> 2.

IExamples of the use of Boolean algebra techuiques for constructing a
logic circuit which can {unction in a 5pec1['ed manner.

3.7 SOLUTIONS/ANSWERS

B1)

a} In E19 of Unitl, you have already verified the Identity laws. Let
us-proceed to show that the propositions p v (p Aq) and p arc
logically equivalent. It suffices to show that the truth tables of
both tnesc propositions are the samd. This follows from the [irst
and last columns of the following table.

Similarly, you cau see that the propositions p A (p Vv q) and p are
cquivalent proposttions. This establishes the absorption laws for
the Roolean algebra-{S, A, v, T, F).

b) Let A and B be two subsets of the set X. Since A N3 C A,
(ANB)UA = A. Similarly. as A C AUB, we have (AUBINA = AL
-Thus; both the lorms of the absorption laws hold good for the
Boolean algehra (P{X), 0.0, X, ).

Obgerve that

(qp vxa) = x\axl - (D Morgan’s Laws)
= {xiAxiyAl (Tdentily Taw)

) = _{,\:’] ALY A (e VY xY) (Coennlomentation Taw)
= ' Ciistrilaanive L)

Similarly, VO Ci see (hit )

XpAxy = (XA Az VX)) = {x] AxgAxa)V (x) A xg A XS

= (x} A A xg) V(xEAXE A XG).

Thus, the DNT of the Boolean expression X{xi, X2, x3) is given by

G Axh AXg) V() Ay ARV (x] Axa Axg) V(x) A X5 A %3).

plalpaq|pVipAal]

FIF| F o |

FIT| F 3 i -
T{Fl F (- 17 ° )
r{T| T T -

Boolean Algebra and
Circuits
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E3) We have

E4)

ES5)

EG)

E7)

18)

(A VG AR)Y = (g A g A Gt vy
- = ( V (x3)) A () A (3))
= (x] Vx2) A (x; A X3)
Now
(x] Vxy) = (x]Vx)vo
= (] Vx2} Vv (x5 A x3)
= (xi vx Vixa) A (x] Vxp V x5).
Similarly, it can be seen that

(x1 Vx3) = {x1 Vx; Vxa)A{x v X3V, x3}. Thus, the CNF of the

. given Boolean expression is -

(x] V x; Vx3) A (xi Vg VX3) A(x) Vxy Vxz}A(x; v Xy V x3).
We can write ‘
X(xl,}Q, X3) = ((x; A x2) V ({(x; A X2) A x;;]J V (xa A x3)
= (X1AX)}V(x2 A X3) (by Absorption law)
= x2A{x; Vx3) (by Distributive law)
This is the simplest form of the given expression. '

Take the propositions P and q in place of the bits X1 and x5,
respectively. Then, when | and 0 are replaced by T and F in Table 3
here, we get the truth table for the proposition P Aq (see Table 2 of
Unit 1).

This establishes the analogy between the functioning of the AND.gate

and the conjunction operation on the set of Propositions.

Take-the propositions P and q in place of the bits Xt and x,, .
re'spectively. Then, when 1 and 0 are replaced by T and F in Table 4
here, we get the truth table for the proposition PV q (see Table 1 of
Unit 1). : _

This establishes the analogy between the functioning of the OR-gate
and the disjunction operation on the set of propositions.

Firstly, observe that the information about the outputs of the three
elementary gates, for different values of mputs, can also be written as
follows:

O/\O:O/\l=l)\0=0,l/\1=l; (sce Table 3)

0vo=0, Ovi=1vo=1vi =1, and (sce Table 4)

0'=1, I'=0. (sce Table 5)
Clearly, then both the operations A and V are the binary operations on
Sand’: B Bisa unary operation. Also, we may take  for O and 1
for I in the definiticn of 2 Boolean algebra.
Now, by looking at the logic tables of the threc clementary gates, you
can see that all the five laws BI-B5 are satisfied. Thus, &5 is a Boolean
algebra.

a) Here Xy and x, are inputs to an OR-gate, and 50, we take x; v x,
as juput to the NOT-gate next in the chain which, in turn, yieids
(x1 V x3) as the required oulput expression for the circuit given in

(a).

b} Here x; and X2 are the inputs to an AND-gate. S0, the expression
X1 A xp serves as an input tg the NOT-gate, being next in the
chain. This gives the expression {x; A xz)’ which Serves as one
input Lo the extreme right AND-gate. Also, since X3 is another

input to this AND-gate (coming out of a NOT-pate). wa vat +1~



expression (x1 A xz)’ Axj as the final output expression which
represents the circuit given in (b).

3)  You know that the circuit representing expressions x, and x, V x§ are
as shown in Fig. 16 (a) and (b) belos.

(a) ' (b)

Fig. 16 _
Thus, the expression XA (xg V x3}, being connected by the symbol A,
gives the circuit corresponding to it as given in Fig.17 below.

X X,
S —— ) A )

X o
: T Xy V Xy J
X, X5

Fig. 17: A logic circuit for the expression. x/ r (x, v x5)

) You can easily see, by following the arguments given in E9. that the

-circuit represented by the expression x, v (x3 Axz) is as given in Fig. 18.

- o
1 : .
- — X v (% A x5)
. o ) = -
Xz 2 .
- Xy A Xg : -
Xy | : - -

Fig. 18 .
The logic table of this expression is as given below.

- [jl M2 X3 _):3 Xé AXg P xp Vv (.\f) A X3) H

oo loTloT 1 0 0 :

- 0-lo )11l ! j
O L10)07 o | 0 L

Fjyojp0p 171 0 I

(1 ]1]0 0 0 '

Lyltojo _og ! y

L1ol1]1] 1 1 !

Lti1r]1qo 0 1 ;

Siuce the output axpression representing the cirenit given in E8(D) is

und to be (x, 7.
below.

Ry
( u
0o
£ 1!
L{o!
0] 14
1] 1
I |0

Ll

x2)" A xS the logic table

Mo b Xy foxe f {3 A s
TN T

0 0 v
! oo i
0 ( 1 ||
0 0 1 g
1 0 | |
0 1 0

1 1.0 1

1 1 0

T T

for Lhis circuit is as given

L 1 ;

0 0 -

1 j !

! i

0| 0

1 0.

0 .0 .
o] o

Boolean Algebra.and
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E12) Because the expression (x; Axp) V (x, AX3) involves three variables, the

corresponding Boolean function, { (say} is a three variable function, j.e.
[:8* 5B Itis defined by

f(e;,eg,c;;) = (C] A eg) \' (01 Ae:',}, €, and c3 € 1.

Now, you can verify that the values of f in tabular form are as given jp
the following table.

r(CI,GQ,CjJ =
((’.‘1 /\(’.2) V(C] f\c&)

E13) To show that the Boolean expressions X and Y are equivalent over the
Lwo-element Booleag algebra B = {0, 1}, it suffices to show that the
Boolean functions fand g (say) corresponding to the expressions X and
Y, respectively, are the same. A3 you can see, the function f for the
cxpression X is calculated in E12 above.

Similarly, you can see that the Boolean function g for the expression Y
in tabular form is as Eiven below.

x§ | xg Vx) B(x1,x2,x3) =
: X1 A (xp Vv x5)
1| 1 0
0 0 0
1 1 0
- 1 1 1
0 ! 0
1 1 1
0| o 0
0 1 i

Comparing (e last columns of this table and the one given in E19
above, you can see that
f{er,e9,03) = gler,ez,¢q) VeeeselB= {0,1}. Thus, X and Y are
cqitivalent. .
E14) firstly, let us evaluate Lhe given expression X(xp,xa, x3) over (o
Lwo-clement Boolea 2igebra B3 = (0, 1} as follows:
X(0,0) = 10’ A 0 v (0 A0} v (0A0)
= (l/\l)\/(l/\(])‘."({}f\(]}
= IVUVH=] =~ [{0,0);
X{1,0) = (1'a W)V (A0 v (1A 0)
(0A1) V{0AQ) V(1 AQ)
' OVOVO=0=q(,0) B
X{0,1) (O’Al')V(O'/\l)V(U/\l)
= (A0 V(1AL V(ALY

[
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X(I,1) UAlyv('al)val

DA V0ALV({LAL

i

= 0vOovi=i={(,1)

It thas fallows Lthat Xley.en) = fle, ) Veo,e0 8 5= {0,1}.

I515) a)

Obzerve from the given rable that, among the two values 0 and 1
of thz {unction f(x1, x2.x3). the value I occurs the least number of
times. Therefore, by the remark made after Example 13, we would
prefer to obtain the Boolean expression in DNF.

To ger this we will use Theorem 3 and the stepwise procedure
adopted in Example 12. [irstly observe that

vi = (e, eizenn) = (1, 1.1),v2 = (ea1, 00, €93) = (1,0,0) and v3 =
(e31.es2,e33) = (0,0, 0),

are che three iriplets of values v; for which fivi)=1,1<i<3.
Then. the three minterms my, my and my (say) corresponding Lo
these three values vy, v4 and vy, respectively, are given by

My = ynAvpAvp
= X;AXs A Xz (because ¢y = ¢j9 = ¢35 = 1)
M2 = Yo Ayaa Avag
= X) AX) A Xg {(because ¢y, = 1 and ez = eq3 = Q)
mz = ¥31 Ayaz Ay ,
XA, A X3 {because e3) = e3p = ¢33 = 0)

Finally. the required Boolean expression in DNF is given by

N(x1,x2,x7) = uy Vg Vg
o= (xi A X2 Az} V(xg A .\:"2 I \’j) v (x'l A x'z A \’3)

By.the given table, among the two values 0 and ! of the function
g{x:.x2. x3), the value 0 has the least number of appearances. So

“we would prefer o abain ihe correspoitding Boolean expression in

ONF. .
1o zet that we will nae ieorem d and the stepwise precedure
adopted in Exanple |3 firstiy, observe that

vi = (e, 012,c13) = (1.0, Liovy = (ear,eom,004) = (0,1,1) and vy =
(€31, €32, ¢33) = (0, 1.0). '

are the three triplets of vaues vi for which g(\,) =0 1<i<1
Then. the three maxterns A Ma oand :\'1_3 (max) correspoudime o

these three values vy vy angd v respectively, are given_ by

e NI TR S - ' -
= M T {hoenuse Crp = ey = L and ey = (0
_‘\.T_g = W) ‘\.'_,\J Oy .
- = :-:', VTRV (beciuse cop = 0wl Con =y = L)
My = yyiVyas vy, - ) .
- i - = ’ : - ]
= X Vxa'Vxy (because ez = e33 = 0 and car = 1}

Finally, the required Boolear exi)rcs_sion (in CXNF) is given-by

Circuits
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L

x(x11x2:x3) = MIAM2AM3 )
= (X]‘_VX;VX;)/\(X;VJCQV'Xg)A-(x;VJCnga

16) Let g denote the function which depicts the functional utility of the

can casily sce that all the values of the function § are as given below-
8(0,0) =0, g(0,1) =1, 8L,0) =1, g(1,1) = p,
Thus, proceeding as in the Previous exercise, it can be seen that the
Boolean expression (in DNF), which yields g as its Boolean [unction, is
given by tlie expression
X(x1,%2) = (x} AX2) V (x1 A x),
because g(0, 1} =1 and g(1,0) =-1.
Finally, the logic circuit, corresponding to this Boolean expression is as
shown in Pig. 19,

Fig. 19

r——— -
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BLOCK 2 BASIC COMBINATORICS " -

Have you ever thought about how a communication engineer can find the total '

number of distinct ways in which a fixed number of dots and dashes can be
used for telegraphic communication? Or, how we can count the number of
primes less than or equal to a given number? Enumeration problems such
as these are what we discuss in combinatorics. The techuiques discussed in
this block are termed combinatorial. We use them to study the problem of
determining the size, and in some cases also the structure, of various sets that
arise in such diverse applications as games, probability, computer programme
analysis and mathematics itself.

This block consists of three units. Unit 4 deals with permutations and com-
binations, the binomial and multinomial thieorems, and combinatorial proba-
bility.

In this context, you might hnd it interesting to note that the notion of per-
mutation can be found in the Hebrew work “Sefer Yetzirah” (i.c., The Book
of Creation), a manuscript written by a mystic some time between 200 and
600. Also, the ‘binomial theorem’, which everybody is so familiar with, first
appeared in the work of Buclid (300 BC). What is of further historical interest
is that Blaise Pascal (1623 — 1662), published ir the 1650s a treatise dealing
with the relationships among binomial coeflicients, combinations, and pdlyno-
mials. These results were used by Jakob Bernoulli (1645-1705) to prove the
general form of the binomial theorem.

In the next unit of this block, Unit 5, we discuss partitions of natural numbers
and counting the number of ways of distributing a finite number of objects
into a finite number of containers, usually called boxes. 1l was Leonard Euler

(1707-1783) who advanced the study of partitions of integers in his 1740 two-
volume opus, “Introduction in Analysin Infinitorum®.

The last unit of this block, Unit 6, deals with the pigeonhole principle and the
principle of inclusion and exclusion. The latter principle has an interesting
history, being found in dilferent manuscripts under such names as the “Sieve
Method™ or the “Principle of Cross Classilication”. A sct theorelic version of
Lhis principle, which concerned itself with set unions and interscction, is found
in “Doclrine of Chanees™ {I718). a text on probability theory by Abraliam De
Maivre (1667 = 1754). Somewhat earlier, in 1713, Pierre Remond de Montmort
{1678 —1719) used the idea behind the principle in bis solution of the problem
senerally known as “le probleme des rencontres™ {(deraneements).

On the other hiand. the pigeonhole principle has no elear-ent mathematical
origin. This is also known as the Dirlchlet-drawer principle, alter the nane
ol the famous German mathematician Divichlel, (1805 — 1859). The more
sophisticated generalisation of this privciple colwdoated in the 1930 paper of
. Ramsey,

The combinatorial reasoning that vou will stady in this Block underclies all
analysis ol computer systems. diserete operanions research problens and linie
probability, Onr discossion of combinatories docsnt end willy the three units

heres W contime this stady i the iest block, adso consisting ol three nniis,

Befure we end, o note of advice! 1 you want Lo really get 1o arips with the
cantent, of s block, you must attempt Misceiliineons Bxereses siven at the
end of each unit. Deing Lhis, will lelp you mne

lerstand the undertyiog re: soning

better, and hence enjoy Lhe theory of combinatories.



NOTATION AND SYMBOLS

n!

P(n,r)
C(n,r)

P(n,ry,ma,...,r

n{A), A
P(X)
P(A)

Pn
Px
Qr

Pr (k)

p{®

P

s(n,k),0 <k <
ST > m)
x]a

B“

W(A)

'i\'(Pl)

N{(p1, p2) -

N{p}.py)
W(¢)
C (0)

n)

n

nn—1)...2.1
n!
{n—r)!
n!
(n =it
n?

The cardinality of Lhe set A
The powerset of the set X
The probability of the event A
The number of partitions of the natural number n
The number of partitions of n with exactly k parts
The number of partitions of n with k or fewer parts
The number of partitions of n with no part larger than k
The number of distinct partitions of n
The number of odd partitions of n
The Stirling number of the first kind
The Stirling number of the second kind
Xx—D{x~2)...(x ~n+1), i, falling factorial
Bell number
“The suim of the weights of objects possessing all the prop-
" erties in the sel A .
_The number of objects having the property p,
The number of objects that have the property p; and P2
The number of objects that do not have the properties
Prand pp - - : ’
The sum of the weights ol all the N objects
‘The weight ol all objects not possessing any of the prop-
erties p or equivalently possessing cxactly o propertics
The number of derangements of the numbers 1 to n
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41 INTRODUCTION

Combinatorics deals with arrangements ol objects according 1o some pattern (listing)
and counting the number of ways it can be donc. Mostly it deals with finite number of
objects and [inite number of ways of aranging them nccording to some pattern.
Somctimes cven infinite number of objects and infinite number of ways in which they
can be arranged are considered.

We present a few basic formulae involving pennutations and combinations. We have
discusscd binomial and multinomial expansions. Al the end we present some
applications to probability theory. To gel an idea of the type of counting problems we
present a few simple cxamples below:

Example a: Consider the 26 letters of Enelish alphabet. Find the numbei of words (nat
necessarily meaninglul) of length 3.

The words can be enumerated as aaa, aub, aag, ..., zas. Clearly the number of wards is
26 > 26 % 26.

This is 2n cxample with [nite number ol objecis arranged in & linite number ol ways.

Example b: In (he previous example consider the number ol all possibie wards ol Lnie
length.

As the length of words is not bounded, clearly. the aumber of words w infinite. This s
an example with finite number of abjects arrmeed i infinite nwmber ol ways.

Example ¢; Consider the sei of all posiuve integers. How many ol them are less than
1007

The answer is clearly 99, T this case we have infinite number af abjects weanged in 2
finite number of ways.

Example d: Consider the set of all positive inegers. How many of them are prime?
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The unswer is ‘infinity* as there are infinity of prime numbers,

Example e: Suppose a mail-order company sells six styles of slack. Each style is ‘_
available in 8 lengths., six waist sizes, and four colours. How many different kinds of
slacks does the company have 1o stock?

The answer is 6 X 8 x 6 % 4 = 1152 kinds [ slacks.

We will be mainly intcrested in amranging a finite number of objects in a finite number
of ways,

Objectives

Aller reading this unit yvou should be able 10

. know the contenis of the subject of combinatorics:
. use [aciorials;

. know what permutations and combinations are:

. perform caleulations in permulations;

® perform calculations in combinations;

¢  cxpand in binomial series:
] expand in multinomial serics; )
- use the ideas to caleulate combinatorial probabilities,

4.2 THE MULTIPLICATION PRINCIPLE AND THE
ADDITION PRINCIPLE : .

We now discuss two [undamental principles of counting called Multiplication Principle
and Addition Principle. There is one principle calted multiplication principle which is
more-general than permutations. There are various ways of explaining this principle.
Suppose thal a task/procedure consists of a scquence subtasks or steps say subrask 1 ...,
subtask 2...., sublask k. Furthermore suppose thal sublask 1 can be performed in n,
ways, sublask can be performed-in n, ways after the subtask | has been performed,
subtask 3 can be performed in n, ways after the subtask | and subtask 2 have heen

performed and -s0 on. Then the number of ways the whole task can be performed is -

Ny -0, -.on Let us take the model of boxes and objects Mling them. Suppose thére are _
m boxes. Supposc e first box can be filled ap in K (1) ways. For-cvery way of Niing
the first hox, suppose there are k (2) ways of filling the second-box. Then the two boxes
can be filled up in k(1) - k (2) ways. [n generit, il [or every way ol flling the first
{r-1} boxes the rth box can bLe filled up in k (r) ways, for r = 2,73 ... m, then the toul
number of ways of Glling-all them hoxes is k (1) -k (2) ... k (m) ways.

This principle can handle many situations which the simple permutation cannot. It is
casily scen that the formula for P (n, 1) has been derived using this principle,

Jusl as we have multiplicalion principle, there is “another fun(lamcnnl principle called the
addition principle. Suppose that a task consists of performing exactly one sublask from
—.mmnu a collcctmn ol d|<JU|m (mutually <xelusive) subrasks, says sublask 1, subtask 2,

- .. subtask k. (e the sk is performed i either the sublask 1 is perfonmed or subtask

2. ..or sablask k is peeformed). Furiher suppose that subtask 7 can be performed in n,

wars = L2 Lk dthen die nombé of ways tie sk can be perfurmed is ihe suin
STy T 0y s By Suppose we want Lo enumiecie soine cambinatonal arrangemenis. 1
there are k classes Cp. C,. ... C, of arouping these arrangements, such thai, these
classes are mutually exclusive and cxhaustive in the scnsethat cvery arrangement [alls
precisely tn one ol the classes, then the total number of arrangements is equal 1o the

sum ol the pumber of arcangements beionging 1o these k clusscs.

Example 1: There arc -lhrcc political partics P}, P,. and Py. The party -P,- tus 4

- members, Py has 5 members and Py has 6 members in an assembly.” Suppose we want o -

select wo persons, both [rom-the same party to become president and vice president nf
a_government org anisation. In how m.my w'l)'S can llns be done?



Solution: I'im P we cando it in 4,3 = 12 ways by the multiplication -principlc. From
P, it can he zhne in 5.4 = 20 ways, From P, it can be done in 6.5 = 30 ways. By the

Camblnatoricc —— An
‘Intradeclion

addition prucple the number ways of doing il is 12 + 20 + 30 = 62 ways,

Though the atdition principle seems to be simple, together with the -mulliplication-
principle. guie a number of combinatorial cnumcration can be done with them.

* ok %

4.3 PERMUTATIONS

Permutations ax ardered arrangement of objects. Mare specifically, if we are given a
number of ohuuts. permutation of them taken k at a time (where k is not more than the
number oi ohirzts) consists of amanging k of them on a line, the order in which they
arc arranged h:ng important. (lincar arrangement)

Example 2:

The permutations of a, b, ¢, d taken 2 at a time are ab, ba, ac, ca, ad, da,

be, cb. bd. db :d, de. They are 12 in number. Note that ab and ba are considered
different even hough they consist of same two objects.

4.3.1

NotzZons

We neced a noution for wriling product of consecutive integers from 1. The products 1,
| %2, I x2x2% 1 x2x3x4, cic, can be writien compactly by [!, 21, 3!, 4!, etc.
respectively. Trese are read as ‘one factorial®, ‘lwo factorial’, ‘three factorial’, *four

factorial’ elc,

. !

In general we vrite 1 X2x3x ... X nas n! and read il as ‘n factorial’ for cvery

posilive (intega

]

n.

E1} Evaluate

121

E2) Compulc T +4) ! and 3! + 41 Are they cqual?

E3) If m ané 1 are positive integers show that (m +n)! 2 m! + al,

E5) Il n coups.

E4) . Compulc —ﬂT for n = 20 and r = 17.

-n!

arc at a dance, in how many ways can the men and women be paired

for = sing .« dance?

Suppose n and -

of n distinguizsl..

PP P We

Wiat is tie v .
linc. Choure o .

ways, Then fre

box. The {irst -

the il box s 8
Thus we have ¢

I (r

I we see the ovos

(=1} lams (n
proved that

P

We state this o

Theorem 1 17

i

hn=r=1) ...

¢ Lwo positive integers with r € n, Then the number of permutations

& objects taken k at a time is denoted interchangeably as P (n. 1), "P.

- the notation P (n, r).

al P(n, 1)? To answer this question consider 1 boxes arranged in a
Hject out of nand place it in the first box. This can bz done in o
he remaining (n - 1) objects choose one and place Tt in e second
hoxes can be lilled in n (n — 1) ways, We continue this operation Gl!

#). The number of ways of doing this isn(n—1) (nh—=2) ... (n—r=1).
.side i

c=n(n=0)}...(n—-r + 1)

msion Tor 1 (n. r) it is clear that is obtained by omitiing (he st
320 from o n= 1) (n=2) ... 3.2.1. Thus we have

= nln-nt

icorem,.

wmber of r-penmutation from an n-set, where 0 € ¢ € 1oy wrven by
=nm=1yin-2)y ... (n—-r+i)
1

(n-1)
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In particular, the number of permutation of an n-set, n 2 0, is given by

P{n, n) =n!
Example 3: P (6, 4) = 6.5.4.3 = 61/(6 - 4)!

® ¥ x

We defined factorials only for posilive inlegers. Thus at this stage 0! or zero-factorial
has no meaning. But consider P (n, n). Clearly its valee is nl. On the other hand

P(n, n) = nn - n)! by the carlier formula derived, Henee, if at all B! bas to be
defined. it can only be L, At this stage we will take. by deftnition that G = 1, Thix will
be consistently used everywlere and hence no logical difficulty will arse. in particular
we will have P{n, 0) = 1 and P (0. 0) = I though apparcntly no sericus interpretations
except mathematical necessity consistency can be given in support of these idenlities,

Distinguishable and indistinguishable objects: [n defining the concept of permutation we
assumed thal the objects wers distinguishable. YWhat does it mean and what is the nced
for it? Going back 1o the example of permutations of a, b, ¢, d taken tw o at a tiwe,
namely, ab, ba, ac, ca, ad, da, be, ¢b, bd. db, ¢d, de, supposed d =¢ = b, which means
merely that we don’t distinguish between the three objects b, ¢, d. Then the 12
permutations change to ab, ba, ab, ba, ab, ba, bb, bb, bb, bb, bb, bb. These comprise
repcated permulations ab and ba together with bb. Are we going lo consider them as
permulations? Later on we will consider permutations in which repetitions are allowed.
But for the present we have to assume that all the objects are distinguishable and no
penmulation conlains any repeated object.

4.3.2 Circular Permutalions

Permutation of abjects is usually thought of as linear arrangement ol. objects; this means
that we visualize arrangement of objects in a line. ‘But there is a variant in which.the
objects are arranged along the circumlerence of a circle. We observe the objects in the
clockwise direction. On the circumfercnee there is no prefered origin and hence the
permutations abed, beda, cdab, dabe will fook exactly -alike (sec Fig. 1). 1f we consider -
all the n! permutations of n things cach permutation will be indistinguishable from the
(n< 1) more obtained by the process of wansferring (he object at the first position Lo the
last position repeatedly in linear permutation, that is. if arrangements arc coasidered the
same when one can be coblained from the other by rotation, Thus as circular

permulations we will have exactly n¥/n = (n— )%, Thus we have shown that the number
of circutar permutations of n things taken all at a time is (n—1}!

d

‘ ) -Fip. 1 b
Example 4: In hew many ways is it possible to scat €ight |)c'rso_n at a round-lable?

Soluhon Clearly we need the circular pcrmul'mon.s ul S 1hings. Henee the .'\na\\Lr is -
7= 5040, ] -

Example 8: To the procecding question, what would-be the answer if a cerlam puis
mong the cight persons (1) must not’sit in de'm.nL :-.t..u;’ (1) must sit in adjacent

s&.d['\

Solulion: From 5040 we have to subtracl the number of cases in which the pair ol
person sit (ogelher. If we consider Wie pair as forming one unit, we have 6! circular
permulations. ic, (7 - 1) But ¢ven as unit they can ‘be arranged in two ways. Hence
the required answer is 70 - 6' 6! = 3600 {or part (). :

-

* % %



Example 6: Suppose there are five married couples and they (10 people) are made to
seat about a round table-so that neither two' men nor two women sit mgclhcr (the sexes
alternate) Find the number of circular arrangements. .

Solution: Five females can be made (o sit about a round tble in (5 — 1)t = 41 ways.

Onc male can be seated in between [wo females. There are five positions and hence

they can be made to sit in 5! ways. By mulllpltcauon principle, the tolal numbcr of
ways of scaling arrangement is 41 x 5! = 2800.

* % ¥

LExample 7: If seven people are seated about a round table, how many circular
arrangements are possible if any will not have the same neighbours in any two
arrangements.

Solution: The following two distinct arrangements show that each has same ncighbours.
Hence the total number of circular arrangements

[
= (T=1) ' X — =360
(7= 1)t == 30

=
o

Fig. 2

Example 8: If there are 7 gents and 5 ladies, how many eircular arrangements are
posstble if the ladies do not sit adjacent (o each other.

Salution: The seven gents can be seated first. This can be done in 6! ways. The
Jadies can sit in between two gents. There are seven places te sit. The fadies can sit in
P (7, 5) ways, Hence the answer is 6! X P (7, 3).

1 & o
Examiple 9 How many numbers between 10 and 99 have distinct digis?
Selution: One miay be wmpted o give the answer as P (10, 2). But these will also

include the cases with 0 in the first position. The correct answer is 9.9 = §1. For, the
first positien can be filled up in 9 ways (by any digit other than Q). Aler filling the

lvst position the second position can be filled up in 9 ways (by any of the 9 digits other

than (hat accupying the first position. Note that this will include 0 also)

You may now uy the lollowing cxcrcises.

56} How many liconce plates can be nade if cacli should have 3 leiters with o fetia

reprated? Wikt will be the answer il the letiers can be cepeated?
L7y How many inegers between 190 and 999 consist of distinet even digils?

E8) Consider all (he numbers.between 100 and 999 that have distinet digits. How
ntany of them are odd?

‘E9) Verify that P15, 2) = P(7.3) andi P (59) =P 3).

Combinatorics — An
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E10) How many integers of five digits greatcr that 63000 have the following wo

properties: -(i} the digits of the number arc distinct: (i) the digits 0 and 1 do not
occur in the number? -

433 Permutation of Objects not Necessarily Distinct

We have shown that there are P (n, r) ways to choose r objects from a set of n distinct
objects and arrange them in linear order. In this section we cansider the samc problem
with the relaxed condition that some of the objects in the collection may be
indistinguishable, that is, we discuss arrangements of a collection of objects with
repeated abjects such as the colleclions a, b, =, b, b. =, a. Suppose therc arc n things of
which m,; belong to category |, m; beloag to category 2, etc. my, belong 10 calegory K,
wilh the categorics mutually cxclusive and exhaustive so that iy + my ... + myg = n.

n!
mtm,)...m/!
follows from the fact thal any permulation is unaffected if the objects belonging to
category | are permuted among themsclves in m,! ways, objects belonging o catcgory 2
are permuted among themselves in my! ways, ..., objects hetonging Lo category K are
permuted themselves in my! ways. More precisely we have Whe following theoremn:

. This

Then the number of distinct permutations of these o things is

Theorem 2 Il there are n objects classilied into k distinct types, with m, identical
objects of the first type, m, identical objects of (he second type -.. and m, identical
objects of the ki type where my + mz + ... m; =0, then the number of armangements
n!

of these n objects, denoted by P (n; my, my, ..o My) = ——————"—.
m, ! m,t o m !
1- R B

Proof: Let x be the number of such penmutations. If the objects of calegory i are
considered distinet, then they can be arranged amongst themselves inom;! ways where

i =1, 2. ... k. By multiplication principle, the total number of permutation of n distinct
things taken all at a time is xm! my! .. m! But this is precisely nl when there are n
distinct objects. Hence xm,! m,! ... my! = n! That is x = nlZm iny! ..omy !

- Example 9: How many 9-lettered words (not necessarity meaningful) can be (ormed

asing all the letters of the word CHARIVARI?

Selution: In the word CHARIVARI C, H, V aceur onee. A, R. I cach occurs wice.
Henee we can form 9111111212121 = 45360 words, )

T T T

E11)-How many permulations arc there of the letiers aken all aL a time of the words
(a) ASSESSES. (b) PATTIVEERANPATTI?

4.4. COMBINATIONS

Pcemutation refers 10 the ordered arrangement ol objects. Bul combination is a sclcction
ol a specilied number of abjects from a storé ol distiguishable objects. Supposc there
are o distinel objects and we_wanl a selection of r objeets, where ¢ < n, and the order of
thc_objects in the selection dues not matter. This is called a combination of o things
Tlaken r it a time. The uumber of ways of domg this 1 represented interciangeably by
C.omC, G (2) and Con, 1) We will use the notaton C (n, r) lor ypographical
convenicnee and alsu in conformity with the notation P (n, 1) for permutation. We can
conwveniently read C (n, r) as ‘n choose 10 emphasize the fact that only ‘choice is '
invelved but not ordering. One ‘ol the muin dillicultics in permutations and combinations
is in determining which one is to be used in patticular situation. 1his calls for iogicai
thinking. Ounly practice brings oul the dilference between-them. In terms ol ideas of scl
theory C (n. 1} is the number of subsels of size r from u'scl containing.n clements.-EFrom
(his point of .vicw, clearly, C{n, n) is I, fur every posilive inlcger n.



4.4.1 ‘Tormula for C(n, r)

Let us get a relationship between P (n, 1) and C(n, r). With n distinct objects, C (n, r) -
counts the number of ways of choosing r of them without regard to the order. Any onc
of these choices is simply a set of r objects. Such a set can be ordered in r! ways. Thus,
to cach combination there corresponds r! permutations and hence there are r! times as
many permutations as there arc combinations. Hence, by the multiplication principle we

gt P(n. =t C(n.ryor C(n, 1) =P(n Oft! = Pln1) _ nt
have proved. ‘ Py (a—tH r!

. Thus we

Theorem 3 The number of r-combination from an n-set, where 0 £ K = a. is given by
I

C n, l') i

¢ (n—r}tr!

Theorem 4 C{n, r} = ‘C (n, n -1k

Proof: For every choice of r things from n there comesponds uniquely a choice of n—r
things from n, consisling of the leftovers. This onc-lo-ane correspaondence shows there
qumbers must be the same. This proves the theorem. Another proof of the ihicorem is to
observe that the formula for C (n, 1) is unaltered if r is changed o n —r.

Even though we have a formula for C(n, 1} in terms of factorials. in praclice, we use

the following obvious identity. ;

o (n- 1) ... r factors

Cin, )= ,
r(r—1) ... r factors

In the above cxpression there are r factors in the numerator as well as in the
denominator. Hence if r is Iess than {n —r1)} we use the formula as it is. On the other
fiand, il r is greater than n—r, wWe usc the expression with n—r factors in Lthe numeralor
"as well as the denominator.

But C (10, 8) 199
. But N =
2.1

Example 10: C (10, 3) =

The numbers C (n, r)'s arc zlso called the binomial coclficicnts as wicy oCCUr a8
cocihicients of x™ in the expanston of {1+ x)"in ascending powers of x. Dut we wilt
consider the expansions later. At this stage some numerical examples are in order.

Exmmnple 11: Evaluate C(6, 23, C (7, 4y and C (9,3}

Solution: C(6, 2) = L3 L s.c (7, 4) = 165 15, Hlere we have made vse of the
2 3.2.1
-
fact that C(7, 4) =C(7,3). TV 1) = ;;T = 84.
L U A

At this stave certain values of C (i, r) thal ace casy lo get are mivedn,

Cr.nf=C 0)="{n 0=1 Cin, N=Cmn=1)=Dn 1} =n

4.4.2 Combinations with Repetilion

Let us consider e tollowing example: Suppose [ive friends slopy at o swed shop
where cach of them has one of the following: a samosz, o ubbi, and @ vada Flow
many different putchases are possible? Let s, L, and v represent samasa, nkki, vada
respectivety, In the following table we have listed some possible purchases i [irst
column and in sccond column we have shown another representation ol cach
purchase.

Combhinalerics — An
Introduction
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Here cach x to the left of the (irst bar (|) represents a s. cach x benween the 1rst and
second bars represents a ¢ the x's 1o the right of the second bar stands for v's. Any
order will consists of five x's and two |’s. Conversely any sequence of five x’s and two
{'s represents an order. By this 2 correspondence has been cstablished belween two
collections af objects, where we know how to count the numbers in one collection. But
e number of sequenses of five x's and two l’s is just the number of 1wo positions in
the sequence for the I's. Hence the answeris C(72.2)or C (7, 5) = -;'_IIU_ .

When repetitions are allowed, for n distinct objects an arrangement of size r of these
objecls can be obtained in n* ways, for any integer r 2 0. Let us now discuss a
comparable problem for combination. When we wish (o select, wilh repelition, r of 0
distincl objects, we are considering alf arrangements of r of one kind (say x's) and n- |

of the ather kind (say rs)'ns (n—1) |'s are nceded to separate n types and their

. fn+r-1)1
number is Lnxr- DV _ C(n + r — [, r) as shown helow,
r'{n-T1)!
Theorem 5 Let n and r be natural numbers, Then the number of sclutions 1n natural
numbers Lo the equation X, + X, + ... + X, = r or equivalently the number of ways 1o

choose r ohjects from a collection of n objects with repetition allowed is C(n-r— 1, 1),

__Proof: Consider the set of all strings of length n + r - | containing exacily r stars and

n — ! bars. The racdinality of this sct is C{n + r— I, r). Now we demonstrale how such
sirings corresponds (o solution of the equation x; + ... + x, = r. Then n— ] bars in the
string_divide the siring into n substrings of stars. The number of stars in these n
. substrings are the values of x, through of x. Stnce there arc r stars altogether. the sum
“is r. There is ane-to-onc cormespondence belween strings and sotutions and the theorem -
is proved. ; ; -

Example 12: A bov wanis to buy someé pel birds. The pet stere sells parrals. boibuls
and moinas. How many dillerent sclections arc possible if the boy wanls to lake home
stx birds, - to

Snlution: Here v = 6, n_= 3. Hence number of possible selection of pet birds

=C(6+ 3_—1.6}=c(3,(,)=@=23_'

i fact we 2ee enamerating all arrangements of § synbols consisting of six xX's 2nd two
hars. -

= & W

Example 13: Delermine ajl integers solutions 10 the equation

Xy+ Xy + X+ %, =T wherex, 20 Torall 1 €i<4

Seliztion: The solution of the equation conesponds 1o a sclection. with repetition, ol
size 7 from o collection of size 4. Hence there are C{3+7 - 1,7 = 120 solutions.
fu=351=7) ) .

- L3 >
We conclude with the following remark. Let us recognize the equivalence of the ’ -
following; ' )

(@)  The number of integer solutions of the equation X, + X; + ... + X, =1, X, 20,
l=1<n ’ -

(b)) The nuch_:r of sclections, wilh repetition, of size r (rom 2 colicction of size h._

(c) ‘The nuniber of ways r fdentical-objects can .be distributed among n distirct
containers. (Please refér to unit- 5). - ° :



45 THE BINOMIAL EXPANSION - e aeuion

Sum of two distincl symbals kike a + b, p +q. x +y, etc. is catled a binomial, the
binomiai expansion refers 1o the expansion of a positive integral power of such a
binomial assuming that the symbols stand for real numbers or complex nunibers.
Elementary multiplication gives the following expansions readily.

(a+b) =a?+2ab+Db?

a' + 32’ + 3ab? + b’

(a +h)
(a+ b = a' + 4a'b + 6222 + dabt + b

(a+ b)Y = a®+ 5a'b + [02'b? + 10226 + Sab* + b°

Example 14: Let us take the last identity. On the right hand side we have the six lerms
a%. Sa%h. 10a*b?, 10a%b*, Sab*, and b®. Our aim is to explain the significance of the
coclhcients 1, 5, 10 10, 5, 1.

et us consider
(a+bY¥ =(a+b)(a+b) (ath) (a+b) (a+b)

Suppose we want the coefficient of a'b? in this expansion. Clearly every tcrm can be got
by sclecling one tenm from the binomial in each of the § parenthescs. To gel a'b? we
have to select a from 3 of the parentheses and b from the remaining 2 parentheses.
Clearly the parentheses for a can be ¢hosen in C (5, 3) ways, whicl is precisely 10.

€ *

The above argument can be extended to get the coefficient of a'd" =" in the expansion of
(a + b)™. From the n parenthescs representing (a + b)® we have (o select r for a and the
remaining {n — 1) for b, This can be done precisely in C (n, r) ways. Thus the coefficicent
of a'b™ " in the expansion of {a+ b)" is C( a, r). In view of the fact that C(n, 1) =
C(n, n—=r) the coc(ficients of aB" ~F and a"~'b" will be cqual. Clearly r can ake only
the valees 0, 1, 2, ... a. We also have C(n, 0) = C(n, n) = | as the cocfficients of a"
and b". Hence we have established the binomial expansion

i+ =a"+Cn, 1} " '5+Cn, 2) R PR

e+ C{n, ) 2" D+ L+ B
4.5.1 TPascal’s Formula for C (n, 1}

An mteresting property of the binamial coelicients makes it exsy 1o 1abulate their
vilues. The Tormula is as follows.

Theorem 6 For all positive integers noand all rosuch that 1 2120,
Cim+1L,n=Cmn+C,r-1).

Proof: The lelt hand side of the identity represents the numbuar of ways ol choosing r
things out of (n + 1) distinet things. Suppose we sclect an objeet from (0 + 1) and mark
it. Then the mubier of combinations in which the mrked thing is absent is clearly

C in. 1) as we have then o choose r tings out of the unmarked things. The number of
combimtions o which the marked thing is present 18 Conor = 13 oy wa have o chooe
(¢ - 1) objects from the n unmarked things and attach the nuirked thing 1o 4 fo ake up
Faiines. Pascal’s tormuin now Toiiows Nom the fact that te sun of L fast o
numbers mentioned muost be equal o Cn+ 1) Alternative algehae proot

n! n!
+ S

(o — ! n—r+ 0 {r-1¥

Cin.ry+ Ctn,r— 1)

n!
= n=r+ b4y = C{n+ 1, 1)
r{a+i-r}
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Pascal’s Triangle: Pascal’s identity formula 8ives us a recursive way 1o calculate the
binomial coelficients, sinee it tells us the value of C(n, r) in terms of binomial
cocflicients with a smaller value of n. The base cases are C 0,0 =C(n, n) =1 for all
n 2 O, since Theorem 3 only applies for 1 £ r £ n. This recursive approach allows us to

form Pascal’s triangle, the display of the binomial coefficients shown in the figure
given below,

' 8 28 56 70 56 28 8 I
I 9 36 8 126 126 8 36 9 |
P10 45 120 210 252 210 120 45 10 |
1 .11 S5 165 330 462 462 330 165 55 11 1
Pascal’s triangle,

- Fig. 3 ~
_The nth row of Pascal's triangle gives the binomial coefficients C {n,ryasr géé's {rom
0 (at the left) 10 n (at the right); the top row, consisling of just thé number I, is for n =
0. The left and right borders are ali 1's, reflecting the fact that C(n, 0) = C(n, n) = I
for all n. Each entry in the interior of the Pascal’s triangle is the sum of the two cntrics .
iemediately abové it to the left and right. We call this property the Pascal propeny. For
example, each 15 in row 6 {remember that we are starting the count of rows at 0) is the
sum of {he 10 and the 5 immediately above it.

The diagonals of Pascal's triangle are also interesting; they correspond to conslant -
values of r. The left edge, consisting of all I's, corresponds 1o r = 0, .reflecting the fact
that C (n, 0) = |. The diagondl paralicl o the lefi edge but moved oheunil to the right
reads {from the top down} 1,23 4,5 ..., rcﬂcfling the fact.rhat Cin. 1) = n_l_'nr )

n 2 1. The next diagonal to the right, reading 1. 3, 6, 10, 15, ..., reflects the facl that
Cn, 2 =n{n-1¥2 for n > 2; these nunahers arc called “riongulac™ nu'mbcrs, and their
ditferences iucrease by 1 as we moye down the diagonal, -

4.5.2 Some Identities Involving Binomial Coefficients o

Identity 1: By setling a=b = | in the binomial expansion of _(:\+ b)" we pot
C.0)+Cln: ) +C(n, 2) + ... C(n,n =1)+ C(n, n) = 20
This-idcnlily has an inlerpretation worth knowing. Suppose there is - set with n -~
¢clements. HGw many distincl subsets can be formed from this set? The number of
subscts containing precisely r clements is C (n. r). Hence the total number of subsels is
2:20 C(n, 1) = 2° by the identily. Thus we have proved the followi_n-g:- .
The number of distinct subsets of a sl with o clements is 2°
Identity 2: By sculing a=1lb=-l in the expansion ol {a+ b)" we get
Cn, D) +Clo, N+Cn, D+ .+ (-1 + Caa) = 0 -

By taking all the ncgative erms 1o the right hand sidé we zel

Z Chn= Z_C'(n. ()= 2m! ) . )
I'cw::n —L ;‘oc!d -



and this has the interpretation that the number of subsets of a set wilh n elements with Cambinatories.— #
even number of lerms is equal to the number of subsets with odd number of terms. : Introdueclic

E12)  Show that C (n, m& CmK=C(nk}Cin-k m=-%)

EI13) Prove st C(k, ) + Ck + 1L KDY+ C(k +2. ) + ... +
Cin, K)=Cn+ 1.k +1) lor all patural numbers k <

4.6 THE MULTINOMIAL EXPANSION

In analogy with binomial which is a sum of two symbols, we have multinomial whicl is
a sum of several distinet symbols (alleast theee, but finile). Multinomial expansion refers
lo the expansion of a positive integral power of a multinomial. Specifically we will’
consider the expansion of (a, + a, + ... a, )" For (he expansion we can use the same
technique as we use for the binomial expansion. We consider (he nih power of the
multinomial as the product of n lactors each of which is the multinomials Every lerm in
the cxpansion can he cbiained by picking one symbol rem eaci facter and multiplying
them. Clearly any term will be of the form afia,2 ... a’m where My T0 --0y AF€ DON-
negative integers adding to n, Such a lcrm is oblained by selécting 2, from r, factors,

a, from r, factors from among the rcmamlng (n —r,) parentheses, and S0 On. '11115 can be
done in C{n, r;}- C(n- Iy ) - C{n—-r = ry) ... C{n-r—r—-.. =T O) ways.
n!

o .Thus we have shown that the mulunomnl
rl rz -

This is casily seen to simplily to
cxpansion is
ﬂ‘ r r
n_ - r
(Qy+a;+... +a,)" = E A L aflas? .., aip
ool

Where the summations is over all non-negative integers ry, 1y, ... r,, adding 1o n.

4.6.1 A Notation for Multinomial CoefTicients

We saw that the cocfficient of ajia)2... afm in the expansion of (a, +a,+ ... +a )

m

n! R . . . . . . .
. This is called a multinomial coefficient in analogy with the binomial

fr.t

rpiplo !

cocflicient, We have a convenient notation (o represent the multinomial cocfficien. ns
n y

(O T SV ST r,)- This is also represented by many auvthors as (F|. S TP P

Example I3: What is the coefficient of x2y%2%%0? in the expansion of
(NG y+ e +14+w)07

Seolution: Ciearly the coefMicient is C {10: 2, 2, 2, 2, 2) = (0¥ (21)°,
ioe oy

Example 16: What is the sum of the coelficients of all terms in the expansion ol
(+ b+ )7

Solution: The required answer is

Tl

et rl lil

Where the summation is over all nos-negattve mteyers 1.5, 1 wldimy ion Bad s also
the value of

7!

cvaluated at a = b = ¢ = 1. Thus answer is (1 + 1 + 1)? = 37,

i + &
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.(X)T N

E14)  Write expansion of (a + b + ¢} in full.

EI5)  What is the value of Zﬁ 27354 where the summation is over all 1, s, L,

non-negalive integers adding to 87
E16) Show that
Cin)Cln-r r) Cln-r,—rp. 1) ... Clo—1, -0, — ... =T _y. [) =

n! .
ifry+rp+ ...+, =n.-

ot m

4.7 APPLICATIONS TO COMBINATORIAL
PROBABILITY

Histarically, counting problems have been closely associated with probability. The
probability of getting at least 6 heads on 10 {lips of a fair coin, the probability of
finding a defective bulb in a sample of 25 bulbs if 5 percents of the bulbs from which
the sample was drawn are defective — all these probabilities are essentially counting
problems, The famous Pascal's Iriangle (or binonual coefficients discussed in scclion
4.5.1 was developed by Pascal around 1650 while analysing some gamblmg i
probabilities,

4.7.1 LElements of Classical Probability Theory -

- Suppose we have a finite set X with N clements. The collection of all subsets of X is

represcnted by 2(X) or simply by @ The clements of 2 are called cvents. The null set
3 is called the tmpossible event, and the set X itself is called the sure event. Let us
represent the number ol elements of a [inite set A, -also relerred o as the cardinalily of

"A. by n (A)

Definition: If by some random mechanism we can cnsure that afl the n (X) cases are

cqually likely, which merely means that there is nothing to prefer one cases for the
otlicr, then, the probability of the evenl A in 2, represented by P(A) is the ratio
n(.’.\] P{A) )

, defined by the French muthematician Laplace.

Note that the ussumption of “equally likely’ is fundamental in the Classical Probability
Tieory. Usually this is ensured by considering cxperiments in which alf the n (X} cases
arc given equal passibilit\' for sclection, An experiment is a clearly defined procedure
that produces one of a given set af outcomes. These outcomes (n (X) cases) are called
clementary cveals and the set of all clcmcntury events is called the sample spacc of the
experiment. When.we consider coin lossing we assume that the coin’is unbiased, which
merely means that head-and tait arc cqually likely in-a tass.- ~The toss itsclf is considered
a random mechanism ensuring ‘equaily Jikely’ outcomes. There are ¢oins that are
‘loaded”, which means that Qni‘. side of the coin _111:1'5' be heavier than the other. Such
coins are cxcluded from cur purview. Probability theory has been develeped to consider
even cases where Xis o inhie set Bur we will not consider those cases. In the
abaence of any statement about the ‘equally likely” case we always assume it to be the

M i Lo - - :

Some=Cansequences: As n () = 0 if follows that P (@) = 0. Ry definition n(X) = N
and hence P(X) = 1. If A and B are lwo cvents, thea n (AuB)=n{A)+n(B} -

B (AN BYimplies PAOLLB) =P (A) + P B)Y-P(AN ]3) In particular, if A and B are
mutually exclusive (which means that A and B have no common clements), then
P(AwB) =P (A) + P(B) Notethat A v B can bcmlcquctcd as atleast onc of he
cvents from A and B. Thus we have provcd .



4.7.2 Addition Theorem in Probability . Combinatorics — Ao

Introduction
If A and B arc two mutually exclusive cvents then the probabilily of their union is the
sum of the probabilitics of A and B.

Corollary: Suppose A is an event. Then the probability of A {alse denoted by A'), the _
cvenl complementary to A, or the event ‘not A’ is 1 =P (A).

The reason is that the events A and A€ are mutually exclusive and exhavstive and hence
AwUAS = X and P(AY + P(AY) = L. 115 casily seen by a similar argument that it the
events A, A, ... A, are pairwise disjoint {mutually exclusive), then the probability of
the union of Ajs is the sum of the probabilitics of As. This is the generalised addilion
theorem in probability. The subject matier of Combinatorial Probability Theory is the
computation of probabilities of events in finite seis, where all ¢lements arc equally
likely. The probabilities of events are salely determined by the cardinaliues of the
events and the cardinality of the master set X. The difficulty in the calculation of
probability is then merely the difficulty in calculating the cardinality of the events.
Events are usually described by certain properties of same points in X and determining
the event and its cardinality can be quite difficult at times.

Example 17: A dic is rolled once. What are the probabilities of the following events
(i) even number (ii} atleast 2 (ii1) aunost 2 (iv) atleast 107 :

Solution: Il we call the events as A, B, C, and D, then we have X =101,234,56)
A={246),B=(23456}C= {1,2), and D = { }. Hence n(X) = 6, n{A) = 3,
n(BY=5n(Cy=2,n(D)=0 leading (o the answers P (A) = 3/6, P(B) = 5/6,

P{C) = 26, P(D) = 0. 4

* &k *

Example 18: A coin is tossed twice. What is the probabilily of geiting atleast one
head?

Solution: [n this case X can be described by
{{H, H}, (H,T}. {T, H} (T, TH

For cxample the pair {H, T} represents the case when head occurs in the first loss and
(il in the second. In our problem the event A consists ol the cases

(H, T). [(T. H). {H, H}.
Thus n(A) = 3, n (X} = 4. Hence I (A} = 3/4.

E R I ]

Example 19: A coin is tossed n limes, What is the probabihity of getting exaculy r
heads?

Solution: It 11 and T represent head and il respectively, then X consiis ol sequenves
of Jength o that can be formed using oniy the leters Hoand T. Clearly n (X)) =2

The event A consists of those cases in which theie wre precisely ¢ 117 Obvinusly
n(A) = C(n. 1. Hence the required probability is C{n, 1)/ 2%

1 =
Example 20: What is the probubility of geting a total of 7 when 1wo dice ure thrown?

Sotution: If x and v denote the numbers that come up on the two dice. then clearly X
consists of 36 pairs (x. ¥) where x and y cun take any vabue Croan 1 1o 6. The required

cvent A of getting iotal of 7 consists of the 6 cases
(1,63, (2, 8 (30 4 (0 3 6, 060 )
Thus 0 (AY = 6, n (X} = 36 and hence P(AY = u (AMn (X} = 6/36 = L/0h.

L]

Example 21: Two dice, onc red and one white, e 1oiled. SWhat s the probability that
the white die trns up a smailer number than the red dic?



Basic Conibinatorics Solution: As in the previous example. if the number on the red die is x and that on the

white is y, then X consists of the 36 pairs (x, ¥}, where x and y can be any integer
from {1, 2, 3, 4, 5, 6). For the ¢vent A we nced x < y- Clearly for x = 1, 2. 3, 4, Sy
canbe x+1, x+2,...6, i.e., 6 - x in number. Thus

5
H(A)=Z (0-%)=5+4+3+2+1 =15
x = |

by the addition principle. Hence P {A) = 15/36 = 5/172.

* a &

Exzmple 22: [ a five digil number is chosen at random, what is the probability that (he
product of the digits is 207

Solution: X is the collection of all 5 digit numbers. If any cne of them is abede, than
a can be from 1 0 9. But b, ¢, d, ¢ can be from 0 to 9. Thus by the muliiplication
principle n(X) =9.10% = 90000, For the elements of A we need to have a. b.c. d. e =20.
Clearly 20 can be factored in only two ways, viz., (i) 1.1.1.4.5 and (2) 5.2.2.1.1 as the
product of five factors. Of course the numbers can be permuted to give all possible
cases for A. The numbers 3, 4, I, I, | can be permuted in 54111131 = 20 ways

and the numbers 5, 2. 2, I, | can be permuled in 5112121 = 30 ways, Sa. n A) =

20 +30 = 50, giving P (A) = S0/90000 = 1/1800,

£ & x

There are several other methods for solving combinatorial probicms which will be taken
up tn ke next (wo units. Let us now. summarise whal we have covered in this unit,

4.8 SUMMARY - ' -

In 1his unit we have discussed the nawre ol conibinatorics. Specilically we covered Lhe
fallowing: -

i Did somne problems involving addilion principle and multiplication principle
withaut éxplicilly naming these principles.

2. lareduced ultiplication principle and did some probléms using it.
- . 3. Introduged.addition principle and ¢:d somé problems using it.
) - T4, Delined permutations and derived formula for calculating them.

- 5. Did some numerical prablems on permutations. T -
6. Inroduced circ;Mar permualations, -7

’ 7. Inuoduced the jdea of pCl’;‘l‘I!.!luliUI-‘iS uf objects not necessarily distinel.
8. Introduced the cbnqcpl ol combinations and derived a formula for calculating the

number of combinations. _

9. . Did some problems in cembinations.

10. Derived a formula for combination with repelition.
li.  Derived the formuli for binomial cxpansion_and did some problems using it
(2. Introduccd Pascal's forinutae and Paseal’s triangle for binomial coctficients.
13, Eatended i tdea of biromiz! expansion to malinomial cxpansion.
14, lnlrg(iuccd-lhc classteal combinaorial probability.

15. Derived addition theoicm -ol"prolmhiiily.

16.  Did a number of ﬁumcricnkproblcms in probability.

4.9 SOLUTIONS/ANSWERS o

EI) 15Y12! = 151413121121 = [5.14.13 = 2730. -



E2)

E3)

E4)

ES5)

E6)

ET)

Eg)

E%)

E10)

Ell)

L12)

E13)

RS

LE15)

3+ 51 =7 =5040. But 31+ 40 =6+24 = 6 +24 = 30, Obviously the twa
numbers are not cqual, :

-

(m+n)!=(m+n) (m+n-1) ... M+ m.
m+n)! —m =mi{(m+n) Mm+n—1) ... m+D-1}2m![pl+m" -1]
(m+o)-mi-nt2mfal+m"— 1] —nl=at (m' =1} +m! ("= 1) 2 0.

n!

ﬁ forn =20 and r = 3 is 20¥/17! = 20.19.18 = 6840.
n-—r).:

Suppose we number the men as |, 2, 3, ..., n. Then the first man can be paired
with any from n, the second can be paired with any from the remaining (n— 1)
women, and so on. Hence the number of ways of pairing is n{n-1) ... .

By muliiplication principle the answer is 26.25.24 if the Ietters cannot be repeated
and 26.26.26 if the letters cannot be repeated.

By multiplication principle the number of integers between 100 and 999 with all
digits even is 4.5.5 = 100 (nolc that the first one cannot be zero, but the sccond
and third digis can be 0 100)

FFor a number to be odd the last digit should be odd. The [ast position can be
filled vp in 5 ways. If the second position is filled up by 0, then the first position
can be filled up in § ways. Thus the number of odd numbers with 0 in the middle
position and all digits distinct is 40, by the multiplication principle. If the sccend
position is filled up by a digit other than O then it can be done in 8 ways. Then
the first position can be filled up in 7 ways, so, the number of odd numbers with
all digits distinet with the middle digit not zero is 5.8.7 = 280. Thus by addition
principle the answer is 40 + 280 = 320.

P(15 2)=1514 =210and P (-'?. 3 =7.65= 210
P(5 5) =54321=120and P (6, 3) = 6.54 = 120.

1

We will divide the required numbers into two classes. Class I consists of those
numbers with first digit 6. Class II consists of those numbers that have first dipit
greater than 6. In class I the number of clements is 1.4.6.5.4 (the first digit is
chosen in 1 way the second can be bnly (rom 5, 7. 8, 9, the third in 6 ways,
eic). The number of ¢lements in class I is thus 480, In class 11 we have

3.7.6.5.4 = 2520. Thus by addition principle the required answer is
480 + 2520 = 3000,

a) In the word "ASSESSES' we have A once, [ twice, and § five times. Thus
the number of permutations is

EY1215! = BT.G/2 = 1G8.

2} T the word "PATTIVEERANPATTIY R, N ond V occur once, P, E oand |
occur twice, A thrice and T (our times. “Thus the required numbier of
permulations is 16H/1111112121213141 = 455111,

The lelt side counts the ways to seleel a group of m people chosen fram a set of
n people and then select a subset of k leaders, sav. of this group. Equivalendy, the
right side counts the ways to select the subset of k leaders from the set ol n
peaple first and then select the renvuniog m -k member of the group from the
remaining n -k people.

One can prove tus by induction (by inducting on the vuarizhie o) The base case iy
trivial, since il n = 0, then k = 0 ax well, and the cquation reduces w C{0, O) =
CO 1), whneh s rue, The inducton step 15 proved by preeal’s fanmulw/identity
and the induction hypothesis

(a+bacy =@+ 0%+ )+ dab+abt + a'c + act 4 bles hehy + 6l®b? + a4
be?) + 12 {atbc + ab®c + ahe?). The coefficients 1. 4, 6. 12 are precisely

'
hinomin! coalficicnis
LERS NN AT TR L VL D) S T L Y

iy . .
Clearly z %T 2'3°4" is the expansion of (2 + 3 + 4)%, Hence the required
ristt!

answer is 95,

Cumbinalories — An
Intraduction



Rasic Combinatorics E16) We can prove this by induction on m. Assume that the result is true for m,

Consider the left hand side with (m + 1) factors. By induction the product of

. (n—1)! N ,
the last m factors is : ! ;- Thus the leit hand side reduces
(PYI L N S
n! {n-r) L. n!
o —  ~—————— and 1his is equal to — |
pn-r)! nlet oot L LI

This shows that the result is true for (m + 1) also, But the result rec—=cs Lo
expansien for C(n. r.) when m = 2 and hence true for m = 2. By i=Zuction the
resultis true for all 2asitive integral m > [,

4.10 MISCELLANEOUS EXERCISES

El) How many “words” can be formed using the leuers of IGNOU (cach 2t most
once):

a) il all the five leters must be used:
b)  if some (or all) of the lelters may be omitted?
E2) In how many ways 52 cards can be arranged as a deck?
E3) How many “words” can be formed using four X's and (wo Y's?

E4} How many commiltees of four people can be chosen from a club with ten
members?

E5) If-Bill wanis to rake two maths courses and nwo hislory courses, and there are five
suitable maths courses and Tour suitable history courses available, in how many
ways can he choose (e four courses?

E6) How many words can be formed usunﬂ ali e letters of MISSISSIPPI?

E7) Find C(20. 3). C(10. 2) and C (10, 8). .

E8) Find C(15; 5,3, 2, S) and C(I5; 5, 5. 3, 2). - _

E9) If a bakery has five kinds of caokies, in how many ways can 2 dozen be chosen?

E10) Jack has six toys and wanis (o trade two toys \\-’Ilh Jim. who has cight toys. In
liow many ways can they Irade?

El1} In how many ways can five A’s and ? B s be. lined up so lha[ no two A's are
adjacent? : - :

E12) The marse code is made up of marks called dots and dashes. “Q", for example,
(- )= Is it possible o make up such a cede so thal every letter of the alphabet |\
rc[)rc':cntcd by al mast three macks? Al mosl four?

£13) In how many orders can six people be scated at a round table if one of the people
hates onc of the other five people and refuscs 1o sit beside him or her? -

El4) Il a commiliee of 1en people contains four womenr, in how many ways can a
subcommittce of l'vc be choscn il that subcommitice must by Jaw contain alleast
B, © onc woman?

E15Yf a single card is drawen from a standard deck, what is the probabilizy-that it is
- red or a face card? ) -

E16)-What is the probability that in eight tosses of a fair coin there will be cxactly four
fieads? At lest Tonr hesds?

L7} Among thitty peopic chasen at candom, w h e is the probalility that-ag least two of
them have thn, same Lirthday?

Ei18} In the expansion ol (x + y]“ there is a erm of the form Ax* y™, A a constant.
What is A and what is m?

. ) EIQ) What is the coclficient of x? n (2 + 3x)'0?



£20) Prove the following identities by writing out both sides in factorials and

~ simplifying.
@ 2L e =Ch+lren
r+ 1l

E21)
E22)
E23)
524)

® Crm)Cmn=Cmo-Clhor,m-r).

Show that S0 C (. 1)+ C(m. k1) = C+m. n+k)
What is the coefficient of x* in the expansion of (1 + x +2x?)57
Use binomial thearem to find E Cin, 0k an arbitrary number.

In a ten-question true-false exam, a student must achieve six correct answers to
pass. If she selects his answers randomly, what is the prabability that she will
pass?

4.11 SOLUTIONS TO MISCELLANEOQUS EXERCISES

El)

E2)

I33)

E4)

ES)

16)

o

L
E1y

El2)

El3)
El4)

(@) P (5.5) =5!=120. (b) As the number of r-lettered words js P (5. 1) the
answer is

er=0 P(5,N=1+5+54+543+5432 4 54.3.2.1 = 326. Note that
this includes a null word,

Answer is P(52, 52) = 521. This is a huge number.

6!
Answer s = [5.
214!
109.8.8
i 10 4}y = ———= =210.
The answer is C (10, 4) a371

The answer is C (5.2). C{4, )= a0
i

11214141

The answer is = 35650.

20.19.18 10.9

The answer is C (20, 1 = = 1140. C (10, 2y = —7——1— = A5,

C(l10. 8) = C 10, 2) = 45

I5!

.

The answer 15 C (15,5, 3,2, 5=

- . ~and Cis 5.5 30 2 s sane as C
SR

(157 3.3, 2, 3}, the [FrevIous answer.,

I the cookies are calied A B, CoDE the probiem is o choose 12 leuers frons
them aking any of them any oumber of wnes. Clearly it is the coefficient of £!°
m(F+x+x2+ )% IUis the coellicient of 200 (1= x 18 and it is

C (9.3 = 126.

The answer is C (6, 2). C(8, 2) = 1525 = 420)

When we line up 5 A's there are 6 gaps withi which each A lies, Tp keep them
separate we should put respectively . b, o, . o, [ s wath the restriction
a20 b d > Lfz0,andas hsead e «f= 7. The arswer 15 thwe
coelficient of x7 ip

O+xexa s ata SYN s Nt ) Tis the coefTicient of ¥t in
Ll Y = (™ The caefficient s C (5, 3 = 10,

With 3 marks we can form 2 + 4 + 8 = 14 letters only. Wilh 4 marky we can

3
lorm 2+ 4+ 8+ 16 = 30. As we have only 20 letters 4 marks should suffice,
The answer js 51 - 2.41 = 120 - 48 = 72.
The answer s C(l9, 5) - C (6, 5).

Combinataries — An
Introduction

2}



Baslc Combinatorics E15) There are 26 red cards, Of the remaining the face cards are 8 (2 A's, 2 K's, 2 (s

and 2 I's). Thus there are 34 cards {avourable to our event. Hence the probability-
is 34/52 = [7/26.

El1&) Prob'lbility of exactly 4 heads is C (8, 4)/2% = 35/128. Probability of atlcast 4
heads 15 [C(8, 4) + C(8. 5} + C(8, 6) + C (8. 7) + C (8, 8)] 728 Itis (70 + 56 +
28 + 8 + 1)/2% = 163/256.

E17) There are possible 365 birthdays {assuming a non-leap year). The complementary
cvent is that all the 30 will have different birthdays. Probability of this is € (365,
301 365'% This comes 1o more than 0.5.

E18) As every term has degree n in x, y, m should be {n -~ 3), Coefficicnt of xf.\-""-'E in

(x =3)"is C{n, 5). Thus A = C (n, 5).

E19) The tenn containing x- in (2 +3x)' §s C (10, 3) - 2* - (3x)". Hence the answer is

C(10, 3).8.37,
n+ | n! (n+1)!
=20) (a) . = =Cn+l.r+1)
okl tln=0)! e+ DU+ ] —r— 1)
I 1 I _ 1
(b} LHS v _m __ ne-n = RHS

min-m)! rm-)! rio-n)! m-n'm-m!

E21) LHS is the coefficient of x™ in the expansion of {1 + x)" - (I + %—)m equal 10
coelficient of x™-% in the expansion of (1 + x)™*™ which is C(n+ m, m— k) =
Cn=m, n+k). ’

7, 115
27) (! + \.+“.2x2)i Z —[Lr-(sr‘:,—)s by multlinomial expansion. x* occurs for the

following cases with cocfficients. (a) r = 3, s = 0, t = 2. This gives
SHAGI0NRNY =40 =2, 5 =2, 1= 1. This givcs S12/(2121110) = 6O.
(c)r=1, s=4,1=0. Thlb gives 511/(4111Q1) = 5, Thc required answer is
40+60+5 = lOS

E23) Thl.. answer 18 (L + )"

E24) The answer is same as the probabilily of getting atleast 6 heads in 10 tosses of a
true coin” Henee the answer is
C0. 6)20+C 10, 732"+ C (10, 8)2'° + C (10, 9)/2'° + C (10, IO)/?.‘O It
simplifics 10 (210 + 120 + 45 + 10+ 1)/1024 = 193/512,
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5.1 INTRODUCTION

In this unit we will be mainly discussing partition of a natural pumber, partition of a
n-set and counting the number of ways of distributing a finite number of objects into a
lnite number of conlainers, usually called boxes, Tie objects themselves may he
described as balls. The counling depends upon two things.

(1) The balls are distinguishable or indistineuishable.
(2} The containers may be distinauishable or indistinguishable.

We will see them in detail in this unit, In the process we huve introduced Stirhiny
numbers of {irst and secend kind and Bell numbers. We have alse introduced somme
recunience relations and gcacrating functions concerning partitons and (hese oo
Objectives

Afler reading this unil you should be able 1o

° know whal an integer partition is and how 0 count the aumber of partitions of
an integer:

© understand the problems involved in distribution of objects in contuners:

L count the number of ways ol distributing distinguishuble objects intw

distinguishable containers:

o count the number of ways of distibunng distnewshable objects wia
indistinguishable containers:

] count the number of ways of disutbuting indistingwishable objects into
distinguishable containers;

¢ count the number of ways of distributing indistinguishable objects into
indistinguishable containers;

L]
o calculate Stirling numbers of second kind;
calculate Bell numbers;

Q calculate Sticling number of first kind.

231



Bacie Combinaarivs

5.2 INTEGER PARTITIONS

Suppose S is a set with n objects. Any collection of non-cmpty, disjoint subscis of S
with vnion S s called the partition of S. For cxample, if § = [a, b, ¢, d], then {(a, b),
{c]. {d]) is a partition of S, {{c, d}, {a) . {b}} is another partition of S. Whenever we
consider a set, the elemenss of the set are considered distincl. If some elements repeat,
then the collection is no longer a set but a multiset, Consider a multiset with

n clemants: single element repeated n times. How ean we define its partitioa? IT

S = {a.a, 2. a} then the parutions (2. a}, ta}fa)} and [{a}. {a), {a, al ) zre wdentical
as order is not relevant in a collection, Tt is clear that a partition of a multisat is
compictely determined if the number of elements in each subcollection forming the
(kutition is known. Marcover the order in which these numbers are given is totally
trrelevant, This brings us to the definition of the partition of a positive integer. Any
representation of n as a sum of positive integers in non-increasing order s called a
partition of o i.e. We consider the partitioning of a posilive integer n into posilive
summands and seck the number of such partitions, without regard ta order. Since order
is 10 be ignored, we have followed the convention of writing (he summands i non
increasing order. For example the partilions of 5 are (a) §, B)4+1,(c)3 + 2, (d)
341+ 1 () 2+24 L, N2+ T+ 1+ 1, and(g) 1 +1+1 + 1+ 1. If P_ represents the
number of partitions of the integer n, then we have shown that P, = 7. In any partition
ol n the numbers constitluting the sum are called the parts. For example, tin 2 + 2 + .
the paits are 2, 2. and 1, {t has three parts, Among the parlitions of 5, we have 1 with |
part, 2 with 2 parts, 2 with 3 parts, [ with 4 parts, and 1 witl 5 parts. The number of
partitions of n with exacdy k parts is represented by P* Thus we have Pi=1,P}=2_
P{=2Pi=1 0= L '

5.2.1 Recurrence Relation l'or-Pl’l‘ ) -

First of all let us define what we mean by a recurrence relation,

Definition: Let (a,: n 2 0} be a sequence of real or complex.numbers. A recurrence
relation.is simply an expression of the form a,=F(a, _, a,_; ...n), where F isany
function of the variables Ay 8, _q. -.n and n, In other words, it permitsfallows us (o _
compute the nth term of a sequence [rom one or more of the preceding terms. We shall
mainly Jeal with such function F which are polynomials and depend on only finitly
nuny variables A, _pe &9 -v 3, . and n. Further discussion on recurrence relation Ha
been taken up in Block 3. - -

Theorem 1 We have LT -

el )2_ ¥ _— pk |

_ In+lu+“'+pu _iuvk' -
I _ 1am ’ - Tl
Pl=pro | S

Proof: The sccond formula is obvious {rom the definition. We will prove the Tast™
formula. Let M be the ser of partitions of n having k or less parts; each partition
belonging 1o M may be considered as o k—tuples. Deline on M the mapping

Cp Py, 00,0 5 i+ hpg+lp, + L1

mn

M ois mapped Jnte the set M7 of partitions of n + K into exaclly k parts. This mapping is

- bijective, since (1) two distiner k-tuples of M are mapped onto twa distinet k—tuples of

MY every k—tuple of MY s the pvage of a k-tuple of M. Therefore,
IR LS IR I T V) I N

From these tonmulas the PYs may be caleulated recursively, oy,

Prob k=1, 2 3 4 5 g

n=1 1 7 0 00 0 o
LR I | 0 0 .0 ) )
51 i I 6 0 0 ]

- a l"0 . 2 1 1 o o

by 2o 720 11 o

-2 3 3 2 4
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Lel Q" denote lhc number of partitions of n with k or fewer parts. Clc.arly Ql= l lor
every no, Q“ =P _ lFor the case n = § we have Qs =1, Qs =3, Q5 s, Qs = 6, and
Qs =7 Let P (k) denole the number of pariitions of a with no part larger than k. We
can think of P (k) as a [unction of two variables, n and k. Then we have P 1) =1,

Py(2) = 3 1)5(3) =35, y4) = 6, and P(5) = 7. Clearly for any n, we must have
P (n}) = P_. In the example given, peculiarly, we have Py(k) = Qﬂ for every k. Is il true
in gcncm! lhal P (k)= QL for every k and n? To show that this result is (ue we
represenl a partition by ats Ferrer's graph.

5.2.2 Ferrer’s Graph

Suppose the pars of a pantition are s, s, ..., s, . Then the Ferrer's graph of the partition
constsis of m rows of dots, the lirst row with s dots. the second row with s, dots. and
so on. This graph vses rows of dots to rcprc:.cnl 2 partition of an integer wherc the
number ol dots per row does not increase as we go from any row 10 one below il In
cach row the dots are left-justified, For example, the partition 5+4+3+2 of 14 is
represeited by its Ferrer's graph as lollows. (Fig. (a)):

] . ] . . : ] o » [ ]

. . ] . . ] . .

. . ] . .

. . ] L] .

* !
d=5+4+3+2 d=4+4+3+2+1
(a} (b)
Fig, 1

Clearly. if we change the rows into columns in z Ferrer's graph we gel the Ferrer's
graph of anather partition of the same number. The new partition so obtained is called
the conjugate partition. Clearly, for every partition (here is a unique conjugate.
Moreover, the conjugaie of the conjugate partition is the original partilion. But the size
of the Targest part 1n a partition is the number ol parts i the caonjugale partition. Thus
we have 2 anc-one correspondence between the partitions of an integer with no part

larger than k aad the partitions of n with almost k parts. Thus P (k) = QF Thus we
have proved.

Theorem 2 For any two integeis i, b, < . tie number o prubitions of nowilic a
most k parts is equal o the number of partitions with nu patt larger than k.

121) BEvaluate l’l. Py.oand l’_..'

E2) Evaluate P"J and Q.l,-

E3) Evalume Q2, Qg ..., in general, Q2
E4)  Show that PP = pr-t= .

523 A Recurrence Relation lor the Number ol Pactitions

We are going 10 see, how btk depzuds on valees of Poasl smallor aisumionts where
! = n -

both uoand b oare viewed as arsements.

Theorem 3 For any positive fategers noand L. L < L < & we Lave
3 T ] - > -
PERy=P- ot )

Proof: P (1) counts the anmber of partitions of o with paets nat Pveer than K We can
group lhl,.‘)c periitions mto two classes. (1) those having k oas 2 part: (31) those not having
k as a part. The partitions of type (i) are clearly P (k= 1} number. In partition of
type (i) clearfy one part is k and hence the other p.ll’l‘- constitute w partition of n -k

with no part larger than k, and hence must be P _(k}. Adding the 1wo numbers we
obtain a proofl of the theorem.

Parlitions and Distributions



linsic Combinataries

Solution: For 2 the partitions are 1+ 1 and 2. For 3 the partitions are [ + !
cand 2+ 1. For 4 the partitions are | F1+1+1,2+1+ 1 and 2+ 2. For 5 the

Note that the above recurrence relation can be used 1o gel the value of P (k) for any
combinalion of n and k, if we note that P{)=1.sincen=tl+i+..+] {n times}
and P (k) = P.(n), il k > n. For exaniple, to calculare P,(4) we use the recurrence
relation repeatedly to get, P(4) = P(3) + P,{(4) . But

Pdy=p,(2) =2

Pe(3) = P(2) + P(3} = P(1) + PAD+P3)=1+3+3=7, giving

P () =9
Now that P (k) ~P (k- 1) = Qf ~ QL= . This means that the number of paritions in
which the largest part is k is cqual 1o the number of panitions of n with exaclly k parts.

Thas we have proved.

Theorem 4 For every n. k, k < n. the number of parlitions of n with exactly k parts is
equal (o the number of partitions of n with k as the largest pare

Exaniple [: If the conjugate partition of a partition is itself then it is said to be seif.
conjugate. Exhibit a self-conjuzate partition of 6,

Solution: 6 =3+2+1.Itis casily seen hat it is self~conjugale.

* >

Exaniple 2: Show (hat if a partilion of n js Py + P+ ... p,, then its conjugate partition
5q +q,+... q,. where r is p, and q; is the number of p,'s that are at leasi i.

Solution: 1T we construct the Ferrer's graph for the partition then the statements made in
the preblem are transparcntly seen.

x = ow

-Example 3: Show that a number of the form n{n+ 1)/ 2 always has a self-conjugate

partition.

Solution: “We can writc n (n + 13/2as 1 +2 4+ 3+ ... +n, When the order of this is
reversed it is a partition of the number n (n + 1}/2. Evidendly the partition is sclf
conjugale. ) : -

k ¥ m

Example 4: Exhibit the partitions of the numbers from 2 10 8 which have only the
numbers | and/or 2 as paris.

+ |

partitions are Tt b+ L+ 141,241 1+ I, and 242+ I, For 6 (he partitions
arqi+|+'|+|+l+l.2+I+l+l'+l.2+‘2+ I+ 1. and 2 + 2+ 2. TFor 7 the
partitions are | 4 |« L+ 1 4] 4 1 4 2 4 P+, 2 42+ + 1+,
and 2+ 2 + 2 + {..For'§ the partitions are | + 1 Flh+l sl + 1414102214
+'I+ITI+1,2+2+]+l+l+l,?.+2+2+l-.»I.nnd2+2+2+2.

T ¥ x

Example 5: How many partitions of 2n are (here which have only the numbers 1 and/
or 2 as parts? '

Solution: The maximum number of parts that are 2 is clearly n for (he number 2n,
Hence ihe number of required purtitions is n+ .- - -

r x B - -

B5) Hoe muany partitions of 2n + [ are tere which have only the numbers and/for 2

R e - =
I RI RN -

(36} How many partitions of 20 are there which have only onc oF (wo not necessarily

distine! paris?




5.2.4 Generating Function for P ’s Partitions and Disiri;
Let us define Ordinary Generating functions :

Definition. The gencrating function for the sequence of real {or complex) numbers,

{an};’:o is given by the expression A{x) = L = “txk =a;+ax + a,x?+ ..+ ax" ...
k=]
—a forma:i rwer series in x.

More about this have been discussed in unit 8 (Block 3). The series P(x) = Z := p Pxt

is called the generating function for P,'s. The reason for this is that the coclflicienr of x"

in this scries is the number P

Theorem 5 The generating function for Plsis (1—-x)? (1 -x) -1 —xh T
Proof: Consider the product

(I+x+x?+ 5%+ ) (1+x2+ s )+ x+ S exey

In this product we can find the coefficient of x" as follows. Take one tenn cach from
cach parenthesis and multiply to get x". The term from the first parenthesis gives the
aumber of 1's in its exponent, the temm from the second gives the number of 2's in s
cxponenl and 50 on, in a partition of n. We can thus get all the partitions of n by
considering the coefficient of x” in it This proves our result.

Calculation of P 's for small values of n:

Suppose we wanl to calculate-P_ for n < 6. I( is cnough to relain relevant parts of the
generating function as we need only coelficicnt of X" for'n € 6. The relevant part is as -
follows: : : ’

(T+x+ x4+ x4 x5+ x6) (+x2+x%+ 5% (1 +x*+ x5 (1 + x% (I +x3) (1 +x9)

We multiply this out and retain only powers of x al most 6. From the first two
parentheses the required terms are |+ x + 2x2 4 2¢% 4 3x% 4 3¢5 +4x5. From the -
last four parcatheses (he required terms are |+ x £ x3 4 x5 + 2x5. Multiplying

now the two series obuiined and ‘retaining only enns upto x® we get

Ptx +2x7+ 3x% + 5x5 4 765 4+ 11x6. Thus we get the following:

_Puzl.I’[=l.I‘.‘;=2.P:1=3.F3:_5.P5=?.P6=[l. ) -
Example 6: Show that il generating function for the iumber of p.'_'tr[i‘tions ofnin
which every pasi is at least 2 js (1 ~ x) P{x). Hence show that the-number of partitions

of nin which every part is at leas| 2 js b - Py -

" . Solution: Clearly (1 -x) P(x ) = (1 ~xy ! (I~x~' ... The RYS clearly gives in the

coefficient of x" those partitions of n in which cach part is at least ts 2. This proves the

result. Coelficient of x" on REHS s cocfficient of x" on (I —x) P{x) and it is ciearly_ _
- p B

o ne]

L 5

The generating function for PY"s "the number of Ways 0 express noas a sum of district
integers. is given hy . ) -

- Py = (4 xy+x3) (1 0y U L

_,
i

o= ﬁ (l+x'}:‘ﬂ_'€‘i“?§’j)"g—,\'f‘) .“_,XS)
1=| {1~ (3 (1 —xY '_I.l—-_'—- =
i1 S )

d=x) (-2 (T—xh

The gererating (unction for PYs, the number of ways 10 express noasa sum of odd
Ilegers, s given by

PO )= (1 +x + x2 +o) kM et ) x

Uex*+ x5 3142724 )

lons
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l l 1 |

I —x [-x' 1-x%1-%x7
Since PA(x) = POX(x) we have PY = ple),

You will come across further discussion and problems conc.;_rnmg partition of integer in
unit 8 (Generating functions) of Block 3.

5.3 DISTRIBUTIONS

By distribution we mean the distribution of several abjects into several containers, In a

colourful rcprcscnlanon we talk about distributing balls among bexes. Here there arc
possible cases.

] The bails could all be distinguishable and the boxes all distinguishable.
2. The balls could be distinguishable and 1he boxes indistinguishable,

3. The balls could be indistinguishable and the bexes distinguishable.

4,  The balls could b;.: indistinguishable and the bexces 10¢ indistinguishable.

In each of these four cases we will be counting the number of such distributions. It is
quite possible that there are mixed cascs apart from these four ‘pure’ cases, Wherever
possible we will meation them and treat them with the methods developed for these for
CiSCE,

I

A general guideline for modelling distribution problem is, distribution of distinct objccls
corresponds to arrangement and distribution of identical abjects comesponds to seleclion.
We will give illustrative examples 1o cover the four cases.

(A) There arc twently students and lour colleges. In how many ways the students could
be accommodated in the lour colleges?

In .this example the students are clearly distinguishable and the colleges are also
distinguishable, This comes under case (1).

(B} An employer wants to distribute 100 one-rupee notes among 6 employces, Find the
number of ways of doing this.

Though the one-rupee-notcs can be distinguished by their distinct numbers, we

don't cansider them distinguishable as fir as their use is concerned. Hence this is a
case of distributing indistinauishable objects among distinguishable boxes. Tlere the
employees. considered as distinguishable, are the ‘boxes’. This falls uvnder case (3).

(C)  Supposc we want to greup T student 1oto 10 groups of 10 each for the purpose
of medical examination. Thea the groups as such are indistinguishable though the
sludents in them are distinguishoble. Tence tus (alls under cuse (2).

(D} There are 1000 one-rupee notes. In how many ways they can be bundied inte 20
bundles?

As helore the rupee notes are constdered indistinguishable. Clearty the bundles are by
themselves not distinguishable, only the contents may vary, Hence this falls under
case ()

531 Distinguishable Objects nto Distinguishable Containers

There is o speeial interpretation for thix case. As the abjects are  distinganshable they
van be considered as elements of a set, say O, Tie containers are also distinguishable
tormmye a sel, say C. Any distribution [ ean be now considered as a mapping Irom Q
mto €. When there is no resteiction on the way the objects are distributed into
camingrs (that is, with any number of objects per container), it is clear that the number
ul ways ol doing this is m", where n s the number of objects. the eardinality 100 of the
set O, and m is the number of containers, the cardinality of the set C. This (ollows from
the multiplication principle il we note that each object can be distributed into the
conlainers in m ways. :



The set of all mappings from a set A into a sct B is represented by B, Thus we have Tartitions and Distdbutions
shown thal the cardinality of the set BA js |BIW! :

Example 7: Show that the number of words of tength n on an alphabet of m: leters is
m". :

Solution: Note thar the feuers of the alphabet can be used any number of times in a
ward. A word of n letiers can be considered as n ordered boxes each helding a lewer
froin the alphabet. The boxes became distinguishable because they “ordered’. The lelters
of the alphabet are clearly distinguishable. Thus any word of lengti n is equivalent (o
setting up a map from the boxes to the leteers. Clearly the number of ways of doing this
is m. There couid be a confusion here. The boxes are laken as objects and the leter of
the alphabet are taken as containers. (boxes are not the conlainers')

= %

Example 8: Supposc we have a set S with m objects. An n-sample from this set S is
ordered arrangement of n ictiers taken from § with replacement at every draw in n
draws. Show that the number of n-samples from an m-set is m",

Solutien: Clcarly every n-sample is a word of length n {rom the ‘alphabet’ §
containing tn letiers. The result now lollows from the previous Example,

x ¥ =

5.3.2 Generating Function Approach

Suppose we have two letlers {a, bj. I we formally expand (a +'b)* by multiplying one
letter taken from each of 1he three parentheses withoul changing the order of the faclors,
then we gel (he following Ienns. aaq, aab, aba, abb, baa, bab, bha, bbb. Clearly these
arc {he 3-lettered words from the alphabel {a, b}. Thus (he expanston (a + b)* can he
considered as generating all these words. Clearly the number of such words can be
calculated by replacing a, and b by L. This gives 2%= 8. In general, if there are -
m-letters {a,, &,.... 2 L, then the generating function for all the word of length n from
e alphabet of m-leucrs- is (@ +a,+..+ a " and the number of words can be got by
replacing all the lewters by | in this generating function and [his clearly is m".

The gererating function approach is very uselul in enumerating combinatorial objects
and coufiling the nuinber of ways af doing it. As an example consider the fallowing.
Example 9: Find the number of (ive-letered words over the alphabet (a, B} in which
the second letter is b and the faurth leter is o,

Solution: The generating fimeon for all these words is clearly

(a+b)b (a+b)a (a+b) These words can zol-by formally exparding it preserving the
order of {actors. The number of such words s 2ot by replacing o, b by |. Clearly the

answeris 2 -0 -2 -3 L 228

= x x

Now lere are some exercises for you Lo solve.

E7)  Find the number of tree-letered words that can he formed withe the English )
alphaber with 26 Tetwrs. How many ol them end in s? How nmay of them lave o — --

vowel in the middle pasition? i -

28} How manv hve-digit mimbers are cven? How many Tive-digit nkubers e

-composed of only odd digils? - T

E9) There are 4 ladivsand § gonts. A comminee ol-three, n president,ma vice-president,
_and a sceretary has e ! formed Grom them. Ly now many ways this cim be done
in the fuliowing cases. ; -

{a) The -vicc-pr_csidcm shoald be a ldy? - - . . ’ -

(L) Exacily one of vice-president or seerelary s!_lo'u]d_ be T lady?

(c) -There isat least onc lady in the commitice? ) o ’ - ’ ’ 29 -

. - - R
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5.3.3 Containers with at Most One Object

Suppose we want the distribution of m distinguishable objects into n distinguishable
conlainers wilh the extra condition that no container should contain more tan one
object. [t is clear that this is impossible if n < m. On the other hand if n > m then we
can get all these armangements by first.choosing m containers to contain exact
object and then permuting the m objects among the chosen containers. Clearl
be done in Cln, m)-m! = n(n - {} ... (n—=m + 1) = P(n, m).

Ly one
y this can

Thus we gel a new interpretation for P(n, m). Note that n{n-1) ..
calied a falling factorial and is represented by (n]
zero. Thus we have proved.

.(n—-m+ 1)is also
Af m > n, then [n], is interpreted as

Theorem 6 The number of ways of disicibuting m distinguishable objects into n
distinguishable containers such that no container contains more than one object is [nl -

¢

E10)  Show that the number of m-lettcred words with distinct letters over an afphabet
wilh n letlers is [n],,-

EL1} Show that the number injective mappings from an m-sct into an n-set is [n].-

53.4 Distinguishable Objects into Indistinguishable Containers

To get the number of ways distributing n distinguishable objects inlo m indistinguishable
containers we need the number when exactly k of the containers are occupied. This
takes us to Stirling numbers of second kind.

5.3.5 Stirling Numbers of the Second Kind

Suppose n. 2 m. The number of disiributions of n distinguishable objects into m
indistinguishable conlainers such 1hat no conlainer is emply is represented by S0, This
number is called the Stirling number of the second kind. This is also the number of
partitions of a set of n objects inte m classes clearly, that is, we define the Stirling
numbers of the secend kind as f(ollows: For natural numbers n and m, S:‘ ts the number
of partitions of an n-sel into exactly m parts {rccall that the parts have to be non-
emply).

Clearly ST = ¢if n < m, for. if the number of containers exceeds (he number of objects,
then it is impossible (o have all the containers non-empry.

[H]

| 4
It ean be shown that 87 = — Z (-1 C {m, m - k) (m — k)"
m!' v =o

53.3.6 Recurrence Relation for S::'

-1 13

Theorem 7 Il L < m 2 n, then 87| = s + m&.

Prool: Let us mark one of the n+ 1 objects and consider the partition of the n + |
objects Into m classes.

Case {1} The marked objeet forms a class of one element. Then the remaining o objects
. . - n -1
will form (m — 1} classes in S ways.

Cose (2) The marked abject occurs with at least one more elewment in a class. The
numieey of such partitions is mS™, for we can Ot form a pacition of m classes with Lhe
n unmarked objects and then attach the marked objeet 1o one of these m classes.

By addition principle we now get 87, = S:'_I + m§". Note that. by delinition, we
have S7 =1, and S = 0 if m > n. Also, trivially we may definc S, =0ilm<Qor
n < 0. With this intempretation of §7' it is now easy lo see Ihat we have, for [ € m < n,

m _ cm-1 m
Se e =S5 +mS



5.3.7 A Generalisation of the Recurrence Relation for Stirling
Numbers of Second Kind

Theorem 8 S, = 2, _, C(a, k).S7"

‘Proof: Let us mark ons object tn a sel of (n + 1) objects, Suppose the marked objcct is
present in a class with (n—k+ 1) elements, This iz possible in C (n, n -k sy U ways.
Foar we can cheose n - k more objects 10 go with the marked object in C (n, n-k)
ways. The remaining % objects can be distribuied into (m - 1) classes in SIL“" ways, The
result now follows from the addition principle by allowing k 10 vary from 0 to n.

Note: Though the statement of the previous theorem is formally correct, it is to be
remembered that on RHS k can meaninglully take only values m—~ | € & < n, other
lerms being zero. Bur the statement of the theorem is simpler than this, in a way.

Stirling Numb..s and onto Functions

Suppose N = ( [, 2,...n} and M = {1, 2, ..., m}. Then the number of onto functions
from N to M is precisely Saym!. This follows from the fact that if f is an onto function
from N to M, then the inverse images, (1), '(2), ..., I-'(%) constitute partition of

N into m classcs. The factor m! comes because S, represents only partition, where the
order of partition is immaterial, but in functions it cannot be ignored. Concerning this,
you may refer to section 6.3.2 .of unit 6.

r
5.3.8 Generating Function for Stirling Numbers of Second Kind

Il x is a variable. then an ordinary power of x is x" for positive integral n. We also
have factorial-power of x, wrilten [x], for any positive integral n, defined by

X, Ex(x-D(x=-2) ... (x—n+ 1)

[t is also called a falling faclorial. Il was Stirling who discovered the relation between
ordinary powers of x and the lactorial power of x through Sticling numbers.

The Stirling numbers of the first kind are defined as follows: For n a positive intcger
ind 0 £k < n, s(n, k) is the coefficient of x* in the expansion of Lhe "falling

n
factorial™ with n factors. That is (x]; = x (x=1) (x=2) ... (x=n + |) :E:,Os (n, i) x'. .

n fact his result is as follows concerning Stirling ntmber of sccond kind.
n

Thearem ¢ x"= z S!r[x]i
=0

Troof: If n > 0, let F (N, J) denote the number of anto funclions from an n-clement set -
N o the set J. If we add the numbers (N, J} for all subsets J of a set M, we gel the
otal number of furcliors from N-10 M. We will write this as Z,Cm F (N, I}. But the
umber of functions from N o M is clearly m". Thus we have,

m

n® = Z F(N.D) = ‘E;)C(m. DEMN AL 2, 5D
. 1= '

Ien

m (138

- '____ L C (n. Y18t = ZSL [mJJ.
: i

h !

V=
=1

jug [m_]II =0, for j>m and S =011 n Hepze we can wiige

m

T = DSl = s,

=0 j=1 .
. - . a0 ’ . .
hus we have proved that m" = L;:u s [m]J. Notw consider the equation
n‘ H ) .- -7 - . - - - - . ’ _-
n = ijn 51 [x]j. This is polynomial equation in x of degree n-Bul by our previous
tool, this equation is satisficd by x = 0, 1, 2, .... n..Bul'a polynomial cquatién of -

Partitions and Distributlons
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degree nin x cannol have more than n roots unless it is an identity. Thus cur cquation
is in fact an identity. Thus we have proved that for all real x,

n
x" = 2 8 (x].
j=0 "7

Example 10: Express x¥ in werms of [alling Cacioriats and hence get 8. for
m=0. 1,2 3 4. :

Solution: x* —[x], = x¥ = (x¥ - 6x" + 52 =6x) = 6x* = 11 x2 + 6x

Thus x*~ [x], - 6[x], = 7x% - G6x and henee x4 - [x]; = 6{x],~7[x], = x or
= (x)y + 6]y + 7[x], + [x],. ' i

The coclficients are 8¢ = 0, §) = 1, S{=7.8) =5 S; = 1. Note that we can also do
this by writing x* = afx], + bl'Jn-:]_1 +C{X]2 +d[x]|. and delermining the constanls-a, b, ¢, d
by substituting x = 1,2, 3, 4 successively on hoth sides.

* & ¥

E12)  Writec down (he parlitions of (1, 2, 3, 4] into 1wo paris. Hence calculate S2

Lxample 11: Calculaie 82 and S,

Solution: §2 = St+2 SI=1+72% 1 =3 We have used here the obvious fact that
Sh=1. )
n

S

T

n — T, HH r
I as we have S| = | for cvery positive n,
T r ok

Now we live everything required to prave

Theorenm: 10 The number of ways of distributing n distinguishable objecets into m
indistinguishable containers is S!+ S+ ..+ s

Proof: When we distribute n distinguishable objects into m indistinguishable containers
there are m cases. Case (k) is cxacily k containers are occupied (the rest being empty).

Here & can vary from 1 o m. The number of distibutions in case (k) is cleariy SL‘. The
thecorem now follows from addition principle.

5.2.9  Bell Numbers

The number of disuibution of n distinguishubic objects into n indistinguishable
voptnners o called the mth Bell combeo wifier die Aneocan mathematician BT Belh
amd g represented by B - Also B is the number of partitions of a set with n elements
say of (Lo20on) (thatds, B also is the number of dilferent equivalence relations on
aoset with noelements).

Corollary:

B =8 +S+ .. +5n

n

Lixample 12: Caleulawe B,
Seletion: By definition By = 81487+ 87+ S But s! = 1. Si=1.
SisdferSE=8li2.87 e 23=7 50 =60t

Sy =S+ 82323 126 Tha B, = 147464 1 = 15,

1]
Theorem 11 Bn+i z C(n, k). B,
k=0



Proof: Using recurrence relation for 8" we gel
n+1 n+1 n

= XSt = 2, D ST =

n+l

ZC(n L)ZS“"' ZC(n k)« B,

m=|

In the above proof we have used the obvious facts that SE =0 and SQ“’ =0
ifm-12>»k

Note that we take By = | by delinition in this formula.

Example 13: Calculale successively B, B,, ..., B,

Solution: B, = Sl=1

B,=C(l.0)-8B,+C(L 1)-B,=1+1=2

B,=C(2,0)-Be+C(2 1)-B +C(2,2)-B,=1+42.01+12=5
=C@3.0)-By+C(3, 1)-B,+C(3.2)-B,+C(3.3) By=1+3.1+32+5= 15,

By=C (4 0)-By +C(4. 1)-B, + C(4,2)-B,+C(4, 3)- B+ C (4, 4)- B, =
1+4.1+62+45+15= 52

Bi=C(50)-By+C(5. 1)-B +C(52)-B,+C(5 3)-B, + C(5 4) B, +
C(5.5) Bg=1+51+102+105+5.15 + 52 = 203, :

= & ¥

5.3.10 Indistinguishable Objects- into Distinguisﬁable‘ Containers

Suppose there are m indistinguiskable objects and n distinguishable containers. As the
objects are indistinguishable the distributions depend only on the mumber of objects in
the n containers. As the containers are distinguishable they can be assurned to be
arranged in- fine, Hence the nuriber of distribulions is the number of ways of writing
the number m as the sum X +x,4 .. 'n. where the x;’s.are non-negative integers. But
the number of distributions can be got mare ¢asily as rollows

As the objects arc indistinguishable we can label -all of them as X. Arrange m X's along
a lire. Introduce n - [ Lreaks among (he m + ) spaces separaling the X's (including the
space before the first X and the space afier the last XY The number of breaks put in
any space is not resirained, Now we have n+m— | ciements, m ol them being X's and
n =1 of them break symbols, The n =1 break symhols separate the X's into Xps Xpy oemy
%, X's. Thus the number ol such dl\lnbuuonq is C{n+m=F, ). Thus we have proved
that

Theorem 12 The number of distributions of m indistinguishable objccts into n
dl%‘[m"UIbh.lNc containers is C{u+m = 1. m). (with any numbcr ol objects tor
conlainer). - T -

Corollary: The number ol non-negative integial solutions of -the equation

XX, s = mis Cn+m=1, m). _

Incidentally, we nate that the number of distributions of m_indistinguishable objeds uuo
n distinguishable containers with at most one object per container is Cn,m)

Concerning this, reler [0 section 4.4.2 of unjt 1,

Example 140 Show tha tie number of combinations of n distinguishable objects taken
i imes repetitions of the "objects beina allowed 5 Ctn 1t m = [, m),

Solution: I the objecis arc PN Naw 0 X ihen we can choose ":1 Xy times X,
tnes, ... X - x_ times, sucli that Xy eyt 4 X = me Clearly this can be dona. in
Cm+m= 1, my ways. ‘ -

A - - -

Another approach: Suppose we get the number of non-negative intceral solutions of the
equation X; + x; + ... +x, = m, Then we can get the number of distributions of m

Partitions and Distributions
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indistinguishable objects into n distinguishable containers as the two numbers are equal.
Consider ( 1+ ¢ + 2+ ...)" This expression can be teeated as the product of n
expression (1 + U+ 12 +...). In this the coelficient of ™ is got by (akiag t with
exponent x; from the first brackel, 1 with exponcnt x, from 1he second brackel, etc., t
with exponent x [rom the nth bracket and  multiplying all the terms, provided the x,'s
add up te m. Thus the number of solutiens of cquation x; + x, +... + x_ = m is equal 10
the coelfcient of ™ in the expansion of (1 +t+ 2 (1 ="+ ...)n (which is (1 -0~ ")
and it is C(n +m -1, m}. Note that we uscd binomial expansion with negative integral
exponent. The negalive binomial expansien is as {follows. For n, a positive integer, we
have

(lL+xy"= z Cin+r-1, oy (-1N%"
r=0

Some authors vse the notation C (= n, m) (-1)™ Tor C (n + m = |, m) for this reason.

Thus the number of distributions of m_ indistinguishable objects into n distinguishable
containers is C(n+m-1, m).

Example [5: How maay distinct solutions arc there of x + y + 2 + w = 10 (a) in non
negative integers? and (b)Y in posilive inlegers?

Solution: (a) Clearly the answer is C (4 + 10— [, 10) and this reduces to C (13, 3) =
13.12.11/6 = 286, (b) We want here x, y, z. w o be positive. Hence we can write them
respectively as X + 1, Y+ 1. Z+ 1. W+ 1, where X, Y, Z W are non-negative. Hence
we want the number of non-negalive solutions of the cquation X + I'+ Y + | + )
Z4+ 1+ W+ i=10orX+Y+Z+W=6 The answernow is C{d-+ 6-1, 6) =
C. 6)=Cr9, 3) = 84. )

'
LI

Example 16: Show that the number of positive solutions of the cquation x| + X, + ... +
X, =m is C{m-1Ft m-n).

Solution: I a positive solution is x|, x,, ... X, then it can be written as X, + 1,

X,+ 1 ... X+ 1, where X's arc non-negative. Thus the required number is the number
of non-negative solutions of X, + X, + ... + X + n =m, ar the number of non-negative:
intcgrat solutions of X + X, + ... + X, = m~n and this is clearly equal 1o C{(n+m -
n~1., m-n)=C{m-=-1, m=n),

5.3.11 Indistinguishable Objects into Indistinguishable Confainers

Suppose theic are n indistinguishable objecls and m indistinguishable containers. Aoy
distibution 15 determined putely by the unordered m-tuple of non-nepative lnleyers with
sumi n. This 1s cquivalent w the sumber of non-increasing sequences of length m ol
non-nesative falegers with sum n, But dhis s precisely the number of partitions of the
wteger nowith al mest mparts |, vix., p.|.+ P:; + . P = Q= P(m). We have ahicady
scen this in partitions of integers.

With this we have come te the end of this unit, Let us take a quick look at what we
have studied in this unil.

5.4 SUMMARY

In this unit we have coveren the following:
1. We have started our discusgion with partizon of 2 naturab number (unordeiedy,

2. While discussing partitions you have been introduced to the concepls of recurrenc:
relations and pencrating Tunctions.

3. Concerning distributions of several objects into several containers, lour cases have
been discussed.

4. In the process we have introduced Bell numbers and Stirling numbers of second
kind (also of the first kind).



5.5 SOLUTIONS/ANSWERS

Ei) P, is obviously [ as | can be partitioned in only one way. For calculating P, we
can write all the partitions as follows 1 + 1 + 1,2+1, 3, Thus P, = 3. The
partitions of 5 are

]+[+|+l+l.2+]+l+|.2+2+|l,3+l+|.3+2.4+l,5.ThusP_1=?.

E2) P"I is the number of partitions of n wilh just one parl. This is the partition {n)
only. Thus Pl = 1. Q! is the number of partitions of n irto at most one parl.
Clearly his is 1.

E3) Q/is the number of partitions of n inlo at most 2 pans. Tha is. Qf =Pl + PL
But P} = 1. The partitions of P¢ are 44 1, 3+2 and hence 2 in numbcr. Thus
Q2 = 3. In a similar manner P2 consist of 5+ 1, 442, 3+ 3. Thus Ql=4.In
general, to calculate P2 we have to write n as X +y, where x 2 y. If n is odd, say
(2r+ 1), the partitions are (Z2ry+ 1, 2r—1)}+ 2e=-2)+3, ...+ 1)+, clearly
r = (n—1)2) in number. But il n is cven, say, 2r, then the partitions are

@r—1)+ 1, 2r=2)+2, .., (r} + 1, clearly r (= n/2) in number. Thus, if n is odd,
Qi=(n—1¥2+ L and if n is even, Q2 = /2 + 1,

E4}  The only partition of PP consists of sum of n 1's, Thus P2 = 1. I we want P2~
clearly the only way is the sum of one 2 and (n-2) I's. Thus P:“' = [.

E5)  The pantitions of 2n + [ with each part 2 or | can be enumerated by considering
the number of 2's appears. Clearly, we can have a1 most n 2's, Corresponding
to r 2's, there is a unique partition, for r= 0, 1, 2, ..., n. Thus there are n + | ) )
such partitions. . : . .

E6) We nced precisely Q;n. According o E3, Qf =n/2+ 1 il nis even. Thus
Q3= n+ 1. i _—

_ E7)  The 26 letters arc distinguishable objects. We have 1o [ill in three distinguishable
containers, viz. the first, second, and third pasitiens of a three-lettered words.
“The solution clearly is 263, If the last letier is to be x, the number is only
262 1 = 676. If the middIc lelter is a vowel, then by multiplication principle,
the answer is 20 X $x 26 = 3380. '

E8)  In a five digit number we do not want the ficst digit 10 be 0. Hence the number . .
of 5-digit numbers is, by multiplication principle 9.10.10.10.10 = 90000. The - .o -1

number ol 5-digit numbers composed of only odd digits (ie, I, 3,5, 7, 9)-is - ) - -

clearly 5% = 3125.

" E9) (a) We can choose a lady for vice-president in 4 ways. To fill the remaining 2
' positions wc can_sclect 2 from, the remaining 8 persons in X 7 = 56 ways.
Heree the required number 15 4 x 56 = 224, '

(b) II vice-president is 2 fady (chosen in 4 ways) others can be selected in
5% 4 = 20. Similarly caxc applics to sccrelary being a Jady. Hence by
addition and multiplication principle the answer is 20x 4 + 20%4d = 160.

(). Without any_ restriction three can be selected in 9% § x 7 = 504 ways. Il no
lady is 1o be selecled. then it can Be done-in Sx 4 x 3 = 60 ways.
. What we need i§ the _cm_nplcmi:n_l of this. Thus the required answer is
- 504 -GO = 444, . - B -

10y I the alphabet has o letds, me-leuered words with disfinet lellers cin be lonmed,
by mulaplication principle, in nii- 15 (o -2 ...in—-m+ 1) = {nj,, ways,

EH- Inan injeciive mapping images of distinet elements should be distinet. There are.
T snopossible sineges for the fise elenfent of the meset, n - | passible mages Tor the
sccond and xo on. Lence the number of such mappings is n(n-1) ...
(n-m+ 1) = (0™ - :

L

12y The set {1, 2; 3. 4] can be partitioned into two parts in the follosing ways.

(1), {2, 3,405 (21, {1, 3, 4)7 (3)7(T, 2. 4% {4}, (1, 2, 3}z {1, 2). {3, 4): . _
(1, 3); 2. 2): {1, 4}, {2, 3}). Thus there are 7 cascs. -Thus we have S_.?_: 7.- - -

- - - - - e ——— e e a e
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56 MISCELLANEOUS EXERCISES

1. In how many ways may o identical chemistry books, r identical mathematics book,
s identical physics baaks, t identical astronomy books be arranged on three
bookshelves? {Assume there is no limit on the number of books per shelf).

2. A store sells eight different kinds of candy. In how many ways may you choose a
bag of 15 picces?

3. In liow many ways inay 40 sludents be grouped into four groups of five cach for
a discussion section led by a graduate student and two groups of 10 cach for a
section led by a professor?

4.  In how many ways may 1G0 distinct beads be used to make thrcc necklaces with
20 beads and four nccklaccs with 10 beads?

5. If m identical dice and n identical coins are thrown, how many resulis may he
distinguished?

6. -Express (he polynomial 3x* + 2x? + 1 in terms of the factorial polynomials [x],,
[x], cte. )

7. A computer has eight jobs to divide among (ive different slave compulers.

~ Assuming cach slave gets at least one job, in how many ways may this be done?
Answer the same question assuming the five slave computers arc mdlsungu:shablc
to the master compulter, -

8. How many funclions arc there from an cighti-clement set onto a four clcrncnl set?

9.  Show that S*~' = C(n, 2).

10, Show that §2 =2°""-1.

11. Show that PX =35 P ..

12.  Find the conjugate partitions for the following? (G, 5, 5, 3). (5, 4, 3, 2, 1),

(8, 6. 6, 4, 2, 2). '

13.  Show that the number of partitions of n into 2 parts is nf2 if n is even and
{n—1)2il nis edd.

14.  Show that P_—P__, is the number ol pactitions of n into parts greater than 1.

5. Show that P, +P 272P |

57 SOLUTIONS TO MISCELLANEOUS EXERCISES

. The bookshelves are distinguishable. Assuming all the books to be distinguishable,
the distribution can be done in NY ways, where N = n+r+s+1t, Once the
distribution is made we know that as books belonging lo the same subject are not

13
distinguishable the nummber of distinct distribution is only —L—
n'clsit!

2. We have only to find how many of cach kind is to be bought to make up a total
of 15. This is the number of non-negative integral solutions ol X, +x, + ... + Xz =
15. Clearly the answer is C (1548 -1, 15) = C (22, 15).

3. Let us st of all divide 40 students into twao groups of 20 cach, This can be done
in C (40 20y ways. The first 20 may now be grouped into 4 groups ol § euch in
ZGUSYY ways. Thie sccond group 20 can be grouped into twe proups of 10 cach
in €220, 10). Thus the required numbn,r of ways is C (40, 20)[204(51)Y)

C (20, 10). "Lhis simplifies 10 -——?— .
(1015
- . . 100
4, I'he seleclion of beads for the 7 nmeckiaces can be made in —————— ways.

(2013101

Having made (he selection a necklace with k dislinct beads can be made in (k- [)!



11.

13.

recurrence relation_for P¥'s.

" arc respeciively

ways as circular permutation . Thus the required answer is —---

100! 200101
20010

(9!

(91)%. This reduces 10

In each die there are ¢ possible resulls and in cach coin 2 resulis, The resulls
from m cice will be an unerdered i tuple of numberss from 1 1o 6. This is just
distinguished by the number of 1's number of 2's cte. This is Jjust the number of
solutiors of X+ %+ ..+ X, =m. Thisis C(n+6~i m) =V (m+5, 5).
Similzrly the n coins give rise (© C(n+ 1, {). Hence i-z required answer is
(n+i; Cun+35. 5).

We have o wrile 3x% 4+ 2x% 4 1 ay alx], + blx], + c[x]. - d[x], +¢. One casy
method of doing this is to give suceessively the valuss x = 0,71, 2, 3,4 and
cquate both sides. When x = 0 we have | = c. When x = | we getb=d+e
givingd =5 When x = 2 we gel 57 = 2d +2¢ + ¢ giving ¢ = 23. When x = 3
we gel 262 = ¢+ 3d + 6c + 6b giving b = 18. When x = 4 we gel BOL = e+ 4d
+ 12c + 24b + 24a giving a = 3. Thus we finally have 3x* + 2x2+ | = x1,+
18 {x]; + 23[x], + 5[x], + L.

If the slave computers are distinguishable, then the required number is the number
of positive solutions of x, + X3+ ... + X, = 8 and 1his is same as the number of
non-negaltive solutions of Xp+...+x;=3and this is as C{(5+3 -1, 3) = C (7, 3).
I the slave computers are indistinguishable, then the required answer is the
number of partitions of 8 with exactly 5 parts and it is Pg.

The number of onto funclions from B-element set ta a 4-clement is 834!. !

Sf=1is the number of pactitions of n things into (n - 1} non-empty classes. Clearly
(n—12) classes will be singletons and one class doubleton. For this we have Just to
choose [wo elements to form a doubleton and this can te done in C(n. 2} ways.

S: is the number of partitions of a4 n-sel inta 1wo non-empty classes. For this we
have to seleet members of one class. This can be any non-empty subset-of the
n-sct ather than the entire set. But the lotal pumber of subsets js 2, Hence the
required answer is (2"—2)/2 = 2°~' - {. We have to divide by 2 as the two -
classes are unordered. . -

3 ; ..
We have to prove that P¥ = iet Pl oy But this is merely a restatement of the

By constructing Ferrer's graph we can elsily see that the conjugale pattilions of

(6. 5.5, 3), (5, 4, 3. 2. 1). (8.6, 6. 4. 2. 2)

(5.4, 43,3, 0.(5,. 4,3, 2, 1. (6, 6, 4, 4.3, 3, 1, ).

The number of partitions of n into 2 parts is the namicr of posilive integral
solutions of x +y = n wilh (he condition x-2 y. If ns cven, thea x-can be n/2,
N2+ 1, ... a— 1, preciscly 0/2 in number. If n is odd, then x = y is impossible
and we will have x > y.- Hence x can be (n+ 1)/2, ... n— |, precisely

(n - 12 in number. T -

P.—P,_, is thedilference between the number of partitions of n and the runber -

of partitions of (n - 1). Consider a pariition of n - 1. Adding T as an exira part we
gel a partition of n. Henee there is onc-one correspondence between the partiions
of n— 1 and the partitions of n in which 1 i 2 pa, The result now follows.

The incquality can Be writien as P,y 27, -, By the previous
problem LHS is the number of pariiiois of 0+ 2 with parts greater than [. As lie
number of such partitions inerease with nothe resolt fotlows.

Partitions and Distribytions
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6.1 INTRODUCTION

In this unit we are going to discuss/ to learn about the pigeon-hote principle, the

principle of incluston-exclusion and application of these two principles’to combinatoria
problems.

Objectives
After reading this unit you should be able to:
e apply the pigcon-hole principle 1o problems;

0 counl the number of comibinatorial objects with ths help of the principle of
inthusion-exclusion.

6.2 PIGEON-HOLE PRINCIPLE

A patently obvious [act about finite sets, known as Pigecs-Hole principle is a

transparcntly simple principle with surprisingly large nur=er of Aapplications in
combinatorics.

Suppose there are 10 boxes and 11 objects. I the objects zre each placed in some box
or the vther m an arbilrary manner, then, at least one bex will have more than one
object in 1. On the face of it (his asscition is clearly truz. as we cannot cnsure at mos
une object in every box if the number of objecis exceeds the number of boxes, No
formal prool scems necessary. This principle is called the pigeon-hole principle.
Formally we state the pigean hole principle,

Pigeon-Hole Principle: Il there are n boxes and (n + 1) cbjects, then for any
assignment of objects to the boxes, there will always be 2 box with more than one
object in i, or if m pigeons occupy n pigeonholes and m > n, then there is at least one
pigcon hwole with two or more pigeons roosting in it.

A variant of this used in most of the examples is as folloss: If nm + 1 objects are
distributed among m boxes, then at least one box will have more than n objects —
known as gencralized pigeon-hole principle.

The Generalized Pigeon-hole Principle — Some Varianis:

Theorem 1. Let k and n be positive integers. IT k balls are put into n boxes, then sorr
box contains al least. [k/n] b'nlls {xS[x]<x +1)



Proof: If caclt box contained fewer than {k/n] balls, then there would be at most - More About Counlin
n {[k/n] — I} balls altogether. But

n({k/n] — 1} < n{(k/n} + 1 ~ 1) = k, a contradiciion.

For example if 479 students are enrolled in Discrete Mathematics, and if there are
9 sections of the course being offercd, then some section has at least [-—4;9 ] =
[53.2] = 54 swudents in it

Theorem 2. If a finite set S is partitioned into k scts, then at least one of the sets has
1S|
k

Proof: Let A, ... A, be the sets in the portion of set S, Then average value of | Ay s

or more tlements.

% A, +. . +[A]l = % So the largest A; has at least this many elements.

Theorem 3. Consider a function f: S = T where S and T are finite sets satisfying

[S]> r.|T]. Then at least one of the sets £ (1) has more than r elements. (f * )
denoles the inverse image of the set {1} = {x e S : f(x) =1}) .

Proof: The family {f* (0 : t T} partitions S into k sets with k <|T[. By the

princ_iplc!julsl shown above, some set of £ (1) has at least |f—l members. Since
) S ¢
% __W > r by hypothesis; such a set [“ (1) has more than r elements, p

When r = |, this principle states that if f: S — T and 1S] 2 IT[. then at least one of

the scts {7 (1) has more than one element, that is f is not injective,

Example 1: Assuming that fricndship is mutual show that in any group of people we
can always find (wo persons with the same number of friends in the group. oo

This appears rather surprising. If.there are n persons in the group, then let the number .
of friends in the group of the ith person be 1(i). Clearly {(i) can take values only
between 0 and (n— 1), If some (i} is 9, it means that.the ith pcrsoﬁ does not have any
fricnds in the group.In this case no {(i) can be (n—1). Thus only one of the values 0 or
~ (n—1).may be present among the f(i)'s. Thus the n {(i)'s can take only (n-1) distinct
values, By pigcon hole principle two f(i)'s must be equal.

LI

Example 2: If 5 poiats are chésen at random within or on the boundary of an
cquilateral triangle of side | inch., show that we can find {wo points at a distance of at
nrost 1/2 tneh. oo - i

Solution: Divide the wriangle into four equilatera! triangles of side 1/2 inch by joining

the midpoints of the sides by three line segments.“These four triangles may now be -
considered as boxes and the five points as objects. By pigcon hole principle we can find

a smatler triangle with two points in it. Clearly distance between these two points is at

most 1/2 inch. i .

& ¢ ok

- Example 3: Given any ten different positive inlcgers tess than_107 show that there will = - - -

¢ two disjoint subsets with the same sum. - ; =z

Solution: The highest numbers we could be given would Le 97. 98, ..., 10G wiich add
wp o 1015, So, consider pigeon-holes marked 0, 1, 2, ..3; 1015, The set of 10 posilive
integers have 2'% = 4024 subsets. Put a subset in the pigéon-hole marked with the sam

of the numbers in the set. The 1024 subsels have o be put in 1016 pi_gcon—holcs. So.
some pigeon-hole will have more than one subset with"the same sunm; Two of them.
though having the same sum. may oot be disjoint. But by dropping the common
clements in them, we are left with disjoint subscts with. the same suin.



DBasic Combinalorics

40

Here are spmc' excrecises {or you to do.

El)} If 10 points arc chosen in an equilaleral triangle of side 3 cms., show that we can
find two points at a distance of at most | en. :

E2) On 11 occasions a pair of persons from a group of 5 was called for a function.
Show that some pair of persons must have attended the functional at least twice.

E3) Four persons were found in a queue independently on 25 occasions. Show that at
lcast on two occasions they must have been in ihe queue in the same order.

Example 4: Show that every sequence on n® + | distinct integers contains either an
increasing subsequence of n+ 1 numbers or a decreasing subsequence of n -+ 1 numbes.

Solution: Let the sequence be a|, 2;. ..., 32, (- Suppose there is no increasing

subsequence of n + [ numbers. For cat.h a, let s(k} be the length of the longest :
increasing subsequence beginning at 9. Since all n? + 1 of the s(k)'s are between | and !
n, some label, say, m must be used at least n+ 1 times. Since by the gencralised pigeon-

hole principle, at least [-%] = n+ 1 of these numbers are the same (the s(k)'s are

the pigeons, and the fumbers from [ 1o a are the pigeon holes). Now if i < j and
s(i) = s(j), then ; > a. Olherwise & followed by thd longest increasing subsequence
starting at a; would be increasing, subscquence of length s(j) -+ 1 starting at a;, a
comradwuou since §{) = S{j). Then n + I integers a, for which s(k) = m must form a
decreasing subsequence of length at Jeast n+ L

* £ &

Example 5: If we take n integers, not necessanly distinct, then show that sum of some
of these numbers_ is a multiple of n.

Solution: Lel S{m) be the sum of the first m of these nurnbcrs If for some 1, m,

1 < m, S(m)-S(1) is divisible by n, then, a,,{ + 3, ;5 + ... 3 is a multiple of n. This
also will mean that S(1} and S{m) lecave the same remainder whcn divided by n. If we
cannot find such pairs, then it means that the numbers 5(1), 5(2), ..., 8(n) leave
different remainders when divided by n. But there being only n possible remainders, viz:
0, 1, 2,..., {n— 1), enc of thesc numbers must leave a remainder of 0. This mcans one
of the sums S(i} is divisible by n. This completes the proof. In fact we have proved (ha
one of the sums of consecculive terms is divisible by n.

% £

You may [ry SOMe Mol CXeroises now,

4y If any set of 11 integers is chosen fram 1, ..., 20, show that we can find among
them onc of them dividing another,

1353 17 100 balls are placed in 15 boxes, show that two of the boxes must have the
same number of balls,

(G) I 4, 85 ..., 2, is 2 permutation of 1, 2...., n and n is 0dd, show thal the praduc!
(a; - 1) (a, - 2) ... (a, —n) must be cven.

We conelude by stating some extensions of pigeon hole principle and, some more

cxercises. Some extensions of Pigeon-Hole Principle:

i, Suppose we put infinity ol objects in o Naite number of buxes. Thea atlenst on
box must have infinity of objecis.

This follows from the Tact that if every box contains ealy a [inite number of
objects, then the lotal number of objects must be [inite,

2. Let Ay, Ag ., A De snbsels of the finite set S such that cach clement of S is ir
al least 1 of the sets A;. Then the average number of clements in the A% is at Icn
LSt
k

This gencralized version allows the sets A; to overlap.

The Pigcon—H;aIé Principle, Theorem 2, is the special case t = 1.



E?) Every positive inicger is given one of the seven colours in VIBGYOR. Show Lhat
atleast ong of the colours must have been used infinite number of times.

E8) Let A be some fixed 10-clement subset of {1, 2, ..., 50}. Show that A possesses
two different S-clement subsets, the sum of whose clements are cqual.

E9) The positive inlegers are grouped into 100 sets, Show that at least onc of the sets
has an infiatty of even numbers. [s it necessary thal al least one sel should have
infinity of even numbers and infinity of odd numbers?

6.3 INCLUSION-EXCLUSION PRINCIPLE

Let us il,zstrate this principle with an example first,

In a club with 54 members, 34 play tennis, 22 play golf, and 10 play both. There are il
playing handball, of whom & play tennis also, 4 playing golf also, and 2 play both
tennis and golf, How many play none of the three sports?

Let S represent the set of all members of the club. Let T represent the set of lennis
playing members, G represent the set of golf playing members, and H represent the set
of handball playing members. Let us represent the number of elements in A by {A|.
Consider the number [§|—|T |-G |[-|H]. Is this the answer to the problem? Nd, for
those who arc in T as well as G have been subtracted twice. To compensate for this
doublc subtraclion we may now consider the number |S|-|T]—-]G{-|H|[+|TA G|+
|G H| +|HNT]. Is this the answer? No, for those playing all the three games have
been sublracted thrice and then added thrice. But those members must have lotally -
excluded. Hence ‘we now consider the number. |S|-|T|-[G|=|H|+|Tn G|+
IGAH[ +|HNTI- TN GAH|. This is the correct answer. This reduces to
54-32-22-11+10+6+ 4-2= 5.

In this formula we make alternately inclusions and'c-:xclusions Lo arrive at the cormrect
answer. This is a simple case of the principle of inclusion and exclusion. It is afso
known as the sieve principle. The reason for this is that we subject the objects to swvcs
of progressively finer mesh to arrive at a certain grading. :

The Inclusion-Exclusion Principle will tefl us the size of a union in lcrms of lhc sizes of

various inlersections”. - -

To calculate the size of AU A, U ... W A_. Caleulale the sizes of all possible
intersections of sets from A, A, ... A,. Add the resulls obtzined by inserseciing an
udd number of the seis, and then subtract the resubs oblained by intersecting an even

number of the seas. o

The Inclusion-Exclusion Principle is ideally suited to situations in which (1) We just
want the sizeof A, W, A; ... U A, not a listing of ils elements and (i) Muldple
interesections are [airly casy to count.

~ We will consider the inclusion-exclusion formula in its generality in the lollowing
theorgm; .

Theorem 4. Suppose we have a set-ol’ N objeets and a set of n properties 9. Py, --- Py
“which cin be applied_to these objects. By a property we mean any distinguishing
critcrion by which we can say wheilicr an object satialics the criteiion o noi, Let us
suppose that every object is assigned a weight. Let PP represent the set of mopertics. 11
A is a subset of P let W(A) represent the sum ol the weights of objects possessing all
the properlics in A \puaauabln" possibly some other propertics not in A as vall). Then
we have Lthe lonmuia, ’

E(0) = _“}'(@)_ Z W(A) + z W(A) — o+ )W) (1)
- AcPhlal=1 AcPIAl=2 - '

'svhcrc W) is the sum of the weights of all the N objects and E(Q) is the sum of the
weiglits of all objects -not.possessing any of .the properlies .in P 0T c.quwalenlly
posscssmg exactly 0 prc)pcmcs ] oAl

More Aboul Coeunting
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The above formula gives the sum of the weights of objccls possessing none of the
propertics in P. :

Proof: Consider an object which possesses exactly r properties in I. Let us see how
many limes its weight is cansidered on the RHS of the formula. Clearly its weights is
considered only in those terms where A is contained in the set of the r propertics. In

“W(@) il is considered once. In 4 = par= | W(A) it is considered (actually subtracted)
r times. In the next term il is added C(r, 2) times and so on. Thus in the sum it appears-

Cr.O-C{r. N+CE D-CE I+ +-1)YC{ )

times. But this sum is 0 if r > 0 and [ if r = 0. Thus the weight of any object which

possesses none of the propertics is added precisely once in the sum. This proves the

correctness of the formula, :
Note hat 0 = (1 -1 = 1=C(r, D+ Cr - ...+ -y CE il r>0
Butifr=0, then {J -1 = L. ‘

Corollary I: If we ke the weight of every object as 1, we gel the number of objects

possessing none of the properties in P from the formula by
n

N(pjp; .- py =N- X Np2 + IN(pip)) = + 1" NPy Py -Pr) @

Where N(p,) denoles the number of objects that have the properties -p;, N(p; p;) denotes
the number of objects that have the propertics p; and p;, N(P;) denotes the number of
objects that do not have the properly p; €tc. :

Unless specificd otherwise, assume that the weight of cach object is 1. Then sum of the
weights of a collection will be exactly equal to the cardinality of the collection.

Let n(A) denote the number of elements in the set A (which we have also denoted by -
IAl). Also we denote A, M A, N AY by AjA AT where AS s the'complement of the set
A, An clement is in AJAS ... A7 if it is in none of the seis A; 1= 1,2, ... 0.

Covollary 2: Let A, Ay, .. A, be n sets in a universe U of N elements. Let Sy denoie
the sum of the sizes of all k-tuple intersection of the Ajs. Then

CR(AL A, L A= N-S 5, - Syt L+ DS+ L+ (DS, 3)
Corollary 3: Let Aj, Ay o A be scls in lhclunivcrsc 4L Then
n(A VA, UAY =S, =S+ Sy— .. = (1) XIS L (1) S, {4)

We will illustrate the use of the formula. |

Example 6: Find (e sum of the numbers fram 1 10 25 which are not divisible by 2
o 3 ’ .

Salutian: et us rive a weight of r for the integer.c from {1, 2, ... 254, Then we have
find the st of the weizhts of all objects not possessing the two properlics (1)
divisibility by 2. and (2) divisibility by 3. In this casc we have

WOy =1+ 2+ .+ 325 =325

W(hy=2+4+... +24 = 201 +2 + ...+ 12).= 156, (sum of the weights of all objects
possessing property (1)) ’ '

W(2) = 34 64 ...+2d4= 31 +2+...+8) =-109. Also

W, 2y =6+ 12+ 18+24 = 00. The required answer is, by the sieve formula,
325 - 156 - 108 + 60 = 121,

e itlustrste the application of corollary 2 and 3 by the following example.
Example 7: How many ways are there o distribute r distinct objects into five (disunet)
boxes with (i) at fcast one empty box? (ii) no empty box (1 25)!

Solution: Let 7 be all distributions of r distincl objects into five boxes. Let Ay denote
the set ol distributions with ith box being empty. Then the required number of
distributions wilh at least ene empty box is n (AW Ay . W AQ). We have N = 51,
a(A;) = 4" = (5-1)"), the humber .of distribiutions with each ohject giving into onc of
the remaining four boxes, n(AiAJ'.)': 3" = ((5.-2)). and so forth. Thus by Corollary 3
above, we have- ’ Tt " o



n(A .. VAS) = § =5, + 8, -5, + 8 More About Counting
- S C(5 N4 —C(5. 2 F+C (S, 32 (=C(5, HIT+0

Also n(AjAS ... AY) =5-CG D) 4"+ C(5, 2)3—C (5, 3)2°+C (5, a)I" by
Corollary 2. ’

= k&

Example 8: How many solutions are there to the cquation x +y + 2+ w = 20 in posilive
intcgers x <6, ¥y <7, 258, ws97

Solutien: To tse inclusion-exclusion. we let the objects be solutions (in posilive
integers) of the equation. A solution has property p, if x>0, property p, if y > 7,
property py if z> 8, and py il w> 9. Then what we need is preciscly Eg The total
number of positive solutions 1o the equation is C(20~1, 4--1) = C (19, 3). Thus
W) = C (19. 3). Similarly

W(p,)=CR0-6-1,4-1)=C(l3, 3), W (p,) = C(12,3) W {p) = C(IL, 3),

W(py) = C(10,3), W(p,p) =C(20-6-7-1,4 —3)y=C(6. 3), W(pp,) = C(5 3), !
and so on, By inclusion-cxclusion we obtain

E(0) = C(19, 3)-C (13, 3)-C (12, 3) -C(1l, 3)-C(10. 3)
+C6. N+CG,H+CMA 3)+C(4,3) +C(3A. 3)
= 969 -286-220—165-120
+20410+4+4+1
= 217.

Now you may try the following exercises:

ELQ) How miany numbcrs from O o 999 are not lelSlblc by cither 5 or.7?

E1l) Eight pcoplc cmcr an clevator. At each of four floor stops at least one person -
leaves the elevator, After four floor stops the clcvalor 15 cmpiy-In how many ways -
can this be done?

E12) How many six-digit numbers contain exactly ilwee different digits?

6.3.1 Appllcatlon (o Numben Theory — Euler’s Totient FFunction . -

Let m be a positive integer whosc distingt primc factors are’ pj.-Pa. < Py Th-.n the 3 .
number of integers Letween | and m which are relatively prime to m (h.m: no Cominoen . - -
“ factor other than 1) equals - N

m{l—-ﬁl'l-')-(l—-pl—\—_(l—lTln) B _

(This expression is usually denoted by ¢ (im) and it defines Euler’s tatienl [unction in
number theory.)

Solution: Let the objects-be {1, 2, 3,.... m} and for | €£i< o lei “properly 17 be that a -
number is divisible by . Then the intcgers m that set which are relutively prime Lo

m are precisely those which have none of the properties 1, 2, ..., n, Henee the )
answer is {by lormuia (1)) - : - ) - -

-fll

~W({-W @ -... - Wi

+WL.2)+ WL 3+ ..+ Win-1.n)
oW 2 3 Wl 2 4 W(n-2.n-1,n)

e -7

1P WL 20 ) - : S



But W(i) =~l"“— W, ) = “l; . etc. Hence the required number is

i i)
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n
m—z n +z o -4 . =" m
i=1

B ii Pl PiPz--- Dy
But the above expression is clearly equal (o

m(i-) (1-L) (L)

" Ta

6.3.2 Application to onto Maps

We will show that the number of lunctions fram an m-clement sel onto a k-elernent set
5 D - CK D (k-D". (mzk21)

To prove this we will define the objects 1o be all the mappings from M, an m-clement
sct o K, a k-clement sct. For these objects we will define k properiies. The ith property
is that a mapping does not have the ith clement in K as an image. Clearly the number
of abjects is k™. The number of mappings excluding a specific set of i elements in K

i5 (k- )™ and there are C(k, i} such scts. An application of inclusion-exclusion
principle now gives the required answer. -

Stated more precisely, these are
kM-Ck, D(k-BD"+Ck, 2} (k-2)"— ... + (=D Ck kS M

different subjeclive functions from M conto K.

Example 9: How many {unctions arc there from a five-clement set onto a three-clement
sel?

Solution: The answer is 2&:0 1Y Ck, 1) (k=)™ for m =5 and k = 3. Thus the
required answer is 3°-3-2%+3- [5 = 24396 + 3 = 150.

LY

Theorem 1: The number of partitions of an m-element set into k classes is

k
ﬁz (=1} Cek. i) (k=™

1
kT

Proof: II the k classes arc distinguishable the numiber of partitions weould have been the
same as the number of funclions from an m-clement set onto a k-element set. As the
classes arc indislinguishable we have to divide this number by k! From the previous
application 1o onlo maps the result follows. We thus have an cxplicit formula for sk.

Example 10: What is the Stirling number S3?

Solution: We have already seen that the number of [unctions from a S-element sel ono
a three-clement set is 150, By the previous theorem the answer is 150/3! = 25.

* T ¥

Example 11: Suppose A, I3, € are three finite subsets of a set X, Show that

iAuBUCI-{Al-IBI-iCI+iAnDBI+|B ACl+lANCl-laAnBnCi=0

Solution: Consider the set of objects as the set Aw B u C. Let the property p; be, nol a
member of A, the property p,, not a member of B, and p;, not a member of C. Then,
clearly the number of elements which are in none of the three sels is counted by the
expression in the problem. This number is clearly 0, as we are considering only the
clements in AwBwWC.




6.3.3 Application of the Principle of Inclusion-Exclusior io More About Counting
Probability

An important application of the principle of inclusion-exclusion is used in probability.
Suppose in a probability space A, A.. ..., A, arc n events. Then we have,

P (AU AU uA}-E(—)’“ Z P(A, A

l€i<iy<...<t €n
Proof: It must be noted that in the atove formula AB means A A B. and A | AU
U A, means atleast one of the events A, A,, ..., A_ happens.

To every elementary event [er us give the weight equal  its probability. The ith
property is that the clementary cvent belongs to the event A We will then have

W(@) =1
By DeMorgan's law, we have AA% ... A is the complcmcnl of AyjuAu.LUA
But the prnciple of inclusion- cxclusnon gwcs
n
P(AA, . A) = I~Z(—1)' E P& AL . A)
r=1 1€i € P i r
_Il__ 12<...<|r_.n

The resull now follows [rom the fact that

PlA; VA LULUA) = T-PAA] .. A) ’

6.3.4 Application to Derangenient.s

The expression aja, ... a,_ is called a permutation of 1, 2, ..., n if all the a's arc distinct

and are from {1, 2, ..., n}. A permutation aa, ... 2, is called a derangement if g =i for .
i=1,2,.., n Thus 231 is a derangement, while 321 is not, because 2 is in ifs natural -
position. - . Co

The problem now is to find d, the number of derangements of the numbers 1 to n. Let _ ; -
the set of all permutations of 1 10 n be our objects, and let us give a weight of 1 1o : -

cach of these objects. The property p, is that the aumber i occurs in the ith position of

the permutation. Then d, is precisely E(0) or N{p/ ... p5). It follows that W(p) =

(n—l)'x—lz .nW(p,pz)—(n DLij=1,2 ynizj ~ ) -

Clearly W(pI1 Pi, -+ pi) = (n—r)!, for after fixing-the |lh~posn|0n with '- forj =1,
2, .., r, we can {ill lhc remaining (n=rj positions wuh— the remaining (n—r) numbcrb -
in (n —r)! ways. By the principle of inclusior-exclusion we have )

da=E©) =ni=C(n, Iy (n— 1) + Cn, 2) (W=2)' — ... +(~1)" C (n. n)O!

_1(]11'1‘ lnl)
SR TR T TR ATE :

Note: The cxpression (1 "_[IT+'2]—:_'~]_|+ +(_1)GL) is the bcainr'.ing of the ~
- .
expansion [or . Even for moderaicly farge value of n. d, is very close (o

" nle”! = 036788 nl.
-Further we have the foilowing formela: - -

For a seL of n objects, the number of pecrmutations in which {1 a z.ubscl of r objects are
deranged can be computed by the [onnula

—_C(r., 1) (_n— M+CiE2) =2 -+ (1Y Cir, ) {(n=r)! H
I ()

Example 12: Let n books be distribuied-10 o childrcn.'Thc baoks are retuned add
distributed 1o the children again later on. In how many ways the books be distributed so
that no child will gct the same book wwice? T

=0
—
l

. (i) exactly r elements are-in their raturat position is C(n, 1) d,

Solution: (n1)? ¢ smcc corresponding 1o each first dlSlnbuUOl'l there arr.'r (n')c:'I ways -
" of distribution.- - _ . - 45
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Example 13: I0 ten people check their lats, and the drunken hat-check girl returns the
iats randemily to the people, what iy the probability that no ane gets the right hat?

Solution: The number of cases {avourable to the event is clearly d,q. The tolal

number of cases is 10!, Thus the probability that none will get the rigln hat

You may now Iry the following exercises.

E13)

El4)

In how many ways can the intcgers 1. 2, 3,.... 7. 8 and 9 be permuted such that
no codd integer will be in its nuwcal position.

Find the number of permutations in which exactly four of the nine integers
(b 2, .., 9} arc in their natural positions (exacii+ five ntepgers are
dearranged).

With this we have come to the end of this unit which 15 the last unit of this block. Let
us now summarise what we have covered in this unit.

6.4

SUMMARY

After going through this unit, you have studied the foilowing:

IR

2
3
4.
5

Pigeon hole principle stated in several equivalent forms.
Several types of generalized pigeon-hele principiz.
Various applications of the pigeon-hole principle.
Principle of inclusion and cxclusion-various formziae.

Vartous application of the principle of inclusion =3 exclusion.

0.5

SOLUTIONS/ANSWERS

El)

C2)

[Z4)

[3)

By drawing lines parallel 1o the sides and througs the poinls trisceling each side,
we can divide the equilaleral triangle inle 9 cquilzzral triangles of side | e
Thus il 10 points are chosen, atleast two of ther: must lie in one of the 9
triangles.

S persens can be paired in C(53, 2) = 10 wavs, Honze if pairs are invieed 11 ames,
at least one padr must have been invited twice ¢ mare times by pigcon-hole

principle.

Four persons can be arranged in a line in 4! = 22 ways. Hence if we consider
25 occastons, atleast on wo occasians the same (odering in the queue must have
been found by pigeon-hole principle.

Consider the lollewing grouping of numbers.

{1.2,4, 8. 16}, (3.9, I8}, {5, (5},

{6, 12}, {7, 14}, {10, 20), {110, {13}, {17}, LIt

There e 18 groupings caliwusting all the 20 intez2s from 1 o 200 10 1L
numbers arc chosen it is impassible o sclect at most ane from cach group. So

two numbers have 10 be sclecied from soime grouy, Obviously one of tham wiil
divide the other

Suppese X, Xa. ... Xy are (he-number of balls in the 15 boxes in the increasing
order, assuming that all these numbers are differeai. Then, clearly, x; 2 i—1 for
t=1,2,.., 15 But then,

15 . ;
zi=1 x; 2 14 15/2 = 105. But the total number of balls is only 100, a
contradiction. 'I"hus the x;'s cannot all be dillerent



E€) In the sequence a;, a,, ..., a, there are (n + 12 odd numbecrs and (n—2)2 even More About Caunting
numbers as n is odd. Hence it is impossible to pair all a’s with numbers from |,
2, ..., n with opposite parity (evenness and oddness). Hence, in at least one pair
(i, a;) both the numbers will be of the same parity. This means that (he facior
{a;— 1} is even and henee the product is even.

R . T —

E7) Consider the seven colours as containers and the numbers gelling the respective
colour their contents. Then we ave a distribution of infinite number of abjccts in
7 container. Hence, by the exiension of pigcon-hole princinle, m least one
container mest have infinity of objects. The colour of tha: container must have
been wsed infinile number of times.

EB) Let J£ be the family of 5-element subsets B of A. For each B in J. let T(B) be
the sum of the numbers in B. Obviously we must have f(B)Z1+2+3+4+5=
15 and (B} £ 46 + 47 + 48 + 49 + 50 = 240. Hence - % — T where T = [ 15,
G, ..., 240). Since |T] = 226 and |%|=C (10, 5) = 252. by the gencraliscd pigeon
hole principle (3} % contains different sels with the same image under {. that is,
different sets the sums of whose elements are equal,

E9) The 100 collections can be considered as containers. There ace infinity of even
numbers. When these even numbers are distributed into 100 containars, at least
one container must have infinity of them, :

A conlainer need nol contain infinily of even and infinity of odd numbers. For, il
we put all odd numbers in the first container and all cven numbers in the second,
leaving other 98 containers cmipty, then, no container has infinity of odd and
infinity of even numbers.

’EIOJ Let thc_objccls be the integers 0, 1, ..., 999. Let p; be the property that a number -

is divisible by 5. Let py be the property that a number is divisible by 7. Let the
“weight of each of these numbers be 1. Then we need precisely the sum of the
weights ol the objects possessing none of the propertics py. p,. W (@) = 1000.
W (p,) = 200. For, ihe numbers divisible by 5 arc 0, 5, 10, ..., 995, exactly 200
nursbers. W (p,) = 143. For, the numbers divisible by 7 are 0. 7, 14, ..., 994,
exactly 143 numbers, W (p, p,) = 29, for the numbers divisible by 5 as well as
7 are principle the answer is 1000 - 200 - 143 + 29 = 686. '

El1} The answer 1o this problem is clearly the number of functions from an §-sct
_ oento a 4-sei. 8-scl is the sel of people and the d-sel s the set of Noors. This
number is -

4
> cua. ) (8- =d5_4.3546-25_4.18 - .
i=u - - .

E12)-We can choose three digits in C (10, 3} = 120 ways. The number of G-diptl
numbers using ali the three numbers is same as the numbci of functiens (rom a

-7 6-scl onto a 3-set and (his number is 36~ 3 - 26 + 316 = 540. Hence the answer
is 120 . 540 = 64800. Bul this will include numbers starting with 0 slso. =

EI3) 1, 3,5, 7. 9 arc the odd intcaers. ' ’ : - -
By formuta (5) the reguired number of ways is - ] - )
91 =G5, 8!+ C(5, )7 —C(5. 3)6! + C(5, 4)5! ~C(5, )= - T~ =

El4) By formuia (6). the reguired number of permutation is Cry. i, =3, s, o - -

6.6 MISCELLANEOUS EXERCISES

1) A group of couples sits around a circular table for » group-discussion on mariral. -
. problems. In how many_ways may the group be scated so that no hushand and :
wife sil together?! L _ ' ; -

-E2} A used car dealer hus 18 cars on-the-lot, Nine of them have an aulomatic -

transmission, 12 have power steering.-and 8 have power brakes. Seven have bolh
" automatic Iransmission-and power steering, four have automatic transmission and



t: :r\u:ﬁ 5.

Biasic Car:hinatorics riower brakes, and five have power sicering and power brakes, Three cars have

power steering and brakes and automatic transmission. How many cars have
automatic transmission only? How many cars are “stripped?”,

E3) A bookcase has five shelves each with 10 books on it. Each shelf contains books
on one of five different subjects. In how many ways may the books be removed
for dusting and refurned to the shefves so that each subject still has a shelf of its
own, even though no shelf has a book previously on it?

E4) In a club there are 10 people who play tennis and 15 who play squash; 6 of them
play both. How many play at least one of the sports? :

E5) In aclub there are 10 people who play tennis. 15 who play squash and 12 who
play badminton. OF these, 5 play 1ennis and squash, 4 play ténnis and badminton
and 3 play squash and badminton; and of these just 2 people play all three sporis.
How many people play at teast one of the three sports?

E6) How many numbers from 2 to 1000 are perfect squares, perfect cubes or any
higher power?

E7) Suppose that you are given n + 1 different positive integers less than or equal to
2n, Show Lhat

(i} there cxisis a pair of them which add upto 2n + 1,
(i) there must exist two which are relatively prime

E8) If n+ 1 positive integers arc less than or cqual to 2n, show that wc can find two
of them such that one is a multiple ol the other.

£9) Prove that in any n + 1 integers there will be a pair which differs by a multiple
of n. .

!
E10) Every day I pul 1 rupee or 2 rupees inla a piggy-bank and the total is m rupees
after n days. Show that for any integer k with 1=k < 2n —m there will have been
a pedod of consccutive days during which the total amount put into the pigey-
bank was exactly k rupees.

EL1) Prove that, given any posilive integer n, some multiple of it must be of the form
99...900...0.

[12) How many integers beiween 1 and 10000 ace divisible by at least one of 2, 3
and 5.

13) How many integers between 1 wnd 10000 are divisible by at least anc of 2, 3, 5
and 77 Deduce that there are at most 2288 prime numbers less than 10000.

6.7 SOLUTION TO MISCELLANEOUS EXERCISES

£1)  We assume the couples are aubered as couple 1 through couple n. Let
N = {!, 2,.... n}. Let the property ¥ be “tuushand and wile i sil together”, for
i=1,2 .. n Let P e the setof n properlies. Lel us assign a weight of 1 10
every object, What we nced is clearly Eq. To get W (A, AC D ‘Al =r, we seal
ihe r couples together and aliow the remaining 2n — 2r peapie 1o sil down al the
remaining places; we arc in elfect aranging 21 — ¢ unils around a circular tabie.
Tiis can be done in 2n—t— 1)} ways. Now cach couple can occupy its 1wo chairs
in two ways. Therefore, after the 2n—r unit are assigned 1o places, there are ar
ways [or the units o be placed in Wheir assigned places. Thus. (here are
27 (2n—r— 1)} ways to scal the people. Thus

1]
' H . TR L, I H 1
E(O) = 2. (- NVWIA) = Z (~1) C (. D2 (=i =)
ACP i=0

T

3
S ®

Let b poperiies T, 5, B repiesent “with aulomatls transmission” “with power
steering’, ‘with power brakes'. respectively. Here (the cars are ous abjects, Then,
we have, W (@) = 13,

WD =9, W(S) =12, W (@) =8 WIS = 7. W{T, B) = 4.




WS, B)=5 W(T. S, B) = 7. 'Stripped’ will be E (0) in number. Thus,
‘Stripped” = 18 -9~ 12-8+7+4 + 5-3 = 2. For getting number of cars with
aulomalic transmission only, consider those with automalic transmission and
with no other propenty. Clearly the number required is W (T) - W (T, S§) -
WTB)+W(T.S,B)-9-7—-4+3=|,

E3) The arrangements of interest here are arrangements of books on shelves. 1f we
take the property j. “shell § gets the same subject it had last time.” then for a
given set I of i shelves, there are 10! ways 10 return the books of a given subject
o each shelf in I, giving (10!)' ways to fill these shelves. Next there are {(5-1)
other shelves and there are (5 —i)! ways 1o assign subjects (o shelves so that the
shelves in I-and perhaps some athers - get their original subjects back. Then there
are (101)*~7 ways to assign the books 1o these shelves. Thus we have (101
(5-1)! arrangements having at least the properties in L so W (I) = (10)% (5 — i)
Stnce we want E; we apply the inclusion-exclusion principle 10 get, with K= (1,
2, 3,4, 5},

- E(0) = Z (— D10 (5 - 11!
IcK .

5
:E(—J)SC(S. i) (5-1)"
i=0

5

:5!(101)52(%})L. | ’

i=0

E4) "The required number is 10+ 15~6 = 19.
C5) The required number is 10+ 15 + 12-5-4-34+2=1727 - ) -

E€) Consider the objects {2, 3, ..., 1000} and let a member of this have ‘property i il
it equals the ith power of some integer. Since 2'% > 1000 there are no tenth
powers in the set and ‘the only propertics which really concern are propertics ’
2,3....,9 - ’

W (2) = [(1000)!7] -1 = 30, W(3) = [(1000}“—‘] -1 =9,
W(2,3)=W(6) = [(1000)} -1 =2, W(2,4) = W(@d) =4 -~
W(2,3,4) =W (12) = 0, W(2, 3, 6) = W(6) = 2, ... where [x] denoics

i

the “integer part’ of x. Continuing in this way gives [he number of object with at
Jleast one of the properties as

30+-9-f-4+2+2+1+_|+,1~2—4—2—I—-2—1'7I+2+ I = 40.

4y

Let the numbers be ay, a,, ... a,,,. These numbers are distinet and lie
between | and 2n. Let us suppose that.we cannot find a pair of them with
sum 2n + 1. i we define b, = 2n+ [ —a; fori= [. 2, ... n+ |, then each b,
1s a positive integer less than equal o 2n. No b; can be an a. Thus the
collection a,, by, ay, by, = a, L, by has (2n + 2) distinct integers all

- between 1 and 2n. This is cleacly impossible by pigeon-hole principle. This

contradiclion shows’that some pagr must have a'sum of 2n + |.

We claim that twao of the numbers must be-consceutive integers. Let the

{n + 1) nubers arranged in increasing order be a,, ... a,, 4 If net two
-humbers are consecutive dntegers, ther g, - a,220ori= L2, on

Adding these we oot a =iy 2 2n and this is impossible. Thus two of the
¢ing C £ 1
numbers must be consecutive infegers. Thess are abviously prunc to each

othcr.

n+T1

8) Il all1the n + | numbers are not distinct, then 1wo of them would be equal, and

© ooncis nivially o muhiple of the other. Thus we cin assume that the numbers are
fJislinét. Lel us consider pigéon-holes marked 1, 3, 5,..0 2n—1. We put a numiber
in the colleetion of n+ 1-given nunibers in a pigecon-hole marked r il r is the

“_ largest odd number dividing the number. There being only n pigeon-holes two
of the numbers should fall in the same pigeen-hole. Those-two numbers havé = - ..

More About Counting

49



i

2
'y

‘-1'!-_(|1L‘,¢‘

e

Easle Combinatorics

EY)

EID)

"EID

E12)

213)

the same odd number as the maximum odd divisor, r say. Then the twe

numbers should be of the form r- 2, r- 2%, where a £D. Clearly r- 27 divides
b

r-2° .

Let the imegers be aj, a,. ... a,, . Let us suppose that dilference of no two of
them is divisible by n. Cansider the n dilferences a, -, for i = 2, 3. ... n. When
these differcoces arc divided by n the remainders can only be from Q. 1, 2, ...,
n— 1. But 0 is excluded by our assumplion. Hence two af the remainders must be
equal by pigeon-hole principle. Suppese a, —a; and 2, -2, leave the same
remainder. Then theic differcnce a,—a; will be divisible by n.

Let the totad uplo ith day be ¢, 1 =1, 2, ..o, Let | € k< 2n - m. Consider the 2n
aumbers. L, by, o L Ly + K+ ke + k. Clearly all these 2n numbers Tic in
the interval [1, 2n —1]. By pigeon-hele principle two of these must be equal. say
Land G+ K then -y =k

2

Consider the o+ | numbers [ 10, 10 .., 10% Let the semainders when these
numbers are divided by o be ry. . ... 1 respectively. These r's can take only the
vidues (L 2, ... o — 1. Thus. by pigeon-hele prnciple, two of them must be the
same. say r, r,. This means, n divides 10° = 10°, assuming that b > a. But

10" — 10" is exactly of the form 99 ... 900 ... 0.

l.ct the objects be the numbers | to 10000, Let A, B, C be the properties,
(i} divisible by 2. (ii) divisible by 3 and (iii) divisible by 5. Then the number of
numbers nol divisible by any of the threc numbers is given by

G0} = 10000 — W{A) - W(B) - W(C)
+ W(AB) + W(BC) + W(AC) - W(ABC).
But W(A) = 5000. W(B) = 3333, W(C) = 2000.
WAR) = 1666. W(BC) = 666. W(AC) = 1000, W(ADC) = 331. Thus
E(0) = t0000 — 5000 - 3333 - 2000 ‘
+ 1666 + 666 + 1000 - 333 = 2666. The required answer is
10000 — 2666 = 7334,
As in the previeus problem we define A, B, C, D. Then
[Z(() = L0000 + 1666
+ 1000 + 714 + 666 + 476 + 285 + 47

~ (5000 + 3333 + 2000 + 1428 + 333 + 238 + 142 + 95) = 2285. Thus the required
number 15 10000 — 2285 = 7715, Also we have 2285 numbers not divisible by
2.3, 5 and 7. The prime numbers could be found only among these 2285 numbers
and ol course 2, 3, 5 and 7. But we have 10 omit |, Thus there could be al masl
2285+ 4 -~ 1 = 2285 prunc numbers. ’
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BLOCK 3 .. RECURRENCES

Suppose you were a communication technologist and needed to create a single
error detecting code of a particula{' type. You would then need to find the
number of binary sequences with an even number of 0's (or 1's}. How would
vou do this? One of the simplest ways to solve this problem and other counting
prablems is by using recurrence relations. What are these relations?

A recurrence relation, or recurrence {in short), is an equation that expresses
a given problem for n objects in terms of the same problem posed for less
than n objects. For example, let us consider the most famous exanple of a
recurrence relation/equation, which is also the first recurrence relation found
in mathematical texts. The problem js:

How many pairs of rabbits are prodpced after n months il we start with onc
pair or rabbits exactly one month old, and if every month, to each pair of
rabbits more than one month old a new pair is born?

Let f(n) denote the number of pairs of rabbits presenl at Llie beginning of a
month n,n > 1. In Unit 7 you will see that the recurrence relation f(n) =
f(n—1)+{{(n—2), for n > 3, with £(0) = 1 and (1) = 1 describes the situation.
In this unit we discuss, in great detail, several problems that lead Lo recurrence
relations, and give you an indication of how they can be solved. .

Recurrence relations have been used in various ways from the time of Fibonacci
{1170-1250). Jakob Bernoulli (1654-1705}, his nepkew Daniel Bernoulli (1760-
1782), James Stirling {1692-1770), Euler, and other mathematicians of the
late seventeenth and early eighteenth centuries also used recurrence relations
extensively to solve problems in analysis and combinatorics. More recently,
recurrence relations have been used in diverse fields like economics, psychology
and sociology.

When we talk of “using recurrences”, what do we mean? Is it cnough to merely
state the praoblem as a recurrence relation? Afier all, the problem has to be
solved. So, what is important Is to be able to solve recurrence relations, that
is, to find explicit formulas for recursively defined functions. This is what we
aim to do in Units 8 and 9.

In Unit. 8, we intraduce you to the theory of combinatarial generating fune-
Lions, developed in the late cighleenth century. and first discussed by Laplace
in his 1812 classic “Theorie Analytiques des Probabitité. A generating fune-
tion is merely a simple and sophisticated mathematical model for a counting
problemn. By using ilis, one cin solve complicated counting probleins, some
of which cannot be solved by thie combinalorial argumeuls of Block 2. Iu this
unit we have shown how generaling functions can be used to model seleclion
and arrangement problems, a5 well as partition problems. In the context ol ve-
currences, we have discussed how to solve them by using gencrating functions.
This method of solution was introduced by De Moivie and Junes Stirling
(1692-1770). '

Ly Unit 9 we Lake up four other techuiques for solving recinrence relations, s
you will see, we have largely confined ourselves Lo solutions of only one type
of recurrence relation. Somectimes, though, other types ol recwrrences can be
reduced to this type and solved by the methods given in the unit.



By the time you reach the end of the block, we hope that you will be familiar
with various aspects of recurrence relations. We also hope that you would

appreciate the simplicity and elegance of the methods using recurrences for -

solving counting problems.
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1 INTRODUCTION

r

the previous block, you have learnt to solve various types of combmatorial
oblems using a varied set of tools. However, there are many kinds

oblems that have to do with counting which cannot be tackled only with

2 techniques we have presented so far. To give you one such example, lock
the problem of counting the number of ways of filling up n boxes lahelled
Y...,n, with 0’s and 1’s, in such a way that no two adjacent boxes have a
To solve this, and several such problems, we need to use the idea of
currence relations’.

e basic method to solve counting problems that seem to r&sist a solution
ng the basic counting tools is the method of recurrences. As a first step,
1 will need to set up the required recurrence relation satisfied by the
blem. This is quite similar to the problem of learning how to get to ihe
1 rung of a ladder from the (r — 1) th rung. It is for this reason that you
y expect to be able to verify solutions to recurrence relations by use of
thematical Induction. The sccond and final step is to actually solve the

urrence. There is a large number of lechniques available to us to do this,
l we will study them in the following Units.

: first two sections deal with problems that may ba solved by means of

h relations. We aim to give you some insight into how to set up

Irrences in these sections. The next section deals with various notations
definitions that you may come across in the course of this block. Finally,
discuss ‘divide and conquer relations’, used in Computer Science.

jectives

2r reading this unit, you should be able to
efine a recurrence refation:

ive examples of recurrence relations;
1 .

't up recurrence relations;

3ply divide and conquer algorithm.



Hecurrences

Fiz.1: Fibonace:
(1170-1250)

7.2 THREE RECURRENT PROBLEMS

Let us begin by exploring three sample problems that will give you an idea of
what is to follow. They have two characteristics in common: each bas been
investigated repeatedly for centuries, and each has a solution based op the
idea of recurrences. This means that the solution to cach problem depends
on the solution to smaller instances of the same problem.

Problem 1(Rabbits and the Fibonacci numbers): Have vou heard of
the problem of breeding rabbits, originally posed by Leonardo dj Pisa, also |
known as Fibonacei, in 1202 in his book Liber abaci? The problem is: :
ane pair'of rabbits. one male and one female, are left on an island. These '
rabbits begin breeding at the end of two months aud jroduce 2 pair of

rabbits of opposite sex at the end of each month thereafter. Can you
determine the number of pairs of rabbits after n months assuming no rabbi¢
dies on this island?

Let F, denote the ;mmber of pairs of rabbits after n months. Then F, = 1.
Since the pair does not breed in the second month, 7, = 1 as well. To find
the number of pairs after n months, we must add the number of pairs after
n -~ 1 months to the number of pairs born in the nth month. But the
newborns come from pairs at least two months old, i.e. from the pairs that
already existed after n — 2 months; there are 7,_9 of these. Therefore, the
scquence {Fu[n > '} nieets the cordition Fa=Fna+Fnoifn> 3,
together with F; = 1 = F2. This sequence is called the Fibonacci, sequence,
and the F, are called Fibonacci numbers:

So, have wé solved the PProblem? Not quite; but it uniquely defines the
Sequence we seck, describing its members in terns of some previous members.
We can also define %, as a function of n, as in the following exercise.

“El}  Using induction, verify that V5 F, = (I—"Zﬁ)" = (1:25)111 n>1.

Now let us consider another important recurrent problem.

Problem 2 (The Tower of Hanoi): This problem is invented by the
French mathematician Edouard Lucas in 1883. We are given a tower of
cight discs, initially stacked in decreasing size on one of three pegs.

] I

A B - S co-

Fig, 2¢n): initial position for the towers of Hunoi problem.

‘The objective is to transfor the entire tower to oie of three pegs. moving



only one disc at a time without ever moving a larger disc onto a smaller one.,
Lucas furnished this toy with a legend about a much larger Tower- of
Brahma, which supposedly had 64 discs of pure gold resting on three
diamond needles. At the beginning of time, he said, Gdd Placed these golden

. discs on the first needle anq said that 2 group of priests should transfer them
to a third, according to the rules above. The Tower will crumble and'the
world come to an end once the task is finished.

Recurrence Relations

Let us generalise this problem and see what happens if we have n dises
instead. Let us say that Ty is the minimum number of moves that will
transfer n disks from one peg to another under the rules. Clearly, T) =1,
and T2 = 3 {why?). A littie bit of experimentation on three disks leads us to
the general strategy: we first transfer the n — 1 smallest to a different peg
frequiring T, moves), tlien move the largest (requiring one move;
1emember, it must move!), and finall{ transfer the n — 1 smallest back onto
the largest {requiring another Ta—1 moves}. Thus, we can transfer n discs

r' -

B C

Fig.2(b): A position for the towers of Hanoi Problem after three moves,

or n > 2) in at most 2Tq-1 + 1 moves. So,T,, S2Th; +1,iln> 2. Why
ave we used “ <7 instead of “ =" here? Qur coustruction proves only that
T'n—1 4+ 1 moves are enough but can we do better? The answer is “No”. At
me point, we must mave the largest disc. When we do, the n — 1 smallest
ust be on a single peg (why?), and it has taken at least Ty—1 moves to put
em there. And, before moving the largest disc for the last time, we must
ansfer the n — 1 smallest discs (which must again be on a single peg) back

o the largest; this too requires T+ moves. Hence, T}, 22Tn  +1if
> 2.

i with the first example, we shall postpone solving the recurrence relation
it obtained to Unit 9. Incidentally, once you have done the following
ercise, you will note that the priests will require a minirmum of

'~ ) = 18446744 073709521 €15 moves to transfer the golden disks. Even
the rate of one move per second, it will take Lhem more than 5 x 107

irs to solve the puezle, so the world should survive a wlile longer!

) Using induction, show that Tg=2"-1,n>1.

w let us consider the third problem we had in mind. This recurrent
blem has a geometric flavour.

oblem 3 (Lines in the Plane): We wish to determine the maximum



Recurrences .

number of regions, Ly, into which the plane is cut by n straight lines. As
with our previous examples, we will content ourselves with .merely being able -
to express Ly in a recurrence equation, leaving the task of solving it for Unit
9. Looking al the first few cases will convince you that a picture would help.
We have pictured the situation for n = 1 and 2 . We suggest you make a

A 4
L=l L= L=4

Fig.3
drawing in the case n = 3. The answer for three lines will tell you that the
initial guess (which you may be tempted to make looking at the one line and
the two line case) that L, = 2" needs to be revised. Suppose we have already
broken up the plane into L, regions by means of n — 1 lines. We should
insert the nth line in a manner so as to increase the number of regions by as
much as possible. A little bit of playing around will convince you that the
number of regions increase by k precisely wlhen the nth line splits k of the
previous regions. This will take pldce only if it hits the previous lines in
k — 1 different places. However, two lines can intersect in at most one point,
so that the new line can intersect the n — 1 old lines in at most n —1 .

" different points. So k—1<n-1,ie, This establishes the upper bound

L,<Ly_ +nforn>?2 - -
But, can we achieve this upper bound? To do this, we place the n th line in ~
such a way thai it is not paralle! to any of the others (hence intersects them
all), and such that it does not pass through any of the existing points of
intersection (hence-it intersects them at different points}. This es’tablis!‘.e_s
the recurrence for Ly, namely,L, = L1 +n for n > 2, with L1 =2

Here’s an exercise for defining Ly in terms of a. -

E3) Using induction, show that L, = Zn(n+ 1) + 1, 1 21

You will have noticed that in each of the three problems; we have been able
to express the nth term of a sequence in terms of one or more previous terms
and a function of n. This gives you a method to compute the terms of the
sequence accurately, given enough time. At times, if the relation between the
terms is in a reasonably idice form, we can even “solve” the recurrence, that
is, express the n th term as a function of n. You wilt learn how to solve these
three recurrences by the -methods discussed in Unit 9.

Lel us now cousider soie more recurrent problens.

7.3 MORE RECURRENCES

You have becn CKDOSCG to some mmous I'CC'U.I'['CIIE prUchms 1 the prev tous
section. In this section, we shall take another look at setting up recurrence -
relations for combinatorial problems of the kind you would have encountered

in the previous block or elsewherc. You will find that in trying to determine -



the recurrence, we are really attempting to describe the counting inductively.
In most cases, you will see that the recurrence relation leads to an alternate
method of solution, although the methods themselves will be dealt with in |
Unit 9. : -

Problem 4: We begin by considering the problem of sorting a list of n
numbers into increasing order, Let us denote by ¢, the number of
comparisons made in sorting n items. To find the smallest element of the
list, we will need to make n — 1 comparisons (pick the first two items in the
list, choose the smaller one, compare this to the third item, and continue the
procedure). If we now exchange the first element with the smallest, we are
left to carry out the process on n— 1 jtems. Since the number of comparisons
necessary on the remaining n — I items is Cn—1, the total number of
comparisons is given by ¢, = ¢y + n — 1,n 22, withe, =0.

b

E4) Using the recurrence relation for Ca, show that ¢, = in(n -1),n> 1

Problem 5: You may recall that the set of all subsets of any non-empty set,
S, is called its power set, and denoted by P(S). Let us determine a
recurrence relation satisfied by s, = [P(S)], where [S] =.n. Let us take
5={1,2,... ,n}. Now, any subset, A, of S either contains the number n or
does not. Let us consider these two mutually exclusive case separately and
count the number of such subsets, A. Ifn € A, then A = AU {n}, where A’
is a subset of {1,2, ... »0 = 1}. So, there are as many subsets A as there are
subsets A, Since A’ C {1,2,... ,n— 1}, there are Sp—1 such subsets A. On
the other hand, ifn g A, then, in fact, A is a subset of {1,2,...,0~1}, and
there are s,_; of these too. Combining these, we see that

5n *=8n—1 +8n-1 =25, 3, n > 1, with sy = 1.

E5) Using the recurrence relation for Sn, show that s, =2" n > (.

Problem 6: Recall that a bijection is a one-one, onto mapping of a set
mto itsell. It is quite casy to determine directly the number of bijections of
1 n-set {a set with n clements). We will, however, be looking at a
‘ecurrence relation satisfied by the number of bijections, by, of any n-set, say
(1,2,...,n}. To begin with, if [ is any such bijection, f(n) could be any one
of the n elements of the set {1,2,... ,n}. But now we must map the elements
f {1,2,...,n — 1} bijectively to {1,2,... ,n}\ {f(n)}; there are bp—1 ways of
loing this, and hence that many choices for the function f. Notice that cach
hoice of {(n) leads to a bijection of an (n — 1)-set. In all then,

m =1ba_y, n 22, with by = i. )

I6) Using the recurrence relation for bn, show that b, =n!, n > 1.

Ve end ibis section Ly looking again at the problem of the missing hats,
iscussed towards the end of the previous block.

'roblem 7: You may recall that the problem is to determine the number of
crangements of n objects, d,,, and that we had employed the method of
nclusion-Exclusion to solve it.

£call that d, counts the number of Permutations of n objects that leave no
bject fixed. Any such permutation is called 2 derangement. Let us begin
y labelling the objects s"erially: 1,2,... ,n. In any such derangement of n
bjects, 1 gets sent to some 1, where i # 1. Two cases arise: for the same

S

Recurrence Relations



Recurrences derangement, either i gets sent back to 1 or it does not. In the first case, we
can leave out 1 and i from the original set and obtain a derangement of n — 2
objects; there are dp..2 such possibilities. In the second case, we may omit 1
from the original set to obtain a derangement of n — 1 objects; there are dn_
such possibilities. Therefore, assuming 1 gets sent to i, there is z total of
dn-1 + dn-2 possibilities. Observing that i could have beer anv numUer
between 2 and n, we conclude that d,, = (n ~ 1)(dp_; +da_2) for 0 > 3. To
complete the recurrence relation, we note that d{ =0 and dy = 1.

You will have noticed that to compute d, one neceds to know the values of
the two preceding terms. Can we get to compute d, on the basis of the value
of only one preceding term, d,_;? To explore this, let us write the recurrence
in the form dy — nd,—; = — [da—; — (n — 1)d,—3]. We now observe that the
expression on the right hand side within the brackets is got from the
expression on the left hand side by merely replacing n by n — 1. If we write
Dn = dq — ndp—3, we have the simplified expression D, = —D,_;. But then
Doy =—-Dp_s, and 50 Dp = Dp_2. Continuing this procedure, we arrive at
Dy = (—1)""2D; = (—1)" [d3 — 2d;] = (—1)". Therefore, we have

dp =ndp_1 + (- 1)“ if n> 2, withd; =0.

E7) Using either recurrence relation for d... in the discussion above, show
that

,n>1

n—n'z

We end this section with a few problems in whlch you are required to set up
the recurrence equation, -

— - - .
E8) For each n > 1, define a, = ZC(nJ.—k,Qk),bn = ZC(n+k,2k+ 1),

k=0 k=0
with ag = 1, bp = 0. Show that for each

n >0, any =y + bny1, boy1 = a, + ba. ; -7

E9)- Derive the recurrence relation for the number of ways to parenthesise
the expression xj + xg + -+ + Xn so that only two terms will be added
at a time. For axample, the expression ({(x; + x2} + x3) is fully
parenthesized, but (x; + x2) 4+ x3 is not.

[£10) Set up a recurrence-relation for the determinant of the n x n matrix
with 1 along the main diagonal and with 1 on either side of the main
diagonal in each row and zero elsewhere.

E11) Set up a recurrence relation for the n-digit sequépces of numbers using
only the’integers {0, l, 2:3} having an cven number of 0's.

1512) Show that the 11umber of r-permutations of n distinct objects, P{n ),
satisfics the recurrence r('la.tmﬂ )
SP(nr) =P(n—1,1)4+rP{a—~1,r=1),n>1,r>1.

B13) Let 57 denote the Stivliug nu.ubers of the second kind, that is, the
number of ways to distribute r distinct objects into n nondistinct boxes
with no box left empty. Show-that S? satisfies the recurrence rela.tlon

0 ¢ - - _ SH,i-—S“ 1—!—nS“'I<n(r _ I -

L



E14) Let f(n,k) denote the number of ways of selecting k numbers trom tne

n numbers 1,2;... 21 80 that no two consecutive numberg are selected.
Find a recurrence relation for f(n,k), and using the conditions
f(n,1) =n and {(n,n) = 0, verify that f(n, k) = C(n -k + 1,k).

tuzcurrt:uuu ALCiananga,

E15} Let t, be the number of incongruent triangles with integral sides and
perimeter n. Show that

tn_a if n is even;
b _ e
" trs + D 4) il nis odd.

E16) Suppose n unit circles are drawn on th
intersects any of the other circles at exactly two points and no three
circles meet at the same point. Derive a recurrence relation for the
number, r,, of regions into which the plane is divided by the n circles.

¢ plane such that each circle

In the next section, we give all relevant definitions and introduce the
notations.

7.4 DEFINITIONS

!

We hope you have got a fairly good idea of wha: = “recurrence relation® is,
as well as how to set it up by now. It is time to formalise the procedure and
set up a more rigorous mathematical pedestal for it. A recurrence relation
is a formula that counts the number of Ways to do a procedure involving n

sbjects in terms of the number of ways to do it with fewer objects. The
‘ormal definition is as follows:

Definition: Let {an:n> 0} bea sequence of rez! or complex numbers. A

‘ecurrence relation (or a recurrence €quation) is an expression of the
orm ‘

3 =F(an-1,80-2,... ,n)

cbere F is a funclion of some of the variables z. _

f-Zno3,... L& I Nate
hat all the a;5 need not oceur in the expression.

1 other words, it allows us to compute the nti: ¢
r more of the preceding terms. The symbol “F~ merely denozes a {anv)

nction, and the variables are (some or all of} tixe preceding terms in the

lquence as also n. For our purposes, we shall ouly deal with such functions

' which are polynomials and depend on only finitely many vari
N=1y8p-2,... 8y, L.

erin of a sequence [rom o:e

ables.

‘efinition: The order of e reeurrenee relazion defined by

iy = I?(z'..~|1—l|:.|~ll-—2|--' vn‘ll—kuu}

k, where a, depends on one or more of the
nallest such integer. We do not. define an oxder for recurrence relations of

i form ay = Flngoy,a,.9,. .. \1) that depend ou each of its previeus
rms.

previous k teoms and & is the

herefore, if we.can compute the n th term of a sequenee from the preceding

terms, but not from the preceding k — 1 terms, we define the order to be k. 1



Hecurrences Definition: The degree of the recurrence relation is the degree of F,
. treated as a polynomial in its variables excluding n. If F is not a _
polynomial in its variables, no degree is assigned to the recurrence relation.

A recurrence relation of degree one is also calied linear, one of degree two
quadratic,, and so on, just like we have in the case of polynomials. After

all, the notion of “degree” is tied up with the degree of the defining
polynomial F.

~

Definition: A recurrence relation is called to Le homogeneous if it
contains no term that depends only on the variable n. A recurrence relation
that is not homogencous is said to be non-homogeneous or
inhomogencous.

Thus, for a recurrence to be called homogeneous, every term defining the
recurrence must contain at least one of the preceding terms of the sequence.
Usually, the term homogeneous is used for linear recurrences regardless of
its order.

Examples:
I. ay,=3a,_1+n%is nonhomogeneous of order 1 and degree 1.

2. ap=na, 542" is nonhomogeneous of order 2 and degree 1.
3. an= Ay +al,is homogeneous of order 2, but has no degree.
4.

Ay =an—1+ 2,24 --- +ag is hoemogeneous, has no order, but has
degree 1.

-5 an=al_,+a, gan_gan_y is homogeneous of order 4 and degree 3.

- . s . -
_ . 6. a,=sina,_; + Cosan—z +8lnap_3+--- +e" is nonhomogeneous, has
" -no order and no degree. -

7. ap=f(n)an—; + h(n)ag_g +--- + fn-x(n)2n_x + g(n) represents the
general form of a linear k th order recurrence relation (fo—x(n} £ 0). It
is homogeneous if g(n) = 0 for each n, and nonhomogeneous

© otherwisel N ) :

8. a, =agan_| + 21849+ ...+ an-13g{n > 2) with ag = 0, and aj=1lisa
nonlinear recurrence relation. ' :

9. anx =an. ik + Zn-1,k—1 IS a recurrence relation in two variables n and k.
- T Taking ag i = C(n, k), the given relation is nothing but Pascal’s identity
- with initial conditions 2q,0 = C(n,0) = agn = C{n,n) =1 for aln>0
and apy =0,k > ; ' - ' _

10 ey =ap_gp ) + an-3 k-1 + ap—sk_1, with initial conditions -

az1-=a3, = a4 = 1 and 2x,1 = 0 otherwise, is a recurrence relation in
two variables (This is the recurrence relation for the ways to distribute

n identical balls into k distinct boxes with between two and four bails in -
cach box). '

11. a, = ans2 -1 with 2; = 0 ( n a power of 2) is 2 nonlinear recurrence
_ relation. . ' ;
- - You must have observed while looking at the various examples above that Lhe
recurrence relation alone will not define for you the terms of the sequence-
To be able to do Lhis, one needs to know where to begin the sequenee. If a5, -~
is defined in terms of an—y along, deciding Lhe value for a9 (or, 21, or where ~
ever you wish to begin the sequence) uniquely describes the sequence for you. -
“More generally, in case of a kith order recurrence, one needs to know the first
k terms, typically ag, . .. »2x—i of the sequence in order tol'uniquc'ly define the
sequence. A well-defined lincar recurrence relation of degree k consists of a
recurrence part and initial conditions for k consecutive values. - -

12



Definition: A kth order recurrence relation has initial conditions
provided the values of one or more of the terms ag, a;,... ,a,_y are known.

Definition: A function f(n) is said to be a general solution to the
recurrence relation if it satisfies the recurrence equation,

A function g(n} is said to be the particular solution tg 3 recurrence
relation if it satisfies the recurrence equation, together with the initial
conditions.

Please note thal there are infinitely many “general solutions™ o any
recurrence relation without injtial condition(s), one for each set of values for
the initial terms, but only one “solution” once the first k initial terms are
fixed for recurrence relations of order k. You have been verifving that given
functions are indeed solutions to the recurrences of the previous two sections,
We give 2 few more examnples of a simipler nature. The solution of recurrence

elations will be discussed in unit 9.
Ixamples:
The general solulion to ap = an_y is a. = ¢, where ¢ is any constant, but

il in addition ag = 1, then the solution isa, =1,n>0

The general solution to a, = 251+ 1152 =c+n, where ¢ is any
constant; if ag = 0, then the solution i 2. =n.n>0.

The general solution to a, = kan_) is a- = ¢&® where ¢ is any constant;
if 2g = 1, then the solution is & =X n>0.

i. The general solution to a, = an_) ta._qis

1+\/§) te 1—\/5_)

a,=q - wkere ¢, ¢y are anyv coenstants.

2 2
Ifa) =1,a; = 3, then the particular solution is

/ n _ . /\"
311:(—1-.-{—__\/_5) +(1 q\a) o212,

2

n

The general solution to a, — ]
n —

_ n?(n + 1){2n + 1)

an_: =1’ witha; =1, ic

. the concluding section, we discuss some common types of recurrence

lations that result from divide and congues alegrithms,

5 DIVIDE AND CONQUER RELATIONS

18 is a decorposition algorithm that solves a problem of sizr n € Z+ by
breaking it up into a number of instances of the same kind of problem
with smailer inpul paraneter {several smaller nonoverlapping
subprobleins of approxunately equal size)

solving these subproblems, and
I use Lheir solutions to construct a solution for the origina! p:oblem of
Si2e n.
We shall Lo specially interested in cases wlere n is a power of 2.
: discuss a few classic examples of such algorithins to motivate you i.e.
‘¢¢ recurrence relations that result from divide and conguer algorithm.

oblem 8: lu a tennis tournament, each entrant plays a match in the first
md. Next all winners from the first round play a sccond-round match.

nners continue to move on to the next round, until finally only one player
eft as the tournament winner., Assuming thet tournaments always involve

Recurrence Relations
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n =2k players, for some k, find the recurrence relation' for the number of
rounds in a tournaments of n players.

The recurrence relation for a,, the number of rounds, is a, = ans2 + 1. since
after a,,;» rounds there remains only two players, the winners of the
subtournament of the first n/2 players and the subtournament of the second
n/2 players. One more rounds picks the tournament winner from tke two
remaining players. Here a; = 0 (with one player, zero tournament. You will
see in unit 9 that its solution is given by a, = logan

Problem 9: Suppose that A is a sorted array of n elements, and «= wish to
determine whether some nurmber x is in the list. The straightforwar<
sequential search in which x in successively compared to AL}, Al2"--+ [ Alqn]
requires n comparisons in the worst case.

Consider the following divide and conquer binary search algorithm for
determining whether or not a2 number x is in a sorted list kept in some array.

If the array has one element, then compare x to that element the required
number of comparisons (a,) for n = 1, is one, that is ap = 1.

If the array has more than one element, get the element M in the ‘middie’ of
the array. If x is greater than or equal to M then call the algorithm
recursively on the “Second half*” of the array. Otherwise call the algorithm
on the “first hall™ of the array. ‘

This is called binary search because it successively throws away “hal™ the
remaining possible elements until it has found the one'entry that could be x.
Suppose n = 2%, and the required number of ¢omparisors be a,. Then ay =1
and an = ap;; + 1{n > 2). -

If n =1, then the list has one element and it requires one comparison.
Otherwise, we have one comparison with M (It represents the overhead

‘required to break the problem into half and a, /2 comparisons in the recursive
-call to solve the subproblem

Very often a list of n names must be alphabetized, or a list of n numbers
must be rearranged into ascending order: Such an alphabetization or

rearrangement is called a simple sort -1 , S

Suppose that we have a pair of lists each with m {m and n_) elements. which
are already sorted. The two sorted lists may Be merged into one scrted list of
2m (m + n) elements, This is ca.ll-.ed merge sort, That is, given sorted lists .
A={aj,as...,a,) and B =.{b1,b2,...,bm), with a; <2y < ... < ajand

b1 £ba < - < by, we wish to produce a list C = (cr,€2-* ,Cugm) which
contains all the elements of the two lists A and B, totally sorted so that

¢ € < - L epym- We briefly indicate the way the list C is obtained. We
begin with our left index finger pointing to a, and our right index finger
pointing to by. We compare the two numbers and find the smaller. Tlhe
smaller number is put in the list C and we advance the index ﬁngér that was
peinting to that number. We repeat the process-compare numbers being
polinrted al, put the smaller one as Lhe next element of C, and advance that

Ainger-imtil the tist C has been filled completely. Every time the comparison

of 2, to by is wade another clement is correctly placed in the merged lises
Hence the number of comparisons required g2m—1(m+n—-1)

Sorting algorithm for an array A of n elements 5ay X1,Xz,- - .Xg ¢ In
simple sorting algerithm, to determine the smallesl number in the Jist, we -
first compare x; to xs, the smmaller of the two in compared to xz, the result is
compared to x¢ and so on. Add this number to what is to be the final sorted-



list and create a new list of u — 1 elements by removing this number from the
sriginal list. To find the second smallest number in the original list, apply
.he process described above to the list of n — 1 clements left ‘after the first
itep and so on. (refer Problem 4 in section 7.3)

Problem 10: We now derive the recurrence relation of the merge sort
dgorithm for sorting an array of n munbers. In merge sort algorithm we
ve the following steps: If A has one clement then il is already sorled else
ve divide the array in “hall”: i.¢, we split. the original list in half,
ecursively sort the first half and reenrsively sort the second half.

verge the two halves Logether Lo form a single array. Suppose n = 2.

t; = 0. The number of comparisons used by merge sort satisfies the
ceurrence relation

by = 28+ u-1 (n22) ]

vhere 24,72 term represents the total comparisons required for the
ubproblems; and {hie n — | teno in the overhead required to combine the
esults i.e. merging two sorled lists each containing n/2 elements (2 x 5 - 1).
[lhie solution is given by a; = nlogy(n) —n+1 = k2% — 2% + 1.

Ve call a recurrence a divide and conquer recurrence if it has the {orm
a = bag, +d(n} for integer a > 1, where b is a constant and d is a function
f 11. We have considered the cases whereca = 2. ,

Z17) Finding the nth power of an interger i, by successive multiplications by i
requires n — 1 mulliplications. Assuming n = 2¥, describe a divide and
conquer algorithm such that if a, is the number of multiplications Lo
find the nth power, then a, = a,» + 1. Is the algorithm desirable given
that the selulion is given Ly a, = loga(n)? '

218) Finding the product of a list of n integers by successive multiplication
requires 1 — 1 multiplications. Assuming n = 2%, deseribe a divide and
conguer algorithm for which the number of multiplications a,, satisfics
Lhe recurrence relation
Ay = 2"‘:1/'3 41

219} To multiply two n-digit numbers, one must do normally n?
el

digit-times-digit nudUplictions. Use a divide and conquer alsorithm to

do better when nois o power of 2

Vith this we have come to the ad of this anit, Next two units will deald
Jch the methods of solving recurcence relations. Now et us take a quick
aol al what we have disenssed i this unit.

.6 SUMMARY

i thiy Unit recurrence reladions vou lovesstudied cthe lollowing pouns:

] Yon have come across several exomples of recmrence relations, diawn
Gram well-known problns and from rontine exercises in combitiories,

b Yo shoukd e n Barly gaood ddea of how 1o set up recarrenes relic ions
aller having read this unit.,

1) You should alse be familine witl the different definitions that have heen
introduced to you.

[}
{)  Finally you liave learnt of sclting up of recurrence relations with the
lielp of divide and couquer algorithm.

Recurrence Relations
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7.7 SOLUTIONS/ANSWERS

E1) It is easy to check that Fy = 1 = F». With & = e

1)

E3)

ES5)

EG) .

£7)

a1
observe that a, # are solutions to the equation x2—x—-1=0.1If

03> 3, VB (Faot +Faa) = (0™ = 1) + (@2 = °72) =

a"2a+ 1) - A"2A+1) =" 2a? ~ gr2.82 =a" — 3% = V5 Fy, as
desired.

Observe that Ty = 1. If

n>2 2Fa +1=202""1-1)+1 = 2" — 1 = Ty, verifving the formula.
Note that L, = 2. Il

n>2, Ly +n= %(n ~1n+1+n= %n(n +1) + 1 = Ly, as required.
It is casy to see that ¢; = 0. If

n>2 ¢y +n—Il=3n-1)(n-2)+n-1= sn{n — 1) = ¢q, as
desired.

Observe that sp = 1. If n > 1, 25,1 = 2.2°7! = 2" =5, verifying the
formula.

We note that by = 1. If n > 2, nby ) =n.(n =1} =nl=1b,, as
required.

We check that d; = 0,dy = 1. To verily the first order recurrance

_relation, note that ifn>2,

. i _ n-1 i
ndg_y ~(-1)" = n(n—1)! (—-_lll)— + (-1t
2 i

(e
= d, )

as desired.

In ease of the second order recurrence relation, ifn>1,
-1

(n— (et +dpen) = (n=1) {(nQ 1)1 :
- i U
4 (11—2)! 2 .(:1“‘11}

0
. ' n—1 i
= n(n-1)! Z (_})

=0
n-—1 i
. -1
. - ==t —‘—)—
B i=0 te- B
- - - - I‘.-:.;J- ( ‘L}i -
_ - ] '1\11—1)!%3—-11 -
- {i (—l)i (__1)n—l
_ - I\!“f_—o'_i!__(n-_l)l(n—l)‘
n .
-1}
= nl -—)— = dg,



E8) Writing a5 = 3 y_, C(un +k,2k) + 1, we get

A b —— .

n n
npi—an = 9 Cln+k+1,2k)= > Clo+k2k)+1
k=1 k=1 -

n
= 3 Cn4k2k—-1)+1
k=1
n-1
= ZC(;1+1<+1,21< =1} +1

k=
n

= Y Clo+k+1.2k+1)

k=0
=" bpar-
Likewise, with by = ¢, Clfa+k, 2k + 1),
n ’ o-—1
bort by = D Cla—%+1,2k+1) - > Cln+k,2k 1)
k=0 =0
n—-1 o-1
= S Cle-k+1,2%k+1)— > Cla+k2k+1)+1
k=0 =0
n—1
= ) Cla+k2k)+1
k=0
n
= Y C(e+x2K)
k=0
= 4ag
E9) If the number of ways to parentiesize the expression x; +x2 +---+Xq

is ag, the required number for ibe two subexpressions x; +--- <+ x; and
Xpaq + oo+ X are ag and a._y. respectively. It follows that there are
apan_k ways to parenthesize the total expression, with k > 1.
Therefore, the recurrence relztion satisfied by &; is

an = 8,-18] +~ 24229+~ Er2._ 2+ aja, .0 > 2, with a; = 1.
Using the fact a3 = 0, we cax exiend this to

ag =0,a; = l.a; = ap8p + 313 ...+ 21321 F 2g—1 + 208(0 2 2)

1¥10) Let A, denoie the requined = X n determinas:. Expanding abour the

E11)

&l
=
¥

L

first row. we get A, mizus the determinzst which when expanded
aboul ils first row vields A -, The corresponding recurrence relation
s AL, =A, ;-2 u>3 with Ay =1 A-=0.

Let a,, denate the number of n-digit sequences containing an even
number of 0°s. Then there are a,,_; (n — 1)-digit sequences that have an
even uamber of Os and 4°~% — a,_; {n — 1)-digi: sequences that have an
odd mnnber of U's. To each of the a,..; sequences that have an even

nmmber of 075, the digit 1.2 ar 3 can be appended Lo yield sequences ol
lenglh i that contain i even number of 0's. To each of the 4271 —a

soquences that have an odd number of 0%s. the digit 0 must be

appended to vield sequences of length u that contain an even munber of
. - . . . - , LoAn—

O's. Therefore, forn 2 2, 0, = 30,0, #4777 — o) = 20 24 '

with oy = 3.

Of the n distingt objects, pick any one ohicct and call it “special”,
Then, the number of r-;wrmui.ations in which this “special” object does
not appear is P(n — 1,r) because this is the number of r- permutations
of the remaining n — 1 objects. On the other hand, if the “special”

17
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object does appear, the number of r-permutations is rP(n—1,r — 1)
because the “special” object could be in any one of r positions between
objects or at either end, and we have then to determine the number of

(v — I}-permutations of n — 1 objects. Combining the two. we get the
required recurrence.

E13) Tlis is somewhat similar to the previous one; choose a “special” object
first. The box containing this object either coutains no other object or
contains at leas: one more. In the first case, we need to distribute r
distinct objects into n — 1 nondistinct boxes, with no empi box; the
number ol ways in which to do this is Sr—!. Otherwise, the special
“object” may be placed into any one of the n (nondistinct} boxes (there
arc n choices), and we still neeu to distribute r abjects into n
nondistinet boxes, with no empty box; there are S such choices for
each choice of the box the “special” object is placed in. Combining the
two cases gives the recurrence relation.

E14) We first show that {(n,k) =f(n—1,k) +f(n—2,k—1) for

1 < k-< n— 1. If the number 1 is among the k numbers chosen, we have
to choose k — 1 more numbers {rom the n—2 numbers 3.4.... ,n. If
the number 1 is not among the k numbers selected, we have to choose k
numbers from the n— 1 numbers. 2,3,...,n.
To verify the formula, we induct on n + k. The base case is trivial.
From the induction hypothesis, we have .
fln, k) =fh-1,k)+fn—-2,k—-1} = Cln-kk) +Cn—kk—1)=

- Cln—k+ 1,k) as desired.

“E15) A triangle.may be formed with integral sides a,b,c, with a > b >cif

and only if b+ ¢ > a+ 1. Therefore, given a triangle with sides a,b,c,
there exists a triangle with sides 2 —1,b—1,c =1 if and only if -
b+c2a+ ‘2 Conversely, given a trlangle with sides a—1,b—1,c—1,
there always exists a triangle with sides a,b;c. Hence, the dxﬁerencg
between the number of tna.ngle.s with integral sides a,b,c and those
with integral sides a — 1,b—1,c — 1 is precisely the number o[ ordered
triples (a,b c), a2 b>e, such that b+c=a+ 1.

Let s count thc -number of such triples.- If b+¢=2a+ 1, the
perimeter;-n =a+ b 4 ¢ =2a + 1 must be an odd integer, so that
there are as many t:mngles with pernncter n -as there are with
periineter n— 3. This proves the recurrence for the even case. I n is
odd, then a = ~;— and- ¢ must satisfy the inequalitics
l<c<b=a—c+1l,orl<c< |2 = |25 ). Thus, in this case,

IR T B I S N
ty —tn-a = 4 = 4 . _

E16) A bit of experimentation will yield the formulac 1y = 2,19 = 4,13 =8
_and 14 = 14. Suppose that we have drawn n — 1 unit circles chat divide
the plane into r,-) regions. The n Lh circle intersects these n — 1 circles
at 2(n — 1) points, that is, the nth circie will be divided iuwo 2(n — 1)
ares. Since each of these arcs will divide onc of the 1y regtons into

L
{wo, we have the recwrence 1y =1,y +2(n =~ . n = 2.

1517} Divide n.by 2, find 1 17, and square it. Thus a, = ay + l A he algorithun
is desirable since loge(n) grows more slowly than . -

1218) Dwide n by 2. Find the product of first 2 integers and the product of
last 3 mLe"cu, Mulliply bwo products obtained. Thus a, = 2an + !

1219) Let n-be a pov.er ol 2. Let the two n- dlglt numbera be A and B. We_



8plit cach of these numbers into two §-digit parts: Recurrence Heiations

A= AIIO% 4+ Az and
B =B,107 + B, (like 1235 = 12 x 100 + 35)

Then A.B = A1B10" + AyB>107 + AzB,107 + A,B,

~We need only Lo make three 3-digit multiplications, A;.By, A2.By and
(Ay 4- A2} (By -I- I3y) Lo determine A - B since
Ay I3y - Ba - Ay = {A, -i-A-z)-(B]-i-Bz)—Al By - Ay -Bs

Actualy (A + A) or (By + B2} may be (7 + 1)-digit numbers but this
slight variation does npot effect the general magnitude of our solution
(like 1295 = 12 » 107 + 95)

If 2, represents the number of digit-times-digit multiplications needed
to multiply two n-digit numbers by the above procedure, this gives the
recurrence relation

a, = 3Jan
(n Z

3 _ 6

a, is proportional to n'®8:

112

— 2 substantantial improvernent over

19
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8.1 INTRODUCTION

The theory of generating functions is an outstanding example of the beauty
of mathematics revealed through its theories whose simplicity and power
provides an intuitive understanding of a wide range of problems. Though it
is based on simple polynomial arithmetic, it provides a unified approach to
questions in many fields. In this unit we will discuss their use in
combinatorics, including recurrences.

A generating function is simply a formal power series of the type
o0

E ayz", where the coefficients a, are the terms of a sequence of numbers
n=0 . . . i
representing solution of a combinatorial problemn and the exponents of Lthe

symbol z depicts certain enumerative objectives of thal problem.

In 5ec.8.2. we shall explain the concept and some clementary uses of
generaling functions. In Sec.8.3, we shall introduce you to a particular type
of generating functions which are used to solve arrangement problems in
combinalorics.,

In Scc.8.4, we shall explore the power of the generaling funclions as a tool
when, for example, it is used to evolve soine combinatorial identities, solve
some combinatorial problems involving general integer equations, find the
number of partitions and solve certain recurrence relations.

Ohjectives

After reading this unit, you should be able o

= define and construcl gencraling funciions for various types ol combinatorial
problems;

= identify the generating function associaled with a sequence;
* identily the exponential generating function associated wilh a sequence;
* use generating functions to evolve identities involving combinatorial coeffi-

cients; ; 21
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¢ use generating functions to solve general integer equation problems, certain
problems in-the theory of partitions and linear recurrence relations. -~

8.2 GENERATING FUNCTIONS

As you have seen in previous units, the solution of a combinatorizl problem
(in most cases) is a number sequence. In some cases these numbers can be
obtained explicitly by simnple combinatorial arguments. But in many other
situations these numbers are linked by certain relations (see Unit 7}, and so,
we need to do more to get them explicitly.

The beauty of generating functions is that it helps us to solve many such
problems using simple algebraic operations on polynomials {possibly
infinite). The basic idea here is that we identify sequence of numbers with a
power series (a type of infinte polynomial) which on applying certain simple
(algebraic) operations assumes a form from where we can easily read out the
desired numbers as coefficients.

There are many occasions when terms of a sequence (which otherwise may
represent the solution to a combinatorial problem) appear as coefficients in
some power scrics. We illustrate this point with the help of [ollowing
example.

LExample 1: Determine the number of integer solutions to lincar equation

Xp+X2=3, with0< X, <1and0<Xs<2.

Solution: By exblicit enumeration, the possible values-are given below.

Xl X'z Sum

0 0 0 -

0 1 1 e

0 2 2

T 0 1

1 1 2 ]

1 -2 - 3 L

Thus,-Lhere are two ways 1o oblain a sum of 1 (alsn 2) :Lpd‘one way to obtain -

the suwm 3. ) - -

Now consider the following product of polynomials: _
(2% + 21) (2% + 2} 4 2%}, _ ,
where Lhe exponents of symbol z in the first facipr correspond to tlhie ij_SSi‘blG
values of X; and in the second factor to the possible values of Xo. On
expanding this product, we get -
(20 + ﬁl)(zo + 2! 4 22) = (2020 + 2021 + 2022 + 2120 + 212! 1 2727)
) =14 224 222 423 :

Adding the-exponents ol the symbol z after multiplication corresonds to

considering the sum of the values of X and Xo.

We note that the coefficient of z°, | < r < 3, in this expression gives {he
number of integer solulion to X + Xo =r, with 0 € X, € 1 and 0 < Xg £ 2

“In particular, because the cocfiicient of z* in the abuve expression is 1, and

so, there is only one pair of values viz. (1,2}, which satisfy the given lincar

Q(iuar;nn

F ¥ %

Suppose we intend to {ind non-negative integer solution to the linear equation



X1+Xz+X3 =10, with0 <X, <4, X3 >0, and X3 > 0. . Generating Functions
Then, by arguments given in the example above, we take theproduct of the '
following three polynomials:

(1+z+z2+23+zd)(z+zz+-..)(l+z+2.2+...).

In the above product, both second and third factors are infinite because
there is no upper bound on X, and Xj. Also, second lactor does not contain
the constant term owing to the fact that X2 > 0. Theu, as before, coefficient
of 2'%in the above expression will give us a solution to the lincar cquation
given above.

For finding the coefficients of a power series, we often use the following
results.

Result 1: (Binomial Theorem)

> Clyn)d, itn>0
a) (1 + Z)n = r;l:l
Z C(n,r)z", ifn<0.
r=0

b) (1'—2)‘“= (l+z+zz+---)“=1+ZC(n—1+r,r)zr-l

r=1 r

=l+z+z24...+2"1 z:£]

n

1—
Result 2:
-z

Nex-t, we illustrate the technique of identifying the power series associated
with a combinatorial problem with the help of following example.

Example 2: TFind a power series associated with the problem where we
have to find the number of ways to select a dozen pieces of fruit from 5
apples, 10 bananas and 15 coconuts.

Solution: To begin with, let us use the letters A, B and C for apples,
baunanas and coconuts, respectively. So, if we select k apples, £ banaunas and
m coconuts, then we must have k- 24+ m = 12, with the restriction that
0<k<5,0<€<10and0<m < 15. Let us see what we could do to set up
the problem: using the symbols A, B and C.

Here you may think of A¥ to denote k appies, B! denoting € bananas and C™
denoting m coconuts, then we have picked the correct number of pieces
provided the degrec (i.c. the sum k 4- £ + m) of the terin AXB{C™ equals 12.
‘Thus, to find the required number of ways ol relecting a dozen picces of [ruit,
you simply have to find the number of terins in the CXPANSION

(A A A B e B G +C%) ()

whose degree equals 12, This will be e suw of the coefflicients ol all the
terimg ABIC™ g (1} such thnt B0+ == 12 jo of AURAGE Aot

At this point i is mnportant 1o observe Lt any sclection ol (riits with the
given restriction on the numbers k, € and m corresponds to precisely one
term in this product. For instance, il you pick 3 apples, 4 bananas and 5
coconuts, the corresponding term in the product (1) is ASBACS. And
conversely, the terim AB2C? represents the choice of 1 apple, 2 bananas and 9
coconuts. Thus product (1) when expanded as Z a;jkAiBjCk, gives the

ik
required (finite) power series for the given problem.

* & #
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Now, since our real interest is in the degree of AXB!C™ (i.e. in the sum
k+£+m), we may as well replace each of these symbols in (1) by a commen
symbol say z. Then, as before, we are led to determine the coefficient

. of "% in the following product of polynomlals.

Adzd - +22)1+z+-+20 +z 4+ +2'%).

Here, now we don’t need to look into the possible ways in which
A% B and C™ add up to 12 fruits.

Next, let us ask 2 similar question for the problem given in the following
example.

Example 3: How can a power series be associated with the problem in
which we have to find the number of selections of fruits if we have Rs.50 with
us and it is given that an apple costs Rs.5, a banana Rs.2 and a coconut Rs.3.

Solution: Since here we don’t have any restrictiua on the number of pieces
of fruit, the required power series (in terms of money) is of the {orm

(AP A+ AV . YBY+ B2+ B+ WCP+ CP - CO -,

which is the product of three polynomials (infinite because there is no
restriction on the number of pieces ol {ruit}. Because an apple cosls Rs.5, so
purchase of k apples would mean that we have to spend Rs.5k. Similarly,
purchase of £ bananas and m coconuts will amount to spending Rs.{2£ 4- 3m).

‘Thus purchase of (k + £ +m) fruits correspond to the term ASXB2C3™ in the

above product of three polynomials. Also because we have Rs.50 only, we
must have 5k + 22 + 3m = 50. On the other haid, each term ASKBZ{C3m
(with 5k 4+ 2£ 4 3m = §0) in the above series gives a choice for purcha.smg k
apples, ¢ bananas and m coconuts.

Thus in view of given cost of the apple, banana and coconut., powers of
symbols A, B and C in the first, second and third polynomials are multiples
of 5, 2 and 3, respectively. ‘As before, in this expression we seek the number
of terms with degree 50. However, by our discussion following Example 2, we
may replace each of these symbol by a common symbol z (say) then the
required numbér is given by the coefficient of z°° in the expression

{1+z +210 4 )(1+z +2t 4142+ ). ' (%)

Hence this product on expansion gives the power series associated with the
above problem. -

e

In above example, if we impose some restrictions on our selection of the
fruils, then therc will be a relative-change in the associated power series ().

‘This is whal we want you to sec in-the following excrcise.

E1) TFind the power series associated with_the problem given in Example 3,
a}  when all sur-sclections are required.to have 1'apple at least;

L} when cach selection has to have at least one fruit of cach type.

Above you havé scen how to associale a power series with a combinatorial
problem whose solution is given by cerlain coéfﬁcients of that scries. Certain
scries can be written in a funetional form which we calt as closed form. Tor
example, it follows {rom lJanI'ﬂlZ!.l theorem (see_ R.1 gwen above) that



(I42)" (n<0)is the closed form {or a functional form) of the power series
o2 Cln, r)z.

A functional form (or closed forin) of a series associated with a sequence is
called its generating function. A formal definition. of the generating
function is given below.

Definition: The generating function Afz) (say) for the sequence of real

(or complex) numbers, {aq,2;,... .iq,...} is given by the power series
Ll
Alr) =D apa =ay s apzd - ta g~
k=0

Thus, the (n + 1) Lth term «., of the sequence 2 >0 Is simply the coefficient
of z" in A(z). As said before, the generating “nction thus serves the purpose
of identifying the different terms of a sequencs by different powers of the
symbol z. -

For example, the associated power series of t=e constant sequerce {a.a, - - }
13
ataz+az’+... = al-z+tel+..
= a(l—z)L
Thus a(l - z)~! is the generating function ;ie. 2 closed form; of the
constant:sequence {a,a,---}.

"ov binomial thegrem;

More generally, let G(z) be the generating S:==ion of the geometric
progression {ar"},», i.e.,

G(z) = a+ (ar)z + (ar’)z® + -ee

Then
Gz} —a = ra+ (ar)z = (ar®)s” =
= rzG(z),
which gives, on simplification, G(z) = af{1 — = .

Why don’t you try an exercise now?

E2) 1In the following verify thas
(2) the generating function for the £23:¢ —oometric DIOITTERS 0
{a.ar,ac®, ... a1 isa(l — oo 1 — rz).
(L) the generating function for the segzance of binomiz! coeiicient s
{C(k,0),C(k. Da, Cik.2)a%, .. is 2 = az)k.
(¢} the gencrating fuuction for the seguence of binomial cocficients

{Ck—-1,0).C(k, Da. C(k + 1. 2027 . }is (1 —az)™™.

Note thal the generatiug function for a finite 2equense is the generating
function for a corresponding infinite sequesee which ean he alitaine! Iy
setting 1o zoro every tenm not previously defSne?. Thus S o Gade
polynomial ag + agz 4 " we wrile

ag + a1z 4 iy + 0t £ 0t =

Now lel us see how the technigque of assoCiaiiug & series with o sequence is
helpful in-solving a combinatovial problem. \We try to understand this with
the help of following exumple.

\
Example 4: Determine the nuniber of subsets of a set of n clements, n > 0.

Generating Functions

To distinguish them from
exponential  generating
functions  (which  we
will define in the next
section}, they are some-
times  called ordinary
generating functions.
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Two  symbolic
. a,z" and 3 bgz°

serics
are

Solution: Let s, denote the rumber of subsets that a set of n elements can
have. In the previous unit, you have seen that the recurrence relation
satisfied by the sequence {s,} is given by

Ngp =285p_; ifn>1and sy = 1. {see Problem 5 of Unit 7)

Let S(z) stands for the generating function of the sequence {s,}n»0. So we
can write

oo} [+ =]
S(z) = anz“=l+Zs,,z"
n=0

n=1

= 1+2 Z Sp_1Z" {(by definition of sy, n > 1)
o0
= 1422 Z snz” =1+ 22.5(z),

ie. S(z) =14 2z5(z).

Solving last equation for S(z}, we get

S(z) = 7 (by binomial theorem)

said to be ecqual iff  pipally comparing the coefﬂcmnts of z* on both sides of above equation, we

an = b, Vn.

26

get s, = 2", n > (. Thus the number of subsets of a set of n element is
27, Vn.

* & &

As you liave seen in above example, some (algebraic) operations are needed

= at the middle stage of the process while writing the general term of a .

sequence explicitly. These operations on generating functions, which we are

defining below, have a crucial role to play in solving combinatorial problems.

- Aside from the usual operations of addition,__s_ubtraction, multiplication and

division of series, we will-also find the need for differentiating or integrating
a power series. It is important to observe that, while performing last two

i . d
Operations our aim is to assaciate with the object 1 ( E a. z“) (and
%

f {Z an? ) dz) a new-power series as given-in the right hand side of

-03 (and Oy, rcsncctwely)

01.(Sum and Difference) Z az" % Z baz' = Z (an =b )z

Og%(MuItip_Iilchti-on) (Z an z") (Z by Z“) => (i al-:bn—k) z";

k=0

-O;_,.(Differentiation) 4 (Z ") = z (n+ 1.)an+1 z;

dz
_O.q_.(Integrat-:ion) / ( gz ) dz = z HE:_‘] AR
2"}/

Os- (DlVlblOIl) (Z an 2"} /(50 bya") = 3 cad

3 .
~ - . . S
- = (30 by z") (00 cnz") = 3 agztie, an = ) byoyo

The quotient of two power series defined in Cs above is via the product in
. the usual manner. ln[act there is no really convenient expression for the
quotlent



Next, let us now look at some general results which provide connection
between the generating functions of various sequences, terms of which are
related in some manner Lo each other. These results are particularly useful
when we know Lhe generating functions of some of these, and wants Lo find
the same for others.

‘For instance, following lemma cur hely you to oliain gencrating function of
the product of Lwo sequences if the grnerating funciions of individual
sequences are known.
Lemma 1: If Afz) is the geur: tating function for U sequerce {as b and
B(z) is the generating function for the sequence by civg. then Ay - Ble) s
the p,eucratmg function for the: seguence {cu}upa. where

Zk:o Aply_y, b > ).

Proof: The prool readily follows ffom the definition uf muliiplication of
power series (see Oy above), We liave. by definition.

e = (5 ($0)

where at each step of the process we collected the ccefficients of same powers
of z. The proof of the lemma iz the- complete by wsizg the definition of Ch
as given in the statement,

Why don’t you use it to solve the 727 1OWINE exercize

I23) Prove the binomial idenziy S:‘_ C{m. (. _..l: =1t =Cun —1: k.

using Lenmma 1. Hence daduee The binosia

> g Clk. i‘r:C{zL..l_).

We next prove anotber usefn! fonnna of L simtiar natire,

Lemima 2: Suppose that the BNITITWOC {3, Foone ik 1ho srieriitng function
Az} Then generating function Bt 2wy) fu. the sequence {by s, where

by =y = g, Tor n > 1. and b = oo is given b
B{z) = (1 = 2)A(2).

Proof: By d({mmun the gene ing Mminction for the soquence {h, ) s

]
Bz~ ) b

1ot

a

-
= lJ” - \ by ;’,”

t1
L

n=1
oo o

- A Z Ana —w ,}._.\ gt {using definition of 1;,,)
n=1 n=l

A [A () —ig) = rA(R) {by definition of A(z))

(1 —2)A(z).

This completes thie proof of the lemnma.

Generating Functions
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E4) (a) Use Lémma 2 to find the generating function A(z) (say) for the -
sequence in arithmetic progression {a,a +d,a+2d,...}.

(b) Suppose that A(z) is'the generating function for the sequence’
{an}a>c- Show that the generating function S(z) (sar) for the .

sequence {s,} of its partial sums viz. s, = Z ay, (r. = 0) is given

A (o) k=0

Az

S(z) = .

by S(z) = +—,

{c} Use (b) to find the generating function for the sequence
{1,3,6,...}.

We next look at a problems which you might have solved earlier by different
methods. Using generating functions, we shall give you alternative methods
of solving them. This is an example mvolvmg the sum of k-th power of the
first n natural numbers which we denote by k

lLe. ok = 1%+ 2k + +nkH21

You already know how a formula for ok (1 < k € 3} can be verified by
induction (see Unit 2). Let us sce how generating function techaique makes
this task easier. You will see this in operation for the evaluation of

05 = 3=t j* in the following example. .

Example 5: Find the sum o of squares of the first n natural numbers

Solution: Diflerentiating the binomial function (1 —z)~* Z z, .we get

STt =(1-2)"%  (see O3),
1=0

Multiplying this by z on- both sides, we get

Z]z-l'—z(l—z} o g - -

Repcatmb this process of first differentiating and then multlph ing by %, WC -
act

ZJ zl—z(l+z)(l—?) :

J_
where we write A(z) for the generating function of the sequence %t -

Then _
oo (==} k .
Sook = > (LR
) .- k=1 k=1 \j=l
B N - . - Alz)- -
; = by E4(b
B N T (L))

) ' - = z{l+2){1—-2)""

Therefore, o> is the coeflicient of z" 1n the series which can be 0bL¢mui Ly

’ oxpa.nclmrr the function z{1 4 2){1 — z)7%. However, because

wl
i

p—

M1 -2}~ _z(l —‘.ﬁ)_'_d-l-zz{l-i!._l”’,

!

95 this is the samé as looking for the sum of coeflicients of 287! and 2"~? in the

Fl



expanded form o-
identity C(n, k) =

ol =C(n=

Try the followin

E5) Find the s:
functions.

So far, you lean
some simple cor
combinatorial p
This is particul:
order plays a ¢
for more details
kind of geperati
problems.

8.3 Expo:

inomial function (1 — z)~%. Thus, in view of binomial
n — k), we have

~C(n+1,3) =n{n+1)(2n + 1)/6.

LA

I5¢ now,

of the first o natural numbers, using generating

to identify generating functions and use them to solve

rial problems. However, there are several

3 which are hard to crack by using these functions.

e of problems that involve arrangements (in which

ole) and distributions of distinct objects (see Block 2
- 1e next section we introduce vou to a slightly differen:
. -tion which will prove useful for sovling these type of

.3l Generating Functions

In this section.
the last sectior
[inding the nu:
cah be formed
not all letters

Thus, we may
the three-lett
possibilities (i
distinct, in B:
first case, and

Now could w-
is merely the
m+-n =3 il
would have |
in which cas
cise. \We are
strings of th:
Consequenti:
(so Lotal is 3

Now, as woe »

[or the coefis
e, n a

el = gy
4
oY
Forr=1,2

dlUSWer we
is 1, we end

An expones
A formal d:

1 Il study a modified form of the series we discussed in

v 1derstand the difference, ket us consider the problem of

¢ three-letter words ie., a string of three letters which

: two-alphabet set {a,b} (say), with the restriction thz:
: words are identical.

1t two a's and one b or two b's and one 2 to form 2"
+ s out of the two-element set {2, b}. Each of these t=o
iscussion of permutations of objects, not pecessarily
jive 31/2!1! = 3 distinct words viz. aab, aba.baa in the
ib, abb in the second, for a totzl of six words.

it the number of distinct passibilities in above probiem
of positive inieger solutions to the linear equation

= of this as using m as and n b’s, where m,n > 17 This
< we had not been interested in the position of a and &.
% aba would mean the same to us. But this is not tie

" ting the number of threeletter words i differenc

« 3. So, the position of the letters is important.
c:id like each integer solution to contribute not 1 bu-
* total number of words.

sount the number of three letter words, we should 10
+ .Y in  series that counts {m + n}l/mh! cach time
rithat. So, we try the product

cnt z?_l_z:" z A
TR Tt T an oo

tteocflicient of 2" in this is tenn of the form 1/min!, wiiere
We need to multiply this by {(m 4+ n)! in order to get the

- 1§ for. Since the coefficient of 2* in the above expansion

tinlying this by 3! to get a right auswer to above problem.

crating function is precisely the power seties of this type.

= is given below.

Generating Functiopn.

An ordered pair (x.v)

positive integers is a sol
tian 1o the iinear equar’

Mmen =3 ifTxu+v=

!
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Definition: The exponential generating function Aep(z) (say) for the
sequence of real or complex numbers {ag,a1,... ,aq,.:.,} is given by the -
power series '

00 '
ay, k_ an -
Acxp(z) =§:-—k, ao+—1|z+ +—n!z“+---.
k=0

As you can see, the nth term a, of the given sequence is no longer the
coefficient of 2" in Anx,(z), rather it is n! times that coefficient.

For example, the exponential generating [unction for the constant seq.uence
{1,1,1,...} is given by

cxp(z)=ez=za —1+z+§+
n=0 !

Does it remind you of some function? Of course, it resembles exponential
function with which you are familiar but here z is just a symbol and not a
variable. It is this resemblance from where these type of generating functions
have derived their name.

Try the following exercise now.

E6) Find the exponential generating function of the sequence {P(n,k)}}_,,
for a fixed n € IN where P(n,k) denotes the number of k-permutations
of n objects.

As before, let us try to identily the exponential generating functions -

associated with the comnbinatorial problem given in the following example:

Ekmﬁple 6: Show that the exponential generating function associated with
the problem of finding the number of ways to choose some subset of m”

objects and distribute them into n boxes in such a way that the order in fhe )

same box is counted, is given by e*(1 —2)}™".

Solution: First of all, recall from Unit 5 that there are C(m, k) ways of

- ¢hoosing k out of the m objects, and- then n{n+1}---(n+ k — 1) ways to

arrange them into h boxes. Thus, the total number of ways to choose some

" subset of m objects and distribute them into n boxes in such a way that the

order in the same box is counted, are’

C(m, 0} + i n(n + 1) . (n + k— 1) C(m, k)
B :
: r

P L S .
= 1. [E-‘-_; mlxn(n+l-)‘--(n+k 1):\

Here we may take n to-be fixed, and consider this a sequence in m alone.
Therclore, the coresponding exponential generatmg function for this -
scquence is _ _ - -

o2 [ ] m 1 . - .
> Y - . LI
-:%B Llhn‘ + L (m — k)Ik! x n{n + 1)_ _{n +.k 1}] 2z

whicl, in turn, is 2 product of the serics .~ -

. (i _1_:31;1\ -an'll-(] ah i n(n--i—-l) (n+mF 1) m) - {SCC- O

[ 2%
e

I * 1
. m!
\m_ﬂ )

-m=1 : -
Now the first series equa.ls ¢’ (by dcﬁml‘.mn) whlle the second equa.ls



{1 —2z)~", by binomial theorem, Hence we have obtained the assomated
exponential generating function, as claimed.

* % %

Why don’t you try an execrcise now?
y Y

IE7} Show that the exponeniial generating function of the sequence {Bn}2,
ol Bell numbers, satisfying the recurrence

B, = Z C(n, k), n > 2 with By = 1,
k=0

is z/(e* — 1).

Let us work out few examples to get a fecling about some elementary uses of
the exponential generating functions in solving combinatorial problems.

Example 7: Find the number of bijections on a set of n elements, n > 1.

Solution: Let b, denote the number of bijections on a set of n elements,
n > 1. Recall from the previous unit (Problem 6} that the recurrence
relatidn satisfied by the sequence {b,} is given by

by =nb,_;ifn>2and by =1.

Since we do not know by, we will igoore this term. The exponentiz!
gencrating function B(z) (say} of the sequence {b,}) is given by

bI b2 2 b3 3 br
B()=—1—"Z—; +3! .+FZT—---
‘Thean
b
B(z) = Zn—?z“
n=1 N
_ . [e.u] nbn—l = b' 1—- s i-'b >
= zfzh;z. oz {by definition of by, n > 2)
[+a]

. bn oo
= ZTZZIEZ =z +2.B(z).
n=

Solving for B(z), we get
=y
B(z) =z/(1 —z) = L ™. (by bimomial thecrem)
n=1
So, by comparing coefficients of 2*, we get from the last equalizv
b, =uln>1.

k¥

AL times, the exponential generating functions are also useful in cale ulating
the suut of an inlinite series. Lot us see an example of this.

Example 8: Find the sum of the series

[s ] ] - T T

— (k+1i) 1° & =i

S (G DA L SN G2 Vol
Ll ! 1t n!

k=0

using exponential generating functions.

o
1 . 1 ' ¥ \ o P — z - *
Solution:Multiply by z on the bLoth side of &% = (: e we gat
n=0
. 2t
ze” = —
n!
n=—0

Generating Functions
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This equation when differentiated once, gives
oo
n + 1)z°
(I+ Iz)e’ = Zﬂ (—n!)—. (see O3)

Having already got one n+ 1 term in the numerator suggests that we are on
the right track. We repeat the first two steps viz. multiply each side of the
last equation by z and then differentiate, we get

(1+ 3z +22)e Z(Il+l)2

The 1est of the job is easy. Put z =1 in the last equation to get
=]

S5e = Z (» 4 1)%/n!. Therefore, the required sum of the given series is 5e.
n=0
* ¥ x

Why don’t you try an exercise now?

E8) Using exponential generating functions, find the number d, of -
derangements of n objects. (see Unit 6 & 7 for more detailes on
derangements.)

In the previous two sections, you have seen some elementa}r use of two type
of generating functions. In the next section, we shall give some more
applications of generating functions. -

8.4 Applications ' o

In Sec.8.2, for certain problems we only talked about the generatmg function .
and didn’t attempted to solve them. For instance, this is the case with- '
Example 2 and Example 3, because to solve them, you need to be familiar

with methods of solving linear equations. We shall discuss methods involving
generating functions for solving a linear cquation here. Also, we shall discuss

. the use of generating functions’in solving certain problems about partitions,

which you have studied in Unit 5. Finally, in this section, you will see how

different type of recurrences are solved by using generating functions. -

S let us start by applying generating functions to solve some simple
combinatorial identities, particularly those that involve binomial-coefficients.

8.4.1 Combinatorial Identities
By bin;omial -theo'rén_l'
(1+2)" Z Cn, k)z", - . _ - (2)

we know that (L 4 )" is the gcn('ratmg function of the finite sequence
{Cln,k)}I'_y. We shall use this to evolve some cotubinalorial identities given

in the following two examples.

Example 9: Prove tlie binoinial 1dpnt1tv ’ -

-C(n,l)+3C{n,3)+5_C(n, 54 =n2"?% = 2C(n 2)+4C(11,4)+6C(n, 6) +

Solution: Diﬂ'erentiatin_g: both sides of (2 )-wmh respect to z, we get -



n(l +z)"-! = i kC(n k)zk"'. Generating Functions
k=0

Now setting z = 1 and z = —1 in the resulting expression, we get

oD
> kCk) = u3! ang (3)
k=1
[v )
- z {"'l)k_lkC(n,k) = 0, respectively. (4)
k=1
Shifting negative terms to the r.lis. in (4), we have
C(n, 1) + 3C(n,3) + 5C(n, 5} + - - - = 2C(n, 2) +4C(n,4) + 6C(n, 6) +--- .

Now on adding terms 2C(n, 2),4C(n, 4), 6C(n, 6) ... so on, to bath sides of
above identity, we get

i kC(n, k) = 2(2C(n, 2) + 40(n, 4) + 6C(n, 6) + .. | (5)

n=l

n2n—l

From this, using (3), it follows that r.h.s, of (3) equals =n2°"2, With

this we hdve established the binomial identity stated above.

*xx

Our next application concerns k-permutations of a set of n elements. By E12
of Unit 7, you know that the number of k-permutations of n distinct objects,
P(n, k), satisfies the recurrence rejation

P(n,k}=P(n— 1,k) +kP(n— L,k — 1), m,k > . (6)

Example 10: For fixed n, find an explicit formula for P(n.k) by making use
of its exponential generating function, Pe,(z: n) (say) as defined below.

ol

Poxp(zin) = Z (P(n,k}/kY) "

k=0

Solution: Using (6) and the definition of P (27 k), we have

— P(n.k) , =~ Pln-1k) , & KPa—1.k~1) ,

2 = = 3 TR %] ¢

k=1 a=] k=1

[aa] i L) o

. Pink) Plo -1k}, kPfn—1k-1),_,
e g N -2 K ng k-1 -
= Poplz;in) — P(n, 0) = [Pexp(zin=1) = P{n-1,0)] + % Pexp{zin — 1)
= ’ Pexp(z; n) = (1 +2)Pap(zin=1) (as P(n,0) = P(n—1,0))
= Pexplzyn) = (1 +2)% Pexp(2:0) = (1 + 2" (by iteration)

Since the coeficient of z¥ in {1 +2)" is C(n, %) (by Linomial theorem), it
follows Ly comparing coelflicients, that
Pin, k) n!
k! (n = k)
Of course, if k > n, C(n, k) =0, and hence Pi{n, k) = 0 then. So, we have
obtained Pin k), explicitly.

= C{n,k} = P(n.k) = kiC(n, k) =

33
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4ly ule WOHOWINE eXerciSe now.

E9) Evaluate, using generating function technique, the sum
2 k=1 k35C(n, k).

We next consider the application of generating functions to general integer
equations.

8.4.2 Linear Equations

Gencrating functions are alsg particularly handy when one is locking for
non-negative integer solutions to linear equations of the type

a1 +az+...+ay =n. You may recall that we showed earlier (see Theorem 5
ol Unit 4) that this equals C(n 4+ k ~ 1,k —1) by elementary counting -
techniques. If, on the other hand, each a; is a positive integer, then the
number of such solutions equals C(n — 1,k — 1) (see Example 16 of Unit-5).

Generating functions often provide a simpler way to solve such equations.
This is illustarted in the following example.

Example 11: - Find the number of non-negative integer solution of the
linear equation

al-f—_ag-i-----{-ak:n, _
using generating function techniques. - : -

Solution: In the first case, where each a; > 0, the required number is the

coefficient of z" in the following product of polynomials (see discussion
following Example 1)

(1+z'+z2-I'-‘---)---(1+z+z2+'---). © (k times)

‘Each term of this product equals (1 —2)~! (by binomial theorem) and the

coefficient of 2" in (I — 2}~k js

C(n+k—1,u)=C(n+k-1,_k-1); . , _
If each 2; > 1 instead, we seck the coefficient of z® in the expansion
(z+zz+z3+---)---(z+zz+z_3_+---). -(K times) ) S
Each term of this product equals z(1 —2)~! (by binomial theorem) and the
coefficient of 2" in z2*(1 — 2)~k is the coefficient of z°~* in (1 =z)~k, This
equals C((n ~ k) +k = 1,n—k) =C(n—-1,k-1). _
Of course, this means that there is no solution if n < k, as should be the case.

£k &

If, in above example, we require that one or more of the solutions a; are
Lourided at both ends, and if we allow a; to be negative, then the number of

- .. solutions; even for k = 2 or'3 -becomes a tedious computation. The method

of gencrating functions is just what you could use for such problems. We
illustrate this in the following example.

-Bxainple.12: -FiI}d the number of integer solutions Lo a; + a2 + a3 =g,

where —1 < a; < 1,1 < o, <3and a; > 3.

Solulior: Let us bring this into the situation of Exampie. 11. For this, we
put by =a; 41 and by = 23 — 3. Then our problem is same as looking for

‘the number of integer solutions to

- bi+badby=n=2 where 0 <b €2,1<b, <3and by > 0.
Now, in view of these bounds on by’s, it follows that associated generating



{unction is given by
- {1 — 3
1 -3 . #(1 ~ z3) . 1
1-— 1 - 11—z’
by using binomial theorem and R2. As before, we w,uu. the coeflicient of
22 in this expansmn which is same as the coefficient of 2"~ in
(1-2%)2(1 -2} = (1 —2)"3 —22%(1 —2)~% 4 2%(1 — 2} %
We leave it for you to check that the answer is:
C{n-—-1,2) - 2C(n+2,2) + C(n +5,2).

(I+z+22)(z+22+23)(1+z+22 +.- ) =

This simplifies to 9 if n > 7. What would it be il n = 77 Cousider the
cases: 4 < n <7 and n = 3, separalely, you can get the answer easily, 7
course, it is 0 for n < 3.

ERE

The technique adopted in the example given above is no different if wo boe
more than three surnmands or if the bounds we had zre more general.
principle, therefore, we are in a position to find the number of 1nteger
solutions to

ap+ag + - 4ag =n, withm; < a; <M, m.. IeZ li<jgx

Why don't you check your understanding of it by ztie mpung the followin:
cxercise?

E10) How many integer solutions are there to )~ &y —a3+ & --ag =%
with a; > k foreach k, 1 <k €57

Another illustration of the use of generating functions iz i the matheimzs: -zl
theory of partitions ~ historically one of the first prodlems studied with
generating functions. We shall talk about this nex:.

8.4.3 Partitions

We shall only sce one aspect of partitions, namely. t2air conneciion with
generaling functions. You already had some exposcze of them in Unit !
Here we will go a little deeper. For this, we shovic @iz doZne the sequs
of partitions. P,.

Definition: The nth term of the sequence {Pedon > Locounis the nunt .-
ways in whicli noean be expressed ax a sum of m\“:i'-'-: SIeCons Auch U
order of the summands (parts) is not importani. We dedne Da = 1.

Forexample, Py =5 since 4 =34 1=2+2=2 - 1= o jel—" 3

partitioning n is the same as istributing n non-distinct objouis into !

non-distinct boxes, with the emptly box allowed (e =310 B s
ol linear equittions discussod above, P s the number of non-negative soee -

solulions to the integer equation

.

R+ XA+ X4 =0, N, = hg(vid,

whiere a, denotes the namber of K's in the parbition.
Let us look al the form that the generating function, 77(7) of the seqin. o
{Py}aso must take.

Note Lhat, in the above lincar equation, for each integer k > 1, we mayv use
none, one or more ks according to the valuc of a; 2> 0. There s no otlr
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restriction on ay’s. Therefore, for each term X; = i.g; (a; > 0) the
corresponding term in the associated generating function is-simply )
1+ zk.-_l— 22k ... Therefore, on taking the product for &ll i > 1, we obtain

P =l Q+z¢+2%+--) =] —.
l =l

Generating functions of related sequences are not any harder to determine.
They play a significant role in proving identities involving partitions. We
illustrate this with the help of the following example.

Example 13: Show that every nnonnegative integer can be written as a
unique swm of distict powers of 2. .

Solution. The generating function for the sequence {a; }, where a, denote
the number of ways n can be written as sum of distinct powers of 2, is
(1+2)(1+22)1+zY1+2%)---
Now, we have
(1 —2)(1 +2)(1 +22)(1+2%)(14+28)---
= (1~ 22)(1 +2%)(1 + 2 (1 +28)---
= (1 —-z)(1 +2")(1 +2)---

=(1-2")(1+2"")---
= 1. . (assumingfz|< 1)
Thus, in view of operation Os and binomial theorem, it follows that

(1+z)(1_ +22)(1 + 281 +28) --- =ﬁ=1+z+z?’+..'. -

From this, by co_mpa:ing coeflicients, we conclude that the coefﬁcier_ﬂ;‘of z" in
the Lh:s. of the equation is 1. Hence, the number a, of partitions of n into
distinct parts of of size 1,2,4,8,16,..., so on, is 1. In other words, every

* non-negative integer can be uniquely expressed as the sum of distinct
- powers of 2. ) :

[N

¥ ok

"~ Why don’t you try the followiné’ exercise -now?

) E11) Show that the generating function for the sequence of the number of
- partitions of n with:
a} parts cach of which'is at most m is H (1-29"Y4
~ - k=1
b) unequal parts is H (1 +2%);
- k=1

: oo )
c¢) parts each of w‘hicll is odd 15 H (I— '.:':Zkhl)"1 - - -
: k=1 |

bl)) Find Lthe generating function for the_sdc_luénm of the numnber of

partitions of o

i) into prirmes; -
i} into distinct primes.

Next, we shall discuss one of the most important uses of generating. .
functious, viz., its utility as a tool to’so_l\cé the recurrence 'relatipps.



8.4.4 Recurrence Relations

Ie Unit 7, you have learnt how to set up recurrences for a combinatorial
problem. Though we had not talked about how to solve them, we gave you
some solutions, which you verified.

For solving a recurrence, we need to know the terms of a sequence explicitly.
In other words, for a sequence {a,} that satisfies a given recurrence, we shall
use its generating function A(z) (say) to find an explicit formula for a, in
terms of n.

As is clear from the solution of Example 4, Example 7 and Example 10, we

can write the procedure involved as an algorithm, in steps as follows:

1. Express a, in terms of the previous terms of the sequence, as an
equation valid for all integers n > ny, for some ng. (Usually, the
recurrence relation is already in that form.)

2. Multiply both sides of the equation by z" and sum all the resulting
equations over all n > no. The left-hand side yields the generating
function for a, minus at most a finite number of terms, while the
right-side is to be algebraically simplified so that it becomes an
expression involving A{z). Here A(z)\s the generating function
associated with the sequence {a,}-

3. Solve the resulting equation for A(z). _ ;

4. Expand the closed form of A(z) into a power series (by using the
binomial theorem) and read off the coefficient of. z“ Thls gives an
explicit expression for a,, for all n.

Note that the Step 2, where we are required to express the r.h.s. in terms of

A(2), is very important. A certain degree of algebraic mmphﬁcatxon is
needed. there.

- ‘Let us try to understand the steps of above algorithm with the help of
following exa.mple

Example 14: Find the maximum mlmber of regions, Ln, into whlch the
plane is cut by n straight lines. (Problem 3 of Unit 7} . -

Solution: The recurrence relation satisfied by the sequence {La}is .
Ly =Lo_y +nfor n-> 2, and L, = 2. If the same recurrence-were to hold for

- n > 1 instead, then Ly must equal 1. (This actually makes sense for if there -

1s no line, there is only one region.) So we need not apply Step 1 of the
algorithm. - -

" Starting the sequencc at Lo instead, the generatmg function L{z) (say) of the
sequence {Lj,}n>0 is given by : ) .

L(Z)=ZL,—,Z“.: —
_ =0 - :

Step 2: Now, by using the above recurrence relation, we get
= =]

L{z) = 1+ Z (L + n}2" )
n=1
oa oo ~
= 14z Loo12"7 425 ng® !
niol o n=1
= l+z Z Laz" +2 z nz" "t
n=0 n=1 _ - _
= 1+zL{z)+ -

Generating Functions
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Step 3: Solving for L(z} the last equation, we get

] z
L(z) = 1—-z+(1—z)3'

Step 4: So, using binomial theorem, we get
=]

1
L(z) = ; {1+ En(n + 1)}2".
Finally, equating coeflicients of %" on both sides of the last equation, we get
Ly = %11(11 + 1) +1,n2>1,

With this the algorithm terminates and we have obtained an explicit formula
for L,, ¥n.

i+

Why don't you try an exercise now?

E13) Using Theorem 1, find the nth term, £, of the Lucas sequence given
by Lo =Ly 14 Loz, 12> 3, with £, = 1, £, =3

We next consider the sequence of Fibonacci numbers {#,} which satisfy the
recurrence relation

Fo=Fa1+Faain>3, and A =1=F,. (Problem 1 of Unit 7)

Example 15: Find the generating function associated with the sequence of
Fibonacel sequence {Fn}n>1- Then deduce 2 formula for F, n > 1.

Solution: We write F(z) for the associated generating function. Then, by
definition, we have

[av)
Flz) = Y Fur
n=1
[a~)
= 24+28+ Y (Fazi + Faza)z®  (Step 2)

n go o
= z4-22 44 Z Foo" 442 Z Faz"

n=2 n=]
~ = 5427 +2[F(z) ~ 7] + 227 (a).
Then (1 -z — 22)F(z) = 2. Thereflore, with a = {1+ /5)/2 and

F(z) =

(by solving equation 22 4.z — 1 = 0)

(1 —az)(1 - Bz)

1 1 ] )
(t—ﬁ(l—az 1-/3z

1
a—fi

Comparing cociticients of 2" now gives 7, = (" — AN/ — 3}, for all u > 1.

s «]
Z (a" - B")z".  (by binomial theorem)

n=0

LR

Try the folowing exercise now.

lald) Soive the recurrence relation T, = 2T+ 1ifn 2 2and Ty — 1, usiuy,
gencrating funclions technique. {see Tower of Hanoi problem in Unit 7)

Il you bave understeed the steps that we fllowed in solving the rucurrence
relation involving Fibonacci sequence in previous example, then it should nol
be difficult for you to understand the proof of the following general result.



Theorem 1: The generating function, denoted by U(z), for a general linear, ‘Generating Functions
homogeneous recurrence relation with constant coefficients, of order Kk, =

Up'= ajla—) + agupg + -

satisfies the equation -

“FaKkUnojan 2 k, with ug = ¢p,... up g =g,

k-1

(I —ajz—asz?—.-. — akzk}U(z) =y + Z {ca —aicp_y — --- — anco)z”.

n=1

Proof: We have, by definition,

U(z) = Z Un z"

n=0

= (Uo+1112-+"

O
4 uy.g Zk_l) + Z u, z"

n=k

oo .
— (CO S LR S Zk_]') + Z (alu.-,_l +agug_g 4. akun—k)zn

n=k

oo 00
= (CD + - +ck_1zk‘l) +az Z un_lz"_l +--- +akzk Z un_kzn_k
n=k '

n=k
= {co+--- + Ck 21 4oy 2[U{z) —cg~ ¢y 2z ~ - T Ck—2Z27 4 ... 4 axz2°U(z)
= pk__l(z)+[a.lz+a2z2+---+akzk]U(z), ’
- © k-1 ; -

where pr_1{z) = ¢g + Z

R n=1
degree at most k — 1 (How?).

(cn—~ajcuy —--- — anCp)z® is a polynomial of

Further simplification gives

II‘T a1 Z-— ag Zz_l— ‘e

UG = pa). -

This completes the proof of the theorem.

A first conclusion that you can easily deduce from the thegrem above, is

- given in the following result.

Corollary ‘:[_:' The generating function of linear, homogenecus recurrence
relations with constant coeflicients given in Theorem 1 is a rational function,
p(z)/a(z), with the numerator, p(z), 2 polynomial of degree 2t most one less - -

than the order of the recurrence.

Also observe that 1 + q(z) is equat to the polynomial obtaizcd from the r.h.s’

of the given recurrence re
2' (1 < < k). While appl

lation given in Theorem 1 by replacing u,_; with
ying this corollary, you need to pay careful -

attention to the form of q(z). You should not try to memorize p(z) at all. -

After all, once you know q(z), p(z) can be obtained by-multiplying q{z) by
<0

the generating series E “u, 2" _ : . =

n=f{}
Lel us'employ Thearem 1
relation.

Example 16: .Solve the

uu _ QUn_l "I_ 26Un_.

and Corollary 1 to solve the following recurrence-
third-order recurrence - - -
2= 24“[1—3 =0,n >3, - - o . -

with the initial conditions uy = §, u; = 17 and u; = 53. _ -

Solution: We cicnote b}_r

U(z) the generating function for the sequence {u,}.- - LT

. Thf:n_, Bj(-Th'eorem 1, we know that" . . -
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(1 =92 + 2627 — 2423)U(z) = p(z)

is a polynomial of degree 4 in z. Now, & little more calculations will lead you
to conclude that -

(1 =92 + 2622 — 2423)U(z) = (1 — 22)(1 — 32)(1 — 4z)U(z)

oG o0 =) o
= E u 2" —9 E up 2™+ 426 E u, 2"t — 24 E u, 2"t
=g n=0 u=0 n=0 ’

ug -+ (uy — ug)z + (ua ~ Yu; + 26ug)z?
2 e)

+ 3 (U — Qugy + 26up_g.— 24u,_3)z"
n=3

= 0 — 37z + 5622, by using the given recurrence relation.
Therefore,

Ufz) = (6 ~ 37z + 5622) /(1 — 2z)(1 — 32)(1 — 4z).
Decomposing the r.h.s. into partial fractions, we then get

Uz) =3(1—-2z)"' + (1 - 32)~! +2(1 — dz)~ 1.
Now using binomial theorem and comparing coefficients of z* in the resulting
series with the series on the Lh.s. viz. U(z), we get

Up=3-2243"4+2.4% n>0.
* ¥ ¥

Try the following exercise now.

E15) Determine the generating function for the sequence {t,}22, given by
the recurrence relation (n > 3)

tn-3, if n is even;
¢ = _q)tz
") ﬁ—(?—-. if 1 is odd,

where, t, denotes the number of incongruent triangles with integral
" sides and perimeter n. You may also take tg =t; =t, = 0.

In yet another situation, let us next consider the case of nonhomogenous
recurrences viz. when the nonhomogenous term(s) are either of the types

" {r€ C) or n* (k € NU{0}). Below we consider the case when it is of tle
form 1. The method of generating functions, and in particular Theorem 1,
can still be of use to good effect as the following example shows.

Example 17: Solve the third-order nonliomogenecous linear recurrence with
constant coefficients viz. v, — 3u,_3 — 2u,_3 = an + b - 2" in terms of the
initial conditions ug, u; aud us,.

Solution: Write U(z) for the generating function of the sequence {un}uxo,
then

(1 =32 — 2. U{s) = (1 +2)2(1 — 22)U{z)

[a 2] [vn] o
= E u, 2" -3 5 u, s -2 E u, 2"
n=U n=0

n=0

f

[va)
ue + wpz + (up ~ 3ug)z? + Z (up — Ju,—2 — 2u,_3)z"

n=3

. oo o0
=" -— 2 n—1 n
o + Wz 4 (22 - 3ug)z +az‘z nz"~'+b Z (22)

‘n=3 n=3



=(u —b)+ (0 —a— 2bb)z + {uz — 3uy — 2a ~ 4h)z2 : Generating Functions
a a , _ . , :

—(1—2)2_1—z_+1—-22'_ ) '
The rest of the calculation is tedious, but routine. We employ partial
fractions, to get U(z) in the form

A(l—z)"'+B(1-2)"2+C(1+2)"' +D(1 +2)~2 + E(1 —22)" 1+ F(1 —27)-2,

for some choice of A,... ,F. In terms of these constants,
Us =A+B(n+1)+ C(-1)" + D(-1)"(n + 1)+ E2" +F.2"(n + 1), n > 0.
x kW

Try the following exercise now.

E16) Use Theorem 1 to solve the recurrence an.~ 325_; — 102,49 = 28 x 5"
for n > 2, with a5 = 25 and a; = 120.

It is sometimes possible to solve even non-linear recurrences with the help of
generating functions. We illustrate this by solving a recurrence about which
you have read before in Unit 7.

Example 18: Solve the recurrence relation

dp = 8n—121 +ap-282 + - + 22332 + a13,-1, 0 > 2, witha, > -
U(Vﬂj and a; = 1.

Solution: In order to extend the validity of the given récurrence
ton > 1, we define ay = 0. If we denote its generating function by A(2), we get

oo oo
Z anz" = Z (aq-1a; * An.282 4+ -+ aga;_o + a1an-1)z"
=2 n=2 . ) -
= - Al -aiz-a = {A@Y - (uagta0a)z—ag?  (by Oy)
= {A@)}~-A@) +2z =0 - i
' vi—4
= : A(z) 12yi-t 21 3
Now, using Binomial Theorem, the coefficient of z” in (1 — 42)!/2 is equal to

BE-D-Goney, ' | D
: : _n!2 " (=4)", _

. . .- -9 .
which you can €asily simplify to TC(2n —2,n~1). -

We choose the solution A(z) = (1 — /I = 4z)/2, so that the terms a, are non
negative. For n > 1, we thus have S

1 . (2n — 2)!
=-C(2n—-2,n0~1) = =4
an IIC( n 1 I‘) i (n'___ 1)'1’1' - .

B

So far we have discussed the use of generating funétions in various areas.

Regarding lincar recurrence relations, we Lave seen -how- useful they arc for -
finding solutions of sich equations. There are several other methods for

solving cquations of this kind. We shall discuss them ‘in the next unit. For

now, let us summarise what -we have covered in this unit.

85 SUMMARY -~

. In this unit we have covered the_i’qllowing’ points. -- - _ : g



Recurrences . 1. Generating {unctions, both ordinary and exponential, are defined by
analysing certain combinatorial problems.

2. Some elementary uses of generating functions are illustrated through
examples,

3. Applications of generating functions in solving combinatorial identities
are illustrated.

4. Generating functions are employed in determining the number of integer
solutions to linear equations in general, and to some results on
partitions of integers.

5. Some linear, homogeneous (as well as non-hémogenous) recurrence
equations with constant coefficients are solved.

G.  How to use generating function to solve certain non-linear recurrence
relations.

8.6 SOLUTIONS/ANSWERS

Note: In all the following solutions, we will skip some steps and you are
cncouraged to work out Lhe individual steps to ensure understanding of the
computational procedure. In most cases, previous blocks will also be helpful.

El) a) The associated power series is
@ +204 )0+ )P S+ )
Here the first polynomial does not contain the constant term
because of the given condition.

b) Since each k, £ amd m are positive by given condition, and so, for
2 choice of (k + £+ m) fruits (with 5k + 2¢ + 3m = 50), the
associated power series is

(B +20+ . Hal+20 4. )22 420+ .00).

£2) a) The gcncrating function for the finite geometric progression is
k—1 .
Z ar"z" = Z: (rz)" = afl ~ r*z") /(1 - ), by result R2.
n=_
b} Replacing z by az in the binomial theorem, it follows Lhat
{1 + az)* is the generating function for the sequence
{Clk,n)a*}32,, if k is negative. This gives solution of (b).

¢} Replacing 2 and k Ly their negatives in the expansion for (1 + az)¥
given in (b), we get (1 —az)~F =32 C(-k 11)( 1)"a"z", where
C(—k,u) denotes the term (—k)}{—=k—1)---(=k — (n— 1))/n! =
(=D)"k(k4-1)---(k —I—n - 1)/n! = (-1}"C(n-+k—1,n). Therefore,
we get (1 —az)™ % =% C(k+ (n —1),n)a"z". Thun (c) iollows.

23) For negative m and n, since (1 + z)"™ is the gencrating functlion for the

sequence {C(m, k) }52 and {1 4 2)" is the generaling function for

1C{n, K} }e2,, the funct:on (L+2)™ (1 + 2)7 is the generating function

for the sequence with kth term L C{m,j)C{n,k — j) by Lemma 1.

' However, {1 +2)™ is the generating function for {C{m + n, k)}2,.
Hence the first identity.

The second identity follows from the first by taking m = n = k and
42 - using the identity C(n, k} = C(n, n—k). -



E4)

I5G)

E7)

a)- Write a, =a+nd,n > 0. Then a, ~a,-;=d,¥vn> 1, and ag = a. Generating Functions
Let {by} denote the sequence, where by = a a.nd b, =d,Yn > 1.
By definition, . " - ‘ 1
B(z) = a+dz+de?+... = a+zd[1+z+z2+. ] =a+dz(l—-2z)71, ‘
which is the generating function for the sequence {b}q»1. Thus, by
Lemma Z, B(z) = (1 — 2)A(z) :
= Afz)=a(l-z) '+zd(l1~2)"2={a+(d - a)s}{l —2)"2

b) Since a;, =8, — 5,1, for n > 1, and ay = sg, so. we have
(1 —2)5(z) = A(z). (by Lemma 2)
IFinally, proof is complete by using the definition Qs of quotients

of series.

¢} The nth term of the given sequence is the n th partial sum of the
sequence {1,2,3,...,} whose generating function A(z) (say) is
(1-2)"1, by (a). Hence by (b), the generating function for the
sequence [1 3,6,...} equals (1 —2)73,

Differentiating the binomial function (1 —2)~! = PR 2, we pget
oo . i i
S Pl =(1=2)"2  (see Oz). - -
i=0 i ) ’ i ) B

On multiplying this E)y % both sides, we get
L A(R) =02 0 = (1l -2) 7,

wlere we write A(z for the genera.tmg function of the sequence {i}iz1~

Then _ _ . - ’ Tl _: ___ ]
o k -
> o 2 Z EJ & - A
k=L Sk=lo\j=t LT i -l a
: L A@ - TR,
(1__2) (bp.‘f Ed(b)j ) = . o - _ -
= 2{t—z)73 | - ' L

Therelore, o} is the coeflicient of 2" in the series which can be obtamed

Ly expanding the function z(1 — z] ~3. However, this is the same as
looking for the coefficients of z"~! in the expanded form of the binomial~
function (I — z)~3. Thus, in view of binomial identity

C(n, k) C(n,n = k), we have :

ol=Cn+1Ln~1)=Cn+1,2) =n+1)/2. -

By definilion, expoucntial ;Dv.,uud.tmp, {functlion of the sequence - -
{P(nI)dn_, is ) - - o

ZP(HR)P Zan}Z"(1+z ' - ; B

k=0 k=0

The exponential generating function for- the sequence of Bell numbérs, -
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E8)

E9)

Bexp(z) equals 3°°° ) (B, /n!) 2"

(€ = )Bup(a) = (fj i,) (Zj =

A first-order recurrence equation that the sequenc
given by

dn = ndp—1 +(-1)", 1> 2, with d; = 0,d,

In order that the recurrence also hold for n = I~

O
Then, with D.,_r,(z) = Z {dn/n!) z", we have
n=0
oo oD [+
dn ndﬂ—l
P D )
n=1 n=1 n=
= Deplz)—dg = zDexp{z) + (77 -
e—z
= Dcxp(z) —_ 1 . -

Now the coefficient of 2" in the expansion of e~
s0, the coeflicient of z/ in the expansion of Dy,
(sce E3(b}). It then follows that d,, = n! > k=0
comparing coeflicients of z".

Differentiating and then muitiplying by z on b
2 teo C(n,k)2" = (1 4-2)", we get Yo KGO
Pulting z =3 yields 7, k3*C(n, k) =3 x 4"

E10) Since the required generating function is

E11) a)

44

(22 +23 + 2t - ) (@ 28 455 + )2t 420 -
DI C-AR S LRI =20(1+z+424-..)
solutions is the coefficient of 2% in (1 — )79, w
‘The contribution to the generating funct;
(1+25+2%4-..). Since 1 <k < m, the
function is [Ty, (1 425422 ...y = T
b} Il we use unequal parts, no part k may UL
corresponding term in the generating fun.
may be used at most once. Therelore, th
TIR2, (1 4 2%).
¢)  The contribution from the odd part, 2k -
(14 2%k=1 4 2221 4 ), Thus, the rc
is Hl?;l (1 - g26-1 4 72(2k-1) +-) = 1’1

By above discussion, the required gener:.
(14 2P +22P0 - (1 2P 4 2202 4

" satisfies is

{sce Problem 7 of U

wedg=1.

¥ (=1)"/n!, and
7 = (=1 /K
1L ¥n, by

- of the identity
2z{1 4 2)" L

R [ (AR AN S L

: yaber ol inieger

cvls (°7) =495

conopart ks

* . generating

::“)"l.

1L The

L+ zk), s0 that k

- Lag function is

: 2nerating function
. z?l'.:—l)—l_

. ction 1s



ii) Similarly, here generating function will be
(1 +2zP1)(1 +2P2) .-

E13) We set L9 = L3 — L1 = 2, so that the recurrence is valid for n > 2. By
Theorem 1, (1 — 2z ~ 22)L{z) = Ly + (L1 — Lo}z = 2 — 2. Therefore,
L(z) = (1 —az)™! + (1 — fz)7!, where a+ # = 1 = —af. Comparing
the cocficients of 2", we get £, =a" + 5%, n > 0.

[514) Defining T = 0, so that the recurrence is valid for n > 1, and writing
T(z) for the generating function of {T,}%2,, we have T(z )
Yoz Taz"=To+2 302 Tu1z" + Soo- oz =22.T(2) + 2/{1 — z).
Therefore, T(z) =2/(1 —2)(1 —22) = {1 —2z,7' — (1 — 2)~!, and hence
T, = 27 — 1, n > 0, by comparing coeflicients zfter applying binomiai
theorem on r.lus. of the last equality.

E15) Let T{z) = 3 024 taz". Then,

T(z) = (tg+t1z+ toz?)+ Z th_az"
+ i n-= 1)"“ g2n+l
, oon=l
= 23.T(z) +322n——1 °“+—Z( 1)" 228
) oo =1 n=0 .
z d 23 ’
1 — 3 T(z - = 2{1+l +
(1 =) 1) 4dz“§ T4 = 2
. 323 + A
- 741 =232 7 4(1~-72)
B 23(4 — 32% — 22374 2%)
. . T = - ;
= - T) A1 —22)3(t — 22
[516) Let :_\(z)_ =52 a,2". Then,
L (1232~ 1022)A(z) = ap+(a — 3210)
. co _
) , Z (an — 3ap—1 — 10a,_2)z"
’ ) - n=2 e -
= 25+ 452 + 28 Z (3z)"

- B n=2
: (20—80{~L47 2)./{1 — 5a).
Using partial fractions, we get . ) ‘ -
A(z) = (25 — 80z + 47522) /(1 4- 22)(1 ~ 52)% =
1500 = 22)71 = 10(1 — 52} 7! +20(1 ~ 52)7*. Equating cocliicients of 2",
we get .

a, = 15(—2)" — 10- 5" + 20(n + 1)5" = 15(=2)"+ {10 20u)5", n > 0.

Generating Functions

-
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9.1 INTRODUCTION

In the two previous units of this block, you have studied about setting up
recurrences and how to solve them by the use of generating functions. In this
‘unit we concentrate on other methods of ﬁnding solutions of recurrence
equations..

To begin with, we shall develop the general theory for solving a linear
lomogeneous recurrence with constant coefficients. Following this, we shall
discuss some general theory for solving a linear non-homogeneous recurrence
whose non-homogeneous part is 2 polynomial or an exponential function. We
shall conclude the unit by illustrating several techniques developed for
solving recurrences which may otherwise be hard to solve by more standard
methods. We shall also look at examples of real-life applications of the
theory we discuss.

As you can see, this unit-is closely linked with_ Unit 7. So, please glaﬁce over
that unit azain before going [urther.

Let us now clearly spell out the objectives of this unit.

Objectives

After reading this UI'llL, you should be able to

¢ {ind the Cll'].l:LCL(..leLlC polynmmaf cquat.lon and roots ofa. lincar,
_homogeneous rocurl_en(.c rclat.lon with constant cocllicients;”

. Sﬂl ve any linear, haiageuenus rr_-c‘nrrr_'n_r:: relalion wilh consiant

-~ eoelficients;

-e Solve lincar, non-homogencous recurrences with constant coefficients when
the non-homogenous part is either a polynoinial or an exponential
functidn' : :

'« solve recurrence relatlom by the inethod of lnspectlon[telcscoplc -

sum';/lteratlonfsubst1tut10n wlicrever a.ppllca.ble
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9.2 LINEAR HOMOGENEOUS RECURRENCES

You would recall from Unit 7 that the general form of a linear,
non-homogeneous recurrence of order k is

"n = i-1 (n)un—l + r2(n)un—2 + - + rk(n)un-—k + g(“}! n 2 l{1

where cach f; and g is a function of n. It is homogeneous tl g is identically
zero, and non-homogencous otherwise.

Now, let us assume that g is non-zero. Then, associated with the
non-homogeneous recurrence is the homogeneous recurrence

Uy = rl (n)un—l + fZ(HJun-Z et rk(n)un—-kl n 2k,
which we get by simply setting to zero the non-homogeneous part.

Let us concentrate on recurrences whose homogenecous parts are linear. You
know that the most general linear homogeneous equation with constant
coeflicients is

Y =¢u,_,; + CUy_ 2+ - 4 Clp g, N 2 k, (1)
where the ¢; are constants, le, ;e CVYi

Related to this is an equation that we shall now defipe.

Definitions: The characteristic equation, or auxiliary equation, of the
linear, homogeneous recurrence (1) is the equation

2k — ¢zt —c;ézk‘z----—ck_lz-ck =0. (2)

The roots of the characteristic equation (2) are called the characteristic
roots of (1).

The multiplicity of a characteristic root « of (1) is the greatest Integer
m such that {z — a)™ is a factor of the characteristic polynomial of (1),
Le, of 2% — ¢ zk=1 ., -

~Notice that the characteristic cquation is simply obtained by setting the mth
term of the sequence {u,} equal 1o z™ in the recurrence, and simplifying.

For instance, the characteristic equation of the recurrence
Tap2 =20, —w, o, n> 2, s

2" = 90 272 ie., 2t =922 _ 1.
Therefore, the characteristic roots of this recurrence are 1 and —1, both with
multiplicity 2.

Now, given the characteristic roots of a recurrence, how do we solve it? As
vou know from Unit 8§, solving a recurrence means finding a sequence
{2,} that satisfies it, where a, is a function of n. Often if we can find such a
sequence, then we shall (somewhat carelessly!} say a, is a solution.

Now, to Lry and understand how to solve recurrences like (1), let us cons) les
the recurrence

a, = 16a, _,.

From Unit 8, you know that its solution is of the furm

2, = A(4)" +B(~4)", where A and B are constants, Observe that 4 and —4
2re the roots of the characteristic equation, z2 = 16, of the given recurrence.
‘Both these roots have multiplicity 1.

Now let us consider the recurrence

iz =280y +42, —8a, .-



b
: : : ' . ¢
You can check that its characteristic polynomial is B ' Solving Recurrences
2%~ 222 — 47 48, ie, (z ~ 2)*(z + 2). : . . ) :
So, its characteristic roots are 2 (with multiplicity 2) and —2 (with g . . J

" multiplicity 1). = " . , ' .

By applying the techniques of Unit 8, you can also check that the 'genera.l
solution of the given recurrence js

a, = {(Ag+ An)(2)" + B(:,(—ZZ)“,‘AO,AI,B0 € C.

We can write this as .

a, = AgC{n,0)2" + ALC(1 +n,1)2" + B C(n, 0}(-2)", Ag Al By e C.

Have these examples given you an inkling of the general form of the solution
of (I} in terms of its characteristic roots? Match your conclusions with the
following theorem.

Theorem 1: A sequence {a,} satisfies the linear, homogeneous recurrence
relation with constant coefficients
un = Cl ul‘l—l =+ (Lzun_2 +.' R Cklln__k, Il 2 k,

if and only if each a, is a sum of expressions of th~ form

boC{n, 0o + b C(L + n, 1)l + ... + D1 C(my — 1+, mm, — Daf

where a, @,, - - - are the characteristic roots of multiplicity my,my,- -, respec-
tively, and the b;s are constants.

Proof: We recall from Theorem 1 in Unit 8 that the generating functioh,
U(z}, of the sequence {u,} is of the form p(z)/a(z), where p and q are

polynomials with degp < degq, and q(z) = 1 — C1Z — 2% = -1 = qkzk.
Now, zk — cl_zk*’ —cyzhT? — .. Ch2 — ¢ = Hfz — o)™
L N /1y 1\ o\ mi
k . k [
— —_— —_ —_— —_ e - o = = ]_— -
= en (@) e () = e ()] v -2y
=l -t —pt? — - — ¢tk = H (I = a;t)™, where we put t = l i
AN . _ _ 5 - -
2 U(z) = EE—Z%, where q(z) = H(I — &;2)™ ‘and deg p < deg q.
z)" . ;
R 1 :

Sc, using partial fractions, we can express U(z) as-a linear combination af

-terms of the form (1— o:i_z)‘-i‘_‘, where-0 < £ m, — 1. Since the coefficient of  For j > 0,

2" in the expansion of (1 — a;z)~i-1 <quals C(~j — Ln)a®, i.e., Cj + njjaf',  C{-jn) _

the theorem follgws. ) S . - =G+ =) -

" Note thal cach a; in the theorem is actually a ﬁﬁite__lfnear“ combination of
terms of the form nla”, where o is a characleristic root of multiplicity m,
and 0 < j < m — 1. This is because the binomial cocficients C{ +n,j) are
themselves polynomials of degree j in the variable n. Tt is often easier {o
c'xpre.ss the solution in this form, as for instance, when the characteristic
roots are all distinct, i.e., of multiplicity one. In this situation, the
form of the solution sequence is o

k R -
u, = Z Ajaf, n>0,
=1

where t.]m.njs ave the characleristic rools and Ajs are constants Lthat are to
" be determined by theé-initial conditions..

Let us look at some examples of how Theorem 1 can be applied. While doing - -
50, lel us see how the solution dcpc;nd's_ on the initial conditions. -

Example 1:° Solve Lll_c recurrence a, = 4a; _,, where

_:a')ao=4xf_11 :G . :__ o - ’ '-__ h— N - - 49
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a0

b) ag =6,2,= 20
Solution: The roots of the characteristic equation of the recurrence, z2 = 4,

are £2. Thus, by Theorem 1, the general solution is of the form
a, = A{2)" + B(—2)", where A and B are arbitrary constants.

a) Now, ifag =4 and &) = 0, then the general solution gives us
A+B ?4 andIZA—2B =6.
A= 3 B= 3
So the solution is a, = 7(2)"~1 — (—g)n-1..
b) Ifag =6 and a, = 20, the general solution yields
A+ B =06 and 4A + 4B = 20.
Since these equations are inconsistent, there is no solution.
c) Ifa;, =6,a, =20, we get
2(A —B) =6 and 4(A + B) = 20.
So, A =4, B =1, and the solution is
2 = 4(2)" +(=2)".

* % X

In the example above you have'seen how important the initial conditions are.
You have also seen that sometimes these conditions can be such that no
solution is possible.

Now consider a second order linear homogeneous recurrence with constant
coefficients that you solved in Unit 8 by making use of generating functions.
This equation can also be solved by applying Theorem 1, as you will just see.

Example 2: Obtain the solution for the recurrence relation satisfied by the
Fiboracci sequence (see Problem 1, Unit 7). '

Solution: Recall that the Fibonacci sequence {F,} satisfies
.?-'n—}'n_l—an2=0ifn23,and.Fl=l=.7:2. (3)

Thehcharacteristic equation, 22 — 7 — I = 0, has distinct roots o = (1 + V5)/2

and = (1 — /5)/2. Therefore, by Tleorem 1, for some constants A and B,
Fo=Aad"+BfS" n>1. 4)

This is the general solution for the recurrence (3).
As you have scen in the previous example, the values of A and B depend on
the initial conditions, i.e., the fiest two terms of the sequence.

Since F} = 1,{4) = 1 = A + BS.

Since 7 =1, (4) => 1 = Aa? + B2,

Also, since @ and f are roots of 22 — 72— 1 = 0,
o = a4 1 and 8% =+ L.

So, we get

l=Ae + B = Ala+ 1)+ B +1) = (Aa + BA)+ (A +B) =14 (A DB).
Therefore, A 4+ B = 0.

“Therefore, A(a — f8) = 1, and

£ 7

{5

!
* &% |

Now consider an example in which no initial conditions are given.



Example 3: Solve the sixth order linear, homogeneous recurrence relation’
u, +u,y — 11wy p — 130, 3 % 26y, _4 +20u,_4 — 24u, _ =0.

Solution: The first Step is to identify the characteristic roots together with

their multiplicities. The characteristic equation is

20 +2° —ll/ — 1323 4+ 2622 4+ 202 — 24 = 0

ie, (z—1)2%z—3)(z+2)°=0.

Since the root 1 is of multiplicity two, the root 3 of multiplicity one and the

root (—2) of multiplicity three, by Theoremh 1 we know that u, is a linear

combination of the six terms

C{0 4+ n,0):1", C(1 + n, 1).1" C(0+n 0)3°,C(0 4+ n,0)(—2)", C(1 + n, 1)(—~2)"
and C(2 + 1, 2)(—~2)",

1
e, u, = a+b(1+n)+c3"+d(~2)" +e(l +n)(—2 ),,HM

(=2)%,
where a, ..., f are constants which can be determined il any six consecutive
terms (typically, the first six) of the sequence are known. Since no initial
conditions are given, we can only simplify the expression to the form

u, = A+ Bn+ C.3" + (D + En 4+ Fn?)(—2)", where A, ..., F are constants."

k¥

So far we have solved linear recurrence relations by using Theorem 1. Now let
B I
us solve a non-linear recurrence relation, by reducing it to a linear relation.

Example 4: Solve the recurrence a2 = 5a2, where a_ > 0 and ay = 2.

Also flind a;.

‘Solution: The given recurrence is a quadratic relation. But, if we put
b, = a2, the relation becomes
_bn+l = 5b,, by = 4.
From Theorem 1, you know that’its solution is
. b, =A(5)", A a constant.
- Now, by =4=> A=4-
b, = 4(5)"
Since &, 1s the positive square root of b,
a, =2(5)*? for n > 0.
" ag = 1250.

EE

Why don’i you try some exercises now?

E1) Find the general solution of the recurrence relation
= 3a

n—L"’

[52) Dectermine constants ¢; and ¢, such that the recursion
e,y ey, = = 0 has the characteristic roots T & /=

193) PFind the solulion of the following rccurrence equation satisfied by P2
the number of p1rt1t|ons of 1 into 1:\»0 parts in non-increasing orders

1 __ ol D2 _ )_ 12 »2 1 7 '
LTI T B A 1 Jxl/ul -—Ul — P:]— -

I this sectinn we have seen seme ways of solving linear homogeneous

T recuntences with constant- coelticients. You have also seen how sgine
non-limear recurrences can be rcduced to such linear recurrences, and hence
solved. Let us now sce how to use what we have discussed here for solvmg
non- homoﬂcueous recurrcnces with constant coe[ﬁc:cntb - -

Solving Recurrences
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A particular solution
of (5) is any sequence
{an} that satisfies (5).

52

9.3 LINEAR NON-HOMOGENEOUS
RECURRENCES

In this section we shall look at some general theory pertaining to finding
solutions of equations like u, = 3u,_, + 3n% — 2", More generally, we shall
study equations of the form

Up = ¢y + Cuy g +... CxUp—k + g(.n)ﬂ" > k. (5)
Looking at (5), you may wonder if the solutions of (1) and (5) are linked.
‘The following theorems tell us something about this. o
Theorem 2: If {a,},5¢ and {b,},5q are two sequences, each satisfying the

non-homogeneous recurrence (5), then {d, }, withd, = a_—b_, n> 0, satisfies
the associated homogeneous recurrence (1).

Proof: Since {a,} and {b,} satisly (5), and d, =a, ~ b_, for n > 0 we get
d, = a,—b

n n ]

leyan_+ -+ ga, p +an))—[e b+ + ¢y by + g{n)]
= Cldn—l +---+ ckdn—k'

il

This shows that {d,} satisfies (1), i.e., we have proved the statement.

Now, can you see how we can use Theorem 2 albng with Theorem, 1 to find
the general form of any solution of (5)? The following result explicitly
answers this question.

Thteorem 3: Every solution of the recurrence () is of the form a, +b,,, where
a, is any particular solution of (5) and b, is any solution of its associated
homogeneous recurrence (1).

Proof: Let a, be any particular solution of (5). Now, Theorem 2 tells us
that the difference of any two solutions of (5) is a solution of (1).

So, every solution u,, of (5) satisfies u, — a, = b_, where b, satisfies (1).
Therefore, u, = a, -+ by, where a_ is a particular solution of (5) and b, is'a
solution of {1).

We have proved the two theorems above only for linear recurrence relations
with constant coeflicient. But they hold true in the general case also. This is
what the following exercise is aboul.

E4) State and prove the analogues of Theorems 2 and 3 for general
recurrence; of the form
w, = fl [n)un—l + f?(n)un—Q +---+ I‘I-«:(n)"ln—'k + g(n),
wlere the {;s and g are functions of n.

In view of the two theorems above, to solve (5) we must laok for any one
solution of {5) and the general form of the solution of (1). Let us consider
an example.

Iixample 5: Find the complete solution of the recurrence

a, =32,_, ~4nn> L

Solution: The required soluticn, as Thecrem 3 says, is the sum of the
general solution of a, = 3a,_; and any solution of the given recurrerze.
From El you know that the gencral solution of 2, = 3a,,_, is

a, = b.3", . :

where b is a constant.



Now, let us consider the non-homogeneous part too. We have
a‘n = 3_an—l - 4n,

Let us see if a, can be of the form An+B,A,B e C,

H it is, then

An+4 B =3[A(n—-1)+B) - 4n = n(3A —4) — 3A + 3B.
Comparing the coefficients of n, we get

A=3A -4 and B =3B = 34,

ie., A=2and B =3.

So, a, = 2n + 3 works, and hence is a particular solution of the given
recurrence,

So, the total solution of the recurrence will be
a,=b3"+2n+3,beC

* K

In the example above, we have obtained a particular solution by guess work.
In many cases we need to use such an approach. Unlike the homogeneous
case, there is no general method to obtain a particular solution for a
non-homogeneous recurrence. But there are techniques available for certain
recurrences, including the one given in Example 5. The following theorems
tell us about two special cascs.

Theorem 4: A particular solution of (5) with non-homogeneous part an®,

where a is a known constant and d & N, is of the form

1) Ap+An+A,?+.+Amnd if 1is not a characteristic root of (5);

) Agn™ A ™ 4 Ae™H i s a characteristic root of (5) with
multiplicity m, ’ : ’

where Ay, A, ---, A, arc constants. .

“Theorem 5: A particular solution of (6) with non-liomogencous part ar®
(where a is a known constant) is of the form -

i), Ar", if r is not a characteristic root of (5);

i)  An™r", if r is a-characteristic root of (5) with multiplicity m,

where A is a constant.

We will not prove these results here, but shall look at a few examples of their
use. You may recall having encountered some of these examples “in prewous
units. i .-

Example 6: Find the solution to the recurrence in Problem 3 of Sec. 7.2,
nawmely, L, = L _, +0,n>2, with L, =2

Solution: Obscrve that 1 is the ouly characteristic root of this recurrence.
So, the general solution to the homogeneous part of this recurrence is simply
a.l" = a, where a is a constant.

Now, the non-homagencous part of the recurrence is n. So, applying

g _Tlu.orem 4(it) with n = 1 and d'= 1, we see that a particular solution of this

_'1'orurréuce is of the [orm
A+ An% A A €C. - -

T Tird the values.of Ag-and A weser L= Ajun+ A, n? in the recurrence
relation to get . _
Ayn+ Aln_') = Agln-1 Ao D) 4a

) == f—r'\g“rf‘\ )"r (f\ - )J'\.l - in —E-...I‘2

Compnring-Lhc constant terms and the coefficients of n, we get
0= -Ag+ A, Ay =A,—-2A, + L

o

Therefare, 4 = A, =

t\.‘tl'—-

Solving Recurrences
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o4

Now, taking the sum of both the solutions, we get

n{n+1) °

—

The initial condition L, = 2 tells us that a = 1, so that

n{n + 1}
2 1

L, =a+

L,=1+ n>l

* ¥ ¥

Example 7: Rani takes a loan of R rupees which is to be paid back in T
months. If I is the interest rate per month for the loan, what constant
payment P must she make at the end of each period?

Solution : Let a, denote the amount Rani owes at the end of the nth
montly, i.e., after the nth payment. Then the problem can be'written as

=2, +la, ~P, 0<n<T~1l,20=R,a; =0. -

So, the homogencous part cont.nbutes b(1 + I)" to the solution, b being a
constant.

Using Theoren?f;(i), with r = 1, we see that the non-homogencous part
contributes A, a constant.
But then, putting a, = A in our recurrence relation, we get
A=A(l+I}-P=A=P/L
Thus, a, =b(1 +I)" + P/L
Then,ay =R=>b+P/I=R=b=R-P/I
Also,apr=0=b(1+D)T+P/I[=0

_IR(1+ DT

- (1+D7

¥ ok %

Example 8: Solve the recurrence u, = au,_, +c.a", n > 1, where a and ¢
are kdown constants,
Solution: Using Theorem 5, we get
u, = A.a" +Bnz", A and B being constants.
=~ = a"(A+Bn)}forn>0.

xow

Now, here are some simple exercises for you.

E5) Solve the recurrence T, = 2T,_; + I, n > 2, with T, = 1 (sce Problem
2, Sec. 7.2).

EG) The population of a species of snails in a certain lake triples every year.
Starting with 1000 such snails, and finding 1500 of them the {ollowing
year, 200 are removed from the lake to increase them in other lakes.
Simtlarly, at the end of every year 200 are removed. If a,, represents the
snail population in the lake alter n years, ﬁnd and solve a recurrence
relation for a,,n > 0. '

Now let us cansider a result which tells us how to find a particular solulion
for recurrences with non-homogeneous parts which are linear combinations of
nd and 1, r 2 constant.

Theorem 6 (Superposition Principle): If {a,} is a solution of
v, =Cpuy_y +Cuy o+ + Gl T8 (n)
and {b,} is a solution of



U, = ¢l + Gy g + - o+ Gty oy + Bo(n), ‘Solving Recurrences
then, for constants A and B, Aa, + B, is a solution of
U, = ¢ U,y + -+ ceu,_ + Ag, (n) + Bg,(n).

- Proof: For n > k, we have Aa_ + BD,
= A[Cl a‘n—l +oe - ck"‘l'n—l-i + 4] (Il)]--i" B[bn—l +-- ckbr:—}: + g2(n)]
=c (Aa,_; +Bb, |} +--- + ¢ (Aa,_, + Bb, ) + {Ag,(n) + Bgy(n}}.

This means that Aa, + Bb, is a solution of (5) with g{n) = Ag, (n) + Bg,(n).

In view of Theorem 6, we can combine the results of Theorems 4 and 5 to get
solutions of non-homogeneous recurrences like the following one.

Example 9: Obtain the general solution of the recurrence
vo—Tvp_ 1+ 12v,_,=52"—43", n> 2

Solution: Since there are no initial conditions and the equation is of second
order, we can only expect a general solution involving two constants.

To begin with, the homogcncous part v, — 7v,_; + 12v_ _, =0 has the
characteristic polynomial z? — 7z + 12, i.e., (z — 3){z — 4). Conscquently, its
general solution is of the form a.3" + 1.4", where a,b & C.

Now let’s consider the non-homogeneous part. It consists of two terms, one
of which is a power of one of the characteristic roots. By Theorems 5 and G,
we must set v, = ¢.2" 4-dn.3" in order to find a particular solution.
When we do this, Lhe recurrence relation gives us
2" 2¢(4 — 14 + 12) +3"2d [9n - 21(n — I} + 12(n — 2)] =-5.2"— 4.3".
= 2" e —10) = 37" 1{d — 12) . _ ' i
Since this equality is true for every n > 1, we see that 2°~!|{d — 12) for every
n > 1. This can only be true ifd—12 =0, i.e.,, d = 12, This forces
¢ — 10 =0 te be true, ie, c = 10.
Putting all this information together, we get
v, =10.2" 4 (a 4+ 12n)3" + 1b.4", where a,b € C.-
LAE TR I
Let us go back to"I_'heorem 6 for 2 moment.. Will the superposition principle
be true for linear homogeneous recurrences too? Actually, it will, and we - o

have been using this fact quite a lot. Try and pinpeint where we have first )
used |t. for such recurrences. : i

Here are some exercises now. ; .

E7) 1f the recurrence u, + ¢ u,_; + ¢yu;,_, = an + b has a general solution
u, = A2" + B.5% 4 3n - 5, find a,b,¢; and ¢,

E8) Solve the recurrence v, — v, _| + 16v, _, ~ 12v, 53 =2" + 3", with the
Cinitial terms vy = I,v| = 0,v, = 1.

Soudar we have seen how tomsolve (5} if g(n) is of Lll(. [orm ‘mEI ar" or a linear

comhimation af terins of these types. There is one nore wype of

non-hompgencous part that we shatl discuss now.

.Theorem 7: A particular solution of {5) wilh non-hemegencous part an' ",
swherd a and r are known constants and d € Ny is of the form

i) ArMAG S+ A At chu:hex r nor 1 are character 1st1c
roots of (o) N

i) An"r"(Ag + An + -+ Agn?), if either r or 1 (but not both) is a
- - characteristic root of (5) with multiplicity m; . -
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ili) An™Ttm2r(A A n+--- 4+ Ayn?), if r and 1 both are characteristic

roots of (5) with multiplicities m, and m,, respectively,
where A, Ay, A,,---, A, are constants.
As before, we shall not prove this result, but shall show how it can be applied.

Example 10: Find a linear homogencous recurrence with constant
coefficients for which the characteristic roots are 1 with multiplicity two, —1
with multiplicity three and 2 with multiplicity five. Further, assume that the
non-llomogeneous part is a linear combination of n(—1)",n2.2" and 3" plus a
polynomial of degree three.

Solution: We wish 10 solve a recurrence which has 10 characteristic roots.
So, it is of the form

U, = ¢ uy_ 4 -+cygu,_ o+ (ag+an+a,n? +agnd}+bn(—1)" +c.n?2"+d.37,
where we know that the characteristic polynomial of the homogeneous part
is (2 — 1)%(z + 1)*(2 - 2)°,

e,z —cz® - —cqz—cpp = (2~ 1)2(2 +1)3(z — 2)5.

So, by Theorem 1, the form of the general solution to the homoegeneous part
will be

(Ag+ Am).1" + (By -+ Byn + Bn?)(—1)* +(Cg + G+ -+ + Cen'j2",  (6)
where the As, Bs and Cs are constants.

Now, by Theorem 4, you know that the'form of the pariicular solution
corresponding to the third degree polynomial is

n?(Dg + D0 + D,n? 4 D;n), where the Ds are constants.

From Theorem 7 you know that the form of the solution corresponding to
bn(-1)" is n®(—1)*(E, + E,n), and to

cn?.2" is n7.2"(Fy + Fn + F,n?), where thé Es and Fs are constants.
From Theorem 5, you kuow that the part of the solution corresponding to

d.3% is G.(3)", G being a constant.
Thus, the particular solution is of the form

n?(Dy +D;n+ Dyn? + Dyn¥)x + n®(—1)*(E, + En)
+n"(2")(Fy + Fyn 4 Fon?) + G(3")

Therefore, the complete solution is the sum of the expressions in (6) and (7).

(7)

+ 4 ¥

Here's an exercise of the same type for you.

ES) Find a recurrence relation with constant coeflicients for which the
characleristic rools are 3 with multiplicity 1 and —2 with multiplicity
2. The relation also has a non-lhomogeneous part which is a linear
combination of 2", n(—1)" and a polynomizl of degree 2.

In this section we have considered some general methods for tackling special
kinds of non-hawmogencous recurrences. While studying them you would have
noticed that the solution of the non-homogeneous part is dependent on
whether a characteristic reot of the recurrence eecurs in this part.

Now that you have studied this secti_on ana Unit 8, can you solve all the
problems given in Unit 77 What about the ‘divide and conquer’ prqblem?
To solve this problem and other recurrences with non-homogeneous parts



different from the ones looked at in this section, we need to look at some
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other solution techniques. Let us do so now.

9.4 SOME OTHER METHODS

In the previous section we have seen how to deal with two kinds of
non-liomogeneous parts of lincar recurrences. There are many other kinds of
recurrences that we can solve by some special methods. We shall look at four
of these methods in this section.

9.4.1 Method of Inspection

One simple way of solving a recurrence is to write down enough terms in the
sequence until one feels comfortable in guessing the solution. However,
unless the pattern of the sequence is fairly straightforward, it is not easy to
make a good guess. Usually, if one has made a correct guess here, the
principle of mathematical induction {(ree Unit 2) can be used to prove the
guess. Let us consider an example.

Example 11: Solve, by inspectien, the recurrence relation a, =a,_; +nln
ifn>1,and ag = 0.

Solution: If we compute the first five terms of this sequence, we get ,
0,1,5,23 and 119. Can you sce what the nth term might be? Does adding
one to each term in the sequence help? Doing so would give us a sequence
that you \&ould recognise, i.e., {n -+ 1).. So our initial guess is

={n+1)! -1 '

H'umg done the mma.l work of making a guess, let us attempt to prove it by

using induction on n. -

The base case is easy to check: ag = (0+ 1)) =1 =0. -

If we are to assume the reésult for n = k, for some k >0, then

gy = ap~(k+Mk+1)=[k+ 1) =-1)+ (k+1)k+1)
= (k+1)M(k+2)—1=(k+2) -1, as we hoped.

This completes the proof by induci.ion, and proves our guess.

- oo ) T s w3

Hcr(, $ an exercise for }ou now.

310} Use the inethod of inspection to _sc')lve_-t!_le recurrence
b, =b,_, +4n* —6n? + 4n— 1 for v > 1 with b,y = 0.

Let us now consider another method {or solving recurrences.

9.4.2 Method of 'I'e_l'es-::'oping_Sums

This neat method is uselul for selving recurrences of the form
u, = u,_y - gln), particalaely if > Cg{n) s casy 1o find. Mare gencrally, i
TN

can Le used to evaluale sums of serles wod produets.
- This methiod is based on the [act that the sum of the first N tertus of a series
wliose nth ternin is of Lhe form a, — a,_,-is sinply

; ' ' . .

{n) —uy) + {a, — '1]) Food(Rns) cagoe) t(ay —ag )= ag —ay.

In much the same manner, the product of the first N terms of a series with
nth terim a fa, ) is ay/ag provided, of course, that nouc of the a,’s is zero. - ) 57
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A sum of the form

SOl + 1) = (D) is

c:llllcd telesceping in
analogy with the
thickness of a collapsed
telescope, which is the
difference between the
cuter radius ol the
gutermost tube and the
inner radius of the
innermost tube.
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Though this method appears casy, it is not often that this method can be
applied, and often not easy to see how to use it even when it can be! Let us
see a few instances of where it can be applied.

Example 12: Solve the linear recurrence

i

n " Ay = FogaFoo 12 1,
where a5 = 2 and F; deuotes the ith Flbonacm numboer.

Solution: From Example 2, you know thal

j|:.n-i-2"‘}-r-r|-—] = (]: 31 + }_) (
So,forn=12,--

il

n a‘:l—l =

& T3 = 3:22"‘712

a—a, = Fi-F2
-, = F -7

F241_F2

j:n+l

__7:]

-, the recurrence gives us the foljowing equations:

On adding these equations, we find that
= 2
8, — 39 =Fa — A

4:'*"‘::=2"‘-F3+1_1;'-‘T:%H‘*'1

LY

L

'7:11+l

F2

denotes the sum of the kth powers of the first n positive integers.

Example 13: Compute o},02 and o3, using the method of telescoping

sums.

Solution:
(k+ 1)z -

Ta find a

, we sum both sides of the identity
k2 = 2k +1 from k=1tok=mn. On domg s0, we gel

(n+1) -—1—2{k+1 —Lz}—ZZL-I-Zl—Zo”-l n.

Let us now find ¢2 and o}

Sumnming both sides of the identities (k + 13° — K =3k + 3k + L and
dk £ 1 from k =1 to k = . we obtaiu

Z{kﬂl —}\}“Q_ll\

”‘_= n{n 4 1)/2.

4+ 1, and

(k + 1)1 — k* = 4k® + 6k” 4
m+1P¥ -1 =
= Ja“ + JJH
n
m+1) -1 = Z{(k.{-l)“_
k=1
= 402 -+ Unr; la

From the first of these equations, and using the vaine of al from above,
9 ; o
7o = n{n+ 1){20 + 1)/G.

[

Plugging in Lhe values of o} wnd ¢

da

3= fa(n + 1)/2)2.

4-n.

¥

*

4

k=1

k=4 K +6
k=1

k=1

n

k"+f1>:k

k=1

The next example should be familiar to you. Recail, from Sec.8.2, that aﬁ

2 inte the second equation, we now ohiain

While going through the example abeve, you may have felt, that Lhere is a
much simpler method to compute ol. But the advantage of using telescoping
sums is that it also works for computing cr},‘ for larper values of k, where the

jsimpler method does not.

Now you, can try and obtain the general formula for ok k> 1.



E11) Find a recurrence relation satisfied by the sequence {orf.f}k, and hence
compiutte or:.i.

Let us now look at Problem 7 of Unit 7, namely, the number of
derangements on k symbols, d,.

Example 14: Solve the recurrence

dy =kdy ; + (=1 if k22, with d, =
Solution: Looking at the recurrence, it doesn’t scem to be in the {orm in
which we can apply the method of telescoping sums to solve it. But we can

alte. it slightly to Dring it into a suitable form. We stmply divide each term
by k!, and get

dg _ _dey  _ (-1

K (k—1) kI -
Now we can apply the method since the terms are such that if we write down
the equations fromk =2 to k = n, and add them, most of the terms will get
cancelled. We will only be left with

dy _dy (DR & (1)K
T > Kl =) K : ’
k=2 k=0
Therefore,

(-
d, =n! Z —kT—,nZl.
. = [

- ’ * & #

. In thé next example we see how ‘telescoping products’ can be used for
solving recurrences. . :

Example 15: Solve the recurrence a; =n’a _,n> 1,a, = 2.
n n—1 2

Solution :  Let us putk =1,2,--+,n, in the equation

ak - 1'{3 -
A
We pet- )
- a .
i DR -
%o -
a
2L 93
a
a ) -
n = “.5
dh -
Multiplying these equations, we get
-t = (n)? -
g

R - -

The techinigue in the cxample above ¢an be used more generaliy for
nou-homogenceous recurrences ol Lhe Lype - ’
a, = f{n)a,_, +g(n), where £(n) # 0 for all v.
Lel us consider an example of this.

: A 1 :
Example 16: - Solve the recurrence Uy = =+ 5,02 Lyg = 1.
. T - -n nl” T

Solving Recurrences
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This method can be
applied here since

1
—#0V¥n>1.
~#0Vn>

60

Solution : The homogeneous part of this recurrence js —22— = }- Using the
31 N
method of telescoping products, we get

11 I 1

nn~1 1 pl"
Now, suppose ihat the solution of the given recurrence is of the form
U, =a,b,, where by = 1. Then

1 1
&1"1)" = Han—lbn—l+;!'
1 1 .
= ayb,_,+ o Sinee ey = 01
= 1
=b, = b,_+ a—‘l-n =b,_;+1, sincea, = o

Now, we can use the method of telescoping sums to solve the recurrence
by=b, _, + I,by = 1. We get
b, =n+1.

1
Therefore, u, =a,b, = n+l .
11:

¥ o %

Can you clearly spell out the steps we have gone through in Example 167 To
obtain a solution of the recurrence v, ={(n)u,_; + g(n), the steps are:

Step 1 : Seeif f(n) £ 0Vn. Only then can this method be applied.

Step 2 : Find the solution {2n} for the homogeneous part of the recurrence.
So, :
2, =1{(n)a,_,¥n> 1.
Step 3 : Assume that the solution of the given recurrence is of the form
u, =ab,.
Then
Z"nbn = f(n)a‘n—lbn—l +g(“)
= a'n]"n—l +g[n)
Therefore, b, =b,_, +g(n)/a,.
Here is where we use the fact f(n) £ 0V n. (How?)
Step 4:  Solve the recurrence
by=Db,_, + 5-(—nl
by whichever method you find suitable.

Step 5 : Then the solution o the given recurrence is u, = a, b,

Here are some exercises now.

[12) Show that G(2n,n) is a solution of the recurrence

2(2n —1)
X, = — 5 Xn-n® > 1.

1213} Use the method of telescoping sums and products to solve the
recurrence a, = n¥a,_, - (u)2ifn > | and aq = 1.

514) Solve the recurrence a, = {nln)a__;,n > 1,25 =5,

Let us now sce how telescoping sums can be used efficiently to sum an infinite
series. Although this is not an example involving recurrence relations, you
would get some idea of how this method can be applied to different problems.



Example 17: Use the method of telescoping sums to sum the mfinite secies
3 5 7 2n+1 .
1237334 tagp ot nw+ Do+ T

extend the idea.

With three terms in the denominator, we first express the nth term as a

partial fractior:
2n+1 172 1 3/2

n{n + 1){(n + 2) n n+1 n+42
Now, if a; denotes the ith term of the series, then

Sn; 4 tay+---4a _
(1_/2+1_3_/E)+(1_/2+1~§/_2)+(1_/2+1_£‘E)

I

1 2 3 2 3 4 3 4 5
1/2 1 3/2
Fooodl— - —— - 2
B n+l n+2
—3/2 1 1 - ’
Since i/ -+ = + _r/1_2 = 0, cancelling groups of such terms, we get
12 1 1/2 -3/2 1 32
S = (T_+2)+(_2_)+(n+1)+(q+1 n+2/
512 . 3 - S

4 n+l1 n+72
Therefore, S = lim’ S,=5/4.
n~4oo .

- + + x

Why don’t you try some exercises now?
Y ry

E135) By methods of this sub-section, solve the recurrence - - -
X, = (0 —2)x,_; +1,n>1, where x, =0.  ~ i

I16) Using the method of telescoping sums, prove the following Fibonacei
idenLiElies: )
a) > A= Foyo — 1;
k=1

n
b) Z Fox-1 = Fans
k=1

C) - Z '7:1\2 = J:n.}_n-f-l;-

T o= k::r ) -
- e . )
d)- ZF:(.‘((Fk—I-’FkH):Q;
B k=2 - -
) ¢) L(}T‘k'—-l}-k+l)‘_l'___l'
k=2 ’ .

And now we shall consider another very commonly used method for solving

- Tecurrences. - ) ) -

Solving Recurrences
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9.4.3 - Method of Iteration

Iteration ‘means ‘to repeat’. In a sense, this is what we do m this method.
More precisely, we successively express the nth term u, in terms of some or
all of the previous (n~1) terms Yoy Uy, -+ -, 0, _y, using the recurrence
equation again and again. While doing so, we try and find an emerging
pattern which can help us find U, explicitly as a function of n.

To see how this method works, let us look at an example.

Example 18: Solve the recurrence relation given by
Up=2u,_ ;42" -1, wheren 2 1 and uy =0.

Solution: Replacing n by n — 1,n — 1 by n —2,- and 5o on in the
fecurrence equation, we get
Uy = 2u,_,+42°—1
= 202u,_,+2""1 1) 4203
22w, o +2.2° — (I + 2)
22(2u, 3 +272 1) 4220 — (142)
2,y +3.29 — (1+ 2+ 22)

Ii

]

il

= 2N+ 02"~ (142422 ... 4. 207

27 -1
= {(n-1)2"+ I,since 1 +24224... £ 9n-1

2—-1"

LI

In the example above, we began with the recurrence relation and reached ap
expression for the nth term in terms of n. In principle this method always
works. But, it is not always easy to apply because the computation can
sometimes get out of hand.

Why don’t you try the following exercise now? You shouldn't have any
difficulty in the computation. In fact, you may find it easier to solve by this
method than by the method you used earlier.

1 1 .
[517) Solve the recurrence Un = sun g+ R 2 1, with uy = I by the
method of iteration. '

Let us now consider an example which can be solved Ly iteration as well as
Ly first solving the recurrence for 2y, and then summing the series. Let us
solve it by using the former method.

Example 19: Sum the first n terms of the series whose kth term, a,,
satisfies the recurrence ay = 3a,_; + 1, and whose initial term, is a; = 2.

Solution: From the recurrence, we find that
n
Z 2, = a + {32, + 1)
k=1
= > a+(1+3)3e,_, +1) 41

= a + (1434-3%)(Ba, _; + 1)+ {1+ (1 + 3}

k=1
n-4

s - Zak+{14-3+32+33)(3an_4+1)+{1+(1+3)
- \ +(1 + 3 +32)}



ap H (L4340 +372)(3a; +1) + {1 + (1 +3)
T+ {1+ 340 377

n—1
2(1 +3 4. 43771 +l Z(Bk —1),since a; = 2
2 k=1

ke 31

and 1+3+.--43 =3 T
5337 -3 —2n
1 .

%

You may like to try and solve a similar problem now.

E18) Use the method of iteration to find the sum of the first n+ 2 terras of

the series whose kth term, u,, satisfies the recurrence u

and whose initial term is u; = 1.

k= +k,

Now let us discuss the fourth method of this section.

9.4.4 Method of Substitution

So far we have seen several techniques for solving a variety of recurrences,
lincar and non-lincar. But there are some that defeat our entire arsenal: For
instance, we are ill equipped to handle-cven some of the simplest non-linear
recurrences and linear recurrentces with non-constant coefficients. It is in

some of these cases that we can call

ourselves from this position.

The method of substitution is used to cha.ngé the g

upon a substitution to extricate

iven recurrence to a form

that can then be readily solved by one of the previously discussed
techniques. As you might expect; the hard part is to figure out what the

substitution should be. Let us see how this
related to the divide-and-conquer relations.

Example 20: Solve the recurrence relation of Problem 8 of
fay =ap+lforn=2%k>1,a =0 -

Soh—ftion':

method works through examples-

Unit 7, namely,

Let us put a,. = u,. Then the given recurrence becomes

U =y +1;u, =0 ) o -
Now,-we can apply the method of telescoping sums, to get the solution

U, =Ug+n=mn,ie, ay, =n,ic., a, = log,m for m > 1.

* % ¥

Example 21: Solve the recurrence obtained by ‘merge sort’
namely, a_ = 2a,mp+n—-1,n=2%Kk> l,a; =0.

Solution :

recurrence becomes.

u = 2wy 425 — 1, uy = 0.
Now, as in-Example 18, we zet
w — (k- 1)2% 11,

Le, ag = (k — 1)2% 4 1.

e, a, = (logy n—1)n 4 1.

£ 3 3

Here are some récurrences for you to solve now.

in Scc. 7.4,

As in the previous example, we put a,. = u. Then the

. Elg} Using an ap-p-ropria.te _éﬁbétitution, solve the recurrence-

Solving Recurrences
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n—1 1 : .
Yo = o Yot o n 2 1, where y, = 5.

E20) Solve the recurrence by = 3t/ +10?, t; = 2, by substitution, and
specify for which values of o the conversion is valid.

Let us look at another example, one which makes it a natural candidate for
the substitution technique.

Example 22: Solve the second order, non-linear recurrence
X, = (2/%0 5 +3,/%,5)2, n > 2, with the initial conditions x; = 1,x, = 4.

Solution; Looking at the recurrence, you probably feel that we have not.

developed the toois to solve an equation of this type. Let's see if we can

trausforme this into a linear recurrence. Let us make the substitution

Yn = X5, 0 > 0: (Note that this substitution is valid because each x_, is

non-negative.) -

The substitution does not quite make the recurrence linear, but at least it

gets rid of the square root symbol—the problem now becomes

yf] = (2y,_; + Iy,_.)% n22, withy, = Ly =2

Extracting square réots of each side, we now get

Yo =2¥y.1 +3¥, 5,022 :

This is a second order linear recurrence with constant coefficdents, and can

be solved by standard methods discussed earlier. We leave it to you to verify

that the solution is

Yo = A.3% + B(—1)", n > 0, for some constants A,B.

Using the initial conditions, we further get

A+B=1] and3A—-B=2,sothatA=3/4andB=1/4.

{3n+1 +(__1)n}2
16 !

SoXy =y = > 0.

% %
As a final example, we look at another non-linear recurrence with an
expogential-type relation between the terms.
Example 23: Solve the recurrence given by x, =x7_ /x12, together with
the initial conditions Xg=T1and x; = 2.

Solution: Taking the logarithun {o any convenient base {we are only going
to be dealing with positive numbers in this sequence after all!) reduces the
right side of this to a form we can quite easily handle:

Iog2 x" - 7 1052 Xn_l - 12 log2 xn_z.
Now, let y, = log, x_. The sequence {y,} satisfies the recurrence

Yo —T¥o_1 + 12y, _, =0.
So its characteristic roots are 3 and 4.
Thercfore, y, = a.3" + b4", n>0,a,be C. _
Now, the initia! canditions Xg = 1 and x; = 2 yield y, = 0 and yy =1
Pullingn=0and | in Yo =ad" +hd" givesa = -1 bh=1,
Therefore, Y, = 4" =3,
Thus, x, = 29" = 23" n>o.

* ok %

Observe that the chaice of base in the example above does not alter the final
answer, as indeed it must not! We chose 2 because Xy and x; are both
powers of two. :

Now, for some exercises.
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E21} Find the solution of VX — 5%+ 6/% 2=0,n02>2, where x; =4

and x, = 25. _ oo :
E22) Solve the recurrence x, = 4n(n ~ Dx,_,+ gn!(:}“) forn>2 ifx;=1

and x; = —1.

E23) Let {u,} satisfy the non-homogeneous recurrence
Un = Cillq_y F+ CU,y_p + Cyun_g +cqu,_, +g(n),
such that the associated homogeneous recurrence has .
(2 — 2)(z — 3)(z — 4)? as its characteristic polynomial, and {g(n)}
satisfies a fifth order linear homogeneous recurrence with constant
coeflicients whose characteristic polynomial is (z~2)%(z ~3)(z — 5)2.
Determine u,,.

E24) Let {v.} satisfy the second order recurrence
Vp+byv,_ +bov, _, =5,
with by, b, and r as constants. Prove that the sequence also satisfies the

third order homogeneous linear recurrence with constant cocfficients
having (22 + b,z + byHz — 1) as its characteristic polynomial.

E25) Let {xg}as0 204 {y,}uso be two solutions of the recurrence
Uy +a,u,7; +agu,_y =0, where a, and a, arc cornstants.
a) Show that {x,y,}.> satisfies a third order linear homogeneous
recurrence with constant coefficients. - '

b) Show that {x, },., satisfies a second order linear homogeneous
recurrence with constant coefficients.

E26) Assume that for positive real numbers a, b and r, there exists m € N
- such that (a + bn)r® < nl for n > m, '
Using this, prove that there does not exist any second order
homogeneous linear recurrence with constant coefficients satisfied by

the sequence {n!}. -

With this we have come to the end of this unit and block on recurrences. Let
us take a quick look at what we have covered in this unit.

9.5 SUMMARY

In this urit we have discussed the following points.

1. " The solution of the lincar homogeneous recurrence with constant
coefficients, C - ; :
u, = cll_xn_l -+ Couy o +-- + Clp_1t > k,

m L ; o ) .
is Z Z b;C(1 + n,1) -aj' B T - - .
-1 |i=0 ) . - : : . -
where a|,- - - | @, arc.the distinct-cliaracteristic roots of this recurrence

with multiplicity bps oy by Tespectively.

. The solution of a linear non-homogeneous recurrence is_ the sum ol the
general solution of its homogeneous part and a particular solution <f the
whole recurrence. - .

l. A particular solution of . _ . S -
Uy =€y y + U 5+ -+, +and, nd>k -
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is of the form

0™Ag+Amn+-.. g Agnd)

where m > () is the multiplicity of 1 as a characteristic root of the
cquation, and the A;s are constants.

A particular solutjon of

u, = Ciu,_ + QU s+ -+ CplUp_y + ar”

is of the form

Au™rn

where m > 0 is the multiplicity of r as a characteristic root of the
equation and A is a constant.

A particular solution of

U, = C Uy +--- + Cpl,_x + andrn

is of the form

nMFmIn g Am+t--+Am9) .

where m; > 0 and my > 0 are the multiplicities of r and 1, respectively,
as characteristic roots of the equation, and the A;s are constants.

The methods of inspection and telescoping sums for solving linear
recwrences with constant coeficients.

The methods of iteration and substitution for solving linear recurrences
with constant and non-constant coefficients. )

9.6 SOLUTIONS/ANSWERS

E1)

E2)

Ed)

coeflicients case’.

The characteristic equation is z = 3, So the characteristic root is 3,
with multiplicity 1. Therefore, the solution is

2, =bC(0+n,0).3",be C,

ie,a, = b3",

The recursion u,, + U,y + Cu_, =0 has the characteristic equation
2’ + ¢,z + cy =0.

We also know that the roots of this equation are 1 +iand 1 —3i.
Therefore, from MTE-04 you know that €] equals the negative of the
sum of its characteristic roots, i.e., —2, and ¢, is the product of these
roots, i.e., 2.

The characteristic eguation of the given recurrence is
33—22-—z+1=(z—1)2(z+1]=0. _

So, P = (an + b) + c(=1)", n 2 0, for some constants a, b, c.
The initial conditions are 2 + 1 — ¢c=0,224+b+c=1and
Jat+b-c=1. Therefore,

—_ —1yn
szminzo

Statements: 1) If {a.} and {b,} are two solution sequences of the
non-homaogeneous recurrence

u, = i-l (n)un-—l + rZ(H)un—E t- rk(n)un-k + g(ll), (8)
then {c_} is a soluiion sequence of its associated homogencous
recurzence, where ¢, =a, — b, .

2) Lvery solution of (8) is of the form a_ + b,, where a, is a particular
solution of (8) and by, is any solution of its associated homogeneous
recurrence

u, = fl (l'l) Uy + .'-- “+ rk(n)un—k - ’ (g)
The proofs are exactly on the lines of the proofs for the ‘constant



E5) The characteristic root of the recurrence T, =2T,_,isz=2, Solving Recurrences

EG)

E7)

E8)

E9)

Therefore, the general selution of the bomogeneous part is
T, =a2" p 2 1.

Adding the solutions of the homogeneous and non-homogeneous parts,
and using the initiaj condition T| = 1, we get T, =2"_1 p > 1.

Here &, , — Ay =3a ., —a ) - 200,n > 0,
Le,z, ., — da,,, +3a, = —200.

The solution corresponding to the homogencous part is

a.3% + b(1)", ie., a.30 +b, where a,b g

Now, —200 = (—200)(1)", and 1 js a characteristic root.

So, by Theorem %, a particular solutijon iIs An, A a constant.
Putting a, = An in the recurrence, we get

An+2)— dA(n +1) + 3An = —9qg = A = 100.

-8, =a3"+b+100n.

With 24 = 1000 and a) = 1500 - 200 = 1300, we have

2, = 100(3)" + 900 +- 100n,n > 0.

The recurrence Up +cju,_ + Cau, o =0 has the characteristic

equation z? €12+ c¢; = 0. From the given solution- we see that jts -

roots are 2 and 5. o '

Therefore, c = ~(2+5) =7 and ¢, =2x5 =10

Now, setting the given particular solution U, =3n— 5in the gEiven - .
€quation, we get |
(3n—5}~7(3n—3)+10(3n—11)=an5rb. S -
Therefore, a =12 and b = —59. _ -

The recurrence Vp— v, + 16v,_, — 12v, _3 = 0 has the characteristic
cquation 23 — 722 4. I, 12=10,ie, (2.~ 2)%(z — 3)=n0.
So, v, = (an + b)2" +¢3" n> 0, for some a, b, c.

The particular solution is of the form ¥, ==An?2" 4 Bp3n. .
Therefore, the recurrentce reduces to- - -

A2" (202 o _qy2 8(n — 22 — 3(n — 3)?}
+B.3"2{9n — 21(n =1} 4-16(n — 2) - 4(n - 3)p=20 330 - -

-'Solving this, we get A = ~-I,B=g

Therefore, v = (—n? 4 an + b)2" + (9n+ ¢)37, > 0.
The initial conditions lead to the cquations
b+ec=1,2(a+b- 1)+3(c+9) =0 and 4(2a+b —4) +9(c+18) =1,
Solving these cquations we get a = b=42 and c= -4 -

Therefore, v, = (—n? 4 7n + 42)2% + (9n — 41)3", n > Q.

We know that 3 and ~2 are the only characteristic roots with
multiplicity 1 and 2, respeclively., Thereflore, the solution corresponding
to Lhe homogencous part is

A3 + (Bn + Cy(—-2)".
'l‘h(:-Imn—homogcncous part of the recutience js

A2 + bn(—1)" & (en? + dn +- e),a, e are constants.
Therefore, the solution corresponding Lo this part is

-D(2”j -{—'{—_l)'f(EO--!; E111)+En'2+Gn+E._ o o E

The complete solution is the sum of_ the two solutions, 67



Recurrences E10) Since the first few terms of the sequence are 0, 1,16, 81, ..., it is
reasonable to guess that b, = n* for n > 0.
Let's check this guess by induction.
Now, this guess is correct for n = 0 and n = 1.
Let’s assume that it is true for n — 1. Now
n!=(n- 1)? + (4n® —6n?+4dn—1)forn> 1.
So, the principle of mathematical induction proves our guess.

E11) Summing both sides of the identity
k

(G + 1kt kil o Z Clk + 1,1)j" from j =1 to j = n, we get the

r=0
recurrence equation

4] k
(n+ 1)k ) = Y. > Clk+ L)
=1 =0
k n
= Y {Clk+1,r) ij}
r=0 j=1
k
= Y {Ck +1,1) 0%}
=0
In particular, k = 4 gives

4
(0 +1)° —1=3"{C(5,1)0}} = 02 + 5oL + 1002 + 1007 + 504,

=0
Therefore,
P n° + 5n! + 100% 4 10n0? 4 4n _n*(n+1)?
" 5 2
n(n+1)(2n+1) n(n+1)
B 3 T2
_ n{n+1)(6n® +9n® +n-1)
30

-~

! —1) (2n -2}
E12) Method 1: Since C{2n,n) = (20)! _ 220 1) (2n—-2)

(m)Z = - i@=D" it follows
that C(2n,n} is a solution of the given recurrence.

n n
Method 2: x, =x J| x/xy =x, ] 22k —1)/k

=% 2"[1.3.5--+(2n —k_ﬂ )/nt = x, {211)!;(:111!]2, n > 0.

[£13) Let us apply the tqclmiqué of Example 15. We can do so, since
n£0V¥n>1.
From Example 15 we know that the solution to the homogencous part is
u, = ug(n')®.
Suppose the solution of the glven recurrence is
ay = uy v, where yyv- = 1.
Then v v, = lr\.:‘ul.l__prn_1 + (n)?

= u,v,_, 4 (n))?

=V, =V .1+ ——

Now applying telescoping sums, we get

1 {1
Vn=vo+z(2§f)
: k=1 7"

68 Then the solution of the recurrence is



1

El14) =n'nvn>1

n

. _ H a_élk_ - ﬂ klk = 112! (n — 1)!(n!)?

wole
P .

1= k=1
e, =35 [1!2!--- (n = l)!(n!)?] .

L13) Multip!ving by n — 1 reduces this recurrence to
n(n - 1)x, ~ (n— Din - xp_y=n-1,n > 1,
Substituting d,, = =n(n — 1)x,, we get

d, ~d,_ I_n—l dy = 0.
n
Ld, = Z(k—l):n(n—l)/?.
k=1
X, = 1/2,n>1.
[216) For convenience, let us define Fo=Fp—F =0.
n n
a') - Z }-k = Z(fk+l _"Fk—-l) = (Fn-l-l—I_]:n)‘_'(Fl +‘7__ﬂ) :}-n+2__
k=1 k=1
n n -
b) Z Far— ZZ(}-?L Fox—2) = Fy, = Fo = Fay
= k=1

=2 k=2
2.11-'4120{(F +}‘;‘)~( L E ) =2
e) Z(J:l—-l}-k+l L[-ﬁ—mﬂ ' (R A
k=2 R -
— -1
= Jim (5 5) (F Fori) ) =1

EI7) Repeatedly replacing n by n— 1, we get
. 1 1 :
u. = -—qu + —

Y

; ] 1 N 1 | 1 1 . 2
T Ty T T Tt b — = — 2
nln—1""7? (n— 1) nl nn—1 00 )

; 1 L Lot L2
== —_—— ——11 - ——e. -—
un—~1) ln—-2 "3 (n—2)! n!

1 3

- . L
nin —1){n - 2)_11""" n!

1 1 n-- 1 -
! = ——0n > {
H i -

nl v

E158) By the weration mathor) we have -
- - a.
Uy = u, ;41

= U+ (n—1)+ n. - .

= ul+[n_—-(n-—2-)]+ “+=(n—1)+n

L.

Solving Recurrences



Recurrences R
w1

2
n+2 n+2

LY oy = %Zk(kﬂ}
k=1 k=1
1 n+? n+2
= 5 (E::kz%-E::k)
1 1

1 [(n+2)(n+3){(2n +5) N {n + 2){n + 3)
2 [ 6 2 ]
(n+2)(n +3)(n +4)

6

E19) Rewriting the recurrence in the form ny, — (n — 1)y,_; = 1, suggests
the substitution x, = ny,, n > 1. The recurrence then reduces Lo the

form x, — x,_; =1, and telescopes to
n

X, — Xg = Z (x), — %1} = 1.
be==1
Therefore, x, =nand y, =1 forn 2 L.
E20) n has to be of the form 2* for the recurrence to be valid.
Now, let us put t,x = u, in the recurrence. Then it reduces to
u =3u,_, +2"n> 1Ly =2 -
The solution of the homogeneous part is u, = A.3".
The solution of the non-homogeneous part is u, = B.2%" = B4".
Putting this-in the recurrence, we get B = 4.
cou, = AT 4 4L
Now, using the initial condition, we get A=-2
u, = (—2)30 4 47

n

e = (—2)3" 4+ 2200,

E21} ket y, = \/X;. Then, y, — oy, _; + Gy, = 0 has the characterislic
rools 2 and 3.
So y, = 2.2" 4 b.3", for some a, b.
Sincey,=2and y, =5,a=1= b.
‘Therefore, x, = y2 = (2" +3°)2 for n > C.

£22) The term nf of the non-homegencous part provides us with the hint
that we should divide both sides by n!. If we do, we get
¥o—4dy,_a= % x 3" n > 2, with yo=1,y, = =1, where y, = x,/nl
Since the homogeneous part of this has the characterislic polynomial
2% — 4 = 0, it follows that
v, = a2 +b{-2)" +¢.3%, n 2 0, for some a, b, ¢.
Inserling this value into the recurrence gives ¢ = 1, while the initial
conditions give risc to a4+ L+c=a-+b 1 1=1and
22— 2bh 4 3e = 2a — 2 + 3 = —1, solving which we get a=1,b = —1.
Therefore, x, = {2" — (=2}" 4-3"}jn,n 2 0.

E23) Write u, as a sum of its homogeneous solulion, u, (), and particular
. solntion, u (P}, Then,
u (M =a, 2" +2,3" + (25 + 24n)}4",3,€ CVi.
. Since g{n) is of the form (A +Bn)2" 4+ C.3" + (D + En)5", the form
that the particular solution takes is !

70 u® = [{Agn + (b + byn)n)2" + Cyn.3" + Dy 5" + (T + E;n)5"



= (A;n +B 10%)2" + Cyn.8" + Dy 5" + (E, + E;n)5°, where the capital

letters are constants.

“Therefore, u, = u(h} +ufP,

E24) Let Iy, I, be the roots of the characteristic polynomial

z® +b;z+b, =0. Then .
a ry 4+ a,ry + cr”

_ (a; + cn)r} + a,rf
n (a + bn)r} + cr®
(2 + bn + en?)r®

if r|,ry, r are all distinct,
ifr=r #ry,
ilry =1, #r,
ifri=r,=r.

In any of these cases, the characteristic polynomial of the linear
homageneous recurrence with constant coeflicients satisfied by {v,} has
roots ry, T, and r, not necessarily distinct. In other words, this
polynomial is (z — r;}(z — )} (z ~ 1) = (22 + bz + by)(z — 1)
£25) Let 2° +ajz +a, = (z — a)(z — ).
If a# B, x,=Ac" +Bf" and ¥o = Ca" + D" for some constants
AB,C,Dandallu>0. _
fa=p,x,=(A+Bn)a" and y,
A,B,C,Dandalln>0.
a) So, if the roots are distinct,
X, ¥, = AC(e?)™ + (AD + BC)(aB)™ + BD{F)", n.> 0. )
So, {x,¥,} satisfies a third order linear homogencous recurrence
with constant coeflicients and distinet characteristic roots a2 yoff
and f%. .
More explicitly, the characteristic polynomial is

= {C + Dn}o™ for some constants

(2 - a)(z ~ of)(z ~ %) = 2° - (a? — a )% + ag(af — )z — &,
and thke recurrence relation is” i -
= (af - 2g)vy_y + 3,0l —2,)v,_p —adv,_; = 0.

Il' the roots are equal,
X ¥, = AC(az)" + (AD + BC)n(a )k 4 BDnQ(az)“ n.>0.
So {x,y,} again satisfies a third order linear homogencous
recurrence with constant coefficients and the characterlstlc root a?
- of multiplicity three. :
More cxpllcn:ly the characteristic polynomlal is
(z ~a?)® = 2% — 3a,22 + 3a%z — a3,
and the-recu_r'rencc relation is
Yn— 36"2"'11—[ + 38‘%"’:1-—2
) In this case, if th(, roots are distinct,
Xpn = A{e®)" + B(A2)", n > 0, and {x,,} satisfies a second-order
Imea.r homorrcnoou‘; rccurrcnce with constant. cocfﬁments and
: . distinct charactéristic roots o and 2.
_ More cxphc:tl), the characteristic polynomlal is

a3, —n’
- d".!"_n—l] = 0.

(2=t (z = f2).=2 - (aT = 2a,)z + a3, and the recurrence
relation is ' P - . '
5 T - i ) _
S (‘J'l 28w, = Tanw, o =0,
If Lhie roots are equal, - - }
- N, = {A.— an){u?‘" >0,

:Jl(l {2\ o} Aagain-silislies™a second order linear homogencous
3
recirrence with constant wc"ll( tents aned the cnalactenstlc roof. a”
- of mulliplicity two. o
More- e\:plmtly “the ch:u.u,lcnahc :)01\ rne mial.is
- 242 - - . )
- (?-—a) =72 —2(12.54—3,2 : _

and the recurrence relation is .. - - ’ ' ; oot

w, = 2_&2w i i

1+37“’ 2 =0

Solving Recurrences

s L




Recurrences E26) If the sequence {n!} is to satisfy a second order homogeneous linear

recurrence with constant coefficients, its nth term must be of the form
a,r] + a,r] for some a,,a, provided r, # 1y, or of the form (a -+ bn)r"
for some a, b. .

£ 1, # tg, Jayrf +aged] < laylley [ + agllral™ < (lay| +Jagln)e?, where
;0, ::‘:a::t(.ilrétl"lz!c}, n! <€ (A 4 Bn)a™, n 2 0 for some positive A, B and e,
and this is a contradiction to our supposition.

2
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"BLOCK 4  GRAPH THEORY

Suppose you want to drive from Delhi to Calcutta. There are several routes
for making the trip. How would you find the shortest route? Or, suppose
you try to colour a map of India in such 2 way that neighbouring states are
assigned different colours. How, will you conclude that only four calours are
necessary to do so, without actually doing the colouring?

These problems may seem very diverse at first sight; but they can be
expressed as problems involving arrangements of certain objects and
relationships between them. To study the arrangements, we view these
objects as points in a plane, and the relationships as lines joining them. The
branch of mathematics that deals with arrangement problems in this manner
is known as graph theory. :

The theory of graphs has a definite starting place in a paper published in
1736 by the Swiss mathematician Leonhard Euler (1707-1783). In this paper
he solved a problem that was then known as the Kénigsberg bridge problem
by formulating it in terms of graph theory. After this, there were a few
sporadic efforts in the development of this theory for a century. In this
century, this theory has again attracted attention for its utility. - People found
"that this theory can be be very [ruitfully used for solving problems related to
the manufacture of integrated circuits, routing problems in transport
network, and other important areas of industry and technology. As you
study this block, we hope you will appreciate some of these applications.

The aim of this block is to introduce you to graph theory and its practical
utility. We begin Lhis in Unit 10.

In Unit 11 we introduce you Lo several special types of graphs. We also
disciss ‘trees’, which were used in 1847 by Gustav Kirchofl (1824-1887) Lo
model and study the working of clectrical circuits. Arthur Cayley(1821-1895)
also used trees to count the distinct isomers of saturated hydrocarbons in

" 1857, :

In Unit 12 we go on to present Euler’s path-breaking work in graph theory.
We also discuss an equally tmportant idea here, that of a Hamiltonian cycle,
This concept, named after Hamilton(1805-1863), was initially used by him in
a mathematical puzzle. This very concepl has now been used to tackle
practical problems like the travelling salesperson problem, which we discuss
in Lhe unit.

In the last unit of this block we discuss a famous problem in graph theory,
that is, the ‘four-colour problem’. Francis Guthric communicaled this
problem to Augustus De Morgan in Lhe 1850’ Lhrough his brother. This was
finally solved only in 1976 by Kennetl Appel and Wollgang Haken, who
presented a compulter-aided prool of the four colour conjecture.. In this unit
we also discuss the charactlerisation of planar graph which was given by
Kastmir Kuratowski in 1930.

The subject you are going Lo study is a very exciling one. both in ity
underlying mathematical structure and in its applications in present duy
selence and technology. We hope you wili enjoy reading this block.



NOTATIONS AND SYMBOLS

G=(V,E) graph G with vertex sct V and edge set L.

K, complete graph with n vertjces

Kon complete bipartite graph with partite sets
Vi and Vy when |Vy] = i and Vol =n.

P, : palli involving n vertices

Ch cycle on n vertices

dg{x) degree of vertex x in G.

§G) minimum vertex degree of G,

A{G) maximum vertex degree of G.

{S)g subgraph of G induced by SC V

x(G) Vertex chromatic number

X' (G) Edge chromatic number



UNIT 10 BASIC PROPERTIES OF
GRAPHS

Structure Page No.
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10.5 Summary 30
10.6 Solutions / Answers 31

10.1 INTRODUCTION

In our évery day life, we come across various problems where we have to look
at them as structures of objects and some family of subsets of those objects.
For example, it may be an electric nelwork where different gadgets are the
objects and they are connected by electric wires. The lengths of these wires
may not be important, but it is important to know how the wires are
connected, that means it is important to know which gadgets are connected
by the end points of the wires. Another exanple is that of the public
transport in a city. Various places are the objects here and the bus routes are
the connections and we want to know the places connected to Lhe starting
point. It may be the problem of establishiug communication links between
lifferent centres. All these problems can be described by using the diagrams.
They may bLe representec pictorially with a set of dots called verlices and a
iel of edges connecting various pairs ol dots. Sucl: representations are called
sraphs. The solutions to the given problems can be obiajied Ly analysing
Deir graphs. Tdeas given by various mathematicians Lo solve such problems
save birth to a branch of mathematics called graph theory.

n this unit we shall begin with defining a grapl and study some of its basic
roperties. In See. 1.2 and U3 we have deliued vitrtons types of graphs.
“hroughont the sectious, these graphs and Lheir propertics are illustrated
Jith the help of exanples. Finally, See. 1.4 s devorad o the study of
nhgraphs. Tu the [ollowing units of Uhis block runwoutld notice that how
hese simple basie idens help as 1o solve mane tangh problems of the day
oy Hfe. We can hive sriphis witls vertices representing poinks in space,
wople, animal species, Sports rean ebe dand edues nighil represent. roads,

alephione lnes, conununication chinels o

hjeciives

e reading this l;t|ilt_.,__;;r.r_u_:sl;«‘_:‘l_:l;l Le able o
identily different wiys of representing i graph:

iclt:utify,cm:1plctd.gruphs,'p"ait.ll.i;::cyciés; (TR

obtain the union and complement of a praplh;



Graph Theory

e write the degree sequence of a graph and obtain the numbe- of edges of a
graph using the degrees of vertices;

identify graphs isomorphic to a given graph;

distinguish induced subgraphs from the given set of subgraphs:

¢ draw a graph on 1, vertices having the degree of regularity r. «where pand r
are integers with r < p, such that at least one of them Is ever,.

10.2 GRAPHS

You must have used the term ‘graph’ while studying the calculvs of real
valued functions of z real variable. It is a set of the form

{(x,f{x}) : x € the domain of the function f}. Such a sct helps us study the
function f. The main difference between the object ‘GRAPH’ that we will
define presently and the graph of a function is that our graph is the object of
our study and not a tool to study something else. Before giving a formal
definition of a grapli let us look at some simple examples.

Example 1: Take two points Xt.x2 in the plane and join them by any line,
This line may be a straight line or an arc (seec Fig.1).

!

W\ AN
AUE

Fig.1

-
[M]

There can be many wayvs to join these points. Here we have shown throee
different ways. : ‘

» 52

Similarly in Examples 2 and 3 we have shown different ways of joining 4
points. ' ’

Example 2: Take four points X1: X2, x3, x4 in the plane. Join x; w0 xj2 by o
line for 1 <1< 3. Thexa join x4 to x,. ) ’

Fig.2

Here in Fig.2 we have miven (wo different drawings. As fir as our study in
this block is concerned these drawings represent the same object.

*xra

Example 3: Take four points X1, ¥2,X3,%q in-the plane. Join x| to the
three-other-points by lines. ’



Basic Properties of

X Grephs

s Fs

.
Xy

Fig.3

Again in Fig.3 above, the three drawings represent same object.

* % oK

So you might have observed in above drawings the points aré important as
object. However, their positions are not important. Similarly, it is important
to know which pairs are joined but the lines or the curves joining them are
not important. You may notice that all the pictures in above examples share
some common features. They are made up of a collection of points,
collection of lines or curves joining some or all these points. We call these
points vertices and we call the curve joining them edges. So to each
drawing corresponds two sets - one of vertices say V and one of edges say E.
If x; and x; are in V and are joined by an edge, the correspondmg element of
E would be the pair (x1,x). Thus B is a subset of V x V. One natural
question about edges may be bothering you. Is (xq,x;) the same as (x2,%1)7
In other words do edges have a direction? The answer to this question is yes.
This leads us to the following definitions.

Definition : A simple graph or an undirected graph G consists of a
finite nonempty set V and a set E of 2 element subset of V. The set V is

called the vertex set of G, the sct I is called the edge set of G and we
write G = (V(G), E(G)) Lo denote the graph G.

Definition : A directed graph or digraph G consists of a finite
nonempty set V together with a subset A of the product set V x V. We call
V the vertex set of G and A the edge set of G and we write

G = (V{G), A(G)} to denote the digraph G.

Pig.4(b) shows a simple gyraph G and 4(a) and 4{c} shows directed graphs G
and Gy respectively.

\ AR N
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f
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-Figlé'



Graph Theory

For the graph G; = (V(G,), E(G,)) shown in Fig.4 (a), since E is a
symmetric relation, there is always a pair of edges joining two vertices that
are related To represent this relation E on the set V, we can just draw onc
edge between every two vertices with the arrowheads omitted as we have
done in Fig4(b). In a directed graph as show in Fig.4(a) and 4(c), directions
are assigned to the edges. Thus, an undirected graph is a representation of a
set and a symmetric binary relation on the set. In an undirected graph, an
edge joining the vertices u and v can be denoted cither by (u.v) and or by
(v,u) as there is no need to make the distinction.

Note that a set and a symmetric relation on the set can be represcnted
either as a directed (both ways) or as an undirected graph. However, an
undirected graph can represent only a set and a symmetric relation on it,
Sometimes, it may happen that in a graph there is a loop, i.e., an edge joins
a vertex to itself as in Fig.4(c), where (u, u) shows a loop. It may also
happen that there arc two or more edges joining the same vertices just as in
Fig.4(c) there are two edges joining y to x. Such edges are called parallel or

-multiple edges and such graphs are called multigraph. In case of 51mp1e

graph botk these situations are avoided.

For the discussion in this block we shall henceforth be concerning only
simple graphs and shall refer to them as just graphs. Also, whenever there is
no confusion, we shall write just V and E in place of V(G) and E(G).

For a graph G = (V, I5), each element v of V is called a vertex of G and
each clement e of E is called an edge of G. If e = {u,v} is an edge, we
denote it simply by ¢ = uv (or e = vu). In this case, v and v are referred to
as adjacent vertices, u and v are said to be incident with e, and e is

incident with'u and v. Similarly, if distinct edges e; and e; of G have a

vertex in common then ¢; and e; are called adjacent edges. For a graph

= (V,E) the relation of ‘adjacency’ is non-reflexive and symmetric
relatlon on V. If the set V is finite then we get finite graph. \Ve call a
graph having p vertices and q edges as a (p, q)-graph.

Example 4: For the graph G| of Fig.4, Gy = (V,E), where V = {u, v,x, v}
and E = {uv,ux,uy, vx,xy}. Thus the only non-adjacent vertices of G, are v
and y. The edges uv and vx arc adjacent since both are incident with the
vertex v. The edges uv and xy are non-adjacent. Two alternate ways of-

- drawing the graph G, are shown in Fig.5.

-

-

e T

\

Fig.5



hus, there is no unique way of drawing a graph, the relative positions of the Basic Properties of
oints and curves have no special significance. Graphs

LI

ou may now try these exercises.

[) Take three vertices x,y,z and draw all possible (3, 2)-graphs on these
vertices.

2) There are four basic blood types: A,B, AB and O. Type O can donate
to any of the four types. A and B cin donate to-AB as well as to their
own types, but type AB can only donate to AB. Draw a digraph that
presents this information.

) far, in our discussion we introduced you to the graphs that we are going
discuss in this unit and the subsequent units of this block. We shall now
miliarise you with types of graphs, but before that we give the following
finitions. -

efinition: Let G = (V,E) be a graph. Take a set V of points on any
rface S (like plane, sphere, etc.). Corresponding to every edge x y € B(G)
aw a curve on the surface S joining x and y, such that this curve does not
ss through any other point in V. Such a representation of the graph @ is
lled a diagram or a drawing of G on the surface S.

Examples 1,2 and 3 above you must have noted that on the surface 5, you
n have many diflerent drawings of the same graph. There we did not give
»s¢ graphs any special name. We now define different types of graphs.

:finition : The complete graph K, is a graph with n vertices, such that
:ry vertex is joined to every other vertex by an edge.

r example, in Fig.6, K, is just a single vertex, K; consists of two adjacent
‘tices. ‘The graph Kj is often called a triangle.

° - /9
- - i
hz /\, N
|
6 d L4 Pt
..-"-/
—
Fig.G
¢ last two figures in Fig. 6 tepresent (wo drawings of I{4 on the plane of
' paper.
“agraph G = (V,I5) on n vertices {x;,%,... b axy = x, walk in G s
nite alternating seguenae of verbices and wdes,
X1X2, X2, X2%3, .- . , Xn_] X, X, Degining with x; and ending with x,, such

@t cach edge in the sequence is incident with the vertices that immediataly
ede and foliow it. The length of a walk is the number of cdges it
itains, with repcated edges counted. A x| — x,, walk is closed if X] = X,
lopen if'x; # x5. A x; — x,, walk in which no edge is repeated is a

= Xq trail and a closed trail is a circuit. Also, a trail with no repeated
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vertices is a path. Formally, we have the following definition.

Deﬁnition : The path P, is a graph on n vertices {X1,... ,Xq} with the
edge set given by E(P,) ={xixif1:1<i<n-— 1}. For example, graph
shown in Fig.7 is Py,. '

AAAAAN

Fig.7

In a path no edge and no vertex is repeated. We shall talk about it in
detail in the next unit. We now define a cycle.

Definition 5: A cycle C, is a graph on n vertices {xi,... 1 Xn} where
E(Co)={xixiz1:1<i<n-— 1} U{xn x1}. For instance, Cy¢ is as shown in

Fie 8.

Fig.8

“Note that the graph C, _i_s obtained by taki_ng P, and adding one more edge

Xp Xi.-A cycle is a circuit in ‘which the only repeated vertex is the
first vertex, this being the same as the last vertex. Also note that in
practise we list only the vertices in a walk. There is no need to include the
edges when listing the vertices and edges of a walk. For example a x; — xs
walk-in Fig.7 may be listed as the walk X1, X2, X3, X1, Xg. -

H H H - H i H
o T L) Q
Ha C/

=
g+
Qe
.0

oy

a

-e I

Butane Isobutanc

Fig.9

It 15 interesting to know that the structure of molecules can also be
represented by graphs.(see Fig.9) Various atoms are represented.by the



vertices and the structural bonds are represented by the edges. For example, Basic Properties of
butane as well as isobutane are both hydrocarbons C¢ Hyg.-The manner in : Graphs’
which the bonds are present between the carbon and hydrogen atoms makes -

the difference. In both the compounds each carbon atom is attathed to four

other atoms. Unlike isobutane, in butane there is no carbon atom which is

attached to all the other carbon atoms.. Water molecule H20 can be shown
by path P3 as in Fig.10. :

fe -

H . Water H
Fig.10
Let us now consider the following example.
Example 5: Suppose a, b, ¢, d,, U,V,X,y represent eight cities in India with
the highways existing between certain pairs of cities. Fig.11 shows the graph
of a roadmap of these cities where each city is represented as a vertex and
two vertices are joined by an edge if the corresponding cities are linked by 2

highway. Find examples of the following walk in the graph given by Fig.11. b
a) A u-—v walk that is not a trail

b) A u-—v trail that is not a path
¢) A u-v pathof length 5
d) A u- u circuit that is not a cycle

e) A u-—ucycle of length 8.
Solution

a} The walk u,v,X,¥,v,b,u,v is not a trail since the edge uv is repeated

b) The trail u, b,x,y,¢,x,v is not a path since the vertex x is repeated
al - d
2} Thepath u,a,d, ¢, X, v has length 5
1) The circuit u, b, V¥, X, v.u 1S not a cycle since the vertex v is repcated Fig. 11
2} The cycle u, v, X, ¥,¢,d,a,b,u has length 8.
T 4 o

You may now tiy the following excrcises.

23)  Write down the vertex set V and edge-set B of each graph in Examples
1), 2) and 3). Name Lhese graphs il you can.

4)  Give an example, different from the one given above for each of the
parts (a) - (c) in Example 5.

¥e now take up come mmore definitious,

Yefinition: Two graphs G = (VG E{G)) and H = (V{ID), EB{(H)) arc
isjoint il they have 1o verlex in common, ji.c., V(G)NV(H) = ¢.

or exainple, the two graphs of Butane and Isobutane shown in Fig. 9 are
isjoint graphs.

fote that when two graphs arc disjeint then their edges arc also disjoint. If |
ot, then there would be an edge ¢ in both G and H and then the ends of ¢ _ :
ould also be in both G and H. . R o r

11
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Definition: The union of two graphs G and H is graph G, with vertex set
consisting of all those vertices which are in either G or I {or both).and with
edge set consisting of all those edges which are in either G or H (or both)
symbolically.

V(GUH) = V(G)UV(H)

E(GUH) = E(G)UE(N)

For example, Fig.12 gives the two graphs G, H and their union G U H.

X3
X, X,
G
_ Fig.12
Example 6: Consider the following graph.
X, X3 ) i _ )
¥ ./\ Ve
Xt X Y, - oY
Xg .- i Ye
- Fig.13 R
Clearly it is the union of Kg.and Cs. )

Example 7: Consider the following graph.

Fig.14

Clearly it is the union of three graphs.
* £ &



Example 8: The following graph is the union of ﬁve_grapﬂs. One of them Basic Propertics of

is just an isolated point. Gragrhs
° i i . i E ’ > J;
Fig.15
¥ %k x

Thus, we can go on taking unions of many graphs.

You may also come across situations where the two graphs have same set of
vertices but there edge set are disjoint. Do we call such graphs by any
special name? Let us consider the following definition.

Definition : Let @ = (V,E) be a (p, q)-graph. By the complement G, we
mean the graph with V(G) = V(G) and E(G) = {xy :xy ¢ E(G)).

Clearly, G is a (P, §)-graph where q = {number of pairs$ of elements of
Vi-q Y

Since in a set -V with p elements there can be C(p,2) = E(l’z"—ll such pairs of
elements, § = P—(P—;—l‘l-— q. :

Example 9: Fig. 16 shows Cs and its complement.

X

X5

Fig.16
* ok x

Example 10: Consider the grapii shown in Fig17(a). Its complement
breaks into two disjeint graphs.

Fig.17

Ine is K3 and the other is Ky (sce Fig.17(L)).
’ LN ¥

Yotice that in Example 9, G isa (5,5} graph and G has § edges. In 13
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Example 10, G is a (7,12) graph and G has 9 edges. Do you see any relation
between the vertices of G and edges of G? You may try the following
exercises and find out the answer.

E5) Three graphs G, G, and Gj are listed below

G; = ({ul,l.lg,ll:;,ll,|,l15,llﬁ},{lllllz,lllll5,111UG,llzL13,UQU;’,.
uzuy, Uglg})
Gy = {({uy,ua, uz, us, us}, {urug, uiuy, wpug, uyug, usus.

Uzls, U3Ug, Ugug})
G3 = ({u|.|u2!u3lu-1|u5:llﬁ}|{UI“?!ulu-llulu5yuzu3|u3u-1-

u3ug, Usug}}
Find 61,§2and63 -

E6) I1fG isa (p,q) graph then how many edges can G have?

Let us go back to the case of electric network. When a mechanic works on
such a network, for his own safety it is best for him to know all the gadgets
connected to a single point. Again, for using the public transport network
cflectively, it is necessary to know the places connected to the starting point.
This stérting point also changes from person to person. That means for
clticien. use of such a system it is best to keep in mind the places one can

. reach from any given point. We translate this problem in graph theory

language.

10.3 REGULAR GRAPHS

You may recall that in the heginning we defined two vertices of a graph G to
be adjacent if they are joined by an edge. Such vertices are also called
neighbours. The set of all neighbours of a fixed vertex x of G is is called the
neighbourhood set of x. Formally, we have the foliowing delinition.

Definition : Let G = (V,E) be a (p,q)-graph. For a vertex x € V, by the
neighbouritood Ng(x) of x in G, we mean theset {y € Vixy e L}, that
15, the set, of all vertices adjacent to the vertex x. A vertex y € Ng(x) 1s
called 2 neighbour of x in G.

Since our graplis are simple, there is a anc-one correspondence between

NG (x) and the set of all edges of G incident with the vertex x. By the
degree dg{x) of the vertex x in G, we meuan the number of cdges Incidant
with a verlex in G. Clearly dg(x) = INg(x)}| where INc:(x}] denotes the
number ofelements of the set Ng(x). Also since in a {p.q) graph the
aximuin rumber of edges incident with vertex x can be (p— 1), we bave
0 <dg(x) < (p—1) for every vertex.x in G Whencver theve is no danger of
confusion, we wilksimply write d(x) instead of de(x). Also a vertéx x of o
graph Gois_called an even vertex'if dg(x) is even, vtherwise it is called an
odd vertex. Now let us look at Lhe following example.

Bxample 11: Cousider the graph G sihown in Pig, 13, First cousider the
vertex xy. Clenrly, thien edges are incident with it aned d{x)} = 3. Likewise
you ity ohserve that

dix2} = 4. d{xy) = 5.d{x4) = 6 and d{x;) =7

We can also write the above observations as d(x;) =i+2forl <i1<5.



¥y

Yis

Yia

Yz

Y12

Fig.18

In the same manner we can write diyj)=1for1 <j<15

* ¥ ¥

You may now try the following exercises.

E7) Write down degrees of all the vertices in the Examples 6 to 10.

E8) If G isa (p,q)-graph and x is a vertex in G, show that degree of x in G
isp—1—dg(x).

Note that in Example 11

dlx1) +d(xz) + ... +d(xs) + d{y1) + ... + d(yys)
= 40
= 2x%20
= 2 (rumber of edges in G)

Same thing you would notice in Examples 6 to 10 which you have Jjust solved
in B7). This is no coincidence. This follows from the following theorem:

Theorem 1: If G is a (P, a)-graph with V(G) = {vy, ... v} oand if
P

i =dglvi), 1 < < p. then 2q = Zdi’ that is, the sum of the degrees of
verlices of G is cven, or. in any grlg];h, the sum of all vertex-degree is equal
to twice the number of eclges, .

Prool: Counsider the set § = {(x,¢) : x € V(G),e € B{G), x is incident on e}.
Choose a vertex v, € V. Thix can be done in p ways. Now since d; = d(v;)
there are precisely o, edpes incident with this vertex-v;. Thase edges pive o,
clenents of the set S, Adding over all the vertices of G, we el

A
51 =

e

ef,. f\]tl

Now choose an edge e in 15(G), This can be done in a ways. This edpe has

' . - —
precisely o end vertions and they give Lwo elements of S. Sumiing over
overy edge e C LG we gen

IS| =.2q. ' T N @

Basic Properties of
) Graphs
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This 15 because every edge is counted twice ence for cach veriex 1t contains.
Equating (1) and (2} w= get the required result,

Thus we can say that sum of the degrees of all the vertices of any graph is
even. This result is 21z known as *Hand Shaking Lemuna’, Let us check il in
the case of the following example.

Example 12: Consider the following graph:

Ysa

8y
Fig.19

Clearly each x;, 1 <1 < 3. is an even vertox each having degree <. All the
remaining vertices yi. 1 < i < 0 are odd vertices each having degree 3. What
is the sum of the degrees of all the vertices? You may check that : is 30.

So far, m the discussion. vou must have noticed that for a simpla

{p,q)-graph G the edge set E(G) is a subset of the set of all subsets of size 2

. . : - W= 1)
of clements of V(G). This means q < l—\-[g—’- But then you may wounder

that is it always possible to go the other way round? That is, for any pair of
: Wp — 13 :
m'_z._’, is it always possible ta find a

(p-q)-graph? - _ - -

positive integers {p,q) with q <

The answer to this question is given by Theorem 1. It gives us a necessary
condition under which 2ny (p,q) graph exists. It helps us to see that there
does not, always exist 2 graph wirh vertices having given degrees. Supposing
you are dsked to

Construct a graph on 17 vertices with 2 of them having degree 1, three having

degree 3. end tite PRI Senn f.g{;‘.-_-gnr; denrea 14},

Can you dn it No. This is Lecruse hiere vhe condition of Theorati-1 is not
fulfilled. The sum of degrees of all vertices is
F+1+3+3+3+10+10+10+ 10 + 104 10 + 10 = 81, which is not cven.

Thoerem-1 can be used wo oblain anotiwr resuit whicl we discuss nowe:.

Corollary: Any graph has even number of odd vertices.

Proof: Let G bea {p,gj—uraph and lew {x,.. .. cXe ) be the set of 211 adedl
vertices and [y, ... cxy b obe the sei of Al even vertiees of G Lo
delx) =2c +13 <i < anddale) =2r 0w 1 i Then

1*

Z2q = > dixg) sives
. FA)

1
1 i
Y
Dy = - {
.2‘.1 = Z(?(.l ! 1} ? \11_}
i L1
= 2fci+c 4 €+t + 2(riay 3 1 l'j,_}



Thus, t =29 — 2(c; +... + ¢} — 2(ree1 + ... + rp). Which shows that t is
even. That is, there are even number of odd vertices.

We now give another interesting result which foliows from here.

Corollary: At any party, the number of people who have shaken the hands
of an odd number of people is even,

Example 13: Consider K,o. All the vertices have degree 9. This means all
the ten vertices are odd vertices. On the other hand in K,; all the vertices
have degree 10, that is, all the eleven vertices are even vertices.

x ¥ ¥

In Example 12 you may observe that the number of even vertices is odd.
That does not mean this happens in every graph. The Graph Cyq has 10
vertices and all of them have degree 2, that is, C;p has even number of ‘even
vertices’.

We now define the mirimum and maximum vertex degree of a graph G.

Definition : If G = (V,E) is a (p,q)— graph then the integers

6(G) = min {dg(x) : x € V(G)} is called the minimum vertex degree of

G and the integer A(G) = max {dg(x) : x € V(G)} is called the maximum
vertex degree of G.

We can in fact number the vertices as V(G) = {v, yVp} with

di = d(v;},1 <i < psuch that d; > dy > 2 dp. h:s is called the degree
sequence of the graph G.

For instance, the degree sequence of the graph G in Example 12 is 4,4,4,
3,3,3,3,3,3.
Il

t -
And now some exercises for you.

ES) Write down 6(G) and A(G) for all the graphs in Examples 1 to 3 and
9, 11,12,

EI0) Each of the lollowing parts gives a list of non- negative integers: Give
an cxample each of a graph having that degree sequence ar : argue that
no such graph exists.

{a) (3,2,2.2,1) {b) (3,2,2.2,1
(c) {(4,3,2.1.0) (d) (4,4,3.3.2,

31}

2) (e) (5.5,5.4.4.3,3)

E11) Let G be a (p,q) graph all of whose vertices have degree k or k + 1. If
G has py > 0 vertices of degree k aud pgay vertices of degree k + 1,

thew py = (k + 1)p — 2q.

In Fig. 9if you see Lhe Lwo graphs of butane and isobulane tlicy look
difierent. However, they have same degree sequence viz.,

It may also happen [or some grapls that Lthey have a constant degree
sequence. That as, cach of their vertices has the same degree. For example, if
you look al C; and its complement, you would notice that

d{x) — 2,1 <15 Thus, the degree sequence of Gy and its complement s
2,2.2,2,2, that is, it is a constant 2. Such praphs are very special. We defiue
thein as follows:

Definition: A graph G is said to be regular with the degree of regularity r
if dg(x) = r for every vertex x € V(G). In this case we often say that G is an

Basic Properties of |
Graphs

7
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r—regular graph. Clearly 0 <r < (p~1).

The graphs I, C,,, are regular with the degree of regularity (n — 1) and 2,
respectively.

Of particular importance are the cubic graphs which are regular craphs of
degree three and about which you shall be studying in the next 1.:::t. \Welj

known example of a cubic graph is the Petersen graph. The two drawings
of the Petersen graph are shown in Fig.20.

Fig.20

Note that it is a (10,15) graph. Let us now consider the following example
of a regular graph.

Example I4: Hypercube Q,.: Let the vertex set consist of all n—tuples
with entries 0.1 only. The edge set is given by o

E(Qu)={ab: a and b differ exactly at onc co-ordinate).

Here; by & we mean an n—tuple (a1,... .2,), where a; = 0 or L, for
1 <i<n
’ ’ (L.LL)
0 1)e —o {1 I)
(0,1,1) (1.0.1)
|- T |
_ ' ©0.1.0) e ~= (1.0.0)
©. 1) _&(1.0)
{0,0.0)
(a) Fig.21 ()
Any vertex & 1s adjaceut Lo precisely 1 other vertices, For example
(N.0,... .0} is acjacent to (1,00, ... 0. (0,100, 0), ... . (0.,0.. 1)

Henee the hypercube Qs n--regular.

i ({1.1,1)@\\___.________ — o —e (i)

| (0,10 : : )
- %g(___)_‘_(_]__.],ﬂg; N _
| | |
| ,
| e —— - e

: } /_,,/ ©,0.0) (L0}

oy o< — — \\-0(1.0,1)

Fig.22



Fig. 21(a) shows the graph of Q, whereas Fig.21(b) and Fig.22 both show
the graph of Q3. You may check that n-regular hypercube Qn has 2" vertices
and n2" ! edges.

&4 %

If G is an r—regular graph on p vertices, then by Theorem 1. 2g=rxp.
Thus 2 divides the product P X r. This means at least one of por r is even.
This makes us ask the [ollowing question: Given a pair of integers
P,n0<r<(p—1), where p xris cven, can we always construct an
r—regular graph on p verlices? To Bet an answer to this question let us
consider the following theorem,

Theorem 2: Given a pair of integers p,r, where at least one of them is even
and 0 < r < (p — 1), there always exists a regular graph on p vertices and
with degree of regularity r.

Proof : The proof is constructive, i.e., we actually construct the graphs of
the required degree. There are two cases:

Case 1: r is even. Write r = 2s, where s is some integer. Now construct a
graph G as follows: V(G) = {v1,-..,vp}. Place them in circular tanner as
shown in Fig.23. Join eacl vi by an edge to vi+j for every '
1€i<p-s,1<j<s. In addition join vertices in the following manner:

. . - /

(1) Join the vertex Vp-s+1 to the vertices Vp—s+42, Vpos+3,--. , V].

(ii) Join the vertex Vp-st+2 to the vertices Vo—s+3) Yposidy--. , Vo,

(iii} Join the vertex vp to the vertices vy, vy, ... ) Vs.

ig.23

Note thal as there are Dovertioes vy vy VoS0 ehat i (1) and {11) above ay
SOON as any of the subseript o .- g1 0, P83, np—s+4, - cle. for ay
value of s exceeds P the exele is repented from 1,2,--. . That is, the
correspouding vertices are Vi-Va, oo oele. You can check that. this wranh iy

Voregular. Although i s difiienlt Lo check it but the examples following Lhis
theorem would help you in doing so. :

Case 2: r is odd. Then P must be even. Write p = 2. Since ¢ is odd,

{r—1) is even. Using Case |, we can construct a graph on vertices
{vi,... v, } which is (r — Dregular. (sce Fig.24) -

Basic Properties of
Graphs
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e -~
S -
S --”
"--.._l _—
V2+n

Vlvn
Fig.24

- -2
ow (51  (0=2) _p
add edges vi vigq, 1 <i<n
graph is r—regular.
We now illustrate the two cases with the help of the following exa:nples.

= n (say). So, without fear of repeiition we can
. Since one new edge is added at every vertex, the

Example 15: Suppose P =12,1r = 4. Take twelve vertices {x1,... WXy},
Place them in a circular manner as shown in Fig,25,

X
Xpp

Fig.25

Le this case s = ¢/2 = 2. Join X o Xy by an edge for every 1< 8 2 1] Jaoin
2 10 2y also by wr edge. Now wll the verticos hivve Swequited degree 2 Now, -
Join cachl x5 Lo Xpp0 for every 1< S0 Fhuadis” join %, to x, IR {TE ST PR
You cen see cleariy that the resulting graph je . —rogular. -

- LA S | - -
- = l' . i
Example 16: Suppose p = |2, r = 9.-Here we unte tha 2 5ol arn inteper.

o r =1y . X : . o :
However, T manteger. Ilence the construction of Bxample 13 can he

repeated for 12 vertices and regularity {r -- 1). Take the graph constructed o



Example 15. Now join each x; to xi4g for every 1 < i < 6. Here L=n=6. Basic Properties of
Graphs.

Again it is easy to see that the resulting graph is 5—regular (see Fig.26).
_ ok %

Example 17: Let us now construct 6—regular and 7—regular graphs on 12
vertices. Let us do this step by step. Let us first start with 6-—regular graph.
Here s = 3. Iig.27 shows the 12 vertices arranged in a circular manner,
where each of vy, vy,- -, vg is joined to the next three vertices in an
ascending manner. That is, v| is joined to vq, v3, v4. v2 i5 joined to v3,vq, vs.
vy is joined to vg4, vs, vg etc.

Y12

You may notice that at this stage divy) =3, d{va) =4, d(vy) = 5, d{z,) = ¢
for 4 <1< 9d(vig) =3, d(vy1) =2 and d{vpp) = 1.
Now, Fig?S acds the l'eII'lflilliIlg Ctlgcs {\'!g Vi, Yip Ve, Vo V) }.‘
{vivizovn vy, v val, {va vy v va, vie va) _
With the addition of these edges the degree of each of the vertices v, Lo vyo
“becomes 6. This gives G-regular graph on 12 vertices (sce Fig.28).
' - 21
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Fig.28

Further, Fig.29 shows that adding the edaes Vivigg, 1 <1 <6, gives a
7—regular graph on 12 vertices.

You may now lest your knowledge of the construction of regular graphs Ly

doing the following L\Llusc

212) Construct 5,6 aned 7 regular griphs on 10 vertices.

We cannol always “see’ the Kr
iy ediffer in the w ay their ve
ity are representoed poeomelri

aphs and say that they ave ‘diflegent Thie

tLices anel edges are Inbollod op ody in il w

funtures-ar may have some rescinblinee. This resembliice has o spocil

nanie. We shall now deline th

You have ioliced in Example’

15 formally.

9 that the complement of C; s again a copy

Cs. We can make things more precise.

Oy
cally, B, stili they maw have some COnLnoGn

of



Let us redraw the two graphs as shown in Fig.30.

X, X

Fig.30

' We can define a map f: V(Cs) — V(Cs) as follows:
£(x1} = xp, f{x2) = x3,[(x3) = xs, f(x4) = x2, f(x5) = x4. What do we observe?
Whenever x; x; € E(Cs), {(x;) f(x;) € E{Cs). In other words the graph
“structure is preserved by the map {. Let us consider one more example.

Example 18: Consider following two graphs G and H as shown in Fig.31.

XI xZ x].

A\

Y ¥a ¥a ¥

Fig.31

Define @ map f : V(G) — V(H) as loliows:

({x1}) = a,f(x2) = b, [{x;) = c, [{y1) = d,f{y2) = ¢, [{y3) = g, f{ys} = h. You
may observe that uv € B(G) if and only if f(u) f(v) € B(H). Many
properties of a verlex u € V(G). are shared by its image in V(H). For
example one can check that dg{u) = dy([(u)) for every u € V(G).

LR 4

Such graphs G and H are 1somorphic. There is a one-onc correspondence
between the vertices of G and H. You may also notice that the munber of
edges joining any two vertices of G ig cqual Lo the number of edges joining
the corresponding vertices of H. 1o other words, two graphs G and H are
somorphic if there is a onc-one correspondenee hetwenn V(G and V{H) that
preserves adjacencies and non-adjacencies. The Lo grapits shown in Fig.3l
are 1somorphic nnder thie correspondence

Npeaxy 5 bhoxaerey @ dys 9o yy o ys o h

o1 Fa v

........

This leads us to the fllowing definition:

Definition : Let G = (V(G), L(G)), T = (V{H),E(I1)} be two graphs. By
an isomorphism [ [rom the graph G to the graph H, we mean-a map
:V{G) — V(H) such that - : -

(1) [is both one-one and onto. :

Basic Properties of
Graphs
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(2) xy € E(G) il and only if {(x){(y) € E(H).
In this case we say that G and H are isomorphic. Otherwise they are called
non-isomorphic.

In order to show that two graphs arc isomorphic, it js cnough to produce one
isomorphism from one of them to the other. However, given two graphs, it is
not easy to show thrt there does not exits any isomorphisin between them.
Then how do we go about showing that two riven graphs are not

isomorphic? The following six properties help us in this task. If two graphs
are isomorphic each of these properties must be satisfied. Thus 1o show that
two graphs are not isomorphic it is enough to show that any one of these
properties does not hold. We shall now state them here,

Properties: Let [ be an isomorphism from a grph G to a graph H. Then
{ollowing holds:

1) IfGisa(p,q)— graph then H is also a (p, q)—graph.

2) The inverse map f~! is an isomorphism from the graph H to the graph

G.

3) Il gis an isomorphism from the graph H to a graph K, then the
composite map gof is an isomorphism from the graph G to the graph [{,

4} [ induces a bijective map [ B(G} — E(I1), given by [{x y) = [(x) f(y).

3) TFor every x € V(G) a vertex y belongs to Ng(x) if and only if £(3)
belongs to Nyr(f(x})). Which means that dg(x) = dy(f(x)), for cvery
-x € V(G). Thus that the degree sequence of the graph G is same as the
degree sequeice of the graph H. ‘

6) If G has a set of vertices {x1,... yxn} such that x, x; aad xj x;.1 are in
E(G) for every 1 <i < (1 — 1), then the vertices {€(x1),... ,f(xa)} in
V{H) are such that [(x,) [(x;) as well as {(x;) [{xis1) are edges in E(H)
for every 1 <i < (n - 1). Thus, for every positive imeger n > 3. the
number of copics of Cy, in G is equal to the number copies of C., in H.

Let us now consider the following examples where we have used these

properties lo.show non-isomorphism of the wo rraphs.

'Exam-ple 19: Ceonsider the.two graphs as shown i Fig.32.

Py ~0 ™
- A
J N
/ - - ¢ \
! = L
f G H j
e y ©
AN *, /
~ . //
. o R ,./b
\““-—-hh._____é_// e g
Flig.32
Both we (8,8)— graphs and have a copy ol Caimside then. Ilowever they
are not isoiorphic. This can he seen easily by writing, dowa their degren

seqnences. The degree sequence of the graph G ix4.2,2,2.2,2, 1. 1 and thai
of the graph H is 3,3,2,2,2,2,1,1.

I or o

Example 20: Consider the following two graphs G and 1. _



X3
X X
X, X x Xg
Xg X
Xy
G

Fig.33

Both are (8, 12}~graphs and have a copy of Cg inside them. Moreover botn
have degree sequence 3,3,3,3,3,3,3,3. They are still not jsomorphic. This
can be seen by observing that the graph G has no copy of a triangle inside it
and the graph H has two triangles {x1,x2,xs} and {x4, x5,%¢}. (see Fig.33)

* k& *

Example 21: Consider the following two graphs G and H as shown in Fig.
34.

X3 Xs

Fig.34

Both are (6, 6)—graphs having 3,3,2,2,1,1 as their degree sequence.
However, they are not isomorphic. T the graph G the two vertices xi, x5
having degree 3 are adjacent. Under any isomorphism (if it exists) they
should be mapped to two adjacent vertices of degrees 3. We observe that in
the graph H the two vertices of degrees 3 are not adjacent.

L% 2% 3

Notice that the two graphs shown in Fig.9, corresponding to butane and
1sobutane are not isomorphic. Unlike isobutane, no carbon atom is attached
to ail the other carbon atoms of butane.

And now the following exercises for you Lo Lry.

E13) Draw au least 6 non-isomorphic graphs on four vertices.

Bid) A graph G is said to be self complementary if it is isomorphic to its
complement G. Show that for a self complementary {p,q)—graph G
cither p or (p — 1) is divisible by 4.

It is often the case that a graph under study is contained within some larger
graph also being investigated. When we talk of an electric circuit, it is often
described in terms of various sub-circuits. Transport in a-country is always

Basic Properties of
CGraphs
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Graph Theory divided into various scctions, for example, the railway transport in India is
divided into Central railway, Western railway, ...etc. That is, whenever we

study any system, it is important to study its subsystems. Likewise here in .
the next section we sty subgraphs.

10.4 SUBGRAPHS.

We shall now formall: define a subgraph of a given graph and study various

types of subgraphs. But before we do that let us look at the following
example.

Example 22: Consider the graph G = (V(G),E(G)) as shown in Fig.35.

Xy X4 X5 x
—— » L
L 2 -
X - s Xg
- ) ) G
- Fig.35

What if we just.tak.c a part of this graph G? Is this a graph? Yes. Consider
the following, '

LCtZY(Gl) = {)leXQ,)Cg.}:4},E-(GI) = [Xi Xig1:1 € i < 3} U{xdxl}
You will note that G; s isomorphic to C;.

IEV(Ga) = {xg,xe}, E{G2) = {xs xq}.

then Go is isomo: phic to Ky, Also the graph

- ~ WGz} = {xa,..- .,}:15},E(G3}_ = {x5 xg}U{xi Nip1 19 €1 < 14}

s somorphic to Cq. {ses Fig.36).

X, « X
e 9 As o—
1 - i
; X / \\
‘ T : ® Xi
| - \
G : Y
! | 5 Gy, % \
o o— @ i G, } _
I ! ’
l ! X, @ eX;
r R J'lr
GGE—— o e X N
1 . ,
. i}
o ..o
- R T X
Fig.36
4y

Note that all these graphs have one thing in common. Their veries sels nre
subsets of V(G} and edge sets arce subsets of B(G). In this sense, «ll these
graphs are ‘subgraphs’ of the graph G. Formally, we have the following

. definition. - - h -
26 _ o e



Definition 12: Let G = (V(G),E(G)) be a graph. A subgraph H of the
graph G is a graph, such that every vertex of H is a vertex of G, and every
edge of H is an edge of G also. That-is, V(H) C V(G) and E(H) C E(G).

Morcover, if H is a subgraph of a graph G, such that V(H) = V(G) and

E(H) C E(G), that is, H and G have exactly the same vértex set then H is
called 2 spanning subgraph of G.

Example 23: In Example 22, the graph H, with
V(H) = V(Ga), E(H) = E(G3) | J{xs x12}

is not a subgraphs of the graph G. (why?). Clearly edge xgx;2 is not in E(G).

¥ ¥ %
Example 24: Consider G = K4 on four vertices xy,x9,X;,%4 as shown in
IMig.37. ‘

Xl X3 X

(‘J"_} ) G-’i
Fig.37

This has [ollowing three copies G1,Ge and Gj of C4 given by

V(Gy) = V(G), and
B{Gy) =[xy 30,50 5, %9 ¥y X1}
VIG2) = VIGY and
(G2} = {x) %o, wg, x4 23, 53 Xy}
V(Gs) = V(G) and
B(Gz) = {x1 x3,x3 X2, X2 X4, X4 ¥}

Thus, in this case Gy, Gy and Gy are spauning subgraphs of the craph G.

¥ % £

Example 25: Consider the Petersen graph G, with the vertex sct

Basic Properties of
Graplia



Graph Theory {xi: 1 <i<8}U{yj:1<1<5}.(see Fig. 33).

Fig.38

COIlSid(..l' the graph G,, where

V(Gi) = {yj: 1 £j <5}, E(G1) = {y1¥3.¥3¥s- ¥sY2, Yoya}.

Here every cdge of G; is an edge in G. On the other hand y. y, is an edge in
G not in G). Thus G, is a subgraph of G.

Now consider the graph Gy as shown below in Fig.39 given by .

X
™
aY
. X - 2
_- Y1
/
- /
;
S o
X? Xy
G,
Fig.39
V(Ga) = {X!-x?:xfh}-'-‘nxﬁ-}'l;}':l}‘ )
E(G2) = {x1 y1,%1 X2,Xy Xp, X9 Xa,X3 X4, X4 X5, X1 Y3, ¥1 ¥3)

Clearly Gz is a subgraph of the graph G. Further, you inay note that
whenever two ver tices of G: are Joined by an edge in G, thal edge belongs Lo
E(G).

L

This peculiarity of the subgraph Go lead o the_following definition: -

Definition: Let G b graph and let $ < V{CG). By the vertex_induced
subgraph of the graph () on-the set S, we mean the subaraph with vertex
set S and the edge ser consisting of 4hose vdees of G which are joining the

- vertices of 8. That is. (=ri;;r-,},:(:t. ={xy:ixZLv xeS8,y €8, xy e BG)}. We
denote Uds subgraph by <8 >¢ L is the subgraph of G induced by. S.
The two points of S are adjacenl in < 8 >¢ il and onily if the}, are
adjacent m G.

The subfrmph Gy in Exdmplc 25 is VEIrLex mduf_{.d ")ll'lljjl'd.l)ll of the graph

28 - G_, whercas bubgraph Gy is not.



- Note that every graph G is a subgraph of itself, i.e. G is a subgraph of G.
Also, for any v € V(G), {v} is a subgraph of G. Further, note that for a
vertex v € V(G), by G — v we mean the subgraph < V(G) — {v} >¢, which
means a subgraph of G consisting of all points of G except v and all lines .
incident with v. For a subset § of V(G) the subgraph < V(G}-S>gis
often written as G — S. '

We now illustrate various types of subgraphs.

Example 26:, Consider the graph G as shown in Fig.40 (a). You may note
the following subgraphs of the graph G here.

Fig.40(b) shows a subgraph H,

Fig.40 (c) gives a vertex induted subgraph H, with V(H,) = V(H,).

Fig. 40(d) shows Hy = G — v, and

FFig. 40(e) gives the spanning subgraph H,.

Basic Properticg of
Graphs’
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Example 27: Consider the graph G and a subgraph H of G zs in Fig.41.

Fig.41

G is a regular graph with degree of regularity 4. Bul the subgraph H is not
regular. However, you may note that V(H} = V(G). Here

J(H) =1 <4 =46(G) = A(G) = A(H). Thus. it is clear {rom thiz example
that a subgraph of a regular graph may or may not be regnlar-.

- S o= %

" Now, a few exercises for you.

[215) Show that for a subgraph H o_l'é:. gr.a.ph G,A(H) € A(G].

E16) Give an-cxamp]c of.a subgraplt H of a graph G with $(G: < §(H) and
A(H) < A(G). - - - ' '

E17) Give an example of a subgraph H of 2 graplh G with (R < 8{QG).

E18) Let G be a graph with n vertices and m cclgeé, and let v be a vertex of

-

G oFdegree k. How many vertices and edges have G — +7

We now end Lhis it by giving a summacy of whit we have covered here,

10.5 SUMMARY.. -

1) A simple graph G-consists of a finite nonempty set V of poines together
with a prescribed set B oof 2 clement subests of V.

2} The complete graplt I, is a graph with oovertices such rhar cvery vertex
is joined to every olhier vertex by an edue.
AY The path Pyoas a reaph ononovernioes Js o0 L0 ok, b s baeh any Lo
I N i [ 10 A 1] .
consceutive odmes are adjacent and where wo cdiee poed noo verex s ore-

puatad.

H) Cyele is o cireuit 1o which Lhe onty tepented vertex sothe diest vertex
whicll being the samne as the Iast veries.

5) Complemeut of the (p,q) graph G is & {p, q) graph G where
q = number of pairs of elements-of V — (.-



6} The number of edges incident with a vertex in a graph G gives the degree
of the vertex and a graph having the same.degree of all its vertices is
regular. Also in any graph the sum of the degrees of all its vertices is
even.

7) There always exist. an r regular graph on p vertices where p, r are integers
and at least one ol themn is cven.

8) For agraph G = (V((3), E(G)), a graph H = (V(H), E(H)) is a subgraph
of G whenever V{H) C" V{G) and E(H) C E(G).

9) The subgraphs of a regular graph may or may not be regular.

10.6 SOLUTIONS / ANSWERS.

E1)

X oY X &- Y X

Fig.42

E2)

Fig.43

E3) Example 1. V = {x,x2},E = {x;x2} Path, complete graph.
Example 2. V = {x,,x2.xa, x4}, E = {x1x9, xax3, X334, x4x1 } cycle
Example 3.V = {xy,x0,x3. 50}, B = {x)x9, x1%3, x1%4}

124) ailhe walk u,vobe, vy, uov is not a traill
LY The trail wib.anu, v s nol a path.
e pahyu oo boeox v hias lengeh 5
A The cireuit u, v, v, by x, v, u 15 not a cycle.
yers Lt 1 v i
¢jThe cvcle o, b, o, d, ¢, x, v, y, u hes lengih 8.

[£5) E(g} = {ujuy, ujuyg, ugug, Uzlg, Uzls, ualis, Uylg, Uslg ) -
B(G2) = {uauz, usus}
E(G3) = {ujus, uiug, ugug, uguy, ugug, uzus, Usus, uqug. }

Basic Properties of
Graphs
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E5) G can have B2 _ ¢ odpes.

ET) Example 6, d(x;) =4,1 <i<5,d{y;})=21<i<T.
Example 9, d(x;) =2,1 €i < 5.
Similarly do others.

E8) dglx) INg(x)|
[{x € V(G) : xy ¢ E(G)}]
= [V(G) —1=Ng(x)
= p-1-dg(x).
E9) (1) 1,1. (9} 2,2
(2) 2,2 (11} 1,7
(3) 1,3. 12) 3,4

EI0) b) Graph has 3 vertices of odd degree, contradiction to corollary-1 of
Theorem 1,

e) Sum of degree of all vertices of a graph is odd contradiction to
theorem 1,

El1) kpk + (k + 1)pk+1 = 2q (Using Theorem 1)

Also, px +px+1 = p
Therefore, kpy + (k+I){p—px) = 2q
orpr = (k+1)p—2q

E12) Here p = 10,r = 5. So 5! is an integer. Take 10 vertices
{x1,%2,..2 ,xj0}. Join x; to xjj; for 1 <i < 9. Join x1g to x;. Now all
the vertices have acquired degree ';—l =2 Joinxjtoxjypor 1 <j <8,
Join xg to x; aud x14 to x3. We now have 4 regular graph.

Here £ =n=5.
Thus to obtain 5 regular graph join
x; to Xj45 for 1 <1< 5 (see Fig. 44).

When r=v,5 =-3. Arrange 10 vertices in a cheular mnanner. Join cach
of the vertices vy, vo,...", vy to the next 3 vertices in an ascending
mahnt_:r. f‘_lSO.&dd the (’.dgCS {"8"9,"8[01“'8"1}: _{Vg\-’m,\-’gvl,_\'g_\-'g},



{vi0vi.vigve, vigvs}). You get 6-regular graph as shown in Fig.45.

Fig.45

In Fig.45 if you add the edge vivi1s,1 <i < 5. You get a 7-regular
graph on 10 vertices.

El3) p=4 then q = 4., = 6. So we want {4,9)-graph, with 0 < q < 6.We are
giving here in Fig. 46 all possible non-isomorphic graphs on four vertices.

] [ ] *—

¢ o ° —e m
L | ® a L *¢—— ¢
Q=2

q=3

S T

% ] ! N
o N A SV B VN
q=3 q=1 q=4 =3 q=6

Fig.46

E14) Suppose G is a (p, q)—graph. Then
E(G) U E(G) = {the set of all pairs of vertices inV(G)}.

. _ Wp -1 .- -
Chus o 4 g = [*_(!_9‘— ) If the graph G ix seif complementary then

a =aq. Thus, p(p — L} = 2q 1 20 = 4q, that iy 4 divides p{p — 1}. Sinee
only one of poor (p— 1} is even, this means cither poor (5 — 1) s
divisible by 4!

E15) Let x € V{H) such that thii(x) = A1), Then, Ny{x} € Ng(x). Thus,
A(H) = [Nu(x)] < Ne(x)] € A(G).

E16)

' 8(G) = 1 <2=4().

AH) = 2<3=4(G)

Basic Properties of

Graphs
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E17) §(H) = 1 < 2 = §(G)

£18) G- = v will have (n — 1)

Fig 47

I"ig.48

vertices and m — k edges,



UNIT 11 SPECIAL GRAPHS
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11.1 INTRODUCTION. y

In the last unit you saw that graphs are often used to represent (that is,
model) communication or transportation networks and several other systems
such as representation of a molecule in a chemical compound and soon. In a

. transportation network, it is necessary to know which destinations are
connected by a direct route. For example, if air travel is-abolished then the
people without any seaport cannot go to any other country unless their
neighbours provide the initial road passage through their territory. When we
use a graph to model this situation, it is important that there be a way to
connect from any vertex to any other vertex. Such graphs are called
connected graphs. In Sec.2.2 we will define connected graphs and we will
show that any graph can be partitioned into connected graphs.

In Sec.2.3, we will familiarise you with a Lype of graph which is useful in
electronics and other areas. These graphs are called bipartite graphs. Such
graphs are very useful in studying real-life problems, for example in
modelting neural network.

In Sec. 2.3 we have considered another type of graphs called “Trees’. The
graphs which represent chemical compounds butane and isobutane are trees.
You are familiar with these graphs in Unit 10. Such graphs are of special
interest to chemists. They want to find out whether any tree correspond to a
chemical compound or not. Here we will show that a Lree has got several
interesting propertivs and these properties are used in studying some real-life
stlualions.

Objectives
After reading this unit, you should be able to
© distinguish between walks, paths, circuits and cycles in a graph
e identify
1} connected graphs
2) Dbipartite graphs

3) trees



11.2 CONNECTED GRAPHS

From Unit 10, you know that graphs are model for different rea! life
situations especially situations involving routes; the vertices represent towns
or junctions and each edge represents a road or some other form of
communication link. This kind of a picture is very heipful in understanding
connected graphs that we introduce in this section. To understand such
graphs we need some definitions which describe ways of “going from one
vertex to another”. We shall first give these definitions in the followi ing
subsection,

11.2.1 Paths, Circuits And Cycles

Consider the graph in Fig.1. Imagine yourself walking along its the edges,
going [rom vertex to vertex.

X4 x? xs

Xa

X ’ : -
Fig.1-

Suppose we want to start at the vertex xy and reach the vertex x,2. Is this
possible? One possible way is to start from vertex xy, walk along the edge -
X1xX2, reach xg, walk along the edge xzxa, reach x3, walk along x3x; reach xy,
continue this till we reach x;3. Suppose we dencte the edge joining ;- and
X a5 (xj_1x;). Then we can describe this walk in an alternating sequence of
vertices and edges as xi, (x)x2), X2, (x2x3), X3, (XaX4), X5, (X4X35), X5, (XsXg),
xg, (x6xg), xg, {x9x10), X10, (310 x11), x11, (X11%10), x10, {x10%13), X13,
(x13%12), X12. What does this repre.sent'? You recalt from Unit 10 that this
r{..pre.sents a walk. This is by no means the shortest way to reach xj- from

. We could have gone from x; Lo xs directly. Moreover, we passed through
thc vertex xyg twice. This is nol necessary. So Lhe above walk can be
described as a leisurely walk. 1f we have more time at our disposal, we can
trace and retrace mmore edges. l'or example, we could have gone from x5 to x5
‘and again back to xg. '

So what are we doing when choosing a walk? We are, in [act, choosing a
sequence whose elements are vertices and edges, alternately.

- Now we formally define a walk.
. hj

Definition: A walk in a graph G is a linile sequance

- W= {vg, e, v, om0, e, vi by where vg, vy, oL v are vertices and

’ C1, 0. ..., 0 are edpes Joimng the vertices vi_y and v,. 1 <§ < k. Note that
all the vis or 5 may nol he distinet. There may be repetition.

Iu this case we say that \V is a walk [rom vy to vy or W is a vg-vyi.
walk or W is a walk _]ommg vo and vi. The verlex vg is called thv
initial vertex and the verlex vy is ca]l(.(] the end vertex of the walk W.
The integer k which is the number of edges contained in a walk'is



called the length of the walk W and is denoted by 1(W). Since the vertices
as well as the edges can be repeated, the length can very well be greater than
the number of the edges of the graph G.

Note: As you have seen, in a walk the vertices as well as edges can be
repeated. So we cannot view this as a subgraph unless all the vertices as well
as the edges in the walk are distinet.

Let’s consider an example .

Example 1: Consider the graph on 5 vertices and 7 edges given in Fig. 2.
Find a x;-xs walk of length 8.

a
4

Xy

Fig.2
Solution: Consider the walk W = {x,,x, X2, X2, X3 X3, X3, X3 Xg,
X4; X4 X2,X2, X3 X5, X5, X5 X3,X3,X3 X4, X4, X4 X5,X5}. Then W is x1-x5 walk of
length 8. * % %

Another possible walk for the same graph could be
{xl,xlxg,xg,xgxq,x4,x4x3,x3,x3x5}. Its length is (W) =4,

Why don’t you try this exercise now?

Special Graphs

El} For the graph given in Fig.3, find a u-v walk of length 7.

Since we are considering only graphs which do not have multiple
edges or loops, we often write a walk W as {va, vy <o, Ye ). While
doing so we assume that two'consecutjve vertices in a walk are joined by an
edge in the graph and that edge is included in the walk. Tor example, the
walk corresponding to Fig.1 can be written as

W= {x1, x, X3, X4y X5, Xg, X9, X10, X1 1, X190, X13,X12}.

The concept, of a walk is Loo general for OuUr purposes, 50 we shall impose

some further restrictions. Belore that let ys consider the graph given in Fig.4.

u
- /f\\\\
NN
y 0<— fff \ R

_ X Figg W
- This is the complete graph I{;, Then

Fig.3
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W= {u,v,x,w,v,x, yhWi={uxw,v, X, ¥y} and Wy = {ux, %, v, ¥} are
three walks joining u and y having lengths 6, 5 and 4, respectively. Also note
that '

i) in the walk W, vertices v and x as well as the edpge v x are repeated,

i1) in the walk W1, only the vertex x is repeated but no edge is repeated
and

i) in the walk W, neither a vertex nor an edge is repeated.
The walks W, W, and W, corresponding to Fig.4, are given special names
according to the definition given below.

Definition: A walk is called a trajl if all the edges in it are distinet. For

example W, corresponding to Fig. 4 is a trail. Note that in a trail vertices
can be repeated. A walk W is called a path if all the vertjces are distinct.
For example W, corresponding to Fig. 4 is a path,

If all the vertices in a walk are distinct, can edges repeat? Remember that
an edge is traced only after tracing an end vertex, Therefore, z2li the edges of
are also distinct. Hence, a path is always a trail. What about the converse?
We leave it as an exercise for you. {seec E2) '

Next we shall give some more definitions.

Definitions: A walk u - v is closed if u = v and open if u # v.

A closed trail is called a circuit.

A circuit in which the only repcated vertex is the first vertex, this being the
same as the last vertex is called a cycle. ' -

Let us consider an cxample.

Example 2: Consider the following graph on 15 vertices.

X

Xs

X . x

3 .

10 I'ig.5™

In this-graph find the [otlowing:

i) @ closed walk which is not a circuit,

i) 2 circuit which is not a cycle,

iii} a eycle, -

Solution: We shall find (i), (1) and (iii) one by one.

i} There are several closed walks i1 it, which are not circuis,
W= {.\:;,x-,.\:;,:(H,xs,x“,xl-g..\:13,311.1,x;_=,.x||.xr,} is o clased walls Here
the vdge x, %y, is repeated. Henee it is not o eircuit,

i} Wy = {x;,,x5,>:;-,.\:5,.‘:‘r,.x-;.,xw,:-:,—,} s A ciredit. Here the vertex xr, 1§
repeated Lhree times. Thus, this iy not a cycle.

iil) W' = {xg,xn.x;,xs:xﬂ i« a cyele.

Try these exercises now.



Special Graplhs

E2} i) Is every trail a path? Give reasons for YOUr Answer.,
ii) If all edges are distinct, then all vertices are distinct. True or
false? Why?

E3) Isacycle a path? Give reasons for your answer.

E4) Let G = (V,E) be a graph where
V = {t,u,v,w,x,y,2} and
E = {tu, tv, tw, ux, vw, vy, uz, wx, wz,xy,xz}. In (i, find -
i)  a u-v trail that is not a path,
1i) a (u-u) circuit that is not a_cycle,

iii) a (v-v} cycle of minimum length.
E5) Let G be a graph such. that 6{G) 2 k. Use the priiaciple of induction to

to show that the graph G has a path of length k starting at any given
vertex. {Recall that §(G) = min {dg(x) : x € V(G)} .

-Now let us go back to the graph given in Fig. 4 again. In this graph
W = {u,v,x,w,v,x,y} is a walk. Suppose we omit the part {w,v} we get
P = {u,v,x,y}. You know that this object is a path, Ira the next theorem,
we will prove that this phenomenon is true in general.

Theorem 1: If W is a u-v walk joining two distinct ve:rtices u and v, then
there is a path joining u and v contained in the walk.

Proof: Let W be a u-v walk given by

W={u=up,e,uy, ,ex,ux = v}

We will find a path joiniug u and v contained in W, using; the principle of
mathematical induction.

Let p(k) denote the statement that if W is a u-v walk of liength k, then there
cxists a path joining u and v contained jn W.

[fk =1, then p(1) is true since every walk of length 1 is a prath.

Now we assume that Lhe statement p(k — 1} is true for all w alks of length
<k — 1. In other words, we assume Lhat given any x-y walk of length

<k — 1, there exists a path joining x and y contained in the - walk. Then we
want to show that the statement p(k) is true for W.

I[V is already a path, we are done. Otherwise, there is at leax it one vertex
which is repeated. Suppose j is the smallest integer such that th e vertex yuj is
repeated. Then Lhere is an integer > § such that u; = u,. Now consider the
walk W) obtained by removing Uie part {ejr1, - e}, that is

Wi ={u=ug,e, -, Up = Ueteegc- ey = v}, Clearly W, is ot u-v walk
colttalned in the walk W oand its length IEWL ) =k — +j <k since )<t
Hence, by induction, we can get A path I joining u and v containe d in W
Sipee I contained in the walk Wand Wiy contained in e wa 1k, the
path Pois contained i the widk WL This. pik} is true for W,

Therelore by induction, p{n} s true for wll 0. Hence the result

The Theorem above says that, if there is o walk joining two vert., ices in
a graph, then we can always find a path joining them.
Now in many of the practical situations it is very important 1o know w hich

of the vertices in a graph can be joined by a walk, end hence by a pat.h. For
instance, in the graph G, obtained by taking union of Kg and K (see Fig.6).

(3~
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A graph, whose cdge-set
is empty is called a nuil
graph.
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X, Xy,
Fig.6
You can see that there is no (xi-ys) walk. Hence there is no way we can
traverse from the vertex x; to the vertex ¥s.

So, in the internal structure of a graph it sometimes matters whether two
vertices are joined by a walk or not. This leads"us to the definition of a
connccted graph which we will introduce in the next subsection.

'11.2.2 Components

As you have noticed, almost all graphs we have discussed so far have been ‘in

one piece: The exceptions zce null graphs and the union of graphs each of

which is in one-picce. We can formalise this difference by intreducing the

concept of connectedness which we shall define in this sub-section. We are

not ‘only interested in the main graphs being connected, but we are also .
interested in Knowing the subgraphs wlhich are connected, which are known 5
as components. Here we shall discuss them in detail. -

Deﬁnition_: A graph G = (V,E) is called connected if for any two vertices
u,v € V, there exists a u-v walk in G. If G 15 not connected, then it is callad

- disconnected.

This means that in a connected grapl any two distinct vertices arc Joined by -
a walk, From Fig. ¢ You can see that both the graphs K, and K5 me -~ i
cdlmccted,_but their union is not connected since theee is no walk connecting
the vertices of Kg to the vertices of K5

Her~ are some exercises for you.

E6) Can a graph with one vertes be counected? Give reasons for your
answor.

E7)  Which of the graphs given in Pig.7 ave counceted?

2 b a b -
P9 o— ¢ 0 oy -
"\\ _ | i
TN s
b  _° a o— o o
< - d c o d - .
(@) : () {2}
' Fig.7- )

E8) Ifa graph G is connected . then all-its subgraphs are connected. 'P-r_ovc oo



or disprove this statement.

While solving E8, you would have realised that subgraphs of connected
graphs nced not be connected. But what about disconnected graphs? You
can see that some subgraphs of such graphs are connected. Let us discuss

them now,

Definition: Let G = (V,E) be a graph A subgraph H of G is called a

component.

i) if H is connected and it is not a subgraph of any other connected

subgraph of G; and °

ii)  whenever K is a connected subgraph of G, and H is contained in K, then

H =K.

Thus, a component is, in a sense, a ‘maximal’ connected subgraph of G. The
L ]

number of components of G is denoted by ¢(G).

* Now, consider the graph G given by Fig.6. You can see that g and K5 are

its components, and G is the union of these components.

Let us consider another example.

Example 3: Consider the graph G given by Fig.8. Find three components

of this graph.

Solution: The three conponents of G are G, Gy aud Gy (given in Fig.9(a),

(1) and ().

o —- -

o——————o- /
. \ / °< »

™~ N /
o ST

- . \\

! /,/, \‘\I‘ Nyl

Here also G s the disjoint union of components Gy, Gy and Gy,

You can now Lry this exercise.

19)  Consider the graph G givcn- Ly Fig_.l[j.- Then lind

Special Graphsa
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Fig.10
i)  all the connected subgraphs of G.

if) all the components of G. Are they disjoint? Give reasons for your -
answer.

E10) Consider the graph given in Fig.11. Show that the graph can be
written as the disjoint union of its components.

Yo
Yn Yo

(

Yiz e ¥s

Z12
Iy z; oz !
Zg . ]Zs
[ 1] ]
L J
L L 7, n
(@) | o ® | ©

Fig.11

In the case of Example 3 and E10, we saw that the graphs given in cach casc
can be written as a digjoint union of the corresponding.components. This
“phenomenon gcnc.allqcs to any graph as you will see in Lhe following
theorem. We shail only state the Lhcorem; the proof of which, though it is
" not very difficult, is omitted.

Theorem 2: Every grapk can be partitioned into coimnponcnts.

Now that we know cach graph can be partitioned into components, we shall
find somethmg more about components in a graph. One direction of interest
is to investigate bounds for the number of edges of a graph on n vertices with
a given_number of components. We shall now state a general result which
gives the required bound as a special case. - - - -
Theorem 3: £ G is a graph with n-vertices and iy h compaonents,
R U
n—k<n< -2—(u —k){n=k+1}

Note: Il G is connected, then k =1 and we get the bounds as
. L .
n—1.<n< '_Eufn -1)

Another approach '11se_d in the study ol connected graphs is to ask the
‘question ‘how connectéed is a connected graph?:.. One possible interpretation



vf this question is to ask how many edges or vertices must be removed from
the graph in order to disconnect it. We shall discuss this in the next
subsection.

11.2.3 Connectivity

Let us now consider the graph showing an electric circuit (see Fig.12). This
graph is connected. Suppose we break the wire connecting d and e in the
electric circuit. This means that in the graph showing the circuit, we are
actually removing an edge corresponding to the wire. Now when we break
this wire, the circuit becomes disconnected. This means that the removal of
that cdge in the graph makes the graph disconnected.

Fig.12

Note: Whenever we talk about removing an edge say xy, we mean,

removing only the connection between x and y, that is the edge
not the incident vertices x and y.

When we remove an edge uv fromn the graph, we denote the resulting graph
by G — uv,

We just saw a situation in which the removal one edge disconnects the graph.

But this is not always the case. For instance if we remove the edge ab in Fig.
12, the resulting graph is not disconnected. You can also see this situation in
the graph given in Fig. 13, which represents the roads connecting the

Fig.13

i lowns i a state, In rhis case Uhe removal of any single edge will not.

discontiiect Lhe grigh sinee there always exist alternate connections
These tvpes of edues lead us o the foliowing definttion

Definition An edae ¢ of a griph G s called a bridge in G if the removal of
¢ disconnects G.

For example; the edge uv in the grapl given by Fie 12, is a bridee.

Here arve some related exercises for you.

I511) Find the bridges in each of the graphs in [ig.14.

Specizl Graphs
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“(b)
Fig.14
2} Give an example of a graph without a bridge.
Let us consider another graph given by Fig.13.
. ) w X B
- ]'_
o
z
6— o

Fig.15

This Erra.pll is connecled. Here, il we rcmove the edge uv, Lhen the resuIng
" graph gets disconnected, the componanis being {v} aud G/ {vj. The
number of components of the resulling graph (G - uv}is 2. Cn th» other
-hand, if we-remove Lhe edge uw, then the graph does not get disconnected.
Nete that the edge uw belongs to Lhe cycic {u.w,x.u}, but Lhe ecge uv daes
not belontr to any such cvele. The cyvcle seems to provide an alternaie

connection between the vertices u and w.

In fact it follows from the definition of a bridge thal an cdﬁc ¢ of a graph
G is a bridge if and only if e dées not belong to auy cvcle of ;.

Wihite doing the exercise £, you wust have obtained a sraph which does

net have a bridge. We cannot disconnect sacit 2 graph by removing st one
edge: we need to remove more than one edae io disconnect it Thorede,

given @ graph, it is natural 1o wsk ‘what is the mintmum number o releey
whose removal disconnects G?7'. This number is given a spiecial nanie -
according Lo _Lhe following definition. .

Definition: The edge connectiv ity A{G) of & connected grapl G is the
qmallt.:,t nuinber of (,d“’(.“i whose removal disconnects Q.

For cngmple, the edge-conneclivily of Lhe graph given in-[ig. 14 4s 1. Jy fact



Lhe edge-connectivity of any graph with a bridge is 1. Special Graphs

Let us consider an example.

Example 4: T[ind the edge-connectivity of the graph G given in Fig.16.

u

Z
Fig.16

Solution: First note that this graph does not have any bridges. Therefore
its edge-connectivity is more than |. Now, if we remove the edges xz, zy,
then the graph gets disconnected. Similarly there are other sets of two edges

namely {xv,vu}, and {uw, wy}, whose removal disconnects G, Therefore we
get that the edge connectivity is 2.

7

* %

Why don't you Lry this exercise now?

E13) Find the edge connectivity of
1) the graph given in Fig.15;

i)  the following graphs.

d b ¢

(a) (b}

Fig.17

Let us now look at a st of cdges of a connected graph.

Definition: A cut set S of 4 comnected graph G is a set S of edges with Lhe
folleing [Prespsenties:

1 the temoval of G e vdees n S disconneciy G-

HY i removal o sy proper subser of 8 will ot disconnect (.

For crianple consider the following seaph aiven in DT

G
L]

Ve

N

v

Y

i

A

- .
‘4——-——0 =
N —

]

Fig.18 45
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and

The set {uw, ux, vx} and {uw, WX, xz} are cut sets for this graph; whereas
the set {uw, wx, xz, yz} is not a cut set since this set has & subset
{uw, wx, xz} whose removal disconnects G.

Note that two cut sets of 2 graph nced not have the same number of cdges.
For example, in the above graph in Fig.18, the scts {uw, ux, vx} and {wy, xz}
are both cutsets.

Also note that the edge connectivity A(G) of a graph G is the size
of the smallest cutset of Q.

Try this exercises now.

Ei4) Which of the following sets of edges are cutsets of the graph given in
Fig.19. and what is its edge-connectivity.?

u w ¥ 1
-
5
v X z
Fig.19
a)  {su,sv}
b)  {uv,wx,yz} )
“¢) {ux, vx, wx, yz) ]
d)  {yt} ]
e) {wx,:-cz,yz}
[} {uw, wx, wy}

We can also think of connectivity in terins of the minimum number of

vertices which need to be removed in order to disconinect a graph. Note that
when we remove a vertex, then if there is any 'édge incident with that vertex;
that aiso gets removed. Let us see somne examples. Let-us consider the '
graphs given in Fig.17. Graph 17(b) can be disconnected by removing just-

one vertex w. But Graph 17(a) cannot bie disconnected by removing one

single vertex, but the removal of two nou-adjacent vertices {such as a and c) -
discounects it. -

Now we can define vertex-connectivily and vertex-cut-set on simniiar-lines as
we have done for edges. Why don’t you try it [or yourself (sce E 13),

I215) How would you define vertex-conncectivily and cut vertex-set ?

-~ . I£16) Find the verlex-connectivily and a cut verlex-set for (he sraph given in
- Fig 17 (L),

I tie nexu section we shall introduce yYou Lo another type of graplis kinowg

as bipartite graphs.

11.3 BIPARTITE GRAPHS . ' ' _

In this section we shall deline Bipartite grapls and explain their importance

- through various problems. : -



Let us first start with the following problem.

Four workmen x;, x,, %3 and x4 are available to fill five jobs ¥1,¥2,¥3,y4 and
ys. Xy is qualified for the jobs y; and y2;x; is qualified for the jobs y; and

ya- X3 is qualified for the job yq; and x4 is qualified for the Jobs y2,y3 and ys..

The assignment problem is concerned with the following questions:

i) Can each person be assigned to a single job for which be is qualified?
ti} Il s0, how should the assignment be made?

iii) If not, at most, how many of them can be assigned?

The problem of the kind stated above is known as assignment problem. To
solve this problem it is convenient Lo consider the following graph theoretic
model of the situation.

The graph G has vertices xj, x3, X3, X4,¥1,¥2,¥3,¥4 and y5 and edges defined
in the following way: there is an edge joining x; and y; if x; is qualined for
the job yj. The graph is shown in Fig.20.

h .
Xy
Y2
X2
Y3
Ay
Ys
X .
\ y

Fig.20

Then the problem of assigning people to jobs for which they arc quzlified is
cquivalent to the problem of selecting a subset of the set of edges such thal
each x will be connecled Lo cxactly one y by one of these edges.

Now, if you look at the graph given in Iig.20, you will sce that the s=t of its
vertices can be divided into two disjoinl subsets such that no two VErLCes in
a subsct are adjacent. Let us lormally define such graphs.

Definition : A grapl G is said to be bipartite if V(G) = NUY. +here X
and Y are non-emply subsets such that X N Y = ¢ and cvery edge in E(G)
has oue end veriex in the set X and the olher end vertex in the set Y.
The sets X, Y form a partition of the set V{G) and we often sav <hal
MUY is a bipartition of the graph G.

An alternative way of thinking of a bipartite graph is in terms of colouting
s vertices with two colours, sav 1ed and blue - a graph is bipartite 7 we can
eolotr cach voriex red or blue in such a way that every edge hias a r24 and
andd 2 blue end.

Bipartite wraphs are vsefud in studyving varions real-lile prablems as
example, lor modelling neural networks. Many different kinds of mozsls have
been formed for studying the neural networks. One such mode} tha:
emulates the essential working of the network using graph theory is given in
Fig.21. As you can sce that this is a bipartile graph and the proper:ics of
bipartile graphs are used in sludying this modal.

Special Graphs
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Interconnection
Weights

Input Neurons Qutput Neulrons

Fig.21
Given a bipartite graph, you may wonder if the Lipartition is unique. The
following example will give you an answer to this question.

Example 5: Consider the graph given in Fig.22. Find two dificrent
partitions that make G bipartite.

X)

Fig.22

Solution: The vertex set is {x;,x?:yl,yg,y;;,zi,z;g}. One way of
* partitioning this can be by taking X = {x1,x2.73), Y = {z;,}'l,_‘,'g.}',-;}.
Another way can be X, = {¥x0,y1),Y; = {z2,21,¥1, y2}. Both these
" parlilions make G- bipartite. ) )
i E LI
We shall now state a theorem which gives a characterisation for bipartite
graphs. Belore giving the statement let us just note the lollowing. )

.Note: When a graph G is a cycle on 1 vertices, we often say thae G is an
n-cycle. A cycle C, is said to be an even cycle if 1 is a positive evon
nteger and it is called an odd cycle if 1t is a positive odd ineper. - The
positive integer n is ealled the length of the cycle. i

Now we state the f.!leorc:n withoutl BIvVing its proot.

Theorem 4: A graph-G iy Lipactive if aued only if G-déns not cazitiadn any

_ ’ odd cyeles ox subgraphs-
You can try solne exercises now,

—

E17) Check whéthér‘f;he_ following graphs are I)E:I)ai'tite or not.



i} complete graph Kz (see Sec. 10.1, Unit 1)

Special Graphs

ii)  hypercubes Qz and Q3 (see Sec. 10.2, Unit 2y . Qn is bipartite

££18) Show that the subgraph of a bipartite graph is bipartite.l

n
E£19) Show that if G,..., G, are bipartite, then UGE is bipartite.

i=!

Let us now go back to the assignment problem. In that problem we are
nterested in finding special subgraphs of bipartite which gives 2 solution to
the problem. We have defined such graphs below.

Definition: In a bipartite graph G, let X and Y denote the two disjoint
subsets of vertices. A matching in G is a set of edges such tha: no two
edges in the set are incident with the same vertex (in X or in Y). In other
words a matching defines a one-to-one correspondence between the vertices
in a subset of X and the vertices in a subset of Y.

For example, the following figure shows a Lipartite graph and one of its
matchings. Fig. 23(b) gives the matching.

1 A :
2 B C———— oA

1
3 C 2 B

3
4 & D D

(a) (b)
Fig.23

Can von find any other matching? We leave this as an exercise for you to

check (see E 20 (i)).

Related o the concept of matching, we have anatlier concept.

Definition: A matehing of X into Y is called a complete matching of X
and Y [ there is an edge incident with every vertex in X. In other words, a
matchiug is complete if a one-to-one correspondence is defined between all
the vertices in X and the verlices in a subset of Y.

bs the matching given in Mg 23(b) a complete matching? No, because in this
matching the vertex 4 is left oul.

In graph-theoretic ternimalogy, the assizoment problem can be stated in the
tallowing way: if G = GIX,Y) is a bipartite graph. when does there exist a
complete matehing from X to Y in G? So. for a given bipartite graph, we
want Lo know whether there is a complete matching of the set of vertices in
A dnto the sct ol vertices in Y. The [ollowing theorem gives a necessary and
sufficient condition for the existence of a complete matching in a bipartite
srapl. As before we'shall ounly state the theorem, omitting the proof.

Theorem 5: Let G = G(X,Y) be a bipar_titc-gra_ph. A complete matching
of X into Y exists in G if and-only if |A[ < |R{A)] for every subset A of X
where |A| denotes the number of elements in A (also called cardinality of A)

a0
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and R{A) denotes the set of vertices in Y that are adjacent to the vertices in
A. - '

Next we shall apply the above theorem to the assignment problem in the
following example.

Example 6: Verify the conditions of Theorem 5 for the assignment
problem given at the beginning of this section{See Fig.20).

Solution: To check the theorem we have to consider all subsets of the
vertex set X = {x,x3,xa,%;), their cardinality, corresponding sets R(A) and
their cardinality. The following table gives a list of all the possibilities.

Table 1

A |A| R(A) [R(A)]
¢ 0 & 0
{x1} 1 {y1,y2} 2
{x2} 1 {y1.ya} 2
{xz} 1 {.‘r'q] l
{x4) 1 {y2.¥3.¥s5} 3
{x1,x2) 2 {¥1,¥2,73} 2
{x2,x3} 2 {y1.y3,y4} 2
{x3,x4} 2 {¥2,¥3,74,¥s) 4
{x1,x4} 2 {y1,¥52.y3,¥5} q
{x2, x4} 2 {¥1.¥2,¥3,y5} 4
{x1,x3} 2 Ayuyayad 3
{x1,x2,x3} 3 {y1,¥2.y3,¥1) q
T {xa,x3,xq). |3 {¥iy2, ¥3, ¥4, ¥5} 5.
{1, 3, X1} 3 {yi.¥2,v3,54} 4
{x1,%2,%x4} 3 {yi,y2,¥3,vs5} 4
{xi,%2,x3,%4) | 4 {y1.¥2,v3,vays) | 5

- For mathemalicians, the interest and nnportance of trees arises from the fact

The table shows that the (:"qndition |A| < |R(A)] is satisfied for all subsets A
of X. Hence the conditions of Theorem 1, is satisfied, ) : '

* 3

The example above shows that there exists a complete matching from X into
Y for the assignment ‘problem. Thereforc the assignment problem is solved.

" You can now try this exercise now.

[220) For the bipartite graph given in Fig.23, tind a matching, apart from Lhe
onc given in Fig.23. Docs the graph given in Fig. 23(a) have a
complete matching? Give reasons for your answer.

Let us now sce another type of graph which has come into prointuence
becauso of its applications to electrical networks.

11.4 TREES

We are all famitiar _u-'ith the idea of a family troe. The concept of @ tree in
graph theory frst wrose in connection wilh work of wrmatheimatician (.
IKirchaff on electric netwarks in the 1840s, and with the work of another.
mathematician Cayley on the cnumeration of chemical molecules in the
1870s. More, recently, Lrees are used many areas, rangiig from linanistics to
computing, ) -

A



that, in many ways, a tree is a special type of grapl, which has several
interesting properties some of which we shall bring out in this section.

Let us first see what a tree means.

Consider the following graphs. Can you find any difference in their
structures? :

Y
X L J
¥s
1o & Y4
© Xy

) (-]

X4 X
‘{_ 1 }'3
(a) (L)

Fig.24

You might have noticed that (a) is disconnected. Also, (a) has no cycles. On
the other hand, (b} is connected and has no cycles. From the following
definition you will sec that (b) is an example of a tree.

Definition: A graph with no cycles is called acyclic. A tree is a cofnected
acyclic graph. A forest is a graph, each of whose components is a tree.

The following figure shows a forest with four components, (a), (b), {c) and
(d) each of which is a tree.

(a)
T'ig.25
A tree has sevaral interesting properties which we shall list in the following
theorent.

Theoren: 6: Let G be a graph with n vertices. Then the {ollowing
statementls arn eqaivalent,

1) s atves,

i) G iy aeyelic and has (u - 1) cdges.

) Gois connected. and has (n — 1) cdges.

wio Gois connected. and overy odpe is a bridee.

VI any iwo seriiees of Goare conneated by exacthy one path.

Proof: ifw = 1 0] the Give resnlis wee reivial We shall thereforoe. HEXSSIRITS
S 2 N Unie 2 von know (hal i we prove
(1) = (i} {iL) = (i) i) = (v ) i) = (v) and v} = (i} then all the

statements are equivalent so lev us de this, \We shall prove the equivalent

v

"

SO LLS otee T e

(1) == (ii): By the delinition. ¢ does nol have any cycles. Therelore it is
acyelic. Now we will show that G has (n = 19 vertices. We will prove this by.
induction. ) R : _

If n =1 then the number of edges is 0. Therefore, the result is true for n = 1.

(b) () (d)

Special Graphs
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So, now let us assume that every tree on p vertices has (p — 1) edges for any

positive integer p such that 1 < p < n. Then we have to show that'every tree
on n vertices has {n — 1) edges. Now suppose we remove any edge. Since G is.
acyclic; the removal of any edge disconnects G into two graphs G; and Gy,

" such that G and G» are connected and acyclic. Therefore G, and G, are

trees and each has vertices less than n. Let n; and nz be the vertices in G,
and G,. Then ny 4+ ny = 0. Since n; and ng are less than n, by our induction
assumption, the number of edges in G and Go are ny — 1 and n» — 1
respectively. Therefore the total number of edges in both the graphs is

n, + nz — 2 = n — 2. This together witl: the edge which is removed will give
the total number of edges in the original graph. Therefore the total number
is n — 1. Thus we got that every tree on n vertices has n — 1 edges. This is
true for all n. Hence the result

(il)=> (iii): Suppose that G is disconnected. Let ¢(G) =t > 1. Let
G1,Ga,...,G¢ be components.of G such that the number of vertices in each
Giis p; for i = 1,2,...t, and the number of edges in each G; is q;, for
1=1,2,...,t. Then

p=p1+p2+...+puag=q +.--+q
Now since every G; is connected and acyclic, each Gj is a tree for

i=1,2,...,t. Therefore, by what we have shown while proving (i) = (ii),
gi=pi— 1,1 <1<t Then

p-l=q=q+...+q=p—t

This is possible only if t = 1. This contradicts our assumption that t > I.
Therefore, G is connected. -

(ili) => (iv): Suppose there is an edge which is not a bridge. Then the
removal that edge will result in a graph with n vertices and {n — 2} edges.. .
This not possible when G is connected by Theorem 3 in Sec. 11.2. Therefore
every edge’is a bridge. .

(iv) => (v): Since T is connected cach pair ol vertices is connected by at
least one path. If a given pair of vertices is connected by two paths, then
they form a cycle, which contradicts the fact thal every edge is 2 bridgc.
Therefore there is a unique path joining any two vertices.- -,

(vi} => (i): We are assuniing Lhat any Lwo verlices are counected Ly a
unique path. So, the graph G is connected. It is-also acyché because if it
contains a cycle G = {xg,x1,.-.,%n = %g}; then we can find two distinct
paths Py = {xg,x;} and Py = {xg,x4-1,..-,%2, %} connecting-the vertices xg
and x;, which contradicts our assumption. Therefore, G is a tree. )

The theorem above.tells us that a tree has got several nice properties which
a general graph does not have. In fact the importance of trees in graph
-tllcory is that every connected graph contains a tree which has all the
vertices ol the original graph, as you will now sce.

Let us consider a connected graph-G. Consider a cycle in it and remove one -

2ol its edges,. such that the resulting graph is connected. We repeat this
procedure with one of the remaiuing cycles, comining until there are no
cveles left. The graph which remains is a connected subgraph of G which
docs not have any cycle. Therefore, it is'a Lree. Note that this ree has all
the vertices-of G. Such a egraph 1s called a spanning tree, as you will realise
(rom the following definition. -

‘Definition: A spanning tree for a graph G is a connected acyclic
subgraph which contains all the vertices of G. '



The following figure shows a connected graph and one of its spanning trees. Special Graphs

Fig.26

Docs this graph have only one spanning tree? No, the graph in Fig. 27 gives
another spanning tree for the graph.

=
-

-

'

[ ]
—-e

z
Fig.27

This shows that a connected graph can have several spanning trees. We shall
now state the theorem, the proof of which is omitted.

Theorem 7: G is connected if and only if it has a spanning tree.

The theorem above tells that in a graph with k components, each comnponent
will have a spanning tree. Because of this result and because of the speeial
structure of trees, in trying to prove a general result in graph theory, it is
sometimes convenient to try Lo prove the corresponding result (or i tree.

You can ury soine exercises now.

E21) Draw three spanning trees of the following graph .

A C
°. .
~.

{
! |
' i
1 //’ H\\\\ ;
N s
e <)
I i}

Fig.2

ey Loee o hipanice maph? Give reasons for your answer.

30 far we have seen three types of graphs: connected graphs, hipartite
graphs aud trees. You will see more types of graphs in the following units.
Leb us now summarise what we have covered in this unit.

on
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15} The vertex conncctivity of a connected graph G is the smallest number
of vertices whose removal disconnects G.

A cut verlex set H of a connected graph g is a set H of vertices with the
following properties
i) the removal of all vertices in H disconnects G

i) the removal of any proper subset of H will not disconnect G.
216} Vertex connectivity is 1 and the sel is {w)

517} i} From the figure you can sce K3 has J-cycles, So, by Theorem 4, it
1s not bipartite.

ii) Both Q2 and Q3 does not contain odd cycles, therefore, by
Theorem 4 , they are bipartite,

[18) Let G be a bipartite graph with a bipartition X UY. Let H be a
subgraph of G. If V(H) is disjoint [rom either X or Y, E(H) = ¢. You
can take any portion of V(H) into two subsets, It will serve as a
bipartition.

t, on the other hand, V(H} intersects both the subsets X, Y of V(G),
then V(H) = X" UY’, where X' = XN V{H),Y' = Y V(H), serves as a
bipartition of H.

E19) Let Gi, 1 <i < n be bipartite graphs with the bipartitions
V(Gi) = XiUY;, respectively. Let G = U, G;. Then, E(G) is the
disjoint union UL, E(G;). Clearly, V(G) = A U B, where
A =UL, X, B =UL Y, is a bipartition of V(G). This can be seen as
follows: Let e be an edge in E(G). Since E(G) is disjoint union
E{G1),...,E(G,) and the edge ¢ belongs to only one of them. Without
loss of generality, suppose € € E(G,). Since G, is bipartite with a
bipartition X; UY,, this means ¢ has one end vertex in X, and the
other in Y, that is, e has one end vertex in A and the other in B.

Thus, G is bipartite with o bipartition A UD.

1220} Fig.31 gives another matching.

Pig.31

The {ollowing is o complete macching in the graph:
{YA 2B 3CAD Y shown by thicker lines in 150,231,

DA

Fig.32



E22) Yes. Siace a tree does not have cycles, by Theorem 4, it is a bipartite Special Graphs
graph.
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12.1 INTRODUCTION

Suppose you go to a new city as a salesperson. You would naturally like to
familiarise yourself with ali the important routes. One way to do this is to
buy a2 map of the city and go around the city. If you do this without proper
planning you may puass through some of the routes more than once. To avoid
this, you would need to sit down and plan your route. The most cilicient way
would use cvery route only once. But is it possible to find such a route 7

This question is so natural that you may not be surprised to know that a
similar question was raised more than 250 years age. Konigsberg was a city
in what was known as Prussia those days. The Prezel river flowed through
Lhis city forming two islands B and C in Fig.1.

=0

Fig.l: A schieinatic diagram of Wonlgsbeng.

The vwo islands and the rest of the city were connected 1o ciach other by
seven bridges. Somie of the citizens usad o amuse theinselves with the
fallowing question: Is it possible Lo go around Lthe city using cach bridae

exactly once 7

-In1 1736, the great Swiss Mathematician Leonard Buler(pronounced as foiler’)

answered this question by converting Lhis into a problem in graph theory.
We will see this problem in Section 12.2(Sec.12.2 in briel}, while discussing
graphs named after Euler.



There is one more question similar to the Konigsberg problem in recreational
mathematics. Which figures can'be drawn without lifting the pen from the
paper and without going over any of the lines twice? This question is also
answered in Sec.12.2,

While Euler’s criterion tells you whether an efficient route for going round
the city exists or not, Fleury's algorithm, discussed in Sec.12.3, will help you
actually Aind the route.

A mathematical puzzle invented by Hamilton involves finding a cycle
containing all the vertices of a certain graph. Motivated by this, we will
discuss conditions for a graph to contain a cycle containing all the vertices of
the graph. Such a graph is called a Hamiltonian graph in honour of
Hamilton. In Sec.12.4 we will give some necessary and sufficient conditions
for a graph to be Hamiltonian. Finally, in Sec.12.5 we discuss a related
question, the travelling salesperson problem.

Objcctives

Aflter reading this unit, you should be able to
e check whether a given graph is Eulerian or not;

¢ apply Fleury’s algorithm to find an Eulerian circuit in an Eulerian graph;

¢ check whether a given graph satisfies certain necessary conditions for a
Hamiltonian graph;

e check whether a given graph satisfies certain sufficient conditions for a
Hamiltonian graph;

find 2 minimum-weight Hamiltonian cycle in a weighted complete graph.

12.2 EULERJAN GRAPHS

As we mentioned in the introduction, Euler solved the Kénigsberg problem
-by converting it into a problem in graph theory. He: represented. each land-
arca by a vertex and each bridge by an cdge(see Fig.2(a)).

' N D

@ W)
Fig2 )

You might have noticed that the grapl in l-‘ig'j(-z}} 15 a multigraph, Here A
and C wre comnecled by two edges; So are C and D. Let us divide one of the
eddges connecting © and D by adding a new vertex E. Similarly, we divide one
ol thi: edges joining A and C by adding a vertex F. Then, we gel Lhe simple
Cgreplon Fig.2(b): If we can find @ way of going around the graph in Fig.2(Dh)
using cach edze only. once, then we can do s0 in the graph in Fig.2(a) alsu
and vice-versa. This process of subdividing the vertigés_can be carried out
for any multisraph. So, while looking for Eulqrian'-circqits, we can still
restrict- ourselves'to simple graphs. Then, the Kdnigsberg bridge may E)q )

Eulerian and
Hamiltonian Graphs
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Fig.3

A
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reformulated as follows:
" Is there a circuit in the graph in Fig.2(b) containing 0
each edge only once?
Recall the definition of a trail from Unit 11. A trajl is a walk in which no
edge is repeated. A closed trail, also called a circuit, is a trail whose
starting vertex and end vertex arce the same. Related to these concepts, we
have the following terms.

Definition : A trajl containing all the edges of the graph is called an
Eulerian trail. A graph is Eulerian if it contains an Eulerian circuit,.

So, we can rephrase the question in {1) in the following way:
Is the graph in Fig.2(b) Eulerian? (2)

Before going further, we give a clarification of our definition of Eulerian
graphs in the form of a remark.

Remark: You might have noticed that we made connectedness a part of the
definition of Eulerian graphs. This is to avoid examples like the one given in
Fig.3. The grapl has a circuit which contains all the edges of the graph.
There is no-edge through which we can reach the isolated vertex: Unless
there is a very special reason, we will nol bother about 2 place to which there
is no access! So, such isolated verlices are of no intecest to us. By making
connectedness a part of the definjtion, such situations can be avoided.

Now, let us find some simple examples of Eulerian graphs. The simplest class
of examples is cycles, for example Cg in Fig.4(a). We can get another
example by adding a cycle of length 3 to the graph in Fig.4(a) at v, {see
Fig.4(b)). '

vy ¥ Vi
1"
vy v vy Vﬁrm Vo
Vi Vs / Vi Vs \j\'s/o v3
|,
V4 ) Vy ] 10
(a) (b) (c)
Fig.d

This is also Eulerian because We can start at the vertex v, traverse the inner
lriangle, come back to vi aud traverse the outer cycle. We get another
Eulerian graph by adding a cycle of length 6 at v, to Fig.4(a).(See Fig.4(c))

Now, you may like to vertfy whether you have understood the definition of
an Bulerian circuit by attempting the ollowing exercise.

151} Prove that the graph given in Fig.4{e) s Bulerian by producing an
Fulerian circuit iy it

You probably found Exercise Peusy. Inasimple example like this, you can
easily prove that a graph is Bulerian by producing au Bulerian circuit by

trial and error. This may not be possible in more complicated cases. It is
impossible to prove that a graph is not Eulerian by trial and error; we may
miss some clever way of tracing an Bulerian circuit. So, we need a necessary
and sufficient condition for a graph to be Eulerian. The condition should

also be easy to apply. The next theorem gives such a condition. Buler's prool



of the necessary part of the theorem appeared in Solutio problematis Eulerjian and
georneiriam situs pertinentis{The solution of 2 Problem relating to the Hamiltonjap Graphs
Geometry of Position). Hierholzer proved the sufficiency part.

Theorem 1: A connected graph G is Eulerian if and only if the degree of
each of its vertices is even,

Proof: Let the graph G be Eulerian and Suppose T is an Bulerian circuit in i
G. Every time the eircuit passes through a vertex, it yses two cdges, one to -
reach the vertex and one to leave it. What about the vertex from which we

start tracing the circuil? The edge with which we start the circuit is paired

with the edge with which we end the circuit. Apart from this, every time we

pass through the.vertex in the intermediate stages we will use two edges

incident at the vertex as before. Also, we use each of the edges only once.

So, all the vertices of the graph have even degreec.

To prove tlhe converse, consider a connected graph In which each vertes has

even degree. We will now prove that G contains an Eulerian circuit by

induction on the number of edges in G, Suppose that the number of edges is

0; since we have assumed that the graph is connected, it consists of a single

isolated point. Since the edge set is empty the statement that there is an

FEulerian circuit containing all the edges is vacuously true. Assume tlat al]

the graphs with fewer edges than G contain an Eulerian cireuit. All the

vertices of G have even degree and G las o vertex of degree O(jsolated

vertex) since it is connected. So, all the vertices have dégrce'a.t least 2. We

can start from an arbitrary poiut u = uy and trace a circuit C as follows:.

We choose any edge ugu, incident at ug. Since up has degree at least two, -
there is another edge incident at’uy, say u us, We &0 on traciug a<circuit like

this, always making sure that we enter and leave any vertex by-different

edges. During the course of tracing C, we may pass through ug several times:. .
The process ends when wa reach up and find that there js no unused cdge to-" - ’ -
leave ug. If the circuit we have obtained contains alj the edges, we are done.

Otherwise, we remove this circuit from G and call the resulting {possibly

disconnected) graph H. All the vertices in each of the comnonents of H have -

even degree aiid all e components have fowar edges than G. S¢ all the

comporents are Edlerian. We now get an Bulerian circuit in G as [ollows:

We start from any vertex v o Lhe circuil C and traverse the cdges of C till Note that, by

we come to a vertex that lies on one of the components of 4. We then - tonneciedness of G, cach -
component of H muose

traverse the Buleriai: circuit in that (:o'lnpuncut,‘cvqﬂtua]ly returning to the g
: contain a point of .

circuil C. We continnge along Cin this fashion, taking Eulerian circuits of
components of H as ve come Lo thew, finally retnrning to the verlex v we
started with, We would have used cach of the adges only once, that i5, we

* have obtained an Eulerian eiréuit,

Let us now sce if we cai solve-the Kanigsherg bridge problem using Theoremn
1. o o -
Example 1: Choeck whethier the Kanipshereiog e mo ronund Lhe city
using cich bridge oniv onee.

Solution:  Yary g el s we biowvs tedneed Ll Wdnigshery Drefone ) i
problem o finding an Ealering Cieniin Frg.2{l). According to the -
hecessary part of e theorem, if 5, araph hos o Bileriag cireuit, it s no ' -

edaes of odd degree. But, as Yo emn e Al (e vertices, except [ oagid I,

A Culerian cireuit, 50, tho

have odd-degroe. So, this graph doesnot Lo
Kénigshergiaus cannot Eo uround-tiu:_t:jt)f USHIE cach vertex only once.

- v or g ) )
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Now, here are some exercises to test your understanding.

E2) After Euler proved his Theorem, much water has flowen under the
bridges in K&nigsberg. In 1875, an extra bridge was built in
Kénigsberg, joining the land areas A and D (See Fig.5). Is it possible -
now for the Kdnigsbergians to go round the city, using each bridge only
once?

r ¥ sw 'l' ""l\ 'T\ ~y wy
B e e H T
S S T Y e

Fig.5
53} By writing the degree sequences of the following graphs, check that
they are Eulerian and write down some Eulerian circuits.

xS " xE

IMig.G

54) a) ILor what values of n is Kn, the complete graph on n vertices,
Pulerian ?
b)  For what values of n,mn is Ky LEulerian 7

£5) TIind out whicli one of Q3, Q4 is Eulerian and which oue is not.

kG)  Show that, in a connected Enlerian graph, an Eulerian circuit can bo
traced starting [rom any vertex.

Suppose now that the people of Kénigsberg will be happy- il they can ro
around the city, still using all the bridges only once, but they do not imind
ending their tour at a point different from their starting poiul. Is this
possible? Let us now examine this question. We will canvert this to a
problem in graph theary, But, before thal we need a couple of definitions
thit will be helpful in formulating our problem.

Definition : By an opern trail we mean a teail in which the ead vertices e

distiuct.
For example, {15,C, D, 3, C, F} is an open trail in the greph in Fig.2(h}.

Definition : A graph G is edge traceable il G contains an open trajl Lhat
contains all the edges of G.




Let US Now 0ok at an exampie ot such a ETaph. Eulerian and
Example 2: Show that the graph in Fig.7 is edge traceable. Hamiltonian Graphs

Solution: Consider the walk {V5,V1,V2,V5,V4,V3, v2,v4}. This contains all
the seven edges of the graph and the end vertices are distinct. Since no edge
is repeated, this walk is an open trail containing all the edges of the graph.
So, the graph is edge traceable,

' Vi -
In view of the definition of an edge traceable graph, citizens of Kénigsberg !.
will have to check whether the graph in Fig.2(b) is edge traceable. As an Vs V2
immediate consequence of Theorem 1, we get the following characterisation
of edg» traceable graphs. ’ vq - v3
Fig.7

Theorem 2: A connected graph G is edge traceable if ang only if it has
exactly two vertices of odd degree.

Proof: Suppose G is an edge traceable graph. Then, there is an open
Eulerian trail T containing all the edges of G. Suppose x and y are the ficst
and last vertices of T. We now add a new vertex & and join this to x and Y.
Let us call the new graph we obtain G’. This is Hlustrated in a particular
case in ["ig.8 below:

X u X u
[} _0 .
i v a & v
X In the graph G’ in Fig.8,
the Eulerian eircuic is
y w L. - .Y w

{a,%u,v,w,y,u, w, N,
i y.ap -
- - G ' G
; ’ Fig.8 )

In the graph G’ we get an_Eulefian circuit as Iollows: We start at a, trace

the edge ax, trace the open Eulerian trail T, and trace the edge ya. So, by

Theorem 1 all the edges of G’ have even degree. Except for x and Yy, the

degrees of all the vertices arc unaffected by the addition of the edges ax and

ay. So, all of them must have even degree, considered as vertices in G.'In the

case of the vertices x and y, their degrees have became even after the edmes

ax and ay are added, i.e., aflter their degrees are increased by one. So, before

" the addition of the-edges, their degrees must have been add,

Conversely, subposc that exactly Lwo- vertices x and ¥ have odd degree.
Then, by adding = new vertex a and two new edges ax and ay, the degrees of

all the vertices become even. 50, we can find an Eulerian circuit starting at -

a. Lel this Bulerizn circuit be {vg = a, Via---, Vo = a}. Siuce x and y are the

;)nly vertices o which a is adjacent, either vi = x or v,lh{ =x. Ilv) =x, we

miust have v,,_; = v and {vi =x,vq, ... ¥n—1 =¥} is the open Eulerian trail, o
Similarly, if v; = v, we must have v, _; = x, and {vi = YoVo, oo Vyoy = x} s - ST
the open Bulerizg vrajl. ' - '

Let us now 106k 4 the ueston thal motivated us Lo prove the thearcin -
above, L. :

Example 3: il whether L is pussibio for Lhe Konirsharminng Lo on
1 - < i o o 2 =

arovud Lthe arey. wrli) using cich Lridge unly ouce, but ending the trip aw x

potet dilferent fronethe starting point.{See Fig.2(lb)}

Solution: Referring tn Fig.20h), o we obsorved bfore, all the vertiees

uxeepl Boand F obave odd degree, ie. there are four vertices of odd degrea. -
50, 1t is not possible for Kénigsbergiaus to tour the city using each bridge '
- only once, cven if Lhc}}_ are allowed Lo start and end the tour a1 fwo different

63 .
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points.
L I )

Here are some exercises for you to try.

E7) Consider the situation after the addition of a new bridge in 1875.(See
Fig.5) Is it possible to tour the city using each bridge only once, if
starting and ending the tour at two different points is permitted?

E8) By writing down the degree scquenee, find out which of the following

graphs are edge traceable. _ vy
Y5 L¥)
Vs Y3
vq
(a) (b)
Fig.9

We considered one more problem that we mentigned in the introduction to
this unit. This asks for a method for determining whether a given figure can
be drawn without lifting the pencil from the paper and without going over
any of the lines twice. There is such a methed, which we shall now illustrate.

Example 4: Check whether the graph in Fig.10{a) can be drawn without
lifting the pencil from the paper and without going over any of the lines
twice, '

Solution: The method involves 4 sieps.

Step 1 (Add vertices at all the Junctions where more than two lines
meet.} In Fig.10{a) there arc three such junctions A, B and C,
So, add vertices at A, B and C to gel the multigraph with loop
in Fig.10(b).. Note that the curve Jomning A and B in Fig.10(a) is
replaced by a straight edge in Fig.10(5). Similarly the curve joining
A and C is represented by the edge AC.

Step 2 (If there are no loops go to step 3. If there are loops, elim-
inatc the loops by adding two vertices of degree two.) If we
add Lwo vertices D and B of degree 2 to Lhe earlier loop al A, we get
the figure in Fig.10{c).

Step 3 (If therc are no multiple edges go to step 4. Otherwise,
eliminate the multiple edges by adding vertices of degree
2.) In Fig.10{c} B and C are connected by two cdges. We climinate
one of the multiple edaes by adding a vertex T to one of the edges.

Step 4 (Count the number of cdges of odd degree in the resulting
graph. If there arc cither two vertices of odd degree ar
no vertices of odd degree, the graph is edge traccable or
Eulerian respectively, So, the graph can be drawn without
lifting the pen from the paper. Therefore, the figure we
started with can be traced without lifting (he pen from the
paper.) As you can sce hom IMig.10{d) there are cxaclly Lwo edges,
B and C, of odd degree. So, the figure can be traced without lifting
the pencil from the paper. ’



If you go through the example above carefully, you may realise that there is
a much easier method for deciding whether a figure can be drawn without
lifting the pencil [rom the paper and without going over any of the lines
twice. In analogy with graphs, let us call the number of lines that meet in a
junction, the degree of the junction for convenience. Note that, only those
junctions where more than two lines meet can give rise to vertices of odd
degree. All the other vertices that we added are of even degree. In view of
this observation, we have the following result;

Theorem 3: A figure can be drawn without lifting the pencil from the
paper and without goiing over any of the lines twice if and only if the number
of junctions whose degree is odd and at least 3 is either 2 or Q.

Here are some exercises for you to try,

E9} Which of the following figures can be drawn without lifting the pen
from the paper and without covering any line segment more than once?

G, - ’ . Ga
Fig.11

E10) Construct, if possible, Eulerian graphs with the following number of -

vertices and edges. When it is not possible, explain why it is not
possible, - T

a|b cf
Number of vertices.| 5 § 6 | 7| i
Number of edges | 10 I(Lﬂ

- In this section we saw that if all the vertices of a graph have even degree, it
is Bulerian. However, there are situations where we know that a graph is

© Eulerian, but.we still may uot be able to find an Eulerian circuit in it. The
next section describes-an_ algorithm due Lo Fleury that gives a method of
finding an Euletian-cireuit in an Enlesam praph.”

12.3 FLEURY'S ALGORITHAIL

In the year iU(jE: Meigu Goan o Chinese mathemarician considercd a
prablem wiricl is kinown as the "Chinese Postinan Problem™. As a part of s
tdaily voutinie, 4 postinan picks i ke miadl ac the post ollice, goes arowid the
.cily, covering each street at least ance and returns Lo Lhe post olflice after
delivéring the inail,- Natarally, be wishes to choose Lis route in sucli-a way:
‘that he-walks as little as possible. How shiould Lie go e:bout,dl_qosing the

Eulerian and
Hamiltonian Graphs
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route? Ilere, if we represent various streets by edges and find that the
resulting graph is Eulerian, then the problem reduces to finding an Bulerian
circuit C of the graph and taking the vertex representing the post office as

the starting vertex. The Chinese postman problem is easily solved in this

case since a good algorithm for determining Eulerian circuit is given by
Fleury. This algorithm can be stated as follows:

Fleury’s Algorithm: Choose any vertex and traverse the edges
arbitrarily, except for the following conditions:

i) At each stage, choose a bridge only if there is no alternative.
ii) At each stage, erase the edge after traversing it and also erase

any isolated vertex that results from the removal of the edge.
Let us look at a simple example to illustrate the algorithm.

Example 5: Find an Bulerian circuit in the graph in Fig.12 using Fleury‘é
algorithm. Indicate the bridges you have chosen.

X] X2 X3

X4q X5 Xg X7
Fig.12

Solution: According to the algorithm, we can choose any vertex as the
first vertex. Let us choose x;.

Stage 1 There are no bridges to avoid at this stage. We choose the edge
x2x5. Alter reaching x5 we erase the edge x2x;5 according to
condition ii) of the algorithm. No isolated vertex results because
of this crasuze.

Stage 2 We arc now at xz. Note that xsxg is a bridge. (See Fig.13 below)
X1 Xg X3

~
Z/
X5

Xy Xg X7

Fiz.13

Since there are other alternatives, we must avoid this edge
according to condition i). We choose x5%y, which is not a bridge.
Alter reaching x; we delete the edge x5x;. No isolated vertex
results.

Stage 3 We chiwose x1x4 even though it is a bridge because we have no
other choice, (See Fig.14.) After reaching x;, we crase x;x;.

st X9 X3
e ]
P A
AN
// \\ / A
& ¢ G . &
Xy X5 xXg T
Fig.14

Now, x| becomes an isolated vertex. Se, we erase iL.

Stage 4 We choose the bridge xsxs although it is a bridge because we
"~ have no other choice. After crasing xaxs, the vertex x4 hecomes
isolated, so. we remove it. :



Stage 5 We choose the bridge xsxg, erase xsxg after reaching xg and erase
the vertex xs which becomes isolated. _

Stage 6 - We avoid the bridge x5x,, choose xgx7, erase xgx7. No isolated
vertex results.

Stage 7 We choose the bridge x7x3, erase x7x3 after reaching x3 and erase
the resulting isolated vertex x;.

Stage 8 We choosc the bridge xyxg, erase x3xg after reaching xg and erase
the resulting isolated vertex xj.

Stage 9 - We choose the bridge xgx2, erase xgxg after reaching xo» and erase
the 1solated vertex x,.

Stage 10 After reaching x2, we find that there is no edge adjacent to x.

The steps are complete.

So, the Eulerian circuit we have obtained is
{x2, x5, X1, X4, X5, X6, X7,X3,Xg,X2}. The bridges we have chosen are
{X1X4,de:nxsxs.x?xa,X:sXG,xsxz}

* ¥ ¥

Remark: If G is an Eulerian graph with q edges, then Fleury's algorithm
stops after exactly q steps. When it stops, we are back at the vertex u..So,
we get an Bulerian circuit of the graph G. It can be proved that Fleury’s
algorithm always yields an Eulerian circuit. Due to the complexity of Lhe
proof, we omit it. ) ) o

Here are some exercises Lo test your understanding of Fleury’s algorithm.
d X B ¥ g

E1l) Find an FEulerian circuit in the graph in Fig.15. Indicate the bridges
you have chosen.

X1 . Xo - " X3

Xy ’ Xg - ) Xg
Fig.15

In this seclion we were interested in finding circuits in which all the edges .of
the graph occur cxactly once. Iu Lhe next section we are interested in finding
cyeles v which all the vertices oconr exactly once.

12.4 OAMILTONIAN GRAPHS.

SUppese a trauspart. colipally opctais bus services between 10 «different

_ places, There are places willy no dicect bus serviee hotween thern, but (here
is always 2 rowte between any Lwo places thal oo through Lhe other places.
[ this situation, the conpany winis Lo offcr o round trip Lhat passes
through cach of Lhe cities exactly oute. [s it [nssible? -

Let us formulite this question as a problem in gfapl-t theory. Let us represent
- the places by vertices. Two verlices are adjacent if a diréct bus connects the -

Eulerian and
Hamiltonian Grapbs
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corresponding places. Since it is possible to go from one place to another,
the graph we get is a connected graph. Now, the question is,

Is there a cycle in the graph in which each vertex occurs

precisely once? ' (3)
A similar question was the basis of the mathematical game described by
Hamilton. In this, he took a regular dodecaliedron. Each of its 20 vertices is
supposed to represent a city of the world. One of the players inserts 5 pins in
5 of the vertices. The other player is supposed to find a ‘world tour’
containing all the remaining 15 cities and come back to the starting vertex.
This amounted to finding 2 cycle covering all the vertices of the regular
dodecahedron. Fig.16 gives such a cycle. -

Fig.16

It is Lime now to give a name Lo such a cycle.

Definition : A cycle C in a graph G is called 2 Hamiltonian cycle if it
contains all the vertices of G. A graph is called Hamiltonian il it contains a
Hamiltonian cycle. A graph is called non-Hamiltonian if it docs not
contain any Hamiltonian cycle.

Can you think of examples of amiltonian graphs other than the one given
in Fig. 167 Is any cycle a [lamiltonian graph? Is any graph obtained by
adding edges Lo a Hamiltonian graph also Hamiltonian? The answer to both
the questions is "yes’. For example, the graphs in I"ig.17 are Hamiltonian.

/ ~ N
\ / N
\ / / < =
Va ,
N
a) fh fo}
Fig.17

Are there any non-Haumiltonian graphs? Trees are obvious exanples of
non-Hamiltonian graphs; since they don't have any cycles, they caunot have



a cycle containing all the vertices! Eulerian and

Note that, by definition, a Hamiltonian graph contains a cycle containing all Hamiltonian Graphs
the vertices. So, a Hamiltonjan graph cannot have cut vertices or pendant
vertices.(Recall that a pendant vertex is a vertex of degree 1.) This gives a
simple method for constructing examples of non-Hamiltonian graphs. For

example, the graph in Fig.18 given below is non-Hamiltonian because it has
a cut vertex x. '

Fig.18

Here are some exercises to test your understanding of the discussion above.

E12) Construct a non-Hamiltonian graph on 9 vertices.
" B13) Find & graph which is Hamiltonian but not Eulerian.
El4) Find a graph which is Eulerian but not Hamiltonian.

[13) Find 2 Hamiltonian cycle in the hypercube Qs o o

We liave used the existence of 2-°cul vertex to prove that the graph in Fig. 18 .
is not Hamiltonian. However, this does not give us a foolproof method of

identifying nou-Hamiltonian eraphs. For exanple, Kiin, _m, n 22 has ne cut

vertices or pendant vertices, and it is not Hamiltonian when n 4+ n is odd, as

we shall now show.

Example 6: Shaw that G, 15 not Hamiltonian when m + n s odd,

Solution: Since Kua is bipartite, it does not have cycles.of odd length.
On the other hand, it has an odd number of vertices. Sa, a Hamiltonian
evele-in this graph, il ib exists, must be of odd length. So, Ko is not

Hanilbaning whel in A oddd. -

= _ - . e

Frent the previous example it s clear that we need some conditions for

ddentidying nan-TEuniltonian wraphs which do not depend on Lhe wxishiznee of

il vertex or pendent vertex, The following theorem gives a slightly Lotter

necessiey eondition fir g sraplo 1o be Hiniltonian, We wilj omit the proof of ‘

s theorem in this conrse. - : Recall that ¢{G) deuotes

T ; (G is 4 Henuiltond ’ Lot f | S of the number of
Lheorenn 4: ] IHd Hatnitoinan graph, then for CVery proper sn )&?Lt__. ol components of (.

V(G), e mist hive - T . -

C . eG-8) <8l -
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Let us now look at an example to illustrate the use of Theorem 4.
Example 7: Show that Kmn is not Hamiltonian if m < n.

Solution: Recall that the vertex set of Kin,n can be partitioned into two
disjoint subsets X and Y of cardinality m and n, respectively, in such a way
that no two edges in the same subset are adjacent and every vertex in X is
adjacent to every vertex in Y. Let us take X to be the set S in the Thedrem.
S0, S| = n in this case. Il we delete ail the vertices in X, the graph becomes
totally disconnected. so, there are m components in G — §, one
corresponding to each vertex of Y. So, C(G - 8) <[] So, by Theorem4,

Km,n is non-Hamiltonian. .

If the condition given in Theorem 4 is not satisfied, the graph is

non-Hamiltonian. However, if the condition is satisfied, it does not mean
that the graph is Hamiltonian. For example, consider the graph in Fig.19(a).

Y1 Y2 Y3 Va
&——e——e o
(a) (b}
Fig.19

Let us remove the two end vertices, so that § = {vi,va} and (5] = 2. We will
get a single isolated vertex(see Fig.19(b)), so c(G—8)=1and

¢(G —8) < |8]. So, the conditions of the Theorem are satisfied. This is a
path of length 2. It does not contain any cycle so it is‘non-Hamiltonia:n.

Now for some exercises to check your understanding of the Theorem.

E16) Show that the following graph is non-Hamiltonizn.
{(Hint: Find a set S C V(G) such that (G ~-8S)>13])

f——

TT——

P L |

Fig.20

E17} Check whether the following graphs are Hamillonian,

X4




E18) Show that the following graph is non-Hamiltonian,

non-Hamiltonian. They are of no use if we want to show that a given graph
is Hamiltonian. We need some sufficient conditions for this purpose. Since
we are looking for a cycle covering all the vertices, it is reasonable to expect
success whenever, at every vertex, there are enough choices of edges. This is

- confirmmed by the following Theorems. Theorem 5 was proved by Diracin
1952. This was generalised to Theorem 6 by Ore in 1960.

Theorem §:° I q js a simple graph on p vertices, p 2 3, and if §(G) > g,
then G 15 Hamiltonjan.

Theorem 6: Let G be a simple grap
condition that - -

h on p vertices, P ?_ 3, satisfying the

d(u) +'d(v) > p for any two non-adjacent vertices u and v. (4)
Then G is Hamiltouian.i
Can yéyu sec that Dirac’s Theorem follows Trom Ore's Theorem? This is

. o 1 - .
~ “because if 5{G) > I , then for any two vertices u and v, we have
, .2 5 ¥ \ _

d{u) + d{v) = 25(G) > p. So. the conditions of Qre's T heorem _are satisfied

Pl = P 1 =
whenever the conditions of Dirac's Theorem are satisfied. So, if we prove
' !

" Ore’s criterinn, we will have alse proved Dirac’s crilerion.
. I

Proof of Ore’s Theorem: We shall prove this resuit by contradiction(see
-Unit 20). Suppose the Theorem is [aise. Then, there are non-Hamiltonian
graphs with move than 3 vertices satisfying (4), So, the following set is
noi-eniply:

F={GiV(Q)=p,G is non-Hamiltonian and satisfies condition 4) _

- Choose a granh in F with the maximum number of cdges among all such
graphis. Let ny donoto this graph by Gii. As Giy is non-Huniitonian, jt -
cannnot be completo, 50, ther: are Lwo vertees, call them u and v, which are
Hol adjacens. .%‘t_r. adding the edae @ - gy 16 Gug, we reL 2 new eraph GL,
The tumber of vertices i Gl s still greater chan 3 because we haven’t
removed any veriex. Since we haven't remioved any cdge; the degrees. of all
the vertices cemain the same So, condition {4) holds for auy-two vertices iy -

: . L erey
Gy also. Bue then, Gi, must be Hamiltouian, If it is not, it will be'in £
This is not possible because IE(GL)] = |E(Gr)] + 1 and Gt was chosen to.
"~ bea graph in F widl, maximum possihle edeges -
ETa) uin 5 .

- Eulerian and
Hamiltonian Graphs

Recall that,
5(G) =
‘min {dege(x)|x € V(G)}
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Now, since Gy is Hamiltonian, we can chioose a Hamiltonian cycle C in G-
Since G is non-Hamiltonian the edge uv must lie on C.(Wly?) Removing
this edge, we get a path in G containing all the vertices. Let
P={u=uu,,..., Up = v} be this path. Define

S = {u;: uyy, € E(Gu)} T = {y;: ujv € E(Gy)}.

Clearly, up = v¢ SUT. (Why?)Hence, |S UT| < p. Now, if possible, suppose
ST =ned uy, €SAT. Then, {ul,---,ui,up, Up—1, ", Uigr,uy} is a
Hamiltonian cycle in the graph G.(Sce Fig.23) This contradicts the
assumption that G is non-Hamiltenian, Hence, SNT = @, that is, SN Tj=0.

72

Fig.23
But then,
P < day{u) + dey(v) = 1S) +|T| = IS U Tl.<p.ie. p<p.

This is a contradiction. Thus, our assumption that the theorem is false, is
wrong. In other words, every graph G on p 2 3 vertices, satislying (4) is
Hamiltonian,

Remark: Note that Theorem 5 and Theorem 6 are just suflicient conditions.
They are not at all necessary. For example, C,, n > 4, is always Hamiltonian
but Cyq is a 2-regular graph, and therefore, d(u) +d(v) =4 < n always.

Here is an example to illustrate the use of the Theorems,

Example 8: To which of the graphs in Fig.24 does Dirac’s criterion apply?
To which does Ore’s eriterion apply?

X
o.
N N
>— T >
&-— — @ o
a . ¥
(a) Fig.24 (b)
Solution: Tor the graph in Fig.24(a), p = 6 and degl(v) = 3 for each vertex
v. 8o, §(G) = 3. Thus, Dirac's criterion is satisfied for 1his graph.
For the graph in Fig.24(b), p = 5, but deg(x) = 2. So. Dirac’s ¢1iterion is not
satisfied by this grapl. However, degfu) + deg{v) > 2 fur all padrs of
nou-adjacent vertices u anel viin et for all pairs u and vy, So. Ore's
criterion applies in Lhis case,
A%
Try the foliowing cxercise now to test your understanding of (he example
above,

E19} To which of the following graphs does Ore's Criterion apply ? To which
of these does Dirac’s critorion apply



Eulerian and
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Fig.25

So far, we have seen a fow necessary conditions and sufficient conditions for a
graph to be Hamiltonian. Are there any conditions that are necessary and
suflicient for a graph to be Hamiltonian? No! It is difficult to prove that a
given graph is Hamiltonian. For example, the Petersen graph is not
Hamiltonian. but it js not casy to show this. Indeed, so far no conditions
have been found that are botl necessary and sufficient for a graph to be
Hamiltoniarn. :

- Now we have comé to the end of our discussion the problem stated in the
beginning of the section. In tlic next section we a related, but slightly
dillerent problem where we we assume that any two places are directly
connected by a bus route. We are interested in finding a way of going around
all the places. visiting each place only once, and doing so in the shottest -
Possible time. -

12.5 TRAVELLING SALESPERSON PROBLEM..

A travelling salesperson wants Lo visit a number of towns and return to the
~base. The travelling time between-any two towns is known. How should
~he/she plan nis/her journcy so that he/she spends as short a time as possible
but visits cach town precisely onee? This is known s the travelling
salesperson problem. Here, one assumes that a direct route connects any
two towns withoul passing through any of the other towns on the list. If we
tey Lo represent the-towns by verlices and the direct route by adges. then we
simply got a complete graph, How should we represent the Line required to
so from one wown to the other? This question leads to the concepl of a

weishiod oripi.

Definition : A weighted graph isa pair (G, 1), where G is graph and [

i5 i real valead Dindtion on the sot LE(G).

Do sitrple Tuneunse, we associntbe some real nnmber [{ey with each eelue o of

the mrapl Gy vhie case of traveliing :-i:‘lh:.‘-i!l('l'h'(}r} probdem, fe) is simply the - -

rine veduiresd v el from one-ened vertos of ¢ to the other end vorross

Reluted ta b v have anothor definition, _ )
Defivition @ For o wallk W oin o werghited praph G bathe welshi F(W),

of the walke Wowe menn Hhe s of weighls ol adb the edoes o W,

30, 0t Lraveiiors problen teduees b fncling a Hanikonian eycle of

tininunn welshl oo waighited complewe graph. OUne possible approachi is Lo

=l
fiud o Hamiltonian cyele first and then seirel for cdges having smaller weight - -

1
[
'
oo
1
’
o
'
1
'
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and modify the cycle using them. The modification can be made a% below:

Let C = {vy, -+, vp,v|} be a Hamiltonian cycle in a weighted complete .
graph. For a fixed i, first check whether there is a j such that

£(vivj) + f(vipavig1) < f(vivig) + £(vjvje1)-
If this inequality holds, then replace the cycle C by

CiJ = fv,-- s VIV Vi1 Yig L Vi, Ve oo |'Vp|vl}-
See Fig.26(b).

je1

Fig.26

Clearly, the weight of the cycle G;; is strictly less than that of the cycle C.
After performmg a sequence of such modifications, one is left with a cycle
whose weight cannot be reduced further by this process. Of course, there is
no guarantee that the resulting cycle will have the least possible weight.
There may be other cycles with lower weight. But it will often be fairly
good. Let us consider an example of this process.

Example 8: Consider the following copy of a weighted K. Starting with
the eycle {L, M, N, O, P, T, L}, modify it to a cycle of lesser weight. The
numbers on the edges indicate the weight assigned to them.

Solution: You can check that,

f{LO} -+ {{MP) = 80 < f(LM) + {{OF} = 167
So, we modify the cycle to {L;O,N,M,P, T,L}. (sce Fig.28(a). Now,
I(MT) + {(PL) = 121 < f(MP) + {(TL) = 138. (See Fig.28)So, again we

-modify the'cycle {L,O,N,M,P, T,L} to {L,0,N,M, T,P,L}. Again,

f(OP) + f(NL) =86 <_' f(oi{) +(PL) = 87. See Fi}.28(c).



Hence, replace the cycle {L,O,P,T,M, N, L} by {L,O,N, M, T,P,L}. You

can check that we can’t decrease the weight of the cycle in the graph we have

obtained in Fig.28(d).

L
60 56
T
13
P
5 36
0
(a)

Fig.28

Hence, by this method we have reduced a cycle of weight 237 to a cycle of
weight 192

LR N

Iere is a related exercise for you to try!

E20) Start with the cycle {vy, vy, vy, V4, Vs, v1} in the following weighted copy

of Ks: Carry out the reduction step once to get a cycle of lesser weiglit.

. Fig.29

We bave now reaclied the end of our unit. Lot us briefly summarise what we
have studied in this unit.

12.6 SUMMARY

- e this unis we defined the following terms: . i
a)  Bulerian- circuit: ~ A cirenit in A graph is calied Eulerian if eacly edge
of the eraph occurs exactly vnce in the eirewir.

by Bulerian graphc A coiieoied graphs Buleriae iF it containg an
Bulerien circuin,

¢} Open trail: A il s open il the initial aod end vertiees of the ipail

are distinet,

di  Bdge traceable graphs: A connecled sraph s cdge traceable if it
has an open trail, . ’ ’

e} Hamiltonian cycle: A eyele is called an Haﬁliltoi;iau cycle if cach
vertex of the graph occurs exactly once in the cycle,

T, L

e

Eulerian an

Hamiltonian Grapb
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A 70y
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f)

Hamiltonian graphs: A graph is called Hamiltonian if it contains a
Hamiltonian cycle.

Also, in this unit, we discussed how to:

1)
2)

3)

identify Eulerian graphs by considering the degree sequence.

identify which graphs are edge fraceable by considering the degree
sequence, '

identify which figures can be drawn without lifting the pen from the
paper and without going over any of the lines twice.

apply Fleury’s algorithm to construct an Bulerian circuit,

apply some necessary conditions to show that a given graph is

« non-Hamiltonian,

apply suﬂicienéy conditions due‘to Dirac and Ore to verify whether a
given graph is Hamiltonian or not.

modify a given Hamiltonian cycle in a complete weighted graph to one
of smaller weight. *

12.7 SOLUTIONS/ANSWERS .

E1)

E2)

[£3)

Eq)

Here is an Eulerian circuit:

{vl:l ¥z, V3, vyq, V51 V6, V1, V7, Vs, Y4, ¥i0, Vg, Vl}
Of course, there are many different Eulerian circuits and you might
have come up with a different one,

The situation will be as in Fig.30. After the addition of the new edge,
both the vertices A and D have become even degree vertices. However,
B and C still have odd degree. So, it is still not possible for the
Kénigsbergians o go around the city using each bridge exactly once.

D

A
Fig.30

The degree sequence of Giis {8,4,2,2,2,2,2,2,2,2,2, 2,2,2,2},
All the vertices are even and hence the graph is Bulerian. You can
check that the following gives an Eulerian circuit in it.

[xl:KQ,Xs,X-hlexs.xa,xa,x?,Ks,XhXﬁ,XIO,Kn,Xl:xlz.xls,-‘il-:,xls‘xr }-

The degree sequance of Gois {8,4,4,4,4,4,2,2, 2,2). Since all the
degrees are even. So, it is Bulerian. An Eulerian circuit in Gy is as
follows:

{X] y X2, X3, %4, X5, X1, Xy, X5, }CQ,X.j,Xl,Xs,):T,X3| X1y X9, X7, X10,X) }
a) Kyisan (n— 1)-regular graph. So, it is Eulerian wlien n = 1 is
even, (i.c.) nis odd. : '

b) Kn.m has n vertices of degree m — 1 and m vertices of degree n —-1.
50, it is Bulerian when n, 1z are odd. '




£5) In Qs, every vertex has degree 3 and hence it is a non-Eulerian graph.
On the other hand, all the vertices of Qq, have degree 4. Hence Qq is
Eulerian. '

E6) Suppose G is an Eulerian graph and {va, v1,-.., vz }'is an Eulerian trail
init. Let x = v; be any vertex in G. Then, the following is an Eulerian
trail starting and ending at x:
{x = vi,Visto oo,V Vo, Vi, viny )

E7) Reler to Fig.30. After the construction of the new bridge joining A and
D all the vertices except B and C are even, i.e. there are two vertices of
odd degree. So, it is possible to go round the city using each bridge
only once, starting and ending the trip at two different points,

158} a) Let us write down the degree sequence of the graph. It is
{4,4,4,3,3,3,3,3,3,3,3).
It has eight vertices of odd degree.
So, the grapl in Fig.9(a) is not edge traceable.
b) The degree sequence of the graph in Fig.9(b) is {4,3,3,2,2,2}. So,
it has exactly two vertices of odd degree. So, the graph is edge
traceable.

19) Since Gy has exactly two vertices of odd degree, it can Le drawn
without lifting the pencil from the paper and withnut going over any of
the vertices twice. . ) )

- Since G2 has precisely two vertices of odd degree, this can also be
traced without lifting the pen from the paper. Since G3 has 6 vertices
of add degree,{degree 3), it cannot be traced without lifting the pen
from the paper. . ) ’ :

- El0) The solutions for (a), and (b) are given below.

- b
) {a) Fig.31 (b)
-{c) " Recall that any Bulerian graph is conuccted. Here, the number of
~vertices is one more than the numnmber of edges. So, such a graph is
a tree and therefore does nol contain any_cycle. Thus, there is no
Eulerian graph with the given number of vertices and edges.
I211) You can check Lhat one Bulerian circuit in the given graph is -
{Xl:K-;--"iz,,‘ir.‘xzi-.\'f;. Ny. Xy, -‘:q:-\':;-‘i?-,-‘ft}-
“The bridges chosen wea
{ X235 NaXG, Aghy, XoXq, X9¥e. Xaxq, X 1X7, X751, }
L12) For exiunple. considar ihe siaph - 32 Phis s non-Iamiltonian

because the vertex x 15 i cul verles,

Fid) See Fig.33 - This las o Lhaeiltonian eycle {vi,vo,va, ve ve, v vy ). Bul,

o not Bulorian bociaus the ver Lices vy aund vy have odd degrees.

L14) The graph given in Fig.32 is Eulerian because all its vertices have ¢ven
-degree. As, we have seen already, it is not Hamiltonian, -
gree. 3 ; y

L

Eulerian and

Hamiltonian Graphs



Graph Theory E15) A Hamiltonian cycle in Q3 is {000, 100, 110,010., 011,111,101,001,000}.

E16) If you remove the vertices marked x, y and z in Fig.34 from this graph,
you will get four connected components, viz., one inner triangle and
three isolated outer vertices.

Fig.34

Hence, by Theorem 4, the given graph is non-Hamiltonian.

E17) A Hamiltonian cycle in the graph G, is {x7,x3, x4, X2, Xg, X5, X1, X7}
Now check that the following cycle in the graph G5 is a Hamiltonian
cycle.

{x12, %14, X8, X9, X10, X11, X13, X7, X6, X5, X4, X3, X2, X1, X12 }-

E18) There are three vertices of degree eight in this graph. If we remove
them we get four connected components. Now apply Theorem 4.

E19) (a} Thisis a 4-regular graph. So, 6(G) = 4. Here p = 6 and therefore

the condition §{G) > g is satisfied. So, Dirac's criterion{and

therefore Ore's criterion) apply here.

(b} Here p = 7. The vertices vy and v; have degree 3 < 23 Therefore,

Dirac’s criterion does not apply, However, the only pair of
non-adjacent vertices in this graph are
(vg.via)s (v, vs), (v, va), (va, va), {ve, vs), (v2, vi)
o Ore's condition is satisfied for these pair of vertices. So, this grapl

is Hamillonian.

¢} Here p =8 and the graph is 4-regular. So, Dirac’s critecion is
satisfied.

d)  Here p = 8. but the vertices vg and v have degree 3 which less

I) . . . - 1 3 .
than '5 = 1. Sou, Dirac’s criterion is not satisfied. The only pairs of

non adjacent vertices are (v7,vs), (vz, va), (v7,va), (v7, vg),
(ve,v2), (vg, va), {vs, va), (vg,vs}. You can check Lhat Ore's
criterion 1s satished for these pair of vertices.

I£20) Notice that _
' $(v1va) + Plvavs) 51 + 78 =129
78 . ' ' © @lvive) + d{vavs) = 5.4 36 =41



Eulesi: ~nd

Hamiltonian Gro; oo

Fig.35

We can modify the given cycle to get the following cycle of smaller
werghti{vy, vy, vz, vo, vs, vy, }
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13.1 INTRODUCTION

You must have seen political maps of India with different states coloured
differently to distinguish between them, Have you ever wondered what is the
minimum number of colours required to colour the map so that any two
states with a common boundary are given two different calours? This
problem of finding the minimmun number of colours needed to colour a given
mayp is called the map colouring problem.

We can formulate the problem in terins of graph theory. We can construct a
graph in such a way that eacl staic of India corresponds to a vertex of India
and if (wo states are adjacenl, the corresponding vertices are also adjacent,
So, we have to colour Lthe vertices of the graph it such a way thal any pair of
adjacent vertices have different colours. In the map colouring preblem, we
ask for the minimum number of colours needed Lo carry out such a colouring.

Note that the construction mentioned above leads to a special class of graphs
called planar graphs. If we are interestod 1 map colouring problem alone, it
is enough to restrict ourselves to such graphs. However, the general vertex
colouring problem, which asks for (e ninimumn nunber of colours needed to
colour the vertices of given graph, not necessarily planar, iy mteresting in
itsell. So, we start our unit by discussing this prohlem in See 132,

Tn Sec 133 as o preparation {or our study of map cejourine problem. we
study planar graphs. [n this section we will prove somne basic results about
planar graphs. We will aiso prove a characterisation of planar eraphs due to
IKuratowski.

In See.13.4, we study tie map colouring problem. We give a Lrief lastory of
the four colour theorem, which says that any map can be coloured with four
colours. The preof of this theorem js beyoud the scope of Lhis course,

However, we will prove the weaker result tliat any map can be coloured with . -

five colours.




In Sec.13.5, we end our unit with a brief discussion of edge colourings. We Colouring graphs

restrict ourselves to the definition of edge colouring, some cxamples of edge
colouring and statements of some of the well known results in this field.
Objecti-res

After reading this unit, you should be able to
e compute the chromatic number of some simple graphs:

+ compule some upper and lower bounds for the vertex chromatic number
x{G) of a graph G:

s Verify whether a given graph 1= planar or not usinz Kuratowski’s theorem
in simple cases

* give an edge-colouring with x'(G) colours for some simple graphs, where
x'(G) is the edge chromatic number of a graph G.

13.2 VERTEX COLOURINGS

In this section we starl our study of colourings with vertex colouring. In the
Subsection 13.2.1, we define vertex colouring and give some examples, In the
Subsection 13.2.2, we will prove some simple bounds on the minimum

nuinber of colours needed to colour the vertices of a given graph. Let us now
start our study of vertex colouring with the definition and some examplcs of

colourings. .- : -
13.2.1 Definition and Examples

Look at the graph in Fig.}. We have given a colouring of Kj using three
colours, namely red, green and blue. :

X1 . . - -

‘Why have we used three colours? It is because we want the adjacent veriigus
to have different colours. In Iy, any two vertlices are adjacent so we need to
colour cach of rthe vertices with different colours. Keep this example in mind
when you read the definition of vertex olouring given below.

Definition = A k-vertex colouring of a graph G is an assignment of k
colours to cach of the vertices of G in such a way tha: no Lwo adjacent
vertices have the same colour. A graph is k-vertex colourable if there is a0
k-vertex colouring. The minimum number of eolours required to colour &
eriph Gois cidied the vertex ¢ bir onmtm number of G, nsnally denoted »

NGy

L this section. we will be discussing only vertex colouring. So, we will use
the terms “k-colouring’, “k-calourable” and “chiromatic number’,
respectivel. We will iy thiar oo miaph s k-chiromatic if it has chromatic
mimber k.

In Fig. 1, we were able 1o nse the names of the colours. red, green and hlue.
because we needed only three colours. Suppose we. need, say, 20 colours, can
T_owe :,tlll use the ueunts to refer Lo the colours? We inay not remerber the

o
¥
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names of so many colours and may probably decide to call them colour I,
colour 2, etc. This will do just as well, because the names of the colours are
not important as long as you can distinguish between the different colours.
We will also use 1,2,3, ... to denote our colours. However, to distinguish
them from usual numbers, we will denote them as {i,2,....

Let us now look at some examples.

Example 1: Colour the graphs in Fig.2 with the minimum possible
number of colours. Also, find the chromatic numbers of the grapls,

v

¥, m ’ lm
i .
[
vy I
K Vz VJ
(a) (b) (€) (d)

Fig.2 Some examples of colouring.

Solution: In Fig.2(a), K;, has just one vertex. Let us colour this with @
‘Thus, this graph is 1-colourable and its chromatic number is 1.

In Fig.2(b), K; has two adjacent vertices. We assign (1} to the vertex v and
to the vertex vz, Thus, we have a 2-colouring. Is there a l-colouring? No!
The two vertices are adjacent and so we need at least two colours. In other

words, the chromatic number ¥(Kj) = 2.

In Fig. 2(c}, we have three vertices and we can colour them with three
different colours. But, can we also have a two colouring? Notice that, v; and
va are not adjacent. So, we can colour them with the same colour, say, [[). v,
15 adjacent to both v; and v3. So, we cannot assign [T to this. Let us assign
to v2. Se, we have a 2-colouring. As we cannot have a l-colouring, this
graph has chromatic number 2.

In Fig. 2(d), we have Ks. In this any two vertices are adjacent, so we need as
many colours as there ace vertices, that is, we need five colours. So, K5 has
chrowatic number 5.

F

Remark: [n the above cxample, we saw that the chromatic number of K,
15 1. More generally, il a graph consists of isolated vertices, its chromalic
number is 1. Conversely, if Lhe chromatic number of a graph is 1, it consists
of isolated vertices.

Also, we saw that the chromatic number of Kz is 5. More generally, Lthe
cliromatic number of K, is n, because any pair of vertices are adjacent in K,,.

Example 2: Find the cluomatic munber of a bipartice graph with edge se
non crmpty.

Solution:  From umit 11, you may recali that a graph G is bipartite i the
vertex set-of G can be partitioned into two non empty disjuint subsels A
and B such that any two vertices in a given set are non-adjacent. We gol a
2-colouring of G by assigning (1] to the vertices in A and [Z} to all thie vertices
in B.{This is illustrated in 2 particular case in Fig.3). Further, note that,
since A and B are non empty and since the edge set 6f G is non empty, at
least one-vertex in A is -adjacent to a vertex in B and_these two vertices must
have different colours. So, we canuot manage. with. less than two colours. So;

a




x(C) =2 if G is a bipartite graph with non empty edge set.

) L .
Remark: We saw in ¢xample 2 that the chromatic number of a bipartite
graph with non empty edge set is 2. The converse is also true. Given a graph

G and a 2-colouring of G, we'can partition the edge set of G into two non
empty sets A and B defined as [ollows:

A {v € V(G) | v is assigned the colour (I}
B {v € V(G) ! v is assigned the colour [}

By the definition of colouring no two vertices in A are adjacent and smula.rl\
for B. Since A aud B are disjoint, G is bipartite by definition.

Here are some exercises {o test your understanding of the above examples.

1) What is the chromatic number of a tree with at least two vertices?
[2) What is the chromatic number of an even cycle Con, n > 27

E3) Is an odd cycle Co,41, n 2> 1, 2-colourable? What is its chromatic
number?

[l a graph 1s k-colourable, are all its subgraphs k- colourable? Let us see. Let
G be a k-colourable graph and H be its subgraph. We assign to each vertex
of H the sane colour that we assigned to it, considered as a vertex of G. If
two vertices are non-adjacent in G, they are non-adjacent in H and therefore
this gives a colouring of H. In other words, x(H) < k = x(G) for every
subgraph' H of G. We can also recast this statement in the following form. .If
a graph G has a subgraph H with chromatic number k, the
chromatic number of G must be at least. k. This fact helps us in
finding the chromatic number of a graph sometimes. We illustrate this in the
next example,

Example 3: Find the chromatic number of Gtétzsch graph.(See Fig.4.) -

"TFig.4 Grotzseh praph

Solution: e fipnre above gives o 4 —coiouring of tis araph. Can this
praph hivve s thiee colonring? Let us try Lo {ind one. Since the outer d-cyele
is an odd eyele, It needs three colours. So, we need at least thiee colours. Let
15 suppose U colonrs of ap, -+, x5 are as shown in IFig.4. Since y; is

«!.(]_} went to x; and x5 we Lave to give it a colour different from @) and [3). So,
we assigh (I to it Similarly, the colours of v+ and ys must be 2 and 3.

respectively. Siuce the vertex z is .J.d__]d_cen!,_ to vertices to-which the colours (1),

Colouring graphs
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(2] and (3] have been allotted, we have to use a fourth colour for this vertex.

So, this graph is not 3—colourable. Therefore, this has chromatic number 4.

Lk

Try the exercises given below to test your understanding of the example
given above.

E4) Show that the chromatic number of the Petersen graph, given in Fig. 5,

. Yy 4‘L Vi
e
/X

Vi vy

Fig.5 Petersen graph.

In the above examples and exercises, we saw that if a graph G hasa
subgraph H with chromatic number x(H) = n, x(G) > n. In particular, il a
graph G has a subgraph H which is isomorphic to K,(such a subgraph H is
known as a clique of size n), the chromatic number of G is at least n.
However, the converse is not true, i.e. if a graph has chromatic number > n,
it need not have a clique of size n. Petersen graph provides a counter
example for this. As we have scen, the chromatic number of Petersen graph
is 3. Convince yourself—you need not prove it—that it does not contain 2
clique of size 3, i.e., a subgraph isomorphic to K3. More generally, in 1955,
Mycielski proved that, for any integer k, there exists a k-chromatic graph
without triangles. The proof of this result is beyond the scope of this course.
However, it is nol difficult to prove the much weaker result that if the
chromatic number of a connected graph is greater thaw 2, it contains an odd
cycle. We leave this as an excercise for you, along with some more exercises,
Lo Lest your understanding of the material we have covered so far.

E5) Show that if x(G) > 3 for a graph G, it contaius an odd cycle.

EG) (a) Find a 3-colouring of the figure in Fig.6,

/ NN
o
f/i’
Fig.6

(b) What is the cliromatic number of the-graph in Fig.6?



E7} TIind the chromatic number of the following graph.

Fig.7

E8) Construct a graph with chromatic number 5.

Recall that, we have sliown that any 2-colourable graph is bipartite. How
was this done? We had put ali the vertices. having the same colour in & single
set. There were two colours and so we got two subsets. They were disjoint
-because no veriex can be assigned two colours.

We are going to extend the ideas to n-colourable graphs. We do this through
the concept of colour classes. First. let us define the colour classes. of a
colouring,.

Delinition : For a k-colouring of a graph G, consider the set

€= {x € VIGi | x is assizned the colour ), for 1 < i < k. Clearly,

CinGy =g, Lo every i 5 Joand VIG) = Cyu-- U, If x(G) =k, cach of
the & colours is assigned (o ot Teast one vertex . (\Why?) So none of these
sibsets v empry Therefore, we set i partition of the vertex sel V(G) into k
nubuadly disjoint non emnpty subsers. The subsets Cy.---, Gy are called the
colour classes of G given by the colouring. '

S0, the colour classes of a 2-tolourable sraph pives i bi rartition of Lhe vertex
: ALY sldaph g

set ol the granhomaking i Dipartise

Let v now-1ook atsome cxnnples of colour classes.

LExample 92 P the cobags ehwses i the g difforens colonirings of the

siene mraph The colour clnsses given by the colonriug i Fig.8(a) atc
Cypo={x) )4
e {_\:-_:,.\:5,:-:.—}.1:-_;.‘.\:_“;. .

You can check thi Oy = {x0xq, 5. Xig ). Co = {x), X0, g, 32, 514 ), Cy

fxxn wg) O = Loaxg) ol Co = Ix5, 3004 ) ave the colour classes

NG N g e K e b Oy = s g xgy, v ) aned

correspanding to the colonring in Fig 8(h).

LI |

Colouring graphs

a (G -colouring,

Cdefined fon any coleuring

The calonr cinsse ¢an bao

ol wgtaph G, net just for
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X3

Xia

X5

)
Fig.8

Try the next exercise to test your understanding of the above example.

E9) Colour the following graph in two different ways and give the colour
classes in each of the cases.

Fig.9

We have seen that any colouring of a graph G gives rise to Uiie colour classes.

You know that, il x,y are two vertices in a colour class C;, then xy € E(G).

So, cach colour class consists of mutually non-adjacent vertices. We

now give a name to those subsets of the vertex set of a graph with this

property.

Definition : A subset S of the vertex set V{G) of a graph G, is said to be an
independent set if any Lwo vertices in S are non-adjacent. An independent [

86



set is called maximal if it i5 not contained in any other independent set.
,The number of vertices in a largest independent set of G, is called the
'independence number of the graph G and it is denoted by afG).

Colouring graphs

Example 3: IFind three different Iraximal independent sets in the graph
given Fig 10,

Fig.10

Solution: In Fig.10 we have the following maximal independence sets:
{VS: \-5} 1 {\'51 Y1, Vg, Vi, “?} y {Vl » ¥2, vy, V4, Vg, VT} p

We cheek thag {vs,vs} is a maximal independent set. This js easy to sce
because all the other remaining vertices are adjacent to one of these two
vertices. So. il any more vertices are added the resulting set will no longer

* % %

Now test your understanding of independent sef by tryi:ig the following -
exercise: - ;

I£10) Find an independent sct of cardinality 4 in the graph given below:

Figar = : )

LT Pind s (G for 1l sraphsiaiven ir Mig.7 and Fig.§

Remark: We suw that bt a _c:ul_our cliss ol a colouring and inﬁcpcndm{t
seLs frave L property that any two vertices in it are lineariy independent. '
However, swhile colour classes depend OII_E!.‘[_IEI.I-'HCII‘I{L[‘ colouring, independent
scet does nat. This is the dillerence he't\-.'(:cn_tlz{isc two concepts. ) ) o
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Recal| that,
8(G) =

min{dg(v) | v € E(G)}

A(G) =

88

max{dg(v) [ v € E(G)}

13.2.2 Bounds for Chromatic Numbers

In this section we will prove some bounds for the chromatic number of a
graph in terms of A(G). For this, we need the concept of k-critical graphs.

We will introduce you to this concept through an-example. Consider the
graph K4. If we remove a vertex, we get a graph isomorphic to the graph in

.Fig.12(a).

@) . ()

Fig.12 Graphs obtained by removing a vertex or an edge from K,
If we remove an edge, we get a graph isomorphic to the graph Fig.12(b).
Both the graphs have chromatic number three, as you can easily verify. Also,
any other proper subgraph of K4 is contained in one of these graphs. So, the
chromatic’ number of any subgraph of Ky is stiictly less than that of K4
which is 4. This shows that K4 shows that Kq is 4-critical, as the following
definition shows.

Definition : A graph G is said to be critical or k—critical or critically
k—chromatic if (G} =k and x(H) < k for every proper subgraph K of the
graph G.

Thus, in the discussion before the definition of k-critical graphs, we have
shown that Ky is 4-critical. Let us look at one nore exampie.

Example 6: Show that Grotzsch graph is 4-critical.

Solution: Refer te Iig.4 for Grdtzsch graph. Let us remove a verlex of
this graph. Depending on the vertex, we get a subgraph isomorphic to one of
the three following graphs:

(2] han

Fig.13 Graphs obtained by removing a vertex from Gréizsch graph

Fram the colouring given in these figures, it is clear that Lhese praphs arce

3 —colourabie. Morcover, ali of them contain S—cycles, Lhat is, they are not
2—colourable. Thus, their chromalic number is 3 < 4 = x(G). This mcans

that x(G — v) < x{G), for every vertex v of the graph G.

Now, if we remove just onc edge of G, without removing any vertex, we get a



subgraplh isomorphic to one of the grapls in Fig.14. The dotted lines
indicate the edges we have deleted.

Colouring graph:

graph.

The 3—calouring of the subgraphs that we get is also given in the figure.
Morcover, these graphs also contain 9—cycles and hence have chiromatic
number 3. Thus, x(G -¢) < x{G), for every edge ¢ of G, Bul then, every
proper subgraph of G is in fact subgraph of one of the six graphs in Fig.13
and Fig. 14 Thus, x(H) < x(G), for every proper subgraph H of the graph
G. So, the Grétzsch graph is d-critical. - .

LI 2

Here is an exercise to test your understanding of the definition of k-critical
graphs. ‘

E12) Show that K,, is an n-critical graph.

EI3} Check whether the Petersen graph is J-critical.

Now, consider a graph with chromatic nuinber k. Need it be k-critical? The
following example will help you answer Ehis question. . T

Example 7: Show that the graph given in Fig.15 s J-chiromatic, but ivis -
nol 3-critica]. T

- - - Fig.15

Solution: AW ean assinn [THvg vy el o To v vy o vy This
SAVES S U e colonriug ol the oeanl This vinpiy g S-ehrominiie beciuse it
Contiing wodoevele {y Viova b Ml e e vertex vao the resulting
sl sull s elnomatic number 3 becase JCsall contins (e 3-cyai

\ ,I‘-'I., Vs nol (O has a subgraph which has il siaoe cliromatic number as G,
So, It cannor e Berilienl ’

r s oy

- Now Lhat we Rnow that a wrapl witly chrunsatic nunber X necdn™t be ”
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3-critical, you may wander if jt will contain a k-critical subgraph. The
[ollowing result tells you that this is true.

Theorem 1: Let G bea graph with chromatic number k. Then, it has 5
subgraph which is k-critical,

Proof: Consider a graph G with x(G) = k. If it is k-critical, we are done.
If it is not, it has a vertex v such that X(G-v}=k IfG-vis k-critical, we
are done. Otherwise, we can remove another vertex and get a subgraph with
chromatic number k., We repeat the process. In the worst case, we will be
left with a k-chromatic subgraph of G on k vertices. If we remove any vertex
from this graph, we will get a graph on k — I vertices which is
(k-1)-colourable. So, the k-chromatic subgraph on k vertices that we have
obtained is k-chromatic. )

We now discuss an example that illustrates Theorem 1.

 Example 8: Find a 3-critical subgraph of the graph given in Fig.15.

Solution: On removing ?;he vertices v and vj, we get a graph isomorphic
to I{3. This is 3-critical.

*+ % &

Here is a related exercise for you to try!

£14) Find a 3-critical subgraph of the Petersen graph.

Let now make table of the values of x{G) and A(G) for some of the examples
we have discussed so far to see if we can find a relationship between these
two quantities.

G X(G) [ A(G)
Grotzsch graph. 4 5
| Petersen graph 3 J
Dodecaliedron 3 3
Cs 3 2
K, 4 3
K 5 4

Observe that, except for Cs, Ks and K, all the other graphs satisfy the
relation ¥(G) < A(G). In 1941, R. L. Brooks proved the following result,

Theorem 2: Lot G be a connectod graph whicli is neither an odd cycle nor
& complete graph. Then,

X{G} < A(G)
We will not prove thearem 2 in this course. However, we will prove the
[ollowing weaker result.
Theorem 3: For every k—chrematic graph G,

x(G) < A(G) +1

Let us now illustrate the application of Brooks® theorem through au example.

Example 9: Find the chfomatjc number of Lhe graph in Fig.16.



Zal

& .
Fig.16

Solution: T2 maximum degree A(G) is 4 for this graph. So, by Brooks’
thearem, Lthe chiromatic number at most 4. But, it has a subgraph
isomarphic 1o Ky, (the subgraph formed by the inner triangle and the vertex
in the centre.;. So, its chromatic number is at least 4. Therefore its
chromatic nu:aber is exactly 4.

¥ ¥ %

Remark: The bound given by Brooks’ theorem may not be as good as it
was in examp:e 9. For example, in the case of Kin, &K p) =1, x(K ) is
2. So the difference x(Kin) — A(Ky ) =n -2, is large when n is large.

We now prove 2 lemma Lhat will be used in the proof of theorem 2.

Lemma 1 I7 G is a k—critical griph with minimum degrce &G}, then
(k—=1) <6G-. )
Proof: If possible, let G be a k—critical graph with 8(G) < (k—1). Let

-v € V(G) such that §(G) = dg(v). Since G is k—critical, x(G —v) <(k—1),
that is G — v has a (k — 1)—colouring. Since dg(v) < (k — 1), v is adjacent te
fewer than k — 1 vertices. So, there is at leasl one colour [, among the k —1
colours, that is not assigned to any of the k ~ 1 vertices adjacent to v. We

can assign this colour to v to get a k —1 colourmg of G. This contradicts the -

fact that x(G = k- Thus our assuinption is wrong, that is, §(G) > (k — 1).

Corollar} 1 zwvery k—chromatic graph G has at least k vertices of degree
> (k—1). _ )
Proof: Let O be a k—chromatic graph, that is, x(G} =k: Let Hbea

k—critical subzraph of G Thus, |VH)| > k and d(H} > (k - 1) This means

T Lhat every veriex x of 0 :;a.l,lsf\ Lhc property that
(1( {x) > dyis g S(HY > (k- There ave at least k such vertices. This

proves Lhe rr:m;::_
We now prove heorem 2,

Proof of Theorem 2: Usiug Carollary 1 Lo Lemma 1, choose @ vertex
x @ V(G). suct: that dg(x) > (k— 11, But then, A(G) > dg(¥) > (k —.l):
that is x(G) = An"(.)—.—l_ |

[0 the introdser s, we mentivned that the map colouring problem can. be
reduced ta fiefine the minimem eofonrs ueeded Lo colour a specia] clasy of

staphs cadbed = Tar araphs, T the soxr section, we defise etz evaphs and
] N 1 [ =3 I -

prove some oo resnlis thad e be nseful in vhe soudy of map colouring

probloem,

3.3 PLANAR GRAPIHS

It transistor radios and television ses. you must have seen printed (.1r(,111t
: I)m,rds These boards have slots Tor various components -and thes'o slols arc

Colouring graphs
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connected to each other. The connections between these slots must be made
in such a way that no two connections cross each other. Given an electronic
crreuit, is it always possible to design a printed circuit board corresponding

to it? '

This can be formulated as a problem in graph theory. We replace the
electronic components by vertices and the conhections between them by
edges. If the resulting graph can be drawn in such a way that no two of the
edges cross each other except at the vertices, then we can design a printed
circuit board for the given circuit. Graphs that can be drawn this way are
called planar graphs. '

We begin our study of planar graphs in this section. We begi?l this section
by defining planar graphs. After giving some examples, we will prove some
basic results on planar graphs like Euler's formula. From this, we will derive
some necessary conditions for a graph to be planar. Using these conditions,
we will show that K34 andﬂK5 are non-pianar.

Let's start by seeing what a planar graph is.

Definition : A graph G is called planar if it can be drawn on the plane in
such a way that no two edges cross each other at any point except possibly
at the common end vertex. Such a drawing is called a plane drawing,.

Here are some examples of planar graphs. In the first row of Fig.17 we have
given the five regular solids called Platonic solids. In the second Tow, we
have given the corresponding graphs. In each of these graphs, the vertices
correspond to the vertices of the corresponding solid and the edges
correspond the edges of the solid.

Y1
¥y
\'4
VI v
vy 7
tetrahedron
{a)

<3 "

tetrahedron
(A)

I"ig.18

Note that x and y are
Jjust points in the plane,
they are not vertices.

92

cube octahedron dodecahedron icosahedron
(b} (c) (d) {
. cube oclahedron tlodecahedron icosahedron
(1) (C) (D} (E)

Fig.17 Regutlar solids and their graphs.

Next, we introduce the concept of « region. Luok at the tetrabodron in

g 17(a). It has four faces. The graph corresponding to it is given in

Fig 17(A). It divides the plane into four faces or regions. Similarly, the cube.
given in Fig 17(Dh) divides the plane into six regions.

In all the above cases, it is very clear what the different regions are. But.
look at the graph in Fig.18. Into how many regions docs it divide the plane?
Two or three? Do the points x aud 'y lic in the same region or in diflcrent
region? To avoid such cohfusion we need to define the concept of a region



rigorously. Here is the definition of a region. Colouring gra i

Definition : Given a plane drawing of a planar graph G, by a region or
face of G. we mean a maximal portion of the plane for which any two points
a,b in it can be joined by a simple curve in such a way that, neither does the
curve have any point in common with the curve representing any edge nor
does any vertex lies on that curve, that is, the curve lics completel, in that
portion of the plane. If R is a region of a planar graph G, by the boundary
of R, we mean all those points x in the plane carresponding Lo the vertices
and edges of G having the property that x can be joined to any point in that
region by & simple curve all whose points, except x. are in that region. There
15 always one unbounded region and it is called the exterior region of G.
Any other region-is called an interior region.

Let us go back to Fig.18 again. Armed with this definition, we can answer x /e
the question we raised. As vou can see in Fig.19, the points x and y can be

joined by a curve that does not cross any of the cdges. So, there are only two Y
regions, the region inside the triangle and the region outside it. Both the Fig.19

points lie in the exterior region of the triangle.
Let us now look at an example to understand these concepts better.

Example 10: Find the number of regions in the graphs given in 20,
including the exterior region.

(a) - (b
Fig.20 '
Solution:  The graph in Iig.20(a) has 8 regions. In the grapli in Fig.20(b),

there are 3 regions.

4 5w

Check your understanding now, Try the following exercise. -

Ei3) Find the nuciber of regions in each of the graphs i Fig.21.

\'l
\'2
. \‘U -
S
_ - ~
& &= Xy Va
N ‘\\—\'“ v, ”
\G / //’
/ -
L
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Lel us now calculate the quantity p — q+r for all the planar graphs in Fig.17
and for the graph in Fig.20(b):

Plar|p—qg+r
IFig.20(b) 6173 2
K4 416 1]4 2
Tetrahedron [ 4 | 6 | 4 2
Cube 81126 2
Octahedron 6 {12]| 8 2
Dodecahedron | 20 | 30 | 12 2
Icosahedron | 12124 [ 18 2

As you can see, p —q +r is always 2 for all these planar graphs.
The following theorem, proved by Eulet in 1736, proves our observation.
Theorem 4: If G is a connected planar (p, q)—graph, then for any planc
drawing of G, the number r of the regions of G is constant and

p—-q+r=2 (1)
Proof: We apply induction(See Unit 2} on the rumber q of the edges of G.
For our convenience let us write down the equation in words also, .

Number of vertices — Number of edges + Number of regions = 2 (2)
for any planar graph G.
If q =0, then G just consists of p isolated vertices. Hence, r = | and the
formula holds. Now, by induction, assume that the formula holds for plane
drawing of a (p, t)—graph for every t < (qa—1), and suppose G is a
{p,a)—graph. If G is a tree, then P=9+1and r =1 so that the formula

holds. If G is not a tree, let ¢ be an edge that lies on a cycle of G and
consider the subgraph G — ¢ of G.

When we remove an edge e, we join exactly two regions to make one region
ot of them, that is G — ¢ has p vertices, (¢ — 1} edges and (r — 1) regions.
This is illustraled in a particular case in i 22

cl\w/ N‘Q/D
(i) (1)
IMig.22
In [F1g.22(a), there ave 4 vertices, 5 celges and 3 regions, After teoving Lhe

adge labelled e, Uhie regions 2 and 3 merge amd become asingle resion. The

new graph in Fig.22(h) has 4 vertices. 4 edues and 2 regions.

Now, by induction assiwoption. the relation in Fepn (1) holds (o this G -«
Using, the form given Fapn (2) fon €0 ¢, we wer

2 = Number ol vertices - Ninnber of cdues 4 Ninhoey of eenions
= D -{qg=iye (00
= DAt

e, p—ag4r=2. [Iur. P g and rare, respectively, e muanber of ver Lives,

Lhe nuniber of edpes and the minibon of remons i GLThis proves the resals

for the graph G.

From the formmla in Equ.(1), we have ¢ = ¢ — P+ 2 Stoee poand ¢ are lixed
ouce we {ix a grapl, it also follows that the nuober of resions a0 plane



drawing of a plavar grapl is independent of the plane drawing. Colouring gray:hs

. -1
Recall that a graph on p-vertices can have up to E{—DT——) edges. In the case

of planar graphs. there is a much better bound. We give this bound(without
proof) in the next theorem.

Theorem 5: I G is a planar (poq}—graph, with p > 3. then q < 3p - 0.
Further, if G is also bipartite, we have q<2p—+

So far, we liave given many examples of planar graphs. But, we haven't
given any example of non-planar sraphs. \We now make use of the bound
given in theorem 5 in the next example to pive such an example,

Example 11: Show that Ks is planar.

Solution: Suppose that K; is planar. Then the number of edges and
vertices in Ky satisfy the relation q < 3p — G given it theorem 5. Ks has 5
vertices and 10 edges, 50 10 < 3 x 5 — 6, i.e. 10 <9, & contradiction.

=% 3

Try the next exercise to check your understanding of theorem 5.

[£16) Verify that K33 is non-planar using theorew 5.

You must have noticed that, so far, we have given only necessary conditions
for planarity. In the next subsection we wil give a necessary and sufficient
condition. :

13.3.1 When is a graph planar?

We have alrcady seen that Kg and Ky 3 are not planar. To prove'this we used
a necessary condition derived from Fuler's formula, .However, the condition --
is not sufficient. For example, in Giérzsch graph. p =11,'q = 20.and * .

20 £33 — 6 = 27. So, the condition in Theorem 9 is satisfied. Bul, as we
shall show later, Grétzsch graph is not planar. Is there-a necessary and
sullicient conglition for a graph to he planar?- :

Yes! In 1930, K. Kuratowski, a Polish mitthematician, proved o necessary

and suflicient condition for a graph to be planar We will state this theorem
and illustrate its application Lhiroughan example. To understand the
statament, let us firse consider Fig.23 below. _

v Y - - ) A \

H x 0c

N
22— . . . -

{ui {h o [T

Fr1e.23 Subdivision of a graph

I this figore, we have stacted wit b aned inseried vertices of denree 7
sotne of e existing odees. Far exanpbe i P28 wo Livee renened e
eeloe v, adeded w0 new vertex aand two more ew cdues va o o We Live:
sinsilarly altered the graphs in "t 23 (1). Fig 2800 ) Pl 23 () el Mg 23 ().
Ly this wily we have ot subdivisions of te grapl i Fig. 23(n). as you shall
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HOW 50,

Definition : A graph G’ is a subdivision of a graph G if it can be obtained
by adding one or more new vertices of degree 2 on the existing edges of G,

In other words, we 'subdivide’ sotne of the existing edges,

Note that, if a graph is planar, all its subgraphs are planar. Equivalently, if »
subgraph of a graph is non-planar, the graph itself is non-planar. Also, if a
graph G’ is the subdivision of a planar graph G, then G’ is also planar. If a
graph G is non-planar, any subdivision of G is also non-planar, So, if a
graph contains a non-planar subgraph or a subgraph which is a subdivision
ol a non-planar graph, it is non-planar. For cxample, the graph in Fig.24(a)
is non-planar since it contains as a subgraph a subdivision of Ks, (shown by
dotted lines)which is a non-planar graph.

Fig.24

In proving the non-planarity of the graph in FFig.24, is it just a coincidence
that it had a subdivision of Ks as a subgraph? No! Kuratowski
theorem(stated below) says that a non-planar graph has to contajn a
subgraph which is a subdivision of Kg or K3,3. So, we need to restrict our
search for non-planar subgraphs{or their subdivisions) to only these two
graphs.

\We now state Kuratowski’s theoren,

Theorem 6: A graph G is non-planar if and only if it contains a
subdivision of Ky or Ky,3 as a subgraph.

Let us now look at an cxample Lo see how this thearem can be used Lo prove
uon-planarity.

Example 12: Show that the Grétzseh graph{See Fig.4} is non-planar.

Ag - %2

i -

Ay Ay

(h)

Fig.25 Non-planarity of Grétzsch graph.

Solution: From Kuratowski's t.l‘:'eorem we know that we have to look for a
subgrapl which is a subdivision of Ks or K4..But, in this case, which of



these two should we look for? Note that subdivision of a graph does not
aflect the degree of any of the vertices of a graph; it only introduces new
vertices of degree 2.

S0, if our grapl contains a subdivision of Ks, it will contain at least 5
vertices of degree 4. If it contains a subdivision of K33 it will have at least
six vertices of degree 3. Let us first check if our graph contains a subdivision
of I{3 3. But, the Grotzsch graph contains ouly five vertices of degree 3,
namelx. vy, yo, yu, y5 and ys. So, it cannot contain a subdivision of K3 3. So,
let us cz.zek il it coutains a subdivision of 5. K5 contains 5 verlices of
degre: 2. Tu Gratzsch graph also thiere are vertices of degree 4, namely x;.
X2, X3. X4 and xs5. Lel us remove the middle vertex, labelled as z. We get the
graph given in Fig.25(a). As you can see, it can be abtained from Ks in
[Pig.25(h) by adding degree two vertices to XXz, X1X4, X2X4, X9X5, X3%5 and
X1X5. So. iL is non-planar.

£ %%

Now, an exercise for you to try!

E17} Show that the Petersen graph is non-planar.
(Hint: Consider the graph obtained by removing the two horizontal
edgzes.)

In tue next seclion we will discuss the map colouring problem. We will show
that this can be reduced to colouring of planar maps. We will also show thart
any planar map can be coloured with five colours.

13.4 MAP COLOURING PROBLEM

The four colour prablem asks whether any map can be coloured with 4
colours. We begin this section with a brief discussion of the history of the
four colour problem. We then show how to construct a planar graph
corresponding to a given map in such a way that colouring the graph is
equivalent to colouring the map. So, if we can prove that any planar map
-can be coloured with four colours, we would have proved that any map can
colowred with four colours. Appel and Haken proved that four colours are
criougiy o colour planar graphs in 1979, so the four colour problem is now
salved. They used nearly 1200 .ho_urs ol tommputer time on some of the fasiest
computers available at that Lime, This gives an idea aboul the complexity of
the proo? and we will not be giving the'prool in this course. However, we will
prove il weaker resull that five colours are always enougli to colour any
plutar graph, Now, for some history!

Prancis Gubrie comnunicated the four colour probiem to De Morgan
throngh Lis hrother Fredrick Guthrie, who was a student al the University
College. London at that time. I appeared in print for the first time-when
Cavley prblished apaper on Chis problei in Raval Geographical Sociely i
ESTUC I vhns paser, e outlines where the difliculties lie in this [rublewn. Tn
Hic s vear, AL Kempe pubhished a prool of the theorem in Ameriean
dovrnmd F M henaties) However, iy 1846, ..k Heawood pointed ou &
Prisleke e [Kempe's prool, He alsu showaed Uit the prool can be modified to
stiow 1l five colomrs are enough (o colour any map. Since thew, oy
nicthenneiciis, O D, Rickhoft Voellen, Ore, Franklin arnong others,

contribwred to the solntion of Lhe problem. Appel and Haken, finally solved

t.Iu:J:m_I)l(:m 1 1974,

Colouring graphs
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We now show how to construct a planar graph corresponding to a given map

in such a way that colouring vertices of the graph is equivalent to colouring
the map.

Consider the map given in Fig.26(a) below. There are 10 regions in the map,
A,B,C,D,E F, G, H, Iand J, including the exterior region. In this map we
add a vertex corresponding Lo each region of the map. (See Fig.26(b).) Note
that we have added a vertex corresponding to the exterior region, namely, J.

i
I [
A H A ea od L AN
D D h H
c o .
B G B C & G
L ]
- h .f
F P
E E F
(a) ‘ (b)
Fig.26

We join two vertices if the carresponding regions have an edge in common.
For example, we have connected a2 and ¢ because they have a common
boundary(see Fig.27 Lelow).

Fig.27

We have not connected Lhe vertices a and ¢ becanse Lhey do not have a
common boundary. We do not connecl Lwo vertices, if the corresponding
regions share only a poini und not a boundary, For exainple, we lunve nol
connected ¢ aud g by an edge for this reason. As YOU €an sec, we pei a
planar graph and colouring the graph is cquivalent Lo colouring Lhe map.
{We assunie that the exterior region of the map is coloured with a single
colour.} So, Lhe four colour problem can be stated as follows:

Is it possible to colour any planar graph with four colours? The
following theorem answers this quéstion. ‘

Theorem 7 [Appe_l—Haken](lQ'?Q)-: Au'y planar graph can be coloured



with four colours.

As we mentioned in the introduction we will not be proving this theorem,
Can we do with three colours always? No! As we have seen, Ky(it is the
graph correspondiag to a tetrahedron) is planar, but it ca.inot be coloured
with three colours.-So, we cannot tmprove the result in Theorem 7.

We now prove a result that will be used in the proof of the five colour
theorem.

Theorem 8: Tor every planar graph G, the minimum degree §(G) is at
most 3.

Proof: If possible, let G be a planar graph such that 6(G) > 6. But then, by
Theorem 5,

6p < > dg(x) =2q < 6p = 12.
x

This is impossible. Hence, é6(G) < 5.
We can prove the five colour theorem now,
Theorem 9: Every planar graph is 5-colourable.

Proof: Let G be a planar graph on p vertices. We prove the theorem by

induction on p. If p < 5, then the theorem js clearly true. Now, assume that
cvery planar graph with (p — 1) vertices, p > 1, is 5-colourable. By Theorem
8, 6(G) <5. Let v be a vertex of G such that 8(G) = dg(v). Consider G — v.
By induction this is 5-colourable. Let us take a 2-colouring of G — v, In this

colouring all the vertices other than v have received some colour. We have to _

get a 5-colouring of the graph G Ly changing the colours assigned to the
vertices other than v, if necessary, and assigning some colour to v.

If dg(v) < 5, then there are at most four vertices adjacent to v in G. Hence,
there is at least one colour [§ not assigned to any of the neighbours of v. By
assigning [i) to v and retaining the same colours for the other vertices, we get
a 3-colouring of G. - :

If dg(v) = 5 but the neighboucs of v in G utilise only four or-less colours
then as before we can complete a S-colouring of G. '

Now suppose dg(v) = o and the neighbours of v in G utilise al] theé five
colours. Renumbering the vertices if necessary, we-can suppose that
ueighbours vy, va, vz, ve, vs of the vertex v arce numbered in such a way that
the colour [ij is assigned to the vertex vi and they are arranged around v in a
plane drawing of G as shown in ["ig.28: ’

Fig.28

Lol 5 = {x € V(CG) : i is assigued to x}. Consider the vertex induced
- subgraph I 5 of G induced by 51U 5;.

Case 1: If the vertices v and v3 belong to two different components of Hyg,

“themn take-Lhe -component(sce unit 11 {or the definition of cormponent- of a -

Colouring graphs
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graph) containing v;.

Fig.29

Interchange the colours only in this component. In other words, assign the
colour [ to all the vertices that arc assigned [3) and assign {3] to all the
vertices that are assigned [[l. In the modified colouring the vertices vy, v3
both receive the colour [31. Now we can assign the colour [1] to the vertex v
and get a S—colouring of G.

Case 2: If v1, v3 belong to same component, then there is a path P joining
them. Because of the colouring, the vertices of this path must have received
colours [} and (3] alternately, starting with colour 1 at v, and ending with
colour [3} at vj.

’
v’qt-
A7
- I
ra
- |
7 1
@ 1
¥s |
&
Vs

This means the union of P and {vyv, vav} is a cyele C (say). Morcover, the
verlex vy belongs Lo the interior region created by this ¢ycle and the vertex,
vy belongs Lo the exierior region created by this cycie. You must remember
that the vertices of this cycle, other than v, have received colours ()] only.
Now, consider the vertex induced subgraph Hy ¢ of G induced by Sq|JSy. If
there is a path joining vy and v4 in this subgraph, then vertices on it will
have colours [2, [ only. But then it has Lo cross the barrier created by the
cycle C. Where can it cross? All tlie-vertices of C have colours 1,3 only. So
there eannot be a common vertex to use. This means there cannot be a 1-Jut.11
Jjoining vz and v4 in the subgraph Hy 4, that is the vertices vy and v; belong-



to different components of Hp 5. Instead of taking H, 3, we take Hy 4 and go
back to the Case 1 and complete the S5—colouring of G.
Thus G is S—colourable.

If we can colour the vertices of a graph, why can’t we colour the edges of a
graph? Is it interesting? In the next chapter, we will answer this question,

Colouring graphs.

13.5 EDGE COLOURINGS.

n this seciion, we consider the problem of colouring the edges of a graph in
such a way that no two adjacent edges receive the same colour, We will not
prove any of the important results in this subject although we will state
sonie of them. The purpose of section is to give a brie{ introduction to edge
colouring. We begin by defining edge colouring. -

Definition : A k-edge colouring of a graph G is an assignment of k
colours to each of the cdges of G in such a way that no two edges incident
with the same vertex ‘have the same colour. A graph is k-edge colourable
if there is a k-edge colouring. The minimum number of colours required to
colour a grapl is calied the edge chromatic number of G, usually
denoted as y'(G). .

Let us now look at some examples of cdge colouring. The easiest case is the
edge colouring of those graphs which have edge chromatic number 1.

Example'13: Tind all the graphs that have edge chromatic number 1.

Solution:  Suppose a graph G has edge chromatic number 1: Since the
edge chiromatic number is one, the graph is l-edge colourable and no two
edges share an end vertex, that is, the graph must be union of some isolated
vertices and soine mutually disjoint edges. Conversely, graph which are
union of isolated vertices and mutually disjoint edges hdve edge chromatic
numnber 1.

. ¥ 4 3
Example l4—:l -Colour the e(]_g_cs ol tne gra_phs Ki. Ki, Ks.

e
g 71

S

Fig.31
The colonring ol Ky K. K- s viven i Fied o Here oo twe adjacent edees
hivver received sanie colonr Ly adl e cies, we hive 1sel leist possible

colours,

Coe - . -
Example 15: Give a edae colouring of Potersen granh,

Solution:  Fie32 gives o J-edge colonring of the Petersen graph.
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Fig.32

Again no two adjacent edges have received same colour. You can quickly
check that three colours will not be enough.

k¥ ¥

Example 16: Give edge colourings of all the trees on 5 vertices. -

2 CIIl Bm-O

| @
m

(1]

b

Fig.33
Again, we have used the least possible number of colours and no two
adjacent vertices received same colour.

4k

Example 17: I'ind the edge-chromatic number of C,,.

Fig.34

L Solution:  As in the case of vertex colouring, if u is even, the edpe
chromatic number is 2. We can colour the edges alternately with the Lwo
colours. If uis odd, Lhe edge chiromatic number is 3. We have illustrated Lhis
in the case of G and Gy in Fig.34.

. 8
If G is agraph and v € V(G) such that dg(v) = A(G), then ol the edges
incident on v must receive dilferent colours, Heuce, auy edge colowring of G
will need at least A(G) colours, that is,
alG) = x (G) (3)
Regarding an upper bound for x'(G), in 1964, Vizing proved the following
result. ’

Ll



Theorem 10: For any graph (G, we have

X' (G) S A(G) +1 )
From (3) and (4) it follows that
A(G) < x'(G) < A(G) (5)

Irom (5}. it follows that there are ouly two possibilities for the edge
chromatic number of a graph G, cither A(G) or A(G) + 1. Thus, this resuls
divides thz set of all graphs into two classes. A graph G is said to belong to
class 1, if ' (G) = A(G) and it is said to belong to class 2, if

X (G) = A(G) + 1. We often say that G is a class 1 graph or G is a class
2 graph. The problem of determining the class of a graph is called the
classification problem. We now discuss some of the results known in this
direction.

Theorem 11: The edge chromatic number of Knisnifitis odd(# 1) and
n—1ifitis even.

Recall that, K,, is n — I-regular. So, A(K,)=n—1. So, Ki belongs to class
1ifnis even and it belongs to class 2 if it is odd.

Regarding bipartite graphs, in 1916, Kénig proved that x’(G) = A(G), in
other words, it is a class 1 grapl. '

In 1977, Erdés and Wilson proved that if p(n) is the probability that a graph
on n vertices selected at random belongs to class 1, then p(n}) — 1 as

n — oo, that is almost all graphs belong to class 1. However, large
familics of class 2 graphs are known, ‘

E18) What is the edge chromatic number of Kmna?

E19) Consider following tree T.

8

/

_a_

BECSEEAN

Fig.35

Give an explicit A(T)— colouring of T

We have now reached the end of this unic. Let us now smmmarise briefly
what we liave learal so far. ; - -

13.6 SUMMARY _-

Dondids gt e defiued: ) .
-a) Verlex colouring of a fraph: A vertex colouring of grap]_l 18 i
assigninent of coloues to verticos in such oowiy thad no (wo acjicent
vertices receive the sane colonring. )
b)  Vertex chromatic number of a graph: The chrotnatic numnber of a
graph is the minimuin number of colours required to colour the araplh.

Colouring graphs
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g)

A colour class of a colouring: For each colour of a colouring, the set
of all vertices that are coloured with that colour is the colour class of
that colour.

Independent set A subset of the vertex set is independent of any two
vertices in the set are non adjacent.

Planar graph: A grapl is planar if there is a planc drawing in which
no two edges cross each other, except at vertices.

Subdivision of a graph: A graph Gy is a subdivision of another
graph G, if it can be obtained by from G, by adding vertices of degree
two at the existing edges.

Edge colouring of a graph: An cedge colouring of a graph is an
assignment of colours to edges in such a way that no two edges incident'
at the same vertex are given the same colour.

Edge chromatic number of a graph: The edge chromatic number of
a graph is the minimum number of colours needed to colour the edges of
graph.

Class 1 and class 2 graphs: A graph is of class I if its edge cliromatic
number is A{G); it is of class 2 if it has chromatic number AH(G) + 1.

In this unit, we studied:

a)
b)

I

some upper bounds for the chromatic number of a*graph.

Euler's formula for planar graphs, which states that
Number of vertices.— Number of edges + Number of regions = 2
for any planar graph.

Kuratowski’s characterisation of planar graphs which says that a graph
1s planar if and only if it does not contain a subdivision of K33 or Ks.

the four colour theorem(without is proof) which says that any planar
graph can be coloured with four colours.

the five colour theorem{with proof) which says that any planar graph
can be coloured with five colourcs.

the Vizing’s bound for the edge chromatic number of a graph, namely

’

x (G) < A(G) 4+ 1.

13.7 SOLUTIONS / ANSWERS.

El)

Recall that Lipartite graphs were characterised as graphs without odd
cycles. Trees are acyelic graphs, i.c. they do nol contain cyclos ay
siubgraphs and therclore they are bipartite. Since trees are conneciod
and we have assnmed it has atleast fwno vertices, it has chiromabic
namber 2

lsven cycies do not contain odd eycles as subgraphs. So, they are
bipartite. Therefore, they have chromatic number 2.

The chromatic number of an odd cycle is 3. Since it is not bipartite, its
chromatic nunber is atleast 3. We get a 3-colouring of Coypyqy i

follows: Let {v|,va,..., van41} be the _vcrl._c':g: set of Conyrr We 'aésigi:_-!ﬂ .
to all the vertices in the set {v; €. V(Cany1) ] iodd;1 <i:< 2n} and El _



to all the vertices in the sot {vilieven,2 <i < 2n}. Now, V9,41 IS Colouring graphs
adjacent to both vy and vz,. So, we cannot assign [ or 2] to this
vertex. Therefore, we assign the third colour 3 to Vantl.

E4) A thres colouring of Petersen graph is given below:

Fig.36
Further Perersen graph contains a 5—cycle which has chromatic
number three. So, Petersen graph has chromatic number three.

123} Since it hes chromatic number greater than 2, it cannot be bipartite.
3o, it mus: contain an'odd cycle. o ;

EG) (a) A 3-colouring of the graph is given below:

Fig.37

{(b) The chromatic nuniber of this graph is three. We have already
seen Chia Uhis graph has S-colouring. Further, it hos cyeles of
lenstl Do sehurantee s wa Liee aready seen that cyeles of odd

I

lenath Bave chironic numba 3.

E7Y Tu the oy st an Iy T(a), thee wrih mduced by v, Vs, Ve, vr I K. So, it
; Y i ry ) L I : i, = 51 VG, '
hiss aclique of sive 4 and Lherclore we need atlear 4 colours. We get a
T-colouripg i mssizntug ) bo Vi, 2 L v, 03 Lo va, i3 Lo vy, B to v, (1

Lo v anel (@ Lo vy, So, the chiromatic number is d

- 128} The figure given in Fig.38 is S-chromatic, . : ; . -
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Fig.38

The graph in Fig.38 contains a clique of size 5, namely the subgraph
induced by the vertices wy, w2, w3, wyq, ws. So, we need atleast 5
colours. We first give a 5-colouring to the subgraph isomorphic to Ky
by assigning [i] to w;, 1 <i < 5. Next, we assign [2 to vy, @] to vo,[I] to
vz [2] to vq, and [i] to vs.

E9) Two different colourings are given in Fig.39

Fig.39

The colour classes for the colouring in Fig.39(a) are {x1}, {x=2}, {x7}.
{x3,%5}, {x4,%6}. The colour classes for the colouring in Pig.39(b) are
{x1}, {x2}, x3, {x4,%7} and {xs,xs}

E].O) {VI;VZ; V4, \.’5,}

I511) For Example 1, you can see that {xi3,x14, X3, X5, X7, X9, X1} is ant
independent sct and any other set has < 7 elements. Thus a(G) = 7.

For Example 2, you note that for every vertex x;, there are precisely
lwo vertices in G not adjacent lo x;. But those two are adjacent.

Hence, a{G) = 2.

E12) Il we remove any vertex from K, we get K,_; which has chromatic
number n — 1. Let {vy, vy, v3, vq, vs} denote the vertex set of K. Let
us remove an edge from K. Renumbering the edges if necessary, we
can assume that the edge we have removed is viv,. Then, we get an
n — 1 colouring as follows: Assign [1] to botl: v, and v,. For each v;,

<i<n— i
106 2__|_1‘1 1, assign [il.



E13) If we remove any of the vertices Vi, Vg, va,

V4, Vs, (See Fig.40 below)

Fig.40

Lhe add cycle {w, wo, W3, Wy, w5} is unaffe

cted and the resulting

subgraph has chromatic number 3. Similarly, the graph obtained by

deleting any of the vertices VIVa, Vavg, vav
graph which has chromalic numnber three s
cyele {wi,wa, wy, wi, ws) .

[£14) Refer to Fig.40. The odd cvele fwi, wa, wy

subgrapi.

B15)a) 18 1) 7

1 V4Vs. vsvr, we will get a
ince it will contain the add

y Wy w5 b s a 3-crilical -

EI6) Since I-{3‘3 18 bipartite, we can apply Theorem 5. Here P=6and q=09,
But, 2p — 4 = 10 > 9 = q. So, Ks 3 is 1iot planar. ’

E17) The graph obtained by_dclcting the two ho
[Fig 15 (). .

{2)

Fig.41

We b e Fie PR B (1) w0

o i :w"i:if!'.'j‘mj‘r!] AN .'['-:'; t.

B8 Sivee 15,

MK, - AT = M, nl

- BLO) The requived A(T) - colouring is eiven Fig
thad it-is not unigue. -

rizontal edges is shown in

Lt vray oy el e EERRIFY

5 bpar sraph. by Kanig's rasult,

A2 You nmst rerneinler
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