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ELEMENTARY ALGEBRA

. 'Exccllent’ I cried. E!nnqw:y, said e,
Sir Arthur Canar Doyle

This is our firat conrse in aigebra. The word ‘algebra’ tomes from ‘al-jabr’, the Arabic term
for the following process: if onc or both sides.of ap equation comain a negative term, then
this is taken 1o the other sjide s0 a5 to make all the terma positive.

Of course, as you know from your previous sludies, algebra encompdsses thuch more.
Mathematicians through the ceatories have bullt up a buge body of knowledge. We sim to
give you n glimpse into some of it that is basic for stadylng other mathematics courses. This
will also be useful (o you while applying mathematics for solving probiems in other areas.

Ve start the course by introducing you to the basic conoept of scts, which was bom in the
20th century. Then we.wil take you back to the 16th and 17th centuries, when Evropean
mathematiclans were meking grcat discoverles in algebra, Tt was in this petiod that a group
of Iialian malhematicians discovered methods for solving polynomisl equations of degree 3
and 4. This work was also responsible for Lhe discovery of complex numbers. In Unit 2 we
shal! talk about complex numbers; and in Unit 3 about the work of the Jialians, that we just
meutianed.

In the scoond balf of the course we will acquaint you with some algebra that was knowu 1o
suclent Indian, Egyptisn snd Babylonian mathematiclans, namely, the theory of linear
equations. jui the Bakbshali Manuscript {c. 4th century A D), fovnd cear Takshshila, there
are several verses dealing with )lnear equations. We will discuss [incar equations taken siugly, as
well as thres methods for oblaining common solutious for several binear equations. One of
these methods is due to the great mathematician Gauss, Another methed, due lo Cramer,
Involves tie concepl of determinanis, We siiall develop tbs concepd and discuss Cramer's

method, We will go into greater depth about systems of equations in our course o linear algebra,

We end the course with a unit on seme well-known and ofien used inequalities. Some were
known to ancienl mathemnticlans, and some were developed o the 19th centry. We shall
discuss them and see how they can be usefully applied

Now, a few words about Lhe way we have presented the course, It is divided into rwo
blocks. [n each block we bave first introduced you to the block-and given a list of syimnbols
that arc uscd in the block. Then we bave presented the unils of the black. In each unit we
Liave interspersed exercises with the text. They are meant to help you check whether you've
uiiderstood the material that we have discussed in that seclion or sub-section. We have also
given our solutions 1o the exerclses in a seétion 2t tha end of the vnit

At ibe end of each biock we hiave given a set of ratscellaneous exercises covering the
contents of the block. Dolog them will glve you sbme practice and a better understanding of
whatwe have done {n the course, though it is not necessary for you to do them.

A special featurc of Block 1 is an appendix on some commonly used matbematical symbols
and methods of proof The contents of this appendix will be of kelp 1o you for studyiug this
couse, or any other matbematics course,

Now a word about our notation. Each uuit js divided into sections, which may be further
divided jnto sub-scctions, These sections / sub-scctions are nofbered sequentially, 25 are
the exerclses ind importanl equalions in a uniL Since the insierial in the different units is
beavily interliuked, we will be doing a lot of crass-referencing. For this we will be using the
notation §¢<. x.y to mean Section y of Unit x.

Awnther mmn'l.llmrv r'.nrnmnenr of thic cruimee icike ac.:mnmilnl whirh rnvere the whnle
comse. Your acadzrinie counsatior will evatuste i and retum i io you wilh deaiied comunenis,
Thus, the assignment is meant to be 5 teaching a5 well 26 an assessment aid.

The course material that we have sant you {3 self-sufficieat. If you have 2 problem ia
understanding any portion, please ask your academic counseflor for help. Aldo, if you feel
Yike studyinp any teple in greater depil, you sy -consult

Higher Algebra by Hall and Knight, Book Palace, 199].
TLis book will be available st your study ceatre.
We hope you will enjoy this course ¢ -
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BLOCK 1 SOLUTIONS OF POLYNOMIAL
EQUATIONS

For centuries » b:sjc concept in mathemnatics bas beea that of pumbess. But, the mathematicians
of the 20th century bave developed another very basic concept, that of a set. You will be
using sets and their operations in any mathematica) study. Thus, it isappropriate that we
begin this course with & unit on sets.

You piobably know that various mnhmlldnm areated vegllive pumbers, Fractions and
redl numbers (like V2 ) in respoase 1o a need for them. b Unit 2 we shall ik of a forther
need that Jed to the creation of s new kind of numbez, samely, a complex number, We shall
define a complex nuntber a5 2 binomial &3 well s an ordered pair. Wesha.llalsodmmss the
‘algebn of compley numbers.

1
lu your previqus mathematical studjes you may bave met polynomisl equations of degres 1
and-2. In Unit 3 we shall bricfly recall their definltions and solutlon acts. Then we ahall
discuss methogs of obiaining solutions of polynomial equations of degree 3 asd 4. These
focthods are due to several 16th century mthnmﬁdtm. and arc still applied for obtam.lng
exaci soletions,

After thesc units we have given a set of miscellanecas exeretses that cover the contents of
this block, Doing these exercises is optional; bul the more exercizes you do, the better.

Finally, at tieiend of the block, we havcgwcamnpp:dhthaldulsmﬂ:somc matbeinatical
logic. As you know, mathematics deals-with reasoning aad the Jaws of ﬂ:ought ARy
malheraatica) activity iuvolves the wse of logical procestes for proving assestions o: fol
sotvu:g problemas, [Lalso invalves 1be use of various symbols Lor brevity, This is why we
feit we should briefy discuss some frequently used aymbols. In the appendix we bave done
so. We have also discussed some methods of proof there. .

In the next block you will need a lm of mathematics that you will study in this block. So go
through all 1be vuits carefully.

=



Solutions of Polynomial
Egquations

Notations and Symbols

{x|xsatisfls P} ' thesctofal] x'such that'x satisfics the property P.
N ; the sct of natural pumbers

Z(Z%) " 1he sct of integers (uon-zero integers)

Q(Q") the set of rational numbers (uon-zezo rational numbers)
RR"- the sel of rtal numbers (non-zeso real numbers)
Lof (o the set of complex pumbess (non-zeso complex numbers)
® the empty set

= belongs 1o

¢ . _ does not belong to

S is contained in (s propesly contained in )

g is not coutaines in

AUB union of the sets A and B

ANB Inlersection of the seis A and B

A\B the set of elesients of A thatare otin B

A° complementof A

AxB Cartesian product of A aud B

3 there exists

v, forall

= implies. ,

< . implies and is implied by
T i€ smd only if

- a|b a divides b
afb a does not divide b -
-therefare

je.  hatis

< {%) less than (less tan or cqual to)

> '(a) greater than (greater whan or cqual 10 )

Rez real part of the complex number z

lmz amnguu.ry part of the complex number Z

Agz the argument of thie complex number z

z the complex conjugate of the complex number 2
deg { _ ihe degree of the polysomial £

Greek Alphabets

a Alpha K- Keppa a, X
3] Beta ” A Lamkbda '

v Gamma L Mu

5 Delta v Nu N
. Epailon B Xi v
; Leta 0 Cmicon i
T Bu w1 Pi {coplital ~
) Theta & v
¢ lola - P . - Rho ©

S.igm.a
{capital
sigma)
Tan
Lpsilon
PRI

Chi

Pal

Omegs

v.
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Objectives
12 Sets | .8
1.3 Subsets 10
1.4 Venn Diagrams 12
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1.1 INTRODUCTION

Carsider the coliection of words thal are defined in » givea dictionary, A word either
fonzs to this coliection or not, depending on whetber it 35 Jisted in the dictlonary ot
nor, This collection is an exampie of a set, a5 you will set in Section 1.2. When you stei
studving any pant of matliematics, you will come into contact wilh ore or more sels.
This is why we wanl 10 spend soine time in discussing 2ome basic concepts and propeysics
Selesiiing aels.

Tit shiis untit we will introduce you te various exampick of sets, Then we will discuss soqme
sruiations on sets. We will aleo inlroduce you to Vean disgrams, o pictoris) way oi
wesLribing sels.

As mentioned enrlier, a knowlédgé of the material covered in this unit is necessary for st ying
ity mathematics course. So please study this unis carefully.

And now we will list the objectives of this unit. Aficr going thyough the unit, pease 2xad
this Jist again 2nd wake cure that you have achigved the objectives. ’

Cilectives

Alter studyiug this unit yoﬁ sbould beableto; .

Q

identfy a set;

o represent sets by thelisting method, property mcthod and Vens disgrams;

= perfonm We aprraiois afcﬂmplcmr-maliou. I'_qicln =3t ialscemcuons on seby;,
% prove and aply thie distibutive taws;

¢ prove and apply De Morpali's laws;

« obtsin the Cattesian product of two or mare 5¢15.

Sets



Solutlons of Pelynomial
Equatlons

A paize cuxcher o a nrtiergl
snmber othar thaw cos, whoto oaly
fectors oo eco'sad kxalf,

Thaeynbol € erends for

W', It e sgpested by tha [tatian .

raztheme solelen Posan (1 B3E.1932)

1.2 SETS

You rmay bave often come acrass categories, classes or collections of objects. In
mathematics, a well-defined collection of objects is c2lled a set. The adjectiv: ‘well

‘defined’ means that given an object it should be possible 1o decide whether it

belongs 1o the collection or nut. For cxamnple, the collection of afl women pilots is a set.
This is because any person is.cither a wornan pilot or not, and accordingly sheflie does or
doces not belong 1o the collection: Oy the other band, tize collection of all inteligent human
beings is not a seL Why? Becausc, a paticular human being may scem intelligent 10 one parson
and not to another. In other words, tlere Is no clear criterion for deciding on who is intelligent
and whoe is not. So, the collcclion is not wel-defined.

Now we give some more examples ¢ sets which you may have come aczoss. We will also
use them a great deal im this coursc.

i} The set of natural numbess, denoted by N.

iy Toesetofintegers, denmisd by Z,.

iif)  The sel of rtional nuinbers, denoted by Q.

iv}  The sct of real numbers, denoted by R

In the next epit we will be stud iz another scf, namel:, the set of caraplex numbers,
denoted by C.

You may like to try this exercise now.

L - ' N, - L
E1) Which of tbe collections mentioned below are sets?

a) Ths collection of all zood people iu India.
) The collection of all those people who bave Loew io Mars.
<) The collectiou of prime nombers.
. d) The collection of cven numbers.
¢) The callection of all rectangles that are not squares.

mm

An obje'él that belongs to a sct is called an element or member of that sct. For example, 2 is
an element of the set of natural nusabers.

We normally use capital leners A, B, C, efc., o denote sets, The small letters a,bcxy,

elc., are usually used 0 denole elements of sets.
We symbolically write the smicment  is a0 elesent of the sct Al as a € A

_Ifa ks not sn plement of A of, qquhafcnuy.ndounotbduugwﬁ,wewﬂuituné.ﬁ.

So, for example, if A is the s¢t of prime mmnbers, then S € A and 9 €-A.

Try the following exercise now,
E2) Which of the Tojlowing stateraeats are truc?

1) 02EN
by 2&N

x

9 VZeRr

A =
= YTy

e) \’_;-1. &R
f)  Any circle is a member of the set in E1 (e).

- o T L L S TP, K Y e N7 - ORI s W TR, vy

Now, you know that a number is either rationa: or irsziional, but not bott: So. whst will tae
sct of gl numbers that are ritional a5 W=l as izoucnal te? It will not havs any elrmczaol




The set which has no eleinents is called the empty set (or the vord sel, or the null set). Tt js
denoted by the Greek letter ¢ (phi). '

A set, which bas at least anc element is called 2 non-empty set. We usually describe a
Non-cipty Setin two ways—ihe listing method and the propeity miethod,

In the first inethod we list all the members of the set within curly brackets, For lustance, the
set of a1} patural aumbers that are facters of 18 4s { 1, 2,5, 10 }.

friw it if the set has 1oo many clements 1o be able to write thein a1l down? Iu this casc we
lit - of the elements of the set, encugh to exhiblt some paterm which its elemesis follow. T "
Fuia wnaple, the set N of natural numbers ean be desertbed ns '

M= .2,3,.0 ),
+ and the sct of all even numbers Jying between 10 and 100 is
ML 16,98 )
1ais method of representing scl8 s cailed the lsting method (or abular method, ar roster method)

Int the second miethod of describing a set we describe its elemewts by means af a property
possessed by all gf them. As an exunple, consider the sct S of all nsluml numbers which arc
multiples of 5. This sct § can be written in the form

S = {x|x€ Nsandxisamultiple of 5 }. B (1)

The vertical bar afier x denotes "such tha‘t'. (Some avthors use : instead of | for such that)
So (1) states that 5 is the setof alt x such that xis a mn'u;l number and X is 8 multiple of 5.
We can #l50 wrlte this In a stightly skorter form as

§ - { xEN]|xlsanmltipleof5},0ras

S~ {5n|nE N'}.

This method of describing the s¢1 is called the propecty method or the sel - builder metliod,

In some cases we can use ejther method to describe the set under copsidertion.
For inslance, the set E, of all natural numbers less then [0, can be deacribed a2

E={1,23.4,5,6,7 9, 9} (by e listing method) , or
E = {x|xis & natural ausuber lews than-10} (by the properly method).

Y au can sec that both these sels are the same, since both of them bave precisely the same
clements. This exanple leads us to the following definition.

Definitlon : Two sets S and T are called equal, depated by S = T, ifT every elemeii of S is
au element of T 3i:d every clewnentof T is ag element of S.

Nyv, while Jescribing b set by the listing method, you iust keep the following Importan
roae arks b mjud.

Rewark 1: Theset {1, 2, 3, 3} is the samnce as {1, 2, 3}, That s, while listing the eleracnts
# acl we do not gaib anylhing by repealing tbem. By convention, we do kot repeat theim-

Remark 2: Cousider the sets {1, 2, 3} and {2, 1, 3}. Are they equal or no1? You can sce
that every element of the ficst st belougs to \be second, and vice verss, Therefore, ese sous
pre cyuel. This exampic sbows that changlng the order In whivh the elements six Jahed
doex aut niter the set,

Wrowould atw bk tu ciiphasive wib observabon about ibe Sroperly e piced,
Remark 3 71 15 v be several properizs i dettie the sanwe sl For exampie,
Puils o= a9 |

S 1A X i dn oven prime nuinbaerd.

You may 1k i do the Toliowlug exercises mow.

Scta



Solutions of Polymomlal
Equations

"I 2elustin sef of 28 equation is
the x4 vi'solutrons of the equation

10

E3) Describe the following sets by the lHsting method.
-a) { x | x Is the smallest primme number }
b) {x|xisadivisorof 12}
0 {x€Z|x*=4)
d)y {x|ax-5=19} -
c) theset ofa:ll ictlers in the English alphabet.
E4) Describe the following sets by the property method.
a) {1,4,9,16,..)
b)) {2,3,5,7,11,13,17, ...}
)+ {=6.-4,-2,0,2,4,6, .}
d ¢

ES5) Give an example of n ncn-empty set which ean be represented only by the propesty
metsod.

(=) Py

While solving E 3 you would have come across sels corsistiig of exacly one element. Such
8 set {5 czlled a slngleton. The singleton with element x Iy usually written as {x}.

‘Remark 4: The clement x is 0ot the sa1 ¢ 35 e set {x}.Infact, x € {x)}.

A set which bas a finlte number of elements s called a finlte set. By convention, the enipty
sct ks considered to be 8 finite set.

A sct which is not fAnite is an infinite sel.
Some exanples of infinite scis areN, Q, Rand the set of points on a given line.

The follewing exercise will belp you in getting used to the notlon of finite and infinite sels.

E6) Which oi the followiug sets are finite, and which are infinite?
a) Z,
b) ¢,
¢} thesolutionsetof2x+5=7,
d) theset of points on the circumfercnce of a circle

¢) thesctofstars in the sky .

T T L T ey

Now, given any two real numbers a and b, you know thal eithera <bara=bora>b. Is
theee a similar telationship between sels? Let us sec.

1.3 SUBSETS

I this section we shall sec whal we mean by the texms ‘55 contzined in’ and "contains’,

PUTIY I ey
T AT AT

A =the set of all students of IGNOU, and

-t A e T3 oo
Twld ML OUD L, TTUIG

B a2 the s#1 of all female sudents of IGNOU.
Every female student of IGNOU is a student of IGNOU. So, cach element of B is also an

[3 . - ny fore nmrm mmas Alns TF la - [
clement ol A, In such & situation we say thai B Is contained in Al

Of coursg, IGNQU also has some male students!
So, there is an element x In A such that % does not belong to B. Mathemetically, we write
this as



I xS Asuchthatx €B. ) , Sets
In this situation we say that B is properly contained in A.
In general, we have the following definitions.

Definitions : A set A isu subsct of a set B if cvery elemeat of A belongs to B.. aud we
deoofe this factby 'AG B. : ' - -

In this situation, we also say that A is contained in B, or that B contalas A, denoted by
B2A e

If AGBand 3y EBsuchihat y ¢ A, then we say that A is a proper subset of B {or A Is
properly cantained in B). We decote thishy AC B,

I£X and 'Y are two sefs such that X has an element x which does not belong to Y, then we
say that X [s not contalned in Y. We denotc this fact by X € Y.

Letus took at a tew exmnples of what we have just defined.

Considec the set A= {1,2,3}. Is A G A ? Since every clement of A is in A, we find that
ACA,

In fact, this is true for any sct. In other words, aay set is a subset of itself. But note that no
set s a proper subset of itsz1f

Mow consider the sets A = {1,~1} and B = {0, £, 2}.

We find that 3(-1) € Asuchthat (-1)€ 8. . AEB.

Similarty, BE A

Note that given any two scts A and B, one and owly one of the following possibilities is true,
iy ACBH.or

iy AZLB. _

Using this fact we can prove by contradiction (see he appendix io this block) that

the crupty set ¢ 1s a subset of every set. LA Druy s A
To prove this, counsider aity set A, Suppose ¢ Q A. Theu there must be saine elemcnt in ¢ which

v 7ot i A But this is uot possible since ¢ bas no elerments. Thus, we reach a contradiction. Thersfore,

wirqt we assumed inust be wrag. Thol is, & & Ajis false. Thus, #C A, for any set A

U-v the following exercises now While doing, them remember that to show that A S B, for
wty sets A aud B, you must show thatifa € Athen s €D,

., aEA=>32€EB. *we' denalea *implice {cer

, tha block spreadin also},
Also, to show that A € B, you must show that Ix € A such iha( x & B.
- I - - The ze4 of &3l subsets ol a 50
L7} Write dawna all the subsets of {1, 2, 3}. How many of tese contain A i called hepower et af
A,

ajnoelanset,  b)one element, o) two elements. e} thiee elements?
E8) Suow tustifAC Band BE C, then A ¢ C. Tuis sbovws dsal 'S’ is 2 transitive
relation,

U9} Sbow that & ix uota rausitive relation, For this, you necd 10 find an sxawpic of
Ihrec seis A, B sad Csuch that A Q,l B.B g C.hurACC,

Now, let ux go back for  monent s the point belore Remazk 2, where we defiied equality
of 5615, Lot s ser what cquality weans in ferms vf subsols, Consider 13¢ 5ol

A =1besetof even natural nuinbers less than 10, aud

B={2,46,8].

They ape equal since every mender of A is a member of B, and vice versa, Tlatis, AS B
mdBLC A

Thus, A=B<(ACE and BCA).
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A vniversal sel s ao wacee

Now, for some interesting exercises |

T
E10) Consider the sets A= {x{x+1=3},B = {1,2} and C = the aet of )} even imunbers
that are prime, What is the rclationship betwecn

i} AandB?
i) AandC?

Ell) IfA=Band B2C, whaut is ihe relationship between A and € ?

— A T

So far you have seen twa methods of representing sets, There is yet another way of depicting
sets and the relationshzps between them. This is what we discuss in We aext section.

1.4 VYENNDIAGRAMS ¢

It is often easier to understand a ~Jluarion if we can represent it graphically. To easc our
understanding af mdny situativns invoiving sets aud their relatlonships, we represent theu
by simple diagrams, called Venn dlagrams, An English logician, John Vean (1834 - 1923),
invented them. To be able tw desw a Vean diagrai, you would nced to know what a univer-
83) 5CLRu.

B any sitwaiion involving twa o ntore sels, we il ionk for 2 couventent farze sel whick
vomtains all e sels under discessian We call iz large seia univeisal setand denele it by
U, Clearly, U is not unique. For cxataple, if we are talKing about Uie set D of womnen divecrors,
and the sei S ol woinen scicklisty, then we can lake suc utiverstl sel U 1w be the setofall
carning woinen, This is becawse U condzins D as well as 5. Bef, we can zlso awe U te be Uie
sel ol alb women. This would aiso serve the same parness.

Again, it we wish to work willi the sty of integers aisd r-1tonar numbers, we could ake e .
setob real numbers as%ur unis ersal e, We could also iake Q a» our upiversal sel, sinee it
coviaing Loth Z and Q.

We usually (ake our universal wer ta be juat Jarge enougb fo contain 2 the scis uwnder
considerition. .

Now, ler ut see low to deaw a Vet disgramn. Suppose wo are discrssig various scis

ABC, e chovst our univensal sel UL So, AT L B S U, T C U L and se on, We show
Ly sEsation i a Veun dizgram as lollows ©

Tie interior of a rectangle represents U, The sebsets AL B, C, eleare reprosepted by the inleriors
ol closed reggiens Iy ong complete! y withio the reclangle, These regious iay be inthe fome of a

cucle, etz vt auy olher shape, To clarify whal we have fasd sacd, congider (e following example.

Exasuple |2 Draw a Veun diagiam to represent the scis
Us {82000 A = {12, 5. B = {3.45},C= {67}

Solutinu ; Sce Figure. 1,

v |
8 C
TN E3N
S A Ve J
r'f .7 A
t T
*1
0
» 10
|
Yah |

Figure [: A Yenn diagram



We have denoted A by 2 circle, B by an ellipse which intersects A, and € as another closed
region. The points B, 3 and 10 don’t lie in any of A, B or C. Al these tegicns and points lie
in the universal set U, which is represented by the outer rectangle.

Note that 3 belongs to both A and B. Therefore, it Jies in the circle as well as the ellipse.
Also note that A and C do not have any ejements in common. Therefore, the regions
representing them do not cut each other, For the saine reason the tegions representing B
and C do not cut each other.

Of course, we could have drawn B and C In the sbape of circles also.

Now, consider the Following siuzation : A sud B are two sels such that A ¢ B, that is, Aijsa
proper subsel of B, What will a Venn diagram corresponding to this situation took like?
Woell,; we can just take B o be our universal set. Then he Venn diagram in Figuse 2 fs one
such diagramn. If we lake another set U that properly contains B, as our unjversa] ser, then
we getthe Venn diagram in Figure 3.

Try this exercise 0w,

E1Z2) How would you represent the following sitvalion by & Yeun diagrain?
_ The set of all rectangics, the set of all squares and the set of all paralcicgrams,

ST T e

MNow that you are {amiliar with Venn diagrams, let us discuss the various apcrations or <els.
During fi: discussian we will be using Yenu diageams off aud oa.

1.5 OPERATIONS ON SETS

You must be ranitiar wilh the basic operations on rea! nembers—addition, sublraction,
multiplication and division. In using tbese we combine ren rezl numbers af 2 fime, n
giffcrent ways, 1o obtaill anotber real sanber. In a simiiar way we can obizin new sats by
zpplying certain operalicns 1o hwo given sels at 4 time. L this section we shall discuss tie
pperations of complaaentation, imersecticn and union,

1.5.1 Complementaticn

ousider the sel Naund {1}, There 2cc elesuents of N that dowot belong to {0, 1}, Fke 2, 3,
¢ The soi eof thess elenvents is the complement of {0, 1} in N, according to the Inllowiig
whnition.

ELxbinition: Let A and B be two sei, The complement of & in i, devoied by B A, 5 the
scl {x EEIxEA).

Similarly, A T = {xCA|xZB)}.

If B js e universal s2: U, then BAA is U VAL This seii; ¢xlled the complenreat of tne set
A, and is denoted by A" or A

The unshared area jn Figure 2 denotes the set BAA (01 A, since B = U inthis myse) This

tiagratn shows us that x = A% if and vnly if x € A,
Notc that in the sitnation of Figurs 2, A\B = ¢, sihee every poyniof A js o poin! o B,

Try this rrarcize now

e LY r A et i L BRIy L ey £ i’ pmemli ety Py S i e R g St

F13) &) RBemaon! the folwwing sebs i s Vorn divfrasr T sa! 8ol i wnrse wenban,
e sct 7. and the set ) (L
b) Is the'set Z 4\ P finite or iufinie?
E73) Let A be any set. What witl AVA @ VA A ami fAT e ?

ror o e D i Ty A L Tt ]

Let us now consider another opzeation on seis, momely, 1be ikfersecijon ot iwy orinors sels.

-

Figure 2

Figura 3

A B A

Scets
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1.5.2 Intersection

Lei A 2nd B be two subscls of 3 yniversal set U. The Intersection of A and B wil! be 1he set
of points that belong 1o both A and B. This is denoted by A N I,

Thus, ANB = {XEU|xEAandx EB}.
To darify this idea considers e following example,

Example 2: Let § be the set of prime pumnbers and T be the set { x € Z | x divides 10}.
Whatis SNT? :

Solution : We take Z 1o be our universal set. Then $ N T = “set of thase i.uiegcrs that are
prime nambers as well 3s divisors of 10 = { 2,5 }.

You should be able to do the foliowing exsreise now.

— —
E15) ObuinZNQ,QNZLZAZand NN,
L - ____-_______-.---_____- - -~ - - . e ———— [
While sotving E 15 you may have noticed certain facts about the operation of intersection.
We explicitly fist them in the (ollowing theorzm,

Theorem 1: For any rwo sets A aad B,

) ANBCA

b) AMNBGE

) AGB=ANB =A

d) ANA=A

) AN¢=¢

) ANB=BNA

g8} A\B = ANB-

by fCisasetsuchthatCCAandCEB, thenCCANB.

Proof : We will prove (a) :and {0}, and leave you to check the rest (see E 16).

So,letx€EANB. ThenxEXandx€B. Thus, AOVBC Aand AN BEB. So we have
proved () and (b).

Now, using (a) and (b}, Uy to do the follawing exercise.

E16) Prove (c) —(h) of Theorem 1.
E17) 1s Theorem 1 (h) true if we replace 'S’ by ‘S’ everywlhere? Why ?

L '
Now, consider the set Q" of negative rational numbers and the set Q* of positive rational
numbers. Then Q™M Q* = &, This shows that Q” and Q* are disjoint scis, a lerm we now

B s
VAL

Definition : Lel A and B be two sets such that A( B = %, Then we say that they are

muiually 4isjeint (OF 4juln).

Now let us represent the intersection of te1s by means of Venn diagrams. The shaded
region in Figure 4 represents the set A N C, wiich is non-cmpty, as you <an see, Also
note Lhat the regfons representing A aud B do ot wverlap, that is, A 1B = ¢. From this
diagram we can also see that nejther is A © C, nor s CC A. Further,both C1 A and ANC
are non-emply sets. See bow much infonmation a Vean diagram van convey!



LR

o e e
1

U

Figure 4

Now, go back 1o Figur: 2 tor 3 momenl. What situation does it represent? It shows two sets
Aand B, with A; B, thatis, A is a proper subset_of B. Then the shaded ares sho'\w;
ANB = A Co '

Tty the following exercise now.

- : . AR S caCy

E18) Let U =2, A = {1, 3, §} B = the s¢t of odd integers Draw, the Vean dlegram 1o
represent this situation, and shade the portion A N B,

VAR e e S e G

So far we have cansidered the infersection of two sets. Now jet us define the intersection of

3, 4 or more sels.

Definition: The intersection of nscls A, As....., A, is défined ta be the set
A|x €A foreveryi = 1,..., 0}

Thisisdenoted by Ay N A; O ﬂ'A“or_f%lA,{ .
i

Let vy jook at an cxzmple iwsolving the intesection of 3 sels.

Example 3: Lei A, Band ¢ b the seis o mullipics of 3, 6 and 10in N, respectively, Co:ain
A BNC

fiolution : A N B N Cwill consistof 6l those natural aumbers that kelong o A, B wd C.
Sbus,

ACBNC = {4« EN3, 6and 10 divide x}

= { XEN|3G divides x}

= {3n|pEN}.
Note the? 30 is the lowest comnton multiple (a e m) of 3, & cad 10.

Tiy the lolicwiag excrcise now,
mmﬁﬁlf.'m;wxﬂcmm.r—a;m rrrrr L -
E19) LetA=411,2,34}, 8= 12.4,856}anaCT =1 1,5 7. & 13

Deteimin. AN BN C Also vorify that

a} ADBAU - (AN
bl ANBNC = ANENMC.

E20) If A = {on!5EN}ana B = {1Sain € N}, hndeine ANB N A

PIRALE T ot e 1 Ty TN OO SRy

YWhat you have shown in E 19 5 not oniy \rae for those Setc. 3 is lrue for any aret sel3 A, B
aad C, This propeety of N is colled assoctavvity . Using: this propesty we can obisin the
interacclion of any i sets by intersecting 2ny tvo adjacens 38 ot 2 ime. .

Sets
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For example; if A, B, C, D are 4 sets, then
ANBNCND = [(ANB)NCIND

= AN[BNC)ND]

= (ANB)N({CND).
Let us now look at another o.]Jmlion on scts.

1.53 Unijon

Suppescwehawve twoses A = {XER|x 510} and B = {x ER|x x 10}. Then any
elenent of R belongs to either A or B, becauss any real number will be either Zess than or
equal to 10 of greater than or equal 1o 10; and 10 will belong to bath A and B. In this case
we will say that R is the union of A and B.

In general, we have the follawing definiticn.

Definltlon : Let A and B be two stis. The set of all those elements which belong euther to .5
or 10 B or to both A and B is called the unlon of A and B, It is symbollcally written as
AUBD

Thus

AUDB « Ix|xEAo0rx€ B}

Before going further we make 1 remark.

Remark 5 : Since A U B conlains all the clemenis of A 25 well &5 B, it Follews thai
ACAUBBEAUB.

InBd, ANBCACAUBMIANBEBCAUR

Using E8, this shows st ANBCAUE.

Now let us look at an example.

Exompte : Find NU Z.

Solutlon:N ={1,2,3,...} aadZ={..-3,-2,-1,0,i,2,3, ... ;.

We want to find

NUZ = {x|xENorx £ 2}.

But N G Z. Thus, x € N = x € Z. This immedistely 1ells ustiaaN U Z = {x {x €2} =1

Example 4 is a patticular cass of the general fact thatA B AUB= B

You cen use this fact while solving the following excscises.

. s el THW

E21) For any three seis A, B and C, show thal
1) AUA = A,
b) AUB = BUA, hatis, the operation of union is commutative.
) AU¢ = A
d) IfASCandBSC ther AUBE O

meRA={ESRIi0 5% 1} snd
=

1 s x < 3}, Determinc AUB.

E23) What can you say abowt Aand BifAUB ~ ¢ ?
il i P R i e o gk e AR T
11 is easy to visualise unions of sets by Venn disgrams. Consider Figuze 5. In this diagrom

we see four seis A, B, C and D, and the winivereai sct U. The shaded agea represcnts 51U B,



C U D i3 the area enclosed by beth C and D, which is just D, since C € D. Can you ind Sots
ihe arca in Figure 5 that represents A LU B U D ? You mnay be able 1o, oace we have defind
'he union of 3 of more seLs.,

Figore 1

Definition : The union of nsets A}, Ay, ..., A, is the 5¢l
{x|x € Aforsomeisuchthat] = j < a }.

Thi:'.isclcmm'.dbyﬁ\lU.."L;U...I.JA.‘,«J:'EJ1 A;.

S0 now yan can see that A U B U D is represenled ia Figure 5 by the shaded area along
wilh the ares enclosed by D. '

'Now,l:llfsmnsldctAUBUC,whdeA ={1,2,3}),B= {2345}, C= {1} Theu
AUBUC = {1,2,3,4,5}. -

You will find bat this is the same as (AUB YU Cas wellas AU (BUC), -

You may also like to verify that

AUB « {A\B} U (AND) U (BIA).

These statements are prrticular cases of the geneca! facts that we ask you to prove ia ibe
following exercise.

EZ4) 2) Forlhescts A, B and C in Exainple 3, show that
AUBUC = (AUB)UC « AU(BUC)

b) Forapy twosels A and B, sbow l.haltAUB = {A\B)U{(ATB) U (BLA).
{We depict this situation in Wie Venn diagrain in Fig.5.)

= m i x
What you have shown in E 24 (a) is true for any thres sets, that is, the operation of union of
sets is associatives. Consequently, wo can obiain the union of any number of set by 1aking
the union of any two adjacent ones at a time. For example, if A, B, C, D are four sets, then
AUBUCUD [(AURB)UCIUD
AU(BUCUD]

= (AUBUEUD).

u

By now you must be familiar with the operations that we heve discussed in thic section. Now

tab irm pbman A vatim sarn s [oesie Mhns anlnes koo
Lot Uz ey FeLIS JAINF YL JUFRRER QIATTC LAIUL EWIRLD MILEM,

1.6 LAWS RELATING OQPERATIONS

In this section we shall discuss two scts of laws that relate unjons with intersections, Cartesian
products with unions and Cartesian products with intsrsections. We start
with the distributive lews, ) 1
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1.6.1 Distributive Laws

You must be fanailjer with the law of distributivity that conneets the operetions of
multiplication and additlon of real numbers, Itls

ax(bec)ooxbenxe Va,bcER

MWhereas we bave only one law for numbers, we bave two laws of distributivity for sels,
which we will now state.

Theorem 2 : Let A, B snd Cbe threc sews, Then

g) - AN(BUC)=(ANB)U (ANC)

b) AU(BNC)=(AUB)N (AUC)

Proof 1 We will prave (a) and ask you 1o prove (b} (see E 2%)
a)  Wewill show that
AN(BUC) S (ANBY U {ANC)amd e 2
(ANB) U (ANC) & AN(BUC). s (3)
Now,xSAN(BUC)

= x€4 o XEBUC

e REAand (xEB or s EC)

= (x‘E.fx cnd xEB)or {xXEA and XEC)

= IxEAﬁB o XxEANC

= xE(ANB) U {ANC)

So, we have proved the first inclusion, (2). Te prove (3}, let
xE(ANBYYU (ANC).

= yEAMNBD or ::EAOC

= (2 A ond xEB) of (xS A and xECI)

> XEA end (REB or nEC)

= XEAand XEBUC

= xEAN(BUC)

So we have proved (3).

Note that our arguraent for proviug (3) is just the reverss uf our argument for proving (2)-
In fact, we could have combinzd the proots of (2) and (3) as 1oliows :

xEAN{BULC)
cr &g T 2UC

— A e T e el T
ot [l S N STU PN H Y H —— )

< rEANTB arxZ2N0C
P N i

- Z.:\J"‘\.I |u; oSttt

This proves (8}

Now ity to solve the following exercise, using a two - way implication.



N S ; - . -
E23) Frove () of [eorain &

Let us verily Theorein 2 In the following situation.
Ezample 5 : Verify the distributive laws for the sets N, Q and R in plsce of A, B and Cc

Solutlon : We fistshow Bt NN (QUR) = (NN Q) U (NAR).

NowQUR = R sinceQ C R

Therefore, NN {QUR) » NNR ~» N, sinccN C =

AlsoNNQ o M and NNR = N.

Therefore, (NN QY U (NNR) = NUN v N,

Thas, NN{QUR) = {BNNQ)} U(NNR).

MNow, ovaily aiMUIQNR) = (NUQ) N {NU R ), note that both sides sre equal
to Q. Hence the low halns,

Remark 6 : Theorei 2 (5} says that N disteibules over U, end Theorem 2 (b} says thar U
disiributes over 7, .

Latus now consider anaiker se! of laws.

1.6.2 ¥y Morpzen’s Eaws

We will now discuss o laws that relate the opemlion of finding the eoiploment 65 52l to
that of the intersection or unjon of sets. These are known &s De Morgan'c fnws, after the

British matheinatician Augustus De Morgan (1806 - 1871),

Theerar 31 Forany two sois A siud B i 2 siaivessal st U,

a) (ANHE) = ACUBS

by {AUB) w ATNERS

PPruof: As in the case of Thaurem 2, we will prowe |.’.a), aud usk you lo prove (b).
o o let xE{ANB « UVANB)

e NEANE

B XE A cr B (hesnse, iIXEA and XEB, hearn S AN B}

- w =1
— A A Qi Koo

fii

= xEAYUE"

So{ANBF o A LB

Now Ity the feHownug exircises.

- 4 = L LI g S R ML L e s L e e L S T T H'l-"'—""'-"‘*'-—-r-:;_'l--_\—"‘_"—":ﬂ

F2L) Fro o 12, of Theoren 3,

1.27) Venly De Morgan's 12's for A and B, where A o {t.21,B » [2,3, 4},

{(Youcan take U = {1,2,3,4),ic., U » A UR, OF courny, W {zvw wiill continue fo Teid
True with awy oliter U,)

EADLAESTRIG s S L eI M e e e o -

S0 iur we have discussed 0peraions on seis and *heir fmfer-ezlaticushin, Yo wdld =ouy il of
a goduct of sevs ofwhich We coosinate suton 3 g a0t b o

H

3.7 CARTESLaM PRODUCT

Aniuteresting sel that can be forued fror iwo given sers is their Cartesian product, namngd
afier e Pren~b phiosopher and martbematiclai Rene Dascaries {1596 — 1650). He also

-

inventee e Cartesian coordinata system, Lt us s ee what tri producy is,

Sigose 7 Biots Docaries

- Sets
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didabuivs over W as well ps uver N

Fii]

I Let A and B be two sets. Consider the pair (a, b), in which the first elemeut is fromn A aud
the second elesent is from B, Then (a, b} is cailed an ordered pair. In 3n ordercd pair, the
order In which Lhe two clements are writien is important. Thus, (8, b) and {b, a} are
different ordered pairs. We call two ordered pairs (a, by and (¢, d) equal (or tae same) if
gm=cand b =d '

Using ordered paiss, we give the following definition.

T+8ninon ﬁ: Cartesivn product A x B, ol the sets A aud B, is the sel of all possible
ordered pairs (3, b) wherea EA,b € B.

- Thatis, AxB = {{a,b) | a€A and bEB}.

For example, ifA = {1,2,3},B = {4, 6}, then

AxB = {{1,4),(1,6)0(2,4),(26}(3,4),(3,6)}

Also note thal -
BxA = {{4,1),(4,2),(4,3).(514(6,2),(63)}
Yonecansecthat (1, 4) €EAxB, bw (1, 4) $BxIA.

Thucl'o-{c,AxB u BxA.

Try these excreises now,
—— e R — e e ]

E28) IFA = {2,5} and B = {2,2}, dA=xB,Ex A AxA.

E29) IfAxB = {(7,2),(7.3).(7,4).(2,2)(2,3}(2,4)}, determine A and B,

1 TSN L0, JETE BT ==
Now that we have defined the Cantesian product of twa sets, let us exiend the definition to
any number of sets.

Definition: LetA;, Aa, ..., Ay be nsels, Then their Cartesian product s the set

AL xAs X e x Ay {{Rpdg e X HGE A Wi = 1,2, 0}

For example, if R s tie set of real sumbers, hen Rx R e {{ 31 35) | 2,814 3, ER},
RxRxR = {(aj2,0;) ] 8 ERVi=1,273}, 2ndsoon.

it is customnary (o wrile RC for R % @ aod R for R o x R{u thnes) .

1n your earlicr mahematical studies you must have often used the factthal R caitbe

geamedrivally represented by a [ing, Are you sise (ainiliar with a geomeirical representation
ofR=R?

Y ou know that every painl in a plane has (wo coordinaies, X and y, amd cuery ordered pair
(x, y) of real numbers defines the coosdinates of a point in the [lanc. Thus, R’ is We Canesiap
product of the x-axis and the y-axis and beaice, R” represents a plane, In the same way R

represents three-dimeasional space, and & wpresents n-diniensianal space, tor anyn z 1.

Try 1he following exercise now.

D a e o e b e =] . s, ]

e b = AT T el L s

E30) Which of hi¢ [ullowing belong 1o the Cartesian preduct QxZ«N? Why?

A
-5,¥1 } &) {-2,2,3}

Beaner not-enndy subget af It ~ R

i1
1=
{2

CA1h i
:—-f—'—" -

£33 Prove that [er ansz:LsA,Baud C,
2 {AXBIULAx)
B} Ax{BNC) = (AxB)IN(AXC)

[ R e e S b et

We will end our discussion on sets here. Lel us summasise what we have covered in this unit,
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1.8 SUMMAKY

In our discussion on sets we have brought out the following points.

1)  Asetis a weil-defined collection of abjects.
2)  Thelisting method and property inetbod for representing scls.
3)  Glven twosets A and B, whatwe meaubyA & B, A 2 BandAcB.

4}  The pictoriat representation of scts and their relationships by Venn di'agrams, and ils
wtikity. ' '

5)  The operations of complementation, iniersection and urtion of scls, and their
propertics.
6)  The distributlve laws : For any three sel3 A, 3and C,
AU(BNC)» (AUBIN(AUVUC)
AN(BUC) ~ (ANBYU(ANC)
7)  Dc Morgan's laws : For any two seis A and B,
(ANB)" = ATUB"
(AUB)® = A°NB" '
8) -The Cariesian product of scls.

New, we suggest that you go back to the objectlves given in See.1.1, snd see il you Liave
achieved them. Oue way of checking this Is to solve all the exercises in the uniL If you
would like 10 kiow what our solutious are, we bave givea thew in the next section,

1.9 SOLUTIONS/ANSWERS

Bl (o) (k@) (e

B2) (o).(

E3) aj {2}
b) {1.2, 34,6, 12}
9 (&-2
d) {8}

Ed) a) (x*|x€Z}
b) {x | xisa prime number }
¢} {x | x isancven jateger}
d) We can have sevcral representations (see Remark 2). For example,
¢ = {xEN]J xisboth odd as well as even }, or
p= {xEN|x <0}.
ES) R
E6) (b), (¢} and (eYare limte.
(1) and (2) are Infinite.

E® o, {1}, {2}, {3} {1.2}.{1. 3} {2, 3h {L 4 33
If 2 finite set A hus n elements, then its power set has 2° eisments.

EB} Let xEA. Then
A QB =x€E B Andthen
B C=xeEC
CXxEA=>xEC
LACC



Solutions of Palynomial E9) Consider A= {0},B= {1}, C= {0).
Equotlons ThenAZ B, BECbhut AL C

B10) Note thatA = {2} =C, B = (1,2).
2w A=C ad AL B

EiyAacC
E12)
P
.____._—-"'""""'—-—--..,
G ©
ﬁ"""--...,.__\
Flgure §

5, R, P are the scis of sguares, rectangles and patallclograms, respectively. Here we

bave lalien UJ = P,

2 SN A RS,
MR
N

N /(\ \\\\\i\\li

N

&\%\\\ B i\/\\\\
AANNNNNS

AR \\\
NAANNRARRNNN

Figvm &

Thesbeded arenis Q\Z.
b) Infiaite
B14) &, 0, frand

Cae ' ' - roy T3
(A7) = A, eineen Ta & 1 2a% oo nE{ A7),

N e B o I R & Ve e o pretve it A A MV H Far this
PR myEne, AL DL o
g e = p = - oA T
fang, nZAOE L AZAD
o’ a- A N
Faoes i
Lo A 4
Yo » b
-‘:1) ANAT A, appleing i)

HE AN 05 inpreofef ().

LA ANA
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Also § & AN, since ¢is & subaet of every sc .
S AMNG e .

f} ANBGB ad ANBGA . ANBGBNA.
Similedly, BNACANB.

.~ ANOB=BNA,

g) x€EA\B & XEA wmd xEB
< Z2Eh o8 xEB°
ax % &L OB
L AVE = ANSE

Ey Leix €EC.ThianlC G A = x €A Sknllady, x € B. Thezefore, & A N B. Hesce,
CLANE ‘ ' -

E17) No. Foz canmpl?, if 4 = {1,23}, B {124}, C = {12}, theaCHA and CCB,
but C b pat moeparly coapined mANB; b ectliyequaltn AN B..

Ei8) .

Fgamo 10
EIY ANEBNC « {§}= (ANBYNC = AN {E2NC)

EZﬁ)gﬂBnA s AN (BNAY=AN{ANB)XR (AN AR
= ANBE = {30n)nEN}..

E2I) ) AT A= AUA o A

b) ¥CAUB<»3EA wriEE
< XEDB or REA
< xCSHEUA.
S AUB=e BUA

) SCA= AU A

d) LetixSAUB TEank €A o T v ane G0, ke AT Cand
" BEC. T,
HENRUD=raEll

. AT RTY
PAE A e T e

—_ e, =
st AL T e
PR ]

Moy v = nw s

8223} Sl AL AUB = O v sss@nt AL ¢ Al Gls rlaag
oA e B Sinibeniy, B = _
E24) s) A - (32 | 8EN)B = (82 | xENLC = {162 | a1},

Nomdnt B A
SCAUE o AL
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~{AUB)UC = AUC = {xEN{ 3 dfvites x"of T0sdivides x}'
Al AUBUC » [XEN | 3,6 or 10 divide x}

= {xEN| 3 or 10 divide x}

- (AUB)ULC

Siudlariy, AUBUC » AU(BUC).

b) A\BCACAUB, BAASBCAUB, ANBCAUBR
- (A\B) U(ANB) U (B\A) C AUB.
Conversely. el x EAUB. Thenx €A of XEB.

Now, there are ondy three possibilitics forx :

DX EA but x&B, that is, xEA\B, or

i}x €A and x €B, that is, XEANG, or

i)x EB but x €A, tat is, xEB\A.
Thus, AUBS(A\B) U (ANB) U (B\A).
So we bave proved the cesull.

E25) x€EAU(BNC)
e xEA or xEBNC
e YEA ot (xEB and xEC)
e (XEA or XEB) and (x€A or xEC)
o xEAUB and x€SAUC
o xE(AUB) N {AUC).

E26) xE(AUB) <« 1 €AUB -
< x@A and x€B ’
o xEA" smd xEBS
«“ XEA'ND

EXL, AUB U 5 (AUBF = ¢
Ao A" = {3,4},B° = {1}
~ANB sy
. (AUBY = A" N B
Futha ANB = {2}. ~ (ANBY = {1,3,4}
L ATUB = (ANB)Y. :
28} AxB o {{2,2) (23) (52 (5.3}
AXxAm= {(sz)i (ls)r {slz)l {5-5)]

E29) A = {7,2).B = {2,3,4)
E30) Ounly (c). (3) s not. since jt is only an ccdered paiz, snd not a triple. (b} is not, slnce

LENUZ (@isaot.sinecVZ & N.(¢) s nol, siace ifs not an oxdered wiple; it

a se1of three elgincois.

E31) Any subsellsA x B, where ACR, BG R. Yora proper subset ofR eu.be:A orB
should be a proper subsct of R

maay Wb e w2 4 W TR
L]

Lrep S ymp gy i = --}

w22 A and yEDBU

'-
4w XCA aud (yE€B or yEC)
mf\r u‘lﬂﬂpﬁﬂi‘fﬁ.,\"leﬂx‘_

ad (x.y) S (AxB)U (AxC}-

B (y)E Ax{BNC)
= xTA ad yEROC
W\X)}t-naﬂ and {-..,.})EAH.C
> (Ly)E(AxXB) D LAXC).
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2.1 INTRODUCTION

in your studies so far you must have deslt with natural numbers, integers, rational
numbers and real numnbers. You also know that 3 shoricoming in N led mathe-
moticians of several centuries ago to defllne acgative numbera. Hence, the sct Z was -
born. For similar reazons Z was extended to QQ and Q 10 R at various stages In his-
tory. Then came & point when methematiciaas logked for solutions of cquations like
2741 = 0. Since x?+ 1 a 0 has oo solution in R, fora lang time it was aceepled
that this eqguation hiss no solution. The Indian mathematicians Makiavira {in 50
A.D.) and Bhasizara (in © 150 A.D.) clearly stated that the square root of a negative
quantity does not exist. Then, in the 18th century the Italian mathematician Cardano
tricd to saive the quedratic equation x2-10x+ 40 = 0. He found that Xy =5 +V i3
and x3 = S -V 15 siisfied the equation. Bui ihen, whit i v =157 He, and otbes
matbcmaticlans, tried to give this expression some meaning, Even while making
mathematical models of resl life solutions, the mathematiclans of the 1 7th and 181
cciturics were coming across more and more examples of equations which had no
real rocls. To overcame this shortcoming the concept of a complex nuinher siowly
ceme into being. [t wes the amous mathematician Gauss (1777-1855) who uscd zud

popularisec . wam# ‘complex number’ for numbers of the Iype S +¥ 15,

In the essly 1803s, 8 geometric representation of complex numbers was developed.
This representation (usily sude complex uumbzs aseeptable to all matbeanativiess.
Slucc then complex numbiers bave seeped inco all brancliey of mathenatics. 1n fact,
they heve cven been necessary for developing several areas in modern physics and

enginecring.

i flils unit we 2im io femiliarisc you wiib compics rumbers and ibe different ways
of representing them. We shal) also discuss the basic algebraic operations on com-
plex numbers, Fiuslly, we shall acquaint you with @ very uselul result. namaciy, De
Iioivre’s thcorem. It has several eppiications. We shall discuss only two ol thew in
tome detail,

We would like to reiterate that whatever malbzmatics course vai: sida. . v ot wits
need the knowledge of the subject matier cavered in tis wnn, ™ -
it ca¥efully - i ensure that you bave achieved the falluwine -

1
N



Solutions of Patynomlal
Equations

26

Objectives.

Affter studying this unjt, you should be able 1o

e definca compkx oumber ;

¢ describe the geometrical, pofar and exponential representations of a complex nuniber ;
. npplyilhc various algcbrale operations on complex numbers ;

» prove and use De Moivre’s theorem.

2.2 WHAT A COMPLEX NUMBER IS

-~ -
When you congider the linear equation 2x +3 = 0, you know thal it has u solution, namely,

X = --:,23- But, can you always ffud a recl sufution of the cquation 3% + b = 0, Whese

a,bElednuﬂ?-lslhemqulrc;lsulnﬁunx - :'E?llis,sincc a(_;—b-)q-b « 0.

Now, what happeﬁs ifwe oy loJook for real solulinus ef any giidzatic cquation over B ?
Cousider one such equation, nantely, el m 0, thay i, x? = -1, Tais cquation has uo
solution in R since the squars of any real number inust be non-negative,

Frowm about 250 A,D. enwards, matbematicians Bave bech coming across quadratic
equations, arksing fromn real life situations, which did not bave any real solotions. 1t veas in
the 16th century thet the Jtalian mathematicians Cardann and Bombelli started & surious
discussion on cxtending the nummber system o include s¢; .+ rets of negative numbers. lu
the next two hundred years imorc and inore ipstances were iacovercd in which the use of
square roots of negetive numbers helped iu fuding the solutions of real problei,

In 1777 the Swiss malkematician Fuler introdueed 1be “Emagliary unit”, which be denaled
by the Greek Jetter jols, that is i He defiucd | e ¥ ~1. Soou aficr, the great matheinatician
Carl Friedrich Gauss jutroduced the term complex numubers fne numbers such s

1+i{e 1+vVA)or—2+iYSim 2+¥V-5 )

Nowadays 1hese numbers are aceepled and used in every fild of nathcruatics.

Let us define » complex number s,

Definithon : A complex number is 3 nuber of the forin X +1iy, whetre x and y anv real

numnbers and i o 1.

We say that ¥ is (be rex] part and y is the Inegloery pact of the complex numberX < iy.
We wrile x = Re (X +iy)andy = lm (x +iy).

Caution: i) iismolz xcal combr.
i) Im (x + iy) s the real nminber y, and ool fy.

We denolc the sct of all complex numbers vy C.
So,C = {x+iy|x, yER)},

By convention, we will usually denote an element of C by 2. So,whehever we will falk of o

-1 | T o LTI T = F I TR N R« I LT
LU(“PIH o1 TLE T | ". AT% TTd L-Eaul e =™ A T l: Wi WL vry T e AW LAY EEWAy L. T R L F b RERG

There is another convemion that we follow while wiiting complex aunibers, wilich we give

in the fallowing ramark,

Remsrk 1 ; When you gc:'ih.rough Sec. 2.4.2, you will sce thally = yI¥ y €R. Thauls
why we can write the cowplex nuwmber x + iy as X + y | #lso.

By conveation, we write any complex number x + iy for which y € Q , 05 x vyl For

5 ifor24il2+i2and 2+i>,

example, we preler tawrlte 241,24 %i and 2 + 5 3 3

respectively.



But, ifz € Cis of the fonn Z = 2 + ¥ b, b€ R, then we prefer to write 2 in this form and
nutssz « a+vDhi

Now that you know what & complex number §s, would you agree that the followin.g- numbers
belong toC? .

S+v-15, 3,V2,¥-2

Each of them is a compiex number because

5+V-15 @« 8eiv1d

3 = 0+i3

VZ = V2 +il

V-2 a 0+iV2

From ibese cxamples you miay have realised ihas some cosnplex nunibers can bave ilicir real
part or their ilnaginary part equei (o 2zero. We have nnmes for such aumbers.

Deflnition : Conslder a complex numberz » X + iy. '
Ify = 0, wesey Z is purely real.
[fx = 0, wesay 2z is puiely Imaginnzy.

We usually wiile the purely real number x + Oi as x only, and write the purcly inaginary
nember G = by s iy only.

Tey these exercises nuw.

£:)} Complete the following tahle :
2 i

Rez

-
=
]

P W |

1+v-23

EZ) Is RCT?Why?

[F— = =X v

Now, givei any complex number, we can define 3 related complex aunber in a very nanural

way, 23 follows.

Definltion ; Letz « x + iy € C. We define the complex copjugate (or klmp-v the
vonjugate) of z W be the comnpiex number

Z ﬁx—i)’.
Thus, Re” = RezondlaZ = ~Im2
Foresamnle (iiz = 15 ] then Z = 154

Trv thit = simnie exer Ci%e LW,

=37 =

o o e Y R T L WA T AT 1 Sl TR S TR

e . e

—an Ly ¥ Trp P T T T -

) L h i :...j,_,.,,_m b

2+3L2 3, 2,3

e . e

Iu Szctlon 2.4.2 you will see oue imporiant use of the compicx conjugale,

So far we have showit you an algebraic method ofttpm_nmtg mmplcx nuinbers. Naw fet
us cunsides o geometrical way of doing <o

Complex Numbers

Voo = ivavaz0.
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23 GEOMETRICAL REPRESENTATION

You know that we can geometsically represent rest numbers on the number lne. In fact,
there Is a ope-one comespaitdence between teal numbers aud points oo We number line, You
bave also scen that 2 complex number 15 detennined by two real nwmbuers, namnely, its real
and imaginary pans. This obscevalion led the matbematicians Wessel and Gauss to thing of
represenling complex nuutbers as poiuts in # plane. This geomelric representalion was given
in the carly 1800s. [t is cx'leat an Argand dlagran, alter the Swiss mathematician

J. R. Asgand, Who propugs . Wie: e,

Let ua see whal an Argond dussm is.,

Take a sectangular ac: o axes OX 2 QY in the XOY plauc. Auy point in the plane is
determined by its Canteslan cogidinaies. Now we consider any compaex number X + iy, W
ruprcscn'l it by the point w the plawe will Carlesian coordinates {x, y). This representation i
an Argand dragiam, Fer exanzple, an Fisure 3, P represents the complex numbes 2 + 3,
whose veal partis 2 awd intag: wry pastis 3, And what nuber dovs P epresent ¥ P’
comesponds 16 2 ~ 3,

)
Y
A= = = — = = -T P
_ :
1 {
I
I 1
i
; )
-3 > 1 0 I 2 ; X
1
_]- I
1
{
=" i
b ¢
r
I
A ——— F Pl
Fipar 11 Az Angeud doprom

You sy ksve rcalised that in an Aygend diagrain the purely real nuinbers bie alony (e x-
axis and the purely imaginsry aumbers lie alonyg the y-axis.

So, you bove seen that, giveu x + iy € C we associate witls it the unique point (x, y) € R
The converse is also tree, That is, given (x, y) € !-!:, w21t associate wills i€ the valgue
comanlex number ¥ &y, Thic means that the bollowine dolinitin of 8 comnplex sumber e

cquivalent ‘o our previvas definilivon,

Sfiniiion 1 & CompER mumsseT I8 an ordeicd paiir af reai nonbens. i e ianguage of stis,

wecesnaythnC « Bx R
Witk the eip of 1his defigition can vou say wieh two comyjiex numbers are equal 7

Delinltion ; We say that iwo complex numbers { X), y; Y and { X~ v2 Jare equad iffx; = xa
andy; = ya.

In other words, Xy +iy) = X3 +iysill X = soady, = ¥



Thus, two elements of C arc equal Iff thelr real parts are cqual and thelr imaginary parts are
equal,

So.rmnmp:e..'—"*—z-@ - =zl+i?-.m

et —— —-—+i—.

2 2 4
Try these exercities now,
e e S A S
E4)s) Ploithe (oflowing elesments of C in an Arpand diagtam : :

' 3.-'!.+i.-l+l‘i

b) PlotthesctsS; = {2+iy]yER). S = (x+IF|xER} and
Sy = {x +ix|x €R} inan Argand disgram_ .
ES) Write down the elemeats of C represented by the polnts ( :..i 3:']. (2,0)and (0, -2}
in the plane.

Ef) Forwhatvalucs of kandm jek + 3 = -%-l-in‘.’

Whilc solving B4 you may bave observed that in »: Argand dispram the point thoy
represents X is the reflection In the x-axis of the paint 1hot represents z, for any
zE€EC

Here are rwo more excreises about complex conjugales.

L
E7) -Forwhichz€ECwlllz = Z?

E8) Foranyz € C, show hat? = 2, (hat is, the conjugale of the conjugate of 2 is 2
m

Now consider ANY nag-zero complex number 2 = x & ly. We represent itby Pin the
Argand dirgram in Figure 2. Wc call the distance OF 1be naodulus of z, and denate

ity lz}

4
x .
3

M e e i
e

| Fipew 5 Misasiss S ergEmeat

lz] » Vi oyl
U2 s reat, what is fz | 7 1t s Just the sbeofute value of

Hore's anadbor bapertsnt «canele oot fhe gyviul-:a,

Complex Numbers
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Remark2:2EC, but|z]ER

Now, il you see Figure 2 agaln, you will sec that ZXOP = 6. We call Gan arpument ol
2 =X +iy.

Fore = 0,{z| = Oandits argumment is not deflned,

Row,il2€C.z » 0, will it have a unique argument ? If 8 is an argument, so are
2+ 0,47 +6, ere If we insist that 6 Iie jn the range —x <@ <1, then we get 2 uniquc
argument. We call this value of 8 the argyment of Z,and devote it by Arg .

It, in Figure 2, we wrlte |2} = r. Then you can sec 1hat 3in 6 = -E—nnd cos § = -i-f-

X =rcosQy wesng,. 1))

So, we can also write z a5
Z = r(cosO+isind), wherar = jz)snd 9 - Arga.
This is called the polar form of z '

Nolcthat, glvenz = x *+ i we can use (1) 1o obtein Arg r w tan™ {i—] However, as more

)
than 071 angle between — and x have the same lan valr e « We Fau:t draw an Argand

dfagram to find the right value of Arg 2.

Lzt us fook at an example,

Exumple 1: (1) Obtain the wodutus and eopumetit ol 1+ 1.
(b) Obnminz,il|z] = 2203 Az z = %

Soletlon: (a) Lot z = 1 4.

ThenRez = 1,Imz = 1, Thus, ! + i comresponds 1o (1, 1), whick lies in the first quadranl,
We find Lbat :

. et ool e ViTeZ o S
;zgn\f'_f_dzz) +{{Imz) =« V1°41° = ¥'7  ang

Imz - 3
mr) = ian '(l} - —:t-or'm.

Rez

Afgz = tan"(

F Y

Since 2 lies in the fzst quadrant, Arg z must ba between 0 and —;E

Thus \Argz = -}

by z m [z }{ cus (Arg z) + isin (Arg 2))

c2{oosEaism ) maf L, ¥YE)
..(ms3+|sln3) 2(2“.2

=1+i-"3

Ty il folivwing exsrvises inw,

gy D e o T L T T e e e e e

E9) Wrilc down the polar forms of the complex numbers Hsted in 54 iak

E10) Show tht {zEC Iz | = 1} is the equation of the citde x?+y2 = 1 in A2, and
vice versa,
£ o R R P 1 Y e WL T Fie’ S R O ) S AT T D ey g

aiin o

There is yet another way of representing a complex number. In fact this method is closely
related o the polar representalion. It uses the expression ¢¥, where 2 € C. Let s define
this expsrssion,



Definitivn : Forany z o X + i;r €C, we defime Complex Numbers

e e e¥{cos y +isiny)

In palliculat;. ifz o ly, a purcly imaginary aumbc_r,-thcn we gel

Euler's formula te” = coay + [alny Yy €R.

This formuta is due to the famous Swiss mathematician Leonhard Euler. You will be using
it quite ofter while dealing with complex numbers. '

Maw consider any 2 € C. We write it ia its polas form,

7 o r.(cos B +1sin 6).

Now. esing Eoler’s formula we find thal

Z.‘ICO

This i the exponential form of the compleX numberz.
V3 3

For example, the exponential form ofz = 3 +-£*

i 3ci"/6.sinceiz] w 3and Arg 7 = :65

Ty this cxercise uow., ‘ K Figare 3 : Ealer (1707 - 1783

E11) Write thic foltuwing complex numbers in poixt for and cxponential formi :

\/— 'J;IH -1,i.

By nov you must be thomughly tamiliar with (he varioss wa)-s of reprosenting a comyplex
number. Let us now Jiscass some operations on complex numbers.

34 ALGEBRAIC OPERATIONS

In this section we will discuss the addiGon, subtraction, mulliplication and division of
complex neinbers. Lot us frst consider *+° sid *=" In G,

2.4.3 Addillon And Subtraction

We will now define addition in € using tc definition of saditlon in R. -
‘Dednition : The sum of wo m-n_npicx nuabers Z, = X; ¥y, and 23 = X3+ Yy is the com
plex numbes zy +2z2 = (Xp + %2+ (¥ + ¥4) thatis

(By y) + (x2, y2b = (X 2 Xp Y ¢ Y2

Lai us jook at an cxample.

T
By
-Sads—h

Solusion: N3 ¢ e(-2+4) = Gei{=2)+i(l +4)
T a8

31



«+ w.ten 0f Polyaomial

Sosratica

fud

1-J

o Tl caruaitati

vand

* G (-2) fothe cddRive

-_...r:

" \’JN#‘.—?;‘ }‘;\
RN
| ~\,
; o
[ (~2)
!
drad i imd=g

i) (S)e(5-i) w(S5+0)»(5- ﬂ"(J-J-S)-ri(O ‘N
w0+if-1)

ﬂ—ll.

Have vou abscrved that any complex ammber is the sum of pu:ely teal and a purely
swaginary aurber ¥ Thisisheausc:ﬂy w (x+0l)+ (0+iy).

lu:hcfdhwmgmnbamukywtovuﬂymvuyhpommduoflddﬁmhc

%

£12) a) Findthetamof2+ diand 2+ 3). :
b} Showthatz+2 » 2Rez foranyz EC,

_E3) Show M 7,7+ 2 = Zi+ 3,V 2, €EC.

i1d) 2} Showr thatz; +Zy » 2, +2Z  forany z;. , €C. )

V) Show that (2 +22) + 23 = 21 % {23 + )} for amy 2, 25, 2, € C.
LEi5) Furdan clement a + i € € such thyy

delardb)nzV2ELC

Il'you Gave solved thoese exerciscs. you must havcm.l[mi frat the MﬁﬁuInCutkﬁu
mos¢ of the properiics ti addition In R salisfies. Also, becanse of what you proved in P15,
we say that ) + 30 (= 0) is the additive identity in C.

- New, can you define sublraction in €7 We give you a very natural definition.

Delinfilen : The difference z;—:;otmeonpl:xnnmbemz; - x;ﬂy;
Ty Xprinisn (-2,

where =2y & (=X5) +i{~y;)

Thus, 2;-2; & 2, ¢ ()

~ (2 iy + [ (~x)+if-yD)

= (X% +1(p =y2)

S«,wlntdomlhiukz-zk.{amyzEC?

Lot see. Takez = x + iy, Then

2~z o (-x)2i(y-y) o 0, the additive dentisy iz C.
Tq&etoﬂmtg:!a@aeow.

E16) Fied (-6+m-(-3-

Er7) thz—f.[onayzeg

E1R) Fid the relationabip between
3) |zlenmd|~z}
%) AgzasdAg(-2),
forany z € €. (See Figure 4.)

-
Wo will now make @ brief remneri on the graphleai reprecestation of the sum of compley
nombars.
Remari 3 Toe additips of twompiaz rumbeare has 2o Important geometslesi

tepreaonlalion, Conslder an Argand disgram (Figure 5) in which we rcpmm Iwo compiex
numbers ;. ¥:) and (s, y2) by the -,ne!-_at:a!’s-dﬂ )

Irmmnphemcumlkhgmwﬁmmwumwﬂdmﬁemwn
Fc'h . ""..\’» J; ("“ ql’.
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4
Y

Rl et L . . (lg X7+ ,'l.}
:
]
1
)
]
]
L]
L}
1
L}
L]
]
1
:
a2 x.-

Figurs 5t Addigiog In C

In vector algebrs you will come ecross 2 similar paraticlograta [avw of additon.

So far you bave scea kow ustarally we bave defin i sddition (end sublrection} in Cby
using sdditica (and sabtraction) in R. Letas see if v & aaa do the same for multiphicatioa.

242 Multiplication And Division

We multipiiostion o B e dofing oudildlondlon e € Bart dhe ynuts L olinbaily

MEMLMMM&MMMS+‘MMC+M
wheres, b, ¢, dER

(s +tx)(c+dx) = ace(ad +bein +ddx?

Nuw.lfuﬁpulx-lhthh,wap!

G ¢ B)(c+id) = (a0—-bd) +i(ed +bo), smcai’ w -1,

This is the way we shall define s peoduct la C.

Defiaition: The prodact r; 2, of two complex samiern 7, = x, + iy and 2, = 3y iy
the complex pnber

2122 = (182 -y ¥ +i(E 45 0

Or, in the lakguage of ordesed paim,

(50 ) % YD) = (K132~ 51 P2 M Y2 4 Xah

For cxample, .

(1.2)(-3,2) = (1. (=3) 22 3.2+ (3R}

= (_7! - @}_

"ol @0 o O~+i({0-0) = ~I, wAkS e ligheetibs ]

Multiplication bas sevesal propestics, which you will discgves i you Ty tx: fadiowing
SXCICELS. :

E19) Obcsin {x, y) (1, 0, (<. 7 (0, 1}, (%, ¥)(0, 0 (x, 0} (¥, 0) anu
Ly),1)" x,y)EC.




Solutlons of Polyaomial

Exuations EX)) Prove that

Vun=pnvnzeC
tultiplicanan in C It commutadive
wd pEsOCI e, b) {"l 22) 3 = 7 (22 23} Y 25,22, 73 eC.

<) (x‘”(ﬁ?’ﬁ) = (1,03 V(x, y) e\ {0}

(Note that x?+ yZ w 0, sizce {1, y) = (0, 0})
d) zZ = 2 ¥zEC

U you've solved these exercises, you musi bave realised thatz. 1 = z Y2E€C.

This means that 1 §5 the mubtiplcative [d=atity of C, E19 also says that
z.0w0¥2&C,

i(x eiy) m =y+ix¥x, yER,

aud that in case z; aad z; are purely sexlpwnbers, owr ‘eficidon of multiplicatlon coincides
with the usual one for R ‘

s, from E20 (a) you can see that muliplication s cown, suiztive, 3nd from £20 (b) tbat
multipltcation is assoclalive,

And, what does £20 (c) say? It says tkat fo7 s ay non-zero <icwentz of C, 3#' € C, such

Ibat 22’ = 1. In this case we say that 2’ is tis multiplicative lnverse of z. Soz' = i—

Using E20 Iet us se¢ bow ta oblaist e siaudard fonn of the suotient of 8 complex nuinber by 3
uon-zero complex nuinber, We will ese a process similar to the one you musl bave used Cor

ratlon slising the denominator Ia expressions like -iﬂ;z-j.—:% . Consider an cxample.
+

Exarple 3 Obain 322 1a the form a 418, 3,6 R

Sotutlon : £20 (d) gives us e clus i e method for making th: Jeacasivator a real wnber.

Lt us multiply and divide gf?-?-by 135, Whatdo we et

[2+3EVf 1= _[2-:-3!){1\‘&}“--,'\-:-51'_:“._3_,
( ) (1-DQ+i) 11 2772

| =i T+
TGYY raC 243 -t 5.
So, 1o " 24—2!.

If you've understood the way we Bave solved the aranple, yéu will have o prodlem in
daing the foltowing exercises.

=2+
B21) Oala 57TV

E22) Fors,b,c,d € Randc?+d? = 0, wiite

a+ib

as an element of C,

c+id

mm’_ BRI el A
Il you Bave Goie B22, el you Riow Buw io wiiic (B¢ qUOTent 0f one compiex nuniber by

a hon-zero complex gumber fo stendard form.

Now, In Sectlon 2.3 we Iatroduced you to the polar forin of & camplex number. Tois form is

very bandy when it comes to muhiplying or dividing complex numbsers. Let us ses why,
34 .



Suppose we kilow z), 2 € C in thelr polar forms, say,
2, = £ (cos 6) +isiu9, )endz; = r3(cos B, +isin 8; ) Then
Z;27 = Iy rz(cos By +isin 8y }{cos By +isinby)
- [ I {{onsﬂlcosoz—-sinﬂislneg)-t-i{sinﬂlmsﬂgé-o&s@lsinﬁz}}
~ 1102 {008 (8, +6; ) +isin (6, +65)) er-(2)
So, [zy22] = 1,13 = |2y || 22| 2nd
Arg(zi2z) = (91+6;]+2|cz.whuewccboosckEZso ﬂ:.u
-x<{(B, +8)+2txxn.

In Figure 6 we give a graphic illustration of what we bave just said,

Y* Y“ w3 (A« B)
!12: -C‘DSﬁWBB-mA-ﬁUB
: En{A+B} =
z cnAs R+wsanxB
0,+ = sz,
8, -
[s] X %

WOIMHHM
1.t us consider an cxample.
Fxamuple 4 1 Obain the product ofz; = 2(00511-!;51':11) and 2, w cos 3 +ism 3.
Enfation : Here f2, [ = 2, Ay, = Ezzl LAmz, o 3
Therelore, z; 23 = 2 {o0s (4 + 3) « 1aa {1 3))
= 2 (cos 3§ +isia 4},

Mote ibat Arg [z, 75) w 4, siove 4 > &, We need to choose ar {nteprr K shich thay
~R«d+2kn xR K = -1 s¢rves the porpose. Tous,

Ag(zzy) » 4-2n

Henct (z; 29) = 2 (cos {4 —2x) + § sin (4 — 28)) i5 ke polar fomma off 2, 2,

W have a very nice meihod of {Inding the mulidplicstive invese ef o non-zero compler
Burdst bn an Argand diegram. L& up 366 what 1 k.

Letz & O\ {0} b eprezentzd by 2 paint B {sec Fimme 7). L0t @ contecens the suad numbey
|2 }% Lei R ioe thie refieciton of £ i ibe 2- am.wina&ﬂ.rqnmtaz.

Now, through {1.0) dmowr g ling narlle] 1o QR, L1 i1 interzeor the Hne DR in 8, Then 8

1
represents T

[
tn
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Figure 71 Fluding the uwitlplicative laverse

Try the following exercises now,

fe s e R, S S w e T N
E24) Find the poler fomms of ) and 2y where Z; = —6andz; = 1+ i Heuce obuain {2, 23
and Asg (z; zg)-

E25) Knowing the polar foms of2;, 2, € C, 23 w 0, oblai the polar form of f‘- .

E26) Obiawy z—l in the polar forn, wlhicze 7, and 2; ase as iu E24. Represenl z,, 20, 7, :l-aud
T Z

:—:in an Argand diagramn.

TRttt S S TR,

Ve will use multiplication and division in the polar fonn a great deal in e nexs section.
Beiore yoing w i1, Ict us give you a rule Wat relzics *+” sad *x’ in C. Do you kuow of such a
lav in R 7 You must have used 1be disuibutive law ofven enough, It says that

2 (brc} e ab+acVa, b, c€R The same law holds for C. Why dou’t you try and prove
it

127} a) Chuck that
(i) {(VZI-30+G+i)
(12 30+ (1 +){S~1)
b) Provethatz; (Za+uzy) = 2,2, +2,23 ¥ 25,2, 23 EC.

Now let us discuss o very uselul theorem,

2.5 DE MOIVRE'S THEOREM

2y = 5 iges O+ isimd jand 22 = rp{cos iy + 1 Gy,
tlenzyZp = gy ip-feus (B + &) + i sim {8, + 62)}.
ka panticulay, ifzy = 7 theneg = 1y, 0 w Go, 81 we find (031

zf = r,2 (cos 20, +is5m26;)



[n fact, this 18 a parucular case of & vefy nice formula, ramely, Gt 3z = (0039 +i5in 8),

thenz® = 1°(cos 110 + i skn nG) fo7 anty integer n. To prove this result we need Do Molvre's
theoremn, named alter the French mathematician Abrabam De Molvee (1667-1754), it tany
amuse you to kmow that Do Meivre never explicitly stated this eault. But Lo secms (o have
known it and used {t in his writings of 1730, It was Euler who explicity stated and provad

this result in 1748,

Thecrem £ (De Molvre's theorem) 1 (c0s 8 + [ 8in )" = cosnB+ Isinnd, foranyn € 2
and any sngle 6.

Proof : Let us first peove it forn » 0, We will prove this by using tae following imporiant
principle. .

Principle of Induction ; Let P(n) be a stetement about a positive integer o, such that
iy P(1)istrue, and
ii)  ifP(m)is troe for some m €N, then P(m + 1) s true,

Then, P(n) s troe Y a €N,

How will we usc this principle ? Fur ey, n € N, we will toke P(n) 1o be e starcuicnt
“(cos B + i 5in 6)* = coand + ) aln /O”. Wo will first prove that i holds far 5 = 1, that s,
P(1) is truc, Then, we will assume that it helds for 8 = m fos some m € N, and prove Wat it
is truc forn = m + 1. This will show that 36 F(m) is true, then 50 is P(m +'1}. .

Now, forn = 1,

(o030 +3i6nB) w cosB+isinfm cosl B+1isinl. 0
So e result is true forn = 1. '
As&umel:llatithlxucfornﬂm.lhllis. )

‘[cosﬂ-g-ishﬁ)“-msmﬁnsinmﬁ. .......... (3}
Now (cos B «isin@)™*?

a (cosB+15in0) (cosCG+isind)

= {cos inl + i sin mB) (cos O + i siu ), by (3)

= 05 (MmO + B) + tatn (mB + 8), by the formula (2} for preducts,

~ cos (in + )8 + i sin (m <« 1}8. |

Henee, the resultis nie forn = m+ 1.

Thus, by the priecipls ol‘indu:linn; the resuitis tue Yu EN.

Naw le1 us sce what bappens ifn a 0.

We deflne 2° = 1, forany z € C\ {9} (As in the case of &, 07 is nat definea.)

Tlhmwnlarn foma i o ot ol _ q
FaLTuRtIy (a3 O T I JHL Y T A

Adso,cos 0. 0+ismQ. 6 = cosD+iaitd » 1,
Tlus, e resuit is also g jogn = 6.

Now, what bappens itn < 07 Maybe, you can psove thls osse, You can do G fotfswing
“&xercises, which will lead you tg the rsult,

.EZBY Piove Iy = cos 0 -1 5in 8, fof any angle B.

1
cot B+isinf

~

You van gudy sobicpion i yeai o
deimil ia thecovres “Aksioe

Algebra®,
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E29) Letn <0, say n=-m, where m » 0. Then

1
(cos O+ tsin )™
Use this fact and De Moivre’s theorem for positive integers to prove that
{cos B+ §ainB)" = cosnb+isinnd.

{cos 8 +i5in B)° =

So DcMoh:rcsLheomm;suuc\anZ

Now,ifz = y(cos B+isin ) EC, then V€ Z
2% = ,1%(cos 8 + 4 sin B)°

= 1°{cos u@ + | sin n6), using De Moivre's theoresa.
What we bave shown is that

[r {cos 9+isiu‘B)]“-r“(nosnB+isinn0)forrER,9ER,nE Z

"This rexnlt hes several appiicetions in mathematics and physics. We shll discuss two of
them bere,

251 Tﬂgosionwﬂﬂe Identities

Oue of the most useful applications of Theorem 1 is in proving idenlities that inyolve
trigonometric functions like sin 0, cos 6, #Lc. Let us Jook at an examnle

Exaraple 3 : Find a formula for cos 40 in terms of cos @ ond sin 6.
Sclution ; By De Moivre's theoremn
(coe 6 ¢ 3510 0)* o co546 4+ 5t0 40 wermene {(€)

We can also expand the Jefi Land side of (4) by using the binomial expansion, Then
(005843530 0)* = (oas 8)°+ °Cy (o5 8) (i sin 8)+ ‘Ca(cos 0 (isin 6)°

+ °C3 05 84i sin 6)’ + (i sin )"

e 03* @+ 41 5in 900876 - 6 5in%0 cos20 - 4isin39cosﬁ+siu‘9 ---------- £)]

Thus, mmpmng lhe real parts in (4) and (5), we a-t
€05 48 = €05~ 6sin’d cs’D + sin’é.

You cen try the followiug exercise on similar lines.

Now, for any m € N let us fook at 2°, wherez € Cauch thar{zf = 1. Then, by
D¢ Molvre's theorem -

2® © cos mB -+ isinmb

aud 2™ = cos m - i sin mB, since cos (- QY = o5 Qand sin —2) = —sin & forany
angie 6,

Thus2™ 42" = Zeosm@end{ {6}
2™ =" = 2isinm0,” s

We can 55 these relation iv cxpress cos™0 and sin™1 in tepns ol cos m9 and sin m@ for
mom ol 22 Let us consider an example.

Exemple 6 : Expand 2% (cos“'0 + 5in™"8) in tems of 1he casines oc sines of mulhplcsofa

Setuilen: Putting m = 1 in the cqualions {6), we get



Ycosl = z+ 1 and 2isin@ = 3_.! Complex Nunibsrs
- 3

. 1\
.'.}‘“cos‘"ﬁ - (z+-z-)
- 21 1 |
= zY¢4dn 2 1-11;+‘°c,z‘° ’.-z—,-+_..+‘°c;,,z"“;§;_ +,.-+4uz-21-;:_7+;;.
by the Dinoavial expansion.

1 4
o (z‘“-a---in—J%dn(z“"z-t ‘:_2)4- S

" .

Zﬁ(cos""ﬂ+sf:f”8) a 2(z‘°+fg]+2(°‘{h)(:z‘""‘ -*.---,;E-_-;]qr...._-r 2("“Czn\
tm 2{2c,u=4nB+2(“‘Cz)cus(4n—4}B_+....} -o-z(""""h),using(ﬁ-).

.
2% (00698 + 5in"B) = cos 4nB + “Caeos (4 -4D +.... = .

‘The procedure we bave shown in Example 6 is very useful for selving differendn! equations
ivolving trigonometsic functlons. It {5 also useful for finding the Laplace wrassform plEuci

fenctions.

Why don’tyou try this exercise now ¢

A T om ey

E31) Apply Dc Moivre's formuia to prove thet -
i) cos 28 = cos6 -gin’e
i) 3in28 = 23 Bcos B

£32) Expand cos®0 —3in®B in teams of the cuifncd of wmpltipize of O,

—=rw : - T Wt | et et g g Sy g Ll
Let us now look st another ares in which we caii agidy De Moivre's theorem with great
success, '

2.3.2 Roots Of A Complex Nomber

in Seclion 2.2 we told you thal the whole subjoct of ooy pley punabegs Sirsigtase 1 ad
anempt to fiid the cquare roots of -1, By now you know Hatwe can elways {ind WL,
distincl compiex square 10083 of eny now-zzm wal aubey.

b= 0,4k - o

That is, pvens € R\ {0}, 3 distlaci 2, 2) E Cench it

T Fared s sk Al anrar.alaw “u—alu-w Lie
AT wmvay whiw g e el b re e LR

givemaay n € Maegdz2 € S,z o 5, e foid Hulinnd g, 1, S U Such a2y - 2

¥k = 1., M.

Esch of these 7, 5 &5 called s ath rosi oz

Toextract all (he nth 10015 of 3 complex Rumber, wo need De Molvze's ineorem as well ax
the Lollowing result that we ask yosi [0 piove,
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T —
EJ3) Lii ¢ be a positlve real number and p € I Show that thére is onc and enly ope
positlve real nmder b such tasid® - x,

@ixt:L2ins >0 besuchibat® = x <" Supposor w 8. Then " —¢® = O and
-7~3 w 8. Then you shiovld reach s contradiction.). .
E‘Imm—_m

We denoto the unigee positive mil rook obtelned in B33 by x4,

"Now fet us conslder an eumplcotnh:dn_duﬁoﬁmmplu number.

Fxameple 7 1 Cbtain alf the fifth zo0ts of iia C.. |
Solution Letz r (005 8.+ i sin 0) be aay 51k coot of L. Thenz® = L The polar form of'i k
i Am%nm%.mw«:

Z =L

=t (cog 8 + i 5in 0)° = cos &

2+iﬂn§

=P (coe50+isn50) w cos T+ 12ind o (T}
by D2 Moivre's theorrm. '
Compoting the madall {plera! of ‘moduing) and aw'ﬁtk complex humbers on
both akies of (7), we get :

F o lad 58 o §+m,wrmk - 0,4l 22 ...

Fis th: mique pagiiive real fillh oot of 1 (sce £33). Sinee 1 €R, 7 = 1, thatks|7] = L,
The possitrie values of O sre

6ol

3 (§¢m}&'oo.=l.=2.....

Thyz, the possible St zoots of § are
m_u..-!i‘h-. E‘ [ Ii .—.E -
..-mllo-estJHsmlwq-as),i: tx21,22...

methisitutm.-.l.huihasmmilclymysmmou.ouforucthZ.Buuhi;isnm
&uaﬁaemoﬂySdemmangmmmywﬂ}be!bcwhuol‘zl'm-
k = -2,-1,0,1,2, Let us gee why.
X dx) . X 4x
Whenlk = 2,2 = ms(m- 3 )-l—:sln(-ﬁ--s-)

= . Tx
"oty T Ry

- . -
Whenkn—l,zums-l-a-—lsml—ﬁ--.:.,.sa_.

Whenk = €¢,7 cr:\i%f'lsin-!% = 24 . 5AY,

Koo A
S risins =z, pay.

Whenk = 1,z = cos
! 2 2

Whank = 2,2z » mﬁ‘_isi‘.‘?_ﬁ_ -z .say.

10 10
13n 13x 7a =
When ¥ -_3.2 - cos-l-ﬁ-q-ishl 0" m(h-ﬁ- +hi.n{2lu—lo) - Za.



17 17x 3;: .
Whenk-‘i.z-msm +isip 10 -oa;s(h— +lm( 0)-:_1_
Simitsrly, when k » 5, you will get 2o, and 0 0o

Thus, k = 5. 6, 7, ... don’L give us new values of 2.
Now, ifwe putk o -3, wegélz = ons(--—:;—“)ﬂm[::%) - Zn

Similsrdy, k= -4, —&.... will not give us new values of Z.
Thu:t'oze. the ouly St roots of i are

{w*zx ]Hsln(%-r'.’k!;-)[ork -0zl z2

ltmnrl“:WeusogcuheSlhtoutsnfihyuklngk-tl.l.Z.S.Mn

<o __'2::: +isin o+z—?— , 48 you bave sech. Only nete that for k = 3 and

10
t-4,lhcnnglﬁewulnothcmth:nngg—::coss.mlswbywchdukukso,

1,2

Now, look at ull the fifth roots of i. Huw are their moduli related ? They bove the ssine
modudus, namely, |i]? (=1) . Thus, they all lie on the circle with ceatre (0,0) 20d radivs 1.
These points will be cqually spaced ou the circic, since the arguncats of conscculwe points

dlﬂ'ﬂby%:-.aconsunLWeplollh-cmmlhemglMammmmrgurco.

vl

Figuae 51 The Bfth rools of i

Using the same procedure as above we €an cblamu the distiuer nih touis ot‘an) N0 LTV
-v s I\"\Jr n. Ve '\_rrlif il

caplex nwaber, for any 0 € N. Thus given, aily B0&-T0S LHmps
i its polar {orm

- = ol doarm

o = s {ots G risle e wherss = lwiande « Apw,

By £33, there is a unique 1 € H.ra-ﬂ sech st = a, Batis, r = 2" Tl 10¢ distin:

wib roots i

(T e H BT S LR S PR fral A eed f,h.-'f"

Cemplex Nuaibers
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Nolc that

a noa-zero complex number has exactly n distinct ath roots for
sny n € N, If zis one root, then the others are
268y, LA, o y TG -1 , WHENE €Y, 1o Ga— ] are the nik roots of unity.

Now you can do some exercises.

m
E34) Find the complex cube roots of unily, that is, those z € C such th212’ = 1. Plot them
in an Argand diagram.

E35) Solve the cquitionz® - 422 +4-2i = 0.
(Hint : The equation can be rewriuca as (22 =2)% = (1 +i)° )

The cube roots of unity that you obtalned in E34 are very important. We usually denote the
14iV3

cube root '—_—T—-by the Greek letter © (omega).

2
-1 +N'3‘) = -.v’?. the othier non-real cube root of waity. Thus,

Note that ¢ ~ (

2 2
the three cube roots of unily are 1, 0, o, wikre ® = it,f-ﬁ
Also note that
Lrw+w? = 0. e (B)
We will oflen pse w and (8) in Upit 3.

“We will equally often use the following resulis, that we ask ycu 1o prove.

T T e e e L L KR IR

£36) a) Leta € R. Show that a bas & real gube 1091 1, and the cube roots of a are r, To, rw’.

b) Show thatifa€R,a<0andaisan e\_'gu. positive inleger, then o will got have &
real uth root.

¢; Letz& C\R Then shiow 1hat 2 has three cube roots, and if any one of them is v,
the otber two are y o, y &=

With this we come to the end of our discussion on compiex numbess. This does’t mean
that you won't be degling with them any maore, In Exct, you will often use whatever
we have covered in this ynis, while studying this course #s well as other mathe-
malics courses,

Lt us take a bref fooi of the points covered inthis uait.

@ =7

NETRTEA AT
38 VI ARY

HaN
o

-
e

In this unit on complex numbers you have shudied the following polnts.

1Y The definition of a mmph\: numher:

A complex number is @ nwaber of the form x + iy.wheie x, y ERand i = V-t.
Equivatently, it is a pair (x, y} ERxR



2)
3)
4

6)

i0)

arib T gl b alebt

x is (he real pari and y is4he imaginary part of X + Iy.

R Fiy = J;z+iyzl[£x| w xzandy) » ¥z

The conjugale of 2 = x +iyisZ, = :'—iy; |

The geomelric represeitation of complex numbers in Argand diagranms.

The polar form of 2 = x +iyisz = r{cos 0+ isin 0}, where r = |2 | = \/—_:}_:'
and 8 = Argz = tan -t }whucwccbo«u!lw 0 |halcorrc~.|-mdslo the position of
2 in an Argand disgram. _

Euler’s formula: e = cos@+isin0YOER.

The exponeatial formofz = x+iyisz = ‘ﬁin, wherer « |2]and@ = Alg o
Addition, subtraction, mullipltcation and divisionin € : Va, b, . d€R
(a+ib)2(c+id) = (azc)+i(b2d),

(@ +ib).{c +id) = {ac—hd)+i(ad +bc),

L L ib =, whena + ib -'0,

arib | faribile=id) ¢ cyigm o,

c+id ¢4 d?

FO!'-ZI,Z:EC,
IZ;ZzI-IZ:IIZzI.Ms(Z:Zz)-AJEZﬂAmem

E;—%.arg{-z—l) = ﬂ:gz;—ﬁfg_iz-#ZﬁiR,{imz; e Oy

zzl
wherek,m € an:choamaotbat

= <Ag(z) 7)) s:_und-—u<Arg(é)sn;

11)

De Moivre's eorem : (cos8 + i 8inB)° « cosn0+sinn® ¥ n € Z and any 44lc &

“The use of De Mcivee’s theerem in proving irigonomelric ideatities and for abtamany

uth reots of complex numbers, where n € N,
PP - CIVE

The cube 100is of unily arc i, o, ©°, Wi & 2

Now that you have gonc trough this unit, plcase go back io the elifectlves listed &t Snetion
2.1. Do you think you have achieved them? One way of finding out is te solve ail L2 exer
cises that we have given you in Wbix unit. If you would like to vesify your solutions os
ansEwers, you can soe what we have wrilten in the following section.

—— e, L b

2.7 SOLUTIONS/ANSWERS
1) z Rez Amz :
1+V-23 i Vi
z 2 2
i 7 3
| o 0 6 :
~1+V3 1+V3 0
5 5

Complex Numbers
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E2) Yen becausc every real number x is the complex number X + 0

E3) 2-31,2+3i2 3L
E4) a)

L1

148

PLQ.Rard Srepresent 3, 10§, 141 and i, respectively.

I

frure 9

V]

EF )

el |

-
l

- - 3]
/]

Flpore 10

H
[
L)
t
i
1
|
2
1
.
!

L Lz and L, repsesent the seis 5,.8: and S-J.-rcspccttvc.l_;r:

et S S
ES5) -i-—+§.2.—_z.,.

1
E6) k 2.m=3.

E7) Letz @ x¢iy. TheaZ = x - v

2 EZ=BEIIN m Xy oy oy oy -

Y = -
LERER =T

EB} Letz o ey, ThenZ = x —lv,

w2 e xTly e xtiy ez

E9) 3 = 3{cosfisisinO)

-"Ntfw|—1+i] = VI+1 » v, and



Al'g(-l-l-i}-lan*l(-;])-—:'/4ﬂr3m/4. Camplex Numbers
Since ~1 + i corresponds to (1,1 ), which lies in the 20d quadrant, Arg (-1 +i )= -345-

et [ (_a +hin( )}
s (RO ( ( == ]*"'“[ jﬂ)}
()

" I
i =.cos 3 +isin >

El10) Foranvz » x+ Iy €C,|z]| = 1.@.1/;!4.,.! alexisy el

5

Gil) +iy = \’_(cos—ﬂsm )} {polar form)

ENTEA

= V35 ¢ ¥* (exponentiat farm)

t+i= V3 (s -a-* inini‘--} (polar form)

= V2 &V (exponcutitt form)
~l = cos 2+ isin =z {polar form)

= ¢ " (cxponcntial form)

- cosg--bisln:;-(poh:ram)

= 2 (cxponential fonm)
E12) o) 2+3i4Z2+31 = 2+ 42-Fiwdelind
b} Letz = x+iy. Then
Z4Z m (x+iy) +(x~iy) = x = 2Re 2. .
S13) Letz) = x; ¢iy; and 2 « Xy +iyy . Then
Zy+zy = (X + XY, +Y2)
LI Iz e (X 2% ={Y;¢ ¥3))
= (X +Xn=yy~¥Y1)
w (X, -V )+ {x-V¥2)
w2z ¥y
Eld) a) Letz; = (x;.y)andz; @ (x2.¥9)
Then z; + 2 = (X5, i) + (%2, ¥2)
- 0+ %Y+ 5
= (X Vaky) . slucca+b o beaVa, bER .
= (X vore (X ) ‘
=y
) Lotz = Koy az = Bavo 2 = &y

Tham |o-ll-.-‘.-!lln.if- ¢,L\ﬁ,;— - -o.n..ﬂn..&.: \_‘!

-
 premy e wmnn - r

E1%) Let z = x4+ iy.
Thenz 4z 4ih) = 2

h a0 tn memvia b nas e
YA D ATy T QR v MU D sTerIs

= (X +v) Ha s th) ax ey
=>(x+a)+i(y+b) » x +iy
=X+d w xandy+b =y

da
th



Solutions of Polymomial =a=0bx=0
Equations sa+ib=0+i0 = 0
E16) (-6-(-3))+i (3 ~{-2)) = -3 + 5i.
E17) Letz = x + iy. Then
Z-Z = (x+iy)=(x—iy) = x~x)+1(y+y) = 2iy.
s {(2Imz).
E18) Letz = x + ly. Then—2 = (=) +{=y} Thus,

aj |z| -Vxh?,and
2] = VP + () = Vai+y = fz)
b) A;gz-un“(f).

Arg (-2) = tan” E‘i] - 20 f) = Argz-2x, because (—z) is the
reflection of 7 ib the origin.
E19) (x, y}(1,06) = {x, ¥}
(x,y) (0,1} = -y, 1)
o1 - 2VIEC {x,y)(0,0) = (0,0)
!:0 - ovrEC. {x. 0} (y,0) ~ {xy,0)
G, y3(1.1) = (x=y, X+ ¥}
E20) a) Let z; = (:'q. yi)and zz = (g, ¥3). Then
7 Zz = {=; u\l’y. y.}

raie v

. (X %~Y1Ya X Y2 ¥ X2 YY)
= (XaX|—¥2¥1 X2 Y1 + X Yo) sinccab = baVa, b,cER
= (X3, ¥2) (x1. ¥))
- 237
b) 1z, « (x1.¥1),22 = {Xz Y2l 72 = (X3 ya) then
2372 = {XyXa = Yi¥2 Xpv2 + X ), a0d
23273 = {XaX3=Y2¥s. X2 Y3+ a3 )
Toerefore, (2;2; ) 7y :
w { (XX2~y1¥2) X = { X3¥2 + Z2¥) ) Y { XMz =~ ny:)v,u.(x.yzﬂzh))
» (X X%y —¥2¥3 )~ ¥3 (Xays + Xayz b X1 ( Xy + Xa¥a )+ (xaxa ~Yaya } 1y )
w z; (2223}
X _= ) . (Iz-l-)' -xy+xy] - (L)

ey Xay eyl xtey?

¢) (x, y)(

d) Letz = x+iy€EC Then
ZZ = (xX+iy)(x—iy) = x +y -(V: -|-;h) - izl"
—2+1 -2 41"
E20 T/ ci@) - 2+iv3
(2+i)(-2~i¥3)
-2)*+ (V3

4:9¥3 2 .
.= +:!-(¢':=T-1)i

sincc 1% m -1,

z . saih
E22) ¢%+d” » Omeczasthate =-Oorde=C. Thus, e+ id = O Hev.e:mlsmnlgful.

a2+ (zﬂb)(c ~id) _ (xc + bd) + i (bc—ad) ac+bd +i- e = ad
c+id  (c+id)(c~id) c +d’ R c*ed )
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. . : Complex Nambers
E23) &) Litz = x +iy w 0. Then, from E20(d) we know that zZ = jz}2

‘l'hcrcl'me.z(lll, ) l'I'hn:sl Fz'lsll:n:mull!plk:ath.'ci.ﬂ\f:.l:t*.coi’z.
z .

1
b) Forz « 0,2. l-l P |I |-|1|-1

Izl
E24) z, w 6{cosa+isinx),z; = ff(mzﬂmz)
~izyzp) = 6V2 and
Afg (2,22) = (u+3:-]+2bt, where k € Z such bat-x'< Arg (z;z2) s .
- Arg (2 -%.

E25) Iz, = 1, (cosD; + i sinBy) and Zy = 12 (cosd; + 15in0y),

Z_nh {cus0; + {ainfy)
22 r(cos0; + isinBy)

- fl{ousfer1 + i sin8,) (cos8, — | sinBy), multiplylng and dividing by (c0s8; i 5indy).
2

= T (cos (0~ 0 +isin (6, -0))

- El(cos(ol—oz+2h)+lch(01-9;+2§IS)).w'b:ukERsuch that
2
e -+ LRz
03[ (-2 n(-3)
6( n ix

- ‘7!-57 OWT-l-ilinT

_g.
-5 =5 =4
Figas 11
The nadete B O T Cand T i m.glgwg__i.’_g, —-nnd—— e eTiVely.
= = 3 L MIp BV - TrTE mo— = o _,zz 2-)
Here OT = Ob-and £XOT = £XOP - £X0Q.
E27) o) LHS = (1 +[(VZ +5)=2i] » (7 +VZ)+iB+V2) r L
‘ oS wlands ,.rI' T BT
RHS = {(VZ +3) +i(VZ =B+ 4+ oij= (VI +N+i (VI 43) DS woa ot o s

Tous, LHS w RHS,



Solutioas of Pelyromial b) Letzy = xp+iy)2s =Xp iy 2 = %+ i

Thenzy(z; +25) » 66y +i2) {62+ xa) +1 03 + )

- falra e 1) —yylya s Yl + L[ Oz ¥+ 1 (g + 53))

m X)Xy~ ¥)¥2) + (X;X3 = ¥1¥a) + L [( x50+ Xoy ) 7 (X1¥3 ¥+ X3¥4)]

= [ —yiyd + 1 (xayz + Xy ]+ [Oxs = yays) =5 (ays + Xyl
= 20y +7) 23

You can also solve this by writing z;, 2> and z, in polar form. If you dv, you wmust
remember 10 be careful about z; = O for any i.

1 cosdl —igin® -
E28) prvrpu R rari cosh — i sing.

£29) Forn <0,58y0 & —m,m - §,

. 1 1
(cos8 =i sinf)" = (cosf + j sn®)™ - (cosﬁnsinﬂ}
= {cos0- i sin8)"

‘% [cos(~8) + i st (~0)"
= ¢cos (—mB) » i sin («m0), sincem > 0.
- &snﬁHsinnB.
E30) (cos® + 1 sind)® = cos 30 +isin 36,
Also, (cosD i 5inB)® = c0s’0 + 3 cos (L sin + 3 corf: {50 + sty
= (00870 — 3 cos8 5in%6) + i (3 sind cos™ —<in’8} .
Thus, comparing resl purts of tic two egualitcs, we get
083G = 0870 =3 cos0 sin%0 w 008’0 3 cosE (1 ~¢0s%6)
= 4c08°0 -3 cos,
' Shniaﬂ),oon-:pmnglhcimaglmyp& 5 we el
 $in30 & 3sinB(1 -sin'0) -5’8 o 3 slab—ds’e,
B31) (cosB #isin8) = c0s20+isin20,and -
(c0sD + 1 5inB)° w c0s?9 + 2i cos@ sinG —sin’6.
< cos 29 = ¢0s’0 —¢ta%®, and
sin20 = Zsinfoosh.
E32) Letz o ¢0s8 +i stn@. Ther, usiug (6),

: L6
1 . 1 i Iy f = 13
(Zcmﬁ)‘-(z+-z-.] -(2‘1-;;]1-6(2‘1--;[_1'-1:»(2 r;gJ+‘20,

(230 » (z‘+;l-‘;)-;6(z‘+f-)+15{2:-.-;3'5}—2@.
2‘(@‘0:-513‘0) (z‘+-—)+30("‘+:};]

m dens 62 ¢ 60 o528

E33) Let.r,sER,r.a:(}nﬂ:" = x = 5" Wewill prove b result by contradiction (ses
sppordlz to thia block) Sunsnczr w 5. Ties

Pef o e P s T e O

Sicer>0,8> 0,5 R
Abos -5,

18



Bat the how can the product of two Ros-zero numbers be zero? So we reacira
contradiction, Therefore, our assrmplion must be falre. T, r=w
E34) Lelz = r{copf + i 5in0) be a cude rool of1 = cos 0+ lainl. .

9——'552'-5 -« T ko, 0 i

Theny = 197 2 1,0 & 3
)
Yi

»e

-1 V3 .. V3

Thus, the rosls are 1 ~= & je—afid i § e
2 2 2 2

E35) We want to obtain those 7 € C for which
(Z-2) = 3(1+i), tharis,
2wl +iandZ =2 o (1 +]), hats,
20 e 34 andz @ 1-1
Thus, we want to find nd the square reots of 3+ jand 1 ~ L
Nawsn-vf"‘{m{ —)nm( "IH.
Iy

Thus, the aquare rools of 3 + i arc
v cos o tsin Vand 107 | con {2 0
i0 (co.szﬂsmz]mdm {cm(zd-:]fls.in{zi-u]}.

whcrc&-la

l_‘Jl....

A

Alsol-j = -fi'(ms(-'3'1)“m(:-‘i]),mmnhcqummm?ﬂ - ieve

'_"“{Lm-s--mma)mdzm(m?u lﬂ.ﬂ?x}

These 4 squate roots are the 6 roots of the givew equalivn,

E36) 2) ifaz ), then by E33, 2 bas 3 real culs 00y, -7, Now, s » afcos O+ i=ia ), *

Thus. tbe cubc roots of 2 are
m{cos?'—;fd-lsm'&;') E=0,1,4

Wt R _‘m U " mmz.

s <, mm-wo. Thus, — s bas » real cube rout, say h. Thenr =~ &5 2 veal

cubcrootofa. And 1] = Jal'?, thatis, £ m — [ |“? (shace r is negative).
Nowa = |a]{cosn + i sin R). Therefore, the cube roots of & arc

Complex Numbers
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Solutions of Polynomial w1kt .. (Zkwilm
Equatlons fa lm f 03 L)—j‘“-‘ +1nip 5—-*:;."-)—), k=012
{Fen 1)
Jopd :+i5in'(‘2—k;_l)‘r£],k 01,2,

a p{eos \'-isiu:c)(cu.\.*-*}—

(gloet L o easx+iainn)

LTI -1, =
u-'r[cn.'a Sﬁ‘--_’;—-'.}-ig-wici:-.gffllg—-s)-}i],k = 0,1,2.

Thos, the fabs inods 6T =2 ), T, wl,
BY Yoz poo- T i G H.Men, inianyBER, |

B e P9,

'Thus, b° < & forany b G 2. Hence, e can't have & real nth roct,
&) Letz = 7 (oost + i ainb), i polar form.

Theuw its zafss goats ace 1™ [f:os %213_ +15in 8 + Ao ),, k=012

.3

Thus, if y = l‘m(msgﬂsin—g—}mmmeomﬂ 1o0ts are

rm(meggﬂﬁsm-&}%) - ?(C-OS%‘:'\'risiﬂ%) = "y, and
+

vl . Gwde . Dd4E) _ 2
T (onﬁ 5 +is.n-——--—3 ] ym
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UNIT 3 CUBIC AND BIQUADRATIC
EQUATIONS

Steucture
3.1 Introduction sl
Objectivea

32 LetUsRecall . 52 .

Lineer Bquations
Quadratio Equations
3.3 CubicEquationx 37
) C_ard-no‘sSohdnal _
Roots Azd Their Relation Wich Cosflficiams
5.4 Biguadntic Equations 3.
Ferrani's Solation
Descatios’ Solution
Roots And Thely Retatlon With Goefficicats
3.3 Summary '
3.6 Solntions/Answers

3 8

3.1 INTRODUCTION

In this unit we will look at aa sspect of algebrs that bas exercised the minds of scver)
mathanaticlens tirosizh the ages, We arc talking ahout the solution of polynontial equatidng
over R, The ancient Hindu, Arsbic and Babylonfan mathematiclans kad discovered mathods
of solving linear and quidratic equatiors. The sncieat Babyionians and-Greeks 2ud olso
discovered methods of solving some cubic equations. But, 23 we have said i Unit 2, tiey Bad
108 thought of complex numbes. So, fior them, a Jot of quadntic and cabic equatians had no

solutions

Tz the 161h cemtury varions Italinn mathematicians weze fooking Ento the geometrica$ prob-
lem of trisccling an angle by stralght edge and compssx. In the process they discovered
a method for solviag the genoral ciibic cquation. This method was divalged by~ -
Glrolamo Cardano, and bence, I8 named alter bim. Thls & tha e Cardano Who wap the
first to introduce complex nurmbess into slgebra. Cardago also publichred 8 metaod -
developed by bls contemporary, Ferrari, for solving quartic equations. Later, in the 17th
century, the French mathematiclan Descartes developed another method for sviving <th

Gegree oquations.

Iu bis vnit we will acquaint you with the solutions dwe to Cadane, Feerari and Doscartes.
But fiest we will quickly cover methods for solving Lzear and quadnatic equations, in the
process we will also touch upon some general thoory of equations, -

Thers are sovers] ranzozs, pert from 2 Rmbometiclan's natwat curailiy, 1os iooking ai
~ubic and biquadratic squations. The matcral covesed n this unit is also uscful for
walderasticians, physicicts, chemists end socisl sefantiste, *

Adfer going through the vnit, pieas'c chock 10'32¢ if you have achicved the following
objectves,

Objectives

Afer sludyiag this wit, you should be able 1o

W0icd iy limea:  (ualney

Cublk sad Biquedratic
Equstions



Solntiors of Polynomial
Eqostions *

¢ solvea quadtic eqration;

'@ apply Cardand's watiod for solvicg a cuble equation;
‘s apply Ferrari’s or Deacartes” method for solving s quartic equation:

¢ use the re.htionbetwem roats agd the coefficients of a polynomul equation for obtaiing
solutions,

32 LET US RECALL

Yoo reay be familiaz with expressions of the form 2x + 5, —Sx° + % Y2 et o), etc
Al these expressions are polynomials in one variable with cosfficients in R. In gerieral, we
have the follewing definitions,

Definitions : An expression of e form 89 X% + 8 X' + 23 X7 # coeen. + 8, X", WheRe

nEN and § €ECVisl,..,s,is calicd a polynomial over C in the variable x.

ag 31, «-om, Ay BFC e coefficlepts of Uiz polynomial.

Ifs, » 0, we Q@Y that the degree of the polynomlal is n and the leading term is a, x™
‘While discussing pojynomirls we will observe the followlayg conventions.

Conventlons ;: We will

i) wrile x®as 1, 5o that we wili verite 20 for ap :to.

i) wrtsx’esx,

iil} write x™ Histead of 1 F (Leo when 2, = 1),

iv)  omilterms of the type #.x".

Thus, t3¢ peiynomiel 2+ 37 - X is 2¢ + Q. x' +3x° + () C.

We nonaliy denole potvnomials in x by £(x). g (x). ere. i the varable x s undeniond, then
we ofiun w: it T {nslead of F(x). We depote the dugree of a palynomial £'(x) by deg; F{x) or
dep I

Nete that the Jegree of D{x) is the hiyhest power ol x ocearring in £ (x). For example,

i} Ax+6 +-§-ix" is a polvoomial of degree 3.
oL .

iy " s a polynemial of degree 5, aRd _

i) 2+ :is's polynomial afdegrec O, sinec 2 53 = (2+i) x5
Remark 1 : 1f {(x) and g0x) arc two polynomials, ten

deg (X)) + gtx) w1s s Wog K. deg 'gEx}?

deg TR0 glx)} 5 dep s} + deg glx).

W say (hat £(x) is a polynoniial over Rif its cocllicients are real numbers, and £x) is
over @ F ifs cocflicicnls are estional numbers, Far ckample, 2% « X and 17 < 33

poiviomials over G as well as B {of degives T and 2 icapuctivels ) O tie other ok o
is m polynomial (ul degree D) over K but nol over Q. I this course we shald alminst abways

he dealing wilh poivaeisieh ovse B
Note that any now-zera clement of R is a polynoinial of degree (fover R.
We defiue the degrec of O to be — =

Now, if we puta-polynomial of degree 1 equal io 2610, we gt a polynomial equalion of
degraen, or-an b degree cquaton ' :



For exumiple, _ : Cuble and Biquadratic

(i} 2x+3 » Uisapolynvnial equation of degree 1, and Equations

(i} 3x°+V2x-1 = 0isa polynomial cquation of degree 2.

WX} = ag+ A1 X % e + 3, X" i5 2 polynomial azd u € C, we cun substitute x by ato
-]

get Ka), e value of the polyaomial at x = a . Thus, [(8) « 3y+2;8 +a32% +...... +3, 2"
Forexample, it C(x) = 2x+3, thenr(1) @ 21 +3 = §, £(1) = 2i +3,and

AR

. -3
Since f(-;-

) = [}, wesay thal:-;-isamluf[(x).

~ Lefipitivn ; Let f(x) be @ non-zero polynomial. a € C is called a rvot (ora ie-ro) of € (x) il
flu) = 0.

lu this case we also say that & i a solution (or a root) of the equation £(x} =0.

A polynomial equation can bave scveral solutions_ For example, the equation x? =1 = 0
has the two soluticus x = Laad x = - 1.

The set ol solutivus of au equation is callcd its solution set Tbus, the sofution set of
“+1 =0 is{L-I}.

Aunctlier definition that you will necd qttite often & the followlg,

Defnition : Two polynomials 29+ 8, X + ..a. + 2, X and by + by X.... + b, x™ are called
equalifn=manda, = b, Vi = 0,1,..,0

Thus, two polynomials are equal if ey have the ssine degree and their corresponding coef-
ﬁcinutsareequa.l.'ﬁlus.Zx)d-B wa'ebr rex+d iff a w 2,be0,c=014 =3

Letus now take a bricf look at polynomials over R whose degrees aro 1 or 2, and tieir
sojulions sets, We start with degree 1 equatlons,

321 Linear Equations

Consider any polynomiel ax +b with 3, b ER and 4 w 0. We call such 2 polynomial a
Lnear polynomlak If we pul it cqual to zero, we get & linear equatlon.

Thus,

X+b =0, 5bER awld,

is the most general form of & luear equation,

You know thal this equalion has a solution in R, namely, 2 = :}'- ; and bt this is the only
sulution.

Somclinies you may came auross equations that doa't appeas o be linear, bul, after
slmplification they become Nnear,

Let us {oak.at sonu.c examplas.

Cxample L Solve 293:.{ 522- 7 (Hem wiemust assume p = 1}

Sotutlon : AL Oraf glanes, this cquation in pdass pot 3ppess to be Hncas, Bug, by cioss-
muwdeiplying, we get the following equivalent equation :

-..Q-..-q,. PRl The virnlend B
HH

'IE'—.
Sda HIVHA B T u«

(Sp-1Kp-13-3(2p) = 3(p-Lp. *
Cusimplitying ibis w. get
>3




Solutions of Polyanmis]
Equstions
Thovard comes fom

3p*~dp+1-6p = 3"-3p,

thatia, 7Jp-1=0.

The solution set of this m_ﬁ{%}nmﬂh  1he solntios et of the cquation we
slariod with,

Example 2: Suppase I buy two plots of 1and for Re. 1,20,000, 20d &ren sell them. Also
suppost that { bave made a profit of 15% o the Gt plot and # logs of 10% on the sccond
Fot. [T my tota] prodfitds Rs. 5500, row mnch did 1 pay for each ploce of land ?

Sohusion - Snmem&nﬁecdhndmhzmﬁwphum
m.(l.m.uuo-:)mmmﬁmm% x 84 uy Liss 1s Rs. —— {1,20,000 ~x ).

2 5 X - (1,20,000-x) = 2500

© Tix ~1,756,000 = O
o x = 000,

‘i'wm,limn try fhese xceucincs BOW.

, .

denneninans art mon-zero.

Bl) Sm:uﬂdhtmuhgmhmemuemm&m&ﬂ

s) 1(£+l') w x for x, where J, K and 2 are constinis,

'

- ]

b) - —+r—hn.hqingr;;ndrgm
_' 3

c

0 C= - {F=32)for ¥, keeping C constant,

BY) Mh«edsﬁqhhsupuhmﬂmmlme@dudcsmmulmgum
third sifle. Find the heigihs of the thres sldes,

E3) amwmmmwmmmmmmmm,my
$= wphill apd takes her kalf an hour, If ey rate bs 8 km per hour slower ont the refum
trdp, bow far does she Live from the study centre?

Hd) Shﬂth@ﬂi&d,pwwﬂaﬂpﬁephdplmﬁwﬂu&m&r
which the amouas is iovested. ICRs. 1000, left a2 fateest for 2 years, eanss Rs. 110,
find the amount of interest eamed by R, 5000 for 3 yeqrs.

(Hint: S o kP, where k I8 the constant of proportionality, S is the simple interest, Pis
the principal and t is the time. )

m
Now that we hava looked at first degren equations, lot us considersecond degres equations,
that Is, equations of degree 2

3.22 Quadmtk Equotions

Copaider the general palynomil in X over R of degree 2 ¢

ax® +bx + ¢, where . b, cER, a = 0.

Ve call tris pelynomini g gtmdreily pelyromisl On equating & quadratic polynomial 1o
22T, We pet g qeandraticsgontiya n siaedad fomm,

Can you ik of an example of & gusdnadc cquatioa? Cun b x% = 5, which i3 G 20me u
x*—5 = 0. Another {a the equation Cardano tried to soive, samely, 52— 10x + 40 = 0 (sce
Sec, 2.1). We arc aure you can think of scversl others.



e

Cubic and Biquadrztic

Various methods fo: solving such cquations bave bera ks <inze Behyloniap tincs (2008 “rnations

B.C.). Bruhmagupta, in 628 A.D. approximately , also piave 7 .tk fov seiving quadrabc
‘vqualions. The methed that cxm be used for any Rladinils egi ion i “oerplcting e
square”, Using it we get the quadratic formula. 141 vs st *13 formuda.

Quadratle Formuls : The solutlons ef the guwides i equetivn
ax +bE+¢ = 0, wherez,b,c € Raoda w 0, xic
b xV b —dic

2x

x'n

Tlie expression b® ~dac is called the diserimiazsz of sx® b 4 ¢ = 0,

Note theat s fonmula tells us that a quadratic equaticn bes onky v wmuls. Thest el may
be cqual or they oy be distines they may be res] or complex.

Convention : We call 2 root that Fesia C\Ra complez real, Mol is, o oot of e fom
2+ib, 2, bER, b w 0, is a complex rood.”

Lt us consider oz examples.
Exnpyple 3 2 Solve
) x-dx+1=0
B 4x*e?5 = 20z
ili) %xP—10m+40 = 0

Solutlon 1 i)} This equation I3 & stondard fona, So we can apply e gu-lratic fonuula
immedlately. Here a = i, b= -4, ca L Subuilivilyg Gwe valus 2 bie GRasitiis i s, We
getthe two roots of the equation to b

= 2-:-14’_3:.,1:33

sV (~a¥ -4 4:VE2
e 2 ! 2

" r—ﬂ-—-__“ﬂ"—ﬂ
— (= -V (AP -4 (DD P

2()

o=

Thus, e sohlions are 2 + Viadz-v3 , bwo diztinel Cements of 1,

T D R e TR TRT D
oD 1Al 0 WS TO5C LS Grat Ui e W el TGV,

i) In this case lez us fiest rewaiic the cquation i landerd Sonn cs

A =20% =35 =

Now, puiliag 2 = 4, b= =20, ¢ = 25 {ates g faalg senuez, e and tant

o WY RO | LA
244y 8

¥
Y and
{ a

_0-VI-4@ &) 5
x X i
Here we find 1hzi both the moobs coipclde ond 2w zeal,
Mole shes B adS Qs e nicamiiani i

iif)  Using ine guadrale forinwia, Wi God hisl the goludlons sm

ey I ot
wod Foola
] -

10 =VIETI60 . Vo

- Byacompis nattuin ende s
~ = = il X

il
[ %51
5

= O = =

eS52v¥-15

w S5 i.x’_lg‘
Thus, in this cuse we get two diatincl counples roots, 5 +1V 15 and 5-1V15.
~ole that in this case thc:ijsm"lminam Is negurive, “ ‘



Solutions of Polynamial

Equations ia te cxabpli sbove do you see b relalionshup between the types ol oot oF » guadmtic

egoation snd the value of its discriminam? There is such a relatiouship, which we now stue,

Theeqnﬂnl'uz-rb:+c =0, 8 m0, a,bc ERbystwo
rooty. They are

) real anddisthict i 6* ~ dac > 0;

H) resl dnd oquni 6% —dac = 0}

ill) complex und distinit ifb? - dac < 0.

Row, is there a differeace in o chamcter of the v ofex- +bx +¢ = 0and

40 +dbx + dc » 0, where J i 2 Lou-zers real sumaber? For wxample, ifb2—dac > 0,
what &5 tho sip of ( do }*— 4 ( Sa 4 { 32 ) “ Yo wiil aito be pasiiive. In 3, the chamacter of
the roots of equivalent quadratic eqnm sy i the seac.

Nuww let us cousider snime nperizns reases which will be useld s you while -.olvlnb
quadmate zguaiions.
Remark 2 - & and § 220 1ol of a guadnatic equation ax” + bx = ¢ = 0 if any only it
_ WX rC = s(N -t p{x—" )

Ths, @ € Clsatoniafen +x ec = 0ifand ondy H(x~a) | (ax*+bx «¢).
Renark 3 5 Frow W oty 071503 you can see that ib° — dee < 0, then the quadratic
cquation 8% +bx rc = 0 las 2 compiex rools which are r:ich other™s conjugatas,
Remark 4 ; Somethies 3 quadeatic equation canchs solved aritheyt maorting to the
Quadratic foxmuin, For example, ihe cquation x? = 9 clearly hes 3 and — 3 as fus roots.
Skoilady, the eyuation (x— 1)° « 0 dearly has two cuincident roots, both equal to 1 (sce
Remark 2).
Using what we have s2id 50 far, tey and solve the fllowing exercises, .
m
ES) A quadaticequation over R can have complex roots while a lncar equation over R

cai caly bave a real root. True o7 false ? Why?
E6) Solveibe following cquations:

3 Fe5=0

cb) (xe9)(x=1)50
¢f -zl

d) pm’—&qmq--:- = Oform, where p, g, ERandp; r w0,

E7) ‘Furwhwahudl_:wmnemﬁoa
o 4 {2k +6 ) x + 16 = O have colncident roots ?

ES) Sbow that the quadeatic cquatioa &” #-bx4 ¢ ® 0 bas.cqual raots {f
{2ax+d) | (ad +tx ) ,

£5) Find the vaimes of b2sg cﬂ'ﬂmﬂsw;ﬂmﬂl.it:éﬁx#;cm.l +laadd ~ias
" s oots. .

E10) Hoeod fererovisofur thrsc = 0, Sonshowehni e+ B o « :;':ﬂe.‘;‘ il :::"

Eli) o, pECsuh@aia+p o p CRawwp u qER Soow ibaia mud fax e
roouohz—pn-q a(
L -~ """~ "

56 Biils tbo conversa of B10. We wili use it fn the pext section.



Let us now consider somc cyuatious which arc not quadmtic, but whose solutions can be
obtaincd from rclated quadratic equstions. Lank at the foltowing example.

Example 4 : Sofve

) '+x?e1 <0, and

B x e VIS<2x.

Salutien:i) 2x* +x2 ¢ 1 = Ocanbewikienes 2y° 4 y + 1 o O, wherey » z’ncnmlvtug

this fory, we gety o :-!—25'—‘17; atis, x° = _.!.2_5_‘/.: , two polynomials over C. -~

Thus, the four solutions of the original eqm.’mm

VTR SV S Y m

4 ' 4 4 ' 4

i) x «» V15-2X isnota polynomial equation. We square both sides o obtata the
pdymhleqmﬁonx’-' L2

Now, any oot of x & VI3 -2X is also 8 root of the cquation x* = 15 -2x.

But the converse need pot be true, since X% = 15 -2x canalso meanx = -V 15 - 2%.
Sowe will obtain the mois of x° = 15 ~ 2x and soc which of bese eatialy x = VIS -2,

Nuw.lbcmouofmquduUcmtbnxz L) !S-Z:nex--&aadx-l-‘w:mbm
thieee vaines [a dhe originad cqistion (o see il ey satisfy it

Now, forx=a-35,
X—VIS-2X m (5)-VIS+10 » (~5)-5 =10 u 0.

Sox w =S is not & solution of the given equation. Betit i a solution o = 15-2x. We
cail it an extraneous selmtion.

What happens when we pet x v 3 in (he given equation? Weget3 » V15-6 le, 33,
which ic fruc. Thus, x o nmmummm

Nawyoumyl&ttosoluelhcfoﬂowingexmkmembalhnmmmck:fmc )
solulions you have obtained sathefy the given equetio=s. This will help you

1) topeirid of extragerus solutions, if sny, and
i) toeasure that your cebculations mahi;ht.

EIZ) Rodmemcfdlowagqu&equ&ﬂndm.mm
8) 4p'-16p°+5 w0
b} (Sx*-6) "<z

€) VZxed =Vrel =1

E13) Arscena welks 1 ki per bour faster than Alks. Both walked froea their village 1o the
ecarest Hbeary, s distance of 24 ke, Alka took 2 kours more an Asneens, What was

Alh'swmscapzed ?

10 this eectiom we aps griag to dleeues soma puiernatics (o which the areat 1163 coms
tury Persisn poet Omar Kbayyam gave o great desl of thought. He, and Greck watbioe
maticlans before bim, obinlned solutions for thied degse: squations by consbdening
Reomelric melthads that involuad the detivr tbag of evoded. Bat ore 3ll] ooty disenss

Cublc and Biquadratic
Equations

57



Solutfons of Polynomial algebrakc methods of cbuaining soluuons of such equations, that is, solutibuswoblained
Equations . by using the basic zlgebraic operations and by radicals. Let us first sce what an equa-
tion of degree 3, or a cuble equation, is.

Deflnltlon : An equation of the lorm

1P ebxlex+d = Qwitha, b,c,dER, a » 0,

Is the most general form of & ceblc ¢quatlion (or a third degree equation) over R,

Forexampchx’ = 0, ﬁx%s:’" =0, -2x = 55— 1 and x> + 5%°+2x = - Tarcall
cubic equatious, since cach of them can be written in the form ax” + bx* ¢ cx +d a 0. with
2 » 0.0n the otherband, x* +1 « 0, xX° +2x% w x*—x2ndx" + VX = 0 arc oot cubic
cqualions.

There are sevcral situations In which onc needs 1o solve cubic cquations. For cx-
ample, many problems in the social, physical and biotogical sclicnces reduce Lo
cbizining the eigenvalues of 2 2 <3 maulx {(which you can siudy about in the
Lincar Algebra course). And for this you need to know kow to obtain the solutions
of » cubic cquaiion.

Fur obtaining solutions of 2 cubic equation, or any polyromial cquation, we nced some
Tesuits about the roots of polynomial equations. We will bricfly discuss ihew viie by one.
- We give the first one without proof.

Theorem 1 : The polynomlal equation of degree g,

A+ X+ b2, X" = 0, whese 2g, 3y, ... 3, € Rand 2, » {1, has  sools, which are rea)
o1 nof-reai complex numbers.

If x4, ... X, 075 the N roots of the cquation in Theorem 1, then

Mg+ X H e b3 X @ 2, (XX (X=X ) (X =%, ).

(Note that the 100t nced not be distinet. Forexample, J + 2X+x° = (x4 ¥ )

We will not prove this fact here; but we will now siaie a very imporiant resull which is used
in the proof.

Theorem 2 (Division nlgoriihm) : Given polyromials { (x) and g (xj {» 0 )over R, 3
polynomials g{x) and i{x) over R such that
[(x)=g{x) q(x)+ 7(x}and dey v (g} < deg g(x)

We will also yse i theoren lo psova tbe following result which iclls us somelbing abaw
complex roots, that is, roots ibat 2rc pon-real complex nuinbers:

" Theorem 3 ¢1f flrpa]ynornli_] equatlon over R bas complex roots, they oceur in prirs. In
facl, if 4 3 ib € C is a root, then a ~ ib is als0 a root.

Proof: Lot £(x} = a5+ 8, X +.... + 2, X" be & polynemial overs R of degree n. Suppose

a+ibELCisarootol () = 0,thstis (X ~{a+ib)} | f(x) We want lo show that

(g~f{a=ib)7 | [{x}tpo.

Mew, {n—far)){={a-tb)) = (::--c:}ze-b2

Ao, by the divislon aigortiam, 5 pojvoomniala g {x) and ¢ (x) over B such that
Jtz)leta)

{aeg SUx )8 degplx) f(x) = {(x=2) ¢b>) g (x}+r{x), where deg r(x} < 2.
foce Romark ). - Since x - (2 + i) divides (x) and ( x —2 * - b%, it divides £(x) = {{ x~2 F +b° } g (xX),
that is, r{x). )

Butrtx)Blm:uﬁnwnmuaxhﬂ-&(x-(a+b)) can oply divide
S8 r(x) if.r(x) = 0.



Sowe iind that ‘ Cuble and Biquadratic
£ = {(x-2) +b%} g (x) Faustlons
Shuce x — (a — ib ) divides the right hand side of this equation, it cust divide f(x).

Thus, a —~ ib is a rect of {(x) = 0 alsc.

Negi¢ that Theorem 3 does nos 3ay that f{x) o 0 ruat bave a complex root. It only says that
If it has a complex root, then the conjugate of Lie rool is also s rool

Wby doa't you try the following cxercises now 7 In hem we sre just recalling some facts
.that you are alroady aware of.

£14) How many camplex rools can a Jincar equation over R have?
E15) Under whai clrcumatances does 1be quadratic equation over R, < + % +q = 0, bave
compliex roots? If irt.has complex roots, how many are they and how are they relzted?

S e ey

Now 1et us fook at Theorems I and-3 in the context of cubic cquetions, Consider the gencral
cubic equation over R,

ax’ +bx’+ot+d =0, a =0,

Any solution of thiz i alao a solution of
el Sxad g,
a 2’ a

and vice verse.
Thus, we can always assume that the most general equation of degrece I over Ris

X+ +qr+r = Owithp, . rER.

Theoten 1 says ihat this equation has 3 roots. Theorera 3 says thed eitber all 3 roots arc real
or pe is red) and two are complex. Let us find these roots sigebraically.

3.3.1 Cardano’s Solutlon

The algebraic method of solviug cubic equations is suppesed to be duc ta the Italian, Jel
Faro (1455-1526). Byt it s calted Cardaro’s iaethod boesuse & became known to people
after the Ialian, Girolamo Cardano, publisbed ki in 1545 in bis ‘Ars Magna™.

Let us see what the melbod ts. We will first look 26 2 particular case. |

Example 5: Solve 27 ¢ 3x ¢ 4x ¢ 1 = &

Soluttan : We fizst remove the s2cond degree tema by comgileting the eube in the foitowing LL/Z:{_....-:_ 4
way.

H3x7 1 dx el = O

TN x’+-§-xz+2:t+-;- =0

Asamne that the solution is y = 1n +n, where m, 0 € €. Then
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Solutions of Polynomini s 5 1
Equations (m+n)+z(m+n)--&-.p

-« m’+3m(m+n)+n’+%(m+n)_% -0

o m+’+ 3m+%] (m-!-n]-'%-ﬂ. - {1)
Let us add a furlber condition on m and n, namely,
3mn+§--0 th:tk,mn-_lsz .......... 2)

Then () gives us m® + 0° = i

123

mi(Z]ghumm o' = - T

Thus, using E11, we see that m’ and ” ere roots of

12§
2.1 '\-i7E - 0.

Heace, by the quadratic formula we find that

SEPARY £ 0
m 3(l-i- 2..,) @, say,

mdn“-%(l— 152]-5 Kay.

From Unit 2 (E36) you know that @ and B bave real roots, say u and v, respectively. Thus,
m can take the values 1, s, @ u, Aod n can lake the values v, v, v,

Noww, o and o are non-real complex rurabers such thate () = 1.

Also, from (2) we know that mn = _TS‘J.T° » real number.

1

Thus, ifevs e, amustbev; if mewo,n muslbcmzv:lfrn-m g, n must be ov.

Hence, the posaitie values of y are

U+ V, DU + @V, @ + v,
Ta £t the three toots of the original equation, we slinply put these values of ¥ in the relation

DY|—-

xny.-.

“This example bas probably given you some idex about Cardano *s method for solving a
general cobic eguation, Let us oulline this method for solving the gonena | equatinn

Ceplequerm0per€R e (3)

s:*.ra

Step X : We fiest write X -ﬂ-px - (x+3) -P‘—: -

Now puty = :#%. Thenx = y—%,ardmceqmuonbummcs

60



(18] (8o [r5) o

v+Ay+Beo, e e
2 3
e A = q-b .
wieie A = ¢ 3andl?v 7] 3 *F
Step 2 : Now let us solve (4).

Lety w u+|3beasolnuon Puning this value of y in (4) we ged
(u+ﬁ) +A(a«f)+Ba=0

= u +3uﬂ(u¢ﬂ)+ﬂ’+A(u+B)+B -0
o e e(3aBrA)(as8)eB=0 e ®)

Now, we choose a and $ 50 that, 3af + A = 0. Thea we bave the two equations
3

{aB) = (—%)’. hatis, o’ p’ = --2‘??-, e (6)
and frown (5)
o’vp* = -B. S—)]

Thus, using E11, we flnd that o and £ are roots of the quadratic equalion
3

Zami-Be0. e ®)

-

Hence, wsing :ov quadsatic Tarmula, we fid that

B /B A
e -—-51-‘./ Tt ~ u, say, aud

Nuw, feon Uuis 2 (E36) we know that any complex aumber bas tree cabe roots. We slso
kzzow thal il'y is 2 cube root, then the threc roots arey, «wy and @®y.

Therefore, ifa aud b derte 2 cube root cach of u sad v, zespectively, bena canbe s, 2w
o5 s wnd £ van be b, bw or b, Docslhhnmthny = a+ P can ke o 9 values ?

Nate that a and § also satisfy the relatioga P = --3-EIL

This, stz wEC, © EC, o’ = !Elklhemﬂypmbﬂlliu[wyu:
a+b,am+bm2.lm2+bca.

$tep 3 : The 3 solutions of (3) are given by substiteting ewch of these values of y ix the

wyuation X o y-%.

Su, what we bave just sbown is (hat

thesouts of ° + pX’ +qx +5 = O are cu-ﬁ-— aw+pa’ —3,uw‘+ﬁm—-g,

1
-1+ iv3 e a’ !
where & = g, ot,aabcm'ozl 3 % -ﬁl,ﬂsamb:roomf

A

Tu. foniiuls we bave obizined Is ratber 3 complicated business A ~alcutator would weninndy
case maliers, as you may find whike tyang i fofo mg cxice

Cubicand Bigoadrativ
Equatim v

Gl
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loIbe ireducible casc o end B
a0 ool real, bat x i rea)

P e i N T B T Gt i - I ST

E16) Solve the following cubic equations :
) 23+l =0
) x*+2ix+342 = 0
€} +6x*+6x+8 = 0
) x*+29x-97 o 0
¢ x* = 30x-133

L

Ia cach of the equatious in E16, you must bave found that %i + % z 0

3

B A
Butwhl‘bappms if 2 Yo7 <.0.

This case is kuown as the irreducible cace. In this casc (9) tells us that a® and B° are

complex numbers ofthe fonna + b and a—1b, whereb » 0. From Unit 2 you know
that if the polar form of 8 + 1b iz r { cos 8 + i sin B }, then its cube roots are

:m(cose":'knﬂﬂng*gkﬁ}.k w 01,2

Similardy, lrc cube oot ofd ~ Ib are

r“‘(me*}“-‘ismﬁ*z““‘}x -0,1,2

3
Hence, the 3 values of ¥ in (@) are

cc;s.g—i'-:%k—’1 where k w 0,1, 2

Al hese are real numbers. Thus b this cise el Ve roots of (3) ere real, zad are givea by

3.8 B 828 P L0 8+dn P
2r Icoszis.Zr ws T3 3,2r co3 3 7

This triganosnciric form of the selution (b dut to Fritwis Vigte (1550-1603).
Now [ry an exerclse.

211/3

E17) Solve the cquaticnx’ -3k ¢ 1 = @
So far, we Bave seca thal a cubic cquation has three roots. We also know that elther st the

fuots are real, or one is reat aud two are complex conjugates. Can we tell the roots of the )
€haracter of the rools by just inapecting the coefficients? We stall enswer this question now,

332 Roots Atd Their Relntion With Coefficients

I this sub-scetion we shall first took at ihe cubic apatogue of E10 and E1, Over there we
art how cosely the roots of 2 quadiatic equatioa are linked wilh its coefficieuts. The same
g Is true for & cuble cquation. Why don’t you try apd prove the relationship that we give
ift the following exereise ?

E18) Showihat o, f and y are the rootls of the cubic eouation

= - . -
s 4 bx " tow+d m [ a = 0 ifand anly if
- - v

a¢sfiym —-%,

aﬂ-+Bv+uf-§.

: d
aﬂ*{ - —;.



(Hint : Notc that the given cubic equution s equivales.i {r Cubic snd Blquadratle
a{x-a)(x—-p){x-1) =0) ‘ . Equations

D A, E M A s S IR R
The redationship in 518 alfows us to solve problems Nke 1. Zollowing.

Exumple § : If &, B, y are the roots of the equation

X eTxlex=5 =0,
find the equation whose roots area +f, B4y, a+y
Solutlon ; By E18 we know that

a+gry=? -

af+Byray =1 | (10)
afyr =5

Therefore, (2 +B)+(B+y)e{ary) = 2{a+Bry) = 14 ... (11)

Also, 0+ = 7—y, B+y» 7-a, y+a = T-P, sothst
(+f)(Ber)+(B+yi(ary)r(asy}(a+h]

o (49-T(y+va)rya)+{d9-T{a+P)+aB)+{49-T{f+y)+Py]

= 147 - 98 + I, using (10) and {11).

=280,and {12)

(a+B)(Bry){a+y) « (T-¥)}(7-$)(7-a)

To cvaluate the expression oa the righ? hand side, we can vse (L0} or we can use the fct Lat
Tl ex-5 = (x-a}{(x~F}(x-7)

w2 P 7. P75 = (T=a)(T-B)(T-7)

Therefore, (G+BY(B+y)(a+y) =2 DT ¢ 1)

Naw, E18, (11}, (12yaid (13} give us the required equation, whick is

X —16x2 ¢ 505 -2 = Q
Why don't you try the {olfcwing exercise now 7

- ke — o

S19) Fiud the sun of the cubcs of the 100t of the cquation x” — 6x% + 11k~ 6 = 0.
Henee find the syin of the [oudth powers of the foois. '
L= e L B e il e Tl T e P S F RN A e A S ST
Lot us now study the character ot ke roots of a cubic equstion. For this purpose we necd to
intraduce the uolion of the discrimintat. In the cose of & quadratic cqualion Erbx +c « U, .
you know tiat the discriminant s b° = de. Also, if ¢ and  § 2re the wo roats of the 2nuation,
heiia+fi @« - b, af = o Therelors,

(a-pY m {a+p)-dap wbi-ac

- R ] - .

Thus, the discriminant m {1~B )", whete o and P sre the roots of the quadraiic
equalion.
Now cousider e genere! quadratic equation, ax? s bz e = @,
Letits roeis be g and . Theo ils disgsizalnanf 5 ' - qeg ~ i {a -5 ):.
Ve uset this refationsip to deffne tite discoaniaant of 28y selyaoimndal cqusiion.
Deflnltion : The discrialazn? of the mib degree equation
3y, X432 % 8, 0D i

2e- 2
e 1 (g-a),

ixlejan -

where ¢y, ..., Qy ate the roots of the polynomial equation.
' ) 63
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In pantivular, Ifwe considerthe vascnm Jaud s, = |, we fnd that

The discriminant of the cuble X + px° +gx +r = O is
2 | p? 20’ m
D--(Q?B +4A ).,WI'I‘L‘J'I}"A-Q--a—.B--E_?.‘_L

Now cowsider Catdano's salufiun of Lhe cubic eguation (3), namely,

x"+pxz+qx_+: - 0,
B A

1 b exprossion under the squane oot Sign b ~= v o ™ =D . where D iy the discriminant.

4 27 W8

Now, (9) teils us that the sign of the discritminant is closely related to she characiers
of the rooks of the equativn. Let us look at the different possibilities for the rools
«,pandyof (3).
1) Tbervots of (3) are afl ree) and distinct. Then {a =B F (B -y ) (a—7 ) thes ks &,
st be positive.
2)  Onlyone root of (3} is ral. Lul this root be o Theu B and y ate complex conjugates.
= B -vis purdy imaginary . (B=v) < 0.
Also,a=f aud a-yare conjugaks,
Therelon:, el product is positive,
Heno, is this cane D < 0.
3) Sopposea = i aud yoa. Sicea-P=0 D=0
AL, B a U. \Why? Because It B = Q, then A = 3 ¢since D = 0).
S 2 2
BuA = 0 = q = 5 thaths afarzy) = L
{Over I;cre we bave used e refationship behween the roots,
atcep @ —{(urf+y)m ~(2aevi ad ¢ = aBefyray e a{a+2y))
On sigpdifyiing we pet ¢ = ¥, B conldiciion,
Thws, B = Q. -
So, if exacly two rodts of (3)arcequal, henD = 0 and B & 0, and hener, A = G

4)  1€all the roots of (3) are wqual, et D=0, B = 0, and bescc A= D,
Lel us summarize (e differcat pussibifitics for 1he charader of the roots aow.

Comlles he cubicequationx® + px’ +yx + ¢ = 0, p,q,t ER,
adllct B = -Z-P—i-ﬂ*t aul A = q-—ﬁ.‘n\w
27 3 3

> a

1) all its roots are read snd distinct il]‘—; *55 < i3
Y
M exacily oue ol is real il —+ == » {
4 d 4 i
B’ A’
3) exuclly two rooks are equsl ill‘—;i- v35 = Oaud B = 0.

In this case all tae rools an real,
2 2

4y atthree rools are cqual iff S+ 5= = 0 and B = 0.

You miay now bk 10 1y the toltowi ig prodlosn o see if you've understood what we bave
justdises -t



1} Uider what conliticns on Lae coefficients of
ax F b +3cx+d = 0,8 » 0,

oy
=2

will the egualion have complex roots?

£21) Wifl all the roots of X = 15x + 126 be real ? Why 7

So for we have Introduced you to a method of solving cubic eguations and we have studled
(he solutions in some depth. We shall study thent some more in Unit 6, as an application of
the Cauchy- Schwarz incquality. Now fet us go on to a discussion of polynomial equalions
of degrec 4.

3.4 BIQUADRATIC EQUATIONS

As in Ikc cast of cubic equations, biquadratic equations have been studicd for a loog time:
The Ancient Arabs were known Lo bave studied them [rom & geometrics] peint of view. In
Ibis section we will discuss two algebraic inethods of sotving such equations. Let us first see
what a biquadratic equation is. ' '

Deflnltion : An equation of the form

i ebx’ vl rdxre = O, whereab e, cER and 4 = 0,

is the most gencral form of a biquadrstie equation (02 a quarilc eqeatlon, of A fourth
degree equution) over R.

Can you think of examples of quartic equations over R? What sboutx* +5 = V2 x -x27
This ceriniy is a quariic equation, as it ks equivalesit oz s =V2 x ¢5 = 8.
Whatahout VX = x*+ 17 This isn't eves a polynomial equation. So it can’t be a quartic.

Let us now conslder various ways in which we can solve an cquatiout of degree 4. In some
chses, as you have seen in Example 4, such an equation cau be solved by selving rlatec
guadratic equations. Buf most biquadratic equations can't be solved in this manner. Two al-
zebraic methods for obtaining the roots of such equations were developed in the 161k 2nd
17th eenturics. Both tbese methods depend on the solving of 1 cubic equation. Let us s:e
what they arz.

A.4.1 Ferrark’s Solution

The first inethod for salving a biquadzatic equation that we will discuss is due to iz 16tk
caadury Italian mathematician Ferran, who worked with Cardano. Let us see what 1he
inellod is with the bealp of an example

Exnmple ? : Solve the equation

x* -2 -5x" +10x -3 = 0.

Solutlon :We will solve this in several steps.

Step 1 : AdS the quadratic polynomis {ax +B ) = 42x? « 26bx + b? 1o both sides. We get
oD (25 )P 2fabe S x ¥ =3 w (axeBF. e ~{14)
Step 2 : Choore a ant! b in R 5o that the left hand side of (14) bzcomes 1 patfect square, s2y

{x*—x + %) wherek 75 an unknown, Thus, we need 1o choose 2 &nd b 50 that

AR, LY P }5342(gh+5}x+b2-3 aRext e’ _;aﬂzau’-.

Eguating 1he coelficienis ol %2 x and the constant 1emh on both aides, we g2!

85 eSS m Zk+T e (5
2({ab+5}) = 2k e (16)
b -3 = K {17
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(15) = a® =« 2k .

Also,(18)=> a « - /11 "

Thus, 28 ¢+ 6 = ;‘2—(_1; P

Theo AN o2 . 7 - 5

EANE A
m A4 A e (18)
This eut - equaiicn Is celled the sesolvest cuble of the giver biguadratic equation. We
Rave ot n1ed it by elimlscting o ead b Som the equations (15), (16) and (17).
We choose euy one veot of the cubic. Onz 1cal soluton of (18) is k = - 1. (Tt is easy to see
this by ispection, Gtherwise you can spply Cardano’s method.)
Then, fom (15), (16} and (1T we get
'=4, 88 ad, o e -4
202 and b= -2(ora =2 md b= 2)satisfy these equations. We need only one
set of vahues of 3 and b. Efther will do. Letus takez = 2 ‘and b =~ -2,
Sisp 3 : Put these values of k, e 2nd bin (X°-x+k P o= (ax+b)’ On taking square
reets, we gel two quednatic equations, namely,
el = (Z3—2), that s,
=354t @0 gpd xXT4+x-3 o 0.
Appiying the quadratic formula to these equaticns we get
Xl +V3 3-V3 -i+¥1i7 1-vi3

2 - 2 2’ 2

Does Bxample, 7 give you some ides of the general method developed by Ferrari? Let us see
whaeitis.
We wani to s6ive the general 4th degree equatioa over R, nomely,
Baplrelemes o0, pgsER e (19)

The [dea ss to express this ¢quation as & differnnce of squares of rvo polynomials. Thch this
difference can be split into 2 product of twe guadretic factors, rnd we can solve the two
quadratic 2quaticns that we oblain this way. Let us write down the steps involved.

Stap 1 : Add (5x ¢ b ) to each side of (19), whete 2 apd b wilt be chosen 0 a8 lo raake the
Jeft hand side a parfect squore, So{19) b2comes

xd+px3->(q+a2)x2+{r-;?@b}z+a-:-b2u{'a;cva-b}? TR (20)
Stcp 2 1 We wanl 1o ciocss ¢ and b so woad the Jelt band side (s o perfcmaqum, ey
(x®+ %x + & Y2, where It I on unknown.

Nota that the cocfficient of x is necessarily % since the coefficient of X’ in (20} is p.

Sowe see that

;2
P epCr(gratiri(reZiblxsseb? = X epid 4 %—)xé-2kx2+pkx +k!_

Fo LIV
Eliminafing = =ud b diasaibhars molctingt e of! the comnivend ~phis
Dlrnrinaiine 3 D 0e i A : ) At a2 LS
p
2 rp - ) z -
{pkar) = é! v ikey ! (s}, thatis,

’

LY
B e aqk® e 2 (pr—ds) K+ {45 ~p s-g?) = O

Fromn Sec, 3.3 you know that thie cubic 2quation has at teest one rend roo!, say o,



Tken, we can find a and b in tefms of i Solutions af Palynomial
Step 3 : Our asswinption was thas Equalicos

(xz-l--g-x-rk)z ~ (ax+tg)"'...

MNow, putting K = o and substituting the values of a and b, we get the quadiatic equaticns’

x2+§x+a - x({ax +b), that ls,

x=+{;——a)x+(u-b)-0.md

x=+(—2-+n)x+(ti+b) o .

Then, using the quadratic forntula we can obisin the 4 rools of these equations, which wil
" be the oots of (20), and beace of (19).

The ronowing exercise gives you a chance t ry out this method for youmlf.

EZZ) Solve the t‘o!!uwing equaﬂons.
a) X 4 _3x%.42%~40 = 0
b) ax*-20x" £330~ A 44 © O
c) x*+125 = 5

Let us now copsider the ather classical mcthod for solving quartic equ.ations.
3.4.2 Nescartes’ Solution

The second method for obuining an algebraic solution for a quartic was given by the
mathematician aud philesopher Rens Descartes in 1637. [n this metbod we wirite the
higuadsatic polynomial as 2 product of two quadratic polynomials. Then we solve the
resvhunt quadratic eguations 1o get the 4 rools of the original quartic.

T.et us cansider an example. In fact, le1 us solve the problem in Example 7 by this method.
Thus, we want to.solve

T T N N [73))

e
AL

. I )
crove B¢ cube fefia, For this we rewrite x* —2r0as

3,1 1
BRI TS

‘ol
-
- g

1] Lot

-
)X =
L

Thus, the givea equation begomes

1 13 AW 44
fx-—)— +2x-16-0

Fow, pulx—-,,— = y. We get

Ayl ___‘
Y- {y+g)s ..(y+) 0

s i3 - 9 -
= -4-—-y +4yv—-—-uu - (22}

Step 2 : Weite the left bond sids of (22) s 2 prodnc: o. quadratic pelynomials. For this, fet

U5 355Ume Wy

y"—-liy + 4y -e---=- (y +t:y+m}(y ~ky+n)

(Mot ket 1o coefficlents of y in each of these Eectors Bre X and ~ k, respectively, since the
product dosa not contain any tesm with y2. )

Equatug cociTicients, we get

(7
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Equations

m‘+n-k2-—?, k{n-m) =4 "‘“'EE ------ - (23)
Eliminating m and n from these eqralions, we get

2 13 4 13 .4y, .2 ;
(k 2 k](kz-2+k) ‘:.lhltls.
k- 13K% + 40K — 16 = D,
1f we putk® = ¢, theahis becormes the resolvent cubic
©-13¢ +401-16 = 0.

This bas one real ro01; fu fact, it has a positive rea) root, becausc of the following result, thal
we give without proof.

Evety polynomial equation, whose Jeading coefficient (s 1 and
degree bs pn odd number, bas at least one real root whose sign is
opposiic io that of its last ierm.

So, vaing this resull, we se¢ !.bat we can expec! to gel one positive value of 1. By trial, we
see that t = 415 2 root, that fs, k= 4, hatis, k = = 2 Any one al these values is sufficiont

forus. Soletus take k =2,
Then, lrom thie equatioils in {23) we get
me= u?. Do =

i
Thys, (22) is equivalent 'o
9 1y .

(}"tz:"-;] (Yz-zl-’—;;) =0,
Step 3 : Solve the quadratic equations

4 .1
f.*ay_.‘ = Oandy’-Zy...z = 0.
By \be quadratic formula we get

2213 2:V5
e

y-

Step 4 : Pul these values X = y+-2i-togcuhefounpouof(21). .

Thus, the roow of (21) are:

-1+¥13 -1-Vi3 3+¥F 3.5

2 2 2t 2
Let us write down the steps in this method of solution for the general quattic equatlon’
*eax’ s ecx+d = 0, 8,b,e,d ER sy (24)

Step I: Reduce the equztion to 1ke G

xX*+glemss » 0. R  ~)

Beep & : Asswme mat

gl rxes o (Fokiem) (P -kxen)
Theh, oA egusiing cosdficienis, we {24

l{u+ﬂ—k2 =g kin-m)ar maw=s
Prom these equations we gét

m+n wkK+q n-m= i

Therefore, 2m = kz.-rq-%, 20 = k2+q+i~.



Substituling m o = 5, We Bt

(5 \-.;k-r](kji-qk-rr) = s, thstis,
N+ 20k + (g2 -5 )k = 0, thatis,
4208+ (qi-45 ) =17 = O, puntingk’ e L

This {s s cubic with at Ieast one positive real root, Then, with 8 known valucof t, we can
determiine the valués of k,m md o So, (25) is equivalent td

(x*+kx+m) (F-lx+n) » 0

Step 3 : Solve e quadiatic equation:

X2 +kx+m = Oandx? ~kx+n = 0.
Tm'swmngeusmeqmmormammmam&of(M).

Now, why don’l you Lry the following exerclses tosee if you have grasped Descasiés’
method ? .
___-—.—__w
|E23) Salve the tollowing equations by Descartes® snetbod; '

) x*=2*+8x=-3 =0

b) x* +8x° ¢ 9x"—8x = 10

&) 5= —6x-2 =

dy x*+ 40 —Tx"~225 424 = 0,

E24) Reduce the equation 2%5 + 5x° - 52° « 2 to 3 biguadratic equation. Heaoe solve it.

While solving quartic equations you may have reatised that the methods thal we Dave dis-
cussed appear 1o be very casy 1o use; buy, in paactice, ey can become guite cumbersome.
This is because Cardano’s method foz solving a cubic ofien requires the use of a calenlntor.

Well, so far we save discussed wethods of obtaining algebraic solutions for polynomial
equalions of degrees'1, 2, 3 and 4. You may thiak 1hat we are goIng 1o do sermething similar
for qulutic equatious, that is, equalions of degree 5. But, in 1824 the Norwegian

algebraist Abel (1802-1829) publlshed 2 proof of the following results

There can e a0 2enicral formula, cxpressed ia explicit algebraic
opertions ou the cozflicients of a palynoiial oquatos, for the
roots of the cquztion, if the degree of the equation is greater thea 4.

Thin result 53y3 Lhct polynomis] equations of degree > 4 do not Lave a geuerl ancSra.ic sole-
tion. But, there are mefhiods that can give s e vaiuc of auy real root tc any required depree 0
accurucy. We will discuss hese riethods in our course on Nurerical Analysis. There are, of
course, specia) polynomial sguaticiss of degree @ § thatcer be solved (¢ In E24). -

Lot us how 100K 3 litle closely 3t the roots of & biquadratic ediaticit. We shal! see how they
are relates] (o (e cocliiclents of thic cquation, juse as we did a1 the case of the cubic. o

3,43 Boots And Thelr Relntion With Coelficients

Tuy the. taro pnevious pub-cections we have shtwa you buw £ cxplicilly ebmin he 4 root oia bi-

quadzalic equation. Let us go back W Yhearezns 1 oot 3 for & monent, Theorem 1 teds us Lhaca

susrtic Bas 4 ronts, wiich wmay Do ront or complex, By Theenan 5, the prasibiliiles are

§)  all che rovss are rad, ar

) o are foad ied B 6ic comptex conjugates efesch ataer, ar

i) (e roots 2 Mo pairs of complex conjugaics, [hat fs,0 %, a-ib, e+id, e~id for
sme s, be, dER . : '

Now, it' 1}, F, T, ¢, &ze the mots uf e qua:ucnx‘+hx5+cr.'+dx += =4, tien

Solutiona of Polynomial

Equztipas

€%



:olm:fﬂs of Polynomisl s e e dxee - 2 (x-n)(x-r}(x-ry}{x-5)
guatlons
- x‘—(r;+r2+r,+r¢)xa+(r1r2+rlr3+rlr‘+r;rg+r2r4+r3r4]:(1
- (Ilrgl’ziﬂf]l'zl]'!'fllbl"1‘[2[‘3[4)!1‘!‘[[21‘3]“.

Compariog the coefficients, we see that

O+ +h34N = —%
[~
i+ 0 + 0 + 00 ¢ 1+ TyTy -';
- d
iy + Nhig + LT, + Oy, = - ;

e
FiETarg = ;'

This means that
sum of the ro0ts = —~ &'E-fg-i‘-;
coelf. is shost for coefficiens. coefl. of x
. ;)
suni of ibe foots taken two al A Hime = -w_f_ﬂ‘.ﬁ.(..-!;
coefl of x
cocll of X

sum of the yools laken three at a time = —
coeff. of x*

coastant tenn

coeit. of x° .
prodect of the toots @ —s————.. that s, .
cocfl. coeff, of x*

. of &t

These four equations are a particular case of the {oflowing result that relates the roots of a
palynomial oquation with its coefficients,

Theorem 4 Leta,, ., o, be the o roots of the equation
l.ox‘*-i-a.x"'h“.i-a,, =0,3ERVYi=01,..,02, » 0. Then

é;&‘&"’—-“‘& .iqi n_,il.
)

u-uh‘-?:ﬂl.m’ = G = (1) f:'

BA=AALA ifilﬂiﬂ(-l)‘s:

In E10 and E18 you have aiready seen that this re3ult &s g forn= 2 and 3.

Theorem 4 I8 very usefu! ia sevarsl ways. Let us consider an sppllcatiou in the caszn = 4
Exampis 8: If the s1an of two roats nf 1he canation

47 —ZAx ¢ 3’ ¢ 65 =8 = 0

is Zero, find all tie roals of the £anuztion

Solution : Let the rooss be 3, b, ¢, d, where a+b = 0.

24 P

Thenastbesyd===cz¢g NI )

voerd =G

1
Ahoab+ac+sd'+bc+bd+od.—.-(u +b){(c+d) +ab-+cd::-§‘:l-

780
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31 '
brcd = 2 v (2T Favatlons
Further, {a +b)cd + ab (c +d)=acd + bed +aba i
r (26) = b = — % o (28)
Flually, abed = -2
. (28) = cd = 8 e (29)

Now using E11, (26) and (29} tell us 1hat ¢ aad ¢ arc rools ofn’-6ua 8 = (.
Thus, by the quadratic formula, ¢ =2,d =4,

Siniarly, a and b are roots ofxz—% =0 Lam= %- b= —:}- .

Ttus, e roots of the given quartic arc

Try the following problems-now,

M U ST T Tyt ) Y i . T AT AT LU Ul

EZz5) Selvc the cquation
X 15x%7 + 70x% + 120x + 64 = Q,
given that the roots are in G.P., I.e., peometrical progression.
(Hint: If four aumbers a,h,ed are in G.P., then ad = be.)

£26) Show that if We sum, of two roots of x* —px® + @ —mx +5 = 0 {wiep,q, 5,5 ER)
equals the sum of the other two, Len p —dpg+ 8 = .

- CREIrE: y- St = L T, T T SUEIROORD:

We have touched upon relations between roots and cocfficients forn = 2, 3. 4. But vou can
appiy Theorem 4 forany n & N. So, in {utuze whenever you nced 1o, you = =l - ‘2 this
tieurein and use its result for equations of degree = 5.

Let us naw windg vy this unit with o summary of what we heve done iu i

3.5 SUMMARY

Tit this uuit we azve inraduced you 1o the theory of lovrer degree cqustions, Specifically, we
have covered o following puints:

. . =1
1)  The linear cquation ax + b = 0 has one root, nanwely, x « ";1 :

2)  The quadratic equztion ax® + % + ¢ = 0bas 2 1cois given by the quadmaiic formula

- b=y b:—-iac. -

3)  Every polvnomizi cguzlion of degree never 2 0as i todis in C.
4) Ifa+ & Cisarcol of areal polynosiad, thenso s - b,

s Murdond!

] - [AK

vinrtind Tar ':.r_'\'l_u{:lg uornhie r.ﬂ'\l:LZinn
n A cubic cquation can have:
I} ibree distinciseal mnots. of
il one real root and Wo complex roots, whiclt ate conjugales, or
i} three real roots, of which exacily wwo are caeal, or
iv) three real rools, alt of which are equal,

7y Jetheds duz io Fenari and Descares for solving a quartic equation. Botb these
ethods reguire the selying of ore cubic and two uadratic cquations,

PR



_viutions of Polynomial
Equatioss

72

8y

9

A quartic equation can have four real roots, or fwo real and two coinplex rools, or 4
complex roots.

.ll‘lheqrootsoflhemhdcgucaqualiomax‘+nl X" e ea v te, = 0,are
M Peeeny Poo then

a
-l
T?lpi '

!z.

z -
L

] - _ 'h
RLE R S
That is, the sum of the product of the 10045 taken k at 3 lime is

(=1 'iw:al. ..... "

A3 int our olber unils, we have given our solutions and/or answers fo the exeicises in the unit
in the following section. You cau go through ther if you Jike. After thai please go buck to
Sectlon 3.1 and sec i you bave achieved the objectives.

3,6 SOLUTIONS/ANSWERS

B1)

E2)

E3)

2) This bas a solution provided J = k,
X ) . Ia Jak -
J~(k+a)-xwx(_k-l +jaell &'x (_-[ 1)-—-—!-‘&
k"

e 20 o R SL8

1
®) R nr o+

¢ Fa §C+32

Let the third side be x o

Then the other two sides are each 2% em fong.
Therelore, X +2X+ 2X a Hjm X n 6,

Thus, the fengths of the sides are G om, 12 cnt aud 22 s

Let ker rate of travel to the study cenire be x kin per bour. Thus, ihe distance from ber
home fo the study centre is % km. While reteming. ber rate is (x — 8) km/br.

Ll eyl k -2
..2(:: 8) 3=¢:r 24,

'I"hus,t.h-edisl.mccisg-d- km = 8 k.

3
Sakz=L
Webkinwthat It o & =« I «x 2 = & = B--
e kuo hat 110 = & = 3N o
‘.-.s-%‘ﬁn

Su, e requleed interest s

é-,!ﬁ x S000 x 3, that is, Rs. 825/



E5) Truc. For example, x*+1 = 0 hag compiex soots. Any linear equationax +b = 0 Cuble asd Biquadratic
over R bas only one rec:, ...._rrmly',:;EE'R

E6) 3) x% = 5 = x = iV5 and— VT,
b) This is (x = (5)) (x — 1) = 0. Thus, by Remsark 2, - and 1 are the rooss,
©} We rewzile lhe glven equation in standard form a5
uvVSx-1=0

. VR AATY - vial

=X 2 2
__x_\/'_sj'+3_m 4?2-3_
V 644%-
d) m = Bg= 2"? * -—‘:;'-:%\/ 16g° -2

E7) The roots are

x = —{2k+6)=V (Zk+6) -64k

2 Kk
The roots will coincidz if the discriminant is zern, thatis (K +6P -84 E o 0.
This will happea whenk® <10 k ¢ 9 « 0, thatds, '
k=1oar k=9
E8) {2tx+b) | (aPe¢bxsc)
=> the 100t 0f 20X +bX = Qisarootofax’ +bx+c w 0. '

> X = -E:-’-hzrooto{u’-rbki-c w0
2
-b -b
- a(*b—] +b (—2:.—]4-: u
= b’—dac =
o ax’ vbx +¢ = 0 kas coincidents] roots.

L3 By Remark 2, we must have
Xabxacew (£-(Le i) (x=(1-1))
-2+ d
Thus, comparing ibe coefflcients of x” 164 2°, wo got
b - —.a cC = 2_ .

E10) a and P arc r00ls 05 ax’ +bx 4 ¢ = 0
& ndebxec - a{x-a) (x-8)
@ axlebx+c ma {xz—(u-rﬁ)l*ﬂ’}

< be-afoesf) udc= gaf
b [

i B ST BEY S
" 2 ¥ a
El}) Substititing x = & in X° ~px ¢+q, we gt
a’~pa+g~a*~(a+R)la+af smmasp = pad afir. c,
-0 -
o oisarootafx’ —px+q = Q.

Simduly, B is a roct ofx? —px +q = 0.



Solutions of Polynomial E12) 2) 4p°—16p°+5 = 0.
Equations Putp? = x Then ihe equatioa becomes
dx’-16x+5 = 0.

Iumuuen-—-—';l' and z--——"2“

NW,p‘-2+ :1 =op--="v 2+ 61
nndp’-z—!—-;l_l—n p-=v 2-—-;;1‘

These 4 values of p are the required roafs.
1
B) (5x°-6) = x.

Every ravtofthis i - reatof
$*—6 = x*

e x*-5x%+6 = 0.

Futx® = y, Then

-

¥ -3y +6 = i

Hs roots arc y = 5z 35—24 --5;1 -3 2

Nowx’ @3 = x = V3 o -V3,
ad X 2w x s VZ or -V2.

Putting these 4 values of x in the giver oquation, we find that V'3 and VZ are Its
solutions, ’

<) Scparating the radicals, we get
Vax+3 = 1+Vz41.
Sgaaring bath sides, we get
2re3 = 14(xvi)e2Vist
o x4+l a2¥x+l.
Again squaring buth sides, we get
xt-2%~3 = 0,
lisroolsarex = 3 and X = ~1.

Subsututing these values of X iu the given equation, we get
VZ(3)+3 V31l alamdvV2{~1)+3-V-1al =1

Thus, botk x = 3 and x = — 1 ar¢ rools of tac given equation,

E13) Let 2lka’a rate be x ki per hour. Then Amecna’s is {x + 1) km per bour.

24

x*

‘The tin:e taken by Ameena te walk to the Hbrary = 1 bours. Thus, the time taken
/24 \

by Alka = | —— + 2 | hours.

t X+

34 24 _
=

+Z
-1 x+1

= x{xrl} =12

= X w~4 o X = 3

Since (- 4) can't be thic rate, i is an extrancous solution. Thus, the required speed
must be 3 ko prr bour.

73



ELl4) None, sinceax +b=0,2,bER = x = —9-_E R Cubicand Biquadr_.-:tic
a Equations
Ei5) Ifp®-4q<0.
There will be two such roots, and they will be conjugatcs.

El6) 3) 27:3+3x2+3x+1-0
)
3 3 2 3 1

= X +TX +2x+5-0

Refemring to Cardano’s forinula, we sec that in this case
A= :::-- B=0
aw -;-_-: fm-t
the roots are — &, m—mz__l_' ml—'m__l' that is,

2 2 2 2 2

---12-| w, 0 (since 1+ +m® a 0),

b) x’+21x +342 = 0.
Here we don’t need to spply Step 2 of Cardanc’s method, since these Is no term
containing x2. Now, with reference 1o Cardana’s formula,
A=21-0m=2], B=0-0+342 « 342,
i
| 342 342 (1) ’ i
) 1'—2‘“\/(“% ol RS R

and f = (=171 _m)% -7

Thus, the rools of the equation are

L=% w-7w? m’—?c;:, thatis, -6, -7 0% w*-Ta.
€) X +6X +6x+8 « 1.

Herep = 6, q w 6, 1 « B,

2 3

TAsga g -6,-B= 2; ?n-m

1 1 .
A v (—6+V36-8) e (=6+2V7) = —0.89]

1
and P w (=6-2V7) = 2243
(We have used a calculator 1o evaluate o and f 1o I devimal places.)
Then de required roo1s are

a+f-2, cwrBu’-2 aw’+fu-2
d) 7 +29x -97 = 0.
Hacp =0, gu 25,1t = =57,

ik f e

2 3
{ 1/5-—) 2297) J - {5
_5.
3

B = (~8557) 2045

Then the rools are

1+ B, o+ Pl xw’+8a

e |
LA
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¢) X’ =30x+133 = 0.
Hewp = 0, q = —30, 1 = 133,
LA =-30,B =133

3
F) 3 i

B w (~665-585)° = —5.

.~ the roofs are — 7, —20:-50)2,--2:.02—5«:.

+
E17) X’ -3x+1 = 0.
Herep = 0,-qw =3, 1 = 1,
"~ A==3 Bl

S0 we are in the irredieible case,

-B \/-a*.;-.’— 1 iv3 n .. 2m
Nwlz.‘. 41-27 -2+ 3 -CO_S +1 81—

3 3
33£+2 kn
Thus, the solutions of the given 2quation are 2 cos — 3 whure
k = 0,1,2, that is, g
in 81 147
20059,26(5 9.2005 9 -

E18) o, B, yare the roots iff
P +b e cx+d = al{x—a)(x-B)(x-1)
wa{xX—(c+p+y) +{af+By+ay)x+ady )
Cn commpaying coefficients, we gel

a+f+y = --E’-

na

af+gy+ay =

aﬁv--f'
E19) Lt tbe roots be oo, f}, v.

Then a+P+y = 6, ap+fy+ay =11, afy = 6

nalefler = (avBry)-2(aBsByray)
-36-22 = 14.

s s ey w (aefry) -3 (Bey)-3p (ary)

-3 (a+B)-6afy

- & -3 (6-a)-3p*(6-P)-(6-y)-6x6
= 185—18(al+ﬁ'2+\;2)+3{a5+ﬁj+y3)

a4+ 4y ) m 180 -18x14 = =72

a."+a’+-,-3-—18.

Now, esch of o, B, v salisly

-6l +1lx-5 = 0.



Thus, they will satisfy x* — 6> # 11x% - 6x = Oalso, Cublc and Blqusdratic
4 ) 2 Equations

Soa =60 +lla’—6a = U

B —68° + 117 —6p = 0

Y -6y’ + 11¥2 -6y = 0.

Adding these equalious, we get

(e 4P ey )=6(P+ B oy )4 11 (a4 B 4y ) =6(a+P+y) = O

= a+B' ey = 6(~18)-11(14)+6(6) = -226.

EzOJHucpuéaE'q-——’r--—-

2 2
. A'gf“i'(ab] . ety

a J 2

Bo2(®Y 133}, d_ B’ -dabeen’d
27¢ a Sla 2) = _.3
Therfare, the equation bas complex rocis if

B* A’ )
3 +2,?. > 0, thatis,

3 g 2,442 m_h3¥
(2 =3be 2 207 (et g,
a
a2 d® —3b% ¢ -6abcd + 407 d + dac® > 0.

E21) Here B = —12£, A = - 15,

2 3
-.%— %—-3344:-0.

Thus, the equation has 1 7zal and 2 complex roots.

T22) a) x*-3x71—42x—40 = D.
Adding {ax + b )* (¢ both sides ave gel
xte (2t -3 1x% (Zab ~aZ)n + b2 =40 ~ (ax+b)?
Assume thal the'leit aad sjdc is (xz +k ‘;!.
(Note that the coelticient of x° in the given cquadon is 0.)
Then x*+(a%-3)57+ (2ab-42)x +b°~ 40 u '+ KT+ 2k &7
Comparing cocfHiaianis, we get

a2 -3 =2k a2 a2k 43
2ab- 42 =0 [=ab =21
b* — 40 =k’ b - i+ 40

Eliminnting a and b we gei

(21 = (2&k+3) (K +40) = 2k + 3k° + 60k + 120
2k* = 3k* + 80k - 321 = 0.

3 is a root of this coualion. With this value of k we get

a* = G, b% = 49, ab = 21

Thesc Fraosiions ore saisfiedbva = 3, b = 7.

Thus, solving the given quertic reduces to solving the (oifowing quedmu.: quations :
x*+3 = 3x+Tondx%+3 - —(3x +7),1hatis,

a°-3—4 = Qand x°+3x+10 = C.

~32iVal

Thus, The requised rools are ¢ 41 and 5

77



Solutions of Polynomixl b) The given equalionis equivalent to
Equations 33
x*-5x> -‘—12—5':. +1 = 0.

The resolvent cubjcis Bk® —33k% + 42k — 17 = 0.
One real root is 1.

With tbis value of k, we find that

s=w(, be,

Thus, the given equation becomes

(1’2—§X+l)2 - 0
Therefore, Lhe given cyuation has the roots

2.1 3%, that is, twa palrs of equal roots,

272
) x* +12x -5 = 0. The resolvent cubicis K + 5k 18 = 0.
Arealrootisk =2

Then, solviag the given equation reduces o solving
(x42) = x(2x~3),hatis
X°-2x+5 = Qandx*+2x—1 = 0.

Thus, the required roots sre
2xv4-20 —2zV4+4 .
— and T that is,

1+2i, 1-2, -1+¥2, -1-v 2.

E23) a) x* -~ +8x -3 = 0,
Sinse there is no x* term, we doa't need to apply Sicp 1. Now assume
x* =2+ 8x—=3 « (x’+kx+m) (x*~ke+n)
Thenm+n-k’ « —2, k(n—m) =8, mn = -3,
Thus, eliminatiag n snd o, we get
K° - 4k* + 16K~ 64 = O,
k* e 4152 oot of this cable in k.
Thus, k c 2 is a sojutiom For this value of k, wegeto =3, m =1
Thus, the roots of the given equation are the soots of x* + 2x — 1 = O and
xI-2x+3 = U, datis, berooisare—1 2 V2 and —1 £iVZ.
b) This equation can be rewritien as
(x+2)4=15x7-40x ~26 = 0,
Putting x +2 = y, we get
¥ - 15y + 20y -6 = O.
Then the cuble in x°. is
k0 30kt + 24047 200 = O, that is,
® ~3012 4 2491 - 400 = 0, puning X = ¢,
Cne rea! positiveroot ist = 16, So we con fake k a 4,
Then we need 1o solve lhc.qu-ldutic cquations
Y -dy+3 w0 ad yedy-2Z =0,
Thus,y = 3, 1, ~22Y86,
Thus, the roots of e given equation are (y=2), that is, 1, —=1,~4 =V 6.
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e) x'—3x*-6x-2 = 0. Cubic and Blquedratic
The cubicink? s k%~ 6k*+ 17k%- 36 = 0. Fauations
k% = 413 aroot Sowecantake k=2
Then we need 10 solve the equations
x242x+2 =0, x-x~1 = Q.

Lxm-1zi,12V32,

dy 1,2, -3, -4

E24) Punting x* = y In the equation, we get
2yt + 5y’ -5y 2 = 0.
Then, by either Ferrari's or Descartes’ metkod, we can Bnd the four valucs ofy,
-1

whichare 1, -1, -2, — >

Putting 1kese values in x: = y, and salving, we get the 8 rbols of the given cqu.n!lou
Thus, 1he required roots are

=V, :w/:i',zf-_',: v %—,'Unl‘.i.u,

“li =i, iVT iV, =, =L
1,=li,~1,i i ‘/_ V3
E25) Letthe roots be a, b, ¢, d. Then ad = be.
’ Now, we know that
1)) drb+e+d = 15 = (a+d)+{beec)a-15 ... G0)

ii)y abrac+ad+bc+bd+ad = 70
= (a+d) (brc)radebe=-70 (31)

i) abc+abd+acdebed» 220 - (32)
iv) abcd = 64
Now,(32) = ad(bsc)+be(a+d) = - 120 = rd{e+bsc+d) = —120
= =15 ad = =120 = 30 = 8, Thus,2d = 8 & be.
Then(31) == (a+d) (b+c) = 70-16 = 54,
This, with (30) tells us thata + dand b + ¢ arc o015 0f x% + 15 + 54 = Q.
Thbus, by the quadratic formula,

~15+3 -15-1
a+d = 2—-=r—6 and b+c = 3

= -9

Then, ad = B and be = S 1)) us that & and d zre zeros of X2 + ix ¢ 8 = G,

and b and c are zewos of x2 485 +8 = 0,

2822 | 5 da-g b-;9§l=-1 ¢ = -8,

A=

E26) Let the roots be a, b, ¢, d, where

a+0 = c+d. v {33)
We know that

2+b+erd @y (34)
(2+b) (c+d)rabred = g e (353
ab{c+d)s(a+b)eder . (36)

abed =5
79
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G5l (3= 2+ » -;- aced,

Tieea (36) = %(lb'td) mrwabecd = %.

M(ﬂ‘)_l.- %-%1-%’- -y
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=m Misceiianeous Exercises
MISCELLANEOUS EXERCISES

This section ks optiopal.

We have listed some problems releted to the material cavered in this block. You may like to
de taem 1o get more practice iu salving problems. We bave also given our solutions io these
questious, because you may like to connler-check your seswes.

1) Ler1, 0 mud o° be the cube roow of unity. Evaluare
) (1-w+0®) (lvw-w?)
b) (1-) (1-0%) (1-a') {1-&’)
J x
) N(l-u')

2)  Give the equaiions, in standard fomm, whose roots are
I) 2. ‘--:'lg

b) V2, V3, =i

3) Forwhawalueofm(--lJWilllheeqmﬂwﬁ-:—h:- - :—-;-E-}'—hwcrdoﬁeqnlh

magninde but opposiie in sign? Herea, bERanda + b = 0.
4} Solve

l}'Z\/E-iQVi - :—'+%‘— wherea, BGR

b) V2 +-iym 2,
) ""rz.x
5y  x"+ 9’ + 127 ~80x - 192 = 0 has a pair of cqual roots. Obein all its roots.

6) Ifa,_b.cnethcroou_o[x’-—pxzﬂ-.U,_ﬂ:dtiuqmﬂonwhoumlrc
bre, c€+a a+b
3 b €

7)  Solvex'-4x®+8x+35 w 0, given Batooeroot s 2 ¢ Vo3,
&) Fomn the cubic whose roots are 1, b, ¢, where

atbec =3,

402+ = 5, amd

a3+b3+¢3 = 11.

Heace evaluate a* + b* « %,

) Fitd the cquation whosc 1005 are 4 Joas i valoe the the rocls of
oS 1T 11 w0
{(Hint : Write the equation as an equatkon i (x —-4))

10} Form the polynomial equation over R of keweat degres which Is sgiizfic.: by 1 —dsad
3+ 2i Isitunique 7

1) Solvex'+ox’+ 1827 r 9+ 1 = 0.
{Bisd! Mot iiatin this cquationise coefilclon® of & 893%™ ~1 arc *he some
Yre= 0, 1,2,3, 4. Sowe candivide throughout by x7 and then write the eruation asa

vadnalic lix + > ~ 7. say. Now soive for y, asd then Forx)

Bl



Solutiogs of Polymomlal _
Equatiers If you are Inwrested in dolg more exeraies outhe watecial cavered i, this block, please
refex to the book ‘Higher Algebra’ by Hall and Knight. Acopy is avallable i your study

centre.
Solutlons

1) &) Weknowthitl+ o roof = 0. .
| l-ovw’ = ~2oand 1 +o—' = -20%
& (l-—w+a?) (T+a-o’)'= (-20) (202 ) = 4° = 4,
since ® = 1.
b) (1-0) (1-0%) (1~e*) (1-6")
= (1-:1:)2 (1-0)2)2. since o = L
o (1=2040%) (1= rot)
= (-3w) (-3a")
= 9.
<) 0, since 1-w = 0,
2} &) The equation is
(x=2) (11-3'2'] (x-2)=0
o (x=2)(Z+3)(x-9}=0
o 2P —19% + 3x +54 = 0, in standard form.
B) X+ (VT -VZ I+ (VO P+ (YT T )x=VE 5 0.
3j Theeguatisa ks zquivelentte
(1+m)x*+ {(a—b}-—m('aq-b)-}x-a-{m-l]c = 0
“The roots are equal.in magmitide and oppasite in sign Ul their swh is zero.
s {a-b)=m(a+b}= O, ihatis,

4) o) Leiy = '\/ 3-:- . Then the givern cquatiorn is equiyaleat io

“Thus, the rools of the given equaticn are
2
b \? 32\ b’ 92
(\hz.) l,ud(\"a b) , that is, ™ and R

b) Puty » VZ . Thex our cquation in y 5

-

yelaz w-2yri =0 = (y-1)f=0

e

.yl
I .1
& X = §is the required o0t
5) Letitsronisbe,a,b,c

Then, the relations benvern the sools a4 e coeflicients are
Yatboe=-% f¢Y)]



6)

8)

-n’+23b+2ac+bc,-12_ ...... (2)

a’bea’c+2be~80 (3)

a’be = —192 )
Using (1), (2) and (3), we get

da® + 272° + 24 = 80

a2 = ~4 is a solution. ‘

Then (1) =» b4c = -, and(4) => bec = =12,

Thus, b and ¢ are roots of

x2+x—12 = 0.

S.bm3 cw4q

. Thus, therools are — 4, -4, -4, 3.

We know that

atbvcap e ()

dbrac+bc = O - “ o {6)

sbe = r -}

Nuw,b:cq- c;aﬂg:b. . bc(p-a)+a.c(;;-b)_-f-hnb(p-c}.umg(s)
s -3 ,, wreB)

. 3
(b;c) (u;a)+(c;a) (s:b]+(a:b) [b:c)_.a +dl;+c uskg (6).
Now, a, bandcsalisfvx’-px%r - .
Thus, on substituting each of 5, band ¢ in this equation, sod summing up. we get
a Jabd el p(a +bPac? Y+3r =0,
A LA -p{(a+b+c)2-—2{ab+_'ac+bc)}-3r
- p’-3n

) (55 (5 (2] 1) (59)- 2 o
A!so{b"'c) [l..*ra] (a+o] ;using(G,a.nd('?}

c
\

] -1 : e (10)
Using {8}, (9) and (i0), we sex that the required cquation is
3
x3+3x’+(2—:—3—r)x+l = 4,

2+iV3 is one rooL So snolbermustbe 2 -3,
Thus, (x? =4x+7) | (x*—4x2+8x +35).

By long division, or by spection, we see thel
._4,“21-04\4- u{xz_u;r.'.f}(v .qua.:))

Thus, the other two roois of the given cqualion asc those 0f 2”4 4x = 5 = 0, hat Is,
"".Gn. L

Now, a2+ 5%+ ¢* = (a +b+é)2-2-(ab+ac-:-bcj

S ab ¥ Ec+br = 2%-5- = 2,

Also, 8’ b’ ¢ w (avbrc) -3 (a4 b ) o (B4t )a s (Fead)h ) babe

Misceltamcons | -
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9)

10)

11)

2
-.bc-.an

Thus 2, b, ¢ are tha raots of

x’—3x2+2x"-§ e 0, that s,

I~ +6x-2 = 0.
Thus 3, b axnd ¢ satisfy 1bis equation, as well as,
3x'—9x + 6x% —2x = 0,
(s b ect)-9(+ P+ ) 6(%+bP ) -2(avbec) w0
= 3*+b'ec’ = 25
Puty « x4, thotis, % = y +4in the given equation. Then the equation that we gei
in y will be the required equation. Thus, 1be required equation is -
(y+d) =S(y+aY+7(y 14 =1T{y+4)+11 a0
o yelly +a3y+ 55y -9 = 0.

If 1- i is a root. so must I + i be. Similarly, 342i and 3-2 aye roots of the equation.
Thus, the eqoation of lowest degree is the quartic

[x=(1=i)j[x=(1+i)} [x={3+2i)] [x~{3~2i)] = O, thal s,

X -8 + 0 -38x 4+ 76 » 0,

This is unique, up to cquivalence. Thal is, any otber polynomial equation that satis(ies

- Qur requireznents must be cquivalent to this equation.

CHICH I +x+1 = O
“
> {x2+-13)+9(x+ij+ 16 = 0, by dividing lbroughout by X%
S
2

X

2 | 1
: a{x-t- +9 x+-7J+14u0.
X

Putlivg x + % = I, we gal

PeWeld o 0

92V 8l-56 - “9+5 -
3 2

Thus, we get two equations in x, ramely,

Thus,l = -2 -7

x+-l- = —Zandx+-l- s —7, thatis,
HY X

+x4+1 = 0andx>+7x+1 = Q.

On solving Wese quadratic cquations, we get e four solutions of the orginal

equation, which are 1, 1, :1%-£



APPENDIX: SOME MATHEMATICAL SYMBOLS Symbols and Tecbalques of

Appendix : Same Mathematlcel

Prool

AND TECHNIQUES OF PROOF

To be able to do any mathematical study, you need to know the language of mathematics, In
this appendix we shall introduce you o some symbols and their meaning. We shall also
bricfly discuss some paths that you wil often take to reach conclusions,

Symbols

1)

2)

3)

Implication (dexoted by =) : We say thata statemient A implies a statement B if B
follows fromn A

We write this as the compound statexsent, ‘A = B’ or ‘If A, then B,

Far cxample, consider A and B, where

A.: Triangles ABC and DEF are congruent.

B: Triangles ABC aud DEF have the same areq.

ThenA==HBH (1)

In thiscase ‘A = B’isa true statement,

Another way of saying A = B.is that ‘A only I B, or that ‘A is suficient for B’,

The converse of the statement "if A, then B* is the statement 'if B, tﬁcn A', that s,
B = A (whichis thesamc 3 A <= B).

For example, the converse of (1) is

‘if twa triangles havethe saiac ares, When they are congrvent.’

While studying geometry you must have proved that this statement is false. (For
cxample, the right-angled triangles with sides 2,3, V13 cm., and 1, 6, V37 ém. bav.
the same area; butthey are incongruent.) Thus, (1) Is true, but jis converse is not
Another way of mying A <= B is that ‘A’ls necessary for B”.

Two-way implicatlon (dendted by <»): Sometimes we flud two statements A and B
forwhichA == Band B « A In this situstion we save spmoe end write A < B,
This statement is the same as:

'Ais equivalent 1o B”; or

‘A (€and only if B', which we abbreviate to *A iff B": or

‘A is necessary and sufficlent for B'.

For example, let

A:x+2a 3and

B:x =1,

Then A = B and B = A. Thegefore, A < B

Mote that for the composite statement ‘A if B’ to be true, both A = Bantl B = A
sbould be true, Heace the staternent

‘Two triangles are congruent iff they have the same area’ is a false statement.

For all/for every (denoted by V) : Sometimcs & statement ipvolving a variable x, say
P(x), is true for every value that x takes, We write this statement as:

Uy B ne Dt W o=t
S IRt i LR Y
mieaning that P (x} is 2 e statemeat for every value of 5.
For example 12t B {x) b the stnramazs 6o . 0 s
ThenP (x)¥ x € N.
Theje exisilnere exists (denaled by 3 ) : I a statement depending on 2 varisble x, say
P (x), Gs {rue for soms valuealx, then we writs

3 x such that P(x).
This says that there is some x for which P(x) is true.
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For example, Ix. € Rsuch thatx-3 =2

Now, copsider the two statements

¥Yx€ R 3y € Rsuchthatx=2y,and .. (3)
Iye R suchthat¥x € R, x = 2y, e )

Is there a differenne in them ? What does (3) mean? It meais thal for any real uumber

-x, we can find a real nuimber y for which x = 2y.

lufact, y = %sewcs the purpose.

Now look at (4). [t says that Wbere is some real sunber y such Ihat whatever real
nuinber x we ake, X = 2y is 1rue. This is clearly a false stateinent

This slrows that we have Lo be very careful when dealing wilh mathenalical symbols.

So far we bave looked at the meaning and use of some cominon logical symbols. Let s
now consider some common techniques of proof,

Methods of proof

In any mathematical theory, we assume cerfain facts calted axioms. Using these axioms, we
arrive at certain resul's (theorens) by & sequence of logical deductions. Each such
sequence fonns o proof of a theoremn. We can give proofs in several ways.

1}

2.

Direct proof: A direct proof, or step in a proaf, takes the following forn:
A is true and the statement *A = B’ is {rue, therefore B is true.
For example,

A ABC is equilateral and (I€a triangle is eanilateral, then it is an isosceles triangle.},
thetefore, A ABC is an iscsceles triangle.

One kind of result that you will often mect in this course and other matheinatics courses is
2 theorem thal assests the equivalence of 2 number of statements, says A, B, C. We can
prove thisby proving A = B.B = A, A= C C= A ad B = C, C = B.
Bul,if A = Band B = C ure botb true, then so is A =» C. So, a shorter proof
could consist af the steps A = B, B = C,C = A, We write this in short as
A=B=>C=A.

Or, 1a¢ proof couldbe A = C => B = A, Thus the order doesi’t matter, as loug as
tbie path brings us back to the slaring point, and all the statemenis are covered.

Whenever you ineet such a reswltin aur courses, we shall indicaie the path we shall
follow.

Contrupusltive proof: This is au indirect method of praof, It uses the fact that
‘A = B’ is equivalent 1 ils contrapositive, ramely, ‘not B = not A’, thatis, if B
does sot ald, then A docs not bald.

(Forexample,x = -2 => x* = 4iscquivalentto ils contraposilive,
xPwd=>xw-2)

Somelimes, it is easier to prove thc contrapositive of a given result. In such situations
we use this metbod of proof. So, how dges this wethod work? To prove ‘A = B’, we
prove ‘not B => nol A’, that is, we assume that B does not bold, and then, through a
sequence of logical steps, we conclude bat A dacs uat hold.

Let us Jook at an example, Suppose we want o prove that ‘1 two triangles are not
oleiitar, then thoy asc not congruent’. We yrave ite contrapositive, namely Clf twa

triangles are tongruent, than they are similar’, which iy casy ia prove.

Proaf by contradiction: This methed 15 also called reductin ad absurdmin, & Latin
phrase. D ihis ncibicd, o prove that a siatement A is Uye, we starl by assuming et A
is [alsc. Then by Jogical steps we arrive ol » known false statemen!. So we reach a

contradiction. Thus, we are forced to conclude that A cannot be false, Hence, A is true.

For exainple, o prove that V2 € Q, we start by assuming thatvV2 € Q.

Then V2 = %Eorsomcp.q €Z,qw0 and (pgq) =1
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2 Appeadix 1 Some Mathemstical

=2mbwl =22y

Letp=2m.

Then 292 = p’ « dm?

= g - 2m? = 2 [ =2{q, which [5 no! possible because we assumed that
naqi=1.

Thus. we arrive at a contradiction. Hence, we conciude that Y2 & Q.

Proof by counter-example: Consider s statement P(x) depending ox a varlable x.
Suppose we want to Hisprove it, that is, prove that it is false. One way is (0 produce an

% for which P(x) is false. Such an x is called a connter<exampleto P(x).
For example, let P(x) be the statement
*Every natural number is 3 product of distinet primes’.

“len x = 4 s a counter-example, since 4 € Nand 4« 2 x 2 is pot 2 praduct of
dissincy primes, In fact, we have seversl coumter-examples in this case.

This is not always lbe best method for disproving & statement, For example, suppose
vou wWaul to check Lhe truth of the statzment

‘Givena,b;c € Z, 3 u € Z such thatan® + ba + ¢ is not a prime number'.

if you try to look for counter-examples, then you're In trouble because you will have
10 find infinitely many-—- one for each triple (s, b, ¢} € - S0, why not bry a direct
proof, as ke one below,

T'roof ;: For fixeda, b, c € Z, ke myn € Z and letan+bn+c ~ L

Tacna{n+ctP+o{n+i)+c s 1{Z+¥ 2an + b ), which is.a proper multiple of L.
Thus onr statement Is true.

&7

Symbols and Techniques of,
Proof
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BLOCK 2 EQUATIONS AND
- INEQUALITIES

Suppose you want to plan a meal for a growing child with three food types. Each food
type has three vitamins in varying quantities, You will nced to calculate the amounl of
each food fype.which will give the child the minimum required amount of the different
vitamins per day. How will you do this ? Algebra gives you an easy way, which you
will read about in Units 4 and 5. In these unirs we discuss three methods of finding
common solutions of several dinear equations. These methods aren't new: in fact, one of
them has been used since ancient times. The other two methods were developed in the
eighteenth century, All these methods are s:ill 1he standard methods -for solving systems
of linear equations, ’

In Unit 6, the last unit of this course, we look at some .algebraic inedualitics. We will
first discuss some inequalities which were even known o the ancient Greeks. Then we
will study three inequalities due to some famous nineteenth century European’
mathematicians. All these inequalities are useful in mathematics and the other sciences,
and they are very simple to prove and apply. That is why we have chosen to expose you
'lo them in this elementary course on algebra.

‘Now, a few suggestions that may help you study the units in this block. Before slarting

* the study of this block, we suggest that you glance through the notation given ar ite

- beginning of Block 1. Also, do try the exercises in the units, in this block as and when
you come Lo them. This will help you to confirm your understanding of the related study
material. At the end of the block we have given a list of miscellancous exercises for you

" to do, if you want to. Doing them will be useful to you. After finishing this block please
try the assignment which. is based on this course,
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UNIT 4 SYSTEMS OF LINEAR

EQUATIONS

Structure -

4.1 . Introduction 5
Objeciives

4.2 \Linear Systems 6
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4.4 Solving by. Elimination 12

4.5 Summary 14

4.6  Solutions/Answers 14

41 . INTRODUCTION

In the last unit we introduced you to-polynomial equations in one variable. In this unit
we will start by considering.linear equations *1 one or more variables. Afier that we
shall consider ways of obtaining common solutions for several such cquations. We cull a
set of Jinear equalions a system of "'near cquations. Such systems of cquations can arise
while studying many practical ~ oblems. These include studying oscitlations, the MTow of
currents, migration panel"ns. vhemical contents of various solutions, inpul-output models
of industrial production, and so on' Thercfore, it is important that you spend some time
studying them,

‘The first definite trace of systems of lincar equations is found in Chui-chang Suan-shu,
that is, Nine Chapters on the Mathematical Art. This is an ancient Chinese mathematiciu
text which was probably written in 1100 B.C. Much later, in the third century B.C. | the
Greeks used some methods for solving certain systems of equations. Further notable
developments in this area of mathematics took place in the 17th cehtury. The Japanese
mathematician Seki Kowa (around 1683) contributed greatly o the theory of systems of
tinear equations. About the same time the European mathematician Leibniz also
discovered a method for solving systems of linear.equations. In the next century the
mathematicians Gauss and Cramer published methods that use the concepts of matrices
and determinants for solving simullancous*equations.

In this unit we will discuss two methods for solving systems of linear equations. We will
.do the mgthod due to Cramer in the next unit.

[Let'us now list the objectives of this unit.

Objectives

After studying this unit, you should be sble to

« obiain ihe solution set of a linear equation in one or more variables;

e define a system of m linear equations in n unknowns:

e apply the methods of substitution and climination for solving simultaneous linear
equations:- , ’

i .

o c100se the appropriate method, of the two methods discussed, for solving a given

linear systemi.

Let us now start our discussion on liéar equations.
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4.2 LINEAR SYSTEMS

You know that the most general form of a linear equaltica over R in one variable x is
ax+b=0abe R,a=0 Youalso know that this has;; :miquc solution. namely,

b
X=—-=

a
Now, can you think of a lincar equation in two variables 7 What about 2x + S5y +5=07
According to the following: definition, it is linear in two variables.

Definition: A linear equation in two variables x and y is an equation which can be
- [0 .
wrilten as

ax +by +c=0,

where a,b,c € R and a and b are not boﬂ1 ZEro.

For example,

-X +-;- ¥ =0; x = 25 and 2s — 4t = 2 are lincar cquations in two variables.

W.izt about xy = 1, the equation of a hyperbola ? Is it a linear equation in 2 variables ?
It is noy, since x and y are both variables; and hence, it is not of the form
ax + by +c =0, where a, b, c € R.

Try the following exercises now,

b

El) Which of the following equations are lirear in 2 variables ? Can you explain why ?
a) 2x + 3xy —4y = 10

RRETEL s

AN

c) Ww+v= 2, 'where u and v are variables.

d 2x=5"—;2¥+1

E2) "Every lincar equation in one variable is also a linear cquation in two variables,” Is
this statement true ? Why?

Now, what would any solution of the linear equation 2x+3y+1= 0 look like ? It would
consist of an ordered pair of rcal numbers say (a,b), such that 2a+3b+1= 0 . For
example, (1, —1) is a solution, since 2(1) + 3(=1) + | = 0.

You can check that [—-%-—%] and [—--él— OJare alsc solutions.

In fact, the given equation has infinitely many solutions given by | x, ;(2;—-”)— , 48 X

varies in R. How do we get this general form of e solution 7 We ca » rewrite the

L FYRNCIES B Y
N . . _T\LAT )
cquation as ¥ =

3 - Then, for any value that'we give, x, say x=a . we get a

. —(Za+1) - . . o
tomesponding value —=—= for v. Thus, ( —(-i‘“—'t_uJ 5 a soluilun~V'a e R, Noie

3 , L

that the solution set is a subset of R2,
, ) —(3y+1 .
Now. we coul¢ also have rewritlen 2, + 3y+1=0asx= —(—L——l. Then the solution

set would have >een {(jéé—*'ﬂ , y] ye L } Are the two solution sets different ?

Not at all. if we wrie —(%J: X, then _(Zx;- ! ]: y. Thus, the sets are the same,



This shows us that we can either obtain the solution set in lcrrns of X or in terms of y. Systems of Lincar Equations

Now. consider the cqual:on x ~2 =0 as a linear equalion in two variables. What is its
solution sct? Whatever value y takes, x will always have to be 2. Thus, the solution set
is {(2, y) | ¥ € R). It is the set of all points on the line x = 2 = 0 (Fig.1). In fact,

any linear equation in 2 variables can be geometrically represenlcd Y‘ ’

by a stra.lght line in the xy-plane.
‘No;v let us define a linear equation in n variables, where n € N, x=2
Definition: A linear equa!ioﬁ over R in n variables x), X,.., X, has the go.:ncml form

QK+ AKa F e + 2%, + b =0, : 0 ' el
where a;, a3t 3., b € R and not all of iy, 8y, veady cqual zero. Fig. 1:x= 2

Thus, 2x + 3y = 1z is a linear equation in 3 variables %,y and z, What does a solution
of this look like ? It will be an ordered lr:ple of real numbers that satisfies the equation.
For example, (0, 0, 0) and (22, 0, 4) aré solutions. Bus, (I,1, I})is not a soluuon.

Let us see what a solution of a general lincar equation looks like.

Definition : An n-tuple (by, b,......b,) in R" is called a solution of the lincar equation
aiX; + Xy + e + X, = b, if '

ajb) + azb, # ... + b, = b. ;
In this case we also say that x; = by, x; = b,, ... + Xq =.b, satisfy the lincar equation.

t
Note that the first element of the n-tuple is substituted for the first variable, the second
for the second variable, and so cn. '

Remember that a linear equation in two or more variables has infinitely many
solutions,

Now why don’t you see if you have absorbed \_'.'hal:‘ we have done so far, -

-
E3) Which of the following are solutions of 3x - 2y + 5z=80"7
a) (0, —40), (b} (0, - 40, 0), (c) (2.3, 15),

79
3 e A
E4) Find the solution sel uf x = y. Also give i geomelrical represenlation.

I.-“r‘t") sl
a (L1, R

Studying only offe.li..car equation at a time has been found inadequate for interpreting
and solving real-world problems malhcmanmlly The mathematical medels of many
problems consist of aset of several linear equiticns which nzed tobe solved at thé same
time. For example, suppose the Indian Governrznt, has 1o suddenly send supplies of -
bload, medical kits, food and water to a quake-hit crea. It knows the volune and wclght
of each unit of these items. It also knows that eich a» roplane can take a maximum
capacity of 600 cubic metres and a maximum weight of 20,060Kg. These facts, pur
together, lead to the two equations

23] <+ 3:(2 + O.BX:\ +'0.6X4 = 600
75%, + 50, + 30%; + 35x, = 20,000,

where X, X5, s, X4 denote the number of containers of blood, medical kits, food and
water , respe’-.ively. We nced to find common solutions to both these ¢quations so as to

* get thic amounis ihat can be senl. In olher words, we need to solve these equations
simultaneously. That is why we call such a set of cquations simultanesus linear
equalions,

Definition: Any finite set of linzar equalions is called a system of linear equations, or a
. linear system. or simultaneons .inear euuat:ons

You have just seen onc exa.mplc involving cmergency airlifting. For another example,
consider the. three equations . 7
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2x +%y'+3z=-|zoo

3x‘+%y+22= 1150 versesenneinneend 1)
- 4x + 3y + 2z = 1400

They form a linear system. This system is the mathematical formulation of the following
prablem:

A company produces 3 products, euch of which must be processed through 3 divisions.
A.B, and C. The number of hours taken by each unit of the product in each division, and
the total number of hours available for production each week is given in Table 1.

Table 1 !
Praduct Total number of
Division hours per week
1 2 3
A 2 3.5 3 (200
B 3 2.5 2 1150
C 4 3 2 . 1400

What is the number of units of each product that should be produced so as 1o exhaust -
the wcckly capacities of the 3 divisions‘?

How is the system (1) obtuined from this problem? Well. if x,y and z denote the number
ol units of euch prcducl we get the system (1)

In the following exercises you can see some more cxamples of lincar systems arising
from pructical problems,

E5) A dietitian is planning 2 noon meal for schoo! children. it consists of 3 food Types.
He wants 10 ensure that the minimum daily requirements (MDR) for 4 vitamins are
salisfied. -

In T.J.bk: 2'we summarise the vitamin content per unit of each food type in
nnl[lgmms and we give the MDR,
Sy e

Table 2
Yitamin conlentfunit .
(in mg.)

Food Type Vi Va Va Vs
1 3 I ‘ 0. I .

2 5 7 2 6

3 2 3 . t] 2

MDR 55 45 10 45

What is the mathematical formulation of this problem?

E0} Thirty litres of u 50% slcohol solution are to be made by mixing 70% soiution and

20% soluzion. We want to know how many litres of euch solution should be used.
Trunslate the problem inlo a linear system.

Let us now discuss what the set of solutions of a system of lincar eguations iooks fike.

Consider the following linear system in one variable: -
ax+b=0 I ’ 2
ex +d=0,

where a, b.e,de Ryaz 0. ¢ 0,




This will have a solution if and only if the two equations have a common solutjon, that

is , iff—£=—-d—. And then, % ='-2( or—ﬂ)' is the unique solution,
a c a- [

For example, the system

x+1=0
3x+3=0
has the unique solution x = -1, while the syslerﬁ
3x =0
2x+5=0

has no solution,

Now consider the system

X+2y=5
Y _ 2y
X+y=3 .

From the second equation we get y = 3 - x. Substituting this value in the first equation
we gel

A+203-x)= 5 thatis, x = .
Theny=3-1=2
So, (2) has a solutiont, namely, x = | and y = 2, that is, the ordered pair (1, 2).

Now, recall that the solutions of a linear equation in tw~ variables correspond to the
points on the line representing the’ equanon Thus, the solutions of (2) would correspond
to the points of intersection of thé twer lines representing the two equations. From Fig.
2(a) you can see that they intersect iX unly cne point, namely,, (1,2). Thus, (2) has a
unique solution.

? -

Y| - Y $

N

N
0

-

Systems of Linear Equations

w ' (b)

Fig. 2! A linear system with {a) a unique solutlon; (b} Infinitely many sotutions;
{c) no solutlon.

Now consider the system

Ft2y=5 - ] s 3)

2x+4y=iG

You can check that for any y € R, the ordered pair (5 -2y, y)isa soluuon of (3). T'hus,
this system has 1qfi_nn[@ly rrgnnu eplutinng. ___

Gcomemcally, since both the equauons of (3) are multiples of each other, they represem
the same line in the plane (see Fig. 2(b)}. Thus. every point on the line is a common
point. Hence the system (3) has infinitely many common points.

Finally, tonsider the system - ‘

(c)
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\

O T SN C:) §
x+y=4

You can see that this system of equations has no solution, since any solution would lead
to the false statement 3 = 4.

'Geomclri-cally. lh\e twe equations of (4) represent distinct parallel lines (see Fig. 2(c)).

Thus, they have no point of intersection.

So you have scen three situations, namely,

i) a lincar system can have a unique solution, or
ii) a linear system can have infinitely many solutions, or
L]

iil) a linear system can have no solution,

In fict, these are the only situations possible for afy systemn of linear equatiops, We shall
not prove this statement here.

Now let us go back to a general lincar system. We give the following definition.

Definition: If a system of lincar equations has a solution, we call it consistent;
otherwise we call it inconsistent.

Tl‘lus, (2) and (3) are consistent sysiems, while (4) is not.

. Why don' you 1ry the following exercise now?

E7) Give lhc gcomelncal‘vu‘.w of the followtng :.yslem of eguations. Hence find out
which of them are cansistent. -

a) X +y=3
¥ =0
y =0

by x+y=2_ -
2x+2y=10-—j- " <
X=y : .

¢) 3a+ ;=0 -‘ i T e

Now let ue discuss o method of solving 2 system of ligeer equations.

1

43 SOLVING BY SUBSTITUTION

Let us consider the following system of linear cqu:iliqhs in gne variable:

3x+5 =0 Sl E
n1320 ]




equation, we get

=5+ 5 =0, a true statement. - . \

-, .. 5
Thus, the equations in.(5) are consistent, and the unique solution is x = —? The method

we have just used for solving (5) is called the substitution method.

Let us see how this method can be used for solving fihear systems in two variables.
Consider the system -
2i+y =17
(6
5x + 3y,= I8 ] _ ©).
We want to solve the equations in {6) simultaneously, that is, at the same time. by

substitution. For this we (irst write one variable in terms of the other by using either of
the equations. We will use the firsL one to write yinteims of x, as y = 7 — 2x.

Then we substitute this value of y in the second equation, to get Sx+3(7-2x) = 18, that
is, 21-x = 18. . '

This gives x=3.
Substituting this value of x in y = 7-2x, we get y=1.
But, is (3,1) & solution? We must double check by substituting these values in (6), We

get2x 3+ 1 x| =7, which is true, and (5 % 3) + (3 % 1) = 18, which i true. Thus, the
system (6) has the unique solution (3,1).

We can also solve (6) by using the second equation to write x=-18—g-—31: ‘Then

substituting in the first equation, we get 2[-18—;2:"—]+ y=T7 givingy = I.

And then x = 18;3)( = |8—(53>< D - 3.

To get some practice in solving by substitution, try the following problems,

m _

E8) Find solutions (if any) of the following sets of simultancous equations by the
substitution method.

a) X +y=-2
y=3 - .

b) 3a+7h =33
a+3b=13

) 25 +t=20

25 -5t=130

- d) x+y=2
« . 2x+2y=4

T Q) 3k ="y

3
Ln

The sebstinrion method that we have employed fqr two equalions in two unknowns can
also be extended for solving several eyuations in several unknowns. But it becomes more
and more difficult to apply as the number of equstions and variables increases. In the

next section we will.discuss a bétter method of;.déalingi:wi(h' any number of equ'aliunsl in
any number of variables, ’ -1 : :

-Systems of Linear Equations

1§
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44 SOLVING BY ELIMINATION

Flg. 3 : Gauss [0 1803

Two systems of equalions are
equivalent if they have the same
solution set.

12

This methed of solving simultaneous linear equations is due to the great German

- mathematician Carl Friedrich Gauss (1777 — 1853). Because of his immense

contribution to the development of matherhatics, he is known as the-"prince of
mathematicians’. The method of solution is called the Gaussian elimination (or
successive elimination) method. In this method we use multiplication and addition 1o | ‘
eliminate the variables, onc by one, from the equations. At cach stage we trunsform the
system of equations into an equivalent one.

Any of the [ollowing transformirtions are allowed:

1) changing the order of the equations of the systemn;

2)  multiplying both sides of any equation of the system by a non-zero real number;
3)  replacing an equation by the sum of that cquation and a non-zero multiple of

another equalion in the system,

Let's work out a simple example, using this method. Consider the system

X+2y+z =4 [ OETURURSRRRNPRI (8 |
3Ix—y—4z =-9 SEPRITOTTTRSIN ¢ ) B
x+y+z2 =2 ST ¢}

Let us begin by eliminating y from (8) and (9), by adding them. We get

4x =3z =-7 SR )
Now lgt us eliminate y from (7) atc {3). For this we add (7) to 2 times (8). We get

b2y 4 2 +2 (3K -y —42) = 4 + 2(-9), that is,

Tx—=Te=-14
Dividing throughout by 7, we get

XN—-z2=-2 SO |
Now, we can- elimiaate x from (10} and (11) by adding (—{4) times (11) 1o (10). We get

dx-32) -4 (x—-2)==T7-4(-2), that is,
z=1.

Substituting this value of z in {11) we get
X==-2+1=-1.
Substituting X = —l,‘z =1 in (%), we get !
Ty =2
We must verify .if the ordered triple {~1, 2, ) satisfies all three equations.
On substiluting this triple in each of the equations, we find that it is indeed the solution.

Whenever we use this method, or any method for solving a linear system we must keep
the foilowing remarks in mind.

Remark 1 : Whenever we solve an equation or a system of equations, we must always
verify our soluiion.

Remark 2 : While solving a linear syslem, if we reach a false statlement, it means that
e system has no sofution.

' ) .
Now-why don’t you try to solve some linear systems.

E9) Solve the followmg systems by the Gaussian elimination methed. :
A 2x+y+z=9 - ' ' i'



-Xx-y+z=1
I-y+2z=9
b) ~3x+4y+52=6
6x + Ty =8
2x-3y+z=1
E10) Solve the system that you got in ES. by elimination.
Z11) Determine, by elimination, the solution set of"the system

—2X+y+3z=12
X+2y+5z2=10
Ox -3y +92=24
SX+5y+22 =0
“_ b ]
In E10 and EI1 you came across systems in which the number of cquations was more .

than the number of variables. In such a siluation also the system can have a unique
solution, infinitely many solutions or no‘sclution. .

There can also be systems of equations with more variables than equations. Such a
system will not have a unique solution. Thus, it will either be inconsistent, or it will
have infinitely many solutions.

Let us consider the following example.

dx -y +z =0 SRR .} |
X+y+2z=5 TPV & I 3

We first eliminate x,

(12)-4x(I13)=-5y=32=-20
= S5y +3z2=20 S STITE PN § I}

We can't eliminate any more variables because playing around with (14) and the original
system will only end in reintroducing x. Instead, we use (14) to write y in terms of z.
We get '

, - 20~3z
.5 = “‘—5 .
Then (13) = x:j..[M}_z = ﬁz_
5 5
Substitute the triple _5_—T27_.- 2‘05;3"2' z | where z € R, in (I2) and (13), 10 verify that

it is a solution. What do you find? For any z € R, the fripi¢ is a solution of the given
system.

For example, when z = 0 we get a solution (1, 4. 0); and when z = | we get i solution

(% I-;- [] and so on. Thus, the given linear system has infinitely many sclutions.

o s (5—2z 20-32 .. .
Y . SCIULIUS GIo e | WHEIT Z 15 dn arDpirary real

. k) "u} i . L 5 ) . 5 )
number, or 4 parameter,

Now censider the systemn

X+2y+z=1 s (1 5)
X+2y+z=-1 s ©)

(15) - (16) = 0 = 2, a falsc statement.
Thus, the system is inconsistent.

Now why don’t you practice the elimination method some more?.

Systems of Linear Equatici=

i3



Equations and Inequalltles

Note the relationship between the
systems in EL5 (a) and E15 (b},

\
.
1
Y
Ve
Xy
I
Q X
Flg.d:y=x
14 .

E12) Solve the system you got in E6, if it is consistent.
El13) Solve the system (I)I that we gave at the beginning of Scc. 4.2.
Eld) Solve the system

4
x+y+z =20
fOx+y—-22=35

E15) Solve the systems

a) x+y+zl=0

y+2z=3

b) x+y+z =0
y+2z =3

: =4

-

So far we have discussed iwo methods of solving linear systems. In the next unit we will
consider yet another method. which is specifically meant for a system of linear equations
in which the number of equations is the same as the number of unknowns.

Let us now summarise what we have covered in this unit.

4.5 - SUMMARY

- 1110 3 unii we have discussed systems of lineur equations. In particular you studied

1) what a lineur system is and how it can arisz (rom nractizal problems.

2y that a linear system can have a unique solution, ‘afinitely many solutions or no
solution,

3)  the sabstitution method for selving “*small™ linear systzms simultaneously.
4)  the Gaossian elimination method, which is the method that is the most widely used.

We hope that you have tried all the exercises in the unit. You may like to see what our
selutions to them are.

4.9 SOLUTIONS/ANSWERS

El) (a) is not, since the quadratic term xy occurs in it.
(b)- is not, since the quadratic term y° occurs in it.
() is not; in fact, it is not even a polynomial equalion.
(d) is linear, since it is equivalent to the lincar equation 3x + 2y — 4 = 0.
E2) 1t is lrue because any linear equation in one variable is ax + b = 0, a # 0. This is
equivaient 1o ax + 0. y + b= 0, a # 0, which is linear in two variabies.
E3) (b} and {d} are. {a) € Rz', and hence can’t be a solution. (&) 1« not, since
32) - 2(3)+ 5(15)y = 80,
E4) [(x,x} x € R}
lis geomeirical fepresentation is given in Fig. 4.
E5) Ley, %, v, z denote the units of each food type. Then

3x +5y+22=55
x+Ty+3z=45

2y - =10
X + 6y + 22 =45



P i - R
E6) Say, we take x litres of the 70% solution and_y litres of the 20% sclution to make Systema of Linear Equations -
30 litres of the 50% solution,

70 20 S0

Then 'I-oﬁx&my =T03x 30
Also x + y = 30,

Thus, the problem reduces to solving the linear system
Tx + 2y = 150

x+y =30

I

E7) a) From Fig.5 you can see that there is no point common to all three lines. Hence
the system is inconsistent, o

Fig. 5 : An inconsistent system
b} We have given the peometrical representation of this system in Fig.6. Agaih. Yj
you can see that the system is iniconsistent. N
¢) In Fig.7 you can see that the three lines have a unique point of intersection,
namely, (0, Q). Thus, the system has the unique solution (0, 0). i
d) From Fig.8 you can sec that this system has the unique solution (3,4), \- ’
E8) a) The second equation says ¥ = 3. Substituting this value in the st equation,
wepgetx +3=~2 =% % =5, ' ]
N : -
“ (=5, 3) is the solution, : . 1o '\' T ONX

ig: 6 : An inconsistent system

by a+3b=13=a=13-3b i

5 32+7b=33=33(13-3b)+7b=33=2b=6=b=3, Y
La=13-3(3) =4

= {4, 3) is the solution.

¢) 28 +1t=20 =t =20- 2s. . ' 0. <
25-—5t=30:23—5(20—25)=30=&s=-66£
i 855 i
..t--20H3— 3 .
(65 _s). ,
o (6 y = 3)15 the SFDIL'II]OFI. Flg, 7
--d)x+y=2=?y=2-x v
W2+ 2y =4 = 2x+22-x)=d=0=0.
Note that the second lequalioh is equiva[eﬁt to the first one, Thus, any solution ]
of the system is a 'solution cf X+y=2 .
Thus, for any value of x &; (x, 2 ~ x) is a solution. For example, (0, 2) is a
solution. o ; [
This system has infinitely many solutions.
0 X
a) 3x =y 5-;,'3_:33\'—5

94y =3x=9+3x-5=3x = 4 = 0. a false statement,

Thus the system is inconsistent, RN
E9) 4) 2x4+y+z =9 , S ¢ s T
' -Xx—y+z= SO IS ¢ I )
-y+ez=6 . I 1) |

To eliminate y we.add (I7) and (18). We get
X+ 2z=10. L S
To eliminate z we subtract (18) from (19). Weget

4x = 8, that is, x =2 _ - . }
Substituting this value of x in (20), we gei . ’ 15

worenes(20)
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2z=I10-2=8=2z=4.

Then {17) gives us

22 +y+4=9=y=1.

Thus. (2, 1, 4} is the solution. (Verify this 1)

29 22 49
b) [41 4] '41}

EIO) 3x + 5y + 2z =55

X+ 7y+3z =45
2y =10

X+6y+2z =45
23y = y=5
Then {210 = 3x + 2z = 30
and 6'22) =x+32z=10
Eliminating x from (25) and (26), we gel
z=0.
Then (24) = x +6(5) + 2(0) =45 = x = 15,

wn(21)
v (22)

we(23)
ve(24)

..(25)
-(26)

Now we need to check if (15, 5. 0) satisfies all the equations in the system. It

doesn’t satisfy (21). But our calculations have been right,
Conclusion: the system is inconsistent !
The dictitian will have to alter his constraints !

EID,{—%. #L
E12) The systzm s
X + 2y = 150
x+y=30
It Las a unique sofution, namely, (I8, 12},
E13) (200,.02, 150}, -
E14) Tac solution set is [{x, 15 - 4x, Ix + S)i xe R).

Ei5) 0) [{z-3,3-2z2) |z R} is the solution set.

bl (I, -5, 4) is the unique solution.
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5.1 INTRODUCTION

In the previous unit we introduced you to linear systems and two methads for solving
them. In this unit we shall discuss a method for sclving a particular type of linear
system. We shull first briefly introduce you to an efficient notation for dealing with
systems of linear equations, namely, a matrix. You ecan find a detailed study in our
course on linear algcbra,

After that we shaJt explain a concept that i int'mately linked with a certain type of
matrix, and hence with the sbldt 1 oF ce.rain systems of lincar equations. The concept is
that of & determinant, which scems to have been first used by ancient Chinesc
mathematicians for solving simultaneous lindar equations. In 1683 the Japanese
mathematician Seki Kowa started developing the theory of determinants for the same
purpose. About the same time the German mathematician Leibniz also defined
determinants and developed their use for solving simultaneous linear cquations, So, you
can see that mathematicians through the ages and around the globe have felt that
determinants are very important. Nowadays scientists and social scientists also
increasingly feel the need to understand and use this concept.

We shall end this unit with a discussion on a methed which uses determinants for
solving certain systems of Jinear equations. This method is due to the cighteenth eentury
mathematician Cramer. It only ;1pp|§cs 1o some of those linear systems in which the
number of variables equals the number of equations.

Let us now list the objectives of this unit.

Objectives

After studying this urit, you should be uble to
e define a murrix. and a square matrix, in particular;

o evoluate any determinant of order 1, 2 or 3:
o identify a non-sinpular matrix:

e identify the lincar systems which cin be solved by using Cromer's rule, and apply the
rufe to solve them.,

. rd
And now let us look gt a convenient way of representing 2 lincar system,

5.2 WHAT IS A MATRIX?

-Consider e sct of iincar equations

2+y —z = "5
x+5y -3z=-6 STV
-X+2y +2z° 1 )

While writing (1) we have had 10 write each variable three times. Wouldn™t it be more
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satisfactory if there were 2 notation that would enable s to avoid this repetition? After
ali, it is the zoefficients that really matter in obtaining their solutions. Let us do away
with writing x, y, z each time, and only write their coelficients in a table in the
following manner :

2 1 -1
1 5 -3
-1 2 2

How did we prepare this table? The first row consists of the coefficients of x, y and z,
respectively, in the first equation; the second row consists of the coefficients in the
second equation; and the third row consists of the cocfficients in the third equation.

In fact, we can symbolically rewrite (1) as

2 1 -1 x 5
15 <3|l y|=]-6 SR )
-1 2 2|z 1

Each greup of numbers or variables enclosed in the square brackels is an example of a
matrix, -

Writing systems of equations in matrix notation leads to a saving of cffort in dealing
with them, especially as the number of equations grows. Nowadays computers are being
used increasingly for solving large systems-of lineur equations. Their efficiency increases
considerably if matrix methods are used. You may be interesied 1o know that matrices
(plural of “‘matrix’') were first used in 250 B.C, for solving systems of lincar equations
in the Chinese mathematics text **Nine Chapters on the Mathematical Art'". Bul the
development of mairix theory is mainly due (o the 19th century British mathematicians
Arthur Cayley and J.J. Sylvester, We will discuss madrix thzory in great detail in our
course on linear algcbra. In this section we shall only acquaint you with matrices. Let us
start with the definition.

Definiticn : A matrix is a _rectangular arrangement of numbers in the form of horizontal
and vertical lines.

The numbers occurring in a matrix are called its clements or entries.

The set of entries in one horizontal line of a matrix is called a row of the matrix; and
the set of entries in a vertical line is called a column of the matrix.

For example,
] 3 -4, . . . )
2 1A 5 is 2 marrix with two rows and three columns, and {—I] is @ matrix with

one row and one column. .

Note that each row ¢f a matrix has the same number of elements. Similarly, each column
of a marix has the same number of elements. This is why we say that the arrangement
of numbers in a matrix is ‘rectangular’.

Now a few words about notation.

As you have sezn in the examples of matrices given so far, we use square brackets to
enclose the entries of matrix.

We usually denole matrices by capiral leuers. For instance, the general matrix with m
rows and n columns is

o [ & | in biie.
-. am ;1m?."""""""'“'"'\:’;ITIn J '

Here a| denotes the clement lying in the 1st row and the (st column, a,, denotes the
clement lying in the 1st-vow and the 20d column, and, in general, a; denotes the clement
lying in the ith-row and (he jth column. We also say that ay is the (i, jth entry of A.
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[ 0] :
Thus, the (I, th entry of | 07 | 2 |is 0, and the (3, Dth entry is 3.
, 3 03 -1

- We can also denote a matrix A consisting of m rows and n columns by A e OF AMO
and we say that it has order m X n or is an m x nmatrix.

We will often refer to the ith row of a matrix, meaning thd ith row from the 1op,
Similarly, the ith column of a matrix refers to the ith colurhn, counting {rom left 1o right.

If the number of rows in a,matrix cquals the nut‘we:of columns, the matrix is called a
square matrix. Isn’t the name appropiiate?

3 5 0 0 0
Some examples of square matrices are [2],[ 1 0 ] and ( 0 O O | Such
0 0 0

matrices are very important in matrix theory.

You may like to tfy some exercises on matrices now.
L

El) Write the order of each of the following matrices.

1 a0 .2 i 0 0 4
-4 i 91, [5L,]9 0] 3|, [2-2i]
3 0 8 o 0 1 l

Also write their (2, 3)th and (1, I)th entries an2 their 3rd columns, if they exist.

E2) Write dowr a 3 x 4 matrix in which 1~e (i, j)th entry is {, whenever i <j, and non-
zero otherwise. .

-

E3) a) Rewrite the linear syslenﬁ that you obtained in E5 and E6 of Unit 4, in matrix
notation.

b) What would happen to these matrices if the first and second equations in each
of the linear systems were interchanged?

Now, go back te the system of equations (1). We rewrote them in matrix notation in (2). We
can also write (2) in shorthand notation as AX=R, where A is the 3 X 3 coclficient matrix, X

| ox . 5 The coelfclent matrix of a linear
isthe 3 x 1 matrix} y [and Bisthe 3% | matrix | -6 | L system js the marrix formed by
z | . taking the coelficients of the equa.

) lions in the system.
If the number of equations in a lincar system equals the number of variables; the
coefficient matrix will be a square marrix. In this situation we can sometimes use the
concept of a determinant-to solve the system. Let us sce what this concept is.

53 DETERMINANTS

You have just seen that we can represent a set of n linear equations in n varizbles by a
matrix equatian AX=R, where & is an nvn matix, Assosiated with 1his squarc matix A,
we can define a unique number — its determinant. In this section we will discuss '
determinants of matrices whose elements are real numbers, We will also discuss somé of -
their propertics. o

Let us start with a definition. .

Definition: The determinant of a 1 x 1 matrix A = [a], denoted by | A | or det (A), is a,

For example, if A = [3], then 1 A | is 3. Stmilarly, if A = [—%] then Al = 7.—;-_

Now let us consider the determinant of a 2 x 2 matrix. , . I ' ' 19
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Definition: The determirant of the 2 x 2 matrix A;[ 4. 2
21 8¢
an ﬂn" iz a3, and is denoted by I A [ .

This is simply the cross multiplication

a a2 -
[ "2 | 7] |

e 2

For example, if A =[ -1 s

].lhcn JAl=0x5=-2X{~)=2.
Another common way of writing'| A ] is to write its elements within parallel vertical
lines, instead of within square brackets. For example, we can write the determinant of

0 2 0 2

-1 5|%| -1 5

L}

We will often see this way of writing a determinant.
L]

You may like to calculate some determinants now.

. - ]
' E4) Evaluale
(a) 1 -1 l (b)i t 1 i | ! 2|
-1 o 227 0 0
@ | i‘o @| 2 =2 ®f 1 -l
|0 i) ' -1 0 -4 0

Compare the determinants obfained in () and (e), and (a) and (f).
m

Now let us use determinants of 2 x 2 matrices to obtain the determinant of a 3 x 3
maltrix. .

Definition: The determinant of the 3 x 3 matrix

) Ay @y ap
The determinant of A is denoted A=l ay dp Ay |is
by |Al or det (A). ) ]_ Q) Ay Ay
a a'q Ht HEL d
lal=a, |2 | a, | 2 fa, f”}.l 2
4y A | dy ay 43 2y

=D lagl A b+ =D apl Ap |+ 1035 A,

where A ; is the matrix obiained from A after deleting the first row and the jth column,”
fohj =1, 2, 3.>
1

In dbtaining | A |, we expanded by (or along) the first row. We could also have
expanded by the second row, third row, or either of the columns. So, for example,
cxpanding along the third column, we set :

A = )" apy A+ D7 ag Al + 1 oy JAnl,

where Ajy denotes the matrix oblained from A after deleting the ith row and the third
column, =

All 6 ways of obiaining { A [ lead 10 the same value. We will not prove this here.
However, let us consider an example.

1 2 6 '
LetA=| 5 4 | [ Then, expanding by the first fow, we get
-O 7 3 2 !



1 2 6 Ty .
5 4 1 = (-I}|+I R | : 1 + (_I)H-Z 2. | g é + (_[)|+1 6. I 5 4 |
7 3 2 _ 2 : 7 3

S@X2-1IxNP2Gx2-1xN+6(5%x3-4xT7
=79,

Now, why don’t you try this exercise?

E5) Obuain | A, for A in the example above, by expanding algng the 3rd row.and by
expanding along the 2nd column,

qm
A5 you have seen, we define the determinant of a 3 % 3 matrix in terms of the
detcrminants of 2 X 2 matrices. In the same way we can obtain the determinant of any

nXn square matrix (n 2 2) in terms of the determinants of (n ~ [) x (n — I} square
matrices.

Definition: The determinant of an n x n matrix A = [a;), where n > I, is gi‘vcn by
PAl=CEn"apl ap T+ D" 2apl Ap L+ o+ =1 a0 1 Ay, L
where A ;= matrix obtained from A on daleting (> .st row and the jth column, ¥ j=i,..., n.

What we have stated for the 3 x 3 case is true for the r X n case (n 2 2), namely, that we
can expand along any row or column to obtain the determinant of A. Thus, -

| A [ =(" 1)i+l -anl Ai[ | +(— I)IT2'332| Ajg | +.. .+(— 1}“’"-ain | Ain-lv i:ll..,_ﬂ,
and B
lal=En"aul Ayl 12 ayl Ay 4.+ 1004 g | &5 1V j=tn.

We call the determinant of an n X n matrix a determinant of order n (or size n).

So far we have spent some time on evaluating determinants of orders 1, 2 and 3. In this
course we shall not go to higher orders. (They are discussed in great detail in our course
on linear algebra.) We will only introduce you to some elementary properties of
determinants now. While doing E4 you may have realised some of them. These
properties help us in evaluating a determinant in a shorter time. Let us see what tliey are.

Theorem 1 : Let A be a square matrix.. Then | A 1 satisfies the following propertics.
P1: If all the elements of dny row or column of A arc zero, then { A | = 0.

P2: If B is the matrix obtained from A by interchanging any two rows (or any two
columns). then IB| =—] A |.

P3: I B is the matrix obtained from A by multiplying all the elements of a row (or all
the elements of a column) of A by a number ¢, then | B[ =c| A |.

P4: If B is the matrix obtained from A by adding the multiple of a row to another row
(or the multiple of a column to another column), then [ B | =] A |.

PS5 If lwo‘ rows (or two columns) of A are equal, then | A | = 0.

We shall not prove these properties here. If you are interested in the proofs, you can
study Block 3 of our next levé! course on linear algebra. In this course we shall only see
how to apply these properties, Let us first verify them in some cases,

lfA=[ (‘) 3] then ] A | = 1x0-2x0= 0 (an example of P1).

If A =[ __g _ g ]and B =\[ (5} ‘ _g :| that is, B is obtained by interchanging the

Cramer’s Rule

A mulliple of 2 row (orof a
column) by 2 non-zero number % is
the'row {or calumn) ablnined by

riwiiipiyiilg cach of s enmies by k, -

) -21_ :
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columns of A, then | Al=15and I B =-15=-[ A | (an example of P2).
If A =[ é _ _é ] and B is obtained by multiplying the second row of A by 5, that is,

B=[ lé 5(]}j]-'hc“|A|=Ba“d|B|=40=5IAI(anexamplcof'PB}_

Now, let us take an example which satisfies the hypothesis of P4. Let A =[ _; j ]

and B = _; _? ] Can you make out if B is reliwed "o A in any manner suggested in

P4? How have we got B? We multiplied the elements in the second row of A by (-1)
and added them to the comresponding elements in the first row, that is, we subtracted the
second row of A from the first row,

Tus, B =[ DD 2D 1)]

Now, |[Al=(M&D-@) 3 =5and |B|=5=1A i- So P4 seems 10 work in this
CUSE.

Now, suppose we .ldd 3 times the first column of A 10 the second column, We get the
matrix
C= 1 243 _ [ 5
B3 (-D+E=n D T -3 -0 |
Then, | C | =| A |, verifying P4 again.

Now let us see if P5 holds for a general 2 X 2 mamix salisfying the hypoLhcsis.‘One such
matrix is

b b
Then | A | = ab — ab = 0, verilying P5.

A=[a a}ibeR.

Now, let us try and obtain the determinant of the 3 x 3 matrix

3 -5 5
A= 2 1 -
3 9 -9

The third colurn is (~1) times 1he secend column, So let us add the sccond column to
the third column. By P4 we get

3 -5 0
A= 1 0 |=0 byPl
3 9 9 \

S0, you have scen some ways in which Pl — P5 can be used for caleulating
determinants, Why don’t you try this exercise now?

e ————

56} Using P1 to P5, evaluate the determinants of

b
O 0 {wherea,b,c d e fchR
c -
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0o 2 [
d D=0 6 3 :
(2 5 |
[a 2a 4 '
e) E=)b 2b e | whetea, b,c.d, e, fe R,
¢ 2 f
P -

As we said earlier, the importance of the properties P1 — P5 lies in their use for
decreasing the effort involved in computing a determinant. You must have realised this
while doing E6. Let us look at another example of (heir use. For our convenience we
will use R| to denote the ith row and C, to denote the ith column.

2 3 6 t
LetA={ 6 5 =5 | To evaluate 1A} by expanding along any row or column will
1 3

require us to evaluate 3 determinants of order 2. But, if we usc P4, we can mutpy R,
by (-2) and add it to R, to get

0 i 0
B= 6 5 -5
] I 3

. T -
Now, R, has two zercs in it.-So wg can obtain | B I, whic is the same as |Al by

expanding along R,. This means that we only need .o evaluate ' B, |.
Thus, [A]=[B|= (-I).l. B = ~23. v

The following remark will be very useful to you for evaluating a determinant.

Remark 1: Whenever you have to compute the determinant of a matrix, it is best o
expand along the row or column with the maximum number of zeros. Therefore, one
should usc the property P4 so as to get as many zeros as possible in some row or column.

You may like to use the remark above to obtnin the following interesting results.

__ ]
a b ¢ p ) .
_ A and B ere the gener! forms of
E?) LetA=) 0 d ¢ jandB=| q s 0 —‘, 3%3 triangular inatrices over .
0 0 f T u
where a, b, ... S 1O « S ,ue R,
Show that

a)  |A| = adf, that is, the product of the elements lying on the principal diagonal

b} IB| = psu.
C is the general 3x3 dlogong)
a 0 0 matrlx over R,
E8} LetC=10 b 0O | wherea, b,ce R.
0 0 ¢

Show that {Cl = abc.

3 2 4 [
E®  Obtain 6 8 i
|9 "6 12|

E10) Show that the analogues of E7 and E8 are true for general 2 X 2 triangular and
diagonal matrices. :

I 0 O
Now consider1 = 0 I O [ Whatis|I|? We usc E§, and find | 1] =.1.
0

0 1 2
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2

And 1 #0. 8o | I|# 0. Because of this property of | [ |, | belongs to the class of
matrices that we will now define.

Definition: A square matrix A is called non-singular if | A | # 0. Otherwise A is called
singulor,

.

' L ; N
You can check that some more examples of non-singular matrices are [5],

2 2 0]

[é ?][2 ? ]and o 1 1 :and[g :]isancxamplcofa
- 0 0 3

singular matrix. '

‘Why don't you try some exercises|now?

i

El1} Which of 1he fotlowing matrices are non-singular? Give reasons for your choice.

I i 6
S N P V5
1 o"|o of B IR B A A B
1T 0 0 5
b a b ¢ .
El12) Whena:c[a].[z d] and d ¢ d |singular? Herea, b, ¢, d,e.f,ge R.
. f g f

Non-singular matrices form an imporant part of matrix theory. In the next section we
shall inl;oduce you to a rule for solving any system of linear equations whose coefficient
malrix is non-singular.

5.4 CRAMER’S RULE

In 1750 the German mathematician Gabriel Cramer-published a rule for solving a set of
n linear equations in n unknowns simulitaneously. Though this rule is named after
Cramer, it seems to have been discovered by the British mathermatician Colin Maclaurin
twenty years earlier,

Let us sec what this rule is.

Consider the general system of 2 equations in 2 unknowns:
ax+by+c=0
dx +ey + =0,

where ae ~ db # 0.

Then, if you usc the substitution method, what solution do you get? We get

xzbf—cc _cd—af :
ac—db' ¥ ac—db o

Notice that this is the same as

c b 2 -cl

ERIN

5 a b/l = 1a b "
d.e’ Id €

But how did we get x and y in the determinant.form? Whar we did was to first write the
system of equations as -

aX+by=-c¢

dx + ey =—f, ¢

that i'é. AX = B, where A is the coefficient malrix[ ; : ]. X'i's|:‘ ; ] and B is the

i 3
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matrixr of constant ten-ns,[ ¢

L

Then e calculated D = | A |, which is given to be non-zero, After that we calculated
Dy, the determinant of the matrix obtained from A by replacing the first column by B;

thus, D) = I :‘;. b . Similla.rly. we calculated D,, the determinant of the matrix
obtained from A by replacing the second column by B; thus, D, = ?g __(; . Then

D _D |
x="p and y="=

Cranter extended this result to a system of n linear equations in n unknowns,
Let us consider his general rule,

Cramer's Rule: Consider the following linear system of n equations in n unknowns :

a||xl+_aux2+ ....... +a|n xn=b|
5121 xl + ﬂzz xz AT ﬂzn xn - bz

Ay Xy + Ay Xyt X, = by
that is. AX = B. where

o) -

For i=1,.....n, define A; to be the matrix obtained from A after substituting T for the ith

column of A. .
Define D; = | A; | Vi =l.........n, and

D=|A]|

Then, if D # 0, the system has the unique solution

. D D, D,

X =D = D e Xa = o

Does all this scem too much to take in? Don’t worry. In this course we shall only be
applying the rule forn = 2 or 3. :

Just remember that

Cramer’s rule can only be applied if
1) the number of equations in the lincar system equals the number of variables; and

ii} the dererminant of the coefficicnt matrix is non-zoro.

Let us apply Cramer’s rulc in an example. Consider the system

2x— 3Jy+z=1
Ay +2=2
Ix=-42-17=0

We first rewrite the system as ) .

2x -3y +z =1}
X+ y +2z =2 - : : ,
3x-0y-4z=17. - - 5
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This is of the form AX = B, where

2. 3 ! 1
A= 1 l I and B=} 2

"3 0 -4 17

Now let us first see whether |A| = 0 or not. Let us expand along the third row. We ‘get

‘D=|A|=3 _:1"\ i —4| 2 =-32%0,
"So we can go ahead and apply Cramer’s rule. For this we evaluate ~
1 -3 i
117 0o 4
2 1 [
D,={1 2 1| ==-32
3 7 A4
7 3 1|
PJ = ] I 2 = -6‘4
] 0 17
D, D, D,
Then x—-5—3 ye—"=1, z= D =-2

On verifying, wr:.1 'ﬁnd that (3, 1, =2) is indeed the solution of the given system.

You may like to try your hand at applying Crame:'s rule now.

£13) Solve the following systems by Cramer’s ruiz, if applicable. Otherwise use the
SJruss un elimination methed (sce Sec. 4.4).

a) x+y+1=0 L
W~ =T,

b) x+'y—z+2=0_
2X—~y+z+5=0
Xx—2y+32-4=0.

c) 3x+5y+2z=1
dx+y-7=0
Ox + 15y + 62 = 3.

El4) Censider the n xn linecr system
2, lx’.+ ARy Ftil X, = 0
a X+ anz 2 Fov 42, % =0

If A is the coefficient mmirix and | A = 0, can we apply Cramer's rule to solve
the system? If so, obtain the s»liion set.

53 1 have Rs. 2480/~ in five, wen and -wenty rupee noles. The total number of notes is
290 and all the ten rupee notes add 1p to Rs. 60/~ more than the sum of the 1\w,nl)'
rupee notes, How many of cach type of nole do I have?

In this unit and the previous one we have discussed three methods for solving linear
systems. The examples and exercises we did involved a maximum of 3 equaticns and i
maximum of four uiknowns. Bui, in practical applications in the sciences and social
sciences, one needs to solve very large systems. These may consist of 15, 20 or more
€quations in as many or morc variables, As you may have gucsscd these systems require
computers for solving them. Then the: best method 10 apply- is the Gaussian elimination
method. We have discussed this method as well as Cramer's rule in grealer detail in our

. course en linear algebra.



Now why don’t you try solving the following exercise by any of the three methods we . Cramer’s Rule
have covered in this unit and the previous one? ' .

M ]

E16) Which of the following lincar sys'lems are consistera? Obtain tne solution sets,
wherever possible. ’

a) 2x-3y +7z =6 .
x—3y+4z =3
3-8y + llz=11

b) 2x—y + 3z— Sw=-7
=Ty + 3z - Tw=-13
Ix+dy +2z= 0.

¢) x-y+z =0
“Ix+y-4z=10
Tx-3y-9%2=10
4x -2y -5z = 0.
d) x-2y+2z2 = 6
X+y— 4z = -7
5x-3y+2z = 3.

Lel us now summarise the contents of this unit.

55 SUMMARY

In this unit we

I} definedanmxn matrix, and a square matrix, in particular.

2)  introduced you to the concept of a determinant of a square matrix.
3)  discussed some properties of determinants.

4)  used the definition and propertics of determinants to evaluate determinants of
orders 1,2 and 3.

5)  defined a non-singular matrix.

6) applied Cramer's rule for solving a lincar system of cquations whose coefficient
matrix is non-singulas '

With this unit we finish our discussion on simultaneous lincar equations, In the next unit
we shall look at some commonly used inequalities. But before going to Unit €, please go
back to the objectives given in Sec. 5.1 and check if you have achieved them. You may
also like to go through the next section, in which we have given our solutions to the
exercises in the unit. This may be useful to you for counterchecking your solutions.

5.6 SOLUTIONS/ANSWERS B

El) Theirordersare 3x3, [ x1,3x3,3x1and X 3, respeciively.
The (2, 3th and (!, 1)th entres of the first natrix are 9 and 1.
The (. [)th entry of inie sccond onc 1s 5. It has no {2, 3xh caty.
The (2, 3)th and (1, 1)th entrics of the third one are 0 and 1.

The (1, 1)th entry of lhe fourth one is 4; it has no (2, 3)th entry.
The (1, 1)th entry of the fifth one is 2; it has no (2,3)th entry.

2 0
Only the first and third matrices have third columns, which are|” 9 |and| O &
respectively. . ' 8i 11 i

C27
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E3)y

Ed)

Ej)

.56)

E7)

28

E2) The required matrix will-be of the form

a 0 0 0
b ¢ 0 O f wherea, ..,fe R\{0}.
d e f 0 '
a3 5 2 . 55
) (l} ; g y | = Tg gives us the system in ES.
1 6 2 z 45

IO

b} The first two rows of bath the cocfficient matrices, as well as of the matrices
on the right hand sides, would be interchanged.

] pives vs the system in E6.

T I X0=(=1) (=1) = =1

b) Ix2-1x2=0

c) 0

d) —it=1

ﬁy expanding along the 3rd row, ﬁc gel

A= (—l)3+|-7-|A315+ CPRAJA e -1y 2, [Aash

2|2 67 |1 6 12
‘7‘4 1! 3|5 U172 s 4,
=_ 79,

By expanding along: the sccoad column, we get

1A= CDML2A |+ 240450 + 123 )A,
=~ 70,

a) 0 by Pl,
) . y

~I
]

.byP3

(LR XENY

b) IB| =3

=3.0, by P53

0.

) Cis obtpined from B above, by inlerchanging the first and third rows.
~|Cl=-1B|=0.

d} D =0uas in (b).

a a d
C)IEI=2 b .b ¢ |=0 byP3, .
c ¢ f

a) We expand along a row or column which has lhe maximum number of zeros.
So, expanding atong C), we get

d e

A= a A =a= 0 f

= adf.

b) IWc can expand along R, lo get

[ B|=psu.

Note that we would gct the same answer if we'd expanded along any olhE'r.row
or column. - - -



ER) Expand along R, to get | C | = abc. Cramer's Rule

i =2 4
E9) LetA=| 6 g I ) .
-9 6 12 !

We want'to make some entries zero. Looking at C,, you may have noliced that
replacing R, by R, + (=2) R and R4 by R, + 3R, will make the (2, I)th and -
(3. 1)th entries zero. Then, by P4 we get

3 =2 4
[Al=| 6+(=2)3 B+(=2)(=2) 1+(-2)4)
-9+3(3) 6+ 3(-2) 12 + 3(4) . °
3 2 4
=0 .12 -7
0 0 24

Now, by E7, | A | = 3x12x24 = 864,

Ei10) The general 2 x 2 real triangular matrix A = ; g orB= g b

b. c € R. In both cases their determinant is ag, the product of the diagonal

, where 1,

elements. The general 2 X 2 real diagonal matrix is C =[ S g J» where . b e R.

The diagonal clements of an nx n

| C | = ab, the product of the diagonal clements. matrix are iIs i, i) th cniries ¥
i=1..., 1.
Elty | 0 ; I L
) | l é | = —1; hence, the first matrix is non-singular.
(157 . e et \
0o o |'® singular, since s daizrminant is zero.
| (3] | == 3 #0; thus, [-3] is non-singu'r,
[ 13 .
2 ! {isnot a square matrix, and ronce -~ 't be non-sinpular, Note that it is
-4 9 '

not singular either, since a singular matrix has to be savare 100, -
The last matrix has zero determinent, and hence 15 singuiar,

E12) [a] is singular iff a = 0.

-

[ 2 (h] ] is singular iff ud —be = 0.

o

Il

a c - ) )
d e d |=(a-c)f-dg). Thisis zero iff a = c or ef = dg. That is,
f f

ir ]

the given matrix is singular iff a = ¢ or[ ; C:_ ] is singular.

ElZya) x+y =-1

2e-y =17

islhesameas[l t'-l |- xi\=[ _.‘, ]
pa -—IJL}' 7

Since D = I é _: l = -3 # 0, Cramer's rule can be applied.

Now.D.:l _.:, | | =—6 and
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Then x 221 D2
Thc?x— D =2 and y= D= 3.
Thus, the solution is (2, --3).

b) The given system ix equivalent to

1 1 - X -2
2 =] ! y| = —-5
Po=2 z 4
! | B
NowD=| 2 -l 1 [ ==3#0. So we can apply Cramer’s rule. We
I -2 3 )
ca!culgfe
2 1 -
Di=| -5 - 1| =7,
4 -2 3 ‘
1T =2 -
D=2 -5 | =-22,
1 4 3
1 1 2
Da=f2 -1 .5]=-=21
1 -2 4
7 22

Therefore, X = —'3. y==z=.

¢) THe sygi(em is equivalent ‘o

3 / 5 2 x ! { 1]

4 I 0 y =

9 15 6)[2, |3,
Note that the 3rd row of the coefficient matrix.is 3 times the §st row. Thus, its
determinant is zero, So we can't apply Cramer's rule. Let us solv> the system
by successive elimination.

The system is

Ix+ Sy+2z=1| . vererenn(3)
dx+ y =7 i 4)
9% + 15y +6z=3 ) R 4. )

Note that (5) is cquivalent to (3). So we can drop (5). Now let us eliminate y

“"from (3) and (4). For this we calculate’(3) -5 x (4), which is

=M+ 2z2=-34 ' T ()

[
. oo

~Now. we can’t climinate any furiher, hetween (2}, {4) and (£)
and (5} to write v and z in terms of x.

Tak avm =aoa fdr
vk WO W ey

4y =y = 7 - 4x, and

(O =z=x 7,

Thus, we get a 1-parameter set of infinitely many solutions,

17 a0 .
{(x.7—4x.7 ol ¥ L RJl.

El14). Since JA] = 0, we can apply Cramer’s rule. Now, to apply this rule, w2 calculate D,



0 Cramer's Rule

for i=1, ......., n by substituting the ith column with the constant column

\ 0
Thus, each D, = 0, by P of Theorem 1. .
Thus, x, =0 Vi = Lot
The solution (0, 0. ......., 0) is called the trivial solution.

E15) Let x, y, z denote the number of fivz, ten and twenty. notes, respeclively. Then we
know that '

5x + 10y + 20z = ?430

X+y+z=2%

10y — 20z = 60

We cen solve this by Cramer's rule to get
x=164,y = 86,z = 40.

E16) a) This is a 3 X 3 system. First let us see if we can apply Cramer's rule, Since the
determinant of the coefficient matrix is zero, we can't apply Cramer’s'rule, .,

- So let us try to solve it by elimination.
Adding the first two equations, we gt
Ix-8v+1lz=09,

Subtracting this from the third equation in the."sy:tem. we get 0 = 2, a false
statement.

Thus the system is inconsistent,

b) The given system is _

2x -y +3z-S5w=-7 )
~ Ty +3z2-Tw =~13 C Cenl(8)
3x +4y + 22 =0 )}

“We shall try and solve by elimination,

To eliminate w from (7) and (8). we calculate 7 X (7) - 5 X (8)

We get

Lld4x + 2By + 6z = 16, hat is,

Tx + 14y +3z2=8 : )]
Elimi.nL'.'ing z from (9) and (10), we get

5% + 16y = 16 o E 1)

Now, we can’t climinate any further. So we shall try and obtain all the
variables in terms of the minimum number of varisbles possible.

(Y= x =—I5g (1-y).

Then (9):5.%(1-;«)«»45« +'2z=o==z=ﬁ,-'¢5ﬁ.' _ | Al



Equatlons and Incqualities “Then (8) = ~7y +%(I4y - 24) 7w = —13 =>4 =_5I_(y_”.

1

Thus, we get a l-parameter set of solutions, namely,

41601 - 14y — 24 -1
{( (5 Ny ys .ys ]IYGR}-

To check that these are the. solutions, we substitute the 4-tuple

—Igﬁ—(l -y v —;—(My —24), -SL(y— 1) [in each of the equations of the

system and find that it satisfies them.

¢) Since the system is a 4x3 system, we shall apply the Gaussian elimination

method. .

X—-y + z=0 -+ - - — )
~3x+y~ 4z=0 ) : cnepana( 133
x-3y-92=0 (14)
4x— 2% -52=0 e
3x{l2)+(|3}=:v-2y—z=0=‘.»‘2y+z=0 ........ (16)

IO - (M) > -4y +162=0=y-d4z=0 ... n

4x(16)+ (1Ty=> y=0.
Then {1 =z =0.
Then (I12) = x = 0.

Wdcheck that (0, 7, 0) satisfies all the equations. Thus the system only has the '
- irivial s .ifen, : - ‘

J) §° =€ the determinant of “y= coefficient matrix is non-zcro, we can apply
" Cra..er’s rule as well as tte elimination method. Let us apply Cramer's rule.
Fcr this we calculate

P-2 1
D=|3 1 -4 = 25,
5 -3 2
6 =2 1
D1= -7 l —4 :_321
5 3 2
_ | 6 |
D=3 -7 4| =-100,
5 5 2 )
1 =2 4]
Dy=¢ 3 I -7(=0
5 =3 5
IB 00 e unite somtion i [ =B =25
X= TR A >3 » z=0, that is, the unique solution r:,[ 77 .0}
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6.1 INTRODUCTION

-

So far we have discussed equations of various kinds. Now we shali consider some
inequalities; not of the social kind, but between real numbers. A raathematical inequality
is 2 mathematical expression of the condition that of two quantities one is greater than,
greater than or equal to, less than or less than or equal to the other. An inequality that
holds for every real number is called an absolite inequality. In this unit we shall restrict
ourselves to such inequalities. '

We will discuss six famous absolu’e inequalities. We have divided them into two
sections ~—those that have been used for centuries and those that were discovered by
some famous nincteenth century European mathematicians. These inequalities have
several applications also. We will discuss a few of them. You may come across seme
applications in other courses too, at which time we hope that you will find that you
didn’t sludy this unit in viin!

Let u [ist our unit objectives now.
Objectives
After reading this unit you should be able to prove wr.¢ apply

s the incquality of the meuns:

o the triangle inequality;

o the Cauchy-Schwarz (Bunyukovskii) incqu--.li.:y;
o Weierstrass' inequalities;

o Tchebychev's incalzu;litics.

Let us discuss the incqualities onc by one.

6.2 INEQUALITIES KNOWN TO THE ANCIENTS

[n this scction we shall discuss two inequalities handed down to us by ancient -
mathematicians. But finst we will give a list of some properiies of inequaiitics you must
be fumiliar with, They are the following:

fora,b,c,de R

) a2b,c20=ac2be

33
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- Thus, the HM of x,, xa.......

ii)azbe-—a<-b

i) 'a 2 b ‘I":ITS% provided a 2 0, b 3 0.

iv) a2b.c2d=>a+c_ab+d
V) @ 2ba20=a>b wherene N

We will often use these properties implicitly while proving the inequalities mentioned in
the unit objectives.

Now let us discuss the inequality that relates three averages. .

- 6.2.1 Inequality of the Means

An important part of arithmetic that can be traced back to the Babylonians and )
Pythagoreans {(approximately 6th century B.C.) is the theory of means gr averages. The |
word *‘average™ comes from the Latin word **huvaria™, which was the insurance paid o
-compensate for damage 0 goods in transit in the olden days. All of us are famitiar with
the term ““average™. In fact, all of us must have often caleulated the average of a finite
set of numbers by adding them up and dividing the sum by (he total number of these
r.imbers. But this is-only one of many types of averuges. We will discuss three of these
types here. Let us start with the *‘usual’ average.

Definition: Ti> arithmetic mean (AM) of n real numbers Xp v X9 wvrernanny X, 18

. n :
Xy F Xt e + X o
= . =, lh:.ll’ls.:_l- in . . ;

+0

=

L

18’

[7L] [y .

For exumple, the AM of—;-. -_3—lund 0 is

The AM is often used in statistics for studying data.

Anather type of average is the geometric mean. This is the best mean to use if we want
lo find the mean of any finite set of positive numbers that follow geometric progression,
Thus, this mean is very uselul for studying populat‘on growth. Let us see how the
geometric mean is defined.

Definition: The geometric mean (GM) of n positive reat numbers

> ST C TR SOl 1

!

n _—
(%, x %)Y that is H x |
| AZrerian,. n N i, i -

or example, the GM of 3 and 4 is V3% 4 =12, and the GM of 24 and & is
2 x4 %8 =y

Yet another kind ofaverage of numbers is their harmonic mean, which we now define.

Definition: The harmonic mean (HM) of n non-zero real numbers

cernimnany Xy 18 1he inverse of the AM of—l,-l—

-

X" Xy X,
* For example, the HM of - 2, %und 7 is —I—‘;— = i_:-g— .
i --5+3+; :



A

“The HM is the most appropriate 1ype of average to use when we want to find the Inequalltles ,
. average rate of a set of varying rates, Thus, it is the best average to use for obtaining the
average velocity of a vehicle covering various distances at different speeds.

At this point we would like to make a remark.

Note: We can obtain the AM of any n real numbers. But, we only define the GM of n
positive real numbers; and the HM of n non-zero real numbers.

Now let us took at the three different means together. To do so, we clearly nced to :
restrict ourselves to positive real numbers, What is the AM of 2, 4 and 87 How is it

related to their GM? And, how is their GM related 1o their HM? The following result
answers these questions.

Theorem 1: Let [x|. Xy......%,} be any finite set of positive real numbers, and let A, G
and H denote their arithmetic, geometric and harmonic means, respectively, Then

AzG=z2H, ' This proof is due to Cauchy, whe
- you will meet ogoin in Sec, 6.3.

We will only give a broad outline of 1he proof here. The inequality A 2 G is first proved
by induction (see Unit 2) for all those integers n that are powers of two. That is,

Xp+Xa+...4+xm
211'[

2xp%2....xoM2 ™ me N cerrmenenee 1)

and equality holds iff x| =x,=.....= xom,
Now, given any n & N, we can always choose r € N such that 27 > n.

We apply (1) to the 2" numbers x|, Xau.os X AseeA, Where the number of As is 27~ n
We get )

Xyt Xg+ ... +x, +A+A+.LLHA

n Z(X) Xy e X AL A)Tr

(with equality iff x|= x,=._.=x = A)

r _ _ n
:L%—M 2 (F?" Al 2 7 since. x;=nA.
- 1=
= AE' =" AZ'—HI
= A2 G"
= A 2 G, since A and G are positive real numbers.
Note that A=G iff x|= x,=...=x,,.

Thus, the result is true ¥V ne N.

. . 1 1 ]
Now let us consider the n positive numbers — , — , —

xl x: o xl'l-

Since dlicir AM v greater tan or equai w their G, we get

(1, AT AR AT
Ittt 2 . —
n{x, X2 an X Xy xn)
L

—_
“H G
= GzH

L1 —Llhatisxmx— Zx.
Sy = v N =Xy = = .
X, X1 X, s n . 35
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Thus, A 2 G 2 H, with équalily iff x;= xy= ....= x,,.

In about 320 ‘A.D. the geometer Pappus of Alexandria gave a geometric construction of
the AM, GM and HM of two numbers, His construction is as follows:

Draw a semicircle with a+b as diameter (see Fig.1). Let its diameter be AC. with
inid-peint O,

1C
b—

Fig. 1 : The AM, GM and HM of o and b are DO, DB and DE, respectively.

Then OA is the radius of the circle. Mark off the point B on AC such that AB=a. Then
BC=b. Draw BD L AC to meet the semicircle in D. Then draw BE 1L DO, as in Fig.1. -
Then Pappus proved that

DO is the AM of a and b,

D3 ix the GM of a and b,

"EistrrHM of aand b,

$...cc DO 2 DB 2 DE, this gives us a geomelric proof for Theorem 1. when n=2.

Now let us apply Theorem 1 1o prove some more incgualities.

n
n

—xample 1: Show that E i > n"(n)", where n! denoles factorial n and r > 0.

i=l

s

Solut’on: Let r be 1 fixed pasitive real number. Consider the n positive numbers 1°.

2 . By Theoregn |

r r r
I +2 4., +n > (lr_zr__”"r)'fn=(n !}r)lfn.

Since the numbers 17, 2', ........ , 0" are not equal, their AM is strictly geeater than their GM. Thus
|

" 1}

= [Z i’] > n(nl)’
e ‘

We cun prove several incqualitics, which are particulacly wsetu! in muthematics. by using

Theorem 1. We ask yeu 10 prove somc of them in ihe lolivwing cxercises.

E 1) Show thut (ib+xy) (ax+by) 2 4ubxy, where a,b,x.y are positive real numbers.
Under what conditions on a.b.x and ¥ would the equality hold?

E 2) Foranyne N and positive real numbers x and y. sHow that

il)l (xy‘")”‘“ 's &TDL

n+1'



m n
c) [I +—l-] < [1 '+—I-].'where m € N such that m < n.
m n+l .

E 3} Is Theorem | true if we remove the condition that the numbers are positive? Why?

Now, you know that the inequalities in Theorem | become equalities when
X|= Xs= ....= X,. When this happens, then x; =A = G = H V i=I......n. Thus, we see that

if X(u %20+ ... « Xp OT¢ N positive real numbers such that x; +xa+.. ... +Xp i% @ constant,
then their arithmetic mean atigins its lowest value and their geometric mean attains its

maximum value when x;=x3=.....2x,=A=G

Let us sce how to use this fact for oblaining some maximum and minimum values. For
convenience, we shall dencte the set of positive real numbers by R™,

Example 2: Find the greatest value of xyz, where x, y, z € R* are subject to the
condition yz+zx+xy=12.

Solution: xyz has greatest velue when (xyz)'“' = (yz) (zx) (xy) has greatest value. Since
yz+2zX+Xy is a constant, we know that the maximum value of (yz) (zx) (xy) is attained
when yz = zx = xy. that is, when x = y = 2.

Then, yz +2x + xy=I2 =2 x=y=z=2,
Hence. the maximum value of xyz is 2° = 8.

Example 3: If the sum of the sides of a triangle is the constant 25, prove that the arca is
greatest when the trigngle is equilateral,

Solution: Let a, b, ¢ be the sides of the trianglc.-&ﬁcr&_
a+b+c = 2s,

and let A denote the area of the triangle.

Then A = ¥s (s-a) (s—b) (5—<).

So, A will be greatest when (.":uu) (s-b) {s=¢) ix maximum,

Now (s—a) + (s-b) + (s¢) =&, a constant,

Thus, (s—a) (s—b} {(s—c) is maximum when

Sa=s-b=s<c thatis,a=b=c.

Thus. the area is maximum +hen the triangle is an equilateral triangle.

Why don’t you try these exercises now?

e P . 2, PP w—
EA) al Prove that if the sum of twp positive numbers {5 given, their product is greatest
when they are cqual.

o) s (a) Irue if e :rords 'surn' and ‘produci’ are inicrchanged? Why?

~ E5) Find the grealem val 1e of (5+x)° (S—x)“ for ~Sex<$, .
(Hint : The greutest value of (5+x) (S-x) occurs when the greatest value of

5+x S—x] -
( 3 J ( yl occfurs)

/

Inequallties
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Eqguatlons and Inequalitics E6) When does a cubeid, with dimensions x,y and z such that x+y+z is fixed, have
maximum volume?

E7) Under what conditions on the dimensions, wili a cuboid with fixed volume have
minimal surface arca?
(Hint: Use the inequality G = H.)

You can study other techniques for obtaining maximum values in our.course on calculus.
Let us now congider another inequality, which follows from Theorem |

Theorem 2: If x,........, x, € R* such that not all of them are equal. and m € Q. m = 0,

m # 1, then
m
YRR i =Xy P T et b S R
< Lif0<m<], and
n n
11
A+ KT+ e X X+ XaF vt X, )
Jifme<QOorm > |
] n

The proofl of this result uses Theorem 1. We shal! not give it here.

A result lhqt follows from Theorem 2 (and Thearem 1) is that

fx +xa+..... + X, =c, & conslant, then

x is n!=MeM  and

for0 <m < | the maximum value of
i=1

L pe 2

n
form <0 or m > | the minimum value of £ xMisnf~Mc™,
- Ci=l
These values are attained when x| =x,=.:..,=x,

Again, we shall not prove this result in this course. But let us consider an example of ils
use for finding some maximum and minimum values.
Fs

. . Sl
Example 4; Find the leasl vajue of—+;+:~. where x. y, 72 &€ R* and x+y+z = 27
X Z

. 1 1 1. .
Solution: —x-+;+z is of the form x"™+y"+z™, where m = -1 < 0. Since x+y+z = 27, the

least value is oblained when xey=z,

- And then x+y+2=27 gives us xsy=z = 0.
Thus, the minimum value (.f-’-+-]—+l—. i —t—l==—
- Xy z

Note that we coutd have also obta'ned the answer by applying the incquatity G 2 H (of
Theorem 1), exacily on the lines of the solution of E7.

Now for some excrciscs.

EB)y Show thint the sum of the mih powers of the first n even numbers is greater {han
an+D™ i m o> .

E9) Show that Y1 +¥2 +.......... +\‘F<nf\/%.whcrcne N.

E10) Let aj, a,, ........, a, € R* and p.g € N such that p > q. Show that
' af + s al < np,'q(:ﬂl’ + b 4. ah)

‘ (Hint: Put m = _—_pﬂ x; =-af in Theorem 2.)

38 .
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So far we have discussed various inequalities related to the arithmetic, geometric and Inequaliiles
harmonic means, Now let us consider an inequality that had its origin in ancient Greek
geomelry.

6.2.2 Triangle Inequality

If you look up any translation of the ancient Greek mathematician Euclid’s “Elements™
you will find that Proposition 20 of Book | says:

“In any triangle, two sides taken together in any manner are greater than the remaining

onc.

This result is the basis of the triangle incquality, which is a statement about the absolute
value of numbers.

Recall thal the absolute value of x € R 15 deflined by
Ixl=x,ifx2 0
- x,if x <0,
Thus it satisfies the following propenties
D) l=]-x1¥xe Rund
i) x=xlvxeR

You can study the absolute value of real numbers in more detiil in our course on
calculus. )

Now lat us state the triangle incquality.
Theorf;m 3: Let x, Xa, %, € R. Then

[X| % Xa FreerernnntXg] S X )|+ Xl Feriomrennt [k

Moreover, equality holds only when all the non-zero x; s have the same sign.
Proof: Let us prove the result for n=2 first.

Now
2 2 2_ 2
(|>cI + X4 ) = (% + x2) since xP=x" ¥ x e R
= K?+2x‘ x:)' + !% - r )
< (%242 |x)} |xa] + |x4f* since x £ )x| ¥ x € R,
= (Jx,] + [xal .

Now we lake the square root on both sides. kecping in mind tat [x| 20V x € R. W»
get -

| x;4%5 | $1 % |+ % |, which is what we wanted to prove.

Note that if x, < 0, say X, = — 3, and x; > 0 say %, = b, where a, " > 0. then
| x,#x5 | = | b—a |, while | x; [ + | x5 1 = a+b. Thus, when x; and x, have opposite signs

Jx +xg} < [xy] + [Xgh
So, Theorem 3 is ttue Jorn = 2,

Now, vt us prove the resuli for the general case, Yy iaduction. So let n > 2 and assume
that Theorem 3 is true for any n-1 numbers. Now c01.27~

gt S NN TE > PC N— 3 L
= Ix!+XZ+...'........+xn_'|| + 1xnl
< |x;] + Xl Feevererrnmeennt [Xntl + [Xgs SinCE the result is true for n-1
numbers. - -

Thus, [X|+Xg*eeeereceretXg] S [X)] # [Xg| Foecerrwent 1| ¥ M€ N 29
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Fig. 2 : Cauchy (1785-1857)

When = chi¥i=1,..,n \

whees ¢ is 2 consuiat, we say thai
l}wn-tuplcs{ai -vv oy ap) and
(by....,b,) are proportlonal,

40

-1 ; .
Further, just as we have shown for the case n = 2, strict inequality holds if all the
non-zere x; s don't have the same sign.

Theorem 3 is not only true for real numbers. In our course on linear algebra we have
proved that if z), 2;, ...z, € C, then | 2+ Zptuennt2, | < [2y] + |2)] Fueernnnt 2],

where 2] is the modulus of z.

Let us verify Theor‘cm 3 for the numbers -2, 1, 5, 0.
Since | ~2+1+5+0] = |4] = 4, and

| =20+ [1] + 151 + [0] = 2414540 = 8,

we find that strict inequality in Theorem 3 is true in this case. Note that =2 and | have
oppasile signs. '

Why don’t you try some exercises now?

Ell) The absolute value of the AM of n numbers is less than or equal to the AM of
their absolute values. True or false? Why?

El2) Prove or disprove that
Ix=y| < |xj-Jy| V x, y € R.

{To disprove a statement means to show that it is false. See the appendix of Block
1)

E13} Prove or disprove that
|x=yl =} —y| | ¥ x, y € R. _
“  (Hint; Write |x| = J(x~y)+y|, and also use the fact that Xl=[-x]¥xeR)
. - -m

Now let us discuss some “newer” inequalities.

6.3 LESS ANCIENT INEQUALJITIES

¥a this section we.shall discuss four important inequalitics which are due to some
mazhematica! giants of the nineteenth century. We start with an incquality duc to three
mathematictans.

6.3.1 Cauchy - Schwarz Inequality

Augustih - Louis Cauchy, the famous French mathematician, was respensible for
developments in infinite series, function theory, differential equations, determinants,

»  probability and several other areas of mathematics. One of his contributions was a resuit,

which was later generalised by the German mathematician H.A, Schwarz (184% -1921).

' We now state this resuit, which was also proved independently by the Russiar!'

mathématician Bunyakovskii.
Theorem 4 ; (Cauchy-Schwarz Inequality) : Let a,. a,, ......, 4, b by by & R

Then

@byrabyievab)? S af + o .k ad) (b7 + B3+t B

with cquality iff a =cb; ¥ i.= 1,.., n, where ¢ is a fixed real number. !

Proof: To help you understand the proof we shall prove it for n=3 first. Then you can
iry and generalise it (see E14),



Now
(a} +af+ad) (bF+b}+b2) — (a; b, +a, by + 23 By)?
= (aj b3 +abj — 2a;2,b, by) + (a3 b2 + a? b — 222 by by) +(a2 b? + a2 b

- 23 b))

=(2) by ~ agby)? + (agby — by’ + (agb; —a,by)

e 0.

When will the equality sign hold? Equality holds iff a;by — a,b; = 0, ~,b; — ayby = 0 and
ab)—a;by = 0, that is, a,=cb,, a;=cb,, ay=cby, for a fixed real number c.

Thus, we have proved the result for n=3.

Now, to complete the proof of Theorem 4, why don't you try this exercise?

L T T
E14) Prove Theorem 4 for any n € N.

Let us consider an application of Theorem 4 for locating tae roots of a polynomial,
Before going further, you may like to keep Unit 3 nearby for easy reference,

Theorem 5: If all the roots of the real polynomial equation a
. ‘ —~a -
x"+a; X +a, X" M.+, = 0 are real, then they lic betwe>1 nl ._"'_nl al- (2—"1J a.
n—1 | %
and —4 + n-| ag _ —2.1_". a, . ' "l .
n n '\f 17 n-1

Proof’; From Theorem 1 of Unit 3, you know that the give equation hzs n roots, Let x
be a root. If x),.....x, | are the other rdots, then by Theorer_4 of Unit 3,
1

X+x |+.....+xn_.| = -4,

2 2
= (a, +x) = (x|+ ....... +xn_1) SO 51D (xf+ ..... +xﬁ_1}, by Theorem 4.

L(n—l) (imcs-i '

oo+ xS (-1 (a2~ 20~ xy) T g

= nx%+2a,x{(n-2)al + 28, (n~ 1) <0

-- et [ (2—.}4] - ER N [%T}zj]s 0

by the quadratic formula.

This holds for all % such that

n n n n~l

-a, -y | i\ -8, g1 | 2
] ot 2 =11 H g 2 =
A~ —— h, Sx<—+—  faj— |— |8
A (n—! Fz n ! L 2
I - - . . - -
Thus, any root of the given polypomial cquation must lie between ihe bounds given hr
the statement of the theorem.

Before giving an example of the use of Theorem 5, we shall make-some related
observations. ' :

Remark §: Consider the polynomial equution ag+a, x-+a,x%+...48,x™ = 0, where .31'.5 zZ

Inequafites
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V i=0, ..., n, and a, # 0.-

Then any rational root of this equation is of the form —:3:, where d is a factor of a,.

Remark 2: For cubic cases, we know from the discriminant (Sec. 3.3.2) when the TOOtS
are all real. And then Theorem 5 can be very useful, especially if we know that the tools
are rational,

Let us now consider an example of the use of Theorem 5.
Example 5.; Solve x*-23x%+167x-385 = 0.

Solution: The discriminant of this equation (sce Secc, 3.3.2) is positive. Hence the given
equation has three distinct real rpots. If the roots are rational they must be integral
factors of — 385. Thus, they must belong to the set’
[£1, &5, £7, 211 435, 455, £77, +385).

23

But, by Théorem 5 the roots mus* i’ between -23—3—%\’7 and T+§-\f7_ Thus, if they

are rational, they can ox’y be 5,7, 11. Qn substituting these values in the cquation, we
find that they are indeed /ots of the given equation. Also, you know that the equation
can only have 3 roots. Hence, these valves are the only roots.

You may now like to try 1o apply Theorem 5 youwrself.

1

E15) Solve x*2x"—x+42 = 0.

Now let us consider another example of Ji¢ nse of Thearem 4. In this example, we shall
=oply dhe Cauchy-Schwarz inequalily wice (o gel an incquality thar we want.

Example6: Let x, y, z € R* such that x?+y*+2% = 27, Show that
vz 2 81,

Solution: Let us first apply Theorem 4 fo the two triples of real pumbers, (x?, y¥2. 232
and (x*?, y'2 217 we get

(7 x Py g\ VN2 ¢ (34t (x+y+z), that is
Py 2 € DY) KAV e, (2)

Now let us apply the Cauchy-Schwarz inequality to the triples
(x, y,2) and (1, I, 1). We pet
(xI+ylezl) € (x3+y3+:? ) (14 2% 1%, that is
(x+y+z) < 3 (xP+y%42?)
=81
= x+ty+z £ 90
Thus, by (2)
(ry?z? )2 £ 9 (Fyerd)

But x™+y?+z? = 27, Thus,

a72
(x3+y3+23} = '{ﬁ', lhal is,

9
x+y>+2 2 8.

Why don't you trv some exercis's jow?

m

E16).1f a, b, x, y € R such that a%+b? = { and x2.+_\,'2 = 1,'then prove that ax+by < 1.

EI7) Prove that if a,,.....a & R*, then



! | - Inequalitles
a) (a+azrt.......+a,) [a—+a—+; ..... +"-:| 2nd | y
1

E18) (Another form of the triangle inequality) If a, b, x, y € R, then show that

V(a-b)? + (x—y)* < V2% + x2 + Vb2 + y2

(Hint: Write (a-b)2+(x—y)? = (a®+x?) + (bz+y2} ~2(ab+xy},'and then apply
Theorem 4 to (a, X) and (b, y).)|,

E19) If x, y, z € R* such that x3+y3+27 = 81, then prove that x+y+z < 9. -
E20) Prove or disprove the following generalisation of Theorem 4 :
b

Letpe N,p# 1, and Ay ey Ay B By b e R,

Then (a)b; + a,b, + oo + 2,0 P < @ +al 4 2Py (B +03+.... +bP)

The Cauchy—Schwarz incquality has several applications in physics and mathemarics,
especially in the context of inner product spaces,

Now let us consider another useful set of incgualities.

6.3.2 Weierstrass® Inequalities

It is generally thought that a good mathematician must have started serious mathematical
studies at an carly age. But the German- mathematician Weierstrass (1815-1897) is an ' "™ A
exception to this ryle. This ocutstanding mathematictan started serious mathematics at the
age of forty. He was r2sponsible for making analysis more rigorous, and is considered to Fig 3 : Karl Theodor Welerstrass
be the **father of modem analysis’. He is responsible for tke following resulr.

1
Theorem 6 (Weierstrass® Inequalities) : Let a;,ay,..., a, be positive real numbers less
than | and 5, = a; + a;+....+4,. Then

(|

(i) 1-s, < (1-a)) (! o (1= <

L)
n

145

)y 1+ 5, 2 (14a) (1427)... (140) < ﬁ, where it is assumed that 5, < 1.
i

Proof : We prove (i} by induction on n, a principle that we introdueed you to in Unil 2.

If n = I, then 5| = a; and hence, (I—sl)-r— (1-a)). . <
Also, since O<af<I,(1-a)(1+a) <1, thatis, (1-3,) < ﬁsl

So, (i) is true whenn = 1.

Let us assume thas (i) is true forn=m , where m € N.
We will see if it is also true for n = m+l. ’ .
Now Smpl = W T g = (al + o +am) + Ame = Smtdne

alse (1—a Y (I—oo) (-2 Y2 1- s | by cur assumption,
\ i 27 14 11 s

Thus, (1-a;) (I-a3) s (b=ay) (0= 2,) 2 (1=s) (1-a,,,}
= 1= (S + @y + S Ay
= I=Smut + 5m e
> 1—=8,, » since s, a5, > 0.

Se, (=)=, ) > 1 — 5, SCPRDIORNIRY () |
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Further, since (1-a;) (1-a,)..... (1) <

I+ by our assumption, and {I-a, < .

we find that

U=a)) (1-ap)..... ([-a,,,.) < (15, (H4amn)
I . i

l"'5111+I + SmOniet

I'*'Snwl (¢_)
(3) and (4), tuken together, tetl us that (i) is true for n = m+1. Hence, by iridu*.tinn. (i) is

true ¥ n e N. '

Now, to complete the proof you can try E21.

E21) Prove (ii) of Theoren 6.

E22) For 0 < a,, dgyeen, a_ < [, prove that
n n_
I—H uicn-—z it; .
i=l i=l -
- (Hint: 0 < 1=, <1 '

£3) Does Theofera 6 hold if 4 <0or a; >l forany i = i,....., n? Give reasons for your
answer, .
- ' " .-M
- f
When you study mathematical analysis, you will find that Weierstrass® inegualities and
their generalisations are very useful,

T,

&
el
Ay o

And finally, we shall discuss some inequalities due 10 a leading: Russian miathematician.

ATy ? 6.3.3 Tcﬁeﬁychev’s Inequalities

Tbe mathematician Pafnutii L.Tchebychev (prenounced Che-bee-cheff) is most known
for his tremendous work in analylic number theory - a4 the theary of orthogonal

Fig. 4 : Tchebychev (1821-1854) polynomials. Over here we shall prove and apply some inequalitics that are named afte.
o him,

Theorem 7. (Tcheb_ychev’s Inequalities) : If a,,...., 44 By vy by € R such that
DaSa<.Sa,,b Sbys..Sb, then

nab, + aby + ...+ ab) 2 (@ +a;+..+a) (b +b, + ... +b.).
iya,za 2.2, , b Sh<...5b, then
n{a,b, + a, bﬁ et BYS @ty kA b+ b+t 5.

Proof : Let us prove (i} for the case n = 3, so that you can understand the proof more
casily.

Since a; £ 2,and by $b, , we find that
(a1-a5) (by=by) 2 0. Therefore,
2iby + by 2 a1b, + ah, e (8)
Similarf)r(; we get
44 abs + ab; 2 ayby + 4, R 03 -



azby + a\b; 2 azby + ab, e €)) ) Inequalities
Adding (5), (6) and (7), we get |
2(a;b, + asb, + a3by) 2 3 (by + b,)- + a, (by + by) + a3 {bj+b,)
Now we add a,b, + a;b; + azb, to both sides and simplify 10 get
C3(@yby + apby + 336y 2 (a+aytay) (By + bk by).
The proof of (i) for any n € N is on exactly the same lines. Let us prove it by induction on n.
The result is true for n = 3 (and, in fact; for n = 1 and 2).
"Assume that it is true for n~t. Then
(-} ajby + o+ b ) 2@+ 4+ +a,_dbr+by+ .. +b, )
Also ab, + ab, 2 a,ﬁn + a,by, since (a-a,) (b-b,) 2 0.
Similarly as;b; +a b, = a;b, + a b,

3, by + ab, 22, b, + ab,
Adding up the left hand sides and the right hand sides of these n inequuli'i;:.u. we get
nlagby + .+ agby) ~ by 2 (@) F o Bug + 8 (B F e - by + ) —a b,
=n{ab + ... + ugb,) 2 (a) +o...il + 4 by + + b,

And now, to complele the proof of the theorem, try E24,

R

E24) Prcve (ii) of Theorem 7. ]
(Hint : Put x, = —a, Vi =, ... n, und use (i).)

Now let us consider an application of Tchebychev's inequalities.

Example 7 : Show that

VT +v2 4o, +vn <n ";l.

Solution : Put u; = b; = Vi V i = L....n in Theorem 7. Then we get
n(NTVT +¥2 V2 + L+ ¥ Vh) 2 (T + V2 ...+ V0 )% that s,

n(l + 2+ ... + R} 2 (¥1 +¥2 +...+Vn ). that is

n [—L“ n;'”] 2 (T +NZ 4 etV )2 since 3 i = nn;-! '

i=|

Taking the square root on both sides, we get

' V'I_+\fz_+....+\/;-5n\jn;].

Now you can try some exercises,

E25) Show that

7|n' ( #+\/é—_+...+_\/%_] s (2n- 1%, |

(Hint : First apply Tchebychev's inequality to the n-tuples 45
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A JE)

E26) If a,b.c € R*, then show that

[ WL 1 ] and [ I.. i i'and then apply it again 1o the n-tuples

a b- c 3
b+c c+a a+b 2

(Hint : See if it is possible to apply Theorem 7 10 b+c, c+a, a+b and their inverses.)

With this inequality we come to the end of this unit. This doesn’t mean that we've
exhausted all the incqualities, or even all the important oncs, We haveJusl exposed you
to a few elementary ones and some of their applications. As you study more mathematics
you, will come across these and several others,

Now let us quickly go through what we have covered in this unit.

6.4 SUMMARY

We have discassed several inequatitics and their applications in this unit, Let us list them
one by one,

1) The inzquality of the means: The AM. of -nv finite set of elements of R* is wealer
than or equal to their GM, which is greater then or equal to rhew-HM

2y If xl,......xn € R such that not all of them are equal , and m e Q, m# 0, 1, then

| { n 3 rl n " ) .
o § L Y § %.| i£0<m< 1, and X
- A
1 1 3 (l n ™. :
szrn > Fz X | ifm<0orm>l.
k|= ) k i=1l )

3)  The triangle inequality : For XXX € R
[X | #X gt S X x4t

The incquality is strict in case all the non-zero x;s don"t have the same sign.

4)  Cauchy-Schwarz (or Bunyakovskii) incquatity: If ajum. .a“,l:;!......l:»rl € R, then
2

Ty | 5| S| 2o

wiln equality iff (aje..n) and (bi..".,bn) arc proportional,

5 ' Weiersirass' ineq!.:alitics: For{ < ;N @, <1 and 8, = z a.

-8 sH (1-a)<

=1 /-

n
1+snSH(-l+ai)<l
il

(here s, <1 is assumedl).
n -



6) Tchebychev's inequalities: If (ajs.-a)(b).,b,) € R such that,
i) a1 £ S_.......'... < a, by .bz & ... Sby, then
n(aib+azbot.....+abs) 2 (aj+ast....+a,) (b1+ba+...+by);
ii) a-| £a; £..5 an.b12 ba2......2b,, then
n(a|bj+azbrt.......+3,bn) S (@pFaz+.4a,) (btbot....+by).

As usual, we suggest that you go back to the beginning of the unit and see if you have
achieved the objetitives. We have given our solutions to the exercises in the unit in the
last section. Please go through them too.

With this we have come to the end of this course. We hope you have enjoyed it, and"
will find it of use in the future,

6.5 SOLUTIONS/ANSWERS

El) Applying the inéguality A 2 G to the positive real numbers ab and Xy, we get
ab+xy 2 2Vabxy

: - {8)
Now we apply A 2 G to ax and by, and we get
ax+by 2 2¥abxy v (9)

(8) and (9) = (ab+xy) (ax+by; = 4 Vabxy ¥abxy = 4 abxy.
Note that equality holds iff ab=xy and ax=by < a=y and b=x,
E2) a) Applying the inequality A 2 G to the n+] numbers

x',y,y,...,y (n times), we get

—'—12(){ ¥ n+l ' CoNy
n+1

Note that equality holds iff x=y.

b) Put x=1 and y=l+r-i; in {a), Then we get
) i" .Hl_l f+n|1+—=
(T

‘ n+ !

c)-Eketm, n e Nand m < n. Then, by (b),

I m 1 m+ 1 ’l’. m+2 I "
[ | +.-_] < [; + ) < (14- ) SR < [l+—',]
m m+ | m+2, n

Hence the result.

E3} No, since the GM of negative nurﬁbprs is not defined. Even A 2 H doces not
remain tree any longer.
For example, take the thice numbers =2, | and 3.

3

=1 1
5 +|+3

Their AM is % and ihelr AM is = %. ng

Wb

L 18
5

' E4) a) Let x,y € R* such that x+y = ¢, a constant, Then, xy is. moximum when Yxy is

maximum, thai is, when x=y.

Inequaliiles
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Equations and lneq:.;'tlillu . b) No. For example, let xy € R* such that xy=1.
: If x=y , then x=I=y. And then x+y=2. But this is not the maximum value of

X+y, since x=5 and y =—Sl-for example, give a larger value of x+y,
A

E5) Since ~5<x <5, 5+x > 0 and 5=x>0.

Stnce 3 3+x +4 [ 3-X )= 10, a constant, the maximum value of

3 4
3ix -5—_5-40ccur'swhen5+x—5_x that is, when x = =2,
3 4 37 4 ' T

Thus, (5+ x')3 (5-x )4 is maximum when 3::-‘72_

E6) Let x+y+z=c..

The volumé of the cuboid is AYZ.

This is mz_nximum when x=y=z , since x+y+z=c,

.Thus, the cube is a cuboid with maximum wlnlume. under the given conditions.
E7) Let x,y and z be dimensions of the cuboid, where xyz=c, a constant.

Now, the surface area of the cuboid is 2(xy+yz+zx). This is minimum when
Xy+yz+zx is minimum, that is, when

Xyz [l+-l-+lJis minimum.
2 x ¥

Now, xyz=c, and the HM of x,y and z is 3 T

X y 2z .

By Theorem 1 we know that the HM is maximum when x=y=z, ﬁus;l+-:j+% is
minimum when x=y=z. Thus the surface area of a cuboid with fixed volume is
minimum when the cuboid is a cube.

E8) We apply Theorem 2 to the n numbers 246...2n, a

We ger

AT )™ (2+,1+6+....+2n J’“ = om [ 1+2+..4n ]‘“
n g n n

m n .
2T 4+d4M 20 n.2“".('—(—Lrl n2: J J , since Z i =Anth n2+l

1=
=n(m+ )7,
E3) Applying Theorem 2 to 1,2,....n, we get
if+\f2_+_...+\’?'( \Jln(n+ 1
2n

n

Henee the resulr.

ELD) I_‘ul m= %.. Then 0 < m < 1. Now we apply Theorem 2 to the n positive numbers

af, — »aP, We get

(3 )’"+ ( ag):+ o agj“ -s ( _a'l’l+_a§ bt ag ]“




=

o
g g q Py oP oD
31+32+...+a" ([a|+a2+...+.ln]
- n

n

i ¥n
o q q r—q |1 L l
C:?d|+32+....+ﬂn£-(n ) (a|+a2+...+‘1n)

< pl~M [a‘l’+a'2’+....+up) since L <land2<,
' n p p

Eil) Let xj....... x, be n numbers.

Then their AM, A =

XI+X2+ +Kn

n

X+ Xy s F X x|+ T b +... ... +] x|

n

n

A= , by theorem 3.

n

—AMDf'xlllle ...... |xnl.

Hence the statement is true. :

E12) False. For cxample, take x=1, y= -3,

Then | x-yl=14=4
and‘xi—|y|=1—3=-2.

5133“X|=‘(x—,y):|-y|s|-x—yi‘+|y|. T e {0y -

.-.ixi—iy|slx—yi

Similartly, | y 1=l x+@y-x s xl+ly-xI=lx|+lx-yl.

sincc|x|=|—xl.

El4)

Therefore, | y | = 1x1s!x-yl eeenn{11)

A and A =l x| -lyllslx-y}

. . 2
(:ﬁ+...+a§ ) \!-:+....-.+b§ ) - (31 b, +:13b2+....+'a“bn)

2
.(aibj—hjb.ljzo. -
] .

with equality iff ab=a; ¥ i, j = Luwii #j,

b=

I
i

‘H.\_
—

foiool s
that is, if b, bj Lhat s

that is, iff a=cb, ¢ i=1,...,n, where ¢ is a corstant,

[ 3 Y TV Y Calrn mmntinm fo macitis Th. * H H icri
The discriminan Of thc \.\.[unuuu ) ,..-ua.m'c luuS, ;!‘"‘ givan QU iation hoc dicrinct

real Foots. They must lic between —( 1 —\’_} 'md—-( 1+47). If they arg rational.

thcy have to be fuctors of 2. Hence, they éan e —1,2 or —Z. Of these, = 1 and 2.
lie within the given bounds. On substitution we find that they actually are the
roots. Since Lhe ejuation has only 3 roots, —1,1 and 2 are its roots.

E16) Just applying Theorem 4 to the numbers a,b,x,y, we get

(ax+by)? € (a%+b?) (xZry?) =1. ]

oax+by = 1. 49
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‘ Equations and Inequalities " EIT) (a)lWe apply the'Cauchy—-Schwarz incqunlity to the nwples = . .. . |

(Yo VetV ) and [7‘-; ;,;?- ....... ;,'-J wegel
1 Y Lo |
(‘\"ETI- q;+ ........ +va_ q;n-] .S (al +a1+ ........... +a )[:I*+€+ +—n—J
] 1 |
Y +a,+....... +a ) |+ — ... +—
< n (a a, n) [ a, anJ
" . _ _ |
b) Applying Theorem 4 to the n-tuples (1,1,......., 1) and (a1, 32yui0r080), We get the
resull.

c) Applying Theorem 4 to the - tuples(l,1,....,I)and (Va;, ﬁ;.ﬁg we get
© the result, :

EI8) (a-bYH(x—yP=(alexd)4(b24y212 (abixy).
< (@hx?) + (b4y2) 42 [(dbtxy)] rereinenn(12)
Also, by Theorem 4 I
(@btxy)? € (*+x?) (b24y?y

i

- = [abtxy| £ '\’uz+ x? '\(h2+ y? : e (13)

(12) and (13) =5 (a-b)? + (x—y)? < [\/(‘;F +x3) + V@2+y?) ]2.
-which gives us the desired resulr,
E19) By the Cauchy—Schwarz inequality applied o (x.y z) and (1,1,1) , we have
p (x |-y+z) <3 (x-+y +z5 Neies (14)
Agela anpiying Theorem 4 to (\';:\!?z_.{z-)'and (xy' y“’ﬁ. z'y-')

we's . ix2ay 202 < (x+y+2) (x*+y>+2Y)

- '

~ 2 = 8l (x+y+z) e rre— )

(14) and (15) = (x4y+2)? £ 9 Bl (x+y+z).

=>‘(x+y+z)3 o (9)?'

= (X+y+2)} <9,

E20) False. For example, take p=3 and the pairs (1,0, (1~1).
Then {(1) (D+0) (-1 £(1340%) (12+=1)3)

E21) We use the principle of incvetion on 1.

For n={, a=s), and hence. l+sI 5 1+a|. .

Also, l—a? < 1. Therefore, 42, < .
-a
1

Assume that the result holds for n=m.
(Then (14a)) (I4ag ). (F40, ) 2 Ts
 (I+a)) {I+a2) (l+a ) (1+a mey) 2 l+s +a““_|+s’11 _

> l+smr+|

Also, (143,) (1+2,) .. (142.) <



. (I+u|} ..... (I+.1m) “+am+l.) < ('-Sm)(l—a,,'m)' .

Thus. (i) is true for n=m+1, and hence ¥ n € N.

E22) We apply Theorem 6 (i} to the n numbers I—-al.l—az........,l—g .

Then

n n

= 1"""‘2“i £ H‘*i'

n
= |- Hui <n —Z:ti
i=1

i=1
E23) No. For example, let us take a,= —1 and a,,= 2.
Then 1-(a,+,) S (=) (1-a;) .

= 0 <2 (-1)=-2, which is [ulse.

E24) If we pur x;=-a, then X, £ X, € ... X . Also b, £ b, £ ...

So, by Theorem 7 (i),

n{x, b +xy byt tx, b) 2 (x|+x2+.....-_+-xn) (b, +byt..tb))

S h

<= -n(a, b+, byl b)=z- (a|+z|2+....-s_-un) (l?|+b2+}---+b")

& nia b|+....+:1n bn) < (al+a2+......+:1“} (hl+.......+bnj.

we get

e
Ly v
> Freneenen T

1A
o
—
'_ml""
+
t‘i)-'[_
+
+
::Mi
~—

1A
-
TN
+
Ml_
+
=)
]
=1
\.._,c..../
#
=
[n]
[a:]
vl
14
1|

=n|l+1 —%1
)
! |
= !I-E++;]‘ < ~N2n-1 (16)
- | 1 1
Again, applying Theorem 7 to (\/_T—‘\/;‘J_ Iand(
we gel

(L ) e e— —

n

: Inegualities
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- E26) Given a,b and c, they can always be ordered. Let us assume that a < b < c.

Then a+b £ at+c 5 bic.

! ] i
Therefore, b = v 2 e

N B I
We .fpply Theorem 7 (i) to ab ' oo ' bic and 1o ¢,b,a.

We get

fci b a l i | -
3 rs +;c-+ brc 2 (i.+btc) bie + ot 2ep | (18)
Also, upplying Theorem 7 (i) to bc, atc, <. b and their inverses, we get

. 0 I B
- 3(1+1+1) £ (brc+atctath, (b+c_+ e + u+b]'

= 9 5 Ha+bo) [¢+;-_:—c+:_—:-g) . ——— )

18 { €, b a3
(18) and (19)] = [u+b+a+c +b+c]?'2'



MISCELLANEOUS EXERCISES

This section is optional.

As in the previous block, this section contains some extra problems related to the
material covered in this block. Doing them may give you a belter understanding of
simulianeous linear equations and inequalitics. As before, our solutions to the questions

" foltow the list of problems.

1}

2)

3)

4)

3)

6)

Solve the following li.near system, if possi-ble’.
Sx+by+ (524 6t=d2

3x + 8y + zllz—- 2t=-8

2%+ 9+ 252+ 1 = 4]

a) If a+b+c = 0; solve the equation

a=x . ¢ b

b} Solve the equation

[5-2x Il 10 ,
1-3x 7 16| =0
T-x 14 i3

Use Cramer's ruie to solve the system
X—y+z=0
2x+3y~5z="7

Ax — 4y — 2z = ~| ,

A company produces three products, each of. which must be processed through
three different departments. In Table | we give the number of hours that cach unit
of each product must stay for in each department. We also give the weekly
capacity of each department.

Table 1
. Product No. of hours
Department Py [ [ availuble per week
I 6 2 2 20
2 7 4. | © 60
3 5 5 3 100

What combination of the threc products will uze up the weekly labour availabilily

in atl departments 7°

b) | bic c+a ath

Prove the following identities:

D boa atl
I b b2} =(b-cl{ec—a){a-"1)
| ¢ gt )

a b ¢
gt rip pHQ (=2 p q T
ytz Z+x  xty X y =z

A fish of species S, consumes. 10 gm. of food F, and 5 gm. of food F, per day. A
fish of species S, consumes 6 gm. of F, and 4 gm. of F, per day. If a given
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7

8

9)

10)

'

Solutions

1)

2)

54

environment has 2.2 kg of F| and 1.3 kg of F, available daily, what population
sizes of the species S, and S, will consume exactly all of the available food ?

Does the system
X + y +tz +w=0
.x-|?3y—2z+w=0
2x —3z+2w=0
have a non-trivial solution?
Oblaiq a solution of the following system, if it exiss.
X+2y+dz+1=4
2x -2-3t=4
X~2y-z . 0
-y—z-5=5
Show that the fd[lowing lineur system has a fwo-parameter solution set.
2x, Xy oXytxg=2
Xp+ X3 =%+ % =1
12x) + 2% + 8xy + 2% = 12,
Use Cramer’s nule, if pos;sfblc. for soiving the fbliowing linear systems :
a) 3x+y=3 .

X +2y =1
b) 2x -3y +z=1

x+y—z=0.

X2y +z=-]

I¢ the coordinate axes in a plane are rotated through an angle 8, then we can
express the old coordinates (x,y) in terms of the new goordinates (x’, y*).as

X =x" ¢cos® - v sind

¥y =&’ $in@ + y’ cosB

Use Cramer’s rule to write (x’, y’} in tesms of (x.¥. '

We apply the Gaussian elimination process. We pet the solution ser
{44z, -1~32,2,6) jz & R}.

a) Adding the 2nd and 3¢d columns to the lirst column of the determinont doesn't
change ils valuc. On doing this and using the fact that a+b+c = 0, we gel

-X ¢ b
-x DX a =0
-X a e¢—x
Il ¢ b - :
=211 bx a =0, by P3 o -~ |
c—X |

1 a
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= (-x) | 0 b—x—c, a-b- | = 0,applying P4 iwice.
0 a-¢ c-x-b

= (%) [ (b~c—=x) {c-b—=x) - (a-¢) (a-bh) | =0, expanding along the first
column. :

- On solving this equation, we find that x = 0 or
(b —¢)?-x%+a’-a (b+c)+ be =0, that is ,

2x? = 3(a? + b? + ¢c), using the condition that a+bic =0,
Thus, the solution set is

[O.i. /%(a2+b'1+c2J J

b)  Using the propeities Pl to P5 of determincnts, we see that

15-2x 11 10 |
11-3x 177 16 =0
7-x 14 13 ]
15-2x 1 10|
=113 | 16| =0
7—x I 13
= X =4,

In matrix notation the system is

| -t | X 0
2. 3 -5 y | = 7
34 -2 z -1
P =1 |
HereD=| 2 3 —5 | =-3220,
3 4 -2

Thus, we can apply Cramer's rule.

Now .
0 -1 1
D,=| 7 3 -5{=-44,
-1 4 =2
r o 1|,
Dy=|2 7 -5|=-42 -
3 -1 2] .
I =1 0
D,=(2 3 7!=2
' 3 4 -1
s, xet o Dy o1 Dy g
X =y = Y3 1% "D s

Let x, y and z be the required quentities of P, P, and P,. Then we need to solve
the system -

6x + 2y + 2z =80
Tx+dy +2z =60
Sx+5y1-3z=I00.

By Gaussian elimination (or Cramer's rule) we gei - 55
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/6)

Fa

-ﬂ I

x=35y=02z=25

So, the ideal combination is 5 units of P,, 25 units of P4, and none of P,, per week.

a? l a a?

a
Il b b = 0 b-a b’a® |, subtracting the first row from
¢ ¢? 0 c-a ¢2a? | the second and third rews.
1 a a?
=({®a)(c-a) | 0 | b+
0 | c+a

= (b-a) (c-a) {c+a~ b - 1)

= (b-¢) (c-n) (a-b)

b) | b cta a+b

G p pH
y+z  zhx xHy

—2a c+a a+b
=| -2p r+p ptq |, subtracting the second and third columns from the

- | —2x Z+x xty | first colyma.

a ct+a a+b
=(-2)|p r©p pHg
X Z+X x+y
a ¢ b " ) .
=(-2)| p r q |. sublracting the first column from the second and
X' z' y | third golumns.
| a b - '
=2 | p G r |, interchanging the sccond and third columns,
= x y 7 ) .

Let x and , denote the number of fish of species %, and 3,, respectively. We have

the information given in Tablc 2 below.

Table 2
Fish Food consumed
. per week (in gms)
Species el ' F3
S) <10 5
s2 . s T
r . .
Total food .
available per week 2200 1300

/

Thus, we need to solve the sysiem

10x + 6y = 2200

© . 5x + dy = 1300,

56

-Solving by any of the methods, we get
X = lO%-y:fZOO.'

Thus, the required sizes are 100 fish of species S end 200 of'spccies S,



7)

8}

9)

‘)

L)

Since D =

By elimination we find that the system has infinitely many.solutions (x, 0, 0, —x), Miscellaneous Exerclses
where x € R. Thus, for any x # 0, we would get a non-trivial solution.

By Gaussian elimination, we reach a stage where we get 0 = Bﬁ chce the given
syslem is inconsistent.

We apply Gaussian climination. Alfter a few steps we get the following s;'slem
Xy =1 '

Xy ¥ 4%, = 3%g =0

Xg— X4+ Xg =Q.

Thus, x; = I, Xy = — 4x; + 3Xg, X3 = X4 — Xs. ;

So, if x4, = s and x5 = t, then our solution set is

{(l;—'45+31.s—l.s.l)[s,te R}.

Thus, we have expressed the solutions in terms of the two parameters, s and t.

a) [In matrix notation, the system i

B

Singe D = | ; é I = 1 # 0, we can apply Cramer’s rule.
Here D) = I 3 l | = 5, and
I 2 _
NERE Y '
D2 = ‘ 5 =2

Thus, ihé solution is x = 5, y =-12.

b) Here the coefficient matrix is
2 -3 | .
A=l | | =1 tandD=l|al=120.
| -2 1

Thus, we can apply Cramer's rule,

1 -3 1
D, = 0 | -l | ==~3,
-1 =2 I
.2 i ;
| -1 ]
2 -3 1
Da=1] 1 i 0| =-8
] A |

Lx=~3, y=-5,z=-8

Here we can write the equations as

[EREIIFRE]

cos® °  —sinB

2 e cinda = 1 -
<inb cosh =cosB +5in“@ =120,

57
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we can apply Cramer's rule.

Now, D, = l oo oosin® L cos8 + y sin®, and

y cos@

cosd X
sin@ y

) = =y cosB — x sinb,

Thus x"=xcos@+ysin 0, y’ =y cos 8- x sin 6.
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