e T
“?\p\) ARSHI TANDON Opg
o0 jide U.P. Govt. Act No, 10 4 04//#

s Of
. 79‘90/ epd}
o

MCA-5.4
'PARALLEL COMPUTING

eal———

[ o T

FIRST - BLOCK o
ements of Parallel Computing And Architecture

&
[\ TR T T R i,

lira Gandhi. National Open University UP Rajarshi Tandon Open University

J

ST . 1T T LA T

Jheyen L




’ MCA-54
Uttar Pradesh Parallel Computing

fremas yw, Rajarshi Tandon Open University

Block

1

ELEMENTS OF PARALLEL COMPUTING AND
ARCHITECTURE

UNIT 1

Introduction to Paraliel Computing 5

UNIT 2

Classification of Farallel Computers 27

UNIT 3

Interconnection Network 46

UNIT 4
Parallel Computer Architecture 64

Srrococ

i T TTYTOY



COURSE INTRODUCTION

‘he course ‘Parallet Computing” deals with the designing/studying of very high
erformance comnputing systems. The emerging lrcnds in real time compuiing

pplications like aerospace, air traffic contral, nuclear control, process control elc, each
emands the resulls of computation delivered within microseconds. Thus there is a
emand for high speed computing. Due 1o technological limitations of highest operating
peed of uniprocessor system, it is widely agreed that higher speed of computation is
ossible only by introducing multiple processing elements and making them work in
arallel. The speed enhancement is possible only through the use of multiple processors.
his course introduces the various aspects of parallel computing.

his course is worth 3 credits and consists of 3 blocks. Block 1 has four units. Block 2
nd Block 3 have 3 units each.

lock-1 discusses the fundamentals of parallel computing, It discusses various attributes
Hated to parallel computer architecture. Parallel computers are those computing systems
\al enable parallel processing. One of the altemnatives for enhancing the executional

reed of a computer is through increasing the speed of its components using VLS!
<hnology. [n order to achieve still higher executional speed even using VLSI techrology
1 a single processor, multiple processing elements are used. The block discusses a
imber of multiple processors-based parallel architectures. The block also discusses the
terconnection networks. Various modules in the multiprocessor systems like processing
ements, I/Q units and memory modules are joired logether through interconnection
rtworks. The performance of the parallel computer greatly depends upon the
terconnection paticrn belween various processors. The block deals with various network
operties. It also gives a-clnssification of networks. [t finally deals with various popuiar
id useful interconneciion networks.

ne of the major difficulties in using systems having muliiple processnrs is to design
ipropriate algorithims, which is the job of a programmer.

lock 2 discusses various issues related to the development of parallel algorithms and
wrallel programming. To devise parallel algorithm for any application there should be an
herent paralletigm in the application. There are certain appiications which are esscatially
quential; in such Lype of applications, the use of a pnallet processing system will not
hance the performance. This block deals with the finidamentals of the development of
rallel algorithms, featares of parallel algorihms, and some programming examples.

ock 3 is devoted to various issues in respect of evauation of performance of parallel
stems. It also discusses the paralle] operaling s siems and the latest trends in paraliel
stems. The operating systems for paralle! systems are different from he operating_
stems for single processor sysiems. Though the main components of an operating

stem are similar to that of a multiprogrammed uniprecessor operating system, yet

ralici operating systems are much more complex due to the existence of multiple
>cessing elements. On the one hand, coordinating muhiple processing efeinents,

iltiple memory modules and /O modules is difficult and on the other hand, ensuring ihe
jource utiiization to the fullest capacity {i.c. optimal performance) is even more

Ticull. This block includes discussion of issucs related to prrallel operating systens.
pics related to resource management i.e. about hov to allocate the processors to various
»g@dms; process management i.¢. how to coordinale belween different asynchronous
ivilies like processes or threads; synchronization manegernznl,; memory and /O
inagement; and interprocess communications, arc discussed in this biock. Finally, the

t unit in his block presents the latest trends i parallel computing.

—=in=




BLOCK INTRODUCTION

This Block consisis of 4 units and deals with general concepls of parallel computing. Unit
1 deals with introductory concepts of (paratlel) computer hardware and software; history
of parallel computing, levels of parallelism; basic concepis of data flow compuling. This
unit also includes discussion of {ndia’s achievement in designing and developing parallel
compulers. Unit 2 is about various classifications of parallel computers. It discusses
differem class:lications of parallc] computers, and salient characteristics of each
classification. Unit 3 is about interconnection network, different processing elements,

memory modules and /0 modules joined through intercannection nelworks. The unit alsoy

diszusses various types, {opologies, perforimance metrics and design issues
interconnection networks. Unit 4 discusses vartous multiprocessor architectures.

Furaliztism in computing systems appears in various forms like pipelining, vectorsation, !

cercurrency, data paraflelism, interleaving, portioning, multiplicily, replication,
timesharing, multitasking, multiprogramming, multithreading, at different processing
invels,

AT T AR I




UNIT 1 INTRODUCTION TO PARALLEL
COMPUTING

Structure Page Nos.
1.0 Introduction 5
I.L1  Objectives 6
History of Parallel Computers 6
1.3 Problem Solving in Paraliel 7
1.3.1  Concept of Temporal Parallelism
1.3.2  Concepl of Dalta Parallelism
1.4 Performance Evaluation 9
1.5 Some Elementary Concepts 9
1.5.1  The Concept of Program
1.5.2 The Conceplof Process
1.5.3  The Conceplt of Thread
1.54  The Concept of Concurrent and Paralle| Execution
1.55  Granularity
[.5.6  Potential of Parallclism
1.6 The Need of Paralle! Computation 4
.7 Levels of Parallel Processing 15
171 Instruction Levet
1.7.2 Leop Level
.23 Procedure Level
1.7.4 Program Level
1.8  Dataflow Computing 16
1.9 Applications of Parallel Processing 17
19.1 Scientilic Applications/Tmage Pracessing
19.2 Engineering Applications
1.9.3 Dalabase Query/Answering Systems
194 Al Applications
1.9.5 Mathcmatical Simulation and Modeling Applications
. India's Parallel Computers 19
1.1l Parallel Terminology used. 20
Summary 23
1.13 Solutions/Answers 23

1.0 INTRCDUCTION

Parallel computing has been a subject of interest in the computing community over the
last few decades. Ever-growing size of daiabases and increasing complexity of the new
problems are putting great stress cn the evén the super-fast modern single processor
computers. Now the entire computer science community all over the world is looking for
sore computing environment where current computalicral capacity can be enhanced by a
factor in order of thousands. The most obvious solution is the introduction of mulliple
processors working in tandem i.¢. the introduction of paralel compuling.

Parallel computing is the simultaneous execution of ihe same ‘ask, split into subtasks, on
Tultiple procéssors in order to obtain results faster. ‘Ihe ide - 's based on the fact that the
yrocess of solving a problem cair shally be divided inte smaiier tasks, which may be
solved out simultaneously with some coordination mechanisms. Befora geing info the
letdils of parallel computing, we shall discuss some basic concepls frequently used in

=TT

T ESTEIYIC ;im0 -,




Elements of Parallel paraltel computing. Then we shall explain why we require parailel computing and what

Computing and the levels of parallel processing are. We shall see how flow of data occurs in parallel

Avchitecture processing. We shall conclude this unit with a discyssion of role the of parallel processing
in some fields like science and engineering, database queries and artificial intelligence. '

1.1 OBJECTIVES

After going through this unit, you will be able to:

« tell historical facts of paralle! computing;

« explain the basic concepts of the discipline, e.g., of program, process, thread,
concurrent execution, paralfel execution and granularity;

explain the need of parallel computing;

describe the levels of parallel processing;

explain the basic concepts ol dutaflow compuling, and

describe various applications of parallz! computing;

a & » a

1.2 HISTORY OFRPARALLEL COMPUTERS

The experiments with and implementations of the use of parallelism started long back in
the 1950s by the IBM. The IBM STRETCH computers also known as IBM 7030 were
builtin 1959. In the design of these computers, a number of new concept- like
overlapping /O with processing and instruction look ahead were introduced. A serious
approach towards designing parallel computers was started with the development of .
ILLIAC [V in 1964 at the University of Illionis. It had a single control unit but multiple -
processing elements. On this machine, at one lime, a single operation is executed on
different data items by different processing elements. The concept of pipelining was
introduced in computer CDC 7600 in 1969. It used pipelined arithmatic unit. In the years
1970 to 1985, the research in this area was focused on the development of veclor super
computer. In 1976, the CRAY| was developed by Seymour Cray. Crayl was a
pioneering effort in the developmeni of vector registers. It accessed main memory only
for load and store operations. Cray1 did not use virteal memory, and optimized pipelined
arithmetic unit, Cray! had clock speed of 12.5 n.sec. The Crayi processor evloved upto §
a speed of 12.5 Mflops on 100 x 100 linear equation solutions. The next generation of
Cray called Cray XMP was developed in the years 1982-84. It was coupled with 8-vector
supercomputers and used a shared memory. :

Apart from Cray, the giant company manufacturing paraliel computers,Control Data
Corporation (CDC) of USA, produced supercomputers, the CDC 7600. its vector
supercomputers called Cyber 205 had memory to memory architecture, that is, input
vector operants were streamed from the main memory 10 the vector arithmetic unit and the -
results were stored back in the main memory. The advantage of this architecture was that -
it did not limit the size of vector operands. The disadvantage was that it required a very
high speed memory so that there would be no speed mismatch between vector arithmetic
urits and main memory. Manufacturing such high speed memory is very cosily. The
clock speed of Cyber 205 was 20 n.sec.

In the 1980s Japan also started manufacturing high performance vector supercomputers.
Companies like NEC, Fujitsu and Hitachi were the main manufacturers. Hitachi

B s Ly

I=ten — v




developed S-810/210 and S-810/10 vector supercomputers in 1982. NEC developed SX-
I and Fujitsu developed VP-200. All these machines used semiconductor technologies to
achieve speeds al par with Cray and Cyber. But their operating system and vectorisers
were poorer than those of American companes.

1.3 PROBLEM SOLVING IN PARALLEL

This section discusses how a given task can be broken into smaller subtasks and how
subiasks can be solved in parallel. However, it is essential to note that there are certain
applications which are inherently sequential and if for such applications, a parallel
computer is used then the performance does not improve.

1.3.1 Concept of Temporal Parallelism

In order 1o explain what is meant by parallelismn inherent in the solution of a problem, let
us discuss an example of submission of electricity bills. Suppose there are 10000 residents
i a locality and they are supposed to submit their electricity bills in one office.

Let us assume the steps to submit the bill are as follows:

1} Go-to the appropriate counter to take the form to submit the bill.
2) Submit the filled form along with cash.
3) Get the receipt of submitted bill.

Assume that there is only one counter with jus: single office person performing all the
asks of giving application forms, accepling the forms, counting the cash, returning the
:ash if the need be, and giving the receips.

This situation is an example of sequential execution. Let us the approximate time taken by
-arious of events be as follows:

Jiving application form = 5 seconds

\ccepting filled application form and counting the cash and returning, if required =
mnts, i.e., 5 x60= 300 sec.

Jiving receipts = 5 seconds.

‘otal time taken in processing one bill = 5+300+5 = 310 seconds.

low, if we have 3 persons sitting al three different counters with
One person giving the bill submissivn form

) One person accepting the cash and returning,if necessary and

i} One person giving the receipt. .

he time required to process one bill will be 300 seconds beczuse the first and third
:tivity will overlap with the second activity which takes 300 sec. whaveas the first and

st activity take only 10 secs each. This is an example of a psrallel processing method as
zre 3 persons work in parallel. As three persons work in the same time, it is called
mporal parallelism. However, this is a poor example of paratlelism in the sense that one
f the aclions.i.e., the second action takes 30 times of the time taken by each of the other

Introduction to
Parallel Computing

VTRV -




eracnts of Parallel twa actions. The word ‘temporal® means 'pertaining to time’. Here, a task is brokerf into

imiputing and many subtasks, and those subtasks are cxecuted simuhaneously in the time domain. In

chitccture lerms of compuling application it can be said thal paraltel computing is possible, if it is
possible, to break the computation or problem in to identical independent computation.
Ideally, for parallel processing, the task should be divisible into a number of activities,
each of which take roughly same amount of timé as other activities.

1.3.2 Concept of Data Parallelism

consider the situation where the same problem of submission of ‘clectricity bill” is

handled as follows: _
Again, three are counters, However, now every counter handles all the tasks of a resident
in respect of submission of his/her bill. Again, we assuming that time required to submit

one bill form is tke same as earlier, 1.e., 5+300+5=310 sec.

We assume all the counters operate simultancously and each person at a counter takes 310
seconds to process one bill. Then, time taken io process all (he 10,000 bills will be
310x(9999/3) +31i0xIsec.

This time is comparatively much less as compared to time taken in ihe earlier situations,
viz. 3100000 sec. and 3000000 sec respectively.

The situation discussed here is the concept of data parailelism. In data parallelism, the
complete set of data is divided into multiple blocks and operations on the blocks are
applicd parallely. As is clear from this example, data parallelism is faster as corapared to
earlier situations. Here, no synchronisation is required between counters(or processers). It
is more tolerant of faults. The working of one person does not effect the other. There is no
communication required between processors. Thus, interprocessor communication is less.
Data parallelism has certain disadvantages. These are as follows:

1} The task to be performed by cach processor is predecided i.c., asssignment of load is
static.

ity It should be possible to break the input task into mutally exclusive tasks. In the
given example. space would be.required counters. This requires multiple hardware

which may be costly.

The estimation of speedup achieved by using the above type of parallel processing is as
follows:

Lét the number of jobs =m
Let the time to do a job=p

If each job is divided into k tasks,
Assuming task is ideally divisible into activities, as mentioned above then,

Time to comp!efe one task = p’k
Time to complete n.jpbs without parallel processing = n.p

*x
Time to completz n jobs with parallel processing = 1 k‘u

, _ time to complete the task if parallelism is not used
Speed up

time to complete the task if parallelism is vsed

TTTTTTATTTTTIMITTIIT YT IS

) B




Inirodaction to
Parallel Computing

I |3
H-I'ul‘ta

N
“—

1.4 PERFORMANCE EVALUATION

In this section, we discuss the primary attributes used to measure the performance of a
computer system. Unit 2 of block 3 is completely devoted to performance evaluation of
parallel computer systems. The performance attributes are:

i) Cycle time(T): It is the unit of time for all the operations of a computer system. It is
the inverse of clock rate (/f). The cycle time is represented in n sec.

ii) Cycles Per Instruction(CPI): Different instructions takes different number of cycles
for exection. CPI is measurement of number of cycles per instruction

iti) Instruction count(L): Number of instruction in a program is called jnstruction count.
If we assume that all instructions have same number of cycles, then 1).e total execution
time of a program
= number of instruction in the program*number of cycle required by one instruction
*time of one cycle,

Hence, execution timz T=I_*CPI*Tsec.

Practically the clock frequency of the system is specified in MHz. Also, the processor
speed is measured in terms of million instructions per sec(MIPS).

1.5 SOME ELEMENTARY CONCEPTS

in this section, we shall give a brief introduction to the basic concepts liks, program,
process, thread, concurrency and granularity.

1.5.1 The Concept of Program

From the programmer’s perspective, roughly 5 program is a

well-defined set of instructions, written in some programming language, with defined sets
of inputs and outputs. From the operating systems perspective, a program is an execuldble
file stored in a secondary memory. Software may consist of a single program or a aumber
of programs. However, a program does nothing unless its instructions are executed by the
processor. Thus a program is a passive entity.

1.5.2 The Concept of Process

informally, a process is a program in execution, after the prosram has been loaded in the
main meniory. However, a process is-more than jnst a program code. A process has its
own address space, value of program counter, return addresses, temporary variables, file
handles, security attributes, threads, etc.

TITTATS

s orTmTrT. -—




Elements of Parallel

Coraputing and
Arclijteciure

107

Each process has a life cycle, which consists of creation, execution and termination

phases. A proccss may create several new processes, which in turn may also create a new :

process. In UNIX operating system environment, a new process is created by fork system
call. Process creation requires the following four actions:

1) Setting up the process description: Setting up the process description requires the
creation of a Process Control Block (PCB). A PCB contains basic data such as
process identification number, owner, process status, description of the allocated
address space and other implementation dependent process specific information
needed for process management.

i1) Allocsating an address space: There are (wo ways to allocate address space to
processes: sharing the address space among the created processes or allocating
separate space to each precess.

iif) Loading the program into the allocated address space: The executable program
file is lvaded into the allocated memory space.

iv) Passing the process description to the process sckeduler: once, the three steps of
process crealion as mentioned above are compleled, the information gatherd through
the above-mentioned steps is sent to the process scheduler which allocates
pracessor(s) resources to various competing to-be-executed processses queue.

The process execution phase is controlled by the process scheduler. Process scheduling

may be per process or per thread. The process scheduling involves three concepts: process ©

state, state transition and scheduling policy.
A process may be in one of the following states:

e New: The process is being crealed.
* Rucning: The precess is being executed on a single processor or multiple processors
= Waiting: The process is waiting for some event to accur.

e Ready: The process is ready to be executed if a processor is available.
+ Terminated: The process has finished execution.

At any time, a process may be in any one of the above mentioned states. As soon as the
process is admitted into job queus, it goes into ready state. When the process scheduler
dispatches the process, its state becomes running,. If the process is completely executed
then it is terminated and we say that it is in terminated state. Fowever, the process may
return to ready state due to some interrupls or may go to watting state d: < to some /O

ST TETTT o

Hi

Pt b

oy -

ST TS

activity. When VO activity i§ over it may go to ready state. The state transition diagram is -

shown in Figure I:

running

Interrupt

new Schedulef dispatch IExit

terminated

Admittech I/O event
Y

F

Figurel: Process state transition diagram




The scheduling policy may be either pre-émpli_ve OF non pre-cmﬁlive. In pre-emptive

Introduction to

policy, the process may be interrupted. Operating systems have different scheduling Parallel Camputing

policies. For example, to select a process to be executed, one of the secheduling policy
may &e: First In First Out(FIFO).

When the process finishes execution it is terminated by system calls like abort, releasing
all the allocated resources.

1.5.3 The Concept of Thread

Thread is a sequential flow of control within a process. A process can contain ane or more
threads. Threads have their own program counter and register values, but they are share
the memory space and other resources of the process. Each process starls with a single
thread. During the execution other threads may be created as and wher required. Like
processes, each thread has an execution state (rimning, ready, blocked or terminated). A
lhread has access to the memory address space and resources of its process. Threads have
similar life cycles as the processes do. A single processor syslem can support cencusrency
by switching execution between two or more threads. A multi-processor system can
support parallel concurrency by execuling a separate thread on cach processor. There are
‘hree basic methods in concurrent programming languages for crealing and terminating
‘hreads: '

» Unsynchronised creation and termination: In this method threads are created and
terminated using library functions such as CREATE_PROCESS, START_PROCESS,
CREATE_THREAD, and START_THREAD. As a result of these function calls a new
process or thread is created and starts running independent of its parents.

» Unsynchronised creation and synchronized termination: This method uses two
instructions: FORK and JOIN. The FORK instruction creates a new process or thread.
When the parent needs the child’s (process or thread) result, it calls JOIN. instruction.
At this junction two threads (processes) are synchronised.

' Synchronised creztion and termination: The most frequently system consiruct to
implement synchronization is

OBEGIN...CQEND. The threads between the COBEGIN...COEND construct are
:xecuted in parallel. The termination of parent-child is suspended unti! all child threads
ire terminated.

N'e can think of a thread as basically a lightweight process. However, threads offer some
idvantages over processes. The advanlages are:

) It takes less time to create and terminate a new thread than to create, and
terminate a process. The reason being that a newly created thread uszs the current
process address space.

i) It takes less time to switch between two threads within the same process, partly
because the newly created thread uses the current process address space.

i) Less communication overheads — communicating betveen the threads of one
process is simple because the threads share @m<ng citier entities the address
space. So, data produced by one thread is immzdiaicly uvailabie w all the ofirer
threads.

e | el i -

11




Elements of Parallcl 1.5.4 The Concept of Concurrent and Parallel Execution

Compuling and |

Architecture Real world systems are naturally concurrent, and computer science is about modeling the
real world. Examples of real world systems which require concurrency are railway
networks and machines in a factory. In the computer world, many new operating systems
support concurrency. While working on our personal computers, we may download a file,
listen to streaming audio, have a clock running , print something and type in a text editor.
A multiprocessor or a distributed computer system can better exploit the inherent
c6T currency in problem solutions than a uniprocessor system. Concurrency is ach_i%ved -
either by creating siaultaneous processes or by creating threads within a process. g
Whichever of these methods is used, it requires a lot of effort to synchronise the
processses/ihreads 1o avoid race conditions, deadlocks and starvations.

Study of c:ncurrent and paralles executions is important due to following reasons:

i) Some probiems are most naturally solved by using a set of co-operating processes.
i) Toreduce tiie execution time,

The words “concurrent” and “parallel” are often used interchangeably, however they are
distinct.

Concurrent execulion is the temporal behaviour of the N-client 1-server model “where only
one client is served at any given moment. [t has dual nature; it is sequential in a small
time scale, but simultaneous in a large time scale. In our context, a processor v:orks as
server and process or thread works as client. Examples of concurrent languagzs ‘sclude
Adam, concurrent Pasc¢al, Modula-2 and concurrent PROLOG).

Paraliel executi::n is associated with the N-client N-server model. It allows the servicing
of more than one clicnt at the same time as the number of servers is more than one.
Examples of parallel languages includes Occam-2, Parallel C and;strand-88.

Paraliel execution does not need explicit concurrency in the language. Parallelism can be
achieved by the underlying hardware. Similarly, we can have corcurrency in a language
without paraliel execution. This is the case when a program is executed on a single
PrOCESSOr.

St L S ST i <

L.5.5 Granulasity '

Granularity refers to the amount of computation dore in parallel relative to the v~ of the
whole program. In parallel computing, granularity is a qualitative measure of the ratio of
computation to communication. According to granularity of the system, parallel-
‘processing systems can be divided into two groups: fine-grain systems and coarse-grain
svetems. In fine-grained systems, parallel parts are relatively small and that means more
frequent communication. They have low computation to communication ratio and require
high communication overhead. In coarse-grained systems parallel parts are relatively
large and that means more computation and less communication. If granularity is too fine
it is possible that the overhead required for communications and synchronization between
tas¥s takes longer than the computation. On the other hand, in coarse-grain paralle) E
systems, relatively large amount of computational work is done. They have high
computation to communication ratio and imply more opportunity for performance
increase.




The extenl of granula.ri_ty'in a system is determined by the algorithm applicd and the

Introduction te

hardware environment in which it runs. On an architecturaily neutral system, the Parallel Computing

granularity does affect the performance of the resulting program. The communication of
data required to start a large process may take a considerable amount of time. On the other
hand, a large process will often have less communication to do during processing. A
process may need only a'small amount of data to get going, but may need (o receive more
data to-continue processing, or may need Lo do a lot of communication with other
processes in order to perform its processing. In most cases the overhead associated with
communications and synchronization is high relative to execution speed so it is
advantageous to have coarse granularity.

1.5.6 Potential of Parallelism

Probléms in the real world vary in respect of the degree of inherent parallelisni inherent in
the respective problem domain. Some problems may be easily parallelized. On the other
hand, there are some inherent sequential problems (for example computation of Fibonacci
sequence) whose parallelization is nearly impossible. The extent of parallelism may be
improved by appropniate design of an algorithm 1o solve the problem consideration. If
processes don’t share address space and we could eliminate data dependency among
instructions, we can achieve higher leve! of parallelism. The concept of speed up is used
as a measure of the speed up that indicates up to what extent to which a seqireniial
program can be parallelised. Speed up may be taken as a sort of degree of inherent
parallelism in a program. In this respect, Amdahl, has given 2 law, known as Amdahl’s
Law, which staies that potential program speedup is defined by the fraction of code (P)
that can be parailelised:

1
S = —
peed up 7
If no part of the code can be paralielized, P = 0 and the speedup =1 i.e. it is an inherently
sequential program. [f all ol the code is parallelized, P = 1, the speedup is infinite. But
practically, the code in no program can made 100% parallel. Hence speed up can never be

infinite.

If 50% of the code can be parallelized, maximum speedup = 2, meaning the code will run
twice as fast.

If we introduce the number of processors performing ine parallel fraction of work, the
relationship can be modeled by:

]
Speedup= ———u-
P
AV+S
Where P = parallel fraction, N = number of processors and S = serial fraction.

The Table I shows the value of speed up for different values N and P.

13

i i i e

Rt




Elenments of Pacalls]
Coszputing and
Archijtecturs

14

Table 1
Spaadup |
N P = .50 P = .90 P = .99 1
10 1.82 5.26 9.17 L
100 1.98 9.17 50.25 i
1000 1.99 9.91 90.99 [
10000 1.99 9.91 99,02 F
i
d

The Table 1 suggests that spced up increases as P increases. However, after a certain
limits M does nct have much impact on the value of speed up. The reason being that, for N -
proceseors te remain active, the code should be, in some way or other, be divisible in
roughly N parts, independent part, each part taking almost same amount of time.

Check Your Progress 1

1) Explain the iife cycle of a process.

3) Differentiate concurrent and parallel executions. E
L
......................................................................................................... :
4) What do undcrstand by the granularity of a parallel system?
1.6 THE NEED OF PARALLEL COMPUTATION :
¥1th the progress of computer science, computational speed of the processors has also
increased many a time. However, there are certain constraints as we go upwards and face
large complex problems. So we have to look for altenatives. The answer lies in parallel |
computing. There are two primary reasons for using parallel computing: save time and t
solve iarger problems. It is obvious that with the increase in number of processors ;

working in parallel, computation time is bound to reduce. Also, they’re some scientific
problems that even the fastest processor to takes months or even years to solve. However,
with the applic «tion of parallel computing these problems may be sofved in a few hours.
Other reasons to adopt parallel computing are:




i) Cost savings: We can use multiple cheap computing resources instead of paying
ii)  heavily for a supercomputer.

ii) Overcoming memory constraints: Single computers have very finite memory
fesources. For large problems, using the memories of multiple computers may
overcome this obstacle. So if we combine the memory resources of raultipie
computers then we can easily fulfill the memory requirements of the farge-size.

problems.

iv) Limits to serial computing: Both physical and practical factors pose significant
constraints to simply building ever faster serial computers. The speed of a serial
computer is directly dependent upon how fast data can move through hardware.
Absolute limits are the speed of light (3*1 0* m/sec) and the transmisston limil of
copper wire (9* 10® m/sec). Increasing speeds necessitate increasing proximily of
processing elements. Secondly, processor technology is allowing an increasing
number of transistors to be placed on a chip. However, even with moiecular or
atomic-level components, a limit will be reached on how small components can be
made. [t is increasingly expensive to make a single processor faster. Using a larger
number of moderately fast commodity processors to achieve the same (or betler)
performance is less expensive.

1.7 LEVELS OF PARALLEL PROCESSING

Depending upon the problem under consideration, paratlelism in the solution of the
problem may be achieved at different Jevels and in different ways. This section discusses
various levels of paralielism. Parallelism in a problem and its possible solutions may be
exploited either manuaily by the programmer or through automating compilers. We can
have parallel processing at four levels.

1.7.1 Instructior Leveli

It refers to the situation where different instructions of a program are executed by
different processing elements. Most processors have severai execution units and can
execute several instructions (usually machine level) . the same time. Good compilers can
reorder instructions to maximize instruction throughp4t. Often the processor itself can de
this. Modern processors even parallelize execution «f micro-steps of instructions within
the same pipe. The earliest use of instruction leve* purallelism in designing PE's to
enhance processing speed is pipelining. Pipelining was extensively uscd in early Reduced
Instruction Set Computer (RISC). After RISC, super scalar processor: were developed
which execute multiple instruction in one clock cycle. The super scaiar processor design
exploits the parailelism available at instruglion level by enhancing the number of
arithmetic and functional units in PE’s. The concept of instruclion level parallelism was
further modified and applied in the design of Very Large !nstruction Word {VLIW)
processor, in which one instruction word encodes more than one operation. The idea of
executing a number of instructions of a program in parallel by scheduling them on a
single processor has been a major driving force in the design of recent processors.

Introduction tn
Farallel Computing

IS TR PR

"1

PmaTi s

o — -




Elzments of Parallel

Coimputing and
Archilzciure

16

1.7:2 Loop Level

At this level, consecutive loop iterations are the candidates for parallel execution.

ilowever, data dependencies between subsequent iterations may restrict parallel execution |

of instructions at loop level. There is a lot of scope for parallel execution at loop level.
Example: In the folloveing loop in C language,

for (i=0; i <=n; i++)
A(i) = B(i)+ C(i)

Each of the instruction A(i) =B(i}+C(i) can be executed by different processing elements
provid=d there are at least n processing elements. However, the instructions in the loop:

for (J=0, }<=q, J+)
AR = A1) +BWD)

cannol be executed parallely as A(f) is data dependent on A(3-1). This means that before
exploiting the Joop level parallelism the data dependencies must be checked:

1.7.3 Procedure Level

Here, parallelism is available in the form of paralle] executable procedures. In this case,
the design of the algorithm plays a major role. For example each thread in tava can be
spawned to run a function or method:

1.7.4 Progran: Level

This is usualy the responsibility of the operating system, which runs processes
concurrently. Diiferent programs are obviously independent of each other. So parallelism
can be extracted by operating the system at this Jevel.

Check Your Progress 2

1) What are the advantages of parallel processing over sequential computations?

.............................................................................................

1.8 DATAFLOW COMPUTING

An alternative to the von Neumann model of computation is the dataflow computation
model. In & dateflow model, control is tied to the flow of data. The order of instructions in
the program plays no role on the execution order. Execution of an instruction can take
place when all the data'needed by the instruction are available. Data is in continuous flow




independcent of reusable memory cells and its availability initiales execution. Since, data is
available for several instructions at the same time, these instructions can be executed in

parallel.

For the purpose of exploiting parallelism in computation Data Flow Graph notation is
used to represent compulations. In a data flow graph, the nodes represent instructicns of
the program and the edges represent data dependency between instructions. As an
example, the dawflow graph for the instruction z=w x (x+y) is shown in Figure 2.

Y w

z
Z=wx(NTYy)

Figure 2: DFG forz=w X (xty)

Data moves on the edges of the graph in the form of data tokens, which contain data
values and status information. The asynchronous parallel computation is defermined by
the firing rule, which is expressed by means of tokens: a node of DFG can fire if there is a
token-on each of ils input edges. I a node fires, it consumes the input tokens, performs the
associated operation and places result tokens on the output edge. Graph nodes can be
singte instructions or tasks comprising multipie instructions.

The advantage of the dataflow concept is that nodes of DFG can be self-scheduled.
However, the hardware support to recognize the availability of necessary data is much
more complicated than the von Neumann model. The example of dataflow computer
includes Manchester Data Flow Machine, and MIT Tagged Token Data Flow architecture.

1.9 APPLICATIONS OF PARALLEL PROCESSING

Parallel computing is an evolution of serial computing that attempts to emulate what nas
always been the state of affairs in the naturai world. Inghe naturat world, it is quite
common to find many complex, interrelated cvents happening at the same time. Examples
of concurrent processing in natural and man-made environments include:

Automobile assembly line

Daily operations within a business

Building a shopping mall

Ordering an aloo tikki burger at the drive ihrough.

. & &

Hence; parallel computing has been considered to be “the high end of computing™ and has
been motivated by numerical simulations of compiex systems and “Grand Challenge
Problems” such as:

e Weather forecasting
"o Predicting results of chemical and nuclear reactions

Introduction tn
Parallel Computing

i?

TITTRIIIT O

UETTTI

B e

TiTw oS




Elemcents of Parallel

Computing and
Architeeture

I8

* DNA structures of various species
Design of mechanical devices

¢ Design of electronic circuits

* Design of complex manufacturing processes

¢ Accessing of large databases

» Design of oil exploration systems

* Design of web search engines, web based business services

e Design of computer-aided diagnosis in medicine

¢ Development of MIS for national and multi-national corporations

Development of advanced graphics and virtual reality software, particujarly for the
entertaininent industry, including networked video and multi-media technologies
» Collaborative work (virlual) environments

1.9.1 Scientific Applications/Image processing

Most of paraliel processing applic:iions from science and other academic disciplines, are
mainly have based upon numerical simulations where vast quantities of data must be
processed, in order to create or test a model. Examples of such applications include:

= Global atmospheric circulation,

s Blood flow circulation in the heart,

¢ The evolution of palaxies,

=  Atomic particle movement,

¢ Optimisation of mechanical components.

The production of realistic moving images for television and the film industry hus become
a big business. In the area of large computer animation, though much of the work can be
done on high specification workslations, yet the input will often involve the application of
parallel processing. Even at the cheap end of the image production spectrum, affordable
systems for smali production companies have been formed by connecting cheap PC
technology using a small LAN to farm off processing work on each image to be produced.

1.9.2 Engineering Applications
Some of the engineering applications are:

* Simulations of artificial ecosystems,
¢ Airflow circulation over aircraft components.

Airflow circulation is a particularly important application. A large aircraft design
company might perform up to five or six full body simulations per working day.

1.9.3 Database Query/Answering Syste::s

There are a large number of opportunities for speed-up through parallelizing a Database
Management System. However, the actual application of paratlelism required depends
very much on the application area that the DBMS is used for. For example, in the
financial sector the DBMS generally is used for short simple iransactions, but with a high
number of transactions per second. On the other hand in a Computer Aided Design (CAD)
situation (e.g., V'L SI design) the transactions would be long and with low traffic rates. [n a
Text query system, the database would undergo few updates, but would be reguired to do

R Berehe et

i B |

-TTTTTITLSTTOT




complex pattern matching queries over a large number of entrics. An example of a
computer designed Lo speed up database queries is the Teradata computer, which employs
parallelism in processing complex queries,

1.9.4 Al Applications

Search is a vital component of an Al system, and the search operations are performed over
large quantities of complex structured data using unstructured inputs. Applications of
parallelism include:

Search through the rules of a production system,

Using fine-grain parallelism to search the semantic networks created by NETL,
Implementation of Genetic Algorithms,

Neuwral Network processors,

Preprocessing mputs from complex environments, such as visual stimuli.

1.9.5 Mathematical Simulation and Medeling Applications

The tasks involving mathematical simulation and modeling require a lot of paralle!
processing. Three basic formalisms in mathematical simulation and modeling are Discrete
Time Systermn Simulation {(DTSS), Differential Equation System Simulation (DESS) and
Discrete Event System Simulation (DEVS). All other formalisms are combinations of
these three formalisms. DEVS is the most popular. Consequently a number of software
tools have been designed for DEVS, Some of such softwares are:

e Parsec, a C-based simulation language.for sequential and parallel execution of”
discrete-event simulation modeis.

»  Omnet++ a discrete-event simulation software development environment wrillen
in C++.

» Desmo-J a Discrete event simulation framework in Java.

» Adevs (A Discrete Event System simulator) is a C++ library for constructing
discrete evenl simulations based on the Parallel DEVS and Dynamic Structure DEVS
formalisms.

s Any Logic is a professional simulation tool fer complex discrete, continuous and

hybrid systems.

.10 INDIA’S PARALLEL CGMPUTERS

In India, the development and design of parallel computers started in the early 80°’s. The
Indian Government eslablished the Centre for Development of Advanced Computing
‘'CDAC) in 1988 with the aim of building high-speed parallel machines. CDAC designed
ind built a 256 processors computer using INMGS T8000 scries processors in 1991. The
sther groups which developed paraltel machines were at Centre for Development of
Telematics, Bhabha Atomic Rescarch Centre, Indian Institute for Sciences, Defence
Research and Development Organisation. The systemns developed by these organisations
are said to be the state of the art of paraile! computers. It is generally agreed that all the
somputers built by 2020 will be inherently parallel.

Introduction o
Parallel Computing.

-

R 1 2 I er

ST oTTETms s e

R T T TR TP

I




lements of Paraliel
Computing and
Archifccture

India’s Parallel Computer

Next, we cnumerate sailent features of various generations of parailel systems devetoped

in India.
Sailent Features of PARAM series:

PARAM 8000 CDAC 1991: 256 Processor parallel computer, INMOS 8000 Lransputer as
processing element. Peak performance of | Gigaflop. Application software weak.

PARAM 8600 CDAC 1994: PARAM 8000 enhanced with Inte! i860 vector

microprocessor. One vector processor for 4 INMOS 8000. Vectorized Fortran. Improved |

sofivare for numerical applications.

PARAM 9300/SS CDAC 1996 : Used Sunsparc I1 'processors and an interconnection
switch made of INMOS transpulers.

Salient Features of MARK Series: . -

Flosolver Mark I NAL 1986: Used 4 Intel 8086 proi:é'ssoré wﬁh 8087 co-processors.
Proof of concept design. ‘ ’

Flosolver Mark 1E NAL 1988: 16 Intel 80386 processor and 80387 floating-point
processor connected to Multibus I backplane bus for interprocessor communnication.
Used for solving fluid dynamics problems using Fortran.

Flosolver Mark I NAL 1991: 8 Inte! i860 vector processors connected using message
passing co-processor on a back plane bus. i860 were rated at 80 Mflops peak. Fluid
dynamics Cedes were optimized for the architecture.

Salient Features of ANUPAM Series:

ANUPAM Model 1 BARC 1993: 8 Intel i860 processors connected to a Multibus 1.

Eight such clusters connected by using 16-bit SCSI interface. Used Front-end processor to

allocate lasks to the paraliel computing cluster. One parallel program at a time could be
run. Fortran environment,

ANUPAM Model 2 BARC 1997: DEC Alpha processors connecled by ATM switch in a
cluster. DEC Unix environment. High Performance Fortran compiler (o run data parallel

programs.

1.11 PARALLEL TERMINCLOGY USED

Some of the more commonly used termg associated with parallel computing are listed
below, .

Task

A logically discrete section of a computational work. A task is typically a program or
program-like set of instructions that is executed by a processor.

B e




Parallel Task

A task, some parts of which can be executed by more than one multiple processor al same
point of time (yields correct results)

Serial Execution

Execution of a program sequentially, onc statement at a time. In the simplest sense, this is
what happens on a one processor machine. [lowever, even most of the parallel tasks also
have some seclions of a parallel program that must be executed scrially.

Parallel Execution

Execution of sections of a program by more than one processor al the same point of tlime.

Shared Memory

Refers to the memory component of a computer system in which the memory can
accessed directly by any of the processors in the system.

Distributed Memory

Refers to network based memory in which there is no common address space for the
various memory modules comprising the memory sysiem of the (networked) system.
Generally, a processor or a group of processors have some memory module associated
with it, independent of the memory modules associated with other processors or group of
processors.

Communications

Parallel tasks typically need to exchange data. There are several ways in which this can be
accomplished, such as, through a shared memory bus or over a network. The actual event
of data exchange is commonly referred 1o as communication regardless of the method
employed. '

Syrchronization

The process of the coordination of paraltel tasks in real time, very ofien associated with
communications is called synchronisation. Often implemented by establishing a
synchronization point within an application wher: a tfask may not proceed further until
another task(s) reaches the same or logically cquivalent poini.

Synchranization usually involves wailing by at least one task, and can therefore cause a
parallel application's execution lime (0o increasc.

Gronularity

In paralle] computing, granularity is a qualitative measure of the ratio of computation to
cammunication.

Coarse Granularity: relatively large amounts of computational work are done between
communication cvents

[ntroduction to
Parallel Computing

2}

=1 B JACI PRre i

L e L T

term

InzoTm — ey = -




“letncnts of Paialicl
Jomputing and
vrchitecture

p i

Fine Granularity: relatively small amounts of computational work are done between
communication events

Observed Speedup
Ubserved specdup of a code which has been parallelized, is defined as:

wall-clock time of serial

wall-clock time of parallel

Granularity is one of the simplest and most widely used indicators for a parallel program's
performance.

Parallel Overhead

The amount of time required 1o coordinate parallel tasks, as opposed to doing useful work.
Parallel overhead can include factors such as:

Task start-up time

Synchronisations

Dala communications

Software overhead imposed by parallel compilers, librarics, tools, operating system, ete.

Massively Parallel System

Refers to a parallel computer system having a large number of processors. The number in
‘a large number of® keeps increasing, and, currently it means more than 1000,

Scalability

Refers 1o a parallel system's (hardware and/or software) ability to demonstrate a
proportionate increase in (parallel) speedup with the addition of more processors, Factors
that contribute to scalability include:

Hardware - particularly memory-cpu bandwidths and network communications:

*  dpplication algorithm
* . Parallel overhead related
*  Characteristics of your specific application and coding

Cheek Your Progress 3

1) Explai.: dataflow computation model.

bttt | B iy [ e




1.12 SUMMARY

In this unit, a number of introductory issues and concepts in respect of parallel computing
are discussed. First of all, section 1.2 briefly discusses history of parallel computing. Next
section discusses two types of parallelismn, viz, temporal and dala parallelisms. The issues
relaling to performance evaluation of a parallel system are discussed in section 1.4.
Section 1.5 defines a number of new concepts. Next section explains why parallel
computation is essential for solving computationally difficult problems. Section 1.7
discusses how parallelism can be achicved at different levels within a program. Dataflow
computing is a different paradigm of computing as compared Lo the most frequently used
Von-Neumann-archilecture based computing. Dataflow computing allows to exploit
easily the inherent paratlelism in a problem and its solution. Issues related to Dataflow
computing are discussed in section 1.8, Applications of parallel computing are discussed
in section 1.9. India’s effort at developing parallel computers is briefly discussed in
section™]1.10. A glossary of parallel computing terms is given in section 1.11.

1.13 SOLUTIONS/ANSWERS

Check Your Progress 1

1) Each process has a life cycle, which consists of creation, execution and termination
phases of the process. A process may create several new processes, which in turn
may also create still new processes, using system calls. In UNIX operating system
environment, a new process is created by fork system call. Process creation requires
the fellowing four actions:

i} Setting up the process description: Setting up the process description requires the
creation of a Process Control Block (PCB). A PCB contains basic data such as
process identification number, owner, process status, description of the allocated
address space and other implementation dependent process specific information
needed for process.management.

i1} Allocating ar address space: There are two ways to allocate address space to
processes, sharing the address space among the created processes or allocating
separate space to each process.

iif) Loading the program into the allocated address space: The executable program
file is loaded into the allocated memory space.

tv) Passing the process descriplion to the process scheduler: The process created is
then passed lo the process scheduler which allocates the processor to the competing
processes.

The process execution phase is controlled by the process scheduler. Process scheduling
may be per process or per thread. The process scheduling involves three concepls: process
stales, slate transition diagram and scheduling policy.

A process may be in one of the following states:

» New: The process is being created.

= Running: The process is being executed on a single or multiple
pProcessors.

s Wailing: The process is waiting for some event to occur.

o Ready: The process is ready 1o be executed if a processor is available.

Introdiction o0
Pavallel Computing

23

B e B

P,

SsSmIoTIve & s

T

el 1




Elcn;cn:s of Parallel
Computing and
Architecture

¢ Terminated: The process has finished execution.

At any time a process may be in any one of the above said states. As soon as the process
is admitted into the job queue, it goes into rcady state. When the process scheduler
dispatches the process, its state becomes running. When the process is completely
executed then it is lerminated and we say that it is in the terminated state. However, the
process may return to ready state due to some interruption or may go to waiting state duc
to some IO activily. When I/O activity is over it may go to rcady state. The state
transition diagram is shown below in the Figure 3:

TunRing

_—

Scheduleg dispaich  Exit

Admitted 170 event
Y

Figure 3: P'rocess siate transition diagram

The scheduling policy may be either pre-emptive or non pre-emptive. In pre-einplive
policy, the process may be interrupted. Operaling systems have different scheduling
policies. One of the well-known policies is First In First Out(FIFO) to select the process
to be executed. When'the process finishes execution il is terminated by system calls like
abort.

2} Some of the advantages that threads offer over processes include:

i} It takes less time to create and terminate a new thread than it takes for a process,
because the newly created (hread uses the current process address space.

ii) Ittakes less time to switch between iwo threads within the same proccss, partly
because the newly created thread uses the current process address space.

iii) Less communication overheads -- communicating between the threads of one process
ts simple because the threads share the address space, in particular. So, dala piodu:ed
by one thread is immediately availabte to all the other threads.

3) The words “concurrent” and “parallel” are often used interchangeably, however they
are distinct. Concurrent execution is the temporal behaviour of the N-client I-server
modcl where only one client is served at any given moment. It has a dual nature: it is
sequential in a small 1ime scale, but simultancous in large time scale. In our context the
processor works as a server and a process or a thread works as a client. For facilitating
expression of concurvent programs, number of concurrent languages are available
including Ada, concurrent pascal, Modula-2 znd concurrent PROLOG.

Parallel execution is associated with the N-client N-server model. It allows the servicing
of more than one client at the same time as the number of servers is more than one. For
(acilitating expression of parallel programs, a number of parallel languages are availablc
including: Occani-2, Parallel C and strand-88.

- mep e——— e

s orzT——

T =




Parallel execution does not need explicit concurrency in the language. Parallelism can be

- achieved by the underlying hardware. Similarly, we can have concurrency in a language
without parallel exccution. This is the case when a program is executed on a single
processor.

4) Granularity refers to the amount of computation done in paraliel relative to the size of
the whole program. In parallel computing, granularity is a qualitative measure of the ratio
of computation to communication. According to granularity of the system, parallel-
processing systems can be divided into (wo groups: fine-grain systems and coarse-grain
systems. In fine-grained systems parallel parts are relatively small and which means more
frequent communication. Fine-grain processings have low computation to communication
ratio and require high communication overhead. In coarse grained systems parallel paris
are relatively large and which means more compulation and less communication. If
granularity is too fine it is possible (hat the overhead required for cormunications and
synchronization between (asks takes longer than the computation. On the other hand, in
coarse-grain parallel systems, relatively large amounts of computational work is done.
Coarse-grain processings have high computation to communication ratio and imply more
opportunily for performance increase,

Check Your Progress 2
1} Parallel computing has the following advantages over sequential computing:

1)  Saves time
i) Solves larger problems.
iln) Large pool of memory,

2) Levels of parallel processing:
We can have parallel processing at four levels.

[) Instruction Level: Most processors have several execution units and can execute
several instructions (usuatly machine [evel) at the same time. Good compilers can
reorder instructions (o maximize instruction throughput. Ofien the processor itself can
de this. Modem processors even parallelize execution of micro-steps of instruclions
within the same pipe.

ii) Loop Level: Here. consecutive loop iteratioi:s are condidates for paralle] execution.
However, data between subsequant jicrations may restrict parallel execution of
instructions al loop fevel. There is a lot of scope or parallel execution at loop level.

it} Procedure Level: Here parallelism is available in the form of paralle! executable
procedures. Here the design of the algorithm plays a major role. For example each
thread in Java can be spawned 1o run a functica or methiod.

iv) Program Level: This is usually the responsibility of the operating sysiem, which runs
processes concurrently. Different programs are obvious!: independent of each other.
So parallelism can be extracted by the operating systern ar this level.

Introduction te
Parallel Computing

25

Ea L LEEN




" Elements of Parallel
Computing and
Avchiteciure

Check Your Progress 3

1) An alternative to the von Neumann model of computation is datallow computation
model. In a dataflow model control is tied to the flow of data. The order of instructions in
the program plays no role in the execution erder. Computations take place when all the
Jata items needed for iniliating execution of an instruction are available. Data is in
continuous flow independent of reusable memory cells and its availability initiates
execntion. Since data may be available for several instructions at the same time, these
instructions can be executed in parallel.

The potential for parallel computation, is reflected by the dawaflow graph, the nodes of
which are the idstruciions of the program and the edges of which represent data
dependency between instructions. The dataflow graph for the instruction 2= w x (x+y} is
shown Lelow,

z
z=wx(xTy)

Figure 4: DFG for z= w ¥ (xty)

Data moves on the edges of the graph in the form of data tokens, which contain data
val...s znd status information. The asynchronous parallel computation is determined by
the firing rule, whicl: is expressed by means of tokens: a node of DFG can {ire if there is a
token on each input edge. If a node fires, it consumes the input tokens, performs the
associated operation and places result tokens on the output edge. Graph nodes can be
single instructions or tasks comprising multiple instructions.

2} Please refer Section 1.9,

N S T

e

T -




UNIT 2 CLASSIFICATION OF PARALLEL
COMPUTERS

Structure Page Nos.
2.0 Introduction 27
2.1 QObjectives 27
2.2 Types of Classification 28
2.3 Flynn’s Classification 28

2.3.1 Instruction Cycle
2.3.2 lInstruction Stream and Data Stream
2.3.3 Flynn’s Classification
2.4 Handler's Classification 33
2.5  Structural Classification 34
2.5.1 Shared Memory SystenvTightly Coupled System
2.5.1.1 Unilorm Mcmory Access Modcl
2.5.1.2 Nan-Uniform Memory Access Model
2.5,1.3 Cache-only Memory Archileciure Model
2.5.2 Looscly Coupled Systems
2.6 Classification Based on Grain Size Y
2.6.1 Parallelism Conditions
2.6.2 Bernstein Conditions for Detection of Parallelism
2.6.3 Parallelism Based on Grain Size
2.7 Summary 44
2.8 Solutions/ Answers 44

2.0 INTRODUCTION

Parallel computers are those that emphasize the parallel processing between the
operations in some way. In the previous unit, all the basic terms ol paiallel processing and
computation have been defined. Parallel compuicrs can be characterized based on the data
and instruction streams {orming various types of computer organisations. They can zlso
be classified based on the computer structure, e.g. mwstiple processors having separale
memory or one shared global memory. Parallel processing levels can also be defined
“basec on the size of instructions in a program catled grain size. Thus, parallel compute:
can be classified based on various criteria. This ar’* ¢iszusses all types of classification o7
parallel computers based on the above mentioncd criteria.

2.1 OBJECTIVES

After going through this unit, you should be able to

o explain the various criteria on which classification of parallel computers are based;

¢ discuss the Flynn’s classification based on instruction and data streams;

« describe the Structural classification based on different computer crganisations;

e explain the Handler's ciassification based on three distiner levels of computer:
Processor contral unit (PCU), Arithmetic logic unit (ALL), Bit-level circuit (BLC),
and

e describe the sub-tasks or instructions of a program thai can be exccuied in parallel
based on the grain size.

T SRTTTTTAN I I T

T TTTTITT R e




lLlements of Parallel
Compuring and
Architecture

2.2 TYPES OF CLASSIFICATION

The following classification of parallel computers have been identified:

1} Classification based on the instruction and data streams
2) Classification based on the siructure -of computers

3) Classification based on how the memory is accessed

4) Classification based on grain size

All these classification schemes are discussed in subsequent sections.

i B Pararar § Saria EeTEarb

2.3 FLYNN’S CLASSIFICATION

This classification was first studied and proposed by iMichael Flynn in 1972. Flynn did
not consider the machine architecture for classification of parallel compulers; he
introduced the concept of instruction and duata streams for categorizing of computers. All
the computers classified by Flynn are not paraliel computers, but to grasp tlie concept of
parallel computers, it is necessary to understand all types of Flynn’s classification. Since,
this classificalion is based on instruction and data streams, first we need to undersiand :
how the instruction cycle works. )

2.3.1 Instruciion Cycle

The instruction cycle consists of a sequence of steps needed for the exccution of an
instruction in a program. A typical instruction in 2 program is composed of twe parts:
Opcode and Operand. The Operand part specilies the data on which the specified
operation is to be done. (See Figure I). The Operand part is divided into two parts:
addressing mode and the Operand. The addressing mode specifies the method of
determining the addresses of the actual data on which the operation is to be performed and
the operand part is used as an argunient by the method in determining the actual address.

0 3 6 15
i

4—————— Operand > 5-
4—0pcralion—.-l< Dl'( P Operand Address » ;

Code Addressing mxle

Figure 1: Opcode and Operand

The control unit of the CPU of the computer fetches instructions in the program, one at a
time. The fetched Instruction is then deceded by the decoder which is a part of the control
unit and the processor executes the decoded instructions. The result of execulion is
temporarily stored-in Memory Bufter Register (MBR) (also cailed Memory Data
Repister). The normai execution steps are shown in Figure 2.




Calculate the address of
instruction 10 be executed

|

I Felch the instruction —l

Decode the instruclion

!

Calculale the operand
address

v

Feich the operands

¥

Execute Lhe instructians

v

Slore the resulis

YES

Are there
More
Instructions?

Figure 2: Instruction execuiion sieps

2,3.2 Instruction Stream and Data Stream

The term ‘stream’ refers to a sequence or flow of either instructions or data operated on
by the computer. In the comnplete cycle of instruction execution, a flow of instruclions
from main memory to the CPU is éstablished. This flow of instructions is called
instruction stream. Similarly, there is a flow of operands between processor and memory
bi-directionally. This flow of operands is callcd data stream. These two types of streams

are shown in Figure 3.
Instruction
stream

" CPU Main Memory

Data stream- .,

Figure 3: Thstruction end data stream

Classification of
Parallel Computers

29

By

ri - i i |

LT —

e




Elements of Paralel Thus, it can be said that the sequence of instructions executed by CPU forms the

(E""I:I_Jutmg and Instruction sireams and sequence of data (operands) required for execution of instructions
' :

Arehitectire form the Data streams.

| 2.3.3 Flynn’s Classification

Flynn’s classification ts based on multiplicity of instruction streams and data sireams
observed by the CPU during program cxecution. Let I;and D, are minirmum number of
streams flowing at any point in the execution, then the computer organisation can be
categorized as follows:

1) Single Instruction and Single Data stream (SISD)

In this organisation, sequential execution of instructions is performed by onec CPU .
containing a single processing element (PE), t.e., ALU under one control unit as shown in *
Figure 4. Therefore, SISD machines are convenlional serial computers that process only
one siream of instructions and one stream of data. This type of computer organisation is
depicted in the diagram:

L=D,=1
- L D, Main
b - 1, >
Control Unil ' ALU Memory
s )
I

Figure 4: $1SD Organisation

Examples of SISD machines include:

*  CDC 6600 which is unpipelined but has multiple functional units.
*  CDC 7600 which has a pipelincd arithmetic unit.

*  Amdhal 470/6 which has pipelined instruction processing.

¢ Cray-1 which supports vector ﬁrocessing.

2) Single Instruction and Multiple Data stream (SIMD}

In this organisation, multiple processing elements work under the control of 2 single
control unit. It has one instruction and multiple data stream. All the processing elements
of this organization receive the same instruction broadcast from the CU. Main memory
can also be divided into modules for generating multiple data sireams acting as a
distributed memory as shown in Figure 3. Therefore, all the processing elements
simultaneously execute the same instruction and are said to be lock-stepped' together.
Each processor takes the data from its own nmemory and hence it has on distinct data
streams. (Some systems also provide a shared global memory for communications.) Every
processor musl be allowed to complete its instruction before the next instruction is taken
for execution. Thus, the execution of instructions is synchronous. Examples of SIMD
organisation are ILLIAC-1V, PEPE, BSP, STARAN, MPP, DAP and the Connection
Machine (CM-1).

This type of compuler organisation is denoted as:

30




Classification of
Paruilel Computers

D,>1
M} PE PELLIN
: MM,
Control lDS;
Unt L PE; 4 MM,
DS,
—>| PE, 44— MM, .

Yy

Figure 5: SIMD Orgarisalion

i} " Multiple Instruction and Single Data stream (MISD)

n this organization, multiple processing clements are organised under the controi of
nultiple contro! units. Each control unit is handling one instruction strcam and processed
hrough its corresponding processing element. But each processing element is processing
only a single data stream at a time. Therefore, for handling multiple instruction streams
and single data stream, multiple control units and inuitiplé processing elements are
organised in this classification. All processing elerents are interacting with the common
shared memory for the organisation of single data strzam as shown in Figure 6. The only
Enown example of a computer capable of MISD operation is the C.mmp built by
Camegie-Melion University.

This type of computer orgarisaiion is denoted as:

1>
D,=1
o i3, ) Ds_ |
‘t—b‘- cu, > g
N IS, ‘LDS E
s 7 PE: { Masn Memory
; s v Ds |
cu, > e, I
- | ps__ 4 N
'.( ' IS; :
h IS,

Figure 6: MISD} D rg:‘.nisatilan

This ¢lzasification is not £ puia: in commercial machines as the concept of single data
sirgar . pxecuting on mukiiple piocessors is rarely applicd. Bui for the specialized
appi..mirons, MISD grganisation can be very helpful. For exzmple, Reul time computers
neca i he izult i lerant where sevesal processors execute the same data for producing the
reduncart data. This is also known as N- version programming. All these redundant daza

F e

AT ITINS




Elements of Parallel
Compuling and
Archilecture

are compared as results which should be same; otherwise faulty unit is replaced. Thus
MISD machines can be applied to fault tolerant real time computers.

4) Multiple Instruction and Multiple Data stream {(MIVD)

In this organization, multiple processing elements and multiple control units are organized
as in MISD. But the difference is that now in this organization multiple instruction
streams operate on multiple data streams . Therefore, for handjing multipfe instruction
streams, multiple control units and multiple processing elements are organized such that
multiple processing clements are handling multiple data sireamms from the Main memory
as shown in Figure 7. The processors work on their own data with their own instructions.
Tasks executed by different processors can start or {inish at different times. They are not

- lock-stepped, as in SIMD computers, but run asynchronously. This classification actually

recopnizes the paratlel computer. That means in the real sense MIMD organisation is said
to be a Parallel computer. All multiprocessor systems fall under this classification.
Examples include; C.mmp, Burroughs D825, Cray-2, S1, Cray X-MP, HEP, Pluribus,
IBM 370/168 MP, Univac 1100/80, Tandem/16, IBM 3081/3084, C.m*, BBN Butterfly,
Meiko Computing Surface (CS-1), FPS T/40000, iPSC.

This type of computer organisation is denoted as:

L>1
D,> 1
AW 1S DS
cu :
' < p PE; |g > MM,
s, ¥
DS, MM
cU, [——»| PE, |¢—— p :

CU, |— PE

{5,
Figure 7: MIMD Organisation

Of the classifications discussed above, MIMD organization is the most popular for a
parallel computer. In the real sense, parallel computers execute the instructions in MIMD
mode.

Check Your Progress 1

1} What are various criteria for classification of parallel computers?

......................................................................................................

2% Iletoe instruclicn and data streams,

It

=




Classification of
Parallel Computers

3) State whether True or False for the following:
a) SISD computers can be characterized as 1, > | and D, > |
b) SIMD computers can be characterized as I, > 1 and D, =1
¢). MISD compulers can be characterized as 1,=1 and D, =1
d) MIMD computers can be characterized as I,> 1 and D, > |

2.4 HANDLER’S CLASSIFICATION

In 1977, Wolfgang Handler proposed an elaborate notation for expressing the pipelining
and paralielism of compulers. Handler's classification addresses the computer at three
distinct levels:

» Processor control unit (PCU),
+ Arithmetic logic unit {ALU),
+ Bit-level circuit (BLC).

The PCU correspaonds to a processor or CPU, the ALU corresponds te a functional unit or
a processmg element and the BLC corresponds to the logic circuit needed to perform one-
bit operations in the ALU.

Handler's classification uses the following three pairs of integers to describe a computer:
Computer=(p*p,a*a,b*b")
Where p = number of PCUs
Where p'= number of PCUs that can be pipelined
Where a = number of ALUs controlled by each PCU
Where a= number of ALUs that can be pipelined

Where b = number of bits in ALU or processing element (PE} word
Whére b'= number of pipeline segments on all ALUs or in a single PE

The following rules and operators are used to show the relationship between various
elements of thé computer:

¢ ‘The ™ operator is used 1o indicate that the units are pipelined or macro-pipelined
with a stream of data running through ali the units.

o The '+ operator is used to indicate that the units are not pipelined but work on
independent streams of data.

¢ The 'V operator is used to indicate that the computer*hardware can work in one of
several modes.

¢ The ™ symbol is used to indicate a range of values for any one of the parameters.

*» Peripheral processors are shown before the main processor using another three pairs
of integers. If the value of the second element of any pair is 1, it may omitted for
brevity.

Handier's classification is best explained by showing how the rules and operators are used
10 classify several machines,

The CDC 6600 has a singfe main processor suppoyted by 10 1/O processors. One control
unit ceardinates one ALU with a 60-bit word length., The ALU has 10 functional units
which can be formed into a pipeline. The 10 peripheral /O processors may work in
parallel with each other and with the CPU. Each /O processor contains one 12-bit ALU.
The descripden for the 10 170 processers is:

|5 ]
L% )




Elements of Paralle?
Computing and -
Architeciure

34

CDC 66001/0 = (10, 1, 12)
The description for the main processor is:
CDC 6600main=(l, 1 * 10, 60)

The main processor and the /O processcrs can be regarded as forming a macro-pipeline
so the " operator is used to combine the two structures:’

CDC 6600 = (I/O processors) * (central processor = (10, 1, 12)* (1, | * 10, 60)

Texas Instrument's Advanced Scientific Computer (ASC) has one controller coordinating
four arithmetic units. Each arithmetic unit is an eight stage pipeline with 64-bil words.
Thus we have:

ASC =(1, 4, 64 * 8)

The Cray-1 is a 64-bit single processor computer whose ALU has twelve functional units,
eight of which can be chained tegether to from a pipeline. Different functional units have
from 1 to 14 segments, which can also be pipelined. Handler's description of the Cray-1
is:

Cray-1= (1,12*8,64* (1 ~ 14))

Another sample system is Camnegie-Mellon University's C.mmp multiprocessor. This
system was designed to facilitate research into parallel computer architectures and
cons2quently can be extensively recenfigured. The system consists of 16 PDP-11
'minicomputers' (which have a 16-bit word length), interconnected by a crossbar’
switching network. Normally, the C.mmp operates in MIMD mode for which the
description is (16, 1, 16). It can also operate in SIMD maode, where all the processors are
coordinated by a single master controller. The SIMD mode description is (1, 16, 16).
Finally, the system can be rearranged to operate in MISD mode. Here the processors are
arranged in a chain with a single stream of data passing through ali of them. The MISD -
modes description is {{ * 16, I, 16). The ‘v' operator is used to combine descriptions of
the same piece of hardware operating in differing modes. Thus, Handler's description for
the complete C.mmp is:

C.mmp = (16, 1, 16) v (1, 16, 16) v (I * 16, 1, 16)

The " and '+' operators are used to combine several separate pieces of hardware. The 'v'
operator is of a different form to the other two in that it is used to combine the different
operating modes of a single piece of hardware.

While Flynn's classification is easy to use, Handler's classification is cumbersome. The
direct use of numbers in the nomenclature of Handler's classification’s makes it much
more abstract and hence difficult. Handler's classification is highly geared towards the
description of pipelines and chains. While it is well able to describe the parallelism in a
single precessor, the variety of paralielism in multiprocessor computers is not addressed
well,

2.5 STRUCTURAL CLASSIFICATION

Flynn’s classification discusses the behavioural concept and does not take into
consideration the computer’s structure. Parallel computers can be classified based on their
structure also, which is discussed below and shown in Figure 8.

As we have seen, a parallel computer (MIMD) can be characterised as a set of multiple
processors and shared memory or metmory modules communicating via an
intercennection network. When multiprocessors communicate through the global shared
memory modules then this organisation is called Shared memvory computer or Tightly

b et

an § Bt ]

B B




coupled systems as shown in Figure 9. Similarly when every processor in a

multiprocessor system, has ils own local memory and the processors communicate via
messages (ransmitted between their [ocal memories, then this organisation is called
Distributed mentory compufer or Loosely coupled system as shown in Figure 10. Figures

9 and 70 show the simplified diagrams of both organisations.

The processors and memory in both organisations are interconnected via an

interconnection network. This interconnection network nay be in different forms like
crossbar switch, multistage network, elc. which will be discussed in the next unit.

Struciure of Parzallel

Computers
Tightly Loosely
Coupled Coupled
systems systems

Fipure 8: Structural classification

Shared
Memory

P
Tuterconnection
P, network
P,
Figure 9: Tightly coupled system
LM | | P,
Interconnection
IM [ P network
LM [ | Pp

Figure 1€ Loosely covpied system

2.5.1 Shared Memory System / Tightly Coupled System

Shared memory multiprocessors have the following characteristich:

* Every processor communicates through a shared global memory.

Classification of .

Parallel Computers

35

TV I

-




Elecments of Parallcl
Computing and
Architecture

36

For high speed real time processing, these systems arc preferable as their throughput
is high as compared to loosely coupled systems.

In tightly coupled system’organization, multiple processors share a global main memory,
which may have many modules as shown in detailed Figure 1. The processors have also
access to IO devices. The inter- communication belween processors, memory, and other
devices are implemented through varicus interconnection networks, which are discussed

below.
Intermupt Signal Interconnection I{O
Network Channels
A A
> D
1/O- Processor
Interconnection
P Py P, Network > D,
P
v > D,
Processor-Memory
Interconnection Network
MI MZ Mn
Shared
Memory
Figure 11: Tightly coupled sysicm organization
i) Processor-Memory Inferconnection Network (PMIN)

This is a switch that connects various processors to different memory modules.
Connecting every processor to every memory module in a single stage while the
crossbar switch may become complex. Therefore, multistage network can be adopted.
There can be a conflict among processors such that they attempt to access the same
memory modules. This conflict is also resolved by PMIN.

Input-Output-Processor Interconnection Network (IOPIN)

This interconnection network is used for communication between processors and /O
channels. All processors communicate with an 1/0Q channel to interact with an 1/Q
device with the prior permission of [OPIN.

iii} Interrupt Signal Interconnection Network (ISIN)

When a processor wants to send an interruption to another processor, then this
interrupt first goes to ISIN, through which it is passed to the destination processor. In
this way, synchronisation betiween processor is implemented by ISIN. Moreover, in
case of failure of one processor, ISIN can broadcast the message to other processors
about its faifure.

Since, every reference to the memory in tightly coupled systems is via interconnection
network, there is a delay in executing the instructions. To reduce this delay, every

o L et bty - i

1vn




processor may use cache memory for the frequent referénces made by the processor as
shown in Figure /2.

P P Pa

Interconnection network

M, M, M,

Figure 12: Tightly coupled systems with cache memory

The shared memory multiprocessor systems can further be divided into three modes
which are based on the manner in which shared memory is accessed. These modes are

shown in Figure 13 and are discusscd below.

Tightly coupled systems

. Uniform mewory Mon uniform Cache-enly
cezess model MEMOTy access memory
(UMA) moedel architecture

(NUMA) motel {COMA}

Fipure 13: Modes of Tightly coupled systems
2.5.1.1 Uniform Menory Access Model (UMA)

In this mode}, main memory is uniformly shared by all processors in multiprocessor
systems and eacih processor has equal access time to shared memory. This model is used
for time-sharing applicalions in @ multt user environment.

2.5.1.2 Non-Uniform Memory Access Madel (NUMA)

In shared memory mulliprocessor systems, local- memories ¢an be connected with every
processcr. The zollection of all Yocal memories forn the global memory being shared. In
thi= wey. global memary is distribuizd to all the processors. tn this case, the access o a
lecoi memory is unitorm for its corresponding processor as it is attached to the local
menwory. Butifone _efercnze is 10 the local mcmory of soine other remote processor, then

Classification uf
Paralle] Compuicrs

-t | tarie petrial aeam i

v




Elements of Parallel
Coaputing and
Architecture

2

the access is not uniform. It depends on the location of the memory. Thus, all memory
waords are not accessed uniformly.

2,5.1.3 Cache-Only Memory Access Model (COMA)

As we have discussed carlier, shared memory multiprocessor systems may use cache
memories with every processor for reducing the execution time of an instruction. Thus in
NUMA model, if we use cache memorics instead of local memories, then it becomes
COMA model. The collection of cache memories form a global memory space. The
remcte cache access is also non-uniform in this model.

2.5.2 Loosely Coupled Systems

These systems do not share the global memory because shared memory concept gives rise
to the problem of memory conflicts, wiich in tum slows down the execution of
instructions. Therefore, to alleviate this problem, each processor in loosely coupled
systems is having a large local memory (LM), which is not shared by any other processor.
Thus, such : ystems have multiple processors with their own local memory and a set of
/O devices. This set of processor, memery and 1O devices makes a computer system.
Therefore, thesc systems are also called muiti-computer systems. These computer systems
are connected together via message passing interconnection network through which
processes cormununicate by passing messages to one another. Since every computer system
or node in multicomputer systems has a separate memory, they are called distributed
multicomputer systems. These are also called loosely coupled systems, meaning that
nodes have little coupling between them as shown in Figure 4.

LM — P ]

Node Message
passing
— | Interconnection

LM P, network

Node
- ul _
LM [] P,
LM: local memory

Node Py, P.: processing elements

Figurc 14; Loosély coupled system organisation

Since local memories are accessible to the attached processor only, no processor can
access remote memory. Therefore, these systems are also known as no-remote memory
access (NORMA) systems. Message passing interconnection network provides consection
to every node and inter-node communication with message depends on the type of
interconnection network. For example, interconnection network for a non-hierarchical
system can be shared bus.

Check Your Progress 2

1) What are the various rules and operators used in Handler’s classification for various
machine types?




2) What is the base for structural classification of parallel computers? Classification of
- Parallel Conputers

.......................................................................................................

2.6 CLASSIFICATION BASED ON GRAIN SIZE

This classificalion is based on recognizing the paratlelism ina program to be execuied on
2 multiprocessor system. The idea is (o identify the sub-tasks or instructions in a program
that can be executed in parallel. For example, there are 3 statements in a program and
statements S1 and S2 can be exchanged. That means, these are not sequential as shown in
Figure 15. Then S1 and S2 can be executed in parallel.

Program Flow l l l
St 52 I
v v y

$2 S 8 S
L 4 7

! K 3’

Figure 15: Parailel execution for §1 and §2

But it is not sufficient to check for the parallelist between stalements or processes in a
program. The decision of parallelisnr also dependson the following faciors:

*  Number and types of processors available, i.=., architeciural features of host
computer

*  Memory organisation

°  Dependency &r data, control and resources

2.6.1 Parallelism Conditions .

As discussed above, paraliel computing requires that the segments to be execuled in

parailel must be indepandent of each other. So, before excéuting parallelism, 2ll the

conditions of parallelism between the segments must be analyzed. In this s<ction, we
discuss th:ee types of dependency conditions between the segments

(showa in Figure 16).

Al
2

| Frarr paae i

TTTTTITIIITIY Y

o




Efements of Parallct
Computing and
Architeture

40

Dependency
conditicns
Data Control Resource
Dependency Dependency Dependency

Figure 16: Dependency relations amung the segments for parallelism

Data Dependency: It refers to the situation in which two or more instructions share same
data. i i.¢ insiructions in a program can be arranged based on the relationship of data
dependency; this means how two instructions or seginents are data dependent on each
other. The following types of data depcndencies arc recognised:

) Flow Dependence : if instruction [, follows 1, anc output of 1; becomes input of
I, then L1 is said to be flow dependent on 1.

i) Anlidependence : When instruction I, follows Iy such that output of I; overlaps
with the input of 1; on the same dala.

ti} Qutput dependence : When output of the two instructions I, and |; overlap on
the same data, the instructions are said to be output dependent.

iv) 1/Q dependence : When read and write operations by two instructions are
invoked on the same file, it is a situation of [/O dependence.

Consider the following program instructions:

Iia=b
e=a+d
Iiya=¢

In this program segment instructions I, and I, are Flow dependent because variable a is
generated by I, as output and used by I, as input. Instructions 1, and 1; are Antidependent

‘because variable a is generated by I but used by I, and in sequence |, comes first. [ is

flow dependent on 1, because of variable c. Instructions I; and T; are Output dependent
because variable a is generated by both instructions.

Control Dependence: Instructions or segments in a program may contain control
structures. Therefore, dependency among the statements can be in control structures also.
But the order of execution in control structures is not known before the run time. Thus,
controi structures dependency among the instructions must be analyzed carefully. For
example, the successive iterations in the following contro! structure are dependent on one

another.

For(i=1;l<=n;i++)

{ if(x[i-1]1=0)
x[i}=0
else
x[i]=1;
}

Resource Dependence : The parallelism between the instructions may also be affected
due to the shared resources. If two instructions are using the same shared resource then it
is a resource dependency condition. For example, floating point units or regisiers are
shared, and this is known as ALU dependency. When memory is being shared, then it is
call=d Srorage dependency. -

] T T T E




2.6.2 Bernstein Conditions for Detection of Parallelism

FFor execution of instructions or block of instructions in parallel, it should be ensured that
the inswructions are mdependent of each other. These instructions can be data dependent /
control dependent / resource dependent on each other. Here we consider only data
dependency among the statements for taking decisions of parallel execution. :.J.
Bernstein has elaborated the work of data dependency and derived some conditions based
on which we can decide the parallelism of instructions or processes.

Bernstein conditions are based on the following two sets of variables:

i)  The Read set or input set R, that consists of memory locations read by the statement

of instruction 1,
i)  The Write sel or oulput set W that consists of memory locations written into by
instruction 1.

The sets R, and W, are not disjoint as the same locations are used for reading and writing
b)’ S|

The followir.z arec Bernstein Parallelism conditions which are used 1o determine whether
statements are parallel or not:

1)  Locations in R; from which S, reads and the locations W; onto which S; writes
must be mutually exclusive. That means S, does not read from any memory
location ento which S; writes. It can be denoted as:

RinW=¢

2)  Similarly, locations in R; from which S;reads and the locations W; onto which 5,
writes must be mutually exclusive. That means S; docs not read from any memory

) location onto which S, writes. It can be denoted as: R W =¢

3} The memory locations W, and W, onto which §; and S; write, should not be read by
5, and S, That means R, and R; should be independent of Wyand W It can be -

denoted as 1 WiNW,=¢

‘Fo show the operation of Bemnstein’s conditions, consider the following instructions of
sequential program:

T:x=(+b)/(a*b)

12:y=(b+c)*d

13:z=x"+(a*c)

MNow, e read set and write set of 11, 12 and 13 are a5 follows:

R,= {a,b} W= {x}
R;= {b,c.d} Wo= {51
Ry={x,a,e} Wi={z;}
Noaw et us find out whether I; and [, are parallel or not
R|ﬁW1=¢
R:ﬁ‘!VI:¢
WinWo=d

That means I and |, arc independent of each other.
Simiterly lor I, |1 1,

RyWa=a

R0V =¢

W,AW=d
Hence 17 and s are not independent of each other.
For I Il 1s.

Romvs=a

i =

Classification of

Parallel Computers

4o

_—

AT TSI

o TEwSS T




Elements of Parallel
Computing and
Acrchilecture

WJﬁW;=¢ .
Hence, 1, and I; are independent of each other.
Thus, I and [ I, and I are parallelizable but I, and ], are not.

2.6.3 Parallelism based on Grain size

Grain size: Grain size or Granularity is a measure which determines how much
computaljon is involved in a process. Grain size is determined by counting the number of
instructions in a program segment. The following types of grain sizes have been identified
(shown in Figure 17} :

Types of Grain sizes

Fine Grain tedium Coarse
Grain Grain

Figure 17: Types of Grain sizes

1} _Fine Grain: This type contains approximately less than 20 instructions.

2) Medium Grain: This type contains approximately less than 500 instructions.

3} Coarse Grain: This type contains approximately greater than or equal to one
thousand instructions.

Based on these grain sizes, parallelism can be classified at various levels in a program.
These parallelism levels form a hicrarchy according to which, lower the level, the finer is
the granularity of the process. The degree of parallelism decreases with increase in level.
Every level according to a grain size demands communication and scheduling overhead.
Following are the parallelism levels (shown in Figure [8):

Pamallclism Levels

Degree of
Parallclism
Level 1 Instruction Level A
Lewvel 2
Loop Level
Level 3
Procedure or SubProgram
Level
Level 4
Program Level

Figurc 18: Paraliclism Levels

ramm-u | Sk i Sa——

B S




2)

3)

4)

Instruction level: This is the lowest level and the degree of parallelism is highest at
this level. The fine grain size is used at instruction or statement level as only few
instructions form the grain size here. The fine grain size may vary according to the
type of the program. For example, for scientific applications, the instruction level
prain size may be higher. As the higher degree of parallelism can be achieved at this
level, the overhead for a programmer will be more.

Loop Level : This is another level of parallelism where iterative loop instructions can
be parallelized. Firie grain size is used at this level also. Simple loops in a program are
easy to paralielize whereas the recursive loops are difficult. This type of parallelism
can be achieved through the compilers.

Procedure or SubProgram Level: This level consists of procedures, subroutines or
subprograms. Mediumn grain size is used at this level containing some thousands of
instructions in a procedure. Multiprogramming is implemented at this level,
Parallelism at this level has been exploited by programmers but not through
compilers. Parallelism through compilers has not been achieved at the medium and

coarse grain size.

Program Leve!: It is the last level consisting of independent programs for

-parailelism. Coarse grain size is used at this level containing tens of thousands of

instructions. Time sharing is achieved at this level of parallelism. Parallelism at this
level has been exploiled through the operating system.

The relation between grain sizes and paratlelism Tevels has been shown in Zable 1.

Tazble 1: Relation betwecn grain sizes and parallelism

Grain Size Parailelism Level

Fine Grain Instruction or Loop Level

Medium Grain Procedurc or SubProgram Level
_ Coarse Grain Program Level

Coarse grain paraliclism is traditionally implemented in tightly coupled or shared memory
multiprocessors like the Cray Y-MP. Loosély coupled systems arg used lo cxecute '
medium grain program segments. Fine grain parallelism has been observed in SIMD
organization of complfers. -

Check Your Progress 3

[

1}

2)

Dectennine the dependency relations among the fellowing instruchions:
[1:a=btc;
12: b = a+d;
13:e=a/f}

Use Bernstein’s cenditions for determining the maximum parallelism between the
instructions in the lollowing scgment:

SEX=Y+2Z
522 =U+V
SR =85+¥
S4:Z = X+R
S5 Q= M+Z

Classification of
Parallel Computers

43

P 1 i et

i =




Elemens of Parallcl
Compuling and
Architecture

41

2.7 SUMMARY

in section 2.3, we discussed Flynn’s Classtfication of computers. This classification
scheme was suggested by Michael Ftynn in 1972 and is based on the concepts of data
stream and instruction streamn. Next, 1 = dizcuss Handler's classification scheme in section
2.4. This classification scheme, suggested by Wolfgang Handler in 1977, addresses the
computers at the following three distinct fevels:

*  Processor Control Unit (PCU)

*  Arithmetic Logic Unit (ALU)

" Bit-Level Circuit (BLC)

In section 2.5, in context of structural classification of computers, a number of new
concepts are introduced and discussed. The concepts discussed include: Tizhtly Coupled
(or shared memory) systems, loosely coupled (or distributed memory) systems. In the
case of distributed memory systems, differcnt types of Processor Interconnectinn
Networks (PIN) are discussed. Another classification scheme based on the concept of
grain size is discusscd in seclion 2.6.

2.8 SOLUTIONS / ANSWERS

Check Your Progress 1
1) The following criteria have been identified for classifying parallel computers:

* Classification based on instruction and data streams
¢ Classificalton based en the structure of computers

¢ (Classification based on how the memory is accessed
» Classification based on grain size

2) The flow of instruclions from the main memory to the CPU is called instruction
stream and a flow of operands between processor and memory bi-directionally is
known as data stream.

3) aF
b) F
c}F
T

Check Your Progress 2

1} The following rules and operators are used to show the relationship between various

elements of the computer:
¢ The ' operator is used Lo indicate that the units are pipclined or macro-pipelined
with a stream of data running through all the units.

T T I T LIS TTITTI TN




¢ The “+ operator is used to indicate that the units are not pipelined bul work on Classification of
independent sireams of data. Parallel Computers
= The 'v' operator is used lo indicate that the computer hardware can work in one of
several modes.
s The '~ symbol is used to indicate a range of values for any one of the parameters.
s Peripheral processors are shown before the main processor using another three
pairs of integers. If the value of the second element of any pair is 1, it may be
omitted for brevity.
The base for structurat classification is multiple processors with memory being
globally shared between processors or all the processors have their focal copy of the
memory. :

-When multiprocessors communicate through the global shared memory modules then

this organization - .

is called shared memory computer or tightly coupled systems . When every processor
in a multiprocessor system, has its own focal memory and the processors
communicalc via messages {ransmitted between their local memories, then this
organization is called distributed memory computer or [oosely coupled system.

In UMA, cach processor has equal access time to shared memory. In NUMA, local
memories are connected with every processor and one reference to a local memory of
the remote processor is not uniform. In COMA, all local memories of NUMA are
replaced with cache memories. :

Check Your Progress 3

1)

2)

3)

Instructions 11 and 12 are both flow dependent and anl{dependcnl both. Instruction {2
and 13 are output dependent and instructions 11 and I3 are independent.

R = {Y,Z} W= (X}
R,= {U,V} W,= (Z}
Ri= {S,V) Wy= (R}
Ry= {X,R)} W= {Z)
Rs= {M.Z} Ws= {Q}

Thus, St, S3 and S5 and $2 & S4 are parzllelizable.

This is the lowest level and the degree of parallelism is highest at this level. The fine
grain size is used at instruction or statement level as only few insiructions form the
grain size here. The fine grain size may vary according to the type of the program.
For example, for scientific applications, the instruction level grain size may be
higher. The loops As the higher degree of paralielism can be achieved at this level,
the overhead for a programmer will be more.

45

) Farie el




hé

UNIT 3 INTERCONNECTION NETWORK

Sirtciure ~ Page Nos.
3.0 introduction 46
3.1 Objectives 47
3.2 Network Properties 47
3.3 Design issues of Interconnection Network 49
3.4 Various Interconnection Nelworks 50
3.5 Concept of Permutation Network 55
3.6 Performance Metrics 63
3.7 Summary 63
3.8 Solution /Answers 63

3.0 INTRODUCTION

This unit discusses the properties and types of interconnection networks. In
multiprocessor systems, there are multiple processing clements, muitiple /O modules,
and multiple memory modules. Each processor can access any of the memory modules

"and any of the {/C units. The connectivity between these is performed by interconnection

networks.

Thus, an interconnection network is used for 2xchanging data between two processors ina
multistage network. Memory bottleneck is a basic shortcoming of Yon Newman
architecture. In case of multiprocessor systems, the performance will be severely ailected
in case the dala exchange between processors is delayed. The multiprocessor system has
one global shared memory and each processor has a smail local memory. The processors
can access data from memory associaled with another processor or from shared memory.
using an interconnection network. Thus, interconnection networks play a central role in
determining the overall performance of the multiprocessor.systems. The interconnection
neiworks are like customary network systems consisting of nodes and edges. The nodes
are switches having few input and few output (say n input and m output} lines.

Depending upon the switch connection, the data is forwarded from mput lines to output
lines. The interconnection networl is placed between various devices in the
multiprocessor network.

The architecture of a general multiprocessor is shown in Figure 1. In the multiprocessor
syslems, these are multiple processor modules (each processor module consists ol a
processing element, small sized local memory and cache memory), shared global memory
and shared peripheral devices.

I Rt Bt e sl




PM,) C
'__..— | P| ‘: .
ol
PPIN PM; G,

| Pz
) )

PM,, Ch

P *‘I

Figure 1: General Mulli-Processor

PMIN = Processor to Memory Interconnection Network
PIOIN= Processor to I/0 Interconnection Network

PPIN = Processor to Processor Interconnection Network
PM = Processor Module

SMi,

Disk
PIOIN

Shared 1/0

devices

Module communicates wilh other modules shared memory and peripheral devices using

interconnection networks.

3.1 OBJECTIVES

After studying this unit, students will be able to understand

¢ discuss the meaning and needs of interconnection network;
-describe the role of interconnection network in a multiprocessor system;

enumerate the types of interconnection network;
explain the concept of permutation network;
discuss the various interconnectien networks, and

describe how matrix multiplication can be carried out on an interconnection network.

3.2 NETWORK PROPERTIES

The following properties are associated with interconnéction networks.

1) Topology: It indicates how the nodes a network are organised. Various topelogies arc

discussed in Section 3.5.

2) Network Diameter: 1t is the minimum distance between the farthest nodes ina
network. The distance is measured in terms of number of distinct hops between any

two nodes.

Interconncction
Network

47

Ei=) b Bl i il

[t S

Pamas v s, o




:ments of Parallel
mputing and

rehitecture

»

ot

3

8

9

10

Node degree: Number of edges connecled with a node is called node degree. 1f the
cdpe carries data froin the node, it is called out degree and if this carries data into the

. node it is callegd indepgew. .

Bisection Bandwidth: Number of edges required to be cut to divide a networ® into
two halves is called bisection bandwidth.

Latency: 1t is the delay in transferring the message between two nodes.

Network throughput: 1t is an indicative measure of the message carrying capacity of
a network. It is defined as the total number of messages the network can transfer per
unit time. To estimate the throughpu, the capacity of the network and the messages
number of actually carried by the network are calculated. Practically the throughput
is only a fraction of its capacity. '

In interconnection network the traffic flow between nodes may be nonuniform and it
may be possible that a certain pair of nodes-handles a disproportionately large
amount of traffic. These are called “hot spot.” The hot spot can behave as a
bottleneck and can degrade the performance of the entire nctwork.

Data Routing Functions: The data routing functions are the functions which when
execuled establishe the path between the source and the destination. in dynamic
interconnection networks there can be various jnterconnection patierns that can be
-generated from a single network. This is done by execuling various data routing
functions. Thiss data rowting operations are used for routing the data between
various processors. The data routing network can be static or dynamic static
network

Hardware Cost: It refers to the cost involved in the implementation of an
interconnection network. It iucludes the cost of switches, arbiler unit, connectors.
arbitration unit, and interface logic.

Blocking and Non-Blocking network: In non-blocking networks the route from any
free input node to any free outpui node can always be provided. Crossbar is ais
example of non-blocking network. In a blocking network simultancous route
establishment between a pair of nodes may not be possible. There may be situations
where blocking can occur. Blocking refers to the situation where one swilch is
required to establish more than cne connection simultancously and end-to-end gata
cannot be established cven if the input nodes and output nedes are free. [ The
~xamnpie of this is a blocking multistage network.

Static and Xynamic Intercomiection Network: In a static network the connection
belween input and output nodes is fixed and cannot be changed. Static
interconnection network cannot be reconfigured. The examples of this type of
network are linear array, ring, chordal ring, tree, star, fat tree, mesh, lours, systolic
arrays, and hypercube, This type of interconneclion networks are more suitable for
building computers where the communication pattem is more or less fixed, and can
be implemented with static connections. In dynamic network the interconnection
pattern between inpuls and outputs can be changed. The interconnection pattern can
be reconfigured according to the program demands. Here, instead of fixed
connections, the switches or arbiters are used. Examples of such networks are buses,
crossbar switches, and multistage networks. The dynamic networks are noraally
used in shared memory(SM) multiprocessors.

L

-- remn o

T rmeremn




11) Dimensionality of Interconnection Network: Dimensionality indicates the
arrangement of nades or processing elements in an interconnection network. 1n
single dimensional or linear network, nodes are connected in a linear fashion; in iwe
dimensional network the processing elements (PE’s) are arranged in a grid and in
cube network they are arranged in a three dimensional network.

[2) Broadcast and Multicast -In the broadcast intefconnection network, at one time one
node transmits the data and alt other nodes receive that data. Broadcast is one to al}
mapping. Itis the implementation achieved by SIMD compuler systems. Message
passing multi-computers also have broadcast networks. In multicast network many
nodes are simulianeously allowed to transmit the data and multiple nodes receive

the data.

3.3 DESIGN ISSUES OF INTERCONNECTION
NETWORK

The following are the issues, which should be considered while designing an
inlgrconneclion network.

it should be decided how many PE’s are there in the

{) Dimension and size of network:
eighburs,

network and what the dimensionality of Lhe network is i.c. with how many n
each processor is connected.
2) Symmetry of the network: 1t is important 1o consider whether the network is
symmetric or not i.e., whether all processors are connected with same number of
processing elements, or the processing elements of corners or edges have different

number of adjacent elemenis.

3) What is data communication strategy? Whether all processors are communicating
with each other in one lime unit synchronously or asynchronously on demand basis.

4) Message Size: What is message size? How much data a processor can send in one
time unit.

5) Start up time: What is the time required to initiate the communicalion process.

6) Data transfer time: How long does it take for a message (o reach to another
pracessor. Whether this time is a function of link distance between two processors or

it depends upon the number of nodes coming in between.

tic or dynamic: That means whether the

7} The interconnection network is sta _
d by algorithm or the algorithm

configuration of interconnection network is governe
allows flexibility in choosing the path.

Check Your Progress 1

1} Define the following terms related with interconnection networks.
i) Node degrces
ii) Dynamic connection network
ti1} Network diameter

Intcreonnection
Netwark

49

e § Sy Fhvaie bt

LR e |




ents of Parajlel 2) What is the sigﬁiﬁcance of a bisection bandwidth?
puling and

lleeture e

3.4 VARIOUS INTERCONNECTION NETWORKS

-

i this section, we will discuss some simple and popularly used mnterconnection networks
P Pop Y

1) Fully connected: This is the most
is directly connected to all othe
Tequiras t0o many connections.

powerful interconnection topology. In this each node
rnodes. The shortcoming of this network is that it

PE] PE2
Iy

ij g
PE, —] :: PE,

Figure 2: Fully connected interconncction topology

2) Cross Bar: The crossbar network is
dimensional grid of switches. It
between inputs and outputs and j

the simplest interconnection network. 1t has 2 two
i5 a non-blocking network and provides connec:ivi;
t 15 possible to join any of the inputs to any output,

An N * M crossbar network is shown in the followin

g Figure 3 (a} and swilch
connections are shownin Figure 3 (b).

;-
1 NXM :
Input “Crossbar OQutput
N M

“Figurs: 3(a)

1
2 Switches -
Input 3
N
1]
] 2 3 L L ey M
Quipus
Figure: 3(b)

Figure 3: Crossbar Network

50

TOTTIVTTT TN T T ITEe

B S o

" -
— == d




A switch positioned at a cross point of a particular row and particular column. connects
that particular row (input) to column (output).

The hardware cost of N*N crossbar switch is proportional to N It creates delay
equivalent to one swnchlng operauon and the routing control mechanism is easy. The
crossbar network requires N? switches for N input and N output network.

3) Linear Array: This is a most fundamental interconncction pattern, In this processors
are connected in a linear one-dimensional array. The first and last processors are
connected with one adjacent processor and the middle processing elements are
connected with two adjacent processors. It is a one-dimensional interconneclion
network.

-PE,

Figure 4: Lincar Array

4} Mesh: 1t is a two dimensional network. In this all processing elements are arranged in
a two dimensional grid. The processor in rows i and column f are denoted by PE;.

The processors on the corner can communicate to two nearest neighbors i.e. PEy can
communicate with PEg, and PE,o. The processor on the bourdary can communicate to 3
adjacent processing elements i.e. PEo; can communicate with PEg, PEy;and PE,, and
internally placed processors can communicate with 4 adjacent processors i.e. PE,, can
communicate with PEy, PE|y PE,; and PE;

PEs PE,, PEq; PEq,

PE;o PEn

PE,,

PEng : : : :

Figure 5: Mesh Network

5) Ring: This is a simple linear array where the end nodes are connected. It is equivalent
to a mesh with wrap around connections. The data transfer in a ring is normally one
direction. Thus, one drawback to this network is that some data transfer may require
N/2 links to be traveled (ltke nodes 2 & 1) where N is the total number of nodes.

Inferconnectior
Networl

3

LITSEETITTTTTITL et

Bl e

I R

t= 1 | mRoTEETIITT ¢, e - omnpl-




PE

ements of Parallel

impuling and
rchitecture [;EN PE

i

i‘ PE,;
\

\PE‘. PE

PE
Figure 6: Ring network

6) Torus: The mesh network with wrap around connections is catled Tours Network.

' (/ O O O
—() O O O
—O+—O+—OT—Q

Figure 7: Torus network

7) Tree interconnection network: In the tree interconnection network, processors are
arranged in a compiete binary tree pattern.

Py

Figure 8:Tree interconnection network

52

Sy TOTTYCT AT

= oy -




8)

Fat-tree: It is a modified version of the tree network. In this network the bandwidth of
edge (or the.connecting wire between nodes) increases towards the root. It is a more
realistic simulation of the normal tree where branches get thicker towards root. [t is the
more popular as compared to iree structure, because practically the more traffic occurs
towards the root as compared to leaves, thus if bandwidth remains the same the root
will be a bottleneck causing more delay. In a tree this problem is avoided because of

higher bandwidth.
o Com

|
PE;
( ) PE,4 1 ; PE;s PEs ) PE;

PEg PEs PEwo PE;  PE;z PEs PEis PEgs

PE,

O

Figure 9: Fat tree

9) Systolic Array: This interconnection network is a type of pipelined array architecture
and it is designed for multidimensional flow of data. It is used for implementing
fixed algorithms. Systolic array designed for performing matrix multiplication is
shown below. All interior nodes have degree 6.

Figure 10: Systolic Array

Interconnection
Nelwork

33

UTITER TroTETTT

B Rl i

Tt Tt -

R I T




ments of Parallel
nputing und
chitecture

54

10j Cybe: Itis a 3 dimensional interconnection network. In this the PE’s are arranged -

in a cube structure.

1uo 101 i

L

I

010 o1t L

000 001 L

Figure 13: Cube interconnection nenwork

i1) Hyper Cube: A Hypercube interconnection network is an extension of cube network. -
Hypercube interconnection network for n 2 3, can be defined recursively as follows:

For n =3, it cube network in which nodes are assigned number 0, 1, ...... .7 in binary, ,

In other words, one of the nodes is assigned a label 000, another one as 001.. . and

the last node as 111.
Then any node can communicate with an

y other node if their labels differ in exactly

one place, e.g., the node with label 101 may communicate directly with G01, 000 and ]

b,

For n> 3, a hypercube can be defined recursively as follows: 3

Take two hypercubes of dimension (n — 1) each having (n -1) bits labels as 00._ .0,

...... IT.....1

Next join the two nodes having same label

connecting the two nodes in the pair.

Forn = 4 we draw 4-dimensional hypercube as show in Fieure 12

s each (n — 1) -dimension hypercubes and join
these nodes. Next prefix *I” the labels of ane of the (n — 1) dimensional hypercube and *Q’

to the fabels of the other hypercube. This completes the structure of n-dimensionai
hypercube. Direct connection is only between that pair of nodes which has a (solid) line

TR T T T

orio o1l l:
- H
- :
0100 0101~ :
" n
- .
J’ i :-
. aon ;
L
A b Py
, .
”’l‘ f"” -
-
o B 770001
- - '
1]} g . :
111 o - \
/ ff -
’f’ ’f
| 101 ,f' ,l’ <
- -

1001

Figure 12: 4-Dimensional hypercube




3.5 CONCEPT OF PERMUTATION NETWORK

In permutation interconnection networks the informatien exchange requires data transfer
from input set of nodes to outpul set of nodes and possible connections belween edges are
astablished by applying various permutations in available links. There are various
networks where mulliple paths from source to destination are possible. For finding out
what the possible routes in such networks are the study of the permutation concept is a
must.

Let us lo k at the basic concepts of permutation with respect o interconnection network.
Let us say the network has set of n input nodes and n output nodes.
Permutation P for a network of 5 nodes (i.e., n = 5) is written as fellows:

1123 45
5413 2
1 means node connectiaons are 1435, 2+ 4, 3431, 43, 532,

The connections are shown in the Figure {3.

Input nodes QOutput nodes

th B ) BN e
LV T - WS T o I

Figure 13: Node-Conacctions

he other permutation of the same set of nodes may be
{12 3 4 5,
2351 4

¥hich means connections are; 142, 2¢>3, 35, 41, and 5¢+4 _
similarly, other permutations are also possibie. The Set of all permutaticns of a 3-nodc
ietwork will be

UGS G ) Be) B )

~onraction, [' 2 3] indicates connection from node | to nodel, node 2 to node 2, and

tode 3 to node 3, hence it has no meaning, so it is dropped.

n these examples, only one set of links exist between input and output nodes and megans it
s a single stage network. It may be possible that there exist multipie links between input
ind output (i.e. multistage network). Permutation of all these in'a multistage network are
:alled permutation group and these are represented by a cycle e.g. permutation

IRterconnection
Netwark

55

it 3 Bkl ety

i RN

SETEEITOITITNY ot ooee




Flentenis of Parallel
Computing and
Architceture

56

P= (1,2,3) (4,5) means the network has twao groups of input and output nodes, one group ;-

cunsists of nodes 1,2,3 and another group consists of nodes 4,5 and connections are
[—2, 2>3, 3—1,and 4—3. Here group (1,2,3) has period 3 and (4,5) has period 2,
collectively these groups has periodicity 3x2=6.

Interconnection from all the possible input nodes to all the oulput nodes forms the
permutation group.

The permutations can be combined. This is called composition operation. In composition |:
opcration lwo or more permutations are applied in sequence, e.g. if Py and P, are two {

rennutations defined as follows:

P= l:z':j] P, [121;].]

The composition of Py and P; will be
— 121 P23
Pi-F2 [u:] [231]
P'|.P2 = '[|23]
321

1

< N
;N

P,

3

Py
Fignre 14 (a)
14;___\ i
2 P.P .2

34—/ 3

Figure: 14 (b)

Similarly, if P; = [‘““ and Py = Ezsu]
42135 31 % 24

then P].P.q =[ ! 2345]
21 3154

’
° P, *5 Py *5
Figure: 15

- b e P




i | Interconnection

23 : 2 Network
3¢— .3
4 .4
5 *5

Figure: 16
Composition of those permutations P, P; are represented in Figures 14 (a) and 14 (b)

There are few permutations of special significance in interconnection network. These
srmutations are provided by hardware. Now, let us discuss these permutations in detail.

1) Perfect Shuffle Permutation: This was suggested by Harold Stone (1971). Consider
N objects each represented by n bit number say X1, Xq2, Xo (N is choserf such that
N = 2n.} The perfect shuffle of these N objects is expressed as
X, Xn2. X0 =Xz, Xo Xna.

That, means perfect shuffle is abtained by rotating the address by | bit left. e.g. shuffle of
8 objects is shown as

0 000 > 000 O
] 001 001 1
2 010 010 2
3 011 oIt 3
4 100 100 4
5 101 101 5
6 110 1o 6
7 111 » 111 7

Figure 17: Shuflle of B objccts

2) Butterfly permutation: This permutation is obtained by interchanging the most.
significant bit in address with least significant bit.

0 000 * 000 O
1 001 . S o011
2 010 > 010 2
3 011 o113
g iool — ™ > 130 ;1
‘ 01 N 101

6 1o 110 6
7 ] » 11l 7

Figure {8: Butterlly permutation
eg Xn.._ Xn.z_ and X].X(): Xo Xn.z ....... X] Xn_|

001100, 010010
011110,

An inierconnection network based on lhis-permutation is the butterfly network. A
butterfly network is a blocking network and it does not allow an arbitrary connection of 57

e ) s Prarrn

TTCLTTITTTT T

LI T i et

T




Tements of Parallel N inputs to N outputs without conflict. The butter[ly network is modified in Benz

‘omputing and network. The Benz network is a non-blocking network and it is generated by joining two

\rchitectare butierfly networks back to back, in such a manner that data flows forward through one
sid in reverse through the other.

3) Clos network: This network was developed by Clos (1953). ltisa nan-blocking
neiw otk and provides full connectivity iike crossbar network but it requires significantly
'ess nuniber of swilches. The organization of Clos neiwork is shown in Figure 19:

1 — 1 I I H B 1 —

27/ 1. 2 2 2 2 2 —
" n~——|n z X y m p [—
n+]1— i 1 / 1 1 1 | I
n+2— . 2 2 2 1 2 2
n+n — g z X y m p [—
— N ! 1 1
] 2 2 2 2 2
T n yA y X m p I

Figure 19: Qrganisation of Clos netwark

Consider an [ input and O output network
Number N is chosen such that {([= n.x} and (O=p.y).

In Clos network input stage will consist of X switches each having n input lines and z
output lines. The last stage will consist of Y switches each having m input lines and v
output lines and the middle stage will consist of z crossbar switches, each of size X x Y.
To utilize all inputs the value of Z is kept greater than or equal to n and p. :

The connection between various stages is made as follows: all outputs of 1* crossiur
swilch of first slage are joined with " input of all switches of middle stage, (i.e., i
ourtput of first page with 1 niiddle stage, 2™ output of first stage with 1* input of second
switch of middie stage and so on...)

The outputs of second switch of first stage. Stage are joined with 2™ input of various
switches of second stage (i.e., 1™ output of second switch of 1" stage is joined with 2 inpu
of 1* switch of middle stage and 2" output of 2™ switch of 19 stage is joined with 2™
input of 2 swiich of middle stage and so on...

Similar connections are made between middle stage and output stage (i.e. outpuls of |
switch of middle sage are connected with 1* input of various switches of third stage.

Permautation matrix of P in the above example the matrix entrics will be n

Bens Network: It is a non-blocking network. 1t is a special type of Clos network where
ftrst and lasi stage consists ol 222 switches (for n input and m output network it wiii
have n/2 swiches of 2 x2 order and the last stage wil! have m/2 switch of 2x2 order the
middle stage will have two n/2 X m/2 switches. Numbers n and m are assumed to be the
power of 2.

58

TTTTE T

roprEramacEymY o0t e




Thus, for 16%16 3-stage Bens network first stage and third stage will consist of 8 (2x2)
switches and middie stage will consist of 2 switches of size (8<8). The conncction of

crossbar will be as follows:

8X8 switch
X2 swilch : 2X2 switch
| & - —a
2 > — —8
J e
4
1
5
6
. >
3
9 e
10 * e
11 =
12 —
2
13 e e
14— e
15 :'.
16

The switches of various stages provide complete connectivity. Thus by properly

Figure 20: 16X16G 3-stage benz network

configuring the switch any input can be passed lo any output.

Consider a Clos network with 3 stages and 3x3 switches in each stage.

. 12345678
Permulation ?
5762 530841

Cross bar

n*2

LA L b -

B =]

10

1
12
13
14

15
16

b
i

Figure 21: Clos Network

Inferconnection
Network

29

[ -

NIV

TOTTTTTIT O L

P

R




Elements of Parallel

Cumputing and
.-\rchilecl[.u-l: .

&0

L]

The implementation of this above permutation is shown in Figure 20.
This permutation can be represented by the following matrix also,

Output

| 2 3 4 S5 6 7 8 9
1
2 X
3 X

Input X

5 X
6 X X
7
g X
9 | X

Figure 22: Permulation representation through Matrix

The upper input of all first stage switches will be connected with respective inputs of 1!
middle stage switch, and lower input of all first stage switches will be connected with
respective inputs of 2" switch. Similarly, all outputs of 1* switch of middle stage will be
connecled as upper input of switches at third stage.

In Benz network to reduce the complexity the middle stage switches can recursively be
broken into N/4 x N/4 (then N/ x M/8), Lill switch size becomes 2x2.

The connection in a 2x2 switch wiit cither be siraight, exchange, lower broadcast or upper
broadcast as shown in the Figure,

> 1

Straight

Exchange Upper broadcast Lower broadcast

Switch 2x2

The 8x8 Benz network with all switches replaced by a 2x2 is shown in Figure 23(a):

R R e e




)
]

2 "

3

4 * ]

5 o—

P -
7 o]

Figure 23 {a): Benz Network

The Bens network connection for perrutation

P[unzsa:a:]
17315620

will be as follows:-

0 e o
. , >
o > T DY P
4 = .
5 e > .
6 o / .
). | <] <G

Fizure 23 (b): 8X8 BENZ NETWORK OF 4 5TAGE

. . 7. . .
The permutatior. for P = [% will be as follows
SR A I |

fnterconnection
MNeiwork

ER T T =il




lements of Parallel
‘omputing and
chhif:tlu'rc

Lo )

~

> > | .

Figure 24: Linc number for n

Hardware complexity of Benz Network: - Benz network uses lesser switches and il
provides good connectiv ity To find hardware complexity of Benz retwork let us assum:
that

N=2" = n=log,N
Number of stages in N inpui Benz network =2n-1=2 log, N -1
Number of 2X2 switches in each stage = N/2.
Total number of cells in network = (N/2) (2 logo N-1})=Nlog, N-N/2

Number of switches in different netwoiRs for various inputs is shown in the followissg
table:

'nput No.ofcross bars  Switches Clos Net  Benz Net

Z 4 ) 9 4

8 64 69 80
64 4096 1536 1408
256 63536 12888 7680

Thus we can analyze from this table that for larger inputs the Benz Network is the best as
ithas the least number of switches.

Shufile Exchange Networl:- These networks are based on the shuffle and exchange
operalions discussed earljer.

w2

i

~1 O

YT T

Do R




3.6 PERFORMANCE METRICS

The performance of interconnection networks is measured on the following parameters.

1) Bandwidth: It is a measure of maximum transfer rate between two nodes. It is
measured in Megabytes per second or Gigabytes per second.

2) Tunctionality: it indicates how interconnection networks supports data routing,
inlerrupt handling, synchironization, request/messape combining and coherence.

3) Latency: [n interconnection networks various nodes may be at difterent distances
depending upon the topology. The network latency refers to the worst-case time delay
for a unit message when transferred through the network between farthest nodes.

4) Scalability: [t refers 1o the ability of interconnection networks for modular expansion
with a scalable performance with increasing machine resources.

5) Hardware Complexily: It refers 10 thic cost of hardware logic like wires, connectors,
switches, arbiter etc. lhat are required for implementation of inlerconnection network.

3.7 SUMMARY

This unit deals with various concepis about interconnection network. The design issues
of interconnection network, lypes of interconnection network, permutation network and
performance metrics of the interconnection networks are discussed.

3.8 SOLUTIONS/ANSWERS

Check Your Progress 1

1) i} Node degrees: Number of edges connecled with a node is called node degree. [fthe
edpe carries data from the riode, it is called oul degree and if this carries-data into the
node it is called in degice.

ii) Dynamic connection network: In dynamic network the interconnection pattern
tetween inputs and outpuis can be changed. The interconnection pattern can be
reconfigured according to the program demands. {2re, instead of fixed connections,
the swilches or arbiters are used. Exampies of such nctworks are buses, crossbar
switches, and mullistage networks. The dynamic networks are normally used in
shared memory(SM) muitiprocessors.

iii) Network diameter: It is the mintmum distance tatween the furhic =t nodes ian a
network. The distance is measured in terma of nuineer of disturct hops.betwe- - any
Lwvo nodes.

2y Biseclion bandwidth of a neiwork is an indicator of robustness of a network in the
sense that ifthe biseciion bundwidth is large ther bere may be more alternative

roules between = pair of nodes, any one of the other ¢"emnative routes may be chosen,

However, 1he degree of difficully of dividing a netv-u.x into smaller networks, is
inversely proportional to the bisection bandwidth.

Interconnection
Network

Rl M b

r—:

Sy TET neToTISe oo

BT T T




64

UNIT4 PARALLEL COMPUTER
ARCHITECTURE

Structure

1.0
4.1
4.2

4.3
4.4

4.5
4.6
4.7
4.5
4.9

introduction

Objectives

Pipcline Processing

4.2.1 Classification of Pipeline Processors
4.2,1.1 Instruction Pipelines
4.2.1.2 Arithmetic Pipelines

4.2.2 Performance and Issucs in Pipelining

Veclor Processing

Array Processing

4.4.] Associative Array Processing

Superscalar Processors

VLIW Architecturc

Mulli-threaded Processors

Summary

Solutions /Answers

Page Nos.

64
64
65

74
75

80
81
82
84
85

4.0 INTRODUCTION

We have discussed the classificatior: of parallel computers and (heir interconneciion
networks respectively in units 2 and 3 of this block. In this unit, various paraliel
architectures are discussed, which are based on the classification of parallel computers
considered earlier. The two major parametric considerations in designing a parallel

computer architecture are: (i) executing multiple number of instructions in paralie), and

(i) increasing the efficiency of processors. There are various methods by whick
instructions can be executed in para]lm and parallel architectures are based on these
methods of executing instructions in parallel. Pipelining is one of the classical and
effective methods to increase paralielism where different stages perform repeated
functions on different operands. Vector processing is the arithmetic or logical

computation applied on veciors whereas in scalar processing only one data item or = pair

of data items is processed. Paralle] zrchitectures have also been developed based on
associalive memory organizations. Another idea of improving the processor’s specd by

having multip!: instructions per cycle is known as Supersealar processing. Multithreading
for increasing processor utilization has also been used in parailel computer architecturc.

All the architectures based on these parallel-processing types have been discussed in
detaii in this unic.

4.1 OBJECTIVES

Adier going .arough this unit, you will be able to:

explain the meaning of Pipeline process.ng and describe pipeline piocessing

architeciures;

identify the differences between scalar, superscalar and vector processing and their

archil>ziures;

T ST

Tk

B IEREERE T Bl iy pErt st

—.ar:

RLE




. i o o Parzliel Computer
describe architectures based on associative memory organisations, and Architecture

explain the concept of multithreading and its use in parallel computer architectuie.

.2 PIPELINE PROCESSING

ipelining is a method to realize, overlapped parallelism in the proposed solution of a
roblem, on a digital computer in an cconomical way. To understand the concept of
ipelining, we need to understand first the concept of assembly lines in an automated
roduction plant where items are assembled from separate parts (stages) and outpul of one
age becomes the input to another stage. Taking the analogy of assembly fines, pipelining
the method to introeduce temporal parallelism in computer operations. Assembly line is
ie pipefine and the separate parts of the assembly line are different stages through which
serands of an operation are passed.

0 introduce pipelining in a processor P, the following steps must be followed:

Sub-divide the inpul process into a sequence of subtasks. These subtasks will make
stages of pipeline, which are also known as segments.

Each stage S; of the pipeline according to the subtask will perform some operation on
a distinct sel of eperands.

When stage S; has completed its operation, results are passed to the next slage S;,,
for the next operation.

The stage S; receives a new sel of input from previous stage S;;.

this way, parallelism in a pipelined processor can be achieved such that m independent
)erations can be performed simultaneously in m segments as shown in Figure 1.

Input

h 4

Si

— ¥

S2

v

Sl'['l B

Qutput

Figure I: m-Segment Pipeline Processor

le stages or segments are implemented as pure combinational circuils performing
ithmetic or logic operations aver the data streams flowing through the pipe. Latches are
ed to separate the stages, which are fast registers to hold intermediate results between

> stages as shown in Figure 2. Each stage S; consists ol a latch L; and a processing
cuit C;_ The final output is stored in output register R. | he flow of data from one stage
another. is controlled by a common clock. Thus, in each clock period, ene stage

nsfers its reslts to another stage.

BN CETETS R

I

A e

I A it R B B




Elemients of Paraltel
Cuomputing and
Architecture

i Slagc S

JEC=Tuny T § gy -t Pt

ey

La
¢ Stage S,

Cz a'
v
ll"" Stage S8, [
C R .

Figure 2: Pipelined Processor

Pipelined Processor: Having discussed pipelining, now we can define a pipeline
processor. A pipeline processor can be defined as a processor thal consists of a sequence
of processing circuits called segments and a stream of operands (data) is passed through
the pipeline. In each segment partial processing of the data stream is performed and the
final output is received when the stream has passed through the whole pipeline. An

operation that can be decomposed into a sequence of well-defined sub tasks is realizes
through the pipelining concept.

=

4.2.1 Classification of Pipeline Processors

B e e

In this section, we describe varicus types of pipelining that can be applied in com

puter -
operations. These types depend on the following factors: .

¢ Level of Processing
* Pipeline configuration
* Type of instruction and data

Classification according to level of processing

According to this classification, computer operations are classified as instruction
exccution and arithmetic operations, Next, we discuss these ciasses of this classification:

¢ Instruction Pipeline: We know that an instruction cycle may consist of many
operations like, fetch opcoede, decode opcode, compule operand addresses, fetch
operands, and execute instructions. These operations of the instruclion execution
cycle can be realized through the pipelining concept. Each of these operations forms
one stage of a pipeline. The overlapping of execution of the operations through the




T : . . - Paraliel Computer
pipeline provides a speedup over the normal exccution. Thus, the pipelines used for Architecture

instruction cycle operations are known as instruction pipelines.

»  Arithmetic Pipeline: The complex arithmetic operations like multiplication, and
floating point operations consume much of the time of the ALU. These operalions ¢an
also be pipelined by segmenting the operations of the ALU and as a consequence,
high speed performance may be achieved. Thus, the pipelines used for ariihmetic
operations are known as arirlunetic pipelines.

“lassification according to pipeline configuration:

\ccording to the configuration of a pipeline, the following types are identificd under this
lassification;

Unilunction Pipelines: When a fixed and dedicated function is performed through a
pipeline, it is called a Unifunction pipeline.

Multifunction Pipelines: When different functions at different times are performed
through the pipeline, this is known as Multifunction pipeline. Multifunction pipelines
are reconfigurable at different times according to the operation being performed.

‘lassification according to type of instruction and data:

.ccording to the types of instruction and data, following types are identified under this
lassification: :

Scalar Pipelines: This type of pipeline processes scalar operands of repeated scalar
instructions.

Vector Pipelines: This type of pipeline processes vector instructions over vector
operands.

2.1.1 Instruction Pipelines

s discussed earlier, the stream of instructions in the instruction execution cycle, can be
alized through a pipeline where overlapped execution of different operalions are
rrformed. The process of executing the instruction involves the following major steps:

Fetch the instruction from the main memory
Decode the instruction

etch the operand

Execute the decoded instruction

iese four steps become the candidates for stages for the pipeline, which we call as
struction pipeline (It is shown in Figure 3).

67

L B bem

CTTTTITT

ITTTTTEITTID

b i

1

RER SR

<or




[

Elemcents of Parallel

Coniputing and l Instruction address
Architecture

Fetch the
insiruction {1F) Stage |

l

Decode the
instruction (DM)

|

Fetch the
operand (FO) Stage IiI

Stage I

Exccute the
instruction (EI) Stage 1V

l Instruction result

Figure 3: Instruction Pipelinc

Since, in the pipelined execution, there is overlapped execution of operatjons, the four .
stages of the iustruc.ios pipeline will work in the overlapped manner. First, the instruction |
address is fetched from the memory 1o the first stage of the pipeline. The first stage
fetches the instruction and gives its output to the second stage. While the second stage of ¥
the pipeline is decoding the instruczion, the first stage gels another input and fetches the
next instruction. When the first instruction has been decoded in the second stage, then its
output is fed to Lhe third stage. When the third stage is fetching the aperand for the first
instruction, then the second stage gets the second instruction and the first stage gets input
for another instruction and so on. In this way, the pipeline is executing the instruction in
an overlapped manner increasing the throughput and speed of executian.

The scenario of these overlapped operations in the instruction pipeline can be illustrated
through the space-time diagram. In Figure 4, first we show the space-time diagram for
non-overlapped execution in a sequential environmenl and then for the overlapped
pipelined environment. It is clear from: the two diagrams that in non-overlapped
execulion, results arc achieved only after 4 cycles while in overlapped pipelined
execution, afier 4 cycles, we are geuing output after each cycle. Soon in the instruciior
pipeline, the instruction cycle has Lbeen reduced to Y of the sequential execution.

Gutput
s - ’ /
Stage Sy 1 2 13
Stage S; i 1l 12 13
Stage S, i1 2 ’ 13
Stage §, {1 12 13

I 2 3 4 3 6 7 8 9 10 11 12 13

Time —®

Figure 4(2) Space-time diagram lor Nen-pipclined Processor

L o]

S e L BC=n Erint e

B TER I TR

T

el o e Lk ]

R e ] el I




Output
Stage Sa 1 {r2 (13|14 (15
Stage S3 nlw|njnlis
Stage Ss h | |Bjulss
Stage §; {12 (3 |14 |I5
1 2 3 4 5 6 7 8 9 10 11 12 13

Time —»

Fipure 4(b) Spate-time diagram for Overlapped Instruction pinelined Processer

Instruction buffers: For taking the full advantage of pipelining, pipelines should be filled
continuously. Therefore, instruction fetch rate should be matched with the pipeline |
consumption rate. To do this, instruction buffers are used. Instruction buffers in CPU have
high speed memory for storing the instructions. The instructions are pre-fetched in the
buffer from the main memory. Another alternative for the instruction buffer is the cache
memory between the CPU and the main memory. The advantage of cache memory is that
it can be used for both instruction and data. But cache requires more complex control
logic than the instruction buffer. Some pipelined computers hive adopted both.

4.2.1.2 Arithmetic Pipelines

The technique of pipelining can be applied to various complex and slow arithmetic
operations to speed up the processing time. The pipelines used for arithmetic
computations are calted Arithmetic pipelines. In this section, we discuss arithmelic
pipelines based on arithmetic operations. Arithmelic pipelines are constructed for simple
fixed-point and complex floating-point arithmetic operations. These arithmetic operations
are well suited to pipelining as these operations can be efficiently partitioned into subtasks
for the pipeline stages. For implementing the arithmetic pipelines we generally use
following two types of adder:

i) Carry propagation adder (CPA): It adds two numbers such that carvies
generated in successive digits are propagaied.

ii) Carry save adder (CSA): It adds two numbers such that carries generated are not
propagated rather these are saved in a carry vector.

Fixed Arithmetic pipelines: We take the example of multiplication of fixed numbers.
Two fixed-point numbers are added by the ALU using add and shift operations. This
sequential execution makes the multiplication a slow process. If we look at the
multiplication process carefully, then we observe that this is the process of adding the
muiliple copies of shifled multiplicands as show below:

Parallel Computer
Architecture

69

LA P BN

ST T T oI




Elemcnts of Paratlel
Compuling and
Architecture

Xs X4 X3 x; X[ Xo =X

Ys Yq. Y3 Yz Y| Yo =Y

XsYo Xa¥Yo XaYo Xo¥Yo. Xi Yo XoYo=Py

XsYi Xa¥i XYy XaY1 XiY) oY) =P

XsYz XaY2 XaY2 XaY2 X1Yz2 XoY2 =P

XsYs X4Y; X573 X2Y3 X,Y3 XoYs =Py

XsYq XaYa X3Ya XaYa X1Y4 XoYs =Ps
XsYs XsYsXaYs XaYs XiYs XoYs = Pg

Now, we can identify the following stages for the pipeline:

» The first stage generzies the partial product of the numbers, which form the six rows

of shifted multiplicands.

* In the second stage, the six numbers are given Lo the two CSAs merging into four

numbers.
s In the third stage, there is a single CSA merging the numbers into 3 numbers.

» In the fourth stage, there is a single number merging three numbers into 2 nun:be:s.

o In the fifth stage, the last two numbers are added through a CPA to get the final
product.

These stages have been implemented using CSA trez as shown in Fignre 5.

T S N

BT TR




Parallcl Computer
Archilecture

L
Stagel
v Vv ¥ \ A A /
e A e L
Stage2
L
Stage3
L
Y
CSA4 Staged4
v ¥
e O 2 By ey S W T~ e W o e A P Py 1k, S
CPA Stage5
e e e s e - et T -_——,1-:: e T T e T e Foe o it | L
P=XxY

Figure 5: Arithmetic ﬁireline for Multiplication of two 6-dipit fixed numbers

‘lcaiing point Ariihmetic pipelines: Floating point computations are the best
andidates for pipelining. Take the example of addition <{ two floating point numbers.
ollowing stages are identified for the addition of two floating point numbers:

BErrhr i § guare) ke bbbl

S e




qavents of Parallel
mpeling and
chitecture

72

s First stage will compare the exponents of the two numbers.
@ Second stage will look {Or alignment of mantissas.

o In the third stage, mantissas are added.

» In the last stage, the result is normalized.

~ These stages are shown in Figure 6.

A=(AmA:) B = (Bn.Be)

Compare Stage §,
exponents

Align Stage S,
Mantissas

Add Stage S;
mantissas

Normalize Stage S4
results

l A+B=Ap + B, B,

Figure 6: Ariihmelic Pipeline for Floating point addition of twwo numbers

4.2.2 Performance and Issues in Pipelining

Speedup : First we take the speedup factor that is we see how much speed up
performance we get through pipelining.

First we take the ideal case for measuring the speedup.
Let n be the total number of tasks executed through m stages of pipelines.

Then rn stages can process n tasks in clock cycles = m + (n-1)
Time taken to execute without pipelining = m.n

Speedup due te pipelining = m.n/{m +(n-1)].

As n>=o |, There is speedup of n times over the non-pipelined execution.

i Hhacty i

B T

SETImETTmT - o e -




Efficiency: The efticiency of a pipeline can be measured as the ratio of busy time span to
the total time span including the idle time. Let ¢ ke the clock period of the pipeline, the
efficiency E can be denoted as:

E={n.m.¢)/ m[mc+(n-1)c]=n/{m+(n-])

As n-> o, E becomes 1.

Throughput: Throughput of a pipeline can be defined ag the number of results that have
been achieved per unit time. It can be denoted as:

T=n/{m+{n-1)l.c=E/c
Throughput denotes the computing power of tle pipeline.

Maximum speedup, efliciency and throughput are the ideal cases but these are not
achicved in the practical cases, as the speedup is limited due to the following factors:

s Data dependency between successive tasks: There may be dependencies between
the instructions of two tasks used in the pipeline. For example, one instruction canjot
be started until the previous instruction returns the results, as both are interdependent.
Another instance of data dependency will be when that both instructions try to modify
the same data object, These are called dara hazards.

» Resource Constraints: When resources are not available at the time of execution
then delays are caused in pipelining. For example, if one common memory is used for
both data and instructions and there is need to read/write and fetch the instruction at
the same time then only one can be carried out and the other has to wait. Another
exa'hjble is of limited resource like execution unit, which may be busy at the required
time.

» Branch Instructions and Interrupts in the program: A program is not a straight
flow of sequential instructions. There may be branch instructions that alter the normal
flow of program, which delays the pipelining execution and affects the performance.
Simifarly, there are interrupts that postpones the execution of next instruction unti] the
interrupt has been serviced. Branches and the interrupts have damaging effects on the
pipelining.

Check Your Progress 1

1} What is the purpose of using latches in a pipelined processor?

Purallel Computer
"Architecture

73

B A rae) | S e g

R B ITET




fements of Parullel
omnputing snd
rchitecture

74

4.3 VECTOR FROCESSING

A vector is an ordered sct of the same type of scalar data items. The scalar item can be a
floating pint number, an integer or a logical value. Fecior processing is the arithmeltic or
togical computation applied on vectors whereas in scalar processing only one or pair of
data s processed. Therefore, vector processing is faster compared to scalar processing.
+hen the scalar code is converted to vector form then it is called vectorization. A vector
pracessor is a special coprocessor, which is designed to handle the veclor cornputations.

Vector instructions can be classified as below:

o Voctor-Vector Tnstructions: Tn this type, vector operands are fetched from the vector
register and stored in another vector register. These instructions are denoted with the
following function mappings:

Fl:v->V
F2: VXV->Vy

For example, vecior sguare root is of F1 type and addition of two vectors is of F2.

* Vector-Scalar Instructions: In this type, when the combination of scalar and vector
are feiched ana scored in vector register. These instructions are denoted with the
following function mappings: iy

F3:8 %X V-2V where S is the scalar item
For example, vector-scalar addition or divisions are of F3 type. :
» Vector reduction Iustructions: When operations on vector are being reduced 1o i
scalar items as the result, then these are vector reduction instructions. These F
instructions are denoted with the following function mappings: '

F4:V->8§
F5:VXV->§

For example, finding the maxirmure, minimum and summation of ail the elements of
vector are of the type F4. Tha dot product of two vectors is generated by F5.

»  Vector-Memory Instructiona: YWhen vector operations with memory M are
perfortned “hen these are vector-memory instructions. These instructions are denoted
with the following function mappings:

F6: M->V _ .
F7:v->V '

For example, vector load is of type F6 and vector store operation is cf F7.

Vector Processing with Pipelining: Since in vector processing, vector instructions
perform tiie same computation on different data operands repeatedly, vector processing is
most suitabie for pipelining. Vector processors with pipelines are designed to handiz
vectors of varying length n where n is the length of vector. A vector processor performs
better if length of vector is Jarger. But large vaiues of n causes the problem in storage of
veciors and there is difficulty in moving the vectors to and from the pipelines.




Pipeline Vector processors adopt the following two architectural configurations for this
problem as discussed below:

) Memory-to-Memory Architecture: The pipelines can access vector operands,
intermediate and final results directly in the main memory. This requires the higher
memory bandwidth. Moreover, the information of the base address, the offset and
vector length should be specified for transferring the data sireams between the
main memory and pipelines. STAR-100 and TI-ASC computers have adopted this
architecture for vector instructions.

v Kegister-to-Register Architecture: In this organization, operands and results are
accessed indirectly from the main memory through the scalar or vector registers.
The vectors which are required currently can be stored in the CPU registers. Cray-
| computer adopts this architecture for the vector instructions and its CPY contains
8 vector registers, each register capable of storing a 64 element vector where one
element is of 8 bytes.

-

Efficiency of Vector Processing over Scalar Processing:

As we know, & sequential computer processes scalar operands one at a time. Therefore if
we have to process a vector of length n through the sequential computer then the vector
must be broken into n scalar steps and executed one by one.

For example, consider the following vector addition:

A+B—C
The vectors are of length 500. This operation through the sequential computer can be

specified by 500 add instructions as given below:

C{l] = A{1]+B{l]

C[500) = A[500] + B{500]

[f we perform the same operation through a pipelined-vector computer then it does not
break the vectors in 500 add statements. Because a vector processor has the set of vector
instructions that aflow the operations to be specified in one vector instruction as:

A (1:500) + B (1:500) — C (1:500)

Each vector operation may be broken internally in scalar operations but they are executed
in parallel which resuits in mush faster execution as compared to sequential computer.

Thus, the advantage of adopting vector processing over scalar processing is that it
eliminates the overhead caused by the loop control required in 2 sequentiai computer.

4.4 ARRAY PROCESSING

We have seen that for performing vector operations, the pipelining concept has been used.
There is another inethod for vector operations. If we have an array of n processing
elements (PEs) i.e., multipte AL!Js for storing multiple operands of the vector, then an n
instruction, for cxample, vector addition, is broadcast to all PEs suzh that they add all

Peralfel Computer
Architecture

P f Sy faa=ty eperrassd

Srrel - - mirieT EIT— - -,




fements of Parallel
“omputing and
wrchitecture

16

-
operands of the vector at the same time. That means all PEs wil! perform computation in =
parallel. All PEs are synchronised under one control unit. This organisation of
synchronous array of PEs for vector operalions is called Array Processor. The
organisation is same as in SIMD which we studied in unit 2. An array processor can
handle one instruction and multiple data streams as we have seen in case of SIMD
organisation. Therefore, array processors are also called SIMD array computers.

iirind e

The organisation of an array processor is shown in Figure 7. The following components
are organised in an array processor:

TIITTTTY OT

VO
4 Data bus 'I Data and Instructions

CuU i
memory .
Host  +—f c¢cu " Pl
Computer i ] _
Control bus v Lo
v * v bl

AL ALU AL

LM ’ 90 LM E

LM :
Intercennection Network (IN) ! : 1
¥

Figure 7: Orgacisation of SIMD Array Processor

Control Unit (CU) : All PEs are under the control of one control unit. CU controls the
inter communication between the PEs. There is a local memory of CU also called CY
memory. The user programs are loaded into the CU memory. The vector instructions in
the program are decoded by CU and broadcast to the array of PEs. Instruction fetch and
decoding is done by the CU only.

Processing elements (PEs) : Each processing element consists of ALU, its registers and
a local memory for storage of distributed data. These PEs have been interconnected via an
interconnection network. All PEs receive the instructions from the control unit and the
different component operands are fetched from their local memory. Thus, all PEs perform
the same function synchronously in a lock-step fashion under the control of the C1..

It may be possible that all PEs need not participate in the exacution of a vector instruction.
Therefore, it is required to adopt a masking scheme to control the status of each PE. A




. . Parallet Computer
nasking vector is used to control the status of all PEs such that only enabled PEs are Architecture

ittowed to participate in the execution and others ~re disabled.

'nterconnection Network (IN): IN performs data exchange among the PEs, data routing
ind manipulation functions. This IN is under the control of CU.

Jost Computer: An array processor may be attached to a host computer through the
sontrol unit. The purpose of the host computer is to broadcast a sequence of vector
nstructions through CU to the PEs. Thus, the host computer is a general-purpose machine
hat acts as a manager of the entire system.

Array processors are special purpose computers which have been adopted for the
ollowing:

v various scientific applications,

v matrix algebra,

v matrix eigen value calculations,
v real-time scene analysis

3IMD array processor on the large scale has been developed by NASA for earth resources
iatellite image processing. This computer has been named Massively parallel processor
MPP) becausc it contains 16,384 processors that work in parallel. MPP provides real-
ime time varying scene analysis.

{owever, array processors are not commercially popular and are not commonly used. The
easons are that array processors are difficult to program compared to pipelining and there
s problem in vectarization.

1.4.1 Associative Array Processing

Zonsider that a table or a list of record is stored in the memory and you want to find some
nformation in that list. For example, the list consists of three fields as shown below:

Name 1D Number Age

Sumit 234 23
Ramesh 136 26

Ravi 97 35

juppose now that we want to find the 1D number and age of Ravi. If we use conventional
LAM then it is necessary to give the exact physical address of entry related 1o Ravi in the
nstruction access the entry such as;

READ ROW 3
“nother alternative idea is that we search the whole list using the Name ficld as an
wddress in the instruction such as:

READ NAME =RAV]

A\gain with serial access memory this option can be imp'emented easily but it is a very
Jow process. An asseciative memory helps at this point and simultaneously examines alt
he entrizs in the list and returns the desired list very quickly.

3IMD array computers havé been developed with associative memory. An associative
nemory is contert addressable memeory, by which it is meant that multiple memory words

77

IR % STy Pl it

LRt N VRS TIE P




Elements of Purallcl are accessible in parallel, The paraliel accessing feature also support parallel search and

Computing and parallel compare. This capability can be used in many applications such as:
Architecture

: Storage and retrieval of databases which are changing rapidly
’ Radar signal tracking

s Image processing

L Artificial Intelligence

« ¢ inherent parallelism fealure of this memory has great advantages and impact in
pziallel computer architecture. The associative memory is costly compared to RAM. The
aryiy processor built with associative memory is called 4ssociative array processor. In
this seclion, we describe some categories of associative array processor. Types of
associative processors are based on the organisation of associative memory. Therefore,
fiest we discuss about the associative memory organisation.

Associative [VMlemory Organisations

The associative memory is organised in w words with 4 bits per word. In w x b array, each
bit is called a cell. Each cell is made up of a flip-flop that contains some comparison logic
gates for patiern match and read-write operations. Therefore, it is possible to read or write
in parallel due to this logic structure. A group of bit cells of all the words at the same
position in a vertical column is called bit slice as shown in Figure 8.

/ Bit slice
r

w words <

v
B bds /word

Figure 8: Associative memary

In the organisation of an associative memory, following registers are used:

Comparand Register (C): This register is used to hold the operands, which are being
scarched for, or being compared with.

Masking Register (M): It may be possible that all bit slices are not involved in
parallel operations. Masking register Is used to enable or disable the bit slices.

Irdiceror (1} and Temporary (T) Regisiers: Indicator register is used 1o hold the

current match paiterns and temporary registers are used to hold the previous match
patterns. :

B T o i it W

Sz grmEr YIRS




. ) ) . . . Parallel Conruter
There are tollowing two methods for organising the associative memory based on bit Architecture

slices:

) Bit parallel orgarisation: In this organisation all bit slices which are not masked
off, participate in the comparison process, i.e., alt words are used in parallel.

. Bit Serial Organisation: In this organisation, only one bit slice participate in the
operation across all the words. The bit slice is selected through an extra logic and
control unit. This organisation is slower in speed but requires lesser hardware as
compared to bit parallel which is faster.

Types of Associative Processor

Based on the associative memory organisations, we can classify the associative processors
into the following categories:

1) Fully Parallel Associative Processor: This processor adepts the bit parallel memory
organisation. There are two type of this associative processor:

* Word Organized associative processor: In this processor one comparison logic
is used with each bit cell of every word and the logical decision is achieved at the
output of every word.

¢ Distributed associative processor: In this processor comparison logic is
provided with each character cell of a fixed number of bits or with a group of
character cells. This is less complex and therefore less expensive compared to
word organized associative processor.

2) Bit Serial Associative Processor; When the associative processor adopts bit serial.
memory organization then it is called bit scrial associative processor. Since only one
bit slice is involved in the paralle! operations, logic is very much reducéd and
therefore this processor is much less expensive than the Tully parallel associative
PrOCESSOf.

PEPE is an example of distrituted associative processor which was designed as a special
purpose computer for performing real time radar tracking in a missile environment.
STARAN is an example of a bit serial associative processor which was designed for
digitai image processing. There is a high cost performance ratio of associative processors.
Due to this reason these have not been commerciatised and are limited to military
applications.

Checlk Your Progress 2

2} Identify the types of the foliowing vector processing instructions?
a) C(l}= A() AND B(l)
b) C() = MAX( A(l), B(I))
c) B()=A(i)/S, where S is a scalar item
d) B(I} <- SIN (A(D)

Frr i et

TTT P | Rt by

B R I

T CaTnT:




O YT L 1. b
omputing and
rchitecture

3} What is the purpose of using the comparand and masking register in the associative
memory organisation?

4.5 SUPERSCALAR PROCESSORS

In scalar processors, only one instruction is executed per cycle. That means only one
instruction is issued per cycle and only one instruction is completed. But the speed of the |
processor can be improved in scalar pipeline processor if multiple instructions instead of |
one are issued per cycle. This idea of improving the processor’s speed by having multiple [
instructions per cycle is known as Superscalar processing. In superscalar processing
multiple instructions are issued per cycle and mu]liple results are generated per cycle. L
Thus, the basic idea of superscalar processor is to have more instruction levcl paralielism.
Instruction Issue degree: The main concept in superscalar processing is how many
istructions we can issue per cycle. If we can issue k number of instructions per cycle in a
superscalar processor, then that processor is called a k-degree superscalar processor. if we |
want to exploit the full parallelism from a superscalar processor then k instructions must
be executable in parallel.

For example, we consider a 2-degree superscalar processor with 4 pipeline stages for
instruction cycle, i.e. instruction fetch (IF), decede instruction (DI}, fetch the operands
(FO), execute the instruction (El) as showh in Figure 3. In this superscalar processor, 2
instructions are issued per cycle as shown in Figure 9. Here, 6 instructions in 4 stage
pipeline have been executed in 6 clock cycles. Under ideal conditions, aftc. .. .. “state,
two instructions are being executed per cycle.

IF | DI | FO | EI

IF [ DI |{FO [EI
IF | DI [FO | EI
IF | DI [FO |EI

IF {DI |FO |[EI

IF IDI {FO |EI

[ ] i I i
I T B - i
1 2 3 4 5 6
Clock Crcles

8 . Figure 9: Supersczlar Processing of insteuction eycle in 4-stage instruction pipeline

oo TR AT o ot

== Fri




- : . . B . Parallcl Computer
or implementing superscalar processing, some special hardware must be provided which Architceture

discussed below:

The requirement of data path is increased with the degree of superscalar processing.
Suppose, one instruction size is 32 bit and we are using 2-degree superscalar
processor, then 64 data path from the instruetion memory is required and 2 instruction
registers are also needed.

Multiple execution units are also required for executing multiple instructions and to
avoid resource conflicts,

lata dependency will be increased in superscalar processing if sufficient hardware is not
ravided. The extra hardware provided is called hardware machine parallelism. Hardware
arallelism ensures that resource is available in hardware to exploit parallelism. Another
lternative is Lo exploit the instruction level parallelism inherent in the code. This is-
zhieved by transforming the source code by an optimizing coimpiler such that it reduces
ie dependency and resource conflicts in the resulting code.

fany popular commercial processors have been implemented wilh superscalar
rchitecture like IBM R5/6000, DEC 21064, MIPS R4000, Power PC, Penttum, etc.

.6 VLIW ARCHITECTURE

uperscalar architecture was designed to improve the speed of the scalar processor. But it
as been realized that it is not easy to implement as we discussed earlier. Following are
>me problems faced in the superscalar architecture:

I is required that extra hardware must be provided for hardware parallelism such as
-instruction registers, decoder and arithmetic units, etc.

Scheduling of instructions dynamically to reduce the pipeline delays and to keep all

processing units busy, is very difficult.

nother alternative to improve the speed of the processor is to exploit a sequence of”
istructions having no dependency and may require diffcrent resources, thus avoiding
:source conflicts. The idea is to combine these independent instructions in a compact
mg word incorporating many operations to be executed simultaneously. That is why; this
rchitecture is called very long instruction word (VLIW) architecture. In fact, tong
1struction words carry the opcodes of different instructions, which are dispatched to
ifferent functiona! units of the processor. [n this way, all the operations to be executed
multancously By the functiona! units are synchronized in a VLIW instruction. The size
fthe VLIW instruction word can be in hundreds of bits. YLIW instructions must be
»rmed by compacting small instruction words of conventional program. The job of
ompaction in VLIW is done by a compiler. The processor must have the sufficient
:sources lo execule all the-operations in VLIW word simultaneously.

or example, one YLIW instruction word is compacted to have load/store operation,
oating point addition, floating point multiply, one branch, and one integer arithmetic as
hown in Figure 10.

Load/Store |FP Add FP Multiply Branch Integer arithmetic

Figure 10: VLIW instruction word
81

i | PR g i

b =ty

R B T B i I TR

TTEEL




Elements of Parallcl A YLIW processor to support the above instruction word must have the lunctional

Computing and compenents as shown in Figure 11, All the functions units have been incorporated
Acrchiteclurc *,

Y
g

according 1o the VLIW instruction word. All the units in the processor share one commen

iarge register file.

S ¥ ¥

»| Load/Store

4 Main memory

Register —
e <"1 FP Add unit

X +
Integer ALU

< 1 Branch unit

A

Figure 11: VLIW Processor

Parallelism in instructions and data movement should be completely specified at compile
time. But scheduling of branch instructions at compile time is very difficult. To handle
branch instructions, frace scheduling is adopted. Trace scheduling is based on the
prediction of branch decisions with some reliability at compile time. The prediction is
based on some heuristics, hints given by the programmer or using profiles of some
previous program executions.

4.7 MULTI-THREADED PROCESSORS

In unit 2, we have seen the use of distributed shared memory in parallel computer
architecture. But the use of distribute-] shared memory has the problem of accessing t+
remote memory, which resulis in latency problems. This problem increases in case of
-arge-scale multipracessors like massively parallel processors (MPP).

For example,’one processor in a multiprocessor system needs two memory loads of two

variables from t:vo remote processors as shown in Figure 12. The issuing processor will
use these variables simultaneously in one operation. In case of large-scale MPP systems,
the following rwo problems arise:

T

LIt




Interconnect
P P P P
M M M M
- /:’ _'_J _‘T‘:

Figure 12: Latency problems in MPP

Yemote-toad Latency Problem: When one processor needs some remote loading of data
rom other nodes, then the processor has to wait for these two remote load operations. The
onger the time taken in remote loading, the greater will be the latency and idle period of
he issuing processor,

Synchronization Latency Problem: If two concurrent procésses are performing remote
oading, then it is not known by whal time two processes, wﬂt load, as the issuing
yrocessor needs two remote memary loads by two procesaes “together for some operation.
lhat means two concurrent processes return the results asynchronously and this causes the
ynchronization latency for the processor. : : .

~oncept of Multithreading: These problems increase in the design of large-scale
nultiprocessors such as MPP as discussed above. Theréfore, a’solution for optimizing
hese latency should-be acquired at. The concept of Multithreading offers the solution to
hese problems. When the processor activities are multiplexed among many threads of
wecution, then problems are not occurring. In single threaded systems, only one thread of
:xecution per process is present. But if we multiplex the activities of process among
everal threads, then the multithreading concept removes the latency problems.

n the above example, if multithreading is implemented, then one thread carr be for issuing
.remote load request from one variable and another thread can be for remote load for
econd variable and third thread can be {or another operation for the processor and so on.

Aultithreaded Architecture: It is clear now that if we provide many contéxts to multiple
hreads, then processors with multiple contexts are called multithreaded systems. These
ystems are implemented in a manner similar to multitasking systems. A multithreaded
rocessor will suspend the current context and switch to another. In this way, the
rocessor will be busy most of the time and latency problems will also be optimized.
Aultithreaded architecture depends on the context switching time between the threads.
‘he switching time should be very less as compared to latency time.

The processor utilization or its efficiency can be measured as:
U=P/(P+I+8)

where

P = useful processing time for which processor is busy

i = 1dle time when processor is waiting
S = Centext switch time used for changing the active thread on the procesor

Paraltel Computer
Architecture

83

T

BTIa T T e




lements of Paralicl
‘pmputing und
wrchilecture

8k

The objective of any parallel system is to keep U as high as possible. U will be highif T -
and S are very low or negligible. The idea of multithreading systems s to reduce 1 such .
that S is not increasing. If context-switching time is more when cumpared to idle time,
then the purpose of multithreaded systems is lost.

Design issues: To achieve the maximum processor utilization in a multithreaded :
architecture, the following design issues must be addressed:

»  Context Switching time: § < |, that means very fast context switching mechanism is
needed.

°  Number of Threads: A large number of threads should be available such that :
processor switches to an active thread frem the idle state. L

Check Your Progress 3

1} What is the difference between scalar processing and sdperscalar processing?

2) Ifasuperscalar processor of degree 3 is used in 4-stage pipeline instructions, then :
how many instructions will be executed in 7 clock cycles? 3

48 SUMMARY

In this unit, we discuss some of the weli-known architecture that exploits inherent
parallelism in the data or the problem domain. In section 4.2, we discuss pipeline h
architecture, which is suitable for ex=cuting solutions of problems in the cases when sither!
execution of each of the instructions or operations can be divided into non-overlapping |
stages. In section 4.3, vector processing, another architecture concurrent execution, is
discussed. The vector processing architecture is useful when the same operation at a time, |
is 10 be applied fo a number of operands of the same type. The vector processing may be |
achieved through pipelined architecture, if the operation can be divided into a number of
non-overiapping stages. Alternatively, vector processing can also be achieved through
arrdy processing in which by a large number of processing elements are used. All these ,
PEs perform an identical operation on different components of the vector operand(s). The
goal of all these zrchitectures discussed so far is the same — expediling the execution '
speed by exploiting inherent concurrency in the problem domain in the data. This goal of
expediting execution at even higher, speed is attempled to be achieved through three ciher
architectures discussed in next three sections. In section 4.5, we discuss the archilecivre
known as superscalar processing architecture, under whick micia than one insicuction per
cyeles may be executed. Next, in section 4.6, we discuss VLIW architecture, which is
useful when program codes, have a number of chunks of instructions which have no
depcidency and also, hence or otherwise require different resources. Finally, in sectio:

1
I
°
I




Paratlel Computer

4.7, another approach viz. Multi-threaded processors approach, of expediting execution is Architecture
discussed. Through multi-threaded approach, the problem of some type of laténcies
encountered in some of the architectures discussed earlier may be overcome.

4.9 SOLUTIONS / ANSWERS

Check Your Progress 1

1) Latches are used to separate the stages, which are fast registers to hold intermediate
results between the stages.

2) [Instruction pipelines are used to execute the stream of instructions in the instruction
execution cycle whereas the pipelines used for arithmetic compufations, both fixed
and floating point operations, are called arithmetic pipetines.

3} A) Data dependency between successive tasks
B} Unavailability of resources
C) Branch instructions and interrupts in the program

Chedk Your Progress 2

1) Vector processing is the arithmetic or logical computation applied on vectors wherezs
in scalar processing only a pair of data is processed at a time.

2) a) Vector-vector instruction b) vector-vector instruction ¢} vector-scalar instruction d)
vector-veclor instruction.

3) The purpose of comparand register in associative memory organization is to hold the
operands which are being searched for or being compared with. Masking register i3
used to enable or disable the bit slices.

Check Your Progress 3

[} In scalar processing, only one instruction is executed per cycle but when multiple
instructions are issued per cycle and multiple resulis are generated per cycle then it is
known as superscalar processing.

N 12

}) The condition for compacting rultiple instructions in a VLIW word is that the -

processor must have the sufficient resources to execute all the operations in VLIV
word simufianencaiy,

TITININTTTI




— e E i e - - e e Peale bl e deira ool ool L 232d F B La sk




. PR L e LT R ) "SI S

- [N WY




R . VL




MCA-5.4
f Uttar Pradesh -
A Rajarshi Tandon Open Univrsity Parallel Computing

lock

2

ARALLEL ALGORITHMS & PARALLEL
ROGRAMMING

NIT 1
wrallel Algorithms 5
NIT 2
am Algorithms 23
NIT 3

rallel Programming 49

BRI Y B PR bt T e




BLOCK INTRODUCTION

\fter discussing general concepts of parallel computing in Block 1, this block discuss
rarious-issues related to parallel algorithms and paralle]l programming for different
:omputing models. Block 2 has three units. Unit 1 of the block discusses various
jeneral issues for designing and analyzing parailel algorithms. Further, a number of
varallel compuler models, viz. PRAM, Interconnection Networks etc. are discussed.
Jext, in this unit, paralle! sorting algorithms are designed and analyzed for these
nodels. Unit 2 of the block discusses issues relating to designing of algorithms for
olving problems on Parallel Random Access Machines (PRAMs). Finally, Unit 3 of
liscusses issues rclaling to the programming of the computer based on the various
nodels discussed carlier.

EET Bt (s b frinit

B e e R R




motd o

PRSP A ] |

[ T T




UNIT 1 PARALLEL ALGORITHMS

Structure Page Nos.
1.0 Introduction 5
1.1-  Objectives P
1.2 ‘Analysis of Parallel Algorithms 6

1.2.1 Time Complexity

1.2.1.1 Asymptotic Notations
1.2.2 Number of Processors
1.2.3 Overzll Cost

1.3 Different Models of Computation 8
1.3.1 Combinational Circuils

1.4 Parallel Random Access Machines (PRAM) 10
1.5 Interconnection Networks 10
1.6 Sorting 11
1.7 Combinational Circuit for Sorting the String 11
1.8  Merge Sort Circuit 14
1.9, Sorting Using Interconnection Networks 16
1.10 Matrix Computation 19
L1l Concurrently Read Concurrently Write (CRCW) 20
1:12  Concurrently Read Exclusively Write (CREW) 20
i.13 Summary 21
.14 Solutions/Answers 22
1.15 References/Further Readings 22
1.0 INTRODUCTION

An algorithm is defined as a sequence of computational steps required to accomplish a
specific task. The algorithm works for a given input and will terminate in a well defined
state. The basic conditions of an algorithm are: input, output, definiteness, effectiveness
and finiteness. The purpose of the development an algorithm is to solve a general, well
specified problem.

A concern while designing an algorithm also pertains to the kind of computer on which
the algorithm would be exectued. The two forms of architectures of computers are:
sequential computer and paralle! computer. Therefore, depending upon the architecture of
the computers, we have sequential as well as parallel algorithms.

The algorithms which are executed on the sequential compaters simply perform according
to sequence of steps for solving a given problem. Such algorithms are known as
sequential algorithms.

However, a problem can be solved after dividing it into sub-problems and those in tum
wre executed in parallel. Later on, the results of the solutions of these subproblems can be
:ombined together and the final solution can be achieved. in such situations, the number
sf-processors required would be more than one and they would be communicating with
:ach other for producing the final output. This environment operates on the parallel
:omputer and the special kind of algorithms called paralie] algorithms are designed for
hese computers. The parallel algorithms depend on the kind of parailel computer they are
lesinged for. Hence, for a given problem, there would be 2 need to design the different
fids of parallel aigorithms depending upon the kind of parallel architecture.

LCETTITIITIY -




Parallel Algorithms &
Parallet Programming

i~

A parallel computer is a set of processors that are able to work cooperati'vely,to solve a
computational problem. This definition is broad enough to include parallel
supercomputers that have hundreds or thousands of processors, networks of workstations,
rmultiple-processor workstations, and embedded systems. The parallel computers can be
represented with the help of various kinds of models such as random access machine
(RAM), parallel random access machine (PRAM), Interconnection Networks etc. While
Jesigning a parallel algorithm, the computational power of various models can be
analysed and compared, parallelism can be involved for a given problem on a specific
model after understanding the characteriscitics of a model. The analysis of parallel
aizorithm on different models assist in determining the best mode! for a problem after
receiving the results in terms of the time and space complexity.

In this unit, we have first discussed the various parameters for analysis of an algorithm.
Thereafter. the various kinds of computational models such as combinational circuits etc.
have been presented. Subsequently, a few problems have been taken up, e.g., sorling,
matrix multiplication ¢tc. and solved using paraliel algorithms with the help of various
pasallel compuational models.

1.1 OBJECTIVES

Alter studying this unit vie learner will be able to understand about the following:
e Analysis of Parallel Algorithms;
» Different Models of Computation;
o Combinational Circuits
o] Interconnection Networks
o PRAM
» Sorting Computation, and
e Matrix Computation.

1.2 ANALYSIS OF PARALLEL ALGORITHMS

A generic algorithm is mainly analysed on the basis of the following parameters: the time

complexily (execution time) and the space complexity (amount of space required).
Usually we give much more importazce to time complexity in comparison with space

complexity. The subsequent section highlights the criteria of analysing the complexity of ;

parallel algoritiuns. The fundamental parameters required for the analysis of parallel
algorithms are as follow: :

» Time Complexity
e The Total Number of Processors Required

¢ The Cost Involved.

1.2.1 Time Complexity

As it happens, most people who implement algorithms want to know how much of a
particular resource (such as time or storage) is required for a given algorithm. The pr.allel
arcitectures have been designed for improving the computation power of the various
aigotithms. Thus. the major concern of evaluating an algorithm is the determination of
the araunt of time required to execute. Usually, the time complexity is calculated on the
basts of the total number of steps executed to accomplish the desired output.

I—aw ey




The Parallel algorithms usually divide the problem into more symmetrical or
asymmetrical subproblems and pass them to many processors and put the results back
together ar one end. The resource consumption in parallel algorithms is both processor
cycles on each processor and also the communica‘ion overhead between the processors.

Thus, first in the computation step, the local processor performs an arthmetic and logic
operation. Thereafter, the various processors communicate with each other for exchanging
messages and/or data. Hence, the time complexity can be calculated on the basis of
computational cost and communication cost invloved.

The time complexity of an algorithm varies depending upen the instance of the input for a
given problem. For example, the already sorted list (10,17, 19, 21, 22, 33) will consume
less ainout of time than the reverse order of list (33, 22, 21,19,17,10). The time
complexity of an algorithm has been categorised into three forms, viz:

i)  Best Case Complexity;
ii)  Average Case Complexity; and
i)  Worst Case Complexity.

The best case complexity is the least amount of time required by the algorithm for a given
input. The average case complexity is the average running time required by the algorithm
for a given input. Similarly, the worst case complexity can be defined as the maximum
amount of time required by the algorithm for a given input.

Therefore, the main factors involved for analysing the time complexity depends upon the
algorightm, paraltel computer model and specific set of inputs. Mostly the size of the
input is a function of time complexity of the algorithm. The generic notation for
describing the lime-complexity of any algorithm is discussed in the subsequent sections.

1.2.1.1 Asymptotic Notations

These notations are used for analysing functions. Suppose we have two functions f{n) and
g({n) defined on real numbers,

i) Theta @ Notation: The set @(g(n)) consists of alt functions f{n), for which there
exist posilive constants cl,c2 such that f{n) is sandwiched between c1*g(n) and
c2*g(n), for sufficienily large values of n. In other words,

A(g(n)) ={ 0<=c1*g(n) <= f(n) <= c2*g(n) foralln>=n, }

ity Rig O Notation: The set O(g(n)) consists of all functions f{n), for which there exists
positive constants ¢ such that for sufficiently Jarge values of n, we have 0<= fn) <=

¢*g(n). In other words,
O(g(n)) ={ 0<= f{n) <= c*g(n) foralln>=n, }

iiiy  $2Notation: The function f{n) belongs to the set Q (g(n)) if there cxists positive
constants c such that for sufficiently large values ofn,
we have 0<= c*g(n) <=f(n). In other words,
C(g(n)) ={ 0<=c*g(n) <=f(n) forall n>=n, }.

Suppose we have a function f(n)= 4n* + n, then the order of function is O(n?). The
asymplotic notations provide information about the lower and upper bounds on
complexity of an algorithm with the help of © and O nuictions. For example, in the
sorting algorithm the lower bound is Q (n In n) and uppe: bound is O (n In n). However,

problems like matrix multiplication have complexities like o) to O(n™*®). Algorithms

Parallel Algorithms

ST T TR ST b

LI B S B




Parallet Algorithms &
_Panallet Programming

which have similar upper and lower bounds are known as optimal algorithms. Therefore,
few sorting algorithms are oplimal while matrix multiplication based algomhms are not.

Another method of determining the perfonnance of a parallel algorithm can'be carried out
afler calculating a parameter called “speedup™. Speedup can be defined as the ratio of the
worst case time complexity of the fastest known sequential algorithm and the worst case
running time of the parallel algorithm. Basically, speedup determines the performance
improvement of paralle! algorithm in comparison to sequential algorithm.

Worst case running time of Sequential Algorithm

Speedup =
Worst case running time of Parallel Aigorithm

1.2.2 Number of Processors

One of the other factors that assist in analysis of paralle! algorithms is the total number of
processors required lo dcliver a solution to a given problem. Thus, for a given input of
size say n, the number of processors required by the parallel algorithm is a function of n,
usually denoted by TP (n).

1.2.3 Overall Cost

Finally, the total cost of the algorithm is a preduct of time complexity of the parallel
algorithm and the total number of proces3sors required for computation.

Cost = Time Complexity * Total Number of Processors

The other form of defining the cost is that it specifics the total number of steps execuled
collectively by the n number of processors, i.e., summation of steps. Another tenn related
with the analysis of the paraltel algorithms is efficiency of the algorithm. It i< *efined as
the ratio of the worst case running ti:ne of the best sequential algorithm and e .. > o the

parallel algorithm. The efficiency would be mostly less than or equal to 1. In a situation, if
efficiency is greater than 1 then it means that the sequential algorithm is (aster than the

paralle] algorithm.

Worst case running time of Sequential Algorithm

Cost of Parallel Algorithm

Efficiency =

1.3 DIFFERENT MODELS OF COMPUTATION

e e RSN

b AR rhnbrehertd

R B e e M

There are various compuiational models for representing the parallel computers. In this
section, we discuss various models. These models would provide a platform lcr the
designing as well as the analysis of the parallel algorithms. -

1.3.1 Combinztional Circuits

Combinationat Circuit is one of the models for parallel computers. In interconnsction
networks, various processors communicate with each other directlv and do not requic a
shared inemory in between. Basically, combinational circuit (c¢) is a connected
arrangenient of logic gates with a set of m input lines and a sct of n output iines as shown
in Figure ! The combinational circuits are mainly made \ip of various imerconiected
counpoinents arranged in the form known as srages as shown in Figure 2.




Combinational
M Inputs Circuit (cc) N Qutputs

Figure 1: Combivational circuit

/__ ey [T 1 CC;2 ==L} \ Ou‘pUts
T cc
\ )

Inputs

e
B I I
N N N
|- €y 5 | E 2
1 3 ' o
T L |

Interconnection Netwaork

Figure 2: Detailed combinationsl circuit

may, be noted here that there is no feedback control employed in combinational circuits.
here are few terminologies followed in the context of combinational circuits such as fan
' and fan out. Fan in signifies the number of input [ines attached to each device and fan
1 signifies the number of output lines. In Figure 2, the fan in is 3 and fan out is also 3. ¢
he following parameters are used for analysing a combinalional circuit:

Depth: It means that the tota! number of stages used in the combinational circuit
starting from the input lines to the output lines. For example, in the depth i$ 4, as
there are four different stages attached to a interconnection network. The other form
of interpretation of depth can be that it represents the worst case time complexity of
solving a problem as input is given at the initial input lines and data is transferred
between various stages through the interconnection network and at the end reaches
the output lines.

Width: It repi'esenls the total number of devices attached for a particular stage. For
example in Figure 2, there are 4 components attached to the interconnection
network. It means that the width is 4.

Size: It represents the total count of devices used in the complete combinational
circuit. For example, in Figure 2, the size of combinational circuit is 16 i.e:
{(width * depth).

Parailel Algorithm:

LRl I e e T b B e 1




. Parallet Algorithms &

Parallel Programming 1.4 PARALLEL RANDOM ACCESS MACHINES

!

PRRAM is one of the models used for designing the parallel algorithm as shown in Figure &
3. 7he PRAM model contains the following components:

1} A set of identical type of processors say Py, P, P3 ...P..
i1} It contains a single shared memory module being shared by all the N processors. As

the processors cannot communicate with each other directly, shared memory acts as';
a communication medium for the processors. -

iii)  I[n order to connect the N processor with the single shared memory, a component
called Memory Access Unit (MAU) is used for accessing the shared memory.

F P P ———p
—— MAU SHARED '
' Processors, 4 — P la— 5 d—P» MEMORY :

H I I|

Fipure 3: PRAM Made)

Following steps are followed by a PRAM model while executing an algorithm:

1}  Read phase: First, the N processors simultaneously read data from N differert ;
memory locations ef the shared memery and subscauently store the read dats into
its local registers.

i) . Computc phase: Thereafier, these N processors perform the arithmetic or logical
operation on the data stored in their local registers.

iii) Write plase: Finally, the N processors parallel write the compuied values from: thcu‘.
local registers into the N memory locations of the shared memory: '

rrwrrearr o

1.5 INTERCONNECTION NETWORKS

As In PRAM, there was no direct communicalion medium between the Processors, i
another model known as interconnection networks have been designed. In the
interconuection networks, the N processors can communicate with each other through
direct links, In the interconncction networks, each processor has an independent local
Mmernory.




<+ Cheek Your Progress 1

1) Which of the following model of computation requires a shared memory?
1) PRAM
2) RAM
3)  Interconneclion Networks
4)  Combinational Circuits

2) Which of the lollowing model of computation has direct link belween processors?

13 PRAM
2) RAM
3) Interconncction Networks

4) Combinational Circuits

3) What does the term width depth in combinational circuits mean?-
1) Cost
2) Running Time
3) Maximum number of components in a given stage
4) Total Number of stages

4} Explain the concept of analysis of parallel algorithms. -

.............................................................................................................

1.6 SORTING

The term sorting means arranging elements of a given set of elements, in a speciﬁc order
i.e., ascending order / descending order / alphabetic order etc. Therefore, sorting is one of
the interesting problerns encountered in computations for a given data. In the current
section, we would be discussing the various kinds ofsortmg algorithms for different
computational models of parallel computers.

The formal representatian of sorting problem is as explained: Given a string of m
numbers, say X= Xy X3 X1, X4 .. _Xmand the order of the elements of the string X is

initially arbitrary. The solution of the problem is to rearrange the elements of the string X
such that the resultant sequence is in an ascending order.

Let us use the combinational circuits for sorting the striag.

1.7 COMBINATIONAL CIRCUIT FOR SORTING
THE STRING

Each input line of the combinational circuit represents an individual element of the string
say x;and each output line results in the form of a sorted list. In order to"achieve the above
mentioned task, a comparator is employed for the processing.

Esch comparator has two input lines, say a and b, and similarly two output fines, say ¢
and d. Each comparator provides two outputs i.e., ¢ prevides maxim  of a and b (max

Parallel Algorithms

11

o




FParallel Algorithms &
Parallel Propramming

12

{a, b)) and d provides minimuim of a and b (min (a, b)) in comparator InC and DeC it is
opposite, as shown in Figure 4 and 5.

In gencral, there are two types of comparators, often known as increasing comparators
and decreasing comparators denoted by + BM(n) and — BM(n) where n denotes the
number of input lines and output lines of the comparator. The depth of + BM(n) and —
BM(n) is Jog n. These comparators are employed for constructing the circuit of sorting.

a ¢ =min (a, b)

P — INC.

b——— ——— d=max (a, b)
Figure 4 (a) Increasing Comparator, for 2 inpuls

2 ——— ——— c¢=min{a, b)

[ — DEC

b——] d =max (a, b)
Figure 4 (b) Decreasing Comparator, for 2 inpuls

i ¢ =max (i, n)

: INC -

n d =min (i, n)
Figure 5 (a): Increasing Comparaior, for n inputs

j— | | c=max(i,n)

: DEC o

n d =min (i, n)

Figure 5 (b): Decreasing Comparator, for n inputs

Now, fet us assume a famous sequence known as bitonic sequence and sort out the

elemenls using a combinational circuit consisting of a set of comparators. The propicrty of

bitonic sequence is as follows:

Consider a sequence X= xq X; X2, X3, Xq ... Xaq Such that condition I:either Ko X1 Xo,
X3 X4 .........X isa monolonically increasing sequence and Xy %42, . XagiSa
monotonically decreasing sequence or condition 2: there exists a cyclic shifl of the
sequence Xo X X2 X3 Xq.............. Xt SUCh that the resulting sequence satisfies the

condition 1.
Let us take a few examples of bitonic sequence:

B1=4,7,8,9,11,6,3,2,1 is bitonic sequence
B2=12,15,17,18,19,11,8,7,6,4,5 is bitonic sequence

In order to provide a solutjon to such a bitonic sequence, various stages of comparaiors
are required. The basic approach followed for solving such a problem is as given:

vl r el Praciey =aerariar R

S




Let us say we have a bitonic sequence X= x; x| X2, X3 Xs . ..., Xa With the property Parallel Algorithms
that first n/2 elements are monotonically increasing elements are monotonically '
increasing like Xo< X< Xz« X3¢ Xa __<Xqp. and other numbers are monotonically decreasing as

Xnn> Xoras1> | _>Xgr. Thereafter, these pattems are compared with the help of a comparator

as follows:
Y= min(xo, %pz), MiN(X; Xp41), MIN(X2 Xanez)y covenerniinin Min (Xp7.1, Xa1)
7= max(xy Xnn), Max (Xy Xyn+1), MAX (X3 Xp242)y «oreecnvnnnns max (Xnz-1. Xa-t)

After Lthe above discussed iteration, the two new bitonic sequences are generated and the
method is known as bitenic split. Thereafter, a recursive cperation on these two bitonic
sequences is processed until we are able to achieve the sorted list of elements. The exact
algorithm for sorting the bitonic sequence is as follows:

Sort_Bironic (X)

#/ Input: N Numbers following the bitonic property
‘/f Qutput: Sorted List of numbers

1) The Sequence, i.e. X is transferred on the input lines of the combinational circuit
which consists of various set of comparators.

2}  The sequence X is splitted into two sub-bitonic sequences say, Y and Z, with the help
of a method called bitonic split.

3} Recursively execute the bitonic split on the sub sequences, i.e. Y and Z, until the size
of subsequence reaches to a level of 1.

4y The sorted sequence is achieved after this stage on the oulput lines.

With the help of a diagram to illustrate the concepl of sorting using the comparators.
Example 1: Consider a unsorted list having the element values as
{3,5,8,9,10,12,14,20,95,90,60,40,35,23,18,0}

This list is to be sorted in ascending order. To sort this list, in the first stage comparators
of order 2 (i.e. having 2 input and 2 output) will be used. Similarly, 2* stage will consist
of 4, input comparators, 3" stage 8 input comparator and 4" stage a 16 input comparator.

Let us take an example with the help of a diagram to illustrate the concept of sorling using
the comparators (see Figure 6).

3 | +BM(2) |3 3 3 0
5 5 |+BM@) |5 5 3
g |-BM(2) |9 8 8 5
9 8 9 +BM(8) | 9 8
19 |+BM(2) | 10 20 ' 10 9
12 12- | -BM(@4) |14 P2 10
% | -BM(2) |20 12 14 12
ROy 14 - 110 20 - | +BM(16) | 14
1 95 | +BM(2) | 90 40 . o5 18
99 93 | +BMM(4) | 60 g P 20
60 | -BM(2) | 60 90 L Ag 23
|40 | 40 95 -BM(8) |40 35
{35 [ +BM(2) | 23 35 35 40
75 35 | BM4: 123 |2 60
I8 -BM(2) | 1o I 18 BB 90
0 0 _ o | s 95

Figure 6: Sorting using Combinational Circuit

FEE et S i P

I B - DL

E R R i o




Parallel Algorithms &
Parallel Programming

Analysis of Sort_Bitonic(X)

The bitonic sorling network requires log n number of stages for performing the task of
sorting the numbers. The first p-1 stages of the circuit are able to sort two n/2 numbers
and the final stage uses a +BM (n) comparator having the depth of log n. As running time
of the sorting is dependent upon the tolal depth of the circuit, therefore it can be depicted
as: -

D(n) = D(n/2) + log n
Solving the above menlioned recurrencerelation
D(n)= (log’n + log n)/2 = O(log’ )

Thus, the complexily of solving a sorling algorithm using a comblnallona! circuit is
O (log’n).

Another famous sorting algorithm known as merge sort based algorithm can aiso be
depicted / solved with the help of combinational circuit. The basic worklng of merge sort
algorithm is discussed in the next section

1.8 MERGE SORT CIRCUIT

First, divide the given secuence of n numbers into two parts, each consisting of n/2
numbers. Thereafter, recursively split the seduence into two parts until each number acis
as an independent sequence. Consequently; the independent numbers are first soried and
recursively merged until a sorted sequence of n numbers is not achicved.

In order 1o perform the above-mentioned task, there will be two kinds of circuits which
would be used in the following manner: the first one for sorting and another one for
merging the sorted list of numbers.

Let us discuss the sorting circuit for merge sort algorithm. The sorting Circuit.

Odd-Even Merging Circuit

Let us firstly Hlustrate the concept of merging two sorted sequences using a odd-even
merging circuit. The working of a merging circuit is as follows:

1) Let there be two sorted sequences A=(a, a; a; a,
which are required to be merged.

2) With the heip of a merging circuit {(m/2,m/2), merge the odd indexed numbers of the
two sub scquences i.e. (a) @ as........ 3p1) and (by by bs__ . bn) and thus resulting in
sorted sequence (¢; ¢2.C3,_ Cm

3) Thereafier, with the help of a merging circuit (m/2,m/2), merge the even indexed
numbers of the two sub sequences i.e. (a; a, ag a,) and (b; b; bs__ . by)and thus

a'l‘n) and B=(bl, b?.. b]. b4 . bm)

resulting in sorted sequence (di.dads_. dm).

4) The final output sequénce O={0, 02 03 02 ) is achieved in the following manzmer:
0,=a, and 0,,, = b, In general the formula is as given below: 05 = min(a;.; b;) and
O+ = max(zig by} for i=1,2,3,4.......... m-].

Now, let us take an exaraple for merging the two sorted sequences of length 4, i.e., A=(a
@2 .8y) and B=(b, b, by bs). Suppose the numbers of the sequence are A=(4,6,9,10) and
B=(2,7,8,12). The circuit of merging the two given sequences is illustrated in Figure 7.

EEREE 5 L]

SE RN oo o

- —rw— T F T




( Odd-even merging circuit

4—>b ‘*}(; > 2
6 e
%- : » 4
/ s e 5
9 S
l -/.f- H\\ - - -
f : N 7
_ N p————p 3
2 |
7
\ . 9 .
— . » 10
£
12 — » 12

Figure'7: Merging Circuit

Sorting Circuif along with Odd-Even Merging Circuit

As we already know, the merge sort algorithm requires two circuits, i.e. one for merging
and another for sorting the sequences. Therefore, the sorling circuil has been derived
from the above-discussed merging circuit. The ba5|c steps followed by the circuit are
highlighted below:

)

i)
iii)

The given input sequence of [ength n s dmdcd into two sub-sequences oflenglh
n/2 each,

The two sub sequences are recurs:vely sorted.

The two sorted sub sequences are merged (n/2,n/2) usmg a merging circuit in order
to finally get the sorted sequence of length n.

Now, let us take an example for soriing the n numbers say 4,2,10,12 8,7.,6,9. The circuit
of sorting + merging given sequence is illustrated in Figure 8.

Analysis of Merge Sort

),

The width of the sorting + merging circuit is equal to the maximum number of
devices required in a stage is O(/2). As in the above figure the maximum number
of devices for a given stage is 4 which is 8/2 or n/2.

The circuit contains two sorting circuils for sorting sequences of length n/2 and
thereafter one merging circuit for merging of the two sorted sub sequences (see
stage 4™ in the above figure). Let the functions Ts and Tm denote the time
complexity of sorting and merging in terms of its depth.

(he Ts can be calculated as follows:

Ts(n) =Ts@2) + Tm(n/2}

Ts(n) =Ts(n’2) + log(n/2),

Cherefare, Ts (n) is equal to Oflog® n).

Parallel Algorithms

5.

TTTI= T os

—Emn




arallel Algorithms &
arallel Programming

4 > o | 1

a . \

) \* . E———‘

6 / /’ B .

10 T

11 =4 —

- ]
————

o .
Ha— \ )< ] -,
.

Figure 8: Sorting + Merging Circait

1.9 SORTING USING INTERCONNECTION
NETWORKS

The combinational circuits use the comparators for comparing the numbers and storing
them on the basis of minimum and maximum functions. Similarly, in the intercoprsctios:
networks the two processors perform the computation of minimum and maximum

functions in the following way:

Let us consider there are two processors p; and p;. Eack: of these processors has been given
as input an element of the sequence, say & and ;. Now, the processor p; sends the element
e; to p, and consequently processor p; sends €; 1o pi. Thereafter, processor p; calculates the
minimum of €; and ¢; i.¢., min (e;¢;) ar®! processor p; calculates the maximum of ¢; and ¢,
i.e. max {e;¢;). The above method is known as compare-exchange and it has been dunicled

in the Figure 9.

€
P, | <= | P
S
ei'g € g
P; P
min (e; e} max (eLej)
P; Pi \

Figure 9: Illustration of Exchange-cum-Comparison in interconnection nelworks:

The sorting probiem selected is b'ibble sort and the intercon:iection network can be
depicted as n processors interconnected with each other in the form of & linear array as

R R T




7&

shown in Figure 10. The technique adopted for solving the bubble sort is known as odd-
2ven lransposition. Assume an input sequence is B=(by by by by b,} and each number

" is assigned to a specific processor. In the odd-even transposition, the sorting is performed
with the help of two phases called odd phase and even phase. In the odd phase, the
elements stored in (pi_p2), {Ps p4), (Ps.Ps)--------- (P»1. P} are compared according to the
Figure and subsequently exchanged if required i.e. if they are out of order. In the even
phase, the elecments stored'in (pa, p3), (P« Ps), (Ps.P7)---.-.-. (Pa2.Pa1) are compared
according to the Figure and subsequently exchanged if required, i.e. if they are out of
order. Remember, in the even phase the elements stored in p, and p, are not compared and
exchanged. The total number of phases required for sorting the numbers is n i.e. n/2 odd
phases and n/2 even phases. The algorithmic representation of the above discussed odd—
even transposition is given below: -

Py P, P; N ——— P,

Figurc 10: {otercanncction network in the form of a Linear Array
Algorithm: Odd-Even Trapsposition

/lnput: N numbers that are in the unsorted formn
//Assume that element bi is assigned Lo pi

forl=l toN
{
If (I%2 = 0) //i.c Odd phase
{
Forj=1,3,5,7,...c...ocooea. 2*n/2-]
{ .
Apply compare-exchange(P;, P;,1) //Operation is performed in parallel
}
}
else // Even phase
{
Forj=2,46.8.................. *(n-1)/2-1
{
Apply compare-exchange(?;, Pj.) //Operation is performed in parallel
}
}
i++
§

I et us take an example and illustrate the o\:ld-even transi)ositilpn algorithm (see Figure 11).

Analysis

The alrove algorithm requires one “for loop’ stariing from I=1 to N, i.¢. N times and for
cach value of I, one ‘for loop’ of J is exccuted in parallel. Therefore, the time complexity
of the algerithm is O(n) as there arc total i phases and each phase performs either odd or
cven transposition in O(1) lime,

Parallel Algorithms

17

ELi=rirah M) i i =l

B I




wrallel Algorithms & !nitially:
wraliel Programming € —p ‘- - p
o L4 7 Lt 1wl 4 1d 6 Id s L1 5 Lf 13
I”Iteratiogl > ] < >
74 o o4t el e o8 ] s 1 |
2" Tteration
N e <>  —> 4>
—-
1 el e e ol s L s L
3 Iteration
B e P >
¢ |4 71 6 |1 9 L1 s [ 10[] 8 11
4% Iteration
*&-——F ————p <+« «— )
|
4_|6_'?__5_9__8_]0 11'|
]
5% iteration
-+ P 4>
4 6 | 5 1] 7 ] 8 | 9 | 10 [ il
¢ 6" Iterati
ration
¢ I s 64 7 s b1 el |l n
7" lteration .
4 || S Ly 6 ! 7 s |- 9 |- 10 |- 11
8" fteration _
4 ||l s || 6 |1 7 8 L4 9 |4 10| d n

ngure 11: Example

< Check Your Progress 2

1) Which circuit has a time complexity of O(n) for sorting the n numbers?

1} Sert-Merge Circuit

2)  Interconnection Networks
3) Combinaticnal Circuits
4) None of the above




v

2) Which circuit has a time complexity of O(logn?) for sorting the n numbers?

1) PRAM

2) Interconnection Networks
3) Combinational Circuits
4y BothIand 3.

3) Explain the concept of sorting in the combinational circuits

1.10 MATRIX COMPUTATION

In the subsequent section, we shall discuss the algorithms for solving the matrix °
multiplication problem using the parallel models.

Matrix Multiplication Problem

Let there be two matrices, M1 and M2 of sizesax band b x ¢ respectively. The product of
M1 x M2 is a matrix O of size a x c.
The values of elements stored in the matrix O are according to the following formulae:

O;= Summation x of (M1, * M2,)) x=1 to b, where 1<i<a and i <j<c.

Remember, for multiplying a matrix M1 with another matrix M2, the number of columns
1 M1 must equal number of rows in M2. The well known matrix muitiplication algorithm
m sequential computers takes O(n’) running time. For muitiplication of two 2x2,
nafrices, the algorithm requires 8 multiplication.operations and 4 addition operations.
Another algorithm called Strassen algorithm has been devised which requires 7
nultiplication operations and 14 addition and subtraction operations, The time complexity

'f Strassen’s algorithm is O(n”*"). The basic sequential algorithm is discussed below:
Mgorithm: Matrix Moultipiica{jon
1put// Twa Matrices M1 and M2

orf=l on
Forj=1ton
{
Oij= 0;
Fork=]ton
Oij= Oij + M]ik * Mzkj
End For
} ) N
End For
1id For

3w, let us modify the above discussed matrix multiplication algorithm according to
raliel computation modets. .

Pzarallel Algarithms

19

e e

[T ST AT PP




Parallel Algorithms &

Parallel Programming 1.11 CONCURRENTLY READ CONCURRENTLY
WRITE (CRCW)

—

1L is one of the models based on PRAM. In this model, the processors access the memory
lecations concurrently for reading as well as writing operations. In the algorithm, which
nses CRCW model of computation, n® number of processors are employed. Whenever a
concurtent wrile operation is performed on a specific memory location, say m, than there
are chances of occurrence of a conflict. Therefore, the write conflicts i.e. (WR, RW, WW)
i.ave been resolved in the following manner. In a situation when more than one processor
tries 1o write on the same memory location, the value stored in the memory location is
always the sum of the values computed by the various processors.

Algorithm Matrix Multiplication using CRCW

Input// Two Matrices M1 and M2
Fort=1lon /{Operation performed in PARALLEL
Forj=lton //Qperation performed in PARALLEL
For k=1 ton #/Opcration performed in PARALLEL
;=0
Oij= Mlik * I\'izki
End For
End For -
End For

The complexity of CRCW based algorithm is O(1).

1.12 CONCURRENTLY READ EXCLUSIVELY
WRITE (CREW)

It is one of the models based on PRAM. In this model, the processors access the memaory
lacation concurrently for reading while exclusively for writing operations. In the
algorithm which uses CREW mwodel of computalion, n? number of processors nave becn
attached in the form of a two dimensional array of size n x .

Algorithm Matrix Multiplicatics vsiag CREW
Input// Two Mairices M| and M2

ForI=lton HOperation performed in PARALLEL
Forj=lton  //Operation performed in PARALLEL
{
OjJ= 0;
Fork=lton
Oij = Oij + Mg * M2kj
End Fer

ond Yor
Eng 7o

The cospy exity of CREW based algorithm is O{n).

B e Bt

oo emepemeaay

F T




& Check Your Progress 3

1) Which of the models has a complexity of O(n) for matrix multiplication?

1) RAM
2} Interconnection Networks
3) CRCW
4) CREW
2) Which of the models has a complexity of O(1) for matrix multiplication?
1) RAM
2} Interconnection Networks
3) CRCW
4) CREW

3) Explain the algorithm for matrix muitiplication in sequential cireuits.

1.13 SUMMARY

In this chapter, we have discussed the various topics pertaining to the art of writing
paralle] algorithms for various parallel computation models in order to improve the
efficiency of a number of numerical as well as non-numerical problem types. In order to
evaluate lhe complexity of parallel algorithms there are mainly three important
parameters; which are involved i.e., 1) Time Complexity, 2) Total Number of Processors
Required, and 3) Total Cost Involved. Consequently, we have discussed the various
computation models for parallel computers, e.g. combinational circuits, interconnection
networks, PRAM etc. A combinational circuit can be defined as an arrangement of logic
gates with a set of m input lines and a set of n output lines. In the interconnection
networks, the N processors can communicate with each other through direct links. In the
interconnection networks, each processor has an independent local memory. In the
PRAM, it contains n processors, a single shared memory module beitig shared by all the
N processors and which also acis as a communication medium for the processors. In order
lo connect the N processors with the single shared memory, a component called Memory
Access Unit (MAU) is used for accessing the shared memory. Subsequently, we have
discussed and applied these models on few numerical problems like sorting and matrix
multiplication. In case of sorting, initially a combinztiona! circuit was used for sorting. A
bitonic sequence was given as an input to a combinational circuit consisting of a set of
comparators interconnected with each other. The compiexity of sorting using
Cembinational Circuit is O (fog? n). Anothar famous sorting algarizkm known as merge
sort based algorithm can also be depicted / solved with the help of Lie coinbinational
circuit. The complexity of merge-sornt using Combinaliona! Clrcuit is O (tce’n). The
interccrinection retwork can be used for solving the sorling problen known as hupble
sort. The interconnection netwoik can be depicied as n processors interconnected with
each other in the form of a linear array. The complexity of bubble sort using
tnierconnection network is O {1}, The well known matrix multiplication algorithm on
sequentiat computers take O (n°) running time and strass.n a}g’brithm take O(n**"). Ir the
present study, we have discussed 1o models based on PRAM for solving the matrix
meitipiication problem. In CRCW model, the processors access the memory location
concurrently for reading as well as for writing opsration. ' the algorithm which uses
CRCY modei of cumputaiion, n’ aumber of processors arc employed. The complexity of
CRCW based algorithm is O(1}. In CREW model, (he processors access the memory

Parallel Algorithms

CTETVTTIE

L




Parallel Algorithms &
Parallel Programming

Py A

location concurrently for reading while exclusively for writing operation. In the algorithm

which uses CREW model of computation, n® number of processors have been attached in
the form of a two dimensional array of size n x n. The complexity of CREW based -
algorithm is O(n).

1.14 SOLUTIONS/ANSWERS

“»  Check Your Progress 1

Y e =

1:
2:
3:
4: The fundamental parameters required for the analysis of parallel algorithms are as
under:

1. Time Complexity;

2. The Total Number of Processors Required; and

3. The Cost Involved.

< Check Your Progress 2

1:2

2:4

3: Each input line of the combinational circuit represents an individual element of the
string say, X;, and each output line results in the form of a sorted Iist. In order to achieve
the above-mentioned task, a comparator is employed for processing.

< Check Your Progress 3

1:
2:
3:

- W &

he values of elements stored in matrix O are according 1o the following formulae:
O;;= Summation of (M1, * M2,;) x=1 to b, where 1<i<a and 1<j<c

1.15 REFERENCES/FURTHER READINGS

1} Cormen T. H., Introduction to Alcorithms, Second Edition, Prentice
Hall of India, 2002.

2) Rajaraman V. and Siva Ram Murthy C. Parallel Computers - Architecture and
Programming, Second Edition, Prentice Hall of India, 2002.

3) Xavier C. and Iyengar S. S. Jntroduction to Parallel Algorithm.

SmTmT T ot

£l ECmt

S1-tpomEmar

ELEEIE BT




UNIT 2 PRAM ALGORITHMS

Structure Page Nos.
2.0 introduction 23
2.1 QObjectives 23

2.2 Message Passing Programming .23
'2.2.1 Shared Memory . : . .
2.2.2 Messape Passing Libraries
2.2.3 Dalta Parallel Programming .

2.3 Data Structures for Parallel Algorithms 43
2.3.1 Linked List .
2.3.2 Armays Pointers
2.3.3 Hypercube Network

2.4 Summary . 47
2.5 Solutions/Answers 47
48

2.6 * Refercnces

2.0 INTRODUCTION

PRAM (Parallel Random Access Machine) mode! is one of the most popular models for
designing parallel algorithms. A PRAM consists of unbounded number of processors
interacting with each other through shared memory and a common communication
network. There are many ways to implement the PRAM model. We shall discuss three of
them in this unit: message passing, shared memory and data parallel. We shall also cover
these models and associated data structures here.

A number of languages and routine libraries have been invented to support these models.
Some of them are architecture independent and some are specific to particular platforms.
We shall introduce two of the widely accepted routine libraries in this unit. These are
Message Passing Interface (MP1) and Parallel Virtual Machine (FVM).

2.1 OBJECTIVES

After poing through this unit, you should be able 10:

explain the concepts of message passing programming;

list the various communication modes for communication among processors;
explain the concepts of shared programming model;

d~scribe and use the funcfions defined in MPL;

understand and use functions defined m PV M;

explain the concepls of data parallel programming, and

learn about different data structures [ike array, linked list and hypercube.

¢ 3 e 3 9

2.2 MESSAGE PASSING PROGRAMMING

Message passing is probably the most widely used parallel programming paradigm today.

[t is the most natural, portable arid efficient approach for distributed memory systems. It
provides naiural synchrehisation among the processes so that explicit synchronisation of

o e Ta S s et |

il mati




“arallel Algaritnmas &
*erafiol Frogramming

memory access is redundant. The programmer is responsible for determining all

parallelism. In this programming model, multiple processes across the arbitrary number of

machines, each with its own local memory, exchange data through send and receive
communication between processes. This model can be best understood through the
diagram shown in Figure 7:

Meanory

Proceaear —§ P P seseo0 P

Uvmmunicatives Nelwork

Figure 1: Message passage model

As the diagram indicates, each processor has its own local memory. Processors perform
computations with the data in their own memories and interact with the other processors,
as and when required. through communication network using message-passing libraries.
The message contains the data being sent. But data is not the only constituent of the
message. The other components in the message are:

* The identity/address of the processor that sending the message;
Starting address of the data on the sending processor;

The type of data being sent;

The size of data;

The identity/address of processor(s) are receivin g the message, and
Starting address of storage for the data on the receiving processor.

Once the message has been created it is sent through the communication network. The
communication may be in the following two forms:

i) Point-to-point Communication

The simplest form of message is a point-to- point communication. A message is senl from
the sending processor to a receiving processor. Message passing in point-to-point
cominunication can be in two modes: synchronous and asynchronous. In synchronous
transfer mode, the next message is sent only after the acknowledgement of delivery of the
last message. In this mode the sequence of the messages is maintained. In asynchronous
transfer mode, no acknowledgement for delivery is required.

ii ) Collective Communications

Saime message-passing syslems allow communication involving more than two

processors. Such type of communication may be called collective communicaiion.
Coilective communication can be in one of these modes:

TR

B e e

Laliiiic Fos

™o




Barrier: In this mode no actual transfer of data takes place unless all the processors
involved in the communication execute a particuiar block, called barrier block, in their
message passing program.

Broadcast: Broadcasting may be one-to-all or all-to-all. In one-to-all broadcasting, one
processor sends the same message to several destinations with a single operation whereas
in all-to-all broadeasting, communication 1akes place in many-to-many fashion. The
messages may be personalised or non-personalized. In a personalized broadcasting,
unique messages are being sent to every destination Processor.

Reduction: In reductions, one member of the group collects data from the other members,
reduces them to a single data item which is usually made available to all of the
participating processors.

Merits of Message Passage Programming

¢ Provides excellent low-level control of parallelism:
¢ Portable;

¢ Minimal overhead in parallel synchronisation and data distribution; and
e Itis less ervor prone.

Drawbacks

* Message-passing code generally requires more software overhead than paralle]
shared-memory code.

2.1.1 Shared Memory

[n shared memory approach, more focus is on the control parallelism instead of data
parallelism. In this model, multiple processes run independently on different processors,
but they share a common address space accessible to all as shown in Figure 2,

CPU | CPU2 CPU 3

Shared Memory

Figure 2: Shared memeory '

fhe preccasers communicate with one another by one processor writing data into a
ocation in memory and another processor reading the data. Any change in a memory
ocation effected by one processor is visible to all other processors. As shared data can be
ccessed by more than one processes at the same time, snune control mechanism such as
acks/ semaphores should be devised to ensure mutual exclusion. This model is ofien
cferred to as SMP (Symmetric Multi Processors), named so because a common
ymmetric implementation is used for several processors of the same type to access the
ame shared memory. A number of multi-processur systems implement a shared-memory
rogramming model; examples include; NEC SX-5, 8Gi Power Onyx/ Origin 2000;
lewlett-Packard V2600/HyperPlex; SUN HPC 10006 400 MHz ;DELL PowerEdpe

430.

PRAM Al-arithins

25

TTTTYTIOT

P ETTET




arallel Algorithms &
arallcl Programming

Shared memory programming has been implemented in various ways. We are introducing

soune of them here,
Thread libraries

Tie most typical representalives of shared memory programming models are thread
lilwaries present in most of the modem operating sy<tems. Examples for thread librarics
zre, POSIX threads as implemenlted in Linux, SolarisTM threads for solaris , Win32
titreads available in Windows NT and Windows 2000 , and JavaTM rhreads as part of
the standard JavaTM Development Kit (JDK).

Distribitted Shared Memory Systems

Distribuizad Shared Memory (DSM) systems emulate a shared memory abstraction on
loosely coupled architectures in order to enable shared memory programming despite
missing hardware support. They are moslly implemented in the form of standard libraries
and exploit the advanced user-level memory management features present in modemn
operating sysiems. Fxamples include Tread Marks System, 1VY, Munin, Brazos, Shasta,
and Cashincre.

Program Annotatior Prciages

A yuite renowned «-proach in this area is OpenMP, a newly developed industry stand=+¢
for shared memory programming on architectures with uniform memory access
characteristics. OpenMP is based on functional parallelism and fecuses mostly on the
parallelisation of lcops. CpenMP implementations use a special compiler to evaluate the
annotalions in the application’s source code and to transform the code tnto an explicitly
parallel code, which can then be executed. We shall have a detailed discussion on
OpenidP in the next unit. '

Shared memory approach provides low-level control of shared memory system, but they
tend la be redious and error prone. They are more suifable for system programming than
to application programming.

Merits of Shared Memary Programming
s Global address space provides a uscr—fnendly programming perspective o
mermory.

"« Data sharing between processes is both fast and uniform due to the proximity of

memory (3 CPUs.
¢ No need 1o specify explicitly the communication of data between processes.
* Negligible process-communication overhead.
» More intuitive and easier lo learn.

Drawbacks

» Naol portable.

e Difficult to manage data locality.

» Scalability is limited by the number of access pathways to memory.
= User is : 2sponsible for specifying synchronization, e.g., locks.

2.1.2 Messz2ge Passing Libraries

[n this section, we shall dlSCUSS about message passmg libraries. Historically, a variety of
message passing libraries have been available since the 1980s. These implementations
dlftered substantially from each other making it difficult for programmers to devciop

= rr TN v

- g

T




portable applicatiens. We shall discuss only two worldwide accepled neszaga passing'
libraries namely; MPl and PVM.

Mcssége Passing Interface (MPI)

The Message Passing Interface (MPI) is a universal standard for providing
communication among the multiple concurrent processes on a distributed memory system.
Most, if not all, of the popular paralle! computing platforms offer at least one
implementation of MPL It was developed by the MPI forum consisting of several experts
from industry and academics. MPI has been implemented as the library of routines that
can be called from languages like, Fortran, C, C++ and Ada programs. MPI was
developed in two stages, MPL-1 and MPI-2. MPI-1 was published in 1994.

Features of MPI-I

» Point-to-point communication,

Collective communication,

Process groups and communication domains,
Virtual process lopologies, and

Binding for Fortran and C.

Features added in MPI-2

* Dynamic precess management,

¢ Input/output,

o One-sided operations for remote memory access, and
o Binding for C++.

MPTD’s advantage over older message passing libraries is that it is both periable (because
MPI has been implemented for almost every distributed memory architecture} and fast
(because each implementation is optimized for the hardware it runs on).

. :
Building and Running MPI Programs

MPI parallel programs are written using conventional languages like, Fortran and C .One
or more header files such as “mpi.h” may be required to provide the necessary definitions
ind declarations. Like any other serial program, programs using MPI need to be compiled
first before running the program. The command to compile the program may vary
iccording to the compiler being used. If we are using mpce compiler, then we car compile
1C program named “program.c” using the following command:

ApCC Program.c -5 Program.o
vost implementations provide command, typically named mpirun for spawning MPI
iocesses. It provides facilities for the user to select number of processes and which

rocessors they will run on. For example to run the object file “program” as n processes
0 I processors we use the following command:

pirun program -np n
IPI functions

APT inciudes hundreds of functions, a small subset of which is sufficient for most
racticai purposes. We shall discuss some of them in this unit.

PRAM Algorithms

et bt o N

e mband

[t TP wls Bl SR L P

i Il R




Parallei Algorithms &
Parallei Programming

¥unctions for MP1 Envh"onment:

int MPI_Init (int *arge, char ** argy)
It initializes the MPI environment. No MPI function can be called before MP1_Init.

int MPI_Finalize (void)

2 lerminates the MPI environmenl. No MPI [i#nction can be called after MPI_Finalize.
12very MPI process belongs to one or more groups (also called communicator). Each
process is identified by its rank (0 to group size —1) within the given group. Initially, all
processes belong to a default group called MPI_COMM_WORLD group. Additional
wroups can be created by the user as and when required. Now, we shall leam some
functions related 10 communicators.

int MPI_Comm_size (MPI_Comm comm, int *size)

returns variable size thal contains number of processes in group comm.

int MPI_Comm_rank (MPI_Comm comm, int *rank)

retumns rank of calling process in proup contm.

Functions for Message Passing:

MPI processes do not share memory space and one process cannot directly access other

process's variables. Hence. they need some form of communication among theniselves. In

MPI environment this communication is in the form of message passing. A message in
MPI contains the following fields:

msgaddr; It can be any address in ihe sender’s address space and refers to focation in
memory where message data begins.

count: Number of occurrences of data items of message datatype contained in message.

datatype: Type of data in message. This field is important in the sense that MPI supports

heterogeneous computing and the different nodes may interpret count field differenily.
For example, if the message contains a strings of 2n characters (count =2n), some
machines may interpret it having 2n characters and some having n characters depending
upon the storage allocated per character (1 or 2). The basic datatype in MPI include all
basic types in Fortran and C with two additional types namely MPI_BYTE and
MPI_PACKED. MPI_BYTE indicates a byte of 8 bits . '

source or dest : Rank of sending.or receiving process in communicator.
rag: 1dentifier for specific message or type of message. It allows the programmer to deal
with the arrival of message in an orderly way, even if the arrival of the message is not”

orderly.

comm.: Communicator. It is an object wrapping context and group of a process .t is
altacated by system instead of user.

The functions used for messaging passing are:

R e e JL B i P e

[EE-X SHEH




. int MPI_Send(void *msgaddr, int count, MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm.)
on return, msg can be reused immediately.
int MPI_Recv(void *msgaddr, iat count, MPI_Daiatype datatype, int dest, int tag,
MPI_Comm comm.)
onreturn, msg contains requested message.
MPI message passing may be either point-to-point or collective.

Point-to-point Message Passing

In point-to-point message passing, one process sends/receives message to/from another
process. There are four communication modes for sending a rmessage:

i} Buffered mode: Send can be initiated whether or not matching receive has been
initiated, and send may complete before matching receive is initiated.

i) Synchronous mode: Send can be initiated whether or not matching receive has been
initiated, but send will complete only after matching receive has been initiated,

iii) Ready mode: Send can be initiated only if matching receive has already been
initiated.

iv) Standard mode: May behave like either buffered mode or synchronous mode,
depending on specific implementation of MPF and availability of memory for buffer
space.

MPI1 provides both blocking and non-blocking send and receive operations for all modes.

Functions for various communication modes

Mode Blocking ' Non-Blocking
Standard MPI Send MPI Isend
Buffered MPI Bsend MP! Ihsend

Synchronus MP{ Ssend MPI Issend

Ready MPI Rsend MPI Irsend

MPI Recv and MP! Irecy are blocking and nonblocking functions for receiving
messages, regardless of mode. .

Besides send and receive functions, MPI provides some more useful functions for
*ommunications. Some of them are being introduced here.

VIPI_BufTer attach used to provide buffer space for buffered mode. Nonblockin g
Unctions include request argument used subsequently io determine whether requested
yperation has completed. '

API_Wait and MP] Test wait or test for completion of nonblocking communication.

4PI_Probe and MF! Iprobe probe for incoming rmessags without actual ly receiving it.
nfarmation about message determined by probing can be used to decide how to receivs

PRAM Algorithms

29

i Pl bremrale BRI

N T/=rvr

I I Y et

el




Parallel Atgorithms &
Parallel Programming

API Cancel cancels outstanding message request, useful foi cleanup at the end of - a
program or after major phase of compulation.

Collective Message Pussing

In collective message passing, all the processes of a group parlicipate in communication.
MPI provides a number of functions to implement the collective message passing. Some
of them are being discussed here.

MPI_Bcast{msgaddr, count, datatype, rank, comm):
This function is used by a process ranked rank in group comm (o broadcast the message to
all the members (including self) in the group. '

MPI_Allreduce

MPI Scatter(Sendaddr, Scount, Sdatatype, Receiveaddr, Reount, Rdatatype, Rank,
Comm):

Using this function process with rank rank in group comm sends personalized message to
aif the processes (inclhuding self) and sorted message (according to the rank of sending
processes) are stored in the send buffer of the process. First three parameters define
buffer of sending process and next three define buffer of receiving process.

MPI_Gather (Sendaddr, Scount, Sdatatype, Receiveaddr, Reount, Rdatatype,Rank,
Comm):

Using this function process with rank rank in group comm receives personalized messc.ge
Jfrom all the processes (including self) and sorted message {according to the rank of
sending processes) are stored in the receive buffer of the process. First three parameicrs
define buffer of sending process and next three define buffer of receiving process.

MPI Alitoall()
Each process sends a personalized message to every other process in the group.

MPI_Ret.-iuce (Sendaddr , Receiveaddr , count, datatype, op, rank, comm):

This function reduces the partial values stored in Sendaddr of each process into a final
result and stores it in Receiveaddr of the process with rank rank. op specifies the
reduction operator.

MPI Scan (Sendaddr, Receiveaddr, count, datatype, op, comm):

It combines the partial values into p final results which are received into the Receiveaddr
of all p proces:<s in the group comm.

MPI_Barricr(crmm):
This function synchronises all pracesses in the group comm.

Timing in MPI program

MPI_Wtime ( ) returns elapsed wall-clock time in seconds since some arbitrary point i
past. Elapsed tiine for program segment is given by the differeace between MPI_Wiime
values at beginning and end of process. Process clocks are not necessarily synchronised,
so clock values are not necessarily comparable across the processes, and care must 2
taken in determining overall running time for parallel program. Even if clocks are
explicitly synchronised, variation across clocks still cannot be expested tc be significant:
Jess than round-trip time for zero-length message between the processes.

I FYEEEETE TFIEE B ) T LTI




Now, we shall illustrate use of these functions with an example.
Example 1:

Hinclude <mpi.h>
int main(int argc, char **argv) {
int i, tmp, sum, s, r, N, x[100]);
MPI_Init(&arge, &argy);
MPI_Comm_size(MPI_COMM_WORLD, &s);
MPI_Comm_rank(MPI_COMM_WORLD, &r);
If{r==0) '
{
printf{ “Enter N:”);
scanf (“%d”, &N);
for (i=1; i<s; i++) _
MPI_Send(&N, 1, MPL_INT,i, i, MPI_COMM_WORLD);
for (i=r, i<N; i=i+s) :
sum+= x[i];
for (i=r, i<s; i++)

MPI_Recv(&tmp, 1, MPI_INT,i, i, MPI_COMM_WORLD, &slatus);
Sum+=tmp; :
}
printf{ “%d”, sum};
}
else { )
MPI_Recw(&N, 1, MPL_INT.,0, i, MPI_COMM_WORLD, &status);
for (i=r, i<N; i=i+s) ) )
sum+= x[i};
MP]_Send(&sum, |, MPI_INT, 0, i, MPI_COMM_WORLD),

}
MPI_Finalize( );
}

Merits of MPI

@  Runs on either shared or distributed memory architectures;

* Can be used on a wider range of problems than OpenMP;

*  Each process has its own local variables; and _

» Distributed memory computers are less expensive than large shared memory
computers. ) -

Drawbacks of MPI

s Requires more programming changes to go {rom serial to parallel version.

»  Can be harder to debug, and-

». Performance is limited by the communicaticn network between the nodes.

'arallel Virtual Machine (PVM)

'"VM (Parallel Virtual Machine) is a portable message-passing brogra:runing_sy:_;tem,
esigned to link separate heterogeneous host machines to form a “virtual machine” which
i a single, manageable paralel computing resource. Large computational problems sircia

PRAM Algoritams

3!

B ot ariinlh 4 LT Pt e v

TTyTTi A

ToSTTEoT




Parallel Algorithms &
Parallel Programming

as molecular dynamics sunulauons -superconductivity swudies, distributed fractal
canputations, matrix algonlhms can thus be solved more cost effectively by usmg the
aggregate power and memory of many computers.

PVM was developed by the University of Tennessee, The Oak Ridge National Laboratory
and Emory University. The first version was released in 1989, version 2 was released in
1991 and finally version 3 was released in 1993. The PVM software enables a collection
1.{ heterogeneous computer systems 1o be viewed as a single parallel virtual machine. it
transparently handles all message routing, data conversion, and task scheduling across a
network of incompatible compuler architectures. The programming interface of PYM is
very simple .The user wriles his application as a collection of cooperating tasks. Tasks
atcess PVM resources through a library of standard interface routines. These routines
a;low the initiation and termination of tasks across the network as well as communication
and synchronisation between the tasks. Communication constructs include those for
sending and receiving data structures as well as high-level primitives such as broadeast
and barrier synchronization.

Features of PVM:

Easy to install,

Easy to configure;

Multiple users can each use PVM simultaneously;

Multiple applicaiions from one user can execute,

C, C++, and Fortran supported;

Package Is small;

Users can select the set of machines for a given run of a PVM program;
" Pracess-based computation;

«  Explicit message-passing model, and

¢  Heterogeneity suppor.

When the PVM is staris it examines the virtual machine in which it is to operate, and
creales a process called the PVM den:on, or simply pvmd on each machine. An exasaplc
of a daemon program is the mail program that runs in the background and handles all the
incoming and outgoing electronic mail on a2 computer, pvimd provides inter-host point of
contact, authenticates task and executes processes on machines. It also provides the fanlt
detection, routes messages not from cr intended for its host, transmits messages from its
application to a destination, receives messages from the other pvmd’s, and bufifers is urtil
the destination application can handic it.

PVM provides a library of functions, libpvmn3.a, that the application programmer calis.
Each function has some particular effect in the PYM. However, all this Jibrary really
provides is a convenient way of asking the local pvmd to perform some work. The pvind

than acts as the virtual machine. Both pvind and PVM library constitute the PYM system.

The PVM system supports functional as well as data decomposition model of paratlel
programming. It binds with C, C++, and Fortran . The C and C++ language bindings for
the PVM user inter{ace library are implemented as functions (subroutines in case of
FORTRAN] . User programs written in C and C++ can access PVYM library by linking the
library liopvin3.a (libfpvm3.a in case of FORTRAN).

All PVvi tasks are uniquely identified by an integer called rask identifier (TTD) assigned
by iocal pvind. Messages are sent to and received from tids. PVM contains several

routiaes that retum TID values so that the user application can identify other tasks in the
system. PVM also supports grouping of tasks. A task may belong to more than onz grecp




and one task from one group can communicate with the task in the other groups. To use PRAM Algarithms®
any of the group functions, a program must be lirked with 1ibgpvm3.a.

Set up to Use PYM

PVM uses two environment variables when starting and running. Each PVM user needs to it
set these two variables to use PVM. The first variable is PYM_ROOT, which is set to the
location of the installed pvm3 directory. The second variable is PYM_ARCH , which tells
PVM the architecture of this host. The easiest method is to set these two variables in -
your. cshre file. Here is an example for setting PYM_ROOT: '

setenv PVM_ROOT $HOME/pvm3

The user can set PYM_ARCH by concatenating to the file . cshrc, the content of file
$PVM_ROOT/lib/cshrc.stub.

Starting PVM

To start PVYM, on any host on which PVM has been instatled we can type .

% pvm

—-r

The PVM console, called pvm is a stand-alone PYM task that allows the user 1o
interactively start, query, and modify the virtual machine. Then we can add hosts to
virtual machine by typing at the console prompt {got after last command)

pvim> add hostname

To delete hosts (except the one we are using ) from virtual machine we can type r

pvm> delete hostname

We can see the configuration of the present virtual machine, we can type
pvi> conf :
To see what PVM tasks are running on the virtual machine, we should type
pvm> ps -a

To close the virtual machine cnvironment, we should type
pvm> halt

Multiple hosts can be added 51mullancously by typing the hostnames in a file one per line
and then type
% pvm hosLfile ’

PV wiil then add all the listed hosts simultaneously before the console prompt appears.

33




Paralle) Algorithms &
Parallel Programming

34

Compiling and Running the PVM Program .

Now, we shalt leam how to compile and run PYM programs. To compile the program ,
change to the directory pvm/lib/archname where archnume is the architeciure name of
your computer. Then the following command:

cc program.¢ -lpvm3 -0 prgram )

will compile a program called program.c. Afier compiling, we must put the executable
file in the directory pvm3/bin/ARCH:. Also, we need to compile the program separately
for every architecture in virtual machine. In case we use dynamic groups, we should also
add -lgpvm3 to the compile command. The exccutable file can then be run. To do this,
dirst run PYM. After PVM is running, executable file may be run from the unix command
line, like any other program.

PVM supplies an architecture-independent make, aimk, that automatically determines
PVM_ARCH and links any operaling syslem specific libraries to your application. To
compile the C example, type

% aimk master.c

Now, from one window, start PVM and configure some hosls. In another window change
directory 10 $HOME/pvm3/bin/PVM_ARCH and type

% master
[t will ask for a number of tasks {0 be executed. Then type the number of tasks.
Programming with PVYM

The general method for writing a program with PVM is as follows:

A user writes one or more sequential programs in C, C++, or Fortran 77 containing
embedded PVYM function (or subroutine) calls. Each program corresponds to a task
making up the application. These programs are compiled for each architecture in the host
pool, and the resulting object files are placed at a locatjon accessible from machines in the
host pool. To execute an application, a uszr typically starts one copy of one task (usually
the “master” or “Initiating” task) by hand from a machine within the host pool. This
process subsequently starts other PVM tasks, eventually resulling in a collection of active
tasks that then compute locally and exchange messages with each other to solve the
problem.

PVM library routines

In this section we shall give a bricf description of the routines in the VM 3 user library.
Every PVM program should include the PVM header file “pvm3. h” (in a C program) or
“fpvm3.h" (in a Fortran program}.

In PVM 3, all PYM lasks are identified by an integer supplied by the local pvmd. In the
following descriptions this task identifier is called TID. Now we are introducing some
commonly used functions in PYM prograrming (as in C. For Fortran, we use prefix pvmf
against pvm in C).

Process Management

e int pvm_mylid( void )

[l 2 S

=T




Returns the #id of the calling process. tid values [ess than zero indicate an crror.
<« int pvm_exit( void )

Tells the local pvid thal this process is leaving PVM. irfo Integer status code returned
by the routine, Values less than zero indicate an error.

o pvm_spawn( char *task, char **argy, int flag, char *where, int ntask, int
*tids )

start new PYM processes. task, a character string is the executable file name of the PVM
process to be started. The executable must already reside on the host on which it is to be
slarted. Argv is a pointer to an array ol arguments to task If the executable needs no
arguments, then the second argument to pvm_spawn is NULL. flag Integer specifies.-
spawn options. where , a character string specifying where to start the PVM process. If
Sflag is 0, then where is ignored and PVM will select the most appropriate host. ntask ,an
inleger, specilies the number of copies of the executable to start. tids ,Integer array of
length nfask returns the tids of the PYM processes started by this pvm_spawn cail. The.
function returns the actual number of processes returned. Negative values indicate error.

e int pvm_kifl( int tid )

Terminates a specifted PYM process. tid Integer task identifier of the PVM process to be
killed (not itself). Return values less than zero indicate an error.

o int pvm_catchout{ FILE *f)

Catch output from child tasks. {f is file descriptor on which we write the collected output.
The default is to have the PVM write the sfderr and stdout of spawned tasks.

Information

» int pvym_parent( void )
Returns the tid of the process that spawned the calling process.

e inf pvm_tidtohost( tid ) _
Retumns the host of the specified PYM process. Error if negative value is relurned.

s int pvm_config(int *nhost, int *aarch, struct pvmhostinfo **hostp )
struct pvmhostinfo {
int hi_tid;
char *ki_name;
char *hi_arch;
int hi_speed;
5

Returns information about the present virtual machine configuration. ghost is the number
of hosts (pvmds) in the virtual machine. narch is the number of different data formats
being used. hostp is pointer to an array of structures which contains the information
about each host including its pvind task ID, name, architcclure. and relative speed({default
is 100G},

PRAM Alporithm

35

DR S R B 1) bt e iel

SrIETHaLTT— 4




*arallel Algorithms &
*arallel Programming

* intinfo = pvm_tasks( int where, int *ntask, struct pvmtaskinfo **taskp )
stract pvmtaskinfo { )

int ti_vid; int ti_ptid;

int ti_host;

int ti_flag; char *ti_a_out; } taskp;

Retums the information about the tasks iunning on the virtual machine. where specifies
what tasks 10 return the information about. The options are:
0
for all the tasks on the virtual machine
pvmd tid
for all tasks on a given host
tid
for a specific task
ntask returns the number of tasks being reporied on.

taskp isa pointer 1o an array of structures which contains the information about each
task including its task ID, parent tid, pvmd task ID, status flag, and the name of this task's
executable file. The status flag values are: waiting for a message, waiting for the pvmd,
and running.

Dynamic Configuration

* int pvm_zddhests( char **hosts, int nhost, int *infos )
Add hosts to the virlual machine. hosts is an drray of strings naming the hosts o be
added. nhost specifies the length of array hosts. infos is an array of length nhost
which returns the status for each host. Values less than zero indicate an error, while
positive values are TIDs of the new hosts.
Signaling

¢ int pvm_sendsig( in( tid, int signum )
Sends a signal to another PVM process. tid is task identifier of PVM process 1o
receive the signal. signum is the signal number.

¢ intinfo = pvm_rotily( int what, inl msgtag, int cnt, int *tids )
Request notification of PV'vi eveni such as host failure. What specifies the type of
event to trigger the notificaiion. Some of them are:
PvmTaskExit
Task exits or is killed.
PvmHostDeleie
Host is deleled or crashes.
PvmHosiAdd
New host is added.
msglag is message 1ag to be used in notification. ent For PvmTaskExit and
PvmHostDelete, specifies the length of the fids array. For PvmHostAdd specifies the
number of times to notify.

tids for PvnTaskExit and PvmHostDelete is an array of length cnt of task or pvmd TIDs
to be notified about. The array is not used with the PvinHostddd option.

Message Passing

Thz PVM communication model provides asynchronous blecking send, asynchronous
blocking receive, and nonblocking receive functions. In our terminology, a blocking send

YT T T THITT OO

T TRTSITVE T ST T T im oy -

—r—ran




retums as soon as the sead buffer is free for reuse, and an asynchronous send does not
depend on the receiver calling a matching receive before the send can return. There are
options in PVM 3 that request that data be transferred dircctly from task to task. In this
case, if the message is large, the sender may block until the receiver has cajled 2 matching
receive,

A nonblocking receive immediately returns with cither the data or a flag that the data has
nol arrived, while a blocking reccive returns only when the data is in the receive buffer. In
addition to these point-to-point communication functions, the model supports the
multicast to a sel of tasks and the broadcast to a user-defined group of tasks. There are
also functions to perform global maxk, global sum, ete. across a user-defined group of
tasks. Wildcards can.be specified in the receive for the source and the label, allowing
either or both of these contexts to be ignored. A routine can be called to return the
information about the received messages.

The PYM model guarantees that the message order is preserved. If task | sends message
A to task 2, then task 1 sends message B to task 2, message A will arrive at task 2 before
message B. Moreover, if both the messages arrive befére task 2 does a receive, then a
wildcard.receive will always return message A.

¢ _int bufid = pvm_mkbuf( int encoding )
creates a new message buffer. encoding specifying the buffer's encoding scheme.

Encoding data options

PVM uses SUN's XDR library to create a machine independent data format if you request
iL Settings for the encoding option are:

PvmDataDefault: Use XDR by default, as the local library cannot know in advance where
You are going to send the dala.

PvmDataRaw: No encoding, so make sure you are sending to a similar machine.

PvmDatainPlace: Not only is there no encading, but the data is not even going to be
physically copied into the buffer.

* intinfo = pvm_freebuf( int bufid )
Dispoies of a message bufter. bufid message buffer identifier.

* iot pvin_getsbuf( void)
returns the active send buffer identifier,

* int pvin_getrbuf( void )
retums the active receive buffer identifier.

*  iot pvm_seisbul'(int bufid )
sets the active send buffer to bufid, saves the state of the previous buffer, and retums the
previous active buffer identifier.

* int pvm_setrbuf( int bufid ) -
sets the active receive buffer to bufid, saves the state of the previous buffer, and retumns
fie previous active buffer identifier. : '

PRAM Algorithins

37

TV uET Caer

HE R

C— ey




Parallel Algorithms & e intpvm_initsend( int encoding }

Paralle] Programming
Clear default sends buffer and specifies the message encoding. Encoding specifies the
.+2XL messape's encoding scheme.

« iat pvm_send(int tid, int msgtag)

‘oumedialely sends the data in the active message buffer. tid Inleger task identifier of
destination process. msgtag Integer message tag supplied by the user. msgtag should be
ninnegative.

» int pvm_recv( int tid, int msgtag )

Faceive a message. tid is integer task identifier of sending process supplied by the user
and mugtag is the message tag supplied by the user( should be non negative integer). The
process returns the value of the new active receive buffer identifier. Values less than zero
indicate an error. It blocks the process until a message with label msgtag has arrived from
tid. pvmm_recv then places the message in a new active receive buffer, which also clears
the current receive buffer.

Packing and Unpacking Data
»  pvm_packs - Fack the active message buffer with arrays of prescnbed data type:

int info = pvm_packi( const char *fmf, ... )

int info = pvm_pkbyte{ char *xp, int nitem, int stride )

int info = pvm_pkeplx( float *cp, int nitem, int stride )

int info = pvm_pkdeplx( double *zp, int nitem, int stride }

int info = pym_pkdouble( double *dp, int nitem, int stride )

int info = pvm_pk{loai( float *fp, intnitem, int stride )

int info = pvm_pkint( int *ip, int nitem, int stride )

int info = pvm_pkuint( unsigned int *ip, int nitem, iot stride )

int info = pvm_pkushort{ unsigned short *ip, int nitem, int stride )
int info = pvm_pkulong( unsigned long *ip, int nitem, int stride )
int info = pyvm_pklong( long *ip, int nitem, int stride)

int info = pvin_pkshort( short *jp, int nitem, int slrlde)

int info = pvm_pkstr( char *sp )

fmt Printf-like format expression spectfying what to pack. nitem is the total number of
ifems to be packed (not the number of byxes). stride is the stride to be used when packing
the items. S0 : '

s  pvm_unpack - Unpacks the active message buffer into armays of prescribed data
type. It has been implemented for different data types:

int info = pvm_unpacki( const char *fmt, ... }

iut iofo = pvm_upkbyte( char *xp, int nitem, int stride)

int info = pvm_upkeplx( float *cp, int nitem, int stride)

iat info = pvm_upkdcplx( double *zp, int nitem, int stride)

int infu = pvm_upkdouble( double *dp, int nitem, int stride)

int info = pvm_upkiloat( float *Ip, int nitem, int stride)

int tnfe = pvm_upkint( int *ip, int nitem, int stride)

in¢ info = pvoa_upkuint( unsigned int *ip, int nitem, int stride )
izt info = pvm_upkushort( unsigned short *ip, int nitem, int stride )
ia? info = pvm_upkulong( unsigned long *ip, int nitem, int stride )
int infe = pym_upKlong( long *ip, int nitem, int stride)

e &% @ & & 0o ° @ 4 O @

W
wra

e By e e

ST T

I I B




» intinfo=pvm_upkshort( short *jp, int nitem, int stride) PRAM Algorithms

o intinfo = pvm_upkstr{ char *sp)

Each of the pvm_upk* routines unpacks an array of the given data type from the active
receive buffer. The arguments for each of the routines are a pointer to the array to be
unpacked into, nitemn which is the total number of items to unpack, and stride which is the
stride to use when unpacking. An exception is pym_upkstr(} which by definition unpacks
a NULL terminated character string and thus does not need nitem or siride arguments.

Dynaniic Process Groups

To create and manage dynamic groups, a separate library 1ibgpvm3 . a must be linked
with the user programs that make use of any of the group functions. Group management
work is handled by a group server that is automatically started when the first grovp
function is invoked. Any PVM task can join or leave any group dynamically at any time
without having to inform any other task in the affected groups. Tasks can broadcast
messages to groups of which they are not members. Now wc are giving soine routines that

handle dynamic processes:

. int pvm_joingroup{ char *group )

Enrolls the calling process in a named group. group is a group name of an existing group.
Retumns instance number.Instance numbers run from 0 to the number of group members
minus [. In PVM 3, a task can join multiple groups. if a process leaves a group and then
rejoins it, that process may receive a different instance number.

» int info = pvm_lvgroup( char *group )
Unenrolls the calling process from a named group.

. int pvm_gettid( char *group, int inum )
Returns the tid of the precess identified by a group name and instance number.

. int pvm_gelinsi( char *group, int tid j
Returns the instance number in a group of a PVM process.

. int size = pvm_gsize( char *group )
Returns the number of members presently in the nzmed greup.

. int pvm_barrier( char *group, in¢ count }

Blocks the célling process until al} the processes in a group have called it. count species
the number of group members that must call pvm_barrier before they are all released. -

° int pvm_bcasi( char *group, int msgtag )
Broadcasts the data in the active message buffer to 2 group «f processes. msgtag is a

message tag supplied by the user. It allows the user’s program io distinguish between
different kinds of messages .1t should be 2 nonnegativc integar.

] int info = pvm_reduce( void (*func)(), void *data, int couns, int datatyne. int
msgtag, char *group, iat rootginst)

3¢

EEES ral B It Frbts e

TR

R R e}




Paralle! Algorithms &
Parallcl Programming

Performs a reduce operation over members of the spectfied-group. func is function
defining the operation performed on the global daia. Predefined are PvimMax, PvmMin.
PvmSum and PvmProduct. Users can define their own function. data is pointer to the
starting address of an array of local values. count species the number of elements of
datatype in the data array. Datatype is the type of the entries in the data array. msgtag is
the message tag supplied by the user. msgtag should be greater than zero. It allows the
user's program to distinguish between different kinds of messages. group is the group
name of an existing group. rootginst is the instance number of group member who gels
the result,

We are writing here a program that iliustrates the use of these functions in the parallel
programming:

Exzample 2: Hello.c

#include "pvm3.h"
main}
f
int cc, tid, msgtag;
char buf{100];

printf{"%x\n", pvm_mytid()}):
¢c = pvm_spawn("hello other”, (char**)0, 0, "", 1, atid);

if {(cc == 1) {
msgtag = 1;
pvm_recv(tid, msqgtad);
pvmt_upkstr (buf) ;
printf("from t%x: %s\n", tid, buf};
I else
printf{"can't start hello other\n"):;

pvm_exit (.}:“
}

In this program, pvm_mytid( ), returns the TID of the running program (In this case, task
id of the program hello.c). This program is intended to be invoked manuaily; after
printing its task id (obtained with pvm_mytid (}), it initiates a copy of anow.e: program
called sello_other using the pvm_spawn () function.. A successful spawn catses the
program to execute a blocking receive using pvm_recv. After receiving the message, the
program prints the message sent by its counterpart, as well its task id; the buffer is
extracted from the message using pvm_upkstr. The final pvm_exit call dissociales
the program from the PVM system.

hello_other.c
#include "pvm3.h"

main{)

{ ,
int ptic, msgtaqg;
char buf{160];

ptid = pvm parent(};

[l B = | brlrbes Tprarbrn

CITVETTISTTIT T T ot o

L T L

B I I

fr AT FomoTET— e




strxcpy(buf, "hello, world from ");
gethostname (buf + strlen(buf), 64} ;
msgtag = 1:

pvm_initsend (PvmDataDefault);
pvm_pkstr (buf);

pvm_send(ptid, =sgtag):;

pvm_exit () ;

}

Program is a listing of the “*slave”" or spawned program; its first PYM action is to obtain
the task id of the *“master” using the pvm_parent call. This program then obtains its
hostname and transmis it to the master using the three-call sequence - pvm_initsend
to initialize the send buffer; pym_pkstr to place a string, in a strongly typed and
architeciure-independent manner, into the send buffer; and pvm_send to transmit it to
the destination process specified by ptid, tagging" the message with the number].

< Check Your Progress 1

1) Write a program 1o give a listing of the “slave™ or spawned programi.

2.2.3 Data Parallel Programming

In the data parallel programming model, major focus is on perfoyming simultaneous
operations on a daia set. The dala set is typically organized inlo SrZommon structure, such
as an array or hypercabe. Processors work collectively on the same data structure.
However, each task works on a different parlition of the same datd structure. It is more
restrictive because not all algorithms can be specified in the data-parallel terms. For these
reasons, data parallelism, although important, is not a universal parallel programming

paradigm.

Programming with the date paraliel model is t:sualty accomplished by writing a program
with the data paralle] constructs. The constructs can be called to a data parallel subroutine
library or compiler directives. Data parallel languages provide facilities to specify the data
decomposition and mapping (o the processors. The languages include data distribution
statemnents, which allow the programmer to control which data goes on what processor to
minimize the amount of communication between (he processors. Directives indicate hoa
arrays are 1o be aligned and distributed over the processors and hence specify
agglomeration and mapping. Communication operations are not specified explicitly by the
programmer, but are instead inlerred by the compiler from the program. Daia paraliel
tanguages are more suitable for SIMD architecture though some languages for MIMD
structure have also been implemented. Data parallel approach is more effective for highty
regular problems, but are not very cffeclive for irregular probiems.

The main languages used for this are Fortran 90, High Performance Fortran (HPF) and
HPCH++. We shall discuss HPF in detail in the next unit. Now, we shall give a brict
overview of some of the carly data parallel languages:

PRAM Algerithms

41

I B Bt -]

FomT—T

SiTETTIt o




Paraliel Algorithms &
Paralicl Programnting

(e
"

e Computational Fluid Dynamics: CFD was a FORTRAN-like language developed in
the early 70s at the Computational Fluid Dynamics Branch of Ames Research Center
for ILLIAC IV machines, a SIMD compulter for array processing. The language
design was extremely pragmatic. No attempt was made to hide the hardware
peculiarities (rom the user; in fact, every attempt was made to give the programmers
the access and control of all of the hardware Lo help constructing efficient programs.
This language made the architecturai features of the ILLIAC IV very apparent to the
programmer, but it also contained the seeds of some practical programming language
abstractions for data-parallel programming. In spite of its simplicity and ad hoc
inachine-dependencies, CFD allowed the researchers at Ames to develop a range of
application programs that efficiently used the ILLIAC V.

e Connection Machine Foriran: Connection Machine Fortran was a later SIMD

language developed by Thinking Machines Corporation. Connection Machine Fortran
included all of FORTRAN 77, together with the new array syntax of Fortran 90. It
added various machine specific features, but uniike CED or DAP FORTRAN these
appeared as compiler directives rather than special syntax in Fortran declarations or
executable statements. A major improvement over the previous languages was that,
distributed array dimensions were no longer constrained to exaclly. fit in the size of
the processing element array; the compiler could transparently map dimensions of
arbitrary extent across the available processor grid dimensions. Finally the language
added an explicitly parallel looping construct called FORALL. Although CM Fortran
looked syntactically like standard Fortran, the programmer had to be aware of many
nuances. Like the ILLIAC IV, the Connection

Machine allowed the Fortran arrays to either be distributed across the processing nodes
(called CM arrays, or distributed arrays), or allocated in the memory of the front-end .
computer (called jront-end arrays, or sequential arrays). Unlike the control unit of the
ILLIAC, the Connection Machine front-end was a conventional, general-purpose
computer—typically a VAX or Sun. But there were still significant restrictions on how
arrays could be manipulated, reflecting the two possible homes,

Glypnir ,IVTRAN and *LISP are some of the other early data parallel languages.

Let us conclude this unit with the introduction of a typical data parallel programming
style called SPMD.

Single Program Multiple Date

A common style of writing data parallel programs for MIMD computers is SPMD (single
program, multiple data): all the processors execute the same program, but each operates
on a different portion of problem data. It is easier to program than true MIMD, but more
flexible than SIMD. Although most parallel cumputers today are MIMD architecturally,
they are usually programmed in SPMD style. In this style, although there is no central
controller, the worker nodes carry on doing essentially the same thing at essentially the

bl Ra=ay = e Y FCTR R ETRCR

e B Il B

REr

R e I o E Rt ]

same time. Instead of central copies of control variables stored on the control progessor of

a SIMD computer, control variables (iteration counts and so on) are usually stored in a
replicated fashion across MIMD nodes. Each node has its own local copy of these global
control vanables but every node updates them in an identical way. There are no centrally
issued parallel instructions, but communications usually happen in the well-defined
collective phases. These data exchanges occur in a prefixed manner that explicitly or
implicitly synchronize the peer nodes. The situa‘lion is something like an orchestra without
a conductor. There is no central control, but each individual plays from the same script.
The group as a whole stays in lockstep. This loosely synchronous style has some




similarities to the Buik Synchronous Paratlel (BSP) model of compuling introduced by
the theorist Les Valiant in the early 1990s. The restricted pattern of the collective
synchronization is easier to deal with than the complex synchronisation problems of a
general concurrent programming.

A natural assumption was that it should be possible and not too difficult to capture the
SPMD model for programming MIMD computers in data-parallel languages, along lines
similar to the successful SIMD Janguages. Various research prototype languages
attempied to do this, with some success. By the 90s the value of portable, standarised
programming languages was universally recognized, and there seemed to be some _
consensus about what a standard language for SPMD programming ought to look like.
Then the High Performance Fortran (HPF) standard was introduced. g

2.3 DATA STRUCTURES FOR PARALLEL
ALGORITHMS

To implement any algorithm, selection of a proper dala-structure is very important. A
parlicular operation may be performed with a data structure in a smaller time but it may
require a very large time in some other data structure. For example, to access i clement
in a set may need constant time if we are using arrays but the required time becomes a
polynomial in case of a linked list. So, the selecticn of data structure must be done
keeping in mind the type of operation (o be performed and the architecture available. In
this section, we shall introduce some data structures commonly used in a parallel

programming,
2.3.1 Linked List

A linked list is a deta structure composed of zero or more nodes linked by pointers. Each
node consists of (wo parts, as shown in Figure 3: info field conlaining specific
information and nexr field containing address of next node. First node is pointed by an
external pointer called head. Last fode called tail node does.not contain address of any
node. Hence, its next field points to null. Linked list with zero nodes is called hull linked
list.

) — R I

L J

Head

Figure 3: Linked List

A large number of operations can be performed using the linked list. For some of the
»perations like insertion or deletion of the new data, linked iist takes constant time, but ¢
s time consuming for some other operations like searching a data. We are giving here an
xample where linked list js used:

ixample 3; :
jiven a linear linked list, rank the list elements in terms of the distance from each to the
15t element.

PRAM Algorithms

43

BT o i i P b b rep o1

VIO T o

Tt

omrers m. . -




wraliel Algorithms &
wrailel Programming

A paratlel algorithm for this problem is given here. The algorithm assumes there are p
number of processors.

Algorithm:

Processor j, 0<)<p, do
if next[j]=j then
rank[jj=0
else rank{j] =1
endif
while rank[next{first]J#0 Processor j, 0< j<p, do
rank[j]=rank[j]+rank[next{j]]
next{j}=next[nextfj]]
endwhile

The working of this algorithm is illustrated by the following diagram:

L 91 3 84 32— 0

Figurc 4 : Fioding rank of elements

2.3.2 Arrays Pointers

An array is a collection of the similar type of data. Arrays are very popular data structures
in parallel programming due to their easiness of declaration and use. At the one hand,
arrays can be used as a common memory resource for the shared memory programming,
on the other hand they can be easily partitioned into sub-arrays for data parallel
programming. This is the flexibility of the arrays that makes them most frequently used
data structure in parallel programming. We shall study arrays in the context of two
languages Fortran 90 and C. -

Consider the array shown below. The size of the array is 10.

[ST10]15]20] 253035 40]45]50]

Index of the first element in Fortran 90 is 1 but that in C is O and consequently the index
of the last element in Fortran 90 is 10 and that in C is 9. If we assign the name of array as

CITITTTT TR T TR IR T




A, then i"™ element in Fortran 90 is A(i) but in C it is A{i-1]. Amrays may be one-
dimensional or they may be multi-dimensional.

General form-of declaration of array in Fortran 90 is
type, DIMENSION(bound) [,attr] :: name

for example the declaration
INTEGER, DIMENSION(S5): A
declare an array A of size 5.

General form of declaration of array in Cis

type array_name [size]
For example the declaration A

int A{10]
declares an array of size 10.

Fortran 90 allows one to use particular sections of an array. To access a section of an
array, you need the name of the array followed by the two integer values separated by a
colon enclosed in the parentheses. The integer values represent the indices of the seclion
required.

For example, a(3:5) refers to elements 3, 4, 5 of the array, a(i:5:2) refers to elements 1, 3,
5 of the array , and b(1:3, 2:4) refers to the elements from rows 1 to 3 and columns 2 to 4.
In C there is only one kind of array whose size is determined statically, though there are
provisions for dynamic allocation of storage through pointers and dynamic memory
ailocation functions like calloc and malloc functions. In Fortran 90, there are 3 possibie
types of arrays depending on the binding of an array to an amount of storage : Staric
arrays with fixed size at the time of declaration and cannot be altered during execution ;
Semi-dynamic arrays or automatic arrays: the size is determined aRer entering a
subroutine and arrays can be created to match the exact size required, but local to a
subroutine ; and Dynaniic arrays or allocatable arrays : the size can be altered during
execution.

In these languages, armay operations are written in a compact form that ofien makes
programs more readable,
Consider the loop:
=0
do i=|{n
a(i)=b(i)+c(i)
s=s+a(i)
end do
it can be written (in Fortran 90 notation) as follows:
a(l:n) = b(1:n) +c{1:n)

s=surn(a(1:n))

in addition to Fortran 90, there are many ianguages that provide succinct operations on
arTays. Soive of the mosi popular are APL, and MATLAB. Aithough these languages
were not developed for paraliel computing, rather for expressiveness, they can be used to
express parallelism since array operations can be easiliv exvo-2d in parallel, Thus, all the
arithmetic operations (+, -, * /, **) involved in 2 vecior expr:ission can be erformed in
paraiiel. Intrinsic reduction functions, such as the sum above, also can be performer in a
sarzllet

PRAM Algorithms

15

— T

IITULIE WM




*aratlct Algovithing &
‘acallel Programming

46

2.3.3 Hypercube Network

The hypercube architecture has played an important role in the development of paralle!

processing and is still quite popular and influential. The highly symmetric recursive
structyre of the hypercube supports a variety of elegant and efficient parallel algorithms.
Hypercubes are also called n-cubes, where n indicates the humber of dimensions, An-
cube can be defined recursively as depicted below:-

0 |
Q-0

1-cube buiic of 2 O—cubes 2-cube built of 2 1-cubes
Figure 5(x): 1-cabe Figure 5(b): 2-cube

3-cube built of 2 2cubes
Figure 5{c): 3-cube

0010 0011 1010 1011
4-cube built of 2 3-cubes
Figure 5(d): 4cube
Properties of Hypercube:

= A node p in a n-cube has a unique label, its binary ID, that is a n-bit binary number.




+ The labels of any two neighboring nodes differ in exactly 1 bit. PRAM Algorithms

+ Two nodes whose labels differ in & bits are connected by a shortest palh of length k.
+ Hypercube is both node- and edge- symmetric.

Hypercube structure can be used to implement many parallel algorithms requiring all-to-
all communication, that is, algorithms in which each task must communicate with every
ather task. This structure allows a computation requiring all-to-alt communication among
P 1asks to be performed in just log P steps compared t polynomial time using other data
structures like arrays and linked lists.

24 SUMMARY

In this unit, a number of concepts have been introduced in context designing of algorithms
for PRAM model of parailel compulation. Tite concepts introduced include message
passing programming, data paralle] programuming, message passing interface (MPI), and
parallel virtual machine. Also, topics relating to modes of communication between
processors, the functions defined in MPI and PVM are discussed in suflicient details.

2.5 SOLUTIONS/ANSWERS

< Check Your Progress 1

1) kello_other.c
#include "pvm3.h"

maini{)

{ )
int ptid, msgtag:
char buf[i1001};

ptid = pvm_parent();

strepy (buf, "hello, world from ");
gethostname (buf + strlen({buf}, &4):
msgtag = 1;

pvm_initsend (PvmDataDefault);
pvm_pkstr{buf};

pvin_send(ptid, msgtagj;

pvm_exit();
}
Program is a listing of the “slave™ or spawned program; its first PVM action is to obtain
the task id of the “*master” using the pvm parent call. This program then obtains ils
hostname and transmits il (o the master using the three-call sequence - pvm_initsend
‘0 initialize the send buffer; pvm_pkstr to place a string, in 2 strongly typed and
architecture-independent manner, into the send buffer; and pvm_send to transmit it to
he desiination process specified by prid, “tapging” the mess:3e with the numberl.

[ T

gl i &}

TUTETIEAES

B ]

L T

CIRTEAT T




wralied Algorithms &
wallel Programming

#e

-

2.6 REFERENCES/FURTHER READINGS

)

2}

4)

Kaw Hwang: Advanced Computer Architecture: Parallelism, Scalability,
Programmability (2001), Tata McGraw Hill, 2001.

Henessy J. L. and Patterson D. A. Computer Architecture: A Qualititative Approach,
Morgan Kaufman (1990)

Rajaraman V. and Shive Ram Murthy C. Parallel Computer: Architecture and
Programming: Prentice Hall of India

Salim G. Parallel Computation, Models and Methods: Ak! Prentice Hall of India

Firkiea vt Pareien Saerrii S

TTTT T TR




UNIT 3 PARALLEL PROGRAMMING

Structure ' Page Nos.
3.0 Introduclion 49
3.1 Objectives 49
3.2  Introduction to Paraliel Programming 50
3.3 Types of Parallel Programming 50

3.3.1 Programming Based on Message Passing
3.3.2 Programming Based on Data Parallelism

3321 Procussor Arrangements

3322 Data Distribution

3323 Data Alignment

3324 The FORALL Statement

3.3.2.5 INDEPENDENT Loops

3.3.26 Intrinsic Function
3.3.3 Shared Memory Programming

3331 OpenMP

3332 Sharcd Programming Using Library Routines
3.3.4 Example Programmes for Paralle] Systems

34 Summary 69
1.5 Solutions/Answers €9
3.6 References 74

3.0 INTRODUCTION

After getling a preat breakthrough in the serial programming and figuring out its
limitations, compuler professionals and academicians are focusing now on paraltel
programming. Parallel programming is a popular choice today for multi-processor
architectures to solve the complex problems. If developments in the last decade give any
indications. then the future belongs to of parallel computing. Parallel programming is
intended to take advantages the of non-local resources to save time and cost and
yvercome the memory constraints.

n this section, we shall introduce parailel programming and its classifications. We shail
liscuss some of the high level programs used for parallel programming. There are certain
rompiler-directive based packages; which can be 1sad along with some high level
anguages. We shall also have a detailed iook npon them.

3.1 OBJECTIVES

\fier going through this unit, you should be able to:

' explain the basics of parallel programming;

* describe the parallel programming based on message passing;
leamn programming vsing High Performance Fortran, and
leamn compiler directives of OpenMP.

1

ittt

PTTTT ILTRT T

S i B B W F

Fte Sl

IE FIm

AR g




Parallet Algorithms &
Parellel Programming

3.2 INTRODUCTION TO PARALLEL
PROGRAMMING

Traditionally, a soflware has been writlen foi serial computation in which programs are :
written for computers having a single Central Processing Unit (CPU). Here, the problems i
are solved by a series of instructions, executed one afler the other, one at a time, by the
CPU. However, many complex, interrelated events happening at the same time like b
pianetary and galactic orbital events, weather and ocean patterns and tectonic plate drili :
may require super high complexity serial software. To solve (hese large problems and 3
save Lthe computational time, a new programming paradigm called parallel programining
was introduced.

I A

To devlop a »arallel program, we must first determine whether ihe problem has some ,
part which can be parallelised. There are some problems like generating the Fibonacci i
Sequence in e case of which there is a little scope for parallelization. Once it has been
determined that the problem has some segment that can be parallelized, we break the i
problem into discrele chunks of work that can be distributed to multiple tasks. This
parition of the problem may be data-centric or function-centric. In the former case,
different functions work with different subsets of data while in the latter each function L
performs a portion of the overall work. Depending upon the type of partition approach, -
we require communicalion among the processes. Accordingly, we have to design the
mode of communication and mechanisms for process synchronization.

33 TYPES OF PARALLEL PROGRAMMING

There are several parallel programming models in common use. Some of these are:
+«  Message Passing;

Data Paraliel programming;

Shared Memory: and

Hybrid.

P R

SEMT e s

in the last uniy, we had a brief introduction about these programming models. In this unit
we shall discuss the programming aspects of these models.

ToRrTmne

3.3.1 Programming Based on Message Passing

As we know, the programming model based on message passing uses high level
programming [anguages like C/C++ along with some message passing libraries like MPI
and PVM. We had discussed MP{ and PVM at great length in unit 2 on PRAM
algorithms. Hence we are restricling ourselves to an example program of message .
passing. '

Example i: Addition of array elements using two processors.

in this problem, we have 10 find the sum of all the elements of an array A of size n. We
shall divide n elements into lwo groups of roughly equal size. The first [n/2] elemem< re
added by the first processor, Po, and last [n/2] elemens the by second processor, Py. The
two sums then are added to get the final result. The program is given below:




Program for Py

#include <mpi.h>

#define n 100

int main{int arge, char **argy) {

int Afal..

int sum0 =0, sum1=0,sum;

MPI_Inii(&arge, &argv);

for( int i=0;i<n;i++)

scanf(*%d", &A[i]);

MPl_Send( &n/2, /2, MPI_INT,1, 0, MPI_COMM_WORLD);
for(i=1; 1<n/2: i++)

sumO+=A[i];

sum]=MPI_Recv(&n/2, n/2, MPL_INT, 1, 0, MPI_COMM_WORLDY},
sum=sum0+suml;

printf(*%d”,sum);

tMPY_Finalize();

}

Program for P,

int func( int Blint n])
{
MPI_Recv{&n/2, n/2, MP1_INT,0, 0, MP1_COMM_WORLDY;
int sum1=0;
for (i=0; 1</2; i++)
suml+=B[i];
MPI_Send( 0, n/2. MPI INT,0, 0, MPI_COMM_WORLD),
}

< Check Yoar Progress 1

I)  Enumerate at least five applications of parallel programming.

2)  What are the different steps to write a general parallel program?

3) Write a program to find the suin of the elements of an array using k processors.

3.3.2 Programming Based on Pata Parallelisin

In a data parallel programming model, the focus is on datz -fistribution. Each processor
works with a portion of dala, In the last unit we introduced some data paralle! languages.
Now, we shall discuss ane of the most popular languages for paralle! programmin, bused

on data parallel model.

Parallel ngmmmin.g

b T B Y i b

P

Bl il B I e R

r

CrTE s a—-




Pacallel Algorithms &
Parullel Programming

52

High Performance FORTRAN

In 1993 the High Performance FORTRAN Forum, a group of many leading hardware and
soflware vendors and academicians in the field of parallel processing, established an
informal language standard called High Performance Fortran (HPF). It was based on
Foriran 90, then it extended the set'of parallel features, and provided extensive support for
computation on distributed memory parallel computers. The standard was supported by a
majority of vendors of parallel hardware.

[HPF is a highly suitable language for data parallel programming models on MIMD and
SIMD architecture, It allows programmers to add a number of compiler directives that
minimize inter-process communication overhead and utilize (he load-balancing
techniques.

We shall not discuss the complete HPF here, rather we shall focus only on augmenling
features like:

. Processor Arrangements,

° Data Distribution,

. Data Alignment,

. FORALL Statement,

. INDEPENDENT loops, and
-

Intrinsic Functions.
33.2.1 Processor Arrangements

It is a very frequent event in data parallel programming to group a number of Drocessors
to perform specific tasks, To achieve this goal, HPF provides a directive called
PROCESSORS directive. This directive declares a conceptual processor grid. In other
words, the PROCESSORS directive is used to specify the shape and size of an armay of
abstract processors. These do not Tiave Lo be of the same shape as the underlying
hardware.The syntax of a PROCESSORS directive is:

!HPF$ PROCESSORS array_name (dim1i, dim 2, ....dim n}

where array_pame is collective name of abstract processors. dim i specifies the size of i
dimension of array_name.

Example 2:

YHPF$ PROCESSORS P (10)
This introduces a set of 10 abstract processors, assigning them the collective name P.

'HPF$ PROCESSORS Q (4, 4)
It introduces 16 abstract processors in a 4 by 4 array.

3.3.2.Z Data Distribution

Data distribution directives tell the compiler how the program data is to be distributed
amongst the metnory areas associated with a set of processors. The logic used for data
distribution is that if a set of data has independent sub-blocks, then computation on thei
can be carried out in parallel. They do not allow the programmer to state directly which
processor wilf perform a particular computation. But it is expected that if the operands of

b i I ) i

L T




a particular sub-computation are all found on the same processor, the compiler will

allocate that part of the computation to the processor holding the operands, whereupon no
remote memory accesses will be involved.

faving seen how to define one OF more target processor arrangements, we need to
niroduce mechanisms for distributing the data arrays over those arrangements. The

JISTRIBUTE directive is used to distribute a data object) onto an abstract processor
mmay.

he syntax of a DISTRIBUTE directive js:
APF$ DISTRIBUTE array_lists [ONTO arrayp]
here array_list is the list of array to be distributed and arrayp is abstract processor array.

he ONTO specifier can be used to perform a distribution across a particular processor
ray. If no processor array is specified, one is chosen by the compiler.

PF allows arrays to be distributed over the processors directly, but it is ofien more
nvenient to go through the intermediary of an explicit template. A template can be
clared in much the same Way as a processor arrangement.

'HPF$ TEMPLATE T(50, 50, 50)

slares a 50 by 50 by 50 three-dimensional template called T. Having declared it, we can
ablish a relation between a template and some processor arrangemént by using

STRIBUTE directive. There are three ways in which a template may be distributeg
' Processors: Block, cyclic and *

Block Distribution
iple block distribution js specified by

F$ DISTRIBUTE TI(BLOCK) ONTO P]

e Tl 'is some template and P1 is some procgssor arrangement.

Y$ case, eath processor gels a contiguous block of template elements. All processors
he same sized block. The last processor may get iesser sized block.

mple 3:

“$ PROCESSORS P1(4)

‘$ TEMPLATE T1(18)

‘3 DISTRIBUTE TI(BLOCK) ONTG P1

result of these instructions, distribution of data will be as shown in Figure |.

Parallel Programmin £

53

R o it % Sy R

Hie e

TOUTTELRMTTTTURTTI urnt o




Paralfel Algorithms &
Parallcl Programming

54

TI(D
TIE)
TI()
TI{4)
TI(S)

PI(1)

[n a variant of the block distribution, the number of template clements allocaled to each
processor can be explicitly specified, as in

TI(6)
T
TI(E)
Ti(9)
TI(10)

P1(2)

TH(I1)
TI(12)
TI(E3)
TI(14)
TI(15)

P1(3)

Figure I3 Block Distribution of Data

THPES DISTRIBUTE T1 (BLOCK (6)) ONTO P1

Distribution of data will be as shown in Figure 2.

TI(Y)
THZ)
TI(3)
TI(4)
TI(S)
TI(E)

P1(1)

T TH13)
TI(E) Ti(14)
TI(9) TI{15)
TI{10) TI(16)
TI(IN TI(E?)
T1(12) TI(18}
Pi(2) PI(3)

Figore 2: Variation of Block Distribution

TL(15)
TP
TI(18)

P1{4)

PI(4)

It means that we allocate ali template elements before exhausting processors, Soine

processors are left empty.
(&) Cyclic Distribution

Simple cyclic distribution is specified by

IHPF$ DISTRIBUTE TI(CYCLIC) ONTO P1

The first processor gets the
Whean the set of processors i
allocating the template elements from there.

Example 4

first template element, the sccond gets the second, and so or;
s exhausted, go back to the first processor, and coniinue

'HPF$ PROCESSORS P1(4)
'HPF$ TEMPLATE T1(i8)
{HPES DISTRIBUTE T1(CYCLIC) ONTO Pi

The result of these instructions is shown in Figure 3.

TIQ)
TIS)
TI(?)
TINY
TIUN

PI(1)

PI(2)

TI(3)
D
TIO
THIS)

I

P1{*

Figure 3: Cyclic Pistribaiiso

TI(4)
TI(8)
TI(12)
TI(16)

= i(4)

ENN B T v | |y ==rer




But in an analogous variant of the cyclic distribution : : Panralle! Programminy

IHPT'$ DISTRIBUTE T1 (BLOCK (3)) ONTO P|

TI(7) )
e Ti(s) Ti(s) Ti(e
TH(3) TI{6) Ti9) TI(i2)
TI(13) TI(16) .
TI(14) TIOT)
TI(15) TI(18)
PI(1) PH{2) PI(3®) Pl{4)

Fipure 4: Variation of Cyclie Distribution

Fhat cove,s the case where both the temnplate and the processor are one dimensional.
~hen the and processor have (the same) higher dimension, each dimension can be
listributed independently, mixing any of the four distribution formats. The
orrespondence between the lemplate and the processor dimensicn is the obvious one. In
HPF$ PROCESSORS P2 (4, 3 '

HPF® TEMPLATE T2 (17, 20)

{PF$ DISTRIBUTE T2 (CYCLIC, BLOCK) ONTO P2

e first dimension of T2 is distributed cyclically over the first dimension of P2; the
:cond dimension is distributed blockwise over the second dimension of P2,

J * Distribution

yme dimensions of a template may have ““collapsed distribulions”, allowing a tcmplate
be distributed onto a processor arrangement with fewer dimensions than the template,

tample 5
IPF$ FROCESSORS p2 {4, 3)

[PF$ TEMPLATE T2 (17, 20}

[PE$ DISTRIBUTE T2 (BLOCK, *) ONTO P1

ans that the first dimension of T2 will be distributed over P1 in blockwise order but
‘a fixed value of the first index of T2, all values of the second subscript are mapped 1o
i SAMeE Processor.

-2.3 Data Alignraent

ays are aligned to templates through the ALIGN directive, The ALIGN directive is
d . !0 align elements of different arrays with each other, indicating that they should be
ributed in the same manner. The syntax of an ALIGN derivative is:

'F$ ALIGN arrayl WITH aray2

e arrayl is the name of array to be aligned and array2 is the array to be aligned to.
mple &

sider the statement
GN A[i] WITH BJi)

Lo
(¥

R T TENTITIV IR

SYETITTHES

ST mT L - - <.z

ETTHNT TSt e




Paratlel Algorithms & This statement aligns each A[i} with B[i] as shown in Figure 3.
Parzilel Programming

A | n
‘vaiv

Figare 5: ALIGN Ali] WITH Bi]

Consider the slatement
ALLIGN A[i] WITH B[i+1] -

This statement aligns the each A[i] with B{i+1] as shown in Figure 6.

A
\

NN
¥ ¥ [¥ ]«

«

Figure 6: ALIGN A[i] WITH B|i+1]
* can be used (o collapse dimensions. Consider the statement

ALLIGN A[:, *] WITH B[:]

This statement aiipne two dimensional array with one dimensional array by collapsing as |
gn 4 P i

shown in Figure 7.

A /

Ny A /
VAV

04 ¥4

. AWD.
/
B
Figure 7: * alignmeat
313.2.4 The FORALL Statemeni .

The FORALL statement allows for more general assignments to sections of an array. A
FORALL statement has the general form.

56

s STEaET T IS TIETnL Y

-

— 1 - -

e




\(0

];ORALL( triplet, ..., triplet, mask)
statement

where sriplet has the general form
subscript = lower: upper : step-size

and specifies a set of indices. step-size is optional. statement is an arithmetic or pointer
assignment and the assignment statement is evaluated for those index values specified by

the list of triplets that are not rejected by the optional mask.

Example 7 The following statements set each element of matrix X 1o the sum of its

indices.
FORALL (i=1:m, j=1:n)  X(ij)= itj

and the following statement sets the upper right triangle of matrix Y to zero.
FORALL (i=I:n, j=1:n, 1<j) Y(i,j) = 0.0

Multi-siatement FORALL construct:
Multi-statement FORALL is shorthand for the series of single statement FORALLs. The

syntax for FORALL is

FORALL (index-spec-list [,mask])
Bedy -
END FORALL
Nesting of FORALL is allowed.

Exampie 8
Let 2= [2,4,6,8,10], b={1,3.5,7,9], ¢=[0,0,0,0,0]
Zonsider the following program segment
FORALL (i =2:4)
a(i) = a(i-1+a(i+1)
c(i) = b(i) *a(i+1).
NI FORALL
The compuiation will be
a[2] =a[1]+a[3] =2+6=8
af3] =a[2]+a[4] =4+8=12
af{4] =a[3]+a[5] = 6+10=16
c{2] =b[2] *a{3] =3*12=36
c[3]=b[3] *a[4] = 5*16=80
c[4] = b[4]} *a[5] =7*10=T70
(hus output is
= [2,8.12,16,10], b=[1,3,5,7,9}], ¢=[0,36,80,70,0} s

£3.2.5 INDEPENDENT Loops

1PF provides additional opportunities for parallel «xccution by using the
NDEPENDENT directive 1o assert thal the iterations of 2 “c:-loop can be performed
ndependently---that is, in any order or concurrentiy---without affecting th= result . In
flect, this directive changes a do-loop from an implicitly parallel construct to an
xnlicitly parallel construct. :

Parallel Prograraming

h
}

N e — Y e e b

B 1 et

—IoTERGD

T

T e T Y S T L

Bt )

=T AR —- L



Parallel Algorithms &
Parsllel Programming

e -

The INDEPENDENT directive must immediately precede the do-loop to which 1t applies.
In its simplest form, it has ne additional argument and asserls simply that no iteration of
the do-loop can affect any other jteration.

Example 9
In the following code fragment, the directives indicate that the outer two loops are

independent. The inner loop assigns the elements of A repeatedly and hence it is not
independent.

o e T TERIHE R A

e =

'HPF$ INDEPENDENT -
do i=i,nl ! Loop over i independent
'HPF$ INDEPENDENT
doj=I,n2 ! Loop over jindependent
do k=1,n3 ! Inner loop not inde.pendent
A(ij) = A(1J) + B(i.j.k)*C(i.j)
enddo
enddo .
enddo
3.3.2.6 Intrinsic Functions
HPF introduces some new intrinsic functions in addition to those defined in F90. The two
fhost frequently used in paraliel programming are the system inquiry functions
NUMBER_OF_PROCESSORS and PROCESSORS SHAPE. These functions provide
the information about the muwnber of physical processors on which the running program
executes and processor configuration. General syntax of is
NUMBER_OF_PROCESSORS s .
NUMBER_OF_PROCESSORS (dim)
where dim is an optional argumenle__lt returns the number of processors in the underlying
array or, if the optional argument is present, the size of this array along a specified
dimension.
Genenral syntax of PROCESSORS SHAPE is
PROCESSORS_SHAPE()

r
- . - 'h - - -
It returns an one-dimensional array, whose " element gives the size of the underlying
processor array in its " dimension. ' -




Example 10

Consider the call of the two intrinsic functions discussed above for a 32-Processor (4x8)
Multicomputer:

The function call NUMBER_OF_PROCESORS () will return 32,
The function call NUMBER_OF_PROCESORS (1) will retum 4.
The function call NUMBER_OF_PROCESORS (2) will return 8.
The function call PROCESSORS_SHAPE () will return an array with two elements 4 and 8.

We can use these inlrinsic functions in tandem with array declarations and HPF
directives, to provide flexibility to the programmer to declare abstract processor arrays
that match available physical resources. For example, the following statement 'HPF$
PROCESSORS PINUMBER_OF_PROCES3SORS()) declares an abstract processor array

P with size equal to the number of physical processors.

< Check Your Progress 2

1) Give the output of the following instructions in HPF:
(a) 'HPF$ PROCESSORS Q (s, 1)
(b) 'HPF$ PROCESSORS PI(5)
'HPF$ TEMPLATE T1(22)
FHPF$ DISTRIBUTE TI{CYCLIC) ONTO P1.

2)  Write a FORALL statemen 1o set lower triangle of a matrix X to zero.

...................................................................................................
...................................................................................................
...................................................................................................

1.3.3 Shared Memory Programming

\s discussed in unit 2, we know that all processors share a common memory in shared
remory model. Each processor, however, can be assigned a different part of the program
tored in the memory to execute with the data stored in specified locations. Each
rocessor does computation independently with the dala allocated to them by the
ontrolling program, called the main program. Afier finishing their computations, all of
1ese processors join the main program. The main program finishes only after all child
rocesses have been terminated completely. There are many alternatives to implement
lese ideas through high levél programming. Some of them are:
L

b Using heavy weight processes.
) Using threads.( e.g. Pthreads).
1) Using a completely new programining language for parzil=l programming (e.g. Ada).
) Using library roulines with an exisling‘sequentia] programming language.
) Modifying the syntax of an existing sequential programming language to create a

parallel programming language (e.g. URGS-

Poraliel Program,aing

BREE R iy T [ gl ) S A L |

TTITTOVCIT T AT

i T

=TramET T

L T T

e,

TN

. —— - e e

| m———



the call of library function omp_get_thread num. Now, we are giving the description of Paralle! Programming
the clauses used in a paraltel construct.

(a) Private Clause:

This clause declares one or more }ist items to be private to a thread. The syntax of the
private clause is
private(list).

(b) Firstprivate Clause:

The firstprivase clause declares one or more list items to be private to a thread, and

initializes each of them with the value that the comesponding criginal item has when the

construct is ecncountered. The syntax of the firsiprivate clause is as follows:
Sfirstprivare(list).

(¢) Shared Clause:

The shared clause declares one or more list items to be shared among all the threads in a
team. The syntax of the shared clause is :
shared(lisf)

d) Copyin Clause:

The cupyin clause provides a mechanism to copy the value of the master thread’s
‘hreadprivate variable to the threadprivate variable of each other member of the teamy
:xecuting the parallel region. The syntax of the copyin clause is :

copyinlist)

i) Wor};'-Sharfng Caonsiructs

4 work-sharing construct distributes the execution of the associated region among the
nembers of the team that encounters it. A work-sharing construct does not Jaunch new
hreads.

JpenMP defines three work-sharing constructs: secrivares, for, and single.
n all of these consiructs, there is an implicit barrier at the end of the construct unless a
1wowait clause is included.

a) Sections

[he sections construct is a no iterative work-sharing construct that causes the structured
locks 1o be shared among the threads in team. Each suructured block is executed once by
me of the threads in the team. The syntax of the sections coasiruct is:

ipragriia omp sections [ser of clauses_}

Enragcma omp section
struciured-hloc
tpragma omp section
tructured-block

61

T T NI T e Tt

B e Tl

1

SLrHr ¢rETRT T

I N e e e




Parallel Algorithms.&
Paralle] Programming

3

The clause is one of the following:
private(Tist)

Sfirstprivate(list)

lastprivate(list)
reductionfoperator: list)

nowait -

(i} Lastprivate Clause

The lastprivate clause deciares onc or more list items Lo be private to a thread, and causes

the correspending original list item to be updated after the end of the region. The syntax
of the lastprivate clause is: -
Lustprivate {list)

(i) Reduction Clause

The reduction clause specifies an operator and one or more list items. For each list item, a

privatc copy is created on each thread, and is initialized appropriately for the uperator.
After the end of the region, the original list item is updated with the values of the pnvate
copies using the specified operator. The syntax of the reduction clause is :

reduction (operator:list)
(b) For Loop Construct

The loop construct causes the for loop 1o be divided into parts and parts shared among
threads in the team. The syntax of the loop construct is :-

#pragma omp for [set of clauses. ]

Jor-loup

The clause is onc of the following:
private(list)

firsiprivare(lisi{)

lastprivate(list)
reduction(operator: lisi)

»

(c) Single Construct

it Rl Ty T

O e | e e i A T

The single construct specifies that the associated structured block is executed by only one

thread in the team (not necessarily the master thread). The other threads in the team do not

execute the block, and wait at an implicit barrier at the end of the single construct, unless

a nowairf clause is specified. The syntax of the single construct is as follows:

#pragma omp single [set of clauses]
structured-block

The clause is one of the following:
private(lisi)

firstprivate(list)

copyprivate(list)

nowait




(i} Combined Parallel Work-sharing Constructs

Combined parallel work-sharing constructs are shortcuts for specifying a work-sharing
construct nested immediately inside a parallel construct. The combined parallel work-
sharing constructs allow certain clauses which are permitied on both parallel constructs
and on work-sharing constructs. OpenMP specifies the two combined parallel work-
sharing constructs: paralle! loop construct, and paratlel sections construct.

() Parallel Loop Construct

The parallel loop construct is a shortcut for specifying a parallel construct containing one
loop construct and no other statements. The syntax of the parallel loop construct is :
Ypragma omp parallei for [set of clauses] :

‘or-loop -

a) Paraliel Sections Construct

Fhe parallel sections construct is a shortcut for specifying a parallel construct containing
)ne sections construct and no other statements. The syntax of the paralie! sections
:onstruct Is:

lpragma omp parallel sections [ set of clauses]

#pragma omp section |
tructurea-block
kpragma omp section
tructured-block ]

1 the following example, routines xaxis, yaxis, and zaxis can be executed concurrent]y.
he first section directive is optional. Note (hat all the section directives need to appear in
e parailel sections construct.

v} Master Construct
he master directive has the following general form:

ragma omp master
ructured block

causes the master thread to execute the structured block. Other threads encountering

is directive will ignore it and the associated structured biock, and will move on. In the
ample, the master keeps Irack of how many iterations have been executed and prints out
progress report. The other threads skip the master region without waiting.

} Critical Directive .

ie eritical directive allows one thread execute the associated structured block. When one
more threads reach the critical directive, they wil! wait unti! no other thread is

ecuting the same critical section (one with the samc name}. and then one thread will
xceed to execute the structured block. The syntax oi the critical directive is

ragma omp critical [name]
uctured_block

Parallel Programming

63

TURITIT T

g Pl

T

i

R

e s -




Parallel Afgorithms &
Parallel Pragramming

64

name is optional. All critical sections with no name are considered to be one undefined |

name. i
(vi) Barrier Directive

The syntax of the barrier directive is

#pragma omp barrier

When a thread reaches the barier it waits until all threads have reached the barrier and
then they all proceed together. There are restrictions on the placement of barrier dircctive
in a program. The barrier directive may only be placed in the program at a position where:
ignoring or deleting the directive would result in a program with correct syntax. i

PIET T

(vii} Aromic Directive

The utomic divective ensures that a specific storage location is updated atomically, rather
than exposing it to the possibilily of multiple, simultancous writing threads. The syntax |
of atomic directive is:
#pragma omp atomic
expression_statement

The atomic directive implements a critical section efficiently when the critical section
simply updates a variable by arithmetic opération defined by expression_statcoient.

(viii) Ordered directive
This directive is used in conjunction with for and parallel for directives to cause 2n r
fteration to be executed in the order that it would have occurred if written as a sequential,
foop. The syniax of the ordered construct is as follows:

Hpragria omp ordered new-line
srructured-block r

3.3.3.2 Sharcd Programming Using Library Routines

The most popt.iar of them is the use of combo function called fork() and join(). Fork()
function is used to create a new child process. By calling join{) function parent process ;
waits the terminations of the child process to get the desired result.

Example i1: Consider the fotlowing set of statements

Process A Process B

fark B ;

join B: - end B;

. the ahove se* of statements pracess A creates a child process B by the stateraent fark
Then A and B continue their computations independently until A reaches the jain
statement, At ihis stage, if B is already ftnished, then A continues exacuting the next
slatement otherwise it waits for B to finish.




In the shared memory modzl, 2 common problem is to synchronize the processes. It may
be possible that more than one process aretrying to simultancously meodify the same
variable. To solve this problem many synchronization mechanism like test_and_set.
semaphores and monitors have been used. We shall not go into the details of these
nechanisms. Rather, we shall represent them by a pair of two processes ¢alled lock and

wntock. Whenever a process P locks a common variable, then only P can use that variable,

Jther concurrent processes have 10 wait for the common variable uatil P calls the uniock
m that variable. Let us see the effect of locking on the output of a program when we do
1ot use lock and when we use lock.

ixample 12

1 us write a pseudocode to find sum of the two functions f{A) + f(B). In the first
Igerithm we shall not use locking.

'rocess A Process B
ium =90
fork B sum = sum+ f{B)
um = sum + f{A) end B
join B
nd A

process A execiites the statement sum = sum + f{A) and writes the results into main
emory followed by the computation of sum by process B, then we get the correct result.
at consider the case when B executes the statement sum = sum + f{B) before process A
uld write result into the main memory. Then the sum contains only f{(B) which is
correct. To avoid such inconsistencies, we use locking,

ocess A Process B

im=70
lock sum

stk B sum = sum + f{B)
unlock sum

Paraliel Progranhming

ETRTY

I e |

T T e

B



Paraitel Algorithms & lock sum
Paralie! 'rogramming
sum = sum + f{A) end B

unlock sum
in 8

end A

In this case whenever a process acquircs the sum variable, it locks it so that no other
process can zccess that variable whivh ensures the consistency in results.

3.3.4 Example Programmes for Parallel Systems

Now we shall finish this unit with the examples on shared memory programming.
Example 13: Adding elements of an array using two processor

int sum, A[ n] ; //shared variables
void main ( ){

inti;

for (i=0; i<n; i++}
scanf (“%d”,&A[il )
sum={;
«? /f now create process to be executed by processor P1
fork(1) add (A,n/2,n-1, sum); // process to add elements from index n/2 to -

1.sum is output variable // now create process to be executed by processor;

PO add (A ,0.“!2-1 y
sump);

join 1;

printf (“%d”, sum),

}
. add (int A[ }, int lower, int upper, int sum} {

int sumI=0, i;
for (i=lower; i<=upper; i++)
suml=sum+Afi];
lock sum;
sum=sum+suml;
unlcck sum ;

}

T [y Y



In this-program, the last half of the array is passed to p.-ro::essor P, which adds them.
Meanwhile processor P, adds the fist half of the array. The variable sum is locked to
avoid inconsistency. )

Example 14: In this example we will sce the use of parallel construct with private and
firstprivate clauscs. At the end of the program j and j remain undefined as these are
private to thread in parallel construct.

#include <stdio.h>

int main()

.{ - -

int i, Jj;

i=1;

1=2

#pragma omp paraliel private(i} firstp: ivate(j)

printf{"%d %dwn", i, j); /* i and j are undefined */
return 0;

}

In the following example, each thread in the parallel region decides what
parl of the global array x lo viork on, based on the thread number:

Example 15

#include <omp.h>

void subdomain(float x[ ], int istart, int ipoints)

.{ ) - ’
ntr;

for (i = 0; i < ipoinls- i+1)

x[istart+i] = 123.456;

}

void sub(float x[ 10000], int npoints)

i

int I_num, num_t, ipoints, istart, -
#pragma omp parallel default(shared) private({t_num . num_t, ipoints, istart)
{

{_num = omp_get thread_num(); //thrcad number of current thread .
num_t = omp_get_num_threads(); //number of threads<

ipoints = npoints / num_t; /* size ol partition */

istart = t_num * ipoints; /¥ starting array index ¢/

if (_num == num_t-1) /* last thread may do more */

ipoints = npoints - istart;

subdomain(x, istart, ipoints);

}

}

nt main{)

{

float 2103y[ 100007,
sub(array, 10060Y;

Parallel Programming

67

P PR e

i BTN Harrararail Rt i

R th

TR SrIoTe vcloas




‘Parallel Algorithms &
Parallel Propramming

58

return @,

1

In this example we uscd two library methods : omp_get_num_threads() and

omp_get thread num().

omnp_get_num_threads() retumns number of threads that are currently being used in
parallel diréctive,

omp_get_Lhread num() retumns thread number (an integer from O to
omp_get_num_threads() - 1 where theead O is the master thread).

Example 16
This example illustrate the use of lastprivate clause

void for_loop (int n, float *a, floal *b)
{

int i;

#pragma omp parallel

{

#pragma omp for lastprivate(i)

for (i=0; i<n-1; i++)

afi]= b[i] + b[i+1];

}

a[i]=b[i];. /* i==n-[ here */

Example 17

This example demonstrates the use 6f parallel sections construct. The three functions,
funl, fun2, and fun3, all can be executed concurrently. Note that all the section directives
need to appear in the parallel sections construct.

void funl1{);

void fun2();

void fun3();

void parallel_sec()

{

#pragma omp parallel sections
{

#pragma omp section
funl(); }
#pragma omp section
fun2();

#pragma omp section
funl(;

}

}

H LI




< Check Your Progress 3

) Write the syntax of the following compiler directives in OpenMP:
(a) Parallel
(b) Sections
(c) Master

!} What do you understand by synchronization of processes? Explain at least one
mechanism for process synchronisation.

1} Write a shared memory program to process marks of the students. Your program
should take the roll number as input and the marks of students in 4 ditferent subjects
and find the grade of the student, class average and standard deviation.

.4 SUMMARY

1 this-unit, the following four types of models of parallel computation are discussed in
etail:

Message Passing;

Data Parailel programming;

Shared Memory; and

Hybrid.
rogramming based on message passing has already been discussed in Unit 2. In context
f data parallel programming, varidus issues related to High Performance Fortran, e.g.,
ata distribution, block distribution, cyclic distribution, data alignment etc are discussed
1 sufficient details. Next, in respect of the third modei of parallel computation, viz
hared Memory, various constructs and features provided by the standard OpenMP are
iscussed. Next, in respect of this model, some issues relating to programming using
brary routines are discussed.

5.5 SOLUTIONS/ANSWERS

7 Check Your Progress 1
} Applicalion of paralicl programming:

i) [n geology and merrology, to solve problers like pianetary and galactic orbits,
weather and ocean patierns and tectonic e drift:

it) In manufacturing 10 scive problems like autonobilz assembly line;

i} Inscience and technology for problem:s like chemical and nuclear reactions,
biological. and human gerame;

ivl Daily operations within a business; and

v) Advanced graphis- sid virtual reality, pariicularly in the entertainment industry.

Parallel Prograniniing

e R

T IREa ey rInT SRS R WS s § s - -



Parallcl Algorithms &
Paraltel Programming

70

2) Steps to write a parall;:l program:

3)

i} Understand the problem thoroughly and analyze that portion of the program lhal

can be paralielized;
ii) Partifion the problem cither in data centric way or in function centric way

depending upon the nature of the problem;
iti) Decision of communication model among processes:
iv) Decision of mechanism for synchronization of processes,
v) Removal of data dependencies (if any),
vi) Load balancing among processors,
vii) Performance analysis of program.

Program for P,

fiinclude <mpi.h>

fidefine n 100

int main(int arge, char **argv) {.

int A[r};

int sum0 =0, sum1{ ],sum, incr, last_incr;
MPI_fnit{&arge, &argv);

for{_int i=0;i<n;i++) /ftaking input array

scanf{"%d”, &A[il)

incr=n/k; f/finding number of data for each processor
last_incr = incr n+n%k; // last processor may get lesser number of data
for(i=1; i<=k-2; i++)

MPI_Send ( (i-1)*incr, incr, MPI_INT.i, i, MPI_COMM_WORLD); // P0 sends |

data to other processors

MP1_Send( (i-1)*incr, last_incr, MPI_INT., i, MPl _COMM_WORLD); // PO
scnds dala to last processor

for(i=1; i<=incr; i++) // PO sums its own elements

sumOH+=Afi];

for(i=1; i<= k-1; i++) 1/ PO receives results from other Processors
suml [ij =MPL_Recv(i, 1, MPI_INT,0, 0, MPI_COMM_WORLD);
for(i=1; i<= k-1; i++) f/results are added 1o get final resuits
sum=sumO+sumli];

printf{*“%d”, sum};

MPI_Finalize(;

}

/{ Program for P, for =1 2 ...k-2,
int func{ int B[int n])

¢
MPI_Recv(l, incr, MPI_INT,0, 0, MPI_COMM_WORLD);
int sum1=0 ;
for (i=0; i<incr; i++)

sum1+=B[i};
MP1_Send( 0, incr, MPL_INT,0, 0, MPI_COMM_WORLD);
) :

Program for the last processor Pk,

int func( int B[int n])
{

LTI S e p-mor e -



MPI_Recv(}, last_incr; MPI_INT,0, 0, MPI_COMM_WORLD); ' Parallel Programming
int sum1=0;
for (i=0; i<last_incr; 1++)
sum1+=B[i];
MPI_Send( 0, fast_incr, MPI_INT,0, 0, MPI_COMM_WORLD};
}

Check Your Progress 2

} a) IHPF$ PROCESSORS Q (s, r)
It maps s x r processors along a two dimensional array and gives them collective

name Q.

b) !'HPF$ PROCESSORS P(5)
'HPF$ TEMPLATE T(22)
~ 'HPF§ DISTRIBUTE T(CYCLIC} ONTO P.
Data is distributed n 5 processors as shown below:

™D T{(2) T T(4) ) T

Ti6) (7 T(E} 9 T(I0)

T(11) T{i2) T(13) T(14) T(15)

T(16) TN T(18) T(19) T(20)

T(21) T

P(1) P(2) P(3) P(4) P(5)
Figure 8

2) FORALL (=1, j=1:n, i >j) Y(i,j) = 0.0

3) Intrinsic functions are library-defined functions in a p ogramming languages to
support various constructs in the language. The two most frequently used in
parallel programming are the system inauiry functions
NUMBER_OF_PROCESSORS and PROCESSORS SHAPE. These functions
provide information about the number of physical processors on which the running
program executes and processor configurarion. General syntax of
NUMBER_OF_PROCESSORS is

NUMBER_OF_PROCESSORS(dim)

where dim is an optional argument. It returns the number of processors in the
underlying array or, if the optional argdment is present, the size of this array along
a specified dimension.

General syntax of PROCESSORS_SHAPE is

PROCESSORS_SHAPE()

It returns an one-dimensional array, whose ™ element gives the size of the
underlying processer array in its i* dimension.

) -rat e N I P B

R T T e

P e

1=t .

S T B




Parzlle] Algorithms &
Paralle]l Programming

< Check Your Progress 3

1) (a) syntax for parallel directive :

2)

Hpragma omp parallel {set of clauses]
where clause is one of the following:
structured-block

iffscalar-expression)

private(iist)

Jirsiprivate(list)

default(shared | none)

shared(list)

capyin(list) L

(b) syntax for sections directive : '

#pragma omp sections [set of clauses ]
{

Hpragma omp section

structured-bloc

Fpragma omp section

structured-block

The clause is one of the following:
privare(list)

firstprivare(list)

lastprivate(list)
reduction{operator: list)

nowait

e 1

(c) syntax for master directive :

LTl TR it T e

ffpragma omp master
structured_block

In parallel programming, shared memory programming in particular, processes very .

often compete with each other for common resources. To ensure the consistency, we———
require some mechanisms called process synchronization. There are numerous

techniques to enforce synchronization among processes. We discussed one of them -

in unit 3.2.2 using lock and unlock process. Now we are introducing semaphores. .
Semaphores were devised by Dijkstra in 1968. It consists of two operations P and Ve
operating on a positive integer s (including zero).P waits until s is greater than zero ¢
and then decrements s by one and allows the process lo continue. V increments s by|
one and releases one of the wailing processes (if any). P and V orerations are
performed atomically. Mechanism for activating waiting processes is aiso implicit irv
P and V operations. Processes delayed by P(s) are Kept in abeyance until released b_\E
a ¥(s) on the same semaphore. Mutual ¢xclusion of critical sections can be achieved;
with one semaphore having the value 0 or 1 (a binary semaphore), which acts as a
lock variable.




3)  Hinclude <math.h> Parallel Programming
int total _m, num_stud=0,sum_marks, sum_square;
void main { )

{

inl roll_no, marks{ )[4],i;
char grade;

float class_av, std_dev;
while (\EOF) {

scanf {(“%d”, &roll_no);

for (i=0; 1<4; i++) f/taking marks of individual student
scanf (“%d” &marks[num_stud](i] );
tolal_m =0; _

num_stud-++;

tor (i=0; i<4; j++)

total m = total_m+marks[num_stud][i]; /#sum of marks

fork(1) grade = find_grade(); //create new parallel -process to find grade

fork(2) find_stat(); /] create new parallel process to find sum and
squares

join 1; /hwait until process find_grade terminates

join 2; /1 wait until process find_stat terminates

printf (“roll number %d”, roll_no);

for (i=0; i<4; i++)

printf (“%d”,marks[num_stud][i] );

printf (“%d”,ictai_m )

printf {(“%c” prade );

.

class_av=sum_marks/num_stud;

std_dev=sqri {(sum_square/std_num) —{class_av*class_av)) ;
printf (“%f %f”,class_av,std dev );

}

char find_grade( )} {

charg,

if (tlotal_m >80) pg="E’;
elseif (total m>70) g="A";
elseif (total m>60) g="B’;
elseif (total ' m>S50) g='C’;
else if (total_m>40) g="D’;
else g='F’;

returmn g;

}

find_stat( } {
sum_marks =sum_marks+total_m;
sum_square =sum_squarettotal_m*total_m;

}

:xample 18: master construct

include <stdio.h>

xztern float average(float, fioat,float);

oid master_consiruct ( float* x. float* xold. ini n, float tol ) 73

E L

LRLE T

T - 4




Parzllel Algorithms &
Parailel Programming

U

{

{

int ¢, i, toobig;

float error, ¥;

c=0;

#ipragma omp parallel

do{ =
flpragma omp for private(i)
for( i = l;i<n-1; ++i ){ -
xold{i] = x[i}; : )

}

#pragina omp single

{

toobig =0, :
}

#pragma omp for private(i,y,error) reduction(+:toobig)
fo(i=1;i<n-1;++i){

y=x[i;

x[i] = average( xold[i-1], x[i], xold[i+1] );

eror=y - x[il; :

if{ error > tol || error < -tol ) ++toobig; :
) ,
#pragma omp master i
{ :
++e; 3
printR "itération %d, toobig=%d\n", ¢, toobig );

}

Ywhile{ toobig > 0 };
}
} - :

3.6 REFERENCES/FURTHER READINGS

i
: [
1) Quinn Michae! J. Parallel Programming in C with MPI and OpenMP, McGraw-Hlll!-
Education (2004).

2} Jorg Keller, Kesler Christoph W. and Jesper Larsson Practical PRAM Programmmg:
(wiley series in Paralle] Computation). f_

3) Ragsdale & Susan, (ed) “Parallel Programming” McGraw-Hill.

4) Chady, K. Mani & Taylor slephen “An Introduction to Parallel Programming, J onesfr
and Barlleh.




R L LT ol




LonLlonmdu

R T VS LLY TS B L

AT U X T NN TUSU R



MCA-5.4
-"Uttar Pradesh .
Rajarshi Tandon Open University Parallel Computing

i o e Ty

Block

3

ADVANCED TOPICS

UNIT 1
Operating System for Parallel Computers 5

UNIT 2

’erformance Tvaluations - 14

UNIT 3

Recent Trends for Parallel Conmipater 32

EEE T A T e it P B




BLOCK INTRODUCTION

Block 3 has three units. Unit I of the block discusses various operating systems issues
including synclironization principles and deadlocks,

Unit 2 discusses various issues concerning performances of various computing
models. Three laws, viz, Amdahi’s law, Gustafson’s Jaw and Sun and Ni’s law are
discussed in context of speed-up of parallel. Finally, in Unit 3 we discuss various
concepts and models of recent origin concerning parallel computing including Paraliel
Virtual Machine, Grid Computing, Cluster Computing and Hyperthreading.

b i i

A o

LI B ke

e P 4 Ty e ayTi e |

— i m———



PRS- ST 11

LI T p—




UNIT 1 OPERATING SYSTEM FOR
PARALLEL COMPUTER

Structure Page Nos.
1.0 Introduction 5
1.1 Objectives 5
1.2 Parallz] Programmming Environment Characteristics 6
1.3 Synchronisation Principles 7

[.3.1  Weir Protocol
i3.2  Sole Aceess Protocol
1.4 Multi Tasking Environment 8
i41 Concepts of Lock
142  System Deadiock
1.3 Deeglock Avoidance

I.5 Messag Passing Progranmune Development Environment 10
1.6 UNIX fer Multiprocessor Sysiem 1
1.7 Summary 12
1.8 Solurions/Answers 12
[.%  Futher Reucings 1

.0 INTRODUCTION

In Riotks 1 and 2, we have discussed paraliel computing architectures and parallel
algurithms, This unit discusscs the additional requirements at operating system and
soilware levels wivich will make the parailel programs run on parallel hardware.
Cuolicatively, Liese regrirements define tlic paraliel program development environmeni. A
paraile) progiraaning cavironment consists of available hardware, supporting languages,
eperaing syslem aiony with sofiware tools and application programs. The hardware
piatiorms have aticudy been discussed in the carlier units. These topics include
diseission of shared memory systems, Mmessage passing systems, veclor procassing;
SC&:I', Superseais!. atzy and pipeiine processors and dziaflow compulers. This unit also
Fresent- a case sudiy regarding operating systems for parallél compuiers,

.3 OBIECTIVES

B e LY ——

Afier studying thiz unit vou wifl be able to describe (he features af soliware and operating
systems for parail! computers.

tn particular you shiould be able to explain the following:

= vanous zdditional requirements imposed at OS level for paralfel computer systems;
* paraliel progriemming environment characteristics:

e multitasking envireament, and

« cateres of Parndte] UNIEX.

VA

CimTET ot -

i I Y et el

I ]

m—tairrtrer - -




wdvanced Topics

12 PARALLEL PROGRAMMING ENVIRONMENT
CHARACTERISTICS

The parallel programming environment consists of an editor, a debugger, performance
cvaluator and programme visualizer for enhancing the output of parailel computation.

All programming cnvironments have.these tools in one form or the other. Based on the
features of the available 100! sets the programming environments are classified as basic,
limited, and well developed. The Basic environment provides simple {acilities for
program tracing and debugging. The limited integration facilitics provide some additional
tools for paraliel debugging and performance evaluation. Weil-developed ervironnients
provide most advanced tools of debugaing programs, for textual graphics interaction and
for paralle! graphics handling.

There are certain parallel overhezds associated with parallel cormputing. The parallei
overhead is the amount of time required to coordinate parallel 1asks, as opposed to doing
useluf work. These include the following factors:

i) Task start up time
ii) Synchronisations
iii) Data communications.

Besides these hardware overheads, there are cértain software overheads imposed by
parallel compilers, libraries, tools and operatipg systems.

The parallel programming languages are developed for parallel computer environments.
These are developed either by introducing new languages (e.g. occam) or by modifying
existing languages like, (FORTRAN and C). Normally the language cxtension appréach
is preferred by most computer designs. This reduces compatibulity problem. High-level
parallel constructs were added to FORTRAN and C to make these languages suitable for
parallel computers. Besides these, optimizing compilers are designed to aulomatically
detect the parallelism in program cade and convent the code to parallel code,

In addition o development-of languages*and compilers for parallel programming, a
parallel programming environment should also have supporting tools for development and
text editing of parallel programmes.

Let us now discuss the examples of parallel programming environments of Cray Y-MP
sofiware 2nd Intei paragaon XP/S. ‘

The Cray Y-MP system works with UNICOS operdting system. It has two FORTRAN
comgpilers CFT 77 and CFT for automatic vector code generation. The system soflware
has large library of routincs, program manage.nent utilities, debugging aids and assembler
UNICOS written in C. It supports optimizing, vectorizing, concurrentising facilities for
FORTRAN compilers and also has optimizing and vetorizing C compiler. The Cray
Y-MP bas three multiprocessing/multitasking methods namely, (i) macrotasking, (D
microtasking, (iil) autotasking. Also, it has a subroutine library, containing various
uliiities, high performance subroutines along with math and scientific routines.

The Intel Paragaon XP/S sysiem is an extension of Inte! iPSC/860 and Delta systems, and
is a scalable and mesh connected multicompiler which is implemented in a distributed
memory systen.

] e e

T T AT T Taw

TTT I ¢ Tt 1t

R

e T mepTeEI T



uses distributed UNIX based OS technology. The languages supported by Paragaon Purallei Computer
include C, C++, Data Parallel Fortran and ADA. The todls for integration include FORGE

and Cast parallelisation tools. The programming environment includes an Interactive

Parzllel Debugger (IPD).

1.3 SYNCHRONIZATION PRINCIPLES

In multiprocessing, various processors need to communicate with each other. Thus,
synchronisation is required between them, The performance and correctness of parallel
execution depernds upon eflicient synchronisation among concurrent computations in
muttiple processes. The synchronisation problem may arise because of sharing of writable
data objects among precesses. Synchronisation includes implementing the order of '
operalions in an algorithm by finding the dependencies in writable dala. Shared abject
access in an MIMD archilecture requires dynamic management at run time, which is
much more complex as compared to that of SIMD architecture. Low-level
synchronization primitives are implemented directly in hardware. Other resources like
CPU, Bus and memory unit also need synchironisation in Parallel computers.

To studly the synchronization, the following dependencies are identified:
1) Data Dependency: These are WAR, RAW, and WAW dependency.

ii) Control dependency: These dcpend upon controd statements like GO TO, I[F THEN,
ele,

ii) Side Effect Dependcencies: These arise due to exceptions, Traps, I/O accesses.

For the proper execution order as enforced by correct synchronization, program
dependencies must be analysed properly. Protocols like wait protocol, and sole access
protocol are used for doing synchrenisation.

1.3.1 Wait protocol

The wait protocol is used for resolving the conflicts, which arise because of a number of
multiprocessors demanding the same resource. There are two types of wait pratocols:
busy-wait and sleep-wait. In busy-wait protocol, precess stays in the process conlext
regisier, which continueusly tries for processor availability. In sleep-wait protocol, wait
prolocol precess is ranoved from the pracessor and is kept in the wait queve. The
hardware cermplexity of this protacol is more than busy-wait in multiprocessor system; if
locks are used for syncironization then busy-wast is used more than sleep-wait,

Exectition modes of & mulliprocessor: various modes of multiprocessing include parallel
execution of programs at (i) Fine Grain Level (Process Level), (i) Medivm Grain Level
(Task Level), (iif) Coarse Grain Level (Program Level).

For executing the programs in these modes, the following aclions/conditions are required

at OS level.

i) Context switching between multiple processes should be fast. In order 10 make context
switching easy multipie scts should be present.

it) The memony allocation to various processes should be fast and context free.

r

The processors that for nodes of the system are 50 MHz i860 XP Processors. Further, it Operating System for

d

I bty I

] A i




dvancew Topics

it} The Synchronization mechanism among multiple processes should be effective.
iv} OS should provide sollware tools for performance monitoring,
1.3.2 Sole Access Protocol

The atomic operations, which have conflicts; are handled using sole access protocol. The
method used for synchronization in this protocol is described below:

1} Lock Synchronization: In this method contents of an atom are updated by requester
process and seole access is granted before the atomic operation. This method can be
applied for shared read-only a.cess.

2) Optimistic Synchronization: This micthod also updates the atom by requester
process, bul sole access is granted aficr atomic operation via abortion. This
technique is also called post s 'nchronisation. In this method, any process may secure
sole access afler first completing an atoinic operation on a local version of the atom,
and then execuling the global version of the atom. The second operation ensures the
concurrent update of the first atom with the updation of second atom.

3) Server synchronization: [t updates the atom by the server process of requesting
process. In this method, an atom behaves as a unique update server. A process
requesling an atomic operation on alom sends the request to the atom’s update
server.

Check Your Progress 1

1) In sleep-wait synchronization mechanism, we know a process is removed/suspended
from the processor and put in a wait queue. Suggest some faimess policies for
reviving removed/suspended progess

1.4 MULTI TASKING ENVIRONMENT

Multi tasking exploits parallelisn by:

1) Pipelining functional units are pipe iinc logether
2) Concurrently using the multiple functirnal units
3) Overlapping CPU and /O activities.

In multitasking environment, there should be a proper mix between task and data
structures of a job, in order to ensure their proper parallel execution.

In multitasking, the useful code of u programme can be reused. The property of allowing
one copy of a programme module (0 be used by more than task in parallel is called
reentrancy. Non reentrant cede can be used only once during lifetime of the programme.
The reentrant codes, which may be called many times by different tasks, are assigned with
local variables.

Shared variable programme structures

[T} et

SmTETIT o

R T

TToTEs i

-1 ————— e




‘The concept of shared variable has already been discussed above. In this section, we
discuss some more concepls refated to the shared programme.

1.4.1 Concept of Lock

Locks are used for protected access of data in a shared vari able system. There are various
types of locks:

1} Binary Locks: These locks are used globally among multiple processes.

2} Deckkers Locks: These locks are based on distributed requests, to ensure mutual
exclusion without unnecessary waiting.

1.4.2 System Deadiock

A deadlock refers to the situation when concurrent processes are holdinig resources and
preventing e.ch other from completing their execution.

The following conditions can avoid the deadlock from occurring;

l) Mutual exclusion: Each process is given exclusive control of the resources allotted
to it.

2) Nou-preemiption: A process is not allowed to release its resources till task is
completed.

3)  Wait for: A process can hold resources while waiting for additional resources.

4) Circular wait: Multiple processes wail for resources from the other processes in a
circulzriy dependent siloation.

1.4.3 Deadlock Avoidance
To avoid deadlocks two types of strategies are user-

t) Stalic prevention: It uses P and V operators and Semaphores to allocate and
deafiocate shared rescurces in a multiprocessor. Semaphores are developed based on
sleep wail protocol. The section of programme, where a deadlock may occur is
called critical section. Semaphores are control signals used for avoiding collision
between processes.

Pand V techiique of Deadlock prevention assaciates a Boolean value 0 or 1 to each
semaphoic. Two atomic operators, P and ¥/ are used to access the critical section
represented by the semaphore. The P(s) operation causes value of semaphore s to be
increased by one if s is already at non-zero value,

The V{(s) operation increases the valuz of s by one if it is not already one. The
equation s=1 indicates the availability of the rezource and s=0 indicates non-
aveilability of the resource.

{during execution, various processes can submit their requests for resources
asvnchronously. The resources are allocated to various processors in such a way that

Operating Systen for

Parallel Com puter

_w

9

BRI U b g | |

Rt oL TER

LT ) e,

B Y AME T Trea ap - - -




\dvunced Topics

10

they do not create circular wait. The shortcoming of the static prevention is poor
resource utilisatton.

2}  Another method of deadlock prevention is dynamic deadlock avoidance. It checks
deadlocks on runtime condition, which may introduce heavy overhead in detecting
potential existence of deadlocks.

Check Your Progress 2

1) Explain the spin lock mechanism for synchronisation among concurrenl processes.
Then define a binary spin lock.

1.5 MESSAGE PASSING PROGRAMME
DEVELOPMENT ENVIRONMENT

In a multicomputer systemn, the computational load between various processors must be
alanced. "To pass information between various nodes, message-passing technique s
sed. The programming environment of 2 multicomputer includes a hiost runume system

~nd resident operating system called Kernel in all the node computers. The host system

provides uniform communication between processes without interveation of the nodes,

_host workstation and network connection. Host processes are located outsides the nodes.

The host environment for hypercube computer at Caltech is a UNIX processor and uses
UNIX and language processor utilities to communicate with node processes. The Kernel
is separately located in each node computer that supports multiprogramming with an
address space confined by local memory. Many node processes can be crealed at cach
node. All node processes exccute concurrently in different physical node or interleaved
through multiprogramming within the same node. Node processes communicate with
each other by sending or receiving messages.

The messages can be of various types. A particular ficld of all messages can be reserved
to represent message type. The message passing primitives arc as follows:

a  Send (type, buffer, length, node process)
»  Receive (type, buffer, length)

Where type identifies the message type, buffer indicates location of the message, lengih
specifies the length of the message, node designates the destination node and process
specifies process 1D at destination node. - Send ard receive primitives are used for
denoting the sending and receiving processes respectively. The buffer field of send
specifies the memery location from which messages are sent and the buffer field of
receive indicates the space where arriving messages will be stored.

The following issues are decided by the system in the process of inessage passing:

1} Whether the receiver is ready to receive the message
2} Whether the communication link is established or not
3) One or more messages can be sent 1o the same deslination node

ST T v DT IR —

B 1 Rt ey

Harkran creaembii




The message passing can be of two types: Synchronous and Asynchronous

In Synchronous, the message passing is implemented on synchronous communication
network, In this case, the sender and receiver processes must be synchronized in time and
space. Time synchronization means both processes must be ready before message
transmission lakes place. The space synchronization demands the availability of

interconnection link.

In Asynchronous message passing, message-sending ands receiving are not synchronized
in time and space. Here, the store and forward technology may be used. The blocked
messages are buffered for later transmission. Because of finite size buffer the system may
be blocked even in buffered Asynchronous non-blocking system.

1.6 UNIXFOR MULTIPROCESSOR SYSTEM

.The UNIX operating system for a multiprocessor system has some additional features as
compared to the normat UNIX operating system. Let us first discuss the design goals of
the multiprocessor UNIX. The original UNIX developed by Brian Kernighan and Dennis
Ritchie was developed as porlable, general purpose, time-sharing uniprocessor operating
system.

The OS functions inctuding processor scheduling, virtual memory management, YO
devices ete, arc implemented with a large amount of sysiem software. Normmally the size
of the OS is greater than the size of the main memory. The portion of OS that resides in
the main memory is called kernel. For a multiprocessar, OS is developed on three models
viz: Master slave model, {loaling executive model, multithreaded kernel. These UNI{X
kerncls are implemented with locks semaphores and monitors.

Let us discuss these models in brief.

D

2)

3)

Masler slave kernel: In this model, only one of the processors is designated as

Master.

The master is responsible for the following activities:
i)  running the kernel code

ii)  handling the sysiem calls

ifi) handling the interrupts,
The rest of the processors in the system run orly the user code and are called slaves.

Floating-Executive model: The master-slave kernel mode] is too restrictive in the
sense that only one of the processors viz the designated master can run the kernel.
This restriction may be relaxed by having more than one processors capable of
running the kermnel and allowing additional capability by which the master may float
among the various processors capable of running the kemel.

Multi-threaded UNIX kernel: We know that threads sre light-weight processors
requiring minimal state information comprising the processor siate and contents of
rclevant registers. A thread being a (light weight) process is capable of execuling
alone. In a multiprocessor system, more than oue processors may execute
simultancously with cach processor possibly exccuting more than one threads, with

Operating System fer

Parallel Computer

LN Pt

Era H

B el v

P -

THOTTTIT I— v s S -




Ivanced Topics

the restriction that those threads which share resources must be altotted 1o one
processor. However, the threads which do not share resources may be allotted o
different processors. In this model, in order (o separate multiple threads requiring
different sets of kemel resources spin locks or semaphores arc used.

1.7 SUMMARY

Ir this unit, various issues relaling 1o operating systems and other sofiware requirements
for parallel compulers are discussed.

In parallel systems, the issuc of synchronisation becomes very important, specially in
view of the fact more than one processes may require the same resource at same point of
time. For the purpose, synchronisalion principles are discussed in section'§.3. For the
purpose of concurrent sharing of the memory in multitasking environment, the concepls
of lock, deadlock ekc are discussed in scction 1.4. Finally, extensions of UNIX for
multiprecessor systems are discussed in scelion 1.6.

1.8 SOLUTIONS/ANSWERS

Check Your Progress 1

1}  Out of large number of fairness policies, the following three policies arc quite well
known:

1) First-In-First-Out (FIFO} policy
2) Upper-bounided misses policy
3) Livelock-free policy

First-In-First-Qut (FIFQ) as the name suggests that no process wiil be served out of
turn. The disadvantage is that in some cases cost of computation and memory
reguirement may be too high.

The second fairness policy may be implemented in a number of ways. Depending upon
the implementation, the implementation costs and memory requirements may be
reduced.

Check Your Progress 2

1} Under the centralized shared (CS) memory, the gate for entry and exist to CS is
contrulled by a single binary variable say y, which is then shared by all processes
atempting to access CS.

For defining the binary spin lock

Lel y be the single variable for entry to the gate. Initially the value of y is set to O
(zero) indicating that cntry by any one process is allowed. Then spin fock controlling
mechanism continuously checks one by one all processes in turn, whether any one of
these procasses needs 1o access the memory. Once, any of the processes is found need
to access CS, that process say I’p is"allowed to access the CS and the entry-allowing
variable y is assigned 0 (zero) indicating next process in queue requiring access 10 CS
is allowed to access CS.

BT I i B N A

g e

B e




Operating System for

1.9 FURTI’IER READINGS Paraliel Computer

1) Kai Hwang: Advanced Computer A rchitecture: Parallelism, Scalability,
Programmability, Tata-McGraw-Hill (2001)

it

2) Thomas L. Casavant, Pave! Tvrdik, Fran(istk Plasil, Parallel Computers: Theory and l[.
Practice, IEEE -

[

! r

3




14

UNIT 2 PERFORMANCE EVALUATIONS

Structure Page Nos.
2.0 Introduction 14
2.1 Objectives 15
72 Metrics for Performance Evaluation 15

2.2.1 Running Time
222 Specd Up
2.23 Efficiency
2.3 Factors Causing Paralle! Overheads 18
2.3.1 Uneven Load Distribution
232 Cost Invoived in Inter-processor Comnmunication
2.: 1 Taraticl Balance Point
2.3.4 Syuchronization
2.4 Laws For Measuring Speedup Perlormance 20
24,1 AlDAHL's Law
2.4.2 GUSTAFSON's Law
2.4.3 -Sun and Ni's LAW
2.5 Tools For Performance Measurement 25
2.6 Performance Analysis 26
246.1 Scarch-based Teols
2.6.2 Visualisation

2.7 Performance Instrumentaiions 29
2:8 Summary 30
2.9  Solutions/Answers 30
2.10 Further Readings 31

2.0 INTRODUCTION

In the eartier blocks and the previous scction of this block, we have discussed a number of
types of available parallel computer systems. They have differences in architecture,
organisation, interconrection pattern, memory organisation and /O organisation.
Accordingly, they exhibit different performances and are suitable for different
applications. Hence, certain parameters arc required which can measure the performance
of these systems.

in this unit, the topic of performance evaluatton explains those parameters that are devised
to measure the performances of various paratlel systems. Achieving the highcs: possible

performance has always been one of the main goals of parallel computing. Unfortunately,
most often the real performance is less by a factor of 10 and even worse as compared to
the designed peak performance. This makes parallel performance evaluation an area of
prit..ity in high-performance parallel computing. As we already know, sequential
algonthms are mainly analyzed cn the basis ol computing time j.e., time complexity and
this is directly related to the data input size of the problem. For example, for the problem
of sorting n numbers using bubble sort, the time complexily is of O (n). However, the
perfortnance analysis of any parallel aigorithm is dependent upon three major (actors viz.
time complexity, total number of processors required and total cost. The complexity is

normally related with input data size (n)-

Thus, unlike performance of 2 sequential algorithm, the evaluation of a parallef algorithm
cannot be carried out without considering the other important parameters like the tota!
number of processors being employed in a specific parallel computational model.
Therefore, the evaluation of performance in parailel computing is based on the parallel
coraputer system and is also dependent upon machine configuration like PRAM,

ERE e e R At el tn e o




combinational circuil, interconnection netwerk configuration etc. in addition to the
parallel atgorithms used for various numerical as well non-numerical problems.

This unit provides a platform for understanding the performance evaluation methodology
as well as giving an overview of some of the well-known performance analysis

techniques.

2.1 OBJECTIVES

After stedying this unit, you should be able to:

° describe th: Metrics for Performance Evaluation,

e 1tell about various Parailel System Overhcads:

= explain the speedup Law; and

« enuricraie ana discuss Performance Measurement Tools,

2.2 MFPTRICS FOR PERFORMANCE EVALUATION

in this section, we wouid highiight various kinds of metrics involved for analysing the
performance of parallel algorilivns for parallel computers.

221 Raniticg Time

The running tine s the amount of time consumed in execution of an algorithm for a given
mput on the MN-precessor Lased parallel computer. The running time is denoted by T{n)
s he numher of processors employed. I the value of n is equal 10 1, then
Sef 1o a sequential computer. The relation between Exzcution lime vs.

Wiere iy =)

L2 £ase is 3
sunriher of processors i shown in Fignre 1.
& r
| ;
! ;
[ i
i {
b
Fyeoution {1
—_ ]
ime i

\ "

Ne. of processors required |
ligere 3: Eaccution Time vs. number of peocessors

S
.

It can be 2asily seen frem he graph that as tha munber of processors increases, initially
the exccution Lime reduces but after a cerain optis um levu! the execution time increases
as number of processors increases. This discrepancy is becasse of the overheads invotved
innereasing the number of pracesses.

Spred up is the niio of the lime required Lo execulc a given progrant using a specilic
sporithin on 2 mechine with single processor (i.c. T (1) (whare n=1}) to the i:me required

Performance Evaluation®

ey 1 el

ST

e e -

g

R B Pl

CHt ATt




Advanced Topics

16

(o execute the same program using a specific algorithm on a machine with multiple
processors (i.e. T(n)). Basically the specd up factor helps us tn knowing the relative gain
achieved in shifting (rom a sequential maghine to a parallel computer. Il may be noted that
the term T(1) signifies the amount of time taken lo execute a program using the best
sequential algorithm i.e., the atgorithm with least time complexity.

Sey) = 1)

Ttn)

Lcl us take an example and illustrate the practical use of speedup. Suppose, we have a
aroblem of multiplying n numbers. The time complexity of the sequential algorithm for a
machine with single processor is O(n} as we neéd one loop [or reading as well as
computing the output, However, in Lhe paratlel compuler, let cach number be allocated to
individnal pracessor and compulation model being used being a hypercube. In such a
situation, -he iotal number of sieps required to compute the result is log n i.ex the time
complexity is O(log n). Figure 2, illustietcs the steps to be followed for achieving the
desired outpul in a parallel hypercube computer moz i,

1 Step )
1
3
4? 4
2™ Step 8 é 6
2 5
I
3
7 4
3" Siep /
8¢/ 5 6 /s
1
3
7 4
8 6

Figure 2: Steps followed for multiplying n numbers stored on n processers

s the number of steps followed is cqual to ? i.e., log 8 where n is number of processors.

flence, the complexily is O(log n}.

In view of the {act Lhat sequential algorithm takes 8 steps and the above-mentioned
parallel algorithm takes 3 steps, the spced up s as under:

8

3

S(m) =

As the value o, S(n) is inversely proportional to ihe time required to compute the output
on a parallel number which in turn is dependent on number of processors employed for
performing the computation. The relation between S(n) vs, Number of processors is
stowin in Figure 3. The speedup is directly proportional to number of processors,

ORI

R e

1R M

-




therefore a lincar arc is depicted. However, in situations where there is parallel overhead, Performance Evatuations

the arc is sub-linear. - w “

S - - -
A
Linear
”

7
~

Speed Up

e

Sub-Linear

Ne. Of processors required

Figure 3: Speed-up vs. Number of Processors

223 Efficiency

The other important metric used for performance measurement is efficiency of parallel
computer sysicm i.c. how the resources of Lhe paralic! systems are being utilized. This is
calied as degree ¢f effectiveness. The cfficicncy of a program on a parallel compuler with
k processofs can be defined as the ratio ol the relative speed up achieved while shifting
the load from single processor machine 1o & processor machine where the multipie
processers are bewng used lor achieving the result in a parallel computer. This is denoted
oy E(K).
Ey is deflined as fallows:

Sk
k

-—
S—

E(hy =

The value of E(k) is directly proportional to S{k) and inversely proportional 1o number of
processors employed for performing the compuzation. The relation betwasn E{k} vs.
Number of processors is shown in Figure 4.

4 ] Lincar

-‘k‘—\h

Sub-Linear

E

e
=i

ciency

4

No. OT processors required

Figure 4: Efficiency vs. Nmnber of Processors

Pt -

N i SR A

B e Rt T rTIEE ro g -




vdvanced Topics

18

Assuming we have the multiplication problem as discussed above with k processors, then
the efficiency is as under:

E(k) = — M _ N
Tem*K logn* N
E{n) =

log(m)

Now, supposing we have X processors i e. X <K and we have to multiply n numbers, iix
such a situation the processors might be overloaded or might have a few overheads. Then

the cfficiency is as under:

R0
T()*X

E(X)=

Now, the value of T(X) has to be computed. As we have n numbers, and we have X
processors, therefore firstly each processor will multiply 27X numbers and conscquenthy
process the X partial results on the X processors according Lo the method discussed in
Figure I. The time complexity is equal to the sum of the time o compule nuitiplication

.ol k/X numbers on each processer i.c., O(K/X}) and time 1o compuie the solution of partial

results Le. log (X}

E(X) = d
(KIX+log(XN*X
E(X) = (K1 X)
(K/X +log(X))
Dividing by X/K wc gel
E(X)= :
(1+ (X1 K)*log(X))

it can be concluded trom the above statcment that if N is [ixed then the efficiency i.c.
E(X} will decrease as the value of X increases and becomes equivalent 10 E(N) in case
X=N. Simitarly, if X is fixed then the efficiency i.e., E(X) will increase as the value of X
_i.c. the number of computations increases.
The other performance metrics involve the standard metrics like MIPS and Mflops. The
rert MIPS (Miliion of Instructions Per Second) indicates the instruction execulion rate.
iiflops (Million ol Floating Point Operatio:.; per Second) indicates the floating-point
execution rale.

2.3 FACTOR CAUSING PARALLEL OVERHEADS

Figures 2,3 and o clearly tilustrate thai the performance melrics are not able 1o achieve a
linear curve i comparison to the increase in number of processors in the parallel
computer. The reason for the above is the presence of overheads in the paralicl computer
which may degrade the pecformance. The well-known sources of overheads in a paralici
computer are:

H 1 et P

i R T T I e e SRR H

HEE S

B R R R L




1) Uneven load distribution )

2) Cost involved in inter-processor communication
3) Synchronization

4) Parallel Balance Point

The foltowing section describes them in detail.

2.3.1 Uncven Load Distribution

In the parallc! computer, the problem is split into sub-problems and is assigned_for
computalion lo various processors. Bul somelimes the sub-preblems are not distributed in
a fair manner Lo various sets of processors which causes imbalance of load between
various processors. This event causes degradation of overall performance of parallel

Conpuers.
2.3.2 Cost Involved tn Inter-Processor Communication

As the data is assigned 1o multiple processors in a paralle! compulter while executing a
parallel algoritlun. the processors might be required to interact with other processes thus
requiring inter-processor communication. Therclore, there is a cost involved in
transierring data belween processors which incurs an overhead.

2.3.3 Paraliel Balance Point

In order to execule a parallel algorithm on a paralle! conrputer, K number of processors
are required. 1tinay be noted that the given input is assigned to the various processors of
the parallel compuier. As we already know, execulion lime decreases with incrcase in
number of processors. However, when input size is fixed and we keep on increasing the
number of processars, in such a sitation after some point the execution time starts
increasing. This is becavse of overheads encounteed in the parallel system.

2.3.4 Synciironization

Multiple processors require synchronization with each other while excewting a parallel
aigorithm. That is, the task running on processor X might have 1o wail for the result of a
lask executing on pro.essor Y. Therelore, a delay is involved in compleling the wiole
1ask distributed anmorg K number of processors.

Check Your Progress 1

) Which of the following ore the reasons for paraile! overheads?
- A} Uneven load disiribution
B} Cost invalved in inler-processar communicalion
C) Parallel Balance Point
D) All ol the abiove
2) Which of the followving are the performance metrics”
A) MIPS
B) Mtiops
C) Parallel Balance Point
D) Aand B only

3) Defing the following terms:
A}il{u’nning Timsz
B) Speed Up
) Eficiency

Performance Evaluations

g

LI TIEr -ee- - -

W,

trT o



Ivaneed Topies

20

2.4  LAWS FOR MEASURING SPEED UP
PERFORMANCE

To measure speed up performance various laws have been developed. These laws arc
discussed here.

2.4.1 Amdahi’s Law

Remember, the speed up factor helps us in knowing the relative gain achieved in shifling
the execution of a task from sequential computer to parallel computer and thie
performance does not increase lincarly with the increase in number of processors. Due to
the above reason of saturation in 1967 Amdahl’s taw was derived. Amdahl’s law states
that a program contains two types of operations i.e. complete sequential operations which
must be donc sequentially and complete parallel operations which can be executed on
multiple processors. The statement ol Amdahl's law can be explained with the help of an
example.

Let us consider a problem say P which has to ba solved using a parallc] computer.
According to Amdah!’s law, there are mainly two types of operations. Therefore, the
problem will have some sequential cperations and some paratlel operations. We alrcady
know that it requires T {1} amount of time 1o execute a problem using a sequential
machine and sequential algorithm. The time (o compute the sequential uperation is a
fraciion @ (alpha) (o < 1) of the total execution time i.e. T (1) and the time to compute the
pacallel operations is (1- o). Therefore, S (N) can be calculated as under:

_ T
S I'(N)
S(N) = ) <0
A*¥TD+(1-a)* ——ﬁ}—
Dividing by T(1)
1
SM)=——7
&+ ——

Remember, the value of a is between 0and 1. Now, let us pu! some values of o and
compute the speed up factor for increasing values of number of processors. We find that
the S{N) keeps on decreasing with increase in the value of « (i.e. number of sequential
operalions as shown in Figure 3).

T3

[REE B S TR e

-ma




a =0.02
64 — Z

o =0.1
a =02

Spced Up 16 |-
a=05

a=0.92

[ L] L - - x

4 16 64 256

" No. of protessors rcquireci
Figure 5: Speed-up vs. Number of Processors

- 5 clearly illustrates that there is a bottleneck caused due to sequential
computer. Even when the number of sequential operations are
he number of processors, the speed up factor

The graph in Figw
operations in a parallel
more, afier increasing 1
S (N) degrades.

th speed up factor S(N) fora fixed value

The sequential fraction i.e. & can be compared wi
of effect of Amdahl’s law on the speed

of N say 500. Figure 6 tllustraies a pictorial view
up factor. ?

Speed Up
Factor S(N)

v

o (Sequential Operations)

Figurz 6: S(n) vs. (G raph is nat to seale) -

The outcomes of analysis of Amdahl’s law are:
Duters, modified compilers need (o be

1) To optimize the performance of parallel com
ber of sequential operations pertaining

developed which should aim to rcdoce the num

to the fraction @.
2} The manufacturers of parallcl computer
scale machines having millions of pfoccssors.

s were discouraged from manufacturing large-

There is one ajor shortcoming identified in Ammdahi’s law. According to Amdahl’s taw,
lie number of sequential operations

:he worklond or the problem size is ahways fixed znd 1
it assumes {hat the distribution of number of sequential

mainly remains same. That is,
operations and parailel operations always yemains same. This situation is shown in

Performance Evaluationg

DR I Frtrs Sl

1w s

T

B e b

BUECLER B Ir-rar et




wWvaneed Topics

Figure 7 and the ratip of sequential and parallel operations are indepcndcn; of problem
size. )

Ls Ls Ls Ls

) Load
Ls = Sequential

Instruction Load

Lp = Parallel
Instruction Load

1 2 3 . 4
No. Of processors
Figure 7: Fixed load for Amdzhl’s Law
However, practically the number of
problem. As the load is assumed to
time will keep on decreasing when n
shown in Figure 8. This is in Introd

parallel operations increases according to the size of
be fixed according to Amdahi’s law, the execution
umber of processors is increased. This situation is
uction o the processes operation.

¥ 3
Ts
Execution _ Ts
Tp Ts
T
p Tp
_b
1 2 3 g

No. Of processors

Figure 8: Execution Time decreases for Amdahi’s Law

24.2 Gustafson’s Law

Amdahl’s law is suitable for a

pplications where response time is critical. On the other
hand, there are man

Y applications which require that accuracy of the resultant output
should be high. In the present situation, the com

due to increase in number of processors attached

“ orkload can be increased. How does this
operate? Gustafson's Law relaxed the restriction of fixed size of problem and aimad ay

using the notion of constant execution time in order to overcoine the sequential bottleneck
cncountered m Amdahl’s Law. This situation which does not assume a fixed workload is
analysed by Gustafson. Thus, Gustafson’s Law assumes that the workload may increass

substantially, with the number of processors but the total execution time should remain
the same as highlighted in Figures 9 and 70,

Bk b Bt

bt

ST TEET T T e

e R U

EEEES

e parT e W




t Ls
Ls -
Ls Lp
L
Load I P
(unit) =5 Lp
Lp
—p

| ] 3 4
Number ol Processors '

Figure 9: Parallel Load Increases for Gustafson’s Law
Accordng to Gustafson’s Law, if th

€ number of parallel operations Tor a problem
increases sufficiently, then the sequ

ential operations will no Tonger be a bouleneck.

o T(I)
S(K)= T(N)

T, +T,(1,L)
S(N)= -t e 7
T, +T,(N,L)

Also, Tp (1, £)= N> Ip(N. L) ie time taken (o execuie paralle! operatinns having a load
of L on one processor js equal fo the N multiplied by the time roken by one computer
having N processor. if & be the fraction of sequential load for a given probiem i.c.,

T,

A=l
. T; + ?;_- ( ,l..r:, L)
Substituting Tp (1 L)=N*Tp N, L) we get,

T, +N*T (N, L),

Sry=2___ o202
T, +T (N, L)
T. T. T. T.
;_ -1

T, L T, Iy

1

f— —
! 2 3 4

Figure 10: Fixed Execution Tirse to Gusiafson's iz

Performance Evaluatio n

Haaarsan i 1

BRE

e NLE TSN - -




wanced Topics

N*T (N,L)
S(N)= 5 + £
T +T,(N,0) T+T,WN.0)

Now, let us change the complete equalion of S(N) in the form of X.
We get’

1

S(N) = a+N * (I-a

S(N) =N - * (N-1)

Now, et us put somc values of o and compute the speed up factor for increasing values of

a i.e. sequential factor of work load for a fixed number of processors say N. Figure 11
illustrates a pictorial view of effect of Gustafson’s Law on the speed up factor. The graph
shows as the value of o increases, the speed up factor increases. This decrease is because

of overhead caused by inter-processor communication.

--------
----------
............
..............
..........
--------
-------
A

Speed Up
faclor

o (Sequential Operations)
Figure 11: S (N) ¥vs. & {Graph is not to scale)

2.4.3 Sun and Ni's Law

The Sun and Ni’s Law is a generalisation of Amdahl’s Law as well as Gustafson's Law.
The fundamental concept underlying the Sun and Ni’s Law is to find the sojutionto a
problem with a maximum size along with limited requiremeni of memory. Now-a-days,
there are many applications which are bounded by the memory in contrast te e
processing speed. )
In a multiprocessor based paralicl computer, each processor has an independent small
memory. In order to solve a problem, normally the problem is divided into sub-problems
and distributed to various processors. It may he noled that the size of the sub-problem
should be in proportion with the size of the independent local memory available with Lhe
praocessor. Now, fora given problem, when large set of processors 1
in that case the overall memory capacity of the system increases proportionalel}-'.
Therefore, instead of following Gustafson’s Law i.e., [ixi
the problem can be increased further such that the memo
technigug assists in generaling more accurale solution as th

ry could be utilized. The above
e problem size lias been

increased.

State the law and then inter part discuss it

is culminated together.

ng the execution time. the size of

b

TaTThT T T T T

Sep et - -



Check Your Progress 2

1) Which of the following laws deals with finding the solution of a problem with
maximum size along with limiled requiremen; of inemory?

a) Amdahl's law

b) Gustafson’s law
¢) Sun and Ni's law
d) Nenc of the above

2) Which of the following laws state the program, which centains two types of
operations i.e. complete sequential operations which must be done sequentially and
complete parallel operalions which can be executed on multiple processors?

a) Amdah!l’s law

b) Gustafson’s law
¢) Sun and Ni's law
d) None of the above

3) Which of the following law used the notion of constant execution time?

a) Amdahl's law

*b) Gustafson’s law
c) Sun and Ni's law
d) None of the above

2.5 TOOLS FOR PERFORMANCE MEASUREMENT

[n the previous units, we have discussed various parallel algorithms. The motivation
behind these algorithms has been 10 improve the performance and gain a speed up. Afier
the parallel] algorithm has been writien and executed, the performance of both the
algorithms is one of the other major concerns. In order to analyze the performance of
algorithms, there are various kinds of" performance measurement tools. The measurement
tools rely not only on the paraliel algorithm but require 1o collect data from the operating,
system and the hardware being used, so as to provide effective utilisation of the tools.

For a given paralicl compuicr, as the number of processors and ils computational power
increases, the complexity and volume of data for performance analysis substantially
increases. The gathered data for measurement is always very difficull for the tools to store
and process il.

The task of measuring Lhe performance of the parallel programs has been divided into two
components,

1) Performance Analysis: i provides the vital informiation to the pre srammers from
the large chunk of statistics available of 1he program while in execuiion mode or
from the output data.

2) Performance Instrumeniation: lis cmphasis on how to efficiently gather
information about the computation of the parallel computer.

Performance Evaluagjons

L)

CE ATl ) = e

T B E

aCaE E I T T e




vdvanced Topics

26

2.6 PERFORMANCE ANALYSIS

la order to ineasure the performance of the program, the normal form of analysis of the
program is to simply calculate the total amount of CPU time required to execute the
various part of the program i.c., procedures. However, in case of a parallel algorithm
running on a parallel computer, the performance metric is dependent on several factors
swch as inter-process communication, memory hierarchy etc.  There are many tools such
i ANALYZER, INCAS, and JEWEL to provide profiles of utilization of various
resources such as Disk Operations, CPU utilisation, Cache Performance etc. These tools
¢ven provide information about various kinds of overheads. Now, let us disciss various =
kinds of performance analysis tools. :

2.0.1 Scarch-based Tools

The scarch-based tools firstly identify the problem and thereafter appropriately give
advice on how Lo correct it.

i bt

I PR

AT Expert from Cray Research is one of the lools being used for enhancing the a
performance of Fortran programs with the help of a set of rules which have been written
with Cray auto-tasking library. The Cray auto-tasking library assisls in achieving the
parailelism. Gasically, the ATExpert analyses the Fortran program and tries 1o suggest
complier directives that could help in improving the performance of the program.

Another tool called “Performance Consultani” is independent of any programming
language, model and machines. 1t basically asks three questions i.c. WHY, WHERE »nrd
WHEN about the performance overheads and bottlenecks. These three questions forim the
3 different axes of the hierarchal model. One of the importam features of Performance -
Consultant Lool is that it searches for boluenecks during execution of program. The above-
mentioned features assisi in maintaining the reduced volume of data. The WHY axis
presents the various bottlenecks such as communication, I/O etc. The WHERE axis
defines the various sources which can causc boltlenccks such as interconnection
neuworks, CPU ete. The WHEN axis iries 1o separate the set of bottlenecks into 2 specific k
phase ol execution of the program.

2.6.2 Visualisation

Visualization is a generic method in contract to search based tools. in this methed visual
aids are provided like piclures to assist the programmer in evaluating the performance of
sarallel programs. One of visualizalion tools is Paragraph. The Puragraph supporis
various kinds of displays like communication displays, task information displays,
utilisation displays elc.

R N B

Communicai:an Displays

Communication displays provide support in determining the frequency nfcommunication, _
whelher congestion in message queues or not, velume and the kind of patlerns being
commuuaicated ete.

Communication Matrix _'

A communication matrix is constructed for displaying the comrunication patiern and size
of messages being sent from one processor to another, the duration of communicalion ele.
In the communication matrix,  two dimensional array is construcied such that bothi the
horizantal and vertical sides are represented with the various processors. It mainly
provides the communication pattern between the processors. The rows indicals the
procassor which is sending the message and columns indicate the processor which is
going 10 receive the messages as shown in Figure 12,




Processors —__y,.

Figure: 12 Communication Matrix

Communication Traffic

The Communication TrafTic provides a pictorial view of the communication traffic in the
intercorinection network with respect to the time in progress. The Communication Traffic
displays the tatal nuinber of messages, which have been sent but not recejved.

Message Queucs

The message queue provides the information about the sizes of queues under utilization of
various processors. [t indicates the size of each processor incoming message queue, which
would be varying depending upon the messages being sent, received or buffered as shown
in Figure 13. It may be noted that cvery processor would be having a limit on maximum
length of its queue. This display mainly helps in analyzing whether the communication is
congestion free or not.

Qucue
Length

Figure [3: Message Queucs

Processors Hypercube

This s specific {0 In tire hypercube: Here, each processor is depicled by the set of nodes
of the graph and the various arcs are represented with communication links. The nodes
status can be idle, busy, sending, receiving etc. and are indicated with the helpofa
specific color. An arc is dravn between two processors when message is sent from one
node to anolher and is deleted when the mtssage is recaived.

Ulilisation Displays

it displays the information abouwt distribution oi worl: among, ihe processors and the
cilzcliveaess of the processars.

Utilisation Summary

The Utilisation Sumimary indicales the siatus of cach processor i.e. kow much time (in the
form of percentage) has been spent by each processor in busy mode, overlicad mode and
idle mode as shown in Figure 4.

Performance Evaluations

D

=1

P BT i

1 Iz0 -

T ETTL LI B Prareer il B bl e

L e R e




Advanced Topics

Time %

Processor 1 2 3 4
Figure 14: Utilisation Summary

Idle overhead busy

Utilisation Count
The Uulisation Count displays the status of each processor in a specific mode i.e. busy

maode, overhead mode and idle mode with respect (o the progress jn time as shown in
Figure 135,

Processors - 1
|

Idle averhead busy
Fisure ¢ 3: Milisation Count

Gantt chart: The Gantt chart illustrates the various activities of each processor wii
respect ta progress in time in idle-overhead -busy modes with respect 1o each processor.

Kiviat dizgraia: The Kiviat diagram displays the geometric description of each
processor’s utilization and the load being balanced for various processors.

Concurrency Profile: The Concurrency Profile displays the percentage of time spent by
the various processors in a specific mode i.e. idle/overhead/busy.

Task Infermation Displays

The Task Information Displays mainly provide visuatization of various locations in the.
paratiel program where bottlenecks have arisen instead of simply illustrating the issues
that can assist in detecting the bottlenecks. With the inputs provided by the users and
through poriable instrumented communication library 1.¢., PICL, the 1ask informatian
displays provide the exact portions of the parallel program which are under execution.

T

TTTTIRTIST T

ST T TR T

e s Sl

e




Task Gantt

The Task Gantt displays the various lasks being performed i.c., some kind of activitics by
the set of processors attached to the paralicl computer as shown in
Figure I6.

Ry

Frocessors

3 =
e
Task 1 Task 3
Figure 16: Task Gantt
Summary of Tasks

The Task Summary tries to display the amount of duration each task has spent starting
from initialisation of the task till its completion on any processor as shown in Figure 17.

Time %

Tasks -

r"‘r-,;zzg

Task | Task 2 Task 3

Figurc 17: Summary of Tasks

2.7 PERFORMANCE INSTRUMENTATION

The performance instrumentation emphasizes on how to efficiently gathér information
about the computation of the paratlel computer. The method of instrumentation mainly -
attempts to capture information about the applications by adding some kind of instrument
tike a code or a function or a proccdure ete. in 1o the source code of the program or may
be at the Lime of execution. The major effect of such instrumentation is generation of
some useful data for performance tools. The performance instrumentation sometimes
causcs certain problems known as intrusion problems.

Check Your Progress 3

1) Which of the following are the parts of performance measurement?
(a) Ferlormance Analysis
(b) Performance instrumentation
(c) Overheads
(YA and B

Performance Evaluation

29

LT i -

Stirmie -

L rreri v e bl d

FERE ]




Advanced Topics

20

23 tistthe various search-based tools used in performance analysis.

2.8 SUMMARY

The performance analysis of any parallel aigorithm is dependent upon three major faclors
i.e., Time Complexity of the Algorithm, Total Number of Processors required and Total
Cost involved. However, it may be noted tixat the evaluation of performance in parailel
computing is based on parallel computer in addition Lo the paratlel algorithm for the
various numerical as well non-numerical problems. The vartous kinds of performance
metrics involved for anaiyzing the performance of paralie! algoritluns for parallel
computers have been discussed e.g., Time Complexiiy, Specd-Up, Efficiency, MIFS, anid
iviflops etc. The sp+rdup is dircetly proportioral to number ol processars; therefore a
linear arc is depiciea. However, in siiuations where there is parallel overhiead in such
stales the arc is sub-linear. The efliciency of a program on a paratlel computer with say N
processors can be defined as the ratio of Lhe relative speed up achieved while shifting
from single processor machine o n processor machine to the nuntber of precessess ivming
used (or achieving the result in @ parallel computer. The various sources of overbeud ia 2
parallel compwer are; Uneven load disiribidion, Cost involved in inter-processor
conurrunication, Synchronization, Paraliel Balaince Point ele.

{n this unit we hzve also discusscd three speed-up iaves ie. Gustefson's law. Anuiahl's
iaw, Sun and Ni's law. The performance of the alge-ithms 13 one of fiw othar mgy
concerns. [n order o analyze the nerlermance of algoriihims, ihiers are vartous kinas «f
performance measurenient tools. The 1aeasurement tools c2ly act only on the parzlie!
algorithm Lut are aiso require to ¢ciiect data from the operating system, the hardware
being used for providing cffective utiti: aticn of the taois. The task of measuring the
perforinance of the parallel programs fias been divided inte two components i.e.
Performance Analysis and Performar.ce [nstrumeataion. The various teols employed Ly
the ebove two components have alse ceen discussed in this unit,

2.9 SOLUTIONS/ANSWERS

Check Your Progress 1

nND

2D

3) The running time defines the amount of time consumed in execution of an algorithim
for a given input on the N processor based parallel comnpuier, The running time is
denoted by T(n) where n signifies the number of processors employed.
Speed up defines the ratio of the time required to exccute 2 given program using a
specific algorithm on a machine with single processor i.2. T {1} (where n=1} to the time
required to execule a given program using a specific algorithm on a machina with
multiple processor i.e. T(n).

L7

Hrele b LN

T o T orTIeTIT— S

T




Elliciency of the machine i.e. how are the resources of the machine e.g. processors being
utilized (effective or inelfeclive)

Check Your Progress 2
1C
2) A
3) R
Check Your Progress 3
1) D

2) ATExpert from Cray Research, Perforiance Consultant elc.
3) Uiilisation Displays, Communication Displays and Task Information displays.

2.10 FURTHER READINGS

Paraltel Computers - Architeciure and Programming, Second edition, by V_.Rajaraman
and C.Siva Ram Murthy (Prentice Hall of India)

Performznce Eyuluadions

31

iz

EETr i ey w1

TTTTRITTIITT TTIIOT

E e ] [ X e N I T




19

UNIT 3 RECENT TRENDS IN PARA-‘LLEL |
COMPUTING

Structure Page Nos.
3.0 Introduction 32
..i Objectives 32
3.2 Recent Paralle! Programming Models 32
3.3 Parallel Virtval Machine 34
34 Grid Compuling 35
3.5 Cluster Compuiing 35
3.6 [A 64 Architecture 37
3.7 Hyperthreading : 40
3.8 Summary - 41
3.9 Solutions/Answers 42
3.10 Further Readings 43

3.0 INTRODUCTION

This unit discusses the current trends of hardware and soRtware in parallel computing.
Though the topics about various architectures, parallel program development and paral:.-
operating systems have already been discussed in the earlier units, here some additional
topics are discussed in tnis unil.

3.1 OBJECTIVES

After studying this unit you should be abie to describe the

e  various parallel programming models;
o concepl of grid computing;

* concept of cluster computing;

s |A-64 architecture, and

» concept of Hyperthreading,.

3.2 RECENT PARALLEL PROGRAMMING
MODELS

A model for parallel programnming is an abstraction and is machine architccture
independent. A mode] can be implemented on various hardware and memory
architeciures. There are several parallel programming models like Shared Memory modef,
Threads model, Message Passing madel, Data Parallel model and Hybrid model etc.

As these models are hardware independent, the modecls can (theoretically) be
implemented on a number of different underlying types of hardware,

The decision aboul which madel to use in an application is oftén a combination of «
number of factors including the available resources and the nature of ihe applicatics.
There is no universally best implementation of a model, though there are certainly some
implementations of @ mode! better than others. Nex{, we discuss briefly some popular
models,

ad

i Bl i

R e T i S R e

HEE IR e e B

o T




) Shared Memory Model

1 the shared-memory programming model, tasks share a common address space, which
ey read and write asynchronously. Various mechanisms such as locks / semaphores mny
e used to control access to the shared memory. An advantage of this model from the
rogrammer's point of view is that program development can often be simplified. An
nportani disadvantage of Lhis model (in terms of performance) is that for this model, data
1anagement is difficult.

) Threads Model

1 1his model a single process can have multiple, concurrent execuiton paths. The main
rogram is scheduled to run by the native operating system. It loads and acquires all the
ccessary softwares and uscr resources [o aclivate the process. A thread's work may best
e described as a subroutine within (he main program. Any thread can execute any one
ibroatine and at the same time it can execute other subrouting, Threads communicate
ith each other through global memory. This requires Synchronization constructs to
isure that more than one thread is not updating the same global address at any time.
hreads can be created and destroyed, but the main program remains live Lo provide the
ecessary shared resources until the application has completed. Threads are commonly
ssociated with shared ‘memory architectures and operating sysicms.

) Message Passing Model

1 the message-passing model, there exists a sel of tasks that use thejr own local memories
uring computation. Muitiple tasks can reside on the same physical machine as well

>ross an arbitrary number of machines. Tasks exchange data by sending and recciving
iessages. in this model, data transfer usually requires cooperation among the operations
1al are performed by each process. For cxample, a send operation must have a matching
:ceive operalion.

Y Data Paralle! Model

| the data parallel model, most of the parallel work focuses on performing operations on
data sel. The data set is typically organised into a common structure, such as an airay or
cube. A set of tasks work collectively on the same data structure with each task working
1 adifferent portion of the same daia structure, Tasks perform the same operation on
ieir partitton of work, for example, “add 3 to every armay element” can be one task. In
ared memory architectures, all tasks may have access to the data structure through the
obal memory. In the distributed memory architectures, the data structure is split up and
ua resides as “chunks™ in the local memory of each task.

V Hybrid model

he hybrid models are generally tailormade madels suiling to specific applications.
ctually these fall in the category of mixed models. Such Lype of application-oriented
odels keep cropping up. Other parallel programming models also exist, and will
tinue to evolve corresponding to new applications.

1 this types of models, any two or more parallel programming models are combined.
urrently, a common example of a hybrid model is the combination of the message
1ssing model (MP1} with either the threads medel (POSIX threads) or the shared
emory model {OpenMP). This hybrid model lends itself well (o the increasingly
ymmon hardware environment of networked SMP machines.

nother common cxadwple of a kybrid model is combining data parallel model with
essage passing model. As mentioned earlier in the daia parallel model, data parallel
plementations (F90, HPF) on distributed memory architectures actually use message
18sing to ransmit data transparently between tasks and the programmer.

Recent Trends in
Parallel Computing

Bl B A Frie-4

B ol r i

ST RS

o wr - L oz-




Advanced Topics

34

6) Single Program Multiple Data (SPMD)

St i) is actually a "high level” programming model that can be built upon any

combination of the previously mentioned paraliel programming models. A single program {
13 executed by all tasks simultaneously. SPMD programs usually have the necessary logic |

programmed into them to allow different tasks to brarich or conditionally execute only
these parts of the program they are designed to execute. That is, tasks do not necessarily
have to execute the entire program, they may execute only a portion of'it. In this model,
different tasks may use different data.

7) Multiple Program Multiple Data (MPMD)

Like SPMD, MPMD is actually a “high level” programming model that can be built upon
‘any combination of the previously mentioned paralle! programming models. ¢
MPMD applicalions typically have multiple executable object files {programs). While the :

application is being run in parallel, each task can be executed on the same or different
program. In this model all tasks may use differént data.

3.3 PARALLEL VIRTUAL MACHINE (PVM)

PVM is basically a simulaticn of a computer machine running paratic! programs. It is a
software package that permits a helerogeneous collection of Unix and/or Windows
computers hooked together by a network to be used as a single large parallel computer It
includes a combination of good features of various operating systems and architecturc-.
Thus large computational problems can be solved more cost effectively by using the
combined power and memory of many computers. The software is highly portable. The
source, which is available free through netlib, has bcen compiled on a range of computing
machines from laptops toa CRAY machines.

PVM cnables users to exploit their exisling computer hardware to solve much larger
problems at minimat additional cost. Hundreds of sites around the world are using PYM
to solve important scientific, industrial, and medical problems. Further, PVM's are being
used as an educational tools to teush parallel programming. With tens of thousands of
users, PVM has become the de {acto standard for distributed computing world-wide.-

Check Your Progress 1

1) Explain the operations in the following message passing operating system modei
1) Object Oriented Model
2) Node addressed model
3) Channel addressed model

2) Explain various Multi Processor Execulion Node.

......................................................................................................
......................................................................................................

3} What are the levels at which multitasking is exploited?

|

T-T




3.4 GRID COMPUTING

Grid Computing means applying the resources of many computers in a network
simultaneously to a single problem for solving a scientific or a technical problem that
requires a large number of computer processing cycles or accesses to large amounts of
daia. Grid computing uses soflware to divide and distribute pieces of a program to as
many as several thousand computers. A number of corporations, professional groups and
universily consorlia have developed frameworks and software for managing grid
caomputing projects.

Thus, the Grid computing model allows companies to use a large number of computing
resources on demand, irrespective of where they are located. Various computational tasks
can be performed using a computational grid. Grid computing provides clustering of
remotely distributed compuling environment. The principal focus of grid compuling to
date has been on maximizing the use of available processor resources for compute-
intensive applications. Grid computing along with storage virtualization and server
virtuaiization cnables a ulility computing. Normally it has a Graphical User Interface
(GUI), which is a program interface based on the graphics capabilities of the computer to
create screens or windows,

Grid compuling uses the resources of many separate computers connected by a network
(usuatly the internet) o solve large-scale computation problems. The SETI@home
project, launched in the mid-1990s, was the first widely-known grid computing project,
and it has been followed by many others project covering Lasks such as protein folding,
research into drugs for cancer, mathematical problems, and climate models.

Grid computing offers a model for solving massive computational problems by making
use of the unused resources (CPU cycles and/or disk storage) of large numbers of
disparate, often desktop, computers treated as a virtual cluster embedded in a distributed
lelecommunications infrastructure. Grid computing focuses on the ability 1o support
computation across administrative domains which sets it apart from traditional computer
clusters or traditional distributed computing.

Various systems which can participate in the grid compuling as platform are:
Windows 3.1, 95/98, NT, 2000 XP, DOS, OS/2, , supported by Intel { x86);
Mac OS A/UX (Unix} supported by Motorola 680 x0;

Mac OS , AIX ( Unix), O8 X ( Unix) supported by Power PC;

AP /UX (Unix) supported by HP 9000 ( PA — RISC);

Jigital Unix open VMS, Windows NT spported by Compaq Alpha;

VS Ultrix { Unix) supporied by DEC VAX;

solaris ( Unix) supporied by SPARC station;

AEX ( Unix) supported by IBM RS /7 6000;

RIS ( Unix) supported by Silicon Graphics workstation.

3.5 CLUSTER COMPUTING

The concept of clustering is defined as the use of multiple computers, typically PCs or
JNIX workstations, multiple storage devices, and their interconnectians, to form what
Ippears to users as a single highly available system. Worksiation clusters is a collection of
oosely-connected processors, where each workstation acls as an autonomous and
ndependent agent. The cluster operates faster than noimal systems.

n general, a ~CPU cluster is about 250~300% faster than a single CPU PC. Besides, it
ot only reduces computational time, but also allows the simulations of much bigger
;ompulational systems models than before. Because of cluster compuling overnight

Recent Trends i
Parallel Compating

E e L

DT CFTIRETPeEm oo




Advanced Topics

36

analysis of a complete 3D injection molding simulation for an extremely complicated
model is possibie.
Cluster workstation defined in Silicon Graplhics project is as follows:

“A distributed workstation cluster should be viewed as single computing resource and |:
not as a group of individual workstations". d

The details of the cluster werci2TSOME7 R4400 workstations, 64MB memory, 1 GB disc:
per workstation, 6 x 17" monitors, Cluster operating on local 10baseT Ethernet,
Computing Environment Status, PVM, MPI (LAM and Chimp), Oxford BSP Library. |

The operating system structure makes it difficult to exploit the characteristics of current 1.
clusters, such as low-lalency communricatien, huge primary memories, and high opcralmg"
spced. Advances in network and processor (echnology have greatly changed the
communication and computational power of local-area workstation clusters. Cluster
computing can be used for load balancing in multi-process systems

- A common use of cluster computing is to balance traffic load on high-traflic Web sites. I1'

web operation a web page request is sent to a manager server, which then determines
which of the several identical or very similar web servers Lo forward the request 1o for
handling. The use of clusier computing makes this web traffic uniform.

Clusiering has been available since the 1980s when it was used in DEC's VMS systems.
IBM's SYSLEX is a cluster approach for a mainframe system. Microsoft, Sun
Microsystemis, and oth=r leading hardware and sofiware compantes offer clustering
packages for scalability as well as availability. As traffic or availability assurance
increases, all or some parts of the cluster can be increased in size or number. Cluster
computing can also be used as a relatively low-cost.form of parallel processing f{or v
scientific and other applications that lend themselves to parallel operations

An early and well-known example was the project in which a number of off-the-shelf
PCs were used to form a cluster for scientific applications.

M e oo -

Windows cluster is supported by the Symmetric Multiple Processors (SMP) and by :
Moldex3D R7.1. While the users chose 1o slart the parallel computing, the program will -
automatically partition one huge model into several individual domains and distribute
them over difierent CPUs for computing. Every computer node will exchange each !
other’s computing daia via message passing interface to get the final full model solution. [
The computing task is parzllel and processed simultaneously. Therefore, the overall
computing time will be reduced greatly.

Some famous projects on cluster computing are as follows:

1} High Net Worth Project: (developed by: Bill McMillan, JISC NTI/65 - The HNW *
Project, University of Glasgow, (billm@aero.gla.ac.uk) '

The primary aims / details of the project are:

* Creation of a High Performance Computing Environment using clustered
workstations

*  Use of pilot facility, ;

¢ Use of spare capacity,

» Use of cluster computing environment as a Resource Management system,

s  Usc of ATM communications,

= Parallel usage between sites across SuperJANET,

* Promoting Awareness of Project in Community. !




i The primary aims/details of Load Sharing Facility Resource Management
Softwarc(LLSFRMS) are beiter resource utilisation by routing the task (o the most
appropriate system and better utilisation of busy workstations through load sharing,
and also by involving Idle workstations.

ypes of Users of the LSFRMS:

users whose computational requirements exceed the capabilities of their own
hargware:

users whose computalional requirements are (oo great o be satisfied by a single
workstation;

users intending Lo develop code for use on a nationai resource;

users wlio are using national resources

users who wish lo investigaie less probable research scenarios.

dvamapes of using clusters:

Better resource utilisation;

Reduced turnaround time;

Balanced loads;

Exploitation of more powerful hosts;
Access Lo non-local resources;
Parallel and distributed applications.

heck Your Progress 2

Name any three platforms which can participate in grid computing.

6 INTEL ARCHITECTURE — 64 (1A-64)

«-64 (Intel Architecture-64) is a 64-bit processor architecture developed in cooperation
' Tntef and Hewlett-Packard, implemented by processors such as Itanium. The goal of
nium was to producg a “post-R1SC era” architecture using :PIC{Explicitly Parailel

struction Compuiting).

Recent Trends ir
Parallei Computing

37

Eri Y Priieres rrams

Rk b ~th

1R EnElET=—

=TT R



Advanced Topics

_simpler) logic placed on the CPU. Thus this design this relies heavily on the perforinance

1 EPIC Architecture

In this system a complex decoder system examines cach instruction as it flows through
the prpeline and sees which can be fed off to operate in parallel across the avaijlable
execution units — e.g., a sequence of instructions for performing the computations
A=B-+Cand

D=F+G

[TX i

These will be independent of each other and - will not affect each other, and so they can
be fed into two different exccution units and run in parallel. The ability to extract -
instruction level parallelism (ILP) from the instruction stream is ecssential for good !
performance in a modern CPU. i

Predicting which code can and cannot be split up this way is a very complex task. In manyt
cases the inpuits 10 one line are dependent on the output from another, but only if some
other condilion is true. For instance, consider the slight modification of the example noted;.
before, A =B + C; IF A==5 THEN D =F + G. In this case the calculations remain

independent of the other, but the secand cosnmand requires the results from the first :
calculation in order to know if it should be run at all. ' -

[n these cases the circuitry on the CPU lypically “guesses” what the condition will be, In :
something like 90% of all cases, an 1F will be 1aken, suggesling that in our example the
second half of the command can be safely fed into another core. However, getting the .
guess wronp can cause a significant performance hit when the result has (o be thrown out
and the CPU waits tor the results of the “right” command to be calculated. Much of th:-
improving performance of modern CPUs is due to better prediction logic, but lately the ,L

=

improvements have begun to slow. Branch prediction accuracy has reached figures in
excess of 98% in recent intel architectures, and increasing this figure can only be

achieved by devoting more CPU die space (o the branch predictor, a self-defeating taclic .
because it woul!take the CPU niore expensive to manuiacture.

I1A-64 instead relies on the compiler for this task. Even before the program is fed into the
CPU, the compiler examincs the code and makes the same sorts of decisions that would

otherwise happen at “run time” on the chip itself. Once it has decided what patlis Lo take,
it gathers up the instructions it knows can be run in parallel, bundles them into onc larper |
imstruction, and then stores it in that form in the program. "

i p) B

i
Moving this task from the CPU to the campiler has several advantages. First, the compilert
d

can spend considerably more time examining the code, a benefit the chip itself dogsn't |
have because it has 10 complete the sk as quickly as possibie. Thus the compiler version |
can be considerably more accurate thzn the same code run on the clip's circuilry. Second, I
the prediction vircuitry is quite complex, and offloading a prediction to the compiler ]
reduces thal complexity enormously. [t no longer has to examine anything, it simply ;
breaks 1he instruction apart again and feeds the pieces off to the cores. Third, doing the
prediction in the compiler is a one-off cost, rather than one incurred every timge the

program 1s run. :

The downside is that a program's runtime-behaviour is not always obvious in the code .
used to generate it, and may vary considerably depending on the actuat data being ¢
processed. The ort-of-order processing logic of a mainstream CPU can make decisions o |
the basis of actual run-time data which the compiler can only guess at. It means that it is
possible for the compiler to get its prediction wrong more oficn than comparable {or

of the compilers. [t leads to decrease in microprocessor hardware complexity by
increasing compiler sofiware complexity.




Registers: The 1A-64 architccwure includes a very gencrous sct of registers. It has an 82-
sit floating point and 64-bit inteper registers. In addition to these registers, 1A-64 adds in
' register rotation mechanism that is controlled by the Register Stack Engine. Rather than
he 1ypica| spill/fill or window mechanisms used in other processors, the Itanium can
otale in a set of new registers (o accommodate new function parameters or lemporaries.
The register rotation mechanism combined with predication is aiso very effcctive in
:xecuting automatically unralled loops.

nstruction set: The architecture provides instructions for multimedia opcrations and
loating point opcrations.

e lanium supports several bundle mappings to allow for more instruction mixing
rossibilities, which include a balance between serial and parallel execution modes. There
vas room fefi in the initiat bundle encodings to add more mappings in future versions of
A-64. In additton, the ltanium has individually settable predicate registers to issue a kind
f runtime-determined “cancel this command™ directive 1o the respective instruction. This
s somctimes more efficient than branching,

're-08 and runtime sub-O8S functionality

m a raw ltanitm, a “Processor Abstraction Layer” (PAL) is integrated into the system.
Vhen it is booted the PAL is loaded into the CPU and provides a low-level interface that
bstracts some instructions and provides a mechanism for processor updates distributed
ia a BIOS update.

Juring BIOS initialization an additional layer of code, the “System Abstraction Layer”
SAL) is loaded that provides a uniform API for implementation-specific ptatform
uRctions.

i top of the PAL/SAL interface sits the “Extensible Firmware Interface” (EF1). EFI is
ot part of-the IA-64 architecture but by convention it is required on all IA-64 systems. It
i 2 simpte API for access to logical aspects of the system (storage, display, keyboard, etc)
ombined with a lightweight runtime environment (similar to DOS) that allows basic
ystern admenistration tasks such as flashing BIOS, configuring storage adaplers, and
nning an OS boot-loader.

ince the OS has been booted, some aspects of the PAL/SAL/EF! stack remain resident in
weinory and can be accessed by the OS 1o perform low-level tasks that are
nplemertation-dependent on the underlying hardware.

A-32 support

1 order to support [A-32, the ltanium can switch into 32-bit mode with special jJump
icape instructions, The [A-32 instructions have been mapped (o the Itanium's functional
tits. However, since, the [tanium is built primarily for speed of its EPIC-style
istruciions, and because it has no out-of-order executlon capabilitics, 1A-32 code

cecutes at a severe performance penalty compared to either the 1A-64 mode or the
entium line of processors. For example, the [tanium functional units do not

stomatically generate integer flags as a side effect of ordinary ALU computation, and do
tininsically support multiple cutstanding unaligned memory loads. There are also 1A-
2 software emulators which are [reely available for Windows and Linux, and these
nulators typically outperform the hardware-based emulation by around 50%. The
/indows emulator is available from Microsoft, the Linux emulator is available {rom’

yme Linux vendors such as Novell and from Intel itsell. Given the superior performance
“the soflware emulator, and despite the fact that JA-32 hardware accounts for less than
/o of the transistors of an [tanium 2, Intel plan to remove the circuitry from the next-
:eralion ltanium 2 chip codenamed “Montecito™.

Recent Trends in
Parmllel Computing

39

HH S et

DHTTTRT - e

o

TSI 1T




Advanced Topics

3.7 HYPER-THREADING

Hyper-threading, officially called Hyper-threading Technotogy (HTT), is Intel's
trademark for their implementation of the simultaneous multithreading technology on the

Pentium 4 microarchitecture. It is basically a more advanced form of Super-threading 1hai|:i

was first introduced on the Intel Xeon processors and was later added to Pentium 4

processors, The technology improves proc¢essor performance under certain workloads by H
rroviding useful work for execution units that would othenwise be idfe for example duringg

a cache miss.
Features of Hyper-threading
The salient features of hyperthrading are:

1) lmproved support for multi-thceaded code, allowing multiple threads to run
simultaneously,

ii} Improved reaction and response time, and increased number of users a server can
support.

According to Intel, the first implementation only used an additional 5% ol the diz area
over the “normal” processor, yet yielded perforinance improvements ol 15-30%.

[ntel claims up to a 30% speed improvement with respect to otherwise identical, non-SMT :

Pentium 4. However. the performance improvement is very application dependent, and
some programs actually siow down slightly when {1TT is turncd on.

This is because of the replay system of the Pentium 4 tying up vaiuable execution

resources, thereby slarving for the othier thread. However, any performance degradation is|
unique to the Pentium 4 (duc to various architectural nuances), and is not characteristic ot

simultancous muitithreading in general.
Funclionality of hypethread Processor

Hyper-threading works by duplicating those sections of processor that store the
architectural stale—but nol duplicating the main execution resources. This ailows a
Hyper-threading equipped processor to pretend to be two “logical" processors to the host
opcrating syslen, allowing the operating system to schedule two threads or processes
simultancously, Wherc execution resources in a non-Hypcr-threading capable processor
are not used by the current task, and cspecially when the processor is stalled, a Hyper-
threading cquipped processor may usc those execution resources o exceute the other
scheduled task.

Except [or 115 performance implications, this innovation is transparcnt to operating
systems and programs. All that is required to take advantage of Hyper-Threading is
symmetrtc multiprocessing (SMP) support in the operating syster, as the logical
processors appear as standard separate processors.

However, it is possible to optimize operating system behaviour on Hyper-threading
capable sysiems, such as the Linux techniques discussed in Kernel Traffic. For example,
consider an SMP system with two physical processors that are both Hypar-Threaded (for
a totai of four logical processors). If the operating system’s process scheduler is uraware
of Hyper-threading, it would treat all lour processors similarly.

As aresult, Honly two processes are eligible 1o run, it might chuose 1o schegule those
processes on the two logical processors that happen 1o belong 10 one of the physical
processors. Thus, one CPU would be cxtremely busy while the other CPU would be

'
5

g
1

i By e rarm

BT TR - T




ompleiely idle, leading to poor overall performance. This problem can be avoiaead oy Kecent 1rendsin

mproving the scheduler to treat logical processors differently from physical processors; Parallel Camputing

n a sense, this is a limited form of the scheduler changes that are required for NUMA
ystems.

The Future of Hyperthreading

Current Pentium 4 based MPUs use Hyper-threading, but the next-generation cores,
vierom, Conroe and Woodcrest wili not. While some have alleged that this is because
dyper-threading is somehow energy inefficieny, this is not the case. Hyper-threading is a
sarticular form of multithreading, and multithreading is deftnitely on Intel roadmaps for
he generation afier Merom/Conroce/Woodcrest. Quite a few other low power chips use
nultithreading, including the PPE fi2m the Cell processor, the CPUs in the Playstation 3
ind Sun's Niagara. Regarding the fulure of multithreading

he real question is not whether Hyper-threading will return, as it will, but rather how it
ill work. Currently, Hyper-threading is identicat to Simultaneous Multi-Threading, but
lulure variants may be different. In future trends parallel codes have been easily ported to
he Pilot Cluster, ofien with improved resuits and Public Domain and Commercial
Resource Managemenl Systems have'been evaluaied in the Pilot Cluster Environment.

The proposed enhancements in these architecture are as [ollows:

» High Performance Janguage implementation
» Further developments in Heterogeneous Syslems
» Management of wider domains with collaborating departments

» Faster communications
» Inter-campus computing

Clieck Your Progress 3

i) How is performance enhanced in 1A-64 Architecture?

3.8 SUMMARY

This unit discusses basic issucs in respect of latest trends of hardware and software
technology for paralic] computing systems. The tzchnology of parailel computing is the
outcome of four decades of rescarch and industrial advances in various fields like
microelecironics. iniegration lechnalogies, advanged processors, memory and peripheral
devices, programnung language development, operating system developments etc.

41

ERUI 1 Rrlered FaverentA

BT

ETR T S

TR IR

T TOm




Advanced Tajtcs

42

The high performance computers which are develgped using these cuncepls provide [ast
and accurate solutions 10 scientific, engineering, business, social and aerospace
applications.

The unit discusses some of the latest architectures. However, the learner is advised to get
the knewledge about further ongoing developments from related websites.

2.9 SOLUTIONS/ANSWERS

“’heck Your Progress 1

1) 1) Object Oriented Model: This mode! treats multiple tasks or processor
concurrently, each task using its own address space. In this model multitasking is
practiced at each node.

The communication between different tasks is carried out by either at
synchronous or asynchronous message passing protocol. Message passing
supports IPC as well as process migration or load balancing.

ii} Node Address Model: In this only one task runs on each node at a time. [t is
~implemented with asynchronous scheme. The actual topology is hidden froin
the user. Some models use store and forward message routing and some models
use wormhole rouling.

iti) Channel Addressed Model: This model runs one task on each node. Data arc
communicated by synchronous message passing for communication channel.

2) a) Multi Processor super computers are built in vector processing as well as for
parallel processing across muitiple processors. Various executions modcis are
parallel execution from fine grain process level.

b) Parallel execution from coarse grain process level
c) Paralle] execution to coarse grain exam level

3}  Multi tasking exploits parallelism at the following level:

1} The different functional unit is pipeline together.

it} Various functional units are used cancurrently.

iii) 1/0 and CPU activities art overlapped.

iv) Multiple CPUs can operate on a single program to achieve minimum excctition

time. :

In a multi tasking environment, the task and the corresponding data structure of a program
are properly peraining to parallei execution in a such a manner thai conflicts wiil not
occur.

Check Your Progress 2

1) The following platform can participate in grid computing.
i)  Digital, Unit, Open, VMS
ii)  AlX supported by IBM RS/6000.
1ii)  Solaris (Unix supported by SPARC station)

2)  Incluster computer the processor are divided into several clusters. Each cluster is a
UMA or NUMA muiltiprocessor. The clusters are connected to global shared
memory model, The complete system works on NUMA model.

All processing elements belonging 10 it clusters are allowed 1o access the cluster
shared memory modules.

I ) TR ) PP e

e 1

LI ]




All clusters have access 10 giobal memory.  Different computers systems have Recent Trends in
specified different access right among Internet cluster memory. For example, Parallel Computing
CEDAR muili processer built at University of [llinols adopts architeclure in cach

cluster is Alliant FX/80 multiprocessor.

i} Collecl them from the website.

} Multi computers have gone through the following generations of development. The
first generally ranged from 1983-87. It was passed on Processor Board Technology
using Hypercube architecture and Software controlled message switching,
Examples of this generation computers are Caltech, Cosmic and Intel, PEPSC.

“he second generation ranged from 1988-92. It was implemented with mesh connected
rchitecture, hardware access rouling environment in medium grain distributed
ompuling. Examples of such sysiems are Intel Paragon and Parsys super node 1000.

‘he third generation ranged from 1983-97 and it is an era of fine grain computers like
AIT, I Machine and Caltech mosaic.

-heck Your Progress 3

) The performance in [A 64 architecture is enhanced in a modern CPU due to vector
prediction logic and in branch prediction technique the path which is expzcted to be
taken as is anticipated in advance, in order to preset the required instruction in
advance. Branch prediction accuracies has reached to more than 98% in recent Intel
architecture, and such a high figyre is achieved by devoting more CPU die space to
branch prediction.

) The run time behaviour of a program can be adjudged only at execution time. I
depends on the actuzl data being processed. The out of order processing logic ofa
‘main stream CPU can make itself on the basis of actual run time data which only

comgpiler can connect. -
) Various dala paraliefism depends as specified as Lo how data is access to distribute in
SIMD or MIMD computer. These are as follows:

1) Run time automatie decomposilion: in this data are aulomatically distributed
wilh no user intervention.

i) Mapping specilications: It provides the facility for user to specify the
communication pattern.

iti) Virtual processor support: The compiler maps virwal process dynamically and
slaticatly.

iv) Direct Access to sharing data: Shared data can be directly accessed wvithout
menitor control.

16 FURTHER READINGS

) Thomuds L. Casavant, Pavel Tvedik, Frantisck Plasil, Parallel Compuiers: Theory and
Applications, IEELL Computer Society Press (1996)

y Kai Hwang: Advaiiced Computer Architeciure: Parallelism, Scalability and
Programmabilily, Tala-McGraw-Hill (2001)

BTTITTIRSTE T T Lt it ar o uo- r e

e TR M mTIETT R -







