- MCA-5.2
Artificial Intelligence and
Knowledge Management

FIRST - BLOCK o
Introductionto AL

©

idira Gandhi National Open University -

T e e M e e e o R —m— -

Shantipuram (Sector-F), Phaphamau, Allahabad - 211013]

) SN

Rajarshi Tandon Open University

MCA-5.2

Uttar Pradesh Artificial Intelligence and

Knowledge Management

Block

1

INTRODUCTION TO A. L.

UNIT 1

Introduction to Intelligence and Artificial Intelligence

UNIT 2
The Propositional Logic

21

R v e

COURSE INTRODUCTION

MCSE-003 is a one semcster introductory course on Artificial Intelligence and
Knowledge Management, in which the following topics are covered:

In Block 1, we give an Overview of Al in which concepts, definilions, tools and
techniques of Al are briefly introduced. Next, Propositional Logic (PL) and First
Order Predicate Logic (FOPL) as vehicles for knowledge representation and
deduclive reasoning, are discussed. However, PL and FOPL can be used only when
knowlcdge of the domain is precise, complete and consisteni.

In Black 2, we discuss Fuzzy Systems which can be used for representing even
imprecisc domain knowledge and making inference in such domains. Also, PL and
FOPL both are monolonic reasoning systems, i.c., when some fact is added to a PL or
an [FOPL system, then, through deduction, we can draw {only) mare facts as
conclusion. But there are situations in which addition of facts necessitates withdrawal
of some carlier known facts or derived conclusions.

" To handlc such situations, we have discussed some Non-Monotonic reasoning
systems including Default Reasoning Systems and Closed World Assumption
Systecms,

In Block 3, the two well-known A.l programming languages, viz., LISP and
. PROLOG are described and discussed. In order to explain how each of the two

languages is used as a vehicle to solve problems, a number of examplcs are included.

Finally, in Block 4 the topics of Expert Systems and Intelligent Agents are discussed.

BLOCK INTRODUCTION

Afier discussing general concepts of parallel computing in Block 1, this block discuss
various-issues related to paratlel algorithms and parallel programming for different
computing models. Block 2 has three units. Unit 1 of the block discusses various
gencral issues for designing and analyzing paralle! algorithms. Further, a number of
paratlc] computer models, viz. PRAM, Interconnection Networks ete. are discussed.
Next, in this unit, paralle] sorting algorithms are designed and analyzed for these
models. Unit 2 of the block discusses issues relating to designing of algorithms for
solving problems on Parallel Random Access Machines (PRAMs). Finally, Unit 3 of
discusses issues relating to the programming of the computer based on the various

models discussed earlier.

UNIT I INTROBUCTION TO
INTELLIGENCE AND ARTIFICIAL

INTELLIGENCE

Structure Page Nos.
1.0 Introduction 3
.1 Ghbjectives 6
1.2 Some Simple Delinition of AL 6
1.3 Befinidon by Eliane Rich 6
1.4 Delfinition by Buchanin and Shortliffe 2
1.5 Another Definition by Elaine Rich 12
1.6 Definition by Barr and Feigenbaum i3
1.7 Delmition by Shalkef(’ 18
1.8 Summary 19
1.9 Further Readings/Relcrences 20

1.0 INTRODUCTION

In this unit, we discuss intelligence. botl machine and human. However, as our
subject matter in the course is machine intelligence, or attificial intelligence, our
discussion of the subject matter is mainly from the point of view ol machine

" intelligence. Machine intelligence is popularly known as Ariificial Intelligence and is
generally referred 1o by its abbreviation viz. AL, We also shall use the name Al for
the discipline throughout. The style of discussion in this unit is to start with a
definition of Al by some pioneer in the (ield, and then claborate the ideas involved in
the definition. Further, whilc etaborating the ideas involved in the definition, we

" introduce a fiumber of relevant new ideas, concepts and definitions Lo be used later, In
this process, we have introduced and/or explained (he foliowing:

i) Artilicial [ntelligence & Human fnteHigence

i) When a problem necessarily requires parallc! processing for its sofution

ii) Symbol vs. number issue

iv) Numeric vs, symbolic processing

v} Algorithm vs. non-algorithmic methad and limitation of algoritlunic approach

vi) Limilations of comiputational abilitics of logical devices

vii) Heuristics ~ an important A.[wechnique

viii) Time/space complexilies of programs and problems, exponential time vs.
polynomial time, hard problems

ix) Role of search and knowledge in solving hard preblems; search as an important
Al tlechnigue

X) Enumcralion ol issues aboul knowiedge

xi) Information: one ol the four fundamental properties of nature

Xit) Organisation; relations between informalion and organisation and between
information and intelligence

xili) A principle of intelligence

Al as a science and as an engineering discipline

xiv) Controversial issuc about the possibility el machine intellizence at least
equating or surpassing human intclfigence.

xv) Brief history o[Al ... the name and as a subject

n

Introduction to Al

1.1 OBJECTIVES

After going through this unit, you should be able 1o:
o discuss the concepts of ‘intelligence’ and artificial intelligence’ as'visualised by
a number of leading experts in the field;
* enumerate the fields in which human beings are still better than computers;
o tell the difference between the concepts of:
(i) Symbel and number
(ii) Algorithmic and non-algorithmic methods
(iii) Informaiion and knowledge
(iv) Polynomial time and exponential time complexities
« tell the relation of information 1o organisation and 10 intelligence.

1.2- SOME SIMPLE DEFINITIONS OF A.L

Before looking at what A.L is in the expen’s opinions that involve technical terms
needing some gxplanation, we state below three simple definitions from completely
non-specialists’ point of view:

I. A.L is the stady of making computers smart.

2. AListhe study of making computer models of human‘intelligence; and finally

3. Al is the study concerned with bulldlng machines that simulate human
behaviour. i
The first one of the above definitions is based on bekaviour-oritnted approach to
A.L According to this approach, Al is concemed with programming computers fo
behave intelligently. The next dcfimtmn is more {rom a psychologists point of view,
where the purpose is to lise compliter as a tool to understand better the mechanisms of
the human mind, and the final definition, which we may call robotic approach fo
A.L, includes under the domaith of A.1, ot only writing’ ‘of computer programs but
building also the whole of an mle![lgent system or machine including its mechamcal
elrzcrramc, optical components and other components.

In order to have still better and concrete opinion about what is Al and its subject-
matter, we consider definitions suggested by leading writers and pioneer contributors
1o the development of A.l. We sipplement these definitions with comments to
facilitate the understanding of the underlying ideas and of the technical terms involved
in the definitions,

1.3 DEFINITION BY ELIANE RICH

Definition 1: The first definilion we consider is by Elaine Rich, - the author of the

- book entitled “Artificial Intelligence’[1]. It states: Artificial InteHligence is the

study of how to makc computers dg things, at which, at the moment, people are
better.

Comment 1, Definition 1: Implicit in the Rich's definition is the idea that there are
memal tasks that computers can do better than buman Beings and vice-versa, there are
tasks whichrar the moment human beirgs can do better than computers. It is well-
known that computers arc better than human beings i in the matter of

e numerical computarion,

TUTYTTTaTTT

Introduction to Intelfigence

* inforaration sforage, and
and Artificial Intelfigence

* repetitive tasks.

On the other hand, at the moment, human beings are much better than machine in
the matter of
* understanding including the capability of explaining,
. predicting the behaviour and structure of a system, .
= inthe matter of common-sense reasoning, ,
* indrawing conclusions when available information is either incomplete,
inconsistent or even both, and : '
¢ also, in visual understanding and speech understanding, which require
simultaneous availability (availability in parallcl) of large amount of information.

In essence, itis found that computers are better than human beings in tasks
requiring sequential but fast computations, where human beings are better than
computers in tasks, requiring essentinlly parallel processing. [n order to clarify
what it is for a problem to essentially require parallel processing for its salution, we
consider the following problem:

C

Figure 1.1

We are given a paper with some letter, say, C written on it and a card-board with a .
pin-hole in it. The card board is placed on the paper in such a manner that the letter is
fully covered by the card board as shown in Figure 7.1. We are allowed to look at the
paper only through the pin-hole in the card-board. The problem is to tell correctly the
letter writien on the paper by just looking through the pin-hole. As the information
about the black and white pixels is not available simultaneously, it is not possible to
figure out the letter written on the paper, The figuring out the letter on the paper
requires, simultaneous availability of the whole of the grey-level information of all the
poiits constituting the letter and its surrounding on the paper. The gray-level
information of the surrounding of the letter provides the context in which to interpret
the lefrer. _

We consider another example that shows the significance of contextual information or
knowledge and its simultaneous availability for visual understanding. From the
following picture, we can conclude that one of the curved lines represents a river.and.
other curved lines represent sides of the hills only on the basis of the simultaneous
availability of information of the pixels.

latreduction to A

Crm——— -

Contextual information plays a very important role not only in the visual
understanding but also in the language and speech understanding. In case of speech
understanding; consider the following example, in which the word ‘wirh® has a
number of meanings {or connotations) each being determined by the context.

¢ Mohan saw the boy in the park with a telescope.
* Mohan saw the boy in the park with a dog.
e Mohan saw the boy in the park with a statue.

Further, the phrase ‘for a Jong time’ may stand for a few hours to millions of years,
but again determined by the context, as explained below.

e He waited in the doclor’s room for a long time. I
¢ It has not rained for a long fime. i
¢ Dinosaurs ruled the earth for g long fime.

Comment 2, Definition 1: In addition to the advantage that human beings have in
the matter ol parallel processing as explained above, Boden [12] says: Aumans have
two psychological strengths whick are yet o be approached by computer systems.
a teeming richness of conceptual sources and the ability 1o evaluate new ideas in
many different ways. The first of these is difficult enough for AI te emulate, the
second is even more problematic.

Comment 3, Definition 1: The definition is rather weak in the sense that it fails to
include some areas of potentially large importance viz, problems that can be solved at
present neither by human beings nor by computers. Also, it may be noted tbat, by
and by, if computer systems become so powerful that there is no problem left, which
human beings can solve better than computers, then nothing is left of Al according to
this definition.

14 DEFINITION BY BUCHANIN AND
SHORTLIFFE

Next, we consider a definition obtained by rephrasing and combining the two
definitions, viz., the first by Bruce G. Buchsaln as given in ‘ Er¢ycolopedia
Britanica’ and the seeond by BUCHANIN & SHORTLIFFE as given in Rule-Based
Expert Systems {2]. It states:

Definition 2 Al is the branch of compuler science that deals with symbolic rather
than numeric processing and non-aigoritimic methods including the rudes of
thumb or lieuristics instead of algorithms as technigues for solving problems.

Conmments/Explanations 1, Definition 2: Symbolic processing vs numberic
processing: We pencrally think and use 128 as a mumber which has a definite relation
with the number say 105 (thar of greater than), also with 64 (that of being double of)
and again with 2 (that of being a multiple of). Also, 128 can be mulliplied, through
built-in mechanisms, with any number say 3 to get 384. tHowever, jif the numbers
mentioned above including 128 denote the roure numbers of brses or louse nonbers
is a residential colony then none of the relations or operations mentioned above, may
frold. Rather, in this contexl, these relations of 128 wert. 105, etc. and the operations
tike multiplication even do nof make any sense. We cannol tell whal is meant by
saying *House Number 128 is greater than House Number 105" in a normally
acceptable way.

On the other hand, even a non-digital character sequence say ABC' may represent a
mumber, for example, in hexadecimal numnber system. Also. words of Englisk (or any
other) language when considered lexicographically ordered, acquire some numeric
aitributes,

The conclusion we draw from the above discussion, is that a word as a sequence of
characters (including digits) may denote a number or a symbol (henceforth, a symbol
stands for nen-numeric symbol) depending upon the context in which it is used.
And the context is deterntined by the nature of the problem wider consideration. If
the problem can be solved using only numerical aspecls of the objects in the domain
and environment of the problem; then we have the advantage ol having built-in
relations (like less than, equal 1o elc.) and the builr-in vperations (like +, -, * etc,) that
can be readily used without having to define these relations and operations explicitly,

But, unfortunately, most of the problems, we encounter for our day 1o day survival or
even for our intellectual pursuits, involve nor only quantitative, but qualitative aspects
also of the objects of the problem domain. In order 10 solve these problems, we usc
common sense reasoning, exploit our capability for visual and linguistic
wnderstanding, try 1o get meaning out of incomplete and even inconsistent information
that is available, in addition to a number of other known and unknown mechanism,
Qualitative aspects. their ideal representations, delining retations and operations
involving these aspects, are gencrally different for different lypes of problems.
Hence, itis impossible to capture in general relevant relations and operations [or all
types of problems, and then defining these as built-in operations ot the machine,
because there are potentially infinite types of problems that we encounter and try 1o
solve.

This discussion explains the basic difference between numeric processing and
(non-numeric) symbolic processing. Summarizing, numeric processing involves
only a small number of well-defined relations and operalions having universally
accepted meanings, and hence, these relations and operations can be incorporated as a
part of a computer system. On the other hand, in symbolic processing the relations
and operations required lo solve a problem depend upon the prablem under
consideration, and hence, have to be defined ‘explicitly along-with or as a part of
programs constituting the solutions of the problems.

The weakness of numeric processing, however, is thal it can be used in solving a
smatl fraclion of the set of problems we want 1o or need to solve. The numeric
processing can be used in solving only these problems, the solutions of which involve
only numeric aspects of the objects involved in the domain and environment of the
problem under consideration. For the solution of other solvable problems, we necd 1o

Intraduction to Intelligence
and Artificial Intelligence

| R

Introduction to A.l

10

use symbolic processing. 1 is nat out of place to mention that not all problems

which even can be stated precisely or formally, are amenable to computer

solutions using even symbolic processing: More discussion in this respect follows

next, under Comments/Explanations 2 for Definition 2. ,

Comments/Explanation 2, Definition 2 : Algorithmic method vs non-algorithmic
method, heuristics : We recall that an Algorithm is a siep-by-step procedure with {
well-defined starting and ending points, which is guaranteed to reach a solution 1o a
specific problem. A solution to a problem which can be expressed as an algorithm is
called an algorithmic solution. An algorithraic solution may invoive only numeric
processing or may involve symbolic processing with/Awvithout numeric orocessing. For
the purpose of further discussion, ‘symbolic processing’ includes/subsumes numeric
processing. Algorithmic approach even when using symbolic processing has
limitations. During 1930’5, a number of logicians and mathematicians including
Godel, Church, Posi, Turing and Kleene suggested 2 number of mathematical
madels of a compuici, and through these models tried to explain the nature of
computation, esiablished a number of useflul results about computation and also
found the limits of computational power.

They proved that even through a problem may be expressed precisely or formally (ie.,
in terms of mathematical entities like sets, relations functions etc.}, yet it need not
yield to an algorithmic solution. A probtem which has at least one algorithmic
solution is called a solvable problem. They further proved that out of even solvable
problems, only a small fraction can be solved if only feasible amount of resources

like, titne and space arc used. [nformally, feasible amount of resources means that
the requirement for resources does not increase too rapidly with the increase in size of
the problem. The notion of the size of a problem will be defined formally later on
(nnder comment I on Definition 3). However, an intuitive idea about the concept of
the size of a problem and its role in estimating the resource requircment for solving
the problem can be had through the simple problem of calculating income tax for each
of the tax-payers. The requirement of resources like, time and compuling equipment
for 1000 tax-payers would be much less, as compared o the requirement of resources
for computing income-tax for one million tax payers. In this prablem, n, the number of
m.t-pa}fe.;'s_for whont the income-tax is to be calculated, may be taken as size of the
problem.

This limitation and other difficultics with algorithmic solutions has given impetus to
efforts for finding non-algorithmic solutions of problems. Neural Network
approach to solving many difficult problems, is a well-known alternative to
algorithmic methods of solving problems. In Al, there are mainly two approaches to
solve problems, which generally difficult to solve with aigorithmic methods. One
approach is Neural approach, mentioned just abave. The other approach is called
syinbolic approach. The symbolic approach cannot be said to be non-algorithmic. The
main difference behveen symbolic approach of Al and algorithmic approach is that
symbolic approach of Al emphasizes exploitation of the knowledge of the domain and
the environment of the problem under consideration. Some of this knowledge is in the
form rules of thumb, generally, cailed heuristics in Al

In order to realise the limitations of algerithmic approach to solving problems, we '
need not refer to highly theoretical work by the earlier nentioned
logictans/mathematicians. The limitation of the approach may be appreciated through
the following simple exanmple.

Consider the problem of crossing from onc side over to the other side of a busy road
on which a number of vehicles are moving at different velocities. A step-by-step (i.e.,
algorithmic) method of soiving this problem may consist of:

(i) Knowing (exactly) the distances of various vehicles from the path to be
lollowed 1o cross over.

(ii) Knowing the velocities and accelerations of (he various vehicles moving on the
road within a distance of, say, one kilometer,

(ii)) Using Newton’s Laws of motion and their derivatives like s = ut + > at?, and

calculating the times that would be taken by cach of the various vehicles o
reach the path intended to be followed to cross over.

(iv}) Adjusting dynamically our speeds on the path so that no coilision lakes place
with any of the vehicle moving on the road.

The above is 2 systematic step-by-step micthod, i.c., mn algorithm, of crossing the road
thal may ensure no collision with any vehicle. But, how many of us can follow it?
Hardly anybody! First of all, it is practically impossible to measure distances,
velacilies and accelerations of various vehicles on the road, even within a radius of
onc kilometér. Secondly, cven il we assume theorelically that it is possible o measure
distances, velocitics and accclerations of various vehicles and 10 calculate safe (imings
to cross the road, we would not like or care to follow the above-mentioned algorithm,
because owr past experience, our sensc of survival and other buill-in mechanisms have
allowed us, in the past, to cross over safcly without following any systematic method,
All of us just guess the distances of the vehicles, safe enough 16 cross over, and then
actually cross over at an appropriate timie. Not ¢ven one in 1000, on an average pels
hurt when crossing a road using only guesses, in a crowded city like, Delhi, where
movement of vehicles is one of the most chaotic and unruly in the whole world.
However, tiiis is not to deny that once in a while, the guess is incorrect and someone
or other gets hurt or even is killed almost every day.

Each one of us every day, comes across hundreds of problems similar to the one ol
crossing of a road, And, for cach such problem one uses a good guess and one
generally is able to solve the problem satisfactorily each time, though the solutions
may nol be the best possible ones. And, or once in a while, we even fail to gel any
solution using the gucss. However, if we insist on only following a systematic step-
by-stop method ihat guarantees best possible solution for solving each problem, then
we would hardly be able to make any progress in our day 10 day business of even
mere survival,

The essence of the above discussion is that while attempting solutions of many of the

. problems, it is not only desirable but almost essential that for each of such problems
we follow some good guess instead of lollowing a step-by-step systematic method
that guarantees the best solution. In A.I, these gucsses are called heuristics, In later
chaplers, we discuss heuristics in delail. However, for the time being, we state that
heuristics are good guesses, possibly based on past experience, Juicdement, intuition
or hunches, which fead us most of the time to reasonably good solutions. though these
guesses do not guarantee the best solutions or even any solution for every instance of
the problem under consideration.

The advantage of using heuristics is that we do not have (o rethink completely
everytime we are faced with a problern of the type of which another problem has
already been solved satisfactorily, If we have a handy rule of thumb that may apply to
the current problem, it'may suggest to us how to proceed.

Lntraduction o Intelligenee
and Artificial Intelligonce

11

Tntroduction to Al

1.5 ANOTHER DEFINITION BY ELAINE RICH

The next definilion, again by Elaine Rich [1{ is more (echnical and involves some
concepts from Theory of Computation. It sates:

Definition 3: Artificial Intelligence is the stady of techniques for solving
exponcntially hard problems in polynemial time exploiting knowledge about the
problenmt domain.

Comments/Explanations 1, Definition 3: For deeper understanding of the concepls
like hrard, selvable and unsolvable problems, any one of the books by Brady [3], by
Lewis and Papadimiriou [4] or by Hoperolt and Ullman [5] may be consulted.
However, for our purpose of appreciating Definition 3 of AL, we briefly discuss only
the required essentials from Theory of Computation (TOC). In the comments on
Definition 2, we have already talked about the mathematical models of computation
and also about the limilations of algorithmic solutions.

As computer study is partly engineering in nature, in the sense that we design and
implement or produce compuler solutions for different types of problems and hence
these products, i.c., solutions, need to be evaluated vis-a-vis problem specifications
and other measures like, efficiency in respect of time and space requirements of the
solutions. In order to measure the efficiency of a suggesied computer solution of a
prablem, the carlier menlioned logicians/mathematicians suggested the concepts of
time complexily and space complexity [or the solutions and even for the problems.
The basic idea behind these complexity measures is that all the operations that a
computer (present or [uture generalions} can execute. may be thought of as composed
of a small number of basic operations. These basic operations can be easily compared
for their relative requirements for time and space. For the basic operation say O,
which is expected to take minimum time (or space} among all the basic operattons, the
time (or space) complexity is assigned the number one. For any other basic operation,
complexity is a positive number depending upon the expected relative requirement for
time (or space) {or the operation as compared to that for the operation O,. For other
compuler opcrations, time/space complexily may be computed (rom those for the
basic operations. Also from these complexitics, we can compute the complexitics of
the programs using the size of the input data as an additional parameter. For example,
to multiply twa n x n matrices we require n* multiplications and (n" — n*) additions.

Thus, complexity of (he straight-forward method of multiplication of two n x n
matrices is n° . § + (n' —n%) &, where a and [} are complexities of, respectively, the
operations of addition and that of muhiplication af tbwo numbers. The time/space
complexity of a problem may be defined as the time/space complexity of the program
which has the least complexity among all the known programs that solve the probltem,
Further, a prablem is said to be polynemial time problem, if the time complexity of
the problem is some polynomial ap p*ra, e LT+ a2, where n is the
size ol lhe data. Similarly, exponentially hard problem is ene for which time
complexity is of the [orm a", with a > L. For large n, the value of an exponential
function increases at a much faster rale than the increase in the value of any given
polymial functions in n. For a given polynomial function f{n) and an exponential
function g(n), it is always possible to find a positive integer k such that g(n) > f(n) for
all intergers n = k. Thus, the problems requiring exponendial time are considered
harder han the problems requiring polynomial time. ‘Polynomial time? is
considerced as reasgnable amount of time, and on the other hand, “exponential time’
is considered as impractical or infeasible amount of time from computational
point of view, This is why, the problems requiring exponential time are considered as.
hard problems. Also, using the fact that the complexity of a problem is the least of
the complexities of its known algorithms, we can not solve an exponential time
problen in polynomial time.

Comnient 2,-Definition 3: Role of knowiedge in solving hard problems: Intraduction to Inteligence
and Artificial Iniclligence

In view of the previous comments, no polynomical time algorithmic solution can exist

for any (exponentially) hard problem, However, there are mechanisms/techniques

which when used in a sotulion of a hard problem, though divesl the solution of its

step-by-step or algorithmic characteristic, yetmay make it a polynomial time solutjon.

. Use ol appropriate knowledge of the problem domain has been found uscful in

techniques that when used, solve hard problems in polynomial time. Definition 3
declares the scope of (or the subject-matter) Al as the study of techniques that
exploit appropriate knowledge to solve hard problems in polynomial time. The
rolc of appropriate knowledge in reducing time complexity of a solution cannot be
overemphasized. The following simple.example supports this claim abundantly:
Ms X is to meel Ms Y al her residence. Initially, let us assume that Ms X knows only
that Ms Y lives in Delhi and knows nothing ¢lsc about Ms Y’s residence. A step-by-
step or algorithmic solution to (he problem may be to search the residential places, one
by one, in some order, in Delhi and to stop when Ms. Y's place is located, The
complexily of the algorithm, on the average, is undoubltedly very large. However, if
X further knows that Y lives in some particular colony say Hauz Khas in Delhi, then
scarch is substantially reduced by searching residential places only within Hauz Khas.

Further, if Ms X alse knows the house number in Hauz Khas, then there is hardly any
search required and X can directly reach Y's restdence. Next, consider just opposite
situation so far as availability of knowledge is concerned. Let us X even do not know
thal Y lives in Delhi. We can easily guess the plight of X when she, if follows a step-
by-step method, is required 1o search, possibly all over (he world, for the residence of
Y.

The importance of (relevant) knowledge in solving difficult problems was recogniscd
by the pioricers in the very early stages in the development of A.I. As we shall find

'subsequently, major portion of A.I. is constituted of discussion of various issues

about knewledge: methods for acquisition of knawledge, for representation of
knowledge, for organisation of knowledge, for manipulation of knowledge, lor
maintenance of knowledge and for restricting search of the problem domain by
exploiting the knowledge of the domain.

1.6 DEFINITION BY BARR AND FEIGENBAUM

Nex1, we come o another definition of AL which involves hnnan intelligence - a
phenomenon only partially understood yet. Rather, computers and some A.L
techniques are being used in helping the psychologists in cstablishing their theories
aboul intelligence and other menial processes. Bul this definition provides another
angle to look at A.L as the study o attempts at incorporating intelligence, whalcver
we undersiand of it yet, in machine. This definition, in a way, would also justify the
tnclusion of the word *intefligence’ in the name ‘Artificial melligence® for the
subject-matier of our study. The definition, by Barr and Feigenbaum in ‘The
Handbook of Artificiai Intelligence’ 16], is as given below.

Defmition 4: Artificial Intelligence is the part of computer scienee conrcerned
with designing intelligent computcer systems, L.e., systems that exhibit the
characteristics we associate with inteligenee in human belhavidur.

Discussion/Comments 2. Definition 4; Vhar is intelligence or imellivent behavionr
in humans? In order 1o have good grasp on the intent of this definition ol AL, we
atrcinpt to enmumerate some known characteristics of Intelligence. There must be some

.basic mechanismis behind intelligent behaviour and some important

attri* utesfcharaclerises of int¢lligence which have defined human recognition or (3

Introduction o A.I

14

understanding, because of which we are not able to describe the phenomenon of
intelligence in its totality. Capturing the total essence of the phenomenon of
intelligence in humans through a definition is aimost impossible, as is noled by one of
the leaders of A.] viz. Patrick Winston [7] of Massachusetts Institute of Technology
(MIT), when he states “defining intelligence usually takes a semester-long
struggle, and cven after that I am not sure we ever get a definition really mailed
down™. However, there are some characteristics of intelligence which are readily
acceptable, some others acceptable after some thinking and still others that may be
controversial. We enumerate the characteristics as considéred by some A L writers
and coniributors and others. Enumeration of these characteristics here is essential
because as A.L. lechnologists, we would study various techniques that help us in
incorporating these characleristics, through computer programs, into machines, which
we attempt lo make intelligent according to Definition 4 of Artificial Intelligence. We
give below the atiributes verbatim from the respective sources.

Douglous R. Holstadter in his book: ‘Godel Escher, Bach: An Eternal Golden
Braid’ [8], whick won him Pulitzer Prize and was a best-seller mentions on Page
26 of the book, the following as essential abilities for intelligence:

. to respond to situations very flexibly;

o to take advantage of fortuitous circumstances;

) to make sense out of ambiguous or contradiclory messages; to recognize the
relative imporiance of different élements of situation;

. lo find similarities between situations despite differences which may separate
them;

. to draw distinctions between situations despite similarities which may link
them,

) to synthesize new concepts by taking old concepts and putting them together in
new ways; '

. to come up with ideas which are novel.

Fisher and Firschein in their book ‘Intelligence: The Eye, the Brain and the
Computer’ [9] on Page 4 state that they expect an intelligent agent to be able to;

. Have mental attitudes (belicfs, desires and intentions)
Leamn (ability to acquire new knowledge)
Solve problems, including the ability to break complex problems into simpler
parts.

. Understand, including the ability to make sense out of ambiguous or
contradictory information. . ‘

. Plan and predict the consequence of contemplated actions, inc¢luding the ability
to compare and evaluate alternatives.

. Know the limits of its (own) knowliedge and abilities.

. Draw distinctions between situations despite similarities.

. Be original, synthesize new concepls and ideas, and acquire and employ
analogies.

. Generalize (find 2 common undeslying patiern in superficiaily distinct
siluations)

) Perceive and model the extemal world

. Understand and usc language and related symbolic tools.

They further state that there arc a number of human attributes that are related
{o the concept of intelligence, but are normally considered distinct from i¢:

* Aswareness (consciousness)
. Aesthetic appreciation (art, music)
. Emotion (anger, sorrow, pain, pleasure, love, hate)

| el i

I[ntroduction to Intelligence

. Scensory acuteness
and Artificial Intelligence

. Muscular coordination (motor skills)

Nexi, we discuss ‘intelligence’ froni more fundamental level. The ideas explained
below are based on the faformation Transfer Model of scicitific phenom:na due 10
Norbert Wicner (1894-1964). Norbert Wiener, an intellectual prodigy and author of
the famous book entitled Cybernerics [1 4]-suggested the Transfer of Information
model to be a better medel than the prevailing model based on Transfer of Fuergy for
explanation of @ number of scientific phenomena. Through the Wiencer's theory, a new
discipline was born, also, called Cybernetics

However, our discussion is mainly based on ideas explained in the book ‘Beyond
{nformation’ by Tem Stonier [10]: According to the ideas explained in Stonier,
there are four fundamental properties of the universe viz. cnergy, maller,
information and evolution (or change). The cardinalily of information in the
universal scheme of things can be judged from the following argument: All the
cnlities from down 1o nucleons to the wholc of the universe, each is known 1o us as an
organised sysiem of simpler abjects, ¢.g., fundamenlal particles organise into
nucleolus, nucleolus organise to form atomic nuclei, which alongwith electrons and
protons organise into atoms and so on. Molecules, polymers, membranes, oraans,
ltving beings, sociclies, planels, planctary systems, galaxies ... and finally the whole
universe, each is known as an organised syslem of some simpler objects. An
organtsation builds upon pre-existing organisations. Thus an organised system is
recursively obtained (or defined) as an interdependent assembly of elements
and/or organised systems. And it is ‘information® what is exchanged between
components of an organised system to efTect their interdependence and to mainiain
the integrity of the system as long as the sysiem swvives against the fourth
Jundamental property of the universe, i.c., evolution or change. Gravitational pull,
now an established entity. is just an information processing aclivity, Thus
‘information’ is no more or no less an abstract concept than ‘energy’ or ‘malter’.
What mass is to ma(ter and the heat is to energy, so is organisation {o
information. Each of the former is a visible and measurable form of the
corresponding latter. More the mass, more the matter in a system; more the heat,
more the capacity (o do work, i.e., energy in the system: similarly higher the degree
(or more the complexity) of the organization (in lerms of urtderlying organizations of
the components and their components and so on, and in terms of the number and
levels of interactions and relations between components at a particular level} higher is
the information content of the system,

The relation between information and organisation and the characteristic
difference between the two is cxactly what is the relation and characteristle
difference between a humber and a numeral. A number is an abstract concept,
wheras a numeral is its physical manifesiation or representation. A number may have
mary representations and even may use many mediums for representations or
manifestations. In the form of, writing on the paper, as pattemns of ink dots on a
piece of paper, the same number may be represented as 7 in decimal, 111 in binary,
and even 4 +2 + | again in decimal. In computer’s memory, the same number is
represented with the help of electronic components, a different medium, and not as
shapes composed of ink-dots. [n human brain ihe same number is represented,
possibly, as some neural net.

Summarising, ¥ seember is a concept which needs a medium for its manifestation
or physical represcatation for the purpose of conveying, or transformation. This
representation is called a nmmmeral. Bul it should be ctear that when we say that -/
heed o hooks', the word ‘two’ is not just the sequence of three leilers viz U, “w
and ‘o’ i.e., the representation, which is intended to be conveved but just it is the
ahstract number which is intended to be conveved., Because ol the tangibility or

m— e i -

Introduction Lo A.T

perceptual “visibility® of the representation, we always usc the representation for
various purposes like ‘applying some operations’ or for conveying, but it is not the
representations, but the instances of the idea or concept (of number) which are
intended to be transformed or conveyed.

Similarly, information is a concept and an organisation is its representation, i.c.,
physical manilestation. For the purpose of applying operations {like refining
informaltion, adding information ¢tc) or for conveying information we use
organisation (as patterns ol ink dots on paper or as neural net in.brain etc). Then, we
manipulate the organisation or representation for applying operations on information
{operations again are abstract, whereas manipulations are their physical realizations).
Also, we communicate the organization for conveying information (communication is
physical realisation of conveying). As in the case of number, information’s
representation may be through various organisations on various type of media such as
patterns of ink dots on paper, neural nets in brain, or on flip-flops in electronic
memory. Forexample, the information content of the organisation in the form of
pattern of inkdots in the sentence *Heat is 2 form of energy’ is stored in the brain as an
organization in ihe form of a Neural Network etc.

Remark t: We have already mentjoned that an atom is an organsied system and so
are organ'’s in the human body and so are the galaxies in the universe. Also every
organized sysiem coftains information. Hence, as we say “‘God gave the numbers® so
we can say ‘God created information” and information is not just a product of
human mental activities.

Remark 2: Information organises not only matier and energy but itsel{ as well.
Evolution leads to discontinuities, i.e., 1o something which is gualitatively different
from the earlicr existing entities. And intclligence is the phenomenon which has -
evolved out of information but which is qualitatively different from information.

Remark 3: Intelligence, being an outcome of evohution from information over a
pertod spanning back almost upio the Big Bang, must be a spectrum of pheromena
and can not be an ail or nothing affair. Further, intelligence can not be a singje-
dimensional phenemenon. The veracity of this claim can be judged by analogy with
evolution of matier and ¢nergy into myriad forms differing from each other in almost
innumerable ways. .

However, in order 1o draw a sort of fuzzy boundary between intelligent organisations
or systems and the other systems, let us consider the case of living matter. Matter
evolved from subatomic particles to atoms, molecules and so in potentially infinite
number of different material objects. Out of these materials, there is-a large number
of types of objects (for example, hiunan beings) for which we can say with surety that
these are |iving matter and again for a large number of types of material objects (for
example soil), we can say with surety that these are not living matiers. Of course,
there may still be large number of objects which may not be distinetly cheracterised as
either. How we decide living or non-living is based on a finite collecticn of attributes
of matter and degree of each such atribute.

Iz the similar manner, we consider a linite set of attributes and deprees for gach
attribute for organizations, i.e., inlormation processing sysiems, which allow us to
categorise systems as intelligent or othenwvise in such a way that the systemsavhich are
generally considered as intelligent are categorised as intelligent and further whatever
systems are generally considered as nan-intelligent are gategorized as non-intelligent.
As evolution has taken over billions of years, hence divergence among information
processing systems intelligence-wise must be potentially infinite. Thus any
categorization based on only finitc number of attributcs would abways be incomplete

and leave large number of cases “uncategorisable’. To begin with, we start with & Introduction 1o Inteligence
working definition of intelligence and then later expand on it: #nd Artificial Intelligence

Intelligence is a property of advanced information processing sysiems, which not
only engage in information proeessing, but are able to analyse their dynamieally
changing environment and to respond 1o it in such a way that:

i) survivability of the system is cnhanced

ii) its reproducibility is enhanced (reproducibility is sort of self propagation
through another system)

iify if the system is goal-oriented, then achievability of goal is enhanced.

In stead of attempling (o categorize most of the information processing systems as
either inteltigent or non-intelligent, if we are interested in their relative merit as
intelligent systems, then the-following principle of intelligence may be uscful. The
principle quated in Stonier [10] states: The intelligence exhibited by a system
may, at least in theory, be measured as a fatio, or quotient, of the ability of a
system to control its environment, versus ihe {endency of the sysiem to be
controlled by the environment,

The above principle fits best, at least, in the limiling cases: At ane extreme is a cube
of sugar dissolving in a cup of tea. Although highly organised, the cube is totally
-controlled by environmental elements aud hence, according to the above principle, it
has zcro intefligence. This is exactly what we also feel. On the other extreme is
technologicaltly advanced human society which can divert the waters of rivers to
irrigate plains lo provide an assured supply of food to its population. Thaus
intelligence measure of a technologically advanced sociely as a whole is, according to
the above principle, quite high. This conclusion of the above principle is in
consonance with what we also feel,

Below we include some more attributes and/or definitions of intelligence by leading
‘computer scientists and A.lL rescarchers. The purpose is to be aware of as many facts
as possibie of yet-lo-be completely understood phenoniena of intelligence. Only then,
it ntay be possible to design and develop really intelligent programs Lo solve those
hard problems which are so [ar not amenable o computer selutions. Also, in this
process, we are providing a list of attributes, against which an A 1. engineer can test
their products for the quality of their product as intelligent one,

Hofstadter [8] on Page 37 says: It is an inherent property of intetligence that it can
Jump out of the task which it is performing and survey what it has done. Self-
evaluation and self-criticism are part of intelligent hehaviour.

Fishler and Firschein [9] on Page 4 state: Intelligence involves leaming capability
and goal-oricnted behaviour, Additional auributes of intelligence include reasoning,
common-sense, planning, perception, creativity, memory retention & recall.

Shanks [11] on Page 49 observes: The simplest and perhaps safest definition of
inteltigence is the ability to react to something new in a non-programmed way. The
ability to be surpriscd or to think for oneself is really what we mean by intelligence.

In order to explain the cancept of A.I. through *Definition 4', we discussed the
concepl of intelligence itself as a phenomenon, Next, we quole another definition of
A.l: again based on the concept of intelligence and given but from engineering point
of view by another pieneer in (he field, viz ShalkofT, a Professor of Electrica)
Engincering.

[e

lntroduction to A.J

1.7 DEFINITION BY SHALKOFF

Definition 5: Shalkoff [13] says: ‘Perhaps broadest definition is that Al is a field
of study that sceks to explain and emulate intelligent behaviour in terms of
computational proccsscs’.‘ :

Comments 1, Delinition 5: According to the above definition, Al is partly scientific
in nature because it secks to ‘explain’ the phenomena’of intelligence, and partly
engineering because it secks to ‘emulate’ intelligent behaviour through computational
processes, i.¢., by penerating representations (of knowledge) and development of
programs Lhat automatically (autonemously) solve problems, so far solved by only
intelligent humans beings.

In view of the fact that A1, is parily an éngincering discipline according lo the above
definition, let us recall what is meant by the concepl engineering.

Engincering may be thought of as the application of science and mathematics by
which properties of matter and sources of energy in nature arc made useful {meering -
sonte requirements and according to some specifications) 10 man in structures,
machines, products, systems and processes elc,

Again, in the light of the definition of Engincering given above, a part of the
definition by Shalkoff may be paraphrased as °...through application of A.L, products
are obtained that exhibit intelligent behaviour...." This paraphrased part of the
definition by ShalkolT raises anather issue: How (o judge/evaluate whether a product
obtained through an application of A.L, is actually intelligent, '

The issue of testing an A.l. product as intelligent product was considered by the
pioneers themselves including Alan Turing, the most well known name among the
pioneers. In honour of Turing, the most prestigious award for contributions to the field
of computer science, has been instituted and is given annually.

Turing suggested a test, which is well known as Turing Test, for testing whether a
product has intelligence. An outline of the Turing test is given below.

For the purpose of the test, there are three rooms. In one of the rooms is a computer
system claimed to have imbedded intelligence. In the other two rooms, two persons
are sitting, one in each room. The role of one of the persons, let us call A, is to put
questions to the computer and to the other person to be called B, without knowing to
whom a particular question is being dirccted, and, of course, with the specific purpose
of identifying the compuler. On the other hand, the computer would answer in such a
way that its idendity is nol revealed to A.

The communication among the three is only through computer terminals so that
identity of the computer or the person B can be known only on ihie basis of quality of
responses as intelligent or otherwise, and not just on the basis of other human or
machine characteristics. If A is not able to know the identity of the computer, then
computer is intelligent. More appropriately, if the-computer is able to conceal its
identity from A, then the computer is intelligent.

We may note here that, in order to be called intelligent, the compuler should be clever
enough not to give answer too quickly, at 1cast not within a fraction of a sccond, even

ilit can, say, 10 a question involving finding of the product of lwo numbers each of '
more than 20 digits.

Objections to Turing Test: Thére have been a number of objections (o the Turing Tntroduction to [ntelligence
lest as a test of inlelligence of a machine. One of the most well known objcctions is sod Artificial Inteitigence
called Chinese Room Test proposed by John Scarle. The essence of the Chinese

Room Test, that we arc gping 1o explain below, js that convincing successfully by a

System, say A., of possessing qualities of another system, say B, does not imply that

the system A actually posscsses the qualities of B For example, the capability of

convincing others by a male liuman ol being a woman, does not give the male the

quality of bearing a child like a woman,

‘The scenario for the Chinese Room Test consists ol a single room with (wo windows.
In the room a scholar on Shakespeare, knowing English, but not knowing Chinese, is
silling with a sort of encyclopedia on Shakespeare. The encyclopedia is printed in
such a way that for cach pair of facing pages, one page is written in Chinese
characlers and the other page is translation in English of the contents of the facing
page in Chincse. Through one of the windows questions on Shakespeare’s litcrature in
Chinese characters are sent 1o the person sitting inside. The person looks through the
encyclopedia and on finding in the encyclopedia the exact copy of the sequence of
characlers sent in, reads ils Iranslation in English, thinks of its answer and writes (he
answer in English for hisfher own understanding, finds the corresponding sequence of°
Chinese characters in the encyclopedia, and sends the sequence of Chinese characters
through the other window. Now, Scarle says that, though the scholar successiully
behaves as if s/he knows Chinese, but, as per assumption it is not so. Just {rom the fact
that a system is able (o simulate a quality, it can not be inferred that the system
possesses the quality.

1.8 SUMMARY

This is an introductory unit 1o the course, The unit gives a bird’s eye view of the
whole of the course of Artificial mtelligence: The approach, in the unit, is 1o start with
a definition by some pioneer in AL In the process of discussion of the definition, a-
number of relevant new concepts are gradually built up and discussed.

In Section 0.3, we discuss definition of A.L, as given by Elianc Rich . It states:
Acrtificial Intelligence is the study of how (o make computers do things, at which,
at the moment, people are better.

In this context, it was discussed that human beings are sill better than compulers in

the problen areas, which require parallel processing and simultancous availability of
informalion,

According 1o the next definition of A.I, as given by Buchamin & Shortliffe:

Al is the branch of com pulter Science that deals with symbolic rather than
numeric processing and non-algorithmic methods including the rules of thumsb or
heuristics in stead of algorithms as fechuiques for solving problems.

In Section 0.4, we discuss the differences (i) between number and symbol, (ii}
between algorithmic and non-aigerithmic methods of solving probiems.

In the Seciion 0.5, another definition by Lliane Rich, as given below, is discussed:
Artificial Intelligence is the study af techniques lor solving exponentially hard
problenmis in polynomial time cxploiting knowledge about the problent domain,

In context of this definition, we discuss the difference between ‘exponentially hard
problems’ versus ‘polynomial time’ problem.

In scction 0.6, we discuss the following definition of Al by Barr & Feigenbaum:

Artilicial Intelligence is the part of computer science concerned with designing 19

TrTTTI -

Inlr'(_!:lul:tiun to Al

20

intelligent computer systems, i.e., systems that exhibil the characteristics we
associate wilh inteiligence in human behaviour.

In context of this definition, we discuss various characteristics of human intelligence.
In the process, we discuss, relation between information and organisation and relation
between information and intelligence.

Finally, in Section 0.7, we discuss a definition of A.l by Shalkoff, an engineer.
According to this definition, A L is partly an engineering and partly a scientific
discipline. As an engineering discipline Al is the study of designing and developing
intelligent machines. In context ol testing whether a machine is intelligent, we discuss
Turing test and ifs criticism.

1.9 FURTHER READINGS/REFERENCES

1. Rich E. & Knight K. {1991). Artificial Intelligence,
Tata McGraw-Hill Publishing Company Limited

2. Buchanan B.G. & Shortlife E.H. eds. (1984), Rule-Based Expert Systems.
Addison-Wesley

3. Brady J.M. (1977). The Theory of Computer Science. Chapman and Hall.

4. Lewis H.R. & Papdimitriou C.H. (198). ¥lentents of Theory of Computation
Prentice-Hall International Lidilions.

5. Hoperoft J.E. & Ullman J.D. (1987). Introduction to Automara Theory,

, Langurages and Camputation. Narosa Publishing House

6. Barr A. & Feigenbaum E.A. (1981-82): The Handbook of Artificial
Intelligence Vol 1, Kaulnan

7. Winston P.H. & Prendergast K.A (1984): “Perspective in the Al Business”™,
eds, MIT Press

8. Hofstadter D.R. (1979): Gddel, Escher, Bach: An Eternal Golden Braid
Penguin Books.

9. Fischler M.A. & Firschein O. (1987). Intelligence: The Eye, the Brain, and the
Compuiter: Addison-Wesley Publishing Company

0. Stonier T. (1992). Beyond Information. Springer-Verleg.

11. Schank R.C. with Childers P.G. (1984). The Cognitive Computer on Language
Learning and Artificial Inteiligence. Addison-Weslcy Publishing Company

12. Boden M. (1998). The Computer can act as a Brain stormer, The Times of
India, New Delhi dated March 06, 1998.

13. Schalkoff R.J. (1990). Artificial Intelligence: An Ingineering Approach
McGraw-Hill international.

14. Wiener N. (1948). Cybernatics. Witey, New York.

15. Boden M. (1990). The Philosophy of Artificial Intelligence. Oxford University
Press.

—_—--

UNIT 2 THE PROPOSITIONAL LOGIC

Structure Page Nos.
2.0 Introduction 21
2.1 Objectives 23
2.2 Logical Study of Valid and Sound Arguments 23
23 Non-Logical Operators 25
2.4 Syntax of Propositional Logic 26
2.5 Semantics/Meaning in Propositional Logic 27
2.6 Interpretations of Formulas 29

2.7 Validity and Inconsistency of Propositions

2.8 Equivalent forms in the Prepositional Logic (PL)
29 Normal Forms

2.10 Logical Deduction

* 2.11 Applications

2.12 Summary

2,13 Solwtions/Answers

2.14 Further/Readings

E YT LN R I LI IS T U Y
L) 0o 00~ Lh Wty o

2.0 INTRODUCTICN

Symbolic logic may be thought of as a format language for representing facts about
objects and relationships between objects of a problem domain alongwith a precise
inferencing mechanism for reasoning and deduction, An inferencing mechanism
derives the knowledge, which is not explicitly/directly availabic in the knowledge
base, but can be logically inferred from what is given in the knowledge base.

The reason why the subject-matter of the study is called Symbolic Logic is that
symbols are used 1o denole facts about objects of the domain and relationships
between these objects. Then the symbolic representations and not the original facts
and relationships are manipulated in order to make conclusions or to solve problems.

Also, we mentioned that a Symbolic Logic, apart from having other characteristics, is
a formal language. As a formal language, there must be clearly stated unambiguous
rules for defining various constituents or constructs, viz. alphabet set, words, phrases,
sentences elc. of the language and also for associating meaning 1o each of these
constilucnts.

The study of Symbolic Logic is significant, specially, for academic pursuits, in view
of the fact that it is rot only descriptive (i-e., it tells how the human beings reason)
but it is also normative (i.¢., it tells how the human beings should reason).

In this unit, we shall first study the simplest form of symbolic logic, viz, the
Propositional Logic (PL). In the next unit, we consider a more general form of logic
called the Firs;-Order Predicate Logic (FOPL). Subsequently, we shall consider other
symbolic systems including Fuzzy systems and some Non-monotonic syslems.

In the propositional logic, we are interested in declarative sentences, i.e., sentences
that can be either true or false, but not both. Any such declarative sentence is called a
proposition or a statement. For example

(i) The proposition: “The sunrises in the west," is False,
¢ii) The proposition: “Sugar is sweet,” is True, and

21

Introduction to A1

22

(iii) Theruth of the proposition: “Ram has a Ph. D degree.” depends upon whether
Ram is actually a Ph. D or not,
Though al present, il may not be known whether the statement is True or False,
yet it is sure that the sentence is either True or False and not both True and False
simultancously.

For a given deciarative senlence, ils being ‘True’ or ‘False” is called its Truth-value.
Thus, truth-value of (i) above is [False and that of (ii} is True.

On the other hand, none ol the following sentences can be assigned a truth-value, and
hence none of these, is a stalemenl or a proposition:

(i) Who was the first Prime Minister of India? (Interrogative senicnce)
(i) Please, give me that book. (fmperative sentence)

(iii) Ram must exercise regularly. (fmperative, rather Deontic)

(iv) Hurmrah! We have won the trophy. (Exclamatory sentence)

In propositional logic, as mentioned earlier also, symbols are used Lo denote
propositions. For instance, we may denote the propositions discussed above as
follows:

P : The sun rises in the wesl,
Q : Sugar is sweel,
R : Ram has a Ph.D. degrec.

The symbols, such as P, Q, and R, that are used 10 denote propositions, are called
.atomic formulas, or atoms. As discussed earlier, in (his case, the truth-value of P is
False, the truth-value of Q is True and the truth-vaiue of R, though not known yet, is
exactly one of “True’ or ‘False’, depending on whelher Ram is actually a Ph. D or
not.

At this stage, it may be noted that once symbols are uscd in place of given statements
in, say, English, then the propositional system, and, in general, a symbolic system is
aware only of symbolic representations, and ihe associated truth values. The system
operate only on these representations. And, except for possible final Lranslation, is not
aware ol the original stalcmean generally given in some natural language, say,
English.

We can build, from atoms, »ore complex propositions, sometimes called compound
propositions, by using togical connectives.

Examples of such prepositions are:

(i)} Swun rises in the east and the sky is clear, and
(i) If it is hot then it shall rain.

The logical connectives in the above two propositions are “and” and “if...then". In the
praposilional logic, five logical operators or connectives, viz., ~ (not}, A (and), v

(or), = (if... then), and & (if and only if), are used. These five logical connectives can
be used to build compound propositions from given atomic formulas. More generally,
they can be used to construct more complicated compound propositions from
compound propositions by applying the connectives repcatedly. For example, if each
of the letters P, Q. C is used as a symbol for the corresponding statement, as follows:

P: The wind speed is high.
Q: Temperature is low.

. C: Onec feels comforiable.

=

Il Eers B

then the senience: The Fropositional
“ifthe wind speed is high and the temperature is fow, then one does noi feel Logic
comforiable”

may be represented by (he formula ((P A Q) — (~ C)). Thus, a compound

proposition can express a complex idea, In the propositional logic, an expression that

represents a proposition, such as P, or a compound proposition, such as (P A Q) — (~

C)), is called a well-formed formula.

2.1 OBJECTIVES

A fier going through this unit, you should be able to:

» lell about whal is Logic, Symbolic Logic, and Propositional Logic (PL); further,
aboul why we sludy cach of these; and about some detailed subjcct matter of
each of these;

¢ telithe difference between a Proposition/Staiement, which forms the basis of PL,
and a sentence in a natural language;

* explain the difference between a logical operator and a non-logical operator; any
symbolic logic uses only logical operators;

» cxplain the concept of arpuments in a logical system and further should be able to
explain mutual differences between a (i} valid argumenl (ii) sound argument
(iii) invalid argument, and (iv} unsound argument;

» dillerentiale benween an expression that is a well-formed formula wif of PL and
an expression ‘which is not a wif;;

e find the truth-value, or meaning, of a wil of PL. and should be able o cxplain
how the truth value of a wiT is obtained from the truth values of alomic wfTs.

e explain the difference between various types of wifs, viz, valid wif: consistent
wif, invalid wif and inconsistent wlTf;

. explain about the various toals, like truth table, logical deduction and reduction
1o normal forms that arc used 1o establish validity/invalidity of arguments, and
further should be able to use these 1ools for the purpose, and

e - uscthe tools and techniques of PL in solving problems that can be solved within
a PL system.

2.2 LOGICAL STUDY OF VALID AND SOUND
ARGUMENTS

Logic is the analysis and appraisal ol arguments.

An argument is a sct of statements consisting of a finile number of premises, i.c.,
assumed stalements and a conclusion.

Valid Argument: A valid argument is one in which it would be contradictory for the
premises {o be true but the conclusion false,

In logical studies we are intercsted in valid arguments.
"Example of Valid Argument

(iy [Fyou overslept, you will be late
(ii) Youare not larte.

- you did not oversleep.
Example of Invalid argument

23

Ingroduction to A.]

24

(i) If you overslept, you will be late
(i1) You did not overslecp
.. you arc nol late

(This argument is invalid, because despite nor having overslept, one may be late
becarse of some other engagements or lazyness,)

Another Invalid Argument

(i) [fwe are close (o the top of M. Evcrest then we have magnificent view.,

(ii) We are having a magniiicent view. :
Therelore,

(iii) We arc the near the top of Mt. Everest.

(This argument is invalid, because, we may have a magnificent view even {f we are not
close to the top of Mt. Everest. The two given statements do not falsify this claim)

How to establish logical validity/invalidity of an argument

We have already discussed invalidity of some arguments, but invalidity above was
based on our infuition. However, inluition may also lcad us to incorrect conclusion.
To be sure about the validity of our argument, we need some formal method. In
Section 1.5, we discuss how a Truth table (a formal toofl) can be used to establish the
validity/invalidity of an argument.

Sound Argument

We may nole thal, in the case of a valid argument, it is not required that the
premises/axioms or assumed slatemenls must be True. The assumptions may nof be
True, and still the argument may be valid. For example, the following argument is
valid, but its premises and conclusion both are false:

Premise 1: If moan is made of green cheese

Then2+2=5
Premisc 2: Moon is made of green checse
(False premise)

From Premise 1 and Premise 2, by applying Modus Ponens, we conclude through
valid argument that 2 +2 =5 (which is Faise).

However, in order to solve problems of everyday life, we need generally to restrict to
only true premises and valid arguments. Then such an argument is called sound

argument.

Sound Argument: is an arpument that is valid and has true premises.

(i) If you are reading this, then
you are not illiteraie
(i1} You are reading this (frue premise)
You are not illiterate (sound conclusion)

Example of valid but not sound argument with correct conctusion.
(i) If moen is made of green cheese then 2 +2=4

(ii) Moon is made of green cheese (False premise)
To conclude 2 + 2 = 4 (correcf) makes the argument a Valid Argument

Exanple of Invalid Argument The Propositiong)

Logic ,

I (i) If you overslepl, you are late.
(ii) you are late.
Therefore, you overslept.
II (i) If you arc in Dclhi, you dre in India.
You are in India.
Therefore, you are in Delhi (invalid argiment, though conclusion may be True)

2.3 NON-LOGICAL OPERATORS

One of reason why special symbols:
AV o~ o o
are used in symbolic logic in stead of the corresponding naltural languapes words:
and, or, not, if.... Then, if and only if, is that the words may have diffcrent
meaning in different contexts. For example, the use of the word and in one sentences
has different connotation or meaning from the use in others in the following;:

(i) Ram and Mohan are good hockey players.

(the statement can be equivalenily broken into two statenenis:
(i) Ram is a good hockey player (ii) Mohan is a good hockey player)

{(ii) Ram and Mohan are good {riends.

{though the word and joins two words Ram & Mohan, but can not be equivalently
broker info two statements viz. (i) Ram-is a friend (i) Mohan is a friend)

(iii) Mohan drove a car 1¢"reach home, met an accident and gol slightly injured.

(Here, the use of the word ‘and’ is not in a logical sense, but, it is in lemporal sense of
‘and then * because statement (i) has different sense from the staicment given in (iv)
below)

(iv) Mohan met an accident, got slightly injured and drove a car to reach home.

Thus from the above staicments, it can be seen that the natural language word and
may have many senses, both logical and non-logical. Similarly, the words since,
hence and because are frequently used in arguments to establish some facts. But as
shown from the following two arguments, their use in logical arguments is risky in
the sensc that some of the arguments involving any of these words may lead lo
incorrect conclusions:

Argument (1): Using the word because, we get correct conclusion from
True siatements.

Let

P: Dr. Man Mohan Singh was Prime Minister of
India in the year 2006 (True statement)

Q: Congress party and its allies commanded majority in Indian Parliament in the ycar
2006 (True statement)

Then the following statement:
P because Q {True statement/conclusion)

25

‘Introduction to A.l

26

Thus, by using the connective because we get a correct/True conciusion ffom two
True stalements viz. P and Q.

Argument (2)

In the following using the word, because, we get incorrect/false conclusion from
True statements

P it

Leat

P: Dr. Man Mohan Singh was Prime Minister of
India in the year 2006 (True statemeni)

R: Chirapoonji, a lown in north-east India, reccived maximum averape rainfall in the
world during 1901-2000. (True statemeny)

However to say

P because R, i.e., 10 say
Dr. Man Mohan Singe was Prime Minster of India in 2006, becaise C hirapoonji, a
{own in north-east India, reccived maximum average rainfail in the world during
1901-2000.
is al least incorrect, il not iudicrous.

Thus from two True statements, P and R and by using connective ‘because’, in this
case, the conclusion is incorrect. :

Thus, by using conrective because, in one argument we gel a correct conclusion from
two True slatements and, on the other hand, we get an incorrect conclusion from True

statements. ;

2.4 SYNTAX OF PROPOSITIONAL LOGIC

A Well-formed formula, or wffor formula in short, in the propositional logic is
defined recursively as folfows:

I. Analom is a wil.

2. IfAisawff, then (~A) is a wif.

3. IFA and B are wils, then each of (A A B), (A v B), (A — B), and (A & B)isa
wiT.

"4. Any wiT'is obtained only by applying the above rules.

From the above recursive definition of a wF it is not difficult to see that expression:
((P—>(QA(~R))) & S)isa wif: because, to begin with, each of P,Q,(~R)and
S, by definitions is a wif. Then, by recursive application, the expression: (Q A{(~R))
is a wit. Again, by another recursive application, the expression: (P - (Q A (~R)))

is a wiT. And, finally the expression given initially is a wfT,

rr——r— - .

Further, it is easy to see that according to the recursive definition ol a wif, each of th
expressions: (P = (Q A))and (P { Q A R)) is not a wif. ’

Some pairs of parcatheses may be dropped, for simplification. For example,
A v B and A — B respectively may be used in stead of the given wffs (A v B) and (A
—> B), respectively. We can omit the use of parentheses by assigning priorities in
increasing order to the councctives as follows:

“, o v, v,

Thus, "> has least priority and "~ has highest priority. Further, if in an cxpression,
there are no parentheses and two connectives between (hree atomic formulas are used,
then the operator with higher priority will be applied first and the other operalor will
be applied later!

For example: Let us be given the wif 2 — O 4 ~ R wilhout parenthesis. Then among
the operators appearing in wiT, the operator ‘~* has highest priority. Therefore, ~ R is
replaced by (~R}. The cquivalent cxpression becomes P — Q A (~ R). Next, out of the
“two operators viz “—” and ‘A’, the operators ‘A’ has higher priority. Thereflore, by
applying parentheses appropriately, the new expression becomes P — (Q A (~ R)).
Finally, only one operator is [efi. Hence the firlly parenthesized expression becomes (P

= QA (=R))

2.5 SEMA.NTICS/MEANING IN PROPOSITIONAL
LOGIC

Next. we define the rules of finding the truth value or meaning of'a wif, when truth
valucs of the atoms appearing in the wif are known or given.

L. The wiT~ A is Truwe when A is False, and ~ A is False when A is true. The wil
~ A is called the negution of A.

2. The wif{A A B)is True if A and B are both True; otherwise, the wif A A B is

FFalse, The wff {A A B)is called the conjunction of A and B.

The wil (A v B) is true if at Jeast one of A and B is Truc; otherwise, (A v B) is

False. (A v B) is called the disjunction of A and B.

4. The wif{A —> B)is False il A is True and B is False; otherwise, (A —> B} is True.
The wiT (A — B) is read as “If A, then B,” or “A implies B.” The symbol ‘=’ is
called tmplication.

5. The wif{A <> B) is True whenever A and B have the same truth values;
otherwise (A <> B) is False. The wff (A ¢ B) is read as “A il and only if B.”

L

Table 1.5
A B ~A (AAB) (A v B) (A > B) (A © B)
T T F T T T T
G)T F F F T F F
GiD)F T T F T T F
(ivyF F T F F T T

The above relations can be sumimarized by Table 1.5 given below.

The table may be read as follows:

Let the symbol T stand for True and the symbol F stand for False. Then, Row (7) is
interpreted as: if we assign T (i.e. True) to A and T to B then the truth values of (~ A),
(A AB),(A vB), (A — B)and (A ¢ B) are respectively F, T, T, T, T.

Further row (ifi), for example, is interpreted as:, if we assign truth-value F (False) to
A and T (True) to B then truth valucs of (~ A), (A AB), (AvB),(A > B)and (A &
B) arc respectively T, F, T, T, F. '

This table, shall be used to evaluate the truth values of a wiTlin terms of the truth
valucs of the atoins occurring jn the formula,

Now, we discuss the issuc, raised in Section 1.2, of how 10 check validity/invaliditly of
art argument through formal means.

The Propositional
Logic

—=—Tse---

27

Inireduction to A.l Validity ithrough Truth-Table.

(i) If 1 overslept, then [am late, i.e., synibolically
S—L
(ii} 1 am not late, i.c., symbolicaily
~ L
To conclude
(iii) 1 did not oversicep, i.c., symbolically
~8 :

To establish the validity/Invalidity of ihe argument, consider the Truih-Table

S [S — [~1, ~8
F F T - T T
F T T F T
T F F T F
T T T F F

There is only one row, viz., first row, in which both the premises viz. S — L-and ~ L
are True. But in this case the conclusion represented by ~ S is also Truc. Hence, the
conclusion is valid.

Invalidity through Truth-Table

(i) Ifl overslept, then I am late
S—o»L
{iiy.I did not oversleep, i.¢.,
~8
To conclude
(iii) I would not be late, i.c.,
~ L (invalid conclusion)

S L (S>L) ~S ~L
F F T T T
F T T T F
T F F F T
T T T F F

The invalidity of the argument is established, because, for validity last column musi
contain Trie in those rows for which all axioms/premisés are True. Bus in the second
row both S = L and ~ 8 are True but ~ L is False

Ex. 1 Express the following statements in ‘Propasitional Logic.
@) If he campaigns hard, he will be elected.
b) If the humidity is high, it will rain cither today or tomorrow.
¢) Cancer will not be cured unless its cause is determined and a new drug for
cancer is found.
d) It requires courage and skills 10 climb a mountain.

Ex.2: Lct
P : He needs a doctor, Q: He needs a lawyer
R : He has an accident, S : Heissick,

U : Heis injured.

28

Stale the following lormulas in English.

a) SE->PAR—>Q) P2 (Svl)
c) (PAQ)=>R d{PAQ)= (SAL)

2.6 INTERPRETATIONS OF FORMULAS

“In order to find the truth value of a given formula G, the truth values {or the afoms of
the formula are cither given or assumed. The set of initially given/ass wmed values of
all the alomic formulas eccurring tn a formula say G, is called an interpretation of
the formula G. Suppose that A and B are two atoms and that ** : to h values of A and
B are T and F respectively. Then, according to third row e Ta le .5, when A is T
and B is T we find that the truth values of (~A), (A- \ B),

(AvB),{(A-B),and (A < B)are T, T, T, T and F, respectivel.. By developing a
Truth-table of a(ny) formula, its truth value can be cvaluated in terms of its
interpretation, i.e., in terms of the (ruth values associated with the constituent atoms.

Example
Consider the formula
G:((AAB)»>(Re (~8S)).

(Please note that the string, in this case G.'before the symbol ', is the _rz&me of the
Jormula ehich is the name of the string of symbols after *:". Thus, G is the name of the
Jornula ((An B)= (R < (~ S))).

The atoms in this formula are A, B, R and S. Suppose the truth values of A, B, R, and
Sarcgivenas T, F, Tand T, respectively. Then (in the following and elsewhere also,
if there is no possibitity of confusion, we use T for ‘True’ and & for 'False.)

¢« (AAB)isFsinceBisF; ™

o (~S)isFsinceSisT; . :
(R« (~S))is Fsince R is T and (~8) is F; and hence,
{(AAB)— (R (~8))is Tsince (A AB)is T (and (R & (~S)) is F, which
does not matier),
Note: In view of the fact that when (A A B) is F, the truth-value of

{A A B) — Any Formuila

must be T and, hence, we need not compute the value of (R & {~ S).
Therefore, the formula G is T if A, B, R, and $ are assigned truth values T, F,sT and T,
respectively,

The assignment of the truth values' T, F, T, T 10 A, B, R, S, respectively, is called an
interpretation of the formula G. Since, each one of A, B, R, and S can be assigned
one of the two values, viz., either T or F, there are 2* = 16 possible interpretations of
the formula G, In Table 1.6, we give the truth valucs of the formula G under all these

1

16 interpretations. o o

The above procedure may be yepeated to find Iruth value of any formula from any
interpretation, i.c., from any'assignment o the atomic formulas occurring in the given
formula.

The Propositional
Logic

29

2 Rt

Intraduction to A

30

Table 1.6 Truth Table of (A A B = (R &> (~ 5}

A B R S ~5 (AAB) (Re(=8) (Aal) (R
> {~ S}
T T T T F T F I
T T T F T T T T
T T F T F T T T
T T F F T T F I
T F T T F F F T
T F T F T F T T
T F F T F F T T
T F F F T F I T
F T T T F F I T
F T T F T N T T
F T F T F F T T
F T F F T F F T
F F T T F F F T
F F T F T F T T
F F F T F F T T
I F F F T F F T

A table, such as given above, that displays the truth values.of a formula G for ait
possible assignments of truth values to atoms occurring in G is called a Truth tablc
of G. '

NOTATION: If A,,....A, are all the atoms in a formula, il may be more coavenient to
represent an nferprefation by a set (my,....m,), where m; is either A; or ~A;.m; is
written as A; if T is assigned to A;. Bul my is wriuen_as ~ A, if F is assigned lo A, ‘

For example, the set {A, ~B, ~R,S} represents an interpretation of a formula in which
A, B, R, and S are the only atoms and which are, respectively, assigned T, F, F, and T.
We will use the notation throughout,

Ex. 3: Consltrucl a truth table for the formula.
P:(~AvBYa(~(AA~B))

2.7 VALIDITY AND INCONSISTENCY OF
PROPOSITIONS

It may noted that in Section 1.2, we discussed the concept of valid Argument. Here,
we study formulas or propositions. Nexl, we shalt consider wif that are true under
all possible interpretations and wif that are false under all possible interpretations.

Example
Let us consider the wiT
G {((A—>B)AA)> B).
The formula G has 27 == 4 possible interpretations in view of the fact it has two atoms
viz A and B. It can be casily seen from the following table that the wIT'G is True

undcr all its inferpretations. Such as a wil which is True under all interpretation is’
called a valid formula (or a (autology),

Truth Table of {{{A— B) A A} > I}

A B (A— B) (A>B)AA (AD>BYAA) B
T T T T T - -
T r F F T
F T T I T
F F T F T

Consider another formula
G:((A->B)A(AA~B))

The truth table of the formula G given below shows that G is False under all its
interpretations. Such a formula which is False under all inlerpretations is called an
inconsistent formula {or a contradiction),

Truth Table of (A—> B) A (A A~ B)

A B ~B (A— B) (Ar~B) ({(Ao>B)A(AA~B)
T T F T F F
T F T F T F
F T F T F F
F F T T F F

Next, we formally define the concepts discussed above.

Definition: A formula is said 10 be valid if and only it is truc under all ils
interpretations. A [drmula is said to be invalid if and only il it is not true under at
least one interpretation. A valid formula is also called a Tautology. A formula is
invalid if there is at least one interprelation for which the formula has a truth value
False.

Definition: A formula is said te be inconsistent (or unsatisfiable) il and only if it is

False under ali its interpretations. A formula is said to be consistent or satisfiable if

and only il il is not inconsistent. In other words, a formula is consistent if there is at
least one interpretation for which the formula has a truth value true.

From the definitions given above, it is easily scen that

(i} A formula is valid if and only if its nepation is inconsisrent.

(ii) A formula is invalid i and only if there is af least one interprelation under
which the formula is false.

(i} A formula is consistent if and only if there is af least one inlerpretation under
which the formula is trice.

(iv) Ifaformula is valid, then it is consistent, but nol vice versa. (example given

below)

(v} IWaformulaisinconsistent, then itis invalid, but not vice versa. {example given

below)
Definilion: If a formula P is True under an interpretation I, then we say that I
salisfied P, or P is satisfied by I. If a formula P is False under an interpretation 1,
then we say that I falsifies P or P is falsificd by L.

As for an examiple, the formula (A A (-B)) is salisficd by the inlerpretation {A, ~ B}

le, by taking A as T and B as T, but is falsified by the interpretation {A, B} i.c., when

A is taken as T and B is taken as T. dn interpretation 1 that satisfies a formula P, is
called a model of the formula F.

The Propositional
Logic

31

-

Rk o

Introduction to A.1

32

Examples:
(i} A Valid Formula:

(a) Even True is a wif which is always True and, hence, True is a valid forgwla.

(b} Gi: A v (~A) is True (or all its interpretations. As G, has only onc atom'viz. A,
terefore, it has only two interpretations. Lel one interpretation of G; be - A is
True. But then G, assumes the value (True v (~ True)) = True. The other
interpretation of G, is : A is False. Then G, assumes the value (False v ~ False) =
True.

(il) Consistent (True for-at least one interpretation} but not valid Formula (i.e. is
invalid, L.e., False for at least one inferpretation):

(a) The simplest example of such a formula is the formula &;: A. Then, for the
assignment A as True, G; is True. Therefore G; is consistent. On the other
hand, the interpretation of G; with A as False, makes G, false. Therefore, G;:
A is nof valid.

(b) Both Gi: A v B and Gy : A A B are consistent but not valid. Bath G; and G,
arc True under the assignment A as True and B as True. On the other hand,
both are False under the interpretation A as False and B as False.

(i) Invalid (False for af least one interprefation) but not inconsistent (nor False
Jor all interpretations): Any one of the examples in (ii) above

(iv) Inconsistent formula (ie., which is false for all interpretations)

{a)} Even ‘False’ is a wif; which is always False, and hence is inconsistent.

(b) Gs: A A(~A) is False, for all interpretations of Gs. Actually, there are only
two interpretations of Gs Orie is : A is True. The other is : A is False. In both
rases (s is False.

It will be shown later that the proof of the validity or inconsisiency of a formulais a’
very important problem. In the propositional logic, since the number of interpretations
of a formula is finite, one can ahvays decide whether or not a formula in the
propesitional logic is valid (inconsistent) by exhaustively examining all of its possible
interprelations.

Ex. 4: For each of the following formulas, deiermine whelher it is valid, inconsistent,
consistent or some combination of these.

() E:~(-A)—B
()G:(A=>B)=>(~-B—->~4a)
(iDH:(Av~A)> (AAB)YA(~A)

(V) J: (AAB)A(~A)—> (Bv~B)

2.8 EQUIVALENT FORMS IN THE
PROPOSITIONAL LOGIC (PL)

Definition: Logically Equivalent Formulas: Two formulas G, and G, are said to be.
(logically) equivalent if for each interpretation i.€., truth assignment 10 all the atoms
that occur in either G, or G;; the truth values of G, and G: are identical. In other
words, for each interpretation, G, is True if and only if G;is True. And, for each
interpretation, G, is False if and only if G, is False.

As will be clear later, it is often necessary to transform a formula from one form to The Propositional
another, cspecially 10 a normal form. This is accomplished by replacing a formula in Logic
the given formula by a formula equivalent 10 it and repeating this process until the

desired form is obtained,

Example
We can verify that the formula E: ~ (A — B) is cquivalent the formula G: to A A ~ B
by examining the following truth table. The corresponding values in the fast two

columns are identical,

Table Joint Truih fable of ~ (A — B} and (A A~ B)

A B ~B (A > B) ~{A—>B) Aa~B
T T T T F F
T F T T T T
F T F T F F
F F T T F F

Solutions of problems using symbolic logic can be simplificd, if we can simplify
involved formulas by some cquivalent simpler formulas given in tabie below. These
cquivalences can be verified by using truth 1ables.

Table of Equivalences of PL

(1.1) E&G=(E->GA(G2E)

(1.2) E->G=~EvG

(13a) EvG=GvL; (MEAG=GAE

{1.4)a) (EvG)vH=Ev(GvH) BIEAGYAH=EA(GAH)
(15)) Ev(GAH)=(EvG)A(EvH); (B)EA(GvH)=(EAG)v(EAH)
(L.6)a) E v False = E; (MEATre=E

(17}a) Ev True= Truc (b) E A Falsc = False

(i.8)(a) Ev ~E=True; ()EA E=E

(1.9) ~{(~E)=E

(1.10)(a) ~(EvG)=~EnA~G: (B}~ (EAG)=~Ev~G

in the lable given above, True denotes the fact that the wit is True under all
Interpretations and Falsc denotes the wiT that is False under all interpretations.

Laws {1.3a), (1.3b) are often, called commutative laws; (1.4a), (1.4b) associative
laws; (1.52), (1.5b), distributive laws: and (1.10a), (1.10b), DPe Morgan’s baws,

2.9 NORMAL FORMS

Some Defitions: A clause is a disjunction of literals. For example, (E v ~ F v ~ G)
is a clause. But (E v ~ I A ~ G) is not a clause. A literal is either an alom, say A, or
its negation, say ~ A:

Definition: A formula E is said to be in a Conjunctive Normal Form {CNF)ifand
only if E has the form E : E; A ...AE,, n 2 1, where each of E,,...., E,isa
disjunction of literals.

Definition: A formula E is said to be in Disjunctive Normal Form {DNF) ifand only
if E has the form E: E, v E; v....E,, wherc cach E, is a conjunction of literals.

Examples: Lel A, B and C be atoms. Then F: (~A AB)v (A A~B A~ C)isa
formula in a disjunctive normal form. 13

il bbb AT

Iniroduction to Al

34

Example: Again G: (~ A v B) A (A v~Bwv~C)isa formula in Conjunctive Norma|
Form, because it is a conjunction of the two disjunctions of literals viz of (~ A v B)
and(Av~Bv~C)

Example: Each ol the following is neither in CNF nor in DNF

(i} (~AvB)v(AA~Bv()
) (A->B)A(~Ba~A)

Using table of equivalent formulas given above, any valid Propositional Logic
formula can be transformed into CNF as well as DNF.

The steps for conversion to DNF are as follows
Step 1: Use the equivalences to remove the [ogical operators ‘¢3” and *—’:

() E©G=(E>g)a(G-E)
)E->G=~EvG

Step 2 Remove ~'s, if occur consecutively more than once, using
(iii) ~(~E)}=E
(iv) Use De Morgan’s laws to take ‘-~ nearesl o atoms

() NEvG)=~Ea~G
(v {EAQ)=~Ev~G

Step 3 Use the distributive [aws repeatedly

(vi) Ev (G AH)=(Ev G) A(E v H)
(Vi) EA(G vH)=(EAG) v (E A H)

Example

Obtgin a disjunctive normat form for the formula ~(A > (~B A C)).

Consider A > (~BAC) =~Av(~BAQC) (Using (E= F)=(~E vF})
Hence, ~(A 2> (~BAC)=~(~Av(~-B ()
=~{(~A)A(~(~BAC)) (Using~(EvF)=
~EaAn~F})
=AABv(~C) (Using ~ (~E) =E and
~(EAF)=~Ev~-F

=(AAB)v(AA(~C)) (Using EA(Fv(G) =
(EAF) v(EAG))

However, if we are to obtain CNF of ~ A (= (~ B A C)), in the last but one step, we
obtain ’

~(A>(~BAC)=A A(Bv~C), which is in CNF, because, edch of A and

(B v ~C)is adisjunct.

Example: Obtain conjunctive Normal Form (CNF) for the formula: D — (A —»
(BAC) - - | '

Consider

DA (BAQ)) (using E = I =~ E v F jor the inner implication)
=B (~Av(BAQC)) (usingE = F~ K vF for the outer implication)
=~Dv{(~Av(BAC) _

=(~Dwv~A)v (B AC) (using Associative law for disjungtion)
=((~Dv~AvBYA(~-Dv~Av()

The last line denotes the conjunctive Normal Form of D— (4 = (B AC))
(using distributivity of v over »)

Note: Ifwe stop ar the last but one stop, then we ebtain (~ D v~ A) v(BAC)=~-D
v~ v{B AC}is a Disjunctive Normal Form for the given formula: D —» (4 — (B
ACH ., :

Ex. 5: Transform the following into disjunctive normal forms.
(~Av~-B)a(8-T) (iij)(A->BYy>R

Ex. 6: Transform the following into conjunclive normal forms.
ANA—>BY=>R

(ii) (A A B) v (A A~ DB)

Ex. 7; Verily cach of the following pairs of equivalent formulas by transferming
formulas on both sides of the sign = into the same normal form,

(}(A> B) = (A AB)=(~A > B)A (B = A)
(i) AABA(~Av~B)=~AA~BA(AvB)

2.10 LOGICAL DEDUCTION

Definition: A formula G is said to be a logical consequence of given formulas E,,.. .,
E. (or G is logical derivation of E,,....E;) if and only for any interpretation Lin
which E; A E; & ...A E, is true, for the interpretation 1, G is also truc. The proposition
E\, Ea...,E, are called avioms/premises of G.

Next, we state without proof two very useful theorems for establishing logical
derivations:,

Theorem 1: Given formulas E,,..., E, and a formula G, G is a logical derivation of
E,....Eq if'ant_i only if the formula ((E) AAE;) = G) is valid, i.e., True for all
interpretations of the formula.

Theorem 2: Given formulas E,,...,E, ard a formula G, G is a logical consequence or
derivation of E,,...E, if only il the fortaula (E(Aa B, A ~G) is inconsistent, i.e.,
False (or all interprelations of the formula.

The above two theorems are very uscful. They show that proving a particular
formula as a logical consequence of a finite set of formulas is equivalent to
proving that a certain single but related formula is valid or inconsistent.

‘Note: Significance of the above two theorems lies in the fact that logical consequence
relates two formulas, where as validity/inconsistency is only abour one formula. Also,
there are a number of well-known methods, including truth-1able method, for

The Propositional
Logic

35

TR - —-

Intreduction (o Al

36

cstablishing inconsistency/validity of a formula. Thus, formula G logically foflows,
from a given set of formulas, we check validity of single formula. And, for checking
validity of a single formula, we already have some mcthods including Truth-1able
method.

Definition: If the formula G is a logical consequence of the formula E,,.. .E,, then the
single fonmula ((E; AA E,}) = G) is called a theorem, and G is also called the

conclusion of the theorem.

There are at least three alternative methods of establishing formula G as a logical
consequence of given formulas Ey, E,,E,.

According to one of lhese methods, through (ruth table or olthenwise, it should be

established that for any interpretation for which each of Ey,E,, is truc then (or that |

interpretation G must be true.

According to second method, using Theorem 1, we should show that the formula:
(Ey AEaA....AE)— G '

is \»"aj'lid, i.e., True for cach of its interpretations. Again validity can be shown either

through a truth 1able or othenvise,

The Yast of the three methods uses Theorem 2. According to this method, in order 10
show, G as a logical consequence of E,, E;,...E,, it should be established that the
formula {E; A Ex AA E, A ~ () is inconsistent, i.e., is False under all its
interpretations. Next, we apply these methods through an example..

Efmmp[c: We are given the formulas

Ei:(A—B)E:-B,G:~A

We are required 1o show that G is a logical consequence of B, and E,. -
Method 1: From the following Table, it is clear that whenever E: A —» B and

Ea: ~ B both are simultanecusly True, (which is true only in the last row of the 1able)
then G: ~ A is also True. Hence, the proof.

A B A—oB ~ 8 ~ A
T T T F r
T F I T F
F T T F T
F F T] T

Method 2: We prove the result by showing the validity of E, A E; = G, i.e., of (A =
B) A ~ B) — ~ A by transforming it into a conjunctive normal form.

A->BA~B)>~A=~((A>B)a~B)v ~A (usingE—=F=(~EvF))
=~{({--AvB)a~B)v~A

=~f{(~AA~B}v(BA~B)v~A
=~((~AA~n~B)vFalse) v~ A

~{{ ~ A An~B)) v~ A (using De Morgan's Laws)

=(AvB)v-A~=

(BvA)yv~A

=Bv(Av-A)

=B v True

LA

R

= True (ahvays) The Propositional
Thus, ((A = B)A B} = ~ A is valid. Logic

Ex. 8: Using Truth Table show that G is a logical consequence of E, and [,

where B, : (A - B),E;:~B,G:~A, by establishing validity of the formula (E, A E,
— Q).

Iix. 9: Use (i) the truth table technique (ii) reduction to DNF/CNT to show that

(A —B)A~B A Ais inconsistent which, in turn proves that ~ A is a logical
consequence of (A — B) and ~ B.

2.11 APPLICATIONS

Next, we discuss some of the applications of Prepositional Logic.
Exampie

Suppose the stock prices go down if the interest rate goes up. Suppose also that most
people are unhappy when stock prices go down. Assume that the interest rate gocs up.
Show that we can cenclude that most people are unhappy.

To show the above conchision, let us denote the statements are as Jollows:

A [nterest rale goes up,
S : Stock prices go down
U : Most people are unhappy

The problem has the following four statements:

1) If the interest rale goes up, siock prices go down,
2) [Ifstock prices ga dewn, most people are unhappy.
3) The interest rate goes up. .

4) Most people are unhappy. (fo conclude)

The above-mentioned statements are symbolised as,

(I"YA= S

2HYS-» U

(37 A

(4 U (to conclude)

In order to estabiish the conclusion, we should show that (') is logical consequence
of (1), (2') and (3°). For this purpose, we show that (4'} is true whenever (UYAYA
(3" is true.

We transform ((A - S)A (S > U) A A) (representing (19 A (2) A (39) into a normal
form:

(A S)A B> U AAY=((~rAvS)A(-SVvU) A A) (by using E— F =
~EvF)
=(AA{(~AVvS)A(~=Sv) (by using E A F =
F AE, (to bring the
last clause A in the
beginning)

37

s Gl

Introduction to Al

38

=({((A A~A}v (A AS)) A (~ 8 v U)) (by using associative
lows and then using
distributivity of
‘A A" over the next
disjunct (~ A v 5))
=((Falsev (A AS)A(~S AU (using False

vE=E)
=(AASIA(~SVv)
=(AASA~S)v(AASAl)
=(A AFalse)v{(AASAU) (using A A False =

False)

=False v(AAS AU} :
=AASAU

Therefore, if ((A—> S) A(S— U) A A) is true, then (A A $ A U) is true. Since

{A A S AU) is irue Lthen each of A, §, and U is true, we conclude that U is true. Hence,

U is a logical consequence of 1), 2) and 3) given above.

Ex. 18:Given that if the Parliament refuses to enact new laws, then the strike will not
be over unless it [asts more than one year and the president of the firm resigns, will
the strike not be over if the Parliament refuses to acl and the strike just starts?

2.12 SUMMARY

In this unit, to begin with, we discuss what is Symbolic Logic and why it s it is
important to siudy it. The subject matter of symbolic logic consists of arguments,
where an argument consists of a number of s{atements — one of which is cailed

the conclusion and is supposed to be logically drawn [rom the others. Each one of the
other is called a premise, To be more specific, the subject of Symbolic Logic is the
study of how to develop tools and technigue to draw correct conclusions from a given
set of premisses or to verily whether a conclusion is correct or not. A conclusion is
correct in the sense: Whenever all the premisses are True then conclusion is
necessarily True. An argument with correct conclusion is called a valid argument.
Next, a sound argument is defined as a valid argument in which premises also have to
be True.

* {in some world).

In this unit, we study only a specific branch of symbolic logic, viz. Propositional
Logic (PL).

Next, we discuss how a statement, also called a well-formed formula (wif) and alsoa

"Proposition, which is the basic unit of an argument in PL, is appropriately denoted

and how it is interpreted, i.c., how a wff is given meaning. The meaning of a wff in
PL is only in terms of True or False. The wifs are classified as valid, invalid,
consistent and inconsistent. i

Then tools and iechniques in the form of Truth-table, logical deduction, normal forms
etc are discussed to test these properiies of wiTs and also to test validity of arguments.
Finally a number of applications of these concepts, tools and techniques of PL are

' nsed to solve problems that involve logical reasoning of PL systems.

2.13 SOLUTIONS/ANSWERS

Ex. 1 .
(a) Let H: He campaigns hard ; E: He will be elected
Then the statement becomes the formula:

H-->E The Propositional

(b) Let H: The Humidity is high, RTY: Tt will rain today Logic
RTW: It will rain tomorrow. i
Then

H —=RTY v RTW
{c) Let C: Cancer will be cored
D: Cancer’s cause will be determined
F: A new drug for cancer will be found
Then the statement becomes the formula:
{~ C) v(D A F). This formula may also be written as:
C—-o>DAaF
{d) Let C: One has courage
S: One has skill
M: One climbs mountain
Then the statement becomes the formula;
. M—'CAS)
Ex 2: (a) If he is sick then he needs a doctor, but, if he has an accident then he needs a
lawyer
(b)-If One requires a doctor then one must be ejther sick or injured,
{c) If he needs both a doctor and a lawyer then he has an accident.
(d) One reguires a docior and aiso a lawyer if and only if one is sick and also

injured.
Ex. 3: .
{1) Truth table of the formula; P: (~ A v B) A (~(A A~B)) is as given below.
A B ~A ~B ~AvB {AA~B|~(AA-B) |P
T T F g T F T T
T F F T F T F F
F T T F T F T T
F JF T T T F T T
Ex. 4

(i) Consistent but not valid, because, for For B as T and A as F, the formula
is T. But, for A as T and B as F the formula is F.

{ii) It can be easily that ~ B — ~ A has same truth-value as (A — B) for any
interpretation. Therefore, in stead of the given formula, we may consider
the formula
(A—-B)>(A->B)
which can be further writien as P — P, writing (A — B)as P. Even P —
can be writien as P v P = P = (A — B), The last formula is F when F and
A'is T. The formulais Twhen A is Fand Bis T. Hence, the formula is
neilher valid nor inconsistent,

Therefore, the formula is consistent but not valid

(iiiy For all truth assignments to A and B, L. H.S. of the formula is always T
and R. H.S. is always F. Hence the formula is inconsistent, i.e., always F

(iv) TheL. H.S. of the given formula is F under ail interpretations, Hence, the
formula is T under all interpretation. Therefore, the formula is valid.

Ex. 5: (i) Removing ‘=', we get

~(Av ~B)A(~SvT)

Taking '~ inside we ger

(AABA(-SVYT (using De Morgan's Law)

_ Using distributivin of A over vie pet

'(~AABA—-S}V(—'-AABA7I') -_

which is the required form 39

TTIyI

Introduction to Al

40

(ii) Removing outer — we get
~(A-o>B)vR

Remaving the other *—* we gel
~{(~AvB)vR

Taking ~ inside, we get
(An~B)vR,

which is the required form

Ex. 6:

(i) Using distributive law in the fast formula of 5 (ii) above, we gel

(Av R}A(~BvR)
which is the required CNF

(i1) Using Left distributivity of v ever A we get
(~AABYY AYA(~AADB)v~D)

Using Right distributivity inside each pair of parenthese of v over A we pet

(~AvVvAIABYAYA(~Av~B)a{Bv~B))
Using~AvA=T=Bv~B, wegel
(TA(BVvANYA((~AVv~B)AT)

which is equivalent to
(BvA)A((~Av~B)=(AvB)a(~Av~D)
is the required CNF.

Ex. 7: (i) Consider L.H.S
Removing inner — on L. [1.5., we get
(~AvB)>(AAB)
removing the other ‘=’
=~({~AvB)v(aaB)
Using De Morgan’s Laws, we get
=(~(~A)A(=B))v(A ADB)
=(AnA~-BYv{AAB)
which is in DNY*

For R.H.S, removing the lwo implications, we gel
(~(~A)vB)a(~BvA)
={(AvB)Aa(~-BwvA)
(vhich is in CNE, but we require DNF)
Using Left distribulivity of A over v, we get
=((AvBYA(~DBYv{(AvB}aA)
Using Right distribulivily of A over v, we gct
S((AA~B)v(BA~B)v{(AAAYv(BA A
UsingBA~B=F AnA=A

And PvF=Pwegct
=(AA~B)Vv({Av(BAA)
=(An~B)v(A)=(Ar~B)v(AAT)
=(Aa~B)v(AABv~B))
=(AA~B)v(AAr~B)v(A AB)
Using P v P = P, we get

=(AA~B)v(A AB)

-(ii) R.H.S Applying associative laws, we get

(~An-B)a(AvB)
Using left distributivity of A over v we get
=({(~AA~ByAad)v{~AA~B)AB)

Apgain using associativity of A and using~A AA=F=~B A B we gel

(i)

e eI o am

(i)

RH.S. =T
Consider L.1L.S, applying associalivity of A, we gel
={(AAB)Aa(~Av~B})),
using left distributivity and commutativity of A we get
=((AAB)A~A)Vv{AAB)A~B)
Using associativity of A and usingAA~A=F=BAa~B
=(BAFYv(AAT)
UsingAAF=F=B aF

=F

Ex. 8: The following table shows that ((A — B) A~ B) — ~ A is frue in every
interpretation. Therefore (A — B) A~ B} — ~ A is valid and according to the First
theorem, ~ A is a logical consequence of (A — B) and ~ B.

Trulh Table of {A > B)A~B) > ~ A

A B A—B ~B (A=B)A~B | ~A (AB)A~-B) 2~ A
T |T T F F F T '

T F F T F F T

F T T F r T T

F F T T T T T

Ex. 9: (i} From the following table, (A — B) A ~ B A A) being False for all
interpretations, is inconsistent.

TruthTable of (A > B)A~B A A

A B A—B ~B (A= B)a~BAA
T T T F F
T F F T F
F T T F F
F F T T F

{ii) Prove the inconsistency of By AE; A~ G, ie.,0f (A &> B)A~B A A by
(ransforming, into a disjunctive nermal form:

(A->BA~BAaA=(~AvB)a(~BAaA)
=(~AAan~BAA)YV(B A~B A A) (Distribuiive Law)
=(~AAAA~B)v(FAA)
= False v False = Ialse

Thus {A — B) A ~B A A is inconsistent.

Ex. 10:
Let us spmbolize the statements in the problem stare of above as foflows:

Al The Parliament refuses to acl.

B: The strike is over.

R: The president of the firm resigns.
S: The strike lasts more than one year.

Then the facts and the question to be answered in the problem can be symbolized as:

El: (A= (- B v (R A 8))) represents the statement “If the congress refuses to enact
new laws, then the strike will not be over unless it lasts more than one year and the

president of the firm resigns,’

E2 : A, represents the statement ‘The congress refuses to act, by and'

The I'ropesitional
Logic

41

=

Entreduction to A.I

42

.
E3: ~ S represent the statement * The strike just starts. '

Ed: -~ B {to be concluded)
Ex. 10: We solve the problem by showing thal the formula P: (A>(~BvRAS)

A A A~8)— - B is valid by two methods: (i) by reducing to CNF/DNF
(ii) by constructing truth-table of the formula.

LI

Methods (i) Removing the two occurrences of ‘—* |, we gel
P=~{({~Av(~Bv(RAS)IAAA~S)v~B

Using De Morgan’s Laws, we get
“(~({(~A)VEBVRASYVv~Av~~S)v~B
=(AA(~~BA~(RAS))V~AvS)v-B

=(AABA ~(RAS)HV~AVvS)v~B
P=(AABA(RvVv~Sv~AvSv~B.. .3)

Consider the case R is assigned value F

Then the formula P becomes

AABAEFFVv~SPvi{~Av~BvS)

=((AAB)AT)v(~(A AB)VS)

=(AABIV{~{AAB)VS)

By denoting A A B bychgelP=Hv(~HvS)=Twhulher(AAB) isTorT?

Consider the case when R is assigned T

Then the formula P given by (i} becomes -
(AABA(=Tv~S)v(~Av~DBvS8)(using De Morgan Laws)
=({(AAB)A~S}v(~(AAB)vS)
=((AAB)A~S)V(~(AABA~S))

Denoling (A A B A~ 8) by K we get i
P=Kv~K=T :
Hence P is valid. Hence, the proof.

Mecthod (ii)

The solution of the problem lies in showing that ~ B logical follows from i), Es, and
E,. This is cquivalent 1o showing that P: ((A - (~-Bv (R A S WMWAAA-8)>~Bis
a valid formula. The truth values of the above formula under all the interpretations are
shown in given table

=

-_EIV{RAS)

MU H=ET T ST ST |
TRMATEATAH TSI ST A m 2|
HH=SsTm eSS m |
e B B B B B I R B I R R B

e R e R R R R e | I
el I N W I R R I T R QR)

A B R S 5, Ea 15 ~B ~Bv(Ra E (Ey A2 A ED) The Praposilinnfl
. s) Sl Logic

T 7T T T T T I I T T T

T T T F F T T F F F T

T 7T F T F T I F F F T

T T I I r T T F F F T

T T T T T T 3 T T T T

T F T F T T T T T T T

T F F T T T r T T T T

T F & I T T T T T T T

F T T T T F F F T T T *

I T T 3 T I T F I T T

F T I T T F F iy F T T

F T I I T F T I r T T

F F T T T F I’ T T T T

F F T F T F T T T T T

F I F T T = F T T T T

I F F F T T T T T T

Under all interpretations forte .a is True. Hence, the formula P a valid formula. ~ B s
a logical consequence of EI, E2 and E3. Henee, the “The strike will not be over” is a
valid conclusion.

2.14 FURTHER READINGS

(Iri the order from elementary to advarnced)

2.

Fa L

el

McKay, Thomas J., Modern Formal Logic (Maciillan Publishing Company,
1989).

Gensler, Harry). Symbolic Logic: Classical and Advanced Svstems (Prentice
Hall, 1990).

Klenk, Virginia Understanding Symbolic Logic (Prentice Hall 1983)

Copi Irving M. & Cohen Carl, futroduction to Logic, IX edition, (Prentice Hall of
India, 2001).

Carroll, Lewis, Symbolic Logic & Game of Logic (Dover Publication, 1955).
Wells, D.G., Recreations in Logic (Dover Publications, 1979).

Suppes Patrick, Introduction to Logic (Affiliated East-West Press, 1957).
Getmanova, Alexandra, Logic (Progressive Publishers, Moscow, 1989).
Crossely, J.N. et al Hiar is Mathematical Logic? (Dover Publications, 1972).
Mendelson, Eliiot: fntroduction to Mathematical Lagic (Second Fdition) (D.Van
Nostrand Company, 1979).

43

R

' Uttar Pradesh

MCA-5.2

5522 Rajarshi Tandon Open Universiy Artificial Intelligence and
Knowledge Management

Block

2 |

KNOWLEDGE REPRESENTATION

UNIT 1

" The First Order Predicate Logic (FOPL) 5
UNIT 2
Deductive Inference Rules And Methods 235
UNIT 3
Systems For Imprecise/Incomplete Knowledge 50

BLOCK INTRODUCTION

In Unit 1, we discuss an extension of Propositional Logic viz., First Order Predicate
Logic (FOPL) as a tool for representing knowledge. First of all, the syntax and
semantics of well-formed formulae (wff) of FOPL are cxplained. Next, topics rclating
to reduction of wif of FOPL to Prenex Normal Form (PNT) and Skolem Standard
Form are discussed. Finally, we illustraic through a number of examples how tools
and techniques of FOPL are used in solving problems of our cveryday experience.

In Unit 2, we discuss within the framework of PL and FOPL, additional tools and
techriques in the form of some basic inference rules and resolution method, for
solving problems.

The problem with PL and FOPL systems taken together is that these systems assume
knowledge of the problem domain as essentially precise, compleie and consistent.
Also, both PL and FOPL are monotonic reasoning systems. But-in many situations,
addition of a new fact may require retraction of some earlier fact. In other words,
monotonic reasoning systems may be inadequate for reasoning in such situations.
However, in the real world, knowledge of the problem domains, in general, is
imprecise, incomplete and inconsistent. '

In Unit 3, we discuss some formal systems including Fuzzy Systems that attempt to
solve problems, the domains of which may be imprecise, incomplete or inconsistent.
We also discuss some Non-Monotonic reasoning systems including Default
Reasoning Sysiems and Closed World Reasoning Systems, in which due to
introduction of a new fact, an earlier fact or conclusion may be retracted.

UNIT1 THE FIRST-ORDER PREDICATE
LOGIC (FOPL)

Structure Page Nos.
1.0 Introduction ' 5
[.1 Objectives 7
1.2 Syniax of Predicate Logic 7
1.3 Prencx Normal Form (PNF) 2
1.4 (Skolem) Standard Form 15
1.5 Applications of FOPL 17
1.6 Summary 18
1.7 Solutions/Answers 19-
1.8 Further/Readings 24

1.0 INTRODUCTION

In the previous unit, we discussed how propositional logic helps us in solving
problems. However, one of the major problems with propositional logic is that,
somelimes, it is unable to capture even elementary type of reasoning or argument as
represented by the following statements:

Every man is mortal.
Raman is a man.
Hence, he is mortal.

The abave reasoning is intuitively cérréct. However, if we attempt to simulate the
reasoning through Propositional Logic and further, for this purpose, we use symbols
P, Q and R 1o denote the statements given above as:.

P: Every man is mortal,
Q: Raman is a man,’
R: Raman is mortal.

Once, the statements in the argument in English are symbolised to apply tools of
propositional logic, we just have three symbols P, Q and R available with us and
apparently no link or connection to the original statements or to each other. The
connections, which would have helped in solving the problem become invisible. In
Prepusitional Logic, there is no way, to conclude the spmbol R from the symbols P
and Q. However, as we mentioned earlier, even in a natural language, the conclusion
of the statement denoted by R from the statements dencled by P and Q is obvious.
Therefore, we scarch for some symbolic system of reasoning that helps us in
discussing argument forms of the above-mentioned type, in addition lo those forms
which can be discussed within the framework of propositional logic. First Order
Predicate Logic (FOPL) is the most well-known symbolic system for the pourpose.

The symbolic system of FOPL treats an atomic statement not as an indivisible unit.
Rather, FOPL not only {zeats an alomic statemnent divisible into subject and predicate
but even further decper structures of an atomic statement are considered in order to’
handle larger class of arguments. How and to what extent FOPL symbolizes and
establishes validiry/invalidity and consistencyfinconsistency of arguments is the
subjcct matter of this unit.

4

Y P

Knowledge Representaiin.

In addition (o the baggage of concepts of propositional logic, FOPL has (he
following additional concepts: terms, predicates and quantifiers. These concep!ts
will be introdueed at appropriate places.

In order to have a glimpse at how FOPL exlends propositional logic, lct us again
discuss the carlier argument.

Every man is mortal. Raman is a man.
Hence, he is mortal. ¢

In order 1o derive the validity of above simple argument, in stcad of looking at an

alomic statement as indivisible, to begin with, we divide each statement into subject

and predicate. The two predicates which occur in the above argument are:
'is mortal' and ‘is man’. i

Lct us use the notation
IL: is_mortal and
IN:is_man,

In view of the notation, the argument on para-phrasing becomes: :
For all x, if IN (x) then IL (). '
IN {Raman),

Hence, IL (RAMAN)

More generaliy, retations of the form greater-than (x, 3 denoting the phrase 'x is
greater than y*, is_brother of (%, y) denoting ‘x is brother of y," Berween (x, y, z)
denating the phrase that ‘x lies berween y and 2, and is_tall (x) denoting ‘x is ret” x|
some examples of predicates. The variables x, y, z etc which appear in a predicats
are called parameters of the predicate.

The parameters may be given some appropriate values such that after substitution of
appropriate vatue from all possible values of each of the variables, the predicates
becone statements, for each of which we can say whether it is “True’ or il is *Fais<".

For example, for the predicate greater-than (x, yj, if x is given value 3 then we obfain
greater-than (3, y}. for which still it is not possible to tell whether it is True or Falsc
Hence, “greater-than (3, y)' is also u predicate. Further, if the variable y is given value
5 then we get greater (3, 5) which , as we known, is False. Hence, it is possible 10
give its Truth-value, which is Folse in this case. Thus, from the predicate greater-tiso
f>. 3), we get the statement greater-than (3, 3) by assigning values 3 to the variabie ..
-and 5 to tlie variable y. These values 3 and 5 are called parametric values or
arguments ol the predicate greafer-than.

{Please note ‘argument of a finctionspredicate’ is a mathematical concept, differant
Jrom logical argument) .

Similarly, we can represent the phrase x likes y by the predicaie LIKE (x, y). Then
Ram likes Mothan can be represented by the statement LIKE (RAM, MOHAN). -

Also function symbols can be used in the first-brder logic. For example, we can use :
product {x, y) to denate x *y and father (x) to mean the father ofx". The slaicnen®
Mohan’s father loves Mohan can be symbolised as LOVE (father {Mohan), kohiois.
Thus,'we need not know name of father of Mohan and still we can talk about him. A
function serves such z role, '

We may note that LIKE (Ram, Mohan) and LOVE ([ather (Mohan),Mohan) are aton:-
or aloinic siatements of PL, in the sense that, one can associate a tuth-valse True or

False with each of these, and each of these does not involve a logical eperator iike ~,
Ay VW, > Or &,

Summarizing in the above discussion, LIKE (Ram, Mohan) and LOVE (father
(Adohan} Mohan) arc atoms; where as GREATER, LOVE and LIKE are predicate
svmbols; x and vy are variables and 3, Ram and Mohan are constants;and father and
product are function symbols.

1.1 OBJECTIVES

Afier studying this unit, you should be able to:

« explain why FOPL is required over and above PL;

¢ define, and give.appropriate examples for, cach of the new concepts required for
FOPL including those of quantifier, variable, constant, term, free and bound
occurrences of variables, closed and open-wif;

= check consistency/vatidity, if any, of closed formulas;

¢ reduce a given formula of FOPL 1o normal forms: Prenex Normal Ferm (PNF) and
(Skolem} Standard Form, and

+ use the tools and techniques of FOPL, developed in the unit, to sglve problems
requiring logical reasoning,

1.2 SYNTAX OF FOPL

In the introduction of the unit, we had a bird’s cye view of:

(i) How analysis of an atomic statement of PL can and should be carried out.
{(ii} What are the new concepts and terms that are required to discuss the subject
matter of FOPL.

(iit) How (i} and (ii) above will prove useful in solving problems using FCPL over and
- above the set of problems sofvable using only PL.

Also, in the introduction (o the previous unit, we mentioned that a symbolic logic is a

formal language and kence, all the rules for building constructs of the fanguage must

be specified clearly and unambiguously.

Next, we discuss how various constructs are built up from the alphabet.

for this purpose, from the discussion in the Introduction, we need at least the
following concepts. '

0V Individual symbals or constant symbols: These are usually harnes of - -bjects,
such as Ram, Mohan, numbers like 3, 5 etc.

ii} Variable symbols: These are usually lowercase unsubscripted or subscripted
tetiers, like x, v, z, x,.

ii{) Function symbols: These are usually lowercase letters like f, g, h,....or strings
of lowercase letters such.as farher and product.

iv) Predicate symbols, These are usually uppeicase letters like P, Q, R,....or
strings of lowercase Iciters such as greater-than, t;_ialf eic. '

A function symbal or predicate symbol takes a fixed number of arguments.ifa
Simction symibol fakes v arguments, fis called an w#-place function symbol. Similarly,
if a predicate svimbol Q lakes #r arguments, P is called an m-place predicate symbol.
For example, father is a one-place finction symbol, and GREATER and LIKE are

The First Order
Predicate 1.opic

Knowlcdge Represcntation

L

two-place predicare syntbols, However, father-of in father_of (x, y) is g, nvo place
predicate symbol.

The symbolic represcntation of an argument of a function or a predicate is called a
term where a term is defined recursively as follows:

1) A variable is a term.

ii) A constantis a term.

iii) Iffis an n-place function symbol, and t,....t, are terms, then f(t,....,L,) 1s a term.
iv) Any term can be generated only by the application of the rules given above.

For example: Since, y and 3 are both lerms and plus is a two-place function symbol,
plus (v, 3) is a term according to the above definition.

Furthermore, we can see that plus (plus (v, 3),) and father (father (Mohan)) are also
terms; the former denotes (v + 3} + y and the later denotes grandfather of Mohan.

A predicate can be thought of as a function that maps a list of constant arguments to T
or F. For example, GREATER is a predicate with GREATER (5, 2) as T, but
GREATER (1,3)asF.

We already know that in PL, an atom or atomic stalement is an indivisible unit-for
representing and validating arguments. Atoms in PL arc denoted generally by symbols
like P, Q, and R etc. But in FOPL,

Definition: An Atom is

(i) either an atom of Propositional Logic, or |
(ii) is obtained from an n-place predicate symbol P, and terms t,,....t, so that i
P (ty,....t;} is an atem.

Once, the atoms are defined_ by using the logical connectives defined in Propositional
Logic, and assuming having similar meaning in FOPL, we can build complex
formulas 6f FOPL. Two special symbol ¥ and 3 are used to denote qualifications In
FOPL. The symbols ¥ and 3 are called, respectively. the universal quantifier and
existential quantifier. For a variable x, (¥x) is read as for all x, and (3x) is read as
there exists an x. Next, we consider some examples to illustrate the concepts discussed
above.

In order to symbolize the following siatemenis:

i) There exists a number that is rational.
ii) - Every rational number is a real number -
i) Ferevery number here exists a number y, which is greater than x.

let us denote x is a rati- number by Q(x), x is a real number by R(x), and x is less
than y by LESS(x,). :n the above statements may be symbolized respectlively, as

(1) (3%) Q(x}
(i) (vx) (Q(x) = R (x)}
(iii) (¥x) (3y) LESStx, y).

Each of the expres-ions (i), (ii), and (iii) is called a formula or a well-formed formula
or witf.

. The First Order

Next, we discuss three new concepts, viz Seope of occurrence of a yuantified variable, ' :
. Predicale Logic

Bound occurrence of a quantifier variable or quantifier and Free occurrence of a
variable.

Before discussion of these concepis, we should know the difference between a
variable and occurrence of u vuriable in a quantifier expression.

The variable x has THREE occurrences in (he formuta

(3x) Q(x) = P(x, v}

Also, the variable y has only one occurrence and the variable z has zero occurrence in
the above formula. Next, we define the three concepts mentioned above,

Scope of an occurrence of a quantifiers is the smallest but complete formula
following the quaniifier sometimes delimited by pair /' parentheses. For example, Q(x)
is the scope of (3x) in the formula

(3x) Qlx) - Plx,).

But the séope of (3x) in the t'ormula (3} Q) — P(x, y)} is (Q(x) = P(x, ¥)).
Further in the formula:

(3x) (P(x) > Q(x, ¥)) A 3@x) (P(x) - R(x, 3)),

the scope iof first occurrence of (3x) is the formula (P(x) = Q (X, y) and the scope of
second occuirence of (3x) is the formula

(P(x) > R{x, 3)).

As another example, the scope of the only accurrence of the quantifier (Vy) in

(3) ((P(x) = Q(x) > (Vy)} (Q (x) = R ()} is { Q (x} = R(¥)). But the scope of the
only occurrence of the existential variable (3x) in the same formula is the formula:

(P = QN P < (¥¥) (Q (x) - R(y))

An occurrence of a variable in a formula is bound if and only if the occurrence is
within the scope of a quantifier employing the variable, or is the occurrence in that
gquantifjer. An occprrence of a variable in a formula is free if and only if this
occurrence of the variable is not bound.

Thus, in the formuta (3x) P(x, ¥} = Q (x). there are three occurrences of x, out of

which first twao occurrences of v are baund, where, the last occurrence of x is free,

because scepe of (3x) in ihe above formula is P(x, ¥). The only occurrence of y in the

formula is free, Thus, x is both a bound and a free variable in the above formula and y

is only a free variable in the formula so far, we tatked of an occurrence of a variable

-3 free or bound. Now, we talk ol (only) a variuble as {ree or bound. A variable is free

in a formula if at least one occurrence af it is Iree in the formula. A variable is bound

ir a formula if at least one occurrence of it is bound. .

I: may be noted that a variable can be both free and bound in a formula. In order 10

further elucidate the concepts of scope, free and bound occurrences,of a variable, we

consider a similar but different formula (or the purpose:

(3%) (P(x, y) = Q{x)). -

:n this formuia, scape of the only occurrence of the quantificr (3x) is the whole of the

rest of the furmula, viz. scope of (3x} in the given formula is (P(x, y) ='Q (x))

Also, all three ocgurrence of variable » are bound. The enly occurrence of v is free.
v . -

Remarks: It may be noted that a bound variable x 1> *ust 2 place holder or a dummy

variable in (he scnse that all occurrences of a bound va. izble x nuay be replaced by

anaiher free variable say 1. which does not occur in the fosmala. However, once, x is

replaced by y then y becomes bound. For e\ampk, £9x) ([{x)) 1s the same as (Vy) f

(¥). It is sontething like :

Knowledge Representalinn

3 Ii -

f v = .[: Yy =—§—~—5~=~--

Replacing a bound variable x by another variable y under the restrictions mentioned
above is called Renaming of a variable x

Having defined an atomic formula of FOPL, next, we consider the definition of a
general formulz formally in terms of atoms, logical connectives, and quantifiers.

Definition A well-formed formula, wif a just or fonnula in FOPL is defined
recursively as follows:

i} An atom or atomic formula is a wff

i) If E and G are wif, then cach of ~ (E), (Ev G), (EAG), (E >), (Ce& G)isa
wil.

1ii) IfE is a w)f and x is a {ree variable in E, then (VX)E is a wff,

iv) A Wff can be obtained only by applications of (i), (ii), and (iii) given above.

We may drop pairs of parentheses by agreeing that quantifiers have the least
scape. For example, {(Ix) P(x, ¥) ~» Q(x) stands Tor

A3X} Pix, y)) - Q{x)

We may note the fllowing two cases of translation:

(i) for all x, P(x} is Q(x) is translated as

(¥x) (P(x) = Q(x})
{(the other possibility (Yx) P(x) A Q(x) is nor valid,)

(ii) for some x, P(x) is Q (x) is translated as (3x) P{x) A Q(x)
(the other possibility (Ix) P(x) — Q(x) is not valid)

Example

Translate the statement: Every man is mortal. Raman is a man. Therefore, Raman is
mortal.

As discussed earlier, lei us denote “x is a man” by MAN (x), and “x is mortal™ by
MORTAL(x). Then “every man is mortal’* can be represenied by

- (¥x) (MAN(x) » MORTAL(x)),
“Raman is a man” by
MORTAL(Raman).

The whole argument can now be represented by

(¥x) (MAN(x) > MORTAL(x)) A MAN (Roman)>> MORTAL (Roman).
as a single statement.
In order 1o further explain symbolisation“let us recall the axioms of natural numbers:

(1) For every number, there is one and only one immediate successor,

(2) There is no number for which 0 is the immediate successor.

(3} For every number other than 0, there is one and only on¢ immediate
prcdecessor.

i.Ct the irimediare successor and predecessor of x, 1espectively bt denoted by fix) ane’
g0x).

s P

. LetE (x, y) denote x is equal fo y. Then the axioms of hatural numbers are represented
" respectively by the formulas:

() (¥x) (3y) (E(y, fx)) A (Y2) (Ez, f(x)) - E(y, 2)))
(i1) ~ ((3x) E(0, f(x})) and
(tii) (V) (~ E(x, 0) = ((¥)3, gx)) A (VZ) (E(z, g(x)} = E(y, 2))))-

Erom the semantics (for-meaning or interpretation) point of view, the wif of FOPL
may be divided inlo two categories, each consisting of

(i} wils, in cach of which, all occurrences of variables arc,bound.

(ii) wiffs, in each of which, at least one occurrence of a variable is free.

The wffs of FOPL in which there is no occurrence of a frec variable, are like wf5 of
PL in the sense that sve can call each of the wffs as True, False, consistent,
incansistent, valid, invalid ete. Each such a formula is called closed formula.
However, when a wil involves a free occurrence, then it is not possible to call such a
wif as True, False etc. Each of such a formula is

called an open formula,

For example: Each of the formulas: greater (X, y), greater (x, 3), (¥y) greater (x, y)
has one free occurrence of variable x. Hence, each is an open formula,

Each of the formulas: (¥x) (Jy) greater (%, v), (¥y) greater (y, 1), greater (9, 2), does
nat have free occurrence of any variable. Therefore each of these formulas is a closed
formuta.

Nexr we discuss some equivalences, and inequalities

The following equivalences hold for any two formulas P(x) and Q(x):
(i) (vX) P(x) A (¥x) Q(x) = (Vx) (P(x) A Q(x)) :

(i) (3x) P(x) v (3x) Q () = (@x) (P(x) v Q(x)

But the {ollowing inequalities hold, in general:

(iii) (V'x) (P(x) v Q(x) # (¥x) P(x) v (Vx) Q(x)

(iv) (3x) (P(x) A Q(x) = (Ix) P(x) A (IX) Q (x)

We justify (iii) & (iv) below:

_Let P(x): x is odd natura! number,
Q(x): x is even natural number.
Then L.H.S of (iii) above states for every natural number it is either odd or even,
which is correct. But R.H.S of (iii) states that every natural number is odd or every
natural number is even, which is not correct, -
Next, L.H.S. of (iv) states thal: there is a natural number which is both even and odd,

which is not correct. However, R.H.S. of (iv) says there is an integer which is odd :

and there is an integer which is even, correct.
Equivalcnces involving Negation of Quantifiers

(v) ~ (Vx) P(x) = (3x) ~ P(x)
(iv) ~ (3x) P(x) = (¥x)~ P(x)

Exa_mples_: For each of the following closed formula, Prove
(i} (¥x) P(x) A (3y) ~ P(y) is inconsistent.
(i) (Vx) P(x) > (By) P(y) is valid

Solution: (i) Consider
(Vx) P(x) ~ (3y) ~ P&))
={Vx) P(x) A~ (VYY) P(y) (taking negation o*_ur)

The First Ocder
Predicate Logic

11

-

Knowledge Representa:im:

But we know for each bound occurrence, a variable is dummy, and can b repluced in
the whole scope of the vuriable wniformiy by another free variable. Henee,

R =(W) Plx) A ~ (V) P(x)

Lach conjunce of the formula is either

Trie of False and, hence, can be thought of as a fornda of PL, in stead of formuda of
FOPL, Let us replace (Vx) (P(x) by Q, a formula of PL.

R=Q An~0Q=False
Hence, the proof.

{ii} Consider

{2} P(x} > 3y) P(y)

Replacing ‘> we get

=~ (¥x) P(x) v 3y} P(y)

= (3x) ~ P(x) v (3y) P(y}

= (3Ix} ~ P(x) v (3x) P(x) {reniaming x as y in the second disjunct)

la other words,

=(3x) (- P(x} v P(x)) {using equivalence)

The last formula s:ates: there is at least one element say b, for ~ P(b) v P(b) holds r.e.,
Jor b, either Pth) is False or P(b) is True.

But, as P is a prescate symbol and b is a constant ~ P(b) v P(b) must be Truc. Hence,
the proof.

Ex. 1 Let P(x) and Q(x} represent “x is a ratiénal number” and “x is a real number,”
respectively. Syinbolize the following sentences:;

(i) Every rational number is a real number.
{ii) Some real numbers are rational numbers.
(iii) Not every real number is a rational number.

Ex. 2 Lel C{x) mean “x is a used-car dealer,” and H(x) mean “x is honesL.” Translate
each of the following into Engiish:

1 OxCKx)
(i (Gx)HX)
(ii) (YX)C(x) > ~H X)) :

- {iv) (3} (CE) A H(xD)

(v) @) {HE) - C(x)).
Ex. 3 Prove the following;

(i} P(a) = ~ ((3x) P{x)) is consistent.
(i) (¥x) P(x) v ((Fy) ~ P(y)} is valid.

1.3 PRENEX NORMAL FORM

In order to facilitate problem solving through PL, we discussed two normal forms, viz,
the conjunciive normal form CNF and the disjunctive normal form DNF. In FOPL,
there is a normal form called the prenex normal forni. The use of a prenex normal
form of a fornutla simplifies the proof procedures, to be discussed.

Definition A forinula G in FOPL is said 10 be in a prenex normal form if and only i7
thz forimuia G is in the fom

(Qx1) QX)) P

where each (Qux;). fori = 1,n, is either (¥x,) or {3x,}, and P is a quanlifier {rce
lormula. The expression (Q1x;)....(Qq Xa) is called the prefix and P is called the
matrix of the formula G.

Examples of some formulas in prenex normal form:

(i) (3x) (IR, y) v Q). (VXY (V) (~ P(x, ¥) > S()),
(i) (VX)) (Vy) (32} (P(x.y) - R (2)).

Neat, we consider 2 method of transforming a given formula into 2 prenex
normal form. For this, first we discuss cquivalence of formulas in FOPL. Let us
recall that two formulas E and G are equivalent, denoted by E = G, if and only if the
truth values of F and G are identical under every interpretation. The pairs of
equivalent formulas given in Table of equivalent Formulas of previous unit are still
valid as these are quantifier—frec formulas of FOPL. However, there are pairs of
equivalent formulas of FOPL that contain quantifiers. Next, we discuss these
additional pairs of equivalent formulas. We introduce some nolation specific 1o FOPL:
the symbol G denote a formula that does not contain any free variable x. Then we
have the following pairs of equivalent formulas, where Q denotes a quantifter which is
either ¥ or 3. Nexl, we introduce four taws for pairs of equivalent formulas.

In the rest of the discussion of FOPL, P[x] is uscd to denote the fact that x is a free
variable in the formula P, for example, P[x] = {¥y) P (x, y). Simifarly, R [X, ¥]
denotes that variables x and y oceur as (rec variables in the formula R Some of these
equivalences, we have discussed carlier.

Then, the following laws involving quantifiers hold good in FOPL
() (QX)P[x] vG=(Qx)(Px]vC)
(i) (Qx)P[x] AG=(Qx)(P[x]AnG)

In the above two formulas, Q may be either ¥ or 3.

(it) ~{(Vx)}Px)=} (~P{x])
(v} ~((3X)P[x])=(¥x)(~P[x]
(v) (V%) P [x] A (Vx) H [x] = (¥x) (P [x] A H [x]).
(vi) @x) P [x} v (Ax) H[x] = (3%) (P [x] v H [x]).

Thal is, the universal quantifier ¥ and the existential quantifier 3 can be distributed
respectively over A and v.

But we must be carcful about (wve have already mentioned these inequalities)
(v (VXY E [X] v (Wx) H [x] # {¥x) (P [x] v H [x]) and
(Vi) 3x)P {x]) A () H [x] # 3x}{P [x] AHIXD

Steps for Transforming an FGPL Fermula into Prenex Normal Form
Step | Remove the connectives ‘¢ and <y using the equivalences
P>G=(P->G)Aa(G—oP)
P+ G=~PvG

Step 2 Use the equivalence to remove even number of ~'s
~{(~P)}=P

The First Order

Predicate Logic

SR T T4

I-tnowledge Representziloa

14

Step 3 Apply De Morpan's laws in order to bring the negation signs immediately
bafore atoms.

~(PvG) =~PA~G
~(PAG)=~Pv~G

and the quantification laws

~{(¥x)} P[x]) = 3x) (~P[x])
~((3x) P [x]) = (¥x) (~Fix])

Step 4 rename bound variables if necessary

Step 3 Bring quantifiers to the left before any predicate symbel appears in the
formula, This is achieved by using (i) lo (vi) discussed above.

We have already discussed that, if all occurrences of a bound variable are replaced
uniformly throughout by another variable not eccurring in the formula, then the
equivaience is preserved. Also, we mentioned under (vii) that ¥ does not distribute
over a aid under (viil) that 3 does not distribute over v. In such cases, in order to
bring quaniificrs io the left of the rest of the formula, we may have o first rename one
of bound variables, say x, may be renamed as 2, which docs not occur either as free or
bound in the other component formulas. And then we may use the following
equivalences.

(Q1'%) P[x] v (Q2 x) H[x]) = (Q1 x) (Q2 2) (P[x] v H[z])
(Q3 x) Px] A (Q4 %) H[x] = (Q3 x) (Q4 2) (P[x] A Hlz])

Example; Transfomi the following formulas into prenex normal forms:

(B (¥ (Q(0) - Gx) R (x,)
(i} (3x)(~{y) Qlx, y) > (32) R(2) 2 S (x)))
(i) (Vx)(v¥){(A2) Qz. y,2) A (Bu)R (x,u) > @V R (. v))).

Part (i)
Step 1: By removing ‘', we ge!
(Y} (~Q () v (@) R(x, ¥))
Step 2: By renaming x as z in {3x) R (x, y) the formula becomes
(V) (=Q () v @EDR (23D
Siep 3: As - Q(x) does not involve 2, we get
(V) G2} ~QX)vR(z ¥}

Part (i)
(I ~EyQx ¥) = ((F2) R (2> 8 (x)))
Step 1. Removing outer ‘="' we get
(@)~ E@ENQE YN v((32) R(2) > S (x)))
Step 2: Removing inner ‘—', and simplifying ~ (~ () } we get
() (AN Q& Y) v (- ((FZ) R(2) v S ()
Step 3: Taking ' inner most, we get
(3x) 3y) Q (x,¥) v ((vV2) ~ Rz} v §(x)))
As first component formula Q (x, y) does not involve z and S(x) does not involvg brih
y and z and - R(z) does not invelve y. Therefore, we may take out { 3 y) and (Vz) 50
that, we get
{3%) (Hy) (Vz) (Q (%, ¥} v (~R(2) v 8 (x)), which is 1.he required fornula in prenex
norma! form.

Tt T T

- r—wmrot— - -

Part (iii) _
(VR (Y2 Qv) At Fu) R (o u) 2 (3v)R (v 1))
Step 1: Removing =7 we get
(¥x) (V%) (32) Q (%, ¥, 2) A (~ (B0} R (%, W) v (B¥) R (y, V)

Step 2: Taking '~' inner most, we get
(vx) (7y} (32 Q (%, y, 2) A{(YU) ~ R (x, 1} v (3V) R (¥, v)))

Step 3: ds variables =, u & v do nor ocewr in the rest of the formula except the formuia
which is in its xcape, therefore, we can take all quaniifiers outside, preserving
the order of their occurrences, Thuy we get

(v} (VY)Y (B (MW EVIQE, v) AR U v Ry, v)))

Ex: 4 (i) Transform the formula (¥x) P(x) = (3x)} Q(x) into prenex normal lonn,

(ii) Obtain a prcnc.lx normal form for the formula
(¥Vx) (V) (32) (P(x, y) ~ P(y, 2)) > (Ju) Q (x. y, u))

1.4 (SKOLEM) STANDARD FORM

A further relinement of Prenex Normal Form-(PNF) called {(Skolem) Standard Form,
is the basis of problem solving through Resolution Method. The Resolution Methed
will be discussed in the next unit of the block.

The Standard Form of a formula of E:OPL is obtained througl: the following three
sleps:

(1) The given formula should be converled to Prenex Nonmnal Form (PNF), and then

(2) Convert the Matrix of the PNF, i.¢, quantifier-frec part of th2 PNF into
conjuiiclive normal form

(3} Skolomization: Eliminate the existential quantifiers using skeolem constants and
functions ‘

Before illustrating the process of conversion ol a formula of FOPL 1o Standard
Normal Form, through exampies, wWe discuss brietly skolem functions,
ok

Skolem Function
We in gencral, mentioned earlier that (3x) (vVv) P(x,y) = (¥y) (3x) P(x.y).......(1)

For example, if P{x,¥) stands for the relation *x>y" in the set of integers, then the
L.H.S. of the inequality (i} above states: some (fived) integer (x} is greater thun ail
infegers {)7). This statement is False,

On the ather hand, R.H.S. of the jncquality-(1) states: for each integer y, there is an
intgger x 5o that x>y. This statement is True.

The difference in meaning of the two sides of the inequality arises because of the fact

that on L.H.S. x in (3x) is independent of y in (¥y) whereas on R.H.S x of dependent
“ony. In other words, x on L H.S. of the inequality can be replaced by some constant

say ‘¢’ whereas on the right hand side x is some function, say, f(y) of y.

Therefore. the two parts of the inequalily (i) above may_be written as
- LH.S. ol (1) =(3x) (¥y) P (x.y} = (V¥) P(c.y),

The First Order
Predicate Logie

Knowledge Representation Dropping x because there is no x appearing in (V) P(c.y)

RH.S. of (1) = (¥¥) (3x) PUy).y) = (¥y) P(f(y), ¥)

The above argument, in essence, explains what is, meant by each of the terins viz.
skolem constam, skolem fimction and skolomisation.

The constants and functions which replace exisiential quantifiers are respectively -
called skolem constants and skolem functions. The process of replacing all
exisiential variables by skolem constanis and variables is called skolemisation. '

A [orm of a formula which is obtained afier applying the steps for

(i) reduction to PNF and then to

(i1) CNF and then

(iii) applying skolomization is called Skolem Standard Form or just Standard
Form.

We explain through examples, the skolomisation process afler PNF and CNF have
already been obtained.

Example: Skolomize the following:
(1) (3x1) (3x2) (9 (Fy2)(3x3)(Vys) Plxi, %20 X3, Y10 Y2 ¥2)

(1) (AT N Fx)(TY-) (3x3)IP(Xy, X2, X, Y1, Y2 JAEXRI(TY2H Txa) (Fye)Qxy, X2,
Y Ya)

Solution (i) As existential quantifiers x, and x; precede all universal quantifiers.
therefore, x, and X, arc (o be replaced by constants. bul by distinct constants, say by
‘e’ and ‘d’ respectively. As existential variable x; is preceded by universal quantifiers
v, and y, therefore, x; is replaced by some function {(y,, y2) of the variables ¥, and ya.
After making these substitutions and dropping universal and existential variatles. we
get the skolemized form of the given formula as

{7y} (¢y2) (Yya) (c, d, F(y1, ya)y Y, Yo i)

e e -

Solution (ii) As a first step we must bring all the quantifications in the beginning of
ihe formula through Prenex Normal Form reduction. Also,

Gx) P,) A BX) - QG2 (30 (P A LLQL, L),
therefore, we rehame the second occurrences of quantifiers (¥x,) and (V) by
renaming these as x5 and xg Hence, afler renaming and pulling out ail the
quantifications to the lel}, we get

(Ax)) (¥y1) (Fx2) (9y2) (3%5) (3xs) (Fy3) (3xe) (V)
(P(xla X X YD)’E) N Q (xS-; Xg ¥,)’4)

Then the existential variable x, is independent of all the universal quantifiers. Hence, _
X, may be replaced by a constant say, ‘¢'. Next x; is preceded by the universal .
quantifier y, hence, x; may be replaced by f(y,). The existential quantifier x; is
precaded by 1he universal quantifiers y, and ya. Hence x; may be replaced by g

(y1, y2). The existential quantifier x; is preceded by again universal quantifier y, and
y,. In other words, x5 is also a function of y, and y,. But, we have to use a different
function symbol say h and replace xx by h (yi. y:). Similarly x; may be replaced by

j (Yt, Yz yj)'

Thus, (Skolem) Standard Form becomes
(V1) (Vy2) (¥ya) (P e, flyn), &(yr, y2). v ¥2) A Q (B G, y2do S (e 2 ya)-

=

—_—

The First Order

Ex 5. Obtain a (skolem) standard form for each of the following formula: Predicate Logic

(i) (3x) (Yy) (¥v} 3Qz) (VW) Bu) P (x, ¥, 2, u, v, W)
iy (VO@ENEDPENv~QKX,2)>R(xy, 2)

1.5 APPLICATIONS OF FOPL

We have develeped tools of FOPL for solving problems requiring logical reasoning.

Now, we attempt solve the proeblem mentioned in the introduction the unit to show
insufficiency of Propositional Logic.
Example: Every man is morial. Raman is 2 man. Show that Raman is mortal. The
problem can be symbolized as:
(i) (¥x) (MAN(x) - MORTAL (x)).
(ii) MAN (Roman).
To show
(iii) Mortal (Raman)

Solution:
By Universal Instantiation of (i) with constant Raman, we get

(iv) Man (Raman} — Mortal (Raman)
Using Modus Ponens with {iii} & (iv) we get Mortal (Raman)

Ex: 6 No used-car dealer buys a used car for his family. Some people who buy used
cars for their families are absolutely dishonest. Conclude that some absolutely
dishonest people are not used-car dealers.

Ex: 7 Some patients like all doctors. No patient likes any quack. Therefore, no doctor
is a quack.

When iLis convenient, we shall regard a set of hiterals as synonymous with a clause.
For example, P v Q v ~R ={P, Q,~R}. A clause consisting of r literals is called
an r-literal clause. A one-literal clause is called a unit clause. When a clause
conlains no literal, we call it the emply clause. Since, the empty clause is always
false. We customarily denote the emply clause by False.

The disjunctions {~ P(x, f(x)} v R(x, f(x), g(x)}) and Q(x, g(x)) v R(x, {{x), g{x)) of
the standard form
~P(x, f{x) v R(x, fx), g(x)) A Q(x, g(x)} v R(x, f(x), £(x))

are clauses. A set S of clauses is regarded as a conjunction of all clauses in S, (1}
.with the condition that every variable thal occurs in S is considered governed by a
universal quantifier. By this convention, a standard form can be simply represented
by a set of clauses.

For example, the standard form the above mentioned formula of (1) can be
-represented by the set.

PO 1)) v R(x, f(x), 2(x)), Q(x, g()) v R(x," f{x), g(x))}-

l?:xamplc:

Find a standard form for the [ollowing formuia:

) o ~((vx) Kx) = 3y} (Y2} Qly, 2))
Solution: Removing the logical symbol '—’, we gl
~ {(~(¥x} P(x)) v (@) (v¥) Q (¥, 2))
Taking *~' inside, we getr
= (VX} P(x}A~@Fy) (Y2} Q(y 2)

Knowledpe Representation

Again laI;ing ~ inside. we pel
(V)P () A () (372~ Q (y, 2}

As variables x, prand - do nol occur any where else, expeet within their respective
scopes. therefore, the quantifiers may be taken in the beginning of the formula
without any changes. Hence, we get

(5%) (7Y} 32 (P (x} A~ Q{y , 2))

which is the required standard form.

Notation: Once, the standard form is obtained, there are no existentiat
quantifications left in the lormula. Also universal quantifications are dropped,
because whatever variables appear in the rest of the fofmula can have only
universal quantification and hence universal quantifications are implied. Next, if
the standard form (without apy quantifiers appearing) which is by definition also in
CNF, is of the form:

Cy A Cy ALa C, then, we may denote the slandard form as a set {cy, €3,....,Cp}.
For example, in the previous example, the standard normal form was

(X)) {7y) (Y2} (P (x} A~ Q (y, 2)), after dropping quantifiers becomes
P(}r~QQ0, 2

The last expression can be written as { P{x), ~ Q (v, z}}.

Ex: 8 Obtain a standard form of the formula
(Ax) (¥y) 2y (Qu) (W) (3w) P(x, v, z, u, v, W)

Ex: 9 Obtain a stundard form of the formula
(Vx) (3y} (32) (-P(X, ¥) A Q(x. 2)) v R{x, ¥, Z)).

Ex: 10 Using Show that G is logical conclusion of H, and 15, where

H, : (¢x) (C(x) = (W(x) A R(X))
H: : (3x) {C{x) A O(x))
G (3x) (O(x) A R(xY)

Ex: 11 Using resolution method. solve the following logic problem.
(i) Some patiems like all doctors, -
(ii) No patient likes any quake.
(iii) Therefore, no dactor is a quake.

Ex: 12 Conclude that some of the «{Ticials were drug pushers where we know the
following

(i) The custom officials searched everyone who entered this country who was
nota VIP. '

(ii) Some of the drug pushers entered this country and they were only scarched
by drug pushers. (iii) No drug pusher was a VIP.

(iv) Some ol the officials were drug pushers.

Ex: 13 From the given statement: Everyone who saves money earns interest, conclude

that if there is no interest, then nobody saves money.

1.6 SUMMARY

In ihis unit, initially. we discuss how inadequacy of PL to solve even simple probiciis,
requires some extension of PL or some other formal inferencing system so as to
caoinpensate for the inadequacy. First Order Predicale Logic (FOPLY, is such an
exiension of PL thas ix discussed in the uail.

Fhe First Order

Next, syntax of proper structure of a formula of FOPL. is discussed. In this respect, a ! .
'redicate Lapir

number of new concepts including those of quantilier, variable, constan, term, free
and bound occurrences of variables; closed and open wiT, consistency/validity of wfs
etc. are intreduced.

Next, tsvo normal forms viz. Prenex Normal Form (PNF) and Skolem Standard
Normal Form arc introduced. Finally, tools and techniques developed in the unit, are
used to solve problems involving logical reasoning.

1.7 SOLUTIONS/ANSWERS

Ex. 1(1) (¥x)(P(x)—> Q(x)}
(i) @x) (P(x} A Q(x))
(i) ~ (¥x) (Q (x) = P(x))

Ex.2

(i) There is (at least) one (person) who is a used-car dealer.

(ii) There is (at least) one {person) who is honest.

(iii) All used-car dealers are dishonest,

(iv) (At least) one used-car dealer is honest.

(v) There is at lcast one thing in the universe, (for which it can be said that) if

that something is Honest then that something is a used-car dealer
Naote: the above translation is not the same as: Some na gap one honesl, is a used-car
dealer. . -
-
Ex 3: (1)} After removal of *—* we get the given formula
=~ Pa) v ~ ({ 3x) P(x)}
=~ P(a) v (¥x) {(~P(x))

Now P(a) is an atom in PL which may assume any valuc T or F. On taking P(a) as '
the given formula becomes T, hence, consistent.
(ii) The formula can be written
(VX) P(x) v ~ (¥x) (P(X)), by iaking negation outside the second disjunct and then
renaming.
The (¥x) P(x) being closed is either T or F and hence can be treated as formula of FL.
Let ¥x P(x) be denoted by Q. Then the given formula may be denoted by Qv ~Q =
True {alwayvs) Therefore, formula is valid.

Ex: 4 (i) (¥x) P(x) = (3x) Q(x) =~ ((¥x) P(x)) v (3x) Q(x) (by removing the
connective-—»)

= (Ax) (~P(x}) v (3x) Q(x) (by taking ‘~’ inside)

= (3x) (~P(x) v Q(x)) (By taking distributivity of 3x over v)
Therefore, a prenex normal form of (¥x) P(x) = (3x) Q(x) is (Ax} (~P(x) v Q(x)).

(i) (vx) (V¥) ((32) (P(x, ¥) A P(y, 2)) > (3u) Q (x, v, u)) (removing the

conneciive—3)
= (V) (V) (~ (@) (P(x. 2) A Py, 2)))
v (3u) Q(x, ¥, u)J (using De Morgan's Laws)
= (vx) (Vy) ((vV2) (-P(x. 2) v ~ Py, 2)}
v (Ju) Q(x, y, 0)

= (V) {(¥y) (VZ) (~P(x, 2)

.19

S P m———

Knowledge Representation

20

v—~Ply,2) vQ{x y,u) (as z and u do not occur in the rest of
the formula except their respeciive
scopes)
Therefore, we obtain the last formula as a prenex normal form of the first formula.

Ex S (i} In the given formula (3x) is not preceded by any universal quantification.

Therefore, we replace the variable x by a (skolem) constant ¢ in the fon'nula and drop
Ix).

I\

Next, the existential quantifier (3z) is preceded by two universal quantifiers viz., v and

. we replace the variable z in the formula, by some function, say, f (v, y) and drop

(3z). Finally, existential variable (3u) is preceded by three universal quantifiers, viz.,
(¥¥), (¥y) and {(¥w). Thus, we replace in the formula the variable # by, some function
g(y, v, w) and drop the quantifier (3u). Finally, we obtain the standard form for the
given formula as

() (V) (VW) P(X, ¥,z 1, v, W)

(ii) Fiest of all, we reduce the matrix to CNF.
=(P(.‘(,)f)V"-Q(X,Z))—)R(X.)’,Z)
=~PNAQX Z) VR, y,2)
= ("' P_('K, }') vR (X, Y, Z\)) (Q (K, Z) vR (X, Y. Z))

Mext, in the formula, there are two existential quantifiers, viz., (3y) and (3z). Each of
these is preceded by the only universal quantifier, viz. (¥x).

Thus, each variable y and z is replaced by a function of x. But the two functions of x
for y and z must be different functions. Let us assume, variable, y is replaced in the
formula by f{x) and the variable z is replaced by g(x). Thus the initially given formula,
after dropping of existential quaniifiers is in the standard form:

(VJ{) ((“" P (x) }') vR (X, Y, Z)) A (Q (J\', Z) vR (X,)’,Z)))

Ex: 6 Let

(i) U(x), denote x is a wsed-car dealer,

(if) B(x)denote x buys a used car for his family, and
(it} D(x) denote x is absolutely dishonest,

The given problem can be symbolized as
(i} (¥x) (U(x} - ~ B(x))
(ii) (3x) (B(x) A D (x}).
(iii) (3x) (D(x) A ~ U(x)) (10 be shown)
By Exister.tial Instantiation of (iii) we ger that for sonie fixed ¢
{iv) B (c) A D (c)
Using Universal Instantiation of (i), with ¢ we ger
(v} U{c)>~B(c)
Using simplification of (iv) we get
(v} B {c) (vii) D(c) _
Using Modus Tollens with (v} and (vi} taking B (¢) =~ (~ (B (c}), we get
(vii) ~ U (c)
Using conjunction af (vif) & (viii), we get
(ix)D(c)a~U({c)
Using Existential Generalizatior of (ix) we ge!
(3%) (D(x) A~ U (x)),
which is required to be established.

Ex: 7

Let us use the notation for the predicates of the problem as follows:

P(x): X is a patient,
D{x): x-is a doctor,
Q(x): X is a quack,
L{x, ¥): x likes y.

The problem can be symbolized as follows:

() @x)((P(x) A (V) (DY) ~ Lx,)
(i@ (vx) (P(x) = (vy) (Ql) = ~ L (x, y)))
(i) (V) (D(X) = ~ Q(x)). (o be shown)

Taking Existential Instantiation of (i), we get a specific ¢ such that
(iv) P)A(VY)(D{)>L(cy)
By simplification of (iv}), we get
(v} P(c)
(vi) (WO —2LEY)

By Universal Instantiation of (ii) with x as ¢ (because the fact in (i) is irue Jor all
values of x and for the already considered value ¢ also. This type of association of an
already used value ¢ may not be allowed in Existential Instantiation)
we gel
(vii) P(c) > V() (Q) —>~L{cy)
Using Modus Ponens with (v) and (vii) we get
(viil) Y(y) (Q{y)-» ~L{c.¥)
As (¥y) is the quantifier appearing in both {vi) and (viii},
we can say that for an arbitrary a, we have
(ix) D (a) — L {c, a) for every a {from (vi)) and
' (x) Q (a} = ~ L {c, a) [or every a (from (viii}}
. (Using the cquivalent P - Q =~ Q — ~ P, we gel from (x):
L (c,a)—>~Q(a)

Ex: 8 In the formula, (3x) is preceded by no universal quantifiers, (Ju) is preceded by
(Vy) and (¥'z), and (3w) by (Vy). (Vz) and (¥z) and (¥v). Therefore, we replace the
existential variable x by a constant a, u by a two-place function f{y, z), and wby a
(hree-place function g(y, z, v). Thus, we obtain the following standard form of the
formula:

(Vy) (V2) (VV) P(a, y, 2. F (¥, 2), v, (¥, 7, V).

Ex: 9 As a first step, the matrix is transformed into the following conjunctive normal
form:

(¥x) @y) @2) (~P(x. y) v R(x, ¥, 2)) v R(x,y, 2)) A (Q(x, Z} v R(x, y, 2))).

As the existential variables (3y) and (3z} are both preceded by (¥x), the variables y
and = are replaced, by one-place function f(x) and g(x) respectively.

In this way, we obtain lhe standard form of the formuwia as:

(¥x) ((-~P(x, {(x)} v R(x, fx), g(x}) ~ (Qlx, g(x)) v R{x, (x), g(x)))).

Ex: 10 As we arc going to use resolution method, we consider ~ G: ~ (3x) (O x) A
R {x) as an axiom.

The First Order
Predicate Logic

21

B B et

St s -

hnow ledpe Representativn

b
-2

We usc the resolution method 10 show these clauses as unsatisfiable.
As H unsolves only guantifier al extreme lefl, its slandard form is:
H~) vWRIAREN=C(KIvWVWEDA(~-C VR
H,:C{a)A0(a) (afor3x)

For standard form ol ~ G

~G=~@ARN O AR =(/)(~0x)v-R{E)

Standard form of ~ G =~ O (x) v~ R (x)

Thus, the clauses of the wils of the problem are:

(i) ~C(x) v W(x)

(ii) ~C{(x) v R(x) from I,

iy C(a)

(ivi Ofa) from H;

() ~0(x) v~ R{x} from ~G.
Resolving (ii) and (iii), we gel

(vi) R(a) Resolving (iv) and {v), we get

(vii) ~R(a) Resolvent (v) and (iv)
Resolving (vi) and (vii) we get

(viit) False

Hernce, G is a logical conéequcncc of F| and F..

Ex : 11 Let us use the symbols:
P(x}: x is a patient
D{): x is o docior
Q(x): x is a quake
L {x, y): x likes y.
Therefore, the given statements in the problemn are symbolized as:
(i} 3x}(P(x} A (¥y) (D(y) - L{x. ¥)))
(i1} (vx) (P(x) = (¥y) (Q{y) = ~L(x, ¥)))
(it} (¥x) (D(x) = ~ Q(x)).

The clauses which are obrained after reducing to standard form are:

(iv) P(a) from (i) to standard
{(vi~D{) vl y) irom {i) form are;
{vi} ~ P(x) v ~ Q(y) v ~ L{x, y) from (ii)

(vii) D(b)) from ~ {iii)

{viii) Q(b) from ~ G from ~ (iii)

Resolving (v) and (vii), we get
(ix) L{(a, b)

Resolving (iv) and (vi) we get
(x)~Q(y) v~ L(a, y)

Resoiving (viit) and (x), we gel
{xi)-L (a, b)

Resolving (ix) #fd (xi), we get
{xii) False

Ex: 12 E(x): x entered this couwntry

V(x):x was VIP,

S(x. y): y searched x,

C(x): x was a custom official, and
P(x): x wus a drug pusher,

When symbolized, the known Tacts become:

(i} (vxHER) A~ V) = 3y) (S ¥ A C
(i) Ex) P A B A (VY S(x3) -2 Pyl
(i) (vx) (P(x) = ~ V() :

and on symbolization, the canclusion becomes

{iv) (3x) (P(x) ~» C)).

As resolution methed is to be used, we assume ~ {iv)
Afer converting Lo standard form. we get the clauses:
{v) ~ () v V(x) v Six, (ftx)) (from (i)
(vi) ~ G(x) v V(x) C{I(x) (from (i)}

(vii) P(a) (from (ii))
{viii) E(a) (from {ii))
(ix) - Sa, ¥) v P(y) (from (ii))
(x) ~P(x) v ~ V() (lrom (iii))
«(xi) ~ P{x) v ~ C(x) (from {iv))
Resolving (vii} and (x) we pet
(xii} ~ V(a)
Resolving {vi) and (viii). we get
(xiii) V{a) v C{f(a))
Resolving (xil) and {xiii}, we gel
(xiv) CKa))

Resolving {(v) and (viii), we get
{xv) V(a) v &(a, [{a))

Resolving (xii} and (xv) we gat
{xvi) 3(a. {ta))

Resotving (xvi) and {ix}
(xvii) P({[{a)n

Resolving (xvii) and {xi}, we get
(vt ~ C{Ia)

Resolving (xiv) and (xviti)
(xix) False

Hence. the prool by resolution method.
¥x: 13 Let us use the symbols:

S{x, v} x savesy,
M (x} x is money,
L {x): ¥ is interest,

E {x, v} x Eamns v.

Then tle given statement on symbolizalion becomes:

1) (7x} ((3y) (3(x, ¥) A M(¥)) = By) (Iy) A E(x, ¥))
the conclusion on

(i1) ~(3x) [(x} = (¥x) (Fy) (S(x. v}~ ~M(¥)

- () ~ (~ (3x) 1 () = (V=) (F9) (S(x, ¥) —» ~M{y))

The nepation of {ii) becomes (iii) ~ ((Ix) T{X) = (X (7Y) (S, ¥) = ~M()))

i a]
. After converling o standard form, we get the clauses:
(YY) ~S{N, v v~ M) v KD (from (1)}

T(v) SSUx,) v~ MUY v E(xL [G0). (rom (i)}

The First Order
Predicate 1 opic

Knawledge Representation

(vi) ~1(2) {from (iii))
(vii} S(a, b) (from (iii})
(viii} M(b) ¢ {from (iii))

Resolving (iv) and (vi}), we get
(ix) ~8(x, ¥) v ~M(y)

Resolving (vii} and (ix) we get
(x) ~ M(b)

Resolving (viii) and (x), we get
(xi) False :

1.8 FURTHER READINGS

1. McKay, Thomas }., Modern Formal Logic (Macmillan Publishing Company,
1989).

2. Gensler, Harry J. Symbolic Logic: Classical and Advanced Systems (Prentice Hall

of India, 1990).

Klenk, Virginia Understanding Symbolic Logic (Prentice Hall of India 1983}

Copi Irving M, & Cohen Carl, Introduction Logic IX edition, (Prentice Hall of

India, 2001).

Carroll, Lewis, Symbolic Logic & Game of Logic (Dover Publication, 1955).

Wells, D.G., Recrearions in Logic (Dover Publications, 1979).

Suppes Pauick:, Introduction to Logic (Affiliated East-West Press, 1957).

Getmanova, Alexandra, Logic (Progressive Publishers, Moscow, 1989).

. Crossely, J.N. et a! What is Muthematical Logic? (Dover Publications, 1972).

0. Mendelson, Elliott: Intraduction to Mathemarical Logic (Second Edition)
(D.Van Nostrand Company, 1979).

o Lk

UNIT 2 DEDUCTIVE INFERENCE RULES
AND METHODS

Structure Page Nos.
2.0 Introduction : 23
2.1 Objectives 26
2.2 Basic Inference Rules and Application in PL 26
23 Basic Inference Rules and Application in FOPL 31
2.4 Resolution Mcihod in PL 37
2.5 Resolution Method in FOPL 40
26 Summary .. 44
2.7 Solutions/Answers 45
2.8 Further Readings 49

*

2.0 INTRODUCTION

In order to establish validity/invalidity of a conclusion C, in an argument, from a
given set of facts/axioms A, Ay,..., A,; so far, we only know that giffter a truth table
should be constructed for the forinula P: A; A Ay A...A A, > C, or this formula
should be converted lo CNF or DNF through substitutions of equivaleat formulas and
simpliftcations. There are other alternative methods also. However, the problem with
these methods is that as the number # of axioms becomes larger, the formula becomes
complex (imagine n = 50) and the number of involved variables, say &, also.generally,
increases. With number of variables & involved in the argument, the size of Truth-
table becomes 2. For large &, the number of rows, i.e. 2* becomes, almost
unmanageable, Therefore, we need 1o search for alternative methods which instead of
processing the whole of the argument as a single formula, process each of the
individual formulas A,, A,,..., and C of the argument and their derivatives by
applying some rules which preserve validity,

[n Section 3.2, we introduce cight inference rules for drawing valid conclusions in PL.
Next, tn Section 3.3, we introduce four quantification rules, so that all the twelve
inference rules are used to validate conclusions in FOPL. The methods of drawing
valid conclusions. discussed so far, are cases of an approach of drawing valid
conclusions, called natural deduction appreach of making inferences in which the
reasolling system initiates reasoning process from the axioms, uses inferencing riles
and, if the conclusion can be validly drawn, then uliimately reaches the intended -
couclusion,

On the other hand, there is another approach called Refutation approach of drawing
valid conclusions. According to this approach, negation of the intended conclusion is
taken as an additional axiom. If the conclusion can be vatidly drawn from the axioms,
then tbrough application of inference rules, a contradiction is encountered, i.2., two
formulas which are mutual negations, are encountered during the process of making
inference. ‘

Resolution method is a singlc rule refutalion method. Resolution method and its
applications for PL are discussed in Section 3.4. Resciution Method and its
applications for FQPL are discussed in Section 3.5.

TOTTTTYTRTT T

Knowledge Represcntation

2.1 OBJECTIVES

After poing through this unit, you should be able 1o-

s enumeralc basic inference rules of PL and also be able to apply these in solving
problems requiring PL reasoning;

¢ enumerate four basic quantification rules and be able 1o apply these rules
alongwith basic rules of PL to solve preblems involving FOPL reasoning;

» c¢xplain Reselution method for PL and apply it in solving problems requiring PL
rcasoning, and

+ explain Resolution method for FOPL 1o solve problems involvine FOPL
reasoning.

F THEEET I

2.2 BASICINFERENCE RULES AND !
APPLICATIONS IN PL

In this section, we study a method which uses a number of rides of inference for
drawing valid conclusions, and later we study Resolurion Method for establishing
validity of arguments.

We introduce ¢ighl rules of inference. Each of these rules has a specific name. In
order to familiarize ourselves with

(i) whatarules efinference is

(i} how a nele is represented, and

(tii) how a rule of inference helps us in sotving problems.

We discuss in some detail, one of the rules known as Modus Pones.
Rule 1 Modus Ponens (M. P.)

P>0.P
0

Norations for M. P.:

{The coruma is read as ‘and’. The rule may alse be writnten as
P.P—>Q

The rule states that if formulas P and P — Q (of either propositional logic or

predicate logic) are True then we can assume the Truth of Q.
The assumpiion is based on the fact that through truth-table methed or othenvise we
can show that if P and P — Q, each is assigned truth vaiue T then Q must have truth

value T.

. L.e,. we may assune conmutativity of commea)

= — -a-

Consider the Table

P—-Q

S|~
el B!
N-..]

._.]

Irom the above table. we can sce that P and P — Q botivare True only in the tirst
row and in the ficst row Q. the formuly which s inferred. is also True,

The same is the reason for allowing use of other rules of inference in deducing
»
new facts.

Rule 2 Module Tollens (M. T.)

P>Q ~0Q
~P

The rule states if P — Q is True, but Q| the conseguent of P— O is Fulse then the
antecedemt Pof ' — Q is also False.

The validity of the rute may again be established through truth-table as follows:

P Q P->Q
T T T
T F F
F T T
F F T

In the above lable P — O is T'and O is False simultancously only in the last row and
in this row P, the formula which is inferred, is False.

Note: The validity of the rest of the rules will not be established. However, it is
desirable that the studenis verify the validity of the other inference rules also through
Truth-Table or othenvise.

Rule 3 Hypothetical Syllogism (H.P.)

P00, 0->R
P> R

The rule states that if we asswne that both the formulas P — Qand Q — Rare True

then we may assume P — R is also True.
Rule 4 Simplification (Simp.)

(i) P;Q and (in1 2L

‘-‘
The rule says that if P A Q is True then P can be assumed to be True (and similarly
O may be assumed to be True.) -

Some of us may be surprised at the mention of the rule, thinking that if Pa Qs True
then P must be True. The symbol A is generally read as ‘and . Bui the significance of
the rule is that ‘A " is merely o symbol and its mzaning in the sense of ‘and’ comes
only through this rule of inference.

Rule 5 Conjunction (Conj.)

£o
PAQ

Deductive lalerenie
Rules and Methods

Knuwledge Represcatitivn

The rule states if formulas P and Q are simultaneously True then the formuln
P A Q can be assumed to be True.

Rule.-6 Disjunctive Syilogism (D.S.)

. PvQ, ~TP o PV, ~0 : ,,
(i) —hQ and (ii) —Yp .

The rwo rules above siate that [f i1 is given that (a) Pv Q is true and (b) one of P or
O is False, then other must be True

Raule 7 Addition {(Add.)

and (ii) Q
PvQ PvQ

()
The rules siate that if one of P and Q is assumed 1o be True, then we can assume
Py Qo be True.

Rule 8 Dilemma (Dil.)

PO RS, PVR
ovSs

The rule states that if both the formidas P — Q and R— S are assumed to be True and
if Pv R, ie. disjunction of the antecedents is assumed to be ‘True’, then assume
Truth of Qv S, which is disjunction of consequents.
- .
We demonstrate how the above-mentioned rules of inference can bé used in
solving problems.

Example: Symbolize and construct a proof for the following valid argument using
rules of inference:

(i} If you smoke or drink too much then you do not sleep well, and if you do not slecp
well or do not eat wellthen you feet rotten, (ii) If you feel rotien, you do not exercise-
well and do not study enough, (iii) You do smoke too much, herefore, (iv) You do
not study enough.

Solution: Ler us symbolize the statemers in the argument as follows:

S: You smoke too much

C: You drink too much

W: You sleep well

E: You eat well

R: You {eel rotien

X 1 You exercise well

T: You study enough

Then the three given siatements marked as {i), (ii) and (ii) are symbolized as follows:

(N {(SvD)—> ~W) A{(~Wv~E) = R)
()R = (~X A~T)
(i} S

(iv) ~T (To show)

Pna
Through simplification of (i), i.e., by using

y We get
VSvD o~ H
Using Add on (iii)| i.e. by usin S we get
sin on (i1i)| 1.e. ,
8 & SvD
(vi)SvD

and using syllogism on (v) and (vi} we get
(vii) ~ W

Again through simplliﬁcalion of (i), we get
(vi){(~Wv~E)—>R

and by addition of (vii), we get

(ix) ~Wwv~E

From (viii} and {ix) using M.P., we get
"R

Again using M.P. with (ii) & (x), we gct

(i) ~X A~T

Again using simplification of (xi) we get the required formula

(xi)~T

Example: Symbolize and construct a proof for the following valid argument: (i) 1f the
Bible is literally true then the Earth was created in six days, (ii) [T the Earth was
created in six days then carbon dating techniques are useless and scientists are frauds,
- {iii) Scientists are not frauds, (iv) The Bible is literally true, therefore, (iv) God does

not exisL.
Solution: Let us symbolize as follows:

B: Bible is literally true

E: The Earth was created in six days

C: Carbon dating techniques are useless
S: Scientists are frauds

G: God exists

Deductive Inferenct
Rules and Method.

Ty TTTA TR T

Knmwvicdge Representalian

Thercjore the statements in the given argumenis are symbolically represented as :

(i) B E

(i) E>CAS
(iii) ~§

(iv) B

(v} ~G (to show)

Using M.P. on (i} and (iv), we gel
(vi) &

Using MLP. on (i) & (Vi) we get
(vii) CA S

Using Simp on (vii), we get

(viii) S

Using Addition on (viii), we get

(ix)Sv~G

Using (D.S.) on (iif) & (ix) we ger

(x)~G £
The last statement is what is (o be proved.

Remarks: in the above deduction, (iii) and (viii) are contradicting each other. In
general, if in the process of derivation, we encounter two statement (like S and ~3)
which contradict each other, then we can deduce any stalement cven if the statement
can never be True in any sense. Thus, if both S and ~ S have already occurred in the
process of derivation, then we can assume the truth of any statement. For example, we
can assume the truth of the statement: ‘Moon is mude of green cheese’

The technique, 1o prove any non-sense slatement say NON-SENSE in a situation
where already two mutually contradicting statements say S and ~ 8 have already beci
encountered, is the same as is used in deriving (ix) by applying Addition Rule to (viiij.

Thus, once we encounter S, where ~8 has already occurred, use Addition rule to get
5 v NON-SENSE from S. Then use D.S. on § v NON-SENSE and ~S, we get NON-
SENSE,

Ex.1 Given the following three statements:

(v} Matter abways exisied

(1Y Ifthere is God, then God creared the universe.

(iil) If GoJ created the universe, then matter did not always exist.

Show the truth of the statement: (iv) There is no God.

Ex.2 Using propositional logic, show that, if the following statements are
assumed fo be lrue:

(i) There is a moral law.
(1) If'there is a moral law, then someone gave it.
(iii) If someone gave the moral law, then there is God.

then the following statement is also irue: o

(iv} there is GOD

Deducrive Inference

2.3 BASIC INFERENCING RULES AND _ Rules and Methods
APPLICATIONS IN FOPL

In the previous unit, we discussed eight inferencing rules af Propositional Logic (PL)
and further discussed applications of these rules in exhibiting validity/invalidity of
arguments in PL. In this section, the earlier eight rules are extended to inciude four
mare rules involving quantificrs for inferencing. Each of the new rules, is called a
Quantifier Rule. The extended set of 12 rules is then used for validating arguments in
First Order Predicate Logic (FOPL).

Before introducing and discussing the Quantifier rules, we briefly discuss why, at all,
these rules are required. For this purpose, let us recall the argument discussed earlier,
which Propositional Logic could not handle:

(i) Every man is mortal.
{ii} Raman is a man.
(iiiy Raman is mortal.

The equivalent symbolic form of the argument is given by:

(i) (¥x) (Man {x) = Mortal (x)
(ii’}Man (Raman)
(iii")y Mortal (Raman}

If. instead of (i} we were given

(iv) Man (Raman) —» Mortal (Raman),

(which is a_formula of Propositional Logic also)

then using Modus Ponens on (ii’} & (iv) in Propositional Logic, we would have
obtained (iii') Mortal (Raman).)

However, from (i’) & (ii") we cannot derive in Propositional Logic (iii’). This
suggests that there should be mechanisms for dropping and introducing quantifier
appropriately, t.c., in such a manner that validity of arguments i not violated. Without
discussing the validity-preserving characteristics, we introduce the four Quantifier
rules.

(i) Universal Instantiation Rule (U.L):

(¥x) p(x)
pla)

Where is an a arbitrary constant.

The rule states if (Vi) p(x} is True, then we can assume P(a} as True for any coristant
a {where a constant a is like Raman). It can be easily seen that the rule associates u
Joermula P(a) of Propositienal Logic 10 a formuta (V) p(x) of FOPL. The
significance of the rule lies in the fact thar once we obtain a formula like P(a), then
the reusoning process of Propositional Logic mcy be used. The rule may be used ,
whenever, its-application seems lo be appropriate.

L

(ii) Universal Generalisation Rule (U.G.)

Pla), forall a
(vx) p{x) N

ed

TTAT T

e ey

Knuwledge Representztise

The rrde says thai if it 15 known that for all constanis a, the statement P(a) is. True,
then we can, instead, use the-formula (¥x)p(x). -

The rule associales with a set of formulas Pfa} for all a of Propositional Logic, a
formula (Vx) p{x)of FOPL. :

Before using the rule, we must ensure that P(a) is True for all a, -
Othenwise it may lead to wrong conclusions. -

(iii)) Existential Instantiation Rule (E. 1.}

3% P(x) (EL)
P(a)

The rule says if the Truth of (Ax) P(x) is known then we can assume the Truth of

P{a) for some fixed a . The rule, again, associates a formula Pfa) of Propositional
Logic to a formula (¥Yx) p(x) o/ FOPL.

An inappropriate application of this rule may lead to wrong conclusions. The source
of possible errors lies in the fact that the choice ‘a’ in the rule is not arbitrary and can
not be known at the time of deducing P(a) from {(3x) P(x).

If during the process of deduction some other (Fy) O(y)or (3x}(R(x))oreven

another (Fx}P(x} is encountered, then each lime a new constant say b, ¢ etc. should be
chosen to infer Q (b) from (3y) OQ(¥) or R(c} from (Ix)(R(x)) or P(d} from

(2x) P(x).

{iv) Existential Generalization Rule (E.G)

P I
___..(& (E.G)
(Ix}P(x)
The rule states that if P(a), a formula of Propus.. . ..:gicis True, then the Truth of

(3x) P(x), a formula of FOPL , may be assumed 10 he True.

The Universal Generalisation (U.G) and Exislential Instanliation rules should be
applied with ntmost care, however, olher two rules may be applied, whenever, it
appears to be appropriate. T

Next, The purpose af the two rules, viz,,

(i} Universal Instantiation Rule (U. I) ;

(iii) Existantial Rule (E. [}

is to associate formulas of Propositional Lagic (PL) to formulas of FOPL in a
manner, the validity of arguments due to these associations, is no! disturbed. Once, we
get formulas of PL, then any of the eight rules of inference of PL-may be used to '
validate canclusions and solve problems requiring logical reasoning for their St
solutions. ' ;

The purpose of the other Quantification rules viz. for generclisation, ie.,
. P(a), foralla

" T v P

P{a} ;.

ey

is that the conclusion to be drawn in FOPL is not generally a jormula of PL but a
Jormula of FOPL. However, while making inference, we may be first associating
Jormuias of PL with formulas of FOPL and then use inference rules of PL to conclude
Jormudas in PL. But the conclusion to be made in the problent may correspond to a
Sormula of FOPL. These two generalisation rules help us in associating formulas of
FOPL with formulas of PL.

Example: Tell, supported with reasons, which one of the following is a correct
inference and which one is not a correct inference.

(i) To conclude F{(a) nG{a} - H{a) A [(a)
Jrom (¥x) (F(x) A G(.‘c)) — H{x) A I(x)

using Universal Instantiation ({/.1)

The above inference or conclusion is iicorrect in view 'of the fact that the scope of -
universal quantification is only the formula: F{x) A G(x) and not the whole of the

formuta.

The occurrences of x in H{x) A [(x) are free occurrences. Thus, one of the correct

inferences would have been:

FlayaG(a)y— H(x)a l(x)

(ii) To conclude F{aYAG(a) = H{a)a I{a) from

() (FOOY A G (x) 2 H(x) v [()} using UL
The conclusion is correct in view of the argument given in (i) above.

(iii) To conclude ~ F(a} for an arbitrary a, from ~(¥.2) F(x) using U.L.

The conciusion is incorrect, becatise actually
~(¥Vx}F() = (3x) ~F (x)

Thus, the inference is not a case of UL, but of Exisiential Instantiation (E.L.)

Further, as per restrictions, we can not say for which a, ~ #(x) is True. Of course,
-~ F{x) is true for some consian, bul not necessarily for a pre-assigned conslant a.

(iv) to conclude ((F(b) AG(B) > H(c))
from (3x)((F(b) A G(J:)} - > H{c)
Using E.L. is nat correci

The reason being thal the censtant to be substituled for x cannot be asswmed 1o be the
seme constant 5. being given in advance, as an argument of £, However,

to conclude ((F(0IAG(a} = H(:c))
from (3x)((F(bLr G(x)) > H(c))is correet

Ex. 3: Tell for each of the following along with appronnalc. reasoning, whether it is a
case of correctincorrect reasoning.

(i} To conciude

‘Deductive Infcrence
Rules and Methods

L

Led

e ——————— e e =T e rl

Knowledpe Representation

P

F (a) nG{a) by applying E.l. to
(Fc} Fix) A 300G (x) '

(ii) To conclude F(a)v(G(a)n H(a)) from
(3x) F(x) v (G(x) A H(x))

&

(iii) To conclude (3¢ (~ F(y) = ~G (¥)) from
~Ffa) -~ G(a)

(iv) To conclude ~ {{3x)(F(x) A G(x)) from ~{ F{a) A G(a))

. Therefore, (i), (i) and (iii) can be symbolized as:

Step for using Predicate Calculus as a Language for Representing Knowledge &
for Reasoning:

Step I; Conceptualisation: First of all, all the relevant entities and the relations that
axist etween these entities are explicitly enumerated. Some of the implicit facts like,
‘a person dead once is dead for ever” have to be explicated.

Step 2: MNomencluture & Translation: Giving appropriate names to objects and
relations. And then translating the given senlences given in English to formulas in
FOPL. Approprimie names are essential in order to puide a reasoning system based on
FOPL. It is well-established that no reasoning system is complete. In other words, a
reasoning system iay need help in arriving at desired conciusion,

Step 3: Finding appropriale sequence of reasoning steps, involving selection of
appropriate rule and appropriate FOPL formulas to which the selected rule is to be

“applied, 1o reach the conclusion. '

Applications of the 12 inferrencing rules (8 of Propositional Logic and 4
involving Quantifiers.)

Example: Symbolize the following and then construct a proof for the argument:

(i) Anyonc who repairs his own car is highly skilled and saves a lot of money o
Tepalrs

(i) Some people who repair thei- own cars have menial jobs, Therefore,

(i) Some people with menial jobs are highly skilled.

Solution: Let us use the notation:

P{x) X is a person

Sy X Saves MoOney on Tepairs

M) x has a menial job

R(x) : x repairs his own car .
H(x) - x is highly skilled. . :

(D (¥x) (R(x) = (H(x)AS(x)})
(i 3(x) (R{x}aM(x}) _ :
(i) (3x) (M(X)AH(x)) (to be concluded)

From (i} using Existential Instantiation (E.[}, we get, for some fixed a

(iv) R{a) A M(a}
Then by simplification rule of Propusitional Logic, we gei
(v) R@) :
From (i), using Universal Instantiation (U.1), we get
(vi) R(a) > H(a) A S(a)
Using modus ponens w.r.i. (v} and (vi} we get
(vii) H(a) A S(a)
By specialisation of {vii) we get
(viii) H(a)
By specialisation of {iv) we get
(ix) M(a)
By conjunctions of (viii} & (ix} we get
M(a) A H{a)
By Existential Gencralisation, we gel
(3x) (M(x) A H(x))

Hence, (iii) is concluded.

Example:

6 Some juveniles who commit miner offences are thrown into prison, and any
juvenile thrown into prison is exposed to all sorts af hardened crintinals,

(i) A juvenile who is exposed to all serts of hardenco criminals will become bitter

and learn more techniques for committing crimes.

(iii) Any individual who leamns more technigues for commitling crimes is a menace

to society, il he is bitter,

(iv) Therefore, some jurveniles who commit minor offences will be menaces to the

socicly.

Example: Lci us symbolize the statement in the given argument as follows:

() - Nx) - x is juvenile. .

(iiy - Cx) x commils minor offences.

(iii) P(x) X is thrown into prison.

(iv) E(x) x is exposed 1o hardened criminals.

(v) B(x) : x becomes bitter. '

(vi) T(x) ~ x learns more techniques {or committing crimes.
(viiy M(x) : X is a menace o socivly.

The statemenis of the argument may be translated as:

(i (3x) {J(x) AC(x) AP(X)) M(Vy) U(Y)E(Y))
(ii) (Ix) (J(x) AE(x)— B(x) AT(x};

(it)) (¥x) (Tx) AB(x)—> M(x))

Therefore,)

Gv) (3x) (J(x) AC(x) AM(x))

'B? simpliﬁ-cation_fi) bacomes
) @)U ACE) AP()) and
vi) ()0 -+ E(YD

From (v} through Exist}entiz;.l Instantiation, [or some fixed &, we gel

(vii) }(b) ~C(B) AP(b)

Through simplificalion (vii) becomes -

(viit) i(b)

i

Deductive [nference
Rules and Methaods

L¥1]

Ln

Ty TToA T T

R -

I<nowlcdge Represcntation

(ix) C(b) and
{(x) P(b}

Using Universal Instantiation, on {vi), we get
(xi) Xb)—>E(b)

Using Modus Ponens in (vii) and (xi) we get
(xii) E(b)

Using conjunction for (viii) & (xii) we get -
{xiii) J(b) ~E(b)

Using Universal Instantiation on (ii) we get
{xiv) J(b) AE(b)=B(b) AT(b)

Using Modus Ponens for (xiii) & (xiv), we gel
(xv) T(b) AB(b)

Usinpg Universal Instantiation for (iit) we get
(xvi) T(b) AB(b)—=>M(b)

Using Modus Ponens with (xv) and (xvi) we gel
(evti) M(b)

Using conjunction for {viii), (ix} and (xvii} we get
{xviii} J(b) AC(b) AM(b)

From (xviii), through Existential Generalization we get the required (iv), i.e.

(3x) (J(x) AC(X) AM(x))

Rl e

Remark: [t may be noted the eccurrence of quantifiers is not, in general,
commutative i.c.,

(Qix) {(Qax} #{Qax) (Qix)

For cxamplu

(Vx) (3 FOoy)= Q) (V) Flxy) : (A)
The oceurrence of (3y) on L.H.S depends onx i.e., occurrence of yon LL.H.S isa .
function of x. However, the occurrence of (3y) on R.H.S is independent of x, hence, i

occurrence of v on R.H.S is not 4 function of x. r

For example, if we take F{(x,y) 10 mean:
Y and x are intzgers such that y>x,

then, L.H.S of (4) above states: For each x there is a y such that y>x:
The statement is true in the domain of real numbers.

On the other hand, R.H.S of (4) above statés that: There is an integer y whici: is
areater than x, for all x.

This stalement is not true in the domain of real numbers.

Ex. 4 We are given the stalements:

(1) No feeling of pain is publicuiiy abservable
{ii} All chemical processes are publically observable

We are to prove that

(it} No feeling of pain is a chemical process.

2.4 RESOLUTION METHOD IN PL

Basically, there are two different approaches for proving a theorem or for making a
valid deduction from a given set of axioms:

i) natral deduction
i} refutation method

In the natural deduction approach, one starts with a the set of axionis, uses some
rules of inference and arrives at a conclusion. This approach closely resembles of the
inluitive reasoning of human beings.

On the other hand, in a refutation method, one staris with the negation of the
conclusion to be drawn and derives a contradiction or FALSE. Because of having -
assumed the conclusion as lalse, we derive a contradiction; therefore, the
assumption that the conclusion is wrong, itself is wrong. Hence, the argument of
resolution method leads to the validity of the conclusion.

So far, we have discussed methods, of solving problems requiring reasoning ol
propositional logic, that were based on

i) Truth-table construction
ii) Use of inference rules, : _
and follow, directly or indirectly, natural deduction approach.

In this seclion, we discuss another method, viz., Resolution Mcthod suggested by
Robinson in 1965 which is based on refutatien approach. The method is important
in view ot'ihe {act that the Robinson’s method has been a basis for some automated
theorem provers. Even, the logic programming language PROLOG (subject matter of
Unit 2, Block J) is bascd on Resolution Method. The resolution method, as mentioned
above, is a refutation method.

In this section, we discuss how the resolution method is applied In solving problems
using only Propositional Logic (PL). The generai reselution method for FOPL is
discussed in the next section.

The resolution method in PL is applied oniy zfler convering the piven stalements or
wiTs into clausal forms. A clasual form of a wff is obtained by first converting Lhe
wff into its equivalent Conjuctive Normal Form (CNF). We already know that a
clause is a formula (only) of the form:

A|VA1V........VA“, - .

where A, is either an atomic formula or negation of an atomic formula.

The resolution method is a generalization of the Modus Ponens, i.e., of

PP Q P~PvQ

when written in the equivaleni form
(replacing P - Q by <P v O).

“This simple special cas.-e, of general resolution principle to be discussed soen, slates
that if the two formulas P and ~ P:v @ are piven lo be True, then we can assume 2 to
be True.

The validity of (general} resolulion mecthod can be established by constructing truth-
table.

Deductive Inference
Rules and Methods

e A

Knowledge Representation

in order (o discuss the resolution method, first we discuss some of its applications.

Example: Let C; - @ vR and Cpr ~ @ v S be two given clauses, so that, one of the
literals i.e., O occurs in one of the clauses (in this case Cy) and its negation (~ Q)
occurs in the other clause C;. Then application of resolution method in this case tells
us to take disjunction of the remaining parts of the given clause C, and C,, i.e., to lake
Cy : R v S as deduction from C| and C,. Then G, is called a resolvent of C; and Ca.
The two literals @ and (~ @} which occur in two different clauses are catled
complementary literals.

In arder to iliustrate reselution method, we consider another example.
Example: Let us be given the clauses Cr. ~S v~Q vRand C;: ~ P v (.

In this case, complementary pair of literals viz. O and ~ Q occur in the twa clause C;
and C.
Hence, th:2 resolution method statcs:

Conclude C3: ~SvR v~ P)

Example: Let us be given the clauses C:~ Q@ vRand Cy- ~ Q v S
Then, in this case, the clauses do not have any complementary pair of lilerals and
hence, resolution method cannot be applied.

Example: Consider a set of three clauses
C; IR

CJ.' ~RvS

C_;.' -5

Then, from C, and C; we conclude, through resolution:

C.1: S

From C; and C,, we conclude,

Cs: FALSE

However, a resolvent FALSE can be deduced only from an unstatisfiable set of
clauses. Hence, the set of clauses C), C; and C, is an unsatisfiable set of clauses.

Example: Consider the set of clauses
Ci:RvS

Crx~RvS

CyRv~S§

C.;.' - .R v~§ .
Then, from clauses C; and C; we get the resolvent
C5 SwvS=8

From C, and C,we get the resolvent

Cﬁ ~8

From Cs and C¢ we get the resolvent

C7 : FALSE

Thus, again the set of clauses C), C,, C; and C, is unsatisfiable.
Note: We could have obtained.the resolvent FALSE from only two clauses, viz., Cy

and Cy. Thus, out of the given four clauses, even set of only two clauses viz, C; and C,
is urisatisfiable. Also, a superset of any urisatisfiable set is unsatisfiable.

ms:

B N

U S

Example: Show that the set of clauses: Deduciive Inference
Rules and Methodds

CprRvS
Cu~Svi¥
Cy~RvS

Cy ~ W is unsatisfiable.

From clauses C; and C; we get the resolvent

C7 '8

From the clauses C; and C, we get the resolvent
Cg W

From the clauses Cy and C; we get

C,: FALSE

Hence, the given set of clauses is unsalisfiable.

Problem Solving using resolution method. We have mentioned carlier, the
resolution method is a refutation method. Therefore, proof technique in solving
problems will be as follows:

After symbolizing the problem under consideration, add the negation of the wif which
represents conclusion, as an additional premize, From this enhanced set of
prenises/axioms, derive FALSE or contradiction. If we are able to conclude FALSE,
then the conclusion, that was required to be drawn, is valid and problem is solved,
Hawever, through oll efforts, if we are not able to derive FALSE, then we cannof say
whether the conclusion is valid cr invalid. Hence, the problemt with given axioms and
the conclusion is not solvable,

Let us now apply Resolution Method for the problems considered carlier.

Example: Suppose the stock prices go down if the interest rate goes up. Suppose also
that the most people are unhappy when stock prices go down. Assume that the interest
rate goes up. Show that we can conclude that most people are unhappy.

To show the above conclusion, let us denote the slalements as follows:

A : Interest rate goes up,
S : Stock prices go down
U : Most people are unhappy

.The problem has the following four statemenis

1) Il the interest rate poes up, stock prices go down.
2) If stock prices go down, most peopie are unhappy.
3) The interest rate goes up.

4} Most people are unhappy. {to conclude)

These statements are first symbalized as wifs of PL as follows:

(1"YA— S

(28> U

(3DA

(4" U. (o conclude)

Converting 10 clausal form, we get

(i)~AvS

(iliy~SvU

i) A

(V) U (10 be concluded 39

U

Knowledpe Representation

40

As per resolution method, assume (iv) as lalse, i.e., assume ~ U as initially given
statement. ie., ai axiom.

Thus, the set of axioms in clasual form is:
(i)~AvS.

(ip~SvUu

(iii} A

(ivi-U

Then from (i) and {jii), through resolution, we get the clause

(v} S,

From (ii) and (iv), through resolution, we get the ¢lause
(vi)~ S

From {vi) and {v), through resolution we get,

{viii) FALSE

Hence, the conclusion, i.c.,
(iv) U : Most people are unhappy
is valid.

We might have observed from the above solution using resolution method, that ciausal
conversion is a major time-consuming step after translation to wffs. Generally, once
the clausa! form is obtained, proof; at least, by a human being can be easily visualised.

Ex. 5:Given that if the Parliament refuses to cract new laws, then the strike will not
be over unless it 1asts more than one year and the president of the firm resigns, will
the strike not be over if the Parliament refuses to act and the strike just staris?

2.5 RESOLUTION METHOD IN FOPIL.

In the beginning or the previous section, we mentioned that resolution method for
FOPL requires discussion of a-number of complex new concepts: Also, in Block 2, we
discussed (Skolem) Standard Form and also discussed how to abtain Standard Form
for a given formuia of FOPL. In this section, we introduce two new, and again
complex, concepls, viz, substitution und unification.

The complexity of the resolution method for FOPL miainly results from he fact that a
clause in FOPL is penerally of the forny - P{x) v Q ({x). X, ¥) V....., in which fize
variables X, y, z, may assume any one ol the values of their domain.

Thus, the atomic formula (Vx) P(x), wich after dropping of universal quantifier, is
written as just P(x) stands for P(a,) A a:)... A P(a,) where the set {2, a;..., a,} is
assumed here to be domain {x).

Similarly, (3x) P(x) stands for (P(a;) v P(as) v ... v P(a,)

However, in order to resolve iwo clauses — one containing say P(x) and the ather
conlaining ~ P(y) where x and y are universal quantifiers, possibly having some
restrictions, we have to know which values of x and y satisfy both the clauses. For this
purpose we need the concepts of substitution and unification as defined and
discussed in the rest of the scction.

Instead of giving formal definitions of substitution. unification, unifier, most general
unifier and resolvent, resolution of clauses in FOPL, we illustrate the concepts
through examples and minimal definitions. i[required

hiail Rt

Example: Let us consider our old problem: Deductive Inference
Rules and Methods

To conclude
(t) Raman is mortal

. From the following two statements:

(i} Every man is mortal and
(iii) Raman is a man

Using the notations

MAN (x) : x isa man
MORTAL (x) : x is mortal,

the problem can be fornudated in symbolic logic as: Conclude
MORTAL (Raman)
Jrom

@i} ((¥x) (MAN(x) » MORTAL (x))
(i) MAN (Raman). .

As resolution is a refutation method, assume
(i) ~ MORTAL (Raman)

After Skelomization and dropping {¥x), (ii) in standard form becomes

6] ~MAN (x) v MORTAL (x)
(ii) MAN (Raman)

In the above x varies over the set of human beings including Raman. Hence, one
special instance of (iv) becomes

(vi) ~ MAN (Raman) v MORTAL (Raman)

At the stage, we may observe that

{(a} MAN(Raman) and MORTAL(Raman) do not contain any variables, and, hence,
their truth or falsity can be determined directly. Hence, each of like a formula of PL.
In term of formula which does not confain any variable is calied ground term or

ground formula.

{b) Treating AMAN (Raman) as formula of PL and using resolution method on (v) and
(vi), we-conclude

(vii) MORTAL (Raman),
Resolving (i) and (vii), we get False. Hence, the solution.
Unification: In the pracess of solution of the problem discussed above, we tried to

make‘the two expression MAN(x} and MAN(Raman) identical. Attempt {o make
1dentical two or more expressions is called unification.

Sh

SrmreT— -

Knowledge Representation

42

In order to unify A4N (x) and MAN (Raman) identical, we found that because one of
the possible values of x is Ramaun also. And, hence, we replaced x by one of its
possible values : Raman.

This replacement of a variable like x, by a term (which may be another variable also)
which is one of the possible values of x, is called substitution. The substiwtion, in
this case is denoted formally as {Raman/x}

Substitution, in general, notationally is of the form {t, /%, b/ Xz o.laf Xy } Where
X|, X3 ..., X, are variables and t; & ...1, are terms and t; replaces the variable X in
SOmMe expression.

Example: (i) Assume Lord Krishna is loved by everyone who loves someone (ii) Also
asstime that no one loves nobody. Deduce Lord Krishna is loved by evervone.

Solution: Let us use the symbols
Love (x, y): x loves y for ' 15 loved by x)
LK : Lord Krishna

Then the given problem is formalized as :

(1) (¥x) ((Iy) Love (x, y)—>Love (x, LK))

(i) - @) (V) ~ Love (x,))

To show : (Vx) (Love (x, LK)}

As resolution is a refutation method, assume negation of the last slatement as an
axiom.

(iit) ~ (¥x) Love (x, LK}
The formula in (i} above is reduced in standard form as follows:
(¥x) {~(3y) Love (x, y) v Love (x, LK))

= (¥x) ({¥y)~ Love (x, y) v Love {x. LK)})

" =(¥x) (¥y) (~ Love (x, ¥} v Love L (x, LK))

(" {V}) does not occurs in Love (x, Li_'{))

After dropping universal quantifications, we get

(iv)~ Love (x, ¥) v-Love {x, LK)

Formula (if} can be reduced ro standard form as follows:
(i) = (¥x) (3y) Love (x, v}

y is replaced through skolomization by fix)

so thar we get

{¥x) Love (x, {(x))

Dropping the universal quantification Deductive Infercnce
Rules and Methods

(v) Love (x, f{x))
The formula in (iti) can be brought in standard form as follows:
(i) = (3x) { ~ Love (x, LK))

As cxistential quantifiar x is not preceded by any universal quantification, therefore, x
may be substituted by a constani a , i.e., we use the substitution {a/x} in (iii) 10 get the
slandard form:

(vi)_-- Love (a, LK).

Thus, to solve the problem, we have the foliowing standard form formulas for
reselution:

(iv) ~ Love {x, ¥) v Love (x, LK)
{v) Love (x, f(x))
(vi) ~ Love (a, LK).

Two possibilities of resolution exist for two pairs of formulas viz.

one passibility: resolving (v) and (vi).
second possibility : resolving {iv) and (vi).

The possibilities exist because for cach possibilily pair, the predicate Love occurs in
complemented form in the respective pair.

Next we attempt to reselve (v) and (vi)

- For this purpose wx atlempt to make the two formulas Love(y, f{xj} and Love (a, LK)
identical, through unification involving subalitulions. We start from the lefi, matching
the two formulas, term by term. First place where matching may fail is when ‘x'
occurs In onc formula and “a’ occurs in the other formuta. As, onc of these happens
to be a variable, hence. the substilution {a/x} can be uscd o unify the portions so far.

Next, possible disagreement through term-bv-term matching is obtained when we get
the two disagreeing terms from (wo ferinulas as (%) and LK. As none of f(x) and LK
is a variable (ote fix} involves a variahle bur is iiself not a variable), hence, no
unification and, hence, no resolulion of (v) and (vi) is possible.

Next, we attempl unilication of (vi) Love (a3, LK) with Love (x, LK) 0o {iv).

Then {irst term-by-term possible disagreement occurs when the corresponding terms
are ‘a’ and ‘x’ respectively. As one of (hese is a variable, hence, the subslitution{a/x}
vnifies the parts of the formulas so far. Next, the-two accurrences of LK, one each in
the two formulas, match. Hence, (he whole ol each of the two formulas can be unified
through the substitution {a/x}. Though the unification has been attempted in
corresponding smaller parts, substitution has fo be carried i the whole of the
formula, in this case in whole of (iv). Thus, after substiretior, (iv) becomes

(viii) ~ Love (a, y} v Love (a, L K)

resolving (viii) with (vit we get

(ix)~ Love (a, y)

TP O

= DT

Knowledge Represcntation

44

L

In order to resolve {v) and (ix), we attempt to unify Love (x, f(x)) af (v} with Love (a,
y) of (ix). The term-by-term matching leads 1o possible disagreement of a of (ix) with
x el (v). As, one of these is a variable, hence, the substitution {a/x} will unify the
portions considered so far. Next, poSsible disagreement may occur with £ (x) of (v)
and y of (ix). As ane of these are a variable viz. y, thereflore, we can unify the two
terms through the substitution { {(x)/y}. Thus, the complete substitution {arx, f ()i}
is required to match the formuias.

Making the substitutions, we get

(v) becomes Love (a, f(x}))

and (ix) becomes ~ Love (&, f (x))

Resolving these formulas we get False. Hence, the proof.

Ex. 6: Unify, if possible, the following three formulas:
() Q (u, f{y,)},
(i) Qua)
(it} Q(ug(h(k)

Ex. 7: Delermine whether the following frrmulas are unifiable or not:
M Qf(a)g(x)
(i) Q&

Example: Find resolvents, if possible for the following pairs of clauses:

(i) -—Q(x,z,x)vQ(w,lz, wjand
(ii) Q(w,hiv,v),w)

Solution: As two lilerals with predicate Q occur and are mutuatly negated in (i) and
(ii),therefore, there is possibility of resolution of ~ Q (¥, z, x} from (i) with Q (s, A (v,
v}, w} of (ii). We attempt to unify Q (x, z, x) and Q (w, h (v, v}, w), if possible, by
finding an appropriate substitution. First terms x and w of the two are variables,
hence, unifiable with either of the substitutions {X/w} or {w/x}. Let us take {w/x}.
Next pair of terms {rom the two formulas, viz, z and h(v, v} are also unifiable,
because, one of the terms is a variable, and the required substitution for unification is
{ h(v, v)iz}.

Next pair of terms at corresponding positions is again {w, x} {oi which, we have
determined the substitution {w/x}. Thus, the substitution {w/x, h(v, v)/z} unfies the
two formulas. Using the substitutions, (i) and (it} become resp. as

G) ~QQv,h(v, V), W) vQ (w, h(v, v), w)

(iv) Qw,h(v,v},w)
Resolving, we get
Q (w, h (v, v), w), .

which is the required resolvent.

2.6 SUMMARY

In this unit, eight basic rules of inference for PL and four rules involving quantifiers,
for inferencing in FOPL, are introduced respectively in Section 3.2 and Section 3.3,
and then these rules are used in solving problems. Further, a new method of drawing -
inference called Resolution method based on refutation approach, is discussed in the
next two Sections. In Section 3.4, Resotution method for PL is introduced and applied
in solving problems involving PL reasoning. In Section 3.5, Resolution method for
FOPL is introduced and used for solving problems involving FOPL reasoning.

Dreductive Inference

Problems with FOPL as a system of knowledge representation and reasoning:
Rules and Methods

FOPL is not capable of easily representing some kinds of information including
informalion pieces involving.

(i) Properties of relations. For example, the malhematical statement:

Any relation which is symmetric and-transitive may not be reflexive is not expressible
in FOPL. A relation in FOPL. can only be constant, and not 2 variable. Only in second
and higher order logics, the relations may be variable. This type of logics are not
within the scope of the course.

(i) linguistic variable like hot, tall, sweat.
For example: [t Is very cold today,
can nol be appropriately expressed in FOPL.

(iii) different belief systems.
For example, f know that he thinks India will win the match, but I think India
will lose, also, cannot be appropriately expressed in FOPL.

2.7 SOLUTIONS/ANSWERS

Ex.1: Assuming the statements (i), (i) and (i) given above as True we are required to
Show the truth of (iv)

The first step is to mark the logical operators, if any, in the statements of the
argument/problem under consideration.

In the above-mentioned problem, statement (i) does not contain any logical operalor.
Each of the statements (ii) and (iii) contains the logical operator ‘If....then....’

The next step is 10 use symbols, P, Q, R, for atomic formulas occurring in the
probtem. The symbols ar¢ generally mnemcnic, i.e., names used to help memory.

Let us denote the atomic statements in the argument given above as follows:
M: Matter always existed,
TG: There is God,

GU: God created the universe.

Then the given statemenis in English, become respectively the following formulas of

PL.:

() ™

Gi) TG->GU
(itiy GU—-~M

(iv} ~TG (Toshow)

Applying transposition to (iii) we get

(v} M- -~-GU

using (i) and {v) end apnlying Modus Ponens, we get
(viy ~GU

Again, applying transposition to (ii} we get A5

TR T O

Knowledpe Representalion

46

(vii) ~GU—> ~TG
Applying Modus Ponens 10 (vi) and (vii) we get
(vii) ~TG

The (ormuta {viii) is the same as formwula (iv) which was required 1o be proved,

BT R a

Ex.2 In order 1o translate in M. let us use the symbois:

ML there is a moral faw,)
SG: someone gave it, (the word ‘it stand for moral law)
TG There is God.

Using these symbols, the Stateent (i) to (iv} become the formula (i) 10 {iv) of PL as
given below:

(iy ML

(i) AL —S8G
(i) SG— TG and
(ivy TG

Applying Modus Ponens to formulae (i) and (ii) we get the formula .
(\;) SG :
ﬁq')plyin,g,-r Modus Ponens o (v) and (iii), we gat

(vi) TG

But formula (vi) is the same as (iv), which is required to be established. Hence the k
proof. ' §

Ex. 3: (i) Corcluding F (a) A G fa) rom (AvY}F(x) A (XG0 rect, because,
as mentioned carlier also, the given Quantified Formula may he eq enily written
as (A} F () A (3y)G(y). And in the case of each cxistential quanuncation, we can

not assign an already-used constant. Therefore, a correct conciusinn may be of the
form p T

F (a) AG(b)

(ii) The conclusion of F(a)v (G(a) A H(a))
from (Ix) F(x}v (G(:c)_ A H(x))

is again incorrect, in view of the fact that scope of existential variable in the
formuta, is only Ffx) and noi the whole fonnula. Hence, the last two occurrences
of x are free. Therefore, a correct conclusion can be F (ai v{(G () A H (x))

(iii) The cenclusion is comrect
£

(iv) Te conclusion is incorrect, because , from the given fact ~ (F(a) A G(a)), ;

we may conclude ((3x) (~ (F (x} A G (x))
which is cquivalent to ~ (¥x}(F(x) ~ G(x})
and not Lo ~ () (5 (x) A Gx))

Ex. 4: For translating the given statements (i), (if) & (iii), let us use the notation:
F(x): x is an instance of feeling of pain
O(x): x is an entity that is publically observable

Cix): x is a chemical process.

Then, the statement (1), (i) and (iii) can be equivalently cxpressed as formulas of
FOPL

(1) (¥x) (F(x) = ~0(x) }
(i) (Vx) (C(x) = O(x))
To prove

(iii) (Vx) (F(x) = -~ C(x))

From (i} using generalized insiantiation, we get
(iv) F (a) »~ O(a), for any arbilrary a

Similarly, from (ii), using geieralized instantiaiion, we get

{(v) C(b) = O(b), for arbiorary b

From (iv) using transposition rule, we gef

(vi) O(a) = ~ F(a), for arbitrary a

As bis arbitrary in (v), thevefore we can rewrite (v' ~s

{vii) C(a) — Ofa), for arbitrarya -

From (vii) and (vi) and using chain rule, we get

(yiii) C{a) — ~ F(al, jor any arbitrary a

Buit as a is arbitrary in (viii), by generalized quantification, we get
(ix) (V) (C(x) = ~F(x))

Bur (ix) is the same as (1if), which was requived io be proved.

Ex. 5: Let us symbolize the siatcments in the problem piven above as foliows:
Al The Parliament refuses to act,

B: The strike is over.

R: The president of the firm resigas.

S: The strike iasts mors than one year.

Then the facts and the qu‘&ction 10 be answered can be symbolized as:

_El (A= (-B IV‘(R’A s Eep'resenls the stateinent: ff the congress refuses to enact
new laws, then the sirike wifl not be over unless it L:sts more than one year and the
president of the firm resigns.

{Note: Punless Q =Pv Q)

E2 : A represents ibe statemient: 2he congress refuves to acit, and

E3: ~ 8§ represent the staiement: The sirike just staris.
E4: ~ B (to be concluded:

Deductive Inference
Rules apd Mcthods

ol Hat IR

Knowledpe Representation

48

As we are going to use resolution method, we use Es the negation of E, as an axiom
in addition to E;, E; and E;.

Es: B

As a first step, we convert E|, E,, E; and E; into clausal forms as follows:
E:~Av(~Bv({RAS))

Using assoctativity of v; we get

=(~Av~B)V{RAS)

Using distributivity of v over », we get

=(~Av~BvR)A(~Av~BVvS)

replacing E, by two clauses
E,:(~Av~BvR})and
E|z:(~AV~BVS)

E,, E, and Ej are already in clausal form

We get the axioms, including the negation of the conclusion, in the clausal form
as

Ey:(~Av~BvR)

Ez:(~Av~BvS)

Ex; A

Ey:~S

Es:~(~B)=B

By resolving E; with E,;, we get the resolvent
Eg:~BvS

By resolving Es with Eg, we get the resolvent as
ET : 8)
By resolving E; with E;, we get the resolvent as
Ey: FALRE

Hence, the conclusion ~ B: The strike will not be over, is valid.

Ex. 6: First, we attempt to unify (i) and (ii)

As the predicate is Q in each of the given terms, therefore, we should attempt
matching terms. The first terms match, as each is u. Next second terms are “a’ and f
{y, 2), none of which is a variable. Hence, (i) and (ii) arc not unifiable.

In the similar manner (i) and {iit) are not unifiable as the second terms f (y,) and g th

(k (u))) are such that none is a variable.

Ex. 7: The predicate symbols (each being Q) match. Hence, we may proceed. Next,
the first two terms viz. £(a) and x, are not identical. However, as one of these terms is
a variable viz. ‘x’, hence, the corresponding terms are unifiable with substitution

{f (a)x}.

Next, the wo terms g (x) and y, one from cach of the formula at corresponding
positions, zre again unifiable by the substitution { g(x)iy}

Hence, the required substitutions { f(a)/x, g (f (2))/y} using the substitution {f (a)}/x}
in g (x)/y to get the substitution {g (f (a))/y}.

Therefore the two formulas are unifiable and after unification the formulas become

Q (fla). g (f(a)))

et e e s -

Deductive Inference

2.8 FURTHER READINGS Rules and Methods
1. McKay, Thomas J., Modern Formal Logic (Macmillan Publishing Company,

1989), :
2. Gensler, Harry). Symbolic Logic: Classical and Advanced Systems (Prentice

Hall, 1990).

3. Klenk, Virginia Understanding Symbolic Logic (Prentice Hall 1983)

4. Mendelson, Elliott: Introduction to Mathematical Logic (Second Edition)
(D.Van Nostrand Company, 1979).

5. Copi Irving M. & Cohen Carl, Infroduction Logic, IX edition, (Prentice Hall of
India, 2001).

6. Siuart Russell, Peter Norving Artificial Intelligence (Second Edition} (Pearson
Education 2003).

49

T iy S

UNIT 3 SYSTEMS FOR _
IMPRECISE/INCOMPLETE
KNOWLEDGE

Structure Page Nos.
3.0 Introduction 50
3.1 Objectives 51
3.2 Fuzzy Syslems 51
3.3 Relations on Fuzzy Sets 55
3.4 Operations on Fuzzy Sels 57
3.5 Operations Unique to Fuzzy Sets : 59
3.6 Non-Monotonic Reasoning Systems 62
3.7 Defzult Reasoning Systems 64
3.8 Closed World Assumption Sysicms 65
3.9 Other Non-Deductive Systems 66
3.10 Summary 67
3.11 Solutions/ Answers 67
3.12

Further Readings 68

3.0 INTRODUCTION

In the earlier three units of the block, we discussed PL and FOPL systems for making
inferences and solving prablems requiring logical reasoning. However, these sysiems
assuine that the domain of the problems under consideration is complete. precise and
consisteni. But, in the real world, the knowledge of the problem domains is generally
neither precise nor consistent and is hardly complete.

[n this unit, we discuss a number of techniques and formal systems that attempt (o
handle some of these blemishes. To begin with, in Sections 4.2 to 4.5, we discuss
fuzzy systems that allempt to handle imprecision in knowledge bases, specially, due
to use of natural language words like hot, pood, tal! etc.

Then, we discuss non-monotonic systems which deal with indefiniteness of
knowledge in the knowledge bases. The significance of these systems lizs in the fact
that most of the statements in the knowledge bases are actually based on belieis of the
cancemed persons or actors. These beliefs get revised as better evidence for some
other beliefs become available, where the later beliefs may be in conflict with the
earlier beliefs. In such cases, the carlier beliefs my have lo be temporarily suspended
or permanentiy excluded from further considerations.

In Sections 4.7 and 4.8, we discuss two formal systems that attempt to handle
incompleteness of the available information. These systems are called Default
Reasening Systems and Closed World Assumption Systems. Finally, we discuss
some inference rules, viz, abductive inference rule and inductive inference rule that
are, though not deductive, yet are quite useful in solving problems arising out of
everyday experience. '

Systems for

3.1 OBJECTIVES lmprecisc/incomptete

knowlcdae

After going through this unit, you should be able to:

. enumerate various formal methods, which deal with different types of blemishes
like incompleteness. imprecision and inconsistency in a knowledge basc;

. discuss, why fuzzy systems are required;

. discuss, develop and use [uzzy arithmetic tools in solving problems. the
descriplions of which involve imprecision;

» ., discuss delault reasoning as a 1ool for handling inconpleteness of knowledge;

. discuss Closed World Assumption Sysiem, as another ool for handling
incompleteness of knowledpe, and

. discuss and use non-deductive inference rules like abduction and induction, as
tools for solving problems from everyday experience.

3.2 TUZZY SYSTEMS

[n the symbolic Logic systems like, PL and FOPL, that we have studied so far, any
(closed) formula has a truth-value which must be binary, viz., True or False.
However, in our everyday experience, we encounter problems, the descriptions of
which involve soine words, because of which, to statements of situations. it is not
possible Lo assign a truth value: True or False. For example, consider the statement:
If the water is 100 hot, add normal water 1o niake it confortable for taking a bath.

In the above statement, for a number of words/phrascs including ‘too hot” *add’,
'comfortable’ elc., it is not possible 16 tell when exactly water is too hot, when water
15 (at) normal (temperature). when exactly water is comfortable for taking a bath.

For example. we cannol el the temperature T such that for water at temperatere T or
less, truth value Fals= can be associated with the statement *Heater is too hor " and at
the same time truth-value True can also be associated 10 ihe same statement Water is
toa Ntot " when the temperature of the water is, say, at degree T+ 1, T+ 2....¢lc.

Some other cases ol Fuzziness in a Natural Language

Healthy Person: we cannot even enumerate all the parameters that determine health,
Further, it is even more difficult 1o tell for what value of a particular parameter, one is
healihy ar otherwise.

Old/young person: It is not possible to tell exactly upto exactly what age, one is
young and, by just addition of one day lo the age, one becomes ofd. We age gradually.
Aging is a continuous process.

Sweet Milk: Add small sugar cube one at a time 10 glass of milk, and go on adding
upto, say, 100 simall cubes. 3

Initially, without sugar, we may take milk as not swect. lowaver, with addition of
each pne small sugar parlicle cube, the sweelness gradually increascs. It is not
possible to say (hai afler addition of 100 small cubes of sugar, the milk becomes
sweet,-and, 1ill addition of 99 small cubes. it was not sweet.

Paal, Pond, Lake,....., Sea, Ocean: for diflerem sized water bodies, we can not say
wlicn exactly a pool becomes a pond. when txactly a pond becomes a lake and so on.

51

A Piaii=h S

ar:ozm oy -

Knowledge Representalions

52

One of the reasons, for this type of problem of our inability to associate one of the
two-truth values to statements describing everyday situations, is due to the use of
natural language words like hot, good, beautiful etc. Each of these words does not
denote something conslant, but is a sort of linguistic variable. The context of a
particular usage of such a word may delimit the scope of the word as a linguistic
variable. The range of values, in some cascs, for some phrases or words, may be very
large as can be seen through the following three statements:

o Dinosaurs ruled the earth for a long period {about miilions of years)
¢ Ithas not rained for a long period (say about six months).
» Ihad to wait for the doclor for a long period (about six hours).

Fuzzy theory provides means to handle such situations. A Fuzzy theory may be
thought as a technique of providing ‘continuization’ to the otherwise binary
disciplines like Set Theory, PL and FOPL.

Furthei, we explain how using fuzzy concepts and rules, in situation like the ones
quoted below, we, the human befigs solve problems, despite ambiguity in language.

Let us recall the case of crossing a road discussed in Unit 1 of Block 1. We
Mentioned that a step by step method of crossing a road may consist of

(i) Knowing (exactly) the distances of various vehicles from the path to be
followed to cross over.

(i) Knowing the velocities and accelerations of the various vehicles moving on the
road within a distance of, say, onc kilometer.

(iif) Using Newton's Laws of motion and their derivatives like s = ut+ %atz, and

calculating the Lime that would be taken by each of the various vehicles to react:
the path intended to be followed to cross over.

(iv) Adjusting dynamically our speeds on the path so that no collision takes place
with any of the vehicle moving on the road.

But, we know the human beings nat only do not follow the above precise method but

~ cannot follow the above precise method. We, the human beings rather fecl

comforiable with fuzziness than precision. We feel comfortable, if the instruction

. for crossing a road is given as follows:

Look on both your left hand and right hand sides, particularly in the beginning, (5
your right hand side. If there is no vehicle within reasonable distance, then attempt 1o
cross the road. You may have to retreat back while crqssing, from somew/ere on the
road. Then, Iry again. : '

The above instruction has a number of words like leff, righi (it may 45° to the right or
90° to the right) reasonable, each of which does not have a definite meaning. But we
feel more comfortable than the earlier instruction involving precise terms.

Let us consider another example of our being comfortable with imprecision than
precision. The statement; ‘The sky is densely clouded” is more comprehensible to
human beings than the statement: ‘The cloud cover of the sky is 93.5 %",

Thus is because of the fact that, we, the human beings are still berier than computcers
in qualitative reasoning. Because of better qualitative reasoning capabilities

 just by looking at the eyes only and/or nose only, we may recognize a person.

ARTTTTTI

« just by taking and feeling a smali nuinber of grains from cooking rice bowl, we _ Systems for
. Imprecise/incomplete

can tell whether the rice is properly cooked or not. knowledge
* just by looking at few buildings, we can identify a |ocality or a city.

Achieving Humian Capability

In order that computers achieve human capability in solving such problems,
computers must be able 1o solve prablems for which onfy incomplete and/ar
imprecise information/knowledge is available.

Modclling of Solutions and Data/Information/Knowledge

We know that for any problem, the plan of the proposed s;olulion and the relevant
information is fed tn the computer in a form aceeptable to the computer.

However, the problems to be solved with the help of computers are, in the first place,
felt by the human beings. And then, the plan of the solution is alse prepared by human

beings.

It is conveyed to the computer mainly for execution, because computers have much
better executional speed.

Summarizing the discussion, we conclude the following facts

{i) We, the human beings, sense problems, desire the problems to be solved and
express the problems and the plan of a solution-using imprecise words of a natural
language.

(ii) We use computers lo sslve the problems, because of their executional power.

(iii) Computers function berer, when the information is given to the computer in
terms of mrathemuatical entifies like numbers, sets, relations, functions, vectors,
matrices graphs, amays, trees, records, elc., and when the steps of solution are
generally pracise, involving no ambiguity.

In order 10 meet the mutually conflicting requirements:

(i) Imprecision of natural language, with which the hwman beings are comfortable,
where human beings feel a problem and plan izs solution.

(ii) Precision of a formal system, with which compulers operate efficiently, where
computers execute the solution, generaily planned by human beings
a new formal system viz Fuzzy system based on ti:e concept of ‘Fuxzzy” was
suggesied for the first time in [965 by L. Zadeh, -

In order to initiate the stedy of Fuzzy sysiems, we quate two statements 1o recall.the
difference between a precise statement and an imprecise statement.

A precise Statement is of the form: “I1f income is more than 2.5 lakhs then tax is 10%
of the taxabie income’.

An imprecise statement may be of the form: [f the forecast about the rain being
slightly less than previous vear is believed, then there is around 30% probability that
cconomy may suffer heavily”,

The concept of ‘Fuzzy’, which when applied as a prefix/adjective to mathematicai
entities like set, relation, functions, irec, etc.. helps us in modelling the imprecise
data, informaticn or knov-iedge through maihematical tools.

L 2 Sy

e

Knowledge Representations

Crisp SetMelation vs. Fuzzy Set/Relation: In order o diflerentiate-the sets,
normally used so far, from the fiizzy sets Lo be infroduced soon, we may call the
normally called sets as crisp sets.

Next, we explain, how the fuzzy seis are defined, using mathematical entities, to
capturé&imprecise concepts, through an example of the concept : tall.

In Indian centext, we may say, a male adult, is

{i} definitely tall if his height > & feet
(i} notatall tall if height <35 fecl and
(iii) if his height = 52" a little bit tall
iv) il his height =5'6" slightly tall

(v) ifheight=5'9" reasonably tall eic.

chil step is to model ‘definitely ail® ‘not at all tall’, *littie bit tall®, ‘slightly tall
‘reasonably Tall’ elc. in terms ©{ mathemaltical entities, e.g., numbcrs; sets etc.
In modelling the vague concept iike ‘t2il’, through luzzy sets, tic numbers in the

" closed set [0, 1] of reals may be uscd on the following lines:

(i) ‘Definitely tall’ may be represented as “fallfness having value I'
(i) ‘Not at all (eIl may be represented as ‘Talfuess having value &'

other adjectives/adverbs may have values between 0 and 1 as follows:

(iii) “A litele bit rall’ may be represented as “faliness having value say 2",

(iv) ‘Slightly fall’ may be represented as “faliness having value say .4’

(v) ‘Reasanably tall’ may be represented as “tailness having value say .7'.
and so on.

Similarly, the values of other concepts or, rather, other linguistic variables like
sweet, good, beautiful, etc. may be considered in terms of real numbers between
0andl.

Coming back to the imprecise concep! of tail, let us think of five mate persons of an
organisation, viz., Mohan, Sohan, John, Abdul, Abrahm, with heights 5°2",6'4", .~
59", 4'8", 56" respeclively.

Then had we talked only-of ciisp set of tall persons, we would have denoted the

Sef of tail persons in the organisation = {Sohan}

But, a fuzzy set, representing tall persons, include alf the persons alongwith ..
respective degrees of taliness. Thus,-in ferns af fuzzy sefs, we write:

Tall = {Mohan/.2; Sohan/l; John/.7; Abdnl/0; Abrahm/.4}.

" The values .2; 1, .7, 0, .4 are called miembership values or degrees:

‘Note: Thase elements which have value 0 may be dropped e.g.

Tall may also be written as Tall = {Mohan/.2; Sohan/|; John/7;, Abrahm/4},
neglecting Abdul, with associawed degrece zero. '

Il we define short/Diminutive as exactly opposite of Tall we may say
Short = {Mohan/.8; Sohan/0; John/.3; Abdul/1; Abrahm/.6}

Syxtems for

33 RELATIONS ON FUZZY SETS Lmprecischaomplet

knowledge

In the case of Crisp sefs, we have the concepts of Eguality of sets, Subset of a sei, and
Member of a set, as illusiraled by the following examples:

(i) Equality of two sets
Let A=f{1,4,13 5}
B={4,1,3,5)}
C={1,4,2,5)}
be three given sels.

Then, Set A is equal to set B denoted by A = B. But A is not equal te C, denoted by

A#C.
(i) Subset
Consider sets A ={[,2,53,4,5,6,7)}
B=1{4,1,35}
C=1{4,8}
Then B is a subset of A, denoted by B — A. Also C is not a subset of A, denoted by

CaA.
{iii) Belongs tofis a member of
IFA={1,4,3,5}
Then cach of [, 4, 3 and 5 is called an element or member of A and the fact that / js a
member of A is denoted by [€ A.

Correspohding Definitions/ concepts for Fuzzy Sets

In order to definc for fuzzy sets, the concepts corresponding to the concepts of
Equality of Sets, Subset and Membership of a Set considered so far only for crisp sets,
first we illustrate the concepts through an example;

Let X be the set en which fuzzy sets are to be defined, e.g.,

X = {Mohan, Sohan, john, Abdul, Abrahm},
Then X is called thc Universal Set

Note: Fr every fuzzy set, all the elements of X with their corresponding memberships’
values from 0 to I, appear.

(i} Degree of Membership: In respect of fuzzy sets, we do not speak of just
“membership’, but speak of ‘degree of membership’.

In the set '

A = {Mohan/2; Sohan/l; John/.7; Abrahnv’.4},

Degrec (Mohan) = .2, degree (John) =.4

For (ii) Equality of Fuzzy sets: Let A, B and C be fuzzy sets defined on X as
follows:
Let A = {Mohan/.2; Schan/!; John/.7; Abrzhm/.4}

B= {A_brahm!.d, Mohan/2; Schan/l; John/.7}.

.Then, as degrees of ¢ach eleinent in the hwo sets, equal; we say fuzzy set A cqi.lal.s .

fuzzy set B, denotedas A = B :

However, if C = {Abrahm/.2, Mohan/ 4; Schan/1;.John/.7}, then
AZC,)

.
Ln

Knowledge Representalions

(iii) Subset/Superset

Intuitively, we know
(i) The Set of ‘Very Tail’ pcople should be a subset of the set of Tall
people. .
(ii) [fthe degree of ‘tallness’ of a person is say .5 then degree of ‘Very
Tallness® for tie person should be lesser say .3. r

Combining the above two idcas we, may say that if E
A = {Mohan/.2; Sohan/1; John/.7; Abrahm/.4} and

- B = {Mohan/.2, Schan/.9, Joln/.6, Abraham/.4}and further,

C = {Mohan/.3, Sohan/.9, John/.5, Abraham/.4},

tlien, in view of the fact that for cach element, degree in A s greater than or equal to
degree in B, B is a subset of A dznoted as B < A. :
Howeve:, degree (Mohan) = .3 in C and degree (Mohan) =2 in A, i
,therefore, C is not a subsct of A. -
On the other hand degree (John) =.5 in C and degree (John} = .7 in A, '
therefore, A is also not a subset of C.

We generalize the ideas illustrated through examples above
LetA and B bcﬁ:z@ sets on the universal set

XK= {x.,xg, [Xn} .
(X is called the Universe or Universil sel)

s.t. ‘
A= {xidv, XolVy, X} and
B = [} /W), Xa/wz, ..., Xp'Wa}

with that 0 < v;, w; £ 1.
Then fuzzy set A equals fuzzy set B, denoted as A = B, if and only if ’ I
vi=w;foralli=12,..n

Furtherifand w < v, foralli

then B is a fuzzy subsel of A.

Example: Let X = {Mohan, Sohan, John, Abdul, Abrahm}
A = {Mohan{.2; Sohan/[; John/.7; Abrahm/.4}
B = {Mohan/.2, Sohan/.9, John/.6, Abraham/.4}

Then B is a_ fuzsy subsef of A. z

In respect of fuzzy sets vis-3-vis {(crisp) sets, we may note that:

® Comesponding to the concept of “beisngs to of (Crisp) set, we use the concept
of ‘degree of membership’ for fuzzy sets. -

® [t may bé noted that cvery crisp set may be thought of as a Fuzzy Set, but not
converselv. For example, if Universal set is
X = {Mohan, Sohan, John, Abdul, Abrahm} and
A = set ol those members of X who are af {east graduates, say,
= {Mohan, John, Abdul}] !
then we can rewrite A as a fuzzy set as follows: i
A = {Mohan/l; Sohan/0; John/1; Abdul/l; Abrahm/0}, in which degree of cach i
member of the crisp sel, is taken as one and degree of each clement of the universal
set which docs not appear in the sct A, is taken as zero.

g - -

Howcever, conversely, a fuzzy scl may not be writlen as a crisp set. Let C bea fuzey
set denoting Educated People, where degree of education is defined as ivllows:
degree of education (Ph.D. holders) = 1
degree of education (Masters degree holders) = 0.85
degree of education (Bachelors degree holders) =.6
degree of educalion {10 + 2 level) =04
degree of cducation (8" Standard) = 0.1
degree of education (less than 8th) = 0.
Let us C = {Mohan/.85; Sohan/.4; John/.6; Abdul/l; Abrahm/0}.

Then, we cannol think of C as a crisp sel.
Next, we define some more concepts in respect of fuzzy sets.

Definition: Support sct of a Fuzzy Set, say C, is a crisp set, say D, containing all the
elements of the universe X for which degree of membership in Fuzzy set is positive.

Let us consider again
C = {Mohan/.85; Sohan/.4; John/.6; Abdul/!; Abrahm/0}.

Support of C = D = {Mohan, Sohan, John, Abdul}, where the elerzent
Abrahm does not belong to D, because, it has degree 0nC.

Definition: Fuzzy Singleton is a fuzzy set in which there is exactly one element
which has positive membership value.

Example:

Let us define a fuzzy set QLD on universal se1 X in which degree of OLD is zero if a

- person in X is below 20 years and Degree of Old is .2 ifa person is between 20 and 25

years and further supposc thal
Old = C = {Mol:an/; Sohan/0; John/.2; Abdul/l; Abrahm/0}.
then support of cld == {John} and hence old is a fuzzy singleton.

Ex. 1: Discuss equality and subsct relationship for the foilowing fuzzy sets defined on
the Universal set X ={a,b,c,d, ¢}
A ={al3, b6, /4 d0, el 7}
5 ={ad, b/l8, cf9 d/d, elT)
C={a/3,b.7,¢/.3,d.2,¢/.6}

3.4 OPERATIONS ON FUZZY SETS

For Crisp sets. we Lave the.operaticns of Unjon, intersection and
complementation, as illustrated by the example:

A = {X3, X3, Xy, Xs}
B = {x), Xy, X5, X7. Ko}

Let X = {x,, Xz, ..., Xi1¢}

Then A U B = {x,, Xy, X3, X1, X5, X7, Xof
A B =Xy, %)
AorX “‘_A = [x,, Ko X7, Xz, XKoo xw}

The concepts of Union, intersection and compleimentation for erisp sels miavy be
extended to FUZZY sets afier observing that for crisp scts A and B, we have

Systems for
Imprecise/incemplele
knowledge

e

T

b B T

57 [

Knowledge Representatians

58

() AUBisthe smallest subsct of X containing both A and B.
(ii) A,n B is the largest subsct of X contained in both A and B.
(iii) The complement A' is such that

(a) A and A' do not have any element in common and
{b) Every element of the universal sct is in either A or A"

Fuzzy Union, Intersection, Complementation;]
In order to motivate proper definitions of (hese operations, we may recatl
(1) when a crisp set is treated as a fuzzy set then

(i) membership in a crisp set is indicated by degreefvalue of membership as 1 (one) in
the cerresponding Fuzzy set,

(ii) non-mcmbership of a crisp sct is indicaled by degree/value of membership as zero
in the corresponding Fuzzy Set.

Thus, smaller the value of degree of membership, a sor of lesser it is a member of
the Fuzzy set.

(2)-While taking union of Crisp sets, members of both sets are included, and none
else. However, in each Fuzzy set, all members of the universal set occur but their
degrees delermine the level of membersliip in the fuzzy set,

The facts under (1) and (2) above, lead us to define:

The Union of two fuzzy sets A and B, is the set C with the same universe as that of A
and B such that, the degree of an element of C is equal to the MAXIMUM of degrees
of the element, in the iwo, fuzzy sets. .

(if Universe A # Universe B, then take Universe C as the union of the universe A and -
universe B) :

The Intersection C of two fuzzy seis A and B is the fuzzy set in which, the degree
of an element of C is equal to the MINIMUM of degrees in the two fuzzy sets.

Example:

A = {Mohan/.85; Sohan/.4; John/.6; Abdul/I; Abrahm/0}
B = {Mohan/.75; Sohan/.6; John/0; Abdul/.8; Abrahm/.3}

Then

AuB= {Mohaﬁ!.SS; Sohan!.ﬁ; John/.6; Abdul/1; Abrahm /3}
A N B = {Mohan/.75; Sohan/4; John/0; Abdul/.8; Abrahm/0})

and, the complement of A denoted by A’ is given by
C"= {Mohan/.15; Sohan/.6; John/4; Abdul/0; Abrahm /1}

Properties of Union, Intersection and Complement of Fuzzy Sets:
The following properties which hold for ordinary sers, also, hold for fuzzy sets

Commutativity

() AUB=BUA
(H)ANB=BnA

We prove only (i} above just to explain, how the involved equalities, may be proved in
general. vy

I I

T

Let {7 = fxy, Xso.ox) e wmiverse for fuczy sets A and B
Ify € A B, then v ix of the form [xi’di} for some
y A B == xifeif as member of 4 and
vy = (xi/fi} as member of B and
di = max (i, fil = max {fi, ei}
=yeflud

Rest of the properties are stated without proof.
Associativity

(i) (AuB)uC=AUB UCQ)

(i} (AnNB}INC=AN(BNQ)
Distributivity '

(i) AuBnC =(AUBIN(AUCQ)

(i) ANnBul=AnBuAn()

DeMorgan’s Laws

(AUB)=A'NB
(ARBy=A"UB'

Iavelution or Double Complement
(AY=A

Tdempotence
ANA=A
AUASA
[dentity
AvlU=U AvU=4
AN Q." =A ¢ NA= ¢

where

r;'f: emply [uzzy sct = {x/0 with xe U/}
and '

L7 universe = {x/1 with xe U)

Ex. 2: For the [ollewing fuzzy sets
A= {a/5, b/6, ¢/3,d/0, c/9} and
T B={/3,bl7, /.6, d.3, ¢/ 6},
find the fuzzy sels A 3, A v Band (AN BY

3.5 OPERATIONS UNIQUE TO FUZZY SETS

Next, we discuss three operations, viz., concentration, dilation and normalization, inat
are relevant only to fuzzy sets and can nol be discussed for {orisp) sets.

(1) Concentration of 2 se1 A is defined as
CON (A) = {x/m* \(X)lxe U}
Example: -)
[f A = {Mohan/.5; Schan/.9; John/.7; Abdul/G; Abrahm/.2}
then

CON(A)Y= {Muham’.E.S; Sohan/.81; Juhn/.49; Abdul/0; Abrahm/.04}.

Systems for
Impreclselincomplete
knowledge

Ty I

e

Knowledge Representations

Ry

a subse! of 4 x B, whér¥A and B are sets of persons living or dead.

In respect of concentration, it mvay be noted that the associated values being between 0
and 1, on squaring, become smaller. In other words, 1he values concentrale towards
zcro. This fact may be used for giving increased emphasis on a concepl. [f Brightuess
of articles is being discussed, then Very bright may be cbtained in terms of

CON. (Bright).

(2) Dilation ((-)pposilc of Concentration) of a fuzzy sel A is defined as
DIL (A) = {¥/y/m, (x)x e U}

Example:

If A = {Mohan/.5; Sohan/.9; John/.7; Abdul/0; Abrahm/.2}
tnen :
DIL. (A) = {Mohan/.7; Sohan/.95; Joha/.34; Abdul/0; Abrahm/.45}

The assrciated values, that are fetwezn @ and 1, on taking square-root get increased,
e.g., if the value assaciated with x was .05 before dilation, then the value associated
with x afler dilation becomes .1, i.c., ten times of the original value.

This fact may be used for decreased emphasis. For example, if colour say ‘yellow’ has
been considered already, then ‘fight yellow’ may be considered in terms of already
dtscussed “vellow’ through Dilation.

(3) Normalization of a {uzzy set, is deflined as
m,{x)
NORM(A)=4x/| = ||xel;.
Max
NORM (A) and is a fuzzy set in which membership values arz obtained by dividing

vziues of thz membership function of A by the maximum membership function.

The resultng fuzzy set, called the normal, (or normalized) fuzzy set, has the
maximum of membership function valug ol L.

Exampic:
IfA = {Mohan/.5; Sohan/.9; John/.7, Abdul/0; Abrahm/.2}

Norm (A) = {Mohan/(.5 =.9 = .55.); Sohan/1; John /(.7 +.9 = .77.); Abdulwv,
Abrahm/(.2 .9 = 22.)}

Note: If one of the members has value |, then Norm (A) = A,
Relstion & Fuzzy Relation
We know from our earlier background in Mathematics that a relation fromasetAtoa

set B 15 a subset of A.x B;
For example, The iclation of father may be written as { {Dasrath, Ram}, ...}, which is

-

The relation JfA g;z‘ may be written as
{(Manhan,;43.7), (Sotian, 25.6), ...},
whwre A is set of living persons and B is s2t of numbers denoting years.

Fuzry Relation

B e

Ih fuzzy sets, every element of the universal sct occurs with some degree of _ Systems for
Imprecisefincomplete

membership. A fuzzy relation may be defined in different ways. One way of knowledge
defining fuzzy relation s to assume the underlying scts as crisp sets. We will discuss
only this case.

Thus, a relation from A to B, where we assume A and B as crisp sels, is a fuzzy
set, in which with each element of A x B is associated a degree of membership
between zero and one.

For example:

We may define the relation of UNCLE as follows:
(i) xis an UNCLE of y with degree 1 if x is brother of mother or father,
(i) xisan UNCLE ofy with degree .7 if x is a brother of an UNCLE of y, and x is

not covered above,
(iii) xis an UNCLE of y with degree .6 if x is the son-of an UNCLE of mother or

father.

Now suppose

-Ram is UNCLE of Mohan with degree 1, Mdjid is UNCLE of Abdul with degree .7
and Peter is UNCLE of John with degree .7. Ram is UNCLE of John with degree.4
Then the relation of UNCLE can be written as a set of ordered-triples as follows:

{{Ram, Mohan, 1), (Majid, Abdul, .7}, (Peter, John, .7), (Ram, John, 4)}.

As in the case of ordinary relations, we can use matrices and graphs o represent
FUZZY relalions, e.g., the relation of UNCLE discussed above, may be graphically

denoled as
Ram 1 Mohan
Majid John
Peter Abdul
Fuzzy Graph
Fuzzy Reasoning

In the rest of this section, we just have a fleeting glance cn Fuzzy Reasoning.
Let us recall the well-known Crisp Reasoning Operators

(i) AND

(i) OR

(i) NOT

(iv) IF P THEN Q

(v) P IFAND ONLYIFQ

Corresponding to each of these ui:erators, there is a fuzzy operator discussed and
defined below. For this purpose, we assume that P and Q arc fuzzy propositions with
associated degrees, respectively, deg (P) and deg (Q) between 0 and 1.

Fhe deg (P) = 0 denotes P is False and deg (P} =1 denotes P is True.

Then the operators are defined as follows:
61

B

R T

Knowledge chrts::ilations

62

(i) Fuzzy AND fo be denoted by A, is defincd as follows:

For given fuzzy propositions P and Q, the expression P A Q denotes a fuzzy
proposition with Deg (P A Q) = min (deg (P), deg (Q))

Example: Let P: Mohan is tall with dug "=
Q: Mohan is educated with dug (Q) =
Then P A Q denotes: ‘Mohan is fall and educated ' with degree ((min) {7, 4}) = 4

(i) Fuzzy OR to be denotcd by v, is defined as foliow_s:
Tar given fuzzy propositions P and Q, P v Q is a fuzzy proposition with
Deg (P v Q) = max (deg (P), deg (Q))

Uxanple: Let P: Mohan is tall with'deg (P)=.7
Q: Mohan is educated with deg (Q) =
Then P v G denotes: ‘Mohan is tall or educated’ with degree ((max) {7, 4})=.7

3.6 NON-MONOTOMIC REASONING SYSTEMS

Monotonic Reasoning: The conclusion drawn in PL and FOPL are only through
(valid) deductive methods. When some axiom is added to a PL. or an FOPL system,
then, through deduction, we can draw more conclusions. Hence, morc additional facts
become available in the knowledge base with the addition of each axiom. Adding of

axioms to the knowledge base increases the amount of knowledge contained in the

knowledge base. Therefore, the sct of facts through inferences in such systems czn
enly grow larger with addition of each axiomatic fact. Adding of new facts can riot
reduce the size of K,B. Thus, amount of knowledge monotonically increases with the
number of independent premises due to new facts that become available.

However, in everyday life, many times in the light of new facts that become available,
we may have 1o revise our earlier knowledge. For example, we consider a sort of
deductive argument in FOPL:

(i} Every bird can fly long distances
(ii) Every pigeon is 2 bird. (iii} Tweety is a pigeon.
Therefore, Tweety can fly long distances.

However, later on, we come to know that Tweely is actually a hen and a hen cannot
fly long distances. Therefore, we have to revise our belief that Tweety can tly cver
long distances.

This type of situation is not handled by any monotonic reasoning system including PL
and FOPL. .This is appropriately handied by Non-Monotomic Reasoning Systems,
wiich are discussed next. -

A non-monotomic reasoning system is one which allows refracting of old
knowledge due to discovery of new facts which contradict or invalidalc a part of the
current knowtedge base. Such systems also take care that retracting of a fact may
necessitate a chain of retractions from the knowledge base or even reintroduction of
earlier retracted ones “from K.B. Thus, chain-shrink and chain emphasis of a K.B and
reintroduction of earlier retracted gnes arc part of a non-monotomic rcasoning
sysiem.

e

Systems faor
Imprecisc/incomplete
knowledge

To mcet the requirement for reasoning in the real-world, we need non-monotomic
reasoning systems also, in addition to the monotomic ones. This is true speciatly, in
view of the fact that it is not reasonable to expect that all the knowledge needed lora
set of tasks could be acquired, validated, and loaded into the system just at the-outsel.
In general, initial knowledge is an incomplete set of partially true facts. The set may
also be redundant and may contain inconsistencies and other sources of uncertainty.

Major components of a Non-Monotomic reasoning system

Nexl, we discuss a typical non-monotomic reasoning system (NMRS) consists of the
following three major components:

(1) Knowledge base (KB),
(2) Inference Engine (IE),
(3) Truth-Maintenance System (TMS),

The KB contains information, facts, rules, proccdures ete, relevant to the type of
problems that are expected to be solved by the systent, The component [E of NMRS
gets facts from KB to draw new inferences and sends the new facts discovered by it
(i.e., I[E) to KB. The component TMS, after addition of new- facts to KB. cither from
the environment or through the user or through IE, checks for validity o the KB, It
may happen that the new fact from the environment or inferred by the [E may
conflict/contradicl somie of the facis already in the KB. In other words, an
inconsistency may arise. In case of inconsistencics, TMS relracts some facts from
KB. Also, it may lead to a chain of retractions which may require interactions
between KB and TMSB. Also, some new fact either from the environment or from IE,
may invalidatc some carlicr retraciions requiring reintroduction of carlicer retracted
facts. This may lead to a chain of reintroductions. These retrievals and introductions
are taken care of by TMS. The IE is completely relieved of this responsibility. Main
Job of IE is to conclude new facts when it is supplied a set of facts.

IE " TMS

KB

Next, We explain the ideas discussed above through an cxariple:

Let us assume KB has two facts P and ~ Q —» ~ P and a rule called Modus Tollens
When IE is supplied these knowledge items, it concludes Q and sends Q to KB.
However, through interaction witli the environment, KB is later supplied with the
information that ~ P is morc appropriate than P, Then TMS, on the addition of ~ P to
KB, finds that KB is no more consistent, =t least, wilih P. Tte knowledge that ~ P is
more appropriate, suggests that P be retracted. Further Q w3 concluded assu:ning P
as Trie. But, in the new situation in which P is assumed 1o %e not appropriate, Q also
becomes inappropriate. P and Q are not deleted from KB, but are just marked as
dormant or ineffective. This is done.in view of the lact that later ox, if again, it is
found appropriate to include P or © or both, then, insiead of requiring some
mechanism for adding P and Q, we just remove marks that made these dormaat.

Non-monotoraic Ressening Sysioms deal with

63

P s S

== 1= n

Q.
Knowledge Represcnlations

64

1) Revisable belief systems

2) incomplete K. B Default Reasoning

\

Closed World assumplion

37 DEFAULT REASONING_SYSTEMS

In the previous section, we discussed uncertainty due to beliefs (which are not
necessarily facts) where beliefs afe changeable. Here, we discuss another form of
uncertairity that occur as a result of incompleteness of the available knowledge ata
particular point of time,

One method of handling uncertainty due to incomplete KB is through default
reasoning which is also a form of nen-monotomic reasoning and is based on the
following mechanism:

Whenever, for any entity relevant to the application, information is not in the KB, then
a defaulf value for that type of entity, is assumed and is assigned to the entity. The
default assignment is not arbitrary but is based on experiments, observations or some
other rational grounds. However, the ypical value Jor the entity is removed if some
information contradictory to the asswmed or default valie becomes available.

The advantage of this type of a reasoning system is that we need not store all facts
regarding a situation. Reiter has given one theory of default reasoning, which is
expressed as

a(x) : Mb, (x),-.-,Mb, (X)

co0 (A)

where M is a consistency cperator.

The inference rule (A) states that if a(x) is true.and nonc of the conditions by (x) is in

.conflict or contradiction with the K.B, then you can deduce the statement C(x)

The idea of default reasoning is explained through the following example:
Suppose we have

Bird (xi : Mily(x)
Fly (x)

0]

(ii) Bird (twitty)

M fly (x} stands for a statement of the form ‘KB does not have any statement of the
form that says x does not have wings etc, because of which x may not be able to fly’.
in other words, Bird (x} :-M fly (x) may be taken to stand for the statement ‘ifx is a
normal bird and if the normality of x is not contradicted by other facts and rules in the
KB.” then we can assume that x can fly. Combining with Bird (Twitty), we conclude
that if KB does not have any facts and rules from wihich, it can be inferred that Twitty
can not fly, then, we ¢an conclude that avitty can fly.

Further, suppose, KB also contains

(i) Ostrich (twitty)

I ST T

B P LR

T e R s T

(ii} Ostrich (x) = ~ FLY (x).

From these twoe facts in the K.B., it is concluded that Twilty being an ostrich, can -
fly. In the light of this knowledge the fact thal Twitty can fly has to be withdrawn.
Thus, Fly (twitty) would be locked. Bccause default Mfly (Twitty) is now
inconsistent.)

Let us consider another example:

Adult{x) : Mdrive(x)
Drive(x)

The above can be interpljcléd in the default theory as:

If a person x is an adult and in the knowledge hase there is no fact (e. g. x is blind, or
x has both of his/her hands cut in an accident eic) which tells us something making x
incapable of driving, then x can drive, is assumed.

3.8 CLOSED WORLD ASS UMPTION SYSTEMS

Another mechanism of handling incompleteness of a KB is called *Closed World
Assumption’ (CWA).

This mechanism is useful in applications where most of the facts are known and
thercfore it is reasonable 1o assume that if a praposition cannot be proved, then it is
FALSE. This is cafled CWA with failure as negation.

_ This means if a ground atom P(a} is not provable, then assume ~ P(a). 4 predicate like
LESS (x. y) becomes a ground atom when the variables x and y are replaced by
constants say x by 2 and y By 3, so that we get the ground ctom LESS (2, 3),

‘Example of an application where CWA is reasonable is that of Airfine reservation
where city-to-cily flight not explicitly entered in the fiight schedule or time table, are
assumed not to exist.

AKB is complete if for each ground atom P(a}; cither P(a) or ~ P(a) can be proved.

By the use of CWA any incomplete X B becomes complete by the addition of the
meta rule:

If P(a) can nor be proved then assume ~ P ().

Example of an incomplcte K.B: Let our KB contain only

(1) P(a).

(i) P(E).

(iii) P(a) - Q(a).

(iv) Rule of Modus Ponens: From P and P — @, conclude).

The above KB is incomplete as we can not say anyihing about Q(b) (or ~ Q(b)) from
the given KB.

Remarks: In general, KB argumented by CW/ need not be consistent i.e.,
It may contain two mutuzlly conflicting wifs. For example, if our KB canlains

only P(a) v Q(o).

Syslcms-1ar
lmprecisc/inconiplete
knowledge

55

Knowledge chrcsent':llions

68

degree (x in (A N BY)= 1 — degree (x in A N B).
Hence _
(AnBY={2.7,bl4,cl7,d/1,eld}

3.12 FURTHER READINGS

t. Munikata, Toshinori Chapter 5 of Fundomentals of the New Artificial
Intelligence: Beyond Traditional Paradigm (springer, 1998).

2. Nguyen, H.T. Walker E.A. A4 First Course in Fuzzy Logic (CRC Press, 1957)

3. Patterson, D.W. Introduction to Artificial Intelligence and Expert '
Systems{Prentice-Hall of India, 2001)

MCA-5.2

Artificial Intelligence and
Krowledge Management

Uttar Pradesh
A Rajarshi Tandon Open University

. Block

3

A.l. PROGRAMMING LANGAUGES

UNIT 1
A.l Languages-1: LISP 5

-UNIT 2
Al Languages-2: PROLOG 42

BLOCK INTRODUCTION

Afer having introduced the essential tools of Al including the knowledge represeniation
methods viz. state space representation, Propositional & Predicate logic, Production
Rules, Semantic nets, Frames etc. and essential techniques of Al including various
search techniques; in this block, we discuss two well-known A.L programming {anguages
viz., LISP and PROLOG, which serve as media to convey these tools and techniques to
help the computer syslem in solving problems.

Each of these two languages is based on a style, of solving problems with the help ol a
computer, which is different from the imperative style of solving problems. The language
LISP, which we discuss in Unit |, mainly supports an allerative paradigm, namely
functional paradigm, for solving problems. In functional paradigm, the solution is
primatily considered as an exercise in defining functions and-applying functions either
recursively or through composition. However, common LISP, which is the most
frequently used version of LISP, is nota pure functional-style programming language.

The language PROLOG is based on still another style, viz declarative style, rather, on

Logic Programming, a special type of declarative style of problem solving. A declarative
style is non-procedural in the sense that a program written according to this style does not

state exactly how the computational process is to be carried out. Rather, a program
consists of mainly a manber of declarations representing relevant Jfacts and rules
concerning the problem domain. The solution 1o be discovered is also expressed as a

question to_ be answered or, to be more precise, a goal to be achieved. This question/goal

also forms a part of the PROLOG program that is intended to solve the problem under
consideration.

Logic programming is a special type of declarative style of programming, in which the

varioys program elements and constructs are expressed in the notations similar 1o that of

predicate logic.

RN S -

UNIT1 A LANGUAGES-1: LISP

Structure Page Nos.
1.0 Introduction 5
1.1 Objectives 6
1.2- Basics of LISP 6
1.3 Data Structures and Data Values 9
L.4 The EVAL Function and Some Evaluations 10
1.5 Evaluation of Primilive Functions 13
1.6 Primitive List Manipulation Functions 14
1.7, Built-in Predicates 16
1.8 Logical Operators: AND, OR and NOT 18
1.9 Evaluation of Special Forms involving DEFUN and COND 18
1.10 The special forms DO and LET 20
I.11 Input/Output Primitives 23
1.12 Recursion in LISP 24
1.13 Association List and Property List 25
1.14 Lambda Expression, APPLY, FUNCALL and MAPCAR 29
I.15 Symbol, Object, Variable, Represcntation and Dotted Pair 31
1.16 Destructive Updates, RPLACE, RPLACD and SETF 4
1.17 Arrays, Strings and Structures 35
1.18 Summary 38
1.19 Solutions/Answers 39
1.20 Further Readings 41

1.0 INTRODUCTION

The task of solving problems using computer as a tool, in general, is a quite a
comprehensive task. Ever since the use of computers in solving problems, it has been
found that the solving of problems can be facilitated by using appropriate
style/paradigm for a given type of problem and using a language designed and
developed according to the basic principles of the style.

Some of the weil-known programming languages like C support imperative style of
programming for solving problems with the help of a computer. The major feature of
imperative style is that the proposed solution is expressed in terms of variables,
declarations, expressions and commands. Declarations assign names lo locations in
the memory and associate types with the values. Commands may be thought of as
names for actions, that are required to be executed by a computing system, mainly to
change values stored in the memory locations. Commands are generally executed in
the order, from top to bottom, as these appear in the program, though through
condilional and unconditional jumps, flow of execution can be changed. One of very
imporiant concept in imperative style of programming is that of the state (of memory),

1.2, the set of values assigned to various locations in the memory at a particular point -

of time.

In this style of programming, the programmer is required to think and express
proposed solution (to a problem under cansideration) in terms of the basic actions that
« ™achine is to carry out. For complex problems, the task of the programimer becdmes
more and more difficult with increase in the complexities of the problems to be
solved. In view of this difficulty, alternative paradigms or styles for solving problems
have evolved since almost the beginning of problem solving with computers. The
language LISP, we are going to discuss in this unit, supports an alterative paradign,
namely, functional paradigm, for solving problems with the help of a computer. In

LISP has jokingly been cailed “the
most inlclfigent way fo. misuse a
computer'. | think that description
is a great compliment, because it
transmits the full flavour of
liberation; it has assisted a number
ol most gifted fellow humans in
thinking previously impossible
thoughts’

Edsger W. Dijkstra

Al Programming
Lamguages

functional paradigsa, the solulion is primarily considered as an'exercise in defining
functions and applying functions either recursively or through composition. Common
LISP is not a pure functional style programming language. /f llas some features of
imperative sryle also. For example, the symbol SETQ allows assigning names lo

1nemory locations and storing values in the memory locations. But, Lisp incorporates

features dominantly of functional programming style.

1.1 OBJECTIVES

Alter going thr(;tlgh this unit, you shoutd be able to:

» explain what is fimctional paradigni of problem solving using a compuling
syslenr,

+ explain how functional paradigm is different from the normally used imperative
paradigm;
discuss LISP as a language having features of funclional paradigm;

s caumerate and discuss characieristic features of LISP;
enumerate and discuss data types and data structures of LISP;

» usc these types and structures in defining data required to solvc a problern under
consideration ;

e . cxplain the role of the inbwilt function EVAL;

e explain and use various built-in general functions, list manipulation functions,
predicates, d tepical operalors,

s explain (he role of the special forms viz. Defen, COMND, DO, LET and use these
in wriling complex programs in LISP;

e explain and use the various input/output primitives available in LISP;
explain the significance of the concept of recursion in solving probiem, and how
recursion is achizved in LISP;

o explain the role of association lists and property lists in developing database and
use these in defining objects and their attribules/properiies; '

o explain the role of a symbol as a variable and further should be able to explain
the-concepts of bound variable and free variable;

° explam the concept of doited pairs and be able to use'the concept in n:prce:senm-(r
fists in LISP, and

s Write complex LISP programs.

1.2 BASICS OF LISP

The progri.mming language LISP takes its name from List Processing. LISP* was
develaped by John McCarthy, during 1956-58 and was implemented during
1959-62. LISF s a number of dialects. However, with the develcpment of
COMMON LISP in the 1980s and its acceptance by a large number of system
implementers and manufactures, it has become almost standard for LISP users. We
also shzll be using and discussing COMMON LISP only.

LISP has been one of the most popular languages for Al applications. LISP was
specifically designed for A.L applications, and we havc already mentioned that Al
applizaiions involve symbolic processing, instead of mere numeric processing. Also,
Al systems are generally large and complex. Their development requires that the
implementation langeage and support environment prowdeﬂexrb:hry rapid
prototyping and good debugging tools. On all these counts, LISP wins over all other

*L1SP is based on a formal system called A-calculus {Lambda-caleulus originally proposad by Alonzn clurch and
wha developed i later alongwith Stephen Kleene as a foundation for Mathematics.

- -lew e

programming languages. Hence, the language was used in its earliest applications for
writing programs which performed symbelic diflerentiation, integration and
mathematical theorem proving. Later applications mainly written in LISP, include
expert systems and programs for common sense reasoning, natural language
interfaces, education and intelligent support systems, learning, speech and vision.
LISP has been found quite useful for the purpose of systems programming to the
extent that LISP machines have been developed in which whole of the programming
from top 1o botlom is in LISP. In LISP machines, which are personal computers, the
operating system, the user utility programs, the compilers, and the mterpreters are all
written in LISP,

We summarise below the main characieristics of LISP.

{i) Itis an applicative/functional language. In a functional language the primary

effect is achieved by applying functions either recursively or througl composition.

For example, in order to evaluate the arithmetic expression
(x*y) -+ (z — u) where the variable x, y, zand u have values respectively 9, 2, 8
and6, ihe following LISP expression

(+(*xy)(-zu))
evaluates to 20, For evaluating the expression, first the function ‘¥ is applied to
the values of x and y, next the function ‘=’ is applied to the values of z and u and
then recursively the funclion ‘+ is applied to the results of the applications.

(ii) The above example also shaws that prefix notation is used in LISP, i.e, the
operator “*> comes before operands x and y. The prefix notation has the
advantage that the operators (tike +, —, * etc.) can be easily located in an
expression.

In contrast, the programming [anguages introduced to us earlier [ike, FORTRAN and
C are all imperative Janguages. A language is said to be imperative which achieves
its primary effect by changing the state of variables by assignnent. For example, 1o
compute the arithmetic expression (x * y) + (z — u), the propramme code in Pascal
would include a sequence of instruction like,

Product =x*):
Difference =z —u
Result = product + sum

It is easily seen that the emphasis is on assigning values to the variables, viz,
product, difference and result. '

(iii) The language LISP allows pragrams to be used as data and vice-versa.

LISP has mainly one data structure viz list, in addition to the elementary
data types: number and symhal. All expressions; whether data or programs,
mainly are expressed in terms of lisis. '

The main advantage of this property of LISP is that the declarative knowledge, i.c.,
information about properties of an object.can be easily integrated with procedural
fmowledge, i.e., information about what actions to be performed. The facility of
uniform representation in LISP is also useful in the sense that it allows us to write

e LISP programs which can modlfv olher programs (written in any [anguage)
including themselves,

e LISP program that can write entirely new LISP programs.

o Al programs that leam new tasks,

Al Lanpuapes-1:
LISP

——p- -

= o7

LT e T - s oas B

A.lL Programming
Languages

(iv)

(vi)

{vit)

(viii)

(ix)

(x)

LISP is a highly modular language and hence suitable for development of
large software. .

The LISP environment provides a facilily called Trace by using which
programs written in LISP can easily keep track of the various instructions that
have been executed, the number of times each has been executed and the
order in which the instructions have been executed.

LISP, being based on the mathematical discipline of A-alculus, is the most
well-defined of all the programming languages. Hence, programs in LISP
are more reliable. The well-definedness of a language is a very important
issue as can be seen from the fact that due to a small error in FORTRAN
program of the type quoted below and FORTRAN environment’s
incapability‘to detect it, lead to the loss a spaceship.
In FORTRAN, the statement
DO 12 1= 1,5

denotes the beginning of a loop, whereas the statement

] DO 12 1= 15 :
is an assignment statement. Through the exccution of the second statement, -
the value 1.5 is assigned to Lhe variable DO 121, because blanks are ignored at
all places in FORTRAN.

*Comments in LISP are given by using the character for semicolon i.e. *;' as

the first symbol on the line which is to be treated as a comumnent. Sequence of
characiers on a given line afier semi-cnlon, is treated as a comment.

We included this feature here because while explaining various features of
LISP, we would be required to provide comments in LISP environment.

The types of the variables are not required to be declared in the beginning
as is done in imperative languages like, FORTRAN or C. Also a variable
name say X, we can assume any type for the values of the variable within-he
same program or procegure.

LISP is formai-free. Any valid LISP expression, say
(x{yz}u)

can be written in any one of the following (or even other) formats:

(x{ (x(y
yz) or z
u)
) u)

We should note that the two parentheses viz the left parenthesis denoted by
(and the right parenthesis denoted by *)* are twe most important
characters in LISP and must be used very carefuily. They are used io
denote lists and for each lefl parenthesis, there is a right parenthesis for any
valid LISP expression, In the light of the above fact, the expressions

Xyx)} or (fg

are illegal symbols or expressions.

Next most important character in LISP is quote, the rofe of which is explained
afier some time under (ii) of evaluation of S-expr.

T TSR 7T

(xi) Separator. Blanks are used to separate S-exprs, i.e., any valid Lisp entity
or object, specially numbers and symbols. Lists are always separated
automaltically from other S-exprs. Comma is used for speclal purposes
and net as a separator.

(xii) Listis defined recursively. A list is a sequence of atoms and/or other
lists enclosed within parentheses. Each of the following three expressions
is an example of a valid list.

(3a(cd))
(this is a list of only symbols)
() :

But the following expressions, one on each of the next three lines is
not a valid list,

(ba3l
this — is — not ~ a — lisl
» a b oc (

1.3 DATA STRUCTURES AND DATA VALUES

Notalion for a valid object in LISP is called S-expressions or just S-exprs (shorthand

for Symbolic Expression). Even objects themselves are also referred to somelime as
S-exprs. The main data types of LISP objects and their interrelationships are shown
i the following diagram:

S-exprs

-

atom

number character

n‘

symbol

mtegcr “*floating complcx

As shown above, an atom is a number, a symbol or a character. A number is a
sequence of digtts, possibly, involving a dot and the felter E appropriately so that the
value is either an integer or a real (decimal) number. The following are exampl® of
numbers:)

11.5E-3 -14.E3 ‘
A symbol is any string of characters which does not represent a number and does not
include parentheses and quotes. However, each of the expressions,
‘()’ and ‘nil’, represents an empty list, and, is both an atom as well as alist.
Each of the followmg is 2 symbol

i+ 1 *Name* - BLOCK#8

Note that 3 + 11 is not a nuthber bat a symbol. The reason for this is that any
arithmetjc expression involving at least one operator, wien represenied in LISP, has
to be a list with first and the last characters as *(* and ‘)’ respectively, and first
element within the list being necessarily an operator. If we intend to represent the
arithmetic expression 3 + 11 which is equivalent to 14, then it is represwtcd as
{+311). .

Al Languages-1:
_LisP

B S

e o o = TR T SRR TE PR YT

A.lL Programming
Languages

10

String: A sequence of characters enclosed within double quotes is a sting, e.g,,
“abc 2 @ string”
is astring
However, the following is nor a string

“square of two is four

SorTTTTERT T

because right double quote is missing.

1.4 THE EVAL FUNCTION

Initially LISP was designed as an inferpreted language, though later compiler based
versions also became available. In the interpreted mode, the prompt visible on the
screen is the symbol “—¢ , which, of course, may be changed.

LISP environment provides an inbuilt function called eval or commonly known
as read—eval-print loop. Any legal LISP object, i.¢., an S-expr typed after the prompt
is considered both as an S-expr and as an input to the read—eval—print loop. The
S-expr is evaluafed according to the rules to be explained and then printed. The value,
so obtained, is also an S—expr, provided that the input is an S—expr. Else, error will be
printed.

Next, we explain, in some detail, how LISP expressions are evaluated,

(i) A quoted expression is evaluated to the expression obtained by removing the
quote, For example,

The following expression
- (+x(*y2)) ;
cvaluates to the expression

> (+x(*yz))

— ’Colour
: where colour is a symbol we get respectively the
; folfowing situations after printing

— colour ’

(i) For g zlrating a symbel say colour, first of all, some value or binding must have
becn associated at some stage before the current evaluation. And then evaluation
of the symbol retumns the associated value or binding. Suppose, earlier at some
stage, the symbol colour is given the value RED, then, if give the input colour,
i.e., if we have i

- colour .
cthen RED is returned, i.e., we get after evaluation

4 RED

{(iii) Evaluating a number: A number evaluates to itself

For example if the input is given as
-~ 41
;then cfter evaluation the number 41 is returned,

(1v) Zvaluating a foaction application

A list of the form

e T R

(< function‘name > <param/! > < param2 > <paramk >} Al Languages-1:
with < finction—1ame > being an.atom and the name of a function, and < parami > Lisy
being an S—expr for each i, is called a function application. For evaluating a function
application, first < paraml > is evaluated to get argl. Similarly < parami > is
evaluated Lo get argi} first for i =2, then for i = 3, and so on. Once alt the arguments
are evaluated then the function is applied to the arguments. Finally the value so
obtained is printed. For example, if the following expression is given as input
—=>(*411)

as 4 evaluates to 4 and 11 evaluates to 11, therefore 44 is returned and prirted. Next
suppose, the symbol x is bound fo 2 and y to 5 then for the input

> (+{*x3)(-y1))

first (* x 3) is evaluated, which in tumn requires evaluation of symbol x. The symbol
x being bound to 2 is evaluated as 2, Thus, the expression (* x 3) evaluates to 6.
Similarly, the expression (~ y 1) evaluates to 4 and finally the whole of the above
expression evaluales to 10.

Nexl, assume sum-sq is a function defined in a program which returns the sum of the
squares of its arguments and again suppose x is bound to 2 and y is bound to 3, then if
we have the following expression is given as input '

->(sum-sq{(*x3}(-y1})

the expression is evaluated and printed as
— 52.
on the monitor

(v) Evaluating a special form
A list of the form
(< special-word > <param 1 > <param 2> __.... < param k>

with < special-word > being a special word in LISP (o be discussed) and < parami >
an S-expr, is called a special form. The evaluation of special form depends upon the
special word. The parameters < parami > may or may not be evaluated depending
upon the

< special-word >.

Some of the well-known special words are: defun, cond, do, quote. We shali discuss
evaluation of these special forms at appropriate place. The special form
(quote x) is just equivalent to *x and hence evaluates {o.x.

- (quote (*37));
evaluates to
- *37)

Note that *(* 3 7 Yor (quote (*3 7 }) evaluates to (* 3:?) and not to 21
(vi) Evaluating a list of the form

(< non-atom > <paraml < paramk >,

wheve < non-atom > is an S-expr is evaluated as follows :

Each of the parameter < parant! > is evaluated yiclding arguments and then the
S-cxpression < nor-atom > is applied to the evaluated arguments. We shall discuss

examples of such evaluations later. 1

AL Programming
Langusages

12

{vii) Certain atoms have preassigned meaning or evaluations as follows in LISP,
therefore, should not be used for other purposes.

Atom Associated meaping .
t ’ logical value frue ;
nil denotes either logical value false or :

the empty list () depending on the context.
The special symbol Setq

Before coming to evaluation of functions in LISP we consider evaluation of special-
form {or the special word SETQ. It binds symbols to values and will be useful in
explaining evaluation of other functional expressions. The special word sefq takes two
parameters, the first a symbol and the second an S-expr. The first parameter is not
evalvated. ctually SETQ may be taken as shorthand for SET QUOTE. And, as we have
explained earlier, QUOTE EXPRESSION evaluates 1o EXPRESSION and rot to the value of
EXPRESSION. e.g. (QUOTE 3 + 5 j evaluates to 3 + 5 and not to 8). The second parameter
is evaluated and the valie so obtained is bound to the symbol represented by first
parameter, e.g., lne S-expr

(setg x 27) binds 27 1 X and also the value 27 is returned
(setg x (* 3 5); buids 15 to x and returns the value 15,
(setg x'(* 3 5)) birds the list (* 35) to x and also returns the list (*3 5)and not 15.

We have already ..ientioned that the action of refurs includes printing of the
returned value. Also the action of refurn includes the fact that returned value car
be utillised in further processing, ¢.g., the S-expr

(+(setqx7)(setqy3))

not only binds x to 7 2nd y to 3 bui also the values 7 and 3 respectively arc ased
in further evaluation and

(+(setqx7)(setqy3))
returns 10, in addition to binding x to 7 and vy to 3.

Sometimes the pairs of argumens e several occurrences of SETQ are run together

and given te a single SETQ. In such a situation, odd-numbered arguments are not

evaluated ane even-numbered arguments arc evaluated. Further each even-numbered

Value is associated or bound to the immediately preceding (or bound te the

immediately preccding) odd numbered argument, e. g., the S-expr ,

(setqx'(12)y7z1])
binds the list (12)tox, 7toyand 11 to z.

associates or binds (12) to x, 7 to y ard 11 to z. It may.be noted that the lis({12} and
the number 12 is associated with x.

Ex 1: Explain the effect of execution of the following stalernents:
(= (+(selgx 5) x} (+(setqy 7)y))
(i) "(-(+setg p 9 (setg s N)(*p s))

Al Languages-I:

1.5 EVALUATION OF PRIMITIVE FUNCTIONS R

LISP has a number of basic functions. In this section, we discuss how S-exprs
involving these primitive functions are evaloated.

We have already mentioned that LISP uses prefix notation for representing functional
EXPIESSIONS.

We explain of evaluation of LISP objects through examples, preceded by some
explanatory remarks, if required.

(i) Some Primitive Numeric Functions: As numeric evaluation is self-evident,
therefore, the following table is sufficient for the purpose

Functlon call Value Comments

(+34811-2) 24 + or plus can take any finite

(plus34811-2) 24 number of appropriate arguments

(-1355) —42 differences or — takes exactly two arguments

(difference’13 53) —42

(*234) 24 times or * may take any finite

{times 2 3 4) 24 number of appropriate arguments

(793) 3 quotient or '/ *takes exactly two arguments

(quotient 9 3) 3

{abs -5.7) 5.7 only one-argument

{abs 5.7) 5.7

{expt32) 9 exponential function

(sqrt 4.0) 20 positive square-root

(max81197) 11 any finite number of appropriate arguments

(min81197) 7

(turncate 14 4) 3 turncate returns the quotient in integer
division neglecting the remainder;

(rem 14 4) 2. remn returns the remainder on division _ '

(round 14.3) 14 round returns the integer nearest to its

(round 14.6) 15 argument. '

.
(float 14) 14.0 integer argument; retums real.

Ex 2: Evaluate the following:
@ + (*2734) (-8 9)(truncate(15 7)})
(i) (* (rem 17 6) (trumcate 8 §) (max 5 911))

Ex 3: Write a function division which divides a number X by Y such that i Y=0
then the function returns the symbol ‘infinity” else it returns the quotient X/Y.

13

e e —— T b b — L rE

A.L Programming
Languwges

14

1.6 PRIMITIVE LIST MANIPULATION
FUNCTIONS

We have alrcady menticned that the programming; langvage LISP 1s mainly designed
for symbolic processing though it may be used for numeric purposes also. Symbolic
processing in LISP is mainly about manipulating lists. Here we consider main Iist
processing operations.

(i) car: It takes a list as an argument and retums the first element of the list. (car’(d b
¢)) returns the element d, (car '({db)c))rcturns (d b), We should note that
argument has to be a quoted list. This is in consonance with our earlier statement
thar for all functions denoted by an atom, the parameters are evaluated to return
argnments for the function.

Thus for evaluating (car '((d b) ¢)}), first of all its parameter viz. '((db)c) is
evaluated, Also we mentioned earlier any quoted expression is evaluated to its
unquoted part i.e., "({d b) ¢) evaluates to the hist ((d b } ¢). And the first element (
(do)c)is(db).Henee (db }is returned.

Further

(car (car’{ (db)e 1)) isevaluated to the atom d.
(car '(LISF IE A AT LANGUAGE))

returns the symbel LISP.

I{ the staternent { setq x { a b ¢)} is followed by the statement { car x) then the
symbol a is returned.

(ii) edr (pronounced as ‘KUDDR ") also takes a list as its argument and returns a list
obtained from the given list by deleting its first element e.g.

(cdr’(dbc)) returns the iist {bc)
(edr’({db)c)) returns tne list (c)
(cdr *(LISP IS AN Al LANGUAGE)) returns the list

(IS AN AI LANGLIAGE).

Also if the statement { setq x *{ @ b ¢)) is followed by the statement (cdr x) then the
value returid is (b e).

But note (cdr "x) returns error, because, 'x evaluates to x and net {o the list (a b ¢) and
the cdr of a symbol, in this case x, is not defined.

Sequence of CARs and CDRs

{ car (edr { cdr (edr *(person (Name Raj)
{ Residence K-76 HauzKhas)
{ City New Delhi)
1))

retums K - 76

LISF provides facilities to simplify notation for a sequerice of cars and cdrs c.g. the
S-expr : .
(cor (car(cdr (car (cdr (cdr given-list)}}))).

e e—

B e L e R BEEENTE

where given-list is bound to some valid list, can be simplified to
(caadaddr given-list))

or to any other S-expr like
(caar (cdadr (cdr given-list })).

Remark: The functions car and cdr take things apart. Next we describe three
functions cons, list and append which put things together.

(iii) Cons: takes two arguments, the first may be any (valid) S-expr but the second
must be a list. Then cons retumns a new list in which the first argument is the first
element in the returned list followed by the clements of the Jist gtven as second
argument, prescrving the earlier order of occurrence in the second argument.

(Cons ' * " (47))rctums the list (* 4 7)
(Cons’(ab)’(be))reunsthelist{(ab)bc)
(Cons 'anil) returns the list (a)

Also, if S-exprs{setqx’{ab))and (setlqy ' (cd))are followed by the S-expr
(Consy x) thenthelist ((cd)ab)is retumed but { Cons "y x) returns the list

(yab)

{iv) list: may take any number of parameters, each of which is an S-expr, it evaluates
the paramelers and then the arguments so obtained are grouped into a list in the
same order as (he corresponding parameters are given initially, e.g., if the inputs {
setq x * (a b}) and (setq y "intelligence) are foltowed by the mput s-expr list 'x y
x "knowledge *y) then on evahration of the last expr, we gel the list { x
intelligence (a b } knowledge v)

(v} Append: the parameters of the function append can not be arbitrary S-exprs but
must cvaluale to lists, It removes the parenthesis from the arguments obtained by
cvaluating the parameters and puts all the lisp objects so obtained into a list.

For examnple, if the S—exprs (setqx *(ab)) and (selqy " (c d)) gre followed by
(appendxy’ ({ab}))

then the last S-expr on evaluation retumms (abed{ab). If we try to evaluate
(append ’ x y) then an ervor is returned, because value of 'x isa symbol x and a
symbol can not be an argument of append,

Next, we define some more built-in list processing functions, which are quite useful in
writing LISP programs for solving problems requiring symbolic processing.

{v1) Reverse: takes a list as its argumcnt and reverses the top level elements of the

argument e.g.
-

{reverse "(ab{ab)(cd)}))
returns
{({cd)(ab)ba)

(vii) Length: again takes a list as its argument-and retums the number of the top level
clements, e.g.,]
(length* (a(ab)(cd)e)) retumns the number 4.

{wi1) Last: apain takes a list as argument and retumns tre last top-level element of the
list, e.g.,

(last’(ab{cd)))retuns thelist (cd)..

A.L Languages-]:
Lisp

A.L Programming

Langunges

16

(ix) Subst (stands for substitution): takes three arguments, such that each occurrence
of second argument in the third argument are replaced by the first argument.
Second argument must be an alom, e.g.,

(subst’ A'B'{DBA))
returns

(DAA)
Also

(subst’{AB)'C'(DBAC))
returns

(DBA(AB})

(x) eval: In some situations, we may need énothér evaluation, in addition to the
evaluation provided by read —sval—print loop. The function eval is explained with
following examples:

— . (setqx’y)
- (setqy z) ; then x evaluates to y but (eval x) evaluates to z.

Ex4: Explain the sequence of steps of evaluation of the following LISP expression:
(length (append (setg x "(ab))} (¢ d) (reverse (sublist’'x '(s 1) ’(u v x))}))

1.7 BUILT-IN PREDICATES

Predicates are functions which retum nil or t depending upon the values of their
arguments. The evaluation by some important predicates is explained in the following
table:

Fugction call Value Returned Comments

{(>7(+23)) t normal ‘greater than’
relation

{(<73) nil normal ‘less than” relation

(=(*37)(+165) t “ = (ests equality of only
numbers

(=equal "(one two) '(one two)) t ‘equal’ tests

(equal *{ two one) * (one two')) nil equality of any two S-exprs,

(equal "(ab)(car({ab)c))) t ‘

(evenp(+47)) nil returns t if argiments is an -
integer .

(evenp(*25)) t and is even, else retumns nil,

{ numberp 2.1416) t- . retumns 1 if parameter

_ evaluales to a
(numberp "x) nil number else evaluates to nil.

Eurther if we have (setq fifty 50) before the next S-expr then

(numberp fifty } i

g ——

But
(numbecr "fifty) nil
(zerop Q) t

if we have (setqx 0) then

(7erop x) {
But

(zcrop 'x) nil
(zerop .0G001) nil

The predicate ‘null’: null returns t if its argument is nil else returns nil, e.g.,

(null ()) retums t
{null 'man) returns mi
(oull"(ab)) returns nil

The predicate ‘member’: The predicate ‘member’ has a little different behaviour. It
may not return ¢ and/or nil. The predicate member tests an atom for the membership
of a list, If an atom is not a member of the list then it returns nil, else it returns the
portion of the list starting with the atom in the list up to the last clement of the list. For
example, if we define

(setq last-alphabet '(uvwxyz))

; then
(member 'a last-alphabet) returns nil
{ member *w Iast-alphabet) returns{wxyz)

However, the predicate member tests the atom only for top membership of the
argument list. Hence,

(member *w ' (uv (wxy)z)retumns nil,
because w is not a member of the list given by the second argument, but w is a
member of a member, viz of (w x y) of the list given by the second argument

The predicate cqi: We considered two forms of predicaics for cquality viz. ‘equal’
and *=". We cousider another predicate eql for equality. The predicate eql checks the
equality of the internal structurc of its arguments. If the structures of arguments are
identical, it returns t else nil. In order to explain the behaviour of egl, we need the
following additional information:

Each time we use the fisnction list even with the same elements, it takes new memory
cells and creales the list. Thus the two s-exprs,

(seiqlistl (list’x'y’z))
and
(setq list2 (list’x’y’z})

creates two lists viz list] and list2 which are infernally different though each of them
consists of the same three clements x, y and z However, fuither we have

{setq list3 listl)

‘hen list3 and kist] point to the same memory locations and hence

Al Lanpuapes-1:
L1SP

17

e A ——— T T T Rt 8T)

Al Programaming
Languages

18

(eql listl hs12) retums nil
(cql listl Hsl3) retumns §
(eql list2 list3) retums nil

1.8 LOGICAL OPERATORS: AND, OR and NOT

The main differences in the behaviour of the logical operators in LISP from their
behaviour in Boolean Algebra or in some other/programming languages are:

)] The operators AND and OR may 1ake one, two or more than two argumcnts
i) The values operated by logical dpuralors in LISP are not exactly /rue or false

but the values are nif and non-nil, i.e., in LISP any S-cxpr which is not nil has the
same logical slatus as that of trie in Boolean Algebra. Hence, modified definitions of
the three logical operalors are:

NOT: Not of nil is {, and, Not of non-nil is nil or.{)
For example, (not* (ab))is nil
(not()})ist

AND and OR are treated as special forms as described below:

AND: The arguments of AND are evaluated from left to right untit some S-expr
evaluates to nil then other arguments are not evaluaied. If, at any stage, an
argument evaluates to nil, then nil is returned. However, if none of the
arguments evaluates 1o nil then the value of the last argument is returned.

OR: The arguments of OR are evaluated from left to right, until either some value
retumed is non- nil, then the value is returned as e value of application of
OR and the rest of the arguments are not cvaluated. However, every argument
evaluates to nil, then nil is retumed.

Examples:
(not mil) returns ¢
{nott) returns mnil
(not ‘dog) returns nil
(and t ‘dog} returns dog
{and t nil *dog) returns ml
(or t i ‘dog) retums t ; first argument that is

non-nil, if any

(or ‘dog mil) returns dog;
{or dog} returns dog
(and ‘dog) refums dog
(ormil ()) returns nil.

1.9 EVALUATION OF SPECIAL FORMS
INVOLVING DEFUN and COND

So far we have discussed only built-in furctions including predicates and relations.
The special word DEFUN allows us to wrile our own functions and build our own
programs. To build up highly complex programs, we need

(1) iteraticn, i.e., repeated cxecution of a sequence of statemenis, and

(i1) Selection. |
In LISP, capability for itcration is provided by the Do construct. On the other hand,

the selection capability in LISP is provided by COND.
(i) Functions are defined usicg the syntax:

(defun < function-name > < parameter-list >
< function-body >)

where < finction-name > is a symbol which names the function being defined,

< parameter-list > is a list of distinct symbols, which forms a list of parameters to the
function and < function-body > is the sequence of S-exprs which describes (or,
denotes) the desired computation.

Simple examples: The LISP function, corresponding to the mathematical function
f(x,y) =x*+y’ forallx,y, is given by the function definition

(defun sumcube (xy)
(F(*xxx}(*yyy)))

Note 1: We have aiready mentioned that in interpreter mode, every S-expr, which
appears after the LISP prompt "> is read, evaluated and printed. The execution of an
S-cxpr that defines a function, returns the name of th e fupction. The name, acling as
a symbol, has a value obtained through execution, associated with it and the
associated value can be used in further processing. For e tample,

= { defun sumcube (xy) (+(“exx)(*yyy)); returns
; sumcube o
Next S-expr

— (length (list (defun sumcube (xy) (+(*xxx) (*yyy))
; fefums
-the integer ! because (defun) returns symbol sumcube then (list ...) returns the

:list (sumcube)-and finally (length) returns the integer 1.

Note 2: Applying a function to its arguments is termed as making a functicn call. For
the above definition of the funclion sumcube, the following sequenc €

— (selg x 3); retums 3
->(surncube2x);retm52*2*2+3“‘3*B,i.e. 35

The capability of conditional or selective evaluation is provided by t.he special
symbo! COND.

The syntax (or legal form) for COND is:

(cond
(< test-1> < S-expr><S-exgr>... < S-expr>)
(<tesi-2 > < S-expr > < S-expr> ... < S-expr>)
(<test-n> < S-expr > < S-expr > ... < S-expr>)
)

Each list of the form (< test-i > < S-expr>. .. <S-expr >) in the above is called a
clause,
The COND form is evaluated according to thie following rule :

Al Lengoages-1:
LisF

-

B 1 ST

[T P ———

e —

A.l. Programming
Langunges

Evaluate the [irst test viz, <test-1 > in clause 1. If it evaluates to non-nil then the
remaining < S-expr > 's in the clause are evaluated in the order from left to right and
the value of the whole COND is the same as the valae of the last S-expr in clausel.

H << test-1 > evaluates to nil, the same sequence of steps is repeated for second clause,
and so on. Until eitler some < test- > evaluates to non-nil, for which earlier described
sequence of steps for the non-nil case, is foliowed. However, if all < test-i > evaluate
to ail then COND fom evaluates to nil.

A special case of COND form is the onc in which < test-i > is the first test which
invariably evaluales to non-nil and the corresponding ith clause has no other S-expr, i
i.e., ith clause is of the form (< test-i >). '

In this case, the value of < test-i > which is assumed to be non-nil is returned.

Exumples uf COND special form

(defun our-max-3 {(xyz)
{ cond
((>xy)
(cond
{ (>xz)x)
{1 z)
}
)
((>yz)y)
{t z)
)
)
)

Comment (a): The example given above graphically demonstrates a style of placing ,'
corresponding parentheses in the code. This is allowed as LISP coede is format free. ’

Comment (b): We also know that t evaluates to itself and henée is non-nil. Therefore,
the two occurrences of the clause (t z)state that in casc { > x y)istruebut{(>x z)
is false then z is retumed. Stdilarly, if { > x y) is false then the next clause as given
below is executed

(
((>y 2z)¥)
{ (z)
)
In this clause, first of all, condition (> yz)is evaluted which, jf tke value happens to
be nil then the condition t in the next sub-clause (tz)is tested. As t always evaluates .
to nor-nil, hence z is retumed.

Comment (c): As z is a number and a number always evaluates to non-nil, therefore,
each of the two occurrences of (t z } in the definition of our-max-3 can be replaced
byjust(z). :

1.180 THE SPECIAL FORMS DO AND LET

Yhe special form Do provides the power of iteration to LISP. We may recall from
our earlier studies that iterative constructs are very useful, specially for denoting long
Sequences of actions by shorter cede.

Also, LET is special form useful in LISP because, it facilitates the creation of local Al Langusges-1;
variables and often yields code which is both compact and efTicient. Lef us first LisP
discuss the speciai form Do in detail,

The do construct has thke following form:

(
(do
((var! init! stepl)
(var? init2 step2)
{vari initi stepi)
{ varm initmi stepi)
Y this part initiates various variabics
" ; also specifies the possible modifications to the value of var-i through step-i
(end-test ; test to see if Do loop
end-formli s 15 {o be terminated

end-form-n return-value

)
body! : body of Do-loop
body2

body-n ; where each body i is an S-exp.

))

The above Do form is evaluated through the following sequence of steps:
Step 1: Variables var-i are initially bound to init-i for all i in paraliel

Step 2: If the S-expr viz end-fest is present, it is examined. I end-test evaluales to nil
then the folowing sub-steps are followed:

(1) Each of bedy+} is evaluated, and if in bady-j any S-expr of the form (refurn value)
is encountered. do is exited and its value is the va/we in return value.

{1i} We should note that only utility of the body is fer exiting or for side-effects.

(ii1) Next iteration starts (only if end-test evaltuated as nil) with binding of each of the
var-i to the value of step-i. Il step-i is omilted, the var-i is left unchanged.

(iv} Repeat whole of step2 again if in step2, end-test evaluates to nil clse go to step3
The next two steps are cxecuted when end-test evaluates to non-nil.

Sten 3: Each of end-form-i is evaluated, the utility of which is for exiting or side-
cffects. :

Step 4: Retumn-value is evaluated and is retumed as value of DO loop.

To iliustrate the applications of Do construct, ve soive two problems using the
coustruct,) .

Example 1: to print the first & natural numbers, where n is a parameter to the

functior, The required function in LISP is:

- { defun print-beginning-integers (1) 71

A.l. Programming
Languages

22

(do

(
(count 1 {+ 1 count))
)
. ({ equal count nn } "done)
(print count)
)

)
- { print-beginnning-integers 12)

123456789101112 done
; here done is used to indicate the successful

; completion of the loop. The /O function
: print shall be explained later.
Next we explain the LET construct:

As we have already mentioned that LET is used for creating local variables. The
purpose and use of LET may be explained through the simple example:

(acfun explain-let (x y)

(let
(
(x 1)
(y 2)
)
{print'x=x)
(terpri)
{pnnt* y=y)
{tempi)
)
{print'x =x)
(print’y=y)

The printing command (terpri) asks she printer to leave the line and start
printing on the next line,

Let us call explain-let with x and y respectively as 8 and 9
—» (explain—fet 8 9) ; we get

x=1
y=2
(> through let, we define a local loop in which x is 1 and y is 2. But, ence execution
exits the loop, then x and y assume the assigned values.

x=8
y=9

Remarks: As in Do, the values of the variables within LET :-;.tructurc are bound 1+
parallel. If we wish to bind values in sequential order then we use LET *

Ex 5: Write a LISP program expo lo compute i raise to power j where i and j are
natural numbers.

Al Langupges-1:

1.11 INPUT / OUTPUT PRIMITIVES LISF

In this section, some frequently used IO primitives are introduced example:

(i) The read statement for input is explained through the following:
— (+ 7 (read));
— 8 ; the value given by the user;
— 15 ; the value returned by the system.
(ii) The primitive TERPRI directs the printer (o0 start on a new line.
(iii) The primitive PRINT takes one argunient. It prints its argument in the same
form in which it is received and also returns the argument as value of the print

slalement.

Example : |

— (print'(xyzu)); retums two lines of (X Y Z U) as shown below.
(XY ZU)
(XYZU)

One of the occurrences of (X Y Z U) is for the value returned by the function prine
- and the other occurrence is printed by the print starement.

Another Example:

—> (print *good moming’); the starement an execution returns the following two
:lines
'good moming’
'good moming’

(1v) The primitive prinl is the same as print except that the new-line characters and
space are not provided

Example

(print 'left) (print 'right)
left
right

— (print "left } (prinl *right)
left right

_..)

(v) The primitive princ : is the same as prin{ except it does not print the double-
quotation marks at of the beginning and end of its argument, if given, e.g.,

~ { princ “good moming™)
good moming “good morning”

_)

princ statement has elimina(ed the double quotes, but returned value is still having
double quoles.

(vi) Formatted Printing through the primitive FORMAT. LISP allows us to have
cleaner output through the primitive FORMAT which has the foltowing syniax.

(format < destination > < string > argl arg2) 23

B

AL Programming Here < destination > specifies where the output is to be directed, e.g., to the printer or

Languages to the monitor or some oiher external file. Default value is generally the monitor. The
word < string > in the format clause indicates the desired output string which is mixed
un with format directlives. The format direclives specify how cach argument is to be -
represented. The order of occurrence of the directives is the same as the order in
which the arguments are Lo be printed. The character ~ is used before cach directive to
identify the directives. Most commen directives are:

~ % : indicates that new line is io be printed.

~ A 1 15 a placeholder for a value which will be printed as if print were used,

~ S : is a placeholder for a value which wilt be printed as if prinl is used,

~ D is a place holder for a value,which must be an integer and which will be printed
as a decimal number,

~F : is a place holder for a value which must be a ﬂoahng point number and will be
printed as a decimal ﬂoalmg point number,

~ C: is a place holder for a value which will be printed as character output, -

Next, field widths for appropriate argument values are specified by an integer between
tilde (i.e., ~) and the dircctive, ¢.g., ~ 3D indicates the integer field width is 3.

1.12 RECURSION IN LISP

Recursion; LISP eajuesses recursive computation in a very natural way.
Let us firsi recal! below what is a recursive function:

Recursive function: is a function which calls itself repeatedly, but each call with
simpler arguments than the arguments used by the preceding call.

Definition of a recursive function requires
(i) arecursive step.

(it) stopping condition for stopping the processing.

.One of the most well-kmown exaniple of recursive definition in Mathematics is that of
Sactoriai, which in the following definition is named as fact and is defined as follows:

fact ()= 1 (the siopping/lermination condiiion)
fact (n) = n*fact (n-1) {the recursive step)

In LISP, the above function is expressed as

— {defun fact (n)
{ cond
(
((=nD)1)
(t(*nfact(— nl)
)
)
)
)
)
FACT
~»(fact5)

24

e e T——— e T —a

120
Anotlier simple example is given below 1o explain recussion in LISP:

We define our own funclion LEN that returns the number of top-mosi elements in a
given list say L:

(defun LEN (L)}
{ Cond
(
((nullL.)0)
(L{(+1(LEN(CdrL)}))
)
)
)
) 0

Ex 6: Wrile a function dzep-fungth that counts the number of a atoms (not necessarily
distinct) in 2 given list. The atoms may be in a list which is a member of another list
which at some level occurs as an element of the given list. For example, for the list

L=(1(2(34)(5)

length L is three. However, deep-length of L is five.

1.13 ASSOCYTATION LIST AND PROPERTY LIST

Associaiion lists are useful tools to associaic attributes and their values with objects.
For example, Lo describe a particular book viz. LISP by Winston & Horn published by
Addison-Wesley Publishing Company in 1984, we may use the representation:

(setq book * ((title { LISP second edition))
(author { Winston & Hom))
{year 1984)
{ publisher addison-wesley)
)
}

The value of the atiribute fitle is a list viz. (LISP second edition) whereas the value of
the attribute year is /984. The values of Lhe attributes may be any S-expr, e.g.,
namber, symbol or list. Formally we define.

Association List is z [ist of embedded sublists, in which first element of each sublist
is a key. In the example of book piven above, the symbols fitle, author, year and
publisher are keys.

The precedure ASSOC: (o retrieve values of keys or attributes, the procedure
ASSOC takes two arguments viz the key and the object-name and returns the list of
two element, the {irst element is the key and the second element is the associated
value of the key, e.g.

— {ASSQC ’year book), returns
{ yvear 1984)

For a given chject, ASSOC locks down the sublist (cazc/t sublist representing key s
associzied value of the key) starting from the first sublist in the list, and matches the
car of each zublist witl e key given as first argument of ASSOC. If the two do not

Al Langoapges-1:
LIsP

| PSR

—-nr —-mp i

A.L Progrnmming
fanguapes

76

match, ASSOC goes further down to next sublist. However, if the key and the car of
the sublist maich then whole of the sublist is retumed.

Property List, and the primitives GET, PUTPROP and SETF
Another way of associating properiies and their associated values to objects in LISP,

is through property lists. Considering again (he earlier example of book with title as
LISP, author as Winston & Horn, Publisher as Addison-Wesley, year as 1984, we can

pul this information in the database using the above-mentioned primitives as follows:

— (putprop "book 'LISP "Title) ; putprop rcturns the attribute values LISP
— {putprop 'book ' (Winston & Hom) 'Author)

' {Winston & IHomn)

-> (putprop *bock *AddisonWesley "Publisher)

Addison-wesley

- {pu.grop buok 1984 “year)
1984

The generai fu:.a of putprop staiement in LISP is
(putprop < object — name — symbol > < attribute — value > < attribuie — name >)

where < object — name — symbol > and < attribute — value > must be symbols and
< atinibute —value > may be any S - expr.

The newer ;Jersfon of COMMON LISP avoid PUTPROP and instead use SETF.

The primitive SETF : SETF is like SETQ. However, SETF is more general than
SETQ. The orimitive SETF also takes two argumients, but the first argumen: s
allowed to be an access function in addition to being an atom. An access function
includes car, cdr and get. Second argument to SETT is the value, as 1s i tbe case of
SETQ. The above-mentioncd LiS]* s'aternents using purtprop can equivalentiy be
replaced by the following statemenis using SETF and GET :

— (SETF (GET 'book 'Title } "Li8P)
LiSP)

— (SETF { GET, book ' Author } ' { Winston & Horn))
{ Winston & Horn))

— { SETF { GET 'book *Publisher) *Addison-Wesley)
Addison-Wesley

— (SETF (GET 'book "year) 1984)
1984

The general forniat for associating values o attribtites of an object using SETF and

GETis

(SETF { GET < object - name —symbeol > < attribule — name >)
~ }aftribute —value >)

SETF can also be used to replace values of car or cdr of 2 lisi as follows:

= (SETOL(xvyz))

(xyz)

— (SEXT (CarL)'a)
(ayz)

= (SETF (CdrL) ' (uvw))
(auvw)

In general (SETF (car < list >) < expr >) replaces the car of < list > by < expr >
and { SETF (cdr < list > <expr>))

replaces the cdr of < list > by < expr >
This usage of SETF allows us to change the values of altributes, whenever required.

In order to retrieve values of atiributes or properties, the primitive GET is used.
Assuming, we have already put the information about the book: LISP by Winston &
Hormn in the database. Then the relevant information pieces may be retrieved as
follows:

— (GET ’book year }
1984

— (GET *book 'Title)
LISP

— { GET ’book "Author)
{ Winston & Hormn)

-clc.

The general format of GET, in order to find the value of the attribute having name
as < attribute ~ name > of the object having name as < object — name >, is :

{ GET < object - name > < attribute >)

Ifthere is no valve in the datz-basc for < attribute —name > and < object — name >, the
value ml is returned.

Note : When more than one SETF or PUTPROP are used to give different values to
the same attribuie of a given object then the effect of only the latest remains. Earlier
values are overwriticn. In order lo change values of attributes, we write another
statement using SETF or PUTPROP. Thus, in continuation of our example about the
book entitled LISP by Winston & Horn, if in addition o the earlier statement, we give
the following statement:

- (SETT { GET ’book 'year } 1987) ; returns
the year of publication as 1987, replacing the year 1984,

Optional parameters: So far we have restricted jo the definition of those functions
which have fixed number of arguments that are always evajuated. However, there are
situations, in which it may be desirable to define functions with variable number of
parameters. For example, we want to define 2 function exponentiare such thai either
the value of base b is given or else it is assypd as 10. For this purpose, we use the
inbuilt. function expf which retums m" for { expt m, n). Thus, exponentiate may
require one apume of two Wgements. For such situations LISP provides a key word
&OPTIONAL, which when used in parameter-list indicates that the paramcters listed

Al Laoguages-1:
LISP

27

A.l Programming
Lamguaf:

28

afler &OPTIONAL may cr may not have arguments correspending to them If the

A1 guments comesponding to some parameters afler &optional are present, the function
uses these in delermining the output result, else there would be no error because of
iheir absence. Fur cxample, the function exponentiate as defined above can be
described in LISP as follows:

~» (defun exponentiate (n & optinal m)
{ Cond
({nullm)(expt 10n})
{(t(exptmn))
)
)
exponeniiite
;exponentiate, in the previous ling, is the value relurmzd by the definition

It may be noted that if &oprinal keyword had not been available and/or had we
defined exponentiate by replacing the parameter-list (n & optional m)by (nm),
then there would have becn an ercor if m is not supplied assuming it to be 10,

The key word &rest

La order 1o explain the use of &rest, we consider the following example:

- — { defun our-sty-3 { n! n2 & optiral n3)

(Cond
((nmulln3) (+nln2))}
(t (+nln2n3))

)

Our-sumn-3 ; returned by the definition.
Let us make the following calls:

— (our-sum-3 5 6)
— {our-sum-3) 567)
. 18
- (our-sum-3 = 5689)
ERROR

The above ERROR occurred, because for correct response by cur-sum-3, minimum
number of arguments in this case musi be 2 { i.e., number of paramaters before
&optimal and maximum number in this casc, must be 3 (i.e. numker of ail parameler
before or after &optlimal), but in the last call to our-sum-3, we supplied four
arguments viz, 5,6, 7, and 8.

Now, it is not always possible to remember the exact number of oplional parameters
and hence not always possible to check erroneous function calls. To remedy this
situation, LISP provides for the keyword &REST which is followed by exactly one
arcument say ‘remaining’. Then if m denotes number of parameters before &oplionai
and n the number of parameters after &optional but before &rest and whenever k
argurents are supplicd and k > m + n, then all the remaining (k—(m +n))
argumenis are grouped into a list and bound fo &rest, In order to explain the ideis
explained above, let us define a function say specialsum-3 as follows.

— (defun specialsum-3 (nl n2 &uptinml n3 &restnd)
(Cond ((and (nulln3 j)(mullnd)) (+nln2))
((uultpd){+nl a2 n3})

TTTTTrTTETTIRYT T

(t ((+nln2n3) (printnd)))

)
)

; the deftnition returns.
Special-sum-3

— (special-sum-3 57
12
—» (special-sum-3 579)
21
— (special-sum-3 579 11)
21(11)

— (special-sum-3 5791112 13)
21 (111213)

1.14 LAMBDA EXPRESSION, APPLY, FUNCALL
AND MAPCAR

When a function is to be called onfy once in a program then we may not like to give a
name to the function in the definition of the function. In such a situation, instead of
the keyword DEFUN we use the keyword LAMBDA. Rest of the definition of the
function remains the same as it would have been under DEFUN. Suppose we need to
compute (x* — y’Y’, the following LAMBDA expression will accomplish the task:

— (LAMBDA (X Y)
(*(-(*XX)(*YY))
(-(*XX)(*YY))

)

Application of a LAMBDA expression is similar to that of application of a function
under normal definition through DEFUN, e.g.,

—» ({LAMBDA (XY)
(* (-(*XX)(*YY) .
, (*XX) (*YY) f

)(3 4); returns
49

The functions APPLY and FUNCALL

APPLY takes two arguments, each of which is evalvated The first argument, which
is either a function-name or LAMBDA expression, is applied to second argument
which is a list. FUNCALL is similar to the function APPLY with the difference that
arguments are supplied without boundary parentheses-of'a list. Function-names are
preferably quoted with #* in stead of just quote.
Examples:

(APPLY #*%(23))

6

— (FUNCALL #'*23):
6 .

A.L Languages-1:
© LISP

29

‘Adl. Programming For the earlier duiined function our-sum-3 which returns sum of 2 or 3 arguments, -
Languages what ever number of arguments out of 2 or 3, are supplied. Let us consider

— (APPLY #’ our-suni-3 (45))
9

-» (FUNCALL #' our-sum-3456)

15
= (APPLY # (LAMBDA (XY) (*(+xx)}(+yvy))) (34))

48
= (funcall # (LAMBDA(XY)(*(+XX)(+YY}))34)

48
The Backquote facility : The backquote is just like quoted cxpression and evaluates
t 1tself except the following difference : Those subexpressions of the expression that
arc preceded by a comma or by the comma followed by the syinbol (@ are evaluated
and substituted appropriately before returning the resuit. Let A be bound to
(3 x4)ihen

-»‘I(ABC);evaluams to
(ABC)

- “(LABC);evalutesto
((3x4)BC)

—_—

(A AB,@AC);evaluatesto
(A(3x 4)B3x 4¢c)

Explanation of evaluation of backquoted expressions: Any suboxpression

which is preceded by a comma is evaluated and substituted by the value so obtaind.

Further, if a subexpression is preceded by , @ then it is evaluated and splice
_substitured. i.e., substitution after removing bounding parentheses, where a the resuls

of evaluation of the argument must be a list. '

The fuaction MAPCAR: MAPCAR is a useful function which is to be repeatedly
applied to a set of lists where each list constitutes one argument list for the function.
Let Fbe a function of arity k, i.e., the function £ requires k arguments in one
application.

The application of mapcar is explained through the following examples.
~> (mapcar #°+ *(1234)°(34))
10 7
(i.e., elements of each of the two lists are udded separaiely)
— (mapcar #' (lambda (x) (+x7))°(234)
; Tetums
91011
— {mapcar #' list’ (xyz)(abc¢))
;relurns
(x aj(y b)(zc)

1.15 SYMBOL, OBJECT, VARIABLE AND
REPRESENTATION

In the contexts in which a symbol has or is expected to have some object or S —erpr
associated with it, it is called a variable. The symbol book]l becomes a varable,
when-associated with the object which represents a book entitled L/SP, authored by

30

-Winston & Horn in the year 7984, The association between the symbol and the object
may be achieved through the LISP statcment:

— (setq bookl”’ ((title LISP Y (author { Winoston & Hom))
(year 1984 } { printing first 1984)
)} ; remums
baokl

The associated object may be referred to as the value of the symbol. The variable may
be considered as the ordered pair: (symbol, value).

Also, a symbol used in the parameter list of a function definition, though does not
have any associated value or object at the lime of definition, yet is a variable because
it is expected to be associated with some object at the time of application of the

function.

Bound & Free Variables: A symbol that appears in the parameter list of a procedure,
is called a bound variable w.r.t the procedure. A symbol, that does not appear in the
parameter list of a procedure, is called a free variable w.r.t the procedure.

Representation of Symbols: In LISP environment, the link between a symbol and the
associated object is unique and is achieved through the following mechanism.

LISP system mainfains a Symbol Table (in some part of the memory) in which each
symbol, when encountered for the first time, is entered alongwith some starling
address, say 3000, of some location in the memory where the associated object is
stored. We may note that some of the components of the object may be changed over
lime, e.g., if Lhe copies of book! are again printed in the in the year 1988. Insuch a
case, the component ‘ (printing first 1984)" of the object is changed by * (prinling
second 1988)’. However, the entry (book1 3000) remains unchanged. Next time when
book1 occurs in a program, the LISP system searches through its possible occurrences
in the symbol table and on finding it there, does not attempt to associate with it
another address or location in memory. Further, the statements like,

(sétq book2 * book1) and
{ setq book3 ' book] }

will associate address 3000 (i.e. the address associated with bookl) with symbols
book2 and book3 as their address parts of (symbol, address) pairs. Thus, we may also
say that a variable is an ordered pair { symbol, pointer).

The Predicate EQ : EQ retwmns Lif and only if the internal structures of its arguments
are identical. Hence, continuing with the eartier discussion, the value (is retwrned in
all the following three cases:

(EQ " book! ' booktl)
(EQ " bookl " book2)
{ EQ " book2 " book3)

Internal Representation of Lists, cons-cells ia memory and the data structure
Dotted Pair: We pointed out that in order to store symbols, LISP system marks a
section of memory, catled symbol 1able and which is considered as composed of cells
1o store (symbol, pointer } pairs. The first component of ach cell is interpreted as a
symbo! and the second component as an address. Similarly, in order to store lists,
LISP system marks out a segment of memary constituting of what is known as cons-
cell. Each cons-cell is a pair (pointer, pointer), i.e., each cons—cell contents are
interpreted as pair of pointers or addresses. The first pointer, in the cons cell to 2 list

AL Laopuages-1:

LisP

3

T e N L

A.l. Programming say L, points to the location in memory where information about CAR of L can be

Languages found and second component of a cons cell points to a location where information
about CDR of L can be found. The cons—cell may be diagrarnmatically represented as -
in the diagrams below, where the left arrow points to CAR and right arrow points to
CDR of the list to be represented by the cons-cell. The CDR -of a single-element list is
nil and is represented by the cons-box, where we may call the boxes of the form as
cons boxes.

Example of representation of lists by cons cells

1. The list { A B) is represented by the cons cell structure:

/

7N\

l

B
2. Thelist ((AB)C)is represented by the cons cell structure:

7\
AR
I

l

B
3. The list { A (B C)) is represented by the cons cell structure:

0 «——

2
/o

A

frmw e -

7N\

aifrer——t—

32 ;
e ' ;

Remarks: The name cons in the cons-cell structures, is justified on the
following grounds:

Let L1 be a list and A be an atom and we have LISP slatement { setq L (Cuns ' A L1))
then L is represented by adding one cons cell in the memory as sliown below:

/

v/

A

Also if L2 is another list then, on the command, (setq M (Cons L2 L1}) resultant list
M is obtained by adding one cons cell in memory as shown below:

M: / \

{t can be easily secn that using the Cons cells representation for lists, operation like
CAR, CDR, ATOM etc can be efficiently implemented.

Ex 7: Draw cons-cell structure for the list ({AB)(CD))-

The Data Structure: Dotted Pair

The cons-cell structure suggests that 2 cons-cell in memory may represent a LISP
object in which the CDR need not be a list but may be-an atom or a symbol.

Dotted Pair: A LISP data structure pair is a structure like list with the difference that
CDR of a dotted pair may be an atom also. A dotted pair with CAR as symbol A and
CDR as symbol B is denoted by (A . B) with spaces around dot on both sides. Thus,
cons-box representation for dotted pair (A . B) s

s \
v N\

A B

and{ CAR '(A .B))isthesymbol A
and{ CDR ’(A .B))is the symboil B.

1.16 DESTRUCTIVE UPDATES, RPLACA,
PPLACD & SETF '

We have earlier discussed updates of attribute values in property lists through
PUTPROP and SETF. But, so far, we have not discussed primitives, in context of
general lists, which achieve destructive updates in parts of given lists. SETF may be
used for the purpose. However, first we introduce two mnemonics for replace CAR

A.l. Lanpuages-1:
LISP

33

cEpmm

-“A.l. Progremming
" Languages

34

and for replace CDR, The mnemonic RPLACA is used for replace CAR and the
mnemonic RPLACD is used for replace CDR. .

Now we explain the two primitives. Both RPLACA and RPLACD take two
arguments. For RPLACA, first argument is a non-empty /iss say bound to a symbol,
say, X and second is an arbitrary LISP object say bound to a symbol, say, Y. Then
(RPLACA XY) replaces (Car X) by Y in the given list and the resulting list is still
bound 1o X. For RELACD, the first argument is again a non-empty list bound to the
symbol, say, X and the second argumerit afso must be a list, say, bound to Y then
(RPLACD XY) replaces (CDR X)) by Y and the resulting list is still bound to 3.
Examples:

—(SETQ X)'((a b) cd);retums
((ab)ed)
= {SETQY 3); retums
3 <
— (REPLACA X Y); retumns
(3 ¢ d); Further if we give

— (SETQZ '(379));retumns
(379)

= {SETQU(ce{)g}); retums
({cef))

— (REPLACA Z U); returns;

({(cef)g)79); this listis bound to Z

= (SETQV'((ab)c)); retuins
((ab)c)

— (REPLACD Z V) ; retums
({(eef)g)((ab)e))

The above two primitives viz RPLACA and RPLACD can be obtained from SETF as
follows:

(RPLACAL S)issame as (SETF(CARL)S)
and (RPLACDLS)issameas (SETF (CDRL)S)

In general we can make changes to lists in arbitrary positions in stead of just to the .
CAR L)and (CDR L), as follows:

(RPLACA) (Cxxxxr L) S)or { SETF (CaxxxxrL))S)
and (RPLACD (Cxoxxr L) S) or (SETF (Cdwooxr 1)) §)
where xxxx is a sequence made out of A’s and D's.

Example :
~» (SETQ X" ({ab){c(de)f)));retumns
({ab){c(de)f))

— (RPLACA (Cdadr X) p)
{{ab)(cpf));still boundto X

— (SETQ Z'({ab)(cde)))
({(ab) (cde})

— (REPLACD (Cdadr Z) '(FG)) ; returns
((2b)(c d FG))

i————

—_— e

Iy 8 Tind
(i} (RPLACA (Cdadr ((uvw)(s{tu)m)})) 'iabej)
{ii)(_filf:L_f\._(‘i')__(_Cdadr ((uvwis{iwm)))’(abo))

1. ARRAYS: LISP provides the primitive MAKE-ARRAY to create array structures.
To create an array structure of dimensionality n and dimensions
<dim—1>, ... <dim-n> the following syntax using MAKE-ARRAY is used:

(MAKE-ARRAY ’(<dim-1> <dim-2> ... <dim-n>})

Far example to create an array structure named Matrix—3 with dimensionality 3 and
<dim-1>as 2, <dim—2> as 2 and <dim-3> as 3 of integers, the following LISP
statement is used:

— (SETQ Mawix-3 (MAKE-ARRAY (223)&KEY : integer 1)
. returns the name Matrix-3

The above statement creates an aray Matrix—3 of [2 elements. The slots in Matrix--3
are empty and we will discuss how to fill values in the stots. The 12 slots in Matrix-3
are referred to as

Matrix-3 {0, 0, 0), Matrix-3 (0, 0, 1) Matrix-3 (0, 0, 2)
Matrix~3 (0, 1, 0), Matrix-3 (0, 1, 1), Matrix-3 (0, 1, 2)
Matrix—3 (1, 0, 0), Matrix-3 (1, 0, 1), Matrix-3 (1, 0, 2)
Matrix=3 (1, 1, 0), Matrix-3 (1, 1, 1), Matrix-3 (1, 1,2)

The priniitive AREF is used to refer to a parricuiar slot in the airap, e.g., .
{ AREF Matrix~3 1 02) refers to the slot Motrix-3 (1, 0, 2)

Tn order to assign a valie to Mawrix-3 (1,], k), the following sialement is need:

- { SETF (AREF Mauix-31 62) 10); assigns value 10 to the slot (1, 0,2)of
Matrix—3

The above value-assigning statement can be easily used to give value say integer g to
{i,j, k }th element of Matrix-3 as

—> (SETF (AREFMatrix-3 1 jk)g)
Further, it can be generalised for any array in stead of Matrix-3.

In order to retrieve values from any slot, say (i, j , k) of Matrix-3 we us¢ the
following LISP statement:

— {AREF Matrix-3 i j k)
; the value g 1s retumed
; if g is the value stored at

. Matrix-3 (i, j, k)then g is returned

Next, we consider defining of strings in LISP:
IL A string is a one-dimensional array, whose elements are characters. MAKE-
ARRAY or MAKE-STRING, a new primitive may be used for the purpose, e.g.,

£l Langunges-I:
LisP

<33

A.L Programming
Languages

L
h

— (SETQ A (MAKE-ARRAY '(4) & KEY : character))
A ;creales a string- structurc A capable of storing
; Characlers
or cquwalem[y we can write the statement
— (SETQ A (MAKE-STRING 4))

In order to store say ‘WORD’ in the string structureA

we can use either v
(SETF (AREF AO)#\W}
(SETF (AREF A1)#0)
(SETF (AREF A2)#R)
(SETE (AREF A3)#\D)
ar

(SETF (AREF A “WORD™)

Note that the two-character sequence viz. # \ is used preceding a charucter 1o indicatc
that the following is to be inferpreted as character.

IIN. Structure: Next, we describe commands in LISP for
e defining Pascal’s record-like structures in LISP environment,
* assigning values to components of such a structure and
« retrieving values from the comporents of such a structure.

The primitive DEFSTRUCT is used to define structures. The syniax o create a
structure (without values assigned to components) is

{ DEFSTRUCT < structure-name > <slot-1 > ... <slot-k>).

The structure created by the above type of LISP statement will be named E
< structure-name > and will have <slot-i>'s as slots. We may recall that ‘<enfity>'
enclosed between angular brackets indicate place-holder for entity 10 be suitable
replaced. The above type of LISP statement automatically generates the keyword
constructor called MAKE — <structure-name> and also automatically creates the
selector functions as <structure-name> — <slot-t>> for each i.

We explain the somewhat terse description above through an example of defining a
binary-tree structure. For this purpose, lct us recall the definition of a binary tree: A
binary tree, is either empty or it consists of a node called the root together with two
binary trees called the Jeff subtree and the right subtree of the root.

For this purpose, a node of binary tree will have three slots: lefi-tree, value righ{-tr
The left-tree and right-tree are pointers.

Ustng DEFSTRUCT, we create the structure, which we name as bin-tree thiough
LISP statement:

(DEFSTRUCT bin-tree left-tree value right-tree)

The in-built mechanisms autematically create the following;

i} Constructor function MAKE-bin-tree
i} Selector function bin-trec-lefi-tree

iii) Selector function bin-tree-value and i
iv} Selector function bin-ree-right-tree. !

Using the above description let us create the following binary tree to be called T1.
The children and grand-children nodes are named as T2, T3 and T4. And a diagonally
crossed cell indicates nil pointer. '

Tl: 3
Z AN

e N\

2 5 :T3

/

7 :T4

r2:

The following sequence of LISP statements create the tree shown above:

— (SETQ T4 (MAKE-bin-tree: lefi-tree nil ; value 7 :right-tree nil))
;8 8 (il 7 mil) is the value returned
- Note we can state : left-tree, : value, : right-tree in any order, e.g.

— (SETQ T3 (MAKE-bin tree : value 5 : lefi-tree T4 ; right-tree nil))
#S (#S (nil 7 nil) 5 nil) is the value returned.

— (SETQ T2 (MAKE-bin-tree : right-tree nil : left-tree nil: value 2))
:#8S (nil 2 nil) is the value retumed

— (SETQ T1 (MAKE-bin-tree: lef-tree T2 : right-tree T3 : value M
; the value returned is the following
#S (88 (mil 2nil) 3#S#S (nil 7 nil) Snil))

In the above the symbol #S indicates the fact that the part following # is a structure.
In order to access vahies of: lefi-tree, : right-tree or : value the selectors bin-free-left-
tree, bin-tree-right-trec and bin-tree-value respectively are used, for example

— (bin-tree-value T1) ; returns
3

— (bin-trec-lefi-tree T1) ; returns

#S (nil 2 nil)

— (bin-tree-lefi-tree T1}; returns
#S (nil 2 nil)

-3 (bin-tree-right-trec T1}; returns
#8(#S (nil 7 nil) 5 nil)

Also if we may give the name of a structure then the witole of the structure would be
available, e.g. ’ '

— T3; the following value is returned
S -(#S (mil 7 mil) 5 wil)

— TI; the following value is returned -
#5(# (ol 2ai)_3#S(#S(nil-7nil)5nil))

Al Languages-1:
LIST

37

AL Programming
Languages

38

T2:

Further, in order to change or even create value of any component, we use the
primitive SETF. For example, if we wish to change : value component of T2 to— 5 we
can use

— (SETF (bin-tree-value T2} - 5); returns

;the following trec as

T1: 3
=~ N\

- AN

-5 3 \ .
- T3

T4: \ 7 T4: 7

/

7

If further. we want T1 to be more symmetrical having T3 as both : fefi-tree as well as
> righi-iree, then we can use

—» (SETF (bin-tree-left-tree T1) T3); retumns T3 as value

AS (#S (nil 7 nil) 5 nil)

The new shape of tree T1 after the sequence of two changes mentioned abeve is like:

TI: 1 3
pd

T3 | 5\ uE .T3
/ .

Further if give the command
— T1; the new structure returned is .

#3 (#S (#S (nil 7 nil) 5 nil) 3 #S (#S (nil 7 nil) 5 nil))

1.18 SUMMARY

The programming language LISP is bascd on the functional paradigm of solving
problems using a computer system. The concepls of ‘paradigm of solving problem’,
‘functional paradigm’ and ‘imperative paradigm’ are briefly discussed in Section 1.0,
i.e., in the Introduction section. Elements of the syntax of the language LISP are
introduced in Section 1.2, The issues relating to structuring of datz and representing
data in LISP are discussed in Section 1.3. How a LISP system evaluates a valid LISP
object is explained in the next section. Section 1.5 explains how primitive LISP
functions are evaluated. Primitive List manipulation functions are discussed in
Section 1.6. The next section discusses built-in predicates of LISP. The various logical
operators are discussed in Section 1.8. Some facilities to write complex programs in
LISP are provided in the form of special forms which use the special words DEFUN,

COND, DO and LET ectc. These special forms are explained in Sections 1.9 and 1.10,
The input/output functions and facilities are discussed in Section 1.11, The
concept/mechanism of recursion plays a very important role in programmiing in
general, and symbolic programming in particular, Recursion in LISP is discussed in
Sectien 1.12.

In order to define objects in terms of their attributes and altribute values, association

fists and property lists are used in L1ISP. Thesc concepts are discussed in Section 1.13.

Some more general and robust facilities in LISP defining and applying functions in
the form of Lambda Expression, Apply, Funcall and Mapcar are discussed in
Section 1.14. The representation of symbols and associated/represented objects in
LISP environment and representation of operations on such represeniations are
discussed in the next three sections. .

1.19 _SOLUTIONS/ANSWERS

Ex 1: (i) The variable x is bound to 5 and the variable y is bound to 7. Further the
value (5 +5) * (7 +7)is evalualed to 140

(ii) The expression having a quote in the beginning itself is evaluated to

(-(+(selqp9)(setqs 3)}(p *9)).
No binding of p to 9 and s to 3 takes place.

Ex 2: (i) The expression in the first round reduces to (+ 24 {—1) 2) which reduces
to 23
(ii) The expression in the first round reduces to (% 5 0 11) which reduces to zero

(©.

Ex3: (Defun{X Y)
(cond (=Y 0) ’infinity)
(t (/ X Y)))

Ex 4:
Stepwise explanation

1. x is associated with {(a b) and (a b) is returned.

2.’(c d) evaluates to (c d)

3. through subst x is replace by list (s t) and we get a new list

(uv(st))

4, through reverse, from the last list, we get ((st) v u)

5. the append of three lists viz (ab), (cd) and ({s t(v u) retuns the list
@bcd{st) v u)

6. Finally 7, the length as number of topmost elements, is retumed.

Ex 3:
(defun expo (ij)
(do
(answer i { * i answer))
; initially answer is i and is
- multiplied in each iteration by i
{powerj(—power 1))
(counter (—j 1) (—counter 1))
- initially power is j and in each iteration power is reduced by 1.
: counter is an auxiliary variable

)

A.L Languages-1:
L.ISP

-39

A.lL Programming
Languapes

40

((zerop counter } answer)

)
— (expo23)
8

Remarks: The clause (powerj (- power 1)) is actually not required. However, it is
introduced to explain. It can be deleted without affecting the overall (final) result. But
it has been introduced to explain an important point about do-loop. We may be
tempted to write the above function expo by replacing the clause (counter -3 1)
(—counter 1)) by (counter (—j 1) (-power [})i.e. replacing last occurrence of
counfer by power; because it is also being computed in the earlier clause. But this
replacement will be wrong, lcading to incorrect result because of the fact that in Do
loop all the variables, viz answer, power, and counter in the above cxampic are
computed in parallel, using values froin the previous iteration/ initialization. Crrrent
values arc available only in the same clause. Therefore, if ‘power’ replaces *counter’
then previous value of power would be available for processing whercas we require
the current value, '

-

In many situations, we need scquential compuration of the variables in the loop. For
this purpose LISP Provides do*. Now, the function of Examplc 2 above may be
rewritten using the earlier computed values of power as is given belory:

(defun expo (i)

(do* (
(answer i { * ianswer))
(power j (—power 1))
(counter (—power 1) .
(- power 1) :
) '
) i
{ (zerop counter) answer) ;
) .
Ex 6: (defun deep-length (L)
(cond
((nuil L) 0)
((listp (car L)) (+ deep-length (car L)) (deep-length (cdr L))
(t(+1{cdr L))
}
)

Ex7: The list ((AB)(CD)) is represented by the cons cell structure

V4 N

™~
e

i
|

Ex 8:
(M} ((uvw)(s{abec)m})
@ {((uvw)(s(tn)aoc))

1.20 FURTHER READINGS

Graham P. : ANSI Common Lisp Prentice Hall (1996).

Sangal R. : Prgramming Paradigms in LISP McGraw-Hill, Inc. (1990).
Patierson D.W.: Chapter 3 of Introduction to Artificial Intelligence and Expert
Systems, Prentice-Hall of India (2001).

Ld [+

AL Langunpis-i:
Lisr

4]

UNIT 2 A.L LANGUAGES-2: PROLOG

Structure Page Nos.
2.0 Introduclion 42
21 Objectives 43
2.2 Fouidations of Prolog 43
25 Notations in Prolog for Building Blocks 46
4 How Prolog System Solves Problems 50
2.5 Back Tracking 54
2.6 Data Types and Structures in Prolog 55
27 Op=rations on Lists in Prolog 57
25 Ty Equality Predicate *=' 01
2¢ Arilhmetic in Prolog 62
210 7= Operator Cut 63
211 Cuiand Fail 65
2,12 Summary 66
2.13 Solutions/Answers 67
2,14 Further Readings 70

Za

2.0 INTRODUCTION

We mentioned in the previous unit that there are different styles of prablem sotving
with the help of a computer. For a given type of application, some style is more
appropriate than others. Further, for each style, some programming languages have
been developed to support it. In this context, we have already discussed two styles of
solving problems viz imperative style and functional style. Imperalive style is
supported by a number of languages including C and FORTRAN. Functional style is
supported by, among others, the language LISP. The language LISP is more
appropriate for A. I applications.

There is another style viz declarative style of problem solving. A declarative style is
non-procedural in the sense that a program writlen according to this style does not
state exactly sow the computational process is to be carried out. Rarther, a program
consists of mainly a number of declarations representing relevans fucts and rules
corice uing ite problem domain. The solution to be discovered is also expr.ssed as a
question to be answered or, to be mare precise, a goal 1o be achieved. This
gueestion/goal also forms a part of the PROLOG program thar is intended to solve the
problem under consideration. The main technique, in this style, based on resoltution
method suggested by Robinson (1965), is that of matching goals (t0 be discussed)
with facts and rules. The matching process tenerates new facts and goals. The
matching process is repeated for the whole set of goals, facid and rules, including the
newly generated ones. The process, terminates when eitherall the initial goals,
alongwith new goals generated later, are satisfied or when it may be judged or proved
that the goals in the original question are not satisfiable.

Logic programming is a special type of declarative stylc of programming, in which
the various program elements and constructs are expressed in the notations similar to
that of predicaze logic. Two interesting features of logic Pragrams are norn-
determinism and backtracking. A non-deterministic program may find a number of
solutions, rather than just one, 1o a given problem. Backtracking mechanism allows
exploration of potential alternative directions for solutions, when some direction,
currently being investigated, fails to find an appropriate solution. The lanpuage

B

PROLOG, whicl sports Logic Programming style, has been found useful 1 AL Al Languages-2:
applications. In this unit, we have ntroduce the programming Janguage PROLOG, PROLOC

2.1 OBJECTIVES

After going through this tinit, you should be able to:

s explain the declarative style and logic programmuig style of probizm solviny,
which form the basis of PROLOG programming;

o explain the difference between declarative style and imperative siyle, where the
laier forms the basis of conventionai programming languages likz, FORTRAN,
Pascal, C elc.

o tell us the rules of syntax of PROLOG;

e 1o write PROLOG programs, using the syntax of the language;

« explain how PROLOG system solves a problem,

o explain the cancept of backtracking and its use in solving problems;

o enumerate the various data types and daia structures available in PROLOG, and
further be able to use the available types and structures in defining the daia fora
program; o
enumerate and apply various PROLOG operations on lists;
enumerate and use predicates in expressions, and
explain the significance of the eperator Cuf and operator Fail and further should
be able to use the operators ‘cut’ and ‘fail’ in programs to solve problems.

2.2 FOUNDPATIONS OF PROLOG

The programming language PROLOG derives is name from PROgramming in
LOGic)

‘The fundamenisls of PROLOG were developed in the early 1970°s by Alain
Colmerauer and Plullipe Roussel of the Artificial Intelligence group at the University
of Marscille together with Robert Kowalski of Department of Artificial Inlelligence at
University of Edinbury, U.X. There are a number of dialects of PROLOG. Two most
important vharacteristics of PROLOG are as giver below:

(i) The facts and rules are represented using a syntax similar to that of predicate
logic. These facts and rules constitute whai is called PROLOG
database/knowledpe base,

(i) The process of problem solving through PROLOG is carried out mainly using an
in-built inferencing mechanism bascd on Robinson’s resolutions method.
Through the inferencing mechanism, in the process of meeting the initially given
goal(s), new facts and goals are generated which also become part of the
PROLOG database.

The syntax of PROLOG is based on Horn Clause, a special type of clause in
predicate logic. We know that a Clause is a predicate logic expression of the form
Pt V P2---nV Pi V .oePe, Where each p; is a literal, and “v’ denotes disjunction. -

Further a fiteral q is of the form p or ~ p {negation of p) where p is an atomic
symbol. A Horn Clause is a clause that has at most one positive literal, i.e., an

atom,

43

IT— - 0w

e R LA

A.L Programming
Languages

There is some minor difference between the predicate logic notation and notation
used in PROLOG. The formula of predicate logic P AQ A R — § is written as

S:-P,Q R
(note the fuil stop foilowing the last symbol R)

Where the symbol obtained from writing *:" (colon) followed by -’ (hyphen) is
read as “if °. Further the conjunction symbol is replaced by *.' (Comma).
Repeating, the symbol *:- is read as ‘if” and comma on R.H.S stands for
conjun<tion.

Summarizing, the predicate logic clause P A Q A R — S is equivalently
represented in PROLOG as S: - P, Q, R. (Note the fidl stop at the end)

Prablem solving style using PROLOG requires statements of the relevant facts
that arc true in the problem demain and rules that are valid, again, in the domain
of the problem under consideration,

A fact is a proposilion, i.e., it is a sentence to which a truth value TRUE is
assigned. (the only other truth value is FALSE). Facls are about various properties
of objects of the problem dornain and about expected-to-be useful relations
between objecls of the problem domain.

Examples of the statements that may be facts are:

1. Mohan is tall.
In this case is_tall is a property and if Mohan is actually tall (by some -
criteria), then the fact may be stated as
is_tall (mohan).

{(the reason for starting the name Mohan with lower-case ‘m’ and not with
upper-case letter ‘M’ is that any sequence of letters starting with an upper-case
letter, 5 treated, in PROLQG, as a variable, where the names like Mohan etc.
denote a particular person and, hence, denote a constant Deiails are given later
an.

2. Amyj is father of Gopal, .
i true, may be stated as: :
father {anuj, gopal). .

3. Ram and Sita are parents of Kush,
if true, may be stated as

parents (kush, rar, sita).

4. Gold is a precious metal
may be stated as:
is_precious {gold).

5. The integer 5 is greater than the integer 4
" may be stated as:

is_greater (5, 4).

6. Aslam is richer than John,
may be stated as
iz_richer (aslam, john).

7. Mohan is tall and Aslam is richer than John :
mmay be stated , using conjunct notations of predicate logic, as
is_tzll {mohan) A is_richer (aslam, john).

The above statements show that facts are constituied of thie following types of
entities viz .

(i) Objects (or rather object names) like, Mohan, Ram, Gold etc. In
PROLOG names of the objccts are caiied atoms.

(i) Numerals like, 14, 36.3 etc. But aumerals are also names of course, thai
of numbers. However, generally, numerals are called numbers, though,

slightly incorrectly.
Also, a constant is eithcr an atom or a number, and

(ifr) Predicates or relation naries like, father, parent, is _precious, 15_ richer
and is_greater etc. In a PROLOG statement.

Predicates are also called Functors in PROLOG

Further, the following type of entities will be introduced soon:

(v) Variables

ﬁr

8. On the other hiand, there are facts such as:
If xis father of y and y is father of z then x is grand_father of z,
which are butter stzied in general terms, in stead of being stated though innumerable
number of facts in which x’s are given specific names of persons, y's specific r1ames

of their respective fathers and z's specific names of respective grand-fathers.

Similarly, in stead of slating innnmerable number of facts about the rzlation of
sister as

Anita is sisler of Anuj.
Sabina is sister of Aslam.
Jane is sister of Johan.,

we may use the general stetcinent involing vaviables, vit, X, Y, M and F, in the
form of the following sule:

X is sister of Y il X is a female and X 2nd Y have the samc parerts M and I

The above rule may be stated in PROLOG as:
is_sister-of (X. Y):- female(X). parents (X, F, &), rarents (Y, F, M).

From iize above discussion, it is now clear that imowledge of & problem domain
can be stated in terms of (acts and rules. Further, fucts 22d rnles can be sizted in
terms ef

(i) Atoms {whick reprosent abject rames) like, Mohan, Ram, Gold cle.
(i) uumbers

AL Languages-2:
PROLOGG

4%

A.L Programming
Languages

6

“(ii) Variables like, X, Y and Z. A variable may be thought of as something that
slands for some object from a set but, it is not known for which particular
object.

(iv) Predicates or relation names like, father, parent, is-precious, is_richer and
is_greater efc. and

{v) Comments: A string of characlers strings generally enclosed between the pair
of signs, viz, /** and **/*, denotcs a comment in PROLOG. The comments are
tznored by PROLOG system.

(v} Atemic formula or structure {atomic formula is different from atom)

Out of the eight examples of slatements which were considered a while apo, the first
six do not involve any of the logical operators, viz,

~ (negation). A (conjunction), v (iisjunction) — (implication) and e» (bi-
implication).

Such siatements which do not contair any logical operators, are called atomic
formulae. In PROLOG, atomic formulae are czlled structures. In geaeral, a
structure is of the form:

functor (parameter list)
where functor is a predicate and parameter list is list of atoms, nurnbers variables and
even other structures. We will discuss structure again under data structures of
PROLOG.
Terms: funclors, structures and constants including numbers are called tenms.

In 2 logical language, the atoms, numbers, predicates, variables and atomic formalas
are basic building blocks for expression of facls and rules consiifuling knowledge of
the domain under consideration. And, as mentioned ea tlier, in logic programming
style of problem solving, this knowledge plays very important role in solving
problems.

2.3 NOTATIONS IN PROLOG FOR BUILDING
BLOGCXS

Alphabet Set of 2 Language:

In any wrilten language, whether natural or formal, the various linguistic cons'rucis
like words expressions, statemems elc. are formed from the elements of a set of
characters. This set is called alphabet set of the language.

‘The alphabet set of PROLOG is:

ABCDEFGHIJKLMNOPQRSTUVWXYZ {upper-case letters)
abcdel‘ghijklmnopqrstuvwxyz (lower-case letters)
0123456789 (humbers)
PR/ = s T@ES &

YO I I 0 N i S

For each type of terms, viz, numbers, atoms, variables and structures, there arg—--
different rules (o build the type of terms. INext we discuss these rules. Sl
Cadstants in PROLOG represent specific gbjects and specific relationships.
Constants are of two types, viz., numbers and atoms.

Numbers: How numbers are represented in PROLOG is illustrated through the
following examples of representation of numbers:
8 7 - 3158 0 87.6e2 35.03e-12
In the above, the “¢” notation is used to denote a power of 10. For example, 87.6¢ 2
denotes the number 87.6 x 102 or 8760. The term 35.03¢~12 denotes 35.03 x 107
Atoni: an atom is represented by
(i) cither a sering in which the first symbol is a lower-case lerter and other
characters in the siring are letiers, digiis and underscores (but no sign
character)
(i) a string or a sequence of characlers [rom the alphabel set {including sign
) characters) enclosed between apostrophes.
(iii) all special symbols like “?-" and *:-" are also atoms in FROLOG

Examples of Atoms
(i) circle ()b (iii) =(equul to sign) (iv) _(underscore}
) ‘=’ (vi) _beta (vii) mchan {viii) 3
(ix) abdul_kalam{uses underscore)
(x)'abdul-kalam’
(uses hyphen. Hyphen is not allowed to be a part of an atom, but within single quotes
all character of the aiphabet are allowed)
{(xi) ‘Anand Prakash’
(the blank symbol is not allowed within a single atom,) But the whole sequ-nce of
characters in ‘Anand Prakash’ including single quotes, represenis a singic atom.
The following are not ators
)] 3mohan (staris with a number)
(ii) abdul-kalam (has kyphen in-between)
(iii) Abdul_kalam {staris with a capital letter)®

Predicate: Predicate have the same notations as ators
Variables: The following notations arc used for variables in FROLOG:
(i) A sting of letters, digits and underscores that begins with an uppercase letier.
{ii} any sequence of letters, digits and underscores which begins with an
underscore, ¢.8,
_result
(iii) The syinbol = (underscore) alone.
Underscore denotes a special type of variable, called anenimous variable. For
example, if we wanl to know if there is anyone whin tikes Mohan, without being
interested in who likes Mohan, then we may use the following statement:
?-likes (_, mohan).
The difference between the behaviours of other variables like ‘X’ and *_" is explained
by the following two queries.
In the query
?-likes (X, X).
the two occurrences ol X denote the same person, hence, if first occurreice of X is
associated with Ankit then second occurrence of X is aulomatically associated with
Ankit. Thus, the above statement in this case says ‘Ankit like himself’. However, in
the following query, different cccurrences of “-" may he associated with different
constants:
?- fikes {-, =)
The query above asks to {ind someonc who likes scmeone, the second someonc may
be diflerent from the first someone. Thus, for
?- likes (-,-).
The PROLOG system, micy i=spond as
‘Ankit Tikes Suresh’, where first occuitence of *- 7 is associated with Ankii and
the second occurrence of '- is associdied with ‘Suresh’.

Al Languapes-2:
FROLOG

47

B s St

Al Frogramming
Langaages

48

Structure: As mentioned ezrlicr, a siructure is of the form:
Predicate (parameter list)
where parameter list consists of atoms and variables separated by comuins .

Term: We have alrcady mentioned that a term is either a constant or 2 struciure, And,
we have also already discusszd representations of constants and structures, .
Fact: A simple statement (i.e., statement not involving logical operatcrs: ~ A v -»
and <3) 1s represenied by a structure followed by a full-stop.
Example

i5_sister({anita, ankur).
{states the fact that Anita is a sister of Ankur).

owns (mohan, book).
(stazes the fact that mohan owns a book)

Fact with Compound Stater:»nt: For expressing facs and relations, the syntax of
PROLGG does not allow arbitrary: clauses but only Fern Clauses. However, in
PROLOG goais may be conjuncied, And, we know z Horn Clause can have at most
ong positive literal. Therefore, the following single (non-atomic) statement ol
predicate caleulus

is_tall (mohan) A is_richer (aslam, john}
has to be expressed as two Prolog statements as follows:

is_tall (mohan).
is_richer {aslam, john).

(nore the dot at the end of each starement)
Head & Bady of a Rule

In the rule

Qyi- Qy, tin, d3, ds.
a, 1¢ the Head of the rule and the R.H.S of 1~ , i.e., @y, 22, 3y, 25’ is the body of the
rulc.

Repeating what bas already been said.

The Head of a rule represents a goal to be achieved and the Body represents vnc or
more of the subgoals (each represented by single (atomic) structure) each of which
must be achieved if the goal representad by the Head can be said to have been
achicved.

Rule Statenzents: In general, a rule in PRULOG is of (ke form:

Head:- Body.
where Head is a (single) structure and Body is a finite sequence of structures separated
by commas. :

Query/Quesiion Statements:

We méntioned earlier, computer programming in PROLOG consists of:
& specifying facts,

s defining rules, and

¢ asking questions,

about objects and their relationships

AT TITTTR T T

We have already discussed PROLOG notation for specifying facts and defining nules.
Next, we discuss PROLOG representation of gquestions. The PROLOG representation
of questions is almost the same as that for facts. ‘The only differcnce in the
representations is that representation of a fact when preceded by the symbol *2-*
(question mark followed by hyphen) becomes the representation of 2 question. For
example, the statement

is_tell (mohan).
represents the fact which when expressed in Englich becomes ‘Mohan is fall’.
However, the following PROLOG notation

?-is_tal (mohan).
denotes the question which when expressed m English becomes: ‘Is Mohan tall?’

We menlioned carlier that for representing facts and rules in PROLOG, we are
restricted to using only Hom Clauses. However, the solving of a problem using a
PROLOG system, requires asking questions, any one of which may be an atomic goal
or may be a conjunct of more than onc atomic goals. In the later casc, the conjunct of
atomic goals representing the (composite) question is represented in Prolog by
writing the atomic goals separated by comrmias.

For example, if we want 1o know whether ‘Mohan is tall end Aslam is richer. than
John?" then the question may be stated in PROLOG as '

?- is_tall (mohan), richer (astam, john).

Sorae interpretations of question forms in PROLOG
Let us consider the rule:
Xis sisterof Yif X is a femaleand X and Y have ik same parents M and F.
The above rule may be stated in PROLOG as:
is_sister of (X, Y):- female(X), parents (X, F, M}, parents (Y, F, M).
Case (i) Then tke guestion in PROLOG
?- is_sister (fane. john).

represents the question (in English): fs Jane sister of Jokn?

Case (ii) Ther. the quesiion in PROLOG.
?-is_sister {X. john).
represents the quesiion:
‘Who (represent by upper-case lelter X) are Johun's sisters, if any?
Rather, the above PROLOG statercent is 2 sorl of {2 following command:
Find the names (represents by upper-case letier X) of (all) sisters of John.

Case (fii) Further, the PROLOG queston:
?-is_sister (jane, X).

represents the command:

Find the nemes (represented by the upper-case feiter X) of all siblings (brothers and

sisters) of jane.

Case (iv) Stili further, the PROLOG question:
7-is_sister {X,).
represents the command:
Find all pairs (represented by pair (X, Y) of, persons ir which the first person is a
sister of the second person in the pair, where second person may be a male or a

JSemale.

A PROLQG prograx: consists of a finite sequence of facts, rules and a query o7 goai
smiement.

Al Langnages-2:
FPROLOC

[TR

Al Programming
Languages

In order to discuss solutions of problems with 2 PROLOG systern, in addition to what
we have discussed so far we need to discuss in some detail represeniation of
arithmetic facts, rules and goals. Also, we need to discuss in some details data
structures in PROLOG. These topics will be taken up later on. Next, we discuss how
a PROLOG system solves a problem.

24 HOW PROLOG SYSTEM SOLVES L
PROBLEMS? | 3

We have mentioned earlier also that solution of a problem through PROLOG system
depends on '

(1) (contents of) PROLOG database or knowledge base. PROLOG database
consists of facts and rules.

(i) PROLOG inferencing system, which mainly consists of three mechanisms viz
(i) Backtracking,
(it} Unification,
(iii) Resolution.

Ifa PROLOG database does not conlain sufficient relevant facts and rules in respect
of a particular query, then the PROLOG system will say ‘fail’ or ‘no’, even if the facts
in the query, be true in everyday life.

For example: Suppose that *Sita is a sister of Mohan’ is a facc ; the real world.
However, if in the database, we are not given any of the following:
(1) is_sisler (sita, mohan). .
(if) parents (sita, m,). ' i
(iii) parents (mohan, m, f),
(iv) mother (sita, m) and mother (mohan, m).
(v) father (sita, f) and father (mohan,).
More penerally, if we are not given any set of statements or relations from which we
can conclude that Sita is sister of Mohan, then PROLOG system would answer the
query:
?- Is_sisler (sita, moha).

as something like: “Sita is a sister of Mohaa” is not froe.
Further, even if all the statements given under (1) to (v} above are in the database, but
the following rule
(vi) is_sister (X, Y):- female (X),
parents (X, M, F), parents (Y, M, F).

is not given in the PROLOG base then also, the systern would answer as something
like: “Sita is a sister of Mohan” is not true,

Further, even if all the statenients given under (1) and (iii) and even rule (vi) are in the ;
databasc, but some statement equivalent to the fact Semale (sita).- ;

is not given, then also the system would answer as something like:

“Sita is a sister of Mohan” is not true.

Lot us Assume the PROLOG database is complete in the sense that the database
contains all the required facts and rules about the real world that are sufficient fo
answer any relevant query. Then, we discuss how the PROLOG system solves a
problem under consideration, [n order to explain the in-built mechanism of PROLOG
system, we start with the parlicular database given below and some quenies and then
generalize the results of our discussions.

Given Database
(i) female (sita).
{ii) female {zarina).
(iii) female (sabina)
(iv) female (june).
(v) ts_sister (sita, sarita),
(vi) is_sisler (anita, aml).
(vii) parents (sita, luxmi, raj).
(viil) parents (sarita, luxmi, raj).
(ix) parents (sabina, roshnara, Kasim).
(x) parents (isaac, mary, athert).
(xi) parents (aslam, roshnara, Kasim).
(xii) parents (zarina, roshnara, Kasim).
(xiii) father (jane, atbert).
(xiv} father (john,alberl).
(xv) father (Phillips, albert)
(xvi) mother {jane, mary}.
(xvii) . mother (john, mary).
(xviii) mother (phillps, ann).

(jane is half sister of Phillips and according to the definition of the PROLOG
database, jane is not a sister of Phillips.)

(xix) is_sister (X, Y}:- female (X),
parents (X, M, F), parents (Y, M, F).

(xx) is_sister (X, Y):- female (X), mother (X, M),
mother (Y, M), father (X, F),
father (Y, F).
The last rule conld have been replaced by the following rule:

(xxi) parents (X, Y, Z):- mother (X, Y), father (X,Z) .

But to explain some important points we consider rule (xx) and do not consider the
last rule, ’

Now, through a number of query examples, we illustrate the way in which a
PROLOG system solves problems.

Query No. 1 For the database given above, consider the query:
?-is_sister (anita, anil).

The PROLOG system starts from the top of the database and malches the functor
is_sister of the query with (e functor female of the statervent which do not match
(both being constants nust be identical for matching). Then PROLCG system passes
ro the next statement and attempts to match is_sister with the functor also Sfemale of
‘he second statement in the database. In this case also, the corresponding functors do

A.L. Langunages-2:
PROLGG

AL Programming
Langunges

52

not match. Similarly, functor in the query does not mateh the functor in each of the
next two stalements.

The PROLOG system passes Lo next (i.c., fifth) statemen(. The functors in the query
and the third statement are identical. Hence, the query system atlempis to maich, one
by one, the rest of the parts of the query with the corresponding parts of the fifth
statement. The first argumcnt viz anita of the query does not match (being consiants, 8
are required fo be identical for matching) to the first argpument viz yita of the fifth =
statcment.

Hence, the PROLOG system passes to sixth statement in the database. The various
components of the query match (in this case are actually identical) to the
corresponding conponents of the sixth statement. Henge, the query is answered as

'j’t’s‘ .
Query No. 2 With the same datzbasc, consider ihe query
?- is_sister (vabina, asicn).

The PROLOG system atiempts (o match the funclor is_sister of the query with
funtors, ane by one, of the facts and rulcs of the database. The first rossibility of
match is in Fact (v) which also has functor is_sister. However, the first argument of
lhe functor in Fact (v) is site which does not match sabina, the comresponding
argument. Hence, the PROLOG systen attempts 1o match with Facl {vi) which also
does not matcn the query. The PROLOG system is not 2ble to find any appropriate
malching upto fact (xviii).

However, the functor is_sister in the query matches the functor is_siter of the

L. H. 8. of the Rule (xix). In other words, PROLOG system attempls to match the
constant sabina given in the query with the variabie X given in U e rule {xix). Here
reatehing takes a diffcrent meaning called unification.

Unification of two terms, out of which at least one is a variable (i.c, the first fetter
of the termt is un upper case letter), is defined as follows:

(i) Ifthe term other than the variable term is a constant, then the constant value is
temporarily associated with (he variable. And further threughout the siatemen:t or
rule, the variable is temporarily replaced by the constant.

(i) If both the terms arc variables, then both are temporarily made synonym in the
scnse any value associated with onc variable will be assumed to be associated
temporarily with the other variable,

In this casc, tie variable temporarily associated with the constant sabina for all
occurrence of X in rule (xix).

Next, PROLOG system aticmpts to match sccond arguments of the funclor is_sister of
the query and of L. [1. S. of rule (xix). Again this malching is 2 casc of unification of
Y being temporarily associated with the constant aslam through out the rule (xix). .

Thus, in this casc, rule (xix) tukes the following form:

Is_sister {(sabina, aslam):- fomale (sabina), parenis (sabina, M, £), parents
(astam, M, IF).

And, we know the symbol *:-" stands for “if *. Thus, in order to satisfy the fact {or to
answer whether) sabina is sister of aslam, the PROLQG system need to check three
subgoals viz, fimale (sabiva), parents (sabina. M, F) and parents fastam, M, F).

Before starting to work on these three subgoals, the PROLOG systemn marks the
rule (xix) for Nuture reference oy for backiracking (fo be explained) to some
earlier fact or rule.
The first subgoal: female (sabina) is trivially matched with fact (iii).
In view of the fact that except sabina the other two arguments in the next (sub)geal viz
parents (sabina, M,) are variables, the subgoal pareits (sabina, M, F) is actually a
sort of question of the fom:

Who are the parenis of sabina?

For the satisfaction of this subgoal, the PROL.OG sysiem again starts the exercise of
matching/unilication from the top of the datubase, i.e, from the {irst staterment in the
database. The possibilities are with facts (vii), (viii)......, (xii). in which (he functor
parents of the subgoal occurs as the functor of the facts (vis), (viii},....., (xii).
However, the first arguments of the functors in (vii) and (viii} do not match the first
argument of parents in the subgoal. Hence the PROLOG system proceeds further to
Fact (ix) for matching. Al this slage the subgoal is

parents(sabina, M, F).
and the fact (ix) is

parents (sabina, roshnara, Kasim).

As explained earlier, M and F, being upper case lctters, represent variables. Hence, the
exercise of matching becomes exercise of unification. From the way we have
explained earlier, the const:nl roshnara gels temporarily (for the discussion of rule
{xix} only} gets assaciated with the variable M and the constant kasim gets associated
with the variable F. As a consequence, the next goal parents faslam, M, F) becomes
the (sub) goal parents (aslam, roshnara, kasim). To satisfy this subgoal, the PROLOG
system again staris ihe process of matching [rom the first statement in the PROLOG
databasc. Ultimately, atter failure of matching with the first eight facts in the database,
subgoal is satisfied, because of ralching with the fact {ix) in the database.

The PROLOG system answers the query with ‘ves’,

Remarks: In respect of the above databasc, the relation of is_sister is not reflexive
(i.e, is_sister (X, X} is not true for all nusmbers of the database), i.e., no male is his
own sister, However, for the set of all females, the ralalion is reflexive.

Remarks: In respect of the above database, the relation of is_sister is also not
symmetric (i.e., il is_sister (X, ¥) is true then it is not necessary that is_sister (¥, X)
must be truc). Any female X may be a sisicr of a male Y, but the reverse is not true,
because the condition femaie (Y) will noi be satisfied. But the relation 1s symmetric
wilhin the set of all females.

Remerks: However, the rzlation of is_sister is (fuily) transitive (i.e., if i5_sister (X, Y)
is true and if is_sister (Y, Z) is true, then /s_sister {X, Z) niust be true)

Ex I: Query No. 3 With the same datcbase, discuss how Le following query is
answered by the Prolog sys:em:

?-is_sisicr {oolae:, sabing).
Ex Z: Query No 4. Wit T sanwe deiabase, discuss how the [ullowing query is
wnswered by the Profos systom:

2y sierap (fune, fohin}

Al Languapes-2:
FROLOC

53

AL Programmlnag
Langusges

54

Ex 3: Query No. 5 With the same database, discuss how the following query 1s
answered by the Prolog system: ' ’
?- is_sister (fane, Phillips)

2.5 BACKTRACKING

The concept of backiracking is quite significant in PROLOG, specially in view of the
fact that it provides a powerful tool in searching alternative directions, when oue of
the directions being pursued for finding a solution, [cads to a failure. Bactracking is
also useful when to a query, there are more than one possible solutions. First, we
illustrate L1e concept through an example and then explain the general idea of
backtracking.

Examplt 1: For the database given earlier consider the query
?- is_sister (sabina, Y), is_sister (Y, zarina).

The query when translated in English becomes: ‘Find the names (denoted by Y) of all

those persons for whom sabina is a sister and further who (denoted by Y) is a sister of

zarina.’

In order to answer Lhe above query, the first solution which the PROLOG sy.tem
comes with after searching the dalabase is : “Associate sabina with Y’, i.c., sabinu is
one of the possible answers o the query (which is a canjunct of two propositions). In
other words, associate Y with sabina, which, according to the facts and rules given in
the database, satisfies is_sister (sabina, sabina) and is_sister (sabina, zarina).

If we are interested in more than one answers, which are possible in this case, then,
after the answer ‘sabina’ the user should type the symbol *;’ (i.e., type semi-colon).
Typing a semi-colon followed by return’ serves as a direction to PROLOG system o
search the database from the beginning once again for an alternative solution.

In order to prevent the PROLOG system from attempting to find the same
answer: sabina again, the system puts markers — one on Rule (xix) aad aftcr that
on Fact (ix) {in that order).

Once the instruction from user through semi-colon is received to find another solution,

the system proceeds to satisfy Rule (xix) from Fact (x) (including) onwards. Then
through Fact (xi), for the first occurrence of Y, aslam is associated. The variable X is
already associated with constant sabina. Then aslam replaces Y in the rule (xix).
Next, PROLOG system attempts to satisfy the second subgoal which, at present, is of
the form:

is_sister (aslam, zarina).

For satisfying this goal, the PROLOG system searches the database from the top
apain. Again rule (xix) is Lo be used. For satisfying L.H.S. of (xix) the subgoal on
R.H.S. of (xix) necd to be satisfied. The first subgoal on R. H. S. of (xix) is to satisfy
the fact: female (aslam), which is not satisfied.

At this stage, the PROLOG system goes back to the association i.e. aslam fo Y, and
removes this association of Y with asfari. Next, the PROLQG system attempls (0
associale some other value to Y, further from the point where Y was associated with
aslam. This is what is meant by Backtracking.

Next, through Fact (xit), zarina is associated with Y and sabina is already associated
with with X. Thus, the subpoal to be searched becomes is_sister (zarina, zarinag). This
goal can be satisfied, because, threc subgoals for this goal, viz, female (zarina),
parents (zarina, M, F) (where zarina is associated with X} and parents (zarina, M, F)
{(where zarina is associated with Y) can be casily scen to be satisfiable from the
database. Hence, the second answer which the system gives is zarina.

Again, the user may scek for another answer to the query by typing “;°. The system
has already marked the fzci (xii) in the database while finding the answer: zarina.
Therefore, for another answer, the PROLOG sysicm starts from the next stalement,
i.¢, Fact (xiii) to search. It can be easily seen that the PROLOG system will not find
any more answers. Henee, it retumns *fail* or ‘NO’.

2.6 DATA TYPES AND STRUCTURES IN
PROLOG

We have already discussed the concepts of atom and number., These arc the only two
elemeniary dala fypes in PROLOG. We also mentioned how atonis and nuribers mo
represented in PROLOG.

We will discuss briefly: relations between numbers, operations on numbers and
statements about numbers later, The discussion is being postponed in view of the fact
that main goal of PROLOG is symbolic processing rather than numeric processing.

We next discuss how symbolic data is structured out of the two elementary data types
viz. atoms and numbcrs. PROLOG has mainly two data structures:

(i) List

(ii) Structure.

To begin with, we consider the data structure: Structure

Structure

We have already discussed the concept of structure, parlicularly, in context of

representing facts, rules and queries. A structures 1n PROLOG is of the form:
(ptedicate (list-of-terms),

where predicate is an atom and [ist-of-terms is a list of terms.

A fact is represented in PROLOG by simply putting a full stop at the end of
appropriate structure. Similarly, a rule or a query can be obtained from appropriate
struchires.

Here we discuss briefly structure from another perspeclive, viz, that of

representing complex data. Structure in this respect is like record structure of other

programming languages.)

Structure is a recurs::vé concept, ie., in the represenlation predicate (list-oi-terms}, a

term itself may be a situcture again. Of course, a term mey also be a constant or a

vartable. For example, an enployee may be defined as :
employee (name, desienztion, age, gross-pay, address)

but then name may be further structured as

Name (first-name, middle-name, last-name)

further first-name may be wrilten, for example, as

Al Languages-2:
PFROLOG

5L

Tt eRTTTT YT I

e e e S

AL Programming
Languages

56

(first-name mohan)
Thus, the information about an employce Mohan may be written in PROLOG as a fact
using a (complex) structure:

employee (name (first_name mohan), (middie-name lal),
(last_name sharma)),

(designation assistan!_regisirar),

{age 43), (gross_pay 35000

(address delhi).

Similarly address may be further structured, for example, as

address { (housesiumber 119),
{street khari-baoli)
{area chandni-chowk)
{city dethi))

A query in order to know the gross-pay of Mohan may be given as:

? _employee (name (mohan), _, _), _, _}(gross_pay X)).

It will return 3500. In the above query, the vanderscores may represent many different
variables.

Ex 4: Give the information about the book: Computer Networks, Fourth Editica by -~
Andrew 8. Tanenbaum published by Prentice Hall PTR in the yeur 2003 as a struclure
in PROLOG. Further, write a query in PROLOG to know the name of the author,
assuming the author’s name is not given

Example 2: The following simple sentence:
Mohan eais banana
may be represented in PROLOG as
sentence ((noun mohan), (verb_phrase (verb eats), (noun banana))).

In general, the structure of a sentence of the form given above may. be cxpressed in
PROLOG as

Sentence ((noun Ni), (verbphrase (verb v), (noun N2}).
Further, A query of the form
?_sentence ((noun mohan), (verbphrase {verb eats), (roun X)))

tells us about what Mohan eats as follows:
(noun banana)

Next we consider the data structure: Last

List: The list is 2 conmon data structure which is built-in in almost all programming
[anguages, specially programming languages meant for non-numeric processing.

Informally, Jist is an ordercd sequence of elements and can have any length (this is
how a list differs from the data sfruciure array; array has a fixed length). The
elements of a list may be any terms (i.e., constants, variables and structures) and even
ather lists. Thus, lis? is a recursive concept.

Formally, a list in PROLOG may be deficed recarsively as follows:

—_— e e e

(i) [}, representing the emnpty list, is a list,
(i) [c1,€2 - eo] is a list if each of ¢; is a term, & list or an expression
(1o be defined}.

Examples of Lists: 1,[1,2,3), [1, [2, 3]]

(note the last two are different lists and also note that the last list has two elements viz
1 and [2,3]

Also, [3,X, [a, [b, X+ ¥]]] Is a list

provided X + Y is defined. For example, X and Y are numbers, then as we shall see
later that X + Y is a valid expression.

Expression is a sequence of terms and operators formed according o syntactic rules
of the language. For example, X +Y * Z may be an expression, if X, Y and Z are
numbers and if infix notation for operations is used.

However, if prefix notation is used, then X +Y * Z is nos an expression, bul +X«YZ
be may an expression.

Also [, _, Y]is a list of three elements, out of which, first two are ‘don’t care’ or
anonymous variables.

2.7 OPERATIONS ON LISTS IN PROLOG

L. The operation denoted by the vertical bar, i.¢. ‘|' is used to associate Head and Tail
of a list with two variables as described below:

(¢} [X[Y]=[aDb,c]

then X is associated with the element a, the first element of the ist and Y is
associated with the list [b; ¢], obtained from the given list by removing its first
element, if any.

i [(X[¥1={fab],cl}

then X is associated with the list 2, b), the first element of the list on R H.S. and
Y is associated with [c].

i) [(X[Y]=[[ab,c]]then

X=[a,b,cland Y=[]
vy [XIY]={a[b,c]]

then X is associated with a and Y is associated with [[b,c]]
© XY1=[ab [c]]be

then X is associated with a and Y is associated with [b, [¢]]

(vi) The operator ‘I is not defined for the list [], having no elements

AL Langamges-1:
PROLOG

57

A.L Programming
Languages

58

Wi) [atb,c+d)=[X,Y]
then X is associaled with a2 + b and Y is associated with.c + d
(Note the difference in the response because vertical bar is replaced by comma)

I. Member Fuaction the funciion is used to determine whether a given argument X
is a member of a given list L. Though the member function is a built-in Junction in
almost every implementation of PROLOG, yet the fotlowing simple (recursive)
program in PROLOG for member achieves the required effect:

member(X, [X|). (i)
member (X, [_[Y]):- member (X, [Y]). (ii)

Definition of member under (i) above says that if first argument of member is Head of
the second argument, then predicate member is true. If not so, then, go fo definition
under (ii). The definition of memb«. under (ii) above says that, in order to find out
whether ficst argument X is a2 meisber of second argument then find out whether X is
a member of the list obtaincd from the secand argument by deleting the first element
of the second argnment. From the abeve definition, it is clear that the case
member (X, []) is not a part of the definition. Hence, the system returns FALSE.
Next, we discuss example to explain how the PROLOG System responds (o the queries
invalving the member function. :

Example 3:
P-member (pascal, [prolog, fortran, pascal, cobol])

The PROLOG system first attempts to verify(i) in the definition of ‘'member’, i.e.,
system matckes pascal with the Head of the given list [prolog, for/ran, paseal, cobol].
i.e., with prolug. The two constants are not identical, hence, (i) f-ils. Therefore, the
PROLOG system uses the rule (ii) of the definition to solve the problem. According to
tuie (ii) the system attempts to check whether pascal is 2 meml er of the tail {fortran,
pascal, cobol| of the given list.

Again fact (i) of the definition is applied to the new list, i.e., [fortran, pascal, cobol) to
check whether pascal belongs to it. As pascal does not match the Head, i.e, Jortran of
the new list. Hence, rule (it) is applied to the new list. By rule (ii), pascal is a member
of the list [fortran, pascal, cobal), if pascal is 2 member of the tail [pascal, cobol] of
the current list.

Again fact (i) is applicd to check whether pascal is a member of the curre:? list
(wascal, cobol]. According to fact (i) for pascal to be a member of the current list
pascal should be Head of the current list, which is actually true. Heace, the
PROLOG system returns “yes’.

The above procedure may he coreiselv exoressed as follows:

Goal X I-1 Y] Comment

1 pascal [prologlfortran, paseal, cobol] pascal does
rot match
prolog
hence apply
rule (ii)

2. pascal [fortran, pascal, cobol] by rule (i}

3. pascal {fortranipascal, cobol) using fact (i)

pascal is
not identical

{0 head of
the list
Hence apply
rule (i1)

4. pascal fpascal, cobol]

5. pascal [pascal|cobol] (again apply
' Jact ()

Head of the current list is identical with pascal, hence, the system responds with a

b »

‘ves .

Ex 5: Explain how the PROLOG system responds to the following query:
?-member (pascal, [prolog, fortran, cobol]).

III. APPEND funciioa is also generally, a built-in function in PROLOG. However,
we can sce how a simple program in PROLOG can be written for the function.

The append function takes two lists and returns a single list such that the elements of
the first list followed by elements of the second list <onstitute the elements of the
returned list. For example

(i) append ({a, b] [¢, X, Y}) refurns the list
fa,b,c, X. Y1

{n} append {a, [b, ¢] L, [[<, X], Y1) returns the list
{a.[h, €], (¢, X], Y]

(iit) append []. [a, b, c]} returns the list
[a, b, c].

(v) appen” {[a, b, ¢, []) also recuins the list
[a, b, c].

The append function in PROLOG may be writter ax:

append ([}, X, X). ()
append {{Head|Tait], Y, [Head{Z]:- a;:p2nd (i Tail], Y, Z). (ii)

Explanation: The above PROLOG nrogram states that append takes three arguments,
gach of which should be a list. The result of appendin the elements of the lists in the
first and second arguments, is stored in the Tist represented by third argument.

Further, the result of application of (i) of the definitior of append 10 an empty list in
first argument with a list X in sccond argument is the same list X as given in second
argurnent, but written in third argument.

However, if the Orst argureni 1s noi [] @:en apply male (1, above.

According to rule (ii) above, Head of the lisi in fisst argumesit becomes Head of the
resultant list (i.e., of the third argument) and the tuti of {he resullant list is obtained by
appending tail j.e., [tail] of the first argument to the list given as second argument of
append. Executing append sccording to the above defintt:cu is a recursive process. In
each successive step, he size of the list in e first crgument is reduced by one and
Sinatly the Iist ir the first argument becomes {] In the last case, fact (i) is applicable
and the process terminates

Al Langmages-2:
PROLOCG

5%

AL Programming
Lapgonages

690

Next, we explain how PROLOG systern responds to a query involving append.
Example 4: Let us consider the query

?-append ({prolog, lisp], [C, fortran}, Z).

As first list is not [], therefore the system associates profog with Head and [fisp] with
Tail. Then by rule (i) prolog becomes the Head of the resultant list and aRter that
PROLOG system attempts to append the list {fisp] with [C, fortran} and the result will
form the tail of the originally required resultant list. Next, list is the Head of new first
argument and [] is the tail of the new first argument. However, second argument
remains unchanged. The result of the second append is a list whose first eleinent is
prolog, second element is isp and the rest of the elements of the resuliant list will be
obtained by appending [] to [C, fortran]. In this case however rule (i) is applicable
which returns [C, fortran] as the result of append {] to [C, fortran], and which will
form the tail of the resultant list, Finally, the resultant list is [prolog, lisp, C, fortran]

Next, we consider another list function.

IV. prefix (X, Z) function which refurns frue if X is a sublist of Z, such that X is
either [] or X contains any number of consecutive elements of the list Z starting from
the first element of Z onwards. Otherwise, prefix (X, Z) returns ‘No’ or ‘False’.
Further explain, justify and trace your program with an example.

The PROLOG program prefix is just one statement program:

prefix (X, Z): - append (X, Y, 7).

where, we have aiready defined append as _)
append ([1, X, X]). (i)
append ([Head'| Tail], Y, [Head | Z]):- append ([Tail), Y, Z}. (i

Explanation: The one-line pr&g:ram, returns true, if by appending any list Y to X we
get Z. Further, next two-statement program append says that append, a function of
three arguments X, Y, Z returns Z as a list in which first, all the clements of X occur
preserving their original order in X. The last ¢lement of X when placed in Z is
followed by elements of Y, again preserving their orderin ¥.

Further explanstion may be glven with the following example query:

?-prefix ([a, b, [a, b, c]).

returns yes. The processing for the response, by the PROLOG system may be
described as follows:

For satisfying the qumy,@b rule becomes
prefix ({a, b], [a, b, c]):- append ({0, 8], Y, {8, b, c])
Next, the system need to satisfy the goal:
append ({a, b, ¥, fa, b, c].
First fact of append is not applicable as {a, bl is not []. The rule (ii) takes the form
apperd ({a | 4], Y, [a| b, ¢])--append (a], ¥, [b, c]).
Which on another dppi;cstion of rule (ji) takes the form
append ([a |, Y, [¢y append ([], ¥, [c]).
Y is associated with {c]. The PROLOG system responds with
Y ={c}

CiTTTTART YT T

Lel us consider another query:
?-prefix (X, [a, b, c]).

In response to the query the PROLOG system, first returns X as [], then if the user
gives (;) to find another answer, then PROLOG system returns X as the Tist fa]. If,
further another answer is required then PROLOG system returns X as the list [a, b]. if
still another answer is required, the answer [2, b, ¢] is returned. Finally, if stilt another
response is required by the user, then the system responds with a “No”.

Ex 6: Another Example query
?-prefix (fa, c], [a, b, c]

Explain the sequence of sleps of processing by PROLOG syslem.

Ex 7: Write a PROLOG program suffix (¥, -~} which returns true if ‘Y is @ sublisc uf
Z such that either Y is [] or Y contains any number of consecutive elements of Z
starting anywhere in the list but the last clement of Y must be the last element of Z.
Further, explain, justify and trace your program with an example.

2.8 THE EQUALITY PREDICATE ‘=’

"Let Term! and Term2 be two terms of PROLOG, where a term may be a constant, a
variable or a structure. Then the success or failure of the goal
7-Terral = Term?2.
is discussed below:

Case I: Both Term! and Term? are constants and, further, if both are identical then
the goal succeeds, and, ifqiot identical, then the goal fails.
Examples: The query

?-mokan =mohan succeeds

7-1287 = 1287 succeeds

?-program = programme fails

7-1287 =1289 fails.

Case IT: One of the terms is a variable and if the varable is not instantiated then the
goal always succeeds
For example
?-brother (mohan, sita) = .
Then the goal succeeds and the variable X is instantiated to the term
brother (mohan, sita)

Case IIT: One of the terms is a variable and the variable is instantiated:
Then apply ‘=’ recursively to the case which is obtained by replacing the
variable by what is its instantiation. For example, consider the query -
7-X = tree.
And X is alrcady instantialed to free, then, replace X by tree in the given query, whickh
takes the new form:
Ttree = tree
On encouatering this new query, PROLOG system relurns si:ccess. However, if X is
already instantiated to any other constant say flower, then the new query becomes:
?-flower = tree. .
Applying Case I above, we get Fail.)
Case IV: Ifboth terms are variables, say, the query is of the form:

A.lL Languages-2:
PROLOG

61

A!f;‘l‘rogummlng
Laogaages

62

1X=Y
then if
(a) both are uninstantiated the query succeeds, but, if during further processing
one of X or Y gets inslantiated to some term then other varable also gets
instantiated to the same term.
(b) If one or both are instantiated, then replace X and/or Y by their respective
inslantiations to generate a new query and apply =’ to the new query.

Case V: Both terms are structures: Two structures satisfy ‘=" if they have the same
functor and the same number of components and, further, il the definition of *="is
applied recursively to the corresponding components, then each pair of corresponding
components satisfies ‘=",

For example:
?-brother {nvohan, X) = brather (Y, sita).

Then the above goal succeeds and X is instantialed to sita and Y is instantiated to
mohan

Similarly the following goal also succeeds

(Q,r,5 T, uv)=plqrs WU V) .
because, first of all, the functors, i.e., p on the two sides of ‘=" are identical. Next,
success of ‘=" for the terms at corresponding positions is discussed below: '
variable Q is instantiated to q, the variable 8 to s, U to u and the variable V to v.
Further, the variables T'and W are, though, nol instantiated, yet they becone co-
referred variables in the sense that if one of these is instantialed to some constant then
the other also gets instantiated to the same conslant.

" - Exerclse 8: Discuss success/failure of each of the following queries:

(1) -gX,a(b,c) }=g(Z, 2 (Z,)}
{ii) ?-letter(}1) = word (letter)

(iii) 7-g(X, X) = gfa, b).

{iv) ?- noun (alpha) = Noun.

(v) 7-noun (alpha) = noun.

2.9 ARITHMETICS IN PROLOG

The language PROLOG has been designed mainly for symbolic processing for ALl
applications. However, some facilities for numeric processing are also included in
PROLOG. For this purpose, the arithmetic operations viz

+ (addition), — (substraction), * (multiplication), / (division) and A
{(exponentiation)

_are built-in and are used in inlix notation.

Further relatioaal operators viz

< (less than), > (greater than), = (equal to), = < {greater than or equal to), >= (less
than or equal tc) have their usual meaniugs and infix notation is used in expressions
using these relational operators. The symbol for ‘not equal to’ is /= '
Please note the notation for ‘less than or equal to’ and “greater than or equal to’

e ——

Al Languages-2:

The ‘1s* operator
PROLOG

It may be noted that in PROLOG, the expression ‘3 + 7" is not the same as the
number 10. The operation of ‘+' does not execute autornatically. For the purpose of
execution of an operation, PROLOG provides the operator ‘is’.

Thus, in response to the query
2-Xis3+7.

the variable X gets instantiated 1o 10

and the prolog system responds as
X=10
Yes

In order to explain numerical programming in PROLOG, let us consider the
PROLOG program for factorial:
factorial (0, 1).
‘factorial (Number, Result):- Number > 0, New is Number — 1, factorial (New.
Partial),
Result is Number * Partial.

Note: In the above definition, each of Number, New, Partial and Result, denotes a
variable.

Explanation of PROLOG program for factorial: If the given number is 0, then ity
factorial is 1. Further, result of computation for factorial of any number Number will
be associated with the variable Result and the goal can be achieved through the
following four subgoals:

(i) Number > 0 should be true,

(i)g The number Number - 1 is calculated through the operator ‘ls’ and is associated
with variable New,

(iii) Factorial of the number (Number — 1) through the operator ‘is’, i.e., of the
number New, is recursively calculated and the result of the calculation is
associated with the variable Partial

(iv) Finally, theough the operator ‘is’, the product of the Number with Partial, (the
result of the factorial of New (i.e. of Number — 1)) is calculated and associated
with Resuit.

2.10 THE OPERATOR CUT |

In'some situations, as discussed by the following example, if the goal is met once, the
problem is taken as solved without need for iterations any more.

Example: It is required to check whether an element is a member of a list X, where,
say X = {c, d, a, b, a, c}, then, if we test the elements of X from left to right for
equality with a, then the third element in the tist matches a and once that happens, we
are not interested in any more occurrences of a inthe list X. Thus in such a situation,
it is required that the PROLOG system to stop any further computation.

However, we know that PROLOG system atte=sots to re-satisfy a goal, even after
_ satisfaction of the goal once. For example, for v following one statement PROLOG
program
prefix (X, Z):- append (X, Y, Z}.
if the query is
?-pregfix (X, fa, Hf).,
then first X is associnres with [] as X =|] ac an answer to the query.

E

A.L Programming
Eanpuages

64

In the next iteration, the PROLOG syslem assaciates the list [a] to X, i.e., .X = [a].
In the still next iteration, the PROLOG system responds with

X =[ab]. :
And Minally, the system responds with a ‘no’.

The PROLOG system, provides a special mechanism or function called ‘cut’ by
witich, if required, the subgoals on the right-hand side of a rule may be prevented
Jrom being tried for more than once, if all subgoals succeed once. The operator cut is
denoted as ! (the exclamation murk) and inserted at a place where the interruption for
not retrying is 1o be inserted.

TTYTTTIRTTTTT O

-

Example 5: Through the following general example we explain how PROLOG
system behaves in the presence of ent denoted by ! when inserted on the R. H. S.of a
nile,

Consider the rule
trial: -a, b, c, I, d, e, f, g.

The above rule says predicate trial succeeds if the subgoals on R.H.S. succeed. The
PROLOG systemn may backtrack between subgoals a, b and ¢ as long as it is required

by the system answer the query, for the predicates a, b and ¢. The change in the i
behaviour of PROLOG system due to the presence of *!" occurs only afier the subgoal :
¢ succeeds and PROLOG system encounters the cut symbol “t". PROLOG system

always succeeds on the cut operator represented by “2*. And Lence PROLOG

system attempts to satisfy the subgoal d. Further, if d succeeds then backiracking may

occur between d, ¢, fand g,

In the process, it is possible that several backtrackings may occur between a, b and ¢
and several (independent) backtrackings may occur belween d, e, faud g. However,
once d fails and crosses on the left to the operator !, then no more atternpts will be
made to re-satisfy c on the left of the operator !.

Example 6: We define below the membership for a set (in a set each element occurs I
only once}. Hence, once a particular element is found to occur then there is no need :
for further testing, for the occurrence ofthe element in a set. The predicate member, in
this sense, may be defined as

member (X, |- }:- 1 (i)

member (X, [_| Y]: - member (X, Y). (ii)

The statement (1) above says that if the-element X is the Head of the list (i.e., X is the
first element of the list) then the R.H.S. must succeed. However, R.H.S. consists of
only the cut symbol “!” which is always true. Further, in the case when the operator is
the cut symbeol then PROLOG system is not allowed to go to its Left. Hence, the
PROLOG system afier succeeding on ‘!’ exits program execution because of the
restriction that the system is not allowed to backirack from “1°.

Example 7: One of the possible PROLQG programs for finding naximum of two
given numbers is the following two-statement program: :
max (X, Y, X):-X>=Y. (i}

/* third argument is for the variable supposed to be associated with the result */
max (X, Y, Y): - X < Y. (i)

But we know that if X > = then X is the maximum of the two, otherwise Y is the
rmaximum. In other words, the comparison X < Y is not required if the first rule fails.
This wastage of effort may be saved by using the foll~ wing program for maximuni, in
stead of the one given through (i} and (ii) above

L he more efticient program for the required solution is-
max G Y, X):-X>=Y, L
max (X, Y, Y).

Example 8: To write 2 PROLOG program that adds an element X to a given sel L
(i.e., L does not contain any duplicate elements). Thercfore, if X € L, then nothing
needs to be done, else, a new list L, may be returned in which X is the Head of L, and
additionally contains all the elements of L and no other elements.

Thus the program may be writlen as
add (X, L, L); - member (X, L), !
add (34, L, (X | L].

Next, we see how the procedure add behaves on various arguments.
7-add (¢, [d, f], L)

/* the systzm responds with */
L=[c,d,f]

7-add (X, [d, f], L)

/* the system after executing only the first statement returns */
L={d,{j
X=d

Example: In order to explain the use of cut, we write a program to find the
factorial(N) using cul as follows:
fact (N, 1} :-N<=1,!
fact (N, Fy:-MisN-1,!
fact- (M, F1),
Fis F1 *N.

2.11 CUT AND FAIL

Before discussion of the cut and fail combination, let us first discuss the predicate fail.

The predicate fuil wherever occurs always fails und initiates backiracking. For
example, Lét number denote a predicate such that nmber (X} is true whenever X is 2
number, else it fails. Further, suppase sum (X, Y. Z) associates with Z the sum of the
numbers X and Y. We define & fnnction add X, ¥ Z) which is similar to sum (X, ¥,
Z), except that the funclion add first verifies that each of X and Y is a number.
Then add can be ‘writter: as -

add (X,’Y, Z):- number (X), number (Y), sum (X, Y, Z).

add (X, Y, Z):- fail.

Cut & fail

Example: Suppose, we want to write a program to calculate tax payable by a person
for a given income. However, according to the law of a country, a foreigner is not
requircd 10 pay tax. Then one of the possible (incorrect) programs may be written as:

tax (Name, Income, Tax):- foreigner(Name),fail.

tax (Name, Income, Fax)i-..........

tax (Name, Income, Tax)i-..........

A Languages-2:
FROL.OG

65

A.l Programming
Languages

66

Except for the firsl one, all others rules are left unspecified. However, these other
riles do not invelve the predicate foreigner but may depend upon income,
conecession/rebdte etc.

Now suppose d/berts is a foreigner. Then According to the first rule forelgrer
(alberts) succeeds and then the predicate fail makes the goal on L.H.S not to succeed.
Hence PROLOG system backtracks and attempts the second and later rules which do
not involve foreigner, _

Hence, some of the later goals may succecd, despite the fact that the tax for albert
should not be calculated. However, the error can be rectified by using cut. The
Jollowing programme outline gives the correct result in the case of foreigners:

tax (Name, Income, Tax):- foreigner (Nane}, !, fail.

lax (Name, Income, Tax):-....... ..

tax (Name, Income, Tax):-..........

Because of the presence of et in the first rule before fail, if foreigner {name}
succeeds, no backtracking takes place after returning to cut from the execution of fajl.
Hence, If foreigner (name) succeeds, the program execution stops afier returning back
fo . . .

However, if foreigner (Name) fails, then processing by PROLOG system conlinues
from the second rule onwards, according (o normal rules of PROLOG execution,

2.12 SUMMARY

The programming language PROLGG is based on Declarative paradigm and Logic
Programniing paradigm of solving problems, These paradigms are quile different
from the nommally used paradigm viz imperative paradign; of solving problems. The
issues about these naradigms are discuss in the Introduction to the unit, i.e., in
Seclion 2.0,

In Section 2.2 the basic concepts of PROLOG, including those of alom, predicare,
variable, atomic formula, goul and JSact,etc. are discussed and defined in English. The
syntax for vaticus elements and constructs of PROLOG including for the above-
mentioned concepls and also for the concepts of structure, term, rufe, guery, goal,
subgoal and program etc are (formally) defined in Section 2.3.

A problem in PROLOG is defined by
(i} defining a database and
(i) aquery representing the goal to be achieved.

The concept of database is defined in Section 2.4. However, Section 2.4 js mainly
devoted to explaining how a PROLOG system solves a problem where the prablem is
delined to the svstem in the way discussed above, [n the process of explanation,
imporant concepts like matching and unification are introduced and defined.

Alongwith maiching and unification, another mechanism viz backtrakeing playa
stgnificant role in problem solving by PROLOG system. The concep! of
backtracking is explained in Section 2.5.

We know built-in data types and data structures play an important role in any A.lL Languages-2:
programming environment which is generally based on some problem solving FROLOG
style/paradigim including the imperative style which is the dominant style of solving

problems using computer. Data types and dalta struciures play a significant role in

problem solving in PROLOG environment also and are discussed in Section 2.6.

Prolog has basically two (elemeniary} data types viz atom and number. Also,

PROLOG has mainly iwo data struclures viz List and Structure.

The operations available in PROLOG, for data structure List are discussed in Section
2.7. The predicate equal (denoted as *=') which plays an important role in PROLOG,
specially in matching and unification, is discussed in Section 2.8.

PROLOG is mainly a symbol processing language. But, in view of the fact that even
{or the problems that require for their solutions dorinantly symbeol piocessing, some
numeric processing may also be required. J'or this purpose, the arithmetic facilitics
built in PROLOG are discussed and defined in Section 2.9. Recursion and iteration
are among major mechanism of PROLOG problerin solving process. However, in
order to check undesirable repetilions (through recursion or iteration) PROLOG
sysiem provides for (wo very important predicates viz Cut and Fail. These predicate
are discussed irlﬂ'cclions 2.10and 2,11.

2.13 'SOLUTIONS/ANSWERS

Ex 1-The goal fails, because, after matching with cither rule (xix) or rule (xx) ol the
query, one of the subgoals generated is female (asfan). But this sub-goal can not be
satisfied by the facts and other rules in the database.

Ex 2: As in the previous query, the PROLOG system while attempting to match and
then rgjecting {he previous [acts and rules, reaches rule (xix). And, as in the previous
query, requires 1o satisfy two subgoals, which after appropriate unification, become

parentsfiane. M, F).
parenis (john, M, F).

Bud, the first of these fuils and hence the who!z of r.iz xix) itself is taken as not
matching and is abandoned for the next rule/fact in the database. The next rule (xx)

is_sister (X, Y):- fenv=1: (X), mother {X, "} father (X, F)
mother (Y, M). fatker (Y, F).

has functor is_sister in the goal and hence matches the functor of the zoal. As
explained earlier, maiching becomes the exercisc of unification of the geoal, Le., of

is_sister {jane, john) with
is_sister (X, Y), which 1s the goal of the rule (xx).

Through unification, variable X is tenporariiv associated i roighout rule (xx) with

constant june, and variable ¥ with constant jo&n throughout rale (xx}.

in the process, R.H.S, of rule (xx) generates tlie fel'nwing Sve (rew) subgoals viz
female (jane). *

mother (jane, M).

mother (john, 3}

father (jane, F).

father (john, F}.

TTTYTTTRRT

A.l. Programming
Languages

68

First of these stibgoals is easily satisficd by the Fact (iv) of tle database. Second of
these subgoals viz mother (jane, M) is a2 son of question of the form: Who is jane s
mother?, .

Fact (xvi} in (he database tells us that mary is mother of Jfane, and hence, the variable
M temporarily. (for the whole of rule (xx)) gets associated with the cons lant mary.

“Thus, the next subgoal ‘morker (john, M).' becomes the goal ‘mother (john, mary).' ¢

which is given as Fact (xvii) and hence is satisfied. “

Fourth subgeal father (jane, F} is equivalent to the question: ‘Who is janes Father?’
The Fact (xiii) in the database associates to variable F the constant albert for the
whole of ruie (xx). In the light of this association, the last subgoal becomes father
{fohn, albery). But this goal is given as Fact (xiv) in the database and hence is
satisfied, The PROLOG system answers the query as ‘ves’,

Ex 3: The PROLOG system proceeds as in previous query and generates five
subpoals, viz,

female (jane).
mother (jane, M).
mother (phillips, M)
father (jane, F),
father (phillips, F).

As, in the case of previous query, while satisfying subgoal motker (jane, M}, the
variable M is associated with mary for all the subgeals. Hence the subgoal motier
(phillips, M) becomes mother (phillips, mary). But there is no fact that malches the
last subgoal. Hence the query fails,

The PROLOG system respeonds with ‘No°.

Ex 4: book ((title computer_nenvorks), (edition Jourth),
(author (first_name Andrew),
- (middle_initial §), (last_name tarienbaim)
J
(vear 2003), (publisher prentice_hall_ptr)).

For the following query:

?_book ({uittle computer_networks), (edition Jourth), X, (year 2003), (publisher
prentice_hall_ptr)).

The system returns the name of the author as (author {(irst_name Andrew),
(middle_nitial, (last_name tanenbaun)). .

Ex §: As discussed in the preceding Example 3, the PROLOG system lakes similar
steps upto Step 4 above, except the constant prolog does not occur in the list under [—:
Y. From step 5 onwards the procedure adopted by PROLOG system is as follows

Goasl X -1Y] Comment

5. pascal [cobol |] Jact (i) not satisfied: Hence
' apply rule (ii) ,
6. pascal [] cannot be satisfied. The !
system says the goal cannot
be satisfied.

Ex 6: The PROLOG system processes the query as follows:
Using the only rule for prefix, the system instantiates variables to get

preﬁx ([a, c]s [a, b, C]):- append ([a! c]! Y, [a, b! C])
Ji.e., in order to satisfy the query, the system has a new goal viz
appcﬂd ([a, c]| Yl [a: br C]).
for which the value of Y, if it ¢xists, is to be found. If no such value exists, then ine

system returns: No
Next the rule in the recursive definition of append gives
Append ([ale], Y, [a[b, c]):- append ({c], Y, [b, c])
which when written as (fcl], Y, [blc]) and when matched with append ({HeaglTail}, Y,
and [Head|Z] is not able to associate any value to Head. Hence PROLOG system

returns: No .

T

Ex 7: The suffix PROLOG program is just one statermnent program:-

suffix (Y, Z):- append (X, Y, Z).
where we have already defined append as

append ([], X, X]. (1)
append ([Head|Tail}, 'Y, (Head{Z]):- append (Tail, Y, Z) {ii)

Explanation The only statcment in the program, states that the statement: ‘Tac lisr ¥
is a suffix of list 2" is true if there is a list X to which if Y is appended then the hist Zis

optained.

The process generated by the program Is explaincd through the following
esamples:

Examaple query
2-suffix (Y, [a, b, c]).

Then through the rule in the definition, we get

suffix (Y, [a, b, ¢]):-append (X, Y, [a, b, cf).
Applying rule {ii) of append, we get the subgoal given on R.H.S. above is satisfied by

associating X to [}, Y to [a, b, c].
Therefore the system retumns yes with

Y ={ab,<c]
If the user desires another answer by a typing *;” then the system applies rule (i) of
append to

Append [(Head[Tail), Y, [afb, c]):-append (Tail, Y, [b, c]).
and ‘a’ is associated to Head.
Again to satisfy the new goal given on R H.S stove, we get through the application of
rule (ii) of append, the system associates {b, ¢] to Y and returns
Y=1b,c]
Similarly, through another iteration, Y = [c] is returned.

Through still another iteration, Y = [] is returned, And, finally, if another iteration is
desired by the user, then ‘No’ is returned.

Ex 8: (i) succeeds, because, first of all the two variables ¥ and Z become co-referred
variables, Then Z gets instantiated to ¢ and hence X also grts instantiated to ¢

(3i) fails, because, the two predicates/functors do not equal.
(iii) also fails, because the variable X pets instantiated to the constant a but then

system can not instantiate the second occurrence of X to some other constant, in
this particular case, to the constant b.

Al Laognages.2:
PROLOG

69

AL Programming
Languzges

70

{(iv) succecds because the R.H.S. is a variable, The variable Noun is associated to the
constant noun {alpha}

(v) fails, both sides of '=" are constants but not identical;

2.14 FURTHER READINGS

I. Clocksin, W.F. & Mcllish, C.S. : Programming in Prolog (Fifih Edition), Springer
(2003).

2. Clocksin, W.F. & Mellish, C.S. : Programming in Prolog (Third Edition), Narosa

Publishing House (1981).

3. Tucke:. A. & Noonan, R. : Programming Languages: Principles and Paradigms,

Tala MeGraw-Hill Publishing Campany Limited (2002).

4. Sebestz, 2. W.: Concepts of Programming Languages, Pearson Education Asia

(2002).

R A |

RS R L I) S T TR T P

g T Uttar Pradesh - . . :
Rajarshi Tandon Open University ArtlﬁCIal Intelhgence and
Knowledge Management

Block

4

Applications of Artificial Intelligence

UNIT 1
Expert Systems 5
UNIT 2

37

Intelligent Agents

R F et vl

BLOCK INTRODUCTION

After having developed the necessary conceptual and the theoretical framework for the
discipline of Artificial Imeltigence (AI) in the earlier three blocks, we will discuss the
applications of A7 in this block. Uit] discusses various topics in the area of expert
systems including knowledge representation schemes, tools for buildings expert systems
and examples of some well-known expert systems. Unif 2 discusses the newly emerging
area of Intelligent Agents. The topics on Intelligent Agents discussed in the block include
classes of agents, environments of agenfs and structure of agents.

TTIUTITTTTT T

[S B WL IPRRp

P I T VP

PRy

UNIT 1 EXPERT SYSTEMS -

Structure Page Nos.
i.0 Introduction 5
1.1 Objectives 5
1.2 An Introduction to Expert Systems 6
1.3 Concept of Planning, Representing and using Domain Knowledge 7
1.4 Knowledge Representation Schemes 7
1.4.1 Semuntic Networks
1.42 Frames
1.43 Proposition and Predicate Logic
1.44 Rule Based Systems .
1.4.4.1 Forward Chaining Systems
144.2 Backward Chaining Syslems
1.4.43 Probability Certainty Factors in Rule Dased Systems
1.5 Examples of Expert Systems: MYCIN, COMPASS 24
1.6 Lxpert System Building Tools 26
1.6.1 Expert Sysiem Shells
[.6.1.1 Knowledge Basc
1.6.1.2 Knowledge Acquisilion Subsystem (Example: COMPASS)
1.6.1.2 Inference Engine
1.6.1.4 Explanation Sub-sysiem (Example: MYCIN)
1.6.1.5 Uscr luterface
1.6.1.6 An Expert System shell: EMYCIN
1.7 Some Application Areas of Expert Systems 32
1.8 Summary ; 33
1.9 Solutions/Answers 33
1.10 Further Readings 36

1.0 INTRODUCTION

Computer Scicnce is the study of how to create models that can be represented in and
exccuted by some computing equipment. A number of new types of problems are
being solved almost everyday by developing relevant models of the domains of the
problems under consideration. One of the major problems which humanity encounters
is in respect of scarcity of human experts to handie problems from various domains of
human experience relating to the ones including those of health, education, economic
wellare, natural resources and the gnvironment. In this respect, the task for a computer
scientist is to create, in addition to 2 model of Lhe problem domain, a model of an i
expert of the domain as problem solver who is highly skilled in solving problems from
the domain under consideration. The field of Expert Systems is concerned with
crealing such models. The task includes activilies related to eliciting information from
the experts in the domain in respect of how they solve the problems, and activities
related 10 codifying that information generally in the form of rules. This unit discusses
such issues about the design and development of an expert system.

i.1 OBJECTIVES

After going through this unit, you should be able to:

o discuss the various knowledge representation scheme

o fell aboul some of the well-known expert systems;

¢ cnumerate and use of various tools for building expert systems;
+ oxplain the various expert system shells, and

e discuss the various applicalion areas for ¢xpert systems.

e e mr e e ER e FrTITPTETE E W e cliw i T |-

Applications of
Artificial Intelllgence

1.2 AN INTRODUCTION TO EXPERT SYSTEMS _

First of all, we must understand that an expert system is nothing but a computer
program or a sct of computer programs which contains the knowledge and some
inference capability of an expert, most generally a human expert, in a particular
domain. As expert system is supposed to contain the capability to lead to some
conclusion based on the inputs provided, information it already contains and its
processing capability, an expert system belongs Lo the branch of Computer Scieace
called Arlificial Intelligence.

Mere possessing an algorithm for solving a problem is not sufficient for a program to
be termed an expert system, it must also possess knowledge i.c., if there is an experi
system for a particular domain or area and if it is fed with a number of questions
regarding that domain then sooner or later we can expect that these questions will be
answered. So we can say that the knowledge contained by an expert system must
contribute towards solving the problems for which it has been designed.

Also knowledge in a expert sysiem musl be regarding a specific domain. As a human
being casinot be an expert in every area of life, similarly, an expert system which tries
to simulate the capabilitics of an expert also works in a particular domain. Otherwise
it may be require to possess potentially infinite amount of knowledge and processing
that knowicdge : finitc 2amount of time is an inipossible task.

Taking into consideration all the points which have been discussed above, let us try lo
give one of the many possible definitions of an Expert Systen:

An Expert System is a compuler program that possesses or represents knowledge in a
particular domain, has the capability of processing/ manipulating or reasoning with
this knowledge with a view to solving a problem, giving somc achieving or to achieve
some specific goal.

An expert system may or may not provide the complete expertise or functionality of o
human expert but it must be able to assist a human expert in fast decision making. The
program might interact with a human expert or with a customer direcily.

Let us discuss some of the basic properties of an expert system:

= It tries to simulate human seasoning capability about a specific domain rathe
than he domain itseif. This feature separates expert systems from some other
famiiiar programs that use mathematical modeling or computer animation. In an
expert sysiem the focus is to emulate an expert’s knowledge and problem solving
capabilities and if possible, at a faster rate than 2 human cxpert.

* It perform reasoning over the acquired knowledge, rather than merely performing
scme calculations or performing data retrieval.

“ It can solve problems by using heuristic or approximate models which, unlike
other algorithmic solutions are not guaranteed to succeed,

4{ programs that achicve expert-level competence in solving problems in different
doriains are more called knowledge based systems. A knowledge-based system is
any systeun which performs 2 job or task by applying rules of thumb to a symbalis-
representztion of knowledge, instead of employing mostly algorithmic or statistical
riethods. Often the term expert systems is reserved for programs whosc knowledze
basc contains the knowledge used by human experts, in contrast (o knowledge
gaibered from textbooks or non-cxperts. But more oftea thau net, (&2 two terms,
expert sysfems and knowledge-based systems are (aken us synonyms. Tegather

ST

e e —EEETT— Te—TTm TR IR SRR U1 FC

thiey represent the most widespread type of A/ application. The area of human
iniclleciual endeavour to be caplured in an expert systent is sometimes called the task
domain. Task refers to some goai-oriented, problem-solving aclivity. Domain refers
to the area within which the task is being perfonned. Some of the typical tasks are
diagnosis, plzrning, scheduling, configuration and design. For example, a program
capable of conversing about the weather would be a knowledpe-based system, even if
that program did not have any experiisc in meteorology, bul an expernt system must be
able 1o perform weather forecasting.

Building a expert system is known as knowledge engineering and its practitioners
are called knowledge engineers. Tt is the job of the knowledge engineer to ensure to
make sure thal the computer has all the knowledge needed to solve a problem. The
koowledpe engineer must choose one or more forms in which to represent the
required knowledge i.e., s/he must choose one or more koowledge representation
schemes (A number of knowledge representing schemes like semantic nets, frames,
predicate logic and rule based systems have been discussed above. We would be
sticking 1o rule based represenlation scheme for our discussion on expert systems).
S/he must also ensure that the computer can use the knowledge efficiently by selecting
from a handlul of reasoning methods.

1.3 CONCEPT OF PLANNING, REPRESENTING
AND USING DOMAIN KNOWLEDGE

From our everyday experience, we know that in order to solve difficult problems, we

need to do some sort of planning. Informally, we can say that Plapning is the process
that exploits the stntcture of the problem under consideration for designing a sequence
of actions in order. to solve the problem under consideration.

The knowledge of nature and structure of the problem domain is essential for planning
a solution of the problem under consideration. For the purpose of planning, the
problem environments are divided into 1wo categeries, viz., classical planning
environments and non-classical planning environments. The ctassical planning
cnvironments/domains are fully abservable, delerministic, finite, static and discrete.
On the other hand, non-classical planning environments may be only partially
observable andfor stochastic. In this unit, we discuss planning only for classical
environments.

1.4 KNOWLEDGE REPRESENTATION SCHEMES

On: of the underlying assumptions in Artificial Intelligence 1s {hat intelligent
behaviour can be achieved through the manipulation of symbol structures
{representing bits of knowledge). One of the main issucs in A7 is to find eppropriate
representation of problem elements and available aclions as symbo! structures so that
ihe representation can be used to intelligently solve problems. In 47, an important
criteria about knowledge representation schemes vr fnnguapes is that they should
support infercnce. For intelligent action, the inferencing capavifity is essential in
view ol the fact that we can’t represent expiicitly everylhing that the system might
ever need to know—somethings have te be left implicit, to be inferred/deduced by
the system as and when necded n problent solving.

Iz gencral, # good knewledge representation scheme should have the following
featuros:

Expert Svatems

P B -

Appliczcons of
Artificial Intelligence

» It should be allow us to express the knowledge we wish to represent in the
language. For example, the mathematical statement; Every symmetric and
traasitive relation on a domain, need not be reflexive is not expressible in First
Order Logrc. :

= It should allow new knowledge to be inferred fiom a basic set of facts, as
discussed above. ’

~ h should have weli-defined syntax and semantics.

Some popular knowledge representation schemes are:

= Semantic networks,
= Frames,

= First order iogic, and
o - Rule-based systems.

As semnaritic networks, frames and predicate logic have been discussed in previous
blocks so we will discuss these briefly here. We will discuss the rule-based systems
i detail.

1.4.7 Semantic Networks

Semantic Network representations provide a structured knowledge representation.

" In such 2 network. parts of knowledge are clustered into semanic groups. [n semantic
networks, tie o, epts and entities/objects of the problem domain are represented by
nodes and relationships belween Lhese entities are shown by arrows, generally, by
directed arrows. In view of the fact that semantic network representation is a
pictorinl depiction of objects, their attributes and the relationships that exist betweei
these objects and other entities. A semantic net is just a graph, where the nodes in the
graph represent concepls, and the arcs are labeled and represent binary relationsiups
between concepts. These nelworks provide a more natural way, as domparcd to other
representation schemes, for mapping to and from a natural language.

For example, the fact (a piece of knowledge): Mohan struck Nita in the garden »vith
a sharp knife last week, is represented by the semantic network shown in Fi igure 1. /.

struck

pasy of

. agent
fime _
. Iast week // strike Mohan

instrurnent

place

garden

Figure 1.1 Semartic Metwork

Er

The two most imporiant relations between concepts acc: (i} subcluss relation between
a class and its superclass, and (i) instance relation belwcen an object and its class.
Other relations may be has-part, color etc. As mentioned earlier, relations are
indicated by labeled arcs,

As information in semantic nefworks is clustered together through relational
links, the knowledge required for the performance of some task is generally available
within short spatial span of the semantic network. This type of knowledge
organisation in some way, resembles the way knowledge is stored and retrieved by
human beings.

Subclass and instance relations alluw us tc use inheritance lo infer new
facts/relations from the explicitly represented ones. We have already mentioned that
the graphical portrayal of knowledge in semantic networks, being visual, is easier
than other represeniation schemes for the human beings to comprehend. This fact
helps the human beings to guide the expert system, whenever required. This is perhaps
the reason for the popularity of semantic networks.

Exercise 1: Draw a semantic network for the following English statement:
Mohan struck Nita and Nita's mother struck Mohan.

1.4.2 Frames

Frames are a variant of semantic nciworks that are one of the popular ways of
representing non-procedural knowledge in an expert system. In a frame, all the
information relevant to a particular concept is stored in a single complex entity, called
a frame. Frames look like, the dala structure record. Frames support inheritance. They
are often used to capture knowledge about typical objects or events, such as a car, or
even a mathematical object like reclangle, As mentioned earlier, a frame is a
structured object and different names like, Sckema, Script, Prototype, and even Object
are used in stead of frame, in computer science literature.

We may represent some knowledge about a lion in frames as follows:

Mammal :
Subclass t Animai
worm_blooded : yes

Lion:
subclass i Mammal
eating-habbit : carniverous
size i medium
Raja:
instance i Lion
colour 1 dull-Yellow
owner : Amar Circus
Sheru :
instance ¢ Lion
size : small

Expert Systems

UTTTTTTIY Y -

TeERe- mr g,

Appllcations of
Artificizl Intellipence

10 -

A particular frame (such as Lion) has a number of attributes or slots such as eating-
kabit and size. Each of these slots may be filled with particutar values, such as the
eating-habir for lion may be filled up as carnivorous.

Sometimes a slot contains additional information such as how to apply or use the slot
values. Typically, a slot contains information such as (attribute, value} pairs, default
velues, conditions for filling a slot, pointers (o other related frames, and also
procedures that are activated when needed for different purposes.

In the case of frame representation of knowledge, inheritance Is simple if an object
has 2 single parent class, and if each slot takes a single value. For example, if a
mammal is warm blooded then automatically a Tion being a mammal will also be
warm blooded.

But in case of multiple inheritance i.c., in case of an object having more than one
parent class, we have to decide which parent to inherit from. For example, a lion may
infrerit from “wild animals” or “circus animals”. In general, both the slots and slot
values may themselves be frames and so on.

Frame systems are pretty complex and sophisticated knowledge representation
tools. This represcntation has become so popular that special high leve! frame based
represeniation langiages have been developed. Most of these languages use LISP as
the host Janguage. It is also possible to represent frame-like structures using object
oriented prograrnming languages, exlensions to the progranming language LISP.

Exercise 2: Deflinc 2 frame for the entity date which consists of day, month“and year,
cach of which is 2 number with restrictions which are well-known, Also a procedure
named compute-day-of-week is alrcady defined. :

1.4.3 Proposition ard Predicate Logic

Symbolic logic may be thought of as a formal language, which incorporates a precise
system for reasoning and deduction. Propositional logic and predicale logic are vv::
well-known farms of symbolic logic. Propositional logic deals with propositions or

statements.

A proposttion or a stalement’is a sentence, which can be assigned a truth-value frree 6
Jalse. For example, the statement:

The sun rises in the west, has a vuth value false,

On the othcr hand, none of the following sentences can be assigned a truth-value
and hencc noue of these, is a statement or a proposition:

(i} Rain musi exercise regularly. (Imperative sentence).

(ii) Tho was the first Prime Minister of India? (Interrogative sentence)
(1ii) Please, give me that book. (Imperative sentence)

(iv) Hurrah! We have won the trophy. (Exclamatory sentence).

G:nerally, the following steps are folowed for solving problemis using
prorasitional legic, where the problems are expressed in English and are such that
these can be solved using propositional logic (PL):

a) First problem statements in English are translated ro formulas of Propositional
logic

Rt o v

b} Next, some of the nules of inference in PL including the ones mentionied
below, are used to solve the problem, if, at ali, the problem under
consideration is solvable by PL.

Some of the rules of Inference of Propositional Logic:

(i) Modus Ponens P
P

Q

(The above notation is imterpreted as: if we are given the two formulae P and
P—{2 of the propositionual logic, then conclude the formula Q. In other words, if
both the formulae P and P—Q are assumed to be true, then by modus poncus, we
can assume the statement @ also as true.)

(i) Chain Rule
P
2R
P—R

_P=0Q
~Q—> ~P

(iii) Transposition

Ex%mple
Given the following three statements:

(i) éfarrer always existed
(i) If there is God, then God created the universe
(it} If Ge created the universe, then mateer did not always exist.

To show the truth of the stalement; There is mo God.

Solution:
Let us denote Lhe atomiic seatements 1n the argument given above as follows:
M: Matier always exsted
TG: Therc is God
GU: God created the universc.
Then the given stalcments in English, become respectively the formulae of PL:
(i) M
(ii) TG>GU
(iiiy GU—» ~M
(iv) To show ~ TG
Applying transposition to {iii) we get
(v) M— ~GU
using {1} and (v) and applying Modus Ponsns, we pct
{vi) ~GU ’
Again, appiying transposition to (i) 'we get
(vii) ~GU— ~TG
Applying Modus Ponens to (vi) and (vii) wc get
(viii) ~TG -
The formula (viii} is the same as fonmula (iv} which was required (o be proved.

Exercise 3: Using prepositional logic, show thai, if the following statcments are
assumed fo be tree: -

Expert Systems

11

T

Applicationa of
Artificial [ntelligence

12

(i) There is a moral law.

(ii} If there is a mioral law, then someone gave it

(Hif} If someone gave the moral law, then there is God.
then the following statemenlt is also true:

{iv) There is God.

The trouble with propositional logic is that i1 is unable to describe properties of
coize und also it Tacks the structure to express relations that exist among two or mere
=ntities. Further, propositional logic does not allow us to make generalised statements
about clazses of similar objects. However, in many situations, the explicit knowledge
of relations-between objects and generalised statements about classes of simiilar -
objects, are esscnlially required Lo solve problems. Thus, propositional logic has
serious limitations while reasoning for solving real-world problems. For example, let
us look at the following statements:

(i) Afl children more than 12 years old must exercise regularly.
{ii) Ram is more than 12 years old.

Now ‘these statements should be sufficient enough to allow us to conclude: Ram nrust
exercise regularly. However, in propositional logic, each of the above statement s
indecomnosable and may be respeclively denoted by P and Q. Further, whatever is
said inside each stalemenl is presumed to be not visible. Therefore, if we use the
Ionguage of propositional logic, we are just given two symbols, viz., P and Q,
representing respectively the two given stalements. However, from just two
propositional forr.alae P and Q, it is not possible to conclude the above mentioned
statement viz., Ram must exercise regularly. To draw the desired conclusion with a
valid inference rule, it would be necessary to.use some other language, including sorie
exlension of propositional logic.

Predicate Logic, and more specifically, First Order Predicate Logic (FOPL) is an
extension of propositional logic, which was developed to extend the expressiveness of
propositional logic. In addition to just propositions of propositional logic, the
predicate logic uses predicates, functions, and variables together with vanabie
quantifiers (Universal and Existential quantifiers) 1o express knowledge.

‘We already have defined the structure of formulace of FOPL and also have explained
the procedure for finding the meuning of formulae in FOPL. Though, we have already
explaincd how to solve problems using FOPL, yet just for recalling the pro-cdure io1
solving problems using FOPL., we will consider below one example.

In this context, we may recall the fuference rules of FOPI.. The inference rules of :1.
including A“cdris Ponens, Chain Rule and Rule of Transposition are valid in FOPL
also after suitable modifications by which formulae of PL are replaced by formulac of
FOPL.

In addition to these inference rules, the following four inference rules of FOPL, thal
will be calied Q,, Q,, Qy and Q,, have no corresponding rules in PL. fr the following
I denvtes a predicaie and x a variable/parameter:

S@OF) (Y0~ Fx)

Q: (Vx} ~ F(x) ~ (@)F(x)

The first of the above rules under Q, says:
From negation of there exists x F (x}, we can infev for all x not of F (x)

~VRFE L (@)~ ()

S Ry T ~ (V) F(x)

The first of the above rules under Q,, says:
From negation of for all x F (x), we can infer there exists x such that not of F (x)

(VD)
Y @

The rule Q, is called universal instantiation

, where a is (any) arbitrary element of the domain of F

d _ Fa), for arbitrary a
. (VX)F(x)

The re is called universal generalisalion

(@} £(x)

, where a is a particular (not arbitrary) constant.
F(a)

Qu:

This rule is also called existential instantiation:

QI _ F(a) for somea
T @FWE)

The rule is catled existential generalisation

Steps for using Predicate Calculus as a Language for Representing
Knowledge

Step 1: Concepiualization: First of all, all the relevant entities and the relations that
exist between these entities are explicitly enumerated. Some of the implicit facts like
‘a person dead once is dead forever® have to be explicated.

Step 2: Nomenclature and ‘Traaslaticn: Giving appropriate names to the objects and
relations. And then transkating the given sentences given in English to formulae in
FOPL.

Appropriate names are essential in order lo guide a reasoning system based on FOPL.
It is well-established that no reasoning system is complete. In other words, a
reasoning system may need help in arnving at desired conclusion.

Step 3: Finding appropriate sequence of reasoning steps, involving selection of
appropriale rule and appropriate FOPL formulae to which the selected rule is to be
applied, to reach the conclusion.

While solving problems with FOPL, generally, the proof technique is proof by
contradiction. Under this technigue, ihe negation of what is to be proved is also taken
as one of the assumptions. Then from the given assumptions alongwith the new
assumption, we derive a conradiction, i.e., using inference rules, we derive a
Statement which is negation of either an ossumption 9r is negation of some earlier
derived formula.

Expert Systems

13

— e e e

Wyplications of
Artificlal Intellipence

Next, we give an exémple to illustratc how FOPL can be used to solve problems
expressed in English and which are solvable by using FOPL. However, the proposed

solution does not use the above-mentioned method of contradiction.
Example

\We are given the statemenis:.

(i) No feeling of pain is publically observable

(ii) All chemical processes are publically observable

We are to prove that

{iit) No feeling of pain is a chemical process

Solution:

For translating the given statements (i), (ii), and (iii), let us use the notation:

F(x): x 15 an instance of feeling of pain
O(x): x is an entity that is publically observab!
C(x): x is a chemical process.

‘Then (i), (ii) and (iii) in FOPL can be equivalently expressed as
@) (V) { F(x)— ~ Ofx))
(i) (¥x) (C(x}> O(x))

To prove
(i) (v (F(x)=» ~C(x))

From (i) using generalized instantiation, we get
(iv) F(a)> ~ O(a) for any arbitrary a.

Similarly, from (i), using generalized instantiation, we get
(¥} C(b) —» O(b) for any arbitrary b.

From (iv) using transposition rule, we get
{vi) O(a)~> ~ F{a) for any arhitrary a

As bris arbitrary in (v), therefore we can rewrite (v) as
(vii) C(a) — O{a) for any arbitrary a

From (vii) and (vi) and vsing chain rule, we get
(viii) C(a)— ~ F(a) for any arbitrary a

But as a is arbitrary in (vii{), by generalized quantification, we get
(ix) (vx) (C(x)— ~ F(x))

But (ix) is the same as (jii), which was required to be proved.

Problems with FOPL as a system of knowledge represcntation and reasoning:
FOPL is not capable of easily representing some kinds of information including

information picces invélving

(1} propetties of relations. For example, the mathematical statement:
Any relation which is symmetric & transitive may not be reflexive
is not expressible in FOPL.

(i) linguistic variables like hot, tall, sweat.

For example: /1 is very cold today,

can not be appropriately expressed in FOPL. Expert Systems
(iii) different belief systems.

For example, s/he krow that he thinks India vill win the match, but I think India will

lose,
also, can not be appropriately expressed in FOPL.

Some shortcomings in predicate calculus

B B b

Now, afier having studied predicate logic as a knowledge representation scheme, we
ask ourselves the inevitable question, whether it can be used to solve real world L
problems and to what extent. ' -

Before we try to answer the above question, let us review some of the properties of
logic reasoning systems including predicate calculus. We must remember that three
important properties of any logical reasoning system are seundness, completeness
and tractability. To be confident that an inferred conclusion is true we require
soundness. To be confident that inference will eventually produce any true conclusion,
we require completeness. To be confident that inference is feasible, we require
traclability.

Now, a5 we have discussed above also, in predicate calculus resolution refutation as
an inference procedure 1s sound and complete. Because in case that the well formed
formula which is to be proved is not logically followed or entailed by the set of well
formed formulas which are to be used as premises, the resolution refutation]
procedure might never terminate. Thus, resolution refutation is not 4 full decision L
procedure. Also there is not other procedure that has this property or that is fully ;
decidable. So predicate calculus is semi-decidable (semi-decidable means that if the
set of input (wetl formed formulas) do not lead to the conclusion then the procedure
will never stop or terminate).

But the sifuaticn is worse than this, as even on problems for which resclution
refulation terminates, the procedure is NP-hard — as is any sound and complete
inference procedure for the first-order predicate calculus i.e., it may lake
exponentially [arge time to reach a conclusion.

How to {ackle these problems:

People who have done research in Artificial Intelligence have shown various ways:

First, they say that we should not msist on the property of soundness of inference

rules. Now what does it mean — basically it means that sometimes or occasionally our : -
rules might prove an *‘untrue formula™.

Second, they say that we should not insist on the property of completeness i.e., to
allow use of procedures that are not guarantced to find proofs of true formulas.

Third, they also suggest that we could use a language that is less expressive that the .
predicate calculus, For example, a language in which everything is expressed using-
only Hom Clauses (Horn clauses are those which have at most onc positive Iileral). :

1.4.4 Rule Based Systems

Rather than répresenting knowledge in a declarative ai:d somewhat stalic way (as a set
of statements, each of which is true), rule-based systems represent knowledge in ierms
of a set of rules each of which specifies the conclusion that could be reached or
derived under given conditions or in different sitzations. A rule-based system

Applications of
Artificial Litelllgence

consists ol
(i) Rulebase, which is a set of IF-THEN rufes,
(ii) A bunch of fucts, and
(ii) Some inlerpreter of the facls and rules which is a mechanism which decides
which rule to apply based on the set of available [acts, The interpreter also
tnitiates the action suggested by the rule selected for application.
A Rule-base may be of the form:
Ry If A is an animal and A barks, than A is a dog
F1: Rocky is an animal
F2: Rocky Barks

‘The rule-interpreter, after scanning the above rule-base may conclude: Rocky.is a dog.

Afer this interpretation, the rule-base becomes

;- If 4 is an animal and A barks, then 4 is a dog
Fi: Rocky is an animat
F2: Rocky Barks
F3: Rocky is a dog.
There are two broad kinds of rule-based systems:
Jorward chaining systems,
and backward chaining systems.

in 2 forward chaining system we slart with the initiat facts, and keep using the rules
to draw new intermediale conclusions (or take certain -actions) given those facts. The
process terminates wien the final conclusion is established. In a backward chaining
system, we siart with some goal statements, which are intended 1o be established and
keep looking for rules ihat would allow us to conclude, setting new sub-goals in the
process of reaching :lie vltimate goal, In the next round, the subgoals become the new
goals to be established. The process terminates when in this process all the subgoals
are given fact. Forward chaining systems are primanly data-driven, whilc backward
chaining systems are goal-driven. We will discuss each in detail.

Next, we discuss in detail some of the issues involved in a rule-based system.

Advartages of Rule-base

A basic principle of rule-based system is that each rule is an independent piece of
knowledge. In an IF-THEN rule, the TF-part contains all the conditions for the
application of ihe rule under consideration. THEN-part tells the action 10 be taken by
the interpreter. The interpreter nced n+: search any where else except within the rule
itself for the conditions required for anplicaiion of the rule,

Another important consequence of the above-mentioned characteristic of a rule-based
system is that no rule can call upon any other and hence rules are tgnorant and hence
independent, of cach other. This gives a highly modular structure to the rule-based
systems. Because of the highly modular structure of the rule-base, the rule-bascd
system addition, delction and modification of a rule can be done without any danger
side effevts.

Disadvantages

The main problem wiih the rule-based systems is that when the rule-base grows and
becomes very Jarge, then checking (i) whether a new rule intended to be added is
redundant, i.e., it is already covered by some of the earlier rules. Still worse, as the
rule- base grows, checking the consistency of the rulz-base also becomes quite
difficult. By consistency, we mean there may be two rules haviog similar conditions,
the actions by the two rules conflict with each other.

Let us first defline working memory, belore we study forward and backward chaining
" systems.

Warking Memory: A working is a representation, in which
* lexically, there are application —specific symbols.
* slructurally, assertions are lisi of application-specific
symbols,
» scmanticaltly, assertions denote facts,
e asserlions can be added or removed from working memory.

1.4.4.1 Forward Chaining Systems

In a forward chaining system the facts in the system are represenled in a working
memory which is coniinually updated, so on the basis of a rule which is currently
being applied, ihe number of facts may either increase or decrease. Rules in the
system represent possible actions lo be taken when specified conditions hold on items
in the working memory—they are sometimes called condition-action or antecedent-
consequent rules. The conditions are usnally patterns that musl march items in the
working memory, while the actions usually involve adding er deleting items from the
working memory. So we can say that in forward chaining proceeds forward,
beginning with facts, chaining through rules, and finally establishing the goal.
Forward chaining systems usually represent rules in standard implicational form, with
an antecedent or condition part consisting of posilive literals, and a consequent or
conclusion part consisting of a positive literal.

The interpreter controls the application of the rules, given the working memory, thus
controlling the system’s activity. It is bused on a cy¢le of activity sometimes known as
a recognize-act cycle. The system f{irst checks 10 find all the rules whose condition
parts arc satis{ied i.e., lhe those rules whicl: are applicable, given the current state of
working memory (A rule is applicable if each of the literals in its anteccdent i.e., the
cendition part can be unified with a corresponding fact using consisteat substitutions.
This restricted form of unification is called paliem matching). It (hen sclects one and
performs the aclions in the action part o1’ the fule which may involve addition ot
deleting of facls. The actions will result in a new i.e., updaled working memory, and
the cycle starts again (When more than one rute is applicable, then some sorl of
externat conflict resolution scheme is used to decide which rule will be applied. But
when there are a large numbers of rules and facts then the number of unifications that
must be tricd becomes prohibitive or difficult). This cycle will be repeated until either
there is no rule which fires, or the required goal is reached.

Rule-based systems vary greatly in their details and syntax, let us take the
following example in which we usc forward chaining :

Example
Let us assume thal the working memory initially contains the following facts :

{day monday)
(at-home ram)

(docs-not-like ram)

Experi Systoms

17

B I B

Applications of
Artificlal Intelligence

18

Let, the éxisting set of rules are:

Ri : IF {day monday)
THEN ADD to working memory the fact : (working-with ram)

R2 : IF (day monday)
THEN ADD to working memory the fact : (lalking-fo ram)

R3 IF ({talking-to X) AND (working-with X)
THEN ADD to working memory the fact : (busy-at-work X)

R4 IF (busy-at-work X) OR (at-office X)
THEN ADD to working memory the fact : (not-at-home X}

R5 : IF (not-al-home X)
THEN DELETE from working memory the fact : (happy X)

Ré IF (working-with X)
THEN DELETE from working memory the fact : (does-not-like X)

Now to start the brocess of inference through forward chaining, the rule based
system will first-search for all the rule/s whose anlecedent part/s are satisfied by the
current set of facts in the working memory. For example, in this example, we can see
that the rules R1 and R2 are satisfied, so the system will chose one of them using its
conflict resolution strategies. Let the rule R1 is chosen. So (working-with ram) is
added to the working memory (afier substituting “ram” in place of X}. So working
memory now looks like:

(working-with ram)

{day monday)

(at-home ram)

(does-not-like ram)

Now this cycle begins again, the system looks for rules that are satisfied, il finds rule
R2 and R6. Let the system chooses rule R2. So now (taking-to ram) is added to
working memory. So now working memory conlains following:

(talking-to ram)

(working-with ram)

(day monday)

(at-home ram)

(does-not-like ramn)

Now in the next cycle, rule R3 fires, so now (busy-at-work ram) is added to working
memory, which now looks like:

(busy-at-work rarn)

(talking-to ram)

(working-with ram)

P e T R T L R

- —————t

Expert Systems

I

{day monday)
{al-home ram)

(does-not-like ram)

Now antecedent parts of rules R4 and R6 are satisfied. Let rule R4 fires, so (not-at-
home, ram) is added to working memory which now looks like :

(nat-at-home ram)
(busy-at-work ram)
(lalking-lo ram}
{working-with ram)
(day monday)
(at-home ram)
(does-not-like ram)

In the next cycle, rule R5 fires so (at-home ram) is removed from the working
memory :

(not-at-home ram)
(busy-at-work ram)
(talking-to ram)
{working-with ram)
(day monday)
(does-nol-like ram)

The forward chining will continue like this. But we have to be sure of one thing, that
the ordering of the rules finng is important. A change in the ordering sequence of
rules firing may result in a different working memory.

.

Some of the conflict resolution strategies which are used to decide which rule to fire
are given below:

s Don’t fire 2 rule twice on the same data.

» Fire rules on more recent working memory elements before older ones. This
allows the system to follow through a single chain of rcasoning, rather than
keeping on drawing new conclusions from cold data.

» Fire rules with more specific preconditions before ones with more general
preconditions. This allows us to deal with non-standard cases.

These strategies may help in getting reasonable behaviorfrom a forward chaining
system, but the most important thing is how should we write the rules. They
should be carefully constructed, with the preconditions specifying as precisely as
possible when different rules should fire. Otherwise we will have litile idea or control

of what will happen.

1.4.4.2 Backward Chzining Systems

In forward chining syslems we have seen how rule-based systems are veed lo draw
new conclusions from existing datd.and then add these conclusions to a working

19

r Wl T sanry o

Applications of miemoy. The forward chaining approwch is most useful swhen we know all the
Artificlal Intellipence imual facts, but we don’t have much tdea what the conclusion might be,

il w2 koow whal the conclusion would be, or hayve some specilic hypothesis 1o (est,
ferwurd chaiming systems may be inefficient. In forward chaining we keep on nicving
alicad until no more rules apply or we have added our hypothesis to the working
~emory. Bul in the process the system is likely to do a iot of additional and irrelevant
v /14, adding uninteresting or irrelevant conclusions 1o werking memory. Let us say
iat i the example discussed bélore, suppose we want 1o find out whether “ram is at
home”. We could repeatedly fire niles, updating the working memory, checking each
iine whether (at-home vam) is found in the new working memory. But maybe we
had a whole balch of rules for drawing conclusions about what happens when I’m
working, or what happens on Monday—we really don't care about this, so would rather
euly fiwve to draw the conclusions that are relevant to the goal.

This con be done by backward chaining from the goal state or on some hypothesized
slate that yee are interested in. This is essentially how Prolog works. Given a goal state
to try and prove, for example (at-heme ram). the system will first check to sec if the
zoal matches the inilial facts given. ICit does, then that goat succeeds. If it docsn't the
syslem will look for rules whose conclusions i.v., actions malch the goal. Once such
piie will b chosen, and the sysiem will then try 1o prove any facts in the
precenditions ot the nile ysing the same procedure, selting (hese as new goals 1o
prove. ¥e should 1ote thar a backwsrd chaining system docs nol need to vpdate
a working mcre ;. Instead it needs to keep track of what goals it needs o prove its
main hypothesis, So we can say that in a backward chaining system, the vreasoning
procceds “bachward”, beginning with the geal to be estaplished, chaining
through rules, and firally anclhioring in facts.

Although, in principle same set of rules can be used for both forward and backware
chaining. However, in packward chaining, in practict we niay choose to write che
rules slighily diffcrently. In backward chaining we are concemned with matching the
conclusion of a rule against some goal that we are trying to prave. So Uic ‘then or
consequen!’ parl of the rule is usually not expressed as an action Lo take (e.g..
add/delete), bul as a state which wil! he true if the PiCTlsCs are true.,

To icarn more, et us take a different example in which we use backward chuining
(The system is used to ideatify u un:i izl based on its properties stored in tha v orking
memoery):

Example

I. Lel us assume Urat the working memory initially contains the following facts:

(has-hair raja)} representing the fact “raja has Lair”

(big-rrwouth raja) representing th‘e fact “raja has a big mouth™
(long zeinled-tecth raja) represenling the fact “raju has long pointed teeth”
(claws raja) representing the fact “rajz has claws”

Ler, the exisung set of rules are:

1 IF {gives-milk X)
THEN (mammal X)

2. IF (has-hair X)
20

A B i

—mE e aEn

THEN (mammat X) Expert System:

3. [F (mammal X) AND (cais-meat X)
THEN (carnivorous X) *

4. IF (mammal X) AND (long-pointed-iecth X) AND (claws X)
THEN (camivorous X)

5. IF {mammal X) AND (does-not-cat-meat X)
THEN (herbivorous X)

6. IF (cammivorous X) AND (dark-spots X}
THEN (cheetah, X)

7. TF (herbivorous X) AND (long-legs X) AND (long-ncck X} AND (dark-spots X)
THEN (giraffe, X}

8. IF (camivorous X) AND (big-mouth X)
THEN (lion, X)

9. IF (herbivorous X) AND (long-trunk X) AND (big-size X)
THEN (elephant, X)

10. IF (herbivorous, X) AND (white-color X) AND ((black-strips X)
THEN (zcbra, X)

Now to start the process of inference through backward chaining, the rule
based system will first forin a hypothesis scd then it will use the anfecedent —
conscquent rules {previcusly called condition — action rules) to work backward
toward hypothesis supporting assertions or facts.

Let us take the initial hypothesis that “raja is a lion™ and then reason
about whether this hypothesis is viable using backward chaining approach explained
below :

¥ The system.scarches a rule, which has the initial hypothesis in l‘hc consequent part
that somicone i.e., raja is a lion, which it finds in rule 8.

» The system moves [fom conscquent to antecedent part of rule 8 and it finds the
{irst condition i.e., the first part of antecedent which says that “raja must be a
carnivorous”.

> Next the system searches for a rule whose consequent part declares that someone
1.e., “raja is a carmvorous”, two rules are found i.c., rule 3 and rule 4. We assume
that the system trics rule 3 first.

» To satisfy the consequent part of rulc 3 which now has becomc the system’s new
hypothesis, the systcm moves to the first part of antecedent which says that X i.c.,
mja has to be mammal.

50 anew sub-goal is created in which the system has to check that “rajaisa
mammal”. It does so by hypothesizing it and tries to find a rule having a
consequent that someone or X is a mammal, Aguin the syslem finds two rules,
rule | and rute 2. Lel us asswme at the system tries rule 1 first,

[n rule 1, the system now moves tu the first antecedent part which says thar X
ie., raiz must give milk for it to be a mammal. The system cannol tefl this

7

TTTRITTTIITT

Applications of
Artificial Intelligence

22

because this hypothesis is netther supported by any of the rules and also it is not
found among the existing facts in the working memory. So the sysiem abandons
rule 1 and try to ese rule 2 to establish that “raja is a mammal®.

In rule 2, it moves to the antecedent which says that X i.e., raja must have hair for
it to be a mammal. The system already knows this as it is ore of the facts in
working memory. So the antecedent part of rule 2 is satis{ied and so the
conscquent that 'raja is a mammal” is established.

by

W

Now the sysiem backtracks (o the rule 3 whose {irst antecedent part is satisficd. In
sccond candition of antecedent if finds ils new sub-goal and in tum forms a new
hypothesis that X i.c., raja eats meat.

N

The system Lries to find a supperting rule or an assertion in the working memory
which says that “raja cats meat” but it finds none. So Lhe system abandons the rule
3 and try to usc rule 4 to establish that “raja is carnivorous”.

In rule 4, the first part of antecedent says that raja must be a mammal for it to be
curnivorous. The system already knows that “raja is a mammali™ because it was
already established when trying 1o satisfy the antecedents in rule 3.

v

v

The system now moves to second parl of an{ecedent in rule 4 and firds a new
sub-goal in which the system must check that X i.c., raja has long-pointed-tecth
which now becomes the new hypothesis. This is already established as “ raja has
long-pointed-icerth” is one of the asserlions of the working memory.

Y

In third part of antecedent in rule 4 the system’s new hypothesis is Lhat “raja has
claws”. This aiso is alrcady cstablished because it is also one the assertions in the
working memory.

> Now as all the parts ol the aniecedent in rule 4 are established so ils consequent
L.e., “raja is camivorous™ is esablished.

Y/

The system now backiracks to rule 8 where in the second part of the antecedent
says that X i.e., raja must have a big-mouth which row becomes the new
hypothesis, This is already established because (he system has an asscriion that
“raja has a big mouth™.

» Now as the whole antecedens of ruic 8 is satisiied so the system concludes tha
“raja is a lion™.

We have scen that the system was abie 10 work backward through the antecedent —
consequen; -ules, using desired conclusions to decide that what asserlions it should
look for and uitimately establishing the initial hypothesis.

How to chonse the iype of chaining among forward or backward chaiping for a
given problem ?

Many of the rule based deduction systermns can chain either forward or backward, but
which of these approaches is better for a given problen: is the point of discussion.

First, tel us learn some basic things about rules i.e., how a rule felates its input/s
(i.e., facts) o output/s (i.e., conclusion). Whenever in a rule, a particutar set of facts
can lead 10 many conclusions, the rule is said to have a high degree of fau ouf, and -
strony candidate of backward chaining for its processing. On the other hand,
whenever the rules are such it a particular hypothesis can lead o many questions for

TATYT A

L

the hypothesis to be established, the rule is said to have a high degree of fan in, and a
high degree of fan in is a strong candidate of forward ¢haining.

To summarize, the following points should help in choosing the type of chaining for
reasoning purpose:

e Ifthe set of facts, cither we alrcady have or we may cstablish, can lead lo a large
number of conclusions or outputs, but the number of ways or input paths to reach
that particular conclusion in which we are interested is small, then the degree of
fan out is more than degree of fan in. In such case, backward chaining is the

preferred choice.

e Buy, if the number of ways or input paths 10 reach the particular conclusion in
whicl we are interested is large, but the number of conclusions that we can reach
using the facts through that rule is small, then the degree of fan in is more than
tlic degree of fan out. In such case, forward chaining is the preferred choice.

e For case where the degree of fan out and fan in arc approximately same, then
in case if nol many facts are available and the problem is check if one of the
many possible conclusions is true, backward chaining is the prelerred choice.

1.4.4.3 Probability Certainty Factors in Rule Based System

Rule based systems usually work in domains where conclusions are rarely ccrtain,
even when we are careful enough 1o try and include everything we can think of in the
antecedent or condition parts of rules.

Sources of Uncertainty
Two tmportant sources of uncartainty inrule based systems are:

¥ The theory ol the domain may be vaguc or incomplele so the methods to gencrate

exact or accurale knowledge are not known.
v Case data may be imprecise or unrcliable and evidence may be missing or !

conflict.

So even though methods to gencrate exact knowledge are known but they are
impractical due to lack or data, imprccision or data or probiems refated to data
collecliorn.

So rule based deduction system developers oficn brild some sort of certainty or
probability computing procedure ot and ebove i3 normal condition-action format
of rirles. Certainty computing procedurcs altach a probability between 0 and 1 with
cach assertion or fact, Each probabilily reflects how certain an aseettion is, whereas
certainty factor of 0 indicates that the assertion is detinitely {alse and certainty factor
of 1 indicates thal the asscriion is definileiy inuc.

Example 1: In thic example discussed above the asscriion (ram al-home) may have a
certainty factor, say (.7 attached Lo il.

Example 2: [n MYCIN a ruic based expert systen; *which we will discuss later), a
tule in which statements which link evidence te hypotiieses are expressed as decision

eriieria, may look ke :

T poticnt has symptoms sl,s2,83, and s4

Expert Systems

23

PTETTTTR T

Applications of

A tificial Latetligence

AND certain background conditions t1,(2 and (3 hold
THEN the paticnt has disease d6 wilh certainty 0.75

I'or detatled discussion on certainty (actors, the reader may refer to probability theory,
fuzzy sels, possibitity iheory, Dempster-Shafter Theory etc.

xereise 4

i the “Animal Identifier System™ discussed above usc forward chaining to iry to
identify the animal called “raja™

1.5 EXAMPLES OF EXPERT SYSTEMS: MYCIN,
COMPASS

The first expert system we choosc as and example is MYCIN, which is of the eatliest
developed cxpert sysiems. As another example of and expert system we bricily
discuss COVIPASS,

MYCIN (An exper(svslem)

Like every onw gle= we are also temipted 1o discuss MYCIN, one of the earliest
designed expert sysicms in Stanford University in 1970s.

MYCIN’s job was to diagnose and recommend treatment for certain blood infections.
To do the proper diagnosis, it is required 1o grow cultures of the infecting organism
which is a very time consuming process and sometime patient is in a critical staie. S -,
doctors have to come up with quick guesses about likely problems from the availabic
data, and use these guesses to provide a treatment where drugs are given which should
deal with any type of problem.

So MYCIN was developed in order {0 explore how human experts make these rough
(but important) guesscs based on partial information. Somelimes the preblern takes
another shape, that an expert doctor may not available every-time every-where, in thal
situation also and expert syslem like MYCIN would be handy.

MYCIN represented its knowledge 27 a set of IF-THEN rules with cerlainty factors.
One of the MYCIN rule could be likc

IF infection is primary-bacteremia AND the site of the culture is onc of the sterile
sHes

AND the suspected portal of enlry is the gastroinlestinal tract
THEN there is suggestive evidence (0.8) that bacteroid inlection occurred.

The 0.8 is the certainty that the conclusion will be true given the evidence. If the
evidence is uncertain the certainties of the picces of evidence will be combined with

the certainty of tie rule to give the certainty of the conclusion.

MY CIN has been written in Lisp, and its rules are formally seprescnted as lisp
expcessions. The action part of the rule could just be a conciusion about the problem
being selved, or it could be another lisp cxpression.

P e e

cmaprm————e

MYCIN is mainly a goal-directed system, using the backward chaining reasoning Expert Systems
approach. However, to increase it reasoning power and cfficiency MYCIN also uses
various heurislics to coatrol the scarch for a sclution.

One of the strategy used by MYCIN is to first ask the user a number of predefined
questions that arc most common and-which allow the system to rule out totally
unlikely diagnoses. Once these questions have been asked, the system can then focus
on particular and moge specific possible blood disorders. It then uses backward
chaining approach 1o try and prove each one. This strategy avoids a lot of
unnecessary search, and is similar to the way a doctor Lrics to diagnose a patient.

The other strategies are related to the sequence in which rules are invoked. One of the
stratepy is simple i.c., given a possible rule to use, MYCIN first checks all the
antecedents of the rule to see if any are known to be false. If yes, then there is no point
using the rule. The other strategies are mainly related to the certainty factors.
MYCIN first find the rules that have greater degree of centaintly of conclusions, and
ibandons its search once the cerlainties involved get below a minimum threshold, say,

2.2

There are three main stages to the interaction with MYCIN. In the first stage, initial
data about the case is gathered so the system can come up with a broad diagnosis. In
the second more directed questions are asked to lest specific hypotheses. At the end of
this section it proposes a diagnasis. In the third stage it asks questions to deternune an
appropriate ireatmend, on the basis of the diagnosis and facts related to the patient,
After that it recommends some treatment. At any stage the user can ask why a
question was asked or how a conclusion was reached, and if a particular trcatiment is
recommended the user can ask il alternative freatmenls are possible.

MYCIN has been popular in expert system's research, but it also had a number of
problems or shoricomings because of which a number of its derivatives like
NEOMYCIN developed,

COMPASS (An expert system)

Before we discuss this let us understand the functionality of telephone company's
switch. A telephone company’s switch is a complex device whose circuitry may
encompass a targe part of a building. The goals of swilch maintenance are to minimize
the number of calls 1o be rerouled due 10 bad conncclions and to ensure that faults are
repaired quickly. Bad connections caused due to failure of connection between two
telephone lines.

COMPASS is an expert system which checks error messages derived from (he
switch’s self test routines, look for open circuits, reduces the time of operation of
components cte. To find the cause of a switch problem, it looks at a series of such
messages and then uses it expertise. The system can suggest the running of additional
tests, or the replacement of a particular component, for example, a relay or printed
circuit board.

As experdise in this area was scarce, so it was a fit case for taking help an expert
system [ike COMPASS (We will Jiscuss later, how knowledge acquisition is done in
COMPASS),

J
N

DI) i

AR oy g

Applications af

Artificial Tntelligence

26

1.6 EXPERT SYSTEM BUILDING TOOLS

Expent system tools are designed to'provide an environment for development of expert
systems mainly through the approach of prototyping,

The expert systems development process is normally a mixture of prototyping and
other incremental development models of software engineering rather than the
convenlional “waterfall model”. Although using incremental development has a
problem of integrating new functionality with the earlier version of expert system but
the expert system development environments Iry to solve this problem by using
modular representations of knowledge (some of the representation schemes like
framcs, rule based systems etc. have aiready been discussed above).

Software tools for development of expert systems mainly fall into the following
Categories:

v Expert System Shells: These are basically a sct of program and (o be more
specific - abstractions over one or more applications programs. One of the major
examples is EMYCIN which is the rule interpreter of the famous expert system
called MYCIN (a medical diagnostic system). EMYCIN also constitutes related
data structures like knowledge tables and indexing mechanism over these lables.
Some recent versions of EMYCIN like M.4 is a very sophisticated shell which
combine the backward chaining of EMYCIN with frame — like data structures,

¢ High Level Programming Languages: These languages are basically used to
provide a higher level of abstraction by hiding the implemenlation details because
of which the programmer need not worry about efficiency of storing, accessing
and manipulating data. One of the good examples is OPS5 rule language. But
many of such languages are research tools and may not available commercially.

¢ Multiple programming environments: These provide a set of soflware modules
to allow the user to use and mix a number of different styles of antificial
intelligence programming. One of the examples is called LOOPS which combines
rule bascd and object - oriented approaches of knowledge representation.

We will now keep our focus on “Expert System Shells”.
1.6.1 Expert System Shells

An expert syslem tool, or shell, is a softvare development environment containing the
basic components of expert systems. Associated with a shell is a prescribed method
for building applications by configuring and instantiating these components.

Expert system shells are basica)ly used for the purpose of allowing non-programmers
to lake advanrage of the already developed templates or shells and which have
evolved because of the efforts of some pioneers in programming who have solved

similar problems before. The core components of an experl systems are the knowledge
base and the reasoning engine,

A generic experl system shell is shown in Figure 1.2:

TTITTTTTTTTL T T T

R

PR

smes

s R T

Expert System Shell

—_
: | | | Knowledpe Knowledye Inference Explenation
Expert Acqulsition Base — Englse Subsystems 1 User User
Subsystem (Reason- Inter-
ing) face SN

Figure 1.2: Components of Expe 1 System Taol (Shell)

As we can see in the Figure 7.2, the shell ineludes the inference engine, a knowlodge
acquisition subsystem, an explanation subsystem and a user inteiface. When faced
with a new problem in any given domain, we can find a shell which can provide the
right support for that problem, so all we need is the knowledge of an expert. There are
many commercial expert system shells avatlable now, each one adequale for a
different range of problems. Taking help of expert system shelts o develop expert
systems greally reduces the cost and the {ime ol development as compared to
developing the expert system from the scratch,

Let us now discuss the componenis of 2 generic experl system shell. We will discuss
about: '

Knowledge Base

Knowledge Acquisition Subsystem
Inference Engine

Explanation Subsystem

User Interface

1.6.1.1 Knowledge Base

It contains facts and heuristic kncwledge. Developers Lry to use a uniform
representation of knowledge as for as possible, Therc are many knowledge
representation schemes for expressing knowledge about the application domain and
some advance expert system shells use both frames (objects) and IF-THEN rules. In
PROLOG the knowledge is represented as logical statements.

1.6.1.2 Knowledge Acquisition Subsystera

The process of capturing and transformation of potentizlly uscful information for a
given problem from any knowledge source (which may be a human experl) to a
program in the format required by that program is the job of a knowledge acquisition
subsystem. So we can say hat these subsystem te help experts buitd knowledge bases.

As an expert may not be 2 compuier literate, so capluring information incl-des
interviewing, preparing questionnaires etc, which is a very slow and time consuming
process. So collecting knowledge needed to solve problems and build the
knowledge base has always been the biggest bottleneck in devcloping experi
systcms.

Somc of lhe reasons behind the difficulty in coMecting information are given below :

Expert Systen.s

LTI

B Rh

Applicatlons of
Artificial intelligence

28

L] The facts and rules or principles of different domains cannot easily be
converied intu o mathematical or a deterministic model, the propertics uf which
are known. For example a teacher knows how 1o motivate the students but
putting down on Lhe paper, the exact reasons,. causes and other factor affecting
sludents is not easy as they vary with individual studenis.

o Different domains have their own terminology and tt is very difficult for experis
1o communicate exactly their knowledge in a normal language.

o Capturing the facts and principles alone is not sufficiens to solve problems. For
exaniple, experts in pariicular domains which information is important for
specific judgments, which information sources are retiable and how problems
can be simplified, which is based on personal experience. Capturing such
knowledge is very difficult.

o Commonsense knowledge found in humans continues to be very difficuls to
capture, although systems are being made to capture it

The idea of automated knowledge capluring has also been gaining momentum. Infact
“machioc learning” is one of the imporiant rescarch area for sometime now. The
roal is that, a computing system or machine could be enabled to leamn in order (o solve
problems like the way human do it.

Example (Knowleage acquisition in COMPASS).

As we already know that COMPASS is an experi system which was build for proper
maintenance and troubleshooting of telephone company’s switches.

Now, for knowledge acquisition, knowledge from a human expert is elicited. An
expert explains the problem solving technique and a knowlcedge engineers then
converls i into and if-then-rule. The human expert then checks if the rule has the
correct logic and if a change is needed then the knowledge enpineer reformulates the
rule.

Somelimes, it is easier to troubleshoot the rules with pencil and paper (i.e., hand
simulation), at least the first time than directly implementing the rule and changing
them again and again.

Lel us summarize the knowledge acquisition cycle of COMPASS :

Extract knowledge from a human expert.
= Document the extracted knowledge.
e Tesl the new knowledge using following steps:

» Let the expert analyze the new dala.

= Analyse the same data using pencil 2nd paper using the documented
knowledge.

» Compare the resulis of the experl’s opinion with the conclusion of the
analysis using pencil and paper.

= Ifthere is a difference in the results, then {ind the rules which are the cause
of discrepancy and then go back to rule 1 to gather more knowledge form
the expert to solve the problem.
Otherwise, exit the loop.

TTTTTTIUTTUTIT TSR T T

1.6.1.3 Inference Engine Fxpert Svitems

An inference engine is used o perform reasoning with both the expert knowledge
which 1s extracted {fom an expert and most commonly 2 human expert) and dala
which is specific to the problem being solved. Expert know ledge is mostly in the form
of a set of [F-THEN rules. Tle case specific data includes the data provided by the
user and also partial conclusions (along with their certainty factors} based on this data.
In a normal forward chaining rule-based sysiem, the case specific data is the elemenis
in the working metmory.

Developing expert systems involve knowing how knowledge is accessed and used
during the search for a solution. Knowledge about what is known and, when znd
how to use it is commonly called meta-knowledge. [n solving problems, a certain
level of planning, scheduling and controlling is required regarding what questions to
be asked and when, what is to be checked and so on.

Different strategics for using domain-specific knowledge have great effects on the
performance characteristics of programs, and also on the way in which a program
finds or searches a solution among possible alternatives. Most know ledge
representations schemes are used under a variety of reasoning methods and research is
going on in this area.

1.6.1.4 Explacation Subsystem (Example MYCIN)

An cxplanation subsystem allows the program (o explain its reasoning to the user. The
explanation can range from how the final or intermediate solutions were arrived at fo
Jjustifying the need for additional data.

Explanation subsystems are important from the following peints of view :

{i} Proper use of knowledge: There must be some for the satisfaction of
knowledge cagineers that the knowledge is applied properly even at the time of
devclopnient of a prototype.

(1)) Correctness of conelusiens: User’s nged to satisfy themselves that the
conclusions produced by the system are correct.

(i) Execution trace: In order to judge that th:e knowledge elicitation is proceeding
smoothly and successfully, a complele trace of program execution is required.

(iv) Knowledge of program behavior: For proper maintenance and debugging, the
knowledge of program behavior is necessary for the programmers.

(v) Suitnbiliiy cf reasoning approach: Explanation subsystems are necessary o
ensure that reasoning technique applied is suitable 1o the particuiar domain.

Explanation in expert systems deals with the issue of control because ihe reasoning
steps used by the programs will depend on how it searches for a solution.

Explanation subsystems are also related to evaluation as by checking the outputs
produced by a system and after examining the trace of its actions performned whils
reasoning, it can be decided that whether or not a system is producing the right answer
for right rensons. Without a gosd explanation subsystew, an expert will be uaable to
judge the system’s performance or wil! be unable to find ways (0 improve it,

TITTT

e =—trar

Applications of

Artifivial Tntelllgence

30

To give nn idea of how an cxplanation subsyslem works, let us have a simple
example:

Example:
Suppose there is a simple rule based systemn to diaguose the problems in a car.

Let the system has following rules:

Rl1: IF engine-gels-petrol AND enginc-turms-over
“THEN spark-plug-faull

R2: IF NOT engine-lums-over AND NOT lights-come-on
THEN battery-problcm

R3: IF NOT engine-tums-over AND lights-come-on

THEN starter-not-working

R4: IF fuel-tank-has-petrol
THEN engine-gels-petrol

We also assume bzt the system has no initial facts.

Explanation subsysicms allow the user 1o ask why it asked a particular questicn, and
how it reached some conclusion. These questions are answered by referring to the
system goals, Lhe rules being used, and any existing problem data. b

Now let us focus on the example given above to see the explanation facilitics
provided, which involve a dialogue involving why and how questions and their
explanations.

System : Does the fuel tank has gas? !
User : Yes. ’

System : Does the engine turns over?
User :No

System : Do lights come on?

User : Why?

System : Iam trying to prove that there is a battery problem. It has been
estzblished that the cngine does not turns over. Therefore if it is not the case
that the lighls come on, then there is a battery problem. Is it tre that the
lights come on?

User : No.

Syslem : I conclude that there is a battery problem. .
User - : Hew?

System : This foliows from Rule 2:
IF NOT engine-tumns-over AND NOT lights-come-on was given by the user.

Providing such an explanation facility involves stating what rules are used in reachinz
conclusions, and using these records to compose explanauons tike the ones above.
Giving simple explanalions like those above is not very difficult, and is quite useful.

Explanation facilities in expert systems are sometimes not used, and somelimes they Expert Systems

are not easily accepted by their users. There are a whole lot of reasons for this. One
reason is that the explanations just reference the “surface” knowledge encoded in the
ruies, rather than providing the “deep” knowledge about the domain which originally
motivatcd the rules but which is usually not represented. So, the system will say that it
concluded something because of rule 5, but not explain what rule § intends to say. In
the example given below, maybe the user needs 1o understand that both the lights aud
the starier use the battery, which is the underiying purpose of the second rule in this
example. Another reason for the frequent failure of explanation facilitizs is the fact
that, if the user fails to understand or accept the explanation, the system can't
re-explain in another way (as people can). Explanation generation is a fairly large arca
of research, concemed with effective communication i.e., how to present things so
that peoplc are really satis(ied with the txplanation, and what implications does this
have for how we represent the underlying knowledge,

Ezxplanation Subsystem in MYCIN (An overview)

MYCIN is one of the first popular expert systems made for the purpose of medical
diagnosis. Let us have a look ai how the explanation subsystem in MYCIN swvorks :
To explain the reasoning for deciding on a particular medical parameter’s or
symplom’s value, it retricves a set of rules and Lheir conclusions. It allows the user to
ask questions or queries during a consuitation.

To answer the questions the system relies on its ability to display a rule invoked at any
point during the consaltation and also recording the order of rule invocations and
associating them with particular events (like particular questions).

As the system using backward chaining so most of the questions belong to *“Why™ or
“How™ category. To answer “Why" questions, the system looks up the hierarchy (i.e.,
tree) of rules to sce which goals the syslem is trying to achieve and to answer “Why"
questions, the system must look down the hierarchy (i.e., tree) to find out that which
sub-goals were satisfied to achieve the goal.

We can sce thal explanation process is nothing but a search problem requiring tree
traversal.

As MYCIN keeps track of the goal to sub-goal sequence of the computation, so it can
answer questions like:

“Why did you ask that if the stain of the organism is gram negalive ?”
Ir response to this, the system would quoete the rules which states “gram negative
staining” may be in conjunction with other conditions and would state that what it was
trying lo achieve.

" Simitarly, if there is “THow” question like:

“How do szy that Organism-2 might be proteus ?”

In it reply, MYCIN would siate the rules that werc applied in reaching this
conclusions and their degice of cenainty and what v as the lost question asked etc.

“Thus we can see.that because of the backward chaining approach, the svster is able 1o
ansv.er "Wy and “hiow” questions satisfactorily. Dut the rele zpplication woild not
he easy if the chains of reusening are ong.

i1

Applications of
Artificlal Intelligence

32

1.6.1.5 User interface

It is used to communicate with the user. The user interface is generally not a part of
ithe expert system technology, and was not given much attention in the past. However,
it is now widely accepted that the user interface can make a critical difference in the
ulility of a system regardless of the system’s performance,

Now as an example, lel us discuss and expert system shell called EMYCIN.
1.6.1.6 EMYCIN (An expert system shell)

EMYCIN provides a demain-independent framework or teinplate for constructing and
running any consullation programs. EMYCIN slands for “Empty MYCIN™ or
“Essenlial MYCIN™ because it basically constitules a MYCIN system minus its
domain-specific medical knowlcdge. However, EMYCIN is something more than this,
as it offers a number of software tools for helping expert system designers in building
and debugging performance programs.

Some charactenstics of EMYCIN are:

+ [t constitutes an abbreviated ntle language, which uses ALGOL-like notation and
which is easier than LISP and is more concise than the English subset used by
MYCIN.

It uses backward chaining which is similar to MYCIN.

» [t indexes rules, in-tura organising them into groups, based on the parameiers
which are being referenced.

e It has an ipterface for system designer which provides 1ools for displaying,
editing and partitioning rules, editing knowiedge held in tables, and also running
rule sets on sets of problems. ‘As part of sysiem designer's interface, EMYCIN
alsg included a knowledge edilor (a program) called TEIRESIAS whose job was
to provide help for the development and maintenance of large knlowledge bases.

e [t also has 2 user interface which allows the user to communicate with the system
smoothly.

1.7 SOME APPLICATION AREAS OF EXPERT
SYSTEMS

The scope of applications of expert systems technology to practical problems is so
wide that it is very difficult to charactenize them. The applications £ind their way into
most ¢ " the areas of knowledge work. Sume of the main categories of applicalions or
an expert system are given below,

« Diagnosis and Troubleshooting: This class comprises systems that deduce faults
and suggest comective actions for a malfunclioning device or process, Medical
diagnosis was one of the first knowledge areas to which ES technology was
applied, but use of expert systems for solving and diagnosis of engincered systems
has become common. '

o Planning and Schedullng: Systems that fall into this class analyze a set of one or
more potentially complex and interacting goals in order to determine a set of
actions to achieve those goal. This class of expert systems has great coramercial
potential. Examples include scheduling of flights, personnel, manufacturing -
process planning etc.

T OITITTITIIR ST

e Process Monitoring and Control: Systemns falling in (his class analyze Expert Systems

real-time data from physical devices with the goal of noticing errors, predicting
trends, and controliing for both optimality and failure correction. Examples of

real-time systems that actively monitor processes are found in the steel making
and oil refining industries.

e Financial Decision Making: The financial services industry has also been using
expert syslem techniques. Expert systems belonging to this calegory acl as
advisors, risk analyzers etc.

¢ Knowledge Publishing: This is a relatively new, but also polentially explosive
area. The primary function of the expert system is to deliver knowledge that is
relevant to Lhe user’s prablem, in the context of the user's problem.

e Design and Manufa"pturing: These systems assist in the design of physical
devices and processes, ranging from high-level conceptual design of abstract
entilies all the way to factory floor configuration of manufacturing processes.

1.8 SUMMARY

In this unit, we have discussed various issues in respect of expert systems. To begin
with, in seclion 1.2 we define the concept of ‘expert system’. In view of the fact that
an cxpert sysiem contains knowledge of a specific domain, in section 1.4, we discuss
various schemes for representing the knowledge of a domain. Section 1.5 contains
examples of some well-known expert systems. Tools for building expert sysiems arc
"discussed in section 1.6. Finaliy, applications of cxpert sysiems are cxplained in

sectron 1.7,

1.9 SOLUTIONS/ANSWERS

Ex. 1) In this casc, it is not the same ‘stiike’ action but two sirike actions which are

involved in the scntence, Therefore, we usc ‘strike” to denole a generic action
of striking whereas *sirike-1" and *strike-2" ¢ce i1s instances or members.
Thus, we gel the semantic network.

~
: : ~,

obicc

agenl

past of

33

[B

LS

Anplications of
A dficid Lntelligence

34

Ex. 2) {date
(day (integer(1....31))
(month (integer (1.....12}))
(year (integer(1.....10000)))
(day-of-the-week (set (Mon Tue Wed Thu Fri Sat Sun)))
(procedure (compute day-of-the-week . (day month year))},

Where the procedure day-of-the-week takes three arguments.
Some problems in Semaatic Networks znd Frames:

There are problems in expressing certain kinds of knowledge when either semantic

networks or frames are used for knowledge representation. For example, it is difficult
although not impossible te express disjunctions and hence implications, negations,

and generaf non-taxonemic knowledge (i.e., non-hicrarchical knowledge) in these
representations,

Ex. 3) Inorder to translate in PL, let s use the symbols:
ML: There is a Moral Law
SG: Someone Gave it (the word ‘it stands for moral law)
TG: There is God.

Using these symbols, the statements (i) to (iv) become the Jormidae (i) to (iv)} of PL
as given below:

() ML

{ii) ML-SG

(i) SGHTG and

(iv) TG

Applying Modus Ponens to formulae (i) and (ii) we get the formul.i
{v) SG
Applying Modus Ponens to (v) and (iii), we get
(v)) TG
But formula (vi) is the same as (iv), which is required 10 be established. Hence the
proof.

Ex. 4) Initially, the working memory contains the following assertions :

(has-hair raja) representing the fact “raja has hair”

(big-mouth raja) representing the fact “raja has a big mouth™

{long-pointed-teeth raja) representing the fact “raja has long pointed
teeth”

(claws raja} representing the fact “raja has claws™

We start with one of the assertions aboul “raja” from the working memory.

Let us choose the first assertion : (raja has-hair)

Now we take this asserlion and try to match the antecedent part of a rule. In the rule
2, the anteccdent part is satisfied by substituting “raja™ in place of X. So the
consequent (mammal X) is established by replacing “raja” in place of X.

The working memory is now updated by adding the assertion (mammal rafa).
So the working memory now looks like: ;

(mammal raja)

i B Faa]

T T

(has-hair raja)
(big-mouth raja)
(long-pointed-teeth raja)

(claws raja)

Now we iry lo match assertion (mammal raja) to' the antecedent part of a rule, The
first rule whose antecedent part supports the assértion is rule 3. So the control moves
10 the second part of rule 3, which says that (eats-meat X), but this is not found in any
of the asscrtions present in working memory, so rule 3 fails,

Now, the system trics to find another rule which maiches assertion {mammal raja), it
find rule 4 whose first part of antecedent supports this. So the control moves to the
second part of the antecedent in rule 4, which says that something i.e., X must have
pointed teeth. This fact is present in the working memory in the form of assertion
(long-pointed-teeth rajz) so the control now moves to the third antecedent part of rule
4 i.c.,, something i.e., X must have claws. We can see that this is supporied by the
assertion (claws raja} in the working memory. Now, as the whole antecedent of rule 4
is satisfied so the consequent of rule 4 is cstablished and the working memory is
updated by the addition of the assertion (camivorous raja), after substituting “raja” in
place'of X.

So the' working now looks Jike:

(carmivorous raja)
(mammal raja)
{has-hair raja)
(big-mouth raja)
(long-pointed-iecth raja)

(claws raja)

Now in the next step, the system tries to match the assertion (carmivorous raja) with
one of the rules in working memory. The first rule whose antecedent parl matches this
assertion is rule 6. Now as the first part of the antecedent in rule 6 matches with the
assertion, the control moves to the second part of the antecedent i.e., X has dark spots.
There is no assertion in working memory which suprerts this, so the rule 6 is aborted.

The system now tries to match with the vext rule which matches the asserlion
(camivorous raja). It finds rule 8 whose first part of antecedent matches with the
assertion. So the control moves to the second part of the antecedent of rule 8 which
says that something i.e., X must have big mouth. Now this is already present in the
working memory in the form of assertion {big-mouth raja) so the second part and
ulimately the whole antecedent of rule 8 is satisfied.

-1ind, so the consequent part of rule 8 is established and the working memory is
updated by the addition of the assertion (lion raja), «fler substimuting “raja” in place of
X

The working memory now iooks like:

(Yien raja)

(camivorous raja)

et -

1T

Applicatious of {mammal raja)
Artificiai Entelligence .]
{has-hair raja)
(big-mouth raja)
(long-pointed-teeth raja)
(claws raja)
Hence, as ihe goal to be achieved i.e., “raja is a lion” is now part of the working

niemery in the form of assertion (lion raja), so the goal is esiablished and processing
stops. '

1.1 FURTHER READINGS

1. Tusselt S. & Norvig P, Ariificial Inteliigence 4 Modern Approach (Second
E:dition} (Pearson Educat’on, 2053).

2. Patterson D. W: Introduction to Artificial Intelligence and Expert Systems
(Prentice Hall of India, 2001).

36

B S I T

UNIT2 INTELLIGENT AGENTS

Structure Page Nos.
2.0 Introduction 37
2.1 Objectives 18
2.2 Definilions 38
2.3 Agenls and Rationality 40

2.3.1 Ralionality vs. Omniscicuce
2.32 Autonomy and Leaming Capability of the Agent
223 Example: A boundary following robot
24 Task Enviromment of Agents 45
2.4.1 PEAS (Performance, Environment, Actuatoers, Sensors)
242 Exampic An Automated Public Road Transport Driver
243 Dilferemt Types of Task Envirenments
2.4.3.1 Fully Observable vs. Partially Observable Environment
24,32 Staric vs. Dynamic Environment
2.4.33 Delerminislic vs. Stochastic Environmient
2434 pisodic vs. Sequential Environment
2.4.3.5 Single agent vs. Multi-agen; Environmenl
2436 Discrete vs, Comtinuous Environment
244 Seme Examples of Task Environnients
2.44.) Crossword Purzle
2442 Medical Diagnosis
2.44.3 Playing Tic-tac-1oc
2.444 Playing Chess
2445 Automabile Driver Agenl
25 The Structure of Apents 51
2.5.1 SR(Sim
2.5.2 ple Reflex) Azents
252 Model Based reflex Agents
255 Goal-based Agents
254 Uliliy-bascd Agents
255 Leaming Agents

2.6 Different Forms of Leaming in Agents 57
2.7 Summary 59
2.3 Solutions/Answers 59
2.9 Funther Readings 59

29 INTRODUCTION

Since the time immemorial, we, the human beings, have always toyed with the idea of
having some sort of slaves or agents, which would act as pEr our commtand,
irtespective of the shape they take, ag long as they do the job {or which they have been
designed or acquired. With the passage ol time, human beings have devcloped
differcnt kinds of machines, where each machine has been intended to petform
specific operalion or a sel of operations. However, with the development of the
computer, human aspirafions have increased manifolds as it has allowed us to think
of and actually implement non-buman agents, which wouid show some level of
independence and intelligence. Robot, one of the piost populz: non-human agents, is
a machine capable of pereziving the eavironment it is tn, and further capable of taking
some action or of performing some job either on its cwn or afer taking some
command,

Despite their perceived beazfits, the dominant public image of the artificiaily
embodied inteiligent machi,es is more as prientially dangerons than potentially
Bonzicial snachines 10 tie hunen race “The hankind is worricd about vie poientially
dangerous capalelinizs of the robits io be dezicad nnd developed in G: - futece.

Wt

B ok b Pt

g

o1

==

e

Applications ol

Artilicial [atellipence

38

Actually, any technology is a double-edged sword. For example, the Intemnet along
with World Wide Web, on one hand, aflows us to acquire informalion at the click of a
buiton, but, at the same lime, the Internet provides an environment which a number
of children (and, of course, the adulis also) become addicts to downloading
pornographic malerial. Similarly, the development of nen-human agents might not
be without its tradeoffs. For example, the more intelligent the robots are designed
and developed, the more are the chances of a robot pursuing its own agenda than its
master's, and more are.the chances of a robot even attempting to destroy others to
become more successful. Some intellectuals even think that, not in very distant future,
there might be robols capable of enslaving the human beings, though designed and
developed by the human beings themselves, Such concerns are not baseless. However,
the (software) agents developed till today and the oncs to be developed in the near
[uture are expected to bave very limiled capabilities to match the kind of intelligence
required for such behaviour.

In respect of the design and devciopment of intelligent agents, with the passage of
time, the momentum seems o have shified from hardware to software, the letter being
diought of as 2 major source of intelligence. Bul, obviously, some sort of hardware is
cssentially nceded as 2 home to the intelligent agent.

2.1 OBJECTIVES

Ailer going through this unit, you shiould be able to:

o define the concept of an ageni;

¢ explain the concepts of a ‘rational agent’ and ‘rationality’;

e icil us about the varous lask environments, for which the use of agents is
appropriate to solve problems from,;

e explain the structure of an agent, and

+ discuss the various forms of used for agenls {o leam.

2.2 DEVINITIONS

An apent mzy be thought of as an entity that acts, generally on behalf of someone
else. More precisely, an agent is an entity that perceives its cuvironment through
sensers and acfs on the cnvironment through acfuators. Some cxperls i the field
requirc an agenl to be additionally aulonomous and geal directed also.

A percept may be thought of as an input to the agent through its censors, over a unit -
of time, sufficient enough to make some gense from the input.

Percep(sequence is a sequence of percepls, generully long enough to allow the agent
{0 initiate some action.

In order to further have an idea about what a computer agent is, et us consider one of
the first definitions of agent, which was ¢oined-by John McChrthy and his friends at
MIT.

A saftware agenr is a spstem which, when given a goal to be achie ved, could carry
out ihe details of the appropriate (computer) operations and further, in case it gets
stieck, it can ask for advice and can receive it from: humans, n:ay even evaluate the
appropriateness of the advice and ther: act switably.

Essentially, a corputer agent is a computer software that additionally has the
following attethules:

R e N O D T

(i) it has autonomous control i.e., it operates under its own control

{if) it is perceptive, i.e,, it is capable of perceiving its own environnient
(iif) it persists over a fong period of time

{iv) it is adaplive to changes in the environment, and

(v) it is capable of taking over others® goals.

As the concepl of (software) agent is of relatively recent origin, different pioncers and
ather experts have been conceiving and using the term in different ways. There are
two distinct but related approaches for defining an agent. The first approach treats an
agent as on ascription i.c., the perceplion of 2 person (which includes expeciations
and points of view) whereas the other apfroach defines an agent on the basis of the
description of the properiies that the agent to be designed is expected to possess.

Leit us first discuss the definition of agent according to first approach. Among the
people who consider an agent as an ascriplion, a popular slogan is “Ageat is that
agent does™. In everyday context, an agent is expected to act on behalf of someone
lo caity out a parlicular task, which has been delegated 1o it. But to perform its task
successfully, the agenl must have knowledge about the domain in which it is operating
and also about the properties of its current user in question. In the course of normal
life, we hire different agents for different jobs based on the required expertise for cach
Jjob. Similarly, a non-human intelligent agent also is imbedded with required
expertise of the domain as per requirements of the job under consideration. For
example, a football-playing agent would be different from an email- anaging
agenf, although both will have the common ailribule of modeling their user.

According to the second approach, an agent is defined as an entity, which functions
continuously and autonomously, in a particular environment, which may have other
wgents also. By continuity and autonomy of au agent, it is meant that the agent
must be able to carry out iis job in a flexible and intelligent fashion and further is
expected to adapt to the changes in its environment without requiring constant human
guidance or intervention. Ideally, an agent that functions continuously in an
environmer! over a long peried of time would also learn from its experience. In
addition, we expect an agent, which lives in a multi-agent environment, to be able to
comrmunicale and cooperzte with them, and perhaps meve [rom place to place in
doing so.

According to the second approach to defining agent, an agent is supposed to
possess some or all of the following propertizs:

* Reactivity: The ability of sensing the environment and then acting accordingly.

® Autonomy: The ability of moving towards its goal, changing ils moves or
strategy, if required, without much human intervention.

¢ Commuuicating ability: The ability lo communicale with other agents and
humans,

* Ability to coexist by cooperating: The ability to work in a mutti-agent
environnicnl to achieve a common goal.

" Abilily to adapt (o 2 new situation: Ability o lears, change and adapt to the
situaiions in the world around it.

@ Ability to draw infereaces: The ability to inier or conciude facts, which may be
vseful, it are not availakle dircetly. :

* Temporal contimiity: The abiiity 1o work eves long periods of time.

Intellipent Agenis

39

Hl el § Rt H

Applicatious of
Ardineial hutelligence

40

* Personality: Ability 1o impersonate or simmulate someene, en whose behalf the
agent is acling.

= Mobifity: Ability o move from one environment 1o another.

2.3 AGENTS AND RATIONALITY

Further, a rational agent is an agent that ac(s in 2 manner that achieves best outcome
in an environment with cerlain outcomes. In an uncertain environment, a rational
agend through its actions atlempls the best-expected outcome.

It m2y be neted that correct inferencing is onc of the several possible mechanisms for
achieving rationality. However, sormctimes a rational action is also possible without
inferencing. For example, removirg hand when a very hot utensil is touched
unintevitionally is an example of ralionality based on reffer acticn insicad of based on
inferencing.

Ve discuss the concepls of rationality and rational ngent in some more detail.

Altempting lo take always Lhe comrect action, possibly but not necessarily involving
logical reasoning, is only one part of being rational. Further, if 2 perfectly correct
action or inferente is not possible then taking an approximately correct, but, aptimal
action under the circumstances is a par of rationality.

Like other atiribirles, we nced some performance measure (i.e., the criteria o judge
the perforimance or success in respect of the task to be performed) to judge rationality.
A pood performance measure [or rationality must be:

= Objective in nature

» [{ must be ineasurable or observable, and

* [t musl be decided by the designer of the agent keeping in mind the problem or tl.¢
sct of problems for handling which the agent is designzd.

In summary, rationality depeads on:

= The performance measure chosen fo judge the agent’s activities.

= The agent’s knowledge ol the.current eavironment or of the world in which 1t
exists. The better the knowledge of the environment, the more will be probability
of the agent laking an appropriate aclion.

= The length of the percept scquence of the agent. In the casc of a longer percept
scquence, the agent can take advantage of its carlier decisions or actions for
similar kind of situations.

= The set of actions available io the aged.

From the previous discussion, we know that a rational agent should take an action,
which would correct its performance measure on the basis of its knowledge of the
world around it and the perccpl sequence.

By the rationality of an agent, we do not mean it fo be afways successful or it to be
omuiscient, Ratianality is concerned with the agent's capabilities for information
gatheriag, exploration and learning {rom its environment and cxpericnce and is-also
concerned with the autonomy of the agent.

— Tl "I -

R CEEE SR I

R e S TR

e — e ——— T R T

2.3.1 Rationality vs. Omniscience

The basic diffcrence between being rationsl and being omniscient is that
rationality deals with trying 1o muximize the oulput on the basis ol current inpul,
environmental condittons, available astions and past cxperience whereas being
omniscient mcans having knowledge of everything, including knowleduc of the future
i.e., what will be the output or outcome of i1s action. Obviously being omniscient is
nexl Lo impossible.)

In this context, let us considr the foliowing scenario: Sohan is going 10 the nearby
grocery shop, but unfortunately when Schan is passing through the crossing suddenly
a police party comes al that place chusing a terrorisl ard attempts to shoot the 1crrorist
but unfortunately the bullet hils Sohan and he-is injured.

Now the question is: £s Sohan irvational in moving through that place. Vhe answer is
no, because the human agent Sohar has no idea, nor 1s expecied {o have an idea, of
what is going to happen at that place in the near future. Obviously, Sohan is mo!
oniscient bul, from this incident can not b woid to De ireational.

2.3.2 Autonomy and Lecarning Capabiliiy of the Agent

Autenomy means {he dependence of the agent own its on percepls (what if percetve
or receives from the environment through senses) rather than the prior knowledge of
its designer. In other words, an agent is aulonomous if it is capable of leaming from
15 experience and has not to depend upon iis prio: knowleidge which may cither be not
complete or be rol correct or both. Greater the cutonemy more {lexible and more
rationai the agent is expected to be. So we can say that a ratienal ~zent sheuld be
aulonomous because it should be able to learn to compeusate lor the incornplete or
incorrect prior knowledge provided by the designer. In the initial siage of ils
operations, the 2gent may nol, rather shouid not, have complete autonomy. This is
desirable, in view of the fact that mn the initial stage, the agent is yet to acquire
knowledge of the environmenl should use (he expericnce and knowledge of the
designer. But, ar the agent guins experience of its enviromunent, its behavior should
become more and wsore vidependent ¢f its prior knowledge provided to it by its
designer.

Learning means the arent can apdaie its knowlea:2 iased on its experience and
changes in the environment, for the purpese o1 w153 ¥ otier actions in [uture.
Althougn the designer might feed some prior oy Jedgz ol the environimenl in the
agent but, as mentioned carlier, as the enviror:a2n might change witl the passage of
time, thercfare, feeding complete knowledee 1tk agent, at the begining of (he
opcrations is neither possible nor desirabic, Cuvisialy, there could be some extreme
cases in which cuvironment is staue, i.e.. Joos net change with time, but such cases
are raie. In such rare cases, however, giving compicie information about (he
environment may be desirable. So, in gencral, in order to update itself, the agent
should have the learning capability 1o update i1s knowiedge with the passage ol time.

2.3.3 LExample (A boundary following robot)

it us consider the {irst example of an agen!, which i a robor thar fellors a
boundary wall,

The definition of the problin, o solve, which an ausnbg Lo be designed, consists in
giving deiails of T

(1) The pereeption capabilities that arc to be available to the agent
{m) Thz aclions that e agent would be able to perform

Fodcliigemar e

[it

i - R

L U1 IR ST

Applications of
Artificial Tatclligence

42

(ili) The environment in which the agent is expected lo perform the task or solve the
problem.

Environment and tasks

The robot is assumed to be enclosed in a room, which is perceived as a two-
dimensional grid-space. The room is enclosed on all sides by walls high enough not to
allow the robot to escape. The room may have some immovable objects. For the
purpose of movement of the robot, the room is supposed to be divided inlo cells, in
the sense that at one time, the robot occupies only onc cell and does not have its parts
spread over two or more cells. To be capable of boundary-following behavior, the
robot must be able to sense whether or not certain cells are frec for it 1o possibly
occupy in the next move. The only action it is ablc to take is o move from the
currently occupied cell to any one of the undccupied surrounding cells, e.g., to ¢,
Ca,....Cs as shown in the Figure 2.1,

Quter boundary

F./_/

Ci1C 1GC3
Cs é Cq
Cr [Cs | Cs

‘““""‘-.._‘M

AN Y /

N A\ A1/

AN N1/ [
LA

LEGEND: @ — robot Solid Unmovable

Cbhject

Possible paositions of the robot

Figure 2.1: Environment for g Boundary-Following Robot Problem

The sensory input about the surrounding czils can be represented in the form ofan
8-tuple vector say <c1,62,63,c4,¢5,06,c7,c8> where each ci is a binary number i.e.,

¢i is cither a 0 for representing a free cell or a 1 for representing (he fact that the cell
is oceupicd by some object. If, at some stage, the robot is in the cell represented by
X, as shown in Figure 2.1, then the sense vector would be <0,0,0,0,0,0,0,1,1>. It may
be noted that the comner and the boundary cells may not have exact eight surrounding
celis. However, for such cells, the missing neighbouring cell may be treated as
occupied.For example, for the cell y of Figure 2.1, the neighbouring cells to the left
of the cell y do not exist. However, we assume these cells exist but are occupied.
Thus, if the robot is in position Y of Figure 2.] then the sense vector for the robot is
<[,0,0,0,0,0,1,1>.

I TR T

Also, the robot performs only one type of aclion i.e., it can move in onc of the free
cells adjacent 1o it. In case the robot attempis lo move to a cell, which is not free, the
action will have no effect i.c., there will be no action.

On the basis of the properties of the environment in which the robot is opcrating, it is
the job of the designer to develop an algorithm for the process that converts
robot’s precept sequences (which in this case is the sensory inpul ¢l to c8) into
corresponding actiens. Let us divide the task of determining the aclion the agent
should take on the basis of the sensory inputs into two phases, viz., perception phase
and action phase.

Perception Phase:

There is an enclosed space, which we call a room. The room is thought of as divided
inlo celis. A cell has just enough space for the robot to be accommodated. Further, at
any lime, robot, except during transition, can not lie across two cells.

» Placement of the agent in some cell of the room is essentially random.

= Agent is to perform boundary following.

= The sensory inpul for the robot consisls of the binary values cl, ¢2,...,¢8 in the
eight cells adjacent to the posilion occupied by the robot. Because there are 8
adjacent cells, so the possible combinations of these values is 2%i.c., 256
combinations. The movement of the robot to any cne of the unoccupied/free
surrounding cells depends upon the robot's environmental conditions. For
examnple, if the (traffic} signal to the right is green and some cells on the right of
the cell currently occupied by the robeots, are free then move to the uppermost
cell of free cells to the right. For example,

B
A C

D

i€ A is the cell currently occupied by the robot and the cell B is occupied by some
object, but cells C and D are free. And, further, cignal on the right is green, then the

robot moves to cell C. However, if both B and C are occupied, then the robot moves

to cell D. 'These environmental conditions are delermined in terms of what we call
Jeatures. For the current problem, let us assume that there are 4 binary valued
features of the agent, namely f1, {2, £3 and f4 and these features arc used to
calculate the action to be taken by the agent.

The rulés for assigning binary values to features may be assumed to be as given
below:
IFc2=l‘ OR ¢3=0 THEN fl1=1ELSE fl=0.
IFc4=0 OR ¢c5=1 THEN f2=1ELSE f2=0.
IFc6=1 OR c7=1 THEN fI=1ELSE $3=0.
[Fc8=1 OR cl=1 THEN f4=]ELSE f4=20.
Action Phase:

Afier calculating the values of the feature set of the robot, a pre-defined function is
used to determine boundary following action of the robot (i.e., the movement to one of
tiie surrounding cell). In adduion to specified actions determined by the {features and

Intelligent Agents

| et I

inT

Aper e e TR

Anclicatinne of
Artificial Intelligence

the pre-defined function, there may be a default actton of movemenl 1o a surrounding
{ree cell. The defsuit action may be cxccuted when no action is possible.

In order to illustrate the type of possible actions, let us consider an example of
specifying the rules for different actions to be performed by the robot:

Action 1: IFfl=0AND 2=0ANDf3=0AND4=0
THEN move up to the right-most frec surrounding cell. Ifno
such cell is free then Atlempt Action 3.

Action2: IFFI=1ANDf2=0 .
THEN move topmost free surrounding cell on the right by
one cell. I ne such cell is free, then stop.

Action3:IFf2=1AND[3-0 '
THEN move down to the lefl-most free cell. If no sich cell is
free then aucmpt Action 2.

Action4: IF3=1 AND{4=0
THEN move to the bottom-most free cell on the lefi. fno
such surrounding ccll is free then move to action 1.
We can sce that the combinations of the features values serve as conditions under

which the robot would perform its actions.

Next, we enumerate below some of the possible parameters for |- -formance measures
in case of such a simple agent.

% The number of limes agent has to reverse its carlier courses of .ctions (more Limes
indicares lower performance).

¥ The maximum of the average of distances from the walls (t' . less the maximum,
bigher the performance).

¥ The boundary distance traversed in parlicular time period (the more the distance
covered, belter the performance).

In the next section, we discuss some of the commonly used terms in context of the
Agents.

Exercise 1

On the basis of the figure given below, find the sense vector of the robot if:
(2) [t starts from the location L,
{b} Tt starts from the location L,

The robot can sense whether the 8 cells adjacent to it are free for it to move into
one of them. If the location of (he robot 1s such that some of the surrounding cells
do not exist, then these cells are, assumned to exist and further assumed to be
occupied.

R S i ramri-Sra

1 e ErErER T et - T TR SEIE D - 2

Outgr boundary " Intelligent Agents

@—_#__ S —— —— .__—I__....._ i
JCH | Cy | Cs
C: | ®]cC,
GG | Cs
/

A

/

|/

/ [1/
Solid gnmovable \ ¢ .
LEGEND:@ —> rcobot Objeet Two possible positions

of the robot
Figure 2.2 Environment of the rabot

24 TASK ENVIRONMENT OF AGENTS

Task environments or problem environments are the environments, which include all
the elements involved in the problems for which agents are thought of as solutions.
Task wpvironments will vary with every new task or problem for which an agen: is
being designed. Specifying the task environment is a long process which involves
looking at different measures or parameters, Next we discuss a standard sei of

- measures or paramelers for specifying a task envircnment under the heading PFAS.

| 24.1 PEAS (Performance, Environment, Actuators, Sensors)

For designing an agen, the first requircra~nt is to specify the task environment to the
maximum extent possible. The task enviroiment for an agent to solve one type of
problems, may be described by the fov m:ior parameters namely, performance
(which is aclually the expected pesformance), environment (i.c., the world around (he
agent), actuators (which include entities through which the agent may perform
actions) and sensers (which describes (he different entitics through which the ageni
will gather information 2bout Ure eavironment).

The four parameters may be collectively callad as PEAS.
We explain these paramelers further, through 2n example of an automated ageni.
which we will preferably call rutomated public road transport driver. This is a mu.

more complex agent than the simple bounsdary folloviing robot which we have
already discussed.

2.4.2 Example (Az Automated Public Road Iransport Driver Agent

We describe the task environment of (he agent on the basis of PEAS.
Performance Measur:s:

45

Applications of
Artificial Intelligence

46

Some of the performance measures which can easily be perceived of an
automated public road transport driver wouid be :

= Maximizing safery of passengers

* Maximizing comfort of passengers

= Ability to reach correct destination

* Ability to minimize the lime to reach the destination

= Qbeying traffic rules

= Causing minimum discomfort or disturbance to other agents

*« Minimizing costs, etc.

Environment {or the world around the apgeant)

We inust remember thai the environment or the world around the agent is extremecly
unceriain or open ended. There are unlimited combinations of possibilities of the
environment situzations, which such 211 agent could face. Lel us enumerate some of the
possibilities or eircumstances which an agent might face:

= Variety of roads e.g., from 12-lane express-ways, [reeways Lo dusty rural bumpy
roads; differenl road rules incliding the ones requiring lefi-hand drive in some
parts of (he world and right-hand drive in other parts.

* The degree of knowledge of various places through which and to which driving is
te be done.

* Various kinds of passengers, including high cultured to almost ruflians etc.

= All kind of other traffic possibly including heavy vehicles, ultra modem cars,
three-wheelers and even bullock carts.

Actuators:
These include the following:

= Handling stecring wheel, brakes, gears and accelerator
» Understanding the display screen
* A device or devices for all communication required

Sensors:

The agenl acting as antomated public road transport driver must have some way of
sensing the world around it i.e., the traffic around it, the distance between the
automobile and the automobiles ahead of it and its speed, the speeds of neighbouring
vehicles, the condition of the read, any turn ahead efe. Jt may use sensors like
odometer, speedometer, sensors telling the different parameters of the engine, Global
Positioning System (GPS} to understand its current location and the path ahead. Also,
there should be some sorl of sensors to calculate its distance from other vehicles etc.

We mu.sl remember that the agent example the automated public road transport
driver, which we have considered above, is quite difficult to implement. However,
there are many other agenis, which operale in comparatively simpler and tess dynamic
cnvironments, e.g., a game playing robot, an assembly line robot control, and an
image processing agent etc.

2.4.3 Different Types of Task Environments

Next, we discuss some of the important characteristics of the environments of the
roblems which are generally considered for solution through agent technology.

Tt TTTT SRTTIYTTTRTTTTT

i s

S T

¢ Fully observable vs. partially observable Intelligent Agents
= Static vs. dynamic

Deterministic vs. stochastic

Episodic vs. sequential

Single agent vs, multi-agent

2.4.3.1 Fully Observable vs. Partizlly Obscrvable Environment

If the agent knows everything about its environment or the world in which it exists,
through its sensors, then we say that the environment is fully ebservable. It would be
quite convenient for the agent if the environment is a fully observable one because the
agent will have a wholesome idea of what all is happening around before taking any
action. The agent in a {ully observable environment will have a complete idea of the
world around it at all times and hence it need not maintain an internal state to
remember and store what is going around it. ¥ully observable environments are

found rarely in rezlity.

A partially observable enviromment is that in which the agent can sense some of the
aspects or features of ihe. world around it, but not all because of any number of
reasons including the limitations of its sensors. Normally, there arc greater chances of
finding a partially observable environment in reality. [nn the first example, viz., a .
boundary following rebot, which we have studicd, the agent or robot has a limited
view of the environment around il, i.e., the agent has information only aboul the eight
* cells immediately adjacent to it in respect of whether each of these is occupied or free.
_ It has no idea of how many non-moving objects are there within the room. Nor, it has
-apr idea of its distarce from the boundary wall. Also, in the second example, viz., an
automated public road transport driver, the driver or the agent has a very
" restricied idea of the environment around it. It operates in a very dynamic
environment, i.e., an environment that changes very frequently. Further, it has no idea
- of the number of vehicles and their positions on the road, the action the driver of the
vehicle ahead is expected to lake, the localion of various potholes it is going lo face in
the next one kilometer and so on. So we can see that in both of these examples, the
environmenl is partially obscrvable.

2.4.3.2 Static vs. Dynamic Environment

Static envirppment means an environment which does not change while the agent is
‘operating. [mplementing an agent in a static environment is relatively very simple, as
the agent does not have to keep track of the chanpes in the environment around if. So
the tine taken by an agenlt to perform its operations has no effect on the environment
because the environment is static. The task enviroonicat of the “beundary
following robot™ is static because no changes are possible in the environment around
it, irrespective of how long the robot might operate. Similarly, the environment of an
agent solving a crossword puzzle is static.

A dynamic environmeat on the other hand may change with time on its own or
because of the agent’s actions, Implementing an agent in a dynamic environment is
quite complex as the agent has to keep track of the changing environment around it.
The task cnvironotent of the “Automated public road (ransport driver” is an
example of a dynamic enviromment because the whole environment around the
agent keeps on changing continuously.

In cuse an environment does not change by tiscll but an agent’s performance changes
the environment, then the environment is said to be semi-dynamic.

47

[I it

ERL L IR ST

Applications of

Ardlicizl Intelllgence

48

2.4.3.3 Decterministic vs. Stochastic Environment

A deterministic environment means that the current state and the current set of
acltons performed by the agent will completely determine the next state of the agent's
environment otherwise the environment is said to be stochastic. The decision in
respect of an environment being stochastic or deterministic, is taken from the point of
view of the agent. If the environment is simple and fully observable then there are
greater chances of its being deterministic. However, if the environment is partially
observable and complex then it may be stochastic to the ageni. For example, the
boundary following robot exists in a deterministic environmen! whereas an awtomared
road transport driver agent exists in a stochaslic environment. In the later case, the
agent has no prior knowledge and also it cannot predicl the behavior of the traffic
arcund it.

2.4.3.4 Dpisodic vs. Sequential Environment

In an episodic environment, the aneot’s experience is divided inio episodes. An
agent’s actions during an episode depend only on that episode because subsequent
episodes do not depend on previous episodes. For example, an agent checking the
lickels of persons who wanl to enter the cinerna hall, works in an episodic
environment, as the process of checking the tickets of every new person is an episode
which is independent of the previous cpisode i.e., checking the ticket of the previous
person, and also the current action 1aken by the ticket checking agent does not effect
the next action to be taken in this regard. Also a robot while checking the scals on the
bottles on an assembly line, also works in an episodic environment as checking the
seal of every new bottle is a new and independent episode.

In sequential environments there are no episodes and the previous actions could
aifect the current decision or action and further, the current action could effect
the future actions or decisions. The task environment of “An automated public road
lransport driver” is an example of a sequential environment as any decision taken or
action performed by the driver 2gent may have long consequences.

Comparatively, working in an episodic environment is much simpler for an agent than
in a sequential cavironment, because, in the former case, previous actions do not
effect the current actions of the agent. Also, while taking current action, the agent
need not think of its future effects.

2.4.3.5 Single-agent vs. Multi-agent Eavironment
A single-agent environment is the simplest pessible environment as the agent is the

only active entity in (he whole environment and it does not have to synchronize with
Lhe actions or activities of any other agent. Some of the examples of 2 single-agent

.environment are boundary following robot, a crossword puzzle solving agent etc.

IF there is a possibllity of other agents also existing in addition lo Lhe agent being
described then the task environment is said to be multi-agent environment. In a
multi-agent environment, the scenario becomes quite complex as the agent has to keep
track of the behavior and the actions of the other agents also, There can be two general
scenarios, one in which all the agents are working together to achieve some common
goal, i.e., to perform a collective action. Such a lype of environment is called
cooperative multi-agent environment,

Also, it may happen that 2ll or some of the agents existinp in the enviroument are
competing with each ofher to achieve something (for example, in a lic-tac-toe game or
in a game of chess both 6f which are two agent games, each player Iries to win by

1
L]

)

il N I) i

T T TE T Lt

irying to predict the possible moves of the other agent), such an environment is called
competitive muiti-agent environment.

An important issue in 8 multi-agent environment is (0 determine whether othet
entities exisling in the environment have o be treated as passive objects or agents.
Normally, if an entity tries to optimize ils performance which have an eflect on the
agent in question then that entity is treated as an agent, but there is no fixed rule to
decide this fact. Also, another very important issuc in a mulli-agent environment is
to decide how the communication between different agents will occur.

2.4.3.6 Discrete vs. Continuons Environment

The word discrete and continucus arc related Lo the way lime is treated, i.e., whether
lime is divid~d into slots (i.e., discrete quantities) cr it is trealed as a continuous

quantity (continuous).

For cxample, the lask environment of a “boundary following robol™ or a “chess
playing agent” is a discrete environment because there are finite number of discrete
states in which an agent may find itself. On the other hand, an awtomated public
fransport driver agent’s environment is 2 continuous one, because, the actions of the
agent itself as well as the environment around it are changing continuously. In the
case of a driver agent, the values received through the sensor may be at discrete
intcrvals but generally the values are received so frequently that practically the
received values are treated as a streamn of conlinuous data.

2.4.4 Some Examples of Task Environments

(i) Planning crossword pezzle
(ii} Medical diagnosis

(iti) Playing tic-tac-toe

{iv) Playing chess

(v} Driving avromabile

2.4.4.1 Crossword Puzzle

As we have already discussed Lhe envifonment is sivgle agent and static which makes
it simple as there are no other players, i.e., agenis and the environment does not
change. But the environmient is sequential in nature, as the current decision will affect
ail the future decisions also. On the simpler sice, the environment of 2 crossword
puzzle is fielly observable as il does not require temeribering of some facts or
decisions taken carlier and also the cnvironment is deterministic as the next state of
the environmenl fully depends on the current state and the current action laken by the
agent. Time can be divided into discrete guazta between moves and so “we can say
that the environment is discrete ia nature,

2.4.2.2 Medicai Diagnosis

The first proble:n in the task snvironment of an agent performing a medical diagnosis
is to decide whether the enviromment is to be ircated as a sin;le-agent or multi-agent
one. If the other entities like the patients pr staff irambers also have to be viewed as
agents (obviously based on whether they are wying 1o muximize some performarce
measwre e.g,, Profilability) then it will be a multi-agcrr enviconment otherwise it will
be a single agent environmeat. To keep the discussion simple, iu this case, let us
choose the cnvironment as a single egent one.

Intetligent Agents

49

USRI

HERE o

Applicailons of
Artificlal Intelligence

50

We can very well perceive that the task cnvironment is partiafly ebservable as all the
facts and information needed may not be available readily and hence, need to be
remembered or retrieved. The environment is stechastic in nature, as the next state of
the environment may not be fully determined only by the current state and current
action. Diagnosing a disease is stochastic rather than delerministic.

Also the task environment is partially episedic in nature and padially sequential. The
environment is episodic because, each patient is diagnosed, irrespective of the

‘diagnoses of earlier patients. The environment is sequential, in view of the fact that

for a particular patient, earlier ireatment decisions are also taken into consideration in
deciding furiher weatment. Furthermore, the environment may be treated as
continuous as there seems to be no benefit of dividing the time in discrete slots,

2.4.4.3 Playinp Tic-tac-toe

As it is a two-player game so obviousiy the environmenlt is multi-agent. Moreover,
both the players try to maximize the:, chances of winning, so it is a competifive one.
Further, the environment is a fully observable environmetit. The environment here is
neither fully deterministic nor stochastid as the environment is deterministic except
for one fact that action of Lhe other agent is unpredictable, so the environment is
strategic. Obviously the cnvironment is semi-dynamic as the environment itself does
not change but the agents performance score does change with time. As time may be
divided into discrete slots between moves so the environment may be viewed as

- discrete, Further, the current decisions while making a move affect all the future

decisions also, therefore, the environment is sequential also.
2.4.4.4 Playing Chess

The environment of a chess-playing agent is also Lhe same as is that of an agent-
playing tic-lac-toe. It is also a iwo-player i.e., multi-agent game. Jome people treat
the environment as fully observable but actually for some of the rules require
remembering the game history so the full environment is not observable from the
cwrrent slate of the chess board. Thus, strictly speaking the environment is
partially—ohservable Further, using the same argumenis as given in case of tic-tac-
{oe, the environmant is stratepic, semi-dynamic, discrete and sequential in nature.

2.4.4.5 Auiomobile Driver Ageut

We have already discussed one subclass of a general driver agent in detaii, viz., an
automated public road transport driver~which may include a bus driver, taxi driver or
auto driver etc. A driver agent might also be christened as a crise control agent,
which may include other types of transport like v.faler transport or air transport also
with some variations in their environments,

Coming back to an automated public road transport driver, we can see that this is one
of the most complex environments discussed so far. So the environment is mulfi-
agent and partially observable as it is not possible to sec and assume what all other
agents i.e., other drivers are doing or thinking. Also the enviromnent is fully dynamic,
as it is changing all the time as the location of the agent changes and also the locations
of the other agents change. The environment is stochastic in nature as anything
unoredictable can happen, which may not be perceived exacily as a result of the
current state and the actions of varicus agents. The environment is sequential as any
decision taken by the driver might affect or change the whole future course of actions,
Also the time is continuous in nature although the sensors of the driver agent might
work 1n discrete mode.

T Tt LTI

s oanE e

‘ ll‘tell!gent Agen_u

2.5 THE STRUCTURE OF AGENTS

There are two parts of an agent or its structure:

® A (hardware) device with sensors and actuators in which that agent will reside,
called the architecture of the agent.

¢ An agent program that will convert or map the percepts in to actions.

Also, the agent program and its architecture are related in the sense thal for a different
agent architecture a different type of agent program is required and vice-versa, For
example, in case of a boundary following robot, if the robot does not have the
capability of sensing adjacent cells to the right, then the agent program for the robot
haste be changed.

Next, we discuss different categories of agents, which are differentiated from each
other on the basis of their agent programs. Capability to write efficient agent programs
is the key to the success for developing efficient rational agents. Although the table
driven approach (in which an agent acts on the basis of the se(of all possible percepts
by storing these percepls in lables) lo design agents is possible yel the approach of
developing equivalent agent programs is found much more efficient.

Next we discuss some of the general categories of agents based on their agents

Programs:
* SR (Simple Reflex) agents

T Model Based reflex agents .o
* Goal-based agents

= Utility based agents

2.5.1 Simple Reflex (SR) Agents

Thezse are the agents or machines that have no internal state (i.e., the don’t remember
anything) and simply react to the current percepls in their environments. An
interesting set of agents can be built, the behaviour of the agents in which can be
captured in the form of a srmple set of funclions of (heir sensory inputs. One of the
earliest implemented agent of this category was cailed Machina Specularrix. This
was a device with wheels, motor, photo cells and vacuum tubes and was designed to
move in the direction of light of less intensity ind was designed to avoid the direction
of the bright light. A boundary foilowing robot iz aise an SR agent. For an
autorhabile-driving agent also, some aspects of its behavior like applving brakes
immediately on observing either (he vehicle immediate ly ahead applying brakes or a,
human being coming just in front of the automobile suddenly, show the simple reflex
capability of the agent. Such a simple eflex action in the agent progra, ofthe agent
can be implemented with the help of simple condition-action rules.)

For example: IF a human being comes in front of the au(amob{'le}udden&
THEN apply breaks immediately.

Although implementation of SR agenis is simp!c yet on the negative site this typeof
agents have very limited intelligence because ey do mot store or remember
anything. As z censequence they cannot make use of any previous. expefietice. [n
suramary, they dc not leam. Also they are capable of eperating carrectly on!v if the
cnvlronment is fully observablec. - o

51

TYTITITRITT O

- Applicatians of
Artificlal Intelligence

The current
state of the

TR R B TE

ondition
ction Rules

Figure 2.1: SR (Simple Reflex) Agent
2.5.2 Model Based Reflex agents

Simple Reflex agents are not capable of handling task environments that are not fully
observable. In order to handle such environments properly, in addition to reflex
capabilities, the agent should, maintain some sort of internal state in the form of 2
fonction of the sequence of percepts recovered up to the time of action by the agent. i
Using the percept sequence, the internal sizte is determined in such a manner that it ;
reflects some of the aspects of the unobservable environment. Further, in order to '
rcflect properly the unobserved environment, the agent is expected to have a model of -
the task environment encoded in the agent’s program, where the model has the :
knowledge about—

(i) the process by which the task environment evolves independent of the agent and
(i1) effects of the actions of the agent have on the environment.

Thus, in order to handle properly the partial abservability of the environment, the
agent should have a model of the task enviroriment in addition to reflex capabilities.
Such agents are called Model-based Reflex Agents. :

Eas T]

52

Intelligent Apents

Pe:cepts

B

VT

The current
state of e

The affect of
agent’s aclions

evoludon of the
world of the ageni

Tigare 2.4: A Modcl based Relfex agent

2.5.3 Goai Based Agents

It order to design: appropriate agent for a particular type of task, we know the nature
of the task environnient piays an important role. Also, it is desirable that the .
complexity of the agent should be minimum aud just sufiicicnt to handle the task in a :
particular environment. In this regard, first we discusseed the simplest type oi zgents,
viz., Simple Reflex Agenis. The aclion of this typc = agent is decided by the current
precept only. Nexl, we discussed the Model-Based Reilex Agents, for which an actioi: b
is decided by taking inlo consideration net ouly the latest precept, but the wholc

precept history summarized in the form of int-ma! stzte. Also, action for this type of

agent is also decided by taking into considerziior. the knowledge of the task ;
environment, represenied by a modef of the enviraiiment and encoded into the agent’s .
program. However, in respect of a number of tasks, aven this much Fnowledge may

noi be sufficient for appropriate action. For example, when we are going from city A

to city B, in order to take appropriate action, it is not enough to know the summary of

actions and path which has taken us to some city C between A and B. We also have 10

remember the goal of reaching to city B.

Goal based agents are driven by the goal they want (o achieve, i.e., their aclions are
based om the information regarding their goal, in addition to, of course, other
information in the current state. This goal information is #iso a part of the cusrent
state description and it describes everything that is Jesirable lo achieve (he goal. As
mentioned earlier, an example of a goal-based agent i5 an agent that is required to find
the path to reach a city. [n such a case, if the agent is ani ai:lomobile driver agent, and
if the road is splitting ahvod into two roads then the agent has {o decide which way 10
g io achieve its goal of reaching ils destination. Further, if there is a crossing ahead
then the agent has to decide, whether to go straigh, to go to the left cor to gu lo the :
night. In order o achieve its gual. the agenl sieeds some information r2garding the goal
which describes the desirable evenis and siluntions @ reach the goal. The a:-cnt '

ERCTT I

Ly
[

Applications of
Artificial Intellipence ,

54

programt would then use s goal information lo decide the set of actions to lake in
order 10 reach ils goul.

Another desirable capability winch a good goal based ageni should have is that ifan
agent finds that a part of the sequence of the previous sieps has laken the agent away
from its goal twen it should be able to retract and start its actions from a point which
may take the agent toward the goal.

In order io take appropriate action, decision-making process in geal-based agents may
be simiple or quite complex depending on the problern. Also, the decision-making
required by the agents of this kind needs some sort of looking into the future., For
example, it may analyze the possible outcome of a particular action before i1 actually
performs thal action. In other words, we can say Lhat the agent wonld perform sonte
sort of reasoring of if-then-else type, ¢.g., an automobile driver agent having one of
its guals as not to hit any vehicle in front of it, when {inds the vehicle immediately
ahcad of il slowing down may not anply brakes with full force and in siead may apply
brakes slovly so that the vehicles following it may not Lit jt.

As the goal-based agents may have to reason before they take an aclion, these
agents might be slower than other types of agents but will be more flexible in taking
actions as their decisions are based on the acquired knowledge which can be modified
also. Hence, as compared to SR apgents which may require rewriling of all the
condition-action rules in case of change in the environment, the goal-based ages'ts can
adapt casily when there is any change in its goal.

"

The currend
siate of the

The =ffect of
aeenl’s nclions

. The new stats
afer the
aclion

Hules about
the osolution
af the worid of
the aoent

Goals to be
achiceved

Figure 2.5: A Goal bascd agent

2.54 Utility Dased Agenis

Goal based agent’s success or failure is judged in terms of its capability for
achieving or nat achieving its gogl. A goal-based agent. for a given pair of

ATITTTTTITTST T

IR

R

environinent slate and possible input, only knows whether the pair will lead 10 the
goal state or not. Such an agent will not be able 1o decide in which direction to
proceed when there are more than one conflicting goals. Also, in a goal-based apent,
there is no concepl of partial success or somewhat salisfactory success. Further, if’
there arc more than one methods of achieving a goal, then no mechanism is
incorporated in a Goal-based agent of choosing or finding the method which is faster
and more efficient one, out of the available ones, to reach its goal.

A more general way to judge the success or happiness of an agent may be, through
assigning to cach state a number as an approximate measure of ils success in reaching
the goal [rom the slate, In case, the agent is embedded with such a capability of
assigning such numbers to states, then il can choovse, out of the reachable states in the
next move, the state with the highest assigned number, out of the numbers assigned to
various reachable states, indicating possibly the best chance of reaching the goal.

It will-altow the goal to be achicved more efficiently. Such an agent will be more
useful, i.e. will have more utility. A utility-based agent uses a utility function, which
maps caeh of the world states of the agent to some degree of success, IT it is possible
to define the utility function accuratcly, then the agent will be able to reach the goal
quite efficiently. Also, a utilily-based agent is able to make decisions in case of°
conflicting gonls, gencrally choosing the goal with higher success rating or value,
Further, in environments with multiple goals, 1he ulility-based agent quite likely
chooses the goal with least cost or higher ulility goal cut of multiple goals.

The affect ol
actlons

= T AL The new state
3 AT R
ad -'“"j%?fh i consegueny

How the world e E upor an uclion
[evolves e s R
i B . -t et =
¥eiid independently E :,
- The degree o : : R
success ELET Y
achieved Tl desirabls
consequent N\ Action
upon an
action =
L
.r_ "
ol Action
) -" M
15

Fignre 2.6: A thility based agznt

2.5.5 Learning Asents

It is nol possible to encode all the knowledge in advance, required by a rational agent
for optimal pecformance during its lifctime, This 15 spesially true oi 1he real life, and

Intellizent Agents

reTYTTIITTTTTT O

At s—m - -

T p—— e o

Applications of

Artificial Intelligence

56

not just theoretical, environments. These environmenls are dynamic in the sense that
the environunental conditions chanpe, not only due to the actions of the agents under
considerations, but due to other envirommenial factors also. For example, all of a
sudden a pedesirian comes just in front of the moving vehicle, even when there is
green signal [or the vehicle. In a mulli-agent environment, all the possible decisions
and actions an agent is required to lake, are generally unpredictable in view of the
decisions taken and actions performed simultaneously by other agents. Hence, the
ability of an agent to succeed in an uncertain and unknown environment depends
on ils Iearning capabilily i.c., its capability 1o change approximately its knowledge
of the environment. For an agenl with learning capability, some initial knowledge is
coded in the agent program and after the agent slarts operaling, it learns from its
actions thz evolving environment, the actions ol its competitors or adversaries elc. so
as to improve s performance in ever-changing environment. If approximate leaming
componeit is incorporated in the agent. then the knowledge of the agent gradually
tncreases after each action starting from its initial knowledge which was manually
coded into it at the slart.

Conceptually the learning agent consisis of lour components:

i) Learning Componeni: It is the componcnt of the agent, which on the basis of the
P
percepts and the feedback from the environment, gradually improves Lhe
performance of the agent.

(ii} Performance Component: Il is the component from which all actions originale on
the basis of external percepts and the knowledge provided by U learning
component. b

The design of learning componcent and the design of performance element are
very mach refated to each other because a leaming component is of no use unless
the performance component can be desigred (o convert the newly acquired knowledge
into betler useful actions.

{iii} Critic Component: This component finds oul how well the agent is doing with
respect lo a cerlain fixed performance standard and it is also responsible for any
future miodificalions in the performance component. The critic is necessary to
Judge the agent’s success with respect to the chosen performance standard,
specially in ¢ dynaniic environment. For_example, in order to check whether a
certain job is accomplished, the critic will not depend on external percepts only
but it will also compzre Lhe current slzle to the state, which indicates the
completion of that task,

(iv) Problem Generator Component: This component is responsible for suggesting
actions (some of which may not be optimal) in order to gain some fresh and
innovative experiences, Thus, this component allows the agent to experiment a
little by traversing sometimes uncharted lerritories by choosing some new and
suboptimal actions. This may be useful, because the aclions which may seem
suboptimal in a short run, may turn out to be much better in the long run,

In the case of an auromobile driver agent, this agentwould be of litile use if it does
not have learning capability, as the environment in which it has to operate is totally
dynamic and unprediciable in natere. Onee the automobile driver agent starts
operating, it keeps on learning from its experiences, both positive and ncgative, If
faced with a totally new and previously unknown situalion, e.g., encountering a
vehicle cominrg front the opposite direction on a one-way road, the problem generalor
compotient of the driver ageni mighl suggest some innovative action to tackle this new
siluation. Moreover, the leaming becomes imore difficult in the case of an automobile
driver agend, because the environment is only partially obscrvable,

IR O

L

TN

e B nae e S B L L R

Fixed Performance Siandard _ . Inteltigent Agenis

Performance

Learning [R 'r _Flement
Component S

Problem
Geaerator
Componrent

Figure 2.7: A Learning agent

2.6 Different Forms of Learning in Agents

The purpose of embedding leaming capability in an agent is that it should not depend
totally on the knowledge iritially encoded in it and on !he external percepts for its
actions. The agent learns by evaluating its own decisions and/or making obscrvations
of new siluations it encounters in the cver-changing eivironment.

There may be various criteria for developing learring izxonomies. The criteria may be
based on -

The type of knowledge leamnt, e.g., concepls, probtem-solving or game playing,
o The type of representation used, e.g., predicate cafculus, rules or frames,
The area of application, e.g., medical diagnosis, scheduling or prediction.

We mention below another classification, which is independent of the representation
method and knowledge -representation used. Under this classification scheme, there
are five leaming methods: N
() Rote learning or memorization

(i1) Learning through instruction

(i) Lcaming by analogy

(iv) Learning by induction and

(v} Learning by deductinn.

Rote learning is the simptasi form of [earning, which involves least amount of
inferencing. In this form of learning, the knowicdge is simply copied in the knowledge

base. This is the leamning, which is involved in memorizing multipiication tables, 57

ORI e T

TR —rgre -

Apfnlicaiium of

Artificial intelligence

38

Next type of learning is learning through instruction. This type of learning involves
more inferencing because the knowledge in order to be operational should be
inteprated in the existing knowledge base. This is the type of learning that is invelved
in the learning of a pupil from a teacher.

Learning by analogy involves development of new concepts through already known
similar concepts. This type of learning is commonly adopted in textbooks, where
some example problems are solved in the lext and then exercises based on these
solved examples are given to students lo solve. Also, this type of leaming is involved
when, on the basis of experience of driving light vehicles, one atternpts to drive heavy
vehicles.

Learning by induction is the most frequently used form of leaming employed by
hwian being. This is a form of learing which involves inductive reasoning — a form
of reasoning under which a conclusion is drawn on the basis of a large number of
positive 2zxamples. For example, after sceing a large number of cows, we conclude a
cos has four leps, white colour, two homs symmeirically placed on the head etc.
Inductive reasoning, though usually leads to correct conclusions, yet the conclusions
may not be irrefutable.

For instance, in the case of the concept of cow as discussed above, we may find a
black cow, or we may find a three-legged cow who has lost one leg in an accident or 2
single-horn cow’!

Finally, we discuss deductive learning, which is based on deduciive inference — an
irrefutable form of reasoning. By irrefutable form of reasoning ‘we mean that the
conclusion arrived at through deductive (i.e., any irrefutable) reaconing process is
always correct, if the hypotheses (or given facts) are correct. This is the form of
reasoning which is dominantly applied in Mathematics.

[nductive learning occupics an important place in designing the leaming component of
an agent. The leaming in an agent is based on—

e The subject matter of learning, e.g., concepts, problem-solving or game playing
o (o

e The representation used, predicate calculus, frame or script ete.

o Thr aiitic, which gives the feedback about the overall health of the agent.

1 earning pased on feedback is normally cat€porized as:
e Supervised leaming

« Unsupervised leaming

=« Reinforcement Leamning.

Supervised Learning: It involves a [earning finction from the given examples of its
inputs and outputs. Some of the exaniples of this (ype of leamning are:

s Generating useful properties of the world around from the percepts
e Mapping from conditions regarding the current state (o actions
+ Gatheving information about the way world cvolves.

Unsuper+ised Learning: In this type of leaming, the pair of inputs and corresponding
expecied outputs are not available. Hence, the leaming system, on its own, has to find
rejevant properties from the otherwise unknown objects. For example, finding shortest
path, without any prior knowledge, between two cities in a totally unknown country.

ST TTTITT)l e

Reinforcement (Rewards) Learning: fn many problems, the task or the problem is
only realized, but cannot be stated. Further, the task may be an ongoing one. The user
expresses his or her satisfaction or dissatisfaction regarding the performance of the
agent by occasionally giving the agent positive or negative rewards (i.e.,
reinforcements). The job of the agent is io maximize the amount of reward { i.e.,
reinforcement) it receives. In chse of a simple goal achieving problem, the agent can
be rewarded positively when it achieves the goal and punished every Lime it fails to do

50.

In this kind of task environment, an action policy is needed to maximize reward. But
sometinies in case of ongoing and non-terntinating tusks the future reward might be
infinite, so it is difficult to decide how 1o maximize il. In such a scenario, a method of
progressing ahead is to discount Future rewards beyond a certain factor. i.e., the agent
may prefer rewards in the immediate future to those in the distant future.

Leaming action policies in environments in which rewards depend on a sequence of
carlier actions is called delayed-reinforcemsent learning.

2.7 SUMMARY

In this unit, the concept of ‘Intelligent Agent’ is introduced and further various issues
aboul intelligent agents are discussed. Some definitions in (his context are given in
section 2.2. The next section discusses the concept of rationality in context of agents.
Section 2.4 discusses various types of task environments for agents. Next section
discusses structure of an agent. Finally, section 2.6 discusses various forms of learning

in an agent.

2.8 SCGLUTIONS/ANSWERS

-,

_Ex.1) ForL,

The left upper cell is unoccupied, thérefore, C,=0, C.=0=C;=C; and C¢=0
However, as Cs, Cs and C; do not exist hence are assumed to be occupied.
Thus, the sense-vector is (0,0,0,0,1, 1,1, D)

¥or 1;
C|=1=C|; and C2=C3=C4=C5=C5=C1=0
Thus, the sénse-vector is (1, 0,0,0,4, 8,0, 1)

2.9 FURTHER READING

1. Russell 8. & Norvig P, Artificial Intelligence: A Modern Approach (Second
Edition), (Paarson Educabion,-2003). :

Intelligent Agents

.59

it

T T - f

IR

