T TH [SICRE k!

oM ARSHI TANDON
oy Org
o de U.P. Govt 4
\deU- : OV-ACtN ¢,
QQ} \,\5“36 ! > 10-' of 4//11(‘
«V% &6\3‘0 799 ‘9/ 'pd}]
S 7%
I
G
©
Indira Gandhi National Open University UP Rajarshi Tandon Open University
BCA-08
Introduction to Database
Management Systems
FIRSTBLOCK : Introductory Concepts of Data Base

Management Systems

SECONDBLOCK : RDBMSand DDBMS

THIRDBLOCK : Emerging Trends in Database
Management Systems

Shantipuram (Sector-F), Phaphamau, Allahabad - 211013

BCA-08

Uitar Pradesh

TR T i R_aiarshiTandon Open University Introduction ¥
Database Management
System

Block

1

INTRODUCTORY CONCEPTS OF DATA BASE
MANAGEMENT SYSTEMS _

UNIT 1

Basic Concepts 5
UNIT 2

Database Models and Its Implementations 20

UNIT 3

File Organisation For Conventional DBMS 43
UNIT4

Management Considerations .80

UNITS

Enterprises Wide Information System of the Times .
of India Group (A Case Study) 2

COURSE INTRODUCTION

Database management systems have become an esscntial part of a computer
scicnee education. This course provides a clear description of the concepts
underlying different database models. Tt introduces issues related to
implementation of conventional database modcls.
" cmerging trends in DBMS.

‘The important topics covered in this course are as follows:

Entity-relationship Model

Hierarchical

Network Model

Relational Model

File organization of Conventional DBMS

-Evaluation and Administration of DBMS

Nommalisations

- 8QL

Distributed DBMS-
Object-oriented DBMS

* Client/Server DBMS

Knowledge DBMS

This course contains 3 blocks.

It also describes

BLOCK INTRODUCTION

Being an inlroductory block of this course, it describes basic concepts related 10 all
conventional DBMS modcls. It inroduces E-R model which is used for logical database
design. Iralso takes up the implementation of all the conventional database models. The
focal point of this block is the file organisation for conventional DBMS. It also considers
evaluation and administration of DBMS. Finally it is prescnted with a case'Stuay.

UNIT 1 BASIC CONCEPTS

Structure

1.0 Introduction
L1 Objectives
- 1.2 Traditional File Oriented Approach
1.3 Motivation for Database Approach
1.4 Database Basics .
1.5 Three views of data .
1.6 The Three level Architecture of Data Basc Management System
16.1 Extemnal level or Subschema
1.6.2 Cenceptual level or Conceptuat Schema
1.63 Inicrnal level or Phycgcal Schema
1.64 Mapping between Different Levels
1.7 Dalabase Management Sysiem Facilities
17.1 Data Definition language
[.72 Daia Manipulation language
1.8 Elements of a Dalabase Management System
1.8.1 DMLPrecompiler '
. 1.82 DDL Compiler
1.8.3 File Mannger
1.8.4 Databasc Manager
1.85 QueryProcesror
L85 Datnbase Administrter
1.8.7 Data Dictionary
1.9 Advantages and Disadvantages of Database Management System
1.9.1 Advantages
1.9.2 Dhsadvantsges
1.10 Summary
1.11 Model Answers
1.12 Further Readings

1.0 INTRODUCTION

A dalabase is a colleclion of related information stored so that it is available 1o many users
for different purposes. The corntent of a database is obtained by combining data from all the
different sources in an organisation. So that data are available to all users and redundant data
can be ¢liminated or atlcast minimised. A computer database gives us some elcctronic filmg
system which has a large numbier of ways of cross-referencing and this allows the nser many
diffcrent ways in which to reorganise and retrieve data, A database can handle businéss
inventory, accounting and filing and use the information in its files lo prepare summaries,
estimates and other reports. There can be a database which stores new paper articles,
magazings, books and comics. There is already a well-defined market for specilic
information for highly selected group of users on almost all subjects. MEDLINE is &
well-known dawbase service providing medical information for doctors and similarly

WESTLAW is g computer based information service catering to the requircments of lawyers,

The key to making all this possible is the manner in whiclf'the information in the database is
managed. The management of dala in a database system is done by means of a gencral
purpose software packape called a databasc management system., The database management
system is the major software component of a database sysiem. Some commercially available
DBMS are INGRES, ORACLE, Sybasc. A database management system, therefore, is a
combination of hardware and software that can be nsed to set up and monitor a
database, and can manage the updating and retrieval of database that has been stored
in it. Most databasc management sysiems have the following I acilities/capabilitics;

(a) Creating of a file, addition to data, delction of data, modification of data; creation,
addition and deletion of entin: files, . :

(t) Retrieving data collectively or selectively.
(¢) The data stored can be sorted or indexed at the user’s discretion and directicn,

() Various reports can be.produced from the system. These may be cither standardised
rcport or that may be specifically generated according to specific user delinilion.

1 et o T T

Introductary Corfcepls of
Data Base Management Sysicm

(¢) Mathematical furclions can be performed and the data stored in the database can be
manipulated with these functions to perform the desired calculations.

(f) To maintain data integrity and database use,

The DBMS interpreis and processes users’ requests Lo retricve information from a database.
The following figure shows Lhat a DBMS serves as an interface in several forms. They may
be keyed directly from a terminal, or coded as high-level language programs to be submitted
for interactive or batch processing. In most cases, a query request will have to penemrate
several layers of software in the DBMS and operating sysiem before the physical database
can be accessed. .

Queries ’

COBOL/PL/L
Fortran

Opcrating :
DBMS *—il Data
system _ Base

Flgure 1 : The DBMS a3 un Interface betvreen physical Datsbuse und Users® requests

The DBMS responds 10 a query by invoking the appropriate subprograms, each of which
performs its special function to interpret the query, or to locate the desired data in the
daiabase and present it in the desired order. Thus, the DBMS shields database users from the
tedious programming they would have to do to organise data for storage, Of to pain access o
it once it was stored,

As already mentioned, a database consists of a group of related files of differcnt record types,
and the DBMS allows users to access data anywhere in the database without the knowledge
of how data are actually organised on the storage device. .

The role of the DBMS as an inl):nnediaw between the users and ihe database is very much

. like the function of a salesperson in a consumers’ distributor system. A consuroer specifies

desired items by Filling out an arder form which is submitted o a'salesperson at the counter.
The salesperson presents the specified items to consumer after they have been retrieved from
the storage room. Consumers who place orders have no idea of where aad how the items sre
stored; they simply select the desired items from an alphabetical list jn a catlogue, However,
the logical order of goods ih the cataloguc bears no relationship to the actual physical = |
arrangement of the invenlory in the storage room. Similarly, the database user-needs to know
only what date he or she requires; the DBMS will take care of retrigving it, -

In this unit we will introduce basic concepis of DBMS,

1.1 OBJECTIVES.

Afler going through this unit, you should be able to
e appreciate the limitations of the traditional approacn to application sysiem

dc_fclopn:lent:
e give reasons why the database approach is now being increasingly adoplect: ’
e discuss different views of data;
® list the components of a dalzbase management sysiem:
o enumerate the feature/capabililies of a dalabase management system; and
- » listseveral advdiitages and disadvant;agcs of DBMS,

1 2 TRADITIONAL FILE ORIENTED APPROACH

The traditional ﬁle—une.med approach to information processing has for each apphcatlon &
separate master file and its own set of personal files, Yoo have seen examples of these in the
earlier course on COBOL where various examples such as of payrol), inventory and firaricial

. accounting have been described at various Ievel, An organisation needs flow of information

across these applications also and this requires sharing of data, which is significantly lanlung
in the traditional approach. One major limitations of such a file-based approach is that the
‘programs become dependemon the files and the ﬁlw become dependent upon the programs.

Although such ﬁ.le-based approaches which came mto being with the first commercisl
applications of computers did provide an increased efficiency in the data processing

" compared 1o earlier mgnual paper record-based systems as the demand for efficiency and

speed increased, the computer-based simple file-oriented approach to information processing
started suffering from the following significant disadvantages :

(1) Data Redundsncy : The same piece of information miay be stored in two or more fites.
For example, the particulars of an individual who may be a customer or an employee
may be stored in iwo or more files. Some of these information may be changing, such as
the address, the pay drawn, etc. It is therefore quite possible that while the address in the
master file for one application has been updated the address in the master file for arother
application may have not been. It may not also be easy for the computer-based system to

- even find out as to in how many files the repeating items such as the address is
occurring. The solution therefore is to avoid this data redundancy and the keeping of
multiple copies of the same information and replace it by a system where the address is
stored at just onefplace physically, and is accessible to all applications from this jtsel.

(2) Program/Data Dependency : In the waditional approach if a data ficld is to be added to
a master file, all such programs that access the master file would have to be changed to
allow for this new field which would have been added o the master record,

(3) Lack of Flexibility : In view of the strong conpling between the program and the data,

most information retrieval possibilities would be limited to well-anticipated and pre-
determined requests for data, the system would normally be capable of producing
scheduled records and queries which it has been programmed to create. In the fast
moving and competent business environment of woday, apart from such regularly
scheduled records, there is a need for responding to un-anticipatory queries and some
kind of investigative analysis which could not have been envisaged professionally,
These disadvantages of file based system molivates a database approach. wh.lch will be
taken at the next section.

1.3 MOTIVATION FOR DATABASE APPROACH

Having pointed out some difficultics that arise in a straight forward file-oriented approach
towards information system development, it is useful to see how the problems stated above
can be mitigated by using the database approach.

The preceding discussion may have led you to believe that the raditional file oriented
approach o data processing was entirely wrong and that all new and the correct mogern
approach to data processing should only be through databases. This is not entirely true. With

- the large scale availability of personal computers and greater with power being available on

the deskiops, simple file management systems such as the kind briefly referred to in section
1.2 may be quite appropriate. In fact only large scale organisaiions involved in
manufacturing and business or public utility services such as hospitals, hotels, government
depantments, etc. would be in a position to rely into the database approach. Some of the
reasons why every organisation may not be able to successfully edopt the database approach
are : . .

(1) The work in the organisation may not requiré significantsharing of data or complex
access. In other words the data and Lhe way it is used in the functioning of the
organisaticn is not appropriale to database processing.

(2) Apart from needing a more powerful hardware platform, the software for database
management systems are also quite expensive. This means that a Significant extra cost
has to be incurred by an organisation if it-wanls 1o adopl this approach.

Bus onc

=t —

P et

Inmroductary Concepis of
Data Buse Manogement System

(3) The advantages gained by the possibility of sharing of the data with others; also carries
with it the risk of the daia being unauthorisedly accessed. This may range from violation
of office procedures Lo violation of privacy rights of information to down right thefts.
The organisations, therefore, have to be ready to cope with additional managerial
problems. -

(4) A database management processing syslem is complex and it could lead to a more
inefficicnt sysiem than the cquivalent file-based one.

(5) The siaff availablc for the organisation may not be experienced enough to cope with.
The wraining of personne] in the management in use of a database takes time, is
cxpensive and requires special attention.

(6) The usc of the databasc and its possibility ofbeing shared will, therefore affect many
departments within the organisation. If the integrity of the data is not maintained, it is
possible that onc relevant picce of data could have been used by many programs in

.different applications by different users without they are being aware of it The impact of
this, therefore may be very widespread. Since data can be input from a variely sources,
the control over the quality of data become very diflicult to implement. :

However, for most large organisations, the difficulties in moving over to a database approach
arc sull worth getting over in view of the advantages that are gaincd, namely, avoidance of
data duplication, sharing of data by different,programs, greater flexibility and data
independence. The advantages and disadvantages of DBMS will be discussed in detail in
section 1.9, r

!

1.4 DATABASE BASICS - -

You have seen in the previous scetion the purposes for which a DEMS approach is preferred
over the conventional approach. Since the DBMS of an organisation will in some sense
reflect the nawre of activities in the organisalion, some familiarity with the basic concepts,
principles and terms used in the ficld are impqriant.

The previous courses on Computer fundamentals, software and programming languages have
already given you 2n awareness of the cssenlial ingredients of computer-based information
systems, This section concentrates on those matters ' which are relevant in the context of a

databasc approach. - S

Data-items: The tenm data item is the word for what has traditionally been called the field in
data processing and is the smallest unit of data that has ineaning 1o its users, The phrase daia .
element or elementary item is also sometimes used. Although the data item may be treated as
a molecule of the database, dala ilems arz grouped together 1o form aggregates described by -
various names. For example, the data recured & Tised to refer to a group of data items and a
program usually reads or writes the whele records, The data items conld occasionally be
{urther broken down into what may be called anawtomatic level for processing purposes. For -
cxample, a data item such as a date-would be a composite value comprising the day, date and
year. But for doing date arithmetic these may have to. be first separated before the

calculations are performed. Similarly an identification nurhber may be & data item but it may
contain further information embedded in it. Fdg, example, the IGNOU uses a 9 digit
enrollment number. The first 2 digits of these'imumber reflect the year of admission, the next

2 digits refer to the Regional Centre where the student hs first opted for admission, the next
4 digils are simple sequence numbers and the last digit is a check digit. For purposes of
processing, it may sometimes be necessary to split the data item. :

. Standardisation of data items can become a faitly serioug problem in a large corporate with

several divisions or plans. Each such unit tends 1o have ifs own ways of referring (o the data
items related to personel accounting, engineering,, sales, production, purchase activities, etc,
It would be exiremely desirable if at the slage of adopting the database approach a
commitment from the top management is acquire:d for prospective standardisation across the
enterprise for schemas of the data items, ’

Entities and Attributes: The real world which is being ,a_uempnfd&; markel on to the
database would consist of occasionally a tangible objéet such as an employee, a component

In an inventory or a space or it may be i taﬁEif:k: such as aevent, a job description,
identification numbers t construct. Afl such items about which rclevani
informatign in the database are called Entities. The qualities of the entity which we .

store as information are called the attributes, An armibiye may be expressed as a number or Basic Concepts
as a text. It may even be a scanned picture, a sound sequence, a moving picture which is now '
possible in some visual and multi-media databases,

Dala processing normally concems itsclf with a collection of similar entities ang records

information abou the same aributes of cach of them. I the traditional approach, a

programmer usually maintains a record about each entify and a data item in each record .

relates to each attribute. Similar records are grouped irfto files and such a 2-dimensional |
array is sometimes refered 10 as a flat file. '

Logical and Physical Data : One of the key features of the database approach is to bring
aboul a distinction between the logical and the physical struchures of the data. The term
Jogical structure refers to the way the programmers sce it and the physical structure refers to
the way data are actually recorded on the storage medium. Even in the carly stages of records
stored on tape, the length of the inter-record tape requires that many logical records be
grouped into one physical record to several storage places on tape. It was the soltware which
scparated them when used in an application program and combined them again before
wriling back on tape. In today's system the complexities are even greater and as will be seen
when one is referring to distributed databases that some records may physically be located at

significantly remote places, .

Schema and Subschema: Having seen that the database does not focus on the logical
organisation and decouples it from the physical representation of daua, it is useful 10 have a
term to describe the logical database description, A schéma is a logical database description
and is drawn as a chart of the types of data that are used. It gives the names of the énrities -
and atributes and specify the relationships between them. It is a framework into which the
values of the data item can be fitted. Like an information display system such as that giving
arrival and departure time at airports and raflway slations, the schema will remain the same
though the values displayed in the system will change from time to time. The relationships
that has specified between the diflerent entities occurring in the schema may be a one to ane,
one 1o many, many 1o many or conditional.

‘The term schema is used to mean an overall chart of all the data item types and record-types
stored in a database. The term subschema refers to the same view but for the data-ilem types
and record types which are used in a particular application or by a particular user. Therefore,
many different subschemas can bederived from one schema. A simple analysis to distingnish
between the schema and the sub schema may be that if the schema represented a road map of
Delhi showing major historical sites, educational institetions, railway stations, roadway
stations and airports, a subschema could be a similar map showing one route each from the
railway station or the airport to the IGNOU campus at Maidan Garhi.

Data Dictionary : It holds detailed information about the different siructures and data types :
the details of the logical structure that are mapped into the dillerent structure, details of
relationship between data items, details of all users privileges and access rights, performance
of resource with details.

The last two items discussed in this section will be further elaborated in the subsequent
seclions,)

1.5 THREE VIEWS OF DATA

.DBMS isa collection of inlerrelated files and a sct of programs that allow several users to
access and modify these files. A major purpose of a database system is (o provide users with
an abstract view of the data. That is, the system hides certain details of how the data is stored
and maintained. However, in order for the system to be usable, data must be retrieved
efficiently,

The concem [or efficiently leads w the design of complex data structure for the
l'fcpresemaLion of data in the database. Howcver since database sysicms are often used by non
computer professionals, this complexily must be hidden from database systetn users. This is
done by defining levels of abstract as which the database may be viewed, there are logical
view or external, conceptual view and internal view or physical view.

External vie\;v : This is the highest Ievel of abstraction as seen by a user. This level of
: atllsuabl.ion describes only the pari of entire database,

s B ey ¢

_ :;_‘:_“."_:ﬁfww;:; tem Conceptual view : This is the next higher level of abstraction Which is the sum total of

_ AnageTent Sy user’s views. This level describes what data are actually storedin the database, This level
containg information about entire database in terms of a small number of relatively simple
struciure,

Internal level : This is the lowest level of abstraction at which one describes how the data

are physically stored. The interrelationship of any three levels of abstraction is itlustmated in -

figure 2.

Customer name

b Customer nemo "
Customer address

Customer Soc_Sec_No
. Logical record 1 Customer address.

™ . —
Customer annual salary -

»
Logica! view) ' ". Logical record 2

User 1 - User2

Customer name; string
Customer Social Security number: key
Customer address: string :
Customer skill; string :
|_Customer annual salary: integer
. Conceptual record

Conceptuel view

DBA -

L
Name: string length 25 offset 0
Soc_Sec_No: 9 dec offset 25 unique

Internal view - Cuslomc; Department: string length 6 offset 34
f::‘;’m. Address: string length 51 offset 40
120 | Skill: string-length 20 vffset 91

Salary: 9, 2 dec offset 111

Internal record
) Figure 2: The three'vlews ol data
To illustrate the distinction among different views of data, it can be compared with llh_q
concept of data types in programminglanguages, Mest-high level programming language
such as C, Pascal, COBOL, etc. support the notion of a record or structure type. For example
in the “C’ langnage we declare structure (record) as follows:)

struct Customer [
char name [15];
char address [30];
o .

. This defines a new record called customerith 2 fields. Each field has a naine and daia type
associated with it. :
In a banking organisation, we may have several such record typi_:s, 'i.ncluding among others :

e sccount with ficlds Aumber and balance ' ‘

¢ employee with ficlds name and salary
10 i

»

At the intemal level, a customer, account or employee can be described as a sequence of
conseculive bytes. At the conceplual level each such record is described by a type definition,
illystrated above and also the interrelation among these record types is defined. Finally at the
external level, ve define several views of the database. For example, for preparing the
payroll checks of bank employces only information about them is required, one docs nat -
need to access information about customer accounts, Similarly, tellers can access only
account information. They cannot access information concesming salaries of employees.

1.6 THE THREE LEVEL ARCHITECTURE OF DBMé

In the previous seclion we defined three levels of abstraction at which the database may be
viewed. A database management system that provides these three levels of data is said (o
follow three-level architecture as shown in figure 3. These three levels are the extemnal level,
the concepal level and the intermal level, @ .

External, . *| View View eanrarraml View
‘Level 7 User1) User.2 . Yl UserN

* Mapping supplied by DBMS

Conceptual . : -

Level = Conceptual view
Mapping supplicd by ' DBMS/OS

in;:glal Internal view -

Flgure 3: The three level architecture for a DBEMS

The view at each of these levels is described by a schema. A schema as mentioned carlier is
an outline or a plan that describes the records and relationships existing in the view. The
-schema also describes the way in which entitics at one level of abstraction can be mapped to
the next level. The overall design of the database is called the database schema. A database
schema includes such'informationas; ©)

e characteristics of data items such as entities and atrributes
‘e logical structure and relationship among those data jlems
o format for storage representation
. ® inteérily parameters such as physically anthorisation and backt;in politics.

The concept of a database schema corresponds to programming language notion of type
definitjon. A variable of a given type has-a-particular value at a given instant in time. The
concept of the value of a variable in Programming languages cormresponds mhe concept of
an instance of a database schema. -

Since each view is defined by a schema, there exists several schema in the databasc and
Lhese exists several schema in the database and these schema are partitioned following three
levels of data abstraction or views. Al the lower level we have the physical schema,at the
intermediate level we have the conceptual schema, while at the higher Ievel we have a
subschema. In general, database system supports one physical schema, one conceptual
schema and several sybschema. ' : s

Basic Concepts

1

introductory Concepts of
Dutn Buse Manogement System

12 -

1.6.1 External Level or Subschema

The extemal level is at the highest level of database absiraction where only those portions of
the databasc of concern 10 2 nser or application program are included. Any number of uscr
views (some of which may be identical) may cxist for a given global or conceptual view.

Each extemal view is described by means of a schema called an external schema or
subschema, The exiemal scheraa consists of the definition of the logical records and the
relationships in the external view. The external schema also contains the method of deriving
the objecls in the extemal view from the objects in the conceptual view. The objects includes
entities, auributes, and relationships, "

1;6.2. Congefltual'Level or Conceptual Schema -

At this level of database abstraction all the database entities and the relationships among
them are included. One conceptual view represents the entire database. This conceptual view.
is defined by the conceptual schema. It describes all the records and relationships included in
the concepmal view and, therefore, in the database. There is only one conceptual schema per
database. This schema also contains the method of deriving the objects in the conceptual
view from the objects in the intemnal view,

The ﬂescriplion of data at this Ievel is in a format independent of its physical representation.
It also includes features that specify the checks 1o retain data consistency and integrity,

1.6.3 Internal Level or Physical Schema

We find this view at the lowest Jevel of abstraction, closest 1o the physical storage method
used. It indicates how the data will be stored and describes the data structures and access
methods to be used by the database. The intemal view is expressed by the internal schema,
which contains the definition of Lhe stored record, the miethod of representing the data ficlds,
and the access aids used.

1.64 Ma pp.ing Between different Levels

Two mappings are required in a database system with three different views as shown in
figure 3. A mapping between the cxternal and conceptual level gives the correspondence
among the records and the relationships of the extemnal and conceptual levels.

Similarly, there is a mapping from a conceptual record to cii internal one, An intemnal record
is a record at the internal level, not necessarily a stored record on a physical storage device.
The internal record of figure 3 may be split up into two or more physical records, The
Physical database is the data that is stored on secondary storage devices, It is made up of .
records with certain data structures and organised in files. Consequently, there isan -

- addilional mapping from the intcrnal record 1o one ar more stored records on secondary

storage devices.

1.7 DATABASE MANAGEMENT SYSTEM FACILITIES

Two main types of facilitics are supported by the]E)_BMS:
" » . the data definition facility or c!alé definition language (DDL)
' Ihedaa manipulation facility or data manipulation language (DML)

1.7.1 Data Definition Language

Database management sysiems provide 2 facility known as the data defmition language -
(DDL), which can b used to define the conceptual schema and also give some details about
how 1o implement this schema in the physical devices used o store the data. This definition
includes all the entity sels and their associated atiributes as well as the relationships among
‘he entity sets. The definition also includes any constrainis that have to be maintained, - -
ncluding the constraints on the value that can be assigned 1o a given attribute and the
constraints on the values assigned to different attributes in the same or different records,
These definitions, which can be described as metadata about the data in the database, are

" expressed in the DDL of the DBMS and maintained in a compiled form {usually as a set of

tables), The compiled form of the definitions is known as a data dictionary, directory, ar’

system catalogue The data dictionary contains information on the data stored in the database Beslc Concep
and is consulted by the DBMS before any data manipulation operation.”

The database management systcm maintains the information on the file structure, the method
vsed 1o efficiendly access the relevant data {i.c., the access method). It also provides a method
whercby the application programs indicate their data requirements. The application program
could use a subset of the conceptual data definition language or a separate language. The
daiabase system also contains mapping functions that allow it to inter;:-2t the stored data for
the application program. (Thus, the stored data is transformed into & 10rm compatible with

the application program.) ' .

The intemal schema is specified in a somewhat similar data definition language called data
sterage definilion language: The definition of the intrrsi view is compiled and maintained
by the DBMS. The compiled internal schema specifies the implementation details of the
intemal database, including the access methods employed. This information is handled by
the DBMS; the user need not be aware of these, details,

172 Data Manipulation Language

DML is a language that enables users to access or manipulate as organised by the appropriate
data model. Data manipulation involves retrieval of data from the tlatabase, insertion of riew
data jnto the database, and deletion or modification of existing data. The first of these data
manipulation operations is called a query. A Query is a statement in the DML that requesis -
the retricval of data from the database. The subsct of the DML used 1o posc a query is known
as a query language; however, we use the terms DML and query language synonymounsly.

The DML provides commands to seleet and retrieve data from the database. Commands are
also provided 10 insert, update, and delcie recofds. They could be used in an interactive mode
or embedded in conventional programming languages such as Assembler, COBOL,
FORTRAN, Pascal, or PL/I. The data manipulation functions provided by the DBMS can be
invoked in application programs directly by procedure calls or by preprocessor statements.
The latter would be replaced by appropriate procedure calls by either a preprocessor or the
compiler. .

There are basically two types of DML:
e Procedural : which requires a user to specify what data is needed and how to get it
e Nonprocedural : which requires a user to specify what data is needed without
specifying how Lo get it

Daia definition of the external view in most current DBMSs is done outside the application
program or interactive session. Data manipulation is done by procedure calls to subroutines
provided by a DBMS or via preprocessor siatements, In an integrated environment, data
definition and manipulation are achicved using a uniform set of constructs that forms part of
. the user’s programming environment

1.8 ELEMENTS OF A DATABASE MANAGEMENT
SYSTEM ’ :

The major components of a DBMS are cxplained below :

1.8.1 DML Precompiler

It convens DML statement cmbedded in an applicatton program to ngrmal procedure calls in
the host language. The precompiler must interact with the query processor in order to
" gencrate the appropriate code.

1.8.2 DDBL Compiler

The DDL compiler converts the data dcﬁniu’dn stalemenls inte a set of ables. These tables
contain information conceming the database and are in a form that can be used by other
components of the DBMS.

13

T aTE e

Intruductury Congepls ul
[hita Base Muasnagement System

14

‘183 File Manager

File manager manages the allocation of space on disk storage and the data structure used to
represent information stored on disk. The file manager can be implemented using an
interface (o the cxisting file subsysicm provided by the operaling system of the host
compulter or it can include a ile subsysiem written especially for the DBMS.

1.8.4 Database Manager _'

Databases typically. rcquirc"a larpe amount of storage space. Corporate databases are usnally
measured in lerms of gigabytes of data. Since the main memory of computers cannot store .
this informatidh, il is stored on disks. Data is moved between disk storage and main memory
as needed. Since the movement of dma lo and from disk is slow relative to the spedd of
control processing unit of compu!cra itis imperative that database system structure data so

_ as o minimisc the need Lo move data between disk and main memory. A daiabase manager is

a program module which provides the interface between the lc - ievel data stored in the -

“database and the application programs and querics submitted to the system. Itis rcsponsible
or intcrfacing with file system. One of the funciion of dawbase masager is to convert user’s

querics coming dchctly via the query processor or indirectly via an application program frOm
the user's logical view to the physical file system. In addition, the tasks of enforcing
constraints (o maintain the consistency and integrity of the data as well as ils security are also
performed by databasc manager. Synchronising the simullaneous operations performed by
concurrent users is under the contiol of the data manager. It also per{forms backup and

“recavery opcrauons Letus summarise now the i |mpormnl responsibilities of Dalabase

manager

o -Interaction with file manager : The raw daia is siored on the disk using the file
sysicm which is usually prowdcd by a conventional operating system. The database
‘manager tran. ates the various DML statements into low-level file system
. commands. Thus the database manager is responsible for the actual storing,
retricving and updating of data in the database,

s Integrity enforcement : The-data values stored in the database must satisfy certain
types of consisiency constraints. For example, the balance of a bank account may
never fall below a prescribed amount (for example Rs. 200). Similarly the number
of holidays per year an employee may be having should not exceed 25 days. These
constrainis must specilfied explicitly by the DBA. If such constraints are specified, -
then the database manager can check whether updates to the database result in the
violation of any of these constraints and if so appropriate action may be imposed.

» Sccurity enforcement : As discussed above, not every nscr of the database nceds 1o
have access 1o the entire cort==t of the database. It is the job of the database
manager Lo enforce these seeurily Tequiremenis.

- Bnckup and recovery : A computer sysiem like any other mechanical or electrical
device, is subject 1o failure. There arc a variety of causes of such failure, including
disk crash, power Yailuse and sfw erors. In each of these cases, information
conceming the daiabase is lost. It is the responsibility of database manager to detect
such failures and restore the database to a stie that exisied prior to the occumrence
of the failure, This i is usually accomplished lhmugh the backup and rccovexy
procedures.. :

e Concurrency contrel : When several users update the dalabase concurrently, (he
consistency af dala may no longer be preserved. Tt is necessary for the sysiem to
control the interaction among the concurrent uscrs, and achlcvmg such a control i is
one of the responsibilitics of databasé manager.

1.8.5 Query Processor

The database user retricyes data by formulating'a query in the data mampulauon language
provided with the databaso The query processor is used to interpret the online user’s query
and convert it intp'an efTicient series of operations in a form capable of being sent to the data
manager for execution. The query processor uses the data di~tionary 1o find the structure of
the relevant portion ‘of the database and vses this information in modifying the query and
preparing an optimal plan 10 access the database.

1.86 Database Administrafor ’ ' Dasle Concepts

Onc of the main reasons for having database management system is 1o have control of both
dala an programs accessing that data, The person having such control over the system is
called the database administrator (DBA). The DBA administers the three levels of the
database and, in consuliztion with the overall user community, sets up the definition of the -
global view or conceptual level of the database. The DBA further specifies the external view
of the various users and applications and is responsible for the definition and implementation
of the intermal level, including the storage structure and access methods to be used for the
optimum performance of the DBMS, Changes 10 any of the three Ievels necessitated by
changes or growth in the organisation andfor emerging lechnolor, y arc under the contro! of
the DBA. Mappings bétwceen the internal and the conceplual levels, as well as between the
internal and the concepiual levels, as well ~2 between the conceptual and cxternal levels, ame
also defined by the DBA, Ensuring that approprialc measures are in place 1o maintain the
integrity of the databasc and that the databasc iz n2t accessible to unauthorised users is
another responsibility, The DBA is responsible for granling permission W the users of the
database and stores the profile of each nser in the database. This profile describes the
permissible activities of & user on that portion of the daiabase accessible to the user via onc
Or more uscr views, The user profile can be used by the database system (o verily that a
particular nser can perform a given operation on the database.

The DBA is also responsible for defining procedures 1o recover the database from failures
due.to human, natural, or hardware causes with minimal loss of data. This recovery
procedure should crable the organisation 10 continue 1o fanction and the intact portion of the
database should continue to be available.

Let us summarise the functions of DBA are :

e Schema definition : The creation of the original database schema, This is
accomplished by writing a sct of definition which are transtated by the DDL
compiler to a set of ables that are permanently stored in the data dictionary.

e Storage Structure and access method definition ; The creation of appropriate
storage struclure and access method. This is accomplished by wri ting asetof
definitions which are transfated by the data sidrage and deftnition language
compiler.

o Schema and Physical organisation medification : Either the modification of the
database schema or the description of the physical storage organisation. These
ehanges, although relativcly rarc, are accomplished by wriling a sct of definition
which are used by either the DDL compiler or the data storage and definition
language compiler to gencrate modification (o the appropriate internal system tables
(for example the data dictionary), '

e Granting of authorisation for data access : The granting of different lypcs of
authorisation for dala access to the various users of the database, .

o Integrity constraint specification : These constrajnts are kept in a special system
strocture that is consulied by the daabase manager whenever one of the valugble
tools thal the DBA uscs 1o carry out data administration in data dictionary.

1.8.7 Data Dictionary

Itis scen that when a program become somewhat large in size, keeping a rack of all the
available names that arc used and the purpose for which they were used becomes more and
more difficult. Of course it is possible for a programmer who has coined the available names
to bear them in mind, but should the same author come back 1o his program alicr a
significant Lime or should another programmer have 1o modify the program, it would be -
found that it is extremely difficult to make a reliable account of For what pwpose the data” -
files were used.

The problem becomes even more difficult when U number of dala types that an organisation has
-in its database increased. It has also now perocived that the daia of an orpattisation is a valuable
corporate resource and therefore some kind of @n inventory and cataloguc of it must be
maintained 5o as 1 assist in both the wilisation and management of the resource.

It is for this purposc that a data dictionary or dictionary/directory is cmerging as 2 major wel,
An inventory provides definitions of things. A dircctory tells you where 1o find them. A datz
dictionary/directory contains information (or data) about the data. 15

Ty P8 e

hilreduclory Concpts of A comprehenisive data dictionary would provide the definition of data item, how they fit into
Dala Trase Management System

16

the data structure and how they relale 1o other enlitics in the database. With the
comprehensive base of information the data dictionary can serve several useful purposes
connecling across the whole spectrum of planning, determining information requirement,
designing and implementation operation and revision. There is now a greater emphasis on
having an integrated sysiem in which the data diclionary is part of the DBMS. In such a case
the data dictionary would store the information conceming the external, conceptual and
iniemal levels of the databascs. It would combine the source of each data field value thal is
Arom where the authenticate value is obtained, The frequency of its use and audit trait
regarding the updates including user identification with the Lime of each update.

The greater acceptlance and proliferation of relational dalabasc._s‘liave encouraged the
evolution of data dictionary 0 “information resource dictionary system® (IRDS) for such
facilities, as is the suggestion from ANSI (American National Standards Institute).

The DBA uses the data dictionary in every phase of a database life cycle, siarting from the
embryonic data gathering phase to the design, implementation and maintenance phases.
Documentation provided by a data dictionary is as valuable to end uscrs and managers as it
provided by a data dictionary is as valuablc to end users and managers as it is essential to the
programmers. Users can plan their applications with the database only if they know exactly
what is stored in it. For example, the description of a data item in a data dictionary may
include its origin and other text description in plain English, in addition 1o its data format.
Thus users and managers will be able 1o sce exacily what is available in the database. You
could consider 2 data dictionary (o be a road map which guides users to aceess informarion
within a large database. L. -

~

Naive vsers Application Quecy Database
Programmers - Administrator

|

Application | - SI
ystem calls Darabase
Programs, . Scheme
L R h 4
DML Query DDL .
Precompiler Processor Compiler
B / \
Applicalion} .
Program . » Database
(Object gd;e' | Manager
'-.. . -
r
File Manager
r
DBMS

Dictionary

Figure 4: DIMS Structure

DSV

wn idcal data diclionary should include everything a DBA wants to know about the database. liavle Concepts
(1) external, conceprual and internal <latabase descriptions

(2) descriptions of entitics (record types}, auributes (ficlds), as well as cross-references,
origin and meaning of data elements

(3) synonyms, authorisation and securily codes . . :

{(4) which external schemas are used by which programss, who the users are, and whal their
awthorisations are. -

+ A data dictionary is implemented as a dalabase o that users can query its content by either
interactive or batch processing. Whether or not the cost of acquiring a data diclionary system
is justifiable depends on the size and complexity of the information system. The cost
effectiveness of a data dictionary increascs as the complexity of an information sysicm
increases. A dala dictionary can be a greal asset not only 1o the DBA for database design,
implementation and maintenance, but also 1o managers or end users in their project planning.
Figure 4 shows these components and the connection among them.

1.9 ADVANTAGES AND DISADVANTAGES OF
DATABASE MANAGEMENT SYSTEM

One of thc main advantages of using a databasc system is that the organisation can excrt, via
the DBA, centralised management and control over the data. The database administeator is
the focus of the centralised control. Any application requiring a change in the structure of a
data record requires an armangement with the DBA, who makes the necessary modifications.
such modilications do not alfcct other applicalions or users of the record in question.
Therefore, these changes meet another requirement of the DBMS: data independence. The
following are the important advamages of DEMS :

1.9.1 Advantages

Reduction of Redundancies

Centralised contral of data by the DBA avoids untnccessary duplication of data and
clfectively reduces the 1otal amount of data storage required. Tt also climinatas the extra
processing neccssary to trace the required data in a large mass of data, Another advantage of
avoiding duplication is the climination ol the inconsistencies that tend to be present in
redundant data files. Any redundancics thal exist in the DBMS are conwrolled and the Sysiem
ensures that these multiple copics arc consistent.)

Sharing Data

A Gztabase allows the sharing of data undcr its control by any numbcr of applicaiion
Programs Qr usu.s.

Data Integrity :
Centraliscd control can alsa ensurc that adaquate checks are incorporated in the DBMS to
provide data intcgrity. Data integrity means tha the daw contained in the dawshase is both
accurate and consistent, Therclore, daw valwes being entered for storage could be checked to
ensure that they fall within a specificd range and are of the correct format. For example, the
value for the age of an employee may be in the range of 16 and 75. Another integrity check
that should be incorporated in the dutabag® is (& ensure that if there is a reference o cenain
object, that object must exist In the case of an automalic telier machine, for example, a user
is not allowed to transfer funds from a nonexisient saving account 1o a checking account

PData Security

Data is of vital imponance (o an organisation and may be conlidential, Such confidential
dala must not be accessed by unauthorised persons. The DBA who has the ultimate
responsibility for the data in the DBMS can ensure that proper access procedures are
followed, including proper authenticalion sehemas for access lo the DBMS and additional
checks before permitling access 10 sensitive dage, Different [evels of security could be
implemented for various ypes of daty and operations. The enlorcement of security could be
datavalue dependent (c.g., a manager has aceess to the salary details of cmployees inhis or

E | . s P A s ey

Introductory Concepts of
Duta Dase Manpgement System

18

her.department only), as well as data-type dependent (but the manager cannot aceess the
medical history of any employces, including those in his or her department).

Conflict Resolution

Since the database is under the control of the DBA, she or he should resolve the conflicting

requirements of various users and applications. In essence, the DBA chooses the best file

structure and access method o got optimal performance for the response-critical

applications, while permitting less critical applications to continue to use the database, albeit
. with a relatively slower response.

Data Independence’ , :

Data independence, is usually considered from two points of view: physical da
independence and logical data independence. Physical data independence allows changes
in the physical storage devices or organisation of the files 10 be made without requiring
changes in the conceptual view or any of the extemal views and hence in the application
programs using the database. Thus, the files may migrate from one type of physical media 10
another or the file structure may change without any need for changes in the application
programs. Logical data independence implics that application programs need not be changed

~ if ficlds are added [0 an existing record; nor do they have (o be changed if fields not used by

application programs are deleted. Logical data independence indicates that the concepiual
schema can be changed without aflecting the existing extermnal schemas. Data independence
is advantageous in the database environment since it allows for changes at one level of the
datnbase without aflecting other levels, These changes are absorbed by the mappings
bc.lwccn the levels,)

Logical data independence is more difficult 1o achicve than physical indcpendence. Since
application programs are heavily depéndent on the logical structure of the data they access.

The concept of data independence is similar in many respects to the concept of abstract data

Lype in modem programming languages like C++. Both hide implementation details from the
users. This allow users 1o concentrate on the gencral structure rather than low-level
implementation details, '

1.9.2 Disadvantages

A significant disadvantage of the DBMS system is cost. [n addition to the cost of purchasing
or developing the sofiware, the hardware has to be upgraded to allow for the exicnsive '
programs and the work spaces required for their execution and storage. The processing
overhcad introduced by the DBMS to implement security, integrily, and sharing of the data
causes a degradation of the response and through-put times. An additional cost is that of -
migration from a traditionally Sseparate application environment 1o an integrated one.

While cenmralisation reduces duplication, the lack of duplication requires that the database be
adequately backedup so that in the case of failure the data can be recovered. Batkup and
recovery operations are fairly complex in a DBMS environment, and this is exacerbated in a
concurrent multiuser database system, Furthermare, a database syslem requires a certain
amount of controlled redundancies and duplication 1o enable access to related data items,

Cenlralisation also means that the data is accessible from a single source namely the
database. This increases the polential severity of security breaches and disruption of the
operation of the organisation bécause of downtimes and failures, The replacement of a
monolithic centralised database by a federation of independent and cooperating distributed
databases resolves some of the problems resulting from failures and downtimes.

Check Your Progress
1. What are the important tasks of Dagabase manager?

2. What are the main functions of database administrator?

N

Whet are the drawbacks of file processing sysiem?

1.10 SUMMARY

A database system is an integrated collection of related Gles along with the details about their
deflinition, inlerpretation, manipulation and mainicnance. A DBMS is a major software
component ol database system. Tt consists of collection of interrelated data and programs Lo
access that data. The primary goal of a DBMS is to provide an environment which is both
convenicnt and cl(icient o use in rancvmg information from and storing information into
the database.

The DBMS not only makes the intcgrated collection of reliable and accurate dala ava.ilablc T\)
multiple applications and users but also conwrols from unauthorised users lo access (he data.

A DBMS is a major software system consisting of a number of clements. It provides users DDL

. for defining the external and conceptual view of the data and DML, for manipulating the data
stored in the database. The database manager is (he companent of DBMS that provide the
interface between the userand the file system. The database adminisuration defines and maintains
the three Iévels of the daiabase as well as the mapping between Ievels [o insulate the higher Jevels
from changes that take place in the lower levels. The DBA is responsible for implementing
measures for ensuring the scourity, integrity and recovery of the database.

111 MODEL ANSWERS

1. The dawabase manager is responsible for the following tasks :
e intermclion with the file i-nanngcr

integrily enforcement

sccurily cnlorcement
s backup and recovery

s concurrent control

Somc databasc sysicm, designed for use on small personal compulers are missing soveral of
the feaures lisicd above, This allows for a smaller daia manager. A small dat manager has
less requircment for physical resources, specially main memory and costs less (o implement,
2. - The function of database administrator include :

& Schema dcl'muon

e Storage structure and access mcthod dc['muon

e Granting of authorisaiion for dah access

& Integrily constraintspecification

3. The drawbacks of the file processing sysiem are :
o Data redundancy and inconsistency
& Dau isolaion
¢ Sccurily problems
e Inicgrily problems
These dilficulties among others, have prompicd the development of DBMS.

1.12 FURTHER READINGS

I Bipin C. Desai, An Introduction to Database Systems, Golgotia: Publication Pvt. Lid. 1994,

2. llencry F. Korth,Abraham Silberschatz, Darabase System Concep:s McGraw Hill
Intemational Editions.

D/nslc Concepts

19

ALY

20

"UNIT2 DATABASE MODELS AND ITS

IMPLEMENTATION

Structure

20 Inmroduction -
2.1 Objectives
2,2 File Managemient System
2.3 Entity Relationship Model
23.1 Rclavionship Bewween Enlily Seas
232 Repircscnistion of Enlity Scis in the Form of Relations
2.3.3 Generalisuion snd Spesification
234 Agpregation

"24 The Hierarchical Modcl

. 24,1 Replication Vs Vinual Record
242 The Accessing of Data Rocoads in Hicrarchical Data Struciune
24.3 Implemenistion of the Hicrarchical Data Model
2.5 The Network Model
25.1 DBTG Sa
25.2 Implementalion of the Network Data Model K
2.6 The Relational Model
261 Advamages and Disadvamagesof Relational Approach
2.6.2 DiMl ¢ Belween Relational and Other Mode|s
263 An example of a Reluional Model
264 Conversion of Hicrarchical and Network Struciure into Relation
265 [mplementalion of Relational Data Mzl
2.7 Summary
28 Muodel Answers
2.9 Fu.ther Readings

2.0 INTRODUCTION

In the previous unit, you have seen the limitations of the traditional approach to infermation
processing and the advaniages and limitations of data base approach. However, there are still
many ways in which a daia base approach can be implemented. You are possibly now
Tamiliar with dBASE IH kind of approach 10 dala base management which is brandedas a
relutional data basc type approach.But other variclics also exist, though relational dala bases
becoming more and more popular.

One can say that 8 DIEMS is a mechanism for coordinating the storage and retrievai of
data in such a manner that its integrity, consistency and availability is ensured.Some of
the earlier approaches adoplcd a iree like hierarchical struclure, while another approach more
commonly known as the CODASYL data base adopted the nefiyork architecture, This unit
will bricfly describe the features of all these Lhree approaches,including, entity relationship
which is usually used for applicution development. With each modet we will also discuss ™
some of its implementation strategies.

2.1 OBJECTIVES

. Alter going through this unit, you shonld be able to:

e idenlify the structures in the different models of DBMS;
& convert any given dala base sitvation 10 a hierarchical or relauonal model;
e diseyss entity-relalionship model .

® stile the essential [eatures of the relilional mode]; and w2

e discuss implementation issues of all the three models.

2.2 FILE MANAGEMENT SYSTEM.

. The precursor 10 the present day database management sysiems was File Management
Systems (FMSs). In the carly days of data processing, all files were [Tat files.A flat file is one
wherc cach record containg the same ypes of data items.One or more of these data ilems are
designated as the key and is used for sequencing the file and for Iocating and grouping
records by sorting and indexing.You will sec that in the real world, which is to be ranslated

* into a datnhase approach, many file structurcs-are not flat. They are described with words or

phrases like hierarchical files, codes, sets, free strucnures and networks:All these types of

structures can be closed as either trees or clause stnictures. However, it may be borne in mind
that all these complicated filc siructure can be broken down into groups of flat files with
redundant data item.

It is in this context that the FMS resembles the DBMS and it allows applications to be
developed without having to write high level language programs, They came into being in
the 1960s as a more produciive approsch to information access than a maditional route of
programming via & high level language,

An FMS consists of a number of application programs. Becauce productivity enhancement in
using an FMS compared 10 a conventional high level language is about 10101, programmess
use it. But the case of use of an FMS also eNCOUTagEs ¢ end uscrs with no previous
programming experience o perform querics with special FMS language. One of the more
well known in this regard is RPG (Report Program Generator) which was very popular
for generating routine business reports. In order 16 use the RPG the user would define the
input fields required by filling out an input specification format. Similarly eutput formats can
be specificd by filling ot an oiitput specificalion forms, The possibility of giving a certain
structure 1o the output and the availability of default eptions made the package relatively
easy to learn and use. Some well-known examples of such FMS packages are Mark-4, Data
trec, casy tree and power’ ~use, The structure of an FMS is diagramatically illustmted below:

FMS
Commands

High level language

Assembly languape

implementation of
FMS toutine

Basic Access
metheds

Flgure 1: Flle management system

The FMS relics'upon the basic access methods of the host operating system for data
management. But it may have its own special language (o be used in performing the
retricvals. This language in some ways is more power{ul than the standard high level
programming languapges in the way they define the data and development applications.
Therefore, the file management system may be considered (0 be a level higher than mere .
high level Janguages. If we think of conventional high level programming languages such as
RTRAN, PASCAL, elc., as third generation languages and the non-procedural SQL as
. fourth gencration languages, then the FMS language would fit somewhere in between.

Database Models ant ks
Implementation

21

]qtrnducmry,l:?ompls af
Date Base Manegement System

22

‘The FMS program may ectually make less time 1o execule than an equivalent program v_.g%lwn
in a high level lacguage because of the built-in algorithm for so.t, merge, »nd repont
gencration in the FMS software, Therefore some of the advanmge.s qﬁ%vmmjo__
standard high leve] language are:

e less soliware development cost — Even by experienced pruzrammcrs it takes mogths:
o years in developing a good sofiware syStem in high level unguage.

. Suppon of efficient query facility — On line queries for muuiple- kcy retrievals arq
ledious t program, - - i

Of course one could bear in mind the limitations of an FMS in the scs’seFN& cannot handle
complicated mathematical operations and array manipulations. In o'der to remedy the
situation some FMSs provide an interface to call other programs wrréen in a high level
language or an assembly language.

Anoiher limilation of FMS is that for data management and access it is resvicied te basic
access methods. The physical and logical links required between different fizs 1o be able to
cope with complex multiple key querics on multiple files is not possible. Even though FMS
is a simple, powerful tool it cannot eplace the high level language, nor caa it perform
complex iriformation retrieval like DBMS. Itisin this context that reliaace on a good
database management system become essential,

23 ENTI'TY-RELATIONSHIP (E-R) MODEL

E-R model grew out of the excercise of using commercially-available DEMS 1o model
application database, Earlier DBMS were based on hierarchical angd network approach. E-R
is a generalisation of these models, Although it has some means of describing the physical
database model, it is basically useful in the design of logical datebase nodel, This analysis is
then used 1o organise data as a relation, normalising relations and ﬁna]l} ob{ammg a
relational database model.

The mtily—rclal.ionship model for data uses three features 10 describe dala. These are:
1. Entities which specify distinct real-world items in an application.

2. Relalmnsh:ps which connect e,nuucs and represent meaningful depcndenc:cs between
’ them.

3. . Aftiributes which specify propertics of entities and relalionships.

We illustrate these terms with an gxample. A vendor supplying items to a company, for
example, is an eatity. The item hq supplics is another entity. A vendor and an item are
related in the sense that a vendor supplics en item. The act of supplying.defines a relationship
between a vendor and an item. An entity set is a collection of similar entities. We can thus
define d vendor set and an item set. Each member of an enlity set is described by some
attributes, For example, a vendor may be described by the attributes

) (vendor code, vendor name, address)
An item may be described by the atributes
{item code, n.em name)

Relationship also can be characterised by a number of attributes. We can think of the
relationship as supply between vendor and item entitics. The relationship supply car &
described by the attributes: {order_no, date of supply).

2.3.1 Relationship Between Entity Sets

The relationship between enlily sets-may be many-lo-many (M:N), one-io-many (1::1),
many-to-gne (M:1) or one-fo-one (1:1). The 1:1 relationship between e-tity se B, and B,
indicates that for each entity in either sei there is at most one entily in thi- iecond set that is -
associaled with it. The 1:M relationship from entity set E; o E, indicats aat for an
occumrence of the entity from the set E;, there conld be zer, one, or more entities from the
entity set E; associated with it. Each entity in E, is ascociated with ai most one entity inthe
entity st E;, In the M:N relationship between entity sets E; and E,, there is no restriction as

+

r

:

to the number of cntitics in one sét assoctated with an cnr.iljvlin the other scL The databasc
stucture, employing the E-R model is usually shown pictodally using entity-relationship
(E-R) diagram. ' ’

.'Tl'o illustrate these different lyp.cs of relattonships, consider the foltowing cntity sels:
DEPARTMENT, MANAGER, EMPLOYEE, and PROTECT.

‘The relationship between a DEPARTMENT and a MANAGER is usually one-to-one; there is
only one manager per department and a manager manages only one department This
~ relationship between entitics is shown in ligure 2 _ Each catity is represented by a

Department

.

b

Manager

. Flpure 2 : One-to-onc relatlonship

rectangle and the relatonship between them is indicated by a direct line. The relationship
from MANAGER to DEPARTMENT and from DEPARTMENT to MANAGER is both 1:1.
Note that a one-to-one relationship behween two entity seis does not imply that for an
occurmrence of an entily from one set at any time there must be an occurrcree of an entity in
the other seL In the case of an organisation, there could be times when a depariment is
without a manager or when an employee who is classified as a manager may be withouta
department 1o manage. Figure 3 shows some instances of one-to-onc relationships between
the entities DEPARTMENT and MANAGER.

"Deptt, I Depll. 2 - Deptt. 3

Manager 1) Manager 2 Manager 3

Flgure 3 : Some Instances of One-to-one relotionship

A onc-to-one relationship exists from the cntity MANAGER (o the entity EMPLOYEE
because there are several employces reporting o the manager. As we just pointed oat, there
could be an occurrence of the entity type MANAGER having zero occurrences of the entity
type EMPLOYEE reporting (o him or her. A reverse relationship, from EMPLOYEE to
MANAGER, would be many 1o one, since many employees may be supervised by a single
manager. However, given an instance of the entity set EMPLOYLE, there could be only one
instance of the entity set MANAGER to whom that employee reports {assuming that no
employee reports (0 more than onc manager). These relalienships belween entities are
illustrated in fgurc 4. Figure 5 shows some instances of these relationships.

Manager

Y

Employce

Figeee 3 Ruindwmadup 1M

Database Models and Iis
Implcmentatlon

B TSP Ay e Py

I troduIBIY Cancapts u?
Data BseManageiment Sysiem

The relationship between the eniity EMPLOYEL 4nd the entity PROJECT can be derived as
follows: Each employee could be involved in @ number of different projects, and a number of
employces could be working on a given projccl This relationship between EMPLOYEE and
PROJECT is many-to-many. Tt is lustrated in figure 6. Figure 7 shows some mstanccs of

Manager 1 Muaaager 2 Wanager 3
i
1
-4 % L F b
Emp 1 l Emp 2 Emp 3

Fleure 5 : Instances of 1:M rolationshlp

i~ -

Project

Flgure & : M:N relatlonship

such a relationship.
Employece
Emp 1 .Emp 2
F 3 &
-
Y Y
Proj: 1 Proj. 2

h 4

Proj. 3

Flgure T: Insianees of M:N relatlonship

Proj. 4

In the entity-relationship (E-R) diagram, entitics are represented by rcctahgles and

relationships by a dlamond-shapcd box and aiributes by ¢llipses or ovals. The following E-F.

dlagram for vendor, item and Lheir relationship is illustrated in figure 8(a).

t Vendor-addr. ,

(¥Yendor-Code)

I Vandor No. }

< Sunnly

R
{ - order-ne)

rl YENDOR

Y |

{ item-code ,

| TIEM |

Pricefeniu

(jlem.name)

Eigure My} : E-R diapram for Veodors; items and thelr relatlonshlp .

[e = e

232 Representation of entity sets in tlie form of relations _ ““‘""I‘m"’:;’;d;::fh';’

The entity nlationship diagrams are useful iff representing the relationship among entitics
they show e Jogical model of the daiabase. E-R diagrams allow us to have an overview of
the importa entities for developing an information system and other relationship. Having
obtained E-R diagrams, the next step is to replace each entity set and relationship set by a
table or a rhiion. Each Lable has a name. The name used is the entily name. Each table has a
nurnber of mws and columns. Each row contains a member of the entity set. Each column
correspondsto an altribute. Thus in the E-R diagram, the Vendor-entity is replaced by table 1.

Table 1 : Table for lhe.E-nlily Vendor

Vendoreode Yendor name Address

1456 Ram and Co. 112 First Cross, Bangalore - 12
1685 Gopal and Sons 452 Fourth Mzin, Delhi - 8
1284 Sivraj Bros. 368 M.G. Road, Punc - 8
1694 Gita Ltd. 495 N.S.C. Road, Calicut - 9

‘The above tible is also known as a relation. Vender is the relalion name. Each row of a
relation is cilled a mple. The titles used for the columns of a relation are known as relation
attributes. Exch tuple in the above example describes one vendor. Each element of a wiple
gives a specific property of that vendor. Each property is identified by the title used for an
attribute colurnn, In a relation the rows may be in any order. The columns may also be
depicted inany order. No two rows can be idenlical,

Since it is inconvenient to show the whole table comresponding to a relation, a more concise

notation is used to depict arelation. It consists of the relation name and ils attribulas, The
identificr of the relation is shown in bold face. The relation of 1able 1 is depicted as:

Relation attributes

Vendor (Vendor code, Vendor name, Address) _
Relation Relation
name identfrer
The other relations corresponding 1o figure are:
Supplies (Vendor code, Item code, Order no., Qly.
I .

Composite identifier

Supplied, Date of supply, pricc/unit)
A specified value of a relation identifier uniquely identifies the row of a relation.

If a relationship is M:N, then the identificr of (he relationship entity is a compasite identifler
which includes the identifiers of the entity sels which are related. On the other hand, if the
relationship is 1:N, then the identilier of the relationship entity is the identifier of one of the
cnlity sets in the relationship. For example, the relations and identificrs corrcspondmg Lo the
E-R dlagram of figurc B(b) arc: -

Teacher (Teacher-id, name, department, adircss)
Advises (Teacher-id, Swdent-id))

Stadents (Student-id, mame, deparuncnt, address)

Inreductory Concepts of
Duta Base Maagement System

2%

2,34 Aggregation

Agpregation is tie process of compiling information on an object, thercby abstracling a
highcr-level object. In this manner, the entily person is derived by apgpresaling the
characleristics name, address, and Social Security number, Another form of the apgrcgation
is abstracting a relationship between objects and viewing the relationship as an object As
such, the ENROLLMENT relationship between entilics student and coursc could be viewed
as entity REGISTRATTION. Examples of aggregation are shown in figure 10.

Consider the retationship COMPUTING of figure 11. Here we have a rclal.ionshi.p ameng Lhe
entities STUDENT, COURSE, and COMPUTING SYSTEM. A student regisicred in a given

PERSON
. AGGREGATION
{ Name) (Address) (. SsSN)
@
REGISTRATION
STUDENT COURSE
(C))
Flpure 10 : Examples of aggregation
(Accounting_Code
Studem Comp.ming Course

Compuling Sysiem

Figure 11 : A relutlonshlpamung three entltles

course uses onc of several computing systems 1o complete assignments and projects. The .
relationship Between the ealities STUDENT and COURSE could be the aggregaied enlily
REGISTRATION (figure 10b), as discussed above, In Lhis case, we could view the 1emary
relationship of figure 11 as onc belween regisiration and the cntity computing systcm.
Another method ol aggregating is to consider a relationship consisting of the cnlily
COMPUTING SYSTEMSs being assigned 10 COURSES, This relationship can be axpgrepaed
as a new entity and a relutionsbip established between it and STUDENT. Note that the
dilterence between a relalionship involving an aggregation and one with the three entitics

~ _lies'in the number of relationships. Tn the former case we have two relationships; in the latier,

o,

. ‘ ,
only one exists. The approach to be taken depends on what we want to cxpress. We would
" use the wemary relationship related w0 a COMPUTING SYSTEM.

2.4 THE HIERARCHICAL MODEL

A DBMS belonging (o the hierarchical data model uses tree structures to represent
relationship among records. Tree structures occur naturally in many data organisations
because some entities have an intrinsic hierarchical order. For examp'e, an institute has a
number of programmes to offer. Each program has a number of conrses. Each'course has a
_ numbser of studeats registered in it. The following figure depict-, the four entity types
Institute, Program, Course and Student make up the four different levels of hicrarchical
structure. The figure 12 shows an exampl~ of datavase occurzence for an institute. A database
is a collection of database occurrence.

Institute

L 3

Programmes

L

Courses
]

Sindents

Figure 12 : A simpte Hlerarchy

A hicrarchical database therefore consists of a collection of records which are connected with
each other through links. Each record is a collection of fields (attributes), cach of which
contains one data value. A link is an association between peecisely bwo records.

A tree structure diagram scrves the same purpose as an cntily-rclat.ionsl';i? diagram; namely it
specifies the overall logical structure of the database.

The fellowing figure shows typical database occurrence of 2 hierarchical struchure (lrec
structure) -

Instilute

— ‘ |

Program B

Program A

Databasc Modely and its

Course A, Course Ay

Course Ay _ |Coursc By Course By Course D,

swd. 1| [swd. 2| |Swd. 3| [sted. 4] |Swd. 5| |Swd. 6

=

. |_—— r—.
Stud. 7} |Swd. 8] |swd. 9| |Swud. El@d.ll

Stud. 12

Figure 13 : Database acourrencs of & hkerarchleal strncture

e -TN

Implementation

29

| B § AR ity wpr oy Py

Intreductory Concepts of
DData Base Mansgement System

10

The hierarchical data model has the following (eatures:

e Each h:crarch:cal tree can have only one root record type and (his record typcdom
not have a parent tecord type.

o The root can have any number of child recard iypes and each of which can itself be
a ol of a hicrarchical subree.

e Each child record type can have only one parent record type; thus a M:N
relationship cannot be directly expressed between two record types.

o Daia in a parent record applies to all its children records

& Achild record occurrence must have a parent record occurrence; deleting a parent
record occwrence requires deleting all its children record occurrence.

24.1 Rephcatlon ¥s Virtual Record

The liiérarchical model, like the network model (discussed in the next section) cannot
SUpport & many-to many relationship direcity, In the network model the many-to-many
relationship is implemented by introducing an intermediate record and two one-*c- many
relationships. In the hicrarchical model, the many-to-many refationship can be expressed
using one of the following methods: replication or virtual record. When more than one
employee works in a given depariment, then for the hierarchical tree with EMPLOYEE as
Lhe root node we have to replicate the record for the department and have this replicated
record attached as a child 1o the comresponding occurrence of the EMPLOYEE recqrd type.

Replication of data would mean a waste of storage space and could Jead to data
inconsistencies when some copics of replicated data are not updated. The other methed of

" represenling the many- tn many relationship in the hierarchical data model is to use an

indircct scheme similar to the network approach. In the hierarchical model the solution is to
use the so-called virtual record. A virual record is essentially a record containing a pointer
to an occurrence of an actal physical record type. This physical record type is called the -
logical parent and the virwal record is the logical child. When a record is to be replicated in
several daiabase trees, we keep a single copy of that record in one of the trees and replace,
each other record with a vireal containing a pointer to that physical record, To be more
specific, Jét R be a record type that is replicated in several hierarchical diagrams say H,, H,,
..... H,,. To eliminate replication we create a new virwal record type virtual - R, and replace R,
i.nmchoflhcn 1 trees with a record of type virtual - R. Virmal - R will contain no data.

242 The Accessing of Data Records in Hierarchical Data Structure
‘The tree type dala sbructure is used to represent hierarchical data model shows the

relationships among the parents, children, cousins, uncles, avnts, and mblmgs. Ameisthusa

collection of nodes. One node is designated as the root node; the remaining nodes ronn trees
or subirees,

An ordered tree is a tree in which the relative order of the sublrees is significant. This
relative onder nol only significs the vertical placement or leve] of the subtrees but also the
left to right ordering. Figures 14 {3) and (b) give two examples of ordered trees with A as the

_ root node and B, C, and D as its children nodes. Each of Lhe nodes B, C, and D, in turn, are

D D ('|J - B

Hl1 J HA1J G EF

Figure 14 : Example of two trees

) £ e

_root nodes ot\subtrees with children nodes (E, F), (G), and (, T, 0, r&spccuvcly The Database M;’dd’ and lis
s:gmﬁcancémthc’ordmng of the subtrecs in these diagrams is discussed below. Implemeatation

_Traircrsmg an ordc“ted tree.can be done in a number of ways. The order of processing the
:nodes of the treedepehds on whether or not one processes the node before the node’s subtree
. and the order of processing the subtrecs (left to right or right to left). The usval praciice is the
- so-called préeorder traversal in which the node is proo&ssed first, follawed by the leltmost

I:subtﬂ;'.t: not yetpma:ssod:

The preonder processmg of the ordered tree of figure 14(a) will process the nodcs in the
sequence A, B,E,E,C, G, D, H LY

The sigmificance of the ordered tree becomes evident when we consider the sequence in
which the nodes-could be reached when nsing a given tree traversing strategy. For instance,
the order in which the nodes of thie hietarchical tree of figure are processed using the
prcorilcr processing strategy is not the same as the order for Ggure 14(a); even mough the
trec of part b contains mesamcnodc.sasﬂ-aetreeofpma.

Two distinct methods can be used (o implement the pmordcr sequence in the ordered tree.
Thefirst method, shown in ﬁglm: 15 uses hicrarchical pointers to implement the ordered tree
of pf_m 14(a). Here the pointer in cach record points to the

A

E——FFJ J71-1—!'1-—»(3

Figure 15: Preorder Traversal of flgure 14(a)

- r:lcxt record in the preorder sequence. The second mcthoci, shoym in figure 16 oses two types
of pointers, the ¢hild and the sibling pointers. The child pointer is uscd to point to the

I—IA
I_? EETTERTRRTE ¥-.l._.-—lD _
j SR *F (LJ H-eene] ooeree G

Figure 16 : Chlld/Sibllng Polnters

leftmost child and the sibling pointer is used to point to the right sibling, The siblings are

no cs that have the same parent. Thus, the binary tree corresponding to tree in the figure (a)
is obtained by connecting together ali siblings of a node and deleting all links from a node to
its children except£for the link to its lefimost child Using this transformation, we obiain the
tree representation as shown in ligure 16.

2.4.3 Implementation of the Hierarchical Data Model

Each occurrence of a hieruchical tree can be stored as a variable length physical record, the
nodes of the hierarchy being stored in preorder. In addition the stored record contains a
prefix lield. This field contains control information including pointers, [lags, locks and
counters, which are used by DEMS to allow concurrent usage and enforce data integrity.

A number of methods could be used 1o store the hierarchical trecs in the physical medium .
offects vot only ihe periormance of the system but also the operations that can be performed

on e database. For example, if cach occurrence of the hicrarchical tree is stored as a

variable length racord on a magnetic tape like device, the DBMS will allow only sequential

’ 31

r = p v e

Intraductory Concepts of

Data Base Munugement System’

32

retrieval and insertion or modification may be disallowed or performed only by recreating
the entire database wilh the inseriion and modification storage of the hicrarchical database on
a direct access device allows an index structure to be supported for the root nedes and atlows
direct access to an oceurrence of a hicrarchical tree. The storage of one occurrence of the
hierarchical definition trec of figure 14 (a) using the variable length record approach is

given in the following figure,

[aybye; Lpibyey epnle g d byl dhy byl Iz]

Fl,gu.re 17 : Sequentlol storage of hlerarchicl database

The hicrarchy can also be represented using pointer of either preorder hierarchical type or
child/sibling type. In Lhc hierarchical Lype of pointer, each record occurrence has a pointer
that points to the next record in the preorder scquence. In the ~h2!d/sibling scheme, each
record has two types of pointers. The child poiniter points 1o its leftmost child record
occurrence. The sibling pointer points (o its right sibling {or twin). .5 record has one sibling
pointer and as many child pointers as the number of child types associated with the node

" corresponding to the record. The following wwo figures, figure 18 and figure 19 illustraies
preorder hierarchical poinier and child sibling pointers respectively of hierarchigal tree
shown in figure 14.

R
rq—.F

e T T

hyy—why; L. J2

iy
hd
L
=}
flon)
o
il

Flgure 18 : Preorder Hlerarchical Polnler

o e .
i | [

e L g i hy—*1,—*],

h!.l._-* hzz"'"‘lz '—.'jz'

Figure 19 : Child Sibling Polnters

2.5 THE NETWORK MODEL

The network data medel was formalised in the late 1960s by the Database Task Group of the
Conference on Data System Language (DBTG/CODASYL). Their frst repart which has
been revised a number of times, contained detailed specifications for the network data mode’
(a model conforming to these specifications is also known as the DBTG data model). The
specifications contained in the repost and its subsequent revisivis have been subjected to
much debate and criticism, Many of the cuwrent database applications have been built on
commercial DBMS systems using the DBTG model.

2.5.1 DBTG Set

The DBTG model uses two diffcrent data structurs 1o represent Lthe daiabase cntilies and

relationships between the entities, namely record type and set type. A record type is used to

represent an entity type. It is made up of 2 number of dma itcms thal represent the auributes
of the entity. .

Aset typeis uscd to represent a directed relationship betwecen two record types, the so-called
owner record type, and the member record type. The set type, like the record type, is
named and specifics that there is a onc-to-many relationship (1:M) between the owner and
_member fecord types. The set type can have more than one record type as its member, but
only one record type is allowed to be the owner in a given sct type. A database could have
one or more occurrences of each of ils record and set types. An occurrence of a set Lype
consists of an oceurrencs of each of its record and scl types. An occurrence of a set type
consists of an occurrence of the owrer record type and any number of occurrences of each of
its member record types. Arecord Lype cannot be a member of two distinct occurrences of
the same s¢t type.

Bachman introduced a graphical means called a data structure diagram to denote the logical
relationship implicd by the set. Here a labelled rectangle represents the corresponding entity
or record type. An amrow that connects two labelled rectangles represents a sel type. The
arrow direction is from the owner record type to the member record type. Figure shows two
record Lypes (DEPARTMENT and EMPLOYEE) and the set type DEPT_EMP, with
DEPARTMENT as the owner record Lype and EMPLOYEE as the member record type.

Department

Depl_Emp

" Employee

Figure 20 : ADBTG set

The daia structure disgrams have been extended to include field names in the record type

rectangle, and the amow is used to clearly identify the data liclds involved in Lhe set

association. A one-to-many (1:M) relationship is shown by a set type arrow that staris from

the owner field in the owner record type. The arrow points to tht member ficld within the -
member record type. The fields that support the relationship are clearly identified.

Each entity type in an E-R diagram is represenied by a logical record type with the same
name. The atributes of the entity are represented by data fields of the record. We use the
term logical record 1o indicate that the actual implementation may be quite different,

The conversion of the E-R diagram into a network database consists of converting each 1:M
binary relationship into a st (a 1:1 binary relationship being a special case of a 1:M
_relationship). If there is a 1:M binary relationship R, from entity type E, 1g entity type E;,

enlity 1 M N

cnlity 2
record type record type
for cntity 1 . , for entily 2

Set type 1 -, Sct 1ype 2

r

"{ Common member
record type

Flgure 21 : Conversion of an M:N relatlonshlp Intn two 1:M DBTG sels

Database Models and {ta

Implementatfon

33

P e e s .2+ =

Introductary Coocepls of
Data Base Munegement Sysiem

34

then the binary relationship is represented by a sei An instance of this would be §; with an
instancs of the record type corresponding 1o entity E; as the owner and one or more insiances
of the record Lype corresponding ta entity E, as the member. If a relationship has atribuees,
unless the attributes can be assipned to the member record type, they have 1o be maintained
in a scparate Jogical record type created for this purpose. The introduction of this additional
rccond Lype requires that the eriginal set be converted into two symmetrical sets, with the
record cormmesponding Lo Lhie attributes of the relationship as the member in both the se1s and
the records corresponding to the entitics as the owners. :

Each many-to-many relationship is handled by introducing a new record type to represent the
relationship wherein the auributes, if any, of the relationship are stared. We then create twor
symmetrical 1:M sets with the member in each of the sets being the newly introduced record
type. The conversion of a mahy-(o-many relationship into two one-to-many sels usmg a
common member record type is shown in figure 21.

In the netwark model, the relationships as well as t.he navlgauon through the database are
predefined at database creation Lime.

2.5.2 Implementation of the Network Data.Model

The record is a basic unit to represent data in the DBTG network database model. The
implementation of the one-to-many relationships of a set is represented by linking the
members of a given occurrence of a set to the owner record occurrence, The acmal method of
linking the member record occurrence Io the owner is immaterial to the user of the database;
however, for our discossion, we can assume that the set is implemented using a linked list.
The list starts at the owner record cccurrence and links all the member record occurrences
with the pointer in the last member record occurrence leading back to the owner record.
Figure 22 shows the implementation of the set occurrence DEPT-EMP where the owner
record is Comp.se. and the’ member records are the inslances Jancy and Santosh. Note that
for simplicity we have shown only one of the record [ields of each record. This method of
implementation assigns one pointer {link) in each record for each sct type in which he
record panticipates and, therefore, allows a recard occurrence Lo participale in only one
occurrence of a given set type. Any other method of implementing the set construct in
datsbase management system based on the BTG proposal is, in effect, equivalent to the
linked list method.

Pointer 1o the
OWDET

Pointer to the
first member

b A
Jancy - > Saptosh

Printer 1o next
member of the 3e1 poccurence

Flgure 22 : Implementaton of Lhe DBTG SET o network model

A second form of network implementalion, especially useful for M:N relationships, is a bit
map, which is depicted in figure. A bit map is a matrix created for each relationship. Each
row corresponds to Bie relative record number of a target record of a relationship. A 1 bitina
cell for row X and column Y means that the records corresponding to row X-and column Y -
are associaled in this relationship; a zero means no association, For example, figure 23
indicaies that PRODUCT with relalive record number X is related to VENDOR with relative
record numbers 1 and Y (and possibly othess not shown) Bit maps are powerful data
structures for the following rcasons:

1. Anurecord Lype(s) can be included in rows or columns,
2. 11, 1M, and M:1 relationships can all be represented.

3. Rows and columns can be Togically manipulaied by Boolean operators (“and,” “or,”
“not") to determine records that satisly complex associations (e.g.,-any record that has
both parent S and parent T).

SITET

] Errie o W oy

1 2 Y
lfr 0 0
210 90 1
|1 o0 1

- Flgure 23 : Example of a bit map Implementatlon for Product and vendor relatlonshlp [n a network

4. A bitmap can be manipulated equally as well in either 2 row or column access (all the row
records for 2 common colemn or all the column records for a common row) and can be
 easily extended for n-ary relationships).

2.6 . THE RELATIONAL MODEL

_The relational data base approach is relatively recent and begun with a theoretical paper of
* §Codd. which proposed that by using a technique called nonmnalisation the entanglement

'Codd, principles relate to the logical description of the data and it is important to bear in
mind that this is quite independent and feasible way in which the data is stored. It is only
some years back that these concepts have emerged from the research development test and
trial stages and are being seen as commercial projects, The aitractiveness of the relational
approach aronse from the simplicity in the daia organisation and the availabilily of
reasonably simple to very powerful query languages. The size of the relational database
apprdach is that all the data is expressed in terms of tables and nathing but tables. Therefore,
all entitics and attributes have to be expressed in rows and columns, In the PC world also the
availability of dBASE IT and iits later versions have encouraged the preater use of relational
databases. The immense popularity of spreadsheets also arouse because of the inherent
simplicity of expressing information in terms of rows and columps.

The differences that arise in the relational approach is in selting up relationships between
differcnt 1ables, This actually makes use of certain mathematical operations on the relalion
such as p-ojection, union, Joins, ete. These operations from relational algebra and relational
_calculus are discussion in some more details in the second Block of this course. Similarly in
- order to achieve the organisation of the data in terms of tables in a salisfactory manner, a
technique called normalisation is used,

A umitin tie 2econd bieck of this course describes in detail the processing of normalisaton
and various stages including the first normal forms, second normal forms and the third
nomal forms. ‘At the moment it is sufficient to say that normalisation is a technique which
helps in determining the most appropriate Erouping of data items into records, segments or
tuples. This is necessary because in the relational model the datd items are arranged in lables
which indicate the structure, relationship and integrity in the following manner:

(1} Inany given ¢olumn of a table, all items are of the same kind
(2) Each item is a simple number or 2 chamacter string

(3) Allrows of a table are distinct. In other words, no 2 rows which are identical in cvery
column.

{(4) Ordering of rows within a 1able is immaterial

(5) ‘The columns of a able are assigned distinci names and the ordering of these columns is
immaterial

(6) If atable has N columns, it is said (o be ol degree N. This is sometimes also referred to
as the fardinality of the table. From 2 few basc tables it is posstble by setling up
relations, create views which provide the necessary information to the diflcrent users of
the same database. |

observalton in the tree and network structure can be replaced by a relatively neater structure.

Database Modely and ita
Implementation

35

Introductory Concepls ol
Data Dase Manogemnent Sysiem

36

'2.6.1 Advantages and Disadvantages of Relational Approach

Advantages of Relational approach

The popularity of the relational database approach has been apart from access of availability

of a large variety of products also because it has certain inherent advantages.

{1) Ease of use: The revision of any information as tables consisting of rows and columns is
quite natural and therefore even first time users find it auractive.

" (2) Flexibility: Differcnt tables from which information has 1o be linked and extracted can

be easily manipulated by operators such as project and join to give information in the
form in which it is desired.

(3) Precision: The usage of relational algebra and reladonal calcolus in the manipulation of

the relations between the tables ensures that there is no ambiguity which may otherwise -

arise in establishing the linkages in a complicated network type database.

{4) Security: Security control and authorisation can also be implemented more easily by
moving sensitive atiributes in a given lable inlo a separate relation with its own
authorisation controls, If authorisation requirement permits, a particular autribute coutd
be joined back with others to enable (ull information retrieyal, ’

(5) Data Indenendence; Data independence is achieved more casily with normalisﬁtion
structure used in a relational database than in the more complicated tree or network
structure, .

(6) Data Manipulation Language: The possibility of responding to ad-hoc query by means

. of #language based ont refational algebra and relational calculus is easy in the relational
daabasc approach. For data brganised in other structure the query language either
becomes complex of exremely limited in its capabilities.

Disadvantages of Relational Approach -

One should not get carried way into believing that there can be no alternative 10 the RDBMS.
This is not so. A major constraint and therelore disadvantage in the use of relational database
system is machine performance. If the. number of tables between which retationships to be
established are large and the tables themselves are voluminous, the performance in
responding lo queries is definitely degraded. It must be appreciated that the simplicity in the
relational database approach arise in the logical view. With an interactive system, for
example an operation like join would depend upon the physical storage also, It i, therefore
common in relational databases (o tune the databases and in such a case the physical data
layout would be chosen so as lo give good performance in the most frequently run
operations. It therefore would naturally result in the [zct that the lays frequently run
operations would tend 10 become even more shared. .

While the relational datsbase approachisa logiceﬂly atiractive, commercially feasible
approach, but if the data is for example naturally organised in a hierarchical mannar and
stored as such, the hicrarchical approach may give better results. It is helpful to have a
summary view of the differences between the relational and the non-relational approach in
the following section.

2.6.2 Difference between Relational and Other models

1. Implementation independence : The relational model logically epresents all -
relationships implicitly, and hence, one docs not know what associations are or are not
physically represented by an cfficient access path (without looking at the internal dawa
model). ;

2. Logical key pointers : The relalionut data model uses primary (and secondary) keys in
records fo represent the association belween two records. Because of this model's:
implementaton independence, however, it is conceivable that the physical database
(totally masked from the user of a relational database) could use address pointers or one
of many other methods. :

3. Normalisation theory : Propertics of a database that make it frce of certain mainienance

problems have been developed within the context of the relational model (although these

properties can also be designed into a network-data model dalabase).
4, High-tevel programming languages : ngmmmg lanpuages have been developed

specifically to access databases defined via the relational data model; these languages : Databpse Models and its

: permit data 1o be manipulated as groups or files rather than proceduraily: one record ata " Implementatlon .

Lime.

2.6.3 An Example of a Relational Model _
Let us sce imponant features of a RDBMS through some examples as shown in figure 24,

A rclation has the following properties:

1. Each column contains values about the same attribute, and each table cell value must be
_ simple {a single value). ’

2. Eachcolumn haga distinct name (attribute name}, and the order of colnmns is
immatcrial. '

3. Each row is distinct; that is, one row cannot duplicate another row for selected key
© atibite columns.

4. The sequence of the rows is immalerial,

PRODUCT relation Attributes
______...-—//\-..___
PRODUCT # | DESCRIPTION PRICE | QUANTITY- | Relative
ON-HAND record#
0100 - | TABLE 500.00 T 42 1
0975 WALL UNIT 750.00 0 2
Tu
ples < 1250 CHAIR 400.00 13 3
1775 DRESSER 500.00 8 4
—
Primary Key

VENDOR relation

VENDOR# VENDOR-NAME VENDOR-CITY
26 MAPLE HILL DENVER
13 CEDAR CREST BOULDER
16 OAK PEAK FRANKLIN
12 CHERRY MIN ~ .| LONDON

SUPPLIES relation

VENDOR# | PRODUCT# | VENDOR-PRICE
13 1775 250.00
16 0100 150.00
16 ' 1250 200.00
2% 1250 ~200.00
26. 1775 - 275.00

Flgure 24 : Example of a relatlonal data model

As shown in figure 24, a tuple is (he collection of values that composc-one row of 2 relation.
A tuple is equivalent to a record instance. An n-tuple is a tuple compased of n attribute
values, where n is called the degree of the relation. PRODUCT is an cxample of a 4-tuple.
the number of tuples in a relation is its cardinality.

37

Tedi—IC:

g 1

Introductory Concepts of
Data Buse Menagement System

A domain is the set of possible values for an altribuie. For example, the domain for
QUANTITY-ON-HAND in the PRODUCT relalion is all integers grealer than or equal 1o
zero. The demain for CITY in the VENDOR relation is a set of alphabetic chm‘aclcrs strings
restricted 1o Lhe names of U.S. citics.

We can J_sc a shorthand notation to absiracily represent relations (or tables), The three
relations in figure 24 can be wrilten in this notation as

PRODUCT (PRODUCT#, DESCRIPTION, PRICE, -
QUANTITY-ON-HAND)

VENDOR(VENDOR#, VENDOR-NAME, VENDOR-CITY)

SUPPLIES (VENDORY, PRODUCTS#, VENDOR-PRICE)

In :.I'us form, thc attribute (er.attributes in combination) for which no more than one tuple
may have the same (combined) value is called the pnmary key. (The pnmaly key attributes
are underlined for ¢larity.) The relational data modet requires that a pimary key of a tuple
{or any component attribute if a combined key) muy not contain a null value. Although
several different atiributes {called candidate keys) might serve as the primary key, only orie
(or one combination) is choscn. These other keys arc then called alternate keys.

.
Rl

The SUPPLIES relation in figure 24 requires Iwo atiributes in combination in order to
identify uniquely each wple. A composite or concatenated key is a key that consists of two -
or more Airibuics appended together. Concatenated keys appear frequently in a relational
data base, since intersection data, like VENDOR-PRICE, may be uniquely identified by a
combination of the prihiry keys of the related cntities. Each component of a concatenated
key can be used o identify wples in another relation, In fact, values for all component keys

" of a concatenated key must be present, although monkey attribute values may be missing.

Further, the relational model has been enhanced o indicate that a tuple (e.g., for PRODUCT)
logically should exist with its key value (e.g., PRODUCT#) if that value appears in a
SUPPLIES tuple; this deals with existence dependencies.

We can relate tuples in the relational mode! only when there are common atiributes in the
relations involved, We will expand on this idea in the next section, The SUPPLIES relation
also suggests that an M:N relationship requires the definition of & third re.lauon, much like a
link or mlersecuon record in the simple network model.

Codd (1970) populanscd\mc use of relations and tables as a way to model data. At first
glance, this view of data may scem only to be a different perspective on the network data
model (all we have done is replace address pointers with logical pointers and eliminate lines
from the database diagram). Several debales havé essentiatly argued this point. Codd and
many others have shown that relations are actually formal operations on mathematical sets,
Further, most data processing operations (e.g., printing of selected records and finding
related records) can also be represented by mathematical operators on relations. The result of
mathematical operations can be proved to have certain properties. A collection of operations,

" called normalisation, has been shown to result in databases with desirable maintenance and

logical properties. This mathematical elegance and visual simplicity have made the relational
data modet one af the driving forces in Lhe information systems field. :

~ 2.64 Conversion of Hierarchical and Network Structure into Relation

The relational data model is as rich as the complex netwark model in its ability 1o represent
directly, withomt much redundancy, a widc variety of relationship types. However, unlike the
network model, relatonships are implicit; Lhat is, there is no diagrammatic convention (arcs,

“or links) used o explicitly show a relationship betweén two relations (i.e. reIauonsth

bebween entities).

Rierarchical and network structure can be decomposed into relations when appropriate
connection fields are inserted into relevant child record types. The figure 25 shows an
example of comverting a4-level hicrarchical structure into a relational daLa model.

To establish a dam paih from the root 10 a child node, the primary keys of theu respective
parents are insened inio alt child nodes. For example, the primary key of COLLEGE is
inseried inta the PROGRAM relation, while the primary key of PROGRAM)
(FROGRAM{}AME) is in 1um added 10 the STUDENT relation.

e

" Hierarchical Schema

e

COLLEGE .,
[COLLEGE [COLLEGE-ADDR]
»
N
Lo
- PROGRAM : “"
© 7 [PROGRAM-NAME | PROGRAM. coonnmaronl

-« F -
" STUDENT / 5\M:omzsa

I—s NO | 5-NAME] s- ADD'_[| .COURSE-NOJCOURSE-NAME] DATB-OFFEREd

a

'om R ¥ "
[Ol'FER-NO[DATE |
Flgure 25 : Converslon ofanN Levdﬂlerardllul Strucure Into's Rﬂ.ldon.llDl!.andd

Let us consider the following seqof rclauons that deﬁnc a relational dalabas\c for lhc complc.x
network of figure 26- - . .

,',Cl:ls:';omér #—=» Order
| H ’ . ’ -

4

order-for- Y
- - -7 raduct .

Product |&——m Order-line
1
Sources-of- -
goode .

s Vendor

Fjgunzs Complex Netwrork Dm Model
CUSTOMER(CUS 0 MER#,_@S_TUMER AJ_JDRESS). '
CUSTOMER-DETALLS)
ORDER(ORDER# CUSTOMER#.ORDER-DATE,
DELIVERY-DATE, TOTAL-AMOUNT)
PRODUCT(PRODUCT#DESCRIPTION, PRICE,
QUANTITY-ON-HAND)
ORDER-LmE(ORDER#,PRbDUCT#
QUANTITY-ORDERED, EXTENDED PRICE)
- VENDOR(VENDOR#; VENDOR—NAME,‘VENDOR—CITY)
SUPPLIES(VENDOR, PRODUCTY)

In this example, CUS:[UMER. PRODUCT, and VENDOR are basm relations that exist
independently of all oiher data. The ORDER relation, too, can exist independently, but one
of its atributes, CUSTOMER#, called a cross-reference key, implements the .
Orders-for-Customer gglationship from figure 26. The atiribute CUSTOMER# in the
ORDER relation couldl have any name (say, ACCOUN'T#).:As long as the domain of values
and the meaning of CUS'IOME{# and ACCOUNT# are thE/same, then proper linking of .
related tuples can ocer. We will use a dashed nnderline o denole a cross-reference key. The
problem with using different names n different relations for the same sittribute is that 2
“reader” of a relational database definition may not readily understand that these two
attributes can be nsed lg.lmkralmed data. In-most cases, use of & cross-reference key in the
relational datz model nfedns that, %Ic. any value of CUSTOMER# found in an ORDER
luple logically should m«u@gs:ro #.m some unique existing CUSTOMER muple.
- -

.

4

Datdbase Models ong its
Impll_!'ntﬂlﬂio.rl

39

l'ni.rmfl|.||:r.||:|-jr Coneeptdof
Data Bume Management Systerm

'The ORDER relation has its gwn unique key; ORDER#. An aliernate key might be the

coimnbination of CUSTOMER# and ORDER- DATE (if customers do no snbmit two or mbre .
orders in a day). If ORDER# was not an essential piece of data for applications of this
database, then the following SALE relation would be sufficient:

SALE(CUSTOMER# ORDER-DATE, DELIVERY-DATE, TOTAL-AMOUNT)

Here the CUSTOMER# key appears as (part of} the primary key in each related record -
(tuple). In this case, CUSTOMER® is referred o as a foreign key. The term referential
integrity applics to both cross-reference and forcign keys, and means that the key value must
exist in the associated relation for database integrity. Thus, a SALE cannot be created unless
a CUSTOMER row exists for the refercnced customer and a CUSTOMER row may not be
deleted if this will leave any SALE row without a referenced CUSTOMER. Foreign keys are
common in relational data bases due to the way they are designed, as will be scen later.

" The ORDER-LINE and SUPPLIES relations exist because of M:N relauonshlps

ORDER-LINE is like the intersection record of a network database where
QUANTITY-ORDERED and EXTENDED-PRICE arc the intersection daia. The .
concatenaled key is composed of the keys of the related relations. The SUPPLIES relation is
like the link record of a simple network database, In this database, we do not care (o know
anything about this M:N relationship other than the PRODUCT and VENDOR associations
themselves.

In general, a hierarchical or network structure can be decomposed into a relational data
model as follows: '

(1) Each node in a hierarchical or network structure is isolated into a separate relation.

{2) The primary key of a parent node is incorporated into its child relation ta.establish the
one to many relationship between the parent and its child.

2.6.5 Implementation of the Relational Data Model

As stated earlier, the relational data mode is a purely logical view of dawa. Unlike lhe
hicrarchical and network models, whose structure and diagrammatic conventions imply
specify physical linkages, in the relational model, we do not know how relationships have
becn implemented.

We might conclude thal, in practice, a wide varicty of dam sn'ucum:s would be used.
Surprisingly this is not the case.

By far, the most commen data structure for lmplcmcnung a relational database is the use of
tree-structured indexes (ofien B-trecs) on primary and selected secondary keys. Any auribute
that is used io select tuples in a PROJECT or WHERE clause is a possible candidate for
indexing. Auributes used to JOIN relations can be indexed; frequenily, this greatly reduces
the cost to perform a JOIN. To JOIN relations VENDOR and SUPPLIES from figure 24
without an index {or without sorting both relations into order by values for the common
attribute), we would have 1o follow this proccdure

1.- Do Until end of VEN'DOR table,
2. Read next VENDOR mplc

3. Scan the whole SUPPLIES relation, and if a luplc has the same VENDOR# as the
current VENDOR tuple, then create a new RESULT wple.

. 4. EndDo..

5. Eliminate redundant tuples from relation RESULT.

With an index, step (3) is made much more efMicient, since only the SUPPLIES wples with
the same VENDORS®, if any exist, need be reirieved (which is probably a very small
percentage for each value of VENDOR#H). The DBA, cannot optimise the database for all
possible query formulations. Thus, for every relation the anticipated volume of different
types of queries, updates, and so on is estimated to come up with an anticipated usage
pattern. Based on these statislics, decisions on phyysical organisation are made. For example.
it would be inappropriate to provide an access stnucture (say & B* -tre) for evexy atiribute of
every relation; these secondary dccess swruchures have storage and search overneads,

The DBMS can make usc of all the features of the file management system. As most DBMSs " Database Models and ity
have versions that run on diffcrent machines and under different operating system Tmplementatlon
environmens, the DBMS may support file systems not available under the host machine

cnvironment. Thus, every DBMS defines the file and index structures it supporis. The DBA

chooses the most appropriate filc organisation. In the cvent of changes Lo usage palicms or 10

cxpedite the processing of certain querics, a reorganisation can take place.

A large number of querics requires the joining of two relations. L may be appropriate to kegp
the joining tuples of the iwo relations cither as linked records or physically grouped into a
single record.. . :

We may consider a relation to be implemented in terms of a single (or multiple) file(s) and a

wple of the relation to be a record (or collection of records). For the file, we may definea
 storage strategy, for example, scquential, indexed, or random, and for each auribute we cdn
" define additional access StuCITes, ' . .

The most powerful DBMSs allow a great deal of implementation detail to be defined for the
relations. The more common but less powerful DBMSs (mostly on microcomputers) allow
very simple definitions, for cxample, indexing on certain atributes (this is usually a B* -ree
index). Some systems require the index to be regenerated after any modification 10 the
indexing auribute values. Additional commands for sorting and other such operations are
also supported. The. typicel file organisation is plain sequential. (In fact, many micro-bascd
DBMSs éonluse a relation or table with a {la sequential file.)

A single relation may be stored in more than onc [ile, i.e., some attributes in onc, the rest in
others. This is known as fragmentation. This may be donc [0 improve the retrieval of cerain
attribute values; by reducing the size of the wple in a given file, more tuples can be fetched
in a single physical access. The system associates the same internally gencrated identificr,
called the tuple identilier, 10 the different fragments of each wple. Based on these tuple
identifiers a complete tple is casy to reconstruct

In addition 1o making vse of the file sysicm, the DBMS must keep track of the details of each
relation and its attribute defincd in the database. All such information is kept in the directory.
The direciory can be implemented using a number of system-defined and maintained
relations. For ezch relation, the systcm may contain a tuple in some system relation, -
recording the relation name, creator, date, size, storage, structure, and so on. For each
attribute of the relaton, the system may maintain a tuple recording the relation identifier,
atibute name, type, size, and so forth, Different DBMSs keep diffcrent amounts of
information in the directory relations. However, because the implementation is usually as
relations, the same data manipulation language that the DBMS supports can be used to query
these relations. ’

Relational database management systems arc often used for highly interactive on-line
information systems, which may have many adhot querics. Fast response, at the expense of
exlra index space, seems 10 be the popular choice.

Check Yaur Progress’ py
I Define a bit map and cxplain how it can be used to implement M:N relationship.

Py

bl

2. Defincthe following 1cmms: -
s Invericdliss

o PBclerental Inrcgrity

e Fomignkey

w Conledawe key

a B.Tree
41

St T — e

1ntroductory Concepts of
‘Data Base Management System

42

2.8 MODEL ANSWERS

2.7 SUMMARY

In this unit we reviewed three major traditional data models used in current DBMSs, These
three models are hierarchical, network and relational .

The hierarchical mode! evolved from the file based system. It uses tree type data structure to.
represent relationship among records. The hierarchical data model restricts each record type
to only parent record type, Each parent record type can have any number of children record

Lypes.
In a network model, one child record may have more than one parent nodes. A network can
be converted into one or more trees py introducing redundant nodes.

The relational model is based on a Collection of tables. A table is also called relation. Atree
or network structure can be converied into a relational structure by separating each nade in
the data structere inlo a relation. '

r

The entity-relationship diagrams are useful in representing he relationship among entities.
They help in logical database design. We have also presented implementation schemes of
each of the traditional database models. You should refer 1o the pext unit for imderstanding
data structure concept for implementation schemes.

L. Abit-map is a matrix created for each relationship. Each1ow coresponds to the relative .

record number of a source record and each column corresponds to the relative record
number of a target record of the relationship. A 1 bit in a ~=2! for row x and column y
means that the records corresponding to row x and column y are associated in this
relationship; azero means no association,

2: & [Tnverted list— It is a table or list that i organised by secohdary key values.

¢ Relerential integrity — It is an integrity constraint that spesifies that the value of an
aliribute in ore relation’ depends on the value of the same attribute in another

relation.)

» . Foreignkey —1Ifa non-.kcy auribute in one relation appears as the primary key (or
part of the primary key) in another relation, it is called foreipn key.)

e Candidate key — One or more attributes in a relalion that uniquely identify instance

of an entity, and therefore, may serve as a primary key in that relation.

o B-Tree— It is a tree data structure in which all Iéaves are at the same distance from
the root (B stands for balanced).

2.9 FURTHER READINGS

1. Bipin C.Desai, An Introduction to Database Systems, Galgolia Publication Pyt Lid,
1994,) ') : -

2. Henery F. Korih Abrabiun Silberschatz, Database System Concepts, McGraw Hill

. Intemational Editions,

UNIT 3 FILE ORGANISATION FOR

CONVENTIONAL DBMS

Structure

3.0 Introduction - ’ x
3.1 Objectives
3.2 File Organisalion
3.3 Scquential File Organisation \
3.4 Indcxed Scquential File
3.4.1 Typesof Indexes
3.4.2 Organisation Surverure of Indexed Sequential file
3.4.3 Vil Storage Acecss Method (VSAM)
3.4.4 Implementation of Indexing wsing ree Structure
3.5 DircciFile Organisation
3.6 Muli-key File Organisation
3.6.1 The need for Mulliple Access Path
3.§2 Mulilist file Organization
36. 3 1 1 File Org
364 Cellular Partitions
3.6.5 Comparisen and Trade-off in the Dcugn of mulitkey file
3.7 Summary
38 Model Answers
39 Furnher Readings

3.0 INTRODUCTION \

Just as arrays, lists, tees and other data structures are used to |rnplcmcnt daa orgamsat.mn in
main memory, 2 number of strategies are used to support the organisation ot' data in

Cne accoss key 7
Yos No

15,51
oyaae

Sequential Access only

Yo
/ N‘ . Multkey organisation

Sequenua] Direct accass
Organtsation only ?

Invartod
/ \ o Mautilst

Index Structura fils

Organlsauon usntial
g

Organrsation Ring file

Sequenlla] +

iroct Access

/ e

ISAM

',.-

,f .

",

RS

! Sedr Tree Tree mechanism
' Trea P

- Hashing
Implementation
technlque} mechanism

IFigure 1 : Flle organisation technliques

Struciure

|
l
Binary'’ B B+ Implementation

43

1 nitaductory Cvacepls of

Py Bace Mlanarement Sysicm

24

sccondary memory. In this unit we will look at different strategics of orpanizing data in the
secondary memory. In this unit, we are concemed with obtaining data representation for files
on cxternal storage devices so that required functions (e.g. retrieval, npdate) may be carried
out cfficienily. The particular organisation most suitable for any application will depend
upun such factors as the kind of extemal slorage available, types of queries allowed, number
of kcys, mode of retrieval and mode of update. The figure 1 illustrates different file
organisations hased on an access key.

3.1 OBJECTIVES

Alter gning through this unit you will be able to:
o defi r{c what is a filc organisation
& list file organisation lcchnigucs
& discuss implementation techniques of indexing through tree-structure
e discuss implemcntation of direct file organisation
e discuss implementation of multikey file organisation

e discuss trade-off and comparison among file organigation techniques

3.2 FILE ORGANISATION

Precise definition of cach of these technique will be presented later in this ynil,

The technique used to represent and store the records on a file is called the file organisation.
The four undamental file ocganisation techniques that we will discuss are the following:

1. Sequcntial

2. Relative

3. Indexed scquential
4. Mull-key

There are two basic ways, that the file crganisation lechniques differ. First, the organisation
determines the file’s record sequencing, which is the physical ordering of the records in

storage.

Second, the file organisation determines the set of operation necessary o find pariicular
records. Individual records are typically ideniified by having particular values in search-key
ficlds. This dafa ficld may or may not have duplicate values in file, the field can be a group
or elementary item. Some [ile organisation technigues provide rapid aécessibility on a variety
of search key; other techniques support direct access only on the valve of a single one.

The organisation most appropriate for a particular file is determined by the operational
characieristics of the storage medium used an the nature of the operations 19 be performed on
the data. The mast important characteristic of a storage device that influcnces selection of o

+ storage device once the appropriate file organisation technique has been determined) is

whether the device allows direct access 1o particular record occurrences without accessing
all physically prior record occurrences that are stored on the device, or allows only
sequential access to record occurrences. Magretic disks are examples of direct access
storage devices {dbbreviated DASD's); magnetic lapes are examples of sequential Storage
devices. .

'3.3 SEQUENTIAL FILE ORGANISATION

The most basic way to organise the collection of records that from a file is to use sequential
organisation. In a scquentially organised file records are written consecutively when the file
is created and must be accessed consecutively when the file is later used for input {figure 2),

File Organisation For
Conventlonal DBMS

Eegnning ol—*| Record 1
e’
Record 2
Record n-1
Record N
Endoffile —»M

Filgure 2 : Structure of sequenilal flc

In a sequential file, records are maintained in the logical sequence of their primary key

values. The processing of a sequential file is conceptually simple but inefficieat for random
- access: However, if access to the file is strictly sequential, a sequential file is suitable. A

sequential file could be stored on a sequential storage device such as a magnetic tape.

Search for 2 given record in a sequenhal file requires, on average, access 10 half the records
in the file. Consider a system where the file is stored on a direct access device suchas a disk.
Suppose the key value is separated from the rest of the record and a pointer is used 10
indicate the location of the record. In such a sysicm, the device may scan over the key values
at rotation speeds and only read in the desired record. A binary or logarithmic scarch
technique may also be used to search for a record. In this method, the cylinder on which the
required record is stored is located by a series of decreasing head movements. The search,
having been localised 10 a cylinder, may require the reading of half the racks, on average, in
the case where keys arc embedded in the physical records, or require only a scan over the
tracks in the case where keys are also stored separately. .

Updating usually requires the creation of a new Hle. To maintain file sequence, records are
copied to-the point where amendment is required. The changes are then made and copied into
the ncw file. Following this, the remaining records in the original file are copied to the new
file, This method of updating a sequential file creates an automatic backup copy. IL permits,
updates of the type U, through U,,. .

Addition can be handled in a ranner similar to updating. Adding a record necessilates the
shifiing of all records from the appropriate point to the end of file to create space for the new
record. Inversely, delelion of a record requires compression of the file space, achieved by
he shifting of records. Changes to an existing record may also require shifting if the record
size expands or shrinks. ' '

The basic advaniage offered by a sequential file is the case of access 1o the next record, the
simplicity of organisation and the abscnte ol awtiliary data sructures. However, replies 1
simple queries are lime consuming {or large files. Updates, as seen above, usually require the
creation of a new file. A single update is an expensive proposition if anew file must be
created. To reduce the ¢ost per update, all such requests are batched, sorted in the order of the
sequential file, and then used 1o update the sequential file in a single pass. Such 2 file,
containing the updates o be made to a sequential file, is sometimes referred Lo a fransaction
file, :

Inthe batched mode of updating, a transaction file of update records is made and then sorted
in the sequence of the cequential file. The update process requires the examination of cach
individual record in the original scquential file (the old masier file). Records requiring no
changes are copied directly to a new file (the new master file); records requiring one or
more changes aré written into the new master file only after all necessary changes have bzen
made. Insertions of new records are made in the proper sequence. They are written into-the
now master file at the appropriate place, Records o be deleted are nol copied to the new
master file. A big advantage of this method of update is the création of an automatic backup
copy. The new master file can always be recrcated by processing the old master file and the
transaction file. -

: 45

G ¢ e g

Introductory Conccpts of
Data Roye Manegement System

4

6

Block, - Block, Dlock,

Flgure 3 : A file with cmply spaces for record Inserijons

A possible method of reducing the creation of a new file at cach update run is to create the
original file with “holes" (spice left for the addition of new rccords, as shown in the Jast
figure). As such, if a block could hold K records, then at inilial creation it is made 10 contain
only L * K records, where 0 <L < 1 is known as the loading factrr Additional space may
also be carmarked for records that may “overflow" their blocks, ¢.g., if the record ri Iogically

‘belongs to block Bi but the physical block Bi does not contain the regisite free space. This

additional free space is known as the overflow area. A similar technique is employed in
indcx-quuem.ial files,

3.4 INDEX-SEQUENTIAL FILE ORGANISATION

The retrieval of a record from a sequential file, on average, requires access to half the records
in the file, making such enquirics not only inefTicient but very time consuming for large files,
To improvethe query response time of a sequential file, a type of indexing technique can be
added. ' |

An index is a set of y, address pairs, Indexing associates a set of objects 1o a set of orderable
quantities, which are usually smaller in number or their propenies provide a mechanism for
faster search. The purpose of indexing is (o expedite the search process. Indexes created from
a sequential (or sorted) sct of primary keys are referred to as index sequential. Althouph the
indices and Lhe datz blocks are held logether physically, we distinguish between them
logicaily, We shall usc the term index file (o describe the indexes and data file to refer 1o the
data records, The index is usually small enough 1o be read inw the processor memory,

A sequential {or soried on primary keys) file that is indexed s called an index sequential
file, The index provides forrandom access o records, while the sequential nalure of the file
provides casy access (0 the subschuent records as well as sequential processing. An
additional feature of this file syslehnis the overflow area, This leature provides additional
space for record addition without necessitating the creation of a new file. Bq'fore'staning
discussion on index sequential file structure, Ict us, discuss types of indexes.

3.4.1 Types of Indexes

The idea behind an index access siruclure is similar to that behind the indexes used
commonly in textbooks. A textbook index lists important terms at the end of the book in
alphabetic order. Along with each term, a list of page numbers where the term appears'is
Ziven. We can scarch the index to find a list of addresses - page numbers in this case - and
use these addresses 1o locate the term in the extbook by searching the specified pages. The
aliernalive, if no other guidance is given, is (o sift slowly through the whole textbooks word
by word 10 find the 1erm we are interesied in, which corresponds to doing a lincar search on a
file. OF course, most books do have addiiional information,such as chapter and section titles,
which can help us find a term without having to search through the whole book. However,
the index is the only exact indication of where each term occurs in the book,

An index is usually defined on a single field of a file, called an indexing field. The index
typically siores each value of the index field along with a list of pointers 1o all disk blocks
that contdin 2 record with that field value, The values in the index are ordered so that we can
do a binary scarch on the index. The index file is much smaller than the dala file, so
scarching the index using binary search is reasonably efficient. Multilevel indexing.does
away with the need foi binary scarch at the expense of creating indexes (o the index itself!

There are several types of indexes. A priniary index is an index spaclﬁed on the ordcr_ing ’
key field of an ordered fjle of records, Recall that an ordering key field is used to physically
order the file records on disk, and every record has a unique value for that field. If the

.the ordering field another type of index, called a clustering index, can be used. Notice thata

o i o Mo sov] i Fn'n- Orginlnl.lonl?lr
ordering figld is not a key field that'is, several records In (e file can have the same value for Conventionsl DB n:s

file can hava at most one physical ordering ficld, so it can have at most one primary index or

. one clustering index, but not both, A third type of Index, called a secondary index, can be
. specified on any nonordering field of a file, A file can have several secondary indexes in

addition 10 its primary access method. In the next three subsections we distuss these three

Lo typcsofmdexcs .. o

Primary lndexes

‘A primary index is an ordered file whose records are of fixed len=h with two ﬁclds. The

first field is of the same data Lypes as the ordering key ficld of tho data file, and the second

field is a pointer ta a disk blokc - a block address. T.. ordering key field is called the

primary key of the data fileThereis onc index entry (or index record) in the index file for
cach block in the data file, Each index entry ks the value of the primary key field for the

first record in a blogk and a pointer to other block as its two field values. We will refer tothe - -
wwo field values of Index entry i as K(i), P(i). .

To create a primary jndex on the ordered file shown in flugre 4; we use the Name (ield as the
primary-key, becaiisg that is the ordering key field fo the file {assuming that each value of

NAME SEN

black 1 Aaron, Ed
Abbon, Diane

BIRTHCATE JOB SALARY SEX

Acostn, Mare | l |]- |

block 2 Adams, John
Adama, Rebin . - -

T] I

block 3 Aloxandar, Ed
Alfred, Bob

Allen, Sam] _]: l I I

block 4 Allen, Troy
andars, Kaith

Anderson, Rob | I [[|

block 5 Andeison, Zach
Angali, Joa

Archer, Sua I [: : I l

block & Armnid, Mack -
' Amaold, Staven

Atkdns, Timothy| | | |

block -1 Wong, James

Wood, Donald

Woods, Manny | —| | | Il

block n Wright Pam
" | Wyan, Charles

Zimmar, Byton | | [[. [

Agure 4 : Some blocks or an ordered (segirential) flle of EMPLOY EE records with NAME: as the ordering fidd .
. S =

(S el ey] |

Introductory Concepls of
Dats Base Mansgement Sysem

48

- . - - Fie
NAME is unique). Each entry in the index will have a NAME value end a pointer, The first
three index entries would be: ' -

<K(1) = (Aaron, Ed), P(1)= address of block 1>
<K(2) = (Adams,John), P(1) = address of block 2 >
<K{(3) = (Alexander,Ed), P(3) = address of block 3>
{a) MAME SSN 0B SALARY
0
1
2
3
M-2
M-1
(b ' dara oids _ ovecliow palftor
()]
1 M
2 -1
3 —1
4 5 M+2 addresa
N - spaca .
M-2 - M+)
M-1 = 5 = N
M] M+5
M+ 'g \ ; - | I
M2 - M+ 4 .
ovarflow
spaca
M+ O-1 - : = 1
M+0 .
~ null ntar = —1 ; - B '
T RoTraton i trnad pet Poian o

’ Figure 5 : Nustruling intzrnal hashing datg structures. .
(s} Axtay of M posilons for use in hasking, (b) Collision resalutian by éh.llnh?g of records,

Figure 6 illustrates this primary index. The total number of entries in the index will be the
same as the number of disk blocks in the ordered data file. The first record in each block of
lhcdalaﬁlciscaﬂedmeanchorrecnrdoftheblnck,ursimplymehhckanchor(aschemc
simﬂarlomeonedescribedhcmcanbe.used,wimthelas:rmdineach,block,ralhgrﬁun
the first, as the block anchori A primary index is an example of what is called a nondense
index because it includes an entry for each disk block of the data file rather than for every
record in the data file. A dense index, on the other hand, contains an entry for every record in
the file, . -

The index file for a primary index needs substantially fewer blocks than the data file for two
reasons, First, there are fewer index entries than there are records in the data file becanse an
entry exists for each whole block of the data file rather than for each record. Second, each
indcxmtryistypicallysmallcrinsimﬁnnadatarecmdbec&meilhasmﬂytivoﬁcld;.sq

fo - ¢'I-VDH,

more index entries than data records will fit in one block. A binary search on the index file File Orpantsation For
will hence require fewer block accesses than a binary search on the data file. o Convenilonal DBMS
) DATA FILE
PRIMAFY
FELD)
NAME SSN__BIFTHDATE JOB SALARY SEX
Aaron, Ed . i .
| Abbor, Diane !
Acomm, Mare | [: |] |
) . ol Adams, Jotm
. INDEXPLE K Adams, Rebln
. [0, PR ellﬂﬂﬂl : .
II|II mﬂ. JE.I'I I I " I i I
BLOCK - Aaxander, Ed .
PRIMARY Attred, Bod : L
ey BLOCK | - I
Allen, Sam oo .
1/ = 1 T T 1
Adams, Join a /'Aion, Troy .
Alaxander, Ed CP Andars. Ketth
Allon, Troy ¢ I I
Anderson, Sach -] Anderson, Fob | | [1| [
Amotd, Mack « —
7 Andarson, Zach
Angol, Jog
Acher.Sue | | 1 [
. _ -
: Amold, Mack |
j\rmlid.g_mn
Wong, Jamea X *
Wt Pam A \\ Atins, Timothy |] | |
Wong, Jamos
Vood, Donaid
Woods,Manry | | | [
Wright, Pam
Wyan, Charles
Zimmar. Byron l | I l I

Flgure 6 : Primary lndex on the ordering key dd of the file shown In Agure 5

Arecord whose primary key value is K will be in the block whose address is P(i), where
Ki< K £(i+ 1). The ith block in the daa file contains all such records because of the
physical ordering of the file records on the primary key [licld, we do a binary search on the
index file to find the appropriate index entry i, then erieve the data file bleck whose address
is P(i}. Notice that the above formula would not be correct if the data file was ordered on a
nonkey field that allows multiple records to have the same ordering field value. In that ease

. the safne index value as that in the block anchor could be repeated in the last records of the

" previons block. Example 1 illustrates the saving in block accesses when using an index to

- search for a record.

" Example 1: Suppose we have an ordercd file with r= 30,000 records siored on a disk with
block size B = 1024 byles. File records are of fixed size and unspanned with record length R

.= 100 bytes. The blocking factor for the file would be bfr LB/R)) = [(10247100)) =10 _.
records per block. The number of blocks needed for the fileisb = r(rr"bﬁ;ﬂ- =[(30,000/10) 1=

49

=TI

Intriduciory Conceplaof, -
Data Buse Management System

50 -

CLUSTERING
FIELD

3000 blocks, A binary search on the data file would need approximately [(logzb)_l =
[(10g,3000) | = 12 block accesses. -

Now suppose the ordering key field of the file is V = 9 bytes long, a block pointerisP=6
bytes long, and we construct a primary index for the file, The size of cach index entry is R, =
(9 +6) = 15 bytes, so the blocking factor for the index is bir;= Lem)) =L (1024/15)] =68
entrics pei block.

The total number of index entries r; is equal to the number of blocks in the data file, which is
3000. The number of blocks needed for the index is hence b, = I'F.jbfrl)'l =[(3000/68])] =45
blocks. To pesform a binary search on the index file would need [(log,b)1 =[(log 45)] = 6

" block accesses. To search for a record using the index, we need one additional block access
1o the data file for a total of 6 + 1 =7 block accesses - an improvement over binary search on
the data file, which required 12 block accesses.

-A major problem with a primary index - as with any ordered file - is insertion and deletion of
records. With a primary index, the problem is compounded because if we atempt 1o insert a
record in its correct position in the data file, we not only have to move records to make space

for the new record bul also have to change some index entries because moving records will

change the anchor records of some blocks. We can use an unordered overflow file. Another
possibility is to use a linked list of overflow records for each block in the data file. We can
keep the records within each block and its overflow linked tist sorted to improve retrieval
Lime. Record deletion can be handled using deletion markers.

" Clustering Indexes

If records of a file arc physically ordered on a nonkey field that does not have 2 distinct value
- for each record, that field is catled the clustering field of the file. We can creale a different

. type of index, called a clustering index, to specd up retrizval of records that have the same.

DATAFILE
(CLUSTERING
" FIELD)

DEFTNUN&R NAME SSN JOB BIATHDATE SALARY

INDEX, FILE
(K[}, P(i)> anirlea).

[L) [I Y

G oo Ca fra

O
YALUE - POINTER

WSS

e |2

@ || onjajain

-8 L@

A

o [aa |tn o
-

@ o |a |m

Flgure 7 : A dustering [ndex on the DEPTNUMBER orderlog fidd of an EMPLOYEE fle .

e e [

value for the clustering ficld. This differs from a primary index, which requiires that the
ordering field of the data file have a distinct value for each record.

A clustering index is also an ordered file with two fields; the first field is of the same type as
the clustering field of the data file and the second ficld is a block pointer, There is one entry
in the clustering index for each distinct value of the clustering field, containing that value
and a pointer to the first block in the data file that has a record with that value forits

DATA FILE -
(CLUSYERING
FIELD})
"DEPTNUMBEA NAME SSN JOB BIFTHDATE SALARY
p -

block pointer o—1/ Vouspoinar
i 2
2
block pointer ' .——nnui pointoe
3
3
3 - .
. - .)
block painter @ ﬂﬂuPﬂiﬂW .
INDEX FILE_ ul : T
(<K, Pei}> entries)) [[T 1
Biock painter .——ﬂnulpdnler
CLETONG ook
VALUE POINTER . a
1, P! s
2
- 3 /] °
T 4 e i block painier - .__nnu! pointer
5
P e | ~— 5
8 9 5
5
5

m | @ [

~_block polnier .—ﬂ rul polnter

l?lgur? & : Qustering Index with separate blocks for each group of records
with the same value for the dustering Held .

’ \‘ - block painter ._..nnul pointor
block pofnier @ .:nnulpninlar_
—— -
' @ e I I]
Black pointer 0—-—nnul painter
8 }

Flle Orpanlsation For
Conventional DRMS

51

Introductory Cancepts of

Dala Bast Management System

52

clustering Eeld. Figure 7 shows an example of a data file with a clustering index, Nole the

" record insertion and record deletion still cause considerable problems because the data.

records are physically ordered. To slleviate the problem of insertion, it is common (o reserve
a whole block for each value of the clustering field; all records with that value are placed in
the block. If more than onc block is needed to store the records for a particular value,
additional blocks are allocated and linked together. This makes insertion and deletion
relatively su—,ughtfonvmd Figure 8 shows this scheme.

A clustering index is another example of a nondense index because it has an eatry for- every
distinct value of the indexing ficld rather than for evrey recard in the file,

Secondary Indexes

Asecondary index also is an ordered file with two fields, and, as in the other indexes, the
second field is a pointer to a disk block. The first field is of the samedmatypeassome
nonordering field of the data file. The ficld on which the secondary index is constructed is
called an indexing field of the file, whether ils values are distinct for every record or not.
There can be many secondary indexes, and hence indexing fields, for the same file.

We first consider a secondary index on a key field - a field having a distinct value for every
record in the data file. Such a field is somelimes called a secondary key for the file. In this
case there is one index entry for each record in the daa file, which has the value of the
secondary key for the record and a pointer to the bleck in which the record is stored, A

secondary index on a key field is a dense index because it contains one entry for each record

in the dala file,

We again refer to the two field values of index entry i as K(), P(i). The entries are ordered
by value of K(i), so we can nse binary search on the Index. Because the records of the data

file are not physically ardered by values of the secondary key field, we cannotuse block - .

INDEX FILE :
{<K{l), P{i}= antrios) . DATA FILE
. FIELD
R e e
VAWE POINTER ,)
g
1 L .
2 K :
hay 13
3 - a
4 e,
5 e =
1] - 45
7 « a
8 / 17,
P
. ‘ 21
0 e 1
" - p
12 e | 2
13 PR
14 ”
15 .o 10
e po
T | 1
|17
18 > 2
19 [P
20 ") 18
.24 "4 14
22 . .___.
23 & 12
24 Py 7
7 19
z

Flgure 9 : Adense secondary index on a nonordering key fieid of a flle

L1 Ty

ancheors. Thatis why an index entry is created for each record in the data file rather than for
each block as in the case of a primary index. Figure & illustrates a secondary index on a key
auribute of a data [ile. Notice that in figure 9 the pointers P{i) in the index entries are bleck
pointers, not record pointers. Once the appropriate block is transferred to main mcmnry,

" search for the desired record within the block can be carried out.

A secondary index will usualy necd substantially more stornge space than a primary index
becaue of its larger number of eniies. However, the improvement in search lime [or an
arbitrary record is much greater for a secondary index than it is for a primary index, because
we would have 10 do a linear search on the data file if the secondary index did not exist, For
a primary index, we ¢could still use binary search on the main file even if the index did-not
exist because the records are physically ordered by the primary key (icld. Example 2

_ illustrates the improvement in number of blocks accessed when using a secondary index to

search for a record.

Example 2 : Considerl the file of Example 1 withr = 30,000't'|xed- length records of size R =
-100 bytes siored on a disk with block size B = 1024 bytes, The file has b= 3000 blocks as
calculated in Example 1, To do a lincar search on the file, we would require b/2 = 30002 =

"1500 block accesses on the average.

Suppose we construct a-secondary index on a nonordering key licld of the file thatis V=9
bytes long. As in Example 1, a block pointer is P = 6 byles long, so cach index entry isR. =
{9+ 6) = 15 bytes, and the blocking factor for the index is bir, = L(B/R)] =1(1024/15)] =
68 ‘entrics per block. In a dense sccondary index such as this, 'the total number of index

.entries.is r, is equal to the number of records in the data file, which is 30,000. The number of

blocks needéd for the index is hence b= (r/bir)=(30. 000!68) 442 blocks.
Compare this to the 45 blocks needed by the nondensc primary mdcx in Example 1.

A binary search on Lhis secondary index needs (log,b) = (log2442) =9 Llock accesses. To
search for a record using the index, we need an additional block access to the data filc fora
totat of 9 + 1 = 10 block accesses - a vast improvement over the 1500 block accesses needed
on the average for a linear search.

DATA FILE
{(INDEXING
FIELD}
REC-OH.DC‘; DEPTHUMBER MAME SSN JOB HATHDATE SALARY
PONTEAS ~
. 5
, :\ !
: . P 0
2
3]
INDEX FLE i ‘
(<M, P{» sntrios) 7 ﬁ‘ :
" o
FIELD BLOG / R
_ ¥ALUE PQI T s
19 ' 7
2 o P 4
3 & ‘/. A 1
4 . : g
5 .| Fi P!
8 . 5
" .‘_’_. :
5
(yw’
- 2 ?
i
Fiyi L
J[]]
: =
2
[
3

Flgure 10 : A secondary Index on 2 nonkey ficld Implcmcntcd using onc level of Indireetion su that index
entrles are flxed [englh and haye unfque fdd \nJues

Flle Organisation For
Conventlonal DBMS

53

Introductary Concepls of

Duta Base Management System

34

We ¢an also create a secondary index on a nonkey ficld of a file. In this case numerous -
records in the data file can have the same value for the indexing ﬁeld_ There are several
opuons for u-nplemenung such an index;

& Option 1 is to include several index entrics with the same K(i) 'vgluc'- one for each
record. This would be a dense index.

e Option 2 is to bave variable-length records for the index entrics; with a repeating
field for the pointer. We keep a list of pointers (j,1),.....P{i.k) in the indexentry for
K(i) - one pointer to each block that contains a record whose indexing field value
equals K(i). In either option 1 or option 2, the binary search algorithm on the index

- must be modified appropriately.

Oplion 3, which is used commonly, is to keep the index entries themselves at a
fixed length and have a single entry for each index field value, bul creale an extra
level of indirection to handle the multiple pointers, In this scheme, which is
nondense, the ponter P(i) in index entry (i), P{i) points to a block of record pointers;
each record pointer in that block points 10 one of the data file reords with a value
K(i) for the'indexing field. If some value K(i) has too many records, so that their-
record pointers cannot fil in a single disk block, a linked list of blocks can be used.
This technique is illustrated in figere 10, Retricval via the index requires an
additiona] block access because of the extra level, but the algorithms for searching
the index and, more imponant, for insertion of new records in the data file are
straightforward. In addition, retrievals on complex sclection conditions may be. -
handled by referring to the pointers without having (o retrieve many unnecessary
file records,

Notice that a secondary index provides a logical ordering on-the records by the indexing
field. If we access the records in order of the entries in the secondary index, we get them in
order of the indexing field.

‘Multilevel Indexing Schemes : Basic Technique

In a-full indexing scheme, the address of every record is maintained in the index. For a smali
file, this index would be small and can be processed very efficiently in main memory. For a

Poinler

- 10 noxt ' Polnter
Key gvel Key o -
Indax record
nL .

e

4503’“]%:31“1 b, %w‘\]??ﬂl "I

Pointer
- Key tonext
vl
Indax
1000 m
2100 uz

8459 Tin
' heat level iln
Hinlndex

8599 | 12m 9989 | plg

|nlemediala Lowes1

lavel Indexas ‘erved Indox

Flpure 11 : Hlcrarchy of indexes

. l'argc file, the iﬁdcx’s size would posc problems. It is possible to create a hierarchy of indexes Flle Organisation For

with the lowest level index pointing to the records, while the higher level indexes point to the Conventlopal DBNIS

indexes below them (figure 11). The higher level indices are small and can be moved to main
memory, allowing the scarch to be localised to onc of the larger lower level indices.

The lowest level index consists of the <key, address> pair for each record in the file; this is
costly in terms of space. Updates of records require changes to the index file as well as the
data file, Insertion of a record requires that its <key, address> pair bg inserted in the index at
the correct point, w!:*'~ deletion of a record requires that the <key, address> pair be removed
from the index. Theretore, maintenance of the index is also cxpensive. In the simplest case,
updates of variable length records require that changes be made to the address field of the
record entry. In a variation of this scheme, the address value in the lowest level index entry
poinis to a block of records and the key value represents the highest key value of recods in
this block. Another variation of this schemé is described in the next section.

3.4.2 Structure of Index Sequential Files _

An index-sequential file consists of the data plus one or more levels of indexes. When
inserting a record, we have to maintain the sequence of records and this may necessitate
shifting subseqgent records. For a Jerge file this is a costly and ineflicient process. Instead, -
the records that overflow (lici- ' ~+ical area arc shifted into a designaied over{low arez and a
pointer is provided in the logica area or associated index eniry poinis to the overflow -
location. This is illustrated below (figure 12), Record 165 is inserted in the original logical
block causing & record to be moved to an overflow block.

| 611 612 | 614 | 618 624

Orglnel Iogical Block

. 1
611 | 812 | 614 | 615 { &18 ~—»{ 611 |

Original logical block Ovardlaw block

Figure 12 : Overflow of record

Multiple records belonging to the same logicalarea may be chained to maintained logical
sequencing. When records are foreed into the overflow areas as a result of insertion, the
insertion process is simplified, but the search time is increased. Deletion of records from
index-sequential files creates logical gaps; the records are not physically removed but only
flagged as having heen deleted. If there were a number of deletions, we may have a great
amount of unused space.

An index-sequential (il is therefore made up of the foliowing components:

1. Aprimary data storagr.': area. In cerlain systems Lhis arca may have unused spaces
embedded within it o permit addition of records. It may also include records that have
been marked as having been deleted.)

2. Overflow area(s). This pcﬁnits the addition of records to the files, A number of schem
exist for the incorporation of records in these areas into the expected logical sequence.

3. Ahicrarcy of indices. In a random cniquify or updale, the physical location of the desired
record is obtained by accessing these indices.

The primary data area contains the records wrilten by the mgrs-"l’)mgrams. The records are
written in data blocks in astending key scquence. These daf blocks are in tm stored in
ascending sequence in the primary data area. The data blocks are sequenced by the highest
key of the logical records contained in them.

There are several approaches 10 structuring both the index and sequential data portion of an
fndexed sequential file. The most common approach is to build the index as a tree of key
values. The tree is ypicaly a variation on B-tree which we will discuss later. The ather
common approach is 1o build the index based on the physical layout of the data in storage.

The important technigue for building index based on the physical layout of the data in

siorage is ISAM (Index sequential access method) which we will discuss. s

- 1=

a1

Intrductory Concepls of

Data Bas: Management System

Physical Data Organisation Under ISAM

When a record is stored by ISAM, its record key must be onc of the fields in the record, The
records themselves are first sorted by record key into ascending order before they ar stored
on one or more disk drives, [SAM will always maintain the records in this sorted order. Each
record is stored on one of the tracks of a disk. Those records that follow it in soried sequence
arc placed dirccily after it on the same track or, il room does not permit, arc spilled over onto
the next track in the same cylinder. In other words, they are dropped down to the next platter
surfacc. The arm does not move; looking downwared, the next head is selected eletronically.

Since the tracks on a cylinder are Tabelled 0, 1, 2, the records that follow those on track

1 arc placed on rack 2. Track O'is the next fle cylinder. The cylinders are also labelled 0, 1,

Figure 13 shows two cylinders of records, but only their keys are shown, Note that the keys
arc in ascending seqience throughout their storage on both eylinders. We have not shown
record O on either cylinder, as this is used by ISAM for control. Of course, the number of
tracks on each cylinder is a function of the size of the disk pack.

When ISAM retrieves a record, it needs to know the cylinder, the track address, and the

record key. These are the components Lthat must make up the direclory entries for the ISAM

file. In ISAM a directory is called an index. For example, if a directory entry for record 1500
gave cylinder 9 and track 3, then ISAM would sclect cylinder 9, The read head associated
with track 3 would then be activated. The bouom side of the top platter is usually track 0
because the top being exposed is subject 1o damage; therefore, the read head selected would
be that for the top side of the third platier, as shown in figure 14, Of course, the requircd
record might be one of the many records stored on track 3. Rotation of the drive would
eventually bring the required record under the read head. The desired record is identified by
its record key. . T ’

Because the records in an ISAM file are keptin soned order by record key, it is not necessan

o have a directory entry for every single record. It is sufficicnt to know the largestrecord
key on every track of e file. For cxample, suppose the largest key on the track 3 is 100 and
the largest on track 4 is 200. A record with key 175, if it exists in the file at all, must be on
track 4. It cannot be on track 3 as the largest key on that track is 100. ’

The most obvious place to keep the directory for each cylinder on the file is, of course, on
the eylinder itself, and it is on wack 0 of cach cylinder that ISAM keeps its directory. This

- direclory is known as a irack index; it contains the largest key on every track and the

hardware address of that rack. Figure 15 shows a typical wack index for one cylindzrof a
file. In this cylinder, for example, 400 is shown to be the largest key on mrack 3 and 700 the
largest key on the cylinder. Later we will see that this directory is slightly more com-plicated.
This will be'clarified when we discuss how ISAM keeps track of records that are added to

Track

1/ 50 | 60 | 70 [80| 50
2| 100 | 110 [120 [130 [140
a| 150 | 160}

{oz0| 930 g0
950 | 960 | 970 | 980 | 990
10¢. | 1010 | 1020 | 1050 1080

1090 [1100 |1230 [1256 [1300
1345 (1580 1600 [1700 1711
1900 | 200¢)

Q) P -

20 . 29901 3001

Figure 13 : Record Storape

=L

the file after its original creation, For the moment, this simplified version of the directory is Fiie Organisation Far-

more 1]1.a,n suﬂ]ciem_ Conventlonel DBMS
- Top not
/—>< usgd
Track 1 Cylinder 0
"
' /G
Track 0 - Cylinder 1
A e (@)
Trackd _’/)
. Cylindar 2
@ (b)

Flgure 14 : Disk organlsatlon (a) disk; (i) top view of platier

1% 150 | 2| 200 |3 400 | .. | .. [20} 700
track key track -kay tack koy track key

Flgure 15 : Tradk Index

How does the ISAM use this directory to [ind a record on the file? First it positions the
readwrite mechanism over the appropriate cylinder and selects rack €. Let us suppose that
the index on track Q has the entrics shown below in figure 15 and the system secks the key
350. The entry indicates that the record, if it is to be found, will be on track 3. The read head
for mrack 3 is sclected and the rotation of the drive will cventually bring the record with key
350, if it exists, under this read head. The Fact that the index for.this cylinder is on the
cylinder itself means that no additional movement of the read/write mechanism is necessary.

ENE
track key

When an ISAM file is spread over several cylinders, there is more than one track index. A
track index is placed on wack 0 of each cylinder used by the file. There remains then in this

-case a further problem. When a record is being sought. which track index should be

examined? Not surprisingly, ISAM kceps a cylinder index with an entry for each of its track
indexes. Each entry in this index specifies the address of every track index and the largest
entry in each track index, In other words, the cylinder index has an entry fer cach cylinder of
the file and the largest entry on that cylinder. The foHowing is a typical cylinder index:

| 13 J1ss0| 14 [1750] 15 [2000 [16 | 3000 | |
eyl key eyl key cyl key oyl key

This cylinder index shows that on cylinder 15 the largest key that will be found i 2000. If
1SAM is seeking recard 1886, an examination of this cylinder index meveals that the record,
if it exists, can be found on cylinder 15. The read/write mechanism moves to cylinder 15,
sclects track 0, and consults the track index. If that track jndex is then track 2 is sclected.

THTHEE 1890 | om0 | .. |

| 3
mack. key track key track key

The cylinder index is not associated with any particvlar cylinder of the file and is stored ina
scparale arca oron another disk aliogether. This are is referred 1o as e clinder area. The
file itself along with the Irack indexes is called the prime arca.

57

[ntroductory Concepls of

Data Base Management System

58

Somctimes a file may be very Jarge; even extending across scveral disk drives, In this Tase.
hundreds of cylinders may be involved causing the cylinder index itself to be several tracks
or cylinders in size. In this eventuatity, ISAM may even create an index of the cjlinder
index. Such an index is called a master index. Each enfry of the master index then points 1o a
track of the cylinder index and specifies the largest key given on this track of the cylinder
index, Even another master index might be made of this index. Perhaps now thereader can
appreciate why the name "Indexed” is the first word in ISAM.

Figure 16 shows segments of cach of the Uuce types of indexes. The reader should uyto
follow the search algorithm, beginning at the master index, for the Iocation ot record 43,
Only two tracks of both the master index and cylinder index are shown. The first entry in the
masler index says that the largest key mentioned in track 1 of the cylinder index is 211. The
first entry on track 1 of the cylinder index shows that 95 is the largest key on the track index
on cylinder 6. Checking the track index of cylinder 6 shows thar record 45 is Iocated on track
2. Record 45 also happens to be the largest record key on track 2.

Master Index
‘1| 211 [2] 671
Cylinder index ¥
§1 s\ 95 7 120 - |60| 211
= 2061[311 [6p a1 -~ o] 671

Track index for tracks { -_20
25245 - 2p a5

~ Cylinder
=]

Flgure 16 : Search algorithm through three Indexes Overflow Records In ISAM

Qverllow Records in ISAM

Unlike Relative I-O, which docs not permit the addition of a new record to a file unless an .
emply slot is available, ISAM allows any number of new records to be added to an existing
file. The number is limited by the availability of suflicient storage space. As mentioned
carlier, ISAM also maintains the original ordering of the sorted file. Any record to be added
is insenied into the file at an appopriate place. To accomplish this insertion, room must be
made available for the record on s track by shifting each record that logically follows the
one 1o be added forward on the wrack and dropping the last record on the track off the end.
For example, if the records &t the end of a track are ™~ -

26 | 28 [30 [31 | 33 | 35 |

and record 34 is 1o be added, then the track will be changed to -

|l [0]33] xn]ss

and record 37 will be dropped off the end. The rack’s highest key is now 35 and the track
index is changed accordingly. The guestion, of course, is what to do with record 37 that was
dropped. Il it is added to the next track, it will cause the record at the end of that rack to be
dropped off the end and a domino effect will cascade through all the records on the file. In
each case, the track index will need 10 be changed as will the cylinder index when Lhe last
record on the cylinder is forced ofY. To avoid this problem, the record dropped off the
original track is removed from the file and placed in an overflow area, This overflow area -
may be on another disk unit, eisewhere on the same disk unit, or even perhaps on the same -
cylinder if several tracks on each cylinder are set aside and designated for averflow use. The
exact placement of the overflow area is determined when space for the file is requested from

the operating system.

Earlier, it was noted that a simplified version of the track index had been prescnted. This
version ¢can now be upgraded. In aclual fact, there are two entries for each track on a given
cylinder, We shall designate them as "N" and "O" entries, wherc "N™ denotes a normal entry

- and "O" an overflow entry. Before overflow records are added to the file, both entries are the
same. For example, the track index for cylinder 6 of a file might appear as

N 0 N 0 N
[r Ja20] 1 [20] 2 J200] 2 Jooo[3 {2s0]...]|

In this case, both the N and O entries for track 2 designate that 200 is the largest key on this
track. Suppose, in fact, that track 2 contains the following records (only the keys shown):”

o | s | 1so | ... | 180 | 190 200 |

As indicated by the track index, the largest key o be found on wrack 2 is 200. Now suppose
record 185 is 1w be added 1o this track forcing record 200 off the end into the overflow area,
Track 2 now becomes ' ’ .

| 130 | 145 | 150 | ... | 180.| 185 | 190
.As the largest key on track 2 is now 190, the N entry for this track in the index must be
changed to 190 as fotlows: .
N ® N -) N

1 (120 1 o] 2 |190f 2 |200] 3 | 250

Suppose fusther mial-i'ecord 290 is placed in'an overflow arca on track 10 and s the first h
record on this overflow track. If thisis designated as 10:1, the ovér{low area should be-
changed as follows:

. N o N o . N

[1Jo] 1-Ji0] 2 Jwwofroa]20] 3 J2s0]...|

In effect, then, record 200 has become the first of many possible records in the overflow
area. _

If record 186 is added tb track 2, forcing 190 off the end into the overflow area leaving track
2as . f .

130 145 150 . 180 | 185 186

then record 190 wili be added as the second record in the overflow area, ramely 10:2, and
the overflow entry on the track index will be replaced by 10:2 so that the track index
becomes

N o N 0 N

L [0 1 | 20 2 J1s6 102f20] 3 [250] ... |

Note that in the O entry the 200 is not changed as it still represents the largest record key in
the overflow area. In fact Lhe previcus entry 10:1 is added to the latest record to be added 1o
the overflow area, record 190, so that it is not Jost. The everflow area now looks like

[200 [10:1 | 190

with record 190 pointing to fecord 200. The symbo! "#” indicates that record 200 does not
point to another record. The oyerflow entry always contains two values :

‘wigrepresenis the largest key value in the overflow arca that has been moved there from an
individual track (200 in the above example) and the other contains a pointer to the smallest
key in the overflow area (190 in the above examplc): If record 194 is now spilled to the
overflow area, the O entry will not be changed as 190 s still the smallest record key value in

File Organisatlon For
Cooventlona] DEMS

59

Iniruvduetory Cuncuepls of
Dot Bese Munagemenl Systerm

the overflow arca. As the record with kc)" 194 comes alter 190, record 190 is adjusted 1o
point o recond 194 and 194 to 200. The sorted order is maintained in the overlow area,
which now appears as

1200 | 10:3 | 190 [10:1 | 194

Tvis not necesaary that the records stored on a track in the overflow area be associated with
only one track of the prime arca. This is only the case here because we have assumed that all
the overllow reconts on track 10 come from track 2. This is not always so. It is quite possible
10 have overllow records from rnany other tracks so that we could well imagine an overflow
area as follows:

N 0 . N- 0 N
| # {200 04| 100] # |216]200] 104 [103]204] ... |

where records 214 and %15 have amrived from track 4. Record 214 is the second overflow
record from track 4 and points (o the firsi from track 4, namely 216, at location 10:3,

The algorithm to be employed in adding a record to the overflow area can now be Stau:d:

ALGORITHM : OVERFLOW ADDITIONS
1. Find the first available position in the overflow area,

2, Move the record to this position

3. Ifthis record is the record of lowest key in the overflow area, place the poinier to this
record in the overflow entry of the track index and move the old value in the track index
Lo the pointer field of the newly added record. If this is not the case, move)the address of
the new record 1o the pointer field of the record in the overflow area that precedes il in
soried sequence and pIacc the old value of the pointer into the pointer field of the new
record.

Overflow Considerations

If a record is in Lthe prime area of 4 file, its retrieval is siraightforward. The master, cyl:dner
and track indexes are cxamined: the appropriate track selected; and finally, after rolational
delay of Lhe drive, the record is retrieved. This is not, true if the record is in the overfow arca.

If the record is in the overflow area, its retrieval can 1ake a long Lime. Suppose, for example,
that record 16,000 is the first record moved 1o an over(low area and later followed by 60
more such records. As these 60 later records are chained together in key sequence order by
pointer, all 60 records will have 1o read before record 16,000 can be located. As each read is
a lime-consuming process, this ¢an take a lon time. the efficiency of ISAM is defeated by
allowing large numbers of recards to overflow from a single wack

This problem can be overcome by writing a "clean-up” program which reads all the records
on the file, including those in the overflow areas and creates a larger file. This can be done
whenever the time (aken o retrieve records has become unacceptable, The time taken for
retrieval is the dominant criterion here as it is accepiable to have a large overflow area
if the records in it are seldom retrieved.

The other possibility is, as with relative files to creaie dummy records, In ISAM a dummy
record is a record that contains HIGH-VALUES in the first character position but must, as
with all records in ISAM, also conlain a ynique key. During file creation these reconds are
sorted along with all the other file records and scattered whereever desired within the file.

Dummy records prevent growth in the overflow area in two ways. First, if a record to be
added 1w an ISAM file has the same key as a dummy record, it mesely replaces the dummy
record. This is the ideal sitnation as no records are shifted; along a given track and none of the
indexes are changcd The sccond feature of dammy records is that they are not moved to the
overflow area il they are forced off the end of the track by the insertion of a new record.

They are simply ignored. The N entry in the track index is changed to reflect the fact that a
dilTerent record now holds the last position on the track. If both the O and N keys are the
same before the addition 1akes place, then they are both changed. Suppuse for example that
the N and O entreis for irack 7 of a ccrlmn cylinder are given as

N 0 ' File Organlsatlon Far
Conventlonal DRMS
7 100 7 100

and that track 7 has the keys

Tsoleo[n]. .. []iww
with record 100 being 2 dummy record. The addition of record 55 would change track 7 as
follows:
so [ss | e | 0] .. |®
and since record 100 is a dummy record (and therefore not transferred to the overflow area),
the N and O entries become '
N 0

ERENENIE

Creating an ISAM File

_An ISAM file must be loaded sequentially in sorted order by record key. ISAM will detect a
record out of order. Any dummy records (o be added to the file should be placed in the input
data stream in sequence. These records are best added where record additions are expected to
1ake place. For instance, a credit card company may expect in the near future to add records
whose keys range between 416-250-000 and 416-275-000 as a new district of credit card
holders is opened up. In this case, dummy records with these keys ¢an be created and added
1o the file during file creation. Another possibility is simply to scatter a certain percenlage of
dummy records throughout the file. This is not nearly as cffective nor alway possible (there
may be no unused keys in the file). Recall that a dummy record is only ignored ifitis at the
end of a track. It will stay on a track until it is replaced by a valid recoxd with the same key
or pushed off the end by a new insertion.

Once the [ile is in use, any record whose deletion js desired can be turned into a dummy
record by writing HIGH-VALUES in its first characler position. This isa useful feawre,
especially in a credit card situation or phone number list where inactive customers can be
replaced.

So what is the significance of the ISAM organisation ?

Advantages of ISAM indexes :

1) Because the whole sructure is ordered to a large extent, partial (LIKE 1y%) and range
" (BETWEEN 12 and 18) based retricvals can oficn benefil from the use of this type of
index.

7) ISAMis good for static tables becasue there are usually fewer index levels than B-trec.

E)) Because the Index is never updated, there are never any Jocking contention problems
within the index itscli—this can occur in B-tree indexcs, especially when they get to the
point of *splitting’ o create another level.) .

4) In general there are fewer disk 1/Os required to access data, prdvided there is no overflow.

5) Again if little overflow is evident, then data tends o be clusiered. This means thata
single block retnieval often brings back rows with similar key values and of relevance 1o
the initiating query. '

_ Disadvantages of ISAM indexes: . _
1) ISAM is still not as quick as some (hash organisation, dealt with later, is quicker).
2) Overflow can be a real problem in highly volatile tables.

3) The sparsc index means that the lowest level of index has only the highest key fora
. spedific data page, and therefore the block (or mare usually a btock header), most be
scarched 1o locate specific rows in a black. -) 61

" Inlreductory Concepts of
Dats Base Mansgement System

In a nutshell ticrefore, these are the two types of indexing generally avaifable. As I have
already said, indexes can be either created on one single, or several groups, of columns
within single tables, and generally the ability to treate them should be a privilege under the
control of the DBA. Indexes usually take up significant disk space, and although generally of
significant benefit in the case of data retrigval, they can slow down insertfupdate and delets
operation hecause of overhead in maintaining the index, and in ISAM of easuring the logical
organisation of the data rows. The presence of an index does not mean that thé RDBMS will
always use il, a reality of life discussed faler; and it is also true that it is not generally
possible 1o pick and choose which index will be used under which conditions, If follows,
therefore, that the administration of indexes should be done centrally, with great case, and
should be a major consideration in the physical design stage of a project due to its
application dependence.

Before leavmg these types of access mechanisms and moving on to an explanation of ©
hashing, it is worth listing some of the other functions that may bc required within the
context of maniputating indexes.

343 VSAM

The major disadvantage of the index-sequential organisation is that as the file grows,
performance deteriorates rapidly because of overflows and consaquenlly there arises the
necd for periodic reorganisation. Reorganisation is an expensive process and the file
becomes unavailable during reorganisation, The virtual storage access method
(VSAM) is IBM's advanced version of the index-sequential organisation that avoids
these disadvantages. The system is immune to the characteristics of the storage medium,
which could be considered as a pool of blocks, The VSAM files are made up of two
components: the index and data. However, unlikg index-sequential organisation, -
overflows are handled in a different manner, The. VSAM index and data are assigned to
distinct blocks of virtual siomge called a control interval, To allow for growth, each
time a data block overflows it is divided into two blocks and appropriate. changes are
made to the indexes to reﬂect this diyision. .

3.44 Implementatmn of. Indexmg through Tree-Structure

Indexes suppart applications that selectively access individual records, rather than swchmg
through the eatire collection in sequence. One field (or a group of ficlds) is used as the index
field. For example in a banking application, there might be a file of records describing
Branch Offices. It might be appropriate to index the file on Branch Name, puvnd.mg access
to Branch Office information to support interactive inquiries,

.

We shall start with a relatively simple wree-structured index and then progress to more
caomplex slrucu.lres

Binary Search Trees As Indexes

I.zlmﬁmtremns:daﬂ:ebmry scarch tree. Recall that the nodes of 2 bma:ysearchtrecarc
armanged in such a way that a search for a particular key valve proceeds down one branch of
the tree, The sought key value is compared with the key value of the tree’s root: if it is less .
than the root value, the search proceeds down the lefi subtres; if it is greater than the root
value, the search proceeds down the right subtres. The same logic is applied at each node
encountered until the search is satisfied onusdctcnnmed lhauhcsoughlkey is not included
in the tree.

Typically, a key value does not stand alone. Rather, the key value is associamii with
information fields to form & record. In general, storing these information fields in the binary
search trec wonld make for & very large tree, In order to speed searches and to reduce the
tree size, Lhe information fields of records commonly are stored separate from the key
values. These records are orgamscd;nm files and are sotred on secondary storage devices
such as rotating disks, The connection between a key value in the binary search tee and the
corresponding record in the file is madc by housing & pointer o the record with the key
value,

Figure 17 shows the binary search tree with pointers included to the data records.

f =~y

rim o e) T

‘[¢]e[ELEMENT

RECORDS

B

Figure 17 : Dinary search tree from fgure 8-23 used asan ndex

This augmentation of the binary search tree to include pointers (1.e. addresses) to data
records outside the structure qualifies the trec to be an index. An index is 2 structured
collection of key value and address pairs; the primary purpose of an index is to facilitate
access 10'a collection of records. An index is said Lo be a dense index if it contains a key
value-address pair for each record in the collection. An index that is-not dense is sometimes
called a sparse index, There are many ways to‘organise an index; the augmented binary
search tree is one approach.

At this time we will not concem oursclves with the actual location of those rﬁcords on

“primary or secondary storage. Suffice it to say that in contrast to relative files where the

physical locations of records are determined by 2 hash algorithm applied to key values, there
is significantly more freedom in the physical placement of records in an indexed file.

M-Way Search Trees

The performance of an index can be enhanced significantly by increasing the branching
factor of the trec. Rather than binary branching, m-way (m2) branching can be used. For
expository purposes, we ignore {or the moment pointers out of the structure to data recoeds
and consider only the intemal structare of the tree. An m-way search tree is a ree in which
each node has out- degree <= m, When an m-way search irec is not empty, iL has the
following properties.

1. Each node of the iree has the structure shown in figure 18,

n Po | Ko | Pv | Ko | P2l wo | Pay Kt | Pa
l |] |

I

Figure 18 : Fundamenial structure of @ node ln an m-way scarch tree

The Py Py e .P_are painters Lo the node’s subtrees and the Ky, K., are key values.
The requircment that cach node have out-degree <= m forces n=m-1.

2. The key valucs in a node are in ascending order:

Ki <Ki.+l
fori = 0,..n2

3. Allkey values in nodes of the subtreg pointed 1o by P; are less than the key value K, for i
=0, e -1,

4. Allkey valucs in nodes of the subtree pointed 1o by P, are greater than the key value
" Kn-l.)

5. The subtrees potnted to by the P, i =0, , narc also m-way search trecs.

Note that the arrangement of key values in ﬁodcs is analogous o their arrangement in
binary search trecs. A five-way scarch trec has a maximum of five pointers out of cach
" node, i.c..n 4. Some nodes of the trec may contain fewer than five pointers. '

63

' A T

Introduclory Coocepts of
Data Base Mansgement System

Example

-Figure 19 iltustrates a threc-way search tree. Only the key values and the non-null subires

pointers are shown, In the figure, leaf nodes have been depicted as containing just key
valucs, Each intemal node of the search tree has'the siructure depicted in figure 18, here with
a maximum of three subtree pointers, -

E m Flgure 19 : Example three-way search tree

M-Way Search Trees as Indexes : :
When an m-way search tree is used as an index, each key- pointer pair (K, P,) becomes a
triplet P, K;, A, where A, is the address of the data record associated with key value K. Thus,

* each tree node not only points to its child nodes in the trez, but also points into the collection

of data records, If the index is dense, every record in the collection will be pointed to by
some node in the index, :

We can define the node type for an m-way search iree index as follows in Pascal,
Lype nodepir = T nodetype; '
recptr = T retype;
nl, keytype = integer;
nodetype = record
n:integer
keyptrs:armay [0..01] of record
pit § nodeptr;
key } keytype;
adur 2 recpir
end;
keypim:nodepir
end;
Apain key’s Iype need not be integer, n<m—~landnl=n—1.

Searching an M-Way Search Tree -

The process of searching for a key value in an m-way search tree is a relatively
straightforward extension of the process of searching for a key value in a binary search tree.
A recursive version of the scarch algorithm follows, The variable kevs contains the sought
key value; r initially points (0 the root of the tree. The searchi tree is assumed 10 be global,
with var node: nodetype

procedure search(skey;keytrype;var rnodeptr, foundrec:recptr):
vari:0.n; -
begin if (r=nif)
then foundrec: = nil
clse begin i: = 0;
’ while (i < n and skey nodekey[i])
' doi:i=i+ 1]
if (i < n and skey = nodeXkey[i])
then foundrec : = node.addr{i]
elscifi<n
then search (skey,node.ptr[i] foundrec)
clse search(skey,node. keyptm, foundrec)

“B&ﬁ‘

Compare‘mis logic with direct searches of a binary search tree. The primary difference is that
the array of keys in each node of the m-way tree must be scanned to find the appropriate
pointer 10 followeither down 1o achild node or directly to the detarecord.

B-TREES

The basic B-tree structure was discovered by R.Bayer and £ McC.:elght (1970) of Bocmg
Scientific Research Labs and has grown to become one of the most popular techniques for -
organising an index shucture. Many variations on the basic B-tree have been developed; we
cover the basic stmcmre first and then introduce some of the variatons,

The B-tree is kmown as the balanced sort trae, which is useful for external sorting. There are
strong uses of B-trees in a database system as pointed out by D.Comer (1979) : “While no
single scheme can be optimum for all applications, ihe technique of organising a file and its-

index called the B-tree; is, de facto, the standard organisation for indexes in a database system.”

The file is a collection of records. The index refers 1o a unique key, associated with each
record. One application of B- trees is found in IBM’s Virtal Storage Access Method
(VSAM) file organisation. Many data manipulation tasks require data storage only in main
memory. For applications with a large database running on a system with limited company,
the data must be slored as records on secondary memory (disks) and be accessed in pieces.
The size of a record can be quite 1arge as shown below:
struct DATA
(.

int 55N,

char name [80];

char address [80];

char schoold [76];

struct DATA * lel; /* main memory addresses */

struct DATA * right; /* main memory addresses */

d_block d_lelt; f* disk block nddress */

d_block d_xight; 1* disk block address *f .

There are two sets of pointers in the struct DATA. The main memory pointers, left and right,
are used when the children of the node arc in memory and the disk addresses, d_left and
d_right, are used to reference the children on the disk. The size of DATA is 256 bytes.

Data is moved by block transfer into main memory for manipulation; howeves, the disk
access is slow (tens of milliseconds) compared with a main memory move (iens of
microseconds), so we wanl 10 minimise the disk accesses. One methoed is to make the data
nodes even fractions (172, 1/4, etc. or multiples (1,2, eic.) of the disk sector size.

Another method is w expand the capacity of the node for storage of data. A binary tree node
conlains one key or data clement and has pointers to two children. We can construct a tree
with nodes that have moré than two possible children and more than one key. The ree hasa
property called order, the maximum number of children, l'or any given node. If the maximum
is N children, then the order of the ree is N,

The ADT B-'h'ee

To reduce disk accesses, several conditions of the tree must be true; 1he height of the wreé
must be kept 10 a minimem; there must be no emply subtrecs above the leaves of the tree; the
leaves of the tree must all be on the same level; and all nodes except the leaves must have at
least some minimum number of children (perhaps half of the maximum). The lool alone may
have no children, if the tree has only one node. Otherwise it may have as [ew as two and as
many as the maximum number of children. The keys in the trec should have some defined
ordering (numerical, lexical, or some other relationship). A tree that has these properties is
called a balanced sort trde (a B-tree). The B-tree propertics are listed below.

An ADT B-Trcc of order N is a treg in which;

1. Each node has a maximum of N children and a minimum of N/2 children, The root may
have no children or any number from 2 to the maximum.

2. Each node has onc fewer keys than children with a maxinium of N-1 keys.

3. the keys are amanged in a defined order within the node. All keys in the subiree to Lhe
teft of a key are predecessors of the key, and all keys in the subtree to,the right of a key
are successors of the key.

File Organisation ¥or
Canventiorm! DBMS

65

Inroductory Concepty of

Date Base Manugement System

When a new key is to be inserted into a full node, the node is split into two nodes, and
the key with the median value is inserted in the parent node. In case the parent node is
the root, a new root node is created.

5. Allleaves are on the same level. There is no empty subtree above the level of the leaves.

Insertion in the B-Tree .

The insenion of & new key into a B-tree begins with the search for a match. If a match is
found for the key, then the insertion operalion lakes some action {an error message is sent or
a count is incremented, ete.) and retums an emor indication to the caller, If no match is found,
then the key is simply added to a leaf, unless-the left is ful. If the leaf is full then it is split
into two nodes (requiring creation of a new node and the copying of half of the old nodes
keys and pointers 10 the new node) and he median value key is inseried into the parent of the
node. I the parent was also full, the split and key push up ripples upward, The ordering of
the Keys is maintained, and the ordering of keys among subirees is maintained. -

The ree trends to become more balanced with subsea:ueat insertions. The B-ree is like a

crystal in its growth: upward and outward from fts base, the leaf level. To illusmate the

insertion process, we will build a B-tree of order 5 by inserting the following data:
{D'H'KIZFBIPIQIEIAI Sl WITDCILDNIY!M}

The kby ordering is ascending lexical. We keep track of the pointers by numbering them.,

D. First the root node is created (+), then key D is inserted into it.

oy

H, K, Z: the keys are searched for match; if match not found, they are simply inserted.

B: The nede is full, so it must be split; of the keys, B, D, H, K, and Z, key H is the median
valuc key, so it promoies to the parent, but this is the root node so we must create a new node (+), -

P, Q, E, A: Each key is simply inserted,

$: The niode is full, 50 it must be split. A new node at the leaf level is created (¥). OF the keys,
K.P.Q,S,and Z, key Q is the median value,

W, T: The keys are simply inserted. ’ Flle Organbaton For
Convenlional DIMS

C: The nexde is full, so it must be spliv. A new node at the keal level is created (*). Of the keys,
A, B,C,D,and E, key C is the median valuc.

L, N: The keys are simply insertca.

Y: The node is full, so it must be split. A new node atthe leaf levelis created (™). Of the
keys, S, T, W, Y, and Z, key W is the median valuc.

M: The node is [ull, 5o it must be split. A new node at the leal level is created (*%). OF the
keys, K, L, M, N, and P, kcy M is the median value.

67

==

Introductory Concepls of

Dula Buse Manogement System

68

* Ifthe key is found in a leaf node and the node has more than the minimum number of nodes,

The root node is also full, so it-is split. A new root node is created (+). Of the keys, C, H, M,
Q. and W, the key M is the median key. It is inscried into the new root. .

Note how the balance has been maintained throughout the insertions. A node split prepares the
wayforanumbe.rofsimpleirmﬁons.lfmenumbaofkeys ina node is large, the time befare
the next split (involving node creation and data transfer into the new node) will be fairly long.

Deletion of 2 Node in the B-Tree

Deletion of a key is somewhhat the reverse of insertion. If the key is found in a leaf, the
deletion is fairly straightforward. If the key is not in a leaf, then the key's successar or
predecessor must be in a leaf, because the insertion is done starting at a leaf, If the leaf is
{ull, the median value key is pushed upward, so the key closest in value to a key in a nonleaf
node must be in the root. The requirement that there be a minimum number of keys in a node
also plays a part, as we shall sec. . '

then the key is simply deleted and the other keys in the node adjusted in position, If the node
has only the minimum number of keys, then we must look at the immediately adjacent leaf
nodes. If onc of nodes has more than the minimum numbez of keys, the mdeian key in the
parent node is moved down to replace the deleted key and one of the keys from the adjacent ",
leaf nodc is moved into the parent node in place of the median key.

To demonstrate this deletion, we use the B-tree of order 5 shown in the sectior on msemon.
We will delete the key P from the tree afier the insertion of the key S.

P:Its Icaf node is at minimum key count, and the adjacent node with keys A, B, D, and B hag

- more than the minimurm key count. We can replace P with the median key H in the parent

node. We then replace H with the key clasest to it in value, keyE."

If both of the adjacent nodes have only, the minimum number of keys, ore of the adjacent
nodes can be combined with the node that hgld the deleted key, and the median key from the
parent node that partitioned the two leaf nodes is pushed down into the new leaf node. We
will usc the tree from the last example with keys A and B deleted.)

|1

File Organlsalion For
Convenllonal NS

P:lis Ica[' node is at minimum key count, and the adjacent nodes also have minimum kcy
count. We push H down into the combined node.

We summarise the key features of a B-tree as follows:

1. Ther is no redundant storage of scarch key values. That is, B-tree stores cach scarch
key valuc in only one node, which may contain other search key values.

The B-tree is inherently balanced, and is ordered by only one type of search key.
The insertion and delelion operations are complex with the time complexity Oflcig2 nk

The search time is O(log, n)

b BowoN

The number of keys in the nodes is not always the same. The storage management is
only complicated if you choose to create more space for pointers and keys, otherwise the
size of a node is fixed.

The B-tree grows at the node as 6pposecl lo the binary tree, BST, and AVL trees.

7. For a B-tree of order N with n nodes, the height is log n. The height of a B-tree increases
only because of a split at the root node.

There are several variations of B-tre, including BY -tree and B -tree. The B* -tree indices
are similar to B -Lree indices, The main dichrcncc between the B” -tree and B-wree are:

I. InaB*-wee, the scarch keys arc storcd twice; cach of the search keys is found in some
leaf nodes.

2. InaB-tree, there is no redundancy in storing search-key values; the search key is found
only onc in the ree. Since scarch-key values that are found in nonlcaf nodes are not
found anywherc ¢lse in the B-tree, an additional pointer field for cach search key is kept
in a nonleaf node.

3. InaB* -trce, the insertion and deletion operations are complex and Olog, n), but the
search operation is simple, efficient, and O(tog, n).

Because this B-tree structure is so common place, it is worth sirhply listing some of the more
imporiatn advantages and disadvantages.

Advantages of Btree indexes :

1) Because there is no overflow problem inherent with this type of organisation it is good
- {or dynamic table — those that sufler a great deal of insert / update / delete activity.

2) Becauscitistoa barpe c:i;cm sclf-maintining, it is good in supporning 24-hour operation.

3) Asdaais retricved via the index it is always prcscnltcd in order.

4) *Getnext' gueries are efficicnt because of the inherent ordering of rows within the index
blocks.

5) .Buree indexcs are good for very large lables because they will need minimal
reprganisation. 6

= s e

Intraductor
Drata Jlase |

Concepts of
anagement System

6) There is predictable aceess time for any retrieval {of the same number of rows of course)-

because the Biree struclurc keeps itsell balanced, so that there is always the same
numbcr of index levels for every rewieval. Bear in mind of course, that the number of
index levels does increase both with the number of records and the length of (he key
value. .

Because the rows arc in order, this type of index can Service range type enquiries, of the type
below, efliciendy.

SELEC-;[.... WHERE COL BETWEEN X AND Y.

Disadvantages of Btree indexes :

1} For stutic tables, there are belter organisations that require fewer 1/0s. ISAM indexes are
preferable to Biree in this iype of environmentL

2} Buree is not really appropriale for very small wables because index look-up becomes a
signilicant part of the overall access lime.

3} Theindex can use considerable disk space, cspecially in products which allow different

users 10 creale separate indexcs on the same 1able/column combinations.

4) Becausc the indexes themselves are subject to modificalion when rows are updaled,
dclcted or inscricd, they arc alse subject 1o locking which can inhibit concurrency.

So 1o conclude this seclion on Biree indexes, it is worth stressing that this structuare is by far
and away the most popular, and perhaps versatile, of index structures supporied in the world
of the RDBMS today. Whilst not fully optimiscd for cortain acuvity, il is scen as the best
single compromisc in satisfying all the diffcrent access methods likely to be required in
normal day-to-day operution.

3.5 DIRECT FILE ORGANISATION

In the irdex-sequential file organisition considered in the pmvious scctions, the mapping
from the search-key value (o the storage location is via index entrics. In direct [ile

| ————> Address

Key volue ———— Ha§h funcii

Fipure 20 : Mapplng from a key value 1o on address value

organisation, the key value is mapped dircctly 1o the storag.. location. The usual method of

dircclL mapping is by performing some arithmetic manipulation of the key value. This process -

is called hashing. Let us consider a hash function h that maps the key value k to the value
h(k). The value h(k) is uscd as an address and for our application we require that this value
be in some range. IT our address area for the records lies bétween 8, and §,, the requirement
for the hash function h(k) is that for all valucs of k it should gencrale valucs between §, and
S, . ’
It is obvious that a hash funclion that maps many different key values (o a single address or
one that does not map the key values uniformly is a bad hash function. A eollision is said to
occur when two distinct key valucs are mapped 1o the same storage location. Collisjon is
handled in a number of ways. The colliding records may be assigned to the next avajlable
space, or they may be assigned 10 an overllow arca. We can immediately sec that with
hashing schemes there are no indexes to traverse. With well-designed hashing functions
where collisions are few, this is a great advantage.

- Anpther problem that we have o resolve is Lo decide whal. addrcess is represented by hik). Let

the addresses generated by the hiash function the addrgsses of buckets in which the y, agdress:
pair values of records are stored. Figure shows the buickets gontaining the y, address pairs
that allow a reorpanisation of the actual data file and actual record ‘address without allecting
the hash functions, A limitcd numbcer of collisions could be handled antomatically by the use
of a buckel of suficient capacity. Obviously the space required for the buckets will be, in
gencral, much smaller than the actual data file. Consequently, its reorganisation will notbe .
that expensive. Once the bucket address 1s generaled from the key by the hash function, 2

LTI T~ =

scarch in the bucket is also required 1o locate the address of the required record. However, File Organisajon For
since the bucket size is small, (his overhead is small. . Couventjonal DBMS

* The usc of the bucket reduces the problem associated with collisions. In spite of this, 3
bucket may bocome [uil and the resulting overflow could be handled by providing overflow
buckets and using a pointer from the normal bucket 1o ap eniry in the overflow bucket. All
such overllow entrics are linked. Multiple overflow from the same buckel results in a Jong
list and slows down the retrieval of these records. In an aliernate scheme; the address
generated by the hash function is a bucket address and (he bucket is used 1o store the records
diréetly insicad of using a pointer Lo the block gontaining the record. ’ ’

Blocks of reeonds

Bucker,

key -address

209
610
1920
976

DR

Bucket,

177

Bucket

1209

Overilow
buckels

——

eI -1
T e

Figure 21: Mickel and-block orponiatlen fur hashlng
)

Let s represent the value:
s = upper buckel address value - lower bucket address valuc + 1

Herz, s gives the number of buckets. Assume that we have somc mechanism Lo converi key
valucs 1o numieric pnes. Then a simple hashing function is: .

hEK)=kmods

where k is the numeric representation of the key and h{k) produces a bucket address. A
moment’s thought tclls us that this method would perform well in some cases and not in
others., .

It has been shown, however, that the choice of a prime number for s is usually satisfactory. A
combination of multiplicative and divisive methods can be uscd Lo advantage in many
praciical situations. }) o 1

Introductery Concepls of
Duta Base Monagement System

72

There are innumcrable ways of converting a key to a numeric value. Most keys are numeric,
others may be either alphabetic or alphanumeric. In the latter two cases, we can use the bit
represeniation of the alphabct to generate the numeric equivalent key. A number of simple
hashing methods are given below. Many hashing functions can be devised from these and
other ways,

1. Usethe low order part of the key. For keys that are consecutive integers with few 8aps,
this method can be used to map the keys to the available range.

2. End folding. For long keys, we uicnufy start, middle, and end regions, such that the sum
of the lengths of the start and end regions equals the length of the middle region, The ~
start and end digits are concatenated and the concatenated string of difits is added to the
middle rcg:on digits. This new number, mod s where s is the upper limit of the hash
[unction, gives the bucket address:

123456 123456789012 654321

For the above key (converted to integer value if required) the end folding gives the two
values 10 be added as: 123456654321 and 123456739012, .

3. Squareall or part of the key and take a past [rom the result. The whole or some defined
part of the key is squared and a number of digits are selected from the square as being
part of the hash result. A variation is the multiplicative scheme where one part of the key
is multiplied by the remaining part and a numcbr of digits are selected from the result

4. Division. As stated in the bcgmmng of this section, the key can be divided by a humber,
usually a prime, and the remainder is taken as the buckel address, A simple check with,
for instance, a divisor of 100 tells us that the last two digits of any key will remain
unchanged. In applications whete keys may be in some multiples, this would produce a
poor resulL. Therefore, division by a prime number is recommended. For many
applications, division by odd numbers that have no divisors less than about 19 gives
satisfactory resulls

Wc can conclude from the above discussion thal a number of posmb]e methods for
generating a hash function exist. In general it has been found that hash funclions nsing
division or multiplication performs quite well under most conditions.

_To summarise the advanu:ges and disadvaniages of this approach :

Advantages of hashing :
1) Exact key matches are extremely quick.

2) Hashing is very good for long keys, or those with multiple columns, provided the
complete key value is provided for the query.)

3) This organisation usually allows for the allocation of disk space so a good deal of disk
© management Is possible.

4) Nodisk space is used by this indexing method.

Disndvantapes of hashing,:

1) It becomes difficult 16 predict overllow because the workings of the hasl'ung algorithm
will not be visible to the DBA.

2} No sorting of data occurs cither physically or logically so sequential access is poor.

3) This organisation usneally takes a lot of disk space 1o ensure that no overflow occurs —
there is a plus side w this though: no space is wasted on index structures because |.hcy
simply don’t exist.

To sum up hashing it’s true to say that not many products support this type of strucutre, and it <

is likely, I feel, 1o become entirely redundant in most sofiware RDBMSs. Ina hashing
orgamsauon the key that is hashed should be the one that is used most to retrdeve the data (or
join it to other tables) and this will often not be the primary key that I have previously
defined within the scope of logical data design, .

Flte Organtsatlon For

36 MULTIKEY FILE ORGANISATION Conventional DBMS

In this seclion, we have introduced a family of file organisation schemes that allow records
10 be accessed by more than one key ficld. Until this point, we have considered only
single-key filc organisation. Sequential by a given key, direct access by a particular key and
indexcd sequential giving both dircet and scquential access by a single key. Now we enlarge
our base to include those file organisation Lhat cnable a single data file to support multiple
access paths, each by a different key. These {ile-organisation lechniigues are at the heart of
databasc implementation.

There are numerous techniques that have been used to implement muhtikey file organisation.

Most of the approaches are based on building indexcs to provide direct access by key value.

The fundamental indexing techniques were already introduced in the section 34, In this

section we discuss two approaches for providing additional access paths into a file of data
records,

» Multilist file organisaﬁon

e Invertcd file organisation

3.6.1 Need for the Multiple Access Path

Many intcractive information systems require the support of multi-key [iles. Consider a
banking system in which therc are several types of users: teller, Ioan officers, branch
manager, bank officers, account holders, and so forth. All have the need to access the same
dala, say records of the format shown in figure 37 Various Lypes of users need to access
these records in different ways.A teller might identify an account record by its ID value. A
loan officer might need to access all account records wilh a given value for
OVERDRAW-LIMIT, or all account records for a given value of SOCNO. A branch manager
might access records by the BRANCH and TYPE group code. Abank officer might want
periodic reports of all accounts data, soried by ID. An account holder {customer) might be
able to access his or her own record by giving the appropriate 1D value or a combination of
NAME, SOCNO, and TYPE code.

ACGOUNT
‘97| name - | eroupcope | Balance | SVERRTY
" | wasT | FIRST |BRANGH| TYPE | .
Figure 22 : Example record format
Support by Replicating Daia .

One approach (o being able 10 support all these types of access is (o have several dillcrent
files, cach organised to serve one type of request. For this banking example, there might be
one indexed sequential account file with key ID (to server tellers, bank officers, and account
hoklers), one scquentiat account file with records ordered by OVER-DRAW-LIMIT (1o serve
Joan officer), one account file with relative organisation and user-key SOCNO (1o serve foan
officers), one sequential account file with records ordercd by GROUP-CODE {lo serve
branch managers), and one relative account file with user-key NAME, SOCNO, and TYPE
code (10 serve account holders). We have just identified five files, all containing the same
data records! The five files dilTer only i their organisations, and thus in the access paths they
provide.

Difficulties Caused by Replication

Replicating data across [iles is not a desirable solution 10 the problem of providing multiple

access paths through that data. One obvious difficulty wish this approach is the resuliam

storape space requircments, However, a more serious difficuilty with this approach is keeping

updaies o the replicated data records coordinatad. The mutti-key file is a classical and oflen

suecessul solrion ro the multiple-paih rewcieval problen: it uses indexes rather than data

replication. : A

7| prs pad

Inteoductory Conceply of
Data Base Manajement Syitem

74

Whencver multiple copies of data exist, there is the potential for discrepancics. Assume that
you have three calendars. You keep one at home by the ielephone, on¢ in your bricfcase, and
onc at your office. What is the probability that those three calendars show the same record of

appointments and obligations? The likely situation is that you will post some vpdates lo onc

copy bul forget 10 enter them in other copics. Even if you are quite conscientious about

updaling all three copies, there must be some lag between the times that the updates actually _

appear in Uic-three Jocations. The problem becomes more complex if somebody in addition
to you, for example your sccrelary, also updau:s one or more of yourcnlc.nda.rs The same
dilficultics arise in updaiing daia thal appear in multiple files.

The result of incomplete and asynchronous updates is loss of data integrity. If a loan officer
querics anc (e and finds that account #123456 has an overdraw limit of $250, then querics
another file and finds that the same account has an ovcrdraw limit of $1000, he or she should
question the validity of the data.

Support by Adding Indexes

Anothér approach o0 being able to support severul different kinds of access o a collection of
dat records is 10 have one data {ile with muluple access paths. Now lhere is only one copy
of any daa record 10 be updated, and the update synchronization problem caused by record
duplication-is avoided. This approuch is called mulli-key file organisalion.

The concepl of mulliple-key access gencrally is implemented by building multiple indexes 1o
provide diflerent access paths 10 the data records. There may also be multiple linked lists
through 1he data records. We have scen already that an index can be strectured in several
ways, for examplc as a able, a binary seareh tree, a B-frec, or a BT - tree. The most
appropriate method of implementing a panicular mulli-key fikc is dependent upon the aclual
uscs 1o be made of the dat and the kinds of mulli-key (ile support available, .

3.6.2 Multilist filé organi.;satiun

Before defining muliilist file orpanisalion, let us understand e difference betwcen linked
organisatton and scquential filc orpanisalion. Linked organisations differ from sequential
organisations cssentially in that the logical scquence of records is gencrally from the physical
sequence. In a sequential organisation, if the i'th record of the file is at location |, then the i +
1'st record is in the next physical position I, + ¢ where ¢ may be (he length of the i'th record
or some constant that determines the inter-record spacing. In a linked organisation the next
logical record is oblaincd by following a link valuc from the present record. Linking records
+together in order of increasing primary key value facilitates casy insertion and deletion once
the place at which the inscrlion or deletion to be made is kaown. Searching for a recortl with
a given primary key value is difficult when no index is available, since the only search
possible is a sequential search. To lacilitate scarching on the primary key as well as on
secondary keys it is customary (o maintain severaf indexes, one for each key. An
cmployee number index, for instance, may conlain entries corresponding Lo ranges of
cmployce numbers. Onc possibility for the example of figure 23 would be (o have an
catry for cach of the ranges 501-700, 701-900 and 901-1100, Ali records having E# in
the same range will be linked wgether as in figure 24. Using an index in this way
rcduces the kength of the lists and thus the scarch time. This idea is very easily
generalised 10 allow for casy secondary key retrieval, We just sct up indexes for cach key
and allow records Lo be in more Lhan one list. This leads 10 the multilist structure for
filc representation. Figure 25 shows the indexes and lists corresponding to mullilist
represeatation of the data of figure 24. It is assumed that the only fields designated as
keys arc: E#, Occupation, Sex and Salary. Each record in the file, in addition to all the

relevant information fields, has 1 link field for cach key field. L
Fecord | E# | Name Oecupation | Degree | Sox Locaion Ms | Salary
A |800 JHAWKINS |programmor | Bs. M Los Angeles | S 10,000
B.|510 |WILLIAMS }analyst B.S F Los-Angnlas M 15,000
C |as0 |FRAWLEY |analyst M.S. F | Minnoapois [s | 12000
D [7s0 |austiN |progemmer | 88, 0 | F [LosAngeles| S | 12,000
E {620 MES&‘;EH proprammor B.S. M | Minneapdlis M 8,000

Figure 23 ; Sample data fur Employee File

r |

The logical order of records in any particular list may or may not be imponant depending
upon the application, In the example filc, lists comresponding to E#, Occupation and Sex have
been set up in order of increasing E#. The salary lists have been set up in order of increasing
salary within each range (record A precedes D and C cven though E#(C) and E#(D) arc less
than E#(A)). .

Upper value
700
800
1100
E # index
Figure 24 : Linking together all seconds [n the same Lype
€ * index Occupation index
Maximum E* Intst| 700 | 800 | 1100 value analyst | programmer
Length of list 2 2 2 length 2 3
Pointer o firstnode | ~ 1 g painter B E
R | I | 1
! .
) E " link > O O o]
Occupatlon link |_GC (o] [o]
Sexting | D A c s} o
Salarylink |__© o c o o
B E D A - C
valua |Femala Male value | <9000 |= 12000 | < 15000
length 3 2 - length 1 3 1
pointar B E pointer E A "B
Sex Indax Salery Index

Flgure 25 : Multllist reprosentation I'r-lr Ngure 23

Notice that in addition to kcy valucs and poinlcrs Lo lists, each index entry also contains the
length of the corresponding Tist. This information is useful when retricval on boolcan querics
is required. Tn order 10 meet a query of the type, retrieve all records with Scx = female and
Occupation = analyst, we search the Sex and Occupation indexes for female and analyst
respectively. This gives us the pointers B and B. The lenglh of the list of analysts is less than
that of the list of females, so the analyst list starting al B is searched. The records in this list

:are rewrieved and the Sex key examined to determine if the record truly satisfics the query.

Retaining list lengths enables us lo reduce search time by allowing us o search the smaller
list. Multilist struciures provide a scemingly satisTactory solution for simple and range
querics, When boolean queries are invalved, the search time may bear no relation to the
number of records satisfying the query. The query K1= XX and K2 = XY may lcad lo 2 XX
list of lenigth n and a K2 list of length m, Then, min{n,m} records will be retrieved and tested
against the query. It is quite possiblc thal nonc or only a very small number of these

min [p,m} records have both K1 = XX and K2 = XY This situation can be remedied to some
calent bnthe use of compound keys. A compound key is oblained by combining two or morg
keys logcﬂ‘mr. We would combine the Sex and Occupalion keys Lo get a new key
Sex-Occupation. The-values for this key would be: [emale analyst, femalc programmer, male
analyst.and male programmer. With this compound key replacing the two keys Sex and |
Occupation, we can satisfy querics of the type, all male programmers or all programmers, by
retricving onlty as many records as actually satisly the query. The index sizc, however, grows
rapidly with key compounding. If we have ten keys K, wr K g the index for K, having n,
enlrics, then the index for the compound key K, K,..... K, will have n,f:, n, cauries whilc the

uriginul indexes, had a wotal of E}_l’, n; enirics. Also, handling simplc gueries becomes more
complex if the individual key indexes arc no longer rciained.)

File Organlsation For
Conventonal DBMS

75

'“‘T"‘:}"‘W’j Concepts °; Inserting a new record into a multilist structure is easy so long as the individual lists do not

Duta Bt Management SSUem 1 ave 10 be maintained in some order. In this case the record may be inserted at the front of
the appropriate lists. Delction of a record is difficult since there are no back pointers.
Deletion may be simplificd at the expense of doubling the number of link fields and
maintaifiing each list as a doubly linked list. When space is at a premium, this expense may
not be acceptable. An aliemative is the coral ring structure described below.

Coral Rings

The coral ring strecture is an adaptation of the doubly linked muliilist struciure discussed
above. Each list is structured as a circular list with a headnode. The headnode for the list for
key value K| = X will have an information field with vatue X. The field for key K, isreplaced
by a link field. Thus, associated with each record, Y, and key, K, in a coral ring there afe two
link fields: ALINK(Y,i} and BLINK (Y,1). The ALINK field is used Lo link together all
reconds with the same value for key K. The ALINKS form a circular list with a headnode
whose information ficld retains the value of K, for the records in this ring. The BLINK ficld
for some records is a back pointer ond for others it is a pointer to ihe head node, To
distinguish between these two cases another ficld FLAG(Y,i) is used. FLAG(Y,i) = 1 if
BLINK(Y,i} is a back pointer and FLAG(Y,i) = 0 otherwise. In practice the FLAG and
BLINK fields may be combined with BLINK(Y,i) O when it is a back poinier and 0 when it
is a pointer to the head node, When the BLINK field of a record BLINK(Y,i)isused asa

- back poinler, it points Lo the nearest record, Z, preceding it in its circular list for K, having
BLINK(Z,) also a back pointer. In any given circular list, all records with back pointers form
another circular list in the reverse direction (Sce figure 27). The presence of these back
poiniers makes it possible to cary out a deletion without having 4o start at the front of each
list containing the record being deleted in qrder to determine the preceding records in these -
lists. Since these BLINK ficlds will usually be smaller than the original key ficlds they
rcplace, an overall saving in space will ensue, This is, however, obtined at the expense of
increased retricval Gme. Indexes are maintained as for muldilists. Index eniries now point to
head nodes. As in the case of multilists, an individual node may be a member of several rings
on different keys. ’

analyst e ALINK(.)

= — & = BUNK{.}

BLINK { .1}

a =head noda for
analyst ring

forwrard drcular list contains nodes a,

i A BC,D.
raversa creular list containg nodes a, G, A

Figure 26 : Coral rings for analysts In a hypothetical e

3.6.3 Inverted File Organisation

Conceplually, invenied files are similar to multilists. The difference is that while'in multilists
recomds with the same key value are linked together with link information being kept in
individual records, in the case of inverted files this link information is kept in the index iscll.
Figure 27 shows the indexes for the [ile of figure 24. A sliphtly different strategy has been
used in the E# and salary indexes than was used in figure 26, though the same sirtepy could
have been used here 0o, To simplify further discussion, we shall assume that the index for
every key is dense and contains a value entry for cach distinct value in the file. Since the
index entrics arc variable length (the number of records with the same key value is variable),
index mainienance becomes more complex than for multilisis. However, several benefits
accrue from this schcme. Boolean querics require only one access per record satisfying the
query (plus some accesses to process the indexes). Queries of the lype K1 = XX and K2 =

% XY. These wo lists arc then merged o obuain 2 list of all records sa!.isl'ying the query. K1 =

XX and K2 = XY can be handled similarly by intersecting the two lists. K1 = not. XX can File Orpanisatlon For
be handled by maintaining a universal list, U, with the addresses of all records. Then, K1 = . Canventlonal DIMS
oL X2Cis just the dilTerence between U and the list for K1 = XX. Any complex boolean

query may be handled in this way. The retrieval works in two steps. In the first siep, the

indexes are processed 1o oblain a list of records satisfying the query and in the second, these

records are retricved using this list. The number of disk accesses necded is cqual tothe

number of records being retrieved plus the number to process the indexes.

Invericd files represent one cxtreme of [ile organisation in which enly the index siructures
are imporiant, The recards themselves may be siored in any way (sequentially ordered by
primary key, random, linked ordered by primary key eic.).

E# index Qccupatlion index Salary index
510 . analyst B.C 2,000 |E
620 programmer | AD,E 10,000 | A
-750 B 12,000 [C,D
800

) . Sex Index 15,000 (8B
850 . :

lemale B,CD
male AE

Figure 27 : Indexes for fully Inverted Me

Inverted filcs may also result in space saving compared with other file siriclurcs when
record retricval does nol require retrievad of key [iclds. In this ease, the key ficlds may be
deleted from Whe records. In the casc ol mullilist structures, this deletion of key fickds is
possible only with significant loss in system retrieval performance. Insertion and deletion of
records requires only the ability to insert and delete within indexes.

3.6.4 Cellular Partitions
In order to reduce file search times, the storage media may be divided into cells, A cell may
be an entire disk pack or it may simply be a cylinder. Lists are localised Lo lic within a cell.
Thus if we had a multilist organisation in which the list for KEY1 =PROG list included
records on several different cylinders then we could break this Tist into several smaller lists
where each PROG list included only those records in the same cylinder. The index eniry lor
PROG will now contain several entries of 1he type. {addr, length), where addr is a pointer to
the start of a list of records with KEY) = PROG and length is the number of records on this
lisL By doing this, all records in the same cell (i.e. records on this list By doing this, all
records in the same cell (i.c. cylinder) may be accessed without moving the readfwrile heads.
In case acell is a disk pack.then using cellular partitions it is possible to search different cells
_in paralic] (provided the system hardware permits simultaneous readingfwriting from several
disk drives).

It should be notcd that in any real sitvation a judicious combination of the techniques of this
section would be called for. L., the file may be inveried on certain keys, ringed on others,
and a simple mullilist on yet other keys.

3.6.5 Comparison and Tradeoff in the Design of Multikej File
Both invered files and mului-list files have
e Anindex for cach secondary key:

e An index enlry for cach distinet value of the sccondary key.

In cither file orpanisation
. @ The index may be tabular or tree-structured.

e Thecntrics in an index may ar may not be sored.

e The pointers (o data records may be direcl or indirect.
; 77

e e

Introductory Conerpls of
Data Bage Mansgement System

The indexes differ in that
e Anentry in an inversion index has a poinier to each data record with that value.
e Anentryin 2 multi-list index has a poi}ltcr to the first data record with that value.

Thus an inversion index may have variable-length entries whereas a mulli-list index has
fixed-length entrics. In either organisation

® The dawa record pointers fora key value may of may not appear in some sorted
order. :

e Keeping entries in sorted order introduces Ovc:hcad..
The data record file
® Isnotailected by having an inversion index built on top of iL

e Must contain the linked lisis of records with identical secondary key values in the
eulti-list strecture.

Some of the implications of these differcnces are the following:

e Index management is easier in the multi-list approach because entries are fixed in
length. :

¢ The inverted file approach tends to exhibit better inquiry performance. Many types
of queries can be answered by accessing inversion indexes withont necessitating
access 10 dota records, thereby reducing 1/0-access requirements.

¢ Inversion of a file can be transparent 1o a programmer who accesses that file but
does not use the inversion indexcs, while a multi-list struclure affects the file"s
record layout. The mult-list pointers can be made transparent to a programmer if
the data manager docs not make them available for programmr use and stores them
at the end of cach record.

Additionally, the multi-list structure has proven uscful in linking together occurrences of
different record types, thereby providing access paths based upon Iogical relationships, Itis .
also possible to provide multiple sort orders through a single data collection, by linking the
records Logether in order by various keys,

Check Your Progress
1. 'What is the difference beiween B-Tree and B tree.

2. Whya B* ree is a better structure than a B-tree for implementation of an indexed
sequental file? :

3.7 SUMMARY

In this unit, we discussed four fundamental file organisation techniques. These are
sequential, indexed sequential, direct and multi-key file organisation. The selection of the
appropriate prganisation for a file in an information system is imporant to ths performance
of that system. The fundamental faciors that influence the sclection process include the
following; ”

1, Nature of operation 1o be performed.

2. Characteristics of storage media to be used.

* 3. Volume and frequency of transaction to be processed. Flle Orgmlauon For-
. _ ’ Convertlonal DBMS .

‘4. Response time requirement. -

We also discussed trade-ofls betveen them. .

3.8 MODEL ANSWERS

1. InaB* teethe leaves are linked together (o form a sequence set; interior nodes exist
only for the purposes of indexihg the sequence set (not to index into data/records). The
insertion and deletion algorithm differ slightly.

2. Sequential access 1o the keys of a B-tree is much slowez than sequential access o the
~ keysofa B* tree, since the latter are linked in sequential order by definilion,

39 FURTHER READINGS

1. Bipin C. Desai, An Introduction 1o Database Systems, Galgolia Publication Pvt. Lid.
New Delhi, 1994, ’ '

2. Mary E.S. Loomis, Data Management and File Structures (Second Edilion) PHI,
3, Horowiz & Sahni, Fundamentals of Data Strucitore, New Delhi.

79

;= | ey

UNIT4 MANAGEMENT CONSIDERATIONS

~ Structire

40 Intoduction

4.1 Objeclives

4.2 Organisational Resistance 10 DBMS Tools

4.3 Conversion from an Old System 'lo a New System
44 Evaluation of a DBMS

435 Adminisiration of 3 DBMS

4.6 Summary)

4.7 Modcl Answers

4.8 Funher Reading

4.0 INTRODUCTION

Unlike he previous two units where we discussed mainly technical issues related to DBMS
i e. file organisation of conventional DBMS, different models of DBMS, in this unit we will
focus on administrative aspects of managing data. This unit will comprisé issues of
organisational resistance, the methodology for conversion from an old system to a new
system, the i 1mport.ancc of adopting a de-centralised distributed approach and evaluation and
administration o7 such systems. The material stated in this unit would get further strengthen
by a specific example of ¢nterprise-wide different management that is being discussed in the
followmg unit. ‘ .

4.1 OBJECTIVES

Alter going through this unil, you should be sble to :
e identify the factors causing resistance to the induction of new DBMS tools;

e determine the path that must be chosen in converting from an old existing system toa
new system; -

o list the various [actors that are imponant in evaluating a DBMS system;
e formulale a simplc evaluation methodology for DBMS selection and acquisition;
e cnumerate the functions of the database administrator; and

. @ list the check-points and principles which must be adhered to in order that information

quality is assured.

4.2 ORGANISATIONAL RESISTANCE TO DBMS
TOOLS

Organisations who theoretically and ideally be rationale and their decision making not to be
guided by purely an objective approach of its own good. In practice, this does not happen

* and organisations react to information systems by offering resistance. Thisisa partofan .

inherent opposilion Lo change, There are some aspects of change related to information

System that arose great passion. This drose because of some of the following factars;

e Political ohservation: The officers and mansgers at different levels of an organisation
feel threatened with the nice long standing poli equations and relauonshnps which
have cnjoyed their otherwise upward movemer‘#."gnmm the organisation, and may be
threatened by a new intervention into their styles Yof working.

~e _ Information transparency: In the absence of n electronic computer-based efficient

informalion system, many funclionaries in an ‘arganisation have access to information
which they control and pass an giving it the colour that would suit them. The

- availability of infarmation through computer-based systems to almost all who would
have an interest in it makes this authority disappear. It is therefore naturally resented.

. Fear of luture potential: The very fact that compuiers can slore information in a very

compact manner and it can be collated and analysed very speedily gives rise to
apprehensiens of [uture adverse use of this informalion against an individeal, Mistakes
in decision making can now be highlighted and analysed in detiil afier Ieaming spells of
time. It would not have been possible in manual fike-based systems or any system where
the data does not flow so readily.

Imer-departmental rivalry, fear of personal inadequacy, in comprchensive of the new regime
the loss of orcs own pawer and the greater {reedom o others-and difference in work styles -
2|t add up to produce resistance to the induction of new information processing tools. Apart
[rom thesc general considerations, there are reasons 10 resist instailation of a ncw DBMS.

There are sevcral poinis of resistance o new DBMS 1o0ls:

e Resistance 1o acquiring a rew tool

Resistance o choosing 10 use a new tool

« Rcsistance 1o leaming how 10 use a new wol
« Resistance to using a new tool.

The selection and acquisiLioii'ol' a DBMS and related tools is oné of the most important
computer-relaicd decisions made in an organisation. it is also one of the most difficult.
There are many systems from which 10 choose and it is very dilfficult to obtain the nec#ssary
information 10 make a good decision. Vendors always have great things (0 say, convincing
argument for their systems, and often many satisfied castomers. Published literaure and
software listing services are 100 cursory 1o provide sufficient information on which to base a
decision. The mere difliculty in gathering information and making the sclection is one point
of resistance (o acquiring the new DBMS tools. ~

The initial cost may also be a barrier 1o acquisition, However, the subsequent .nvestment in
uaining people, developing applications, and entering and mainwining daa will be many
lime more. Selection of an inadequate system can greatly increasce these subscqucnl. cosls to
the point where the inilial acquisition cost becomes imelevanL

In spite of the apparent resistance to acquisition, the projections for the daabase industry are
{orccasting a muiti-billion doliar industry in the 1990%. Even though an organisation may
acquirc a DBMS, there are siill several additional points of registance Lo overcome.

1Simply having a DBMS doces not mean that it will be used. Scveral factors may contribute o

the lack of nse of new DBMS rools.
o lack of familiarity with the tools and what it can do

e sysicm developers used to wriling COBOL (or other language) programs prefer o build
syslems using thic (20)s ey already know

e the pressure to get new application development projects completed dictates using
established tools and techniques .

» systems development pcmonncl have not been thoroughly tained in Lhe use of the new tool

» the organisation has not sct up a program (0 trair uscrs of new DBMS tools

- » users arc reluctant o use a new tool becausc there is no one in the organisation to

provide advice in its use and to help when problems arise
e toolis only knowii to a fow specialists in the data processing depariment
s noone in the organisation is compelling cven encouraging the use of new DBMS 1ools

e DP mahage.mem is afraid of run away demand on the compuﬁng facilities if they allow
users Lo directly access the data on the host computer using an usy 10 use, high-level
retrieval facility

e organisatiopal policics which do not demand appropriale juskfication for lhe 100l
-chosen (or not chosen) for each system development project.

Having pointed out the transactions from which utility can atisc to the intervention of a new -

DBMS, it may be nscful 1o have a summary of a few poinlers whith wonld posslbly lead 02
~ greater.success in such an endeavour.

Munagement Conslderations

L.?n?_'

817

Introductory Concepls of
Data Base Manogement System

82

Reasons for snoccess

Appreciation for information
is a valuable corporate
reasons and its management
must be given special

.importance.

Fecusing on most beneficial
usage of datahase, which
relate 1o the bottom level.

An incremental approach to
building applications with

each new siep being reasonably
small and relatively easy 10
implement.

Cooperale-wide planning by a
high level, empowered,
competent data administrator.

Conversion planning which
permits all the systems to co-
exit with the new.

Awareness education and
involvement of all persons at
a level appropriate (o the.1r
functions.

Good understanding of the

technical issues and tight
technical control by the
database administrators.

Recognition of the importance
of a data dictionary and
standards for naming, update
contro] and version
synchronisation,

Simplicity,

A'proper mix of centralised
guidance and de-centralised
implementation.

Proven-work-free software.

If the above factors leading 1o success or failure of the project are borne i in mmd. the chancw
of a successiul implementation and the possibmty of organisational benefit from thisis- -

ETEaler,

Reasons for failure

Perception by the barrens in
the organisation that the MIS
design i3 amengce
conflicting interest to
prevent the success,

Over sailing MIS 1o top
management and chosen .
applications for their
challenge (o the programmer
members,

A prant design far creation
of an impressive system
that can be a pinata fer -
all information problems,

Fragmé.nted plans by non-
communicating and not
eventally response groups,

A siation which may put
into the new system and
attempis o re-wrile o
many old programs.

Apathy by most people to
implementation of the new
system. -

Inadequate computing power,
incomrect assignment of
throughput and assigned

time and failure 1o monitor
usage and performance.

Casual approach to dala
standards and documentation,

Confused thinking.
Indifference of the central

system and proliferation of -

incompatible systems.)
The latest software wonde.

——r = —§

4.3 CONVERSION FROM AN OLD SYSTEM TO-A

NEW SYSTEM

Management is-also concerned with long-term corpcn-atc strategy. The dambasa selecled has.
10 be consisient with the commitments of that corporale strategy. But if the organisation .
does not have a corporate database, then one has to be developed before conversion is to take
place. Selecting a datahase has (o be from the (op down: data flow diagrams, representing
the organisation’s business functions, processes and activities, should be dawn up fisst;, -

followed by entity-relation charts detailing the_relationships between different business Munagement Conslderations
information; and then finally by data modclling. If the enlily- rclationship chart has a
tree-like structure, then a hierarchical data siniciure should be adopted; if the chart shows a
network structure, a network data’structure should be chosen, Otherwise, a sniversat
structure, such as that of a relational database, should be choscn,

Corporate Strategic Decisions: The database approach 1o information sysicmsisa
long-term investment, It requires a large-scale commitment of an organisalion’s resources in

" compatible hardware and sofiware, skilled personnel and managément support.
Accompanying costs are the education and training of the personnel, conversion and
documentation. It is essential for an organisation to fully appreciate, if not understand, the
problems of converting from an existing, file- basced system to a database system, and to
accept the implicdtions of its operation before the conversion.

Before anything else, the management has 1o decide whether or not the project is a feasible
one or that it matches the users' requirements. Costs, timetables, performance considerations
and the availability of expertise arc major concems too. A pilot project to act as a benchmark
is always necessary. A successful data resource management environment must have this

. management commitment, along with adequate resources in budget, people, equipment and
material, a data dictionary, and integrated organisation of people and data in the
data-administration section,

X .
Hardware Requirements and Processing Time: The database approach should bein a
position to delegate (o the database management system some of the functions that was
previously performed by the application programmer. As atesultof this delegation, a
computer with a large internal memory and greater processing power is needed. Powerful
computer sysiems were once the luxury enjoyed by those database users who could afford
such systems but fortunately, this trend is now changing. Recent developments in hardware
technology has made it possible to acquire powerful, yet affordable sysicm.

Depending on the structure of the data and the access methods to them, the use of a database
management system may result in longer processing times. Far some database applications
the run time can be just &5 quick - if not quicker than the conventional environment. But if
the run times for a majority of cases in the existing environment is so much slower, than the
database approach is an unwise decision,

For some applications, the need for high-volume transaction processing may force a
company 1o engineer one or even several sysiems designed o satisfy this need. This
sacrifices a certain flexibility for the system to respond to ad-hoe requests.

And it is also argued that because of the easier access to data in the database, the frequency
of access will become higher. Such overuse of computing resources will cause slips in
perfnmance, resulling in an increased demand for computing capacity. It is sometim
difficoit to dztemine i the increased access to the database is rmlly necessary. '

The dawabase approach offers a number of imporiant and practical advaniages [o an organisation.
Reducing data redundancy improves consistency of the data as well as making savings in slorage
space, Sharing dala often enables new applications to be developed withount having to create new
dala files, Less redundancy and greater sharing also result in less confusion between '
organisational units and less tie spent by people resolving inconsistencies in reports. Centralised
control over data standards, security restrictioris, and so on, facilitates the evolution of
information systems and organisations in nse (o changing business needs and strategies.
Now-a-days, users with little orrio previols programming cxpericnce can, with the aid of
powerful user- friendly query langu.age.s,’ mangpulate daa o satisly ad-hoc queries. Data’
independznce helps ease program developmertkand maintenance, rising programmer
productivity, All the benefits of the datibase agproach contribute to reduced costs of application
development and improved quality of managerial decisions.

A principal component of the changcover from a conventional system to a database system is
the conversion of data files and applications programs to a form needed by the database
management system. The accuracy with which this is done is vital to the success of the
database system. Once (he nrograms and files have been converted, the new procedures may
be introduced by either parallel running or pilot running. This must be properly planned and
controlled, and the necessary instructions must be issued to both users and data-processing
staff. ‘When the users are satisfied, the new systems can be handed over, and the database
administrator will stay on as part of the maintenance group, '

83

e |

=y

Intnductory Councepts of

Datn Pose Munogenicnl System

Amid the volatile dna processing world where lechnology advances so mpidly, the data

processing manager must satisly user demands while maintaining an economical operation.
Management must set specific goals for developers and uscrs alike 1o Iearn the new Wwols of
the database management sysiem. The investments will pay off when uscrs and developers

. become proficient in accessing data and building systems with the new tools. They reap the

cconomic regards and benefits of the hardware/soliware capabilities of the database system,
the database manner and the database administrator both need a variety of database
conversion tools. A new sofiware technology catled duta translation is being developed at
many rescarch institulions, but the research is still in its infancy. Many more years of
research is needed to dispel the doubts and fears faced by many processing installations on
the decision to go for datahase,

Dawabase conversion is not an easy task. Depending on cach situation, management has o
decide which approach is the best one - coexistence, or having two databases,
redevelopment, conversion, transparency, or DML substitution and packages. The
management must bear in mind the impanance of user-learming curve in accepting a new
database for the organisation. Also, conversion to a hicrarchical or a network database is
more difficult than to a relational dawabase because relational databases have simpler data
structures. Users need only to define keys in each able file; very often keys are det'ncd with
the table [iles.

In general, converting to a database involves the following:

1. Inventorise currcnt systems such as data volume, user satisfaction, present condition and
the cost to maintz2in or redevelop.

2. Determining conversion priority in strategic information system plans, building block
systems and critical needs o replace system.

. QOblain commiwment from senior/lop management.
. Appoint qualificd dawsbase-administration stafT.

. Education management information systems stafl.
. Select snitable and appropriate soflware.

. Inswall data dictionary [lirst.

. Involve and educate users.

o 00 =~ th Lh AW

. Redesign and implement new dala stractures,

10. Wrile software utility tools to convent the files or database in the old system Lo the new
database.

11, Mod‘iry all application pregrams 1o rnaké use of the new data structures.
12. Design a simple dawabase first for pilot testing.

13.I Irmplement all software.

14. Update policies and procedures,

15. Install the new dzilabase (‘m production.

In the recent wrend of database development, a common front- end to the various database
management sysiems will often be constructed in such a way that the original systems and
the programs on them are not modified, but their databases can be mappod to cach other
through a single uniform language.

Another approach is to unify various database siruciures by applying the dalabase standards
laid down by the Intemational Standards Organisation for data definition and data
manipulation. Public acceplance of these standard database strecmires will ensure a more
rapid development of additional conversion tools, such as antomatic functions for Joading
and unloading databases into standard forms for model-to-model database mapping.

If an organisation afice weighing all the relevant factors decides to make an invesimentin a
good database management sysicm, it has to devejop a product planned for doing so. Many
of the sleps required arc more or less along the lines thal are required when an organisation

first moves in towards the use of computer-based information system. One would Management Considerations
immediately note the similarity to the steps referred 1o in the course on “System Analysis and

Design". In the interest of bricfing therefore the reference would be only 10 those factors

which arc of grealer consequences for the problem at hand. It may, however, be useful to

bear in mind that a detailed implementation plan wounld be more or less along the lines of

creation of a computer information system for the first Lime.,

4.4 EVALUATION OF A DBMS

The evaluation, is not simply a matter of comparison or description of one system against
another independent system, and surveying sometimes available throngh publication do
describe and compare the features of available systems, but a valuc of an organisation
depends upon its own problem environment. An organisalion must ﬂ'lcrel'ore look at this own
needs to evaluation of the available systems.

It is worthwhile putting some attention to who should do this.” In a small organisation it is
possible that a single individual would be able to do the job, but larger organisations need to
formally establish an evaluation team, Even this team’s composition would somewhat
change as the evaluation process moves ori, A good role in the initial stage would be played
by users and management focus on the organisational needs. Computers and Information .

- technology professionals then evaluate the technical gaps of several candidate system and

finally financial and accounling personnel examine the cost estimates, payment allernatives,
tax consequences, persgnnet rcqm.rcmcms and contract negotiations.

The rcasons which inspire the organisation o acquire a DBMS should be clearly documcnted
and used to determine the propertics and help in making trade offs between conflicting -
objectives and in the sclection of various features that the candidate DBMS may have,
depending upon the end-uscr requirements. The evaluation team should also be aware of
technical and administrative issues. These lechnical crileria could be the following:

(@) SQLimplementation

(b) Transactiop management '
{c) Programming interface

(d) Database server environment
{c) Data storage fcalures

() Database administration

(g) Connectivity

(h) DBMS integrity

Similarly there conld be administralive criteria such as:
{1) Required hardware platform

(:;.) Doecumentation

(3) Vendor's financial stability

{4} Vendor support

(5) Iniual cost

{6) Recuning cost

Each of these, especially-the technical criteria could be further broken into sub-criteria. For
example the data slorage features can be further snb-classified into :

{a) lostdatabascscgmenls
(b) clustered indexes
{c) clustcred tables

Once this lcvel of detailing is done, Lhe list of features becornc qum: larpe and may cven run
into hundreds. Ifa dozen products are to tie evaluated, we are’(alking of a fairly large matrix.

At this point, it is important for the evaluation teams and especially its lechnical members to

segregate these features into thosé which are mandatory. Mandatory features would be those

which if not present in the candidate systenn, the system need not be considered further. For

cxample, does DBMS provide facilities for progmmmmg and non-programming users? Can

be considered as one.among several mandatory conditions. Mandatory requirement may also 85

T L

Introductory Concepts of
Data Dase Management Systern

85

[llow Irom a desire lo preserve the previous investment in information systems made by an
organisaion. The presence of the mandatory condition means that the system is a candidate
for the rating procedure.,))

Having done the first stage of creating a feature list, onc of the simplest ways could be to
develop & table where the features and its related information for each candidate system is
listed 10 in a tabular form against the desired feature. Such forms can be chosen to compare
the various systems and although this cari not be enough to conclude an evaluation, it is a
useful method for at least broadly ranking and short-listing the systems. A quantitative
flavour can be given 1o the above approach by awarding points for features which are in
simple Yes and No type. Il all the features are not equally imporiant 1o the organisation, ifien
the summing up of the points awarded for each of the featurcs for any of the system is not
quite appropriate. In such a case a rating factor ¢an be assigned to each feature to reflect the
relevant level of importance of that feature to the organisation. Of course such rating or
scoring should be done after the first condition of mandatory requirements have been met by
the proposed system. Sometimes the mandatory characteristics may be expressed in the
negative as something which the sysiem must not have.

The points of the rates is a contentious issue and must be decided locking only to the needs
of the organisation and with reference to the characteristics of any specific candidate system
one of the approaches used. towards arriving at a suitable set of rating faclors is to follow the
Delphi method. In bricf, the Delphi approach requires key people who may be expected to
be knowledgeable lo make suggestions as 10 what would be the appropriale rating factor.

‘These are collected, compiled, averages taken and deviation from averages peinied out. This

dala is then re~Circulated, to the same set of people for wanting to change their opinions
where Lheir own views were varying largely from the average, The delails can then be
carried out and it has been found that in about as few as 3 to 4 iterations in good consensus
emerges, .

One of the weakness 1of the methodologies discussed so far is that they are focusing on the
systems but not on the cost benefit aspects. A good evaluation methodology should be
possibly suggest the most cost effeciive solution to the problem. For example, if a system is
twice as good as ancsther system, but costs only 40% more than it ought 10 be a preferred

solution.

In order 1o carry azost after analysis ane has 10 use a rating function with each feature to
nomalize the sequence. Rather than having an approach where a feature is characterised as
a Yes/No, (he attrilute corresponding to its presence or absence which in marks term could
be O or 1, a mark «:an be given on a scale which is appropriate to the feature, This can arise
in issues such as the number of terminals that are supported or the amount of main memory
required. Rating functions can be of several types of which 4 are illustrated in Figure 1,

(@) Linear; In alinear raling function the ral.ing\incre.ases in proportion to higher marks
starting frorn O,

() Broken linear: There are situations where the minimum threshold is essential and
similarly there is a saturated value above which no additional value is givén, Typically”
in generak concurrent access, few or 3 would be includable value and mare than 9isof
no additicynal value, -

() Binary: This is of course an Yes/No type where 2 system either has or does not have the
feature rr some minimom valuc for the f X

(d) Inverse: There ere some auributes where'a higher mark achually implies a lower mating.
For cxample in accessing the time to process a standard query, the mark may be simply
the time scale in an appropriate manner. Therefore, a shorter time actuglly has a higher

. rating. . -

For each feature, the rating function uses an appropriate and convenient scale of
measurement for determining a system's feature mark. Ths rating function ransforms a
system:’s featre mark into a normalised rating indizating its value relative to a nominal mark
for that feature. The nominal mark for each featun: has a nominal rating of one.

" The use of rating function is more sdphisticalcd and costly to apply than the simplified

methodologies. The greater objeclivily and precision obtained must be weighted against the
overall bencfits of DBMS acquisition and use, Some features will have no appropriate)
objective scale on which 10 mark the featire. The analyst could use a five point scals with a
linear rating function as follows: .

o= i

Feature evaluation Rating point Management Consideralions
Excellent (A) 5 ' ’
Good (B) -4

© Average (C) 3
Fair (D), 2
Podr (E) 1

Variations can expand or contract the rating scale, using a nonlinear raling function, or
expand the points in the feature evaluation scale Lo achieve greater resolution. In extreme —
cascs, the analyst could simply use subjective judgement to arrive at a rating dircctly, :
remembering that a featare rating of one applics to a nominal or average system.

Having converted all the marks 10 ratings, the system score is the product of the rating and
thie weight summed across all features, just as before. The overall score for a nomma‘{ system
would be one (since all weights sum to one and all nominal ratings are onc). This is
important for defermining cost effectivencss, the ratio between Lhe value of a system and ils
coel. The organisation first determines the vatue of a system which cams 2 nominal mark for
all featnres. This is called the nominal value. Then the actual value of a given system is the

LINEAR Vaflda!mn
rating increases Mark is the mumober of differeat
in im 1o rales for (Eulmg validation |
higher marks, crilerin on data jlam values.

| | I l 1 1 1 -

1234567 - > Mer,

3 ¥ rules
Nominal
Mark
AR

BROKEN Concurrant Arcess

Mark is the number of concurrent
users handled; fewer than three
is of ncgligible value (R=0)

and more than ninc is of no
additional valun (R=2).

_ LINEAR
with” mintmum thnfhold
of value and wwmntion level
of maximum valuz. 1

169

L} ;.llﬂ'l
Nominal o -
AR
BINARY - Reyrieval
L TyICIm either = fheeeeeeee ey P ——————— Mark i the I'Il.'ll'l'lhl' of n:mrd
does or does not 1ypes addresuable in e single
have the feswre, queryy Lwo is nominal more
or Eome minimim. is not warth & higher mu:lg
|
—> M
2 d
Norninal W rereocd Lypes
&R
TNVERSE Performance
a higher mark Mark is the time 10 txccule a
roduces » standard 11ery' s shoner lime
ower rating. 1l has a higher ming (perhaps)
. reflecting machine costs).
- > "M
169 M ds
Naminal

Pirore : Sample Feature Rating Funvtions

87

:;‘:‘:3““";{ C"“:::’“t"; stom K product of the overall sysiem score and the ..ominal value, Thie.cost effectiveness of a
5 as Mdnagement Sy system is the actual value divided by the cost of the system. System cost is the present value
cost of acquisition, operation and maintenance over the estimated life of the system,

With a cost-effectivencss measure for several candidate systems, the organisation would
tentatively select the sysiem with the highest cost-cflecliveness ratio.

Of course there may be intangible factors other than the technical and adminisixative critcria
referred to earlicr which may influence the final selection based upen political judgements of
the management or some other considerations, It would of course be possible to even (o
build these up of that can be explicitly so illustrated into the evaluation process, -

4.5 ADMINISTRATION OF A DATABASE -
MANAGEMENT SYSTEM

Acquiring a DBMS'is not suficicnt for successful data management. The role of database
administrator provide the human focus of responsibility to make it all happen. The DBA role
may be filled by one person or several persons.

Wh‘Bneve.Lpeople share the use of a-comm¢n resource such as data, the potential for coﬁflict
exists. The database administrator role i is fundamentally a people-oriented finction to
mediale the conflicts and seck compromise for the global good for the organisarion,

Within an organisalion, database administration generally begins as a support function within
the systems development unil. Sometimes it is in a technical support nnit associated with
operations. Eventually, it should be separate from both development and operations, residing
in a collection of support functions reporting directly to the director of information systems. -

- - Such a position has some stature, some independence, and can work directly with users to
capiore their data requirements. Database administration works with development,
operations, and users o coordinate the response (o data needs. The database administrator is
the key Tirik in establishing and maintaining management and user confidence in the database
and in the system [acilities which makc it available and control its inteprity.

While the ‘doing” of database system dcs13n and development cani be decentralised to several
dcvelogment projects in the Data Processing Department or the user qrganisations, planning
and control of database development should be centralised. In this way an organisation can
provide more consistent and coherent information to successively higher levels of
management.

The functions associated with the role ol‘ database administration include:

s Definition, creation, revision, and retirement of data fonnaﬂy collectzd and stored
within a shared corporate dalal:nsc

o Making the database avallablc to the using environment through tools such as a
DBMS and related query languages and report writers,

e Informing and advising users on the data resources currently available, the proper
interpretation of the data, and the use of the availability tools. This includes
educational majerials, training sessmns. pammpauon on projects, and special
-assistance,

. Majnlaining database iniegrity including cx;-slanoe control (backup and recovery),
definition control, quality control, update control, concurrency contral, and access
control.

e Monitor nd improve opcralions and performance, and maintain an andity trail of
datahace activities.

The data dictionary is one of the more imporiant tools for the database administrator, It is
used to maintain information relating to the various resources used in infermation Systems
{hence somelimes called an informalion resource dictionary)—dats, input transactions,
outpitreports, programs, application systems, and users. Itcan:

- » Assist the process of system analys:s and deSIgn

S e Provide a more complete definition of the data slorcd in the database (thari is
88 maintained by the DBMS). - -~

e [Enable an organisation to assess the unpar,l of a suggested changc within thc
information system or the database,

s - Help in establishing and rnamtmnmg siandards, for example, of dala names.

s Facilitate hljmah'con-lmunication'lhmugh more complete and accurate
documentation.

‘Several dam Hictiqnmy software packages arc commercially available.

The DBA shoiild also have tools to monitor the performance of the database system to
indicate the need for reorganisation or revision of the database.

Check Yoor Progrﬁs o
1. List factors which motivate the move to acquirc the DBMS approach,

4.6 SUMMARY

The process of selecting, evaluating and finally acquiring a DBMS package takes a
substantial time and efforts. Me tasks begin when the need and requirement of an
organisation and user is strongly felt, Designing such package in-house is not a realistic
alternative with more and more reasonably good commercial system available in market.

The important criteria for selection of DBMS are technical and administrative criteria. The
key technical criteria relate to the type of system required, balancing the competing
objectives of efficiency and functionality. Administrative criteria include vendor
charactcristic matnienance support, documentation, training and ease of leaming and use,
cast elc.

An organisation will live with chosen DBMS for several years. If the initial siudy and
selection is done wilh a broad view or organisational needs now and into the future, the
choicé can enhance data processing is responsivencss to user needs, managerial dJIl'ercnce
effectiveness and organisation profitability.

4,7 MODEL ANSWERS

1. e Faster response Lo queries
e Fasier application development
® Data sharability |
® Redoced program maintenance
° Adaplabiliﬁ lo changing requirement
e Increased security '
® Tmansferability atross hai;hg’a;_e

2; _ The foundation of the data dictionary is information about data items with a
comprehensive base of information, the dala dictionary can scrve several uselul

Management Considerations

4~ par ol

Introduciory Cuncopits of
Data Bdse Monagonenl System

S0

purposes. These purposcs span the whole spectrum of planning, determining
information requirement, design and implementations, operations and revision.

® Data availability : A data map for end users to discover what data exists in the
organisation, what it means, where itis stored and how 10 access it. May be
provided using a facility for browsing through a data dictionary,

e Documentation : Providing reports of data about data. The data dictionary can be
used to generate a graphical representation of database structure similar to
automatic program flowcharting. In a general sense, the data dictionary is a vehicle
for managing size and complexity in a database environment. In a typical
single-function organisalion (not a mixed conglomerate) the individual data items
will number in the several thousand. The data items appear in hundreds of files
(record types) which are interrelated and in hundred of input transactions or data .
capture screzns and omput reporis. ’

48 FURTHER READING

Everest, Gorden C., Database Management Objectives System Functions & Administration,
McGraw Hill Tnternational Editions, 1986. .

e T

UNIT 5 ENTERPRISE WIDE |
" INFORMATION SYSTEM OF THE
TIMES OF INDIA GROUP
(A CASE STUDY)

Structure

50 Introduction

5.1 Objectives .

52 Organisation and the Operating E:nvu-onmcm

5.3 Unique Nature of the Business

54 Shiftin Strategy :

55 Information System Goels and How to Achieve the Goal

56 Implementation Pians and Problems during the Implementation
5.7 The Response Sysw'n and Respnet Choices

5.8 Benefits-

© 59 Fufime,

5,10 Sammary '

50 INTRODUCTION

The Times of Indin is a leading Publishing House of India. The Group is implemeriting an
" Enterprise wide Information System to help it realise its strategic goals. One component of

the System is RESPNET. Respnet is discussed at some length. The problems faced in
implementing it are mentioned. The role of Ingres in the Information System is touched

npon.

5.1 OBJECTIVES

After going through this unit, yodshoum be able to:

¢ understand the need for an Enterprise wide Infonnauon System in g large
Publishing House,

¢ . understand the meaning and complexity of an Enterprise wide Information System
- in a large organisation with offices in several places throughout the country;

e understand the components of an Enterprise wide Information System; _

o _understand thc detnils of the implementation of an Enterprise wide Information
Systcm;)

[2 unders!and the problems encountered dunng the implementation of an Enterprise
w:dc Information System;, - -

o“' undf:rsland the benefits of an Enterprise wide mt'ormalion System:

. ® understand the role of a commcrciaily gvailable Database Management System
(Ingres) in implementing an Enterprise wide Information System; and

e appr&:imc the need for continual enhancement and technological upgradation in
, mamtmnmg an Enterprise wide Information System.

5.2 ORGANISATION AND THE OPERATING
ENVIRONMENT

The Times of India Group is the leading publishing house of the country. The group
pubhshcs thrée national newspapers, two regional ones and one evening paper besides a few
magazines. For over 155 years now the Times of India has consistently maintained its
position as the flagship among Indian dailies, Its six editions can beast of a combined -

" circulation of over 500,000 and a readership of over 2,000,000. Independent surveys have

91

1oy] e ey

Introductory Concepis of
Datn Boxe Manngement System

9%

+shown that about 70% of Indian decision makers read,the Times of India. The Economic

Times, the national financial paper, enjoys a pre-eminent position in its category.

The combined annual tumover of the Group is Rs. 3 billion (about US § 100 million). It has
12 Major branch offices of which 9 are publishing centefs. In addition there are over 40
smaller marketing offices,

In addition Lo its publishing aclivities, the Group prodiices software for Television and is a
major purchaser of Radio (FM) broadcasting time. It also has a company olfering financial
services, Other expansion plans are afoot. -

The Group has to operate in a fiercely competitive business environment. The rivals include
other newspapers and magazines and other media, mainly television, With the expansion in
the reach of national and satellite television, there has been a perceptible shift in the
preference of people away from newspapers and towards television and video,. This decline
in the reading habil has affected all newspapers and publishers and has led to greater
competition among them. . ' :

This has led 10 a situation not unlike that in any other business activity. Timely and accurate -
commercial information has become indispensable not only to grow and 1o thrive, bat for
mere survival as well. The information required can be classified broadly into that glefined
from external entitics and the portion which originates in the organisation itself, = -

While computers are of immense help in both these pursuits, this paper discusses mainly the
experience of the Information Services Division (ISD) of the Times of India Group in
making available internal commercial information to various levels of management. The task
would be a mammoth one anywhere, but in a developing country like India it poses an
additional set of problems o those carrying it out. The process is still on, though good
progress has been made already, ‘ - - -

5.3 UNIQUE NATURE OF THE BUSINESS

Befare going on to sharing ISD’s experience in more detail, it would not bé out of place to.
elucidate the dynamics of the newspaper business. It has certain features that make it quite
different from the typical manufacturing or trading corperawon, These features have had their
impact on both the approach 1o the design of the information system as well as on the
development of its specific components. : ’

There are three main functions in this industry. These are the editorial, which gathers news, ~
articles, syndicated columns and the rest of the contents of the newspaper for which the
majority of the readers read and buy it. The talent in this area consists of the journalists who
lend character to the contents of the paper. Excellence in editorial and news content helps
boest circulation, which is the life blood of the newspaper. As is known even to lay persons, -
the income from circulation forms only a small part of the eamings of a newspaper. A large
circulation helps increase the columnage of advertisements carried. Advertisements are the
major source of revenue for a newspaper and determine its financial fortunes. . - .

* OF course, success in selfing advertisement space means enough resources for the newspaper

to plough back into improving its editorial content, in improving facilities for, staff functions
and generally all over the organisation. This is the circle which drives this line of business.

The absence of any reference to the actual production process will not have goné unnoticed
by discemning readers. While its impartance cannot be overstated, the potential benefits of
excellence in manuiacturing are cost saving due to reduction in wastage and the like. The
potential es regards increasing revenue is only peripheral, by using good paper, producing

- legible copy and so on, Hence the printing process has not been mentioned while describing N

the main business cycle of a newspaper, - -

Since advertising is the major revenue eamer, it assumes the greatest mpormncemany
information system built for a newspaper. The peculiar characteristics of its functioning
therefore need (o be elaborated upon. .. :

In a Newspaper Group like the Times 6f India, adve:tuse.menls may be boolned froim any

- branch office for publication in any edition of any newspaper published by the Group, which

is often called a product. Different products may be published from different sets of - |
branches, and each of them could have a different value as far as advertising warth o clients

i
T
[

i ey P e —

goes. Hence the situation is different from a multi-location manufacwring organisation. In Enterprise wide Information
such an organisation, although the same product could be manufactured from differcnt System "';:’::lg;‘:
facilitics located at different geographical sites, there would not be any diflerence between

them, A difference would exist only if they were different products.

For example, consider a company which manufactures washing machines and refrigerators, *
the former from locations A, B, C and D, and the latter from B, C and E Il an order is
received for refrigerators, they can be supplied from B, C or E. Similarly weshing machines
can be supplied from A, B, C or I» and there is no difference between appliances supplied
from different locations,

This is not the case with adveniising space. If a newspzr 'x’ is published from A, B, C and
D, then the value of advertising in *x" at A is disterent from the value of an advertisement in
the same newspaper "x” at B, and so on. This is be~ause of the different circulation fignres
and readership profiles at different locations. And yet Lhe situation is not like that of two
differcnt products, since the editorial content is largely the same.

5.4 SHIFT IN STRATEGY

Upto 1985, the Group was content with the way things were going for it. I had steady
- business, there were no dangerous rivals and there were adequate profits 1o be had, The
Group was conservative and there was no altempt at innovation in the area of marketing.

Around that lime, there was & shift in the thinkiig of the owners and it was decided to gain a
leadership position and expand aggressively. It was also decided T change the focus of '
activity from mere publication of a newspaper to Becoming an information and marketing
company. This meant expanding the activities of tht Group to other media, syndicating news
and other such extensions. Thus the Times of India Gro \mnccrcd the colour newspaper in
the couniry. Such innovation required a change in the wdy thmgs were done and above all it
meant that a strategic plan would have to be conceived of and executed.

The exact nature of the plan will be of interest to students at a business school more than to
the readers of this paper, and so it will not be dwelt upon. But what would certainly be of
interest is the fact that even the development, let alone the cxecution of such a strategic plan
was handicapped by the absence of information. This was a pily because the data already

- was available to the organisation, either within or from external sources.

The tactical aspects of the plan required that changes be made in the way the activities of the
various functions were carried ﬁ?‘- It was not possible to do this using the primitive software -
available and working at that ti

The above difficulties meant that the changed philosophy of the'Group could not really show
up in its working. However, whatever litle was possible was done, and in particular, the
importance of timely and accurate information was brought to the notice of the management,

5.5 INFORMATION SYSTEM GOALS AND HOW TO
ACHIEVE THE GOAL

With this background, it will now be possible (o elzborate on the Information System goals
of the Times of India Group and then on the experience of ISD in achicving them. The
central role played in this by commercially available database management systems will
also be discussed.

Over three years ago, ISD conceived of and embarked on (he task of detigning, developing,
implementing and maintaining an Enterprise wide Information System for the Times of India
Group. The system was to embrace all the internal commercial information needs of the
Group. The various functions at major locations arc Response (as advertising is called
internally}), Circulation, Inventory, Finance, Transport, Newsprint, Personnel and others.

. Al each location these systems would be put together into an Integrated Information System
for the Iocation. Similarly most functions were caried out at different Iocations. So the
functions were 10 be integrated across geographical locations as well. The result would be an
Organisativ.: Wide Information System.

93

Ihlrnduclnry Concepts of
Dnta Base Manapement System

The goal of this system was 10 provide any authorised user access o any piece of
information required, even if this meant that the data had (o come from all over the country.
The operation of the system was 10 be as user friendly as possible. The user was to be
fransparent 1o any task except posing his query and obtaining the result. '

The system was to operate such that the activities of the various functional areas were all
performed with the help of the computer, This'would ensure that al data entered the system
at source. No subsequent transcribing process would be necessary. All nsers would do their
own data entry, pose their own queries to the system and satisfy all their information needs. .

Given this operational information system, it was decided to build a decision support system
around the data available. This would help all Ievels of users o make decisions based on all
relevant data,

The above goal was recognised as an ambitious one and one s would take a long time to

be alained. The task would be a mammoth one in any part of the world, but was recognised
as being especially difficult in a country like India, with weak power and :
Lelecornmunicalions infrastructure, .

There are various componcnls involved in this kind of endeavour. Broadly, these are the
hardware, the operating system, the database management system, the application; the
Physical network and the networking software, In addition there would be the man-machine
interface,

Here the main emphasis will be on narrating the experience of ISD in developing the
applications and the role of commercially. available dawabase management systems in this.
The network choices and solutions will also be discussed, as they show the special problems
ISD has had 1o solve, and as they are related to database issues,

It would not be out of place here to mention that when ISD embarked on this task, it was not
as if the organisation was deyoid of computers or commercial applications. However, the
applications then running were typically batch operations written in third generation
languages. This helped in that users were somewhat familiar wilh computers and did not
harbour any dread of the mactiines. However, it also meant Organising a smooth ransition to
new applications with as litle disruption in operations as possible, -

. Given the importance of the Response function to the organisation, this was the napral -

choice 1o begin the changeover to'the enterprise wide information system, First the task of
rewriting the whole application was staried, As each usable module was ready, the . -
implementation and Lransition operation was performed. Since ISD is based at Delhi, this

" was the first office to have the new svzicm. The Response system is discusséd in more detail

later,

5.6 IMPLEMENTATION PLANS AND PROBLEMS
DURING THE IMPLEMENTATION '

The broad plan of implementation was (o install the Response system in siandalone mode at

all offices, while networking these together subsequently. This involved changes to the -
application to make it a true network application and use the myriad possibilities this opened
up. The work on the other applications was to continue simultaneovisly; All such applications
like the Finance System were 1o be implemented at Delhi first as this allowed ISD w observe’,
and support them easily, . ‘

The decision support system for the Response function at the operational level was gl:aduaﬂy '
developed together with the implementation of RESPNET, as the Response software system'

- was christened. This system was 1o be refined as and when more possibilities were suggested

By the users. By this tme ISD is working on decision support facilites for top marageméit. -
This includes support for pricing decisions and tarlff structures, ~ ~ © - 0 00

The task of integralion was 1o be laken up in varions phases depending on the situation.
Thus, in the case of Response, it was felt conveniznt 1o iniegrate vertically across branches. -
rather than first wait for other applications to come up at a branch. So integration was begun
in both directions at the same time. For example, the Financé System under dovelopment and

. implementation at Delhi is finked to the Response and Circulaticn applications, It will sodn; -

be connected to the Inventory and Personnel systems. The exact order in which the

Tl L e

integration of varicus software systems was to be done was felt 1o be not important. It was En““‘;‘l’" "'"“; :;‘“’,".'I’““""';.
therelore decided not to work out the delailed plan in advance and to integrate in the most ystem o ln:h (r;n:,uop
convenient order. ’

Problems during the Implementation

These were the decisions taken during the carly siages when the Response software was yet -
1o be developed. As already mentioned, this was the [irst package taken up for development
and implementation. The experience gained during this lask wil' -2w be narrated, wgether
with the problems fzced and how these were overcome,

The difficultics were broadly of two kinds—those conceming the physical system of the
Response Department and those with the network. There were issues with the reliability of
the hardware and thg, UNIX ports available in T:dia, but these have been solved by now with
the availability of iMernational brand names which offer reliable UNIX boxes, capable of
providing the uninterrupled service required from the hardware and with wel! tested system
software. This problem might be peculiar to the country, but it underscored the need for good
hardware and reliable sofiware. The ISD lost a large amount of time in dealing with
hardware crashes and unreliable operating systems during all stages of the development and
implementation of the Information System. Otherwise the progress made so far would have
been much greater. '

Another twist to the issue of reliable software was that there was no certified port of Ingres
on the hardware available to ISD. This resulied in varicus problems wilh Ingres which
perhaps have not been faced by others elsewhere. However these necd not be dwelt on now
that they are behind us.)

There were two major dilficulties encountered, with data lines and with the physical .
operations of the Response department. The lcased lines available to ISD were all 4800 baud
lines with a fall back 1o 2400 baud. There was a standby linc offered with cach main line.
However the uptime of the lines was very low and even when working, the lines were noisy,
resulting in a very slow speed of operation. This problem was found 1o be mainly with the
local leads at the various centres, as the long distance lines available, even in India, were of
quite good quality. The long distance network is rapidly being converted 1o vse fibre optic
cable, ensuring first class transmission. However, the same could not be said for the local
nctwork. To get around this difTiculty, dedicated cables were proposed at all centres from the
organisation's premises to the telephone exchange concerned. This helped reduce the
problem somewhat, However, the reliability of lincs is an issue which still has not been
resolved and one for which no solution is in sight yet. It is hoped (hat at some time good
quality lines will become available 1o ISD.

Irrespective of the issues concerning the network, it was decided to have local databases for
each main branch so that local operations and autonomy were not compromised in the event
of failure of any segment of the network. This meant that the full Response system consisted
of a system of loosely coupled, co-operative databases. The coupling is weak becanse
although in the normal situalion the local databases interact extensively, it is possible for a
centre to be cut off from Lhe network and still function nommalty for opertions related to that
branch. As soon as the network is re-established, the interaction with other databases starts
again. This is a less than desirable situation, hut the enly feasible solution given the
compulsions of the reliability of the network..

Because of this situation, certain other problems came to thic fore. Thus it was found
impossible 1o implement a fully. on-line network application because of the line conditions.
The way out was Lo write software which would try and work en-line and fall back to batch
updales as and when the line was ayailable. After some experimentation the idea of having a
transaction based on-line application had to be postponed indefinitely as it was found almost
impossible to be on-line for any reasonable length of time, The Response system is thus
currently one where updates take plece across the network at the earliest point in time
possible, depending on the availability of the data lines. However, it must bs ecmphasised

, again that this has not been done as a matter of choice, but after failing on more desirable

options. Whenever the line quality improves, the application will be made fully wansaction
based. -

-‘ This brings onc to another problem concemning commercially available databases. While

Ingres was very useful in quick application development, robust local operation, satisfactory
speed and so on, the fact was that the developers of Ingres who had conceived of and
implemented its network capabilitics came from a difTerent cullural background. The Ingres

95.

fir S) i

Introductory Cuncepls of

Data Base Managemenl System

06

neiwork related products were all built for a situation where reliability of telecommunication
lines was Laken for granted. Hence there were no (eatures Lo allow for recovery after a
networkbreakdown, much less [o cater (0 a situation where a network was-pariially down
almost all the time.

It was therefore not found possible 1o usc Ingres netwotk products for the Response sysicm
application, althongh it must be again emphasised that this isfio reflcction on the quality of
1hose products. The problem was eavironmental and culiural, However as far as ISD was
concemed, it was nccessary 10 write routings for taking care of the resulting preblems. This
has been done and the necessary subroutines are available (o the application developers for
their use.

In this connection, it must be mentioned here that late last year, Ingres did realise this
possibility, and released commercially a product which takes care of a situation where
communication links are down. The services provided by this product are very similar to

what ISD had had to develop o gel around the difficulties faced with the nctworc, If only .
thisproduct had been available earlier, ISD could have saved a lot of tir= in moving towards
its information scrvice goals.)

An entirgly different sct of difficullies was encountered becanse of the fact that the earlier .
operations were not netwarked. Since éach branch functioned independently, the physical
operutions everywhere were slighily different. This meant that implementing a single
package all over the organisation requircd changes in operation all over. Every branch had 1o
change somewhat in order to make operations uniform. Apart from this, certain master
inforination like agency codes, rate codes and the like had 1o be made uniform ail over the

-couniry. This required several rounds of discussions amiong the branches and a lot of
organisation wide dala processing cxercises. At the end of all these, ihe operations at
branches were made vniform.

The above process could not take place at one stroke. There were several changes made
piccemeal which affectcd the software development process as well, The software had to be .
changed repeatedly 10 accommodate changes found (o be required in the physical operations
of Response. In fact, the implemeniation of the software resulted in several changes in the
Response Department. | o

57 THE RESPONSE SYSTEM AND RESPNET
CHOICES | .

The Response syslem can now be describer! &2 some length. As already mentioned, this is the
main revenue eamer for the organisation, and hence commands the greatest attention from
the management. The organisation publishes three national, two regional and one evening
newspaper from 9 branches, with two more branches being sales offices, There are alsoover
40 minor salcs offices, each being altached 10 some branch or the other. There are also some
nationally popular magazines published. '

‘The taridl struclurc for publishing adverisements in these publications is somewhat complex.,
The rate chart of the Group has becn feit worlhy of a name, Mastermind. There are four main
categorics of rates—single, multiple, super and slam. A single insertion is carried at the ’
single raie. Various combinations of insertions merit better rates, of which the best for the
client is the slam. The acal rate in any category depends on the publication and the
publishing centre. The rate can also vary depending on the category of the advertisement. -
There are four major calegorics-—display, tenders, appointments and financial. Classified
advertisements have a difTerent rate structure altopether and thete is a completely dillerent
modulc in the sofiware which deals with them. .

In any category, publication and centre, the rate can attract discounts or premiums. Discounts
arc oflered on certain kinds of advertisements, for example, thosg promoting books, oron.
volumes like (ull page advertisements. Premiums are charged for special positions or pages
and for solus adventisements, The rates for colour and black and white advertisements are
different,

The real complexity of the rale structure arises because of linkages between publications. There
are various advertisement package deals available to clients, where the publicaticns and the total
rate are fixed. In some packages, a few publications arc fixed and the client has the privilege of
choosing the others, There are linkages among newspapers and magazines as well.

A

(Vo) s1-vDa

e oy o~y - g

This is further complicated by the possibility of cancellations. Suppose an agency books an Enterprise wide infurmatlun
“advertisement 1o be carried in the Times of India at four centres. This would atrct a super Sym-o[;:sgi?:mnr

rate. Now if the agency cancels two of Lhese insertions, it will be cntided 10 only a multiple i

rate, which is higher. So the cancellation process involves nol only marking the two

inscriions which were actually cancelled, but must also affect the two other insertions which

were booked with it. And it should be remembered that all these could be located at different

centres 50 that the information has 1o ravel over the network, transparent to the operator at

the booking counter, There is thus strong interaction among different centres.

In addition to all this is the fact that all the publications of the Group arc not part of the same
company, So the software must handle a multi-company scenario. For advenisements
booked by foreign entities, payments have to be collected in a currency different from the
domestic rupee. The software therciore needs to take care of different currencies.

The advenising raies end the structure ilself is subject 10 frequent change, usually at least
twice an year. For the purposes of management information, an year's report could require
data coming from at least two differcni rate cycles. Therefore a history of past rates and
struciures has to be maintained, -

This was a bricl description of the sysiem on the advertisement booking side. The collection
and follow up of outstanding amounts forms a major sub-system of the sofiware. Itis part of
the accounting module. The situation is that the organisation interacts direcly with several
kinds of parties who book advertisements—accredited agencies, non accredited agencics,
government agencies and direct clients. All-of these but the last are entiled to deferred
payment. This period can go upto 60 days.

A major elfort in the Response Department is that of producing bills comectly and on Lime.
Although an agency might have booked an advertisement for a particular size, exigencies of
the situation might resull in the advertisement being published in a somewhat different size.
Such a chanpe could also eccur by mistake. When billing a client, he cannot be charged a
higher amount but must be given the benefit of a Iower amount il a smaller size has been
published. This requires that the actual size of an adventisement be fed into the system afler
publication. Similarly advertisements that are held over due io any compulsions on the part
of the publishers cannot be billed. Thus booking information is only a rough guide (o billing.

The financial heahh of the company depends (0 a large extent on proper follow up on these
receivables and their collection. Most of the major apencics have offices and clicnts at mere
than one place, and they book advertisemnents [or various branclics. When collections are
made, they nced to be matched against the bills which are being discharged. If this process is
not gone thirough, it results in what are called unmatched credis. These are a problem as far
as accounting is concemed,

Apan frem all this, there is the question of research on competition. The columnage aof
advertisements in various categories is capwured by the software, The revenue of rivals is
then estimated based on their published rate chans, Now only this, the gist of the aciual
advertisements is stored and compared with the organisation’s publications o determine
advenisements and campaigns which went to rivals but were denicd to the Group. This helps
the sales s1afT in planning and follow up.

The complexitics of accounting will now be touched upon. Earlier, the Response operations
were on what is intenally called the “ A" system. This meant that the publishing branch was
responsible for billing and collection, immespective of where the aclual booking or payment
was done by the client. Credit for revenue was given (o the publishing branch. This resulted
in difTicullics in collection because usuaily it was the booking branch which was in a beuter
positien (o collect the reccivables. Since the booking branch got no credit for collecting the
money, there was lack of vigorous effort on its part in this direction, resulting in large
receivables organisation wide. This sysiem was followed by what was callet the “B™ system.
This gave credit for revenue 1o the booking branch. For a long period, billing was done on
“A" basis by the publishing centre and collection was done by the booking centre.

This system was switched to the “B” sysicm meaning responsibility and credit.on booking
basis for all activitics. This helped billing to be more accurate as the booking banch is best
cquipped 1o bill, The next step would be consolidated billing for a clicnt, possibly from a
céntralised facilily. That would really climinale almost all problems that currently occur in
billing, as the clicnt would be presented with a single bill for the whole billing period.

Given all these complexitics. the Rcspt-m'sc soltware was expected o help in client servicing

97

= e Eroa | e

Introdectory Concepts of
Dotz Base Manapgenicnt System

and help in pointing out the loopholes in the operations of the depanment. It was necessary
to have a good syslem of oblaining operationzl information, help in making decisions and |
tighten controls to help plug revenue leakage. -

There were various choices 10 be made to implement just this one component of the
Informalion System. These were on all components of the System, comprising of the
hardware, the system software, the database management system, the application, the
networking protocols and the choice of the backbone network. The options available and the
seleclions made will now be explained. .

The organisation had a fairly large amount of hardware available, but this was mostly of
Personal Computers being used for office automation. The hardware used by the applications

* then running was a heterogencous mixture of machines of varying power from different.

vendors. It was necessary to decide whether to try and use the existing hardware or procure
new machines without reference (o those existing then. It was felt that the best course would
be to try and use whatever hardware was available 1o the extent possible, Later more
hardware could be procured after some success had been auained and the management was
alive (o the possibilitics from the Information System. Accordingly the existing hardware
was used for implementing the new Response soltware package and only laier were new
machines procered 10 run it The old hardware was shunted off to other applications and
“other, smaller, ceatres. Some of it has now been discarded as it had outlived its useful life.

As far as the operaling system was concered, it was felt that it was imperative to have a*
standard operating system which was open and not tied to any particular vendor or hardware.
The natural choice was AT&T Unix (SVR 3.2) at that time since this was the operaling
system in use in the organisation for various applications.

Fortunately at that lime various rclational database management packages-had become

available commercially. This enabled a much Quicker and easier path to application
development, as otherwise writing the Information Sysiem in a third generation language

would have meant a large lead time in developing Lhe various tools to be used by the

application team — forms packages, code gencration routines and the like. Also database /
management packages provided various features like security, power fail backup and so on. Coe
Alter swdying various options available and evaluating the lcading RDBMSs for current

* features and the roadmap for the future, Ingres was chosen as the RDBMS for all application
~ development work. All 3GL work would be donc in ANST 'C” o in Ci+.

For the nelwork'iﬁg it was decided to use TCP/IP mnniﬁg over X.25. This would enable

- teliable communication with facilities for automatic routing transparent 1o the end user or

even the application developer. It was fell necessary o have at least two routes between any
w0 pairs of nodes given the unreliability of the backbone netwark.

For the physical network, there was not much choice as the availability was resiricted to
using dial up telephone lines or leasing 4-wire, full duplex, data circuits offered by the
relevant authority for peblic use. The choice was for Jeased lines bepween mzjor branches
given the potentially large volume of traffic and dial up facilities for minor offices,

The topology of the network was also dictated by the kind of application envisaged. Fora
file transfer kind of application based on central processing and control, a star network might
have been appropriaie. However it was desired to have a transaction based true on-line
network application.

The modalities of application development also had to be decided wpon. The possibility of
using external assistance for developing the system was considered. However, knowing that
adequate technical éxpertise was available in ISD, it was decided to develop the Information
System completely in-house.

Wherever any special purpose utilities or tools were found necessary they would be
developed in-house unless the effort involved was disproportionately large:

58 BENEFITS

The bencfits from RESPNET are already becoming apparent. One of the things to be noted
aboul the soliware is that it has cvolved over the years rather than being designed at some
point of tre. it now covers the entire gamut of Response operations and now covers all its
activities, from booking.__':':bi‘_}lin',;. accounting and.credit conirol to market research. The -

forcmost advantage is that client servicing has improved tremendously. For example, cliont Enterprise wide Information
querics can be now answered speedily. Earlier if a clicnt put.in a query about rates or the Systom of the T l&“ﬁg
total amount to be paid for a package, it used to take scveral minutes to work out the figures

and explain the various combinations possible. This can now be done in seconds. Again, ’

questions like whether an advertisement for another centre actually gol camried can now be

answered almost immediately. Billing has become more accurate and complaints on that

score have reduced quite a bit. Revenue leaks on account of cancellations not resulting in

rale changes have also vanished. Co

The natural spin-off from this has been more revenue, It has also been possible to implement

the complex rate structure becanse of the Response sofiware. Without this, the rate chart

would have been simpler. While the advantage might not be apparent easily, a more

customised rate structure resulis in greater revenue by enabling rates o be pegged closest to

what the market will bear, Strong publications can now charge higher rates than thoss at low , ——
revenue cenires. It may be mentioned here that advertisement revenae has increased by 98% :

‘over-the threc-year period from 1990 to 1993. This averages to a growth rate of 25% per

annum. -

What is more, it is now possible to evaluate the impact of ralc changes on revenue. This was
an excrcise which could not have been even attempied before. This helps in making
decisions on rate changes. More data is available to the decision makers in this respect,
whereas such decisions were done more on the basis of management perceptions and less on
any facts available.

Another benefit is in credit control, Earlicr, this was possible at a local level only. Tt was a
Adilficult exercise getting the account of an agency across the country and when such a
statement was compiled, it would be out of date. Such information can now be quickly
compiled and the appropriate aclion taken,

It is now possible to know who the lop customers of the organisation are, Since the aclual
clicnis do not normally interact directly with the organisation, information about the biggest
end clients was earlier not available casily. This is now known and is an important input 1o
the marketing team.

. The different publications of the Group at the various locations arc not all part of the same
company. The same publication can be part of a different company in a dillerent location,
Now 'vhilc advertiscment rates and the like need 10 be uniform and the agencies need not
take this intn consideration, the accounting has to be done scparately for each company.
However, the Management needs information on Response withoul reference to companics.
This situation is casily handled by the Response software by 1aking difTerent vicws of the -
data, Thié was not casy to do earlicr.

Apari from decision support, the sofiware now makes available to the users an effeclive

operational information system. This takes care of many day o day problems faced carlier. .
For example information on banned agencies now is flashed (o all offices within minotes,

and aclually an agéncy can be banned at all offices from any effice. This obviates the need

for notifications going o various officks and then getting entered into the system, which

arrangement could result in advertisements from the agency concerned geiting published in

spite of a ban on the agency.

Such-an uperaliona.l'inl‘ormalion system has the desirable side ¢fect of plugging revenue
leaks. Some of the Ieaks were due to operational problems like the matter of banned
agencics. Others are concerned with malfcasance on Lhe part of some cmployees. Thus
carlier the availability of cenain premivm positions in a publication at a location was known
only to the persons concerned there., People at other ofTices could not quickiy get 10 know
about the availabilily of such space. This left room for various malpractices at that location.
Now persons at any office can query the availability of space at any other office. This
precludes any person from taking advantage of the lack of this information.

Another uscful feawre now available to response wsers is the ability to send c-mail, converse
with colleagucs at any office and cven have a conference. Many small points can now be
discusscd like this over the network without having to make an expensive phone call or
having 1o travel. Conferencing facilitics over the network have reduced Lthe amount of
travelling done by exccutives to sort aut dillicult issves. The suvings on these heads alonc
more than recover the costs of sclting the newwork up.

The result of all thesc benefits from the Response system is a great competitive advantage to
the organisation. None of the rivals have anything close 1 offer as'yet, and it is no surprise if
chicnts find ours a pleasant organisation to deal with, The cffort at improvement is o
continue so 5 1o provide clients and intemnal uscrs the best environment possible,

o9

[e e T o

[nigoductury Concepls of

Data Base Manogentent System

100

3.9 FUTURE

Some of the enhancements 1o be made to the Réspunse system as it now exists are now
touched upon. These are plans and could be changed if found necessary. However they
follow as logical sieps 10 build upon the foundation already laid,

The first enhancement would be 1o extend the system o all minor offices as well as the major
ones. This will entail setting up the system at over 40 additional locations, as well as -
cxpanding the network 1o include all those eitics. An extension ol this phase of
implementation would be to allow major agencics (o dial into the network and have limited
operational access. Thus an agency would be allowed 10 only make reservations for space
and not Ip achually book an advertisement. It could be allowed to ook at its accounts only
and nol of any other party. It could query the availability of space at any location and could
check up on whether an advertisement has been published or not. This sort of extension o
the sysiem will be a big change for the agencies.

The Group rate chart being so complex, another feature planned is to provide media planning
services 10 all polential clients, This would enable an analysis 10 be done of how 1o maximise
reach in a given readership profilc at minimum cost. The software would have to be
sophisticated enough to be of real use. Al present there are quite a few combinations of
publications which are not even examined because there are so many of them.

The decision support facilides will be enhanced 1o help all levels of users, from the order
CnUry operalors [o op management.

A feawre which would greatly improve productivity apart from any other benefits is that of
rransmilting the advertiscment matter, whether text or photographic, over the nelwork to
other ofTices for direct incorporation into the paper. This would necessitate good quality, fast
data lines as well as a good page fayow software module. At present this is done manually.

To summarise, RESPNET will be coninuously improved so as 1o be of even more benefit 1o
Lhe organisation.

5.10 SUMMARY

The somewhal detailed reaiment of Response was only indicative of the magmmde qt the -
Lask before the organisation, ISD has 10 put in a comparable amount of effort in each
functional area and then intcgrate the various software systems vertically and horizontally
before the poal of having an enterprise wide information system and a decision support
syslem is anywhere near realisation.

The individual applications continue to grdw in complexity as has been found while

* devcloping the Response sysiem., So the 1ask of improving and rcﬁnmg the software as well

as the user interface will pose a continucus challenge.

When the implementation of only one comporent of the Enterprise wide Information
System, an implementation which is only partially complete, has resulted in such great
benefits visible Lo the clients, the management and those who operate the system, it is certain
that when the complete Information System is in place, it will mean changes norlung short of
revolutionary for all concerned:

Belore closing the paper, a few words on the database management system used for Lhis task,
Ingres, will be in order. Ingres has been very useful in this whole endeavour because of the
very good productivity it has been possible o achieve, Otherwise the task of writing the
Response softwvare alone would have been a herculean ene. There has been no loss of data so
far in spite of hardware and power failures. Never, so far, has it been necessary (o use
backups 1o retrieve data. The robusiness of Ingres has been a great comforting factor during
the long years of intensive effornt at developing and implementing a package which already
has over 200,000 lines of 4GL code, not counting any comment lines. Repeated changes
which had to be madc (o the soltware were possible because of the ease of coding in Ingres.

It must, however, be mentioned that this endorsement of Ingres is based on the actual
experience ol the organisalion and dozs not in any way insinuate that other database
management sysiems available commercially are inlerior or could not have been used to
develop and implement the cnierprise wide information system discussed in this paper. But at
ne time did Lhe organisation have occasion 10 regret having chosen Ingres.

The task of having the information sysiem in place is far from complele, There will be
various problems 1o be solved and experiences (o be gone through, which can perhaps be
described in papers and discussed at conferences in the years 1o come.

BCA - 08

‘Uttar Pradesh .
Rfarshi Tandon Open University Introduction to
] Database Management
System
Block
RDBMS AND DDBMS
UNIT 1
Relational Model - P
UNIT 2 j
Normalization 22
UNIT 3)
Structured Query Language 36
UNIT 4
' _‘I' %"

e
Distributed Databases

BLOCK INTRODUCTION

This block describes lopics related 10 RDBMS and Distributed DBMS, One of the main
advantages ot’ the relational model that it is conceptually simple and more importandy based
on mathem of relation, It also frees the users from details of storage structure
and aceess methods. In.a distributed databesh gysizm, the database is stored i several
Computers. “The computers'in ad:sﬁbutadsystemcmmuﬂmmwithmh other theough
various communication media, such as high speed buses ostelephone lines, They do not
share main mermory nor do they share a clock. There are 4-units in llnsbloct\'l‘lweeumlsm'e
related 1o RDBMS and one unit is on DDBMS.

Imponant muss discossed in this block are :
e Relational Algebra o
® qua.llmﬁon . ~
e SQL
"o Data Replication and-Data fragmentation.

£ e 2 R

Y or T s Lo e

UNIT1 RELATIONAL MODEL

Structure

Y 1.0 Introduclion

1.1 Objectives]

12 Concepts of a Relationai Model
1.3 Fommal Definition of a Relation
14 The Codd Commandments ‘ .
. 1.5 Rclational Algebra

1.6 Relalional Completeness

1.7 Summary N
© 1.8 Model Answers

1.9 Furher Reading

1.0 INTRODUCTION

One of the main advantage of the relational model is that it is conceptually simple and more
_ importantly based on mathematical theory of relation. italso frecs the users from details of
storage structure and access methods. .

“The relational model like all other models consists of three basic components:
e asctof domains'and a set of relations
e operation on relations : ’ i
s integrity rules

Tn this unit, we first provide the formal definition of a relational data model. Then we-define
basic operations of relational algebra and finally discuss the integrity rules, .

L

1.1 OBJECTIVES

s

Aftt;.r completing this unit, you will be able lo:_—.,
e define the concepts of relational model
e discuss the basic operations of the relational algebra :
e state theintegrity rules ‘

1.2 CONCEPTS QF A RELATIONAL MODEL

The relational madel ‘was propounaed.bpEF. Codd of the IBM in 1972. The basic concept in
the relational model is thatol a celdtiom. -

A relation can be viewgd as » table which has the following properties :

Property It it is colugin homogencous. In other words, in any given colurn of a mble,
all items4re of the same kind.

Property 2: cach iten is a simple number or a character siring. That is, 2 table must be in
INF. (Firét Normal Form) which:will be introduced in the second unit

Property 3; allrows of aableare distinct.” !
Pl:bpérty 4: the ordering of rows within a bte is immaterial.

Property 5: Lhe columns of & table are ass}#ed distinct names and the ordering of these
-columes is immatedal. ;7 T . -

[

RDBMS and DDBMS

. Example of a valid relation

S# % SCITY

10 1 BANGALORE
10 2 BANGALORE
1 1 BANGALORE
11 2 BANGALCRE

-, 1.3 "FORMAL DEFINITION OF A RELATION

Formally, a relation is defined as the subset of the cxpanded cartesian product of domains, In
order to do so, first we define Lhe cartesian product of two scis and then the expanded
-cartesian product.

The cantesian product of two scis Aand B, denoted by AX B is -
" AxB=(@b):ac Amdbe B)
'ﬂu;: expanded cartesian product of n sets A}, Ag,...., A, is defined by
XA ApeA) = ()22)i 3,6 A] 1<=j<=m)
The clement (a,, a;,...,2,) is called an n-tuple.

Given domains Dy, D,,... D, we define a relation, R, a5 a subsct of the expanded cartesian
product of these domains as follows:

R(Dy, Dgv.. D) § X(Dy, Dy D)

In general we say that a relation defined over n domains has a degree n or is n-ary, The
elemceats of this set are n-tuples.

‘We shall distinguish beiween the definition of a relation and the relation itself. We shall say
that the definition of a relation gives a name o the relation and specifics the companeats

over which it is delined. These components are referred to as relation attributesor stributes
for short. An atribute has a domain associated with it from which it 1nkes on values, The
relation itself, on'the other hand, is the set of wples which constitute it at a given instance of .
Lime. For example, a statement which says that a relotion Supplier is built over auributes S#,
Pi#, SCITY having domains integer, charcter string respectively is the definition of the
welation Supplier. The relation-itsclf is shown below. It must be noted (hat at the time the
definition of a relation is just given, a relation with no twples in it, i.c. a null relation, is
created.

Supplier
. S PH SCITY
10 1 BANGALORE
10 2 BANGALORE
o 10 3 BANGALORE
11 1 BOMBAY
11 2 BOMBAY

g .
Arelational schema is defined to be a collection of relation definitions.

V& can now define the notion of a relational dalabase or database for short. A database is g
collection of relations ol assoricd degrees such thal these relations are in accordance with\ _
their definitions in the relational schema. Since a relation is time varying, by this dcﬁmunn
we can infer that a database is also tinie vnry:rg

1.4 THE CGDD COMMANDMENTS

|
Inthe rnosl. bﬂsne\or dcﬁ.nmons a DBMS can be regardcd as relational only if it obeys the

Jollowing three rules:

L

-t Vir =m
e Allinformation must be held in tables =L
. Ty Lt
e Retrieval of the data must be possible using the following iy'pes-qj:npqralions:
SELECT, JOIN and PROJECT e

e All relationships between data must be represented explicitly in mxil'dﬁl.a i'lse]_t'.

This seally is the minimum requirement, but it is surprising to se¢ just how some well-known
datatiase preducts fail according (o these simple rules to be in fact. rclauonal no matier what
theiy vendors clmm P

To/define the requirements more ngomusly, compliance with the 12 rujcs stated below must
be-demonstrable, within a single product, for it to be termed relatigga): In reality it’s true to
say that they don't all carry the same degree of imporiance, and i some yerygood .
products exist today supporting major Iu.rgc -scale production systents that'cannot, hand on
heart, claim to obey any more than eigi.. or so of thesc rules. It’s likely however, that it is,
only when all 12 rules can be satisfied, by facilitics that coexist logcme.r, that the full benefits
ormerelauonaldalabasccanbemalxscd- F o

- Yo

The Twelve Rules

Just as in the 12 rules that define the distributed product, there is & smgle overa]l rule which
in some ways covers all others and is commonly callcd Rule 0 It States t.hal: '

" Any truly relational database must be manageable enhrely lhrOUgh :ts owR relahona]
capabilities .

Having stated this rule, we will not delve decper cxeept 10 say’ Ihat its meamng can be
interpreted by stating that a refational database must be relational, wholly relational and
nothing but relational. If a DBMS depends on record-by-record data manipulation tools, it
is nof, truly relational.

Rule 1: The information rute -4

All information is expl icitly and logically represented in exaclly one way — by data
values in tables.]

Tn simple terms this means that if an item of data oesn’t reside somcwhere in atable i Lhc
database then it doesn’t exist and this should be extended to the point where even such:
information as table, view and column names to mention just a few} should be contained /
somewhere in table form. This necessitates the provision of anpictive data dictionary, that is
itself relational, and it is the provision of such facilitics that allow the relatively easy
additions to RDBMS"s of programrhing and CASE tools for example. This rle serves on jls
own to invalidate the claims of several databases to be relational simply because of their lack
of ability to'store dictionary items (or indeed metadata) in an integrated, relational form.

Commonly such products implement their dictionary information systems in some native file

structure, and thus set themselves up for failing at the first hurdle. /

'
Rule 2 : The role of guaran!.ced access / !

Every item of data must be logically adﬂr&;snble by resorting to a combmahon of table

name, primary key value and columm name.

Whilst it is possible to retrieve individual items of dar.a in many dnl'rérent ways, especially in

a relationalySQL environment, it must be true that any item can be retrieved by supplymg the
table name, the primary key valuc of the row holding the item and the column name in which
it is to be found. If you think back to the t2ble like slorage siructure, this rule is saying that
at the intersection of A column and a row you will necessarily find one value of a data-item
{or null).

Rule 3 : The systematic treatment of pull values

It may surprise you lo sce this subject on the list of properties, but it is fundamertal o the
DBMS that nu:l{ values are guppdried in the repeesentation of missing and inapplicable

. information. This support for null values must be consistent throughout the DBMS, and
independcat of data type (a null value in 2 CHAR [icld must mean the same as null inan
INTEGER ﬁeld for example). ; - ,.-'/

b0 has oficn beey. mssmmmpmmm That‘a character to represcnt missing or
mnpphcuhle data his bw.nzlloz,..led lrcm Lhe dorry!m ol characlers purunen' 1o 8 particular

T g
e

-

Relationiai' Modd.

T T s s

RDBMS and DDEMS

item. We may for éxgmple define four pamissible values for a column SEX as:

M Male

F Female

X No data available
Y Not applicablc

- Such a solution requires careful design, and must decrease’ productivity at the very least.

This situation is particularly undesirable when very high-level languages such as SQL
are uscd o manipulate such daia, and if such z solution is used for numeric columns all
sorts of problems can arise during aggregate functions such as SUM and AVERAGE etc.

Rule 4 : The database description rule-

A description of the database is held and maintained using the same logical structures
used to define the data, thus allowing users with appropriate authority to query such
information in the same ways and using the same languages as they would any other data
in the database.

Put into casy terms, Rule 4 means that there must be a data dictionary within the
RDBMS that is constructed of tables and/or views that can be examined using SQL.
This rle states therefore that a dictionary is mandatory, and if taken in conjunction with
Rule 1, there can be no doubt that the dictionary must also consist of combinations of
tables and views. -

Rule 5 : The comprehensive sub-tanguage rule’

There must be at least one language whose statements can be expressed as character strings
conforming to some well defined syntax, that is comprehensive in supporting the following :

e Dala delinition -

& _View definition

e Dala manipulation,

e Inteprity constrainis

& Authorisation

. 'T‘ransacl.i_on boundarias .
Again in real terms, this means that the RDBMS must be completely manageable through its
own dialect of SQL, although some products stilt support SQL-like languages {Ingress -
support of Quel for example). This rule also sets out 1o scope the fenctionality of SQL - you

will detect an implicil requirement o support access control, integrity constraints and
transaction management facilitics for éxample. -

Rule 6 : The view updating rule

All views that can be updated in theory, can also be updated by the system. This is quite
adillicult rule w interpret, and so a word of explanation is required whilst it is possible to
create views in all sorts of illogical ways, and with all sorts of aggregates and virtnal
columns, it is obviously not possible to update through some of them. As a very simple
example, if you define a virtual column in a view as A*B where A and B are columns ina
base table, then how can you perform an update on that virtual column direcily? The
dalabase cannot possible break down any number supplied, into its two component parts,
without more information being supplied. To delve a litle deeper, we should consider that
the possible complexity of a view is almast infinite in logical terms, simply because a view
can be defined in terms of both tables and other views. Particular vendors restrict the
complexity of their own implementations, in some cases quite drastically.

Even in logical terms i is often incredibly difficult to tell whether a view is thearetically
updalable, let alone delve into the practicalities of actually doing so: In fact there exists
another st of rules that, when applied 10 a view, can be used to determine its level of logical
complexity, and it is only realistic to apply Rule 6 to those views that are defined as simple
by such criteria. .

Rule 7 : The insert and update rule)
An RDBMS must do more than just be able to retrieve relational data sets. It has 16 be

L s P A — 7

- capable of inserting, updating and deleting data as a relational sel. Many ﬁbﬁMSes that fail Relstional Moded
the grade fall back to a single-record-at-time procedural technique when it comes Hme to
' manipulate data.

Rule 8 : The physical independence rule

User access to the database, via monitors or application programs, must zemain logically
consistent whenever changes to the storage renresentalion, or access mcr.hods to the data, m'e
Channg '

Therefore, and by way of an example, il an index is Suiltor destroyed by the DBA on a table,
any user should siill retrieve the same data trom that table, albeit a litde more slowly. Itis
largely this rule that demands the clear distinction between the logical ond physical layers of
the database. Applications must be limfted fo interfacing with the logical layer 1o enable the
enforcement of this rule, and it is this rulc that sorts out the men from (he boys in the
relational market place. Looking at other architectures already discussed, one ean imagine
the consequences of changing the physical strucwre of a network or hierarchical system,

However there are plenty of traps awaiting even in the relational world. Consider the
applicetion designer who depends on the presence of a B-tree type index to ensure retrieval
of data is in a predefined order, only to find that the DBA dynamically drops the index! What
about the programmer who doesn’t check for prime key uniquencss in his application,
because he knows it is enforced by a unigue index. The removal of such an index might be
catastrophic. I point ont these two issucs because alrhough they are scrious factors, I am not
convinced that they constilute the breaking of l.hlS rule; it is for the individual to make up his
own mind.

Rule 9 : The logsical data independence rule _
Application programs must be independent of changes made o the base tables.

- TAB 1 _FRAG 1 "FRAG 2
A B C D A B ACOD
1 ACE 1A ‘1 C E
A4 ACEF 4 A 4 C F
6 B DG 6 B 6 DG
2 B D H 2 B 2 D H

Figure 1: TAB 1 Split into bwo [ragments

This rule allows many types of database design change to be made dynamically, without
users being aware of them. To illustrate the meaning of the mle the examples on the next
page show Lwo types of aclivity, described in more detail later, that should be possible if this
nile is enforced.

FRAG 1 FRAG 2 - TAB 1

A B ACD A B CD
1 A 1 C E 1 A CE
4 A 4 CD 4 A CF
6 B 6.D G 6 B DG
¢

2 2 D H 2 B DH
P - .
> '

Flgure 2 ; Two fragments Comblned Into Ope Tat*

===

RDBMS and BBEMS |

10

Firstly, it should be possible (o split a table vertically into more than oné fragment, as long
as:such splitting preserves all the original data (is ron-loss), and maintain the primary key in
each and every fragmenL This means in simple terms that a single table should be divisible
into one ar more other tables. , '

Secondly it should be possible 1o combine base tables into one by way of a non-loss join.

Note that if such changes are made, then views will be required so that users and applications
are unaffected by them,

Rule 10 : Integrity rules

The relational model includes two general integrity rules. These inlegrity rules implicitly or
explicitly define the set of consisicnt database states, or changes of state, or both. Other
integrity constraints can be specified, for example, in 1erms of dependencies during database,
desipn. In this seclion we define the integrity rules formutated by Codd.

Integrity Rule 1

Integrity rule 1 is concemed with primary key values. Before we formally state the rule, let
us leok at the effect of null valucs in prime attribuies. A nall value for an auribute is a value
thal is either not known at the lime or does noL apply o a given instance of the objecL It
may al: > be possible that a particular tuple docs not have a value for an atribute; this fact
could be represented by a null value,

- Tfany auribule of a pﬁma.ry‘kéy (prime auribute} were permitted to have null values, then,

because the auributes ir the key must be nonredundant, the key cannot be used for unigue
identficaton of wples. This contradicls the requirements for a primary key. Consider the
relation P in figure 3. The altribute Id is the primary key for P. If null values {represented as
@ were permitied, as in figure 3, then the two tples @, Smith are indistinguishable, even
though they may represent two different instances of tiic entity type employee. Similarly, the
tuples < @, Lalonde > and 10, Lalonde >, for all intcnis and purposes, ere also
indistinguishable and may be referring 1o the same person. As instances of entities are

cdisl.inguishablc, so musl be their surrogates in the model.

P: P:
Id Name Id Name
101 Jones
101 Jou_cs @ Smith
103 Smith
104 Lalonde
104 Lalonde) . f
107 Ev: 107 Evan
van
110 Drew
110 . Drew
112 Smith | @ Lalonde
@ Smith
(a) (b)

Figure 3 : (s) Relatlon without nul! values and (b) relation with sull veloes

Integrity rule 1 specifies that instances of the entities are distinguishable and thus no prime
auribute (component of a primary key) value may be null. This rule is also referced 10 as the
entity rule. 'We could state this rule formally as: :

Definition: Integrity Rule 1 (Entity Integrity):

If the attribute A of relation R is a prime atéribute of R, then A cannot acceptnull
values, .

Integrity Rule 2 (Refe;'ential Integrity) :

. Integrity rule 2 is concerued with foreign keys, Le., with attributes of a relation having

domains that are those of the primary key of another relation.

Relation (R), may contain references to another relation (S). Relations R and § need not be
distinct. Suppose the reference in r is via a set of attribules that forms a primary key of the
relation S. This sct of atiributes in R is a foreign key. A valid relationship between a wplé in
R 1o ane in S requires that the values of the atiributes in the foreign key of R comrespond 1o
the primary key of atuple in S. ﬂﬁsmsumsﬂmtmemfmceﬂomampbotmemlnﬁmk

is made unambiguously Lo an existing tuple in the S relation. The referencing attribute(s) in Reational Moded
the R relation can have null value(s): in this casc, it is not referencing any tuple in the S

relation, However, if the value is not null, it must exist as the primary attribute of a tple of

the S relation. If the referencing attribute in R-has a value that is noncxisient in S, Ris

attempling to reler a nonexistent tuple and hence 2 nonexistent instance of the comresponding

entity. This cannot be allowed. We illustrate this peint in the following cxample:

‘Example

Consider the example of cmployces and their has a manager and as managers arc also
employees, we may represent managers by their employee numbers, if the employee number
isa key of the rclation employee. Figure 4 illustrates an example of such an cmployee
rclation. The Manager attribute represents the employee number of the manager. Manageris
a foreign key; nete that it is referring 1o the primiary key of the samc relation. An cmployee
can only have a manager who is also an employce. The chicf exceutive oflicer (CEO) of the
company can have himsclf or herself as (he manager or may take null values. Some
employces may also be temporarily without manager, and this can be represented by the
Manager taking null valucs,

Emp# Name Manaper
101 Jones @
103 Smith 110

104 - Lalonde 107
107 - Evan : 110
110 Drew 112
112 Smith 112

Figure 4 : Furelgn Keys

Definition : Integrity Rule 2 (Referentiol Integrity)

Given two relations R and 8, suppose R refers (o the relation S viz a set of attributes that
forms the primary key of § and this set of attributes forms a lorcign key in R. Then the value
of the forcign key in a tuple in R must cither be cqual to the primary key of a tuple of S or be
cotirely null. .

If we have the auribute A of relaion R defined on domain D and the primary key of relation
§ also defined on domain D, then the values of A in tuples of R must bé cither null or equal .
to the value, let us say v, where v is the primary key valuc for a tuple in S. Notc that R and §
may be the same relation. The tuple in S is called the target of the forcign key. The primary
key of the referenced relation and the attributes in the forcign key of the referencing relation
could be composite. '

Referential integrity is very imporiant.- Because the foreign key is used as a sumrogate for
anather entity, the rule enforees the existence of a tuple for the relation corresponding 1o the
instance of the referred entity. In example, we do not want & nenexisting employee io be
manager. The integrity rule also implicitly defines the possible actions that could be taken
whenever updates, insertions, and deletions are made.

If we deicte a tuple that is a target of a forcign key reference, then three explicit possibililics
exist to maintain database integrity:

s Al tuples thal contain references o the deleted tuple should also be deleted, This
may canse, in tum, the deletion of other tuples. This option is referred to as a
domgino or caseading deletion, since one deletion leads to another,

- Onlﬁ t_upli:s that are not referenced by any other tuple can be deleted. A wple

2 ed by other iples in (he database cannot be deleted.
|)
(e tuple is deleted. However, to avoid the doming effect, the pertinent foreign key

‘auributes of ali referencing tuples are set to null. _

Y . ' .
Similar at':@ps are required when the primary. key of a referenced relation is updated, An
pidate of dprimary key can be considered as a deletion followed by an insertion,

The choice of the oplion o use during a tuple deletion depends on the applicalion. For

. example, in most cases il would be inappropriate to delcte all employees under a given

manager on the manager’s departure; it would be more appropriatc Lo replace it by null,
.o I

RDBMS and DDBMS

12

- Another example is when a department is elosed. If employees were assigned to

departments, then the employee tuples would contain the department key too. Deletionofa
department tuples should be disallowed until the employces have either been reassigned or
Lheir appropriale attribute volues have been set to null. The insertion of a tuple with a
foreign key reference or the update of the forcign key attributes of a relation require a check
that the referenced relation exisis.

Although the definilion of the relational model specifies the two integrity rules, it is
unfonuenale that these concepts are not:fully implementced in all commercial relatignal
DBMSs. The concept of refercntial integrity enforcement would require an explicit
stalement as 1o what should be done when the primary key of a target tuple is updated or the
larget luple is deleted.

Rule 11 : Distribution rule:
A RDBMS must bhave distribution independence.

This is one of the more auractive aspects of RDBMSes,Dalabase system built on the
selational framework are well suited to today's client/scrver database design.

Rule 12 : No subversion rule :

If an RDBMS supports a lower level language that permits for example, row-at-a-time
processing, then this language must not be able to bypass any integrity rules or
constraints of the relational language.

Thus, not only must a RDBMS be goverited by relational rules, but those rules must be ils
primary laws.

The practical importance of these rules is difftcult o eslimate, and depends largely on the
RDBMS in queslion, ils proposed use and individual view points, but the theoretical
importance is undeniable, It is interesting 1o see how some of the rules relate to others, and
1o some of the more important advantages of the relational model. Itis unlikely at the
present time that any RDBMS can ¢laim [ull logical data independence because of their
genenally poor ability o handle updating through views. Even woken adherence to this rule
however, when combined with facilities enabling physical data independence, polentially
yield advaniages to applications developers, unheard of with any other type of daiabase -
system. Coupling these {wo rules with the data independence and distribution independence
rules can take the protection of cusiomer investment Lo new heights,

The beauty of the relational database is that the concepts that define iL are few, easy to
understand and explicit. The 12 rulis explained can be used as the basic relational design
crileria, and as such are clear indications of the purity of the relational concept. Whilst you
do not {ind these rules being quoted so often these days as in the recent past, it does not mean
that they are any less important. Rather it can be interpreted as reflecting a reduced
importance as propaganda. Other [actors, of which performance is the most obvious, have
now laken precedence.

1.5 RELATIONAL ALGEBRA

Relationa! algebra is a procedural Iznguage. It specilies the operations to be performed on
existing relations (o derive resull relations. Furthermore, it defines the complete scheme for
cach of the result relations. The relational algebraic operations can be divided into basic
set-oricnied operations and relational- oriented operations. The former are the iraditional set
operations, the latier, thosc for performing joins, selection, projection, and division.

Basic Operations .

Basic operations are the traditional set operations: union, difference, intersection and
cartesian product. Three of these four basic operations — union, intersection, and difference —
require that operand relations be union compatible. Two relations are union compatible if
they have the same arity and one-lo-one cormespondence of the atributes with the
comresponding attributes delined over the same domain, The carlesmnproducl canbe
defined on any two relations, Two relations P and Q are said 10 be-union compatible if both
Pand Q are of the same dcgrcc n and the domain of the corresponding n attributes are
identical, ie. if P=P(P,,} and Q= [Q,, ... Q,} then

" Dom(Py = Dom(Q) fori= (1,2,n} : ' Relational Moded
where Dom(P,)) represents the domain of the auribute Py

Example 1

In the examples to follow, we utilise two relalions Pand Q given inFigure 5. R isa
computed result relation, We assume Lhat the refations P and Q in Figure 5 represent employees
working on the development of software application packages J; and J, respectively.

P: Q:

Id Narme 1d Name
101 Jones 103 Smith
103 Smith] 104 Lalonde
104 Lalonde - 106 Byron
107 Even 110 Drew
110 Drew)

112 Smith

Flgure 5 : Unlon compatible relations

If we assume that P and Q are two union-compatible relations, then the union of P and .Q is
-the scl-theorelic union of P and Q. The resultant relation, R = P Q, has tuples drawn from
Pand Q such that '

=(tle Pvie Q)

The result relation R contains tuples that arc in cither P or Q or in both of them. The
duplicate wplcs arc climinated.

Remember that from our definition of union compatibility the degree of the relations P and R
is the same. The cardinality of the resuliant relation depends on the duplication of luplu inP
and . From Lhe abave expression, we can see that if all the tuples in were contained in P,
then R| |P| and R P, whilc if the wples in Pand Q were disjoing, then |R] = [P] +1 Ql.

Example 2 -

R, the union of P and Q given in Figure 3 in the above example 1 is shown in Figure 6(2). R
represents employees working on the packages J, or I, or both of these packages. Since a
relation does not have duplicate wplcs, an cmployee working on both I, and J, will appear in
the relation R only once.

R: . R: R: "

il Name id | Name . Id Name
141} Jones ’ 101 Jones 103 Smith
103 Smith 107 Evan 104 Lalonde
104 Lalonde 112 Smith 110 Draw
107 Even
110 Drew) P-Q , © PnQ
112 Smith

- @ PuQ

Flgure. 6 : Results of {2) unlon (b} dUTerence and (c} Intersectlon aperations
Difference (—)
The dilference operation emoves common Luplcs from the first relation.

R = P-Qsuchthat

R (e PAarLE Q)

Example 3 Py

R, the result of P - Q, gives employees workmg only on packagc J,. (figure 6(b) in cxamplc
2). Emplnyecs working on both packages J; and [, have bccn removed. \

13

[= (g ¥

14

Intersectlon ()
The interseclion operation selects the common tples from the two relations,

R = PnQwhere
R = [tite PALe Q)

Example 4

The resultant relation of P~ Q is the set of all employces working on both the packages.
(figure 5(c) of example 2).

The intersection operation isreally unnecessary. It can be very simply expressed as:
PAQ =P-P-Q)

It is, however, more convenient to write gn eiprg:ssion with a single intersection operation
than one involving a pair of difference operations,

Note that in these examples the operand and the result relation schemes, including the
atribute names, are identical i.e. P= Q =R, If the aribute names of compatible relations
are not identical, the naming of the auributes of the result relation will have 10 be resolved. _

Cartesian Product (x)

The extended cartesian or simply the cartesian product of two relations is the concatenation
of wples belonging to the 1wo relations. A new resuliant relation scheme is created
consisting of all possible combinations of the tuples.

R=Px(;
where a wplere Risgivenby (4] ¢ | t; e P A 1, € Q). ie. the result relation is cbrained
by concatepau'ng cacp luple in relation P with each wple in relation Q. Here, represents the
concatenalion operation, :
The scheme of the result relation is giw;'.n by:

R=P Il Q
The degree of the result relalion is given by:

IRl =Pl +1Ql
The cardinality of the result relation is given by;

Rl =Pl *Iql

Example §) i
The cartesian product of the PERSONNEL relation and SOFTWARE, PACKAGE relations

of figurc 7(2) is shown in figure 7(b). Note that the relations P and Q from figure S of
example 1 arc a subsct of the PERSONNEL relation,

PERSONNEL : ' Software Packages :

Id Name s

101 | Jones 1
- 103 Smith). 1,

104 Lalonde

106 Byron

107 Evan

110 Drew

112 Smith .

T{a)

. o Y 8 [

PERSONNEL : -

d P.Name S
101 "Jones 5
101 Jones 5
103 Smith I
104 Lalonde 5
104 "Lalonde 5
106 Byron 1.
106 Byron I
107 Evan i
1007 Ewvan Jz
110 Drew A

- 112 Smith I
112- |, Smith I

() -

Figure 7 : (o) PERSONNEL (Emp#, Name) and SOFTWARE_PACKAGE(S) represent emp.loyul and Ii‘t-

ware packages respectively; (b) the Carteslan product of PERSONNEL and SOFTWARE_PACKAGES

The union and intersection operauons are assoeiative and commutative; thercfore, given
relationsR, 8, T:

RUBUD=RU)UT=EBURUT=TUSUR)=..RNENT)=RAS)NT=..
The dili‘e:reﬁcc operation, in general, is noncommutative and nonassociative,
R-82#5-R roncommulative
R-(5-T)#(R-5)-T nonassociative

Addmmal Relational Algebralc Operations

The basic set operations, which provide a very limited data mampulauon facility, have been
supplemented by the defmition of the following operahons projection, selection, join, and
division, These operations are represented by symbols T, G, %o and + respecuvely
Projection and selection are unary operations; join and dmsuon are binary,

Projection (r)

The projection of a relation is defined as a projection of all its tuples over some set of
attributes, ie., it yields a vertical subset of the relation. The projeetion operation is used to
either reduce the number of attributes in the resullant relation or to reorder atwributes. In the
first case, the arity (or degree) of the relation is reduced. The projection operation is shown
graphically in figure 8. Figure 8 shows Lhe projection of the relation PERSONNEL on the
attribute Name. The cardinality of the result relation is also reduced duc to the deletion of
duphcate tples.

We defined the projection of a tuple §; over the attribute A, denoted t,[A] or 1t A(Ii) as (a),
where a is the value

PERSONAL ;
Id Name Name
101 Jones , Jones
103 Smith Smith
- 104 Lalonde — Lalonde
106 Byron .|~ Byron
Folo07 Evan Evan
Yol uo Drew _ Drew
112 Smith
Flg‘ul."e 8 : Projection of retatlor PERSONNEL over ateribute Nnme‘ -'_'. -
T . '

py—n-

Boluiaat Mad.

o e e) o o o

‘RDBMS and DDBMS

16

ol ﬁ_:pl:; t; over the autribute A. Similarly, we define the projection of a relation T, denoled by
" T{A] or & £(T), on the alribute A. This is defined in terms of the projection for each tuple in

1; belonging to T on the autribute Aas: .

ﬁAi={ai Iy[Al=a A e T)

where T[A) is a single attribute relation and | T[A]| < T. The cardinality T[A] may be less -
than the cardinality IT! bacause of the deletion of any duplicates in the resule. A case in point
is illustrated in figure 8. '

Similarly, we can define the projection of a relation on a sct of attribute names, X, s a
concatenation of the projections for each attribute A in X for every tuple in the relation.

TR ={ 4A] lye T)
Abelongsta X ;
where [A] represents the concatenation of all L{A] forall Ae X.
Abelongs to X -

Simply stated, the projection of a relation P on the set of altribute names Y belong to Pisthe
projection of each wple of the relation P on the set of atiribute names Y. oo

Note that the projection operation reduces the arity if the number of atiributes in X is less
than the arity of the relation, - The projection operation may also reduce the cardinality of the
result relation since daplicate tuples are removed. (Note that the projection operation _
produces a relation as the result. By definition, a relation cannot have duplicate wples. In
most commercial implementations of the relational model, however, the duplicates would
still be present in the result).

Selection (o)

Suppose we want (o find those employees in the relation PERSONNEL of Gigure 7(a) of
example’5 with un Id Iess than 105, This is an operation thay selects only some of the tuples
the relation. Such an operation is known as a selection operation. “Lhe projection operation
yields a vertical subset of a relation. The action is defined over a subsct of the attribute
names but over al! the wples in the relation. The selection operation, however, yields a
horizontal subset of a given relation, i.e., the action is defined over the complete set of
attribute names but only a subset of the tuples are included in the result. To have a tuple
included in the result retation, the specified selection conditions or predicates must be
satisfied by iL. The selection operalion, is sometimes known as the restriction operation.

PERSONNEL : _ Resulls of Selection

d Name . d Name
101 | Jones 101 Jones
103 Smith 103 Smith
104 Lalonde 114 Lalonde
106 Byron
107 .| Evan
110 Drew
112 Smith -

Figure 9 - Result of Selectlon over PERSONNEL far 14 < 105.

Any finite number of predicates connected by Boolean operators may be specified in the
sel-ction opsation. The predicates may define a comparison between two ,
domain-compatible attributes or between an attribute and a constant value; if the comparison
is between allribute A, and constant ¢,, then ¢; belong to Dom(A;). . . .

- Given a relation P and a predicate expression B, the selections of those tuples of relation P

that satisly the predicate B is a relation R wrilien as:
R=0pP

“The ahove expression could be read as “select these toples t from P in which the predicate

B(t) is ttue.” The set of tuples in relation R are in this case defined as follows:

R={tl Le oPAB{)} Relatlonal Madel

JOIN ()

The join operator, as the name suggests, allows the combining of two relations to forma
single new relation. The wples from the operand relations that participate in the operation
and contribule to the result are related. The join operation allows the processing of
relationships existing between the operand relations.

Example 6 _) : .
In figurel0we encounter the following relations: ASSIGNMENT (Emp#, Prod#, Job#)
JOB_FUNCTION (Job#, Tide) '
. T . o
EMPLOYEE : - oL
Empt Name Profession =
101 Jones Analyst . |
103 Smith - Programmer
104 .Lalonde Rc:ccpﬁonist
106 Byrom | Receplionist
107 Evan VPR &D
110 Drew VP operalions
112 Smith - Manager
PRODUCT :
Prod# Prod-Name Prod-Details
_HEAP!I | HEAP-SORT ISS Module
BINS9 BINARY-SEARCH ISS/R Module
© .FM6 FILE-MANAGER ISS/R-PC Subsys B
B++] B++_TREE ISS/R Turbo Sys -
Ba+2 B++ TREE ISS/R-PC Turbo -
@
JOB-FUNCTION ' ASSIGNMENT s
Job# Title Emp#d Prod# Job#
900 Presi . .101 HEAP 1 600
. ident .
. - 110 BINS9 800
800 1} Manager : 103 | HEAP1 700
. 100 Chiel Programmer
600 Analyst _ 101 BINS9 700
110 FM$§ 800
107 B++1 800
L)

Flgure 10 (a) Reutlon schemes for employee role In developmenl teama (b) Sample relatlons

Suppose we want Lo respond 10 the query Get product number of assignments whose
develnpment teams have a chief programmer. This requires firsL computing the cartesian
product of the ASSIGNMENT and JOB_FUNCTION relations. Let us name this product
relation TEMP. ‘This is followed by selecting those tuples of TEMP where the atmibule Title
has the value chief programmer and the value of the attribute Job# in ASSIGNMENT and
JOB_FUNCTION are the same. The required result, shown below is obtained by profeciing
these wples on the atiribute Prod#.” The operations are specilied below.

-

TEMP = (ASSIGNMENT X JOB_FUNCTION)

Tproae (0 Title = ‘chiel programmer’ A ASSIGNMENT Job# (TEMP))

Prod #

HEAP1 -
BINS 9 \

17
.

RDDMS and DDBMS

In another method of responding to this query, we can first select those tuples from the
JOB_FUNCTION relation 5o that the value of the attribute Title is chief programmer. Let us
call this set of tples the relation TEMP1. We then compute the cariesian product of TEMP1
and ASSIGNMENT, calling the product TEMP2. This is [ollowed by a projection on Prod#
over TEMP2 to give us the requircd response. These operations are specified below:

TEMPL = (o Title= ‘chicl programmer’(JOB_FUNCTION))

TEMP2 = (o ASSIGNMENT.Job# = JOB_FUNCTION.Job# (ASSIGNMENT X TEMP1))
Tpmas {TEME2) grives the required resulr

Notice that in the selection operation that follows the cartesian product we take only those
tuples where the value of the altributes ASSIGNMENT. Job# and JOB_FUNCTION Job# are

the same. These combined operations of cartesian product followed by selection are the join
operation. Nole that we have qualified thé identically named attributes by Lhe name of the

. corresponding relation to dislinguish them.,

In case of the join of a relation with itsell, we would need to rename either the atributes of
onc of the copics of the relation or the relation name itself, We illustrate this in example 7.

In general the join condition may have more than one term, necessitadng the use of the
subscript in the comparison operator. Now we shatl define the different types of join
operations,

In these discussions we usc P, Q, R and 50 on o represent both the melation scheme and the
collection or bag of underlying domains of the atiribuizs, We call it a bag of domains
because more than one atribule may be delined on the same domain,

Typically, PN Q may be null and this guarantees the uniquencss of altribute names in the
rc'sul@ relation, When the same atiribute name occurs in the wo schemes we use qualified
names.

Two common and very useful variants of the join are the equi-join and the natural join. In
Lthe equi-join the comparison operator theia(i = 1,2,......, n) is always the equalily operator
{=). Similarly, in the natural join the comparison aperator is always the equality operator,
However, only onc of the two seis of domain compalible auributes involved in the natural
joinare A from Pand B, from Q, fori=1,, n, the natural Join predicate is a conjunction
of terms of the following form:)

GIAI=LBDfori=12,...n

) Domain‘compal.ibilily requires that the domains of A; and B, be compatible, and for this

Teason relation schemes Pand Q have attributes defined on common domains, Le., PQ =4,
Therefore, join auributes have common domains in the relation schemes P and Q. .
Consequendy, only one set of the join attributes on these common domains needs o be
preserved in the result relation. This is achiéved by taking a projection after the join
-operation, thereby eliminating the duplicate attributes. If the relation P and Q have attributes
with the same domains but difercnt atiribute names, then renaming or projection may be
specified. .

Example 7

Given the EMPLOYEE and SALARY relations of figure 11(i), il we have 10 find the salary of
employees by name, we join the twples in the relation EMPLOYREE with those in SALARY
such that the value of the attribute Id in EMPLOYEE is the same as that in SALARY. The
natural join takes the predicate expression to be EMPLOYEE.Id = SALARY,Id. The result

of the natural join is shown in figure 11(ii). When using the natural join, we do not need to
specily this predicate. The expression 1o specify the operation of finding the salary of
employees by name is given as follows. Here we project the result of the natural Join
operation on the atiributes Name and Salary: S

- 7 (Name.Salary) (EMPLOYEE ¢ SALARY)

|y s e

EMPLOYEE : SALARY: - EMPLOYEE » SALARY Relallorad Model
1d Name 1d Salary 14 Name |- Salary
101 Jones 101 67 01 Jones® . 67
103 | Smith 163 55 103 |smin | 55
104 | Lalonde 104 75 104 | Lalonde | 75
107 Evan 107 80 107 Evan 80

ASSIGNMENTEmp# | COASSIGN Emp #
107 107
107 101
107 103
101 107
101 , 101 -
101 103
110 110
110 101
103 107
103 101
03 103
101 110

Flgure 11: {I) The natural joln of EMPLOYEE and SALARY relations;
(i) The folat of ASSISWMENT with 1he renemed copy

Division (+)
Before we deline the division operation, Jet us consider an example.

Example 8

Gwcn the relations Pand Q as shown in figure12 (), the result of dividing P by Q is the
[fclation R and it has two wples. For cach tuple in R, its product with the tples of Q must be
inP. In our example (a,.b,) and (a),by) must both be tuples in P; the same is mue for (as, b))
and {aghsy).

Simply stated, the cartesian product of Q and R is a subset of P. 1n figurz12(b), the resull - |
rclation R has four wples; the cartesian producmf R and Q gives a resulting relation whu:h is -

P: Q: R(resull) Q: thenR1s:
A B B A - B A
ay b, b, & by]
a by by as 3
ko] by , &
iy b] . ﬂs
dy ba g
as by
as bz) .
' (@) (b} -
& tenRis Q:

"-\'..

’,

el

"%B ,iA' B

.
Y

7,' Elguglz Examples of the dlvision operlllnn (a2} R Peq .
g-_Q(Ejs,ﬂusa.p inparti); (P R= P+Q;P isibe wmanslrn qu,l){-a ARR1 (f— . .
E E‘-L I".K'!rl) (dga‘t“ >k £> B

-,

Q(Phlhes!mlsinpml) . - ' 1!5'_'-

e

RDBMS anda DDBMS

20

»

again a subset of P. In figure12 {c}, since there are no wples in P with a value b, for ll'fc)
attribute B (i.e., selectiong . ,(P) =0), we have an empty relation R, which has a cardinality
of zero.)

In figure 12(d), the retation Q is emply. The resuli relation can be defined as the projcc}Ion
of P on the attributes in P — Q. Howevcr, it is useal o disallow division by a cmpty relation.

Finally, if relation P is an empty relation, then relation R is also an crmply relation.

Let us treat the Q as representing one sct of propertics (the properties are defined on the Q,
cach wple in Q representing an instance of these properties) and the relation r as representing
entities with these properties (entities are defined on P - Q, and the properties are, as before,
defined on Q); note that P U Q must be equal toP. Each tuple in P represents an object with
some given property, The resultant relation R, then, is the set of entities that possesses all the
properties specified in Q. The two enlitics a) and a5 possess all the properties, i.e., b, and b,.
The other entities in P, a,, ay, and a,, only posscss one, niot both, of the properties. The
division operation is useful when a query involves the phrase “for all objects having all the

specified properties.” Note that both P — Q and Q in general represent a set of attributes. It

should be clear that Q not a subset of P,

1.6 RELATIONAL COMPLETENESS

The notion of relational completeness was propounded by Codd in 1972 as a basis for

evaluating the power of diffcrent query languages.

A language is relationally complee if the basic relational algcbra operations can be
performed. The basic relational algebra operalions are

Union

e Difference

e Gross product
e Projection

s Seleclion

Query [anguages that are actwally used in practice provide features in addition to the one
mentioned above, For example, they provide facilitics for

1. modification, storage and deletion of information
printing relations

2 _

3. assigning relations to some relation names

4. computling aggregate funclions like SUM and MAX
5.

performing arithmetic, for example, like retrieving the Salary + commission.

Check Your Progress \
1. Define lhe following terms;

(a) Intcnrion of a el
(b) Extension of g set
2. What is union compalible?

X omTi srE F pTs

1.7° SUMMARY

The relational model has evoked a wide amount of interest in the database community, This -

model has a very sound mathematical basis to it It exhibits a high degres of data
_independence.

However, it has its share of difficultics. These arc:

. @ Therelational model does not deal with issues like semantic integrity,
concurrency and database security. These issues are Iell to be solved by the
\ implementors of database managemen systems based on the relational medel. The
most serious consequence of the foregeing was the absence of |hc concept of
* semantic integrity in refational systems.

e Traditionally, implementations of the relational model have sulfered from the
drawback that they are relamrely poor on response time, The biggest problem is in
" the realization of the join operator. Whereas, a DBMS based on, the relational
model can handle small databases, as the sizes of databases reach the region of
bitlions of bytes the performance of these systems falls rather drastically.
Consequently, these systems are able to support databases of relatively small sizes,

1.8 MODEL ANSWERS

1. {a) Theintention ofa sc.t-d_eﬁncs the permissible occurrences by specifying a
membership condition,

(). The extension of the set specifies one of nuimerons possible occurrences by explicitly
listing the set members. These two methods of defining a set are illustrated by the

following example:)
Intentionof setG = {g | gisan odd positive integer less than 10} .
Extensionof setG = {13,579}

2. T\vo relations arc wnion compatible if they have some arity and one 16 one
- correspondence of the atiributes with the corresponding attributes defined over, the same’

domain. %
I

&
1.9 FURTHER READING ' S "

Bipin C.Desai, An Introduction to Database System, Galgotia Publication, New Defhi.

Relntions) Modsl

T & B W e sy £ 7y

UNIT2 NORMALIZATION

Structure

20 Inroduction

2.1 'Objectives

22 Functional Dependency

23 Anomalies in 3 Database

24 Properties of Normalized Relations
2.5 First Normalization :
26 Seccond Nomal Form Reladon

27 Third Normal Form ’

28 Boyce Codd Normal Form (BCNF)
29 Fourth and Filth Normal Form
2.10 Some Examples of Dayabase Design
2,11 Summary

2,12 Model Answers

2.13 Funher Readings

- 2.0 INTRODUCTION

The basic objectives of nonmalization is 1o reduce redundancy which means that information
is to be Stored only ence. Swring inlormation several limes Jeads to wastage of slorage space -
and increase in the towad size of the data stored. Relations are normalized so that when
relations in a database are to be alicred during the life 1i.ne of the database, we do not lose
information or introduce inconsistencics.” The type of allerations normally needed for
relations are: :

1. Insertion of new data v:ﬂuw to a relation. This should be possible without being forced
to leave blank fields for some attribules.)

2. Deletion of aluple, namely, arow of a relation. This should be possible without losing
vital information unknowingly.

3. Updating or changing a value of an awibute in a wple. This should be possible withont
- exhautlively Searching all the twples in the relation. .

In this unit, in the beginning we discuss the importance of having a consistent database
“without repetilion of data and points out the anomalies that could be introduced in a database
with ani undesirable scheme. Then we discuss the different forms of normalization,

2.1 OBJECTIVES

Alter going through this unil, you may be able to:
e discuss the different types of anomalies in a database
e swate what is functional dependency
. .list the different forms of normalization

e differentiate among diflerent (ypes of normalization.

2.2 FUNCTIONAL DEPENDENCY

As the concept of dependency is very important, it is essential that we first understand it well
&nd then proceed 1o the idea of normalization. There is no fool-proof algorithmic method of
identifying dependency. We have 1o use our coramonsense and judgement of specify
dependencies.

Let X and Y be two auributes of a relation. Given the value of X, if there is only one value
of Y corresponding to it, then Y is said to be functionally dependent on X This is indicated
by the notatig.a; .

X =5 Y . ! — Normallzation

+ For example, given the value of item code, there is only one valuc of item name for it. Thus
item name is functionally dependent on item code. This is shows as:

Itemcode ~—> ilcm name
Similarly in table 1, given an order number; the date of the order is known. Thus : order no.
Order date) .
Functional dependency may also be based on a composite atiribute. For example, if we write
X.Z 5Y '

it means that there is only one value of Y comesponding to given values of X, Z. Inother -
words, Y is functionally dependent on the composite X, Z. In other words, Y is functionally
dependent on the composile X, Z. In table 1 mentioned below, {or example, Order no., and

Item code Logether determine Quy. and Price. Thus: :

Order no., ltem code — Qty., Price
As another example, consider the rclation

Student (Roll no., Name, Address, Dept,, Year of .sr.udy)

Order no. Order date Itert code CQuantity Pricelunit
1456 260289 3687 52 5040
1456 260289 . 4627 s - 6020
1456 260289 3214 207 © 1750
1886 040389 4629 45 2025
1886 040389 4627 30 6020
1788 040489 4627 40 60.20

Table 1: Normatlzed Form of the Relatfon

In this relation, Name is functionatly dependent on Rell no. In fact, given the value of Roll
no., the values of all the other altribules can be uniquely deiermined. Name and Depariment
are not functionally dependent because given the name of a student, one cannot find his

+ depariment uniquely. This is duc Lo the fact that there may be more than one student with the
same name. Name in this case is not a key. Department and Year of study are not
funciionally dependent as Year of study perains Lo a student whercas Depariment is an
independent auribute. The functional dependency in this relation is shown in the following
figure as a dependency diagram. Such dependency diagrams shown in figure 1 arc very
useful in normalization.

Relation Key: Consider the rciaﬁnn of table 1. Given the Vendor code, the Vendor name
and Address are uniquely determined. Thus Vendor code is the relation key. Givena
relation, if the value of an atribute X uniquely determines the values of all other attributes in

Year of study

- Flgure I; Dependency dlagrom for he relation “Student™

arow, then X is said to be-Lhe key of that refation. Sometimes more than one au.i'i’butc is
- needed io uniquely g;mfﬁc other-atributes in a relation row. In l.lnt-ea_a:-gueha setof. , -
" auributes is thekey,- I 1able 1, Ol'rdcr no. and Item code together forBLd Key. In ujc, - 2

g vy v et e | e

RDBMS and DDBMS

24

refation “Supplies” (Yendor code, Item code, Qty. supplied, Date of supply, Pricefunit),

Vendor code and Ttem code together fofm the key. This dependency is shown in the
following diagram (figurc 2).

Quantity supplied
"i Date of supply |

Pricefunit

Figure 2: Dependency diagram for the redatlon “Supplles™

Observe that in the figure the fact that Vendor code.‘ and Item code 1ogether form a composite
key is clearly shown by enclosing them together in a rectangle.

- e ey [

2.3 ANOMALIES IN A DATABASE

Consider the following relation scheme pertaining to the information about a smdent -

maintained by a university:

STDINF(Name, Course, Phone_No, Major, Prof, Grade)

Table 2 shows some tuples of a relation on the relation scheme STDINF(Name, Course,
Phone_No, Major, Prof, Grade). The funclional dependencies among its alnibulcs_ are shown
in Figure'3. The key of the relation is Name Courss and the relation has, in addition, the
following functional dependencies (Name — Phone_No, Name — MﬂjOf, Name Course —»
Grade, Course — Prof]. .

Name Course Phone_No Major Prof - Grade
Janes 353 2374539 Comp Sci Smith - A

Ng 329 427-7350 Chemistry Tumes B
Jones 328 2374539 Comp Sci Clark B
Martin 456 388-5183 Physics James A
Dulles 293 3716259 Degiston Sci Cook C
Duke 491 | 823-7203 Mathematics Lamb B
Duke 156 823-7293 Mathematics Bond in prog
Jones 492 237-4539 Comp Sci Cross in prog
Baxier 379 839-0827 Enplish Broes C

Tuble 2: Student Data Representation in Relation STDINF

Here the attribute Phone_No, which is not in any key of the relalion scheme STDINF, is not
functionally dependent on the whole key but only one part of the key, namely, the attributa
Name. Similarly, the autributes Major and Prof, which are not in any key of the relation
scheme STDINF either, are fully functionally dependent on the attribute< Name and Course,

respectively. Thus the determinants of these functional dependencies are again not the eatire

key but only part of the key of the relation. Only the attribute Grade is fully funcuonally
dependent on the key Name Course.

The relation scherme STDINF can lead 1o several undesirable problems:

e Redundancy: The aim of the database sysiem is to reduce redundancy, meaning
that inforration is to be stored only once. Storing information several times leads
- to the waste of storage space and an increase in the intal size of the data stored.

Updates 10 the database with such redundancics have the polential of becoming
inconsistent, as cxplained below. In the relation of table 2, the Major and
Phone_No. of a student arc stored several times in the dalabase: once for each
course that is or was laken by a student. . -

e Update Anomalies: Multiple copics of the same fact may lead (o update anomalies
or inconsistencies when an update is made and only some of the multiple copies are
updated. . Thus, a change in the Phone_No. of Jenes must be made, for consistency,
in ali tuples pertaining to the student Jones. 1f one of the three tuples of Figure 3 is
not changed 1o reflect the new Phone_No. of Jones, there will be an inconsistency in
the data. ’ -

“iName',;| “Coursé |Phone No: '+ Majo

Figure 3: Functlon dependencies In STDINF

e Inseriion Anomalies: If this is the only relation in the database showing the
association between a faculty member and the course he_or she teaches, the fact that
a given processor is teaching a given-course cannot be éntered in the database
unless a student is registered in the course. Also, if another relation also establishes
a relationship betwéen a course and a professor who teaches that course the
information stored in these relations has to be consistent.

e Deletion Anomalies: If the only student regisiered in a given course discontinues

the course, the information as to which professor is offering the course will be lost if

this is the only relation in the databasc showing the association between a faculty
member and the ¢ourse she or he teaches. If another relation in the database also
cstablishes the relationship between a course and a professor who teaches that
course, the deletion of the last wple in STDINF for a given course will not cause the
information about the course’s teacher Lo be lost) -

The problems of database inconsistency and redundancy of data are similar to the problems
that exist in the hierarchical and netwosk models. These problems are addressed in the
network model by the introduction of virwal fields and in the hierarchical model by the
introduction-of virwal records. In the rclational:model, the above problems can be remedied
by decomposition. We define decomposilion as follows:

Definition: Decom pasition _
The decomposition of a relation scheme R = (A, Ay, ... Aois its replacement by asetof
relation schemes (Ry, Ry, ... Ry}, such thatR, s Rfor 1S ismandR, U Ry v R, =R.

A relation scheme R can be decomposed into a collection of sclation schemes (R, Rg, Ry ...
R_] to climinate some of Lhe anomalies containcd in the original relation R. Here the
relation schemes R, (1 € i$ m) are subsets of R and the intersection of Ry n Ryfori=j
need not be empty. Furthermore, the union of R; (1 <i £ m) is cqual R, 1e.R=R; Ry ..

R,

The problems in the relation scheme STDINF can be resolved if we replace it with the
following relation schemcs:

STUDENT_BSEQ{Name, Phonc_No, Major)
TRANSCRIPE{K.me, Course, Grade)
TEACHER (Cdise, Prof)

The first relation scheme gives the phone number and the major of cach student and such
information will be stored only once for each studenl. Any change in the phone number will
thus require a change in only onc Luple of this relation.

-

Normaltation

ROBMS EWDDBNS

26

The second relation scheme stores the grade of each student in each course that the student is
or was enrolled in.-(Note: In our database we assume that either the student takbs the course
only once, or if he or she has to repeat it 1o improve (he grade, the TRANSCRIPT relation _
stores only the highest grade) - .

The third relation scheme records the teacher of each course. One of the disadvantages of
replacing the original relation scheme STDINF with the three relation schemes is that the
retrieval of certain information requires a natural join operation to be performed. For
instance, (o find the majors of a surdent who obtained & grade of A in course 353 requires a
join 10 be perfermed: (STUDENT_INFO ¢ TRANSCRIPT). The same information could
be derived from the original relation STDINF by selection and projection,

When we replace the original schemée STDINF with the relation schermes STUDENT_INFO,
TRANSCRIPT and TEACHER, the consistency and referential intcgrily constraints have to
beenforced. The mferential integrity enforcement inaplies that if a wple in the relation
TRANSCRIPT exists, such as (Tones, 353, in prog), a tuple must exist in STUDENT_INFO
with Name = Joncs and- furthermore, a tuple must exist in STUDENT_INFQ with Course =)
353. The atribute Name, which forms part of the key of the relation TRANSCRIPT, is a key
of the relation STUDENT_INFO. Such an attribute (or a group of attributes), which
cstablishes a relationship between specific wples (of the same or two distinct relaticns), is
called a feeign key. Notice that the attribute Course in relation TRANSCRIPT is also a
foreign key, since it is 2 key of the relation TEACHER.

Notz that the decomposition of STDINF into thé felation schemes STUDENT (Name,
Phone_No, Major, Gradc) and COURSE (Course, Prof.} is a bad decomposition for the
following reasons: :

1. Redundancy and update anomaly, because the datn {or the attributes Phonc_no and
Major are repeated.

2. Loss of information, because we lose the fact that a student has a given grade in a
- particular course.

.24 PROPERTIES OF NORMALIZED RELATIONS

Tdeal relations after normalization should have the following propertics so Lhat the problems
mentioned above do not occur for relations in the (ideal) normalized form:

L. Nodaa value should be duplicated in different rows unnecessarily.
2. Avalue must be specificd (and required) for every attribute in a row.

3. Each relation should be self-contained. In other words, if a row Fom a relation is
delcied, important information should not be accidentally lost

4. ' When a row is added 1o a relation, other relations in ihc database should not be affecied,

5. Avalue of an auribute in a teple may be changed independent of other tuples in the
relation and other relations. ’

The idea of nommalizing relations to higher and higher normal forms is to attain the goals of
having a sct of idcal relations mecting the above criteria,

2.5 FIRST NORMALIZATION

The relation shown in table 1 is said to be in First Normal Form, abbreviated as INE. This
form is also called a flat file. There are no composite attributes, and every attributz is single
and describes one property. .

Converting a relation o the INF form is the first cssentipl siep pormalization. There are
successive higher normal forms known as 2NF, 3NF, BCNFE, 4NF and SNF. Each fo.m is an
improvement over the carlier form. In other words, 2NF is an improvement on INF, 3NF is
an improvement on 2NF, and so on. A highernormal form relation is a subsct of lower
nomnal farm as shown in the following figure 4, The highbr normalization steps are based on

“three important concepls:

s e e e et e e

Nonzallation

i

5NF
ANF ' .

BCNE
INF

2NF
INF q

Flgurl: 4: Diustration of suctesdye normal formsof & nlltlonJ-L(
1. Dependence among attributes in a relation _'g _-_:'t;'-'

2. Ideniification of an altribuie or a st of attributes as the key of amlaﬁfﬁ

- . \‘i f
s
2.6 SECOND NORMAL FORM RELATIOQ: N

3o ‘i‘

" We will now define a relation in the Second Normal Form (QNQ.\A%uGh is said o be in

2NF if it is in INF and non-key atiributes arc functionally depeisdént ori the key astribute(s).
Further, if the key has more than one atribute then no non- kcy%buu:s uld be o
functionally dependent upon a part of the key atmibutes. Consider, for ex plc. the relauon
given intable 1. This relation is in INF. The key is (Order no., Ttem codé) The dependency
diagram for auributes of this relation is shown in figure 5. Thé nonzkey auribute Price/Unit
is functionally dependent on Item codé which is part of the rclhuon heye\mso the non-key
attribute Order date is functionally depeadent on Order no. which if'a part of the relation key.
Thus the relation is not in 2NF. 11 can be transformed to 2NF§ tung'h into three ’
relations as shown in table 3.

3. Mulivalucd dependency between ausibutes

In table 3 the relation Orders has Order no. as the key. Thé' {
composite key Order no. and Iiem code. In both relstions Lﬁc fion Kw au.nbulcs ae
functionally depcndcnl on the whole key, Observe that by lmnsfurmmg Lo 2NF rclatlons the

-

"J
L
LI

rder no.

) ”-‘iﬂl'b‘i“h - Ty
| o] ’ .

ok, e -

e

:‘-Q :-'__5.
T At | nemcode ﬁ
o ¥ TG
=¥ R
§'5.- . ?
Figure 5 Depen iency dlagram for the relatlon gl

27

==y

R DBEMS wod DDEMS

repetition of Order date (table 1) has been removed. Further, if an order for an item is
cancelled, the price of an ilem is not lost. For example, if Order no, 1886 for ltem code 4629
is cancelled in wble 1, then the fourth row will be removed and the price of the item is lost.
In table 3 only the fourth row of the table 3(b) is omilted. The item price is not lost as it is
available in 1ble 3{c}. The data of the order is also not lost as it is in table 3(a).

(a) Orders _ (b) Order Details * (c)Prices
Order 'Order Order Item Quy. Trem Price/
ne date no. Code code unit
1456 260289 1456 3687 52 |. | 3687 5040
1886 040389 1456 . 4627 38 4627 6020
1788 040489 1456 3214 20 3214 1750

I 1886 - 4629 45 4629 2025
1886 4627 30
1788 4627 40

. Tabled: Spllu.l:-ng of Rawtlon given Ln table 1 Into 2NF Relations

Thesg relations in 2NF form meet all the “ideal” conditions specified. Observe that the three
relations oblained as self-contained. There is no duplication of data within a relation. . -

2.7 THIRD NORMAL FORM

A Third Normal Form normalization will be needed where all attributes in a relation tuple are
not functionally dependent only on the key auribite, If two non-key attributes arc
funcrionally dependent, then there will be unnecessary duplication of data, Consider the
relation given in table 4. Here, Roll no. is the key and all other attributes are

Roll ne. Name Department . Year Hostel name
1784 ¢ _ Raman Phiysics 1 - Ganga
1643 Krishnan * Chemistry 1 Ganga
1768 Gopalan Mathematics 2 Kaveri
1848 Raja ’ Botany 2 Kaveri
1682 Maya Geology 3 Krishna
1485 Singh . Zeology 4 Godavari

Table 4: A2NF Form Redatlon -

functionally dependenton it. Thus it is in 2NF. If it is known that in the college all first’

_ year students are accommodated in Ganga hostel, all second year students in Kaveri, all third -
year studenis in Krishna, and all fourth year students in Godavari, then the non-key attribute

Hnseelnameisdemdﬂummcnon-kcyamil;méYw. This dependency is shown in figurc 6.

Figure §: Dependency dlagram for the relation

|y =y Py =y

Observe that given the year of student, his hostel is known and vice versa. The dependency
of hostel on year leads to duplication of data as is cvident from mble 4. Ifitis decided 1o ask
all first year students 1o move wo Kaveri hostel, and all second year stedents to Ganga hostel,
this change should be made in many places in table 4. Also, when a students year of sludy
changes, his hostel change should also be noted in Table 4. This is undesirable. Table 4 is
said to be in 3NF if it is in 2NF and no non-key attribute is functionally dependent on any
other non-key attribute. Table 4 is thus not in 3NF. To wransform it to 3NF, we should
introduce anather relation which includes the functionally related non-key attributes. This is
shown in table 5. - .

Roll no. Name Depe“ment Year Year Hostel name
1784 ‘Raman Physics 1 I Ganga
1648 . Krishnan ~ Chemistry 1 2 Kaveri
1768 . Gopalan Mathemarics 2 3 Krishna
1848 Raja Botany 2 4 Godavari
1682 Maya Geology 3

1485 Singh Zoology 4

‘Teble 5: Conversion of toble ¢ [nte byo AN relatons

It should be stressed again that dependency betwecn attributes is a semantic property and has
to be stated in the problem specification. In this example the dependency between Year and
Hostel is clearly stated. In case hostel allocated to students do not depend on their year in
college, then table 4 is already in 3NF.

Let us consider another example of a relation. The relation Employee is 'givcn below and i1
dependency diagram in figure 7. :

Employee (Employee code, Employee name, Depl., Salary, Project no., Termination date of
projeci}. - .

As can be seen from the figure, the termimation date of o prdjccr. is dependent on the Project
no. Thus this relation ig notin 3NF. The 3NF relations are: ’

Employee (Employee code, Employee name, Salary, Project no.)
Project (Project no. Termination date)

Employee name |
/ Dcpanmenl if}
)
mployee Codel il Salary

Termination date |i—

- Figure 7: Deptndency diogram of emplayee relution

B3

)

2.8 BOYCE:CODD NORMAL FORM (BCNF)

;ﬁssumc that a relation has more (han onc possible key. Assume further that the composite
cys have a common attribute, If an attribute of a composite key is dependent on an attribute
:aF the other composiic key, a normalization called BCNF is needed. Consider, 1s an

akample, the silatioh Professor: =

Professor (P!%ﬁésof code, Dept., Heed of Dept., Parent time)

Normalizatlon

LT

RDBMS and DDBMS

It is assumed tha;l.
1. A prof;:ssur can work in momhlhan one department

2. The percentage of the lime he spends in cach depariment is given,
3. Each department has only one Head of Department.

___The relationship diagram roﬁlc above relation is given in figure 8. Table 6 gives the

relation attributes. The two possible composite keys are professor code and Dept. or
Professor code and Head of Depl. Observe that department as well as Head of Dept. are not
non-key attributes. They are a pant of a composite key,

: _ ' Head of
De ent] Department
Professor code -
.
Department » Head of Department
Head of Department
Department

Professor code

Figure 8: Dependency dlagram of Professor relatlon

Professor Code | Depariment Head of Dept. Parent
Pl Physics Ghosh 50
Pl Mathematics Krishnan 50
P2 Chemiscy . | Rao 25
P2 Physics Ghosh 75
P3 Miithematics | Krishrian 100

Tuble 6: Nermalizutlon of Relntlon “Professar” .

The relation given in 1able 6 is in 3NF Observe, however, that the names of Dept. and Head
of Dept. ere duplicated. Further, if Professor P2 resigns, rows 3 and 4 are deleted. We lose
the information that Rao is the Head of Departmcm of Chemistry.

The normalization of the relation is done by creating a new relation for Dept. and Head uf -
Dept. and deleting Head of Dept. from Professor relation. The normalized relations are
shown in the following table 7.

(@))
Professor Departrent Percent Department Head of |
cade time DepL.
P1 Physics 50 Physics ~ Ghosh
Pl Mathematics 50 Mathematics Krishnan
P2 Chemistry 25 Chemistry * Rao
P2 Physics) 15
- P3 Mathematics . . 100

Tuble 7: Normnalized Professor RdaUon in BCNF

P gy s g e gy 7

and the dependency diagrams for these new relations in figure 8. The dependency diagram
gives the imponant clue 10 this normalization step as is clear from figures 8 and 9.

Department ;
N .
" Percent time l
Professor code
Pepartment - Head of Department

Figure 9; Dcpendency dlagram of Professor redation

2.9 FOURTH AND FIFTH NORMAL FORM

When ateributes in a relation have multivalued dependency, furthcr Nommalisation to 4NF
and SNF are required. We willillustrate this with an example. Consider a vendor supplying
many ilems to many projects in an organisation. The following are the assumptions:

1. A vendor is capable of supplying many itemns,
2. Aproject uses many iterns.

3. Avendor supplies 1o many projecis.

4. Anilem may be supplied by many vendors.

Table § gives a relation for this preblem and figure 10 the dependency diagram(s).

Yendor code Item code Prdject no.l
V1 Il Pl
V1 : 12 Pl
Y1 I1 P
V1 12 P
V2 12 P1
V2 R & T Pl
v3 I P2
V3 . Il P2

-Table §: Yendor-sipply-projecis Raatlon)

BT

The relation given in table 8 has a number of problems. For c:ié‘mﬁ[b:

Y
o

—»——¥ indicates multivalued dependency

Pigure 10 : Dependency diagrams of vend or-sup ply-projed refatfon

Normallzatlon

31

RDEMS and DDBMS

2

@ If vendor V1 has 1o supply Lo project F2, but the item is not yet decided, then a row
with a blank for ilem code has (o be introduced.

e The information about item 1 is stared twice for vendor V3,
Observe that the relation given in Table 8 is in 3NF and also in BCNFE, It still has the

* problems mentioned above. The problem is reduced by expressing this relation as two

relations in the Fourth Normal Form (4NF). A relation is in ANF if it has no more than one
independent multivalued dependency or one independent multivalued dependency with 8
functional dependency.

Table 8 can be expressed as the two 4NF relations given in Table 9. The fact that vendors
are capable of supplying ceniain items and that they are assigned to supply for some projects
in independently specified in the 4NF relation.

{a) Vendor Supply (b} Vendor project
Yendor code Ttem code) Vendor code Project no.
V1 n V1 Fl
vl 12 Vi P
Y2 12 vz - Pl
V2 3 vi . Pl
V3 Il : N3 P2

Tubla 9; Vendor-supply-projed Relatlans in 4NF

These relations still have a problem, Even though vendor V1's capability to supply items
and his allotment to supply for specified projects may not need it. 'We thus need another
relation which specifies this. This is called SNF form. The SNF relations are the relations in
Table 9(s) and 2(b) together with Lhe relation given in table 10,

Project no. Item code
Pl 11
Pi 12
P2 11
P3 | Il
P3 I3

Table 10: SNF Addittonu] Relatlon

Ia tble 11 we summarise the normalisation sieps slready explained.

Input relation Transformation Output relation

All relations Eliminate variable length records, Remove INP
multiatiribuce lines in ble

INF relation Remove dependency of non-keysattribute on part 2NF

of a multiattribute key -
2NF Remove dependency of non-key attributes on 3NF
other non-key attributes
. r
3NF Remove dependency of an auifbuie@f a BCNF

muitiattribute key on an attribute c¥another
(overlapping) multi-auribute key™ .

BCNF Remove more than one independent multivalued 4 NF
,.,-:‘5.‘; : dependency from relation by splitting relation
IO RN
4NFr =, Add onc relation relating atiributes with SNF
- multivalued dependency to the. two relations :
K with moltivalued dependency > -
L .
Toble 11: Summary of Normsallsation Steps Vi

Ar 1 M ey 0 e e | o e

Normaltzation

210 SOME EXAMPLES OF DATABASE DESIGN

. Consider a problem where items are supplied by a vendor and checked by a receiving
process against orders for detecting any discrepancy, An order file is used to check whether
the deliverics arc against orders and whether there is any discrepancy. We will now see how
these data can be organised as refations. The E-R diagram of figure 11 applies for th:s case
and the rclauons are:

Figure i11: An E-R dlagram for Ordors Placed with de(u:.'s far Supply of Iterny .
ORDERS (order no., order datc)

ORDER PLACED FOR (arder no., item code)

ORDER PLACED WITH (order no., vendor code, ilem cotle, qty. ordered, pnoefumt.
delivery time allowed)

YENDORS (vendor no., vendor ‘Inamc. vcndor address)

ITEMS Glem code, iteni name)

SUPPLIES ivendor code, item code, order no., qty. supplicd, date of supply)
The key attribute(s) arc in bold Icucr(s-) in each refation.

Lct us examine whether the relations are in normal form. ORDERS and ORDER PLACED
FOR are simple relations. In the relation ORDER PLACED WITH, the key is the composite
attributes order no., vendor code and item code. However, arder no, and vendor code arc
functionatly related if we assume that a given order no. has only ene vendor specificd.
Further, an arder is with a vendor for an ilem. The price/unil depends on the item and the
vendor. Thus we necd Lo modify the relations ORDER PLACED FOR and ORDER
PLACED WITH to:

ORDER PLACED FOR (order no., Item codg, gty. ordered, pricc/unit, delivery wme)
ORDER PLACED WITH (vendor code, Ytem code)

The weo relations have composiic keys. The non-key ficlds are not related to one another, In
a key with more than one atiribute the individual alributes are not funclionall'y dependent.
Thus these twe relations anc in normalised form and do not need any further change.

There is still one problem. Many orders may be given to the sune vendor for the same or
different items. In order to organisc this data we necd one more relation

ORDER WITH VENDOR (order no., vendor code)
50 that we can find out which vendor supphe,d ag:unsn an order.

The relations VENDOR and ITEM are: simple and arc’in normalised form. The rclauun
SUPPLIES is, however, not normaliscd. Yendor code and order no. are funciionally
: 33

=) e 7 Ty

RDBMS and DDEMS

Ho
)

.
o}
:
.
S

dependent. There is a multivalued dependency between vendor code and item code as a
vendor can supply many items. We Lhus splil the relations into 1wo relations:

ACTUAL VENDOR SUPPLY (vendor no., item code, qty. suppiied. date of supply)
VENDOR SUPPLY CAPABILITY (vendor code, item code) '

Cbserve that the relations VENDOR SUPPLY CAPABILITY and ORDER PLACED WITH
have identical attribuics. However, VENDOR SUPPLY CAPABILITY relation will have a
{vendor code, item code) table without a vendor having supplied any item. The relation
ORDER PLACED WITH will have a teple only when a vendor dciually supplies an item.

Ve now consider another problem. Let a database contain the following: Teacher code,
Tcachcr‘s name, Teacher's address, rank, department, courses taught by the teacher, course

¢, credils for course, no. of students in the class, course taught in semester no., student
no name, dept,, year, and courses taken in semester no, The following ml‘ormauon is gwcn
on dependencies.

e Ateacher may leach more than one course in a semester.
e Atcacher is afMiliated to only one depaitment.
® Astudent may take many courses in a semester.

e The same course may have more than one section and different sections may be
taught by different tcachess, -

An enliLy- rclauonshlp diagram for this problem is given in figure 12. The relations

.corresponding to the E-R diagrm are;

[Teacher I

Flgure 12 : An E-R dlagram for teacher dutabase

_ TEACHER (Teacher code, course no., no. of rank, dept.)
TEACHJES COURSES {Teacher code, coursc no., no. of students)
COURSES (course ne., course rime, credits, semester tanght)
STUDENT (student no., student’s name, dept., year)'
STU'DEN'I‘-COURSES (student’s no., course no., scm-esr.er no.}

TEACHER rclauon has only one key, All non-key atiributes are functionally dependent only
on the ké,’y-_, Tha;e is no functional dependency among non-key au.nbules Thus the relation

e m. o higher NFs are applicablc), - '
STUDENY, "__‘1auon ?2 ﬁo similasly, in 3NF. In the COURSE relation, course name coold
. However fitcre is no ovrrlapping multiatiribute key. The relation is in 3NF
- omah §f6n is requiga: The relations TEACHES COURSES and
STUDENT- URSES have multialtribute keys, but the relations themselves are in normal -
form. The: 68y poin Witk | jgro /clear, from these relztions, is the relation.between teacher
and szt This hag been nnssed in eE‘Rd:agram The mIauonsh:p ishetwegn thgf ’

tcacher, courses tanght and students. In other wor&s. we should be able to answer the
question “Which teacher is teaching course no. X 1o student no. Y7™ Letus add a relation

TEACHES TO (Teacher code, student no., course no.)

In this relation Teacher code and course no., have a mul{valucd dependency. Similarly,
Teacher code and student no. as well as student no. and course no., have multivalued
dependency. Howcever, TEACHES COURSES (Teacher code, course no., no. of students)
and STUDENT-COURSES (student no., course no., scmester no.) relations are a.'lrcady in
the database. Thus the relation TEACHES TO as it is specilicd above is suflicient to gwc the
idea that smdent Y tekes course X from Teacher Z.

Check Your Progress
1. What is the basic purpose of 4MNF?

2. What types of anomalics are found in relational databasc?

2.11 SUMMARY

In this unit, we pointed out different types of anomalies in the database that could cause an
undesirable cffect. 'We also discussed several forms of normalization that could help in
removing Lhesc anomalies.

2.12 MODEL ANSWERS

1. The2nd, 3rd and BCNF normal forms deal with functional dependencics only. uis
possible for a relation in 3NF to siill exhibit vpdate, inscrtion and deletion anomalies.
This can happen when multivalued dependencics ane not properly taken care of, In
order 1o eliminate anornalies arise out of these dependencics, the notion of 4NF was
developed.

2. Thereare 3 types of anomalies in database. These are:
{1} Insertion anomalics
(ii) Delelion anomalics

(iii) Update anomalics

2.13 FURTHER READINGS

1. Bipin.C. Desai, An Introduction to Database System, Galgotia Publi;;al.ion. New Delhi.
2. V.Rajaraman, Analysis and Design of Informatic System, PHL, Ncw Delhi-1995.

Normaiization

5

LT o flm —pw e

)

UNIT3 STRUCTURED QUERY LANGUAGE

Structure

3.0 Introduction

3.1 Objectives

32 Cawegories of SQL Commands

" 3.3 Data Definilion

34 Data Manipulation Statements
341 SELECT- The BasicFoem
342 Subquerica
3,43, Functions
3.44 GROUPBY Fraure
345 -Updaing the Dztabase
34,6 Dala Definition Fadlities

33 Views

3.6 Summary

3.7 Further Reading

3.0 INTRODUCTION

SQL is an acronym for Structured Query Language. Tt is available in a number of datg base
management packages based on the relational model of data, for example, in DB2 of the
IBM and UNIFY of the UNIFY corporation. :

Originally defined by D.D. Chamberlain in 1974, SQL underwent a number of modifications
over the years. Today, SQL has become an official ANSI standard. -

It allows for data definition, manipulation and data control for a relational database. The data
definition facilities of SQL pemit the definition of relations and of various alternative views
of relations. Further, the data control facility gives features for ane user 1o anthorize other
users 10 access his dala. This facility also permits esscriions to be made about data integrity,
Al the three major facilities of SQL, namely, dala manipulation; data definition and data
control are bound together in one integrated language framework,

3.1 OBJECTIVES

After going thrmigh this unit you will be able to:
' Differemiate SQL commands

e List data manipulation commands

o List data definition commands

e Make queries using data manipulation commands.

3.2 CATEGORIES OF SQL COMMANDS

SQL commands can be ronghly divided into three majar categories with regard 1o their
functionality. Firsily, there are those nsed 1o create and maintain the database struclure. The
second category includes those commands that maniputate the data in such Structures, and
thirdly there are those that control the use of the database. To have gl this functionality ina
single language is a ¢lear advantage over many other systems straightway, and must certainly

_contribute largely 1o the rumour of it being casy o use.

I’s worth naming these threc fundamental Lypes of commands for future reference, Those
that create and mainlain the database are grouped into the class called DDL or Data
Definition Language statements ag those used to manipnlate data in the tables, of which
there are four, 'Eﬁrem.n&a Manipulation Language commands. To control usage of
medammetg;qa" ontrol Language) are used, and it is these three in

- conjunction phakediz o tons that define SQL. There are-therefgre o eavironmental

3 . -

sgn

statements, as one finds so irritating in COBOL: {or example, no siatements to control’
program flow (iffthen/else, perform, go to) and of course, no equivalent commands to open
and close files, and read individual records. At this Isvel then, it is easy o see where SQL
gets its end- oser-tool and easy-to-use tags.

The Data Definition Statements
To construct and administer the database there are two major DDL siatements - CREATE and
DROP, which form the backbone of many commands:

CREATE DATABASE o create a database DROP DATABASE 1o remove a database
CREATE TABLE to create a table DROP TABLE to drop a table CREATE INDEX to
create an index on a colume DROP INDEX to drop an index CREATE VIEW tocreate a
vicw DROP VIEW to drop a view.

There may be some additional ones, such as ALTER TABLE or MODIFY DATABASE,
which are vendar specilic.

The Data Manipulation Statements

To manipulate data in tables directly or through views we use the four standard DML
stalcmcnts

SELECT DELETE lNSERT UPDATE

These statements are now universally accepted, &s is their functionality, although the degres
to which these commands support this functionality varies somewhat between products
compare the functionality of different implementation of UPDATE for example.

Data Control
This deals with three issues

' (a) Recovery and Cﬁﬁcurrency
Concumency is concemed with the manner in which multiple users operate upon the dala’

Each individual user can either reflect the updates of a transaction by using the COMMIT or
.can cancel all the updates of a transaction by using ROLLBACK.

{b) Security
Security has two sSpects toit.

The first is the VIEW mechanism. A view of a relation can be created which hides the
-sensitive information and defines only (hat part of a relation which should be visible. A user
can then be allowed to access this view.

CREATE VIEW LOCAL AS
SELECT * FROM SUPPLIER
WHERE SUPPLIER.CITY = 'Delhi’
The above view reveals only the suppliers of Delhi.

_ The second is by using GRANT opesation. This shall grant one or more access rights 1o
perform the data manipulative operations on the relations.

(c) Integrity Constraints
Inlegrity constraints are enforced by the system, For example, one can specify that an
atribute of a relation will not take on nuli values.

3.3 DATA DEFINITION L

Data definition in SQL ie via the create stalement. The statement can be used to create 8
1able, index, ar view (i.e., & virual table based on existing tables). To create a table, the
create stalement specifies the name of Lhe table and the names and data types of each columa

Structared Query Ll.nilllg-e

4

37

wt e 1 e

RDBMS and DDEMS

of the table. Hts format is:

create table <relation> (<auribute list>)

" . where the atrribute list is specified as:

<attribute list> : = <auribule name> (<data type>)[not null] <attrbute list>

The daia types supporied by SQL depend on the particular implemenuation. However, the
following data types are generally included: integer, decimal, real (i.e., floating point values),
and character strings, both of lixed sizc and varying length. A number of ranges of values for
the intcger data ype are generally supported, for example, integer and smallint, The decimal

_ value declaration requires the specification of the total number of decimal digits for the value

and {optionally), the number of digits 1o the right of the decimal point. The number of
fractional decimal digits is assumed-to be, zero if only the total number of digits is specified.

<data typex :: = <integer> | <smallint> | <char(n)> | <floac> | <decimal (p[,q)}:>

In addition, some implementations can support additional data types such as bit strings,
graphical strings, logical, daia, and time. Some DBMSs support the concept of date. One
possible implementation of date could be as eight unsigned decimal digits representing the
data in the yyyymmdd format. Here yyyy represents the year, mm represents the month and
dd represenis the day. Two datcs can be compared to find the one thal is Iarger and hence
occurming later. The system ensures (hat only legat date values are inscrted (19860536 for
the date would be illegal) and functions are provided to perform operations such as adding a
number of days io a daic 1o come up with another date or subtracling a date from the current
date to find the number of days, months, or years. Dale coastants are provided in either the
format given above or as a character sring in one of the lollowing formats: mm/dd/yy;
mm/dd/yyyy; dd-mmm-yy; dd-mmm-yyyy. In this text we represent a dale constant as cight
unsigned decimal digits in the format yyyymmdd.

The employce relation for the hotel database can be defined using the create table statément
given below. Here, the Empl_No is specilied to be not null to disallow this unique identifier
from having a null valuc. SQL supports the concept of null values and, unless a column is
declared with the not null option. itcould be assigned a null value.

create table EMPLOYEE
Empl_No integer not null,
Name : char (25),

Skill char (20)
"Pay-Rate decimal (10,2))

The definition of an eéxisting relation can be aliered by using the alter siatement. This .
siatement allows a row column Lo be added 1o an existing relation. The existing tples of the
altered relation are logically considered to be assigned the null value for the added column.
The physical alteration occurs to a tuple only duning an update of the record.

alter table exisling-tablc-name /
add column-name data-type [....] '
alter table EMPLOYEE

add Phone_Number decimal {10)

The create index statement allows the creation of an index for an already exisiing relation.
The columns to be used in the generation of the index are also specified. The index is named
end the ordering for each column used in the index can be specificd as cither ascending or
descending. _The cluster option could be specificd to indicate that the records are o be
placed in physical proximily to each other. The unique option specifies that only one record .
could exist at any time with a given value for the column(s) specified in the statement o
create the index. (Even though this is just an access aid and a wrong place 1o declare Lhe
primary key). Such columns, for insiance, could form the primary key of Lhe relation and
hence duplicate tuples are not allowed. One case is the ORDER relation where the key is the
combination of the atiribute Bill#, Dish#. In Lhe case of an existing relation, an attempt o
creale an index with the unique option will not-succeed if the relation does not salisfy this
unigueness crilerion. The syntax of the create index statement is:shown below:

create (unique] index name-of-index
on existing- table-name

(column-nmne[ascendiﬁg ot descending) - Structured Query Language _

[.column-name[order]....})
[eluster]

The following statement causes an index called empindex to be bullt on the columns Name .-
and Pay_Rate. The enuries in the index are ascending by Name value and descending by

Pay_Rate. In this exemple there are no restrictions on the number of records with the same

Name and Pay_Rate.

Create index empindex

on EMPLOYEE (Name as¢, Pay_Rate desc); -

An existing relation or index could be deleted from the database by the drop SQL statement.
The syniax of the drop statement is as follows:

drop table existing-table-name;

drop index existing- index-name;

3.4 DATA MANIPULATION -

Data manipulation capabilities allows one to retrieve and modify contents of the data base.
The most important of these is the SELECT operation which allows dam 10 be retrieved from
the dala base. ' ~ o

The relation definitions that shall be used in the rest of the module are given below.

There are parts which are supplied by suppliers, S contains the details about each supplier. -
Turnover for a supplier is in lerms of lakhs of rupees. Information regarding suppliers of
specific parts is contained in SP whereas information about the paris themselves is contained

inP.
5 .
S SNAME “SCITY TURNOVER
10 . CAUVERY BANGALORE 50
11 NARMADA BOMBAY - 100
12 YAMUNA DELHI 70
13 TAPI BOMBAY 20
P
P# WEIGHT COLOUR . COST SELLING PRICE:
1 25 RED 10 T30 '
2 30 BLUE 15 45
3 45 RED 20 45
SP
S# PH QTY
10 1 100
11 1 5
10 2 50 -
11 2 30
10 3 10
12 3 100
13 1 2

39

e e F =t 2

RDBMS and DDBMS

3.4.1 SELECT - The Basic Form

The select statement specifics the method of selecting the tuples of the relations(sk The
tuples processed are from anc or more relations specified by the form clause of the stlect |
stalement : b

The basic form of SELECT is

Select <iarget list>

from «<relation list>

[where <predicate>]

SELECT lists the auributes 1o be selected

FROM relations from which information is to be nsed .
WHERE condition. The rows that qunlify are those for which the condition evaluates to true,

Condition i3 a single predicate or a cotlection of predicates combined using the Boolean
operators AND, OR and NOT. .

The column names following SELECT are (o be retrieved from the relations specified in the
FROM part. WHERE specifies the condilion that the tuples must satisfy in order 1o be part of
the resulL

Below we shall siate first the retrieval query in English and they specify its SQL equivalent.

Unqualified Retrieval
1. Get the part numbers of all the parls being supplicd.

SELECT P#
FROM SP
PH
1 7/
1
2
2
3
3

1 - .
Part numbérs gelling repeated? That's right. SELECT does not eliminate duplicate rows
(unlike the project operation of the relational algebra). In order to do that
2. Get the part numbers of all the pans being supplied with no duplicates.
SELECT DISTINCT P# ’
FROM SP S

wM—E

If all the columns of the relation are 1o be retrieved then one needn’t list all of them.
A can be specified after SELECT to indicate retrieval of the entire relation,

3. Ger ful details of all suppliers.

SELECT *
FROM §
-8 .
. S# SNAME - - SCITY TURNOVE!
10 CAUVIRY BANGALORE 50
11 NARMADA “BOMBAY 100
12 TAMUNA DELHI 70

13 TAPI BOMBAY 20

T T

The ORDER BY clause _ ' Structured Query Language |
The result of a query can be ordered either in ascending (ASC) order or in descending
(DESC) order.
4. Get the supplicr numbers and turniover in descending order of tumover.
SELECT 5#, TURNOVER

FROM S . AT
ORDER BY TURNOVER DESC

s# TURNOVER

11 100

12 70

10 50

13 20

Instead of a colum|.1 name, the ordinal position of the column i the result can be used.
That is, the above query can be rewritien as

5. SELECT S#, TURNOVER
FROMS
ORDER BY 2 DESC
The format of the order clause is
CRDER BY [int/gol [ASC/DESC), }
¢ol — column name .
int —ordinal position of the column in the result Lable
ASC/DESC ~ Ascending or descending
If there is more than one specification, then the left-to- right specification corresponds to
major-to-minor ordering. This is shown below.

6. Get the supplier number and pan nuraber in ascending order of supplier number and
descending order for the part supplied for each supplier.

SELECT S# P# QTY

FROM SP

ORDER BY Si#, P4 DESC
S# P# QTY
10 -3 10
10 2 50
10 1 100
11 .2 30
11 1 5
12 3 100
13 1 20

Qualified retrieval

The expressicn fotllowing WHERE specifics the condition that must be satisfied. Below we
consider a few examples.

7.. Getlhe |I:Icr.ails of suppliers who operate from Bombay with wrnover 50.
SELECT 5.*
i:ROM 5
WHERE CITY = 'BOMBAY' AND TURNOVER > 50
Sk SNAME SCITY TURNOVER -

11 NARMADA BOMBAY 100
41

e e TR (v

RDBMS and DDIMS

+ The above form is a conjunction of comparison predicates. A comparison predicate is of the

form
scalar-expr O scalar-expr

where O is any of the six relational operatoss

=, D, €, 3, €, o

-

and a scalar expression is an arithmetic expression with

operalors as +,—, %, /

operands as col., function, constant

BETWEEN Predicate

B. Get the part numbers weighing between 25 end 35
SELECT P#, WEIGHT

FROMP

WHERE WEIGHT BETWEEN 25 AND 35
Pi WEIGHT
1 - 25
2 30

The use of BETWEEN gives Lhe range within which the values must kie. If the value should .
lic outside a mnge then BETWEEN is to be preceded by NOT. For example,

SELECT P#)

FROMP
WHERE WEIGHT NOTRETWFEN 25 AND 35
P# WEIGHT
3 45
would retrieve all part numbers whose weight is less than 25 or greater than 35 as shown
above,
LIKE Predicate -

 This predicate is used for pattermn matehing. A column of type char can be compared with a

string constant, The use of the word LIKE doesn't look far exact match but a farm of wild
string match. A % or - can appcar in the string constant where

% stands for a sequence of n (>=0) characiers
—stands for a single character

Examples

ADDRESS LIKE *%Bangalore%' - ADDRESS should have Bangalore somewhere as a part
of it if the match is to succeed. .

'STRANGE STRING LIKEA-%' ESCAPEY

Here, the nonna'.l&r[leaning ol — is overridden with the use of the escape chardgter. STRANGE
above will mi,[eh}ivim any string beginning with —

9. Getihe rz.mcs and citics of suppliers whose name begin with C

SELECT . SNAME, semy -
FROMS * . '
WHERE *. i "“SNAME LIKE*C%’

SNAME % 'sCITY

CAUVERY BANGALORE - o

When the data is to be retrieved from more than one relation thea both the relation ; |
- names is specified in the FROM clause and the join oondiﬁon'in‘llhé WHERE pant. __

10. For each part supplied, get paﬂ: number and names of all cities supplying the part.
SELECT P#, CITY ’ '

FROM SP,S
WHERE SP.S# = 5.5#
P# SCITY
1 BANGALORE
1 BOMBAY
2 BANGALORE
2 BOMBAY
3 BANGALORE
3 DELHI
1 BOMBAY

How does, then, one specify a join on the same relation?

11. Get pairs of supplier numbers such that both operate from Lhe samc city.

SELECT FIRST.S#, SECOND.S#
FROM S FIRST, § SECOND

WHERE FIRST.CITY = SECOND.CITY
AND FIRST.S# < >SECOND S# .

FIRST and SECOND are tuple variablcs, both ranging over S, The last line climinates a
supplier getting compared with himsell,)

s# s4
1 13
13 11

But, we see that suppliers with numbers 11 and 13 are getting compared twice. Can that be
aveided? How about < instead of <> 7

SELECT FIRST.S#, SECOND.S#

FROM S FIRST, S SECOND
WHERE FIRST.CITY = SECOND.CITY
AND FIRST.S# SECOND.S#

Tests for NULL

An alribute can be Lested for the presence or absence of null.

12. Getthe sui:plicr numbers whose tumover is null

SELECT s#
FROM s
WHERE TURNOVER IS NULL

. Therg is no wple in the result of this query as in the sample
Can the last line in the above query be replaced by
WHERE TURNOVER = NULL

Structured Query Language

43

o = e) = ey

RDBMS and DDBMS

Not really! It is incorrect as nothing {even NULL) is equal to NULL.,
‘The lermat for specifying NULL is
col. efIS [NOT] NULL

IN Predicale

This is 1o be used whenever you want (o test whether an attribute value is one of a set of
values. For cxample,

13. Get the part numbers that cost 20, 30 or 40 rupess.

SELECT P.P#, SELLING PRICE

FROM P _
WHERE SELLING PRICE IN (20, 40, 45)
P# SELLING PRICE

2 ©4s

3 45

Iv's a quicker way of specifying comparison,
The format of the predicatwe ~
scalar-expr [NOT] IN (atom list)

3.4.2 Subqueries

The cxpression following WHERE can be either a simple predicate as explained above or it -

can be a query iisell? This part of the query following WHERE is catled a Subquery.

A subquery, which in tum is a query, can have its own subquery and the process of
specilying subqueries can continue ad infinitum! More practically, the process ends once the
query has been fully expressed as a SQL statement,

Subqueries can appear when using the comparison predicate, the IN predxca:e and when
quantifiers are used (riot yet explained). .

Comparison Predicate

14. Getthe supplier numbers of suppliers who are located in the same city as Tapi.
SELECT - 5.5#, SNAME
FROM 8 |
WHERE S.CITY =
(SELECT SCITY

. _- FROM S

WHERE . SNAME=‘TAP!')

_ The inner sélectﬁubque.ry) retrieves the city of the supplier named Tapi. The outer select

(the main one) therscompares the city-of each suppliegggethe supplier relation and picks up
those WhBl:lf.': []ﬁw‘ Rplilaﬁson succeeds, - -)
. S4 ' SNAME : -
11" ' NARMADA -)
S 13. . TaPl :
Nnr.ig:;t!;w_é subquery appears after the companson;ope.rala' The forma: of this form of
eXpr o1y)

scalar-oxpr oi'f@[or subquery

-

g == e = s

" IN Predicate

In this form the subquery selects a set of values, The outer query checks whether the value of

a specified attribute is in this set.

'15. Get the names of suppliers who supply part 2

SELECT S.SNAME
FROM s
WHERE SSHIN
(SELECT SP.S#
FROM SP
WHERE SPPH = 2)

SNAME

CAUVERY

NARMADA

The above query can be equivalently expressed as

SELECT $.SNAME
FROM S
WHERE 2IN
(SELECT P#

FROM sp
WHERE S.SH=5#)

3# is unqualified and therefore, refers to SP. That is because every unqualified atiribute name
is implicitly qualified with the relation name from the nearest applicable FROM clause.

Quantified predicates

The two quantifiers that can be used are the ALL and ANY. Any stands for the existential
quantifier and ALL for the universal quantificr. .

Lets first look i AMY, it can be specified in a comparison predicate just following the
comparison operator. That is,

scalar-expr O ANY subquery

The subquery is first evaluated to give a set of values, The above expression is true if the
scalar-cxpr is Q comparable with any of the values that form the resull of the subquery.

16. Gel the par nurnbers for parts whose cost is loss than the current maximum cost.
SELECT Pi#, COST

FROM P
WHERE COST < ANY
(SELECT COST
FROM ' p)
P# COST
1 10

2 - 15

Structured Query Langusge

45

=P e et . e

——————— -

46

RDBMS lnll DDRMS

The inner select gets the cost of all the parts. In the outer select, a P s selected if its cost is
less than some element of the set selectéd in the earlier step.

17. Get the supplier names of suppliers who do ot supply part 2.

SELECT SNAME
FROM S
WHERE 2< > ALL
(SELECT P#
FROM SP
WHERE S#=S.5%)
SNAME o
YAMUNA
TAPI

For each supplier, all the parts supplied by him are collected in the inner select. If none of
them is equal to P2 then the condition evalualces 1o true and supplier name forms part of the
result

Existence Test
This kind of an expression is used when it is necessary to find out if the sct of values

retrieved by using a subquery contains an element or not

18. Get the supplier names of suppliers who supply at least one part.
SELECT SNAME '

FROM §
WHERE EXISTS

.(SELECT *
FROM S§P

WHERE SPS#=S5.5%)

" For a given supplier, if the subquery selects at least one tuple then the condition (which

follows WHERE) cvaluates Lo true. Then, the name of the supplier is selected. IN our data
base every supplicr is supplying at least one part. So the names of all of them would be part -
of the result

3.4.3 Functions

Some standard functions arc defined in SQL and can be used when framing queries. There
are five built-in functions. These are

'COUNT - numberof values of a column
SUM - Sum of values in a column
AVG - Avemge of values in a column .
MAX - illmumum of all thé. values in a column I_gl)
MIN — Minimum of all the values ina column

If the function is followed by the word DISTINCT then unique valugs are used. On the other
hand, if ALL follows the function then all the values are used for evalualing the funcuon
ALl is the default’

COUNT(*) has a special meaning in that it counts the number of rows of a relation, CQUNT
; 5 ; . : R

T

in any other form must make use of DISTINCT. In other wdrds. except when rows are
connted, COUNT always relurns the number of distinct values in a column.

19. Get the total number of suppliers
‘ SELECT COUNT(")

FROM 5 ,
COUNT(*) counts the number of wples of § and henee, the numbt;r of suppliers,
20. Get the total quantity of Part 2 that is supplicd.

SELECT SUM (SP.QTY)

FROM Sp

WHERE SPP#=2
The answer is one of

8 25 b)) 40 ¢ 80 dy 100
21. Get the part numbers whosc cost is greater than the average cosL.

SELECT P#

FROM P

WHERE COST

(SELECT AVG(COST)

FROM P)

22. Get the names of suppliers who supply from a city where there is atcast one more
supplier; ’

SELECT ~ SNAME
_FROMS _FIRST

WHERE 2
(SELECT COUNT (CITY)
FROM 3

WHERE CiTY =FIRST.CITY)

Some praclice exercise beforc we move on [o the next section. Try and write the expression
yoursell before looking al the solution. Yours might be different from the solution given in
the notes. For all you know, yours might be a better solution. So, go-ahead and iy, Use any

feature that has been covered till now.
1. Get the names of supplicrs who supply at least one red part
SELECT SNAME
FROM S
WHERE §# IN
(SELECT 5#
FROM Sp
WHERE P#IN
(SELECT P#
FROM P

WHERE COLOUR = 'RED"))

Structured Query Languajre

47

ey ey s ey

. RDEMS and DDEMS

48

2.. Get the supplier numbers who supply at lml one part supplied by supplicr 10.
SELECT DIS‘I‘INC.'I' SH
FROM SP
WHERE P# IN
(SELECT P# °
FROM Sp

WHERE S#=10)

3.4.4 GROUPBY Fecature

This feature allows onc to partition the result into a number of groups such that ell rows of
the group have the same value in some specificd column.

23. Gel the part number and the tolal quantity.
SELECT P#, SUM(QTY)

FROM 5P
GRQUP BY P#
pa SUM(QTY.)
1 125
2 80
3 110

GROUP BY groups together all the rows which have the same value for PR, The function
SUM is then applicd to each group. That is, the result consisis of a part number along with
the total quantity in which il is supplied.

Whencver GROUP BY is used then the phrase WHERE is to be replaced by HAVING. The
meaning of HAVING is the same as WHERE cxcept that the condition is aow npphcahlc o
cach group.

24. Get the part numbers for parts supplicd by more than one supplier.
SELECT P#

 FROM SP
GROUPBY P#
"HAVING COUNT(*) > 1

Each group conlains one or more tuples wh:c.h have the same parlnumbe:' COUNT(*) is
applied 10 cach such group.

The result before COUNT(*) is applied Is
P4
1
.2
3 .
In this case aii the par numbers will be selected.

3.45 Updating the Database o,

The contents of the ¢- tabase can be modified by inserting a new tuple, deleting an cnsung
tuple or changing Lhe values of atiributes of one or mere fuples.

INSERT

The insertion facility allows new uples to be inserted into given relations. Attributes which
are not specified by the insertion statement are given noll values, Consider

1. Add a part with number 14, weight 10, coloured red, with the cost and selling price ag
20 and 60 respectively.

INSERT INTOP:
< 14,10, 'red”, 20,60 >
The tple is inserted into P.

I all the fields are not known then a tple can still be added. The attributes whose values are
not specified will have a null valoe,

INSERT INTOP:
<15, 'GREEN">

The values for fields the weight, cost and the setling price which aré not specified are
assumed to be null. -

2, I.\ct us assume that there is a relation called RED-PART with one column P#.
INSERT INTO RED-PART ;
SELECT P#
FROM P
WHERE COLOUR= ‘red’

The various attributes of P having red colour ere identified and inserted into the mhﬁon
RED-PART.

DELETE)
The deletion facility removes specified mplﬁ from the database, Consider
1. Delete sup]:;liér 13

DELFTE §

WHERE S#=13

Since S# is the primary key only one tuple will be deleted from S.
2. Delete all suppliers who supply from Bangalore

DELETE §

WHERE SCITY = 'BANG'ALORE'

Here, mon;:. than anl._‘. supplier can get deleted.
3. Delete all the suppliers

DELETE $

The definition of S exists but the relation is empty.
4. Delete all the supplies involving red coloured paris.

DELETE - SP
WHERE ‘red'=

(SELECT COLOUR
FROM P -

WHERE PP#=SPP#H

Structured Query Languisge

49

RUBMS and DDBMS

50 .

UPDATE

When columns are 1o be modificd SET clause is used. This clause species the update 10 be
made (o selected wples. .

1. Change the city of supplicr 13 to Bangalore and increase the tumover by 20 Ilakhs.
UPDATE § '
SET CITY = ‘BANGALORE’

TURNOVER = TURNOVER + 20
WHERE SW=13

2. Increase quantity by 10 for all supplies of red coloured parts,
UFDATE SP
SET QTY =QTY + 10
WHERE PHIN. -

(SELECT P¥
FROM P
WHERE COLOUR ='RED")

3.4.6 Data Definition Facilities

Data definition facilities permit users 1o create and drop relations, define alternative views of
relations.

CREATE statement nilows 1o define a relation. The name of the relation Lo be created and its
various ficlds together with their data types must be specified, If a certain attribute is barred
from containing null values then a NONULL specification must be made for it.

Te must be noted that the word TABLE is used in this syntax instead of RELATION.
Example ')

CIFEATE "TABLE DEPT

(DNQ(CHAR(Z)NONULL),

DNAMIZ (CHAR'(12) VAR),

LOC(CHARQ0) VARY)

VIEW

A very important aspect of daa definition is the ability 10 define alternative views of data.
The process of specifyinyy an altemative view is very similar to that of framing a query. The
derivzd relation is stored and can be used therealter as an object of the various commands. It
is also possible to define other views on p of the newly created relation,

Example
DEFINE VIEW D50 AS
SELECT EMPNO, NAME, JOB
- FROM EMP
WHERE DNC = 40

D5C: contains the employee nhmbc:, name and job of lhosc employees who are in depariment 50.
|

L=

Structured Query Lapgunge

3.5 VIEWS

5 !
A view is a virtual table, that is one that does not actually exist. Tt is made up of a query on
-other tables in the database. It could include only certain columns or rows from a table or
from many tables. A view which resiricts the user to certain rows is called a horizontal view
and a vertical view restricts the user to certain columns. You are nol restricted to purely
horizontal or vertical slices of data. :

A view can be as complicated as you like, You can have grouped views where the query
contains a GROUP BY clause. This makes the view a summary of the datainatableor
fables.)

If the list of column names is omitted the ¢olumns in the view take the same name as in the
underlying tables. You must specify column names if the qurey includes calculated columns
or two columns with the same name. There are several advantages to views, including :

@ Security : Users can be given access o only the rows/celumns of tables that
concern them. The table may contain data for the whole firm but they only see data
for their department. ‘

e Date integrity : The WITH CHECK OPTION clause is used to enforce the query
conditions oo any updates to the view, If the vicw shows data for a particular office
the user can only enter data for that office.

o Simpticity : Even if a view is a multi-table query, querying the view still looks like
a single-table query. .

e Protection from change : If the structure of the database changes, the user's view
of the data can remain the same.

There are two disadvangages 10 views :

" » Performance : A vicw may look like a single table but undemeath the DBMS is
usually still running mult-table queries. 1F the view is complex then even simple
queries can lake a long time.- . '

e Update restrictions : Updating the daia through a vicw may or may not be
possible. If the view is complex the DBMS may decide it can’t perform updates and
make the view read-only. i ’

The ISO siandard specifies five condilions that a view must meet in order 1o allow update.s :
« The view must not have a DISTINCT clause
e The view must only name onc table in the FROM clause

e All columns must be real columns — no expressions, calculated columns or column
{unctions

e The WHERE clause must nol contain a sub-query
» There must be no GROUP BY or HAVING clause

You will find that most dialects of SQL are not quite so restriclive, The underlying principle
is that updates are allowed if the rows and columns of the view are traceable back to acmal
rows and columns in tables.

The format of view statement is as follows
cTeate view <viCw namcs> as quUery expression

" A vicw isa relalion (virtual rather than base) and can be uscd in query expressions, that is,
queries can be written using the view as a relation. Views gencrally are not stored, since the
dala in the basc relations may change. The base relations on which a view is based arc
sometimes called Lhe existing relations. The definilion of a view in a create view statement
is stored in the system catatog. Having been defined, it can be used as if the view really
represenied a rcal refation. However, such a virual relation defined by a view is recomputed
whenever a query rcfersieil

51

= o ey

RDBAIS and DDBMS

32

.~ /iria high-level language such as BASIC, C, COBOL, FOR

'.3.7 FURTHER READWNG

Example

(a) For reasons of confideniiality, not all users are permitted to see the Pay_Rale of an
employee. For such user the DBA can creale a view, for example, EMP_VIEW defined
as:
create view EMP_VIEW as
"(select Empl_No, Name, Skill

-from EMPLOYEE)

(b) A view can be created for a subset of the wples of a relation, as in this example, For
assigning employces lo particular jobs, the manager requires & list of the employees who
have not been assigned 10 any jobs:
create view FREE a5
(select Empl_No
from EMPLOYEE)
minus

_{select Empl_No
from DUTY_ALLOCATION)

(c) The view in part {b) above can also be created using the following statements;

create view FREE as

(select Empl_No

from EMPLOYEE)

where Empl_No any

(select Empl_No

from DUTY _AL LOCATION)

In the above examples, the names of the autrbuies i the views are-implicitly taken from'the
basc relation. The data types of the attribute of the view are inherited from the
corresponding attributes in the base relation. We can, however, given new names 1o the
auributes of the view, This is illustrated in the syntax of the create view statsment given
below: .

create view VIEW _NAME
(Namel, Name 2,)
as (sclect)

Here the atributes in the view arc given as Namel, Name y S and these names are
assaciated with the existing relation by order correspondence, The definitien of a view is
accomplished by means of a subquery involving a select stalement as given in the syntax
above. Since a vicw can be used in a select statement, a view can be defined an another
existing vicw. '

3.6 SUMMARY

'.f_Mpsl commereial refational DBMSs support some form of the SQL data manipulhtion

Laaguage, and this creates differcnt dialects of SQL. SQL has been standardised; that is, &
- minimum compatible subset is specificd as a stapgard, In addition, embedded versions of
:#SQL are supparted by many commercial DBMSS. This allows applicetien program wriilen

A

atabasc accessing SQL by means oﬁgppmpﬁq(m preprocessbrs

" n
2

gl,Pa.‘a_cgl,orPLﬂlou;cﬂ'te .

_:5“' . ; . r Wtz '- - \] .
ﬂ%ipin C. Desai, An Introduction to Daiabase Managengr. Gplgolia Publication, New Delhi.

']

- -
- ~

UNIT 4 DISTRIBUTED DATABASES

Structure

4,0 Introduction

4.1 Objectives

4.2 Swucuure of Distributed Database

4.3 Trade offs in Distributing the Database .
43.1 Advantage of Dawu Distribation :
432 Disadvantages of Dau Digtribution

4.4 Design of Distributed Databases
4.4.1 Dawu Replication

- 442 Daw Fragmentation
45 Summary
46 Funther Reading,

4.0 INTRODUCTION

In a distributed dalabaw. system, the dalabasc is stored on several computers. The computers

in a distributed systcm communicate with each other through various communication media,
such as high-speed buses ar lelephone line. They do not share main memory, nor do they
share a clock.

The processors in a distributed system may vary in sizc and function. They may include
small microcomputers, work station, minicompulers, and large gencral-purpose computer
system, These processors arc referred to by a number of different names such as sites, nodes,
compulers, and so on, depending on the context in which they are mentioned. We mninly use
the term site, in order to emphasize the physical distribulion of these systerms.

Adistributed database system consists of a collection of sites, each of which may pariicipate
in the execution of transactions which access data at onc site, or several sites. The main
difference between centralized and distributed database sysicms is that, in the former, the
data resides in one single location, while in the latier, the data resides in several locations, As
we shall see, this distribution of data is the cause of many difficultics that will be addressed
in this chapter.

4.1 OBJECTIVES

After going through this unil you may abl to :

e Differentiate DDBMS and conventional DBMS

e Discuss Network topology for DDBMS

e Discuss advantages and disadvaniages of DDBMS

s Distinguish between horizontal and vertial fragmentation.

4.2 STRUCTURE OF DISTRIBUTED DATABASE

A distribnted database system consists of a colleclion of sites, each of which maintains a
local databases system. Each site is able to process’]ocal transactions, those transaclions that
access date only in that single sile. In addition, a site may participate in the execution of
"global transactions, those transactions that access data is several sites. The execulion of
global transactions requires communication among the sites.

The sites in the system can be connected physically in a varicty of ways. The various
topologies are represented as graphs whose nodes corespond to sites. An edge from node A
to node B corresponds to a direct connection between the Lwo sites. Some of the most
common configurations are depicted in Figure 1. The major differcnces ameng these
configurations involve: ’

53

== 1 pe— e — - =g

- RDBMSand DDBMS

54

w Insullation cost The cost of physically linking the sites in the sysiem.

» Communication cost. The cost in time and money to send a message from site A o
site B.

o Reliobility. The frequency with which a link or site fails.

o Availability. The degrec io which data can be accessed despite the [ailure of some
links or sites.

As we shall scz, these differences play an important role in choosing the appropriate

‘raechanism for handling the distribution of data.

Thne sites of a distributed datbase system may be distribuled physically cither over a large
geopraphical area (such as the all Indian states), or over a small geographical arca such asa
single building or a number of adjacent buildings). The former ype of network is referred to
as a long-haul netwaork, while the lauer is referred 10 as a local-area network.

Since the sites in long-haul networks are disributed physically over a large geographical
area, the communication links are likely to be relatively slow and less reliable as compared
with local-area networks, Typical long-haul links are telephone lines, microwave links, and
satellite channcls. In contrast, since all the sites in Jocal-area networks are close to each

other, communication links are of higher speed and lower ermr rate than their counterparts in”
long-haul networks. The most commmon links are Lwisted pair, bascband coaxial, broadband
coaxial, and fibcr oplics. | '

Let us illystrate these concepts by considering a.banking sysiem consisting of four branches
located in four different cities. Each branch has its own computer with a database consisting
of al the accounts maintained al that branch. Each such installation is thus a site. There also
exists one single site which maintains information about all the Jranches of the bank.
Suppose that the database systcms at the various siles are based on the relational model.
Thus, each branch maintains (among olhers) the relation deposite (Deposit-scheme) where

Deposite-scheme = (branch-name, account-nwnber, customer-name, balance)

site containing information about the four branches maintains the relation bianch
(Branch-scheme), where / '

Branch-scheme = (branch-name, assets, branch-ciry)

There arc other relations maintained at the various sites which are ipnored for the purposz of
our example.

panially connected netwark

o b

L stroiciure nelwnrk WwIr mRWOTR ring nclwork
- 1. ’

Figure I 1 Nepwprk topolugy

r T ey e {

Alocal wransaction is a-transaction that accesses accounts in the one single site, at which the Distributed Databases

transaction was initiated. A plobal ransaction, on the other hand is one which either access
accounts in a site diflerent from the one at which the oransaclion was initiated, or accesses
.Aaccounts in several different sites. To illustrate the dilference between these two types of
transactions, consider the transactiono add $ 50 10 account number 177 located at the Delhi
branch. If the transaction was initiated ot the Delhi branch, then it is considered locat;
otherwise, it is considercd global. A transaction 1o transfer $ 50 from account 177 to account
305, which is located at the Bombay branch, is a global ransaction since accounls in two
different sites are accessed as a result of its execulion,

What makes the above configuration a distributed database syslcm are the facts lhm.
e The various sites are aware of cach other,

- @ Each site provides an environment for excculing both local and global transactions.

43 TRADE-OFFS IN DISTRIBUTING THE DATABASE

There are several reasons for building distributed database systems, including sharing of
data, rcliability and availability, and speedup of query processing. However, along with these
advantages come scveral disadvantages, including sofiware development cost, greater
potcntial for bugs, and mcmsad processing overhead. In this section, we shall elaborate

- briefly on each of these.

4.3.1 Advantages of Data Distribution

" The primary advantage of distributcd database sysms is lhe ability Lo share and access dala
in a reliable and efficient manncr. .

Data Sharing and Distributed Control

If a number of different sites are connected to cach other, then a user at anc site-pay be oble
to eccess data that is available at another site. For exampie, in the distributed ban!gmg sysiem
described in Section 4.2, it is possible for a user in onc branch to access tata in another
branch. Without this capnbilily, a user wishing to wransfer funds from onc branch to another
would have 1o resori to some external mechanism for such 3 transfer. This extermal
mecchanism wouid, in eflect, be 2 single centralized dalabase.

The primary advantage to accomplishing data sharing by mcans of data distribution is that
each site is able to retain a degree of control over data stored Jocally. In 2 ecntralized system,
the database administrator of the central sile conlrols the daabase. In a distributed system,
there is a global database administrator responsible for the entire system. A part of these
responsibilitics is delegated to the local database administrater for cach site. Depending upon
the design of the distributed database system, cach local administrator may have 3 dilfercnt
degree of antonomy is oftcn a major advantage of distributed databases.

Reliability and Availabijlity

. If one site fails in distributed system, the remaining silcs may be able to continue operating.
In paﬂ.tcular. if data arc replicaled in several siies, ransaction necding a particular data item
may find it in several sites. Thus, the failure of a sitc docs not nccessarily Imply the
shutdown of the system,

The failure of onc site must be detected by the system, and appropriate action may be needed
to recover from the failure. The system must no lTonger use the service of the failed site.
Finally, when the {ailed site recovers or is 1epaired, mechanisms musi be available 1o
inteprate it smootily back into the system.,

" Although recovery from failure is more complex in distributed systems than in centralized
sysicm, Lhe ability of most of the sysiem Lo continue to operate ‘desplie the failure of oae sile
results in increased availability. Availabiiity is crucial for datbase systems used for real-time
applications. Loss of access to data by, for cxample, an airline may result in the Ioss of
potential ticket buycrs 1o compcutors

Speedup Query Processing

Ifa query involves data arseveral sitcs, it may be possible to split the query into subquerics
that can be exccuted in paralic by scveral sites, Such paraliel computation allows for faster 55

T

RDDMS and DDBMS

.‘36_..

. processing of a user's query. In those cases in which data is replicated, querics may be

dirccted by the sysicm 1o the Icast heavily loaded sites.

4.32 Disadvantages of Data Distribution

The primary disadvantage of distributed database sysiems is the added complexity required
to ensure proper coordination among the sites. This increased complexity takes the form of ;

L] Sol'lwal.'e development cost : [1 is more diflicult w implement a distributed
database sysicm and, thus, more costly.

e Greater potential for bugs : Since the sitcs thal comprise the distributed sysiem
operate in parallcl, it is harder to ensure the correctness of algorithms, The potealial
exists for extremely subtlc bugs. The an of constructing dlstn‘buu:d algorithms
rcmams an active and important arca or research.

o Increased prucessmg overhead : The Qxchangc of messages and the addmonal
computauon rcqmrcd 14 achieve inlersite coordination is a form of overhead that
docs not arise in centralized systems. N

o Inchoosing the design for a database system, the designer must balance the
ardvantages against the disadvantages of distribution of dota desigm ranging from
fully disiributed designs o designs which included large degree of centralization. -

4.4 DESIGN OF DISTRIBUTED DATABASES

The principles of database design that we discussed earlicr apply o distributcd datsbases as
well. In this section, we focus on those design issucs that are specific to distributed databases.

Consider & relation that is (o be stored in the datahase. There are several issues involved in
storing this relation in the distributed database, including:

e Replication : The systcm maintains several identical replicas (copies) of the
relation. Each replica is siored in a differcnt site, resulting in data replication. The
allemalive 1o rcplicau'un is 1o siore only one copy of relation.

.. Fragmentahon The relation is partitioned into several fragments. Each fragment
is stored in a different site,

o Replication and ﬁngmentatmn This is a combination of the above two notions.
The relation is partitioned into several fragments, The system rnamlalr.o scveral
identical replicas of cach such fmgment.

In the following subsections, we elaborate on each of these.

4.4.1 Data Replication

If relation r is replicaled, a copy of relation r is stored in two or more sites. In the most
extreme case, we have full réplication, in which a copy is stored in every site in the system.

There are a number of advantages and disadvantages to replication.

e Availability : Il one of the sites containing rclation r fails, then the relation r may be
found in another site, Thus, the system may continue to proc queries involving r
despite the [ailure of one she. ’

o Increased parallelism : In the case where the majority of access to the relation r
results in only the reading of the relation, the several sites can process querics
involving r in parallcl. The more replicas of r there are, the greater the chance that

.the needed data is found infhe site where the transaction is executing. Hence, data
replicalion minimizes movement of data between sites,

» Increase overhead on update : The system must ensure that all replicas of a
relation r are consistent since otherwise erroneous computations may result. This
implics that whenever v is updated, this npdate must be propagated to all siles
containing replicas, resulting in increused overhead. For example, in g banking
system, where account information is replicated in various sites, it is necessary that
transactions assurc that the balance in a particular account agrees in all sites.

l'.': '] - -' . i) \ - ' - -

f e i g [Lar et

In general, replication enhances the performance of read operations and increases the
availability of data to read transactions. However, update Lransactions incur greater overhead.
The problem of controlling concusrent updates by several transactions to replicated data is
more complex than Lhe centralized approach o concurrency control..We may simplify the
management of replicas of relation r by cheosing one of them as the primary copy of r. For .
example, in a banking systcm, an account may be associated with the site in which the
account has been opened. Similarly, in an airline reservation system, 4 (light may be
associated with the site at which the flight originates.

4.4.2 Data Fragmentation

If the relation r if fragmented, r is divided into a number of fragmenis £, Ty....., T, These
_fragments contain sufficient information 1o 1 >constict the original relation r. As we shall
see, this reconstruction can'take place through the application of either the union operation or
a speeial type of join operation on the various fragments. There are iwe diffeent schemes for
fragmenting a relation: horizontal fragmentation and vertical fragmentation. Horizontal
fragmentation splils the relation by assigning cach tuple of r'to one or more fragments,
Vertical fragmentation splits the relation by decomposing the scheme R of relation rin a
special way that we shall discuss. These two schemes can be applied successively to the
same retation, resulting in a number of differcnt fragments. Note that seme information may

appear in several fragments.

- Pelow we discuss the various ways for fragmenting a relation. We shall 1llustralc these by
fragmenting the relation deposit, with scheme:

Deposite-scheme = (branch—nanw. account-name, customer-name, balance)

'The relation deposite (deposite-scheme) is shown in Figure 2,

branch-name account number customer-name balance
Bombay ’ 305 ' Lowman -500
Bombay 226 Camp 336
Delhi 117 . Camp 205
Delhi 402 Khan - 10000
Bombay - 155 Khan 62
Delhi 408 " Khan 1123
Delhi 639 Grcen .. 750
Flgurc 2 : Sampie deposite relation ‘
Horizontal Fragmen(ation
The relation r is partiioned into a number of subsets, 1y, ry, Each subset consists of a

number of wiples of relation r. Each tuple of relation r must bclong to onc of the l'ragmcnls
so that the ungmal relation can be reconstructed, if needed.

A fragment may be defined as a sclection on Lhe globa] relation T, That is, a prcdlcalc Plis
used to construck fragment ri as follows:

o= o, {r)

The regonstrecton of the relation rcan be obtained by wuking the union of all mpments, that

To illustrate this, suppose that the relation r is the deposite relation of Figure 2. This relation
can be divided into n dilferent fragmenis, each of which consists ol tuples of accounls
belonging Lo a particular branch. Il the

(2}

branch-name) accouni-number cusiomer-name balance
Bombay 305 Lowman : 500
Bombay 226 Camp T - 336
Bombay 155 Khan 62

Distbuted Databases

57

e

RDBMS and DDBMS

ﬂ\. t.ll
58

branch-name account-number customer-name balance
Dethi 177 Camp . 205
Delhi 402 Khan 10000
Delhi 408 Khan 1123
Delhi ' 639 - Green' 750
)]

Pigure 3 : Horlzonta! fragmentatlon of relation of depasit

banking system has only two branches, Bombay and Dethi, then therc are two different
fragments:) '

deposit | = O pranhepame = "Hitiride~ (AEPG3c)
deposit ; = O pranciename = “Valiepira~ (dEposit)

these iwo fragments are shown in Figure 3. Fragment deposil 1 is stored in the Bombay site,
Fragment deposit 2 is stored in the Delhj site,

In yur example, the i’ragmc.nls are disjoinl. By changing the selection predicates used to
construciion the fregricnts, we may have a panicular wple of r appear in more than one of

* the 1. This is a form of dala replication about which we shall say more at the end of this

seclion.

Vertical Fragmentation
In jts most simple form, vertical fragmcniation is the same as decomposition. Vertical
fragmentation of r(R) involves the definition of se\?cra_] subsels Ry, R;,...., R, of R such that
=T .
Each fragment i of r is défined by:

ri=1Ilg ()

relation r can be reconstrucied from the fi ragments by taking the natural join:

Fr=rno r o9 ppod | oo In
branch-name { account-number | customer-name balance terple-id
Bombay . 305 Lowrman 500 !
Bombay 226 Camp 336 2
Dclhi 177 Camp . 205 3
Delhi 402 Kahn 10000 4
Bompay_ [155 Kahan 62 5
Dclh} 408 Khan 1123 6
Delhi 639 Green 750 7

Pigure 4 : The depusite relatlon of Figure 4.2 with tuple-lds

More generally, vertical ragmentation is accomplished by adding a spécial altribute called a
tupleid to the scheme R. A wple-id is a physical or logical address for a tuple. Since each

upa in r must have a unique address, the luple-id auribute is a key for the augmented scheme.

-4
!’n Figurc 4, we show the relation deposit’, the deposit relation of Figure 2 with twple-ids .
ddded. Figurc 5 shows a vertical decompagsition of the scheme Deposit-scheme tuple-id into:

Deposit-scheme-3 = 'Efra.rich-namr customer-name, luple-id)

. Deposit-scheme—4 --;i(accaﬂni-numben balance, iuple-id}
A .’ . -

: Tie L_\fio relalion shown in figure 5 .*c:i;f[l from comfputing:

.
depotity = Nppgivscheme.3 (Deposit')
. . deposity = Mppn g conamee. (Deposir’)

e

ey e

branch-name | customer-name tuple-id
Bombay) Lowman 1
' Bombay Camp 2
Delhi Camp 3
Delhi . Khan 4
Bombay Khan "5
Delhi Khan 6
Delhi o, Green 7
(8}
account-number halance tuple-id
305 500 1
225 336 2
177 205 3
402 10000 4
155 62 5
408 1123 6
639 750 7
®)

Figure 5 : Yertlcal fragmentation of relatlon deposit
To reconstruct the original deposit relation from the fragments, we compel

N pupasit-scheme (deposity ©° deposu_,)
Note that the expression

deposity, o© deposit,
is special form of natural join. The join attribute is tuple-id. Since the jupled-id value
represznls an address, it is possible [o pair a wple of deposit 3 with the corresponding wple
of deposit 4 by using the address given by the tuple-id value, This address allows dircct
retrieval of the tuple withoul the necd for an index. Thus, this nateral join may be computed
much more efficiently than typical natural joins.
Although the raple-id auribute is important in the implementation of vertical partitioning, it
iz important that this attribute rot be visible to users. If users are given access 10 fuple-ids, it
becomes impossible for the system to change ple addresses. Furthermore, the accessibility
of intemal addresses violates the notion of data independence, oac of the miain virtees of tie
relational model,

4.5 SUMMARY

A distributed database system censists of a coflection of sites, each of which maintain a local
database system. Each site is ahle to process local transaction, those transaclian thal access
data gnly in that single site. In addition, a site may participate in the execution of global
transactions thase transactions that access data n several sites. The execution of global
transactions requircs communicalion among the sites.

There are several reasons for building distributed dalabase systems, including sharing of
data, reliability and availability, and spced of query processing. However, along with these
advantages come several disadvantages, including software development cost, greater
potential for bugs, and increased processing overhead. The primary disadvantage of
distributed daiabasc systems in the added complexily requircd Lo ensure proper co- -ordination
among the sites,

There are several issues involved in storing, a relation in the distribuled database, including

rcplication and fragmentation. It is essential that the system mintmise the degree 1o which a
user needs to be awarc of how a relalion is stored.

4.6 FURTHER READING

Henry F. K orth, Abraham Silberschatz, Database System Concepts, McGraw Hill

- Intemational Editon.

Distritnited Databases

i et s Ty

v ey ey

Notes

Uttar Pradesh] BCA --08
Relarshl Tandon GpenUniverstty Xufroduction toDatabase

Management Systems

Block

3

Emerging Trends in Database Management Systems
UNIT 1 :

Introduction to Object Oriented Database
Management Systems : 5

UNIT 2

Introduction to Client / Server Database 15
UNIT 3

Introduction, to Knowledge Databaseé 34

S

fm g o o 4

Expert Advisors
Prol. E.S. Grover* Dr. §.C. Mekua Prof. RG. Gupla
Profestur of Computer Svicnce 5r. Direeter Schaol of Camputer and
University of Dethi Meanpower Developmend Diviston Sciences
Delhi Deparimen of Electronics Jawaharlal Nehru Uruvcm:y
Oovt of Indin - Delhi
Brg V.M. Sundaram New Delhi .
Coordinator Prof 5.K Wawa
DuE-ACC Centre Dr. (1. Haider Prefessor of Comnputer
New Delhi Dirzctar Science
Infbemation Technology Centre Jamia Millia
Prof. Karmeshu T'CIL, Delhi Delhi
Schoul of Computer and
Systems Seiences Prof. H.AL Gupla Dr. Sugats Mitra
Jawaharlal Nehr University Departmen of Flectrical Principal Scienlin
Delli Engincesing) National Institute of
Indizn Institute of Technology Infacmntion Technalogy
Prof. L.AL Patnaik Delhi’ New Dethi
Indian [nstilute of Sciarce
HRaugaloee Prof 8. Sadagopan Prof. Sudhir kaicker
Departinent of Industrial Director -
Prof. .M. Pant Engineering - Schoo) of Compuler and
Director Indinn Indtilute of Technology * Systorn Sceince
Scheol of Compuler and Kanpur Jawaharlal Nehru University
Information Sciences Déhhi
IGNOW, New Dellu ~
Faculty of the School
Praf. M.M. Pant Mr. Shashi Bhushan
Director Lecturer
Mr. Akshay Kurmur Dr. (Mrs) Bimlah
! exturer Lecturer
Course Preparation Team
Prof. M.M. Panl Block Welters
Director, SOC1S '
IGNOY Utpal Bhanacharya
- . NIT
M. Milind Mahajani New Dathi
Manager
Information Services Mr. Shashi Bhoshan
Times of India Group Lecturer, IGNOQU
New Delhi
I, N. Parimals Course Coordinator
Bida Institule of Technology
and Stience, Pilani Mr, Shashi Blushan |
Lecturer, [GNOU

Mr. Shashi Bhushan
Laocturer, IGNOU

Priut Productlon ; Sh. Jitender Sethi, APO, MPDD

March, 2003 (Reprint)

© Indira Gandhl National Cpen University, 1992

ISBN-81-7263-823-X

Al nghfs rosorvad, No par of this wark mcy be reproduced in any form, by mimeograph or any omar
means without permission in whting fram the Indire Gandhi National Open Universily.

~urther information on the Iniira Gandhl Nationa! Open Universiy coursés may be oblained from the

University's office at Maidan Gerhi, New Doihi - 110068:

=

- BLOCK INTRODUCTION

Since the 1960, the technology for managing data has evolved from [ile system o
hicrarchical, 1o network, to relational. RDBMSs were originally designed for mainframe
compulers and business data processing. Many of 1oday’s applications arc workstation based
and involve complex data and operations. For example, computer aided design database
require the support of composite objects and differcnt versions of the same objects. A
multimedia database may contain variable length ext, graphics, images, audio and video
data. Finally a knowledge-basc requires data rich in Semanlics.

During the latc 1980s and carly 1990s, the image of the classical mainframe compuyter for
computing is decreasing and the tread is towards Clicay/Server computing.

In this block we have taken up three new emerging wpics/disciplines in database. These are
Object oricated databases, ClicnyServer databascs and Knowledge dalabases. In fact there
are many more such as Disribuied database, Multimedia database, Temporal database, |
Spatia) database, cic. But, we will be waking up these topics in advance course of DBMS 10
b offered at third year level, In this block there are 3 units:

The first unil introduces objegt oriented database system. In this unit we have discussed the
basic componcnts of CODBMS, how it is dilfercnt from RDBMS and what are its drawbacks
and promises.

The second unit takes up Clicnt/Server daiabase. Apart from talking about basics of
Clicnt/Server computing we have also demonstrated how to develop an application in
Clieny/Server cnyironment.

The final uni discusses Knowledge dalabase. The focal points covered in this unit are how a
knowlcdge base system is different from databasc and what are knowledge representation
schemes.)

A0 T

UNIT 1 INTRODUCTION TO OBJECT
ORIENTED DATABASE '
MANAGEMENT SYSTEM

Structure

1.0 Introduction

1.1 Objectives

1.2 What are Next Generation Data Basc System?

1.3 New Datnbase Application

1.4 What is Object Oriented Database Management System? |

1.5 Promises of Object Oriented System

L6 Promiscs and Advantages of Object Orientad Database Management System

1.7 Deficiencies of Relational Database Management System

1.8 Difference Between Relational Database Management System and
Chject Oriented Database Management System .

1.9 Alternative Objective Oncnu:d Dalabase Strategles

1.10 Summary

1.11 Model Answers

1.12 Funher Readings

1.0 INTRODUCTION

Since 1960s, Data Base Management Systems (DBMS) have been widcly used in data
processing environment. The support of characteristics such as data sharing, independence,
consistency, integrity is the main reason for its success which traditional file management
system does not inherendy offer.

A database system is usually organised according 1o a data model. In the previous block, we
discussed three most populer models: hierarchical, network and refational. The dilfercnce
among all these three models is in the way of organising records, although they are record
"based. They were mainiy designed to process large amount of relatively simple and fixed
format data. DBMS baséd on these models along with sophisticated indexing and query
optimization techniques have scrved business oricoted database application especially well.

RDBMSs were originally designed for mainframe computer and businass data processing
applications. Morcover, relational systems were optimized for environments with large
number of users who-issue shiort querics. Bul today’s application has moved from cenmralised
mainframe computer to networked workstation on every desk. These applications include

Tomputcr aided defign (CAD), mulimedia system, sofiware engincering {design of complex
project), knowledge database (1o be discussed in wiit 3 of this block). These operations
require complex operations and data structure representation, For example, a multimedia
database may contain variable length text, graphics 1magcs.aud10 and vidco data. Finally &
knowledge basc systcm rcqmrcs datg rich in semantics.

Existing commercial DBMS both small and large scale have proven inadequate for these
applications. The wraditiona! database notion of storing data in two-dimensional tables or in
flal liles breaks down quickly in the fce of complex data struciures and dam types used in
woday's nppl:cauons

Research 1o model and process complex data has gone in two dirc:_ilinns: -
() extending the funcionality of RDBMS -

(b} developing and i.mplcmenl_ihg OODBMS that is based on object oriented
programming paradigm.

OODBMSs arc designed for use in todhy's application arcas such as muitimedisd CAD,
office automation, ete.In this unit, we will ouch up some of the basic issucs refates] 1o
DODBMS.

R L T T N I e

" Emerging Trends In Database
Manageincnt Sysien

1.1 OBJECTIVES

After going through this unit, you will be able to:
» define what is object oricnicd DBMS
» diflerentiate between RDBMS and CODBMS
» list next generztion database sysicms

= list advantages of object orienlcd DBMS

1.2 WHAT ARE NEXT GENERATION DATABASE
SYSTEM?

Compute\r sciences has pone through several generation of database management starting
with indexed files and later, network and hicrarchical data base management sysiems
(DBMS). More recently, relational DBMS revolutionalised the industry by providing
powerful data management capabilitics based on few simple concepts. Now, we arc an the
verge of another gengrtion of database system called Object Oriented DBMS based on
object oriented programming paradigm. This new kind of DBMS, unlike previous DBMS
models, manage more complex kind of data for ¢xample multimedia objects. The other kind
of next generation DBMS is knowledge databasc management system (KDBMS) which is
uscd o support the management of the shared knowledge. It supports & large number of -
complex rules for aulomalic daw inferencing {retrieval) and maintcnance of data inlegrity.

The goal of these new DBMS is Lo support a much wider range of data intensive applications
in engincering, graphic representation—scientific and medical These new DBMS can abso
support new generations of traditional business applications.

1.3 NEW DATABASE APPLICATIONS -

Some applications that require the manipulation of large amounts of data can benefit from
using a DBMS, However, the nature of the data in these applications does not fit well into
the relational framework.

(1} Design dalabascs : Engincering design databases are useful in computer-aided
design/manufacturing/sofltware engineering (CAD/CAM/CASE) systcms. In such
sysiems, complex objects can be recursively partitioned into-smaller objects.
Furthermore, an object can have different representations at diflerent levels of
abstraclion (equivalent objects). Moreover, a record of .n object’s evolution (object
versions) should be maintained. Traditional database technology does not support the
notions of complex objects, equivalent objects, or object versions. |

(2) Muliimedia databases : In a modern office information ot other multi-media system,
dawa include not only text and numbers but also images, graphics and digital audio and
video., Such multimedia data are wypically stored as sequences of bytes with variable
lengths, and segments of data are linked together for easy reference. The varable length
data straciure cannot fit well into the relational framework, which mainly deals with
fixed-format records. Furthermore, applications may require access to multimedia data
on the basis of the structure of a graphical item or by [ollowing logical Tinks,
Conventional query languages were not designed (or such applications.

(3) Knowledge bascs : Arificial intelligence and expert systems represent information as
facts and rules that can be collectively viewed as a knowledge base. In typical Anificial
Inelligence applications, knowledge represeniation requires daa structures with rich
semantics that go beyond the simple siructure of the relational model. Artificial
decomposition and mapping would be necessary if a relational DBMS were uscd,
Furthermore, operations in a knowledge base are more complex than those in 2
tradilional database. When a rule is added, the syslem must check for contradiction and
redundancy. Such operations cannot be represented directly by relational operations, and
the complexity of checking increases rapidly as the size of the knowledge base grows.

4170 P~ o ey § e) { ey

_ In genenal, these applications require the represcntation of complex data elements as Introductlon to Object Orlented
well as complex relationships among them, Users in these environments have found Database Management System
relational echuology inadequate in terms of fexibility, modelling power, and clliciency.

1.4 WHAT IS OBJECT ORIENTED DATABASE
MANAGEMENT SYSTEM ?

Object-oriented technologics in use today include object- oricnted programming languages
{e.g., C++ and Smalitalk), object- oriciiled database systems, object-oriented uscr interfaces
(e.g., Macintosh and Microsolt Windows systems) and so on. An object-oriented technology
is a technology that makes availablc 10 the users facilities that are based on object-oricnted
concepts. To define object-oriented concepts, we must first understand what an object is.

Ohject

The 1erm object means a combination of data and program that represents some real-world
entity. For cxample, consider an employee named Amil; Amit is 23 years old, and his salary
is §25,000. Then Amit may be represented in a computer program as an object. The data part
of this object would be (name: Amit, age: 25, salary: $25,000). The program part of the
object may be a collection of programs (hire, retricve the data, change age, change salary,
firc). The data part consists of data of any type. For the Amit object, string is used for the
name, integer for age, and monctary for salary; but in general, even any user-defined type,
such as Employee, may be uscd. In the Amit object, the name, age, and salary are called
allributes of the object. '

Encapsuolation

Ofien, an object is said to encapsulate data and program. This means that the users
cannot see the inside the object but can use the object by calling the program part of
the object. This is not much-diflcrent (rom procedure calls in conventional programrming;
the uscrs call 2 procedure by supplying valucs for input parameters and receive results in
oulput parameters.) :

Inheritance and Class

The 1cem object-oriented roughly means a combination of abject encapsulation and
inherilance. The term inheritance is sometimes called reuse. Inheritance means roughly that a
new objcct may be created by extending an existing objeck. Now let us understand the term
inherilance morc preciscly. An object has a data part and a program part. All objects that *
have the snme altributes lor the data part and same program part are collectively

called a class (or type). The classes arc arranged such that some class may inherit the
atiribnes and program part [rom some other classes.

Amit, Ankit and Anup are each an Employec abject. The data part of each of these abjects
consists of the auributes Name, Age and salary. Each of these Employce objecis has the same
program part (hire, retricve the data, change age, change salary, fire). Each pregram in the
program part is called a method, The tenn class refers 1o the collection of all chjceasghat
have the same attribules and methods. In our example, the Amit, Ankit and Auup quu:;_‘:i %
belong to the class Employce since they all have the same altributes and mcmods.hﬂ?'ﬁm
may be used as the Lype of an alribute of any objecL Al this time, there is only onaﬁ.}s:ﬁ.
the sysicm namely, the class Employce; and three objects that belong to the class nime)y .
Amnit, Ankil and Anup objects, -

" Inheritance Hierarchy or Class Hierarchy

Now suppose that a uscr.wishes (o create two sales employees, Jai and Prakash. Bul aveid
employces have an additional attribule namely, commission. The sales employees camri
belong 1o the class Employec. Howeyer, the user can creale a new class, Sales Emploez.
such that a!l atributes and methods associated with the class Employec m.y be reuseil
ihe auribule commission may be added t0*§alcs- Employee. The user does this by autiging
the class Sales-Employce Lo be a subclass of the ¢lass Employce.- The user can now PriFiced
o create il two sales employees as abjects belonging to the class Sales Employee. 1%
Asers can'create new classes as subclasses of cxisfing classes, In general, a class mag™
inherit from one or more existing classes and the inheritance structure of classes bucomes a
.. direcied seyclic graph (DAG); bul {or simplicity, the inheritance strucwure is called an
. ‘}j\}heritnnce hierarchy or class hierarchy.

Emierging Trends in Datobpse
Manapemcent Sysiem

.

- The power of chject-oriented concepls is delivered when encapsulation and inheritance work
together.

= Since inheritance makes it possible for different classes to share the same set of
attributes and methods, the same program can be run against objects that belong to
different cTasses. This is the basis of the object-oricnicd user interface that deskiop
publishing systems and windows management sysicms provide today. The same set
of programs (c.g., open, close, drop, create, move, elc.) apply to different types of
data (jmage. text file, audio, directory, etc.). : -

» I the users define many classes, and each class has many attributes and methods, -
the benelit of sharing not only the auributes but also the programs can be dramatic.
The attributes and programs need not be defined and written from scratch, New
classes can be created by adding attributes and methods of existing classes, thereby
reducing the opportunity to introduce new errors 1o existing classes.

1.5 PROMISES - OF OBJECT ORIENTED SYSTEMS

Object-oriented systems make these promises:

s Reduced maintenance
The primary goal of object-oriented development is the assurance that the system
will enjoy a longer life while having far smaller maintenance casts. Because most
of the processes within the system are encapsulated, the behaviours may be reused
and incorporated into new behaviours, | '

* Real-world modelling
'Object-oriented systems tend to model the real world in a more complete fashion
than do raditional methods. Objects are organised into classes of objects, and
objects are associaled with behaviours. The model is based on objects rather than
on data and processing,

+ Improved rellability - :
Object-oriented systems promise to be far more reliable than traditional systems,
primarily because new behaviours can be built from existing objects,

« High code reusability :
When a new object is created, it will automatically inherit the data attributes and
characteristics of Lhe class from which it was spawned. The new object will
&lso inherit the data and behaviours from all superclasses in which it participates.

1.6 PROMISES AND ADVANTAGES OF OBJECT
ORIENTED DATABASE MANAGEMENT SYSTEM

An object-oriented programming language (OOPL) provides facilities to create classes for
orgahising objects, Io create objects, to struclure an inheritance hierarchy to organise classes
so that subclasses may inherit aurfbutes and methods from superclasses, and 10 call methods
to access specific objects, Similarly, an object-oriented database system (OODB) should
provide facilities 1o create clnsses for organising objects, Lo create objects, to structure an -
inheritance hierarchy to organise classes so that subclasses may inherit atributes and .
methods from superclasses, and 1o call methods to access specific objects. Beyond these, an
OQDB, because it is a database system, must provide standard database facilities foond in
today’s relational database systems (RDBs), including nonprocedural query facility for
retrieving objecls, automatic query oplimisation and processing, dynamic schema changes
(changing the ¢lass definitions and inheritance strecture), automatic manngement of access

- methods (e.g., B+tree index, extensible hashing, sorting, elc.) to improve query processing.
performance, automatic transaction management, concurrency control, recovery from

system crashes, and security and authorisation, Programming languages, including
OOPLs, are designed with one user and a relatively small datsbase in mind. Databass

systems arc designed with many users and very large databases in mind; hence performance,

security and authorisation, concurency control, and dynamic schema changes become
_ important issues, Fyrther, transaction systems are used 1o maintain critical data accurately; -
hence, ransaction management, concurrency control, and recovery are important facilities.

In so far as a database system is a system software, whaose funclions are called from _ I""‘“”"“'““""Obi“");“"'cd
application programs written in some host programming Janguages, we may distinguish two Database Manxgement System
different approachcs 1o designing an OODB. Onc is to slorc and manage objects created by

programs writien in an QOPL. Some of the current GODBs are designed 1o slore and

manage objects generated in C++ or Smallalk programs. Of conrse, ar RDB can be used o

store and manage such cbjects. However, RDBs do not understand objecls—in particular,

metheds and inheritance. Therelore, what may be called an object manager or an

ohject-orienticd layer soltware needs to writien 1o be manage methods and inheritance and to

translate ohjecls 10 Luples (rows) of a relation (table). But the object manager and RDB

combincd are in elfect an OODB (with poar performance, of course).

Another approach is 1o make object-oricnted facilitics available to users of non-OOPLs. The
users may create ¢lasses, objects, inheritance hicrarchy, and so on, and the database system
will store and manage those objects and classes. This approach in elfect lumns non-Q0PLs
(e.g., C, FORTRAN, COBOL, etc.) into object-oriented languages. In fact, C++ has lumed
C into an OOPL, and CLOS has added object-oricnted programming facilitics 1o Common,

- LISP. An QOCDB designed using this approach can of course be vsed to store and manage
objects created by programs written in an OOPL. Although a translation layer would riced (@
be written to map the OOPL objects 10 objects of the dawabase system, the layer should be
much less complicated than the object manager Jayer ihat an RDB would require,

In vicw ol the fact that C++, despite its growing popularity, is not the only progmmming

" language that database application programmcrs arc using or will ever.use, and there is a
sigmificant gulf between a programming language and a database system that will deliver the
power of object-oriented concepis to daabase application programmers. Regardless of the
approach, QODBs, if done righl, can bring about a quantum jump in the productivity of
database application programmess and even in the performance of the application programs.

One séurce of the technological quanym jump is the reuse of a database design and program
that object-oriented concepts make possible for the first time in the évolving history of
dutabase technelogies. Object-oriented concepts are fundamentally designed to reduce the
difficulty of developing and evolving complex software systems or designs. Encapsulation
and inheritance allow attributes (i.c., database design) and programs to be reused as the basis

' for buildifig complex databases and programs. This is precisely the goal that has driven the
data management technology from file systems to relational database systems during the past
three decades. An OODB has the polential to satisly the objective of reducing the difficulty
of designing and cvolving very targe and complex databases.

Another source of the technological jump is the powerful data type facilitics implicit in the
object-oriented concepts of encapsulation and inheritance.

Advantages of Object-Oriented Dalabases

Systems developed with object-oriented languages have many benefits, as previously
discusscd. Yet, as also described, these systems have particular auribates that can be
complemented with object-oricnted databascs. These attributes include Jlack of persisience,
inability to share objects among multiple users, limited version control, and lack ol‘acccss 10
other data, for example, data in other datnbases.

In systems designed with object-oriented languages, objects are created during the running of
a program and arc destroyed when the program ends. Providing a database thal can store the
objects between runs of a program offers bath increased flexibility and increased security.

The ability to swre Lhe objects also allows the objects 1o be shared in a distributed .
environment. An object-oriented database can allow only the actively used objects 10 be
loaded into memory and thus minimizes or preempts the need for virtual memory paging.
This is especially useful in large-scale systems. Persistent objects also allow objects 1o be "

stored for ea6h version. This version control is usclul not only for testing ‘applications, but

also for many object-oriented design applications where version control is a functional -) .
rcquucmcnl. of the application itself. Access Lo other data sources can also be Tacilitated wnh‘ -
object-orienicd databases, especially those built as hybrid relational systems, whichcan . -"_ ’ s
access rc.lénonaltables as well as pther object types. T

Objcc:t-oru:n!ed databases also offer many of the benefits that were l'ormcrly found only in - . 7

expert égrr.ems With an object-oriented database, the relationships between objects and i

constriints on objects are maintained by the dam‘* ase management system, that is, the objcef

themsclves. The rules associated with Lhe experl system are esscntially replaced by the

objccl ,m:hcma and the mclhods As many cxpen syslems currcnlly do not have adequalc -
-f . . '

Emerging 'I\I-l.-nds In Database
Management System

10

databasc support, object-oriented databases afford the possibility of offering expert sysiem

* functionality with much beuter performance.

Object-oriented databases offer benefits over cuirent hierarchical and relational database
maedels. They enable support of complex applications not supparted well by the other
models, They enhance programmabilily and performance, improve navigational access, and
simplify concurrency control. They lower the risks associated with referential integrity,
and they provide a better user metaphor than the relational model.

Chject-oriented databases by defnition allow the inclusion of more of the code (i.e. the
object’s methods) in the database itself. ‘This incremental knowledge about the application
has a number of potential bencfits of the database system itself, including the ability to
optimize query processing and to control the concurrent execution of transactions.

Perdormance, always a significant issue in system implementation, may be significanly
improved by using an object-oriented model instcad of a relational model. The greatest
improvement can be expected in applications with high data complexity and large numbers
of inter-relationships. Clustering, ar locating the related objecis in close proximity, can be
accomplished through the class hicrarchy or by olher inenclations. Caching, or the
retention of cenain objects in memory or stomge, can be optimised by anticipating that the
user or application may retrieve a particular instance of the class. When there is high data
complexity, clustering and caching techniques in object databases gain tremendous
performance benefits that relaiional databases, because of their fundamental architecwre,
will never be able to approach,

Object-oriented databascs can store not only complex application componenis but also larger
structures, Although relational systems can suppert a large number of tuples (i.e. rows ina
table), individual types are limited in size. Objcci-oricnted databases with large objects do

. not suffer a performance degradation because the objects do not need to be breken apart and

reassembled by applications, rega:dlcss of the complexity of the propenties of the application
objects.

Since objects contain direct refercnces (o other objects, complex data set can be efficiently
assembled using these dircct references, The ability to search by direct references
significanuly improves navigational access. In contrast, complex daua sets in relational
databases must be atsembled by the application program using the slow process of joining
lablcs

For |he programmer, one of the challenges in building a datahasc is the data manipulation
language (DML) of the database. DML for relational databases usually differ from the
programming language used 1o construct the rest of the application. This contrast is due to
differences in the programming paradigms and mismatches of type systems. The i
programmer must leam two languages, two 100! sets, and twa paradigms because neither
alone has the functionality to build an entire application. Certain types of programming
100ls, such as application generators and fourth-generation languages (4GLs) have emerged
to produce code for the entire application, thereby bridging the mismaich between the
programming language and the DML, but most of these tools compromise the application
Programming process.

With object-oriented databases much of this problem is climinated. The DML can be
extcnded so that more of Lhe application can be wrilten in the DML. Or an object-oriented
application language, of example C4-+ can be extcnded 1o be the DML, More or the .
application can be built into the database itsclf. Movement across the programming interface
between the database the application then occurs in a single paradigm with a common set of
toals. Class libraries can also assist the programmer in speeding the creation of databases.
Class libraries encourage reuse of existing code and help 1o minimise the cost of later
modifications, Programming is easier because the daa structures model the problem more
closcly. Having the data and procedures encapsulated in a single object makes it less likely
that a change o one Obje{:l will affect the integrity of other objects in the database,
Concurrency control is also simplified with an object-criented database, In a relational
database, the application needs 1o lock each record in each table explicitly because related

. data re-represented across a number of tables. Integrity, a key requirement for databases, can

be better sapported with an object-oriented database, because the application can lock all the
relevant data in one operation. Referential integrily is better supported in an object-oriented
databage because the pointers are maintained and updated by the database itself, Finally,
object-orienled databases offer a better user metaphor than relational databases. The wple or
lable, although enabling a well-defined implementation siategy, is not an iniitive modelling

)

[ramework, especially outside the domain of numbers, Objects offer & more natural and Introduction to Object Orfentsd
encompassing modelling metaphor. . Dalabase Managemeht System

1.7 DEFICIENCIES OF RELATIONAL DATA BASE
MANAGEMENT SYSTEM : :

Thee data type (acilities in fact are the keys o eliminating three of the important deficiencies
of RDBs. Thess are summarized below, we will discuss these pointsin greater detail later.

. RDBs force the users (o represent hicrarchical data (or complex nested data or
compound data) sach as bill of maicrials in terms of tuples in multiple relations,
This is awkward o start with, Further, to retrieve data thus spread outin multiple
relations. RDBs must resort to joins, a generally expensive operation, The data
type of an attribute of an object in OOPLs may be aprimitive type or an arbitrary
user-defined type (class). The fact that an ebject may have an atmibute whose value .
may be another object naturally leads to nested object representation, which in tumn
allow hierarchical data to be naturally (i.c., hierarchically) represented.

« TRDBs offer a set of primitive buill-if daia types for use as domains of columnsof
relation, but they do not offer any means ofgdding user-defined data types. The
built-in data types are basically all numbers afd # symbols. RDBs are not
designed to allow new data types 10 be added and{gérefore ofien require major
surgery to Lhe system architeciure and code ttadd asy new daia type. Addinga
new data type 10 a dalabase system means allowing its use as the data type of an -
auribute—that is, storage of data of that type, querying, and updating of suclr data.

- Object enicapsulation in QOPLs does not impose any.reskriction on ihe types of data
that the data may be primitive types or user-defined types. Further, new data types.
may be created as new classes, possibly even as subclasses of existing classes,
inheriting their attributes and methods.

» Object encapsulation is the basis for the storage and managemient of programs a8
well as dala in the database, RDBs now siipport stored procédures—that is, they
allow programs to be writien in somg procedural langdage and sioredinthe - .. . <
database for later loading and executién., Howgver, the stored procedures in RDBs..
are not encapsulated with data—ghat is, they are:not associated with any relakion ot -
any Luple of a relation. ‘Further, sincg RDBs do not have the inheritance - TS
mechanisn, the stored procedures cagnot alitomatically, be reuscd. - :

1.5 DIFFERENCE BETWEEN, RELATIONAL .
'DATABASE MANAGEMENT SYSTEM’AND OBJECT -
ORIENTED DATABASE MANAGEMENT SYSTEM .

RDBMSs were never designed to allow for the nested structurs, These ypes of applications
arc extensivély found in CAD/CAE, acruspace, eic. OODBM can easily support these .
applications: Moreaver, it is much easier and nawral to navigate. trough these complex
structures in form of objects that model the real world in OQDBMS rathes than table, tuples
.and records in RDBMS. o T e : .

2

Itis hard 10 confuse & relational database with an object-oriented database. "The normalised
relational model is based on-a fairly elegant mathemalical theory. Relational databases

“derive a virtual structure at run Lime based on values from sets of data $tored in mbles.
Databases construct views of the data by selecting daia from multiple tables and loading it
into a single table (OODBs traverse the daia from object to ebject). B

Relational datahases have a limited number of simple, buiit-in data types, such as infeger
and string, and & limited number of built-fn operations (hat can handle these data types. You
can create complex data types in a relational database, but you must do iton a linear basis,
_such as combining fields inio records. And the opcralions on these new complextypesare - =
restricted, again, to thoss defined for the basic types (as opposed to arbitrary data types of o
subclassing with inheritance as found i OODBs). '

The object modz! supponts .brawsing of object.class librarics, which allows the reuse, rather

A= { iy

Emerging Trends In Database
Management System

12

than the reinvention, of commonly used daia elements. Objects in an OODB survive
mulliple sessions; they ase persistent. If you deleie an object stored in a relational database,
other objects may be left with references to the delcted ore and may now be incorreet The
integrity of the data thus becomes suspect and creates incensisient vessions.

In the relational database, complex objects must be broken up and stored in scparate tables,
This can only be done in a sequential procedure with the next retrieval replying on the
cutcome of the previous. The relational database does not understand a global request and
Lhus cannot oplimisc multiple requests, CODBs can issuc a single message (request) that
contains multiple tansactions. -

The relational model, however, suflfers at Ieast one major disadvantage, It is difficult 1o
express the semantics of compléx objects with only a table model for daia starage. Although
relational databases are adequate for 2ccounting or other Lypical transaclion-processing
applicarions where the data types are simple and few in number, the relational model offers
limited help when data types become numerous and complex. '

Object-oriented daabases are favoured for applications where the relationships among

- elements in the daabasc camy the key information. Relational databases are favoured when
the values of the database clements carry the key information. That is, object-oricnted
models capture the structure of the daw; relational models organise the data fiself. I€a record
el be understood in isolation, then the relational database is probably suitable. If a record
makes sensc only in the context of other records, then an object-oriented database is more
appropriate.)

Engineering and technical applications were the first applications o require databases that
handle complex data types and capture the structure of the dala. Applications such as
mechanical and electrical computer-aided design (MCAD and ECAD) have always used
noniraditional forms of data, represcnting such phenomena as three-dimensional images and
VLSl circuit designs. Cifrrently these application programs store their data in ’
application-specific file structures. The data-intcnsiveness of these applications is not only
in the large’ amount of daia that need to be programmed into the database, but in the
complexity of the data itself. In these design-based applications, relationships among
clements in the datbase carry key information for the user. Functional requirements for
complex cross references, struciural dependences, and version management all require a
richer representation than what is provided by hierarchical or relational databases.

Check Your Progress
1. Whal are the drawbacks ol current commercia) databases?

2. What is the meaning of multi-media dan?

s = i e

19 ALTERNATIVE OBJECT-ORIENTED DATABASE * ‘Distuchuvagonentspion
. STRATEGIES - -

Therc are at least six approaches for incorporating object orientation capabilities in
databascs:

1. Navel database data model/data language apprgach : The most aggressive approach
is to develop entirely new database langeage and database management system with
object orientation capabilitics. Most of the research project in object-oriented databases
have pursued this approach. In the industry introduces novel DML (Data Manipulation
Language) and DDL (Data Definition Language) constructs for a data model based on
semantic and functional data models.

2. Extending an existing database language with object orientation capabilities s A
number of programming languages have been extended with object-oriented constructs.
Ca+ flavors (an extension of LISF), and Object Pascal are cxamples of this approach in
programming languages. It is conceivable to follow a similar strategy with database,
languages. Since SQL is a standard and the most popular database language, the most
reasonable solutiori is to extend thislanguage with object-oriented constructs, reflecting
the object orientation capabilities of the underlying database management system. This
approach being pursued by most vendors of relational systems, as they evolve the next
generation products, There have been many such attempts incorporaling inheritance,
function composition for nested entities, and even some support of cncapsulation in an
SQL framework. '

7. Extending an existing object-oriented programming language with daiabase
capabilities : Another approach is o introduce database capabilities to an existing
object-oricnted language. The object orientation features abstracl data typing,
inheritance, object identity—will already be supported by the object-oriented language.
The extensions will incorporate database features (querying, transaction support,
persistence, and 5o on), .

4. Embedding object-oriented database language constructs in a host (conventional)
language : Database languages can be cmbedded in host programming languages. For
example, SQL statements ¢an be embedded in PL/ C, FORTRAN and Ada. The types
of SQL. (that is relations and rows in relations) arc quite diffcrent from the type syslems .
of these host languages. Some object-oriented databases have taken a simiiar approach
with a host language and an object-oriented database language.

1.10 SUMMARY

During the past decade, object oriented echnology has found its way into database user
interface, operating system, programming languages, expert Systein and the Tike. Object | |
Oriented database product is already in the market for severat years and several vendors of
RDBMS are now declaring that they will extend their products with object oriented .
capabilities. In spite of all these claims there is o wide acceptability of ODDBMS because
of lack of industry standard. This technology is sill evolving and take some more time o get
fully settled. -

.11 MODEL ANSWERS

Check Your Progress - : . _

1. Most of thé cumment ~ommercial database systems suffer fromi 2n inability o manage
arbitrary types of dats, arbitrary large data and data stored on devices other than
mapnetic disks, They understand a relatively limited set of data types such as integer,
reat data, monetary unit, short strings. Further they are not designed (o manage data
stored on such inéreasingly important storage devices such as CD-ROM and Vidcodisks..

2. Broadly, muitimedia data means arbitrary data types and data from arbitrary data
sources. Arbitrary data types include he nuimeric data and short steing data supporicd in
' conventional database systems; large unstructured data, such as charts, graphs, ables,
and arrays; and compound documents that are comprised of such data. Asbitrary data

r Loy e £y

Enierglng Treads ls Database
Management System

14

sources include a native dalabase; external {(remoic) databases; host file base; data input,
slorage, and presentation {output) devices; and even data-generating and
data-consuming programs (such as a lext processing systcrm),

3a) The ability to represent arbitrary daia types {including compound documenis) and

b)

)

&)

specification of procedures (programs) that interact with arbitrary data sources.
The ability to query, update, insert and deleic multimedia data (including retrieval of
multimedia data via associative search within multimedia data; minimally, text).

The ability to specily and executz abstract operations on multimedia data; for example,
to play, fast forward, pause, and rewind such one-dimensional data as audio and texr; 1o
display, expand and condense such two-dimenisional data 25 a bit-mapped image,

The ability 1o deal with heterogencous dala spurces in a uniform manner; this includes
access to data in these sources and migration ¢f data from one data source to another,

1.12 FURTHER READINGS

2,

Modem Database Systems—the Object Model , Interoperability and Beyond, By WON
KIM, Addison Wesley, 1995,

Object-Oriented DBMS : Evolution & Perform ance Issues, A.R.Huwson & Simin H.
Pakzad, IEEE Computer, Fcb. 1993, '

g rer 3 ey

UNIT 2 INTRODUCTION TO CLIENT/
SERVER DATABASE

.Structure

20 Introduction
2.1 Objectives
22 Evolution of Clieny/Server
2.3 Emergence of Clien/Server Architecture
‘24 The Client/Server Computing
24,1 Basics of Clien/Server Computing Paradigm
242 Why nted Clicn/Server Computing?
243 Advantages of Climnt/Server Camputing
" 244 Components of ClicayServer Computing
2.5 ‘The Critical Products
251 Object Oriented Technology (OOT)
252 Digribuled Computing Environment
253 Applicstion Programming Interface (APT)
25.4 Multithreaded Processes
255 Remote Procedure Calls (RPC)Y
256 Dynamic Data Exchange (DDE)
257 Object Linking and Embedding (OLE)
2.6 Devcloping an Application
2.7 Structured Query Language (SQL)
27.1 Dan Pefinition Langoage (DDL}
272 Data Manipulation Languzge (DML)
28 Client/Server : Where 10 next?
- 29 Summary
2.10 Model Answers
2.11 Further Readings

2.0 INTRODUCTION

The concopt behind the Client/Server solution is concurrent, cooperative processing. It is an
approach, that presents a single systems vicw [rom a user’s vicwpoint, involves processing
on multiple, interconnected machines” provides coordination of activilics in a manner
transparent to end users. :

This unil is broadly divided into three parts. The firsl part (sections 2.2 and 2.3) address as
the basics of clicnt scrver computing. The sccond part (scction 2.4) discusscs the criticat
products used in implementing client/server model. The focal point of the last part isto
develop an application in client server eavironment.

2.1 OBJECTIVES

At the end of this course, the reader should be able 10 understand
o the broad level issues in Client’ Server computing
« the product components of Clicrt’ Server architecture
« how to develop application in Clicnt’ Scrver model

« discoss the possible cmerging scenario in Client” Server computing.

2.2 EVOLUTION OF CLIENT/SERVER

Mainframe Scenario .]
» Aficr twenty years of existence starting in the middle of seventics, (the computcr bascd

._f}l\ppl\i_j:atiq_n_ proliferated the business and scientific application throughout the world. The

Emerging Trends In Databane
Manageniend Sysiem

1é

scenario was dominated by mainframe computers. The development of hardware has always
ouiplaced the development of software yet user requirements did outgrow the capacity of the
mainframe computers coupled with the Lict thal belter hardware releases were being
launched at rapid succession, The large EDPhouses Lypically opted for the beiter version of
hardware every aliernale year, The new model of the hardware wanld take over Lthe major
share of applications readering the eartier model unutilized or underutilized,

PCs as Environment for Business Computing

In the Tate sevenlies first version of PC with 64 KB of main memory were launched, they
wert typically uscd to do wordprocessing jobs and spreadsheel calculations. In 1980, IBM
launched its 640 KB PC, this is single most important development in the field of computers,
which revolutionised the concept of computing profoundly, In 1980 people did not think that
the PCs could really become a serious computing cnvironment because of the advancemenis

~ el iechnologics in many other related fields. In the decade of 80s PCs grew in power and

speed in leaps and bounds. Becausc of the slandard cnvironment and non-proprictary
architecture and also because of the very low price tag PCs and software that runs on PC
spreaded at a rate which has never been witnessed in field of Information Technology.

Emergencé of Open Systems

Tiil the middle of 70s for over two and half decades proprietary nciworking solutions
dominatzd the networking scenario. The solutions used 1o be very expensive, each company
used to set its own networking and connectivity standards. Each company believed in giving-
the complete network, sofiware and networking solution 1o the end client rendering the
solutiens extremely high priced and beyond the budget of most Information Technology
organisations. Further this did not enable sharing machines from multiple vendors on a
network. The advent of non-proprictary siandards in network and software product
components allowed increasing use of open system. The chip, the peripherals, the
architecture, the networking protocols, the operaling system even the soltware components
became standard. These devclopments allowed growth of non-proprietary solution, network
solutich involving network and sofiware components from maltiple vendors. This also
enabled usage of downsized environmenis. PC users Erew 10 upsized environment with
Novell netwarc among other sofiware as the servers.

In: 80s networking of PCs in local area network (LAN) or connectivity between PCs running
beaween DOS and VAX running VMS and PCs, conncctivity between almost all standard
machines gave rise 10 a new way of Isoking at computing. The R & D labs dealing with
software started warking on solution which would distribute the computing load on multiple
machines on network. Client/Server architccture took birth around these developments, It
basically trics to utilize and distribute computing requirements on PCs, UNIX sarvers, YMS
servers, even mainframe depending on the computing requirements. ©

2.3 EMERGENCE OF CLIENT’ SERVER
ARCHITECTURE

Seme of the piqnccﬁng work that was done by some of the relational database vendors
allowed the computing to be distributed on multiple computers on network using
contemporary technologics involving: .

Low Cost, High Performance PCs and Servers
Graphical User Interfaces

Open Systems

Objectl-Orientation

Workgroup Computing

EDI and E-Maif

Relational Dalnbasgs

Networking and Data Communication

2.4 THE CLIENT/SERVER COMPUTING

In this agplication we will iake up basics of Client/Scrver modek: how 1o define clicnt and

At i AT T

server, objectives of client/server model, the dilference between majnframe based computing

-and client/server computing eic.

2.4.1 Basics of Client/Server Computing Paradigm

A Client is an application thal iniliates pecr (o peer communication and users usually
involve client software when.they use a network service. Most client software consisis of
conventional application programs, Each time a clicnt application execules, it conlact a
server, sends a request and awaits a response. When the response arrives, the client
continues processing. Clients are often casicr 10 build than servers and usually require no,
special system privileges (o operate. :

By comparison, a server is any program that provides services o requesting processes in
client. Tt waits for incoming communication requests from a client. It receives aclient’s
request, perhaps the necessary computation and retums the result Lo the client.

Generally, it does not send information to the requester until the requesting process tells it to

do so. But the server must also. manage sychronisation of services as well as communication

once a request has been initiated.

The client may initiate a transaction with e server, while normally the server does not
iniliate a transactlion with the client. .

The clicnt is therefore the more active pariner in this association, requesting specific
functions, accepting corresponding resulls from the server, and acknowledging the
completion.of services. The client, however, docs not manage the synchronization of
services and associated communication. Because servers often netd to eccess data, server
software ustially requires special system privileges. Because a scrver executes with speciel
system privilege, care must be taken to ensure that it does not inadvertenly pass privileges
on o the clients that use it. For cxample, a file server that operates as a privileged program

. must contain code 1o check whether'a given file can be accessed by a given client, the server

cannol rely on the usval operating system because its privileged staius ovemides them,
Servers must contain code that handle the issuc of: ’

= Aunthentication — Verifying Lhe identity of a client *

» Awhorisation — -Determining wlicther a given client is perminied to access
the service by the server supplies. '

« Data Sccurity — Gencrating that data is not unintentionally revealed o

) compromised.)

= Privacy — Keeping information about an individua! from
unauthorised access.’

« Protection’ — Guaranteeing that newwork applicaion cannot abuse
Syslem Fesources.

The general case of client/server implementation is shown in figure,.

SERVER
" MANY-TO-ONE
OR
MANY-TO-MANY
_ COMMUNICATIONS -COMMUNICATIONS 12tz

Flgurel : The peneral ease bf cllent/sciver Implementatlon

Introduction to Cllent/
Server Daisbaw

17

Emerging Trends In Databace
Manapement System

18

With the client/server computing model of distributed operations
« Many clicnis may share onc server,

« . The same client may access many servers, both logical and remote.

The client, the server, or both can be a workstation. The server can also be a supermicro, a
database computer, or a supercompuier. Purposeful old minis and obsolete mainframes have
not been included in the definition.

Since server-based supports can be complex, l.hc term server does not necessarily refer 1o a
piece of hardware, a dalabase unit, a gateway, or a spccml-purposc processor dedicated to
Tun soliware. The concept is much broader: Server requires both software and hardware for
a range of functions—though typically each server is specialised.

The technical solutions should bé able to assure networkwide shared access by applicauoﬁs .
processes that address databases, number printers, gatcways, and other resources. The
environment can be;

« Simple, such as a small work group sharing applications and peripherals
.or
» Complex, resulling from wider sharing across multiple sysl_cins and topologics

Whether the sclution we are after is simple or complex, wotally new or a conversien of
mainframe applications, a basic design principlc is never to build 2 system to support the
current organisational divisions and their departments. A great deal of the necessary
flexibility can be provided by solutions that are modular and independent of carrent
structures.

A different way of making this statement is that the ml‘onnauun technology (IT) solunons we
devclnp must be orgamsauon—mdepcndan

= They should not reflect lhc current organiéaj.ion chart.
¢- They should be immune to structural changes—hcnu: flcxiblc,

s They should i integrate with exisling resources, assunng the end user of seamless
aceess to them.

The goal of the solutions through client/server computing is to enable a client program
anywhere in a network to request services from anywhere else in the network in a way
that is both transparent and independent of any particular mterconnecled’ software and
hardware. This rcl‘crcncc raises a number of questions:

* What computers, communications, and software solutions should be used 10.create a
clieni/scrver network ? : -

* What range of functionality should be targeted 1o optimise cost-ciTectivencss ?

+ How can the system be kept flexible to develop new applications, add new uscrs,
and cnhance its own structure ?

'» How can we ensure that server platforms and ¢licnt stations will deliver the high
availability demanded by the most compelitive applications ? -

+ What facililics will be able 10 manage all the nodes and Jinks in the client/server
ncuwork, distributing the software and contralling the physical assels 7

Not all approaches that réprcsent themselves as clicntfscrver models can answer these
questions in an able manner. Without any doub, excepuons should be madc of mainframes
and nonintelligent terminals connected to main{rames or minis,

‘Another major exccpuon isthe stand-alone workstation. Urrdcr no stretch of the
imagination can it qualify as a clicnt/server model, athough some vendoss try to scll itas
such. APC or any other unit that is not networked is not a workstation.

Integrating what has been said so far, we are converging toward definition that. client/servers
are exc:llent multiuser systems with a flexible but all defined applications perspective.
These applicaiions must be designed to work together through adherence 1o rules.

The forcgoing concepts are not necessarily new. To a substaniial cxlcﬁt. they have existed
for four decades in computing. Whal is new is the truly peer-to-pecr structure of the
" implementation environment. .

The wider acceplance of the outlined soJutions largely depends on the functionnlity pravided
by the system as a whole. What makes the client/server architecture distinct from
mainframe-based processes are its distributed but cooperative applications
characteristics: .

* Clients and servers function across platforms within the network, whether in & local
or in a wide area.

-« Distributed software artifacts exccute on multiple platforms within the supported
- archilecture, - .

+ Processcs on the network can be dynamically distributed (o the most appropriate
(and available) platform for execution.

Graphics applications can be assisted through graphics processors. A numerically iniensive
process within an application can be migrated from a client to the network’s number
cruncher server, and a complex database query may aceess a different database server if the
information elements it requires are themselves distributed. This emphasises the need fi
first- class solutions in networking, . .

2.4.2 Why need Client/Server Computing?

Clieny/Server (C/S) architecture involves ranning the application on multiple machines in
which each machine with ils component softwarc handles only & part of the job. Client
machine is basically a PC or a workstation that provides presentation services and the
appropriale computing, connectivity and interfaces while the server machine provides

- database services, connectivity and computing services to multiple users, Both client
machines and server machines are connccted to the same nctwork. As the users grow more
client machines can be added 10 the network while as the Ioad on the datobase machine
increascs more servers cen be connected to the network. The client could be character
terminals or GUI PCs or workstations connected to the nctwork. Server machines are
stightly more heavy dury machines which gives databasc services 1o the client requests,

The network need not be Local Area Network (LAN) only, it can be on much wider
distributed Wide Area Network (WAN) across multiple cities. The client and server
machincs communicate through standard application program interfaces (APT) and remote
procedure calls (RPC). The language through which RDBMS based C/S environment
communicate is known as structured query language (SQL).

243 Advantages of Client/Server Computing

C/S computing caters to low cost and user fricndly environment. It can be used to develop
highly complex multiuser database application being handled by any mainframe COMpUICes |
.until about 5 years back. Itoffers expandability. It ensures that the performance degradatiod

«isnot so much with increased Ioad, It allows connectivity with the heterogeneous machinesi
and also with real time date feeders like ATMs, Numerical machines. It allows the datobase '
menagement including security, performance, backup, server cnforced integrily to be part of
the database machine avoiding the requirement 1o wrile large number of redundant piece of
codc dealing with database field validation and refercntial integrity. Since PCs can be used
as clients, the application can be connccted to the spreadsheets and other applications
through Dyramic Data Exchange (DDE) and Object Linking and Embedding (OLE). If the
load on database machine grows, the same application can be run slightly upgraded machine
like disk machine provided it offers the seme version of RDBMSs on diverse machines, - &
legacy applicatioristgn old machines or geographically scparated can mect all requirements -
of an enterprise. *~ |

244 Compi_fﬁ:'énls of Client/Server Computing
ﬂ‘ he Server 5 . S

?Ihc._scwu'.mach'ines could be running NOVELL LAN or INTEL based server or UNIX from .

SCO orAT&T or UNIX being run on RISC machines like HP, SUN Microsysiems, IBM,
J’(\.‘xon'l]:naq ele, . A

Introduction to Cllent/
Gerver Database

e e e e

Emerging Trends In Database
Maunagement Syslem

These server machines should be running on RDBMS engine like Sybase, Oracle, Informix
clc. The scrver machine wakes care of data storage, backup, recovery and database services.
Itis typically a multiuser machine catering o large number of requests submitted from the
¢lient machine or exccuting requests for RPCs/Stored procedures. The database engine
exccutes the requests and sends the result to the client machine and the presentation service
of the client machine puts the reecived data in required format. Some of the databases take
care of the Gile handling, (he 1ask and user handling themselves. The server also allows
ceriain constraints at table level or ficld level to be incorporated. The field level validations
are gencrally called rules c.g. if cmployee cede is 4 chars, all numeric slanting with digit
other than 0. In employec able this constraint can be sttached to the field iwself. Tt would
eliminate writing a code for field validation an this ficld in each table. If the existence of the
employce code is 10 be checked belore entering employee pay delails for a month, it weould
involve two tables : employee pay detail and employee master. These types of checks are
called referential integrily constrainis. If these constraints can be incorporated in the database,
then we can reduce large number of application code, More than that, il will be ensured that
application errors do not eflect the inlegrity/reliability of the data stored in the dalabase,

These types of integrily checks are called Database Triggers. The advanced RDBMSs also
allow on-line database backup, schema modificalion and performance and wning. Database
stored procedures are cerain more repetitively éxecuted pieces of code stored in the database
itself, written in the extended form of SQL called T-SQL in Sybase, PL/SQL in Ormgcle 7.
These fast and compiled server resident procedures improve performance by reducing
nctwork traffic and by allowing a single copy of the procedure to large number of users.
Stored procedures can be execoted by client machine. Remote procedure calls on the
contrary are gencrally invoked by servers which enables distributed database processing
when the information is available on multiple servers. RPCs can handle the siwarion very
efliciently. In the earlier versions of RDBMSs process (or users design was followed, so
number of processes on a machine would be directly proportional to the number of users

. currently using the RDBMS. This resulled in iremendous degradation of performance as

number of users grew in number. “The reason being, afler sometime the user processes go
into swap. Sybase pioncered the multithreaded RDBMS design in which, imespective of the
number of users toking database services, the database process code just be one. Today, most
of the important RDBMSs provide for multithreaded server design. The mullithreaded
architecture combined with scrver integrity, Clicnt Server Architecture, conneclivity |10}
networking protocol, conneclivily 1o heterogencous databases has resulted in anor
movement lowards enterprise wide computing.

2.5 THE CRITICAL PRODUCTS

 In this section we will briefly look at some tools 1o implement client/server environment.

2.5.1 Object Oriented Technology (O0T)-
The fundamental ideas underlying OOT are:

"« Abstraction
* Objecis
¢ Encapsnlation
» . Classes and Instance

¢ Inheritance
» Message
* Methads

How QOT differs from structured programming?

" Structured Programming

Data and code are separate and code™aperates on data.

Q0T
Dala angd procedures are logether and the object responds (o messages.

T —

—

Abstraction

i It is the act of removing cerlain distinctions between objects so that we can see

* commonalties. The result of an abstraclion process is a concept or object type. One of the
- forms of abstraction is Data Abstraction. Here only the selected propertiea of the object are
made visible to the outside world and their intemal representation are bidden, The object
model has a greater advaniape over conventional languages that the lower Ievel
unplernmtanon details are not visible,

Object

An object is any thing, real orabstract, abﬁt which we store data and those methods that
manipulate the data. Its an encapsulated abstraction that includes state information and g

. clearly defincd sef of access protocol {messages to which object rcspond.s) Itis a software
package which contains related data and procedures. The basic concept is to define coftware
objects that can intersect with each olher just as 1hcu' real-world counterparts do.

An object type is a categary of object. An object is an instance of an object type.

Encapsulauon
Packaging data and methods together, is called Encapsulauon

Its advantages are:
+ Unnecessary details arc hidden,
¢ Unintentional data modification is avoided i.c. provides security and reliability.

« - Presents interference with the intermals and also hides the complexity of the
components. Thus, encapsulauun is impormnt because it separates how an object
behaves, from how it is unplememed.

Classes

‘Aclassisan implementation of an object type and is defmed by and is defined by a class
description that defines both the attribules and messagw for an object that class. It specifies
a data structure and the parrmss:ble operationz! methads that apply to each of its objects,
Classes can also be objects in some objeet oriented language.

An object is an instance of a class, The propertics of any instance (object) are given by the
class description of its class. Thus,

o Classis template that helps us o create pbjects. .

e Classes have names {class identificr) that indicates the kind of objecis they
represent. ’

« Classes may be arranged in hiermrchy with subclass representing rnore specific
kinds of objects than their super class,

Inheritance) .

Inheritance allows the developer 1o create a new class for object from an existing one by
inheriting the behaviour and then modifying or'adding to iL [t provides an ability to crcate
classos that will antomatically tedel themsclves on other ¢lasses. Sometimes a class inherils
propertics of more than one superclass, then its called MULTIPLE INHERITANCE. This
inheritance leads (o a “Class Hierarchy”, It is a network of classes that starts with the most
general as the uppermost branches and descends o the bottom leaves which are most
specific. The power of an Object Oricnted envifonment is defined by the Class Hierarchy
and its capabilities.

Iis advantages are:
. liw;ability of code
. Avoid ;:Iuplical.ion of code

'« Reduce cost of maintenance

" Intreduction to Client/

Server Database

L P Rt et T

Emerging Trends [n Databasa
Management System

Message
A message is

» Aspecific'symbol, identifier or key-word(s) with or without parameters that
represents an aclion to be taken by an object.

* Only way to communicate with an objccl is through message pa_.';sing.
* Anobject knows what another intrinsic property/capability object has, but not how
it does it
» Amessage is not restricted (o onc recipicnt object but 1o multiple object.

In A conventional progrﬁmmlﬁg language an operation is invoked by calling a named
procedure and supplying with it the data to act on. If the wrong data are supplicd the wrong

results will be reumed. o

Methods

They are ofien called SELECI'ORS since when they are called by name r.hey allow lhe
system to select which code is to be executed.

e Methods arc description of operations.
. Mémod appears as a component of 05ij

= . There isa 1-1 comespondence between messages and melhods tha.l are executed
- when a message is received by a given object. -

* The same message might resulemi dilferent method.

-These concepls have becn also explained in ,lhc previous unit

2.5.2 Dlstnbuted Computm g Env;ronment

D:smbuung computing environment intcgrates compulers in gcograpmcally distant location
and underlymg applications. These computers could be of different types with different
operating systems, even the RDBMSs. Tt can also utilize hcte:ogeneous client environment
like Powcrbulldc.r. VisualBasi¢, Uniface elc.

. Issues involve:

-« Networking multiple machines. .

. Imeg:aung RDBMS appllcauons using global d:chonary or two-phasc commit
(2PC) or rephmted serverftable.

" Global Dictionary

The dala mcuonary of these geographlcally separate databascs is stored centrally to (ake
action on distributed transactions, ‘This caters (o location transparency e.g. if the salary of all
the pwplc in a corporation belonging 1o grade G2 is higher by 25%, the ransaction

-statement nced not specify the location name where G2's data has to be changed. A

statement similar Lo increased salary of G2 by 25% globally w:ll do,

"Two Phase Commit. (2PC)

In 2PC, the commil server in phase one checks out the avmlablhty of participating Servers m
all the locations. In phase two, after sending the transactions to the individuat

servers and réceiving OK from them on updauon the commit server END COMMIT stams
o all the' paruc:paung servers;

Rephmted Serverﬂhble

. Inthis method, the tables required for distributed u'ansacuon are copwdhephcawd to.all

participating server sites, The ceplication server ensures tiat when there is a change in the,

- replicated table, the change ragsmitted 10 all the locations. This enables reduced network

u'afﬁc and lays prone o apphcauon storage owing fo network fmlun:, -
The cammummuqn betwesn helcmgcneous dnl.abasc is done l}uough d.mhase gq:swayx.

Y

L~ T —permgar) [) e

2. 5.3 Application Programming Interface (API) Introduction to Cllent/

Server Database
It is simply a specilication of a set of functions that allow client and sérver processes to
communicate. It hides the underlying platform hardware and sofRlware from the developer.
APIs show the developer a single-system image across a heterogeneous network of
processors. ¢.8. Open Database Connccuvlty (ODBC). The primary advaniage of
developing the client application using a standard API is that the resulting appllcauon can
use any back-end database scrver rather than just a specific server. The primary
disadvantage is that they generally include the least common denominator of all tools and
database servers that support the standard, So consider the use of API only if two or more
databases servers are used,

2.5.4 Multithreaded Processes

A single process can have multiple threads of execution. This simply means that a single
multithreaded process can do the work of multiple single-threaded processes.” The advantage
of a multithreaded process is that it can do the work of many single-threaded processes but
requires far less system overheads. If a database server uses multithreaded server processes,
it can support large number of clients with minimal system overheads, The user processes
and server processes are differcnt and one server Process can serve mu]uple USET Processes.
‘This conﬁgm-auon is called Multithreaded Archlwcu.tre.

2.55 Remote Procedure Calls (RPC)-

With RPC ene component communicate with a remote component using simple procedure

calls. This involves peer 1o peer messaging. Ifan application issues a functional request and

this request is embedded in an RPC, the requested funciion can be located anywhere in the -

enterprise, the caller is authorised to access. The advantage of this process to process’

cpmmunication is evident when processors are involved in any simultaneous processes.-

New client applications that use object-level relationships between processes provide need

for this type of communication e.g. a client requests information from a server by connecting

to the server, making the request by calling low-level procedure native to the database server, - -

and then disconnecting. To respond W a request, the server connects 10 the apphcauon and’

calls a low-level procedure in the application. 7

RPCis typ:cally transparent (o a user, making it very casy 1o use. 'The RPC provi&es facility
for the invocation and execudon of requests from processors running diffecent aperating
systems and using different hardware platforms from the callers.

.2.5.,6 Dynamic Data Exchange (DDE)

Through a set of APIs, windows provide calls that support to the DDE protocol for
message-based exchange of data among epplications. DDE can be used to construct
HOT-LINKS betwéen applications where data can be fed from window to window without
operation intervention. DDE support WARM-LINKS that we can creale so the sexver
application notifies the client that the data has changed and client can issue an explicit
request to receive it. We create REQUEST-LINKS to allow direct copy and paste operation
between a server and client without the need for an :mn_ned:ale clipboard. - No notification of
change in data by the server application is provided.' EXECUTIVE LINKS cause the
execution of one application 1o be controlled by the another, This provides an easy 1o use
batch processing capability. Thus, using DDE, applications can sharc data, execute
commands remot.cly and chcck ermor condilions,

257" Object Linking and Embedding (OLE)

Linking is ene way of attaching information from one apphcauon to another. Link can be
locked, broken or reconneclcd. Linked information is stored in source application.

Emheddmg makes the information 1o bc embedded, a part of the destination document, thus
increases ils size,

OLE is designed to let users focus on data rather (han on the software required to marupulale
. 'the data. A document becomes a collection of objects, rather than a file. Applications that
are OLE-capable provide an API that passes the description of the object to any other

'~ application that requests the object. OLE is perhaps the most powesful way to share
information between documents. In order to link an object credted in another application to
another file, but applications need (o be running in the same envlronmcnl i.e. cither DDE or
OLE

Emcrging Trends In Database
Munagement System

Advantnges of OLE
+ We can display an embedded or linked object as an icon instead of its full size,

» We can convert an embedded or linked to a dilferent application.

2.6 DEVELOPING AN APPLICATION

C/S application developments requires broadly dividing the application into two categorias:
= Server Coding
¢ Client Coding

Server Coding :

Creation of Database

It has two major phases—the demgn phas.. and the crcatlon phase, The design phase
includes planning file limits, size and location of the initial data files, size and location of the
new databasc transaction log groups and members, detcrmining the character set Lo store
database data. COmce we have planned a new database we can execute it using the SQL -
commands. -

Creation of Tables
Once dalabase is created, the tables to be kept under this database are designed. The table is

- comprised of columns and the properties of these columns are decided i.e. whether the field

is null or not null, which is the primary/foreign key eic.

Creation of Database Triggers

Triggers cnsure that when a specific action is performed, related actions are performed., I:
also cnsures that centralised, global operations should be fired for the triggering stalement,
regardless of which user or database application issues the statement. By default, triggers are
automatically enableqd when they are created, A pre-defined or user-defined error conditions
or exception may be rzised during execution of a trigger, if so, all effects of the trigger -
execution are rolled back, unless the exception is specifically handled.

Creahon of Stored Procedures

A stored pmcedure is a schema object that logically groups a set ot‘ SQL and PL!SQL
programming language in Oracle and T-SQL statements in Sybase together 1o perform a
specific task these are created in a user schema and stored in a database for continued use.
These can be invoked by calling explicitly in the code of a database application, by another
procedure or funclion oc by a trigger. Itis defined 1o complete a single, focussed task. It
should not duplicate functionality provid=d by another fcatere of the server e.g. defining.
procedures to enforce data integrily rules that may be enforced using inlegrity constraints,

* Creation of Server Enforced Validation Checks

This is done through database integrily rules. It guarantees that the data in a database

adheres to a predefincd set of constraints. ' Tts a rule for a column of a table which prevenis
invalid data-entry into the tables of a database. It is stoved in a data dictionary. It supponis
enlity integrily and referential integrity. Rules depend on type of data and condition .
specikicd at lime of access of data and [requently accessed as a check on transaction a.nd not
as a constraint on the dalabase.

Creation of Indexes

Indexes are used 1o provide quick access 10 rows in a table, It prowde faster access 1o data
for operations that retum a small portion of the rows of a table. Indexes should be created
alter loading data in a table. Index those columns wh:ch re-used for joins to improve
pcrf'oma.ncc on joins of multiple tables.

Lay
Creauup of Views

: V:cv}sarc crealed 1o see the same data that is in database tables, but with a different

pere five. A vicw is a vinual table, deriving its data [rom base tables. Views are usedto -

_limitgccess to specilic 1able columns ard create value-based security by defining a view for

}

a specific rows. Views can also be used to derive other columns not prescat in any table &.g. Tntraduction to Cllent/ -

_ calculated field. Server Databam

2.7 STRUCTURED QUERY LANGUAGE (SQL)

It has emerged as the standard for guery language for relational DBMSs. Iis original version

was called SEQUEL. It is still pronounced as SEQUEL.SQL is both the data definition and

‘dats manigulation language of a number of relational database sysiems ¢.g. Oracle, Ingres,
Sybase, Informix ete.

Note: In this discussion, we would be taking exampies tor Hotel database having two
tables: |

Employee (Emp_no, Name, skill, Pay,_rate)
Duty_allocation(Pesting_no, Emp_rio, Day, Shift)

2.7.1 Data Definition Language (DDL)
Data definition in SQL is via the create statement.’
- Create A Table:
Syntax: - .
Create table < relation (attribute list)
<attribue list> = < attribute name > (<é|ata ype>)
- [« autribute list]
<data wpe>£<inwgu>l<maﬂhwl<dm{n}> I<van:1[1a;]=)»l-<ﬂom'> | < decimal >
. _ - @La)> '

Note: In above syntax, relation means table (i.e. file), while attribute means fields or

columns. In addition, some data types may be implementation dependent.

For example, the employee relation for the Hotel database can be created as:

create teble Employee
(Emp_mo integer not null,
Narme char (25),
Skill char (20),

Pay-rate decimal (10,2))

Alter Table

The definition of an existing relation can be altered by using the elter statement. Tt allows
the new column to be added. The physical alteration occurs only during an update of the
recorg.

Syntex: .
alter table existing _table_name
add column_name data type{...}

For example, to add phone_number attribute to the cmployee relation alter table Employee
add phone_number decimal(10}

Create Index :
Tt allows the creation of an index for an already existing 1able.
Syntax:

create[unique] index name_of_index

on existing_table_name
{column_name[ascending or descending]
{ column_nameforder],...]) [cluster)

Cluster option is used 1o indicate that the records are to be placed In physical proximily to
each other. :

25

A~ s Py e oy

Emerging Trends in Detabase
Management System

For example, create an index (named empindex) on Employee relation usmg cnlumns Name
and Pay_mr.c)

Creae index empindex
on Employee (Name asc, Pay_rate desc)

Drop Table/Index . .
It is used (o delete relation/index from the database.

Syntax:
y drop table cxlsung_lablc name
drop index existing_index_name

2.72 Data Manipulation Language (DML)

Select Statement

I is the only data retricval statement in SQL. It is based on relational calculus and enuuls
selection, jein and projection,

Syntax :
select [distinctfunique] <target list»
" from <relation list»
[where <predicate=]
[order by attribute_name desc/ase)
[group by attribute_name]
[having value_expression]

. |
For example, find the values for atiribute Name in the employee rclation.

select Name ’
. from Employee ’

For example, get Duty_allocation details in ascending order of Day for Emp_no 123461 for _
the month of April 1986 as well as for all employees for shift 3 regardless of dates.

select *
- from Duty_allocation
where (Emp_no = 123461 and Day 19860401 and
Day = 19860430} or shift = 3)
order by Day asc

Updete Statement
Syntax :
update <relation> set <target_value list
[where <predicate>]
«<target_value_list> = <attribute nomes> =
<value exp> [, <target_value list»]

For example, changc‘l’ay_me to 8 of the employee Ron in the ﬁmployee relation,

update Employce
S st Pay_rate=8
? where Name = ‘Ron’
Delete Statetnent
" Itdeletes on or more rucordsm the relation,
Synlax :
delete < relation >
[where < predicate =)

whﬂeclausemleftom.aﬂuwhmlwlnmerelauonmdclm Induscnse.thorchumis -

‘ﬂ.ﬂl lcnown_to the dalahase although it is an empty ralauun
For example, delete the mplz_:_t‘cr employeo Ron in the’ Emplo;md lelmk;n. - 3

s e o v T

delete < relation >
[where < predicate »]

Insert Statement

* It is used to insert new tples in a specified relation.
Syntax : :

insert into < relation > (< target list »)

. value (< values list >)
«< value list > = < value expression > [, < target list »]

We can replace value claose by select statemenL
eg.- Inseta tuple for the employee Ron, .
insert into Employee
values (123456, *Ron’, *waitcr”, 8)

Condition Specification

SQL supports the following Boolean and comparison opcréiors: and, or, not, =, < >, >=>, <,
<=, likc. If more thar one of the Boolean operators appear together, not has the highest
priority while or has the lowesl. Parentheses may be used to indicate the desired order of
evaluation. .

Arithmetic and Aggrepgate O, rators

Avg

Min

Max

Sum

Count
For cxample, find the avcrag;: pay rate for crpploycc working as a chef. h
select avg (Pay_ratc) '

from Employee
where skill = ‘chef’

+

For example, get the number of distinct pay rates [rom the Employce relation.

select w.um (distinct Pay_rate)
from Employee

For cxample, get minimum and maximum pay-rates.

select min(Pay_ralc), max{Pay_raie)
from employee

Join

SQL does not have a direct representation of the JOIN operator. However, the type of j‘oin '

can be specificd by an appropriate predicate in the where clause of the select statcment.
For example, retrieve the shift delails for employee RON.

select Posting_No, Day, Shift
from Duty-allocation, Employee
where Duty-allocation. Emp_No
= Employes.Emp_No
and
Name = ‘Ron’

SQL uses the concept of ple variablcs from relational calculus. In SQL a liple variable is
defined in the from clause of the select statement.

* For example, get employees whosc rate of pay is more than or equal to the pay of employee

Pierrc.

¥

Introductlon to CTieal/
Scrver Database

27

Flr==Tpre) — =l

Emerglng Trends o Dalabase

Management Syslem

28 -

" select ¢1.Name, e2.Pay-rate
from Employce ¢, Employee ¢2
where el.Pay- rate > 62.Pay

and
e2. Name = ‘Picrre’

Set Manipulation
SQL provides following set of operators:
Any
In
Exists
. Not exists
" Unien
Minus
Intersects
Containsg
When using these operators, remember that the stalement *select...” relums a set of tuples,

Any
It atlows the Iesting of a value against a set of values,

Fm; example, get the names and pay rates of employces with employee number less than
123469 whose rate of pay is more than the rale a pay ot'al. lcast one employee with
employec-No >= 123460.

sclect Name, Par-rate
from Employee
where Emp-No 123480
and
Pay-rate > any (sclect Pay-rate
from Employee
where Employee »>= 123460

In

_ Its equivalent to = any.

For examplz, get employees who are working either on the date 19860419 or 19860420
select Emp_No
from Duty-allocation)
where Day in (19860419, 19860420}

Contains

It is used to test for the containment of one set in another

For example, find the names of all the employees who are assigned to alL,llw posmons that

require chef's skil.

select e Name
from employee e
where .
(select Posting_no
from Duty_allocation d)
where e Emp _no=d.Emp_no
conlains . .
* {select p.Posting_no
from Position p
where pskill = chef‘) .

* Position is another relation of Hotel datahesé:
Position (Posting_no, skilh"

-+

=4 N e ey T i

All
For example, find the employees with the lower pay-raie
select Emp_No, Name, P:iy-mte
from Employce .
where Pay-rale <= all

(select™
Pay-ratc from Employez) o

Not In
It is equivalent to # all

Not Contain
It is complcment of contains

Exists .
.exists (select x from ...)

It cvaiuates Lo true if and only if the ;-esult of “select x from ..." i not empty.
For cxample,{ind the names and pay-fate of all the employees who are aliocated a duty.

select Name, Pay-rate
from Employee
where cxists
' (sclect *
from Duty-allocation
where Employce.Emp_no=
Duty_allocation. Emp_no

Not Exists
It is complement of exists.

For example, find the name of pay rate of all the employee who are not allocated a duty.

sclect Name, Pay-rate
from Empleyee
where not exists
(sclecL™
from Dury-allocation
where Employce. Emp_no =
Duty_allocation Empl_no)

Union
Duplicates are removed from the resultof a union.

For cxample, get employees who are wailers of working aLposﬁng-ho 321,

select Emp-No

from Employece

where skill = ‘waiter’

union -
(sclect Emp-No
from Duty-allocation
where Posting-No=321] .

_Minu.s
For cxample, get a list of employecs not assigned a duty.

select Emp-No
from Employec
minus
(select Emp-MNo
~ from Duty-allocation)

Introducilon to Clientf
Server Database

20 .

I T e e

Emerging Trends o Database Intersect

Munagement System

For example, gef a list of names of'employecs with Lhe skill of chef who are assigned a duty.

sclect Name

from Employee

where Emp_no in

{(select Emp_No

from Employee
where skill = ‘chef’
intersect
(select Emp-No
from Duty-allocation)}

Cat:gorim-lion

Sometimes we need to group the tuples with some common property and perform some
group operations on them. For this, we use group by and having oplions in where clause.

For example, get a count of different employees on each shift.

sclect shift, count(disiinct Emp_No) ‘
from Duty-allocation
group by shift

For example, get a count of different employees on cach shift.

select shift, count(distincl Emp-No)
. from Duty-allocalion
@ group by shift

For example, get employee ﬁﬁmber of all employees working on at least two dates.

select Emp-No

from Duty-allocation
group by Emp-No
having count(*) » 1

View
Conceptual or physical relations are catled base relations. Any relation that is no partof the

physical dalabase i.e. a virtual relation, is made available to the users as a view. A view can
be defined using a query expression. :

creale view <view names>
as <query expression>
Far example, create a view named Emp_view containing the fields Emp_No and Name from
- Emplpye relation.
create view Emp_view
(sclect Emp_No, Name
from Employes)
DROP VIEW
Drop view view-name

2.8 CLIENT/SERVER: WHERE TO NEXT? N

Clicnt/Scrver Compnting has a great future ahead, The successful organizations have to be
market driven and competitive in the times to come, and they will use Client/Se or
Compuning as the enabling technology to add values to their business. .

. In fiyture cheap and powerful workstations will be available 1o alt nd usezs tybe used s)
clients maccesslheinfoxmatimoumescrverswhimmdisuibumdghhuy. The futime .
Clien/Servey Information System will provids the information from date in it original form,”

e.g. image, video, gmphics, documents, spreadsheels eic. without the need to be specific " /,

I

L ld

-

The future trends in networking show that there is going (o be an explosion in the number
nelwork users and more than 70% users, and obviously most of themn will use Client/Server
as the underlying technology. The networks of the future will support much higher
bandwidth (of the order of 100 Mups) by using the technologies Jike corporate networks will
cut across the boundaries of citics or even countries and they will be connected to major
networks around the world, An organization living in isolation will not survive in future, -

The future Client/Server Information Systems will use the object oriented programming—
OOP. Techniques to make zero defect applications. The OOPs will provide the capability 1o
reuse prevmusly tested components. The reuse of already tested components is quile
common in most enginecring and manufacturing applications (or even the hardware design),
the QOPs makes it for the sofiware development too.

The future Clieat/Server will cover the sysiems such as Expert Systems, Geographic
Information Systems, Point-of- Sexvices, Imaging, Text Retrieval, Document Management
Systems or Electronic Filing Systems, Executive Information Systems, Decision Suppont
Systems etc., alongwith the data handling in QLTP (On Line Tiansacuon Processing) and
real time environments.

Check Your Peogress
1. Discuss rade-off between mainfrarne and Clieny/Server environment

2.9 SUMMARY

The first major challenge for bnsiness today is staying competitive in .a changing liberalized
global economy. Success, even survival, depends on how quickly and accurately one can get
up-to-daie information so that major busincss decision can be taken without any delay.

The availability of a vast amount of knowledge and information needs integration of
computer and communication systems.

There is a paradigm shift today in using technc;logy for finding solutions/information from
the earlier days,

« In the 1960s by centralized mainframes
+ " In:the 19703 by mmwmputcrs. as distributed dats processing
. In the 1980s by the pe.rsmal computers (PCs) and Local Area Networks (LANS)

« In the 1990s by Client/Server erchitecture which nse as server product ranging from
UNIX and NT box's to Database Computers (DBCs) and supercomputers.

Compames ‘that have moved ont of this mainframe system to Client/Server architecture have
found three major advantages: !

+ Client/Server technology is more flexible and responsjve to user needs
« A significant reduction in data processing costs

« Atiincrease in business competitliveness as the market edge tms owards
my:rehandising

2.10 MODEL ANSWERS

1. Inamtinframe all operations take place on one system. This type ofénvimmnentis

being 1ised for the last 30 years, but it is:

" Introduction (o Cllent/
Server Dalnbase

3

| merT e £y ety — [

Emerging Trends In Dalsbase
Managzment System

EY)

 Highly costly
« Highly inflexible

‘s Quite slow because of contzntion

» Lessrclinble

By contrast to this monolithic approach Client/Server (shown in figure 2) provides a
low-priced robust solution (o user requirements. This approach permits downsizing
production subsystem while allowing the clients and servers the necessary wols and facilities
to control, manage and tung the covironment in which they operate.

END-USER
<) WORKSTATION

Figure2: Alayuul approach to érapullng enbances functionalily and lnm flexibillty,
tpeed and rellablity at low cost. _

Most Client/Server solution are also very attenlive in matiers of security. Access (o any
resonrce can be defined to the file level, with such access being controlled through :
identification ard anthorisation. Logically dofined closed use groups can be setp to enable
the cahancing of security measures by network administrators,

2.11 FURTHER READINGS

1.

RTINS

Dol

" Guide to Clicny/Server Database by Joe Salemi

Developmg ChenUSm'er Applications by W.H.Inmon

Mastering Oracle and Client/Server Computing by Steven M.Bobrowski
BSG@ ClientfServer Ccmputing by SHL System House

Feamnng SQL standard by Hayden Book

Datapro report o ClmnfSenrcr Compudng by Emagmg 'Itmds. Sohmons tnd
Strategies,

Datapro report on ChenUSer\'u'-Cfmllense by FDDl or Ethemnet Swﬂchas

Datapro report on The Hiddcu Costof' Clicnl!Sm'er Compuung

Crem ey e e

9.
10.

11,

Client/Server Computing by Patrick Smith and Steve Guengerich

GUI based Design and Development for Client/Server Applications using Power
Buitder, SQL Windows, Visual*Basic, PARTS Workbench by Jonathan S.Sayles, Steve
Karlen, Peter Molchan and Gary Bilodeau,

Beyond LANS Client/Server Computing By Dimitris N. Chorafas: McGraw-Hill Series
on Computer Communication:1994,

Intrédaction to Client/ -
Server Dalabase

33)

t |

g

UNIT 3 INTRODUCTION TO KNOWLEDGE
- DATABASES

Strocture.

390 Introduclion
3.1 Objcclives
3.2 Definition and Importance of Knowledge
3.3 What is a Knowledge Base System?
34 Dilference Between a Knowledge Base System and a Database System
3.5 Knowledge Representation Schemes
3.5.1 Rule Based Represeniation
3.5.2_ Frame. Based Representation
353 Semantic Nets
354 Knowledge Represeniation Uning Logic
3.6 Summary
3.7 Model Answers
3.8 Funher Reading

3.0 INTRODUCTION

Akmowledge base management system (KBMS) is a computer system that manages the
knowledge in a given domain of interest and exhibits reasoning power to the level of a
human expert in this domain. In typical Anificial Intelligence (AT) application, knowledge
dcpresentation requires data structures with rich semantics that go beyond the simple
structure of the relational model, Al is the part of computer science with designing

intelligent compuler systems, that is systems that exhibit the characteristics we associate with

intelligence in human behaviour. Furthermare, operations in a knowledge base are more
complex than those in traditiondl dambase, When arulé is added the system must check for
contradiclion and redundancy, Such operations cannot be represented directly by relational
operations and the complexity of checking increases rapidly as the size of kmowledge base
Erows.

3.1 OBJECTIVES

After going through this unit you will be able to :

e define what is knowledge, hypothesis and belief

« explain what is a Knowledge base system

. 'di&e.renﬁate between Knowledge base system and a database system
» list severnl kmowledge represeniation schemes

3.2 DEFINITION AND IMPORTANCE OF
KNOWLEDGE

Definition and Importance of Knowledge

Knowledge can be defined as the body of facts and principles accumulated by ’
human-kind or the act, fact or state of knowing., While this definition may be true, itis ~
far from complete. 'We know that kmowledge is fhuch more than this, Tt is having a
familiarity with language, concepts, procedures, rules, ideas, abstractions, places, |
cusioms, facis and associations, coupled with éin ability to use these notions effectively in
modelling different aspects of the world. Without'this ability, the facts and concepis aro
heanmgless and, therefore, worthless. The meaning of knowledge is closely related to the ,
meaning of intelligence. Intelligence requites the possession of and access to knowledge.
And a characttristic of intelligent people is that they poss:ss much lcnuwledge.

In biological organisms, knowledge is likcly stored as complex structures of interconnected

=L—1I=T—F.

neurons. The structures correspond 1o symbalic representation of the knowledge possessed Kn ME"";"-&:‘ to

by the organism, the facts, rules and so on. The average humane brain weighs about 3.3 o Databases
- pounds and conlains an estimated number of 10* neurons. The neurons and their

interconnection capabilitics provide about 10 bits of potential storage capacity.

In computers, knowledge is also stored as symbolic structures, but in the form of colleclions
of magnetic spots and voltage states. State-of-the-art storage in compulers is in the range of
10™2 bits with capacitics doubling about every theee 1o four years. The gap between human
and compuler storage capacities is narrowing rapidly. Unforwnately, there is still a wide gap
between representation schemes and efficiencies.

A common way Lo represent knowledge extemal to a computer or 2 humane is in the form.of
written language. For example, some facts and relations represented in printed English are

Jancy is tall.
Ram loves Sita,

Som has leamed 10 use recursion to manipulate Binary tree in several programming
‘languages. ' .

The first item of knowledge above expresses a'simple fact, an attribute possessed by a
person. The sccond ilem expresses a complex binary rclation between two persons. The
third item is the most complex, expressing relations belween a person and more abstract
programming concepts. To truly understand and make use of this knowledge, a person needs
other world knowledge and the ability to reason with iL

Knowledge may be declarative or procedural. Procedural knowledge Is compiled
knowledge related to the performance of some task. For example, the steps nsed to solve
an algebraic cquation are expressed as procedural knowledge. Declarative knowledge, on
the other hand, is passive knowledge expressed as statements of facts about the world.
Personncl data in a database is typical of declarative knowledge. Such data are explicit
picces of independent knowledge.

Frequently, we will be interested in the usc of heuristic knowledge, a special type of -
knowledge used by humans to solve complex problems. Heuristics are the knowledge
used to make good judgments, or the strategies, tricks or “rules of thumb® used to
simplify the solution of problems. Heuristics are usually-acquired with much experience.
For example, in locating a fault in a TV set, an experienced technician will not start by
making numerous voltage checks when it is clear that the sound is prescnt but the picture is
not, but instead will immediately reason that the high voltage flyback transfcomer or related
componcnt is the culprit. This type of reasoning may not always be correct, but it frequently
is, and then it leads 10 a quick solution. .

Knowledge should not be confused with data. Some scicntists emphasize this difference
with the following example. A physician treating a paticnt uscs both knowledge and data.
The data is the patient’s record, including paticnt history, measurements of vital signs, drugs
given, response Lo drugs, and so on, whercas the knowledge is what the physician has Iearned
in medical school and in the years of intcrnship, residency, specialization, and practice.
Knowledge is what the physician now learns in jounals. Tt consists of facts, prejudices,
belicls, and most importanly, heuristic knowledge.

Thus, we can say that knowledge includcs and requires the use of data and inforvaation. But
jtis more. Tt combines relationships, corrclations, dependencics, and the notion of gestalt
with data and information. -

Even with the above distinctior, we have been vsing knowledge in its broader sense up to
this point. At times, however, iit will be uscful or even necessary (o distinguish between
knowledge and other concepts such as belief and hypotheses, For such cases we make the
. following distinctions. We deline belicf as essentially any meaning(ul and coherent
expression that can be represented. Thus, a belicf may be true or false. We definc a
hypothesis as a justified belicl that is not known to be tnic. Thus, a hypothesis is a beliel
which is backed up with some supporting evidence, but it may still be false. Finally, we
definc knowledge as true justitied belief. '

Two other knowledge terms which we shalf occasionally use arc episiemology and
melaknowledge. Epistemology is the study of the nature of knowledge, whereas
~metaknowledge is knowledge about knowledge, that is, knowledge about what we know.,

35..

L1 PR ek ki ey g

Emerging Trends In Database
Management System

N

36

In this section we have tricd to give a broader definition of knowledge than that commenly
found in dictionaries, Clearly, we have not offered a scicntific definition, we are not able 10
measure knowledge, How then will we know when a system has enough knowledge to
perform a specified task? Can we expect to build intelligent systems without having a more
precise definition of either knowledge or intclligence? In spite of our ignorance about
knowledge, the answer is definitely yes,

Finally, our overall picture of knowledge cannot be complete without also knowing the
meaning of closcly related concepts such as undersianding, leaming, thinking, remembering,
and reasoning. These concepts all depend on the use of knowiedge. But then just what is
leaming, or reasoning, or understanding? Here 100 we will find dictionary definitions
lacking. And, as in the case of knowledge and iniclligence, we cannot give scientific
definitions for any of thesc: terms either.

The Importance of Knowledge

Al has given new meaning and importance to knowledge. Now, for the first time, it is
possible Lo “package” specialized knowledge and scll it with a system that can use it to
reason and draw conclusions. The poiential of this important development is only now
beginning 1o be realised. Imagine being able to purchase an untiring, reliahle advisor that
gives high level professional advice in specialised areas, such as mannfacturing techniques,
sound [inancial strategics, ways to improve one’s health, top marketing sectors and
strategies, optimal farming plans, and many other imporiant matlers, We are not far from the
practical realisation of this, and those who ¢reate and market such systems will have more
than just an economic advantage over the rest of the world,

3.3 WHAT IS A KNOWLEDGE BASE SYSTEM?

One of the important lessons leamed'in Al during the 1960s was that general pupose
problem solvers which uscd a limited number of laws or axioms were too weak o be
effective in solving problems of any complexity. This realisation eventually led 1o the design
of what is now known as Knowlcdge base Syslem, systems that dcpend on a rich base of
knowledge 10 perform difficult tasks,

Edward Feigenbaum semmarised this new. thinking in a paper at the Intemational Jaint
Conference on Artificinl Tntelligence (LICAY) in 1977. He emphasised (he fact tha: ihe real]
power of an expert system comes from the knowledpe it posscsses rather thar the particular
inference sthemes and othes formaljsms.it cmploys. This new view of Al systems marked

the turning point in the development of more powerful problem solvers. It formed the basis
for some of the new emerging expert systems being developed during the 19703 including

. MYCIN, an expert system developed to diagnose infectious blood diseases. An-expert

N

: ':5':-'_ . Input-Output S Inferencecontrol |~) bwl_ed};c
Sl unit N B unit: - : " . base .

- — o . L
e

system contains knowledge of experts in a particular domain along wilh an inferencing
mechanism and an explanation sub-system. It is also called knowledge base system.

Since this realisation, much of the work done'in Al has been rclatedilo so-called Knowledge -
base systems, including work in vision, learning, general problem splving and natural
language understanding. This in tumn has led to more emphasis being placed on research
related w0 knowledge represcniation, memery organisation, and the use and manipulation of

“knowlcdge.

Co) e
Knowledge base systems get their power from the expert knowledge that has been codﬁﬂ_'ihlo
facts, rules, heuristics, and procedures. The knowledge jg stored in a knowledge base *

‘Scparae [fom Lhe control and inferencing companents. This makes it possible o add néw!

knowlox_lge ar refine existing knowledge without recompiling the control and inferencing .
programg* This greally simplifies the constriction and maintenance of Knowledge basé
syslemSg; i

.; {0 the knowledge lies the power! This was, the_mcssa'ﬁc;lcamed afew farsighted researchers *
" ab§Rinford University during the Late 1960 and early 1970s. _ S

s

T+ FprelsComponeatsfafKnowicdgetascd system. g

e P = et g e e

" The proof of their message was provided in the first Knowledge base expen systems which
_were shown to be more tham 1oy problem solvers. These first systems were real world
~"problem solvers, tackling sich tasks as determining complex chemical structures given only
the atomic conslituents and mass spectra data from samples of the compounds and lIater
performing medical diagnoses of infectious blood diseases,

* Using the analogy of a DBMS, we can define a knowledge base management system
(KBMS) as a computer system used to manage and manipulate shared knowledge. A
knowledge base system’s manipulation facility inclndes a reasoning facility, usually
including aspects of one or more of the following forms of reasoning : deductive, inductive,
or abductive. Deductive reasoning implies that a new fact can be inferred from a given set
of facts or knowledge using known rules of inference. For instance, a given propositicn can
be found to be true or false in light of existing knowledge in the form of other propéasitions
believed 10 be either true or false, Inductive reasoning is used to prove something by first
proving a base fact and then the increment siep; having proved these, we can prove 2
generalized fact. Abductive reasoning is used in genemting a hypothesis to explain
observations. Like deductive reasoning, it points to possible inferences from related
concepis; however, unlike deductive reasoning, the number of inferences could be more than
onc. The likelihood of knowing which of these inferences comresponds to the current state of
lhe system can be gleaned from the explanations gencratcd by the system, These-
. explanations can facilitate choosing among these alieratives and arrivii{§ at the ﬁna]
conclusion.

In addition to the reasening farility, a knowledge base system may incorporate an
explanation Facility so that the user can verify whether the reasoning used by the system is
consisient and complele. The reasoning facility also offers & form of toring to the
uninitiated user. The so-called expert systems and the associated expert system generation
facilitics are one form of knowledge base systems that have cmerged from rescarch labs and
are being marketed commercially. Since a KBMS includcs reasoning capacity, there is a
clear benefit in incomporating this reasomng power in darabase application programs in
languapes such as COBOL and Pascal.

Most knowledge base systems are still in the research stage. The first generation of
commercial KBMSs are just beginning to emerge and integration of a KBMS with a DBMS
is a current research problem. However, some headway has been made in the i integration of
expert systems in day-to-day database applications.

3.4 DIFFERENCE BETWEEN A KNOWLEDGE BASE
SYSTEM AND A DATABASE SYSTEM

There is no consensus on the difference betweer a knowledge base system and a database
system. Ina DBEMS, the siarting point is a data model to represent Lthe data and the
interrelationships between them; similarly, the starting point of a KBMS is a knowledge
representation scheme. The requirements for any knowledge representation scheme should
provide some mechanism to organise mowledge in appropriate hicrarchies ar categories,
thus allowing easy-access to associated concepts, In addition, since knowledge can be
expressed as rules and exceptions 1o rules, exception-handling features must be present in
the knnwledge stored in the system must be insulated [rom changes in usage in its physieal
or logical structure. This concept is similar to the data independence concept used in a
DBMS. To data, linle headway has been made in this aspect of a KBMS,

+ AKBMS is developed to solve problem for a finite domain or portion of the real world. In
developing such a system, Lthe designer selects a significant objects and relationships among
these objects. In addition to this domain-specific knowledge, general knowledge such as
concepls of up, down, far, near, cold, hot, on top of, and besides must be incorporated in the
KBMS. Another type of knowledge, which we call common scnse, has yet to bo successfully
incorporated in the KBMS.

“The DBEMS and KBMS have similar architectures; both contain a component o model the

- information being managed by the system and have a subsystem to respond (0 queries. Both
systems are used 1o mode! or represent a portion of the real world of interest 1o the
application. A daiabase system, in addition (o storing facts in the {form of data, has limited
capability of establishing asseciations between these dota. These assoeiations could be
pre-cstablished as in the case of the network and hierarchical models, or established using

Introdaction to
Knowledge Databuaes

Ky

Emerglng ‘I'rends in Database
Manapeinent System

18

-~k

common values of shared domains as in the relational model, A knowledge base system

exhibits similar associative capability, However, this capability of establishing associations
between dita and thus 2 means of interpreting the information contained is at a much higher
level in a knowledge base system, ideally at the level of a knowledgeable human agent.

Onc diffcrence between the DBMS and KBMS that has been proposed is that the knowledge
basc sysiem handles a rather small amount of knowledge, whereas a DBMS cilicicntly (as
measired by responsé performance) handles large amounts of shared data. However, this
distinction is fallacious since the amount of knowledge has no known boundarics and what
Lhis says is that existing knowledge base sysiems handle a very small amount of knowledge.
This does not mean that at some future date we could not develop knowledge base systems 1o
efliciently handle much larger amounts of shared knowledge.

In a knowledge base sysiem, the emphasis is placed on a robust knowledge representation
scheme and extensive reasoning capability. Robust signifies thal the scheme is rich in
expressive power and at the same time it is efficient. In 8 DBMS, emphasis is on efficient
access and management of the data that mode! a portion of the real world. A knowledge base
sysiem is concerncd with the meaning of information, whereas a DBMS is interested in the
information contained in the data. However, these distinctions arc not absalute.

For our purposes, we can adopt the following informal definition of 8 KBMS, The i imponant
po:m in this definition is that we are concemed with what the system does rather than how it
is done.

A knowledge base management system is a computer system that manages the
knowledge in a given domain or field of interest and exbibits reasoning power to the
level of a human expert iu this domain,

AKBMS, in addition, provides the user with an integrated language, which serves the
purpose of the tradilional DML of ihe existing DBMS and has the power of a high-level
application language. A database can be vicwed as a very basic knowledge base system in so
far as itmanages f#ts, It has been rccogmscd that there should be an integration of the
DBMS technology with the reasoning aspect in the development of shared knowledge bases.
Database technology has already addressed the problems of improving system performance,
concurrent access, distribution, and friendly inicrface; these features are equally pertinent in
a KBMS. There will be a continuing need for cumrent DBMSs and their functionalities
co-cxisting with an integrated KBMS. However, the reasoning nower of 8 KBMS can
improve the ease of retrieval of pertinent information from a DBMS.

3.5 KNOWLEDGE REPRESENTATION SCHEMES

Knowlcdge is the most vital part of Knowledge Base System or Expert System. These
systcins contain large amounts of knowledge 10 achieve high performance. A suitable
Knowledge Representation scheme is riecessary to represent (his vast amount of knowledge
and o perform inferencing over the Knowledge Base (KB). A Knowlcdge Represenialion
sclieins means a set of syntzclic and semanlic convenlions to describe varions objects. The
synlax provides a set of rules for comb:mng symbols and arrangements of symbols to form
expressions.

Knowledge Representation is a non-trivial problem, which continues to engage some of the
best minds in this ficld even after the successiul development of many a Knowlegge Base
System. Some of the important issues in Knowledge Representation are the fcﬂmy:g

i) Expressive Adeguacy: What knowledge can be and cannol be repraggited ina
pan.icular Knowledge Representation scheme ? -

ii) Reasoning Efficiency : How much eflort is required to perform mfermng over:
the KB? There is gencmlly & trade off between expressive adequacy am:l yeasoning
¢llicicncy.

jif) Incompleten ess: What can be left unsaid about a domain and how dOEa one
perform ml‘crcncmg over incomplele knowledge 7

" iv) Real World Knowledge* H’ow can we. dc.al with auitudes such as belle[s, desires

and inwcntions ?

s |

-

* Major Knowledge Representation schemes are based on production rules, frames, Introduction to
semantic nets and logic. Facts and rules can be represented in these Knowledge Knowledge Databases
Representation schemes. Inference Engines using forward chaining, backward chalning
or a combination thereof are used alongwith Lhese Knowledge Representation schemesto
build aclal Expert System. We will bricily describe these Knowledge Representation
schemes and inferencing engines.

3.5.1 Rule Based Repi‘esentation

A rule based system is also called production rule system. Essentially, it has three pans,
working memory, mle memory or praduction menuty and interpreter. Working memory
contains facts about the domain. These are in the form of triples of objects, atiribute and
value. These [acts are modified during the puucese of execution. Some new facts may be
added as conclusions. '

Production memory contains IF-THEN rules. IF part contains a sct of conditions connected
by AND. Each condition can have different other conditions connected by AND or OR,
Each condition can give either true or false as jts value. THEN part has a sct of conclusions
or actions. Conclusions may change valucs of some entity or may create new facts,

A rule can be fired when all the conditions in it ase true, Ifany of the condilions is not true
or unknown, the rule cannot be fired. If il is unknown, the system will iry to determine its
value. Once a rule has fired, all its conclusions and actions are exceuted.

For {iring a rule, the system looks into its database. If a rule has some of its conditions
satisficd, it is a candidate for further exploration. There may be more than one such nule.
This conflict is resolved by some stralegy like choosing the rule which contains the
maximurn number of satisGed conditions, or there may be metarules which may be domain
dependent 1o move the reasoning in a particular direclion.

Rules may be used in both forward and backward reasoning. When it is ised in forward
mode, the system starts with a given set of initial data and infers as much information as
possible by application of various rules. Again new data are used to infer further. Atany
point sysiem may ask the user to supply more information, if goal state has not been reached
and no more rules can be applicd. System keeps on checking for goal state at each firing of
rules. Once goal state has been detected reasoning comes to an end. In backward
reasoning mode, reasoning staris with the goal and rules are selecled if they have the goal in
their right hand side (RHS). To achieve the goal, lefi hand side (LHS) conditions have to be
true. These conditicns become new sub-goals, Now the system tries to achieve these
sub-goals before trying the main goal. At some point it may not be possible to establish goal-
by application of rules. In this siluation the system asks the user (o supply the information.

1t may be noted that thése rules are not JF-THEN programming constructs avaitable in most
of the procedural Programming languages. These are different in the sense that they are not
execuled sequentially. Their execulion depends on the state of the database which
determines which are the candidates rules. Another difference is that TF-part is 2 complex -
patiern and not just a Beolean expression.

Rules have been used in many classical sysiems like MYCIN, RIXCON cic. Even today it
is the most frequent used Knowledge Representation scheme. The reason is that most of
the time, experts find it casier to give knowledge in the form of rules. Further, rules can be
casily uscd for explanations.

One problem with rules is (hat when they grow very large in number it becomes difficult to
maintain-them becanse KB is unstruclred. Some techniques like context in MYCIN solve
the problem to some extent

3.5.2 Frame Based Representation

The concepl of frame is quite simple. When we encounter a new situation, we do not analyse
it from scratch. Instzad we have a large number of structures or (records) in memory
representing our experiences. We try to match the current sitwation with these structures and
then the most appropriate one is chosen, Further details may be added Lo this chosen
structure o that it can exactly describe the situation. A computcr representation of this
common knowledge is called a frame.

It is convenient o create a knowledge base aboul situations by breaking it into modular
39

i ey

Emerging Trends in Databose
Management System

chunks, called frames. Individual frames may be regarded as a record or stmcuire. .

Each [rame contains slots that identify the type of situations or specify the parametess of a
particular situation.

A frame describes a class of objects such as ROOM or BUILDING. It consists of varions
slots which describe onc aspect of the object. A slot may have certain condition which -
should be met by the filler, A slot may also have default value which is used when the slot
value is not available or cannot be obtained by any other way. If added procedure describes
what is to be done if stots get a value. Such information is called facet of slot.

An cxample is preseried below:

[CHAIR
IS-A : FURNITURE
COLOUR ; BROWN
MADEOF : WOOD
LEG : 4
ARMS : defaul: 0
PRICE D 100

Reasoning with the knowledge stored in a frame requires choosing an appropriate frame for
the given situation. Some of the ways information may be inferred are the following :

a} If ceriain infqrmalion is missing from current situation, it can be inferred. For
example, if we have cstablished that the given object is a room, we can infer that
room has got a door. o

b) Slots in a frame describe companents of situation. If we want 1o build a situation
then information associated with the slots can be used o build components of tHe
sitation,

c) ‘If there is any additional feature in the object which can be discovered using a
typical frame, it may require special auention. For example, a man with 4 tail is
not a normal man, .

3.53 Semantic Nets

Scmantic net representation was developed for natral language understanding. Semantic
net was originally designed to represcni the meaning of English words. It has been usedin
many expert sysiems Wo. It is used for representation of declarative kmowledge. In semantic
nets, the knowledpe is represented as a sct of nodes and links. A node represents an chject or
concept and a link represents relationship between two objects (nodes).

Moreover, any node may be linked lo any number of other nodes, so giving rise to a
formation of network of facts, An example is shown'in the following figure,

GOVT-OFFICE
IS-A
. IS-PART
PERSON DEPARTMENT - GOVERNMENT
— IS=A
IS-A
EMPLOYEE
ME ' DOE LOCA]TQN .
_ - LNB
' 5-A..
. BUILDING z
" Flgure?2 : Semantic Net : i

" Asemantic net as shown in figure 2, cennot be represented like this in computer. Every pair
and iis link are stored scparately. For cxamplc. IS—A (DOE, Department) in PROLOG
represenis

DEPARTMENT

IS~A

DOE

Flgure 3 : One-vray link representations

The link as shown in the figure is a one-way link. I we want an enswer Lo “who is my
employer 7” the system will have to check all the links coming to node ME. This is not
computationally efficient. Hence reverse links are also stored. In this case we add

R N -
ME .EMPLOYE OF . DOE

Flgure 4 : Represcntation of w reverse Jink

InLISP the basic scmantic nelwork unit may be programmed as an atom/property list
combination. The unit given in department—DOE scmantic networks would be composed
ol “DOE" as the atom, "“IS—A" as a property and “Department” as the value of that property.
The value “Department” is of course, &n alom in its own right and this may have a propeny
list associated it as well, “Is-a” relationship indicaies that one concept is an attribute of the
aother. Other links (relationship) of particular use for describing objecl concepts are “has”,
indicating that one concept is a parl of the other. Using such relations, it is possible to
represent complex set of Eacts through semantic network. The {ollowing figure illustrales
one possible representation of facts about an employee “"AKSHAY™. These include—

- “Akshay is a bank manager”
“Akshay works in the State Bank of India tocate din IGNOU Cumpus
" “Akshay is 26 years old”
“Akshay has blue eyes”
IGNOU Campus
1]
‘Location

Swtte Bank of India

Works in

has .
blue eyes Akshay. Bank manager

26 ycars old
Figure 5: Representation of complex sots of fools through semantic nets

Whenwe have 10 represent morc than two argument relationships, we break it down into
arguments relationships,

SCORE (INDYA AUSTRALIA (250 1500)
can be wiiten as '

participant (match-1 INDIA)

participamt (match-1 AUSTRALIA)

score (match-1 {250 150))

Intraduction lo
Knowledpe Dalabasey

41"

) | e

Einerglag Trends In Database
Mamaponient System

As with an Knowledge Representation scheme, the problem solving power comes from the
ability of the program to manipulaic knowledge 10 -~lve a problem. Intersection scarch is
used to find the relationship belween two objects. In this case activation sphere grows from
Lhe two modes and inicrsects cach other at some time. The corresponding paths give the
coirect relationship, More technigues have been developed o perform more directed search.

3.54 Knowledge Representation Using Logie

Traditionally logic has been studied by philosophers and mathematicians in different
countries in order to describe and understand the world around us. Today compuler scientists.
arc using this tool to teach a compuicr about the world. Here we discuss propositional and
predicate logic.

We can casily represent real-world facts as logical propositions in propositional logic. In
propositional logic we deal with propositions like

IUis raining. (RAINING)

Itis sunny. (SUNNY)

Iis windy. (WINDY)

If itis raining then it is not sunny,

(RAINING —— >~SUUNNY)

Given the fact that “11 is raining” we can deduce that it is not sunny. .
But the represeniationat power of propositional logic is quite fimited. For example, suppose
we have 10 represent ’

Yivek is a man,

Anurag is a man.

We may represent them in computer as VIVEKMAN and ANURAGMAN. But from these,

we don’t get any information about similarity between Vivek and Anurag. Abelter way of
rcpresentation is

MAN (VIVEK)
MAN (ANURAG)

Consider the sentence ‘All men are mortal”. This requires Guantification like

The form of logic with these and certain other exira features is called predicate logic, The

basic clements are described here,

% Ajlodys Ponens :

Here capilal letter P, Q etc. stand for predicates. A predicale is of the form predicate-name
(argl..argn)

Tt can have valul,cs true or false. A predicate represents among the arguments.
AND A (P A is true when both arc truc)
OR v (Pv Q is truc when atleast one is true)
NQOT ~ (~F is'truc when Pis falsc)
Implies (P — Q is true unless P is truc and Q is falsc) means for all the values of X, P holds.
P(X) means there exists at least one value of X for which Pholds.

means only some valucs are true.

jlf_hp'pmdicalc logic has the {ollowing two properties: : o - -__' . “=

}) fompletenass :1f Pis a thearcm of predicate logic thenit can bederived only by..- | -
.- the inferences rules available in predicate logic; R R

Ly -

Soundness : There is no P such that bath Pand NOTP_ar'e lmprcms g S

e

j:cidabilily property of propositional logic docs notcarry ov_a.ir:mlq predxcalc Togic, The
ing inferences rules are some of the imporiant rules available-in predicate Jogic's- - - -

. ey

I(P— Q and Pis ruc then Qis tye .. S

Modus Tollens ;. I[P — Qand Qis falsc then P is false |
Chaining : ITPvQ and (NOTP)\VQ then Q is true
Reduce to * 1" Pand NOTPreducesto [}.

Most of the Al theorem provers for clausal form use resolution as the only way of
inferencing, This subsumes the above five rules of inference. Resolution proves a thegromn
by refutation. First a normal form of clauses is obtained and then negation of the theorem is
added to it. I it leads to a contradiction then the theorem is proved, A discussion of detziied
algorithm is beyond the scope of this handout.

" Let us now explore the use of predicate logic as a way of representing knowledge by looking
at a specific example. ; '

" 1)~ Anilisa Manager
ii) Anil1sa disciplined
i} Al slaﬂ'ia‘;c cither Toyal 1o Anil or hatc him
iv) Everyone is loyal I0 somenne '
The facts described by these sentences, can be represented in Predicate logic as follows:

i) Anilisa Manager -
"~ Manager (Anil)

ii) Anil s a disciplined
disciplined (Anif)
1il) All stafT arc cither loyal to Anil or hate him.
iv) Evcryonr; is Juyal to somegne _)
v} Preuicate logic is uselu) for representing simple English sentences into a logical

siiemient. But, it creales amtbiguity for complicated sentences.

Check Your Propress
}: DRhineand describe the differenee between knowledpe, belicf, hypothesis and data.

Z Whatis the diflerence between declarative and procedurat knowledge ?

Introductiv e
Knowledge Matabages

.43

a5 P

Ay ———

":‘erglnq'l‘h-end.l {n Database

Mansgement System 3.6 SUMMARY

. In this unit, we defined a knowledge base system as a computer system used for the
i T management and manipulation of sharcd knowledge. We compared 2 knowledge base
“system with a DBMS and pointed out similarities and differcnces. We also considered the
differcnt schemes used to represent knowledge.” The semantic network, first order logic, rule
based systeny, frames and peocedoral representation,

‘3.7 MODEL ANSWERS

Check Your Propress

1. Knowledge can be defined as the body of facts and principles accumulated by
human-kind or the act, fact, or siate of knowing. While this definition may be truc, it is
far from complete. We know that knowledge is much more than this. It is having 2.
familiarity with language, concepts, procedures, rules, ideas, abstractions, places,
customs, facts, and associations, coupled with an ability 1o use thess notions effectively
in modelling different aspecis of the world. Without this ability, the facts and concepts
arc meaningless and therefore worthless. The meaning of knowledge is closely related
to the meaning of intelligence. Intelligence requires the possession of and access of
imowledge. And a characteristic of intelligent people is that they possess much
knowledge. .

‘Thus, we can say that knowledge includes and requires the use of data and infarmation.
Bulitis more. It combines relationships, comrelations, dependencies, and the notion of
gestall with data and information.

2. Knowledge may be declarative or procedural, Procedural knowledge is compited
knowledge relaied 1o the performance of some task, For example, the steps used to
solve an algebraic: equation are expressed as procedural knowledge. Declarative
knowledge, on the other hand, is passive knowledge expresses as statements of facts
about the world. Personnel data in a database is typica! of declarative knowledge. Such
dara are explicit pieces of independent knowledge.

3. The following are knowledge representation techniques:
i} Rule Based Representation ' ‘
ii) Frame Based Representation
iii) Semantic Nels
iv) Knowledge Representation Using Logics

4. In semantic nets, the knowledge is represented as a set of nodes and links, Angde
represents an object or concept and a link represents relationship between two objects
(nodes).

KT

:3.8 FURTHER READING

1. _An Introduction to Databast Systems by Bipin C. Desai, Galgotia Publications Pvt. L.

TN =T,

T G Yl ke L LE LU A

