BCA-1.5

'%ﬁe- W Uttar Pradesh .
(&= Rajarshi Tandon Open Universi, Introduction to
Database Management
System

Block

1

INTRODUCTORY CONCEPTS OF DATA BASE
MANAGEMENT SYSTEMS

UNIT 1

Basic Concepts 5
~UNIT 2

Database Models and Its Implementations 20
UNIT 3

File Organisation For Conventional DBMS 43
UNIT4.

Management Considerations 80
UNITS |

Enterprises Wide Information System of the Times
of Indi;a_ﬂ‘.ronp (A Case Study) 9] BCA-1.5/1

BCA-1.5/2

Expert Advisors

Prof. P.S. Grover

Professor of Computer Sciences
University of Delhi

Delhi

Brig. VM. Sundaram
Co-ordinator
DoE-ACC Centre
New Delhi

Prof. Karmeshu

School of Computer and
Systems Sciences
Jawaharlal Nehru University
Delhi

Prof. L.M. Patnaik
Indian Institute of Science
Bangalore

Prof, MM. Pant
Director

_ School of Computer and

Information Sciences
IGNOU
New D:l]u i

Dr. 5.C. Mehta

St Director

Manpower Development Division
Department of Electronics

Govt. of India

New Delhi

Dr. G. Haider

Director

Infonmation Technology Centre
TCIL, Delhi

Prof. HM.

Department of Electrical Engineering
Indian Institute of Tadumlogy

Delhi

Prof. §. Sadagopan

Department of Industrial Engineering -

Indian Institte of Technology
Kanpur

Prof. R.G. Gupta .

- School of Computer and

Systems Sciences
Jawaharlal Nehra University
Delhi

Prof. S.K. Wason

" Professor of Computer

Scicnce
Jamia Millia
Delhi

Dr Sugata Mitra
Principal Scientist
National Institute of .
Infopntation Technology
New Delhi

Prof. Sudhir Kaicker
Director

School of Computer and
Systems Sciences -
Jawaharlal Nehra Um\'emty
Delhi

Faculty-of the School

Prof. M.M. Pant
Director

Mr. Akshay Kumar .
Lecturer

Mr. Shashi Bhushan

Lectarer

Course Preparation Team

Prof. MM, Pant
Director SOCIS
IGNOU

Mr. Millind Mahajani
Manager

Information Services
Time of India Group
NewDelhi -~

Dy, N. Parimala

Birla Institate of Technology
and Science, Pilani .
Utpal Bhattacharya

NIT

New Del_hi

Mt: Shashi Bhushan
Lecturer, IGNOU

Block Writer
Mr. Shashi Bhushan
Lecturer, IGNOU-

Course Coordinator
Mr. Shashi Bhushan
Lecturei, IGNOU -

Print Production : Sh. Jitender Sethi, APO, MPDD

‘March, 2003 (Reprint)

© Indira Gandhi National Open University, 1995

ISBN-81-7263-861-2

!l rights reserved. Nopart of this work may be reproduced in any form, by mimeograprh or any other means,

withowt permission in wmmg Jrom the Indira Gandhi National Open Umwrslfy

Further :qfarmanon on .'Jrz Indira Gandhi National Open University courses may be obtained ' from the .
Unrversity's office at Maidan Garhi. -New Delhi- | 10068,

-

Reproduced and reprinted with the permission of Indira Gandhi National Open University by
Sri D.P.Tripathi, Registrar, U.P.R.T.Open University, Allahabad (December, 2015)
Reprinted by : Nitin Printers, 1 Old Katra, Manmohan Park, Allahabad.

COURSE INTRODUCTION

Database management systems have become an essential part of a computer
science education. This course provides a clear description of the concepts
underlying different” database models. Tt introduces issues related to
implementation of conventional database models. It also describes
emerging trends in DBMS. : '

The important topics covered in this course are as follows: -

Entity-relationship Model
Hierarchical
Network Model
Relational Model
File organization of Conventional DBMS
Evaluation and Administration of DBMS
Normalisations
SQL :
Distributed DBMS
Object-oriented DBMS
" Client/Server DBMS
Knowledge DBMS

This course contains 3 blocks.

BCA-1.5/3

BLOCK INTRODUCTION

Being an introductory block of this course, it describes basic concepts related to all
conventional DEMS models. It introduces E-R model which is used for logical database
design. It-also takes up the implementation of all the conventional database models. The
focal point of this block is the file organisation for copventional DBMS. It also considers
evaluation and administration of DBMS. Finally it is presented with a case’Stuay.

BCA-1.5/4

UNIT 1 BASIC CONCEPTS

Structure

1.0 Introduction
1.1 Objectives
1.2 Traditional File Oriented Approach
1.3 Motivation for Database Approach
1.4 Database Basics :
1.5 Three views of data ;
1.6 The Three level Architecture of Data Base Management System
1.6.1 Extemnal level or Subschema
1.6.2 Conceprual level or Conceptual Schema
1.6.3 Intemal level or Physical Schemna
1.6.4 Mapping between Different Levels
1.7 Database Management System Facilities
1.7.1 Data Definition language
1.7.2 Data Manipulation language
1.8 Elements of a Database Management System
" 1.8.1 DML Precompiler
. 182 DDL Compiler
1.83 File Manager
1.4 Database Manager
1.25 Query Processor
1.8.6 Database Adminisirator
1.8.7 Data Dictionary
1.9 Advantages and Disadvantages of Databasc Management System
1.9.1 Advantages :
1.92 Disadvantages
1.10 Summary
1L.11 Model Answers
‘1.12 Further Readings

1.0 INTRODUCTION

A database is a collection of related information stored so that it i< available to many users
for different purposes. The content of a database is obtained b combining data from all the
different sources in an organisation. So that data are available to all users and redundant data
can be eliminated or atleast minimised. A computer database gives us some electronic filing
system which has a large number of ways of cross-referencing and this allows the user many
different ways in which to reorganise and retrieve data. A database can handle businéss
inventory, accounting and filing and use the information in its files to Prepare summaries,
estimates and other reports. There can be a database which stores new paper articles,
magazines, books and comics. There is already a well-defined market for specific
information for highly selected group of users on almost all subjects. MEDLINE is a
well-known database service providing medical information for doctors and similarly

WESTLAW is a computer based information service caterirg to the requirements of lawyers.

The key to making all this possible is the manner in whiclf’the information in the database is
managed. The managiement of data in a database system is done by means of a general
purpose software pac:kage called a database management system. The database management
system is the major software component of a database system. Some commercially available
DBMS are INGRE!S, ORACLE, Sybase. A database management system, therefore, is a
combination of hardware and software that can be used to set up and monitor a
database, and can manage the updating and retrieval of database that has been stored
in it. Most database: management systems have the following facilities/capabilities:

(a) Creating of a fille, addition to data, delction of data, modification of data; creation,
addition and dezletion of entire files. i N

(b) Retrieving dara collectively or selectively.
{c) The data storizd can be sorted or indexed at the user’s discretion and direction.

{d) Various reports can be-pmduecd from the system. These may be either standardised
rcport or thas. may be specifically generated according to specific user definition.

BCA-1.5/5

Introductory Coricepts of

Data Base Management System

BCA-1.5/6
6

(e) Mathematical functions can be performed and the data stored in the database can be
manipulated with these functions to perform the desired calculations.

{f) To maintain data integrity and database use.

The DBMS interprets and processes users’ requests to retrieve information from a database.
The following figure shows that a DBMS serves as an interface in several forms. They may
be keyed directly from a terminal, or coded as high-level language programs to be submitted
for interactive or batch processing. In most cases, a query request will have to penetrate
several layers of software in the DBMS and operating system before the physical database
can be accessed.

Queries '
~ s

Operating :
DBMS system g:;g

F Y

COBOL/PL/1|
Fortran

Flgure 1 : The DBMS 2 an Interface between physical Database and Users® requests

The DBMS responds to a query by invoking the appropriate subprograms, each of which
performs its special function to interpret the query, or to locate the desired data in the
database and present it in the desired order. Thus, the DBMS shields database users from the
tedious programming they would have to do to organise data for storage, or to gain access o
it once it was stored.

As already mentioned, a database consists of a group of related files of different record types,
and the DBMS allows users to access data anywhere in the database without the knowledge
of how data are actually organised on the storage device.

“The role of the DBMS as an intbrmediary between the users and the database is very much
like the function of a salesperson in a consumers’ distributor system. A consumer specifies
desired items by filling out an order form which is submitted to a salesperson at the counter.
The salesperson presents the specified items to consumer after they have been retrieved from
the storage room. Consumers who place orders have no idea of where and how the items are
stored; they simply select the desired items from an alphabetical list in a catalogue. However,
the logical order of goods ih the catalogue bears no relationship to the acfual physical .
arangement of the inventory in the storage room. Similarly, the database user needs to know
only what data he or she requires; the DBMS will take care of retrieving it.:

In this unit we will introduce basic concepts of DBMS.

1.1 OBJECTIVES

After going through this unit, you should be able to

e appreciate the limitations of the traditional approacn to application system
development;

give reasons why the database approach is now being increasingly sdopted;
discuss different views of data;

list the components of a database management system;
enumerate the feature/capabilities of a database management system; and
list-several advantages and disadvantages of DBMS.

.' 1.2 TRADITIONAL FILE ORIENTED APPROACH

The traditional ﬂle-mmmd approach to mfonnauon processing has for each appllcatmn a
separate master file and its own set of personal files. You have seen examples of these in the
earlier course on COBOL where various examples such as of payroll, inventory and finaricial
. accounting have been described at various level, An organisation needs flow of information
across these applications also and this requires sharing of data, which is significantly lacking
in the traditional approach. One major limitations of such a file-based approach is that the
pmgramsbmmnedependentmﬂnﬁlﬁmdmeﬁlwbmomdepmdmtupmﬂnm&

Although such ﬁle-based approaches which came into being with the first commercial

applications of computers did provide an increased efficiency in the data processing -

* compared to earlier manual paper record-based systems as the demand for efficiency and
speed increased, the computer-based simple file-oriented approach to information processing

started suffering from the following significant disadvantages : ,

(1) Data Redundancy : The same piece of information may be stored in two or more files.
For example, the particulars of an individual who may be a customer or an employee
may be stored in two or more files. Some of these information may be changing, such as
the address, the pay drawn, etc. It is therefore quite possible that while the address in the
master file for one application has been updated the address in the master file for another
application may have not been. It may not also be easy for the computer-based system to

. even find out as to in how many files the repeating items such as the address is
occurring. The solution therefore is to avoid this data redundancy and the keeping of
multiple copies of the same information and replace it by a system where the address is
stored at just oneplace physically, and is accessible to all applications from this itself.

(2) Program/Data Dependency : In the traditional approach if a data field is to be added to
a master file, all such programs that access the master file would have to be changed 1o
allow for this new field which would have been added to the master record.

(3) Lack of Flexibility : In view of the strong coupling between the program and the data,
most information retrieval possibilities would be limited to well-anticipated and pre-
determined requests for data, the system would normally be capable of producing
scheduled records and queries which it has been programmed to create. In the fast
moving and competent business environment of today, apart from such regula:ly
scheduled records, there is a need for responding to un-anticipatory queries and some
kind of investigative analysis which could not have been envisaged pmf.,smonally
These disadvantages of file based system motivates a database appmach, whmh will be
taken at the next section.

1.3 MOTIVATION FOR DATABASE APPROACH

-Having pointed out some difficulties that arise in a straight forward file-oriented approach
towards information system development, it is useful to see how the problems stated above
can be mitigated by using the database approach. .

The preceding discussion may have led you to believe that the traditional file oriented
approach to data processing was entirely wrong and that all new and the correct modem
approach to data processing should only be through databases. This is not entirely true. With
. the large scale availability of personal computers and greater with power being available on
the desktops, simple file management systems such as the kind briefly referred to in section
1.2 may be quite appropriate. In fact only large scale organisations involved in
manufacturing and business or public utility services such as hospitals, hotels, government
departments, etc. would be in a position to rely imto the database approach. Some of the
reasons why every organisation may not be able to successfully adopt the database approach
are :

(1) The work in the organisation may not requir:: significantsharing of data or complex
access. In other words the data and the way it is used in the functioning of the
organisation is not appropriate to databage processing.

"(2} Apart from needing a more powerful hardware platform, the software for database
management systems are also quite expensive:. This means that a significant cxtra cost ' BCA-15/7
has to be incurred by an organisation if it wanis to agdopt this approach.

Introductory Concepts of
Data Base Management Sysiem

BCA-1.5/8
8

{3) The advantages gained by the possibility of sharing of the data with others, also carries
with it the risk of the data being unauthorisedly accessed. This may range from violation
of office procedures to violation of privacy rights of information 10 down right thefts,
The organisations, therefore, have 10 be ready to cope with additional managerial
problems.] -

(4) A database management processing system is complex and it could lead to a more
incfTicient system than the cquivalent file-based one.

(5) The staff available for the organisation may not be experienced enough to cope with,
The training of personnel in the management in use of a database takes time, is
expensive and requires special atiention,

(6) The use of the database and its possibility ofbeing shared will, therefore affeci many
departments within the organisation. If the integrity of the data is not maintained, it is
possible that one relevant piece of data could have been used by many programs in

_different applications by different users without they are being aware of it. The iispact of
thig, therefore may be very widespread. Since data can be input from a variety sources,
the control over the quality of data become very difficult to implement.

However, for most large organisations, the difficulties in moving over to a database approach
are still worth getting over in view of the advantages that are gained, namely, avoidance of
data duplication, sharing of data by different programs, greater flexibility and data
indcpendence. The advantages and disadvantages of DBMS will be discussed in detail in
section 1.9.

1.4 DATABASE BASICS

You have seen in the previous section the purposes for which a DBMS approach is preferred
over the conventional approach. Since the DBMS of an organisation will in some sense
reflect the nature of activities in the organisation, some familiarity with the basic concepts,
principles and terms used in the field are impartant.

The previous courses on Computer fundamentals, software and programming languages have
aiready given you 2n awareness of the essential ingredients of computer-based information
systems. This section concentrates on those matters which are relevant in the context of a
database approach,

Data-items: The term data item is the word for what ha traditionally been called the field in
data processing and is the smallest unit of data that has meaning to its users. The phrase data
element or elementary item is also sometimes used: Although the data item may be treated as
a molecule of the database, data items are grouped together to form aggregates described by
various names. For example, the data recusred 5 ssed to refer 1o a group of data items and a
program usually reads or writes the whole records. The data items could occasionally be
further broken down into what may be called an automatic level for processing purposes. For
example, a data item such as a date-would be a composite value comprising the day, date and
year. But for doing date arithmetic these may have to be first separated before the
calculations are performed. Similarly an identification nurhber may be a data item but it may
contain further information embedded in it. Fogexample, the IGNOU usesa 9 digit
enrollment number. The first 2 digits of thesenumpber reflect the year of admission, the next
2 digits refer to the Regional Centre where the student hds first opted for admission, the next
4 digits are simple scquence numbers and the last digit is a check digit. For purposes of
processing, it may sometimes be necessary 1o split the data item,

_Standardisation of data items can become a fairlly seriouq problem in a large corporate with

several divisions or plans. Each such unit tends to have ifs own ways of referring to the data
items related to personal accounting, engineering, sales, production, purchase activities, etc.
It would be extremely desirable if at the stage of adopting the database approach a
commitment from the top management is acquired for prospective standardisation across the
enterprise for schemas of the data items.

Entities and Attributes: The rcal world which is being attempted to market on to the
database would consist of occasionally a tangible cbject such as an employee, a component
in an inventory or a space or it may be intangibile such as a event, a job description,
identification numbers or a abstract construct. All such items about which rclevant
information is-stored in the database are called Entities. The qualities of the entity which we

store as information are called the attributes. An attribute may be expressed as a number of Basié Concepts
as a text. It may even be a scanned picture, a sound sequence, a moving picture which is now
possible in some visual and multi-media databases,

Data pmoessing niormally concemns itself with a collection of similar entities and records
information about the same attributes of each of them. It the traditional approach, a
programmer usually maintains a record about each entify and a data item in each record
relates to each attribute. Similar records are grouped isito files and such a 2-dimensional
array is sometimes referred to as a flat file. '

Logical and Physical Data : One of the key features of the database approach is to bring
about a distinction between the logical and the physical structures of the data. The term
logical structure refers to the way the programmers sec it and the physical structure refers to
the way data are actnally recorded on the storage medium. Even in the early stages of records
stored on tape, the length of the inter-record tape requires that many logical records be
grwpedinmmephysicalmcmdmssveralstmageplacesonmltwasthesuﬁwmwhich
separated them when used in an application program and combined them again before
writing back on tape. In today’s system the complexities are even greater and as will be seen
when one is referring to distributed databases that some records may physically be located at
significantly remote places.

Schema and Subschema: Having seen that the database does not focus on the logical
organisation and decouples it from the physical representation of data, it is useful to have a.
term to describe the logical database description. A schéma is a logical database description
and is drawn as a chart of the types of data that are used. It gives the names of the éntities
and attributes and specify the relationships between them. It is a framework into which the
values of the data item can be fitted. Like an information display system such as that giving
arrival and departure time at airports and railway stations, the schema will remain the same
though the values displayed in the system will change from time to time. The relationships
that has specified between the different entities occurring in the schema may be a one to one,
one to many, many o many or conditional.

The term schema is used to mean an overall chart of all the data item types and record-types
stored in a database. The term subschema refers to the same view but for the data-item types
and record types which are used in a particular application or by a particular user. Therefore,
many different subschemas can begerived from one schema. A simple analysis to distingunish
between the schema and the sub schemamajr be that if the schema represented a road map of
Delhi showing major historical sites, educational institutions, railway stations, roadway
stations and airports, a subschema could be a similar. map showing one route ¢ach from the
railway station or the airport to the IGNOU campus at Maidan Garhi.

Data Dictionary : It holds detailed information about the different structures and data types :
the details of the logical structure that are mapped into the different structure, details of
relationship between data items, details of all users privileges and access rights, performance
of resource with details.

The last two items discussed in this section will be further elaborated in the subsequent
sections.

1.5 THREE VIEWS OF DATA

.DBMS isa collection of interrelated files and a set of programs that allow several users to

“access and modify these files, A major purpose of a database system is to provide users with
an abstract view of the data. That is, the system hides certain details of how the data is stored
and maintained. However, in order for the system 1o be usable, data must be retrieved
efficiently.

The concern for efficiently leads to the design of complex data structure for the
representation of data in the database. However since database systems are often used by non
computer professionals, this complexity must be hidden from database system users, This is
done by defining levels of abstract as which the database may be viewed, there are logical
view or external, conceptual view and internal view or physical ‘view,

External view : This is the highest level of abstraction as seen by a vser. This level of
abstraction describes only the part of entire database. BCA-15/9

A7=]

Intreductory Concepts of

Conceplual view

Internal view

BCA-1.5/10
10

Conceptual view : This is the next higher level of abstraction which is the sum total of

Drta Buse Munagement Sy%e® user’s views. This level describes what data are actually stored:in the database. This level
' contains information about entire database in terms of a small number of relatively simple
Internal level : This is the lowest level of abstraction at which one describes how the data
are physically stored. The interrelationship of any three levels of abstraction is illustrated in -
figure 2.
Customer name Cusmmmtr name -
Custnmer address Customer Soc_Sec_No
Loglcal record 1 Customer address
. Customer annual salary
Logical view . . Logical record 2 -

User 1. User 2

Customer name: string
Customer Social Secuntjr number: key
Customer address: string
Customer skill; string
L Customer annual salary: integer
. Conceptual record

-
L]
-
Name: string length 25 offset 0
Soc_Sec_No: 9 dec offset 25 unique

g Department: string length 6 offse
{:;::h Address: string length 51 offset 40
120 | Skill: string-length 20 offset 91

Salary: 9, 2 dec offset 111

Internal record
Figure 2: The three views of data

To illustrate the distinction among different views of data, it can be compared with the
concept of data types in programmingfanguages. Most high level programming language
such as C, Pascal, COBOL, etc, support the notion of a record or structure type. For example
in the “C’ language we declare structure (record) as follows:

struct Customer {

char name [15];

char address [30];
}

Customer

_ 'This defines a new record called customerwith 2 fields. Each field has anamcanddalatypc

associated with it.

In a banking organisation, we may have several such record types, including among mhers
e account with fields number and balance
e employee with ficlds name and salary

At the internal level, a customer, account or employee caa be described as a sequence of Besk Conerpls
consecutive bytes. At the conceptual level cach such record is described by a type definition,

illustrated above and also the interrelation among these record types is defined. Finally at the

external level, we define several views of the database. For example, for preparing the

payroll checks of bank employees only information about them is required, one does not

need to access information about customer accounts. Similarly, tellers can access only

account information. They cannot access information concerning salaries of employees.

1.6 THE THREE LEVEL ARCHITECTURE OF DBMS

In the previous section we definéd three levels of abstraction at which the database may be
viewed. A dalabase management system that provides these three levels of data is said 10
follow three-level architecture as shown in figure 3. These three levels are the external level,
the conceptual level and the internal level,

External View View T L
Level Userl User2 ' UserN
|

Mapping supplied by DBMS

Conceptual : 5

Level Conceptual view
Mapping supplied by DBMS/OS

i?;:;?al Internal view -

Figure 3: The three levd architecture for s DBMS

The view at each of these levels is described by a schema. A schema as mentioned earlier is
an outline or a plan that describes the records and relationships existing in the view, The
schema also describes the way in which entities at one level of abstraction can be mapped to
the next level. The overall design of the database is called the database schema. A database
schema includes such information as:

e characteristics of data items such as entities and attributes
e logical structure and relationship among those data items

e format for storage representation
e integrity parameters such as physically authorisation and backup politics.

The concept of a database schema corresponds to programming language notion of type
definitjon. A variable of a given type has-a-particular value at a given instant in time. The
concept of the value of a variable in Programming languages corresponds 1o the concept of
an instance of a database schema.

Since each view is defined by a schema, therc exists several schema in the database and

these exists several schema in the database anid these schema are partitioncd following three

levels of data abstraction or views. At the lower level we have the physical schema, at the

intermediate level we have the conceptual schema, while at the higher level we have a

subschema. In general, database system supports one physical schema, one conceptual

schema and several gubschema. BCA-1.5/11

11

Intreductory Concepts of
Data Buse Management System

BCA-1.5/12
12

1 6.1 External Level or Subschema

The external level is at the highest level of database abstraction where only those porumls of
the database of concem 10 a user or application program are included. Any number of user
views (some of which may be identical) may exist for a given global or cuncq:tual view.

Each external view is described by means of a Schcma called an external schemacr
subschema. The extemal scherna consists of the definition of the logical records and the
relationships in the external view, The external schema also contains the method of deriving
the objects in the extemnal view from the objects in the conceptual view. The objects in¢ludes
entities, attributes, and relationships, i

162 Conceptual Level or Conceptual Schema

At this level of daiabase abstraction all the database entities and the relationships among
them are included. One conceptual view represents the entire database. This conceptual view:
is defined by the cnnceplual schema. It describes all the records and relationships included in
the conceptual view and, therefore, in the database. There is only one concr:pmal schema per
database. This schema also contains the method of deriving the objects in the conceptual
view from the objects in the internal view,

The description of data at this level is in a format independent of its physical representation,
It also includes features that specify the checks to retain data consistency and integrity.

1.6.3 Internal Level or Physical Schema

We find this view at the lowest level of abstraction, closest to the physical storage method
used. It indicates how the data will be stored and describes the data structures and access
methods to be used by the database. The internal view is expressed by the internal schema,
which contains the definition of the stored record, the method of representing the data fields,
and the access aids used.

1.6.4 M_app.ing Between different Levels
Two mappings are required in a database system with three different views as shown in

 figure 3. A mapping between the external and conceptual level gives the correspondence

among the records and the relationships of the external and conceptual levels.

Similarly, there is a mapping from a conceptual record to 2.1 1ntamal one. An internal record
is a record at the internal level, not necessarily a stored record on a physical storage device.
The internal record of figure 3 may be split up into two or more physical records. The
Pphysical database is the data that is stored on secondary storage devices. It is made up of.
records with certain data structures and organised in files. Consequently, there isan
additional mapping from the internal record to one or more stored records on secondary
storage devices.

1.7 DATABASE MANAGEMENT SYSTEM FACILITIES

Two main types of facilities are supported by the f)_BMS:
" the data definition facility or data definition language (DDL)
e the data manipulation facility or data manipulation language (DML)

1.7.1 Data Definition Language

Database management systems provide a facility known as the d.'atn dEfmlhﬂll languaﬂ;e
(DDL), which can be used to define the conceptual schema and also give some details about |
how 1o implement this schema in the physical devices used to store the data, This definition
includes all the entity sets and their associated attributes as well as the relationships among
‘he entity sets. The definition also includes any constraints that have to be maintained,
ncluding the constraints on the value that can be assigned to a given attribute and the
constraints on the values assigned to different attributes in the same or different records.
These definitions, which can be described as metadata about the data in the database, are

- expressed in the DDL of the DBMS and maintained in a compiled form (usually as a set of
‘tables). The compiled form of the definitions is known as a data dictionary, directory, or’

system utalnglie The data dictionary contains information on the data stored in the database
and is consulted by the DBMS before any data manipulation operation.”

The database management system maintains the information on the file structure, the method
used to efficiently access the relevant data (i.c., the access method). It also provides a method
whereby the application programs indicate their data requirements. The application program

couldusaasnbscmflhecmmphm:hmdcfmumhnguageurammhnmge The
database system also contains mapping functions that allow it to inter=--¢ the stored data for

 the application program. (Thus, the stored data is l:msfonned into & form compatible with
the application program.)

The internal schema is specified in a somewhat similar data definition language called data
storage definition language: The definition of the interrai view is compiled and maintained
by the DBMS. The compiled internal schema specifies the implementation details of the
intemal database, including the access methods employed. This mfmunmshmdledby
theDBMS ﬂreuse;nwdmtbeawm‘eofﬂmdetmls.

1.7.2 Data Manipulation Language

DMLr.salanguagedmtenablesumtomsornmuwlmeasmgamsedbyﬂlew
data model. Data manipulation involves retrieval of data from the database, insertion of new
dala into the database, and deletion or modification of existing data. The first of these data -
" manipulation operations is called a query. A query is a statement in the DML that requests -
the retrieval of data from the database. The subset of the DML used to pose a query is known
s a query language; however, we use the terms DML and query language synonymously.

The DML provides commands to select and retrieve data from the database. Commands are
also provided to insert, update, and delete records. They could be used in an interactive mode
or embedded in conventional programming languages such as Assembler, COBOL,
FORTRAN, Pascal, or PL/I. The data manipulation functions provided by the DBMS can be
invoked in application programs directly by procedure calls or by preprocessor statements.
The Iawwwldhereplaccdby appropriate procedure calls by either a preprocessor or the
compiler. :

. There are basically two typesof DML:
e Procedural : whmhrequ:rcsausermspec:fywhatdatalsneededandhowmgcm

e Nonprocedural : which requires 4 user to specify what data is needed without
specifying how to get it
Data definition of the external view in most cum:nt DBMSs is done ommdc the application
program or interactive session. Data manipulation is done by procedure calls to subroutines
provided by a DBMS or via preprocessor statemenis. In an integrated environment, data %
definition and marupu!auun are achicved using a uniform set of constructs that forms part of
) the user’s programming environment,

1.8 ELEMENTS OF A DATABASE MANAGEMENT
SYSTEM

- The major components of a DBMS are explained below :

1.8.1 DML Precompiler

It converts DML statement embedded in an application program to mrmal pmoedure calls in
the host language. The precompiler must interact with the query processor in order to

* generale the appropriate code.,

1.82 DPL Cm'npiler

The DDL compiler converts the data definition statements into a set of tables. These tables -
contain information conccrning the database :md arc in a form that.can be used by other
components of the DBMS.

Basic Concep

BCA-1.5/13

13

Introductory Congepts of
Data Base Management System

BCA-15/14
14

‘183 File Manager

File manager manages the allocation of space on disk storage and the data sructure used to
represent information stored on disk, The file manager can be implemenicd using an
interface to the existing file subsystem provided by the operating system of the host
computer or it can include a file subsystem written especially for the DBMS,

1.8.4 Database Managér .

Databascs typically rcquu'c a large amount of stﬂragc space. Corporale databases are usually
measured in terms of g:gabytes of data, Since the main memory of computers cannot store
ths informatich, it is stored on disks. Data is moved between disk storage and main memory
as needed. Since the movement of data (o and from disk is slow relative to the speéd of
control processing unit of compuicrs, it is imperative that database system structure data so

_ as to minimise the need o move data between disk and main memory. A database manager is

a program module which provides the interface between the Ic « icvel data stored in the -

“database and the application programs and queries submitted to the system. Itis mspnnsible
_for mf.crt'acmg with file system. One of the function of database masager is to convert user’s

queries coming directly via the query processor or indirectly via an application program from
the user’s logical view to the physical file system. In addition, the tasks of enforcing
consltraints to maintain the consistency and integrity of the data as well as its security are also
performed by database manager. Synchronising the simultaneous operations performed by
concurrent users is under the control of the data manager. It also performs backup and
recovery opetations. Let us summarise now the important responmbslmes of Database
manager: -

. lnteractnon with file manager : The raw data is stored on the disk using the file
system which is usually prowde,d by a conventional operating system. The database
‘manager tran .ates the various DML statements into low-level file system
_ commands. Thus the database manager is responsible for the actual sioring,
retrieving and updating of data in the database.

o Integrity enforcement : The data values stored in the database must satisfy certain
types of consistency constraints. For example, the balance of a bank account may
never fall below a prescribed amount (for example Rs, 200). Similarly the number
of holidays per ycar an employee may be having should not exceed 25 days. These
constraints must specificd explicitly by the DBA. If such constraints are specified, -
then the database manager can check whether updates to the database result in the
violation of any of these constraints and if so appropriate action may be imposed.

e Security enforcement : As discussed above, not every user of the database needs to
have access 1o the entire cort2t of the database, It is the job of the database
manager to enforce these sccurity requirements,

~ @« Backup and recovery : A computer system like any other mechanical or electrical
device, is subject to failure. There arc a variety of causes of such failure, including
disk crash, power‘fmlure and s/w errors. In each of these cases, information
conceming the database is lost. It is the responsibility of database manager to detect
such failures and restore the database to a state that existed prior to the occurrence
of the failure. This is usually accomplished through the backup and reon\renr
procedures.. ;

e Concurrency contrel : When several users update the database concurrently, the
consistency of data may no longer be preserved. It is necessary for the systemto
control the inleraction dgmong the concurrent users, and achmvmg such a control is
one of the msponmbllmcs of database manager.

1.8.5 Query Processor

The database user retricves data by formulating'a query in the data mampmaunn l:mguage,
provided with the databasen The query processor is used to interpret the online user’s query
and convert it into ap efficient series of operations in a form capable of being sent to the data
manager for exccution. The query processor uses the data di~tionary to find the structure of
the relevant portion of the database and uses this information in modifying the query and
preparing an ogtimal plan to access the database.

1.8.6 Database Administrator

One of the main reasons for having database management system is to have control of both
data an programs accessing that data. The person having such control over the system is
called the database administrator (DBA). The DBA administers the three levels.of the
database and, in consultation with the overall user community, sets up the definition of the
global view or conceptual level of the database. The DBA further specifies the external view
of the various users and applications and is responsible for the definition and implementation
of the internal level, including the storage structure and access methods 10 be used for the
optimum performance of the DBMS, Changes to any of the three levels necessitated by
changes or growth in the organisation and/or emerging technolor,y are under the control of
the DBA. Mappings between the internal and the conceptual levels, as well as between the
internal and the conceptual levels, as well =5 between the conceptual and external levels, are
also defined by the DBA. Ensuring that appropriatc measurcs are in place to maintain the
integrity of the database and that the database 1= n5t accessible to unauthorised users is
another responsibility. The DBA is responsible for granting permission to the users of the
database and stores the profile of each user in the database. This profile describes the
permissible activities of a user on that portion of the database accessible to the user via one
or more user views. The user profile can be used by the database system to verify that a
particular user can perform a given opcration on the database.

The DBA is also responsible for defining procedures to recover the database from failures
due.to human, natural, or hardwarc causes with minimal loss of data, This recovery
procedure should enable the organisation to continue to function and the intact portion of the
database should continue to be available.

Let us sammarise the functions of DBA are :

e Schema definition : The creation of the original database schema. This is
accomplished by writing a set of definition which are translated by the DDL
compiler to a set of tables that are permanently stored in the data dictionary.

e Storage Structure and access method definition : The creation of appropriate
storage structurc and access method. This is accomplished by wriling a set of
definitions which are u*anslated by the data storage and definition language
compiler.

¢ Schema and Physical organisation modification : Either the modification of the
database schema or the description of the physical storage organisation. These
ehanges, although relatively rare, are accomplished by writing a sct of definition
which are used by either the DDL compiler or the data storage and definition
language compiler to generate modification to the appropriate intemal sysl.em tables
(for example the data dictionary).

e Granting of authorisation for data access : The granting of diffcrent types of
authorisation for data access to the various users of the database.

s Integrity constraint specification : Thesc constraints are kept in a special system
structure that is consulted by the database manager whenever one of the valuable
tools that the DBA uses to carry out data administration in data dicionary.

1.8.7 Data chtwnary

It is seen that when a program become somewhat large in size, lcecpmg a track of all the
available names that are used and the purpose for which they were used becomes more and
more difficult. Of course it is possible for a programmer who has coined the available names
to bear them in mind, but should the same author come back to his program after a
significant time or should another programmer have to modify the program, it would be -
found that it is extremely difficult to make a reliable account of for what purpose the data” -
files were used. '

The problem becomes even more dilficult when the’number of data types that an organisation has
-in its database increased. It has also now perceived that the data of an organisation is a valuable
corporale resource and therefore some kind of dn inventory and catalogue of it must be
maintained 50 as 10 assist in both the utilisation and management of the resource.

1t is for this purpose that a data dictionary or dictionary/directory is emerging as a major ool
An inventory provides definitions of things. A dircctory tells you where to (ind them. A data
dictionary/directory contains information (or data) about the data.

Basic Concepts

BCA-1.5/15
15

Hitroductory Concepts of
Data Base Management System

BCA-1.5/16
16

A comprehensive data dictionary would provide the definition of data item, how they fit into

. the data structure and how they relate 10 other entities in the database, With the

comprehensive base of information the data dictionary can serve several useful purposes
connecting across the whole spectrum of planning, determining information requirement,
designing and implementation operation and revision. There is now a greater emphasis on
having an integrated systcm in which the data dictionary is part of the DBMS. In such a case
the data dictionary would store the information concerning the external, conceptual and
internal levels of the databases. It would combine the source of each data field value that is

[from where the authenticate value is obtained. The frequency of its use and audit trail

regarding the updates including user identification with the time of each update.

The greater acceptance and pmllfcmmn of relational databasq;have encouraged the
evolution of data dictionary to “information resource dictionary system” (IRDS) for such
facilities, as is the suggestion from ANSI (American National Standards Institute).

The DBA uses the data dictionary in every phase of a database life cycle, starting from the
embryonic data gathering phase to the design, implementation and maintenance phases,
Documentation provided by a data dictionary is as valuable to end users and managers as it

~ provided by a data dictionary is as valuable to end users and managers as it is essential to the

programmers. Users can plan their applications with the database only if they know exactly
what is stored in it. For example, the description of a data item in a data dictionary may

~ include its origin and other text description in plain English, in addition to its data format.

Thus users and managers will be able to see exactly what is available in the database. You

could consider a data dictionary to be a road map which guides users to access information
within a large database, :

Naive users =~ Application Query Database

gxmnms System ca#ls ; R | I;atahas:

. Figure 4: DBMS Structure

| an ideal data dmunnm'y should include everything a DBA wants o know about the database.
(1) extemal, conceptual and internal databasc descriptions

2 desmpucns of entities (record types), atinbutes {fields), as wcii as crms-refermccs.
origin and meaning of data elements

(3) synonyms, authunsauqn and secumy codes

(4) which external schemas are used by which progrants, who the users are, and what their
authorisations are. .

- Adata dictionary is implemented as a database so that users can query its comcmby either
interactive or batch processing. Whether or not the cost of acquiring a data dictionary system
is justifiable depends on the size and complexity of the information system. The cost
effectiveness of a data dictionary increases as the complexity of an information system
increases. Adaladrcuanarycanbeagrea: asset not only to the DBA fordamhasedmm
implementation and maintenance, but also to managers or end users in their project planning.
Figure 4 shows these components and the connection among me.m

1.9 ADVANTAGES AND DISADVANTAGES OF
'DATABASE MANAGEMENT SYSTEM

One of the main advantages of using a datahasc system is thét the organisation can exert, via-

~ the DBA, centralised management and control over the data, The database administrator is
the focus of the centralised control. Any application requiring a change in the structure of a
data record requires an arrangement with the DBA, who makes the necessary miodifications.
such modifications do not affect other applications or users of the record in guestion,
Therefore, these changes meet another requirement of the DBMS data independence. Thc
following are the important advantages of DBMS : :

1.9.1 Advant_nges

Reduction of Redundancies

Centralised control of data by the DBA avoids unnecessary duplication of data and :
effectively reduces the total amount of data storage required. It also climinates the extra
processing necessary to trace the required data in a large mass of data, Anmhemdvanmgtof
avoiding duplication is the climination of the inconsistencies that tend to be present in
redundant data files. Any redundancics that exist in the DBMS are controlled and the system
ensures that these multiple cnplcs are coisislent.

Sharing Data
A darabase allows the shanng of data undu its control by any numbcr of application
Programs or usu.s.

Data Integrity

Centralised control can also ensurc lh'al adequate checks arc incorporated in the DBMS o
provide data integrity. Data integrity means that the data contained in the database is both
accurate and consistent. Thercfore, data valwes being entered for storage could be checked to
ensure that they fall within a specificd range and are of the correct format. For example, the
value for the age of an cmployee may be in the range of 16 and 75. Another integrity check
that should be incorporated in the databage is te ensure thit if there is a reference to certain
object, that object must exist. In the case of an automatic teller machine, for example, a user
is not allowed to transfer funds from a nonexistent saving account to a checking account.

Data Secnnty

Data is of vital importance 10 an orgamsauun and may be-confidential. Such confidential
data must not be accessed by unauthorised persons, The DBA who bas the ultimate
responsibility for the data in the DBMS can ensure that proper access procedures are
followed, including proper authentication sehemas for access to the DBMS and additional
checks before permitling access to sensitive data. Different levels of security could be
implemented for various types of data and operations. The enforcement of sccurity could be
datavalue dependent (c.g., 2 manager has aceess to the salary details of employecs in-his or

e

 liasie Concepts

BCA-1.5M1T
17

Introductory Concepts of
Data Base Management System

BCA-1.5/18
18 -

her department only), as well as data-type dependent (but the manager cannot access the
medical history of any employees, including those in his or her department).

Conlflict Resolution

Since the database is under the control of the DBA, she or he should resolve the conflicting
requirements of various users and applications. In essence, the DBA chooses the best file
structure and access method w get optimal performance for the response-critical
applications, while permitting less critical applications to continue to use the database, albeit
with a relatively slower response.

Data Independence
Data independence, is usually considered from two points of view: physical data
independence and logical data independence. Physical data independence allows changes
in the physical storage devices or organisation of the files to be made without requiring
changes in the conceptual view or any of the external views and hence in the application
programs using the database. Thus, the files may migrate from one type of physical media to
another or the file structure may change without any need for changes in the application
programs, Logical data indcpendence implies that application programs need not be changed
if fields are added to an existing record; nor do they have to be changed if fields not used by
application programs are deleted. Logical data independence indicates that the conceptual
schema can be changed without affecting the existing external schemas. Data independence
is advantageous in the database environment since it allows for changes at one level of the
database without affecting other levels. These changes are absorbed by the mappings
be.lwecn the levels.)

Logical data independence is more difficult to achieve than physical independence, Since
application programs are heavily dependent on the logical structure of the data-they access.

The concept of data independence is similar in many respects to the concept of abstract data
type in modem programming languages like C++. Both hide implementation details from the
users. This allow users to concentrate on the general structure rather than low-level
implementation details. : '

1.9.2 Disadvantages

A significant disadvantage of the DBMS system is cost. In addition to the cost of purchasing
or developing the software, the hardware has to be upgraded to allow for the extensive '
programs and the work spaces required for their execution and storage. The processing
overhead introduced by the DBMS to implement security, integrity, and sharing of the data
causes a degradation of the response and through-put times. An additional cost is that of -
migration from a traditionally separate application environment 1o an integrated ane.

While centralisation reduces duplication, the lack of duplication requires that the database be
adequately backedup so that in the case of failure the data can be recovered. Batkup and
Tecovery operations are fairly complex in a DBMS environment,'and this is exacerbated in a
concurrent multiuser database system. Furthermore, a database sysiem requires a certain
amount of controlled redundancies and duplication to enable access to related data items.

Centralisation also means that the data is accessible from a single source namely the
database. This increases the potential severity of security breaches and disruption of the
operation of the organisation because of downtimes and failures, The replacement of a
monolithic centralised database by a federation of independent and cooperating distributed
databases resolves some of the problems resulting from failures and downtimes.

Check Your Progress
1. What are the important tasks of Database manager?

..

2. What are the main funclions of database administrator?

-- B T R T

Whaxt are the drawbacks ol file procegsing system”?

1.10 SUMMARY

A database system is an integrated collection of related files along with the details about their
definition, interpretation, manipulation and maintenance. A DBMS is a major software
component of database system. It consists of collection of interrclated data and programs to
access that data. The primary goal of a DBMS is to provide an environment which is both
convenient and cfficient to use in rcme.wng information from and storing information into
the database.

" The DBMS not only makes the intcgrated collection of reliable and accurate data available to
multiple applications and users but also controls from unauthorised users to access the data.

A DBMS is a major software system consisting of a number of elements. It provides users DDL
for defining the external and conceptual view of the data and DML for manipulating the data
stored in the database. The database manager is the component of DBMS that provide the
interface between the user and the file system. The database administration defines and maintains
the three levels of the database as well as the mapping between levels to insulate the higher levels
from changes that take place in the lower levels. The DBA is responsible for implementing
measures for ensuring the sccurily, integrity and recovery of the database.

1.11 MODEL ANSWERS

1. The databasc manager is responsible for the following tasks :
e interaction with the file manager
e integrity enforcement '
e securily cnforcement
e backup and recovery

e concurrent control

Some databasc'system. designed for use on small personal computers arc missing soveral of
the feawres listed above. This allows for a smaller data manager. A small data manager bas
less requirement for physical resources, specially main memory and costs less 1o implement,
2. -The [unction of database administrator include :

e Schema dcﬁmu(}n

e Stlorage structure and access mcthod definition

o Granting of authorisauonfor dati access

e Integrity constraint specification

3. T backs of the file processing system are :
.a redundancy and inconsistency
Jala isolation :
“=curity problems
zgrity problems
st w..ocitltics among others, have prompted the development of DBMS.

1.12 FURTHER READINGS

1. Bipin C. Desaiy An Introduction to Database Systems, Golgotia Publication Pvt. Ltd. 1994,

- 2. Henery F. Korth,Abraham Silberschatz, Database System Co.'!ceprs McGraw Hill
International Editions.

Basic Concepts

BCA-1.5/19
19

BCA-1.5/20
20

UNIT2 DATABASE MODELS AND ITS
IMPLEMENTATION

Structure

20 Intvoduction *

2.1 Objectives

2% File Management System

2.3 Entity Relationship Model
2.3.1 Relationship Between Entity Sets
2.3.2 Represcntation of Entity Sets in the Form of Relations
2.3.3 Generalisation and Sp.i:irca.lion .
2.3.4 Aggregation

2.4 The Hierarchical Model

2.4.1 Replication Vs Vinual Recorl”
242 The Accessing of Data Records in Hierarchical Data Structure
2.43 Implementation of the Hierarchical Data Model
2.5 The Network Model
251 DBTG Sa
2.5.2 Implementation of the Network Data Model
2.6 The Relational Model
2.6.1 Advantapes and Disadvantages of Relational Approach
2.6.2 Difference Between Relational and Other Models
2.6.3 Anexample of & Relational Model
2.6.4 Conversion of Hicrarchical and Network Structure into Relation
2.6.5 Implementation of Relational Data Model
27 Summary
2.8 Modcl Answers
2.9 Fuither Readings

2.0 INTRODUCTION

In the previous unit, you have seen the limitations of the traditional approach to information
processing and the advantages and limitations of data base approach. However, there are still
many ways in which a data base approach can be implemented. You are possibly now
familiar with dBASE IH kind of approach to data base management which is brandedas a
relational data base type approach.But other variclics also exist, though relational data bases
becoming more and more popular.

One can say that a DBMS is a mechanism for coordinating the storage and retrieval of
data in such a manner that its integrity, consistency and availability is ensured.Some of
the earlier approaches adopled a tree like hierarchical structure, while another approach more
cotnmonly known as the CODASYL data base adopled the nefigork architecture. This unit
will briefly describe the features of all these three approaches,including, entity relationship
which is usually used for application development. With each model we will also discuss
some of its implementation strategies.

2.1 OBJECTIVES

_ After going through this unit, you should be able to:

@ idenlify the structures in the different models of DBMS;

e convert any given data base situation to a hierarchical or relauonal model;
e discuss entity-relationship model |
e slate the essential features of the relational model; and

e discuss implementation issues of all the three models.

2.2 FILE MANAGEMENT SYSTEM

- The precursor to the present day database management systems was File Management
Systems (FMSs), In the early days of data processing, all files were flat files.A flat file is ons
where cach record contains the same types of data items.One or more of these data items are
designated as the key and is used for sequencing the file and for locating and grouping
records by sorting and indexing.You will see that in the real world, which is to be translated
into a database approach, many file structures-are not flat. They are described with words or
phrases like hierarchical files, codes, sets, tree structures and networks.All these types of

structures can be closed as either trees or clause structures.However, it may be borne in mind

_that all these complicated file structure can be broken down into groups of flat files with
redundant data item.

It is in this context that the FMS resembles the DBMS and it allows applications to be
developed without having to write high level language programs. They came into being in
the 1960s as a more productive approach to information access than a traditional route of
programming via a high level language.

An FMS consists of a number of application programs. Because productivity enhancement in
using an FMS compared to a conventional high level language is about 10 to 1, programmers
use it. But the easc of use of an FMS also encourages end users with no previous
programming expericnce to perform queries with special FMS language. One of the more
well known in this regard is RPG (Report Program Generator) which was very popular
for generating routine business reports. In order tc use the RPG the user would define the
input fields required by filling out an input specification format. Similarly output formats can
be specified by filling out an output specification forms. The possibility of giving a centain
structure Lo the output and the availability of default options made the package relatively
easy to learn and use. Some well-known examples of such FMS packages are Mark-4, Data
trec, easy tree and power ~use. The structure of an FMS is diagramatically illustrated below:

- FMS
Commands

High level language

Assembly language

implementation of
FMS routine

Basic Access
methods

Database

Figure 1: File management system

The FMS relies upon the basic access methods of the host operating system for data
management. But it may have its own special language to be used in performing the
retrievals. This language in some ways is more powerful than the standard high level
programming languages in the way they define the data and development applications.
Therefore, the file management system may be considered to be a level higher than mere .
high level languages. If we think of conventional high level programming languages such as
RTRAN, PASCAL, elc., as third generation languages and the non-procedural SQL. as
. fourth generation languages, then the FMS language would fit somewhere in between.

Database Models and its
Implementation

BCA-1.5/21
21

Iptroductory Concepts of
Datg Base Management System

BCA-1.9/22
22

The FMS program may actually take jess time w execuie than an eguivalent program hﬁtlen
in a high level larguage because of the built-in algorithm for so.t, merge, md rsport
generation in the FMS software. Therefore some of the advamagw Wb cemparedio
standard high level language are:

e less software development cost — Even by experienced prorrammers it takes mongths:
or years in developing a good software system in high level unguage.

e Support of efficient query facility — On line queries for mutiple-key retrievals arq
tedious to program,

Of course one could bear in mind the limitations of an FMS in the smcFM} mnmlhandli
complicated mathematical operations and array manipulaticas. In order to remedy thc
situation some FMSs provide an interface to call other programs wrisen in a high level
language or an assembly language. ;

Another limitation of FMS is that for data management and access it is resvicted to basic
access methods. The physical and logical links required between different fir:s to be able to
cope with complex multiple key querics on multiple files is not possible. Even though FMS
is a simple, powerful tool it cannot replace the high level language, nor caa it perform
complex information retrieval like DBMS. Itis in this context that reliaxce on a good

database management system become essential.

2.3 ENTITY-RELATIONSHIP (E-R) MODEL

E-R model grew out of the excercise of using commercially-available DBMS to model
application database. Earlier DBMS were based on hierarchical and network approach. E-R
is a generalisation of these models. Although it has some means of describing the physical
database model, it is basically useful in the design of logical database model. This analysis is
then used to organise data as a relation, normalising relations and finally oblammg a
relational database model.

The mtily-re!ationship model for data uses three features to describe data. These are:

1. Entities which specify distinct real-world items in an application.

2. Relationships which connect entities and represent meaningful dependencies between
them,

3. . Attributes which specify properties of entities and relationships.

We illustrate these terms with an example. A vendor supplying items to a company, for
example, is an entity. The item hqsupplies is another entity. A vendor and an item are
related in the sense that a vendor supplies an item. The act of supplying.defines a relationship
between a vendor and an item. An entity set is a collection of similar entities. We can thus
define 4 vendor set and an item set. Each member of an entity set is described by some
attributes. For example, a vendor may be described by the attributes

{vendor code, vendor name, address)
An item may be described by the attributes
(item code, item name)

Relationship also can be characterised by a number of attributes. We can think of the
relationship as supply between vendor and item entitics. The relationship supply can >+
described by the attributes: (order_no, date of supply).

2.3.1 Relationship Between Entity Sets

The relationship between entity sets may be many-to-many (M:N), one-io-many (1:"1),
many-to-one (M:1) or one-to-one (1:1). The 1:1 relationship between ¢ tity se3 E, and E,
indicates that for cach eatity in either set there is at most one entity in the second set that is .
associated with it. The 1:M relationship from entity set E, to E, indicats .nat for an
occurrence of the entity from the set E;, there could be zero, one, or more entities from the

. entity set E, associated with it. Each entity in E, is associated with at most one entity in the

entity set E,. In the M:N relationship between entity sets E; and E,, there is no restriction as

to the number of entitics in one sct associated with an cntitsr in the other sﬁ. The database ; Dltl!lu'la‘hiodnk :.:11 its
structure, employing the E-R model is usually shown pictorially using enuty mlatlomiup mplementation
(E-R) diagram.

Td illustrate these di[fmenl types of relationships, eonsider the following entity sets:
DEPARTMENT, MANAGER, EMPLOYEE, and PROJECT.

The relationship between a DEPARTMENT and a MANAGER is usually one-to-one; there is

only one manager per department and a manager manages only onc department. This
relationship between entities is shown in figure 2 . Each entity is represented by a

dearlmcnl

Mz‘magcr

Figure 2 : One-to-one relationship

rectangle and the relationship between them is indicated by a direct line. The relationship
from MANAGER to DEPARTMENT and from DEPARTMENT 1o MANAGER is both 1:1.
Note that a one-to-one relationship between two entity scts does not imply that for an
occurrence of an entity from one set at any time there must be an occurrence of an entity in
the other set. In the case of an organjsaﬁm,mea'ecuuldbelimwhmadcpanrrmtis
without a manager or when an employee who is classified as a manager may. be without-a
department to manage. Figure 3 shows some instances of one-to-one relationships between
the entities DEPARTMENT and MANAGER.

‘Deptt. 1 : ' Deput. 2 Deptt. 3

Manager 1 | Manager 2 Manager 3

Figure 3 : Some instances of One-to-one relationship

A one-to-one relationship exists from the entity MANAGER to the entity EMPLOYEE
“because there are several employces reporting to the manager, As we just pointed out, there
could be an occurrence of the entity type MANAGER having zero occurrences of the entity
type EMPLOYEE reporting to him or her. A reverse relationship, from EMPLOYEE to
MANAGER, would be many to one, since many employees may be supervised by a single
maniager. However, given an instance of the entity set EMPLOYLE, there could be only one
instance of the entity set MANAGER to whom that employec rcports (assuming that no
employee reports to more than one manager). These relationships between entities are
illustrated in figure 4. Figure 5 shows some instances of these relationships.

Manager

Y

‘Employee

N BCA-1.5/23
Figure 4 : Reinavmship T4 . -
FA

-imm-"‘mﬁlwls uf
Trata HoseManagement System

Manager 1 M.ma;m' 2] - Menager 3

h J b

.'Empl_ I Emp2 | - Emp 3
L N

Figure 8 : Instances of 1:M rdlationship

The relationship betwoen the cniity EMPLOYEE and the entity PROJECT can be derived as
follows: Each employee could be involved in a pumber of different projects, and a number of
employees could be working on a given project. This relationship between EMPLOYEE and
PROJECT is many-to-many. It is illustrated in figure 6. Figure 7 shows some instances of
such a relationship.

l Employee -H—b—i-i Pr-ojecl

Figure 6 : M:N relationship

Emp 3

Proj. 3 Proj. 4

_ Figure 7: Instances of M:N relationship
Inthe euﬁly—re!éﬁonship (E-R) diﬁgram, cntities are represented by rectanglesand -
relationships by a diamond-shaped box and attributes by ellipses or ovals.The following E-F.
diagram for vendor, item and their relationship is illustrated in figure 8(a). .

(Vendor-Code] { .VendorNo.) (Vendor-addr.

VENDOR

Quy. supplied

vendor-Code J™
date-of-supply

i

~ Pricefunit

|

t order-no l

BCA-1.5/24

24 Wigure &) : E-R diagram for Vendors; items and their relationship

. . . . ; Database Models and its
2.3.2 Representation of entity sets in the form of relations _ Tgdementition

The entity relationship diagrams are useful ifi representing the relationship among entities
they show the logical model of the database. E-R diagrams allow us to have an overview of
the important entities for developing an information system and other relationship. Having
obtained E-R diagrams, the next step is to replace each entity set and relationship set by a
table or a relation. Each table has a name. The name used is the entity name. Each table has a
number of rows and columns. Each row contains a member of the entity set. Each column
corresponds to an attribute. Thus in the E-R diagram, the vendor entity is replaced by table 1.

Table 1 : Table for the Entity Vendor

Vendor code Vendor name Address

1456 RamandCo. = 112 First Cross, Bangalore - 12
1685 Gopal and Sons) 452 Fourth Main, Delhi - 8
1284 Sivraj Bros. 368 M.G. Road, Pune - 8

1694 Gita Ltd. 495 N.S.C. Road, Calicut - 9

The above table is also known as a relation, Vendor is the relation name. Each row of a
relation is called a tuple. The titles used for the columns of a relation are known as relation
attributes. Each tuple in the above example describes one vendor. Each element of a tuple
gives a specific property of that vendor. Each property is identified by the title used for an
attribute column. In a relation the rows may be in any order. The columns may also be
depicted in any order. No two rows can be identical.

Since it is inconvenient to show the whole table comresponding to a relation, a more concise
notation is used to depict a relation. It consists of the relation name and its attributes. The
identifier of the relation is shown in bold face. The relation of table 1 is depicted as:

Relation aﬂributes

Vendor (Vendor code, Vendor name, Address)

-Relation Relation
name identifier

The other relations comresponding to figure are:
Supplies (Vendor code, Item code, Order no., Qty.

Composite identifier

Supplied, Date of supply, price/unit)

A specified value of a relation identifier uniquely identifies the row of a relation.

If a relationship is M:N, then the identifier of the relationship entity is 2 composite identifier
which includes the identifiers of the entity sets which are related. On the other hand, if the
relationship is 1:N, then the identifier of the relationship entity is the identifier of one of the

entity sets in the relationship. For example, the relations and identifiers cmcspmdmg to the
E-R diagram of figure 8(b) are: = :

Teacher (Teacher-id, name, department, address)
Advises ﬂhacher—id, Swdent-id)

Students (Student-id, mame, deparunent, address)
: BCA-1.5/25

25

" Introduciory Concepts of
DPrata Base Manapement System

BCA-1.5/26
26

(Address) (Depzr{menl) (_Ngme } (Teacher_id)

Teacher

Swdent_id

(D:panmcnl)(Name)

{ Swdent_id ;

Stadents

J

Figure 8(b) : E-R Diagram for Teacher, Students and their relationship

One may ask why an entity set is being represented as-a relation. The main reasons are easc
of storing relations as flat files in a computer and, more importantly, the existence of a sound
theory on relations, which ensures good databasc design. The raw relations obtained as a first
step in the above examples are transformed into normal relations. The rules for
transformations called normalisation are based on sound theoretical principles and ensure
that the final normalised relations obtained reduce duplication of data, ensure that no
mistakes occur when data are added or delcted and simplify retrieval of required data. We
will not discuss in detail the theory of normalisation. We will, however, describe what these
normalisation steps are, why they are needed, and how they are done. The end product of all
these steps in a good database design for an application.

2.3.3 Generalisation and Specification

Abstraction is the simplification mechanism used (o hide superfluous details of a set of
objects, it allows one to concentrate on the properties that are of interest to the application.
As such, car is an abstraction of a personal ransportation vehicle but does not reveal details
about mode, year, colour, and so on. Vehicle itself is an abstraction that includes the types
car, truck, and bus. '

There are two main abstraction mechanisms used to model information: Generalisation and
aggregation. Generalisation is the abstracting process of viewing set of objects as a single
general class by concentrating on the general characteristics of the constituent s¢ts while
suppressing or ignoring their differences. It is the union of a number of lower-level entity
types for the purpose of producing a higher-level entity type. ‘For instance, student is a
gmsmhsauun of graduate or undergraduate, full-time or part-time students. Similarly,
employee is a gencralisation of the classes of objects cook, waiter, cashier, maltre d'.
Generalisation is an IS_A relationship; therefore, manager IS_An employee, cook IS_An
employee, waiter IS_An employee, and so forth. Specialisation is the abstracting process of
introducing new characteristics to an existing class of objects Lo create one or more new
classes of objects. This involves taking a higher-level entity and, using additional
characteristics, generating lower-level entities. The lower-level entities also inherit the
characteristics of the higher-level entity. In applying the characteristic size to car we can
create a full-size, mid-size, compact, or subcompact car. Specialisation may be seen as the
reverse process of generaligation: additional specific properties are introduced at a lower
level in a hierarchy of objects. Both processes are illustrated in the following figure 9
wherein the lower levels of the hicrarchy are disjoint.

The entity set EMPLOYEE is a generalisation of the entity sets FULL__TIME_EMPLOYEE
and PART_TIME_EMPLOYEE, The former is a gencralisation of the entity sets faculty and -
staff; the latter, that of the cntity sets TEACHING and CASUAL. FACULTY and STAFF inherit
the attribute Salary of the entity set FULL_TIME_EMPLOYEE and the latter, in tum, inherits the
atiributes of EMPLOYEE, FULL_TIME_EMPLOYEE is a specialisation of the entity sct
EMPLOYEE and is differcntiacd by the additional attribute Salary, Similarly, PART_TIME
_EMPLOYEE is a specialisation differentiated by the presence of the attribute Type.

{ Employce_No] (Name) (Date_of_Hire)

EMPLOYEE

4GeNErALIZATION } - | SPECIALIZATION |

(FULL_TIME_ . PART_TIME_
EMPLOYEE 1 EMPLOYEE-

|

faculty - . saff teaching casual

(Dc{grcc) (Imcrcst) @Iassll“calm) (Stipend) { Hour_Ratc |

Figure 9 : Generatisation and smum

In designing a database to model a segment of the real world, the data nmdcllmg scheme
must be able to represent generalisation. It allows the model to repeesent gencric entitics and
treat a class of objects and specifying relationships in which the generic objecls participate,

Generatisation forms a hierarchy of entities and can be rcpresented hy a hlmrchy of tables
whlch can also be shown lhmugh following relations for conveniences. :

EMPLOYEE(Fmp! no, name, Date_of bmh)
FULL_TIME(Empl_no, _mlary}

s PART_TIME(Empl_no, typc) |
FACULTY(Empl_no, Degree, Inicrest)
STAFF(EmpI_no, Hour_rate)
TEACHENG{EmpI no, Stipend)

Here the primary key of cach entily corresponds to entrics in dll'!"crcnl tables and dirccts one
1o the appropriate row of related tablcs.

Another method of representing a gencralisation hicrarchy is 10 have the lowest-level cntities
inhcrit the attributes of the entities of higher levels. The top and intermediate-level entitics
arc not included as only those of the lowest level are represented in tabular form. For
instance, the attributes of the cntity sct FACULTY would be {Empl_No, Name,
Date_of_Hire, *;-al.lry, Degree, Intcrest}. A-scparate table would be required for each
lowest-level entily in the hierarchy. The number of different tables required to represent
these cntitics would be equal to the number of entitics at the lowest lovel of the
gencralisation hicrarchy. :

Database Models and its
Implementation -

BCA-1.5/27

27

Intreductory Concepts of
Data Base Management System

BCA-1.5/28

28

2.3.4 Aggregation

Aggregation is the process of compiling information cit an otject, thereby abstracting a
higher-level object. In this manner, the entity person is derived by aggresating the
characteristics name, address, and Social Security number. Another form of the aggregation
is abstracting a relationship between objects and viewing the relationship as an object. As
such, thce ENROLLMENT relationship between entities student and course could be viewed
as entity REGISTRATION. Examples of aggregation are shown in figure 10.

Consider the relationship COMPUTING of figure 11. Here we have a re!alionslﬁp among the
entities STUDENT, COURSE, and COMPUTING SYS'-I'EM. A student registered in a given

PERSON
: AGGREGATION
(Name) (Address) (5SN)
(a)

REGISTRATION

STUDENT _’— COURSE

(b)

Figure 10 : Examples of aggrtgatiﬁn

{ limits }

Computing System

(Accounting_Cude_}

Course

Student

Figure 11 : A relationship among three entitics

course uses onc of several computing systems o complete assignments and projects. The .
relationship between the entitics STUDENT and COURSE could be the aggregated entity
REGISTRATION (figure 10b), as discussed above. In this case, we could view the temary
relationship of figure 11 as one between registration and the entily computing system.
Another method of aggregating is w consider a relationship consisting of the entity
COMPUTING SYSTEMSs being assigned 1o COURSEs. This relationship can be aggregated
as a new entity and a relationship established between it and STUDENT. Notg that the
difference between a relationship involving an aggregation and one with the three entities
lies in the number of refationships. In the former case we have two relationships; in the later,

[]

only one exists. The approach to be taken depends on what we want to express. We would

use the temary relationship related to a COMPUTING SYSTEM.

2.4 THE HIERARCHICAL MODEL

A DBMS belonging to the hierarchical data model vses tree structures to represent
relationship among records. Tree structures occur naturally in many data organisations
because some entities have an intrinsic hierarchical order. For example, an institute has a
number of programmes to offer. Each program has a number of courscs. Each course has a
number of students registered in it. The following figure depict-, the four entity types
Institute, Program, Course and Student make up the four different levels of hierarchical
structure. The figure 12 shows an example of database occurzence for an institute. A database
is a collection of database occurrence. '

Institute

L B

Programmes

'

Courses

b

Students

Figure 12 : A simple Hierarchy

A hierarchical database therefore consists of a collection of records which are connected with
each other through links. Each record is a collection of fields (attributes), each of which
contains one data value. A link is an association between precisely two records.

A ree structure diagram serves the same purpose as an emity-reiationshig diagram; namely it
specifies the overall logical structure of the database.

The following figure shows typical database occurrence of a hierarchical structure (tree

structure)
Institute
I_Prugrarn A Program B
TP " | s
Course A, Course Ay Course Ay Course B, Coursc B, Course B,
Stud. 1| |Stud. 2| |Stud. 3] |Stud. 4| |Stud. 5| [Stud. 6

Figure 13 : Database occurrence of 2 hicrarchieal structure

Stud. 7

Stud. 8 .Smd.'.? Stud. 10

Stud. 11 “;tud. 12

Database Models and its

Implementation

BCA-1.5/29

29

Introduciory Concepts of
Data Base Management System

BCA-1.5/30

n

The hierarchical data model has the following features:

e Each hierarchical tree can have only one root record type and this record type does
not have a parent record type.

e The root can have any number of child record types and each of which can itself be
a root of a hierarchical subtree.

o Each child record type can have only cne parent record type; thus a M:N
relationship cannot be directly expressed between two record types.

e Datain a parent record applies to all its children records

e Achild record occurrence must have a parent record occurrence; deleting a parent
record occurrence requires deleting all its children record occurrence.

2.4.1 Replication Vs Virtual Record

The hieraichical model, like the network model (discussed in the next section) cannot
support a many-to many relationship directly. In the network model the many-to-many
relationship is implemented by introducing an intermediate record and two one-*c- many
relationships. In the hierarchical model, the many-to-many relationship can be expressed
using one of the following methods: replication or virtual record. When more than one
employee works in a given department, then for the hierarchical tree with EMPLOYEE as -
the root node we have to replicate the record for the department and have this replicated
record attached as a child to the coresponding occurrence of the EMPLOYEE record type.

Replication of data would mean a waste of storage space and could iead to data
inconsistencies when some copies of replicated data are not updated. The other method of
representing the many- tn many relationship in the hierarchical data model is to use an
indirect scheme similar to the network approach. In the hierarchical model the solution is to
use the so-called virtual record. A virtual record is essentially a record containing a pointer
to an occurrence of an actual physical record type. This physical record type is called the
logical parent and the virtual record is the logical child. When a record is to be replicated in
several database trees, we keep a single copy of that record in one of the trees and replace,
each other record with a virtual containing a pointer to that physical record. To be more
specific, let R be a record type that is replicated in several hierarchical diagrams say Hy, H,,
..... H,. To eliminate replication we create a new virtual record type virtual - R, and replace R
in each of the n-1 trees with a record of type virtual - R. Virtual - R will contain no data.

242 The Accessing of Data Records in Hierarchicﬁl Data Structure

The tree type data structure’is used to represent hierarchical data model shows the
relationships among the parents, children, cousins, uncles, aunts, and siblings. A tree is thus a
collection of nodes. One node is designated as the root node; the remaining nodes form trees
or subtrees. '

An ordered tree is a tree in which the relative order of the subtrees is significant. This
relative order not only signifies the vertical placement or level of the subtrees but also the
left to right ordering. Figures 14 (a) and (b) give two examples of ordered trees with A as the
root node and B, C, and D as its children nodes. Each of the nodes B, C, and D, in turn, are

Figure 14 : Example of two trees

root nodes orsuotrees with children nodes (E, F), (G), and (H, 1, J), respectively. The
mgmﬁmc&ntﬂlc’mdamg of the subtrees in these diagrams is discussed below.

Trairemﬁgmmd&edmmnbadom in a number of ways. The order of processing the
nodcsof&nt&ﬂepeﬁdsmwhe&umnﬂmmmﬂwmﬂebefaemm ’s subtree
and the order of processing the subtrees (lefi. 1o right or right 10 left). The usual practice is the
so-called prevrder traversal in which the node is pmoa;sed first, followed byﬂwleﬂnmst
‘subﬂeenotyetm‘amd:

'_Thepmderprwmmgofﬂmmdemdueenffgm l4{a}willpmcess1henodmmme
mmA.B,E,F,C G,D,H,LJ.

" The mgnfmeufmemdaﬁmbmnmevﬁmtwhmwemmmemumm
which the nodes could be reached when using a given tree traversing strategy. For instance,
the order in which the nodes of the hierarchical ree of figure are processed using the
preorder processing strategy is not the same as the order for figure 14(a), even though the
tree of part b contains the same nodes as the tree of part a.

Twuﬂimmmemodsmbeusedmnnpiunmtﬁmmdﬁrmqmmﬂmmﬂﬁedm

Thefirst method, shown in figure 15 uses hierarchical pointers to implement the ordered tree .

of part 14(a). Here the pointer in each record points to the

A _

—D

' E—'—PF H—]—G

Figure 15: Preorder Traversal of figure 14(a)

liextreocrﬂ in the preorder sequence. The second method, shown in figure lﬁusesmtypes.

of pointers, the child and the sibling pointers. The child pointer is used to point to the

I_IA
‘_]IS aransnnsans .pc ..-.-......j
E--»F £) S R ¢

Figure 16:Chudsmmjmm

leftmost child and the sibling pointer is used to point to the right sibling. The siblings are

no cs that have the same parent. Thus, the binary tree corresponding to tree in the figure (a)

is obtained by connecting together all siblings of a node and deleting all links from a node to
*its children except for the link to its leftmost child. Using this uansfmuun. we obitain the
tree representation agshown in figure 16.

2.4.3 Implementation of the Hierarchical Data Model

“Each occurrence of a hierarchical tree can be stored as a variable length physical record, the

nodes of the hierarchy being stored in preorder, In addition the stored record contains a
prefix field. This field contains control information including pointers, flags, locks and
counters, which are used by DBMS 1o allow concurrent usage and enforce data integrity.

A number of methods couid be used to store the hierarchical trees in the physical medium
affects not only the performance of the system but also the operations that can be performed
on the database. Furexample,:fmh occurrence of the hierarchical tree is stored as a
variable Iength record on 2 magnetic tape like device, the DBMS will allow only sequential

Database Models and its
Implementation

BCA-1.5/31
31

Introductory Concepls of

Bata oo Matagomsat Sriicon retrieval and insertion or modification may be disallowed or performed only by recreating

the entire database with the insertion and modification storage of the hierarchical database on
a direct access device allows an index structure to be supported for the root nodes and allows
direct access 1o an occurrence of a hierarchical tree. The storage of one occurrence of the '
hierarchical definition tree of figure 14 (a) using the variable length record approaci is
given in the following figure. ¥

[a, by e,y 1 fybyeg epyfocy g dyhy I dyphy by Iy Iz}

Figure 17 ; Sequential storage of hierarchical database

The hierarchy can also be represented using pointer of either preorder hierarchical type or
child/sibling type. In the hierarchical type of pointer, each record occurrence hias a pointer
that points to the next record in the preorder sequence. In the ~+:19/sibling scheme, each
record has two types of pointers. The child pointer points 10 its leftmost child record
occurrence. The sibling pointer points to its right sibling (or twin). .’ record has one sibling
pointer and as many child pointers as the number of child types associated with the node
corresponding 10 the record. The following two figures, figure 18 and figure 19 illustrates
preorder hierarchical pointer and child sibling pointers respectively of hierarchigal tree
shown in figure 14.

e e

v
€y ¥Cyy

Figure 18 ; Preorder Hierarchical Polnter

W

h,—*,—*],

= o

by

3“ _"e’l‘l'_"fl

, hyy— hyy—l —¥j;
€y —* ¢y —y

Figure 19 ; Child Sibling Polnters

2.5 THE NETWORK MODEL

The network data model was formalised in the late 1960s by the Database Task Group of the
Conference on Data System Language (DBTG/CODASYL). Their first report which has
been revised a number of times, contained detailed specifications for the network data mode
 (a model conforming to these specifications is also known as the DBTG data model). The
specifications contained in the report and its subsequent revisivais have been subjected to
BCA-1.5/32 much debate and criticism. Many of the current database applications have been built on
commercial DBMS systems using the DBTG model.

32

251 DBTGSet : . Database Models and its

Implementation
Th:DBTGmdelusestwodefmmdatasmmtumstorepmenuhedatabaseennucsam -
relationships between the entities, namely record type and set type. A record type is used to
represent an entity type. It is made up of a number of data items that represent the attributes

of the entity. . .

Asettypelsnseﬂmmptesmtadirectedmlaﬁmlshipbctwm two record types, the su-called
owner record type, and the member record type. The set type, like the record type, is
named and specifies that there is a one-to-many relationship (1:M) between the owner and
member fecord types. The set type can have more than one record type as its member, but
only one record type is allowed to be the owner in a given set type. A database could have
one or more occurrences of each of its record and set types. An occurrence of a set type
consists of an occurrence of each of its record and set types. An occurrence of a set type :
consists of an occurrence of the owrer record type and any number of occumrences of each of
its member record types. A record type cannotbe a membe: of two distinct occurrences of
the same set type.

Bachman introduced a graphical means called a data structure diagram to denote the logical
- relationship implied by the set. Here a labelled rectangle represents the corresponding entity
or record type. An arrow that connects two labelled rectangles represents a set type. The
arrow direction is from the owner record type to the member record type. Figure shows two
record types (DEPARTMENT and EMPLOYEE) and the sct type DEPT_EMP, with
DEPARTMENT as the owner record type and EMPLOYEE as the member record type.

Depaﬁment .

chpl_'Emp

Employee

Flgure 20 : A DBTG set

The data structure diagrams have been extended to include field names in the record type
rectangle, and the arrow is used to clearly identify the data fields involved in the set
association. A one- m-mmy(IM)relanonshrpisslwwnbyaseuypeamwﬂmtmfmm
the owner field in the owner record type. The arrow points to thé member field within the -
member record type. The fields that support the relationship are clearly identified.

Each entity type in an E-R diagram is represented by a logical record type with the same
name. The atiributes of the entity are represented by data fields of the record. We use the
term logical record to indicate that the actual implementation may be quite different.

The conversion of the E-R diagram into a network database consists of converting each 1:M
binary relationship into a set (a 1:1 hinary relationship being a special case of a 1:M
relationship). If there is a 1:M binary relationship R, from entity type E; tq entity type E,,

entity 1 M N entity 2
record type record type
for entity 1) for entity 2

| e i
Set'f.yng 1 ‘ - . Settype 2

r

" | Common member
record type

BCA-1.5/33

Figure 21 : Conversion of an M:N relationship into two 1:M ﬂBTG sels 1

Introductory Concepts of
Data Base Management System

BCA-1.5/34
E

then the binary relationship is represented by a set. An instance of this would be S, with an
instance of the record type corresponding 1o entity E; as the owner and one or more instances

" of the record type corresponding to entity E; as the member. If a relationship has attribuces,

unless the attributes can be assigned to the meémber record type, they have to be maintained
in a separate logical record type created for this purpose. The introduction of this additional
rmoﬂupemqwcsﬂmuwmgnmlmbecmvmdmmmosymmumalmwmme

- record corresponding 1o the attributes of the relationship as the member in both the sets and
" the records corresponding to the enuuesnsl]mowners.

Each many-to-many relationship is handled by introducing a new record type to represent the
relationship wherein the attributes, if any, of the relationship are stored. We then create two'
symmemmll Msﬂsmththcmcmbermmhoflhesmbcmgdwmwlymmdmedmd
type. The conversion of a mahy-to-many relationship into two one-to-many sets using a
common member record type is shown in figure 21.

In the network model, the relationships as well as the navigation through the database are
predefined at database creation time.

2.5.2 [Implementation of the Network Data. Model
The record is a basic unit to represent data in the DBTG network database model. The

* implementation of the one-to-many relationships of a set is represented by linking the

mmnbwsofngnmocammofasetmﬂ:eownumordmrmmﬂwacmalmﬂmdnr
Imkmgdiemenmamdoccmncemﬂlenwnalslmmtenalmdiemernfdmahmbasm
however, for our discussion, we can assume that the set is implemented using a linked list. - -
The list starts at the owner record occurrence and links all the member record occurrences
with the pointer in the last member record occurrence leading back to the owner record.
Figure 22 shows the implementation of the set occurrence DEPT-EMP where the owner

* record is Comp.sc. and the member records are the instances Jancy and Santosh. Note that
" for simplicity we have shown only one of the record fields of each record. This melhodo_f

implementation assigns one pointer (link) in each record for each sét type in which the
record participates and, therefore, allows a recard occurrence to participate in only one
occurrence of a given set type. Any other method of implementing the set construct in a
database management system based on the DBTG proposal is, in effect, equivalent to the

 linked list method.

Comp. Sc. :
Pointer to the Pointer to the
first member - owner

Printer 1o next
member of the set occurence

F'gure 22 : Implementation of the DBTG SET in network model

A second form of network implementation, especially useful for M:N relationships, is a bit
map, which is depicted in figure. A bit map is a matrix created for each relationship. Each
row corresponds to the relative record number of a target record of a relationship. A 1 bitina
cell for row X and column Y means that the records corresponding to row X and-column Y -
are associated in this relationship; a zero means no association. For example, figure 23 .
indicaies that PRODUCT with relative record number X is related to VENDOR with relative
record numbers 1 and Y (and possibly others not shown). Bnmapsarcpnw-fuldata :
structurcs for the following reasons:

1. Anurecord type(s) can be included in rows or columns. . -
2. 1:1, 1:M, and M:1 relationships can all be represented.

3. Rowsand columns can be logically manipulated by Boolean operators (“and,” “or,” .
“not™) to determine records that satisfy complex associations (¢.g., any record that has
both parent S and parent T).

1 Y
111 0 --- 0

0 [e]
X[1 o0 1

* Figore 23 : Example of 2 bit map implementation for Preduct and vendor relatlonship in a network

4. Abit map can be manipulated equally as well in either a row or column access (all the row
records for a common column or all the column records for a common row) and car: be
easily extended for n-ary relationships).

2.6 THE RELATIONAL MODEL

The relational data base approach is relatively recent and begun with a theoretical paper of
§Codd - which proposed that by using a technique called normalisation the entanglement

observaton in the tree and network structure can be replaced by a rclauvely neater structure.

"Codd, principles relate to the logical description of the data and it is important to bear in
mind lhal. this is quite independent and feasible way in which the data is stored. It is only
some years back that these concepts have emerged from the research development test and
trial stages and are being seen as commercial projects. The aitractiveness of the relational
approach arouse from the simplicity in the data organisation and the availability of
reasonably simple to very powerful query languages. The size of the relatioaal database
apprdach is that all the data is expressed in terms of tables and nothing but tables. Therefore,
all entities and attributes have to be expressed in rows and columns. In the PC world also the
availability of dBASE III and its later versions have encouraged the greater use of relational
databases. The immense popularity of spreadsheets also arouse because of the inherent
simplicity of expressing information in terms of rows and columns,

The differences that arise in the relational approach is in setting up relationships betwaen
different :ables, This actua]ly makes use of certain mathematical operations on the relation
such as p-ojection, union, joins, etc. These operations from relational algebra and relational
_calculus are discussion in some more details in the second Block of this course. Similarly in

+ order to achieve the organisation of the data in terms of tables in a satisfactory manner,a
technique called normalisation is used.

A tmit-in the 2econd bleck of this course describes in detail the processing of normalisation
and various stages including the first normal forms, second normal forms and the third
normal forms. -At the moment it is sufficient to say that normalisation is a technique which

- helps in determining the most appropriate grouping of data items into records, segments or
tuples. This is necessary because in the relational model the data items are arranged in tables
which indicate the structure, relationship and integrity in the following manner:

(1) Inany given column of a table, all items are of the same kind
(2} Each item is a simple number or a character string

{3) A]l rows of a table are distinct. In other words, no 2 rows which are identical in every
column.

(4) Ordering of rows within a Iab{e is immaterial

(5) The columns of a table are assigned distinct names and the ordr:nng of these columns is
1mmatena.l

(6) If a1able has N columns, it is said to be of degree N. This is sometimes also referred to
as the gardinality of the table. From a few base tables it is possible by setting up
relations, create views which provide the necessary information to the different users of”

: Ihe same database.

Database Models and lts
Implementation

BCA-1.5/35
15

Introductory Concepts of
Data Base Management System

BCA-1.5/36
36

2.6.1 Advantages and Disadvantages of Relational Approach

Advantages of Relational approach

The popularity of the relational database approach has been apart from access of availability
of a large variety of products also because. it has certain inherent advantages.

(1) Ease of use: The revision of any information as tables consisting of rows and columns is
quite natural and therefore even first time users find it attractive.

" (2) Flexibility: Different tables from which information has to be linked and extracted can -

be easily nmipulamd by operators such as project and join to give information in the
form in which it is desired.

(3) Precision: The usage of relational algebra and relational calculu.s in the manipulation of
the relations between the tables ensures that there is no ambiguity which may otherwise
arise in establishing the linkages in a complicated network type database. '

4) Security: Security control and authorisation can also be implemented more easily by
moving sensitive attributes in a given table into a separate relation with its own
authorisation controls. If authorisation requirement permits, a particular attribute could

. be joined back with others to enable full information retrieyal,

(5) Data Independence: Data independence is achieved more easily with normalisation
stmcmmus_edm amlatlonaldatabassrl'mnm the more complicated tree or network
structure.

(6) Data Manipulation Langugge:.'l'he possibility of responding to ad-hoc query by means

- of alanguage based on relational algebra and relational calculus is easy in the relational
database approach, For data organised in other structure the query language either
becomes mnphx or eaxtremcly limited in its capabilities.

Ihsadvantages of Rehuonal Approach

One should not get carried way into believing that there can be no alternative to the RDBMS.
This is not so. A major constraini and therefore disadvantage in the use of relational database -
system is machine performance. If the number of tables between which relationships to be
established are large and the tables themselves are voluminous, the performance in
responding to queries is definitely degraded. It must be appreciated that the simplicity in the
relational database approach arise in the logical view. With an interactive system, for
example an operation like join would depend upon the physical storage also. It is, therefore
common in relational databases to tune the databases and in such a case the physical data
la:rout would be chosen so as to give good performance in the most frequently run
opemuons. It therefore would naturally result in the fact that the lays frequently ran
operations would tend to become even more shared. ;

‘While the relational database approach isa logicaﬁ!y attractive, commercially feasible
approach, but if the data is for example naturally organised in a hierarchical manner and
stored as such, the hierarchical approach may give better results. It is helpful to havea
summary view of the differences between the relational and the non-relational approach in
the following section.

2.6.2 Difference between Relational and Other models

1. Implementation independence : The relational model logically represents all -
relationships implicitly, and hence, one does nat know what associations are or are not
physically represented by an efficient access path (without looking at the intemal data
model). ' d

2. Logical key pointers : The relational data model uses primary (and secondary) keys in
records to represent the association between two records. Because of this model’s
implementation indepcndence, however, it is conceivable that the physical database
(totally masked from the user of a relational database) could use address pointers or one’
of many other methods.

3. Normalisation theory : Propertics of a database thmmakc it free of certain maintenance
problems have been developed within the context of the relational model (although these
properties can also be designed inio a network data model databasc). ;

4, High-level programming languages : ngammmg lanpuages have been developed

specifically to access databases defined via the relational data model; these languages

. permit data to be manipulated as groups or files rather than procedurally: one record at a

time.

2.6.3 An Example of a Relational Model

Let us see important features of a RDBMS through some examples as shown in figure 24.

A relation has the following properties:

1. Each column contains values about the same attribute, and each table cell value must be

simple (a single value).

2. Each column has adlsl.lmt name (attribute name), and ﬂwmderﬂf columns is

immaterial.

3. Eachrow is distinct; that is, one row cannot duplnca:e another row for selected key

attribute columns.

4, The sequence of the rows isimmat&ial.

PRODUCT relation

Attributes
__---"""A"'-—.'.__
F g : ST
PRODUCT # DESCRIPTION | PRICE | QUANTITY-
ON-HAND
0100 TABLE 500.00 42
0975 WALL UNIT 750.00 0
1
Toples § 1280 CHARR 400.00 13
1775 DRESSER 500.00 8
et
Primary Key
VENDOR relation
VENDOR# VENDOR-NAME VENDOR-CITY
26 MAPLE HILL DENVER
13 CEDAR CREST BOULDER
16 OAK PEAK FRANKLIN
12 CHERRY MTN LONDON
SUPPLIES relation
VENDOR# PRODUCT# | VENDOR-PRICE
13 1775 250.00
16 0100 150.00
16 1250 - 200.00
26 1250 200,00
26, 1775 275.00

Figure 24 : Example of a relational data model

Relative
record#

1
2
3
4

As shown in figure 24, a tuple is the collection of values that composesone row of a relation.

A tuple is equivalent to a record instance. An n-tuple is a tuple composed of n attribute

values, where n is called the degree of the relation. PRODUCT is an e.xample. of a 4-tuple;
lhc number of tuples in a relation is its cardinaliity.

Datahase Models and its

Implementation

BCA-1.5/37
7

Introductory Concepts of
Data Base Maragement System

BCA-1.5/38

A domain is the set of possible values for an atiribute. For example, the domain for
QUANTITY-ON-HAND in the PRODUCT relation is all integers greater than or equal to
zero. The domain for CITY in the VENDOR relation is a set of alphabetic characters strings
restricted to the names of U.S. cities.

We can use a shorthand notation to abstractly represent relations (or tables). The three
relations in figure 24 can be written in this notation as

PRODUCT (PRODUCT#, DESCRIPTION, PRICE,
QUANTITY-ON-HAND)

VENDOR(VENDOR#, VENDOR-NAME, VENDOR-CITY)

SUPPLIES (VENDOR#, PRODUCT#, VENDOR-PRICE)

In this form, the attribute (or attributes in combination) for which no more than one tuple
may have the same {combined) value is called the primary key. (The primary key attributes
are underlined for clarity.) The relational data model requires that a primary key of a tuple
(or any component attribute if a combined key) may not contiin a null value. Although
several different atributes (called candidate keys) might serve as-the primary key, only onie
(or one combination) is chosen. These other keys are then called alternate keys.

The SUPPLIES relation in figure 24 requires two attributes in combination in order to
identify uniquely each tuple. A composite or concatenated key is a key that consists of two
or more dtfributes appended together. Concatenated keys appear frequently in a relational
data base, since intersection data, like VENDOR-PRICE, may be uniquely identified by a
combination of the primary keys of the related entities. Each component of a concatenated
key can be used to identify tples in another relation. In fact, values for all uompnmmke.ys

- of a concatenated key must be present, although monkey attribute values may be missing,

Further, the relational model has been enhanced 1o indicate that a tuple (e.g., for PRODUCT)
logically should exist with its key value (¢.g., PRODUCT#) if that value appearsin a :
SUPPLIES tuple; this deals with existence dependencies.

We can relate tuples in the relational model only when there are common attributes in the
relations involved. We will expand on this idea in the next section, The SUPPLIES relation
also suggests that an M:N relationship requires the definition of a lIurdm]atmn. much like a
link or mtersecum record in the simple network model.

‘Codd (1970) populan'sad\mc use of relations and tables as a way to model data. At first

glance, this view of data may scem only to be a different perspective on the network data
model (all we have done is replace address pointers with logical pointers and eliminate lines
from the database diagram). Several debates have essentially argued this point. Codd and
many others have shown that relations are actually formal operations on mathematical sets.
Further, most data processing operations (e.g., printing of selected records and finding
related records) can also be represented by mathematical operators on relations, The result of
mathematical operations can be proved to have certain properties. A collection of operations,

* called normalisation, has been shown to result in databases with desirable maintenance and

logical properties. This mathematical elegance and visual simplicity have made the relational
data model one of the driving forces in the information systems field.

2.6.4 Conversion of Hierarchical and Network Structure into Relation

The relational data model is as rich as the complex network model in its ability to represent
directly, withom much redundancy, a wide variety of relationship types. However, unlike the
network model, relationships are implicit; that is, there is no diagrammatic convention (arcs,
or links) used to explicitly shuw a relationship betweén two relations (i.e., relationship
between entities).

Hierarchical and network structure can be decomposed into relations when appropriate
connection fields are inserted into relevant child record types. The figure 25 showsan
example of converting a 4-level hierarchical structure into a relational data model.

To establish a data path from the root to a child node, the primary keys of theu' respective
parents are inserted into all child nodes. For example, the primary key of COLLEGE is
inserted into the PROGRAM relation, while the primary key of PROGRAM
(PROGRAM(MAME) is in ttrtt added 10 the STUDENT relation.

Databass Models and ity
Hierarchical Schema - Implementszion

COLLEGE
| COLLEGE |COLLEGE-ADDR|

PROGRAM
| PROGRAM-NAME | _PROGRAM- coonnm,m:ml

STUDENT / 1\4:-':)1:11'515

|s-No | s-NAME] s-ADDR | [COURSE-NO | COURSE-NAME] DATE-OFFERED]

OFFER _
| OFFER- NO| DATE |

Figure 25 : Conversion of an N | Mwl Hiu'-r-:hlul SMHmlollMuﬂ Ml'lodel

Let us consider the following seg of rclatlons that definc a relational database for IJ'.'c complex
network of figure 26: . -

'_C;jétomer +—== Order |
j

order-for-

S oduct 2
Product |- »ol Order-line
Saﬁm‘u-uf-
goods - .
Vendor

Fjgureﬁ.: Cnmpl.Netwurli Data Moded
CUSTOMER(CUSJOMER#, CUSTOMER-ADDRESS),
cusmmnmm;
ORDER(ORDER#,CUSTOMER#,0RDER-DATE,
DELIVERY-DATE, TOTAL-AMOUNT)
PRODUCT(PRODUCT#,DESCRIPTION, i’RICE,
QUANTITY-ON-HAND)
ORDER-LINE(ORDER# PRODUCTY,
QUANTITY-ORDERED, EerHﬂEb-Ptha)
VENDOR(VENDOR# VENDOR—NAME,VEQDOR—CI‘I‘Y)
SUPPLIES(VENDOR#, PRODUCTS)

In this example, CUSTOMER, PRODUCT, and VENDOR are basic relations that exist

independently of all other data. The ORDER relation, too, can exist independently, but one

of its attributes, CUSTOMERG, called a cross-reference key, implements the

Orders-for-Customer zelationship from figurg 26. The attribute CUSTOMER# in the

ORDER relation could have any na me (say, ACCOUNT#). As long as the domain of values

and the meaning of CUSTOMER# and ACCOUNTH# are the same, then proper linking of

related tuples can oceur. We will use a dashed underline to denote a cross-reference key. The

problem with using different names: in different relations for the same atéribute is that a

“reader” of a relational database de finition may not readily understand that these two

attributes can be nsed tq link related data. In-most cases, use of & cross-reference key in the

relational data model means that, for mample-aﬂ]fvalmnftUSTOMER#fonndmanORDER BCA-1.5/39
, tuple logically should exist a CUS TOMER# in some unique existing CUSTOMER tuple. %

]'n-lmd‘ucurf Concepts of
. Data Base Management System

BCA-1.5/40
40

The ORDER relation has its own unique key; ORDER#. An alternate key might be the
combination of CUSTOMER# and ORDER- DATE (if customers do no submit two or more
orders in a day). If ORDER# was not an essential piece of data for applications of this
database, then the following SALE relation would be sufficient:

SAL.E{CUSTDBER#,ORDER-DATE.DELIVERY-DATE. TOTAL-AMOUNT)

Here the CUSTOMER# key appears as (part of) the primary key in each related record -
(tuple). In this case, CUSTOMER# is referred to as a foreign key. The term referential
integrity applies to both cross-reference and foreign keys, and means that the key value must
exist in the associated relation for database integrity. Thus, a SALE cannot be created unless

a CUSTOMER row exists for the referenced customer and a CUSTOMER row may not be
deleted if this will leave any SALE row without a referenced CUSTOMER. Foreign keys are -
common in relational data bases due to the way they are designed, as will be seen later.

The ORDER-LINE and SUPPLIES relations exist because of M:N relationships.
ORDER-LINE is like the intersection record of a network database where
QUANTITY-ORDERED and EXTENDED-PRICE are the intersection data. The .
concatenated key is composed of the keys of the related relations. The SUPPLIES relation is
like the link record of a simple network database. In this database, we do not care to know
anything aboul this M:N relationship other than the PRODUCT and VENDOR associations
themselves.

In general, a hierarchical or network structure can be decomposed into a relational data
model as follows: : ;

(1) Each node in a hierarchical or network structure is isolated into a separale relation,

(2) The primary key of a parent node is incorporated into its child relation ta.establish the
one 10 many relationship between the parent and its child.

2.6.5 Implementation of the Relational Data Model

As stated earlier, the relational data model is @ purely logical view of data, Unlike the
hierarchical and network models, whose structure and diagrammatic conventions imply
specify physical hnkagcs, in. the relational model, we do not know how relationships have
been lmpln:mcntcd

‘We might conclude that, in pracuoc a wide variety nfdata structures would be used.
Surprisingly this is not the case. .

By far, the most common data structure for 1mp1ementmg a relational database is the use of
tree-structured indexes (ofter: B-trees) on primary and selected secondary keys. Any attribute
that is used io select tuples im a PROJECT or WHERE clause is a possible candidate for
indexing. Autributes uscd to .JOIN relations can be indexed; frequently, this greatly reduces
the cost to perform a JOIN. To JOIN relations VENDOR and SUPPLIES from figure 24
without an index (or without sorting both relations into order by values for the oommm
attribute), we would have to follow this procedure.

1. Do Until end of VENTJOR table.
2. Read next VENDOR. wple.

3. Scan the whole SUPPLIES relation, and if a tuple has the smneVENDOR#asﬂw
current VENDOR uuple, then create a new RESULT tuple.

. 4. EndDa.

5. Eliminate redundant; tuples from relation RESULT.

With an index, step (3) i's made much more efficient, since only the SUPPLIES tuples with
the same VENDOR#, if any exist, need be retrieved (which is probably a very small
percentage for each value: of VENDORG#).The DBA cannot optimise the database for all
possible query formulaticns. Thus, for every relation the anticipated volume of different
types of quéries, updates , and so on is estimated to come up with an anticipated usage
pattern. Based on these statistics, decisions on physical organisation are made. For example,
it would be inappropriate to provide an access structure (say a B* -tree) for every attribute of
every relation; these sec:ondary access structures have storage and search overneads.

The DBMS can make use of all the features of the file management system. As most DBMSs . Database Models e
have versions that run on different machines and under different operating system - Donyhemmion
environments, the DBMS may support file systcms not available under the host machine
environment. Thus, every DBMS defines the file and index structures it supports. The DBA
chooses the mmappmpmw file organisation. In the event of changes 1o usage patiems or to
expedite the processing of certain queries, a reorganisation can take place. :

Alargenumberufqumcs requsmsdnjmnmg of two relations. It may be appropriate to Eeﬁp
the joining tuples of the two relations ither as linked records or physically gmuped mto a
single record.

We may consider a relation to be implemented in terms of a single (or multiple) file(s) and a
tuple of the relation to be a record (or collection of records). For the file, we may definea

. storage strategy, for example, sequential, mdued, or random, and for each attribute we can
define additional access structures.

The most powerful DBMSs allow a gmamml of implementation detail tubedeﬁncd for the
relations. The more common but less powerful DBMSs (mostly on microcomputers) allow
very simple definitions, for cxample, indexing on certain attributes (this is usually a B* -tree
index). Some systems require the index 1o be rcgmmwd after any modification to the
indexing attribute values. Additional commands for sorting and other such operations are
also supported. The typical file organisation is plain sequential. (In fact, many m:cm-based
DBMSs confuse a relation or table with a flat sequential file.)

Asmglcrelaum may be stored in more than one ile, i.e., some attributes in one, the restin -
others. This is known as fragmentation. This may be done to improve the retrieval of certain
attribute values; by reducing the size of the tple in a given file, more tuples can be feiched
in a single physical access. The system associates the same internally generated identifier, -
called the tuple identifier, to the different fragments of each tuple. Based on mm tple -
identifiers a completc wple is easy to reconstruct.

~ In addition to making use of the file sysiem, mcDBMSmmkecpmcknrﬂedamlsofcmh

- relation and its attribute defined in the database. All such information is kept in the directory.
The directory can be implemented using a number of system-defined and maintained
relations. For each relation, the system may contain a tple in some system relation, -
recording the relation name, creator, date, size, storage, structure, and so on. For each -
attribute of the relation, the system may maintain a tuple recording the relation identifier,
attribute name, type, size, and so forth. Different DBMSs keep different amounts of -
information in the directory relations, However, because the implementation is usually as
relations, the same data manipulation language that the DBMS supports can be used to query
these relations. -

Relational dalabase management systems are often used for highly interactive on-line
information systems, which may have many adhoc queries. Fast response, at the expense of
extra index space, seems 10 behe popular choice.

Check Your Progress - /
1 Define a bit map and explain how it can b¢ used lmmplemmt M: ‘i relaumship.

e i L L T T T T T
= : i

S i B RS AR R SRR AR R R A A AR RS

A

2. Defire the fol Imwiﬁg terms:
e Inveried list s

e Referential Integrity

‘¢ Foreign key

o Condidate key

o BTres BCA-1.5/41

4

introductory Concepts of p
‘Data Base Management System . .

D e e T

2.7 SUMMARY-

Inlhls unit we reviewed ﬂmma;muadmonaldammodelsusedmwumtbnms.m
three models are hierarchical, network and relational.

The hierarchical model evolved from the file based system. It uses tree type data structure to
represent relationship among records. The hierarchical data model restricts each record type
to only parent record type. Each parent record type can have any number of children record

types. '

In a network model, one child record may have more than one parent nodes. A network can
be converted into one or more trees by introducing redundant nodes.

' Therelamnalnmdellshasﬂdonacuilecuon of tables. A tuble is also called relation. A tree
wmuksmmuuembeomwmd:nmamlauumimmbywpmmngmhmdem :
the data structure into a relahm

The entity-relationship diagrams are useful in representing the relationship among mﬁl.ics.
They help in logical database design. We have also presented implementation schemes of
each of the traditional database models. You should refer to the next unit for understanding
data structure concept for implementation schemes,

2.8 MODEL ANSWERS

1. Abit-map is a matrix created for each relationship. Each row coiresponds to the relative

. record number of a source recard and-each column corresponds to the relative record
number of a target record of the relationship. A 1 bit in a ~=2! for row x and column y
mteans that the records corresponding to row x and column y are associated in this
relationship; a zero means no association.

2. e TInverted list— It is a table or list that is organised by secondary key values.

e Referential integrity — It is an integrity constraint that specifies that the value of an
attribute in orie relation’depends on the value of thé same attribute in another
relation,

e . Foreign key — If a non- kcy attribute in one relation appears as the pnrmr:,rkey {ar
part of the primary key) in another relation, it is called foreign key.

Candidate key — One or more atiributes in a re]atqm that uniquely identify instance
of an entity, and therefore, may serve as a primary key in that relation,

e B-Tree — It is a tree data structure in which all leaves are at the same distance from
* the root (B stands for balanced).

29 FURTHER READINGS

1. Blme,Desm An!mduc!m to Database Systems, Galgotia Publmnoqut.Ltd.
1994

2. Henery F. Korth Ahranam Silberschatz, Database System Compt.:. McGraw Hill
- Intemational Editions. ;

BCA_1.5/42
42

UNIT3 FILE ORGANISATION FOR

CONVENTIONAL DBMS

Structure

30
i1
32
33
34

3.5
36

Introduction

Objectives

File Organisation

Sequential File Organisation

Indexed Sequential File

3.4.1 Typesof Indexes

3.4.2 Organisation Structure of Indexed Sequential file
343 Vinual Storage Access Method (VSAM)
3.4.4 Implementation of Indexing using tree Structure
Direct File Organisation

Multi-key File Organisation

3.6.1 The need for Multiple Access Path

362 Mulilist file Organisation

3.6.3 Inverted File Organisation

364 Cellular Pamitions

3.6.5 Comparison and Trade-off in the Design of m'nll:ike'y file
Summary

Model Answers

Further Readings

3.0 INTRODUCTION

Just as arrays, lists, trees and other data structures are used to implement data organisation in
main memory, a number of strategies are used to support the organisation of data in

One access key 7

/ . ﬁgmww
keys aito
Sequenua ccess only '

23

m‘y\

-";-\

Bnn B Implementati
"g Tros Tﬂ!ﬂ mechanism &

. Hashi
) e

Flgum 1 : File organisution techniques

BCA-1.5/43

43

i ntroduetory Contepts of
Bata BaseManagement System

BCA-1.5/44

44

secondary memory. In this unit we will look at different strategics of organizing data in the
secondary memory. In this unit, we are concerned with obtaining data representation for files
on exiernal slorage devices so that required functions (e.g. retrieval, npdate) may be carried
our efficiently. The particular organisation most suitable for any application will depend
upon such factors as the kind of external storage available, types of queries allowed, number
of keys, mode of retrieval and mode of update, The figure 1 illustrates different file
organisations hased on an access key. :

3.1 OBJECTIVES

After going through this unit you will be able to:
@ define what is a file organisation
» list file organisation techniques
e discuss implementation techniques of indexing through tree-structure
e discyss implementation of direct ﬁl.c organisation -
e discuss implementation of multikey file organisation

e discuss trade-off and comparison among file organisation techniques

3.2 FILE ORGANISATION

Precise definition of each of these technique will be presented later in this unit.
The technique used to represent and store the records on a file is called the file organisation.

. The four fundamental file organisation techniques that we will discuss are the following:

1. Sequential

2. Relative

3 Irbdexed.sequenﬂal

4. Multi-key _ . ,
There are two basic ways, that the file urgan'isaﬁon techniques differ. First, the organisation
determines the file’s record sequencing, which is the physical ordering of the records in
Second, the file organisation determines the set of operation necessary to find particular
records. Individual records are typically identified by having particular values in search-key
ficlds. This dafa field may or may not have duplicate values in file, the field can be a group
‘or elementary item. Some file organisation techniques provide rapid accessibility on a variety
of search key; other techniques support direct access only on the value of a single one.
The organisation most appropriaté for a particular file is determined by the operational
characteristics of the storage medium used an the nature of the operations Lo be performed on
the data. The most important characteristic of a storage device that influences selection of a

- storage device once the appiopriate file organisation technique has been determined) is

whether the device allows direct access to particular record occurrences without accessing
all physically prior record occurrences that are stored on the device, or allowsonly
sequential access to record occurrences. Magrietic disks are examples of direct access
storage devices (abbreviated DASD's); magnetic tapes are examples of sequential storage
devices. : '

'3.3 SEQUENTIAL FILE ORGANISATION

The most basic way to organise the collection of records that from a file is to use sequential
organisation. In a sequentially organised file records are written corisecutively when the file
is created and must be accessed consecutively when the file is later nsed for input (figure 2).

EFiegnning of—| Record 1
ile

e
0]
18
d
r

Record n-1
Record N

End of file ——»

Figure 2 : Structure of sequential file

In a sequential file, records are maintained in the logical sequence of their primary key

values. The processing of a sequential file is conceptually simple but inefficient for random
" access. However; if access to the file is strictly sequential, a sequential file is suitable. A

sequential file could be stored on a sequential storage device such as a magnetic tape.

Search for a given record in a sequental file requires, on average, access to half the records
in the file. Consider a system where the file is stored on a direct access device such as a disk.
Suppose the key value is separated from the rest of the record and a pointer is used to
indicate the location of the record. In such a system, the device may scan over the key values
at rotation speeds and only read in the desired record. A binary or logarithmic search
technique may also be used to search for a record. In this method, the cylinder on which the
required record is stored is located by a series of decreasing head movements. The search,
having been localised to a cylinder, may require the reading of half the tracks, on average, in
the case where keys are embedded in the physical records, orrcqmrconlyascanmerthe
tracks in the case where keys are also stored separately.

Updating usually requires the creation of a new file. To maintain file sequence, records are
"copied to the point where amendment is required. The changes are then made and copied into
the new file. Following this, the remaining records in the original file are copied 10 the new
file. This method of updating a sequential file creates an automatic backup copy. It permits
updates of the type U, through U,

Addition can be handled in a manner similar to updating. Adding a record necessitates the
shifting of all records from the appropriate point to the end of file to create space for the new
record. Inversely, deletion of a record requires a compression of the file space, achieved by

-~ the shifting of records. Changes to an existing record may also require shifting if the record
size expands or shrinks.

The basic advantage offered by a sequential file is the ease of access to the next record, the
simplicity of organisation and the absence of auxiliary data structures. However, replies o
simple queries are time consuming for large files. Updates, as seen above, usually require the
creation of a new file. A single update is an expensive propositicn if a new file must be
created. To reduce the cost per update, all such requests are batched, soried in the order of the
sequential file, and then used to update the sequential file in a single pass. Such a file,
containing the updates to be made to a sequential file, is sometimes referred to a transacuun
file.

In the batched mode of updating, a transaction file of update records is made and then sorted
in the sequence of the s=quential file. The update process requires the examination of each
individual record in the origiral sequential file (the old master file). Records requiring no
changes are copied directly to a new file (the new master file); records requiring one or
more changes are written into the new master file only after all necessary changes have been
made. Inserticns of new records are made in the proper sequence. They are written into-the
new master file at the appropriate place. Records to be deleted are not copied to the new |
master file, A big advantage of this method of update is the création of an automatic backup
.copy. The new master file can a[ways be recre.atcd by processing the old master file and the
transaction fila

File Organisation For
Conventional DBMS

BCA-1.5/45

45

Introductory Concepts of

Data Base Management System

BCA-1.5/46
46

Block, Block, Blocky .

Figure 3 : A file with emply spaces for record insertions

A possible method of reducing the creation of a new file at each update run is to create the
original file with "holes” (space left for the addition of new records, as shown in the last

- figure). As such, if a block could hold K records, then at initial creation it is made to contain

only L * K records, where 0 <L < 1 is known as the loading fact~ ‘Additional space may
also be earmarked for records that may "overflow" their blocks, e.g., if the record ti logically
‘belongs to block Bi but the physical block Bi does not contain the re¢isite free space, This
additional free space is known as the overflow area. A similar technique is employed in
index-sequential files,

3.4 INDEX-SEQUENTIAL FILE ORGANISATION

The retrieval of a record from a sequential file, on average, requires access to half the records
in the file, making such enquiries not only inefficient but very time consuming for large files.
To improvesthe query response time ufa sequmual file, a type of mdaxlng technique can be
added.

An index is a set of y, address pairs. Indexing associates a set of objects o 2 set of mde;abk -

‘quantities, which are usually smaller in number or their properties provide a mechanism for

faster search. The purpose of mdexmg is to expedite the search process. Indexes created from
a sequential (or sorted) set of primary keys are referred to as index sequential. Although the
indices and the data blocks are held together physically, we distinguish between them
logically. We shall use the term index file to describe the indexes and data file to refer to the
data records. The index is usually small enough m be read into the processor memory.

A sequential (or sorted on primary keys) file 1]1at is indexed is called an index sequential
fite. The index provides for random access to records, while the sequential nature of the file
provides easy access to the subselgnuem records as well as sequential processing. An
additional feature of this file sysiem is the overflow area. This feature provides additional
space for record addition without necessitating the creation of a new file. Before starting
discussion on index sequential file structure, let us, discuss types of indexes.

341 Types of Indexes

The idea behind an index access structure is similar to that behind the indexesused
commonly in textbooks. A textbook index lists important terms at the end of the book in
alphabetic order. Along with each term, a list of page numbers where the term appears is
given. We can search the index to find a list of addresses - page numbers in this case - and
use these addresses to locate the term in the textbook by searching the specified pages. The
alternative, if no other guidance is given, is 10 sift slowly through the whole textbooks word
by word to find the term we are interested in, which corresponds to doing a linear search ona
file. Of course, most books do have additional information,such as chapter and section titles,
which can help us find a term without having to search through the whole book. However,
the index is the only exact indication of where each term occurs in the book.

An index is usually defined on a single field of a file, called an indexing field. The index
typically stores each value of the index field along with a list of pointers to all disk blocks
that contain a record with that field value, The values in the index are ordered so that we can
do a binary search on the index. The index file is much smaller than the data file, so
searching the index using binary search is reasonably efficient. Multilevel indexing does
away with the need for binary search at the expense of creating indexes to the index itself!

There are several types of indexes. A primary index is an indeX specified on the ordering
key field of an ordered file of records. Recall that an ordering key field is used to physically

~ order the f’]ereoordsondlsk. and every record has a umquevalucfurthatﬂeld If the

ordering figld is not a key field that :s, several records in te file can have the same value for
the ordering field another type of index, called a clustering index, can be used. Notice thata
file can have at most one physical ordering field, so it can have at most one primary index or
_ one clustering index, but not both. A third type of index, called a secondary index, can be

- specified on any nonordering field of a file. A file can have several secondary indexes in
addition to its primary access method. In the next three subsections we discuss these three

. types of indexes.

Primary Indexes

‘A primary index is an ordered file whose records are of fimd lencth wlth two fields. The
first field is of the same data types as the ordering kcy field of the data file, and the second
field is a pointer ta a disk blokc - a block address. T7.. ardering key field is called the
primary key of the data file There is one index entry {or index recnrd) in the index file for
each block in the data file, Each index entry i..2 the va'ue of the primary key field for the
first record in a block and a pmnlﬂ:r to other block as its two field values, We will refer to the
two ficld values of index entry i as K(i), P(i).

To create a-primary jndex on the ordered file shown in fiugre 4, we use the Name field as the
primary key, becaus that is the ordering key field fo the file (assuming that each value of

NAME SSN BIATHDATE JOB SALARY SEX

block 1 Aaron, Ed
: Abbatt, Diane

Acosta, Marc | i: [&

block 2 Adams, Jahn
Adams, Robin

Akers,dan | | l |

" block 3 Alexandar, Ed
Alfred, Bob

Allen, Sam | [I | |

blpek 4 Allen, Troy
andars, Kaith

Anda@on, Rob |]: | |

black 5 Andarson, Zach
Angeli, Joa

Archer, Sue | [[| 1

block & - Arnoid, Mack 5
Arnold, Steven

Atiins, Timothy] [: ==] [|

bhcir. 1 Wong, James
Wood, Donald

Woods, Manny] [: 1 I *

block n Wright Pam
* | Wyatt, Charles

Zimmer, Brron{ . E: | | . |

‘igure 4 Some blocks on an ordered (scqusential) file of EMPLOYEE records with NAME as the ordering ficld

Flie Organisation For
Conventional DEMS

BCA-1.5/47

47

Intrcductory Concepts of
Data Base Management System

BCA-1.5/48

-

™

NAME is unique). Each entry in the index will have a NAME value ahd a pointer. The first
three index entries would be: - :

(Aaron, Ed), P(1)= address ?fblock 1>

<K(l) =
<K(2) = (Adams, John), P(1) = address of block 2 >
<K(3) = (Alexander,Ed), P(3) = address of block 3>
(a) NAME SSN JOB SALARY
o
1
2]
3
M-2
M-1
{b) . &m fiolds. . overflow polnter
0 -1
1 M
2 a1
a -1
4 M+ 2 address
space
M-2 - M+1 |
Mot — . —
M M+5
M+ 1) =1
M2 . Mt overflow
space
M+0=-1
M+ O

— nuil pointer = -1 Y i
- @verfiow pointer refers o posi
- naxt record in linked list

; Figure 5 : Diustrating internal hashing data structures.
(a) Array of M positions for use in hashing. (b) Collision resolution by Mg of records.

Figure 6 illustrates this primary index. The total number of entries in the index will be the
same as the number of disk blocks in the ordered data file. The first record in each block of
the data file is called the anchor record of the block, or simply the block anchor (a scheme
similar to the one described here can be used, with the last record in each block, rather than
the first, as the block anchor! A primary index is an example of what is called a nondense
index because it includes an entry for each disk block of the data file rather than for every
record in the data file. A dense index, on the other hand, contains an entry for every record in
the file. ; =

The index file for a primary index needs substantially fewer blocks than the data file for two
reasons. First, there are fewer index entries than there are records in the data file because an
entry exists for each whole block of the data file rather than for each record. Second, each
index entry is typically smaller in size than a data record because it has only two fields, so

_mchduemhs&audamrw&fdsﬁﬂfuinmeblwhAbimmhdnheh&eﬁﬁh

will hence require fewer block accesses than a binary search on the data file.

DATA FILE

KEVFELD)

NAME SSN BIRTHDATE JOB SALARY SEX
Aaron, Ed ; : : Yo
Abbott, Diane |

e [] = 1T

; ot Adams, John
INDEX FILE B Adams, Robin

\) s T L

. BLOCK: [Alexander, Ed
o) e S
KEY : p

: Allen, Sam -
/”!im.'l'mt

Anders, Keith
ddosonfob | | []

l@.m i \'\'Andmm.zam

Angeli, Joa

Aaron, Ed

[
o|p|e/elole

Arnold, Mack
Amold, Steven

Wong, James
Wright, Pam

ols|

Atins, Timothy | | . i.] . [

Wong, James
Wood, Donald

Woods, Manny |- | | I

Wright, Pam
Wyatt, Charles -

e] s ETeT

Figure 6 : Primary Index on the ordering key ficld of the file shown in figure 5

A record whose primary key value is K will be in the block whose address is P(i), where
Ki< K <(i+ 1). The ith block in the data file contains all such records because of the
physical ordering of the file records on the primary key field, we do a binary search on the
index file to find the appropriate index entry i, then retrieve the data file block whose address
is P(i). Notice that the above formula would not be correct if the data file was ordered on a
nonkey field that allows multiple records to have the same ordering field value. In that case

 the safe index value as that in the block anchor could be repeated in the last records of the

' previous block. Example 1 illustrates the saving in block accesses when using an index to

« search for a record.

~ Example 1 : Suppose we have an ordered file with r = 30,000 records stored on a disk with
‘block size B = 1024 bytes. File records are of fixed size and unspanned with record length R

- = 100 bytes. The blocking factor for the file would be bfr L(B/R)] = [(1024/100)] = 10
records per block. The number of blocks needed for the file is b = [(r/bf) |- =[(30,000/10) 1 =

File Organisation For
Conventional DEMS

BCA-1.5/49

49

Introductory Concepts of,. 3000 blocks. A binary search on the data file would need approximately [(log,b) | =
Data Base Management System {(10323000)-[= 1% block socesses.)]

Now suppose the ordering key field of the file is V =9 bytes long, a block pointerisP=6
bytes long, and we construct a primary index for the file. The size of each index entry is R, =
(9 + 6) = 15 bytes, 50 the blocking factor for the index is bfr, =L(B/R)] =L (1024/15)] = 68
entries per block.

The total number of index entries r; is equal to the number of blocks in the data file, which is
3000. The number of blocks needed for the index is hence b, = rﬁ_rg'bfri)—l =[Fmoxﬁsﬂ =45
blocks. To perform a binary search on the index file would need [(log;b) | =/ (log,45)] =6
block accesses. To search for a record using the index, we need one additional block access
to the data file for a total of 6 + 1 = 7 block accesses - an improvement over binary search on
the data file, which required 12 block accesses. ‘s

-A major problem with a primary index - as with any ordered file - is insertion and deletion of
records. With a primary index, the problem is compounded because if we attempt 1o insert a
record in its correct position in the data file, we not only have to move records to make space
for the new record but also have to change some index entries because moving records will
change the anchor records of some blocks. We can use an unordered overflow file. Another

- possibility is 1o use a linked list of overflow records for each block in the data file. We can
keep the records within each block and its overflow linked 'ist sorted to improve retrieval
time. Record deletion can be handled using deletion markers.

Clustering Indexes ; _
If records of a file are physically ordered on a nonkey field that does not have a distinct value
. for each record, that field is called the clustering field of the file. We can creale a different
 type of index, called a clustering index, to speed up retrieval of records that have the same.

DATA FILE
{CLUSTERING
FIELD)
OEPTNUMIER NAME SSN JOB BIRTHDATE SALARY
- - :
INDEX FILE 1
(<K(1), P(}> enties) 5
2
2
CLUSTERING s 3
FIELD BLOCK 3
VALUE POINTER e
1 & .
2 F =
3 el a
4 ™S 4
5 4
& e
8 O 5
5
I8
5
7]
E A
i
SR
8
8
a &
8

BCA-1.5/50

" Figure 7 ; 4 <lustering Index on the DEPTNUMBER ordering fleld of an EMPLOYEE flle .
50 - ;)

value for the clustering field. This differs from a primary index, which requiires that the File Organisation For °
ordering field of the data file have a distinct value for each record. : Conventional DBMS

A clustering index is also an ordered file with two fields; the first field is of the same type as
the clustering field of the data file and the second field is a block pointer. There is one entry
in the clustering index for each distinct value of the clustering field, containing that value
and a pointer to the first block in the data file that has a record with that value for its

: DATA FILE LI
(CLUSTERING
FIELD)

DEPTNUMBER NAME SSN JOB BIRTHDATE SALARY

1
T]
. : :
block pointer .mf}'m pointer
2
2
3
3 2
3
3 ' : e i
biock painter @ .---ﬂnul painter
INDEX FILE — ; -
(<K(i), P(i)> entries) a i f I I I
block pointer .*—-—ﬂnul. pointer
FIELD BLOCK .
VALUE POINTER 4
1, 4
2
- 3
ikl black pointer .—-—-—ﬂnul painter
5 -
-] -
8 5
5
5 ;
T block painter .uuﬂnul palnter
[+
B
]
6 : :
block pointer @ .—ﬂnulpuinnm
6| I |
block pointer &-—-—ﬂnul pointer
B
[:]
B
" block pointer .—ﬂnui pointer
Figure 8 : Clustering index with mparnuﬁlu:ks for each group of records .) BCA-1 5/51

with the same value for the dustering feld
' 51

Introductory Concepts of
nmm:ws;m
BCA-1.9/52

52

chstmngﬁdifﬁgm?shumanmnphdadamﬁhwnhachmngmﬂemNowﬂu
record insertion and record deletion still canse considerable problems because the data. .
mnﬁsmphyﬁcaﬂyudmﬂ.hﬂhvm&&sprnhkmofﬂwﬁm,uwmmnnm
awhdeﬂuckfwmdwalueafﬂucmmrmgﬁﬁlﬂ.ﬂmmmuvﬂmmﬂmdin'
the block. If mare than one block is needed to store the records for a particular value,
mmmmwmmmmmmmm
rclnnvclysu'pightfwward Figure 8 shows this scheme. - = =

Adustemgmﬂﬂmamdwuamphufanmdmmmdexbemmnhsmmwfmwery :
distinct value of the indexing field rather than for evrey record in the file. -

Secendarjlnd:xes '
Asamndarymdexalsmsanordmdﬁkwuhmﬁdds.and asmlheothm'mdems,ths
second field is a pointer io a disk block. The first field is of the same data type as some
nonordering field of the data file. The field on which the secondary index is constructed is
called an indexing field of the file, whether its values are distinct for every record or not.
There can bé many secondary indexes, and hence indexing fields, for the same file..

We first consider a secondary index on a key field - a field having a distinct value for every
record in the data file. Such a field is sometimes called a secondary key for the file, In this
case there is one index entry for each record in the data file, which has the value of the
secondary key for the record and a pointer to the block in which the record is stored. A

& secnndarymdexunakeyﬁcﬂmadmumdﬂbmum:tmmsmﬂmfwmhmd

in the data file. .

We again refer to the lwoﬁcld valmséfmda:cuu'ylasl({"), P(i) 'I‘hémmesareordefed
by value of K(i), so we can use binary search on the index. Because the records of the data

fslea:cmtphymca]ly urdueﬁbyvalue&ofthsmdarykzyfwld,m:ammmbhck i

T L omns
woex : . . FIELD
L O I e B O o
) Te - :. -
: B\ 13
3) '8
4 b
5 e S
8 e 18
7 (n” a
8 17,
rd
‘9 4 =
B [N 1
1 pe= =
12 —af : L 2
13 &\
Bl 2 o
15 - & 10
| 1a ’ 20
¥ |
17 4
18 [4
19 N 23
20 7 18
at "1 14
22 -
23 -] 12
24] 7
- ; 19
g 22

Figure 9 : A dease secondary Index on a nonordering key field of a file :

anchors. That/is why an index entry is created for each record in the data file rather than for
each block as in the case of a primary index. Figure 9 illustrates a secondary index on a key
attribute of a data file. Notice that in figure 9 the pointers P(i) in the index entries are block-
pointers, not record pointers. Once the appropriate block is transferred to main memory, a
search for the desired record within the block can be carried out. .

A secondary index will usualy need substantially more storage space than a primary index
becaue of its larger number of entries. However, the improvement in search tlime for an
arbitrary record is much greater for a secondary index than-it is for a primary index, because
.we would have 10 do a linear search on the data file if the secondary index did not exist, For
a primary index, we could still use binary search on the main file even if the index did not
exist because the records are physically ordered by the primary key ficld. Example 2
illustrates the improvement in number of blocks accessed when using a sccundary index to
search for a record. :

Example2: Consldcr the file of Example 1 withr= 30.000 fixed- length records of size R =
100 bytes stored on a disk with block size B = 1024 bytes. The file has b = 3000 blocks as
calculated in Example 1. To do a lincar search on the file, we woulc:l requtre b;‘2 3000.-’2 =
"1500 block accésses on the average.

Suppose we construct a.sacunda.ry mdex ona nonordcnng key field of 1he ﬁk: thatis V=9
bytes long. As in Example 1, a block pointer is P = 6 bytes long, so-each index entry isR. =
(9 +6) = 15 bytes, and the blocking factor for the index is bff; = LBR)) =L1024/15)] =
68 entries per - block. In a dense sccondary index such as this. the total number of index
_entries is 1, is.equal to the number of records in the data file, which is 30,000. The number of
blocks needéd for the mdex is hencc b, = (r/bfr) = (30, DUD;‘GB} 442 blocks

Cumpan: !h!s 10 the 45 hlocks needed by lhc nondense primary 1ndc;t in Exampl(: 1

A binary search on this secondary index needs (log,b,) = (1031442) 9 block acc:sses To
search for a record using the index, we need an additional block access to the data file.for a
total of 9 + 1 =10 block accesses - a vast improvement over the 1500 block accesses needed
on the average for a linear search,

DATA FILE
{INDEXING
FIELD)

DEPTNUMBER MAME - SS5N JOB BIRTHDATE SALARY

@ |- o [

@ e i P

Ty

o ol |

w2 o f= lon

oo |w |

Figure 10 : A secondary index on a nonkey ficld implemented using one level of indirection so that index
entries are fixed length and have unique fleld values . B

File Organisation For
Conventional DBMS

BCA-1.5/53

51

Introductory Concepts of
Data Base Management System

BCA-1.5/54
54

We can also create a secondary index on a nonkey field of a file. In this case numerous
records in the data file can have the same value for the indexing field. There are several
options for implementing such an index: ' i

e Option 1is to include several index entries with the same K(i) value - one for each

record. This would be a dense index.

Option 2 is to bave variable-length records for the index entrics, with a repeating
field for the peinter. We keep a list of pointers (i,1),.....P(i,k) in the indexentry for
K(i) - one pointer to each block that contains a record whose indexing field value
equals K(i). In either option 1 or option 2, the binary search algorithm on the index
‘must be modified appropriately.

Option 3, which is used commonly, is to keep the index entries themselves at a
fixed length and have a single entry for each index field value, but create an extra
level of indirection to handle the multiple pointers. In this scheme, which is
nondense, the ponter P(i) in index entry (i), P(i) points to a block of record pointers;
each record pointer in that block points to one of the data file reords with a value
K(i) for the indexing field. If some value K(i) has tog many records, so that their-
record pointers cannot fit in a single disk block, a linked list of blocks can be used.
This technigue is illustrated in figure 10. Retrieval via the index requires an
additional block access because of the extra level, but the algorithms for searching
the index and, more important, for insertion of new records in the data file are
straightforward. In addition, retrievals on complex selection conditions may be.
handled by referring to the pointers without having to retrieve many unnecessary
file records.)

Notice that a secondary index provides a logical ordering on-the records by the indexing
field. If we access the records in order of the entries in the secondary index, we get them in
order of the indexing field. _

‘Multilevel Indexing Schemes : Basic Technique

In a-full indexing scheme, the address of every record is maintained in the index. For a small
file, this index would be small and can be processed very efficiently in main memory. For a

Pointer ' Pointsr

: to next ' I next _ Pointer
K vl Key jovel Key
index) index
uL o FoooT T G]2 0 60 | Bl
< fEeg T BY
Key ;‘ﬂ m:'
: nex
lavel
index
1000 | 1
2100)
nz | - e
200) o S
9900 Iin .
Highest level [in
9999 | 12m | 9999 | plq |
intermadiate Lowest
level indexes level index

Figure 11 : Hierarchy of indexes

lugeﬂmﬂnmdexsmwouldposemoblm&lmmblemmnhmchyofmm
with the lowest level index pointing to the records, while the higher level indexes point to the

indexes below them (figure 11), The higher level indices are small and can be moved to main

memory, allowing the search to be localised to one of the larger lower level indices.

The lowest level index consists of the <key, address> pair for each record in the file; this is
costly in terms of space. Updates of records require changes to the index file as well as the
data file. Insertion of a record requires that its <key, address> pair be inserted in the index at
the correct point, wh**~ deletion of a record requires that the <key, address> pair be removed
from the index. Theretore, maintenance of the index is also expensive. In the simplest case,
updates of variable length records require that changes be made to the address field of the
record entry. In a variation of this scheme, the address value in the lowest level index entry
points to a block of records and the key value represents the highest key value of recods in
this block. Another variation of this scheme is described in the next section.

3.4.2 Structure of Index Sequential Files

anmdex—mquenualﬁlecmnmofﬂnﬂaﬂplusommmmlwelxofnﬂme&m
inserting a record, we have to maintain the sequence of records and this may necessitate
shifting subseqgent records. For a large file this is a costly and inefficient process. Instead,
the records that overflow m:-"nmlmm¢Mmmadmn@awdovﬂfhwmnnda
pointer is provided in the log:val area or associated index entry points to the overflow -
location. This is illustrated below (figure 12). Record 165 is inserted in the original logical
block causing a record to be moved to an overflow block.

1811 ¢ 612 | 614 | 618 624

Original logical block

611 | 612 | 614 | 815 | 618 — p| 611

Original logical block - Overfiow block
Figure 12 : Overflow of record

Muluple. records belonging to the same logical-area may be chained to maintained Iogncal
sequencing. When records are forced into the overflow areas as a result of insertion, the
insertion process is simplified, but the search time is increased. Deletion of records from
index-sequential files creates logical gaps; the records are not physically removed but only
flagged as having becn deleted. If there were a number of deletions, we may have a great
amount of unused space.

An index-sequential file is therefore made up of the following components:

1. Aprimary data storagé area. In certain systems this area may have unused spaces
embedded within it to permit addition of records It may also 1m]ude records that have
been marked as having been delewd

2. Ovuﬂow area(s). This penmrs the addition of records 10 the files. A number of schemes
exist fur the incorporation of records in these areas into the expected logical sequence.

3. A hierarcy of indices. In a random mqulry or update, the physn:al location of the desired
record is obtained by accessing these indices.

Ihepnmarydatnmwnwnsmemordswntwnby ‘ﬁugmm&'ﬂmecordsarc
writien in data blocks in as¢ending key sequence. These-daia blocks are in turn stoted in
ascending sequence in the primary data area, The data blocks arc scquenced by the highest
key of the logical records contained in them.

There are several apprmches 1o structuring both the index and sequential data portion of an
indexed sequmual file. The most common approach is to build the index as a tree of key
values. The tree is typicaly a variation on B-tree which we will discuss later. The other
common approach is to build the mdcx based on the physical layout of the data in storage.

The unportant technique for building index based on the physical layout of the data in
storage is ISAM (Index sequential access method) which we will discuss.

¥

File Organisation For
Conventional DBMS

BCA-1.5/55

55

- - Introduetiory Coirtepts of
Dats Bast Manigement Systern

BCA-1.5/56
56

Physical Data Otgatiisation Unider ISAM

‘When 2 record is siored by ISAM, its record key must be one of the fields in the record. The

Twmﬂsthumlvesmfmmwmmdkeymmﬂmgmmwmm

on one or morg disk drives. ISAM will always maintain the records in this sorted order. Each
record.is stored on.one of the tracks of a disk. Those records:that follow it in sorted sequence
are: placed directly afier it on the samg track or, if room does not permit, are spilled over onto

[the next track: in the-same cylinder, In other words, they are dropped down to the next platter -
surface. The arm does not move; looking downwared, the next head is selected eletronically.

Slmclh:mlmmacyhnderamlabelledﬂ 1,2,the records that follow those on track
1.are placed on track 2. Track (' is the next file cylinder. The cylinders are also labelled 0, 1,
e i

-Figure 13 shows two.cylinders of records, but only their keys are shown. Note that the keys

arc in ascending sequence throughout their storage on both ¢ylinders. We have not shown
record 0 on either cylinder, as this is used by ISAM for control. Of course, the number of -
tracks on each cylinder is a function of the size of the disk pack.

When ISAM retrieves a record, it needs to know the cylinder, the track address, and the. -
m::onlkey Mmdwmmmﬁmmmakewﬁedummmm for the ISAM
file, In ISAM-a directory is called an index. For example, if a directory entry for record 1500
gave cylinder 9 and track 3, then ISAM would select cylinder 9. The read head associated
with track 3'would then be activated, The bottom side of the top platter is usually track 0. .
because the top being exposed is subject to damage; therefors, the read head selected would
be that for the top side of the third platter, as shown in figure 14. Of course, the required
record might be ane of the many records stored on 3. Rotation of the drive would
eventually bring the required record under the read The desired record is ideatified by.
its record key.

Because the records in an ISAM file are kept in sorted order by record key; it is not necessary:
mhvcad.lrectnrymuyfurevcrysmglcmcm'd.ltmsuﬂ'mlmknowmchrgemmmd

. key on'every track of te file. For example, suppose thé largest key on the track 3is 100 and .

the largest on track 4 is 200. A record withi key 175, fltenﬂsmiheﬁle.ataﬂ.mustbem
track 4. anmbemhmkSasﬂnlmgcstkeyonthatmrkislm

The most obvious plau: to keep the directory for each cylinder on the file is, of course, on
the cylinder itsclf, and it is on track 0 of dach cylinder that ISAM keeps its directory, This

. directory isknown as a track index; it contains the largest key on every trackand ths
hardiware addréss of that frack. Figure 15 shows a typical track index for one cylinder of a

file, Ini this cylinder, for example, 400 is shown to be the largest key on track 3 and 700 the
mmmmmmmmwmmdmumymmm
mwmmmew&WMIsmmmamﬂHWaﬂmm

Track -
100 | 110 |120 |130 |140
150 | 1807

{620 930 | s40
“950 | 960 | 970 | 980 | 990
100.1 1010 | 1020 | 1050 {1080

| 1080 | 1100 1230 |1256 (1300
2| 1345 | 1560°|1600 |1700 [1711
1900 | 200¢}

the file after its original creation. For the moment, this simplificd version of the directory is File Organisation For
more than sufficient. Conventional DBMS

Top not
//-$< used
@/‘/ Track 1 Cylinder0
" /7
Track 0 B\\'ﬁadﬁﬁ Cylinder 1 @

i 7
L ___.__/ Cylinder 2

(a) ()

Figure 14 : Disk organisation (a) disk; (b) top view of platter

| 150 [2 200 |3 400 |..|. }20| 700
wk Ry back oy etk hey track key
Figure 15 : Track Index

How docs the ISAM use this directory to find a record on the file? First it positions the
read/write mechanism over the appropriate cylinder and selects track 0. Let us suppose that
the index on track 0 has the entrics shown below in figure 15 and the system secks the key
350. The entry indicates that the record, if it is to be found, will be on track 3. The read hcad
for track 3 is selected and the rotation of the drive will eventually bring the record with key
350, if it exists, under this rcad head. The fact that the index for.this cylinder is on the
cylinder itself means that no additional movement of the read/write mechanism is necessary.

| 3 | 400
track key

When an ISAM file is spread over several cylinders, there is more than one track index. A
track index is plmed on track 0 of each cylinder used by the file, There remains then in this
casc a further problem. When a record is being sought. which track index should be
examined? Not surpnsmgly. ISAM keeps a cylinder index with an entry for each of its track
indexes. Each entry in this index specifies the address of every track index and the largest
entry in each track index. In other words, the cylinder index has an entry for each cylinder of
the file and the largest entry on that cylinder. The Followmg isa typlc'tl cylinder index:

13 | 1650 | 14 | 1750 | 15 |[2000| 16 | 3000
cyl key eyl key ¢yl key cyl key

This cylinder index shows that on cylinder 15 the largest key that will be found is 2000. If
ISAM is seeking record 1886, an examination of this cylinder index reveals that the record,
if it exists, can be found on cylinder 15. The rcad/writc mechanism moves to cylinder 15,
selects track 0, and consults the track index. If that track index is then track 2 is sclected.

1 1800 2 1890 3 1990 —l
track key tack key track key

The cylinder index is not associated with any par!lcula.r cylinder of the file and is stored in a
separaie arca or-on another disk altogether. This are is refeyred io as the eylinder area, I‘m
file itself along with the track indexes is called the prime area. BCA.15/57

- 57

Introductory Concepts of

Data Base Management System

BCA-1.5/58
58

Somgtimes a file may be very large, even extending across several disk drives. In this case
hundreds of cylinders may be involved causing the cylinder index itself to be several tracks
or cylinders in size. In this eventuality, ISAM may even create an index of the cylinder
index. Such an index is called a master index. Each entry of the master index then points to a
track of the cylinder index and specifies the largest key given on this track of the cylinder
index, Even another master index might be made of this index. Perhaps now the reader can
apprecme why the name "Indexed” is the first word in ISAM,

Figure 16 shm segments of each of the three types of indexes. The reader should’ trytu
follow the search algorithmy, beginning at the master index, for the location ot record 45.
Onlytwouacksofbothﬂwnmsmrmdcxmdcylmdermdexamshown The first entry in the
master indéx says that the largest key mentioned in track 1 of the cylinder index is 211. The
first entry on track 1 of the cylinder index shows that 95 is the largest key on the track index
on cylinder 6. Checking the track index of cylinder 6 shows that record 45 is located on track
2. Record 45 also happens to be the largest record key on track 2.

Master Index
1]211|2] 671
Cylmder index

L |120{ - |60| 211

61/ 31162 41| - |90| 671
5 Track index for tracks 1-20
E6l1]25[2|45| ~ |20] 95
}\ - PR &
U i

Figure 16 : Search algorithm through three indexes Overflow Records in ISAM

Overflow Records in ISAM

Unlike Relative I-O, which docs not permit the addition of a new record to a file unless an
empty slot is available, [ISAM allows any number of new records to be added to an existing
file. The number is limited by the availability of sufficient storage space. As mentioned
earlier, ISAM also maintains the original ordering of the sorted file. Any record to be added
is inserted into the file at an appopriate place. To accomplish this insertion, room must be
made available for the record on its track by shifting each record that logically follows the
one to be added forward on the track and dropping the last record on the track off the end.
For example, if the records &t the end of a track are

26 28 30 31 33 35 37

and record 34 is 1o be added, then the track will be changed to

2% | 28 30 | 31 33 34 | 35

and record 37 will be dropped off the end. The track's highest key is now 35 and the track
index is changed accordingly. The question, of course, is what to do with record 37 that was
dropped. If it is added to the next track, it will cause the record at the end of that track to be
dropped off the end and a domino effect will cascade through all the records on the file. In
each case, the track index will need to be changed as will the cylinder index when the last
record on the cylinder is forced off. To avoid this problem, the record dropped off the
original track is removed from the file and placed in an overflow area. This overflow area
may be on another disk unit, elsewhere on the same disk unit, or even perhaps on the same
cylinder if several tracks on each cylinder are set aside and designated for overflow use. The
exact placement of the overflow area is determined whmspamfurtheﬁleumquesmd&om

the operating system.

Earlier, it was noted that a simplified version of the track index had been presented. This File Organisation For
version can now be upgraded. In actual fact, there are two entries for each track on a given Clmeentlanal DRLAS
cylinder. We shall designate them as "N" and "O" entries, where "N" denotes a normal entry

and "O" an overflow entry. Before overflow records are added to the file, both entries are the

same. For example, the track index for cylinder 6 of a file might appear as

N 0 N 0 N
1 |20 1 [120] 2 J200] 2 J200] 5 [250] ...

In this case, both the N and O entries for track 2 designate that 200 is the largest key on this
track. Suppose, in fact, that track 2 contains the following records (only the keys shown):

130 | 145 | 150 | ... | 180 | 190 | 200 |

Asmdwawdby the track index, the largest key 1o be found on track 2 is 200. Nuwm:pposc
record 1835 is to be added to this mkfmmgrwmdlﬂﬂoﬁﬂmendmwﬂmmaﬂowm

Track 2 now becomes
130 145 | 150 ... | 180 [185 190
.Asg the largest key on track 2 is now 190, meNemfmﬂusmkmmemdcxmunbe
changed to 190 as follows:
N ® N - e 4] N

1 120 1 [120] 2 |190| 2 [200] 3 |2501 ...

Suppose further that record 200 is placed in an overflow area on track 10 and is the first
record on this overflow track. If this is designated as 10:1, the overflow area should be
changed as follows:

N o N 0 N

1 120 1-/120] 2 |190]101|20] 3 |25

In effect, then, record 200 has become the first of many possible records in the overflow
area.

It‘record ISﬁlsaddedw track 2, forcing 190 off the end mtol:hem'l:rﬂowamlwvmgmk
2as

130 145 150 180 .| 185 186

then record 190 will be added as the second record in the overflow area, namely 10:2, and
the overflow entry on the track index will be replaced by 10:2 so that the track index
becomes

N o N 0 N

1 120 | 1 1200 2 | 186 (102|200 | 3 | 250

Note that in the O entry the 200 is not changed as it still represents the largest record key in
the overflow area. In fact the previous entry 10:1 is added to the latest record to be added to
the overflow area, record 190, so that it is not lost. The overflow area now looks like

| 200 | 101 | 190

with record 190 pointing to record 200. The symbol "#" indicates that record 200 does not
point to another record. The overflow entry alivays contains two values :

Ungrepresents the largest key value in the overflow arca that has been moved there froin an

individual track (200 in the above example) and the other contains a pointer to the smallest BCA-1.5/59
key in the overflow area (190 in the above example): If record 194 is now spilled to the

overflow area, the O entry will not be changed as 190 is still the smallest record key value in 59

. Introductury. Concepts of
Data Bsse Mansgement System

BCA-1.5/60
60

the overflow area. As the record with key 194 comes after 190, record 190 is adjusted to -
point to record 194 and 194 to 200. The sorted order is maintained in the overlow: -
which now appears as :

200 | 10:3 | 190 | 10:1 | 194

' It is not necesaary that the records stored on atrz;ckin the overflow area be associated with

only one track of the prime area. This is only the case here because we have assumed that all
the overflow records on track 10 come from track 2. This is not always so. It is quite possible
to have overflow records from many other tracks so that we could well imagine an overflow
area as follows:)

N O N- - 0 : N .
| 200|104 | 190 [# | 216 | 10:1 | 194 | 10:3] 214

where records 214 and 216 have arrived from track 4. Record 214 is the second overflow
record from track 4 and points to the first from track 4, namely 216, at location 10:3. -

The algorithm to be employed in adding a record to the overflow area can now be stated:

ALGORITHM : OVERFLOW ADDITIONS
1. Find the first available position in the overflow area.

2. Move the record to this position

3. If this record is the record of lowest key in the overflow area, place the pointer to this
record in the overflow entry of the track index and move the old value in the track index
1o the pointer field of the newly added record. If this is not the case, movejthe address of
the new record to the pointer field of the record in the overflow area that precedes it in
sorted sequence and place the old value of the pointer into the pointer field of the new.
record. : s

Overflow Considerations : .

If a record is in the prime area of a file, its retrieval is straightforward. The master, cylidner,
and track indexes are examined; the appropriate track selected; and finally, after rotational
delay of the drive, the record is retrieved. This is not true if the record is in the overflow area.

If the record is in the overflow area, its retrieval can take a long time. Suppose, for example,
that record 16,000 is the first record moved to an overflow area and later followed by 60
more such records. As these 60 later records are chained together in key sequence order by
pointer, all 60 records will have to read before record 16,000 can be located. As cach read is
a time-consuming process, this can take a lon time. the efficiency of ISAM is defeated by
allowing large numbers of records to overflow from a single track.

This problem can be overcome by writing a "clean-up” program which reads all the records
on the file, including those in the overflow areas and creates a larger file. This can be done
whenever the time taken 1o retrieve records has become unacceptable, The time taken for
retrieval is the dominant criterion here as it is acceptable to have a large overflow area
if the records in it are seldom retrieved. .

The other possibilily is, as with rclative files to create dummy records. In ISAM a dummy
record is a record that contains HIGH-VALUES in the first character position but must, as
with all records in ISAM, also contain a unique key. During file creation these records are .
soried along with all the other file records and scattered whereever desired within the file.

Dummy records prevent growth in the overflow area in two ways. First, if a record to be
added to an ISAM file has the same key as a dummy record, it merely replaces the dummy
record. This is the ideal situation as no records are shifted along a given track and none of the
indexes are. changed. The second feature of dummy records is that they are not moved to the
overflow area if they are forced off the end of the track by the insertion of a new record.
They are simply ignored. The N entry in the track index is changed to reflect the fact thata
different record now holds the last position on the track. If both the O and N keys are the
same before the addition takes place, then they are both changed. Suppose, for example, that
the N and O entreis for track 7 of a certain cylinder are given as EEU R T EPT

N
7 (100 | 7 | 100

and that track 7 has the keys

... | .| .].90.] wo

F -

with record 100 being a dummy record. The addition of record 55 would change track 7 as
follows*

50 | 55 | 60 70]... %

and since re¢ord 100 is a dummy record (and therefore not transferred to the overflow area),
the N and O entries become

N 0
7 19| 7 | %.

Creating an ISAM File

. An ISAM file must be loaded sequentially in sorted order by record key. ISAM will detect a
record out of order. Any dummy records to be added to the file should be placed in the input
data stream in sequence. These records are best added where record additions are expected to
take place. For instance, a credit card company may expect in the near future to add records
whose keys range between 416-250-000 and 416-275-000 as a new district of credit card
holders is opened up. In this case, dummy records with these keys can be created and added

to the file during file creation. Another possibility is simply to scatter a certain percentage of

dummy records throughout the file. This is not nearly as effective nor alway possible (there
may be no unused keys in the file). Recali that a dummy record is only ignored if it is at the
end of a track. It will stay on a track until it is replaced by a valid record with the same key
or pushed off the end by a new insertion.

Once the file is in use, any record whose deletion is desired can be tumed into a dummy
record by writing HIGH-VALUES in its first character position. This is-a useful feature,
especially in a credit card situation or phone number list where inactive customers can be
replaced.

So what is the significance of the ISAM organisation ?

Advantages of ISAM indexes :

1) Because the whole sructure is ordered to a large exient, partial (LIKE ty%) and range
(BETWEEN 12 and 18) based retrievals can often benefit from the use of this type of
index.

2) ISAM is good for static tables becasue there are usually fewer index levels than B-tree.

3) Because the Index is never updated, there are never any locking contention problems-
within the index itself—this can occur in B-tree indexes, especially when they get to the
point of *splitting’ to create another level.

4) In general there are fewer disk 1/Os required 10 access data, provided there is no overflow.

5) Again if litle overflow is evident, then data tends to be clustered. This means that a

single block retneval often brings back rows with similar key values and of relevance 1o
the initiating query.

Disadvantages of ISAM indexes :

1) ISAM is still not as quick as some (hash organisation, dealt with later, is quicker).

2) Overflow can be a real problem in highly volatile tables.

3) The sparse index means that the lowest level of index has only the highest key for a
specific data page, and therefore the block (of more usually.a block header), must be
scarched to locate specific rows in a block.

File Organisatin For
C-wml!nml DBMS -

BCA-1.5/61
6l

Introductory Concepts of
Data Base Management System

BCA-1.5/62

62

In a nutshell therefore, these are the two types of indexing generally available. As I have
already said, indexes can be either created on one single, or several groups, of columns
within single tables, and generally the ability to create them should be a privilege under the
control of the DBA. Indexes usually take up significant disk space, and although generally of
significant benefit in the case of data retrieval, they can slow down insert/update and delete
operation hecause of overhead in maintaining the index, and in ISAM of ensuring the logical
organisation of the data rows. The presence of an index does not mean that the RDBMS will
always use it, a reality of life discussed later; and it is also true that it is not gencrally
possible to pick and choose which index will be used under which conditions. If follows,
therefore, that the administration of indexes should be done centrally, with great case, and
should be a major consideration in the physical design stage of a project due to its
application dependence.

Before leaving these types of access mechanisms and moving on to an explanation of
hashing, it is worth listing some of the other functions that may be required within the
context of manipulating indexes. :

3.4.3 VSAM

The major disadvantage of the index-sequential organisation is that as the file grows,
performance deteriorates rapidly because of overflows and consequently there arises the
need for periodic reorganisation: Reorganisation is an expensive process and the file
becomes unavailable during reorganisation. The virtual storage access method
(VSAM) is IBM’s advanced version of the index-sequential organisation that avoids
these disadvantages. The system is immune to the characteristics of the storage medium,

* which could be considered as a pool of blocks. The VSAM files are made up of two

components: the index and data. However, unlikg index-sequential organisation, '
overflows are handled in a different manner. The VSAM index and data are assigned to
distinct blocks of virtual storage called a control interval, To allow for growth, each
time a data block overflows it is divided into two blocks and appropriate changes are
made to the indexes to reflect this division. :

3.4.4 Implementation of Indexing through Tree-Structure _
Indexes support applications that selectively access individual records, rather than searching
through the entire collection in sequencs. One field (or a group of fields) is used as the index
field. For example in a banking application, there might be a file of records describing
Branch Offices, It might be appropriate to index the file on Branch Name, providing access
to Branch Office information to support interactive inquiries.

‘We shall start with a relatively simple tree-structured index and then progress to more
complex structures. : _

Binary Search Trees As Indexes _ _
Let us first reconsider the binary search tree. Recall that the nodes of a binary search trec are
arranged in such a way that a search for a particular key value proceeds down one branch of

 the tree. The sought key value is compared with the key value of the tree’s root: if it is less .

than the root value, the search proceeds down the left subtree; if it is greater than the root
value, the search proceeds down the right subtree. The same logic is applied at each node -
encountered until the search is satisfied or it is determined that the sought key is not included
in the ree. ; : 2
Typically, a key value does not stand alone. Rather, the key value is associated with
information fields to form a record. In general, storing these information fields in the binary
search tree would make for a very large tree. In order to speed searches and to reduce the
tree size, the information fields of records commonly are stored separate from the key
values. These records are organised jnto files and are sotred on secondary storage devices
such as rotating disks. The connection between a key value in the binary search tee and the
corresponding record in the file is made by housing a pointer to the record with the key
value.

Figure 17 shows the binary search tree with pointers included to the data records.

[o]e]BEE [0] [o]«]poG 0]

Figure I‘J:Bhnr_rmrchml‘;nm fipure 8-23 used as an index

This augmentation of the binary search tree to include pointers (i.e. addresses) to data
records outside the structure qualifies the tree to be an index. An index is a structured
collection of key value and address pairs; the primary purpose of an index is to facilitate
access to a collection of records. An index is said to be a dense index if it contains a key
value-address pair for each record in the collection. An index that is-not dense is sometimes
called a sparse index. There are many ways to‘organise an index; the augmented binary
search tree is one approach.

At this time we will not concem ourselves with the actual location of those records on

" primary or secondary storage. Suffice it to say that in contrast to relative files where the
physical locations of records are determined by a hash algorithm applied to key values, there
is significantly more frcedom in the physical placement of records in an indexed file.

M-Way Search Trees

The performance of an index can be enhanced significantly by increasing the branching
factor of the tree. Rather than binary branching, m-way (m2) branching can be used. For
expository purposes, we ignore for the moment pointers out of the structure to data records
and consider only the internal structure of the tree. An m-way search tree is a tree in which
each node has out- degree <= m, When an m-way search.tree is not empty, it has the
following properties. :

1. Each nodc of the tree has the structure shown in figure 18,

n | P | K | P, | K |Py] .. |P
l |] |

0 b

Figure 18 ¢ Fundamental structure of a node [n an m-way scarch tree

The Py, P,,, P, are pointers to the node’s subtrees and the K,, K., are key values.

The requirement that each node have out-degree <= m forces n=m-1.
2, The key values in a node are in ascending order:

Ki < Ki-rl :

fori = 0, ..n2

3. Allkey values in nodes of the subtree pointed (o by P, are less than the key value X, for i
=0, o, 01,

4. Allkey values in nodes of the subtree pointed 1o by P, are greater than the key value
Kn-1. ’

5. 'The subtrees pointed to by the P, i =0,, n are also m-way search trees.

Note that the arrangement of key values in nodes is analogous to their amrangement in
binary search trecs. A five-way search tree has a maximum of five pointers out of each
node, i.e.,n 4. Some nodes of the trec may contain fewer than five pointers. ’

BCA-1.5/63

63

Introductory Concepts of
Data Base Management System

BCA-1.5/64
64

Example

Figure 19 illustrates a three-way scarch tree. Only the key values and the non-null subtree

pointers are shown. In the figure, leaf nodes have been depicted as containing just key
values. Each mmdnodcofmemhmhmmmmmmdmﬁgwe lB.hm-.wnh
a maximum of three subtree pointers.

M-Way Search Trees as Indexes
thnmm-myseamhmlsusedasmmdu each key- pointer pair (K, P,) becomes a

. triplet P, K, A, where A, :smeaddrassofmedmammﬂamumdmnywlmK,M

humnodnnutonlypomtsto:lsmﬂdrmdcs in the tree, but also points into the collection

of data records. If the index is dense, every record in the collection wﬂlbepomwdwhy

some node in the index.

Wecandefmmenodetypeformm-waymhmmdexasfuummm
_tmnoﬁemr-%odctm

recptr = T rectype;
nl, keytype = integer;
nodetype = record
n:integer
keyptrs:array [0..n1] of record
ptn ynodeptr;
key } keytype;
adur : recptr
end;
keyptm:nodeptr
end;

Again key's type need not be integer,n $m —1andnl =n -1,

Searching an M-Way Search Tree

The process of searching for a key value in an m-way search tree is a relatively
straightforward extension of the process of searching for a key value in a binary search tree.
A recursive version of the search algorithm follows. The variable kevs contains the sought
key value; r initially points to the root of the tre¢. The search tree is assumed to be global,
with var node: nodetype

procedure search(skey;keytrype;var rnodeptr, fuundrmrecpu).

var i;0..n;
begin if (r=nil)
then foundrec: = nil
elsc else begini: = 0;
while (i <n and skey node.key)]
doi:=i+1;
if (i < n and skey = node key[i])
then foundrec : = node.addr[i}
elseifi<n -
then search (skey,node.ptr{i],foundrec)
- else search(skey,node keyptm,foundrec)
end; ;
end;

Compare this logic with direct searches of a binary search tree. The primary difference is that File Organisution ¥or
the aray of keys in each node of the m-way tree must be scanned to find the appropriate Conventional DBMS
pointer to follow either down to a child node or directly to the datarecord.

B-TREES

The basic B-tree structure was discovered by R.Bayer and E. Mchght {1970} of Boe;mg
Scientific Research Labs and has grown 1o become one of the most popular techniques for
organising an index structure. Many variations on the basic B-tree have been dcvclnped,
cover the basic structure first and then introduce some of the variations.

The B-tree is known as the balanced sort tree, which is useful for external sorting. There are
strong uses of B-trees in a database system as pointed out by D.Comer (1979) : “While no
single scheme can be optimum for all applications, the technique of orgamsmg a file and its
index called the B -tree. is, de facto, the standard organisation for indexes in a database system.”

The file is a collection of records, The index refers to a unique key, associated with each
record. One application of B- trees is found in IBM’s Virtual Storage Access Method
(VSAM) file organisation. Many data manipulation tasks require data storage only in main
memory. For applications with a large database running on a system with limited company,
the data must be stored as records on secondary memory (disks) and be accessed in pieces.
The size of a record can be quite hrge. as shown below:-
struct DATA

i I
int ssn;
char name [80];
char address [80];
char schoold [76];
struct DATA * left; /* main memory addresses */
struct DATA * right; /* main memory addresses */
d_block d_left; /* disk block address */
. d_block d_nght. /* disk block address */ .

)
There are two sets of pmmers in the struct DATA. The main memory pointers, left and right,
are used when the children of the node are in memory and the disk addresses, d_left and
d_right, are used 1o reference the children on the disk. The size of DATA is 256 bytes.

Data is moved by block transfer into main memory for manipulation; however, the disk
access is slow (tens of milliseconds) compared with a main memory move (tens of
microseconds), so we-want to minimise the disk accesses. One method is to make the data
nodes even fractions (1/2, 1/4, etc. or multiples (1,2, etc.) of the disk sector size.

Another method is to expand the capacity of the node for storage of data. Abinary tree node
contains one key or data element and has pointers to two children. We can construct a tree
with nodes that have moré than two possible children and more than one key. The tree has a
property called order, the maximum number of children, for any given node. If the maximum
is N children, then the order of the tree is N.

The ADT B-Tree

To reduce disk accesses, several conditions of the tree must be true; the height of the treé
must be kept to a minimum; there must be no empty subtrees above the leaves of the tree; the
leaves of the tree must all be on the same level; and all nodes except the leaves must have at
least some minimum number of children (perhaps half of the maximum). The toot alone may
have no children, if the tree has only one node. Otherwise it may have as few as two and as
many as the maximum number of children. The keys in the tree should have some defined
ordering (numerical, lexical, or some other relationship). A tree that has these properties is
called a balanced sort trée (a B-tree). The B-tree properties are listed below.

An ADT B-Tree of order N is a tree in which:

1. Each node has a maximum of N children and a minimui of N/2 children. The root may
have no children or any number from 2 to the maximum.

2. Each node has one fewer keys than children with a maximum of N-1 keys.

3. the keys are arranged in a defined order within the node. All keys in the subtree to the
feft of a key are predecessors of the key, and all keys in the subtree to,the right of a key
are successors of the key.

BCA-1.5/65

65

Intreductory Concepts of
Data Base Management System

BCA-1.5/66

66

Wtwnanewkeymmbcmsenedmtoafuﬂnodc.menodemsplumtomnodes and
the key with the median value is inserted in the parent node. In case the parent node is
the root, a new root node is created.

5. All leaves are on the same level, There is no empty subtree above the level of the leaves.

Insertion in the B-Tree

The insertion of a new key into a B- -tree begins with the search for a match. Ifamatchls
found for the key, then the insertion operation takes some action (an error message is sent or
a count is incremented, etc.) and returns an error indication to the caller, If no match is found,
then the key is simply added to a leaf, unless-the left is ful, If the leaf is full then it is split
into two nodes (requiring creation of a new node and the copying of half of the old nodes
keys and pointers to the new node) and the median value key is inserted into the parent of the

node. If the parent was also full, the split and key push up ripples upward. The ordering of
the keys is maintained, and the ordering of keys among subirees is maintained. -

The tree trends to become more balanced with subsequent insertions. The B-tree is like a.
crystal in its growth; upward and outward from its base, the leaf level. To illustrate the
insertion process, we will build a B-tree of order 5 by inserting the following data:

{Df}!—' K!ZJB,RQ|EIAISI w‘l TICFI-"INtY'I M}

The key ordering is ascending lexical. We keep track of the pointers by numbering them.,
D. First the root node is created (+), then key D is inserted into it.

B: The node is full, so it must be split; of the keys, B, D, H, K, and Z, key H is the median
\ra]uckcy,suitpmnmesmﬂwmruu,bmmisislhe_motnudesowemmmnmwmde(ﬁ..-

8 'Ihemde:sfuli so it must be split. A new mdcalmelmflcvehscrmwd{') Ofthekeys.
K,P,Q,S, andZ.RnyQuzﬂ]e.medmn value.

File Organisation For

- W, T: The keys arc simply inserted.
‘onvenlional DBMS

C: The node is full, 5o it must be split. A new node at the leaf level is created (*). Of the keys,
A, B,C, D, and E, key C is the median valuc.

Y: The node is full, 0 it must be split. A new node at the lcaf level is created (*). O the
keys, S, T, W, Y, and Z, key W is the median value.)

M: The pode is full, so it must be split. A new node at the Jeaf lovel is creatcd (*). Of the
keys, K, L, M, N, and P, key M is the median valuc.

BCA-1.5/67

67

Intreductory Concepts of
Duta Base Management Sysiem

BCA-1.5/68

68

The root node is also full, so it is split. A new root node is created (+). Of the keys, C, H, M,
Q, and W, the key M is the median key. It is inseried into the new root.

Note how the balance has been maintained throughout the insertions. A node split prepares the
way for a number of simple insertions. If the number of keys in a node is large, the time before
the next split (involving node creation and data transfer into the new node) will be fairly long.

Deletion of a Node in the B-Tree

Deletion of a key is somewhhat the reverse of insertion. If the key is found in a leaf, the
deletion is fairly straightforward. If the key is not in a leaf, then the key’s successor or
predecessor must be in a leaf, because the insertion is done starting at a leaf. If the leaf is
full, the median value key is pushed upward, so the key closest in value to a key in a nonleaf
node must be in the root. The requirement that there be a minimum number of keys in a node
also plays a part, as we shall see. ' :

If the key is found in a leaf node and the node has more than the minimum number of nodes,
then the key is simply deleted and the other keys in the node adjusted in position. If the node
has only the minimum number of keys, then we must look at the immediately adjacent leaf
nodes. If one of nodes has more than the minimum number of keys, the mdeian key in the
parent node is moved down to replace the deleted key and one of the keys from the adjacent
leaf node is moved into the parent node in place of the median key.

To demonstrate this deletion, we use the B-tree of order 5 shown in the sectioni on insertion.
We will délete the key P from the tree after the insertion of the key S.

. more than the minimum key count. We can replace P with the median key H in the parent

node. We then replace H with the key closest o it in value, key E.

If both of the adjacent nodes have only the minimum nuinber of keys, ore of the adjacent
nodes can be combined with the node that hgld the deleted key, and the median key from the
parent node that partitioned the two leaf nodes is pushed down into the new leaf node. We
will use the tree from the last example with keys A and B deleted. i

File Organisation For
~Conventional DEMS

P:Its leaf node is at minimum key count, and the adjacent nodes also have minimum key
count. We push H down into the combined node.

We summarise the key fcatmes of a B-tree as follows:

1.

o oa W N

There is no redundant storage of scarch key values. That is, B-tree stores each search
key value in only one node, which may contain other search key values,

The B-tree is inherently balanced, and is ordered by only one type of search key.
The insertion and deletion operations are complex with the time complexity {'.le‘(lt:-gz n).
The search time is O(log, n).

The number of keys in the nodes is not alwhys the same. The storage management is
only complicated if you choose to create more space for pointers and keys, otherwise the
size of a node is fixed.

The B-tree grows at the node as nppo@ed to the binary tree, BST, and AVL trees.

For a B-tree of order N with n nodes, the height is log n. The height of a B-tree increases
Oi‘ll}' because of a split at the root node.

There are several variations of B-tre¢, including B* -tree and B -tree. The B* -tree indices
are similar to B-tree indices. The main difference between the B" -tree and B-tree are:

1.

In a B* - tree, the scarch keys are stored twice; each of the search keys i is fmmd in some
leaf nodes.

In a B-trce, therc is no redundancy in storing search-key values; the search key is found
only one in the tree. Since search-key values that are found in nonleaf nodes are not
found anywhere else in the B-tree, an additional pointer field for each search key is kept
in a nonleaf node.

In a B* -tree, the insertion and deletion operations are complex and C»{iugz 1), but the
search operation is simple, efficient, and O(log, n).

Because this B-tree structure is so common place, it is worth simply listing some of the more
importatn advantages and disadvantages.

Advantages of Btree indexes :

1

2)
3)
4

9

Becauscitistoa larg.c extent self-maintaining, it is good in supporting 24-hour operation.

Because there is no overflow problem inherent with this type of organisation it is good
for dynamic table — those that suffer a great deal of insert / update / delete activity.

As data is retrieved via the index it is always presented in order.
‘Get next” queries are efficient because of the inherent ordering of rows within the index

~ blocks.

Btree indexes are good for very large tables because they will need minimal : BCA-1.5/69
reorganisation. _ -

R

L’;"“’?W C“"“"“‘:; wem 8 There s predictable access lime for any retrieval (of the same number of rows of course)
SN beeause the Btree structure keeps itsell balanced, so that there is always the same
number of index levels for every retrieval. Bear in mind of course, that the number of
index levels docs increase both with the number of records and the length of the key
value. : '

Because the rows arc in order, this type of index can Service range type enquiries, of the type
below, efficiently.

SELECT ... WHERE COL BETWEEN X AND Y.

Disadvantages of Btree indexes :)
1) For static tables, there are betier organisations that require fewer I/Os. ISAM indexes are
preferable to Buce in this type of environment. - -

2) Buree is not really appropriate for very small tables because index look-up becomes a
significant pan of the overall access time.

3) The index can use considerable disk space, especially in products which allow different
uscrs Lo creale separale indcxes on the same table/column combinations.

" 4) Because the indexes themselves are subject to modlification when rows arc updated,
deleted or inserted, they are also subject to locking which can inhibit concurrency.

So to conclude this seclion on Birce indexes, it is worth stressing that this structure is by far
and away the most popular, and perhaps versatile, of index structures supported in the world
of the RDBMS today. Whilst not fully optimiscd for certain activity, it is secn as the best
single compromise in satisfying all the different access methods likely to be required in
normal day-1o-day operation.

- 3.5 DIRECT FILE ORGANISATION

In the index-sequential file organisation considered in the previous sections, the mapping
from the scarch-key value to the storage location is via index entrics. In direct file

Figure 20 : Mapping from a key value to an address value

organisation, the key value is mapped dircctly to the storag. location. The usual method of
direct mapping is by performing some arithmetic, manipulation of the key value. This process
is called hashing. Let us consider a hash [unction h that maps the key value k (o the value
h(k). The value h(k) is used as an address and for our application we require that this value
be in some range. If our address area for the rccords lies bétween S, and S,, the requircment
for the hash function h(k) is that for all valucs of k it should gencrate values between S, and
S,. - . : o
1t is obvious that a hash function that maps many different key values to a single address or
one that does not map the key values uniformly is a bad hash function. A collision is said to
. occur when two distinct key values are mapped to the same storage location. Collisjon is
handled in a number of ways, The colliding records may be assigned 10 the next avajlable
space, or thcy may be assigned 10 an overflow arca. We can immediatcly see that with . -
hashing schemes there arc rio indexes to traverse. With well-designed hashing functions
where collisions are few, this is a great advantage.

Another problem that we have 10 resolve is to decide what address is represented by h(k). Let

the addresses generated by the hash function the addrgsses of buckets in which the y, address

pair valucs of records are stored. Figure shows the buckcts gontaining the y, address pairs

that allow a reorganisation of the actual data file and actual record address without affecting

the hash functions. A limited number of collisions could be handled automatically by the use

of a bucket of sufficient capacity. Obviously the space required for the buckets will be, in
BCA-1.5/70 general, much smaller than the actual data file. Consequently, its reorganisation will notbe .
that expensive, Once the bucket address ts generated from the key by the hash function, a

scarch in the bucket is also rcqmred 10 locate the address of the requ:red record. Huwcven File Organisatjon For
since the bucket size is small, this overhead is small. : , * Conventional DBMS

" The use of the bucket redices the problem associated with collisions. In spite of this, a
bucket may become full and the resulting overflow could be handled by providing overflow
buckets and using a pointer from the normal bucket to an entry in the overflow bucket. All
such overflow entries are linked. Multiple overflow from the same bucket results in a long
list and slows down the retrieval of these records. In an altemate scheme; the address
- generated by the hash function is a bucket address and the bucket is used to store the records
dlr{x:l.l)' instead of using a pointer to the block gontaining the record.

~ Blocks of records

Bucket,
key .address

209
610
| 920
976 -

Buclmz- '

177

Figure 21: Bucket and block organisation for hashing
|

Lets fcprescm the value:
s = upper bucket address value - lower bucket address valiie + 1

Here, s gi-\ft‘.s the number of buckets, Assume that we have some mechanism to convert key
values to numeric ones. Then a simple hashing function is:

h(k) =k mod s

where k is the numeric representation of the kéy and h(k) produces a bucket address. A
moment's thought tells us that this melhod would perform well in some cases and not in
others, :

It has been shown, however, that the choice of a primc number for s is usually satisfactory. A BCA.1 5/71
combination of multiplicative and divisive methods can be used 1o advantage in many '
-practical situations. i : , 71

Introductory Concepts af * There are innumerable ways of converting a key to a numeric value, Most keys are numeric,

Thuts Fune o et Bpstim others may be either alphabetic or alphanumeric. In the latter two cases, we can use the bit
representation of the alphabet to generate the numeric equivalent key. A number of simple
hashing methods are given below. Many hashing functions can be devised from these and
other ways.

1. Usemelowordcrpanufﬂw key. For keys that are consecutive integers with fewgaps,
. this method can be used to map the keys 1o the available range.

2. End folding. For long keys, we 1deuufy start, middle, and end regions, such that the sum
of the lengths of the start and end regions equals the length of the mnddlereg'm. The
start and end digits are concatenaied and the concatenated string of difits is added to the
middle region digits. This new number, mod s where s is the upper limit of the hash

" function, gives the bucket address:

123456 © 123456789012 654321

For the above key (converted to integer value if required) the end folding gives the two
values to be added as: 123456654321 and 123456789012,

3. Square all or part of the key and takeapaﬂﬂnmﬂmrcsu[L’I?wwboharmedefm&d
part of the key is squared and a number of digits are selected from the square as being
part of the hash result. A variation is the multiplicative scheme where one part of the key
is multiplied by /thc remaining part and a numebr of digits are selected from the result.

4. Division. As stated in the beginning of this section, the key can be divided by a number,
usually a prime, and the remainder is taken as the bucket address. A simple check with,
for instance, a divisor of 100 tells us that the last two digits of any key will remain

- unchanged. In applications where keys may be in some multiples, this would produce a
poor result. Therefore, division by a prime number is recommended. For many
applications, division by odd numbers that have no divisors less than about 19 gives

- satisfactory results. . :

We can conclude from the above discussion that a number of puss:ble methods for
generating a hash function exist. In general it has been found that hash functions usmg
division or multiplication performs quite well under most conditions.

“To summarise the advanmgcs and disadvanl.agcs of this approach :

Advantages of hashing :
1) Exact key matches are extremely quick.

2) Hashing is very good for long keys, or those with multiple columns, prundod the
complete key value is provided for the query.

3) This orgatusaum usually allows for the allocation of disk space so a gmd deal of disk
" management is possible.
4) Nodisk space is used l{:-y this indexing method.

-Dlsu-dvantages of hashing,:

1) It becomes difficult to predict overflow because the workings of the hasi:mg algorithm
will not be visible to the DBA. :

2) No sorting of data occurs either physically or logically so sequential access is poor.

3) This orgamsauon usually takes a lot of dj.ék space o ensure that no overflow occurs —
there is a plus side to this though: no space is wasr.e.d on index structures because they
simply don’t exist.

To sum up hashing it’s true to say that not many products support this type of strucutre, and it “
is likely, [feel, to become entirely redundant in most software RDBMSs. In a hashing
.o,gambaucm, the key that is hashed should be the one that is used most to retrieve the data (or
join it 1o other tables) and this will often not be the primary key that I have pre\rmusly

defined within the scope of logical data design.

BCA-1.5/72
72

3.6 MULTIKEY FILE ORGANISATION

In this section, we have introduced a family of file organisation schemes that allow records
to be accessed by more than one key field. Until this point, we have considered only
single-key file organisation, Scquential by a given key, dircct access by a particular key and
indexed sequential giving both direct and sequential access by a single key. Now we enlarge
our base to include those file otganisation that enable a single data file to support multiple
access paths, each by a different key. These file organisation techniques are at the heart of

database implementation.

There are numerous techniques that have been used to implement multikey file organisation.
Most of the approaches are based on building indexes to provide direct access by key value.
The fundamental indexing techniques were already introduced in the section 3.4, In this
section we discuss two approaches for providing additional access paths into a file of data
e Muiltilist file organisation

e Inverted file organisation

3.6.1 Need for the Multiple Access Path

Many interactive information systems require the support of multi-key files. Consider a
banking system in which there are several types of users: teller, loan officers, branch :
- manager, bank officers, account holders, and so forth. All have the need to access the same -
da;a,mymﬂsoﬂhet‘mmshownmﬁgureﬂ,‘s’armstypesofummedmacm ’
these records in differcnt ways.A weller might identify an account record by its ID value, A
lmnofﬁoerrmghtmedtoamallawoumreomﬂswnhnglmvaluefor
OVERDRAW-LIMIT, or all account records for a given value of SOCNO. A branch manager
might access records by the BRANCH and TYPE group code. A bank officer might want
periodic reports of all accounts data, sorted by ID. An account holder (customer) might be
able to access his or her own record by giving the appropriate ID v&lucorammbmauunnf
"NAME, SOCNO and TYPE code.

Figure 22 : Example record format

Support by Replicating Data g

One approach to being able to support all these types of access is to have several different
files, each organised to serve one type of request. For this banking example, there might be
onc indexed sequential account file with key 1D (to server tellers, bank officers, and account
holders), one sequential account file with records ordercd by OVER-DRAW-LIMIT (o scrve
loan officer), onc account file with relative organisation and user-key SOCNO (1o serve loan
olTicers), one scquential account file with records ordered by GROUP-CODE (lo serve
branch managers), and one relative account file with user-key NAME, SOCNO, and TYPE
code (10 serve account holders). We have just identified five filcs, allcontammg the same
data records! The five files dlf[cr only in their organisations, and lhtts in the access paths they

provide,

Difficulties Caused by Replication % ' - .
Replicating data across files is nol a desirable solution to the problem of providing multiple
access paths through that data, One obvious ditTiculty with this approach is the resultant
storage space requirements. However, a more serious diificully with this approach is keeping

" updates 1o the replicated data records eoordinated. The multi-key file is a ¢lassical and often
successiul solution (o the multiple-patli ectrieval problem; it uses indexes rather than data
replication.

File Organisation For
Conventional DBMS

BCA-1.5/73

Introductory Concepts of
Data Base Management SyStem

BCA-1.5/74

74

Whenever multiple copies of data exist, there is the potential for discrepancies. Assume that
you have three calendars, You keep one at home by the telephone, one in your briefcase, and -
one at your office. What is the probability that those three calendars show the same record of
appointments and ubhgauons? The likely situation is that you ml.l post some¢ updaltes to one -
copy but forget to enter them in other copies. Even if you are quite conscientious about :
updaungalllhmecopms.ummustbamelagbemeenmcumes ﬂmlmenpdalcsacum!ly
appear in tfic-three locations. The problem becomes more complex if somebody in addition

Lo you, furmmplc your secretary, also updnmson:: or more ofjrourca]mdars.'l'lw same
difficultics arise in updating data that appear in multiple files. ;

The result of incomplcte and asynchronous updates is loss of data integrity. If a loan officer
querics one file and finds that account #123456 has an overdraw limit of $250, then querics
another file and finds that the same account has an overdraw limit of $1000, he or she should
question the validity of the data.

Suppor.t by Adding Indexes

Anothér approach to being able to support several different kinds of access to a collection of
data rceords is 1o have one data file with multiple access paths. Now there is only one copy
of any data record 1o be updated, and the update synchronization prob]em caused by record
duplicatioris avoided. This approach is called muli-key file organisation.

The concept of multiple-key access gencrally is implemented by building multiple indexes to
provide dilferent access paths Lo the data records. There may also be multiple linked lists
through thic data records. We have scen already that an index can be structured in several
ways, lor example as a table, a binary scarch wree, a B-tree, or 4 B - tree. The most .
appropriate method of implementing a particular multi-key file is dependent upon the actual
uscsto be made of the data and the kinds of multi-key fi file support available. .

3.6.2 Multilist file orgamsatwn

Before defining multilist file m-gamsmmn, let us understand the differcnce between linked
organisation and scquential filc organisation. Linked organisations differ from sequential
organisations csscntially in that the logical scquence of records is gencerally from the physical
sequence. In a sequential organisation, if the i’th record of the file is at location L, then the i +
I'st record is in the next physical position L + ¢ where ¢ may be the length of the i'th record
or some constant that determines the inter-record spacing. In a linked organisation the next
logical record is obtained by following a link value from the present record. Linking records
-together in order of increasing primary key value facilitates easy insertion and delction once
the place at which the inscrtion or deletion to be made is known. Searching for a recorll with
a given primary key value is difficult when no index is available, since the only scarch
possible is a scqucnual scarch. To facilitate scarching on the primary key as well as on
secondary keys it is customary 1o maintain several indcxes, one for each key. An
employee number index, for instance, may contain entrics corresponding to ranges of
employce numbers. Onc possibility for the example of figure 23 would be to have an
catry for each of the ranges 501-700, 701-900 and 901-1100, All records having E# in
the same range will be linked together as in figure 24. Using an index in this way
reduces the length of the lists and thus the search time. This idea is very easily
gencralised Lo allow for casy secondary key retrieval. We just set up indexes for each key
and allow records to be in more than one list. This leads 1o the multilist structure for
filc representation. Figure 25 shows the indexes and lists corresponding to multilist
representation of the data of figure 24, It is assumed that the only fields designated as
keys are: E#, Occupation, Sex and Salary. Each record in the file, in addition to aH the -

rclevant information ficlds, has 1 link field for each key field. e
Record | E# |.Name Occupation | Degree | Sex Locaion | MS | Salary
A [800 |HAWKINS |progammer | BS. | M | LosAngeles| S | 10,000
B {510 |WILLIAMS [analyst 8.8 F mlk'geles M | 15000 |
C 950 |FRAWLEY |analyst M.S. F | Minneapoiis | S | 12,000
D |750 |ausTIN |programmer | BS. | F | LosAngeles| S .| 12000
E |620 |MESSER |programmer | BS. M | Minneapolis | M | 9,000

Figure 23 ; Sample data for Employee File

The logical order of records in any particular list may or may not be 1mpurtantdep¢ndmg File Organisation For
upon the apphcanon In the example file, lists corresponding to E#, Occupation and Sex have Conventional DBMS
been set up in order of increasing E#. The salary lists have been set up in order of i mcreasmg

salary within each range (record Aprccedc: D and C even though E#(C) and E#(D) are less

than E#(A)).
Upper valua
700
900
1100
E # index
Figure 24 : Linking together all seconds in the same type.
E * index Occupation index
Maximum E* in list| 700 | 900 | 1100 value analyst | programmer
Length of ist 2 2 2 length 2 3
Pointer tofirstnode |~ | | | pointer B E
j L l
E * link o] o o]
Occupation link | C 0 o
Sexlink | D A c [} [s!
Salary link o} o] (% Q O
B E D A i
value | Female Male value | 9000 |< 12000 | <15000
length 3 2 length 1 3 1
pointer B E pointer E A ;
Sex Index Salary Index

Figure 25 : Multilist representation for figure 23

Notice that in addition to key values and pointers 1o lists, cach index entry also contains the
]cngth of the corresponding list. This information is useful when retrieval on boolean querics
is required. In order to meet a query of the type, retricve all records with Sex = female gnd
Occupation = analyst, we search the Sex and Occupation indexcs for female and analyst
respectively, This gives us the pointers B and B. The length of the list of analysts is less than
that of the list of females, so the analyst list starting at B is searched. The records in this list
‘are retrieved and the Sex key examincd to determine if the record truly satisfies the query.
Retaining list lengths enables us to reduce search time by allowing us to search the smaller
list. Multilist structures provide a scemingly satisfactory solution for simple and range
querics. When boolean queries are involved, the search time may bear no relation to the
number of records satisfying the query. The query K1 = XX and K2 = XY may lead to a XX
list of length n and a K2 list of length m. Then, min{n,m} records will be retrieved and tested
against the query. It is quile possible that none or only a very small number of these
min {n,m] records have both K1 = XX and K2 = XY. This situation can be remedied to some
cxtent bythe use of compound keys. A compound key is obtained by combining two or more
keys together, We would combine the Sex and Occupation keys to get a new key
Sex-Occupation. The values for this key would be: female analyst, female programimer, male
analyst.and male programmer. With this compound key replacing the two keys Sex and
Occupation, we can satisfy queries of the type, all male programmers or all programmers, by
retricving only as many records as actually satisfy the query. The index size, however, grows
rapidly with key compounding. If we have ten keys K, v Ko the 1nd¢x for K; having n,
entrics, then the index for the compound key K, K, ... Km w:ll have ft | 1, entries whx]c the

original indexes, had a total of I3, n, entries. Also, handling simplc querics becomes more BCA-1.5/15
complex if the individual key indexes are no longer retained. o8

Intreductory Concepts of
Data Base Management System

BCA-1.5/76
76

Inserting a new record into a multilist structure is easy so long as the individual lists do not
have o be maintained in some order. In this case the record may be inserted at the front of
the appropriate lists, Deletion of a record is difficult since there are no back pointers.
Dekum may be simplified at the expense of doubling the number of link fields and
maintaifiing each list as a doubly linked list. When space is at a premium, this expense may

: notbeaccep{abl& An allemative is the coral nng structure described below.

Coral Rings

The coral ring structure is an adaptation of the doubly linked multilist structure discussed
above. Each list is structured as a circular list with a headnode. The headnode for the list for
key value K; = X will have an information field with value X. The field for key K, is replaced
by a link field. Thus, associated with each record, Y, and key, K, in a coral ring there are two
link fields: ALINK(Y,i) and BLINK (Y,i). The ALINK field is used to link together all
records with the same value for key K. The ALINKS form a circular list with a headnode
whose information ficld retains the value of K; for the records in this ring. The BLINK field
for some records is a back pointer and for others it is a pointer to the head node. To
distinguish between these two cases another field FLAG(Y,D) is used. FLAG(Y,i) = 1if
BLINK(Y,j) is a back pointer and FLAG(Y,i) = 0 otherwise. In practice the FLAG and
BLINK fields may be combined with BLINK(Y,i) 0 when it is a back pointer and 0 when it
is a pointer to the head node. When the BLINK field of a record BLINK(Y;i) is used as a

. back pointer, it points to the nearest record, Z, preceding it in its circular list for K, having

BLINKI(Z.,i) also a back pointer. In any given circular list, all records with back pointers form
another circular list in the reverse direction (Sce figure 27). The presence of these back
pointers makes it possible to carry out a deletion without having 4o start at the front of each
list containing the record being deleted in grder 1o determine the preceding records in these
lists. Since these BLINK ficlds will usually be smaller than the original key fields they
replace, an overall saving in space will ensue. This is, however, obtiined at the expense of
increased retrieval time. Indexes are maintained as for muliilists. Index entries now pmnl to
head nodes. As in the case of multilists, an individual node may be a member of several nngs :
on difTerent keys.

node o
. A B c D
i e LG I e M e e AUNK(. i)
= o — « m— BLINK(,)
BLINK (,1)
a = head node for
analyst ring

forward circular list contains nodes «, A B C,D.
reverse arcular list contains nodes a,

Figure 26 ; Coral rhms for analysts in ahypom;um file

3.6.3 Inverted File Organisation

Conceptually, inverted files are similar to multilists. The difference is that while in mulnhsts
records with the same key value are linked together with link information being kept in
individual records, in the case of invenied files this link information is kept in the index itsclf,
Figure 27 shows the indexes for the file of figure 24, A slightly different stratcgy has becn
used in the E# and salary indexes than was used in figurc 26, though the same strategy could
have been used here oo. To simplify further discussion, we shall assume that-the index for
every key is dense and conmains a value entry for each distinct value in the file. Since the
index entrics are variable length (the number of records with the same key value is variablc),
index maintenance becomes more complex than for multilists. However, several benefits
accrue from this scheme. Boolean querics require only one access per record satisfying the
query (plus some accesses to process the indexes). Querics of the type K1=XX and K2 =
XY. These two lists are then merged to obtain a list of all records satisfying the query. K1="

" XX and K2 = XY can be handled similarly by intersecting the two lists. K1 = .not. XX can .

- be handled by maintaining a universal list, U, with the addresses of all records. Then, K1 =
.not. XX is just the difference between U and the list for K1 = XX, Any complex boolcan

.guery may be handled in this way. The retricval works in two stcps. In the first step, the
indexes are processed 1o obtain a list of records satisfying the query and in the second, these
records are retrieved using this list. The number of disk accesses nceded is equal o the
number of records being retrieved plus the number to process the indexes.

Inverted files represent one extreme of file organisation in which only the index structures
are important. The records themselves may be stored in any way (sequentially ordered by
primary key, random, linked ordered by primary key etc.). : :

E#index ' Occupation index Salary index
510 [analyst B,C 9,000 |E
60 programmer | AD,E 10,000 | A
Wi I ' 12,000 |C,D
800 ' ;

Sex Index - 15,000 |B
950 . :
: female B.C.D
male AE

Figure 27 : Indexes for fully inverted file

Inverted files may also result in space saving compared with other file structures when
record retrieval does not require retricval of key fields. In this case, the key ficlds may be
deleted from the records. In the casc of multilist structures, this deletion of key ficlds is
possible only with significant loss in system retricval performance. Insertion and delction of
records requires only the ability to insert and delete within indexes,

“3.6.4 Cellular Partitions

In order to reduce file scarch times, the storage media may be divided into cells. A cell may
be an entire disk pack or it may simply be a cylinder. Lists are localised to lic within a cell.
Thus if we had a multilist organisation in which the list for KEY'1 =PROG list included
records on several different cylinders then we could break this list into several smaller lists
where cach PROG list included only these records in the same cylinder. The index entry for
PROG will now contain several entries of the type. (addr, length), where addr is a pointer 1o
the start of a list of records with KEY1 = PROG and length is the number of records on this
list. By doing this, all records in the same cell (i.¢. records on this list. By doing this, all
records in the same cell (i.e. cylinder) may be accessed without moving the read/write heads.
In case a cell is a disk pack.then using cellular partitions it is possible to search different cells
in parallcl (provided the system hardware permits simultaneous reading/writing from several
disk drives). X

It should be noted that in any real situation a judicious combination of the techniques of this . -

section would be called for. Le., the file may be inverted on certain keys, ringed on others,
and a simple multilist on yet other keys.

3.6.5 Comparis.on and Tradcoff in the Design of Multikey File
Both inverted files and multi-list files have)
& Anindex for cach secondary key.
e An index entry for each distinct value of the sccondary key.
In either file urganisati.on
e The index may be tabular or tree-structured.
e The cntrics in an index may or may not be sorted.

e The pointers to data records may be direct or indirect.

File

Conventional DBMS

BCA-1.5/77

n For

7

Introductory Concepts of
Data Base Management System

BCA-1.5/78

n

The indexes differ in that
. Anenu-yinaninversionindcxhasapoinmrmmhdammcurdwimmalvalpe.
® Anentry in a multi-list index has a pointer 10 the first data record with that value.

Thus an inversion index may have variable-length entries whereas a multi-list index has
fixed-length entries. In either organisation

e The data record pointers for a key value may Of may not appear in some sorted

order.
e Keeping entries in sorted order introduces overhead.
The data record file

e Isnot affected by having an inversion index built on top of it.

e Must contain the linked lists of records with identical secondary key values in the
multi-list structure. -

Some of the implications of these differences are the following:
e Index management is easier in the multi-list approach because entries are fixed in
length. i
e The inverted file approach tends to exhibit better inquiry performance. Many types
- of queries can be answered by accessing inversion indexes without necessitating
access to data records, thereby reducing 1/0-access requirements,

e Inversion of a file can be transparent to a programmer who accesses that file but
- does not use the inversion indexes, while a multi-list structure affects the file's
record layout. The multi-list pointers can be made transparent to a programmer if
the data manager docs not make them available for programmr use and stores them
. at the end of each record. :

Additionally, the multi-list structure has proven useful in linking together occurrences of
different record types, thercby providing access paths based upon logical relationships; It is
also possible to provide multiple sort orders through a single data collection, by linking the
records together in order by various keys.

Check Your Progress
1. What is the difference beiween B-Tree and B* tree.

R R R A R RS S e e

2. Why a B* tree is a betier structure than a B-tree for implementation of an indexed
scquential file?

B e S ——

-------------------------------- L. Y SO

3.7 SUMMARY

In this unit, we discussed four fundamental file organisation techniques. These are
sequential, indexed sequential, direct and multi-key file organisation. The selection of the
appropriate organisation for a file in an information system is important to th= performance
of that system. The fundamental factors that influence the selection process include the
following: a

1. Nature of operation to be performed.
2, Characteristics of storage media to be used.

-3 \bhmeandﬁ’equmcyﬁftrmsacﬁnntoﬁeprommd. File Organisation Fo¥ -
) _ : Conventional DBMS .

4. Response time requirement. -
We also discussed trade-offs betieen them.

3.8 MODEL ANSWERS

1. InaB* tree the leaves are linked together to form a sequence set; interior nodes exist
only for the purposes of indexing the sequence set (not to index into data/records). The
insertion and deletion algorithm differ slightly.

2. Sequential access to the keys of a B-tree is much slower than sequential access to the
- keysofa B tree, since the latter are linked in sequential order by definition.

39 FURTHER READINGS

1. Bipin C, Desai, An Introduction to Database Systems, Galgotia Publication Pvt. Lid.
New Delhi, 1994, '

2. MaryES. Lbnmis. Data Management and File Structures (Second Edition) PHI.
3. Horowtz & Sahni, Fundamentals of Data Structure, New Delhi.

BCA-1.5/79

79

BCA-1.5/80
89

UNIT4 MANAGEMENT CONSIDERATIONS

Structure

4.0 Introduction

4.1 Objectives

4.2 Organisational Resistance to DBMS Tools

43 Conversion from an Old System 10 a New System
4.4 Evaluation of a DBMS

4,5 Administration of a DBMS

46 Summary

4.7 Model Answers

4.8 Further Reading

4.0 INTRODUCTION

Unlike he previous two units where we discussed mainly technical issues related to DBMS
i e. file organisation of conventional DBMS, different models of DBMS, in this unit we will
focus on administrative aspects of managing data. This unit will comprise issues of
organisational resistance, the methodology for conversion from an old system to a new
system, the importance of adopting a de-centralised distributed approach and evaluation and
administration of such systems. The material stated in this unit would get further strengthen
by a specific example of enterprise-wide different management that is being discussed in the
following unit. ; _ '

41 OBJECTIVES

After going through this unit, you should be able to :
® idémify the factors causing resistance to the induction of new DBMS tools;

e determine the path that must be chosen in converting from an old existing system toa
new system;

e list the various factors that are important in evaluating a DBMS system;
e formulate a simple evaluation methodology for DBMS selection and acquisition;
e enumerate the functions of the database administrator; and

@ list the check-points and principles which must be adhered to in order that information

quality is assured. ; .

4.2 ORGANISATIONAL RESISTANCE TO DBMS
TOOLS

Organisations who theoretically and ideally be rationale and their decision making not to be
guided by purely an objective approach of its own good. In practice, this does not happen

* and organisations react to information systems by offering resistance. Thisisa partofan .

inherent opposition to change. There are some aspects of change related to information
system that arose great passion. This arose because of some of the following factors:

e Political observation: The officers and managers at different levels of an organisation
feel threatened with the nice long standing political equations and relationships which
have enjoyed their otherwise upward movementwithin the organisation, and may be
threatened by a new intervention into their styles of working. '

~e Information transparency: In the absence of an electronic computer-based efficient

inforration system, many functionaries in an organisation have access to information
which they control and pass on giving it the colour that would suit them. The
availability of information through computer-based systems to almost all who would
have an interest in it makes this authority disappear. It is therefore naturally resented.

'» Fear of future potential: The very fact that computers can store information in a very Management Considerations
compact manner and it can be collated and analysed very speedily gives rise 10 :
apprehensions of future adverse use of this information against an individual. Mistakes
in decision making ¢an now be highlighted and analyscd in detail after leaming spells of
time. It would not have been possible in rnanua] file-based systcms or any system where
the data does not flow so readily.

Inter-departmental rivalry, fear of personal inadequacy, in comprehensive of the new regime
the loss of ones own power and the greater freedom to others-and dilference in work styles -
all add up to produce resistance to the induction of new information processing tools. Apart
[romﬂ:esege:malmnﬂdmmons there are reasons to resist mstallmm of a new DBMS.

ThemmsemnlpmnmufrmsmmmeBMSmuls
. R:msmncemmqumnganewmol

e Resistance o choosing to use a new tool

™ .Rcsistametolcaminghowmuseanewmol

. 'Rcslsmmmumnganewmoi

The se]ccnonandacqu:smoi{ofaDBMS andre.lar.edtoolsmomofthcnmsnmponm
computer-related decisions made in an organisation. It is also one of the most difficult.
There are many systems from which 1o choose and it is very difficult to obtain llnmc&smry -
information to make a good decision. Vendors always have great things 1o say, convincing
argument for their systems, and ofien many satisfied costomers, Published literature and
software listing services are too cursory to provide sufficient information on which to base a
decision. The mere difficulty in gathering information and making Lhe selection is one point
of resistance to acquiring the new DBMS ftools. . -

The initial cost may also be a barricr to acquisition, However, the subsequent iavestment in
training people, developing applications, and entering and maintaining data will be many

time more. Selection of an inadequate system can greatly mrm::ﬂm:subsequemmm
the point where the initial acquisition cost becomes irrelevant.

Inspmnfmsappammrwmwwquwmm.&npmmomﬁxunmmdmrym _
forecasting a multi-billion dollar industry in the 1990%s. Even though an organisation may.
ncqmaDEMs ﬂmmsuusevemladdnmnalpumlsnrmqasmumovmume.

QS:mply having a DBMS ‘does not mean that it will be used. Several t‘aﬂm’s may contribute w
the lack of use of new DBMS tools. -

-@ lack of familiarity with the tools and what it can do

e syster developers used to writing COBOL (oroﬂwrlangnnge} programs prefer to build
systems using the tnols iney already know

. ﬂwprﬁmmmgetnewapp]mmndevehpmcmpmﬁlscumplcwdmcmmwng
- established tools and techniques

. _mmsMMmﬂMmmMﬂwmghlymmdlnﬂmmdemw
e the organisation has not sct up a program 1o train uscrs of new DBMS tools .

*® users are reluctant 10 use a new tool because there is no onc in the organisation to
pravide advnemltsuscmdmlwlp when problems arise

. _wohsonlyknown mafewspemltsummedalaprmngdepmmmt
. noommlhcm’gmumomsmmpellmgcvcnmmuagmgunmufncwDBMSmh

. Wmusaﬁadofnmawaydcmdonummpuﬁnsfwilmufmﬂm
users to directly mm:dnmmﬁwmummawngwusy touse.hlgh lﬂel
retrieval facility :

o organisational policies which do not demand appropriate justification for the tools
-'M(ﬂﬂM}fMMWM&Mptﬂj&ﬂ
Having pointed out the transactions from which utility can arisc to the intorvention of a new
DBMS nmaybcumfufmhvcammmufﬂewpmmmwmmmwbwmwa 5CA1 5/81

Introductory Concepts of
Data Base Management System

BCA-1.5/82
82

Reasons for success

Appreciation for information
is a valuable corporate

_reasons and its management

must be given special
importance.

Fecusing on most beneficial
usage of database, which
relate to the bottom level.

An incremental approach to
building applications with

each new step being reasonably
small and relatively easy to
implement.

Cooperate-wide planning byh
high level, empowered,
competent data administrator.

Conversion planning which
permits all the systems to co-
exit with the new.

Awareness education and
involvement of all persons at
a level appropriate to the:r
functions.

Good understanding of the

technical issues and tight
technical control by the
database administrators.

Recognition of the importance
of a data dictionary and
standards for naming, update
control and version
synchronisation.

Simplicity.

A proper mix of centralised
guidance and de-centralised
implementation.

Proven work-free software.

Reasons for failure
Perception by the barrens in
the organisation that the MIS

design is amena:oe
conflicting interest to
prevent the success.

Over sailing MIS to top
management and chosen
applications for their
challenge to the programmer
members.

A grant design for creation

of an impressive system
that can be a pinata for
all information problems.

Fragmented pla.ns by non-
communicating and not
eventually response groups.

A situation which may put
into the new system and
altempts to re-write to
many old programs.

Apathy by most people to
implementation of the new
system. -

Inadequate computing power,
incorrect assignment of
throughput and assigned

time and failure to monitor
usage and performance.
Casual approach to data
standards and documentation.

Confused thinking.
Indifference of the central
system and proliferation of
incompatible systems.

The latest software wonder.,

Iflheabovefacmleadmgtomcessnrfaﬂumofmepmjectmbormmmmd.thcchm
of a successful 1mphmmmandﬂwposs’ibﬂ1tyofugamsaﬁmalbmaﬁ;ﬁumthww b

greater.

4.3 CONVERSION FROM AN OLD SYSTEM TO A

- NEW SYSTEM

Management is also concerned with long-term corporate strategy. The database selected has,
to be consistent with the commitments of that corporate strategy. But if the organisation .
does not have a corporate database, ummemmbadcmhpedbefmcmvmuwm
place. Selecting a database has to be from the top down: data flow diagrams, representing
the organisation’s business functions, processes and activities, should be drawn up first,

followed by entity-relation charts detailing the relationships between di fferent business Management Considerations
information; and then finally by data modelling. If the entity- relationship chart has a

tree-like structure, then a hierarchical data structure should be adopted; if the chart shows a

network structure, a network data structure should be chosen. Otherwise, a universal

structure, such as that of a relational database, should be chosen,

Corporate Strategic Decisions: The database approach to information systems isa
long-term investment. It requires a large-scale commitment of an organisation’s resources in

“compatible hardware and software, skilled personnel and management support.
Accompanying costs are the education and training of the personnel, conversion and
documentation, It is essential for an organisation to fully appreciate, if not understand, the
problems of converting from an emstmg, file- based system to a database system, and to
accept the implications of its operation before the conversion.

Before anything else, the management has to decide whether or not the project is a feasible
one or that it matches the users’ requirements, Costs, timetables, performance considerations
and the availability of expertise are major concems too. A pilot project to act as a benchmark
is always necessary. A successful data resource management environment must have this
management commitment, along with adequate resources in budget, people, equipment and
material, 4 data dictionary, and mtegratcd organisation of people and data in the
data—admmistrauon section.

Hardware Requtrements and Processing Time: The database approach should be in a
position to delegate to the database management system some of the functions that was
previously performed by the application programmer. As aresultof this delegation, a

- computer with a large intenal memory and greater processing power is needed. Powerful
computer systems were once the luxury enjoyed by those database users who could afford
such systems but fortunately, this trend is now changing. Recent developments in hardware
technology has made it possible to acquire powerful, yet affordable system.

Depending on the structure of the data and the access methods to them, the use of a database
management system may result in longer processing times. For some database applications
the run time can be just as quick - if not quicker than the conventional environment. But if
the run times for a majority of cases in the existing environment is so much slower, than the
database approach is an unwise decision.

For some applicaunns the need for high-volume transaction processing may force a
company to engineer one or even several systems designed to satisfy this need, This
sacnf ices a certain flexibility for the system to respond to ad-hoc requests.

And it is also argued that because of the easier access to data in the database, the frequency
of access will become mghcr Such overuse of computing resources will cause slips in
performance, resulting in an increased demand for computing capacity. It is somer.unes
difficuit to dzrerming i the increased access to the database is rally necessary.

The database approach offers a number of important and practical advantages oan organisation.
Reducing data redundancy improves consistency of the data as well as making savings in storage
space. Sharing data often enables new applications 1o be developed without having to create new
data files. Less redundancy and greater sharing also result in less confusion between
organisational units and less tie spent by people resolving inconsistencies in reports. Centralised
control over data standards, security restrictions, and so on, facilitates the evolution of
information systems and organisations in rgsponse to changing business needs and strategies.
Now-a-days, users with little or nio previous programming experience can, with the aid of
powerful user- friendly query languages, manipulate data to satisfy ad-hoc queries. Data
independence helps ease program developmeriyand maintenance, raising programmer
productivity. All the benefits of the database approach contribute to reduced costs of application
development and improved quality of hmngcnal decisions. 4

A principal component of the changeuver from a conventional system to a database system is
the conversion of data files and applications programs to a form needed by the database
management system. The accuracy with which this is done is vital to the success of the
database system. Once the nrograms and files have been converted, the new procedures may -
be introduced by either pm‘allel running or pilot running. This must be properly plannad and
controlled, and the necessary instructions must be issued to both users and data- -processing
staff. When the users are satisfied, the new systems can be handed aver, and the d:atabase

administrator will stay on as part of the maintenance group. : . BCA-1.5/83

33-

Intriductory Concepts of
Data Buse Manugement System

BCA-1.5/84

84

Amid the volatile data processing world where technology advances so rapidly, the data
processing manager must satisfy uscr demands while maintaining an economical operation,
Management must set specific goals for developers and users alike to leam the new tools of
the database management system. The investments will pay off when users and developers
become proficient in accessing data and building systems with the new tools. They reap the
cconomic regards and benefits of the hardwarc/software capabilitics of the database system,
the database manner and the databasc administrator both need a variety of database
conversion tools. A new sofiware technology called data translation is being developed at
many rescarch institutions, but the rescarch is still in its infancy. Many more years of
research is necded to dispel the doubis and fears faced by many processing installations on
the decision to go for database.

Database conversion is not an easy task. Depending on each situation, management has to
decide which approach is the best one - coexistence, or having two databases,
redevelopment, conversion, transparency, or DML substitution and packages The
management must bear in mind the importance of user-leamning curve in accepting a new
database for the organisation. Also, conversion to a hierarchical or a network database is
more difficult than to a relational database because relational databases have simpler data
structurcs, Users nced only to define keys in each table file: very often keys are dcﬁne.d with
the table files.

In general, converting to a database involves the following:

1. Inventorise current systems such as data volume, user satisfaction, present condition and
the cost to maintain or redevelop.

2. Determining conversion priority in strategic information system plans, building block
systems and critical needs to replace system.

. Obtain commitment from senior/lop management.
. Appoint qualificd database-administration staff.

. Education management information systems staff.
Select suitable and appropriate soliware.

. Install data dictionary first. '

. Involve and educalte users.

=T - - B - A Y

. Redesign and implement new data structures,

10. Write software utility tools to convert the files or database in the old system to the new
database,

11, Modil'y all application programs to mahe use of the new data structures.
12. Design a simple database first for pilot testing. |

13. Tmplement all software.

14. Update policies and procedures,

15. Install the new détabase On production,

In the recent trend of database development, a common front- end to the various database
management sysicms will often be constructed in such a way that the original systems and
the programs on them are not modified, but their databases can be mappcd Lo each other
through a single uniform language.

Another approach is to unifly various database structures by applying the database standards
laid down by the International Standards Organisation for data definition and data
manipulation. Public acceptance of these standard database structures will ensure a more
rapid development of additional conversion tools, such as automatic functions for loading
and unloading databascs into standard forms for model-to-model database mapping.

If an organisation afier weighing all the relevant factors decides to make an investment in a
good database management system, it has to devejop a product planned for doing so. Many
of the steps required are more or less along the lines that are required when an organisation

- first moves in towards the use of computer-based information system. One would Management Considevations
immediately note the similarity to the steps referred to in the course on “System Analysis and

Design”. In the interest of briefing therefore the reference would be only to those factors

which are of greater consequences for the problem at hand. It may, however, be useful to

bear in mind that a detailed implementation plan would be more or less along the lines of

creation of a computer information system for the first time. '

4.4 EVALUATION OF A DBMS

The evaluation, is not simply a matter of comparison or description of one system against
another independent system, and surveying sometimes available through publication do
describe and compare the features of available systems, but a value of an organisation
depends upon its own problem environment. An organisation must therefore look at this own
needs to evaluation of the available systems. '

It is worthwhile putting some attention to who should do this." In a small organisation it is
possible that a single individual would be able to do the job, but larger organisations need to
formally establish an evaluation team. Even this team’s composition would somewhat
change as the evaluation process moves on. A good role in the initial stage would be played
by users and management focus on the organisational needs. Computers and Information

- technology professionals then evaluate the technical gaps of several candidate system and
finally financial and accounting personnel examine the cost estimates, payment alternatives,
tax conscquences, personnel requirements and contract negotiations.

The reasons which inspire the organisation to acquire a DBMS should be ¢clearly documented
and used to determine the properties and help in making trade offs between conflicting
objectives and in the sclection of various features that the candidatc DBMS may have,
depending upon the end-user requirements. The evaluation team should also be aware of
technical and administrative issues. These technical criteria could be the following:

(a) SQL implementation :

(b) Transactiop management

(c) Programming interface

(d) Database server environment

(¢) Data storage features

(f) Database administration

(g) Connectivity

(h) DBMS integrity

Similarly there could be administrative criteria such as:

(1) Required hardware platform

{i) Documentation

(3) Vendor’s financial stability

(4) Vendor support

(5) Initial cost

(6) Recurring cost

Each of these, especially the technical criteria could be further broken into sub-criteria. For
example the data storage features can be further sub-classified into
(a) lost database segments - :

(b) clustered indexes

(c) clustered tables

Once this level of detailing is done, the list of features becofne quite large and may even run
into hundreds. If a dozen products are to be evaluated, we are talking-of a fairly large matrix.

At this point, it is important for the evaluation teams and especially its technical members to

segregate these featurres into thosé which are mandatory. Mandatory features would be those

which if not present in the candidate system, the system need not be considered further. For BCA_1 5/85
example, does DBMS provide facilities for programming and non-programming uscrs? Can :

be considered as one among several mandatory conditions. Mandatory requirement may also - 85

L]

Introductory Concepis of
Data Base Management System

BCA-1.5/86
86

flow from a desire to preserve the previous investment in information systems made by an
o:gamsaunn The presence of the mandatory condition means lhat the system is a candidate
for the rating pmoe;durc

Having done the first stage of creating a feature list, one of the simplest ways could be to
develop 4 table where the features and its related information for each candidate system is
listed to in a tabular form against the desired feature. Such forms can be chosen to compare
the various systems and although this can not be enough to conclude an evaluation, it is a
useful method for at least broadly ranking and short-listing the systems. A quantitative
flavour can be given to the above approach by awarding points for features which are in
simple Yes and No type. If all the features are not equally important to thé organisation, iien
the summing up of the points awarded for each of the features for any of the system is not
quite appropriate. In such a case a rating factor can be assigned to each feature to reflect the
relevant level of importance of that feature to the organisation.. Of course such rating or
scoring should be done after the first condition of mandatory requirements have been mei by
the proposed system. Sometimes the mandatory characteristics may be expressed in the
negative as something which the system must not have.

The points of the rates is a contentious issue and must be decided looking only to the needs
of the organisation and with reference to the characteristics of any specific candidate system
one of the approaches used towards arriving at a suitable set of rating factors is to follow the
Delphi method. In brief, the Delphi approach requires key people who may be expected to
be knowledgeable to make suggestions as to what would be the appropriate rating factor.
These are collecied, compiled, averages taken and deviation from averages pointed out. This
data is then re-circulated to the same set of people for wanting to change their opinions
where their own views were varying largely from the average. The details can then be
carried out and it has been found that in about as few as 3 to 4 iterations in good consensus
emerges. :

One of the weakness of the methodologies discussed so far is that they are focusing on the
systems but not on the cost benefit aspects. A good evaluation methodology should be
possibly suggest the most cost effective solution to the problem. For example, if a system is
twice as good as another system, but costs only 40% more than it ought to be a preferred

solution.

In order to carry a cost after analysis one has to use a rating function with each feature to
normalize the sequence. Rather than having an approach where a feature is characterised as
a Yes/No, the atribute corresponding to its presence or absence which in marks term could

“be 0 or 1,amark can be given on a scale which is appropriate to the feature. This can arise

in issues such as the number of terminals that are supported or the amount of main memory
required. Rating functions can be of several types of which 4 are illustrated in Figure 1.

(a) Linear: In alinear rating function ﬂmmunymeases in pmpuruon to higher marks
starting from 0.

(b) Broken linear: There are situations where the minimum threshold is essential and
similarly there is a saturated value above which no additional value is given. Typically
in general concurrent access, few or 3 would be includable value and more than 9 is of
no additional value,

(c) Binary: This is of course an Yes/No type where a system either has or does not have the
feature or some minimum value for the featm-e

(d) Inverse: There are some attributes where a higher mark actually implies a luwer rating,
For example in accessing the time to proce:ss a standard query, the mark may be simply
the time scale in an appropnatc manner, “Therefore, a shorter time aclnallyhaa higher

. rating.

For each feature, the rating i unctiun uses an appropriate and convenient scale of
measurement for determining a system’s feature mark. The rating function transforms a
system’s feature mark into a normalised rating indicating its value relative to a nominal mark
for that feature. The nominal mark for each feature has a nominal rating of one.

* The use of rating function is more sophisticated and costly to apply than the simplified

methodologies. The greater objectivity and precision obtained must be weighted sgainst the
overall benefits of DBMS acquisition and use. Some features will have no appropriate
ubjecme scale on which to mark the featire.: The analyst could use a five point scale witha
linear rating function as follows:

Feature evaluation ' Rating point ; Maunagement Considerations

Excellent (A) 5
Good (B) 4
" Average (C) 3
Fair (D), 2
Podr (E) 1

Variations can expand or contract the rating scale, using a nonlinear rating function, or
expand the points in the feature evaluation scale to achieve greatcr resolution. In extreme
cases, the analyst could simply use subjective judgement to arrive at a rating directly,
remembering that a feature rating of one applies to a nominal or average system.

Having converted all the marks to ratings, the system scorc is the product of the rating and
the weight summed across all features, just as before. The overall score for a numma}system
would be one (since all weights sum to one and all nominal ratings are one). This is
important for determining cost effectiveness, the ratio between the value of a system and its
cost. The organisation first determines the value of a system which eams a nominal mark for
all features. This is called the nominal value. Then the actual value of a given system is the

1\ Rating;

LINEAR

fating increases

in ion to
higﬁer marks.

Validation

Mark is the number of dll'l'emnt
rules for expressing validation
crileria on data item wvalues.

11

1234567

Nominal
Mark

BROKEN LINEAR

with’ minimum thréshold

of value and saturation level
of maximum value.

Concurrent Access

Mark is the number of concurrent
vsers handled; fewer than three

is of negligible value (R=0)

and more than nine is of no
additional value (R=2)

i # users
Nominal
AR
BINARY Retrieval
a sy:mci.thcr frerrrrrrm e o —— . Mark is the number of record
does or does not ' types addressable in a single
have the feature, : query; two is nominal morne
or some minimum. * s not worth a higher rating.
>» M
2 iead
Nominal W N
MR
INVERSE Performance
a higher mark Mark is the lime 10 execute a
roduces a standard query; a shorer time
ower rating. 1 feren has a higher rating (perhaps)
reflecting machine costs).
> ‘M
369 3 siccid
Nominal

BCA-1.5/87
Figure : Sample Feature Rating Functions

87

Introductory Concepts of
Data Base Management System

BCA-1.5/88
88

product of the overall system score and the .ominal value, Thie.cost effectiveness of a
system is the actual value divided by the cost of the system. System cost is the present value
cost of acquisition, operation and maintenance over the estimated life of the system.

With a cost-gffectiveness measure for several candidate systems, the organisation would
tmtalivcly select the system with the highest cost-cffectiveness ratio.

Of course there may be intangible factors other than the technical and administrative criteria
refemred to earlier which may influence the final selection based upon political judgmncnts of
the management or some other considerations. It would of course be possible to even to
build these up of that can be explicitly so illustrated into the evaluation process.

4.5 ADMINISTRATION OF A DATABASE

MANAGEMENT SYSTEM

Acquiring a DBMS'is not sufficient for successful data management. The role of database
administrator provide the human focus of responsibility to make it all happen. The DBA role
may be filled by one person or several persons.

Whenever people share the use of a-common resource such as data, the potential for conflict
exists. The database administrator role is fundamentally a people-oriented function to
mediate the conflicts and seck compromise for the global good for the organisation.

Within an organisation, database administration generally begins as a support function within
the systems development unit. Sometimes it is in a technical support unit associated with
operations. Eventually, it should be separate from both development and operations, residing
in a collection of support functions reporting directly to the director of information systems.

- Such a position has some stature, some independence, and can work directly with users to

capture their data requirements. Database administration works with development,
operations, and users to coordinate the response to data needs. The database administrator is
the key link in establishing and maintaining management and user confidence in the database
and in the system facilities which make it available and control its integrity.

While the ‘doing’ of database sysiem design and development can be decentralised to several
development projects in the Data Processing Department or the user organisations, planning
and control of database development should be centralised. In this way an organisation can
provide more consistent and coherent information to successively higher levels of
management.

The functions associated with the role of database administration include:

e Definition, creation, revision, and retirement of data formally collected and stored
within a shared corporate database. -

e Making the database available to the using environment through tools such as a
DBMS and related query languages and report writers.

o Informing and advising users on the data resources currently available, the proper
interpretation of the data, and the use of the availability tools. This includes
educational materials, training scssmns. pamclpauon on projects, and special
assistance,

e Mainiaining database integriiy including ¢mtemc control (backup and recovery),
definition control, quality control, updaxe camrol. concurrency control, and access
control.

e Monitor and improve operations and performance, and maintain an audity trail of
database activities,
. : -
The data dictionary is one of the more important tools for the database administrator, It is
used to maintain information relating to the various resources used in information systems
(hence sometimes called an information resource dictionary)—data, input transactions,
outpiit reports, programs, application systems, and users. Itcan:
- » Assist the process of system analys:s anddesxgn.

e Provide a more complete definition of the data stored in ﬂledatahasc(lhaﬂu
maintained by the DBMS).

e Enable an organisation to assess the impact of a suggested change within the
information system or the database. v '

e Help in establishing and majniaining standards, for example, of data names.
e Facilitate human communication through more complete and accurate
documentation, ;
‘Several data dictionary software packages are commercially available.
The DBA should also have tools to monitor the performance of the database system to
indicate the need for reorganisation or revision of the database.

_Check Your Progrels _
1. List factors which motivate the move to acquire the DBMS approach,

B

e SR R RS R R ERAE e b e bl e

FEEEEsERas E L L

2. “What are some of the purposes of a data dictionary?

L T T e T

4.6 SUMMARY

The process of selecting, evaluating and finally acquiring a DBMS package takes a
substantial time and efforts. e tasks begin when the need and requirement of an
organisation and user is strongly felt. Designing such package in-house is not a realistic
alternative with more and more reasonably good commercial system available in market,

The important criteria for selection of DBMS are technical and administrative criteria. The
key technical criteria relate to the type of system required, balancing the competing
objectives of efficiency and functionality. Administrative criteria include vendor
characteristic maintenance support, documentation, training and ease of leamning and use,
cost elc, '

An organisation will live with chosen DBMS for several years. If the initial study and
selection is done with a broad view or organisational needs now and into the future, the
choice can enhance data processing is responsiveness to user needs, managerial difference
effectiveness and organisation profitability,)

.

.47 MODEL ANSWERS

1. e Faster response to queries
e Faster application development
e Data sharability '
® Reduced program maintenance
® Adaptability to changing requirement
® Increased security
® Transferability across hardware

2. The foundation of the data dictionary is information about data items with a
- comprehensive base of information, the data dictionary can serve several useful

Management Consid erations

BCA-1.5/89

89

Introductory Cuncepts of g £ e
: purposes. These purposcs span the whole spectrum of planning, determining
Dot W loe M gwminh Nyt information requirement, design and implementations, operations and revision.

e Data availability : A data map for end users to discover what data exists in the
organisation, what it means, where it is stored and how (o access it. May be
provided using a facility for browsing through a data dictionary.

e Documentation : Providing reports of data about data. The data dictionary can be
used to generate a graphical representation of database structure similar to
automatic program flowcharting, ‘In a general sense, the data dictionary is a vehicle
for managing size and complexity in a database environment. In a typical
single-function organisation (not a mixed conglomerate) the individual data items
will number in the several thousand. The data items appear in hundreds of files
(record types) which are interrelated and in hundred of input transactions or data .
capture screens and output reports.

4.8 FURTHER READING

Everest, Gorden C., Database Management Objectives System Functions & Administration,
McGraw Hill International Editions, 1986.

BCA-1.5/90
20

UNIT5 ENTERPRISE WIDE
INFORMATION SYSTEM OF THE
‘TIMES OF INDIA GROUP

(A CASE STUDY)

Structure

5.0 Introduction

5.1 Objectives

'5.2 Organisation and the Operating Environment

53 Unique Nature of the Business

54 Shift in Strategy

5.5 Information System Goals and How to Achieve the Goal
5.6 Implementation Plans and Problems during the Implementation
5.7 The Response System and Respnet Choices

5.8 Benefits-

59 Future

SlOSummm‘;r'

5.0 INTRODUCTION

The Times of India is a leading Publishing House of India. The Group is implementing an
" Enterprise wide Information System to help it realise its strategic goals. One component of
the System is RESPNET. Respnet is discussed at some length. The problems faced in
implementing i it are mentioned. The role of Ingres in the Information System is touched

npon.

5.1 OBJECTIVES

After going through this unit, you should be able to:

o understand the need for an Emcrpnsc wide Infonnauon System in a large
Publishing Hmlse.

e . understand the meaning and complexity of an Enterprise wide Information System
in a large organisation with offices in several plm:es throughout the country;

e understand the components of an Enterprise w:de Information System;

e .understand the details of the implementation of an Enterprise wide Information
System;

[3 understand the problems encountered during the implementation of an Enterprise
wide Information System; - -

. understand the benefits of an Enterprise wide Information System;

understand the role of a commercially available Database Management System
(Ingres) in implementing an Enterprise wide Information System; and

o appreciate the need for continual enhancement and technological upgradation in
_ mammmmg an Enterprise wide Information System,

5.2 ORGANISATION AND THE OPERATING

ENVIRONMENT

The Times of India Group is the leading publishing house of the country. The group
publishes three national newspapers, two regional ones and one evening paper besides a few
magazines. For over 155 years now the Times of India has consistently maintained its
position as the flagship among Indian dailiés. Its six editions can boast of acombined -
 circulation of over 500,000 and a readership of over 2,000,000. Independent surveys have

BCA-1.5/91
91

Introductory Concepts of +shown that about 70% of Indian decision makers read the Times of India. The Economic
_ Data Base Management System Times, the national financial paper, enjoys a pre-cminent position in its category.

The combined annual turnover of the Group is Rs. 3 billion (about US $ 100 million). It has
12 Major branch offices of which 9 are publishing cefiters. In addition there are over 40
smaller marketing offices.

Iﬁ addition to its publishing activities, the Group produces software for Televisionandisa
major purchaser of Radio (FM) broadcasting time. It also has a company offering financial
services. Other expansion plans are afoot.

The Group has to operate in a fiercely competitive business environment. The rivals include
other newspapers and magazines and other media, mainly television, With the expansion in
the reach of national and satellite television, there has been a perceptible shift in the
preference of people away from newspapers and towards television and video. This decline
in the reading habit has affected all newspapers and publishers and has led to g;reaia
competition among them,

This has led to a situation not unlike that in any other business activity. Timely and accurate -
commercial information has become indispensable not only to grow and to thrive, but for
miere survival as well. The information rcqmred can be classified broadly into that glcﬁned
from external entities and the portion which originates in the organisation itself.

While computers are of immense help in both these pursuits, this paper discusses mamlythe
experience of the Information Services Division (ISD) of the Times of India Groupin
making available internal commercial information to various levels of management. The task
would be a mammoth one anywhere, but in a developing country like India it poses an
additional set of problems to those carmng it out, The process is still on, ﬂmughgood
progress has been made already.

53 UNIQUE NATURE OF THE BUSINESS

Before going on to sharing ISD’s experience in more detail, it would not be out of place to
clucidate the dynamics of the newspaper business. It has certain features that make it quite
different from the typical manufacturing or trading corperauon. These features have had their
impact on both the approach to the design of the information system as well as on the
development of its specific components.

~ There are three main functions in this industry. These are the editorial, which gathers news,
articles, syndicated columns and the rest of the contents of the newspaper for which the
majority of the readers read and buy it. The talent in thlsareacmsmtsofthe]mmmhsm who
lend character to the contents of the paper. Excellence in editorial and news content helps
boost circulation, which is the life blood of the newspaper. As is known even to lay persons, -
the income from circulation forms only a small part of the earnings of a newspaper. A large
circulation helps increase the columnage of advertisements carried, Advertisements are the
major source of revenue for a newspaper and determine its fi_nanc:al fortunes. . ' -

' Ofcourée success in selling advertisement space means enoughresumces'fdr lhénewspaper
to plough back into improving its editorial content, in improving facilities for staff functions
and generally all over the organisation. This is the circle which drives this line' of business.

Theabscmeofanymfmmﬂ:eacmalpfoducnmpmcmswﬂlmthwegoncmnmd
by discerning readers. While its importance cannot be overstated, the potential benefits of
excclienmmmanufamngmmsnvmgdnemmducmnmwasmgeandmchke.m
potential as regards increasing revenue is only peripheral, by using good paper, producing
legible copy and so on. Hmcaﬁwpnnungpmcesshasmtbaen mmuonadwhdedesmbmg :
the main business cycle of a newspaper, = '

Since advertising is the major revenue eamer, it assumes the greateslunpmmnce many
information system built for a newspaper. The peculiar characteristics of i its funcuomng
therefore need to be elaborated upon. .

In a Newspaper Group hkeﬂm'l‘imwoflndla advetusenmms mayl:ebnolmi ﬁ-mqany o
- branch office for publication in any edition of any newspaper published by the Group, which

BCA-1.5/92 is often called a product. Different products may be published from different sets of - -
9% bmnclws andeachofrl-mmmuldhaveadxﬁmmva!ucasfarasadvemsmgwmu:mchm:s

goes. Hence the situation is different from a multi-location manufacturing organisation. In
such an organisation, although the same product could be manufactured from different
facilities located at different geographical sites, there would not be any difference between
them. A difference would exist only if they were different products.

For example, consider a company which manufactures washing machines and refrigerators,
the former from locations A, B, C and D, and the latter from B, C and E. If an order i
received for refrigerators, they can be supplied from B, C or E. Similarly washing machines
can be supplied from A, B, C or D and there is no difference between appliances supplied
from different locations.

This is not the case with advertising space. If a newspzrer 'x” is pubished from A, B, C and
D, then the value of advertising in ‘x’ at A is diiuterent from the value of an advertisement in
the same newspaper ‘x’ at B, and so on. This is berause of the different circulation figures

- and readership profiles at different locations. And yet the situation is not like that of two
different products, since the editorial content is largely the same.

5.4 SHIFT IN STRATEGY

Upto 1985, the Group was content with the way things were going for it. It had steady
 business, there were no dangerous rivals and there were adequate profits 1o be had, The
Group was conservative and there was no attempt at innovation in the area of marketing,

. Around that time, there was a shift in the thinking of the owners and it was decided 1o gain a
leadership position and expand aggressively. It was also decided o change the focus of
activity from mere publication of a newspaper to becoming an information and marketing
company. This meant expanding the activities of the Group: to other media, syndicating news
and other such extensions, Thus the Times of India ploncered the colour newspaper in
the country. Such innovation required a change in the way things were done and above all it
meant that a strategic plan would have to be conceived of and executed. :

The exact nature of the plan will be of interest to students at a business school more than to
the readers of this paper, and so it will not be dwelt upon. But what would certainly be of
interest is the fact that even the development, let alone the execution of such a strategic plan
was handicapped by the absence of information. This was a pity because the data already
was available to the organisation, either within or from external sources,

The tactical aspects of the plan required that changes be made in the way the activities of the

various functions were carried out. It was not possible to do this using the primitive software -

available and working at that time.

The above difficulties meant that the changed philosophy of the Group could not really show
up in its working. However, whatever little was possible was done, and in particular, the
importance of timely and accurate information was brought to the notice of the management.

5.5 INFORMATION SYSTEM GOALS AND HOW TO
ACHIEVE THE GOAL

With this background, it will now be possible to elzborate on the Information System goals
of the Times of India Group and then on the experience of ISD in achieving them, The
central role played in this by commercially available database management systems will
also be discussed. .

Over three years ago, ISD conceived of and embarked on the task of designing, developing,
implementing and maintaining an Enterprise wide Information System for the Times of India
Group. The system was to embrace all the internal commercial information needs of the
Group. The various functions at major locations arc Response (as advertising is called
internally), Circulation, Inventory, Finance, Transport, Newsprint, Personnel and others.

. At each location these systems would be put together into an Integrated Information System
for the location. Similarly most functions were carried out at different locations. So the
functions -vere to be integrated across geographical locations as well. The result would be an
Organisatic.1 Wide Information System. :

Enterprise wide Information
. System of the Times of
India Group

BCA-1.5/93

93

Introductory Concépis of
Data Base Management System

BCA-1.5/94
94

The goal of this system was to provide any authorised user access to any piece of
information required, even if this meant that the data had to come from all over the country.
The operation of the system. was to be as user friendly as possible, The user was to be
transparent to any task except posing his query and obtaining the result.

The system was to operate such that the activities of the various functional areas were all
performed with the help of the computer. This 'would ensure that all data entered the system
at source. No subsequent transcribing process would be necessary. All users would do their
own data entry, pose their own queries to the system and satisfy all their information needs. .

Given this operational information system, it was decided to build a decision support system
around the data available. This would help all levels of users o make decisions based on all
relevant data.

The above goal was recognised as an ambitious one and one tiat would take a long time to
be attained. The task would be a mammoth one in any part of the world, but was recognised
as being especially difficult in a country like Im:l:a. with weak power and :
telecommunications mfmsu'ucture

There are various components involved in this kind of endeavour. Broadly, these are the
hardware, the operating system, the database management system, the application, the
physical network and the networking software. In addition there would be the man-machine
interface.

Here ‘he main emphasis will be on narrating the experience of ISD in developing the
applications and the role of commercially available database management systems in this.
The network choices and solutions will also be discussed, as they show the special problems
ISD has had to solve, and as they are related to database issues.

It would not be out of place here to mention that when ISD embarked on this task, it was not
as if the organisation was deyoid of computers or commercial applicatians. However, the
applications then running were typically batch operations written in third generation
languages. This helped in that users were somewhat familiar with computers and did not
harbour any dread of the machines. However, it also meant organising a smooth transition to
new applications with as little disruption in operations as possible.

Given the importance of the Response function to the organisation, this was the natural
choice to begin the changeover to the enterprise wide information system, First the task of
rewriting the whole application was started, As each usable module was ready, the -
implementation and transition operation was performed. Since ISD is based at Delhi, this

* was the first office to have the new syaicm. 'IheRespnmesyﬂemlsmscussedmmedmﬂ

later,

5.6 IMPLEMENTATION PLANS AND PROBLEMS
DURING THE IMPLEMENTATION

The broad plan of implementation was to install the Response system in standalone mode at
all offices, while networking these together subsequently. This involved changestothe
application to make it a true network application and use the myriad possibilities this opened
up. The work on the other applications was to continue simultaneously: All such applications
like the Finance System were to be implemented at Delhi first as this allowed ISD to observe _
and support them easily.

The decision support system for the Response function at the operational level was gradually
developed together with the implementation of RESPNET, as the Response software system
was christened. This system was to be refined as and when more possibilities wmsuggwtad _
by the users. By this time ISD is working on demsmn support facilities for top management. 3
This includes support for pricing decisions and tariff structures.

The task of integration was to be taken up in various ;ihases depending on the situation,

Thus, in the case of Response, it was felt conveni>nt to integrate vertically.across branches .-
rather than first wait for other applications to come up at a branch. So integration was begun
in both directions at the same time. For example, the Financé System under dzvelopment and -

. implementation at Delhi is linked to the Response and Circulation applications. It will soon:

be connected to the Inventory and Personnel systems. The exact order in which the

integration of various software systems was to be done was felt to be not important, It was
therefore decided not to work out the detailed plan in advance and 10 integrate in the most
convenient order,

Problems during the Implementation

These were the decisions taken during the early stages when the Response software was yet -
to be developed. As already mentioned, this was the first package taken up for development
and implementation. The experience gained during this task wil' ~>w be narrated, together
with the problems faced and how these were overcome.

The difficulties were broadly of two kin'>—those concernizg the physical system of the
Response Department and those with the network. There were issues with the reliability of
the hardware and thg UNIX ports available i Tz4ia, but these have been solved by now with
the availability of international brand names which offer reliable UNIX boxes, capable of
providing the uninterrupted service required from the hardware and with well tested system
software. This problem might be peculiar to the country, but it underscored the need for good
hardware and reliable software. The ISD lost a large amount of time in dealing with
hardware crashes and unreliable operating systems during all stages of the development and
implementation of the Information System. Otherwise the progress made so far would have
been much greater. '

Another twist to the issue of reliable sofiware was that there was no certificd port of Ingres
on the hardware available to ISD. This resulted in various problems with Ingres which
perhaps have not been faced by c—ﬂim elsewhere, However these need not be dwelt on now
that they are behind us.

There were two major difficulties encountered, with data lines and with the physical
operations of the Response department. The leased lines available to ISD were all 4800 baud
lines with-a fall back to 2400 baud. There was a standby line offered with each main line.
However the uptime of the lines was very low and even when working, the lines were noisy,
resulting in a very slow speed of cperation. This problem was found to be mainly with the
local leads at the various centres, as the long distance lines available, even in India, were of
quite good quality. The long distance network is rapidly being converted to use fibre optic
cable, ensuring first class transmission. However, the same could not be said for the local
network. To get around this difficulty, dedicated cables were proposed at all centres from the
organisation’s premises to the telephone exchange concerned. This helped reduce the
problem somewhat, However, the reliability of lines is an issue which still has not been
resolved and one for which no solution is in sight yet. It is hoped that at some time good
quality lines will become available to ISD.

Irrespective of the issues concerning the network, it was decided to have local databases for
each main branch so that local operations and autonomy were not compromised in the event
of failure of any segment of the network. This meant that the full Response system consisted
of a system of loosely coupled, co-operative databases. The coupling is weak because
although in the normal situation the local databases interact extensively, it is possible for a
centre to be cut off from the network and still function normally for operations related to that

- branch. As soon as the network is re-established, the interaction with other databases starts
again. This is a less than desirable situation, but the only feasible solution given the
compulsions of the reliability of the network,,

Because of this situation, certain other problems came to thi fore. Thus it was found
impossible to implement a fully on-line network application because of the line conditions.
The way out was to write software which would try and work on-line and fall back to batch
updates as and when the line was available. After some experimentation the idea of having a
transaction based on-line application had to be postponed indefinitely as it was found almost
impossible to be on-line for any reasonable length of time. The Response system is thus
currently one where updates take place across the network at the earliest point in time
possible, depending on the availability of the data lines, However, it must be emphasised

, again that this has not been done as a matter of choice, but after failing on more desirable
options. Whenever the line quality improves, the application will be made fully transaction
based.

This brings one to anothcr problem conceming commercially availablc databases. While

Ingres was very useful in quick application development, robust local operation, satisfactory

speed and so on, the fact was that the developers of Ingres who had conceived of and
implemented its network capabilitics came from a different cultural background. The Ingres

Enterprise wide Information
System of the Times of

India Group

BCA-1.5/95
95

Introductory Concepts of
Data Base Management System

BCA-1.5/96

96

network related products were all built for a situation where reliability of telecommunication
lines was taken for granied, Hence there were no features to allow for recovery after a
network breakdown, much less to cater loa mluahun where a network was-partially down
almost all the time.

It was therefore not found possible to use Ingres network products for the Response sysiem
application, although it must be again emphasised that this is‘ho reflection on the quality of
those products. The problem was environmental and cultural. However as far as ISD was
concerned, il was necessary 10 wrile routines for taking care of the resulting problems. This
has been done and the necessary subroutines are available to the application developers for
their use,

In this connection, it must be mentioned here that late last year, Ingres did realise this
possibility, and released commercially a product which takes care of a situation where
communication links are down. The services provided by this produet are very similar to
what ISD had had 1o develop to get around the difficulties faced with the network. If only
thisgroduct had been available earlicr, ISD could have saved a lot of ti= in moving towards
its information service goals.

An entirely differcnt set of difficulties was encountered because of the fact that the earlier
operations were not networked. Since each branch functioned independently, the physical
cperations everywherc were slightly different. This meant that implementing a single
package all over the organisation required changes in operation all over. Every branch had to
change somewhat in order 10 make operations uniform. Apart from this, certain master
inforiaation like agency codes, rate codes and the like had to be made unifprm all over the
country. This required several rounds of discussions among the branches and a lot of
organisation wide data processing cxercises, At the end of all these, the operations at
branches were made uniform.

The above process could not take place at one stroke. There were several changes made
piccemeal which affected the software development process as well. The software had to be
changed repeatedly to accommodate changes found to be required in the physical operations
of Response, In fact, the implementation of the software resulted in scch-al changes in the
Response Dcp:mmcm.

S. 7 THE RESPONSE SYSTEM AND RESPNET
CHOICES

The Response syst-:m‘t can now be describer 5: some length. As already mentioned, this is the
main revenue earmer for the organisation, and hence commands the greatest atteation from
the management. The organisation publishes three national, two regional and one evening
newspaper from 9 branches, with two more branches being sales offices. There are also over
40 minor sales offices, each being attached to some branch or the other. There are also some
nationally popular magazincs published.

The tarilfl structure for publishing advertisements in these publications is somewhat complex.
The rate chart of the Group has been felt worthy of a name, Mastermind. There are four main
categories of rates—single, multiple, super and slam. A single insertion is carried at the
single rate. Various combinations of insertions merit better rates, of which the best for the
client is the slam. The actual rate in any category depends on the publication and the
publishing centre. The rate can also vary depending on the category of the advertisement. -
There arc four major categories—display, tenders, appointments and financial. Classified
advertisements have a different rate structure altogether and thefe is a completely dilferent
module in the software which deals with them.

In any category, publication and centre, the rate can attract discounts or premiums, Discounts
are offered on certain kinds of advertiscments, for example, thosg promoting books, or on.
volumes like full page advertisements. Premiums are charged for special positions or pages
and for solus advertisements. The rates for colour and black and white advertisements are
different.

The real complexity ofmemmﬂnmmaﬁéesbecauseoflmkagesbemeenpubﬁcaﬁuns.m
are various advertisement package decals available to clients, where the publicaticns and the total -

-rate are fixed, In some packages, a few publications are fixed and the client has the privilege of

choosing the others. There are linkages among newspapers and magazines as well.

This is further complicated by the possibility of cancellations. Suppose an agency books an Enterprise wide Information
advertiscment to be carried in the Times of India at four centres. This would attract a super System "‘;::;‘ig:mﬁ
rate. Now if the agency cancels two of thesc insertions, it will be entitled to only a multiple ’
rate, which is higher. So the cancellation process involves not only marking the (wo

insertions which were actually cancelled, but must also affect the two other insertions which

were booked with it. And it should be remembered that all these could be located at different

centres so that the information has 1o travel over the network, transparent to the operator at

the booking counter. There is thus strong interaction among different centres,

In addition to all this is the fact that all the publications of the Group are not part of the same
company. So the software must handle a multi-company scenario. For adverliscments
booked by foreign entities, payments have to be collected in a currency different from the
domestic rupee. The software therefore needs to take care of different currencies.

The advertising rates and the structurc itself is subject to frequent change, usually at least
twice an year. For the purposes of management information, an year’s report could require
data coming from at least two duffuem rate cycles. Therefore a history of past raics and
slrucr.ums has to be maintained. .-

This was a brief description of the system on the advertisement booking side. The collection

* and follow up of outstanding amounts forms a major sub-system of the soliware. It is part of
.the accounting module. The situation is that the organisation interacts directly with several
kinds of parties who book advertisements—accredited agencies, non accredited agencies,
government agencies and direct clients. All of these but the last are entitled to deferrcd
payment. This period can go upto 60 days.

A major effort in the Response Department is that of producing bills correctly and on time,
Although an agency might have booked an advertisement for a particular size, exigencies of
the situation might result in the advertisement being published in a somewhat different size,
Such a change could also occur by mistake. When billing a clicnt, he cannot be charged a
higher amount but must be given the bencefit of a lower amount if a smaller size has been
published. This requires that the actual size of an advertiscment be fed into the system afier
publication, Similarly advertisements that are held over due to any compulsions on the part
of the publishers cannot be billed. Thus booking information is only a rough guide to billing.

The financial health of the company depends to a large exient on proper follow up on these
reccivables and their collection. Most of the major agencies have offices and clients at more
than one place, and they book advertisements for various branches. When collections arc
made, they need to be matched against the bills which are being discharged. If this process is
not gone thirough, it results in what are called unmatched credits. These arc a problem asfar
as accounting is concerned. 2

Apan from all this, there is the question of research on competition. The columnage of
advertisements in various calegories is captured by the software. The revenue of ivals is
then estimated based on their published rate chanis. Not only this, the gist of the actual
advertisements is stored and compared with the organisation’s publications to determine
advertisements and campaigns which went to rivals but were denicd to the Group. This helps
_ the sales staff in planning and follow up.

The complexities of accounjing will now be touched upon. Earlier, the Response operations
were on what is internally called the “A” system. This meant that the publishing branch was
responsibie for billing and collection, irrespective of where the actual booking or payment
was done by the client. Credit for revenue was given to the publishing branch.-This resulted
in difficulties in collection because usually it was the booking branch which was in a better
position to collect the receivables. Since the booking branch got no credit for collecting the
money, there was lack of vigorous effort on its part in this direction, resulting in large
receivables organisation wide. This system was followed by what was callet] the “B” system.
This gave credit for revenue to the booking branch. For a long period, billing was done on
A" basis by the publishing centre and collection was done by the booking centre.

This system was swilched to the “B” sysicm meaning responsibility and eredit.on booking

basis for all activitics. This helped billing to be more accurate as the booking branch is best

equipped 1o bill. The next step would be consolidated billing for a client, possibly from a

centralised facility. That would really climinate almost all problems that currenily occur in

billing, as the client would be prescnted with a single bill for the whole billing period.

BCA-1.5/97

Given all these complexities, the Response software was expected 1o help in client servicing i

:;‘:;";‘;ﬁ:‘;{:;:“c;‘n::’; e and help in pointing out the loopholes in the operations of the department. It was necessary
= - to have a good sysiem of oblaining operational information, help in making decisions and
tighten controls to help plug revenue leakage.

There were varicus choices to be made to implement just this one component of the
Information System. These were on all components of the System, comprising of the
hardware, the system software, the database management system, the application, the
networking protocols and the choice of the backbone network. . The options available and the
selections made will now be explained.

The organisatiun had a fairly large amount of hardware available, but this was mostly of
Personal Computers being used for office automation. The hardware used by the applications
then running was a helerogencous mixture of machines of varying power from different
vendors. It was necessary to decide whether to try and use the existing hardware or procure
new machines without reference to those existing then. It was felt that the best course would
be to try and use whatever hardware was available to the extent possible, Later more
hardware could be procured after some success had been antained and the management was
alive to the possibilities from the Information System. Accordingly the existing hardware
was used for implementing the new Response software package and only laler were new
machines procured 1o run it. The old hardware was shunted off to other applications and
“other, smaller, centres. Some of it has now been discarded as it had outlived its useful life.

As far as the operating system was concerned, it was felt that it was imperative to have a’
standard operating system which was open and not tied to an:gr particular vendor or hardware.
The natural choice was AT&T Unix (SVR 3.2) at that time since this was the operating
system in use in the organisation for various apphcauons

Fortunately at that time various relational database management packages had become
available commercially. This enabled a much quicker and easier path to application
development, as otherwise writing the Information System in a third generation language
would have meant a large lead time in developing the various tools to be used by the
-application team — forms packages, code generation routines and the like. Also database |
management packages provided various features like security, power fail backup and soon. |
After studying various options available and evaluating the leading RDBMSs for current
* features and the roadmap for the future, Ingres was chosen as the RDBMS for all application

development work. All 3GL work would be done in ANSI ‘C’ or in C++,

For the networking it was decided to use TCP/IP running over X.25. This would enable
rcliable communication with facilities for automatic routing transparent to the end user or
even the application developer. It was felt necessary to have at least two routes between any
two pairs of nodes given the unreliability of the backbone network.

For the physical network, there was not much choice as the availability was restricted to
using dial up telephone lines or leasing 4-wire, full duplex, data circuits offered by the
relevant authority for public use. The choice was for leased lines between major branches
given the potentially large volume of traffic and dial up facilities for minor offices, :

The 1opology of the network was also dictated by the kind of application envisaged. For a
file transfer kind of application based on central processing and control, a star network might
have been appropriate. However it was desired to have a transaction based true on-line
network application.

The modalities of application development also had to be decided upon. The possibility of
using external assistance for developing the system was considered. However, knowing that
adequate technical expertise was available in ISD, it was decided 10 develop the Information
System complelely in-house.

Wherever any special purpose utilities or tools were found necessary they would be
developed in-house unless the effort involved was disproportionately large.

5.8 BENEFITS

The benefits from RESPNET are already becoming apparent. One of the things to be noted
BCA-15/98 about the software is that it has evolved over the years rather than being designed at some
point of lime. Jtnow covers the entire ganiut of Response operations and now covers all its

[98 : activities, from booking, billing, accounting and,credit control to market research. The

foremost advantage is that client servicing has improved tremendously. For example, client
querics can be now answered speedily. Earlicr if a client put in a query about rates or the
total amount to be paid for a package, it used to take several minutes to work out the figures
and explain the various combinations possible. This can now be done in seconds, Again,
questions like whether an advertisement for another centre actually got carried can now be
answcred almost unmudmely Billing has become more accurate and complaints on that
score have reduced quite a bit, Revenue leaks on account of cancellations not msulung in
raic changes have also vanished.

The natural spin-off from this has been more revenue. It has also been possible to :mplcment
the complex rate structure because of the Response software, Without this, the rate chart
would have been simpler. While the advantage might not be apparent easily, a more :
customised rate structure results in greater revenue by enabling rates to be pegged closest to
‘what the market will bear. Strong publications can now charge higher rates than those at low
revenue centres. It may be mentioned here that advertisement revenue has increased by 98%
‘over-the three year period from 1990 to 1993, This averages to a growth rate of 25% per
annum,

What is more, it is now possible mevaluateﬂ!elmpactofmwchangesmrcvmue.Thaas
an exercise which could not have been even attempied before, This helps in making
decisions on rate changes. More data is available to the decision makers in this respect,
whmassuchdecmmswmdammmmmebamsnfmanagmmtmwmandlessm
any facts available.

Another benefit is in credit control. Earlier, this was poss:b!e at a local level oniy 11 was a
(difficult exercise getting the account of an agency across the country and when such a
statement was compiled, it would be out of date. Such information can now be quickly
compiled and the appropriate action taken. ~

_Iti_snmi*possibletoknowwho the top customers of the organisation are. Since the actual
clients do not normally interact directly with the orgamsauon. information about the biggest
end clients was earlier not available easily. This is now known and is an important input to
the marketing team.

. The different publications of the Group at the various locations arc not all part of the same
company. The same publication can be part of a differcnt company in a diffcrent location,
Now *vhile advertisement rates and the like need to be uniform and the agencies need not
take this into consideration, the accounting has to be done scparately for each company.
However, the Management needs information on Response without reference to companies.
This situation is easily handled by the Response sofiware by taking different views of the
data. This was not easy to do earlier.

Apart from decision support, the software now makes available to the users an effective
operational information system. This takes care of many day to day problems faced carlier.
For example information on banned agencies now is flashed o all offices within minutes,
and actually an agency can be banned at all offices from any office. This obviates the nced
for notifications going to various offices and then getting entered into the system, which
arrangement could result in advertisements from the agency concerned getting published in
spite of a ban on the agency.

Such-an opea‘a!iona]'in['cnnalinn system has the desirable side cffect of plugging revenue
leaks. Some of the leaks were due to operational problems like the matter of banned
agencies. Others are concerned with malfcasance on the part of some employees. Thus
earlier the availability of certain premium positions in a publication at a location was known
only to the persons concerned there. People at other offices could not quickly get to know
about the availability of such space. This left room for various malpractices at that location.
Now persons at any office can query the availability of space at any other office. This
preciudes any person from taking advantage of the lack of this information.

Another useful feature now available to response users is the ability 1o send e-mail, converse
with colleagues at any office and even have a conference. Many small points can now be
discussed like this over the network without having o make an expensive phone call or
having 1o travel. Conferencing facilitics over the network have reduced the amount of
travelling done by executives to sort out difficull issucs. The savings on these heads alone
more than recover the costs of sctting the network up.

The result of all thesc benefits from the Response sysiem is a great competitive advantage to
the organisation. None of the rivals have anything close to offcr as yet, and it is msurpn’se if
clients find ours a plcasant organisation to dea! with. The effort at improvement is o
continue $0 4 to provide clients and intcrnal uscrs the best environment possible.

Enterprise wide Information
System of the Times of
India Group

BCA-1.5/99
99

Dt Base Management Sy~ 5.9 FUTURE

mofmmmwmmmmmkmsymmzmmmm %
touched upon. These are plansand could be changed if found necessary. Huwe\re.rﬂ;ey :
follow as logical steps to build upon the foundation already laid.

The first enhancement would be to extend the system to all minor offices as well as the major
-ones, This will entail sctiing up the system at over 40 additional locations, as well as -
expanding the network to include all those cities. An extension of this phase of)
implcmentation would be to allow major agencies to dial into the network and have limited
‘operational access. Thus an agency would be allowed to only make reservations for space
and not to actually book an adventisement. It could be allowed 1o look ‘at its accounts only
and not of any other party. It could query the availability of space at any location and could
checkupnnwhedmanadvernsammhasbeenmbhshadurmmmmnfextensmto s
the system will be a big change for the agencies, - '
The Group rate chart being so complex, another feature planned is to provide media planning
services 10 all potential clients. This would enable an analysis to be done of how to maximise
reach in a given readership profile at minimum cost. The software would have to be
sophisticated enough to be of real use. At present there are quite a few combinations of

. publications which are not even examined because there are so many of them.
Thedecmmmppm{nmlmwmbcaﬂianccdmhdpalllevclsofuws.ﬁ'nmtheordu
entry operalors (o top management. -

A feawre which would grealy improve productivity apartfmm any other benefits is that of
transmitting the advertisement matter, whether text or photographic, over the network to

. other offices for direct incorporatipn into the paper. This would necessitate good quality, fast
data lines as well as a good page layout software module. At present this is done manually.
Tosmnmanse,RESPNEPwdlbccununuﬂuslynnpwwdsnasmheofemmbﬁneﬁtm
the organisation. ’

510 SUMMARY -

The somewhat detailed uwmemofkeepmsewasmly mdmuveofﬂmnmmldet#'the
task before the organisation. ISD has to put in a comparable amount of effort in each
functional area and then integrate the various software systems vertically and horizontally
befmemegoalnfha\dngmmmmdclnfmnaﬁonsymm:mw
system is anywhere near realisation.

Thcmdmdualapplmimsmnnnuemwmwmplﬂuyuhsbmfomdwhﬂs
developing the Response system. Soﬂ;etaskoflmprmmgandtefminsthcmﬂmmﬂsweu
as the user interface will pose a continuous challenge.
When the implementation of only one component of the Enterprise wide Information -
System, an implementation which is only partially complete, has resulted in such great

* benefits visible to the clients, the management and those who operate the system, it is certain
that when the complete Information System is in place, 1tmﬂmmchangesmthmgslmof
revolutionary for all concerned. -

Before closing the paper, a few words on the database management system used for this task, _'
Ingres, will be in order. Ingres has been very useful in this whole endeavour because of the
very good productivity it has been possible to achieve. Otherwise the task of writing the
Response software alone would have been a herculean one. There has been no loss of data so
far in spite of hardware and power failures, Never, so far, has it been necessary to use
backups Lo retrieve data. The robustness of Ingres has been a great comforting factor during
the long years of intensive effort at developing and implementing a package which already -
has over 200,000 lines of 4GL code, not counting any comment linés. Repeated changes
‘which had to be made to the soliware were possible because of the ease of coding in Ingres, -
It must, however, be mentioned that this endorsement of Ingres is based onthe actual -
experience of the organisation and does not in any way insinuate that other database
management systems available commercially are inferior or could not have been used to
develop and implement the enterprise wide information system discussed in this paper. Bm at
no time did the organisation have occasion to regret having chosen Ingres.

The task of having the information system in place is far from complete. There will be
BCA-1.5/100 . various problems to be solved and experiences tobcguwlluough.whmhcauperhapsbe
00 described in papers and dlscussedalmnferemcsmtheymwcmnc.

BCA-1.5

Uttar Pradesh .
Rajarshi Tandon Open University Introduction to
Database Management

System

Block

2

RDBMS AND DDBMS

UNIT 1

Relational Model
UNIT 2

Normalization

UNIT 3

Structured Query Language
UNIT 4

Distributed Datsbases

BCA-1.5/101

‘Expert Advisors

Prof. P5. Grover

Professor of Computer Sciences
University of Delhi

Delhi

Brig. V.M. Sundaram
Co-ordinstor
DoE-ACC Centre
Mew Delhi

Prof. Karmesha

School of Computer and
Sysiems Sciencos
Jawaharlal Nehru University
Delhi

Prof. .54, Patnaik
Indian Instiivte of Science

Information Technology Centre
TCIL, Dethi

Prof. HM. Gupta

Deparument of Electrical Engineering
Indian Institte of Technology

Delhi

Prof. S. Sadagopan

Prof. RG. Gupta’ ey
Schmldeplmud

~ Systems Sciences

Jawaharlal Nehru University
Delhi

Prof. 5.K. Wason
Professor of Computer
Science -

Jamia Millia

Delhi -

Dr. Sugata Mitra
Principal Scienti
National Instinne of
Information Technology
New Delhi

Bangalore , Department of Industrial Engineering Prof. Sudhir Kaicker
Indian Institute of Technology Director

Prof. MM, Pant Kanpur School of Computer and

Direcior Syitems Sciences

School of Computer and Jawaharlal Nehru University

information Sciences Delhi

1GRNOU .

New Dethi

Facuity of the School

Prof. MM. Pamt Mr. Shashi Bhushan

Director Lecturer

Mr. Akshay Kumar

Lecturer

" Course Preparation Team

Prof. M.M. Pam Block Writer

Director SOCIS Mr. Shashi Bhushan

IGNOU Lecturer. IGNOU

M. Millind Mahajani Course” Coordinator

Manager Mr, Shashi Bhushan -

Information Services Lecturer, IGNOU

Time of India Group
New Delhi

Dr. N. Parimala
Birla Institute of Technology
and Science, Pilani

Utpal Bhattacharya
NIT -
New Delhi

Mr. Shashi Bhushan
“ Lecturer, IGNOU

Print Production : Sh. Jitender Sethi, APO, MPDD

March, 2003 (Reprint)

© Indira Gandhi National Open University, 1995

1SBN-81-7263-866-3

Alf rights resarved. No part of this work may be reproduced In any form, by mimeograph oranyomor

means wfh&autpsmiswnmwnfmgfrmnmahMGamWNaMOpeﬂ

.

Funhorlnfmnaﬂononb‘mmmeanm Nafional Cpen Umvarsﬂycoummaybemmm
University's office af Maidan Garhi..New.Deihi - 110068.

BCA-1.5/102

BLOCK INTRODUCTION

This block describes topics related to RDBMS and Distributed DBMS. One of the main
advantages of the relational model that it is conceptually simple and more importantly based
on mathematical theory of relation. It also frees the users from details of storage structure
and access methods. In a distributed database system, fhe database is stored in several
computers. The computers in a distributed system communicate with each other through
various communication media, such as high speed buses ostelephone lines. They do not
share main memory nor do they share a clock. There are 4=units in this block. Three units are
related to RDBMS and one unit is on DDBMS.

Important issues discussed in this block are :
¢ Relational Algebra
e Normalization
e SQL
e Data Replication and Data fragmentation,

BCA-1.5/103

BCA-1.5/104

UNIT1 RELATIONAL MODEL

Structure

1.0 Introduction

1.1 Objectives

1.2 Concepts of a Relational Model
1.3 Formal Definition of a Relation
14 The Codd Commandments

1.5 Relational Algebra .

1.6 Relational Completeness

1.7 Summary

1.8 Model Answers
-19 Further Reading

1.0 INTRODUCTION _ :

One of the main advantage of the relational model is that it is conceptually simple and more
importantly based on mathematical theory of relation. It also frees the users from details of
storage structure and access methods,

The relational model like all other models consists of three basic components:
e asctof domains and a set of relations
@ Operation on relations
e integrity rules

In this unit, we first provide the formal definition of a relational data model, ‘Then we-define
basic operations of relational algebra and finally discuss the integrity rules.

1.1 OBJECTIVES

Aﬂér completing this unit, you will be able to;
-@ define the concepts of relational model
e discuss the basic operations of the relational algebra
e state the inlcéritjr rules

1.2 CONCEPTS OF A RELATIONAL MODEL

The relational model was propounded bgE.F. Codd of the IBM in 1972. The basic concept in
the relational model is that ot a relaren

Arelation can be viewed as a table which has the following properties :

Property 1: it is column homogeneous. In other words, in any given columa of a table,
all items are of the same kind.

Property 2: each ilem is a simple number or & character string, That is, a table must bein
_ INF. (First Normal Form) which:will be introduced in the second mit.

Property 3: - all rows 6f a table are distinct.
Property 4: the ordering of rows within a table is immaterial.

Property 5: the columns of a table are assigned distinct names and the ordering of these
columns is immaterial.

BCA-1.5/105

RDBMS and DDBMS . Example of a valid relation

S# - P# SCITY

10 1 BANGALORE
10 2 BANGALORE
11 1 BANGALORE
11 2 BANGALORE

- 1.3 "FORMAL DEFINITION OF A RELATION

Formally, a relation is defined as the subset of the cxpanded cartesian preduct of domains, In
order to do so, first we define the cartesian product of two scts and then the expanded
‘cartesian product.

The cartesian product of two sets A and B, denoted by A x B is
AxB={(ab):ae Aandbe B}

The expanded cartesian product of n sets Ay, Ag,...., A, is defined by
XAy AgAy) = (@2,) € A] 1<=j<=1))

The element (a,, a,.....a,) is called an n-tuple.

Given domains D,, D,,... D, we define a relation, R, as a subset of the expanded cartesian
product of these domains as follows:

RO, D,...D,) € XMy, D;... D)

In.génemlwcsaymmarehﬁondbfmednvern'domainshmadegrmhurisn-ary.'lhe
elements of this set are n-tuples.

‘We shall distinguish between the definition of a relation and the relation itself, We shall say
that the definition of a relation gives a name to the relation and specifics the components
over which it is defincd. These components are referred 1o as relation attributes or attributes
far short. An attribute has a domain associated with it from which it takes on values. The
relation itself, on the other hand, is the set of tuples which constitute it at a given instance of
time. For example, a statement which says that a relation Supplier is built over attributes S#,
P#, SCITY having domains integer, character string respectively is the definition of the
zelation Supplier. The relation itself is shown below. It must be noted that at the time the
definition of a relation is just given, a relation with no tuples in it, i.e. a null relnuon. is

created.

Supplier
S# P# SCITY
10 1 BANGALORE
10 2 BANGALORE
10 3 BANGALORE
1 1 BOMBAY
1 2 BOMBAY

A relational schema is defined to be a collﬂcuon of relation deﬁmnona

We can now define the notion of 2 relational database or database for short. A databasc is a
collection of relations of assorted degrees such that these relations are in accordance with
their definitions in the relational schema, Since a relation is time varying, by this definition
we can infer thatadainb-ise is also time varymg

14 THE CGDD COMMANDMEN’I‘S

BCA-15/106 " Inthe must_ basjg\of dcﬁmuons a DBMS can be regarded as relational only if it obeys the
6 . .rollowmg three rules: .

‘e ‘Al information must be held in tables .

e Retrieval of the data must be possible using the following types gfoperations:
. SELECT, JOIN and PROJECT _

o All relationships between data must be represented explicitly in that data tscif.

This really is the minimum requirement, but it is surprising to see just how some well-known
dambm;mdlmfmimdmgmﬂmmplemlmtobemfacnmhum no matter what
ﬂleuvendum;lmm

Thdtfmﬂleraqnimmrsmmngmusly.m;immlhlhe 12 fules stated below must
be'demonstrable, within a single product, for it to be termed relatitnal; In reality it's troe to
say that they don’t all carry the same dogree of importance, and indeed some yery good
mmmwmhm&mhmdmmmﬂmmhmdm
heart, claim to obey any more than eigi.. or so of these rules. It's likely however, that it is
only when all 12 rules can be satisfied, by facilities Ilmooexistwgemer,ﬂmﬂnfullbméﬁn
ofmemlaummldﬂabmcanbemlmd-

The Twelve Rules

Just as in the 12 rules that define the distributed produet, there is 4 single overall rule which
msunmysmmaﬂmhmandlsmmmomY catled Rule 0. It states that:

" Any truly relational database must be manageable entirely through its own rehhnnal
eapabl'hm

Having s1ated this rule, we will not delve deeper cxcept to say that its meaning can be
interpreted by stating that a relational database must be relational, wholly relational and-
nothing but relational. If a DBMS dcpends on record-by-record data manipulation tools, it
is not truly relational.

Rule 1: The infmmaﬁon rule

All information is exphl:ttly and logically represented in exactly one way — by data
values in tables.

Insunplelmnslhlsmcansﬂ!aufanlmofdamdoesn tmsndemwhmmamblemdm
database then it doesn’t exist and this should be extended to the point where even such-
information as table, view and column names to mention just a few, should be contained
somewhere in table form.. This necessitates the provision of an active data dictionary, that is
itself relational, and it is the provision of such facilities that allow the relatively easy
additions to RDBMS'’s of programring and CASE tools for example. This rule serves on its
own to invalidate the claims of several databases mbemlauonalsupplybecanmofﬂmhck
of ability to store dictionary items (or indeed metadata) in an'integtated, relational form,
Commonly such products implement their dictionary information systems in some native file
structure, and thus set themselves up for failing at the first hurdle. '

Rule 2 ; The rule of guaranteed access
Every item of data must be logically addressable by resorting to a combination of table
name; prunzr_y key value and column rame.

Whilst it is possible to retrieve individual items of data in many different ways, especially in
are!auonal.fSQLemﬂmnmnt. it must be true that any item can be retrieved by supplying the
table name, the primary key value of the row holding the item and the column name in which
it is to be found. If you think back to the table like storage structure, this rule is sayinig that .
at the intersection of a column and a row you will necessarily find one value ofsdatamm
(or null).

Ruale 3 : The systematic ireatment of null values

It mey surprise you to ree this subject an the list of praperties, hut itis fondamental to the
DBMS that null values ars supparted in the representetion of missing end inapplicahle
informatipn. This support for null values must be consistent throughaut the DBMS, end
independent of data type (a null value in 8 CHAR field must mean the rame agull in an
INTEGER field for example).

It has often been the case in ather porduct types, that a character to represent missing or
inapplicable data has been allocated from the dompin of characters pertinent to & particular

BCA-1.5/107
iy

RDBMS and DDBMS

BCA-1.5/108
B

ilem. We may for éxamplc define four permissible values for a column SEX as: -

M Male

F Female

X No data available
Y Not applicable

Such a solution requires careful design, and must decrease productivity at the very least.
This situation is particularly undesirable when very high-level languages such as SQL
are used to manipulate such data, and if such a solution is used for numeric columns all
sorts of problems can arise during aggregate functions such as SUM and AVERAGE etc.

Rule 4 : The database description rule-

A description of the database is held and maintained using the same logical structures
used to define the data, thus allowing users with appropriate authority to query such
information in the same ways and using the same languages as they would any other data
in the database.

Put into easy terms, Rule 4 means that there must be a data dictionary within the
RDBMS that is constructed of tables and/or views that can be examined using SQL.
This rule states therefore that a dictionary is mandatory, and if taken in conjunction with
Rule 1, there can be no doubt that the dictionary must also consist of combinations of
tables and views.

Rule 5 : The comprehensive sub-language rule

There must be at least one language whose statements can be expressed as character strings
conforming to some well defined syntax, that is comprehensive in supporting the following :

o Daia definition

e View definition

e Data manipulation

e Integrity constraints

° Auﬂl;arisal:ion

e Transaction boundaries
Again in real terms, this means that the RDBMS must be completely manageable through its
own dialect of SQL, although some products still support SQL-like languages (Ingress
support of Quel for example). This rule also sets out to scope the functionality of SQL ~you

will detect an implicit requirement to support access control, integrity constraints and
transaction management facilities for example,

Rule 6 : The view updating rule :

All views that can be updated in theory, can also be updated by the system. This is quite
a difficult rule to interpret, and so a word of explanation is required whilst it is possible to
create views in all sorts of illogical ways, and with all sorts of aggregates and virtual
columns, it is obviously not possible to update through some of them. As a very simple
example, if you define a virtual column in a view as A*B where A and B are columns in a
base table, then how can you perform an update on that virtual column directly? The
database cannot possible break down any number supplied, into its two component parts,
without more information hemg supplied. To delve a little deeper, we should consider that
the possible camp]cxlty of a view is almost infinite in logical terms, simply because a view
can be defined in terms of both tables and other views. Particular vendors restrict the
complexity of their own implementations, in some cases quite drastically.

Even in logical terms it is often incredibly difficult to tell whether a view is theoretically
updatable, let alone delve into the practicalities of actually doing so. In fact there exists
another sgt of rules that, when applied to-a view, can be used to determine its level of logical
complexity, and it is only realistic to apply Rule 6 to those views that are defined as simple
by such criteria.

Rule 7 : The insert and update rule
AnRDBMSmustdommcmanjuﬂbcablcmmmrelammmm!thastuba

capable of inserting, updating and deleting data as a relational set. Many RDBMSes that fail Relational Modd
the grade fall back to a single-record-at-time procedural technique when it comes time to
manipulate data.)

Rule 8 : The physical independence rule

User access 10 the database, via monitors or application programs, must zzmain logically
consistent whenever changes to the storage renresentation, or access methods to the data, are
changed. : A

Therefore, and by way of an example, if an index is built or destroyed by the DBA on a table,
any user should still retrieve the same data from that table, albeit a little more slowly, Itis
largely this rule that demands the clear distinction between the logical and physical layers of
the database. Applications must be limited to interfacing with the logical layer to enable the
enforcement of this rule, and it is this rule that sorts out the men from the boys in the
relational market place. Looking at other a:chitectures already discussed, one can imagine
the consequences of changing the physical structure of a network or hierarchical system.

However there are plenty of traps awailing even in the relational world. Consider the
application designer who depends on the presence of a B-tree type index to ensure retrieval
of data is in a predefined ‘order, only to find that the DBA dynamically drops the index! What
about the programmer who doesn’t check for prime key uniqueness in his application,
because he knows it is enforced by a unique index. The removal of such an index might be
catastrophic. I point out these two issucs because although they are sérious factors, I am not
convinced that they constitute the breaking of this rule; it is for the individual to make up his
own mind. . '

Rule 9 : The logical data independence rule _
Application programs must be independent of changes made to the base tables.

- TAB 1 FRAG 1 'FRAG 2
ABCD A B A C D
1 A CE 1 A ‘1 € E

4 ACE 4 A 4 CF
6 B DG 6 B 6 DG
2 B DH 2 B 2 D H

" Figure 1: TAB 1 Split into two fragments

This rule allows many types of database design change 10 be made dynamically, without
users baing aware of them. To illustrate the meaning of the rule the examples on the next
page show two types of aclivity, described in more detail later, that should be possible if this
rule is enforced.

FRAG 1 FRAG 2 TAB 1
A B A T ABCOD
¥ A | 1 C E 1 A CE
4 A 4 CD 4 A CF
6 B 6 DG 6 BDG
248 2 D H 2 B DH
Al .
XN — BCA-1.5/109

Figure 2 : Two fragments Combined into One Tat 9

RDEMS snd BPBMS

BCA-1.5/110
10

Firstly, it should be possible to split a table vertically into more than on¢ fragment, as long
as such splitting preserves all the original data (is non-loss), and maintain the primary key in
¢ach and every fragment. This means in simple terms that a single table should be divisible
into one or more other tables,

Secondly it should be possible to combine base tables into one by way of a non-loss join.

Note that if such changes are made, then views mllberequlred so that users and applications
are unaffected by them.

Rule 10 : Integrity rules

The relational model includes two general integrity rules. These integrity rules implicitly or
explicitly define the set of consistent database states, or changes of state, or both, Other
integrity constraints can be specified, for example, in terms of dependencies during database
design. In this section we define the integrity rules formulated by Codd.

Integrity Rule 1

Integrity rule 1 is concerned with primary key values. Before we formally state the rule, let
us look at the elfect of null values in prime atiribuics. A null value for an auribute is a value
that is either not known at the time or does not apply to a given instance of the object. It

- may al: > be possible that a particular wple docs not have a value for an attribute; this fact

could be represented by a aull value.

- IF any altribute of a primary kcy (prime attribute) were permitted 1o have null values, then,

because the atiributes ir the key must be nonredundant, the key cannot be used for unique
identification of tuples. This contradicts the requirements for a primary key. Consider the
relation P in figure 3. The attribute Id is the primary key for P. If null values (represented as
@ were permitied, as in figure 3, then the two tuples @, Smith are indistinguishable, even
though they may represent two different instances of ihe entity typc employee. Similarly, the
tuples < @, Lalonde > and 10%, Lalonde >, for al! intents and purposes, are also
indistinguishable and may be referring to the s2me person, As instances of entities are
distinguishable, so must be their surrogates in the model.

P: P

Id Name Id Name
101 - Jones

101 Jones 2

103 Smith @ Smith
104 Lalonde

104 Lalonde :

; 107 Evan

107 Evin ;

110 Drew 110 Drew

12 Smith @ Lalonde
@ Smith

(a) (b)

Figure 3 : (a) Relation without null values and (b) relation with null values

Integrity rule 1 specifies jhat instances of the entities are distingnishable and l;lws.no prime
auribute (component of a primary key) value may be null. This rule is also referred 10 as the
entity rule, We could state this rule formally as:

Definition: Integrity Rule I (Entity Integrity):
If the attribute A of relation R is a prime attribute of R, then A cannot accept null
values.

Integrity Rule 2 (Referential Integrity) :

. Integrity rule 2 is concerned with foreign keys, i.e., with attributes of a relation having

domains that are those of the primary key of another relation.

Relation (R), may contain references to another relation (S). Relations R and S néed not be
distincL. Suppose the reference in r is via a set of attributes that forms a primary key of the
relation 8. This sct of attributes in R is a foreign key. A valid relationship between a tuple in
R to one in S requires that the values of the attributes in the foreign key of R correspond to
the primary key of a tuple in S. This ensures that the reference from a tuple of the relation R

is made unambiguously to an existing tuple in the S relation. The referencing attribute(s) in Relational Model
the R relation can have null value(s); in this case, it is not referencing any tuple in the §

relation. However, if the valuc is not null, it must exist as the primary attribute of a tuple of

the S relation. If the referencing attribute in R has a value that is nonexistent in S, R is

attempting to refer a nonexistent tuple and hence a nonexistent instance of the corresponding

entity. This cannot be allowed. We illustrate this point in the following example:

Example

Consider the example of employces and their has a manager and as managers arc also
employees, we may represént managers by their employee numbers, if the employee number
is a key of the relation employce, Figure 4 illustrates an example of such an employce
relation, The Manager attribute represents the employee number of the manager, Manager i3
a forcign key; note that it is referring to the primary key ol the same relation, An employee
can only have a manager who is also an employee. The chief exccutive oflicer (CEO) of the
company can have himself or hersell as the manager or may take nul! valucs. Some
cmployees may also be temporarily without manager, and this can be represented by the
Manager taking null values.

Empi Name Manager
101 Joncs @
103 Smith 110
104 Lalonde 107
107 Evan 10
110 Drew 112,
112 Smith : 112

Figure 4 : Forcign Keys

Definition ;Imegrity Rule 2 (Referential Integrity)

Given two relations R and S, suppose R refers to the relation § via a set of attributes that
forms the primary key of S and this sct of attributes forms a foreign key in R. Then the value
of the forcign key in a tuple in R must cither be cqual o the primary key of a tuple of S or be
entirely null.

If we have the attribute A of rclation R defined on domain D and the primary key of relation
§ also defined on domain D, then the values of A in tuples of R must be either null or equal
to the value, let us say v, where v is the primary key value for a tuple in §, Note thatR and §
may be the same relation. The tuple in S is called the target of the forcign key. The primary
key of the refercnced relation and the attributes in the foreign key of the referencing relation
could be composite. ; '

Referential integrity is very important.” Because the foreign key is used as a surogate for
another entity, the rule enforces the existence of & tuple for the relation corresponding to the
instance of the referred entity. In example, we do not want a nenexisting employec to be
manager. The integrity rule also implicitly defines the possible actions that could be taken
whenever updates, insertions, and deletions are made.

If we delcte a tuple that is a target of a foreign key reference, then three explicit possibilities
exist to maintain database integrity: ' :

e All tuples that contain references to the deleted tuple should also be deleted. This
may cause, in turn, the deletion of other tuples. This option is referred toas a
donfino or cascading deletion, since one deletion leads to another.

e Only wples that are not referenced by any other tuple can be deleted. A tuple
referred by other tuples in the database cannot be deleted.

e Themple isdeleted. However, to avoid the domino effect, the pertinent foreign key
auributes of all referencing tuples are set to null.

Similar aetions are required when the primary key of a refcrenced relation is updated. An
update of a primary key can be considered as a dcletion followed by an inscrtion.

The choice of the option to use during a wpie deletion depends on the applicalion. For
. example, in most cases il would be inappropriate to delete all employees under a given BCA-1.5/M111

manager on the manager’s departure; it would be more appropriate to replace it by null .

RDBMS and DDBMS

BCA-1.5/112

12

Another example is when a department is closed. If employees were assigned to
departments, then the employce tuples would contain the department key 1o, Deletion of a
department tuples should be disallowed until the employees have either been reassigned or
their appropriate attribute values have been set to null. The insertion of a tuple with a
foreign key reference or the update of the forcign key attributes of a relation require a check
that the referenced relation exists.

Although the definition of the relational model specifies the two integrity rules, it is
unfortunate that these concepts are not fully implemented in all commercial relational
DBMSs. The concept of referential integrity enforcement would require an explicit
statement as to what should be done when the primary key of a target tuple is updated or the

“target tuple is deleted.

Rule 11 : Distribution rule :
A RDBMS must have distribution independence.

This is one of the more muai::i\{c aspects of RDBMSes,Database system built on the
relational framework are well suited to today’s client/server database design,

Rule 12 : No subversion rule :

If an RDBMS supports a lower level language that permits for example, row-at-a-time
processing, then this language must not be able to bypass any integrity rules or
constraints of the relational language.

Thus, not only must a RDBMS be governed by relational rules, but those rules must be its
primary laws.

The practical importance of these rules is difficult to estimate, and depends largely on the
RDBMS in question, its proposed use and individual view points, but the theoretical
importance is undeniable. It is interesting to sec how some of the rules relate to others, and
1o some of the more important advantages of the relational model. It is unlikely at the
present time that any RDBMS can claim full logical data independence because of their
generally poor ability to handle updating through views. Even token adherence to this rule
however, when combined with facilitics enabling physical data independence, potentially
yield advantages to applications developers, unheard of with any other type of database
system. Coupling these two rules with the data independence and distribution independence
rules can take the protection of customer investment to new heights.

The beauty of the relational database is that the concepts that define it are few, easy to
understand and explicit. The 12 rulus explained can be used as the basic relational design -
criteria, and as such are clear indications of the purity of the relational concept. Whilst you
do not find these rules being quoted so often these days as in the recent past, it does not mean
that they are any less important. Rather it can be interpreted as reflecting a reduced
importance as propaganda. Other factors, of which performance is the most obvious, have

. mow laken precedence.

1.5 RELATIONAL ALGEBRA

Relational algebra is a procedural language. It specifics the operations to be performed on.
existing relations to derive result relations, Furthermore, it defines the complete scheme for
cach of the result relations. The relational algebraic operations can be divided into basic
set-oriented operations and relational- oriented operations. The former are the traditional set
operations, the latter, those for performing joins, selection, projection, and division.

Basic Operations : ;

Basic operations are the traditional set operations: union, difference, intersection and
cartesian product. Three of these four basic operations — union, intersection, and difference —
require that operand relations be union compatible. Two relations are union compatible if
they have the same arity and one-to-one correspondence of the attributes with the
corresponding attributes defined over the same domain. The cartesian‘product can be
defined on any two relations. Two relations P and Q are said to be-union compatible if both
P and Q are of the same degree n and the domain of the comresponding n attributes are
identical, i.. if P=P(P,, ...} and Q= (Q,, ... Q,} then

 Dom(P) = Dom(Q) for i = (1,2,n)
where Dom(P,) represents the domain of the attribute P;.

Example 1

In the examples to follow, we utilise two relations P and Q given in Figure 5. R isa
computed result relation. We assume that the relations Pand Q in Figure § represent employees
working on the development of software application packages J; and J, respectively.

P: Q:

Id Name ' id Name
101 Jones 103 Smith
103 Smith 104 Lalonde
104 Lalonde : 106 Byron
107 Even 110 Drew
110 Drew
112 Smith

Figure 5 : Unfon compatible relations

If we assume that P and Q are two union-compatible relations, then the union of P and Q is

the sct-theoretic union of Pand Q. The resultant relation, R = PU Q, has tuples drawn from
P and Q such that

R={tle Pvie Q)

The result relation R contains tuples that are in cither P or Q or in both of them. The
duplicate tuples are eliminated.

Remember that from our definition of union compatibility the degree of the relatioris Pand R
is the same. The cardinality of the resultant relation depends on the duplication of tuples in P
and Q. From the above expression, we can sce that if all the tples in Q were contained in P,
then |R| = |P| and R = P, whilc if the tuples in P and Q were disjoint, then |R| = [P +| QI.

Example 2

R, the union of P and Q given in Figure 5 in the above example 1 is shown in Figure 6(a). R
represents cmployees working on the packages J; or J,, or both of these packages. Since a
relation does not have duplicate wiples, an-employee working on both J; and J, will appear in
the rclation R only once.

R: . R: R: .
Id Name 1d Name . Id Name
101 Jones 101 Joncs 103 Smith
103 - Smith 107 Evan 104 Lalonde
14 Lalonde 112 Smith 110 Draw
107 Even
10 Drew ®) P-Q () PnQ
112 Smith

(a) PUQ

Figure 6 : Results of (a) unlon (b) difTerence and (c) Intersection operations
DifTerence (=) l
The difference operation removes common tuples from the first relation.
R = P-Qsuchthat _
R = (thhePateq)

Example 3

R, the re.eu!lof P —-Q, gives employces workmg only on package J,. (figurc 6(b} in example
2). Emplnye.es wmkmg on both packages J; and J; have been removed.

" Relational Model

BCA-1.5/113
13

BCA-1.5/114
14!

Intersection (M)
The intersection operation selects the common tuples from the two relations.

R = PnQ where
R = [tlte PALe Q)

Example 4

The resultant relation of P~ Q is the set of all employces working on both the packages.
(figure 5(c) of example 2).

The intersection operation is really unnecessary, It can be very simply expressed as:
PNnQ =P-(P-Q)

It is, however, more convenient Lo write an expression with a single intersection operation
than one involving a pair of difference operations.

Note that in these examples the operand and the result relation schemes, including the

- attribute names, are identical i.e. P= Q =R, If the attribute names of compatible relations

are not identical, the naming of the attributes of the result relation will have to be resolved.

Cartesian Product (x)

The extended cartesian or simply the cartesian product of two relations is thesconcatenation
of tuples belonging to the two relations. A new resultant relation scheme is created
consisting of all possible combinations of the tuples.

R=Px{

where atuplere Risgivenby (t, || ;| t, € P A 1, € Q}, i.e. the result relation is obtained
by conatenating each tuple in relation P with each tupls in relation). Hers, represents the
concation operation.

The scheme of the result relation is given by.
R=P || Q

_ The degree of the resuilt relation is given by: -

IRl =[Pl + 10l
The cardinélity of the result relation is given by:

IRl =|P| * |Q|

Example §

The cartesian product of the PERSONNEL relation and SOFTWARE_PACKAGE relations
of figure 7(a) is shown in figurc 7(b). Note that the relations P and Q from figure 5 of
example 1 arc a subsct of the PERSONNEL relation.

PERSONNEL ; Software Packages :
1d Name 5
101 | Jones I
103 Smith I
104 Lalonde
106 Byron
107 Evan
110 Drew
112 Smith
Tea)

Id P.Name S
101 Jones I]
101 Jones 5
103 Smith]
103 Smith 5,
194 La]ltll'ld'e Jl
104 " Lalonde 5
106 Byron L
106 Byron I
107 Evan 5
107 Evan I
110 Drew ¢
110 Drew I
12 Smith I
112 Smith 1
®)

Figure 7 : (a) PERSONNEL (Emp¥, Name) and SOFTWARE_PACKAGE(S) represent employees and soff-
ware packages respectively; (b) the Cartesian product of PERSONNEL and SOFTWARE_PACKAGES

The union and intersection operations are associative and commautative; therefore, given
relations R, S, T;

RuSuT) =RuS)uT=EuRUT=TUBUR)=.RNEAT)=RNSNT=..
The difference operation, in general, is noncommutative and nonassociative,
R-S#5-R noncommutative
R—-(8-T)=(R~-8)-T nonassociative

Additional Relational Algebraic Operations

The basic set operations, which provide a very limited data manipulation facility, have been
supplemented by the definition of the.following operations: projection, selection, join, and
division. These operations are represented by symbols &, G, <= and + respectively,
Projection and selection are unary operations; join and division are binary.

Projection (x)

The projection of a relation is defined as a projection of all its tuples over some set of
attributes, i.e., it yields a verfical subset of the relation. The projection operation is used to
either reduce the number-of attributes in the resultant relation or to redrder attributes. In the
first case, the artty (or degree) of the relation is reduced. The projection operation is shown
graphically in figure 8. Figure 8 shows the projection of the relation PERSONNEL on the
atribute Name. The cardinality of the result relation is also reduced due to the deletion of
duplicate tuples.

We defined the projection of a tuple t; over the attribute A, denoted t;[A] or & ,(t), as (a),
where a is the value

PERSONAL :

Id Name : Name
101 Jones Jones
103 Smith _ Smith
104 Lalonda - - 3 Lalpnde
106 Byron Byron
107 Evan ’ Evan
110 Drew ; Drew
112 Smith

Figure 8 : Projection of rel'lﬂnn PERSONNEL over attribute Name

BCA-1.5/115
15

‘RDBMS and DDBMS

BCA-1.5/116
16

“of tuple t; over the attribute A. Similarly, we define the projection of a relation T, denoted by
. T[A]orn*{'n.nnmemmbutu& Th:sisdefmdmmusofmepmpcnmformhmphm
1; belonging to T.on the attribute A as:

TAI= (& I5[Al=8 A 4eT)

where T[A] is a single attribute relation and | T[A]l £ T. The cardinality T[A] may be less
thanthecardmaluymbacauseofmedelwonofmyduplmesmﬂwm A case in point
1sﬂ!uslmmdmﬁgure3

Similarly, we can define the projection of a relation on a set of attribute names, X, as a
concatenation of the projections for each attribute A in X for every mplc in the relation.

TX1=(4A] Ie T)
Abelongs to X
where t[A] represents the concatenation of all 4[A] forall Ae X.
Abelcmgsiax '

Simply stated, thcpropcuon ofamlnuunPouthnsetnfatmbuwnamYbelmngmhe
projection of each tuple of the relation P on the set of attribute names Y.

Note that the projection operation reduces the arity if the number of attributes in X is less
than the arity of the relation. -The projection operation may also reduce the cardinality of the
result relation since daplicate tuples arc removed. (Note that the projection operation
produces a relation as the result, By definition, a relation cannot have duplicate tuples. In
most commercial implementations of the rclanomlnmdel however, Illthphcaws would
stﬂlhapmsemmtheresull) -

| Selection (o)

Snpmwuwmttnfmdﬂmempl in the relation PERSONNEL of figure 7(a) of
example’5 with an Id less than 105, This is an operation that selects only some of the tples
the relation. Such an operation is known as a selection operation. ‘I'he projection operation

" yields a vertical subset of a relation. The action is defined over a subset of the attribute

names hutmrallmetuples in the relation. The selection operation, however, yields a
horizontal subset of a given relation, i.e., the action is defined over the complete set of
aribute names but only a subset of the tuples are included in the result. To have a tuple
included in the result relation, the specified selecuunomdnﬁonsm;udmam must be
sausfedbylt. The selection operation, tsmeﬁmuhmwnasﬂteresﬁ-mm operation.

PERSONNEL : Results of Selection
Id Name A Id Name
101 _ Jones _ 101 Jones
103 Smith 103 Smith
104 Lalonde ; 114 Lalonde
106 Byron
107 | Evan
110 Drew
112 Smith -

Figure 9 : Result of Selection over PERSONNEL for Id < 105.

Any finite number of predicates connected by Boolean operators may be specified in the
selzction opesation. The predicates may define a comparison between two :
domain-compatible auributes or between an attribute and a constant valoe; lfthemmpaﬂson
is between attribute A, and constant c,, then ¢, belong to Dom(A,).

- Given a relation P and a predicate expression B, the selections of those tuples of relation P

that satisfy the predicate B is a relation R written as:
R=0xP) '

"Iheahaveexpmssmnmuldbareadas selacuhoseluplestﬁum?mwhwhthepmdmm

B(1) is ue.” Themtufmplminrelumkmmﬂuscascdcﬁnudwfoﬂow

lia {t|te PABQ)

JOIN (>4)

The join operator, as the name suggests, allows the combining of two relations to form a
single new relation. The tuples from the operand relations that participate in the operation
and contribute to the result are related. The join operation allows the processing of
relationships existing between the operand relations.

Example 6

In figurelQwe encounter the following relations: ASSIGNMENT (Emp#, Prod#, Job¥)

JOB_FUNCTION (Job#, Ti_tle)

EMPLOYEE :

Emp# | Name Profession
101 Jones Analyst
103 Smith - Programmer
104 Lalonde Receptionist
106 Byron Reéceptionist
107 Evan VPR &D
110 Drew VP operations
112 Smith - Manager
PRODUCT : .
Prod# Prod-Name Prod-Details
HEAPI { HEAP-SORT ISS Module
BINS9 BINARY-SEARCH IS5/R Module
-FM6 FILE-MANAGER ISS/R-PC Subsys
B++1 B++_TREE ISS/R Turbo Sys
B++2 B++_TREE ISS/R-PC Turbo
(a)

JOB-FUNCTION ASSIGNMENT -
Job# | Title Emp# | Prod# Job#
1000 CEO 107 HEAP 1 - BOD

s 101 HEAP 1 600
. 500 President . 110 BINS9 800
800 Mana : 103 HEAP1 700

700 Chief Programmer

60 | Ak 101 | BINS9 700
110 FM6 800
107 B++1 800

()

Figure 10 (a) Relation schemes for employee role in development teams (b) Sample relations

Suppose we want to respond 1o the query Get product number of assignments whose
development teams have a chief programmer. This requircs first computing the cartesian

- produgt of the ASSIGNMENT and JOB_FUNCTION relations. Let us name this product
relation TEMP. This is followed by selecting those tuples of TEMP where the attribute Title
has the value chief programmer and the value of the attribute Job# in ASSIGNMENT and
JOB_FUNCTION are the same., The required result, shown below is obtained by projecting
these tuples on the attribute Prod#. The operations are specified below.

TEMP = (ASSIGNMENT X ;FDB_FUNC'ITGN]

Ripooae (0 Title = ‘chief programmer’ A ASSIGNMENT.Job# (TEMP))

Prod #

HEAP1 -
BINS 9

Relational Moded

BCA-1.9/117

17
!

RDBMS and DDBMS

BCA-1.5/118

18;

In another method of responding to this query, we can first select those tuples from the

JOB FUNCTION relation so that the value of the aitribute Title is chief programmer. Letus
call this set of tuples the relation TEMP1. We then compute the cartesian product of TEMPI
and ASSIGNMENT, calling the product TEMP2. This is followed by a projection on Prod#
over TEMP2 1o give us the required response, These operations are specified below:

TEMP1

- {a Title = “chief programmer’(JOB_FUNCTION))

TEMP2 (o ASSIGNMENT.Job# = JOB_FUNCTION.Job# (ASSIGNMENT X TEMP1))

Tproge (TEMP2) gives the required result.

Notice that in the selection operation that follows the cartesian product we take only those
tuples where the value of the atributes ASSIGNMENT.Job# and JOB_FUNCTION. Job# are
the same. These combined operations of cartesian product followed by selection are the join
operation. Note that we have qualified the identically named attributes by the name of the
corresponding relation to distinguish them.

In case of the join of a relation with itself, we would nced to rename either the attributes of
one of the copies of the relation or the relation name itself. We illustrate. this in example 7.

In general the join condition may have more than one term, necessitating the use of the
subscript in the comparison operator. Now we shall define the different types of join
operations.

In these discussions we use P, Q, R and so on to represent both the relation scheme and the
collection or bag of underlying domains of the attributes. We call it a bag of domains
because more than ong autribute may be defiried on the same domain.

Typically, PN Q may be null and this guarantees the uniqueness of attribute names in the
result relation. When the same attribute name occurs in the two schemes we use qualified
names.

Two common and very useful variants of the join are the equi-join and (he natural join. In !
the equi-join the comparison operator theta(i = 1,2,......, n) is always the equality operator
(=). Similarly, in the natural join the comparison operator is always the equality opcrator.
However, only one of the two sets of domain compatible attributes involved in the natural
join are A, from P and B; from Q, for i = 1,, n, the natural join predicate is a conjunction
of terms of the following form:

IA)= LB fori=12,...n

Domain compatibility requires that the domains of A; and B; be-compatible, and for this

“Teason relation schemes P and Q have attributes defined on common domains, Lc..PnQ#nb.'

Therefore, join attributes have common domains in the relation schemes P and Q.

. Consequently, only ene set of the join attributes on these common domains needs to be

preserved in the result relation. This is achiéved by taking a projection after the join
‘operation, thereby eliminating the duplicate attributes. If the relation P and Q have attributes
with the same domains but different attribute names, then renaming or projection may be
specified.

Example 7

Given the EMPLOYEE and SALARY relations of figure 11(i), if we have 1o find the salary of
employees by name, we join the tuples in the relation EMPLOYEE with those in SALARY
such that the value ot the atiribute 1d in EMPLOYEE is the same as that in SALARY. The
natural join takes the prédicate expression to be EMPLOYEE.Id = SALARY.Id. The result

of the natural join is shown in figure 11(ii). When using the natural join, we do not need to
specify this predicate. The expression 1o specify the operation ot finding the salary of
employees by name is given as follows. Here we project the result of the natural join
operation on the attributes Name and Salary:

% (Name.Salary) (EMPLOYEE < SALARY)

EMPLOYEE ; SALARY : EMPLOYEE w SALARY
i | Name | Smary | d | Name | Salary
101 | Jones 101 67 01 | Jones 67
103 | Smith - 163 55 03 | Smith 55
104 | Lalonde | 75 04 |Lalonde ; 75
107 | Evan 107 %0 07 |Evan | 80
ASSIGNMENTEmp# | COASSIGN Emp# |

107 107

107 101

107 103

101 107

101 101

101 103

110 110

110 101

103 107

103 101

103 103

101 110

Flgure 11: (1) The natural join of EMPLOYEE and SALARY: relations:
(i) The joint of ASSIGINMENT with the renamed copy

Division (+)
Before we define the division operation, let us consider an example,

F.xamplel 8
Given the relations P and Q as shown in figure12 (a), the result of dividing P by Q is the

relation R and it has two tuples. For each tu
in P. In our example (a,,b,) and {z,,b;)

and (ag,by).

Simply stated, the cartesian product of Q and R is a subset of P. In figure 12(h), the result
relation R has four tuples; the cartesian prodact of R and Q gives a resulting relation which is

ple in R, its product with the tplesof Q must be

must both be tples in P; the same is true for (as, by)

P: Q: R (result) :
A | B B A
a] b‘] hl a]
N by by s
dp b,

& b,
4 by
ds by
as b,
(a)
Q: then R is
B A
b,
by
by

T ittormdidy . (B)R = P+ Q(Pisthe smeagin part)

Q:

then R s :

A

a
By
iy

a5

(b)

thenRs:

A
9y
dy
a3

Ls

(d)
Figowe 12 : Examples oflhedlvlsion_qpemjou. (AR=P+Q;
W) R~ P - O (P jsthasame ps in part [); () K =P+ () (P isthe same 55 by cart iz +

BCA-1.5/119

-

RDBMS and DDBMS

BCA-1.5/120
20

again a subset of P. In figure12 (c), since there are no wples in P with a value by for the
attribute B (i.e., selectiong _ 5(P) = 0), we have an empty relation R, which has a cardinality
of zero. ’

In figure 12(d), the relation Q is cmpty. The result relation can be defined as the projection
of P on the attributes in P~ Q. However, it is usual o disallow division by a empty relation.

Finally, if relation P is an empty relation, then relation R is also an empty relation.

Let us treat the Q as representing one set of properties (the properties are defined on the Q,
each wple in Q representing an instance of these propertics) and the relation r as representing
entities with these properties (entities are defined on P — Q, and the properties are, as before,
defined on Q); note that P'w Q must be equal to P. Each tuple in P represents an object with
some given property. The resultant relation R, then, is the set of entities that possesses all the

* propertics specified in Q. The two entities a, and a5 possess all the properties, i.¢., b, and by,

The other entities in P, a,, a;, and a4, only possess one, not both, of the properties. The
division operation is useful when a query involves the phrase “for all objects having all the
specified properties.” Note that both P —Q and Q in general represent a set of atributes. It
should be clear that Q not a subset of P.

1.6 RELATIONAL COMPLETENESS

The notion of relational completeness was propounded by Codd in 1972 as a basis for
evaluating the power of different query languages. :

A language is relationally complete if the basic relational algebra operations can be
performed. The basic relational algebra operations are '

e Union
Difference
Gross product
Projection
Selection

Query languages that are actually used in practice provide features in addition to the one
mentioned above. For example, they provide facilities for

1. modification, storage and deletion of information

2

3. assigning relations to some relation names

4. computing aggregate functions like SUM and MAX
5.

performing arithmetic, for example, like retrieving the Salary + commission,

Check Your Progress
1. Define lhe following terms:

(a) Intention of asct
(b) Extension of 3 set
2. What is union compatible?

...

1.7 SUMMARY

‘The relational model has evoked a wide amount of interest in the database community. This
model has a very sound mathematical basis to it. It exhibits a high degree of data
independence.

However, it has its share of difficulties. Thesc are:

e The relational model does not deal with issues like semantic integrity,
concurrency and database security. These issues are left to be solved by the
implementors of database management systems based on the relational model. The
most serious conscquence of the foregoing was ﬂwabsmceofﬂw concept of
semantic integrity in relational systems.

e Traditionally, implementations of the relational model have suffered from the
drawback that they are relatively poor on response time. The biggest problem is in
the realization of the join operator. Whercas, a DBMS based on the relational
model can handle small databases, as the sizes of databases reach the region of
billions of bytes the performance of these systems falls rather drastically.
Consequently, these systems are able to support databases of relatively small sizes.

1.8 MODEL ANSWERS

1. (a) The intention ofa smdefm the pmn:smble occurrences by specifying a
membership condition.

(b). The extension of the set specifies one of nuimerous possible occurrences by explicitly

listing the set members. These two methods of defining a set are illustrated by lhu
following example:

Intention of set G = (g | gismoddpositiveinmgerlessﬂmn 10)
Extensionof setG = (1,3,579}

2. Two relations are union compatible if they have some arity and one to one
- correspondence of the alm“l}ul.es with the corresponding attributes defined over the same
domain,

1.9 FURTHER READING

Bipin C.Desai, An fmrqduclion 1o Darabase System, Galgotia Publication, New Dethi.

Relational Model

BCA-1.5/121

21

UNIT 2 NORMALIZATION

Structure

20 Introducuon

2.1 Objectives

22 Functional Dependency

2.3 Anomalies in a Daabase

24 Properties of Normalized Relations
2.5 First Nermalization

26 Second Normal Form Relation

2.7 Third Nonnal Form

2.8 Boyce Codd Normal Form (BCNF)
29 Founh and Fifth Normal Form
2.10 Some Examples of Database Design
2.11 Summary

2.12 Model Answers

2.13 Further Readings

2.0 INTRODUCTION

The basic ebjectives of normalization i to reduce redundancy which meeny that infermatien

it to be stored only once. Storing information several timeeleads to wastage of storage space
and incrense in the total size of the data stored. Relations are normalized so that when
relations in database are to be altered during the life time of the atabase, we do not loge
informetion or introduce inconsistencies. The type of alterabions normally neaded for

relations are

1. Insertion of new data values 10 a relation. 1his should be possible without being forced

to leave blank fields for some attributes.: '

2. Deletion of atuple, namely, 2 row of 2 relation. This should be possible without losing
vital information unknowingly.

exhmstively searching all the tuples in the relation

I this unit, in the beginning we discuss the imporuance of havm% a consistent database
Without repetition of data and peints ont the anomalies that could be intreduced in a database
with an undesirable scheme. Then we discuss the different forms of normalizetion

21 OBJECTIVES

 Aftter going through this unit, you may be able to:

o discuss the different types of anomalies in a database
e state what is functional dependency
e list the different forms of normalization

e differentiate among different types of normalization.

2.2 FUNCTIONAL DEPENDENCY

As the concept of dependency is very important, it is essential that we first understand it well
and then proceed 10 the idea of normalization. There is no fool-proof algorithmic method of
identifying dependency. We have to use our commonsense and judgement of specify
dependencies,

Let X and Y be two auributes of a relation. Given the value of X, if there is only one value
of Y corresponding to it, then Y is said to be functionally dependent on X, This is indicated
by the notation: _]

X =2 Y

+ For example, given the value of item codc, there is only onc value of item name forit. Thus
ilem name is functionally dependent on item code. This is shows as:

Itemcode — itemname

: Similardla);e in table 1, given an order numbcr; the date of the order is known: Thus : order no.

Functional dependency may also be based on a composite attribute. For example, if we write

XZ-oY
it means that there is only one value of Y corresponding to given values of X, Z. In other
words, Y is functionally dependent on the composite X, Z. In other words, Y is functionally
dependent on the composite X, Z. In table 1 mentioned below, for example, Order no., and
Iiem code together determine Qty. and Price. Thus :

Order no., ltem code — Qty., Price

As another example, consider the relation

Student (Roll no.; Name, Address, Dept., Year of study)

Order no. Order date [tem code Quantity Pricelunit

1456 260289 3687 52 5040
1456 260289 4627 a8 60.20
1456 260289 3214 20 17.50
1886 040389 4629 45 20.25
1886 040389 4627 30 60.20
1788 040489 4627 AQ 6020

Table 1: Normslized Form of the Relation

In thix relation, Name iz functionally dependent oa Roll no. In fact, given the walue of Roll
no., the values of all the other attributar can be uniquely determined Name and Department
are not functienally dependent because given the name of a student, one cannot find his de-
partment uniquely. Thir iz due to the fact that there may be more than one student with the '
same name. Name in thiz case iz not akey. Department and Year of study arc not functi onal-
Iy dependent ag Year of study pertainr to a student whereaz Department iz an independent at-
tribute. The functional dependency in thiz relation is showu in the foll owing fi gure az a de-
pendeney diagram. Such dependency diagrams rhown in figure 1 are very nseful in normal -
dzatien

Relation Key: Consider the relation of table 1. Given the Vender code, the Vendor name and
Addrers are uniquely determined. Thus Vendor code is the relation key. Given a relation, if
the valte of an attribute X uniquely determines the valuer of all other attributes in

| MName |
e e |
B o ey

Year of study |

Figure 1: Dependency diagram for the relation “Student
a row, then X iz said to be the key of that relation. Sometimes mote then one attribute iz
needed to uniguely determine otheratibutes in a relation row. In that cese-stteh a set of

" *attributes is thgikgyl: In teble I, Order no. and Item code together foAyiit key. In t|e

BCA-1.5/123
2

RDBMS sed DDEMS " relation “Supplies” (Vendor code, Tiem code, Qty. supplied, Date of supply, Price/uni),
Vendor code and Item code together form the key. This dependency is shown in the

following diagram (figure 2).
Quantity supplied
Vendor code
>|J Date of supply i
Item code

Pricefunit

Flgure 2: Dependency diagram for the relation “Supplies”

Observe that in the figure the fact that Vendor code and Item code tegether form a composite
key is clearly shown by enclosing them together in a rectangle.

23 ANOMALIES IN A DATABASE

Consider the following relation scheme pertaining to the information about astmdent -
maintained by a university:

STDINF(Name, Course, Phone_No, Major, Prof, Grade)

Table 2 shows some twples of a relation on the relation scheme STDINF(Name, Course,
Phone_No, Major, Prof, Grade). The functional dependencies among its attributes are shown
in Figure 3. The key of the relation is Name Course and the relation has, in addition, the
following functional dependencies {Name — Phone_No, Name — Major, Name Course —
Grade, Course — Prof}. :

Name Course Phone_No Major 1 Prof Grade

Jones 353 237-4539 Comp Sci Smith A

Ng 329 427-73%0 Chemistry Turmer B

Jones 328 237-4539 Comp Sci Clark B

Martin . 456 388-5183 Physics James A

Dulles 293 371-6259 Decision Sci Cook c

Duke 491 823-7293 Mathematics Lamb B

Duke 356 823-7293 Mathematics Bond in prog

Jones 492 | 237-4539 Comp Sci Cross inprog -
| Baxter 379 839-0827 English Broes C

Table 2: Student Data Representation In Relation STDINF

Here the attribute Phone_No, which is not in any key of the relation scheme STDINF, is not
functionally dependent on the whole key but only one part of the key, namely, the attributa
Name. Similarly, the attributes Major ant Prof, which are not in any key of the relation
scheme STDINF either, are fully functionally dependent on the attributes Name and Course,
respectively. Thus the determinants of these functional dependencies are again not the entire
key but only part of the key of the relation. Only the attribute Grade is fully functionally '
dependent on the key Name Course. : '

The relation scheme STDINF can lead to several undesirable problems:

e Redundancy: The aim of the database system is Lo reduce redundancy, meaning
that information is to be stored only once. Storing information several times leads
10 the waste of storage space and an increase in the total size of the data stored.

4
B%A—'l'.ﬁﬁ 24

Updates to the database with such redundancies have the potential of becoming Normaltzation
inconsistent, as explained below. In the relation of table 2, the Major and
Phone_No. of a student arc stored several times in the database: once for each

course that is or was taken by a student.

e Update Anomalies: Multiple copies of the same fact may lead to update anomalies
or inconsistencies when an update is made and only some of the multiple copies are
updated. Thus, a change in the Phone_No. of Jones must be made, for consistency,
in all tuples pertaining 1o the student Jones. If one of the three tuples of Figure 3 is
not changed to reflect the new Phone_No. of Jones, there will be an inconsistency in
the data. &3

I i ¥

Figure 3: Function dependencies in STDINF

e Insertion Anomalies: If this is the only relation in the database showing the
association between a faculty member and the course he or she teaches, the fact that
a given processor is teaching a given-course cannot be entered in the database
unless a student is registered in the course. Also, if another rclation also establishes
a relationship between a course and a professor who teaches that course the
information stored in these relations has to be consistent.

e Deletion Anomalies: If the only student registered in a given course discontinues
the course, the information as to which professor is offering the course will be lost if
this is the only relation in the database showing the association between a faculty
member and the course she or he teaches. If another relation in the database also

. ecstablishes the relationship between a course and a professor who teaches that
course, the deletion of the last tuple in STDINF for a given course will not cause the
information about the course’s teacher to be lost. #

The problems of database inconsistency and redundancy of data are similar to the problems
that exist in the hierarchical and network models. These problems are addressed in the
network model by the introduction of virtual fields and in the hierarchical model by the
introduction of virtual records. In the relational: model, the above problems can be remedied
by decomposition. We define decomposition as follows:

Definition: Decomposition .
The decomposition of a relation scheme R = (A, Ay, ... Ajis its replacement by a set of
relation schemes (R, R;, ... R}, such thatR, < Rfor 1< ismandR, U Ry R, =R.

A relation scheme R can be decomposed into a collection of relation schemes (R;, Ry, Ry ...
R,] to eliminate some of the anomalies contained in the original rlation R. Here the
relation schemes R, (1 € i< m) are subsets of R and the intersection of R; n R;fori # j
need not be empty. Furthermore, the union of R; (1 <i <m) is cqual to R, ie.R=R; R, ...

R,

The problems in the relation scheme STDINF can be resolved if we replace it with the
following relation schemes:

STUDENT _INEGHNane, Phone_No, Major)
TRANSCRIPE(e, Course, Grade)
TEACHER (Ccigse, Prof)

The first relation scheme gives the phone number and the major of each student and such
information will be stored only once for each student. Any change in the phone nurber will BCA.15/125
thus require a change in only one tuple of this rclation. ;

25

The second relation scheme stores the grade of each student in each coarse that the student is
or was enrolled in., (Note: In oar database we assume that either the student tales the course
only once, or if he or she has to repeat it to improve the grade, the TRANSCRIPT relation .
stores only the highest grade.)

The third relation scheme records the teacher of each course. One of the disadvantages of
replacing the original relation scheme STDINF with the three relation schemes is that the
retrieval of certain information requires a natural join operation to be performed. For
instance, to find die majors of a student who obtained a grade of A in course 353 requires a
join to be performed: (STUDENT _INFO b» TRANSCRIPT). The same information could
be derived from the original relation STDINF by selection and projection.

When we replace the original scheme STDINF with the relation schemes STUDENT _INFO.
TRANSCRIPT and TEACHER, die consistency and referential integrity constraints have to
be enforced. The referential integrity enforcement implies that if a tuple in the relation
TRANSCRIPT exists, such as (Jones. 353, in prog), a tuple must exist in STUDENT_INFO
with Name = Jones and furthermore, a tuple must exist in STUDENT_INFO with Course =
353. The attribute Name, which forms pan of the key of the relation TRANSCRIPT, is a key
of the relation STUDENT _INFO. Such an attribute (or a group of attributes), which
establishes a relationship between specific tuples (of the same or two distinet relation,), is
called a foreign key. Notice that the attribute Course in relation TRANSCRIPT is also a
foreign key. since it b a key of the relation TEACHER.

Note that the decomposition of STDINF into the relation schemes STUDENT (Name, Phone
No, Major, Grade) and COURSE (Course. Prof.) Is a bad decomposition for the following
reasons:

1. Redundancy and update anomaly, because the data for the attributes Phone no and Major
are repeated
2. Loss of information, because we lose the fact that a student has a given grade in a

particular course.

2.4 PROPERTIES OF NORMALIZED RELATIONS

Ideal relations after normalization should have the following properties so that the problems
mentioned above do not occur for relations in die (ideal) normalized form:

1. No data value should be duplicated in different rows unnecessarily.
2. A value must be specified (and required) for every attribute in a row.

3. Each relation should be self-contained. In other words, if a row from a relation is deleted,
important information should not be accidentally lost

4. When a row 1s added to a relation, other relations in the database should not be affected.

5. A write of an attribute in a tuple may be changed independent of other tuples in the
relation and other relations.

The idea of normalizing relations to higher and higher normal forms [s to attain the goals of

having a set of ideal relations meeting the above criteria.

2.5 FIRST NORMALIZATION

The relation shown in table | is said to be in First Normal Form, abbreviated as INF. This
form is also called a flat file. There arc no composite attributes, and every attribute is single
and describes one property.

Converting a relation to the INF form is the first essential step normalization. There arc
successive higher normal forms known as 2NF. 3NF, BCNF, 4NF and 5NF. Each fa m is an
improvement over the earlier form. In other words, 2NF is an improvement on INF. 3NF is
an improvement on 2NF. and so on. A higher normal form relation is a subset of lower
normal form as Shown in the following figure 4. The higher normalization steps are based

on three important concepts:

5NF
4NF

_BCNE
INF

ZNF

INF

Flgure 4 Illustration of successive noermal forms of a relation
1. Dependence among attributes in a relation

2. Identification of an attribute or a set of attributes as the key of relation

3. Multivalued dependency between attributes

2.6 SECOND NORMAL FORM RELATION

We will now define s relation in the Second Nomal Form (2NF): Arelstion iz saidta bein
.(2NFifitisin 1NF s0d non-key attributer ate functionally dependent on the key attributs (s
Further, if the key has more than one attributs then no aon-key atbributes shonld be
functionally dependent upon apart of the key attributes. Consider, for example. the relation
givenin tahle t. This relation iz in 1NF. The key iz (Order np., Item cods). The dependency
diagram for. sttributes of thiz relstion is shown in figure 5. The non-key attribute Pricef/Unit
is functionelly d=pende=nt on Item code which is pert of the relation k=y. ;Alsg. the non-key
.attribute Order date is fanctionally dependent on Order no. which is a part of the relation key
Thus the relation iz nat in INF. It can be transformed to INF by splitting it into three
.relstipns as shawn in tsble 3

In table 3 the relation Orders has Order no, as the key. The relation Oreder details has the
composite key Order no, and Item code. In bothe relations the non-key attributes are
functionally dependent on the whole key. Observe that by transforming to 2NF relations the

. Order date l :
Uirder.no.

Quanﬂty i

" Iten code
\ 2
dce/unit J

ool Crtit e

BCA-1.5/127
&

Figure : Dependency diagram for the relation give in table

RDBMS and DDBMS repetition of Order date (table 1) has beca removed. Further, if an order for an item is
' - cancelled, the price of an item is not lost. For example, if Order no. 1886 for Item code 4629
isqnncelhdinlablcl.ﬂmnﬂm[ﬂuﬂhmwwillbcrcmmcdandllmpriocofﬂmimmism
In table 3 only the fourth row of the table 3(b) is omitted. The item price is not lost as it is
available in table 3(c). The data of the order is also not lost as it is in table 3(a).

(a) Orders (b) Order Details (c) Prices
Order . Order Order liem Qty. Item Price/
no date no. Code code unit
1456 260289 1456 3687 52 3687 5040
1886 040389 1456 4627 38 4621 6020
1788 040480 | | 1456 3214 20 3214 1750
[1886 4629 45 4629 2025
1886 4627 30
1788 4627 40

 Tuble3: Splitting of Relation given in table 1 into 2NF Relations :

These relations in 2NF form meet al the “ideal” conditions specified, Observe that the three
relations obtained as self-contained. There is no duplication of data within a relation.

2.7 THIRD NORMAL FORM

A Third Normal Form normalization will be needed where all attributes in a relation tuple are
‘not functionally dependent only on the key autribute. If two non-key attributes are
functionally dependcnt, then there will be unnecessary duplication of data. Consider the
relation given in table 4. Here, Roll no, is the key and all other attributes are

Roll no. Name Department - -~ Year Hostel name

1784 * Raman Physics 1 Ganga
1648 Krishnan ~ * Chemistry 1 Ganga
1768 Gopalan Mathematics 2 Kaveri
1848 Raja Botany 2 Kaveri
1682 Maya Geology 3 Krishna
1485 Singh Zoology 4 Godavari

Table 4 A 2NF Form Relation

functionally dependent on it. Thus it is in 2NF. If it is known that in the college all first
.}'ﬂ.rsmdennmmmmmodawdmﬁangahmd,nusewndyearﬂudcmsinKmmaumird
ywmmanKmmﬂaﬂfomﬁmsuMhGodhmﬁ.mmcnm-kwmhm
Hosiel name is dependent on the non-key attribute Year. This dependency is shown in figure 6.

Name

Department

R no.

Year

Hostel name
BCA-1.5/128 |
” - Figure 6: Dependency diagram for the relation

Observe that éivcn the year of student, his hostel is known and vice versa, The dependency
of hostel on year leads to duplication of data as is evident from table 4. If it is decided to ask

all first year students to move to Kaveri hostel, and all second year students to Ganga hostel,

this change should be made in many places in table 4. Also, when a student’s year of study
changes, his hostel change should also be noted in Table 4. This is undesirable. Table 4 is
said to be in 3NF if it is in 2NF and no non-key attribute is functionally dependent on any
other non-key attribute. Table 4 is thus not in 3NF. To transform it to 3NF, we should
introduce another relation which includes the functionally related non-key attributes. This is
shown in table 5. .

Roll no. Name Depa. :ment Year ! Year Hostel name
1784 -Raman Physics 1 1 Ganga
1648 . Krishnan Chemistry 1 2 Kaveri
1768 - Gopalan Mathematics 2 3 Krishna
1848 Raja Botany - 2 4 Godavari
1682 Maya Geology 3

1485 Singh Zopology 4

Table 5: Conversion of table 4 into two 3NF relations

It should be stressed again that dependency between attributes is a semantic property and has
to be stated in the problem specification. In this example the dependency between Year and
Hostel is clearly stated. In case hostel allocated to students do not depend on their yearin
college, then table 4 is already in 3NF.

Let us consider another example of a relation. The relation Employee is given below and its
dependency diagram in figure 7.

Employee (Employee code, Employee name, Dept., Salary, Project no., Termination date of
project).

As can be seen from the figure, the termination date of a project is dependent on the Project
no. Thus this relation is not in 3NF. The 3NF relations are:

Eh;ﬂoyee (Employee code, Employee name, Salary, Project no.)
Project (Project no. Termination date)

Employee name f

Department

Salary

/
=

Termination date

Employee Code

Flgure 7: Dependency diagram of employee relation

2.8 BOYCE CODD NORMAL FORM (BCNF)

Assume that a relation has more than one possible key, Assume further that the composite
Keys have a common attribute. If an attribute of a composite key is dependent on an attribute
of the other composite key, a normalization called BCNF is needed. Consider, as an
oxample, the ralation Professor; =

Professor (Professor code, Dept,, Head of Dept., Parent time)

Normallzation

BCA-1.5/129

RDBMS and DDBMS

BCA-1.5130
30

It is assumed that

L. Apm[ésmrmn work in mura. than one department

2. ‘The percentage of the time he spends in each department is given.
3. Each depaniment has only one Head of Department.

_ The relationship diagram for the above relation is given in figure 8. Table 6 gives the

relation attributes. The two possible composite keys are professor code and Dept. or
Professor code and Head of Dept. Observe that department as well as Head of Dept. are not
non-key atributes. They are a part of a composite key.

' Head of
Department / Bepesiond
Professor code \
Percent time
Dei:amnem Head of Department
Head of Department
Department
[Professor code \ -
- Percent time

Figure 8: Dependency dlagram of Professor relation

Professor Code | Department Head of Dept. Parent
Pl Physics Ghosh 50
Pl Mathematics | Krishnan 50
P2 Chemistry Rao 25
PR Physics Ghosh 75
P3 Mathematics | Krishnan 100

Table 6: Normalization of Relation “Professor™

The relation given in table 6 is in 3NF. Observe, however, that the names of Dept. and Head
of Dept. are duplicated. Further, if Professor P2 resigns, rows 3 and 4 are deleted. We lose
the information that Rao is the Head of Department of Chemistry.

The normalization of the relation is done by creating a new relation for Dept. and Head.of-.
Dept. and deleting Head of Dept. from Professor relation. The normalized relations are
shown in the following table 7. '

(@ ' ®)

Professor Department Percent Department Head of
code time Dept.
P1 Physics 50 Physics ~ Ghosh
Pl Mathematics 50 Mathematics Krishnan
P2 Chemistry 25 Chemistry -~ Rao
P2 Physics ' 15

P3 Mathematics i 100

Tuble 7: Normalized Professor Relation in BCNF

and the dependency diagrams for these new relations in figure 8. The dependency d:agram
gives the important clue to this normalization step as is clear from figures 8 and 9.

Department :
‘J-] Percent time !
Professor code
Department -I Head of Department

Figure 9: Dependency diagram of Professor relation

2.9 FOURTH AND FIFTH NORMAL FORM

When attributes in a relation have multivalued dependency, further Normalisation to 4NF
and SNF are required. We will illustrate this with an example. Consider a vendor wpplﬁng
marny items 1o many projects in an organisation. The following are the assumptncms.

1. A vendor is capable of supplying many items.

2. A project uses many items.

3. A vendor supplies to many projects.

4. Anitem may be supplied by many vendors.

Table 8 gives a relation for this problem and figure 10 the dependency diagram(s).

Vendor code . Item code Project no.l
V1 Il Pl
V1 - Pl
V1 n P3
V1 A P3
V2 12 P1
V2 13 P1
V3 1 - P2
V3 11 Bl

-Table §: Vendor-supply-projects Relation i

The relation given in table 8 has a number of pmblems.' For Mﬁfe{ m—

Y
e~

———— indicates multivalued dependency

Flgure 10 : Dependency dlagrmsofwndﬁ-ﬁpﬂ!-prﬁ‘d relation

BCA-1.5/131
3|

RDBMS and DDBMS e Ifvendor V1 has 1o supply 1o project P2, but the item is not yet decided, then a row
* with a blank for item code has to be introduced.

e The information about item 1 is stored twice for vendor V3,

- Observe that the relation given in Table 8 is in 3NF and also in BCNF. It still has the

* problems mentioned above. The problem is reduced by expressing this relation as two
relations in the Fourth Normal Form (4NF). A relation is in 4NF if it has no more than one
independent multivalued dependency or one independent multivalued dnpcndcncy witha

functional dependency.

Table 8 can be expressed as the two 4NF relations given in Table 9. The fact that vendors
mcapﬂﬂcufsupplymg certain 1lemsandﬂlatlheymasmgncdmsupplyformepro;ecls
in mdcpmdmuyspec:ﬁed in the 4NF relation.

(a) Vendor Supply (b) Vendor project
Vendor code Itemcode |- Vendor code Project no.
7 Tl V1 Pl
Vi 12 , Vi P3
V2 2 : : 2 - - A
V2 B - V3 Pl
V3 I V3 P2

Table 9: Vendor-supply-project Relations in 4NF

These relations still have a problem. Even though vendor V1’s capability to supply items
and his allotment to supply for specified projects may not need it. We thus need another
relation which specifies this. This is called SNF form. The SNF relations are the relations in
Table 9(a) and 9(b) together with the relation given in table 10.

Projectno. Item code
Pl n
Pl 12
P2 In
P3 1
P3 K]

Table 10: SNF Additionsl Relation

In table 11 we summarise the normalisation steps already explained.

Input relation Transformation ' Qutput relation
All relations Eliminate variable length records. Remove INF)
multiattribute lines in table : .
" INF relation Remove dependency of non-keysattribute on part 2NF
of a multiattribute key * :
2NF =~ | Remove dependency of non-key attributes on - 3NF
| other non-key attributes
3NF Remove dependency of an attnbute of a BCNF
multiattribute key on an attribute of another
(overlapping) multi-attribute key . .
' BCNF Remove more than one independent multivalued 4NF
E : dependency from relation by spl.tttmg relation. |- _
4NF " Add one relation relating mmhgﬂ_ with - 5NF
multivalued dependency to the two relations '
with multivalued dependency

BCA-1.5/132

1 Tuble 11: Summary of Normallsation Steps

210 SOME EXAMPLES OF DATABASE DESIGN

Consider a problem where items are supplicd by a vendor and checked by a receiving
process against orders for detecting any discrepancy. An order file is used to check whether
the deliveries are against orders and whether there is any discrepancy. We will now see how

these data can be organised as relations. The E-R diagram of figure 11 applies for Ihls case
and the relauom are:

Figure 11: An E-R diagram for Orders Placed with Vendors fﬁrs-;;m of Ttems -
ORDERS (order no., order date)
ORDER PLACED FOR (order no., item code)

ORDER PLACED WITH (order no., vendor code, item code, qty. ordered, pnw'uml.
delivery time allowed)

VENDORS (vendor no., vendor hariw, \'cndur aM}

ITEMS (item code, item name)

SUPPLIES {\'endnr cnde, item code, order no., qgty. supplicd, datc of supp!y}
The Imy attribute(s) are in bold lcucr(s) in cach relation.

Let us examine whether the relations are in normal form. ORDERS and ORDER PLACED
FOR are simple relations, In'the relation ORDER PLACED WITH, the key is the composite
attributes order no., vendor code and item code. However, order no. and vendor code are
functionally related if we assume that a given order no. has only one vendor specified.
Further, an order is with a vendor for an itern. The price/unil depends on the item and the
vendor. Thus we need to modify the relations ORDER PLACED FOR am:l ORDER
PLACED WITH to :

ORDER PLACED FOR (order no., Item code, gty. ordered, price/unit, delivery ume)
ORDER PLACED WITH (vendor code, Item code)

The two relations have composite keys. The non-key fields are not related to one another. In
-a key with more than one atiribute the individual attributes are not funclionally dependent.
Thus these two relations arc in normalised form :and do not need any further change.

There is still one problem. Many orders may be given to the same vendor for the same or
different items. In order to organisc this data we 1iced one more relation

ORDER WITH VENDOR (order no., vendor codic)
so that we can find out which vendor supplicd against an order.

The relations VENDOR and ITEM are simple and arc-in normalised form. The relation
SUPPLIES is, however, not normalised. Vendor code and order no. are functionally

Normaltzation

BCA-1.5/133
33

RDBMS and DDBMS

BCA-1.5/134

dependent. There is a multivalued dependency between vendor code and item codeasa
vendor can supply many items. We thus split the relations into two relations:

ACTUAL VENDOR SUPPLY (vendor no., item code, qty. supplied, date of supply)
VENDOR SUPPLY CAPABILITY (vendor code, ilem code)

Observe that the relations VENDOR SUPPLY CAPABILITY and ORDER PLACED WITH
have identical attributes. However, VENDOR SUPPLY CAPABILITY relation will have a
(vendor code, item code) table without a vendor having supplied any item. The relation
ORDER PLACED WITH will have a tuple only when a vendor dctually supplies an item.

We now consider another problem. Let a database contain the following: Teacher code,
Teacher’s name, Teacher’s address, rank, department, courses taught by the teacher, course
name, credits for course, no. of students in the class, course taught in semester ne., student
no., name, dept., year, and courses taken in semester no. The following information is given

on dependencies. _
e Atcacher may teach more than onc course in a semester.
° ﬁ_teacher is affiliated to only one department.
e Astudent may take ma;uy courses in a semester.

e The same coursc may have more than one scctmn and different sections may be
taught by different 1eachers.

An entity-relationship diagram for this problem is given in figure 12. The relations
corresponding 1o the E-R diagram are:

Teacher - . Student

Figure 12 : An E-R diagram lor teacher database

TEACHER (Teacher code, course no., no. of rank, dept.)
TEACHES COURSES (Teacher code, course no., no. of students)
COURSES (course no., course r wme, credits, semester taught)
STUDENT (student no., student's name, dept., year)
STUDENT-COURSES (student’s no., course no., scmester no.)

TEACHER rclation has only one key. All non-key attributes are functionally dependent only
on the key, TFhere is no functional dependency among non-key attributes. Thus the relation
is normalisedinINF. (No higher NFs are applicable). -

STUDENT relation is adso,similarly, in 3NF. In the COURSE relation, course name conld
also be akey However Hicre is no overdapping multiattribute key. The relation is in 3NF
and no furthor normalisatfon is requined. The relations TEACHES COURSES and
STUDENT- COURSES have multiautribute keys, but the relations themselves are in normal
form. The only point which is not/clear, from these relztions, is the relation between teacher
and stodent. This has been nussed in the EIR diagram. The refationship ishbetwesn the

teacher, courses taught and students. In other words, we should be able to answer the ' Normalization
question “Which teacher is teaching course no. X to student no. Y?" Let us add a relation

TEACHES TO (Teacher code, student no., course no.)

In this relation Teacher code and course no., have a mul{jvalued dependency. Similarly,
Teacher code and student no. as well as student no. and course no. have multivalued
dependency. However, TEACHES COURSES (Teacher code, course no., no, of students)
and STUDENT-COURSES (student no., course no., semester no.) relations are already in
the database. Thus the relaticn TEACHES TO as it is specificd above is suﬂimmtmgweme
mﬂmmdentYlalcasmurseXﬁnm'IhacherZ.

Check Your I’regi'ess
1. What is the basic purposc of 4NF?
. 2. What types of anomalies are found in relational databasc?

2.11 SUMMARY

In this unit, we pointed out different typm of anomalies in the database that could cause an
undesirable effect. We also discussed several forms of normalization that could help in
removing these anomalies.

2.12 MODEL ANSWERS

1. The 2nd, 3rd and BCNF normal forms deal with functional dependencies only. Itis
possible for a relation in 3NF to still exhibit update, insertion and delction anomalies.
This can happen when multivalued dependencics are not properly taken care of. Inr
order to eliminate anomalies arise out of these: dependencics, the notion of 4NF was
developed.

2. There are 3 types of anomalies in database. These are:

(i) Insertion anomalies
(ii) Deletion anomalies
(iii) Update anomalies

2.13 FURTHER READINGS

1. Bipin.C. Desai, An Introduction 1o Database System, Galgotia Pubﬁ;:aﬁon. New Delhi,

2. V. Rajaraman, Analysis and Design of Informatic System, PHIL, New Dethi-1995.

BCA-1.5/135

35

BCA-1.5/136

'UNIT 3 STRUCTURED QUERY LANGUAGE

Structure 2 .

3.0 Introduction
3.1 Objectives
3.2 Categories of SQL Commands
33 Data Definition
34 Daia Manipulation Statements
3.4.1 SELECT - The Basic Form
3.4.2 Subqueries
3.4.3, Functions
344 GROUP BY Feawre
3.4.5 -Updating the Dtabase
3.4.6 Duia Definition Facilitics
3.5 Views
3.6 Summary
3.7 Further Reading

3.0 INTRODUCTION

SQL is an acronym for Structured Query Language. It is available in a number of data base
management packages based on the relational model of data, for example, in DB2 of the
IBM and UNIFY of the UNIFY corporation. .

Originally defined by D.D. Chamberlain in 19?4, SQL underwent a number of modifications
over the years, Today, SQL has become an official ANSI standard. ‘

It allows for data definition, manipulation and data control for a relational database. The data
definition facilities of SQL permit the definition of relations and of various alternative views
of relations. Further, the data control facility gives features for one user to authorize other
users to access his data. This facility also permils assertions to be made about data integrity.
All the three major facilities of SQL, namely, data manipulation, data definition and data
control are bound together in one integrated language framework.

3.1 OBJECTIVES

After going through this unit you will be able to:
s Differentiate SQL commands
e List data manipulation commands
e List data definition mmmands
» Make queries using data manipulation commands.

3.2 CATEGORIES OF SQL COMMANDS

SQL commands can be roughly divided into three major categories with regard to their
functionality. Firstly, there are those used 10 create and maintain the database structure. The
second category includes those commands that maniputate the data in such structures, and
thirdly there are those that control the use of the database. To have all this functionality in a
single language is a clear advantage over many other systems straightway, and must cmmnl;r
contribute largely to the rumour of it being easy to use.

It's worth naming these three fundamental types of commands for futare reference. Those
that create and maintain the database are grouped into the class called DDL or Data
Definition Language statements and those used to manipulate data in the tables, of which
there are four are the DMLor Data Manipulation Language commands. To control usage of
the data the DCL commands (Data Control Language) are used, and it is these three in
conjunction plus one or two additions that define SQL. There are therefore no environmental

statements, as one finds so irritating in COBOL: for example, no statements 1o control Structured Query Language
program flow (if/then/else, perform, go to) and of course, no equivalent commands to open
and close files, and read individual records. At this level then, it is easy to see where SQL
gets its end- user-tool and easy-to-use tags.

The Data Definition Statements

To construct and administer the database there are two major DDL statements - CREATE and
DROP, which form the backbone of many commands:

CREATE DATABASE to create a database DROP DATABASE to remove a database
CREATE TABLE to create a table DROP TABLE to drop a table CREATE INDEX - to
create an index on a column DROP INDEX to drop an index CREATE VIEW 1o create a
view DROP VIEW to drop a view.

There may be some additional ones, such as ALTER TABLE or MODIFY DATABASE,
which are vendor specific. .

The Data Manipulation Statements

To manipulate data in tables directly or through views we use the four standard DML
Statements:;

SELECT DELETE INSERT UPDATE

These statements are now universally accepted, as is their functionality, although the degres
to which these commands support this functionality varies somewhat between products
compare the functionality of different implementation of UPDATE for example.

Data Control
This deals with three issues

' (a) Recovery and Cbn'cnrrency

Concurrency is concemed with the manner in which multiple users operate upon the data
base.

1

Each individual user can either reflect the updates of a transaction by using the COMMIT or
can cancel all the updates of a transaction by using ROLLBACK.

(b) Security
Security has two aspects to it.

The first is the VIEW mechanism. A view of a relation can be created which hides the
sensitive information and defines only that part of a relation which should be visible. A
can then be allowed to access this view.)

CREATE VIEW LOCAL AS
SELECT * FROM SUPPLIER
WHERE SUPPLIER.CITY = ‘Delhi’
The above view reveals only the suppliers of Delhi.

The second is by using GRANT opesation, This shall grant one or more access rights to
perform the data manipulative operations on the relations.

(c) Integrity Constraints

Integrity constraints are enforced by the system. For example, one can specify that an
attribute of a relation will not take on null values.

3.3 DATA DEFINITION L

Data definition in SQL is via the create stalement. The slatement can be used to create a
table, index, ar view (i.e., a virtual table based on existing tables). To create a tabie, the BCA-1.5/M137

create statement specifies the name of the table and the names and da'_:a types of each column "

RDBMS and DDBMS

BCA-1.5/138
P

of the table. Its format is:

create table <relation> (<atribute list>)

where the attribute list is specified as:

<attribute list> :: = <atiribute name> (<daa type>){not null] <atribute list>

The data types supporied by SQL depend on the particular implementation. However, the
following data types are generally included: integer, decimal, real (i.e., floating point values),
and character strings, both of fixed sizc and varying length. A number of ranges of values for
the integer data type are generally supported, for example, integer and smallint. The decimal
value declaration requires the specification of the total number of decimal digits for the value
and (optionally), the number of digits to the right of the decimal point. The number of
fractional decimal digits is assumed to be zero if only the total number of digits is specified.

<data type> :! = <integer> | <smallint> | <char(n)> | <float> | <decimal (p[.q])>

In addition, some implementations can support additional data types such as bit strings,
graphical strings, logical, data, and time. Some DBMSs support the concept of date. One
possible implementation of date could be as eight unsigned decimal digits representing the
data in the yyyymmdd format. Here yyyy represents the year. ram represents the month and
dd represents the day. Two dates can be compared to find the one that is larger and hence
occurring later. The system ensures that only legal date values are inserted (19860536 for
the date would be illegal) and functions are provided to perform operations such as adding a
number of days 1o a dale to come up with another date or subtracting a date from the current
date to find the number of days, months, or years, Date cc.1stants are provided in either the
format given above or as a character string in one of the following formats: mm/dd/yy; _
mm/dd/yyyy; dd-mmm-yy; dd-mmm-yyyy. In this text we represent a date constant as clghl.
unsigned decimal digits in the format yyyymmdd.

The employee relation for the hotcl database can be defined using the create table statément
given below, Here, the Empl_No is specified to be not null to disallow this unique identifier
from having a null value. SQL supports the.concept of null values and, unless a column is
declared with the not null option, it could be assigned a null \ralum

create table EMPLOYEE
Empl_No , integer not null,
Name char (25), '
Skill char (20)
'Pay-Rate decimal (10,2))

The definition of an existing relation can be altered by using the alter statement. This
statement allows a row column to be added to an existing relation, The existing tuples of the
aliered relation are logically considered to be assigned the null value for the added column.
The physical alteration occurs 10 a tuple only during an update of the record.

alter table existing-table-name ;

add column-name data-type [....] !
alter table EMPLOYEE

add Phone_Number decimal (10)

The create index statement allows the creation of an index for an already existing relation.
The columns to be used in the generation of the index are also specified. The index is named
and the ordering for each column used in the index can be specified as either ascending or
descending. The cluster option could be specified to indicate that the records are to be.
placed in physical proximity to each other. The unigue option specifies that only one record -
could exist at any time with a given value for the column(s) specified in the statement to
create the index. (Even though this is just an access aid and a wrong place to declare the
primary key). Such columns, for instance, could form the primary key of the relation and
hence duplicate tuples are not allowed. One case is the ORDER relation where the key is the
combination of the attribute Bill#, Dish#. In the case of an existing relation, an attempt to
mmhﬂexmthﬂmmqmopmnmﬂnﬂsumdﬂﬂwmhnmdmm:amfyﬂm
uniqueness criterion. Msmmdmmmmwmwmwnm

create [unique] index name-of-index
on existing- table-name

{column-namn{aswﬂil;g or descending]
[,column-name[order]....])
[cluster]

The following statement causes an index called empindex to be built on the columns Name
and Pay_Rate. The entries in the index are ascending by Name value and descending by
Pay_Rate. In this example there are no restrictions on the number of records with the same
Name and Pay_Rate.

Create index empindex

on EMPLOYEE (Name asc, Pay_Rate desc); P

An existing relation or index could be deleted from the database by the drop SQL statement.
The syntax of the drop statement is as follows:

drop table existing-table-name;

drop index existing- index-name;

3.4 DATA MANIPULATION

Data manipulation capabilities allows one to retrieve and modify contents of the data base.
The most important of these is the SELECT operation which allows daia 10 be retrieved from
the data base. i

The relation definitions that shall be used in the rest of the module are given below.

There are pans which are supplied by suppliers. S contains the details about each supplier.
Turnover for a supplier is in Yerms of lakhs of rupees. Information regarding suppliers of

specific parts is contained in SP whereas information about the parts themselves is contained
inP. :

S
S# SNAME “SCITY TURNOVER

10 CAUVERY = BANGALORE 50

11 NARMADA BOMBAY 100

12 YAMUNA DELHI 70

13 TAPI BOMBAY 20

P

P# WEIGHT COLOUR . COST SELLING PRICE:
1 25 RED 10 © 30

2 30 BLUE 15 45

3 45 RED 20 45

SP

S# P# QTY

10 1 100

11 1 5

10 2 50

11 2 30

10 10

12 3 100

13 1 20

Structured Query Language

BCA-1.5/139
39

RDBMS and DDBMS 3.4.1 SELECT - The Basic Form

The Select statement specifics the method of selecting the tuples of lhc selations(s} The
tuples processed are from one or more relations specified by the form clause of the select
statement. 0

The basic form of SELECT is

Select <target list>

from <relation list>

[where <predicate>]

SELECT lists the attributes to be selected

FROM relations from which information is to be used

WHERE condition. The rows that qualify are those for which the condition evaluates to true,

Condition is a single predicate or a collection of predicates combined using the Boolean
operators AND, OR and NOT.

The column names following SELECT are to be retrieved from the relations specified in the

" FROM part. WHERE specifics the condition that the tuples must satisfy in order to be part of
the result.
Below we shall state first the retrieval query in English and they specify its SQL equivalent.

Unqualified Retrieval
1. Get the part numbers of all the parts being supplied.

SELECT P#
FROM SP
P#
1
1
2
2
3
3
1

Part numbérs getting repeated? That's right. SELECT does not eliminate duplicate rows
(unlike the project operation of the relational algebra). In order to do that
2. Get the part numbers of all the parts being supplied with no duplicates.
SELECT DISTINCT P# '
FROM SP

WHI—;

If all the columns of the relation are to be retrieved then one needn’t list all of them.
A * can be specified after SELECT to indicate retrieval of the entire relation.

3. Get full details of all suppliers.

SELECT *
FROM §
s ‘
S# SNAME - - SCITY TURNOVE!
10 CAUVERY BANGALORE 50
11 NARMADA °“BOMBAY 100
BCA-1.5/140 12 ~AMUNA DELHI 70

13 TAPI BOMBAY 20
40 i

The ORDER BY clause _ Structured Query Language |
The result of a query can be ordered either in ascending (ASC) order or in descending
(DESC) order,
4. Get the supplier numbers and turnover in descending order of tumover.
SELECT S#, TURNOVER

FROM § ‘
ORDER BY TURNOVER DESC
s# TURNOVER

11 100

12 70

10 50

13 20

Instead of a column name, the ordinal position of the column in the result can be used.
That is, the above query can be rewritten as

5. SELECT S#, TURNOVER
FROM §
ORDER BY 2 DESC
The format of the order clause is
ORDER BY (int/col [ASC/DESC),)
col — column name
int - ordinal position of the column in the result table
ASC/DESC - Ascending or descending
If there is more than one specification, then the lefi-to- right specification corresponds to
major-to-minor ordering. This is shown below, p

6. Get the supplier number and part number in ascending order of supplier number and
descending order for the part supplied for each supplier.

SELECT S#P# QTY

FROM SP
ORDER BY S#, P# DESC
S# P# QTY
10 3 10
10 2 50
10 - 1 © 100
11 2 30
11 1 5
12 3 100
13 1 20
Qualified retrieval
The expression following WHERE specifics the condition that must be satisfied. Below we
consider a few examples.]

7. Get the details of suppliers who operate from Bombay with turnover 50,

SELECT 5.*

IFROM S

WHERE CITY = ‘BOMBAY' AND TURNOVER = 50
S# SNAME SCITY TURNOVER

11 NARMADA = BOMBAY 100 BCA-1.5/141

41

RDEMS and DDBMS

BCA-1.5/142

= 'Ihcabovefmn:saconjuncuonofcumpansonpwdmm A comparison predicale is of the

form
scalar-expr O scalar-expr

where O is any of the six relational operators

=, €3, €, > <=, 5=

and a scalar expression is an arithmetic expression with
OpCrators as +, —, *, /

operands as col., function, constant

BETWEEN Predicate

8. Get the part numbers weighing between 25 and 35
SELECT P#, WEIGHT
FROMP
WHERE WEIGHT BETWEEN 25 AND 35
Pit WEIGHT
L = 25
2 30

The use of BETWEEN gives the range within which the values must lie. If the value should
lic outside a range then BETWEEN is to be preceded by NOT. For example,

SELECT P#

FROM P

WHERE WEIGHT NOT BETWEEN 25 AND 35
P# WEIGHT
3 45

would retrieve all part numbers whose weight is less than 25 or greater than 35 as shown
above. ;

LIKE Predicate

This predicate is used for pattern matctimg. A column of type char can be compared with a
string constant. The use of the word LIKE doesn’t look for exact match but a form of wild
string match. A % or - can appear in the string constant where

% stands for a sequence of n (>=0) characters
~stands for a single character

Examples

ADDRESS LIKE '%Bangalore%’ ADDRESS should have Bangalum somewhere as a part
of it if the match is to succeed.

'STRANGE STRING LIKE%-%' ESCAPEV

Here, the normal meaning of — is overridden with the use of the escape ch.a:acler STRANGE
above will mafch-with any string beginning with —

9. Get memmcs and cities of suppliers whose name begin with C

SELECT SNAME, SCITY
FROM §

WHERE SNAME LIKEYC%'
SNAME scTy

CAUVERY BANGALORE

thnmedaaasmbcmncvedﬁommmthanmemlamn Jboth the relation |
names is specaﬂed in the FROM clause and the join condition ‘ﬂIéWHER.E;EﬂIL

10. For each part supplied, get pan number and names of all cities supplying the part.
SELECT P#, CITY

FROM - SRS
WHERE SP.5#=S.5#
p# SCITY
1 BANGALbRE
1 BOMBAY
2 BANGALORE
2 BOMBAY
3 BANGALORE
3 DELHI
1 BOMBAY

How does, then, one Specif} a join on the same relation?
11. Get pairs of supplier numbers such that both operate from the same city.

SELECT FIRST.S#, SECOND.S#
FROM § FIRST, § SECOND

WHERE mrdn:sﬁcom.cm
AND FIRSTS# < >SECOND.S# |

FIRST and SECOND are tuple variables, both ranging over S The last line eliminates a
supplier getting compared with himself,

S# S#
11 13
13 11

But, we see that suppllers with numbers 11 and 13 aregetung compared twice, Can that be
aveided? How about < instead of <> ?

SELECT FIRST.S#, SECOND.S#
FROM S FIRST, S SECOND
WHERE FIRST.CITY = SECOND.CITY
AND FIRST.S# SECOND.S#

Tests for NULL

An attribute can be tested for the presence or absence of null.

12. Get the supplier numbers whose turnover is null

SELECT S#
FROM S
WHERE TURNOVER IS NULL

- Thexe is no tuple in the result of this query as in the sample
Can the last line in the above query be replaced by
WHERE TURNOVER = NULL

.Sh'l.lttlrﬂ Query Language

BCA-1.5/143
43

RDBMS and DDBMS " Not really! It is incorrect as nothing (even NULL) is equal to NULL.
The format for specifying NULL s
col. ref IS [NOT] NULL

_ IN Predicate
This is 1o be used whenever you want 10 test whether an attribute value is one of a setof
values. For example,

13. Get the part numbers that cost 20, 30 or 40 rupees.

SELECT PP#, SELLING PRICE
. FROM P |
WHERE - SELLING PRICE IN (20, 40, 45)
P# SELLING PRICE
2 45
3 45

It’s a quicker way of specifying comparison,
The format of the predicate
scalar-expr [NOT] IN (atom list)

3.4.2 Subqueries
The expression following WHERE can be either a simple predicate as explained above or it
- can be a query itsclf! This part of the query follomng WHERE is called a Subquery.

A subquery, which in tum is a query, can have its own subquery and the process of
specilying subquerics can continae ad infinitum! More practically, the p prm ends once the
query has been fully expressed as a SQL statement.

Subqueries can appear when using the comparison predicate, the IN predicate and when
quantifiers are used (not yet explained),

Comparison Predicate
14. Get the supplier numbers of suppliers who are located in the same city as Tapi.
SELECT S.5#, SNAME
mOM s
WHERE - S.CITY=
(SELECT S.CITY
FROM)
WHERE SNAME = ‘TAPI')

The inner selectt Subquery) retrieves the city of the supplier named Tapi. The outer select
(the main ong) then mmpmesﬂwcu}kafemhsuuﬂmgmplwrmlﬂmmmup
those where the cdtparison succeeds.

S# SNAME
11 NARMADA
13 TAPI
Notice ihar &e subquery appmmaﬂamecmnpanmmperm 'Ihefmnmoftlnsrmmof
expression

BCA-1.5/144
scalar-expr opekaior subquery

a4

IN Predicate ' Structuréd Query Language

In this form the subquery selects a set of values. The outer query checks whether the value of

a specified attribute is in this set.
'15. Get the names of suppliers who supply part 2
SELECT | S.SNAME
FROM s
WHERE SS#IN
(SELECT SPS#
FROM SP
WHERE SPP#=2)
SNAME
CAUVERY
NARMADA

The above query can be equivalently expressed as

SELECT S.SNAME
~ FROM s

WHERE 2IN

(SELECT P#

FROM SP

WHERE S.5%=SH)

S# is unqualified and therefore, refers to SP. That is because every unqualified attribute name
is implicitly qualified with the relation name from the nearest applicable FROM clause.

Quantified predicates

The two quantifiers that can be used are the ALL and ANY. Any stands for the existential
quantifier and ALL for the universal quantifier.

Lets first look 5i AMY. it can be specified in a comparison predicate Jjust following the
comparison operator. That is,

scalar-expr O ANY subquery

The subquery is first evaluated to give a set of values. The above expression is true if the
scalar-expr is O comparable with any of the values that form the result of the subquery.

16. Get the part numbers for parts whose cost is less than the current maximum cost.
SELECT P#, COST

FROM P
WHERE COST < ANY
(SELECT COST
FROM ' P
P4 COST
1 10
: BCA-1.5/145
2 15

45

'i“"s'_*iﬂmm The inner select gets the cost of all the parts. In the outer select, a P# is selected if its cost is
_lmmanmeehmmtnfmemselmtédmunearﬁamp.

17. Get the supplier names of suppliers who do not supply pa:t 2.

SELECT SNAME
FROM S
WHERE 2< > ALL
(SELECT P#
FROM SP
WHERE S# = S.5#)
SNAME |
YAMUNA
TAPI

For each supplier, all the parts supplied by him are collected in the inner select. If none of
them is equal to P2 then the condition evaluates to true and supplier name forms part of the
result.

Existence Test

This kind of an expression is uscd when it is necessary to find out if the set of values
retrieved by using a subquery contains an element or noL.

18. Get the supplier names of suppliers who supply at least one part.
SELECT SNAME

FROM S

WHERE EXISTS
.(SELECT *

FROM Sp

WHERE SP.5#=35.3#)

For a given supplier, if the subquery selects at least one tuple then the condition (which
follows WHERE) cvaluates to true. Then, the name of the supplier is selected. IN our data
base every supplier is supplying at least one part. 50 the names of all of them would be part
of the result.

3.4.3 Functions

Some standard functions arc defined in SQL and can be used when framing queries. There
are five built-in functions. These are -

COUNT — number of values of a column
SUM - Sum of values in a column
AVG - Average of values in a column

MAX - Maxunum of all the values in a column
MIN —~ Minimum of all the values in a column

If the function is followed by the word DISTINCT then unique values are used. On the other
hand, if ALL follows the function then all the values are used fm' eviluating the fm:u::uon
ALL is the default.

BCA-1.5/146 " R T ; f
COUNT(*) has a special meaning in that it counts the number of rows of a relation, CQUNT:

46

in any other form must make use of DISTINCT. In other words, except when rows are
counted, COUNT always returns the number of distinct values in a column,

19. Get the total number of suppliers
© SELECT COUNT(*)
FROM §
-COUNT{‘) counts the number of tples of S and hence, the numbel' of suppliers.
20. Get the total quantity of Part 2 that is supphed
SELECT SUM (SP.QTY)
FROM Sp
WHERE ~ SPP#=2
The answer is one of
a) 25 b) 40 ¢ 80 d) 100
21. 'Guﬂwpanmuvbasﬁhmcmisgrwmﬂmnﬂnavmgem
SELECT P#

FROM P

WHERE ~ COST
(SELECT AVG(COST)
FROM P)

22. Get the names of suppliers who supply from a city where there is atleast one more
supplier. . : '

SELECT SNAME
FROMS FIRST

WHERE 2
(SELECT COUNT (CITY)
FFOM S

WHERE GiTY = FIRSTCITY)

Some pradicc exercise beforc we move on to the next section. Try and write the expression
yourself before locking at the solution. Yours might be different from the solution given in
the notes. For all yon know, yours might be a better solution. So, go-ahead and try. Use any

feature that has been covered till now.

1. Getthe namcsofsupplinrﬁ who supply at least onc red part
SELECT SNAME
FROM S

* WHERE - S# IN

(SELECT S#
FROM SP
WHERE P#IN
(SELECT P#
FROM P

WHERE COLOUR = ‘RED"))

Structured (uery Languaje

BCA-1.5/147
47

. RDBMS and DDBMS 2., Get the suppliec numbers who supply at least one part suppliedt by supplicr 10.
SELECT DISTINCT S# '

FROM SP
WHERE P# IN
(SELECT P#. °
FROM SP°

WHERE S#=10)

3.4.4 GROUPBY Feature

This feature allows one to partition the result into a number of groups such that all rows of
the group have the same value in some specified column.

23. Get the part number and the total quantity.
SELECT P#, SUM(QTY)
FROM 5P '
GROUP BY P#
o suM@IY)
O £
2 80
3 110

GROUPBngupsmscl}ma]lthemwswhmhhnveﬂwmwluefofH The function
SUM is then applied to each group. That is, the result consists of a part number along with
ﬂw:uaiquanutymwhmhummphed

%MGROWBYWMMMWHEREHDMWM HAVING. The
mdﬂﬂﬂﬁw%mummmumhmmﬁm&n

each group.

24. Get the part numbers for parts supplicd by more than one supplier.
SELECT P# '
FROM ~ SP

GROUPBY P#
'HAVING COUNT(™) > 1

Eachgrwpumumnsmmmmpuswhwhlmwﬂumpmnnmbu CGUR'II')I:
applied 1o each suchgmnp

' The result before COUNT(®) is applied is
P
1
2
3
-.'mmmmmmmbmﬁuumm

345 Updaﬂng the Datahase

BCA-1.5/148 ' _The contents of the ¢ mmmunm&dwm;smwh&bﬂngmm
48 : mplcnrcl:angmuﬂlc.valuesofnmhumdmurmumim

i

INSERT Structured Query Langusge

The insertion facility allows new tuples to be inserted into given relations. Attributes which
are not specified by the insertion statement are given null values. Consider

1. Add a part with number 14, weight 10, coloured red, with the cost and selling price as
20 and 60 respectively.

INSERT INTOP:
< 14,10, ‘red’, 20, 60 > .
The tuple is inserted into P,

If all the fields are not known then a tuple can still be added. The attributes whose values are
not specified will have a null value.

INSERTINTOP:
<15, 'GREEN">

The values for fields the weight, cqstandﬂ:esellinépricewtdcha:emtspedrmdm
assumed to be null. : :

.
2. Let us assume that there is a relation called RED-PART with one column P#,

INSERT INTO RED-PART :
SELECT P#
FROM P

WHERE COLOUR = ‘red’

The various attributes of P having red colour are identified and inseried into the relation
RED-PART.

DELETE
The deletion facility removes specified tuples from the database. Consider
1. Delete supplier 13

DELETE §

WHERE S#=13

Since S# is the primary key only one tuple will be deleted from S.
2. Delete all suppliers who supply from Bangalore

DELETE §

WHERE SCITY = ‘BANGALORE'

Here, more than one supplier can get deleted.
3. Delete all the suppliers

DELETE §

The definition of § exists but the relation is empty.

4. Delete all the supplies involving red coloured parts.
DELETE SP
WHERE ‘red’'=
(SELECT COLOUR
FROM P

- WHERE PP#=SPP#
) BCA-15/149

49

RDBMS and GDBMS

BCA-1.5/150

50

UPDATE

When columns are to be modificd SET clause is used. This clause specifies the update to be
made to szlected tuples.

1. Change the ity of supplicr 13 to Bangalore and increase the tumover by 20 lakis.
UPDATE §
SET CITY = ‘BANGALORE’
TURNOVER = TURNOVER + 20
WHERE ~ S#=13
2, Increase quantity by 10 for all supplies of red coloured parts.
UFDATE SP
SET QTY=QTY + 10
WHERE PHIN
(SELECT P#
FROM P
WHERE COLOUR = ‘RED")

3.4.6 Data Definition Facilities '

Data definition facilities permit users to create and drop relations, define alternative views of
relations.

CREATE statement allows Lo deline a relation. The name of the relation to be created and its
various fields together with their data types must be specified. If a certain attribute is barred
from containing null values then a NONULL specification must be made for it.

It must be noted that the word TABLE is used in this syntax instead of RELATION.
Example . '
CgEﬁIéTABLEDEPT
(DNO(CHAR(2),NONULL),
DNAME (CHAR (12) VAR),
LOC(CHAR(20) VAR))

VIEW

A very important aspect of data definition is the ability to define alternative views of data,
The process of specifying an altemative view is very similar to that of framing a query. The
derived relation is stored and can be used thereafter as an object of the various commands. It
is also possible to definc other views on top of the newly created relation.

Example
DEFINE VIEW D50 AS
SELECT EMPNO, NAME, JOB
- FROM EMP
* “WHERE DNO =50
D5(contains the employee number, namie and job ufl]wcmploymwhom in department 50.

3.5 VIEWS

A view is a virtual table, that is onc that does not actually exist. It is made up of a query on

‘other tables in the database, It could include only certain columns or rows from a table or
from many tables. A view which restricts the user to certain rows is called a horizontal view
and a vertical view restricts the user to certain columns. You are not restricted to purely
horizontal or vertical slices of data. :

A view can be as complicated as you like, You can have grovped views where the query
contains a GROUP BY clause, This makes the view a summary of the data in a table or .
tables. ‘

If the list of column names is omitied the columns in the view take the same name as in the
underlying tables. You must specify column names if the qurey includes calculated columns
or two columns with the same name. There are several advantages to views, including :

e Security : Users can be given access to only the rows/columns of tables that
concern them. The table may contain data for the whole firm but they only see data
for their department.

e Date integrity : The WITH CHECK OPTION clause is used to enforce the query
conditions on any updates to the view. If the vicw shows data for a particular office
the user can only enter data for that office.

e Simplicity : Even if 4 view is a multi-table query, querying the view still looks like
a single-table query.

e Protection from change : If the structure of the database changes, the user’s view
of the data can remain the same.

There are two disadvangages to views :

e Performance : A view may look like a single table but underncath the DBMS is
usually still running multi-table queries. IF the view is complex then even simple
queries can take a long time, '

e Update restrictions : Updating the data through a view may or may not be
possible. If the view is complex the DBMS may decide it can’t perform updates and
make the view rcad-only. '

The ISO siandard specifies five conditions that a view must meet in order to allow updates :
o The view must not have a DISTINCT clause
e The view must only name onc table in the FROM clause

e All columns must be real columns — no expressions, calculated columns or column
_functions

e The WHERE clause must not contain a sub-query
e There must be no GROUP BY or HAVING clause

You will find that most dialects of SQL are not quite so restrictive. The underlying principle
is that updates arc allowed if the rows and columns of the view are traceable back to actual
rows and columns in tables.

The format of view statement is as follows :
create view <vicw name> as query expression

A view is a relation (vintual rather than base) and can be used in query expressions, that is,
queries can be written using the view as a relation. Views generally are not stored, since the
data in the basc relations may chuange. The base relations on which a view is based are
sometimes called the existing relations. The definition of a view in a create view statement
is stored in the system catalog. IHaving been defined, it can be used as if the view really
represented a real relation. Howsever, such a virtual relation defined by a view is recomputed
whenever a query refersto it

Structured Guery Language

BCA-1.5/151
51

RDBMS and DDBMS

BCA-1.5/152
52

Example _ |

(a) For reasons of confidentiality, not all users are permitted to see the Pay_Rate of an
employee. For such user the DBA can create a view, for example, EMP_VIEW defined
i ; .
create view EMP_VIEW as
(sefect Empl_No, Nmne._Skill
from EMPLOYEE)_

(b) A view can be created for a subset of the tuples of a relation, as in this example. For
assigning employees to particular jobs, ﬂlemamgenequmahstofunemphymwho
have not been assigned o any jobs:
create view FREE as
(select Empl_No

“from EMPLOYEE)
minus
(select Empl_No
from DUTY_ALLOCATION)

(c) The view in part (b) above can also be created using the following statements:

create view FREE as

(select Empl_No

from EMPLOYEE)

where Empl_ﬂo any

(select Empl_No

from DUTY_ALLOCATION)

In the above examples, the names of the atiributcs in the views are-implicitly taken from the
base rclation. The data types of the attribute of the view are inherited from the
corresponding attributes in‘the base relation. 'We can, however, gwe.n new names to the

attributes of the view. This is illustrated in the syntax of the create view statement given
below:

create view VIEW_NAME

{(Namel, Name 2,)

as (select)
Here the attribules in the view are given as Namel, Name 2, and these names are
associated with the existing relation by order correspondence. The definition of a view is
accomplished by mcans of a subquery involving a select statement as given in the syntax

above. Since a view can be used in asclmmmcm.avmmbe defmdmm
existing view.

3.6 SUMMARY

Most commercial relational DBMSs support some fonnofd'ieSQLdatamampulaﬁm
lmgmgc,mMlemdﬂfcmntdlalectsofSQL SQL has been standardised; that is, a -
minimum compatible subset is specificd as a standard. In addition, embedded versions of
SQLam supporicd by many commercial DBMSE. This allows applicatien program wrilten”
in(a high-level language such as BASIC, C, COBOL, FORTRAN, Pml.nrl’l.ﬂlousethc
dal.abasc accessing SQL by means mp[mprhu' preprocessors,

3.7 FURTHER READING -

Bipin C. Desai, An Introduction to Ddfﬂ_ﬁﬁ.w Managermii, Cifl&blia Publication, New Delhi,

UNIT 4 DISTRIBUTED DATABASES

Structure

4.0 Introduction

4.1 Objectives :

4.2 Structure of Distributed Database

4.3 Trade offs in Distributing the Database
4.3.1 Advantage of Data Distribution
4.3.2- Disadvamages of Data Distribution

44 Design of Distributed Databases
4.4.1 Data Replication
4.4.2 Dawa Fragmentation

4.5 Summary

46 Further Reading

4.0 INTRODUCTION

In a distributed database system, the database is stored on several computers. The computers
in a distributed system communicate with each other through various communication media,
such as high-speed buses or telephone line. They do not share main memory, nor do they
share a clock.

The processors in a distributed system may vary in size and function. They may include
small microcomputers, work station, minicomputers, and large gencral-purpose computer
system. These processors are referred to by a number of differcnt names such as sites, nodes,
computers, and 5o on, depending on the context in which they are mentioned. We mainly use
the term site, in order to emphasize the physical distribution of these systems.

A distributed database system consists of a collection of sites, each of which may participate
in the execution of transactions which access data at one site, or several sites. The main
difference between centralized and distributed database systems is that, in the former, the
data resides in one single location, while in the latter, the data resides in several locations. As
we shall see, this distribution of data is the cause of many difficulties that will be addressed

in this chapter.

4.1 OBJECTIVES

After going through this unit you may able to :

e Diffcrmtiale.DDBMS and conventional DBMS

e Discuss Network topology for DDBMS

e Discuss advantages and disadvantages of DDBMS

e Distinguish between horizontal and vertial fragmentation.

4.2 STRUCTURE OF DISTRIBUTED DATABASE

A distributed database system consists of a collection of sites, each of which maintains a
local databases system, Each site is able to process local transactions, those transactions that
access data only in that single site. In addition, a site may participaie in the execution of
‘global transactions, those transactions that access data is several sites. The execution of
global transactions requires communication among the sites.

The sites in the system can be connected physically in a variety of ways. The various
topologies are represented as graphs whose nodes correspond to sites. An edge from node A
to node B corresponds to a direct connection between the two sites. Some of the most
common configurations are depicted in Figure 1, The major differcnces among these
configurations involve: '

BCA-1.5/153
53

EDERS a0 DORNS e Installation cost. The cost of physically linking the sites in the system.'
s Communication cost. The cost in time and money to send a message from site A to
site B,

e Reliability. The frequency with which a link o site fails.
e Availability, The degree to which data can be accessed despite the failure of some
links or sites.
‘As we shall see, these differences play an important role in choosing the appropriate
mechanism l'ur handling the distribution of data.

The sites of a distributed database sysicm may be distributed physically either over a large
geographical area (such as the all Indian states), or over a small geographical area suchas a
single building or a number of adjacent buildings). The former type of network is referred to
as a long-haul network, whilc the latter is referred 10 as a local-area network.

Since the sites in long-| haul networks are distributed physically over a large geographical
area, the communication links arc likely to be relatively slow and less reliable as compared

- with local-arca networks. Typical long-haul links are telephone lines, microwave links, and
satellite channels. In contrast, since all the sites in local-area networks are close to each
other, communication links are of higher speed and lower error rate than their counterparts in
long-haul networks. The most common links are twisted pair, basehnnd coaxial, broadband
coaxlal and fiber optics.

Let us illustrate these concepts by considering a banking system consisting of four branches
located in four different cities. Each branch has its own computer with a database consisting
. of all the accounts maintained at that branch. Each such installation is thus a site. There also
exists one single site which maintains information about all the Jranches of the bank,
Suppose that the database systems at the various sites are based on the relational model.
Thus, each branch maintains (among others) the relation deposite (Deposit-scheme) where

De;'mire-scﬁem = (branch- -name, account- number customer-name, baIam:e}

site cnmammg mformanm about the four branches maintains the relation bIanch
(Branch-scheme), where |

Branch-scheme = (branch-name, asse’s, omnch-c:g'}

There are other relations mmmamcdauhcvamusmwmhmwmedfurﬂwpurpmof
our example.

slar nEword

BCA-1.5/154 .
54 : -_ L lesml:l__lqtﬁ@rktmﬁm'

A local transaction is a transaction that accesses accounts in the one single site, at which the
transaction was initiated. A global transaction, on the other hand is one which either access
nocounlsinasitediﬁmtﬁummemwuwhichunuamonminiﬁmd.urm
accounts in several different sites. To illustrate the difference between these two types of
transactions, consider the transactiori fo add $ 50 to account number 177 located at the Delhi
branch. If the transaction was initiated at the Delhi branch, then it is considered local;
otherwise, it is considered global. A transaction to transfer $ 50 from account 177 to account
305, which is located at the Bombay branch, is a global transaction since accounts in two
different sites are accessed as a result of its execution. e

What makes the above configuration a distributed databasc system are the facts that:

5

e The various sites are aware of cach other. i
- @ Eachsite provides an environment for executing both local and global transactions.

4.3 TRADE-OFFS IN DISTRIBUFING THE DATABASE

There are several reasons for building distributed database systems, including sharing of

data, reliability and availability, and speedup of query processing. However, along with these

. advantages come several disadvantages, including software development cost, greater

~ potential for bugs, and increased processing averhead. In this section, we shall elaborate
briefly on each of these. :

4.3.1 Advantages of Data Distribution
' The primary advantage of distributed database systems is the ability to share and access data
in a reliable and efficient manncr. - kbl : e

- Data Sharing and Distributed Control

If a number of diffcrent sites are connected to cach other, then a user at onc site may be able
10 access data that is available at another site. For example, in the distributed banking system
described in Section 4.2, it is possible for a user in one branch to access data in smother

- branch. Without this capability, a user wishing to transfer funds from one branch 1o another
would have to resort to some external mechanism for such 2 transfer. This external

- mechanism would, in effect, bé a single centralized database,

The primary advantage to accomplishing data sharing by mecans of data distribution is that
~each site is able to retain a degree of control over data stored locally. In a centralized system,
the database administrator of the central site controls the database. In a distributed system,

there js a global database administrator responsible for the entirc system. A part of these
responsibilitics is delegated to the local databasc administrator for each site. Depending upon

 the design of the distributed database system, each local administrator may have a different
degree of autonomy is often a major advantage of distributed databases.

Reliability and Availability

. If one site fails in distributed system, the remaining sites may be able to continue operating,
In particular, if data are replicated in scveral sites, transaction necding a particular data item
may find it in several sites. Thus, the failure of a site does not necessarily imply the
shutdown of the system,

The failurc of one site must be delected by the system, and appropriate action may be necded
10 recover from the failure, The system must no longer use the service of the failed site.
Finally, when the failed site recovers or is 1epaired, mechanisms must be available to
integrate it smoothly back into the system, _ :

 Although recovery from failure is more complex in distributed systems than in centralized
system, the ability of most of the system to continue to operale despite the failure of one site
results in increased availability. Availability is crucial for database systems used for real-time
applications. Loss of access to data by, for example, an airline may result in the loss of
potential ticket buyers to competitors. '

. Speedup Query Processing . :
Il a query involves data at several sitcs, it may be possible to split the query into subqueries
that can be executed in paralicl by several sites. Such paralicl computation atlows for faster

" Distribated Databases

BCA-1.5/155
.35

RDEMS and DDBMS

j %C}'M 21196

. processing 6f a user's query. In those cases in which data is replicated, queries may be

directed by the system to the least heavily loaded sites.

4.3.2 Disadvantages of Data Distribution

The primary disadvantage of distributed database systems is the added complo:-m;r required
to ensure proper coordination among the sites. This increased complexity takes the form of :

e Software development cost : It is more difficult to implement a distributed
database system and, thus, more costly.

o Greater potential for bugs : Since the sites that comprise the distributed system
operate in parallel, it is harder to ensure the correctness of algorithms. The potential
exists for extremely subtie bugs. The art of constructing distributed algorithms
remains an active and important arca or research.

. lm:remd processing overhead : The ¢xchange of messages and the addll.mm.l
computation mqmmd to achieve intersite coordination is a form of_mlﬂhead that
does not arise in centralized systems. -~

e Inchoosing the design for a database system, mcdcs:gnamnstbalm the
advantages against the disadvantages of distribution of data design ranging from
fully distributed designs to designs which included large degree of centralization.

2.4 DESIGN OF DISTRIBUTED DATABASES

The principles of database design that we discussed earlier apply to distributed databases as
well. In this section, we focus on those design issues that are specific to distributed databases.

Consider a relation that is to be stored in the database. There are several issucs involved in
storing this relation in the distributed database, including:
e Replication : The systcm maintains several identical replicas (copics) of the

relation. Each replica is stored in a different site, resulting in data replication. The
ﬂmmummmpltmuonmmmmlymmpyofmhum

@ . Fragmentation : The relation is partitioned into several fragments, Each fragment
is stored in a different site.

e Repliuabunandl“ragmmmmn;Thus:sncmnbmaﬁnnoflhcabnw’wnnmm
* The relation is partitioned into several fragments. The system maintair.3 several
identical replicas of each such fragment.

In the l‘ollowing subsections, we elaborate on each of these.

: 4 4.1 Data Replication

If relation r is replicated, ampyofmhumrmstuedmtwoummmhmemm
exlmfmcase we have full replication, in whmhaoupymsmredmevuy ml.cmthesystem

'Ihere are a number of advantages and disadvantages to replication.

e Availability : If one of the sites containing relation r fails, then the relation r may be
found in another sile. Thus, the system may omu.muamprmqumumvol\rmgr
' _deSpuctl'lcfa'lurcnfmsm. i

» hﬂmdpsralhlmm.hmccmwhmuwmqiodtyo!mwlhordmhnr
results in only the reading of the relation, the several sites can process queries
involving r in parallel. The more replicas of r there are, the greater the chance that
_the needed data is found infthe site where the transaction is executing. Hence, data
replication minimizes movement of data between sites,

» Increase overhead on update : Thesystem must ensure that all replicas of a

. relation r are consistent since otherwise erroneous computations may result, This
.. implies that whenever r is updated, this update must be propagated to all sites
containing replicas, resulting in increased overhead. For example, in a banking
system, where account information is replicated in various sites, it is necessary that
transactions assure that the balance in a particular account agrees in all sites.

In general, replication enhances the performance of read operations and increases the

availability of data to read transactions. However, update transactions incur greater overhead.
The problem of controlling concurrent updates by several transactions to replicated data is .

more complex than the centralized approach to concutrency control.-We may simplify the
management of replicas of relation r by choosing one of them as the primary copy of r. For .
example, in a banking system, an account may be associated with the site in which the
account has been opened. Similarly, in an airline reservation system, a flight may be
associated with the site at which the flight originates.

44.2 Data Fragmentation

Iftherelmionr:ffragmemed.rrsdmdadmmanumbmnfﬁagmullsrl.r,....,r,..m
fragments contain sufficient information to . 2constuct the original relation r, As we shall
see, this reconstruction can take place through the application of either the union operation or
a special type of join operation on the various fragments. There arc two diffezent schemes for
fragmenting a relation: horizontal fragmentation and vertical fragmentation, Horizontal
fragmentation splits the relation by assigning each tuple of r to one or more fragments.
Vertical fragmentation splits the relation by decomposing the scheme R of relationrin a
special way that we shall discuss. These two schemes can be applied successively to the
same relation, resulting in a number of different fragments. Note that some information mny
appedr in several fragments.

Below we discuss the various ways for fragmenting a relation. Wc shall illustrate these I:y
fragmenting the relation depos:l. with schemc:

Deposite-scheme = {bmnch—mnw. account-name, customer-name, balance)

The relation deposite (deposite-scheme) is shown in Figure 2.

" branch-name account number customer-name balance
Bombay 305 Lowman - 500
Bombay 226 - Camp - 336
Dethi : 117 , Camp - 205.
‘Dethi 402 Khan . . 10000
Bombay : 155 Khan 62
Delhi 408 ' Khan ' 1123
Delhi 639 . Green 750

Figure 2': Sample deposite relation

Horizontal Fragmentation-

The relation r is partitioned into a number of subsets, ry, 3,, f,. Each subsct consists of a
number of tuples of relation r. Each tuple of relation r must belong to one of the fragments,
so that the original relation can be reconstructed, if needed. .

- A fragment may be defined as a selection on the global relation r. That :s.apmdncatc?l is
used 1o construct fragment ri as follows:

r; = G, (n)

The reconstruction of the relation r can be obtained by taking the union of all fragments, that
is, -

To illustrate this, suppose thattin:relaum r is the deposite rclaﬁon of Figure 2. This relation
can be divided into n di(ferent fragments, each of which consists of wples of accounts
belonging to a particular branch, If the

branch-name ' accouni-number cusiomer-name balance
Bombay 305 Lowman 500
Bombay 226 Camp 336
Bombay . 155 Khan 62

(@

A
Disiiibuted Databases

BCA-1.5/157

57

RDBMS and DDBMS

BCA-1.5/158
58

branch-name account-number . CUSIOMEr-name balance
Delhi 177 Camp : 205
Delhi 402 Khan 10000
Delhi 408 Khan 1123
Delhi 639 - Green 750
(b)

Figure 3 : Horlzontal fragmentation of relation of deposir

banking system has only two branches, Bombay and Delhi, then there are two different
fragments; &

deposit | = O pranch-name = “Hiitside (d€Posic)
dfpﬂ.i’ff: = Ghmh—m--ww (dep‘-%'ﬂ)

these two fragments are shown in Figure 3. Fragment deposit 1 is stored in the Bombay site,
Fragment deposit 2 is stored in the Delhi site.

In Sur example, the fragmcms are disjoint. By changing the selection predicates used to
construction the fregrients, we may have a particular tuple of r appear in more than one of
the r,. This is a form of data replication about which we shall say more at the end of this
section.

Vertical Fragmentation
In its most simple form, vertical fragmentation is the same as decomposition. Vertical
fragmentation of r(R) involves the definition of several subsets Ry, R;,...., R, of R such that
=L
Each fragment ri of r is défined by:

ri = I, (r)

relation r can be reconstructed from the fragments by taking the natural join; -

r=n oo Le) co KR o ,, o0 Ty
| branch-name | account-number | customer-name balance tple-id
Bombay 305 Lowman 500 1
Bombay 226 Camp 336 2
Delhi 177 Camp - 205 3
Delhi 402 Kahn 10000 4
Bombay | 155 "~ Kahan 62 5
Dclhf 408 Khan 1123 6
Delhi 639 Green 750 7

Figure 4 : The depusite relation of Figure 4.2 with tple-ids

More generally, vertical fragmentation is accomplished by adding a special attribute called a
tuple-id to the scheme R. A wple-id is a physical or logical address for a tuple, Since each
tupa in r must have a unique address, the wple-id auribute is a key for the augmented scheme,

In Figure 4, we show the relation deposit’, the deposit relation of Figure 2 with uple-ids
ddded. Figure 5 shows a vertical decompaisition of the scheme Deposit-scheme tuple-id into:

Deposit-scheme-3 = thranch-name, customer-name, tuple-id)
Deposit-scheme-4 = (account-number, balance, tuple-id)

TIhe two relation shown in figure 5 res#lt from computing:

deposity = Np,poy scheme.5 (Deposit’)
deposity = Nppusitschemes. (Deposit’)

branch-name | customer-name tuple-id
Bombay | Lowman 1
Bombay - Camp 2
Delhi Camp 3
Delhi Khan 4
Bombay Khan 5
Delhi Khan 6
Dethi . Green 7
@)
account-number halance tuple-id
305 500 1
226 - 336 2
177 205 3
402 10000 4
155 © 62 5
408 1123 6
639 750 7

(b}
IFlcult 5 : Yertical fragmentation of relation deposit
To reconstruct the original deposit relation from the fragments, we compel

Tpeposii.scheme (deposity ©° deposity)
Note that the expression

deposity ©° deposil,
is special form of natural join, The join attribute is tuple-id. Since the fupled-id value
represents an address, it is posmble to pair a tuple of deposit 3 with the cormesponding tuple
 of deposit 4 by using the address given by the tuple-id value. This address allows direct
retrieval of the tuple without the need for an index. Thus, this natural join may be computed
much more efficiently qlan Iypmal natural joins.

Altlmgh the tuple-id attribute is important in the implementation of vertical partitioning, it
is imponant that this attribute not be visible to users. If users are given access (o tuple-ids, it
becomes impossible for the system to change tuple addresses. Furthermore, the accessibility
of internal addresses violates the notion of data independence, onc of the main virtues of the
relational model.

o f
kY

4.5 SUMMARY

A distributed database system consists of a collection of site§, each of which mainiain a local
database system. Each site is able to process local transaction, those transaction {hat access
data only in that single site. In addition, a sitc may participate in the execution of global
transactions those transactions that access data n several sites. The exccution of glebal
transaclions requires communication among the sitcs.

There are several reasons for building distributed database systems, including sharing of
data, reliability and availability, and speed of query processing. However, along with these
advantages come several disadvantages, including sofiwarc development cost, greater '
potential for bugs, and increased processing overhead. The primary disadvantage of :
distributed database systems in the &ddﬁd complexity required 1o ensure proper co-ordinaion
among the sites.

There are several issues involved in storing, a relation in the distributed database, inciuding
replication and fragmentation. It is essential that the systcm minimise the degree to which a
user needs to be aware of how a reldtion is stored. |

4.6 FURTHER READING

Henry F. Korth, Abraham Silberschatz, Damtme Sys:em Concepts, McGraw Hili
International Edition.

Distributed Datgbases

BCA-1.5/159

Notes

BCA-1.5/160

~ Uttar i’ra-desh : . BCA'I.S
RafarshiTanden OpenUniversty Iy ¢roduction toDatabass
Management Systems

Block

3

Emerging Trends in Database Management Systems

UNIT 1

Introduction to Object Oriented Database
Management Systems 5

UNIT 2

Introduction to Client / Server Database ' 15
UNIT 3

Introduction to Knowledge Database 34

-

BCA-1.5/161

BCA-1.5/162

Expert Advisors

Prol. P8, Grover Dr. 8.C. Mehia Prof R.G. Gupta -
Professor uf Computer Svience Sr. Director School of Computer and
University of Delhi Manpower Development Division Sysloma Beionces
Delhi Department of Electronics Jawaharlal Nehru ermuy
Gowt, of India Delhi
Hrig V.M. Sundiram New Delhi
Conrdmaior Prof. 5.K. Wasan:
Luk-ACC Centre Dr. ©. Haider Professor of Compuler
Pouw Delhi Dirzctor Science
Information Technology Centre Jamia Millia
truf. Kurmeshu ‘I'CIL, Delhu Delhi
Suhionl of Computer and
Systems Seiences Prof, H.M. Gupta Dr. Sugata Mitra
Tawaharlal Nehru University Departmen! of Electrical Principal Scientigt
Deilii Engineering National Institute of
Indian Inslitute of Technology Informition Technology
Prol. LM, Pamaik Delhi Now Dalhi
Indian Institute of Science
Hangalors Prof. §. Sadagopan Prof, Sudhir kaicker
Departument of Industrial Director
Prof. M.M. Pant Engineering Schuol of Computer and
Diractor Indian Institute of Technology " Systems Sceinces
School wf Computer and Kanpur Jawaharla] Nehru University
Infarmation Sciences Dalhi
IGNOU, New Delhi ©
Faculty of the School
Prof. M.M. Pant Mr, Shashi Bhushan
Directar Lacturer
Mr, Akshay Kumnar Dr, (Mrs.) Bimlesh
1 acturer Lagturer .
Course Preparation Team
Prof, M.M. Pant Block Writers
iirector, SOCTS
IGNOU Utpal Bhatiacharys
NIIT
Mr, Milind Mahajani New Delhl
Manager
Information Services Mr. Shashi Bhushan
“Times of Iudia Group Lesturer, IGNOU
New Dalhi
Tir. N, Parimala Course Coordlnator
Birla Institute of Techaology
and Science, Pilani Mr. Shashi Blistian
Lecturer, JGNOU

Mr. 8ha=hi Phushan
Lecturer, WGNOU

Print Production : Sh. Jitender Sethl, APO, MPDD

March, 2003 (Reprint)

© |ndira Gandhl National Open Univarsity, 1085

ISBN-81-7263-823-X

Al rights reserved. No part of this workmey be repreduced in eny fom, aymrmmnﬂh aranyathar
means witholit permission In writing from tha Indira Gandhl National Open Univarsity.

Zurther Information on the indira Gand!ii Mational Open University coursés may be oblained from the
Lisiversity's office at Maldan Garhi, New Delhi - 110088.

BLOCK INTRODUCTION

Since the 1960s, the technology for managing data has evolved from file system to
hierarchical, to network, to relational, RDBMSs were originally designed for mainframe

computers and business data processing. Many of today’s applications are workstation based

and involve complex data and operations. For example, computer aided design database
require the support of composite objects and different versions of the same objects. A
multimedia database may contain variable length text, graphics, images, andio and video
data. Finally a knowledge-base requires data rich in Semantics,

During the late 1980s and early 1990s, the image of the classical mainframe compyter for
* computing is decreasing and the trend is towards Client/Server computing,

In this block we have taken up three new emerging topics/disciplines in database. These are
Object oriented databases, Client/Server databascs and Knowledge databases. In fact there
are many more such as Distributed database, Multimedia database, Temporal database,
Spatial database, etc. But, we will be taking up these wpw.s in advance cuuzseofDBMS o

_ be offered at third year level. In this block there are 3 units:

_ ‘The first unit introduces objegt oriented database system. In this unit we have discussed the
-basic components of OODBMS how it is different from RDBMS and what are its drawbacks
and prmmses

The second unit takes up Client/Server database. Apart from Lalking about basics of
Client/Server computing we have also démonstrated how to develop an application in
Client/Server environment.

‘The final uni* discusses Knuwledge. database. The focal points covered in this unit are how a
knowledge base system is different from database and what are knm\rledge represcntation
scl‘t:mw ’

BCA-1.5/163

BCA-1.5/164

UNIT1 INTRODUCTION TO OBJECT
ORIENTED DATABASE
MANAGEMENT SYSTEM

Structure

1.0 Introduction

1.1 Objectives

1.2 What are Next Generation Data Basc System?

13 New Database Application -

14 What:sDmermnwdDmhaseMumgmmISym?

1.5 Promises of Object Oriented System

1.6 PmummﬂAdmmgesoIObjucmmnmdDmmemgcmmSym
1.7 Deficiencies of Relational Database Management System

18 D:ffameBetmeelmalebamMmagenmSymmd
~ Object Oriented Database Management System

19 MmuveDbpcﬁveOnenmdDambaseSmwgies

1.10 Summary

1.11 Model Answers

1.12 Further Readings

1.0 INTRODUCTION

Since 1960s, DalaBascMansgunmSystcms(DBMS) havebumwidcl}'uscdmdata
processing environment. The support of characteristics such as data sharing, independence,
consistency, integrity is the main reason for its success which traditional file managmnm
system does not inherently offer. :

Adambases;rstemmusuaﬂymgamseda&mdmgmadmnm& lmheprmmsblock.we
 discussed three most popular models: hierarchical, network and relational, The difference
among all these three models is in the way of organising records, although they are record
based. They were mainly designed to process large amount of relatively simple and fixed
fommdntaDBMSbasudonﬂmmodelsaimgwlﬂ;mummdmdexhgmdquw
opmmmmmqmmmbmmmmmmmvwﬂ

RDBMSs were ongmally designed for mainframe computer and business data processing
applications. Moreover, relational systems were optimized for environments with large

number of users who-issue short queries. But today’s application has moved from ccnatralised

mainframe computer to networked workstation on every desk. These applications include
“computer aided defign (CAD), muitimedia system, software engineering (design of corple -
project), knowledge database (10 be discussed in unit 3 of this block), These operations
require complex operations and data structare rcprescmaum For example, a multimedia
database may contain variable length text, graphics, images, audm and video data, Finaliy a
knowledge base system reqmrcs datg rich in semantics,

Existing commercial DBMS, both small and large scale have proven inadequatc for mcse
applications, The traditional database notion of storing data in two-dimensional tables or in
flat {ilcs breaks down quickly-in the face of complex data stractures and daia lnu used in
oday's apphcauons :

Research 10 model dnd process complex dam has gone in two directions: .
(a) exiending the functionality of RDBMS

(b) doveloping and implementing OODBMS that is based on object oriented
programming paradigm.
OODBMSs arc designed for use in lodhy's application arcas such as mult:mcchnfCAD

office automation, etc.In this unit, we will touch up some of lhr busic issues refated to
OODBMS. i

BCA-1.5/165

Enierging Trends in Database
Management System

BCA-1.5/166

1.1 OBJECTIVES

After going through this unit, you will be able to:
» define what is object oricnicd DBMS
« differentiate between RDBMS and OODBMS
= list next generation dawbase sysiems

+ list advantages ui‘objccmmnmu DBMS

1.2 WHAT ARE NEXT GENERATION DATABASE
SYSTEM?

Compule} sciences has gone through several generation of database management starting
with indexed files and later, network and hierarchical data base management sysiems
(DBMS). More recently, relational DBMS revolutionalised the industry by providing
powerful data management capabilities based on few simple concepts. Now, we arc on the
verge of another gencration of database system called Object Oriented DBMS based on
object oriented programming paradigm. This new kind of DBMS, unlike previous DBMS
models, manage more complex kind of data for example multimedia objects. The other kind
of next generation DBMS is knowledge databasc management system (KDBMS) which is
uscd to support the management of the shared knowledge. It supports a large number of
complex rules for automatic data inferencing (retrieval) and maintenance of dala integrity.

The goal of these new DBMS is 1o support a much wider range of data intensive applications
in engineering, graphic representation—scicntific and medical. These new DBMS can also

- support new generations of traditional business applications.

1.3 NEW DATABASE APPLICATIONS

Some applications that require the manipulation of large amounts of data can 'béneﬁt from
using a DBMS. However, the nature of the data in u:cssapphmumsdacsmtmwcll into
the relational framework.

(I) Design databases : Engineering design databases are useful in computer-aided
 design/manufacturing/sofuware enginecring (CAD/CAM/CASE) systems, In such
systems, compléx objects can be recursively partitioned into smaller objects.
Furthermore, an object can have diflcrent representations at different levels of
abstraction (equivalent objects). Moreover, a record of ..n object’s evolution (object
versions) should be maintained, Traditional database technology does not support the
nouons of complex objects, equivalent objects, or object versions.

(2) Multimedia databases : In a modem office information or other multi-media system,
data include not only text and numbers but also images, graphics and digital audio and
video, Such multimedia data are typically stored as sequences of bytes with variable
lengths, and segments of data are linked Logether for easy reference. The variable length
data structure cannot fit well into the relational framework, which mainly deals with
fixed-format records. Furthermore, applications may require access to multimedia data
on the basis of the structure of a graphical ilcm or by lollowing logical links.
Conventional query languages were not designed for such applications.

(3) Knowledge bases: Artificial intelligence and expert systems represent information as
facts and rules that can be collectively viewed as a knowledge base. In typical Artificial
Intelligence applications, knowledge representation requires data structures with rich
semantics that go beyond the simple structure of the relational model. Artificial
decomposition and mapping would be necessary if a relational DBMS were used.
Furthermore, operations in a knowledge base are more complex than those in a
traditional database, When a rule is added, the system must check for contradiction and
redundancy. Such operations cannot be represented directly by relational operations, and
the complexity of checking increases rapidly as the size of the knowledge base grows.

‘In gcnml these applications require the representation nl‘cmnplex data elements as Introduction in Olbect Orlented
" well as complex relationships among them. Users in these environments have found Thtilimes Jmngiemcnt S o
;elaumml techuology inadequate in terms of flexibility, modelling power, and efficiency.

1.4 WHAT IS OBJECT ORIENTED DATABASE
"MANAGEMENT SYSTEM ?

Object-oriented technologics in use today include object- oriented programming languages
(e.., C++ and Smalltalk), object- oriciited database systems, object-oriented user interfaces
(e.g., Macintosh and Microsoft Windows systems) and so on. An object-oriented technology
is a technology that makes available to the users facilities that are based on object-oricnted
concepts. To define object-oriented concepts, we must first understand what an object is.

Object £
The term object means a combination of data and program that represents some real-world

- entity. For example, consider an employee named Amit; Amit is 25 years old, and his salary
is $25,000. Then Amit may be represented in a computer program as an object. The data part
of this object would be (name: Amit, age: 25, salary: $25,000). The program part of the
‘object may be a collection of programs (hire, retrieve the data, change age, change salary,
fire). The data part consists of data of any type. For the Amit object, string is used [or the
name, integer for age, and monetary for salary; but in general, even any user-defined type,
such as Employee, may be used. In the Amit object, thenamc, age, and Sﬂlﬂl‘}' arc called
altributes of the object.

Encapsulation

Ofien, an object is said to encapsulate data and program This means that the users
ciannot see the inside the object but can use the object by calling the program part of
the object. This is not much different from procedure calls in conventional programming;
the uscrs call a procedure by supplying values for input parameters and receive results in
output paramelers,

Inheritance and Class

The term ohject-oriented roughly means a combination of object encapsulation and .
inheritance. The term inheritance is sometimes called rense. Inheritance means roughly that a
new object may be created by extending an existing object. Now let us understand the term -
inhcritance morc precisely. An object has a data part and a program part. All objects that '

have the same attributes for the data part and same program part are collectively -
called a class (or type). The classes ar¢ arranged such that some class may- inherit the
atributes and program part from some other classes.

Amit, Ankit and Anup arc each an Employce object. The data part of each of these objects
consists of the attributes Name, Age and salary. Each of thesc Employce objects has the same
program part (hire, retrieve the data, change age, change salary, fire). Each program in the
program part is called a method. The term class refers to the collection of all ﬂbjm
have the same attributés and methods. In our example, the Amit, Ankitand Ai.up objec i g
belong 10 the class Employee since they all have the same attributes and methods. T!H;*m
may be uscd as the type of an altribute of any object. At this time, there is only oné ks oA

* the sysicm namely, the class Employee; and three ohjecls that belong to the class niimejy .
Amit, Ankit and Anup objects.

" Inheritance Hierarchy or Class Hierarchy

Now suppose that a user.wishes (o create two sales employees, Jai and Prakash. But shod
employecs have an additional attribute namely, commission, The salcs employees came
belong to the ¢lass Employee. Howeyer, the uscr can create a new class, Sales Employes

* such that all auributes and methods assegiated with the class Employee may be reused and
the attribute commission may be added 10§ales Employee. The uscr does this by deeking
the class SdlessEmployee 10 be a subclass of the class Employee.. The user can now prodeed
‘to create thie Lwo sales employees as objects belonging to the class Sale: Employee. Two
Hisers cancreate new classes as subclasses of existing classes. In general, a class may
_inherit from one or more existing classes and the inheritance struclures of classes becomesa
- . directed acyclic graph (DAG); but for simplicity, lhe-mhentanoa structies is called an

*Ninheritance hierarchy or class hierarchy. BCA-15/167

Emerging Trends in Database
Manapement System

BCA-1.5/168
8

-

The power of objecl-omnmd cmcn:pis is delivered when encapsu]auon and inheritance work
wgclher

« Since inheritance makes itppssible for different classes to share the same set of
" attributes and methods, the same program can be run against objects that belong to
different chasses. This is the basis of the object-oriented user interface that deskiop
publishing systems and windows management systcms provide today. The same set
of programs (e.g., open, close, drop, create, move, eic,) apply to different types of
data (unagc text file, audio, directory, etc.).

» [If the users define many c]asses.audeachclasshasmany attributes and methods,
the benefit of sharing not only the attributes but also the programs can be dramatic,
The attributes and programs need not be defined and written from scratch. New
classes can be created by adding attributes and methods of existing classes, thereby
reducing the opportunity to introduce new errors to existing classes. -

1.5- PROMISES ' OF OBJECT ORIENTED SYSTEMS

Object-oriented systems make these promises:

» Reduced maintenance ' _
The primary goal of object-oriented development is the assurance that the system
will enjoy a longer life while having far smaller maintenance costs. Because most
of the processes within the system are encapsulated, the behamurs may be reused
and incorporated into new behawours

* Real-world modelling
Object-oriented systems tend 10 mudal the real world in a more complete fashion
thaa do traditional methods. Objects are organised into classes of objects, and
objects are associated with behaviours, The model is based on objects rather than
on data and processing,

* Improved reliability
Object-oriented systems promise to be rar more reliable than traditional systems,
primarily because new behaviours can be built from existing objects.

» - High code reusability :
When a new object is created, it will automatically inherit the data attributes and
characteristics of the class from which it was spawned. The new object will
also inherit the data and behaviours from all superclasses in which it participates.

1.6 PROMISES AND ADVANTAGES OF OBJECT
ORIENTED DATABASE MANAGEMENT SYSTEM

An ohjcct-onenlacd progrmnmmg language (OOPL) pmwdes facilities to create classes for
orgahising objects, to create objects, to structure an inheritance hierarchy to organise classes
so that subclasses may inherit atéributes and methods from superclasses, and to call methods
to access specific objects. Similarly, an object-oriented database system (OODB) should
provide facilities to create classes for organising objects, to create objects, to structure an -
inheritance hierarchy to organise classes so that subclasses may inherit attributes and
methods from superclasses, and to call methods to access speeific objects. Beyond these, an
OODB, because it is a database system, must provide standard database facilities found in
today’s relational database systems (RDBs), including nonprocedural query facility for
retrieving objects, automatic query oplimisation and processing, dynamic schema changes
{changing the class definitions and inheritance structurc), automatic management of access

- methods (e.g., B+-tree index, extensible hashing, sorting, etc.) to improve query processing.

performance, automatic transaction management, concurrency control, recovery from
system crashes, and security and authorisation, Programming languages, including
OOPLs, are designed with one user and a relatively small database in mind. Database
systems are designed with many users and very large databases in mind; humpcrfum&nq&,l
security and authorisation, concurrency control, and dynamic schema changes becomc
important issues, Fyrther, transaction systems are used to maintain critical data accurately;
hence, transaction management, concurrency control, and recovery are important facilities.

In so far as a database system is a system software, whose functions are called from
application programs written in some host programming lanpuages, we may distinguish two
differcnt approaches to designing an OODB. One is 1o store and manage objects created by
programs written in an OOPL. Some of the current OODBs are designed to store and
manage objects generated in C++ or Smalltalk programs, Of course, an RDB can be used to
store and manage such objects. However, RDBs do not understand objects—in particular,
methods and inheritance. Therefore, what may be called an object manager or an
object-oriented layer software needs to written 1o be manage methods and inheritance and to
translate objects to tuples (rows) of a relation (table). But the object manager and RDB
combined are in effect an QODB (with poor performance, of course).

Another approach is Lo make object-oriented facilitics available to users of non-QOPLs. The
users may create classes, objects, inheritance hicrarchy, and so on, and the database system
will store and manage those objects and classes. This approach in effect tums non-OOPLs
(e.g., C, FORTRAN, COBOL, eic.) into object-oricnted languages. In fact, C++ has tumed
C into an OOPL, and CLOS has added object-oriented programming facilities to Common

" LISP. AnOODB designed using this approach can of course be used to store and manage
objects created by programs written in an OOPL. Although a translation layer would need to
be written to map the OOPL objects to objects of the database system, the layer should be
much less complicated than the object manager layer that an RDB would require.

_ In view of the fact that C++, despite its growing popularity, is not the only programming
languajge that database application programimers are using or will ever.use, and there is a
significant gulf between a programming language and a database systém that will deliver the
' power of object-oriented concépts to database application programmers. Regardless of the
approach, OODBs, if done right, can bring about a quantum jump in the productivity of
database application pmgramrrm and even in the performance of the application pmgmns.

One source of the technological quantum jump is tlwmuseofadatabusedemg;n and pmgram
that object-oriented concepts make possible for the first time in the cvolving history of
database technologies, Object-oriented concepts are fundamentally designed to reduce the
difficulty of developing and evolving complex software systems or designs, Encapsulation

_and inheritance allow attributes (i.e., database design) and programs to be reused as the basis
for building complex databases and programs. This is precisely the goal that has driven the
data management technology from file cystems to relational database systems during the past
three decades. An OODB has the potential to satisfy the objective of reducing the difficulty
of designing and evolving very large and complex databases.

Another source of the technological jump is the powerful data type facilities implicit in the
object-oriented concepts of encapsulation and inheritance.

Advantages of Object-Oriented Databases -

Systems developed with object-orieated languages have many beriefits, as previously
discussed. Yet, as also described, these systems have particular attribuies that can be
complemented with object-oriented databases. These attributes include lack of persistence,

inability to sharc objects among multiple users, limited version control, and lack of access to
other data, for cxample, data in other databases,

In systems designed with object-oricnted languages, objects are created during the running of
a program and are destroyed when the program ends. Providing a database that can store the
" objects between runs of a program offers both increased flexibility and increased security.
The ability to store the objects also allows the objects to be shared in a distributed
environment, -An object-oriented database can allow only the actively used objects to be
loaded into memory and thus minimizes or preempts the need for virtual memory paging,
This is especially mﬂ_:lin‘iwgu—scale systems. Persistent objects also allow objects to be
stored for eaéh version, This version control is uscful not only for lcsﬁngapplmamns but
also for many object-griented design applications where version control is a functional
requircment of the application itself. Access 10 other data sources can also be facilitated with:
abject-orienied daabases, especially those built as hybrid relational systems, which can
mssmlanmaitahlesaswcﬂmmherobmlypes

Object-enented dmhams also offer many of the benefits that were formerly found only in
expert sybiems. With an object-oriented database, the relationships-between objects and th
constraints on objects are maintained by the data* ase management system, that is, the objes
themselves. The rules associated with ﬂweﬂnnsymm are essentially replaced by the
object schema und the methods. As many expert systems currently do not have adequate

Introduction to Object Oriented
Database Management System

BCA-1.5/169

Emerging Trends in Database
Management System

BCA-1.5/170

10

database support, object-oriented databases afford the possibility of offering expert system
functionality with much better performance.

Object-oriented databases offer benefits over current hierarchical and relational database
models. They enable support of complex applications not supported well by the other
models. They enhance programmability and performance, improve navigational access, and
simplify concurrency control, They lower the risks associated with referential integrity,
and they provide a better user metaphor than the relational model.

Object-oriented databases by definition allow the inclusion of more of the code (i.e. the
object’s methods) in the database itself. This incremental knowledge about the application
has a number of potential benefits of the database system itsclf, including the ability to
optimize query processing and to control the concurrent execution of transactions.

Performance, always a significant issue in sysiem implementation, may be significantly
improved by using an object-oriented model instcad of a relational model. The greatest
improvement can be expected in applications with high data complexity and large numbers
of inier-relationships. Clustering, or locating the related objects in close proximity, can be
accomplished through the class hierarchy or by other interrclations. Caching, or the
retention of certain objects in memory or storage, can be optimised by anticipating that the
user or application may retrieve a particular instance of the class. When there is high data
complexity, clustering and caching techniques in object databases gain tremendous
performance benefits that relational databases, because of their f undamental architecture,
will never be able to approach.

Object-oriented databases can store not only complex application components but also larger
structures, Although relational systems can support a large number of tuples (i.e. rows ina
table), individual types are limited in size. Object-oriented databases with large objects do

_ not suffer a performance degradation because the objects do not need 1o be broken apart and

reassembled by applications, regardless of the complexity of the properties of the application
objects. '

Since objects contain direct references to other objects, complex data set can be efficiently
assembled using these direct references. The ability to search by dircct references
significantly improves navigational access. In contrast, complex data sets in relational
databases must be assembled by the application program using the slow process of joining
tables.) :

For the programmer, one of the challenges in building a database is the data manipulation
language (DML) of the database. DMLs for relational databases usually differ from the
programming language used to construct the rest of the application. This contrast is due 1o
differences in the programming paradigms and mismatches of type systems. The
programmer must leam two languages, two tool scts, and two paradigms because neither
alone has the functionality to build an entire application. Certain types of programming
tools, such as application generators and fourth-generation languages (4GLs) have emerged
to produce code for the entire application, thereby bridging the mismaich between the
programming language and the DML, but most of these tools compromise the application
programming process. .

With object-oriented databases much of this problem is eliminated. The DML can be
extended so that more of the application can be written in the DML, Or an object-oriented
application language, of example C++ can be extended to be the DML. More or the
application can be built into the database itself. Movement across the programming interface
between the database the application then occurs in a single paradigm with a common set of
tools. Class libraries can also assist the programmer in speeding the creation of databases.
Class libraries encourage reuse of existing code and help to minimise the cost of later
modifications. Programming is easier because the data structures model the problem more
closcly. Having the data and procedures encapsulated in a single object makes it less likely
that a change 1o one object will affect the integrity of other objects in the database.
Concurrency control is also simplified with an object-oriented database. In a relational
database, the application needs to lock each record in each table explicitly because related
data re-represented across a number of tables. Integrity, a key requirement for databases, can .
be better supported with an object-oriented database, because the application can lock all the
relevant data in one operation. Referential integrity is better supported in an object-oriented
database because the pointers are maintained and updated by the database itself. Finally,
object-oriented databases offer a better user metaphor than relational databases, The tuple or
table, although enabling a well-defined implementation strategy, is not an intuitive modelling

framework, especially outside the domain of numbers. Objects offer a more natural and Introduction to Object Oriented
encompassing modelling metaphor. Database Managemént System

1.7 DEFICIENCIES OF RELATIONAL DATA BASE
MANAGEMENT SYSTEM

The data type facilities in fact are the keys to eliminating three of the important deficiencies
of RDBs. These are summarized below, we will discuss these pointsin greater detail later.

« RDBs force the users to represent hicrarchical data (or complex nested data or
compound data) such as bill of materials in terms of twples in multiple relations.
This is awkward to start with, Further, to retrieve data thus spread out in multiple
relations. RDBs must resort to jcins, a generally expensive operation. The data
type of an attribute of an object in OOPLs may be a primitive type or an arbitrary
user-defined type (class). The fact that an object may have an attribute whose value
may be another object naturally leads to nested object representation, which in turn
allow hierarchical data to be naturally (i.e., hierarchically) represented.

* RDBs offer a set of primitive built-in data types for use as domains of columns-of
relation, but they do not offer any means of adding user-defined data types. The
built-in data types are basically all numbers and symbols. RDBs are not
designed to allow new data types to be added and ¢hdrefore often require major
surgery to the system architecture and code td-add any new data type. Addinga
new data type 10 a database system means allowing its use as the data type of an
atiribute—that is, storage of data of that type, querying, and updating of such data.
Object encapsulation in OOPLs does not impose any. restriction on the types of data
that the data may be primitive types or user-defined types. Further, new data types
may be created as new classes, possibly even as subclasses of existing c!asses.
inheriting their attributes and methods. _

+ Object encapsulation is the basis for the storage and management of programs as
well as data in the database. RDBs now siipport stored prooel:lures-wlhar. is, they
allow programs to be written in some proccdura[language and storéd inthe - .
database for later loading and execution.” Howmrer the stored procedures in RDEB
are not encapsulated with data—that is, they are not associated with any relation or -
any tuple of a relation. Further, since RDBs do not have the inheritance -
mechanism, the stored procedures cannot alitomatically, be reused.

1.8 DIFFERENCE BETWEEN RELATIONAL .
DATABASE MANAGEMENT SYSTEM'AND OBJECT
ORIENTED DATABASE MANAGEMENT SYSTEM

RDBMSs wete never-designed to alk}w for the neswd structure, ‘I‘hesc lypes of ap]}llcatims
are extensively found in CAD/CAE, acrospace, etc. OODBM can easily support these
applications. Moreover, it is much easier and natural to navigate through these complex
structures in form of objects that model the real world in OODBMS rather than table, wples
.and records in RDBMS ‘ - "

Itis hard to confusea relauouai database with an object-oriented database. Tha nunnahsed
relational model is based on a fairly elegant mathematical theory. Relational databases
“derive a virtual structure at run time based on values from sets of data stored in tables.
Databases construct views of the data by selecting data from multiple tables and.]nadmg it
into a single table {OODBs traverse the data from object mob_pecl)

Rclaucml dalabases have a hrmwd nixmber of simple, bullt—m data types, such as integer
and string, and a limited number of buili-in operations that can handlc these data types. You
can create complex data types in a relational database, but you must do it on a linear basis,
such as combining fields inio records. And the operations on these new complex types are -
restricted, again, to those defined for the basic types (as opposed to arbitrary daa types or
subclassing with inheritance as found in OODBs).

: : BCA-1.5/171
The object model supports _browsing of object class librarics, which allows the reuse, rather

Emerging Trends in Database
Management System

BCA-1.5/172

12

Fg A

than the reinvention, of commonly used data elcments. Objects in an OODB survive
multiple sessions; they are persistent. 1f you delete an object stored in a relational database,
other objects may be left with references to the deleted one and may now be incorrect. The
myuf:hadamhuzbawmmmﬂcmmsmcmmﬂmm -

In the relational database, cnmplcxobjeclsmmbehmkenupmdmdmscpmmtablm
This can only be done in a sequential procedure with the next retrieval replying on the
outcome of the previous. The relational database does not understand a global request and
thus cannot optimise multiple requests, OODBs can issue a single message (requ:st) that
nmlmmmulupletranmcums.

The relational model, however, suffers at least one major disadvantage. It is difficult to
umﬁcmuuofmpl&xubpclswﬂmlyamhlemndel for data storage. Mlhungh
relational databases are adequate for accounting or other typical transaction

FWE
~ applications where the data types are simple and few in number, the relational model offers

limited help when data types become numerous and complex.

Object-oriented databases are favoured for applications where the relationships among
elements in the database carry the key information. Relational databases are favoured when
the values of the database ¢lements carry the key information. That is, object-oriented
models capture the structure of the data; relational models organise the data itself. If a record
can be understood in isolation, then the relational database is probably suitable. If arecord
makes sense only in the context of other records, then an ob_]ecl-onmted database is more

appropriate.

Engineering and technical applications were the first applications to require databases lhal
handle complex data types and capture the structure of the data. Applications such as
mechanical and electrical computer-aided design (MCAD and ECAD) have always uscd
nontraditional forms of data, representing such phenomena as three-dimensional images and
VLSI circuit designs. Currently these application programs siore their data in
application-specific file structures. The data-intensiveness of these applications is not only
in the large amount of data that need to be programmed into the database, but in the °
complexity of the data itself, In these design-based applications, relationships among
elements in the database carry key information for the user. Functional requirements for
complex cross references, structural dependences, and version management all require a
richer representation than what is provided by hierarchical or relational databases.

- Check Your Progress
1. What are the drawbacks of current commercial databases?

What is the meaning of mulli-media data?

B T T T P P T T T T T T e P T T T T T T T R R R T T T T L T R TR T

derraranaa s EmtEmsEmsEassEfEssssassassssanan T I L LT LT PP ranr T T LR L L L T T L LY R e
BT T T T T T e T T L L T R e TR LT LT R L LR
D T e T e P e LT T e T T T T T T P T FEEEE SRR AR R ELETET FasEEsIRERANSRRS R A

- 3, List few requirements for multi-media data management.

1.9 ALTERNATIVE OBJECT-ORIENTED DATABASE 'Drusus wasagoncatsysiem
STRATEGIES -

There are at least six approaches for incorporating object orientation capabilities in

1. Novel database data model/data language apprgach : The most aggressive approach
is to develop entirely new database language and database management system with
object orientation capabilities. Most of the research project in object-oriented databases
have pursued this approach. In the industry introduces novel DML (Data Manipulation
Language) and DDL (Data Definition Language) constructs for a data model based on
semantic and functional data models. '

2. Extending an existing database language with object orientation capabilities : A
number of programming languages have been extended with object-oriented constructs,
C++ flavors (an extension of LISP),and Object Pascal are examples of this approach in

~ programming languages. It is conceivable to follow a similar strategy with database

languages. Since SQL is a standardand the most popular database language, the most
reasonable solution is to extend this language with object-oriented constructs, reflecting
the object orientation capabilities of the underlying database management system. This
approach being pursued by most vendors of relational systems, as they evolve the next
generation products. There have been many such attempts incorporating inheritance,
function composition for nested entities, and even some support of encapsulation in an
SQL framework,

3. Extending an existing object-oriented programming language with database
capabilities : Another approach is to introduce database capabilities to an existing
object-oriented language. The object oricntation features abstract data typing,
inheritance, object identity—will already be supported by the object-oriented language.
The extensions will incorporate database features (querying, transaction support, -
persistence, and so on). ; '

4. Embedding object-oriented database language constructs in a host (conventional)
language : Database languages can be embedded in host programming languages. For
example, SQL statements can be embedded in PL/I C, FORTRAN and Ada. The types
of SQL (that is relations and rows in rclations) are quile different from the type systems
of these host languages. Some object-oriented databases have taken a similar approach
with a host language and an object-oriented database Ianguage.

1.10 SUMMARY

During the past decade, object orieated technology has found its way into database user
interface, opcrating system, programming languages, expert systen and the like. Object -
Oriented database product is already in the market for several years and several vendors of
RDBMS are now declaring that they will extend their products with object oricnted
capabilities. In spite of all these claims there is no wide acceplability of OODBMS because
of lack of industry standard. This technology is still evolving and take some more time to get
fully settled. :

1.11 MODEL ANSWERS

Check Your Progress = P .

1. Most of the cirreis; commercial database systems suffer from an inability to manage
arbitrary types of data, arbitrary large data and data stored on devices other than
magnetic disks. . They understand a relatively limited set of data types such as integer,
real data, monetary unit, short strings. Further they are not designed 1o manage data
stored on such increastngly important storage devices such as CD-ROM and Videodisks..

2. Broadly, multimedia data means arbitrary data types and data from arbitrary data
sources. Asbitrary data types include the numeric data and short string data supported in
conventional database systems; large nnstructurcd data, such as charts, graphs, tables, BCA-15/173
and arrays; and compound documents that are compriscd of such data. Arbitrary data
' ' 13

Eniérging Treads la Database
Management Systeon

BCA-1.5/174
14

sources include a native database; extemal (remote) databases; host file base; data input,
storage, and presentation (output) devices; and even data-gencrating and
data-consuming programs (such as a text processing systemy),

3a) The ability to represent arbitrary data types (including compound documents) and

b)

c)

d)

specification of procedures (programs) that interact with arbitrary data sources.

The ability to query, update, insert and deletc multimedia data (including retrieval of
multimedia data via associative search within multimedia data; minimally, text).

The ability to specify and execute abstract operations on multimedia data; for example,
to play, fast forward, pause, and rewind such one-dimensional data as audio and text; 1o
display, expand and condense such two-dimensional data as a bit-mapped image.

The ability to deal with heterogeneous data sources in a uniform manner; this includes
access 1o data in these sources and migration ¢if data from one data source 0 another.

1.12 FURTHER READINGS

1

Modem Dalabasc Systems——me Object Model , Interoperability and Beyond, By WCN

. KIM, Addison Wesley, 1995,

2.

Object-Oriented DBMS : Evolution & Perform ance]ssues A.R Hurson & Simin H.
Pakzad, IEEE Campuler Feb. 1993,

UNIT 2 INTRODUCTION TO CLIENT/
SERVER DATABASE

- Structure

20 Introduction
2.1 Objectives
2.2 Evolution of Client/Server
2.3 Emergence of Client/Server Architecture
24 The Client/Server Computing
4.1 Basics of Client/Server Computing Paredigm -
242 Why need Client/Server Computing?
24.3 Advantsges of Clisnt/Server Computing
' 244 Components of Client/Server Compuiing
2.5 The Critical Products
2.3.1" Object Oriented Technology (OOT)
232 Dinributed Computing Environment
253 Application Progmmming Iniarface (APT)
2.5.4 Multithreaded Processes
_ 255 Remote Procodure Calls (RPC)
‘256 Dynamic Data Exchange (DDE)
2.5.7 Object Linking and Embedding (OLE)
2.6 Devcloping an Application
2.7 Structured Query Language (SQL)
27.1 Data Definition Language (DDL)
: 272 Data Manipulation Language (DML)
2.8 Client/Server : Where to next?
29 Summary

~ 2.10 Model Answers

2.11 Further Readings

2.0 INTRODUCTION

The concept behind the Client/Server solution is congurrent, cooperative processing. It is an
approach, that presents a single systems view from & user's viewpoint, involves processing
on multiple, interconnected machines provides coordination of activitics in a manner
transparent ta end users,

This unit is broadly divided into three parts. The first part (sections 2.2 and 2.3) address as
the basics of client server computing, The second part (section 2,4) discusses the critical
products used in implementing client/server model. The focal point of the last part is to
develop an application in client server environment,

2.1 OBJECTIVES

At the ond of this course, the reader should be able to understand

+. the broad level issues in Client’ Server computing

+ the product components of Client’ Server architecture

+ how to develop application in Client” Server model

* discuss the ﬁcss_ihle emerging scenario in Client’ Server computing,

2.2 EVOLUTION OF CLIENT/SERVER

Mainframe Scenario

After twenly years of existence starting in the middle of scventios, ﬂwcmputcrhmud BCA-1.5/175
application proliferated the business and scientific application throughout the world. The

H

Emerging Trends in Database scenario was dominated by mainframe computers. The development of hardware has always

Management Sysicm . - outplaced the development of software yet user requirements did outgrow the capacity of the
mainframe computers coupled with the fact that better hardware releases were being
launched at rapid succession. The large EDP houses typically opted for the better version of
hardware every alternate year. The new model of the hardware would take over the major
share of applications rendering the carlier model unutilized or undenutilized.

PCs as Environment for Business Computing

In the latc seventies first version of PC with 64 KB of main memory were launched, they
were typically used lo do wordprocessing jobs and spreadshect calculations, In 1980, IBM
launched its 640 KB PC, this is single most important development in the ficld of computers,
which revolutionised the concept of computing profoundly. In 1980 people did not think that
the PCs could really become a serious computing environment because of the advancements

" of technologies in many other related fields, In the decade of 80s PCs grew in powerand
speed in leaps and bounds. Because of the standard environment and non-proprietary
architecture and also because of the very low price tag PCs and software that runs on PC
spreaded at a rate which has never been witnessed in field of Information Technology.

-

Emergenee of Open Systems

Till the middle of 70s for over two and half dccades proprictary networking solutions
dominated the ncnvorkmg scenario. The solutions used to be very expensive, each company
used to set its own networking and connectivity standards. Each company believed in giving
the complete network, software and networking solution to the end client rendering the
solutions extremely high priced and beyond the budget of most Information Technology
organ nsalmns Further this did not enable sharing machines from multmle vendors on a
network.” The advent of non-proprictary standards in network and software producl
components allowed increasing use of open system. The chip, the peripherals, the
architecture, the networking prolocols, the operating system even the software components
became standard. These developments allowed growth of non-proprietary solution, network
solution involving network and software components from multiple vendors. This also
enabled usage of downsized environments, PC users grew to upsized environment with
Novell netware among other software as the servers. ' '

In 80s networking of PCs in local area network (LAN) or connectivity between PCs running
between DOS and VAX running VMS and PCs, connectivity between almost all standard
machines gave rise to a ncw way of looking at computing. The R & D labs dealing with

* software started working on solution which would distribute the computing load on multiple
machines-on network. Clieny/Server architecture took birth around these developments. It
basically tries to utilize and distribute computing requirements on PCs, UNIX sérvers, VMS
SETvers, ev'-i:nmainframe depending on the computing requirements. =~

2.3 EMERGENCE OF CLIENT’ SERVER
ARCHITECTURE

Some of the pioneering work that was done by some of the relational database vendors
allowed the computing to be distributed on multiple computers on netwo.rk usmg
contemporary technologics involving:

Low Cost, High Performance PCs and Servers
Graphical User Interfaces

Open Systems

Object-Orientation

Workgroup Computing

EDI and E-Mail

Relational Databases

Netwarking and Data Communication

2.4 THE CLIENT/SERVER COMPUTING
BCA-15/176

1% In this application we will ake tp bagics of Clieny/Server model: how to define client and

server, objectives of client/server model, the difference between mamﬁame based compulmg

-and clicnt/server computing eic,

2.4.1 Basics of Client/Server Computing Paradigm

AClient is an application Mmlualespmrtopee:cunmumcauun and users usually
involve client software when they use a network service. Most client software consists of
conventional application programs. Each time a client application executes, it contact a
server, sends a request and awaits a response. When the response arrives, the client

~ continues processing. Clients are often easicr 1o build than servers and usuallyrequuc no,
special system pnw]egm to operate. =

By comparison, a server is any program lbatpmvldessemoes to requesting processes in
client. It waits for incoming communication requests from a client. It receives a client’s
request, perhaps the necessary computation and returns the result to the client.

Gerwrally.udownmsmdmfmamnmmemquestermmmemqu&mgpmcmwsn to
doso. But the server must also manage sychronisation of services as well as mmmmumunn
once a request has been initiated.

The client may initiate a transaction with wie server, while. normally the senerdoes not
initiate a transaction with the client. .

The client is therefore the more active partner in this assomtion, requesting specific
functions, acoepnng corresponding results from the server, and acknowledging the
cumpleuun of services. The client, however, does not manage the synchronization of
services and associated communication. Because servers often need to access data, server
software usually requires special system privileges. Because a server executes with special
system privilege, care must be taken to ensure that it does not inadvertently pass privileges
on to the clients that use it. For example. a file server that operates as a privileged program

. must contain code to check whether'a given file can be accessed by a given client, the server
cannot rely on the usual operating system because its pnmlegedmomndesﬂnm
Servers must contain code that handle the issue of:

« Authentication — Verifying the identity of a client 3
* Aathorisation =~ — Determining whether a given client is permitted to access.
: ; the service by the server supplies.

* Data Security — Generating that data is not unmtenumally rwmled or
compromised. ?

¢ Privacy . — Keeping information about an 'individual from

. unauthorised access. _

"« Protection — Guaranteeing that network application cannot abuse '

system resources.

The general case of chmﬂ‘me.r implementation i is shown in ﬁgure..

MANY-TO-ONE

OR °
MANY-TO-MANY .

_COMMUNICATIONS - COMMUNIGATIONS g
" Figurel : The general case uf clieat/sciver Implementation

Introduction to Client/

Server Database

BCA-15/177
17

" Emerging Trends i Database -wuhmmmmmmuaﬂmmmm

Management Systesma

BCA-1.9/M178
B

. Mmyclmtsnmyshmonem _
. Thcmchuﬁmymmmymboﬁhﬁmlmdm

- 'l'he::lmt.d:esme: ‘or bothi can bé a workstation. 'I‘Inmmndsobenmmho.a

database compuler, Or a supercompuier. Hupusefuloldmmunﬂuhmhwmﬁamm
nmbemnmludedmﬂledeﬁniﬂm. :

Smmbmedmmmbcmpm ﬂtmmmduesnmma‘ilyrefutoa '
piece of hardware, & database unit, a gateway, or a special-purpose processor dedicated 10 -
run soltware, mmptumuchhuwwmumbmhmhwmandemﬂw

- amgedhmﬁm—ﬂmghtmﬂyuchmisspmﬂmd.

mmﬂﬂmﬁaﬂduaﬂemmmmMWM
mmmmmmmmmmmm K
eavionmentcanbe: - 5

. SunphMasa_smaﬂwqtmﬂming@pﬁmﬂmsmﬂpedplm_ik
_ or
. mmmmmmmmmw

Wbﬂhuﬂnwlulmmmaﬂwnnmﬁcwmphx.wmﬂymaamof
mainframe applications, a basic design principle is never to build a system to support the.
currept organisational divisions and their departments.’ A great deal of the necessary
mmmumwmmnmmmmmam Fa
structures.

- Adiffmmmyufmkmgthhmismﬂwmfmmwwmwm

dmmk’@mmhmmlndewma : _ ;
& mmummuwmmmm I
wmmbemmmmmmm-mmm
mmmmmmmumdmﬁm

access to them,
mmﬂrmmwdhwwwmpuﬂngumm-mm -
anywhere in a network to request services from anywhere else in the orkin a way
that is both transparent and independent of any particular ed software and
hrdw-u. 'Ihisrd‘mmamhquxsﬁms:
* - What mmpﬂmmdmfmsdmmuhwdma
; network ?

. WMHMMhMNWMMMW?

. Ihwpmﬂnsymbekq:tﬂmdbumdevehpwwapﬂm nddnewusm.
andeuhmeusmme?)

. Huwcnwmmtﬁﬂmplﬂfamsmddmsuﬂmwﬂldchwnhhish
ﬂaﬂahﬂuydmmdedbymemmmpcmmsppmm

'_- wumun&wwmmwhmwmmmmmhmmw
network, distributing the software and controfling the physical assets?

i mmwmmeuammMmmm

questions in an able manncr. wmmmymmmmumamm

- and nonintelligent terminals connected (o mainframes or minis.

* ‘Another major exceptigniis the stand-alone workstation. Undunqsnmhotm i
.+ imagination can it qualify as a client/scrver model, although some vendars try to sell it as

guch, ammmymbumndmkbmmkmunmam

Inizgrating whmhasheenwdwt‘ar mmcmm:gmg toward definition that client/servers
are exceilent multinser systems with a flexible but all defined

applications
Mapplmmmbed&ngmdmwmtwgethwﬂmghﬂlmwmh

The foregoing concepts are not necessarily now, To a substantial extent, they have existed Introduction to Client/
for four decades in computing. What is new is the truly peer-to-pecr structure of the Sorver Dalsbase
" implementation environment,

The wider acceptance of the outlined suluuans Jlargely depends on the functionality provided
by the system as a whole. What makes the client/server architecture distinct from
mainframe-based processes are its distributed but cmperahve applications
characteristics:

. Clients and servers function across platforms within the network, whether in a local
or in a wide area.

* Distributed software artifacts exccute on multiple platforms wuhm the supported
- architecture.

+ Processes on the network can be dynamically distributed to the most appropriate
(and available) platform for execution.

Graphics applications can be assisted through graphics processors. A numerically intensive
process within an application can be migrated from a client to the network’s number
cruncher server, and a complex database query may access a different database server if the
information elements it requires are thcmschres d:smbu:ed This emphasises the need for
first- class solutions in networking. :

242 ‘Why need Client/Server Computing?

Client/Server (C/S) architecture involves running the application on multiple machines in
which each machine with its component software handles only a part of the job. Clicnt
machine is basically a PC or a workstation that provides presentation services and the
appropriate computing, connectivity and interfaces while the server machine provides

- database services, connectivity and computing services to multiple users, Both client
machines and server machines are connecied to the same network. As the users grow more
client machines can be added to the network while as the load on the database machine
increases more servers can be connected to the network, The client could be character
terminals or GUI PCs or workstations connected to the network. Server machines are
slightly more heavy duty machines which gives database services to the client requests.

The network need not be Local Arca Network (LAN) only, it can be on much wider
distributed Wide Area Network (WAN) across multiple cities. The client and server
machines communicate through standard application program interfaces (API) and remote
procedure calls (RPC). The language through which RDBMS based C/S environment
communicate is known as structured query language (SQL).

2.4.3 Advantages of Client/Server Computing

- C/S computing caters to low cost and vser fricndly environment. It can be used to develop

_highly complex multiuser database application being handled by any mainframe computers
until about § years back. Itoffers expandability. It ensures that the performance degradatiof

- is not so much with increased load, It allows connectivity with the heterogencous machinesi
and also with real time date feeders like ATMs, Numerical machines. It allows the database
management including security, performance, backup, server enforced integrity to be part of
the database machine avoiding the requirement to write large number of redundant piece of
code dealing with database (ield validation and referential integrity. Since PCs can be used
as clients, the application can be connecied to the spreadshects and other applications
through Dynamic Data Exchange (DDE) and Object Linking and Embedding (OLE). If the
load on database machine grows, the same applu:atmn can be run slightly upgraded mach:m
like disk machme.pmwded it offers the same version of RDBMSs on diverse machines,
legacy applications‘an old machincs or geographically separated can meet all mquutmcnls
of an enmrpu'iw

244 Comp&ents of Client/Server Computmg

"I‘he Server

The, server.machines could be running NOVELL LAN or INTEL bascd server or UNIX from
SCOorAT&T or U'NIXbcmg run on RISC machines like HP, SUN Microsystems, IBM, BCA-15/179
Compag etc.

Emerging Trends in Database
Management System

BCA-1.5/180
»

These server machines should be running on RDBMS cngine like Sybase, Oracle, Informix
etc. The server machine takes care of data storage, backup, recovery and database services.
It is typically a multiuser machine catering to large number of requests submitted from the
client machine or executing requests for RPCs/Stored procedures. The database engine
exccuies the requests and sends the resull 1o the clicnt machine and the prescntation service
of the client machine puts the received data in required format. Some of the databases take
care of the file handling, the 1ask and uscr handling themselves. The server also allows
certain constraints at table level or ficld level to be incorporated. The field level validations
are generally called rules c.g. if cmployee cede is 4 chars, all numeric starting with digit
other than 0. In employee table this constraint can be attached to the field itself. It would
eliminate writing a code for field validation on this field in each table. If the existence of the
employee code is to be checked before entering employee pay details for a month, it would
involve two tables : employee pay detail and employee master. These types of checks are
called referential integrity constraints. If these constraints can be incorporated in the database,
then we can reduce large number of application code. More than that, it will be ensured that
application errors do not effect the-integrity/reliability of the data stored in the database,

These types of integrity checks are called Database Triggers. The advanced RDBEMSs also
allow on-line database backup, schema modification and performance and tuning. Database
stored procedures are certain more repetitively executed pieces of code stored in the database
itself, written in the extended form of SQL called T-SQL in Sybase. PL/SQL in Oracle 7.
These fast and compiled scrver resident procedures improve performance by reducing
network traffic and by allowing a single copy of the procedure to large number of users.
Stored procedures can be executed by client machine. Remote procedure calls on the
contrary are generally invoked by servers which enables distributed database processing
when the information is available on multiple servers. RPCs can handle the situation very
efficienuly. In the eatlier versions of RDBMSs process for users design was followed, so
number of processes on a machine would be directly propertional to the number of users
currently using the RDBMS. This resulted in tremendous degradation of performance as
number of users grew in number. The reason being, after sometime the user processes go
into swap. Sybase pioncered the multithreaded RDBMS design in which, irrespective of the
number of users taking database services, the database process code just be one. Today, most .
of the important RDBMSs provide for multithreaded server design. The multithreaded
architecture combined with server integrity, Client Server Architecture, connectivity to

_networking protocol, connectivity to heterogencous databases has resulted in major

movement towards enterprise wide computing.

2.5 THE CRITICAL PRODUCTS

In this section we will briefly look at some tools to implement client/server environment.
2.5.1 Object Oriented Technology (OOT)
The fundamental ideas underlying OOT are:

» Abstraction

¢+ Objects

« Encapsulation

o s Classes and Instance

’ Inherim_noe
. Me&age
+ Methods

How QOT differs from structured programming?

Structured Programming
Data and code are separate and code'operates on data.

00T

' Data and procedures are together and the object responds to messages.

Abstraction " Introduction to Cllent/

:hmmemofmnmmgomdtsummshetwecnobmmmﬂwemm i
- commonalties. The result of an abstraction process is a concept or object type. One of the

" forms of abstraction is Data Abstraction, Here only the selected properties of the object are

made visible to the outside world and their internal representation are hidden. The object

model has a greater advantage over conventional languages that the lower level

implementation details are not visible,

Object

An object is any thing, real or abstract, abc:1t which we store data and those methods that
manipulate the data. Its an encapsulated abstraction that includes state information and a
- clearly defined set of access protocol (messages to which object responds). It is a software
package which contains related data and procedures. The basic concept is to define <oftware
objects that can intersect with each othujustas I‘.IIBlr real-world ooumrpartsdo

Anobpcuypelsacategorynfobm An object. lsaninstanccofm ob;ecttype.

Enmpsulaﬁon_ _
Packaging data and methods together, is called Encapsulation.

Its advantages are:
+ Unnecessary details are hidden.
+ Unintentional data modification is avoided i.e. provides security and reliability.

« - Presents interference with the internals and also hides the complexity of the
components. Thus, encapsulation is important because it separates how an object
behaves, from how it is unplemenwd.

Classes
A class is an implementation of an object lypeandjsdef‘medbyandmdcﬁmdbyaclms
description that defines both the attributes and messages for an object that class; It specifies

a data structure and the permissible operational methods that apply to each of its objects.
Classes can also be objects in some object oriented language.

An object is an instance of a class. The properties of any instance (object) are given by the
class description of its class, Thus,

«* Class is template that helps us to create objects.

+ Classes have names (class identifier) that indicates the kind of objects they
represent. '

» Classes may be arranged in hierarchy with subclass representing more specific
kinds of objects than their super class,

Inheritance

Inheritance allows the developer (o create a new class for object from an existing one by
inheriting the behaviour and then modifying or adding to it. It provides an ability to crcate
classes that will automatically medel themselves on other classes. Sometimes a class inherits
propertics of more than one superclass, then its called MULTIPLE INHERITANCE. This
inheritance leads to a “Class Hierarchy™. It is a network of classes that starts with the most
general as the uppermost branches and descends to the bottom leaves which are most
specific. The power of an Object Oricated enwrcmmcnt is defined by the Class Hicrarchy
and its capabilities.

Its advantages are:
* Reusability of code
« Avoid duplication of code

* Reduce cost of maintenance BCA-1.5/181

mmum
Management System’

BCA-15/182
o,

Message
A message is

. hq)mﬁcsymbolidmuﬁﬂmkcy-wwd(s)wnhWWMpnmm&i
mmmtobewkmbymohjmt. :

. Onl;rwaymcmmunmwhannhmmﬂnwghmm

= Annbmhmmm:mmmmfcmmobjmmwmm
it does it.

* Amessage is not restricted to one recipient object but to multiple object.
In a conventional programming language an operation is invoked by calling a named

procedure and supplying with it the data to act on. Iflhcwmngdatammpphedtheml;,
results will be returned.

Methods
They are often called SELECTORS since when they are called by name they allow the
system to select which code is to be executed.

¢ Methods are description of operations.

. Mw'ma_mpmmtofobject.

. Misaldoumﬂmﬂuwgbmﬁmgmandmmamumd
-whmamemistemiwdbyagimnbjed.'

. 'I‘hemmmsaga might mukﬁdiﬂ‘mmd.

-'Ihmcmweptslmebm also explained in the previous unit.

252 Distributed Computing Environment

Dimﬂ:nﬁngmmmmmminmm hmaj:hiullydimlnm
and underlying applications. These computers could be of different types with different -
systems, even the RDBMSs. hmnhnnﬁﬂmhmmmschmmm

.Operating
“like Powerbuilder, VisualBasic, Uniface eic.

Issues involve:
* . Networking multiple machines.

. IﬂmﬂlﬂRDBMSnpplmMmubbﬂdeMywm-ﬂwm
A2PC) or replicated setver/table.

Global Dictionary.

mmmmmemkmmmW
action on distributed transactions. ‘This caters to location transparency e.g. if the salary of all
ﬂnpopbmlmmmbdmmwmmwhighwbyﬂ%.lhm .
statement need not specify the location name where G2's data has to be changed. A
mdnﬂhrmimmasedmhryoﬂﬂbym;luhﬂywiﬂdﬂ. § o

Two Phase Commit: (2PC)
thC.ﬂwmmquplmamdwdmumﬂuthynfmﬂM;mh
all the Tocations. In phase two, after sending the transactions to the-individual participating -
servers and réceiving OK from them on updation, mmmummcomm
to all-the participating setvers.

_ Repluidsenernhhle-

Inﬂmmllnd, ummmsuwmﬂmnm
server sites. The replication server ensures tiiat when there is a change in the.

participating:
replicated table; the change transmitted to all the locations. ‘This enables reduced network

traffic and lays prone 10 application storage owing fo network failure,

The communication between heterogenéous database is don throngh database gateways.

2.5.3 Application Programming Interface (API)

Itis simply a specification of a set of functions that allow client and sérver processes to
communicate. It hides the underlying platform hardware and software from the developer.
APIs show the developer a single-system image across a heterogeneous network of
processors. e.g. Open Database Connectivity (ODBC). The primary advantage of
developing the client application using a standard API is that the resulting application can
use any back-end database server rather than just a specific server. The primary
disadvantage is that they generally include the least common denominator of all tools and
database servers that support the standard. So consider the use of API only if two or more
databases servers are used. :

2.54 Multithreaded Processes

A single process can have multiple threads of execution. This simply means that a single
multithreaded process can do the work of multiple single-threaded processes. The advantage
of a multithreaded process is that it can do the work of many single-threaded processes but
requires far less sysiem overheads, If a database server uses multithreaded server processes,
it can support large number of clients with minimal system overheads. The user processes
and server processes are different and one server process can serve multiple user processes.
This configuration is called Multithreaded Architecture.

255 Rémnte Procedure Cal_ls (RPC)

With RPC one component communicate with a remote component using simple procedure
calls. This involves peer to peer messaging. Ifan application issues a functional request and
this request is embedded in an RPC, the requested function can be located anywhere in the -
enterprise, the caller is authorised to access. The advantage of this process to process
epmmunication is evident when processors are involved in any simultaneous processes.
New client applications that use object-level relationships between processes provide need
for this type of communication e.g. a client requests information from a server by connecting

to the server, making the request by calling low-level procedure native to the database server, . -

and then disconnecting. To respond toa request, the server connects to the application and
calls a low-level procedure in the application. ; ;

RPC is typically transparent to a user, making it very easy to use. The RPC provides facility
for the invocation and execution of requests from processors running different operating
systems and using different hardware plaiforms from the callers.

.2.5.6 Dynamic Data Exchange (DDE)

Through a set of APIs, windows provide calls that support to the DDE protocol for
message-based exchange of data among applications. DDE can be used to construct
HOT-LINKS betwéen applications where data can be fed from window to window without
operation intervention, DDE support WARM-LINKS that we can create so the server
application notifies the client that the data has changed and client can issue an explicit
request to receive it. We create REQUEST-LINKS to allow direct copy and paste operation
between a server and client without the nced for an immediate clipboard. No notification of
change in data by the server application is provided.! EXECUTIVE LINKS cause the
execution of one application to be controlled by the another. This provides an easy to use
batch processing capability. Thus, using DDE, applications can share data, execute
commands remotely and check error conditions. "

2.5.7 * Object Linking and Embedding (OLE)

Linking is one way of attaching information from one application to another. Link can be
locked, broken or reconnected. Linked information is stored in source application.

Embedding makes the information to be embedded, a part of the destination document, thus
increases ils size. ' ' '
OLE is designed to let users focus on data rather than on the software required to manipulate
‘the data. A document becomes a collection of objects, rather than a file. Applications that
are OLE-capable provide an APT that passes the description of the object to any other
- application that requests the object. OLE is perhaps the most powerful way to share .
‘information between documents. In order to link an object created in another application to
another file, but applications need to be running in the same environment i.e. €ither DDE or
OLE.

Introduction to CHent/
Server Database

BCA-1.5/183
23

Emerging Trends In Database
Management System

BCA-1.5/184

Advantages of OLE
¢ We can display an embedded or linked cbject as an icon instead of its full size.

» We can convert an embedded or linked 1o a different application.

2.6 DEVELOPING AN APPLICATION

' C/S application developments requires broadly dividing the application into two categories:

« Server Coding
+ Client Coding
Server Coding :

Creation of Database _

It has two major phases—the design phase and the creation phase. The design phase
includes planning file limits, size and location of the initial data files, size and location of the
new database transaction log groups and members, determining the character set to store
database data. Once we have planned a new database we can execute it using the SQL
commands.

Creation of Tables
Once database is created, the tables to be kept under this database are designed. The table is

- comprised of columns and the properties of these columns are decided i.e. whether the field

is null or not null, which is the primary/foreign key etc.

Creation of Database Triggers -

Triggers ensure that when a specific action is performed, related actions are performed. It
also ensures that centralised, global operations should be fired for the triggering statement,
regardless of which user or database application issues the statement. By default, triggers are
automatically enabled when they are created. A pre-defined or user-defined error conditions
or exception may be raised during execution of a trigger, if so, all effects of the trigger -
execution are rolled back, unless the exception is specifically handled.

Creation of Stored Procedures

A stored procedure is a schema object that logically groups a sel ofSQLand PI.."SQL
programming language in Oracle and T-SQL statements in Sybase together to perform a
specilic task these are created in a user schema and stored in a database for continued use.
These can be invoked by calling explicitly in the code of a database application, by another
procedure or function or by a trigger. It is defined 1o complete a single, focussed task. It
should not duplicate functionality provided by another feature of the server e.g. defining.
procedures to enforce data integrity rules that may be enforced using integrity constraints.

" Creation of Server Enforced Validation Checks

This is done through database integrity rules, It guarantees that the data in a database
adheres to a predefined set of constraints. *Its a rule for a column of a table which prevents
invalid data-entry into the tables of a database. It is stored in a data dictionary. It supports
entity integrity and referential integrity. Rules depend on type of data and condition
specikied at time of access of data and frequently accessed as a check on transaction and not
as a cbnstraint on the database,

Creatior of Indexes

Indexes are used Lo provide quick access to rows in a table. Itprovtde faster access o data
for operations that return a small portion of the rows of a table. Indexes should be created
after loading data in aable. Index those columns which re-used for joins to improve
per{umanpe on joins of multiple tables.

\
Creatmsp of Views

- V:ev}sarc created to see the same da:a that is in database tables, but with a different

rope ive. A view is a virtual table, deriving its data from base tables, Views are used to
imitidceess to specific table columns and create value-based security by defining a view for j

a specific rows. Views can also be uscd to derive other columns not present in any table e.g.
~ calculated field. :

2.7 STRUCTURED QUERY LANGUAGE (SQL)

It has emerged as the standard for qmrjr language for relational DBMSs. Its original version
was called SEQUEL. It is still pronounced as SEQUEL.SQL is both the data definition and
data manipulation language of a number of relational datalmsnsystmse.g. Oracle, Ingres,
Sybase, Informix etc.

Note: In this discussion, we would be taking exampies 1or Hotel database having two
tables:

- Employee (Emp_no, Name, skill, Pay_rate)
" Duty_allocation(Posting_no, Emp_no, Day, Shiff)

2.7.1 Data Definition Language (DDL)
Data definition in SQL is via the create statement.
-Create A Table:
Syntax:
Create table < relation (attribute l:st)
_<atributelist> = <attribute name > (<data type>)
[< attribute list >]
< data type > = < integer > Icsmllint:-Icchm{n):-lcvm:::ar:vkﬂnm:l«:decimal:
@La)>
Note: In above syntax, relation means table (i.¢. file), while attribute means fields or
columns. In addition, some data types may be implementation dependent.
For example, the employee relation for the Hotel database can be created as:

create table Employee
(Emp_no integer not null,
Name char (25),

Skill char 20),
Pay-rate decimal (10,2))

Alter Table

The definition of an existing relation can be altered by using thaaltermm Ttallows
the new column to be added. The physical alieration occurs only during an update of the

~ recorg.

Syntax:
alter table cxistmg_mb]e_name
add column_name data type(...}

For example, to add phone_number attribute to the employee relation alter table Employee
add phone_number decimal(10)

Create Index
It allows the creation of an index for-an already existing table.

Syntax:

create[unique] index name_of _index

on existing_table_name
(column_name[ascending or descending]
[,column_name[order],...]) [cluster)

Cluster option is used to indicate that the records are tubeplmd in physical proximity 1o
each other.

Introduction to Client/
Server Database

BCA-1.5/185
25

Emerging Trends in Database
Management System

BCA-1.5/186

2

A
e

meph.dﬂﬂememph&rumpbyukonhtheﬁmpb}mmhﬁm

For example, create an index (named empindex) on Employee relation using columns: Name
and Pay_rate :
Create index cmpindex
on Employee (Name asc, Pay_rate desc)

Drop Table/Index
It is used to delete relation/index from the database.
Syntax:
y drop table existing_table_name
drop index existing_index_name

2.7.2 Data Manipulation Language (DML)

- Select Statement

It is the only data retrieval statement in SQL. Iusbamdonrelamnal calculus and entails
selection, join and projection.

Syntax :
select [distinct/unique] <target list>
" from <relation list>
[where <predicate>]
[order by attribute_name desc.'asc]
[group by attribute_name]
[having value_expression]

For example, find the values for attribute Name in the cmplo:,reé relation.

select Name

from Employee ‘

For example, get Duty_allocation details in ascending order of Day for Emp_no 123461 for
the month of April 1986 as well as for all employees for shift 3 regardless of dates.

select *
- from Duty_allocation
where (Emp_no = 123461 and Day 19860401 and |
Day = 19860430) or shift = 3)
order by Day asc

Update Statement
Syntax :
update <relation> set <target_value_list
[where <predicate>]
<iarget_value_list> = <attribute name> =
<value exp> L -:tm'gr,uralua__lmt

For example, cMngePaymmSofthemplo}ﬁeRmmtheEmployeerehuun

update Employee
set Pay_rate=8
wlnre-Nanwy‘Run‘

f Delete Statement

ltdelewsmmrmoremmdsmlhcrdauon.

Syntax:
“. delete <relation>
wheredprediutezr]

Ifarhueclmmnslcftout.allﬂwmpbeammcrdamnmddmd Inﬂmma.l.hemhuonk

-ﬂmhmmlhedauhasealﬂaoughulsmempwmlam

w

delete < relation >

[where < predicate >]
Insert Statement
* It is used to-insert new tuples in a specified relation.
Syntax : :
insert into < relation > (< target list >)
value (< values list >)
< value list > = < value expression > [, < target list >]
We can replace value clause by sclect statement.

e Inseta tuple for the employee Ron.
insert into Employee
values (123456, ‘Ron’, ‘waiter’, 8)

Condition Specification

SQL supports the following Boolean and comparison aperam and, or, not, =, <>, >=>, <, '

<=, like. If more than one of the Boolean operators appear together, not has the highest
priority while or has the lowest. Parcntheses may be used to indicate the desired order of
evaluation. :

Arithmetic and Aggregate O, rators
Avg
Min
Max ‘
Sum
Count
For example, find the average pay rate for employee working as a chef, -
select avg (Pay_rate) '
from Employee :
where skill = ‘chef’
For example, get the number of distinct pay rates from the Employee relation.

select cﬁunt (distinct Pay_rate)
from Employee

For cxample, get minimum and maximum pay-rates.

select min(Pay_rate), max(Pay_rate)
from employee

Join

SQL does not have a direct representation of the JOIN operator. However, the type of _]um '

can be specified by an appropriate predicate in the where clause of the select statement.
For example, retrieve the shift details for employee RON.

select Posting_No, Day, Shift

from Duty-allocation, Employee

where Duty-allocation. Emp_No

= Employece.Emp_No
and
Name = ‘Ron’

SQL uses the concept of tuple variables {rom relational calculus. In SQL a tuple variable is
defined in the from clause of the select statement.

" For example, get employees whose rate of pay is more than or equal to the pay of employee
Pierre, '

Introduction to Client/
Server Database

BCA-1.5/187

27

Emerging Trends ia Database : select el.Name, e2.Pay-rate

Management System from Employee el, Employee €2
where el.Pay- rate > 2 Pay
and
¢2. Name = ‘Pierre’

Set Manipulation

SQL provides following set of operators:
Any
In
Exists
Not exists

* Union

Minus
Intersects
Contains

When using these operators, remember that the statement “select...” retumns a set of tuples.

Any :
It allows the testing of a value against a set of values,

F'D'I; example, get the names and pay rates of employees with employee number less than
123469whoscrawol’payl.smmlhanmcmmﬁpaynfmleastonemplcyeewlﬂm
employec-No >= 123460,

scloct Name, Par-mm '
from Employee
where Emp-No 123480
and
Pay-rate > any (sclect Pay-rate
: from Employee
where Employee >= 123460

In _ :
Its equivalent to = any.

For example, get employees who are working either on the date 19860419 or 19860420
select Emp_No '
from Duty-allocation _
where Day in (19860419, 19860420)

-Cunlain.s
It is used tolcstfa’tlmcnntmnmtofmc set in another

For exampie find the nmnesof all the employees who are assigned 1o all,ih posmms that
require chef's skill,

select e Name |
from employee &
where :
(select Posting_no
from Duty_allocation d
where e.Emp_no=d.Emp_no 3
comams ;
- (select p.Posting_no
from Positicn p
where p.skill = ‘chef™ Y.

* Position is another relation of Hotel databose:

BCA-15/188 Position (Posting_no, skill}/

28--

All o
For example, find the employees with the lower pay-rale

~ select Emp_No, Name, Pay-rate
from Employee : :
where Pay-rate <=all
(select*
Pay-rate from Employee)

NotIn
It is equivalent to # all

Not Contain
It is complement of contains

Exists _
exists (select x from ..)

It evaluates to true if and only if the l-'esull. of “select x from ...” is not empty.
.For cxample, find the names and pay-rate of all the employees who are a!iocatedla duty.

select Name, Pay-rate
from Employee
where exists
' (sclect *
from Duty-allocation
where Employce. Emp_no =
" Duty_allocation.Emp_no

Not Exists
It is complement of exists.

For example, find the name of pay rate of all the employee who are not allocated a duty.

select Name, Pay-rate
from Employee
where not exists
(sclect *
from Duty-allocation
where Employee.Emp_no =
Duty_allocation.Empl_no)

Union
Duplicates are removed from the result of a union,

For example, get employees who are waiters or working at posting-no 321.

select Emp-No

from Employee

where skill = ‘waiter’

union -
(sclect Emp-No
from Duty-allocation
where Posting-No = 321)

Minus)
For example, get a list of cmployeés not assigned a duty.

select Emp-No
from Employee
minus
(select Emp-No
~ from Duty-allocation)

Introduction to Clicat/
Server Database

BCA-1.5/189
29 .

Emerging Trends in Database

Maunagement System

BCA-1.5/180

Intersect
For example, get a list of names m“'cmployees with the skill of chef who are assigned a duty.

sclect Name
from Employee
where Emp_no in
{(select Emp_No

from Employee
where skill = ‘chef”
intersect
(select Emp-No
from Duty-allocation))

Catgorization
Sometimes we need 10 group the tuples wuhsmneoommunmandpm‘mmm

group operations on them. For this, we use group by and having options in where clause,

For example, get a count of different employees on each shift.

select shift, count(distinct Emp_No)
from Duty-allocation
group by shift

For example, get a count of different employees on cach shift.

select shift, count(distinct Emp-No)
from Duty-allocation
group by shift
For example, get employee number of all employees working on at least two dates.
select Emp-No
from Duty-allocation
group by Emp-No
having count(*) > 1
View

meeplualorphyswalrelatmnsarecalledﬂaserelaums. Any relation that is no part of the
physical database i.e. a virtual relation, is made available to the users as a view. Amwcm

be defined using a query expression.

create view <view name>

as <query expression> _
For example, create a view named Emp_view containing the ficlds Emp_No and Name from
Emplpyet relation.

create view Emp_view

(select Emp_No, Name

from Employee)
DROP YIEW
Drop view view-name

2.8 CLIENT/SERVER: WHERE TO NEXT?

Clicat/Server Computing has a great future shead. The successful organizations have to be
market driven and competitive in the times to come, and they will use Client/Sex 2r”
Omnpnmgmdwmmﬂmgmchmbgymaddvalmhﬂﬁrbuﬁm

qutumclnapandpowcrhﬂwkmuomwﬂlbeavuhbbmnﬂmdmwhuwdas
clients to access the information on the servers which are distributed globally. The futire

Client/Servey Information System will provide the information from data in its original form,” .

&.g. image, video, graphics, documents, spreadsheets etc. without the need to be specific -
am:mmmmmmamm

The future trends in networking show that there is going to be an explosion in the number hwﬂ;’;g&“
network users and more than 70% users, and obviously most of them will use Client/Server =
as the underlying technology. The networks of the future will support much higher

bandwidth (of the order of 100 Mbps) by using the technologies like corporate networks will

cut across the boundaries of cities or even countries and they will be connected to major

networks around the world. An organization living in isolation will not survive in future. -

The future Client/Server Information Systems will use the object oriented programming—
QOP. Techniques to make zero defect applications. The OOPs will provide the capability to
reuse previously tested components. The reuse of already tested components is quite
common in most engineering and manufacturing applications (or even the hardware design),
the OOPs makes it for the software development too.

The future Client/Server will cover the systems such as Expert Sysiems, Geographic
Information Systems, Point-of- Services, Imaging, Text Retrieval, Document Management
Systems or Electronic Filing Systems, Executive Information Systems, Decision Support
Systems elc., alongwith the data handling in OLTP (On Line Transaction Processing) and
real time environments.

Check Your Progress
1. Duscuss trade-off between mainframe and Client/Scrver environment.

2.9 SUMMARY

The first major challenge for business today is staying competitive in a changing liberalized
global economy. Success, even survival, depends on how quickly and accurately one can get
up-to-daie information so that major business decision can be taken without any delay.

The availability of a vast amount of knowledge and information needs integration of
computer and communication systems.

There is a paradigm shift today in using techruilug}- for finding solutions/information from
the earlier days.

» Inthe 1960s by centralized mainframes
« Inthe 1970s by minicomputers, as distributed data processing
« Inthe 1980s by the personal computers (PCs) and Local Area Networks (LANs)

+ Inthe 1990s by Client/Server architecture which use as server product ranging from
UNIX and NT box's to Database Computers (DBCs) and supercomputers.

Companies that have moved out of this mainframe system to ClnewServer architecture have
t'nmd three major advantages:

« Client/Server technology is more flexible and responsive to user needs
e A significant reduction in data processing costs

. Ammscmbnﬂnessconmeuﬁvmasmemmketedgeummwards
rm,rchandlsmg

2.10 MODEL ANSWERS

1. Inamauinframe all operations take place on one sysiem. This type of dnvironment is s S
being 11sed for the last 30 years, but it is: :

31

En-m-glng'l‘rend: in Database
Managzment System

BCA-1.5/182
'32

o

* Highly costly

« Highly inflexible

* Quite slow because. of contention

* Lessreliable
By contrast to this monolithic approach Client/Server (shown in figure 2) provides a
low-priced robust solution to user requircments. This approach permits downsizing

production subsystem while allowing the clients and servers the necessary tools and facilities
to control, manage and tune the environment in which they operate.

END-USER
WORKSTATIOM

Figure 2 : A layered approach to craputing enhances functionality mdlnu-uﬁ Nexibllity,
speed and reliability at low cost. ' !

Most Client/Server solution are also very attentive in matters of security, Access to any
resource can be defined to the file level, with such access being controlled through :
identification and authorisation. Logically defined closed use groups can be setup to enable
&menmhgofmuﬂtymmnesbyuemmkadminiwm

2.11 FURTHER READINGS

1. Developing Chenﬂ'Sewa Applications by W.H.Ilmwn

2 GWWMMWWIMS&!M!
3. khwmg&mbmdmmﬁmmmmungbﬁmmmsh
4. BSG Clieny/Server Computing by SHL System House
5. Featuring SQL standard by Hayden Book

Dammmwﬂhmu&mammpmgbymm&mm
Strategies.

Datapro report on Chmwuvu-&nlbngeby FDDIorEthm Smtc!m
Datapro report on The I-hddnqustﬁfCﬁmﬁeawrCmnpuﬂng

H

I

9. Client/Server Computing by Patrick Smith and Steve Guengerich Introduction to Cllent/
10. GUI based Design and Development for Client/Server Applications using Power ' '
Builder, SQL Windows, Visual*Basic, PARTS Workbench by Jonathan S.Sayles, Steve
Karlen, Peter Molchan and Gary Bilodeau.

11. Beyond LANS Client/Server Computing By Dimitris N. Chorafas; McGraw-Hill Series
on Computer Communication;1994.

BCA-1.5/183
33|

BCA-15/194
3“..

UNIT 3 INTRODUCTION TO KNOWLEDGE
DATABASES

Structure.

3.0 Introduction
3.1 Objectives
3.2 Definition and Importance of Knﬂwledge
3.3 What is a Knowledge Base System?
34 Difference Between a Knowledge Base System and a Database System
3.5 Knowledge Representation Schemes
3.5.1 Rule Based Representation
3.5.2_ Frame Based Representation
3.5.3 Semantic Nets
354 Knowledge Representation Using Logic
36 Summary
3.7 Model Answers
3.8 Further Reading

3.0 INTRODUCTION

Aknowledge base management system (KBMS) is a computer system that manages the
knowledge in a given domain of interest and exhibits reasoning power to the level of a
human expert in this domain. In typical Anificial Intelligence (AT) application, knowledge
éepresentation requires data structures with rich semantics that go beyond the simple
structure of the relational model. Al is the part of computer science with designing
intelligent computer systems, that is systems that exhibit the characteristics we associate with
intelligence in human behaviour. Furthermore, operations in a knowledge base are more
complex than those in traditional database. When a rule is added the system must check for
contradiction and redundancy. Such operations cannot be represented directly by relational
operations and the complexity ufcheckmg increases rapidly as the size of knowledge base
ZrOws.

3.1 OBJECTIVES

After going through this unit you will be able to
o define what is knowledge, hypothesis and belief
« explain what is a Knowledge base system
. 'dlfferenﬁa.te between Knowledge base sysiem and a database system
+ list several knowledge representation schemes

3.2 DEFINITION AND IMPORTANCE OF

KNOWLEDGE

Definition and l’mpnrianoe of Knowledge

Knowledge can be defined as the body of facts and prmttples accumulated by
human-kind or the act, fact or state of knowing. While this definition may be true, itis
far from complete. We know that knowledge is much more than this. It is having a
familiarity with language, concepts, procedures, rules, ideas, abstractions, places,
customs, facts and associations, coupled with an ability to use these notions effectively in
modelling different aspects of the world. Without this ability, the facts and concepts are
hmmngless and, therefore, worthless. The meaning of knowledge is closely related to the
meaning of intelligence. Intelligence requires the possession of and access to knowledge. -
And a charact®ristic of intelligent people is that they pusscss much kwwledge.

In biological organisms, knowledge is likely stored ascomplex structures of interconnected -

neurons. The structures correspond 10 symbolic representation of the knowledge possessed
by the organism, the facts, rules and so on. The average humane brain weighs about 3.3
- pounds and contains an estimated number of 10'2 neurons. The neurons and their -
interconnection capabilities provide about 10' bits of potential storage capacity.

In computers, knowledge is also stored as symbolic structures, but in the form of collections
of magnetic spots and voltage states. State-of-the-art storage in computers is in the range of
102 bits with capacities doubling about every three to four years. The gap between human

and computer storage capacities is narrowing rapidly. Unfortunately, there is still a wide gap

A common way to represent knowledge extemal to a computer or a humane is in the form of
writlen language. Fmemple.mefadsandrelationsmpmwd in printed English are

Jancy is tall.
Ram loves Sita.

- Som !mslmmedmusemmsnnwmampulmnmarymmmualpmmmmg
lmgmgm. :

'I'heﬁrstmufhmwledgeaboveaxmmaﬂmplefact,anamhueposmssedbya
person. The second item expresses a complex binary relation between two persons. The
mudmmmemmmmu,mmmgmwmmamnmdmm
programming concepts. Touutyundm'mndandmaxeusconmskmledgc,npamnmcds
other world knowledge and the ability to reason with it.

Knowledge may be declaratlve or procedural. Procedural kmmledge is mmpi.'led .
knowledge related to the performance of some task. For example, the steps used 1o solve
an algebraic equation are expressed as procedural knowledge, Declarative knowledge, on
the other hand, is passive knowledge expressed as statements of facts about the world.
Personnel data in a database is typical of declarative knuwlcdge. Such dal:a are explicit
pleoes of independent I:nowledge.

- Frequently, we will be interested in the use of lmmstic knowledgt, a special type of
*knowledge used by humans (o solve complex problems. Heuristics are the knowledge
used to make good judgments, or the strategies, tricks or “rules of thumb” used to
‘simplify the solution of problems. Heuristics are usually-acquired with much experience.
For example, in locating a fault in a TV set, an experienced technician will not start by
making numerous voltage checks when it is clear that the sound is present but the picture is
_not, but instead will immediately reason that the high voltage flyback transformer or related
component is the culprit. This type of rcasoning may nntalways be correct, but it frequemly
is, and then it leads to a quick solution.

Knowlcdge should not be confused with data. Some scicnlists emphasize this difference
with the following example. A physician treating a paticnt uscs both knowledge and data.
The data is the patient’s record, including patient history, measurements of vilal signs, drugs
given, response to drugs, and so on, whereas the knowledge is what the physician has leamned
in medical school and in the years of internship, residency, specialization, and practice.
Knowledge is what the physician now learns in journals. It consists of facts prejudices,
beliefs, and most mpomnl.ly, heuristic knowledge. -

Thus, we can say that knwlcdge includes and requires the use of data and information. But
itis more. It combines rclauonsh:ps,corrciaunns dcpem.lcnc:cs. and the muon of gestalt
with data and information.

Even with the above distinction, we have been using knowledge in 1tsbmadersemupm :
this point, At times, however, it will be useful or even necessary to distingunish between
knowledge and other concepts such as belief and hypotheses. For such cases we make the
. following distinctions. We define belicf as essentially any meaningful and coherent
expression that can be represented. Thus, a beliel may be true or false. We define a

~ hypothesis as a justified belicf that is not known to be truc. Thus, a hypothesis is a belief
which is backed up with some supporting evidence, but it may still be false. Fmally, we
define knowledge as true jllstlﬁeﬂ belief.

Two other knowledge ierms whlch we shall occasionally use are epmtcmlogy md
‘metaknowledge. Epistemology is the study of the nature of knowledge, whereas
_metaknowledge is knowledge about knowledge, that is, knowledge about what we know.

Introduction to

BCA-1.5/195
35

Emerging Trends in Database
Management System

BCA-1.5/156

I
e S

In this section we have tried to give a broader definition of knowledge than that commonly
found in dictionaries. Clearly, we have not offered a scientific definition, we are not able to
measure knowledge. How then will we know when a system has enough knowledge to
perform a specified task? Can we expect 10 build intelligent systems without having a more
precise definition of either knowledge or intelligence? In spite of our ignorance about
knowledge, the answer is definitely yes.

Finally, our overall picture of knowledge cannot be complete without also knowing the
meaning of closcly related concepts such as understanding, learning, thinking, remembering,
and reasoning. These concepts all depend on the use of knowledge. But then just what is
leaming, or reasoning, or understanding? Here too we will find dictionary definitions
lacking. And, as in the case of knowledge and intelligence, we cannot give scientific
definitions for any of these terms either.

The Importance of Knowledge

Al has given new meaning and importance to knowledge. Now, for the first time, it is
possible to “package” specialized knowledge.and sell it with a system that can use it to
reason and draw conclusions. The potential of this important development is only now

‘beginning to be realised. Imagine being able to purchase an untiring, reliable advisor that
. gives high level professional advice in specialised areas, such as manufacturing techniques,

sound financial strategies, ways to improve one’s health, top marketing sectors and

‘'stralcgies, optimal farming plans, and many ether important matters. 'We are not far from the .

practical realisation of this, and those who create and market such systems will have more
than just an economic advantage over the rest of the world,

3.3 WHAT IS A KNOWLEDGE BASE SYSTEM?

One of the important lessons leamed in Al-during:the 1960s was that general purpose

“problem solvers which used a limited number of laws or axioms were too weak o be

effective in solving problems of any complexity. This realisation eventually led to-the design
of what is now known as Knowledge base system, systems that depend on a rich base of
knowledge to perform difficult tasks.

Edward Feigenbaum summarised this new thinking in a paper at the International foint
Conference on Antificial Intelligence (IJCAT) in 1977. He emphasised the fact tha: the real
power of an expert system comes from the knowledge it possesses rather than the particular
inference schemes and-other-formalisms-itemploys. This new view of Al sysiems marked
the turning point in the development of more powerful problem solvers. It formed the basis
for some of the new emerging expert systems being developed during the 1970s iacluding

- MYCIN, an expert sysiem developed to diagnose infectious blood diseases. An-expert

system contains knowledge of experts in a particular domain along with an inferencing
mechanism and an explanation-sub-system. It is also called knowledge base system.

Since this realisation, much-of the work donc in AT has been related to so-called Knowledge -
base systems, including work in vision, learning, general problem solving and natural
language understanding. This in turn has led to more emphasis being placed on research
related 1o knowledge representation, memory organisation, and the use and mampulnum of

- knowledge.

!
Knowledge base systems get their power from the cxpenhmwludge that has been cndq:l into
facts, rules, heuristics, and procedures, The knowledge js stored in a knowledge base

‘separate from the control and inferencing components. This makes it possible to add new;

knowledge or refine existing knowledge without recompiling the control and lnfuew
programs: This greaily simplifies the construction and mﬁimenamc of meledgc

“system§

.. In the knowledge lies the power! This was thsme.ssageleamad afew fmgiated researchers
3 alS&nfcutl Unwers:ly during the late 1960s and early 1970s.

Input Output = Infmoe—cunu'ol e Kpowledge
unit ; e unit- = - base ,

" Figure 1 Components of fKnowledge-hysed system.

" The proof of their message was provided in the first Knowledge base expert systems which _ Introduction to
were shown to be more tham 10y problem solvers, These first systems were real world _ Rlodus Ds nimess
problem solvers, tackling stich tasks as determining complex chemical structures given only

the atomic constituents and mass spectra data from samples of the compounds and later

performing medical diagnoses of infectious blood diseases.

Using the analogy of a DBMS, we can define a knowledge base management systema
(KBMS) as a computer system used to manage and manipulate shared knowledge. A
knowledge base system’s manipulation facility includes a reasoning facility, usually
including aspects of one or more of the following forms of reasoning : deductive, inductive,
or abductive. Deductive reasoning implies that a new fact can be inferred from a given set
of facts or knowledge using known rules of inference. For instance, a given proposition can
be found to be true or false in light of existing knowledge in the form of other propositions
believed to be either true or false. Inductive reasoning is used to prove something by first
proving a base fact and then the increment step; having proved these, we can prove a
generalized fact. Abductive reasoning is used in generating a hypothesis to explain
observations. Like deductive reasoning, it points to possible inferences from related
concepts; however, unlike deductive reasoning, the number of inferences could be more than
one. Thehhehtmdofhmngwhxhnfﬂmm&mmmmpmdsmﬂnmnmof
the system can be gleaned from the explanations generated by the system, These- -
_ m@mmfﬂmchwmmgth&uahummmdmﬁhﬁﬂmﬁﬂ
conclusion. :
In addition to the reasoning facility, ahmwledge.bmsyxmm may incorporate an
explanation facility so that the user can verify whether the reasoning used by the system is
. consistent and complete. The reasoning facility also offers a form of tutoring to the
uninitiated user. The so-called expert systems and the associated expert system generation
facilities are one form of knowledge base systems that have emerged from research labs and
are being marketed commercially. Since a KBMS includes reasoning capacity, there is a
-clwbcnefumummamgthmmwnmgpowmdmbascapplmmmmm
lmgmgesmchasCOBOLmdPasml

- Most knowledge base systems are still in the research stage. 'l'heﬁmmuuf
commercial KBMSs are just beginning to-emerge and integration of a KBMS with a DBMS
is a current research problem. Ehwevermehudwayhmhemnﬁdemﬁemmﬁ
expert systems in day-to-day database applications.

3.4 DIFFERENCE BETWEEN A KNOWLEDGE BASE
SYSTEM AND A DATABASE SYSTEM

There is no consensus on the difference between a knowledge base system and a database
system. In.a DBMS, the starting-point is a data model to represent the data and the .
.interrelationships between them; similarly, the starting point of a KBMS is a knowledge
representation scheme. Therequirements-for any knowledge representation scheme should
provide some-mechanism to ofganise knowledge in.appropriate-hicrmarchics.or categories,
thus allowing easy:access to associated concepis. Inaddition, sinceknowledgecanbe
expressed as rules and exceptions to rules, exeeption-handling features must be present in
the knowledge stored in the system must be insulated from changes in usage in its physical
or logical structure. This concept is similar to the data independence concept used ina
DBMS. To data, little headway has been made in this aspect of a KBMS.

. AKBMS is developed to solve problem for-a finite domain or portion of the real world. In.
developing such a system, the designer selects a significant objects and relationships among
these objects. In addition to this domain-specific knowledge, general knowledge such as
concepts of up, down, far, near, cold, hot, on top of, and besides must be incorporated in the
KBMS. Another type of knowledge, which we call common sense, has yet to be successfully
incorporated in the KBMS.

- The DBMS and KBMS have similar architectures; both contain a.component to model the
information being managed by the system and have a subsystem to respond {0 queries. Both
systems are used to model or représent a portion of the real world of interest to the
application. A database system, in addition to storing facts in the form: of data, has limited
capability of establishing associations between these data. These associations couldbe BCA-15/197
pre-cstablished as in the case of the network and hierarchical models, or established using

37

Emerging Trends in Database
Management System

'BCA-1.5/198

-—)

common values of shared domains as in the relational model. A knowledge base system
exhibits similar associative capability. However, this capability of establishing associations
between data and thus a means of interpreting the information contained is at a much higher |
level in a knowledge base system, idcally at the level of a knowledgeable human agent.

One difference between the DBMS and KBMS that has been proposed is that the knowledge
base system handles a rather small amount of knowledge, whercas a DBMS efficiently (as
measured by responsé performance) handles large amounts of shared data. However, this |
distinction is fallacicus since the amount of knowledge has no known boundaries and what

; ﬂﬁssaysismmuisﬁngkmwhdgebmesymmshmdleamyumnmmfmbdgm

This docs not mean that at some future date we could not develop knowledge base systems to
efficiently handle much larger amounrsaf shared knowledge.

In a knowledge base system, the mnphasns is placed on ambusl knowledge representation
scheme and extensive reasoning capability. Robust signifies that the scheme is rich in
expressive power and at the same time it is efficient. In a DBMS, emphasis is on efficient
access and management of the data that model a portion of the real world. A knowledge base
system is concerned with the meaning of information, whereas a DBMS is interested in the
information coniained in the data. However, these distinctions are not absqlute.

For our purposes, we can adopt the following informal definitioa of a KBMS. The important
pomtmtlnxdcﬁmﬂumstha&wemmmed w:!hwhatthesystemdoesmﬂ:uman how it

~ isdone.

A knowledge base management system is a computer system that manages th
knowledge in a given domain or field of interest and exhibits reasoning power to the
level of 2 human expert in this domain.

A KBMS, mwdmon pmudesmeuserwnhanmtegmtedlanguage.whmhmthe
purpose of the traditional DML of the existing DBMS and has the power of a high-level -
application language. A database can be viewed as a very basic knowledge base system in so

_far as it manages f#tts. It has been recognised that there should be an integration of the

DBMS technology with the reasoning aspect in the development of shared knowledge bases.
Database technology has already addressed the problems of improving system performance,
concurrent access, distribution, and friendly interface; these features are equally pertinent in
a KBMS. There will be a continuing need for current DBMSs and their functionalities
co-existing with an integrated KBMS. However, the reasoning power of a KBMS can
improve the ease of retrieval of pertinent information from a DBMS.

3.5 KNOWLEDGE REPRESENTATION SCHEMES

Knowledge is the most vital part of Knowledge Base System or Expert System, These
systeins contain large amounts of knowledge to achieve high performance. A suitable

Knowledge Representation scheme is riecessary to represent this vast amount of knowledge -
and to pertorm inferencing over the Knowledge Base (KB). A Knowledge Representation

- scheme means a set of syntactic and semantic conventions to describe various objects. The

syntax provides a set of rules for combining symbols :md arrangemenis of symbols to form
expressions.

Knowledge Representation is a non-trivial problem, which continues to engage some of the
best minds in this field even afier the successful development of many a Knowledge Base:
System. Somic of the important issues in Knowledge Repmnnmum are the fofjowing:

i) Expressive Adequacy: What knowledge can be andcanmtberw ina

i) Reasoning Efficiency : How much effort is required to perform inferéncing over
the KB? There is generally a trade off between expressive adequacy and zrmnumg
eﬂ'mlency

iii) Incompleteness: Whatcnnbe left unsaid about a domain and howdo&nm
pcrfnrm mi‘um:mg over incomplete knowledge 7

iv) Real World Knowledge: Howmwedmlmduammdes mhasbel;e&,desm
-and jntentions 7 : '

* Major Knowledge Representation schemes are based on production rules, frames, Introduction to
semantic nets and logic. Faclsmﬂruhscanbercpmmmd in these Knowledge - Knowiedge Ditabeare
Representation schemes. Inference Engines using forward chaining, backward chaining

or a combination thereof are used alongwith these Knowledge Representation schemes to

build actual Expert System. Wamﬂhmﬂydasmbeﬂmlcnowbdpwm

schemesandhfenndngenglnes.

3.5.1 Rule Based Representatiun

A rule based system is also called production rule system. Essmtmﬂy.lt!mﬂnupam.

working memary, rule memory or production memwury and interpreter. Working memory

contains facts about the domain. ‘These are in the form of triples of objects, attribute and

value. These facts are modified during the paucess of execution. Smnemwiwsmaybe
- added as conclusions. '

Production memory contains IF-THEN rules. IF part contains a set of conditions connected
by AND. Each condition can have different other conditions connected by AND or OR.
Each condition can give either true or false as its value. THEN part has a set of conclusions
or actions. Conclusions may change values of some entily or may create new facts.

A rule can be fired when all the conditions in it are true. If any of the conditions is not true
or unknown, the rule cannot be fired. If it is unknown, the system will try to determine its
valuc. Onceamlehasﬁled.aﬂllsoonclmanducmnsmmmed.

For firing a rule, the system looks into its database. Ifarulehasmoﬁnscmdiﬁons
satisfied, it is a candidate for further exploration. There may be more than one such rule.
This conflict is resolved by some stralegy like choosing the rule which contains the -
maximum number of satisfied conditions, or there may be metarules which may be domain
dependent to move the reasoning in a particular direction,

Rules may be used in both forward and backward reasoning. When it is ised in forward
mode, the system starts with a given set of initial data and infers as much information as
possible by application of varions rules. ‘Again new data arc used (o infer further. Atany
" point system may ask the user to supply more information, if goal state has not been reached
and no more rules can be applicd. System keeps on checking for goal state at each firing of
rules. Once goal state has been detected reasoning comes to an end. In backward
reasoning mode, reasoning starts with the goal and rulcs are sclected if they have the goal in-
their right hand side (RHS). To achieve the goal, left hand side (LHS) conditions have to be
true. These conditions become new sub-goals. Now the system tries to achieve these
sub-goals before trying the main goal. At some point it may not be possible to establish goal
by application of rules. In this situation the system asks the user to supply the information.

It may be noted that thése rules are not IF-THEN programming constructs available in most
of the procedural Programming languages. These are different in the sense that they are not
executed sequentially. Their execution depends on the state of the database which
determines which are the candidates rules. Another difference’is that IF-part is a complex
pattern and not just a Boolean expression.

Rules have been used in many classical systems like MYCIN, RUXCON etc, Even today it
is the most frequent used Knowledge Representation scheme. The reason is that most of
‘the time, experts find it easier to give knowledge in the form of rules. Furrher rules can be

easily used for explanations.

Onepmblem with rules is thatwbeﬂiheygmw very large in numbernbeodmes difficult to
maintain-them because KB is unstructured. Some techniques like context in MYCIN solve
the problem to some extent.

3.52 Frame Based Representation

The concept of frame is quite simple. When we encounter a new situation, we do not analyse:
it from scratch, Instead we have a large number of structures or (records) in memory
representing our experiences. We try to match the current situation with these structures and
then the most appropriate one is chosen. Further details may be added to this chosen '
structure so that it can exactly describe the situation. A computer mpmsmtalmn of this
common knowledge is called a frame,

It is convénient to create a knowledge base about situations by breaking it into modular BCA-1.5/199

a P chunks, called n-ames Individual frames may be regarded as a record or structure. |
Each frame contains slots that identify the type of situations or specify the parameters of a
particular sitnation. :

A frame describes a class of objects such as ROOM or BUILDING. It consists of various
slots which describe one aspect of the object. A slot may have certain condition which
should be met by the filler. A slot may also have default value which is used when the slot
value is not available or cannot be obtained by any other way. If added procedure describes
what is to be done if slots geta value. Such information is called facet of slot.

An cxample is presented below:
(CHAIR

IS-A : FURNITURE

" COLOUR : BROWN

. MADE-OF : WOOD
LEG : 4 :
ARMS : default: 0 ' ;

PRICE : 100 '

Reasoning with the knowledge stored in a frame requires choosing an appropriate frame for
the given situation. Some of the ways information may be inferred are the following :

a) If certain information is missing from current situation, it can be inferred. For
example, if we have established that the given Objecl is a room, we can lnfer that
room has got a door.

b) Slots in a frame describe components of situation. If we want to build a situation
then information associatcd with mcslolscanbensedmhmldoompmmsofmc
situation.

c) 'If there is any additional feanncintheuhjoclwhichénnbedimwud using a
typical {rame, it may require special atiention. For example, a man with a il is
not a normal man.

3,5.3 Semantic Nets

Scmnncuampwmmmnwasdevelupedfunammllanguagemm Semantic
net was originally designed to represznt the meaning of English words. It has been used in
many expert systems too. It is used for representation of declarative knowledge. In semantic
nets, the knowledge is represented as a set of nodes and links. A node represents an object or
concept and a link represents relationship between two objects (nodes).

Mmmver.anxnudémaybelinked to any number of other nodes, so giving rise toa
formation of network of facts. An example is shown in the following figure.

GOVT-OFFICE

IS-A |
ISPART :
PERSON DEPARTMENT ' <. GOVERNMENT

. IS-A
1S-A
e e on |LOCATION .
- LNB

BCA-1.5/200 SRR g R, | ‘BULDING |:

" Figure 2 : Semantic Net : 3 o ket

Ammmnamdnwnmﬂmz,mmbemmwdlﬁwﬂmmmpm Every pair
and its link are stored separately. For example, IS—A (DOE, Department) in PRDLOG
 répresents

DEPARTMENT

1S-A

Figure 3 ; One-way link representations

'The link as shown in the figure is a one-way link. If we want an answer to “who is my
employer 7" the system will have to check all the links coming.to node ME. This is not
computationally efficient. Hence reverse links are also stored. Inthiscase weadd -

ME - EMPLOVER OF ' DOE

ﬁﬂuhlqnunhﬁu oﬁuur_nllﬁ

hWhmmMm;mmmmﬂlem
combination. The unit given in department—DOE semantic networks would be composea
of as the atom, “IS-A" as a property and “Department” as the value of that property.
The value “Department” is of course, an atom in its own right and this may have a property
list associated it as well, “Is-a” relationship indicatcs that one concept is an attribute of the
other. Other links (relationship) of particular use for describing object concepts are “has”,
mmmamwwmamofumuﬂw Using such relations, it is possible to -
represent complex spt of facts through semantic network. The following figure illustrates -
mmb&memuﬂmofhsabumnmﬂom“ﬁmﬂw' 'maaamcludb—

“Akshay is a bank manager” :
“Akshay works in mswmnmamumdmmww
“Akshay is 26 years old”
“Akshay has blue eyes”
Location
State Bank of India
| Works in
‘blue eyes —— Akshay__ Bank manager
26 years old

Figure 5: ma“mammnﬂm

.Wimweimwwmptmnmthmmmmlﬁonshps.wmumm
arguments mlalionships.

SCORE (INDIA AUSTRA.LIA (250 150))

can be written as

participant (match-1 INDIA)

participant (match-1 AUST'RALIA)-

score (match-1 (250 150))

BCA-1.5/201

Knowledge Databases

41

Emerging Trends ln Databasc As with an Knowledge Representation scheme, the problem solving power comes from the

s e " ability of the program to manipulate knowledge 1o slve a problem. Intersection search is
used to find the relationship between two objects. In this case activation sphere grows from
the two modes and intersects each other at some time, The corresponding paths give the
correct relationship. More techniques have been developed 1o perform more directed search.

3.54 Knowledge Representation Using Logic
Traditionally logic has been studied by philosophers and mathematicians in different
countries in order to describe and understand the world around us. Today computer scientists-
are using this tool to teach a compuier about the world: Here we discuss propositional and
predicate logic.
We can easily represent real-world facts as logical propositions in propositional logic. In
propositional logic we deal with propositions like

It is raining. (RAINING)

Itissunny. (SUNNY)

Itis windy. (WINDY)

If it is raining then it is not sunny, .

(RAINING —— >~SUNNY)
Given the fact that “It is raining” we can dedice that it is not sunny.
‘But the representational power of propositional logic is quite limited. For example, suppose
we have Lo represent
" Vivek isaman, -

Anurag is a man.
We may represent them in computer as VIVEKMAN and ANURAGMAN. But from these,
we don’t get any information about similarity between Vivek and Anurag. A better way of
representationis

MAN (VIVEK)

MAN (ANURAG)

Consider the sentence ‘All men are mortal’. This requires quantification like

“The form of logic with these and certain other extra features is called predicate logic. The -
basic elements are described here. : . :

Her capital letier P, Q etc. stand for predicates. A predicate is of the form predicate-name
(argl..argn) '
It can have values lmclor_ false. A predicate represents aniung the arguments.

AND A (P A is true when both are true)

OR v (Pv Qi true when atleast ons s troc)

NOT ~ (~P is true when Pis falsc)

Implies (P — Q is truc unless P is true and Q is falsc) means for all the values of X, P holds.

P(X) means there cxists at least one value of X for which P holds.

mmmlymvﬂucsamﬁue. £
- The'predicate logic has the following two properties:

a) Completeness : If P is a theorem of predicate logic then. it can be desived only by’
the inferences rules available in predicate logic; ; i

9_ Soundness : There is no P such that both P and NOT P ase theorems.

Thedccidability property of propasitional logic does not carry over into predicéte logic, T

following inferences rules are some of the important rules avaitable- in predicate logic's
ModusPonens : IfP— Qand Pis true then Q is true

BCA-1.5/202

ModusTollens : IfP— Qand Qis false then Pis false .
Chaining s rmmmmwmmm
Reducéto @ Pand NOTPreducesto (). '

mwﬂnummmmmmuwmmmummﬁ .
‘inferencing. This sobsumes the above five rules of inference. Resclution proves a theorem -
by refutation. Firsta normal form of clabses is obtained and then négation of the theorem is
added 10 it. nmwmmmmum Adbmdunol‘dmﬂad

alumﬂmuhemdlhemd%m

‘Lot the use of
mumuﬂm usc mms-wdmwwm

)] Aniluaw

H) Anﬂuaﬁuiﬁned

iﬁ) Aﬂmﬁmdﬁuhﬂhﬁnﬂwhﬂchim

h') Emhlwyalum s

: mmeWMMBMEWMHM

) Arﬁlhaw
W(ﬁnﬂ)

| i) Anﬂhaaimipm
Fa dmuplmu](hml)
< 1) Anndrmemnaﬁmﬁnﬂumm
w} Emomnhryalmsnmm
v) Wmhmfummmmm;w
mnuumamhguyhmm:wm i s

Check\’mrl’mm
b lemnnd mm:mm hatwwnknowledp.bebuf hypnﬂamnnddm

P

sassasaninardanidenradibasabnan AL L] L (T FERA AR N Y
-.l-—v~llll-l-l|lu|!|-'|!!'|l'$!l I!E-.UQ'.!" Ll]
= AR sdEARARAE nE R II. L1 Ii‘h : e sRase PN LLELE RS Rl LRt
|-;l¢'.lnclnpno| . o T LT - +
L L L T e L L R T

— e e i.I.t..lllll‘llll? -------- " gk pgremaincnamn ;-

3. Wmdebﬁnhnuamhﬂefmﬂwhowhdgemmﬂm?

Howthe Xnowledge repmemmm is donc through Semmuicw

....................... e e e e e T e e LT L e L Rl L L L it Lt IR it b

e L e R L P L

PPy TR P TP PR T PR e e S LS

PP R e e P ST T P P T TR SR LR PR R T

BCA-1.5/203

Emerging Trends In Database
Management System

BCA-1.5/204

3.6 SUMMARY

In this unit, we defined a knowledge base system as a computer system used for the
management and manipulation of shared knowledge. We compared a knowledge base

“system with a DBMS and pointed out similarities and differences. We also considered the

different schemes used to represent knowledge. The semantic network, first order logic, rule
based system, frames and précedural representation.

3.7 MODEL ANSWERS

Check Your Progress

L

Knowledge can be defined as the body of facts and principles accumulated by
buman-kind or the act, fact, or state of knowing. While this definition may be true, itis
far from complete. We know that knowledge is much more than this. It is having a
familiarity with language, concepts, procedures, rules, ideas, abstractions, places,
customs, facts, and associations, coupled with an ability to use these notions effectively
in modelling different aspects of the world. Without this ability, the facts and concepls
are meaningless and therefore worthless. The meaning of knowledge is closely related
to the meaning of inielligence. Intclligence requires the possession of and access of
knowledge. And acharacteristic of intelligent pcople is that they possess much
knowledge. ;

Thus, we can say that knowledge includes and requires the useot'data and information,
But it is more, It combines relationships, correlations, dependencies, and the notion of
gestalt with data and information.

Knowledge may be declarative or procedural. Procedural knowledge is compiled
knowledge related to the performance of some task. For example, the steps used 1o
solve an algebraic: equation arc expressed as procedural knowledge. Declarative
knowledge, on the other hand, is passive knowledge expresses as stalements of facts
about the world. Personne! data in a database is typical of declarative knowledge. Such
data are explicit pieces of independent knowledge.

The following are knowledge representation techniques:

i) Rule Based Representation

ii) Frame Based Representation

iiil) Semantic Nets |

iv) Knowledge Representation Using Logics

In semantic nets, the knowledge is represented as a set of nodes and links. A node

Iqrm;umohjemuwmplandahnk rep!esentsrelamnslnp between two objects
nodes;

3.8 FURTHER READING

l‘

An Introduction to Database Systems by Bipin C. Desai, Galgotia Publications Pvt. Lid.

