Year	Sem.	Course Code Paper Title		Theory/Practical	Credits	Max.	
						Marks	
		UGPHS -101N	VECTOR, MECHANICS AND GENERAL PHYSICS	Theory	2	100	
		UGPHS -101P(N)	PRACTICAL WORK	Practical	2	100	
1	П	UGPHS -102N	OSCILLATION, WAVES AND ELECTRICAL CIRCUITS	Theory	2	100	
		UGPHS -102P(N)	PRACTICAL WORK	Practical	2	100	
	III	UGPHS-103N	ELECTROMAGNETISM	Theory	2	100	
		UGPHS-103P(N)	PRACTICAL WORK	Practical	2	100	
	IV	UGPHS-104N	ANALOG AND DIGITAL ELECTRONICS	Theory	2	100	
2		UGPHS -104P(N)	PRACTICAL WORK	Practical	2	100	
		SKILL ENHANCEMENT COURSE					
		SBSPHS-02	MODERN PHYSICS	Theory	4	100	
		Discipline Centric Elective Course					
	v	DCEPHS -105N	OPTICS	Theory	2	100	
		DCEPHS-106N	THERMAL PHYSICS	Theory	2	100	
		DCEPHS-107P(N)	PRACTICAL WORK	Practical	2	100	
_		Discipline Centric Elective Course					
3	VI	DCEPHS -108N	QUANTUM MECHANICS AND SPECTROSCOPY	Theory	2	100	
		DCEPHS -109N	SOLID STATE PHYSICS AND ADVANCED ELECTRONICS	Theory	2	100	
		DCEPHS -110P(N) PRACTICAL WORK		Practical	2	100	
	1	1	1	32	1500		

Year: 2023-24 Syllabus of B.Sc Programme: Subject: PHYSICS [UGPHS]

Programme:	B.Sc. Year: 1 Semester: I					
Subject: Physics						
Course Code: U	Course Code: UGPHS -101N Course Title: Vector, Mechanics and General Physics					
Course Objectives:						
• The course	• The course provides the students of core concepts of system of particles, motion, friction,					
work, energ	gy, planetary and satellite motion.					
• Some fund	amental concept of vector calculus.					
• The fundament	nental concepts make the students to find their interest so that they can explore in					
physics, an	d they can pursue their higher degree in physics.					
Course Outc	omes:					
CO.1 Unders	tand and illustrate various vector calculus method.					
	tand and define the laws involved in mechanics.					
	eeper understanding of mechanics and its fundamental concepts.					
	tand the fundamental ideas on conservation of laws.					
	tand objects in space as they are introduced to planetary and Satellite motions					
Credits: 2	Type of Course: Core					
Max. Marks: 1						
Block 1	Vector and mechanics					
	Vector analysis					
	• Scalar and vector, polar and axial vectors, Concept of tensor.					
	• Dot and cross product of two vectors, scalar and vector triple products					
Unit 1	• Gradient of scalar, divergence of vector, curl of vector, solenoidal and					
	lamellar vector.					
	• (Line, surface, volume) integral of vectors, Gauss, Stokes					
	and Greens theorem (onlystatement).					
	Vector identities (only statement)					
Unit 2	. Dynamics of a particle					
	• Force, momentum, impulse.					
	• Work, Power, energy.					
	• Conservative and non-conservative forces.					
	• Work-energy theorem, mechanical energy.					
	• Conservation of momentum and conservation of mechanical energy.					
	Elastic and inelastic head on collision.					
Unit 3	Angular and rotational motion					
	• Equation of motion and fundamental definitions.					
	• Angular momentum, torque, rotational K.E, angular impulse.					
	• Conservation of angular momentum and its applications.					
	• Moment of inertia, radius of gyration, theorem of parallel and					
	perpendicular axes.					
	• Expression for moment of inertia for ring and disc, hollow and					
	solid spheres, hollow and solid cylinder, thin rod and plates (derivation is not required).					
	 Rolling without sliding and sliding without rolling motion, total kinetic 					

	energy.				
	 Motion of body along inclined plane in both cases. 				
	Dynamics of many particles				
	Centre of mass and centre of gravity of a system				
	• Centre of mass and laboratory frame of reference.				
Unit 4	• Motion of centre of mass of a system.				
	• Linear momentum, angular momentum, torque, kinetic energy,				
	potential energy, mechanicalenergy for a system of particles.				
	• Difference between conservation laws (linear momentum, angular				
TT :	momentum, mechanicalenergy) for a particle and system of particles				
Unit 5	Dynamics of rigid body				
	• Concept of rigid body and its characteristics.				
	• Equations of rotational motion when the directions of angular				
	momentum coincide and donot coincide with axis of rotation.				
	• Relation between angular momentum, moment of inertia and angular				
	velocity in tensor form.				
	• Moment and product of inertia, inertia tensor.				
	Processional motion.				
Block-II	General Physics				
Unit 6	Gravitation				
	• Gravity and gravitation, inertial and gravitational mass.				
	• Variation of gravity with shape and rotation of earth, height and depth				
	from surface of earth.				
	 Gravitational field and potential due to spherical shell and solid sphere. Gravitational self energy 				
	Gravitational self-energy.				
	 Orbital motion of satellite. Essana valoaity of body. 				
	• Escape velocity of body.				
II.'. 7	Communication satellite and weightlessness condition.				
Unit 7	Motion under central force				
	 Central force and its characteristics. Reduced mass. Reduction of two body central force problem to one 				
	 Reduced mass. Reduction of two body central force problem to one body problem. 				
	 Expression for transverse and radial acceleration of a body moving 				
	under central force.				
	 Acceleration of planet moving around sun. 				
	 Kepler's laws of planetary motion (statement, derivation and 				
	applications).				
	 Expression for total energy of earth and condition to different paths. 				
	 Newton's law of gravitation from Kepler's law. 				
Unit 08	Elasticity				
	• Kinetic model for solids (F-r and U-r graphs).				
	• Behavior of loaded wire (graphs and definitions).				
	 Poisson ratio, elastic constants and inter-relationship among them. 				

	Angle of twist and shear. Torsion of cylinder. Torsional rigidity.
	 Bending of beam, bending moment, geometrical inertia and flexural
	rigidity.
II : O	Elastic potential energy of stressed and twisted wire
Unit 9	Fluid mechanics and viscosity
	• Ideal fluid, critical velocity, stream line and turbulent motion.
	• Compressible and incompressible fluid, lamellar and
	nonlamellar motion, steady and variable motion.
	• Equation of continuity and its significance.
	• Euler's equation and its application to deduce
	Bernoulli's equation, Application of Bernoulli's
	theorem (velocity of efflux, spinning of ball).
	 Newton's formula for viscous force. Kinematical and dynamical viscosity (CGS, MKS andSI units).
	 Poiseuille's law (statement, derivation, limitations), Series
	and parallel combinations of capillaries.
	 Stokes's law for viscous force, terminal velocity.
Unit 10	Surface tension
Cliff 10	Adhesive and cohesive force. Shape of meniscus. Angle of contact.
	 Surface tension, surface energy, unison of small drops and bubbles.
	 Effect of temperature and impurity on surface tension and angle of
	contact.
	• Excess pressure inside air bubble and soap bubble.
	 Rise and fall of liquid inside capillary.
	 Importance and application of capillarity.
Suggested T	ext Book Readings:
00	roduction to mechanics, D. Kleppner, R.J. Kolenkow, 1973, McGraw-Hill.
	anics, Berkeley Physics, vol.1, C.Kittel, W.Knight, et.al. 2007, Tata McGraw-Hill.
	cs, Resnick, Halliday and Walker 8/e. 2008, Wiley.
•	tical Mechanics, G.R. Fowles and G.L. Cassiday. 2005, Cengage Learning.
•	nan Lectures, Vol. I, R.P.Feynman, R.B.Leighton, M.Sands, 2008, Pearson
Educa	
	uction to Special Relativity, R. Resnick, 2005, John Wiley and Sons.
	rsity Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
	can be opted as an elective by the students of following subjects: NA
	uivalent online courses (MOOCs) for credit transfer: NA
	nedia and other digital components in the curriculum:
	ě i
Choose anv	one or more than: e-SLM/ Other electronic and digital contents

Programme: B	Sc.	Year:1		Semester:2		
<i>e</i>		Subject:	Physics	Semesteriz		
Course Code: I	Course Code: UGPHS-102N Course Title: Oscillation, Waves and Electrical Circuits					
Course Object	tives:					
	-	udents of core co	oncepts of oscillation	ns, waves and electrical		
circuits		- 1		· · · · · · · · · · · · · · · · · · ·		
	1		rsue their masters in	st, so that they can explore		
Course Outco		physics and pu	isue men masters n			
	and in detail the co	ncepts of oscill	ations.			
	and in detail the co	*				
	ze basic terms in e					
_	neorems to construct					
CO-5 Ability	to design and cond	uct experiments	as well as to analy	ze and interpret data		
				e a circuit problem into a		
	problem using circ			-		
Credits:2	- -		Type of Course: (Core		
Max. Marks: 1		Min. Passing M	arks: 36			
Block 1	Mechanical oscil	lations				
Unit I	 Undamped oscillator Periodic motion and its classification. Electrical analogous of mechanical quantities. Undamped oscillations and its characteristics, kinematical and dynamical definition of SHM. Derivation of differential equation using energy consideration and its definition. Examples of SHM (mass-spring system, general pendulum compound pendulum, floatingcylinder, liquid column in U-tube), effective mass of spring. 					
Unit II	Damped oscillator					
	• Damped oscillation and its characteristics, comparison with undamped oscillation.					
		differential equ	lation using energy	consideration and its		
	• Derivation of differential equation using energy consideration and its solution for heavy,critical and weak damping.					
		•	uency of damped o	scillation.		
	• Relaxation time, energy dissipation, logarithmic decrement, quality factor.					
Unit III	Forced oscillator					
	• Forced oscillations and its examples.					
	 Differential equation and steady state solution. Amplitude recommendered and value its recommendered impedance 					
	 Amplitude resonance and velocity resonance, mechanical impedance. Amplitude and velocity resonance frequency, phase difference among 					
	position veloc		mance mequency,	phase universitie aniong		
	-	•	dissipation.			
	Power absorption and power dissipation.Quality factor, band width, sharpness of resonance.					

	Coupled oscillator				
	• Nature and condition of Lissajous figures (for 1:1 & 1:2 frequencies).				
TT '4 TT 7	• Normal co-ordinate, degree of freedom, normal modes of vibrations.				
Unit IV	Oscillations of two coupled masses.				
	Oscillation of two coupled pendulums.				
	• Energy of two coupled systems.				
Block 2	Waves				
Unit V					
	Wave motion				
	Basic definitions, types of propagation, concept of phase.				
	• Expression and properties of plane progressive wave.				
	• Differential equation of wave motions, wave front.				
	• Plane progressive wave in fluid and stretched string. Displacement wave and				
	pressure wave.				
	Plane progressive wave in stretched string.				
	• Intensity and energy transportation in wave.				
Unit VI	Waves at boundaries of two media				
	• Free and bounded medium.				
	Specific acoustic impedance, characteristic impedance.				
	• Reflection and transmission coefficient of amplitude at joints of two				
	media/strings.				
	• Reflection and transmission coefficient of energy at joints of two media/strings.				
	• Discussion of results for various conditions of impedance of both media				
Unit VII	Superposition of waves				
	• Principles of superposition (statement, limitations, phenomenon observed).				
	• Reflection of sound waves at free surface and rigid surface.				
	• Stationary waves (formation and characteristics), SWR.				
	• Mode of natural oscillations of stretched string and air column.				
	• Fundamental frequency, harmonics and overtones.				
	• Difference between interference and beats in sound.				
Block III	Electrical circuits				
Unit VIII	Transient phenomenon and galvanometer				
	 Transient state and steady state, Time constant. 				
	 Transient response LR, CR, LC and LCR circuits. 				
	 Theory of moving coil galvanometer (dead beat and ballistic), 				
	critical resistance anddamping.				
	 Sensitivity (current, charge and voltage) of moving coil galvanometer. 				
	 Applications to measurement of high resistance by leakage method. 				
Unit IX	Alternating current				
	• J-Operator and phasor notations, reactance, impedance, susceptance,				
	admittance.				
	• Instantons, Peak, RMS and Average value of alternating voltage and current,				
	Form factor.				
	• Angle of lag and lead, wattful and wattless current, average power				

	consumed (active, reactive and apparent), power factor.				
	 Phasor and vector diagram of CR, LR, LCR series, LCR parallel, LR 				
	in series with C inparallel circuits.				
	• Parallel and series resonance, sharpness of resonance, Quality factor,				
	Bandwidth Resonancefrequency.				
Unit X	Network analysis (For both AC and DC)				
	Circuit elements and various networks circuits.				
	• T and π networks and their equivalence.				
	Kirchhoff's current and voltage laws. Mesh and nodal analysis of electrical circuits.(Matrices and determinant methods).				
	Concept of constant current and constant voltage source. Thevenin and Norton's				
	theorem.				
	• Maximum power transfer theorem, superposition theorem, reciprocity theorem.				
Suggested To	ext Book Readings:				
1. Wave	s: Berkeley Physics Course, vol. 3, Francis Crawford, 2007, Tata McGraw-Hill.				
2. Fundar	mentals of Optics, F.A. Jenkins and H.E. White, 1981, McGraw-Hill				
3. Princip	ples of Optics, Max Born and Emil Wolf, 7th Edn., 1999, Pergamon Press.				
4. Optics	, Ajoy Ghatak, 2008, Tata McGraw Hill				
5. The Pl	nysics of Vibrations and Waves, H. J. Pain, 2013, John Wiley and Sons.				
6. The Ph	nysics of Waves and Oscillations, N.K. Bajaj, 1998, Tata McGraw Hill				
This course can be opted as an elective by the students of following subjects: NA					
Suggested equivalent online courses (MOOCs) for credit transfer: NA					
Electronic media and other digital components in the curriculum:					
Choose any one or more than: e-SLM/ Other electronic and digital contents					
Name of electronic media: e-SLMYear of incorporation: 202					

Programme	: B.Sc.	Year: 2 nd	Semester: 3 rd			
		Subject: Phy				
Course Code: UGPHS-103N Course Title: Electromagnetism						
Course Obj	ectives:					
• To n	nake students und	erstand the electrostation	c fields, potential, and capacitance, by			
appl	ying Coulomb's la	w and Gauss's law.				
• To n	nake students und	erstand the magnetosta	tic fields and inductance by applying Biot			
Sava	art's law and Amp	ere's law to find.				
• To in	mpart knowledge o	on the concepts of magn	etostatics, magnetic flux density, scalar and			
	or potential and its					
	-		ay 's law, induced emf and Maxwell 's			
equa		1				
Course Out						
CO1- Under	rstand the basic m	athematical concepts r	elated to electromagnetic vector fields.			
CO2- Apply	y the principles of	electrostatics to the so	lutions of problems relating to electric field			
		ry conditions and elect				
CO3- Apply	y the principles of	magneto statics to the	solutions of problems relating to magnetic			
		-	nd magnetic energy density.			
		=	law, induced emf and Maxwell 's equations			
	_		oblems relating to transmission lines and			
	ne wave propagati	_	C C			
Credits: 2	1 1 8		pe of Course: Core			
Max. Marks	: 100	Min. Passing Marks:	•			
Block 1	Electrostatics					
	Electric charg	e, force and fields				
	Concept of	charge, Coulomb's la	w, electric field, electric flux.			
	-	-	ion, integral and differential form).			
Unit I	Application	• Application of Gauss law for charge distribution (linear, cylindrical, spherical).				
	Coulomb's					
	Electric fie	ld due to charged ring,	charged infinite rod and charged disc			
	from Could					
		ectrostatics.				
Unit II	-	ntial and dipole				
	-					
		elds, potential gradient				
			ting and dielectric sphere).			
	_	_	al charge distribution (hollow			
		graphical representatio				
	-		a uniform and non-uniform electric field. electric dipole at a point in Cartesian and polar			
	 Electric file coordinates 	-	erecure upore at a point in Cartesian and polar			

• Force between two electric dipoles.

Unit III	Dielectrics
	• Capacitor and its capacity, principle of capacitor, energy stored in field of
	capacitor.
	• Capacity of partially filled parallel plate capacitor, expression for induced
	charge.
	 Effect of dielectrics slab introduced inside plates of charged capacitor
	when its remainsconnected with battery and when it is disconnected
	from battery.
	• Spherical plates capacitor and cylindrical plates capacitor.
	• Change in electrical properties when N small charged drops coalesce to form a
	large drop.
	• Three electric vectors (D , E , P), dielectric constant, dielectric
	strength, electrical susceptibility.
	 Polarization, surface and volume charge density, Gauss law in dielectrics.
	• Macroscopic and microscopic properties of dielectrics. Clausius – Mossotte
	formula.
Block 2	Magnetostatics
Unit IV	Electric current and magnetic fields
	• Electric current and current density. Ohm's law and Joule's law, drift velocity.
	• Magnetic field around stationary charge, moving charge and current carrying
	conductor.
	• Biot-Savart law and its application to straight conductor, circular loop,
	solenoid and toriodcarrying current.
	Magnetic field due to moving charge, Lorentz force
	• Force between two current carrying conductor and two moving charges.
	• Cyclotron (principle, construction, working, limitations and modification),
	Betatron.
Unit V	. Laws of magnetostatics
	• Lines of forces, Gauss law in magnetostatics.
	• Ampere circuital law (statement and derivation), its applications to
	current carrying rod(hollow and solid).
	• Inconsistency of Ampere circuital law with equation of continuity.
	Modification of Ampere circuital law by Maxwell with introducing concepts of
	displacement currents and its importance. Comparison of displacement current
	and conduction current.
	• Vector potential and its expression due to straight conductor and circular loop.
	• Derivation of magnetic flux density using vector potential for circular loop.
Unit VI	Magnetic materials
	• Magnetic properties (magnetic flux density B, magnetizing
	field H, intensity of magnetization Im, susceptibility, relative
	and absolute permeability).
	• Magnetization, cycle of magnetization, hysteresis loop, retentivity, residual
	magnetism.
	• Three magnetic vectors (B, H, Im), three magnetic currents (free, bound and

	total).
Block III	Curl of intensity of magnetization.
	Electromagnetic Phenomenon
Unit VII	 Electromagnetic induction Faraday's law of electromagnetic induction (statement, integral form, differential form) and analogy with Newton's laws of motion in mechanics. Condition for existence and depending factors of induced charge, induced voltage, inducedcurrent and induced power. Dynamic induced EMF and derivation of its expression, Self and mutual induction and inductance, static induced EMF (self and mutual). Reciprocity theorem and Neuman's relation. Relation between self and mutual inductance of two coupled coils, energy of coupledcircuits.
	• Transformer and its equivalent circuit, condition for ideal transformer (expression forefficiency and voltage gain), transformer losses.
BLOCK IV	Electromagnetic Theory
Unit VIII	Fundamental equations
	 Four Maxwell's equations (statement and physical significance). Maxwell's equations and features of their general plane wave solution in source free space. Maxwell's equations and features of their general plane wave solution in simple dielectrics. Differential equation and velocity for electromagnetic waves in
	 source free space anddielectric medium. Characteristics of electromagnetic waves, impedance, refractive index. Skin depth and its importance.
Unit IX	Energy and momentum of an electromagnetic wave
	 Differential equation of plane electromagnetic waves in conducting media and its solution. Behavior and property of electromagnetic waves for good dielectric and good conductors.
	• Poynting theorem (statement and derivation).
	• Expression for electromagnetic energy density.
	Momentum density vector and its importance
	Maxwell's stress tensor (statement and derivation).
Unit X	 Fresnel's equation Boundary conditions at discontinuity for D, E, B and H. Reflection and refraction at normal and oblique incidence of electric vectors perpendicular toboundary.
	Reflection and refraction at normal and oblique incidence of electric

	vectors parallel toboundary.				
	• Total internal reflection, Brewster's law, degree of polarization.				
	• Plane wave propagation in plasma and its properties (qualitative), metalli				
	reflection.				
	• Elementary theory of dispersion.				
Suggested Tex	xt Book Readings:				
1. Electric	city and Magnetism, Edward M. Purcell, 1986, McGraw-Hill Education				
2. Electric	city & Magnetism, J.H. Fewkes & J.Yarwood. Vol. I, 1991, Oxford Univ. Press				
3. Electric	city and Magnetism, D C Tayal, 1988, Himalaya Publishing House.				
4. Univers	sity Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.				
5. D.J.Gri	iffiths, Introduction to Electrodynamics, 3rd Edn, 1998, Benjamin Cummings.				
This course ca	an be opted as an elective by the students of following subjects: NA				
Suggested equ	uivalent online courses (MOOCs) for credit transfer: NA				
Electronic me	edia and other digital components in the curriculum:				
Choose any one or more than: e-SLM/ Other electronic and digital contents					
Name of electronic media: e-SLMYear of incorporation: 2021					

Programme: B.Sc.	Year:2 nd		Semester:4 th			
Subject: PHYSICS						
Course Code: UGPHS -104N	Course Code: UGPHS -104N Course Title: Analog and Digital Electronics					
Course Objectives:						
• This course helps the stud	dents to gain basic id	eas of the construct	tion and working of electronic			
devices and circuits.						
• The aim of this course is	to make students acq	uire knowledge ab	out Boolean algebra, logic Circuits.			
Course Outcomes:						
CO-1- Be familiar with the	basic concepts of con	nstruction and work	ting of electronic devices and			
Bipolar junction transistor.						
CO-2- Apply the knowledge	CO-2- Apply the knowledge to understand the working of amplifiers and oscillators					
CO-3- Apply the knowledge	e to understand the w	orking of special ty	pes of Diodes			
CO-4- Apply the principles	of feedback in ampli	fiers and oscillators	8			
CO-5- Understand the concepts and techniques in digital electronics.						
CO-6- Understand various number systems and their importance in digital designing.						
CO-7- Analyze and construct various digital circuits.						
CO-8- Design combination and sequential circuits.						
Credits:2		Type of Course: Co	re			
Max. Marks: 100 Min. Passing Marks: 36						
(Syllabi framed block wise/unit wise)						

Block 1	Electron devices		
	Semi-conductor physics		
	• Band theory of solids and classification of solids on its basis. Intrinsic and extrinsic		
	(n-type,p-type) semiconductors.		
	 Conductivity, mobility, drifts motion and diffusion motion of free electron and holes. 		
	 p-n junction (formation of depletion region and potential barrier). 		
Unit I	 Forward and reverse biasing of p-n junction, forward and reverse current. 		
	 Diode equation and characteristics, static and dynamics resistance, knee voltage. 		
	 Breakdown mechanism (Zener and Avalanche), transition and storage capacitance. 		
	 Zener diode (statement, characteristics and comparison with p-n junction). 		
	 Zener diode (statement, characteristics and comparison with p-it junction). Zener diode as voltage regulation (circuit and analysis). 		
Unit II	Power supply		
Omt n	 Non regulated and regulated power supply. 		
	 Circuit and mathematical analysis of rectifier (HWR, FWR and BR). 		
	 Ripple factor, rectification constant, voltage regulation and efficiency of rectifier. 		
	 Filtering by RL, RC and LC circuit (only qualitative). 		
	 Photonics device LED (principles and applications). 		
	 Photodiode and photo transistor, photoconductivity. 		
	 Solar cell (principle, construction, working and characteristics). 		
Unit III	Bipolar junction transistor		
Omem	 NPN and PNP transistor and their action. 		
	 Types of configurations, region of operation, thermal runaway. 		
	 Characteristics and parameters of CE, CB and CC configuration of transistor. 		
	 Emitter efficiency, base transport ratio and current gain in CB configuration. 		
	 Leakage current, hybrid parameters. 		
	 Transistor biasing and their merits & demerits, thermal stability. 		
	 DC and AC current gains in all three configurations of transistors and their inter- 		
	relationship of transistors.		
Unit IV	Unipolar transistors		
Child I V	 FET (construction, classification, symbol, principle of operation). 		
	• Internal and external biasing of FET. Fundamental definition related with FET.		
	• Characteristics and parameter of FET.		
	• Comparison of FET with BJT.		
	• MOSFET (enhancement and depletion mode), construction, symbol and working.		
	 NMOS and PMOS, CMOS as switch, BJT as switch. 		
	• Storage and transition time (definition and importance).		
	• Schottky diode and Schottky transistors (statement, symbol and importance).		
Block 2	Electronic circuits		
Unit V	Amplification		
	• Introduction to different gains (impedance, current, voltage and power).		
	• Small signal hybrid equivalent circuits of transistor in three configurations.		
	• Inter-relationship among hybrid parameters in CE, CB, and CC configuration of		
	transistors.		

	• Importance of voltage divider biasing of transistor, operating points.
	 DC and AC load lines (statement and analysis).
	 De and Ae toad files (statement and analysis). Classification of amplifiers on the basis of coupling, range of
	operations, uses and frequency.
Unit VI	Voltage and power amplifier
Chit VI	 RC coupled amplifier (single and multistage), components and their functions.
	 Analysis of frequency (low, medium and high) response curve with the help of
	equivalent circuits.
	 Push-pull amplifier (characteristics, advantages and disadvantages).
	• Single and double tuned amplifier (characteristics and importance).
	• Audio and radio frequency amplifier (characteristics and importance)
Unit VII	Oscillator
	• Feedback amplifier (positive and negative), open and closed loop gains.
	• Merits and demerits of negative feedback amplifier over positive amplifier.
	• Barkhausen criterion for sustained oscillation (statement and proof).
	Component of oscillator and their functions
	• Tuned collector, Hartely and Colpit oscillator (circuit and working).
	• RC oscillator, phase shift oscillator and Wiens bridge oscillator.
	Crystal oscillator.
Block III	Digital Electronics
Unit VIII	Number system and codes
	• Number system (decimal, binary octal and hexa-decimal), radix.
	• Rules for interconversion of one number system into other number systems.
	• 1s and 2s compliments of binary numbers. Binary arithmetic's.
	• Different types of codes (BCD code, Excess 3 codes, Grey code, ASCII code,
	EBICDICcode and error code).
Unit IX	Boolean algebra and logic gates
	Boolean algebra and its features
	• Logic gates (Switching circuit, Truth table, Venn diagram, Boolean function).
	• Primary gates (AND, OR, NOT) and their representation using p-n diodes &
	transistors.
	• Universal gates (NAND, NOR) and realization of other gates using these.
	• Exclusive gates (XOR, XNOR), equivalent and non-equivalent gates, characteristics
	andXOR-laws, XNOR-laws.
	• AND-OR, OR-AND, NAND-NAND, NOR-NOR realization of Boolean expression.
Unit X	Boolean Theorems and combinational logics
	• De-Morgan's laws, commutative laws, associative laws, distributive laws,
	absorptive laws ofBoolean algebra.
	absorptive laws ofBoolean algebra.Dual and compliment of Boolean function.
	 absorptive laws ofBoolean algebra. Dual and compliment of Boolean function. Minterms, maxterms, SOP form, POS form of Boolean functions.
	absorptive laws ofBoolean algebra.Dual and compliment of Boolean function.

 minterms and maxterms. Simplification and Boolean expression by Boolean laws and K-mapping. Half and full adder, half and full subtractor.
Fext Book Readings: ed Electronics, J. Millman and C.C. Halkias, 1991, Tata Mc-Graw Hill.

2. Electronics: Fundamentals and Applications, J.D. Ryder, 2004, Prentice Hall.

- 3. Solid State Electronic Devices, B.G.Streetman & S.K.Banerjee, 6th Edn., 2009, PHI Learning
- 4. Electronic Devices & circuits, S.Salivahanan & N.S.Kumar, 3rd Ed., 2012, Tata Mc-Graw Hill
- 5. OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edition, 2000, Prentice Hall
- 6. Electronic circuits: Handbook of design & applications, U.Tietze, C.Schenk, 2008, Springer
- 7. Semiconductor Devices: Physics and Technology, S.M. Sze, 2nd Ed., 2002, Wiley India
- 8. Electronic Devices, 7/e Thomas L. Floyd, 2008, Pearson India

This course can be opted as an elective by the students of following subjects:NA

Suggested equivalent online courses (MOOCs) for credit transfer: NA

Electronic media and other digital components in the curriculum:		
Choose any one or more than: e-SLM/ Other electronic and digital contents		
Name of electronic media: e-SLM	Year of incorporation: 2021	

Programme: E	B.Sc. Year:2 nd Semester:4 th		
	Subject: PHYSICS		
Course Code: SBSPHS-02 Course Title: MODERN PHYSICS			
Course Object			
The aim of th	is course is to make the students learn and discuss about the Modern Physics.		
Course Outc	omes:		
	tand the concept of Reference point.		
	tands the concept of Special and General theories of relativity.		
	blish a relationship between mass and energy.		
CO-4 Describ	be the series of spectra and know Frank-Hertz experiment		
Credits: 4	Type of Course: Skill Enhancement Course		
Max. Marks: 1	0		
	(Syllabi framed block wise/unit wise)		
Block I	Special Theory of Relativity		
	Emergence of special relativity:		
	• Frame of reference (inertial and non-inertial), Events (simultaneous, colocal andcoincidence)		
	 Centripetal force, centrifugal force, and Coriolis force. 		
Unit I	 Classical relativity, Galilean variant and Galilean in-variant. 		
	• Compatibility of electromagnetism with principle of relativity and mechanics.		
	• Michel Jon-Morley experiment-significance of negative result.		
	• Postulates of special theory of relativity.		
Unit II	Relativistic kinematics:		
	• Lorentz transformations (statements and derivation).		
	 Relativity of simultaneity and length contraction. 		
	• Relativity of co locality and time dilation.		
	• Experimental verification of length contraction and time dilation.		
	• Relativistic transformation of velocity, resultant of two successive Lorentz		
transformations.			
	• Relativistic velocity addition theorem (statement, derivations and applications).		
	• Aberration of stars (statement, derivation and comparison with classical result).		
	• Relativistic Doppler effect (statement, derivation and discussion of result).		
Unit III	Relativistic dynamics:		
	 Non-relativistic and relativistic particles. 		
	• Einstein's mass and energy equivalence relation, relativistic kinetics energy.		
	• Variation of mass with velocity (only qualitative) and its importance.		
	• Fundamental equations of relativistic motion, longitudinal and transverse mass.		
	Momentum and energy transformation equations.		
	Minkowski time space diagram and its applications.		

Block II	Atomic Physics			
Unit IV	Atomic models:			
	• Bohr's theory of hydrogen likes atoms, Bohr radius, Sommerfeld fine structure			
	constant, Rydberg & Rydberg Constant, Binding energy.			
	• Spectral series of hydrogen atom, H_{α} , H_{β} , H_{γ} , H Balmer lines			
	• Reduced mass, effect of nuclear motion, isotopic shift,			
	Ground, Excited and ionized state, emission and absorption spectra			
	• Excitation, resonance and ionization potential, ionization energy of atom			
	Bohr's correspondence principle (statement, proof and importance)			
	Qualitative discussion of sommerfeld atom model.			
Unit V	X-Ray spectra			
	Production of X-rays (qualitative discussion of Roentgen tube and Coolidge tube)			
	Properties and application of X-rays			
	Continuous and characteristic X-rays, Bremstrahlung radiation			
	• Continuous and line X-ray spectra (K-series, L-series, M-series)			
	• Duane-Hunt's law, cutoff frequency and cutoff wavelength,			
	• Moseley's law (statement, derivation and applications), absorption edge			
	Comparison of optical and X-rays spectra			
Unit VI	Atomic structure:			
	• Vector atom model (need, statement and importance)			
	• Space quantization, concept of electron spin and quantum numbers			
	• Stern-Gerlach experiment (principal theory and importance of results)			
	• Magnetic moment of atom, Bohr magneton, Gyro magnetic ratio,Larmor			
	precession and frequency			
	• Intensity rules, selection rules, spectral terms, sodium D_1 and D_2 lines, Fine			
	structure of Halines,			
	• Coupling scheme (L-S and j-j), spectra of alkali and alkaline earth elements.			
Unit VII	Dualism nature:			
	• Planck's quantum theory and Einstein modifications, Photon and its characteristics			
	• Photoelectric effect (statements laws and mathematical explanation), quantum efficiency			
	• Compton effect (statement and explanation, expression for Compton shift and recoil			
	energy),			
	• Dualism in nature, de-Broglie hypothesis, matter waves and its importance.			
	Comparison of matter waves with electromagnetic waves and mechanical waves			
	• Davisson-Germen experiment (principle, working and importance of result)			
	• Wave packet, phase velocity and group velocity, wave and particle velocity,			
	relation among them			
	Uncertainty principle (statement, significance and application)			
Block III	Nuclear physics			
Unit VIII	Radioactivity:			
	• Natural and artificial radioactivity, emission of alpha particle, electron, positron			
	and gammaparticles			

I			
	• Size of nucleus, classification of nuclei (isotopes, isobars, isotones,		
	isomers andisodiapheres).		
	 Radioactive series, successive radioactive decay, radioactive equilibrium Earth define and earbon define, artificial pueleer transmutation 		
	Earth dating and carbon dating, artificial nuclear transmutation		
	• Discovery of neutrons and radioisotope in everyday life		
	Nuclear force and its Yukawa (Meson) theory.		
Unit IX	Nuclear energy:		
	• Mass defect, packing fraction, binding energy, specific bind		
	• Binding energy curve, explanation of nuclear fission, nuclear of nuclearenergy,	ar fusion and release	
	• Kinematics of nuclear reaction, Q-value of reactions		
	• Bohr's-Wheeler model, activation and excitation energy, no	rmal and enriched	
	Uranium,		
	• Liquid drop model, semi-empirical mass formula,		
	• Shell model, magic number, collective model		
Unit X	Elementary particles		
	• Classification of elementary particles on the basis of mass, s	spin and interaction,	
	• Particles and anti-particles.	-	
	• Process of annihilation and process of production of matters		
	• Quantum number (Lepton number, Baryon number, iso		
	charge number, strange number)		
	• Conservation laws and concept of Quarks.		
Suggested Te	xt Book Readings:		
66	actory nuclear Physics by Kenneth S. Krane (Wiley India Pvt. Ltd	l., 2008).	
2. Conce	pts of nuclear physics by Bernard L. Cohen. (Tata Mcgraw Hill, 1	998).	
3. Introdu	action to the physics of nuclei & particles, R.A. Dunlap. (Thomso	n Asia, 2004).	
4. Introduction to High Energy Physics, D.H. Perkins, Cambridge Univ. Press			
5. Introduction to Elementary Particles, D. Griffith, John Wiley & Sons			
6. Quarks	·		
7. Basic i	deas and concepts in Nuclear Physics - An Introductory Approach	h by	
K. Hey	de (IOP- Institute of Physics Publishing, 2004).		
8. Radiat	8. Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).		
This course c	an be opted as an elective by the students of following subjects	s:NA	
Suggested equ	uivalent online courses (MOOCs) for credit transfer: NA		
Name of elec	tronic media: e-NLW	Year of incorporation: 2021	

 Constructions and materials used in optical fibers, Principle of fiber optics and propagation of light in optical fiber, Advantages and disadvantages of optical fiber communication Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. Phase index and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers, 	Programme:	B.Sc.	Year:3 rd	Semester:5 th	
105N Course Objectives: • The aim of this course is to make the students learn and discuss about the Optics and their related experiments. • Students also correlate them with the corresponding theory, through the standard set of experiments. • Student will learn basics of Optics. CO-1. To impart basics knowledge of laser and holography CO-2. To impart basics knowledge of laser and holography CO-3. Student will familiar with nature of light. Credits:2 Type of Course: ELECTIVE Max. Marks: 100 Min. Passing Marks: 36 (Syllabi should be framed block wise/unit wise; No of blocks and units may change) Block 1 Geometrical and Quantum optics Co-axial system of lenses • Cardinal points (focal points, principal points and nodal points). • Analytical methods for analysis of cardinal points. • Matrix methods for analysis of cardinal points. • Matrix methods for analysis of cardinal points. • Equivalent lens, problems on combination of thin lenses. • Eye pieces (Ramsdon and Huygens), Ray diagram and characteristics, merits and demerits. • Aplanatic points and its importance Unit II Laser and holography: • Coherence (Temporal and Spatial) • Stimulated and spontaneous emission, Einstein co-efficient and their interrelationship • Basic idea about l	Subject: PHY	YSICS			
 The aim of this course is to make the students learn and discuss about the Optics and their related experiments. Students also correlate them with the corresponding theory, through the standard set of experiments. Course Outcomes: CO-1 Student will learn basics of Optics. CO-1 Student will familiar with nature of light. Credits:2 Type of Course: ELECTIVE Max. Marks: 100 Min. Passing Marks: 36 (Syllabi should be framed block wise/unit wise; No of blocks and units may change) Block 1 Geometrical and Quantum optics Co-axial system of lenses Cardinal points (focal points, principal points and nodal points). Analytical methods for analysis of cardinal points. Equivalent lens, problems on combination of thin lenses. Eye pieces (Ramsdon and Huygens), Ray diagram and characteristics, merits and demerits. Aplanatic points and its importance Unit II Laser and holography: Coherence (Temporal and Spatial) Stimulated and spontaneous emission, Einstein co-efficient and their interrelationship Basic idea about laser and its components, pumping and population inversion Comparison of laser light and ordinary light Ruby laser, Helium-Neon laser, semiconductor laser and their applications Holography and hologram, comparison of hologram with photography. Recording and reconstruction of hologram with photography. Constructions and materials used in optical fibers, Principle of fiber optics and propagation of light in optical fiber, Advantages and disadvantages of optical fiber, Solwest and fastest mode of propagation inoptical fiber, Solwest and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers, Solwest and faste			Course Title: OF	PTICS	
their related experiments. Students also correlate them with the corresponding theory, through the standard set of experiments. Course Outcomes: CO-12. To impart basics of Optics. CO-2. To impart basics knowledge of laser and holography CO-3. Student will familiar with nature of light. Credits:2 Type of Course: ELECTIVE Max. Marks: 100 Min. Passing Marks: 36 (Syllabi should be framed block wise/unit wise; No of blocks and units may change) Block 1 Geometrical and Quantum optics Co-axial system of lenses CCardinal points (focal points, principal points and nodal points). Analytical methods for analysis of cardinal points. Equivalent lens, problems on combination of thin lenses. Eye pieces (Ramsdon and Huygens), Ray diagram and characteristics, merits and demerits. Aplanatic points and its importance Unit II Laser and holography: Co-det and spontaneous emission, Einstein co-efficient and their inter- relationship Basic idea about laser and its components, pumping and population inversion Comparison of laser light and ordinary light Ruby laser, Helium-Neon laser, semiconductor laser and their applications Holography and hologram, comparison of hologram with photography. Recording and reconstruction of hologram with photography. Fiber optics Constructions and materials used in optical fibers, Principle of fiber optics and propagation of light in optical fiber, Advantages and disadvantages of optical fiber, Subsets and group index in optical fiber, Subsets and group index in optical fiber, slowest and fastest mode of propagation inoptical fiber, Subsets and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers, Subsets and group index in optical fiber, Subsets and fastest mode of propagation inoptical fibers, Subsets and fastest mode of propagation inoptical fibers, Subsets and fastest mode of propagation inoptical fib	Course Obje	ectives:			
Course Outcomes: CO-1 Student will learn basics of Optics. CO-2. To impart basics knowledge of laser and holography CO-3. Student will familiar with nature of light. Credits:2 Type of Course: ELECTIVE Max. Marks: 100 Min. Passing Marks: 36 (Syllabi should be framed block wise/unit wise; No of blocks and units may change) Block 1 Geometrical and Quantum optics Co-axial system of lenses Cardinal points (focal points, principal points and nodal points). Analytical methods for analysis of cardinal points. Equivalent lens, problems on combination of thin lenses. Eye pieces (Ramsdon and Huygens), Ray diagram and characteristics, merits and demerits. Aplanatic points and its importance Unit II Laser and holography: Coherence (Temporal and Spatial) Stimulated and spontaneous emission, Einstein co-efficient and their interrelationship Basic idea about laser and its components, pumping and population inversion Comparison of laser light and ordinary light Ruby laser, Helium-Neon laser, semiconductor laser and their applications Holography and hologram, comparison of hologram with photography. Recording and reconstruction of hologram with photography. Recording and netrials used in optical fibers, Principle of fiber optics and propagation of light in optical fiber, Advantages and disadvantages of optical fiber communication Numerical aperture, acceptance angle, V-parameters, meridional and skew	their	related experim	ents.	-	
CO-1 Student will learn basics of Optics. CO-2. To impart basics knowledge of laser and holography CO-3. Student will familiar with nature of light. Credits:2 Type of Course: ELECTIVE Max. Marks: 100 Min. Passing Marks: 36 (Syllabi should be framed block wise/unit wise; No of blocks and units may change) Block 1 Geometrical and Quantum optics Co-axial system of lenses • Cardinal points (focal points, principal points and nodal points). • Analytical methods for analysis of cardinal points. • Matrix methods for analysis of cardinal points. • Matrix methods for analysis of cardinal points. • Equivalent lens, problems on combination of thin lenses. • Eye pieces (Ramsdon and Huygens), Ray diagram and characteristics, merits and demerits. • Aplantic points and its importance Unit II Laser and holography: • Coherence (Temporal and Spatial) • Stimulated and spontaneous emission, Einstein co-efficient and their inter- relationship • Basic idea about laser and its components, pumping and population inversion • Comparison of laser light and ordinary light • Ruby laser, Helium-Neon laser, semiconductor laser and their applications • Holography and hologram, comparison of hologram with photography. • Recording and reconstruction of hologram and its applications Unit III Fiber optics • Constructions and materials used in optical fibers, • Principle of fiber optics and propagation of light in optical fiber, • Advantages and disadvantages of optical fiber communication • Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis • Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. • Phase index and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers,	exper	iments .			
CO-2. To impart basics knowledge of laser and holography CO-3. Student will familiar with nature of light. Credits:2					
CO-3. Student will familiar with nature of light. Credits:2 Type of Course: ELECTIVE Max. Marks: 100 Min. Passing Marks: 36 (Syllabi should be framed block wise/unit wise; No of blocks and units may change) Block 1 Geometrical and Quantum optics Co-axial system of lenses Cardinal points (focal points, principal points and nodal points). Analytical methods for analysis of cardinal points. Matrix methods for analysis of cardinal points. Equivalent lens, problems on combination of thin lenses. Eye pieces (Ramsdon and Huygens), Ray diagram and characteristics, merits and demerits. Aplanatic points and its importance Unit II Laser and holography: Coherence (Temporal and Spatial) Stimulated and spontaneous emission, Einstein co-efficient and their interrelationship Basic idea about laser and its components, pumping and population inversion Comparison of laser light and ordinary light Ruby laser, Helium-Neon laser, semiconductor laser and their applications Holography and hologram, comparison of hologram with photography. Recording and reconstruction of hologram and its applications Unit III Fiber optics Constructions and materials used in op			*		
Credits:2 Type of Course: ELECTIVE Max. Marks: 100 Min. Passing Marks: 36 (Syllabi should be framed block wise/unit wise; No of blocks and units may change) Block 1 Geometrical and Quantum optics Co-axial system of lenses • Cardinal points (focal points, principal points and nodal points). • Analytical methods for analysis of cardinal points. • Matrix methods for analysis of cardinal points. • Equivalent lens, problems on combination of thin lenses. • Eye pieces (Ramsdon and Huygens), Ray diagram and characteristics, merits and demerits. • Aplanatic points and its importance Unit II Unit II Coherence (Temporal and Spatial) • Stimulated and spontaneous emission, Einstein co-efficient and their interrelationship • Basic idea about laser and its components, pumping and population inversion • Comparison of laser light and ordinary light • Ruby laser, Helium-Neon laser, semiconductor laser and their applications • Holography and hologram, comparison of hologram with photography. • Recording and reconstruction of hologram and its applications • Holography and hologram, compagation of light in optical fiber, • Advantages and disadvantages of optical fibers, • Principle of fiber optics and propagation of light in optical fiber, • Advantages and disadvantages of optical f				olography	
Max. Marks: 100 Min. Passing Marks: 36 (Syllabi should be framed block wise/unit wise; No of blocks and units may change) Block 1 Geometrical and Quantum optics Co-axial system of lenses • • Cardinal points (focal points, principal points and nodal points). • Analytical methods for analysis of cardinal points. • Matrix methods for analysis of cardinal points. • Equivalent lens, problems on combination of thin lenses. • Eye pieces (Ramsdon and Huygens), Ray diagram and characteristics, merits and demerits. • Aplanatic points and its importance Unit II Laser and holography: • Coherence (Temporal and Spatial) • Stimulated and spontaneous emission, Einstein co-efficient and their interrelationship • Basic idea about laser and its components, pumping and population inversion • Comparison of laser light and ordinary light • Ruby laser, Helium-Neon laser, semiconductor laser and their applications • Holography and hologram, comparison of hologram with photography. • Recording and reconstruction of hologram and its applications • Holography and hologram, comparison of light in optical fiber, <t< td=""><td></td><td>nt will familiar w</td><td>on the nature of light.</td><td></td></t<>		nt will familiar w	on the nature of light.		
(Syllabi should be framed block wise/unit wise; No of blocks and units may change) Block 1 Geometrical and Quantum optics Co-axial system of lenses Co-axial points (focal points, principal points and nodal points). Unit I Cardinal points (focal points, principal points and nodal points). Matrix methods for analysis of cardinal points. Matrix methods for analysis of cardinal points. Unit I Matrix methods for analysis of cardinal points. Equivalent lens, problems on combination of thin lenses. Eye pieces (Ramsdon and Huygens), Ray diagram and characteristics, merits and demerits. Aplanatic points and its importance Aplanatic points and its importance Unit II Laser and holography: Coherence (Temporal and Spatial) Stimulated and spontaneous emission, Einstein co-efficient and their interrelationship Basic idea about laser and its components, pumping and population inversion Comparison of laser light and ordinary light Ruby laser, Helium-Neon laser, semiconductor laser and their applications Holography. Recording and reconstruction of hologram with photography. Recording and reconstruction of hologram and its applications Unit III Fiber optics Constructions and materials used in optical fibers, Principle of fiber optics and propagation of light in optical fiber, <td></td> <td>100</td> <td></td> <td></td>		100			
Block 1 Geometrical and Quantum optics Co-axial system of lenses • Cardinal points (focal points, principal points and nodal points). • Analytical methods for analysis of cardinal points. • Matrix methods for analysis of cardinal points. • Equivalent lens, problems on combination of thin lenses. • Equivalent lens, problems on combination of thin lenses. • Eye pieces (Ramsdon and Huygens), Ray diagram and characteristics, merits and demerits. • Aplanatic points and its importance Unit II Laser and holography: • Coherence (Temporal and Spatial) • Stimulated and spontaneous emission, Einstein co-efficient and their interrelationship • Basic idea about laser and its components, pumping and population inversion • Comparison of laser light and ordinary light • Ruby laser, Helium-Neon laser, semiconductor laser and their applications • Holography and hologram, comparison of hologram with photography. • Recording and reconstruction of hologram and its applications • Inlography and materials used in optical fibers, • Principle of fiber optics and propagation of light in optical fiber, • Advantages and disadvantages of optical fiber communication • Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis • Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. • Phase index and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers, <td></td> <td></td> <td></td> <td></td>					
Co-axial system of lenses • Cardinal points (focal points, principal points and nodal points). • Analytical methods for analysis of cardinal points. • Matrix methods for analysis of cardinal points. • Equivalent lens, problems on combination of thin lenses. • Eye pieces (Ramsdon and Huygens), Ray diagram and characteristics, merits and demerits. • Aplanatic points and its importance Unit II Laser and holography: • Coherence (Temporal and Spatial) • Stimulated and spontaneous emission, Einstein co-efficient and their interrelationship • Basic idea about laser and its components, pumping and population inversion • Comparison of laser light and ordinary light • Ruby laser, Helium-Neon laser, semiconductor laser and their applications • Holography and hologram, comparison of hologram with photography. • Principle of fiber optics and propagation of light in optical fiber, • Advantages and disadvantages of optical fiber communication • Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis • Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. • Phase index and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers,					
 Cardinal points (focal points, principal points and nodal points). Analytical methods for analysis of cardinal points. Matrix methods for analysis of cardinal points. Equivalent lens, problems on combination of thin lenses. Eye pieces (Ramsdon and Huygens), Ray diagram and characteristics, merits and demerits. Aplanatic points and its importance Unit II Laser and holography: Coherence (Temporal and Spatial) Stimulated and spontaneous emission, Einstein co-efficient and their interrelationship Basic idea about laser and its components, pumping and population inversion Comparison of laser light and ordinary light Ruby laser, Helium-Neon laser, semiconductor laser and their applications Holography and hologram, comparison of hologram with photography. Recording and reconstruction of hologram and its applications Unit III Fiber optics Constructions and materials used in optical fibers, Principle of fiber optics and propagation of light in optical fiber, Advantages and disadvantages of optical fiber communication Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. 	DIUCK I		*		
 Analytical methods for analysis of cardinal points. Matrix methods for analysis of cardinal points. Equivalent lens, problems on combination of thin lenses. Eye pieces (Ramsdon and Huygens), Ray diagram and characteristics, merits and demerits. Aplanatic points and its importance Unit II Laser and holography: Coherence (Temporal and Spatial) Stimulated and spontaneous emission, Einstein co-efficient and their interrelationship Basic idea about laser and its components, pumping and population inversion Comparison of laser light and ordinary light Ruby laser, Helium-Neon laser, semiconductor laser and their applications Holography and hologram, comparison of hologram with photography. Recording and reconstruction of hologram and its applications Unit III Fiber optics Constructions and materials used in optical fibers, Principle of fiber optics and propagation of light in optical fiber, Advantages and disadvantages of optical fiber communication Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. 		CO-axial syste	em of ienses		
 Analytical methods for analysis of cardinal points. Matrix methods for analysis of cardinal points. Equivalent lens, problems on combination of thin lenses. Eye pieces (Ramsdon and Huygens), Ray diagram and characteristics, merits and demerits. Aplanatic points and its importance Unit II Laser and holography: Coherence (Temporal and Spatial) Stimulated and spontaneous emission, Einstein co-efficient and their interrelationship Basic idea about laser and its components, pumping and population inversion Comparison of laser light and ordinary light Ruby laser, Helium-Neon laser, semiconductor laser and their applications Holography and hologram, comparison of hologram with photography. Recording and reconstruction of hologram and its applications Unit III Fiber optics Constructions and materials used in optical fibers, Principle of fiber optics and propagation of light in optical fiber, Advantages and disadvantages of optical fiber communication Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. 		Cardinal	points (focal points	s, principal points and nodal points).	
 Unit I Matrix methods for analysis of cardinal points. Equivalent lens, problems on combination of thin lenses. Eye pieces (Ramsdon and Huygens), Ray diagram and characteristics, merits and demerits. Aplanatic points and its importance Unit II Laser and holography: Coherence (Temporal and Spatial) Stimulated and spontaneous emission, Einstein co-efficient and their interrelationship Basic idea about laser and its components, pumping and population inversion Comparison of laser light and ordinary light Ruby laser, Helium-Neon laser, semiconductor laser and their applications Holography and hologram, comparison of hologram with photography. Vinit III Fiber optics Constructions and materials used in optical fibers, Principle of fiber optics and propagation of light in optical fiber, Advantages and disadvantages of optical fiber communication Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. 					
 Equivalent lens, problems on combination of thin lenses. Eye pieces (Ramsdon and Huygens), Ray diagram and characteristics, merits and demerits. Aplanatic points and its importance Unit II Laser and holography: Coherence (Temporal and Spatial) Stimulated and spontaneous emission, Einstein co-efficient and their interrelationship Basic idea about laser and its components, pumping and population inversion Comparison of laser light and ordinary light Ruby laser, Helium-Neon laser, semiconductor laser and their applications Holography and hologram, comparison of hologram with photography. Fiber optics Constructions and materials used in optical fibers, Principle of fiber optics and propagation of light in optical fiber, Advantages and disadvantages of optical fiber communication Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. 	I Init I	•		-	
 Eye pieces (Ramsdon and Huygens), Ray diagram and characteristics, merits and demerits. Aplanatic points and its importance Unit II Laser and holography: Coherence (Temporal and Spatial) Stimulated and spontaneous emission, Einstein co-efficient and their interrelationship Basic idea about laser and its components, pumping and population inversion Comparison of laser light and ordinary light Ruby laser, Helium-Neon laser, semiconductor laser and their applications Holography and hologram, comparison of hologram with photography. Recording and reconstruction of hologram and its applications Unit III Fiber optics Constructions and materials used in optical fibers, Principle of fiber optics and propagation of light in optical fiber, Advantages and disadvantages of optical fiber communication Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. Phase index and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers, 	Unit I		-	-	
 and demerits. Aplanatic points and its importance Unit II Laser and holography: Coherence (Temporal and Spatial) Stimulated and spontaneous emission, Einstein co-efficient and their interrelationship Basic idea about laser and its components, pumping and population inversion Comparison of laser light and ordinary light Ruby laser, Helium-Neon laser, semiconductor laser and their applications Holography and hologram, comparison of hologram with photography. Recording and reconstruction of hologram and its applications Unit III Fiber optics Constructions and materials used in optical fibers, Principle of fiber optics and propagation of light in optical fiber, Advantages and disadvantages of optical fiber communication Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. Phase index and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers, 		-			
 Aplanatic points and its importance Unit II Laser and holography: Coherence (Temporal and Spatial) Stimulated and spontaneous emission, Einstein co-efficient and their interrelationship Basic idea about laser and its components, pumping and population inversion Comparison of laser light and ordinary light Ruby laser, Helium-Neon laser, semiconductor laser and their applications Holography and hologram, comparison of hologram with photography. Recording and reconstruction of hologram and its applications Unit III Fiber optics Constructions and materials used in optical fibers, Principle of fiber optics and propagation of light in optical fiber, Advantages and disadvantages of optical fiber communication Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. Phase index and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers, 		• 1			
 Unit II Laser and holography: Coherence (Temporal and Spatial) Stimulated and spontaneous emission, Einstein co-efficient and their interrelationship Basic idea about laser and its components, pumping and population inversion Comparison of laser light and ordinary light Ruby laser, Helium-Neon laser, semiconductor laser and their applications Holography and hologram, comparison of hologram with photography. Recording and reconstruction of hologram and its applications Unit III Fiber optics Constructions and materials used in optical fibers, Principle of fiber optics and propagation of light in optical fiber, Advantages and disadvantages of optical fiber communication Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. Phase index and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers, 				ortance	
 Coherence (Temporal and Spatial) Stimulated and spontaneous emission, Einstein co-efficient and their interrelationship Basic idea about laser and its components, pumping and population inversion Comparison of laser light and ordinary light Ruby laser, Helium-Neon laser, semiconductor laser and their applications Holography and hologram, comparison of hologram with photography. Recording and reconstruction of hologram and its applications Unit III Fiber optics Constructions and materials used in optical fibers, Principle of fiber optics and propagation of light in optical fiber, Advantages and disadvantages of optical fiber communication Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. Phase index and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers, 	Unit II	-	<u> </u>	Jordanee	
 Stimulated and spontaneous emission, Einstein co-efficient and their interrelationship Basic idea about laser and its components, pumping and population inversion Comparison of laser light and ordinary light Ruby laser, Helium-Neon laser, semiconductor laser and their applications Holography and hologram, comparison of hologram with photography. Recording and reconstruction of hologram and its applications Unit III Fiber optics Constructions and materials used in optical fibers, Principle of fiber optics and propagation of light in optical fiber, Advantages and disadvantages of optical fiber communication Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. Phase index and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers, 	Onn n	Laser and no			
 relationship Basic idea about laser and its components, pumping and population inversion Comparison of laser light and ordinary light Ruby laser, Helium-Neon laser, semiconductor laser and their applications Holography and hologram, comparison of hologram with photography. Recording and reconstruction of hologram and its applications Unit III Fiber optics Constructions and materials used in optical fibers, Principle of fiber optics and propagation of light in optical fiber, Advantages and disadvantages of optical fiber communication Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. Phase index and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers, 		Coherence	e (Temporal and S	patial)	
 Basic idea about laser and its components, pumping and population inversion Comparison of laser light and ordinary light Ruby laser, Helium-Neon laser, semiconductor laser and their applications Holography and hologram, comparison of hologram with photography. Recording and reconstruction of hologram and its applications Unit III Fiber optics Constructions and materials used in optical fibers, Principle of fiber optics and propagation of light in optical fiber, Advantages and disadvantages of optical fiber communication Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. Phase index and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers, 		• Stimulate	d and spontaneou	s emission, Einstein co-efficient and their inter-	
 Comparison of laser light and ordinary light Ruby laser, Helium-Neon laser, semiconductor laser and their applications Holography and hologram, comparison of hologram with photography. Recording and reconstruction of hologram and its applications Unit III Fiber optics Constructions and materials used in optical fibers, Principle of fiber optics and propagation of light in optical fiber, Advantages and disadvantages of optical fiber communication Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. Phase index and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers, 		relationsh	nip		
 Ruby laser, Helium-Neon laser, semiconductor laser and their applications Holography and hologram, comparison of hologram with photography. Recording and reconstruction of hologram and its applications Unit III Fiber optics Constructions and materials used in optical fibers, Principle of fiber optics and propagation of light in optical fiber, Advantages and disadvantages of optical fiber communication Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. Phase index and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers, 		Basic ide	a about laser and it	s components, pumping and population inversion	
 Holography and hologram, comparison of hologram with photography. Recording and reconstruction of hologram and its applications Unit III Fiber optics Constructions and materials used in optical fibers, Principle of fiber optics and propagation of light in optical fiber, Advantages and disadvantages of optical fiber communication Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. Phase index and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers, 		Comparis	on of laser light an	d ordinary light	
 Recording and reconstruction of hologram and its applications Fiber optics Constructions and materials used in optical fibers, Principle of fiber optics and propagation of light in optical fiber, Advantages and disadvantages of optical fiber communication Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. Phase index and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers, 	-		er, Helium-Neon la	ser, semiconductor laser and their applications	
 Unit III Fiber optics Constructions and materials used in optical fibers, Principle of fiber optics and propagation of light in optical fiber, Advantages and disadvantages of optical fiber communication Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. Phase index and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers, 			hy and hologram, c	comparison of hologram with photography.	
 Unit III Fiber optics Constructions and materials used in optical fibers, Principle of fiber optics and propagation of light in optical fiber, Advantages and disadvantages of optical fiber communication Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. Phase index and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers, 		Recording	g and reconstructio	n of hologram and its applications	
 Principle of fiber optics and propagation of light in optical fiber, Advantages and disadvantages of optical fiber communication Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. Phase index and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers, 	Unit III			× ••	
 Principle of fiber optics and propagation of light in optical fiber, Advantages and disadvantages of optical fiber communication Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. Phase index and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers, 		Construct	tions and materials	used in optical fibers,	
 Advantages and disadvantages of optical fiber communication Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. Phase index and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers, 				-	
 Numerical aperture, acceptance angle, V-parameters, meridional and skew rays' analysis Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. Phase index and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers, 					
 rays' analysis Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. Phase index and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers, 		-	-		
 Types of fibers (SIF, GIF, Single mode and multimode), fiber profile. Phase index and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers, 					
• Phase index and group index in optical fiber, slowest and fastest mode of propagation inoptical fibers,		-	•	ingle mode and multimode), fiber profile.	
mode of propagation inoptical fibers,					
			U 1	1	
\checkmark Augmanum and dispersion in oblicat fibers barameter valientiation joss.		-			

	dispersion)		
	 Qualitative discussion of coupler, splices and connecter. 		
Block 2	CONCEPT OF LIGHT		
Unit IV	Nature of light:		
	 Statement, merits and demerits of Newton's corpuscular theory, Huygens longitudinalwave's theory and Fresnel transverse wave theory. Huygens principle and its explanation, laws of reflection and refraction. Electromagnetic wave theory (statement, consequences and limitations) Fermat's principles (statement and applications). Perception of light (human vision, color vision and color receptor) Scattering of light and its importance 		
Unit V	Concept of polarization:		
	 Cause and concept of polarization, plane of vibration and plane of polarization Un-polarized light and types of polarized light (linear, circular and elliptical). Plane polarized light by reflection and refraction, Brewster's law, piles of plates Plane polarized light by selective absorption (dichroism) and double reflection (E & Orays), birefringence. 		
	• Polarizer and analyzer, Nicol prism, law of Malus		
	• Huygens theory of double reflection by uniaxial crystal, negative and positive		
	 crystal, optic axis Superposition of two plane polarized lights along mutually perpendicular directions. 		
Unit VI	Detection of polarized light:		
	 Retardation plates (quarter and half wave plates), features and applications. Production and detection of elliptically and circularly polarized light Analysis of different polarized light. 		
	 Babinet compensator (principle, theory, application). 		
	Optical rotation and specific rotation, optical activity		
	• Fresnal theory of optical rotation.		
	Polarimeters (Half Shade and Biquartz), their merits and demerits.		
Block III	Interference and diffraction		
Unit VII	Concept of interference		
	• Statement and essential conditions for observation of interference		
	• Constructive and destructive interference, shape of fringes, visibility of fringes		
	• Youngs double slit experiment, shift in fringes pattern due to thin sheet of transport metorial		
	transparent material.Fresnel biprism, Fresnel bimirror, non-localized fringes.		
	 Fresher offisher offi		
	 Formation of coherent sources due to division of wave front in 		
	above devices and comparison of their fringe pattern.		
	 Fringes pattern with white light. 		

Unit VIII	Unit VIII Interference by division of amplitudes		
	• Stokes analysis of phase change on reflection		
	• Color in thin films (parallel and Wedge shaped) due to white light.		
	• Newton's rings (principle, theory and applications)		
	• Haidenger fringes, localized fringes.		
	• Michelson interferometer (principle and working), conditions for different shape of fringes, comparison with Newton's ring fringes		
	 Febry-Perot interferometer, intensity distribution, coefficient of finesse, 		
	visibility of fringes, sharpness of fringes, superiority over Michelson		
	interferometer fringes,		
	• L-G plates		
Unit IX	Fresnel diffraction		
	• Difference between interference and diffraction.		
	Classification of diffraction and their conditions.		
	• Fresnel construction of half period's zones, rectilinear propagation of light.		
	• Diffraction at straight edge and circular aperture.		
	• Zone plate and its comparison with convex lens		
	• Cornu's spiral (theory, applications and merit)		
Unit X	Fraunhoffer diffraction:		
	• Single slit fraunhoffer diffraction (theory and graph for maxima and minima)		
	• Double slit fraunhoffer diffraction (theory and importance), missing spectra.		
	• Plane diffraction grating (principle and analysis), condition for absent spectra		
	• Grating spectra and prism spectra.		
	• Concave diffraction grating (theory and types), superiority over plane grating.		
	• Rayleigh criterion of resolution, limits of resolution of eye.		
	• Resolving power of Grating, Prism, Telescope, and Microscope.		
Suggested Te	ext Book Readings:		
1. Funda	mental of optics, F. A. Jenkins & H. E. White, 1981, Tata McGraw hill.71		
2. LASERS: Fundamentals & applications, K.Thyagrajan & A.K.Ghatak, 2010,			
3. Tata McGraw Hill			
4. Fibre optics through experiments, M.R.Shenoy, S.K.Khijwania, et.al. 2009, Viva Books			
 5. Nonlinear Optics, Robert W. Boyd, (Chapter-I), 2008, Elsevier. 			
 Optics, Karl Dieter Moller, Learning by computing with model examples, 2007, Springer. 			
7. Optical Systems and Processes, Joseph Shamir, 2009, PHI Learning Pvt. Ltd.			
8. Optoelectronic Devices and Systems, S.C. Gupta, 2005, PHI Learning Pvt. Ltd.			
 Optical Physics, A.Lipson, S.G.Lipson, H.Lipson, 4th Edn., 1996, Cambridge Univ. Press 			
Suggested equivalent online courses (MOOCs) for credit transfer: Optics nptel course -			
https://youtu.be/U2Qhpa2Zmm4			
<u>maps.//youtu.</u>			
Electronic media and other digital components in the curriculum:			
	one or more than: e-SLM/ Other electronic and digital contents		
Name of elec	tronic media: e-SLM Year of incorporation: 2022		

Programme: I	B.Sc. Year: 3 rd	Semester:5 th	
	Subject: PHYSICS		
Course Code: D		RMAL PHYSICS	
	Course Objectives: The aim of this course is to make the students learn and discuss about the		
Thermodynar			
Course Outc	omes:		
CO-1 Student	will learn basics of Thermodynami	cs.	
CO-2. To imp	art basics knowledge of laws of The	ermodynamics.	
	t will be familiar with term Entropy		
	s will understand Thermodynamic r		
Credits: 2		Type of Course: ELECTIVE	
Max. Marks:	100 Min. Passing Ma	rks: 36	
		wise; No of blocks and units may change)	
Block 1	Thermodynamics		
	Fundamental of thermodynami	cs	
	• Thermodynamic systems, the	•	
	• •	(thermal, mechanical and chemical).	
Unit I	• Equation of state, equation of		
Omer	• Zeroth law of thermodynami		
		c variables, extensive and intensive variables.	
	-	i-static processes. reversible and irreversible	
	processes.		
	• Conditions for reversibility.		
Unit II	First law of thermodynamics		
	• Expression for thermal work		
	• Point function and path func		
	• Internal energy and enthalpy both as point function.		
		umics (statement, derivation, limitations and	
	applications).		
	• Degrees of freedom, atomic heat ratio, Mayer's relation.		
		sochoric, isothermal and adiabatic).	
T T T T T T T T T	P-V indicator diagram and it	s importance.	
Unit III	Second law of thermodynamics		
	• Need of second law.		
	• Carnot cycle (P-V and T-S d		
	Carnot heat engine and Refri	-	
	• Thermal efficiency and coef	-	
	• Carnot theorems (statement,		
		of Second law and their equivalence.	
	-	are and its comparison with perfect gas scale of	
	temperature.		
Unit IV	Entropy	l aborratoristica)	
	 Entropy (need, statement and Clausing theorem and Clausi 		
	Clausius theorem and Clausi	us mequanty of entropy.	

	• Change of entropy (in mixing, for change of state and for perfect gas).		
	• Available and non-available energy, ordered and disordered state.		
	• The principle of increase of entropy and degradation of energy.		
	• Consistency of Clausius & Kelvin statement with definition of		
	second law in terms of entropy.		
Block 2	Thermodynamic relations		
Unit V	Maxwell's relations		
	Reciprocal theorem and reciprocity theorem in thermodynamics		
	• Maxwell's relations (statement, significance and derivation from laws of		
	thermodynamics).		
	• Thermodynamic potentials (statement, significance and applications).		
	• TdS equations (statement, proof and applications).		
	• Heat capacity equations in different forms.		
	• Atomic heat ratio.		
Unit VI	Phase Transition		
	• First order phase transitions and its characteristics. Clausius Clapeyron		
	equations.		
	• Second order phase transition and its characteristics. Ehrenfest equations.		
	• First and second latent heat equations from Maxwell's relation, effect of		
	pressure on meltingpoint of solids and boiling point of liquids.		
	• Joule's expansion, Joule's coefficient, Energy equation.		
	• Free expansion and conservation of internal energy in it.		
	• Change of entropy in isothermal irreversible process.		
Unit VII	Third law of thermodynamics		
	• Joule's Thomson expansion, conservation of enthalpy.		
	• Enthalpy equation, Joule-Kelvin coefficient, inversion curve.		
	• Different methods of coolings, liquefaction of gas, adiabatic demagnetization.		
	• Comparison of Joule-Thomson expansion with Joule expansion and adiabatic		
	expansion.		
	• Throttling process, change of entropy in an irreversible adiabatic process.		
	• Third law of thermodynamics and its consequences.		
	• Statistical Mechanics: Maxwell-Boltzmann law - distribution of velocity -		
	Quantum statistics - Phase space - Fermi-Dirac distribution law - electron gas -		
	Bose-Einstein distribution law - photon gas - comparison of three statistics.		
Block III	Heat		
Unit VIII	Kinetic Theory of Gases		
	• Perfect gas equation and conditions for its validity to real gas.		
	 Comparison of ideal gas and real gas. Vander Waal equation of state, 		
	Vander Waal constants.		
	 Andrews experiment on CO₂, critical state, gas and vapors. 		
	 Andrews experiment on CO₂, critical state, gas and vapors. Critical constants (statement and inter-relationship). 		
	 Mean free path (qualitative) and its applications. 		
	 Transport phenomenon in gases (viscosity, thermal conductivity and self 		
	- Transport phenomenon in gases (viscosity, merinai conductivity and sen		

	diffusion, derivation of expressions for each and their inter-relationship).
	 Brownian's motions and its features.
Unit IX	Conduction and convection
Ollit IX	 Modes of transfer of heat.
	• Steady and variable states. Thermal conductivity, Thermal diffusivity.
	• Temperature gradient, heat flow through combination of slabs, thermal
	resistance.
	 Formation of ice layer and its consequences.
	 Fourier equation of heat. Discussion of results for exposed and covered
	rods, Ingen-Hauseexperiment.
	• Periodic flow of heat (qualitative) and its applications.
	 Natural and forced convection (qualitative).
Unit X	Radiation
	• Radiant energy, black body radiation, white radiation. Reflectivity, absorptivity
	andtransmitivity.
	• Kirchoff's law for radiation, (statement, derivation, significance and
	applications).
	• Stefen-Boltzman law (statement and derivation), Stefan's constant, Newton's
	law of cooling.
	• Average energy of quantum oscillator and classical oscillator. Number of
	modes per unitvolume in frequency range.
	• Planck's law for radiations (need, statement and derivation), ultraviolet
	catastrophe.
	• Derivation of classical laws (Stefan's, Wien's displacement, Wien's fifth
	power, Rayleigh-Jean) from Planck's law.
	• Spectrum of black body radiations at different temperatures.
Suggested T	ext Book Readings:
1. Heat a	and Thermodynamics, M.W. Zemansky, Richard Dittman, 1981, McGraw-Hill.
2. A Trea	atise on Heat, Meghnad Saha, and B.N.Srivastava, 1958, Indian Press
	hal Physics, S. Garg, R. Bansal and Ghosh, 2nd Edition, 1993, Tata McGraw-Hill
4. Mode	rn Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer.
5. Therm	nodynamics, Kinetic Theory & Statistical Thermodynamics, Sears & Salinger.
	Narosa.
	epts in Thermal Physics, S.J. Blundell and K.M. Blundell, 2nd Ed., 2012, Oxford
Unive	ersity Press
This course c	can be opted as an elective by the students of following subjects:NA
Suggested as	wivelent online courses (MOOCs) for anodit transfers Thermal Physics: Natel
	uivalent online courses (MOOCs) for credit transfer: Thermal Physics: Nptel .be/iSjKPeyoXYU
<u>mups.//youtu.</u>	
Electronic n	nedia and other digital components in the curriculum:
Choose any	one or more than: e-SLM/Other electronic and digital contents
Name of elec	ctronic media: e-SLM Year of incorporation: 2022

Programme: B	Sc	Year:3 rd		Semester:6 th
Tiogramme. D		Subject: PE	IYSICS	Semester.
Course Code: DCEPHS-108N Course Title: QUANTUM MECHANICS AND SPECTROSCOPY				
Course Objectives:				
• To pro	vide basics know	ledge of Quantum r	nechanics.	
-		miliar with the Sch		n.
Course Outco				
CO-1 Student	will learn basics	s concepts of quanti	um mechanics.	
CO-2 students	will be able to	understand the varie	ous operators used	to represents dynamic
variables				
CO-3 The eige	en values and eig	gen functions of lin	ear harmonic oscil	lator
-				s of microscopic systems.
Credits: 2			Type of Course: Ele	ective
Max. Marks: 1		Min. Passing Mark		
			rise; No of blocks a	and units may change)
Block 1	Wave mechanic	S		
	Basic concept:			
	• Need of au	antum theory and q	uantum mechanics	S
	-	• 1		its representation in various
Unit I	forms			
Omt I	 Wave function and its interpretation by Max-Born and Schrodinger 			
	 Separation of variables, stationary states 			
	 Probability density and probability current density 			
	• Equation of	• •	5	5
Unit II	Condition of w			
	• NT	.1	1.1	
		ble and unnormaliza		
		for normalized, o	rtnogonal, ortno	normal and complete wave
	function	walwag of the mag	hun ami cal maniahla	
	-	n values of thermo of the thermo	•	
		a function and Kron		
	-	erate states and deg eorem (statement, c		ificance
Unit III	Operator algeb		ienvation and sign	inicalice).
Omt m	•		ator inverse operat	tor, operator algebra
	-		-	nentum, energy velocity,
	1	rgy and angular mor	` 1 '	iencani, energy veroerty,
		perators (Linear, He		their properties)
				simultaneous wave
		d uncertaintyrelatio	-	
		tion, Eigen values		equations
	-	•	-	ital angular momentum,
		, position, L^2 .		Č ,
			ommutator rules a	mongst L+,L-, Lz and L^2 .

Block 2	Applications of Schrodinger's equation		
Unit IV			
	One- and three-dimensional problems		
	• Free particles, particle in box.		
	Potential steps, potential barrier(tunneling),		
	 Potential well of infinite depth and finite depth. 		
	 Harmonic oscillator (classical and quantum), series solution. 		
	• Eigen values and Eigen function of harmonic oscillator,Hermite polynomial		
	• Zero-point energy and parity of oscillator.		
Unit V	Spherically symmetric systems:		
	• Spherically symmetric potential, components of angular momentum in polar		
	coordinate		
	• Spherical harmonics and their orthogonality Legendre Polynomial,		
	• Schrödinger equations for rotator with free axis and its series solutions		
	• Schrödinger quatim for hydrogen atom, solution of r-equation, θ -equation,		
	Ø equation, Eigenfunction and Eigen values of hydrogen atom, Bhoris		
	radius		
	• Degeneracy and quantum number of hydrogen atoms		
	Comparison of Schrödinger atomic model with Bohr's atomic models.		
Block III	Identical particles and perturbation		
Unit VI	Identical particles		
	• Distinguishable and indistinguishable particles.		
	Symmetric and anti-symmetric wave functions		
	Concept of spin and spin angular momentum		
	• Pauli spin matrices (definition, commutation, anti-commutation), spin wave		
	function		
	Exchange operator, exchange degeneracy		
	Equation of motion, condition for constant motion.		
11 4 3711	Pauli exclusion principle (statement and importance)		
Unit VII	Approximation methods:		
	 Born-approximation (statement and application) Variation methods (statement and application) 		
	 Variation methods (statement and application) Perturbation method (time independent and time dependent) 		
	 Ferturbation method (time independent and time dependent) Time independent perturbation (non-degenerate and degenerate, first order 		
	and second ordercorrection)		
	 Application of perturbation theory to helium atom, ortho and para helium. 		
	 Application of perturbation theory to include and para heritant. Application of perturbation theory to anharmonic oscillator, comparison 		
	of harmonic andanhormonic oscillator		
Unit VIII	Atomic spectra:		
	• Lande-g factor (statement and derivation)		
	• Shift in energy of atom when placed in magnetic field		
	• Zeeman effect (statement and classification)		
	• Classical and quantum theory of normal and anomalous Zeeman effect, Paschen		
	Back effect		

	• Zeeman pattern for sodium lines and other various transitions Stark effect and		
	• Zeeman pattern for sourch miles and other various transitions stark effect and its characteristics		
Block IV	Molecular spectroscopy Unit		
Unit IX	Types of spectroscopies:		
	• Electronic, Rotational, Vibrational and Rotational-vibrational spectroscopy		
	 Selection rules, energy and frequency of vibrational spectra 		
	 Selection rules, energy and frequency of Notational spectra Selection rules, energy and frequency of Rotational spectra 		
	 Raman effect, stokes and anti-stokes lines (quantum and classical explanation) 		
	 Infrared spectroscopy 		
	 Fluorescence and phosphorescence spectroscopy 		
Unit X	Techniques of spectroscopy:		
Onit X	 Electronic spectra, 		
	 Electronic transitions 		
	 Frank-Condon principle 		
	 Singlet and triplet states 		
	 Fine structure and hyper fine structure 		
 NMR (principle and importance) 			
	• ESR (principle and importance)		
Suggested Te	ext Book Readings:		
1. A Tex	t book of Quantum Mechanics, P.M.Mathews and K.Venkatesan, 2nd Ed.,		
	McGraw Hill		
	um Mechanics, Robert Eisberg and Robert Resnick, 2nd Edn., 2002, Wiley.		
-	um Mechanics, Leonard I. Schiff, 3rd Edn. 2010, Tata McGraw Hill.		
-	um Mechanics, G. Aruldhas, 2nd Edn. 2002, PHI Learning of India.		
-	um Mechanics, Bruce Cameron Reed, 2008, Jones and Bartlett Learning.		
-	um Mechanics: Foundations & Applications, Arno Bohm, 3rd Edn., 1993, Springer		
-	um Mechanics for Scientists & Engineers, D.A.B. Miller, 2008, Cambridge		
	rsity Press		
Suggested eq	uivalent online courses (MOOCs) for credit transfer: NA		
Electronic n	nedia and other digital components in the curriculum:		
	one or more than:e-SLM/Other electronic and digital contents		
Name of elec	ctronic media: e-SLM Year of incorporation: 2022		

Drogramma	D Co	Year:3 rd		Semester:6 th	
Programme: B.Sc.		Subject: PH	VEICE	Semester.0	
Course Code	DCEPHS-109N			CS AND ADVANCED	
		ELECTRONICS			
•				earn and discuss about the	
basic's conc	epts of solids and	Advanced electronics			
Course Out		edge of Crystal and its	structura		
		to understand Advance		nice	
		to understand Advance	0		
Credits: 2			Type of Course: Ele		
Max. Marks	· 100	Min. Passing Mark			
				ind units may change)	
Block 1	Basic concep			······································	
	Crystal and i				
	·		te of solids. liquid	crystal and its characteristics	
	(qualitativ	-			
	· -	ystal structure (SC, F	CC BCC)		
	-	and Bravais lattice.	ee, bee).		
Unit I			nes of crystals on t	the basis of Bravais lattice.	
		•	- •		
	-				
	crystals		Anisotropic bod	y, clastic constants of cubic	
Unit II	Band theory	of solids			
	• Need of f	ree electron quantum	theory		
		eld Fermi model band			
	One dime	ensional motion of ele	ctron in periodic p	ootential (Bloch theorem).	
	Kronning	-Penny model (featur	es and its importar	nce).	
	• Fermi sur	face, effective mass c	of charge carriers (electron and holes).	
	Concentra	ation in semiconducto	ors.		
	Hall effect	ct (qualitative).			
Unit III	Lattice vibra	ations			
	Interatom	ic force and classifica	ation of solids.		
	Lattice en	ergy of ionic crystals			
	Vibration	of monoatomic and d	iatomic linear chai	in, acoustic and optical modes,	
	phonon.				
		capacity of solids, clas	ssical theory of spe	cific heats (Dulong and Petit's	
	law).	ntol regults and need	of quantum thacm	of spacific hast of solids	
	-			of specific heat of solids.	
		s theory of speci		l, statement,	
		ons, derivations andlin		accumptions derivations and	
	•	• 1	(need, statement,	assumptions, derivations and	
	limitation	15).			

 Unit IV Magnetism and superconductivity Comparison of features of diamagnetic and paramagnetic materials with examples. Curie lawand Curie Wiess law. Classical and quantum theory of diamagnetism and paramagnetism. Qualitative discussion of ferromagnetism, anti-ferromagnetism and ferrimagnetism. Superconductivity and its characteristics, magnetic behavior of superconductor. Meisner's effect, BCS theory (qualitative). Types of superconductors (examples, properties and applications). Josephson effect, quantum Hall effect. Block 2 Advanced analog electronics Unit V Different modes of operations. Eber's moll model for PNP and NPN transistors. Expressions for various currents and voltage. Saturation parameters and its importance. Conditions for cut off mode, saturation mode, inverse mode and active mode. Comparison among all modes of operations. Unit VI Transmission and reception Basic elements of transmitter, medium and receiver. Modulation (need, types and statements). Analysis of AM, FM and PM, modulation index. Frequency spectrum and power in modulations. Circuit of modulator. Demodulation (need and statements). Circuit for demodulator. 		Concept of Einstein's temperature and Debye temperature.
 Comparison of features of diamagnetic and paramagnetic materials with examples. Curie lawand Curie Wiess law. Classical and quantum theory of diamagnetism and paramagnetism. Qualitative discussion of ferromagnetism, anti-ferromagnetism and ferrimagnetism. Superconductivity and its characteristics, magnetic behavior of superconductor. Mcisner's effect, BCS theory (qualitative). Types of superconductors (examples, properties and applications). Josephson effect, quantum Hall effect. Block 2 Advanced analog electronics Unit V Different modes of operations. Eber's moll model for PNP and NPN transistors. Expressions for various currents and voltage. Saturation parameters and its importance. Conditions for cut off mode, saturation mode, inverse mode and active mode. Comparison anong all modes of operations. Unit VI Transmission and reception Basic elements of radio communication systems. Requirements of transmitter, medium and receiver. Modulation (need, types and statements). Analysis of AM, FM and PM, modulation index. Frequency spectrum and power in modulations. Circuit for demodulator. Derandulation (need and statements). Circuit for demodulator. Derandulation (need and statements). OP-amplifier (symbol, number code, power supply and characteristics). Input-output relationship, input-offset and output offset voltage. Differential input and output resistance. Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier. Differential and on-inverting amplifier. Differential and output characteristics. 	Unit IV	
 examples. Curie lawand Curie Wiess law. Classical and quantum theory of diamagnetism and paramagnetism. Qualitative discussion of ferromagnetism, anti-ferromagnetism and ferrimagnetism. Superconductivity and its characteristics, magnetic behavior of superconductor. Meisner's effect, BCS theory (qualitative). Types of superconductors (examples, properties and applications). Josephson effect, quantum Hall effect. Block 2 Advanced analog electronics Unit V Different modes of operations. Eber's moll model for PNP and NPN transistors. Expressions for various currents and voltage. Saturation parameters and its importance. Conditions for cut off mode, saturation mode, inverse mode and active mode. Comparison among all modes of operations. Unit V1 Transmission and reception Basic elements of radio communication systems. Requirements of transmitter, medium and receiver. Modulation (need, types and statements). Analysis of AM, FM and PM, modulation index. Frequency spectrum and power in modulations. Circuit for demodulator. Demodulation (need and statements). Circuit for demodulator. Demodulation (need and statements). Circuit for demodulator. Demodulation (need and statements). Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier. Differential input and output resistance. Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier. Differentiation and basic integrator. 	C III C I V	· ·
 Classical and quantum theory of diamagnetism and paramagnetism. Qualitative discussion of ferromagnetism, anti-ferromagnetism and ferrimagnetism. Superconductivity and its characteristics, magnetic behavior of superconductor. Meisner's effect, BCS theory (qualitative). Types of superconductors (examples, properties and applications). Josephson effect, quantum Hall effect. Block 2 Advanced analog electronics Unit V Different modes of operations. Eber's moll model for PNP and NPN transistors. Expressions for various currents and voltage. Saturation parameters and its importance. Conditions for cut off mode, saturation mode, inverse mode and active mode. Comparison among all modes of operations. Unit VI Transmission and reception Basic elements of radio communication systems. Requirements of transmitter, medium and receiver. Modulation (need, types and statements). Analysis of AM, FM and PM, modulation index. Frequency spectrum and power in modulations. Circuit of modulator. Demodulator. Demodulator. OP-amplifier (symbol, number code, power supply and characteristics). Input-output relationship, input-offset and output offset voltage. Differential input and output resistance. Common mode rejection ratio, output current, power consumption, slew rate gain-badwidth product. Characteristics of OP- amplifier, comparators and detector. Inverting and non-inverting amplifier. Differential and basic integrator. 		
 Qualitative discussion of ferromagnetism, anti-ferromagnetism and ferrimagnetism. Superconductivity and its characteristics, magnetic behavior of superconductor. Meisner's effect, BCS theory (qualitative). Types of superconductors (examples, properties and applications). Josephson effect, quantum Hall effect. Block 2 Advanced analog electronics Unit V Different modes of operations. Eber's moll model for PNP and NPN transistors. Expressions for various currents and voltage. Saturation parameters and its importance. Conditions for cut off mode, saturation mode, inverse mode and active mode. Comparison among all modes of operations. Unit VI Transmission and reception Basic elements of transmitter, medium and receiver. Modulation (need, types and statements). Analysis of AM, FM and PM, modulation index. Frequency spectrum and power in modulations. Circuit for demodulator. Demodulator. Demodulator. Demodulator. Demodulator. OP-amplifier OP-amplifier (symbol, number code, power supply and characteristics). Input-output relationship, input-offset and output offset voltage. Differential input and output resistance. Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier. Differentiat or and basic integrator. Block III Advance digital electronics Unit VIII 		-
ferrimagnetism. Superconductivity and its characteristics, magnetic behavior of superconductor. Meisner's effect, BCS theory (qualitative). Types of superconductors (examples, properties and applications). Josephson effect, quantum Hall effect. Block 2 Advanced analog electronics Unit V Different modes of operations. Eber's moll model for PNP and NPN transistors. Expressions for various currents and voltage. Saturation parameters and its importance. Conditions for cut off mode, saturation mode, inverse mode and active mode. Comparison among all modes of operations. Unit VI Transmission and reception Basic elements of tradio communication systems. Requirements of transmitter, medium and receiver. Modulation (need, types and statements). Analysis of AM, FM and PM, modulation index. Frequency spectrum and power in modulations. Circuit of modulator. Demodulation (need and statements). Operational amplifier OP-amplifier (symbol, number code, power supply and characteristics). Input-output relationship, input-offset and output offset voltage. Differential input and output resistance. Common mode rejection ratio, output curr		
 Superconductivity and its characteristics, magnetic behavior of superconductor. Meisner's effect, BCS theory (qualitative). Types of superconductors (examples, properties and applications). Josephson effect, quantum Hall effect. Block 2 Advanced analog electronics Unit V Different modes of operations. Eber's moll model for PNP and NPN transistors. Expressions for various currents and voltage. Saturation parameters and its importance. Conditions for cut off mode, saturation mode, inverse mode and active mode. Comparison among all modes of operations. Unit VI Transmission and reception Basic elements of transmitter, medium and receiver. Modulation (need, types and statements). Circuit of modulator. Demodulation (need and statements). Circuit for demodulator. Demodulation (need and statements). Circuit for demodulator. Demodulation (need and statements). Circuit for demodulator. Differential input and output resistance. Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier. Differential on on-inverting amplifier. Differential and basic integrator. Advance digital electronics Unit VII 		
 Meisner's effect, BCS theory (qualitative). Types of superconductors (examples, properties and applications). Josephson effect, quantum Hall effect. Block 2 Advanced analog electronics Unit V Different modes of operations. Eber's moll model for PNP and NPN transistors. Expressions for various currents and voltage. Saturation parameters and its importance. Conditions for cut off mode, saturation mode, inverse mode and active mode. Comparison among all modes of operations. Unit VI Transmission and reception Basic elements of radio communication systems. Requirements of transmitter, medium and receiver. Modulation (need, types and statements). Analysis of AM, FM and PM, modulation index. Frequency spectrum and power in modulations. Circuit of modulator. Demodulation (need and statements). Circuit for demodulator. Demodulation (need and statements). Circuit for demodulator. Demodulation (need and statements). Circuit for demodulator. Demodulator. Differential input and output resistance. Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier. Differential on on-inverting amplifier. Differential and on-inverting amplifier. Differential and no-inverting amplifier. Differential electronics 		5
 Types of superconductors (examples, properties and applications). Josephson effect, quantum Hall effect. Block 2 Advanced analog electronics Different modes of operations. Eber's moll model for PNP and NPN transistors. Expressions for various currents and voltage. Saturation parameters and its importance. Conditions for cut off mode, saturation mode, inverse mode and active mode. Comparison among all modes of operations. Transmission and reception Basic elements of radio communication systems. Requirements of transmitter, medium and receiver. Modulation (need, types and statements). Analysis of AM, FM and PM, modulation index. Frequency spectrum and power in modulations. Circuit of modulator. Demodulation (need and statements). Circuit for demodulator. Differential input and output resistance. Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier, comparators and detector. Inverting and non-inverting amplifier. Differentiatior and basic integrator. Biferentiation and basic integrator. Biferentiation and classification of logic families. Input and output characteristics. 		
 Josephson effect, quantum Hall effect. Block 2 Advanced analog electronics Unit V Different modes of operations. Eber's moll model for PNP and NPN transistors. Expressions for various currents and voltage. Saturation parameters and its importance. Conditions for cut off mode, saturation mode, inverse mode and active mode. Comparison among all modes of operations. Unit VI Transmission and reception Basic elements of radio communication systems. Requirements of transmitter, medium and receiver. Modulation (need, types and statements). Analysis of AM, FM and PM, modulation index. Frequency spectrum and power in modulations. Circuit of modulator. Demodulation (need and statements). Circuit of demodulator. Demodulation (need and statements). Circuit for demodulator.		
Unit V Different modes of operations. • Eber's moll model for PNP and NPN transistors. • Expressions for various currents and voltage. • Saturation parameters and its importance. • Conditions for cut off mode, saturation mode, inverse mode and active mode. • Comparison among all modes of operations. Unit VI Transmission and reception • Basic elements of radio communication systems. • Requirements of transmitter, medium and receiver. • Modulation (need, types and statements). • Analysis of AM, FM and PM, modulation index. • Frequency spectrum and power in modulations. • Circuit of modulator. • Demodulation (need and statements). • Circuit of modulator. • Deperational amplifier • OP-amplifier (symbol, number code, power supply and characteristics). • Input-output relationship, input-offset and output offset voltage. • Differential input and output resistance. • Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. • Characteristics of OP- amplifier, comparators an		
 Eber's moll model for PNP and NPN transistors. Expressions for various currents and voltage. Saturation parameters and its importance. Conditions for cut off mode, saturation mode, inverse mode and active mode. Comparison among all modes of operations. Transmission and reception Basic elements of radio communication systems. Requirements of transmitter, medium and receiver. Modulation (need, types and statements). Analysis of AM, FM and PM, modulation index. Frequency spectrum and power in modulations. Circuit of modulator. Demodulation (need and statements). Circuit for demodulator. Unit VII Operational amplifier OP-amplifier (symbol, number code, power supply and characteristics). Input-output relationship, input-offset and output offset voltage. Differential input and output resistance. Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier, comparators and detector. Inverting and non-inverting amplifier. Differentiator and basic integrator. Block III Advance digital electronics Introduction and classification of logic families. Input and output characteristics. 	Block 2	Advanced analog electronics
 Expressions for various currents and voltage. Saturation parameters and its importance. Conditions for cut off mode, saturation mode, inverse mode and active mode. Comparison among all modes of operations. Unit VI Transmission and reception Basic elements of radio communication systems. Requirements of transmitter, medium and receiver. Modulation (need, types and statements). Analysis of AM, FM and PM, modulation index. Frequency spectrum and power in modulations. Circuit of modulator. Demodulation (need and statements). Circuit for demodulator. Unit VII Operational amplifier OP-amplifier (symbol, number code, power supply and characteristics). Input-output relationship, input-offset and output offset voltage. Differential input and output resistance. Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier, comparators and detector. Inverting and non-inverting amplifier. Differentiator and basic integrator. Block III Advance digital electronics Unit VIII Logic families Introduction and classification of logic families. Input and output characteristics. 	Unit V	Different modes of operations.
 Saturation parameters and its importance. Conditions for cut off mode, saturation mode, inverse mode and active mode. Comparison among all modes of operations. Unit VI Transmission and reception Basic elements of radio communication systems. Requirements of transmitter, medium and receiver. Modulation (need, types and statements). Analysis of AM, FM and PM, modulation index. Frequency spectrum and power in modulations. Circuit of modulator. Demodulation (need and statements). Circuit of modulator. Demodulation (need and statements). Circuit for demodulator. Unit VII OPerational amplifier OP - amplifier (symbol, number code, power supply and characteristics). Input-output relationship, input-offset and output offset voltage. Differential input and output resistance. Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier, comparators and detector. Inverting and non-inverting amplifier. Differentiator and basic integrator. Block III Advance digital electronics Unit VIII Logic families Introduction and classification of logic families. Input and output characteristics. 		• Eber's moll model for PNP and NPN transistors.
 Conditions for cut off mode, saturation mode, inverse mode and active mode. Comparison among all modes of operations. Unit VI Transmission and reception Basic elements of radio communication systems. Requirements of transmitter, medium and receiver. Modulation (need, types and statements). Analysis of AM, FM and PM, modulation index. Frequency spectrum and power in modulations. Circuit of modulator. Demodulation (need and statements). Circuit for demodulator. Unit VII Operational amplifier OP-amplifier (symbol, number code, power supply and characteristics). Input-output relationship, input-offset and output offset voltage. Differential input and output resistance. Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier, comparators and detector. Inverting and non-inverting amplifier. Differentiator and basic integrator. Block III Advance digital electronics Introduction and classification of logic families. Input and output characteristics. 		• Expressions for various currents and voltage.
 Comparison among all modes of operations. Unit VI Transmission and reception Basic elements of radio communication systems. Requirements of transmitter, medium and receiver. Modulation (need, types and statements). Analysis of AM, FM and PM, modulation index. Frequency spectrum and power in modulations. Circuit of modulator. Demodulation (need and statements). Circuit for demodulator. Unit VII Operational amplifier OP-amplifier (symbol, number code, power supply and characteristics). Input-output relationship, input-offset and output offset voltage. Differential input and output resistance. Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier. Differentiator and basic integrator. Block III Advance digital electronics Unit VIII Unit VIII 		Saturation parameters and its importance.
 Comparison among all modes of operations. Unit VI Transmission and reception Basic elements of radio communication systems. Requirements of transmitter, medium and receiver. Modulation (need, types and statements). Analysis of AM, FM and PM, modulation index. Frequency spectrum and power in modulations. Circuit of modulator. Demodulation (need and statements). Circuit for demodulator. Unit VII Operational amplifier OP-amplifier (symbol, number code, power supply and characteristics). Input-output relationship, input-offset and output offset voltage. Differential input and output resistance. Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier. Differentiator and basic integrator. Block III Advance digital electronics Unit VIII Unit VIII 		• Conditions for cut off mode, saturation mode, inverse mode and active mode.
 Basic elements of radio communication systems. Requirements of transmitter, medium and receiver. Modulation (need, types and statements). Analysis of AM, FM and PM, modulation index. Frequency spectrum and power in modulations. Circuit of modulator. Demodulation (need and statements). Circuit for demodulator. Unit VII Operational amplifier OP-amplifier (symbol, number code, power supply and characteristics). Input-output relationship, input-offset and output offset voltage. Differential input and output resistance. Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier. Differentiator and basic integrator. Block III Advance digital electronics Unit VIII Logic families Introduction and classification of logic families. Input and output characteristics. 		
 Requirements of transmitter, medium and receiver. Modulation (need, types and statements). Analysis of AM, FM and PM, modulation index. Frequency spectrum and power in modulations. Circuit of modulator. Demodulation (need and statements). Circuit for demodulator. Unit VII Operational amplifier OP-amplifier (symbol, number code, power supply and characteristics). Input-output relationship, input-offset and output offset voltage. Differential input and output resistance. Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier, comparators and detector. Inverting and non-inverting amplifier. Differentiator and basic integrator. Block III Advance digital electronics Unit VIII Logic families Introduction and classification of logic families. Input and output characteristics. 	Unit VI	Transmission and reception
 Modulation (need, types and statements). Analysis of AM, FM and PM, modulation index. Frequency spectrum and power in modulations. Circuit of modulator. Demodulation (need and statements). Circuit for demodulator. Unit VII Operational amplifier OP-amplifier (symbol, number code, power supply and characteristics). Input-output relationship, input-offset and output offset voltage. Differential input and output resistance. Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier. Differentiator and basic integrator. Block III Advance digital electronics Unit VIII Logic families Introduction and classification of logic families. Input and output characteristics. 		Basic elements of radio communication systems.
 Analysis of AM, FM and PM, modulation index. Frequency spectrum and power in modulations. Circuit of modulator. Demodulation (need and statements). Circuit for demodulator. Unit VII Operational amplifier OP-amplifier (symbol, number code, power supply and characteristics). Input-output relationship, input-offset and output offset voltage. Differential input and output resistance. Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier, comparators and detector. Inverting and non-inverting amplifier. Differentiator and basic integrator. Block III Advance digital electronics Unit VIII Logic families Introduction and classification of logic families. Input and output characteristics. 		• Requirements of transmitter, medium and receiver.
 Frequency spectrum and power in modulations. Circuit of modulator. Demodulation (need and statements). Circuit for demodulator. Unit VII Operational amplifier OP-amplifier (symbol, number code, power supply and characteristics). Input-output relationship, input-offset and output offset voltage. Differential input and output resistance. Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier, comparators and detector. Inverting and non-inverting amplifier. Differentiator and basic integrator. Block III Advance digital electronics Unit VIII Logic families Introduction and classification of logic families. Input and output characteristics. 		• Modulation (need, types and statements).
 Circuit of modulator. Demodulation (need and statements). Circuit for demodulator. Unit VII Operational amplifier OP-amplifier (symbol, number code, power supply and characteristics). Input-output relationship, input-offset and output offset voltage. Differential input and output resistance. Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier, comparators and detector. Inverting and non-inverting amplifier. Differentiator and basic integrator. Block III Advance digital electronics Unit VIII Logic families Introduction and classification of logic families. Input and output characteristics. 		• Analysis of AM, FM and PM, modulation index.
 Demodulation (need and statements). Circuit for demodulator. Unit VII Operational amplifier OP-amplifier (symbol, number code, power supply and characteristics). Input-output relationship, input-offset and output offset voltage. Differential input and output resistance. Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier, comparators and detector. Inverting and non-inverting amplifier. Differentiator and basic integrator. Block III Advance digital electronics Unit VIII Logic families Introduction and classification of logic families. Input and output characteristics. 		• Frequency spectrum and power in modulations.
 Circuit for demodulator. Unit VII Operational amplifier OP-amplifier (symbol, number code, power supply and characteristics). Input-output relationship, input-offset and output offset voltage. Differential input and output resistance. Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier, comparators and detector. Inverting and non-inverting amplifier. Differentiator and basic integrator. Block III Advance digital electronics Introduction and classification of logic families. Input and output characteristics. 		Circuit of modulator.
 Unit VII Operational amplifier OP-amplifier (symbol, number code, power supply and characteristics). Input-output relationship, input-offset and output offset voltage. Differential input and output resistance. Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier, comparators and detector. Inverting and non-inverting amplifier. Differentiator and basic integrator. Block III Advance digital electronics Introduction and classification of logic families. Input and output characteristics. 		• Demodulation (need and statements).
 OP-amplifier (symbol, number code, power supply and characteristics). Input-output relationship, input-offset and output offset voltage. Differential input and output resistance. Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier, comparators and detector. Inverting and non-inverting amplifier. Differentiator and basic integrator. Block III Advance digital electronics Unit VIII Logic families Introduction and classification of logic families. Input and output characteristics. 		Circuit for demodulator.
 Input-output relationship, input-offset and output offset voltage. Differential input and output resistance. Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier, comparators and detector. Inverting and non-inverting amplifier. Differentiator and basic integrator. Block III Advance digital electronics Unit VIII Logic families Introduction and classification of logic families. Input and output characteristics. 	Unit VII	
 Differential input and output resistance. Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier, comparators and detector. Inverting and non-inverting amplifier. Differentiator and basic integrator. Block III Advance digital electronics Unit VIII Logic families Introduction and classification of logic families. Input and output characteristics. 		
 Common mode rejection ratio, output current, power consumption, slew rate gain-bandwidth product. Characteristics of OP- amplifier, comparators and detector. Inverting and non-inverting amplifier. Differentiator and basic integrator. Block III Advance digital electronics Unit VIII Logic families Introduction and classification of logic families. Input and output characteristics. 		
slew rate gain-bandwidth product. Characteristics of OP- amplifier, comparators and detector. Inverting and non-inverting amplifier. Differentiator and basic integrator. Block III Advance digital electronics Unit VIII Logic families Introduction and classification of logic families. Input and output characteristics.		1 1
 Characteristics of OP- amplifier, comparators and detector. Inverting and non-inverting amplifier. Differentiator and basic integrator. Block III Advance digital electronics Unit VIII Logic families Introduction and classification of logic families. Input and output characteristics. 		
 Inverting and non-inverting amplifier. Differentiator and basic integrator. Block III Advance digital electronics Unit VIII Logic families Introduction and classification of logic families. Input and output characteristics. 		
• Differentiator and basic integrator. Block III Advance digital electronics Unit VIII Logic families • Introduction and classification of logic families. • Input and output characteristics.		
Block III Advance digital electronics Unit VIII Logic families • Introduction and classification of logic families. • Input and output characteristics.		
Unit VIII Logic families Introduction and classification of logic families. Input and output characteristics. 		
 Introduction and classification of logic families. Input and output characteristics. 		
• Input and output characteristics.	Unit VIII	Logic families
• Input and output characteristics.		• Introduction and classification of logic families.
· ·		
• Noise margin and noise immunity.		• Noise margin and noise immunity.
• Rise and fall time.		· ·

	• RTL (circuit, analysis and applications).
	• DTL (circuit, analysis and applications).
	• TTL (circuit, analysis and applications), totem-pol.
	• Comparison of RTL, DTL and TTL.
Unit IX	Sequential circuits
	Difference from combinational circuit.
	• Flip-flops (RS, D, JK) master slave.
	• Register (function and types).
	• Counter (function and types).
	• Memory (function and types).
	• Convertors (A/D and D/A).
Unit X	Integrated circuits and devices
	• Introduction of integrated circuit and its comparison with discrete circuits.
	• Classification of IC on the basis of construction and operation.
	• Monolithic IC (basics structure and fabrication).
	• Cathode ray oscilloscope (principle, construction, block diagram, working and
	application).
	• Multimeter (principle, types, construction and function).
	• Ultrasonics (production, detection, velocity measurements and applications),
	Hypersonic and ultrasonics.
00	Text Book Readings:
1. Introd	uction to Solid State Physics, Charles Kittel, 8th Edition, 2004, Wiley India
Pvt. Ltd.	
2 Eleme	ents of Solid-State Physics, J.P. Srivastava, 2nd Edition, 2006, Prentice-Hall of
India	sits of Sond-State 1 hysics, J.1 . Silvastava, 2nd Edition, 2000, 1 fendee-fran of
mula	
3. Introd	uction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill
4. Solid	State Physics, N.W. Ashcroft and N.D. Mermin, 1976, Cengage Learning
	state Physics, H. Ibach and H. Luth, 2009, Springer
	entary Solid-State Physics, 1/e M. Ali Omar, 1999, Pearson India
	State Physics, M.A. Wahab, 2011, Narosa Publications
-	l Principles and Applications, A.P. Malvino, D.P. Leach and Saha, 7th Ed.,
,	ta McGraw Hill
	mentals of Digital Circuits, A. Anand Kumar, 2nd Edition, 2009, PHI
-	g Pvt. Ltd.
10. OP-A	AMP & Linear Digital Circuits, R.A. Gayakwad, 2000, PHI Learning Pvt. Ltd.
This course	can be opted as an elective by the students of following subjects:NA
Suggested e	equivalent online courses (MOOCs) for credit transfer: NA
Electronic n	nedia and other digital components in the curriculum:
	one or more than: e-SLM/ Other electronic and digital contents
Name of elec	ctronic media: e-SLM Year of incorporation: 2022