Year-2023-2024 Syllabus of B.Sc. Programme: [Subject Name: Mathematics]

Year	Sem.	Course Code	Paper Title	Theory/	Max.	Credits
				Practical	Marks.	
	Ι	UGMM-101(N)	Differential Calculus	Theory	100	2
		UGMM-102(N)	Analytical Geometry	Theory	100	2
1	II	UGMM-103(N)	Integral Calculus	Theory	100	2
		UGMM-104(N)	Differential Equation	Theory	100	2
		UGMM -105(N)	Mechanics-I (Statics and Dynamics)	Theory	100	2
2	III	UGMM -106(N)	Mechanics-II (Dynamics and Hydrodynamics)	Theory	100	2
		UGMM -107(N)	Linear Algebra	Theory	100	2
	IV	UGMM -108(N)	Calculus of function of several variable and Vector Calculus	Theory	100	2
		Discipline Centric E				
		DISCIPLINE CENTRE EL	Abstract Algebra	Theory	100	2
	v	DCEMM -109(N)	Number Theory	Theory	100	2
		DCEMM-110(IV)	Viva Voce	Practical	100	2
		Skill Enhancement Course				
3	VI	SBSMM-03(N)	Elementary Analysis	Theory	100	4
		Discipline Centric Elective Course				
		DCEMM -112(N)	Advance Analysis	Theory	100	2
		DCEMM -113(N)	Function of Complex Variable	Theory	100	2
		DCEMM-114(N)(P)	Viva Voce	Practical	100	2
	1	1	Total N	Marks/Credit	1500	32

In accordance with NEP-2020

Syllabus for B.Sc. Subject: MATHEMATICS

	Course prerequisites: 10+2 with Mathematics				
Programme: B.Sc.	Year: 2023-24	Semester: I			
Subject	: MATHEMATICS				
Course Code: UGMM-101(N)Course Title: Differential Calculus					
Course Objectives:	·				
> To understand the basics concept of set	theory, function and	relations with their properties.			
To understand the limit, continuity with	their applications.				
To know about the differentiation and the	heir application in sol	lving real life problem.			
To determine the derivative of some specific termine the derivative of some specific termine.	ecial functions.				
Course Outcomes:					
CO1: The student will be able to unders	stand about the sets,	relation and function with their			
properties.					
CO2: The student shall understand the imp	portance and solution	n procedure of problems related to			
limit and continuity.					
CO3: The student will get to know about	differentiation and 1	ts applications in determining the			
derivatives of higher orders.	, <u>1</u> 1.,				
CO4: The student shall understand the impo		ons of Rolle's theorem, Lagrange's			
Mean value Theorem and Cauchy Mean va	1				
Credits: 2	Type of Course: C				
Max. Marks: 100 Min. Passing Marks: 36 Plack 1 Sat. Polation					
, ,	Block 1 Set, Relation, Function and its Property Set and Relation: Set Theory, Types of sets, Operations on Sets, Laws Relating				
		esian product of two sets, Relation,			
	-	a Relation, Types of Relations,			
1	•	set, Partition of a Set, Quotient set			
of a set, Oder Relation and Exa		set, i utilion of a Set, Quotient set			
	Functions: Functions or mapping, Direct and inverse images of subsets under maps,				
Real valued Functions of one variable, Inverse functions, Graphs of func-					
		ven and odd functions, Monotone			
		n of \mathbb{R} as a complete ordered field,			
	Basic properties of R, Absolute value, Intervals on the real line.				
	Limits: Definition of limit of a function at a point of its domain, Algebra of Limits,				
Infinite Limits (Limits as $x \rightarrow \frac{1}{2}$	Infinite Limits (Limits as $x \to \pm \infty$), One Sided Limits.				
Unit IV Continuity: Continuity (Defin	itions and Examples)	, Algebra of continuous functions,			
		ness supremum and infimum of a			
function, Boundedness and ir	ntermediate value th	eorem, properties of continuous			
functions over closed intervals,	Type of discontinuity	y, Image of a closed interval under			
continuous mons	continuous maps.				
continuous maps.					

Unit V	Differentiability and Derivatives: Differentiability of a function at a point, Definition		
Unit v			
	of derivative of a function and its geometrical interpretation, Derivatives of some		
	simple functions, Algebra of derivatives, Chain rule. Sign of derivatives and		
	monotonicity of functions, Continuity versus Differentiability. Derivative of		
	exponential function, Logarithmic functions.		
Unit VI	Derivative of Hyperbolic Functions and Some Special Functions: Definition of		
	Hyperbolic Functions, Derivative of Inverse Hyperbolic Functions Methods of		
	Differentiation (Derivative of x ^r), Logarithmic Differentiation, Derivatives of		
	functions defined in terms of a parameter, Derivatives of Implicit Functions,		
	Derivatives of Trigonometric Functions, Derivative of the Sine Function, Derivative		
	of the Cosine Function, The Derivatives of the other trigonometric functions,		
	Derivative of the Tangent Function, Derivatives of Inverse Functions, Derivatives		
	of Inverse Trigonometric Functions, Use of Transformations.		
Unit VII			
	Derivatives. Leibnitz's Theorem. Maclaurin's Series, Taylor's Series		
Unit VIII	I Mean value theorems: Rolle's theorem, Lagrange's Mean value Theorem and Cauchy		
	Mean value Theorem.		
Suggested	Text Book Readings:		
1. R.G. I	Bartle & D.R. Sherbert, Introduction to Real Analysis, John Wiley & Sons, 2020.		
2. T.M.	Apostal, Calculus Vol. I, John Wiley & Sons Inc, 1991.		
3. S. Bal	achandra Rao & C. K. Shantha, Differential Calculus, New Age Publication, 2001.		
4. H. An	ton, I. Birens and S. Davis, Calculus, John Wiley and Sons, Inc., 2002.		
5. G.B. T	5. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007.		
Suggestee	d online link:		
00	//archive.nptel.ac.in/courses/111/104/111104092		
2. <u>https:</u>	s://onlinecourses.nptel.ac.in/noc23_ma13/preview		
-	//archive.nptel.ac.in/courses/111/104/111104144		
	//archive.nptel.ac.in/courses/111/105/111105122		
	se can be opted as an elective by the students of following subjects: NA		
Suggested	equivalent online courses (MOOCs) for credit transfer: NA		

Course prerequisites: 10+2 with Mathematics						
Program	ne: B.Sc.	Year: 2023-24	Semester: I			
Subject: MATHEMATICS						
Course Co	Course Code: UGMM-102(N) Course Title: Analytical Geometry					
Course O	bjectives:					
➢ To un	derstand the basic concepts of	f conic section and curve tra	acing.			
➤ To de	velop working skills with stra	ight line, sphere and cylind	er.			
➤ To ac	quire basic knowledge about o	cones, reciprocal, envelopir	ng and right circular cone.			
To lease	arn the concepts and uses of co	entral conicoids.				
Course O	utcomes:					
CO1: The	student will get to know abo	out conic section and curve	tracing, and its applications in			
finding the	e area, surface and volumes.					
CO2: The	e student shall understand the	e concepts of straight line,	plane, sphere, intersection of			
sphere and	l plane, cylinder and right circ	cular cylinder, cones and rig	ht circular cone.			
	-		coordinate geometry and learn			
	e some of the surface by using					
	e student will be able to und	erstand the central conicol	ds with properties and their			
application		Γ				
Credits: 2		Type of Course: Core				
Max. Mar		Min. Passing Marks: 36				
Block 1	Conic Section					
	Conic Section: Homogeneous equation of second degree and conditions on it to					
Unit I	represent different types of conics. Polar coordinates Polar equation of a line, parabola,					
	ellipse and hyperbola when focus is taken as pole. Polar equations of the chord joining					
	two points.					
Unit II			ontact), pair of tangent lines,			
	asymptotes, Tracing of a cor	11C.				
Block 2	Sphere and Cylinder	0. 1.1 1	1, , , , , , , , , , , , , , , , , , ,			
Unit III	•	• •	lirection cosines and direction			
	-		f the equation of a plane, plane			
			lines and two planes, distance			
			of two planes, intersection of			
Unit IV	line and plane. Coplanar lines shortest distance between two skew lines.Sphere: Equation of a sphere, Intersection of sphere and planes, Intersection of two					
Unitiv		-	of a straight line and a sphere.			
		•	er of a point. Radical planes,			
	Radical lines, Co-axel system					
Unit V			inder with Axis parallel to co-			
			r cylinders. Rules surfaces,			
	generating lines of a hyperbo		-			
Block 3	Cones and Central Conico		simple properties.			
DIUCK J	Conco anu Centi ai Conico	14.5				

Unit VI	Cones: Equation of a cone with a given base, Intersection of a cone and a plane passing			
	through the vertex of cone, tangent plane, reciprocal cone, Enveloping cone, right			
	circular cone.			
Unit VII Central Conicoids-I: Standard equation of a Central conicoid, ellip				
	hyperboloid of one sheet and two sheets, tangent planes, tangent lines, polar planes			
	and polar lines.			
Unit VIII	Central Conicoids-II: Enveloping cones and cylinders section with a given centres.			
	Diametric plane, conjugate diameters, normal, normal drawn from a given point.			
Suggested	Suggested Text Book Readings:			
1. Rober	Robert J.T Bell, Elementary Treatise on Coordinate Geometry of three dimensions, Macmillan			
India	India Ltd. 1923.			
2. P.R. V	2. P.R. Vittal, Analytical Geometry 2d & 3D, Pearson, 2017.			
3. S.L. L	L. Loney, The Elements of Coordinate Geometry, McMillan & Company, London, 2016.			
4. Thoma	Thomas, G.B. and Finney, R.L., Calculus and Analytic Geometry, 9th Edition, Pearson, Reprint,			
2002.	2002.			
This cour	This course can be opted as an elective by the students of following subjects: NA			
Suggested	Suggested equivalent online courses (MOOCs) for credit transfer: NA			

Program	me: B.Sc.	Year: 2023-24	Semester: II	
		Subject: MATHEMA	TICS	
Course C	ode: UGMM-103(N)	Course Title: Integr	al Calculus	
Course O	bjectives:			
≻ To ur	nderstand the basics conc	epts of integration and	their methods.	
≻ To de	evelop working skills wit	h integration and use of	f reduction formula in integration.	
> To le	arn the integration of rati	onal and irrational func	tion and tangent normal to the curves.	
➤ To di	scuss the applications of	integration.		
Course O	utcomes:			
CO 1: Th	e student shall understan	d the Integration and th	eir solvable techniques.	
CO 2: Th	e student will be able to u	nderstand the principles	s of integral and learns to solve a variety	
of practica	l problems in science and	engineering.		
CO3: The	e student will get to know	ow about solutions of	integration of rational and irrational	
function.				
CO4: The	e student will get to know	v about integral calculu	s and its applications in finding areas,	
surface an	d volumes.			
Credits: 2	2	Type of Course: Co	re	
Max. Ma	rks: 100	Min. Passing Marks	s: 36	
Block 1	Integration			
	Method of Integration: Standard Integrals, Algebra of Integrals , Integration by			
	Substitution, Integrals using Trigonometric formula, Trigonometric and Hyperbolic			
Unit I	Substitution, Two properties of Definite integrals, Integration by Parts, Evaluation			
	of $\int (a^2 - x^2) dx$, $\int (a^2 + x^2) dx$, $\int (x^2 - a^2) dx$, $\int e^{ax}$, $[f(x) + f'(x)] dx$.			
Unit II	Reeducation Formul	a: Reduction formu	la, Integrals Involving trigonometri	
	functions, Integrals involving products of trigonometric functions, Integrals Involving			
	Hyperbolic Functions.			
Unit III	Integration of Ratio	nal and Irrational F	Function: Integration of Rational an	
	Irrational Functions Integration of Rational Function, Some simple Rational Function,			
	Partial Fraction Decomposition, Method of Substitution, Integration of Rational			
	Trigonometric Functions, Integration of Irrational Functions.			
Unit IV	Tangent Normal of	the Curves: Equation	ns of tangents and normal, Angles of	
	intersection of two curves, Tangents at the origin.			
Block 2	Application of Integral Calculus			
Unit V	Tracing of curves: Cl	assifying singular poin	ts, Asymptotes (Parallel to the axes an	
	oblique asymptotes. Tracing of curves.			
Unit VI	Area Under a Curve:	Area of the curve in Ca	artesian form, Polar form, Area Bounde	
	by a closed curve, Leng	gth of a Plane Curve in	Cartesian Form, Parametric Form, Pola	

Unit VII	Volume of a solid of Revolution: Volume of a solid of Revolution in Parametric Form,	
	Polar form, Area of Surface of Revolution in Cartesian Form, Parametric Form and	
	Polar form.	

Suggested Text Book Readings:

1. P. K. Mittal, Integral Calculus, S. Chand Limited, 2005.

2. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007.

3. Piskunov, N., Differential and Integral Calculus, Vol 1 & 2, 2nd edition. Mir Publishers, 1974.

4. Kreyszig, E., Advanced Engineering Mathematics, 10th edition. John Wiley & Sons, 2010.

5. Malik, A.K., Mathur, P, Purohit, S.D., A text Book of Engineering Mathematics-I, Manakin Press, 2020.

Suggested online link:

1. https://archive.nptel.ac.in/courses/111/105/111105122

This course can be opted as an elective by the students of following subjects: NA Suggested equivalent online courses (MOOCs) for credit transfer: NA

Course prerequisites: 10+2 with MathematicsProgramme: B.Sc.Year: 2023-24Semester: II

Subject: MATHEMATICS

Course Code: UGMM-104(N)Course Title: Differential Equation

Course Objectives:

- > To learn the first order ordinary differential equations with first degree and not of first degree.
- > To understand the applications of differential equations.
- > To acquire basic application problems described by second order linear differential equations.
- > To learn the solution of ordinary differential equations of higher orders.

Course Outcomes:

CO1: The student shall understand the importance and solution procedure of solving the first order ordinary differential equations with first degree and not of first degree.

CO2: After completing this course, a student will be able to solve differential equations and applications in science and engineering.

CO3: The student shall understand the second order linear differential equations with constant coefficient. Furthermore, the student will be able to develop understanding towards Euler-Cauchy linear equations and Simultaneous linear differential equations.

CO4: To understand and able to solve the various differential equation with variable coefficients used in engineering and science.

used in engin	comig und science.	
Credits: 2	Type of Course: Core	
Max. Marks	: 100 Min. Passing Marks: 36	
Block 1	Differential Equations of First Order and First Degree	
	Differential equation: Differential equations, Types of differential equations, Order	
Unit I	and degree of differential equations, Formation of differential equation, Solution of	
Unit I	differential equation, Geometrical meaning of a differential equation, Initial value	
	problems and statement of Existence and Uniqueness Theorems.	
Unit II	Methods of solution of a differential equation of first order and first degree:	
	Methods of solution of a differential equation of first order and first degree, Method of	
	separation of variables. Solution of homogeneous equations. Equation reducible to	
	homogeneous form.	
Unit III	Linear differential equation: Linear differential equation and Bernoulli's linear	
Olint III	differential equation.	
Unit IV	Exact differential equations : Exact differential equations. Integrating factors to solve	
	non-exact differential equations in different cases.	
Unit V	Differential equation of the first order but not of the first degree: Differential	
	equation of the first order but not of the first degree, Equation solvable for x, y and p.	
	Clairaut's equation and singular solutions.	
Block-2	Applications of differential equation	
Unit VI	Geometrical Applications of Differential Equations: Applications of differential	
	equation, geometrical application and physical applications; Newton's law of cooling,	

	Kirchoff's law of electric circuits, motion under Gravity, rectilinear motion, simple		
	harmonic motion, rate of growth or decay, heat flow.		
Unit VII	Physical applications of differential equations of first order and first degree-I: The		
	n th order linear differential equation with constant coefficients, general solution and		
	particular integrals. Method of finding particular integrals Methods of undetermined		
	coefficient, variation of parameters.		
Unit VIII	Physical applications of differential equations of first order and first degree-II:		
	Physical applications of differential equations of first order and first degree-II, Method		
	of finding particular integrals by inverse operator methods.		
Block-3	The nth order linear differential equation with constant coefficients		
Unit IX	The nth order linear differential equation with constant coefficients: Method of		
	finding particular integrals by inverse operator methods.		
Unit X	Methods of finding particular integrals by inverse operator method: Linear		
	differential equations of second order. Transformation of the equation by changing the		
	dependent variable, independent variables and Normal forms.		
Unit XI	Linear Equations with constant coefficients: Equation reducible to Linear with		
	constant coefficients, Euler-Cauchy linear equations. Simultaneous linear differential		
	equation with constant coefficient.		
Unit XII	Linear differential equations: Linear differential equations of second order.		
	Transformation of the equation by changing the dependent variable, independent		
	variables and Normal forms.		
	Text Book Readings:		
	mons, Differential Equations with Application and Historical Notes, Tata –McGraw-Hill.		
	D.P. Choudhary & H. J. Freedman, A Course of Ordinary Differential Equations, Narosa		
Publicati			
	ai Singhania, Ordinary Differential Equation, S. Chand, 2020.		
-	golts, Differential Equation and Calculus of variations, University Press of the Pacific.		
,	.K., Mathur, P & Purohit, S.D., A text Book of Engineering Mathematics-II, Manakin		
Press, 20			
Suggested o			
	<pre>/epgp.inflibnet.ac.in/Home/ViewSubject?catid=ZLCHeZEhCZ8yCri36nSF3A== /archive.nptel.ac.in/noc/courses/111</pre>		
	e can be opted as an elective by the students of following subjects: NA		
	equivalent online courses (MOOCs) for credit transfer:		
~			

Differential equations for engineers By Prof. Srinivas Rao Manam

https://onlinecourses.nptel.ac.in/noc22_ma72/preview

Course prerequisites: 10+2 with Mathematics					
Programm	Programme: B.Sc.Year: 2023-24Semester: III				
Subject: MATHEMATICS					
Course Co	Course Code: UGMM-105(N)Course Title: Mechanics-I (Statics and Dynamics)				
Course O	bjectives:				
To lease	arn the stable and unstable ea	quilibrium in statics.			
> To de	velop competency in unders	tanding of virtual work and c	common catenary.		
🕨 To un	derstand the motion in a pla	ne, tangential and normal dire	ections, rectilinear motion.		
To un	derstanding the constrained	motion and motion under cer	ntral forces.		
Course Ou	utcomes:				
CO1: The	student shall understand the	basic concepts of Statics.			
	_	out virtual work, displacemen	_		
		e dynamics system and descri	-		
	_	onic motion and their utility in			
		importance and solution proc	edure of constrained motion		
	n under central forces.	Γ			
Credits: 2		Type of Course: Core			
Max. Mar		Min. Passing Marks: 36			
Block 1	Statics				
Unit I	-		ble equilibrium definition and		
	1 0	tion of Stability, Heavy body	•		
Unit II			al of Virtual work acting on a		
		al work of rigid body, tension			
Unit III			, intrinsic equation, Cartesian		
	_	tenary, Relation for Common	Catenary, Stretched wires.		
Block 2	Dynamics				
Unit IV		-	nd accelerations in Cartesian		
	e e		along tangential and normal		
TT 1. TT	directions. Determination of				
Unit V			nonic motion. Elastic strings.		
	-		ous laws, Motion in resisting		
	medium. Motion of particles of varying mass, Rocket motion.				
Unit VI	Constrained Motion: Constrained motion (Vertical circle and vertical cycloid).				
Unit VII			entral forces: Central orbit,		
	Conservation of angular momentum, areal velocity, Kepler's laws of motion, an				
differential equations to the path of a particle.					
00	Suggested Text Book Readings:				
		nics-Statics, Prentice Hall Pub			
 R.C. Hibbeler, Engineering Mechanics-Dynamics, Prentice Hall Publishers. A. Nelson, Engineering Mechanics Statics and Dynamics, Tata McGraw Hill. 					
	4. J.L. Synge & B.A. Griffith, Principles of Mechanics, Tata McGraw Hill.				

Course prerequisites: 10+2 with Mathematics				
Programme: B.Sc.Year: 2023-24Semester: III				
Subject: MATHEMATICS				
Course Code: UGMM-106(N)Course Title: Mechanics-II (Dynamics and Hydrodynamics)				
Course Objectives:				

> To learn about moment of inertia and D'Alembert's principle.

- \blacktriangleright To learn the motion about a fixed axis, equation of motion about axis of rotation.
- > To understand the boundary surfaces, Euler's equation of motion and impulsive motion.
- > To understanding the doublets, image system of a doublet with respect to a plane, a circle, a sphere.

Course Outcomes:

CO1: The student shall understand the basic concepts and application of moment of inertia and D'Alembert's principle.

CO2: The student will get to know about motion about a fixed axis, equation of motion about axis of rotation.

CO3: The student shall understand the hydrodynamics system and describe the boundary surfaces, Euler's equation of motion and impulsive motion, and their utility in real life.

CO4: The student shall understand the importance of doublets, image system of a doublet with respect to a plane, a circle, a sphere.

Credits. 2	Credits: 2 Type of Course: Core		
		V A	
Max. Marks: 100		Min. Passing Marks: 36	
Block 1	Dynamics		
I Init I	Moment of Inertia: Mo	ment and product of inertia of some standard bodies, principle	
Unit I	axis, Momental ellipsoid	of a body.	
Unit II	D' Alembert Principle:	The general equation of motion, motion of the centre of inertia	
	and motion relative to th	e centre of inertia.	
Unit III	Motion about a fixed a	xis: Moment of the effective forces about the axis of rotation,	
	moment of momentum	about the axis of rotation, kinetic energy of the body rotating	
	about a fixed axis, equat	ion of motion about axis of rotation.	
Block 2	Hydrodynamics		
Unit IV	Boundary surfaces: Equation of continuity in different coordinate system and boundary		
	surfaces, velocity potential, stream-lines.		
Unit V	Euler's equation of motion: Euler's equation of motion, steady motion, Bernoulli's		
	equation, Helmholtz equation, Impulsive motion.		
Unit VI	Motion: Motion in two dimensions, stream function, irrotational motion, complex		
	potential, sources and sinks.		
Unit VII	Doublet: Doublets, image system of a simple source with respect a plane, a circle, a		
	sphere. Image system of a doublet with respect to a plane, a circle and a sphere, circle		
	theorem.		
Suggested	Suggested Text Book Readings:		
1. Nag, P.K., Engineering Thermodynamics, 3rd ed., Tata McGraw-Hill, 2005.			

- 2. Robert Norton., "Kinematics and Dynamics of machinery" 1st Ed., McGraw Hill India., 2009.
- 3. R.C. Hibbeler, Engineering Mechanics-Dynamics, Prentice Hall Publishers.
- 4. A. Nelson, Engineering Mechanics Statics and Dynamics, Tata McGraw Hill.
- 5. J.L. Synge & B.A. Griffith, Principles of Mechanics, Tata McGraw Hill.

Suggested online link:

1. <u>https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=ZLCHeZEhCZ8yCri36nSF3A</u>==

This course can be opted as an elective by the students of following subjects: NA Suggested equivalent online courses (MOOCs) for credit transfer: NA

Course prerequisites: 10+2 with Mathematics				
Program	ne: B.Sc.	Year: 2023-24	Semester: IV	
Subject: MATHEMATICS				
Course Co	Course Code: UGMM-107(N)Course Title: Linear Algebra			
Course O	bjectives:			
To un	derstand the vector space, fi	eld and their properties.		
To lease	arn about the basis and dimer	nsion of a vector space and quo	tient spaces.	
To un	derstand the matrices, linear	system of equations, Eigen val	ues and Eigen vectors.	
		ial, inner product space, bilinea	ir and quadratic forms.	
Course O	utcomes:			
		erstand the basic concepts and	d uses of vector space field and	
their prope				
	•		ector space and quotient spaces.	
		=	nd uses of matrices for solving	
		eigen values and eigen vector		
			nner product space, bilinear and	
-	forms with their applications			
Credits: 2		Type of Course: Core		
Max. Mar		Min. Passing Marks: 36		
Block 1	Vector Space			
			, Field, Examples \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_p	
Unit I		(p, a prime) of fields. Definition of a vector space, Some basic properties of a vector		
			sets with examples. Linearly	
		nce of a subset. Finite dimens	-	
Unit II	Basis, Dimension and Quotient Spaces: Basis of a vector space, Dimension of a vector			
	-	ector space, linear sum and di	rect sum of subspaces, Quotient	
	spaces.			
Unit III		-	nd some properties, Linear	
			space and range space. Rank and	
			of vector space homomorphism,	
	-	n-singular, Invertible transform		
Unit IV	_	_	al space \mathbf{V}^* of a vector space \mathbf{V} ,	
	-		se of a linear transformations.	
		i vector space, Rank of transp	ose of a linear transformation.	
Block 2	Matrix			
Unit V	-		is, equality, Algebra of matrices,	
	-	=	trices over a field. Ring of all n-	
	-	-	matrix), Transpose of matrix,	
TT '- TT	Equivalent matrices, Similar Matrices, and Orthogonal matrices.			
Unit VI			mn rank of a matrix, Elementary	
	matrices, elementary row	and column operations of a	a matrix, elementary matrices,	

	Normal form of a matrix, Echelon form of matrix, Inverse of a non-singular matrix.		
	Determinant rank of a matrix. Non-homogeneous and homogeneous linear equations.		
Unit VII	Determinants: Determinant of a square matrix, Cofactor of an element of a determinant,		
	Properties of a determinant, minor of an element of a determinant, Evaluation of a		
	determinant. Laplace expansion of a determinant. Product of two determinants (all		
	statements without proof).		
Unit	Eigen Vector and Eigen Space: Adjoint of n- square matrix. Inverse of a matrix of a		
VIII	non-singular matrix by using adjoint of the matrix. Characteristic roots or Eigen values		
	of a linear transformation and Eigen vector and Eigen space.		
Block 3	Characteristic polynomial inner product space bilinear quadratic forms		
Unit IX	Characteristic polynomial of a matrix: Characteristic polynomial of a matrix,		
	Diagonalization of a matrix, Caley - Hamilton theorem. Inverse of a matrix of a non-		
	singular matrix by Caley - Hamilton theorem. Characteristic polynomial of a linear		
	transformation, Minimal polynomial, Hermitian Matrix, characteristic roots of a complex		
	Hermitian matrix.		
Unit X	Inner product space: Definition and examples of inner product, length of a vector,		
	Cauchy Schwarz inequality, distance between two vectors, angle between two vectors,		
	Orthogonal and ortho normal sets.		
Unit XI	Bilinear, quadratic and Hermitian forms: Bilinear, quadratic and Hermitian forms,		
	bilinear form on a vector space V. Quadratic forms, matrix of quadratic form, normal		
	form or canonical form.		
Suggested	Text Book Readings:		
	rt Strang, Linear Algebra and its Applications, Thomson, 2007.		
	maresan, Linear Algebra- A Geometric Approach, Prentice Hall of India, 1999.		
	eth Hoffman, Ray Alden Kunze, Linear Algebra, 2 nd Ed., Prentice-Hall of India Pvt. Ltd.,		
1971.			
	Malik, A.K., Mathur, P, Purohit, S.D., A text Book of Engineering Mathematics-II, Manakin		
	Press, 2019.		
00	online link:		
	1. <u>https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=ZLCHeZEhCZ8yCri36nSF3A</u> ==		
	 <u>https://archive.nptel.ac.in/courses/111/104/111104125</u> https://onlinecourses.nptel.ac.in/noc23_ma07/preview 		
	se can be opted as an elective by the students of following subjects: NA		
	l equivalent online courses (MOOCs) for credit transfer: NA		
5455 CB100			

Course prerequisites: 10+2 with Mathematics		
Programme: B.Sc. Year: 2023-24 Semester: IV		
Subject: MATHEMATICS		
Course Code: UGMM-108(N)Course Title: Calculus of Function of Several Variables		
	and Vector Calculus	

Course Objectives:

- > To learn about the partial differentiation and jacobians with their applications.
- > To understand the maxima and minima, and Lagrange's method of undetermined multipliers with their importance.
- > To understand the basic concepts and uses of vector calculus.
- > To know about applications of vector calculus.

Course Outcomes:

CO1: The student shall understand the partial differentiation, Euler's Theorem on Homogeneous functions.

CO2 The student will get to know about the maxima and minima of function s of two variables, Lagrange's method of undetermined multipliers.

CO3: The student will get to know about the basic concepts and uses of vector calculus.

CO4: The student shall understand the importance and applications of vector calculus like as curl, gradient and divergence.

8	i divergenee.	
Credits: 2 Type of Course: Core		Type of Course: Core
Max. Mark	as: 100	Min. Passing Marks: 36
Block 1	Partial Differentiation	
	Partial Differentiation	:-Partial Derivatives of first order, Partial Derivatives of Higher
Unit I	order, Total derivative,	Homogeneous functions, Euler's Theorem on Homogeneous
	functions, Deductions f	rom Euler's Theorem.
Unit II	Composite Functions:	- Differentiation of Composite Functions, Jacobians, Properties
	of Jacobians, Theorem	ns on Jacobians, Jacobian of Implicit Functions, Functional
	Relationship,	
Unit III	Maxima and minima:	- Maxima and minima of functions of Two variables, Conditions
	for maxima and minima, Necessary condition for existence of maxima and minima,	
	Local and global maxima and minima of a function, Lagrange's method of	
	undetermined multipliers.	
Block 2	Vector Calculus	
Unit IV	Operations on Vectors:- Scalar triple product and its geometrical interpretation.	
	Properties of scalar triple product. Reciprocal system of vectors. Properties of the	
	reciprocal system of vectors. Scalar product of four vectors. Vector product of four	
	vectors.	
Unit V	Differentiation of a	Vector Functions and Gradient:- Scalar and vector point
	function. Differentiation	n of a vector functions with respect to scalar. Gradient of a scalar
	field, geometrical inte	erpretation of gradient, directional derivative, properties of
	gradient, gradient in polar coordinates.	

Unit VI	Divergence and Curl:- Divergence of a vector point function, Physical interpretation	
	of divergence, Solenoidal vector. Curl of vector point function, Physical interpretation	
	of curl, Irrotational vector, Vector identities, Velocity potential, Laplace operator.	
Unit VII	Integration of a Vector Function:- Line Integral, Surface Integral, Volume Integral.	
Unit VIII	Applications: Green's Theorem in a plane, Gauss Divergence Theorem and Stokes's	
	Theorem (Without proof) and their applications.	

Suggested Text Book Readings:

1. Kreyszig, E., Advanced Engineering Mathematics, 10th edition. John Wiley & Sons, 2010.

2. Malik, A.K., Mathur, P, Purohit, S.D., A text Book of Engineering Mathematics-1, Manakin Press, 2020.

3. Mujumdar, N. S., Function of Several Variables and Vector Calculus, Nirali publication. **Suggested online link:**

- 1. <u>https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=ZLCHeZEhCZ8yCri36nSF3A</u>==
- 2. https://archive.nptel.ac.in/courses/111/105/111105122
- 3. https://archive.nptel.ac.in/courses/111/104/111104125

This course can be opted as an elective by the students of following subjects: NA

Suggested equivalent online courses (MOOCs) for credit transfer: <u>https://onlinecourses.nptel.ac.in/noc23_ma27/preview</u> **Integral and Vector Calculus** By Prof. Hari Shankar Mahato, IIT Kharagpur.

Course prerequisites: 10+2 with Mathematics				
Program	ne: B.Sc.	Year: 2023-24	Semester: V	
	Subject: MATHEMATICS			
Course Co	ode: DCEMM -109 (N)	Course Title: ABSTRACT A	LGEBRA	
Course O	bjectives:			
To un	iderstand the concepts of	group theory with their propertie	es.	
	1	iism, subgroups and cyclic group	p.	
To un	iderstand the normal subg	roups and symmetric groups.		
		nd ideal with their properties.		
		understand the basic concepts	and uses of group with their	
properties.				
		I the importance of homomorph	nism subgroups and uses of	
cyclic grou	1			
	•	about the normal subgroups and		
		the applications of ring, field and i	deals.	
Credits: 2		Type of Course: Core		
Max. Mar	1	Min. Passing Marks: 36		
Block 1	Groups and Subgroup		• • • • • •	
	Elementary Group Theory: Definition of a group, abelian groups examples including Z_m , Z_p , U_m the group of n th roots of unity, Hamiltonian group, Klein's four group,			
Unit I		2		
		gral power of an element of a g	roup, order of an element of a	
Unit II	group.	groups and Cyclic Croups:	Subgroups of a group and	
Omt n	Homomorphism, Subgroups and Cyclic Groups: Subgroups of a group and examples. Homomorphism, isomorphism, Subgroup generated by a subset of a group.			
	Cyclic groups.			
	Coset Decomposition of a Group: Coset decomposition, left coset and right coset of			
Unit III	a subgroup of a group. Lagrange theorem. Index of a subgroup. Euler's theorem.			
	Fermat's theorem.	5 5	0 1	
Block 2	Normal Subgroups and Symmetric Groups			
Unit IV	Normal Subgroups and Homomorphisms: Normal subgroups, Centre of a group.			
		rmaliser of an element of a group		
	Direct and inverse in	mage of a subgroup and a	normal subgroup under a	
	homomorphism. Quotie	nt groups.		
Unit V	Symmetric Groups an	d Automorphisms: Fundament	al theorem of homomorphism	
	of groups, Symmetri	c group S _n , Cayley's theo	rem, Cycle's transposition,	
	Decomposition of a permutation, alternating groups A _n . Automorphisms of groups.			
	Inner automorphisms.			
Block 3	Rings and Fields:			
Unit VI	-	g Definition and examples, elem		
	•	without zero divisor. Integral	•	
	Homomorphism and isc	omorphism of Rings, subrings, s	ubfield with examples. Kernel	

	of a homomorphism.		
Unit VII	Homomorphisms and Embedding of rings: Direct image and inverse image of a		
	subring and a subfield under a homomorphism. Characteristic of a non-zero integral		
	domain. Imbedding of a ring into another ring the field of fractions of an integral		
	domain.		
Unit VIII	Ideals: Ideals, left ideal and right ideal, principal ideal with example. Prime ideal,		
	maximal ideal, Quotient rings. Fundamental theorem of homomorphism, rings, and		
	field.		
Suggested	Suggested Text Book Readings:		
1. J.B. Fra	1. J.B. Fraleigh, Abstract Algebra by J.B. Fraleigh, Published by Narosa publishing House.		
2. I.N. He	2. I.N. Herstein ,Topics in Algebra, Wiley, 2006.		
3. Vijay K Khanna & S K Bhambri, Vijay K Khanna (Author), S K Bhambri, Vikash Publishing,			
2017.			
4. Frank	rank Ayres & Lloyd R. Jaisingh, Schaum's Outline of Abstract Algebra, McGraw hill, 2020.		
Suggested online link:			
1. https://a	1. https://archive.nptel.ac.in/courses/111106137		
This cour	This course can be opted as an elective by the students of following subjects: NA		
Suggested	l equivalent online courses (MOOCs) for credit transfer: NA		

Course pro	erequisites: 10+2 with Math	ematics	
Programm	e: B.Sc.	Year: 2023-24	Semester: V
	Subje	ect: MATHEMATICS	
Course Code: DCEMM -110 (N)Course Title: Number Theory		er Theory	
Course Ob	jectives:		
> To under	stand the basics concept of nu	umber theory.	
➢ To learn	about the Chinese Remainder	Theorem and Euler's	function.
> To under	rstand the Gauss theorem, Ga	uss reciprocity theorem	n and Quadratic residues for prime-
power m			
To know	about the arithmetic function	with their applications	s in solving real life problem.
Course Ou	tcomes:		
CO1: The s	tudent will be able to understa	and about the basics co	ncept of number theory.
CO2: The	student shall understand the	importance and appli	ications of the Chinese Remainder
Theorem an	d Euler's function.		
CO3: The s	tudent will get to know about	Gauss theorem, Gauss	s reciprocity theorem and Quadratic
residues for	prime-power moduli.		
CO4: The s	tudent shall understand the im	portance and applicati	ons of arithmetic function.
Credits: 2		Type of Course: Co	
Max. Mark	s: 100	Min. Passing Marks	s: 36
Block 1	Basic Introduction of Num	ber Theory	
Unit I	Analytic Number Theory: Division algorithm, Euclid's algorithm for the greatest		
Ollit I	common divisor, Prime numbers, fundamental theorem of arithmetic.		
Unit II	Congruence's: Linear congruences and algorithm to find the solution of Linear		
	congruences, Chinese Remainder Theorem, An extension of Chinese Remainder		
	Theorem (with non-coprime		
Unit III			of Euler function, examples and
	properties, Multiplicative property of Euler's function.		
Block 2	Gauss theorem & Applicat	ions	
Unit IV	_		group of units modulo an integer,
	primitive roots, Existence of primitive roots, Quadratic congruences, Quadratic		
	residues, Legendre symbol,		
Unit V			y theorem, Quadratic residues for
	prime-power moduli and arb	itrary moduli.	
Unit VI	Arithmetic Functions an	d applications: Ari	thmetic Functions, multiplicative
	functions and their properties, Mobius function and its properties, Mobius inversion		
	formula and its applications.		
66	Text Book Readings:		
1. Niven, I.	Zuckerman, H. S. and Mont	egomery, H. L. (2003)) An Int. to the Theory of Numbers
) John Wiley and sons, Inc., N		
) Universal Book Stall, New Delhi.
3. Balakrish	nan, V. K. (1994) Schaum's C	Outline of Theory and P	roblems of Combinatorics Including

Concepts of Graph Theory, Schaum's Outline. Suggested online link: 1. <u>https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=ZLCHeZEhCZ8yCri36nSF3A</u>== This course can be opted as an elective by the students of following subjects: NA Suggested equivalent online courses (MOOCs) for credit transfer: NA

Course prerequisites: 10+2 with Mathematics			
Programm	e: B.Sc.	Year: 2023-24	Semester: V
Subject: MATHEMATICS			
Course Code: SBSMM -03(N)Course Title: Elementary Analysis		Analysis	
Course Ob	jectives:		
> To under	rstand the logical connect	ives, tautology and quantifi	ers.
To learn	about relation, equivalen	ce relation and mapping wi	th their properties.
	•	Ũ	s, sequences and infinite series.
		al and their applications in a	areas and volume.
Course Ou	tcomes:		
CO1: The	student will get to know	v about the concepts of lo	gical connectives, tautology and
quantifiers.			
		••	uivalence relations and mapping.
		e real number system and d	ivision in Integers, sequences and
infinite serie			
	•	about multiple integral and	its applications in finding areas,
surface and	volumes.		
Credits: 4		Type of Course: Core	
Max. Mark		Min. Passing Marks: 36	
Block 1	8 8	tics, Relation and Mappir	
Unit I	Language of Mathematics: Language of Mathematics, Mathematical statements, logical connectives, Tautology, quantifiers.		
Unit II	Relation: Relations (definition and examples), types of relation, composite of relations, equivalence relation, equivalence class, partition of a set and order relation.		
Unit III	Mapping: Mapping (definition and examples), types of map, inverse map,		
Block 2	composition of maps, direct and Inverse images of a set. Real number system and Division in Integers		
Unit IV	Real number system: Axiomatic definition of real number system as a complete		
			•
Unit V	ordered field. Archimedean principle, relational and irrational density theorem.Division in Integers: Division in Z, Division algorithm, greatest common diviso		
and least common multiple. Euclidean algorithm. Prime integers. Fit theorem of arithmetic's.		-	
Block 3	Sequence and Infinite Series		
Unit VI	-		ded and unbounded sequences,
		=	y sequences. Limit of a sequence.
		•	ences, and Cauchy's criterion for
	convergence of a sequer		· · · · ·
Unit VII			ence and divergence of series.
			ent condition for convergence.
			s ratio test, Raabe's ratio test,
			Root test, Alternating series.
		j = weildes voor und	

	Leibnitz's theorem. Absolute convergence and conditional convergence of a series.		
Block 4	Multiple Integral and Its Applications		
Unit VIII	Double and Triple integrals, Change of order of integration, surface and volume		
	integration and their applications in areas and volume.		
Suggested	Text Book Readings:		
1. Elemen	1. Elementary Analysis: The Theory of Calculus by Kenneth. A. Ross.		
2. Sharma and Vashishtha, Real Analysis, Krishna Publication, 2014.			
3. S C Malik, Mathematical Analysis, New Age International Publishers, 2017.			
Suggested	Suggested online link:		
1. <u>https://</u>	1. https://archive.nptel.ac.in/courses/111/105/111105122		
This course	This course can be opted as an elective by the students of following subjects: NA		
Suggested	Suggested equivalent online courses (MOOCs) for credit transfer: NA		

Course prerequisites: 10+2 with Mathematics			
Program	ne: B.Sc.	Year: 2023-24	Semester: VI
	Subject: MATHEMATICS		
Course Co	Course Code: DCEMM -112 (N) Course Title: Advance Analysis		
Course O	bjectives:		
> To und	lerstand the basics concept of	f metric space.	
	e	function of series and improp	e
		, μ-test, Abel's test, Dirichle	
To kno	w about step function, mean	value theorem for integrals a	and Change of variables.
Course O	utcomes:		
CO1: The	e student will be able to und	lerstand the basic concepts a	nd uses of metric spaces with
their prope	erties.		
CO2: The	student shall understand the	e importance of convergence	of function of series and uses
of imprope	er integral.		
CO3: The	e student will get to know ab	out the convergence, μ , Abel	's and Dirichlet's test.
		he applications of step func	tion, mean value theorem for
integrals a	and Change of variables.		
Credits: 2		Type of Course: Core	
Category	of Course	OER	
Max. Mar	r ks: 100	Min. Passing Marks: 36	
Block 1		, Compactness and complet	
	Metric Space: Metric space	e (definitions and examples),	open and closed balls, interior
Unit I	points, exterior point, and l	boundary points, limit points	open and closed sets, limit of
	a sequence in a metric space	· ·	
Unit II	-		tinuity of a function between
	-	ation of continuity in terms	of open sets, Closed set and
	closer of a set.		
Unit III		A '	o Weierstrass property, Total
			ountable compact metric space
Block 2		of series and Improper Inte	
Unit IV	Complete Metric Space:	Uniform continuity, Lebesg	gue number, Complete metric
	space.		
Unit V	-	e and series of functions	
		ce and series of a function	
	condition for a uniform convergence, Weierstrass test, Abels test and Dirichlet's test		
	for uniform convergence, T	Ferm by term integration and	term by term differentiation.
Unit VI		• • • •	s; Integral over infinite interval
	_		vals with unbounded integrals.
	Necessary and sufficient co	onditions for such integrals.	
Block 3	Convergence test, Rieman	nn integral	

Unit VII	Convergence Test: Comparison test, µ-test, absolute convergence, convergence of	
	integrals of product of two functions, Abel's test, Dirichlet's test.	
Unit VIII	Step Functions: Step function and their integrals, upper and lower integrals of a	
	bounded function of one variable (through step functions). Integrable functions,	
	Riemannian condition of integrability. Properties of Integrals of a step functions.	
Unit IX	Mean Value Theorem: Mean value theorem for integrals, Fundamental theorem of	
	integral calculus. Primitive of a function. Change of variables, second mean value	
	theorem (statements only).	
Suggested	Suggested Text Book Readings:	
1 0 4		

1. S. Arumugam and A. Thangapandi Issac, Sequences and Series, Edition 2012, New Gamma Publishing House.

2. K. Chandra Sekhara Rao and K. S. Narayanan, Real Analysis Volume – I, Edition 2008, S. Viswanadhan Printers and Publishing Pvt. Ltd.

3. M. K. Venkatraman and Manorama Sridhar, Sequence and Series, Edition 2002, The National Publishing Company.

4. Singh, S. R. & Malik, A. K. Topology, I.K. International Publishing House Pvt. Limited, 2012.

This course can be opted as an elective by the students of following subjects: NA

Suggested equivalent online courses (MOOCs) for credit transfer: NA

Course prerequisites: 10+2 with Mathematics				
Program	ne: B.Sc.	Year: 2023-24	Semester: VI	
	Subj	ect: MATHEMATICS		
Course Code: DCEMM -113 (N)		Course Title: Function of Complex Variables		
Course O	bjectives:			
To un	iderstand the basic concepts of	f analytic function and Cau	chy Riemann equations.	
To de	evelop working skills with con	nplex integration, series and	d singularities.	
≻ To ac	equire basic knowledge abou	t calculus of residues and	Evaluation of real definite	
-	als by contour integration.			
	arn the concepts and uses of co	onformal mapping and Mob	ius (bilinear) transformation.	
Course O	utcomes:			
	student will get to know about	•	•	
	e student shall understand the		-	
	e student shall understand the		_	
	s of residues and Evaluation o		-	
	student will be able to unders	1	d uses of conformal mapping	
	us (bilinear) transformation wi			
Credits: 2		Type of Course: Core		
Category of Course		OER		
Max. Marks: 100		Min. Passing Marks: 36		
Syllabi framed block wise/unit wise				
Block 1	Complex variables and Por			
	Function of Complex Variable: The concept of a function of a complex variable,			
Unit I	Continuous functions, uniform continuity, bounded functions, differentiable and			
	analytic functions, differentiability, analytic or regular functions Cauchy Riemann			
	equations, necessary and sufficient condition for a function to be analytic, construction			
	of analytic function, Milne Thomson method.			
Unit II	Power Series: The circle of convergence of a power series, power series and analytic			
	functions, the exponential functions, the trigonometric functions, the logarithmic			
	functions.			
Block 2 Complex Integration and Expansion of series				
Unit III Unit IV	Complex Integration: Jordan Arcs, Rectifiable arcs, contours, Complex integration, integration along a regular Arc Cauchy theorem the elementary form of Cauchy			
	integration along a regular Arc, Cauchy theorem, the elementary form of Cauchy theorem at a second form of Cauchy theorem extension of Cauchy's theorem and			
	theorem, the general form of Cauchy theorem, extension of Cauchy's theorem on contours, defining multiply connected regions, Cauchy integral formula, derivative of			
	an analytic function, Morera's Theorem.			
	Expansion in series and singularities: Taylor series, Cauchy's inequalities, Liouville's theorem, Laurent's series, isolated singularities of an analytic function, the			
	zeros of analytic function, the behaviour of analytic function at isolated singularities,			
	limiting point of zeros or poles, the behaviour of an analytic function near an isolated			
	essential singularity.			
	cosential singularity.			

Block 3	The Calculus of Residues (Integration) and Evaluation of real definite integrals by contour integration		
Unit V	The calculus of Residues: The Residue at a singularity, Residue at infinity, calculation		
	of reduced in some special cases, Cauchy's theorem of Residues, poles and zeros of a		
	Meromorphic function. Rouche's theorem, applications of Rouche's theorem,		
Unit VI	Evaluation of Definite Integrals by Contour Integration: Jensen's Theorem,		
	Poisson's integral formula, The evaluation of integrals of the type $\int_{0}^{2\pi} f(\cos\theta, \sin\theta)d\theta$,		
	The evaluation of integrals of the type $\int_{-\infty}^{\infty} f(x) dx$.		
Block 4	Conformal Representation		
Unit VII	Conformal Representation: Mappings by analytic functions, Differentiable arc		
	through a point, conformal mapping, existence of the inverse function, Conformal		
	character and analyticity, mapping by simple functions, super facial magnification, The		
	linear transformation, The Mobius (bilinear) transformation, The transformation		
	$\omega = \frac{1}{z}$, Geometrical inversion, fixed points of a bilinear transformation.		
Suggestee	1 Text Book Readings:		
1. Ponnusa	amy, Foundations of Complex Analysis. 2 nd Edition, Narosa Book Publication, 2008.		
2. K.P. Gu	pta, Functions of complex variable, Sixteen Edition, Pragati Prakashan, 2002.		
3. J. B. Co	nway, Functions of One Complex Variable, Narosa Publishing House, New Delhi, 2002.		
4. Dennis	G. Zill, Complex Analysis, Jones and Bartlett Publishers, 3ed		
5. V. Ahlf	ors, Complex Analysis (Third Edition), McGraw-Hill, 1979.		
6. M. Spie	egel, J. Schiller, S. Lipschutz, Schaum's Outline of Complex Variables, 2ed (Schaum's		
Outlines)			
7. James V	V. Brown & R. V. Churchill: Complex variables and applications, McGraw-Hill, 2006.		
00	online link:		
	//epgp.inflibnet.ac.in/Home/ViewSubject?catid=ZLCHeZEhCZ8yCri36nSF3A==		
	rse can be opted as an elective by the students of following subjects: NA		
00	l equivalent online courses (MOOCs) for credit transfer:		
https://arcl	hive.nptel.ac.in/courses/111/103/111103070/ by Prof. P. A. S. Sree Krishna IIT Guwahati		