Year-2023-2024 Syllabus of B.Sc. Programme: [Subject Name: Computer Science] In accordance with NEP-2020

Year	Semester	Course Code	Title of Paper	Credits	Max. Marks
	_	UGCS -101N	Computer Fundamental & PC Software	2	100
4	I	UGCS -101(P)N	Practical Work	2	100
1		UGCS -102N	C Programming	2	100
	II	UGCS -102(P)N	Practical Work	2	100
		Skill Enhancement Course			
		SBSCS-02N	Python Programming	4	100
		UGCS -103N	Data Structures	2	100
2		UGCS -103(P)N	Practical Work	2	100
_	III	Skill Enhancement Course			
SBSCS-01N		SBSCS-01N	Discrete Mathematics	4	100
UGCS -104N		UGCS -104N	Introduction to Database Management System	2	100
	IV	UGCS -104(P)N	Practical Work	2	100
	Discipline Centric Elective Course				
	V	DCECS -105N	Computer Network	2	100
		DCECS -106N	Operating System	2	100
3		DCECS -107(P)N	Practical Work based on 106	2	100
		Discipline Centric El	lective Course		
	VI	DCECS -108N	C++ and Object Oriented Programming	2	100
		DCECS -109N	Software Engineering	2	100
		DCECS -110(P)N	Practical Work based on 108	2	100
			Total Credit/Max. Marks	36	1600

Course prerequisites: 10+2 with Computer science, Mathematics				
Programme: B.Sc. Year: 1 Semester: I				
Subject: Computer science				
Course Code: UGCS -101N				

Course Objectives:

- To demonstrate the knowledge of the basic structure, components, features and generations of computers.
- To describe the concept of computer languages, language translators and construct algorithms to solve problems using programming concepts.
- To Compare and contrast features, functioning & types of operating system and computer networks.
- To demonstrate architecture, functioning & services of the Internet and basics ofmultimedia.
- To illustrate the emerging trends and technologies in the field of Information Technology.

Course Outcomes:

CO-1 Demonstrate the knowledge of the basic structure, components, features and generations of computers.

CO-2 Describe the concept of computer languages, language translators and construct algorithms to solve problems using programming concepts.

CO-3 Compare and contrast features, functioning & types of operating system and computer networks.

CO-4 Demonstrate architecture, functioning & services of the Internet and basics of multimedia

CO-5 Illustrate the emerging trends and technologies in the field of Information Technology.

Credits: 2	Type of Course: Core			
Max. Marks: 1	00 Min. Passing Marks: 36			
Block 1				
	Computer Basics:			
	Algorithms, A Simple Model of a Computer, Characteristics of Computers, Problem-			
	solving Using Computers.			
	Data Representation: Representation of Characters in computers, Representation of			
Unit I	Integers, Representation of Fractions, Hexadecimal Representation of Numbers, Decimal			
Unit I	to Binary Conversion, Error-detecting codes. Input & Output Devices: Description of			
	Computer Input Units, Other Input Methods, Computer Output Units (Printers, Plotters)			
	Operating Systems: History and Evolution. Main functions of OS Multita			
Multiprocessing. Time Sharing, Real Time OS with Examples Database Manag				
	System: Purpose and Organization of Database, Introduction to Data Models.			
Unit II	Disk operating system(DOS):			
	Introduction, history & versions of DOS, DOS basics- Physical structure of disk, driv			
	name, FAT, file & directory structure and naming rules, booting process, DOS			
	files, DOS commands- internal & external,.			
Unit III	Windows Operating System:			
	Windows concepts. Features, Windows Structure, Desktop, Taskbar, Start Menu, My			
	Computer, Recycle Bin, Windows Accessories- Calculator, Notepad, Paint, Wordpad,			
Character Map, Windows Explorer, Entertainment, Managing Hardware & Sof				
	Installation of Hardware & Software, Using Scanner, System Tools, Communication,			
Block 2	Sharing Information between programs			
Unit IV	Word Processing- MS-Word			
	Features, Creating, Saving and Opening Documents in Word, Interface, Toolbars, Ruler,			
	Menus, Keyboard Shortcut, Editing, Previewing, Printing,& Formatting a Document,			
1	wienus, Keyboard Snoricui, Editing, Previewing, Printing, & Formatting a Document			

	Advanced Features of MS Word, Find & Replace, Using Thesaurus, Using Auto-	
	Multiple Functions, Mail Merge, Handling Graphics, Tables & Charts, Converting a word	
	document into various formats like- Text, Rich. Text format, Word perfect, HTML etc.	
Unit V	Worksheet- MS-Excel: Worksheet basics, creating worksheet, entering into worksheet,	
	heading information, data, text, dates, alphanumeric values, saving & quitting worksheet,	
	Opening and moving around in an existing worksheet, Toolbars and Menus, Keyboard	
	shortcuts, Working with single and multiple workbook, working with formulae & cell	
	referencing, Auto sum, Coping formulae, Absolute & relative addressing, Worksheet with	
	ranges, formatting of worksheet, Previewing & Printing worksheet, Graphs and charts.	
	Database, Creating and Using macros, multiple worksheets- concepts, creating and using.	

Suggested Text Book Readings:

- 1. Fundamental of Computers By V.Rajaraman, B.P.B. Publications
- 2. Fundamental of Computers By P.K. Sinha
- 3. Microsoft Office 2007 Bible John Walkenbach, HerbTyson, Faithe Wempen, caryN. Prague, Michael R.groh, PeterG. Aitken, and Lisa a. Bucki -Wiley India pvt. ltd
- 4. Discovering the Internet: Complete Shelly Cashman 4th Edition Course Technology

Reference Books:

- 1. Introduction to Information Technology Alexis Leon, Mathews Leon, and Leena Leon, Vijay Nicole Imprints Pvt. Ltd., 2013.
- 2. Office 2007 By Shelly, Cengage Publication

Suggested online links: https://www.pearsoned.co.in/prc/book/anita-goel-computer-

fundamentals-1e-1/9788131733097

Electronic media and other digital components in the curriculum:

Name of electronic media: e-SLM Year of incorporation: 2020

Course prerequisites: 10+2 with Computer science, Mathematics					
Programme: B.Sc. Year: 1 Semester: 1					
Subject: Computer science					
Course Code: UGCs 101P(N) Course Title: Practical -WORK					

Course Objectives:

- To understand the fundamental concept of computer.
- To understand the basics concept of communication and network.
- To explore various features of MS-Word and its applications.
- To develop understanding of MS-Excel. To design the presentation using MS-power Point. To understand the fundamental concept of database and working with MS-Access

Course Outcomes:

- CO1. Understand the basic component of computers, software and Hardware.
- CO2. Acquire knowledge about MS-Word and different formatting styles used in that.
- CO3. Acquire knowledge about MS-Excel and different techniques used in that.
- CO4. Acquire knowledge about MS-Power Point and formatting styles used in that.
- CO5. Acquire knowledge about MS-Access and different techniques such as creating form, writing queries used in that.

Credits: 2	Type of Course: Core
Max. Marks: 100	Min. Passing Marks: 36
C 4' D 4' IT' 4	

Suggestive Practical List

- Learn and Understand the basic component of computers, software and Hardware.
- Do practice on MS-Word and different formatting styles used in that.
- Do practice onMS-Excel and different techniques used in that.
- Do practice on MS-Power Point and formatting styles used in that.
- Do practice and Acquire knowledge about MS-Access and different techniques such as creating form, writing queries used in that.

Suggested Text Book Readings:

- 1. Fundamental of Computers By V.Rajaraman, B.P.B. Publications
- 2. Fundamental of Computers By P.K. Sinha
- 3. Microsoft Office 2007 Bible John Walkenbach, HerbTyson, FaitheWempen, caryN.Prague,

Michael R. groh, Peter G. Aitken, and Lisa a. Bucki - Wiley India pyt.ltd

4. Discovering the Internet: Complete - Shelly Cashman 4th Edition - Course Technology

Reference Books:

- 1. Introduction to Information Technology Alexis Leon, Mathews Leon, and Leena Leon, Vijay Nicole Imprints Pvt. Ltd., 2013.
- 2. Office 2007 By Shelly, Cengage Publication

2. Office 2007 – By Sherry, Cellgage Fublication		
Electronic media and other digital components in the curr	riculum:	
Name of electronic media: e-SLM	Year of incorporation: 2021	

Course prerequisites: 10+2 with Computer science, Mathematics					
Programme:B.Sc.	Year:1	Semester:2			
Subject: Computer science					
Course Code: UGCS-102N	Course Title: C Programmi	ing			

Course Objectives:

- To describe & understand the problem solving techniques.
- To understand the concept of basic terminology used in C programming.
- To develop programs in C language by writing, compiling and debugging.
- To develop programs involving simple statements, conditional statements, iterative statements, array, strings, functions, recursion, structure and union.
- To differentiate between call by value and call by reference, acquire skills of using dynamic memory allocations, use of pointers and basic operations on a file..

- CO1. Describe the functional components and fundamental concepts of a digital computer system including number systems.
- CO2. Construct flowchart and write algorithms for solving basic problem
- CO3. Write 'C' programs that incorporate use of variables, operators and expressions along with data types.
- CO4. Write simple programs using the basic elements like control statements, functions, arrays and strings.
- CO5. Write advanced programs using the concepts of pointers, structures, unions and enumerated data types.

Credits: 2	Type of Course: Core		
Max. Marks:	100 Min. Passing Marks: 36		
Block 1	Introduction to algorithms and program design		
Unit I	Unit 1: Introduction to Algorithms		
Omt 1	Problem solving techniques, Algorithm		
Unit II	Pseudo-codes and Flowcharts		
	Tools of Algorithm, Pseudo codes, Flowchart		
Unit III	Program design principles		
	Introduction to computer programming, Program design principles, Programming		
	techniques, Program Errors		
Block 2	Introduction to the 'C' programming language		
Unit 1	Unit 1: Introduction		
	History of C Language, Structure of a 'C' program, Creating and Executing a 'C'		
	rogram		
Unit 2 Data Types in 'C'			
	Character Set of 'C' language, Tri graph characters, Tokens, Identifiers, Keywords,		
	Constants, Data types, Variables		
Unit 3	Storage Classes		
	Scope and lifetime of variable, Storage classes, Automatic storage class, Register storage		
	class, Static storage class, External storage class		
Unit 4 Input and Output Functions			
	Reading a single character, Writing a single character, Formatted Input-Output,		
	Formatted Input, Formatted Output		
Block 3:	Operator and Control Structures		
Unit 1:	Operators and Expressions		
1	Arithmetic operators, Relational operators, Logical operators, Assignment operators,		

	Increment and decrement operators, Conditional operators, Bitwise operators, Special
	operators, Operator Precedence and Associativity, Ivalue and rvalue, Type casting:
	Promotion and Demotion of variable types
Unit 2:	Decision Structures in 'C'
	if statement, if else statement, nested if else statement, switch statement, goto statment
Unit 3:	Loop Structures in 'C'
	for statement, while statement, do while statement, break statement, continue statement
Unit 4:	Arrays
	One dimensional array, Two dimensional array, Multidimensional arrays, Strings, String
	handling functions, Character functions
Block 4	Advanced Features of C
Unit 1:	Pointers
	Pointers and Address (&) operator, Pointer declaration and Initialization, Indirection
	operator, Pointer Arithmetic, Arrays and Pointers, Character strings and Pointers, Array
	of Pointers, Pointer to Pointer
Unit 2:	Functions
Functions, user-defined functions, categories of function, returning non-integ	
	function arguments, recursion, arrays as function arguments
Unit 3:	Structures, Unions, enum and typedef
	Structure definition, Structures within structures, Structures as function arguments,
	Pointers to structures, Unions, Enumerated data type, Type definition
Unit 4:	File and Memory Management in 'C'
	Files, File Pointer Variable, Opening a file, Reading and writing to files, File Status
	Functions, Random Access to files, Command Line Arguments, Memory management
Unit 5:	Preprocessor Directives and Error reporting
	Macro directives, Conditional directives, Control directives, Error reporting
0 4 1 1	

Suggested Readings:

SLM of University

- 1. Kanetkar Y., "Let Us C", BPB Publications.
- 2. E. Balagurusamy, Computer Concepts and Programming in C, McGraw Hill.
- 3. Yashwant Kanetkar, "Working with C", BPB Publications.
- 4. E. Balagurusamy, "Programming in ANSI C", TMH.
- 5. Reema Thareja, Computer Fundamentals and Programming in C, Oxford Publication.
- 6. Jeri R. Hanly, Elliot B. Koffman, Problem Solving and Program Design in C, Pearson Education.
- 7. Behrouz A. Forouzan, Richard F. Gilberg, Thomson, Computer Science- A Structured Programming Approach Using C, Cengage Learning.
- 8. Schildt H., "C- The Complete Reference", McGraw-Hill.
- 9. Goyal K. K. and Pandey H.M., Trouble Free C", University Science Press
- 10. Gottfried B., "Schaum's Outlines- Programming in C", McGraw-Hill Publications.

Electronic media and other digital components in the curriculum:

Name of electronic media: e-SLM Year of incorporation: 2021	Name of electronic media: e-SLM Year of incorporation: 2021
---	---

Syllabus for [B.Sc.]: Subject: [Computer science]				
Course prerequisites: 10+2 with Computer science, Mathematics				
Programme: B.Sc.	Year:1		Semester:2	
Subject: Computer science				
Course Code: UGCS 102P (N) Course Title: Practical Work Based on UGCS 102				
Course Objectives:				
1. To write, compile, debug and execute programs in a C programming environment.				
2. To learn programs that incorporate use of variables, operators and expressions along with data types.				
3. To learn programs for solving problems involving use of decision control structures and loops.				
4. To learn programs that involve the use of arrays, structures and user defined functions.				
5. To Write programs using file handling operations.				
Programme: B.Sc. Course Code: UGCS 102P (N) Course Objectives: 1. To write, compile, debug and 2. To learn programs that incorporate in the compile of th	Year:1 Subject: Comp Course execute programs in orate use of variable g problems involving the use of arrays, s	puter science Title: Practical Work a a C programming eness, operators and express use of decision contextructures and user decisions.	a Based on UGCS 102 nvironment. essions along with data types. erol structures and loops.	

Course Outcomes:

CO1. Write, compile, debug and execute programs in a C programming environment.

Credits:2 Type of Course: Core

Max. Marks: 100 Min. Passing Marks: 36

Suggestive List of Practical

- Program to implement conditional statements in C language.
- Program to implement switch-case statement in C language
- Program to implement looping constructs in Clanguage.
- Program to perform basic input-output operations in C language.
- Program to implement user defined functions in C language.
- Program to implement recursive functions in C language.
- Program to implement one-dimensional arrays in C language.
- Program to implement two-dimensional arrays in C language.
- Program to perform various operations on two-dimensional arrays in C language.
- Program to implement multi-dimensional arrays in C language.
- Program to implement string manipulation functions in C language.
- Program to implement structure in C language.
- Program to implement union in C language.
- Program to perform file handling operations in C language.

Suggested Text Book Readings:

SLM of University

- 1. Kanetkar Y., "Let Us C", BPB Publications.
- 2. E. Balagurusamy, Computer Concepts and Programming in C, McGraw Hill.
- 3. Yashwant Kanetkar, "Working with C", BPB Publications.
- 4. E. Balagurusamy, "Programming in ANSI C", TMH.
- 5. Reema Thareja, Computer Fundamentals and Programming in C, Oxford Publication.
- 6. Jeri R. Hanly, Elliot B. Koffman, Problem Solving and Program Design in C, Pearson Education.
- 7. Behrouz A. Forouzan, Richard F. Gilberg, Thomson, Computer Science- A Structured Programming Approach Using C, Cengage Learning.
- 8. Schildt H., "C- The Complete Reference", McGraw-Hill.
- 9. Goyal K. K. and Pandey H.M., Trouble Free C", University Science Press
- 10. Gottfried B., "Schaum's Outlines- Programming in C", McGraw-Hill Publications.

Electronic media and other digital components in the curriculum:

Name of electronic media: e-SLM	Year of incorporation: 2021

Course prerequisites: 10+2 with Computer science, Mathematics				
Programme: B.Sc.	Year: 1	Semester: 2		
Subject: Computer science				
Course Code: SBSCS-02N Course Title: Python Programming				

Course Objectives:

- 1. To acquire programming skills in core Python.
- 2. To explore the use of data structures, strings, text files, lists and dictionaries.
- 3. To acquire Object Oriented Skills in Python.
- 4. To understand to solve the problems with Python database, Python multithreading.
- 5. To work with Django framework, Numpy and other libraries.

- CO1. Understand and comprehend the Basics of Python programming.
- CO2. Describe and explain the use of the built-in data structures list, sets, tuples and dictionary.
- CO3. Make use of functions, modules and its applications.
- CO4. Demonstrate the principles of OOPs and identify real-world applications using OOPs, files and exception handling provided by Python.

Credits: 4		Type of Course: Core		
Category of C	ourse	Value-added / employability/		
Max. Marks: 1	100 Min. Passing Mark	ks: 36		
Block 1	BASICS OF PYTHON			
	UNIT – 1: Introduction: History o	f Python, Need of Python Programming, Applications		
Unit I	Basics of Python Programming Usi	ng the REPL(Shell), Running Python Scripts, Python		
	IDLE.			
Unit II	Tokens and Statements: Variab	les, Constants, Assignment, Multiple Assignment,		
	•	, Input-Output, Indentation, Statements, Comments,		
	Single Comment and Multiline Com			
Unit III		sions: Types – Integers, Strings, Booleans; Operators-		
	·	n (Relational) Operators, Assignment Operators,		
		ators, Membership Operators, Identity Operators,		
		and order of evaluations Control Flow- if, if-else, if-		
elif-else, for, while, break, continue, pass.				
Block 2 DATA STRUCTURE IN PYTHON				
Unit IV		e, Lists - Operations, Slicing, Methods; Tuples -		
		tions, Methods, Dictionaries- Operations, Methods,		
	· · · · · · · · · · · · · · · · · · ·	omprehensions- Operations , Methods.		
Unit V		Calling Functions, Passing Arguments, Keyword		
	Arguments, Default Arguments, Variable-length arguments, Anonymous Functions,			
		ning Values), Scope of the Variables in a Function-		
	Global and Local Variables			
Unit VI		Creating modules, import statement, from. Import		
		ackages, Introduction to PIP, Installing Packages via		
	PIP, Using Python Packages.			
BLOCK 3 O		OPS IN PYTHON		
Unit VII	UNIT – 7: Object-Oriented Prog	ramming OOP in Python: Classes, 'self-variable',		
	Methods, Constructor Method, Inhe	ritance, Overriding Methods, Data hiding.		
Unit VIII	UNIT – 8: Exception Handling : E	rror, and Exceptions: Difference between an error and		

	Exception, Handling Exception, try except for block, Raising Exceptions, User Defined			
	Exceptions			
Unit IX	UNIT – 9: Python Libraries: Brief Tour of the Standard Library – Operating System			
	Interface – String Pattern Matching, Mathematics, Internet Access, Dates and Times,			
	Data Compression			
Unit X	UNIT – 10: GUI Programming and Testing : Multithreading, GUI Programming,			
	Turtle Graphics Testing: Why testing is required?, Basic concepts of testing, Unit testing			
	in Python, Writing Test cases, Running Tests.			
BLOCK 4:	MACHINE LEARNING IN PYTHON			
Unit XI	UNIT – 11: Machine Learning Using Python : Machine Learning Basics, Features and			
	Labels, Supervised and Unsupervised Learning.			
Unit XII	UNIT - 12: Regression and Classification in Machine Learning: Simple Linear			
	Regression, Multiple Regression, Data Collection for Machine Learning, Classification –			
	Features and Types			

Suggested Text Book Readings:

- 1. Kenneth A. Lambert, Martin, Juneja "Fundamentals of Python", Cengage Learning.
- 2. Python Programming: A Modern Approach, Vamsi Kurama, Pearson.
- 3. Learning Python, Mark Lutz, Orielly.
- 4. Harsh Bhasin, "Python for Beginners", New Age International.
- 5. Ashok Namdev Kamthane, Programming and Problem Solving with Python, TMH.
- 6. Allen Downey, Learning with Python, Dreamtech.

Suggestive digital platforms web links-

http://docs.python.org/3/tutorial/index.html

http://interactivepython.org/courselib/static/pythonds

http://www.ibiblio.org/g2swap/byteofpython/read/

T71 4 •	10	1 41	10 04 1	4	•	41 • 1
Higgiranic	media an	d Athor	diaith '	components	ın	the curriculum:
Licen ome	muua an	u vinci	uizitai	Components	111	. mc curricurum.

Name of electronic media: e-SLM Year of incorporation: 2021

Course prerequisites: 10+2 with Computer science, Mathematics				
Programme: B.Sc. Year:2 Semester:3				
Subject: Computer science				
Course Code: UGCS -103N Course Title: Data Structures				

Course Objectives:

- 1. To develop the understanding of data structures, their types and applications.
- 2. To familiarize with concepts of algorithm and complexity.
- 3. To implement, analyze various data-structures as array, linked-list, stack, queue, tree, graph, etc. in detail and utilization of data structure techniques in problem solving.
- 4. To develop the understanding of various sorting and searching techniques.

- CO1. Explain the concept of data structure, abstract data types, algorithms and analysis of algorithms.
- CO2. Describe basic data organization schemes such as arrays and linked lists, implementation of linked lists, operations on linked-list,
- CO3. Describe stacks and queues, their applications and implement various operations on them using arrays and linked lists
- CO4. Describe the properties of trees and graphs and implement various operations such as searching and traversal on them

and traversar	on them	
Credits: 2	T	Type of Course: Core
Category of Course		Value-added / employability/
Max. Marks:	100 Min. Passing Marks:	36
Block 1		
	UNIT 1: Introduction to data structu	ire
Unit I	Algorithm, Basic criteria for algorithm	ms, Data type, Data structure, Data representation,
	linear and non linear data structure.	
Unit II	UNIT 2: Basics of algorithm	
	Algorithm, Basics of complexity of alg	gorithm
Unit III	UNIT 3:Array	
		, Single and multi-dimensional array, address
	calculation (one dimensional, two dime	ensional, multidimensional), sparse matrices
Block 2		
Unit IV	UNIT 4: Stack	
	y representation and implementation of stadk; infix,	
		of expression and evaluation multiple stacks,
	Application of stacks.	
Unit V	UNIT 5: Recursion	
		some named problems of recursion, principle of m, how recursion works, tail recursion.
Unit VI	UNIT 6: Queue	in, now recursion works, turi recursion.
Omt VI		lar queue, dequeue, priority queue, Application of
queue.		iai queue, aequeue, priority queue, ripprieuron or
BLOCK 3		
Unit VII	UNIT 7: Linked List	
Representation and implementation of		single linked list, Operations in the singly linked
	circularly linked list, doubly linked list, circularly	
doubly linked list, Application of		aked list: polynomial representation and addition,
	garbage collection	
Unit VIII	UNIT 8: Tree	

	Basic terminology, binary tree, binary tree representation, complete binary tree, extended			
	binary tree, array and linked list representations, traversing binary tree, threaded binary			
	tree, binary search tree, Operations on BST, AVL tree, Operations on AVL tree, B-tree			
	Insertion and deletion in B tree.			
Unit IX	UNIT 9: Graph			
	Basic terminology Graph representation Depth first search, breadth first search,			
	topological sort, connected components, spanning tree, minimum cost spanning tree,			
	Kruskal's and prim's algorithm, Shortest path algorithms: Bellman Ford Algorithm,			
	Dijkstra's algorithm, Floyd-Warshall algorithm.			
BLOCK - 4				
Unit X	UNIT 10: Searching and sorting			
	Sequential search, binary search, comparison and analysis, Selection sort, Bubble sort,			
	Insertion sort, Heap sort, Quick Sort, Merge sort, Shell sort, radix sort.			
Unit XI	UNIT 11: Hashing			
	Hash table, hash function, collision resolution strategies, hash table implementation			
Unit XII	UNIT 12: File Structure			
	Terminology, File organization, Sequential files, Direct File organization, Indexed			
	Sequential file organization			

Suggested Text Book Readings:

- 1. Y. Langsam, M. Augenstin and A. Tannenbaum, Data Structures using C and C++, Pearson Education Asia.
- 2. Ellis Horowitz, S. Sahni, D. Mehta Fundamentals of Data Structures in C++, Galgotia Book Source, New Delhi.
- 3. S. Lipschutz, Data Structures Mc-Graw Hill International.
- 4. Data Structures: A Pseudocode Approach with C, Second Edition, Richard F. Gilberg, Behrouz A. Forouzan
- 5. Jean-Paul Tremblay, Paul. G. Soresan, An introduction to Data Structures with Applications, Tata McGraw Hill International Edition.
- 6. A. Michael Berman, Data structures via C++, Oxford University Press.
- 7. Thomas H. Cormen, Introduction to Algorithms, 3rd Edition (The MIT Press).
- 8. M. Weiss, Data Structures and Algorithm Analysis in C++, Pearson Education.
- 9. Tremblay & Sorenson, An Introduction to Data Structures with Applications, Mcgraw Hill.
- 10. R.S. Salaria, Data Structures and Applications using C, Khanna Book Publishing.
- 11. Samanta D., "Classic Data Structures", Prentice Hall India.
- 12. Aho, Ullman and Hopcroft, "Design and Analysis of algorithms", Pearson Education.
- 13. R. Neapolitan and K. Naimipour, "Foundations of Algorithms", Jones an Bartlett, Student edition.
- 14. Reema Thareja, Data Structures using C, Oxford Univ. Press

Suggestive digital platforms web links or online course-

https://www.oercommons.org/authoring/14873-data-structure/view

https://www.oercommons.org/courses/data-structure-and-algorithms

https://onlinecourses.swayam2.ac.in/cec19 cs04/preview (online course)

Electronic media and other digital components in the curriculum:

Choose any one or more than: e-SLM/ Other electronic and digital contents

Name of electronic media: e-SLM Year of incorporation: 2021

Course prerequisites: 10+2 with Computer science, Mathematics					
Programme: B.Sc. Year: 2 Semester: 3rd					
Subject: Computer science					
Course Code: UGCS -103(P)N Course Title: Practical Work Based on UGCS 103					
Course Objectives					

Course Objectives:

- To learn implementation of various Data Structures.
- To applying data structures in solving real life problems using C/Python.
- To learn implementation of various Data Structures.

Course Outcomes:

- CO1. Write and execute programs to implement different searching algorithms.
- CO2. Write and execute programs to implement various sorting algorithms
- CO3. Write and execute programs to implement various operations on two-dimensional arrays..
- CO4. Implement various operations of Stacks and Queues using both arrays and linked lists data structures.

CO5. Implement graph algorithm to solve the problem of spanning tree

Credits: 2		Type of Course: Core
Category of Course		value-added / employability/
Max. Marks: 100	Min. Passing Mark	xs: 36
(Practical Work Based on UGCS 103)		

- To implement addition and multiplication of two 2D arrays.
- To transpose a 2D array.
- To implement stack using array
- To implement queue using array.
- To implement circular queue using array.
- To implement stack using linked list.
- To implement queue using linked list.
- To implement BFS using linked list.
- To implement DFS using linked list.
- To implement Linear Search.
- To implement Binary Search.
- To implement Bubble Sorting.
- To implement Selection Sorting.
- To implement Insertion Sorting.
- To implement Merge Sorting.
- To implement Heap Sorting.
- To implement Matrix Multiplication by Strassen's algorithm
- Find Minimum Spanning Tree using Kruskal's Algorithm

Electronic media and other digital components in the curriculum:

Name of electronic media: e-SLM	Year of incorporation: 2021
Name of electronic media: e-SLM	T Year Of Incorporation: ZUZT

Course prerequisites: 10+2 with Computer science, Mathematics				
Programme: B.Sc. Year:2 Semester:3				
Subject: Computer science				
Course Code: SBSCS-01N Course Title: Discrete Mathematics				

Course Objectives:

- To perform operations on discrete structures such as sets, functions, relations.
- To apply mathematical arguments using logical connectives and quantifiers.
- To identify and prove properties of Algebraic Structures.
- To formulate and solve recurrences and recursive functions.
- To apply the concept of combinatorics to solve basic problems in discrete mathematics.

Course Outcomes:

Credits: 4

CO1. Use mathematical and logical notation to define and formally reason about basic discrete structures such as Sets, Relations and Function

CO2. Apply mathematical arguments using logical connectives and quantifiers to check the validity of an argument through truth tables and propositional and predicate logic

Type of Course: Core

CO3. Identify and prove properties of Algebraic Structures like Groups, Rings and Fields

CO4. Formulate and solve recurrences and recursive functions

CO5. Apply the concept of combinatorics to solve basic problems in discrete mathematics

1 Type of Course: Core	
ourse Skill development	
100 Min. Passing Marks: 36	
Language of Mathematics and its application	
Mathematical Logic: statements, operations, truth values, tautology and quantifiers.	
Arguments: Rule of Detachment, Validity of a compound statement by using Truth	
Table , Validity using Simplification Methods, Validity using Rules of Inference,	
Invalidity of an Argument, Indirect Method of proof and Proof by Counter-Example.	
Boolean Algebra: Boolean Algebra, Principle of Duality, Isomorphic Boolean Algebras,	
Boolean Algebra as Lattices, Boolean Functions, Disjunctive Normal Form, Conjunctive	
Normal Form, Minimization of Boolean Functions (Karnaugh Map)	
Switching circuits and logical Circuits: Switching Circuits, Simplification of circuit,	
Non-Series Parallel Circuits, Relay Circuits, Logic Circuits	
Set theory and its application	
Set theory: sets, Subsets, Operations on Sets, Complementation, Intersection and Union,	
Laws Relating Operations, Distributive Laws and De Morgan's Laws	
Relation: Relation, binary relations in a Set, Domain and Range of a Relation, Total	
number of Distinct Relations, Relations as Sets of Ordered Pairs, Types of Relations,	
Composition of Relations, Equivalence relation in a set, Partition of a Set, Equivalence	
Class and Quotient set of a set.	
Partitions and Distributions: Equivalence Relations, Equivalence Classes, Properties of	
Equivalence Classes, Quotient set and Partition.	
Function: Functions, Direct and Inverse image, Inverse Functions, Operations on	
Functions, Composite of functions, Types of Functions and Connection between	
Equivalence relation and mapping.	
Counting Process	

Unit I	Mathematical Induction: Principle of Mathematical Induction, Second Principle of		
	Induction and Well ordering property.		
Unit II	Combinatorics: Basic counting principles, Principle of Disjunctive counting, Principle of		
	Sequential counting and Ordered and Unordered Partitions.		
Unit III	Permutation		
Unit IV	Combination		
Block – 04	Probability theory and application		
Unit I	Binomial theorem: Binomial theorem, General term in a binomial expansion, Middle		
	term in a binomial expansion and Binomial expansion for rational exponents		
Unit II	Probability: Definition of Probability, Addition law for counting and Product law for		
	counting.		
Unit III	General Counting methods: General Counting method is the extension part of counting		
	process. It discusses Sum and Product Rulesand The Pigeonhole Principle.		
Unit IV	The Inclusion- Exclusion Principle: inclusion-exclusion principle, Alternative form of		
	the inclusion-exclusion principle and Onto Functions.		

Suggested Text Book Readings:

Suggested online links:

- 1. Kenneth H. Rosen, "Discrete Mathematics and Its Applications", McGraw Hill.
- 2. B. Kolman, R.C Busby and S.C Ross, "Discrete Mathematics Structures", Prentice Hall.
- 3. R.P Girimaldi, "Discrete and Combinatorial Mathematics", Addison Wesley.
- 4. Y.N. Singh, "Discrete Mathematical Structures", Wiley- India.
- 5. Swapankumar Sarkar, "A Textbook of Discrete Mathematics", S. Chand & Company PVT. LTD.V.
- 6. Krishnamurthy, "Combinatorics Theory & Application", East-West Press Pvt. Ltd., New Delhi.
- 7. Liptschutz, Seymour, "Discrete Mathematics", McGraw Hill.
- 8. J.P. Trembely&R.Manohar, "Discrete Mathematical Structure with application to Computer Science", McGraw Hill.

Electronic media and other digital components in the curriculum:			
Choose any one or more than: e-SLM/ Other electronic and digital contents			
Name of electronic media: e-SLM Year of incorporation: 2021			

Course prerequisites: 10+2 with Computer science, Mathematics				
Programme: B.Sc.	Programme: B.Sc. Year: 2 Semester:4th			
Subject: Computer science				
Course Code: UGCS -104N Course Title: Introduction to Database Management System)				

Course Objectives:

- To learn the features of a database system and its application and compare various types of data models.
- To construct an ER Model for a given problem and transform it into a relation database schema.
- To formulate solution to a query problem using SQL Commands, relational algebra, tuple calculus and domain calculus.
- To understand the need of normalization and normalize a given relation to the desired normal form.
- To understand different approaches of transaction processing and concurrency control.

- CO1. Describe the features of a database system and its application and compare various types of data models.
- CO2. Construct an ER Model for a given problem and transform it into a relation database schema.
- CO3. Formulate solution to a query problem using SQL Commands, relational algebra, tuple calculus and domain calculus.
- CO4. Explain the need of normalization and normalize a given relation to the desired normal form CO5. Explain different approaches of transaction processing and concurrency control.

Credits: 2		Type of Course: Core		
Category of Course employabil		employability/ skill development/		
Max. Marks: 100 Min. Passing Marks: 36		Min. Passing Marks: 36		
Block 1				
	UNIT 1: Overv	view of database management		
Unit I	Introduction, Tra	Introduction, Traditional oriented approach, Three view of data, The three level		
Cint 1	architecture of D	DBMS, DDL, DML, data model schemas and instances, Advantage and		
	disadvantage of	database management system.		
Unit II	UNIT 2: Datab	ase Models and implementation		
		e management system, entity relationship model, the hierarchical model,		
		the relational model		
Unit III		. UNIT 3: Entity relationship model		
		oncept, notations of ER diagram, mapping constraints, keys, concept of super		
	* '	ey, primary key, verbalization, aggregation reduction oF ER diagram to		
	tables, extended	ER model, relationship of higher degree		
Block 2				
Unit IV	UNIT 4: Relati			
	Concept, Formal definition of a relation, entirety. constraint, entity indignity, re			
		constraints, domain constraint, relational algebra relational calculus.		
Unit V	UNIT 5: SQL			
		of SQL, Advantage of SQL, SQL data types, SQL commands, SQL		
	operators, insertion, update and delete operations, joins, unions intersection,			
		nd sub queries, aggregate function, cursor in SQL		
Unit VI UNIT 6: Database Design		ase Design		

	Conceptual, logical and physical design, Functional dependencies, normal form, first		
	second, third, BCNF, multi-valued dependencies, fourth normal form, join dependencies		
	fifth normal form, inclusion dependencies, lossless join decomposition, normalization		
	using FD, MVD and JDs.		
BLOCK - 3			
	UNIT 7: File Organization		
	Introduction, file organization, sequential file organization, index-sequential file		
	organization, direct file organization, multi key file organization.		
	UNIT 8: Transaction Processing Concept		
	Transaction system, testing of serializability, serializability of schedules, conflict and		
	view serializable schedule, recoverability, recovery from transaction failure, Joe based		
	recovery, checkpoints, deadlock handling, concept of concurrency.		
Suggested Te	xt Book Readings:		
1. Date, C.J.,"	1. Date, C.J., "An Introduction to Database Systems", Narosa Publishing House, New Delhi.		
2. Korth, Silb	2. Korth, Silbertz, Sudarshan, "Database Concepts", Tata Mcgraw-hill Education (India).		
3. Elmasri, N	3. Elmasri, Navathe, "Fundamentals Of Database Systems", Pearson Education New Delhi India.		
4. G.K. Gupta, "Database Management System", Tata Mcgraw-hill Education (India) Pvt. Ltd.			
5. Bipin C. Desai, "An introduction to Database Systems", Galgotia Publication.			
6. Majumdar& Bhattacharya, "Database Management System", Tata Mcgraw-hill Education.			
7. Ramakrishr	nan, Gehrke, "Database Management System", McGraw Hill (India) Pvt Ltd.		
8. Chakravart	i, "Advanced Database Mnagement System" Wiley Dreamtech Publications.		
9. Ullman, J.I	D.,"Principles of Database Systems", Galgotia Publications, New Delhi.		
10 7			

Suggestive digital platforms web links

Electronic media and other digital components in the curriculum:		
Name of electronic media: e-SLM	Year of incorporation: 2021	

10. James Mortin- Principles of Database Management Object Oriented Modeling & Design.

Course prerequisites: 10+2 with Computer science, Mathematics			
Programme: B.Sc. Year: 2 Semester:4th			
Subject: Computer science			
Course Code: UGCS -104(P)N Course Title: Practical Work Based on UGCS104 (Introduction to			
Database Management System)			

Course Objectives:

- To write SQL commands to query a database.
- To develop database and writing queries using MySQL, SQL Server.
- To write, debug and implement SQL programs in MySQL, SQL Server.
- To learn programming in SQL.

Course Outcomes:

- CO1. Describe the features of a database system and its application and compare various types of data models.
- CO2. Construct an ER Model for a given problem and transform it into a relation database schema.
- CO3. Formulate solution to a query problem using SQL Commands, relational algebra, tuple calculus and domain calculus.
- CO4. Explain the need of normalization and normalize a given relation to the desired normal form
- CO5. Explain different approaches of transaction processing and concurrency control.

Credits: 2	•	Type of Course: Core
Category of Course		Employability/ skill development/
May Marks: 100	Min Passing Mark	rs: 36

Suggestive Practical's

- 1. Installing SQL Server/MYSQL.
- 2. Creating Entity-Relationship Diagram using case tools.
- 3. Writing basic SQL statements.
- 4. Restricting and sorting data.
- 5. Displaying data from multiple tables.
- 6. Aggregating data using group function.
- 7. Manipulating data.
- 8. Creating and managing tables.
- 9. Normalization.
- 10. Creating procedure and functions etc.
- 11. Design and implementation of Payroll processing system.
- 12. Design and implementation of Library Information System.
- 13. Design and implementation of Student Information System.
- 14. Automatic Backup of Files and Recovery of Files.

Suggested Text Book Readings:

- 1. Date, C.J., "An Introduction to Database Systems", Narosa Publishing House, New Delhi.
- 2. Korth, Silbertz, Sudarshan, "Database Concepts", Tata Mcgraw-hill Education (India).
- 3. Elmasri, Navathe, "Fundamentals Of Database Systems", Pearson Education New Delhi India.
- 4. G.K. Gupta, "Database Management System", Tata Mcgraw-hill Education (India) Pvt. Ltd.
- 5. Bipin C. Desai, "An introduction to Database Systems", Galgotia Publication.
- 6. Majumdar& Bhattacharya, "Database Management System", Tata Mcgraw-hill Education.
- 7. James Mortin- Principles of Database Management Object Oriented Modeling & Design.

Suggestive digital platforms web links	
Name of electronic media: e-SLM	Year of incorporation: 2021

Course prerequisites: 10+2 with Computer science, Mathematics		
Programme: B.Sc.	Year: 3	Semester:5th
Subject: Computer science		
Course Code: DCECS -105N	Course Title: Computer Network	

Course Objectives:

- To understand the computer networks and concentrates on building a firm foundation
- To provide the fundamental knowledge of the various aspects of computer networking
- To understanding the OSI Reference Model and TCP/IP Model
- To have a good knowledge of Reference Model Layers and associated protocols.
- Analyze the requirements for a given organizational structure. Select the most appropriate networking architecture and technologies and appreciate recent developments in the area.

- CO1. Understand computer network basics, network architecture, TCP/IP & OSI reference models and other concepts.
- CO2. Understand error handling concepts, data link protocols, flow-error control, multi-channel access protocols and Standards
- CO3. Describe network layer protocols, IP addressing, IPV4 addressing, Routing algorithms, etc.
- CO4.Describe functionality of Transport layer and related protocols; concept of QoS and techniques.
- CO5. Define various application layer protocols such as DNS, Electronic Mail, FTP, HTTP, Telnet and understand network security

and is taken and the second of			
Credits: 2	Type of Course: Election	Type of Course: Elective	
Category of C	Course Employability/ skill dev	Employability/ skill development/	
Max. Marks: 100 Min. Passing Marks: 36			
Block 1			
	Introduction to Computer Network		
Unit I	Computer networks, Network Hardware—Local Area ne	etworks, Metropolitan Area	
Omt 1	networks,, Wide Area networks, Wireless networks, Internet	etworks, Network Software:	
	Protocol Hierarchies		
Unit II	OSI and TCP/IP Model		
	Design and Issue for layers, Interfaces and services, Connect		
	less Services. OSI reference model, and its Evolution, TCP/II	P model.	
Unit III	. Unit 3: The Physical Layer:		
	Physical Layer, Transmission media, twisted pair, Base band and Broadband coaxial		
	cable, Fiber optics, unguided media.		
Unit IV	ISDN and Switching Techniques:		
	MODEM, ISDN services, Switching Message, Packet Circuit switching TDM, and FDN		
	ATM, X.25.		
Block 2	Block 2 Link Layer Issues and Access Protocols		
Unit V	Data Link Layer:		
	Data Link Layer, Error detection and Correction, Protocols: Simplex Stop and wait		
	protocols, One bit sliding window protocol, Using Go-Back N. Flow control, Sliding		
	Window Protocol, Channel Allocation Problem		
Unit VI	Multiple Access Protocol: ALOHA, CSMA protocol, Coll	ision Free protocol, Polling,	
	FDM, TDM		

Unit VII	The Medium Access Sub Layer:		
	Framing, Static and Dynamic Channel Allocation in LANs and MANs, IEEE Standard		
	802.3, and Ethernet IEEE standard 802.4 and token Ring, IEEE Standard 802.5, Token		
	Bus		
Unit VIII	Network devices:		
	Hub, Bridges, Switch, Gateways, Routers.		
BLOCK - 3	IP Addressing and Routing Issues		
Unit IX	IP Protocol and Addressing:		
	Network layer design issue, IP Protocol, IP Addresses, subnets,		
Unit X	: Connection Management:		
	Internetworking, connectionless and connection oriented services, tunneling,		
	Fragmentation, Firewall, Internet Controls Protocols.		
Unit XI	: Routing in Network Layer:		
	Routing Algorithm, shortest path routing, Flooding, Flow-based routing, Broadcast		
	routing, Congestion Control Algorithm, Congestion control and prevention policies;		
Block 4:	Transport, Session, Presentation and Application Layer		
Unit XII:	Transport layer:		
	Transport layer connection management, flow control, error control, congestion control,		
	Establishing and releasing a connection, TCP service Model, TCP protocol		
Unit XIII:	Session and Presentation Layer:		
	Introduction to cryptography and data compression		
Unit XIV:	The Application Layer:		
	Network Security, Domain Name System, Email: Architecture and Services, Message		
	formats, Message transfer.		
Suggested Tex	kt Book Readings:		
	1. Forouzen, "Data Communication and Networking", TMH A.S.		
2. Tanenbaum, Computer Networks, Pearson Education			
3. W. Stallings, Data and Computer Communication, Macmillan Press			
	4. AnuranjanMisra, "Computer Networks", Acme Learning 5. G. Shanmugarathinam, "Essential of TCP/		

4. AnuranjanMisra, "Computer Networks", Acme Learning 5. G. Shanmugarathinam, "Essential of TCP, IP", Firewall Media

Suggestive digital platforms web links

Electronic media and other digital components in the curriculum:

Choose any one or more than: e-SLM/Other electronic and digital contents

Name of electronic media: e-SLM Year of incorporation: 2021

Course prerequisites: 10+2 with Computer science, Mathematics				
Programme: 1				
	Subject: Computer science			
	DCECS -106N Course Title: Operating System			
Course Obje				
• To develo	op the understanding of the structure and functioning of Operating System.			
	about Processes, Threads and Scheduling algorithms.			
To unders	stand the principles of concurrency and Deadlock.			
• To learn	various memory management schemes.			
• To study	I/O management and File systems.			
Course Outc	omes:			
	main components, services, types and structure of Operating Systems.			
	he various algorithms and techniques to handle the various concurrency control issues.			
	re and apply various CPU scheduling algorithms for process execution			
•	occurrence of deadlock and describe ways to handle it			
•	and apply various memory, I/O and disk management techniques.			
Credits: 2	Type of Course: Elective			
Category of C				
Max. Marks:	100 Min. Passing Marks: 36			
Block 1	TINTER 4 T A D A			
I Init I	UNIT 1: Introduction			
Unit I	Basic definitions, Batch processing, Multi-programming. Time sharing, multiprocessing;			
Unit II	Structure and Functions of Operating System UNIT 2: Process and thread			
Omit II	Process, Process states, State Transitions, Process Control Block, Context Switching,			
	concept of thread, comparison between process and thread, Thread model, thread usage,			
	implementing thread in kernel and user space.			
Unit III	. UNIT 3: Process Scheduling			
	Scheduler, Scheduling criteria, Preemptive and non-preemptive scheduling, Process			
	Scheduling, Process scheduling algorithms.			
Unit IV	UNIT 4: Concurrent Process			
Process Interaction, Shared Data and Critical Section, Mutual Excl				
	Synchronization, Classical Problems of Synchronization, Semaphores, Monitors.			
Block 2				
Unit V	UNIT 5: Deadlock			
	Concept of deadlock, necessary condition for deadlock, resource allocation graph,			
	deadlock prevention, deadlock avoidance, Banker's algorithm, Deadlock detection,			
deadlock recovery.				
Unit VI	UNIT 6: Memory management			
Address Binding, Dynamic Loading and Linking Concepts, Logical and P				
	Addresses Contiguous and non-contiguous memory allocation, Paging, Segmentation,			
TT ', T7TY	Virtual Memory, Demand Paging, Page fault, Page replacement algorithms, thrashing.			
Unit VII	UNIT 7: Secondary memory management:			
	Free Space management, Disk Structure, Disk Scheduling, Formatting, Swap space Management.			
IImit X/III				
Unit VIII				
Suggested Text Book Readings: 1. Abraham Sibarahatz and Peter Book Calvin, "Onesating System Concents". Addision Wesley.				
1. Auranam S	iberschatz and Peter Baer Galvin, "Operating System Concepts", Addision-Wesley			

- 2. Milan Milankovic, "Operating Systems, Concepts and Design", Tata McGraw-Hill.
- 3. Harvey M Deital, "Operating Systems", Addison Wesley
- 4. Richard Peterson, "Linux: The Complete Reference", Osborne Tata McGraw-Hill.
- 5. SibsankarHalder and Alex A Aravind, "Operating Systems", Pearson Education
- 6. D M Dhamdhere, "Operating Systems: A Concept basedApproach", McGraw Hill.
- 7. Charles Crowley, "Operating Systems: A Design-Oriented Approach", Tata McGraw Hill Education".
- 8. Stuart E. Madnick& John J. Donovan. Operating Systems. McGraw Hill.
- 9. A. S. Tanenbaum, "Modern Operating Systems", PHI.
- 10. William Stallings, "Operating Systems internals and design principles", PHI.

Suggestive digital platforms web links

Electronic media and other digital components in the curriculum:

Choose any one or more than: e-SLM/Other electronic and digital contents

Name of electronic media: e-SLM Year of incorporation: 2021

Course prerequisites: 10+2 with Computer science, Mathematics			
Programme: B.Sc.	Year: 2	Semester:4th	
	Subject: Computer scien	nce	
Course Code: DCECS -107(P)N	Course Title: Practical Work	Based on DCECS106N Operating System	
Course Objectives:			
To develop the understanding	of the structure and functionin	g of Operating System.	
To learn about Processes, Three	eads and Scheduling algorithm	is.	
• To understand the principles of	of concurrency and Deadlock.		
To learn various memory man	agement schemes.		
To study I/O management and	•		
Course Outcomes:			
CO1. Explain main components,	services, types and structure of	f Operating Systems.	
CO2. Apply the various algorithm	ns and techniques to handle the	e various concurrency control issues.	
CO3. Compare and apply various			
CO4. Identify occurrence of dead			
CO5.Explain and apply various n			
Credits: 2		Course: Core	
Max. Marks: 100	Min. Passing Marks: 36		
Block 1			
<u> </u>	erating systems.		
	es Linux commands.		
	 Writing code to implement scheduling Algorithams. Try to learn perform the various memory management schemes 		
·			
Suggested Text Book Readings:			
1. Abraham Siberschatz and Pete			
2. Milan Milankovic, "Operating		n", Tata McGraw-Hill.	
3. Harvey M Deital, "Operating S		T . M. G	
4. Richard Peterson, "Linux: The Complete Reference", Osborne Tata McGraw-Hill.			
	5. SibsankarHalder and Alex A Aravind, "Operating Systems", Pearson Education		
6. D M Dhamdhere, "Operating Systems: A Concept basedApproach", McGraw Hill.			
7. Charles Crowley, "Operating Systems: A Design-Oriented Approach", Tata McGraw Hill Education".			
8. Stuart E. Madnick& John J. Donovan. Operating Systems. McGraw Hill. 9. A. S. Tanenbaum, "Modern Operating Systems", PHI.			
9. A. S. Tanenbaum, Modern Operating Systems, PHI. 10. William Stallings, "Operating Systems – internals and design principles", PHI.			
Suggestive digital platforms web links			
Electronic media and other digital components in the curriculum:			
Choose any one or more than: e-SLM/Other electronic and digital contents			
Name of electronic media: e-SL		Year of incorporation: 2021	
		· · · · · · · · · · · · · · · · · · ·	

Course prerequisites: 10+2 with Computer science, Mathematics			
		Year: 3	Semester: 6th
Subject: Computer science			
Course Code: I	OCECS -108N	Course Title: C++ and Obje	
Course Objecti		Course Title. CTT and Obje	set Oriented i rogramming
		riented Concepts using C++ 1	anguage
	•	document programs in C++ u	
			n and implement real-world entities like
			sing the object-oriented design process.
Course Outcom		morphism in programming u	sing the object-offented design process.
		nted Concepts using C++ and	l understand/implement C++ programming
		nstants, operators, control sta	
			nce, hiding, polymorphism, interfaces and
	n C++ programmi		ice, mang, porymorphism,merraces and
Credits: 2	ii C++ programmi		f Course: Elective
Max. Marks: 10	00	Min. Passing Marks: 36	Course. Licetive
Block 1		Will. I assing Warks. 50	
DIUCK I	IINIT 1. Princi	ples of object oriented prog	rommina
1			Comparison with procedural programming,
Unit I			mming, benefits of OOP, object oriented
1	Languages, adva		inning, beliefits of Got, object offented
Unit II		ect Orient Programming Sys	stom
Omt II			on and information hiding, polymorphism,
1	overloading.	ice, abstraction, encapsulation	on and information maing, porymorphism,
Unit III	UNIT 3: Adva	nced concent	
Omt m			binding, late binding, dynamic loading).
1		grams, reusability, organizing	
Block 2	Overview of C		object offented project,
Unit IV			s basic data types, user-defined and derived
Omt I v			
Data types, type compatibility, reference, variables type Casting, operator precede control structures, structure, function.		ariables type casting, operator precedence,	
Unit V Classes and objects			
CIII V		•	g class members, scope resolution operator,
1		iding, empty classes, Pointers within a class, passing objects as arguments,	
returning objects from functions, friend Functions and friend classes, constant para and member functions, structures and Classes, static members.			-
Unit VI		zation and cleanup	
Constructors destructor, constructor overloading, order of construction and destru		ding, order of construction and destruction.	
i	Constructors with default arguments, nameless objects, dynamic initialization through		
Constructors, constructors with dynamic operations, constant objects and constru			
	static Data members with constructors and destructors, nested classes		
BLOCK - 3			
Unit VII	UNIT 8: Opera	ntor overloading and type co	onversion
i			ing unary operators, overloading binary
	operators, overloading binary operators using friends, manipulation of strings using		
Operators, rules for overloading operators. type conversions.			
Unit VIII	UNIT 9: Inheri	itance: extending classes	

	Constructors & destructors in derived classes, constructors invocation and data members		
	Initialization, virtual base classes, abstract classes, delegation.		
BLOCK- 4			
	UNIT 10: Pointers, virtual functions and polymorphism		
	Pointers to objects, this pointer. pointers to derived classes, virtual functions,		
	Implementation of run-time polymorphism, pure virtual functions.		
	UNIT 11: Working with files		
	Classes for file stream operations. opening and closing a file, file pointers and their		
	Manipulations, sequential input and output operations, error handling during file		
	Operations, command line arguments.		
	UNIT 12: Object Oriented Modeling		
	Need of object oriented Modeling, Simulation of real life problems using OOP concept:		
	Example, Representation of problem using object and class diagrams at design level.		
Suggested Text Book Readings:			
A.R. Venugopal, Rajkumar, T. Ravishanker "Mastering C++", TMH.			
	R.Lafore, "Object Oriented Programming using C++", Galgotia Publications.		
E. Balagurusa	E. Balagurusamy, "Object Oriented Programming with C++", TMH.		
Suggestive dig	Suggestive digital platforms web links:		
Electronic media and other digital components in the curriculum:			
Choose any one or more than:e-SLM/Other electronic and digital contents			
Name of electr	Name of electronic media: e-SLM Year of incorporation: 2022		

Course prerequisites: 10+2 with Computer science, Mathematics			
Programme: B.Sc.	Year: 3	Semester: 6th	
Subject: Computer science			
Course Code: DCECS -109N Course Title: Software Engineering			

Course Objectives:

- 1. To understand the methodologies involved in the development and maintenance of software (i.e.) over the entire life cycle.
- 2. To learn about generic models of software development process.
- 3. To understand methods of capturing, specifying, visualizing and analyzing software requirements and analysis modeling.
- 4. To know basics of testing and understanding concept of software quality assurance and software configuration management process.
- 5. To understand the different design techniques and their implementation.
- 6. To learn various testing and maintenance measures.
- 7. To understand Project management and Quality Assurance plan and measures.

- CO1. Understand and comprehend the nature of software development and software life cycle models
- CO2. Explain needs for software specifications, software requirements and their gathering techniques and their application.
- CO3. Understand and comprehend software quality assurance techniques.
- CO4. Learn and implement concepts of software design modeling and principles
- CO5. Compare, understand and learn different testing strategies and tactic
- CO6. Understand, compare and apply various software maintenance and management techniques

Credits: 2	Type of Course: Elective	
Max. Marks	: 100 Min. Passing Marks: 36	
Block 1	-	
UNIT-I Software Engineering Fundamentals: Definition of Software		
	characteristics, Software Applications. Software Process: Software Process Models -	
Unit I	Waterfall model, prototyping model, spiral model, incremental model, concurrent	
	development model. Project management Concepts: The Management Spectrum - The	
	People, The Product The Process, The Project.	
Unit II	UNIT-II Software Process and Project Metrics: Measures, Metrics and Indicators,	
	Software measurement Size -Oriented Metrics , Function - Oriented Metrics , Extended	
	Function point metrics Software Project Planning: Project Planning Objectives, Software	
	Project Estimation , Decomposition Techniques - Problem Based Estimation Process	
	Based Estimation ,Empirical Estimation Models- The COCOMO Model Risk Analysis	
and Management: Software risks, Risk identification, Risk Projection, R		
	Risk Mitigation, Monitoring and Management.	
Unit III	UNIT-III Software Quality Assurance: Basic concepts- Quality, Quality Control,	
	Quality Assurance, Cost of Quality, Software Quality Assurance (SQA), Formal	
	Technical Review Software Configuration Management: Baselines , Software	
Configuration Items, The SCM Process, Version Control, Change Contro		
Audit, Status Reporting. Analysis Concepts and Principles: Requirements Eli Software, Analysis Principles. The Information Domain, Modeling, F		
	Representation, The Software Requirement Specification (SRS)	
Block 2		

Unit IV	UNIT-IV Design Concepts and Principles: Design Principles, Design Concepts —		
	Abstraction, Refinement, Modularity, Software Architecture, Control Hierarchy,		
	Structural Partitioning, Data Structure. Software Procedure, Structure, Information		
	Hiding, Effective Modular Design- Cohesion, Coupling Software Testing: Testing		
	Objectives & principles, Unit Testing, Integration Testing (Top Down Integration,		
	Bottom. Up Integration, Regression Testing, Smoke Testing), Validation Testing (Alpha		
	and Beta Testing), System Testing (Recovery Testing, Security Testing, Stress Testing,		
	Performance Testing).		
Unit V	UNIT-V Reengineering: Software Reengineering, Reverse Engineering, Restructuring,		
	Forward Engineering CASE Tools: What is CASE, Building Blocks of CASE, A		
	Taxonomy of CASE Tools, Integrated CASE Environments, The integration Architecture,		
	The CASE Repository.		

Suggested Text Book Readings:

R. S. Pressman, Software Engineering: A Practitioners Approach, McGraw Hill.

Rajib Mall, Fundamentals of Software Engineering, PHI Publication.

K. K. Aggarwal and Yogesh Singh, Software Engineering, New Age International Publishers.

Pankaj Jalote, Software Engineering, Wiley.

Deepak Jain, "Software Engineering: Principles and Practices", Oxford University Press.

Munesh C. Trivedi, Software Engineering, Khanna Publishing House.

N.S. Gill, Software Engineering, Khanna Publishing House.

Suggestive digital platforms web links:

Electronic media and other digital components in the curricul	lum:
Name of electronic media: a SI M	Voor of incorporation, 2022

Course prerequisites: 10+2 with Computer science, Mathematics				
Programme:	B.Sc.	Year:3	Semester:6th	
		Subject: Computer science		
	Course Code: DCECS -110(P)N Course Title: Practical Work based on 108			
Course Obj				
		nd execute programs in a C programmi		
	2. To learn programs that incorporate use of variables, operators and expressions along with data			
types.	C 1		. 1	
		ing problems involving use of decision		
		olve the use of arrays, structures and us	er defined functions.	
Course Out		ile handling operations.		
		execute programs in a C programming	environment	
		orate use of variables, operators and ex		
		problems involving use of decision con		
		e the use of arrays, structures and user of		
	programs using file h			
Credits:2		Type of Course:	Elective	
Max. Marks:	: 100	Min. Passing Marks: 36		
	Program to imple	ement conditional statements in C++ lan	nguage.	
	• Program to implement switch-case statement in C++ language			
	• Program to implement looping constructs inC++ language.			
	• Program to perform basic input-output operations in C++ language.			
	• Program to implement user defined functions in C++ language.			
	• Program to implement recursive functions in C++ language.			
	_	• Program to implement one-dimensional arrays in C++ language.		
Unit I	_	blement two-dimensional arrays in C++		
	_	• Program to perform various operations on two-dimensional arrays in C++ language.		
		Program to implement multi-dimensional arrays in C++ language.		
	_	 Program to implement string manipulation functions in C++ language. 		
		 Program to implement structure in C++ language. 		
		olement union in C++ language.		
			on aveca	
Cuancatada		form file handling operations in C ++la	anguage.	
	Text Book Readings:			
A.R. Venugopal, Rajkumar, T. Ravishanker "Mastering C++", TMH. R.Lafore, "Object Oriented Programming using C++", Galgotia Publications.				
E. Balagurusamy, "Object Oriented Programming with C++", TMH.				
D. Danagarasami, Coject Offeneda Flogramming with Co. 1, 1911.				