Year-2023-2024 Syllabus of B.Sc. Programme: [Subject Name: Biochemistry] In accordance with NEP-2020

Year	Semester	Course Code	Title of Paper	Theory/ Practical	Credits	Max. Marks
	т	UGBCH -101N	Introduction to biochemistry	Theory	2	100
	I	UGBCH -101(P)N	Practical Work	Practical	2	100
1		UGBCH -102N	Nutritional biochemistry	Theory	2	100
	II	UGBCH -102(P)N	Practical Work	Practical	2	100
		UGBCH -103N	Intermediary metabolism	Theory	2	100
		UGBCH -103(P)	Practical Work	Practical	2	100
2	III	Skill Enhancement Course				
2		SBSBCH- 01N	Bio-analytical techniques	Theory	2	100
	IV	UGBCH -104N	Enzymology	Theory	2	100
		UGBCH -104(P)N	Practical Work	Practical	2	100
		Discipline Centric Elective Course			l	
	v	DCEBCH -105N	Microbiology	Theory	2	100
		DCEBCH -106N	Spectroscopy	Theory	2	100
		DCEBCH -107(P)N	Practical Work Based on 105 & 106	Practical	2	100
2		Discipline Centric Elective Course		I		
3	VI	DCEBCH -108N	Plant biochemistry	Theory	2	100
		DCEBCH -109N	Immunology	Theory	2	100
		DCEBCH -109(P)N	Practical Work Based on 108 & 109	Practical	2	100
		Skill Enhancement				
		SBSBCH-04N	Clinical biochemistry	Theory	4	100
			Total Credit/Max. Marks		34	1600

Programme: B.Sc.	Year: First	Semester: I		
Subject: Biochemistry				
Course Code: UGBCH-101N Course Title: Introduction to Biochemistry				

- To discuss the basics of outline of biochemistry
- To discuss the solvent properties of water of biochemical reactions
- To discuss the protein that is the building block of living being
- To discuss the basic concept of cell organelles and its role in biochemical functions

- CO 1: Able to understanding of history and scope of Biochemistry in brief.
- CO 2: Learn about water properties and role of it in living beings.
- CO 3: To know about cell structure and their functions
- CO 4: Able to understanding the structure and functions of various cell organelles.
- CO 5: Also able to understand the amino acid structure and its classification, and also know how amino acids play important role in proteins formation.

110	waiming acids play important for in proteins formation.		
Credits: 2	Type of Course: Core		
Max. Marks	: 100 Min. Passing Marks: 36		
Block 1	Life History and Cell Structure		
	Introduction to biochemistry:		
Unit I	The origin of biochemistry and unity of life- History, scope and current prospective		
Omt 1	of biochemistry, unique properties of water, weak interactions in aqueous systems,		
	ionization of water, buffers		
Unit II	Cell structure and functions		
	Prokaryotic and eukaryotic cell, animal and plant cells, units of measurement, light		
	microscope and electron microscope, centrifugation for subcellular fractionation.		
Unit III	Cell organelles:		
	Structure and functions of cell nucleolus, Endoplasmic reticulum, Golgi complex,		
	Lysosome, mitochondria, chloroplasts and peroxisomes.		
Block 2	Amino Acids, Proteins and Carbohydrate		
Unit IV	Amino Acids: General introduction, classification, structure and functions of		
Omt IV	amino acids, basic properties of amino acids.		
Unit V	Proteins the basic molecules:		
	Nature, classification and types of protein structure, Peptides classification and		
	conformational structure		
Unit VI	Carbohydrates:		
	General introduction, classification and structure, monosaccharides - structure of		
	aldoses and ketoses, ring structure of sugars, formation of disaccharides,		
	polysaccharides.		
Block 3	Lipids, Nucleic Acids and Vitamins		
Unit VII	Lipids:		

	General introduction, classification, building blocks of lipids - fatty acids, glycerol,		
	ceramide, structure of fatty acids and their derivatives.		
Unit VIII	Nucleic acids: Nucleotides and nucleosides-structure and properties, nitrogenous		
	bases: purines and pyrimidines, structure of DNA and RNA.		
Unit IX	Vitamins: Types and functions, structure and active forms of water soluble and fat		
	soluble vitamins, deficiency diseases and symptoms.		

- **1.** David L. Nelson and Michael Cox, "Lehninger Principles of Biochemistry" International Edition-2021.
- 2. Dr J L Jain, "Fundamentals of Biochemistry" S. Chand and Company-2020.
- **3.** P S Verma and V K Agarwal, "Cell Biology (Cytology, Biomolecule and Molecular Biology" S. Chand Publication-2016.
- **4.** Talwar and Srivastava, "Textbook of Biochemistry and Human Biology" Eastern Economy Edition, Prentice Hall, India-2002.
- 5. Satyanarayana U., "Biochemistry" Elsevier India, 2021

Suggested online link:

- 1. Cell Organelles: <u>Cell Organelles Notes.pdf (gwisd.us)</u>
- 2. Carbohydrates: CARBOHYDRATES (dhingcollegeonline.co.in)
- 3. Amino Acids: Microsoft Word Amino Acids Peptides Proteins Notes (srmist.edu.in)
- 4. Vitamins: https://www.pearsonhighered.com/assets/samplechapter/0/1/3/2/0132181630.pdf

This course can be opted as an elective by the students of following subjects: NA

Suggested equivalent online courses (MOOCs) for credit transfer: NO

Electronic media and other digital components in the curriculum:

Choose any one or more than one:(Electronic Media: Audio/Video Lectures, Online Counseling/VirtualClasses/E-Contents/e-SLM/OER/supplementary links for reference/Video Conferencing/Radio broadcast/Web Conferencing/ Other electronic and digital contents)

Programme: B.Sc.	Year: First	Semester: II		
Subject: Biochemistry				
Course Code: UGBCH-102N Course Title: Nutritional Biochemistry		al Biochemistry		

- To discuss the basic elements of nutrition.
- To discuss the basal metabolic rate and measurement of fuel value of foods.
- To discuss the biological oxidation of foodstuff.
- To discuss the basic concept of micro and macro nutrition

- CO 1: Able to know the basic concept of different nutrition and energy in brief.
- CO 2: Able to understand the role of different nutrients in growth of living beings.
- CO 3: Learn about cell structure and their functions.
- CO 4: Learn about the concept of digestion of carbohydrates, proteins and fats.
- CO 5: Also know the structure of proteins, carbohydrates and lipids.

Credits: 2	Type of Course: Core		
Max. Marks:	100 Min. Passing Marks: 36		
Block 1	Nutrition and oxidation of foodstuff		
	Elements of Nutrition:		
Unit I	Dietary requirements of carbohydrates, lipids and proteins. Essential amino acids,		
	essential fatty acids, Malnutrition.		
Unit II	Basal Metabolic Rate (BMR):		
	Concept of BMR, factors affecting BMR, measurement of fuel value of foods. basal		
	and resting metabolism, physical activity, energy balance.		
Unit III	Biological oxidation of foodstuff:		
	Measurement of energy content of food, physiological energy value of foods,		
	measurement of energy expenditure, factors affecting thermogenesis.		
Block 2	Nutrition of carbohydrates, Proteins and Vitamins		
	Dietary carbohydrate:		
Unit IV	Functions, digestion, absorption, storage and utilization of carbohydrates, hormonal		
	regulation of blood glucose.		
Unit V	Proteins:		
	Sources, functions, digestions and absorptions, essential and nonessential amino		
	acids, antagonism, toxicity and imbalance, effects of deficiency and kwashiorkor.		
Unit VI	Minerals and Vitamins:		
	Nutrition importance of dietary calcium; phosphorus; magnesium; iron; iodine; zinc		
	and copper, requirements and deficiency diseases associated with vitamin B		
	Complex, C A,D, E and K.		
Block 3	Food and drugs integration		
Unit VII	Lipids and fats:		

	Role of lipid in dietary supplement. Dietary fiber, role of fibre in lipid metabolism,		
	blood glucose level and GI tract functions, role of saturated fat. Sources, functions,		
	digestions and absorptions of fats, types of fats dietary fats, role of omega-3 fatty		
	acids in living human body, essential and nonessential fatty acids.		
Unit VIII	Food and drug interactions:		
	Nutrient interactions affecting ADME of drugs, alcohol and nutrient deficiency,		
	antidepressants, psychoactive drugs and nutrient interactions.		
Unit IX	Nutritional status:		
	Anthropometric measurements, biochemical assessment, reactive oxygen species		
	(ROS), glycosylated Hb, differential diagnosis of B ₁₂ and foliate.		

- 1. David L. Nelson and Michael Cox, "Lehninger Principles of Biochemistry" International Edition-2021.
- 2. Sharma D C, Nutritional Biochemistry, CBS Publications
- 3. P S Verma and V K Agarwal, "Cell Biology (Cytology, Biomolecule and Molecular Biology" S. Chand Publication-2016.
- 4. Tom Brody, Nutritional Biochemistry, Second edition, University of California at Berkely
- 5. Satyanarayana U., "Biochemistry" Elsevier India, 2021

Suggested online link:

- 1. Metabolism: Instruction_Metabolism_1_Medicine_V1.Pdf (Umed.Wroc.Pl)
- 2. Bmr: Basal Metabolic Rate (Upsmfac.Org)
- 3. Minerals and vitamins: https://sightandlife.org/wp-content/uploads/2017/03/sal_mvlex_web.pdf
- **4.** Food and drug interactions: Https://www.omjournal.org/images/75_m_deatials_pdf_.pdf
- 5. Nutritional status: PowerPoint Presentation (zmchdahod.org)

This course can be opted as an elective by the students of following subjects: NA

Suggested equivalent online courses (MOOCs) for credit transfer:

1. Nutritional and Clinical Biochemistry - Course (swayam2.ac.in)

Electronic media and other digital components in the curriculum:

Choose any one or more than: (Electronic Media: Audio/Video Lectures, Online

Counseling/Virtual Classes/E-Contents/e-SLM/OER/supplementary links for reference/Video Conferencing/Radio broadcast/Web Conferencing/ Other electronic and digital contents)

Programme: B.Sc.	Year: Second	Semester: III
Subject: Biochemistry		
Course Code: UGBCH-103N Course Title: Intermediary Metabolism		

- To discuss the basic outline of bioenergetics
- To discuss the concept of metabolism.
- To discuss the concept of thermodynamics
- To discuss the basic concept of metabolism of proteins, carbohydrates and lipids

- CO 1: Able to understanding the concept of bioenergetics and metabolism
- CO 2: Know to the concept of phosphorylation, and ATP cycle
- CO 3: Able to know Glycolysis and Kreb's cycle
- CO 4: Learn about the structure and functions of chloroplast and mitochondria.
- CO 5: Able the understand the concept of photosynthesis and photosystem I and II.

Credits: 2		Type of Course: Core	
Max. Marks:	100	Min. Passing Marks: 36	
Block 1	Bioenergetics and Thermodynamics		
	Bioenergetics:		
Unit I	Introduction to bioenergetics, photochemical reaction in plants, chemical energy of organic substance.		
Unit II	Thermodynamics: Notions and laws of thermodynamics, state functions, equilibrium constant, coupled reactions, free energy charge, and application to chemical reaction.		
Unit III	ATP: ATP cycle and formation of ATP by phosphorylation, importance of ATP and other compounds of high energy potential.		
Block 2	Metabolism of Biomolecules		
	Metabolism of car	rbohydrates:	
Unit IV	Glycolysis, Kreb's cycle, electron transport system in mitochondria, Oxidative phosphorylation and mechanism of ATP synthesis		
Unit V Metabolism of lipids;		ids;	
	Catabolism of trigl acids.	ycerides, biosynthesis of cholesterol, B-oxidation of fatty	
Unit VI	Nitrogen metabol	ism:	
	Nitrogen fixation chlorophylls.	and assimilation, amino acid metabolism, the urea cycle,	
Block 3	Phosphorylation and Photosynthesis		
Unit VII	Oxidative phosphorylation:		

	Mitochondria, electron transport chain-its organization and function, regulation of		
	oxidative phosphorylation, alternative respiratory pathways in plants.		
Unit VIII	Photophosphorylation:		
	Photophosphorylation in plants - structure of chloroplast, molecular architecture of		
	Photosystem I and Photosystem II. Photo inhibition.		
Unit IX	Photosynthesis: Pigments of Photosynthesis, Oxygenic and anoxygenic		
	Photosynthesis, adsorption of light by chlorophyll, Calvin cycle.		

- **1.** David L. Nelson and Michael Cox, "Lehninger Principles of Biochemistry" International Edition-2021.
- 2. Simmi Kharb, Intermediary Metabolism
- **3.** P S Verma and V K Agarwal, "Cell Biology (Cytology, Biomolecule and Molecular Biology" S. Chand Publication-2016.
- **4.** Talwar and Srivastava, "Textbook of Biochemistry and Human Biology" Eastern Economy Edition, Prentice Hall, India-2002.

Suggested online link:

- 1. **Bioenergetics:** Microsoft PowerPoint 426L4Bioen.ppt [Compatibility Mode] (unm.edu)
- 2. Metabolism of Biomolecules: 76633_ch07_5589.pdf (jbpub.com)
- 3. Nitrogen metabolism: Nitrogen Metabolism (wou.edu)
- 4. Photophosphorylation:
- 5. http://ppup.ac.in/download/econtent/pdf/Photophosphorylation.pdf
- 6. Photosynthesis:https://www.rsb.org.uk/images/15 Photosynthesis.pdf

This course can be opted as an elective by the students of following subjects: NA

Suggested equivalent online courses (MOOCs) for credit transfer: NO

Electronic media and other digital components in the curriculum:

Choose any one or more than one: (Electronic Media: Audio/Video Lectures, Online Counseling/Virtual Classes/E-Contents/e-SLM/OER/supplementary links for reference/Video Conferencing/Radio broadcast/Web Conferencing/ Other electronic and digital contents)

Programme: B.Sc.	Year: Second	Semester: III	
Subject: Biochemistry			
Course Code: SBSBCH-01N Course Title: BIO ANALYTICAL TECHNIQUES			

- To discuss the basics concepts of bioanalytical techniques
- To discuss the pH, buffer and biological importance
- To discuss the about concept of chromatography and spectroscopy.
- To discuss the basic concept of electrophoresis

- CO 1: Able to understanding the concept of normality, molarity and molality.
- CO 2: Know the properties of light, optical rotation and optical rotator.
- CO 3: Able to know about visible and UV spectroscopy.
- CO 4: Learn the basic principle of FT-IR and NMR spectrometer.
- CO 5: Discuss the principle of centrifugation and its applications.

Credits: 4		Type of Course: Skill Enhancement Course		
Max. Marks	: 100	Min. Passing Marks: 36		
Block 1	Basics of bio-analytic	Basics of bio-analytical techniques		
	Basic introductions:			
Unit I	Basic concept of bio a	analytical techniques, normality, morality and molality, brief		
	about purification, cer	ntrifugation, filtration, dialysis, homogenization		
Unit II pH and buffer:				
	Hydrogen ion concen	tration, Buffer- definition, types and its preparation, buffers		
	of biological importance such as carbonate bicarbonate, phosphate and acetate.			
Unit III	Properties of Light:	light spectra, wave length, plane polarized light, optical		
	rotation, optical rotatory, absorbance-chromospheres, auxochrome,			
Block 2	Block II- Chromatography and spectroscopy			
Unit IV	Chromography: Principals of partition chromatography, exchange, gel filtration			
Omt I v	chromatography, high performance liquid chromatography (HPLC).			
Unit V	Spectroscopy-I:			
	Concepts of spectroscopy, Beer-Lambert's law, Visible and UV Spectroscopy,			
	applications of colorin	metery.		
Unit VI	Spectroscopy-II Basi	c principle of FT-IR and NMR spectrometer and their role in		
detection of organic molecules detection.		nolecules detection.		
Block 3	Electrophoresis and Centrifugation			
Unit VII	Electrophoresis: Prin	ciples of electrophoresis, separation of proteins by PAGE and		
	SDS-PAGE.			
Unit VIII	Centrifugation: Pr	inciples of centrifugation, differential centrifugation,		
	applications of centrif	ugation and density gradient.		

Unit IX	Microbial techniques: Isolation of bacteria, antimicrobial activity by using DIS		
	diffusion techniques, use of different solvent system for amino acid, carbohydrate		
	and lipid separation.		

- 1. David L. Nelson and Michael Cox, "Lehninger Principles of Biochemistry" International Edition-2021.
- 2. Sabari Ghosal and Anupama Sharma Awasthi, Fundamentals of Bioanalytical Techniques and Instrumentation, Second edition.
- 3. Abhilasha Shourie (Author), Shilpa S. Chapadgaonkar Bioanalytical Techniques
- 4. Sabro Ghosal a. K. Srivastava, Fundamentals of Bioanalytical Techniques and Instrumentation
- 5. Talwar and Srivastava, "Textbook of Biochemistry and Human Biology" Eastern Economy Edition, Prentice Hall, India-2002.

Suggested online link:

- 1. pH and buffer: pH and Buffers.ppt (csun.edu)
- 2. Properties of Light: <u>ACL7_light.ppt (umd.edu)</u>
- 3. spectroscopy: Spectroscopy.pdf (osti.gov)
- 4. Chromatographic Techniques: 222 Chapter 4.pdf (unipune.ac.in)
- **5.** Microbiological Laboratory Techniques <u>Microbiological Laboratory Techniques</u> (mowr.gov.in)

This course can be opted as an elective by the students of following subjects: NA

Suggested equivalent online courses (MOOCs) for credit transfer:

1. Analytical techniques: by Dr. Moganty r. Rajeswari <u>Analytical Techniques - Course (swayam2.ac.in)</u>

Electronic media and other digital components in the curriculum:

Choose any one or more than one:(Electronic Media: Audio/Video Lectures, Online Counseling/Virtual Classes/E-Contents/e-SLM/OER/supplementary links for reference/Video Conferencing/Radio broadcast/Web Conferencing/ Other electronic and digital contents)

Programme: B.Sc.	Year: Second	Semester: IV	
Subject: Biochemistry			
Course Code: UGBCH-104N	4N Course Title: Enzymology		

- To discuss the basics of enzymology.
- To discuss the effects of various factors on enzymatic-catalyzed reactions
- To discuss the enzyme cofactors and inhibition
- To discuss the regulation of enzyme activity and its importance.

- CO 1: Learn the enzyme classification and kinetics
- CO 2: known the reversible and irreversible inhibition
- CO 3: Able to discuss the mechanism of action of chymotrypsim
- CO 4: Know the enzymes used in clinical biochemistry as reagents.

CO 4: Know the enzymes used in clinical biochemistry as reagents,				
CO 5: Able to discuss the principle of co-enzymes, prosthetic groups and allosteric activators				
Credits: 3	Type of Course: Core/Elective(Core)			
Max. Marks:	100 Min. Passing Marks: 21			
Block 1	Enzyme classification and kinetics			
	Introduction to enzymes:			
Unit I	Basic concept and classification of enzymes, enzymes as biocatalysts, effects of			
	various factors on enzymatic-catalyzed reactions.			
Unit II	Enzyme cofactors and inhibition: Role cofactors, mode of action of coenzymes,			
	principle co-enzymes, prosthetic groups, allosteric activators and inhibitors.			
Unit III	Enzymes kinetics: enzymes classification, concept of ES complex, Michaelis-			
	Menten equation, KM constant.			
Block 2	Enzyme action and mechanism			
Unit IV	Enzyme inhibition: Reversible and irreversible inhibition, competitive, non-			
Omt I v	competitive and un-competitive inhibition.			
Unit V	Mechanism of enzyme action: Acid-base catalysis, chemical modification of			
	active site group; mechanism of action of chymotrypsim and lysozyme.			
Unit VI	Enzyme mechanism:			
	Mechanism of action of chymotrypsim, inhibitors of enzymes - antibiotics,			
	regulation of enzyme activity and its importance.			
Block 3	Multienzyme System and its role in medicine			
Unit VII	Enzyme regulation:			
	General mechanisms of enzyme regulation, inhibition, allosteric enzymes, positive			
	and negative cooperatively with special reference to aspartate, transcarbamoylase.			
Unit VIII	Multienzyme System:			
	Mechanism of enzyme action and regulation of pyruvate dehydrogenase,			
	isoenzymes.			

Unit IX	Enzymes in medicine: Enzymes used in clinical biochemistry as reagents,			
	diagnostics and therapy, role of immobilized enzymes in industry.			

- **1.** David L. Nelson and Michael Cox, "Lehninger Principles of Biochemistry" International Edition-2021.
- 2. Nicholas C. Price, Fundamentals Of Enzymology, 3rd Edition
- **3.** P S Verma and V K Agarwal, "Cell Biology (Cytology, Biomolecule and Molecular Biology" S. Chand Publication-2016.
- **4.** Talwar and Srivastava, "Textbook of Biochemistry and Human Biology" Eastern Economy Edition, Prentice Hall, India-2002.
- **5.** Lewis Stevens and Nicholas Price, Fundamentals of Enzymology: Cell and Molecular Biology of Catalytic Proteins

Suggested online link:

- 1. Introduction to Enzymes: Microsoft Word Introduction (ufsc.br)
- **2.** Enzyme Kinetics: ENZYME KINETICS (columbia.edu)
- **3.** Regulation of Enzyme Activity: Slide 1 (mgcub.ac.in)
- **4.** Multienzyme Complexes: Multienzyme Complexes (mlsu.ac.in)

This course can be opted as an elective by the students of following subjects: Any one

Suggested equivalent online courses (MOOCs) for credit transfer:

Enzymology: Enzymology - Course (swayam2.ac.in)

Electronic media and other digital components in the curriculum: Choose any one or more than one: (Electronic Media: Audio/Video Lectures, Online Counseling/Virtual Classes/E-Contents/e-SLM/OER/supplementary links for reference/Video Conferencing/Radio broadcast/Web Conferencing/ Other electronic and digital contents)

Programme: B.Sc.	Year: Third	Semester: V		
Subject: Biochemistry				
Course Code: DCEBCH-105N Course Title: Microbiology		icrobiology		
Course Objectives				

- To discuss the diversity of microbial world.
- To discuss the classification of microbiology, and their nomenclature.
- To discuss the genetic engineering and recombination of bacteria.
- To discuss the basic concept of bacterial cell, gram positive and negative bacteria.

- CO 1: Learn the history of microbial world and development in biology.
- CO 2: Able to know about bacteria, viruses and algae.
- CO 3: Know the biological nitrogen fixation and biofertilizers
- CO 4: Learn the structure and functions of flagella.

CO 4: Lea	arn the structure and functions of flagella.		
CO 5: Ab	ele to know the role of bacteria in N, P, S and C cycle.		
Credits: 2	Type of Course: Elective		
Max. Marks:	: 100 Min. Passing Marks: 36		
Block 1	Microbial world their development		
	Diversity of Microbial world:		
Unit I	Classification of microbiology, and their nomenclature. Whittaker's five kingdom		
	classification systems and their utility.		
Unit II	Development of microbiology:		
	Spontaneous generation vs. biogenesis, general characteristics of different groups,		
	acellular microorganisms (Viruses, Viroids, Prions).		
Unit III	Isolation and Cultivation:		
	Culture media, nutritional requirements and growth characteristics of bacteria,		
	development of various microbiological techniques.		
Block 2	Genetic engineering and Microorganism		
	Genetic:		
Unit IV	Recombination of bacteria conjugation, transduction, and transformation,		
	significance of genetic recombination in bacteria.		
Unit V Bacteria:			
	Structure of bacterial cell, gram positive and gram negative bacteria, microscopy-		
	simple, compound, applications of bacteria and archaea in industry, environment		
	and food.		
Unit VI	Viruses:		
	General structure and classification, properties of viruses, structure and replication		
	of poliovirus and HIV. Protozoa- General characteristics with special reference to		
	Amoeba and Paramecium.		
Block 3	Microorganism and their agriculture		

Unit VII	Algae:			
	Types and occurrence, thallus organization, algae cell ultra structure, pigments,			
	flagella, eyespot food reserves.			
Unit VIII	Fungi:			
	General classification, occurrence, habitat of fungi, distribution, nutritional			
	requirements, fungal cell ultra- structure, role of fungi in agriculture, environment,			
	Industry, medicine and food.			
Unit IX	Role of microorganism in Agriculture:			
	Biological nitrogen fixation, microbes as bio fertilizers, role of bacteria in N, P, S			
	C cycle, role of bacteria in nutrient cycle			

- 1. Donald L. Pavia (Author) Introduction to Spectroscopy
- 2. Gauglitz, John Wiley Handbook Of Spectroscopy 2Nd Edition 4 Volume Set
- 3. David L. Nelson and Michael Cox, "Lehninger Principles of Biochemistry" International Edition-2021.
- 4. Banwell (Author), Fundamentals of Molecular Spectroscopy | 4th Edition
- 5. P. S Kalsi, Spectroscopy of Organic Compounds

Suggested online link:

- 1. Microbial Diversity And Systematic: 1075x_Ch03_025.Qxd (Jblearning.Com)
- **2.** Microbiological Laboratory Techniques: <u>Microbiological Laboratory Techniques</u> (Mowr.Gov.In)
- **3.** Micro-Organism: Pdf (Usda.Gov)
- **4.** Beneficial microorganisms in Agriculture: <u>Microsoft Word Lecture 25 Bio fertiliser.docx</u> (eagri.org)

This course can be opted as an elective by the students of following subjects: NA

Suggested equivalent online courses (MOOCs) for credit transfer: NO

Electronic media and other digital components in the curriculum:

Choose any one or more than one:(Electronic Media: Audio/Video Lectures, Online Counseling/Virtual Classes/E-Contents/e-SLM/OER/supplementary links for reference/Video Conferencing/Radio broadcast/Web Conferencing/ Other electronic and digital contents)

Programme: B.Sc.	Year: Third	Semester: V	
Subject: Biochemistry			
Course Code: DCEBCH-106N	Course Title: Spectroscopy		

- To discuss the basics of UV-visible and IR spectroscopy.
- To discuss the fundamental law of spectroscopy, electromagnetic radiation and atomic adsorption spectroscopy.
- To discuss the NMR, atomic spectroscopy and atomic emission spectroscopy
- To discuss the basic concept of luminescence and electron spectroscopy.

- CO 1: Able to know the history spectroscopy and electromagnetic radiation in brief.
- CO 2: Able to know the principle and instrumentation of UV-Visible and applications
- CO 3: Able to know the principle of electron spectroscopy and its applications.
- CO 4: Able to know the principle of flame photometry.

CO 5: Le	earn the enzymatic kinetics reactions.		
Credits: 2	Type of Course: Elective		
Max. Marks	ax. Marks: 100 Min. Passing Marks: 36		
Block 1	UV-Visible and IR spectroscopy		
	Spectroscopy:		
Unit I	Fundamental law of spectroscopy, electromagnetic radiation, origin of spectra,		
	application of spectroscopy in biochemistry.		
Unit II	UV Visible spectroscopy:		
	Principle and instrumentation of UV-Visible, Beer-Lambert law, qualitative and		
	quantitative analysis by UV-Visible spectroscopy. Origin of spectra and electronic		
	transition, composition of color complex, application of UV-Visible spectrometer in		
enzyme kinetics reaction			
Unit III	Spectroscopy:		
	Theory and principle of infrared spectroscopy, components of IR spectroscopy,		
	application of FTIR in biochemistry.		
Block 2	NMR and Atomic Spectroscopy Amino Acids, Proteins and Carbohydrate		
	NMR Spectroscopy:		
Unit IV	Principle of NMR spectroscopy, NMR spectra measurement, types of NMR, chemical		
	shift, application of NMR in biochemistry		
Unit V	Atomic adsorption spectroscopy:		
	Principle of adsorption spectroscopy, instrumentation and application of adsorption		
	spectroscopy.		
Unit VI	Atomic Emission Spectroscopy:		
	Principle of emission spectroscopy, Instrumentation Emission spectroscopy, principle of		
	flame photometry		
Block 3	Luminescence and Electron spectroscopy		

Unit VII	ICP-atomic emission spectroscopy : Principle of plasma spectroscopy, application of		
	adsorption spectroscopy, comparison of ICP-AES with ASS		
Unit VIII	Luminescence spectroscopy:		
	Luminescence and chemiluminescence, principle of fluorescence, application of		
	Fluorimetry		
Unit IX	Electron spectroscopy:		
	Principle of electron spectroscopy, electron spectroscopy for chemical analysis (ESCA),		
	chemical shift in ESCA.		

- 1. David L. Nelson and Michael Cox, "Lehninger Principles of Biochemistry" International Edition-2021.
- 2. Dr J L Jain, "Fundamentals of Biochemistry" S. Chand and Company-2020.
- 3. P S Verma and V K Agarwal, "Cell Biology (Cytology, Biomolecule and Molecular Biology" S. Chand Publication-2016.
- 4. Talwar and Srivastava, "Textbook of Biochemistry and Human Biology" Eastern Economy Edition, Prentice Hall, India-2002.

Suggested online link:

- 1. Spectroscopy: Spectroscopy.pdf (osti.gov)
- 2. Nuclear Magnetic Resonance: Nuclear Magnetic Resonance (NMR) (brown.edu)
- 3. Electronic Spectroscopy: MSc Chemistry Paper-IX Unit-4.pdf (nou.ac.in)

This course can be opted as an elective by the students of following subjects: NA

Suggested equivalent online courses (MOOCs) for credit transfer: NO

Electronic media and other digital components in the curriculum:

Choose any one or more than one:(Electronic Media: Audio/Video Lectures, Online Counselling/Virtual Classes/E-Contents/e-SLM/OER/supplementary links for reference/Video Conferencing/Radio broadcast/Web Conferencing/ Other electronic and digital contents)

Programme: B.Sc.	Year: Third	Semester: VI	
Subject: Biochemistry			
Course Code: DCEBCH -108N Course Title: PLANT BIOCHEMISTRY		BIOCHEMISTRY	

- To discuss the plant biochemistry and electron transport system in plants.
- To discuss the nitrogen metabolism and nitrogen fixation and assimilation.
- To understand the carbon assimilation, respiration and plant growth regulator
- To understand basic concept of hill reaction, photorespiration and photosynthesis

- CO 1: Able to know the oxidative phosphorylation
- CO 2: know the concept of chlorophyll, pigments, and light harvesting complexes.
- CO 3: To know cyclic and non cyclic photophosphorylation.
- CO 4: Able to understanding the regulation of plant glycolysis
- CO 5: Also know about abiotic and biotic stress, salinity, water stress and pathogenesis.

Credits: 2	Credits: 2 Type of Course: Elective		
Max. Marks: 100 Min. Passing		Min. Passing	Marks: 36
Block 1	Electron Transport System and nitrogen metabolism		
Unit I	Electron Transport	System in Pla	ants:
	Oxidative phosphory	lation, mitocho	ondrial respiratory complexes.
Unit II	Nitrogen Metabolis	s m: Assimilation	on of nitrate, enzyme of nitrate reduction and
	their regulation and a	assimilation of	ammonia into organic compounds.
Unit III	Nitrogen fixation ar	nd assimilatior	n:
	Biological nitrogen f	ixation by free	e living and in symbiotic association, structure
	and function of enzy	me nitrogenase	e, nitrate assimilation.
Block 2	Photosynthetic process and carbon assimilation		
	Photosynthetic prod	cess:	
		-	hotosynthetic membranes and organelles, z
Unit IV			ns. Photosynthetic apparatus and pigments
	involved in photosynthesis, Hill reaction, generation of NADPH and ATP, light		
	harvesting complexe		
Unit V Synthesis of photochemicals: Classification and biosynthesis of		Classification and biosynthesis of Terpenes,	
	Lignins, Waxes and		
Unit VI	Carbon assimilation		
			phorylation, Calvin cycle, and photorespiration
	General introduction	, classification	n and structure, monosaccharides - structure of
		es, ring struct	ture of sugars, formation of disaccharides,
	polysaccharides.		
Block 3	Plant stress growth	regulators	

Unit VII	Stress Metabolism in Plants: A biotic and biotic stress; salinity, water stress,
	chilling, heat, pathogenesis, heavy metals and their impact on plant growth and
	metabolism.
Unit VIII	Respiration: Regulation of plant glycolysis, regulation of plant glycolysis,
	translocation of metabolites across mitochondrial membrane, TCA cycle.
Unit IX	Plant growth regulator: Phytohormones and its effect on plant growth and
	development, regulation of plant morphogenetic processes by light.

- 1. David L. Nelson and Michael Cox, "Lehninger Principles of Biochemistry" International Edition-2021.
- 2. Dr J L Jain, "Fundamentals of Biochemistry" S. Chand and Company-2020.
- 3. P S Verma and V K Agarwal, "Cell Biology (Cytology, Biomolecule and Molecular Biology" S. Chand Publication-2016.
- 4. Talwar and Srivastava, "Textbook of Biochemistry and Human Biology" Eastern Economy Edition, Prentice Hall, India-2002.

Suggested Online Link:

- 1. Electron transport and oxidative phosphorylation: spring 2013 lecture 37 & 38 (purdue.edu)
- 2. Nitrogen metabolism: <u>lesson-10.pdf</u> (nios.ac.in)
- **3.** Carbon dioxide assimilation and respiration: <u>chapter-2-carbon-dioxide-assimilation-and-respiration-for-pdf.pdf</u> (asps.org.au)

This course can be opted as an elective by the students of following subjects: Any one

Suggested equivalent online courses (MOOCs) for credit transfer: NO

Electronic media and other digital components in the curriculum:

Choose any one or more than one: (Electronic Media: Audio/Video Lectures, Online Counseling/Virtual Classes/E-Contents/e-SLM/OER/supplementary links for reference/Video Conferencing/Radio broadcast/Web Conferencing/ Other electronic and digital contents)

Programme: B.Sc.	Year: Third	Semester: VI		
Subject: Biochemistry				
Course Code: DCEBCH-109N	CH-109N Course Title: Immunology			

- To discuss the immunology and types of immunity.
- To discuss the diversity in immune system and types of immunoglobulin's.
- To discuss the generation of antibody diversity, B cell activation and theory of clonal selection.
- To discuss the basic concept of disorderds of immune responses and different immunoglobulin (IgG, IgM, IgA, IgD and IgE)

- CO 1: Able to understanding of immune system and its types.
- CO 2: Able to understanding about antigen, antibody and their interaction.
- CO 3: know about concept of autoimmunity, ELISA and T-cell receptor diversity.
- CO 4: Also understanding about AIDS and active immunity & passive immunity.
- CO 5: Brief idea about SARS, hepatitis, tolerance and hypersensitivity.

000.21	er rata de car ar arta, mepatrica,	tororance and hypersonister, my.	
Credits: 2		Type of Course: Elective	
Max. Marks: 100		Min. Passing Marks: 36	
Block 1	Immune system		
I Init I	Immune system, innate and	d acquired immunity, definitions, non-immunological	
Unit I	barriers, cells and soluble m	ediators of innate immunity, cytokines.	
Unit II	Antigen and Antibody: Criteria of antigen city, haptens; classification, types a		
	functions of antibodies, anti	genic determinants of immunoglobulins	
Unit III	Types of immunoglobulins, generation of antibody diversity, B cell activation,		
	theory of clonal selection, formation of plasma and memory cells.		
Block 2	Diversity in Immune system		
Unit IV	Diversity in Immune system	n: Clonal selection theory, concept of antigen specific	
Omt IV	receptor, generation of antib	oody diversity,	
Unit V	Antigen-antibody: Measurement of antigen-antibody interactions, agglutination,		
	precipitations, opsonizateon	, gel diffusion (ouchterlony double immune diffusion).	
Unit VI	Immune system and immun	ity: Enzyme linked immunosorbent assay (ELISA), T-	
1	Cell receptor diversity, conc	cept of autoimmunity.	
Block 3	Immune responses and Immunoglobulins		
Unit VII	Disorderds of immune res	ponses: Autoimmunity, acquired immunodeficiency,	
	immune tolerance and hyper	rsensitivity.	
Unit VIII	t VIII Cell mediated immunity: T-cell development, MHC locus, structure, fu		
	distribution of MHC glycop	roteins, cell mediated immune responses.	
Unit IX Immnogolobulins: IgG, IgM, IgA, IgD and IgE, active imm		M, IgA, IgD and IgE, active immunity and passive	
	immunity. Brief idea of AID	OS, SARS and hepatitis.	

- 1. David L. Nelson and Michael Cox, "Lehninger Principles of Biochemistry" International Edition-2021.
- 2. Dr J L Jain, "Fundamentals of Biochemistry" S. Chand and Company-2020.
- 3. P S Verma and V K Agarwal, "Cell Biology (Cytology, Biomolecule and Molecular Biology" S. Chand Publication-2016.
- 4. Talwar and Srivastava, "Textbook of Biochemistry and Human Biology" Eastern Economy Edition, Prentice Hall, India-2002.

Suggested online link:

- 1. Introduction to Immunology: <u>Immunology.pdf (hmmcollege.ac.in)</u>
- 2. Components of Immune system: <u>components of immune system (dhingcollegeonline.co.in)</u>
- 3. Immune System: Immune System_Handout (Soinc.Org)
- **4.** Antigens: Microsoft PowerPoint Chapter04-09 (nau.edu)
- 5. Immunoglobulins: Immunoglobulins.pdf (ndvsu.org)

This course can be opted as an elective by the students of following subjects: Any one

Suggested equivalent online courses (MOOCs) for credit transfer: NO

Electronic media and other digital components in the curriculum:

Choose any one or more than one: (Electronic Media: Audio/Video Lectures, Online Counseling/Virtual Classes/E-Contents/e-SLM/OER/supplementary links for reference/Video Conferencing/Radio broadcast/Web Conferencing/ Other electronic and digital contents)

Programme: B.Sc.	Year: Third	Semester: VI		
Subject: Biochemistry				
Course Code: SBSBCH-04N Course Title: Clinical biochemistry		al biochemistry		

- To discuss the basics of clinical biochemistry and clinical enzymology.
- To discuss the role and regulation of electrolyte content in body fluids
- To discuss the concept disorders of carbohydrate, lipids and nitrogen metabolism.
- To discuss the basic concept of blood clotting, nutrition, drugs and cancer.

- CO 1: Able to understanding of electrolyte, enzymes, hormones and bone disorder.
- CO 2: able to know the regulation of blood sugar, glycogen, and diabetes mellitus.
- CO 3: Able to learn the density of lipoproteins, cholesterol, triglycerides and phospholipids in health and disease.
- CO 4: Define the concept of tube feeding, parenteral nutrition, drugs and alcohol
- CO 5: Able to known the types of cancer, multiple steps of tumor development.

Credits: 4		Type of Course: Skill Enhancement Course	
Max. Marks: 100		Min. Passing Marks: 36	
Block 1	Basic in clinical cher	Basic in clinical chemistry and Clinical Enzymology	
	Basic introduction:		
Unit I	Basic concept of clini	cal biochemistry: A brief review of units and abbreviations	
	used in expressing con	centrations and standard solutions.	
Unit II	Electrolytes and acid-base balance:		
	Role and regulation of	f electrolyte content in body fluids and maintenance of pH,	
	body fluids and fluid c	compartments	
Unit III	Clinical enzymology:		
	Enzymes and hormon	es, plasma enzymes, isoenzymes with examples, liver	
	damage, bone disorder	: .	
Block 2	Disorders of carbohy	Disorders of carbohydrate, lipids and Nitrogen metabolism	
	Disorders of carbohy	drate metabolism:	
Unit IV	Regulation of blood s	ugar, glycogen storage diseases, diabetes mellitus, glucose	
	and galactose tolerance	e tests, sugar levels in blood.	
Unit V	Disorders of lipids:		
	Low and high density	lipoproteins, cholesterol, triglycerides and phospholipids in	
	health and disease, Ga	ucher's and Tay-Sach's disease	
Unit VI	Disorders Nitrogen n	netabolism:	
	Abnormalities in nitr	ogen metabolism: Uremia, hyperuricemia, porphyria and	
	factors affecting nitrog	gen balance.	
Block 3	Nutrition, drugs and	blood clotting	
Unit VII	Nutrition and drugs:		

	Routine hospital diets, special feeding methods, tube feeding, parenteral nutrition,		
	drugs, alcohol and toxicants		
Unit VIII	Diagnostic Enzymes:		
	Enzymes in health and diseases. Biochemical diagnosis of diseases by enzyme		
	assays- SGPT, CPK, LDH.		
Unit IX	Blood Clotting:		
	Blood clotting mechanism-hemorrhagic disorders-hemophilia, thrombotic		
	thrombocytopenic purpura, blood groups, antigen and antibodies, circulating		
	anticoagulants.		
Unit X	Cancer:		
	Types of cancer, multiple steps of tumor development, cell death and apoptosis,		
	carcinogens and cancer therapy.		

- **1.** David L. Nelson and Michael Cox, "Lehninger Principles of Biochemistry" International Edition-2021.
- 2. Dr J L Jain, "Fundamentals of Biochemistry" S. Chand and Company-2020.
- **3.** P S Verma and V K Agarwal, "Cell Biology (Cytology, Biomolecule and Molecular Biology" S. Chand Publication-2016.
- **4.** Talwar and Srivastava, "Textbook of Biochemistry and Human Biology" Eastern Economy Edition, Prentice Hall, India-2002.
- 5. Satyanarayana U., "Biochemistry" Elsevier India, 2021

Suggested online link:

- **1.** Pathophysiology of Water and Electrolyte Metabolism: <u>PowerPoint Presentation (bnshungary.hu)</u>
- 2. Nutrient-Drug Interactions and Food: 09361.pdf (colostate.edu)
- **3.** HANDBOOK OF DRUG-NUTRIENT INTERACTIONS: <u>Handbook of Drug-Nutrient</u> Interactions, 2nd Edition (Nutrition and Health) (usp.br)
- **4.** Enzymes of diagnostic values: <u>L12-Enzymes-of-diagnostic-values.pdf</u> (ndvsu.org)
- **5.** Blood Clotting Notes: Blood Clotting Notes (murrieta.k12.ca.us)
- **6.** Cancer: book.pdf (tmc.gov.in)

This course can be opted as an elective by the students of following subjects: NA

Suggested equivalent online courses (MOOCs) for credit transfer: NO

Electronic media and other digital components in the curriculum:

Choose any one or more than one: (Electronic Media: Audio/Video Lectures, Online Counseling/Virtual Classes/E-Contents/e-SLM/OER/supplementary links for reference/Video Conferencing/Radio broadcast/Web Conferencing/ Other electronic and digital contents)