(DBMS)
Uttar Pradesh Rajarshi Tandon
Open University
INDEX
Block-1 03-72

UGCS-104

Database Management System

UNIT-1 OVERVIEW OF DATABASE MANAGEMENT 2-8
UNIT-2 DATABASE MODELS AND IMPLEMENTATION 3-8
UNIT-3 ENTITY RELATIONSHIP MODEL

Block-2 73-188

UNIT-4 RELATIONAL MODEL
UNIT-5 STRUCTURE QUERY LANGUAGE
UNIT-6 DATABASE DESIGN

Block-3 189-236

UNIT-7 FILE ORGANIZATION
UNIT-8 TRANSACTION PROCESSING CONCEPTS

UGCS-104/1

¢0T-dddd

UGCS-104/2

PEPE-102

UGCS-104

Database Management System
1 Tt 7 T A (DBMS)

Uttar Pradesh Rajarshi Tandon
Open University

BLOCK

UNIT 1 05-24

OVERVIEW OF DATABASE MANAGEMENT

UNIT 2 25-44

DATABASE MODELS AND IMPLEMENTATION

UNIT 3 45-72

ENTITY RELATIONSHIP MODEL

UGCS-104/3

PEPE-102

Curriculum Design Committee

Dr. P. P. Dubey, Coordinator
Director, School of Agri. Sciences, UPRTOU, Allahabad
Prof. U. N. Tiwari Member

Dept. of Computer Science and Engg.,
Indian Inst. Of Information Science and Tech., Allahabad

Prof. R.S. Yadayv, Member
Dept. of Computer Science and Engg., MNNIT, Allahabad

Prof. P. K. Mishra Member
Dept. of Computer Science, Baranas Hindu University, Varanasi

Mr. Prateek Kesrwani Member Secretary

Academic Consultant-Computer Science
School of Science, UPRTOU, Allahabad
Course Design Committee

Prof. U. N. Tiwari Member
Dept. of Computer Science and Engg.,
Indian Inst. Of Information Science and Tech., Prayagraj

Prof. R.S. Yadav, Member
Dept. of Computer Science and Engg., MNNIT, Allahabad, Prayagraj
Prof. P. K. Mishra Member

Dept. of Computer Science, Baranas Hindu University, Varanasi

Faculty Members, School of Sciences

Dr. Ashutosh Gupta, Director, Scool of Science, UPRTOU, Prayagraj

Dr. Shruti, Asst. Prof., (Statistics), Scool of Science, UPRTOU, Prayagraj

Ms. Marisha Asst. Prof., (Computer Science), Scool of Science, UPRTOU, Prayagraj

Mr. Manoj K Balwant Asst. Prof., (Computer Science), Scool of Science, UPRTOU, Prayagraj
Dr. Dinesh K Gupta Academic Consultant (Chemistry), Scool of Science, UPRTOU, Prayagraj

Course Preparation Committee

Mr. Sanjeev Gangwar* Author
Dept. of Computer Applications

VBS Purvanchal University, Jaunpur

Ms. Marisha® Author
Assistant Professor- Computer Science

School of Science, UPRTOU, Prayagraj

Dr. Ashutosh Gupta Editor
Director, School of Sciences,

UPRTOU, Prayagraj

Prof. U. N. Tiwari Member
Dept. of Computer Science and Engg.,

Indian Inst. Of Information Science and Tech., Prayagraj

Prof. R.S. Yadav, Member
Dept. of Computer Science and Engg.,

MNNIT, Allahabad, Prayagraj

Prof. P. K. Mishra Member
Dept. of Computer Science

Baranas Hindu University, Varanasi

Dr. Dinesh K Gupta, SLM Coordinator
Academic Consultant- Chemistry School of Science, UPRTOU, Prayagraj

Note: Author’s * -Block 1 and 2, # - Block-3

© UPRTOU, Prayagraj. 2019
ISBN : 978-93-83328-29-1

All Rights are reserved. No part of this work may be reproduced in any form, by mimeograph or any other
means, without permission in writing from the Uttar Pradesh Rajarshi Tondon Open University, Prayagraj.

Reprinted and Published by Vinay Kumar Registrar, Uttar Pradesh Rajarshi

Tondon Open University, 2024
UGCS-104/4 Printed By : Chandrakala Universal Pvt. Ltd 42/7 Jawahar Lal Nehru Road Prayagraj

UNIT-1

OVERVIEW OF DATABASE
MANAGEMENT
Structure
1.1 Introduction
1.2 Objectives
1.3 Traditional file oriented approach
1.4 Introduction to Database
1.4.1 Need to store data
1.4.2 Limitations of manual methods
1.4.3 Why computerized data processing?
1.5 Components of DBMS
1.6 Application of DBMS
1.7 Advantages of DBMS
1.8 Disadvantages of DBMS
1.9 Acid Properties in DBMS
1.10 Database System versus File Systems
1.11 Three view of data or Database Abstration
1.12 Database Language
1.11.1 DDL (Data Definition Language)
1.11.2 DML (Data Manipulation Language)
1.13 Schema and Instance
1.14 Database Models

1.14.1 Hierarchical Database model
1.14.2 Network Database Model
1.14.3 Relational Database Model

1.13.4 Object Oriented Database Model
1.15 Summery

1.16 Objective Type Questions

UGCS-104/5

UGCS-104/6

1.17 Selected Exercises

1.1 INTRODUCTION

An organization must have accurate and reliable data for effective
decision making. Thus the organization maintains data and records of its
various operations electronically. A database is a collection of data
typically describing the activities of one or more related departments e.g. a
university database might contain the information about the following:
entities such as students, faculties, courses and classrooms and
relationships such as student’s enrolment in courses, faculty teaching
courses and the use of rooms for courses. The organization has to store
these data effectively.

1.2 OBJECTIVES

After the end of this unit, you should be able to:

e Understand the role of a database management system in on
organization.

e Know the design, implementation and use of database management
systems.

e Describe the basic purpose and functions of a DBMS.
e Know the advantages and disadvantages of DBMS.

e Understand various database models which are used to design a
correct, new database information system for a business
organization.

1.3 TRADITIONAL FILE ORIENTED
APPROACH

File processing system is supported by a conventional operating
system. The system stores permanent records in various files, and it needs
different application programs to extract records from, and add records to
the appropriate files. Before DBMS came along, organizations usually
stored information in such systems.

Traditionally, data was stored and processed on multiple files with
the help of a program for each application. This is known as file-based
approach of database management. A file may be defined as systematized
self-containing collection of records. It may consist of data (data file) or it
may contain a sequence of basic statements, each user work with a
different program that handles its own independent data.

Traditional file oriented approach has the following disadvantages:

(1)

2)

)

(4)

)

(6)

Data redundancy (or duplication): Data redundancy is storage of the
same piece of data in more than one place in the computer system.
Lets us take an example of college where student record for
examination is stored in other file and his library record is stored in
different file that creates many duplicate values like roll Number,
Name and Father Name.

Data inconsistency (or loss of data integrity): Data inconsistency is a
condition that occurs between files when similar data is kept in
different formats in two different files, or when matching of data
must be done between files. As a result of the data inconsistency,
these files duplicate some data such as roll Number, Name and
Father Name, compromising data integrity.

Program-data dependence: File data is stored within each of the
applications that use that data eg student record program may have
several files relevant to student, faculty, and course. These files are
integrated into the program.

Poor data control: File systems have no centralised control of the
data descriptions. Tables and field names may be used in different
locations to mean different things. For example, the student record
files may list a student as having a single ‘Name’ field that is made
up of student’s Initial and last name e.g. vijay gupta. The
Examination department may keep the student’s name in three
separate fields; ‘First name’, ‘Initial” &‘Last Name’. This may make
it difficult to compare the data in the two files or at least require
additional time in programming the comparison.

Security problems: Security to file system is not secured in
conventional file management system. But in DBMS security is of
high respect as the access paths are only open to part of the database.

Limited data sharing: This dependence of the data on the program
means that the files are not necessarily suitable for a new program
that is being developed. The new program may need its data in
another form or require additional data that is not held.

1.4

INTRODUCTION TO DATABASE

The term database is made up of two separate words, i.e., data and
base. Database is a base for data, i.e., an assembled group of data. A
database allows easy and efficient storage, retrieval and modification of
data, regardless of the amount of data being manipulated, essentially,
database is a computerized record keeping system.

UGCS-104/7

“A Database Management System (DBMS) is a collection of
interrelated data and a set of programs to access those data”. The
collection of data, usually referred to as the database, contains information
relevant to an enterprise. The primary goal of a DBMS is to provide a way
to store and retrieve database information that is both convenient and

efficient.
Database 1s the combination of two words:
DBMS= Database + Management system

A simplified database environment is shown in Figure 1.1:

Data Base management Systems

Users/Programmers

Application Programes/Queries

DBMS Software

\4

Software to process Queries/Programs

v

Software to access stored data

e A

— .

Stored Database Definition
(Meta data) Stored Database

Fig. 1.1: A Simplified database environment

Data bases and database systems have become an essential component of
everyday life in modern society.

1.4.1 Need to store data: A DBMS is software that allows access to
data contained in the database. Its objective is to provide a convenient and
effective method of defining, storing and retrieving the information
contained in the database. The DBMS interfaces with application
programs so that the data contained in the database can be used by

UGCS-104/8 multiple application and users.

1.4.2 Limitations of manual methods:

. Problems of speed
o Problems of accuracy
. Problems of consistency and reliability
e Problems of poor response time
o Problems of work-load handling capability
. Problems of meeting ad hoc information needs
e Problems of cost
1.4.3 Why computerized data processing?

Advantage of speed

Advantage of accuracy

Advantage of reliability and consistency
Advantage of storage and retrieval efficiency
. Advantage of on-line-access

e Advantage of cost

1.5 COMPONENTS OF DBMS

A database management system (DBMS) consists of several
components. Each component plays very important role in the database
management system environment. The major components of database
management system are:

. Software

. Hardware

. Data

o Procedures

. Database Access Language

Software: The main component of a DBMS is the software. It is the set of
programs used to handle the database and to control and manage the
overall computerized database. Some examples of database software
are Oracle, Microsoft Access, Microsoft SQL Server, SAP and MySQL.

Hardware: Hardware consists of a set of physical electronic devices such
as computers (together with associated I/O devices like disk drives),
storage devices, I/O channels, electromechanical devices that make
interface between computers and the real world systems etc, and so on. It
is impossible to implement the DBMS without the hardware devices. In a

UGCS-104/9

UGCS-104/10

network, a powerful computer with high data processing speed and a
storage device with large storage capacity is required as database server.

Data: Data is the most important component of the DBMS. The main
purpose of DBMS is to process the data. In DBMS, databases are defined,
constructed and then data is stored, updated and retrieved to and from the
databases. The database contains both the actual (or operational) data and
the metadata (data about data or description about data).

Procedures: Procedures refer to the instructions and rules that help to
design the database and to use the DBMS. The users that operate and
manage the DBMS require documented procedures on hot use or run the
database management system. The following example creates a simple
procedure that displays the string 'Hello World!" on the screen when
executed.

CREATE OR REPLACE PROCEDURE greetings
AS

BEGIN

Dbms_output.put_line(‘Hello World”);

END;

When above code is executed using SQL prompt, it will produce the
following result:

Procedure created.

The above procedure named 'greetings' can be called with the EXECUTE
keyword as:

EXECUTE greetings;

The above call would display:

Hello World

PL/SQL procedure successfully completed.

Database Access Language: The database access language is used to
access the data to and from the database. The users use the database access
language to enter new data, change the existing data in database and to
retrieve required data from databases. The user writes a set of appropriate
commands in a database access language and submits these to the DBMS.
The DBMS translates the user commands and sends it to a specific part of
the DBMS called the Database Jet Engine. The database engine generates
a set of results according to the commands submitted by user, converts

these into a user readable form called an Inquiry Report and then displays
them on the screen. The database administrators may also use the database
access language to create and maintain the databases. The most popular

database access language is SQL (Structured Query Language). Relational
databases are required to have a database query language.

Users: The users are the people who manage the databases and perform
different operations on the databases in the database system. There are
three kinds of people who play different roles in database system

1. Application Programmers
2. Database Administrators
3. End-Users

1. Application Programmers: The people who write application
programs in programming languages (such as Visual Basic, Java, or
C++) to interact with databases are called Application Programmer.

2. Database Administrators: A person who is responsible for
managing the overall database management system 1is called
database administrator or simply DBA.

3. End-Users: The end-users are the people who interact with database
management system to perform different operations on database
such as retrieving, updating, inserting, deleting data etc.

1.6 APPLICATION OF DBMS

1. Banking: for maintaining customer information, accounts, loans and
banking transactions.

2. Universities: for maintaining student records, course registration and
grades.

3. Railway Reservation: for checking the availability of reservation in
different trains, tickets etc.

4. Airlines: for reservation and scheduled information.

5. Telecommunication: for keeping records of calls made, generating
monthly bills etc.

6. Finance: for storing information about salary, sales and purchase
information.

7. Sales: for storing customer, product and purchase information.

UGCS-104/11

UGCS-104/12

Check yvour Progress 1

Q1. What is data?

Q2. Name any two features of DBMS.

Q3. Name two database languages.

Q4. Differentiate between DDL and DML.

Q5. Draw the overall structure of DBMS and explain its various
components.

1.7 ADVANTAGES OF DBMS

Some of the major advantages provided by the DBMS are:

1.

Improved data sharing: Sharing of data allows the existing
applications to use the data in the database. It also helps in
developing new applications, which will use the same stored data.
The DBMS helps in creating an environment in which end users
have better access to more and better-managed data. Such access
makes it possible for end users to respond quickly to changes in their
environment.

Improved data security: If more users access the data, greater is the
risk of data security breaches. Corporations invest considerable
amounts of time, effort, and money to e

nsure that corporate data are used properly. A DBMS provides a
framework for better enforcement of data privacy and security
policies.

Better data integration: Data integrity refers to ensuring that the
data in the database is accurate. Since, in DBMS, the data is
centralized and is used by a number of users at a time, it is essential
to enforce integrity controls.

Minimized data inconsistency: Data inconsistency exists when
different versions of the same data appear in different places. For
example, data inconsistency exists when a company’s sales
department stores a sales representative’s name as “Sanjeev
Agarwal” and the company’s personnel department stores that same
person’s name as ‘“Sanjeev Gangwar,” or when the company’s
regional sales office shows the price of a product as Rs. 55.86 and its
national sales office shows the same product’s price as Rs. 55.96.
The probability of data inconsistency is greatly reduced in a properly
designed database.

Efficient System: It is very common to change the contents of
stored data. These changes can easily be made in database
management system. The cost of developing and maintaining system
is also lower.

7. Improved decision making: Better-managed data and improved
data access make it possible to generate better-quality information,
on which better decisions are based. The quality of the information
generated depends on the quality of the underlying data. Data quality
is a comprehensive approach to promoting the accuracy, validity,
and timeliness of the data. While the DBMS does not guarantee data
quality, it provides a framework to facilitate data quality initiatives.

8. Reduction in Data redundancy: Data redundancy refers to the
duplication of data. In non-database systems, each application has its
own separate files. This can often lead to redundancy in stored data,
which results in wastage of space. A DBMS does not maintain
separate copies of the same data. All the data is kept at one place and
various applications refer to the data from this centrally controlled
system.

1.8 DISADVANTAGES OF DBMS

1. Increased costs: Database systems require sophisticated hardware
and software and highly skilled personnel. The cost of maintaining
the hardware, software, and personnel required to operate and
manage a database system can be substantial. Training, licensing,
and regulation compliance costs are often overlooked when database
systems are implemented.

2. Problems Associated with centralization: A centralized database is
a database that is located, stored, and maintained in a single location.
This location is most often acentral computer or system, for
example a desktop or server CPU, or a mainframe computer.
Centralization increases the security problems and disruption due to
the downtimes and failures. Centralized databases are highly
dependent on network connectivity. The slower the internet
connection is, the longer the database access time needed will be.

3. Maintaining Regular updation: To maximize the efficiency of the
database system, you must keep your system current. Therefore, you
must perform frequent updates and apply the latest patches and
security measures to all components

4. Complexity of Backup and Recovery: DBMS provide the
centralization of the data, which requires the backup of data so that
in case of failure, the data can be recovered. Hence backup problem
is also the drawback.

1.9 ACID PROPERTIES IN DBMS

The Atomicity, Consistency, Isolation, Durability (ACID) properties are
an important concept in DBMS because it allows secure sharing of data.
There are four ACID properties available in DBMS which are as follows:

UGCS-104/13

UGCS-104/14

(1) Atomicity: It ensures that when an update occurs in a database either
all or none of the update is made available to other users except the

user who is performing the update.

(2) Consistency: It ensures that any change to a value of an instance is
consistent with the change to other values in the same instance.

(3) Isolation: It is used when concurrent transactions occur. The
concurrent transaction is a transaction that occurs at the same time.
Multiple users accessing shared objects is an example of concurrent

transaction.

(4) Durability: It ensures that the updates of committed transactions are

maintained and never get lost.

1.10 DATABASE SYSTEM VERSUS FILE

SYSTEMS

Database systems are designed to manage large bodies of
information. Management of data involves both defining structures for
storage of information and providing mechanisms for the manipulation of
information. On the other hand file processing system is supposed by a
conventional operating system. The system stores permanent records in
various files and its need different application program to extract records
and add records to the appropriate files. The basic difference between
DBMS and file processing system is mentioned below:

DBMS

Traditional file
oriented approach

Less Data Redundancy :

In non-database systems each application
program has its own private files. In this case,
the duplicated copies of the same data are
created in many places. In DBMS, all data of
an organization is integrated into a single
database file. The data is recorded in only one
place in the database and it is not duplicated.

More Data
Redundancy :

Since different
programs create the file
and application
programs, the various
files are likely to have
different formats and
the programs may be

written in several
programming
languages. Moreover,

the same information
may be duplicated in
several places (files).
This redundancy leads
to higher storage and
access cost

Data Consistency:
By controlling the data redundancy, the data
consistency is obtained. If a data item appears

Data Inconsistency:
Files that represent the
same data may become

only once, any update to its value has to be
performed only once and the updated value is
immediately available to all users. If the
DBMS has controlled redundancy, the
database system enforces consistency.

inconsistent. This may
happen because an
update is applied to
some of the files but not
to others.

Efficient data access:

In Database management system, data is
stored in tables. A single database contains
multiple tables and relationships can be
created between tables (or associated data
entities). This makes easy to retrieve and
update data.

Difficulty in accessing
data:

Conventional file
processing
environments do not
allow needed data to be
retrieved n a
convenient and efficient
manner.

Data Isolation:

Isolation specifies when and how the changes
implemented in an operation become visible to
other parallel operations. A database acquires
locks on data to maintain a high level of
isolation

Data Isolation:

Data are scattered in
various files in different
formats. Writing new
program to retrieve
appropriate data s
difficult.

Data Security:

If data is always accessed through the DBMS,
the DBMS can enforce integrity constraints on
the data. For example, before inserting salary
information for an employee, the DBMS can
check that the department budget is not
exceeded. Also, the DBMS can enforce access
controls that govern what data is visible to
different classes of users.

Security Problems:
Not every user of the
database system should
be able to access all the
data. For example, in a
banking system, payroll
personnel need to see
only that part of the
database that has
information about the
various bank
employees. They do not
need access to
information about
customer accounts. So
security constraints are
difficult to manage.

Concurrent Access and Crash Recovery:
DBMS schedules concurrent accesses to the
data in such a manner that users can think of
the data as being accessed by only one user at
a time. Further, the DBMS protects users from
the effects of system failures.

Concurrent access
anomalies:

In order to improve the
overall performance of
the system and faster
response, many systems
allow multiple users to
update the data
simultaneously. In such

UGCS-104/15

UGCS-104/16

an environment,
interaction of
concurrent updates may
result in inconsistent
data.

1.11 THREE VIEW OF DATA OR DATA
ABSTRACTION

The major purpose of a database system is to provide users with
an abstract view of the system. The system hides certain details of how
data is stored and created and maintained. Complexity should be hidden
from database users.

There is several level of abstraction:
(1) Physical Level
(2) Conceptual(Logical Level)
(3) View Level

View Level

Viewl View2 |...... View n

Logical Level

Physical Level

Database

Fig. 1.2: Three levels of data abstraction

Physical Level (Internal Level): This is the lowest level in data
abstraction. This level describes how the data is actually stored in the
physical memory like magnetic tapes, hard disks etc. In this level the file
organization methods like hashing, sequential, B+ tree comes into picture.
At this level, developer would know the requirement, size and accessing

frequency of the records clearly. So designing this level will not be much
complex for him.

Logical Level (Conceptual Level): This is the next level of abstraction. It
describes the actual data stored in the database in the form of tables and
relates them by means of mapping. This level will not have any
information on what a user views at external level. This level will have all
the data in the database. Any changes done in this level will not affect the
external or physical levels of data. That is any changes to the table
structure or the relation will not modify the data that the user is viewing at
the external view or the storage at the physical level.

View Level (External view): This is the highest level in data abstraction.
At this level users see the data in the form of rows and columns. This level
illustrates the users how the data is stored in terms of tables and relations.
Users view full or partial data based on the business requirement. The
users will have different views here, based on their levels of access rights.
For example, student will not have access to see Lecturers salary details,
one employee will not have access to see other employees details, unless
he is a manager. Any changes/ computations done at this level will not
affect other levels of data. That means, if we retrieve the few columns of
the STUDENT table, it will not change the whole table.

1.12 DATABASE LANGUAGES

Database languages are used for read, update and store data in a database.
There are several such languages that can be used for this purpose; one of
them is SQL (Structured Query Language). Database languages are of
following types:

1.12.1 DDL (Data Definition Language)

DDL Stands for "Data Definition Language." A DDL is a language used
to define data structures within a database. It is typically considered to be
a subset of SQL, the Structured Query Language, but can also refer to
language that defines other types of data. A Data Definition Language has
a pre-defined syntax for describing data. For example, to build a new table
using SQL syntax, the CREATE command is used, followed by
parameters for the table name and column definitions. The DDL can also
define the name of each column and the associated data type. Once a table
is created, it can be modified using the ALTER command. If the table is
no longer needed, the DROP command will delete the table.

Since DDL is a subset of SQL, it does not include all the possible
SQL commands. For example, commands such as SELECT and INSERT
are considered as a part of the Data Manipulation Language (DML).

Some examples of DDL Commands are:
e CREATE - to create objects in the database

° ALTER - alters the structure of the database

UGCS-104/17

. DROP - delete objects from the database

. TRUNCATE - remove all records from a table, including all
spaces allocated for the records are removed

. COMMENT - add comments to the data dictionary
o RENAME - rename an object

1.12.2 DML (Data Manipulation Language)

DML stands for “Data Manipulation language”. It is the area of SQL that
allows changing data within the database. The DML can be used to

1. Insert the new data in the database.
2. Modify the data, already stored in the database.
3. Deletion of the data
4. Retrieve the information
It is of two types:

1. Procedural DML.: it requires a user to specify what data are needed
and how to get those data. It also requires writing the
procedures/methods to specify what data is needed.

2. Non-Procedural DML.: it is also called as declarative DML and it
require a user to specify what data are needed without specifying how
to get those data. Non-procedural DML is the collection of commands
for data manipulation including insert, update, delete and query the
data.

Some examples of DML Commands are:
e SELECT - retrieve the required data from the a database
e INSERT - insert new data into a table
e UPDATE - updates the existing data within a table
e DELETE — delete some selected or all records from a table.
e MERGE - UPSERT operation (insert or update)
e CALL - call a PL/SQL or Java subprogram
e EXPLAIN PLAN - explain access path to data

1.13 SCHEMA AND INSTANCES

Databases change over time as information is inserted and deleted.
The collection of information stored in the database at a particular moment
is called an instance of the database. The overall design of the database is

called the database schema.
UGCS-104/18

The concept of database schemas and instances can be understood by
analogy to a program written in a programming language. A database
schema corresponds to the variable declarations in a program. Each
variable has a particular value at a given instant. The values of the
variables in a program at a point in time correspond to an instance of a
database schema.

Database systems have several schemas, partitioned according to the
levels of abstraction.

(1) Physical schema
(2) Conceptual schema
(3) External schema

(1) Physical schema: physical schema describes the database design at
the physical level. It specifies additional storage details. Essentially
the physical schema summarizes how the relations described in the
conceptual schema are actually stored on secondary devices such as
disks and tapes.

(2) Conceptual schema: the conceptual schema sometimes called
logical schema describes the stored data in terms of the data model
of the DBMS. In a relational DBMS the conceptual schema
describes all relations that are stored in the database.

(3) External Schema: External Schema is a schema that represents the
structure of data used by applications. Each external schema describes
the part of the database that a particular user group is interested in and
hides the rest of the database from that user group. A high-level data
model or an implementation data model can be used at this level. A
database may also have several schemas at the view level, sometimes
called subschemas that describe different views of the database

1.14 DATA MODELS

Data model is a collection of conceptual tools for describing data, data
relationship, data semantics and consistency constraints. It consists of two
parts:

¢ A mathematical notation for describing the data and relationships.

e A set of operations used to manipulate that data.
Every database and database management system is based on a particular
database model. A database model consists of rules and standards that
define how data is organized in a database. there are four basic types of
database models: Hierarchical, Network, Relational and Object-oriented
database model.

1.14.1 Hierarchical Database model: The data is sorted hierarchically,
using a downward tree. This model uses pointers to navigate between
stored data. It was the first DBMS model. It was developed by the IBM for
its IMS (Information Management System) database. This model uses

UGCS-104/19

UGCS-104/20

parent-child relationship, that is, one-to-many relationship. The main
advantage of hierarchical database is that data access is quite predictable
in structure, and therefore, both retrieval and updates can be highly
optimized by a DBMS. The hierarchical data model is shown in Figure
1.3.

University

/ Database

UG
(B.Tech) PG
Co'mputer Electrical | | Mechanical MCA MBA
Science Engineeri | |Engineering

1.14.2 Network Database Model: Like the hierarchical model, this
model uses pointers toward stored data. However, it does not necessarily
use a downward tree structure. This model allows having 1:1(one-to-one),
I: M (one-to-many) and M: M (Many-to-Many) relationships. The
primary drawback of networked database is that it can be quite
complicating to maintain all the links. The hierarchical data model is
shown in Figure 1.4

Store

Customer Manager Sales

man

Order Items

Fig, 1.4: Network Model

1.14.3 Relational Database Model: Relational database management
system is based on the relational model developed by E.F. Codd. A
relational database represents all data in the database as simple two
dimensional tables called relations that are the logical equivalent of files.

Each row (record) of a relational table, called tuple, represents a data
entity with columns of the table representing attributes (fields). The
allowable values for these attributes are called the domain.

Roll no Name Address
230456 Sanjeev Gangwar | Paschim Vihar,Delhi
230457 Vijay Sharma Premnagar, Bareilly
230458 Ajay Gupta Lajpatnagar,
Lucknow

Table 1: Student Table

1.14.4 Object Oriented Database Model: The object-oriented data model
is another data model that has seen increasing attention. The object-
oriented model can be seen as extending the E-R model with notions
object-oriented data model. The object-relational data model combines
features of the object oriented data model and relational data model. Semi
structured data models permit the specification of data where individual
data items of the same type may have different sets of attributes. This is in
contrast with the data models mentioned earlier, where every data item of
a particular type must have the same set of attributes. The extensible
markup language (XML) is widely used to represent semi structured data.

Check vour Progress 2

Q1. How many levels do database system architecture consists of?
Q2. Name the type of data independence.

Q3. Name two database languages.

Q4. Differentiate between DDL and DML.

Q5. Explain Three Tier architecture with suitable diagram.

1.15 SUMMARY

K/

« A Database Management System (DBMS) is a collection of
interrelated data and a set of programs to access those data.

X/
L X4

DBMS can also be define as interface between the application
program and the operating system to access or manipulate the
database.

X/
L X4

A database model is a collection of conceptual tools for describing
data, data relationship, data semantics and consistency constraints.

UGCS-104/21

UGCS-104/22

*

X/
L X4

X/
°

X/
L X4

They are of four types: Hierarchical, Network, Relational and
Object-oriented database model.

The collection of information stored in the database at particular
moments is called an instance of the database.

The overall design of the database is called the database schema. It
is of three types: Physical Schema, conceptual schema and
External Schema.

Data Definition language (DDL) is used to create, modify and
delete database.

Data Manipulation Language (DML) is used to access or
manipulate database. Here we can update, Add, insert and modify
the database. It is of two types: procedural DML and Non-
procedural DML.

1.16 OBJECTIVE TYPE QUESTIONS

Choose the correct or best alternative in the following:

Q.1

Q.2

Q3.

In the relational modes, cardinality is termed as:

(A) Number of tables. (B) Number of constraints.
(C) Number of tuples. (D) Number of attributes.
Ans: A

The view of total database content is

(A) Conceptual view. (B) Internal view.
(C) External view. (D) Physical View.
Ans: A

DML is provided for

(A) Description of logical structure of database.

(B) Addition of new structures in the database system.
(C) Manipulation & processing of database.

(D) Definition of physical structure of database system.

Ans: C

Q4.

Q.5

Q.6

Q.7

Q.8

Q.9

Q.10

Architecture of the database can be viewed as

(A) Two levels. (B) Four levels.
(C) Three levels. (D) One level.
Ans: C

The database schema is written in

(A) HLL (B) DML
(©) DDL (D) DCL
Ans: C

In the architecture of a database system external level is the

(A) Physical level. (B) Logical level.
(C) Conceptual level (D) view level.
Ans: D

In a Hierarchical model records are organized as

(A) Graph. (B) List.
(C) Links. (D) TREE
Ans: D

A logical schema

(A) is the entire database.

(B) isastandard way of organizing information into accessible
parts.

(C) describes how data is actually stored on disk.

D) both (A) and (C)

Ans: A

A relational database developer refers to a record as.

(A) A criteria. (B) A relation.
(C) Atuple. (D) an attribute.
Ans: C

An advantage of the database management approach is.
(A) Data is dependent on programs.
(B) Data redundancy increases.
(C) Datais integrated and can be accessed by multiple

programs.
(D) None of the above.
Ans: C

UGCS-104/23

UGCS-104/24

1.17 SELECTED EXERCISES

1.

10.

Why would you choose a database system instead of simply
storing data in operating system files?

Give the structure of DBMS and explain the role of various users
in it.

What do you mean by External Schema, Conceptual Schema and
Internal schema?

What do you mean by Data Abstraction? Explain its types in
details.

Explain different languages that are supported to manage the data
in DBMS.

Explain ACID Properties in database.
Explain any two DML commands with example.

What is the difference between physical data independence and
logical data independence?

Explain the merits and demerits of data base system.

Distinguish between procedural and non-procedural DML’s.

UNIT-2

DATABASE MODELS AND
IMPLEMENTATION

Structure

2.1 Introduction
2.2 Objectives
2.3 File Management System
2.3.1 Whatis a File?
2.3.2 Advantages
2.3.3 Disadvantages
2.4 Database Management System
2.5 Database Approach vs. File Processing Approach
2.5.1 Main Characteristics of database approach
2.6 Data Models
2.6.1 Object Based Logical Model
2.6.2 Record - Based Logical Models
2.6.3 Logical Model
2.6.4 Physical Model
2.7 Summery
2.8 Objective Type Questions

2.9 Selected Exercises

2.1 INTRODUCTION

The main objective of database system is to highlight only the
essential features and to hide the storage and data organization details
from the user. This is known as data abstraction. A database model
provides the necessary means to achieve data abstraction. A database
model or simply a data model is an abstract model that describes how the
data is represented and used. A data model consists of a set of data
structures and conceptual tools that is used to describe the structure (data
types, relationships, and constraints) of a database.

UGCS-104/25

UGCS-104/26

A data model not only describes the structure of the data, it also
defines a set of operations that can be performed on the data. A data model
generally consists of data model theory, which is a formal description of
how data may be structured and used, and data model instance, which is a
practical data model designed for a particular application. The process of
applying a data model theory to create a data model instance is known as
data modeling.

Data model means, to give a SHAPE to the data. A Data model makes
it easier to understand the data. We can also define the data model as "The
collection of high-Level data description that hides many low level storage
details".

The data models are divided into three different groups. They are,
1. Object - Based Logical Models
2. Record - Based Logical Models
3. Physical Data Models

In this unit, we will discuss these data models in detail.

2.2 OBJECTIVES

At the end of this unit, you should be able to:

o Understand the difference between database approaches and file
processing approach.

e Know the various data models.
o Understand the requirements for conceptual data modeling.

o Understand data model and its ability to be used as a blueprint to
build a physical database.

. Build a database from a data model that will result in a better
database implementation.

2.3 FILE MANAGEMENT SYSTEM

Data are stored in files in all information systems. Files are collections of
similar records. Data storage is build around the corresponding application
that uses the files as shown in Figure 2.1. Important features of file
processing system are

e Where data are stored to individual files is a very old, but often used
approach to system development.

e FEach program (system) often had its own unique set of files.

INVENTORYPROGRAM ORDER ENTRY ACCTS/RECV PROGRAM
PROGRAM

CUSTOMER

CUSTOMER
FILE

PRODUCT
FILE

PRODUCT
FILE

FILE

Fig. 2.1: FILE PROCESSING SYSTEM
2.3.1 What is a file?

. A File is a collection of data about a single entity.

o Files are typically designed to meet needs of a particular
department or user group.

o Files are also typically designed to be part of a particular computer
application

2.3.2 Advantages

% Files are relatively easy to design and implement since they are
normally based on a single application.

R/

«» The processing speed is faster than other ways of storing data.
2.3.3 Disadvantages

e Duplication of data: In file system approach each user has to
maintain a separate copy of the same file that results in redundant
information.

e Inconsistency: In file system approach, the same information is
stored in more than one file. When a record is deleted or updated in
one file, the corresponding record should be deleted from all the
files which are associated with that record. If any file is left
unchanged then the data in the files becomes inconsistent and may
provide wrong information when required.

e Lengthy program and system development time: In file system
approach, if any new functionality is required than to implement
that functionality the complete file system and the associated
programs have to modified, which is a time consuming task.

e Excessive program maintenance when the system changed.
Duplication of data items in multiple files. Duplication can affect

UGCS-104/27

UGCS-104/28

on input, maintenance, storage and possibly data integrity
problems.

e Inflexibility and non-scalability: Since the conventional files are
designed to support single application, the original file structure
cannot support the new requirements.

e Accessing of information is slower: To access required information
in file system approach the user has to manually perform the
access process to obtain a sequence of information and then
arrange them to derive the result.

24 DATABASE MANAGEMENT SYSTEM

Database management system is a software of collection of small
programs to perform certain operation on data and manage the data.

Two basic operations performed by the DBMS are:
e Management of Data in the Database
e Management of Users associated with the database.

Management of the data means to specify that how data will be stored,
structured and accessed in the database. Management of database users
means to manage the users in such a way that they can perform any
desired operations on the database. A DBMS also ensures that a user
cannot perform any operation for which he is not allowed and also an
authorized user is not allowed to perform any action which is restricted to
that user. In general DBMS is a collection of programs performing all
necessary actions associated to a database.

2.5 DATABASE APPROACH VS. FILE
PROCESSING APPROACH

Consider an organization/enterprise that is organized as a collection of
departments/offices. Each department has certain data processing "needs",
many of which are unique to it. In the file processing approach, each
department would "own" a collection of relevant data and software
applications to manipulate that data.

For example, a university's Registrar's Office would maintain
(most likely, with the aid of programmers employed by the university's
"computer center") data (and programs) relevant to student grades and
course enrollments. The A.O Office would maintain data (and programs)
regarding fees owed by students for tuition, room and board, etc.

One result of this approach is, typically, data redundancy, which
not only wastes storage space but also makes it more difficult to keep
changing data up-to-date, as a change to one copy of some data item must
be made to all of them (called duplication-of-effort). Inconsistency

results when one (or more) copies of a datum are changed but not others.
(e.g., if you change your address, informing the department's office should
suffice to ensure that your grades are sent to the right place, but does not
guarantee that your next bill will be, as the copy of your address "owned"
by the A.O’s Office might not have been changed.)

While in the database approach, a single repository of data is maintained
that is used by all the departments in the organization.

2.5.1 Main Characteristics of database approach
1. Self-Description

A database system not only includes the data stored that is of relevance to
the organization but also a complete definition/description of the
database's structure and constraints. This meta-data (i.e., data about data)
is stored in the so-called system catalog, which contains a description of
the structure of each file, the type and storage format of each field, and the
various constraints on the data (i.e., conditions that the data must satisfy).

The system catalog is used not only by users (e.g., who need to know the
names of tables and attributes, and sometimes data type information and
other things), but also by the DBMS software, which certainly needs to
"know" how the data is structured/organized in order to interpret it in a
manner consistent with that structure. Recall that a DBMS is general
purpose, as opposed to being a specific database application. Hence, the
structure of the data cannot be "hard-coded" in its programs, but rather
must be treated as a "parameter" in some sense.

2. Program-Data Independence

DBMS architecture can be used to explain the concept of data
independence which is the ability to change the representation of data at
one level of a database system without the compulsion of changing the
data representation at the next higher level. Two types of data
independence can be defined:

Logical data independence: It is the ability to change the representation
of data at the conceptual level without having to change the representation
of data at the external level. For example if you want to expand the
database by adding a record type of data item, you will have to change the
conceptual level. The change in the conceptual level can be made
accordingly and the external level that refers to the remaining data need
not be changed.

Physical data independence: It is the ability to change the representation
of data at the internal level without having to change the representation of
data at the conceptual or external level. Changes to the internal level may
be needed, if some physical files are to be recognized. For example if you
want to improve the performance of retrieval or update of a database you
may need to create additional access structures. This may result in file
reorganization. If the data stored in the database does not change you will
not have to change the conceptual level.

UGCS-104/29

UGCS-104/30

In traditional file processing, the structure of the data files accessed by an
application is "hard-coded" in its source code. (e.g., consider a student file
in a C program which uses array of structures: it gives a detailed
description of the records in a file.)

If, for some reason, we decide to change the structure of the data (e.g., by
adding another field Blood Group), every application in which a
description of that file's structure is hard-coded must be changed!

In contrast, DBMS access programs, in most cases, do not require such
changes, because the structure of the data is described (in the system
catalog) separately from the programs that access it and those programs
consult the catalog in order to ascertain the structure of the data (i.e.,
providing a means by which to determine boundaries between records and
between fields within records) so that they interpret that data properly.

In other words, the DBMS provides a conceptual or logical view of the
data to application programs, so that the underlying implementation may
be changed without the programs being modified. (This is referred to as
program-data independence.)

3. Multiple Views of Data

Different users (e.g., in different departments of an organization) have
different "views" or perspectives on the database. For example, from the
point of view of A.O's Office , student data does not include anything
about which courses were taken or which grades were earned. (This is an
example of a subset view.)

As another example, a Registrar's Office employee might think that
PERCENTAGE is a field of data in each student's record. In reality, the
underlying database might calculate that value each time it is called for.
This is called virtual (or derived) data.

A view designed for an academic advisor might give the appearance that
the data is structured to point out the prerequisites of each course. A good
DBMS has facilities for defining multiple views. This is not only
convenient for users, but also addresses security issues of data access.

4. Data Sharing and Multi-user Transaction Processing

As we know that the simultaneous access of computer resources by
multiple users/processes is a major source of complexity. The same is true
for multi-user DBMS's.

Arising from this is the need for concurrency control, which is supposed
to ensure that several users trying to update the same data do so in a
"controlled" manner so that the results of the updates are as though they
were done in some sequential order (rather than interleaved, which could
result in data being incorrect).

This gives rise to the concept of a transaction, which is a process that
makes one or more accesses to a database and which must have the
appearance of executing in isolation from all other transactions (even ones

that access the same data at the "same time") and of being atomic (in the
sense that, if the system crashes in the middle of its execution, the
database contents must be as though it did not execute at all).

Applications such as airline reservation systems are known as online
transaction processing applications.

CHECK YOUR PROGRESS 1

Q1. Define file.

Q2. Define data independence.
Q3. What is a transaction?

Q4. What is data model?

Q5. Define the following term
(1) Data redundancy

(i1) Data consistency

2.6 DATA MODELS

Data model is a collection of conceptual tool for describing data
relationship. Data Model is used to describe the overall data base schema
or structure. A data model provides a way to describe a design of a
database at view level, logical level, and physical level.

The data models mainly classified in four categories,
(1) Object based Logical Model
(2) Record Based Logical Model
(3) Logical Model
(4) Physical Model

2.6.1 Object Based Logical Model

In the recent years, the object-oriented paradigm has been applied to
database technology, creating two new data models known as object-
oriented data model and object-relational data model. The object-oriented
data model extends the concepts of object-oriented programming language
with persistence, versioning, concurrency control, data recovery, security,
and other database capabilities. On the other hand, the object-relational
data model is an extension of relational data model. It combines the
features of both the relational data model and object-oriented data model.

e [t is used in describing data at logical & view level.

e This model is based on a collection of objects; an object contains
value stored in instance variable.

e Objects that contain the same types of values and the same methods
are grouped into class.

UGCS-104/31

UGCS-104/32

The Object based logical models are described in the different following
models.

(a) The E-R (Entity-Relationship) Model
(b) The Object-Based Logical Model

(¢) The Semantic Data Model

(d) The Functional Data Model

(a) E-R Model

The entity is a "Thing" or “Object" in the real world that is
distinguishable from other objects. The E-R model is based on the
collection of basic objects called Entities and the Relationship among
them. Consider the following diagram shown in Figure 2.2.

NS o >

Customer . Account
Deposit

Address Name
Balance

Fig. 2.2: ER diagram for banking system

In the above diagram, RECTANGLES represents ENTITIES,
DIAMONDS represents RELATIONSHIP among those ENTITIES.
LINES represent links of Entities to Relationships.

The entity-relationship (E-R) model is discussed in detail in Unit 3.
(b) Object - Oriented Model

The Object oriented model is based on a collection of objects. An object
contains values stored in instance variables and bodies of code that
operates on the object. (These bodies of code are called methods).

Objects that contain the same types of values and the same methods are
grouped together into classes.

Features of object oriented model are:

e Object oriented model describe real life entity easily.

e Basic elements of object oriented model are class, methods, and
object.

e Using object we can call methods (Functions) of class.

e In Object Oriented Model, each different type of information is
stores in different files.

For example consider the Customer purchase Items scenario in which
customer related information’s are stores in one class, Purchase Related
information’s are stores in one class and Item related information’s are
stores in one class.

In object oriented model each information stores in different class. So that
if in future, requirement changes we can easily handle that kind of
situation

Advantages: -
e Data Abstraction: It hides the internal representation or complexity.

e In future if requirement change then it require changing the code of
method. In this case we can change code without changing the
internal code of method.

e Inheritance: Because of its inheritance property, we can re-use the
attributes and functionalities. It reduces the cost of maintaining the
same data multiple times.

(c) Semantic Data Model

A Semantic data model is a more high level data model that makes it
easier for a user to give Starting Description of the data in an
organization. (Semantic is nothing but the meaning). These models
contain a wide verity of relations that helps to describe a real application
scenario. A DBMS cannot support all these relations directly. So it is build
with only few relations known as relational model in DBMS. A widely
used semantic data model is the Entity-Relationship (ER) data model
which allows us to graphically denote entities and relationship between
them.

(d) Functional Data Model

The functional data model makes it easier to define functions and call
them where ever necessary to process data.

UGCS-104/33

UGCS-104/34

2.6.2 Record - Based Logical Models

In this type of models, the data is kept in the form of RECORDS
(documents). These models describe data at Logical and View Levels.
When compared with object based data models, the record based logical
models specify the overall logical structure of the database and provides
higher-level implementation.

e Record base logical model are used in describing data and view
levels.

e Record base model are so popular because the database is structured
in fixed format record of several times.

e FEach record type defines a fixed no of fields and each fields of a
fixed length. The used of fixed length record simplify the physical
level implementation of database.

Following are the three types of record based logical models:
(a) Hierarchical Model
(b) Network Model
(¢) Relational Model

(a) Hierarchical Model

The hierarchical data model is the oldest type of data model, developed by
IBM in 1968. This data model organizes the data in a tree-like structure, in
which each child node (also known as dependents) can have only one
parent node. The database based on the hierarchical data model comprises
a set of records connected to one another through links. The link is an
association between two or more records. The top of the tree structure
consists of a single node that does not have any parent and is called the
root node.

The root may have any number of dependents; each of these
dependents may have any number of lower level dependents. Each child
node can have only one parent node and a parent node can have any
number of (many) child nodes. It, therefore, represents only one-to-one
and one-to-many relationships. The collection of same type of records is
known as a record type.

Figure 2.3 represents a hierarchical schema which has three record types
and two Parent-Child Relationship (PCR) types. Department, Employee
and Project are the record types in Figure 2.3.

Department

Name Number Code
Employee Project
Name Sex Name Number

Fig. 2.3: Hierarchical Model

Each record type can have a set of data items or fields. For example record
type Department can have department name, department number and
department code as the field or data items. Parent-Child Relationship type
can be represented by listing pair in parentheses. For example in Figure
2.3 there are two Parent-Child Relationship types which can be
represented as (Department, Employee) and (Department, Project). In
Figure 2.3 each occurrence of the (Department, Employee) Parent-Child
Relationship type relates one department record to the records of the many
employees who works in that department. The occurrence of (Department,
Project) Parent-Child Relationship type relate a document record to the
records of projects controlled by that department.

Figure 2.4 represents the tree like structure of the hierarchical schema

Department

shown in Figure 2.3.

Fig. 2.4: Tree Representation of Hierarchical Schema

In tree like structure, a record type is represented by node of the tree and
parent-child relationship type is represented by arc of the tree.

UGCS-104/35

UGCS-104/36

The main advantage of the hierarchical data model is that the data
access is quite predictable in the structure and, therefore, both the retrieval
and updates can be highly optimized by the DBMS. However, the main
drawback of this model is that the links are ‘hard coded’ into the data
structure, that is, the link is permanently established and cannot be
modified. The hard coding makes the hierarchical model rigid. In addition,
the physical links make it difficult to expand or modify the database and
the changes require substantial redesigning efforts.

Points to remember

e In the hierarchical model, records are organized as trees rather than
arbitrary graphs.

e The record type at the top of the tree is usually known as root.

e In general, the root may have any number of dependents and each of
these dependents may have any number of low level dependents and
o on.

(b) Network Model

The first specification of network data model was presented by
Conference on Data Systems Languages (CODASYL) in 1969, followed
by the second specification in 1971. It is powerful but complicated. In a
network model the data is also represented by a collection of records, and
relationships among data are represented by links. However, the link in a
network data model represents an association between precisely two
records. Like hierarchical data model, each record of a particular record
type represents a node. However, unlike hierarchical data model, all the
nodes are linked to each other without any hierarchy. The main difference
between hierarchical and network data model is that in hierarchical data
model, the data is organized in the form of trees and in network data
model, the data is organized in the form of graphs.

The main advantage of network data model is that a parent node
can have many child nodes and a child can also have many parent nodes.
Thus, the network model permits the modeling of many-to-many
relationships in data. The main limitation of the network data model is that
it can be quite complicated to maintain all the links and a single broken
link can lead to problems in the database. In addition, since there are no
restrictions on the number of relationships, the database design can
become complex. Figure 2.5 shows the network model of online book
database.

PUBLISHER (P_ID, Pname, PhoneNO)

P001 Hills Publication 2546967
‘ﬂ)K (ISBN, Book_Title, Pry
001-345-456 165 "1345-563-00y C++ 180
\ \REVIEW (R_ID, Ratmg/ \
B006
A005 > A004 | 6.2

Fig. 2.5: Network data model for Online Book database
Point to Remember

e The popularity of the network data model coincided with the
popularity of the hierarchical data model. Some data were more
naturally modeled with more than one parent per child.

e Data in the network are represents by collection of records and
relationship among data are represented by links. This links can view
as a pointer. The records in the database are organized as a collection
of arbitrary graph.

(c) Relational Model

The relational data model was developed by E. F. Codds in 1970. In the
relational data model, unlike the hierarchical and network models, there
are no physical links. All data is maintained in the form of tables
(generally, known as relations) consisting of rows and columns. Each row
(record) represents an entity and a column (field) represents an attribute of
the entity. The relationship between the two tables is implemented through
a common attribute in the tables and not by physical links or pointers. This
makes the querying much easier in a relational database system than in the
hierarchical or network database systems. Thus, the relational model has
become more programmers friendly and much more dominant and popular
in both industrial and academic scenarios. Oracles, Sybase, DB2, Ingres,
and Informix, MS-SQL Server are few of the popular relational DBMSs.

Figure 2.6 shows the relational model of Online Book database. The
relational model represents both Data (entities) and Relationships among
that data in the form of Tables. Each table contains multiple columns and
each column contains a unique name.

UGCS-104/37

BOOK

UGCS-104/38

ISBN Book Title | Category | Price | Copyright Date | Year | Page count | P_ID
001-345-456 Novel 165 2007 2006 260 P001
345-563-007 C++ Textbook | 180 2009 2008 670 B006

PUBLISHER
P ID Pname Address Phone Email
P001 Hills USA 2546967 Hills@gmail.com
REVIEW
R ID ISBN Rating
B006 001-345-456 6.5
A005 345-563-007 8.5
A004 345-563-007 6.2

Fig. 2.6: Relational data model for Online Book database

Point to Remember:

The relational model uses a collection of a table to represent data
and the relationship among those data.

Each table is consist of multiple columns and each column has a
unique name.

The Relational Model is a depiction of how each piece of stored
information relates to the other stored information. It shows
how tables are linked, what type of links are between tables, what
keys are used, what information is referenced between tables. It's
an essential part of developing a normalized database structure to
prevent repeat and redundant data storage.

Advantages:

(1) Ease of use: relational data model is easy to implement as data is
stored in the forms of tables.

(2) Flexibility: relation data model is flexible as changes in the database
structure need not be changed in all related application programs.

(3) Security: By splitting data into tables, certain tables can be made
confidential. When a person logs on with their username and
password, the system can then limit access only to those tables
whose records they are authorized to view.

(4) Data Independence: Data independence is achieved more easily with

normalization structure used in a relational database than in the more
complicated tree or network structure.

2.6.3 Logical Model: A logical data model describes the data in as much
detail as possible, without regard to how they will be physical
implemented in the database. Features of a logical data model are:
o all entities and relationships among them.
o All attributes for each entity are specified.
o The primary key for each entity is specified.
o Foreign keys (keys identifying the relationship between different
entities) are specified.
o Normalization occurs at this level.
The steps for designing the logical data model are as follows:
Specify primary keys for all entities.
Find the relationships between different entities.
Find all attributes for each entity.
Resolve many-to-many relationships.
Normalization.

M

An example of a logical data model is shown in Figure 2.7

Time Primary Key Product
/
Date ~ Product ID
.. () .
Date Description Product Description
Month Attributes Category
Month Description)) Category Description
Year Unit Price
Week Created
Week Description L)

| [~

Relations
hips between entities
Store ID (FK)
Product ID (FK) [<
Date (FK)
Item Sold .
Sales amount Primary Key
Store N
Store ID /
Store Description

Region
Region Name
Created

Fig. 2.7: Logical Data Model

UGCS-104/39

2.6.4 Physical Model

Physical data model represents how the model will be built in the
database. A physical database model shows all table structures, including
column name, column data type, column constraints, primary key, foreign
key, and relationships between tables. Features of a physical data model
include:

e Specification of all tables and columns.
o Foreign keys are used to identify relationships between tables.
o Denormalization may occur based on user requirements.

o Physical considerations may cause the physical data model to be
quite different from the logical data model.

o Physical data model will be different for different RDBMS. For
example, data type for a column may be different between MySQL
and SQL Server.

The steps for physical data model design are as follows:

Convert entities into tables.

Convert relationships into foreign keys.

Convert attributes into columns.

Modify the physical data model based on physical constraints /
requirements.

el e

An example of a physical data model is shown in Figure 2.8.

Date Id: Integer Product Id: Integer

Date Desc: Varchar(30) Prod Desc: Varchar(30)
Month_Id: Integer Category Id: Integer
Month_Desc: Varchar(30) Category Desc: Varchar(30)
Year: Integer Unit Price: Float

Week Id: Integer

Week Desc: Varchar(30)

Dim_Time \ Dim_Product

Store ID: Integer
Product ID: Integer
Date ID: Integer
Items Sold: Integer
Sales Amount: Float

Fig. 2.8: Physical Data Model
UGCS-104/40

CHECK YOUR PROGRESS 2

Q1. What is ER diagram?

Q2. What is Table?

Q3. Define the term PCR.

Q4. Define Logical Model.

Q5. Describe Hierarchical Data Model with suitable example

2.7 SUMMERY

e The main objective of database system is to highlight only the
essential features and to hide the storage and data organization
details from the user. This is known as data abstraction.

e A database model or simply a data model is an abstract model that
describes how the data is represented and used.

. The Data Models are divided into four different groups: Object -
Based Logical Models, Record - Based Logical Models , Logical
Model and Physical Data Models.

o Database management system is software of collection of small
programs to perform certain operation on data and manage the
data.

o Data are stored in files in all information systems. Files are
collections of similar records.

o Data model is collection of conceptual tool for describing for data
relationship. Data Model is used to describe the overall data base
schema or structure.

. The Object based logical models are described in the different
following models.: The E-R (Entity-Relationship) Model, The
Object-Based Logical Model, The Semantic Data Model The
Functional Data Model

. In record based logical model the data is kept in the form of
RECORDS (documents). These models describe data at Logical
and View Levels.

e Record based logical models are divided into three categories:
Hierarchical model, Network Model and Relational Model.

. Physical data model represents how the model will be built in the
database. A physical database model shows all table structures,
including column name, column data type, column constraints,
primary key, foreign key, and relationships between tables.

UGCS-104/41

2.8 OBJECTIVE TYPE QUESTIONS

Choose the correct or best alternative in the following:

Q1. The conceptual model is
(A) Dependent on hardware.
(B) Dependent on software.
(C) Dependent on both hardware and software.
(D) Independent of both hardware and software.
Ans: D

Q 2. Which database level is closest to the users?

(A) External (B) Internal
(C) Physical (D) Conceptual
Ans: A

Q3. Which of the following is another name for weak entity?

(A) Child (B) Owner
(C) Dominant (D) All of the above
Ans: A

Q4. Which of the following is record based logical model?

(A) Network Model (B) Object oriented model
(C) E-R Model (D) None of these
Ans: A

Q5. In E-R Diagram relationship type is represented by

(A) Ellipse (B) Dashed ellipse
(C) Rectangle (D) Diamond
Ans: D

Q6. Hierarchical model is also called

(A) Tree structure (B) Plex Structure
(C) Normalize Structure (D) Table Structure
Ans: A

UGCS-104/42

Q7.

QS.

Q.

Q10.

Which two files are used during operation of the DBMS?
(A) Query languages and utilities

(B) DML and query language

(C) Data dictionary and transaction log

(D) Data dictionary and query language

Ans: C

In relation schema, each tuple is divided into fields called
(A) Relations (B) Domain

(C) Queries (D) All of the above
Ans: B

The relational database environment has all of the following
components except.

(A) Users (B) separate files
(C) Database (D) query languages
Ans: B

The view of total database content is

(A) Conceptual view (B) Internal view
(C) External view (D) Physical view
Ans: A

2.9

SELECTED EXERCISES

What is data model? Explain object based and record based data
models.

Explain the disadvantages of a file processing system.

Explain the difference between Database approaches and file
oriented approach.

Explain the following
(a) Network Model
(b) Hierarchical Model
(c) Relational Model

Explain the concepts of relational data model. Also discuss its
advantages and disadvantages.

Write short notes on the following
(a) Object-based logical models
(b) Record based logical models
(c) Physical data models

) PP
What are the different data models present and explain briefly® UGCS-104/43

UGCS-104/44

UNIT-3
ENTITY RELATIONSHIP MODEL

Structure

3.1 Introduction

3.2 Objectives

33 Database design and E-R Diagrams

3.4
3.5
3.6

3.3.1 Entity

3.3.2 Attributes

3.3.3 Types of Attributes

E-R Diagram

Mapping Constraints

Relationships and Relationship sets

3.6.1 Degree of a Relationship

3.7 Keys

3.8

3.9
3.10

3.7.1 Primary Key

3.7.2 Super Key

3.7.3 Candidate key

3.7.4 Foreign Key

3.7.5 Alternate Key

3.7.6 Composite Key

Extended E-R Model

3.8.1 Specialization

3.8.2 Generalization

3.8.3 Attribute Inheritance

3.8.4 Aggregation

Reduction of ER Diagram to Tables
Relationship of Higher Degree
3.10.1 One-to-one Relationship
3.10.2 One-to-many Relationship

UGCS-104/45

UGCS-104/46

3.10.3 Many-to-many Relationship

3.11 E-R Examples

3.12 Summery

3.13 Objective Type Questions
3.14 Selected Exercises

3.1 INTRODUCTION

The entity-relationship (E-R) model is a high-level data model. It

is based on a perception of a real world that consists of a collection of
basic objects, called entities, and of relationships among these objects. It
was developed to facilitate database design by allowing specification of an
enterprise schema, which represent the overall logical structure of a
database.

The ER model is beneficial for a database designer in various ways,
which are:

The constructs used in the E-R model can easily be transformed into
relational tables.

Simple and easy to understand and is, therefore used by a database
designer to communicate a database design to the users according
the database.

It is used as a design plan by a database developer to implement a
data model in database management system.

3.2

OBJECTIVES

At the end of this unit, you should be able to:

Understand the objective of an entity relationship diagram.

Know that an ER diagram is a logical representation of an
organization’s data, and consists of three primary components:
Entities, Attributes and relationships.

Discuss different Mapping constraints.

Know the keys that will be used to establish the relationships in the
database.

Understand how to prepare ER diagram for organizational data and
convert ER diagram into tables.

3.3 DATABASE DESIGN AND ER DIAGRAMS

The database design process can be divided into three steps.

1. Requirement Analysis: The first step in designing a database
application is to understand what data is to be stored in the database, what
application must be built in top of it, and what operations are most
frequent and subject to performance requirements. In other words, we
must find out what the users want from the database.

2. Conceptual database Design: The information gathered in the
requirements analysis step is used to develop a high-level description of
the data to be stored in the database, along with the constraints known to
hold over this data. The ER model is one of several high level or semantic,
data models used in database design.

3. Logical Database Design: We must choose a database to convert the
conceptual database design into a database schema in the data model of
the chosen DBMS. Normally we will consider the Relational DBMS and
therefore, the task in the logical design step is to convert an ER schema
into a relational database schema.

3.3.1. Entity: Entities are specific objects or things in the mini-world that
are represented in the database. It includes all those “things” about which
data is collected. An entity may be a tangible object such as a employee,
student, a place or a part. It may also be non-tangible such as an event, a
job title or a customer account. For example if we say that a customer
buys goods, it means customer and goods are entities.

Pictorially, entities are represented in rectangles.

CUSTOMER Entities GOODS

4

An Entity Set: An entity set is a set of entities of the same type that share

the same properties. The set of all persons who are customer at a given
bank can be defined as the entity set customer.

3.3.2. Attributes: An entity is represented by a set of attributes, that is,
descriptive properties possessed by all members of an entity set. Attributes
are properties used to describe an entity. In a database, entities are
represented by tables and attributes by columns. For example an
EMPLOYEE entity may have a Name, Address, Sex, BirthDate and

UGCS-104/47

Department entity may have a DepartmentName, DepartmentNo,
DepartmentLocation and Address field shown in Figure 31.

COWED

EMPLOYEE

DepartmentLocation

DEPARTMENT

Fig 3.1: Attributes for entity EMPLOYEE and DEPARTMENT
3.3.3 Types of Attributes:

DepartmentName

(1) Simple (Atomic) and Composite attributes
(2) Single Valued and Multi Valued attributes
(3) Stored and Derived Attributes

(4) Null Values

(1) Simple (Atomic) and Composite Attributes: Attribute that are not
divisible are called simple or atomic attribute. For example street-
number, street-name etc. Whereas composite attributes are those
attributes which can be divided into sub-parts (i.e. other attributes).
For example an attribute name could be considered as a composite
attribute consisting of first name, middle name, and last name. For
example:

Name (firstname, middlename, lastname) and similarly Address
(HouseNo, Street, City, State, ZipCode, Country) are composite

attribute.
UGCS-104/48

(2) Single-valued and Multi-valued Attributes: An attribute having only
one value for a particular entity is called single-valued attributes,
whereas attributes may have multiple values for a specific entity is
called multi-valued attributes. For example the loan number attributes
for a specific loan entity refers to only one loan number, such type of
attributes are single-valued whereas phone number attributes, where
the employees may have zero, one or several phone numbers. This
type of attributes is said to be multi-valued.

(3) Stored and Derived Attributes: The value for this type of attribute
can be derived from the values of other related attributes or entities.
For example the age and date of birth of a person. For a particular
person entity, the value of age can be determined from the current
(today’s) date and the value of that person’s Birthdate. The Age
attribute is hence called a derived attribute and is said to be derivable
from the Birthdate attribute, which is called stored attribute.

(4) Null Values: In some cases a particular entity may not have an
applicable value for an attribute. For example, a college degree
attribute applies only to persons with college degrees. For such
situation, a special value called null is created.

3.3 ER Diagram (ERD): Entity relationship diagram is the
graphical representation of the E-R model. You can describe logical
structure of a database graphically by using ERD. The main elements
of Entity relationship diagram are:

Symbol Meaning Description
Entity Set Rectangle: it
represents entity
sets. The label of
a rectangle is the
name of an
entity.

Attributes Ellipse: it
represents
attributes.

Relationship Diamond: it
<> Sets. represents

relationship sets.

Link Lines: it
represents link
between
attributes to

UGCS-104/49

entity sets and
entity sets to
relationship sets.
A solid line

%E_

participation of
entity set in

between two
entity sets
represents a
relationship.
Multivalued Double ellipse: it
@ Attributes represents
multivalued
attributes
o Derived Dashed ellipse:
T T Attributes it represents
m derived
attributes.
Total Double line: it

represents
participation of

relationship an entity E in a
relationship set
R.

Optional Entity | Circle: it
represents an
optional entity.

Primary Key Underline: it

Attribute indicates
primary key
attribute

Weak entity Double

sets. rectangles

represent weak

entity sets.

For example, Figure 3.3 shows the entity relationship diagram
representing the Person, Car and Accident entities and the relationship

UGCS-104/50 between them.

Address
Name ’

Person Report no

Accident

Participated

Damage-amount

Fig 3.3: E-R diagram for a Car insurance company

3.4 Weak and Strong Entity Set: An entity set that does not posses
sufficient attributes to form a primary key is called a weak entity set. One
that does have a primary key is called a strong entity set. You can also
represent a week entity set using entity relationship diagram. Figure 3.4

shows representation of a week entity set.
Payment-date

number

Loan Loan-
paymen

Payment

Fig 3.4 E-R diagram with a weak entity set

UGCS-104/51

UGCS-104/52

In figure 3.4, payment loan is the week entity set with attribute Payment-
number, Payment-date and Payment-amount. This implies that the week
entity set is dependent on the entity set, loan through the relationship set
Loan-payment. The relationship between the week entity set, Payment and
the entity set Loan is represented by using double outlined diamond for the
relationship set Loan-payment. The entity relationship diagram also
represents the use of double lines, which indicate total participation. Total
participation of the entity set Payment represents that each payment is
related to a Loan using the relationship set Loan-payment.

“CHECK YOUR PROGRESS 1”

QI. List the various types of attributes of an entity set.

Q2. What is Entity-Relationship diagram?

Q3. What is weak and strong entity set?

Q4. Define main elements of Entity-Relationship diagram.

Q5. What is entity and attribute? Give some examples of entites and
attributes in a manufacturing environment. Why are relationships
between entites important?

3.5 MAPPING OR CARDINALITY CONSTRAINTS: To understand
cardinality constraints, you need to consider binary relationship set R
between entity sets A & B. Mapping cardinalities or cardinality ratios
express the number of entities to which another entity can be associated
via a relationship set. Mapping cardinalities are most useful in describing
binary relationship sets. For a binary relationship set, the mapping
cardinality must be one of the following types:

1. One-to-one
2. One-to-many
3. Many-to-one
4. Many-to-many

(1) One-to-one(1:1) : An entity in A is associated with almost one entity
in B, and an entity in B is associated with almost one entity in A. in Figure
3.5 Employee and Department are two entities, an employee in the
organization belongs to a single department. Thus this relationship represents
a one-to-one relationship.

A B Employee
Department

N
o I
[o
e

Fig. 3.5 One-to-one relationship

(2) One-to-many(1:N) : An entity in A is associated with any number
(zero or more) of entities in B. in entity in B however can be associated at
most one entity in A. In Figure 3.6, each department can have many
employees but an employee is related to a single department only. The
relationship between the department and employee is 1:N relationship.

A B

Department Employee

Sanjeev
Vijay

Fig. 3.6 One-to-many relationship

UGCS-104/53

UGCS-104/54

(3) Many-to-one (M: 1): An entity in A is associated with at most one
entity in B. An entity in B however can be associated with any number
(zero or more) of entities in A.

Son Father

Fig. 3.7 Many to one relationship

Figure 3.7 shows many to one relationship between Son and Father. A
Father may have many sons but a son has only one Father.

(5) Many-to-many (M: N): An entity in A is associated with any
number (zero or more) of entities in B and an entity in B is
associated with any number (zero or more) of entities in A. Figure
3.8 shows a many-to-many relationship between Employee and
Project. An employee may be assigned to many projects; each
project must have many employee.

>
w

X <

Employee Project

Fig 3.8 Many-to-many

3.6 RELATIONSHIPS AND RELATIONSHIP SET

A relationship is an association among two or more entities. For example,
an employee Works_at a department, a student Enrolls in a course. Here,
Works at and Enrolls are called relationships.

A set of relationships of similar type is called a relationship set. Like
entities, a relationship too can have attributes. These attributes are
called descriptive attributes.

3.6.1 Degree of a Relationship: The degree of a relationship is the
number of participating entity types. A relationship type of degree two is
called Binary, a degree three is called Ternary, and degree four is
quaternary.

UGCS-104/55

UGCS-104/56

Example for Binary Relationship

Teacher Subject

Fig. 3.9: Binary Relationship

In Figure 3.9, Teaches is the binary relationship between entities Teacher
and Subject.
Example for Ternary Relationship

In Figure 3.10, The University might need to record which teacher taught
which subjects in which courses. So, CST is the ternary relationship
between entities Course, Subject and Teacher.

Subject
Course

Teacher

Fig 3.10: Ternary Relationship

Example for quaternary Relationship

In Figure 3.11, a Solicitor arranges a bid on behalf of a buyer supported by
a financial Institution

Solicitor

Buyer Arranges Financial Institution

Bid

Fig. 3.11: Quaternary Relationship

3.7 KEY

The integrity of the information stored in a database is controlled by
keys. A key or key field is a column value in a table that is used to either
uniquely identify a row of data in a table or establish a relationship with
another table.

In database management system, a key is a field that you use to sort
data that is arranging the records in ascending or descending data. It is also
referred as sort key, index or key word. Most database system allows more
than one key so that records can be stored in various ways. Keys can be of
different types:

3.7.1 Primary Key: A primary key is a column (or columns) in a table
that uniquely identifies the rows in that table. For example in the
STUDENT table of Table 3.1, RollNo is the primary key as each student
have unique roll number.

Roll No First Name Last Name
1 Amit Gupta
2 Sanjeev Gangwar
3 Harshit Gupta
3 Ajay Singh

Table 3.1: STUDENT

The values placed in primary key columns must be unique for each row
thus no duplicates can be tolerated. In addition, nulls are not allowed in
primary key columns.

3.7.2 Super Key: Super key is the combination of more than one attribute
that is used to identify every tuple (row) of the table uniquely. A table may
contain more than one super keys depending on the possible combinations
of the attributes in the table. You can use primary key of a table to make a
super key. For example, different combinations of RolINo, Name, Branch,
DOB and Year attributes of STUDENT table of Table 3.2 form different
super keys for STUDENT table.

RollNo Name Branch Dob Year
1 Amit Gupta CS 12/07/1982 I
2 Sanjeev Gangwar IT 25/10/1981 11
3 Harshit Gupta EC 06/04/1983 111
3 Ajay Gupta EE 28/07/1980 11

Table 3.2: STUDENT
Now from the above table
Super Keyl= {RollNo, Name, Branch}

UGCS-104/57

Super Key2= {Name, Branch, Dob}
Super Key3= {Name, Dob, Year}

3.7.3 Candidate key: In the relational model of databases, a candidate
key of a relation is a minimal superkey for that relation; that is, a set of
attributes such that

1. The relation does not have two distinct tuples (i.e. rows or records in
common database language) with the same values for these attributes
(which means that the set of attributes is a superkey)

2. There is no proper subset of these attributes for which (1) holds
(which means that the set is minimal).

The constituent attributes are called prime attributes. Conversely, an
attribute that does not occur in ANY candidate key is called a non-prime
attribute.

Note: - A combination of one or more fields whose value uniquely
identifies a record in a table. That is, no two records in a table can have the
same key value. Every field is a candidate key but there cannot be more
than one primary key in a table.

From the above student table.
Candidate keyl= {RollNo, Name}
Candidate key2= {Name, Dob}
Candidate key3= {Name, Branch}

3.7.4 Foreign Key: Foreign key is that column of the table, which is used
to maintain relationship with other tables of database. Foreign key of a
table should be defined as primary key in another table. For example,
Stud_Activity is an attribute of Student table of Table 3.3 that is primary
key of another table Activity which is shown in Table 3.4

Stud Roll Stud name Stud class Stud activity
101 Amit Twelfth Cricket
102 Vijay Eleventh Football
103 Sanjeev Twelfth Hockey

Table 3.3: Student

Stud_activity No of participants Incharge of activity
Cricket 40 Sushil
Football 30 Yogendra
Hockey 20 Ankit

UGCS-104/58

Table 3.4: Activity

In the above table Stud activity is the primary key of the Activity table .
Stud_activity attribute of Activity table is inherited in the Student table.
Stud_activity is used to show records of participants of different activities
in Student table. Thus you can use this attribute to build a relation between
Student table and Activity table.

3.7.5 Alternate Key: Any candidate key(s) other than the one chosen as a
primary key is known as alternate key.

3.7.6 Composite Key: Composite key is a key composed of more than
one column. Sometimes, it is also known as concatenated key or
structured key.

“CHECK YOUR PROGRESS 2”

QI. Define a relation.

Q2. Differentiate between primary key & candidate key.
Q3. Explain degree of a relationship.

Q4. Define cardinality constraints.

Q5. What are the two types of constraints in E.R diagram? Explain.

3.8 EXTENDED E-R MODEL

The extended entity relationship model (EER model) includes all the
modeling concepts of the E-R model and the concepts of specialization,
generalization, attributes inheritance and aggregation.

There are basically four concepts of EER-model
e Specialization
e (Generalization
e Attribute Inheritance
e Aggregation
3.8.1 Specialization (top down design process):

Specialization is the process of taking subsets of the higher-level entity set
to form lower-level entity sets. It is a process of defining a set of
subclasses of an entity type, which is called the super class of the
specialization. The process of defining subclass is based on the basis of
some distinguish characteristics of the entities in the super class.

For example suppose the bank wishes to divide accounts into two
categories, checking account and saving account- savings account need a
minimum balance but the bank may set interest rates differently for

UGCS-104/59

UGCS-104/60

different customers, offering better rates to favored customers. The bank
could then create two specializations of account, namely saving account
and checking account.

We can apply specialization repeatedly to refine a design schema. For
instance, bank employees may be further classified as one of the
following:

e Officer
e Teller
e Secretary

Each of these employee types is described by a set of attributes that
includes all the attributes of entity set employee plus additional attributes.
For example, Officer entities may be described further by the attribute
office-number, teller entities by the attributes station-number and hours-
per-week, and secretary entities by the attribute hours-per- week. Further.
In terms of an E-R diagram, specialization is depicted by a triangle
component labeled ISA. The label ISA stands for “is a” and represents, for
example, that a customer “is a” person shown in Figure 3.13. The ISA
relationship may also be referred to as a superclass-subclass relationship.
Higher and lower-level entity sets are depicted as regular entity sets —
that is, as rectangles containing the name of the entity set

3.8.2 Generalization (bottom-up design process):

A generalization hierarchy is a form of abstraction that specifies that two
or more entities that share common attributes can be generalized into a
higher-level entity type called a super type or generic entity. The lower
level of entities becomes the subtypes, or categories, to the super type.
Subtypes are dependent entities.

Generalization is used to emphasize the similarities among lower-
level entity set and to hide differences. It makes ER diagram simpler
because shared attributes are not repeated. Generalization is denoted
through a triangular component labeled ‘IS A”.

Differences in the two approaches may be characterized by their starting
point and overall goal. Specialization stems from a single entity set; it
emphasizes differences among entities within the set by creating distinct
lower-level entity sets. These lower-level entity sets may have attributes,
or may participate in relationships, that do not apply to all the entities in
the higher-level entity set. Indeed, the reason a designer applies
specialization is to represent such distinctive features. If Customer and
Employee neither have attributes that person entities do not have nor
participate in different relationships than those in which Person entities
participate, there would be no need to specialize the person entity set.

Generalization proceeds from the recognition that a number of
entity sets share some common features (namely, they are described by the
same attributes and participate in the same relationship sets). On the basis
of their commonalities, generalization synthesizes these entity sets into a
single, higher-level entity set. Generalization is used to emphasize the
similarities among lower-level entity sets and to hide the differences; it
also permits an economy of representation in that shared attributes are not

repeated.

Credit-Rating

Person
ISA
Employee
ISA
Officer Teller Secretary

Hours-Worked

Fig. 3.13 E-R diagram with generalization and specialization

3.8.3 Attribute Inheritance

A crucial property of the higher- and lower-level entities created by
specialization and generalization is attribute inheritance. The attributes

UGCS-104/61

UGCS-104/62

of the higher-level entity sets are said to be inherited by the lower-level
entity sets. For example, customer and employee inherit the attributes of
person. Thus, customer is described by its name, street, and city attributes,
and additionally a Credit-Rating attribute; employee is described by its
name, street, and city attributes, and additionally employee-id and salary
attributes.

Figure 3.13 depicts a hierarchy of entity sets. In the figure,
employee is a lower-level entity of set of person and a higher-level entity
set of the officer, teller, and secretary entity sets. In a hierarchy, a given
entity set may be involved as a lower-level entity set in only one ISA
relationship; that is, entity sets in this diagram have only single
inheritance. If an entity set is a lower-level entity set in more than one
ISA relationship, then the entity set has multiple inheritance, and the
resulting structure is said to be a “Lattice”.

3.8.4 Aggregation: Aggregation is the process of compiling information
on an object, thereby abstracting a higher-level object. One limitation of
the E-R model is that it cannot express relationships among relationships.
Aggregation is a process when relation between two entity is treated as a
single entity. As shown in Figure 3.14, the relation between Center and
Course is acting as an Entity in relation with Visitor.

Center Course

Visitor

Fig. 3.14 E-R diagram with aggregation

3.9 REDUCTION OF E-R DIAGRAMS INTO
TABLES

Database can be represented with the help of E-R notations and these
notations (diagrams) can be reduced to collection of tables. For every

entity set, relationship set in a database can be represented in tabular form.
The name of the table is the name of corresponding entity set of
relationship name. Each table would have columns, the number of
columns would be equal to the number of attributes each entity set or

relationship set have.

Division ‘ Dept w Manager
d_ by

-

Emplovees @ Dependent

Relation

Fig. 3.15 E-R diagram

The ER diagram of above problem is divided into three sections

(1) Strong entity sets(Division, Dept, manager, Employees)
(2) Weak entity set (Dependents)
(3) Relation sets(contains, managed by, have, dependents_of)

(1) Reducing Strong Entity Sets into Tables: Consider the entity sets
Division of the E-R diagram of Figure 3.15. This entity set have two
attributes Div_id and Div_name. We can represent this entity set by a
table called Division with two columns.

Div id Div_name
DI Engineering
D2 Pharmacy

Table: Division

Similarly entity set ‘Dept’ have attributes Dept no and D name, which
will be represented by table Dept.

UGCS-104/63

Dept no D name
Dept01 Computer Science
Dept02 Information Technology

Table: Dept

Entity set Manager has also two attributes Mgr id amd Mgr name which
will be represented by table Manager and entity set Employee have two
attributes Emp no and Emp name which will be represented by table

employee.

Megr id Mgr name
MGO1 Ravi
MGO02 Vijay
Table: Manager

Emp no Emp name

EMPO1 Dinesh

EMP02 Akshay

EMPO03 Suresh

Table: Employee

(2) Reducing Weak Entity Sets into Tables: In E-R Diagram shown in
Figure 3.15 we have only one weak entity set Dependent. This entity
set has three attributes Name, Age, and Relation. The entity set
‘Dependent’ is represented by table ‘Dependent’ shown below

Table Dependent
Name Age Relation
Manu 34 Father
Ashish 12 Brother

(3) Reducing Relationship sets into Tables: In E-R diagram shown in
Figure 3.15 we have four relationship sets Contains, Managed by,
have, Dependents_of.

Contains relationship set involves two entity sets Division with primary
key Div_id and Dept with primary key Dept no.

Div_id Dept no
D1 Dept01
D2 Dept02

Table: Contains Relation
Managed by relationship set involves two entity sets Dept with primary
key Dept no and manager with primary key Mgr id. Thus managed by
relationship table contains attributes Dept no of entity set Dept and

UGCS-104/64 Mgr id of entity set Manager.

Dept no Megr id
Dept01 MGO1
Dept02 MGO02

Table: Managed by relation

have relationship set involves two entity sets Dept with primary key
Dept no and Employee with primary key Emp no. Thus have relationship
table consist of primary key of Dept and Employee.

Dept no Emp no
Dept01 EMPO1
Dept02 EMPO02

Table: have relation

3.10 RELATIONSHIPS OF HIGHER DEGREE

Degree of relationship refers to the number of participating entities in a
relationship. If there are two entities involved in relationship then it is
referred to as binary relationship. If there are three entities involved then it
is called as ternary relationship and so on. It is represented by a diamond
symbol. All relation has three components:

As shown in Figure 3.16 customer & Goods are entities. Customer entity
has three attributes Code, Name & address with Primary key Code. Entity
Goods have two attributes Code & Price. Relationship exists between
entity Customer & Goods is Goods Bought.

(1) Name: It is the title or entity identifier such as Goods Bought
shown in Figure 3.16.

(2) Degree: It represents the number of attributes (field) associated
with the table or relation.

(3) Cardinality: The degree of relationship (also known as
cardinality) is the number of occurrences in one entity which are
associated (or linked) to the number of occurrences in another.

UGCS-104/65

Customer

Goods Goods
Bought

Fig. 3.16 Entities, Attributes, relationships

Relationships are of three types: one-to-one, one-to-many and many-to-

many.

3.10.1 One-to-one Relationship (1:1): In one-to-one relationship, one
record in a table is related to only one record in another table. For example
in Figure 3.17, one student can enroll only for one course and a course will
also have only one Student.

Student

Course

Fig. 3.17 One-to-one relationship

3.10.2 One-to-many Relationship (1: M): In one-to-many relationship,
one record in a table (parent table) can be related to many records in
another table (child table) .For example in Figure 3.18, a father may have
more than one child but the child has only one father.

Child 1

Father

Child 2

UGCS-104/66

Child 3

Fig. 3.18 One-to-many relationship

3.10.3 Many-to-many Relationship (M: M): In many-to-many
relationship, one record in a table can be related to one or more records in
another table, and one or more records in the second table can be related to
one or more records in the first table. For example in Figure 3.19, an
employee may work on several projects at the same time and a project has
a team of many employees.

Works on

Employee

Ql.
Q2.

Q3.
Q4.
Q5.

Q6.

Employs
Fig. 3.19 Many-to-many relationship

“CHECK YOUR PROGRESS 3”

Explain Extender ER model.

Project

Define the concept of aggregation. Give an example of where this

concept is useful.

Explain multivalued dependencies with example.

Discuss the naming conventions used for ER schema diagrams.

Construct an ER diagram for university registrar’s office. The

office maintains data about each class, including the instructor, the

enrollment and the time and place of the class meetings. For each

student class pair a grade is recorded. Determine the entities and

relationships.

Draw an E-R diagram for a hospital with a set of patients and a set

of medical doctors, with each patient a log of the various

conducted tests is also associated.

3.11 E-R Examples

(1) Construct an E-R diagram for a car insurance company whose

customers own one-or-more cars each. Each car has associated with it zero
to any number of recorded accidents.

UGCS-104/67

Person

s e
I

G

car

N
0
G
g
5

5

Repor

$

Particiap
ated

Damage am

(2) Construct an E-R diagram that used only a binary relationship between
students amd course-offering. Make sure that only one relationship exists
between a particular student and course-offering pair. Yet you can
represent the marks that a student gets in different exams of a course

offering.
Course Offering

@

Exam —

i A

UGCS-104/68

3.12 SUMMERY

The Entity-Relationship model is a high level data model based on
a perception of a real world that consists of a collection of basic
objects, called entities and of relationships among these objects.

An entity can be define as a ‘thing’ or ‘object’ in the real world
that is distinguishable from all other objects, whereas an entity set
is a set of entities of the same type that share the same properties
or attributes.

Attributes are the descriptive properties possessed by each member
of an entity set.

The domain of an attribute is the collection of all possible values,
and attribute can have.

Mapping constraints express the number of entities to which
another entity can be associated via a relationship set.

A key is a value which can always be used to uniquely identify an
object instance. It is of five types: super key, candidate key,
primary key, composite key and foreign key.

Generalization is the abstracting process of viewing set of objects
as a single general class by concentrating on characteristics of
lower level entities while ignoring there is different.

Aggregation is a technique to express relationship among
relationship.

Specialization is the process of designing sub-groupings with an
entity set.

3.13 OBJECTIVE TYPE QUESTIONS

Choose the correct or best alternative in the following:

Q1. Key to represent relationship between tables is called

(A) Primary key (B) Secondary Key
(C) Foreign Key (D) None of these
Ans: C

Q2. What is a relationship called when it is maintained between two
entities?

(A) Unary (B) Binary
(C) Ternary (D) Quaternary
Ans: B

UGCS-104/69

UGCS-104/70

Q3. The RDBMS terminology for a row is

(A) tuple. (B) relation.

(C) attribute. (D) degree.

Ans: A
Q4. Which are the two ways in which entities can participate in a
relationship?

(A) Passive and active (B) Total and partial

(C) Simple and Complex (D) All of the above

Ans: B

Q5. Which of the following is another name for weak entity?
(A) Child (B) Owner
(C) Dominant (D) All of the above
Ans: A

Q6. A primary key is combined with a foreign key creates

(A) Parent-Child relation ship between the tables that connect
them.

B) Many to many relationship between the tables that connect
them.

(C) Network model between the tables that connect them.

(D) None of the above.
Ans: A

Q7. In E-R Diagram derived attribute are represented by
(A) Ellipse (B) Dashed ellipse
(C) Rectangle (D) Triangle
Ans B

Q8. An instance of relational schema R (A, B, C) has distinct values of A
including NULL
values. Which one of the following is true?

(A) A is a candidate key (B) A is not a candidate key

(C) A is a primary Key (D) Both (A) and (C)

Ans: B
Q9. A primary key if combined with a foreign key creates
(A) Parent-Child relationship between the tables that connect them.
(B) Many to many relationship between the tables that connect
them.
(C) Network model between the tables that connect them.
(D) None of the above.
Ans: A

Q10. In E-R Diagram relationship type is represented by

(A) Ellipse (B) Dashed ellipse
(C) Rectangle (D) Diamond
Ans: D

3.14 SELECTED EXERCISES

A S AN

. Discuss briefly the convention for displaying an E-R diagram.

What is the difference between specialization and Generalization
with respect to database?

Explain difference between a weak and a strong entity set.
Explain Primary key, Candidate key, super key and foreign key.
Explain the mapping constraints in detail.

Discuss the Relationship and its type.

Discuss the concept of aggregation.

Construct an E-R diagram for hospital management system.

Suppose you are given the following requirements for a simple
database for the Indian Hockey League (IHL):

e The IHL has many teams,

e cach team has a name, a city, a coach, a captain, and a set of
players,

e cach player belongs to only one team,

e cach player has a name, a position (such as left wing or goalie),
a skill level, and a set of injury records,

e ateam captain is also a player,

e a game is played between two teams (referred to as host team
and guest team) and has a date (such as July 25th, 2016) and a
score (such as 3 to 1).

Construct a clean and concise ER diagram for the IHL database. List
your assumptions and clearly indicate the cardinality mappings as well
as any role indicators in your ER diagram.

10. Construct an ER diagram for a college database. Statements are

given below:
e A college contains many departments
e FEach department can offer any number of courses

e Many instructors can work in a department

UGCS-104/71

UGCS-104/72

11.

12.

13.

¢ An instructor can work only in one department

e For each department there is a Head

e An instructor can be head of only one department
e Each instructor can take any number of courses

e A course can be taken by only one instructor

e A student can enroll for any number of courses

e Each course can have any number of students

An organization purchases items from a number of suppliers.
Suppliers are identified by SUP-ID. It keeps track of the number of
each item type purchased from each supplier. It also keeps a record
of supplier’s addresses. Supplied items are identified by ITEM-
TYPE and have description (DESC). There may be more than one
such addresses for each supplier and the price charged by each
supplier for each item type is stored. Identify the entites and
relationships for this organization and construct an E-R diagram.
From the E-R diagram, write the scripts for creating a schema.

What is an entity? What is a relationship? Explain ER modeling
with the help of database for a Student Management System.

Construct an ER diagram for university registrar’s office. The
office maintains data about each class, including the instructor, the
enrollment and the time and place of the class meetings. For each
student class pair a grade is recorded. Determine the entities and
relationships.

UGCS-104

Database Management System

_ (DBMS)
Uttar Pradesh Rajarshi Tandon
Open University
BLOCK
UNIT 4 75-98
RELATIONAL MODE
UNIT 5 99-164
STRUCTURE QUERY LANGUAGE
UNIT 6 165-188

DATABASE DESIGN

UGCS-104/73

Curriculum Design Committee

Dr. P. P. Dubey, Coordinator
Director, School of Agri. Sciences, UPRTOU, Allahabad
Prof. U. N. Tiwari Member

Dept. of Computer Science and Engg.,
Indian Inst. Of Information Science and Tech., Allahabad

Prof. R.S. Yadayv, Member
Dept. of Computer Science and Engg., MNNIT, Allahabad

Prof. P. K. Mishra Member
Dept. of Computer Science, Baranas Hindu University, Varanasi

Mr. Prateek Kesrwani Member Secretary

Academic Consultant-Computer Science
School of Science, UPRTOU, Allahabad
Course Design Committee

Prof. U. N. Tiwari Member
Dept. of Computer Science and Engg.,
Indian Inst. Of Information Science and Tech., Prayagraj

Prof. R.S. Yadav, Member
Dept. of Computer Science and Engg., MNNIT, Allahabad, Prayagraj
Prof. P. K. Mishra Member

Dept. of Computer Science, Baranas Hindu University, Varanasi

Faculty Members, School of Sciences

Dr. Ashutosh Gupta, Director, Scool of Science, UPRTOU, Prayagraj

Dr. Shruti, Asst. Prof., (Statistics), Scool of Science, UPRTOU, Prayagraj

Ms. Marisha Asst. Prof., (Computer Science), Scool of Science, UPRTOU, Prayagraj

Mr. Manoj K Balwant Asst. Prof., (Computer Science), Scool of Science, UPRTOU, Prayagraj
Dr. Dinesh K Gupta Academic Consultant (Chemistry), Scool of Science, UPRTOU, Prayagraj

Course Preparation Committee

Mr. Sanjeev Gangwar* Author
Dept. of Computer Applications

VBS Purvanchal University, Jaunpur

Ms. Marisha® Author
Assistant Professor- Computer Science

School of Science, UPRTOU, Prayagraj

Dr. Ashutosh Gupta Editor
Director, School of Sciences,

UPRTOU, Prayagraj

Prof. U. N. Tiwari Member
Dept. of Computer Science and Engg.,

Indian Inst. Of Information Science and Tech., Prayagraj

Prof. R.S. Yadav, Member
Dept. of Computer Science and Engg.,

MNNIT, Allahabad, Prayagraj

Prof. P. K. Mishra Member
Dept. of Computer Science

Baranas Hindu University, Varanasi

Dr. Dinesh K Gupta, SLM Coordinator
Academic Consultant- Chemistry School of Science, UPRTOU, Prayagraj

Note: Author’s * -Block 1 and 2, # - Block-3

© UPRTOU, Prayagraj. 2019
ISBN : 978-93-83328-29-1

All Rights are reserved. No part of this work may be reproduced in any form, by mimeograph or any other
means, without permission in writing from the Uttar Pradesh Rajarshi Tondon Open University, Prayagraj.

UGCS-104/74

UNIT-4
RELATIONAL MODEL

Structure

4.1 Introduction
4.2 Objectives
4.3 Relational Database
4.3.1 Entity
4.3.2 Attributes
4.4 Relational Model Concepts
4.4.1 Domain
4.42 Tuple
4.4.3 Relationship
4.44 Degree
4.5 Types of Relationships
4.5.1 One-To-One Relationship
4.5.2 One-To-Many Relationship
4.5.3 Many-To-Many Relationship
4.6 Constraints in DBMS
4.7 Types of constraints in DBMS
47.1 Domain Constraints
4.7.2 Tuple Uniqueness Constraints
4.7.3 Key Constraints
4.7.4 Single Value Constraints

4.7.5 Integrity Rule 1 (Entity Integrity Rule or
Constraint)

4.7.6 Integrity Rule 2 (Referential Integrity Rule or
Constraint)

4.7.7 General Constraints
4.8 Constraints in SQL

4.9 Types of SQL Constraints
UGCS-104/75

UGCS-104/76

4.10
4.11
4.12

4.13
4.14
4.15
4.16

4.9.1 NOT NULL

4.9.2 UNIQUE
493 DEFAULT
4.9.4 CHECK

4.9.5 PRIMARY KEY

4.9.6 FOREIGN KEY

Weak Entity Sets

Assertions

Relational Calculus

4.12.1 Tuple Relational Calculus
4.12.2 Domain Relational Calculus
4.11.3 Domain versus Tuple Calculus
Relational Calculus versus Relational Algebra
Summery

Objective Type Questions

Selected Exercises

4.1 INTRODUCTION

The

ER model is the generalization of earlier described models,

hierarchical and network models. It was first proposed by CHEN in 1976
and since then so many modification have been introduced in the model.

Our goal is to provide information for the purpose of decision making in
business. The database is one to provide such information. The ER model
is normally expressed by a graphical representation called Entity
Relationship Diagram (ER Diagram). E-R diagram serve the following
purposes.

They model the information needs of an organization.
They identify entities and their relationships.
They provide a starting point for data definition (data flow diagram).

They provide an excellent source of documentation for application
developers as

well as database and system administrators.

The various term used in ER model are Entities, Relationships and
Attributes. An entity is an object that exists in real world and is
distinguishable from other objects. The relational data model represents
the database as a collection of relations. A relation can be seen as a table
of values. There are six basic operations in relational algebra: selection,
projection, cartesian product, set union, complement and rename. Some
additional operators are also included in relational algebra such as join,
outer join and division. Relational calculus is also used in relational
algebra to retrieve the data from database. Relational calculus is divided
into two categories, tuple and domain.

4.2 OBJECTIVES

After the end of this unit, you should be able to:

e Define terms related to entity relationship modeling, including
entity, entity instance, attribute, relationship, cardinality, and foreign
key.

e Describe the entity modeling process.
e Discuss how to draw an entity relationship diagram.

e Describe how to recognize entities, attributes, relationships, and
cardinalities.

e Describe how to model supertype/subtype structures and unary
relationships.

e Describe various constraints.

43 RELATIONAL DATABASE

Relational database is made up of two-dimensional table which is used to
represent data in the form of rows and columns. The two-dimensional
table in relational database is known as relation and represents a real world
object. A relation describes the properties of the real world object, which it
represents.

4.3.1 Entity: A collection of entities or relationships among entities. An
entity is an object that exists and is distinguishable from other objects. An
entity set is a set of entities of the same type that share the same
properties. An entity is represented by a table in relational model. For
example, employee, student etc. are entities. Entity instance refer to a
particular occurrence of an entity in a table. For example, a particular
employee in an organization represents an instance of the employee entity.

UGCS-104/77

UGCS-104/78

4.3.2 Attributes

An entity is represented by a set of attributes, that is, descriptive
properties possessed by all members of an entity set. Attributes of an
entity are used to describe the specific entity. For example, an employee
entity is characterized by employee name, address etc. which are its
attributes. Attributes can be classified into three categories, which are:

e Composite & simple attributes: composite attributes are the
attributes which can be subdivided into smaller attributes. For
example, the name of an employee can divided into first name,
middle name, and last name. simple attributes are the attributes ,
which cannot be further subdivided into smaller attributes.

e Single valued & multivalued attributes: single valued attributes are
the attributes, which have a single value for a particular entity. For
example, employee name is a single valued attribute. Multivalued
attributes are the attributes, which can have more than one value for
a particular entity. For example, contact number of an employee is a
multivalued attribute as a particular employee can have more than
one contact number.

e Derived & stored attributes: derived attributes are the attributes
whose value can be derived from the value of some other attributes.
For example, the working years of an employee can be derived from
the date of joining of the employee and present date. The attribute
date of joining is said to be the stored attribute from which we derive
the value of some other attribute.

4.4 RELATIONAL MODEL CONCEPTS

There are certain terms that are used in context of relational model.
These are:

4.4.1 Domain: It is a set of atomic values. The values that cannot be
divided into subcomponents are called atomic values. Generally, you
specify a domain as a data type from which the values forming the domain
are taken. For example, the employee name attribute has domain name a
to z i.e. it can accept between a to z only.

4.4.2 Tuple: In relational data model, a row of a table is termed as a
tuple that gives complete information of an entity. For example, the row
with employee name ‘Ravi’ in the Employee relation is a tuple.

4.4.3 Relationship: Relationship shows the association between two
or more relations i.e. how entities are related to one other. For example in
the Figure 4.1, Depositor is the relationship between the customer entity

and account entity. Customer entity has primary key Social security and
Account entity has primary key Account number

Comsise) cuomer > I

Q@

Depositor

Customer Account

Fig. 4.1: Relationship set

4.4.4 Degree: Degree of a relationship is the number of relations
participating in that relationship. For example Depositor relationship
represents the relationship between two relations Customer and Account.
Therefore the degree of Depositor relationship is two and is known as
binary relationship.

4.5 TYPES OF RELATIONSHIPS

Mapping Cardinalities express the number of entities to which another
entity can be associated via a relationship set. It is most useful in
describing binary relationship sets. For a binary relationship set the
mapping cardinality must be one of the following types:

e One to one
e One to many
e Many to one
e Many to many
4.5.1 One-To-One Relationship

A relationship between two entities is said to be 1:1 when a single
instance of first entity is related only to another instance of the
second entity. For example shown in Figure 4.2, Employee and
Department are two entities. An Employee in an organization

UGCS-104/79

UGCS-104/80

Employe

belongs to a single department. Thus this relationship represents a

1:1 relationship:

Department_Na

Employee Department

Fig. 4.2: One to One Relationship

4.5.2 One-To-Many Relationship

A relationship between two entities is said to be 1:N when a single
instance of first entity is related to zero, one or more instances of the
second entity but a single instance of second entity can be related to only a
single instance of the first entity. For example, in the Figure 4.3, a loan is
associated with at most one Customer via borrower; a customer is
associated with several loans via borrower

Customer borrowe loan

r

Fig. 4.3: One to Many Relationship

4.5.3 Many-To-Many Relationship

A relationship between two entities is said to be M:N when a single
instance of first entity is related to zero, one or more instances of the

second entity and a single instance of second entity can also be related to
zero, one or more instances of the first entity. For example, in the Figure
4.4, a Customer is associated with several loans via borrower and a loan
entity is associated with several customers via borrower.

Social-security

loan-number @
DhAana

Customer loan
borrower

Fig. 4.4: Many to Many Relationships

4.6 Constraints in DBMS

Constraints define a condition, which need to be satisfied while storing
data in a database. DBMS allows you to define and implement the
constraints for a database object. For example, you can specify a
constraint that each field in the employee id column of the Employee
table must contain a unique value. The database designers need to identify
the constraints during database design.

Need of Constraints:
Constraints in the database provide a way to guarantee that:
e The values of individual columns are valid.

e In a table, rows have a valid primary key or unique key
values.

e In a dependent table, rows have valid foreign key values that
reference rows in a parent table.

4.7 Types of constraints in DBMS

4.7.1 Domain Constraints:

Domain Constraints specifies that what set of values an attribute can take.
Value of each attribute X must be an atomic value from the domain of X.
The data type associated with domains includes integer, character, string,
date, time, currency etc. An attribute value must be available in the
corresponding domain. Consider the example below — UGCS-104/81

UGCS-104/82

RollNo Name Class Age

11 Ankit MCA 22

12 Srishti BTech 18

13 Saurabh | MBA | A<—
Not allowed because Age is an
integer attribute.

4.7.2 Tuple Uniqueness Constraints:

A relation is defined as a set of tuples. All tuples or all rows in a relation
must be unique or distinct. Suppose if in a relation, tuple uniqueness
constraint is applied, then all the rows of that table must be unique i.e. it
does not contain the duplicate values. For example,

RollINo | Name Class Age

11 Ankit MCA 22

12 Srishti BTech 18

11 Ankit MCA 22<4—
Not allowed because all
rows must be unique.

4.7.3 Key Constraints

Keys are attributes or sets of attributes that uniquely identify an entity
within its entity set. An Entity set E can have multiple keys out of which
one key will be designated as the primary key. Primary key must have
unique and not null values in the relational table. In an subclass hierarchy,
only the root entity set has a key or primary key and that primary key must
serve as the key for all entities in the hierarchy. For example,

RollNo Name Class Age
11 Ankit MCA 22
12 Srishti BTech 18
11 <4 Saurabh MBA 22
Not allowed as primary key

value must be unique.

4.7.4 Single Value Constraints

Single value constraints refers that each attribute of an entity set has a
single value. If the value of an attribute is missing in a tuple, then we cal
fill it with a “null” value. The null value for a attribute will specify that
either the value is not known or the value is not applicable. Consider the
below example-

RollNo | Name Class Age | Driving Licence Number

11 Ankit MCA |22 UP-2725

12 Srishti BTech | 18 UP-3871, UP- 6757

1]

Not allowed as a person does not have
two driving licence

13 Saurabh | MBA 22

1]

Allowed as a person may or may not
have a driving licence.

4.7.5 Integrity Rule 1 (Entity Integrity Rule or Constraint)

The Integrity Rule 1 is also called Entity Integrity Rule or Constraint. This
rule states that no attribute of primary key will contain a null value. If a
relation has a null value in the primary key attribute, then uniqueness
property of the primary key cannot be maintained. Consider the example
below-

4.7.6 Integrity Rule 2 (Referential Integrity Rule or
Constraint)

Referential integrity is a database concept that ensures that
relationships between tables remain consistent. When one table has
a foreign key to another table, the concept of referential integrity states
that you may not add a record to the table that contains the foreign key
unless there is a corresponding record in the linked table. It also includes
the techniques known as cascading update and cascading delete, which
ensure that changes made to the linked table are reflected in the primary
table.

Foreign key constraint prevents conditions that violate any reference
between the two database tables. A foreign key value refers to another
table with the corresponding values of primary key in a database table.
Consider the following example where you need to create a database table
with a foreign key constraint.

CREATE TABLE Class
(student id int, couese name varchar(10), age int,

CONSTRAINT fk_student

UGCS-104/83

UGCS-104/84

FOREIGN KEY (student_id)
REFERENCES Student (STUD_ID))

The CREATE statement creates a Class database table with various
columns such as student id, course name and age. The student id defines
a foreign key for the Class database and STUD ID is the primary key for
the Student database table. The student id refers to the STUD ID primary
key of Student table.

4.7.7 General Constraints

General constraints are the arbitrary constraints that should hold in the
database. Domain Constraints, Key Constraints, Tuple Uniqueness
Constraints, Single Value Constraints, Integrity Rule 1 (Entity Integrity)
and 2 (Referential Integrity Constraints) are considered to be a
fundamental part of the relational data model. However, sometimes it is
necessary to specify more general constraints like the CHECK Constraints
or the Range Constraints etc.

Check constraints can ensure that only specific values are allowed in
certain column. For example , if there is a need to allow only three values
for the color like ‘White’, ‘Red’ and ‘Green’, then we can apply the check
constraint. All other values like ‘Black’ etc would yield an error.

CarlD Name Model Color

A-2345 Maruti 800 | 2010 White

A-6754 Maruti 800 | 2012 Red

A-7865 Maruti 800 | 2011 Grey

A-5643 Maruti-800 | 2105 Blgck
Not allowed as CHECK
constraint is applied

Range Constraints is implemented by BETWEEN and NOT BETWEEN.
For example, if it is a requirement that student ages be within 16 to 25,
then we can apply I the range constraints Ofor it. The below example will
explain Check Constraint and Range Constraint —

RolINo | Name Class Age

11 Ankit MCA 22
12 Srishti BTech |18
13 Saurabh | MBA 30

T

Not allowed as the RANGE defined is in
between 16 and 25

4.8 CONSTRAINTS IN SQL

The SQL CONSTRAINTS are an integrity which defines some
conditions that restricts the column to remain true while inserting or
updating or deleting data in the column. Constraints can be specified when
the table created first with CREATE TABLE statement or at the time of
modification of structure of an existing table with ALTER TABLE
statement.

The SQL CONSTRAINTS are used to implement the rules of the
table. If there is any violation of the constraints caused some action not
performing properly on the table the action is aborted by the constraint.

Some CONSTRAINTS can be used along with the SQL CREATE
TABLE statement.

The general structure of the SQL CONSTRAINT is defined as:

The CONSTRAINT keyword is followed by a constraint name
followed by a column or a list of columns.

Syntax:
CREATE TABLE <table name>(
columnl data type[(size)] constraint,

column?2 data type[(size)] constraint,

“CHECK YOUR PROGRESS 1”

What is a relation? What are its characteristics?

Define Constraints in database.
Define the terms: domain, tuple and degree.

Define derived and stored attributes.

A

Discuss the various features of relational data model in detail.

4.9 TYPES OF SQL CONSTRAINTS

The SQL provides following types of Constraints:

Constraint Description

NOT NULL This constraint confirms that a column cannot store
NULL value.

UNIQUE This constraint ensures that each rows for a column
must have different value.

PRIMARY KEY | This constraint is a combination of a NOT NULL

UGCS-104/85

UGCS-104/86

constraint and a UNIQUE constraint. This constraint
ensures that the specific column or combination of
two or more columns for a table have an unique
identity which helps to find a particular record in a
table more easily and quickly.

CHECK A check constraint ensures that the value stored in a
column meets a specific condition.

DEFAULT This constraint provides a default value when
specified none for this column.

FOREIGN KEY | A foreign key constraint is used to ensure the

referential integrity of the data in one table to match
values in another table.

4.9.1 Not Null

NOT NULL constraint makes sure that a column does not hold NULL
value. When we don’t provide value for a particular column while
inserting a record into a table, it takes NULL value by default. By
specifying NULL constraint, we can be sure that a particular column(s)
cannot have NULL values.

Example:

CREATE TABLE STUDENT (

ROLL_NO INT NOT NULL,

STU NAME VARCHAR (35) NOT NULL,
STU AGE INT NOT NULL,

STU ADDRESS VARCHAR (235),
PRIMARY KEY (ROLL NO)

);
4.9.2 Unique

UNIQUE Constraint enforces a column or set of columns to have unique
values. If a column has a unique constraint, it means that particular
column cannot have duplicate values in a table.

CREATE TABLE STUDENT (
ROLL NO INT NOT NULL,

STU NAME VARCHAR (35) NOT NULL UNIQUE,
STU _AGE INT NOT NULL,

STU ADDRESS VARCHAR (235) UNIQUE,
PRIMARY KEY (ROLL NO)

)

4.9.3 Default

The DEFAULT constraint provides a default value to a column when
there is no value provided while inserting a record into a table.

CREATE TABLE STUDENT (
ROLL NO INT NOT NULL,
STU NAME VARCHAR (35) NOT NULL,
STU AGE INT NOT NULL,
EXAM FEE INT DEFAULT 10000,
STU ADDRESS VARCHAR (235),
PRIMARY KEY (ROLL NO)
);
4.9.4 Check

This constraint is used for specifying range of values for a particular
column of a table. When this constraint is being set on a column, it ensures
that the specified column must have the value falling in the specified
range.

CREATE TABLE STUDENT (

ROLL NO INT NOT NULL CHECK(ROLL_NO >1000),
STU NAME VARCHAR (35) NOT NULL,

STU AGE INT NOT NULL,

EXAM _FEE INT DEFAULT 10000,

STU_ADDRESS VARCHAR (235),

PRIMARY KEY (ROLL_NO)

);

In the above example we have set the check constraint on ROLL NO
column of STUDENT table. Now, the ROLL NO field must have the
value greater than 1000.

4.9.5 Primary Key

Primary key uniquely identifies each record in a table. It must have unique
values and cannot contain nulls. In the below example the ROLL NO
field is marked as primary key, that means the ROLL NO field cannot
have duplicate and null values.

CREATE TABLE STUDENT (
ROLL NO INT NOT NULL,

UGCS-104/87

http://beginnersbook.com/2015/04/primary-key-in-dbms/

UGCS-104/88

STU NAME VARCHAR (35) NOT NULL UNIQUE,
STU AGE INT NOT NULL,
EXAM FEE INT DEFAULT 10000,
STU ADDRESS VARCHAR (235) UNIQUE,
PRIMARY KEY (ROLL NO)
)

4.9.6 Foreign Key

A foreign key constraint specifies that the values in a column (or a
group of columns) must match the values appearing in some row of
another table. We say this maintains the referential integrity between two
related tables.

Say you have the product table that we have used several times already:
CREATE TABLE products (

product no integer PRIMARY KEY,

name text, price numeric);

Let's also assume you have a table storing orders of those products. We
want to ensure that the orders table only contains orders of products that
actually exist. So we define a foreign key constraint in the orders table that
references the products table:

CREATE TABLE orders (

order id integer PRIMARY KEY,

product_no integer REFERENCES products (product no),
quantity integer);

Now it is impossible to create orders with product no entries that do not
appear in the products table.

We say that in this situation the orders table is the referencing table and
the products table is the referenced table. Similarly, there are referencing
and referenced columns.

Example:

Consider the structure of the two tables as follows:

CUSTOMERS table:

CREATE TABLE CUSTOMERS (
IDINT NOT NULL,

NAME VARCHAR (30) NOT NULL,
AGE INT NOT NULL,

ADDRESS CHAR (25),

SALARY DECIMAL(18,2)

PRIMARY KEY (ID)

);

ORDERS table:

CREATE TABLE CUSTOMERS (
IDINT NOT NULL,

DATE DATETIME,

CUSTOMER _ID INT references CUSTOMERS (ID),
AMOUNT DOUBLE,

PRIMARY KEY (ID)

);

If ORDERS table has already been created, and the foreign key has not
yet been set, use the syntax for specifying a foreign key by altering a
table.

ALTER TABLE ORDERS

ADD FIREIGN KEY (Customer ID) REFERENCES CUSTOMERS
(ID)

410 WEAK ENTITY SETS:

The entity set which does not have sufficient attributes to form a
primary key is called as Weak entity set. An entity set that has a primary
key is called as Strong entity set. Consider an entity set Payment which
has three attributes: payment number, payment date and
payment amount. Although each payment entity is distinct but payment
for different loans may share the same payment number. Thus, this entity
set does not have a primary key and it is a weak entity set. Each weak set
must be a part of one-to-many relationship set.

UGCS-104/89

UGCS-104/90

Loan

Number @

A member of a strong entity set is called dominant entity and member of
weak entity set is called as subordinate entity. A weak entity set does not
have a primary key but we need a means of distinguishing among all those
entries in the entity set that depend on one particular strong entity set. The
discriminator of a weak entity set is a set of attributes that allows this
distinction be made. For example, payment number acts as discriminator
for payment entity set. It is also called as the Partial key of the entity set.

The primary key of a weak entity set is formed by the primary key of
the strong entity set on which the weak entity set is existence dependent
plus the weak entity sets discriminator. In the above example
{loan_number, payment number} acts as primary key for payment entity
set.

The relationship between weak entity and strong entity set is called as
Identifying Relationship. In example, loan-payment is the identifying
relationship for payment entity. A weak entity set is represented by doubly
outlined box and corresponding identifying relation by a doubly outlined
diamond as shown in Figure 4.5. Here double lines indicate total
participation of weak entity in strong entity set. It means that every
payment must be related via loan-payment to some account. The arrow
from loan-payment to loan indicates that each payment is for a single loan.
The discriminator of a weak entity set is underlined with dashed lines
rather than solid line

Discriminetor

Payment_
date

Payment

amount

Payment

Number

Loan Loan Payment
Payme

Fig. 4.5: Relation between strong and weak entity set

The tabular comparison between Strong Entity Set and Weak Entity Set is
as follows:

S.No | Strong Entity Set

Weak Entity Set

1 It has its own primary key. It does not have sufficient
attributes to form a primary
key on its own.

2 It is represented by a rectangle. It is represented by a double
rectangle.

3 It contains a primary key It contains a partial key or

represented by an underline. discriminetor represented by
a dashed underline.
4 The member of strong entity set is | The member of weak entity
called as dominant entity set. set is called as subordinate
entity set.

5 The relationship between two The relationship between

strong entity set is represented by | one strong and a weak entity

a diamond symbol. set is represented by a
double diamond sign known
as identifying relationship.

6 The line connecting strong entity | The line connecting weak

set with the relationship is single. | entity set with the
identifying relationship is
double.

7 Total participation in the Total participation in the

relationship may or may not exist.

identifying relationship
always exist.

4.11 ASSERTIONS

An assertion is a predicate expressing a condition that we wish the

database to always satisfy. For example, consider the statements:

(a) The sum of all loan amounts for each branch must be less than the

(b) Each loan has at least one customer who maintains an account with a

sum of all balances at the branch.

minimum balance of Rs. 1000.000

UGCS-104/91

The SQL-92 standard provides the following form for the assertion
declaration:

create assertion <assertion-name> check <predicate>
The two previous constraints would be:
create assertion sum-constraint check
(not exists (select * from branch
where (select sum(amount) from loan
where loan.branch-name = branch.branch-name)
>= (select sum(amount) from account

where loan.branch-name = branch.branch-name)))

create assertion balance check (not exists (select * from loan where not
exists (select *

from borrow, depositor, account
where loan.loan-number = borrower.loan
and borrower.customer-name =
depositor.customer-name
and depositor.account-number =
account.account-number

and account.balance = 1000)))

4.12 RELATIONAL CALCULUS:

The relational calculus is a non procedural query language whereas
relational algebra is a procedural query language.

In non-procedural query language, the user is concerned with the details of
how to obtain the end results. Whereas in procedural query language we
define each step in order to obtain the end result. In relational calculus a
query is expressed as a formula consisting variables. There is no
mechanism to specify how a formula should be evaluated.

Relational calculus are of two types
(1) Tuple Relational Calculus

(2) Domain Relational Calculus

UGCS-104/92

1.12.1 Tuple Relational Calculus

The tuple relational calculus is based on specifying a number of tuple
variables. The simple query based of tuple relational calculus is given by
the following equation:

{t{ COND (t)}
where t is a tuple variable and COND (t) is a conditional expression.

The result of a query in the tuple relational calculus is all the tuples which
satisfy condition that may specify in the query. Consider the relation
Student listed in Table 4.1

Name SSN Phone No City Age GPA
Amit 546-65 | 9876754634 | Agra 19 5.8
Vijay 456-78 | Null Delhi 18 4.9
Saroj 435-67 | 0656567656 | Mumbai 22 3.29
Himanshu | 768-34 | 9656467646 | Bareilly 23 7.8
Santosh 564-78 9876574367 | Varanasi 18 5.7

Table 4.1: The Student relation

In this relation if you need to find all the students whose ages are less than
20, you can write the following query

{t| Student(s) and s.age<20}

As a result three tuples will be retrieved from the Student relation as listed
in table 4.2

Name SSN Phone No City Age GPA

Amit 546-65 9876754634 | Agra 19 5.8

Vijay 456-78 Null Delhi 18 49
Santosh | 564-78 9876574367 | Varanasi 18 5.7

4.12.2 The Domain Relational Calculus

The domain relational calculus is based on specifying single values from
domain attributes. The simple query based of domain relational calculus is
given by the following equation:

{X1,X2,....Xy [COND(x},X2,......... Xn,Xn+1> Xnt2> Xntm) }

Here X1,X2,...Xn, Xnt1, Xnt2,..... Xntm are domain variables that range over
attributes, whereas COND is a condition or formula of the domain
relational calculus.

The atoms of formula in domain relational calculus are

UGCS-104/93

UGCS-104/94

(1) An atom of the form relation R(x;,x,,.....X;) where degree of the
relation is n and name of the relation is a domain variable. Each x;
a domain variable in which i ranges between 1<=i<=n. This atom
specifies a list of values of (Xi,Xa,.....Xn) Wwhich are tuple in the
relation R.

(i1) An atom of the form x; op X; where op is one of the comparison
operator and x; and X; are domain variables.

(iii)An atom of the form x; op ¢ or ¢ op x; where op is one of the
comparison operator and x; and x; are domain variables, and c is a
constant value.

Some examples of queries specified in the domain calculus follow. We
will use lowercase letters I, m,n,...... ,X,y,z for domain variables.

(1) List the names of managers who has at least one dependency.

{s,q| (3 ©) (3 j) (3 1) (EMPLOYEES (qestuvwxyz) AND DEPARTMENT
(hijk) AND DEPENDENT (Imnop) AND t=j AND I=t))

(2) Retrieve the name and address of all employees who work for the
‘Research’ department.

{q, s, v/ 3 z) 3 1) (3 m) (EMPLOYEE(grstuvwxyz) AND
DEPARTMENT (Imno) AND I="Research’ AND m=z)}

4.12.3 Domain versus Tuple Calculus

In tuple calculus, the range variable ranges over the tuple instead of
relation. In domain calculus the range variables range over the domain
instead of tuple. Range variable is a variable that helps in relational
calculus to retrieve data in the form of tuples and domain from database.

“CHECK YOUR PROGRESS 2”

Explain relational algebra.

. Differentiate between tuple and domain calculus,

1.
2
3. Differentiate between procedural and non-procedural language.
4. Define Strong and Weak entity set.

5

. Explain Entity Integrity constraint with example.

4.13 RELATIONAL CALCULUS VERSUS
RELATIONAL ALGEBRA

Relational algebra is a procedural query languages that allow you
to retrieve data from a database by specifying sequence of operations.
Whereas relational calculus is a nonprocedural query language in which

you can write declarative expressions to specify the request for retrieving
data from a database.

Relational algebra contains a set of explicit operators such as join,
union and intersection. These explicit operators tell the database how to
construct a desired relation from the given relations. Relational calculus
provides a notation for retrieving a desired relation instead of using
explicit operators. Relational calculus is divided into two categories tuple
and domain.

The distinction between relational algebra and relational calculus is
superficial because relational calculus and relational algebra are logically
equivalent. Each query of relational algebra has an equivalent query in
relational calculus. Similarly each query of relational calculus has
equivalent query in relational algebra.

4.14 SUMMERY

o Entity- An entity is an object that exists and is distinguishable from
other objects. An entity set is a set of entities of the same type that
share the same properties.

o Attributes- An entity is represented by a set of attributes, that is,
descriptive properties possessed by all members of an entity set.

o Relationship sets - A relationship is an association among several
entities.

® Degree of a Relationship Set-Refers to number of entity sets that
participate in a relationship set.

o Mapping Cardinalities Express the number of entities to which
another entity can be associated via a relationship set.

® An integrity constraint is the condition that can be applied on a
database schema to restrict the data according to the need. It is of
two types: Entity integrity constraints and referential integrity
constraints.

e Domain constraints are the most elementary form of integrity
constraint. They are tested easily by the system whenever a new
data item is entered into the database.

e Anassertion is a predicate expressing a condition that we wish the
database to always satisfy.

® Query language is a language through which we communicate with
the database. It is of two types: Relational algebra & relational
Calculus.

UGCS-104/95

UGCS-104/96

4.15 OBJECTIVE TYPE QUESTIONS:

Q1.

Q2.

Q3.

Q4.

Q5.

Every time attribute A appears, it is matched with the same value
of attribute B, but not the same value of attribute C. Therefore, it is
true that:

(A) A?B. (B) A?C.
(C) A?(B,C). (D) (B,C)?A.
ANS: A

The different classes of relations created by the technique for
preventing modification anomalies are called:

(A) normal forms. (B) referential integrity
constraints.

(C) functional dependencies. (D) None of the above is
correct.

ANS: A

A relation is in this form if it is in BCNF and has no multivalued
dependencies:

(A) second normal form. (B) third normal form.

(C) fourth normal form. (D) domain/key normal
form.

ANS: C

Row is synonymous with the term:

(A) record. (B) relation.
(C) column. (D) field.
ANS: A

The primary key is selected from the:

(A) composite keys. (B) determinants.
(C) candidate keys. (D) foreign keys.
ANS: C

Q6.

Q7.

Q8.

Qo.

Q 10.

Which of the following is a group of one or more attributes that
uniquely identifies a row?

(A) Key (B) Determinant
(C) Tuple (D) Relation
ANS: A

When the values in one or more attributes being used as a foreign
key must exist in another set of one or more attributes in another
table, we have created a(n):

(A) transitive dependency. (B) insertion anomaly.
(C) referential integrity constraint. (D) normal form.
ANS:C

A relation is considered a:

(A) Column. (B) one-dimensional
table.

(C) two-dimensional table. (D) three-dimensional
table.

ANS C

In the relational model, relationships between relations or tables
are created by using:

(A) composite keys. (B) determinants.
(C) candidate keys. (D) foreign keys.
ANS: D

A functional dependency is a relationship between or among:
(A) tables. (B) rows.

(C) relations. (D) attributes.

ANS: D

4.16 SELECTED EXERCISE

Ql:

Given relational schema:

Frequent (D, P)

Serves (P, B)

Likes (D, B)

Attributes: P (pub), B (beer), D (drinker)

UGCS-104/97

UGCS-104/98

Q2:
Q3:
Q4:
Qs:
Q6:
Q7:
Q8.
Q.

Q10.

Write the SQL statements for the following query
(a) The pubs that serve a beer that Jefferson likes.
(b) Drinkers that frequent at least one pub that serves “Bud” or
“Becks”.

(c) Drinkers that frequent only pubs that serve some beer they like
(d) Drinkers that frequent only pubs that serve no beer they like.
What is Relational Algebra? Explain with Example.
What is Entity Set Relationship & describe roles & design issues.
Describe the Relational Calculus with Example.
Define Assertion & types of assertion.
What is Referential Integrity?
What do you mean by Weak Entity Sets?
Define relational algebra, Tuple & Domain relational calculus.
Consider the following database.

Employee (employee-name, street, city)

Works (employee-name, company-name, salary)

Company (company-name, city)

Manager (employee-name, manager-name)

Give an expression in the relational algebra, the tuple relational
calculus, and the domain relational calculus, for the following

query.
Find the names of all employees who work for estate bank.

Discuss the various features of relational data model in detail.

UNIT-5
STRUCTURE QUERY LANGUAGE

Structure

5.1 Introduction

5.2 Objectives

5.3 Structured Query Language
5.4 Need of SQL

5.5 Characteristics of SQL
5.5.1 SQL statements

5.6 Advantages of SQL

5.7 SQL Process

5.8 SQL Commands
5.8.1 DDL - Data Definition Language
5.8.2 DML - Data Manipulation Language
5.8.3 DCL - Data Control Language
5.8.4 DQL - Data Query Language

5.9 SQL Queries

5.10 SQL Data Types
5.10.1 Numeric Data Types
5.10.2 Character Data Types
5.10.3 Date and Time Data Types
5.10.4 Binary Data Types
5.10.5 Boolean Data Types

5.11 SQL Operators
5.11.1 SQL Arithmetic Operators
5.11.2 SQL Comparison Operators
5.11.3 SQL Logical Operators
5.11.4 SQL - Boolean Expressions
5.11.5 Create Database

UGCS-104/99

UGCS-104/100

5.12

5.13

5.14

5.15
5.16
5.17

5.11.6 DROP Command
5.11.7 Use Statement
5.11.8 Create Table

5.11.9 Insert into Command
5.11.10 Where Clause
5.11.11 AND & OR Operator
5.11.12 Update Command
5.11.13 Delete Command
5.11.14 Like Clause

5.11.15 Top Clause

5.11.16 Group By Clause
5.11.17 Distinct Keyword
5.11.18 Order By Clause
Constraints

5.12.1 Dropping Constraints
5.12.2 Integrity Constraints
SQL Join Types

5.13.1 Inner Join

5.13.2 Left Join

5.13.3 Right Join

5.13.4 Full Join

5.13.5 SelfJoin

Union

5.14.1 UNION All Clause
5.14.2 Intersect

5.14.3 Except

Null

Truncate Table

Views

5.17.1 Advantages of VIEW
5.17.2 Disadvantages of VIEW

5.17.3 Creating a VIEW
5.17.4 Updating a VIEW
5.17.5 Dropping Views

5.18 Nested Query

5.19 SQL Aggregate Functions
5.19.1 SQL First () Function
5.19.2 SQL Last () Function
5.19.3 Minus (Difference)

5.20 Cursors
5.20.1 Creating a Cursor
5.20.2 Opening a Cursor
5.20.3 Scrolling a Cursor
5.20.4 Testing a Cursor's Status
5.20.5 Closing a Cursor
5.20.6 Scope of Cursors

5.21 Triggers
5.21.1 Advantages of Triggers
5.21.2 Creating Triggers
5.21.3 Triggering a Trigger

5.22 Summary

5.23 Objective Type Questions
5.24 Selected Exercise

5.1 INTRODUCTION

The objective of a database is to store data in such a manner that it
can be easily accessed and altered by the user who is using a database. To
store and retrieve data from a database, DBMS uses a database language.
The database languages allow a database administrator to retrieve, update
and remove data from the database. The language which a database
administrator can use to maintain database are SQL (structured query
language). SQL is a standard, interactive and programming language for
accessing, querying, managing and updating data in RDBMS. Using SQL
you can also create databases and various database objects such as table,
columns and views. In addition SQL is useful not only for changing the
configuration of the server of a database but also for modifying the

UGCS-104/101

UGCS-104/102

database or its session settings. Now, with technology advancements,
SQL also supports object-relational database management systems.

Programming language SQL (PL/SQL) is a development tool that extends
the features provided in the SQL database language. PL/SQL allows you
to provide flow control and logic design to unstructured SQL command
blocks.

5.2 OBJECTIVES

At the end of this unit, you should be able to:

¢ Introducing the SQL objects needed for database management
activities.

e Describing how SQL Server Enterprise Manager is used to create a
database table.

e Describing the CREATE TABLE statement for creating a database
table and use of SELECT statement to retrieve data from databases.

e Explaining how you can manipulate data stored in a database using
SQL statements.

e Describing character sets, literals and data types in SQL.

5.3 STRUCTURED QUERY LANGUAGE

SQL (structured Query Language) is a computer language for storing,
manipulating and retrieving data stored in relational database. SQL is the
standard language for Relation Database System. All relational database
management systems like MySQL, MS Access, and Oracle, Sybase,
Informix, postgres and SQL Server uses SQL as standard database
language.

5.4 NEED OF SQL

SQL is a standard language for accessing and manipulating databases.
SQL help us to retrieve data from database according to user requirement.
It is a standard language for relational database system. We can describe
SQL as follows:

e Allow users to access data in relational database management
systems.

e Allow users to describe the data.
e Allow users to define the data in database and manipulate that data.

e Allow to embed within other languages using SQL modules,
libraries & pre- compilers.

e Allow users to create and drop/delete databases and tables.

e Allow users to create view, stored procedure, functions in a database.

e Allow users to set permissions on tables, procedures, and views.

5.5 CHARACTERISTICS OF SQL

SQL is a standard interactive and programming language for querying and
modifying data and managing databases. Although SQL is both an ANSI
and an ISO standard, many database products support SQL with
proprietary extensions to the standard language. The core of SQL is
formed by a command language that allows you to retrieve, insert, update,
and delete data, and perform management and administrative functions.
SQL also includes a call-level interface (SQL/CLI) for accessing and
managing data and database remotely. Some important characteristics of
SQL are

(1) SQL enables end user and system persons to deal with a number of
database =~ management systems where it is available.

(i1) Applications written in SQL can be easily ported across systems.
Such porting could be required when the underlying DBMS
needs to upgraded because of change in transaction volumes or
when a system developed in one environment is to be used on
another.

(i11)) SQL as a language is independent of the way it is implanted
internally. A query returns the same result regardless of whether
optimizing has been done with indexes or not. This is because SQL
specifies what is required and not how it is to be done.

(iv) The language while being simple and easy to learn can cope with
complex situations.

(v) The results to be expected are well defined in SQL.
5.5.1 SQL statements

SQL statements can be executed on any computer (mainframe or
personal computer) and under any operating system. The SQL statement
(or command) accepts one or more relations as input and returns a single
relation as output. SQL follows the relational calculus style. The syntax of
SQL statements are also similar to relational calculus operators.

It also has features for:
(1) Defining views on database.
(2) Specifying, security and authorization.
(3) Defining integrity constraints.

(4) Specifying transaction controls.

UGCS-104/103

UGCS-104/104

5.6 Advantages of SQL

Below given are the advantages of Structured Query Language (SQL):

1)

2

(&)

(C))

(©))

()

)

®

®

Portable: SQL is run in programs in mainframes, PCs, laptops,
servers and even mobile phones. It runs in local systems, intranet and
internet. Databases using SQL can be moved from one device to
another without any problems.

Used with any DBMS system with any vendor: SQL is used by all
the vendors who develop DBMS.

SQL Standard: First standard for SQL was put up in 1986 by ANSI
(American National Standards Institute) and ISO (International
Standards Organization). It was later expanded in 1989 and in 1992
and 1999.

Used for relational databases: SQL is widely used for relational
databases.

Easy to learn and understand: SQL mainly consists of English
statements and it is very easy to learn and understand a SQL query.

Interactive language: SQL can be used to communicate with the
databases and get answers to complex questions in seconds.

Both as programming language and interactive language: SQL
can do both the jobs of being a programming as well as an
interactive language at the same time.

Complete language for a database: SQL is used to create
databases, manage security of a database. It can also be used for
updating, retrieving and sharing data with users.

Multiple data views: By use of SQL, different views of structure
and content of a database can be provided for different users.

(10) Dynamic database language: By the use of SQL database structure

can be changed in a dynamic fashion even when the contents of the
database are accessed by users at the same time.

(11) Supports object based programming: SQL supports the latest

object based programming and is highly flexible.

(12) Supports enterprise applications: SQL is the database language

which is used by businesses and enterprises throughout the globe.
For an enterprise application it is a perfect language for a database.

(13) Integrates with Java: SQL integrates with Java by using an API
known as JDBC (Java Database Connectivity).

(14) Used in internet: SQL is used in three tiered Internet architecture.
The architecture includes a client, application server and a database.
The architecture includes a client, application server and a database.
In the Oracle client/server architecture, the database application and
the database are separated into two parts: a front-end or client
portion, and a back-end or server portion. The client executes the
database application that accesses database information and interacts
with a user through the keyboard, screen, and pointing device such
as a mouse. The server executes the Oracle software and handles the
functions required for concurrent, shared data access to an Oracle
database.

The client and server are located on different computers; these
computers are connected via a network as shown in Figure 5.1.

Database|Server

Client Client

Fig. 5.1: Client/server architecture

5.7 SQL Process

When you are executing an SQL command from any RDBMS, the system
determines the best way to carry out your request and SQL engine figures
out how to interpret the task. There are various components included in
the process. These components are Query Dispatcher, Optimization
engines, Classic Query Engine and SQL query engine etc. Classic query
engine handles all non-SQL queries but SQL query engine won't handle

UGCS-104/105

logical files. Following is a simple diagram (Figure 5.2) showing SQL

Architecture
SQL Query
v
Query Language Processor |« Parser+Optimizer
A\ 4
DBMS Engine File
< Manager+Transacti
on manager

Physical Database

Fig. 5.2: SQL Process

5.8 SQL Commands

The standard SQL commands to interact with relational databases
are CREATE, SELECT, INSERT, UPDATE, DELETE, and DROP.
These commands can be classified into groups based on their nature:

5.8.1 DDL - Data Definition Language

Command | Description
CREATE Creates a new table, a view of a table, or other object in database
ALTER Modifies an existing database object, such as a table.

Deletes an entire table, a view of a table or other object in the
DROP

database.

(a) Creating a Table

A row refers to the horizontal part of the table which contains one or more
columns. A column refers to the vertical part of the table which contains
one or more rows of data of one type.

UGCS-104/106

The CREATE statement is used to create and manage database objects.
For example you can create a Customers database table that consists of
information details of customers of an organization. To create a Customer
table, execute the following SQL statement.

CREATE TABLE Customer:;
The above command creates the Customer database on DBMS.

Alternatively the following statement can also be used to create a
customer details. table that contains detail of the customers of the
organization such as cust_firstname, cust lastname and cust id.

CREATE TABLE cust_details(cust_firstname char(20) not null,
cust_lastname char(20) not null, cust _id int not null);

The above statement creates a table cust details in the current database.
The wvarious attributes of the cust details are cust firstname,
cust_lastname and cust_id and column of the cust_details table.

(b) How to modify table

Once a table is created it's structure is not necessarily fixed in stone. In
time requirements change and the structure of the database is likely to
evolve to match your wishes. SQL can be used to change the structure of
a table, so, for example, if we need to add a new field to our Customer
table to tell us if the customer has phone no, then we can execute an SQL
ALTER TABLE command as shown below:

ALTER TABLE Customer ADD COLUMN Phone_no int;

To delete a column the ADD keyword is replaced with DROP, so to
delete the field we have just added the SQL is:

ALTER TABLE Customer DROP COLUMN Phone_no;
(c) How to delete table

If you have already executed the original CREATE TABLE command
your database will already contain a table called Customer, so let's get rid
of that using the DROP command:

DROP TABLE Customer;
5.8.2 DML - Data Manipulation Language

Command Description

INSERT INTO | inserts new data into a database table
UPDATE updates data in a database table
DELETE deletes data from a database table

(a) How to Insert Data
The command to add new records to a table is:

INSERT INTO target [(fieldl [, field2 [, ...]])] UGCS- 1047107

UGCS-104/108

VALUES (valuel [, value2 |, ...]);

So, to add a customer record for user amit, we would issue the following
INSERT query:

INSERT INTO Customer (cust_firstname, cust_lastname, cust_id)
VALUES ("sanjeev', "gangwar", 9);
(b) How to Update Data

The INSERT command is used to add records to a table, but what if you
need to make an amendment to a particular record? In this case the SQL
command to perform updates is the UPDATE command, with syntax:

UPDATE table
SET newvalue
WHERE criteria;

For example, let's assume that we want to change customer last name
gangwar to patel. Our SQL statement would then be:

UPDATE Customer

SET cust_lastname=""patel"
WHERE cust_id=9;

(c¢) How to Delete Data

SQL provides a simple command to delete complete records. The syntax
of the command is:

DELETE [table.*]
FROM table
WHERE criteria;

Let's assume we have a user record for Sanjeev gangwar, (with cust id
9), which we want to remove from our User we could issue the following

query:
DELETE *

FROM Customer
WHERE cust_id=9;

This query will delete an entire record of customer sanjeev gangwar.

5.8.3 DCL - Data Control Language:

Command Description
GRANT Gives a privilege to user
REVOKE Takes back privileges granted from user

(a) The GRANT statement is used to grant the privileges on the database
objects to specific users. Normally the GRANT statement is used by
owner of the table or view to give other users access to the data. The
GRANT statement includes list of the privileges to be granted, name
of the table to which privileges apply and user id to which privileges
are granted.

Example
(1) Give user ABC full access to employee table:
GRANT Select, Insert, Delete, update on employee to ABC

(2) Let user ABC only read the employee table. Update, delete and insert
are not allowed.

GRANT Select on employee to ABC
(3) Give all users select access to employee table:
GRANT Select on employee to public

Note that GRANT statement in the above example grants access to all
present and future authorized users. This eliminates the need for you to
explicitly grant privileges to new users as they are authorized.

(b) REVOKE STATEMENT: In most SQL based databases, the
privileges that you have granted with the GRANT statement can be
taken away with the REVOKE statement. The structure of the
REVOKE statement is much similar to that of the GRANT
statement. A REVOKE statement may take away all or some of the
privileges granted to a user id. E.g.

Revoke Select, Insert on employee from ABC
5.8.4 DQL - Data Query Language:

Command Description

SELECT Retrieves certain records from one or more tables

The SELECT statement is used in conjunction with the FROM keyword
which specifies the name of a table from where the stored data is to be
retrieved. The following syntax determines the basic SQL SELECT
statement:”

SELECT Column_name

From Table name
UGCS-104/109

UGCS-104/110

let's assume that we want to retrieve customer first name from Customer
table. Our SQL statement would then be

SELECT cust_firstname
FROM Customer;

This SELECT statement retrieves records from a single column in a
database table.

5.9 SQL Queries

SQL is followed by unique set of rules and guidelines called syntax.
This unit gives you a quick start with SQL by listing all the basic SQL
Syntax. All the SQL statements start with any of the keywords like
SELECT, INSERT, UPDATE, DELETE, ALTER, DROP, CREATE,
USE, SHOW and the entire statements end with a semicolon (;).

Important point to be noted is that SQL is case insensitive which
means SELECT and select have same meaning in SQL statements.

(1) SQL SELECT Statement:
SELECT columnl, column2...column FROM table name;
(2) SQL DISTINCT Clause:

SELECT DISTINCT columnl, column2...column FROM
table name;

(3) SQL WHERE Clause:

SELECT columnl, column2....columnN FROM table name
WHERE CONDITION;

(4) SQL AND/OR Clause:

ELECT columnl, column2....columnN FROM table name
WHERE CONDITION-1

{AND|OR} CONDITION-2;
&) SQL IN Clause:
SELECT columnl, column2....columnN FROM table name
WHERE column_name IN (val-1, val-2,...val-N);
() SQL BETWEEN Clause:
SELECT columnl, column2....columnN FROM table name
WHERE column name BETWEEN val-1 AND val-2;

7 SQL LIKE Clause:
SELECT columnl, column?2....columnN FROM table name
WHERE column_name LIKE {PATTERN};

t)) SQL ORDER BY Clause:
SELECT columnl, column2....columnN FROM table name

HERE CONDITION ORDER BY column_name {ASC|DESC};

9) SQL GROUP BY Clause:

SELECT SUM (column name) FROM table name WHERE

CONDITION
GROUP BY column_name;
(10) SQL COUNT Clause:

SELECT COUNT (column name) FROM table name WHERE

CONDITION,;
(11) QL HAVING Clause:

SELECT SUM (column name) FROM table name WHERE

CONDITION

GROUP BY column name HAVING (arithematic function

condition);
(12) SQL DROP TABLE Statement:
(13) QL CREATE TABLE Statement:

CREATE TABLE table name (Columnl datatype, Column2

datatype, Column3

datatype, ColumnN datatype, PRIMARY KEY (one or more

columns));
DROP TABLE table name;
(14) SQL CREATE INDEX Statement:

CREATE UNIQUE INDEX index name ON table name

(columnl,

column2,...columnN);
(15) SQL DROP INDEX Statement:

ALTER TABLE table name DROP INDEX index name;
(16) SQL DESC Statement:

DESC table name;

UGCS-104/111

UGCS-104/112

17)

(18)

(19)

(20)

21

(22)

(23)

(24)

(25)

(26)

27)

SQL TRUNCATE TABLE Statement:
TRUNCATE TABLE table name;
SQL ALTER TABLE Statement:

ALTER TABLE table name {ADD/DROPMODIFY}
column name {data ype};

SQL ALTER TABLE Statement (Rename) :

ALTER TABLE table name RENAME TO new_table name;
SQL INSERT INTO Statement:

INSERT INTO table name (columnl, column2....columnN)
VALUES (valuel, value2....valueN);

SQL UPDATE Statement:

UPDATE table name SET columnl = valuel, column2 =
value2....columnN=valueN

[WHERE CONDITIONT];

SQL DELETE Statement:

DELETE FROM table name WHERE {CONDITION};
SQL CREATE DATABASE Statement:
CREATE DATABASE database name;
SQL DROP DATABASE Statement:
DROP DATABASE database name;
SQL USE Statement:

USE DATABASE database name;

SQL COMMIT Statement:

COMMIT;

SQL ROLLBACK Statement:
ROLLBACK;

5.10

SQL DATA TYPES:

SQL data type is an attribute that specifies type of data of any object. Each
column, variable and expression has related data type in SQL.

You would use these data types while creating your tables. You would
choose a particular data type for a table column based on your

requirement. Following are the various categories of data types that are
supported by SQL:

e Numeric

e Character

e Date and time
e Binary

e Boolean

5.10.1 Numeric Data Types

Numeric data types are used to store numeric data in a database table.
Table 5.1 lists the numeric data types and their description.

Data types Description
INTEGER or
INT(size) Defines integer data types only. The size in the
SMALLINT(size) parenthesis determines the numbers of digits.
BIGINT((size)
DECIMAL ot Defines the demmql number. The size in

. parenthesis determines the maximum numbers
DEC(size,d) .) .
NUMERIC(size.d) of digits and d determines maximum number of

’ digits to the right of the decimal.

Table 5.1: The Numeric Data Types in SQL

5.10.2 Character Data Types

Character data types are the data types that represent sentences, symbols
or a combination of both of them. Table 5.2 lists the character data types.

Data types Description

Defines a fixed length string that can be letter
CHARACTER or efines a fixed length string that can be letters,
numbers, and special characters. The fixed size
CHAR(SIZE) . : . ;
is specified in parenthesis.

CHARACTER VARYING | Defines a variable length string. The maximum
or VARCHAR(SIZE) size is specified in parenthesis.

Table 5.2: The Character Data Types in SQL
5.10.3 Date and Time Data Types

The date data type enables you to define the date for a column value.
Table 5.3 lists the date data type in different formats:

Data Type Description
Date(yyyymmdd) 2015-07-25
Date(mmm yyyy) Jan 2016
Date(mm-yy) 07-2014

Table 5.3: The Date Data Types in SQL

UGCS-104/113

UGCS-104/114

The above table describes the date data types for specifying the dates in
the columns of a database table. The date and time data types are datetime
and smalldatetime.

5.10.4 Binary Data Types:

Binary data type is similar to hexadecimal data and comprising characters
that range from 0-9 and A-F, in groups of two characters each. You need
to specify 0x before the binary value. Table 5.4 lists the two binary data
types and their description:

DATA TYPE Description
Stores up to 8000 bytes of fixed length binary data.
BINARY|[(n)] The maximum byte length may be specified in
parenthesis.

Stores up to 8000 bytes of variable length binary
data. n specifies the maximum byte length of a
binary variable. By variable-length, it is meant that
binary data may contain less than n bytes and the
actual length of the data entered gives the storage
size.

VARBINARY[(n)]

You should use the varbinary data type instead of the binary data type,
when you expect null values or a variation in data size.

5.10.5 Boolean Data Types

The BOOLEAN type is used for representing values that can be either
true or false. Unless prohibited by a NOT NULL constraint, a BOOLEAN
can be NULL or unknown.

5.11 SQL Operators

An operator is a reserved word or a character used primarily in an SQL
statement's WHERE clause to perform operation(s), such as comparisons
and arithmetic operations. Operators are used to specify conditions in an
SQL statement and to serve as conjunctions for multiple conditions in a
statement.

A SELECT statement uses operators to filter the data records that you
want to retrieve from the database tables. The various operators used in
the SELECT statement are:

e Arithmetic operators
o Comparison operators
e Logical operators

e Operators used to negate conditions

5.11.1 SQL Arithmetic Operators:

The arithmetic operators allow you to perform mathematical functions
such as addition and multiplication on data stored in the database tables.

Let us assume that variable ‘a’ holds 10 and variable ‘b’ holds 20 then:

Operator | Description Example

N Addition - Adds values on either side a + b will give 30
of the operator

i Subtraction - Subtracts right hand a-b will give -10
operand from left hand operand &
Multiplication - Multiplies values on o

%k *
either side of the operator a* b will give 200
Division - Divides left hand operand I

/ by right hand operand b/awill give 2
Modulus - Divides left hand operand

% by right hand operand and returns b % a will give 0

remainder

5.11.2 SQL Comparison Operators

The comparison operators allow you to compare values of columns in a
database table with a specified value. Let us assume variable ‘a’ holds 10

and variable ‘b’ holds 20 then:

Operator

Description

Example

Checks if the value of two
operands are equal or not, if yes
then condition becomes true.

(a=Db) is not true.

Checks if the value of two
operands are equal or not, if
values are not equal then
condition becomes true.

(a!=b) is true.

<>

Checks if the value of two
operands are equal or not, if
values are not equal then
condition becomes true.

(a<>Db) is true.

Checks if the value of left
operand is greater than the
value of right operand, if yes
then condition becomes true.

(a>Db) is not true.

Checks if the value of left
operand is less than the value of
right operand, if yes then
condition becomes true.

(a<b) is true.

Checks if the value of left
operand is greater than or equal
to the value of right operand, if
yes then condition becomes

true.

(a>=D) is not true.

UGCS-104/115

UGCS-104/116

Checks if the value of left
operand is less than or equal to
the value of right operand, if (a<=Db) is true.
yes then condition becomes
true.

Checks if the value of left
operand is not less than the
value of right operand, if yes
then condition becomes true.

(a!<Db) is false.

Checks if the value of left
operand is not greater than the
value of right operand, if yes
then condition becomes true.

(a!>Db)is true.

5.11.3 SQL Logical Operators

Here is a list of all the logical operators available in SQL.

Operator Description
The ALL operator is used to compare a value to all
ALL .
values in another value set.
AND The AND operator allows the existence of multiple
conditions in an SQL statement's WHERE clause.
ANY The ANY operator is used to compare a value to any
applicable value in the list according to the condition.
The BETWEEN operator is used to search for values
BETWEEN that are within a set of values, given the minimum
value and the maximum value.
EXISTS The EXISTS operator is used to search for the presence
of a row in a specified table that meets certain criteria.
IN The IN operator is used to compare a value to a list of
literal values that have been specified.
The LIKE operator is used to compare a value to
LIKE o : .
similar values using wildcard operators.
The NOT operator reverses the meaning of the logical
NOT operator with which it is used. Eg. NOT EXISTS, NOT
BETWEEN, NOT IN etc. This is negate operator.
OR The OR operator is used to combine multiple
conditions in an SQL statement's WHERE clause.
The NULL operator is used to compare a value with a
IS NULL NULL value.
UNIQUE The UNIQUE operator searches every row of a

specified table for uniqueness (no duplicates).

5.11.4 SQL EXPRESSION

An expression is a combination of one or more values, operators, and SQL
functions that evaluate to a value. SQL Expression are like formulas and
they are written in query language. You can also use them to query the
database for specific set of data.

Syntax:
Consider the basic syntax of the SELECT statement as follows:

SELECT columnl,column2...columnN FROM table name where
[CONDITION][EXPRESSION];

There are different types of SQL expression, which are mentioned below:

(a) SQL Boolean Expressions

SQL Boolean Expressions fetch the data on the basis of matching single
value.

Following is the syntax of SQL Boolean expression:

SELECT columnl, column2...columnN FROM table name
WHERE [SINGLE VALUE

MATCHING EXPRESSION];
Consider CUSTOMERS table that has following records:
SQL>SELECT * FROM CUSTOMERS;

ID NAME AGE ADDRESS SALARY

1 Ramesh 33 Delhi 2000.00

2 Ram 32 Lucknow 1500.00

3 Shyam 25 Bareilly 2000.00
4 Komal 27 MP 6500.00

In the above query * refers to selection of all rows.
Here is a simple example showing usage of SQL Boolean Expressions:

SQL> SELECT * FROM CUSTOMERS WHERE SALARY = 2000;

ID | NAME AGE ADDRESS SALARY

1 Ramesh 33 Delhi 2000.00

UGCS-104/117

(b) SQL - Numeric Expression

This expression is used to perform any mathematical operation in any
query. Following is the syntax:

SELECT numerical expression AS OPERATION NAME
[FROM table name WHERE CONDITION] ;

Here numerical expression is used for mathematical expression or any
formula. Following is a simple examples showing usage of SQL
Numeric Expressions:

SQL> SELECT (12 + 6) AS ADDITION
ADDITION 18

There are several built-in functions like avg (), sum (), count () etc. to
perform what is known as aggregate data calculations against a table or a
specific table column.

SQL> SELECT COUNT (*) AS "RECORDS" FROM CUSTOMERS;
RECORDS 6
(¢) SQL - Date Expressions
Date Expressions return current system date and time values:
SQL> SELECT CURRENT _TIMESTAMP;
Current Timestamp

2013-07-18 05:30:23
5.11.5 CREATE DATABASE

The SQL CREATE DATABASE statement is used to create new
SQL database.

Basic syntax of CREATE DATABASE statement is as follows:
>CREATE DATABASE DatabaseName;

Database name should be unique within the RDBMS.

Example:

To create new database <testDB>, then CREATE DATABASE
statement would

be as follows:

SQL> CREATE DATABASE testDB;

UGCS-104/118

Make sure you have admin previledge before creating any
database. Once a database is

created, you can check it in the list of databases as follows:

SQL> SHOW DATABASES;
5.11.6 DROP

The SQL DROP DATABASE statement is used to drop any existing
database in SQL schema.

The syntax of DROP DATABASE statement is :
DROP DATABASE DatabaseName;
Example:

To delete an existing database <tryDB>, then DROP DATABASE
statement would be as follows:

SQL> DROP DATABASE tryDB;,
5.11.7 USE

The SQL USE statement is used to select any existing database in SQL
schema.

The syntax of USE statement is as follows:
USE DatabaseName;

Example:

You can check available databases as follows:
SQL> SHOW DATABASES;
information_schema

AMROOD
TUTORIALSPOINT
mysql

orig

test

tryDB

Now if you want to work with AMROOD database then you can execute
USE AMROOD SQL command and start working with AMROOD
database:

UGCS-104/119

UGCS-104/120

5.11.8 CREATE TABLE
The SQL CREATE TABLE statement is used to create a new table.
The syntax of CREATE TABLE statement

CREATE TABLE table name(columnl datatype, column2 datatype,
column3 datatype,

..... columnN datatype, PRIMARY KEY(one or more columns)
);

CREATE TABLE is the keyword telling the database system what you
want to do. The unique name or identifier for the table follows the
CREATE TABLE statement.

Then in brackets comes the list defining each column in the table and what
sort of data type it is. The syntax becomes clearer with an example below.

Example:

Following is an example which creates a CUSTOMERS table with ID as
primary key and NOT NULL are the constraints showing that these fileds
can not be NULL while creating records in this table:

SQL> CREATE TABLE CUSTOMERS (ID INT NOT NULL,
NAME VARCHAR (20)

NOT NULL, AGE INT NOTNULL, ADDRESS CHAR (25),
SALARY

DECIMAL (18, 2), PRIMARY KEY (ID));

You can verify when your table is created successfully by looking at the
message displayed by the SQL server otherwise you can
use DESC command as follows:

SQL> DESC CUSTOMERS

5.11.9 INSERT INTO

The SQL INSERT INTO statement is used to add new rows of data to
a table in the database.

Syntax:
There are two basic syntax of INSERT INTO statement is follows:

(1) INSERT INTO TABLE NAME (columnl, column2,
column3,...columnN)]

VALUES (valuel, value2, value3,....... valueN);

Here columnl, column2,...columnN are the names of the columns in the
table into which you want to insert data.

(i1) INSERT INTO TABLE NAME VALUES (valuel, value2,
value3,.....,valueN);

You may not need to specify the column(s) name in the SQL query if you
are adding values for all the columns of the table. But make sure the order
of the values is in the same order as the columns in the table. The SQL
INSERT INTO syntax would be as follows:

Example:

Following statements would create four records in CUSTOMERS table:
INSERT INTO CUSTOMERS (ID, NAME, AGE, ADDRESS, SALARY)
VALUES (1, 'Ramesh', 32, '"Ahmedabad', 2000.00);

INSERT INTO CUSTOMERS (ID, NAME, AGE, ADDRESS, SALARY)
VALUES (2, 'Khilan', 25, 'Delhi', 1500.00);

INSERT INTO CUSTOMERS

VALUES (3, 'kaushik', 23, 'Kota', 2000.00);

INSERT INTO CUSTOMERS

VALUES (4, 'Chaitali', 25, 'Mumbeai', 6500.00);

5.11.10 WHERE

The SQL WHERE clause is used to specify a condition while fetching
the data from single table or joining with multiple table.

If the given condition is satisfied then only it returns specific value from
the table. You would use WHERE clause to filter the records and fetching
only necessary records.

The WHERE clause not only used in SELECT statement, but it is also
used in UPDATE, DELETE statement etc. which we would examine in
subsequent sections.

Syntax:

The syntax of SELECT statement with WHERE clause is as follows:
SELECT columnl, column2, columnN

FROM table name

WHERE [condition]

You can specify a condition using comparision or logical operators like >,
<, =, LIKE, NOT etc. Below examples would make this concept clear.

Example:

UGCS-104/121

UGCS-104/122

Consider the CUSTOMERS table having following records:

1D NAME AGE ADDRESS SALARY
1 RAMESH 32 AHMEDABAD | 2000.00
2 KHILAN 25 DELHI 1500.00
3 KAUSHIK 23 KOTA 2000.00
4 CHAITALI |25 MUMBAI 6500.00

Following is an example which would fetch ID, Name and Salary fields
from the CUSTOMERS table where salary is greater than 2000:

SQL> SELECT ID, NAME, SALARY FROM CUSTOMERS WHERE
SALARY >2000;

Output of the above query is

| 4 | CHAITALI | 6500 |
5.11.11 AND & OR

The SQL AND and OR operators are used to combine multiple conditions
to narrow data in an SQL statement. These two operators are called
conjunctive operators.

These operators provide a means to make multiple comparisons with
different operators in the same SQL statement.

(a) The AND Operator:

The AND operator allows the existence of multiple conditions in an SQL
statement's WHERE clause.

Syntax:

The syntax of AND operator with WHERE clause is as follows:
SELECT columnl, column2, columnN

FROM table name

WHERE [condition1] AND [condition2]...AND [conditionN];

You can combine N number of conditions using AND operator. For an
action to be taken by the SQL statement, whether it be a transaction or
query, all conditions separated by the AND must be TRUE.

(b) The OR Operator

The OR operator is used to combine multiple conditions in an SQL
statement's WHERE clause.

Syntax:
The syntax of OR operator with WHERE clause is as follows:

SELECT columnl, column2, columnN

FROM table name
WHERE [condition1] OR [condition2]...OR [conditionN]

You can combine N number of conditions using OR operator. For an
action to be taken by the SQL statement, whether it be a transaction or
query, only any ONE of the conditions separated by the OR must be
TRUE.

5.11.12 UPDATE
The SQL UPDATE query is used to modify the existing records in a table.

You can use WHERE clause with UPDATE query to update selected rows
otherwise all the rows would be effected.

Syntax:

The syntax of UPDATE query with WHERE clause is:
UPDATE table name

SET columnl = valuel, column2 = value2...., columnN = valueN
WHERE [condition];

You can combine N number of conditions using AND or OR operators.

5.11.13 DELETE

The SQL DELETE Query is used to delete the existing records from a
table.

You can use WHERE clause with DELETE query to delete selected rows,
otherwise all the records would be deleted.

Syntax:

The syntax of DELETE query with WHERE clause is as follows:
DELETE FROM table name

WHERE [condition];

You can combine N number of conditions using AND or OR operators.

5.11.14 LIKE

The SQL LIKE clause is used to compare a value to similar values using
wildcard operators. There are two wildcards used in conjunction with the
LIKE operator:

» The percent sign (%)
» The underscore ()

The percent sign represents zero, one, or multiple characters. The
underscore represents a single number or character. The symbols can be
used in combinations.

UGCS-104/123

Syntax:

The syntax of % and _ is as follows:
SELECT FROM table name
WHERE column LIKE 'sssssss%'
or

SELECT FROM table name
WHERE column LIKE '%aaaaa%'
or

SELECT FROM table name
WHERE column LIKE 'aaaaa '

or

SELECT FROM table name
WHERE column LIKE ' aaaa'

or

SELECT FROM table name
WHERE column LIKE ' aaaa '

You can combine N number of conditions using AND or OR operators.
Here aaaa could be any numeric or string value.

Example:

Here are number of examples showing WHERE part having different
LIKE clause with '%' and ' ' operators:

Statement Description

,WHEI,{E SALARY LIKE Finds any values that start with 200

200%

WHERE SALARY LIKE |Finds any values that have 200 in any
'%200%' position

WHERE SALARY LIKE | Finds any values that have 00 in the second
" 00%' and third positions

WHERE SALARY LIKE | Finds any values that start with 2 and at

2 % %' least 3 characters in length

XZI;I,ERE SALARY LIKE Finds any values that end with 2

WHERE SALARY LIKE | Finds any values that have a 2 in the second

UGCS-104/124

" 2%3' position and end with a 3

WHERE SALARY LIKE | Finds any values in a five-digit number that
2 3 start with 2 and end with 3

5.11.15 TOP

The SQL TOP clause is used to fetch a TOP N number or X percent
records from a table.

Note: All the databases do not support TOP clause. For example MySQL
supports LIMIT clause to fetch limited number of records and Oracle
uses ROWNUM to fetch limited number of records.

Syntax:

The syntax of TOP clause with SELECT statement would be as follows:
SELECT TOP number|percent column_name(s)

FROM table name

WHERE [condition]

Example:
Consider the CUSTOMERS table having following records:
ID NAME AGE ADDRESS SALARY
1 RAMESH 32 AHMEDABAD | 2000.00
2 KHILAN 25 DELHI 1500.00
3 KAUSHIK 23 KOTA 3000.00
4 CHAITALI |25 Pune 6500.00

Following is an example on SQL server which would fetch top 3 records
from CUSTOMERS table:

SQL> SELECT TOP 3 * FROM CUSTOMERS;

This would produce following result:

ID NAME AGE ADDRESS SALARY
1 RAMESH 32 AHMEDABAD 2000.00
2 KHILAN 25 DELHI 1500.00
3 KAUSHIK 23 KOTA 3000.00

5.11.16 GROUP BY

The SQL GROUP BY clause is used in collaboration with the SELECT
statement to arrange identical data into groups.

The GROUP BY clause follows the WHERE clause in a SELECT
statement and precedes the ORDER BY clause.

Syntax:

UGCS-104/125

The syntax of GROUP BY clause is given below. The GROUP BY clause
must follow the conditions in the WHERE clause and must precede the
ORDER BY clause if one is used.

SELECT columnl, column2
FROM table name

WHERE [conditions]

GROUP BY columnl, column2
ORDER BY columnl, column2
Example:

Consider the CUSTOMERS table having following records:

ID NAME AGE ADDRESS SALARY
1 RAMESH |32 AHMEDABAD | 2000.00
2 KHILAN 25 DELHI 1500.00
3 KAUSHIK | 23 KOTA 3000.00
4 CHAITALI | 25 Pune 6500.00
5 RAMESH |26 BAREILLY 1500.00

If you want to know the total amount of salary on each customer, then
GROUP BY query would be as follows:

SQL> SELECT NAME, SUM (SALARY) FROM CUSTOMERS

UGCS-104/126

GROUP BY NAME;
This would produce following result:
NAME SUM(SALARY)
RAMESH 3500.00
KHILAN 1500.00
KAUSHIK | 3000.00
CHAITALI | 6500.00

The SUM function returns the grand total of the records contained in a

specified column of the database.

SQL> SELECT SUM (SALARY) FROM CUSTOMERS;

This would produce following result:

SUM(SALARY)

14500.00

5.11.17 DISTINCT

The SQL DISTINCT keyword is used in conjunction with SELECT
statement to eliminate all the duplicate records and fetching only unique

records.

There may be a situation when you have multiple duplicate records in a
table. While fetching such records, it makes more sense to fetch only

unique records instead of fetching duplicate records.

Syntax:

The syntax of DISTINCT keyword to eliminate duplicate records is as

follows:

SELECT DISTINCT columnl, column?2...... columnN
FROM table name
WHERE [condition]

Example:

Consider the CUSTOMERS table having following records:

ID NAME AGE ADDRESS SALARY
1 RAMESH 32 AHMEDABAD | 2000.00
2 KHILAN 25 DELHI 1500.00
3 KAUSHIK 23 KOTA 3000.00
4 CHAITALI |25 Pune 6500.00
5 VIJAY 30 Chennai 2000.00

To get the distinct column values, we use the following SQL command:

SQL> SELECT DISTINCT SALARY FROM CUSTOMERS ORDER

BY SALARY

SALARY

1500.00

2000.00

3000.00

6500.00

UGCS-104/127

UGCS-104/128

5.11.18 ORDER BY

The SQL ORDER BY clause is used to sort the data in ascending or
descending order, based on one or more columns. Some database sorts
query results in ascending order by default.

Syntax:

The syntax of ORDER BY clause which would be used to sort result
in ascending or descending order is as follows:

SELECT column-list

FROM table name

[WHERE condition]

[ORDER BY columnl, column2, .. columnN] [ASC | DESC];

You can use more than one column in the ORDER BY clause. Make
sure whatever column you are using to sort, that column should be in
column-list.

Example:
Consider the CUSTOMERS table having following records:

1D NAME AGE ADDRESS SALARY
1 RAMESH 32 AHMEDABAD | 2000.00
2 KHILAN 25 DELHI 1500.00
3 KAUSHIK 23 KOTA 3000.00
4 CHAITALI |25 Pune 6500.00

SQL> SELECT ID, NAME, SALARY FROM CUSTOMERS WHERE
SALARY > 1500 ORDER BY SALARY;

The output of above SQL statement is:

1 RAMESH 2000
KAUSHIK 3000
4 CHAITALI | 6500

5.12 Constraints

Constraints are the rules enforced on data columns on table. These are
used to limit the type of data that can go into a table. This ensures the
accuracy and reliability of the data in the database. Contraints could be
column level or table level. Column level constraints are applied only to
one column where as table level constraints are applied to the whole table.

Following are commonly used constraints available in SQL

e NOT NULL Constraint: Ensures that a column cannot have NULL
value.

e DEFAULT Constraint: Provides a default value for a column when
none is specified.

e UNIQUE Constraint: Ensures that all values in a column are
different.

e PRIMARY Key: Uniquely identified each rows/records in a database
table.

e FOREIGN Key: Uniquely identified a rows/records in any another
database table.

e CHECK Constraint: The CHECK constraint ensures that all values
in a column satisfy certain conditions.

e INDEX: Use to create and retrieve data from the database very
quickly.
Constraints can be specified when a table is created with the CREATE
TABLE statement or you can use ALTER TABLE statment to create
constraints even after the table is created.

5.12.1 Dropping Constraints

Any constraint that you have defined can be dropped using the ALTER
TABLE command with the DROP CONSTRAINT option. For example,
to drop the primary key constraint in the EMPLOYEES table, you can use
the following command:

ALTER TABLE EMPLOYEES DROP CONSTRAINT
EMPLOYEES PK;

where EMPLOYEES PK is a primary key for table EMPLOYEES.

Some implementations may provide shortcuts for dropping certain
constraints. For example, to drop the primary key constraint for a table in
Oracle, you can use the following command:

ALTER TABLE EMPLOYEES DROP PRIMARY KEY;

Some implementations allow you to disable constraints. Instead of
permanently dropping a constraint from the database, you may want to
temporarily disable the constraint, and then enable it later.

5.12.2 Integrity Constraints

Integrity constraints are used to ensure accuracy and consistency of data in
a relational database. Data integrity is handled in a relational database
through the concept of referential integrity.

UGCS-104/129

UGCS-104/130

There are many types of integrity constraints that play a role in referential
integrity (RI). These constraints include Primary Key, Foreign Key,
Unique Constraints and other constraints mentioned above.

5.13 SQL Join Types

The SQL Joins clause is used to combine records from two or more tables
in a database. A JOIN is a means for combining fields from two tables by
using values common to each. There are different types of joins available
in SQL

5.13.1 INNER JOIN: It returns rows when there is a match in both
tables. The most frequently used and important of the joins is the INNER
JOIN. It is also referred as an EQUIJOIN. The INNER JOIN creates a
new result table by combining column values of two tables (tablel and
table2) based upon the join-predicate. The query compares each row of
tablel with each row of table2 to find all pairs of rows which satisfy the
join-predicate. When the join-predicate is satisfied, column values for
each matched pair of rows of A and B are combined into a result row.

Syntax:
The basic syntax of INNER JOIN is as follows:
SELECT tablel.columnl, table2.column2...
FROM tablel
INNER JOIN table2
ON tablel.common _field = table2.common_field;
Example

Consider the following two tables; (a) CUSTOMERS Table 5.1

ID NAME AGE ADDRESS SALARY
1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Mufty 24 Indore 10000.00

Table 5.1 CUSTOMERS

(b) ORDERS Table 5.2

ORDERID DATE CUSTOMER ID | AMOUNT
102 2009-10-08 |3 3000
100 2009-10-08 |3 1500
101 2009-11-20 |2 1560
103 2008-05-20 | 4 2060

Table 5.2 ORDERS
Now, let us join these two tables using INNER JOIN as follows:
SELECT ID, NAME, AMOUNT, DATE
FORM CUSTOMERS
INNER JOIN ORDERS
ON CUSTOMERS.ID= ORDERS.CUSTOMER ID;

This would produce the following result:

1D NAME AMOUNT DATE

3 Kaushik 3000 2009-10-08
3 Kaushik 1500 2009-10-08
2 Khilan 1560 2009-11-20
4 Chaitali 2060 2008-05-20

5.13.2 LEFT JOIN

The SQL LEFT JOIN returns all rows from the left table, even if there
are no matches in the right table. This means that if the ON clause matches
0 (zero) records in right table, the join will still return a row in the result,
but with NULL in each column from right table.

This means that a left join returns all the values from the left table, plus
matched values from the right table or NULL in case of no matching of
join predicate.

Syntax:

The basic syntax of LEFT JOIN is as follows:

SELECT tablel.columnl, table2.column2...

FROM tablel

LEFT JOIN table2

ON tablel.common_filed = table2.common_field;

here given condition could be any given expression based on your

requirement.

UGCS-104/131

UGCS-104/132

Let us consider the CUSTOMERS AND ORDERS table describe in Table
5.1 and Table 5.2

Now, let us join these two tables using LEFT JOIN as follows:
SELECT ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

LEFT JOIN ORDERS

ON CUSTOMERS.ID=ORDERS.CUSTOMERS ID;

This would produce the following result:

1D NAME AMOUNT DATE
1 Ramesh NULL NULL
2 Khilan 1560 2009-11-20
3 Kaushik 3000 2009-10-08
3 Kaushik 1500 2009-10-08
4 Chaitali 2060 2008-05-20
5 Hardik NULL NULL
6 Komal NULL NULL
7 Muftfy NULL NULL

5.13.3 RIGHT JOIN

The SQL RIGHT JOIN returns all rows from the right table, even if there
are no matches in the left table. This means that if the ON clause matches
0 (zero) records in left table, the join will still return a row in the result.but
with NULL in each column from left table.

This means that a right join returns all the values from the right table, plus
matched values from the left table or NULL in case of no matching of join
predicate.

Syntax:

The basic syntax of RIGHT JOIN is as follows:
SELECT tablel.columnl, table2.column?...
FROM tablel

RIGHT JOIN table2

ON tablel.common_filed = table2.common_field;

Let us consider the CUSTOMERS AND ORDERS table describe in table
5.1 and table 5.2.

Now, let us join these two tables using RIGHT JOIN as follows:
SELECT ID, NAME, AMOUNT, DATE
FROM CURTOMERS

RIGHT JOIN ORDERS
ON CUSTOMER.ID=ORDERS.CUSTOMER ID

This would produce the following result

ID | NAME AMOUNT DATE

3 Kaushik 3000 2009-10-08
3 Kaushik 1500 2009-10-08
2 Khilan 1560 2009-11-20
4 Chaitali 2060 2008-05-20

5.13.4 FULL JOIN

The SQL FULL JOIN combines the results of both left and right outer
joins. It returns rows when there is a match in one of the tables.

The joined table will contain all records from both tables, and fill NULLs
for missing matches on either side.

Syntax:

The basic syntax of FULL JOIN is as follows:
SELECT tablel.columnl, table2.column2...
FROM tablel

FULL JOIN table2

ON tablel.common _filed = table2.common_field;

here given condition could be any given expression based on your
requirement.

Let us consider the CUSTOMERS AND ORDERS table describe in Table
5.1 and Table 5.2.

Now, let us join these two tables using FULL JOIN as follows
SELECT ID, NAME, AMOUNT, DATE

FROM CURSOMERS

FULL JOIN ORDERS

ON CUSTOMERS.ID=ORDERS.CUSTOMER ID;
ID | NAME AMOUNT DATE
1 Ramesh NULL NULL
2 Khilan 1560 2009-11-20
3 Kaushik 3000 2009-10-08
3 Kaushik 1500 2009-10-08
4 Chaitali 2060 2008-05-20
5 Hardik NULL NULL
6 Komal NULL NULL
7 Muffy NULL NULL
3 Kaushik 3000 2009-10-08
3 Kaushik 1500 2009-10-08
2 Khilan 1560 2009-11-20
4 Chaitali 2060 2008-05-20

UGCS-104/133

UGCS-104/134

If your Database does not support FULL JOIN like MySQL does not
support FULL JOIN, then you can use UNION ALL clause to combine
two JOINS as follows:

SQL> SELECT ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

LEFT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER _ID
UNION ALL

SELECT ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

RIGHT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER _ID

5.13.5 SELF JOIN

The SQL SELF JOIN is used to join a table to itself, as if the table were
two tables, temporarily renaming at least one table in the SQL statement.

Syntax:

The basic syntax of SELF JOIN is as follows:
SELECT a.column_name, b.column name...
FROM tablel a, tablel b

WHERE a.common_filed = b.common_field;

here WHERE clause could be any given expression based on your
requirement.

Consider the CUSTOMERS table as shown in Table 5.3

ID NAME AGE ADDRESS SALARY
1 RAMESH 32 AHMEDABAD 2000

2 KHILAN 25 DELHI 1500

3 KAUSHIK 23 KOTA 2000

5 HARDIK 27 BHOPAL 8500

6 KOMAL 22 MP 4500

7 SANJAY 24 INDORE 10000

Table 5.3: CUSTOMERS

Now, let us join this table using SELF JOIN as follows:

SELECT a.ID, b.NAME, a.SALARY

FROM CUSTOMERS a, CUSTOMERS b

WHERE a.SALARY <b.SALARY;

This would produce the following result:

ID NAME SALARY
2 RAMESH 1500
2 KAUSHIK 1500
1 CHAITALI 2000
2 CHAITALI 1500
3 CHAITALI 2000
6 CHAITALI 4500
1 HARDIK 2000
2 HARDIK 1500
3 HARDIK 2000
4 HARDIK 6500
6 HARDIK 4500
1 KOMAL 2000
2 KOMAL 1500
3 KOMAL 2000
1 SANJAY 2000
2 SANJAY 1500
3 SANJAY 2000
4 SANJAY 6500
5 SANJAY 8500
6 SANJAY 4500
5.14 UNION

The SQL UNION clause/operator is used to combine the results of two or
more SELECT statements without returning any duplicate rows.

To use UNION, each SELECT must have the same number of columns
selected, the same number of column expressions, the same data type, and
have them in the same order but they do not have to be the same length.

Syntax:

The basic syntax of UNION is as follows:

SELECT columnl [, column?]
FROM tablel [, table2]
[WHERE condition]

UNION
SELECT columnl [, column2]

FROM tablel [, table2]
[WHERE condition]

UGCS-104/135

UGCS-104/136

here given condition could be any given expression based on your
requirement.

Example:

Suppose the first table is

ID Name

1 Ashish

2 Amit
And the second table is

ID Name

2 Amit

3 Vijay

SELECT * from first
UNION
SELECT * from secomd

The result table will look like,

ID Name
1 Ashish
2 Amit

3 Vijay

5.14.1 UNION ALL CLAUSE

The UNION ALL operator is used to combine the results of two SELECT
statements including duplicate rows.

The same rules that apply to UNION apply to the UNION ALL operator.
Syntax:

The basic syntax of UNION ALL is as follows:

SELECT columnl [, column2]

FROM tablel [, table2]

[WHERE condition]

UNION ALL

SELECT columnl [, column?]

FROM tablel [, table2]

[WHERE condition]

here given condition could be any given expression based on your

requirement.

Example:

Suppose the first table is

1D Name
1 Ashish
2 Amit
And the second table is
ID Name
2 Amit
3 Vijay
SELECT * from first
UNION ALL
SELECT * from second
The result table will look like,
1D Name
1 Ashish
2 Amit
2 Amit
3 Vijay

There are two other clauses (i.e operators) which are very similar to
UNION clause, they are

e INTERSECT CLAUSE

e EXCEPT CLAUSE

5.14.2 INTERSECT CLAUSE

The SQL INTERSECT clause/operator is used to combine two SELECT
statements, but returns rows only from the first SELECT statement that are
identical to a row in the second SELECT statement. It means
INTERSECT returns only common rows returned by the two SELECT
statements.

Just as with the UNION operator, the same rules apply when using the
INTERSECT operator. MySQL does not support INTERSECT operator.

Syntax:

The syntax of INTERSECT IS
SELECT columnl [, column2]
FROM tablel [, table2]

UGCS-104/137

UGCS-104/138

[WHERE condition]
INTERSECT

SELECT columnl [, column2]
FROM tablel [, table2]
[WHERE condition]

Here given condition could be any given expression based on your
requirement.

Example:

The First table is
ID Name
1 Ashish
2 Amit

And the second table is

ID Name
2 Amit
3 Vijay

Intersect query will be,
SELECT * from first
INTERSECT

SELECT * from second

The result table will look like

1D Name
2 Amit
5.14.3 EXCEPT CLAUSE

The SQL EXCEPT clause/operator is used to combine two SELECT
statements and returns rows from the first SELECT statement that are not
returned by the second SELECT statement. It means EXCEPT returns
only rows which are not available in second SELECT statement.

Just as with the UNION operator, the same rules apply when using the
EXCEPT operator. MySQL does not support EXCEPT operator.

Syntax:

The syntax of EXCEPT
SELECT columnl [, column2]
FROM tablel [, table2]

[WHERE condition]

EXCEPT

SELECT columnl [, column2]
FROM tablel [, table2]
[WHERE condition]

here given condition could be any given expression based on your
requirement.

5.15 NULL

The SQL NULL is the term used to represent a missing value. A NULL in
a table is a value in a field that appears to be blank.

A field with a NULL has no value. It is very important to understand that a
NULL value is different than a zero value or a field that contains spaces.

Syntax:
The basic syntax of NULL while creating a table:
SQL> CREATE TABLE CUSTOMERS (
ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (25),
SALARY DECIMAL (18, 2),
PRIMARY KEY (ID)
);

here NOT NULL signifies that column should always accept an explicit
value of the given data type. There are two columns like ADDRESS and
SALARY where we did not use NOT NULL which means these columns
could be NULL.

A field with a NULL value is one that has been left blank during record
creation.

Example:

The NULL value can cause problems when selecting data, however,
because when comparing an unknown value to any other value, the result
is always unknown and not included in the final results.

You must use the IS NULL or IS NOT NULL operators in order to check
for a NULL value.

Consider the following table, CUSTOMERS that have following records:

UGCS-104/139

UGCS-104/140

1D NAME AGE ADDRESS SALARY
1 RAMESH 32 AHMEDABAD | 2000.00

2 KHILAN 25 DELHI 1500.00

3 KAUSHIK 23 NULL NULL

4 CHAITALI |25 NULL NULL

Now following is the usage of IS NOT NULL operator:
SQL> SELECT ID, NAME, AGE, ADDRESS, SALARY

FROM CUSTOMERS
WHERE SALARY IS NOT NULL;

This would produce following result:

1D NAME AGE ADDRESS SALARY
1 RAMESH 32 AHMEDABAD | 2000.00
KHILAN 25 DELHI 1500.00

Now following is the usage of IS NULL operator:

SQL> SELECT ID, NAME, AGE, ADDRESS, SALARY

FROM CUSTOMERS
WHERE SALARY IS NULL,;

This would produce following result:

ID | NAME AGE | ADDRESS | SALARY
3 |KAUSHIK [23 [NULL NULL
4 | CHAITALI [25 |NULL NULL
5.16 TRUNCATE TABLE

The SQL TRUNCATE TABLE command is used to delete complete data

from an existing table.

You can also use DROP TABLE command to delete complete table but it
would remove complete table structure form the database and you would

need to re-create this table once again if you wish to store some data.

Syntax:
The syntax of TRUNCATE TABLE
TRUNCATE TABLE table name;

Example:

Consider CUSTOMERS table having following records:

ID NAME AGE ADDRESS SALARY
1 RAMESH 32 AHMEDABAD | 2000.00
2 KHILAN 25 DELHI 1500.00
3 KAUSHIK 23 MUMBALI 3500.00
4 CHAITALI |25 PUNE 4500.00

Following is the example to truncate:

SQL > TRUNCATE TABLE CUSTOMERS;

Now CUSTOMERS table is truncated and following would be output
from SELECT statement:

SQL> SELECT * FROM CUSTOMERS;
Empty set (0.00 sec)

“CHECK YOUR PROGRESS 1”
What is DDL?
What is DML?
What are the advantages of SQL?

Define join.

Explain group by, having clause of SQL with example.

N L

Give syntax of UPDATE command. Demonstrate with suitable
example.

5.17 Views

A view is a "virtual table" in the database whose contents are defined
by a query. The tables of a database define the structure and organization
of its data. However, SQL also lets you look at the stored data in other
ways by defining alternative views of the data. A view is a SQL query that
is permanently stored in the database and assigned a name. The results of
the stored query are "visible" through the view, and SQL lets you access
these query results as if they were, in fact, a "real" table in the database

Views are an important part of SQL, for several reasons:.

e Views let you tailor the appearance of a database so that different
users see it from different perspectives.

e Views let you restrict access to data, allowing different users to see
only certain rows or certain columns of a table.

e Views simplify database access by presenting the structure of the
stored data in the way that is most natural for each user.

5.17.1 Advantages of VIEW

Views provide a variety of benefits and can be useful in many different
types of databases. In a personal computer database, views are usually a
convenience, defined to simplify database requests. In a production
database installation, views play a central role in defining the structure of
the database for its users and enforcing its security. Views provide these
major benefits:

UGCS-104/141

UGCS-104/142

Security: Each user can be given permission to access the database only
through a small set of views that contain the specific data the user is
authorized to see, thus restricting the user's access to stored data.

Query simplicity: A view can draw data from several different tables and
present it as a single table, turning multi-table queries into single-table
queries against the view.

Structural simplicity: Views can give a user a "personalized" view of the
database structure, presenting the database as a set of virtual tables that
make sense for that user.

Insulation from change: A view can present a consistent, unchanged
image of the structure of the database, even if the underlying source tables
are split, restructured, or renamed.

Data integrity: If data is accessed and entered through a view, the DBMS
can automatically check the data to ensure that it meets specified integrity
constraints.

5.17.2 Disadvantages of VIEW

While views provide substantial advantages, there are also two major
disadvantages to using a view instead of a real table:

Performance: Views create the appearance of a table, but the DBMS
must still translate queries against the view into queries against the
underlying source tables. If the view is defined by a complex, multi-table
query, then even a simple query against the view becomes a complicated
join, and it may take a long time to complete

Update restrictions: When a user tries to update rows of a view, the
DBMS must translate the request into an update on rows of the underlying
source tables. This is possible for simple views, but more complex views
cannot be updated; they are "read-only."

5.17.3 Creating a VIEW

The CREATE VIEW statement is used to create a view. The statement
assigns a name to the view and specifies the query that defines the view.
To create the view successfully, you must have permission to access all of
the tables referenced in the query.

The CREATE VIEW statement can optionally assign a name to each
column in the newly created view. If a list of column names is specified, it
must have the same number of items as the number of columns produced
by the query. Note that only the column names are specified; the data type,
length, and other characteristics of each column are derived from the
definition of the columns in the source tables. If the list of column names
is omitted from the CREATE VIEW statement, each column in the view
takes the name of the corresponding column in the query. The list of
column names must be specified if the query includes calculated columns
or if it produces two columns with identical names.

The CREATE VIEW syntax is as follows:
CREATE VIEW view_name AS
SELECT columnl, column2.....

FROM table name

WHERE [condition];

You can include multiple tables in your SELECT statement in very similar
way as you use them in normal SQL SELECT query.

Example:

Consider the CUSTOMERS table having following records:

1D NAME AGE ADDRESS SALARY
1 RAMESH 32 AHMEDABAD | 2000.00
2 KHILAN 25 DELHI 1500.00
3 KAUSHIK 23 MUMBAI 3500.00
4 CHAITALI |25 PUNE 4500.00

Now, following is the example to create a view from CUSTOMERS table.
This view would be used to have customer name and age from
CUSTOMERS table:

SQL > CREATE VIEW CUSTOMERS VIEW AS
SELECT name, age
FROM CUSTOMERS;

Now you can query CUSTOMERS VIEW in similar way as you query an
actual table. Following is the example:

SQL > SELECT * FROM CUSTOMERS VIEW;

This would produce following result:

NAME AGE
RAMESH 32

KHILAN 25
KAUSHIK 23
CHAITALI |25

5.17.4 Updating a View

A view can be updated under certain conditions:
e The SELECT clause may not contain the keyword DISTINCT.
e The SELECT clause may not contain summary functions.

e The SELECT clause may not contain set functions.

e The SELECT clause may not contain set Operators.
UGCS-104/143

UGCS-104/144

o The SELECT clause may not contain an ORDER BY clause.
e The FROM clause may not contain multiple tables.

o The WHERE clause may not contain subqueries.

o The query may not contain GROUP BY or HAVING.

e Calculated columns may not be updated.

e All NOT NULL columns from the base table must be included in the
view in order for the INSERT query to function.

So if a view satisfies all the above mentioned rules then you can update a
view. Following is an example to update the age of Ram.

SQL > UPDATE CUSTOMERS VIEW
SET AGE =32
WHERE name='"Ram’;

This would ultimately update the base table CUSTOMERS and same
would reflect in the view itself. Now try to query base table, and SELECT
statement would produce following result:

ID NAME AGE ADDRESS SALARY

1 RAM 32 AHMEDABAD 2000.00

2 KHILAN 25 DELHI 1500.00

3 KAUSHIK 23 MUMBAI 3500.00

4 CHAITALI 25 PUNE 4500.00
5.17.5 Dropping Views

Obviously, when you have a view, you need a way to drop the view if it is
no longer needed. The syntax is very simple as given below:

DROP VIEW view_ name;

Following is an example to drop CUSTOMERS VIEW from
CUSTOMERS table:

DROP VIEW CUSTOMERS VIEW;

5.18 NESTED QUERY

A Subquery or Inner query or Nested query is a query within another SQL
query, and embedded within the WHERE clause. A subquery is used to
return data that will be used in the main query as a condition to further
restrict the data to be retrieved. Subqueries can be used with the SELECT,
INSERT, UPDATE, and DELETE statements along with the operators
like =, <, >, >=, <= IN, BETWEEN etc.

There are few rules that subqueries must follow:

> Subqueries must be enclosed within parentheses.

> A subquery can have only one column in the SELECT clause,
unless multiple columns are in the main query for the subquery to
compare its selected columns.

> An ORDER BY cannot be used in a subquery, although the main
query can use an ORDER BY. The GROUP BY can be used to
perform the same function as the ORDER BY in a subquery.

> Subqueries that return more than one row can only be used with
multiple value operators, such as the IN operator.

> A subquery cannot be immediately enclosed in a set function.

> The BETWEEN operator cannot be used with a subquery;
however, the BETWEEN can be used within the subquery.

Subqueries with the SELECT Statement:

Subqueries are most frequently used with the SELECT statement. The
syntax is as follows:

SELECT column_name [, column _name]

FROM tablel [, table2]

WHERE column_name OPERATOR
(SELECT column_name [, column_name |
FROM tablel [, table2]

[WHERE])

Example:

Consider the CUSTOMERS table having following records:

1D NAME AGE ADDRESS SALARY
1 RAM 32 AHMEDABAD | 2000.00
2 KHILAN 25 DELHI 1500.00
3 KAUSHIK 23 MUMBAI 3500.00
4 CHAITALI |25 PUNE 4500.00

Now let us check following sub-query with SELECT statement:
SQL> SELECT *
FROM CUSTOMERS
WHERE ID IN (SELECT ID
FROM CUSTOMERS
WHERE SALARY >2000) ;

This would produce following result:

UGCS-104/145

UGCS-104/146

ID NAME AGE ADDRESS SALARY

3 KAUSHIK 23 MUMBAI 3500.00

4 CHAITALI |25 PUNE 4500.00

5.19 SQL Aggregate Functions

SQL aggregate functions return a single value, calculated from values in a
column. Some of the useful aggregate functions are:

e AVG() - Returns the average value

e COUNT() - Returns the number of rows
e FIRST() - Returns the first value

e LAST() - Returns the last value

e MAX() - Returns the largest value

e MIN() - Returns the smallest value

e SUMY() - Returns the sum

e Consider the query “Find the average account balance at the
Perryridge branch.”We write this query as follows:

SELECT AVG (balance)
FROM account
where branch-name = ’Perryridge’;

The result of this query is a relation with a single attribute, containing
a single tuple with a numerical value corresponding to the average balance
at the Perryridge branch.

e Consider the query “Find the minimum salary offered to a
employee.”We write this query as follows:

SELECT MIN (salary)
FROM employee;

The result of this query is a relation with a single attribute, containing
a single tuple with a numerical value corresponding to the minimum salary
offered to an employee.

e Consider the query “Find the maximum salary offered to a
employee.”We write this query as follows:

SELECT MAX (salary)

FROM employee;

The result of this query is a relation with a single attribute,
containing a single tuple with a numerical value corresponding to the
maximum salary offered to an employee.

¢ To find the number of tuples in the customer relation, we write
SELECT COUNT (*)
FROM customer;

The result of this query is a relation with a single attribute, containing
a single tuple with a numerical value corresponding to the total number of
customers present in the customer table.

e To find the total salary issued to the employees we write the query:
SELECT SUM (salary)
FROM employee;

The result of this query is a relation with a single attribute, containing
a single tuple with a numerical value corresponding to the addition of the
salaries offered to all the employees.

5.19.1 SQL FIRST () Function

SQL SELECT FIRST () function returns the first value of selected
column.

Syntax:
SELECT FIRST (Column_name) FROM table name;
OR
SELECT FIRST (Column_name) AS First Name FROM table name;
Example: Consider the CUSTOMERS table having following records:

1D NAME AGE ADDRESS SALARY
1 RAM 32 AHMEDABAD | 2000.00
2 KHILAN 25 DELHI 1500.00
3 KAUSHIK 23 MUMBAI 3500.00
4 CHAITALI |25 PUNE 4500.00

Write a query to display a first name from table 'CUSTOMERS'.
SELECT FIRST (Name) AS First name form CUSTOMERS;

The result is shown in the following table.

First name

Ram

UGCS-104/147

5.19.2 SQL LAST () Function

SQL SELECT LAST() function returns the last value of selected column.

Syn

tax:

SELECT LAST (Column_name) FROM table name;

OR

SELECT LAST (Column_name) AS Last Name FROM table name;
Example: Consider the CUSTOMERS table having following records:

ID NAME AGE ADDRESS SALARY
1 RAM 32 AHMEDABAD | 2000.00
2 KHILAN 25 DELHI 1500.00
3 KAUSHIK 23 MUMBALI 3500.00
4 CHAITALI |25 PUNE 4500.00

Write a query to display a last name from table 'CUSTOMERS'.
SELECT LAST (Name) AS Last name form CUSTOMERS;

The result is shown in the

following table.
Last name

CHAITALI

5.19.3 MINUS (Difference)

Minus returns the rows from the first query that were not present in the
second. For example:

UGCS-104/148

TABLE: (A)
ID | NAME AGE | ADDRESS SALARY
1 RAM 32 AHMEDABAD | 2250.00
2 KHILAN 25 DELHI 1500.00
3 KAUSHIK 23 MUMBAI 3500.00
4 CHAITALI 25 PUNE 4500.00
TABLE: (B)

ID | NAME AGE ADDRESS SALARY
3 KAUSHIK 23 MUMBAI 3500.00
4 CHAITALI 25 PUNE 4500.00

SELECT * A

MINUS

SELECT * B;

The output of this query is:

D NAME AGE ADDRESS SALARY
1 RAM 32 AHMEDABAD | 2250.00
KHILAN |25 DELHI 1500.00
5.20 Cursors

A database cursor is similar to the cursor on a word processor screen. As
you press the Down Arrow key, the cursor scrolls down through the text
one line at a time. Pressing the Up Arrow key scrolls your cursor up one
line at a time. Hitting other keys such as Page Up and Page Down results
in a leap of several lines in either direction. Database cursors operate in
the same way. Database cursors enable you to select a group of data, scroll
through the group of records (often called a recordset), and examine each
individual line of data as the cursor points to it. You can use a
combination of local variables and a cursor to individually examine each
record and perform any external operation needed before moving on to the
next record.

One other common use of cursors is to save a query's results for later use.
A cursor's result set is created from the result set of a SELECT query. If
your application or procedure requires the repeated use of a set of records,
it is faster to create a cursor once and reuse it several times than to
repeatedly query the database. (And you have the added advantage of
being able to scroll through the query's result set with a cursor.)

Follow these steps to create, use, and close a database cursor:
1. Create the cursor.
2. Open the cursor for use within the procedure or application.

3. Fetch a record's data one row at a time until you have reached the
end of the cursor's records.

4. Close the cursor when you are finished with it.

5. Deallocate the cursor to completely discard it.

5.20.1 Creating a Cursor

To create a cursor using SQL, issue the following syntax:
>declare cursor _name cursor

>for select statement

>[for {read only | update [of column name list]}]

The Oracle7 SQL syntax used to create a cursor looks like this:
SYNTAX:

>DECLARE cursor name CURSOR

UGCS-104/149

UGCS-104/150

>FOR {SELECT command | statement _name | block name}

By executing the DECLARE cursor_name CURSOR statement, you
have defined the cursor result set that will be used for all your cursor
operations. A cursor has two important parts: the cursor result set and the
cursor position.

The following statement creates a cursor based on the ARTISTS table:
INPUT:

> create Artists Cursor cursor

> for select * from ARTISTS

> g0

ANALYSIS:

You now have a simple cursor object named Artists_Cursor that contains
all the records in the ARTISTS table. But first you must open the cursor.

5.20.2 Opening a Cursor

The simple command to open a cursor for use is

SYNTAX:

>open cursor_name

Executing the following statement opens Artists_Cursor for use:
> open Artists_Cursor

> go

Now you can use the cursor to scroll through the result set.
5.20.3 Scrolling a Cursor

To scroll through the cursor's result set, Transact-SQL provides the
following FETCH command.

SYNTAX:

>fetch cursor name [into fetch target list]
Oracle SQL provides the following syntax:
>FETCH cursor_name {INTO : host variable
>[[INDICATOR] : indicator variable]

>[, : host_variable

>[[INDICATOR] : indicator variable]]...

>| USING DESCRIPTOR descriptor }

Each time the FETCH command is executed, the cursor pointer advances
through the result set one row at a time. If desired, data from each row can
be fetched into the fetch_target list variables.

NOTE: Transact-SQL enables the programmer to advance more than one
row at a time by using the following command: set cursor rows number
for cursor_name. This command cannot be used with the INTO clause,

It is useful only to jump forward a known number of rows instead of
repeatedly executing the

FETCH statement.

The following statements fetch the data from the Artists_Cursor result set
and return the data to the program variables:

INPUT:

> declare @name char(30)

> declare @homebase char(40)

> declare @style char(20)

> declare @artist_id int

> fetch Artists Cursor into @name, @homebase, @style, @artist id
> print (@name

> print @homebase

> print @style

> print char(@artist_id)

> g0

5.20.4 Testing a Cursor's Status

Transact-SQL enables you to check the status of the cursor at any time
through the maintenance of two global variables: @@sqlstatus and
@@rowcount.

The @@sqlstatus variable returns status information concerning the last
executed FETCH statement. (The Transact-SQL documentation states that
no command other than the FETCH statement can modify the
@(@sqlstatus variable.) This variable contains one of three values. The
following table appears in the Transact-SQL reference manuals:

Status Meaning
» Successful completion of the FETCH statement.
» The FETCH statement resulted in an error.

> There is no more data in the result set.

UGCS-104/151

UGCS-104/152

The @@rowcount variable contains the number of rows returned from
the cursor's result set up to the previous fetch. You can use this number to
determine the number of records in a cursor's result set.

The following code extends the statements executed during the discussion
of the FETCH statement. You now use the WHILE loop with the
@@sqlstatus variable to scroll the cursor:

INPUT:

> declare @name char(30)

> declare @homebase char(40)

> declare @style char(20)

> declare @artist id int

> fetch Artists_Cursor into @name, (@homebase, @style, @artist_id
> while (@@sqlstatus = 0)

> begin

> print (@name

> print @homebase

> print @style

> print char(@artist_id)

> fetch Artists Cursor into @name, @homebase, @style, @artist id
> end

> go

ANALYSIS:

Now you have a fully functioning cursor! The only step left is to close the
cursor.

5.20.5 Closing a Cursor

Closing a cursor is a very simple matter. The statement to close a cursor is
as follows:

SYNTAX:
>close cursor_name

This cursor still exists; however, it must be reopened. Closing a cursor
essentially closes out its result set, not its entire existence. When you are
completely finished with a cursor, the DEALLOCATE command frees the
memory associated with a cursor and frees the cursor name for reuse. The
DEALLOCATE statement syntax is as follows:

SYNTAX:
>deallocate cursor cursor _name

The following example illustrates the complete process of creating a
cursor, using it, and then closing it, using SQL.

Example

INPUT:

> declare @name char(30)

> declare @homebase char(40)

> declare @style char(20)

> declare @artist_id int

> create Artists Cursor cursor

> for select * from ARTISTS

> open Artists_Cursor

> fetch Artists_Cursor into @name, (@homebase, @style, @artist_id
> while (@@sqlstatus = 0)

> begin

> print (@name

> print (@homebase

> print @style

> print char(@artist_id)

> fetch Artists_Cursor into @name, (@homebase, @style, @artist_id
> end

> close Artists_ Cursor

> deallocate cursor Artists Cursor

> go

NOTE: The following is sample data only.

OUTPUT:

Soul Asylum Minneapolis Rock 1

Maurice Ravel France Classical 2

Dave Matthews Band Charlottesville Rock 3
Vince Gill Nashville Country 4

UGCS-104/153

UGCS-104/154

Oingo Boingo Los Angeles Pop 5

Crowded House New Zealand Pop 6

Mary Chapin-Carpenter Nashville Country 7
Edward MacDowell U.S.A. Classical 8

5.20.6 The Scope of Cursors

Unlike tables, indexes, and other objects such as triggers and stored
procedures, cursors do not exist as database objects after they are created.
Instead, cursors have a limited scope of use.

5.21 TRIGGERS

Triggers are stored programs, which are automatically executed or fired
when some events occur. Triggers are, in fact, written to be executed in
response to any of the following events:

e A database manipulation (DML) statement (DELETE, INSERT, or
UPDATE).

e A database definition (DDL) statement (CREATES, ALTER, or
DROP).

Triggers could be defined on the table, view, schema, or database with
which the event is associated.

5.21.1 Advantages of Triggers
Triggers can be written for the following purposes:
e Generating some derived column values automatically
o Enforcing referential integrity
o Event logging and storing information on table access
e Auditing
e Synchronous replication of tables
e Imposing security authorizations
e Preventing invalid transactions
5.21.2 Creating Triggers
The syntax for creating a trigger is:
CREATE [OR REPLACE] TRIGGER trigger name
{ BEFORE |AFTER | IBSTEAD OF }
{INSERT [OR] | UPDATE [OR] | DELETE}

[OF col name]

ON table name

[REFERENCING OLD AS o AS NEW AS N]
[FOR EACH ROW]

WHEN (condition)

DECLARE

Declaration-statements

BEGIN

Executable-statements

EXCEPTION

Exception-handling-statements
END;
Where,

CREATE [OR REPLACE] TRIGGER trigger name: Creates or
replaces an existing trigger with the trigger name.

{BEFORE | AFTER | INSTEAD OF}: This specifies when the
trigger would be executed. The INSTEAD OF clause is used for
creating trigger on a view.

{INSERT [OR] | UPDATE [OR] | DELETE}: This specifies the
DML operation.

[OF col name]: This specifies the column name that would be
updated.

[ON table name]: This specifies the name of the table associated
with the trigger.

[REFERENCING OLD AS o NEW AS n]: This allows you to refer
new and old values for various DML statements, like INSERT,
UPDATE, and DELETE.

[FOR EACH ROW]: This specifies a row level trigger, i.e., the
trigger would be executed for each row being affected. Otherwise the
trigger will execute just once when the SQL statement is executed,
which is called a table level trigger.

WHEN (condition): This provides a condition for rows for which the
trigger would fire. This clause is valid only for row level triggers.

Example: Let us consider the customers table

UGCS-104/155

UGCS-104/156

ID NAME AGE ADDRESS SALARY
1 Ramesh 32 Ahmedabad 2000.00
2 Khilan 25 Delhi 1500.00
3 Kaushik 23 Kota 2000.00
4 Chaitali 25 Mumbai 6500.00
5 Hardik 27 Bhopal 8500.00
6 Komal 22 MP 4500.00

The following program creates a row level trigger for the customers
table that would fire for INSERT or UPDATE or DELETE operations
performed on the CUSTOMERS table. This trigger will display the salary
difference between the old values and new values:

CREATE OR REPLACE TRIGGER display_salary changes
BEFORE DELETE OR INSERT OR UPDATE ON customers
FOR EACH ROW

WHEN (NEW.ID>0)

DECLARE

sal diff number;

BEGIN

sal_diff := :New.salary - :OLD.salary:
dbms_output.put_line(‘Old salary: ‘ || : OLD.salary);
dbms_output.put line(‘New salary: || : NEW.salary);
dbms_output.put line(‘ Salary difference: “ || sal diff);
END;/

When the above code is executed at SQL prompt, it produces the
following result:

Trigger created.
Here following two points are important and should be noted carefully:

e OLD and NEW references are not available for table level triggers,
rather you can use them for record level triggers.

e If you want to query the table in the same trigger, then you should
use the AFTER keyword, because triggers can query the table or
change it again only after the initial changes are applied and the table
is back in a consistent state.

e Above trigger has been written in such a way that it will fire before
any DELETE or INSERT or UPDATE operation on the table, but
you can write your trigger on a single or multiple operations, for

example BEFORE DELETE, which will fire whenever a record will
be deleted using DELETE operation on the table.

5.21.3 Triggering a Trigger

Let us perform some DML operations on the CUSTOMERS table. Here is
one INSERT statement, which will create a new record in the table:

INSERT INTO CUSTOMERS (ID, NAME, AGE, ADDRESS,
SALARY)

VALUES (7, ‘KRITT’, 22, ‘HP’, 7500.00);

When a record is created in CUSTOMERS table, above create trigger
display_salary changes will be fired and it will display the following
result:

Old salary;
New salary: 7500
Salary difference:

Because this is a new record so old salary is not available and above result
is coming as null. Now, let us perform one more DML operation on the
CUSTOMERS table. Here is one UPDATE statement, which will update
an existing record in the table:

UPDATE customers
SET salary= salary + 500
WHERE id=2;

When a record is updated in CUSTOMERS table, above create trigger
display_salary changes will be fired and it will display the following
result:

Old salary: 1500
New salary: 2000
Salary difference: 500

“CHECK YOUR PROGRESS 2”

What is Cursor?

List advantages of triggers.

Explain aggregate function.

Define view.

. What are the SQL constructs to modify the structure of tables, views

and to destroy the tables and views?

6. What are the various characteristics of SQL? Discuss five aggregate
functions with a suitable example.

7. What do you mean by Query and sub-query? Discuss cursors in SQL
also.

8. What are triggers? How to create triggers?

e

UGCS-104/157

UGCS-104/158

5.22 SUMMERY

Structured Query Language (SQL) is a comprehensive language for
controlling and interacting with a database management system. It is
non-procedural in nature. It can be also define as a query language
that allows access to data residing in database management system.

A table is uniquely identified by its name and consists of rows that
contain the stored information and column that describes an
attributes of the tuples.

Aggregate functions are statistical function such as COUNT, MIN,
MAX, AVG etc. they are used to compute to describes an attributes
of the tuples.

A view is a virtual table where data is not stored physically but give
the convenient method to retrieve and manipulate users to make
simple queries to retrieve the results from complicated queries. It is
of two types: simple view and complex view.

Assertion is a method of expressing a condition that we want
database to satisfy always.

Triggers are stored programs, which are automatically executed or
fired when some events occur.

The cursor is a database object that allows you to manipulate data
contained within the work area assigned to execute an SQL
statement.

5.23 OBJECTIVE TYPE QUESTIONS

Ql.

Q2.

The statement in SQL which allows changing the definition of a
table is

(A) Alter. (B) Update.
(C) Create (D) select.
Ans: A

Relational Algebra is.

(A) Data Definition Language. (B) Meta Language
(C) Procedural query Language (D) None of the above
Ans: C

Q3.

Q4.

Qs.

Q6.

Which of the following is correct?
(A) aSQL query automatically eliminates duplicates.

(B) SQL permits attribute names to be repeated in the same
relation.

(C) aSQL query will not work if there are no indexes on the
relations

(D) None of these
Ans: D

Which of the following is a valid SQL type?

(A) CHARACTER (B) NUMERIC
(C) FLOAT (D) All of the above
Ans: D

Which of the following is an advantage of view?

(A) Data security (B) Derived columns
(C) Hiding of complex queries (D) All of the above
Ans: D

Which of the following is a legal expression in SQL?

(A) SELECT NULL FROM EMPLOYEE;

(B) SELECT NAME FROM EMPLOYEE;

(C) SELECT NAME FROM EMPLOYEE WHERE SALARY

= NULL;

(D) None of the above

Ans: B

UGCS-104/159

UGCS-104/160

Q7.

The result of the UNION operation between R1 and R2 is a
relation that includes.

(A) all the tuples of R1
(B) all the tuples of R2
(C) all the tuples of R1 and R2

(D) all the tuples of R1 and R2 which have common columns

Ans: D

Q8. A file manipulation command that extracts some of the records
from a file is called
(A) SELECT (B) PROJECT
(C) JOIN (D) PRODUCT
Ans: A

Q9. A table joined with itself is called
(A) Join (B) SelfJoin
(C) Outer Join (D) EquilJoin
Ans: B

Q10. The operator is used to compare a value to a list of literals

values that have been
specified.
(A) BETWEEN (B) ANY
(O)IN (D) ALL
Ans: A

5.24 SELECTED EXERCISE

(1) What is the Differences between the Table and View? What are the
various advantage of using views. Explain the simple and complex
views with suitable example?

(2) What are the types of Joins in SQL?

(3) Explain the cursors with example?

(4) Define a NULL value? How do you retrieve null values from the
database?

(5) How do you use views during the application development?

(6) Database consists of the following tables:

STUDENT(S#, Sname)
COURSE(C#,Title,Teacher name)
RESULT(S#,C#,Marks)

Write queries in SQL

(1) List of students who appear in all courses tough by a teacher
named Dr. Sharma & marks scored more than 60 Marks.

(i11)) The subject titles in which there are maximum failure
(7) Consider the following table:
Employee (Emp Name, Dept Name, Salary)
Write SQL statements for the following:
(1) Find the employee name who is getting lowest salary.
(i) Find the department name which has highest average salary.

(i11)) Find all the department where more than 60 employees are
working.

(iv) Find all employees whose salary is higher than the average
salary of their department.

(8) (a) Write SQL statement to create these tables:
Suppliers(sid: integer, sname: string, address: string)
Parts(pid: integer, pname: string, color: string)
Catalog(sid: integer, pid: integer, cost: real)
(b) Solve the following queries:
(1) Find the names of suppliers who supply some red part.

(i) Find the most expansive parts supplied by suppliers named
Mahesh.

(i11) Find the parts supplied by every supplier at less than Rs. 200.

(iv) Find the supplier names of the suppliers who supply a red part
that costs less than Rs. 100.

(9) (a) Schema defined for Employee Management System is:

Employee: EmpID, Name, Address, Department, Designation,
Salary

Department: DeptID, Name, HeadID
Create and insert data for the above schema.
(b) Write SQL queries for the following and show the results:

UGCS-104/161

UGCS-104/162

(10)

(11)

(1)

(12)

(1) Retrieve the details of employee who gets the maximum salary.

(i) List names of all employees who earn more than Rs. 1, 00,000
in a year.

(iii)) Give the name of the employee who heads the department
where employee with EmpID 3 works.

Consider Following Schema

Employee (ENO, ENAME, Department, Designation, DOJ, Salary,
Dept_Location)

Solve the following query

(i) List the employees having Designation as “Manager” and
.Dept_Location as “Mumbai”

(i1) Set the salary as Rs.50,000/- having Designation as “Project
Leader”

(iii)) List ENO, ENAME, Salary of employees having Salary between
Rs. 20,000/- to Rs.30,000/-

(iv) List Ename of employees having 2nd alphabet in the name as “A”.
Given the relational schema:

ENROLL(S#, C#, Section), S# is student number.

TEACH (Prof, C#, Section), C# is course number.

ADVICE (Prof, S#), Prof is Thesis advisor of S#.

PRE-REQ(CH#, pre-C#), pre-C# is prerequisite course.

GRADE (S#, C#, grade, year)

STUDENT (S#, Sname), Sname is student name.

Give queries expressed in SQL

List of students taking courses with Ajay or Vijay.

(i1) List all students taking at least one course that their advisor
teaches.

(i11) List those professors who teach more than one section of the same
course.

(iv) List all students number and course number.

(v) List the student number and course number who got grade A
Consider following Relational Algebra schema

STUDENT (RNO, Name, DOB, Percentage, DNO)
DEPARTMENT (DNO, DNAME, HEAD)

Solve the following query using SQL

(13)

1. Find Student’s name and course from Computer Department
ii. Get the Student’s name who has percentage greater than 70.
For the following relational database write the expressions in SQL.
Branch Schema (branch name, Branchcity, Assets)

Customer schema (customername, customerstreet, customercity)
Loan schema (Branchname, loannumber, Amount)

Borrower schema (customername, loannumber)

Account schema (Branchname, Accountnumber, balance)
Depositor schema (customername, Accountnumber)

1. Find the names of all branches in Loan Schema?

ii. Find all customers having loan, account or both at bank?

iii. Display customer names in alphabetical order who have a loan
at the Perryridge branch?

iv. Find set of all customers who have an account at the bank?

UGCS-104/163

UGCS-104/164

UNIT- 6
DATABASE DESIGN

Structure

6.1 Introduction

6.2 Objectives

6.3 Database anomalies

6.4 Normalization

6.5 Normalization Terminology

6.6
6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20

6.5.1 Primary Key

6.5.2 Functional Dependency

Inference Rules and Attribute Closure

First Normal Form

6.7.1 Eliminate the Multivalued Columns from the Table
6.7.2 Each Column in the Table is Atomic
6.7.3 Each Column Must Have a Key
6.7.4 Eliminate the Repeating values
Partial Dependency

Second Normal Form

Transitive dependency

Third Normal Form

Boyce- Codd Normal Form

Decomposition

Multi-Valued Dependency

Fourth Normal Form

Join Dependency and Fifth Normal form
Functional Dependency

Summery

Objective Questions

Selected Exercise

UGCS-104/165

UGCS-104/166

6.1 INTRODUCTION

Database Normalization, or data normalization, is a technique to
organize the contents of the table for transactional database and for the
data warehouses. Normalization is a part of the successful database
design; without normalization, database systems may be inaccurate, slow,
and inefficient, and they might not produce the data we expect.

The primary reason for the normalizing databases is that normalization
is the potent weapon against the possible corruption of databases
stemming from what are called insertion, deletion & update anomalies.

Normalization can be viewed as a series of steps one after another, to
deal with ways in which tables can be too complicated. These steps are
known as First Normal Form (INF), Second Normal Form (2NF), Third
Normal Form (3NF), Boyce-codd Normal Form (BCNF), Fourth Normal
Form (4NF), and Fifth Normal Form (5NF).

6.2 OBJECTIVES

After the end of this unit, you should be able to:
e Describe the various types of anomalies.

e Describe the normalization and the various concepts such as primary
key and functional dependencies used in normalization.

e Explaining the first, second and third normal forms applied on a
database in normalization technique.

e Explaining transitive dependency, decomposition, attribute
preservation and multivalued dependency.

e Describing the fourth and fifth normal forms with join dependency.

6.3 DATABASE ANOMALIES

The goal of designing a database schema is to minimize the storage
space, which is occupied by data stored on the hard drive. Database
anomalies are the errors in data contained in the database that reduces the
performance of database management system (DBMS). The database
anomalies also affect the performance of DBMS by increasing the size of
data files. The following types of database anomalies can increase the size
of data files:

e Insertion anomalies: These occur when it becomes difficult to
insert data in the database. You cannot insert data having null values
in a table, which has a primary key constraint. So when you have a
record that contains values for all the columns apart from the

primary key column, you cannot insert that record into the table.
This restricts the ability of inserting the records into the database.

e Deletion anomalies: When any particular relation in the database is
affected by the deletion of a particular record, deletion anomalies
occur. For example, in a database, a table contains the record of
students. The subject column of the table contains the information
about the student, which the students have opted. Now if you delete
all the records for the multimedia subject, then you can lose the
information about the students who are studying only multimedia.

e Modification anomalies: These occur when a database user changes
the value of a data item and the value of that data item does not
change in other tables.

6.4 NORMALIZATION

Normalization is the process of eliminating redundancy of data in a
database. A relational table in a database is said to be in a normal form if it
satisfies certain constraints. The normalization process involves various
levels of normal forms that allow you to separate data into multiple related
tables. The common examples of normal forms are : first normal
form(INF), second normal form(2NF), third normal form(3NF), fourth
normal form(4NF) and fifth normal form(5NF). The goals of
normalization are:

e Elimination of redundant data storage.
¢ Ensuring that only related data is stored in a table.

Therefore, normalization helps you to remove data redundancy and
update inconsistencies when data is inserted, deleted or modified in a
database. A normalized relational database provides several benefits:

e Provide better overall database organization and data consistency
with a database.

e Allows you to create tables that can be easily joined with other tables
with related information.

e Helps to reduce redundant data across the table.
e Prevents data loss by assigning primary and foreign keys in a table.

e Helps to reduce modification anomalies such as deletion, insertion
and update anomalies.

6.5 NORMALIZATION TERMINOLOGY

Normalization terminology consists of various concepts frequently
used in normalization such as primary key and functional dependency.

UGCS-104/167

UGCS-104/168

6.5.1 PRIMARY KEY

The primary key of a relational table uniquely identifies each row in a
table. A primary key is either a column in a table that is unique such as
identification number and social security number. Primary key is a set of
single column or multiple columns from a table. For example, consider the
student record database that contains tables related to student’s
information. The table STUDENTS consists of various attributes such as
student id, first name, last name and student stream.

student id first name last name student stream
SO01 Sanjeev Gangwar Computers

S02 Amit Yadav Electronics
S03 Sanjay Rawar Electrical

Table 6.1: the STUDENTS table

A unique student id number of a student is a primary key in the
STUDENTS Table 6.1. You cannot make the first or last name of a
student a primary key because two or more students may have the same
first name and stream

6.5.2 FUNCTIONAL DEPENDENCY

A functional dependency is a constraint between two sets of attributes
from the database. Functional dependency is represented by X-->Y
between two attributes, X and Y in a table. The functional dependency X--
>Y implies that Y is functionally dependent on X. Table 6.2 lists the
various attributes in the EMPLOYEE table.

employee id | employee name employee dept
EO1 Sanjeev Gangwar

E02 Amit Yadav

E03 Sanjay Rawar

Table 6.2: the EMPLOYEE Table

In Table 6.2 the various attributes of the EMPLOYEE are employee id,
employee name and employee dept. You can state that:

employee id-> employee name

the above representation states that the employee name attribute is
functionally dependent on the employee id which implies that the name of
an employee can be uniquely identified from the id of the employee.
However you cannot uniquely identify the employee id from the
employee name column because more than one employee can have the

same name. However each employee has different value in the
employee id column.

Functional dependency is a type of constraint based on keys such as
primary key or foreign key. For a relation table R, a column Y is
functionally dependent on a column X of the same table if each value of
the column X is associated with only one value of the column Y at a given
time. All the columns in the relational table R should be functionally
dependent on X if the column X is a primary key.

If the columns X and Y of a relation R are functionally dependent, the
functional dependency can be represented as:

Rx=> Ry
For example consider the following functional dependency in a table
employee id->salary

the column employee id functionally determines the salary column
because the salary of each employee is unique and remains the same for an
employee, each time the name of the employee appears in the table.

A functional dependency represented by X—>Y between two sets of
attributes X and Y that are subsets of R, is called as trivial functional
dependency if Y is a subset of X. For example employee id->project is a
trivial functional dependency.

6.6 INFERENCE RULES AND ATTRIBUTE
CLOSURE

Inference rule for functional dependencies define the new
dependencies, which can exist between two relations. The inference rules
help deduce these new dependencies from a given set of functional
dependencies F. The set of dependencies which cannot be specified is
called the closure of F and is denoted by F+. Following are the six
inference rules of functional dependencies F.

e 1R1 (reflexive rule): if XSY then X—Y: this rule states that if
XEY and two tuples t1 and t2 exist in a relation instance r of relation
R such that t1[X]=t2[X]. Now tl1[X] =t2[X] because XEY. this
implies that X—Y holds true in relation instance r of relation R.

e 1R2(augmentation rule): { X—Y }|=XZ—YZ: this rule states that if
X—Y holds true in a relation instance r of R but XZ—YZ does not
exist, then tuple t1 and t2 must exist in relation R.

e IR3(transitive rule): {X—Y, Y>Z}|=X—Z

e IR4 (decomposition or projective rule): this rule states that if
X—YZ holds true then X—Y and X—Z also hold true.

UGCS-104/169

UGCS-104/170

e 1RS (union or additive rule): this rule states that if X—Y and
X—Z hold true then in the relation R, X—YZ also hold true.

e 1R6 (pseudo transitive rule): this rule states that if X—Y and
WY —Z hold true, then WX—Y also holds true.

Attribute Closure

To compute the closure J* of a given set J of functional dependencies,
you can apply the inference rules until they stop producing new functional
dependencies. You can test whether a set of attributes, J is a super key or
not, by finding the set of attributes, which are functionally determined by
J. You can use the following algorithm to compute the closure J*

result :=J

while (changes to result) do

for each functional dependency B—C in F do
begin

if B Sresult;

then result :=result U C

end

the above code assumes that J is a set of attributes and you can call the set
of attributes determined by a set F of functional dependencies. The closure
of J under F is denoted by J*

Let us discuss this algorithm with an example;

Assume a relation schema R = (A, B, C) with the set of functional
dependencies F = {A — B, B— C}. Now, we can find the attribute
closure of attribute A as follows;

Step 1: We start with the attribute in question as the initial result. Hence,
result = A.

Step 2: Take the first FD A — B. Its left hand side (i.e, A) is in the result,
hence the right hand side can be included with the result. This lead to
result = AB.

Step 3: Take the second FD B — C. Its left hand side (i.e, B) is in the
result (or subset of result), hence the right hand side can be included with
the result. Now, result = ABC.

We have no more attributes. Hence the algorithm exits. As the result, J*
includes all the attributes of relation R. Now we would say J™ is ABC.
And, A is one of the keys of the relation R.

6.7 FIRST NORMAL FORM

If data in the table has an identifying key and does not include
repeating groups of data, the table is said to be in 1NF. To reduce data
redundancy by using first normal form you need to

e Remove the duplicate columns from a table.

e C(reate a separate table for related data and identify the primary key
in the table.

According to the first normal form, a table should be atomic which implies
that no duplicate data exists within the same row of a table. For example
consider the items in Table 6.3.

Order No | Item | Iteml Qt | Iteml Pri | Item | Item2 Qt | Item2 Pri
1 y ce 2 y ce

011 IT90 | 322 368 IT91 | 564 45%

Table 6.3: The Items Table

In Table 6.3 the information provided is redundant. The multiple values of
same type are stored in multiple columns such as quantity and price of two
items are stored in different columns.

The requirement of first normal form is:
e FEliminate the multivalve fields from the table.
e Each column in the table must be atomic.

e Each column in the table must have a key such as primary or foreign
key.

e Remove the repeating information from the table.

6.7.1 Eliminate the Multivalued Columns from the Table

The first requirement to apply 1NF to a table is to ensure that the table
does not contain mutivalued columns. For example; consider a Books
table with attributes book name, book author, book ISBNno, book price,
book publisher and book category. Table 6.4 lists the various attributes in
the Books table.

book author | book ISBNno | book price | book publisher | book categ
ory

John 8790478 35 ABC Sales

Wilkins

Chris 8790388 25 PQR Accounts

Burton

Ken Wilkins | 8790689 77 ABC Sales

Table 6.4: The Books Table

UGCS-104/171

In the table, since a book can have more than one author and also a book
can be included in different categories, therefore such columns that consist
of multivalued elements should be removed from the table. Therefore the
Books table should contain book ISBNno, book price, and
book publisher.

Table 6.5 lists the various attributes of the Books table after the
multivalued elements are removed.

book ISBNno | book price book publisher
8790478 35 ABC
8790388 25 PQR
8790689 77 ABC

Table 6.5: The Books Table after the multivalued elements are
removed

Table 6.6 lists the Book category table.

book ISBNno book category
8790478 Sales

8790388 Accounts
8790689 Sales

Table 6.6: The Books category table

6.7.2 Each Column in the Table is Atomic

You need to ensure that each column in a table that is to be normalized
is atomic. For example, the author table can be divided into two columns
which are first name and last name to make the table atomic.

Table 6.7 lists the various attributes in the author table.

book ISBNno | First name Last name
8790478 John Wilkins Wilkins
8790388 Chris Burton Burton
8790689 Ken Wilkins Wilkins

Table 6.7: The Author Table

6.7.3 Each Column Must Have a Key

You can determine if each column in a table contains unique value by
verifying the keys in table. The various key that can exist in a table are:

UGCS-104/172

e Super key: refers to one or more than one column that identifies a
unique row within a table,

e Candidate key: refers to the super key consisting of minimum
number of columns required for identifying a unique row in a table.

e Primary key: refers to the candidate key required to uniquely
identify a row in a table.

e Alternate key: refers to the candidate key which is not selected as a
primary key.

e Foreign key: refers to one or more than one column in a table that
matches a candidate key in the same or different table. A row in a
table may be linked to a row in another table by using a foreign key.

In the Books table, the super keys are Book author and book ISBNno.
The super keys for the author table are the combination of first name and
last name.

The primary key for the Books table is Book ISBNno and the primary
keys for the auther table are first name and last name to ensure that each
row in the author table is unique you can add the Author city and
Author zipcode columns in the primary key field.

Table 6.8 lists the various attributes in the author table.

Book author book ISBNno | Author address | Author phoneno
John Wilkins 8790478 Houston 0067675467
Chris Burton 8790388 New York 0087658945
Ken Wilkins 8790689 Denver 0067345275

Table 6.8: The Author Table

6.7.4 Eliminate the Repeating values

To make a table compliant with INF you need to eliminate the
repeated values from the table. For example, in the Books table the
publisher column can contain same values for different books. Therefore,
to remove the repeating values you can make a separate table, publisher
with attributes Publisher id and Publisher name. The publisher id can be
identified as the primary key for the publisher table.

Table 6.9 lists the various attributes in the Publisher table.

Publisher id Publisher name
P0240 ABC
P0240 PQR
P0240 ABC

Table 6.9: The Publisher Table

UGCS-104/173

UGCS-104/174

6.8 PARTIAL DEPENDENCY

In a table, a primary key consists of one or more than one column to
uniquely identify each row in the table. Partial dependency occurs when a
row of a table is uniquely identified by one column that constitutes a
primary key without requiring the entire primary key to uniquely identify
the row. For example consider a table ‘Stocks’ with attributes cust id,
stock and stock price.

Table 6.10 lists the various attributes in the Stock table.

cust id stock Stock price
C012 stk1 15
C013 stk2 10
C014 stk3 20

Table 6.10: The Stocks Table

In the above table, suppose cust id and stock are identified as the
primary key for the Stocks table. However the column stock price is
partially dependent on the primary key because only the stock column
determines the stock price. Also the values in the stock price column do
not need the cust id column to uniquely identify the price of the stocks.
Therefore you need to make a separate table for the stock price where the
stock column is the primary key. In the new table, partial dependency is
eliminated because the stock price column depends on the entire primary
key.

Partial dependencies can only occur when more than one field
constitutes the primary key. If there is only one field in the primary
identifier then partial dependencies cannot occur.

6.9 SECOND NORMAL FORM

A table is in 2NF if the table satisfies all the conditions of first
normal form and does not consist of any column that depends on only one
part of the identified primary key. The 2NF is based on the concept of full
dependency.

To apply 2NF to a table you need to:
e Ensure that the table confirms to INF.

e C(reate a separate table for sets of values that are applicable to
multiple records.

e Relate these tables with a foreign key.

Table 6.11 lists the various attributes in the Emp_project table

Emp id | Proj no | Proj hrs | Emp name | Proj name | Proj loc
1 P34 10 Ravi Sales Delhi
2 P45 04 Kisan Account Noida

Table 6.11: The Emp_project Table

The above table Emp project confirms to INF since it does not
contain repeated values and Emp id and Proj no are identified as the
primary keys for the table. However you need not confuse that the table is
in 2NF because all the columns of the table depend on only a part of the
primary key, which comprises Emp id and Proj no identified for the
table. For example the column Emp name is dependent on only the
Emp id and does not depend on the Proj no part of the primary key.
Similarly the Proj name column is dependent on only the Proj no column
and not on the Emp_id primary key.

Therefore to apply 2NF to the Emp project table you need to make
a separate table for columns thet depend on only a part of the primary key.
The new table should contain columns that are dependent on the entire
primary key identified for the table. The table formed after applying 2NF
to the Emp project table are emp proj and emp table and proj table. Table
6.12 lists the various attributes in the emp_ proj table.

Emp id | Proj no Proj hrs
1 P34 10
2 P45 04

Table 6.12: The emp_project

Table 6.13 lists the various attributes in the emp table

Emp id Emp name

1 Ravi

2 Kishan

Table 6.13: The emp table
Table 6.14 lists the various attributes in the proj table

Proj no Proj name Proj loc
P34 Sales Delhi
P45 Account Noida

Table 6.14: The proj table

UGCS-104/175

UGCS-104/176

“CHECK YOUR PROGRESS 1”
How do you apply 2NF to a relational table?

Define the term partial dependency.
How do you apply 2NF to a relational table?

Define inference rule.

A

What are the advantages of normalized relations over the un
normalized relations?

6.10 TRANSITIVE DEPENDENCY

A transitive dependency occurs when a non-key column is uniquely
identified by values in another non-key column of a table. A non-key
column of a table refers to the column that is not identified as a key such
as candidate key or primary key. For example consider a SUPPLIER table
with attributes supplier id, supplier status and supplier address. The
functional dependencies that exist in the SUPPLIER table help to
understand the concept of a transitive dependency.

Table 6.15 lists the various attributes in the SUPPLIER table.

supplier id supplier status | supplier address
SO1 10 Mumbai

S02 20 Pune

S03 30 Lucknow

Table 6.15: the SUPPLIER table
In the following table, the following functional dependencies hold:
supplier id — supplier status
supplier id — supplier addree
supplier _address — supplier_status

in the SUPPLIER table, the non-key column supplier status is identified
by both the primary key supplier id and non-key columns
supplier_address. Therefore transitive dependency exists in the above
table. To eliminate transitive dependency, you need to apply 3NF to the
table.

6.11 THIRD NORMAL FORM

If a table satisfies the requirements of 2NF and the functional
dependence of the non-key columns is only on the primary key, it is in

3NF. The third normal form is based on the concept of transitive
dependency. A functional dependency A — B, in a relation, R is a
transitive dependency if the following conditions are satisfied:

e A column or set of columns, C, exists in the table that is neither the
candidate key of R nor the subset of any key of R.

e The functional dependencies A — C and C —B hold in the table.

For example consider a Subject table with attributes such as Subject no
and Chapter name. Table 6.16 lists the various attributes in the Subject
table.

Subject no Chapter name Instructor Department
CS001 Entity relationship | Dillep Gupta Computer
EC001 Digital Electronics | Ravi Kumar Electronics

Table 6.16: The Subject table

In the above table, Subject no is the only candidate key. Therefore the
following functional dependency exists for the Subject table.

Subject no — Chapter name
Subject no — Instructor
Instructor — Department

From the above functional dependencies you can say that Subject no
— Department and therefore the above table 1s in 2NF. However the table
is not in 3NF since Department is not directly dependent on Subject no. In
the Subject table the Department column is determined by another non-
key column, Instructor. Therefore to apply 3NF to the Subject table, you
need to decompose the table into two tables subject inst table and
instructor table.

Table 6.17 lists the various attributes in the subject inst table.

Subject no Subject name Instructor
CS001 Entity relationship | Dillep Gupta
EC001 Digital Electronics | Ravi Kumar

Table 6.17: The Subject_inst table

Table 6.18 lists the various attributes in the instructor table.

Instructor Department
Dillep Gupta Computer
Ravi Kumar Electronics

Table 6.18: The instructor table

UGCS-104/177

UGCS-104/178

6.12 BOYCE-CODD NORMAL FORM

Boyce-Codd normal form is stricter than third normal form. In BCNF
the relation which is in BCNF is also present in third normal form (3NF)
but the relation in 3NF need not necessarily be present in BCNF. In 3NF
anomalies can occur, if a relation has two or more candidate keys. In the
situation of overlapping candidate keys, 3NF is unable to stop occurrence
of anomalies. This provides a base for BCNF, which is based on the
concept of determinant. A determinant refers to an attribute on which
some other attribute is functionally dependent. The following code shows
the relation and determinants:

R (a, b, c, d)
a, c—b,d
a, d—b

In the above code the first determinant states that you can change
the primary key of relation R from a,b to a,c. After applying this change,
you can still determine the non-key attributes present in relation R. The
second determinant indicates that a,d determines b, but as a,d do not
determine all the non-key attributes of R, it cannot be considered as the
primary key of R. This implies that the first determinant is a candidate key
but the second determinant is not a candidate key. Hence this relation is
not in BCNF but is in 3NF.

To be in BCNF every determinant of the relation has to be a
candidate key. The definition of BCNF specifies that a relation schema R
is in BCNF if a non trivial functional dependency

X —A holds in R, then X is a super-key of R.

6.13 DECOMPOSITION

The relational database design algorithm starts with a single
universal relation schema R= {A;, A,, Aj... A,) which includes all the
attributes of a database. The database designers specify the set, F of
functional dependencies which holds true for all the attributes of R. This
set, F of functional dependencies is also provided to the design algorithms.
With the help of functional dependencies, these algorithms decompose the
universal relation schema, R into a set of relation schemas, D= {Rj, R,...
Rin) which turns out to be the relational database schema. In this case D is
referred as a decomposition of R. The properties of decomposition are:

e Attribute preservation: It involves preserving all the attributes of
the relation, which is being decomposed by the design algorithms.
While decomposing a relation, you need to make sure that each

attribute in R exists in at least one relation schema R; while
decomposition the relation.

e Lossless-join decomposition: It ensures that the join remains in the
same relation, as it was before the decomposition of the relation. The
decomposition of the relation R into several relations Rj, R,... R, is
called lossless-join decomposition. If the relation R is the natural
join of the relation R;, R,... R, to test whether a given
decomposition is a lossless-join for a given set F of functional
dependencies, you need to decompose the relation R into R; and R,.
If the decomposition of the relation R is lossless-join then one of the
following conditions has to be true:

(R intersection R,) —-(R;—R3)
(R intersection R;) —(R,—Ry)

e Dependency preservation: It states that of each functional
dependency X — Y, specified in F, either directly appears in one
of the relation schemas R; in the decomposition D or is inferred
from the dependencies that appear in the relation R; . the need of
dependency preservation arises because each dependency in F
represents a constraint on the database. When decomposition does
not preserve the dependency, then some dependency can be lost in
decomposition. You can check for a lost dependency by creating a
join of two or more relations in decomposition to get a relation,
which includes all the left and right-hand side attributes of the lost
dependency. Then, check whether or not the dependency is
preserved on the result of join.

Example:

Suppose there is a company wherein employees work in more
than one department. They store the data like this:

emp id | emp nationality | emp dept dept type | dept no of emp
1001 Austrian Production D001 200
and planning
1001 Austrian stores D001 250
design and
1002 American technical D134 100
support
1002 | American Purchasing | 113, 1 699
department

Functional dependencies in the table above:
emp_id -> emp nationality
emp_dept -> {dept type, dept no _of emp}

Candidate key: {emp id, emp dept}

The table is not in BCNF as neither emp id nor emp_dept alone are keys. UGCS-104/179

To make the table comply with BCNF we can break the table in three
tables like this:

emp_nationality table:

emp id emp nationality
1001 Austrian
1002 American

emp_dept table:

emp dept dept type dept no of emp
Production and planning D001 200

stores D001 250

design and technical D134 100

support

Purchasing department D134 600

emp_dept_mapping table:

emp id | emp dept

1001 Production and planning
1001 stores

1002 design and technical support
1002 Purchasing department

Functional dependencies:

emp_id -> emp_nationality
emp_dept -> {dept_type, dept no_of emp}

Candidate keys:

For first table: emp id
For second table: emp dept
For third table: {emp id, emp_ dept}

This is now in BCNF as in both the functional dependencies left side part
is a key.

6.14 MULTI-VALUED DEPENDENCY

An entity in E-R model can have multi-value attributes. A multi-value
attribute is one that does not have a single value but a collection of values.
If you have to store such an entity in one relation, you should repeat all the
information excepting the multi-value-attribute value. In this way the same
instance of the entity will have many tuples. The situation becomes much
inferior if the entity’s multivalued attributes exceed one. The multi-valued
dependency (MVD) gives a solution to the problem of more than one
multi-valued attributes.

UGCS-104/180

MVD: Let R(X, Y, Z) be a relation. The multi-valued dependency X——
Y is said to hold for relation R if for a given set of value for attribute X,
there is a set of zero or more associated values for the set of attribute Y.
The Y values depend only on X values and have no dependence on the set
of attributes Z.

Suppose a Students table, which has Stud name, Qualifications and
Languages as attributes. In the relation a student can have more than one
qualification (Stud id —— Qualifications) and know more than one
language (Stud id—— Languages). This relation shows duplication of
data inconsistency. You can decompose the Students relation into two
relations having attributes Stud id, Qualifications and Stud id,
Languages.

In this example if there is dependency between Qualifications and
Languages attributes then Student relation would not have MVD and
cannot be decomposed into two relations.

6.15 FOURTH NORMAL FORM

The fourth and fifth normal forms depend on multivalued facts and
composite keys. The multivalued facts correspond to many-to-many
relationship and many-to-one relationship. In the fourth and fifth normal
forms, you need to minimize the number of columns in a composite key.

In the fourth normal form, you must ensure that a record satisfies the third
normal from and does not contain two or more independent multivalued
facts about an entity. For example, consider a table R with attributes
employees, skills and languages. Since in the table, an employee may have
various skills and may know various languages, therefore the table has two
many-to-many relationships. Under fourth normal form, the two many-to-
many relationships are not represented in a single row and you need to
split R into two tables. Therefore, the table R is split into a table with
attributes employees and skill and another table with attributes employees
and language.

If each table contains only one multi-valued dependency per key attribute,
the relation is in fourth normal form.

For example, consider the following instructor table as shown in Table
6.19 which lists the various attributes of instructor table

MID Database Instructor
1 Access Manoj

8 Access Ravi

1 Access Sachin

1 DB2 Manoj

1 DB2 Sachin

8 Oracle Ravi

Table 6.19: The Fourth Normal Form of Instructor Table

UGCS-104/181

UGCS-104/182

The redundancy of data is obvious: there are multiple values of Instructors
and Database for each MID. This illustrates a multi-valued dependency.
Table 6.20 and 6.21 shows the fourth normal form of instructor table.

MID Database
1 Access

8 Access

1 DB2

8 Oracle

Table 6.20: MID_DATA Table

MID Instructor
1 Manoj

1 Sachin

8 Ravi

Table 6.20: MID_instructor Table

6.16 JOIN DEPENDENCY AND FIFTH NORMAL
FORM

The fifth normal form (5NF) is based on join dependency. Join
dependency implies that after a table is decomposed into three or more
tables, the tables can be joined to from the original table. A table is in SNF
if the table cannot have lossless decomposition into smaller tables. A
lossless decomposition implies that after a relational table is decomposed
into smaller tables. The joining of the tables results in exactly the same
relational table which was decomposed. If an instance is added to a table,
which is not in 5NF, it results in spurious results when the tables are
decomposed and then rejoined.

Table 6.21 lists the various attributes of instructor —-MID-Location table.

Instructor MID Location
Smith 1 New York
Smith 2 Chicago
Jones 1 Chicago

Table 6.21: The Instructor-MID-Location Table

If you were to add the MID-2 to New York, you would be faced with
adding a line to the table for each instructor located in New York. If Jones
were certified for MID-2 and could travel to New York, you would have
to add two lines to reflect this.

Table 6.22 shows the instructor-MID-Location table and its decomposition
into fifth normal form.

Instructor- Seminar- Instructor-Location
Seminar Table Location Table Table
Instructo | MI MI Locatio Instructor | Location
r D D n
Smith New York
Smith 1 1 New
York Smith Chicago
Smith 2 :
1 Chicago Jones Chicago
Smith 1
2 Chicago

Table 6.22: The fifth normal form of instructor-MID-Location Table

6.17 FUNCTIONAL DEPENDENCY

Functional dependency is represented by X—Y between two
attributes, X and Y in a table. The functional dependency X—Y implies
that the Y is functionally dependent on X. For example, consider the
following EMPLOYEE table:

Table 6.23 lists the various attributes in the EMPLOYEE table.

Employee id Employee name Employee dept
K067263 John Sales
K067264 Chris Accounts
K067265 Ken sales

Table 6.23: The EMPLOYEE table

In table 6.23, the various attributes of the EMPLOYEE are Employee id,
Employee name and Employee dept. You can state that:

Employee id —Employee name

The above representation states that the Employee name attribute is
functionally dependent on the Employee id which implies that the name
of an employee can be uniquely identified from id of the employee.
However you cannot uniquely identify the Employee id from the
Employee name column because more than one employee can have the
same name. However each employee has different value in the
Employee id column.

Functional dependencies are a type of constraints based on keys, for a

relation table R, a column Y is said to be functionally dependent on a UGCS-104/183

UGCS-104/184

column X of the same table if each value of the column X is associated
with only one value of the column Y at a given time. All the columns in
the relational table R should be functionally dependent on X if column X
is a primary key.

If the columns X and Y are functionally dependent, the functional
dependency can be expressed as:

R.x—R.y
For example consider the following functional dependency in a table.
Employee — Salary

The column ‘Employee’ functionally determines the ‘Salary’ column
because the salary of each employee is unique and remains same for an
employee, each time the name of the employee appears in the table.

A functional dependency represented by X — Y between two sets of
attributes X and Y are the subsets of R, is called trivial functional
dependency if Y is a subset of X.

For example, Employee Project — Project is a trivial functional
dependency.

A functional dependency represented by X — Y between two sets of
attributes X and Y which are subsets of R, is called a non-trivial functional
dependency if at least on of the attributes of Y is not among the attributes
of X.

For example Employee — Salary is a non-trivial dependency.

Full functional dependencies are applied to the tables, which have
composite keys. Full functional dependency implies that when a primary
key in a table is made up of two or more columns, the other columns are
identified by the entire key.

“CHECK YOUR PROGRESS 2”
1. What is a primary key in a relational table?

2. Explain the concept of functional dependency with an example
Explain join dependency and fifth normal form.

3. What is transitive dependency?

4. Describe the term MVD in the context of relational database
management system by giving an example.

5. What is dependency Preservation property for decomposition? Explain
why it is important.

6.18 SUMMERY

Normalization is the technique to organize the contents of the table
for transactional databases and data warehouses. Normalization
eliminates two factors: redundancy and in consistent dependency.

An attribute in a relational table is said to be functionality
dependent on another attribute in the table if it can take one value for
a given value of the attribute upon which it is functionally
dependent.

The reflexivity rule, Augmentation rule and the Transitivity rule
are known as “RAT Axioms” or “Armstrong Axioms” in honour of
the person who was first proposed it.

The various types of normal forms are: First normal form, Second
normal form, Third normal form, BCNF form, Fourth normal form,
Fifth normal form.

Multi-valued dependency occurs when two or more independent
multi-valued facts about the same attribute occur within the same
relation. More generally, it is denoted by

X-——-Y

6.19 Objective TYPE Questions

Ql:

Q2:

Q3:

Every time attribute A appears, it is matched with the same value
of attribute B, but not the same value of attribute C. Therefore, it is
true that:

(a) A—B b)) A—-C
() A—(B,C) (d B,C—A
ANS: A

The different classes of relations created by the technique for
preventing modification anomalies are called:

(a) Normal forms. (b) Referential integrity
constraints

(c) Functional dependencies. (d) None

ANS: A

A relation is in this form if it is in BCNF and has no multi-valued
dependencies:

(a) Second normal form. (b) third normal form

(b) fourth normal form (d) domain/key normal
form

ANS: C

UGCS-104/185

UGCS-104/186

Q4:

Qs:

Q6:

Q7:

Q8:

Q9:

Q10:

Row is synonymous with the term:

(a) Record (b) relation
(¢) column (d) field
Ans: A

The primary key is selected from the:

(a) Composite keys. (b) Determinants
(c) Candidate keys (d) foreign keys
Ans C

Which of the following is a group of one or more attributes that
uniquely identifies a row?

(a) Key (b) Determinant
(c) Tuple (d) relation
Ans: A

When the values in one or more attributes being used as a foreign
key must exist in another set of one or more attributes in another
table, we have created a (n):

(a) Transitive dependency (b) insertion anomaly
(©) Referential integrity constraint (d) normal form
Ans:C

A relation is considered a:

(a) Column. (b) 1 d table
(©) 2 d table (d) 3 d table
Ans: C

In the relational model, relationships between relations or tables
are created by using:

(a) Composite keys (b) determinants
(©) candidate keys (d) foreign keys
Ans: D

A functional dependency is a relationship between or among;:

(a) Tables (b) TOWS
(©) Relations (d) attributes
Ans: D

6.20 SELECTED EXERCISE

Define the following Models:

Conceptual Data Models

Logical Data Models

Physical Data Models

What is the Normalization?

Discuss kinds of normalization with example.
Define INF with example

Define 2NF and 3NF with example

What is BCNF? Explain with example?
Differentiate between 4NF and MVD.
Differentiate between SNF and Join dependency.
Explain Following:

Inclusion Dependency

Boyce-Codd Normal Form

What is join dependency? Explain with example?
What do you mean by decomposition of a relation?

Discuss on the various ways in which we can arrive at a good
database design.

Define BCNF. How does BCNF differ from 3NF? Explain with an
example.

UGCS-104/187

UGCS-104/188

BLOCK

UNIT 7 193-210

FILE ORGANIZATION

UNIT 8 211-236

TRANSACTION PROCESSING CONCEPTS

UGCS-104/189

Curriculum Design Committee

Dr. P. P. Dubey, Coordinator
Director, School of Agri. Sciences, UPRTOU, Allahabad
Prof. U. N. Tiwari Member

Dept. of Computer Science and Engg.,
Indian Inst. Of Information Science and Tech., Allahabad

Prof. R.S. Yadayv, Member
Dept. of Computer Science and Engg., MNNIT, Allahabad

Prof. P. K. Mishra Member
Dept. of Computer Science, Baranas Hindu University, Varanasi

Mr. Prateek Kesrwani Member Secretary

Academic Consultant-Computer Science
School of Science, UPRTOU, Allahabad
Course Design Committee

Prof. U. N. Tiwari Member
Dept. of Computer Science and Engg.,
Indian Inst. Of Information Science and Tech., Prayagraj

Prof. R.S. Yadav, Member
Dept. of Computer Science and Engg., MNNIT, Allahabad, Prayagraj
Prof. P. K. Mishra Member

Dept. of Computer Science, Baranas Hindu University, Varanasi

Faculty Members, School of Sciences

Dr. Ashutosh Gupta, Director, Scool of Science, UPRTOU, Prayagraj

Dr. Shruti, Asst. Prof., (Statistics), Scool of Science, UPRTOU, Prayagraj

Ms. Marisha Asst. Prof., (Computer Science), Scool of Science, UPRTOU, Prayagraj

Mr. Manoj K Balwant Asst. Prof., (Computer Science), Scool of Science, UPRTOU, Prayagraj
Dr. Dinesh K Gupta Academic Consultant (Chemistry), Scool of Science, UPRTOU, Prayagraj

Course Preparation Committee

Mr. Sanjeev Gangwar* Author
Dept. of Computer Applications

VBS Purvanchal University, Jaunpur

Ms. Marisha® Author
Assistant Professor- Computer Science

School of Science, UPRTOU, Prayagraj

Dr. Ashutosh Gupta Editor
Director, School of Sciences,

UPRTOU, Prayagraj

Prof. U. N. Tiwari Member
Dept. of Computer Science and Engg.,

Indian Inst. Of Information Science and Tech., Prayagraj

Prof. R.S. Yadav, Member
Dept. of Computer Science and Engg.,

MNNIT, Allahabad, Prayagraj

Prof. P. K. Mishra Member
Dept. of Computer Science

Baranas Hindu University, Varanasi

Dr. Dinesh K Gupta, SLM Coordinator
Academic Consultant- Chemistry School of Science, UPRTOU, Prayagraj

Note: Author’s * -Block 1 and 2, # - Block-3

© UPRTOU, Prayagraj. 2019
ISBN : 978-93-83328-29-1

All Rights are reserved. No part of this work may be reproduced in any form, by mimeograph or any other
means, without permission in writing from the Uttar Pradesh Rajarshi Tondon Open University, Prayagraj.

UGCS-104/190

UNIT -7: FILE ORGANIZATION

Introduction, file organization, sequential file organization, index-
sequential file organization, direct file organization, multi key file
organization.

UNIT -8: TRANSACTION PROCESSING CONCEPT

Transaction System, testing of serializability, serializability of schedules,
conflict and view serializable schedule, recoverability, recovery from
transaction failure, log based recovery, checkpoints, deadlock handling,
concept of concurrency.

UGCS-104/191

UGCS-104/192

BLOCK INTRODUCTION

Storage of database and its efficient access when needed are important
aspects of any practical database system. In the first unit of this block, we
shall primarily discuss the techniques of storing databases permanently
over physical storage devices and the techniques used for accessing it
later. In particular, we shall discuss the physical placement of database
records on disk, various types of file organizations such as heap file
organization, sequential, direct, indexed and multi-key file organizations.
We shall also learn the advantages and disadvantages of each of them. In
the next unit, we shall discuss transaction processing concepts. We will
start with the concept of concurrency and why it is needed. Then, we will
discuss transactions, its definition, the states of transaction, their properties
and then we will define the concept of schedules. We will discuss about
serializability of schedules and serializability test. Thereafter, we will
move on to discuss the various types of failures that might occur in a
database system and their remedies. In the end we will briefly discuss the
concept of deadlock and how the database system handles deadlock. After
learning this block, you would have gained most of the knowledge
required for working with real database systems and be able to design and
manage small database applications.

UNIT-7

FILE ORGANIZATION
Structure
7.1 Introduction
Objectives
7.2 Placing File Records on Disk

7.3
7.4
7.5

7.6
7.7
7.8

7.9

7.2.1 Allocation of Files on Disk Blocks
7.2.2 File Headers

Heap File Organization
Sequential File Organization
Direct File Organization

7.5.1 Internal Hashing
7.5.2 External Hashing

Indexed File Organization
Index-Sequential File Organization

Multi Key File Organization
7.8.1 Partitioned Hashing
7.8.2 Grid Files

Summary

7.10 Review Questions

7.1 INTRODUCTION

So far we have studied the relational database model, database
integrity and normalization techniques. For a typical database system, the
number of tables and the records in each table is very large. This large
amount of data is to be stored for future use. In most cases, the databases
are stored for a long period of time and the information in the databases
are repeatedly accessed and modified during this period. Most databases
are permanently stored on magnetic disks (secondary storage) mainly

because:

UGCS-104/193

UGCS-104/194

1. Databases are generally very large and cannot fit entirely in the main
memory

2. Primary storage is volatile and hence its contents will be lost if the
power is turned off.

3. The cost of storage is much less in case of disk storage as compared
to primary storage.

There are various ways of storing large amounts of data on the disk
each having its own advantage and disadvantage. Physical database design
involves choosing a particular database design technique out of several
available techniques, that best suits the given application requirement. File
organization is mainly concerned with the organization of data into
records, physical placement of records on the disk and access structures
for retrieval of the records whenever needed.

In most database applications, only a part of the database is required at
any point of time for processing. Whenever a portion of the database is
needed, it has to be located on the disk, copied to the primary memory for
processing, and written back to the disk if any changes are made in the
data. The records should be stored on the disk in such a manner as to make
locating and retrieving the records efficient. It is therefore, necessary for
database designers, administrators and implementers to know various file
organization techniques, their implementation, their advantages and dis-
advantages for design, implementation and operation of Database
Management Systems.

In this unit, we will discuss file organization in database systems. We
will discuss how different types of records are placed physically on the
disk. We will also discuss various access structures which can be defined
on different types of file organizations for providing faster retrieval of
records. These provide alternative ways of accessing records in addition to
the one based on physical placement of records.

OBJECTIVE

After learning this unit you should be able to:
1. Describe how databases are stored physically on the disk

2. Describe the various types of file organizations and discuss their
advantages and disadvantages

3. Differentiate between primary and secondary file organizations
(auxiliary access structures)

4. Define multi-key file organization

7.2 PLACING FILE RECORDS ON DISK

The magnetic disk is a random access storage device. The smallest unit
of data stored on a disk is a bit. Data is stored on the disk into concentric
circles known as tracks. The number of tracks range from a few hundred
to a few thousand and each track can store tens to 150 Kbytes. The track is
further divided into smaller units known as sectors. Though most disks
have their tracks divided into sectors, it is not necessary. The division of
tracks into sectors is hard-coded on the disk surface and cannot be
changed.

The tracks are divided into equal sized disk blocks (or pages). The size
of disk blocks is set by the operating system during formatting (or
initialization) and cannot be changed dynamically. Data is transferred
from disk to the main memory in units of disk blocks. Blocks sizes
typically range from 512 to 8192 bytes. As we have just discussed, the
database is stored as files on a disk. A file is a logical sequence of records.
The records of the file are mapped onto the disk blocks. Although the size
of the disk blocks is fixed and cannot be changed dynamically, the size of
the records may vary. Typically, in a relational database, the tuples of
different relations are of different sizes. We employ different methods for
storing different types of records. Based on whether the size of each
record of a file is same or not, the files in a database system can be of two

types:
1. Fixed Length Records and

2. Variable Length Records

If different records in a file are of fixed length then the file is said to be
of fixed length otherwise it is said to be of variable length. Figure 7.1
below gives an example of fixed length records. Here, every record has
same fields and the length of each field is fixed. The system can identify
the starting position of each field relative to the starting position of the
record.

Name Employee ID Salary Hire Date Department

Ram 1234 XXX XXX Computer

Figure 7.1: Records of fixed length

It is possible to have variable lengths of records in a file if different
fields of a record are of variable lengths or some records can have
repeating or missing values. Nevertheless, we can store records of variable
lengths as fixed length records if we know the maximum possible length
of the variable length fields. We can then reserve this maximum amount of
space for every record. This method however can cause a large amount of
space to be wasted if the number of records is large. Storage and access is
much easier for fixed length records than for variable length records. This
is because if the length of each record and the length of each field of the

UGCS-104/195

UGCS-104/196

record is fixed, the system can access each record by calculating the fixed
length offset from the starting position of the record.

For variable length records, where fields of a record can be of varying
length, some special character is used as separator (the separator should
not appear in any of the field values) for the field values. For example, if
in the above case, we allow name of the employee to be of variable length
then we would require a separator character to mark the end of the field
name. This is shown in the Figure 7.2 below:

Name Employee ID Salary Hire Date Department
| Ram | B 1234 | XXX | XXX | Computer |

I Separator Character
Figure 7.2: Records of Variable length

For optional fields the records can be stored as a sequence of name-
value pairs as <field-name, field-value> or we may use some integer
coding for each field and store the fields as <field-code, field-value>. In
such cases, we need separator characters to separate the field name from
the field value and for separating one field from another field. A separator
character is also needed to mark the end of a record.

A repeating field in a record is a field that can have multiple values.
For storing repeating fields in a variable length record, we need a
separator character for separating the multiple values of the repeating field
and another one to mark the end of the field. Lastly, a separator character
will be required to mark the end of the record. The processing of files of
variable lengths is usually a part of the file system and is therefore not of
concern for programmers. In other words, the programmer need not worry
about whether the file contains fixed length records or variable length
records and she can work with the variable length records file in the same
manner as with the fixed length records file. Understandably, therefore
the storage and processing of variable length records files is more complex
than that of fixed length records where the starting position of each field
are known and fixed.

Check Your Progress

Q. Discuss how optional fields and repeating fields of a variable length
record are stored.

7.2.1 Allocation of Files on Disk Blocks

There are different ways in which files can be allocated on disk blocks.
Several ways of allocating disk blocks are: Contiguous Allocation,
Linked Allocation and Indexed allocation.

In contiguous allocation, the records of files are stored contiguously
one after the other on the disk blocks. This makes reading the file easier.

However, insertion and deletion of records becomes difficult as it would
involve shifting of records. Thus, while reading of file is easier in
contiguous allocation, the expansion of file becomes difficult.

In linked allocation, file can be stored on several non-contiguous disk
blocks and each disk block contains a pointer to the next block. This
makes it easy to expand the file; however reading the files takes longer
time than for contiguous allocation. In some cases, the file is stored on
clusters of disk blocks and the clusters are linked.

The third type of storage used for allocation of files is indexed
allocation. Here, one or two blocks act as index blocks. The index blocks
store the address of the disk blocks that actually store the data. The index
can be single level or multi level depending on the amount of data to be
stored. In multi level indexing structures, there are more than one index
blocks and one index block contains the pointer to other index blocks
which in turn contains the pointer to actual disk blocks. It is also common
to use a combination of the three techniques.

7.2.2 File Headers

A file header also known as a file descriptor contains information
about a file that is required by the system to access the file. It contains the
address of the disk blocks that store the file and also the record format
description of the file. The record format description includes field length
and order of fields for fixed length records and field type codes, separator
characters and record type codes for variable length records. For searching
a particular record in a file, one or more disk blocks are copied to the
buffers in the main memory. The desired records are then searched in the
buffers.

If the address of the disk block that contains the record is unknown then
we must do a linear search over all the blocks until the desired record is
found or the search ends unsuccessfully after searching all the blocks.
Each block is copied into the main memory and searched for the desired
record using the information in the file header. This can be very time
consuming if the size of the file is very large. Therefore, the goal of a
good file organization is to locate the desired record within a minimal
number of block transfers.

Organization of Records in a File

There are a number of operations that can be performed on a file.
Typical file operations include scan, insert, delete, find or locate, modify
etc. Depending on the structure and purpose of the database system, there
can be operations that we expect to perform more frequently on a
particular file rather than others. Some files can be more static in nature
i.e. update operations may be very rare on them while others can be
dynamic meaning they are updated more frequently than others. A
successful file organization is one which can execute as efficiently as
possible those operations which we expect to perform more frequently on
a file. For example, if a user wants to search the details of an employee

UGCS-104/197

UGCS-104/198

based on employee ID then the file organization should be such that it
facilitates finding a record based on its Employee ID value.

Different applications on the database may require different
arrangement of the records of the data. This might give rise to conflicts in
terms of the most efficient arrangement of the records. In many cases,
there exists no such organization that allows all the operations to be done
efficiently. In such cases, the designer must choose a compromise between
different operations by taking into account the relative importance and mix
of different operations.

File organization can be broadly divided into two different types. Primary
file organization and Secondary file organization. Primary file
organization describes how the records are actually placed on the disk
and therefore, how they can be accessed. Primary organization of files can
be of different types. A heap file places the records randomly on the disk
following no particular ordering. Sequential file places the records
sequentially one after the other based on the value of some particular data
field (attribute). In a Hashed file, a hash function determines the position
of a record on the disk based on a particular data field. Another primary
file organization is B-tree which uses a tree structure to store the data.
Secondary file organization or auxiliary access structure describes a
number of access structures on the files either based on the order in which
records are placed or independently. It makes efficient access of the
records possible on fields other than the primary field. We will discuss
both Primary and Secondary file organization techniques here.

Check Your Progress

Q. Discuss the goals of a successful file organization.

7.3 HEAP FILE ORGANIZATION

This is the simplest and most basic type of file organization. This is
applied to files of unordered records. Here, the records are placed in no
particular order and new records are inserted at the end of the file.
Therefore, it is known as a heap file organization. In this type of file
organization, insertion of new records is very efficient as the new records
can simply be place after the last record. Searching a record in the file
would however amount to linearly searching the record block by block
which is quite expensive. If a file has n blocks, then on an average n/2
blocks need to be searched to find a particular record. If a record is not
present or if there are multiple possible matches then we must do a linear
search over all the n blocks.

Deletion of a particular record requires finding the block containing the
record to be deleted, copying the disk block into the memory buffer,
deleting the record and writing back the disk block. Another approach

could be to use a deletion marker with every record. A record will be
considered as deleted if the deletion marker is set to a particular value, a
different value of the marker will indicate a valid (not deleted) record.
Both of these techniques require reorganization of the file to reclaim the
unused space of the deleted records. During reorganization, all the records
are accessed sequentially and are clubbed together by removing the
unused space. Another possibility is to use the space of deleted records to
insert new records. This however requires keeping track of the empty
locations.

Advantages:

1. Simplest type of file organization

2. Insertion is very efficient

Disadvantages:

1. Retrieval is inefficient and requires a linear search
2. Deletion results into unused space

3. Requires frequent reorganization of files if delete operations are
frequent

7.4 SEQUENTIAL FILE ORGANIZATION

In sequential file organization the records are placed sequentially one after
the other based on the values of one of the fields known as the ordering
field. If the ordering field is same as the key field of the file then the
ordering field is known as the ordering key. Figure 7.3 shows an example
of an ordered sequential file based on the employee ID. Sequential file
organization allows records to be read in sorted order which can be used
for display purposes and in certain types of query processing algorithms.

Employee ID Name Salary Hire Date =~ Department
12301 Ram XXX XXX Computer
12302 Aman XXX XXX Mathematics
12303 Akash XXX XXX Humanities
12304 Srishti XXX XXX Arts

Figure 7.3: An Ordered sequential file

In sequential file organization reading the records and searching for a
particular record is very efficient if it is based on the ordering key field.
For finding the next record no additional disk block access is required
until the current record is not at the end of a block. However, the
sequential file organization provides no improvement over heap file
organization if the searching over the records is based on some field other
than the ordering field.

Insertion and deletion are expensive operations to perform on an
ordered file as the sequence of the records must be maintained after

UGCS-104/199

insertion and deletion. For insertion we first need to find the correct
location of the record to be inserted based on the ordering field and then
space must be created to insert the record at that location by shifting the
following records. This process is very time consuming if the file size is
large. On an average half the number of disk blocks that contain the file
will have to be re-written. Similarly for deletion, all the records following
the record to be deleted have to be shifted up. This process however can
be made more efficient by using the deletion marker and periodic
reorganization of file.

The process of insertion in a sequential file organization can also be
made less severe by using some techniques. Maintaining some unused
space in each block is one possibility where new records can be inserted in
this space. In this case, the shifting of records will be limited by the size of
the block. However, once all the space gets used up, the original problem
would appear again. Another technique which is commonly used is to
keep an overflow file. The overflow file is an unordered file where the
new records can be inserted at the end of the file. The original file is
known as the main file or the master file. In such a system, the overflow
file is periodically sorted and merged with the main file. Although this
technique reduces the time and overhead of insertion, it makes searching
more difficult. The searching algorithm needs to perform a linear search
over the overflow file if, the search item is not found in the master file. In
applications where most up-to-date information is not required, the
overflow file is ignored while searching. Ordered files are much less
frequently used in common database applications. They are more common
when an additional access path also known as the primary-index is used.
This type of organization is known as index-sequential file organization.
We will discuss this type of file-organization in detail in subsequent
sections.

It is possible that the ordering field is not the key field for the file. In this
case, the file organization is known as clustering file organization and the
file is known as clustered file. In clustering file organization, as the
ordering field is not the key field there can be multiple records for each
value of the ordering field. In this case, all the records that match a
particular value of the ordering field are stored sequentially followed by
the records for next higher value of the ordering field.

Advantages:
1. Searching of records is very efficient (ignoring overflow file)

2. It is suitable for batch systems (large volume of data that need to be
processed periodically)

Disadvantages:

1. Requires frequent reorganization of file. File operations such as
insertion, modification and deletion all require reorganization of
records.

UGCS-104/200

2. The method is too slow to handle most of the real life applications
and hence it is rarely used in database applications.

7.5 DIRECT FILE ORGANIZATION

Direct file organization implies providing direct access to the records
of the data file. For providing direct access to the records the concept of
hashing is used. Therefore, this type of file organization is also known as
hashed file organization. It provides very fast access to the records. In
hashed file organization, a hash function is defined which takes the value
of a particular field called hash field as input and provides the disk block
containing the particular record as the output. Using hashed file
organization a record can be accessed directly for equality condition on
the hash field. If the hash field is also a key field then it is known as hash
key. The search for the particular record within the block retrieved using
the hash function can be performed internally in the main memory buffer
which is much faster than disk search. Hashing can be of two types
Internal hashing and External Hashing. While internal hashing is used for
internal files, external hashing is used for disk files.

7.5.1 Internal Hashing

Internal hashing is used for internal files and is typically implemented
using a hash table. The address of a particular record or the location
where a record is to be stored is determined using the hash function. The
hash function performs the key to address translation, also known as
mapping. Suppose we have an array of records and M address spaces that
correspond to it as shown in Figure 7.4. In this case, we have to choose a
hashing function such that it takes the hash field value as input and gives
an integer value between 0 and M-I. There are many different hashing
functions which can be used to this effect. One common hash function is
h(K) = K Mod M. This function returns the remainder of the hash field
value K after division by the total address space M. This value will always
lie between 0 and M-1 and hence it is a valid hash function. The value
returned by this function is then used for storing the record. Other
commonly used techniques for generating hash functions are mid square
method, folding, algebraic coding, digit analysis etc.

A situation that commonly arises with hashing is known as collision.
Collision occurs if the address, to which the hash field of a record being
inserted is mapped, already contains another record. In this situation, the
new record must be inserted at some other location. The technique by
which we find the new location where the colliding record will be inserted
is known as collision resolution. Some of the methods commonly used for
collision resolution are open addressing, chaining and multiple hashing.
Each collision resolution has its own algorithm for insertion, deletion and
retrieval of records. This increases the complexity of the file organization
method. A good hashing function should be such that it distributes the
records uniformly over the address space so as to minimize collision while
not leaving many unused locations.

UGCS-104/201

UGCS-104/202

Advantages:

1. It provides the fastest possible way of retrieving record given the
value of the hash field.

2. Insertion of records is very fast.

Disadvantages:

1. Search condition must be an equality condition on the hash field.
2. Itis a complex file organization method.

3. Performance of the hashing technique depends on the choice of hash
function.

4. Hashing function needs to be carefully chosen so as to ensure that
not only the collisions are minimal but also there isn’t too much
unused space.

7.6 INDEXED FILE ORGANIZATION

So far we have discussed various types of primary file organization
techniques. As discussed earlier primary file organization refers to the way
files are stored physically on the disk. We can also define additional
access structures on the file. Access structures also known as indexes can
provide speedy retrieval for certain search conditions. The access
structures provide alternative ways of accessing the records irrespective of
their physical placement on the disk, based on the indexing field. Indexing
field is the field on which the access structures are defined. Any field in
the data file can be used as an indexing field and thus multiple indexes can
be defined on the same file. To find a record using the index structure, the
index is accessed first, which points to the disk block(s) where the record
is located.

Indexes

The index used in a database storage application can be understood as
similar to the one which is used in a textbook. The index which is given at
the end of the textbook lists the important terms used in the book in the
alphabetical order. We can search the index of a book to find out the page
number corresponding to a given word which gives us the location where
the term is used in the textbook. This helps in locating the word easily in
the text. Indexes can be categorized based on different criteria.

Indexes can be of many different types. We will discuss here the two most
prevalent types of indexes namely:

1. Single-level indexes and

2. Multilevel indexes

UGCS-104/203

UGCS-104/204

Single-level Indexes

For a database application, a file contains a number of records with
certain record structure consisting of a number of fields. Usually an index
access structure is on a single field of the file. This field is also called as
the indexing field or indexing attribute. The index then stores two values
namely, the value of the index field and a pointer to all the disk blocks that
contain the records corresponding to the value of the index field. The file
that stores the indexes for the database file is called the index file. The
values of the index are ordered and therefore, a binary search can be
performed on the index file for efficient retrieval. We will discuss here,
only about ordered indexes. The ordered indexes can be of several types:

1. Primary Index: A primary index is defined on the ordering key
field of the ordered file. It is an ordered file with two fields. One of
the field is same as the primary key and the other field contains the
address of the block that contains record with that primary key value.
The index file has that many entries as the number of disk blocks in
the data file. Thus, it is a sparse index as the entries are not
maintained for each value of the index key field.

2. Clustering Index: If the physical ordering of the records of the file
is not on a key field then another type of indexing called clustering
index can be used. A clustering index again is an ordered file
consisting of two fields. One of the fields is same as the clustering
index while the other field is a block pointer pointing to the address
of the block containing record with that value of the clustering field.
The clustering index has one entry for each distinct value of the
clustering field and the corresponding block pointer contains the
block address of the first block of the data file that contains a record
with same field value. As you know that a file can have at most one
physical ordering, one can at most define one primary index or one
clustering index on the file but not both.

3. Secondary Index: A secondary index is the one which is defined on
a non-ordering field of a file. It provides an additional way of
accessing a file for which a primary index is already defined. A file
can have multiple secondary indexes in addition to its primary access
method.

Multilevel Indexes

Multilevel indexing scheme uses multiple files for storing the indexing
information of a file. The indexing schemes discussed thus far have only
one ordered index file. The problem with keeping only one index file is
that the searching over the index file itself becomes enough time
consuming if the file size increases beyond certain limit. Typically for
large database files, the index file itself can be very large extending over
multiple disk blocks and the binary search over the disk blocks for
searching a particular index entry would approximately require log, bi
time for an index with bi blocks.

The idea behind multi-level indexes is to create an index over the index
file which can be used to store the pointers to the disk blocks containing
the index entries. The original index file is said to be the first file which is
the first level and the index to the first file is said to be the second level
index. Using this second index file the searching time can be reduced. This
process can be repeated to the next level so as to create third level index
and so on.

Dense and Sparse Indexing

In dense indexing, the index value is stored for every value of the search
key while in sparse indexing an index entry is stored for only some of the
search key values. E.g. primary indexing is a sparse indexing scheme as
the index entries are stored for every block of the data file and not every
value of the search key.

7.7 INDEX-SEQUENTIAL FILE ORGANIZATION

This is the type of file organization in which the primary index is used for
indexing the file. Since the primary index is defined on the ordering key
field, the records are physically stored on the disk in the order of the
indexing field and every record has a unique value for this field. A
primary index itself is an ordered file of fixed length with two fields. The
first field is the primary key of the data field and the second is a pointer to
the disk block. There is one entry for each disk block in the index file.
Each index entry has the value of the primary key field of the first record
of a disk block and a pointer to the block. The structure of a typical entry
in an index file with Name as the primary key (assuming that no two
records have the same Name field value) is illustrated in Figure 7.6.

Key Address
Akankasha Address of block 1
Chandrika Address of block 2

Nilesh Address of block 3

Renu Address of block 4

Santosh Address of block 5

Figure 7.6: Structure of a typical index file

As discussed earlier, this is a sparse indexing scheme since the index
entries are not maintained for every record of the data file also the index
entries are small with respect to the size of a record (has only two fields),
the index file needs substantially fewer blocks than the data file. Thus, a
binary search over index blocks requires fewer block accesses than a
binary search on the data file. Further, in order to retrieve a record when
the value of its primary key is given we simply perform a binary search on
the index file so as to find the appropriate index entry and then retrieve the
corresponding data block. E.g. for an index value K such that K(i) < K <

UGCS-104/205

K(i+1) where i is the ith entry in the index file and P(i) is the address of
the corresponding data block, we first find the index entry i and then
locate the data file block with address P(i) to find the desired record. An
example of the index file is shown in figure 7.7.

Advantages:

1. It provides faster access to the records.

2. Indexes can be defined as per requirement on any field irrespective
of the physical ordering of the records.

Disadvantage:

1. Creating and maintaining index files is an overhead on the Database
Management System.

Check Your Progress

Q1. Why does the index file for a primary index need comparatively
much less number of blocks for storage than the actual data blocks?

Q2. Why is it possible to have several secondary indexes on a file but only
one primary or clustering index?

Name DoB | Salary | Sex
Akankasha
> Name DoB | Salary | Se:
Chandrika

Akankasha

Chandrika

Nilesh ||

Renu

Santosh

v

Figure 7.7: example of an index file with primary index
UGCS-104/206

7.8 MULTI-KEY FILE ORGANIZATION

So far we have seen indexed file organizations based on primary or
secondary keys. In all these types of file organizations the records were
accessed based on only single field of the data file. However, in practice
there might be situations where accessing records using multiple keys can
be easier and faster than those based on single key. For example, let us
consider an Employee file as shown in Figure 7.8 below. Here, the EID is
defined as the primary key of the file. Now, suppose we want to retrieve
the details of employee with DeptNo = 3 and Age = 35. Since both of
them are non-key attributes, there can be multiple records corresponding
to each value of the keys. In this case, the records can be accessed in
multiple ways:

1. Firstly, if any one of the two i.e. Age and DeptNo are defined as index
field, we can search the records based on that key and using it select
the records that satisfy the search condition for the other field.

2. If an index is defined for both of the fields then we may use both the
indexes to retrieve the corresponding addresses and then take the
intersection of them to get the records that satisfy both the conditions.

EID Name Age DeptNo Salary
51 Jain 50 1 50,000
25 Rishi 40 8 45,000
64 Hari 30 5 30,000
37 Meena 35 3 40,000

Figure 7.8: Employee table

None of the above methods would be efficient if, the records that
satisfy one of the search conditions are very large and the intersection is
small. In such cases, we may think of an index that can take the
combination of <DeptNo, Age> as the search query. A number of
possibilities exist for doing this. The type of file organization where we
use a combination of keys as index is known as Multi-key file
organization. In this type of file organization, an index is created on a set
of multiple attributes <A1, A2, A3...An>. The search key values are also
defined as n valued tuples <v1, v2, v3...vn>. The composite search key is
then determined by a lexicographic ordering of these tuple values. We
discuss here some of the techniques commonly used in multi-key file
organization.

7.8.1 Partitioned Hashing

It is an extension of static external hashing that allows access on
multiple keys. It can be used only for equality queries. Here a key
consists of n components; the hash function produces the results with
n separate hash addresses. The bucket address is a concatenation of
these n addresses. The required composite search key can then be

UGCS-104/207

UGCS-104/208

searched by looking up the appropriate buckets that match the parts
of the address in which we are interested.

Advantage:
1. It can be easily extended to any number of attributes.
Disadvantage:

1. It cannot handle range queries on any of the component attributes.

7.8.2 Grid Files

In this scheme, a grid array is constructed with one linear scale for
each search attribute. The scales are made in such a way that a uniform
distribution is achieved over the attributes. Each cell points to some bucket
address where the records corresponding to that cell are stored. An
example of the grid file is shown in Figure 7.9. We can see in the figure
that department numbers 1 and 2 are mapped to the value 0 on the scale,
similarly dept number 8 is mapped to the single value 4. As we can see
from the figure, age is divided into groups. A query for Dno = 3 and Age
= 45 will map to cell number (1,3) in the grid array. The grid array can
conceptually be applied to any number of search key. For a search query
with n keys the grid will have n dimensions.

DNo Employee File Bucket
0 1,2 .
1 3.4 1
2 5
3 6,7
4 8

T inear Scale for Ace

0 1 2 3 4
<25 26-30 31-40 41-50 >50

Figure 7.9: A grid array on DNo and Age attribute
Advantage:
1. It reduces time for multiple key accesses.
Disadvantages:
1. It results into space overhead in terms of grid structures.

2. For dynamic files, frequent file reorganization is required which
increases the maintenance cost.

7.9 SUMMARY

In this unit we studied various file organization methods. We discussed
briefly about the structure of the magnetic disk and how data is stored and
retrieved from the disk. We then discussed the way database files can be
stored on the disk. Then we started a detailed discussion about the
physical placement of records of the database file on the disk which is also
known as file organization. We discussed different types of file
organization techniques such as heap file organization, sequential file
organization, direct file organization, indexed file organization and multi-
key file organization.

While heap file organization is simplest and easy to understand, it creates
problems in retrieval, deletion and modification of records. Sequential file
organization stores the records sequentially based on some field of the
data, it is the least used technique of file organization. Hashed file
organization provides the fastest access mode based on the hash key field;
however it works mainly on equality comparisons with the hash key field.
Indexed file organization provides access structures in addition to the
primary file organization. Multi-key file organization provides indexes
based on multiple keys rather than a single key. They are very useful for
fast processing of queries.

7.10 REVIEW QUESTIONS

1. What is the difference between primary and secondary storage?

2. What is the difference between fixed length records and variable
length records? Discuss the reasons for having variable length
records in a database file.

3. What is the difference between file organization and access
method?

4. What is the difference between primary, secondary and clustering
indexes? Which amongst them are dense indexes?

5. How does multi-level indexing improve efficiency in searching
index file?

UGCS-104/209

UGCS-104/210

UNIT-8

TRANSACTION PROCESSING CONCEPT

Structure

8.1

8.2
8.3

8.4
8.5

8.6
8.7
8.8

8.9

Introduction

Objective

Concept of Concurrency

Transaction System and Schedules

8.3.1 Transaction

8.3.2 Different States of a Transaction

8.3.3 Desirable Properties of a Transaction
8.3.4 Need for Controlling Concurrent Transactions
8.3.5 Schedules

Serializability of Schedules

Conflict and View Serializable Schedule
8.5.1 Conflict Serializability

8.5.2 View Serializability

Testing of Serializability

Recoverability

Recovery from Transaction Failure

8.8.1 Types of Failures

8.8.2 Log based Recovery
8.8.3 Checkpoints
Deadlock Handling
8.9.1 Locks

8.9.2 Two Phase Locking

8.9.3 Deadlock

8.10 Summary

8.11 Review Questions

UGCS-104/211

UGCS-104/212

Bibliography

INTRODUCTION

In the last unit we discussed file organization and details regarding
physical placement of database records on the disk as also various
techniques for retrieving records as and when required. In this unit, we
shall move a step forward and discuss how the Database Management
System handles insertion, deletion and updation processes in the database.

A user normally does not require access to the whole database at a time
and therefore, only the portion of the database (typically a few blocks)
which is required by the user is loaded into the main memory. Any kind of
operation on the data done by the user is initially saved in the main
memory itself. Moreover, a DBMS typically allows multiple users to
access the database at a time. It is the responsibility of the database
management system to write the results of any kind of update operation
performed by the users on the database back to the disk. As you might
have guessed, this process requires ensuring that the updates are not lost
before they are written back to the disk due to some kind of failure as well
as maintaining the consistency of the database before and after the updates
are applied. In this unit, we shall discuss in detail the challenges in
implementing these database operations and the techniques used for
managing them. This unit is organized as follows:

Firstly, we would discuss the concept of concurrency and its advantages;
this would be followed by an introduction to the concept of a transaction.
We will then discuss transaction schedules, their serializability and
categorization of schedules based on the concept of serializability. This
will complete the discussion related to concurrency of the system and how
DBMS handles concurrency. Next, we would move on to discuss the
concept of recoverability and various techniques used by the DBMS for
recovery. This will also involve a discussion on the problem of deadlock
which arises due to implementing concurrency in the system and a brief
discussion on handling deadlock. The last section will give a summary of
what we have learned in this unit and will be followed by review
questions.

Objective

After learning this unit, you should be able to:
1. Explain the concept of concurrency and its importance

2. Explain what a transaction is, the concept of serializability and its
usage in transaction management

3. Understand and explain the different ways of recovery of a system

4. Define the concept of deadlock and theoretically explain its handling

8.1 CONCEPT OF CONCURRENCY

You must have studied in Operating Systems course about single and
multi-user systems. For the sake of revision, we would discuss them in
brief here. Single-user systems are the ones where at most one user can
access the system at a time. Such systems are mostly offline and are
typically limited to a single PC. All the things that we have studied up till
now have been taught keeping in mind that a single user is accessing the
system at a time. Such systems are easy to manage as any kind of
operation on the database will be performed by the sole user who accesses
it and the database integrity can always be insured. Multi-user systems on
the other hand, can be accessed by more than one users at a time such as
the railway ticket reservation system. Such systems are distributed over a
large number of access devices and are often online. These systems are
based on the concept of multiprogramming. Multi-programming systems
allow processes to run in interleaved manner. What this means is that a
process will be executed for some time after which it will be suspended
and some other process will be executed. The maximum number of
processes that a system can execute efficiently in this manner is known as
the degree of multiprogramming. Concurrent execution of processes
helps in improving the CPU utilization and hence the efficiency of the
system. This is because a process while executing may require I[/O and
other types of interrupts; for example, reading a file from disk. Now, when
a process is reading a file from disk the CPU sits idle until that task is
completed. The concept of concurrency involves temporarily suspending
the running process at this point until it completes the interrupt and restart
its execution at a later point of time. The CPU during this period can
execute some other process and hence, the efficiency of the system can be
increased. Since, all these things are hidden from the end user; it gives the
impression that the system is running more than one program at the same
time.

For providing such functionalities however, the concurrency control
system has to manage the interleaving of different processes. It does
increase the system overhead as the concurrent execution of processes
may also result into different types of problems. We shall discuss how the
concurrency control manager handles this in great detail in the coming
sections. But before that we need to be aware of the concept of a
transaction and its properties.

One last point that you should keep in mind while reading this unit is that
it is possible to parallely execute different processes (without any kind of
interleaving) in a system using more than processors. However, most of
the discussion in this unit will be based on the idea that the system has a
single processor and multi-programming is achieved by means of
interleaving only.

UGCS-104/213

UGCS-104/214

Advantages of Concurrency:

1. It leads to better utilization of CPU and hence increases the system
throughput (remember, throughput is the number of processes
completed per unit time)

2. It reduces the waiting time for transactions. Concurrent execution
allows CPU to be allocated to all the processes currently in the
queue, concurrently and hence reduces the overall waiting time for
execution of all the transactions.

Disadvantages

There are basically three types of problems that may arise due to
concurrent execution of transactions. These are:

1. Lost Update Problem
2. Dirty Read Problem, and
3. Incorrect Summary Problem

These problems will be discussed in detail after we complete the
study of the concept of transactions.

8.2 TRANSACTION SYSTEM AND
SCHEDULES

8.2.1 Transaction

A transaction is a logical unit of database processing. Being a "logical”
unit of work implies that a transaction may actually include more than one
operations of database processing but it will logically be treated as a single
unit by the transaction management system and since it is a “unit” of
work; it will either be performed in its entirety or not performed at all.

Usually a transaction includes one or more database operations such as
read, write, insert, delete, update etc. and a single application program
usually has more than one transactions embedded in it. Transactions can
be specified using BEGIN and END statements in SQL. These statements
define transaction boundaries and all SQL statements within them, execute
together.

The sequence of operations defined within a transaction take the database
from one consistent state to another consistent state without necessarily
preserving the database consistency during the intermediate steps.
Consider for example, a transaction in an inventory management system,
where 10 quantities of an item are to be taken from the stock and added to
a customer’s bill. It is clear that after 10 is subtracted from the database
item (say X) and before it is added to the customer’s bill item (say Y); the

database is in an inconsistent state. However, the consistency is preserved
before the transaction started and it is also preserved after the complete
execution of the transaction. This should give you an idea about why it is
required to execute a transaction in its entirety i.e. either executed totally
or not executed at all. It is the responsibility of transaction management
system of the database to ensure atomicity of the transaction.

We will now discuss different states of a transaction during execution but
before that let us briefly discuss the database model considered for
understanding transaction processing concepts.

A transaction can potentially access any database item. This item could be
a single field in a record or the entire record, it could be a database table or
even more than one tables in the database. For the sake of convenience,
we refer any item accessed by a transaction as a named entity say ‘X’. All
the discussion following this would be independent of the size of the data
item accessed by the transaction and it will be based on this simplified
model of database. Using this (simplified) model all possible operations
that can be performed by a transaction can be covered by the following
two operations:

1. READ(X): read the database item X to a local program variable
which is also supposed to be named X for simplicity.

2. WRITE(X): if the transaction somehow modifies the variable X, it
needs to be written back to database (in place of original item X).
This is done using the write operation.

8.2.2 Different States of a Transaction

A transaction can be in one of the following four different states at any
point of time:

1. Active: This state implies that the transaction is being executed. This
is the initial state of a transaction

2. Partially Committed: A transaction is said to be partially
committed after it has successfully executed its last statement

3. Committed: After a transaction is partially committed, the
transaction recovery subsystem needs to make sure that the
transaction will not be undone in case of a system failure. (For
example, by recording the changes made by the transaction in the
system log). Once this check is done the transaction is said to be
committed.

4. Failed: This state implies that either the transaction could not be
executed normally or the changes made by the partially committed

UGCS-104/215

UGCS-104/216

Read, Write

Begin

transaction could not be recorded and hence the transaction must be
aborted.

Aborted: This implies that the transaction has ended unsuccessfully
and hence any changes made by the transaction that may have been
applied to the database must be undone (also known as rollback).
The state transition diagram of a transaction is given in Fig 8.1.

Partially
Committed

Committed

Terminated

> Aborted

Fig 8.1: Different states of a transaction

8.2.3 Desirable Properties of a Transaction

In order to ensure the integrity of the data items accessed by various
transactions; every transaction is supposed to possess some properties.
These are also known as ACID properties:

1.

Atomicity: Implies that each transaction is an atomic unit of
processing i.e. it is either executed in its entirety or not executed at
all. It is the responsibility of the transaction recovery subsystem to
ensure atomicity of a process.

Consistency: A transaction must after its successful execution move
the database from one consistent state to other. It is generally
considered to be the responsibility of the programmer to ensure that
if the database was in a consistent state before the execution of
transaction; it remains in a consistent state after the successful
termination of the transaction.

Isolation: Every transaction should execute in isolation with all
others i.e. concurrently executing transactions should not interfere

with each other. Isolation is enforced by the concurrency control
subsystem of the DBMS.

4. Durability: The changes made in the database by a committed
transaction must persist in the database even in the case of a system
failure i.e. the information saved by committed transactions must not
be lost. Ensuring durability is the responsibility of the transaction
recovery subsystem of DBMS.

8.2.4 Need for Controlling Concurrent Execution of
Transactions

We shall now discuss the three types of problems that may arise due to
concurrent execution of transactions. For understanding these problems
we shall assume that two transactions denoted by T1 and T2 are executing
concurrently in the system. Let us suppose that transaction T1 reads a
database item X, subtracts 20 from it and adds this value to database item
Y, while transaction T2 reads the database item X and doubles its value as
shown below (Fig 8.2):

T1
Read(X);
X =X-20;
Time| | Read (Y);
Y =Y +20;
Write(X);
Write(Y);

T1
Read(X);
Time X = X*2;
Write(X);

Fig 8.2: Two transactions T1 and T2 submitted simultaneously to the
DBMS

Lost Update Problem: This type of problem arises when two
transactions access the same database item and one of them updates it, but
due to interleaving of transactions, the second transaction, which was also
accessing the same database item reads it before the first transaction writes
the updated value back to the database. In such a scenario, the updated
value of one of the transactions will be lost based upon which transaction
gets to execute the “Write’ statement first. Let us understand this with the

UGCS-104/217

help of an example. In Fig 8.3, we show a possible scenario of concurrent
execution of the two transactions T1 and T2.

In the first part of Fig. 8.3, transaction T1 reads the item X and subtracts
20 from it before it is interleaved and transaction T2 reads the value of X
and multiplies it with 2. The transaction T2 is however now interleaved
and transaction T1 completes with updating the value of X to its new
value (X-20). Now transaction T2 executes its last statement and updates
the value of X to the new value (X*2). Thus, the update performed by
transaction T1 is simply lost. For an external user, it would seem as if the
transaction T1 never manipulated the value of X! Similar would be the
case for Transaction T2 in the second part of Fig. 8.3.

T1 T2
Read(X);
X:=X-
20;
Read(Y);
Read(X);
X:=X*2;
Time
Y:=Y+2; Update by Transaction T1
v Write(X); is lost.
Write(Y); /
Write(X);
T1 T2
Read(X);
X:=X-
20;
Read(Y);
Read(X);
X:=X*2;
Time Write(X);
J Update by Transaction T2
is lost.
Wl /4
Y| Write(X);

Write(Y);

Fig. 8.3: The lost update problem arising due to concurrent execution
of transactions

UGCS-104/218

Dirty Read Problem: Now, consider another scenario of concurrent
execution of transactions. Here, transaction T1 reads the item X and
updates its value to a new value. However, the transaction T1 later fails
due to some reason and therefore, the value of item X updated by the
transaction T1 needs to be changed to its original value. Suppose, another
transaction T2 which is also executing simultaneously in an interleaved
manner somehow reads the value of X before it is changed back to its old
value, then the value of X as read by T2 is incorrect. This type of read is
known as Dirty Read. The problem of dirty read or incorrect read is
represented in Fig 8.4.

T2 reads the new value of X

T1 T2
Read(X);
X:=X-20;
Read(Y);
Y:=Y+2;
’ dated by T1.
Write(X): o oparee oy
Read(X); =]
Time Xi=X*2;
Write(X); T1 fails and the value of X
) must be changed to its old
! Write(Y); % — value.

Fig. 8.4: The dirty read problem arising due to concurrent execution
of transactions

Incorrect Summary Problem: Some database transactions need to
calculate the aggregate over values of certain variables. In case of
concurrent execution, the transaction calculating the aggregate value
might read some values of variables before update and some values after
update, this might result into an incorrect aggregate value. Let us take an
example to make the things more clear. Suppose transaction T1 is trying to
get the aggregate of variables X and Y in the database while transaction
T2 reads item Y and subtracts 20 from it and adds this value to variable X.
A possible order of execution of transactions T1 and T2 is given in Fig.
8.5. Here, transaction T1 has read the old value of X but new value of Y
due to interleaving of operations and thus calculates the wrong aggregate.

By looking at these examples, it must have become clear to you that some
kind of concurrency control must be applied in the database in order to
maintain the consistency of the database when transactions are executing
in an interleaved manner. In the following sections, we shall discuss the

UGCS-104/219

concept of serializability and how it is used for ensuring the consistency of
database during concurrent execution of transactions.

T1 T2
sum:= 0
Read(X);
sum:=sum + X;
Read(Y);
Time Y:=Y-20;

Write(Y); sum is incorrect
ﬁ

Read(Y); /
sum:=sum + Y;

Read(X);
X:=X+20;
Write(X);

Fig. 8.5: The incorrect summary problem arising due to concurrent
execution of transactions

8.2.5 Schedules

A schedule S of transactions of a database system is defined as the
sequence of operations of the transactions appearing in S in their
chronological order. In other words, a schedule S of n transactions T1,
T2... Tn consists of all the operations of transactions T1, T2... Tn in the
order in which they are executed with time. Here, it should be noted that
normally a schedule includes all the operations of each transaction
including commit and abort operations. However, for the purpose of
concurrency control and recovery, only read and write operations are
considered.

Check Your Progress

1. What is the difference between partially committed and committed
transactions?

2. What are the advantages of concurrency?

3. How is dirty read problem different from incorrect summary
problem when both of them involve reading of a database item by
one transaction that is updated by some other transaction.

UGCS-104/220

8.3 SERIALIZABILITY OF SCHEDULES

Serial and Non-serial Schedules: A schedule S is said to be a serial
schedule if for every transaction T that appears in S, all the operations of T
are executed consecutively otherwise the schedule is said to be non-serial.
Clearly, a serial schedule corresponds to a system where there is no
interleaving and hence no concurrent processing of transactions occurs.
For concurrent transactions, the schedule is necessarily non-serial. Also,
since serial schedules correspond to transactions executing serially one
after other, serial schedules are always correct. For a schedule consisting
of n transactions, there are n! possible serial schedules.

Serializable Schedules: There is another category of schedules which are
non-serial but are equivalent to some serial schedule consisting of the
same set of transactions as the non-serial schedule. Such schedules are
known as Serializable schedules. Any schedule consisting of n
transactions that is serializable, is equivalent to at least one of the n!
possible serial schedules over the same n transactions. As serial schedules
are always correct, any schedule that is Serializable is also correct.

We now turn our attention to equivalence of two schedules. There are
several different ways in which two schedules can be said to be
equivalent. The simplest method is to compare the effect of transactions
on the database. According to this criterion, two schedules can be said to
be equivalent if they result into same final state of the database. Such
schedules are known as Result Equivalent. Result equivalence of
schedules is however not considered a good criterion because two
schedules can also be result equivalent accidentally. The more commonly
used criteria for deciding equivalence of schedules is conflict equivalence
and view equivalence. We shall discuss these concepts and the
serializability of schedules based on conflict and view equivalence in the
next section.

8.4 CONFLICT AND VIEW SERIALIZABLE
SCHEDULES

8.4.1 Conflict Serializability

Conflict serializability is defined in terms of conflict equivalence of
schedules which is concerned only with the conflicting operations in a
schedule and not all operations. We shall first discuss when two operations
in a schedule are said to conflict and then discuss equivalence of schedules
based on it.

Two operations in a schedule are said to be conflicting if the following
conditions hold:

UGCS-104/221

UGCS-104/222

1 The two operations belong to different transactions
i1 Both of them access the same data item and
iii At least one of the two operations is a Write operation

Based on the above criteria, two schedules S and S’ are said to be conflict
equivalent if the order of conflicting operations in the two schedules are
same. Further, a schedule S is said to be conflict serializable if it is conflict
equivalent to some serial schedule of the same set of transactions. An
example illustrating conflict equivalent schedules is given in Fig. 8.6 and
8.7. Fig. 8.6 shows two possible serial schedules of two transactions T1
and T2 while Fig. 8.7 shows two non-serial schedules of the same
transactions T1 and T2. As can be seen from figure, Schedule D is conflict
equivalent to Schedule A while Schedule C is not equivalent to any serial
schedule.

8.4.2 View Serializability

Extending on the same lines, we can define a schedule as view
serializable if it is view equivalent to some serial schedule of the same set
of transactions. Two schedules S and S’ consisting of the same set of n
transactions T1, T2... Tn are set to be view equivalent if the following
three conditions hold for every transaction Ti:

1. If Ti reads the initial value of data item X in S then, Ti must also
read the initial value of X in S’

ii. If Ti reads the value of a data item X in S and that value of X was
produced as a result of a Write(X)operation executed by another
transaction Tj in S then, Ti must read the value of X produced by
Write(X) operation performed by Tj in S’ also and

iii. If the last Write(X) operation on data item X in S is performed by a
transaction Ti then Ti must also perform the last Write(X) operation
on data item X in S’.

Tl T2 Tl T2
Read(X);
X:=X-20; Read(X);
Read(Y); X:= X*2;
, Y:=Y+2; Write(X);
Time Write(X); Ti
Write(Y); tme
Read(X);
X:=X-20;
Read(X); Read(Y);
X:=X*2; Y:=Y+2;
' Write(X); Write(X);
v | Write(Y);
Schedule A Schedule B

Fig. 8.6: Serial schedules consisting of transactions T1 and T2.

T1 T2 1 T2
Read(X); Read(X);
X:= X-20; X:=X-20;
Read(X); Read(Y);
. X:=X*2;) Y:=Y+2;
Time Time Write(X);
Read(Y);
Write(X); X=X*2;
Write(Y); Write(X);
v Write(X); v Write(Y);
Schedule C Schedule D

Fig. 8.7: Two non-serial schedules of transactions T1 and T2

The first two conditions ensure that each transaction in the two schedules
reads the same value of the database item and hence produces same result.
Further, the inclusion of third condition ensures that both the schedules
produce the same final state of the system.

It should be noted that conflict serializability is more restrictive as
compared to view serializability i.e. a conflict serializable schedule is
always view serializable while a view serializable schedule may or may
not be conflict serializable. The difference between the two schemes lies
in the assumption of constrained writing. The constrained write
assumption requires each Write(X) operation to be preceded by a Read(X)
operation. In unconstrained writing a transaction may write a new value
of database item X that is independent of its previous value. Such a write

UGCS-104/223

UGCS-104/224

is called blind write. Any schedule that is conflict serializable but not
view serializable contains transactions that perform blind writes. Let us
understand this with the help of an example. The schedule S consists of
three transactions T1, T2 and T3 as shown in Fig. 8.8. Cleary, S is view
serializable to the serial schedule consisting of transaction T1 followed by
T2 followed by T3. S is however, not conflict serializable to any possible
serial schedule of transactions T1, T2 and T3.

T1 T2 T3
Read(X);
Write(X);
Write(X);
Write(X);

Fig. 8.8: A schedule that is view serializable but not conflict serializable

8.5 Testing for Serializability

In order to figure out if a given schedule S is serializable or not, you
don’t have to draw all possible sequences of transactions in S rather,
algorithms exist for testing the serializability of a given schedule. In
this section, we shall discuss one such algorithm which is used for
testing the conflict serializability of two schedules. Testing for view
serializability is a comparatively difficult task. The problem of testing
view serializability of two schedules is NP-Hard and therefore, finding
a polynomial time algorithm for testing view serializability of a
schedule is highly unlikely.

Suppose, we want to test the serializability of a schedule S which
consists of n transactions T1, T2, ... Tn. For testing the conflict
serializability of S, only Read(X) and Write(X) transactions are
considered. The first step is to generate a precedence graph.
Precedence graph contains a set of n nodes which correspond to the n
transactions that appear in S. Any two transactions Ti and Tj (1 <1, >
n) are connected by an edge if an operation in Ti precedes a
conflicting operation in Tj i.e. the operation in Ti occurs before the
operation Tj in schedule S. This process is repeated for each set of
conflicting operations. The step-by-step algorithm for constructing the
precedence graph is given below:

Algorithm for testing Conflict Serializability of a Schedule S
Step 1: Create a node in graph G for each transaction Ti occurring in S

Step 2: Create an edge starting from node Ti and ending at node Tj if, Ti
executes

a Read(X) before Tj executes a Write(X).

Step 3: Create an edge starting from Ti and ending at Tj if, Ti executes a
Write(X) before Tj executes a Read(X).

Step 4: Create an edge starting from Ti and ending at Tj if, Ti executes a
Write(X) before Tj executes a Write(X).

Schedule S is serializable if and only if the precedence graph generated in
the above manner does not contain any cycles.

Check Your Progress

1. Test if the schedule given in Fig. 8.9(a) below is serializable or not.

T1 T2 T3
Read(A);
Read(C);
Read(C);
) Read(A);
Time Read(B);
Write(A);
Write(B);
Read(B);
v Write(C);
Write(B);

Fig. 8.9(a): Schedule consisting of three concurrently executing
transactions with the progress of time.

Solution:

@

Since, the precedence graph does not contain a cycle, the schedules are
Serializable. The corresponding serial schedule is 73 followed by TI
followed by T2 as shown below (Fig. 8.9(b)):

UGCS-104/225

UGCS-104/226

T1 T2 T3
Read(A);
Read(B);
Read(A); Write(B);
Read(C);
) Write(A);
Time
Read(C);
Read(B);
v Write(C);
Write(B);

Fig. 8.9(b): Schedule given in figure 8(a) re-written as a serial
schedule

Hint: You can take dummy values for variables A, B and C and check that
both schedules 8(a) and 8(b) give exactly same result.

Uses of Serializability: As we have already discussed serializable
schedules are always correct and therefore, the operations performed by
serializable schedules will never leave the database in an inconsistent
state. Hence, it is desirable to ensure serializability of every schedule in a
system where transactions are executing concurrently. Practically,
however it would become very difficult to test the serializability of
schedules in a large database system where new transactions are submitted
all the time such as an online reservation system. Further, testing the
schedules for serializability after all the transactions have been performed
will amount to cancellation of a large number of transactions. Therefore,
most database systems apply concurrency control techniques that
guarantee the serializability of the schedules. One such technique which is
widely used in various database systems is two-phase locking. There are
other techniques also such as timestamp ordering, multiversion protocols
etc.

8.6 RECOVERABILITY

The fundamental goal of a transaction management system is to ensure
that whenever a transaction is submitted to the DBMS, either all the
operations of the transaction are executed successfully and the changes
made by the transaction are recorded in the database or no changes are
made by the transaction as also no other concurrently executing
transactions are affected by it. It should never be possible for a transaction
to execute partially i.e. some operations are applied to the database while
others are not. If a transaction fails after executing some of its operations,
the database must be recovered from any inconsistency that might have
arisen due to the failure of the transaction. A transaction might fail due to
various reasons. We shall discuss the reasons for failure of a transaction
and techniques used for recovery from failures in more detail in the next

section. Let us first understand the concept of recoverability in a database
system.

So far, we have characterized the schedules on the basis of their
serializability i.e. from the view point of maintenance of consistency of
the resulting database system. Schedules can also be categorized on the
basis of their recoverability from failures. Suppose, a transaction fails due
to some reason then it must be aborted and any changes made by the
transaction to the database must be undone. Further, if there are other
transactions that are dependent on the failed transaction (they have read a
data item that was written by the failed transaction), these transactions
must also be aborted. The schedules for which this is possible are called
recoverable schedules while the schedules for which this cannot be done
are called irrecoverable schedules. Let us understand this with the help of
an example.

Normally, we assume that any transaction that has committed should
never be rolled back i.e. the changes made by a committed transaction
must persist in the database even if some other concurrently executing
transaction fails. Now, keeping this constraint in mind, imagine a scenario
where a transaction T1 reads a data item X updated by another transaction
T2. Tl makes changes to this data item, records the new value
successfully in the database, completes its execution and reaches the
commit point. Meanwhile, transaction T2 fails for some reason and must
be aborted. Now, if we were to undo the changes made by T2 we would
necessarily require transaction T1 to be rolled back which cannot be done
as T1 has already committed. Thus, this schedule is irrecoverable and
must not be permitted.

In a recoverable schedule, no committed transaction is ever rolled back.
However, a non-committed transaction may need to be rolled back during
the recovery process because it has read a data item updated by the failed
transaction. This phenomenon is known as cascading rollback. There are
techniques for avoiding cascading rollbacks. A schedule that does not
involve cascading rollback is known as cascadeless schedule. A schedule
S is cascadeless if, every transaction Ti in S, only reads values of data
items that are written by committed transactions.

8.7 RECOVERY FROM TRANSACTION
FAILURE

In this section, we shall first discuss the different types of failures that
might occur in a database system. We will then focus on a specific
category of failures i.e. transaction failures. We shall study the commonly
used techniques for recovering from transaction failures.

UGCS-104/227

UGCS-104/228

8.7.1 Types of Failures

Logical Failure: Logical errors might cause a transaction to fail. Such
errors may arise due to some operations in the transaction itself, such as a
division by zero, integer overflow etc. A transaction might also fail due to
local errors such as non-availability of data item demanded by a Read(X)
command. Further, the concurrency control system might demand some
transaction to be aborted for ensuring consistency of the database.

System_Failure: This type of failure affects the whole database system
and not just a few transactions. It is caused when the system reaches an
undesirable state where no transactions can be executed such as the
occurrence of a deadlock, system crash due to problem in say DBMS
software or a bug in operating system itself, memory crash etc. Such
failures do not physically damage the system. Further, these types of
failures only affect the volatile data of the system and the data stored in
permanent storage are not affected.

Media Failure: Media failures are the result of physical damage to the
system such as disk failure. Such failures might also affect the
permanently stored data in the database.

In the next two sub-sections, we shall discuss techniques of recovery from
transaction failures which occur most commonly in database systems.
Recovery from media failure and catastrophic failures (power-cut, fire
etc.) is rather complicated. We shall not go into the details of recovery
from such types of failures. These types of failures are usually avoided by
keeping multiple copies of database apart from the main system.

8.7.2 Log-Based Recovery

The most widely used recovery mechanism in database systems is the
log-based recovery. The system maintains a log of every transaction
taking place in the database. The information stored in the log can be used
for recovery. The system log is stored on the disk so that it is not damaged
except in case of disk failures or catastrophic failures. The log is also
periodically archived on a tape in order to allow recovery of database in
case of catastrophic failures. The information stored in a typical system
log is shown below.

1. <Start, T> - It indicates that the transaction T has started.

2. <Write, T, X, old value, new value> - Indicates that transaction T
has updated the value of database item X from old value to
new_value.

3. <Read, T, X> - indicates that transaction T has read the value of
database item X.

4. <Commit, T> - indicates that the transaction T has completed
successfully and the updates done by it can be recorded permanently
to the database.

5. <Abort, T> - indicates that the transaction T has been aborted.

It should be noted that the Read(X) operation by a transaction need not
be stored in the log for the purpose of recovery (Step No. 3 above).
However, it might be stored if the system log is also additionally used for
the purpose of auditing etc. The recovery of a database system from a
crash amounts to reading the log entries and either undoing or redoing the
operations individually as stored in the log. You might be wondering why
a redo operation might be required during the recovery process. Suppose,
a transaction executed successfully and recorded all its entries to the
system log and subsequently moved to committed stage. However, a
system crash occurred in the meantime before the changes made by the
transaction could be recorded to the actual database stored on the disk. In
such a case, the transaction would be required to be redone at the time of
system recovery which can be done by reading the log and changing all
the variable values updated by the concerned transaction from old value
to the new value.

8.7.3 Checkpoints

As you have just studied, the DBMS maintains system log in order to
recover from transaction failures. In case of a failure, the operations are
either undone or redone based on the information stored in the log. For
conducting the recovery operation, we need to search the entire log. This
is not the ideal approach mainly because performing all the operations
stored in the log would result into unnecessary re-doing of a number of
operations (from older transactions) especially for large databases. This is
because most of the transactions would have already written their updates
to the disk and hence re-doing them would cause unnecessary delay in the
recovery process. In order to avoid this, the system uses checkpoints.
Checkpoints ensure that all the updates done by the successful
transactions are recorded on the disk and the system is informed that the
updates up to this point should not be redone in case of a failure. More
specifically, following actions are performed during a checkpoint:

1. All running transactions are temporarily suspended

2. All the buffers residing in the memory that are modified by some
transaction are written to the disk

3. A logrecord known as the <checkpoint> is written to the log
4. All log entries in the main memory are force-written to the disk

After, performing the checkpoints, the system resumes execution of
the suspended transactions. During the recovery process, undertaken after
a system failure, the system searches for the last checkpoint in the log
entries and all the operations performed by transactions that committed
before the last checkpoint are not redone as all of their updates have
already been recorded to the disk.

It is the responsibility of the recovery management system to decide
when to perform a checkpoint. A checkpoint can be performed after

UGCS-104/229

UGCS-104/230

certain fixed time period such as after every » minutes or after every ¢
number of committed transactions. A checkpoint entry also requires some
additional information regarding the currently active transactions in order
to facilitate re-doing of operations during recovery.

8.8 DEADLOCK HANDLING

As we have discussed earlier, the concurrency control subsystem in the
DBMS ensures the serializability of the transactions and this is done by
using a number of techniques most common among them is two-phase
locking. Implementation of any kind of locking technique results into a
type of problem known as deadlock. Before discussing deadlock however,
we need to gain some understanding of the concept of locks and the
method of two-phase locking. In the next subsection, we shall briefly
discuss these concepts just sufficient to give you an understanding of the
deadlock situation and how the system handles deadlock.

8.8.1 LOCKS

A lock is associated with a database item X and indicates the state of
the item. If the database item is locked then it cannot be accessed by a
transaction. The locks are issued by the currently running transactions and
are managed by the concurrency control subsystem. Locks are used for the
purpose of concurrency control. For each database item X, a lock is
defined that is associated with two operations lock(X) and unlock(X).
Whenever, a transaction requires access to a database item, it first issues a
request for a lock on that item. If the variable is not already locked by
some other transaction, the system immediately issues the lock to the
requesting transaction otherwise the transaction has to wait until the lock
is granted. In its simplest form, the lock is a binary variable that can take
two values 0 (unlocked) and 1 (locked). Such a lock is called a binary
lock. Binary lock guarantees mutual exclusion i.e. only one transaction
can access the database item at a time. In order to ensure successful
working of the lock, the operation of request for granting the lock and
releasing the lock must be implemented as indivisible units also known as
the critical section in operating systems. It implies that whenever a
transaction requests for a lock on a database item X, it either ends up
getting the lock or it is sent to the waiting queue for lock to be granted. It
is never interleaved in between by some other transaction during this
process.

Binary lock is generally considered too restrictive for database operations
as it does not discriminate between a Read(X) and Write(X) operation.
Generally, for when a transaction reads an item X, we might allow some
other transaction to read the same item, though simultaneous write
operations should never be allowed. For this purpose, multi-mode locks
are used. Here, three locking operations are available viz. Read lock(X),
Write lock(X) and Unlock(X). These locks are also known as read/write
locks or shared/exclusive locks. The Read lock(X) operation is a shared

lock as multiple transactions can acquire a Read lock on the item X. The
Write lock(X) operation on the other hand is exclusive lock because a
write lock is exclusively granted to a single transaction at a time.

8.8.2 Two-Phase Locking

In two-phase locking protocol, all the locking operations of a transaction
(Read lock and Write lock) precede the first unlock operation. The
operations in such a transaction can be divided into two phases:
expanding phase and shrinking phase. The first phase is the expanding
phase where the transaction acquires locks on all the items needed by it.
This is followed by the shrinking phase, where the transaction releases the
locks acquired during the expanding phase. Also, if the transaction
management system allows lock conversion (changing a Read lock to a
Write lock and vice-versa) then upgrading of lock i.e. conversion from
Read lock to Write lock is done in the expanding phase while
downgrading (conversion of Write lock into a Read lock) is done in the
shrinking phase. If the two-phase locking system is enforced for all the
transactions submitted to the DBMS then, the resulting schedule is
guaranteed to be serializable and hence the need for testing the
serializability of schedules is eliminated. Two-phase locking reduces the
amount of concurrency possible in a schedule, it is however desirable as it
eliminates the need for checking the schedules for serializability.

An example illustrating the above concepts is given in Fig. 8.10(a).

Tl
Read lock(A);
Read(A);
Unlock(A);
) Write lock(B);
Time Read(B);
B:=B+A;
Write(B);
Unlock(B);

v

Fig. 8.10(a): Two-phase locking: A schedule that does not follow two

phase locking
Here, transaction T1 does not follow two phase locking as the operation
Unlock(A) precedes Write lock(B) which is not permitted in two phase
locking. In order to make transaction T1 follow the two phase locking
protocol we may re-order its operations as below (Fig. 8.10(b)). As can be
seen from Fig. 8.10(b), all the Read lock and Write lock operations occur
before the first Unlock operation in T1’ and hence T1’ follows two-phase
locking.

UGCS-104/231

UGCS-104/232

T
Read lock(A);
Read(A);
i Write_lock(B);
Time Unlock(A);
Read(B);
B:=B+A;
Write(B);
Unlock(B);

v

Fig. 8.10(b): Two-phase locking: Schedule T1 (Fig. 8.10(a)) re-written
so as to follow two phase locking protocol

8.8.3 Deadlocks

We have studied in the last section about two phase locking protocol
which is the most commonly used protocol for concurrency control in
DBMS. It requires a transaction to lock all the data items it needs during
the expanding phase and release them during the shrinking phase. This
mechanism results into a problem known as deadlock. Deadlock is a
situation where each transaction T in a set of two or more transactions
waits for acquiring lock on an item locked by another transaction in the
same set. Thus, the system enters into a state where no productive work
could be performed by any transaction because each transaction is waiting
for other transaction to release the lock on some item. Fig. 8.11(a) shows
an example of a deadlock situation.

Handling of deadlock is an important part of a concurrency control
subsystem in a DBMS. Deadlock handling in the database system is either
based on a preventive mechanism or on detection mechanism. In
preventive mechanism, certain protocols are used that prevent deadlock
from occurring and hence ensure that the system never enters into a
deadlock. While in detection mechanism, the system uses deadlock
detection protocol to find out if a deadlock actually exists in the system.
The second approach is more practical and is useful when it is known
beforehand that a deadlock will rarely occur i.e. there are little chances
that two transactions will require access to same database item at the same
time. This is possible if the transactions are small and each transaction
locks only a few database items. For long transactions and for transactions
that require large number of database items, deadlock prevention protocols
are better suited.

Deadlock Prevention:

Deadlock can be prevented in two phase locking if every transaction is
allowed to lock all the items it needs in advance. If some of the items are
not available, then the transaction does not lock any item and waits until it
gets all the locks in advance. This approach is not practical as it further
limits the amount of concurrency in the system. Another protocol for
deadlock prevention requires ordering all the database items according to

their priority ranking and ensuring that a transaction that needs more than
one item locks them in the order of their ranking. This method also limits
the amount of concurrency in the system. A number of other protocols are
also used. We shall not go into the details of these protocols for the sake of
brevity.

Deadlock Detection:

As discussed earlier, the deadlock detection protocols test the system for
existence of deadlock. The simplest method to detect if a deadlock exists
in the system is to construct and maintain a wait-for graph (Fig. 8.11(b)).
The wait-for graph is a directed graph where each node represents a
transaction in the system. An edge is drawn from transaction Ti to Tj if, Ti
is waiting for an item locked by transaction Tj. When transaction Tj
releases the item required by transaction Ti, the lock is granted to
transaction Ti and the edge is dropped. Deadlock is detected by existence
of a cycle in the wait-for graph.

T1 T2
Read lock(A);
Read(A);
Time Write lock(B);
B:=B+I;

Write lock(B);

v Write lock(A);

Fig. 8.11(a): Deadlock: Partial Schedule consisting of two transactions
T1 and T2 that are in a deadlock situation.

Fig. 8.11(b): Deadlock: Wait for graph for the Partial Schedule shown
in Fig. 8.10(a) — cycle indicates existence of deadlock

Once, it is known that deadlock exists in the system some transactions
must be aborted in order to end the state of deadlock. The process of
choosing a transaction for abortion is known as victim-selection.
Algorithms exist for deciding which processes to abort for ending the
deadlock. A crucial part of a deadlock detection mechanism is deciding
when to check a system for existence of a deadlock. For this purpose,

UGCS-104/233

UGCS-104/234

different criteria such as number of transactions executing currently, the
average waiting time of transactions for locking an item may be used.

Check Your Progress

Test whether the system represented by the following partial schedule (Fig.
8.12) is in deadlock state or not.

T1 T2 T3
Write_lock(A)
Read(A);
Read lock(C);
Read(C);
Read_lock(A);
Read lock(C);
) Read(C);
Time Write_lock(B);
Read(B);
Write(A);
Write lock(B);
v Read(A);
Read(B);
Write(B);

Fig. 8.12: Schedule consisting of three concurrently executing
transactions with the progress of time.

8.9 SUMMARY

In this unit, we have mainly focussed on learning about concurrency. We
discussed the concepts related to concurrency, the advantages of
concurrent execution of transactions and the mechanism for controlling
concurrently executing transactions.

We started with defining the concept of concurrency its advantages and
disadvantages and also learned that almost of the real-world database
systems are based on concurrency. Then we defined database transactions
which are logical units of processing that are always executed in entirety.
We learned that, every transaction is required to possess four fundamental
properties known as ACID properties in order to ensure the integrity of
the database system. We saw how concurrent execution of transactions
helps in better utilization of CPU time and hence results into faster
processing of transactions. Concurrently executing transactions however
might interfere with each other and might leave the database in an
inconsistent state. It is therefore, important to control the transactions
executing concurrently. We discussed about the concurrency control

subsystem of the DBMS which is responsible for ensuring the proper
execution of concurrent transactions. The concurrency control subsystem
uses serializability of the schedules of transactions in the database as the
criterion for ensuring consistency of database. It follows certain protocols
which make sure that the resulting schedule for all the concurrently
executing transactions in the system is serializable and hence correct.

After learning about concurrency, we discussed several types of failures
that might occur in a database system and learned that different
mechanisms are used in databse management systems for recovery from
failures. Recovery from transaction failures is mainly done by maintaining
a log of all the transactions executing in the database. In case of a failure,
the system checks the log entry and restores the database into a consistent
state by either undoing or re-doing the operations stored in the log.
Checkpoints help in deciding the last consistent state of the database
system and reduce the amount of re-work required to be done in case of a
failure. Lastly, we discussed about deadlocks. Deadlocks occur in
database systems because of implementation of concurrency control
protocol (two-phase locking). Database systems handle deadlock either
based on deadlock prevention strategies or based on mechanisms of
deadlock detection.

8.10 Review Questions

1. Discuss different types of failures that might occur in a database
system. Read more about how recovery is done for them.

2. What is the difference between deadlock detection and deadlock
prevention? Which of the mechanisms is better suited for a large
database with long duration transactions.

3. Discuss the importance of a system log. Briefly discuss the entries in
system log. Where is the system log stored?

4. What are the desirable properties of a transaction? Discuss.
Bibliography

1. Fundamentals of Database Systems, Fifth Edition, R. Elmasari and
S.B. Navathe

2. Database System Concepts, Fourth Edition, Silberschatz, Korth and
Sudarshan

3. An Introduction to Database Systems, Seventh Edition, C. J. Date,
Pearson Education

UGCS-104/235

Notes

UGCS-104/236

Notes

UGCS-104/237

Notes

UGCS-104/238

Notes

UGCS-104/239

Notes

UGCS-104/240

	B 1
	1.2 OBJECTIVES
	After the end of this unit, you should be able to:
	 Understand the role of a database management system in on organization.
	 Know the design, implementation and use of database management systems.
	 Describe the basic purpose and functions of a DBMS.
	 Know the advantages and disadvantages of DBMS.
	 Understand various database models which are used to design a correct, new database information system for a business organization.
	1.5 Components of DBMS

	B 2
	At the end of this unit, you should be able to:
	(b) Network Model
	Fig. 2.5: Network data model for Online Book database
	Point to Remember
	Fig. 2.6: Relational data model for Online Book database

	B 3
	At the end of this unit, you should be able to:

	B 4
	4.7.1 Domain Constraints
	4.7.2 Tuple Uniqueness Constraints
	4.7.3 Key Constraints
	4.7.4 Single Value Constraints
	4.6 Constraints in DBMS
	Constraints define a condition, which need to be satisfied while storing data in a database. DBMS allows you to define and implement the constraints for a database object. For example, you can specify a constraint that each field in the employee_id co...
	Need of Constraints:
	4.7 Types of constraints in DBMS

	Referential integrity is a database concept that ensures that relationships between tables remain consistent. When one table has a foreign key to another table, the concept of referential integrity states that you may not add a record to the table tha...
	Foreign key constraint prevents conditions that violate any reference between the two database tables. A foreign key value refers to another table with the corresponding values of primary key in a database table. Consider the following example where y...
	CREATE TABLE Class
	(student_id int, couese_name varchar(10), age int,
	CONSTRAINT fk_student
	FOREIGN KEY(student_id)
	REFERENCES Student (STUD_ID))
	The CREATE statement creates a Class database table with various columns such as student_id, course_name and age. The student_id defines a foreign key for the Class database and STUD_ID is the primary key for the Student database table. The student_id...
	4.8 Constraints in SQL
	The SQL CONSTRAINTS are an integrity which defines some conditions that restricts the column to remain true while inserting or updating or deleting data in the column. Constraints can be specified when the table created first with CREATE TABLE stateme...
	4.9.1 Not Null
	NOT NULL constraint makes sure that a column does not hold NULL value. When we don’t provide value for a particular column while inserting a record into a table, it takes NULL value by default. By specifying NULL constraint, we can be sure that a part...
	4.9.2 Unique
	4.9.3 Default
	4.9.4 Check
	This constraint is used for specifying range of values for a particular column of a table. When this constraint is being set on a column, it ensures that the specified column must have the value falling in the specified range.
	4.9.5 Primary Key
	4.9.6 Foreign Key
	We say that in this situation the orders table is the referencing table and the products table is the referenced table. Similarly, there are referencing and referenced columns.

	Example:
	4.11 Assertions

	B 5
	UNIT-5
	STRUCTURE QUERY LANGUAGE
	5.4 Need of SQL
	5.20.4 Testing a Cursor's Status
	5.20.5 Closing a Cursor
	5.20.6 Scope of Cursors
	5.21 Triggers
	5.21.1 Advantages of Triggers
	5.21.2 Creating Triggers
	5.21.3 Triggering a Trigger
	5.22 Summary
	5.23 Objective Type Questions
	5.24 Selected Exercise
	5.1 INTRODUCTION
	The objective of a database is to store data in such a manner that it can be easily accessed and altered by the user who is using a database. To store and retrieve data from a database, DBMS uses a database language. The database languages allow a dat...
	Programming language SQL (PL/SQL) is a development tool that extends the features provided in the SQL database language. PL/SQL allows you to provide flow control and logic design to unstructured SQL command blocks.
	5.2 OBJECTIVES
	At the end of this unit, you should be able to:

	5.3 Structured Query Language
	5.4 Need of SQL
	Fig. 5.1: Client/server architecture
	5.7 SQL Process
	Fig. 5.2: SQL Process
	5.8 SQL Commands
	5.8.1 DDL - Data Definition Language
	(a) Creating a Table
	A row refers to the horizontal part of the table which contains one or more columns. A column refers to the vertical part of the table which contains one or more rows of data of one type.
	The CREATE statement is used to create and manage database objects. For example you can create a Customers database table that consists of information details of customers of an organization. To create a Customer table, execute the following SQL state...
	CREATE TABLE Customer;
	The above command creates the Customer database on DBMS.
	Alternatively the following statement can also be used to create a customer details. table that contains detail of the customers of the organization such as cust_firstname, cust_lastname and cust_id.
	CREATE TABLE cust_details(cust_firstname char(20) not null, cust_lastname char(20) not null, cust_id int not null);
	The above statement creates a table cust_details in the current database. The various attributes of the cust_details are cust_firstname, cust_lastname and cust_id and column of the cust_details table.
	(b) How to modify table
	Once a table is created it's structure is not necessarily fixed in stone. In time requirements change and the structure of the database is likely to evolve to match your wishes. SQL can be used to change the structure of a table, so, for example, if w...
	ALTER TABLE Customer ADD COLUMN Phone_no int;
	To delete a column the ADD keyword is replaced with DROP, so to delete the field we have just added the SQL is:
	ALTER TABLE Customer DROP COLUMN Phone_no;
	(c) How to delete table
	If you have already executed the original CREATE TABLE command your database will already contain a table called Customer, so let's get rid of that using the DROP command:
	DROP TABLE Customer;
	5.8.2 DML - Data Manipulation Language
	(a) How to Insert Data
	The command to add new records to a table is:
	VALUES (value1 [, value2 [, ...]);
	So, to add a customer record for user amit, we would issue the following INSERT query:
	VALUES ("sanjeev", "gangwar", 9);
	(b) How to Update Data
	The INSERT command is used to add records to a table, but what if you need to make an amendment to a particular record? In this case the SQL command to perform updates is the UPDATE command, with syntax:
	WHERE criteria;
	For example, let's assume that we want to change customer last name gangwar to patel. Our SQL statement would then be:
	WHERE cust_id=9;
	(c) How to Delete Data
	SQL provides a simple command to delete complete records. The syntax of the command is:
	WHERE criteria;
	Let's assume we have a user record for Sanjeev gangwar, (with cust_id 9), which we want to remove from our User we could issue the following query:
	WHERE cust_id=9;
	This query will delete an entire record of customer sanjeev gangwar.
	5.8.3 DCL - Data Control Language:
	5.8.4 DQL - Data Query Language:
	The SELECT statement is used in conjunction with the FROM keyword which specifies the name of a table from where the stored data is to be retrieved. The following syntax determines the basic SQL SELECT statement:`
	SELECT Column_name
	From Table_name
	let's assume that we want to retrieve customer first name from Customer table. Our SQL statement would then be
	SELECT cust_firstname
	FROM Customer;
	This SELECT statement retrieves records from a single column in a database table.
	(1) SQL SELECT Statement:
	SELECT column1, column2…column FROM table_name;
	(2) SQL DISTINCT Clause:
	SELECT DISTINCT column1, column2…column FROM table_name;
	(3) SQL WHERE Clause:
	SELECT column1, column2....columnN FROM table_name WHERE CONDITION;
	(4) SQL AND/OR Clause:
	ELECT column1, column2....columnN FROM table_name WHERE CONDITION-1
	{AND|OR} CONDITION-2;
	(5) SQL IN Clause:
	SELECT column1, column2....columnN FROM table_name
	WHERE column_name IN (val-1, val-2,...val-N);
	(6) SQL BETWEEN Clause:
	SELECT column1, column2....columnN FROM table_name
	(7) SQL LIKE Clause:
	(8) SQL ORDER BY Clause:
	SELECT column1, column2....columnN FROM table_name
	(9) SQL GROUP BY Clause:
	(10) SQL COUNT Clause:
	(11) QL HAVING Clause:
	(12) SQL DROP TABLE Statement:
	(13) QL CREATE TABLE Statement:
	(15) SQL DROP INDEX Statement:
	(16) SQL DESC Statement:
	(17) SQL TRUNCATE TABLE Statement:
	(18) SQL ALTER TABLE Statement:
	(19) SQL ALTER TABLE Statement (Rename) :
	(20) SQL INSERT INTO Statement:
	(21) SQL UPDATE Statement:
	(22) SQL DELETE Statement:
	(23) SQL CREATE DATABASE Statement:
	(24) SQL DROP DATABASE Statement:
	(25) SQL USE Statement:
	(26) SQL COMMIT Statement:
	(27) SQL ROLLBACK Statement:
	5.10 SQL DATA TYPES:
	5.10.1 Numeric Data Types
	Numeric data types are used to store numeric data in a database table. Table 5.1 lists the numeric data types and their description.
	Table 5.1: The Numeric Data Types in SQL
	5.10.2 Character Data Types
	Character data types are the data types that represent sentences, symbols or a combination of both of them. Table 5.2 lists the character data types.
	Table 5.2: The Character Data Types in SQL
	5.10.3 Date and Time Data Types
	The date data type enables you to define the date for a column value. Table 5.3 lists the date data type in different formats:
	Table 5.3: The Date Data Types in SQL
	The above table describes the date data types for specifying the dates in the columns of a database table. The date and time data types are datetime and smalldatetime.
	5.10.4 Binary Data Types:
	Binary data type is similar to hexadecimal data and comprising characters that range from 0-9 and A-F, in groups of two characters each. You need to specify 0x before the binary value. Table 5.4 lists the two binary data types and their description:
	You should use the varbinary data type instead of the binary data type, when you expect null values or a variation in data size.
	5.10.5 Boolean Data Types
	The BOOLEAN type is used for representing values that can be either true or false. Unless prohibited by a NOT NULL constraint, a BOOLEAN can be NULL or unknown.
	5.11 SQL Operators
	5.11.2 SQL Comparison Operators
	5.11.3 SQL Logical Operators
	Syntax:
	(a) SQL Boolean Expressions
	(c) SQL - Date Expressions
	Example:
	Example:
	Example:
	Example:
	Example:
	(a) The AND Operator:
	Syntax:
	(b) The OR Operator
	Syntax:
	Syntax:
	Syntax:
	Syntax:
	Example:
	Syntax:
	Example:
	Syntax:
	Example:
	Example:
	Syntax:
	Example:
	5.12.1 Dropping Constraints
	5.12.2 Integrity Constraints
	Syntax:
	Syntax:
	Syntax:
	Syntax:
	5.14.1 UNION ALL CLAUSE
	Syntax:
	Example:
	Syntax:
	Example:
	Syntax:
	Syntax:
	Example:
	Syntax:
	Example:
	5.17.1 Advantages of VIEW
	Example:
	5.17.4 Updating a View
	5.17.5 Dropping Views
	Subqueries with the SELECT Statement:
	Example:
	where branch-name = ’Perryridge’;
	FROM employee;
	5.19.1 SQL FIRST () Function
	Write a query to display a first name from table 'CUSTOMERS'.
	SELECT FIRST (Name) AS First_name form CUSTOMERS;
	The result is shown in the following table.
	5.19.2 SQL LAST () Function
	Write a query to display a last name from table 'CUSTOMERS'.
	SELECT LAST (Name) AS Last_name form CUSTOMERS;
	5.21.1 Advantages of Triggers
	Triggers can be written for the following purposes:
	5.21.2 Creating Triggers
	The syntax for creating a trigger is:
	CREATE [OR REPLACE] TRIGGER trigger_name
	{ BEFORE |AFTER | IBSTEAD OF }
	{INSERT [OR] | UPDATE [0R] | DELETE}
	[OF col_name]
	ON table_name
	[REFERENCING OLD AS o AS NEW AS N]
	[FOR EACH ROW]
	WHEN (condition)
	DECLARE
	Declaration-statements
	BEGIN
	Executable-statements
	EXCEPTION
	Exception-handling-statements
	END;
	Example: Let us consider the customers table
	5.21.3 Triggering a Trigger
	Let us perform some DML operations on the CUSTOMERS table. Here is one INSERT statement, which will create a new record in the table:
	INSERT INTO CUSTOMERS (ID, NAME, AGE, ADDRESS, SALARY)
	VALUES (7, ‘KRITI’, 22, ‘HP’, 7500.00);
	When a record is created in CUSTOMERS table, above create trigger display_salary_changes will be fired and it will display the following result:
	Old salary;
	New salary: 7500
	Salary difference:
	Because this is a new record so old salary is not available and above result is coming as null. Now, let us perform one more DML operation on the CUSTOMERS table. Here is one UPDATE statement, which will update an existing record in the table:
	UPDATE customers
	SET salary= salary + 500
	WHERE id=2;
	When a record is updated in CUSTOMERS table, above create trigger display_salary_changes will be fired and it will display the following result:
	Old salary: 1500
	New salary: 2000
	Salary difference: 500

	B 6
	6.4 Normalization

	B 7
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

