" % U.P.Rajarshi Tandon Open UGCS-102
University, Allahabad
| Problem Solving
Through "C"

Introduction to Algorithms and Program

Design

Unit1 | 5
Introduction to Algorithms

Unit 2 12
Pseudo-codes and Flowcharts

Unit3 27

Program Design Principles

UGCS-102/1

SUSHI-017

UGCS-102/2

4\ s Cupla T
_.Schooi of Cqmputer and I}]ﬁarmau(m Science
UPRTOU, Allahabad

_Prof K. K. Bhutani Member
Ex-Pro: ._r,UmversttyofA]lahab;ad
Director. UPTECH, Allahabad

Prof. Rajiv Ranjan Tiwari Member
: nent of Electronics & Communieation,

K. Tnstitute of‘App]i’ed Physics & Technology

‘Faculty of Science. University of Allahabad

Allahabad

Prof. R. 8. Yadav Member
Department of Computer Scierice & Engineering
NNIT:Allahabad, Allahabad

Dr. C. K. Singh Member
Lecturer

School of Computerand Information Scieice,

UPRTOU, Allahabad

Sri Rajit Ram Yadav Member
Lecturer

School of Computer and Information Science;

UPRTOU, Aliahabad

Course Preparation Committee

Dr. Ashutosh Gupta Author
Associate Professor, Department of CS & 1T,
'MJPRohilkhand University, Bareilly-U.P.

Dr, Manu Pratap Singh Editor
Professor, Department of Computer Science Engineering

Dr.Bhimrao Ambedkar University, Agra.

Mr. Manoj Kumar Balwant Co-ordinator,

Associate Professor (Computer Science)
'School of Sciences, UPRTOU, Allahabad.

All Rights are reserved. No part of this work may be reproduced in any
form, by mimeograph or any other means, without permission in writing
from the Uttar Pradesh Rajarshi Tondon Open University, Prayagraj.
Printed and Published by Vinay Kumar, Registrar, Uttar Pradesh Rajarshi
Tandon Open University, 2024.

Printed By: Chandrakala Universal Pvt. Ltd. 42/7 Jawahar Lal Neharu Road, Prayagraj,

Block-1 COURSE INTRODUCTION

The objective of this course is to introduce the basic problem solving
techniques as well as introductory programming using ‘C’ language. By learning
the problem solving methods, you should be able to analyze a problem and
develop an algorithm for its solution. The aim is to provide an extensive variety
of topics on this subject with appropriate examples. The course is organized into
following blocks:

Block 1 introduces the notion of algorithms and fundamental principles of
program design.

Block 2 covers the basic features of ‘C’ programming language.
Block 3 describes the Control features of ‘C’ programming language.

Block 4 describes the advanced features like pointers, arrays, structures, functions
and Input/output operations on file.

UGCS-102/3

UGCS-102/4

UNIT-1Introduction to Algoﬁthms

Structure

10 Introduction
1.1 Objectives
12 Problem solving techniques

13 Algorithm
14 Examples
1.5 Summary
1L.OINTRODUCTION

In this unit, the focus is to analyze the problem and develop an
algorithm for its solution. The problem solving methods are discussed in
detail to provide the insight view. Algorithms and flowcharts are two
common modes of solving a problem and finally how the algorithm and
flowcharts are converted into.a‘C’ code isillustrated in this unit

1.1 OBJECTIVES

After the end of this unit, you should be able to:

® analyze the problem and develop an algorithm for its solution;

¢ representan algorithm in an abstract language (eg. pseudao-code,
Structure Diagrams);

e represent an algorithm with the help of flowchart.

¢ understand the fundamental principle of program design.

12 PROBLEM SOLVING TECHNIQUES

The ability to solve a problem is developed with time. When you
try to solve a smaller and simpler problem, you become more attentive
about the steps required for writing solutions of the problems. The two
approaches for problem solving are analytical approach and algorithmic
approach.

Analytical approach: This approach is used mainly by mathematicians
and physicists. In this approach, we try and solve a problem by:

. separating the given quantities

. identifying what is to be solved

UGCS-102/5

Introduction to Algorithme

& Program Design

UGCS-102/6

I Check your progress 1
l The recipe above is not exactly an algamthm Why?

o. applying correctformulae for solution

. pertorming operations suich asaddition/subtraction (if necessary)
e finally getting an answer

Example 1: Whatis the volume of acuboid if length, breadth and height
are 3,4 and5 unitsrespectively?

Here, length, breadth and heightare 3, 4and 5 urits. Let volume
of a cuboid be vol .

Weknow that volume of a cuboid is the multiplication of length,
breadth and height. So, -

vol =length * breadth *height
__.Subaﬁtuting'the-values of'l'engﬂi,,breadfh' and height, we get;
val = 3*4*5 = 60-units®

Algorithmicapproach: This approach uses a sequence of deterministic
steps tosalve problems: Anexampleisthe' nstructionsniseded to prepare
acupoftea:

1. Bail half cup water

add half cup milk in the'kettle

add ene teaspoon sugarin the kettle

add half teaspoonitealeaves in the kettle.
boil the solution for three minutes

empty the kettle inthe cup

D g W N

The order of the instructions is important. This is very similar to
computer processing,

. The Inputs (Steps 1 to4) are the ingredients.
. The instructions (Step 5-)"‘&e5cfibe‘-the Processing
® _ TheOutput (Stepb)isatea

In nutshell ‘problenvsolving thr@ugh computersisdoneby perfennmg
following steps:
¢ Clearly define the problem
e Identify the inpur(s) for solving the problem.

* Examine or analyze the given problem and formulate a method
tosoiveit. Split the problem into a sequernce of elementary tasks
(if required).

Devise analgorithm to solve theproblem:.

Make flowchart of analgorithm to know the control flow.
Write an algorithm (or program) in any programming language.
Compile and run the program (debugging).

® Testthe program (debugging).
¢ (ollect output.

The devise phase of an algorithm (see step four above) normally
consists of

a) a sequence of instructions (sequence)
b) an ability to make choices (selection)
c) an ability to repeat parts of the process (repetition)

a) Sequence: It represent that each of the instructions should be
numbered, and we normally execute the next instruction in the sequence,
Foreg.

1. Take radius of a circle as input
2. Calculate area of circle.

Here, note that sequence of instruction is important, Without
knowing the radius, we can't calculate the area of a circle

b) Selection: The selection has an ability to make choice among
various existing choices. We may think of using an IF statement.

IF something is true
THEN do an action
ELSE do another action
ENDIF

For e.g. IF age >=18

THEN Write(“you are adult”)
ELSE

Write(“you are minor”)
ENDIF

¢ Repetition: Sometimes, we need that part of our algorithm repeats
till the condition is true. To do this, we may use WHILE, FOR or REPEAT
UNTIL construct.

WHILE something is true*
keep on doing an action
ENDWHILE

REPEAT

keep on doing an action
UNTIL something is true

13 ALGORITHM

Definition: An algorithm is a well defined finite sequence of executable
instructions with these properties:

Introduction to Algorithms

UGCS-102/7
7

Introduction to Algorithms
& Program Design

UGCS-102/8
, -8

(2. Perform

. (Input): There may be zero or more external inputs supplied to

an algorithm.

o (Output): At least one output quantity is generated by the
algorithm.

s (Definiteness): There is no ambiguity in any instruction and each
instructionshould be clear.

* (Effectiveness): Each instruction must be sufficiently basic so that
it can be easily written in any programming language.

. (Finiteness): In all cases, the execution of an algorithm must
terminate atter a finite number of steps.

The efficacy of an algorithm is examined on the basis of following
parameters:

i ¥ Time complexity: It is the amount of computer time required
by an algorithm for its execution. This time includes the time for
compilation of a program as well as time for execution.

2. Space complexity: It is the amount of space (or memory)
required by an algorithm for its execution and outcome of final output.

An algorithm may be expressed in terms of pseudo codes and
flow charts, which we discussed in next unit.

1.4 Examples

Now; let us write algorithms for some example problems.

Problem: Write an algorithm for swapping (interchange with each other)
of two numbers,

Solution: We can swap (or interchange) two numbers by using a
temporary number Z. If we assign value of X to Z, value of Y to X and
value of Z to Y, than both numbers are interchanged. Re-writing the
above statement in the algorithm form as:

Algorithm 2 (Swapping of two numbers)
1. Read two numbers Xand Y

(a) Z=X

(b) X=Y

(c) Y=Z
3. Display Xand Y

Check Your Progress 2:
Can you get better solution for above example?

Problem: Write an algorithm for finding the factorial of a given positive
number.

Solution: We know that factorial of agiven number is calculated as:
| IR CR— (N-2). (N-1)
and base condition is 0! =1

Algorithm 3 (Calculating Factorial of a given number)
1. Read positive number N
2. Set Factorial =1
- WHILE N 2D
(a) Factorial = Factorial * N
(b) N=N-1
4. ENDWHILE
5 Display Factorial

Problem: Write an algorithm for finding the greatest common divisor
(GCD) of two numbers.

Solution:

Algorithm 4 (Finding GCD of two numbers)

1. Read Aand B as larger and smaller of two input numbers
2. Divide Aby B and call the remainder R
3 IF R isnot equal to 0 THEN

(a) A=B

(b) B=R

(c) return to step 2
4, ELSE

GCD=B
3, ENDIF
Check Your Progress 3:

What will when if A and B are equal?

Problem: Write an algorithm for a program which will sum up and
display the following:

Sum=1+4+7+10+13
Solution: By analyzing the above series, we note that first term is 1 and
every next term is obtained by adding 3 to the previous term. This

addition continues till we get last term 13. Using this approach, we write
an algorithm 2 for the above problem.

Algorithm 1 (uses GOTO statement)
1. setsumto(

2 setXto1l
B add X to sum

Introduction to Algorithms

UGCS-102/9
9

Introduction to Algorithms 4, Increase X by 3
& Program Design 5. IfXislessthanorequalto 13 GOTOline 3

6. display sum

Note that Steps 3 and 4 are repeating statement (Looping
statement), and

Step 5 is a selection operation (Selection statement).

Another way to solve the same problem is carried out with the help of
WHILE.... ENDWHILE structure (see Algorithm 2).

Algorithm 2 (uses WHILE ENDWHILE structure)

1. setsum ta ()
R setXto1l
3. WHILE X is less than or equal to 13
4. add X to sum
5. Increase X by 3
6. ENDWHILE

At last, another way to solve the same problem is carried out
with the help of FOR..... ENDFOR structure.

Algorithm 3 (uses FOR ENDFOR structure)

1 setsumto0

2 FOR X going from 1 to 13 with steps of 3
3. add X to sum

4 ENDFOR
5

.display sum

Note: Algorithms are notnecessarily unique. Several completely different
algorithms can solve the same problem.
Problem: Design an algorithm for finding the sum of the digit of a
number.
Solution:
Algorithm 4 (uses WHILE ENDWHILE structure)
1. Read number N
2 Set sum =0
3. WHILEN 0

(a) Remainder=N % 10

() Sum=Sum +Remainder

(0 N=N/10

ENDWHILE

4. Display Sum

UGCS-102/10
16

Check your progress4
1. Design an algorithm for finding the reverse of u number.

2. Describe an algorithm which will accept two numbers from the
keyboard and calculate the sum and product displaying the answer
on the monitor screen.

3. Design an algorithm for generating a Fibonacct series up to n terms.

Write an algorithm to check whether the given number is 4 prime
number or not.

1.5 Summary

In this tunit we presented problem solving techniques to analyzea
problem and showed how to formulate a good solution using algorithms.
We have also described the essential properties that an algorithm should
have. The two parameters, time and space complexity, for analyzing an
algorithm was also discussed with enough examples sothatreaders should
be well acquainted. At last, section 1.4 covers some example of algorithms
to solve simple problems.

Introduction to Algorithms

UGCS-102/11
11

Introduction to Algorithms
& Program Design

UGCS-102/12
12

UNIT 2: Pseudo-codes and Flowcharts

Structure

20 Introduction

2.1 Objectives

2.2 Toolsof Algorithm
23 Pseudocodes

24 Flowchart

25 Examples

26 Summary

2.0 INTRODUCTION

In previous unit of this block, you learned about algorithms and
their properties. We have also seen some examples illustrating how to
build an algorithm for the given problem. An algorithm cannotrunona
computer, you have to write the algorithm in a programming language
that a computer can understand. The languages that a computer
understands are known as computer programming languages. In this
unit, we focus on two famous tools for representing an algorithm, namely
flowchart and pseudo code. We will try to learn and use both Flowchart
and Pseudo-code techniques while we are designing algorithms (finding
solutions) for the given problems. Flowchart and Pseudo code actually
give better understandability for the problem solution.

2.1 OBJECTIVES

This unit deals with the representation of algorithm in terms of

flowchart and pseudo code.

Atthe end of this unit, you will be able to:

. Explain the need of flow charts.

o Draw flow-chart for the given problem.

. Write pseudo code using various constructs.

® Understand the three basic logical structures, namely, sequence,
selection and repetition.

2.2 Tools of Algorithm

There are various Algorithm tools available today to properly understand
the problem solving process, but the most common tools are Flowcharts

and Pseudo-Codes. In this unit, we provide the notion of Flowcharts

and Pseudo-Codes as an alternative way for writing algorithms (finding
solutions) for the given problems.

2.3 Pseudo cddes

Pseudo codes ot Structured English are also known as Structured
Pseudo codes. There are no general accepted standards for pseudo-codes.
We will work with a form that has minimum number of rules and is
essentially language independent. Since pseudo-code instructions are
written in English, they can be easily understood and reviewed by users.
Because structured pseudo codes come into view to be fairly factual
translations of algorithm, they closely resemble the refined product.

Pseudo codes have the following properties:

(@) Itissimilarto spoken English rather than normal programming
language-PASCAL, BASIC. So it is easily understand by
programmers and non-programmers.

(b) Itsvocabulary setis much restricted than normal speech, as it has
to follow a rigid logical order.

(c) There are number of conventions for writing Pseudo codes.

Structured pseudo code uses keywords (e.g. IF... ELSE, WHILE,
FOR, COMPUTE, MAX, MIN etc.) whlch by some conventions, are
written in capital letters and have a specnf]c logical meaning in the context
of the description. We have already seen above keywords while designing
algorithms in.Unit 1.

The key to good algorithm design and thus to programming lies
in limiting the control structure to only three constructs. Since pseudo
codes are a way to represent an ﬂgoﬁm; they have three basiclogical
structures.

a) SEQUENCE
b) SELECTION
0) REPETITION
a) SEQUENCE

- It correspond that each of the instructions in the SEquence should
be numbered, and each instruction should be executed in a sequence.
You can write anything in small case letters for assignments, data
manipulations, initialization etc.

- Example 1:
1. Input the marks for SUBJECT1, SUBJECT2 and SUBJECT3
2. Total_marks=SUBJECT1+SUBJECT2+SUBJECT3

Here, order of instructions are important because without knowing
the marks of three subjects, we can't calculate the total marks. -

Pseudo-codes & Flow Charts

UGCS-102/13
13

Introduction to Algorithms
& Program Design

UGCS-102/14
14

[Check your progress

1. Write the pseudo code for finding the average of six numbers,

and sum of the numbers is given
a) SELECTION

Most of the programs need a number of ‘choices’ where the
subsequent action depends on the choices being made in structured

English.

There are four types of SELECTION structures:

1 IF ...ENDIF (Simple IF) Structure
IE....THEN....ELSE ENDIF Structure

2
3. CAb}:. .OF.......ENDCASE Structure
4

NESTEDIF ELSE Structure

Most common construct for selection is IF....THEN.... ELSE
statement.

IF something is true
THEN do an action

ELSE do another action
ENDIF

For example, acompany offers 20% discount to their premium
customers, 10% discount to their standard customers and 5% discount
to their regular customers. The Pseudo code representation of this
statement is as follows:

IF Customer is a premium Customer
THEN give 20% discount
ELSE IF Customer is a standard Customer
THEN give 10% discount
ELSE IF Customer is a regular Customer
THEN give 5% discount
ELSE
no discount is given
ENDIF
Now suppose we have to make a more difficult decision. At this
time, company provides 30% discount to their premium customers who
have been customers for last two years, 20% discount to their standard

customers who have been customers for last one year, but other customers
get only 10% discount.

IF Customer is a premium Customer
IF Customer is over 2 years
THEN 30% discount is given
ELSE 10% discount is given
ELSE IF Customer is a standard Customer
IF Customeris over 1 years
THEN 20% discount is given

ELSE 10% discount is given
ELSE
10% discount is given
ENDIF
Another type of decision is a CASE statement which is a substitute
to the IF..... THEN..... ELSE construct illustrated above. The CASE
statement prowdes relatwely simple decisions and can be used in place
ofIF...THEN....ELSE to avoid any confusion among the programmers.

For example, we can write the above difficult decision with the help of
CASE statement.

CASE 1: Customer is a premium Customer OF
IF Customer is over 2 years
THEN Give 30% discount
ELSE 10% discount is given
CASE 2: Customer is a standard Customer OF
IF Customer is over 1 years
THEN Give 20% discount
ELSE 10% discount is given
default: 10% discount is given
ENDCASE

b) REPETITION

Sometimes we require that a block or set of instructions may be
repeated until a final condition is reached or the given condition is not
satisfied. For example assume that Block 1 is the name of the block
consisting of several instructions. We desire that this set of instructions
(Block 1) is to be executed until the number of processed records reached
10. In structured pseudo code, the four construct for repetitions are:

1. | WHILE condition is true This type of conditional loop
Block 1 tests for terminating

ENDWHILE condition at the beginning of
the loop.

In this case no action is
performed if the first test
causes the terminating

condition to evaluate as false. |

2. | DO This type of conditional loop

Block 1 This of conditional loop

WHILE condition is true tests for terminatin,
condition at the end of the
loop. This loop executes at

least once even if the
terminating condition is
initially false, so iteration
time is greater than and

1 - equaltol.

Pseudo-codes & Flow Charts

UGCS-102/15
15

Introduction to Algorithms

& Program Design

UGCS-102/16
16

REPEAT
Block 1
UNTIL condition is true

This loop executes at least
once even if the condition is
initially TRUE, so iteration
time is greater than and
equal to 1.Iterationsare
carried out while conditionis
FALSE, and stopped when

the condition is TRUE.
FOR (starting state, stopping FOR loop is used when the
- condition, increment) number of iterations is known
Block1 in advance. This, in its
ENDFOR simplest form, uses an

initialization of the variable
as a starting point, a stop
condition depending on the
value of the variable. The
variable is incremented on
each iteration until it reaches
to the required value.

Example 2: Write a program segment that repeatedly asks for entry of
anumber in the range 1 to 100 until a valid number is entered.

Solution:
REPEAT
PRINT “Enter a number between 1 and 100”
ACCEPT number

UNTIL number < 1 OR number > 100

Example 3: Write pseudo code to print out each character typed ata
keyboard until the character X is entered.

Solution:
WHILE letter <‘x’
ACCEPT letter
PRINT “The character you typed is”, letter
ENDWHILE

Note: The third construct REPEAT.... UNTIL is not available in C
language.

Example 4: Write a pseudo code to print 1, 2, 3, 4.
Solution:
FOR(n=1;n<=4;n=n+1)
PRINT n
ENDFOR

In section 2.5, we will see.how to use various selection and
repetition statements for solving a given problem.

2.4 Flow charts

Like Pseudo-codes, flowchart is another way to represent an
algorithm. A flowchart is consisting with set of standard symbols, each
of which is distinctive in shape and represents a particular type of
operation (see Table 1). The symbols are joined by straight lines called
flowlines. These flowlines are actually arrows to specify the order in which
the operations are performed.

- A flowchart is useful in many situations where complex programs
contain numerous branches, since it can describe the interrelationships
between the various branches and lopps. Flowcharts also permit us to
rapidly test several alternative solutions to a problem since it is much
easier to draw the flowchart than to write the program. Once a flowchart
has been draw, the task of writing the program becomes simplify.

Finally, a flowchart is an admirable medium for documenting a
program. It provides a suitable means of communication between both
programmers and nonprogrammers. This is important during the design
of a program, especially when numerous people are working on the same
task. Since a flowchart is not reliant on a particular programming
language, it can be understood by another programmer and by people
who have partial knowledge of programming. This can be of immense
advantage during later maintenance and use of the program.

Flowchart Symbols

The symbols used in flowchartsare standardized by the American
National Standards Institute. If the direction of flow is not clear, then
arrows are used on the connecting flowlines. A flowahart should have
oone beginning (or start) and one or more end (or stop) points and should
be arranged so that the direction of computation is from top to bottom
and from left to right. It may be possible that flowlines can cross each
other, but the crossing flowlines should be independent of each other.
Whenever possible, crossing of flowlines should be avoided, sinceit makes
the flowchart difficult to read. Table 1 shows the various flowchart symbols
and the operation that they represent. While there are so many shapes
tor specific purposes, to avoid complexity, in this course, only a limited
subset of these shapes will be shown and going to be used in examples.
Next, we describe the meaning of various symbols.

Tabel 1: Flowchart symbols

)
Symbol ~ Name connotation

Flowlines Represent direction of processing

Pseudo-codes & Flow Charts

UGCS-102/17
17

Introduction to Algorithms
& Program Design

UGCS-102/18
18

Terminal

An ovalis used to indicate the
beginning and end ot a program

Input/Output | A parallelogram indicates the input
oroutput of information

Process Represent computations or data
manipulations/ processing

Decision Represents a decision point in the
process, usually requiring a “yes’ or
‘no’ response, then branching to
different parts of the flowchart.

On-page Connects two or more processes

connector into one. Represents conneetion
with another process. A reference
to the new process should appear
within the circle.

Off-page connector Connects flowson

connector different pages.

<> Program Represents multiple choices for the
Decision-3 Or| user, with the selected option
More Options | determining the user’s path
Dt through the rest of the program.

Loop Ahexagon indicates the beginning

of arepefition structure.

Flow charts also have three basic logical structures:

a) SEQUENCE
b) SELECTION
¢ REPETITION

a) SEQUENCE

Initialization, data manipulation (or computation) and assignment
statements are considered as Sequence Statements and they are
represented with PROCESS symbol (Rectangle) in FLOWCHARTs.
Following are the examples of initialization and data manipulation

statements.

Example: INITIALIZATION
pi=3.14
interest_rate=10%
amount =5000
year=>5

In above example, the values of pi, interest_rate, amount and year
areinitialized. The above sequence of statements are executed one by

one.

b) SELECTION

There are four types of SELECTION structures:

IF ...ENDIF (Simple IF) Structure
IF....ELSE...... ENDIF Structure
CASE i OF vevuss ENDCASE Structure

NESTEDIF Structure

e fR B

Next, we show how to represent these structures using pseudo-
code and flow charts.

1. IF ...ENDIF (Simple IF) Structure B
Pseudo code Flow chart
IF condition
statement-1 statement-1
statement -2
statement -2
END IF

2. IF....ELSE......ENDIF Structure

Pseudo code

[F condition
statement-1
statement -2 ptatement—?;

statement=1

< |
statement-4 statement-2

ELSE
statement-3
statement -4

END IF

Pseudo-codes & Flow Charts

UGCS-102/19
19

Introduction to Algorithms
& Program Design

UGCS-102/20
20

3. CASE....OF...... ENDCASE Structure

Pseudo code Flow chart

CASE field OF

Value-1: statement-1

Value-2: statement -2 condition?

... Value-n; statement -n
END CASE

Value-1

stement-l

Note: CASE statement can be used in place of Nested IF statements
when choices are specific values and they are not including
ranges.

4, NESTED IF Structure
Flow chart

START

Pseudo code

Y

IF condition1 N

Block 1

ELSE IF condition 2 No Yes
Block 2

ELSE IF condition 3

Block 3

ELSE IF condition 4 N Yes
Block 4 2| Block3 [
ELSE Block 5 S Lanmnes
ENDIF

ENDIF N Yes
ENDIF

ENDIF

Block 1

2| Block 2

Block 4

No

Block5 [

Check your progress

1. Writethe pseudo code using nested if statement for student grades

with following conditions:
if grade is greater than or equal to 85 then print “Grade A”
if grade is greater than or equal to 70 then print “Grade B”
if grade is greater than or equal to 60 then print “Grade C”
if grade is greater than or equal to 50 then print “Grade D"
if grade is below 50 then print “Fail”

2. Convert the above pseudo code using CASE statement.

3. Draw the flow chart for question number 1 and 2.

a) REPETITION (Control Structure)

A repetition structure represents some part of the program that

repeats. This type of structure is also known as loop or eontrol structure.
There are four different LOOP Structures:

1. WHILE...... ENDWHILE loop
2 B, 3 . WHILE loop

3. REPEAT......UNTILloop

4 FOR.u. ENDFOR loop

Next, we present representation of these loop structures using pseudo-
code and flow charts.

1. WHILE...... ENDWHILE loop
Pseudo code Flow charts
WHILE condition
Statement -1

Pseudo-codes & Flow Charts

Statement-2 condition?

ENDWHILE

statement -1

—>| statement -2

UGCS-102/21
21

Introduction to Algorithms

& Program Design

UGCS-102/22
22

2. DO...... WHILE loop

Pseudo code

Flow charts

Do
Statement -1

Statement-2

WHILE condition

yes

V)

Statement 1

Statement 2

X

/Cond_i_{-in;N né

3. REPEAT...... UNTIL loop

Properties:

® Thisloop executes at least once even if the condition is initially
TRUE, so iteration time is greater than and equal to 1.

¢ [Iterationsare carried out until the condition remains, and stopped
when the condition is FALSE.

e Working method is: First Execute and Then Check the condition

Pseudo code

Flow charts -

REPEAT
Statement -1

Statement-2

UNTIL condition

yes

statement -1

~ statement -2

condition?

4. FOR (starting state, stopping condition, increment).....ENDFOK
loop

Pseudo code Flow charts
Example

setito1
FOR i=1to 50 with step 2.
addito total
END FOR
PRINT total

total = total + i

So far we have seen how to draw flow chart and write pseudo
codes. Next, we present some problems so that you can become more
familiar with these tools of algorithm.

2.5 EXAMPLES

Problem: Write the pseudo code and draw flow chart to accept
two numbers and find the square of the biggest number.

Solution: The pseudo code and flow chart for the above problem
is given below:

Pseudo code

INPUT A,B

IF Ais greater than B
THEN square=A*A

ELSE square=B * B

Flow chart

ENDIF

2 ;

T
/ INPUTA, B /

yes
Square=A* A

no

—_—y S_qua.'re=B *B.

b4

Pseudo-codes & Flow Charts

UGCS-102/23
23

Introduction to Algorithms
& Program Design

UGCS-102/24
24

groblem: Write the pseudo code and draw flow chart to print your name
times.

Solution:
Pseudo code

Set i=0

INPUT Name

WHILE iisless than 5
PRINT name
incrementiby 1

END WHILE

Flow chart

// INPUT name

e/
&(_

Y"'S PRINT name /—qu+_1|
no

Check your progress

1. Write the pseudo code and draw flow chart to choose the largest
number from a set of three numbers, A, B, C.

2. Write the Pseudo code for the following chart.

Buy Garments
| P

Moneylyft
yes

Buy other
no things.

Return to
home

if

Check your progress
1. Draw the flowchart for the following pseudo code.
START
INPUT Numl
INPUT Num?2
PRINT menu of operations
INPUT operation
WHILE (operation <1) and
(operation >4)
PRINT error message
INPUT operation
ENDWHILE
CASE operation OF
1:Result=Numl + Num?2
2 :Result=Numl - Num2
3:Result=Num1 * Num2
4 :TF Num?2 is not equal to 0
THEN Result=Num1/
Num?2
ELSE
Result=0
ENDIF
ENDCASE
PRINT Result
END
2. Thesequence of Fibonacci numbers is defined as below:
f(i) = f(i-1) + f(i-2) with f(0) =1 and f(1) =1

Whrite the pseudo code and draw a flowchart to calculate and display
Fibonacci numbers.

3. (a)List the main keywords used in Pseudocodes. (b) What control
structures they represent.

4. Design an algorithm and the corresponding flowchart for finding
the sum of the numbers 2,4, 6,8, ...,n

Pseudo-codes & Flow Charts

UGCS-102/25
25

Introduction to Algorithms
& Program Design

UGCS-102/26
26

6
7
8.
9

Using flowcharts, write an algorithm to read 100 numbers and
then display the sum.

Write an algorithm to read two numbers then display the largest.
Write an algorithm to read two numbers then display the smallest
Write an algorithm to read three numbers then display the largest.
Write an algorithm to read 100 numbers then display the largest.

2.6 SUMMARY

In this unit, we studies about pseudo code and flow charts. We

have also seen that both are the alternative ways of defining the problem
solving process in sequential manner. Both of these methods uscs three
logical structures, sequence, selection (or decision) and repetition (control
structure) for solving any problem. You also learned that:

what is program flow chart?

what symbols and constructs are used in drawing flow charts
what are the guidelines for drawing flow charts

how to draw a good flow chart

how to use nested loops in flow charts

how to use multiway selection in flow charts
how to use nested loops in flow charts

how to use multiway selection in flow charts

UNIT 3: PROGRAM DESIGN PRINCIPLES Program Design Principles

Structure

3.0 Introduction

31 Objectives

3.2 Introduction to computer programming
3.3 Program design principles

34 Programming techniques

3.5 Program Errors

3.6 Summary

3.0 INTRODUCTION

In this unit, we will see the basic design principles of a good
program and also describe some terminology related to the computer
programming. The unit includes the introduction of programming
languages and showing that how the problem is solved by going through
a programmihg cycle. The programming paradigms like, unstructured
programming, structured programming, procedural programming,
modular programming, top down and bottom up design are also
discussed.

3.1 OBJECTIVES

Program designing is a very crucial step in software development
process; hence it is not so easy to develop good software without the
proper understanding of programming paradigms. At the end of this
unit, you will be able to:

¢ know about the various programming languages, including low
level and high level language.

® Understand the definition of program and the principles of good
programming,.

e Know the concept of programming cycle and its various phases
to develop a good program.

e Know different programming approaches.

UGCS-102/27
27

Introduction to Algorithms
& Program Design

UGCS-102/28
28

3.2 INTRODUCTION TO COMPUTER
PROGRAMMING

A computerisan information processor. Data and information
are given as inputinto the computer and then processing is performed-
to produce output (see Figure3.1).

{ INPUT | == | COMPUTER | === | OUTPUT|

Figure - 3.1 Structure of Computer

All the physical components including input and output devices
that are attached to a computer are known as hardware. The set of
instruction performed by the computer is called a computer program.

Computer is a sense less machine and it cannot perform any
work without instruction from the end user. The tremendous speed
and accuracy for performing the instruction is the key property of
computer. Itis up to you to make a decision that what you want to do
and in what sequence. That's why computer cannot take its own decision
as you can. Therefore, it needs specific logically related instructions
that the programmer feeds into a computer to solve a particular
problem. These instructions are termed as program. The set of programs
written for a computer is referred to as software. A programming
language is a set of convention that provides a technique to tell the
computer what operations it has to perform.

A programming language used to communicate with the
computer has certain specific characteristics. It has a restricted set of
vocabulary. Each “word” in the programming language has clear-cut
meaning. Every programming language has certain limitations but

still they are used in gradual way to solve difficult problems.

There are two major types of programming languages; low —
level and high-level language.

a) Low-level Languages

Both machine and assembly level languages are called “low-
level”. The term “low” does not mean “inferior” in any sense, both
rather “closeness” to the way in which the machine has been built.

Machine-Level Language

Although computers can be programmed to understand many
different computer languages, there is only one language which is
understood by the computer without using translation or interpretation.

An instruction prepared in any machine language has a two -
part format. The first part is the command or operation, and it tells the
computer what function is to perform. Every computer has an operation
code or opcode for each of its functions. The second part of the instruction
is the operand, and it tells the computer where to find or store the data or
other instruction that are to be manipulated.

Programs written in machine language can be executed very fast
by the computer. This is mainly because machine instructions are directly
understood by CPU and no translation of the program is required. Because
the internal design of every type of computeris different from every other
type of computers and needs different electrical signals to operate, the
machine language also is different from computer to computer. Therefore
the programs or instructions written in machine language are machine
dependent. Hence the program which is running on a machine can’t run
on the other machine.

Assembly -Level Language

One of the first steps in improve the program preparation process
was to substitute letter symbols mnemonics for the numeric operation
codes of machine language. The language which substitutes letters and
symbols for the numbers in the machine level language program is called
an assembly level language or symbolic language. A program written in

symbolic langrage that uses symbols instead of numbers is called an.

assembly code.

This assembly program also enables the computer to convert the
programmer’s assembly language instructions in to its own machine code.
A program of instructions written by a programmer in an assembly
language is called the source program. A source program has been
converted into machine code by the assembler (see Figure 3.2). This
machine code is referred as object program.

Assembly-level language has number of advantages over machine-
level language, some of them are: it is easier to understand and use, easy
to locate and correct errors, easier to modify.

But there are certain limitations of assembly-level languages like
it includes machine dependency (designed for the specific make and
model of processor), knowledge of hardware to the programmer for
writing the code.

Assembly Machine language
language program | — Assembler program
(source program) (object program)

Figure: 3.2 - Assembler

Program Design Principles

UGCS-102/29
29

Introduction to Algorithms

& Program Design

UGCS-102/30
30

b) High level language

Writing a program in machine language or assembly language
requires a deep knowledge of the internal structure of the computer.
While writing a program in any of these language, a programmer has
to remember all the operation codes (numeric or mnemonics) of the
computer and know in detail what each code does and howr it affects the
various registers of the computer. Therefore, to make programming task
convenient for the programimer and easier to understand for the user

the high level languages were developed..

High-level language are intended tobe machine independentand
are problem oriented languages (POLSs) i.e. they reflect the type of

_problem solved rather than the features of the machine. These languages

enable the programmers easier for him to concentrate on the logic to
solve the problem. Advantages of high-level language are easier to learn,
less time to write, machine independent simplification and diagnostic
error detection.

There are many programming language that are used to create
programs. Some of the examples of these languages are BASIC,
FORTRAN, COBOL, Pascal, C, C++. Like English language, all
programming languages have a rule of grammar of their own known
as syntax of the language.

Since computer hardware is capable of understanding only
machine level instructions, so that a software is required to convert the
instruction of a program written in high-level language (source code) to
machine instructions (object code) before the execution of program. We
have seen that assembler also perform this conversion process but for
the high level programming languages, interpreter or compiler is required
for this purpose. It is shown in Figure 3.3.

High Level Machine language
language Program Compiler or program
(source program) interpreter (object program)

Fig.3.3: Compiler or interpreter
Compiler

Compilers are large programs which reside permanently a
secondary storage. When the translation of a program is to be done,
they are copied into the main memory of the computer. The compiler,
being a program, is executed by the CPU. While translating a given
program, the compiler analyses each statement in the source program
and generates a sequence of machine instructions which when executed,
will precisely carry out the computation specified in the statement. As

the compiler analyses each statement it uncovers certain types of errors.
These are referred to as diagnostic errors. A compiler cannot diagnose
logical error. It only diagnoses grammatical (syntax) errors in the
program.

Interpreter

Aninterpreter is another type of translator used for translating
high-level language into machine code. It takes one statement and
translates it into an machine instruction which is immediately executed.
The translation and execution alternate for each statement in the high-
level language program.

This differs from a compiler which nearly translates the entire

source program into an object program and is not involved into its

execution however in case of an interpreter, no object code is saved for
future use because the translation and the execution processes alternate.

The performance comparison of both interpreter and compiler can seen
as:

1 Interpreter provides fast response to change the source code.
.4 Compiler is a complex program with respect to interpreter
3

Interpreters are easy to write and do not occupy much space in
memory as compared to compiler.

4. The interpreter is a time consuming method because each
statement must translate every timer it is executed from the source
program.

B A compiled machine language program runs much faster than

an interpreter program.

Assemblers, compilers and interpreters are system software’s that
translate a source program written by the user to an object program
which is meaningful to the hardware of the computer. These translators
are also referred as language processor since they are used for processing
a particular language.

3.3 PROGRAM DESIGN PRINCIPLES

Program designing is a very sedative phase of software development
cycle. The prettiness of mind, skill of brain and sensible view is assorted
with system objective to implement design.

The designing process is very complex (not simple), unwieldy and
annoying with many curves in the way of doing well design.

The objectives of Program design are:

Program Design Principles

UGCS-102/31
31

Introduction to Algorithms
& Program Design

UGCS-102/32
32

(i) Substitute old system: The new system is designed in such a
way that it can be used to substitute old system because of high
maintenance cost of old system and also the efficacy of old system is
very low.

(i) Requirement of Industry: Industry and organizations needs
the development and installations of new system for the working groups
and end user.

(i) Efficiency: The new designed system is installed to raise the
production of company or organization.

(iv) Competition: Every organization wishes to launch a new system
that proves its strength and it is a matter of status also. In the era of
thriving competition, if organization does not deal with modem
technology, it is futile to face competitions.

(v) Maintenance: The new system is required to uphold organization
position.

Individuals and computer industry repeatedly searches for more
proficient ways to perform the software development process. One
possible way to reduce the development cost and time is to standardize
software programs and the programming process. The benefits of
standardized programs are that they are easier to code, maintain, debug,
and modify.

In latest years, a range of techniques have appeared attempting
to reduce differences in the way programmers’ design and develop
software. A few of the most frequently used techniques for standardization
are described as follows:

3.3.1 Program Specifications

Before writing a program, a detail specification must be prepared
to show what exactly a program has to do. This task may be done by
other programmer or by more senior programmer or a system analyst.
It is the wastage of time if the programmer start typing the program
before a clear specification has been created. Usually, such as a
specification has three main parts:

a) Input: a detailed description of the format of the input data.
b) Output: adetailed description of the format of output data.

0 Processing;: a detailed description for the processing of the
program to get the output from the input.

3.3.2 Programming Circle

~ Before developing asolution for the given problem, itis not only
sufficient to know the rules of a computer language beside this the

problem-solving skills and techniques are also important. There are
following five steps for program development to solve the given problem:.

a) Problem statement

b) Planning the solution or logic design
) Program Coding

d) Program Testing

e) Documentation

a) Problem statement

It requires to define the problem precisely, and clearly as per the
system requirements, i.e., kind of input, processing, and output required.
Some other tasks those are also involved in this step can represent as:

. Understandability of the vocabulary used in the raw formulation?
. What and which type of information has been given?

. How canIidentify a solution?
. What should I want to process and produce as output?
. Which information is missing (or left) and will any of this be of
use?
. Is there any insignificant information?

. What assumptions should I made while writing a program?
b) Planning the solution or Logic design

To work out a given programming problem, one has to follow a
systematic approach, i.e., devise an ordered set of activities that will

converta given input into the desired algorithm. Apart from these we-

should also concentrate on following two issues given below:
. Which mathematical structures seem best-suited for the problem?

. Are there any other problems that have been solved which resemble
this one?

An algorithm consists of three main components. These are input,
process and output. Algorithms implemented by a computer are known
as computer programs. We have also discussed that a program consists
of basically the following operations: -

) Sequence — inorder
I Selection —selecta choice based on some criterion (e.g.,
if...else)

II. Repetition — Iteration

~ These three operations are sufficient to describe any algorithm
and we havealso discussed that an algorithm can be described by drawing
flowcharts and writing pseudocode.

Program Design Principles

UGCS-102/33
33

Introduction to Algorithms
& Program Design

UGCS-102/34
34

0 Program Coding

We require a programming language to express an algorithm.
Program coding refers to the process of transforming a pseudocode or

flowchart into a computer program using a programming language.
The program is written in accordance with the language syntax. There
are many high-level I}()rogramming languages, each with a different
consl iler, such as FORTRAN, COBOL, C, C++, Pascal, ADA, ALGOL,
BASIC, etc,

There is a required set of programming rules to encourage the
habit of following convention.

L NAMES

Selection of variable names is very important during development
of a program. It enables yourself as well as other programmers to debug
and mogjfy innear future. As the part of program documentation, names
must clearly indicate both the kind of thing being named and its role in
the program. There ma\}r be two choices, and you should prefer one and
follow it consistently. Variable names may be one word long can begin
either with alower case or an upper case and thereafter are lower case
including other acceptable characters.

Following are the guidelines for choosing meaningful names:
. Generally select English words, which explain the thing being

named.

. Always use simple names for variables. For example, a loop
counter might be a single letter.

. Avoid using lots of one- and two- character names like p1 ory.

. Use common prefixes/suffixes to correlate names of the same
general type or category.

. Do not use misspell and meaningless suffixes to create variables

with similar names, e.g; if the name student is used, do not define
another variable with a name like stu, stud, or stul.

. Do not use names that are analogous to each other and thus causes
confusion.
. Avoid the use of acronyms as abbreviations, as a substitute, if

i;our names are getting long you may eliminate vowels (e.ﬁr
tElmnt), or use an unambiguous prefix (e.g., lastElem), but NOT

le.

Here are some examples of good and bad variable (See Table 3.1)

Table 3.1: Examples of Good and Bad variable names
Good Name Bad Name
TaxRate Rate, tRate
Tax_rate tr
Price_In_Dollar pDollar, priceD
Max _ Mx

L Indentation

It is advisable that you should maintain consistency of indentation
throughout your code. The proper indentation enables you and other

programmers to read and understand the code in better way. Example
of good indentation is given below.

IF condition

THEN statements
ELSE

statements
END IF
FOR(...)

statements
‘ENDFOR

You can also use rightward drift for indentation. If you have
deeply nested block of code, then indentation pushes you farther and
farther to the right, so that no room is left to write a line of code. To keep
away from this situation, you can use a modest size indentation. Four
spaces are probably optimal.

II. Comments

Comments are very useful for the reader to debug, modify and
understand your code. You can follow the given guidelines to add a
‘comment:

* Allinternal documentation must be written in English. Do not
use comments that simply put another way your code in English,
without abbreviating it or adding any information.

. For each variable, provide a one-line comment about the use of
the variable. These may follow the variable declaration as
~ Seti=0 /* loop variable */
FOR i=1,i<10, step 1
/* Do some operation here */

END FOR
° you may also use a comment block to identify the use of several
variables together.
. Give the purpose of major section of the program.

III. Careful use of White Space

Sometimes the simple insertion of a blank line makes the program
much easier toread. But don't put too much white space otherwise the
reader will not be able to see enough of the code at a time.

a) Program Testing

Program testing is a proper assessment technique in which
software requirements, design, or code are examined in detail by a person

or group other than the author to perceive faults, violations of development

Program Design Principles

UGCS-102/35
35

Introduction to Algorithms
& Program Design

UGCS-102/36
36

standards, and other problems. Generally, programmers use the phase:
desk-checking, translating and debugging to perform proper validation
and testing of the program.

. Desk-checking: Trace the program code to find out any error
that might be there. It is same as proof reading and may expose
several errors.

e Translating: A compiler is a translator and has in built

capabilities of detecting errors and produces a listing of them.
These are mostly errors due to the incorrect syntax in the use of
language.

. Debugging: Debugging is the process of locating, analyzing,
and correcting suspected errors. These errors (or bugs) are
identified during the execution or running of the program. Most
of the errors in this phase are due to the logic of the program.

b) Documentation

Program documentation is a detailed explanation of the
programming cycle and specific details about the program.
Documentation is an on-going process required to supplement human
memory and help organize program planning. Documenting a
program is also critical to communicate with other who might have an
interest in your program. Typical documentation materials include
origin and nature of the problem, brief description of the program,
logic tools such as flowcharts and pseudo code, and testing results. The
comments written in the program code are also an important part of
documentation.

The documentation may be divided into two categories: Infernal
and External Documentation.

L Internal Documentation

This type of documentation deals with those aspects of programs
which are embodied in the syntax of the programming language, and
includes:

o significant names used to explain data items and procedures.

. Comments concerning to the function of the program as a whole
and of the modules comprising the program.

. Simplicity of the style and format: i.e indentation of related block
of instructions, blank lines separating modules.

. Use of symbolic names (variable names) instead of constants.
IL External Documentation

This category includes supporting documentation, which should
be maintained in a manual or folder accompanying any program. It is

necessary that as soon as changes are made in a program, its external
documentation is updated at the same time. Out-of-date documentation
can mislead to a maintenance programmer and result in time wastage.

External documentation should include:
. A current listing of the source program.

. Program specification that is, a document defining the purpose
and mode of operation of the program.

. Structure diagram showing the hierarchical organization of the
modules currently comprising the program.

. Specification of the data being processed, items in reports and
external files processed.
. Where applicable, the format of screens used to interact with users.

- 3.3.3 Program Maintenance

Program maintenance refer to a process that includes all the
changes to a program once it is implemented and processing real
transactions. Itis natural that at some time, maintenance is required to
correct errors that were not found during the testing stage. Other times,
maintenance is mandatory to make changes that are the result of users’
new information requirements.

Summarizing the above program design concept, following are
the principles of good programming;.

a. The program requirements must be specified with no ambiguity
and should be clear and precise. These specifications will be

prepared by a systems a_n'alyst or group of programmers who

are working on the software design. A programmer has the task
of converting these specifications into a written program in the
form of pseudo code or flow chart.

b. During development of a program, a programmer should keep
working papers. He can refer back to these papers later to check
what he has done in case:

i If there is an error in the program for correction;

ii. If the user of the program asks for.a change in the
program or wants to incorporate some more features in
the program.

c. Theworking papers might include a pseudo code, or flowchart
(orboth).
d. While writing a program, the programmer should try to keep it
| as short as possible, since this will make more efficient use of

Program Design Principles

UGCS-102/37
37

Introduction to Algorithms
& Program Design

UGCS-102/38
38

storage capacity in the CPU. The program should therefore be
logically well- structured.

After making a complete program, it should be tested. A
programmer should prepared test data and establish whether
the program will process the data according to the specifications
given by the system analyst.

There should be provision for program amendments. One
possible way is to leave space in the program instruction
numbering sequence for new instruction to be inserted later. For
example, instructions might be numbered initially 10, 20, 30,
40, etcinstead 0f 1,2,3,4.

A report should be kept of all program errors that are found
during testing and the corrections that are made to the program.

Every version of a program should be separated so that it is easy
to avoid a mix-up about what version of a program should be

used.

3.4 PROGRAMMING TECHNIQUES

In recent years, a range of techniques are evolved those attempt
to minimize differences in the way programmers’ design and develop
software. A few of the most commonly used techniques for
standardization are described in this section.

IProgramming techniques:

ming does not involve any decision

making. It can be used for handling

small & simple problems.

A general model of these programs

is:

(a) read adata value

(b) compute intermediate result

(c) use intermediate result to compute
desired answer

(d) print the answer

(e) stop

Non-structured programming
frequently uses GO TO statement
to transfer control from one part of
the program to another part.

Non-structured Structured

Itis a straight forward method for Professor E. W. Dijkstra
programming in a sequential (1960) introduces the term
manner. This type of program- Structural Programming.

After some years, Italian
scientist C. Bohm and

G. Jacopini (1966) gave the
basic principal that supports
this approach. Itis often
known as “GOTO-less”
programming, because it is
avoided by programmers.

Structured programming is
standardize technique used
for software development.
Structured programming
was invented to address the
shortcomings of non-

sh‘uchuedprogramnﬁng
that frequently uses GO TO
statements.

Using GO TO codes in the

program, one can transfer control

to backward, forward, or anywhere
else within the program. The

problem is that the connections
|between parts of the program by using
GO TO commands can become

quite messy.

The disorganized and sometimes
complicated pattern of linkages
between parts of the program is also
known spaghetti code. This type of
programming is difficult to understand
and debug.

Such a non-structured programming
isnow viewed as fruitless programming

strategy.

To develop good quality software, developers have to cautiously
imagine and design the programs. Now a days, software is expected to
follow recognized design principles. The customary design standards are
structured programming and structured design.

3.4.1 Structured programming

Structured programming does not use GO TO commands. In
structured programming, the program is divided into several basic
structures. These structures are called building blocks and makes use of
the control structures (sequence, selection and repetition), which we have
already studied in previous sections. Here, we introduce again for brevity.

(@) Sequence Structure: This module contains program statements
one after another. This is a very simple module of Structured
Programming. The sequence principle implies that program instructions
should execute in the order in which they appear (see Figure 3.3).

Statement 1

~”
I statement 2

N _
| statement 3 |

Figure: 3.3 Sequence Structure

(@ Selection or Conditional Structure: The selection rule implies

that statements may be executed selectively using IF-THEN and/or IF-
THEN-ELSE statements. These statements work in the following way.

Program Design Principles

UGCS-102/39
39

Introduction to Algorithms

& Program Design

UGCS-102/40
40

IF a condition is met or is true, THEN a specific set of instructions will
be executed. If the condition is false, then another set of instructions will
be executed.

no Test_ yes .
[Nconditi statement 1
4 N
statement 1| [statement 2 Test yes
condition statement 2

Test
condition

statement 3

\J;h.
Figure:3.4 Selection Structure

(@ Repetition or Iteration Structure: The iteration principle
indicates that one part of the program can repeat or iterate upto a limited
number of times.

statement 1

statement 2

Figure-3.5 Repetition Structure

3.4.2 STRUCTURED DESIGN

In accordance with structured design principles, a program should
be designed from the top-down or bottom-up as a hierarchical chain of
modules. Amodule is a logical way of dividing a program so that each
module does one or a small number of related tasks.

a) Modular Programming

The Modular programming breaks a program into
subcomponents called modules. Each module consists of an independent
or self-contained set of statements. Modules are also known as routines,
subroutines, or subprograms or procedures. Each module is designed to
do a specific task in the overall program, such as to calculate the total
marks of a student in an exam program. In programming language,
different names are used for it as:

Programming Languages Module known as
BASIC, FORTRAN ‘Subroutine
" Pascal Procedure or function
C, CH+ CH function
Java Method

Modules are independent and easily manageable. Generally -
modules of 20 to 50 lines considered as good modules when lines are-

increased, the controlling of module become complex. Modules are
debugged and tested separately and combined to build system.

Advantages:

Modular programming has the ability to write and test each

module independently and in some cases reuse modules in other
programs. '

A program consists of multiple modules. In addition, there is a
main module (called top module) in the program that executes
the other modules.

You can use top-down or bottom-up approaches in order to design
a program consisting of modules.

b) Top-Down Approach

Top-down decomposition is the process of dividing the overall
procedure or task into many small module or subprogram or function
or procedure from top to bottom and then subdivide each component
module until the lowest level of detail has been reached. Itis called top-
down design or top-down decomposition since we start “at the top”
with a general problem and design specific solutions to its sub problems.
In order to obtain an effective solution for the main problem, it is
advantageous that the sub-problems (subprograms) should be
independent from each other. The top module is tested first, and then
sub-modules are combined one by one and tested.

This programming approach focuses on developing a software
program theoretically before program coding starts. A programming
team first creates a diagram that looks similar to an organizational chart
with the main module at the top and subordinate modules down below

connected by lines with each box representing a program module. The
chart shows how modules relate to each other but does not describe the
aetails of the program statements in each module. The structure chart is
usually referred to as a Hierarchical Program Organisation (HIPO). So,
it is the set of principles that enable a problem to be solved by breaking it
down into manageable parts, step-by-step from the overall problem
specification.

Program Design Principles

UGCS-102/41
41

Introduction to Algorithms
& Program Design

UGCS-102/42
42

Main Module

N

Q
P3 Q] [R1] [R2] [R3)

Fig. 3.6 Top down approach

Let us assume that a main module (see Figure 3.6) is divided into
sub-program P, Q, and R. The P is divided again into subprogram P1,
P2 and P3. The sub-program Q and R is divided into Q1, Q2 and R1,
R2, R3 respectively. The solution of main module is obtained from sub
program P, Q and R.

0 Bottom-up Approach

In bottom-up approach, already on hand facilities (designs) are
used (taken) into consideration as a model for anew design. We take an
already existing computer program as a model for our new program.
We also try to utilize the existing facilities or design in a way, which
gives the out program a better performance. At first, bottom layer modules
are designed and tested, second layer modules are designed and
combined with bottom layer and combined modules are tested. In this
way, designing and testing progressed from bottom to top. In software
designing, only pure top down or Bottom up approachisnot used. The
hybrid type of approach is recommended by many designers in which
top down and bottom up, both approaches are utilized.

Check your progress

1. Write pseudcode for a program that will accept names and marks of
each student in the class of 50 students, and then calculate the average
of all marks. The program should make sure that the entered marks
are valid (in the range of 0 and 50). Use the idea of modular
programming.

2. Write pseudcode for a program that will read two matrices and then
display their sum.

3. The scalar product (also called the inner/dot product) of the two
vectors (one-dimensional arrays) A and B with n elements is defined
as

Write a pseudocode, which calls a subprogram with three parameters,
A, B, N. The main program should input N and the two arrays A
and B. The subprogram should have a name called Product and it

should compute the scalar product according to the formula given.

3.5 PROGRAM ERRORS

Itis difficult to detect and troubleshoot a software failure. It starts
with the problem and the term “error”, covers all different kinds of errors,
bugs, failures, or faults. A very casual definition of the term “error” is as
follows:

“An error is defined as the computation of one or more incorrect
p
results by a computer.”

The above definition of an error has also been used in the definition
for debugging. In termis of errors, two kinds can generally be well-known:
hardware errors and software errors. The former result from erroneous
functions of electronic elements by dust, heat, variations in electrical
currents, and others, or have been introduced through corrupted
connections and cables or by other faulty components. The hardware
errors leads to interruptions of service, which often result in complete
breakdowns or system shutdowns. In this course, we are not considering
hardware errors, but instead concentrate on the second kind of errors,
thatis software error.

a. Software error

Software errors (known as logical errors) are caused by the fact
that the software specification is not followed. The program is
compiled and executed without errors, but does not generate to

produce the required result.

b. Syntax errors
These errors occur due to the fact that the syntax of the language
isnot followed.

c Semantic errors

It refer those errors that are due to an improper use of program
statements.

d. Overflow error

This type of error occurs when the computer tries to handle a
number that is too large for it. It is well known that every computer
has a well-defined range of values that it can represent. If during
execution of a program it arrives at anumber outside this range,
it will show an overflow error. Overflow errors are also known as
overflow conditions.

e. Underflow

It represents a condition that occurs when a computer tries to
represent a number that is too'small for it (that is, a number too

Program Design Principles

UGCS-102/43
43

Introduction to Algorithms
& Program Design,

'UGCS-102/44

close to zero). Different computer take action to underflow
conditions in different ways. Some report an error, while others
approximate as best they can and continue processing. For
example, if your computer support 4 decimal places of precision
and a computation produces the number 0.000006, an
underflow condition occurs.

£ Runtime error

Run time error occurs during the execution of a program. For
example; if your program tries to access amemory location that
is not supposed to access by it, run time error cecurs. It also
happens due toimproper use of pointers, which we shall, studied
in C language or by using the division by zero to any number.
In contrast, compile-time refers to events that occur while a
program is being compiled.

8. linking errors

In some programming languages the in-built library functions
or routines available and the user program tries to use these
functions. Hence the tiser includes the files of these functions in
the main module or program. If there is.any improper use of
inclusion or skipping of these files, ten an error occurs which
kmwn as linking error.

3.6 SUMMARY

Program-desig‘n is a very crucial step in software design process;
so that it is not so easy to develop a good software. It needs specific
logically related instructions that the programmer feeds into a computer
tosolve a particular problem. These instructions are termed as program.
A programming language s a set of convention that providesa technique
to tell the computer what operations it has to perform. There are two
major types of programming language; low -level and high-level
language. Assemblers, _comp’iiers-and interpreters are system software

that translates a source program written by the user in any
- programming language to an object program which is meaningful to

the hardware of the computer. These translators are also referred as
langirage processor since they are used for processing a particular

language. Program designing is a very sedative phase of software

development cycle. The objectives of Program designing are: replacement
of old system, Organizational requirement, toincrease efficacy of old
system, competition among the industries.

oo U.P.Rajarshi Tandon Open
NP University, Allahabad

UGCS-102

Problem Solving
Through "C"

Introduction to the 'C' Programming

Language

Unit1 5
Introduction

Unit 2 19
Data Types in 'C' |
Unit3 38
Siorage Classes’

Unit 4 54

Input and Output Functions

UGCS-102/45

UGCS-102/46

Course Design Committee

Dr. (Prof. JOmji Gupta
School of Computer and Information Science
UPRTOU, Allahabad

Prof. K. K. Bhutani
Ex-Professot, University of Allahabad

Director, UPTECH, Allahabad .

Prof. Rajiv Ranjan Tiwari
Department of Electronics & Communication,
JK. Institute of Applied Physics & Technology
Faculty of Sciénce, University of Allahabad
Allahabad

Prof. R. S. Yadav
Department of Computer Sciefice & Engineering
MNNIT-Allahabad, Allahabad

Dr. C. K. Singh

Lecturer

School of Computer and Information Science,
UPRTOU, Allahabad

Sri Rajit Ram Yadav
Lectrer
School of Computer and Information Science,

UPRTOU, Allahabad

Chairman

‘Member

Member

Member

Member _

Meinber

Cdurs-e : Préparfation Commit}tee-

Dr. Ashutosh Gupta

- Associate Professor, Department of CS & 1T,

NIJERohllkhand University, Bareilly-U.P.

Dr. Manu Pratap Singh

Professor, Department of Computer Science En gmeenng

Dr. Bhimrao Ambedkar University, Agra.

Mr. Manoj Kumar Balwant
Associate Professor (Computer Science)

Schoot of Sciences, UPRTOU, Allahabad.

Author
Editor

Co-ordinator,

Block-2 INTRODUCTION

This block will cover the introduction to programming in ‘C".‘C’ is a
general-purpose programming language with many features like flow control

and data structures, and a rich set of operators. ‘C’ isneither a high level’ language,

nor a pure low level language. It is not specialized to any particular area of

application. But its nonexistence of restrictions and its simplification make it

more convenient and effective for many tasks than apparently more powerful

languages. The journey of ‘C’ was started for designing and implementation of

UNIX operating system on the DEC PDP-11, by Dennis Ritchie. ‘C’ is not fixed

for any particular hardware or system so, itis easy to write programs that will
run without alteration on any machine that supports‘C’.

Programming in‘C’ is anincredible advantage in those areas where you
may desire to use Assembly Language but would fairly keep it a “simple to
write” and “easy to maintain” program. Ithas been said that a program written
in‘C’ will pay a premium of a 20% to 50% increase in runtime because no high
level language is as dense or as fast as Assembly Language. However, the time
saved in coding can be remarkable, making it the most attractive language for

many programming responsibilities. It is possible to write a program in‘C’,

then rewrite a small portion of the code in Assembly Language and approach
the execution speed of the same program if it were written utterly in Assembly
Language.

There are various reasons for learning ‘C’. “C’ is most likely the hottest
programming language around. In fact, many of the best-selling Windows

applications were writtenin ‘C’. If you are just come to the programming, ‘C’ i is

a great first programming language. If you already know a programming
language, such as BASIC or Pascal, you'll find ‘C’ a praiseworthy addition to
your language set.

To understand this and rest subsequent blocks, you don't require any
prior knowledge of the ‘C’ programming language. We will start with the most
basic concepts of ‘C’ and take you up to the highest level of ‘C’ programming
including the concepts of pointers, structures, and dynamicallocation. To fully
comprehend these concepts, it will take a good bit of time and work on your
part because they are not particularly easy to clutch, but they are very powerful
tools. Enough said about that, you will see their power when we get there; just
don’t allow yourself to worry about them yet.

UGCS-102/47

UGCS-102/48

UNIT-1 Introduction

Structure
1.0 Introduction
1.1 Objectives

12 History of ‘C’ Language

1.3 Structureofa’C’ program

14 Creating and Executing a‘C’ program
15 Escapesequence characters

1.6 Example programs

1.7 Summary

1.0 INTRODUCTION

In this unit, we provide basic features that are common to all ‘C’
programs. The development history of ‘C’language is introduced so that
you will familiar with ‘C'language. The structure of ‘C’ program is
explained that will help to understand the basic terminologies and
functions used in ‘C’ language. This Unit also describes how to create
your first ‘C’ program and how to exequte it under different compilers. It
is important that you try to understand basic concept of programming
which we have already studied in previous block. The ‘C’ language is
not very difficult but rather it is very user friendly and by repeatedly
practicing it will make you master in the ‘C* programming.

1.1 OBJECTIVES

After going through this unit, you should be able to:
® explain the need of ‘C’ programming language;

® explainstructure of ‘C’ program;

® Create and execute simple‘C’ programs;

® Declare, define and compute the values of variables via simple
arithmetic operation;

® Understand examples of escape sequences and program
comments;

® Usetheinputand output statements;

1.2 PROBLEM SOLVING. TECHNIQUES

The ability to solve a problem is developed with time. When you
try to solve a smaller and simpler problem, you become more attentive
about the steps required for writing solutions of the problems. The two

UGCS-102/49

5

Introduction to the 'C'

Programing Language

UGCS-102/50
6

1.2 HISTORY OF C LANGUAGE

The early development of ‘C’ occurred at AT&T Bell Labs between
1969 and 1973. It was written by Dennis M. Ritchie. It was named ‘C’
because its features were derived fromformer language called ‘B’ Many
of the importantideas of ‘C’ stem from the language BCPL, developed
by Martin Richards. The influence of BCPL on ‘C’ proceeded indirectly
through the language ‘B’, which was written by Ken Thompson in 1970
at Bell Labs, for the first UNIX system on a DEC PDP-7.

The origin of ‘C’ is closely tied to the development of
the Unix operating system, originally implemented inassembly language
ona PDP-7 by Ritchie and Thompson. Eventually they decided to port
the operating system to a PDP-11. Language B’s inability to take
advantage of some of the PDP-11’s features, especially byte address
ability, led to the development of an early version of ‘C’. Thereafter,
Dennis M. Ritchie rewrites the Unix operating system in’C’ language.
The original PDP-11 version of the Unix system was developed in
assembly language. By 1973, with the addition of struct types, the 'C’
language had become powerful enough that most of the Unix kernel was
rewritten in ‘C’. This was one of the first operating system kernels
implemented in a language other than assembly. The important thing
which was considered for ‘C’ language is:

“BCPLand B arc .ypeless” languages whereas'C’ provides a
variety of data types.”

Because of powerful and dominant features of ‘C’, its use quickly
spread beyond Bell Labs. In the late 70’ ‘C’ replaces well-known
languages of that time like PL/I, ALGOL etc.Everywhere programmers
began to write all sorts of programs in C language. Later on different
organizations write their own versions of ‘C’ with a slight difference.
This causes a serious problem for system developers. To resolve this
problem, the American National Standards Institute (ANSI)formed a
committee in 1983 to establish the standard definition of ‘C’. This
committee approved a version of ‘C’ in 1989 which is known as ANSI
‘C’. With littledifferences, every modern C compiler has the ability to
staywith this standard. ANSI‘C’ was then approved by the International
Standards Organization (ISO) in 1990. The development of ‘C’ in its final
form can seen from Figure 1.1. |

ALGOL

BCPL - ALGOL-68 Pascal
B ALGOL-W todula-2
Traditional C Modula-3 |

ANSIHISO G g9

Sigure 1.1, Taxonaormy of C Language

In contrast to FORTRAN 77 languages, ‘C’ source codeis free-
form which allows random use of whitespace to format code, rather than
column-based or text-line-based restrictions.

‘C’ source files contain declarations and function definitions.

Function definitions contain declarations and statements. Declarations

either define new types using keywords such asstruct, union, and enum,
orassign types to and possibly reserve storage for new variables, usually
by writing the type followed by the variable name. Keywords such
as char and int specify built-in types. Sections of code are enclosed in
braces ({ and }, sometimes called “curly brackets”) to limit the scope of
declarations and to act as a single statement for control structures.

‘C’ is often used for “system programming”, including
implementation of operating systems and embedded system applications,

due to a combination of desirable characteristics such as code portability

and efficiency, ability to access specific hardware addresses, ability to
match externally imposed data access requirements, and low run-
time demand on system resources.

- “C’ isa structured programming language. It is considered as a
high-level language because it allows the programmer to concentrate on
the problem at hand and not worry about the machine that the program
will be using. While many high languages claim to be machine
independent, ‘C’ is one of the closest to achieving that goal This s the

another reason that it is used by software developers whose applications

have to ruri on many different hardware platforms.

1.3 STRUCTURE OF A “C’ PROGRAM

It’s time to write your first ‘C’ program* This section will take you
through all the basic parts of a‘C’ program so that, you will be able to

Introduction

UGCS-102/51
7

Introduction to the 'C'

Programing Language

UGCS-102/52
8

write it. The structure of a “C’ program is shown in Figure 3.2. We will
discuss all the components of this structure in detail in the subsequent
sections. Right now, this structure is just shown to tell you that almost all

“C’ programs follow this.

Preprocessor directive s,

Global deciarations

int main (void)

[' Local declarations I

| Staternarts I

s

Thher functions as reguired

Figurs 1.2 Structurs of a O program

Let’s write our first ‘C" program.
/* Program 1.1 */

main()

{

}

It is suggested tl. 1t you follow the structure of a ‘C’ program
through vour first program. Now, we explain each statement of
program1.1:

Anything that is written with in the backslash-asterisk pair/* */
are treated as comment. Comments are very useful for debugging and
identification of the corresponding task. So Program1.1 is a comment
here.

Next, to the comment, there is a word main, which is very
important, and must appear once, and only once in every ‘C’ program.
Programsin ‘C’ consist of functions, one of which must be main().This
is the point where execution of a‘C’ program begins. Then other functions
may be “invoked”. A function is a sub-program that contains
instructions or statements to perform a specific task on its variables.
When its instructions have been executed, the function returns control
to the calling program, to which it may optionally be made to return
the results of its computations. Because main() is also a function, it has
to return control back to the operating system after termination of the
program. We will see later that main() does not have to be the first

statement in the program but it must exist as the entry point. Following
the main program name is a pair of parentheses () which are an
indication to the compiler that it is a function.

The two curly brackets inlines 3 and 4, properly called braces,
are used to define the limits of the program itself. The local declarations
and actual program statements between the two braces and in this case,
there are no statements. So your first program does absolutely nothing.

This program can be compiled and you can run it but since ithas
no executable statements; it does nothing. It is of course a valid ‘C’
program. When you compile this program, you may get a warning. The
warning displays the message that “main should return a value”. So either
you ighore the warning or modify the program1.1 so that warning
message disappears after next compilation.

The modified version of program1.1 is given as in program1.2

/* Program 1.2 */

int main()

{

return 0;

}
This modified program must compile onany good ‘C’ compiler

since it obeys the ANSI-C standard. In ANSI “C’ standard, by default,

main function always returns an integer value. Hence this is the reason
to add return 0 in the main function. The return statement must be the
last statement in a main function.

Note:In ‘C’ language, any amount of whitespace is allowed.

Now take a look to another example (Program 1.3) which shows
that how an output can appear on the screen after the execution of a‘C’
program.

/* Program 1.3 */

#include <stdio.h>

void main(void) {

-printf(“My first C program.\n”);
}

The first line of Program1.3 is read as “Hash-include” stdio.h and
written as

#include <stdio.h>

Itis one place where whitespace is important. The complete term
must be on one line, and there can be nothing else on the line. They are
also not terminated by a semi colon.

Introduction

UGCS-102/53
9

Introduction to'the 'C’

Programing Language

UGCS-102/54
10

The first line represents a preprocessor directive. The “C’
preprocessor is a program that processes our source program before it is
passed to the compiler. In this unit we will not describe more about
preprocessor directives, instead we concentrate what exactly is its
purpose. The C function used in the example for writing our output by
using a function printf(),which is defined in the stdio.hlibrary which
isincluded in the program by the statement #include<stdio.h>.This
statement tellsthe compiler:

o tostop reading our C source file

first, read the file stdio:h

. then goback toreading our source file

stdioh is afile thathas details of all the input/output functions
available in theC library and commonly known asheader file.

 The word voidmeans empty, nothing, none. When it appears
before main(), it indicates no vale will return to the main function.
When it appears within the parentheses of a function, in this case;main 0
funcfion, it indicates thecompiler that main has no arguments on which
itworks.

The ‘C’ library contains many useful functions. Oneof themisa
function printf() statement.

printf(“My first C program.\n”);
This function outputs the message on the computer’s display. A

function, including main(), may optionally have arguments, which

arelisted in the parenitheses following the function name. These are the
values of the parameters in terms of which the function is defined, and
are passed to itby:the calling program.Inthe above example, main()
has no arguments. The functionprintf() has one argument It is the bunch
of characters enclosed in dou ﬁﬁntescbﬂrmﬂrseqﬂmmbemm
double quotes are called strings, The double quotes “ do not appear in
the output.So the string which is displayed in your monifor screenis

My first € program.
‘€’ uses semicolons tomark the end of an expressionor terminatea
UPi'O t}usend, we have Seen thata ’CngIam starts exeéunon :

isavailablein standardC .libra_ry ﬁlestdw:h

structure. The only thing remains is the explanation of curly braces -

{......The body of program1.3is enclosed inbracesf}; apair of braces
defines ablock. A ‘C’ program may-consist of several blocks, which
may include another block, and so on. Like Pascal, “C’isalso ablock -
structured language. Although left and right braces which mark a

block may be placed anywhere on the line, for convenience of reading
and debugging they are generally vertically aligned in the same column.
Following program1.4 shows an elegant way to indent your program.

/* Program 1.4 illustrates proper use of indentation */
#include <stdio.h>
int main(void)

{ =y ",
printf(“This is the first level block.\n");
{
printf(“This is the second level block.\n");
{ :
printf(“This is the third level block.\n");
{
: rintf(“This is the fourth level
: lock.\n");
}
}
1
return 0;
}

It is noted that in program1.4, each left brace is balanced by a
corresponding right brace. '

Comments in C language are intended to help people understand
your programs, and should be written in a way that its logic becomes
transparent. They may be placed wherever the syntax allows whitespace
characters: blanks, tabs or newlines. Anything that is written as comment
isignored by a compiler. The compiler replaces all the comment with a
single space.

Block comments in ‘C’ progrém are included between /* */ pair.
They start with thesequence /* and end with the sequence */.

Example 1:
/* this is a block comment
That covers two lines. */
Example 2:

/)(-

Itisan exémple of Block comment.

Here you can add detail about your program,

Many programmers like to add asterisks at

Introduction

UGCS-102/55
11

Introduction to the 'C'

Programing Language

UGCS-102/56
12

the beginning of each line to clearly mark the comment.
' ‘C’ language also supports single line comment. The single line
comments starts with double forward slash, //.

Example 3:
// itis an example of single line comment.

You must be careful with comments. Don't forgetto put the final
*/.If you forget */, it means the compiler ignores a lot of your code.

Note:The C language does not support nesting of comments,
so don't embed comments within comments.

Writing in this way
/* = — % === *[
is an example of an invalid block comment.
Check your progress 1
1. Writeaprogram to display your nick name on the monitor.

2. Modify the program to display your address and phone number
on separate lines by adding two additional printf() statements,

1.4 CREATING AND EXECUTING A ‘C’
PROGRAM - .

In this section, we explain the process for converting a program written
in‘C’ into machine language. The procedure (See Figure 1.3) is presented
in a straight forward manner but you should be aware of that these
steps are repeated many times during development to correct errors
and make improvements to the code.

Note: There are many compilers and environments available for writing,
compiling, linking and executing a‘C’ program. If you runa PCunder
DOS, you can use Turbo ‘C’, Borland ‘C’, Lattice “C’, Microsoft ‘C’,
Quick ‘C’, Aztec ‘C’, Lightspeed ‘C’ and many more. These range
from the simplistic to thesupportive. If you are using UNIX or LINUX
operating system, then command and other features will differ. The most
simple systems require the programmer to use a text editor toenter all
the code, the code is written to an appropriately name file, compiled,
thenlinked to necessary libraries and execution of the code can then
follow. The usercorrects mistakes by returning to the editor. More
supportive environments tend to beintegrated, with some automatic
generation of code; the available libraries may be very extensive.

The Figure 1.3 explaih how to create, compile and execute a’C’
program. The source program filename must have .c extension to
indicate the compiler that it is a ‘C’ source program. The successful

compilation process generates an object file with .o extension and
executable file with .exe extension. This is the .exe file which is executed
I:. 0t f 1 " o . . i _

—»| Text editor STER 1. once the svdtem s ready
the programme is enterad,

5

Sragrammer -5 ;
b using any wel kown Texd editor
L This is known asthe source
prograrmme since it represents
dindudesstdio b the original form of programme.
int mainivaoid}
isource ||
program) printf{"y first © programin'}
- returr O
;
¥ STZP 2 ~the source programme 15 complled
ifthere are nio aor the compiiation
compiier processslops
iln case of any grrors insyntay or
. semantics of thelanguage they are
L 4 fistad out and compilation process
0010 1600 stops rght there
{object 1610001 STER 3 - the translated pregramme. known as
e} (6100010 object code is stored on anather file
3 iﬂ emﬁ*; with o extension
Lilrapy i .
...Lrar_; v STE2 4" after the programme has been transiated
_ inte Ghject code itis linked with the fkrary
—> Linker functions which are calied by the prograrmme
: I this program object cede s inked with
J' printf{} function that is calied by aur source
X program.
G070 1000 0100 S .
fexaciitable 10400011 1010 ST 4 - the compiled and linked programime prodices
cade} i B o anather file with the extension exe’ which is
‘ 10400010 1110 : the executaple file. The size of executable file

is larger in size compared to objedt code file

1110 6001 1610 - ;
- This is because library fucntion is linked with

\.

the object code

¥
Runner STER§ - After getting executadle file you can run the
prograrm '

Y

STER T - Finaly, you get

iresult on
manitor) f-,!y firg program F‘, first G program

as outgut an the monitar

Figure 1.3 Creating and Executing a 'C' program

1.5 ESCAPE SEQUENCE CHARACTERS

Escape Sequence Characters are ‘also known as Backslash
Character Constants. ‘C’ supports some special escape sequence
characters that are used to do special tasks. Character combinations
consisting of backslash \ followed by letter is called escape sequence.
An escape sequence may be used to represent a single quote asa character
constant.

Introduction

UGCS-102/57
3

Introduction to the 'C'

Programing Language

UGCS-102/58
14

The \n is an example of an escape sequence. Itis used to print
the newline character. In‘C’, it is not possible to use Enter key to go
next line, so how to start a new line. This can be done with the help.of \n
character which serve the purpose of ‘Enter key’. Putting \n in the printf
statement

printf(“My \n first \n C \n program.\n”);

tells the compiler that after displaying the first string, it goes to second
line, displaying second string and so on untilno more \n characters are
encountered.

So the output of above printf statement is Jooks like:
My
first
C

program

If a string does not contain a \n atits end, the next string to be printed
will begin in the same line as the last, at the current position of the cursor,
i.e. alongside the first string. So the output of two consecutive printf()
statements '
printf(“This is My first C program.”);
printf(“It is very easy to write C program”);

This is My first C program.It is very easy to write C
program Some of the escape sequence characters are as follow:

Characterconstant| meaning action

\n new line (line break) Go to nextline.

\b backspace Takes the cursor back to one
position left.

\t horizontal tab Moves cursor 1 tab right.

\f form feed It forces the printer to eject the
current page and to continue
printing at the top of another.

" alert (alerts a bell) Ring a bell.

\r carriage return sent the print head back to the
start of the line.

\v vertical tab Vertical tab advances the page]
1 _ by several lines without a
carriage return.

\? question mark Displays ?

\ single quote Displays *

' double quote Displays

\\ backslash Displays\

0 mull To indicate end of string

\xmn - Hexadecimal character | Displays Hexadecimal valuenn
code nn, where

n={0.1...F} .

\onn Octal character Displays Octal value nn
code nn, where
n={0...7}

\nn Octal cnaracter code nn | Displays Octal value nn

where n={0,..7}

InC, “”is the null string. The null string is not “empty”, as one

might thought; it contains a single character, the null character, ASCII
value 0 (in which all bits are set to zero).

Check your progress 2

1.

Give the output of the following program/* Program 1.4 */
#include<stdio.h> main(){printf(“This\nis\a\nthe \n\nway of
writing, \ “What about you?\”\n");}

2 Write a C program that generates the following output: /
* Itis a one line comment */ :
B. Execute Program 1.5 below and obtain the answer to the question
in its printt():/* Program 1.5 */ '
#include <stdio.h>
int main (void) {
printf (“bell alert \\a %d\n”,"\a");
printf (“backspace \\b %d\n”,"\b’);
printf (“horizontal tab W\t %d\n”,"\t');
printf (“newline \\n %d\n” ,‘’\n");
printf (“vertical tab \\v %d\n” ,"\v");
printf (“formfeed \\E %d\n” ,"\f');
printf (“carriage return \\r %d\n” ,"\r’);
printf (“double quote \” \\\" %d\n”,"\"");
printf (“singlequote \" \\\" %d\n”,"\");
printf (“questionmark ? \\? %d\n” ,"\?);
printf (“backslash YA MUY S%d Y, Ay
return 0;
) _
. Give the output of the following program
P Program 1.6 */
#include <stdio.h>
main(void)
{ :
printf(“\aEnter your desired monthly salary:”);/* 1 */
printf(“ $_______ \b\b\b\b\b\b\b"); /2%
return0;
}
b.

Give the output of the following program

Introduction

UGCS-102/59
15

Introduction to the 'C

Programing Language

UGCS-102/60

16

[* Program 1.7 7/
#include <stdio.h>
main(void)
{
printf(“What is your name: \t");
- printf(*} "My name is Ramesh \ ”");
return 0;

"

Y

Point out the errors in the tollowing program:
#include <stdio.h>

Main(void)

{

print(“\ p This is wrong or right?”);

}

1.6 EXAMPLE PROGRAMS

{

5 In this section we present few programs those involve concepts
which have not so far been discussed. They will be covered later in this
Block at appropriate place. Many of the illustrated programs in this section
are self explanatory and itis advised to you to go through these programs
and understand the essence of each statement. You can also try to write,
compile and execute them.
/* Program 1.8 */
#inlcude<stdio.h>
voidmain()

/*illustration of elementary operations with small integers
'InC, intrepresent small integers */

inta=7,b=9, ¢ -
a, b, c are int variables

ais7,bis9, c does not have a value yet

%
printf(“a=%d, bﬁ%d\n” a,b);
each %d prints a decimal number
*
c=atb; /*
now c is addition of a and b
*
printf(“c=a+b=%d \n”,c);
R (o1 i
the * means ‘ multiplied by’
*
printf(“c=a*b=%d \n”,c);
c=a/b; J*

int a is divided by another int b

i Introduction
printf(“c=a/b="%d \n”,c);
c=a%b; I*
% stands for remainder. So ¢ gets the
remainder value when a is divided by b
.
printf(”“c=a%%b=%d \n”,c);/* %% is used to print % sign */
c=a%b; '
printf(“c=a%%b=%d \n”,c);
}
/* Program 1.9 */
#include<stdio.h>
voidmain()
{ /* read values from the keyboard, and see how scanf() works */
inta, b, c;
printf(“Enter a value for a. Type a small integer, press <Enter>");
scanf("%d”, &a); /* -
notice the ampersand “&”, just before a
*/
printf(“Enter a value for b. Type a small integer, press <Enter>");
scanf(“%d", &b);
c=a*b;
printf(“c=a*b=%d\n", c);
!
/* Program 1.10 */
#include<stdio.h>
voidmain()
{ [* program to compute greatestamong two numbers
See how if statement of C language works */

inta, b;
printf(“Enter a value fora”);
scanf(“%d”, &a);
printf(“Enter a value for b”);
scanf(“%d”, &b);,
if(a>b) /* 1s a greater than b?. */

printf(“a is greater thanb\n");
else /* else, if it’s not, b is greater than a. */
printf(“b is greater than a\n”);

1
S

Here, we show the basic difference between ANSI C and K&R style C
ANSI C style program K&R style C program
/* Program 1.11*/# /*Program 1.12%/
inlcude<stdio.h> #inlcude<stdio.h>
int addtwo(inta, intb); /* a function intaddtwo(); /*
that adds two ints ¥/ see difference here */ UGCS-102/61
main() main() 19

Introduction to the 'C’

Programing Language

UGCS-102/62
18

I inta, b, sum;

printf(“Enter a value for a”) 3

scanf(“%d”, &a);

- printf(“Entera value forb”);

scanf(“%d”, &b);

sum=adtwo(a,b); /* transfer control

“to addtwo()
function, with
arguments a, b
*/
printf(“addtwo() tells us their
~sum=%d\n", sum);

]

intaddtwol(int p,intq)

{ .
printf(“i am calling from addtwo()
~and”);

printf(“recently i receive two
numbers “);

printf(“%d and %d”, p, q);
printf(“...theirsumis... ”);
r]etum (p+q)

T

inta, b, sum;

printf(“Entera valuefora”);
scanf("“%d", &a);
printf(“Enter a value forb”);
scanf(“%d”, &b);

qum=adtwo(a,b); /* transfer control

toaddiwo()
function, with
arguments a, b
f '
printf(“addtwo() tells us their
sum = %d\n”
sum);
-
intaddtwol(p, q)/* Note the dlfference
between ANSI Cand
K&R Cstyle */
intp, q;
{
printf(“iam calling from addtwo() and
u);) .

Printf(”recenﬂyi receive twonumbers

nntf(”%d and %d", p, q);
Ermtf(..theirsumis...”);

return (p+q);
’ .

1.7 SUMMARY

_In this Unit, we presented a historical development of ‘C’
programming language, explaining the advantages it have toboth system
and application developers. We also showed how to write a simple ‘C’
programs. We have also undergoné some important terms like, main(),
printf(), function, block, arguments, parameters, statements, semicolon,
comments, null string, null character, escape sequences and preprocessing

- directive #include<stdio.h>.

"UNIT 2: DATA TYPES IN ‘'C’

Structure

2.0 Introduction

21 Objectives

2.2 Character Set of ‘C’' language
2.3 Trigraph characters

24 Tokens
2.5 Identifiers
26 Keywords

2.7 Constants
2.8 Datatypes
2.9 Variables

210 Summary

2.0 INTRODUCTION

Any computer program has two entities to consider, the data,
and the program. They are highly reliant on one another and careful
planning of both will lead to a well planned and well written program.
Unfortunately, it is not possible to study either completely withouta
good working knowledge of the other. The ‘C’ language is rich and
supports many basic built in data types. The typed language supports
pre defined types of data or variables in their program. They also pose
restrictions on the kinds of operations performed on a particular type.
Almost all languages are différ one from another with respect to the
degree of typing. In contrast to Pascal, which is a strongly typed
language, ‘C’is loosely typed language. Pascal does not permit doubtful
operations such as addition of a character value to a real value. Another
benefit of typing is that it helps the compiler to allot appropriate amount
of memory for each program variable; i.e. one byte for a character, two
for an integer, four for real variables etc. But‘C’ provides more degree
of flexibility to the programmers to write code of greater reliability and
robustness.

2.1 OBJECTIVES

After working on this un‘it,.jzop should be able to:
e explain the meaning of tokens and its various categories.
° explain identifiers, and how to construct a valid identifier.
e construct a valid constant and variables.
¢ Understand various keywords of C language.

Data Types in "C"

UGCS-102/63
19

Introduction to the 'C'

Programing Language

UGCS-102/64
20

e Understand the basic data types, int, float, double, char; and
range medifiers; short, long, signed and unsigned.

¢ Declare and define the variable

2.2 CHARACTER SET OF ‘C' LANGUAGE

The characters can be used to form words, numbers, and
expressions. The characters or character setin‘C’ are grouped into the
following categories, as listed in Table 1:

Tahle 1: Character set of <C’
Category Characters Description
Letter A viisviniienss Z All upper case letters
T All lower case letters:
Digits 0,1,2,34,5,6,7,8,9 All decimal number
Special characters
Characters Description Characters Description
' Comma : & Ampersand
' Period A Caret
Semi-colon * Asterisk
: Colon - Minus
? Question mark + Plus
d Apostrophe < Less than
” Quotationmark | > Greater than
! Exclamation marld (Left parentheses
| Vertical bar) Right parantheses
/ Slash [Left bracket
\ Backslash] Right bracket
~ Tiles § Left brace
Underscore } Right brace
$ Dollar Yo Percent
r Number sign
[White space | Space ___Form-feed Carriage return
horizontal-tab New line _

2.3 TRIGRAPH CHARCTERS

The source character set of ‘C’ source programsis contained within
seven-bit ASCII character set, but is a superset of the ISO 646-1983
Invariant Code Set (K&R).

Trigraphs are a sequence of three characters starting with two
consecutive question marks(??) followed by another character and allow
the compiler to replace with their corresponding punctuation
characters. Trigraph sequences are used in ‘C’ program files for some
keyboards which do not support some characters mentioned in Table
2(Special Characters).

The following Table 2 shows the list of trigraph sequences
followed by an example.

Table 2: Trigraph sequences and thelr equivalent puncituation

character

[Trigraph sequence | Punctuation character| Description
7= £ Number sign
72(| Left bracket
?7?)] Right bracket
< i Leftbrace
7> i Right brace
77 | vertical bar
72/ ' by backslash
2?7 Bt = ' Caret
77- : ~ filde

Let us consider the following program, try to print th~
string??<character??>withprintf() statement

tinclude <stdio.h>

main()

{

printf(“??<Character 22>);

}

The string which is printed on your monitor screen is:{ Character
| because 2?<and 27> is trigraph sequences that are replaced with the
“* and “}’ character.

24 TOKENS

The ‘C’program is split into tokens separated by white-space
characters. The program replaces all comments by a single space.There
are six categories of tokens: identifiers, keywords, constants, string literals,
operators, andother separators. Blanks, horizontal and vertical tabs,

newlines, form-feeds and comments which we have already discussed -

are ignored except as they separate tokens. The purpose of splitting a
program into tokens is to tell the compiler that which token belong to
which category. '

Letus consider a’C’ statement.

diff=7-4;

Then, this statement is split into following tokens shown in Table
3. The Table 3 also describes its category. :

Table 3
Token Token type (Category)
diff Identifier

Assignment operator
Integer constant
Addition operator
Integer constant

N7 B Ko |

End of statement (separator)

~-

Data Types in "'

UGCS-102/6521

Introduction to the 'C’

Programing Language

UGCS-102/66
22

Exercise 2.2: Given below are some identifiers. Specify which of them
are valid identifiers and which are invalid and why?

(a) rname. (b) SIZE_ARRAY (© 12 5
(d) ABC (e)$_IS_MINE () Va2
(g) Size of array (h) Is2+2=4? (i)_Is-valid
2.6 KEYWORDS

The keywordsor reserved wordscan be considered as
identifiers those are reserved to have specialmeaning.These words
are notallowed to be used by programmer for their own purpose. There
are 32 words defined as keywords in C. They are always written in
lower case. For exampleint is used for representing integer.The following
identifiers are reserved as keywords in‘C’ language, and should not use
otherwise

auto break |case char const continue| default | do

double | else enum extern | float for goto |1

int long register | return | short signed |sizeof |static

truct |switch |typedef | union | unsigned |void |volatile| while

2.7 CONSTANTS

Constant in ‘C’ refer to data values that cannot be changed during
the execution of a program. Like variables, constants also have a data
type. We shall discuss the meaning of data type in subsequent sections.
C supports several types of constants (see Figure 1.4). The constants are
broadly divided into two categories: numeric and character constants.

| Constants
Numeric Constanis | [Character Conslanis

rlnlcgerCoarslalmls | lT{caI constants | Character |Slr|'ng
constanis

Figure 1.4: Types of constanis

2.7.1 Integer Constants Data Types in "C"

Aninteger constant refers to a sequence of digits. There are three
types of integers, namely decimal, octal and hexadecimal.
0 Decimal integers: It consist with set of unique digits i.e from0

through 9,preceded by an optional -or +sign. For examples:
123, 23468, 0, -78, +39 etc.

0 Octal integer constant: consists of any combination of digits from
~ thedigitOto 7, with aleading 0. For example: 037, 0, 0435,0551.
0 Hexadecimal integer constant:A sequence of digits preceded by

Ox or 0X is considered as hexadecimal integer. They may also’
- include alphabets ‘A’ through ‘F or‘a’ throu%ﬁ ‘' which indicates
10 througEr)l 15. For example: 0x2, 0x9f, 0Xcbd etc. :
There are following rules for constructing the Integer Constants:
Aninteger constant must have at least one digit.
It must not have a decimal point.
it could be either positive or negative.
if no sign precedes an integer constant it is assumed to be positive.
No commas or blanks are allowed within an integer constant.
The largestinteger value that can be stored is machine-dependent.
The allowable range for integer constants is -32768 to+32767. It
is 32767 on 16 bit machines and 2,147,483,6470n32-bit machines.

NG » N

Example of some valid numeric constants

Constant Type - "Constant type

245 Decimal integer 035 Octal integer

-68 Decimal integer 038 Octal integer

+123 - Decimal integer | 0x234 Hexadecimal integer
0 Decimal integer 0X24B Hexadecimal integer

Example of some invalid numeric constants

Invalid Constant| Remark
1245 White space is not allowed
~ -5,68 Comma (,) is not allowed
$123 Illegal use of $

UGCS-102/67

23

Introduction to the 'C’

Programing Language

UGCS-102/68
24

2.7.2 Real constant

The real constants are often called Floating Point constants. The
real constants could be written in two forms: Fractional form and
Exponential form. The rules for constructing Real constants expressed
in Fractional form are as follows:

1. A real constant must have at least one digit.
It must have a decimal point.

It could be either positive or negative.
Default signis positive.

A

No commas or blanks are allowed within a real constant.

Anexample [or real constant in fractional form is:426.0,-32.76,-
48.236

The exponential (or scientific) form of representation of real
constants is usually used if the value of the constant is either too small or
too large. In exponential form of representation, the real constant is
represented in two parts. The part appearing before ‘e’; is called mantissa,
where as the part following ‘e’ is called exponent.

Rules for constructing Real constants expressed in Exponentlal
form are as follows: -

(i) mantissa part and the exponential part should be separated by a
letter ‘e’

(i) Themantissa partmay have a positive sign.
(iii) | Defaultsign of mantissa partis positive.

(iv) Theexponent have at least one digit which can be eitherpositive
or negative integer. Default sign is positive.

(v) Range of real constants expressed in exponential form is -3. 4e38

to3.4e38.
Example of some valid real constants
0.003 Al
+23.123 0.45¢3
-0.536 0.78e-3
336.0 1.23e6
358 -5.24e-2

2.7.3 Character Constant

A character constant is a single alphabet, a single digit or a
single special symbol enclosed within single inverted commas. The
escape sequences which have discussed in UNIT 1 are also an example of
character constant. For Example: ‘A’ is a valid character constant whereas
‘aA’isnot.

The rules for constructing Character Constantsare as follows:

(@) Themaximum length of a character constant can be 1 character. Data Types in "C"

(b) Since each character constant represent an integer value so, itis
also possible to perform arithmetic operation on character
constant.

Each character constant has an ASCII value associated with it.
For example, the following statements will print 66 and B respectively.

printf(“%d”, ‘B");// %d specifier is used to print decimal value (i.e.
ASCII value of B)

printf(“%c”, ‘66"); Il %c specifier is used to print character (i.e. ASCII
character of 66)

Some examples of character constant are: ‘$" /A’,’S’, "+,
1.7.4 String Constant

A string constantor string literalis any sequence of characters
enclosed in pair of double quotes, such as “abc”. The characters may be
letters, number, special characters and blank space.String constants are
always treated differently from character constants. Forexample ‘a”and
“a” are not the same.Some examples$ of string constant are:
“hello!”,”1987", “Well Done”, “?.....1 ?,”X”.In C, all string constant

are terminated by '\ 0’ {or NULL string).
Check your progress 1

1. First character in any variable name must always be an a
2. C variables are case
3. A character variable can store character at a
time.
4. Point out which of the following C constants are invalid:(a)
21.34 (b)023 (c)Oxtc40 (d)-23 4
5. Give the output for the program
main()
{

printf("%d %d %d %d”, 62, 062, 0x62, 0x62);}
6. Givethe output for the program
main()
{
char letter =‘T"; printf("%d”, letter);
} | _
7. Execute and predict the output for the program
main() :
{
char numl =t’;
char num2 =‘a’;
int add; ' UGCS-102/69

25

Introduction to the 'C’

Programing Language

UGCS-102/70
26

add = numl + num?2;

prigtf("the sum of %d and %d is = %d”, num1, num?2,
add);

printf("the sum of %c and %c is = %d”, num1, num?2,
add);}

8. Give the output for the program
main()
{ .
printf("??(\n\nnn\n\n??));
I

9, Write a grogram to read the distance in decimal form (like 21.34
Km) and print the output in meters (like 21340 meter). [Hint: use
scanf()to read values from keyboard]

10. 'Write a program to interchange the values of a and b without
using third variable.

2.8 DATA TYPES

Each program requires a particular type of data for displaying a
meaningful result. These particular kinds of data are known as data type.
A type defines a set of values and a set of operations that can be applied
on those values. ' '

“C’ also has all the standard data types as in any high level
language. C has int, short, long, char, float, doublebasic data types.
‘C’ has no Boolean data type or string type. ‘C’ has no Boolean type but
0 can be used for false and 1 can be used asTruie.

+ The memory necessities of each type will differ on different
computers, and in fact can vary with different compilers on the same
processor. The range of data types available allows the programmer to

select the type appropriate to the needs of the application as well as the
machine.

The Table 4 shows the basic built-in clata types available in ‘C’
language along with their possible range of values and sizein bytes
occupied by that data type variable in memory. Itis noted that the size
taken by each data type is machine depend ent. For most compilers as
the IBM machine intdata types occupied in 2 bytes, and are restricted to
the range [-32768, 32767]. Compare this with the Macintosh machine,

where ints are 4 byte signed integers in the range [-2147483648,

2147483647].

Note:The use of the standard headers <limits.h>and <float.h>can
help in fixing sizes when trying to write portable programs.

Table 4: Basic built in data types in C

Note: Size depends upon machine architecture

Data type Size (in bytes) ~ Range . DataTypesin"C"
int 2 -32,768 to 32,767

float 4 -3.4e-38 to 3.4e+38

double 8 1.7e-308 to1.7e+308

char 1 -128 to 127

(I) Theintdata typeis used to define integer numbers.
/* Program 2.1 */

#include<stdio.h>

voidmain()

{

inthumber;
number =25;

}

In the above program2.1, number is a variable name that has.
int data type. This tells the compiler to allocate 2 bytes of memory for
number variable. Now, the range of number lies in between -32,768
to 32,767. It means that this variable can hold any values that lie in this
interval. If you are trying to assign some more value that is beyond this
range, than you will get erroneous results.

Now, it’s an exercise for you to check the result for program2.2.
What output do you expect and what will you see inyour monitor screen!

Exercise: /* Program 2.2 */
#include<stdio.h>
voidmain()
{
intsalary;
salary =252341;
printf(“Salary is Rs. %d\n”, salary);

|)
Note: The %d in printf statement is used to print integer values.

Execute the program below, with the indicated arithmetic
operations, to determine their output.
/* Program2.3 */
#include<stdio.h>
voidmain()
{
int x =30, y =20, z;
printf(“x=%d \n", x);
printf(“y =%d\n", y); _
Z=X-Y;: UGCS-102/71
27

Introduction to the 'C'

Programing Language

UGCS-102/72
28

printf(“Their ditterence x—y is=%d \n”, z);
z=x*y; "
printf(“Their product x * y is=%d \n”, z);
z=x/y; o
printf(“Their quotient x / y is=%d \n”, z);

}

In particular, determine the values you obtain for the quotient x/
y when:

x = 40, y =20;
x =50, y =20;
x=60, y =20;
x=70, y =20;
Can you explain your results?

(D) The float data type is usec. to define floating point numbers. A
float data type number uses 4 bytes giving a prec 1on of 7 digits. So
these numbers are known as single precession numbers.
/* Program 2.4 */
#include<stdio.h>
voidmain()® .
{
float ratio;
ratio =2.5;
printf(“value of ratio is %f”, ratio);

}

Note: The %f in printf statement is used to print float values.

In program?.4, ratio is a variable name that has float data type.
This tells the compiler to allocate 4 bytes of memory for ratio variable.
The range ofvariable ratio lies in between -3.4e-38 to 3.4e+38. It means
this variable can hold any values that lie in this interval. If you are trying
to assign some more value that is beyond this range, then you will get
erroneous results.

(ID The double data type is used to define large floating point
numbers. It takes 8 byte of storage in memory and its range lies from
1.7e-308 to1.7e+308.A double data type number uses 8 bytes giving a
precision of 14 digits. These are known as double precession
numbersand have a much greater range of definition than floats. .
Remember that double type represents the same data type that float
represents but with a greater precision. The precision means the number
of significant digits after the decimal point. |

To extend the precision further, we may use long double which
uses 10 bytes.(long is described in next section). |

Execute the program?2.5 which computes the volume of sphere,
whose radius is read from the keyboard.

/* Program 2.5 */

#define P13.1415928 /I MACRO definition
#include<stdio.h>
voidmain()

{

double radius, volume;

printf(“This program computes volume of sphere\n");
printf(“Enter radius of sphere: “);

scanf(“%lf", radius); // %If is used to input double values
printf(“Volume of sphere is (4/3) * plrii%ein”);

volume =(4/3)*pi*radius*radius*radius;

printf(“Volume of sphere is :%If\n"), volume); // % If is used to
output double values, '

}
Note about Program 2.5

The %lf (or %le or %lg) in scanf() statements are required for
the input of double variables.To get output of double variable using
printf(), use %e (or %E), %f or %g for single precision.

The #define also called MACRO, itis used to declare constants
n C. Like #include, #define are also preprocessor control lines. The
seneral usage of #define is:

#define IDENTIFIER value_to_be_replaced

It is noted that there should be no space between # and define.
-ike #include, #define are also not terminated by semi-colon. If you

lace semi-colon there, it will become a part of replacement string and
:ause syntactical error.

A #define quantity is not a variable and its value cannot be
nodified by an assignment. A major benefit of MACRO definition is
hatif the replacement string has to be changed throughout the program,
han it has to be changed once in a MACRQO definition.

ANSI C also provides the const declaration for items whose value
hould not be change in a program:

const int speed = 2500;

1e keyword const lets the programmer specify the type explicitly in
ontrast to the #define, where the type is deduced from the definition.

End of Note].

V) Thechar data type s used to define character data type. It takes
byte of storage in memory and its range lies from -128 to 127.

Consider Program?2.6 which illustrates double and char data
pes. '

Data Types in "C"

UGCS-102/73
29

Introduction to the 'C'

Programing Language

UGCS-102/74
30

/* Program 2.6 */
#include<stdio.h>
void main()

{

double ratio;

ratio =350000;

char Decision;

decision="Y’;

printf(“value of ratio is %If”, ratio);

printf(“Your decision is %c”, Decision);
!
Note: The % If in printf statement is used to print double values.
The %c in printf statement is used to print char values.

The Program?2.6 declares ratio and Decision as double and
char data type respectively. This tells the compiler to allocate 8 and 1
byte of memory locations to the variables ratio and
Decisionrespectively.

The Table 4 shows that char data type needs 1 byte in memory.
Since 1 byte consists of 8 bits, the char data type has 2% =256 possible
values, which constitute its range. That's why char data type hasrange
in between -128 to 127, thus total of 256 possible values. As int data
type takes 2 bytes (or 16 bits), it has 2' = 65536 possible values. So
positive and negative values covered by int data type includes from -
32,768 to 32,767, thus total of 65536 values. The same argument is also
applied for float and double data types.

It's an obvious question that range of these built in data types are
very small. If we are trying to store an integer value that exceeds the
range of int data type, than what should we do? The answer is C provides
us some range modifiers to increase the predefined range of data types.
This is the next topic for discussion.

Execute and check the output of the Program2.7. What you
observe from these outputs?
/* Program 2.7 */
finclude<stdio.h>
voidmain()
{
int cost =42000;
intitem =12;
float cost_per_item=cost/item;
printf(“”The cost per item is %f\n”, cost_per_item);
doublelight_speed =300000000;
int time = 50;
float distance;

distance =light_speed * 50;

printf(”Distance covered by light in %d time is: %f”, time,
distance);

Data Types in "C"

}
Note: The %f in printf statement isused to print floating values.

2.8.1 Range modifiers

The data types explained above have the following range
modifiers (or qualifiers).

e short

* long

° signed

. unsigned

The modifiers define how much amount of membry is allocated
to the variable.

To alter the amount of memory, usé short and long qualifiers.
The qualifiers short and long apply to integers.

For example:
short int qty;
long int distance;

To change the sign, use signed and unsigned qualifiers. The
qualifier signed or unsignedcan be applied to char or any integer.

Unsigned numbersare always positive or zero and unsigned char
variables have valuesbetween 0 and 255, while signed char have values
between -128 and 127 (negative numbers are represented in 2's
compliment form.)

ANSI C has the following rules for the range modifiers:
short int <= int <= long int
float <= double <= long doub le

oss than or
less than

! A word of caution: The meaning of these types will vary
between compilers, for example on some machines int and short int
will represent the same range. You are advised to check your compiler
manual before porting your program from one machine to another;
otherwise, you may face an overflow error. [End of caution] !

Table 5represents the names of some most commonly used data
types and their possible range of yalues and size in bytes on a 16-bit UGCS-102/75

machine. . 31

Introduction to the 'C'

Programing Language

%5—102/76

Table 5: Size and range of basic data types in C

Type - Bytes Range
nfeger intarsigned int 2 -32768 10 32,767
unsigned int 2 0t0 65,535
shortintor |1 -12810127
signed short int
unsigned shortint |1 00 55
longintor |4 =2, T47,583,6480 2,147,483 647
unsigned shortint
unsignedlongint | 4 0t04,249,967,295
Floating point | float 4 34e-38t034e+38
double 8 1.7e-308to 1.7e+308
_ | longdouble 10 34e-4992t0 1.1e+4932
tharacter char or signed char| 1 -128t0 127
unsigned char 1 0t0255
Execute|the program and d¢terming its output. Also examine the
pffect of changing the %u format conveysion specifiers to %d in the
printf()s. Can ypou explain your resplts?

/* Program 2.8 */
#include<stdio.h>
voidmain()

{ :
unsigned int hall_seats, tickets_sold, viewers_standing;
hall_seats =50000; '
tickets_sold = 60000
viewers_standing =tickets_sold - hall_seats;
printf(“ticket sold : %u\n”, tickets_sold);
printf(“seats availbale: %u\n”, hall_seats);
printf(there could be rush because \n");

printf(there may be nearly %u standees at the match.\n”,
viewers_standing);

}

Note: %u is used to output unsigned int.

Note: When a long integer constant is assigned a value the letter L (or 1)
must be written immediately after the rightmost digit:

long int big_num = 1234567890L;

Execute the program and determine its output. Also examine the
effect of changing the ‘ﬁd format conversion specifiers to %l and %d in

the printf()s. Can you explain your results?
/* Program 2.9 */

#include<stdio.h>

voidmain()

{)

long int population_2010 = 12345678901;

printf (“the pospulation of country in 2010 \n");
printf(will exceed %Ild if we do\n”, population_2010);
printf(“not take concrete steps now \n");

}
Note:%ld in printf() output long decimal ints.

Note: The unsigned long declaration transforms the range of long int
to the set of 4 byte non —negative integers. unsigned long are output
by %Ilu format conversion specifier in the printf().

Experiment with the following program to see what happens if
any of x or y or z exceeds the limit of ints for your computer.
/* Program 2.10 */

#include<stdio.h>
int main()

{

int x, y, z;

printf(“type value for x\n");

scanf(“%d”, &x);

printf(“value of xis \n”, x);

printf(“type value foryx\n”);

scanf(“%d”, &y);

printf(“value of yis \n”, y);

z=x+y; _

printf(“The sum of x and y is %d”, z);-

return 0;

If you are interested to know about how much storage is allocated
to a data type, you can use sizeof operator which we will discuss in
next unit. '

The sizeof() is a special operatorwhich returns number of bytes
taken by a data type.

Execute the Program?2.11 to check the size of memory taken by
various data types.

/* Program 2.11 */
#include<stdio.h>
int main()

r |
printf(“sizeof(char) == %d \n”, sizeof(char));
printf(”sizeof(sh(jrt) = %d \n”, sizeof(short));
printf(“sizeof(int) = %d \n”, sizeof(int));
printf(“sizeof(long) = %d \n", sizeof(long));
printf(“sizeof(float) = %d \n”, sizeof(float));
printf(“sizeof(double) = %d \n”, sizeof(double));

Data Types in "C"

UGCS-102/77
33

Introduction to the 'C’

Programing ’Laﬁguage

UGCS-102/78
34

printf(“sizeof(long double) = %d \n”, sizeof(long double));
printf(“sizeof(long long) == %d \n”, sizeof(long long));
returnQ; . '

2.9 VARIABLES

Suppose you have to store the data, so you require specific
memory location. But it is very difficult for us to remember the physical

address of stored data. So what we do, we assign some name to the

physical address that contains the data and this name is called logical
address or variable name. It is called variable because its value (data
value) can be changed throughout the program execution. Which type
of value is to be stored is determined by the type of data. If data value
belongs to some whole numbers, than its type should be int. Thus,
eachvariable has a specific type,which is known as variable data type.
This data type tells the computer how muchmemory is occupied by the
variable to store the data.

The rules for constructing different types of variable names are
as follows:

(1) Avariable name may consists of letters, digits and underscore
characters.

(2) The first character in the variable name must be an alphabet.
Some systems permit underscore as the first character.

(3) Nocommas or blanks are allowed within a variable name.

(4) No special symbol other than an underscore can be used in a
variable name.

(), Uppercase and lowercase are significant. For example; variable
CUST_ID isnot same as Cust_Id and cust_Id.

(6) Thevariable name should not be a ‘C’keyword.
Some example of valid variable name:

Cust_Id Min_Salary Name_Student
Amount Height box

Some example of invalid variable name:

@2 'Hello 13" (address)

2.9.1 Declaration of variables

Any variable used in the program must be declared before using
itin any statement. To accomplish this task, the type declaration statement
is used and its syntax is as:

dai:a_typ_e variable_namel, variable_name2,... ;

If more than one variables are declared, they are separated by
comma (). The declaration statement must be ended by semi-colon (;
).

For example, the declaration

int count;
tells the following things to the compiler:
o count is thea name of variable.
. count is logical addressof variable.
o count has int data type, soitis allocated 2 bytes of memory on
16 bit machine.

. Suppose ‘2003’ is the physical address of variable count. It is
noted that this physical address may vary on each time when
the statement is executed. Here we have chosen 2003 just for
illustration purpose.

. Presently, it has given no value to store. Itis noted that when we
assign nothing to a variable, it automatically takes any value.

Do not think that it has value Zero (0)

Cﬂl.ll‘lt

2003 2004

Thus, following descriptive statement can be made: “count is a name of
variable, which has int data type and it gets 2 byte of memory irrespective
of what physical address it have”.

Now, state what you infer from the given declarative statements:

char value;
float result,sum;
double add;

Execute the following program and determine its output on your
computer.

/* Program2.12 */

#include<stdio.h>

voidmain()

{ inta,b,c; /*a,b,careundefined */
intz;
z=a+b; /[*zisadditionofaandb */

Data Types in "C"

UGCS-102/79
35

Introduction to the 'C'

Programing Language

UGCS-102/80
36

printf(“value of a andbis %d and %d is\n”, a, b);
printf(“and their sumis %dn”, z);

)

Note: You will get some surprising results. !!!

1A word of caution:Never assume that variable itself takes

~ meaningful value, so it’s your responsibility to give some valid valuesto

your variable. [End of caution]!
2.9.2 Initialization of variables

As soon as the variable declaration takes place, it allocates a
memory space depending upon the type of a variable. The variable can
also initialize at the time of declaration. The following syntax is used for
initialization of a variable at any place in the program.

| variable_name =expression; |

e.g, int count;
count=4;

Since we have declared count as int type, it takes 2 byte in
memory on 16 bit machine. So the ASCII value of 4 (in 16 bit
representation), which is 52, is stored in the physical address of count.
The ASCII value 52 in 16 bit representation is 0000000000110100.

Thus, pictorially, the memory content of count variable having
value 4is looks like:

count [00000000 00110100 | = count [4]
12003 2004

(a) Internal memofy details (b) programmer’s view

The part (a) shows internal memory details for storing the value
of variable count, while from programmer’s point of view (b); the

variable count has the value 4.

" The declaration and initialization (or defining) of a variable
can be done in a single step using the syntax given below:

data_type variable_name = expression;

See the following examples:

charletters="X;

int marks =76;

float amount = 145.13;
Note: it's a good programming practice to write initialized variables on
a separate line followed by a comment beside the variable name.

See the following examples:

int gty; " qu’anti;fy of anitem */
floatcost=12.10; /* cost of an item */
floattotal_art; /* total amount for purchase */

Let’s look at programs 2.13 and 2.14 below and predict there
outputs:

/[* Program 2.13 */

#include<stdio.h>

int main()

{

charchl, ch2;

intvarl;

printf(“press any key between a-z, then press Enter key \n");
scanf(“%c”, &chl); :

printf(“press another key between a-z, then press Enter key \n”);
scanf(“%c”, &ch2);

printf(” The ASCII value of characters you typed are:”);
printf(“%d and %d\n”, ch1, ch2);

varl =chl*ch2;

printf(“Their productis %d\n”, varl); -

return 0;

} * Program 2.14 */

#include<stdio.h>
int main()

| : |
chara="H’,b=¢’, =1, d="l', e='0’, newline ="\n’;
printf(“%c”, a);

printf(“%c”, b);

printf(“%c”, c);

printf(“%c”, d);

printf(“%c”, e);

printf(“%c”, newline);

return 0;

}

‘Check your progress 2

1. Write a program to compute volume of a cone of radius (R) 10
and height (H) 15. The volume of a cone is given by the expression:
V=(1/3)*PI*R*"R*H ;

2 Write a program to compute simple interest; if principal amount,
year for deposit and rate of interest is F, T, R respectively and
simple interest Iis given by.

[=P*R*T/100[Hint; B, R, and T may be float values]

Data Types in "C"

UGCS-102/81
37

Introduction to the 'C'

Programing Language

UGCS-102/82
38

3. What will be the output of the following program:
#include<stdio.h>
void main()
[
chara,b,c='d’;
b=c/20;
a=b*b+12;
printf(“%c”, a);
printf(“%d”, a);

4. State the output of following program.
#include<stdio.h>
voidmain()

int alpha = 077, beta = Oxabc, gamma = 123, res;
res = alPha +beta gamma;
printf(“%d \n”, res);
res= beta/alpha,
printf(“%d \n”, res);
res =beta % gamma;
printf(“%d \n”, res);
res =beta/ (alphatgamma);
} printf(“%d\n”, res%;

5 Write a C program to verify whether:

C12*12+13*13 +14*14 +15* 15+ 16 * 16 = 17717 + 1818 +
- 19%19 +20 *20

2.10 SUMMARY

The concept of tokens and its various categories like; identifiers,
keywords, constants, string literals, operators, and other separators are
discussed. The trigraph sequences and character set of C is briefly
explained. The basic data types of C are defined through the seven
keywords: intlong, short, unsigned, char, float and double. (The
keyword signed and long double are ANSI c extensions).

The printf() statement is defined with the help of following format

‘conversions:

d Decimal integers

u Unsigned integers

0 Octal integers

X Hex integers, lowercase

X Hex integers, uppercase

f Floating point numbers

e Floating point numbers in exponential format, lowercase e
E Floating point numbers in exponential format, uppercase E
g Floating point numbers in the shorter of f or e format

G Floating point numbers in the shorter of F or E format c single

characters

UNIT 3: STORAGE CLASSES

Structure

3.0 Introduction

3.1 Objectives

3.2 Scope and lifetime of variable
33 Storageclasses

34 Automaticstorage class

35 Registerstorage class

3.6 Staticstorage class

3.7 External storage class

38 Summary

3.0 INTRODUCTION

One of the ‘C’ language’s strengths is its flexibility for defining
the data storage. There are two aspects that-can be controlled in ‘C’:
scope and lifetime. Scope refers to the places in the code from where

the variable can be accessed. Lifetime refers to the points in time at

which the variable can be accessed. As we know that any variable used
in the program must be declared before using it in any statement. But
thisisnot sufficient because, to fully define a variable one needs to mention
not only its ‘type’ but also its ‘storage’ classes. The storage class
determines scope and lifetime of a variable. This unit introduces the notion
and four types of storage class and also lifetime of local and global
variables.

3.1 OBJECTIVES

Atthe end of this unit, you may be able to:

® understandthe scope and lifetime of an identifier.
® know local and global variables, and when they are used?
® storage class and its necessity to declare variable name

® know four types of storage class; auto, register, static and extern

3.2 SCOPE AND LIFTIME OF VARIABLE

Any portion of a’C’ program that is enclosed by the left brace {'
and the right brace ‘}’ is referred as alocal block. A “C’ function, like
main(), contains left and right braces, and therefore anything between
these two braces is contained in alocal block. As we see later, if statement
or a switch statement can also contain braces, so the portion of code

Storage Classes

UGCS-102/83
39

Introduction to the 'C’

Programing Language

UGCS-102/84
40

between these two braces would be considered a local block. In addition,
you may want to create your own local block without the help of a‘C’
function or keyword construct. You can do this and this is absolutely
legal. Variables can be declared within local blocks, but they must be
declared only at the beginning of alocal block. Variables declared in this
waycan access only within the local block. So, we can define scope as a
region of program text in which the variable can use or access. Duplicate
variable names declared within a local block take precedence over
variables with the same name declared outside the local block. The
program 3.1 shows an example that uses local blocks:

/* Program 3.1 */
6. #include <stdio.h>

*7. + void main()
8. {
9, /* start of local block for function main() */

10. intx=20; // 1. scope of x starts here
11. printf(“x before the inner block: %d\n”, X);
1z |

13. /* start of inner local block */

14. intx=10;// 2. scope of x starts here

15. - printf(“x within inner block: %d\n”);

16. |

17. /* start of our own independent local block */

18. intx=5; /1 3. scope of x starts here

19. printf(“x within the independent local block:%d \n”,x);
20.) '

21. /* end of our own independent local block, and
22, end of 3. scope of x
23, %/
24,] :
25. /* end of inner local block , and
26. end of 2. scope of x

2. ¥
28. printf(“x after the inner block: %d \n”, x);
29. |

30. /* end of local block for function main(), and
31. endof 1. scope of x |
32,
This example program produces the following output:
x before the inner block: 20
x within inner block :10

x within the independent local block: 5
x after the inner block: 20

Note:

1L Itis noted that as each variable x was defined, it took precedence
over the previously defined variable x. Also observe that when
the inner local block is ended, the program is reentered into the
scope of the original variable x, and its value become 10.

2. The scope of variable x starts from the point from which it is

declared and scope ends when the local block ends. -

Soin general, we have two catégories of variables; local variable
or global variable.

3.2.1 Local variable

These variables are declared inside some functions, like in
Program3.1 (Line 10), x is declared in main() function. The lifetime of a
local variable is the entire execution period of the function in whichit is
defined.Thus, the lifetime of variable x(Line 18 of program 3.1) is upto
the execution of Line 20, i.e. end of independent block. Since their scope
and lifetime is limited to the local block, they cannot be accessed by
any other function.In general, variables declared inside a block are
accessible only in that block. |

Let us see another program 3.2 which computes the area and
perimeter of a circle.

/* Program 3.2 */
/* Compute Area and Perimeter of a circle*/
1. #include <stdio.h>

2 float pi=3.14159; /*Notehere: piis declared as global
variable*/

3 void main()

4 { '

5. float rad, area, peri; /* Local variables®/
6. printf(“Eriter the radius of circle ”);

7 scanf(”“%ft” , &rad);

8 area=pi*rad * rad;

9 peri=2%pi*rad;

10. printf(“Area of circle is = %f\n” , area)

11. printf(“Perimeter of circle is = %f\n” , peri);
12. } '

The value of pi is defined before main() function, hence it canbe
access by any function or statement thourhgout the entire program.
Thus itis a global variable.

Storage Classes

UGCS-102/85

41

Introduction to the 'C’

Programing Language

UGCS-102/86

42

3.2.2 Global variable

Global variables are declared outside all functions, like in
Program 3.3(Line 2), pi is defined outside main() function. The lifetime
of a global variable is the entire execution period of the program. It can
be accessed by any function defined below the declaration, ina file.

/* Pragram 3.3 */
/* Compute Area and Perimeter of a circle*/

1. #include <stdio.h>

2. float pi =3.14159; /* Global */

3. void main()

4. | float rad; /*Local®/

5. printf(“Enter the radius “);
6. scanf(“%f” , &rad);

7. floatarea=pi*rad * rad;

8. float peri=2*pi*rad;

9. printf(“Area = %f \n” , area)
10. printf(“Peri=%f\n", peri);
1.) '

“The above example programs 3.1, 3.2 and 3.3 are raising a
question that should variables are stored in local blocks? The use of local
blocks to store the variables is unusual and therefore should be avoided,
with only unusualexceptions. One of these exceptions would be for
debugging purposes, when you may want to declare alocal instance of
a global variable to test within your function. Another purpose touse a
local block is to make your program more readable in the current
context. Itis suggested that you should declare your variablewhere it is

' used. Itmakes your program more understandable. On the other hand,

well-written programstypically do not have option to declare variables
in this way, and so you should avoid using local blocks.

Consider program 3.4 and predict the output with justification
of your result.
/* Program 3.4 */
1. #include<stdio.h>
2. intglobalVar=1; /* global variable */

3. int myFunctlon(mt) /*This is a way to declare function
prototype. */

4. void main(void) /* | local variable: result, in main */

5

6. int result; _

7. result = myFunction(gllobalVar);/* call myFunction */

8. printf(“%d” result)

. Storage Classes
9. printf(“%d”,globalVar);
10.
1.}
12.
13. intmyFunction(int x) /* Local variable x */
14. | _
15. +x; /* Note: it is pre-increment of variable x */
16. printf(“%d”,x);
17. printf(“%d”,globalVar);
18. +globalVar; /* Note: it is pre-increment of variable
globalVar */
19. returnx;
2.)

The program 3.4 has a global variable globalVar initialized with
value 1. We also have a function

int myFunction(int); [See Line 3 of the above program)]

The line 3 declares a function whose name is myFunction. Its
return type is int, which indicates that after performing computation,
this function returns int value. The parentheses of myFunction indicates
that it receive an argument of int type.

Atline 7, we call this function by writing

result = myFunction(globalVar);

This call takes int type argument, which is global Var,and returns
int value. The returned value is stored in a local variable result. The
result is local variable because it 13 declared and defined in main()
function.

The definition of myFunction is given at line 13. Here, the
variable x receives the values passed by myFunction from line 7. So x
receives the value of globalVar, which is 1. '

In general, every function has: _

. a prototype, also called function declaration (Line 3)
. acall to function (line 7)
° a definition of function (line 13)

We will see functions in more detail in next Block. Here, our
purpose is to demonstrate how to identify scope and hfehme oflocal and
global variable.

The globalVaris a global variable, its scope is throughout the UGCS-102/87

program and its lifetime remains till.the end of main(). On the other 1

Introduction to the 'C'

Programing Language

UGCS-102/88
44

hand, variable x is local to the function myFunction, so its scope is
limited within the function and its lifetime is limited till the end of
myFunction(). After that, itisno longer in use and hence removed from
the memory. The call ofmyFunction transfers the control from line 7 to
line 13. In line 15, there is a statement

++X;

This statement signifies that we have to increment the value of
xby 1 before going to use x. Thus, the new value of x becomes 2. The
output at line 16 is now 2. Since globalVar is global variable, it is still

- inner for the myFunction() block, and hencu its value at line 17 is 1.

Next, we pre-increment the globalVar and its new value becomes 2 at
line 18. And finally, we return the value of x from the myFunction().
This return the control back to line 7 of main() { nction. The returned
value of x is now assigned to local variable result declared in main().
This value of result is printed in line 8 and gives 2. Similarly, value of -

globalVaris 2. [Why?]
Check your progress 1

L Predict the output of the following program.
intglobalVar=1; /*global variable*/
intmyFunction(int); /*function prototypes */
void main(void)

{ int result;

result = myFunction(globalVar); /* call myFﬁnction o
printf(“%d”, result);

} " int myFunction(int x) /* Local variables: x, globalVar */
{ int globalVar; /* new “local” variable */
printf(“%d\n”,globalVar); /* prints ???*/
return (x +1);

)

2, Predict the output of the following program.int
myFunction(int); /* function prototypes */

void main(void) /* local variables: x,result in main */
{
intresult, x=2;

result=myFunction(x); /¥ call myFunction */
printf(“%d”, result);

printf(“%d” x);
int myFunction(int x) /* Local variable: x */

x=x+1;

printf(“%d \n”,x);

return x;

}
3. Predict the output of the following program.

finclude <stdio.h>
intx; /¥ xis a global variable */
inty; /*yis a global variable */
void swap(int, int); /* prototype for swap */
void main(void)

{ x=1; /*x and y are not declared here!!! ¥/
y=2

~ swap(x,y);

printf(“x=%d, y = %d \n",x,y);

} void swap(intx, int y)

{
int temp = x;
X=Yy;
y =temp;

} Is this program really swaps the value of x and y? Justify your
answer.

3.3 STORAGE CLASSES

Any variable which is used in the program must be declared before
using it in any statement. Hence to accomplish this task, the type
declaration statement is used. The syntax of this declaration is as:

data_type var_l,var_2,...;

To fully define a variable one needs to mention not only its ‘type’
but also_its ’storage’class. In other words, not only all variables have a
data type, they also have a ‘storage’ class.’Storage’ refers to the scope
of a variable and memory allocated by compiler to store that variable.
Scope(or visibility) of a variable is the boundary within which a variable
can be used. Storage class defines the scope and lifetime of a variable.If
we don’t specify the storage class of a variable,default storage class is
used by avariable.

There are basically two kinds of locations in a computer where
the value of a variable may be kept i.e.: Main Memory and CPU
register. It is the variable’s storage class that determines which of these
two locations is used for storage of variable’s value.

Moreover, a variable’s storage class tells us:

(@) Where the variable would be stored, i.e. either in memory or in
CPU register.

Storage Classes

UGCS-102/89

45

Introduction to the 'C'

Programing Language

UGCS-102/90
46

(b) What will be the initial value of the variable, if the initial value
is not specifically assigned?

(©) Whatis the scope of variable; i.e. in which block/function the
value of the variable would be available.

(d) Whatis the lifetime of the variable; i.e. how long the variable
would exists.

In general, there are four storage classes are supported by C":
(@) automaticstorage class
(b) register storage class
() staticstorage class
(d) externalstorage class

3.4 AUTOMATIC STORGAE CLASS

A variable declared inside a function without any storage class
speciﬁcaﬁon, isby default an automatic variable. They are created when
afunction is called and are destroyed automatically when the function
exits. Automatic variables can also be called local variables because they
arelocal to a function. | '

Features of the variable defined to have automatic storage class

areas follows: |
Storage . Main Memory |
Default initial value . Anunpredictable value, whichis
often called garbage value
Scope . Local to the block in which the
- variable is defined
Lifetime . Till the control remains within the

_ block where the variable is defined.
The syntax for declaration of automatic variable is:
'Syntax :auto data_type var_1, var_2, .. .;
where keyword ‘auto’ refers to automatic storage class.
Example:

/* start of block */
{ o
int year_passed;
auto int year; -
}
- f* - endofblock */
The example above defines two variables. We have not written
any storage class name to variable year_passed. However, we explicitly
mention the auto storage class to variable year. But in both cases, auto
is the storage class for both the variables i.e. year_passed and
yearbecause the as default storage class of any variable is auto.

Consider a program 3.5 to demonstrate the use of automatic
storage class.

/* Program 3.5 */
#include<stdio.h>
void main()

{

Storage Classes

auto int i=10; /¥ 1.ideclared inside main() block */

{

autointi=20; /* 2.ideclared inside inner block */
printf(“\n\ti =%d” i); '
} - [*end of scope for2. ¥/
printf(“\n\n\ti= %d”,i); = /*end of scope for1l. */

The first printf() displays i =20 as scope of inner i is within the
block whereas second printf()statementdisplaysi= 10 asiisvisible here,
becauseits lifetime remains till end of main().

Execute program 3.6and predict the output values. What you
infer from the results.

/* Program 3.6 */
#include<stdio.h>
void main()
{
autointi=1;
(:
- autointi=2;
{ autointi=3;
printf(“%d,i);
)

}
printf(“%d” i);

printf(“%d”,i);

Consider a program segment below that illustrate the Illegal use of auto.
#include<stdio.h>

auto int a; /* Illegal — auto must be within a block */
void main () '

{

auto intb=2;

}
3.5 REGISTER STORAGE CLASS

During the computation, the values of variables are transferred

from main memory (RAM) to CPU. The computations are performed in :
processor (CPU) and the final result is sent back to RAM. This action : UGCs-102/91

47
slow down the process of execution.

Introduction to the 'C'

Programing Language

UGCS-102/92

48

On the other hand, by storing the values directly into the CPU’s
register, the computation speeds up. Hence it is obvious that, there should

- beno waste of time to getvariables from memory and sending it to back

again.Therefore the register is used to define local variables and the
variable will store directly in the register of CPU instead of RAM. It means
that the variable has the maximum size equal to the size of register
(usually one word) and can't allow to apply the ‘&’ operator (as it does
not have a memory location). |

+ CPU register should be used only for the variable which require
fast access, such as loop counters. It should also be noted that by defining
the variable as ‘register’does not mean that the variable will always be
stored in the register. It means that it may be stored in a register -
depending on hardware and implementation restrictions.Becasue, there
are limited numbers of CPU registers, so only few variables can be placed
inside register.

The features of a variable defined as register storage class data
type are as follows:

Storage | : CPU register

Default initial value s garbage value

Scope : Local to the block in which the
variableis defined

Lifetime : Till the confrol remains within the
block in which the variable is
defined.

The syntax for declaration of register variable is:

Syntax :register data_type var_1, var_2, .. ;

where keyword ‘register’ refers to register storage class.

! A word of caution.The data type for register variable must
be int. We cannot use register storage class for all types of variables. [
End of caution]

Example:

register int counter;

}

The registerstorage class hints to the compiler that the variable
will be heavily used andshould be kept in the CPU's registers, if possible,
so that it can be accessed quickly. There are several restrictions on the
use of the registerstorage class.

(i) Because the variable m_ay not be stored in memory, its address
cannot be taken with the unary &operator. An effort to retrieve
the address of variable will cause an error by the compiler.

() The variable must be of a type integer to store it in the CPU’s
register. Thisimplies that a singie valueof a size less than or equal
to the size of an integer. Some machines have registers that can
hold floating-pointnumbers as well.

(i) Thenumber of registers are limited, soit may actually make the
execution process slower because the register is keeping the
variable and it may unavailable for other processing work.

(iv) Itisnotapplicable for arrays, structures or pointers.
(v) - It cannot not used with static or external storage class.

- Consider program 3.7 to demonstrate register storage class and
predict the output of the program.
/* Program3.7 */

#include <stdio.h>
void main()

{
register int i=10;
{
' register int i=20;
printf(“\n\t %d",i);
)
printf(“\n\n\t%d”, i);

The first printf() displays i =20 as scope of inner i is within the
block whereas second printf() statement displaysi=10 as i is visible
here, because its lifetime remains till end of main(). So the output of the
above program is 20 and 10 respectively.

3.6 STATIC STORAGE CLASS

static is the default storage class for global variables. The two
variables below (book and page) both have a static storage class as:

static int book; [*explicitly declared as static -
int page; /* global variable */
(_

printf(“%d \n”, page);

Storage Classes

UGCS-102/93
49

Introduction to the 'C'

Programing Language

UGCS-102/94
50

A static variable tells the compiler to persist the variable until
the end of program. Instead of creating and destroying a variable every
time when it comes into and goes out ofscope,static variable is
initialized only once and retainsthe value till the end of program.
Static storage class can be used only if we want the value of a variable
to persist between different function calls.

Features of a variable defined to have a static storage class are as
follows:

Storage . Memory

Default initial value - Zero (0)

Scope : Local to the block in which the
o variable is defined

Lifetime - value of the variable persists

between different function calls.
The syntax for declaration of static variable is:
Syntax : staticdata_type var_1, var_2,...;
Example: static int a;

This declaration tells to the compiler that variable a has static
storage class. Hence initial value of a is 0, its location is in the main
memory and its scope is “Local to the block in which the variable is
defined” and lifetime exists till the end of program.

Like auto variables, static variables are also local to the block in
which they are declared. The difference between them s that, the static
variable does not disappear when the function is no longer active. Their

‘values persist, it means that if the control comes back to the same

function again the static variables have the same value as they had last
time in the function. |

The following example makes the concept clearer. In program
3.8, we have abc() function, in which staticvariable iis initialized with

“value 1. Since itis declared static, its scope and life exists till the end of

program. Thus, it retains its previous value on each next function call.
When first time abc() is called, printf() displays 1. Then, iis incremented
by 1 and becomes 2. When the control transferred to main(), the value
of iwill persisti.e. 2. Now in next call of abe(), value of i=2is displayed
because compiler ignores the statement static inti=1. Thuswe get1,2,
3 as output because of three function calls of abe() function.

/* Program 3.8 */
finclude<stdio.h>
main ()
{

abe();

abc();
abc();

abc()

staticinti=1;
printf(“%d" i);
i=i+; :

}

3.7 EXTERNAL -STROAGE CLASS

A variable that is declared outside to any function is an external
or globalvariable.Global variables remain available throughout the

entire program. One important thing to remember about global variable

is that their values can be changed by any function in the program.

The features of variables whose storage class has been defined as
external are as follows:

Storage § Memory

Default initial value . Zero (0)

Scope o Global

Lifetime e As long as the program’s execution

doesn’t come to an end.

The syntax for declaration of externdl(or global) variable is:

Syntax : externdata_type var_1, var_2, .. ;

The extern keyword is used before a variable name to notify the
compiler that this variable is declared somewhere else.
The extern declaration does not allocate storage for variables. Example
for external variable declaration is:

extern int a;

External variables differ from other storage classes variablesina
way that their scopewere local, whereas the scope of external variable
is global. External variables are declared outside to all functions, so that
they are available to all functions those want to use them.

Consider a program 3.13 where the use of global variable is
illustrated.
/* Proram 3.13 */
#include<stdio.h>
int x=20;
voidmain()

Storage Classes

UGCS-102/95
51

Introduction to the 'C'

Programing Language

UGCS-102/96
52

int x=30;
printf(“%d”,x);

display ();

display ()

printf(”\n%d”,x);

The program 3.13 has a global variable x initialized with value
20. Another local variable xis initialized with value 30 in main() function.
Here, name of variables are same, so to remove any conflict, the local
variable gets preference over global variable. Hence first printf()
displays value 30. Next, display() is called where printf()prints the global
value of x. Now here, value of global variable xi.e. 20 is printed because
its scope and lifetime still remain.

Note: The local variables get preference over the global variable when
the conflict arises.

If we have multiple files and we want to define a global variable
or function which will use also in other files, then extern storage class
for the variable is usedin another file to provide reference for defined
global variable or function. Thus, extern is used to declare a global
variable or function in another file also.

Let us see another example where global variable from one file
can be used in other file using extern keyword. Here extern keyword is
being used to declare count in another file.

filel.c file2.c
extern int count; int count=5;
write() main()

{

printf(“countis %d\n”, count);| ~ {
} write();

}

The variable count in ‘file2.c’ will have a value of 5. If filel.c
changes the value of count, the file2.c will see the new value.

3.8 SUMMARY

The scope of a variable (or identifier) is the portion of a program
from where the variable is accessible. Both variables and functions have

two attributes: type and storage class. The scope of a variable or function
is related to its storage class. The four storage classes; auto, register, static
and extern are discussed. An auto storage class determines the storage

duration and scope of identifiers.The static storage class creates and

initializes storage for variables when the program begins execution.
Storage continues to exist until execution terminates. If an initial value is
not explicitly stated, a static variable is initialized to 0. We can retain
values of local variables by declaring them to be static. An extern storage
class is used to reference identifiers in another file. By choosing storage
class register, the programmer indicates an expectation that the program
would run faster if a registercould be used for storage of variable instead
of memory.

S‘torége Classes

UGCS-102/97
' 53

Introduction to the 'C’'

Programing Language

UGCS-102/98
54

UNIT 4: INPUT AND OUTPUT FUNCTIONS

Structure

40 Introduction

4.1 Objectives

42 Readingasingle character
4.3 Writing a single character
44 Formatted Input-Output
45 Formatted Input

4.6 ' Formatted Output

4.7 Summary

4.0 INTRODUCTION

Although our programs have implicitly shown that how to print
messages, we have not formally discussed how can we use ‘C’ facilities to
input and output data. We devote this Unit to fully explain the Cinput/
output facilities and show how to use them. In this Unit, we describe
simple input and output formatting.'C’ provides various header files that
provide necessary information for the available library functions. The
header file required for Input and output functions is stdio.h. This file
caninclude in the program by following statement:

tinclude<stdio.h>

The file name stdio.h is an abbreviation for standard input-
output header file. When the name of header file is bracketed by <and

> a search is made for the header in a standard set of places.

A text stream consists of a sequence of lines; each line ends with a
newline character. If thesystem doesn't operate that way, the library does
whatever necessary to make it appear as if itdoes. For instance, the library
might convert carriage return and linefeed to newline on inputand back
again on output (K & R). A terminal keyboard and monitor can be
associated only with a text stream. A keyboard is a source for a text

stream; a monitor is a destination for a text stream.

4.1 OBIECTIVES - Input & Output

Function

 Atthe end of this unit, you may be able to:

° Understandhow to read a character from the keyboard through
functions getchar(), getch(), getche(). '

e Understandhow to write character on monitor screen through
functions putchar(), putch().

. Know about printf() and scanf() functions and their various
conversion specifiers. '

4.2 READING A SINGLE CHARACTER

In this section, we present some related programs for processing
character data. The model of input and output supported by the standard
library is very simple. Textinput or output, regardless of where it originates
or where it goes to, is dealt with as streams of characters. A fext strean is
asequence of characters divided into lines; each line consists of zero or
more characters followed by a newline character. It is the responsibility
of the library to make each input or output stream confirm this model.
The ‘C’ programmer using the library need not worry about how lines

are represented outside the program (K & R).
(@ getchar()

One of the simplest operation is reading a single character from
the standard input unit (usually the keyboard) can be perfomr by using
the function getchar().

The usage (or syntax) of getchar() is:

char getchar();

Since it has char return type, its assignment takes the following

form:

| char_variable_name = getchar();

char_variable _name is a valid ‘C’ name that has been declared as char
type.
When this statement is executed, the computer waits until akey is

UGCS-102/99
pressed by the user and then assign the typed character as a value to 55

Introduction to the 'C’
Programing Language

UGCS-102/100

56

getchar() function, which in turn assign it to char*valriable. _name,
The getchar () function accepts any character from the keyboard, this
includes RETUREN and TAB. This could create problems when we use

getchér() iﬁteractively inaloop.

Let us look at Program 4.1 for illustration of getchar().
/* Proram 4.1 */
#include <btd10 h> /* standard header for input/output */

~ main()

{

char ch;
printf(“Enter any character\n”);

ch=getchar(); /*getasingle character from the keyboard */
printf(’;You typed %c”, ch);

.

(b) getch()

Another function that returns the:character that you typed
without echoing it on the screen is getch(). To make use of getch(), we

must include the following header file:
#include<conio.h>

in your program.Here, conio stands for console input-output.

~ Note that conio.h and the getch() fdnct_i.on described above are nota
. part of the ANSI-C standard butare available on most ‘C’ compilers

written for DOS.

The usage (or syntax) of getch() is: | void getch();

Since it has void return type, it does not return anything.

When above statement is executed, the computer waits untila

key is pressed by the user. As soon as kéy is pressed, the control transfers

to the next statement. The getch () function accepts any character from
the keyboard and there is no need to hit Enter key.

Letuslook at Program 4. 2for 1]1ustrat10n of getch(). The program

adds two numbers and pnnt their sum.

/* Proram 4.2 */ Input & Output
#include<stdio.h> /* standard header for input/output*/ Function
#include<conio.h> /* header file for getch() function */

voidmain()
{

int a, b, ¢;char ch;
printf(“Type first number\n");
- scanf(“%d”, &a);
printf(“Type second number\n”);
scanf(”%d”, &b);
c=a+b;
printf(“The sum of %d and %d is %d\n”, a, b, ¢);

getch(); /* computer waits for a key to press */

When you run the above program on your machine, its output
looks like:

Type first number:
2

Type Secondnumber:
3
The sum of 2 and 3 is 5.

Press any key to terminate.

On pressing any key from the keyboard, program terminates

successfully.
(0 getche()

Another function that returns the character that you typed and
also echoes the character on the screen is getche(). To make use of
getche(), we must include the #include<conio.h> header file in your

program.
UGCS-102/101

The usage (or syntax) of getche() is: void getche(); 57

Introduction to the 'C’

Programing Language

UGCS-102/102
58

Since it has void return type, it does not return anything.

When above statement is executed, the computer waits until a
key is pressed by the user. As soon as key is pressed, the key is displayed

on the screen and the control transfers to the next statement.

Let us look at Program 4.3 for illustration of getche(). The
program 4.3 is similar to program 4.2, but note the difference in

functioning of getch() and getche().
/* Proram 4.3 */

#include <stdio.h> [* standard header for input/output */
tinclude<conio.h> /* header file for getch() function */
void main()
{ |

inta, b, c;char ch;

printf(“Type firstnumber \ n”);

scanf(“%d”, &a);

printf(“Type second number\n");

scanf(”%d”, &b);

c=a+b; -

" printf(“The sum of %d and %dis %d\n", a,b, c);

/ getche(); /* computer waits for a key to press and echoes
it*

} _
When you run the above program on your machine, its output
looks like: . '

Type first number:

2

Type Secondnumber:

&

Thie sum of 2 and 3is 5.

P ress any key to terminate.
v

If you pres s key ‘v/, then it displayed in your monitor screen as
shown above and. program terminates successfully.

4.3 WRITING A SINGLE CHARACTER

(@) putchar()

As wehave seen that to read a single character, we need getchar()
function. There is an similar function putchar() for writing a
singlecharacter to the monitor screen . It takes the following form:

putchar(char_variable_name);

wherechar_variable _name s a chartype variable containing a single
character.

When the above is statement is executed, the putchar() function displays
char_variable_name on monitor screen.

Let us look at Program 4.4 for illustration of putchar().

/* Proram 4.4 */
#include<stdio.h> /* standard header for input/output*/
voidmain()
{
char ch;
printf(“Enter any character\n”);
ch=getchar(); /*getasingle character from the keyboard */
printf(“You typed: “);
putchar(ch);

(b) putch()

The function of putch() is similar to putchar(). It prints a single
character on monitor screen.It takes the following form:

putch(char_variable_name);

where char_variable _name is a char type variable, containing a single
character.

When the above is statement is executed, the putch() function
displays char_variable_name on monitor screen.

Program 4.5 below illustrates the use of previous discussed
functions. You must include <stdio.h>to invoke these functions.
/* Proram 4.5 */
#include <stdio.h> /* standard header for input/output */
voidmain()

{
char chl;

Input & Output

Function

UGCS-102/103
59

Introduction to the 'C'

Programing Language

UGCS-102/104
60

printf(“Enter any lowercase character (a—z)\n");

chl=getchar(); /*getasingle character from the keyboard */

printf(“You typed: “);

putchar(ch1-32); /*displaysuppercase character on
terminal screen. The ASCII codes of

uppercase letters are 32 less than for the
corresponding lower case characters

!
putch('\n’);
}
Check your progress 1
1. Execute and verify the output of the following program
#include <stdio.h> /* standard header for input/output */

* void main()

{
char chl;
printf(“Enter any lowercase character (a—z)\n”);

chl=getchar(); /*getasingle character from the keyboard "
putchar(chl); putchar(ch1+2);

putchar(ch1+4);
putchar(ch1+6);
putchar(ch1+8);
putchar(ch1+10);
putchar(ch1+12);
putch(’\n’);

4.4 FORMATTED INPUT-OUTPUT

‘The getchar() and putchar() functions are restricted in the sense
that only one character can be read-in and read-out respectively at a
time and these function can not reador write float and string data types.
The functionsprintf() and scanf() fall under the category of formatted
console input-output functions. These functions allow us to supply the
inputin a fixed format and obtain the output in the specified form. The
next subsequent sections describe the formatted input and output
functions. o

4.5 FORMATTED INPUT

Aninput data that is arranged in some particular format is known
as formatted input. The function scanf() is used for formatted input from

standard input device that is keyboard. The name scanf stands for
“formatted scan”. We have already seen this input function in a number
of examples. In this section we explore several other features and options
that are available for reading formatted data with scanf() function. The
general form of scanf () statement is as follows:

int scanf(“format control string”, &varl, &var2,...... , &varn);

The format control string specifies the field format in which
data is to be entered from keyboard. The format control string can
contain the following items:

(@ White space character: Itincludes blanks (), tabs (\t) and
newline (\n). White spaces in the input are usually ignored. But
in some situation, they are not discarded. We shall see those
situation later in this unit. A white space in the format string
corresponds to zero, or more white spaces that are input by the
user. '

(b) Conversion (or Format) Specifiers: The specification of format
specifier (or modifiers) is shown below. The control of input
conversion is much easier than for output conversions. Any, all,or
none of the following format modifiers may be used between
the % and the final letters of the conversion (or format)
specification. It should remember that these must appear (if at
all) 1{1 the sequence shown below. For readability purpose, we
use Oto indicate a space in the example output where spacing is
notobvious. ' '

Specification of conversion (or format) specifier

% |* maximum-field-width | length letters
(See Table 4.1 for
more details)

(See Table 4.2 for more details about

above fields)
The arguments next to format control string are the addresses
of the variable (&varl, &var2,......,&varn) to which you want to write

“in the input. scanf() takes a variable nuraber of variables, as many as
there are format specifiers in the format string. The addresses of
variables areseparated by commas.To pass the address of a variable
X, you put an ampersand (&) before it.

Example:scanf (“%f”, &X);

NOTE: The variable type has to match its corresponding format specifier.
So in the caseof this example, X has to be of type float.

Input & Output

Function

UGCS-102/105

61

Introduction to the 'C'

Programing Language

UGCS-102/106
62

[Note] that the return type of scanf() is int. What does it mean?
scanf() reports its status by returning a value. The value is the number
of input values successfully completed.

Consider the following Program 4.6 which reads two values.
Execute the program in your machine and verify the results. |

/* Program 4.6 */
#include<stdio.h>
voidmain()
{
inti, j, numbers_input;
printf(“type 2 numbers: “);
numbers_input=scanf(“%d %d”, &i, &j);
/* The following block of code executes only
‘when you are trying to input only one value */
while(numbers_input!=2){ |
printf(“2 numbers needed!!! try again:”);
numbers_input =scanf(”%d %d”,&i, &j);
)

printf(“you enetered %d numbers and their values are “, numbers_input);
printf(“\t %d and %d”, i, j);
}

The above program needs two inputs. These two inputs are read
by scanf(). If you are trying to input less than two values, then the
condition inside while loop will become true and you are prompted again
two enter two values.

Consider another statement:
| scanf (“%d %d”, &x, &y),

The return value corresponding to the following inputs are shown
below along with their explanation.

Input no.| Data input| Return valu¢ Explanation

1. 7 8 2 Since both 7 and 8 are

integers, scanf successfully
read both values and return 2

2. 7 B 1 Input 2 will change x to 7 but
y will remain unchanged. So
return value is 1

3. B 7 0 For input 3; both x and y
ﬂFnchanged Hence, return value

Note: if the input cannot be matched to the expected format, itis leftin

Input & Output
the buffer until it can be “consumed”. kit
[End of Note]

Table 4.1 scanf Conversion letters and their matching types
letters | Matching| Auto skip | format Example Sample
Data type| leading Matching
white Input
space?
d int yes decimal number | inta;longb; -23200
scanf{"%d %ld", &a,
| &b
0 int yes octal number unsigned int a; 023
_ ' scanfl"%0”, &a);
xorX int yes hexadecimal unsigned int a; 1A
number scanf{"%d", &a);
|d long | yes decimalnumber | long b;scanf 200
(‘I canalsobe (“%ld", &b);
applied toany of
the above o change
the type from ‘int
. to ‘long’)
fu unsigned | yes decimalnumber | unsignedinta; pAl
' scanf{“%%u”, &a);
lu unsigned | yes decimal number | unsigned longa; 30
' long : scanf{*%olu”, &a);
e char no single character | charch;scanf P
| (e, &ch);
8 charpomter | yes string char s[30]; hello
scanf (“%29s”, 8}
aefg | float yes number with six float a;scanf 12
digits of precision; | (“%f*, &a);
eisfor
scientific
notation
Iflgle | double yes number withsix | doublea;scanf
digits of precision; | (“%lf", &a); 34
le is for scientific
notation
% % (aliteral) | no literal intazscantl*%ed%%", 2%
&)

UGCS-102/107
63

Introduction to the 'C’

Programing Language

UGCS-102/108

64

Table 4.2 : scanf Format Specification Syntax

Conversion | Description Example Matching Results

Modifier Input-

* o Assignment int a; a-29 a=29,
Supression. This |scanf(“%*s %d", return
modifier causes the - |&a);/* here %*s value==1
corresponding input | indicates that
to be matched and | this value
converted, but not |[mustnot

o assigned. read */ ,

maximum This is the maximum |int a; 2345 a=23,

field-width | number of character |scanf(“%2d"”, return value
to read from the inpuf. &a);/* here, =1
Any remaining maximum
input is left unread. |no. of char

to read is 2*/

length A length modifier is used to exactly specify the type of the

modifier matching argument. Since mosttypes are promoted to int or

double a length modifier is rarely used. However it is used
forlong and other types that don't have an explicit conversion
letter of their own. Note thatspecific length modifiers only make
sense in combination with specific conversion letters.
Usingundefined combinations causes unpredictable results. The
length modifiers and their meaningsare:

h h specifies the short a; 200 a=200
argument is a short | scanf(“% return

or unsignedshort. hd”, &a); value==

1 (Thisis the letter |longa;, b; 100 100

ell and not the digit |scanf(“%ld | 276447232 | 276447232
one.) 1specifies the | \n%d”, return
argument is along | &a, &b); value==2
or unsignedlong.

L Legal for floating | long a; 3.14 3.140000
point conversions | scanf return
(a A eEfFgand |(“%Lt", value==1

G conversion letters),
specifies the
matching argument

isa long double.

&a);

- 4.5.1 Reading Integer Numbers

Refer Table 4.1 and 4.2. The Table 4.1 indicates four different types of
letters; d, o, x or u. and Table 4.2 indicates length modifiers h (for

~short or unsignedshort) and 1 (for long or unsignedlong). These

modifiers can be combined with their respective letters to form valid
conversion specifiers. So valid conversion specifiers are:

d int
u unsigned int

hd | shortint orunsigned shortint

lor lu| long orunsigned long

1d long int
Consider the following example:
short intnum]; /* num1 is short int */
intnum?2; /* num?2 is int */
long int num3; /* num3 is long int */

unsigned long intnum4; /* num4 is unsignedlong int */
scanf(“%2hd %3d %2ld %6lu”, &numl, &num2, &num3, &num4);
The data line is:

23 431 24 768234

The field width of first value 23 is 2 as it consists of 2 digits. Note
thatin scanf() statement, the first conversion specifier is %2hd, where 2
represents the maximum width of number to be read andh represent
that data input is short int. So this width matches with field width of
the number 23. So numlis assigned with data value 23. Similar
argument is also applied to rest three numbers, i.e. num2, num3 and
numd4, which receives the value 431, 24 and 768234.

Suppose the input data is:
432 2356 56 974174

The variable num1 will be assigned 43 (because of %2hd) and
num?2 will be assigned 2 (unread part of 432). The variable num3 will
be assigned 23 (because of %2ld) and num4 will be assigned 56
(unread part of 2356). The rest values 56 and 974174 will be assigned
to the firstand second variable in the next call to scanf(). Such types of
errors may be removed if we don’t use fieldwidth specifications. Thus,
the statement: ' '

. scanf(“%hd %d %ld %lu”, &numl, &num2, &num3,
&numd); _

will read the data inputs
432 2356 56 974174

coﬁectiy and assign 432 to num1, 2356 to numz2, 56to num3 and 974174
to num4.

Execute the following program 4.7 and verify the results in your machine.
/* Program 4.7 */
#include<stdio.h>

Input & Output

Function

UGCS-102/109

65

Introduction to the 'C’

Programing Laﬁguage

UGCS-102/110
66

main()

{ |

inta,b,c,d, e, f;
intx,y, z

printf(“Enter 2 numbers: \n");
scanf(“%*d %d %d”, &a, &b, &c);
printf(“%d %d %d\n\n”, a, b);

printf(“Enter two 4-digit numbers: \n “);

scanf(“%3d %4d”, &d, &e);

printf(“%d %d\n\n",d,e);
printf(“Enter 2 integers: \n");
scanf(“%d %d”, &a, &d);

printf(“%d %d \n\n”, a, d);

printf(“Enter a nine digit number:\n “);
scanf(“%3d %4d %3d”, &x, &y, &z);

- printf("%d %d %d\n\n”, x,y, z);

}

printf(“Enter two three digits numbers: \n”);
scanf(“%d %d”, &a, &d, &e);
printf(“%d %d “, d, e);

4.5.2 - Reading Floating Numbers

The most common specifier for floating point numbers is %£. This
specifier will acceptcharacters ‘0'-'9', '+, ’, and ‘e’. The input can be of
the form 2343.45 or 136e3.The Table 4.1 and 4.2 are referred to valid
conversion specifiers for float, double and longdoubleas follows:

a, f, g,| float

e float;e is for scientific notation

If,1g |double

le double ;le is for scientific notation
f long double

A number can be skipped by using %*f, %*1f, %*Lf specifiers.

Let us see some examples for reading floating point numbers.

Satatement | Input Output - Explanation

scanf(“%f"”, &a); | 21 21.0 [inputstring“21" is converted to the

float value 21.0

scanf(“%e”, &a); | 2le-1 2.1 [inputstring “21e-1"is converted to

the fp value 2.1

scanf(“%f”, &a); | 21 41 21.0 | inputstring “2141” isalso

converted to float value 21.0, and
“0 41" is left in theBuffer. [Note:

O represents space]

Consider the following program 4.8 and predict its output.

/* Program 4.8 */

#include<stdio.h>

voidmain()

{
floata, b;
doublex, y;
printf(“Enter values fora and b"”);
scanf(“%f %e” ,&a, &b);
printf(“\n");
printf(“a=%f\nb=%f\n\n", x, y);

printf(“Enter values for x and y”);
scanf(”%lf %lf”,&x, &y) i
printf(“\n”");
printf(“x =%lf\n y=%le\n\n”, x, y);
printf(“x=%If\n y=%le\n\n", x, y.); '
}
4.5.3 Reading Strings

The format specifier for a string of characters is %s. This specifier
accepts all non-whitespace characters. The string is terminated once a
white space is encountered. Additionally,once the whole string is read
from the input, a NULL character(\0) is appended to it to indicate end
of string. But what will we do if we read aa space in our string? It is the
weakness of scanf(). Therefore, we may use some another functions like,

gets().

Satatement Input Output Explanation

scanf(“%s”, &a); 21 2lg input strihg “21" is converted to the
: ' string “210” (@ is the NULL
character)

scanf(”%s”, &a) 2le-1 2le-lg input string “23e-1" is converted to
the string “23e-10"

scanf(“%s”, &a); Hello Hellog inputstring “Hello World” is
World converted to the string “Hellog”,
and"World” is left in the buffer.
[Note: the space is left in the buffer]

aswell]

Note: If you input a larger string than the size of the array it isbeing
written to, awful things can happen. Variables in subsequent locations
in memorywill be overwritten by the string. So when using %s always
allocate enough memory tofit all the characters of the string plus an

Input & Output

Function

UGCS-102/111
67

Introduction to the 'C'

Programing Language

UGCS-102/112
68

extra location for the NULL. We will discuss this issue later when we will
discuss arrays.

4.5.4 Reading characters

Atlast, we have reached to the discussion that indicates how to
read a character using scanf. Here, the things get really confused. Aswe
have stated previously that all specifiers ignored white spaces. So once a
white space is occurred in an input, the specifier input was terminated.

~ Moreovet, any white spaces before the input were also ignored. Let us

consider that single decimal number is required by two consecutive scanf
calls. The user types in a number then hits ‘enter’ to signal the end of the
input. That “Enter key” is actually stored in the buffer. When the next
scanf is called, the first thing it sees in the buffer is the “\n”, and since
that’s a white space, the function discards it and waits for the user to
input a second decimal number. But this is not the case with single
characters.

On the other hand, %c will accept any single character as an input,
including white spaces. So if thesecond scanf had requested a single
character, instead of a second decimal number, then when it sees the “\n’
in the buffer, it would just assign “\n’ to the corresponding variable. There
are many ways to get around that problem. The easiest solution involving
scanfis to puta ‘\n’ in the format string of the second scanf call preceding
the %c specifier. | ' '

S0 our modified code should be look like this:
scanf(“%d”, &x); - _
scanf(“\n%c”, &y); /* note: \n before %c */
rather than this:
scanf(“%d”, &x);

scanf(“ohe”, &y);
4.6 FORMATTED OUTPUT

So far we have seen the use of printf function to print the result
and comments in the program. printf is also a function in the stdio.h
file. It is used to output formatted information to the console. printf is
alike to scanfin many aspects, so this section will be fairly small, simply
detailing the similarities and differences between the two functions.

The general form of printf() function lookes like:

int printf(“format control string “, varl, var2, varn);
The return type of printf is an int value. It returns the number of ASCII

characters outputted to the screen, including Enter key. So you do not
worry about the number of successfully outputted fields since you can
simply check for output errors by reading whatis output to the console.
The following example demonstrates the return value of printf statement.

/* Program 4.9 */

Input & Output
#include<stdio.h> ~ Function
voidmain()
{
inti;

i=printf(“Hello World”);
printf(“Number of characters output by printfis: %d”, 1);
}

The output of the above program is;
Number of characters output by printf' is: 11

The variables which are printed on screen are represented by varl,
var,andvarm. There is no need to pass the addresses of variables. In
place of list of variable, it can be written as constants, single variable o1

anarray names. Even more complex expressions, function reference may
alsobe included.

 The format control string SPEleIES the field format in which
data is to be displayed on monitor screen. The format control string
can contain three types of items:

a. . Characters thatare 51mp‘ y printed as they are.
b. Escape sequences that begin with a \ sign; like \n, \t, \betc.
¢. Conversion (or format) specification that begins with a %sign.

The specification of format specifier (or modifiers) is shown
below. To control the appearance of the converted arguments, any orall,
or none of the following format modifiers may be used between the %
and the final letters of the conversion (or format) specification. It is _
also remembered that these must appear (if at all) in the sequence shown
below. For readability purpose, we use O to indicate a space in the
example output where spacing is not ebvious.

Specification of conversion (or format) specifier
% | flags | Minimum- |
_ field-width precision Iength letters

(See Table 4. 4 for more details about | (See Table
4.3 above
fields) for

more details)

The Table 4;3 and 4.4 describes the various fomiat control with

some small examples.
UGCS-102/113

69

Introduction to the 'C’

Programing Language

UGCS-102/114
70

vaiue has fewer characters, then the
resulting string is pacdded with spaces
(or zeros) on the left (or right) by

default (or if the appropriate flag is uspd.)

Table 4.3: printf Conversion Letters and Matching Types
“|Letter | Type of Matching Argument Exampl'e Output
% Hone ' prntf{ "%), 70
d int printf{ “%d”, 17); 17
u unsigned int (Converts to decimal) printf{ “%u”, 17u); 17
0 unsigned int (Converts to octal) printf{ “%0”, 17); 21
X unsigned int (Converts to lower-case hex)j printf{ “%x”, 26); la
X | unsigned int (Converts to upper-case hex) printf{ “%X”, 26); tA
f,F 1 double ' printf(“%f”, 3.14); 3.140000
e,E | double - printf{ “%e”, 31.4); 3.140000e+01
g,G | double printf(“%g, %g”, 3.14,3.14e-
3.14,0.0000314); 05
a,A | double printf{ “%a”, 31.0); Ox1fpH0
c mt printf(“%c”, 65); A
S string printf(“%s”, “Hello™); Hello
p | void* inta=1; printf(“%p”, [0064FE00
&a); |
n int* inta; printf{ “*ABC%n”, | ABC (a==3)
a),
Table 4.4 printf Conversion Specification Formatting
[Note: means a space]
Format Description Example Output' |
Control
flags The flag characters may appear in any order and have the following meanings:
- left-justify within the field printf("|%3d%-3d]", 12, 12)] | 1212 |
+ Forces positive numbers to printf(“%+d”, 17); +17
include a leading plus sign. '
space Forces positive numberto | printf(“(%0d]”, 12); 12
include a leading space.
This flag forces the outputto | printf(“%#X”, 26); 0XI1A
be in some alternate form.
0 Pad with zeros rather than printf{ “%04d]”, 12); 10012
spaces
minimum| field width represents the printf{ “{%35s|”, “ABC"); | ABC|
ield- minimum number of characters
idth | inthe resulting string. Ifthe converted

-precision Aperiod by itself implies a precision of zero. The meaning of a precision depends

length

on the type of conversion done. Only the conversions listed below are defined:
When used with floating-point

conversion letters (a, A, ¢, E, f,

F, g, and G) theprecision printf(“|%5.21]", 3.147); | 3.15
specifies how many digits will

appear to the right of the decimal

point. The default precision is six.

When used with integer conversion printf(“|%6.4d”, 17): | 0017
letters (d, 1, 0, u, x, and X) the

precision specifies the minimum

number of digits to appear. Leading

zeros are added as needed.

When used with string conversions printf{ “|/%-5.3s]”, ,
(letter “s”) the precision specifies ~ “ABCD”); [ABC |
the maximum number of bytes

written. Ifthe stringis too long it

will be truncated.

A length modifier is used to exactly specify the type of the matching
argument. The length modifiers and their meanings are:

h specifies theargument is printf{ “%hd”, 300); 30 -
a short or unsignedshort. '
I (Thisisthe letter el! and longa=300,b=
“not the digit one.) 1 specifies (long) 1.0E+14; 300
the argumentisa long or printf(“%ld\n%d", a, 276447232
unsigned long. b);
L Leé;al for floating point conversions printf{ “%Lf". 3.14L); 3.146000

(a,A,¢,E. f;F, g,and G conversion letters),
specifies the matching argument s a long

double.

UGCS-102/115

71

5. What is the output of the following program:

main() \

[
int Rupees =2;
int paisa=3; /*$2.03%/
printf(“$%d.%d “, Rupees, paisa);
printf(“$%d.%2d “, Rupees, paisa);
printf(“$%d.%02d “, Rupees, paisa);

}
47 SUMMARY

There are several functions that have more or less become
standard for input and output operations in ‘C’. These functions together
are referred by standard input-output library. We have discussed some

“common functions that can be used for reading and writing input data.
The unit discusses various functions like getchar(), getch(), getche(),
putchar() for reading/writing a single character. We have also seen
formatted I/O functions like printf and scanf with various conversion
specifiers. Sufficient number of examples are also provided so that you
are more familiar with them.

UGCS-102/116
72

- U.P.Rajarshi Tandon Open -
N University, Allahabad UGCS 102
Problem Solving
Through "C"

Operator and Control Structures

Unit1 5
Operators and Expressions

Unit?2 | " 27
Decision Structures in 'C'

Unit 3 - 38
Loop Structures in 'C'

Unit 4 - 57
Arrays

UGCS-102/117

UGCS-102/118

Course Design Committee

Ur. (Prof.)JOUmj1 Gupta

‘School of Computer and Information Science

UPRTOU, Allahabad

Prof, K. K. Bhutani
Ex-Professor, University of Allahabad
Director, UPTECH, Allahabad

Prof. Rajiv Ranjan Tiwari
Department of Electronics & Communication,
JK. Tnstitute of Applied Physics & Technology
Facuity of Science, University of Allahabad
Allahabad :

Prof. R. S. Yadav
Department of Computer Science & Engineering
MNNIT-Allahabad, Allahabad

Dr. C. K. Singh

Lecturer
School of Computer and Information Science,

UPRTOU, Allahabad

Sri Rajit Ram Yadav

Lecturer :

School of Computer and Information Science,
UPRTOU, Allahabad

Chairman

- Member

Member

Member

Member

Member

Course Preparation Committee

Dr. Ashutosh Gupta

- Associate Professor, Department of CS & 1T,

MIJP Rohilkhand University, Bareilly-U.P.

Dr. Manu Pratap Singh

Professor, Department of Computer Science Enginering

Dr. Bhirnrao Ambedkar University, Agra.

Mr. Manoj Kumar Balwant
Associate Professor (Computer Science)
School of Sciences, UPRTQU, Allahabad.

Author

Editor

Co-ordinator,

Block-3 INTRODUCTION

This block introduces various types of operators with their priorities,
precedence and associativity. The ‘C’ programming language contains a rich
set of operators. Operators are the symbols which have a predefined meaning
(or operation) associated with them. These operations are for the mathematical
or logical manipulations. A program uses operators to manipulate items or
variables.

There are many situations in which the order of execution of these
statements need to change based on certain specific condition or repeat a group
of statements until specific conditions are fulfilled. This require a sort of decision
making to check whether a particular condition is satisfied or not and then
instruct the computer to execute particular instructions accordingly. The various
decision structures like if, if....else, nested if....else, switch and goto
statements in “C’ are describe in Unit 2.

Most algorithms require a control structure that will allow us to repeat
certain lines of code until a condition is reached. We call these repeating
structures asloopsand discussed in Unit 3. “C’ provides three loop structures to
control the repeated execution of one or more statements. The counter controlled;
forloop is a counting loop that may also involve other conditional testing, used
extensively with arrays and uses pretesting of the loop control variable(s). The
while or do-while loop is used for event controlled repetition. A while loop is
used when it is possible that the loop may never execute. Itis a conditional loop
that often doesn’t involve counting, it uses pretesting of the loop control
variable(s). A do-while loop is used when the loop must execute at least one
time. It uses post-testing of the loop control variable(s) and generally used with
interactive input. C allows us to use jump statements. These statements, like
break and continue, are also flow control statements that cause the interruption
of the execution flow and jumps to a different statement that is not lie in the
successive sequence path of program statements.

In Unit4, we will see one-dimension and multidimensional array, which
are used to hold a group of variables of the same type, Bach element of the
array is identified and accessed by its subscript or position in the array. Array
subscript begins at 0 for the first element. The array concept makes possible
random access to any element. A string is a group of characters usually letters of
the alphabet. ‘C’ uses a string of data in some way, either to compare it with
another string, output it, copy it to another string, or whatever, the functions
are set up to do what they are called to do until a null, which is a zero, is
detected. We have also studied scime standard predefined functions which are
available for use. These are mostly input/output functions, character and string
manipulation functions.

UGCS-102/119

UGCS-102/120

UNIT-1 Operators and Expressions

Structure

1.0 Introduction

1.1 Objectives

1.2 Arithmeticoperators

1.3 Relational operators

1.4 Logical operators

1.5 Assignmentoperators

1.6 Incrementand decrement operators

1.7 Conditional operators |

1.8 Bitwise operators

1.9 Special operators

1.10 Operator Precedence and Associativity
1.11 lvalueand rvalue '

112 Type éast:ing: Promotion and Demotion of variable types
1.13 Summary

1.0 INTRODUCTION

This unitintroduces various types of operators with their priorities,

precedenceand associativity. The ‘C’programming language contains a .

rich set of operators. Operators are the symbols which have a predefined
meaning (or operation) associated with them. These operations are for
the mathematical or logical manipulations. A program uses operators to
manipulate items or vari ables. The data items or variables on which
operators operate are known as operands. The operators of ‘C’ language
can classify into the following categories:

Arithmetic operators

Relational operators

Logical operators

Assignment operators

Increment and decrement operators
Conditional operators

Bitwise operators

Special operators

An expression is a sequence of operands and operators that
reduces to a single value. Expressions can be simple or complex. An
operator is a syntactical token that requires an action be taken. An

UGCS-102/121

5

operand is an object on which an operation is performed. The expressions
are categorized into the following categories:

Operator and Control

Structures

Expression categories

Primary Binary Postfix Prefix Unary Ternary

The primary expressions are consisting of variable names, literal
constants and parentheses expressions. Some of the examples of pri-
mary expressions are: '

e Names: height, volue, price, INT_MAX, SIZE
. Literal constants: 5, 345.34, ‘C’, “Hello”
. Parentheses expressions: (4*3/6), (b= 24+¢%?2)

We will discuss more about rest of the expressions later in the
next subsequent sections while discussing operators, as each type of
expression particularly work by a specific types of operators categories.

1.1 OBJECTIVES

After working though this Unit, you should be able to:

e Write and evaluate complex ‘C’language expressions, built with
the arithmetic, logical and other complex operator categories.

e Know the conceptof precedence and associative properties among
various operators, and how they are evaluated.

o How these properties will help you to decide sequence in which
the various statements of a C program are evaluated.

1.2 ARITHMETIC OPERATORS

Arithmetic operators are the most commonly used operator. They
are used to perform arithmetic operations and operate on any built-in
data types allowed in C. These operators are:

Table 1.1: Arithmetic operators
Operator | Meaning Examples
+ Addition or unary plus , 8+7
- Subtraction or unary minus Count-1
¥ Multiplication numl *num?2
/ ‘Division (divisor musk by non zero) num/den
- % Modulo division (gives remainder.
UGES-102/122 This operator is valid only for integer Count % 3
¢ | division)

The operator- can be used as unary minus (-) operator. The unary
minus negates the sign of its operand. For example; -(-1)=1.In C, all
numeric constants are positive. Therefore, in C, a negative number is
actually a positive constant preceded by aunary minus, for example: -3.

Note:'C’ does not any operator for exponentiation.

All of these operators are binary operators. Here the term binary
means we need two operands. The two operands and an operator form a
binary (or arithmetic)expression. For example, consider the expression:

(a- b)*(a+b)/4

We have already discussed in previous blocks that ‘C’is a weak
typed language. The weak typing of ‘C’ supports the mixing of operands
of differing types. Operands may undergo type conversion before an
expression takes on its final value. The general rule is that the final result
will be in the highest precision possible given the data types of the
operands.

When an arithmetic expression is assigned to a variable, there are
two operators used i.e. an arithmetic operator and an assignment operator.
Let us consider following expression:

A=B+C

First Band Care added, the result will be in the same precision as
the highest precision of Band C. This result will be then cast (or converted)
into the precision of Aand the assignment will occur. The expression
becomes a statement because it is terminated with a semicolon.

Note:The left operand in an assignment expressmn must be asingle

variable.
An arithmetic statement is of following types:
1.2.1 Integer arithmetic expression

This type of expression consists of either integer constant or integer
variable; i.e. both operands are integer type. The result of operation always
yields integer value. Consider the following example 1:

Example 1: Integer arithmetic expressions
Assume a=22,b=15
statement Result -~ Explanation
at+b =37 Asusual, no need to explain
a-b =7 “
a*b =330 “
a/b =] Decimal part truncated
a%b | =7 Remainder of division

Ininteger divisor, following points are noted:

Operators and

Expressions

UGCS-102/123
7

Operator and Control

Structures

UGCS-102/124
8

° If both operands have same sign, then result is truncated towards
zero.i.e. 2/3=0o0r-2/-3=0.
o If one of them is negative, the truncation is implementation

‘dependent. i.e.-7/8 may be zero (0) or -1.

Similarly, in modulo division, the sign of the resultis always the
sign of first operand (i.e. dividend). For example:

-16%3 =-1
-16%-3 = -1
16 %3 = 1.

- Note:Both operands of the modulo operator (%) must be integer types.

Question 1.Execute the following Program 1.1 and verify its result.

[* program 1.1 */

#include<stdioh>
voidmain()
{ .
int minutes, seconds;
printf(“enter seconds\n");
scanf(“%d”, & seconds);
minutes = seconds/60;
seconds =seconds%60;
. printf(“minutes = %d seconds = %d”, minuts, seconds);

) .
1.2.2 Floating point Arithmetic Expression

This type of expression consists of floating point (or real)

- operands(either real constant or real variables). The real operands may

be either in decimal or exponential notation. The result of operation is
always an approximation of the calculation performed. Consider the
following example 2:

Example 2: floating Point (or real) arithmetic expressions
Assume a=17.67, b=5.1
statement | Result Explanation
at+b =22.77 Asusual, no need to explain
a-b =12.57 “ _ '
a*b =90.116997 Precision upto 6 digits
a/b* | =3.464706 Precision upto 6 digits

Note: We cannot use % operator with real numbers.

Question 2:Execute the following Program 1.2 and verify its result.
/ * program 1.2 */

#include<stdioh>

voidmain()

{

float cent, faren;

printf(“enter temperature in centlgrade \n");
scanf(“%f", ¢);

faren =1.8*cent +32.0;

printf(“temperature in cenhgrade is %E” cent);
printf(“temperature in Farenhite is %f” faren);

}
1.2.3 Mixed Mode arithmetic Expression

When one operand is real and another is integer type then, such
an expression is called mixed mode arithmetic expression. If any one of
the operand is real, then real operation is performed, and the result is
always a real number. Consider the following example 3:
Example 3: Mixed Mode arithmetic expressions
Assume a= 17.67 (areal number),
b=5 (ainteger number)

c (ainteger number) [NOTE]

statement | Result Explanation
c=a+b =22 See [Note] below
csa-b =12 h
c=a*b =88
c=a/b =3

Note for Example 3:First respective operation on a andbare
performed, the result will be in the same precision as the highest precision
of aand b. This result will be then cast (or converted) into the precision
of cand the assignment will occur.

Let us consider another example 4 where variable cis of real type.

Example 4: Mixed Mode arithmetic expressions
Assume a =17.67 (a real number),
b=5 (a integer number)
C (a real number) [NOTE]
statement | Result Explanation
c=a+b = 22.670000 The explanation for example
c=a-b =12.670000 4is sameas given in example 3.
c=a*b = 88.350000
c=al/b = 3.534000

Consider the program 1.3 and execute the program in your
machine. The program takes three numbers as input, calculate their sum
and average.

/ * Program 1.3 */
#include<stdioh>
voidmain()

{

intnum1, num2, num3, sum;

floatavg;

Operators and

Expressions

UGCS-102/125
9

Operator and Control

Structures

UGCS-102/126

10

printf(“enter three integer numbers \n”);

scanf(“%d%d%d”, &num]l, &num2, &numa3);

sum =numl + num?2 + num3;

avg=sum/3.0;

printf(“entered numbers are %d %d%d \n”, num1, num2, num3);
printf(“Their sum and average is %d and %f\n”, sum, avg);

}

The output of the above program is:

Enter three integer numbers

357

Entered numbers are 35 7

Their sum and average is 15 and 5.000000

In‘C, the arithmetic operators have the priority as shown below:

First priority *] % Arithmeticoperators
Second priority + -
Third priority = Assignment operator

Operators with within the same priority are evaluated from left
to right.

1.3 RELATIONAL OPERATORS

This category of operators is used to comparearithmetic
expression, functions, variables and constants. For example, we often
compare weight of two persons, or price of two items. This comparison
can be done with the help of relationaloperators. The relational
operators are also binary operators as they require two operands, i.e.
operand 1 and operand 2.

Here, operand 1 and operand 2 may be either:

Arithmetic expression

Return value of Functions
Variables

Constants

and, operator may be any one of the operator as mentioned in Table1.2.
When arithmetic expressions are used on either side of a relational
operator, the arithmetic expressions will be evaluated first and then the
result will compare, Thus, arithmetic operators have higher precedence
than relational operators.

For example; an expression

a<b

that contains a relational operator is referred as
relationalexpression. The result of relational expressmn isalways either
1(TRUE) or 0(FALSE).

‘C’has following six relational operators as shown in Table 1.2,

The relational expressions are used in decision making statements.
These will later discuss in next units.

Table 1.2: Relational operators
Operator | Meaning Examples |Result of relational
NER expression
< Isless than 13<2 TRUE
= Isless than or equal to |20 <= 20 TRUE
> Is greater than 5 5% FALSE
>= Is greater than or 7>=9 FALSE
equal to
= Equalto 4==4 TRUE
I= Not equal to _ 21=3 TRUE

Note: In“C’, O represents FALSE and 1 represents 1(TRUE).

What does the following program print?

#include<stdioh>
voidmain()
{
printf(“%d\n”, 5> 3);
printf(“%d\n”, 3 <5);
printf(“%d\n”, 4 +3>=2+1);
}

14 LOGICAL OPERATORS

‘C’ has following three logical operators as shown in Table 1.3.

The logical operators && and | | are used when we need to test more than

one condition and make some decision base on the obtained result.

Table 1.3: Logical operators

OperatofMeaning | Logical Description expression

&& Logical AND|Exp1 &é& Exp 2 | The logical expression is true
: only if both (Exp1 and Exp
2) Expressions are true.

[Logical OR |Expl || Exp2 | Thelogical expressionis true
only if either (Exp1 or Exp
2) E};(pressmns are true.

! Logical NOT|! Exp1 Itis just the negate of current

value of Exp1

An expression that consists of two or more relational expressions
is termed as logicalexpression or a compoundrelationalexpression.
Consideran logical expression given below:

Operators and

Expressions

UGCS-102/127
11

Operator and Control

Structures

UGCS-102/128

12

X <y && i==

Like relational expression, logical expression also glves the result
in terms of 1(TRUE) or O(FALSE).

The logical operators (except logzcaINOT (1)) are also binary
operators because they require two operands. When relational
expressions are used on either side of above saidlogical operators, the
relational expressions will be evaluated first, which in turn evaluates
arithmetic expression and then the result will be computed. Thus,
arithmetic operators have higher precedence than relational operators,

~ which have higher precedence than logical operators (except

logicalNOT).[See Table 1.4].

Table 1.4: Result of Logical AND and OR Expressions

Operand 1 | Operand2 | Valueoflogical AND Value of logical OR
Operand 1 && Operand 2|| Operand 1 I 1Operand 2 |

Nonzero | Nonzero - 1 0
Nonzero | 0 0 1
0 | Nonzero 0 1
0 0 | 0 0

The logicaNOT operator takes only one operand, so it is come
under the category of unaryoperators. The expressidns formed by
unary operators are termed as unaryexpressions. This unary expression
is also called prefix expression, as operator always lies left to the
expression.[See table 1.5].

Table 1.5: Result of Logical NOT expression
Value of logical NOT
Operand 1 ! operand 1
Non zero . _ 0

| 0 _ 1
" Con'sider the following example 5 that involves simple logical
statements to complex logical statements. It is an exercise for you to

justify the evaluated part and answer how the respective results are
obtained.

While evaluating .complex logical expressions joined by !, &&
and | |, thereis noneed to evaluate the entire expression logical expression
if its value is found from its sub expressions. Consider an example:

0.003 >1.23 && 30> 12

Here first sub expression (0.003 > 1.23) is evaluated, which is
FALSE. So there is no need to evaluate sub expression (30> 12), because
the value of whole expression will be FALSE due to the presence of logical
AND operator.

Example 5: Logicalexpressions
Assumea=4,b=5,¢c=7,d=12,e=56,f=34
[Cogical expression [Operand 1 Operand 2| evaluation Output result
((ab) < (d+e)) && |relational |relational |(20 < 68) ()
(c>d) ___|expression | expression| && (7> 12) FALSE
((e/a) >=3) && (a) [arithmetic |variable |(14) && (4) (1)
' expression TRUE
-23 |1 ((ctd)<= (d+#f))constant |relational |-23 || (1)
expression | (19 <= 46) TRUE

Letus consider another example
- 0.003>1.23 [130>12

Here, ﬁrst sub-expression is evaluated which results FALSE. Next
second sub-expression is evaluated due to the presence of | | operator as
the result of whole expression cannot be decided without evaluation of

both sub expressions. The evaluation of both sub expressions gives the
result TRUE. '

~ What does the following program print?
#include<stdioh>
‘voidmain()
{
printf(“%d\n”,7>3);
printf(“%d\n”, 8 <5);
printf(“%d %d\n”, (5> 3) && (3<5),(5>3) 11(3<5));
| printf(“%d %d\n”, (1> 0)*(1<0), 1>0 *1<0);
J ' -
1.5 ASSIGNMENT OPERATORS

Assignment operator (=) is used to assign the value of an
expression to a variable . An assignment operator is also a binary operator
that requires two operands. The left hand operand is called as Ivalue.
Similarly, right hand operand is called as rvalue. An lvalue is an
expression to which a value can be assigned. The lvalue expression is
located on the left side of an assignment statement, whereas an rvalue is
located on the right side of an assignmentstatement. Each assignment
statement must have an lvalue and an rvalue. The Ivalueexpression
mustreference a storable variable in memory. It cannot be a constant.

The'C’ language offers number of compound operators, including
assignment operator that combine other operations, as summarized in
Table 1.6. These compoundoperators are also known as shorthand

“assignment operators. They have following form:

Operators and

Expressions

UGCS-102/129
13

Operator and Control

Structures

varop=exp;

Where var is alvalue variable, exp is an expression and opis a

binary arithmetic operator. The operator op=is known as shorthand
(or compound) assignment operator.

The above statement is similar to var = var op exp

Thus, the statement x =x +1 is similar to x +=1.

Table 1.6: Shorthand (or compound) assignment operators
Operator | Description Example Remark
= Assignment Num = 6 Assign 6 to num
+= Sum and assign . |Num += 6 | Adds 6 to number
= Subtract and assign|Num -= 16 | subtract 16 to number
A Multiply and assigniNum *= 5 Same as Nurm = Num?*5;
= Divide and assign |Num /=13 .| Same as Num = Num/13
&= Bitwise AND and [Numl &= | ands the bits of Numi
assign Num?2 with Num?
= Bitwise OR and |[Numl I= ors the bits of Num1 with-
assign Num?2 Num?2
Question 3: See the program below and check how the complex
assignment can be done. '
int main()

{

inta, b, ¢; /*Integer variables for examples */

a=12;
b=3; _
c=a+b; . /* simple addition */

- c=a-b; /* simple subtraction *
c=a*b; /* simple multiplication ~ */
c=a/b; /* simple division * _
c=a%b; ~ [*simple modulo (remainder) */

c=12%a +b/2 - a*b*2/(ac + b*2);
c=c/4+13%a +b)/3 - a*b + 2*a*a;

a=a+1l; [* incrementing a variable ¥/
b=b*5
a=b=c=20; - [* multiple assignment L

a=b=c=a+b*¢/3; |
a=(b=(c=20));

/* Identical to multiple assigninent *f

return (;

UGCS-102/130
14

1.6 INCREMENT AND DECREMENT Operators and
OPERATORS Expressions

‘C’ has unary operators for both increment and decrement.
The Table 1.7 show the increment (++) and decrement operator (—).

Table 1.7: Increment and Decrement operators
Operator |Description | Example|Expression Equivalent to
++ increment X++ Postfixexpression| x=x+1
+HX Prefixexpression | x=x+1
— decrement X- Postfix expression| x=x-1
- X Prefix expression x=x-1

The operator ++adds 1 to the operand while — subtract 1 from the operand.

The expressions formed by post-increment of ++and - - are called
postfix expression while expression formed by pre-increment of +and
- - are called prefix expression. Since both expressions consider only one
operand, that's why they come under the category of unary expression.

- Effect of post-operator (x++ or x- -) and pre-operator (++x or --X):

1.. Iftheyareindependently used, their behavior is very simple

For example: x++ means x=x+1, x- - means x=x -1, ++x means
x=x+]1 and - -x means x =x -1.

2 If they are used as rvalue, i.e. right hand side of expression, their
behavior is entirely different. For example; consider the following
two cases:

(@)

X =4;
Y5 e

In this case, x is first incremented by 1. This incremented value of
x (i.e. 5) is then assigned to y. So the value of xand y is 5. -
(by

x=4;

y =X+

In this case, x is first assigned to y. After that, its value is
incremented by 1. So the value of xis 5 and that ofy is 4.

Question 4:Execute the progi-am 1.4 and verify the results in your
machine.

/ * Program 1.4 */
#include<stdioh>
voidmain()

{

int x=4, y=6, z; UGCS-102/131

printf(“valueofx :%2d\n”, x); s

Operator and Control

Structures

UGCS-102/132
16

printf(“value of x++ :%2d\n", x++);
printf(“new value of x: %2d\n”, x);
printf(“\n\n");

printf(“valueofy :%2d\n",y);
printf(“value of ++y :%2d\n”", ++y);
printf(“new value of y: %2d\n”, y);
X=X +y--;

printf(“newvalueofx = :%2d\n”, x);
printf(“new value of y :%2d\n”", y);
YRRy

printf(“new value of x : %2d\n”, x);
printf(“new value of y : %2d\n”, y);

=X---Hy+--y+X;

printf(“valueofz :%2d\n”, z);
printf(“new value of y 1 %2a’ ", y);
printf(“new value of x : %2d\n”, x);

}
1.7 CONDITIONAL OPERATOR

The conditional operator (or ternary operator) can be used to
return a value. It has the following syntax:

_ exprl ?expr2 : expr3
wheré expl, exp2 and exp3 are expressions.

The expre:sion exprlis evaluated first. If it isnon-zero (true), then
the expression expr2is evaluated, and that is the value of the conditional
expression. Otherwise expr3is evaluated, and that is the value. Only one
of expr2and expr3is evaluated. The expression formed by ternary
operator ?:is known as ternaryexpression. |

Consider the following example:
inta=6,t =7, x;
x=(a>b)?a :b;

In this case, exp1 (a>b) is evaluated and becomes FALSE, so xis
assigned valuebi.e. x=7.

The ternary operatoris a substitute of if .. .else. The brackets round |
the conditionare not strictly necessary, but they do aidreadability.

Consider the program 1.5 and execute it on your machine to
verify the results.
/ * Program 1.5 */
#include<stdioh>
voidmain()

{

intage; Operators and
printf(“Enter your age\n”); Expressions
scanf(“%d”, age);

printf(“yourageis :%d\n”, age);

(age>18) ? printf(“You are major”); : printf(“You are minor”);

The output of the above program is:

Enter your age
43
Your age is :43

You are major

1.8 BITWISE OPERATORS

‘C’ has arich set of bitwise operators to interact with the hardware,
i.e. machine level. Using these operators we can access the individual
bits of a byte. These operators allow us to manipulate the individual bits
of abyte. The manipulation involves testing of bits, or shifting them right
or left. The bitwise operators may not be applied on float or double. The
bitwise operators available in ‘C’are shown in Table 1.8;

Table 1,8: Bitwige gperators

Operator | operation

& BitwiseAND; compares two bits and generates a 1 result
if both bits are 1, otherwise it returns 0.

I BitwiseOR; compares two bits and generateé alresultif
either or both bits are 1; otherwise it returns 0.

A BitwiseexclusiveOR; compares two bits and generates a
1 result if the bits are complementary; otherwise it returns
0.

~ Bitwisecomplement; inverts each bit. ~is also known as
1’s complement.

>> Bitwiseshiftright; moves the bits to the right, discards -
: the far right bit and if unsigned assigns 0 to the left most
bit, otherwise sign extends.

<< Bitwiseshiftleft; moves the bits to the left, it discards the
far left bit and assigns 0 to the right most bit.

Execute the program 1.6 and verify the result in your machine.
/ * Program 1.6 */
#include<stdioh>
voidmain()
{ intx=12, y=34;
printf(“Bitwise AND of xand y is :", x=x&y);
printf(“Content of x is now e 1 ' UGCS-102/133
printf(“Bitwise OR of xand yis :“, x=xly); 17

”

printf(“Content of x is now ", x);
printf(“Bitwise Ex-OR of xand y is ", x=x"y);
Structures " printf(“Content of x is now 7X)

' printf(“Bitwise Complement of xis :”, ~X);
printf(“Content of x is now ”,X);
printf(“Bitwise Complement of yis :“, ~y);
printf(“Content of y is now LX)
printf(“Bitwise left shift of x <<2is : ", X =X<<2);
printf(“Contentof xisnow ", x);
printf(“Bitwise right shift of y>>2 is : “, y=y >>2);
printf(“Content of y is now Uy)

Operator and Control

}

The output of the above program is:
Bitwise AND of xandyis : 0
Content of x is now : 0
Bitwise OR of x and y is : 34
Content of x is now : 34
Bitwise Ex-OR of xand yis : 0
Content of x is now 0 0
Bitwise Complement of xis : 255
Content of x is now ;255
Bitwise Complement of yis : 219
Content of y is now : 219
Bitwise left shift of x<<2is : 152
Content of x is now : 255
Bitwise right shift of y>>21is : 54

Content of y is now 1 255

1.9 - SPECIAL OPERATORS

‘C’ provides some Specia] operators which are as follows:
(@ Comma ,)operator
(b) sizeof (sizeof())operator
(©) address (&) operator

(d) dereferencing (or value at address, *) operator
() dot(.)operator

(f) member selection (->) operator

We will discuss first two operators in this section, rest operators
will discuss in subsequent units of pointers and structures.

(@ Comma operator

'The comma operator can be usecl to link the related expression
together. A comma separateslist of expression, these are evaluated left-
to-right and the value of right-most expression is the value of the

UGCS-102/134 combined expression. o

18 For example:

value = (x=10,y=5, x+y);
t=x,x=y,y=t; //exchanging value
(b) Sizeof operator

It is a unary operator and also a compiler time operator The
sizeof() is a special operator that returns number of bytes taken by a
characterconstant, variable or data type.

The syntax of sizeof operatoris
sizeof(operand)

The operand may be a character constant, variable or data
type or any userdefineddata type.

For example: consider the following program 1.7:
I* Program 1.7 */
#include<stdio.h>

intmain()
inta=2;
floatb=3.4;
char ch=s’;
printf(“sizeof(a) == %d \n”, sizeof(a)); /* operand is variable */
printf(“51zeof(char) =%d\n”, s1zeof(char)) i operand 1s data

type */
prmtf(‘sizeof(’s’)==%d \n”, sizeof('s)),/"’ operand is constant */

printf(“sizeof(float) = %d \ n”, sizeof(float));/* operand i xs/ data
type *

ey

return 0;

] _

The output of the following program is:
sizeof(a) ==2

sizeof(char) ==1

sizeof('s’) =1

sizeof(float) == 4

Check your progress 1

1. Verify by executing a‘C’ program that for int variables a andb,
a%b equalsa-(a/b) * b, regardless of whether a or bare

negative or positive.
2 Find the value that is assigned to the variables x, y, and z when
the following proram is executed. '
#include<stdio.h>
void main()
{ intx,y, z

x=3+4-5+6— (7 - 8);
y=2*34+4*(6-7);
z=3*4+5/15% 14;

- Operators and

Expressions

UGCS-102/135
19

Operator and Control

Structures ,

UGCS-102/136
20

F -
Add printf at appropriate places.

3. Give the output of the following program:

#include<stdio.h>

void main()

{ intx=3,y=52z2=7w;
W=X%y+y%X-2%XxX-Xx%z
printf(“%d\n”, w);
w=x/z+ylz+(x+y)/z
printf(“%d\n”, w);

)

4 What does the following program print.

finclude<stdio.h>
void main()

{
printf(“%d\n”, -1 +2-12*-13 / -4);
printf(“%d \n”, -1 %-2+12 % -13 % -4);
}

1.10 OPERATOR PRECEDENCE AND
ASSOCIATIVITY

Precedence of operators is a very important concept that you
should study. In this section we will describe the precedence and
associativity of operators. When you have mixed arithmetic expressions,
the multiplicationand division operations are completed before the
addition and subtraction operations when they are all atthe same logical
level. Therefore when evaluating a * b + ¢/ d, themultiplication and
division are donefirst, then the addition is performed. However in the
expressiona* (b +c/d), the addition follows thedivision, but precedes
the multiplication because the operations are at two different logical levels

- asdefined by the parentheses. While a parenthesis allows us to change

the order of priority, we can use them to improve understandability of
the program. Itis always a good practice to use pair of parentheses to
make sure that the priority assumed is the one we desire.

Consider a program 1.8 which shows the effect of precedence on
an expression.
/* Program 1.8 */
#include<stdio.h>
intmain()
{ inta=10;
Int b =20;
Int ¢=30;
printf(“a*b+c is :%d\n”,a*b+c);
printf(“a*(b+c) is :%d\n”, a*(b+));
return 0;

)

The output of the following program is:
a*b+cis 230 Expressions

a*(b+c)is: 500

Operators and

The program clearly shows that expression within the parentheses
is first evaluated and then next expression is evaluated.

Precedence is used to determine the order in which different
operators in a complex expression are evaluated. The precedence of C
operators dictates the order of calculation within an expression. The
precedence of the operators introduced here is summarized in the Table
L10. The highest precedence operators are given first. Associativity is
used to determine the order in which operators with the same precedence
are evaluated in a complex expression. Associativity is applied when we
have more than one operator of the same precedence level in an
expression. | '

Now, let us see an example on associativity. Example 6 shows
the right to left associativity. -

Example 6:
Consider the statements:
. inta=b=c=d=10;
at=b*=c-=5;
printf(“a=%d b=%d c=%d d=%d \n", a, b, ¢, d);

Here the operators +=, *=, -= belong to same precedence level.
S0, evaluation of statement begins from righ to left. The value of ¢
becomes c=c-5=10-5=5. This value 5 is assigned toitslvaluei.e. b *=
5. The value of b becomes b = b *5 = 10*5 = 50. Finally value of b is
assigned to a +=50; a=a + 50 = 10 +50 =60.

The output of the above program is
a=60,b=50,¢=5,d=10.

Table 1.10: Precedence and Associativity among C operators
Operator | Description Associativity Rank
() Function call Left to right 1
[] Array element reference
- Unary minus . 2
i Increment
-- Decrement
! Logical NOT Right to left
% Bitwise complement (1's complement)
$ Pointer reference (indirection)
& Address .
sizeof() | Size of an operand UGCS-102/137
(type cast) | Type cast conversion 21

Operator and Control * Multiplication Left to right 3
/ Division

Structures % Wil
+ Addition Left to right 4

=i Subtraction '

<< Left shift Left to right 5
> Right shift
< Less than Left to right 6
<= Less than or equal to
> Greater than _
p Greater than or equal to
= Equality Left to right 7
= Inequality
& Bitwise AND Left to right 8
A Bitwise XOR Left to right 9
I Bitwise OR Left to right 10
&& Logical AND Left to right 11
| Logical OR Left to right 12
2% Conditional (or ternary) expression ' 13
= Assignment operators 14
o
%=
t= Right to left
P
Ae
=
<<=
>>=
; Comma Right to left 15

1.11 LVALUE AND RVALUE

An Ivalue is an expression to which a value can be assigned. The
lvalué expression is placed on the left sideof an assignment statement,
whereas an rvalue is located onthe right side of an assignmentstatement.
Each assignment statement must have an lvalue and an rvalue. The
Ivalue expression mustreference a storable variable in memory. It cannot
be a constant. For instance, the following lines show a fewexamples of
lvalues:

The variable x is an integer, which is a storable location in memory.

UGCS-102/138 Therefore, the statement x = 1 qualifiesx to be an Ivalue.

22

We have stated that an lvalue'was defined as an expression to
which a value can be assigned. It was also explainedthat an lvalue appears
on the left side of an assignment statement. Therefore, an rvalue canbe
defined as anexpression that can be assigned to an lvalue. The rvalue
appears on the right side of an assignment statement.

Anrvalue can be a constant or an expression, as shown here:

intx,y;
x =10; /*101is an rvalue; x is an Ivalue */
y=(x+5); : /¥ (x+5)is anrvalue; yisan Ivalue */

An assignment statement must have both an Ivalue and an rvalue.

1.12 TYPE CASTING: PROMOTION AND
DEMOTION OF VARIABLE TYPES

Up to this point, we have assumed that all of our expressions
involved data of the same type. But, what happens when we write an
expression that involves two different data types, such as multiplying an
integer and a floating-point number? To perform these evaluations, one
of the types must be converted.'C’ provides two ways of type conversion:

1. Implicit type conversion: If operands are of different types, the
lower type is automatically converted to the higher type before the
operation carried out. The result of conversion is of higher type. The
automatic type conversion process is called as promotion of data type
to higher data type. The following sequence rules are followed while
evaluating expressions.

(@ char data type is automatically type converted to short (or

shortint).

(b) shortis autornatically converted to int, similarly int to long,
- longtointlong.

() floatisautomatically converted to double.

(d) Ifoneof the operand is double, the other is converted to double,
and the result is double.

(¢) Ifoneof the operand is unsigned, the other is converted to
unsigned, and the result is unsigned.

It is noted that final result of an expression is converted to the
type of Ivalue (i.e. variable on the left of assignment sign) before assigning
the value to it. Yet, the subsequent changes are introduced during the
final assignment. In this conversion process the following important
aspects are considered:

(i) Conversion of float to int causés truncation of the fractional part
(i) Conversion of float causes roundmg of digits.

Operators and

Expressions

UGCS-102/139
23

Operator and Control

Structures

UGCS-102/140

24

(i) ~ Conversionof longintto int causes dropping of the excess higher
order bits.

The above changes actually somewhat squeezes (i.e. truncation,
rounding off) the rvalue and assign it to the Ivalue. This process is
known as demotion, because you are trying to fit a big data type ob]ect
to the small data type object.

Look at the Program 1.9 that shows how an automatic promotion
of variables takes place. Execute the program and verify the results.

/* Program 1.9 */

#include<stdio.h>

int main()

| charc="a’;
float d =234.5;
inti=354;
short s =45;

printf(“int* shortisint: %d\n”,i*s);

printf(“float * char is float: %f\n”, d*c);

d=d+c; - [* char promoted to float */
i=c+s; /* char and short promoted to int */
printf(“float + char : %f\n”, d);

printf(“char + short is int:: %d\n”,i);

return(;
J

The output of the following program is:

int * short is int : 15930

float * charis float : 15242.500000

float + char : 299.500000

char + shortisint : 110

2. - Explicittype conversion:There are many situations where we

are forcing a type conversion in a way that is entirely different from
automatic type conversion process. Suppose we need to calculate the
speed of a vehicle, given that distance to be covered in 125km and time
to cover the distance is 3 hours. The speed of vehicleis given by

Speed =distance/time

Since both, distance and time, are declared as integer values,
the decimal part of the result of the division may be lost and the resulting
speed value will represent a wrong figure. This problem can be overcome
by converting one of the variables to the floating point as shown below:

Speed = (float) distance / time

The operator (float) converts the speed to the floating point
number for the purpose of evaluation of the expression. Now, automatic
type conversion plays its role and division is performed in floating point

mode. Thus restoring the fractional part of computation. The use of
operator(float)does not change the value of the variable speed. The value
is changed locally within the expression. Such an explicit type
conversion process is known as casting.

A cast tells the compiler to temporarily treat one data type as
though it wasanother.

The general format of a castingis:
(type-name) expression

wheretype-name is one of the standard ‘C’ data types. The
expression may be a constant, variable or an expression.

The cast has a high precedence and will be only applied to the
first operand of anexpression, unless the whole expression is bracketed.
If a cast is applied to a longer type then bits will be lost. A cast isequivalent
to assigning the expression to a variable of the type and then using
thatvariable in place of the whole construction.

Execute the program 1.10 and verify the results.

/* Program 1.10 */

#include<stdio.h>

int maing)

{

{

inta=2;

floatx =17.1, y=8.95, z;

charc;
¢ =(char)a + (char)x;

printf(“ charcis %c :\n
¢ =(char)(a + (int)x);

printf(“ charcis %c :\n”,c);
¢ = (char)(a +x);

printf(“ charcis %c :\n”,c);
c=a+x

rr

+Ch

printf(“ charcis %c :\n”,c);
z = (float)((int)x * (int)y);

printf(“ floatzis %f :\n”,z);

“z=(float)((int)(x * y));

printf(” floatzis %f :\n”,z);
Z gy

printf(“ floatzis %f :\n”,z);

“return 0;

Operators and

Expressions

UGCS-102/141
25

Operator and Control

Structures

UGCS-102/142
26

Check your progress 2
1. Statethe output of the following program:

tinclude<stdio.h>
int main()
{
intx=7,y=-7,z=11, w=-11,5=9, t = 10;

printf(“ x=5d, y = %d, z=%d, w =%d, s = %d, t=%d \n"), x, ,
z,w, s, t);

2. Assumei=36andj=19
What will the ouput of the following statement
k-=(i>15 && i <=234) 2 -1:1%; '

3. Write a C program to convert given number of days to a measure
of time given in years, weeks and days. For example, 365 days is
equal to 1 year, 1 week and thre days. (ignore leap year).

4. Write a progam which reads two integer numbers from keyboard
and perform multiplication on them using bitwise operation.

5 Write a program to sum the digits of a four digit number.

6. Assume thati, jand k are integer variables and their values are
8,5and 0 respecﬁvelty. What will be the values of variables i and
k after executinsg the following expressions?
(@ k=(j5)?(i<5)?i-j:j-i:k-j

b) i-=)?2(i)?2(j):(i):(k);
1.13 SUMMARY

This unit discusses various ‘C’ operators and their categories. ‘C’
expressions are valid combinations of operators and operands those
compute a value determined by the precedence and associativity of the
operators. The weak typing of C supports the mixing of operands of
differing types. Operands may undergo type conversion before an
expression takes on its final value. The general rule is that the final result
will be in the highest precision possible given the data types of the
operands. This may resultina promotion or a demotion, by which values
are converted to wider or less wide types. A demotion may cause lost of
most significant bits of an operand.

UNIT 2: DECISION STRUCTURES IN ‘C’ HedRes e iy

Structure

20 Introduction

21 Objectives

2.2 ifstatement

23 if....elsestatement

24 nested if ... else statement
2.5 switch statement
26 gotostatment

27 Summary

2.0 INTRODUCTION

Acomputer program is a set of instructions for a computer. These
instructions, also known as statements, are executed sequentially i.e, one
after the other as they appear in a program. There are many situations in
which the order of execution of these statements need to change based
on certain specific condition or repeat a group of statements until specific
conditions are fulfilled. This require a sort of decision making to check
whether a particular condition is satisfied or not and then instruct the
computer to execute particular instruchons accordingly. A part of datais
called logical if it conveys the idea of TRUE or FALSE. In real world life,
logicaldata (TRUE or FALSE) are créated in answer to a question that
desires a yes or no answer, In compuber science terminology, we donot
use yes or no, we use TRUE or FALSE. In C language, FALSE is 0 and
TRUE is anything other than 0, but most commonly 1.

In other words, we can say that a program can be much more
powerful if you control the order in whichstatements are running. There
are many situations in which we need to make selection between optional
sections of a program. Suppose you are required to prepare two lists of

candidates as given below:
1. List 1 contains name of students who will appear in examination.
- List 2 contains name of those students who are not eligible to

appear in examination.
These lists can be prepared on the basis of percentage of attendance
of student. Astudent can appear in an examination if it has maore than 75
% attendance, otherwise he or she will not eligible to appear in an
examination. Therfore to decide whether a student will be appearing in
examination or not, you need to compare his or her percentage of UGCS-102/143

27

Operator and Control

Structures

UGCS-102/144

28

attendance with 75, and then take a decision about what to do next. So
the decision statements are:

If attendance of student is greater than 75 then

Student is eligible for appear in an examination

Otherwise '

student is not eligible for appear in an examination

Let us consider another problem where decision is to be made:

“A person is eligible for a job if his age is between 18 and
30 years”

The above sentence can be written in term of logical expression
as:
age>=18 && age <=30

‘Remember that, we already discussed such kind of logical
expression in previous Unit. Therefore, a person will be eligible only if

this expression is evaluated to TRUE, otherwise the person will not
eligible. Let us check this expression for a person having age 16.

16 >¥18 &&16 <=30 =>FALSE&é& TRUE =FALSE
Consider another statement:

“Ravi will join the company if either kamlesh is President
or Rajul is Vice president”

The above statement is TRUE only when either Kamlesh is
president or Rajul is vice president:

So, we can come to conclusion that FALSE&& anything is
always FALSE, TRUE | | anything isalways true. It is noted that both
the above problems consist of relational operator as well as logical
operators. So in many situations we need to take decisions based on
some logical data.

In this Unit, we discuss various decision (or selection) structures,
including if, if ... else, nested if ... else, switch and goto that controls
the flow of execution of a program.

2.1 OBJECTIVES

After working though this Unit, you will be able to:

® Know the simple if statement, if... else and nested if .. else
construct.

® Understand when switch statement is used in programs
® Use goto statement for branching

® Write programs that involves simple to complex decision
structures.

2.2 THE if STATEMENT Decision Structures in 'C

In‘C, if is adecision making étaterﬁent and it is used to control
the flow of execution of statements.The decision is described to the
computer as a conditional statement that can be answered either true
or false. If the answer is true, one or more action statements are executed.
If the answer is false, then a different action or set of actions are executed.
The generalform of a simple if statement is:

if (test-expression)

{
}

Set-of-stateinents

rest-of-statement-block

The Set-of-statements may be a single statement or a group of
statements. If the fest-expression is evaluated as true, the Set-of-
statementswill execute, otherwise Set-of-statements will skip and the
execution transfers fo rest-of-statement-block. It should note that if text-
expression is true, then both Set-of-statementsand rest-of-statement-block
are executed in sequence. The test-expression may represent a relation
2xpression, a logical expression,a numeric variable or a numeric constant.
T'he specified condition may be a simple condition or compound
ondition. :

Consider the following program 2.1 that test whether a given
aumber is greater than 10.

"* Program 2.1*/
finclude <stdio.h>
void main()

int num =20; /* initialize num by 20%*/
if(num >10) '

printf(“The number is greater than 10\n");

printf(“The number is:%d”,nﬁm);

2.3 THEif....else STATEMENT

When there are two possible outcomes, we can use if -
sIse statement. Remember thatOtherwise is another way of saying else in
inglish. ButIn‘C’, we only use else. The if ..else statement is an extension

f if statement. The general form of if... else statement is as follows:
UGCS-102/145

29

Operator and Control

Structures

UﬁfS—lOZ/146

if (test-expression)

True-Set-of-statements

}
else
{ .
False-Set-of-statements
}

rest-of-statement-block

If the test-expression is evaluated as TRUE, the True-Set-of
statementswill be executed; otherwise False-Set-of-statements will be
executed, followed by execution of rest-of-statement-blockin sequence
In both the cases, anyone of the blocks will execute.

Consider a problem to determine whether a given number 1:
positive. Program 2.2 shows how this can be done with the help of if .
else statement.

/* Program 2.2 */
#include <stdio.h>

- void main()

{ intnumber;
printf(“enter any integer number”);
scanf(“%d”, &number);
if (number >=0)
printf(“The number is positive”);
else,
printf(“The number is negative”);

J

Question 1:Below the two statements are given. Verify that thei
simplified statements are correct.

Original statement Simplified statement
If(a!=0) If(a)

statement ' statement
If(a==0) If(!a)

statement ' statement

Question 2: Write a program to check whether the input year isalea
year or not.

2.4 NESTED if...else STATEMENT

When there are more than two possible outcomes, we us

several else and if’s in nested form as follows:

if (test-expression 1)
{
if (test-expression 1)
{
Statements 1
}
else
{
Statements 2
}
}
else
{
Statements3
}
rest-of-statement-block

Weneed to know that whether input number s posmve, negative
or zero. There are three possible outcomes, so we can use nested if . .
else statement to identify the number.

Consider the following example where we need to know that
whether two input numbers are same or one number is greater than
other. Following program 2.3 demonstrates this case.

/* Program 2.3 */
#include <stdio.h>
void main()
{ intnuml, num2;
scanf(“enter two integer numbers”);
“scanf(“%d %d”, &num1, &num?);
if (num1 <= num2). /* test num1 is greater than num2 |
if(numl <num?2)
printf(“%d is less than %d”; num1, num?2);
else
printf(“%d is equal to %d”, num1, num2);
else /* num?2 is greater than num1 */
printf(“%d is greater than %d”, num1, num2);

}

Note:elseis always paired with the most recent unpaired if.

2.5 else...if LADDER

It is the collection of if statements with association of else
statements when we have to perform multi-path decisions. A multi-path
decision is a chain of ifs in which the statements associated with each
elseis anif. It has the following general form:

Decision Structures in 'C'

UGCS-102/147
31

Operator and Control if (condition 1)
Sticties statement 1;
' else if (condition 2)
statement 2; _
else if (condition 3)
statement 3;
else if (conditionn)
statement n;
else
: default-statement;
rest-of-statement-block

This type of construct is known as else . . if ladder. The conditions
are evaluated from top of the ladder to downwards. If any one of the
condition evaluates to TRUE than all the statements in that block will
executed.Execution pointer will directly jump to the rest-of-statement-
block immediately after the closing curly braces. If all the given conditions
evaluates to false than all the statements in else block will execute. Here,
else block is also known as default statement.

The following example program takes a candidate’s age and test
score, and reports whether the candidate has passed the test. It uses the
following criteria: candidates between 0 and 14 years old have a pass
mark of 50%, 15 and 16 year olds have a pass mark of 55%, over 16’s
have a pass mark of 60%.

/* Program 2.4 */
#include<stdio.h>
void main()
l
int age, score;
printf(“Enter the candidate’s age: “);
scanf(“%d”, &age);
' printf(“Enter the candidate’s score: “);
scanf(“%d”, &score);
if (age <= 14 && score >=50)
{ printf(“candidate age is %d and he passed the test.\n”, age)
printf(“his score is %d\ n”, score);
}
' else if (age <=16 && score >= 55)
{ printf(“candidate age is %d and he passed the test.\n", age);
printf(“his score is %d \n”, score);
}
else if (score >= 60)
{ printf(“candidate age is %d and he passed the test.\n”, age);
UGCS-102/148 printf(“his score is %d \n”, score);

32)

else
printf(“This candidate failed the test.\n");

}

Question 3: Write a program that takes integer value in between 0 to 6
corresponding to Sunday to Saturday. The program will display name
of the day according to the input number.

2.6 switch STATEMENT

We have seen that when multiple alternatives are given and only
one s to be selected than use of the if statement can control the program.
But the program becomes more complex when number of alternatives
increases, not only for end user but also for the programmer who has
designed that. ‘C’ provides us a multiple selection mechanism through
the use of switch statement.

The switch statement is for the multi way decision. It is well
structured, but it is having onelimitation that it can be used only in
certain casevalues where onlyone variable (or expression) is tested

forcondition checking. When a match is found, a block of statements

corresponding to that case is executed. switch statement can only test
for equalitycondition (=).The general form of switch statement is shown
inbelow: '
switch (expression)

{

~caseconstant_1:
group_of_statements:1;
break;
case constant_2:
group_of_statements_2;
break; '

default:
default_group_of_statements;
break;
}

reét-of-statement-block

All branches of the decision must depend on the value of that
variable only. Also the variable used in condition checking must be an
integer or character type (int, long, short or char).In switch-case
statement each possible value of the variable can control a single branch
and a final, catch all leftover cases. You should use defaultbranch (final)
for catching all unspecified cases.

Decision Structures'in 'C'

UGCS-102/149

33

Operator and Control

Structures

- UGCS-102/150
34

The expression is an integer expression or characters. constant_1,
constant_2, are constants or constant expressions (evaluate to an
integer constant) and are known as caselabels. Each of these case labels
must be unique with in a switch statement. The group_of_statements_1,
grodp_of__s tatements_2... are the block of statements and may contain
zero or more statements. Also, there is no need to put braces around
these group_of_statements. However, each case label end with a colon

(2). |
When the control comes to switch statement, the value of
expression is compared with each case labels, i.e. constant_1,

constant_2..... If a case is found whose value matches with the

expression value, then the corresponding group_of_statementsare
executed sequentially.It should remember that break must be used after
the end of every group_of_statements, which indicates the end of
execution of block. Finally, control transfers to rest-of-statement-block.
The default is an optional case. When you write it inside the switch
statement, it will be executed when the value of expression does not match
with any of the case values, otherwise no action is perfomed and control
transfers to rest-of-statement-block.

Now; let us see the example below. This will clarify you the concept
of swifchcase. This example takes an objective which converts an integer
into a text description or you can say that this program is working to
estimate the number given as input.

intnumber;

/* Guess a number as none, one, two, many */
switch(number)
{case 0:
printf(“The number is : None\n”);
break;
casel: _
printf(“The number is :One\n”);
break;
case 2:
printf(“The numberis: Two\n”);
' break;
case 3:
case4:
case5:
default :
printf(“The number is : Many \n");

break;

In the above example, each case is listed with some corresponding
action.For examplecase 0 is associated with following action:

printf(“The numberis: N one\}l”); '
break;

The above switch statement uses empty cases. The case 3, 4, and
5and defaultexecute the same statement.

Consider the following case, where weekdays are displayed as
text strings on supply of digit in between 0 to 6 as input, This problem
can also be implemented with the help of switch statement as shown
below:

int day;

switch (day)

{case 0: printf (“Sunday\n");
break ;

case 1: printf (“Monday\n"); .
break;

case 2: printf (“Tuesday\n") ;
break ;

case 3: printf (“Wednesday \n”) ;
break ; '

case 4: printf (“Thursday\n") ;
break ; _

case 5: printf (“Friday \n");
break ;

case 6: printf (“Saturday\n"”);
break ;-

default: printf (“Error — invalid day.\n");
break;

}

2.7 goto STATEMENT

The goto statement is used to alter the program execution sequence
by transferring the control to some other part of the program. ‘C" supports
the goto statement to branch unconditionally froim one point to another
point in the program. The general syntax of goto statement is:

goto label; ‘ :

where labelis a valid ‘C’ identifier used to label the destination where the
control could be transferred. A label has the same form as a variable
name, and is followed by a colon. It can be attached toany statement in
the same function as the goto. The scope of a label is the entire function.
Alabel has following form:

label : statement;

Decision Structures in 'C’'

UGCS-102/151
35

Operator and Control

Structures

UGCS-102/152
36

There are a small number of situations where goto may find a
place. The most common isto dispose of processing in some deeply nested
structure, such as breaking out of two or moreloops at once. The break
statement cannot be used directly since it only exits from theinnermost
loop.Thus:

for(...)
for (...){
if (failure)
goto fault;
}
faul
[* patch the fault*/

This organization is helpful if the error-handling code is non-
trivial, and if errors can occur inseveral places.

Consider the program 2.8 that illustrates the use of goto
statement. The program computes the sum of first n natural numbers.
/* Pragram 2.8 */

#include<stdio.h>
void main()
{

intlimit, num, sum=0;

printf(“Enter the limit for addition of natural numbers\n “);

scanf(“%d”, &limit); '

num=1;
target: sum += num; /* target used as label */

if (num <limit)

{ num-++;
gototarget;

}
printf(“Sum of first %d natural numbers is %d \n\n", limit, sum);

The output of the above program is:
Enter the limit for addition of natural numbers
10
Sum of first 10 natural numbers is 55
Check your progress 1
L State the output of the following program

x=1;

y=1 Decision Structures in 'C’

- if(n>0)
x=y+1;
y=y-1

printf(“ %d %d”, x, y);

What will be the values of x and y if n assumes a value of (a) 1

and (b) 0.
2. Write a program to find the type (i.e. equllateral isosceles, Scalene
ornone) of triangle.
3. Write a program to find the number of and sum of all integers
greater than 100 and less than 200 that are divisible by 7.
4. Write a program that will read the value of x and evaluate the
following function A fery =4
o= | O Fery =0

iw! far o &
Using (a) nested if statements
(b) Else if statements, and -

(c) Conditional operator ?:

5 Create a program and execute it to check the category of the
entered character.

- #include<stdio.h>void
main()

char ch;
printf(“enter the character\n”);
scanf(“%c”, ch);
if(ch>="0" && ch<="9")
printf(“\n%c is a digit\n", ch);
elseif ((ch>="A"&&ch <="Z") | | (ch>=a’ && ch<="2"))
printf(” \ n%cis an alphabet\n”, ch)
else
printf(“\n%c is a special charcatert\ n” ch)

}
6. Write a program to find the smallest of 3numbers.

2.8 SUMMARY

The logical operators, like &&, || and !, relational operators can be sued
in conjunction with if. .. else statements to create programs with branches. ‘C’
does not support data type for booelan decision. However, it can be cleverly
implemented with the help of TRUE (anything) or FALSE (0). This unit discusses
nested if..else construct, ladder else .. if and its better alternative switch statement.
The unconditional branch statement goto can be used in few places; like, to get
rid out from innermost loops. 37

UGCS-102/153

Operator and Control
Structures

UGCS-102/154
38

UNIT 3: LOOP STRUCTURES IN ‘C”

Structure

30 ' Introduction

3.1 Objectives

3.2 forstatement

3.3 whilestatement

34 do.....while statement
35 break statement

3.6 continue statement

3.7 Summary

3.0 INTRODUCTION

In general statements are executed sequentially i.e the
firststatement in a function is executed first, followed by the second, and
soon.Most algorithms require a control structure that will allow us to
repeat certain lines of code until a condition is reached. We call these
repeating structures loops. ‘C’provides various control structures that
allow for more complicated execution paths. Loop structures are often
desirable in coding in any language to have the ability to repeat a block
of statements a number of times. In ‘C’, there are statements that allow
iteration of this type. Specifically, there are two classes of program loops
i.e. unconditional and conditional. An unconditional loop (for example,
goto) is repeated a set number of times. In a conditional loop the
iterations are halted when a certain condition is true. Thus the actual
number of iterations performed can vary each time the loop is executed.
The ‘C’ programming language has several structures for looping and
conditional branching. ' |

. A loppstatement allows us to execute a statement or group of
statements multiple times, Following is the general from of a loop
statement (see Figure 3,1)which is found in most of the programming

languages.

r 3

Conditional code

b

condition

_If condition is true

If condition is false

Figure 3.1: general form of loop statement

Aloop is a sequence of statements those are executed until some
conditions for termination of the loop is not satisfied. Aloop therefore
consists of two parts; one is body of the loop (or conditionalcode) and
another is control statement(or condition) as shown in Figure 31. The

control statement (or condition) tests certain conditionsand then allows

the repeated execution of the statements contained in the body of the
loop.

With respect to the position of control statement in the loop, a
control structure may be classified either as the entry-controlled loop or
exit —controlled loopas specified in Figure 3.2.

Entry Entry

false Body of the loop

Test
Condition ?

false

Test
Condition ?

Body of the loop

l

(a) Entry control (a) Exit control

Figure 3.2: Loop control

In the entry-controlled-loop, the control conditions are tested
before starting of the loop execution. If the conditions are not satisfied,
then the body of the loop will not be executed. In the case of exit-
controlled-loop, the control conditions are tested at the end of the body
of the loop and therefore the body is executed unconditionally for the
first time.

We can also distinguish two types of loops, which differ in the
way in which the number of iterations(i.e. repetitions of the body of the
loop)is determined: _

o Definite(or determinate) loops, in which the number of
iterations is known before we start theexecution of the body of
the loop.The example of definite (or determinate) loops is the

Loop Structures in 'C’

UGCS-102/155
39

Operator and Control

Structures

UGCS-102/156
40

for-loop that we will see in next section. The definite loop is
also known as counter controlled loop.

Example: repeat for 10 times printing outa $.

Indefinite(or indeterminate) loops, where the number of
iterations is not known before we start to execute the body of the
loop, but depends on when a certaincondition becomes true (and
this depends on what happens in the body of the loop). This
category has two types of “while” loops, one that allows the

+ execution of the block only if a given condition is true and

another that would allow the execution of the block at least
once, and then, only if the condition is true, The indefinite loop
is also known as event- controlled loop. An event-controlled
loop will terminate when some event occurs. The event may be
the occurrence of a sentinel value. A sentinel value is a special
signal to indicate the end of input. There are other types of events
that may occur, such as reaching the end of a data file.

Example: while the user does not decide it is time to stop, take the
print out and ask the user whether he wants to stop.

The ‘C’ language provides three types of loop structures for

performing loop operations. They are:

(a) whilestatement
(b) do..whilestatement
(0 forstatement
3.1 OBJECTIVES
After working though this Unit, you should be able to:
o Write programs using for, while() and do.. while() loops.
° Use the break statement to jump from the loops.
° Use continue statement to abort the current iteration and start.

new iteration.

3.2 while STATEMENT

' The while loop is the simplest loop structure. The while statemer

allows us to perform pretest loops. Thus, it is an entry controlled loog
The syntax (or format) of thewhile loop is as follows:

while (conditional-expression)

{

body of the loop

The while loop executes as long as the conditional-expression is
true. The body of the while loop is a compound statement which is
repeatedly executed and again conditional expression is evaluated. The
body of the loop must have some statement which will eventually makes
the condition false. The loop terminates when the conditional expression
becomes false. If the conditional expression cannot become false, the while
loop becomes an infinite loopexecuting endlessly. As the conditional-
expression is evaluated first, the while loop statement will be executed
Zero or more times.

Every while loop will always containthree main elements:
. Priming: initialize your variables.
. Testing: test against some known condition.
. Updating: update the variable that is tested.
Consider a simple example

/* Program 3.1 */

#include <stdio.h>

#define MAX5

voidmain ()

{

intindex =1; /* priming: initialization of variable */
while (index <= MAX) /* testing: test the condition */

{

printf (“Index: %d\n”, index);

index=index +1;

/* updating: increment the variable */
J
J

The output of the above program is:

U = W N =

The above program initializes the variable index, test the value of
index with some predefined value and then incrementing the index value
by 1 inside the while loop. The updating of index is very essential
otherwise test-condition never becomes false and while loop goes into an
infinite loop.

Loop Structures in 'C’

UGCS-102/157
41

Operator and Control

Structures

UGCS-102/158
42

Example:

A class teacher needs to calculate the average exam grade fora
class of 10students. Such kind of problem can also be solved by using

‘while loop. In this case, grade is the required input and average of grade

is requested output. We initially assign variable counter as 1 and
increment its value up to 10 (as maximum student is 10 in a class). On
each iteration, we check whether counter reaches to 10. If it is not, the
grade is taken as input and total grades are summed up on each iteration.
With the body of loop, counter variable is incremented by 1. Thus, itis
guaranteed that while loop will terminate after finite number of steps.
/* Program 3.2 */
#include <stdio.h>
int main ()
{ _

int counter, grade, total, average ;

total=0;

counter=1;

while (counter <=10)

. printf (“Enter a grade : “);
“scanf (“%d”, &grade) ;
total = total + grade ;
counter = counter+1;

J

average =total /10;
printf (“Class averageis: %d\n", average) ;
return0;

}

Question 1: The program 3.2 works only with class sizes of 10. What
about if class size vary after few months? We would like our program to
work with any class size.Hence, modify the above program which asks
the user about how many students are in theclass. Use that number in
the condition of the while loop and when computing the average.

+ The program 3.3 shows the use of while loop to check user input.
If entered numer is negative, then appropriate message will appear,
otherwise; input number is displayed on screen.
/* Program3.3 */
#include <stdio.h>
intmain ()

{

int number ;

- printf (“Enter a positive integer : “) ;

scanf (“%d”, &number) ;
while (number<=0)

{

printf (“\nThat’s incorrect. Try again.\n");
printf (“Enter a positive integer: “) ; ~.
scanf (“%d”, &number) ;

}

printf (“You entered: %d \n”, number);
return(; '

| ,
Wehave already stated that sometimes while loop is worked as
an event controlled loop. It is NOT known in advance exactly how
many times a loop will execute. Consider the following program 3.4
which shows the sentinel value as an indication of end of input. The
sentinel value serves as an event to occur. The program adds the value
that is taken as input from keyboard. The input ends as soon as user
type -1. |
/* Program 3.4 */

#include<stdio.h>
voidmain()
{
sum=0; /* initialization of variable */
printf(“Enter an integer value: “);
scanf(“%d”, &value);
while (value =-1) /* -1is a sentinel value; it indicates

end of input */

sum=sum+ value; /* data modification */
printf(“Enter another value: “);
scanf(“%d”, &value);

The following program 3.5, calculates the mean and standard
deviation. We have used sqrt function to find the square root. Since the
function is from the math library we must have the directive #include
<math.h> before main (). The mathematical library takes only
arguments of type double. Hence we convert float to double by explicit
cast operator (double) before we apply sqrt function. The mathematical
library does not convert float to double by default. The program stops
when user inputs the frequency f as 0. Verify the result on your machine.

/* Program 3.5 */

#include<stdio.h>
#include <math.h>

voidmain()

Loop Structures in 'C'

UGCS-102/159
43

Operator and Control

Structures

UGCS-102/160
44

{ float x, mean, devi, sum=0, sqsum=0;
intn=0, f=1; '
while (£!=0)
{ printf(”\nenter value & freqency”);
printf(“enter fregency 0 to stop”);
scanf (“%f%d”, &x, &f);
n+=f; /[*nis total number of observations®/
sum += f*x; sqsum += f*x*x;

mean =sum/n;

~devi=sqrt((sqsum /n - mean * mean));
printf(“\n total number = %d”, n);

v printf(“\nmean = %.2f”, mean);
printf(“\n std. deviation = %.2f”, devi);

}
3.3 do...while STATEMENT

The do...while statement is a variant of the while statement in
which the condition test is performed at the “bottom” of the loop.
Thedo....while statement is used to write post-test loops. Thus, itis
an exit controlled loop. The syntax (or format) of thedo ...while loop
isas follows.

do

{ _
. body of the loop

}while (conditional-expression);

Note that, the conditional-expression appears at the end of
the loop, sobody of the loop execute once before the condition is tested.
If the conditional-expression is true, the flow of control jumps back
up to do, and body of the loop execute again. This process repeats
until the given condition becomes false. As the conditional-expression
is evaluated after the execution of body of the loop, this guarantees that
the loop is executed at least once. The do loop terminates with a semi-

‘colon (;).

The following program 3.6 reverses an integer with a
do....whileloop. Check the output of the program:
/* Program 3.6 */
finclude<stdio.h>
voidmain()
{

int value, r_digit;

printf(“Enter the number to be reversed.\n”);
scanf(“%d”, &value);
do{

r_digit =value % 10; /* obtain remainder */
printf(“%d”, r_digit);/* print remainder */
value=value/10; /*modify value; */

} while (value!=0); /* testuntil value becomes zero */

printf(“\n"); '

The above program just displays the reverse of number, however
it actually does not store that number. Modify the above program so
that it stores the value of reverse number as well as display it.

3.4 for STATEMENT

Itis simply a new way to describe the “while” loop. We use for
loop in place of while when both start and end conditions are known
and after every iteration of the loop there is an increment step. A for loop
is a repetition control structurethat allows you to efficiently write a loop
that needs to execute a specificnumber of times.The for loop is an example
of counter controlled loop and entry controlled loop.

The basic syntax of the forstatement is:
for (initialization expression;test expr;increment expr)

{

program statement(s);

The flow of control in a for loop is described below:

1. The initialization expressionstep is executed first nr.! anly
once. This step allows you to declare and initialize any loop control
variables. Itis noted that you are not required to put a statement here, as
long as asemicolon appears.

2. Next, the test expr(or condition)is evaluated. If it is true, the

program statement(s) inside the body of the loop is executed. If it is

false, the program statement(s) inside the body of the loop does not

“execute and flow of control jumps to the next statement just after the for
loop. The body of the loop is usually a compound statement. Hent_:e, we
have enclosed it in the curly braces. If it is a simple statement the braces
are unnecessary

3. After the program statement(s) inside body of the for laop
executes, the flow of control jumps back up to the increment expr

Loop Structures in 'C’

UGCS-102/161

45

Operator and Control

Structures

UGCS-102/162
46

statement. This statement allows you to update any loop control variables.
This statement can be left blank, as long as a semicolon appears after
the condition.

4. The condition isnow evaluated again. If itis true, the loop executes
and the process repeats itself (program statement(s), then increment
expr, and then again test expr). If the condition in test expression (test
expr) becomes false, the for loop terminates.

Consider a simple example where a variable starts from initial
value of 15 and stop when its value becomes 20. On every iteration, the
current valueis displayed.

/* Program 3.7 */
#include <stdio.h>
int main ()

{

/* for loop execution ™/
for(inta=15;a<20;a=a+1)

{

printf(“value of a: %d \n”, a);

}

return0;

}

The output of the above program is:

value of a: 15
value of a: 16
value of a: 17
value of a: 18

value of a: 19
_The forloop s easier to write and is equivalent to a while loop.

A loop becomes infinite loop if the test expression condition never
becomes false. Afor is normally used to make a loop infinite. Since none
of the three expressions that form the for loop are required, you can
make anrendless loop by leaving the conditional expression empty. The
following program is an example of infinite loop.

#include <stdio.h>
int main ()
{

~for(;;)

printf(“Iam running forever.\n");

' return O;

When the conditional expression is absent, it is assumed to be
true. Usingfor(;) construct signify an infinite loop.

NOTE: You can terminate an infinite loap by pressing Ctrl +Ckeys.
3.5 NESTED LOOPS IN C

‘C’ programming language allowsusing one loop inside another
loop. Following section shows few examples to illustrate the concept. The
syntax for a nested for, while and do... while loop statements in ‘C’are
as follows:

for (init; condition; increment)

{

for (init; condition; increment)

{ statement(s);
}
statement(s);

}

while(condition)

{ i
while(condition)
{ statement(s);

>

statement(s);

} 3

do

{

statement(s);

do '

{ statement(s);
}while(condition);

}while(condition);

You can place any type of loop inside of any other type of loop. For
example a forloop can be inside a while loop cor vice versa.

_ " Consider the following program 3 8 that uses a nested for loop to find the
prime numbers from 2 to 50.

/* Program3.8 */

R

#include <stdio.h>
intmain ()
/*local variable definition */
inti,j;
for(i=2; 1<50;i++)
{

for(=2;j <= (1/j); j*++) :
if{(1(1 %yj)) break; /1 if factor found, not prime

Loop Structures in 'C’

UGCS-102/163
47

Operator and Control if(j> (i) printfC*%d s primen”, i)

}

Structures fetum{);

}
The output of the above program is:

2 is prime

3is prime

5 is prime

7 is prime

11is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31is prime
37is prime
41 is prime
43 is prime
47 is prime

3.6 FLOW CONTROL STATEMENTS

. Flow control statements determine the next statement to execute.
"Thus, the statements which we have studied earlier like; if-else,

if switch, while, for, arid do are flow control statements. But the above
statements do not allow us to determinein an arbitrary way which is
the next statement to be executed. As an alternative they structure the
program, and theexecution flow is determined by the structure of the
program. '

‘Callows us touse]ump statements. These statements are also flow :
control statements that cause the interruption of the execution flow and
jumpsto a different statement that is not lie in the successive sequence

path of program statements.
There are following two types of Jump statements are used in
‘C
® : break (jump to the statement immediately following the current
~ loop or switch statement)
o continue (jump to the condition of the loop)

3.6.1 break statement

Thisis a valuable statement when you need to jump out of aloop
depending on the value of some results calculated in the loop. The break
will jump out of the loop you are in and begin executing statements
following the loop, effectively terminating the loop. The break statement

UGCS-102/164
48

canbe used in while, do-while, and forloops to cause premature exit Loop Structures in 'C’

of the loop.

Ithas following two ﬁsages:

1. When the break statement is encountered inside a loop, the loop is
‘immediately terminated and program control resumes at the next statement
following the loop.

2. ltcanbeused to terminate a case in the switch statement (already

covered in decision making).

If you are using nested loops (i.e. one loop inside another loop),
the break statement will stop the execution of the innermost loop and
start executing the next line of code after the block.

The syntax of a break statement is as:
break ;

This statement has to be placed inside the body (a block usually)of
a while, do..whileor for statement. It stops the execution of the
bodystatement and jumps to the end of the statement. The remaining
statementsof the including block are simply skipped. The break statement
is usuallyassociated with an if statement to decide if the loop has to be
exitedor not.

Consider the following program to illustrate the working of break.

1 voidmain()
2 {
3 intij;
4, for (i=0;i<5; ++)
5. { _
6 if(i==3)
7 break;
8 _ printf(” %d “i);
9 J
10. printf(“value of i after break statement is %d”, i);
11. }

~ The output of first, second and third iteration is 0, 1, and 2
respectively. When i is 3, we encounter the break statement. The control
is transfer to the statement just following the exited loop, which is line
number 10. So output “value of i after break statement is 3 is displayed.

When several loop statements are embedded together, a
breakstatement will be applied to the closest loop statement:
for (i=0;1i< 10; ++)
{
while (i!=5)
{ UGCS-102/165

Operator and Control

Structures

UGCS-102/166
50

break;
printf(” %d “,i);
)
printf(“ %d “,i);

In this example, the break statement will stop the while loop
only whenIbecomes 2.

3.6.2 continuestatement

The continue statement can be used in while,do-while, and
forloops, and its effect causes the remaining statements in the body of
the loop to be skipped for the current iteration of the loop. The syntax
for a continue statement in ‘C’ is as follows:

continue;

Example; Print out the odd numbers between 0 and 100.
for (inti=0; i <=100; i++) {

if(i%2==0)

continue;

pl’iﬁtf(_”%d", i);

For the for loop, continue statement causes the conditional test
and increment portions of the loop to execute. For the while and
do...while loops, continue statement causes the program control passes
to the conditional tests.

Normally, a break or a continue statement causes the exit from
a single level of nesting of switch or loopstatements in which it appears.
However, such statements allow also for exiting from more than one
level ofnesting of a switch or loop.Hence to do this, the statements that
define a block can have a label:

label :loop-statement ;
A label must be a constant expression (analogous to those used in

‘the cases of a switch statement).The statementisas:

breaklabel ;

interrupts the loop that has the label specified in the break
statement. If there is no loop with the specifiedlabel that surrounds the
breaklabel statement, then a compile-time error is signaled.Consider a
Program 3.9 that causes exiting from more than one level ofnesting of
for loop.
/* Program 3.9 */
#include<stdio.h>
main()
(_

for(i=1;i<15;i=i+1)

for (j=1;j<13;j=j+1)
if (j%7==0)

break out; /*use of break label; statement*/

printf (“X”);
}

}
printf (“\n");
)
out: printf(“ I am in out label exiting from all nested loops”); /* out
label */
}

3.7 SUMMARY

‘C’ provides three lop structures to control the repeated execution
of one or more statements. The counter controlled; for loop is a counting
loop that may also involve other conditional testing, used extensively
with arrays and uses pretesting of the loop control variable(s). The while

or do-while loop is used for event controlled repetition. A while loop is
used when it is possible that the loop may never execute. Itis a conditional
loop that often doesn't involve counting, it uses pretesting of the loop
control variable(s). A do-while loop is used when the loop must execute
atleast one time. It uses post-testing of the loop control variable(s) and
generally used with interactive input. C allows us to use jump statements.
These statements, like break and continue, are also flow control
statements that cause the interruption of the execution flow and jumps
to a different statement that is not lie in the successive sequence path of
program statements.

Check your progress 1
1. Check the output of the program:

#include<stdio.h>
voidmain()
{
inti=1; factorial=1;
while (i<=n)
{ factorial *=1i;
i=i+1;
}

Loop Structures in 'C’

UGCS-102/167

51

Operator and Control

Structures

UGCS-102/168
52

2. 'Willthisloopend?
j=15;
while (j--);

3 find the output of the programs (a)

errors, if any.

(a)

void main()

{

intk;
for (k=1; k<=8 ; k+=2)

~ printf(“%d”, k*=3);

} .

(b)

void main()

{ _
intk=0,p=1; \
for (k=10;k>0; —k)
{p*=k+;
k -=2;
}
printf(“%d%d”, k, p);

}

]

void main()

{ intk=0,sum =0;
while (k <=4)
sum *=k++;
printf(“%d",sum);

)

(d)

void main()

{ intg; '
while (! (c = getch()))
putchar(c);

}

(e)

void main()

[_
intk=1;
do
{ i

- printf(“%d”, k);

} while (k> k);

}

6

void main()

{

intk =3, sum =0;
for (k=0; k <=5; k)

to (h) after correcting syntax

{
if (k >3)

continue;
sum +=Kk;
} printf(“%d %d”, k, sum);
}
()
void main()
{
intk=3, sum=0;
for (k=0; k <=5; k++)
{ if (k> 3) break;
sum +=k;
} printf(“%d %d”, k, sum);
}
(h) void main()
{
intx,y=2;,
for (x=5; x<18; x +=4)
{
yEx
printf(“%d %d \n",x,y);
\ _
J
4. Read a series of 'n’ numbers and add up them. Also find the

squares of those numbers. After all numbers are input, print the mean
and standard deviation.

5. How many times does for loop execute?
(@) for(i=m;i<=n;i++)
(b) for(i=m;i<n;i++)

() for(i=m;i<n;i+=Xx)

6. The following program print every Nth number between 0 and
100, inclusively.
#include<stdio.h>
voidmain()
{
constint N =10;
inti;
for(i=0;
i<=100;i +=N)
printf(“%d\n”, i);

Loop Structures in 'C'

UGCS-102/169

53

Operator and Control

Structures

UGCS-102/170
54

Answer the following questions.

(@)
(b)

7
0
1
2
3
4
5
6
8

64

How many times is the loop executed?

What is the value of the loop control variable i when the loop
terminates?

Write code to output the first two columns:

Following program displays the conversion of temperature in

Celsius to Fahrenheit.

#include<stdio.h>
voidmain(),

{

}

int ctemp;
float ftemp;
printf(“ ctemp \t ftemp”);
for (ctemp = 100; ctemp <=0; ctemp--)-
{ ftemp =(9.0/5.0) * float(ctemp) + 32.0;
printf (“%10.1f %10.1f\n", ctemp, ftemp);

Answer the following questions.

@
5.0)?

(b)

What would happen if we had written (9/5) rather than (9.0/

What would happen if we had left off the parentheses from
around (9.0/5.0)?

Why was it a good idea to write float(ctemp) in the above
expression rather than just ctemp? |

The loop as written will not execute at all. Why not, and how
should you fix it?

#include<stdio.h>
voidmain()

{

(=100 >= 1.
for(i=100;1>=1;i--) Loop Structures in 'C’

printf(“%d\n”, i);

}

Answer the following qtiestions.

a. Whathappens when test condition is changed to i>1? How
abouti>0?

b. Whatis the value of the loop control variablei when the loop
terminates? ' '

10. Following program reads and adds a collection of positive floating
point numbers (until a 0.0 value is read)

#include<stdio.h>
voidmain()
{
float item;
floatsum=0; //initialize the sum
printf (“Enter a positive number. Use 0 to stop)”);
scanf (“%f”, &item);
while (item !=0.0) // test for sentinel value 0.0

{ sum += item; // sum = sum + item;
printf (“Enter a positive number. Use 0 to stop)”);
scanf (“%f”, & item); '

}

printf (“The sum of the values just read is: %f”, sum);

}

Answer the following questions.

(@ Re-write this loop to count the number of items read. Note that
this number is not known before hand so it is more convenient to
use a while loop here. '

(b) Hand trace this loop to be sure it works. Use values 1.1, 2.2, and
33

(0 Whatwill happen of the f1rst printf /scanf pair is omitted? Trace

theloop.

(d Whatwillhappenif the second printf/scanf pairis omitted? Trace
theloop.

€ Whatwould happen if there were just one pair of printf/scanf
- statements and these were placed at the very beginning of the
loop?
1. ' UGCS-102/171
(@) Whatdoes the following code do? 55

Operator and Control

Structures

UGCS-102/172
56

intx, y=0;
scanf(“%d”, &x);

while(x !=0) {

y = (x % 10) + (y * 10);
x [=10; -

printf(“%d”, y);
Trace with x values 12, 452, and 1825. What about negative values?

(b) ~ What does the following code do?
Cintx, y;
for(y =0, -
printf(“%d”, x) /] expression 1
x!=0; /I expression 2
y=x%10+y* 10, (x /=10); // expression 3 and null body (the
: semi-colon)
printf(“%d”, y);
Trace with small x values 12, 452, and 1825.
() Arethetwo previous codes functionally equivalent?
12. Modify the program so that it does not make use of break
statement.
#include <stdio.h>
int main ()
{
“inta=10;
while(a<20)
{
printf(“value of a: %d\n”, a);
at+;
if(a>15)
{
break;
)
J
return 0;

UNIT 4: ARRAYS AND STRINGS

Structure

40 Introduction

41 Objectives

42 Onedimensional array
43 Twodimensional array
44 Multidimensional arrays
45 Strings

4.6 - String handling functions
4.7 Character functions

48 Summary

4.0 INTRODUCTION

“C’ programming language provides a data structure called the
array, which can store a fixed-size(or bounded) sequentialcollection of
elements of the same type. Arrays are an example of a structured
variable in which (1) there are a number of elements of data contained
in the variable name, and (2) there is an ordered method for extracting
individual data items from the whole. An array is used to store the
collection of data, but it is often more useful to think of an array as a
collection of variables of the sametype.

Consider the case where you need to keep track of the roll number
of student for a class of 100 students. Your first approach might be to
create a specific variable for each student. This might look like

_introll0 =100 introll1=101; int roll2 =102;
- Itbecomes increasingly more difficult to keep track of the roll

numbers as the number of variables increase. Arrays offer a solution to
this problem.

Instead of declaring individual variables, such as roll0, rolll, ..., _

and roll99, you declare one array variable such as Roll No and use
RolINo[0], RolINo[1], and ..., RolINo[99] to represent individual
variables. A specific element in an array is accessed by an index
number orsubscript in brackets after the array name. Thus,

RollNo[0]=100, « RollNo[1]=101, RollNo[2]=102
represent individual variables with correSponding assigned values.

Individual variables are also called elements of an array.

Arrays & Strings

UGCS-102/173

57

Operator and Control

Structures

UGCS-102/174
- 58

All arrays consist of contiguous memory locations. The lowest
address corresponds to the firstelement and the highest address to the
last elementof the array as shown in Figure 4.1. '

First Last
element element
d
RolINo[0]| RolINo[l1]] RoliNo[Z]| ... oease | | e RolINo[9]

Figure4.1 : Array consisting of 100 elements

Here we present some rules to create arrays:
1. All elements of an atray are of the same type.

2 The number of elements in an array cannot change once you
have instantiated thearray.

3 The type of the array can be any datatype, primitive or non-
primitive (structure type).

41 OBJECTIVES

After working with this Unit, you should be able to:

o Declare and initialize one dimensional and multi dimensional
‘array. .

@ Write programs using arrays of different data types.
. Apply various operations on an array.

o Know string arrays and various operations of them.

4.2 ONE DIMENSIONAL ARRAY

An array is a multi-element box (of same type), and uses an
indexing system to find each variable stored within it. In ‘C’, indexing
starts at zero. Arrays, like other variables in‘C’, must be declared before
they can be used.To declare an array in ‘C’, specify the type of the
elements, name of an array and the number of elements in a single
subscript [] as follows:

' type arrayName [arraySize];

This is called a single-dimensional array. The array Size must
be an integer constant greater than zero and type can be any valid ‘C’
data type. For example, to declare a 7-element array called amount of
type double, use the statement:

double amount[?];

Here amount is a variable array which is sufficient to hold up-to
7 double numbers.Since double data type takes 8 bytes in a memory,
an array variable occupies 8 * 7 = 56 bytes for the array in memory.

During declaration consecutive memory locations are reserved for

the array and all its elements as shown in Figure 4.2. Here, we assume
that first element of amount array has physical address 4000. Since
each element is double type, it takes 8 bytes in memory, so the next
clement starts at physical address 4008. Similarly, last element is at
physical address 4048. After the declaration, you cannot assume that
the elementshave been initialized to zero. There are random }unk ateach
element’s memory location.

The syntax for an element of an array items is amount[i], where
iis called the index of the array element. The array element amount[1]
is just like any normal double variable and can be treated as such. Each

amount[i] element is also known as logical address of an array. In |

memory, one can picture the array amount as in the Figure 4.2.

First Last
element element

. 1

|
amount |
—_

amount(0] amoﬁnt[l] amount[2] amount[3] amount[4] amount[5]
4000 4008 4016 4024 4032 4040

ANAD

Figure 4.2: An array amount having 7 elements - -

~ Similarly, int marks[100]; declares the marks as an array to
contain a maximum of 100 integer constants.

Consider this fragment of program:
1: int square[4];
2: inti;

3 for(i=0;i<4;itt)

4 square[i] = (i+1)*(i+1);

Line 1 defines an array with 4elements, each element is of integer
type. The firstelement of an array has the index 0. Thus, this declaration
gives 4 elements:

square[0]
square[1]

Arrays & Strings

UGCS-102/175

59

Operator and Control

Structures

UGCS-102/176
60

square[2]
square[3]

The last element has an index that is one less than the size of the
array:
Line 2 defines a control variable for the loop that starts at line 3 and
iterates roundthe statement at line 4.

Line 4 in turn assigns to each element the square of its next position ('that
is one morethan its index).

In‘C’ language, character strings can consider also an array of
characters. The arraySize in a character string represents the maximum
number of characters that the string can hold. For example,

char message[10];

declares the message as a character array (string) variable that-
can hold a maximum of 10 characters. Suppose we assign the “HELLO”
string constant into the variable message. Each character of the string is

treated as an element of the array message and is stored in the memory

asfollows:

When the compiler sees a character string, it terminates it with
an additional null character. Thus, the element message[5] stores the
null character \0” at the end. Thus during the declaration of arrays,

- we must always allow one extra character space for the null character.It

is unnecessary for the programmer to enter the null character, as ‘C’ adds it
automatically. -

4.2.1 Initialization of Array
| ~ The general form to initialize the array is:
staticdata_type array_name[size] = {list of values };

where, values in the list are separated by commas. Note that, we have
used the word static before declaration. This declares the variable as a
static variable. If we want to initialize an array, then we can declare it as
a static variable. This causes array elements initialized with 0.

You can initialize array in ‘C’ either one by one or using a single statement
as follows:

double amount[7] = {1000.0, 200.0, 312.4, 1712.0, 50.0, 78.90, 45.67};

The number of values between braces { } cannot be larger than
the number of elements that we declare for the array between square
brackets []

If you omit the size of the array, an array just big enough to hold
the initialization is created. Therefore, if you write:
double amount{] = {1000.0, 200.0, 312.4, 1712.0, 50.0, 78.90, 45.67};

You will create exactly the same array as you did in the previous
example.

amount|[6] = 50.0;

The above statement assigns 50.0 to the 7" element position in
the array. Array with 6th index will be 7th i.e. last element because all

arrays have 0 as the index for their first element which is also called as

base index and the physical memory address for this first element is
known as the base address of the array. Following is the pictorial

representation of the same array we discussed above::
First Last

element eiement
' rovo.0 | 200.0 312.4 17120 | 500 | 78.90 45.67

- amount |
|

amountf01 amountl1] amount/21 amount[3] amountl4] amountf5]
4000 - 4008 4016 4024 4032 4040

Figure 4.2: An wray amount having 7 elements

You can also declare array element one-by-one using the foliowing
statements;

double amount{0] = {1000.0};

double amount{1] ={200.0};

double amount|2]= {312.4};

double amount[3] ={1712.0};

double amountf4] ={50.0};

double amount[5] = {78.90};

double amount[6] = {45.67};

If the declaration of an array is preceded by the word static, then
the array canbe initialized at declaration. The initial values are enclosed
in braces. e.g.,

static int value[9] = {1,2,3,4,5,6,7,8,9};
static float height[5]={6.0,7.3,2.2,3.6,19.8};
Some rules to remember when initializing during declaration:

1. = Ifthelistof initial elements is shorter than the number of array
elements, theremaining elements are initialized to zero.

UGCS-102/177

61

Operator and Control

Structures

UGCS-102/178
62

2. If astatic array is not initialized at declaration manually, its
elements areautomatically initialized to zero. o

3. If a static arfay is declared without a size specification, its size
equals thelength of the initialization list. In the following
declaration, array price has size 5. '

static int price[]-{6 12, 18 2,323},

As we have already discussed that indexing is the method of
accessing individual array elements.Thus msg[4] refers to the 5th element
of the msg array. Acommon programming error is out-of-bounds array
indexing. Consider thefollowing code:

int grade[3];
grade[S] 78;

In the above example, array grade has only three elements. You are
trying to access 5" element which is actually not.a part of array grade. -
The result of this mistake is unpredictable and machine,
compilerdependent.

4.2.2 Accessing Array Elements

An element of array is accessed by indexing the array name.
This is done by placing the index of the element within square brackets
after the name of the array. For example:

double ;ost = amount[9];

" Theabove statement will take 6th element from the array and
assign the value to cost variable. '

- There is more suitable way to do the same thing. Remember that
array variables and for loops often work hand-in-hand,since the for
loop offers a convenient way to successively access array elements and

'perform some operation with them. Basically, the for loop counter can

use to define the index for an array, as shown in the following summation
example:

int total=0, i ;
int grade[4]={93,94,67,78);
for (i=0;i<4; ++)
 total += gradeli];

The next Program 4.1 shows the use of all the above mentioned
three concepts viz. declaration, assignment and accessing arrays:
/* Program 4.1 */

#include <stdio.h>
intmain ()
{ intn[10]; /* n is an array of 10 integers */

inti j;
/* initialize elements of array */
for (i=0;1<10; i++)

{
}

- /* output (or accessing)each array element’s value */
for (j=0;j < 10; j++)

- n[i]=i+50; /* set element at location i to i + 50 */

o | |
printf(“Element[%d] = %d \n”, j, nj]);
] | o

return 0;

The output of the above program is:

Element[0] = 50 '

Element[1] = 51

Element[2] = 52

Element[3] =53

Element[4] =54

Element[5] = 55

Element[6] = 56

Element[7] = 57

Element[8] = 58

Element[9] = 59

The above program declares an array n of size 10. The first for
loop initializes all the 10 elements of an arfay n by a value (i + 50). The
second for loop iterates all the 10 elements and produces the value of all
thel0 elements of an array n.

‘Consider a problem where we need to read the values from a
one-dimensional array x having 10 elements and compute the sum of
their squares. The program to solve this problem can see in Program 4.2
as follows '

/* Program 4.2 */

#include <stdio.h>

int main ()

{

- intx[10], sum =0; /* x is an array of 10 integers */

inti;
/* read the input from the keyboard and stores the value
in array element. */

for (i=0;i<10;i++)

Arrays & Strings

UGCS-102/179

63

Operator and Control
Structures

UGCS-102/180
64

- { scanf(“%d”, &x[i]); /* read input value for smgle array
element ’*/
} .

/* compute the sum of square of array elements */

for (i=0;1<10;i++)

{ sum +=x[i]* x[i} ;

}

/* display the result */

printf(“The sum of squares of array elements are %d”, sum);
return 0;

}

Note that in the program 4.2, we take an input using scanf() and stores

the received value into an array.

Consider a probiem where we need to list the number of students

those score the marks between 0-9, 10-19, etc. To do so, we use an array

of 10 integers as counters for the ranges (See Program 4.3).

/* Program4J3 */
#include <stdio.h>
int main ()

L

inti,mark;

int totals[10];

/* initialize array with 0%/

for (i=0; i<10; i++) {
totals[i] =();
)
/* tead in the marks and add one to the relevant counter *
printf(“Enter marks finish with -1\ n”);
- scanf(“%d”,&mark);
while (mark {=-1) {
 totalsfmark/10}+;
scanf("%d” &mark);
. _
/*print out the results */
printf(“Number of students in the range \n");
for (i=0; i<10; i++) { :
printf(“%d-%d is %d \n”,
i*10,i*10+49,totals[i]);

b

Question 1: The program 4.3 will fail if a mark of 100 is entered. Modify
the program so that it will work correctly when mark of 100 is entered.

4.3 TWO DIMENSIONAL ARRAY

The two dimensional arrays are useful in those situations where

we need to store table of values or in matrix formi.e. row and column

wise. Atwo-dimensional array is, in essence, a list of one-dimensional
arrays. Each list itself consists of a one-dimensional array. The declaration
of a 2D array can show as:

data_type arrayName [row_size][column_size J; |
Consider a 2D array element, |
imagelilljl
the first index value i specifies a row index, while j specifies a
columnindex.
Declaring 2D arrays is similar to the 1D 'array case:
int a[10]; /* declare 1D array */

float b[3][5]; /* declare 2D array */

Note that it is quite easy toallocate a large chunk of consecutive

memory with 2D arrays. Array b contains 3x5=15 doubles and since
each double takes 8 bytes in memory. Thus, total 15*8 = 120 bytes in
memory will allocate to this array.

A useful way to imagine a 2D array is as a grid or inmatrix. Let
us consider a declaration of array as:

int product[2][3];
This array will look like as:
product 0% column 1%t column 2™ column
O"row | product[0][0] | product[0]fl] | product[0][2]
1* row product [1][6] | product [1]{1] product [1][2]

In ‘C’, 2D arrays are stored by row. Which means that in

memory the 0" row is put into its memory locations, the 1*row then |
takes up the next memory locations, and the 2" row takes up the next

memory locations, and so on. The Figure 4.3 shows the contiguous
memory locations for allocation of array product. Since the array
product is of int type, each element takes 2 bytes in memory. The total
number of element in this array is row_size*column_size =D*3=6.

Arrays & Strings

UGCS-102/181
65

Operator and Control

Structures

UGCS-102/182
66

product{0][0] product [0][1] product [0][2] product [1][0]
product[1][1] product [1][2]

The first element having the logical address
product[0][0],product[0][1] for second element,product[0][2] for the
third element in firstrow. In second row, logical address of elements
areproduct[1][0],product{1][1] and product] 1][2]. The physical addresses for
each logical address are also shown just for understanding that memory locations
are contiguous. The first element product[0][0] is stored at address 4002. The
firstrow elements are stored from address 4002 to 4007. Similarly, second row

~ elements are stored from address 4008 to 4013 as shown in Figure 4.3.

4.3.1 Initialization of 2D Array

The procedure of initializing the 2D Array is exactly similar to
the initialization of 1D arrays. For example, consider the following array:

static int agé[2][3]={4,8,12,19,6,5];/* ar}fay age with 2 rows and 3
columns */

The array is initialized row by row.
Thus, the above statement is equivalent to:
- age[0][0]=4; age[0][1]=8; age[0][2]=12;/* for first row */
age[1][0]=19; age[11[1]=6; age[1][2]=5; * /*for second row */

As before, if there are fewer initialization values than array
elements, the remainder elements are initialized to zero.

To make your program more readable, you can explicitly put
the values to be assigned to the same row in innercurlybrackets as

- shownbelow:

static int age[2][3]={{4,8,12},{19,6,5}};

In addition, if the number of rows is omitted from the actual
declaration, it is set equal to the number of inner brace pairs as given
below:

static int age[][3]={{4,8,12}, /* Note: row_size is missing */
' {19,6,5}
|7

When the above statement is executed, compiler will set the
row_size =2. Comumas are required after each inner brace that closes off
arow, exceptin the case of the last row. -

Arrays & Stfings

The inner brace pairs, which indicate the intended row, are
optional. The following initialization is equivalent to previous example

static int age[2][3]={ 4,8,12,19,6,5);
4.3.2 Accessing Two-Dimensional Array Elements

An element in 2-dimensional array is accessed by using the
subscriptsi.e. row index and column index of the array as:

int val = age[1][2];

The above statement assign array element age[l][2] to vanable
val. The variable valtake 3element from the 2*row of the array.

Again, as with 1D arrays, for loops and 2D arrays (or multi-
dimensional arrays) often work hand-in-hand. Let us consider an
example of program 4.4 as shown below, to access the elements of an
array age:

/* Program 4.4 */
#include <stdio.h>
intmain ()
{
/* anarray with 2 rows and 3 columns*/
static int age[2][3]={{4, 8, 12}, {19, 6, 5}};
inti, j; :
/* output each array element's value */
for (i=0;i<2;i++)
{ :
- for (j=0;j<3;j++)
{

printf(“age[%d][%d] =%d \n", i}, age[i][j]);
] .
}
return0;

) :
The output of the above program is:

age[0][0]: 4

age [0][1]: 8

age [0][2]: 12

age [1][0]: 19

age[1][1]: 6

age[1][2]: 5

The above Frogram uses two for loops to access array elements.

Each loop is used for each subscript i.e. for row and column.
UGCS-102/183

67

Operator and Control

Structures

UGCS-102/184
68

4.4 MULTI-DIMENSIONAL ARRAYS

‘C’ programming language allows multidimensional arrays.
Multi-dimensional arrays have two or more index values which are used
to specify a particular element in the array.The simplest form of the
multidimensional array is the two-dimensional array. Here is the
general form of a multidimensional array declaration:

data_type name[sizel][size2]. '[sizeN]; '

For example, the following declaration creates a three dlmensmnal_
5.10. 4 integer array:

int threedim[5][10](4];

- When a number of arrays are to be declared using the same

dimensions, it is goodpractice to use #define to set the bound. For
example:

#define XDIM 10
#define YDIM 20
#define ZDIM 30

these can then be used in the program:

int testarray [XDIMI[YDIM][ZDIM];
int i,j,k;
for (i=0;i<XDIM;i++)
- for (j=0;j<YDIM;j++)
for (k=0;k<ZDIM;k++)
testarray[ﬂ[]][k]-ﬁYDIM"’ZDIMﬂ*ZDIM-t—k

Then 1f the program needs to cope with larger arrays it is only necessary
to changethe definitions (and probably allow a longer run time and
plenty of memory).

Check your Progress 1

1 What will be the output of the following program.

#include <stdio.h>
int main ()

{

int values [12];
for index;
for (index=0; index<12;index++)
values [index |= 2*(index+4);
for (index=0; index<12;index++)
printf(”’The value at index= %2d is %3d\n”,
~index, values[index];
return 0;

(S

2. Write a program to transposé amatrix.

3. A two dimensional matrix

e & & [

Al4][5)= 2 &% ¥ 3 af
12 37 B4 i z3 is given"
= &4 BE X& Fi

Perform the followmg operations:
(@) Searchinganelement45
(b) Sorting array elements in ascending order.

4. Aand B are Two dimensional matrix -
2 328 10 i1 8 o4 W
A[4][5]= -‘*—_ 57 3 ¢§B[4][5]_ 2 ¥ ¥ 3
12 37 88 0 2% 22 4P 5 b
R S % T . 7 R AR O 7
Perform the following operations:
(@) AdditionofAandB
(b) Subtraction of Aand B
(0 Multiplication of Aand B
5. Write a program to check whether matrix A given in Question 4
is symmetric.
6. Write a program to find sum of even and odd numbers among n

integers stored in an array.

7. A1D array consist of 20 elements. Write a program to take input

from keyboard and find the minimum and maximum valued
elementin an array.

8. Create a 2D array to store and print Pascal’s triangle.
Sampleoutput:

11
121
1331
14641

4.5 STRINGS

A string isactually a one-diménsiorial‘array of characters which -

is terminated by a null character *\ 0. Thus, a null-terminated (orend-
of-string character) string contains the characters that comprise the
string followed by a null. Don't forget to remember to count the end-of-
string character when you calculate thesize of a string.Like the other'C’
variables, strings must be declared before their use. Unlike other 1D
arrays the number of elements set for a string set during declaration
is only an upper limit. The actual strings used in the program can have

Arrays & Strings

UGCS-102/185
69

Operator and Control

Structures

UGCS-102/186
70

{

fewer elements.The general form for declarationof a stringscan shown
as:

static- char array_name[size];
Consider the following code:
static char msg[18] = “Welcome”;

The string called msg actually has only 8 elements. They are

String constants marked with double quotes andautomatically
include the end-of-string character. The curly braces are not required
for string initialization at declaration, but can be used if desired (but
remember the end-of-string character). '

The following declaration and initialization creates a string
consisting the word “Hello”. To hold the null character at the end of
the array, the size of the character array containing the string is one
more than the number of characters in the word “Hello”.

char greeting[6] ={"H’, ‘¢’,’l’, ‘I, “0’, \0'};

If you follow the rule of array initialization then you can write
the above statement as follows:

char greeting[] = “Hello”;

Following is the memory presentation of above defined string in
‘C’. Since string consists of char type (char data type takes 1 byte in
memory), so this string takes 16 = 6 bytes in memory.Here, we assume
that first element of array is at physical address 4000. Thus, last element
which is null (or end-of-string character) is at physical address 4005
as shown below.

" greeting H e 1 1 0 A0’

4000 4001 4002 4003 4004

Actually, you donot place the null character at theend of a string
constant, The C compiler automatically places the "\ 0" at the end of the
string when it initializes the array. Let us try to print above mentioned
string:

#include <stdio.h>
int main ()

char greeting[ﬁ] =(H,’¢,1,T,'0,’ \0'};
printf(“Greeting message: %s\n”, greeting);
return(;

l Arrays & Strings
The output of the above program is; |
Greeting message: Hello |
4.5.1 Initialization of strings

There are following of three ways to initialize the string:
) at the time of declaration, |

char msg[18] = “Welcome”;
(2) Atthetime of reading in a value for the string:
' scanf(“%s”,name);

To readin a value for a stting use the %s format identifier in
scanf() statement.:
(3) Atthe time of using the strcpy function.

strepy(msg, “hello”);.Copies string “hello” into string msg.
Note: Direct initialization using the = operator is invalid. The
following code would produce an error:
' char name[34]; |

name = “Sameer”; /! *# T L L E G A L
INITIALIZATION*/ '
Note: To initialize a string using scanf (See point 2 above), the address
operator &is not needed for inputting a string variable. In ‘C” an array
name is an address. Infact, it is the base addressof all the consecutive
memory locations that makeup the entire array. |
4.5.2 Accessing strings

The %s specifier is also used to display an array of characters

that is terminated by the null ("\ 0") character. For example, the statement
prinf(“%s”, name); '
can be used to display the entire content of the array name.
We have studied previously about the precision with which the
array is displayed. For example, the specification
%10.5

indicates that the first five characters are to be printed in a field width of
10 columns. However, if we add minus sign in the specification (e.g., %~
10.5s), the string will be printed left justified. The program 4.5 illustrates
various effects of %s specifications.
[* Program 4.5 */

#include<stdio.h>

voidmain()
[UGCS-102/187

71

Operator and Control

Structures

UGCS-102/188
72

static char greeting[15] = “Welcome Home";
printf(“\n\n");

printf("—— ————— — — —— — \n");
printf(“1%15s! \n”, greeting);
printf(“1%5s| \n”, greeting);
printf(“1%15.6s1 \n”, greeting);
printf(“1%-15.6s1 \n”, greeting);
printf(“1%15.0s1 \n", greeting);
printf(“1%.3s1\n”, greeting);

printf(“1%s | \n”, greeting);,

prinff(= ——————————— \n”);

e output of the above program is:

| Welcome Home|
I Welcome Home|
I Welcom |
|Welcom o
| ' |
[Well

|Welcome Home |

The oiltput'ﬂlusirates the following features of the %s specifications.

(@) Theentirestring is printed when field width isless than the length
of the string.

(b) Theinteger value (or precision) on the right side of the decimal
point specifies the number of characters to be printed.

(c) Nothingis printed when the number of characters to be printed

is specified as zero.

(d) Ifthereis minus sign in the specification, then string is printed
- left]ustlﬁed

The printf statement also support variable field width or

precision. For example;
- printf(“%* *s\n”, w, d, string);
prints the first d characters of the string in the field width of w.

4.6 STRING HANDLING FUNCTIONS

Almost every compiler comes with some standard predefined

functions which are available for use. These are mostly input andoutput

functions, character and string manipulation functions, and math

functions. We will cover string handeling functions in this Unit. There is
astandard ‘C’ library <string.h>that contains anumber of useful string
operations. The Table 4.1 shows someof them: '

Category: String manipulation functions

Table 4.1: String Functions available in standard <string.h> file|

Functions | Operations

strlen Finds length of a string

strcpy Copies one string to another

stremp Compares two strings

strempi Compares two, strings, non-case sensitive
strcat Appends to a string

Category: String I/O functions
gets(string_name); | readsin a string from the keyboard
[puts(string_name); | displays a string on the monitor

Category: String manipulation functions

We shall discuss briefly how each of these functions can be used
for the processing of strings.

(a) strlen() function:

This function counts the number of characters present in a string.
While calculating the length; it doesn’t count *\ 0'. The syntax for strlen()
is: ' ' '

len=strlen(string);

where, the variable len should be of int type because the strlen

()function returns the number of characters in a string which is an

integer value. The counting ends at the first null character.For example:

intn;

n=strlen(“Hello World");

The value of n (or.length of string) is: 11
(b) strcpy() function: | B

The strcpy functionis one of a set of built-in string handling
functions available for the C programmer to use.The syntax of strcpy
is:

strepy(Target_string1, Source_string?2);

when this function executes, Source_string2 is copied
intoTarget_string1 at the beginning of Target_stringl. The previous

Arrays & Strings

UGCS-102/189

73

Operator and Control

Structures

UGCS-102/190
74

contents of Target_string1 are overwritten. The Source_string2 may
be a character array variable or a string constant. The base address of

- the Source_string2 and Target_stringl should be supplied to this

function. On supplying the base address, strepy () goes on copying the
characters in source string into the target string till it doesn’t encounter
the end of source string ("\ 0'). It is the responsibility of programmer to
see that the target strings size is big enough to hold the sting being copied
into it.In the following code, strcpy is used for string initialization:

| #include <stdio.h>

#include <string.h>

~ voidmain (}

i
char’job[50];
strcpy(job,”Interesting Language”);
printf(“Cis very %s \n” job);
}
The output of theabove codeis: C is very Interesting Language
() strcmp()' function

This function compares two strings to find out whether they are
same or different. The two strings are compared character by character
until there is a mismatch or end of one of the strings is
reached, whichever occurs first. If the two strings are identical, the
function returns a value zero. If they are not,it returns the numeric
difference between the ASCII value of the first non-matching
character. The syntax for stremp() is:

intvar= stremp(string1, string2);

wherevaris either 0 or numeric difference between the ASCII value
of the first non-matching character.For example:

char stringl[]=“Apple”; /* string] initialized to Apple */
char string2[]="Applet’; = [*string2initialized to Applet */
inti, j, k, 1, m; _

i= stremp(stringl,string2); /* both string differ at index 5

\0”” and ‘t’ are different
character */

j= stremp(stringl, “apple”); /* both string differ at index 0.
S : ‘a” and ‘A’ are different
character */

rH

“k=stremp(“Apple”, “string2); ~ /* both string differ at index 5.

\0”” and ‘t’ are different
character */

LI

1=stremp(“applet”, “applet”); /* both string differ at index 5.
“\0”” and ‘t’ are different
character */

“m= stremp(“apple”, “apple”); /* strings are same,so m=0 */

(d) strcmpi() function

strempi() compares string] and string2 without sensitivity to

case. All alphabetic characters = in the two.

arguments stringl and string2 are converted to lowercase before the
comparison. The general form is: '

int var = strcmpi (stringl, string2);

where var is either 0 or numeric difference between the ASCII value of
the first non-matching character. The function operates on null-ended
strings. The string arguments to the function are expected to contain a
null character (\0) marking the end of the string. |

This example uses strcmpi to compare the two strings.

#include <stdio.h>
#include <string.h>
int main(void)
{

/* Compare two strings without regard to case */

if (0 ==strcmpi(“hello”, “"HELLO"))

printf(“The strings are equivalent.\n");
else
printf(“The strings are not equivalent.\n");

return 0;

J

The output should be: The strings are equivalent.
(e) strcat() function

The strcat() function concatenates string2 onto the end of stringl,
and returns stringl to string3. The syntax of this function is:

String3 = strempi(stringl, string?2);

For example:

printf(“Enter your name: “);
scanf(“%s”, name);
title = strcat(name, “ the Great”);

printf(“Hello, %s\n”, title);
Category: String I/O functions

There are following two special functions designed specifically
for string input and output:
gets(string_name);
puts(string_name);

Arrays & Strings

UGCS-102/191
75

Operator and Control

Structures

UGCS-102/192
76

The gets function reads a string from the keyboard. When the
user hits acarriage return the string is inputted. The carriage return is
not part of thestring and the null character (or end-of-string character)

is automatically appended.

The function puts displays a string on the monitor. It does not

prinf the null character (or end-of-string character).

Here is a sample program demonstrating the use of these
functions:

charsentence[100];

printf(“Please enter a sentence\n");

gets(sentence);

printf(“You entered: “);

puts(sentence);

The output of the above program segmentis:
Please enter a sentence
Accept this sentence. All the best.

You entered: Accept this sentence. All the best.

4.7 CHARACTER FUNCTIONS

There is a library of functions designedin ‘C’, to work with
charactervariables. All of those function case are derived in ctype.h file,
so whenever you are using any of these function, the ctype.h file has to
be included on the top. The most commonly used functions are:

‘Table 4.2 : Limited character functions

Category: Testing a character

Return ty lg e: All the functions in this category test the chartype variable ‘ch’ and
returns TRUE (1) or FALSE (0).

Function |Operation : ' Example

isalnum(ch)|Tests for alphanu-| char c;

' |meric character | scanf(“%c”, &c);

if(isalnum(c)) _
printf(“You enteralphanumeric char%c” c);

isalpha(ch) |Tests for alpha- | char ;

betic character. | scanf(“%c”, &c);

if(-isalpha(c)) -
printf(“%c is a ASCII character\n”, ¢);

isascii Tests for ASCII | char c='g’;
character if(isascii(c))

printf(“You enter a letten_af_a]phahet’f_),__

iscntrl Tests for control Cohtro_i characters are between 0 and Ox1F
character or equal to OX7F
isdigit | TestsforOto9 char ¢ '
' | scanf(“%c”, &c);
if(isdigit(c)) |
printf(“You entered the digit %c\n”, c);
isgraph | Tests for printable | Same as isalnumy(), isalpha(), iscntrl(),
| character isdigit(), isprint(), ispunct().
islower | Tests for lowercase| char ¢ =a’; |
character - |if(islower(c)) _
printf(“%c is a IOWerc_ase letter\n”, ¢);
isprint Tests for printable {Same as isalnum(), isalpha), iscntrl(),
character | isdigit(), isgraph(), ispunct(), isgraph().
ispunct | Tests for punctua- |char ¢ ="/}
. tion character if(ispunct(c))
') printf(“[%c] is a punctuation\n”, ¢);
isspace | Tests for space charc=""; '
| character if(isspace(c))
printf(“[%c] is a space\n”, ¢);
isupper | Tests for uppercase] char ¢ = A’;
| character if(isuppez(c))
printf(_"’%c is a uppercase letter\n”, ¢);
isxdigit | Tests for Same as isalnum(), isalpha(), iscntrl(), isdigit(),
hexadecimal isgraph(), ispunct(), isgraph().
Category: character conversion Return type: depends upon chosen function
toascii Converts character| char ¢ ;
~to ASCII code ¢ = toascii(A");
| printf(“ASCII code is : %d \n", ¢);
tolower | Converts character char ¢ ; '
to lowercase c =tolwer(A’),
- printf(“lowercase is : %c \n”, ¢ };
toupper | Converts charac- | charc;

ter to upper

c= touppef(‘a’);_

printf(“Uppercase is : %c \n", ¢);

In the following program 4.7, character functions are used to converta
string to all uppercase characters:

/* Program 4.7 */
#include <stdio.h>

#include <ctype.h>
voidmain() {

. Arrays & Strings

UGCS-102/193
71

Operator and Control

Structures

UGCS-102/194

78

char name[80};

int loop;

printf (“Please type your name\n”);
gets(name);

for (loop=0; name[loop] !=0; loop++)
name[loop] = toupper(name(loop]);
printf (“You are %s\n”,name); |

}
The output of the programis:

Please type your name
Sushant Singh
You are SUSHANT SINGH

4.8 SUMMARY

In this Unit we have studied one-dimension and multidimensional
array, which are used to hold a group of variables of the same type.
Each element of the array is identified and accessed by its subscript or
position in the array. Array subscript begins at 0 for the first element.
The array concept makes possible random access to any element. In
classic ‘C’ arrays which must be initialized must be declared as static. A
string is a group of characters usually letters of the alphabet. ‘C’ uses a
string of data in some way, either to compare it with another string,
output it, copy it to another string, or whatever, the functions are set up
to do what they are called to do until anull, whichis a zero, is detected. We
have also studied some standard predefined functions which are available
for use. These are mostly input/output functions, character and string
manipulation functions.

Check your progress 2
1. Identify the missing statement.
mystrcpy(char dest[], charsrc[])
{
inti=0;
, while(sre[i] ="\0)
[.
“dest[i} =src[i];
———— [* missing statement */

}
dest[i]="\0’;
] _

2. Write a function similar to strlen that can handle unterminated -

strings.
3. Is following two program fragments are equwalent’?
pnntf (“Helloworld\n”);
charhello[}={'H’,¢",’V, I, "o’,”",/w’, o, t’,’l','d’,"\n, O};

4. Write a program that that converts all characl:ers of an input string
to upper case characters.

5. Writeafunction thatreturns trueif an mtE:t stringisa pahndrome
of each other. A palindrome is a word that reads the same -
backwards as it does forwards e.g ABBA.

6. Obtain the outputof the followmg program.
#include <stdio.h>
void main()

{

inti, nc

nc=0;
i=getchar();
while (i '= EQF) {
nc=nc+1;
i=getchar();

printf(“Number of characters in file =%d \n”, n¢)
\ _
7. Obtain the output of the following program.
#include < stdio.h>
void main()
o
<int ¢, nc=0;
while ((c=getchar()) = EOF) nc++;
printf(”Numb'er. of characrers in file = %d\n”, nc);
b | |
Is this program is same as program given in question 7?
8. State what this program does?
#include <stdio.h>
void main()
(intc, nc=0,nl=0;
~ while ((c=getchar()) I=EOF)

nc++; _
Jif (c="\n") nl++;

Arrays & Strings

UGCS-102/195

79

: Opérator and antrol
 Structures

UGCS-102/196
80

, printf(“Number of characters = %d number of lines = %d \
nc, nl);

} . -
9. What will be output if you execute the following 'C’" code?
#include<stdio.h>

void main(}{
char arr[7]="Network”;
printf(“%s” arr);

}

10. - What will be output if you execute the following "C’code?
tinclude<stdio.h> '
void main(){

char arr[11]="The African Queen”;
, printf(“%s” ,arr);

}

11~ What will be output if you execute the’C’code?
#include<stdio.h> '

void main(){ '
char arr[20]="MysticRiver”;
printf(“%d” sizeof(arr));
}
12. What will be output if you execute the following ‘C’code?

#include<stdio.h>

#define var 3
void main(){
char data[2][3][2]={0,1,2,3,4,5,6,7,8,9,10,11};
printf(“%0",data[0](2][1]);
}
13. Whatwillbe output if you execute the following ‘C’code?
#include<stdioh> : |
void main(){
| int arr[1{3]={{1,2),{3,4,5), 5)};
prlntf("%d %d %d” sizeof(arr),arr[u] [2],arr[1 i2Dh;
)
14. Whatwillbe output if you execute the followmg C’code?
#include<stdio. h>

~void main(){

int xxx[10]={5};
 printf(“%d %d” xxx[1],xxx[9]);}
15." : What will be output if you execute the following 'C’ code?

tinclude<stdio.h>
void main(){
long double a;
signed char b;
int arr[sizeof(!atb)];
printf(“%d” sizeof(arr))

Arrays & Strings

UGCS-102/197
81.

Operator and Control

Structures

UGCS-102/198
82

Suggested Further Reading

1.

10,
11.

12

13.
14.

The C Programming Language, Kernighan, Brian
W.; Dennis M. Ritchie (February 1978), (1st
ed.). Englewood Cliffs, NJ: Prentice Hall.

Let us C, Yashwant Kanetkar, BPB, (2013)

. Programming and Problem Solving Through “C”

Language, Harsha Priya, R. Ranjeet, Firewall Media.
Computer Science: A Structured Programming
Approach Using C (3rd Edition) 3rd Edition, Cengage
Learning; 3 edition (February 6, 2006), Behrouz A.
Forouzan (Author), Richard F. Gilberg

Programming Logic and Design, Joyce Farrel, Chegg
l.l'u.UllLdl.lUIl

Lecture notes on I’rogramnung Fundamentals, Giovanni
Moretti, 1998.

Algorithms, flowcharts, data types and pseudocode,
http://www.aves. ktu.edu.tr/
Program errors, www.hptunotes.com/

* C Printf and Scanf Reference, by Wayne Pollock, Tampa

Florida USA

Prmczple of good programing, hitp://www.unaab. edu ng
Program errors and exception handling, https://
www.inf.unibz.it/

Introduction to Computer Programming Concepts, http://
www.spotidoc.com

C Compilers Reference, CodeWarrior.

C programming tutorial, tutorialspoint.com

/%) U.PRajarshi Tandon Open
N University, Allahabad UGCS' 1 02

Problem Solving

Through "C"
Block
Advanced Features of C
Unitl 5
Pointers
Unit2 . 32
Functions
Unit3 60
Structures, Unions, enum and typedef
Unit 4 84
File and Memory Management in 'C'
Unit 5 101

Preprocessor Directives and Error reporting

UGCS-102/199

UGCS-102/200

Course Design Committee

Dr. (Frof.)Omji Gupta
School of Computer and Information Science
UPRTOU, Allahabad

Prof. K. K. Bhutani
Ex-Professor, University of Allahabad
Director, UPTECH, Allahabad

Prof. Rajiv Ranjan Tiwari
Department of Electronics & Communication,
JK. Institute of Applied Physics & Technology
Faculty of Science, University of Allahabad
Allahabad |

Prof. R. S. Yadav
Department of Computer Science & Engineering
MNNIT-Allahabad, Allahabad

Dr. C. K. Singh

Lecturer ‘

School of Computer and Information Science,
UPRTOU, Allahabad

Sri Rajit Ram Yadav

Lecturer

School of Computer and Information Science,
UPRTOU, Allahabad

Chairman

Member

Member

Member

Member

Member

‘Course Preparation Committee

Dr. Ashutosh Gupta
Associate Professor, Department of CS & IT,
MIJP Rohilkhand University, Bareilly-U.P.

Dr. Manu Pratap Singh

Professor, Department of Computer Science Engineering
Dr. Bhimrao Ambedkar University, Agra.

Mr. Manoj Kumar Balwant
Associate Professor (Computer Science)
3chooi of Sqiences, UPRTOU, Allahabad.

Author

Editor

Co-ordinator,

Block-4 INTRODUCTION

This block covers some advance features of ‘C’ language. The Unit 1
discusses the pointers and their relationship to arrays and character strings.
Pointers are very useful part of ‘C'and separate it from more conventional
programming languages. Pointers make ‘C’ more influential allowing a wide
variety of tasks to be accomplished. A pointer is a constant or variable that
contains an address which can be used to access data. Pointers are built on the
fundamental concept of pointer constants.

In Unit 2, we will see the concept of functions or modular programming. -

A program should be divided into a main module and its sub modules. Each
module is then further divided into sub-modules (or pieces) until the resulting
modules are basic. These smaller pieces sometimes called ‘modules” or
‘subroutines’ or “procedures’ or functions. A‘C’program is made of one or more
functions, one and only one of which must be named main. The execution of the
program always starts with main, butit can call other functions, including library
function such as printf() and scanf(), to do some part of the task. Generally, the
purpose of a function is to receive zero or more pieces of data, operate on them,
and return at most one piece of data. Call by reference is most efficient method
as compared to call by value. Use of pointers makes the function programming
most efficient. -

In Unit 3, we will study how external files may read and write by ‘C’
programs. The file I/O functions are very similar to the console I/O functions,
but high level I/O functions are very useful for handling large volume of data.
The dynamic memory allocation functions are also explained with examples.

The Unit 4 describes the preprocessor directives which are the powerful
tool for manipulating text files. While control directives, macro directives and
conditional compilation are its most popular features. Being ‘C" a system
programming language, it provides you access at lower level in the form of return

values. In case of any error, compiler sets an error code errno which is global

variable and indicates an error occurred during any function call.

UGCS-102/201

UGCS-102/202

UNIT-1 Pointers

Structure

1.0 Introduction

11 Objectives

1.2 - Pointersand Address (&) operator

1.3 Pointer declaration and Initialization
14 Indirection operator

1.5 Pointer Arithmetic

1.6 Arraysand Pointers

1.7 Character s'trings and Pointers

18 'Array of Pointers

1.9 - Pointer to Pointer

1.10 Summary

1.0 INTRODUCTION

This Unit starts with introduction and various manipulation
operations apply on pointers. They are very simple but appear a little
confusing for beginners. However, they are powerful and once you
understand the basics, it is easy for you to write complex programs with
great ease. The feature of pointers makes ‘C’ different from other
programming languages. Some ‘C’ programming tasks are performed
more easily with pointers, and other tasks, such as dynamic memory
allocation, cannot be performed without using pointers. Hence itbecomes
necessary-to learn pointers to become a perfect ‘C’ programmer. One
thing which should be kept in minds that, “pointers store addresses
and NOT data values”. Thisisa very simple statement and completely
covers the basics of pointers.

We have already discussed in previous Units that every variable
has a memory location and every memory location has its address
which can be accessed using ampersand (&) operator. Let us consider
an example which will print the address of the variable:

#include <stdio.h>
int main ()
{

intx;

UGCS-102/203

Advanced Features of 'C’'

UGCS-102/204
6

char y[10];
printf(“Address of x variable: %x\n”, &x);
printf(“Address of y variable: %x\n”", &y I) :
return 0;

}

The output of the program might be:

Address of x variable: b0a45400

Address of y variable: b0c523£6

Now, we have seen that what is memory address and how can
we access it? Thus, the underlying framework is complete. Now, let us
see what is a pointer?. In next subsequent sections we introduce little

more intricacies about pointers.

1.1 OBJECTIVES

After going through this unit, you should be able to:

e After going through this unit, you should be able to:
o Understand and use of pointers;

‘o * See the underlying unity of arrays, strings and pointers;
. Various arithmetic operations on pointers.

o Use address (&) operator and indirection (*) operator.

1.2 POINTERS AND ADDRESS OPERATOR

Pointers are very useful part of ‘C’and separate it from more
conventional programming languages. Pointers make ‘C’ more
influential allowing a wide variety of tasks to be accomplished. Pointers
enable us to: -

. Reduce the complexity of program
. Increase the execution speed of program
.« effiéier’xtly representdata tables

e alter values of actual arguments passed to functions (“call-by-

reference”)
. work with memory which has been dynamically allocated
° more concisely and efficiently deal with arrays and strings

For the sake of simplicity, we assume that memory has capacity of 64KB,

so its range is from 0 to 65, 535. When you declare a simple variable, like
| int i;

a memory location with a certain address (say, 4000 is assigned by

computer) is assigned to variable i so that any value can be placed in the
variable. Thus we have the following picture:

Mem.ory — 4000 ? i «——— Variable name
location '

After the statement i=46; the location corresponding to iwill be filled

Memory 5 4000 46 i4——— Variable name
location

Remember that the memorylocation (i.e. 4000 in this example)
is referred as physical address of variable i, whereas, name of variable
(i.e. i, in this example) is known as logical address. Throughout the
execution of program, this physical address is bind(or attached) to

variable i. Therefore you can access the variable either through its

physical address or through logical address.

As we have already described that we can find out the memory
address of a variable by simply using the address operator &. An
address expression, which is also a unary expression, consists of an
ampersand (&) and a variable nameas follws:

&i
The above expression should be read as “address of i”, and it

returns the memory address of the variable i.

The following program 1.1 demonstrates the difference between
the content of a variable and its memory address:

/* Program 1.1 */
#include <stdio.h>
void main()
{
float x;
v=4.126;
printf(“The value of vis %f\n”, v);
printf(“The address of vis %X\n",&v);

Pointers

UGCS-102/205
7

Advanced Features of 'C’'

UGCS-102/206

8

The output of the above program is:
The value of vis 4.'126
The address of v is BEFO

The above program uses %X specifier, which displays the address

in uppercase Hex code. Similarly, %x specifier displays lowercase Hex
codes. '

1.3 POINTER DECLARATION AND

INITIALIZATION

A pointer is also a ‘C’ variable whose value is the address of
another variablei.e. direct address of the memory location. Similar to
other ‘C’ variables, pointers must be declared before they are used to
store any variable address. The syntax for pointer declarationis as
follows: |

data_type *pointer_var_name;

Here, data_type is the pointer’s base type; it must be a valid ‘C’

- data type and pointer_var_name is the name of the pointer variable.

The asterisk * used to declare a pointer is the same asterisk that you use
for multiplication. However, in this statement the asterisk is being used
to designate that the variable is a pointer type variable. Let us consider
the following valid pointer declarations:

int*ip; - [* pointer to an integer */
double *dp; [* pointer to a double */
float *fp; | /* pointer to a float */
char*ch /* pointer to a character */

- The actual data type of the value of all pointers, whether integer,
float, character, or otherwise, is the same, a long hexadecimal number
that represents a memory address. The only difference between pointers
of different data types is the data type of the variable or constant that
the pointer is referring to. |

Now let us see how the memory representation of pointers looks
like. Consider the following two statements:

Linel intage; /* declaration of variable: age is an integer variable*/
Line 2 —int*p; /* declaration of pointer variable : p is a pointer to an
integer */ '

. On executing Line 1, variable age gets some physical address
from memory, say 4000.

Read the second Line 2 from right to left: “p (* MEANS)is a pointer to
an int”

Pointers

Once a pointer has been declared, it can be assigned an address.
Assigning address of a variable to a pointer is referred as initialization
of pointer variable. The general form for initializing pointer variable is:

pointer_var_name = &var_name;

Now, assign the address of an integer variable age to a pointer
variable p. The address is assigned using address operator (&) as

Line3 p=&age; /*pisassigned theaddressofage®/

Read the third Line 3 from right to left: "pis assigned the address of
age”, or _

Read the third Line 3 from left toright: “address of ageis assigned to
pointer p”.

After this assignment, we say that p is “referring to” the variable
ageor “pointing to” the variable age (see logical representation in Figure
1.1). The pointer p contains the physical memory address of the variable
age. Since no valueis assigned to variable age, the contents are represented
as ? in Figure 1.1. :

int age;
int *p;
p= &age;

Address of
/Jariable age
&a
age 2 4000 (Gnee) age ?
4000

Pointer
ariable

Cld [
5

&age stored in
variable p

hysical representation Logical representation

Figure 1.]: Memory and logical represen tlon nte variable
(. Hence, Pl seerﬁ {3 ec are and 1mt1almeapomter

variable and assigning the address of variable to a pointer. Now, let us

consider the statement:
UGCS-102/207

age =34; 9

Advanced Features of 'C'

UGCS-102/208

10

When this statement is executed, the value 34 is assigned to a
variable age. Or, value 34 is stored at physical address 4000. We have
already discussed that the physical addresses are drawn from a set of
memory locations and they are differ on each execution of program.
Thus,.pomter variable p points to an int variable age that has value 34
init.

Letus see another example where multiple pointers point to same
variable. Consider the statements shown in Figure 1.2. -

int age 34; [* age is a"int variable having value 34 */

int *p = &age: /* p is a pointer to int age andaddress of ageis assigned to pointer p

int *q; 1* q'is a pointer to int */

q=p; /* qisassigned a value of p MEANS address contained in p is asmgned toq */

Address of ‘
‘/variable age 4000
&age
e | 34 a0 e |
Point
olnfer ' ~ Pointer e

variable

l - ' / variable :
4000 4000 | P (4 4000 \

q 4 _\ _
/ | &age stored in \ /

&age stored in variable p Value of p and q
variable g - | (address of a)
Physical representation - Logical representation

Figure 1.2: Memory and logical representation of multiple pointer variables-

The firststatement declares an int type variable age with initial
value of 34. The second statement declares an int type pointer variable
p poifiting to address of variable age. The second statement can be’
decomposed into two parts as given below: '

— int *p; I declaration
int *p = &age, !l initialization

M p=dage

The third statement declares a pointer variable q of int type. In
fourth line, we assign content of pointer p to pointer variable q. This
content is actually the physical address of variable age (i.e. 4000). Thus,

address4000 is assigned to pointer variable q. So, pointer q isnow points

to (or referring to) variable age. Thus, twg pointers p and q referring
to sameint variable age.

Since pointers are also declared as variable, they also have memory
~address. Pointer p and q actually have their own memory addresses. The
memory address is always positive constant, so content of pointer is always

an unsigned positive value that represents address.

| [Note]A pointer that points to no variable contains the special
null-pointer constant, NULL.It is a good programming practice to assign
‘aNULL value to a pointer variable in case you are not using that pointer.
This can be done at the time of pointer variable declaration. A pointer
that is assigned NULL is called a null pointer. The NULL pointeris a
constant with a value of zero defined in several standard libraries of ‘C".
Consider the following program 1.2:
/* Program 1.2 */

#include <stdio.h>
int main ()

B |

int*ptr =NULL;

printf(“The value of ptris: %x\n”, &ptr);

return 0;

- The output of the above program is: The value of ptris 0

The memory address 0 has a particularmeaning. It indicates that
the pointer is not deliberately pointing to an accessible memory location.
Rather by convention, if a pointer containis the null (zero) value, it is
assumed to point to nothing!

[End of Note]
One more thing, consider the following statements:

float price, amount; /* declaration of float type variables */-

int item, *ip; [* declaring item as int variable, ip as pointer
| variable */ '
p=&price; /* ILLEGALASSIGNMENT */

 The third statement assigns an address of float type variable to
int type pointer variable, which result in erroneous output. You must
ensure that pointer variables always point to the corresponding type of
data. Thus, when you declare a pointer to be an int type, the system
assumes that pointer will hold the address of variable which is also of int

type.

I_’oj;l_tegs _

UGCS-102/209
11

Advanced Features of 'C'

UGCS-102/210
12

1.4 INDIRECTION OPERATOR

There are some 1mp0rtant operations w}uch we can do with the
help of pointers veryfrequently. (a) define a pointer variables (b) assign
the address of a variable to a pointer and (c) finally access the value at
the physical address which s available in the pointer variable. The first
two points are already described in previous section. This section deals
wlth third point, i.e. the indirection or dereferencing(*) operator.

.The _unary operator *, alsoknown as indirection (or
dereferencmg) operatorreturns the valueof the variable located at
the address specified by its operand.The indirection operator is
complement to the address operator. It is used as follows:

tp;
The above expression is read as “contents of p”, or “value at

address pointed by p”. The value stored at the mémory address p is
returned after executing this statement.

Let us consider the sample program 1.3:
/* Program 1.3 */
#ihclude <stdio.h>
void main()
{ .
inta=2,b=80,*p;
ip=&a; |
b¥*ip; - [*equivalent to b=a*/
printf(“The value of bis %d \n”,b);

The output of the above program is: The value of b is 2
* The statement b="*ip in above code can be read right to left as:
“value at address pointed by p is assigned to variable b”

The above code assign indirectly the value of variablea to variable
b through the pointer ip.

Now let us have fun with pointers. Following program 1.4
accessesvariables through pointers.

/* Program 1.4 */
#include <stdio.h>

void main()

inta=4, *p=&a, *q=&a; [* Linel */
a=a+t4; r Line2 */
*p=10; I Line3 */
*&a="p+*q; /** Line4 */
a="p**q r* Line5 */

}

The explanation of above code is given below:

Line 1: a is int variable. p and q are int type pointers containing the
address of variable a.

Line 2: aisincremented by 4.
Line3: *p=10; means value at address pointed by p is set to 10.
Line4: *&a=*p+*q;

- First consider the lvalue expression, *&a

The precedence of & operator is higher than indirection operator, so &a
is evaluated first. This refers to the statement & a as: address of variable
a,

Next, *(&a) is evaluated, which means: value at address (&a).
Now consider the rvalue expression, *p +*q

*p + *q means: value at address pointed by p + value at
address pointed by q

Now, combining the meaning of both lvalue and rvalue, we
conclude that:

*&a = *p + *q
value at address (&a)|is set to| value at address + value at address
pointedbyp pointed by q '

OR,

value at address (&a) is set to (addition of value at address
pointed by p and value at address pointed by q).

Thus, a=10+10=20 /* Inline 3, *p =10 and q also refer to address of a */
Line5:a="*p**q;

Here * just after p denotes multiplication symbol. Thus a is set to
multiplication of value at address pointed by p and value at address

pointed by q. Previously at line 4, a becomes 20. So after executing line’

5,a=20%*20=400.

Pointers

UGCS-102/211
i3

Advanced Fealiiraep'c Look at program 1.5 and execute it on your machine. Also verify the

results.

/* Program 1.5 */

tinclude <stdioh>

int main()

{ inta=8,b=4,c*p,*q *1;
p=&b;
q=p:
r=&c;
q=+&a;
*q=10;
*r="p+7;

*r=a+*q+*&c
printf(“%d %d %d\n”, a, b, c);
printf(’;%d %d %d\n”, *p, *q, *r);
return0;

}

The output of the following program is:

10 4 31

10 4 31

The following Program 1.6 performs addition of two numbers
using pointers. Create the program in your machine, execute it and
o \'rerify!tl'le results

/* Program 1.6 */
#include <stdio.h>
int main()
{
int x , y, sum;
int *px = &x;
int*py = &y;
int *pr = ∑
printf(“Enter the first number :“);

oy A0 i
UGCS-102/212 scanf(“%d”, px);

- . ; printf(."Enter the second number: .

scanf(“%d”, py),
*sum ="*x+%y;
printf(“ \n%d + %d is %d"”, *px, *py, *sum);
return0;
|
The output of the program is:
Enter the first number : 34
Enter the second number : 56
34 +56 is 90

1.5 POINTER ARITHMETIC

In section 1.3 we have already explained that ‘C’ pointer is an
address which has a numeric value. As a result, you can perform
arithmetic operations on a pointer. There are four arithmetic operators
that can be used on pointers:

o Integersand pointers can be added and subtracted from each other,

i.e.+and -
L] incremented and decremented, (++and --)
o In addition, different pointers can be assigned to each other-

Let us assume, that ptr is an integer pointer which points to the
address 3202. Now, perform the followihg arithmetic operation on the
pointer:

ptr=ptr+1;

Now after executing the above statement, the ptr will point to the
nextvalue of its type., i.e. 3204. This is because when we increment a
pointer, its value is increased by the length of the datatype that it points
to. This operation will move the pointer to next memory location without
effecting actual value at the memory location. If ptr points to a character
whose address is 1200, then above operation will point to the location
1201 because next character will be available at 1201.

[Note] A variable’s address is the first byte occupied by the
variable. Therefore whenever pointer points to a variable, it’s actually
pointing to the first byte of address. See Figure 1.4 for illustration.[End
of Note] | |

Pointers

UGCS-102/213
15

Advanced Features of 'C’

.......... 3200 3201 3202 3203 3204 3205

’

~ Contiguous memory cells .
s o ptr

(a} Aﬁcr the statement, ptr = pir +1, ptr jump 2 bytes as int takes 2 bytes in memory

Figure 1.4 illustration of pointer movenment
1.5.1 Pointer Increment

Itis more easy to increment a pointer variable as compared to
array. Array name cannot be incremented because itis a constant pointer.
The following program 1.7 increments the pointer variable to access each
successive element of the array:

'!*'.Pro'gram'l.'?' g
 #include<stdio.h>*
constint MAX =3,
int main ()
1 int ar]] =_'{1:0'0_, 50,120};
i *ptr; 2
/ f*-'_lét us have array address in pointer*/
_ ?tr__?.:arr;__l;'_rl_lamg- qurréy is actually Ba_s_é a_dflresd of
| . amay % IR
for-(i=0.;.i<MAX; i)

prihtf(”Address of éifr[%_d] =.%Ix\ n”, i, ptr);

_ printf(“Value of arr{%d] = %d \n”, i, *ptr);
UGCS-102/214 :

16

/* move to the next location */

ptr+;

}

return (;

}

The output of the above program is:
Address of arr[0] =3205
Value of arr[0] =100
Address of arr[1] =3207
Value éf arr[1]=50
Address of arr[.2] =3209 |
Value of arr[2] =120

1.5.2 Pointer Decrement

Pointers

The same concept also applies to decrement the pointer, which
decreases its value by the number of bytes of its data type as shown in
Program 1.8: '

/* Program 1.8 */

#include <stdio.h>

constintMAX=3; -

int main ()

[

int arr(] = {100, 50, 120);

inti, *ptr; o

/* letus have array address in pointer */

ptr=&arr[MAX-1]; /* pointer contains address of last
element */ ' '

-fOr(i=MAX;i>0; i—)

[_

printf(“Address of arr[%d] = %x\n", i, ptr);
printf(“Value of arr[%d] = %d \n”, i, *ptr);

/* move to the previous location */

UGCS-102/215
} 17

.Advénced Features of 'C',

UGCS-102/216

18

The output of the above program is:
Address of arr[3] = 3209

Value of arr[3] =120

Address of arr[2]=3207

Value of arr[2] =50

Address of arr{1] -7'3205

-Value of arr{1}= 100

15.3 Comparing pointers

| You canalso compa:e pointers by using relational operators, such
as==,<,<=,>and >=, If ptrl and ptr2 point to variables that are related

toeach other, such as elements of the same array, then p1 and p2 can be
- compared.

- The following program 1.9 modifies the program 1.7 by
incrementing the variable pointer in such a way that the address to which
it points is either less than or equal to the address of the last element of
the array, which is &arr[MAX - 1J:

/* Program 1.9 */

#include <stdio.h>
constint MAX =3;
intmain ()

{

int arr(] = {100, 50, 120};
inti, *ptr; |

ptr _:-%.arr_; - [*assignthe address of arr to pointer variable */

i=0;
while (ptr <=&arr[MAX-1])

{

printf("Address of art{%d] =%x\n", i, ptr);

 printf(“Value of arr[%d] = %d\n”, i, *ptr);./f'point to the previous location
- er

i+

r 3

3

return 0;

}

The output of the above program is:
Address of arr[0] =bfdbcb20

Value of arr[0] =100

Address of var[1] =bfdbcb24

Value of arr[1] =50

Address of var[2] =bfdbcb28

Value of arr[2] =120

1.6 ARRAYS AND POINTERS

Asweknow that, when an array is declared, the compiler allocates
a baseaddress and sufficient amount of memory to store all the elements
of an array in contiguous memory locations. The base address refers to
index0 or firstelement of an array. Also, name of an array is defined
as constant pointer to the first element, so it cannot be used as lvalue.
Consider the following statement:

static int arr[5] = { 10, 20, 30, 40, 50};

Assume that its base address is 2000 and assuming 16 bit machine, int

takes 2 bytes in memory. The five elernents stored in memory is shown
below. Every next element is 2 bytes apart from each other.

Array elements — an0] an{l] anf2] an{3] an(4]
10 20 30 |40 50
Array values R |
. ——> 2000 2002 2004 2006 2008
Array physical address

Suppose we point our integer pointer ptr to this array arr. The
statement looks like;

int *ptr;

ptr = &arr[0];/* Line 1: assigning base address to integer
pointer ptr */

~ Since, name of an array itself represents base address, this implies

hat
ptr=arr; /* Line 2: assigning base address to intéger pointer
tr ¥ _ B E2 :
ssigns base address of array arr to integer pointer ptr. Thus, both the
bove statements (Line 1 and Line 2) are same.

Pointers

UGCS-102/217
19

Advanced Features of 'C'

UGCS-102/218

20

Using indirection operator, we can say that *ptr is same as arr[0].
Now, what happens when we write:
ptr+1;

Since the compiler “knows” this is a pointer (i.e. its value is an
address) and that itpoints to an integer (its current address, 2000, i.e.
address of an integer), it adds 2 to ptrinstead of 1, 50 the pointer “points
to” the next integer, at memory location 2002.Similarly, the ptr declared
as a pointer to along, it would add 4 to it instead of 1.The same goes for
other data types such as floats, doubles, or even user defined datatypes
such as structures. |

Returning to our discussion, ptr+1 points to memory location
2002, which is the address of arr[1]. Againapplying indirection operator,
we can say that *(p+1) is same as arr[1]. Applying the same process
repeatedly, we observe that:

ptr =&arr[0] (=2000) *ptr =arr[0]=10 |
" ptr+1 = &arr[1] (=2002) *(ptr+1)=arr(1]=20
ptr+2 =&arr[2] (=2004) *(ptr+2)=arr[2]=30
ptr+3 =&arr[3] (=2006) *(ptr+3)=arr[3]=40
ptr +4 = &arr[4] (=2008) *(ptr+4)=arr[4]=50

Therefore, in general, if we increment the pointer ptr by i
increment step, the point moves to next location of its type. Thus,

*(ptr + i) = arr[i] = *(arr + i)/ since ptr=arr; refer Line 2 */

The address of an element is calculated using its index and
sizeof(data_type)as:
Address of arr[2] = base address + (2 * sizeof(int)) = 2000 +
2*2 =2004.
" Usinig pointers in this way leads to very efficient code and faster
accessing than array indexing.

Consider the following three programsegment that shows how
to sum up all the elements of a 1D array usingpointers. Their
implementations are completely different. |

Method 1: The elements are summed up one by one and addition is
stored in variable sum '

int a[100],i,*p,sum=0;
for(i=0; i<100; ++i)

sum +=ali};

Method 2: The elements are summed up using indirection operator
applied on array a '

inta[100], 1, *p, sum=0;
for(i=0;1<100; ++)
sum+=*(a+i);
Method 3The elements are summed up using indirection operator applied
onp
| .int.a[IOO],i,*p,sum=0;
for(p=a; p<&a[100]; ++p)
sum +="p;

Let us consider another example where the following code shows
three ways in which an array can be accessed. The program computes
square of position of element.

' int square[5] = { 10, 20,, 30, 40, 50};
int *ptr = &square[0]; |
/* assigns square of number to element */
for (i=0;1<5; i++)
‘squareli] = (i+1)*(+1);
/* and so does this */
for (i=0;i<5; i++)
ptr{i] = (+1)*(i+1);
‘/*and this - note comma*/
for(i=0;i <5;ptr++, i++)
ptr= (i+1)(i%1); _
Nex_t_progfam 1.10 uses sizeof() oper'atof to determine how much
bytes are taken by the data types to which pointer referring and also the

size of pointers on the machine. Execute the program in your machine

and verify that how much bytes are taken by pointers.
/* Program 1.10 */
int main()
{
char Ch;
char *p_C;-
int sizeofCh =sizeof(Ch);
int sizeofPC = sizeof(PC); -

Pointers

UGCS-102/219
21

Advanced Features of 'C'

UGCS-102/220
22

int sizeofStarPC = sizeof(*PC);
intA;
int*PA;
int sizeof A =sizeof(A);

~ int sizeofPA =sizeof(PA);
int sizeofStarPA =sizeof(*PA);
doublg D;
int*PD;
int sizeofD =sizeof(D);
int sizeofPD =sizeof(PD);
int sizeofStarPD = sizeof(*PD);
printf(“sizeof(Ch): %3d | “, sizeofCh);

~ printf(“sizeof(PC): %3d | “, siZeofPC);
printf(“sizeof(*PC): %3d | “, sizeofStarPC);
printf(“sizeof(A): %3d | “ sizeofA);
printf(“sizeof(PA): %3d | “, sizeofPA);
printf(“sizeof(*PA): %3d | “, sizeofStarPA);
printf(“sizeof(D): %3d | “, sizeofD);
printf(“sizeof(PD): %3d | “, sizeofPD);
printf(“sizeof(*PD) :%3d | - sizeofStarPD);

return 0;

The output of the above program is:

sizeof(Ch): 1 | sizeof(PC): 2 | sizeof(*PC): 1
sizeof(A): 2 | sizeof(PA): 2 | sizeof(*PA): 2
sizeof(D): 8 | sizeof(PD): 2 | sizeof(*PD) : 8

Pointers can also be used to perform operations on two-
dimensional arrays. In a one-dimensional array x, the expression

(x+i)=(p+i)=xli] are same.

 Likewise, an element in a two dimensional array can be
represented by the pointer expression as follows:

*(*(x+1) +§) = *(*(p +1)) which is same as x lill j]

1.7 CHARACTER STRINGS AND
POINTERS

A string is a variable-length array of characters that is delimited
by the null character. A string literal or string constant is enclosed in
double quotes. You will surprise to know that a string constant like “Hello
World”is treated by the compiler as an address (Just like we saw with an
array name).The value of the string constant address is the base address
of the characterarray. Consider the statements:

char *str="Hello World”; /*Linel */
char *ptr; /*Line 2 */
ptr=str; /*Line 3 */
Inline 1: stris a pointer to character and assigns the address of

the string constant “Hello world”. This implies that address of first element
"H' is assigned to str;

Inline 2, ptr is a pointer to character,
Inline 3, address stored in str is assigned to pointer variable ptr.
So, & str is same as str.

Thus, we can use pointers to work with character strings, in
a similar way that we used pointers to work with “standard” arrays.
This is demonstrated in the following code:

#include <stdio.h>
void main() {
char*cp;
cp="HiDear”;
printf(“%c\n” *cp);
Print(“%c\n" cp+6));

The output of the above program is:
H
I

[Note] The assignment made in Line 1 above is not applied to character
arrays. The statement like

char str[30];
str = “Hi Dear”;

do not work.[End of Noté]

Pointers

UGCS-102/221
23

Advanced Features of 'C'

UGCS-102/222
24

Let us consider, another example which illustrates easy string
input using pointers:

#include <stdio.h>
main() {
char *msg;
printf(“How are you?\n");
scanf(“%s”, msg);
printf(“Hi Dear! %s\n”, msg);
}
The output of the above program is:
How are you?

HiDear! I am fine. [If I am fine is entered from the keyboard during
the scanf operation]

Consider the program 1.11 which is our own version of computing length
of a string.

/* Program 1.11 */
#include <stdio.h>
void main() {
char *msg;
char *ptr;
int len=0;
printf(“Enter a string: “);
scanf(“%s”, msg);
ptr=msg;
while(*ptr ="\0")
{
lent++;
ptr;
J
printf(”Leng&u of %s is %d \n”, msg, len);
} -
The output of the program is:
Enter a string; Hello
Length of Hello is 5.

The program 1.11 can be modified in a more compact way. See
program 1.12.

[* Program 112 */
#include <stdio.h>
void main() {
char *msg, *ptr;
intlen=0;
printf(“Enter a string: “);
scanf(“%s”, msg);
ptr=msg;
while(*ptr++) len++;
printf(“Length of %s is %d \n”, msg, len);

Another way to compute length of a string is shown in Program
1.13. '

/* Program 1.13 */

#include <stdio.h>

void main() {
char *msg, *ptr;
printf(“Enter a string: “);
scanf(“%s"”, msg);

for(len =0, ptr=msg; *ptr ; len++, ptr++); /* Note: semi-colon
here */

printf(“Length of %sis %d \n”, msg, len);
}

Question 1: Execute the program 1.11 to program 1.13 and verify the
results.

1.8 ARRAY OF POINTERS

There are many situations when we need to maintain an array
which can store pointers to an int or char or any other data type available.

The declaration of an array of pointers to an integer variable is given
below:

int *ptr[MAX];

Pointers

UGCS-102/223
25

Advanced Features of 'C’

UGCS-102/224

26

The above statement declares ptr as an array of MAX integer
pointers. Thus, each element in ptr, now stores a pointer to an int value.
The following example uses three integers which will be stored in an
array of pointers as follows:

#include <stdio.h>

constint MAX =3;

int main ()

{
int arr[] = {100, 50, 120};
inti, *ptr[MAX];

for (i=0;i<MAX;i++)

ia)
1 r

}
for (1=0;i<MAX; i++)
{
printf(“Value of arr[%d]. =%d\n", i, *ptr[i]);
}
return 0;
)
The output of the above program is:
Value of arr[0] =100
Value of arr[1] =50
Value of arr[2] =120

The next example uses an array of pointers to character to store a

list of strings as follows:
#indlude <stdio.h>
constint MAX =4;

int main ()

{ |
char *names[] = {
“Sammer”,
“Himanshu”,
“Nishant”,
“Suraj”,

7
inti=0;
for (1=0;i<MAX; i++)
{
printf(“Value of names[%d] = %s\n", i, names][i]);
}
return 0; |
}
The output of the above program is:
Value of names|[0] =Sammer
Value of names|1]=Himanshu
1Value of names|[2] = Nishant

Value of names([3] = Suraj

1.9 POINTER TO POINTER

A pointer to a pointer is a type of multiple indirection, or a
chain of pointers. Usually, a pointer contains the address of a variable.
Now;, we define a pointer to a pointer, the first pointer contains the address

 of the second pointer, which points to the location that contains the actual
value as shown below:

Pointerl Pointer2 variable

Address of _| Address of ~
Pointer2 "| variable ' 3 value

A variable that is pointer to a pointer must be declared as such. This can
be done by putting an additional asterisk in front of its name. For
example, following is the way to declare a pointer to a pointer of type int:

int **var;
When value of a variable is indirectly pointed by a pointer toa

pointer, accessing that value requires that the asterisk operator be applied
twice, as is shown below in the example:

#include <stdio.h>
int main ()
{

intx;

Pointers

UGCS-102/225
27

Advanced Features of 'C’'

UGCS-102/226
28

int *ptr;
int *pptr;
var =230;
/* take the address of x */
ptr=&x; _
/* take the address of ptr using address of operator & */
pptr = &ptr;
/* take the value using pptr */
prit{tf(”Value of x=%d\n”, x);
printf(“Value available at *ptr = %d \n”, *ptr); |
printf(“Value available at **pptr = %d \n”, *pptr);
return 0; '
}
The output of the above program is:
Value of x=230
Value available at *ptr =230
Value available at *pptr =230
Check your Progress 1
1. Consider the following declaration
int a, *b = &a, **c = &b;
What following program fragment does?
a=4;
**c=5; _
2. What will be the output of the following code segment?
void main()
{ chars[10];
sttcpy(s, “abc”);
printf(“%d %d”,
strlen(s), sizeof(s));
) .
3, . Whatis the output of the following ‘C’ program?
#include <stdio.h> |
void main (){ inta, b=0;
staticint ¢ [10]={1,2,3,4,5,6,7,8,9,0};
for (a=0; a<10;+ + a)
if ((c[a]%2)==0) b+=c[a];
printf (“%d”, b);

} ' : Pointers
4. What is the output of following program:-

intq, *p, n; |

q=176; If the address of q is 2801
p=&q; and p is 2600

n="p; |

printf(“%d”, n);

5. = Thesizeofarray int a[5]={1,2} is

6. . Theoutputof the following statements s
char chi6l={'e’, ", ‘d’, \0’, ‘P');
printf(“%s”, ch);

7. Giventhe following code fragment:

- intmain()

{

int raw[ZO], 1, sum=0;

int *p=raw;

for (i=0; 1< 20; i++)

“(p) =1,

for(i=0; i < 20; I += sizeof(int))

sum +="*(pH)

printf(“sum =%d\n”, sum);

return();

J

What will be the result of execution?
8. What is the missing statement in the following function which
copies string x into string y.
void strcpy(char *x, char *y)
{
while (*y I="\0")....coceiiinniinnn. . /* missing stament */
*x=/\0;
}
9, Write a ‘C’ program to calculate the frequencies of different
alphabets, presentin a given string. The string of alphabets is to be taken
as input from the keyboard.

10. Assuming the following declarations:
int*pijinti, j; _ _ UGCS-102/227
char *pc; 29

.vanced Features of 'C' char c[] = “abracadabra”;

wha;t are the final values of i, j, and c after executing the following
statements.

i_=1;

11. What thing(s) is/are wrong with the following code fragment?
[Note: there may be one thing wrong].

int array[] =1{1, 2, 3};
inti, sum=0;
for(i=0;i<=3;i++) {
sum +=array[i];
}
12. Under what conditions can the following fragment lead to
program failure?
char input[80];
_ scanf(“%s”, input);
13. ' Whatis wrong with the following code?
{char*sl = “Hello, s
char *s2="world!”;

char *s3 = strcat(s1, s2);

14. Whathappens with this code? Please explain
char* s="hello\0”;
char buffer[20];
printf(“%s is of length %d \n” s, strlen(s));
strcpy(s, buffer);

15. + Whatis the output of the following program:

UGCS-102/228
30 char name[30] = “Allahabad”;

/* more code here that might change contents of name */inti=0;
while (i<30 && name]i} !="\0") {name[i] = toupper(namel(i]);

i++}
1.10 SUMMARY

In this Unit, we have studied pointers and their relationship to
arrays and character strings. Pointers are very useful part of “"'and
separate it from more conventional programming languages. Pointers
make ‘C’ more influential allowing a wide variety of tasks to be

“accomplished. A pointer is a constant or variable that contains an address
which can be used to access data. Pointers are built on the fundamental
concept of pointer constants. The actual data type of the value of all
pointers, whether integer, float, character, or otherwise, is the same, a
long hexadecimal number that represents a memory address. The only

difference between pointers of different data types is the data type of the

variable or constant that the pointer referring to. The unary operator *,
also known as indirection (or dereferencing) operator returns the value
of the variable located at the address specified by its operand. The
indirection operator is complement to the address operator. The name of
an array is defined as constant pointer to the first element, so it cannot be
used as lvalue. Similarly, we can use pointers to work with character
strings, in a similar way that we used pointers to work with “standard”
arrays.

Pointers

UGCS-102/229

31

Advanced Features of 'C’

UGCS-102/230
32

UNIT 2: FUCNTIONS

Structure
2.0 Introduction
21 Objectives

22 Functions

2.3 Userdefined functions

24 Categoriesof function

25 Returning Non-integer values
26 * Function Arguments

2.7 Recursion '

28 ArraysasFunction Arguménts
29 Summary

2.0 INTRODUCTION

The programs we have seen so far werevery simple. They simply
solved the given problem that may be carried out without too much
effort. The principles of top—down design and structured programming
state that a program should be divided into a main module and its related
modules. Each module is then further divided into sub-modules (or
pieces)until the resulting modules are basic; that is, they cannot be divided
into further sub-sub-modules.These smaller pieces sometimes called
‘modules’ or ‘subroutines’ or ‘procedures’ or functions (see Figure
2.1). Visualize that you have to develop a huge program like operating
system or word processor, which includes large number of coding lines.
It is not feasible toimplement the whole program in a one big program
file. It is the work of many computer programmers, each working on
smaller pieces of the problem that are then brought together to complete
the solution. Thus, without using functions, the program becomes very
clumsy, hectic and complex to understand. After designing the program,
one has to check that whether it is functioning well or not. This can be
done only when the big program is divided into smaller functioning
units. So, the needs of functions are:

° It helps to manage complexity because smaller blocks of code
are easily readable and understandable.

® You can re-use the code, within a particular program or across
different programs.

° Italsoallows independent development of code.

o Functions provide a layer of ‘abstraction’. Abstractionis a way to
simplify or separate the details of how a process works to an
essential set of features that allow the process to be used. For
example: pritnf() is used to display the content on to the monitor.
You need not worry abouthow it works, rather you simply use it

in your program.
Main module
| Module 1 Module 2 Module 3
Module Module Madule Module Module Module Module
la 1b fc 2a bl 3a 3b

Figure 2.1: Top-down approach using modules (or functions)

2.1 OBJECTIVES

After going through this unit, you should be able to: |

o declare function prototypes'

o create user defined functions to perform task
. call functions by value

° call functions by reference

. pass arrays as arguments to functions

2.2 FUNCTIONS

In ‘C’, the initiative of top-down design is done with the help of functions.
A ‘C’ program is made of one or more functions, one and only one of which must
be named main. The execution of the program always starts with main, but it can
call other functions, including library function such as printf() and scanf(), to do
some part of the task. A task is a distinct job that your program must perform as
apart of its overall operation, such as adding two or more integer, sorting an array
into numerical order, or calculating a square root etc. Generally, the purpose of a
function is to receive zero or more pieces of data, operate on them, and return at
most one piece of data. A function will carry out its intended action whenever it s
accessed (i.e., whenever that function is “called”) from some other portion of the
program. The same function can be accessed from several different places withi~

Functions

UGCS-102/231
33

Advanced Features of 'C' a program. Once the function has carried out its intended action, control will be
returned to the point from which the function was accessed as shown in Figure
2.2.

Execution starts from main(

Y

main ()
{
’ Control transferred to
displ ; . .
isplay() display() function
printf(“after display function”);
} -
display()
{ -
printf(“inside display function”);

}

return the control back
to main()

Figure 2.2: ¢alling and deﬁning function

Function can be classified into two categories: library functions
and user defined functions, We have seen number of library functions in
previous Units, like; printf, scanf, strlen, getchar, putchar etc. These
functions are defined in standard C library files. In this Unit, we focus
on user defined functions that are designed for our intended task.

User defined function names follow the same rule as
variablenames. Functionnames consist of letters, numbers
andunderscoresbut do not start their name with number. Let’s take
anexample. Suppose you need a function which returns the larger of
two integers. The function will define as:
int maximum (int x, int y)

/* Return the largest integer */
{

if (x>y) return x;

returny;

The above function maxitmum takes two arguments both of which
are integers. It returns the value of the largest integer. Note that return

UGCS-102/232 L , .
is being used here in the same way as return was used from main but

34

returning from main exits the program whereas returning from a
function transfers control to wherever the function was called from. Now,
let us use our maximum function from main function to compute the
maximum among two integer numbers as specified in Program 2.1

/* Program 2.1 */
#include <stdio.h>

int maximum (int, int); /* Note: Prototype or declaration, we
: will see it later */

int main()
{
int i=4;
intj=5;
intk;
k= maximum (i ,j); | /* Calling maximum function */
printf (“%d is the largest among %d and %d \n” k,ij);
return 0;
)

int maximum (int a, int b) /* function definition or
implementation of function */

/* return the largest integer */
{
if (a>b) returna;
return b;
)

In the abave program, we are making our own function maximum
that computes the maximum among two integer numbers input to it.
The program has three features, namely; prototype or declaration,
function definition and function calling. A function declaration tells
the compiler about a function’s name, returntype, and parameters. A
function definition provides the actual body of the function. The function
calling specifes the place in main from where the function is used. In
next section we will describe them in more detail.

2.3 USER-DEFINED FUNCTIONS

Like every other variable in ‘C’, functions must be both declared
and defined. The function declaration gives the whole representation of
the function that needs to be defined later. The function definition contains

Functions

UGCS-102/233
35

Advanced Features of 'C" the actual code for a function.In order to use functions, the programmer

must do three things:

@ Define the function
] Declare the function
[]

Calling the function in the main code.

2.3.1 Defining a Function

The general form of a function definition is:

return_typefunction_name(parameter list)/* function header */

{

‘body of the function [* function body */

A function definition consists of a functionheader and a

functionbody.

(@)

(b)

UGCS-102/234
36

The function header has following parts:

Return Type: A function may return a value. The return_type
is the data type of the value the function returns and it may be
any valid ‘C’ data type, including user defined data type. There
are some functions that perform the desired operations without
returning a value. In this case, the return_type is the keyword
void. The term void denotes nothing returned by the function.

Function Name: This is the actual name of the function. Function
names follow the same rule as variable names. Functionnames
consist of letters, numbers and underscores but do not stari
their name with number. 'T'he function name and the parametes
list together constitute the function signature.

Parameters: When a function is called (or invoked) from calling
program, you pass a value to the parameter. This value is referrec
to as actual parameter or argument. The parameter list refer:
to the type, order, and number of the parameters of a function
The parameter list may be optional, i.e., a function may contair
no parameters. Formal parameters are variables that ar
declared in the header of the function definition.

Function Body: The function body actually contains th
collection of compound and simple statements that define wha
the function does. For example in program 2.1, the functios
maximum computes the maximum among two integer number:

For example, if we define a function to return the square of a Fuiictionis
number, then function definition looks like: '

/* function to compute squared of a number */
intsquared (inti) ~ /*Note: Hereiis a formal parameter */
/* Squaresi®/
{
i=1*4;
return i;
}

The above function header consists of following three parts, return
type of function is int, name of function is squared. The parameter
list contains int type value. The first int tells the compiler that the value
returned by the function will beconverted, if necessary, to int.The
parameter tells the compiler that the function takes a single argument of
typeint.The body of function simply squared the value and returns it to
calling function.Any variables declared in the body of function are said
to be local to that function. In our example, variable 7 is local as it is
declared inside the function maximum. Other variables may be declared
external to the function. These are called globalvariables.

By using the keyword return followed by a data variable or
constant value, a function returns a value to the calling program. The
return statement may also contain an expression. Some examples of
return statements are:
refurmn 5;
return ((n+1)*(n+1));
return a*b*c;

When a return keyword is encountered the following actions
are performed: |

° execution of the function is finished and control is transferred
back to the calling program,

° The function call evaluates value of the return expression.
But if there is no return statement control is simply transferred
back when the closing brace of the function is encountered.

The data type of the return expression must match with the
declared return_type for the function.

Itisalso possible that a function have multiple return statements.
For example: :

double absolute(double x) {

if (x>=0.0) - ' UGCS-102/235

37

Advanced Features of 'C'

UGCS-102/236
38

return x;/* if received value x is greater than 0, then simply return
it

else

returni-x; + /* otherwise, negative of x is returned */
}
There are many functions thoseactually neither return any value

nor they require any arguments so for these functions the keyword void
is used. Here is an example:
vqid write_header(void)
{
printf(“Hi! This is the print message\n “);
printf(“Welcome to the world of C programming\n”);
printf(“You are about to learn fucntions “);

}

The 1st void keyword before function name indicates that no
value will be returned. The 2nd void keyword in parameter list indicates
that no arguments are needed for the function.This makes logic because
all this function does is print out aheader statement.

[Note]In‘C’, If a function definition does not specify the return type,
then it is int by default.[End of Note]
2.3.2 Declaring a function

Like any other ‘C’ variable, functions should be declared before
they are used. ANSI ‘C’ provides for a new function declaration syntax
called the function prototypes. Afunction declaration tells the
compiler about a function name, the number and types of arguments
that are passed to the function and the type of value that is to be returned
by the function. The actual body of the function can be defined
separately, which we have seen in previous section. A gerieral form of
function degla_rationis shown below: '

return_type function_name(parameter type list);
. The parameter typeis a typically acomma separated list of types.
Identifiers areoptional; they do not affect the function prototype.
. The keyword void is used if a function takes no argument.

° Alsothe keyword void is used ifno value is returned by the
function.
For the above defined function squared(), following is the function

~ declaration:

int squared (int i);

Parameter names are not important in function declaration only

their type is required, so following is also valid declaration:
int squared(int); /* also a valid declaration */
- Function declaration is required when you define a function in
one source file and you need to call that function in another file. In such

a case, you should declare the function at the top of the file callmg the
function.

The above 'functic’m prototype of squared is simply the function

header from the function definition with a semi-colon attached to
the end. The prototype tells the compiler about the number and type
of the arguments to the function and the type of the return value. Function
prototypes should be placed before the start of the main program.
The function definitions can then follow the main program. In addition
to make code more readable, the use of function prototypes offers
improved type checking between actual and dummy arguments.
2.3.3 Calling the function

Calling a function is very easy. A functlon which calls another

function is known as calling function whereas function to be called is
known as called function. To call a function, just type its name in

your program and make sure to supply arguments (if required by your

function prototype). A statement to call our function squared(int i), we
simply write: | _

squr = squared(5);
where variable squr is defined in a calling function.

When your program encounter the function calling, control passes
to the called function. If the task of function is completed, control passes
back to the main(or calling) program. Additionally, if a value was
returned, the function call takes on that return value. In the above example,
upon return from the squared function the statement:

squared(5);
returns 25 and that retumed mteger value is a551gned to the variable
squr.

Therefore on combining function definition, function prototype
and function calling, we finally build our first user defined function for
squaring an integer number. The following program 2.2 uses function
squared() to compute square of an integer which is passed to it.

/* Program 2.2 */

#include<stdio.h>

int squared (inti); /* Prototype or declaration */
int main() | |

{

Functions

UGCS-102/237

39

Advanced Features of 'C’

UGCS-102/238
40

int i=4;

int squr;
squr=squared (i); [* Calling function*/
printf (“The square of %d is &d \n”, i, squr);
refurn 0;
}
int squared (int i) /* Function definition. The i is

theformalparameter */
{
i=1%;
return i;
}

Actual parameters are variables or constants thoseare passed to the
called function. In this example, value 4 is an actual parameter. Formal
and actual parameters must match exactly in type, order, and number.
Their names, however, do not need to match.

There are following important tips which should be kept in the mind
before calling function. |
. The number of arguments in the function call must match the |

number of arguments in the function definition. The number of
actual and formal arguments should same. :

° The tyi:_:e of the arguments in the function call must match the
- typeof the arguments in the function definition.

° The actual arguments in the function call are matched in-order
with the formal arguments in the function definition.

o The actual arguments are passed by-value to the function. The
formal parameters in the function are initialized with the present
values of the actual arguments.

2.4 CATEGORIES OF FUNCTION

A function can be categorized according to the number of
, parameterspresent and return type (i.e. no return value or some return
value). The functions can belong to any one of the following categories:

void Functions without parameters
void Function with Parameters

Non-void Function without Parameters

ol

Non-void Functions with Parameters

2.4.1 void Functions without parameters

This type of function has return type void which indicates that
the function does not return anything back to the calling function. The
function also does not receive any data from the calling function. Thus

‘there is no data transfer among calling and called function.You can say
that there is only silent communication takes place between the functions
without any give and take action. The following program 2.3 requires
a positive integer as input from user. When user enters any negative
number than warn_and_quit() function invoked. The function displays
message and program is abnormally terminate by exit(1) function. This
is a standard library function that causes termination of program.
Conventionally, a return value of 0 signals that all is well; non-zero values
usually signal abnormal situations.

/* Program 2.3 */
#include<stdio.h>

/* function wam_anquuit has void return type. Also, its parameter list
is empty(void) */

void warn_and-quit(void); /* Prototype or decla_u‘étion */
int main()
{
int x;
printf(“Enter only positive number, Otherwise you suffer!:”);
do { scanf(“%d”, &x);
if(x<0)
wam_and_qtiit(); /* calling function */
} while (x<0);
return 0;

}

/* function definition */
void warn_and_quit (void) /¥ Heréiisaformal parameter */

{

printf(“You have to enter only positive number\n’);

printf(“We have given you warning, but you neglet it. SoIam

quit. \n");
exit(l); /*abnormally terminate the program at thisend */

Functions

UGCS-102/239

41

Advanced Features of 'C’'

UGCS-102/240
42

2.4.2 void Function with Parameters

In this category, an argument should be passed from the calling
function but the called function won't return anything back to the calling
function. The calling function sends the data to the called function but
did not receive anything from the called function. This is a kind of
downward (one way)communication from calling to called function.

Program 2.4 checks that whether a number input by user is even or
o, _ _

* Program 2.4 */
#include<stdio.h>

[* function check_even_odd(int) has void return type. Ithas oﬁe int
parameter */

void check_even_odd (int number); [=
Prototype or declaration */

Jintmain()

{
intnum;
printf(“Enter only positive number: “);
scanf(“%d”, &num);

while (num<=0)

printf (“\nThat's incorrect. Try again.\n") ;
printf (“Enter a positive integer: “) ;
scanf (“%d”, &num);
] :
check_even_odd(num); /* Note: num is actual argument */
return 0;
} |
/* function definition */

_ void check_even_odd(int number) [* Here number is a formal

parameter */
{
If(number % 2 == 0)
printf(“The number %d is even\n”, number);

else

printf(“The number %d is odd \n”, number);

In the above program, an integer number is requested form user.
If user types incorrect, than again he is requested to entered the positive
number. This process will continue till the correct number is not entered.
On receiving correct number, the function check_even_odd is called
with actual argument num. This argument num is passed to called
function check_even_odd. The number num is received by formal
parameter number. The functionchecks whether number % 2 gives
remainder 0 or not. If remainder is zero than number is even otherwise it
is odd. Subsequently corresponding printf statement is executed.

You must sure that formal parameters and actual parameters
must match in number, type and order. The values of actual parameters
are assigned to the formal parameters on a one-to-one basm, starting from
left to right.

2.4.3 Non-void funchon without parameters

The function of this category returns some value to the calling
function but no arguments are passed from the calling function to the
called function. The calling function simply invoked the called function
for some computation. The called function performs some operations and
sends the data back to the calling function. It is a kind of upward(one
way) communication as data is transferred from called to calling function.
Program 2.5 checks that whether a number input by user is even or odd.

/* Progtam 2.5 */
#include<stdio.h>

/* function int check_even_odd(void) has int return type. It has no
parameter, i.e. void */

- intcheck_even_odd (void); /* Prototype or declaration */
int main()
{

int num, flag =0;

flag = check_even_odd(); /* Note: flag collects the value returned
. by the function */

if(flag ==1)

printf(“ Number is even”);
else

printf(” Number isodd”);

Functions

UGCS-102/241
43

Advanced Features of 'C'

UGCS-102/242
29

return 0;
} _
/* function definition */ |
intcheck_even_odd(void) | /* Here number is a
formalparameter */
{ printf(“Enter only positive number: “);
scanf(“%d”, &num); |
while (num<=0)
[|
printf (“\nThat's incorrect. Try again.\n");
printf (“Enter a positive iriteger: “);
scanf ("%d”, &num);
}
if(number % 2 ==0)

returnl; /¥ if num is even, return the value 1 */
else
return0; /*ifnumisodd, return the value0 */

The above function maintains a flag variable in main(). The called
function requires an input from user. If user types even number than
return value is 1 otherwise 0 is returned to the calling function. This
returned value is assigned to flag. The flag value is then checked against
1 or 0. If return value is 1, the number is even otherwise it is odd. This
program is another version of program 2.4.

2.4.4 Non-void Functions with Parameters

In this category of functions, the calling function send some data
to called function, which in turn perform some operations over that data
and sends back the computed result to the calling function. The function
has both return type as well as it has formal parameter list. It is a
kind of two way (bi-directional) communication because both functions
interact with each other by sending data to one another. Program 2.6

‘computes the multiplication of two integer numbers by sending them to

the called function.
/* Program 2.6 */
#include<stdi0.h>

/* function int multiply(int a, int b) has int return type. It has two ini
parameters */

intmultiply (inta,intb); Prototype or declaration */
int main()
{

intnum1, num?2, result;

printf(“Enter two positive integers:);

scanf(”%d %d”, &num]l, &num?2);

while (.(numl<= 0) I'l (num?2 <=0))

printf (“\nThat’s incorrect. Try again.\n");
printf (“Enter two positive integers: “) ;
scanf(“%d %d”, &numl, &num?2);

result = multiply(num1, num?2);

printf(“Multiplication of %d and %d is %d\n”, num1, num?2,
result);

return(;

j
/* function definition */

int multiply(int x, int y) /* Here number is a formal parameter */

{
return (x *y);

The above program passes actual arguments, num1 and num?2
to the called function. The called function received the actual arguments,
numl and num?2 in formal parameters, x and y respectively. The
multiply() function returns the multiplication of formal parameters x
and y. This return value is collected by result variable in main (or calling
function). At Thus, The value of result variable is printed.

2.5 RETURNING NON-INTEGER' VALUES

In earlier section, we have discussed that functions return integer values.
But there may be many situations where we have to return float, double,
char type values. We can do this explicitly by changing the return type
of the function. Let us consider, program 2.7 that multiples any kind of
numeric value, '

/* Program 2.7 */

Functions

UGCS-102/243
45

Advanced Features of 'C'

UGCS-102/244
46

~ tinclude<stdio.h>

long double multiply (long double a, long doubleb);
int main() |
{
long double num1, num?2, result;
~ printf(“Enter two numbers: “);
scanf(“%Lf %Lf", &num1, &num?2);
result= =multiply(num1, num2);

printf(“Multiplication of %Lf and %Lf is %Lf \n”, num1, num2
result);

return 0;
}
[* tunction definition */
long double multiply(long double x, long double y)

{

return (x*y);

In the above program, multiply() function has return type long
double. It also received formal parameters as long double. We have also
removed the restriction of positive integers in this program. The program
correctly runs till the range of long double is not exceeded. The specifier
%L is used for long double. Rest of the program is self explanatory.

2.6 . FUNCTION ARGUMENTS

A function is requiredto use arguments so, it must declare variables
that accept the values of the arguments. These variables are called the
formal parameters of the function.The formal parameters are similar
to other local variables inside the function and are created upon entry
into the function and destroyed upon exit. During a call to a function,
there are two ways that arguments can be passed to afunction:

o Call by value

e Callbyreference
2.6.1 Callby Value

- The call by value method of passing arguments to a function
copies the actual value of an argument into the formal parameter of
the function. In this case, changes made to the formal parameter inside

the function have no effect on the arguments of calling function. Functions

By default, ‘C’ programming language uses call by value method

to pass arguments. Thus, the code within a function cannot alter the

arguments used to call the function, i.e. there is no relation between

actual and formal parameter. Change informal parameter doesn't affect

actual parameter. Consider the function swap() in Program 2.8. This
function exchange the values of two numbers with each other.

/* Program 2.8 */

#include <stdio.h>

void swap(inta, intb); /* function declaration */
int main ()

{

/[* local variable definition: Note: variables a and b are local to this

block only - */

int a =100;

int b = 200;

PR s e e e e “);
printf(“Inside main: Before swap, valueofa: %d\n”, a);

printf(“Inside main: Before swap, value of b : %d\n”, b);

printf(“ — — — — — =)y
/* calling a function to swap the values*/

swap(a, b); /* function calling */
printf(“———————————— — “;

 printf(“Inside main: After swap, value of a: %d\n”, a);
printf(“Inside main: After swap, value ofb: %d\n”,b);
printf(“— — ——— =%

/* function definition to swap the values */

void swap(int a, intb) .

{/* Note: The formal parameters'int @ and int b are local to this
block only */

int temp;

temp =a; /* save the value of a */
UGCS-102/245

a=b; [* putbintoa*/ 47

Advanced Features of 'C'

UGCS-102/246
48

b= temp; [*putaintob*/
printf(“Inside swap: valueofa: %d\ n”,a);
printf(“Inside swap: value of b : %d\n”,b);

return;

}

The output of the above program is:

Inside main: Before swap, value of a :100

Inside main: Before swap, value of b :200

Inside swap: value of a:100

Inside swap: value of b :200

Inside main: After swap, value of a :100

Inside main: After swap, value of b :200

In the above program, variables a and b defined in main() have
only local scope within the main. The actual arguments, a and b, are
passed to function swap(inta, intb). These actual arguments are received
by formal parameters a and b. Do not confuse with the name of
variables. They have same name, but their memory locations are
different. The changes made to local variables (in this case, formal
parameters a and b)DO NOT change other variables with the same
name (i.e. variables aand b in main function).

Thus, the program swaps the numbers with in the swap function.
Actually no swapping is done for actual arguments. The following
observations are made from this example:

®* Howevertheactual and formal parameter names are same, still
" they have different memory locations.

¢ Any changes made to local variables do not change other
variables with the same name.

2.6.2 Call by Reference

In the previous section, we have seen that if a variable in the
main program is used as an actualargument in a function call, its value
won'’t be changed no matter whatis doneto the corresponding formal
argument in the function.

The call by reference method of passing arguments to a function
copies the address of an actual argument into the formal parameter.
JInside the function, the address is used to access the actual argument
used in the function call. This means that changes made to the formal
parameter affect the actual parameter (argument).

In call by reference, the address of actual arguments is passed
to the functions just like any other value. Hence, accordingly youneed
to declare the formal parameters of function as pointer types. Since the
actual argument variable and the corresponding formal parameter
pointer refer to the same memory location. So, changing the contents
of the formal pointer change the contents of the actualargument variable,
as in the following function swap(), which exchanges the values of the
twointeger variables pointed to by its arguments.

Let us call the function swap() with call by reference in the
following program 2.9;

/* Program 2.9 */
/* function definition to swap the values */
_void swap(int *x,int *y)
{
.int temp;
temp =*x; [* save the value at address x */
x =%y; / puty intax*/
*y = temp; [*putxintoy*/
return;
}
#include <stdio.h>
/* function declaration */
void swap(int *x, int*y);
int main ()
[
/*1ocal variable definition */
int a=100;
int b =200;

printf(“Before swap, valueof a: %d\n”, a);

printf(“Before swap, value of b: %d\n”,b);

Functions

UGCS-102/247
49

Advanced Features of 'C'

UGCS-102/248
50

/* calling a function to swap the values.
*&aindicates pointer to a ie. address of variable a and
* &b indicates pointer tob ie. address of variable b.
"/
swap(&a, &b);
printf(“— ——————_——— “V
printf(“After swap, value ofa: %d\n”, a);
printf("After swap, value of b: %d\n”,b);
| printf(“ - —— —— —— — ————— “;
return0; |
} |
The output of the above program is:
Before swap, value of a:100
Before swap, value of b :200
After swap, value of a:200
After swap, value of b:100

which shows that values are swapped inside the function. This is
happened because addresses of actual arguments are passed to the
function. These addresses of actual arguments are received by
corresponding formal pararneter pointers, Any operations through these
formal parameter pointers will change the content of actual arguments.

2.7 RECURSION

Recursion is the process in which a function repeatedly calls to
itself in order to perform calculations. The ‘C’ programming language
supports recursioni.e. a function to call itself. But before using recursion,
programmers must be careful to define an exit condition from recursion
process,otherwise it will go in an infinite loop.

Recursive function is very useful to solve many mathematical
problems like to calculate factorial of a number, generating Fiboriacci
series etc. Instead of using recursive function, programmers prefer
iterative version of the function.

Let us evaluate a factorial of a given number. The following
function calculates factorials recursively:

int factorial(intn)
{

int fact;

if (n<=1)

fact=1;
else

fact=n* factorial(n-1);

return fact;

Let us check the program execution flow for n=4. The function is
first called with an argument 4. Since 4 is not less than 1, control
transferred to else part. Here, the statement

fact=n * factorial (n-1);
is executed withn=4. Therefore,
fact =4 * factorial (3);

will be evaluated. The rvalue is a function call expression with argument
3. This call is than return back to the function with value 3. The next
statement to be evaluated is:

fact =3 * factorial (2);

This again calls the same function with argument value 2. So, again the
next statement:

fact =2 * factorial (1);

is evaluated. This time factorial(1) =1 returns. Thus, complete se‘quénce
of calling factorial(4) is:

fact =4 * factorial (3)
=4 *'3-* factorial (2) .
=4*3*2*factorial (1)
=4*3%*2%1=24.
Let us consider another program to compute Fibonacci series for
a given number using recursion:
/* Program 2,10 */
#include <stdio.h>

int fibonaci(inti)

Functions

UGCS-102/249
51

Advanced Features of 'C'

UGCS-102/250
52

if(i==0)

return 0;

if(i==1)

return 1;

return fibonaci(i-1) + fibonaci(i-2);
int main()

inti;

for (i=0;i<10;i++)
printf(“%d \ t%n’.’, fibonaci(i));

return 0;

J

Execute the program and verify the results.

The output of the program is:

0 1 1 2 3 < 8 13 21 34

2.8 . ARRAYS AS FUNCTION
ARGUMENTS

Like any other ‘C’ variable, you can also pass the values of a one
dimensional array to a function. To pass a single-dimension array as an
argument in a function, you have to declare function formal parameter
in one of following three ways. All these three declaration methods
generate similar results because each tells the compiler that an integer
pointer is going to receive. Similarly, you can pass multi-dimensional
array as formal parameters.

| Mehotd 1:

The formal parameters are pointers to receive address of an array.

It is convenient to use pointers as formal parameters in the function. Functions
Once the function has the base address of the array, it can use pointer

arithmetic to work with all the array elements. Following skeleton shows

the method 1 procedure.

void myFunction(int *param)

{

)
Method 2:
Here, the formal parameter is a sized array. The size of formal parameter

array is same as an array used in calling function. This way, whole array
is passed to the formal parameter. The skeleton of Method 2 is shown as:

void myFunction(int param[10])

{

l
Method 3:

Finally, the formal parameter is an unsized arrayas follows:
void myFunction(int param[])

{

Now let us consider the following function which takes an array
as an argument along with another argument representing the size of
an array. The function refurns an average of the numbers passed through
the array. The Program 2.11 is showing the working for the above said
task.

/* Program 2,11 */

: ; . . e UGCS-102/251
double getAverage(int arr{], int size) /* function definition */ _

53

Advanced Features of 'C'

UGCS-102/252
54

{ inti;
double sum=0;

for (i=0;1<size; ++)

sum +=arrf[i];

|

return (sum/size);

}

~#include <stdio.h>

double getAverage(int arr{], int size); /* function declaration */
int main ()

{

[* anint array with 5 elements */

int num(5] = {10, 12,13, 1, 5);

double avg;

f* pass pointer to the array as an argument */
avg=getAverage(num,5); /* function calling */
/* output the returned value ™/

printf(“Average value is: %f , avg);

return 0; |

}

The out.put of the above program is:

Average valueis: 8.2

2.8.1 Pointers as Function arguments

Let us consider the previous example. Now, in it we change the
formal parameter list. Instead of declaring array as formal parameter,
we use pointer as a formal parameter in the fucntion. Thus, our
function code looks like: '

double getAverage(int *ptr, int size) /* function definition */
{

inti;

double sum=0;

for (i=0;1i<size; ++i)

{

sum += *(ptr + i); /[*accessing array contents using indirection
operator */

}
return (sum/size);

}

There is no need to change the main program. The main program .

passes num as an argument, which refers to the base address of an
array. This address is received by ptr pointer. Now, after receiving the
base address of an array, rest of the program works in the same way as
program 2.11 does.

2.8.2 Return array from function

The ‘C’ language does not allow to return an entire array as an
argument to a function.Still, you can return a pointer to an array by
specifying the array’s name without an index. If you want to return a
one-dimension array from a function, you have to declare a function
returning a pointer as in the following example:

int* myFunction()

{

}

Read the above function header as:

“Function myFunction takes no formal parameters and return an
integer pointer”

Another important point is that you cannot return the address of
local variable through pointers. ‘C’ language does not permit this
operation. However, if you want to return the address of local variable,
then you should declarea local scope of the variable extends up tothe
end of the function in which they are defined. Got it!

Now consider the follb,wing function which compute the square
of 10 integer numbers (1 to 10) and stored them in an array. Finally the
array is returned back to the calling function through the pointer. Note
that, we have declared the array as static in the function, as shown in
program 2.12:

/* Program 212 */
#include <stdio.h>

Functions

UGCS-102/253

55

Advanced Features of 'C'

UGCS-102/254
56

int* getInput() /* getInput() returns pointer to int */
staticint square[10];
inti;

for (1=0;1<10; ++i)

squarefi]=(i+1)*({i+1);

printf(“square[%d] =%d\n”, i, square(i]);

return square; /* returning array square. Name of array
represent address */

/* main function to call above defined function */

int main ()

{

to int

}

[* a pointer to an int*/

int*p; /* pointer p is used to receive return address from
get Input() */

inti;

p =getInput(); [* function getInput() returns pointer
7

for (i=0;i<10;i++)

printf(“*(p+ %d): %d\n”, i, *(p +1));

return 0;

The output of the above code is:

square[0] =1
square[l] =4
square[2] =9
square[3] =16
square[4] =25
squ:clre [5]=36

sciuare[é] =49
square(7] =64
square[8] =81
square[9] =100
"(p+0):1
p+l):4
“(p+2):9
*(p+3):16
pt+4):25
*(p+5):36
(p+6):49
(pt7):64
p+8):81
*(p+9):100

Check your progress 1

1.

Consider the following plrogram:

void main()

[

char *k="xyz;

f(k); |

printf(“%s\n” k);

}(char *k)

{

k=malloc(4); strcpy(k, “pq”);
)

What will be the output?
Write a‘C’ function to split the list in several sub-lists depending

on the number of digitsrepresenting the integers 1.e. single digit
integers will form a list, double digit numbers will form another
list and so on.

If a function is declared as void fn(int *p), then which of the

following statements is valid to call function fn?
(A) fn(x) where x is defined as int x;

(B) fn(x) where x is defined as int *x;

(C) fn(&x) where x is defined as int *x;

(D) fn(*x) where x is defined as int *x;

Functions

UGCS-102/255
57

Advanced Features of 'C'

UGCS-102/256
58

What is the following function compulihg? Assume aandb are
positive integers.int fn(int a, int b)

{if (b==0)
return b;
else

return (a * fn(a, b - 1));}

=
.

Write a function that satisfies the following definition:

int isSorted(int *array, int nElements)

{

/H-

array is a pointer to an array of ints.
nElements is the number of ints in the array.

This function returns true if the array elements are sortedin
ascending numerical order,

and false otherwise.

Example: suppose array contains {5, 9, 13}, and nElementsis 3.
Then this function returns true since 5, 9, and 13 are
inascending numerical order.

¥/

=AY
Ny

*/

Write a function that satisfies the following definition: '.
void findPositives(double *array, int *nElements) {

/!(-

arrayisa pbi’nter toan arréy of doubles.

*nElements is the number of doubles in the array.

This function removes all the non-positive elements fromarray,
and returns, in *nElements, the number of elements remaining.

nElements must be greater than or equal to zero.

‘Example: suppose array contains {1.0, 2.0, -1.0, 3.0}, and

*nElementsis 4. Then, after calling findPositives, the first three
elements ofarray will be {1.0, 2.0, 3.0} and*nElements will be 3.

What is wrong with the following function that is supposed to
return the average of two integers? [Note: there may be more
than one thing wrong].

int average(int i, int j)

return (i +j)/2;
} -
How would you fix the function?

2,10 SUMMARY

A program should be divided into a main module and its sub
modules. Each module is then further divided into sub-modules (or pieces)

until the resulting modules are basic. These smaller pieces sometimes

called ‘modules’ or ‘subroutines’ or ‘procedures’ or functions. A ‘C’
program is made of one or more functions, one and only one of which
must be named main. The execution of the program always starts with

main, but it can call other functions, including library function such as

printf() and scanf(), to do some part of the task. Generally, the purpose
of a function is to receive zero or more pieces of data, operate on them,
and return at most one piece of data. Every function has three
components: definition, declaration, and function calling. A function can
be categorized according to number of parameters presentin it and return
type. Functions communicate through each other either in downward,
‘upward or in bi-directional mode. Call by reference is most efficient
method as compared to call by value. Use of pointers makes the function
programming most efficient.

Functions

UGCS-102/257
59

Advanced Features of 'C’

UGCS-102/258
60

'UNIT 3: STRUCTURES, UNION, ENUM

AND TYPEDEF

Structure

3.0 Introduction

3.1 Objectives

3.2 Structure definition

33 Structures within structures

3.4 .-Stmétures as function arguments
3.5 Pointerstostructures

36 Unions |

3.7 Enumerated data type

3.8 Typedefinition |

3.9 Summary

3.0 INTRODUCTION

While describing arrays, we have seen that arrays allow you to
define type of variables that can hold several data items of the same type
but structure and unions are another user defined data types
availablein ‘C’, which allows us to store mix data items of different types.
The structures are used to represent a record, Let us assume that we have
to keep track of books in a library. The several attributes which we have
to track for each book are; Title, Author, Subject and Book ID. One
possible way is to keep different arrays for each attribute and apply search
operations on different attributes. But this is not the fruitful way because
it complicates the whole tracking procedure. Instead, we can use structures
in place of arrays. Therefore using the structure we have the ability to
define a new data type considerably more complex than the types we
have seen. A structure is a combination of several different previously
defined data types, including basic data types, arrays, pointers and
structure itself. ' | '

3.1 OBJECTIVES

After going through this unit, you should be able to:

° Declare, create and operate on instances of structures

. Declare, create and operate on unions

.3.2 STRUCTURE DEFINITION

Astructure is a data structure whose individual elements can
differ in type. Thus, a single structure might contain integer elements,
floating-point elements and character elements. Pointers, arrays and
other structure can also be included as elements within a structure. The
individual structure elements are referred to as members of the structure.

The structure declaration is somewhat more complicated than
array declaration, since a structure must be defined in terms of its
individual members.

The syntax for declaration is:

struct struct_name

{
data_type member_1;

data_type member_2;

data_type member_N;
¥

In the above declaration, struct is a required keyword,
struct_name is name that identifies structure of this typeand member_1,
member_2,,member_N; are individual member declaration.The
individual members can ordinary variables, pointers, arrays, or other
structure.Each member definition is a normal variable definition, such

as int i; or float f; or any other valid variable definition.The member

names within a particular structure must be distinct from one another,
though a member name can be the same as the name of a variable defined
outside of the structure.

For example:

struct student

{
int 'roll_no;
char name [25];
float marks;
i |
The above is a declaration of structure data type called

student. Ttis not a variable declaration, but a typedeclaration.This is
called user defined data type. It consists of three members, roll_no of

Structures.Union, Enum and

Type def.

UGCS-102/259
61

Advanced Features of 'C' .

UGCS-102/260
62

int type, name of char array, and marks of float type. No memory
allocation takes place after declaring the structure type.At the end of the
structure declaration, before the final semicolon, you can specify one or
more structure variables but it is optional.

3.2.1 Structure Variable Declaration

The members (i.e, roll_no, name and marks) are not accessed
directly. In order to access the members of structure, the structure variable
has to be declared first. As soon as the structure variables are declared
(or created), the memoryallocation takes place.

The syntax for variable creation is:

stroge_class strut struct_name ,variablel,variable2.....variableN;

where storage_class is an optional storage class specifier.

~ Forthe above example of student structure, following are student
structtire variable declaration:

‘struct student Sameer, Swati, Ankur;

~ The above declaration creates three structure type variables,
namely; Sameer, Swati and Ankur. The memory allocation takes place
as soon as the variable of structure is created. The memory allocation
will contiguous.Thus, to know how much memory is allocated to the
structure variable, you can use sizeof() operator. The program 3.1 shows -

“how much memory is allocated to structure variables,Sameer, Swati,

Anlkur.
/* Program 3.1 */
#include<stdio.h>
struct student
{
int roll_no; /* int takes 2 byte */
charname [25]; /* chararray of 20 elements takes 25 bytes */
float marks; /* float takes 4 byte J
7 |
main()
{
stru_ct student Sameer, Swati, Ankur;
printf(“The sizeof of Sameeris: %d\n”, sizeof(Sameer));
printf(“The sizeof of Swatiis: %d\n”, sizeof(Swati));
printf(”The sizeof of Ankuris: %d\n”, sizéof(Ankuf));
}

The output of the above program is:

The size of of Sameeris: 31
The size of of Swatiis: 31
The size of of Ankuris: 31

In the above program, we have define structure student. The
structure consists of three members. The size of a structure depends upon
type of each member. In this case, roll_no is int, which takes 2 bytes.
Member name is an array of 25 elements of char type, and each char
takes 1 bytes in memory, thus a total of 25 bytes are taken by name
member, and finally float takes 4 bytes in memory. The total bytes
allocated tostructure variables are 31,bytes.

You can also declare a structure type and variables
simultaneously. Consider the following structure representing playing
cards. ' _

structplaying_card {
int p ;.

. char*suit;
} card],card2,card3;

The above statement defined a user defined data type:
 playing_cards and also declare structure variables card1, card2, and
card3. The memory allocated for structure playing_cards variables are
4bytes. A variable p takes 2 bytes and since suit is a pointer, which takes
2 bytes of memory ina 16 bit machine. Thus total of 4 bytes are allocated

for variables card1, card2 and card3. The number for bytes taken by

pointer is machine dependent.
3.2.2 Initializing Structure Members

Structure members can be initialized at the time of
declaration. This is analogous to the initialization of arrays i.e. the initial
values are simply listed inside the pair of braces, with each value
separated by a comma. But make sure that values are listed in the same
order as they appear in the structure definition. The syntax for initializing
the value to the members of structure is: '

structure_variable_name.member_namel = value;

structure_varibale_name — member_name2 = value;

Here, the dot operator () is used for all types of structure variable
except pointer variable. The “dot” operator is called the member access
operator.The arrow operator () is used for only pointer variable of
structure (discussed in next subsection).

Structures.Union, Enum and
Type def.

UGCS-102/261
63

Advanced Features of 'C’

UGCS-102/262
64

The values to member_name can be supplied through number of ways:

o You can use normal scanf() to enter the values through keyboard.

o You can use strepy()function to initialize an array values.
Following is an example for initialization in different ways:

struct student Sameer ={100,Sammer, 87};/* initialization during
declaration */

Swati.roll_no=101; {* initialize roli_no of variable Swati
' with 101 */
strcpy(Swati.name, “Swati”); /* initialization using strepy()

string function */
Swati.marks =97;

scanf(“%d”, &Ankur.roll_no); /* initialize using scanf. Input is taken
from keyboard */

scanf(“%s”, Ankur.name);
scanf(“%d”, &Ankur.marks);

The structure initialization and declaration can be done in asingle
step as follows:

struct structure_name

{
data_type memberl;
data_type member2;

L3
L

data_type memberN;

}variabell = {list of value},variable2 = {list of
value},.......... variableN = {list of value}

Forexample:

1. struct student

introll_no;
char name[25];
float marks;

) Sameer={100, “Sammer”,87}, Swati={101, “Swati”, 97}, student3,
studentd4;

2 struct student

introll_no;
char name[25};

float marks;

S1[3]={ {4, “Manoj”,2.1},{5, “Manoj”,2.9},{61, “Manoj”,4.26}};

In the first example, we create and initialize two variables, while
we just create the two variables student3 and student4 and they are
uninitialized. _ _

In the second example, we create an array of structure variable
of size 3 and initialize the array with the values as follows:

S[0] =1{4, - 4 is assigned to roll_no */
“Manoj”, [* Manoj is assign to name[25] */
2.1 /* 2.1is assigned to marks */

!

S[1] = {5, “Manoj”,2.9}
S[2] = {61, “Manoj”,4.26)

The same member names can appear in different structures. There
will be no confusion to the compiler because when the member name is
used it is prefixed by the name of the structure variable. For example,
the member name is common in two different structures, however we
can access them unambiguously by using their respective structure
names with “dot” operator:

struct fruit {
char *name;
int calories;
} snack;
struct vegetable {
char *name;
int calories;
} din_course;
snack.name="banana”; /Note: name is accessed through snack
~ variable */ .
din_course.name="cheese”;/*Note: name is accessed through
din_course variable */
3.2.3 Accessing Structure Members

To access any member of a structure except the pointer type, we
use the member access operator (., i.e dot operator and arrow operator

Structures.Union, Enum and

Type def.

UGCS-102/263
65

Advanced Features of 'C'

UGCS-102/264

66

()ie. pointer operator. The member access operator is coded as a
period between the structure variable name and the structure member
that we wish to access. The syntax of member accessing is:

structure_varibale_name. member_name;

structure_varibale_name member_name;

The dot operator () is used for all types of structure variable except
pointer variable.
*The arrow operator () is used for only pointer variable of
structure (discussed in next subsection).
Consider an example of student structure. We can access

members of structure variables through operator. The program 3.2
shows declaration, initialization and accessing of structure variables.

/* Program 3.2 */
#include <stdio.h>

* #include <string.h>

struct student
{
introll_no;
: char h,ame [25]);
| ﬂoa_t‘marks';
fies
int main() _
{ struct student Sameer; /* Declare Sameer of type student */
structstudent Swati; /* Declare Swati of type student */
struct student Ankur; /* Declare Ankur of type student */

[* Structure variable initialization using assignment */
/* Sameer specification */
Sameer.roll_no=100;
strcpy(Sameer.name, “Sameer”);

Sameer.marks =87;

/* Swati specificaﬁon "
Swati.rq]]_no =101;

strcpy(Swatiname, “Swati”);

Swati.marks=97;

/* Structure variable initialization using scanf function */

scanf(“%d”, &Ankur.roll_no); /* suppose input to roll_nois:

102

scanf(“%s”, Ankur.name); /* suppose input to name[25] is:

Ankur

scanf(”%d”, &A.nkur.marks) ; I* suppose input to
marks is: 67

/* Accessing or printing Sameer info */

printf(“Student Roll No: %d \n”, Sameer.roll_no);
printf(“Student Name : %s\n”, Sammer.name);
printf(“Student Marks : %d \n”, Sameer.marks);

/* Accessing or printing Swati info */

printf(“Student Roll No: %d\n”, Swati.roll_no);
printf(“Student Mame : %s\n”, Swati.name)}
printf(”Smdent‘Marks : %d\n”, Swati.marks);

/* Accessing or printing Ankur info */ |

printf(“Student Roll No: %d \n”, Ankur.roll_no);
printf(“Student Name : %s\n”, Ankur.name);
printf(“Student Marks : %d\n”, Ankur.'marks);

return 0;

1 |
The output fo the following program is:
Student Roll No : 100

Student Name :Sameer

Student marks :87

Student Roll No : 101

StudentName :Swati

Student marks :97

Student Roll No :102

Student Name : Ankur

Student marks :67

Structures.Union, Enum and

Type def.

UGCS-102/265
67

Advanced Features of 'C'

UGCS-102/266
68

3.3 STRUCTURES WITHIN STRCUTURES

We have already seen that structure members may be the variable
of any data type. Thus, a structure can also be the member of a structure.
By using this facility complex data types can be created. Suppose we
need to make a structure that contained both date and time information.
One way to achieve this would be to combine two separate structuresi.e.
one for the date and one for the time. For example,

/* defining struct date: Now date is a user defined data type */
struct date {

int month;
int day;
int year;

L

/* defining struct time: Now time is a user defined data type */

struct time {
inthour;
int min :
int sec;
ki
/* defining struct date_time: date_time is a user defined data type.

The strucutere date_time consist of two variables, today of type
date and now of type time.*/

struct date_time {
struct date today;

struct time now;

The above statement declares a structure whose elements consist
of two other previouslydeclared structures.

3.3.1 Initializing Structures within Structures

The initialization of structure member can be done in the same
way as we did previously: Initialization of date_time canbe doneas follows:

' struct date_time past = {{10,11,1978},{10,11,13}};

which sets the today element of the structure pastto the eleventh
ofOctober, 1978. The now element of the structure is initialized to
tenhours, eleven minutes, thirteen seconds.

Each item within the structure can bereferenced using dot operator (or
arrow operator), if required. For example,

Structures.Union, Enum and

Type def.
++past.now.sec;
if (past.today.month == 11)
printf(“Correct month! \n");
Consider another example which shows nested structure at work:
1. struct record
{ :
inta,b;
~ floatc;
chard;
b
struct class
{
int pointer;
floatg;
7
struct room
{
struct record 51,52;
struct class c1[2];
}
here the member of structure “room” is the variables of structure “record”
and “class”.
All the above three structure can also be written as:
. & struct room {
struct record
{
int a,b;
floatc;
chard;
151,52; UGCS-102/267

69

Advanced Features of 'C’
struct class
[
int pointer;
floatg;
c1[2];
iR1; _
Both the above definition is for same structure and only difference
is in the way of writing. In order to access the member of the “record”

or “class”, which is the sub-member of”room” structure, you can use
following syntax for accessing the sub member:

Structure_variable_name.member_name.sub_member

Structure_variable_name member _nameasub_member

where the dot and arrow operator are used on the basis of types of
variable. '

For example:

The R1 variable is of room type. To access the sub-member of
R1, we use following statements:

R1.Sl.a R1.52.b R1.C1[0].p
R1.51b R1.52.c R1.C1[0].q
R1.S1.c R1.52.d R1.C1[1].p
R1.51.d R1.52.a R1.C1[1].q

3.3.2 Some important properties of Structure

Let us now explore the properties of structure with a view of
programming convenience. We would highlight these properties with
suitable example:

Property 1:

“The value of a structure variable can be assigned to another
structure variable of the same type using the assignment operator”

Forexample:

struct student
UGCS-102/268

70 |

Introll_no; Structures.Union, Enum and
char name[25]; Type def.
float marks;

b

struct student S1={200, “Ravi”, 90.2}; - /* initialization of S1

variable */

struct student 52; /¥ declaration of S2
' variable of student type */

S2.roll_no=Sl.roll_no; /* by using these three statements, we are
copying the */

52.name =51.name; i value_of member of S1 variable to S2
variableof %/

S52.marks=S1.marks; /*student structure. */

The above assignment can also be done in a single statement as
follows:

S1=52;
Property 2:

“The values of a structure variable can be checked for equality or
not equality to another structure variable of the same type using
equality and not equality operator”

For example:

strut record

{

int a;

floatb;
}51={1,2.1},52=(3,4.2};

We have define record as a user defined data type and create

two variables, S1 and S2 initialized with some default values. Now check
whether 51 is equal to S2 or not.

if(51==52) /* this will return zero i.e.;Condition is false. */

{

printf(“Both structure variables are same\n”);
} , UGCS-102/269

71

Advanced Features of 'C’ S2=81; /* make them equal */
if(S11=82) /* This will return zero because We are checking for
inequality */
{

printf(“Both structure variables are not same\n");

}

3.4 STRUCTURES AS FUNCTION
ARGUMENTS

You can pass a structure as a function argument in very similar
way as you pass any other variable or pointer in the function. You can
access structure variables in the similar way as you have accessed in the
previous example. Like arrays, you can pass a structure variable to the
function as an argument. As we have already seen that when we use call

by value method, change made in structure variable in function definition
does not reflect in original structure variable in calling function.Consider
thefollowing Program 3.3 that passes structure student to the function

display().
/* Program 3.3 */
| #include <stdio.h>
#include <string.h>
struct student
{
introll_no;
char name[25];
float marks;
k
/* function declaration */
void display(struct student stu);
int main()
{
struct student s1;
printf(”Enter student’s name: “);
scanf(”%s",&sl.name);
printf(“Enter roll number:”);
S GCS.102/270 scanf(“%d”,&sl.roll_no);
7 printf(“Enter Marks:”);

scanf(“%d”,&s1.marks);

display(s1); // passing structure variable s1 as argument

return 0;

}

/* function definition */

void Display(struct student stu)

{
printf(“Output\nName: %s”,stu.name);
printf(“\nRoll: %d” stu.roll);
printf(“\nMarks: %d”,stu.marks);

l

The output for the following program is:

Name: Ashish

Roll : 202

Marks: 67

In the above program, function display() takes student type
structure. In the main, we have taken following inputs from the user;
roll_no, name and marks member of s1, which is a student type. The
structure s1 is passed to display() function, where these values are printed.

3.5 POINTERS TO STRUCTURES

You can define pointers to structures in very similar way as you
have defined pointer for any other variable as:

struct student *struct_pointer;

The above statement declares struct_pointer is a pointer to
student data type. This means struct_pointer can only point to student
data type. After this, you can store the address of a structure variable in
the above defined pointer variable.

Let us consider again student structure:
struct student
{
introll_no;
char name[25];
float marks;

Jstudentl, student2, *struct_pointer;

Structures.Union, Enum and

Type def.

UGCS-102/271

73

Advanced Features of C

UGCS-102/272
74

The above structure creates two variables student] and student2.
We also create a pointer *struct_pointer of student type.

To find the address of a structure variable, place the address (&)
operator before the structure’s name as follows:

struct_pointer = &studéntl;

To access the members of a structure using a pointer to that
structure, you must use theaoperator as follows:

stmct_poihter roll_no;
struct_‘_pointer' name;
struct_pointer = marks;

‘The operator is known as arrow operator. This operator canonly
be used with structure pointer variables.

You can also access structure variables using following
statements: '

(*struct_pointer).roll_no;
(*struct_pointer).name;
(*struct_pointer).marks;

The Parenthesesare required because preference of structure

£row

“dot " operator “.” is higher than indirection operator “*”.

Let us re-write the program 3.2. The revised program'.3.4 using
structure pointer is shown below:

/* Program 3.4 */
#include <stdio.h>
finclude <string.h>
struct student
{
introll_no;
char name[25];
float marks;
b
/* function declaration */

void display(structstudent*stu); /* display has one parameter:
student type pointer */

int main()

structstudentsl; /* declare studetn] of type student */
structstudents2; /* declare studetn2 of type student */ |
/* studentl specification */
studentl.roll_no=100;
strepy(studentl.name, “Sameer”);
studentl.marks=87;

f* student2 specification */
Student2.roll_no=101;
strepy(student2.name, “Swati”);
student2.marks=97;

/* displaystudent] info by passing address of student1 */

display(&studentl); [* function call */
/* displaystudeni2 info by passing address of student2 */
display(&student2); {* function call */
return 0;

}

/* function definition */

void Display(struct student *stu)

{ printf("\nRoll: %d”,sturoll);
printf(“Name: %s”, stuaname);
printf(“\nMarks: %d” stumarks);

}

The output for the following program is:
Roll:100

Name :Sameer

Marks :87

Roll: 101

Name :Swati

Marks :97

Structures.Union, Enum and

Type det.

UGCS-102/273
75

Advanced Features of 'C’

UGCS-102/274
76

3.6 - UNIONS

‘The union is a special data type available in ‘C’ whose syntax
look similar to structures, but actin a completely different manner. It
enables you to store different data types in the same memory location.
The declaration, initialization and accessing mechanism is same as we
have seen for structures. The only difference is in term “union”. You

have to use union keyword instead of struct. You can define a union

with many members, but onlyone member can contain a value at any
given time. Unions provide an efficient way of using the same memory

location for multi-purpose and it exhibits the dlfference between union

and structure.

To define a umion, you must use the union statement in very
similar way as you did while defining structure. The union statement
defines a néw.data type, with more than one member for your program.

The union syntax is:

union union_name {

typel;

type2;

7
where union_name is the name of union data type, typel,
type2,are ‘C’ data types.

Note: Once you declare a union variable, the amount of memor

reserved is just sufficient to be able to represent the largest member.

(Unlike a sh'ucture where memory is reserved for all members).

Let us define a union type named record which has the three

members i, f, and str:

union record

{
inti;
floatf; _
char stx[10];

} recordl;

Now a variable of record union type can store an integer, a

_ ﬂoatmg—pomt number, or a string of characters. This means that a single

variable i.e. same memory location can be used to store multiple types
of data. You can use any built-in or user defined data types inside a
union based on your requirement.

In the previous example, 10 bytes are set aside for the variable Structures.Union, Enum and
record1 since a char str[10] will take up 10 bytes, an int take 2byteq '

Type def.
and float takes 4 bytes. -

Data actually stored in a union’s memory can be the data
associated with any of its members. But only one member of a union
can contain valid data at a given time in the program.It is responsibility
of programmer to keep track of which type of data has most recently
been stored in the union variable.

Following program 3.5 display total memory size occupied by
the above union:

/* Program35 *
#include <stdio.h>
#include <string.h>
union record
{
inti;
float f;
char str[10] ;
b
int main()
{
union record recordl; _ |
~ printf(“Memory size occupied by record : %d\n”, sizeof(record));
return 0; '
o
The output of the above program is:
Memory size occupied by record : 10
3.6.1 Accessing Union Members

Like structures, member of a union can be accessed with the help
of member access operator (.). You would use union keyword to define -
variables of union type. Following pmgram 3.6 demonstrates the usage :
of member access operator for union:,

/* Program 3.6 ¥
#include <stdio.h>

#include <string.h>
UGCS-102/275

77

union record

Advanced Features of 'C'

UGCS-102/276
78

{

inti;

float f;

char str[10];

L

intmain()

{
union record recordl;
record1l.i=10;
recordl.f=220.5;
strepy(recordl.str, “Hello world”);
printf(“recordl.i: %d\n”, data.i);
printf(“recordl.f: %f\n”, data.f);
printf(“recordl.str : %s\n”, data.str);
return 0;

}

The output of the above program is:

recordl.i: 7524

recordl1.f: 65203075.000000

recordl.str: Hello world

The above output indicates that values of i and f members of
union got junk values because final value assigned to the variable str
has occupied the memory location and this is the reason that the value
of str member is getting printed very well.

Let us take another example as shown in program 3.7 where we
will use one variable at a time, doing so gives you more accurate idea
about union data type.

/* Program 3.7 */

-~ #include <stdio.h>

#include <string h>
union record
{

inti;

float f;

char str[10];

intmain()

{
union record recordl;
recordl.i=10; |
printf(“recordl.i: %d\n”, data.i);
recordl.f=220.5; |
printf(“record1.f: %f\n”, data.f);
strcpy(record].str, “Helloworld”);
printf(“recordl.str: %s\n”, data;str) ;
return0;

}

The output of the above program is:

recordl.i: 10

record1.£: 220.500000

 recordl.str: Hello World-

From the above output, we can see that all the members are
getting printed very well because one member is being used ata time.

3.7 ENUMERATED DATA TYPE

The ‘C’ language provides another user defined data type known
as “enumerated data type”. The use of this data type is to make program
more readable. You can create your own data type with predefined values,
if we know in advance the finite set of values thata data type will have.

The syntax for creating enumerated data type is as follows: -
enum identifier { vall, val2, vaIN };

where identifier represents the user défined enumerated data type and
vall, val2, valN are called members or enumerators. The values
mentioned within the braces are not variables, but in fact are constant
values that the enum can take. The enumerators or members are
automatically assigned values starting from 0 ton-1. The assignment,
arithmetic and comparisons operations are allowed on enumerated type
variables.

Forexample:

enum MONTHS {Jan, Feb, Mar, Apr, May,]un,]ul Aug,
Sep, Oct, Nov, Decl;

Structures.Union, Enum and

Type def.

UGCS-102/277

79

Advanced Features of 'C’

UGCS-102/278

80

In the above statement, MONTHS is a user defined data type
which take values from the above set consisting of {Jan, Feb, mar, Apr,
May, Jun, Jul, Aug, Sep, Oct, Nov, Dec}.

We can declare variables using the following syntax:

enum identifier varl, var2, varN;
the variables varl, var2, varN can take values dnly from the set
{vall, val?,valN }.
For example:

enum MONTHS month1, month2;/* variables declared of type
months */

In above statement, month1 and month2 are variables of type

MONTHS.

We can assign values to the varlables as:’
monthl=Jan;
month2 = Aug;
The statement:
printf(“%d\n”, month2 - month1);
will print 7, because integer value for Aug is 7 and that of Jan is 0.
- The following statement will also work:
if(monthl <month?2)

ER

You can also change the default value by assigning the interger values
to the enumerators when you create the data type

- Forexample: -

enum MONTHS {Jan =1, Feb, Mar, Apr, May, jun, Jul, Aug,
Sep, Oct, Nov, Dec};

Now the enumerators will have values starting fmm 1te12

3.8 TYPE DEFINITION

The ‘C’ programming language provides, typedefinition, using
akeyword called typedef which you can use to give a type anew name.
The syntax for type definition is: '

typedef typf ‘ IDEN;[IFIER

l Any valid C data type It’s a good _
Example: int, float, long, programming practice
keyword double, struct, union etc. to use capitalized word
for identifier.

Following is an example to define a term REALNUMBERS for
all real numbers. : -

typedef long double REALNUMBERS}

After this type definitions, the identifier REALNUMBERS can
be used as an abbreviation for the type long double.

for example; REALNUMBERS 11, 12;

It'sagood programming practice to use uppercase letters for these
definitions to recall the user that the type name is really a symbolic
abbreviation, but you can use lowercase, as follows:

typedef long double realnumbers,

~ The typedef can be used to give a name to user dgﬁned data
type as well. For example, we can use typedef with structure to define
anew data type and then use that data type to define structure variables
directly. The followmg probram 3.8 shows how to use typedef in
structures.

~/* Program 3.8 */
#include <stdio.h>
#include <string.h>
typedef struct student
[_

' int. roll_no;
char name[25];
float marks;
|STUDENTS;

intmain()

{
1

- STUDENTS Student; /* Declare Sameer of type student */
Student.roll_no = 100; '

Structures.Union, Enum and

- Type def.

UGCS-102/279
81

Advanced Features of 'C" ' strcpy(S{udent.name, “Sameer”);
‘Student.marks = 87;
printf(“Student Roll No: %d\n”, Student.roll_no);
printf(“Student Name: %s\n”, Student.name);
printf(“Student Marks : %d \n”, Student.marks);
return §;
}
The output of the above program is:
Student Roll No: 100
Student Name : Sameer
Student Marks : 87
- Check your progress i _
1. Whatsthe difference between these two declarations?

structx1{...};

typedefstruct { ...} x2;

™~

Why doesn't
structx {...};
x thestruct;

work?

3. Define a suitable data structure to store the information like
~ student name, roll number,enrolment centre and marks of five
different subjects. Writc a ‘C’ function to insertsufficient data in
your data structure and function to print the name of the student
andthe total obtained marks who have secured highest total
- marks for each and every enrolment centre | '
4. What will be the output of the following code segment, if any?

myfunc (struct testt) {

strepy(t.s, “world”);

} main() {
struct test { char s[10]; } ;
strepy(t.s, “Hello™);
printf(“%s”, t.s);
myfunc(t);

- - printf(“%s"”, t.s);
UGCS-102/280)

82

5. What will be output of following ‘C’ code?
void main(}
{
struct field
{
int a;
char b;
tbit;
struct field bit1={5, A’};
~ char *p=&bitl;
“p=45; -
clrscr();
printf(“\n%d” bitl.a);
- getch();}
6. What will be output of following ‘C'code?
void main()
I
struct india
{
char c;
float d;
b |
struct world
(
int a[3};
char b;
struct indiaorissa;
K
struct world st={{1,2,3},'P",/q",1.4};
printf(“%d \t%c\t%c\t%f" st.a[1] st.b,st.orissa.c st.orissa.d);
getch(); - |
}

39 SUMMARY

Structures are the special feature of ‘C’ language that permits

mixing of different data types related in some logical sense with a single

entity. A struct variable has members which can be accessed by the dot
and arrow operators. A union is a type similar to the struct that can
hold at any time just one of its members, which may be of various types.
In this Unit, we also have seen the user defined data type, enum and
typedef. The typedef makes an alias to the pre existing data type, while
enum provide the flexibility to create your own data type.

Structures.Union, Enum and

Type def.

UGCS-102/281
83

Advanced Features of 'C'

UGS-102/282

UNIT 4: FILE AND MEMORY
MANAGEMENT IN ‘C’

Structure |

40 - Introduction

4.1 Objectives

42 Files

43 FilePointer Variable

44 Openingafile

45 Reading and writing to files
4.6 FileStatus Functions

4.7 Random Access to files

48 Command Line Arguments
49 Memory management

4100 Summary

4.0 INTRODUCTION

So far, all the output (formatted ornot) in this course has been
written out to withstandard output (which is usually the monitor).
Similarly allinput has come from standard input (usually associated
with the keyboard).The keyboard and terminal are usually console
oriented I/O functions and poses following problems:

. If same data is to be processed later on, than it has to be re-enter
again, which is a cuambersome process.

° Entering large volume of data from keyboard is very time
consuming,. ;
The ‘C'language considers all the devices as files. Thus, devices

such as the keyboard and screen display are treated in the same way as
files. There are following three files automatically opened by your

~ operating system when a program executes to provide access to the

keyboard and screen.The filepointersare the way to access the file for
reading and writing purpose.

Standard File File Pointer Device
Standard input stdin Keyboard
Standard output stdout screen
Standard error stderr Your screen

In this Unit, we are going to describe the storage and retrieval of data
from the files which overcomes the handling of large volume of data
from the keyboard at run time. The ‘C’ programmer can also read data
directly from files and write directly to files.

4,1 OBJECTIVES

After going through this unit, you should be able to:

® Declare files and perform file I/O
® Know various file operation modes
¢ fscanf() and fscanf() formatted I/O operations

¢ Dynamicallocation of memory

4.2 FILES

This Unit describes thathow ‘C’ programmers can create, open,
and close text or binary files for their data storage. A file representsa
sequence of bytes, or collection of related data treated as a unit, does not
matter if it is a text file or binary file. File is also defined as a permanent
storage of data referenced by a name. Usually, files are accessed
sequentially, i.e., any byte can be changed. The prime purpose of afile s
to keep the record of data. Since the contents of primary memory are
lost when the computer is shut down, we need files to store our dataina
more permanent form. ‘C’ programming language provides access of
high level J/O functions as well as low level (OS level) calls to handle file
on your storage devices. This Unit will take you some of the most
important high level I/O functions for the file management, listed in
Table 1.

The DOS 1/O redirection enables you to use redirection operators
for reading and writing of files. Suppose you have to read the data from
the file input.txt and want to write the content after processing to
output.txt. Thenfollowing command:

C:\ >check <inputixt >output.txt
‘will run the program check, and:

Here, input will be read from the file input.txt (or any other
filename) instead of the keyboard, and output will be written to the
file output.txt instead of the display. The operators< (less than symbol)
and > (greater than symbol) are used as input and output redirection
respectively. |

File and Memory

Management in 'C'

UGCS-102/283
85

Advanced Features of 'C'

UGCS-102/284
86

There are so many circumstances when a program has to read/write
directly to a file, and also perform some operations that can be done by
standard library routines available in‘C’ language.

To work with files, the following steps must be taken:

1) Declare FILE type variables.

2) Connect the FILE variable with the actual data file on your
harddisk. Theconnection of a FILE Varlable with a file name is
done with thefopen() function.

3) Perform I/O with the actual files using fprint() and
fscanf()functions. o

4) Disconnect the connection between the FILE variable and actual
disk file. This disassociation is done with the fclose() function.

Table 1: High level I/O operations

Function name operation
fopen() + Creates anew file foruse
b Opens an existing file for use
fclose() + Closes a file which has been opened for use
getc() - . Readsacharacter from afile
putc() - Writesa character toa file
fprinf() - Writes a set of data values tos file
fscanf() - Readsasetof data values froma file
getw() | + Readsaninteger froma file
putw() - Writesaninteger toafile
fseek() - - Sets the position to a desired pointin the file
ftell() - Gives the current position in the file (in terms of bytes from|
the beginning) .
 [rewind() - Sets the position to the start of the file

4.3 FILE Pointer Variable

Now, before using the high level functions in your program, you
must include them into your program. This can be done by including
the file:

#include <stdio.h>
as the first statement in your program.

The first step to use files in ‘C’ programs is to declare a FILE
variable. FILE is a defined data type in stdio.h file. The variable of FILE
type must be declared before you use files (which is a predefined type in
‘C’)and itis a pointer type variable. For example, the following statement

FILE *infile, *outfile;
declares the variable infile and outfile to be a “pointer to type FILE”.
The * must be repeated for each variable.

4.4 OPENING A FILE

Hence, after declaring the FILE variable, and before using it, you
must connect it with a specific file name. The fopen() function performs
this connection. You can use the fopen() function to create anew file or
to open an existing file, this call will initialize an pointer variable of the
type FILE, which contains all the information necessary to control the
stream. Following is the prototype of this function call:

FILE *fopen(const char * filename, const char * mode);

Here filename is a string literal which you can use to name your
file, or it may be the pathname of the disk file.

The access mode indicates how the file is to be used.Access mode
could be a string variable and have one of the following values:

Mode Description
|File Category: | Text files
T Opens an existing text file for reading purpose.
W Opens a text file for writing, if it does not existthen anew file is created.
Here your program will start writing content from the beginning ofthe file,
a | Opensatextfile for writing in appending mode, if it does notexistthena
new file is created. Here your program will start appending content in the
existing file content.
r+ Opens atext file for reading and writing both.
wt Opens atext file forreading and writing both. It first truncate the file o
zero length if it exists otherwise create the file if it does not exist.
at Opens atext file for reading and writing both. It creates the file if it does
. not exist. The reading will start from the beginning but writing can only be

File Category: Binary files

To handle binary files you can use below mentioned access modes instead of the above
mentioned accessed modes.

Here, b stands for binary files; whereas r, w, ahas usual meaning as described above.
‘Srb'”’ “Wb”’ ¢6ab'"’ “ab-l.”, i‘a_+_b1: “Wb+”’ “W+b”’ &% ,?’ “a+ kil

Text files store data as a sequence of characters,whereas binary
files store data as they are stored in primary memory.

Now, let us consider a program segment that shows how to open
a file in write mode:

File and Memory

Management in'C

UGCS-102/285
87

Advanced Features of 'C'

UGCS-102/286
88

char filename[80];

FILE *outfile;

printf(“Enter the name for new file:”);

gets(filename); |

outfile = fopen(filename,”w");

In the above program segment, outfile is declared as FILE type
pointer. The function gets() is used to take the name of file, since name
of file is a string literal. Finally, filename and “w” mode is passed as an

argument to fopen() function. The funchon fopen() returns a pointer to
the outfile FILE pointer. :

Next, consider the following statement
char. filename[80];
FILE *infile; |
infile = fopen(“myfile.txt”,”r");

connects the variable inffile to the disk file myfile.ixt for read access.
Thus, myfile.txt will only read. In this example, we explicitly pass the
name of file to be read.

4.5 READING AND WRITING TO FILES

Once a_file has been created or opened, data can be read f_rom it
aswell as you can write the data to the file. The reading and writing data
can be done by using the functions listed in Table 1. In'this section, we
will discuss these functions one by one.

4.5.1 getc and putc function

The functions fgetc() and fputc() are simplest functions for I/O
operations. The fgetc() function reads a character from the input file
referenced by FILE pointer fin. The return value is the character read,
or in case of any error it returns EOF. The fgete() is used when fin
pointer opensa fileinread “r”" mode. The syntax for fgetc() is as follows:

int fgetc(FILE * fin);

, Conversely, the function fputc() writes the character value of the
argument ch to the output stream referenced by fout. It returns the
written character on success otherwise EOF if there is an error. The
fputc() is used when fout pointer opens a file in read “w” mode. The
syntax for fpute() is given below:

int fputc(int ch, FILE *fout);

The program 4.1 demonstrate the use of fputc() andfgetc().This File and Memory
program declares two pointers fin and fout for reading and writing to
the files respectively. The getc() function reads a character from the
input file test.txt and putc() function writes that character on to out.txt
file.

/* Program 4.1 */
#include <stdio.h>

void main()

B

Management in 'C’

FILE *fin, *fout;

char ch; _
fin=fopen(“test.txt”, “r”); /* opening file test.txt in read mode */
fout=fopen(“out.txt”, “w”); /* opening file out.txt in write mode
while((ch = getc(fin) = EOF) /*read the characters till end of file s

reached */
fputc(ch, fout); /*write the character into output stream pointed by
~ fout?/ '
fclose(fin); /close the file pointers */

fclose(fout);

}
4.5.2 fgets() and fputs() function

Sometimes we need to read a string from a stream, this can be
done with the help of file function fgets(). The syntax of fgets is as follows:

char *fgets(char *buff, int n, FILE *fin);

The functions fgets() reads up to n - 1 characters from the input
- stream referenced by fin. It copies the read string into the buffer buff,
appending a null character to terminate the string. If fgets() encounters
anewline character \n’ or the end of the file EOF before they have read
the maximum number of characters, then it returns only the characters
read up to that point including new line character.

Similarly, to write a null-terminated string to the output stream,
you can use the fputs() function. The syntax of fputs() is as follows:

int fputs(const char *str, FILE *fout);

The function fputs() writes the string str to the output stream
réferenced by fout. It returns a non-negative value on success, otherwise
EOF is returned in case of any error. -

The program 4.2 demonstrate the use of fgets() andfputs().In

this program, we use standard I/O file pointers, stdin for keyboard and UGCS-102/287
89

Advanced Features of 'C'

UGCS-102/288
90

stdout for screen. These pointers receive the input from keyword and
send the output to the screen respectively. On pressing the Enter key at
the beginning of a line, fgets() reads the newline and placesitinto the
firstelement of the array line. Thus, condition inside while loop becomes
FALSE, and loop terminates. Encountering end-of-file also terminates it.
/* Program 4.2 */
/* parrot.c — using fgets() and fputs() */
#include <stdio.h>
#define MAXCHAR 20
int main() |
{
char linefMAXCHAR];
- while (fgets(line, MAXCHAR, stdin) = NULL &&line[0] !="\n")
fpu’;s(liné, stdout);
return 0;

)

The output of the following program is:
Hello how are you
Hello how are you
I am fine!. What about you?
I am fine!. What about you?
[enter]

The program gives correct ouput. This is because the second line
contains 27 characters, and the line array holds only 20, including the
newline character. When fgets() read the second line, it read just the first
19 characters, upto the b in the word about. They were copied into line,
and printed on the screen by using the function fputs().
Since fgets() couldn’t reached to the end of a line, line did not contain a
newline character, so fputs() didn’t print a newline. The third call
to fgets() res-started where the second call left off. Therefore, it read the
next 19 characters into line, beginning with the o after the b in about. This
next block replaced the previous contents of line and printed on the same
line. Thus, fgets() read the second line in blocks of 19 characters,
and fputs() printed it in the same-size blocks.

4.5.3 fprintf() and fscanf() Functions . ,
The file I/O functions fprintf() and fscanf() work just
like printf() and scanf(), except that they require an additional first

argument to identify the proper file. You've already used fprintf(). The
general format for fprintf() is:

fprintf(fp, “format string”, list);
where fpisa file pointer associated with a file that is openend for writing,
The format string contains output specification for the items in the ist.
The list may include variables, constants and expressions.

For example: :
fprintf(fout, "%s %d”, str, t); * write to file */
here, stris a variables of type char and tis a int variable. |
The general format of scanf is:

fscanf(fp, “format string”, list);

Here, reading of the items is dome from file specified by fp, as
per specifications contained in the format string. Now let us consider
the following example:

fscanf(fin, “%s%d", str, &t); /* read from file pointed by fin */ |

fscanf also returns number of items that are successfully read and when
end of file is reached, it returns the value of EOF.

Another useful function for file I/O is feof() which tests for the
end-of-file condition. feof takes one argument, the FILE pointer, and
returns a nonzero integer value (TRUE) if an attempt has been made to
read the end of a file. It returns zero (FALSE) otherwise.

Following program segment shows one of its use:
if (feof(infile)) : /* infile is FILE pointeer */
printf (“No more data \n");

Program 4.3 illustrates both of these file /O functions, along with
the rewind() function.

/[* Program 4.3 */
#include <stdio.h>
#include <stdlib.h>
#define MAX 40
intmain(void)
{
FILE *fout;
char words[MAX]; \
if ((fout = fopen(“test.txt”, “a+”)) ==NULL)
: .
fprintf(stdout,”Can’t open \ "test\” file. \n”); exit(1);
)

puts(“Enter words to add to the test file; press Enter key for
terminate:”);

File and Memory

Management in 'C’

UGCS-102/289
91

Advanced Features of 'C'

UGCS-102/290
92

while (gets(words) I=NULL && words[0]!="\0")
fprintf(fout, “%s “, words);

puts(“File contents:”);

rewind(fout); /* go back to beginning of file */
while (fscanf(fout,”%s"” ,words) =1)
puts(words);

if (fclose(fout) I=0)
fprintf(stderr,”Error closing file \n”);

return 0;

}

The above program enables you to add words to a file. By using
the “a+” mode, the program can both read and write in the file. The first
time the program is used, it createsthe test.txt file and provide a way to
place words in it. When you use the program subsequently, it enables
you to add (append) words to the previous contents. The append mode
addsthe content to the end of the file, but the “a+"” mode also provide
you a way to read the whole file. The rewind() fucntion takes the program
to the file beginning so that the final while loop can print the file contents.
On pressing the Enter key, gets() places a null character in the first
element of the array, forcing the ptogram to terminate the loop.

The rewind() function takes a file pointer and resets the position
to the start of the file.

4.6 FILE STATUS FUNCTIONS

Sometimes, we need to know whether file has reached to EOF
marker or some error occurred. To know this, we use following three
functions:

] feof()
. ferror()
° clearerr()

The functions, feof() and, ferror() determine if a file has reached
to end-of-file or if an error has occurred. The general syntax for feof()
and ferro() is as follows:

int feof (FILE *fp);
int ferror(FILE *fp);

Each FILE pointer which you use to read and write data from
and to a file contains flags that the system sets when certain events occur.

On getting some error, it sets the error flag; otherwise if you

normally reach to the end of the file during a read, it sets the EOF flag.
The functions feof() and ferror() give you a simple way to test these flags,
i.e. they'll return non-zero (TRUE) if they're set.

On the other hand, once the flags are set for a particular stream,
they stay in the same state until you call clearerr() to clear them. The
general syntax for clearerr() is as follows:

void clearerr(FILE *fp);
The following program shows the use of above functions:
/* Program 4.4 */ |
// read binary data, checking for eof or error
int main()
{
int a;
FILE *fp;
fp = fopen(“binaryints.dat”, “rb”);
[/ read single ints at a time, stopping on EOF or error:
while(fread(&a, sizeof(int), 1, fp), feof(fp) && !ferror(fp))
{ . |
printf(“We read %d\n”, a);
J | |
~ if (feof(fp)) _
printf(“End of file was reached.\n");
if (ferror(fp))
printf(“Some error occurred.\n"”);
fclose(fp);
return 0;

} | |
47 RANDOM ACCESS TO FILES

Once the files have been opened, we need some times to access
the specific part of a file. This can be done by positioning the file pointer
directly to the desired position in the file. This can be achieved with the
help of library functions fseek(). The fseek() function treats a file like a
byte array and move directly to any particular byte in a opened file by
the function fopen(). The syntax of fseek() is as follows:

int fseek(fp, + offset, mode); |
The fseek() has three arguments and returns an int value.

The first argument to fseek() is a FILE pointer, fp, to the file being
searched. '

File and Memory

Management in 'C'

UGCS-102/291

93

Advanced Features of 'C'

UGCS-102/292
94

The second argument to fseek() is called the offset (or
numberofbytes). This argument tells how far to move from the starting

~ point (as shown in Table 2). The argument must be a integer value. It

can be positive (move forward), negative (movebackward) or zero (stay
onsame p051t10n)

The third argument is the mode, and it identifies the starting
~mt.

Table 2: Mode fbr fseek

Mode _ Measures Offset From
SEEK_SET Beginning of file
SEEK_CUR Current position
SEEK_END End of file

Following are some examples of fseek(} function calls, where fp is
a file pointer:

fseek{fp, 0, SEEK SET); //gotothe begmnmg of the file

fseek(fp, 10, SEEK_SET); // go 10bytes into thefile

fseek(fp, 2, SEEK_CURY); //advance 2 bytes from the current position
fseek(fp, 0, SEEK_END); //gototheend of the file

fseek(fp, -10, SEEK_END); // back up 10 bytes from theend of thefile

The value returned by fseek() is 0 if everything is okay, and -
1 if there is an error, such as attempting to move past the bounds of the
file.

The ftell() function is type long, and it returns the current file
Jocation.ftell() specifies the file position by returning the number of bytes
from the beginning, with the first byte being byte 0, and so on. The'

- syntax of ftell() is as follows:

long ftell(fp);
 Let us consuier the statement
fseek(fp, OL, SEEK END)

- Itsets the position to an offset of 0 bytes from the file end. That is,
it sets the position to the end of the file. Next, the statement

last = ftell(fp);
assigns to last the number of bytes from the beginning to the end of the
file. :
» Next consider the following loop:

for (count=1L; count <=last; count++)

fseek(fp, -count, SEEK_END); /* go backward */
ch = getc(fp);

The first iteration positions the program at the first character
before the end of the file (that s, at the file’s final character). Then the
program prints that character. The nextloop positions the program at
the preceding character and prints it. This process continues until the
last character is reached and printed.

4.8 COMMAND LINE ARGUMENTS

‘C’ language provides the convenient way to pass some values
from the command line (or terminal or console) to your ‘C’ programs
when they are executing. These values are called commandline
arguments and they are important in many times for your program
especially when you want to run your program from outside instead
using programming those values inside the code.

The command line arguments are handled using main() function
arguments where argc refers to the number of arguments passed, and
argvl 1is a pointer array which points to each argument passed to the
program. The following program 4.5 checks if there is any argument
supplied from the command line and take action accordingly. Assume
that filename is test.exe.

/* Program 4.5 */
finclude <stdio.h>
int main(int argc, char *argv[])
{
if(argc==2)
{
printf(“The argument supplied is %s\n”, argv[1]);

}

else if(arge>2)

{

printf(“Too many arguments supplied.\n”);
else

printf(“One argument expected.\n”);

File and Memory

Management in 'C'

UGCS-102/293
95

Advanced Features of 'C'

UGCS-102/294
96

Run the program from command prompt like this:
C:\>test.exe testing |
The output of the following program is:
The argument supplied is testing
Again, run the program from command prompt like this:
C:\>test.exe testing] testing2
The output of the following program is:
Too many arguments supplied. |
Finally, run the program from command prompt like this:
C:\>test.exe
The output of the following program is:
One argument expected | _
You must remember that that argv[0] holds the name of the
program itself and argv[1] is a pointer to the first command line
argunient supplied, and *argv[n] is the last argument. If no arguments

are supplied, arge will be one, otherwise if you pass one argument then
argcissetat?.

4.9 MEMORYMANAGEMENT

Dynamic memory allocation is required when we need to manage
available memory. For example, it is a common problem that we do not
know how large to make arrays when they are declared. This is because
many times the memory allocation decisions are made during the
runtime. Since ‘C’language does not support automatic garbage collection,
it is very necessary to manage alldynamic memory used during the
program execution. Consider an example where you warit to monitor
the student information that is stored in a structure. We also require that
progrém should be general purpose so that array is sufficient to hold the
biggest possible class size of students:

struct student class[500];

But whathappens when there are only ten students in a class. In
that case, the above statement is infeasible and a huge amount of memory
is wasted especially because the student structure is too Jarge.

This fact forces to use and create correct-sized array variables
during runtime. The ‘C’ language provides users a flexibility to
dynamically allocate and deallocate memory when required. The
<stdlib.h> provides four functions that can be used for dynamic memory
allocation. The Table 3 provides the following four functions:

Table 3: Dynamic memory Allocation and Releasing Function File and Memory
Function prototype Description Management in 'C’

void *calloc(intnum;intsize); | Thisfunctionallocatesan array of num
elements each of whose size in bytes will be
size. The array isinitialized to zeros.

void free(void *address); This function releases ablock of memory block | -
: specified by address.
void *malloc(int num); This function allocates an array of num bytes
and leaves them uninitialized.
void *realloc(void *address, This function re-allocatesmemory extending
intnew size); itupto newsize. |

49.1 calloc() function |

The calloc function is used to allocate memory to a variable
during the program execution. The function takes two arguments
that specify the number of elements to be reserved, num, and the size
of each element in bytes (obtained from sizeof). The calloc function
returns a pointer to the beginning of allocated memory block. The
storage area is also initialized to zeros.

The program 4.6 allocates dynamic memory required for 10
integers as follows.

/* Program 4.6 */
#include<stdio.h>
#include <stdlib.h>
main()
{
int* A=NULL; /* create int pointer and set to NULL. */
if (A = calloc(10, sizeof(int)n)) =NULL) |
[_
for (i=0;i <n;i++) -
*(AH)=1; // you can replace *(A+i) by Ali] if you wish
}

else
{ printf(“calloc failed: Exiting Program!\n\n");
exit(-1);
)
} UGCS-102/295

97

Advanced Features of 'C'

UGCS-102/296
98

The above program creates a int type pointer variable A and set

_itto NULL. The if condition is checked against that whether memory

block Ii_!s allocated or not. If allocated properly, the condition becomes
true and for loop allocates index value as content to memory block
pointed by int pointer A. If condition of if statement becomes false, then
program reports an error message by exit(-1).

4.9.2 malloc() function

The malloc function allocates a memory block of size nbytes.
The malloc function returns a pointer (void*) to the contiguous block
ofmemory which is uninitialized. This void* pointer can be used for
any pointertype. If enough contiguous memory is not available, then
mallocreturns NULL, so be sure to check that memoryallocation was
successful by using the following statement:

void” ptr;

if ((ptr=malloc(n)) =NULL)

exit(-1);”

else

{

Printf(“Memory allocation successful!”);
}

Consider the program 4.7 where you do notknow the length of the text
youneed to store, for example if you want to store a detailed description
for a person, the youWe need to define a pointer to the character without
defining how much memory is actually required and later at some satge
we can allocate memory as shown below in the proram:

/* Program 4.7 */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main()

{

char name[100];

char *detail;

strcpy(name, “Sameer Singh”);

/* allocate membry dynamically */
detail =malloc(100 * sizeof(char));
if(detail==NULL)

{

fprintf(stderr, “Error - unable to allocate required memory \n");

else
strcpy(detail, “Sameer Singh is resident of M.P. “);

printf(“Name = %s\n”, name);
printf(“detail: %s\n"”, detail);

The output of the following program is:
Name =Sameer Singh

Descri-ption: Sameer Singh is resident of M.P.
4.9.3 realloc() function

- realloc() is another useful function for situations where we need toresize
an existing memory block. To reallocate a newblock, we must copy the
old values to the new block and then freethe old memory block. The
syntax of realloc() is:

void *realloc(void *ptr, size_t size);

The realloc() function changes the size of the memory block
pointed toby ptr to size bytes The contents of the old block are
unchanged and newly allocated memorywill be alloacated and it is
uninitialized. If ptr is NULL, resizing fails otherwise it is successful.

49.4 free() function

This function is used to free the occupied memory. When the
variables are not required, the space allocated to them by malloc,
calloc and realloc should be returned to the system. This is done by,

free(address);

that will cause the program to give back the block to the heap (or free

memory). The argument to free is any address that was returned by a

prior call to malloc, calloc and realloc.

Check your progress 1

1. Write a program to copy the contents of one file to another.

2. Two text files text].txt and text2.txt contain sorted lists of integers.
Write as program to create a thirds fie text3.txt which contains a

single sorted, merged list of these two lists. Your program should
use command line arguments.

3. Create a file to store and display the content.

File and Memory

Management in 'C'

UGCS-102/297
99

Advanced Features of 'C'

UGCS-102/298
100

10.

12.

13.

14.

Read a text file and create another file in which multiple blanksare -
replaced by single blank.

Create a file to store integers and display the contents.
Write a line of text in a file and display the contents.

Write a program to find the size of file in bytes (opened in text
mode).

Write a program to find the size of file in bytes (opened in binary
mode). -

Write a program to find sum and average of n mteger numbers
using command line arguments.

Write a program to copy the contents of one file to another file
using command line arguments

. Use command line arguments to pass an integer and display itin

reverse form using recursive function.

Use command line arguments to sort a list of given numbers. All
numbers must be read as command line arguments.

What is the output of the following program segment.
while((ch=fgetc(fptr)) I= EOF)
[_
If((ch>="A’) && (ch<="Z"))
ch+=32;
fputc(ch, stdout);
}

Write a program tocount number of words, characters, blanks,

" punctuation marks i a file.

4.9

SUMMARY

In this Unit, we have studied that how external files may read

and wnte by ‘C’ programs. File I/O functions are very similar to the
console I/O functions that we have studied in previous Units, but high
level I/O functions are very useful for handling large volume of data. The
dynamic memory allocation functions are also studied with examples.
The usefulness of these functions are identified.

UNIT 5: PREPROCESSOR DIRECTIVES Froproser Diecios
' and Error Reporting
AND ERROR REPORTING

Structure

5.0 Introduction

51 Objectives

52 Macrodirectives

5.3 Conditional directives
54 Control directives

55 Error reproting

56 Summary
5.0 INTRODUCTION

The ‘C’ Preprocessor is not part of the compiler, butis a separate
step in the compilation process. In simple words, the ‘C’ preprocessor is
atext processor which operates on the ‘C’ source code before it is actually
parsed by the compiler. It provides macro and conditional features very
closed to the ones available with most of theexisting assemblers.

The preprocessor modifies the ‘C’ program source code according
to special directives found in the program itself. Preprocessor directives
start with a sharp sign ‘#’ when found as the first significant character of
a line.Jt must be the first nonblank character, and for readability, a
preprocessor directive should begin in first column. The directives can
be placed anywhere in a program but are most-often placed at the
beginning of a program, before main(),or before the beginning of a
particular function.The preprocessor expands the code written in the
program according to the directives issued to it and then the expanded
program is passed to the compiler.

Preprocessor directives are line based, and all the text of a directive
must be placed on a single logical line. Several physical lines can be
used but the last one end with the continuation characterbackslash ‘',

There are three basic kinds of directives: macro directives,
conditional directives and control directives. These directives are listed
in Table 1.

. The macro directives allow text sequences to be replaced by some

other text sequences, depending on possible parameters.
UGCS-102/299
101

Advanced Features of 'C']

The conditional directives allow selective compiling of the code

depending on conditions. Most of the time based on symbols
defined by some macro directives.

¢ The control directives allow passing of information to the
compiler in order to configure or modify its behavior.
___._Table 1: Categories of preprocessor directives
Directive Description Category
14#define Substitutes a preprocessor macro Macro directives
#undef Undefines a preprocessor macro '
fifdef . Returnstrueif this macrois defined Conditional
' __directives
fifndef Returns trueif this macro is not defined
#if Tests if a compile time condition is true
felse The alternative for #if
#elif #elsean #if in one statement
#endif Endspreprocessor conditional
#error Prints error message onstderr _ Control directives
#pragma Issues special commands to the compiler,
using a standardized method
#include Insertsa particular header from another file
#line . redefinesthe current line number to the
specified number

ANSI‘C’ defines the number of predefined macros. However,
each one is presented for use inprogramming. The predefined macros
should not be directly modified. The predefined macros with their

description are as follows:
 Macro Description
DATE | The current date as a character literal in “MMM DD YYYY”
format
TIME | The current time as a character literal in “HH:MM:SS” format
FILE | Thiscontains the current filename as a string literal.
LINE | This contains the current line number as a decimal constant.
STDC | Defined as 1 when the compiler complies with the ANSI C
' | standard. _
Consider the program 5.1:
/* Program 5.1 */
 #include<stdioh>
main()

printf(“File :%s\n”, _FILE_);

UGCS-102/300
102

printf(“Date :%s\n”, _DATE__);
printf(“Time :%s\n"”, __ TIME__);

printf(“Line :%d\n”, __LINE__);
printf("ANSI:%d\n”, _ STDC__);

Preprocessor Directives

and Error Reporting

The output of the above program is:

File : check.c
Date :Sep 2 2012
Time :04:50:24
Line:10

ANSI:1

5.1 OBJECTIVES

After going through this unit, you should be able to:

o Know preprocessor directives

e Define the macro directives

. Define the conditional directives and its use in the program
. Define the control directives and its use in the prografn.

5.2 MACRO DIRECTIVS

Macro Directive is a process of Expansion or substitution for an
identifier in a program. The identifier will replace by a predefined string
compared of one or more tokens.

The general format for threedirectives comes under the category
of macro directives are:

#define IDENTIFER replaced_string
#define IDENTIFIER(parameter_list). replaced_string
#undef IDENTIFIER

The two first syntaxes allow a macro to be defined, and the third
syntaxallows aprevious definition to be cancelled (or undefined).

IDENTIFER is any word that follows the rules fora“‘C’ identifier,
and may use lowercase or uppercase characters, but for readability
reasons, most macro names are entered in uppercase only.

replaced_string represents all the characters from the first
significant character immediately following IDENTIFIER (or the closing

_ : UGCS-102/301
brace for the second syntax) up to the last character of the line. This

103

Advanced Features of 'C'

UGCS-102/302
104

character sequence will then replace the word IDENTIFIER each time
itis found in the ‘C’ source file after the definition.

The #undef directive will cancel (or undoes) the previous
definition of amacro. There will be no error message appears if the fundef
directive tries to cancel a macro which is not defined previously. However,
you cannot redefine a macrowhich has already been defined. In such a

case, ithas to be first cancelledby a #undef directive before it is redefined.

The second syntax allows more flexibility in macro substitution,
You can replace with parameters. Note that the opening brace has to
follow 'iinmediately the last character of the macroname, withoutany
whiteéaacé. Otherwise, it is interpreted as the firstsyntax and the
parameter list along with the parentheses will be part ofthe replacement
sequence. Each parameter is an identifier, separatedfrom the others by

acomma. For example:
#define MULTIPLY(a, b) ((a)*(b))

This macro defines the word Multiplyalong with two parameters
called a and b. Parameters should appear in the replacement part, and
the macroshould be used in the remaining C program with a matching

number of arguments.

The program 5.2 shows how the macro substitution is performed:
e I’r&graxﬁ 52 *
#include<stdio.h>

‘#define MULTIPLY(a, b) ((2)*(b))

void main()

{ intx, y, mui;

printf(“Enter two numbers: \n”);

scanf(”%d %d”, &x, &y);

mul = MULTIPLY(x, y);/* Note: MULTIPLY(x, y) is replaced
by x*y */

printf(“The multiplication of %d and 5d is 5d \n”, z);

The preprocessor is recognizing MULTIPLYas a valid macro,

and successfully matched awith x, and b with y. The macro name and

the arguments with the parehtheses have been replaced by the

replacementcontent of the macroa * b where aand b were 1eplaced by
their valuesxand y.

The operator #(hash)placed before a parameter name will turn
it into a text string by enclosing it by double quotes. For example:

| #define STRING(str) #str
will convert: _ _
ptr= STRING(world);
into _
ptr = “werld”;

This feature is useful in string concatenation.

5.3 CONDITIONAL DIRECTIVES

The conditional directives allow compilation of selective codes

depending on conditions based on symbols defined by some macro

directives. The conditional directives are:
ifde.f IDENTIFIER
sifndef IDENTIFIER
#if expression
and are associated with the ending directives
telse |
tendif
#elif expressmn

Any of the above conditional directive is always followed by an
‘ending directive. A ‘C'program having lines enclosed by the conditional
directive and its ending directivewill be compiled or skipped depending
on theresult of the conditiontest.

The conditional directive #ifdef stands for “if hasbeen defined”.

#ifdéf IDENTIFIERIs true if there is the mzicro IDENTIFIER has _

beenpreviously defined. For example, in the #ifdef-fendif directive pair:
tifdef INCREMENT_X '
 ox=x+1

tendif

Preprocessor Directives

and Error Reporting

UGCS-102/303

105

Advanced Features of 'C'

UGCS-102/304
106

The statement x = x +1 will be compiled if the macro
INCREMET _X has been defined previously.

The conditional directive# ifndef IDENTIFIERis true if
IDENTIFIER is not the name of a macropreviously defined.The #ifndef '
stands for “if has not been defined”. For example, in the #ifndef-#endif
directive pair:

tifndef SUM_B_AND_C
Sum=b+¢
#endif
the statement Sum =b +c;will only be compiled if SUM_B__ AND_Chas

not been defined previosuly. If SUM_B_ AND_C has been defined,
then the statements will bedeleted.

#if expression is true if the result of expression is not zero.

The expression is evaluated as a constant expression, thus after
all the possible macro replacements inside the expression,any word which
has not been replaced by a number or an operator is replaced by the

value zero before the evaluation.

An ending directive can also work as a conditional directive by

starting a new conditional block, such as #else and #elif.
Here, are the few possible constructs:
gifdef CHECK
.prin_tf(“outline 1\n");
#endif
If the symbol CHECK has been defined previously, the line
printf... willoe compiled properly and executed. Otherwise, itis simply
skipped.
#if TERMINAL==1
initialize_console();
telse
initialize_printer();
#endif

If the symbol TERMINALhas been previously defined to1, the
lineinitialize_console(); is compiled, and the line ihitialize_prihter is
skipped. If TERMINALIis not defined as 1, or itis not defined, the
behavior of expression is just reverse (if TERMINALis not defined, it is
replaced by 0 andthe expression 0==11s false). -

The #elif directive is simply a reduction of a #else immediately
followed by a #if. It avoids too complex embedding in case of multiple

values:
#if TERM ==1
telif TERM ==
#elif TERM == 3
#else
#endif

Consider another statement:

#undef FILE_SIZE
#define FILE_SIZE 56

The above second statement will only be compiled if FILE_SIZE

has not been defined previously, then FILE_SIZE has been set to 56.

54 CONTROL DIRECTIVES

The control directives allo\if passing of information to the compiler in order
to configure or modify its behavior. The control direétives are:
(a) #include
#include “filename”
or
#include <filename>
The preprocessor replaces <filename>orfilename” by the full content of the
file. A filename specified between double quotes is searched first in the
current directory. A filename specified between angle brackets is searched

Preprocessor Directives

and Error Reporting

UGCS-102/305 .
107

Advanced Features of 'C' first in some predefined system directories, or user specified directories.
Anerror is generated if the file is not found in any of the specified directories.

An included file may contain other #include directives.
The #include directive can beused in two cases:

i Ifwehaveavery large program, the code is best divided into several

different file, each containing a set of related functions.

i. Many times we need some functions or some macro definitions almost

inall programs that we write.

Itis common for the file which is to included to have. h extension. This extension
stands for “headerfile”, possibly because it contains statements which

when included go to the head of a program.
(b) #error
#error error_message to_be_print

On seeing this directive, the compiler gives an error message whose content is
the error_message _to_be_print. This directive is interesting to force
an error if something is detected wrong in the defined symbols. For

example, consider the code below:
#ifndef SYMBOL

#error missing definition for SYMBOL
#endif
If the SYMBOL is not defined, the compiler will output an error

message containing the text “missing definition for SYMBOL”, and
will fail to compile the source file.

(c) tline
#line number “filename”
. The above directives redefine the current line number to the
specified number, and the filename to the specified name in the text

string. This is mainly used by automatic code generators to allow an

error to refer to the input file name and line number rather than the

UGCS-102/306
108

intermediate Csource file produced. This is almost never used by ahuman

‘written program. Nc_)te that this directive modifies the value of the
predefined symbol__FILE__. - ' '

5.5 ERROR REPORTING

Although 'C’language does not offer direct support for error

reporting but as a system programming language, it gives you the

facility to accesslower level contents in the form of return values. Many

of the ‘C’ or even Unix function calls return -1 or NULL in case they

found any error and sets an error code exrno which is a global variable

| and indicates an error occurred during any function call. The various

error codes are defined in <error.h>header file.

An expert ‘C’ programmer can check the returned values as

specified in errno.h file and can take suitable action depending on the
return value. Itis a good practice by a developer toset errno to 0 at the
time of initialization of the program. A value of 0 indicates that there is

no error in the program.
5.5.1 The errno, perror() and strerror()

' The ‘C’ language has two functions, namely; perror() and
strerror() functions which can be used to display the text message
associated with errno. | |
 The S}}ntaic of perror() function is as follows:

| void perror(const éhar *str)
perror(s) prints str and followed by a colon, a space, and then the

implementation-defined error message correspohdMg to the integer in

errno.

e The strerror() function, which returns a pointer to the textual
representation of the current errmo value, The syntax of strerror(}

isas follows:
char *strerror{n);

returns pointer to implementation-defined string corresponding to error

n.

Preprocessor Directives

and Error Reporting

UGCS-102/307
109

Advanced Features of 'C’

UGCS-102/308

110

Considera program 5.3 that tries to open a file which does not
exist. Here, both the functions are shown for demonstration, but you
can use any one of the above functions for printing your errors. Another
thing which is to be noted that, you should use stderr file stream to
output all the errors..

/* Porgram 5.3 */

#include <stdio.h>

#include <errno.h>

#include <string.h>

externinterrmno; /* ermo is global variable, so extern is used */
int main () | -

{ 3

FILE *fp;

interrnum;

fp =fopen (“NotExist.txt”, “rb”);

if (fp==NULL)

errnum = errno;
fprintf_(_stderr, “Value of errno: %d \n”, errno);
perror(“Error printed by perror”);

- fprintf(stderr, “Error opening file: %s\n”, strerror(errnum));

f—

————

fclose (fp);

return0;
}
The output of the above program is:
Value pf errno: 2 _
Error printed by perror: No such file or directory .
Error opening file: No such file or directory

Let us consider another problem when you try to divide a value
by zero. As we know that the answer is undefined. But it is a common
problem that programmers do not check whether a divisor is zero at the
time of dividing any number, and finally it creates a runtime error.

The program 5.4 below shows this type of error and suggests a
way to fix such problem.

/* Program 5.4 */
#include <stdio.h>
#include <stdlib.h>
main()

{ |
intdividend =45;
int divisor = 0; |
int quotieht;

if(divisor==0){

fprintf(stderr, “An attempt has been made to division by zero!
Exiting...\n"); ' '

exit(-1);

}

quotient=dividend/divisor;

fprintf(stderr, “Value of quotient : %d \n”, quotient);
exit(0);

}

The function exit(Q) indicates a sucﬁessful termination of

program, while any non-zero value indicates abnormal termination

of program.
The output of the above pfogram is:
An attempt has been made to division by zero! Exiting...

Instead of placing 0 or any another non-zero -‘Ivalue, itis a good
programming practice to exit with a value of EXIT_SUCCESS after a
successful completion of operation. Here EXIT_SUCCESS is a macro
and itis defined as 0. Butin case if you think that some segment givesa
runtime error then, you should exit with a status EXIT_FAILURE which

Preprocessor Directives

and Error Reporting

UGCS-102/309

111

Advanced Features of 'C’ is defined as -1. Let us consider the following program to demonstrate
the use of EXIT_SUCCESS.

#include <stdio.h>

#include <stdlib.h>
main()
{
mt dividend =45;
int divisor=3;
int quotient;
if(divisor==0){
fprintf(stderr, “Division by zero! EXiting... \n"); -
exit(EXIT_FAILURE);

quotient=dividend / divisor;
fprihtf(stderr, “Value of quotient: %d \n”, quotient);
exit(EXIT_SUCCESS); |

}

The output of the above program is:
Value of quotient:15

Check your progress 1

1 # define dp(e) printf(#e “=%d\n” e)
main()
{intx=3,y=2;
dp(x/y)
}
What will be the output of the program?

2. What will be the output of the program?

| #define START 0 /*Starting point of loop g
#define ENDING9 /*Ending pointofloop ¥/
#define MAX(AB) ((A)>(B)2(A):(B)) /* Max macro definition*/
#define MIN(A,B) ((A)>(B)?(B):(A)) /* Min macro definition */
int main()
{intindex, mn, mx;
intcount=>5;
for (index = START ; index <= ENDING ; index++) { mx=
MAX(index, count); mn=MIN(index, count); printf(“Max
is %d and min is %d\n”, mx, mn); } return0;}
UGCS-102/310 - 3. ' What will be the output of the program?
1 #define WRONG(A)A*A*A *Wrong macro for cube

/#define CUBE(A) (A)(A)*(A) /*Rightmacro forcube */ File and Memory
#define SQUR(A) (A)*(A) /*Rightmacro for square */ Management in 'C’
#define ADD_WRONG(A) (Ay+(A) /*Wrong macro for addition */

#define ADD_RIGHT(A) ((AY+A)) /* Right macro for addition*/

#define START 1 a 3

#defineSTOP 7.

intmain()

{ inti, offset;

offset=5;

for (i=START ;1<=STOP; i++)

(:

printf(“The square of %3d is %4d, and its cube is %6d \n”, i+offset,
SQUR(ioffset), CUBE(i+offset));

printf(“The wrong of %3d is %6d \n”, itoffset, WRONG(i+offset));
] : . \ :
printf(“\nNow try the addition macro’s\n");

for (i=START;i<=STOP;i++) |

printf(“Wrong addition macro = %6d, and right = %6d\n”,
5*ADD_WRONG(i), 5*ADD_RIGHT(i));

}
return0;}
What will be the output of the program?

~ #define OPTION_1 /* This defines the preprocessor control
*/#ifdef OPTION_1 int count_1 = 17 ¥ ThlS exists only if
OPTION_1 is defined */

#endifint main()

{intindex;

for (index=0; index<6 , index++) |
¢ |

printf(“In the loop, index =%d”, index);
#ifdef OPTION_1

printf(” count_1 = %d", couai_1); /* This may be printed */
#endif

printf(“\n");
} return@;

}
#undef OPTION _1

What will be the output of the program?
#define QPTION_1 _ UGCS-102/311
113

#ifndef OPTION_1
intcount_1=17;

#endifint main()

{intindex;

#ifndef PRINT_DATA

printf(“No results will be printed with this version of the program
IFNDEE.C\n"); '

#endif for(index=0;index<6;index++)
{

#ifdef PRINT_DATA

prihtf(”[n the loop, index =%d", index);
#ifndef OPTION_1

printf(” count_1="%d”", count_1);

fendif printf(“\n");

#endif

} return0;

)
5.6 SUMMARY

The preprocessor directives are powerful tool for manipulating
text files. While control directives, macro directives and conditional
compilation are its most popular features. Being’C’a system
programming language, it provides you access at lower level in the form
of return values. In case of any error, compiler sets an error code errno
which is global variable and indicates an error occurred during any
function call. You can find various error codes defined in <error.h>header
file.

UGCS-102/312
114

	Untitled-1
	Untitled-2
	Untitled-3
	Untitled-4
	Untitled-5
	Untitled-6
	Untitled-7
	Untitled-8
	Untitled-9
	Untitled-10
	Untitled-11
	Untitled-12
	Untitled-13
	Untitled-14
	Untitled-15
	Untitled-16
	Untitled-17
	Untitled-18
	Untitled-19
	Untitled-20
	Untitled-21
	Untitled-22
	Untitled-23
	Untitled-24
	Untitled-25
	Untitled-26
	Untitled-27
	Untitled-28
	Untitled-29
	Untitled-30
	Untitled-31
	Untitled-32
	Untitled-33
	Untitled-34
	Untitled-35
	Untitled-36
	Untitled-37
	Untitled-38
	Untitled-39
	Untitled-40
	Untitled-41
	Untitled-42
	Untitled-43
	Untitled-44
	Untitled-45
	Untitled-46
	Untitled-47
	Untitled-48
	Untitled-49
	Untitled-50
	Untitled-51
	Untitled-52
	Untitled-53
	Untitled-54
	Untitled-55
	Untitled-56
	Untitled-57
	Untitled-58
	Untitled-59
	Untitled-60
	Untitled-61
	Untitled-62
	Untitled-63
	Untitled-64
	Untitled-65
	Untitled-66
	Untitled-67
	Untitled-68
	Untitled-69
	Untitled-70
	Untitled-71
	Untitled-72
	Untitled-73
	Untitled-74
	Untitled-75
	Untitled-76
	Untitled-77
	Untitled-78
	Untitled-79
	Untitled-80
	Untitled-81
	Untitled-82
	Untitled-83
	Untitled-84
	Untitled-85
	Untitled-86
	Untitled-87
	Untitled-88
	Untitled-89
	Untitled-90
	Untitled-91
	Untitled-92
	Untitled-93
	Untitled-94
	Untitled-95
	Untitled-96
	Untitled-97
	Untitled-98
	Untitled-99
	Untitled-100
	Untitled-101
	Untitled-102
	Untitled-103
	Untitled-104
	Untitled-105
	Untitled-106
	Untitled-107
	Untitled-108
	Untitled-109
	Untitled-110
	Untitled-111
	Untitled-112
	Untitled-113
	Untitled-114
	Untitled-115
	Untitled-116
	Untitled-117
	Untitled-118
	Untitled-119
	Untitled-120
	Untitled-121
	Untitled-122
	Untitled-123
	Untitled-124
	Untitled-125
	Untitled-126
	Untitled-127
	Untitled-128
	Untitled-129
	Untitled-130
	Untitled-131
	Untitled-132
	Untitled-133
	Untitled-134
	Untitled-135
	Untitled-136
	Untitled-137
	Untitled-138
	Untitled-139
	Untitled-140
	Untitled-141
	Untitled-142
	Untitled-143
	Untitled-144
	Untitled-145
	Untitled-146
	Untitled-147
	Untitled-148
	Untitled-149
	Untitled-150
	Untitled-151
	Untitled-152
	Untitled-153
	Untitled-154
	Untitled-155
	Untitled-156
	Untitled-157
	Untitled-158
	Untitled-159
	Untitled-160
	Untitled-161
	Untitled-162
	Untitled-163
	Untitled-164
	Untitled-165
	Untitled-166
	Untitled-167
	Untitled-168
	Untitled-169
	Untitled-170
	Untitled-171
	Untitled-172
	Untitled-173
	Untitled-174
	Untitled-175
	Untitled-176
	Untitled-177
	Untitled-178
	Untitled-179
	Untitled-180
	Untitled-181
	Untitled-182
	Untitled-183
	Untitled-184
	Untitled-185
	Untitled-186
	Untitled-187
	Untitled-188
	Untitled-189
	Untitled-190
	Untitled-191
	Untitled-192
	Untitled-193
	Untitled-194
	Untitled-195
	Untitled-196
	Untitled-197
	Untitled-198
	Untitled-199
	Untitled-200
	Untitled-201
	Untitled-202
	Untitled-203
	Untitled-204
	Untitled-205
	Untitled-206
	Untitled-207
	Untitled-208
	Untitled-209
	Untitled-210
	Untitled-211
	Untitled-212
	Untitled-213
	Untitled-214
	Untitled-215
	Untitled-216
	Untitled-217
	Untitled-218
	Untitled-219
	Untitled-220
	Untitled-221
	Untitled-222
	Untitled-223
	Untitled-224
	Untitled-225
	Untitled-226
	Untitled-227
	Untitled-228
	Untitled-229
	Untitled-230
	Untitled-231
	Untitled-232
	Untitled-233
	Untitled-234
	Untitled-235
	Untitled-236
	Untitled-237
	Untitled-238
	Untitled-239
	Untitled-240
	Untitled-241
	Untitled-242
	Untitled-243
	Untitled-244
	Untitled-245
	Untitled-246
	Untitled-247
	Untitled-248
	Untitled-249
	Untitled-250
	Untitled-251
	Untitled-252
	Untitled-253
	Untitled-254
	Untitled-255
	Untitled-256
	Untitled-257
	Untitled-258
	Untitled-259
	Untitled-260
	Untitled-261
	Untitled-262
	Untitled-263
	Untitled-264
	Untitled-265
	Untitled-266
	Untitled-267
	Untitled-268
	Untitled-269
	Untitled-270
	Untitled-271
	Untitled-272
	Untitled-273
	Untitled-274
	Untitled-275
	Untitled-276
	Untitled-277
	Untitled-278
	Untitled-279
	Untitled-280
	Untitled-281
	Untitled-282
	Untitled-283
	Untitled-284
	Untitled-285
	Untitled-286
	Untitled-287
	Untitled-288
	Untitled-289
	Untitled-290
	Untitled-291
	Untitled-292
	Untitled-293
	Untitled-294
	Untitled-295
	Untitled-296
	Untitled-297
	Untitled-298
	Untitled-299
	Untitled-300
	Untitled-301
	Untitled-302
	Untitled-303
	Untitled-304
	Untitled-305
	Untitled-306
	Untitled-307
	Untitled-308
	Untitled-309
	Untitled-310
	Untitled-311
	Untitled-312

