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1.1 Introduction

This is most basic unit of this block as it infroduces the concept of statements,
statements, statement variables and the five elementary operations and associated logical
connectives. We introduce the well formed statement formulae, tautologies and
equivalence of formulae. The law of duality is explained and established. It has got
tremendous application in almost every fiekl, social, economy, engineering, technology
etc. In computer science concept of logic is a major tool to Jearn to understand it more
clkarly. Mathematics has a language of its own like most other sciences, which is very
precise and commumicates just what is required-neither more nor less. Language basically
consists of wonds and their combinations called ‘expression’ or ‘sentences’. However in
Mathematics any expression or statement will not be called a ‘sentence’.

1.2 Objectives

After reading this unit we shoukl be able to

1. Understand the concept of staternent and statement variables

2. Use elementary operations like Conjunction, Disjunction, Negation,
Implication, Double implication

3. Understand statement formmlae, tautologies to equivalence of formulae
4, Use law of duality and finctionally complete set of connectives

Logic is a field of study that deals with the method of reasoning Logic provides mules by

which we can determine whether a given argument or reasoning 15 valil {(comrect) or not.
Logical reasoning is used in Mathematics to prove theorems. In computer science logic is
used to verify the correctness of programs.

1.3 Statements

Definitions: A staterment (or proposition) is a sentence which is either true or false but
not both,

Examplel.1, Which of the following are statements?

() Indira Gandhi was one ofthe Prime Ministers of India.
(b} 8is greater than 10,

() 2+4=6

(d} Blood is green

(e) Itis raining



() The sun will come out tomorrow.
Solution:

(a) is a statement because it is true.
{b)is a statement because it is false.
{c)is a statement because it is true.
{d)is a staternent because it is false.
{e) is a statement because the sentence “ it is raining” is either true of false but not
both a given time.
(f) is a statement since it is either true or false but not both. Although, we would
have to wait until tomorrow whether it is true or false,
If a sentence 5 a question (interrogative type) or a command or not free of ambiguity
then the sentence cannot be answered as true or false and therefore such sentences are not
statements,

Examplel.2: The following are not statements.

{a) Is the number 6 a prime?

b)2—-x=6

{c¢) What are you studymg?

{d) Open the door.

{e) This statement is false,
Explanation:

(a) is not a statement becanse it is a question

(b)is not a statement because it is true or false depending on the value of x.

{c)is not a statcment becausc it is a question.

(d)1s a command and therefore it is not a statement.

(e)is not a statement because it is not possible to assign a definite true or false value
to it, If we assume that sentence (¢) is true then it says that statement (e¢) is false.
On the other hand if we assume that sentence (¢) & false then i implies that
statement () is true. Hence it 1s not a statement.

1.4 Logical connectives:

There are some key words and phrases which are used to form new sentences from given
sentences, as for example ‘and’ ‘or’, “not’, ‘if.... then ...., if and only if® etc. They are
called sentential or logical connectives. A Sentence with some logical connective is
called a ‘Compound sentence’ and a sentence without logical connective is called an
‘atonmc sentence. As for examplk: A triangle is a plane figure. Water is cold, are atomic
gentences, But the followings are the compound sentences,



(a) A triangle is a plane figure and is bounded by threc straight lnes.
(b) A real mumber is rational or irrational.

(c) 2013 is not a leap year.

(d) Ifatriangle is equilateral then it's all angles are equal

(e) Ifatriangle is isosceles then two of its angles are equal

A part of a compound sentence that itself is a sentence is called a component of the
sentence — thus the components of the sentence are also sentence,

1.5 Truth functional rules or truth tables:

The rules by which the truth or fakity of a compound sentence is determined from the
truth or falsity of its components are called fruth functional rules. The table giving the
truth or falsity of the compound sentence depending upon the truth or falsity of its
components is called its #ruth table. We shall say that T or F according as the sentence is
true or false respectively.

1.6 Elementary Logical Operations:

The formation of compound semtence from given sentences by usig the logical
comnectives are called elementary logical operations which are five in number in
accordance with the five logical connectives used. They are: (1) Comjunction (2)
Disjunction (3) Negation (4) Implication (5) Double implication.

Note: When we form compound sentence by using any of the five logical connectives, it
is not necessary that the components of compound sentence should be related in the
nation however absurd is permitted. As for example consider the compound sentence
‘Ram is a player and the carth revolves about the Sun. Here the components of the
compound sentence are not related in the usual sense of conversation.

1. Conjunction : A sentence obtained by conjoining two sentences P,Q by using the
connective ‘and’ is called the conjunction of the two sentences and will be denoted by
PrQ (read as P and ().

Example: Let P= U.S.A. sent Apollo 11 to the moon, { = Russia sent Luna 15 to the
moon, Then PAQ=1.8.A, sent Apollo 11 and Russia sent Luna 15 to the moon,



Truth functional rule for conjunction:

PAQ is true if and only if both the sentences P, O are true. How this truth functional rule
is obtained is a matter of sophisticated logical reasoning and is beyond the purview of the
present discussion,

Truth-Table for Conjunction: The following table gives the truth-values of PAQ for all
possible truth values of P and Q-

P11 O | P
T | T| T
T | F| F
F | 1| F
F | F| F

2. Disjunction: A sentence obtained by joining two sentences P, 0, by the connective
‘or’ 15 called the disjunction of the two sentences and will be denoted by P vQ (read as P
or (). For example:P = Ram is intelligent, (=Ram is hard working, Pv(= Ram i
intelligent or hard working,

Truth functional rule for disjunction:

Pv(Qis true if at keast one of P, Q is true, that is,PvQ is false only when both P and (2 are
false. Truth Tablke for disjunction:

L B T
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3. Negation: A sentence which has a truth value oppositeto that of a sentence P is called
the negation of P and is denoted by — P or ~ P. Negation of an atomic sentence is

obtained by using the connective “not’ at proper place,

As for example: If P= The water i5 cold, Then — P =The water i5 not cold.Negation of
PaQis (- P)v (- @), that i8, -{(PA@)=(- P) v (- (). Thus the negation of *‘Ram i poor
and honest’ is “Ram i not poor or not honest. This can be verified by the following Truth
Table:



PAQ| -P | -Q | (PV(Q
F

P |0

T|T| T ]| F | F
rT|F|F | F | T I
F|T|F| T | F T
F|F|F| 1| T T

The above table shows that the truth-values of PAQ (as given in the third column) are
exactly opposite to those of (— P) v(— (J) as given in the last column. The negation of
PvQis (-P)A(-Q), that is, —(PvO)=(-P)A (- Q)

The negation of ‘Mohan or Sohan has failed” is ‘neither Mohan nor Sohan has failed’ that
is, ‘Mohan has not failed and Sohan has not failed’.

4. Implication or a conditional sentence:

A conditional sentence obtained by using the connective ‘If ....then..." is called an
implication. As for example:P =youread, 0 = youwill pass,Byusing the connective *if
......... then’ we get ‘If you read then you will pass’ which can be denoted by ‘If P then
Q’. It is also written as P=0 (read as P mplies Q). In the mplication P=0,P is called
the hypothesis or antecedent and Q is called the conclusion or consequent.

The Truth functional rule for implication:

P=(0 is false if P is true and @ is false;’ otherwise it is true. The Negation of P=>( is
PA(— Q) that is, (P=>=PA(—0). This is proved by the following Truth Table:

P|Q|P2Q| © | PAQ
T T T F F
T|F|F | T T
F|T| T | F F
F F T T F

Truth values of P=0 as given i third column are exactly opposite to those of

PA{- Q) as given m the last column. Thus the Negation of the sentence °If you read then
you will pass’ 15 “You read and you will not pass. Note that ‘If you do not read then you
will not pass’ is not the negation of the given sentence.



3. Double Implication:
A bi-conditional sentence obtained by using the connective ‘If and only if’

{bricfly written as ff} between two sentences P, 0 is called a double implication and is
written a ‘P if{Y. It is also written as P& (read as P implies and implied by Q). Thus
we find that P& Q is precisely the conjunction of P=>0Q, Q=>F, that is P&Q = (P=2>0)
AQ=P). The double implication P& Q is true only when both P and Q are true or both
are false. This is proved by the following table:

P | @ |P=Q|0=P| PeQie (PINQ=F)
T[T | T | T T
T|F| F | T F
F|T| T | F F
F|F| T |T T

Note: If P=the Sun revolves about the earth, 0= The year consists of 400 days, Then ‘P
iff Q’ or P& = the Sun revolves about the earth iff the year consists of 400 days —
which statement is true though P and Q are both false. The Negation of P& Q1is (Pa -
Q)v (O - P). Thus the Negation of the sentence ‘One is good teacher iff one is a good
scholar’ 15 ‘One is a good teacher and a bad scholar or one is a good scholar and a bad
teacher’.

Example 1 : Construct the truth tabke for ~pvq. We must consider all possibk:

combination of truth values of p and gq. All possible combinations of the truth values of
the statements p and g are listed in the first two columns of the tabk. The truth values of
~p are entered m the third column and the truth values of ~p vg are entered i the fourth
column.

P q ~P ~pvy
T T F T
T F F F
F T T T
F F T T

Truth table for ~pv g



Example 2 ; Construct the truth table for pa~p.

Since the statement pA~p has only one distinct atomic statement. We have to consider 2
possibke combinations of truth values. The truth table for pa~p is given below.

4 ~P AP
T F F
F T F

Truth table for p A~ p

Example 3 ;: Construct the truth-table for ~(pa~g).

In the first two columns, we list all the variable and the combmations of ther truth
valyes, In the third column, we write truth values for ~ g, The truth values of pa~ g are
listed in the next column. Finally we obtain the truth values of the proposition ~{ pA~ g).
Thus we have the following truth table:

f2 q ~q PA~q |~pr~q)
T T F F T
T F T T F
F T F F T
F F T F T

Example 4 : Construct the truth-table for (p vgq) A (pvr).

Here, we have three atomic statements. Therefore we shall require eight rows to list all
possible combinations of the truth values of statements p, ¢ and ». Rest of the procedure
will be the same as above. We shall proceed in steps and in the final column we will have
the truth values of the given statements.

P q r Pve pvr (v g)Ap
vr}
T T T T T T
T F T T T
F T T T T

10




T F F T T T

F T T T i T

F T F T F F

F F T F il F

F F F F F F
Truth table for {pv @)A(p vr)

Example 5 : Prove that the truth values of the following pairs of sentences are the same,
@ PA(QVR)and (P AQ) v (PAR)
(&) Pv(QAR)and (Pv QA (PvR)
€) PA(QAR)and (PAQ)AR
@ Pv(QvR)and (PvQ) VR

P| Q| R | OvR | PAQVR)| PAQ | PAR | (PAQIV(PAR)
T | T | T | T T T | 7 T
T|T| F | T T F | F T
T|F| 17| T T T | T T
T|F| F | T F F | F F
Flr| | r F F | F F
F|T| F | T F F | F F
F|F| T | T F F | F F
F|F| F | F F F | F F

from columms fifth and eight we find that the trath values of PA {QvR) ad (PAQ) v (PAR)
are the same in all cases. Solutions of other parts have been keft as exercise.

11




Check your progress
1. Which of the following are statements?

(a) Is3 apositive number?

(b) »¥5x+6=0

(¢) There will be snow in December.

(d) Give me ten rupees.

(¢) Rameshis poorbut honest

() No trangles are squares.
2. Let p be the proposition “Mathematics is easy” and let ¢ be the proposition “five is
greater than four.” Write in English the proposition, which corresponds to each of the
following:(a) p Agq ) pvg

(c) ~{p rq) d) ~pr~g
(&) Pr~pnrg)
3. Write the negation of each of the following statements:
(a) 24+47<13
(b) 3 is an odd nteger and B is an even integer.

(¢) No nice people are dangerous.

4. Let p be the statement “Ravi is rich” and let ¢ be the statement “Ravi is happy.” Write
the following statements in symbolic form:

(a) Ravi is poorbut happy.

(b)Ravi is rich or unhappy.

(c)Ravi is neither rich nor unhappy.

(d)Ravi is poororhe is bothrich and unhappy.

5. Construct the truth-table for the following fimctions:

(@ @Y ® @7y
(c) plte) d) pertp'q”
(& @"+erYlpgtqr)

6. Given the truth values of p and g as true and those of rand s as false; find the truth
values of the following:

@ pvign)
b} (@ Alg v ~(p v vs))

12



Answers

. (c),(c) and (f) are statements.

. (a) Mathematics is easy and five is greater than four.

(b) Mathematics is easy or five is greater than four.

(c) Either Mathematics is not easy or five is not greater than four,
(d) Mathematics is not easy and five is not greater than four.

(¢} Either Mathematics is casy and five is not greater than four or Mathematics is
not easy and five is greater than four.

. (@) Itis false that2 +7<13
(b) Either 3 is not an odd integer or 8 i not an even integer,

(c) Some nice people are dangerous.
. (3)~pAq b)pv~q
(c)~prq (d)~pvipr~q)
. (@) True (b) True

Note: The symbols v, A, ~, &> and <>defined above are called commectives,

Converse, Inverse and Contrapositive of p—¢
Definition: Let p—¢q be any conditional statement. Then,

(a) the converse of p—q is statement g—p.
(b)the inverse of p—qis the statement ~ p—~yq.
(c)the contrapositive of p— g is the statement ~g—~p.

Examplel.15. Write the converse, inverse and contrapositive of the conditional statement

“if 2+ 2 =4 then I am not the Prime Minister of India.”
Let p: 2+2 =4 and q: I am not the Prime Minister of India.

Then the given statement can be written as p—¢q. Therefore, the converse is g—p. That s,
if I am not the Prime Minister of India then 2+2 = 4. The mverse of p—¢q 15 the statement

~p—y~q, That i, if 2+2+4 then I am Prime Minister of India,

The contra-positive of p—g is the statement ~g—~p. That is, contra-positive of the given

statement i5 “if ] am Prime Minister of India then 2+2 # 4.”

13



Propositional Functions and Propositional Variables

By a propositional variable, we mean a symbol which represents an arbitrary
statement (proposition). Thus propositional variable is a variable that can be replaced by
a statement. We shall use the symbols p, g, 7, ....or pi, p2, P3se..... to denote propositional
variables.

Propositional function is a function or statement which is formed by using

propositional variables and connectives, For example, compound statement such as pvg,
g, p—>q and pa(g—r) are propositional functions. More formally,

Definition: A propositional function is an expression, which & a combmation of
propositional variables and connectives. Propositional function are denoted as f (p, ¢,
?,....), where p, ¢, r,....arc the variable used in forming the function f. A propositional
function fin  variables p, p2,p3,.....p, Will be denoted as f( p1,p2.P3,-. .- Pn)-

(1). f(p, q)=~(prg) s a propositional function in propositional variables p and g
(2). f(p,q,r)=p—>(p—>r)is propositional function in propositional variables p,qand r.

(). fler, P2, p3) = (p > p)A(p, > p,) B 8 propositional function in propositional
variables p,p,, and p,. Thus we see that propositional finctions are compound
statements formed by using finite number of simple (atomic) statements and connectives.
We shall often use the word statement for propositional fimetions.

1.1.7 Tautology

Definition 1:A compound sentence is called a tautology if 1t is always true fmrespective of
the truth values of its component parts. ic. A statement (or propositional function) which
is true forall possible truth values of ifs propositional variables is called a tautology.

Definition 2: A statement which is always false s called a contradiction. A simple
method to determine whether a given statement is a tautology is to construct s fruth
table. If the statement is tautology then the column corresponding to the statement in the
truth table contains only 7. Similarly a statement is contradiction if the column
corresponding to the statement contains only F.

14



For example P v — P is a tautology, since one of P and —-P mustbetrue and so Pv—- P is
always true. Similarly (- P=>0) A —Q=>P is a tautology as proved by the following table.

P 0 -P - -P=Q | (P=20)7-Q (P=>0)A Q=P
T T F F T F T

T | F F T T T T

F T T F T F T

F | F T F F T

If P =0 is a tautology then we also say P=0 tautobgically. Thus in the preceding
example we can say that (— P=>0) A — =P tautologically.

Note: P=0 camnot be a tautology if both P and 0 are atomic sentence.

1.1.8 Tautological equivalence

Two sentence P and O are said to be tautologically equivalent if P=Q tautologically.
And ako (O=P taulclogical equivalence if P=>0 tautologically, and also Q=P
tautologically. P and Q are tautologically equivalent may be written as P=0. It is ckar
that two compound sentence P and  are tamtologically equivalent if they have the same
truth values in all the cases. ie. Two statement p and ¢ are said to be bgically equivalent
or equal if they have identical truth values.

One method to determine whether any two statements are equal is to construct a
column for each statement in a truth table and compare these to see if they are identical,

For example P =0 is tautologically equivalent to — 0=> — P as proved by the following
table:

Plo|P2g| 0| -P | -0=P
T |T| T F F T
T |F| F T F F
Flr| r F T T
FlF| T T T T

We find that the truth values of P=>Q and — Q= — P are the same in all the cases.
Hence [P =20] = [-Q= - P] and [- @ = —P= [P =] are both tautologies,

15



The sentence Q= —P is called the contra-positive of the sentence P=>Q. Hence very
often to prove P=Q we prove —Q=-P.

Note: If P=( is a tautology, hen if P is true then O must be true, since the implication is
always true except when P is true and () false.

Example 1 : Show that each of the following is a tautology

@ [pAMpo>glg

®) W-o>DrE@->D]2(-r)
(8 Weshall constructtruth-table for the function pA( p > 4) > ¢

P g e PA(p—oq) | [pr(po9log
T T T T T
T F F F T
F T T F T
F F T F T

Truth table forp A(p > g) 1294
Since the column for [p A p » 4)]—>g contains only T, it is a tautology
(¢} Here we construct the truth-table for [(p 5 A (g 11— po 1]

r

y
4
L]
[~
S
hy
4
™

(ponA@g-on) | [ponAlgo D] pon)
T

e I T | T | L | | I
I | s I |

I e | I | T B T | B
e L I I | - ) I | I

e I T | B | B T | e | I
e | | I | -] | I~

I T | e | e | e | I | A

"

F

Truth table for [(p 5> Ao 12 (o)

16



Since the last column corresponding to [(p —» ¢)A (g > 7) 1> (p—r) contains only 7, it is

a tautology.
Example 2 : Show that the statement pa~p is a contradiction. Consider the truth table
for pa~p.
~ Prp
F F
T F
Truth table for pa~p

It follows from the table that pA~p & a contradiction,

Example 3 : Provethat p - g=~p vg.

We shall constructtruth table for statement p — gand ~p vg.

P q P ~g ~pvg
T T T F T
T F F I3 F
F T T T T
F F T T T

Truth table for 7 - ¢4 and ~pvyg
We observethat the truth values in the colurmns for p - gand ~pvgare identical, Hence
p—>q="PVq.
Example 4 : Show that the statement (pA~p) vg and g are equal,
Consider the truth table for given statement.

p q ~p PAP (pA~p) vg
T T F F T
T F F F F
F T T F T

17




T

F

Truth table for (pa~p) vg and g

From the truth table we see that cohuimns for (pA~p) vg and g are identical. Hence they

are equal

Example 5§ : Show that two statements p and g are equivalent if bi-conditional statement
poq is a tautology. From the definition of biconditional statement we know that pe>q is
true whenever both p and ¢ have the same truth vales. Thus p = ¢ if pe>g 1s a tautology.

Note. (1) Some authors have used the symbol ‘<’ to denote equivalent or equal
statements and symbol ¢ i8 used for biconditional statement, From Example 1.20, we

have p ©gif p ©q i3 tautology.

(2) Two equivalent statements may contain different variables as is clkear from Example

1.19 above.

Example 6 : Showthat p > (g7} =(pArg)> 7

Congider the following truth table.
Plg|r|a—=>r| pag|p(g—on)|(prg)>r
rr\r| r T T T
T T|\F| F T F F
I'FrF|T| T F T T
T\FIF| T F T T
F|\T|\T| T F T T
F|IT\F| F F T T
FIF|T| T F T T
F\F|\F| T F T T

Truth table for p 5 (g &(pag) -

We see that columns for p - (g —»r) and (pag¢) — r are ¥lentical hence given statement

are equal

18




Check your progress
(1) By constructing truth tables, show that the following are tautologies:

(a) (PAD)=P

(b)(P=0) A (O=>R)=>(P=R)
) (PEONOAR)HPSR)
d)(PvQy A —-O=P

(&) [P=0] o[-Pvd]

(2) Show that the following are tautological equivalences:

(@) Pe=F=0)A(-P>-0)
(b) Pv (OAR)=(PvO) A (PVER)
(c) PA(QVR)=(PAQ) v (PAR)
d) -PAD=CP)v(-0)

() -V =(-P)A Q)

() P A(QAR)=(PAQ) A (PAR)
(&) PA(QAR) = (PAQ) AR

The following theorem contains various laws satisficd by propositions. We shall use these
laws for simplification of propositions.

Theorem1: The following laws are satisfied by statements:
1. Commutative laws:

(@) pvg=gqvp. () prg=gnap.
2. Associative laws:

(@) pvigvr=(pvavr (B) palgar)=(prg)ar
3. Distributive laws:

@ pvigan=@vaalevr) b) palgv=(pagv(pAar)
4, Idempotent laws:

(@) pve=p ®) pap=p

5. Laws of absorption:

(@ pvipag)=p {b) preve)=p

6. Involution laws:

19



@ ~¢p=p

7. Complement laws:

@) pv~p=T  (b) pa~p=F
8.De Morgan’s laws:

@) ~(pvgy=pr~qg () ~(pAg)=pv~q
9. Operation with T

(@) pvT=T (b) paT=p
10. Operation with F
(® Fvp=p b)Fap=F

Here Tand F denote statements, which are tautelogy and contradiction respectively.

Proof: We shall prove 3(a) and &(a). The remaining laws can be proved exactly in the
same way by constructing truth tablks.

To prove 3(a), consider the following truth-table

r| pva| pvr|gar| pv(gar)| (pve Alpvr)
T T

p

e G| G| e | e e |
o s s | I e e e
| | | e | - | N |
- T | | B I |

£ I | | B | B | I |
- - s | | | L |
ol B I | I | |

F|\F|F F ¥

Since columns for pv (gar) and (pv¢) A (pvr) are identical they are equal.
Toprove 8(a), consider the following truth table:

Plgl~p| ~q| pve | ~{pve) | ~pr~q
TIT\F | F T F F

20



It follows from the table that ~(pv g)=~ pa~g.

T\F\F|T| T F F
FIT| T T F F
F|F T| F T T

Theorem2: Showthat (@) p 5 g=— pvg, )P OI=(po>9r=(g>p)

Proof: Using the definitions of — and <> we have,

P q ~p r>9 | 90p | peg | ~pve [ (e29A={g>p)
T T F T T T T T
T F F F T F F F
F T T T F F T ¥
F F T T T T T T

Since the truth values in columms (4) and (7) are identical we have (a), Similarly, since
the truth values I columns (6) and (8) are identical, we have (b).

Theorem3 : Showthat (8) ~(p > q)=par~¢, B} ~(pO g)=po~¢q

Proof: Using the definitions of — and <>, we constructthe truth table

2lg|~p|~q|poq|~p2@) | pr~q | poq | ~(POg) | pog
T\T| F | F i F F T F F
TI\F|F| T F T T F T T
FIT|T|F i ¥ F ¥ T T
FIF| T|T i F F T F F

~(p© g)=p ©~g have ientical truth values, $0 ~(p & g)=po~g

Example 7 : Prove that ~(pag)>(~pv(~pve)=~pvg, without constructing tnuth

table.

Solution : We shall use theorems 1 and 2.
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LHS=~(pag)>{~pvi~pve)

=(pAg)V(~pv(~pva) Sincep 5 g=~pvyg
=(2A@)V((~pv~p)vg) by associative law
=(pAq)v(~pAg) by idempotent law
={(prgiv~p)vye by associative law
=(~pv(pAg)vy by commutative law
=(~pvpIr-pPVa) VY by distributive law
=T Al~pvadvyg by complement law
=(~pvegvyg by 9(b) of Theorem 1
=~ pvigvyg) by associative law
=~pvg by idempotent law
=R.H.S.

Check your progress

1. Prove that each of the following is a tautology:
(@ pop (b) prgp
©) po>(pve @) (pAro D)o g

() o) 2Kpvigan) @gn(pvrl

2. Write in words the converse, inverse, contra positive and negation of the implication
“if she works then she will earn money.”

3. Construct truth tables to determine whether each of the followmng is tautclogy ora
contradiction:

(@) pa~p ®) p> g

(€) pognap d) gvi~gap)

4, Prove the following;

@) pvg=gvp (b) palgar)=(ev)ar

p-



() patgvr)=(pagq)vipar @) pvp=p
© ~(prg)=pv~g O ~(pegd=pog
5. Write m English the negation of each of the following:
(a) The weather is bad and I will not go to work.
(b) I grow fat only if I eat too much.
6. Show the following equivalences:
@ ro>@»De~p>0—>9)
(b} ~(r o) & (pA~g)V(~prg)
7. Wedefine p— ¢ if and only if p  gis tautology. Prove the following:
@) pog=>p—>(prg)
®) ¢ >9)>g=>pve
8. Prove that for any propositions p and 4.
(a) pvT=T
(b} paF=F
©) {tev~ DAt~ pv~@}vg=T
Answers

2. The converse of the statement is “if she earns money then the she works.” The inverse
is “if she does not work then she will not earn money.” The contra-positive is “if she does
not earn money then she does not work” The negation of the statement is “she works and
she will not earn money.”

3. (a8 Contradiction
() Tautology
{c) Neither tautology nor contradiction
(d) Neither tautology nor contradiction
5. (a) The weather is badbut I will go to work.
(b) Igrow fat and (although) I don’teat too much,
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1.9. Law of Duality

In this section, we consider only those statements which contain the connectivesA,v and
~ only.

Definition: Two statement p and p* are said to be duals of each other if either one canbe
obtained from the other by replacing Aby v, vbyA, Tby Fand Fby 7.

It is obvious from the definition that dual of a statement is the statement itself We now
state (without proof) the principle of duality,

Principle of Duality

It states that if any two statements are equal then their duals are also equal
Example.8: Prove the following:

@) ~(prg)=pv~q () ~(pvg)=pr~q

Solution: We shall only prove (a). The result stated in (b) will follow by principle of
duality.
To prove (a), consider the following table:

pla|~r||png|~(vd |~pv~g
TIT|F|F| T

TIF|F|T| F T T
FIT|T|F| F T T
FIF|T|T| F T T

From the table, it follows that ~(p Ag=~pv ~gq
1.10, Functionally Complete Set of Operations

Definition: A set of operations (connectives) i8 said to be functionally complete if every
statement can be expressed entirely in terms of the operations in the set.

It is assumed that such a functionally complete set does not contain any connective which
can be expressed in terms of the order connectives in the set.

Recall that so far, we have defined the connectives A,v,~,— and <. We know that p—y¢g
is equal to ~pvq. Thus it is possible to replace each occurrence of »m any statement
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with an equivalent expression imvolving ~ and v. Similarly, we know that:
reg=(p-39Ag>p)=Cpvdal~qvp)

Thus the symbol ¢» can be replaced by connectives v,A and ~,
By De Morgan’s law, we know that~ (pAg)=~ pv~g¢
Or, pag=~(~pv~q). Similary, we have, pvg=~(~par~g)

Thus it is possibk to replace A in any statement by connectives ~and v. Hence any
statement can be expressed in an equivalent statement containing ~ and A only. This
shows that {A,~} 5 functionally complete set of operations. Similarly, any statement can
be expressed in an equivalent statement containing v and ~only, Thus {v,~} is also
functionally complete set.

Example 9 : Write the statement (pv ~¢) - (p A7) in terms of v and ~only.
Solution: We knowthatp 5 g pvg
Therefore, (pv~ g} > (pAr) = ~(pv~g)v(pAr)
= ~(pv~gv~(~pv~7)
because par = ~(~pv~r)

Example 10 : Express pa(g — r)in terms of A and ~.
Solution: pa(g & 7)=pallg > 1Al > g)]

= palt~gvria{~rvq]

= pa~(@r~ra~(ra~q]l (cpvg=(~pr~q))
Example 11 : Show that {—,~} is functionally complete set.

Solution : We know that {v,~} is functionally complete set. Thus any statement can be
expressed in an equivalent statement contaming v and ~, Since

pvg=(~p)—>q

Therefore we can replace the comnective v in any statement by ~ and —. Hence the
statement can be expressed in terms of - and ~. Thus {—,~} is functionally complte.

Example 12 : Show that {A,v} i8 not fimctionally complete.
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Solution: Since the comnective ‘~’ can not be expressed entirely in terms of v&a,
therefore any statement containing ~ can not be expressed in an equivalent statement
containing Adv only, Hence {A,v} is not functionally complete,

Connectives | and T

We now introduce two more connectives, which have useful application in the design of
computers. They are NAND and NOR. The connective NAND is denoted by the symbol

1 and is defined by the following truth table:

P q rTq
T T F
T 7 T
F T T
F 7 T

Truth-table forp Tgq
The connective NOR is denoted by the symbol { and is defined by the following table:

P q Py
T T 7
T 7 7
F T 7
F F T

Truth-table for p bg
For any two statements p and g, it can be shown by constructing truth tables that,

pTg =~(pag) and
pyg = ~(ova).
Theorem1 : Show that each of the sets {3} and {T} is functionally complete.
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Proof: We know that the sets of connectives {v, ~} and {a,~} are functionally complete.
Therefore, in order to show that {$} and {1} are functionally complete, it is sufficient to
show that the connective A,v and ~ can be expressed either in terms of T alone orin
terms of 4 alone. From the definition of T, we see that

pTp=-(pAp)
SED 0 mwasemes (1) Again,

eT)T@Tg=-(pTgsincepTg=-pby (1)
=~(~{pAp)
o [ {2)

Finally,

CANINCHPIETC I NNEY)
= ~(~pr~q)
—ovg e @)

Thus ~, v and A have been expressed in term of T alone. Hence {T} is functionally
complte. In a similar manner, we have

(pd p)=~(pvp)
—
(il T =pve
md (pd p)d(¢Tg)=pag
Thus {4} is functionally complte.
1.11 Sentential form
Consider the following expressions or statements: (1) x is mortal (2) x is a fraction

They are not sentences, since we do not know their truth values. If we take x to be a
mumber in (1) and x to be a man in (2), then these two statements (1), (2) become
meaningless and hence they are not sentences. But if we restrict x in (1) to men and in (2)
to numbers, then these statements will be sentences either true or false. Here x will be
called a variable. Such statements which contain variables like x which are not specified
are called open sentences or sentential from. Similarly expressions containing pronouns,
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as for example ‘He is prime minister of India’, ‘It is a prime number’ are open sentences,
since we do not know their truth value without additional information specifying the
unknown pronouns which behave like variables. The open sentence ‘x is mortal’ will be
denoted by P(x).
1.12. Quantifiers
In the diseussion of logic, some very important statements contain quantifiers, The
following are examples of statements which contain quantifiers:

(1) Some people are honest.

(2) No woman i a player.
(3) All Americans are crazy.
The words some, no and all are known as quantifiers. From quantifiers, we know “how
many” of a certain set of things is being considered.
1.12 (a) Universal Quantifier
Let p be a statement, We define the symbol v_p to mean that for every value of x in the

given set, the statement p is true. The symbol vis called the universal quantifier. v can
also beread as ‘forall’ , ¢ for every” or ‘forany.’

ILLustration: The statement “for all natural numbers, n + 4 >3” can be expressed as
V. p, where x belongs to the set N of natural numbers and p is the statement ‘n+ 4 >3
1.12 (b) Existential Quantifier

Let p be a statement, We define the symbel 3_p to mean that for one or more elements x
of a certain set, the proposition p is true, The symbol 3is called existential quantifier and
is usually read as “these exists” or “for at least one “for some”.

IMhustration : (1) The statement “there exists a number x such that »* —4x=16" may be
written as 3 (x* —4x =16)

(2) The statement 3 (» +4 < 7), where n is in the set of natura] numbers is true since there
exists a natural number, namely I, suchthat » +4 <7 is true.
1.13 Negation of Quantifiers

It is important to know how the negations of statements having quantifiers are formed.
Consider the statement“All Americans are crazy”

The negation of'this statement would be
“Itis false that all Americans are crazy” or equivalently,

“There exists at least one American who is not crazy.”
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In general, we have~(3,p)=V,(~ p) and~(¥,p)=3,(~ p)

Example:The finction fis said to approach the limit ! near 4 if (1) Ve> 0, 35> 0 such
that Vx 0 <|x—a| <&=|fix) — I<e.

Puttmg P(x): 0 <|x—a| <dé=|flx) — [<e.It canbe written as Ve> 035>0 such that V(x)
P(x). Hence the negation of the above definition will be :

The function fdoes not approach/ataif Je>0s.t. V&> 0 Id~P (x)).

That is, if there exists some > 0, such that for everyd> 0, there exists some x for which
0<|r—a|<6and |fx) -1|<e.

Example: Write the negation of ‘No teachers are wise’. Putting P(x}: x i8 wise (x is a
teacher), the symbolic form of the above sentence is Vx (x is a teacher) x is not wise or
V¥x (~ P(x)) (x is a teacher). Hence its negation will be IxP(x) that is, there exists a
teacher x who is wise or’ Some teachers are wise’.

Check vour progress

(3). Given P is trug, Q is false and R is trus, find, find the truth values of:
(@ (PvO)A(OvR).
(b) (P=0)=(Pr-0)
(¢) [(PAQ)A-R]1=(Q=P) [Ans. (8) T, (b) 7, (c} 7]
(4). Write the Negations of the following
(8 (PVO)AR,
() PA{Q=-R),
(c) P=>(0=R).
) PA-QoR,

(&) Vil x£2),



O FE<0)
(8) Vx(xi0) = (> 0),
(h) Fx(x’=1 and X*2x+3= 0)
(i) Every Indian is honest.
() If there is a will then there is a way.
(5). State if the following are sentence, giving reasons of your answer.
(2) Do you think you will pass in the examination?
(b) Mathematics is black .
(c) Walk right in.
(d) Heis a President of India.
() 2/5is a integer .
() Ifyou pass in the examination, then the sun will revolve about the earth.
(g} Oh! How sand he is.
(6). By constructing Truth-tables shows that the following are tautologies:
(a) (PAQ)=>P
(b) (PVvQ)A-Q=P
(c) [(P=0)A(@=R)]= (P=R),
(d) P=>DA-OQ)=P
(7). Prove the following tautological equivalences:
() (P=2Q)v (P=>R)=P=>0VR.

(b) (P=2RIAQ =>R)=PVvQ >R



) (P> AP=>R)=P=0OAR,

(d) (PRV(O=>R)=PAO>R.

(8). Prove that the following are tautologies
@) [(P= Q) A (R=S)]= (PARSOAS).
(b) [P=20) A (R=28)= (PVR=0VS).
(9) Find the dual of the following:
@ (v ar b) pag)vT
{©) ~(zv)a(pv~(pA))
(10) Form the negation of each of the following:
(a) “Forall positive integers x, we have x+2>8"
(b) “All men are honest or some man is a thief.”
{c) “There 15 at least one person who is happy all the time.”
(d) “The sum of any two integers is an even integer.”
(e) At least one student does not live in the dormitories.
Solution: (9) (a) Interchanging v and A, we have, dual a3 (pag)vr.
(b) Dualis (pvg)aF
{10) Dual is Negation of the statement are:
(a) There exists a positive nfeger x suchthatx+2>8.
{b) There exists a man who is not honest and all men are not thief.
{c) Nopersonis happy all the time,
(d) There exists two integers such that their sum is not an even integer.
(¢) All students live in the dormitorics.
Suggested Further Readings

(1) Felx. H. (1978) Set theory, Chelsea publishing Co. New York.
(2) P.T.Johnstone, (1987) Notes on Logic and set theory, Cambridge University Press.
(3) L N. Herstem. (1983) Topic in Algebra, Vikas publishing house Pvt. Ltd.
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Unit-2

Arguments
Structure

2.1, Introduction

2.2. Objectives

2.3. Argument

2.4, Rule of Detachment
(1) Validity using Truth Table
(2) Validity using Simplification Methods
(3) Validity using Rules of Inference

2.5, Invalidity of an Argument

2.6. Indirect Method of proof

2.7. Proofby Counter-Example

2.1. Introduction

The main problm in logic is the investigation of the process of reasoning. In
Mathematics, a certain set of statements (propositions) is assumed and from this set, other
statements are derived by logical reasoning. In this section, we shall mvestigate those
processes which can be accepted as valid in the derivation of a statement from the given
set of statements. The given set of statements i5 called premises or hypothesis and the
statement derived from the given statement is called conchision,

2.2. Objectives

After reading this unit we should be abk: to
Understand the concept of Argument
Use Ruk of Detachment

Understand Invalidity of an Argument
Use IndirectMethod of proof

Use Proof by Counter-Example

R e
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2.3. Argument

Definition: An argument is a process by which a conclusion is formed from a given set

of statements called premises.

An argument i§ said to be valid argument if and only if the conjunction of the premises
implies the conclusion. That 15, the argument which yields a conclusion » from the

premises p,, p,, p,-——--,p, 18 valid if and only if the statement is tautology.

An argument which is not valid is called a fallacy. An argument which is derived from

the premises or hypothesis p,p,,————- , 18 written as

Ex

q
That i8, the premise or premises will be listed first and the conclusion will be written

beneath a horizontal line.

Example:Prove that the followng argument 15 valil:

P

P g

g

Solution: Here p and p—g are two premises and ¢ is the conclusion. To show that the
argument is valid we show that conjunction of the given premises implies the conclusion
15 a tautology. That is, we show [pA(p — g)] > ¢ B a tautology by constructng truth

table.
P q p—q pa(p—q) | [pAlp—9l—>g
T T T T T
T F F F T
F T T F r
F F T F T




It follows from the truth table that [p A(p > ¢)] - ¢ is a tautology. Thus the argument is
valid.

2.4. Rule of Detachment or Modus Ponens

The valid argument P
P9

q
is called rule of detachment. Rule of detachment is also known as modus ponens.

Law of SyllogismThe argument
prq
g

poT
is valid argument and is known as the law of syllogism.

Example:The validity ofthe law of syllogism is proved by constructing truth table for
(p=>rlg2n]->(p-or).

plg(r|poe|gor|por|@2DAg—=27n) | (22DAg>)] 2 {(p>7)
T(T|T(T T T T T
T(T|F(T F F F T
T|(F|T|F T T F T
T|F|F|F T F F T
FIT|T|T T T T T
FIT|F|T F T F T
FIF|T|T T T T T
FIF|F|T T T T T

Truth table for [(p 5> PAlgo> )] (=7
It follows from the truth table that the law of syllogism is a valid argument.
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Given an argument, there are, in general, three methods to check the validity of the
argument, These methods are given below.

1. Validity using Truth Table

In this method, we constructa truth table as follows: p p,———-, p be all the premise and
let ¢ be the conclusion in the given argument We construct truth table for the statement
(BAPA-——=AD,) 24

If we have all Ts in the column of this statement then the statement is tautology and so
the argument used is valid otherwise the argument is not valid.

2. Validity using Simplification Methods

In this method, we convert all the implication statement p — gto the equivalent statement
~ pvgqin the argument involved and then we simplify the resulting statement using rules
of statement (Theorem 1 of § 1.9). If the statement

(B AP AP A————AD) 4

can be reduced to T, then we say that the argument is valid.

3. Validity using Rules of Inference

In this method, we reduce the given argument to a series of arguments each of which is
known to be valid. Two of the most frequently used rules of inference (ie. valid
argument) are the rule of detachment and the law of syllogism.

Example: Show that the following argument s valid

p

Pq
g—r

r

Solution: We shall show the validity of the argument by all three methods.
First solution: We construct the truth table for the statement



f=lpazo2>A(gor)]or

pla|r|eoa|a>r | prle—q) | pAG2>DAG-S) | f
T|IT|IT| T T T T T
TIT|F| T F T F T
T(F|T| F T F F T
T|(F|F| F T F F T
FIT|T| T T F F T
FIT|F| T F F F T
F|\F|T| T T F F T
FIF|F| T T F F T

f=lpap>Alg—>r)]->r

Truth tabke for f=[pa{p > PDAlg> )] >~
Since the columm for f contains only s, the argument is valid
Second solution: We shall simplify the statement

since p—+q=~pvg

=~pvi(pa~q)v(gr~r)vr

={(~pvp)a(-pv~-g)yvigr~r)vr

=TA(~pv~q)vrv(ga~r)

=(~pv~vilrvgalrv~r)}

=(~pv~vi{lrvgaT}

=(~pv~q)v(rvg)

={{(~pv~q)vaivr

={~pv(~gqvag)ivr
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using - (pag)=—pv—gq
using distributive law.
since ~pvp=T

SIce pal=p
sincerv—r=T
Siﬂﬂ&pAT:p

smce Bvg=gvp

by associative law




={~pvT}ivr since~ pvp=T
=T
Since freduces to T, so the argument is valid
Example : Checkthe validity of the argument
p=>q
r~q

por-r

Solution : Since the statement » - 4 is equal to ¢ >~ », We can replace the premise
r—)--gby q—)-—-r.NOW g

gor~r

DT
13 valid argument by the law of syllogism, Hence given argument is valid.
2.5, Invalidity of an Argument
A Short Method for Invalidity of an Argument

In checking a validity of a given argument, if it is found or suspected that the argument is
not valid, a proof of invalidity can be given more easily than by constructing the entire
truth table related to the argument. For proving that the argument is invalid, it i sufficient
to exhibit a particular set of truth valies for the statements involved for which the
premises are all true and the conclusion is false. This is equivalent to demonstrating that
one row in the truth table would contain  and hence the argument is invalid.

Example: Show that the following argument is not valid

P
~-pVvr

~Pq
P

Solution: If p is true, ¢ is false and » is false then each of the premises is true but the
conclusion is false. Hence the argument is invalid.

Example: Given the following statements as premises, all referring to an arbitrary meal:
(a) Ifhe takes coffee, he doesn’tdrink milk,
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(b) He cats crackers only if be drinks milk.
(¢} He doesnot take soup unless he eats crackers.
(d) Atnoontoday, he had coffee.
Whether he took soup at noon today? If so, what is the correct conclusion?

Solution: Letp: he takes coffee.
g: he drinks milk,
7 he eats crakers.
s: he takes soup.
Then we have, by condition (a) thatp—~ ¢
by condition (b), we have » - 4, by condition (¢}, we have~r -~ s
and by condition (d), we have p

Since implication 4 is equivalent to its contrapositive ~ g -5~ r., we have the
following chain of argument:

p=~q a premise

~qD~T contrapositive of premise (b)
po~r a conclusion by law of syllogism
~r =~ S a premise

p—o~s a conclusion by law of syllogism
pl~s

Hence ~s is the conclusion. That is, he did not take soup at noon today.

2.6. Indirect Method of proof

An mportant proof technique called the indirect method follows from the fact that any
implication p-»qis equivalent to its contra-positive~ g =~ p. Thus to prove p g4
indirectly, we assume that ¢ is false and show that p is then false.

More generally, to prove the walidity of an argument with premises
Py» Py Psa———> P, 80d conclusion ¢ by indirect method, we consider second argument

with premises ~ gp1PoPs_—__p,_ Biya —— —Pp  and conclusion p; and prove the
validity of this second argument.
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Example : Show that the following argument is a valid argument.
P
PAGIFVE

q
~8

r

Solution : We will take as premises for the indirect proofall given premises except ~ s
and the negation of the conclusion ~ r.7.e. we shall show that the following argument is
valid: P

PAGrvs

q
~rfs
Now, P a premise
g a premise
o a conglusion because p g — pagis always a tautology.
Now, PAg a valid conclusion
PAGITVS a premise
rvs a valid conclusion by modusponens
~T a valid conclusion because

(rvs)a-r—>s is a tautology
2.7. Proof by Counter-Example

If a statement claims that a property holds for all objects of a certain type, then to prove
it, we nmust use steps that are valid for all objects of that type. To disprove such a
statement, we need only show one counter example. That is one particular object for
which the statement is false. Such a proofis called a proofby counter-example.

Example: Prove that the statement “if » is an integer, then »*—»4+41 is a prime number”
i fake,

Solution: We need only find one example for which the statement is false. If #=41, then
r* —n+41=41* which is not a prime, Hence the statement is false.
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Example: Rohan made the following two statement:

1. TIlove Vicky
2. Ifllove Vicky then I also bve Vivian
Given that Rohan either told the truth or lied m both cases, determine whether Rohan

really loves Vicky.
Sohution : Letp: Rohan loves Vicky and  ¢: Rohan loves Vivian

Consider the following truth table:

e I B | B B
T I | B | B | I
~S o~ | o~ )

We are given that both p and , ., ; are either true or both of them are false. From the
table, it is possibk for both p and ; 5 to be true (row 1) but not possibk for both p and
p— g to be false. Hence Rohan must have told the truth and we conclude that Rohan

really loves Vicky.

Example: An island has two fribes of natives. Any native from first tribe always tells the
truth while any native from the second tribe always lies. Suppose you arrive at the island
and ask a native if there is gokl on the island. He answers “There i a gold on the igland if
and only if I always tell the truth.” Determine whether there is gold on the island.

Solution; Let p&q be the following propositions:
p : He (the native from whom question is being asked) always tells the truth.
g : There is gold on the island.

Then his answer is the statement * , -, ’. Suppose p is frue then p o4 i85 true
Comequently g mmst be true. If p is false then his statement p « 4 is false. Consequently
q must be true. Thus in both cases we can conclude that there is gold on the sland.

Example:A logician was captured by a certain gang, The leader of the gang blindfokled
the logician and placed him in a locked room containing two boxes. He gave the
following instruction “one box contains the key to the room and other a poisonous snake.
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You are the reach into either box you choose and if you find the key, you can use it to go
free. To help vou, vou can ask my assistant a single question requiring a yes or no
answer. However, he does not have to answer truely, he may lic if he chooses.” After a
moment of thought, the logician asked a question, reached in to the box with the key and
left. What question did the logician ask so that he was certain to go free?

Solution: Let p be the statement “the box on my left contains the key”. Let ¢ be the
statement “you are telling the truth,” Suppose we desire the answer “yes” if p is true and
“no” if p is false. In the table given below, the first three columns represent the possible
truth values of p and ¢ and the desired answer. Then the required statement (iec. a
question requiring answer in “yes’ or ‘no’}must have column 4 as its truth vahes,

p | g | Desired answer | Truth value of required statement
rr Yes T
T\F Yes F
F|T Yes F
F\|\F Yes T

We explain the reasoning used in forming the truth table by considering row 2. In this
row truth value of statement p is T while that of g 15 F. Thus the key is in the left box and
the man is lying. Consequently to obtain an affirmative answer the function must have the
value F (because the value of the function in row 1 is 7) The statement corresponding to
this truth tabk is ; <s 4. Hence the proper question is “does the box on the kft contain
the key if and only if you are telling the truth?

Example: Given that the value of 4 is true, can you determine the valie of
~pv(poq?
Solution: We shall constructthe truth tabk having columns for ;5 4 and ~ pv(p & ¢).

Plg|e—>e|-r|proe|~pvpeq)
r\r, T F T T
Tr\F| F F F F
F|IT| T T F T
FIF| T T T T

4



Fromthe table it follows that if ,—, 4 is true then the value of ~ pv(p & ) is true.

Note: In the above example, we could determine the value of ~ pv(p o 4) because
corresponding to each possible choices of p and g for which the value of ;4 is true,
the value of ~ pv(p o ¢) i8s same as 7.

Suggested Further Readings

(1) Felx. H (1978) Set theory, Chelsea publishing Co. New York.
(2) P.T.Johnstone, (1987) Notes on Logic and set theory, Cambridge University Press.
(3) LN. Herstein. (1983) Topic in Algebra, Vikas publishing house Pvt. Ltd.

42



Unit-3

Boolean Algebra

Structure

3.1 Introduction

3.2 Objectives

3.3 Bookan Algbera

3.4 Prnciple of Duality

3.5 Subalgebra

3.6 Isomorphic Bookan Algebras

3.7 DBookan Algebra as Lattices

3.8 Representation Theorem for Finite Boolean Algebras
3.9 Bookan Functions

3.10 Disjunctive Normal Form

3.11 Conjunctive Normal Form

3.12 Minimization of Boolean Functions (Karnaugh Map)

3.1. Introduction

This is most basic ynit of this block as it introduces the concept of statements, statements,
statement variables and the five elementary operations and associated logical connectives.
We introduce the well formed statement formulae, tautologies and equivalence of
formulas. The law of duality i5 explamed and established. It has got tremendous
application in almost every ficld, social, economy, engineering, technology ¢tc. In
computer science concept of logic is a major tool to learn to understand it more clearly,
Mathematics has a language of its own like most other sciences, which is very precise
and commmmicates just what is required-neither more nor less. Language basically
comsists of words and their combinations called ‘expression’ or ‘sentences’. However in
Mathematics any expression or statement will not be called a ‘sentence’,
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3.2. Objectives

After reading this unit we should be able to
1. Understand the concept of statement and statement variables

2. Use ckmentary operations hke Conjunction, Disjunction, Negation,
Implication, Double implication

3. Understand statement formulae, tautologies to equivalence of formulae
4, Use law of duality and fimctionally complete set of connectives

Logic is a field of study that deals with the method of reasoning Logic provides ruks by
which we can determine whether a given argument or reasoning 18 valid (correct) or not.
Logical reasoning is used in Mathematics to prove theorems. In computer science logic is
used to verify the correctness of programs.

In this chapter, we shall study Boolean algebra as an abstract structure. The definition of
a Boolean algebra which will be given now is one given by Huntington in 1904, In fact,
Boolean algebra orignated in the works of the English Mathematician George Boole
(1813-1865). The original purpose of this algebra was to simplify logical statements and
solve logic problems, Today it i the backbone of design and analysis of computer and
other digital circuits.

3.3.Boolean Algbera

Definition: Let B be a none-empty set with two biary operations + and *, a unary
operation’, and two distinct elements 0 and 1. They B is called a Boolean algebra if the
following axioms held forany a, b, ¢ € B.

[B,] Commutative laws: The operations + and * are commutative. In other words,
atb=b+aanda+b=bt+aVa beB

[B,] Identity laws: Forany aeB a+0=a and a*1 =a

That is, both operations + and * have identity elements denoted by ¢ and 1 respectively.

[B;] DistributiveLaws: Each binary operation is distributive over the other, That is, for
any a, b, ¢ € B, at {b*c)=(ath) * (atc¢) and a* (b+c)=(a*b)} + (a*c)

[B;] Complements laws: For each a in B, there exists an element a in B such that a+a’ =
1 and a*a™=0



We sometimes denote a Boolean algebra by (B, +, *. ', 0, 1). The elements 0 and 1 are
called zero element (identity for +) and unit element (identity for *) of B respectively
whik: 2’ is called complement of a in B.

We will usually drop the symbol * between a and b and write a * b smmply as ab. Some
authors use the symbols v and A in place of the symbols + and * respectively and denote
the complement of an element a by the symbol ainstead ofa’,

We mention here that there exist other sets of axioms which can equally well define a
Boolean algebra, though, of course, each set i3 derivable from the other, Moreover, we
shall also give all alternative definition of a Bookan algebra in terms of an associated
partial ordering. The following example shows that the algebra of sets is a Boolean

algebra,

Example : Let S be an non-empty set and P(S) be the power set of S. then P(S) is a
Bookan algebra with respect to union and intersection as two bmary operations + and *
respectively and complement of a set with respect to 8 as unary operation’, ¢ and S will
act as 0 and 1 respectively.

Solution : We shall show that the power set P(S) of a non-empty set S forms a Boolean
algebra with respect to union and intersection as two binary operations + and *
respectively and complement of a subset A of S with respect to 8, ie, 8 — A as unary
operation’ on a.

1. Commutative laws : We know from set theory that

AUB=BNAand ANB=BNAY A, B eP(S)

Thus commutative laws are satisfied.

2. Identity laws: We know that ¢ and S belong to P(S) such that

AUd=A and ANS =A forany A € P(S).

Thus ¢ and S act as 0 and 1 respectively.

3. Distributive laws: From set theory, we know that

AUBNC)=(AUB) N{A U C) and

ANBNO=ANBUANC) foral A, B,C e P(8).

Hence both operations U and N distribute over each other.

4. Complement laws : Forany AeP(S), S — A € P(S) suchthat
AUS-A)=Sand AN(S—-A)=¢

Thus every element A in P(S) containg 2" elements, The case when S contains three
elements is considered in the following example.
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Example: Let S = {a, b, c}. Then P(S) = (¢, {a}, {b}, {c}, {a}, {b,c}, {8, ¢}, S} isa
boolean algebra in which +, * and ’ are taken as union U, intersection MNand complement
with respectto respectively with 0 =¢ and 1=S.

Solution: This i8 a particular case of example 5.1 above. Students are advised fo
reproduce the solution,

Example: Show that the set B = {0, 1} together with the operatons +, * and ’ defined by
the following tables is a Boolean algebra.

+ 0 1 % 0 1 ! 0 1
0 0 1 0 0 0 1 0
1 1 1 0 1

Solution: It 15 ckar from the tables that + and * are binary operations on B and that ' is a
unary operation on B, We show that all axioms fora Boolean algebra are satisfied.

1. Commutative laws: Since the table for + and * are symmetrical about main
diagonals, both operations are commutative,

2. Identity laws: It is clear from the tables that at0=aanda * 1 =a VaeB.
Thus O is the identity for +and 1 is the identity for*

3. Distributive laws: It is casy to verify that both + and * are distributive over each
other, That is, at(b*c) = (ath) * (atcland a* (bt+c)(a*b)H(a*c)Va, b, ¢ €B,

4. Complement laws: Given 0eB, there exists 1 €B such that 0+1=1 and 0*1=0 and
given 1B, we have 0B such that 1+0=1 and 1*0~0 Hence for every a in B, there

exists a'=0 Thus (B, +, ¥, ") is a Boolean algebra.
Example: kt B = {1, 2, 5, 7, 10, 14, 35, 70}. For any a, b in B defme +, * and ' as
follows: atb =Im (a, b), a*bh = ged (3, b) and a=@. Then it shows that B is a Boolean
a]gebranﬁhlaszemelementand?ﬁasmitelem&n’i
Solution: We shall construct the composition tables for +, ¥, and ’,

+ (1 2 5 7 10 14 35 70

1 |1 2 5 7 10 14 35 70
2 (2 2 10 14 10 14 70 70




10 (10 10 10 70 10 70 70 70
14 |14 14 70 14 70 14 70 70
35 |37 70 25 35 70 70 35 70
70 (70 70 70 70 70 70 70 70

2 (1 2 1 1 2 2 1 2
5 |11 5 1 5 1 5§ 3§
7111 1 7 1 7 7 17
w1 2 5 1 10 2 5 10
4 (1 2 1 7 2 14 7 14
35|11 1§ 7 §5 7 35 35
7 11 1 5 7 10 14 35 70

' 1 2 5 7 10 14 35 70

70 35 14 10 7 5 2 1

From the table we see that all the entries in the table are elements of the set B. Therefore
both + and * are binary operations on B and ' i3 a ynary operation on B

1. Commutative laws: Since the composition tables for + and * are symmetrical with
respect to main diagonals. Therefore operation + and * are commmutative,

2. Identity laws: From the composition tables we see that a+1 —a and a*70~ a VaeB.
Hence 1 and 70 are zero element and unit element of B, respectively.
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3. Distributive laws: With the help of the composition tabks for + and * it can be
verified that a+(b*c)=(atb)*(at+c)and a*(b+c)=(b+c)=(a*b+(b*c)Va,b,ceb.

Complement laws: For each aeB, there exist a'=ﬂ in b such that a+a=70 and a*a'=1,
a
Thus complement of every element in B exists m B. Hence B is a Boolean algebra.

3.4. Principle of Duality: Observe the symmetry of the axioms [B;] to [B,] in the
definition of a Boolan algebra b with respect to the two operations + an * and the two
identities ¢ and 1. For example, there are two complement laws and the second
complement law can be obtained from the first complement law buy interchanging + and
* and also interchange their identities 0 an 1. Because of this symmetry it follows that any
statement deducible from the axioms of a Bookan algebra remains valid if the operations
+ and * are interchanged and also their identities 0 and 1 are interchanged throughout.
The new statement so obtained (by interchanging + and * and also interchanging identies
0 and 1 in the given statement) is called dual of the given statement. Thus if a statement
or algebraic ientity holds in a Boolean algebra then its dual also holds, This result is
known as Principle of Duality. We state this result as a theorem.

Theorem 1: (Principle of Duality) and theorem of Boolean algebra remaing valid if +
is interchanged with * and 0 is interchanged with 1 throughout i the theorem,

In the following theorem, each part containg two dual statements, In view of Principle of
duality, it is sufficient to rove only one of them and the other will follow by the Principle
of duality. However to illustrate the nature of duality, we shall give proofs of both
statements in first part,

Theorem2: The following holds n a Boolean algebra B.

1. Idempotent laws:a+a=a anda*a=a VY ach

2. Boundednesslaws:a+1=1 and a*0=0 VaeB

3. Absorption laws: at+ {(a * b)=a and a*(atb)=a Va,beB

4. Associative laws:(at+bXc=aHb+c)and (a*b) *c=a*(b*c)Va, b,ceB

Proof, (1): We first showthat a + a=a VacB
we have a=al by B,

=ata*a byB,

=(a+a)* (ata) byB;

=(ata) ¥ 1 byB.

=a*a byB,. Hencea=a+a



Toshowa*a=a wewritc a=a*1 by B;

=a * (at+a") by B,
=a*ata*a by B,
=a¥*aH) by B,
=a¥*a byB, Thusa=a*a

Note that the step in the proofofa * a=a is dual to the steps in the proofofata=aand
the justification for cach stepsis the same law in a*a=aasina+ta=a.

(2) We shall only prove a+1 = 1. The other statement will be obtained by the principle of
duality. We have

l=a+a by B,
=ata’™1 by B, (' a™1 =a)
= (at+a)*(at1) by B; =1* (a+1) =at+l byB; Thusat1=1

Toprove a * 0 =0, by principle of duality, since a+ 1 =0 holds in a Boolean algebra,
therefore its dual a * (0 =0, also holds in the Boolean algebra by the principle of duality

(3) We first showthat a+a*b=a Va,b, B

wehave a=a*1 by B,

= a ¥ (1+b) by boundeness law, 1+b=1

=a*1+a*b byB, =ata*h byB; Thusata*b=a

To prove a*(a+b)= a, we use principle of duality. Since ata*b=a

Also holds in B by the principle of duality

Note: Students are advised to prove the result a * (a+b)=a without using the principle of
duality.

(4) To prove (a * b)* c =a * (b ¥ c), we first prove that a+(a*b)*c = a+a* (b *c) Va, b,c
€b. By absorption law, we have ata*(b*c)=a=a* (atc)

by absorption law = (at+a*b)*(a+tc)

Thus a+a*(b*c)=a+(a*b)*c by distributive laws canailll)
Next, we will show that a™+a* (b*c)= a+(b+c)*c

We have a+ax(b*c)=(a+a) * (a+tb*c) by distributive law
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=l *(@a'+b*c) bycomplement law
=a'+b*¢ byidentity law = (a"tb)*(a"c) by distributive law

= [1*(a"+b)] *(a"+¢) by identity law

= [(a'+a*b) * (a™+b)]*(+c) wa+ta=1

=(a+a*b)*(a'+c) by distributive law = a’+(a*b)*c by distributive law
Thus a'+a* (b*c)=a'+Ha@a*B*¢ ... (2)

Now, (a*b)*c=0+(a*b)*c=a*a' +(a* b)*cx

= [at{a* (a*D) *c]*[a"Ha*b)*c] by distributive law

= [at+a* (b*c)]*[a"ta*(b*c) by equations (1) and (2)
=a % a' + a* (b¥c) by distributive law
=0+a*(b*c)=a=*{b*c). This completes the proof.
Applying principle of duality on the result (a* b) * ¢ = a* (b*c)
We get (atb)te=at+(b+c)

In view ofthis results, we shall write botha * (b #c)and (a*b)*casa*b *and
similarly, we shall write both {a+b) + c and at+(b +c)as a +b+c.

Theorem3 : For each clement a in a Bookan algebra B, a’ is unique. In other words,
complement of an clement a in Bookan algebra B is unique.

Proof: Let a by any element in a Bookean algebra B. If possible, supposex and y be two
complements cam B. Thena+x=1,a*x=0anda+y=1,a*xy=0

now x=x*1 byidentity law

=x* (aty) by assumption

=X * a + x*y by distributive I= 0 + * y by assumption

=X * y by identity law =x*y+0 by identity law
=x*y+a*y  byassumption =(x+a) *y by distributive law
=1 * y by assumption =y by identity law

Thus complement of a is unique.



Theorem4 : For any element a in a Boolean algebra B, {(a")’ =a (this result is known as
involution law)

Proof: Since a’ is a complement of the element ae B, therefore ata'=1 and a*a’=0. But
this is exactly the condition to be satisfied for a to be complement of a’. Now by
uniquencss of the complement, we have (a’)=a

TheoremS5 : In any Boolean algebra, 0’ =1and 1'=0.
Proof: By theorem 2, we have 1+0=1and 1 »0=0
=>0=1land 1'= 0,
Theorem: The following are equivalent in a Boolean algebra B
(I)a+b=b (2) a*p=a (3) a’+b=1(4) a*b=0
Proof: (1) =(2) By absorption law, wehave a=a+a*b=(a+a)*(a+b)
=a*(a+b)=a+b
(2) = (1) Supposethata * b=a. To showatb=b,
We have a+ b =a*btb by assumption a = a*b
=b+a*b by commutative law =b by abscrmption law
We now show (1) and (3) are equivalent.
(1) = (3) Suppose(1) holds. Then

at+b=a"+(@+b) by(l),a+b=D>b
=(a'ta) +b Dbyassociative bw =1+ b bycomplement law
=1l by theorem (2)
(3) = (1) Supposethat a+ b= 1. Toshowatb=b.
Wehave, a+b=1=*(ath) by identity law
= (a'+a) * (atb) by assumption
=a'*ath by distributive law
=0+b by complement law

=b by identity law
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Thus (1) and (3) are equivalent.

Finally we show that (3) and (4) are equivalent.

(3) = (4). Supposethata’ +b=1. Toshowa*b' =0

Wehave 0=1'=(a"+b) =(ax) =b’ by De Morgain’s law

=a#+b' by involution law
Thus (3) = (@)
Supposethat axb’=0. Toshowa' +b=1
Wehave 1=0"=(*b" by assumption
=a' +(b") by De Morgain’s law
=a'+b

Thus (3) and (4) are equivalent. Consequently, all four are equivalent.

3.5. Subalgebra

Definition: Let (B, +, *,’, 0, 1) be a Bookan algebra. A non-empty subsetS of B is said
to be a sub algebra (or a sub Boolean algebra) if S itself is a Boolean algebra with respect
to the operation +, *# and ' of B.

From the definition, it i5 clear that for any Bookan algebra B, the subsets {0, 1}
containing identities of + and * and the set B are both sub algebras of B. Observe that the
ientities of + and * namely 0 and 1 must belong to every subalgebra. Forif S is a
subalgebra of a Boolean algebra B and ae 8 then by complement laws, a'eS and thus
botha+a'=1 and a* a’' =0 belong to 8.

Theorem 1 : A non-empty subset S of a Boolean algebra B is subalgebra of B if and only
if S is closed under the three operations of B, ie., +, *and .

Proof: Suppose that S is sub-algebra of a Boolean algebra B. Then S itself is a Boolean
algebra under the three operations +, * and ’ defined on B. Hence 8 is closed under the
three operations. Thus a, beS=>atbeSand a’'eS

Conversely, supposeS is closed under the operations +, * and ' of B. That is,
a, beS = ath, a*b and a'eS. To show S is a sub-algebra of B,

First of all, we show that both 0 and 1 are in 5. Since S is non-empty supposeaeS. We
have aeS = a'eS by assumption § is closed under’

Now acS and 2= a + 2’8 and a*a’'eS because S is closed under + and +./
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=> 18 and 0e8§. Thus both identities 0 and 1 are in S,
Now we show that all the four axions [B,] to [B,] are satisfied for S.

1. Commutative law: Let a, be S then a, beB and therefore atb=b+aand a*b=b*a
2. Identity laws : Forany a8, we have 0 and 1&8, such that a+0~=a and a* 1=a,
Vae$

3. Distributive laws : Since operations + and * are distributive over each other for
elements of B, therefore they must also distributive over each other for all elements
of S.
4, Complementlaws : Let aeS. Then by assumption, a’'e S such that ata’' =1 and a=
a' = 0. Hence § itself is a Boolean algebra under the operations of B. Thus Sis a
subalgebra of B.
Example: The subset S = (¢, {a}, {b.c}, {ab,c}} of the Bookan algebra B = {¢, {a},
{b}, {c}, {a, b}, {a, c}, {b, ¢}, {a, be}} which respect to union intersection and
complementation of sets is a sub-algebra of B,
Example: Consider the Boolean algebra B={1,2,5,7,10,14,35,70} discissed in Example
54 0f 5.1ThenS={1,7, 70} is a subalgebra of B,
Example: Let B be any Boolean algebra and aeB such that a=1. Then the subset S = {a,
2, 0, 1} & sub-algebra of B.
Solution: We have to show that S is closed with respect to the operations +, * and ' of B.
We know that ata=a, a*a, at1=1 and a*0=0, VaeB.

we construct composition tables for +, * and ' for the element of S.

+ a a 0 1 « (a8 a 0 1 ' la a 0 1
a a 1 A 1 a |a 0 0 a a a 1 0
2 |1 a a 1 a ([0 o 0 2
0 jla a 0 1 0 (0 0 0 O
111 1 1 1 1 (a o 0 1

Since all entries in the tables are element of S, therefore S is closed with respectto
operation +, * and ’.

Theorem 2: A non-empty subset S of a Boolean algebra (B, +, *, ' 0, 1) is a sub-algebra
of B, if and only if S is closed with respect to operations + and’.



Proof: If S is sub-algebra of (B, +, #,’, 0, 1) then § is closed with respect to operations +
and * and’ by theorem 1. Therefore S is closed with respect to operation + and ”.

Conversely, suppose S is closed with respect to operations + and’. To show that S is a
sub-algebra, we need to show that S is also closed with respect fo *. That is, we must
show a, beSl.

abel =a,bel 8 15 closed w. r. to operation’.
=a +b'es '+ S is closed w.r. to operation +.
=(@4b") = (@)Y* (b"Y =a*b. Thusa*b €8,

Hence S is closed w.r. to * also. Thus S is a subalgebra.

Theorem 3: If S; and S, are two subalgebras of a Boolean algebra B then S1NS; is also
a subalgebra of B.

Proof: Let 8, and S, be any two subalgebra of a Boolean algebra B. We show that
S:MN8; is closed with respect to the operations +, * and ' of B (although in view of
theorem 2, we need to show only for +and ).

Clearly S;NS; is non-empty because 0, 1eS,N8S,. Let a, beS;NS, . We have a,
beS;N8;=>a,beand a, bes,

Now, a, be S,and S, is subalgebra=a+be S8,a*b e S, and a'e S, similarly. a*be
S;NS;anda+be SzﬁﬁbESjﬂSg.SiﬂﬁhﬂY, a*be8:NS;anda’'eSNS,.

Thus S:MN8S; i3 a subalgebra of B,
3.6. Isomorphic Boolean Algebras

Definition: Two Boolean algebras B and B'and saxl fo be isomorphic it there exists a
bijective mapping f from B onto B such that

f(a+b) = f{a) + f(b), a*b)= f{a) * fb) and fz) = [(a)]' for all elements a, b of B.

In other words, two Boolean algebra’s are said to be isomorphic if there exists a one-one,
onto mapping £ B — B—> which preserves that there operations in B and B'.

Note: In the above definition, we have used same symbols for operations in B and B'. If
necessary, the students can use different symbolks to denote the operations in B and B'.




If two Boolean algebras are isomorphic then they must have the same cardinality. If
Boolean algebras B and B’ are isomorphic and one of them, say B, is finite then the
Boolean algebra B’ must also be finite having the same mumber of elements as B,

Example: Let B = {0, 1} and operationis +, * and ' are defined on B as follows

+|o 1 «|0 1 rlo 1
0l0 1 oo 0 1o
111 1{0 1

Then B i a Boolean algebra, Also, consider the set B' = {a, b} together with the
operations ++, *" and — as follows

+la b ala b -la b

alab ala a b a

bla b bla b

Then B' is also a Boolean algebra. The function f: B — B’ defined as f{0) = a and §10=
b i3 abijective mapping which preserves the three operations. Hence Boclean algehras B
and B’ are isomorphic to each other.

Example : Consider Boolean algebra B of power set of {a, b, ¢} discussed in Example
5.2 and the Boolean algebra B'= {1, 2, 5, 7, 14, 35, 70}. B and B’ are isomorphic, In fact,
the mapping f: B —B' defined by

f(9) = 1, f({a})= 2, f{{b}) = 5, f{{c})=7, f({a, b})F10, {({a, c}) =14, f{{b, c})=35 and
f{{a, b, ¢})F70 15 bijective mapping which preserves the three operations. Hence Boolean
algebras b and B’ are isomorphic.

Theorem 4 : Let Boolean algebras B and B’ be ismorphic and let f: B>B' be the
isomorphic mappmg, then

@ IfOis the identity for +in B then f{0) is the identity for + in B.
@) If1is the identity for * in B then (1) is the identity for* in B.

Proof: {i) Let 0 be the identity for +in B and 0* be the identity for+ in g’. Then
fl0)=fa*a") a*xg=0VaeB.
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=f{a) * f{a"} -+ fis somorphic mapping
=fa) * [{a)]’ «» fis somorphic mapping
=0"  bycomplement law. Hence 0" =R0)

(i) Let 1 and 1* be the unit elements in B and B’. Then f{1) = f{a+a’)
ata' =1

= f{a) * f{a") -+ f 18 isomorphic mapping
= f{a) + [f{a)] -+ Tis isomorphic mapping
=1" by complement law, Thus 1°=R1)
Solved Examples
Example: Prove that no Boolkean algebra can have three distinct elements.

Solution: Let B be a Bookan algebra having three elements. Then B mmst have two
distinct elements 0 and 1 as identities ofr the operations + and * respectively. Let a b the
third element of B. Since B in a Boolean algebra, there exists an element a’ in B such that
at+a'=landa*=0

Now there are three cases : (i) a’ =(ii) 2’ = 0 (i) a' =1
Case(i) fa=athenata’'=1=at+ta=1=2a=1
Anda*a'=0=>a*a=0=a=0. Butais different from Q¢ and 1.

Therefore a’' = a is not possible. Case (i) if a' = 0. Thena+a' 1 =>a+0=1=>a=1But
a 18 not equal to 1. Hence a’ =0 is not possible.

Case(iil) fa’'=1. Thena* a'=0=a* 1=0=>a=0

Thus a'# 1 becanse a is not equal to 0.

Therefore B either has only two elements 0 and 1, or B has four elements because if there
18 an ekement a m B different from 0 and 1, then B mmst have another clement f different
from 0, 1 and a, Hence no Booleam algebra can have exactly three elements,

Example: Prove that for any, a, b and ¢ in a Boolean algebra the following are equal. (a)
(atb)(@+c)(b+c)(b)ac+ab+bec {(c)(a+b)(a+c) (dac+a'b

Solation: We have (a+b) (a+c) (b+ec)=(atv) (ab+c) bydistributive law
=a(a'b+c)+b{a’b+c) by distributive law
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=aa'b+ac+ba’btbe by distributive law
=(aa)b+ac+a'bb+be by commutative and associative law
=0b + ac + ab+be aa’ =0 and bb=b =ac+a'bt+be » 0b=0
Thus (a) and (b) are equal
Now we show that (¢} is equal to (b).
(atb) (a'+c) =a (a+c) +b (a™+c) by distributive law
=aa’ +act+ba'tbc by distributive law
=0+ac+ab+be by commutative and complement law
Thus (b) is equal to (c)
Finally, we show that (b) is equal to (d)
ac+a’b+bc=ac +a'b + (a+a’) be wata=l]
= ac+a'btabct+abe by distributive law
= (actabe)yt{(ab+a’be) by associative and commutative law
= (acHac)Ha'b+{a'b)c by associative and commutative law
=ac+ab by absorption law. Hence (b) and (d) are equal
Thus all the four are equal
Example: In any Boolean algebra, show that

(1}{(atb) (b+c) (cta)=ab +bc+ca

(2)(at+b’) (b+c’) (c+a'}= (a*+b) (b™+c) (c™+a)
Solution (1) L.H.5= (a+b) (b+c) (c+a)

= (a+b) [(b+c) (c+a)] by associative law

= (at+b) [(ctb) (c+a)] by commutative law

= (atb) [c+ba] by distributive law

= a(ct+ba) + b{ctba) by distributive law

=ac+ aba+bc+bba by distributive and associative laws

= ac + (aa) b+bc+9bb)a by commutative and associative law ~ aa=a
=ac+ab=bctha by associative and commutative laws

= ab+bctac
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R.H.8. (2) (2tb") (b+c’) (c+2") = [(atb’) (b+c’) J(c+a’)

={(atb’) bHatb)e'|(c+a)) = (ab + b'btac™tbe) (c+a))

= (ab+0Hac'+b'c”) (¢+a’) = (ab + ac™+b'c") (c+a”)

=(ab + actb'c") cH{abtac'+b'c)a'=abctac’c+b'c’ctaba’+ac'ath'c'a’

= abe+H0HH-0HHD'c'a’ = abe + a'b'c’

Similarly, we can show that (a+b) (b™+c)(¢"+a) = abe +a'b'c’

Hence we have (a+b’) (b+c"){c+a’) = (a'+b) (b'+c) (c™+a)

Example: in a Boolean algebra, if a + x=b +x and a + X' =b+x’ then provethat a=b
Solution: We are given thata+x=b+x ...(1)

and a+x'=b+x e (2)
nowa=a+{0 by identity law

=a+xx' vxx'=0

= (at+x) (at+x"} by distributive law

=(b+x) (b +x) by (1} and (2)

=b+xx’ by distributive law

=b+0, +xx'=0-=b by identity law

Example: In anyBoolean algebra, prove that b = ¢ if and only of both at+b = atc and ab=
ac holds,

Proof: If b=c then we have a+b=a+ ¢ and ab = ac both hold
Now we show that atb=atcand ab=ac = b=c¢

b=>b (b+a) by absorption law
=b{c+a) « atb=atc=bta=cta
=bc+ba by distributive law
=bc+ab by commutative law
=bc+ac by given conditiom
=(b+a) by distributive law
=(cta)c =>bta=cta=c by absorption law



Check your progress
1. Write the dual of each of the following

@) (2*1)*(0 +a) =0, (b)a+ab=a+b
2. Show that the set B= {0, a, b, 1} together with the operation v, and ' defined by

v|i0abl Al0 ab 1 :
00 ab 1 ojoooo  0fI
ajlaall al0 a 0 a alb
b(b1b1 b0 O b b bla
1{1 111 1|10 abl 110

is a Boolean algebra.

3. Showthat algebra of sets s a Boolean algebra with respectto suitable operations.

4, Show that a non-empty subset S of a Boolean algebra is a sub algebra if it s closed
under * and ',

5. Showthat a mapping f from a Boolean algebra B to another Bookean algebra B
which preserves the operations + and " also preserves the operation =,

6. Ifaandb are element of a Boolean algebra B then show that &=b if and only if ab’ +
ab=0

7. prove that in any Boolean algebra (a) ata’b =atb
(b) if ax =bx and ax’ bx' then a=b, (c)ab+ab+ab+ab'=1

8. Let B, be the set of n-tuples of'the form (a;, as,.....a;) where each a; is either 0 or 1.
Define suitable operations on B, so that it becomes a Boolean algebra,

[I—Iind s Define (alsa?.: w ":an)+ (b 1 :bZ: """" bn)= (al :bZ: 32:"‘}1'2:- SRLL an:bn): (als 42,.- 'an) *
(a]_,hz,. . -bn) = (al, bz, a3 ,hz. iy a‘n:bn) and (ﬂ-l,ﬂ.z ....... ,a.n)'=(a'1, a’z,. . ...ﬂ.’n)].

Solutions/ Answer
(1) (a) (@+0) + (1+2=1 (b)a(a™+b) =ab



3.7. Boolean Algebra as Lattices

Definition : Let B a Boolean algebra and a, be B, Then a<b if and only if atb=b.
Proof: We know that ab'=0 i8 equivalent to at+b=b, Thus a<b if and only if atb="b

Theorem2: Let B be 2 Boolean algebra, Then the relation < defined as a <b if and only
if ab’ =0 is a partial order onB.

Proof: < is reflexive, Since aa=0 therefore a<a forall ae B

<1 anti symmetric, Let a, beb such that

a<h and b<a. Then ab’=0 and ba'=0

Nowa=al=a(bth’)=ab +ab’'=ab+0 =ab +ba’'=ba +ba’'=b{ata)=b.1=b
Thus < is anti symmetric

< 15 fransitive. Suppose that a<b and b<c. Then ab’=0 and be'=0.

Now ac’=a.l.c'=a(b+b'x’ =(ab + ab"x’ =a{bc”) + (ab")’

= a.0+0.¢’ = (H0=). Hence a<c. Thus <5 a partial order on B.

Theorem 3: Let B be a Boolean algebra. Then (B, <) where <is defined asa<b if and
only if ab’ = 0, is a lattice. Moreover the identities 0 and 1 arc the keast and the greastest
elements of this lattice.

Proof: We have already shown that (B, <) is a partial ordered set. To showthat (B, <) i5 a
lattice, we will show that for any elements a, beB,jom ofa and b is at+b and meet of a
and b is ab. That is, we will show that

Sup {a,b} =av b=a+band inf {a, b} =arb=ab Va, beB
Since a (at+b)’ =a(ah’) = (aab'=0b'=0, a<a+b

Similarly, b<a+b

a<a+band b<a+b= a+bis an upper bound of the set {a, b}.
Let ¢ be any other upper bound of {a, b}. Then a<cand b<c¢

= ac'=0and be'=0=>ac’ +be'=0

=>@+b)c'=0=a+b<c



Thus a + b is the least upper bound of the set {a, b}, which by definition, in the joint ofa
abd be denoted by a v b, Similarly we can show (or by duality) that ab is the infirom of
{a, b}. Thus inf {a, b} =a Ab=ab,

Hence B is a lattice where + and ' are join and meet operations,

Finally, if acB then 0 a™=0 and hence 0<a. This shows that 0 is the least element of B.
Similarly a. 1' = a0 =0 for all acB implies that a<1 forall acB. Thus 1 is the greatest
element of B, Thus B is bounded lattice,

Theoremd: Let (B, +, ., ') be a Boolean algebra, Then the lattice (B v, A), where av=a+
b and aab = ab is bounded, complemented and distributive. Conversely, if (B, v,A)is a
bounded, compkmented and distributive Iattice then (B, +, ., /) is a Bookan algebra,
where atb =a avb, ab=a Ab and a' is a complement of a in (B, v, A).

Proof: Let (B, +, ., ") be a Boolean algebra. Then (B, v, A) is 2 bounded lattice. Since v
and A are precisely + and respectively, axioms B, and B, in definition ofa Boolean
algebra show that (B, v, A) is also distributive and complemented.

Conversely suppose (B, v, A) is bounded, complemented and distributive lattice with 0
and 1 as the least and the greatest ekements. Fora, beB, define

a+b=avband a.b=aaAb

Then the bmary operation + and . are commutative with 0 and 1 as their dentities. The
distributive laws follow from the defnition of a distributive lattice. Thus the axioms B,
to B; mn the defmitions for a Boolean algebra are verified. Since (b, v, A) 5 a
complemented lattice, we can find a complement of each aeB. We denote this
complement of a by a'. Now we have ata’=1and aa’ =0

Thus axiom By is also satisfied, Thus (B, +,., ") is a Boolean algebra,

Remark: Many authors define a Bookan algebra as a bounded, complemented and
distributive lattice, The preceding theorem shows that the definition 8 equivalent to ours,

3.8. Representation Theorem for Fimite Boolean Algebras

The partial order structure induced on the set B of a Boolean algebra (B, +, ., 7} also
enables us to prove the representation theorem for finite Boolean algebras. By a finite
Boolean algebra we mean a Boolean algebra with a finite number of elements. We shall
show that a finite Boolean algebra has exactly 2° elements for some n>0. Moreover, there
is a unique Boolean algebra of 2° elements for every n>0.
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Let (B, +, ., ") be a Boolean algebra. (Then (B, <) is lattice, whete a <b if and only if ab’
= (). We recall that an element a in B & an atom if it covers . In other words, an elements
ain B is called an atom if 0 < a and there is no element b in B suchthat 0 <bandb< a
For example, atoms of a power set Boolean algebra P(8), are precisely smgleton subsets
of 8. As another example, consider the Bookan algebra B= {1, 2, §, 7, 10, 14, 35, 70} of
factors of 70 under the operations lcm (for +) and ged (for.) The atoms of this Bookan
algebra are precisely 2, 5 and 7,

In the following lemma, we give some simple properties about atoms in a fimite Bookan
algebra.

Lemma: Let (B, +, ., ") bea finite Boolean algebra. Then

(i) Forevery noon-zero element b, there exists atleast one atom a such that a<b,

(i) Ifaandb are distinct actms then ab=10

(iii) Ifb is any non-zero element in B and a,, a,, a,...., a4 be all atoms of B such
that a,< b,=1... k, then b = a,+a;+.._.+a, and this representation in unique.

Proof: (i} Let (B, +, ., ') be a {inite Boolean algebra with 0 as the least element. Let b be
any non-zero element of B. We shall show that there exists atleast one atoms a in B such
that a<bh. If b itself & an atom then we have nothing to do. If b 8 not an atom then there
exists b, in B such that 0 <b, <b, If b, is an atom, we are done. Otherwise there exists b,
in B such that 0 < b,< by<b. Continuing n this manner, since B is finite, there exists and
atom b; for some 1 such that 0 < b;< .....by<b<b. It follows that for every non-zero
element b, there exists atleast one atom a suchthata <b.

(ii) Let a and be two distinct aotms of B. If ab # 0 then b (i), there exists an atom ¢ such
that c<ab. Note ab = a Ab = inf {a, b} Therefore ¢ < ab £ a. Since a ifself is an atom it
follows that a = ¢. Similarly b = c. Hence a = b. In other words, if a and b are distinct
atoms then ab= 0.

(i) Let a,, a3, ...., 8, be distinct atoms of B such that a,<b, a,<b,...,a,<b
we claim that b=a,+a,+.. .+a;

since ai<bforeachi=1,2,...,.k = sup {a;, a5,.... Ax}<b
=>a;ta;+... +a,<b. Wenowshowthatb<a;+a,+...+a;

for notational convenience , let ¢ =a,+a,t+....a,.

To show b<c, we shal show bc’=0. b < ¢ will follow by (1). If possible, suppose bc’=0.
Then by (i), there exists an atom a such that a<bc’

Since be'<b and be'c’ by transitive property of <, we have a <b and a<c’
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since a i8 an atom and a < b, therefore a must be equal t one of the atoms a,, a,,..., 2, .
Thus a €a,+a,+....+a,=c¢

Nowa<c'anda<c =2 a<cAac =cc’=0=a=0, which is impossiblke because a is an
atom. Thus be’ =0 which implies b<cby ()

Nowb<¢,c<band <is antisymmetric give b=c=a,+a,+...a,

Uniqueness : supposeb=b; +b,+ .... b,, where each b;is an atom and b;# b; be another
representation of b.

= b;< b for each I, because b is the supremum ofb,, bs,..... b,

Now consider an atom b;, i €i< 1. Since b;<b, we have inf{b;, b} =b;
=>bib=b; 1 €i<r

= bi(a, +a; +...ta)=b; v at agt... ,=b
=b;a;+b;at....bja=b; by distnbutive law

= forsomea;, 1 £j<k b;jaz0 =>b;=3 by (i)

This shows that every b; is equal to some a; and hence representation of b as um of atoms
is unique (except for order),

Corollary: (B, +, ....,", 0, 1} be a Boolean algebra, Then sum of all atoms in B equal 1.
Now we state and prove representation theorem for finite boolan algebras.

Theorem: ket (B, +, ., * ) be a finite Boolean aogebra. Let S be the set of atoms of b.
Then (B, +, ., "0 is isomorphic to the Boolkan algebra (P(S), U, N-) of power set of S.

Proof: Let (B, +, ., ' ) be a finite Boolean algebra and ket S = {a,, a,,...., a,} be the set of
all distinct atoms of B. By the last lemma, every element x # ( has a unique
representation as a sum of atoms. That is,

X =a,+a, +...+a,, where a;, s arc atoms f{0) =¢ and fix) = { a,, 2,, ..... 8;) where
x= a;+a; T ....Ta, is the unique representation of x as a sum of atoms.

Supposex, y are any two elements in B, suppose

xX=a;ta,t+....ta, +b;+b,+....+bg

and y=b;+b,t.... b tcitet+ .

where each a;, 1 €i<1, b;, 1<j <s and ¢, 1<k <t are atoms of B.
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Then xty=a;+a;+....4ta,+b;j+b;+ ... b+ c;teyt..4¢

And xy=b;+b,+...+b,

Because if a; and a; are distinct atoms then a; a,= 0 and
ata=aandaa=aforanya e B,

Hence fix+y) = {a;, a5,.....,8;, b1, b2 by €1, €2 .G}
={a,8,.8,b,by.... b} U{by,b;s....b,cpc5.....c1} =Rxy) = {b1, b ....b;}
= {a;, 22y, 8p, by, baycn B N{ by, b by, €00 6} =8X) N £(3)

Let S - {a,, 8,,..a,, by, by,..... b }={d}, ds,..d; }

We claim z = d,, dj,.. d, is the complement of x. For this, we shall show x+z=1and xz
=0, Clearly, x + z=2a,+ a+.... a7t bj+by+..... bHdy+ dyt..... d, is the sum of all atoms
of B. Therefore, x + z=1. Also xz = 0 because a;a; =0 for distinct atoms a; and a;. Hence
z=x

Now ﬂX') = {dl, dg,....,dp} =8- {al, - T TR bl, bz,....,b,} =8 - ﬂX) cump]ﬂment of
f{x) Further, by uniquenss of the representation, we see that f is one and omto.

(To show f in one-one, consider X, y € B such that x # v, we can write
x=a,+a,t....7a,, and y=b,,b;,....,b, as sums of atoms
xXzy=>atayt...agzb, by, b= {atat..ay )= {by,by,... b }

=f{x) # fy). Thus f in one-one

To show that fis onto, ket {a,+a,+....a,} be any subset of S, then x = a;+ a,+....a,
is a unique element in B and fi(x) = { a,+ a,+....a,}. Hence fis onto.

Hence f is an isomorphism. Thus Boolean algebra (B, +, ., ) and (P (8), U,N,-)are
isomorphic to each other.

Corollary: Every finite Boolean algebra has 2" elements for some positive integer n.

Proof: Since, by above theorem, ¢very finite Boolean algebra B is isomorphic to power
set Boolean algebra P(S) and power set P(S) has 2° elements, where n is the rumber of
elements in 8, the set of atoms of B. Hence B has 2" elements for some n>0.

Example : Consider the Boolean algebra B= {1, 2, 5, 7, 10, 14, 35, 70} with + +, . and '
defined as follows: a+b=Icm (a, b), ab = ged (a, b) and a’ = 70/a.
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In this Boolean algebra, atoms are 2, 5 and 7 and B is isomorphic to the Boolean algebra
(P(S)! U'.- n: = ): Whm S = {2,5,7}.

Example : in any Boolean algebra B, showthata<b—=a+bc==b(a+c), where a, b,
¢ €B.

Proof: Wehave a+b=a(b+b}b

=ab+ab’'+b by distributive law
—ab+0+h va<beab =0
=ab+b by identity law

=b byabsomption. Therefore, at+ bc={(a+b}{a+c) by distributive law

=b{atc) in view of the result just proved.

Example : Show that the lattice whose Hasse diagram is given below is not a Boolean
algebra.

Solution: Observe that elements a and e are both complements of ¢. But theorem says
that such an ekment is unique. Thus given lattice cannot be a Boolean algebra.

Example : Consider the lattice {1, 2, 4, 5, 10, 20} of all positive divisors of 20 under the
divisibility relation.Then this lattice canmot be a Boolkan algebra because it has six
elements and 6+2° for any integer n > 0. Thus we conclnde that divisors of 20 is not a
Boolean algebra,

3.9. Boolean Functions

Let (B, +, 1, ) be a Boolean algebra. By a constant, we shall mean any symbol, such as
and 1, which represents a specified element of B. By a variable, we mean a symbol,
which represents an arbitrary element of B.

A Booksan function or a Boolean polynomial & an expression derived from a finite
mumber of applications of the operations +, -, and ' to the elements of a Boolean algebra.
Expression suwch as ab, (a' + b) + ab’x + ab, and a™+b’ are Boolean functions. In any
Boolean algebra, we know that 2a=a+a=a 3a=a+ a+ a=aand in general na = a
where 1 s any positive integer.

Also #=a.a=a 2=3.a. a=aandh1gencralak=a,wherek'n any positive integer.
Thus no multiples or powers appear in the Boolean polynomials.

Definition: A Boolean ¢xpression of n variabks x,, X,.... X, is said to be a mintermora
minimal polynomial if it is of the form f;(x;) f:(x;) - fa{xs3) ..... (X))

where fi(x;)=x;orxy'foralli=1,2,...n
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for example X,.X;.X,". X;, X;. X, are min-terms in two variables x; and x,. Similarly
X1X3'X; and X, " X," is an example of minterms in three variabks x,,X; and X,.

Theorem 1: There are exactly 2" minterms m variables x;,X, .... X, an expression of
the form f,(x,) f2(x2) ...., f{x,), where each fi(x;) =x; orxy’ forall i=1,...... il

clearly, there are two ways of selecting fi(x;) namely x; or x;’ for eachi= 1, ....,n. This
there are 2" different minterms in n variables.

3.10. Disjunctive Normal Form

Definition: A Boolean function in n variables x,, x,,....., X,, is said to be n disjunctive
normal form (in short, D N form) if i is a sum of minterms. Also 1 and ( are said o be in
disjuncive normal form.

In other words, a Boolean function in n variables x,, x3, ....,X, is sail to be in disjunctive
normal form if the function is a sum of terms of the type f(x;) fr(X2) fi(x3) fa(x4)
f5(xs). ... fu(x,) where fi(x;) = x; or X’; for all j=1, 2,....n and no two terms are same.
Also 1 and 0 are said to be n disjunctive normal from.

The disjunctive normal form is also called the (sum of products canonical form).

Observe that in a disjunctive normal form (sum of products canonical form) any
particular minterm may or may not be present, Since there are 2° minterms in n variables,
we can have only 22different DN forms. These DN forms include the DN form of 0 in
Whlchnnmntermmpresenlmthe sum and also the DN form of 1 where all the minterms

are present in the sum, In any case, every Boolean fimetion given in DN form in n
variables is equal to one of the 2** Boolean functions.

Example ;: Write the function f=(xy' + zx)' + x’ n DN form.

Solution: We have f= (xy' + xz)’' +x' = (xy)'(xz) +x' = (x"+y) x*+2Hx' = x+yz'+x’ =
X + (K Hyd)yr= Xyty)et) R ()

=XYZ tX YZIXYZXyZ+x'yz' =Xz +XyztXyZtxyztxy'z
= xyztxyz+x'vz4+x'y'z+x'y'z’, because the minterm x'y'z" is appearing twice.

Example : Write the Boolean function f — x;+x; in sum of products canonical form in
three variables x4,X, and x;.

Solution: We have = x,+%, = X; (X, X3} (X3+ X'3) Xa HX;+ X)) (X531 X'3)
=X1X»t X1 Xy I'3+ X X X X'z K'3+ XXy X3t X; X» X'3+ Ir]_ X2 X3 +K'1 X2 K'g,
=X Xz X3+ X X3 X3+ X; X'z X'3+ X'} X3 X3+ X1 X3 X5
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Complete Disjunctive Normal Form

As seen earlier, if there are n variables, then the total number of minterms will be 2"
Therefore any DN form can have at most 2" minterms.

Definition : A disjunctive normal form in n variables, which containg all the 2n minterms
is called the complete disjunctive normal form. For example, f = xy + X'y + xy'tx'y' s
the complete disjunctive normal form in two variables. It can be seen by smplification of
the complete disjunctive normal form or by the following theorem that the complete
disjunctive normal form is identically equal to 1.

Theorem 2 : If cach of n variables is assigned the value 0 or 1 in an arbitrary, but fixed

mamner then exactly one minterm of the compkte disjunctive normal form in the n
vanables will have the value 1 and all other minterms will have the value 0.

Proof: Consider the complete digjunctive normal form in n variables x;, x5,....,X,. Then
it has all the 2" minterms of the form f,(x,) £(X,).... fi(x,) where f;(X;}=x; or x'; for each
i=1, 2, ...., n. Now assign the values 0 or 1 to the variables x;, x;,....X,. Select a
minterm from the complete normal form as follows: use x; if x; is assigned the value 1
and use x';if x; is assigned the value O for each x;, =1, 2, ..., n. The term so selected is
then a product of n ones and hence 15 equal to 1. All other terms in the complete normal
form will contain at least one factor 0 and hence will be 0.

Corollary 1 : To functions with same minterms are obviously equal Conversely, if two
functions are equal, then they must have same value for every choice of value for each
variable. In particular, they assume the same value for each set of values 0 and 1, which
may be assigned to the variables. By theorem 2 above, the combmations of values of 0
and 1 which, when asgigned to the variables, make the function assume the value 1
uniquely determine the terms which are present in the DN from for the function. Hence,
both DN forms contam the same min-terms.

Corollary 2 : To establish any identity in Boolean algebra, it is sufficient to check the
value of each function (on both sides of the identity) for all combination of 0 and 1,
which may be assigned to the variables.

We have seen in the preceding theorems that a Boolean function is completely
determined by the value it take for each possible assignment of 0 and 1 to the respective
variables. This suggests that Boolean functions could be easily specified by giving a table
to represent such properties. If such a table has been given, then the function, in
disjunctive normal form, may be written down by mspection. We simply look at the
conditions where the function takes the value 1 then the sum of corresponding minterms
(where function takes the valuel) gives the function, although the function so obtained
may not be in simplest form. The following example will explain this method.
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Example : Find and simplify the function specified by the tabk as given.
Row X y z fxy2)
1 1 1 1 0

2 1 1 0 1
3 1 0 1 0
4 1 0 0 1
5 0 1 1 0
6 0 1 0 0
7 0 0 1 0

Solution : We observe that function £x, y, z) takes the value 1 for the normal form of f
will contain two minterms each corresponding to the conditions given in rows 2 and 4. In
row 2, the values of x, y, z are given respectively as 1, 1, 0 and so the corresponding
minterm will be xyz'. Similarly the other minterm will be xy'z’ which is taken with
respect to row 4. Thus the function f{x,y,z) =xyz' +xy'Z.

We now simplify f{x, y, z) b using laws of Boolean algebra . fix, v, Z)=y2z' (y + ¥) =
xz'. It may be verified that this function satisfies all the other rows also.

Rule for finding complement of a function in DN form

We can find by inspection the complement of any function given in digjunctive normal
form. If a fimction f i given in disjunctive normal from then its complement f i
obtained by omitting from the complete disjunctive normal form the terms which appear
in the function .

Example : Find the complement of the following finctions —

(2) f=ab =ab’
(b) f=a'be + abe’ +a'b'c+a’b'e’

Therefore the complement of f=ah + ab’ is given by £ =ab +a'h’
(b) The complete disjunctive normal form in three variables a, b, ¢ is
abc+abe’+ab'c+ab'e+a'beta'be’+Habe+a'b'c+ab'e’
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Therefore the complement of f=a'bc + abe' + a'b'c + a'b’c’ is given by
f =abc+ab'c +ab'c +a' be’

Example: Find the fimction of three variables x, y and z which is I if either x=y=1 and
70 orif x=z=1 and y =0 and is { otherwise,

Solution: By given conditions, the required function takes the value 1 at two points
namely when x =1, y= 1, z= 0 and when x = 1, y =0 = 1, The corresponding minterms
are xyz' and xy'z. Hence the required function f DN form is equal to sum of these two

terms, ie. f=xyz+txy'z
Example: Express each of the following in DN from in the smallest possible number of
variabks
) xy+xztxy
() (+xyzZ+xyzZtxyz'tit)’
Solution: () Let f =xy+xztxy =xy+xytxz by commmtative law
=x(y+y) txz  bydistrbutive law =x+xz bycomplement law
=x by absorption law. Now f ¢containg only one variable, Hence f=x
is its disjunctive normal form in smallest possibke variables.
(i) Let f= [x'y+xy'+xy'z+x'y'z't+H']’
we first consider the expression without complement, ie, x'yHxyz+xy'z+x'y"z't+t'
and express it in disjunctive normal form in four variabks x, y, z and t.
Now x'y+xyz+x'y'z'tH*= x'v(z+z") (t+") +xyz' (H)xy'z
(HH) + XY ZHEHX) (YY) (2+2) =Xy (22t +2't+) +xyz (H)H
xy'z (tH Y x"2'tH (zyz vz xy 'z xy 2 Xy 'z X vz Xy 274Xy 'z
Using the law ata=a, we ge
= XyZHXYZ R Y2t X yZ U XYz HXYZ Uy 2t X Yzt XYzt
x'yzt'+ x'y'zt'+ xy'Zt'+x'y'Zt". Which contains 13 terms.

Now writng the missing terms from the complete DN form, we get the required function
(which is complement ofthis finction) as f = xyzt+x'v'zt+xy'z't

in DN form in three variables



Example: Solve f{xy, z}- (x+yy’) (x+2) using distributive law

Solution: We canwrite f{x,y, z- (x+yy) (x+2) using distributive law

= x(x"+z) = xz = x(y+y) z= xyztzy'z

The table for above function is given DN from of the function is xyz+xy'z

X y z f(x,y.2)
1 1 1 1
1 1 0 0
1 0 1 1
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

Example: In a Boolean algebra, show that f{x,y) =x{{1, y) +x'f{0,y)

Solution: The compkte DN form of fix,y )is fxy)=xy+

XYy =x(yty Hx'(y+y) ()

putting X = 1 and therefore x’ =0, we get £(1, v) =¥y

Agam puiting x = 0 and therefore x’' = 1, we get f0, y) =y+y'

fixy)=x {1, y) +x'(0, y) by (1)

Example: Write all 16 possible functions of two variables x and v.

Solution: All possible 16 functions are listed in the following table:
xy h £ § 6 & & & £ fio fiy £z fi5 fi4 fis fig
111111011100 O 1 0 O O0 0
1011101100101 0 1 0 0 0
0111011901001 1 0 000 0 0

0

001011100111 0 0 0 1 0
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Therefore, the 16 functions are:
fi=xy + Xy +xy +xy = 1, L=xytx'ytxy’ = x+x'y
fexyixyixy =xypie,  f=xyhaytay =xyty
fs=xytxy+xy =x'y+y, fe=xy +xXy =y
f=xy+xy =x, fy=xy txy =xy +xy
fy=x'y +x'y =X, flo=xy+xy =y
fi=xy+txy =xy+xy, fip=xy=xy, fi3=xy =xy
fiu=xy =xy, fis=x¥=xY¥, fi,=0=0

Check your progress

1. Express each of the following in DN fromin the smallest possible number of
variables (a), x +x'y (b) (utvtw} (uvtu'w)

2.  Write complete disjunctive normal form in three variables x, y and z. Determine
which term equal 1 if (1) x=1,y=z=0,(b)x=z=1andy=0

3. Write disjunctive normal form in the three variables x, y and y of the function f=x
+v.

4, 'Write the function fof X, y and z which is 1 if and only if any two or mere of the
variables are 1.

5. Find, by inspection, the complement of each of the following

(a) xy+xYy, (b) xXy2' +xyz +xyZ
6. Provethat there are exactly 2 distinct functions ofn variables in a Boolean algebra.
7. Write and simplify the two functions f; and f; specified by the table

w
N
=
5h

= o] S| o 2| = =] = M
S| S = =] O O] ]
] il ] k] ] | ]
S o OS] =] O] - O
— e O O & O =] =
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Answer

1. (a)xy+xy'+xy (b) uv'wruvwtuv'w’

3. Xyz+xyz +xyz +xy'Z +xyztxyZ

4, xytyzt+z

5. (@xytxy (b)xyz +xyz' +xy'z + xyz

7. fi=x7, L=xy+xY¥y7

3.11. Conjunctive Normal Form

Conjunctive normal form is a dual of disjunctive normal form. Thus all the results that we
proved for DN forms ¢an be extended to this form by duality.

Definition : A Boolean function is said to be In conjunctive normal form (in short, CN
form) in n variables x,, X,, ...., X, forn > 0 1f the f;(x))f;(xx ... H, (X, ). Where fi(x;) =
xjorx; foreachi= 1, 2,....., n, and no two terms are same. Moreover 0 and 1 are also
said to be in conjunctive normal form. The terms of the type

fi(x Ho(xo .. AH(X,), where fi(x;= x; orx;" foreachi=1, 2, .....,n are callked max-
terms or maximal polynomials.

Theorem 1 ; Every finction in Boolean algebra, which containg no constants is equal to
a function in E/n form,

Proof : Let f be the Boolean function which contains no constant, If f contains an
expression of the form (x+y)’ or (xy) ’ for some variabks x and y then De Morgan’s ruk
may be applied to get X'y’ and x+vy’, respectively. This process may be continued until
each’ which appears applies only to a single variable.

Next, by applying the distribution law, f can be reduced to products. Now suppose some
term does not contain either x; oo x;’ for some variable x;. Then x;x;’ may be added to
this tem without changing the function, Contimuing this process for each migsing variable
in each factors i f will give an equivalent fimction whose factors contain x; or x;’ for
each i = 1, 2, n. Finally, using az=a, we can eliminate the duplicate terms and with this
the proof 5 complete.

Example : Write the function (xy+xz)+x' in CN form
Solution : Let f= (xy"+txz)+x’ = (xy")(xz)+x'
~(@4Y) (KHZYHX = XHEH) (742)



= (x+xty) (x+x'tz) = (xty) (x'+2))
=yt (42 4yY) = Kyt (KHyHD) (D) (K4y'4)

= (x"+ytz) (x+ytz) (x+y'+z)

Defimition : (Compkte conjunctive normal form): The conjunctive normal form in n
variables which containg 2 factors (max-terms) is called complete conjunctive normal
form in n variables.

Theorem 2 : Let £ be a complete conjunctive normal form in n variable, The exactly one
maxterm {factor) will have the value 0 and all other max-terms (factorsO will have the
value 1.

Example : Find the Boolean function { in CN form that is given by the following table

X y Z f
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 1
0 0 1 1
0 0 0 0

Solution: To get the expression in CN form, we look at the values of f{x,y,z) when it is 0.
We see from the table that f takes value 0 at 2, 3%, 4" and 8" row thus

f=(x"+y"+2) (x+yt+z) X+ytz) (xtytz)
Rule for finding complement of a function given in CN form

As in disjunctive normal form, we can use the conjunctive normal form to find
complements of functions written in this form by inspection. The complement of any
function written in CN form is that function whose factors are exactly those factors of the
complete conjunctive normal form, which are missing from the given function.
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Example: Find the complement of f= (x+y'} (x"+y)

Solution: The given fiunction { is written in CN form of two variables. The complete
conjunctive normal form in two vanables is (x+y}(xt+y) (x+y) (x*v)

Therefore the complement of f 5 (x+y) (X' +y')

Example: Find the conjunctive normal form for the finction
Solution: We know that ()’ = £ .. f=[(xyz +X'yz + xy'’Z+x'yz)T
=[{xy2) '&'yz) ' (xy'Z) (x'yz)] by De Morgain’s law

= [(+y'+2) (xty'+2) (H+y+z) (x+y"+2)] by De Morgain’s law
=(xtytz) (xtyt+z) (xtytz) (x'+y+z)

(D

2
(3)

@

&)
(6)
Y

®
®

Check your progress

Express each of the following in CN form in the smallest possibke number of
variable.(a) xtx'y (b) (utviw) (uvtu'w) (c) (xty(xty) (x'+2)

Write the CN form in three variables x, y anx z (a) x+y’ (b) (x+y) (x'+")

Write the fimction of x, y and z which is 0 when any two or more of the variables
are 0 otherwise it is 1.

Find by ingpection the complement of each of the following

(a) (xty) (x'+y) (x4y) (b} (xty+z) (x'+y+2z) (x+y'+z))

Change the function f=uv +u'v +uv' from DN from to CN form
Change the function f= (x+y") (x+y) (x"+y) from CN form to DN

Let £ (x;, X2, X3,) = [(X1+ X1} + Xy’ X,']’ be a Boolean expression (function) over two
valued Boolean algebra. Write f{x,, X5, X;) In both DN and CN form.

Write the EXPI'QSS].{)II(X“ X3, Kg) =x1X1+ XX X3 Xgi[l both DN and CN forms,

Express the function given by the table below in both DN form and CN form
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(10)

(X1, X2,X3) (X, X2, X3)

(0,0,0) 1
(0,0,1) 0
(0,1,0) 1
0,1,1) 0
(1,0,0) 0
(1,0,1) 1
(1,1,0) 0
(1,1,1) 1

For any Boolean function f{x1, x2), show that
fix1, x2)=[ x1+f0, x2)][ x1"+{1, x2)]

(11) Smmplify the following Boolean function

8.

9,

o Oh Eh R e B

() ab + abc + be (b) (ab™+c) (a+b'+c)

Answer

(a) x +y (b) (wHv+w) (wHviw) (uhvHw) (Hvw) (u+vi+w) (o) (x+2z) (x+2))
(x'+z)

(a) (xty'+z) (xty+z) (b) (xtytz) (xtytz) (xtytz) (x'ty'+z) (x+y+z)
(xtytz) (xtyt+z) (x+y+Z) (xty+z) (x+ytz)

(@) (xty) (b) (xtytz) (xty+2) (xty'+z) (x+ytz) X+yt+z)

u+v

Xy

DN form of f = XX, X3+ X1 XoXa+ X X5 Xa+ X1 X X2+ X %5"X5'

CN form of f = (x;X;%3} (X1 X2X3")( X1X2'%3")

DN form of f = x;XaXa+ X1 XoXs'+ X1X2 Ks+ X "X2'X3

CN form of f = (x;+X>tX3 )} (XX 33 ) X3 +X5 X 3 K X1 +Xa+X3)

F (X1,X2,X3 = (X1 X2 +K"3) (X Hx x5 X' Mo Hx5) (XX Hx5)

10.(a) ab+ac (b) act+b'c

75



3.12. Minimization of Boolean Functions (Kamaugh Map)

In this section, we shall concern with the problem of obtaining a minimal Boolean
function equivalent fo a given Boolan function. These problems arise in the design of
switching circuits because the cost of the circuit, to some extent, depends on the number
of swiltches in the ¢ireuit, The goal of minimization is to reduce to minimuym number of
swilches or gate required by a circuit. A general method of simplifying a Boolean
fimction obtam a minimal form is to use basic laws and identities such as a+tab = aof a
Boolean algebra,

Example: Simplifying the Boolean function
f=ab’+cd+ebtedtac+abeth'c’'d’

Solution : Here = ab’cd+cb+cd'+ac’+a'b ¢'+b'e'd’

= (ab'd+b+d") cHatab+b'd )’ = ¢(b+d'+ab'd) +¢'[(ata’) (ath) + b'd]
using a+a’b=(ata’) (atb)

= ¢[{b+d"+b") (b+d+tad)] +c’ [atb+b'd]using distributive law and a +a’=1
= ¢ (b+d+a) (b+d™+d) + c'(atb+b'0 (atb+d") =c (atb+dHc'(atb+d)

v d+d‘l, b+b'=1 =atb+d’

Form the above, it is clear that the choice of which Boolean laws to use in any particular
simplification operation is primarily determined by the skill of the person performing
Bolean manipulations and this skill is partly a matter of experience. Because of this
difficulty in reducing a Boolean fimetions to its simplest (minimal) form, a method base
on Karnugh maps has been developed.

Karnaugh Maps : The Karnaugh map is a pictorial representation of truth table of the
Boolean functions. This method s easy to use when Boolean function has six or fewer
variables. Since function of one variable can be simplified easily, there is no need to
llustrate it, We illustrate the method when mumber of variables in a function is 2, 3 and 4.

Case of two variables :

We consider the case when the Boolean function f is of two variables, say x and y, in the
first figure below, we have constructed a 2x2 matrix of squares with each square
containing one possible input combination of variable x and y. The Karnaugh map of the
function is the 2x2 matrix obtained by placing 0s and 1s i the square according to
whether the functional value is 0 or 1 or the input combination associated with that
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square. For example, the Boolean function f=xy+x'y is represented by the Karnaugh map
as shown I second figure below

x x X x
Y |xy | XYy y[1]1
y o [xy y [0]0

Kamaugh map of f=xy + x'y

We now consider the method to obtain minimal form of the function by using Karnaugh
map. The application of the Bookan law xy+x'y=x, when seen in the context of a
Karnaugh map, becomes the replacement of two adjacent squares (squares having one
side In common) containing 1s by a rectangle containing two squares. The absorption law
x+xy =x has its counterpart on a Karnaugh map as well It is simply the grouping of
adjacent squares into the largest possible rectangle of such squares and we still use the
largest rectangle nstead of individual squares. Of find minimal form of the function, we
first consider all largest rectangkes composed of the adjacent squares with 1s in them.
From the set of these larpest rectangles, the minimum mumber of rectangles are taken
such that every square with 1 is part of atleast one such rectangk.

Example: use the kamaugh map method to find 2 minimal DN form (sum of products
form) of the following functions

(a) fix, y) =xy + xy'
(b) fix,y) = xy + x'y+x'y’

() fix.y) = xy +x7y’

Solution: (a) We first represent fix, y) by a Karnaugh map. The Kamaugh map
representation of f{x, y) = xy =xy’ is the following

ElL =
(=3 =1 .

y
y

We have represented two adjacent squares with 1s in them by a rectangle. This rectangle
represents x, Hence f{x,y) =x.

(b) The representation of f{x,y0=xy+x'y+x'y’ by Kamaugh map is as follows:
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Y | O
Yo

=1l

The finction f{x,y) contains two pairs of adjacent squares with 1 (indicated by two
rectangles) which includes all the squares of f{x,y) which contain 1. The horizontal pair
(rectangle) represents y and vertical pair (rectangle) represents x', Hence,

fx,yF ytx'=xtv & its minimal form.
(¢) The Karaugh map representation of f{x, yFxy+x'y’ i given below

x x
y |0 o
in|

Y

Observe that f(x,y) consider of two rectangles as shown m the figure. Thus f{x,y) =
xy+x'y' is the minimal form.

Case of three Variables

We now turn to the case of a function of three variables, say x, y and z. The Kanaugh
map corresponding to Boolean functions fix, y, 20 is shown in figure 3(a)

Xy xy Xy Xy

.......




In figure 3(a), cach square represents the minterm cormresponding to the column and row
intersecting in that square. In order that every pair of adjacent product in figure 39a) are
geometrically adjacent, the right and left edge of the must be ientified. This is equivalent
to cutting out, bending and gluing the map along the identified edge to obtain the

cylindrical figure as shown in figure 3(b), by a basic rectangle in Karnaugh map with
three variables, we mean a square, two adjacent squares or four squares which form 1x4
or a 2x2 rectangle.

Suppose that the Boolean function f{x,y,z) has been represented in the Karnaugh map by
placing 0s and 1s in the appropriate squares. A minimal form of f{x, y, z0 will consist of
the least number of maximal bagic rectangles (a basic rectangle which is not contained in
any larger basic rectangk) of f which together include all the squares with 1 (in them) of
f

Example: Find using Karaugh maps a minimal form for each of the following Bookan
functions

(a) fix, y, 2} = xyz + xyz' +xyz'+ x'y'Z

(b) f(x, y, 2) = xyz + xyz' +xy'ztxyztxy'’z

() f{x, v, ) = xyz + xyZ+xy'z'+x'y'z'+x'y'Z

Solution: (2) The Kamaugh map corresponding to the given function is given below

,

xy  xp' xy x'y

zm:;amo
¢ ] o |0 |

From the Kamaugh map, we see that fx, y, z) has three maximal basic rectangles
containing squares with 1 which are shown by rectangles. Observe that squars

corresponding to xyz' and X'yz' are adjacent. Thus the symbols are left open ended to
signify that they join in one rectangle. The resulting minimal Boolean function is
Xy+tyz+x'y'z

{b) The Karnaugh map corresponding to the function f=xyz+xyz'+xy'z+x'yz+x'y'z

5 given below which has five squares with 1s i them corresponding to the five

xy xy xy x%y

:llllil

|l ofo}] o
miniterms of £, —
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From the Kamaugh map, we see tht fix, y, z} has two maximal bask rectangles
containing all the squares with 1, which are shown by rectangles. One of the maximal
basic rectangle is the two adjacent squares which represents xy and the other is the 1x4
square which represent z. Both are needed to cover all the squares with 1. So, the minimal
form of f{x.y,z} is given by f{x,y,2z) =xy +z

(c)} The Kamugh map comresponding to the function

fix,y,z) = xyz + xyz'+xX'yz+x'y'z+x'y'z is given below which has five squares with 1s in
the corresponding to the five minterms of £,

xp xy Xy xy
= =

z 0 1 0

« [| o |

As shown by the rectangles, f (x, y, z) has four maximal basic rectangles. To cover all
squares with 1s in them, it is necessary here to include basic rectangles which represent
xy and X'y’ and only one of two rectangles which correspond ® x'z and yz'. Thus fix, y,
Z) has two minimal forms: f(x, y, z) xy + x'y'+x'z'

ad f(x,y,2z)=xy+xy +yz

Case of four variables :

The Karnangh map corresponding to Boolean function f(x, v, z w) with four variablkes x,
y, z and w is shown below. Each of the 16 squares corresponds to one of the 16 min-

Xy gt Xy vy

ww

00

'r' |‘
H

’
W

terms with four variables xyzw, xyzw',.... . X'yvz'w

Here again, we congider the firgt and last columm to be adjacent and the first and last rows
fo be adjacent, both by wrap around.

A basic rectangle in a four variable Karnaugh ma is a square, two adjacent squares, four
squares which form a 1x4 or 2x2 rectangle or eight squares which form a 2x 4 rectangle.
The minimization technique for a Boolean fimction f(x, y, z, w) is the same as for three
variables function.

Example: Use Karnaugh maps to find a minimal form for the follbwing Bookan
functions
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(a) fix, y, 2, W) =X'yzw + xyzw+ Xy'zw't xyz'wHxy'zw'

() fix, y, z, W) = xy'+txyz + X'y'Z+ x'yzw’

Solution: (a) The Karnaugh map representation of the given function is shown below
which has five squares with 1s in the corresponding to the five minterms of f

xy Iy’ % ryr -\f’_}'

w[% o] ]0]
™’ 0 ‘1 l| 0
z'w'll I.I i} 0

Zw | D 0 0 0

in the cotresponding to the five min-terms of f. A minimal cover ofall 18 of the map
consists of the three maximal basic rectangles as shown in the figure. Thus the minimal
form is KX, y, z, w) =y'zw' +xz'Wtx'yvzw

(b) The Karanugh map representation of the given function is shown below, Observe that
there are four squares with 1s in them representing xy’. Similarly, there are two squares
with 1 representing xyz and so on

xy xy' xy x%

W 1 1

w L1 i

7w 1|1

Z'w 1 1

The mininum number of maximal basic rectangles to coverall 1s of the map is 3 as
shown in the figure, Thus the minimal form i f(x, y, z) =xz + y'z' + yzw'

observe that the upper left 2%2 rectangle represent xz while the other 2%2 rectangles
represents y'z',

Example: Use a Kamaugh map to find a minimal form of the finction
f(x, y, z, W) = xyzw + Xyzw'+ xy'zwtx'y'zwix'y'zw
Solution: The Karnaugh map of the given function is shown below
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xy xy xy xy

As shown by the rectangles, f(x, y, z, w0 has four maximal basi rectangles of 1x 2 size,
To cover all 1s, it is necessary to inclnde basic rectangles which represents xz and x'y'z
and only one of the two dotted rectangles which cover 1 at the square comresponding to
xy'zw'. Hence we obtain two minimal forms, namely

fxyzw)=xyztxyztxzw’' and  fix, y, 2 W) =xyz + xy'zty zw.

Check vour progress

1. Describe the Karnaugh maps for three and four variables.
2. Use the Kamaugh map representation to find a minimal form of each of the
following functions: (a) f{ix,y) =x'y +xy
(b)fix, vy, z) =xyz + xy'z + x'yz + x'y'z
()i, y, 2) =xyz +xyZz+XyZ +XYZ +Xyztx'yz
3. Use the Kamaugh map to find a minimal form of each of the followmg functions:
a. f=xyz'wxyz'wxyz' wHxy'zw'+x'v'zwtx'vzw+x'yw'z'
b. f=xyzw'txy'zw'txy'z' wtxy'z'wtx'y'zwtx'yzw+x'v'z'w'+x'yz'w'
4. Find the minimal form of the Bookan function of four variables represented by the
Karnaugh map given below:
Xy xy xy xy

110 (0 |1

2

0 |10 |0

|

0
zw' |0 |0 |0 |0

zw (1 [0 |0 |1




Answer
2. (af=y b)f=z (c)f=ztx'z
3. (a)f=yz+xyzZ+yzw (b) f=xaw'txy'’zZ-xyztxzw @4).f=yw

Suggested Further Readings

(1) Felx. H. (1978) Set theory, Chelsea publishing Co. New York.
(2) P.T.Johnstone, (1987) Notes on Logic and set theory, Cambridge University Press.
(3) L N. Herstein. {1983) Topic in Algebra, Vikas publishing house Pvt. Ltd.
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Unit-4

Unit— 04 Switching Circuits and Logic Circuits

Structure
4.1 Introduction
42  Objectives

43  Switching Circuits

44  Simplfication ofcircuit

4.5  Non-Series Paralle]l Circuits

46  Relay Circuity

47  Logic Circuits

4.8  Design of circuits from given properties

4.1. Introduction

This is most basic unit of this block as it introduces the concept of statements,
statements, statement variables and the five elementary operations and associated logical
connectives. We introduce the well formed statement formmlae, tautologies and
equivalence of formulae, The law of duality is explained and established, It has got
fremendous apphication i almost every field, social, economy, engineering, technology
etc. In computer science concept of logic is a major tool to learn to understand it more
clearly, Mathematics has a language of its own like most other sciences, which is very
precise and commumicates just what is required-neither more nor kess. Language basically
consists of words and their combinations called ‘expression’ or ‘sentences’. However in
Mathematics any expression or statement will not be called a ‘sentence’.

4.2. Objectives
After reading this unit we should be able to
1.  Understand the concept of statement and statement variables

2. Use ¢lementary operations like Conjunction, Disjunction, Negation,
Imphication, Double implication




3. Understand statement formulae, tautologies to equivalence of formulae

4, Use law of duality and functionally complete set of connectives

Logic is a field of study that deak with the method of reasoning Logic provides rules by
which we can determine whether a given argument or reasoning i valid (correct) or not.
Logical reasoning is used in Mathematics to prove theorems. In computer science logic is
used to verify the correctness of programs,

One of the major applications of Boolan algebra is to the switching circuits (an
electrical network congisting of switches) that involve two-state devices. The simplest
example of such a device 8 a switch or contact. The theory mtroduced here holds
equally well for such two state devices as rectifying diodes, magnetic cores, transistors,
various type of election tubes etc, With the advent of computers, the algebra of circuits is
receiving more attention because of the significant use of Boolean algebra in the design
and simplification of complex circuits which are involved in electronic computers, dial
telephone switching system etc.

4.3. Switching Circuits
By a switch we a contact or a device which permits or stops the flow of

electric current. The switch can assume two state “cloged’ or “‘open’ (ON or OFF).When
the switch is closed the current flows in the circuit. When the switch is open current does
not flow. We willsue a, b, ¢.... X, v, z .... ctc to denote switches in a circuit. If two
switches operate so that they open and close simultaneously we denote them by the same
letter. Again, if two switches be such that one is open if and only if the other is closed, we
represent them by a and a'.There are two bask ways m which switches are generally
interconnected. These are referred to as ‘in series’ and m “parallel’.

Definition 1 : Two switches a and b are said to be connected “in series’ if the current flows
only when both are closed and current does not flow if any one or both are open. Two
gwilches a and b connected in series a circuit is denoted by ab and is represented a8

shown in the following diagram.

—-—-—-—a--‘//.——./.v—"-‘_

a h

Definition 2 : Two switches a and b are said to be connected in parallel if current flows
when any one or both are closed and current does not flow when both are open. Two
switches a and b connected in parallel in a circuit is denoted by a+b and is represented as

shown m the followmg diagram:



s
fé)
L
b

We assign the value 1 to a switch which is always closed and the value 0 to a switch
which is always open. If two switches a and a’ bothopen then a is 1 if and only if a™=0

Theorem: The algebra of switches is a Boolean algebra,

Proof: We know that the set B = {0, 1} with operations +, - and ’ defined by the
following tables for ns a Boolean algebra of two elements

+ |01 101 ala

0 (01 0(0 0 01
1 (11 1({0 1 110

Consider the following correspondence between the element and operations of the
switching algebra and the Boolean algebra B of two elements described above.

Booleanalgebraofx x' x + . 0 1

r 1t 1 ) ! !
Switching algebra Xx X  connected connected open closed
in parallel in series
®) 0
With the help of this correspondence, every series-parallel circuit corresponds to a
Boolean function and conversely every Boolean function corresponds to a circuit. Two
circuits S; and S, are defined to be equivalent if both are open (current does not pass
through either) or both are closed {current passes through both) for any given position of

switches mvolved. We now verify that switching algebra satisfies all the axioms of
Boolean algebra.

[B;] Commutative laws: since circuits are equivalent, we have a+b=b-+a
—-—d'/l—-—-—— - s

a

and —— —

]




similarly, circuits are equivalent, we have a-b=b-a

."'": -/r and ool -
(! b b (44

[B,] Distributive laws : Since circuits

7 —
P i and ' —
il d/h;- __.,.ﬂ/'__’__,{._

are equivalents, we have a.(b+c)= ab+bc. Similarly, we have, at+b-c = (a+b) -(a+c)
because bothcircuits are equivalent

S i b and —— -
__.il;' [ b b /C/.
[B;] Identity laws: Since circuits
o
J— 5 b and —-f:/-—
-—-—~—c’/o-—--—--

0

Where 0 represents a switch which is always open, are equivalent therefore, we have,
at0=a, Smmilalry, circuits where 1 denotes a switch which is always closed,

—---—v/a/ .—--/; —— and ";./r

are equivaknt. Thus a,1=a
[B;] Complement laws: Since the circuits are equivalent, we have a+a'=1.

e
a e

— —— and |

o

a'

Similarly, the circuits are equivalent, we have ata’=1
el ’ and —- o/{; -—

a i
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Thus algebra of switches is a Boolean algebra. In view of the above theorem, all results
of Bookan algebra can be applied to switching algebra.

Example : Draw a circuit which realizes (represents) the Boolean function
f=abc¢+a'(b+c’)

Solution : The circuit is given by the diagram
g 7

G b ¢

— /-_ —
b
ﬂ" -/f
[

Example 6.2 : Find the function that represents the circuit

b e
_— P =
/ g
4 ——-—/o———

Solution : The function fwhich represents the circuit is given by f=a (b ¢t+d(ctH))
Example : Find the function that represents the circuit and hence find a circuit

——————e . '/— -
e c d €
7 — f o
- h
4

which would be open (closed) if and only if the above circuit is closed (open).
Solution : The given circuit is represented by function = (at+b)(cdet+{f+g)h)

The required circuit which will be open if and only if the given circuit 18 closed will be
given by the complement of f. Now,

f = [atv) (cde+ (f+g) h)]' =(atbYHcde+ (f+g) h]’
=a'b'+ (c+d'+e") [(frg)g+h' ] =a'b+(c+d"+e) [f g +h']
Thus the required circuit is the following



—*ff-j G
o

f g
d

A

Example : Constructthe tale for closure properties for the function = x"z+z(x+y’)

Solution : A table of closure properties for a function 15 identical to a fruth table for a
propositional function. Therefore, the table of closure propertics for the finction f =

X'ztz(x+y'} 5 given below

X y z X'y xty Zxty) xytz(xty)
1 1 1 0 1 1 0
1 1 0 0 1 0 0
1 0 1 0 1 1 1
1 0 0 0 1 0 0
0 1 1 1 0 0 1
0 1 0 1 0 0 1
0 0 1 0 1 1 1
0 0 0 0 1 0 0

Check vour progress

1. Draw circuits which realize each of the following expressions without simplifyi the
expression,

(a) abe + a (dc + ¢f)
(b} { +b’ +c) (at+bc”) + c'd+d{vb'+c)

(c}xly (ztw) + Z(utv)
2, Find the fimctions which represent each of the circuits given below



G ot
a h h
(a) q —’{ e -‘a/
. /
a b c
e
(b) — g
/r/ W —
¥ .
PRy

3. Find a circuit which is closed when the following circuit is open and open when the

given circuit is closed.

=

d

b

L)

_/f‘ A
! L
R fr

£

4, Find circuits which realize each ofthe functions given in the following table

X
1
1

= o o O

z
1
0

SRS U 1
011
1 01
0 0

Lo
L= B == R =



1(a) ——

(b)

——c’/_o———

X

(c)

4 Circuit for fiis

Circuit for fis

g1




/ x
y oo
Circuit for {5 is 2 I
K o
3 v,

4.4. Simplification of circuit

We have seen i last chapter that Boolean expression can be simplified by algebraic
method using Boolean theorems. Since algebma of circuits (net work ) 18 a Boolean
algebra, we can use theorems and ruks of Boolkan algebra in algebra of circuits also. But
the drawback of this technique is that there are no specific rules for proceeding step by
step to manipulate the process of simplification. Even if minimmm is obtained, one may
not be sure that it is minimum, Another method is the Karanaugh map method which
provieds a simple straight forward technique of simplification of Boolean functions. The
simplification is essential to minimize the cost of the circuit, By simplification of a given
circuit we mean a circuit which is equivalent to the given circuit and which has fewer
switch,

A general method of simplifying a circuit is first to find the Boolean function which
represent the circuit, then to simplify the function by the Karnauh map method and finally
to draw a new circuit diagram realizing the simplified function.

Example:Simplify the circuit
-

— o

Solution: The Boolean function f representing the given circuit is

f=[a+ (b +c)a’] b™+c[b (atcyra(b+c)] =ab’+a'b’c+abe + ab'ctac
The Karnaugh map corresponding to fis

ab ab’ ab’ a'b

c | Om T 1)




The simplified function is f=ab'tac+b’c. This expression is the minimal sum of
products. The circuit corresponding to this form will contain & switches. But if it is
expressed as f= ab’Hatb")c then the corresponding circuit will contain five switches.
Thus we see that we have to see both forms of the simplified expression before
constructing the circuit. Hence we get the following circuit.

Example:Simplifving the circuit given below —

P —
i e
c ' -
P e
a ¢
";: .- -
Ge——

b i
Solution: The circuit is represented by the function

f=bec+ ab'cd + cd' + ac’ + a'be’ + b'c'd’

ab ab’ ab’” a’b

cd 1 1 0 (1]
cd’|| 11 1 1 1]
c'd’ 1 1 1 1 !
c’d 1 1 0 1

The function contains four variabkes. The Karnaugh map of f gives (to find simplified
form of f). There are three basic rectangles each of the type 2x4. The simplified functions
f=a+d'+b. Hence the simplified circuit is
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Note: Kamaugh map method can also be used find function in product of sums form. For
this we have to consider squares with 0 in them only. Consider the Karnaugh map shown
in example 6.6 above. The entry in square at 1% row and 3" row column will be zero if
a+br+c'+d=0. Similarly, the sum term for the 4™ row and 3™ columm will be a+b+c+d'.
The two squares with 0 in them have common variables a, b and d'. The simplified
function is {at+b+c+d")(atb+ctd)=atb+d’

Don’t Care Condition

Boolean functions describe the behavior of circuits. Each square of a Karnaugh map
represents the output of the circuit corresponding to a combination of values of the input
variable, Sometimes it happens that cerfain mput combinations never occur. In such
situations the output of the circuit network, is not specified. These situations are referred
1o as don’t care condition, The square on the Karnaugh map corresponding to a don’t care
conditions is indicated by — or X and such square is known as don’t care square. A don’t
care square may be assumed either as a square with 1 or a square with( as desired while
forming the basic rectangles for simplification. Any one of such squares or some of them
may be included or may not be ncluded while forming basic rectangles.

Example:Suppose a circuit is defined by the following table where x denotes don’t care
condition. Draw the circuit as simplified as possibke

X y z | ftxy2)
0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 X
1 1 0 0
1 0 1 1
0 1 1 0
1 1 1 0

Solution: We can directly represent the function I given by the table in Karnaugh map as
follows —



z | 0] 1 | x
1 0 I 1

[—] =

fexy'+2'7

But if we take 1 in the don’t care square then we have one basic rectangle of the type 2x2
and the corresponding Boolkean function will be f=y"

Hence simplified circuit is e
Thus the addition of don’t care condition has made our circuit simpler.

Check your progress
1. Simplify the following circuits:

s I /R VU ; MR-

a a' a
&= P e
i b b
e
() _ﬂ/,
| g s
o P
( ) —c{l— o [
c a2
._—q":o—-— .—_.,;’.“_l
_/ b —I’E."/I-—
e

2. Suppose that we have a circuit defined by the fimetion f= a(b’+c) + a'b'c’

Suppose further that abc' and a’b’c’ are impossible to occur. Draw the circuit with least
switches,
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4.5. Non-Series Parallel Circuits

In the previous sections, we have discussed circuits which have two terminal. Such
circuits are called 2-terminal circuits. We now study the concept of n-terminal circuits.
The following diagram shows a 3- terminal circuits.

i
a
T; / _/ R T}_
b c
-
Lt

This circuit is a combination of three 2-termainal circuits joining terminal points T, and
T,;, T; and T;, and T, and T, The Boolean function ¢orresponding to the 2-terminal
circuit joining terminals T; and T; will be denoted by f; for each i and j, where i= j. In
general, an n-terminal circuit can be defined as a configuration of switches connected by
wire iIn which n points are designated as terminals. The n{n — 1)2 possible Bookan
functions corresponding to the 2 terminal circuit joining T; to T; for each iand j, &2, will
be denoted as f;. Two n-terminal circuits are said

to be equivalent if each pair of 2 terminal circuits are equivalent or, as well as,
if the fimctions representing the pairs of corresponding circuits are equal

wye Circuit: A -3terminal circuit is said to be a wye circuit if the three 2-terminals
circuits involved have common point other than a terminal Such a circuit is called wye
circuit because of its resemblance with the letter y.



Wye circuit

Delta Circuit : A 3-terminal circuit in which they only common point of any pair of
the three 2-terminal circuits are the three terminals, each of which is common to exactly
two of the terminal circuits is known as delta circuit.

T,

/x/\?\ Delta cireuit

T

' P
H Ty

Bridge Circuit: A non-series-parallel circuit of the type shown below is known as
bridge circuit. The vertices of the circuit are labeled with capital letters for reference. The
point Q is the central point of a wye circuit with terrminals P, R, and S.

Q
aq\d
¢
S T

€  Bridge circuit

R

Star Circuit: An n-terminal circuit is said to be a start if it has a common central point
other than the terminal points. Clearly start circuit is a generalization of wye circuit.

Mesh Circuit: An n-terminal circuit is called a mesh if in this circuit only common
points of any pair of %n(n— 1}, 2-teminal circuits are the terminals only, each of which is

a7



common to exactly (n — 1) 2-terminal circuits. If n = 3, then mesh circuit is simply a delta

4-terminal
mesh circuit

Why-to-delta and delta-to-wye Transformation: As in ordinary circuit theory,
there exist wye-to-data and delia-to-wye transformation. We mtroduce these
transformations to develop a method for reducing a non-series-parallel circuit to an
equivalent circuit of series-paralle]l type. The wye-to-delta transformation is shown

below:

T, T equivalent

/\dclta circuit

2 b b -

Wye circuit \
ﬂ C

¢ ‘ A

v/ N, T T

Wye-to-delta transformation

Clearly, wye-to-delia transformation gives an equivalent 3-terminal since 2-terminal
circuits formed i each case are series connections of the same pair of switches, A delta-
to-wye transformation is given below.

T
T,Z_/z '—l’r T, : Z‘A
(@) (v)

Delta-to-wye transformation



Now to see that the circuits in figure (b) above are equivalent to the circuits i (a), we
note that the 2-terminal circuit from T, to T; in (b) is nothing but the circuit given by the
Boolkean functions. (x+z) (x+y) which 15 equivalent to the function

x+yz in view of the distribution law. Note that circuit from T, to T, in figure (a) & given
by x + yz. Similarly, we can check the other two circuits.

Star-to- Mesh Transformation: Star and mesh circuits are gencralizations of wye
and delta circuits respectively, Therefore wye-to-delta and delta-to-wye transformation
may be generalized to a star-to-mesh and mesh-to-star transformation respectively. Figure
below suggest the method employed.

Start-to-mesh transformation
To find series-parallel circuit equivalent to a bridge circuit

We can use wye-to-delta transformation to obtain a Boolean function to represent the
bridge circuit (which is not a series parallel circuit) to represent the bridge circuit) given
below and thus obtain a series paralle]l circuit which is equivalent




to the given bridge circuit. Consider the bridge circuit given above. The point Q canbe
taken as ceniral point of a wye circuit with terminals P, R and S. applying the wye-to-
delta transformation we get an equivalent circuit shown below:

r oo s

; \ ; | L
Y/

R
We can redraw this circuit as sows below
Gt
T, P| s,
R S
b €

Fromthis figure, it follows that the given bridge circuit is represented by the Boolean
function f=ad + (ac +b) (cd+e)

Conversely, any Boolean function of the form f= ad + (ac +b) (cd + ¢)
can be realized by a bridge circuit. For this, we first locate the delta circuit and then
transform it into a wye circuit,

Altermative method: We now explain two altemnative methods of obtaining the
Boolkean function for a circuit. These methods are eaiser to use in simple cases but have
the disadvantage of being essentially trial and error methods and hence error may occur
in complicated cases.

The first of these methods consosits of examining the circuit for all possible combinations
of closed switches which allow a current through the circuit. To illustrate the method we
consider again the bridge circuit.
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a/%
T, P K >S T,
b \l/e '

R

From the circuit it is clear that there are only 4 possible paths from T to T, namely T, —
P-Q-8S-T,,T,-P-Q-R-ST,,

T,-P-R-Q-S-Ty,and T, -P-R—-S—-T,,

through which current can flow from T, to T,.These paths corresponds fo the comination
ad, ace, bed and be. Hence the required Boolean function is

f=ad + betace +bed

The second alternative methed is to consider all ways in which the circuit ma be broken
{by a combination of open switches)

In thigs method, broken lines are drawn in all possible ways in which the circuit may be
broken as shown above. These combinations are aand b,a,cand e, b,c and d, and d and
¢. Now the required Boolkan function is given by

f=(at+b) (a+cte) (b+c+d) (d+e)

which has the value ( if any of the four sets of switches is open. It can be easily seen that
the three Bookan finctions ad + (ac+b) (cd+e). ad+betbed and (at+b) (at+cte) (btctd)
(d+e) are equivalent,

Example:Simplify the circuit given below
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Solution: We draw broken lines though the circuit in all possible ways in which the
circuit could be broken by a combination to open switches as shown below :

Now we can write the Boolean function frepresenting this cireuit:

f=(x'y +xtz) (xt+z) (X'yv+ytz} (xtztytz) = (x'yt+ztxy) (xt+2z)
= {y+z} (x+z) =xy+z. Therefore, the circuit equivalent to the given circuit is

x b 4

T, T;
z

Note: For convenience switches are also represented as in the above example.
Example : Draw a bridge circuit for the function

f=XwxV styutyv's) (X+z+w+v'sO{y+z+w'+u)

Solution: here, f= (X'u+xV's+yotyv's0 X+z+w'+v"(y+z+w'tn)

= (x+y) (wtv's) [z-w'Hx+v's) (y+u)]

=(x+y) (utv's) (z+w) + (x+2z) (x+v's) (wHv's) (y+u)
102



=(x"ty) (utv's) (ztw) + (x+yv's) (utyv's) =(x"ty) (wtv's) (ztw) + (xX'ytyv's)
=(xutyv's) (z+w} + (x'v'styu) (ztwH{ X'utyv's)

=(xutyv's) (ztw'+1) + xVstyu) (z+wxwyvsHx'(z+w)vst (ztw)u
Hence fis realized by the bridge circuit given below

Example:find the Boolkan function which represents bridge circuit given below.
Simplify, if possible

Solution: We draw broken lines as shown below through the circuit in all possible ways
i which the circuit could be broken by a combination of open switches.




Hence the required Boolean function will be f= (ab+c) (ab+d+a) (c+d+c’) (c"+a)
=(ab+c) (ab+d+a) (1+d)(c"+a} =[ab+c(d+a)](c"+a)

=abe+ec(d+aHabtac(dta) =abe+ab+actacd =ab + ac = a(b+c0

Note: The Boolean function {in the above example can also be simplified with the help

of Karnaugh map.
Example:Simplify the circuit given below

Q y g
a ﬁd
b, & b

S

Solation: The point S is central point of the star circuit with terminals P,QR and T.
Applying the start to mesh transformation, we get an equivalent circuit shown below:

Q\;/(\
ab/‘"bc)& b\\d
o b

b

which is equivalent to
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Now taking Q as the central point of a wye circuit with terminals P, R and T and applying
the wye-to-delta transformation, we get an equivalent circuit shown below

Q‘f /

We redraw this circuit as follows:
a r;’ d
o o ——Eb}}
_ . |
b _E:_b -5
T, P —Ebzl—b— o

From this figure, it follows that the Boolean function representation the given circuit is £
= [(atbc)(ctbe)] [(b+d)+b(c+cb)]+(atbtc)bt+d]=bt+ac'd

Hence the circuit equivalent to the given circuit is

— g i d

Check your progress
1. Construct a bridge circuit which realizes the fimction f =xw'+y'uv+(xz+y’) (zw'+uv).
2, Smplfy the circuits given below:
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3. Find series-paralle]l circuit equivalent to the circuit given below

N
r<\é£§ >
Answer




2. (a)

b
y
L * T,
Z
z!
—— b——
e e X
a
c 2 W
N —
y—=z
e 7 —— w
a!
y c -4 b—
4.6. Relay Circuits:

In Practice, an on-off switch is usually replaced by a relay. A relay is a combination of a
certain set of contacts all operated by a single electromagnet. The term contact carries
essentially the same meaning as switch in that it is a device between two leads, which
may be open ¢ closed. When no eketric current flows through the coil of the magnet, the
relay is said to be m rest state. When cwrrent flows i the coil the relay s activated and
said to be in its operate state. It will continue to be in this state as on as currant flows in
the ¢coil By a normally open contact (also called make contact), we mean a contact that is
open when the relay is in rest state and is closed when the relay is activated. By a
normally closed contact (also known as break contact), we mean a contact that is closed
when the relay is at rest and is open when the relay is activated (ie inoperative state).
Symbolically, normally open contacts and normmally closed contact are represented as
follows —

[ W
i “11

Normally open contact Normally closed contact

(a) (b)

The following figure indicates a typical relay. The on-off switch
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“ 1|+
Controlling the electromagnetic coi will be denoted by a capital letter, say A, and all
nommally open contacts by a and all nommally closed contacts by a’. It may be noted that a
nomally open contact and a normally closed contact on the same relay will always be in
opposite states, whether the relay is at rest or is activated, We can connect relay contacts
in parallel and i series n exactly the same manner as on-off switches are nterconnected
and all the results of Boolean algebra can be applied to the analysis and synthesis of relay
network,

Example:Simplify the relay network given below
AP

I
Solution: The Boolean function commesponding to the given circut i

E=(bd+b")(a+c)+(be+d)a. Representing f by a Karnaugh map, we have
ab a’  ab’ ad

o T Ll EELLE a
ek o
e | o] o [|1]] o
cd |[MTT T [O] T

As shown in the Karnaugh map, fhas four maximal basic rectangles. Thus the minimal
form of f'is given by f=d + ab'+ac.

The simplified network is given below
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Example:A light is controlled by the switching circuit shown in the figure given below,

simplify the circuit
41
] ] L] @
WP W I

S

Solution: The above circuit can be descnbed by the Boolean fimction
f= (ab’+d) (a+b+c) (at+c+d)
The simplified form off is obtained from the Karanugh map of f given bebw

ab ab' a't  d'b
cd L[ o | U
cd ] 1 0 0
c'd l 1 0 0
c'd 1 1 1 ]

As shown in the Kamaugh map, there are three maximal basic rectangles, namely, 2x4,
1x4 and 2x2 rectangles. Hence f=a + ¢'d + bd = at(b+c")d. Thus equivalent circuit
which will perform the same control function is given below

b

< _

r
a

2

4.7. Logic Circuits:

A digital computer used binary number system for its operation. In the binary mumber
system, there are only two digits 0 and 1 called bits. The computer receives, stores,
understands and manipulates information composed of only 0s and 1s. Logic circuits
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(also known as logic network) are constructed using certain clementary circuits called
logic gates. Each logic circuit may be viewed as a machine which contains one or more
input devices and exactly one output device. There are three basic logic gates namely OR
gate, AND gate, and NOT gate. By connecting these gates indifferent ways, we can build
circuit called logic circuits the perform arithmetic and other operations associated with
the human brain. We first define logic gates.

Or gate: An OR gate has two or more inputs but it has only one output. Let x and y be
two inputs. The output of OR gate is denoted by x+vy, where x+y is defined by the table

(b) given below —

vl oxty

¥ _H-_y

1
I
1
0

[@(:jb-ur—l'-"'.

R gate

() (b )

Thus output of OR gate is 1 if one of the input is 1 otherwise i is zero. The logical
operation of an OR gate can easily be exphlined with the help of two switches connected
in parallel as shown in figure (c} above. The figure (a) shows standard symbol for two
input OR gate an OR gate can have as many inputs as desired. The OR gate with 3 input
and 4 input are shown below:

3-input OR gate 4-input OR. gate

And Gate: An AND gate is a circuit that has two or more inputs and one output. If x
and y are two inputs then the output of AND gate is xy where multiplication & defined by
truth table (b) below:

x|y | x
1|1 1
3 } 1foj o e A
v x y
0] 1 0 ’
AND gate 0] 0] 0
(a) (b) (c)

Thus output of AND gat is 1 if both the inputs are 1 otherwise it is zero. The logical
operation of an AND gate can ecasily be explained with the help of two switches
connected in series as shown i figure (c) above. The figure (a) shows standard symbol
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for two input and AND gate. An AND gate can have as many inputs as desired. The AND
gate with 3-input and 4-input are shown below:

X E
A ryz ; xyzw
[ f—

3-input AND gate 4-input AND gate

NOT Gate: A NOT gate i a circuit that hag one input and one output, If x is the nput
then output of NOT gate is denoted by x’ where x' is defined by the truth table (b) below.
A NOT Gate is also called mverter Thus the output of NOT gate is complement of the
input. The output is 1 if input is 0, and output is 0 if the input is

X ’) x'

(a) (b)

E2N
0
L

o —|=

1 if input is 0, and output is 0 if the input is 1.
It is quite obvious that the above gate can be interconnected to form an electronic cireuit
that realizes any given Boolean expression
Example:Construct a circuit using gates to realize the Bookan expression
f=(x; X5} (Xy%3) + (x3+%x4)
Solution: The logic network is given below:

(b))

Alternatively, invertors on x;input line may produce the compkmented variable x,’ and
X3 mput hne may be combined as shown in the figure below. Observe that this network
has 4 input correspondingto four variable x,, X;, X, and x,.
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NAND and NOR gates: There are two additional gates frequently used in computer

known ag NAND gates and NOR gates. Figure (a) below represents a NAND gate and its
associated truth table. NAND gate is equivalent to an AND gate followed by a NOT gate.

NAND
H

-y
T Wy

NAND gate

e
[]

o = ==

X
1
1 1
0 1
0 1

(a)
NAND Gate has two or mores inputs and one output. Further the output of a NAND gate
18 0 if and only if all mputs are 1.

NOR gate is equivalent to an OR gate followed by a NOT gate. Figure (b) below
represents a NOR gate and its associated truth table

NOR

= o

NOR gate

[= B — N ey
S - o —|=
-0 o o

(b)
NOR gate also has two or more inputs and one cutput. The output of a NOR gate is 1 if
and only if all the inputs are 0,
Example:Show that logic circuit corresponding to any Boolean expression can be
realized byusing NAND gates alone.

Solution: Since logic circuits comresponding to any Boolean expression are constructed
using AND, OR and NOT gates, therefore it is enough to show that AND, OR and NOT

gates can be replaced by NAND gates only. The following figures show how OR gates,
And gates and NOT gates can be replaced by suitable inferconnection of NAND gates.
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a
(1) —a-—;)m is equivalent to NOT gate

a
(in “——:D;_
a a
b )w 1s equivalent
e ] to OR gatc
h B b
wra a
(i) Py
“\ )TE is equivalent
_’/3_. to NAND gate
a’v’

Thus logic circuit comresponding to any Boolean expression can be comstructed using
NAND gate only.

Example:Show that logic circuit to realize any Boolean expression can be constructed
using NOR gates alone.

Solution: As in above examplk, we shall show that OR gate, AND gate and NOT gate
can be replaced by suitable inter connectipin of NOR gates,

a ‘ :
. 1s equivalent to

(i) :
# a (ata)=d" NOT gate

(ii) A
il
b

(at+b)’

is equivalent

% ah to OR gate
(atbY

a
(i) 7 - 7

b --b’

—

{ar_l_b:): = dh

Thus logic circuit comresponding to any Boolean expression can be constructed using
NOR gates only.
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Example:Show thatthe set of gates (OR, NOT) is functionally complete.
Solution: Since by DeMorgan’s law xy = (x+y'Y
Therefore an AND gate can be replaced by one OR gate and three NOT gates. The logic

circuit is given below
4 B Y (") >0 Xy

Example:Show that on OR gate can be replaced by a suitable mterconnection of AND
gates and NOT gates, x+y=(x'y'y
Thus an OR gate canbe replaced by one And gate and three NOT gates as shown below

X >o— LTy
T D

Example:Simplify the circuit given below —

xy'

=

phomn B

-
;) :
Z'DCD_

Solution: Clearly the output of first, second, third, and fourth OR gates are a™+b, a'+d,
c+b and ¢+ respectively, Thus the inputs first (upper) AND gate are a+b and a™+ and
inputs of second (lower) AND gate are ¢’+b and ¢Hence inputs of last AND gate are
(a't+b) (a'+d) and (c'+d). Therefore, the Boolean expression corresponding to given circuit
is f={(a"b) (a"+d) ("+b) (c"+d)

= (a+bd) (+bd) =a'c"+bd by distributive law

The simplified circuit corresponding to f=a'c"+bd is given below
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c “——-—"*{}0“‘?' a'c’
b a'c'+bd
d — bd

Example:Construct a logic circuit corresponding to Boolean function

f=xyz+yz+x'y
Solution: Clearly the logic circuit will contain 3 AND gate and one OR gate. The inputs
of the first AND gate will be x, y and ', inputs of second And gate will be and z’ and
inputs of last AND gate will be x’ and . The logic circutt 15 given as

: ™y
: po—y_ S xz2’
I—b@ Ny
_,_/ yz' —i.__"/_xj.z’+yz’+x’};

Do
xy

4.9. Design of circuits from given properties

We shall now design a circuit that has given properties. For this, we first construct the
tale which gives the desired state of the circuit for each possible combmation of states for
the separate switches. The Boolean function corresponding to the table is then written and
if possible simplified. From the simplified expression a circuit 15 drawn.

Example: Design a circuit connecting two switches and a light bulb in such a way that
cither switch may be used to control the light independently of the other. It means that the
change in the state of either one of them must cause a change in the state of the lamp. We
arbitrarily set the lamp ‘on’ when x and y are both closed. We then get the table of valnes
for the closure function, say f ofthe lamp shown in table below:

Row| x | v | f
1 1 1 1
2 1 010
3 0 | 1 0
4 0 0 1

Note that either row 2 or row 3 represents a change of state of a single switch and thus is
required to change the state of the light. Hence function mmst take the value 0 for rows 2
and 3. Finally, row 4 represenis a change of state of a single switch from the state of
either row 2 or row 3, Hence the function f must assume the value 1 in row 4. From the

tale we can write the function as f= xy+x'y’
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A circuit realizing this function is given below
A

Aliernatively, the diagram may also be given as below

ik @

Example: Design as simply as possible a series-parallel circuit for the operation of alight
ndependently from three switches x, y and z.

Solution: As discussed in Example 6.20 above, we arbitrarily set the lamp ‘on’ when x, y
and z are closed. We then get the table of values for the closure function, say f ofthe
lamp as given below:

row | x y z f
L 1 [ [ 1]
2 {1 1 ToTJo
3 J1loft]o
4 1 0 0 1
5 ol 11 To
6 o[ 1 ToTl1
7 Jolol 111
8§ JoJoJoTJo
From this table, we get the function f as follows
f=xyztxy'z+tx'yz'+x'v'z =x(yz+v'Z( + x'(yz'v'z)
Hence the circuit corresponding to f'is
’ _/J’, -———/z/ —
e




Example: An aircraft has three engines. Each engine is provided with a switch which
closes as soon as there is any mechanical fault in that engime. Although the aircraft can
run with just one engine operating, 1 18 desired to have a red lamp appear when there 5 a
fault m any one of the engine and an alarm to ring when there is a fault in any two of
them, Design a two terminal circuit for this, sharing switches whenever possible.

Solution: We denote the three swilches by x, y and z. Let f and g denote the closure

fimctions for the red lamp (R) and the alarm (A) respectively. The table of value for the
closure function fand g of lamp and alarm is given below:

3
b=

.;;—-n|—l|.—--l—lp—i—ll—l"‘--c5

aslol=|—|lo|le|—]—=

o|a|lov || |wjbra]—
olo|lo|os|—|—]=—]—]|=
al=|ol=|o|—|=]|=]|n

From the table, we see that f=x+y+z
g =XyztXyztxyztx'yz = xytxy'ztyz
= xytz{xy'ty) = xytax+y)(y+y) =xy + yz + xz

If we draw separate circuits for red lamp and alarm, we need 8 occurrences of swilches.
To see that whether the sharing of switches is beneficial we first see if f and g have any
common factors, For this we take their conjunctive normal forms, f is already in its CN
form while from table we can write

g = (xtytz) (xty+z) (x+y+z) (x+ytz)

Here although x+y+zis a common factorin f and g, it will not result in any saving to
share it because the remaining three factors of g, even upon simplification woukl require
at least five occurrence of switches. So we write f as f, +f; where f;+x and f,=y+z Then

g= () [x(y+2) (7+2)]
=(y+2) (ryzty'2) = (5+2) (v

Now we may try to use the factor y +z common in f; and g, The resulting circuit is as
follows:
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* Nt
| .
. o | ®

But in this circuit the alarm will also ring even when only X is closed which is not

desired. To avoid this we insert switch x’ as shown in figure below which is a comect
solution.

A 5
_ﬂ_——L—Eg._/._:—@—

Note that there is a saving of switches because 7 occurrence are needed.
Example:Suppose there is committee of four persons A, B, C and D. Any motion i
taken as passed by the committee if and only if either A and any of B, C, D say yes or at
least three out of four members say yes. Any member who says yes press a button, A
light is fo shine only when a motion is passed. Draw the circuit.

Solution: Let a, b, ¢ and d denote the four switches (buttons) given to membes A, B, C
and D respectively, Now the light should shine when a and any of b, ¢, d are closed. That
is when a(b+c+d0 is 1. Similarly light should shine when any three of ab,c,d, are 1. That
is, when any of abc, bed, acd, abd is 1. Thus the closure function for the lamp is given by
f = a(b+c+d) + abctbed+acd+abd = abtact+ad+bed=a (btct+d)}bed

Hence the required circuit is given by the following figure

_.-'b’._

e /.

a* ¢ @
.

. i S

Example:Design a 4-terminal circuit to realize the following three function using
common switches wherever possible.f=xy"z+H(xy'+x'y) zw

g =XyZWHX'yzW, h=XyHxy'+xy) (Z+w)
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Solution: We first write each function in product formto find common factor. Since g
can be most easily factored, we begin by writing it in the form

g =(xy+tx'y)zw’. Examining f and h for possible factors in common with g, we find
£= 2lxy"Hxy"x'y)w] = 2Zxy'yx'y*Hxy Hx'y)w]

=Z[Xy+xZ)y +HEy+Xy}w] = 2xy+xy)y+w)

Smilarly, h=xyH{xy+x'y) @+w)

=xyytxy'ytxy+xy)} (z4w) = xytxy) yHxy+xyXz+w)

= (x'ytxy) (ytz+w))

Hence the required circuit is given below where circuits between Ty and T4, Ty and T,
and T realize finctions g, fand h respectively.

X }" W' T|
T ; y.
o
== T,

Example:Construct a 4-terminal circuit to realize the functions f, g, and h with propetties
given by the followmng table:

xyz) | flg | h
0,00 | 1 0 [ 1
©oon] 1 [ o[ 1
01L0] 01 1
oLl 1 o] o
100/ 0 T of o
(L,o,n | 1 ] 1
(LLO] 0 ] 1 1
aiLnl 1 1ol o

Solution: We first write each finction in conjunctive normal form:
f=(xty+)xtytz) (x*+y+z)

g ={xtytz) (xty+z) (xy'+tz} (x+y+z) (x+y'+2)

h={(xty'+z) (x'+y+z) (x'+y'+z))

The common factor in f, g and h are noted and are indicated below with dotted vertical
lines. Simplification are made where possibk

f=(x"+y'+z) (¥'+z)

g={(x"ty+z) (y'+2) (xt+y)

h=@yis)  (42)
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The required circuit is given below where circuits between T and T, Ty and T;, Ty and
T, are corresponding to functions f, g and h respectively

; =¥
= L, T

¥

Pl LT

T,

Check your progress
1. Simplify the relay network given below

a"F b'H: c“_
a‘”: b” c”:
- —4—

aj| by cyl
-l 11 i1

2. Use Karnaugh maps to redesign logic circuit given below so that it becomes a
minimal AND-O circuit.

x
Y o
z

i
VAR,
\

3. Constructa 3-terminal circuit to realize both the follbwing functions
f=xzw +vzw, g=xzwt yzwtx'y'z

4, Constructa 4-terminal circuit to realize the following three functions with minimum
number of switches = a(b+cd) (x+y)

g =albet+ed), h=albe'+b'ed)

5. Design a circuit which connects two switches at the two entrances of a roomto light
a bulb in the room. The switches work independently so that any of the switch may
be used to operate the bulb.
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6. A digital system has 4-bit input from 0000 to 1111. Desing a decimal input is greater
than 13. Answers

a'": ”b
1 B el
x
|
o) D1 )
X W TI
3 [z~ W
T
x
—_— ] — :
T, c—d. |_cf_ T,
Lp—d— T,
K}
5 _Ex&--y

5. The function is given by f = xyzw + xyzw

—

=

e

1z
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Unit-1

Set theory
Structure

1.1  Introduction
12  Objectives
1.3 Sets

14  Subsets

1.5  Operations on Sets

1.6  Law of Algebra of Sets
1.7  Venn Diagram

1.8 Cartesian Product of Sets

1.1 INTRODUCTION

A word either belongs to this collection or not, depending on whether it is listed in the
dictionary or not. This collection is an example of a set. When we start studying any part
of mathematics, we will come into contact with one or more sets. This is why we want to
spend some time in discussing some basic concepts and properties concerning sets,

In this unit we will infroduce various examples of sets, Then we will discuss some
operations on sets. We will also introduce you to Venn diagrams, a pictorial way of
describing sets. Knowledge of the material covered in this unit 1§ necessary for studying
any mathematics course, so plkease study this unit carefully.

1.2 Objectives

After reading this unit we should be able to:

o identify aset;

»  represent sets by the listing method, property method and Venn diagrams;

s  perform the operations of complementation, union and intersections on sets;
»  prove and apply the distnbutive laws;

» prove and apply De Morgan’s laws;
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1.3 Sets

The concept of set is used m all branches of mathematics. The word “set’ n mathematics
was first of all used by George Cantor. According to him, ‘A set is any collection intoa
whole of definite and distinct abjects of our intuition or thought’. However, Cantor’s
definition faced controversies due to the forms like ‘definite’ and ‘collection into a
whole’. Later on, a single word ‘distinguishable’ used to make the defmition acceptable.
‘A set is any collection of distinct and distinguishable objects around us’. By the
form ‘distinct’, we mean that no object is repeated and some lack the term
‘distingnishable’ we mean that whether that object is in our collection or not. The objects
belonging to a set are called as elements or members of that set. For example, say A is a
set of stationary used by any student i.c.

A = {Pen, Pencil, Eraser, Sharpener, Paper}

A set 88 a well-defined collection of object, By a welldefined collection we mean that
there exists a rule with the help of which it is possible to determine whether a given
object is a member of the given collection or not. Each object belonging to a set is called
an clement or a member of the set. We generally use capital letters 4, B, C, X, Y, Z etc. to
denote sets and lower case ktters a, 5, ¢, x, y etc. to denote elements of a set. If x is an
element of a set A, we write x4 (read as ‘x belongs to 4’}. If x is not an element of A,
we write x#4 (read as X does not belong to 4). Examples:

() LetA={4,2 8 2 6}. The elements of this collection are distinguishable but
not distinct, hence A is not a set.

(i) LetB={a e i o u}!ic. B is set of vowels in English. Here ekements of B are
distinguishable as well as distinct. Hence B is a get,

1.3.1 Methods of Describing Sets
There are essentially two methods to specify a given set

1. Roster Method: A sect may be described by listing all its elements. For example, the
set of vowels in the English alphabet is
A={a,e, i o, u}

Here the elements are separated by commas and are enclosed i a pair of braces {}. This
method of describing a set is called the roster method or the tabular form of the set.

Sometimes, it is not convenient to list all the elements of a set. For example, the set of
natural numbers may be written as

N=1{1,2,3,....}
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2. Property Method (Set Builder Form): The roster method of specifying a set is

not always convenient and sometimes it is not possible to use this method to describe a
set. A set can also be defined by some property which characterizes all the elements of
the set. Forexample,

A= {x:xi8 vowel in the English alphabet}

which reads “A4 is the set x such that x is a vowel in the English alphabet. This method of
describing a set is called property method (or set builders form).

Examples: () N= {n: n is a natural number} (b) £= {x : x is an even integer}

1.3.2 Equality of Sets

Two sets A and B are said to be equal if they contain the same elements, This statement is
also known as the axiom of extension. We write A = B if the sets A and B are equal and
A#B if the set 4 and B are not equal For example,

1. {a,b,c} = {b,a,c}

2' {2:335} * {2: 3: 7}

Remark: If 4 = {a,a4,5,c} and B = {a,b,¢} then it is clear that 4 = B. Thus {g,a,b,c} I8 2
redundant representation of the set {a,b,c} . For this reason, some authors defined a set to
be a well-defined collection of distinct object.

1.4 Subsets

Let 4 and B be two sets, If every element of A is also an element of B then 4 i3 called a
subset of B. We also say that A4 is contained in B or that B contains A. In symbols, we
write * AC B’or ‘B> A’ We say A is not a subset of B if at least one element of 4 does
not belong to B and we write it as Ac B. It is clear that two sets 4 and B are equal if and
only if AcB and Bc A.

Examples:Consider the set 4 = {1,3,4,5}, B = {1,2,3,5} and C ={2,3}. Then Cc Bbut
CaA.

Proper Subset of a Set:Set A is said to be a proper subset of a set B if
(2) Every element of set A i an element of set B, and
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{(b)Set B has at least one element which is not an element of set 4.

This is expressed by writing ACB and read as 4 is a proper subsetof B, if 4 is not a
proper subset of B then we write it as A¢B.

() Letd={4,56)and B=1{4,5,7,8, 6} So, ACB

(i) LetA={1,2,3},and B={3,2,9} So, A¢B.
From the definition of a subset it is clear that every set is a subset of itself, Briefly, B is a
propersubset of 4 if B dand p = 4and write Bc 4.

Empty Set

The set which contains no element is called the empty set (or mmll set or the void set) and
is denoted by {}. The empty set is also denoted by the symbol . Since ¢ has no element,
therefore, empty set is subset of every set. A set which is not empty is called non-empty
set.
Disjoint Sets
Two sets A and B are sail to be disjoint if they have no elements in common.
For example, the sets 4 = {1,2,3,4} and B = {0,5,6} are disjoint while the sefs 4= {1,2,3,4}
and C'= {1,2,6} are no disjoint.
Comparability of Sets: Two sets A and B are said to be comparable if either one of
these happens.

i AcB

(i) Bcd

(i) 4=8B
Similarly if neither of these above three exist ie. A¢B, B¢A4 and 4 # B, then 4 and B are
said to be mcomparable. Example 4 =(1, 2, 3}, and 8= {1, 2}, Hence

set A & B are comparable. But 4= {1, 2, 3} and B= {2, 3, 6, 7} are incomparable
Singleton Set

A set which contains exactly one element is called a singleton, For example, {2} is 2
singleton.
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Universal Set

In any mathematical discussion, we usually consider all the sets to be subsets of a fixed
set called the universal set. Universal set is sometimes referred to as the universe or the
universe of discourse.

For example, in studying human population the universal set consists of all human in the
world and while discussing plane geometry we may consider the universal set to be the
set consisting of all the points in the plane.

Power Set

If X is any set then the set of all subsets of X 15 called the power set of X. denoted by
P(X). Thus P(x)={4:Ac X}. If X contains n elements then p(x)contains 2" elements.

Example:Let x = {1,2,3}then
P(0y= {9, {1},{2},{3},{1,2},{1,3},12,3},{1,2,3}}.
Since X has three elements, P(X)has 2*= 8 elements.

Finite and Infinite Set

A set is said to be finite if it contains a fimite number of distinct elements. A setis said to
be infinite if it is not finite.

Example: Let A= {1,3,5,7,9}. Then 4 1s finite because it contains 5 distinct elements.
Example:dLet B= {1,2,3,4....}. Then B is an infinite set

1.5. Operations on Sets

We mtroduce and study some basic operations in the
section. Using these operation, we can construct new sets v

by combining the elements of given sets.
Union of sets .

Let A and B be two sets. The union of A and B is the set of
all elements which are in the set 4 or in the seth, The
union oftwo sets 4 and B is denoted by the symbol 4B

Fig.-2.1: .45 is shaded
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which is read as * 4 union B’. Symbolically, AUB= {x:xc d0r xc B}

In the adjoining Venn-diagram, the umion of 4 and B is
shown by the shaded area. !

Intersection of Sets ("
Let A and B be two sets, The intersection of A and B 18 the

set of all elements which are both in A and B. We denote
the intersection of 4 and B by 4N 3B, which is read as ‘4
mtersection B’. Symbolically, A[1B8= {x:xcdand xe B}

In the adjoining venn diagram the intersection of two sets 4 and B is shown by the shaded
region.
Complement of a Set

Let A be a subset of a universal set U, The set of all those elements of U which are not m
A i calkd the complement of 4 and is denoted by U-4 or simply 4. Symbolically,
A'=U-A={x:xeUand x¢ 4}

Difference of Sets

The difference 4-B of two sets 4 and B is the set of elements
which belong to A4 but which do not belong to B. Thus, v

A-B=ix:xecAand x¢ B}
The shaded region represents 4-B in the adjoining diagram. @

Example: Let U= {g,b,c,d,¢,f}» A={a,b,c,d}and

Fig. 2.3; A-Bis shaded
B=1p.d fi1.Then 4-B={a,c}, B-4={f}

AUB={a,becd,f}, ANB={bd} and U_4 = {e, f}

1.6. Law of Algebra of Sets

Theorem: Let 4, B and C be subsets of an universal set U. Then the operations defined
on sets satisfy the following properties:
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1. Commutativelaws:

(a) AUB=BUA
(b) AnB=BnA.

2.  Associativelaws:

(@ 4uaUO=UBUC

(b) 4ANENC)=(4NBNC
3. Idempotentlaws:

(@) AU4=4 (b) ANA=4
4. Distributivelaw:

() 4UBNC)=(4AUBN(4UC)

(b) AN(BUC)=(4ANB)U(4NC)
5. [Identity Laws:

(a) 4Ug¢=4 () ANg-¢
6. Involutionlaws:

(A =4
7. De-Morgan’slaws:

(@) (4UBy=4NF) (b} 4NBy=4UB"
8. Complementlaws:

(a) 4U4=1U M) AN4=1¢

Proof : We will prove 4(a) and 7 only and leave proofs of remaining laws as exercises
for the reader, We first prove 4(a), ie. AU(BNC)=(AUBNAUC)

Let xe AU(BNC)then we have,

xeAUBNC) < xedorxeBNC
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o xcAor(xeBandxcCle (xcdorxeB)and{xcdor xe()
< xeAUBand xc 4UC xe(AUBN4AUC)

Hence 4U(BNCY=(4UB)N(4UC)

Proof : 7(a) If xe (AB)'=x€& (4 B) =2x€4 and X #B=>xed' and X eB'=xeA'nB'2xe
(AUBY=>xeA'N B So,(AUB) =AN B’

(b) Say xe (ANB)Y=>xEANB=>x€4 or x&B=xec A’ or x B’
So xe ( ANBY = A'UB" Hence (ANB) = A'UB'.

Check vour progress
1. Determine whether each ofthe following is true or false:

(@) ¢cp®)ocdlc)de{di(d) {9} e{d}
(e} {a,b}ciab,cfab,c} ) {a,b)elab,ciab,c}}
(g) {ab,c}elab,cfab,c}}(h} {ab,c}ciab,ciab,c}}
2. Determine the following sets:
(@ {0}U{a.0,{¢}}(b) {6} N {a.9,{$}}
3. Give an example of sets 4, B and C'suchthat AC B, BeCand A¢C.
4. Write the power set of the set = {, {$}}.
5. Ford={a,b,{a,c},b},determine the following sets:
() A-{a}(b) 4-{$}{c) 4-{{a,B}}
(d) 4-{{a,c}}(e) {$} -4
6. Provethat A-B=ANE.

7. Given that ANB=A4ANCand A'NB=ANC.]Ts it necessary that 8=C? Justify your
answer,

(8) Represent the set A= {g, ¢, i, 0, 4} in set builder form,
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(9) Represent the set B —{x: x is a letter in the word ‘STATISTICS }in tabular form.
(10) Represent the set 4 = {x: x is an odd integer and 3 < x< 13} in tabular form.
(11) Are the following sets equal?

A= {x: xis a Jetter in the word “wolf’}
B={x: xis a ketter n the word ‘follow’}
C= {x: x i8 aletter in the word How}

(12) Find the proper subset of following sets

@ ¢
(i) {1,2,3}
(i) {0,2,3,4}
(13) Find the power sets of the following sets
@ {0}
() {1,23}
(iii) {4,1,8}
(14) If 4 = {2,3,4,5,6}, B={3,4,3,6,7}, C= {4,5,6,7,8}, then find
@D (AuB) N AUC)
(i) (ANB) v (AnC)
(iii) (4-B) and (B—C)
(iv) AAB
Solution

(1) (@Tme. (b)False. (c)True. (d)False.
(e) True., (f) False. {g)True. {h) True.

@ @ia ¢, {0}} ®) {¢}

3) A={a,b},B={a,b}},C={a,b,{a,b,{a,b}}}

@ PX)= {019} {{0}), {9,193 1}

G) @ B.factd} () {.b{a.c}c)AWd) {a.b,d} ()b

(7 Yes.(8) A= {x: xis vowel of English alphabets}
® B={ACLST} (1) A={3,57°9 11}

(11) A and B are equal sets.
(12) @@ {1}, {2}, {3}, {1, 2}, {1, 3}, {2,3}.
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(i) {0}, {2}, {3} 14}, {0, 2}, {0, 3}, {0, 4}, {2, 3} {2, 4}, {3,4}, {0, 2,4},
{0, 2, 3}, {0, 3,4}, {2, 3,4)}.

A3 O {3 {05 @ {{3, {13, 23, (33, {1,2}, {1, 3), {2, 3}, {1, 2, 3}}
(@) {{} {1} {4}, {8}, {1, 4}, {1, 8}, {4, 8}, {1, 4, 8}}
49 0 {2.3,4,567}. @ {3,4,5,6}. @) {2}, 3} (v) {2, 7}

1.7 Venn diagram

Here we will learn the operations on sets and its applications with the help of pictorial
representation of the sets. The diagram formed by these sets is said to be the Venn
diagram of the statement.

A set s represented by circles or a closed geometrical figure ingide the urniversal set, The
Universal Set 8, is represented by a rectangular region.

First of all we will represent the set or a statement regarding sets with the help of Venn
diagram. The shaded area represents the set written,

(a) Subset :
S
B
AcB
(b) Union of sets: Let A U B =B, Here, whole area represented by B represents AUB,
o oagu S
%‘:: N ,_d-._-“ r.'g-'-'-:.l'
& — ||£ =
":‘: !u‘;/_‘_- ,’,‘. = —,‘ lI'r ﬁ;f'
e e = “T" "‘H.—__“—‘-_-,a.
A B T = B
A cB whenneither AuUBwhen AandB are

AcB whenAcB AcBnrBcA disjoint events

(c) Intersection of Sets (A m B): A m B represents the common area of A and B.
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=

A B
AnBwhenAcBand A n B when neither A = B nor
AnB=A BcA
]

AnB=¢

(d) Difference of sets: (A — B) represents the area of A that is not in B,

%’3

A-B,whenAcB A-B,whenBc A
(A-B=9)

A B | B
A = B when neither A—PB when A and B are
AcBnorBcA disjoint sets
(A-BcA)

(¢) Complement of Sets{A"): A’ or A’ is the set of those elements of Universal Set S
which are notin A,

HAVBUCand(AvB)uUC

135



BMC ¥YNENC)

AuB (AvuB)uC

BANBNCOand(ANB)NC

AnBul)

AnB (AnB)nC

hHhAUBNCandAnB )

BuwC
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f - 3
| s S oz R N
i= P . £ \ \
= ‘ 'J-nm-—-u—-; '1.‘-1 'l.' l:\ ‘f.a'
“‘ “1 :" 4 P pp———
<= A =
A B
AAB=(A-B)u(B-A)=AuUB
AAB=(A-B)u(B-A) AAB A)=
When neither AgBnorBg A When A and B arc disjoint

and A and Bare not digjoint

Note: The number of distinct elements of a finite set 4 is denoted by n{A). Let n(A),
n(B) and n{4B), where 4 and B are non-empty sets. Then n{AUB) =n(4) + n(B) - n
(4nB)

In case 4 and B are disjoint sets, so we have ANB = ¢, then n{AB)=n(A}+n(B)

From the above Venn-Diagram, the following results are clearly true n{d) =n{d - B)+
n{AnB)

(a) n(B) = n(B — A) + n(ANB)
(b)n(4d) UB)= n(d — B) + n(B — Ay+ n(4nB)

Then result, n{A\B)= n(A) + n(B) — n(AB) can be generalized as,
n(AVBUCER(Ayn(B)+ n(C) — r(ANB) — n{BNC)— n(AC) + n(ANBNC)
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Example:If 63% of persons like orange where 76% like apples. What can be said about
the percentage of persons whe like both oranges and apple?

Let n{s) = total mmmber of persons = 100

A= {x: x likes oranges}, B= {x: x likes apples}

nd) =63 , n(B) =76 , AnB = {x:x likes oranges and apples both}
Now, n{4UB) = n(A) + n(B)—n(4nB)

~n(ANB) = n(4) + n(B)—n(AUB) =63 +76 — 100 =39 =n(AnB) =39
Hence, 39% people like both oranges and apples.

Example: In a group of 1000 people, there are 750, who can speak Hindi and 400, who
can speak Bengal. How many can speak Hindi only? How many can speak Bengali only?
How many can speak?

Solntion: Let 4 = {x: x speaks Hindi} and B = { x: x speaks Bengali)

~A — B= {x x speaks Hindi and can not speak Bengali}

B — A= {x: x speaks Bengali and can not speak Hindi}

ANB = {x: x speaks Hindi and Bengali both}

Given, n(4) =750, n(B) =400 n(4_B)= 1000

~n(AUB) = n(4) + n(B)— n{AnB) =750 + 400 — 100 = 1150 — 1000 = 150

So, 150 people are speaking Hindi and Bengali both.

Again, n{4) =n(4d — B)+ n(4AB), n{4—B)=n(d)-n(d~B) =750 —150= 600
Hence, 600 people are speaking Hindi only,

Finally, n(S — 4) = n(B) — n{AnB) =400 — 150 = 250 So, 250 people are speaking
Bengali only.
1.8 Cartesian product of Sets

An ordered pair (g, ) consists of two objects « the b in a given fixed order.

We call a and & as the first and second coordinates respectively of the ordered pair (a, 5).
a and b may have equal values, Two ordered pairs (g, b) and (x, y) are said to be equal if
a =x and b =y and we write (g, 5)= (x, y). Thus (1,2) #(2,1). A distinction between the
ordered pair (1,2} and the set {1,2}is that (1,2)#(2,1) but {1,2}={2,1}.

138



Definition: Let 4 and B be two sets. The set of all ordered pairs (a, &), where the first
coordinate a of (@, b) is an element of 4 and the second coordinate b is an element of B is
called the Cartesian product or simply productofsets 4 and B and is written as AxB.

Symbolically, 4B = {(a, b) : ac4 end be B}

Example:Let A = {1,2} and B = {a, b, c}. Find AxB, Bx4, and AxA.

Solution: 4x B ={(,a),(1,5),(1,¢),(2,4),(2,6),(2,)}
BxA={(a,1),(,2,(,),®.2),(c,,(c,2)}. And AxA={(L1),(1,2),(2,1),(2,2)}

The Cartesian product 4x 4is written as 4° and we see from the above example that in
general AxA4=Bx4

Generalizing the definition of the cartesian product of two sets, we define the cattesian
productofn sets 4,4,,..., 4 as follows:

Ax A x.., %4 ={(a,a,..2):0 €40, cA,,...a A
Example:Find x, y if (2x-3,3y-1)=(5,5)
Solution: We know that (2x-3,3y-1)=(5,5) if 2x-3=5and 3y-1=5
=>x=4 and y=2
Example:Let 4={1,2,4},8=1{2,5,7}and C ={1,3,7} . Show that
Ax(BNC) =(4xB)N(4xC)
Solution: BNC ={7} . Ax(BNC) ={(1,7),(27),(4,7)}
Again 4xB={(1,2),(15).(1,7),(2,2),(2,5),(2.7),(4,2),(4,5),(4,7)} and
AxC={(1,1),1,3)(1.7),(2,1).{(2,3),(2,7),(4.1).(4,3),(4,7)}
AAxB)N(4xC)= {(1,7),(2,7),(4,7)} Hemce Ax(BNC)  =(4xB)N(4NC)

Check your progress
(1) f4={2,3,45,6}, B={3,4,5,6,7}, C= {4,5,6,7,8}, then find
(@ (AuB) N (ACKT) (ANB) v (ANC)(iii) (A —B) and (B - C)iv) AAB
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(2) Showthe following sets by Venn-Diagram.
) -3y
(i) 4A-4
(iii) A'~B

(3) In a group of 45 students, 22 can speak Hindi only, 12 can speak English only.
How many can speak both Hindi and English?

4 XA={24,5},B={13,6 7}, C={7, 8} Find {AxB}u {BxC}

Answer/Solution

OO {2,3,4,567. @ {3,4,56). @ (2and 3} @) 27
(3) n(HUE) =45, n(H)- n(HNE)= 22, n(E) - n(HE)= 12.
n(HUE) = n(H)* n(E) - n(HNE) = 22+ 12 + n(HNE)
45— 34 =n(HNE) =11,

@) {4xB}u {BxCY={(2,1), (2,3), (2.6), (2,7), (4,1}, (4.3), (4,6), (4,7), (5.1), (5,3), (5.,6),
D v (,7), (1,8), 3,7, 3.8), (6,7), (6,8), (7.7), (7,8)}= {(2.1), 2,3), (2,6), (2,7),
(4,1), (4,3), (4,6), (4,7), (3,1), (3,3), (5,8), 5,)} W {(1,7), (1,8), 3.7), (3,8), (6,7), (6.8),
(7.7, (7.8}

Suggested Further Readings

(1) Felx. H. (1978), Set theory, Chelsea publishing Co. New York

(2) P.T. Johnstone, (1987) Notes on Logic and set theory, Cambridge University
Press.

(3) L N. Herstein. (1983),Topic in Algebra, Vikas publishing house Pvt. Ltd.

(4) John B, Fraleigh, A first course in Abstract Algebra, Narosa publishing house Pvt.
Ltd.

(5) S.Ganguly and MN.Mukherjee, A Treatise on basic Algebra, Academic
Publishers- Kolkata,
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Unit -2

Relation

Structure

2.1 Introduction

2.2 Qbjectives

2.3 Relation

2.4 Binary Relations in a Set

2.5 Domamn and Range of a Relation

2.6 Typesof Relations

2.7 Difierence between relation and function
2.8 Composition of Relation

2.9 Properties of Relations on a Set

2.10 Partially Ordered Sets

2.1 Introduction

Relation has got tremendous application in almost every field, social, economy,
engineering, technology etc. In computer science conceptof relation i8 a major tool to
learn to understand it more clearly.

2.2 Objectives

After reading this unit we should be able to
s recall the basic properties of relations
¢  derive other properties with the help ofthe basic ones
» identify various types of relation
¢  Relationship between equivalence classes and partition.
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2.3 Relation

The word “relation” suggests some familiar examples of relations between two people
such as the relation of father to son, mother to son, brother to sister, etc. If A is the set of
real numbers then there are many commonly used relations between two real numbers
such as “less than”, “greater than™ or that of “equality”. These examples suggest
relationship between two objects. A relation, which describes relationship between two
objects is called a binary relation. If a relation describes relationship among three objects
then it 15 called fernary relation. For example, the relation described as “three integers
ab, and ¢ in the set {1,2,3,.....,15} are related if their sum a+5+¢ is divisible by 5, is a
temary relation on the set {1,2,3,...,15}. In this relation, the integers 2,3 and 5 are related
because their sum i divisible by 5 but the integers 1,2 and 4 are not related. The relation
between parents and child on the set of human beings i8 also ternary relation, In general,
an n-ary relation among the sets 4 +4,+4,,..4 15 a set of n-tuples in which first
coordinate is an element of 4, the second coordinate is an element of 4, ..., and the »*
clement of A .

Here, we shall only consider binary relations. Such a relation between two objects can be
defined by listing the two objects as an ordered pair. A set of all such crdered pairs, in
each of which first elements is related to the second elements describes a binary relation.
We shall call a binary relation simply as relation.

Definition: Let 4 and B be two sets. A binary relation (or simply a relation) from 4 to B
1s a subsetof AxB, Symbolically, R is a relation from 4 to B if Rc AxB.

If R is a relation from A4 to B and if the ordered pair (g,5) ¢ Rthen we say that the element
a i3 related to the element b by R and we also write aRb which is read as “g is R-related
to b”. If x is not related by y, we write (x,y)#R.

Relation on a Set: Let R be a relation from A to B. If A=B then we say that R is a
relation on the set 4 instead of saying that R is a relation from 4 to 4. Thus a relation on a
set A 18 a subsetof Ax4.

ExamplesLet 4={1,23}and B ={p,q}
Then R = {(Lp) (2.9, q)}is arelation from A4 to B.
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Example:Let I be the set of integers, Define the following relation (less than) on I. xRy if
and only if x<y.Then R={(x,5):x,yclandx< y

Example:Let 4=1,2,...,12}. Define the following relation R on A:
a,R,b1f and only if g divides b. Then

R={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12},(2,2),(2,4),(2,6),(
2,8),(2,10),(2,12),(3,3),(3,6),(3,9),(3,12),(4,4),(4,8),(4,12),(5,5),(5,10),(6,6),(6,12)}. )
Example:Let S be a set. Let R be a relation in p(S), Rep(S)xp(S) given by

R={(4, B): A, Bep(S)and AcB}, Now (4, Bye R=>AcB. Or ARB=ACB.

Example:Let Xbe a setand let A is called the relation of equality or diagonal relation in
Xandwewrite xAyiff x=y.

Example: If R =X x X - A. Then (x, y)eR=>(x, y)eXxX, (x, )eAie. xRy iff x#y

R i5 called the relation of mequality in X, Thus we can say that the relation R of
inequality in a set X'is the complement of the diagonal relation A in XxX,

Example:l ct R be a relation in the set Z of integers given by R={x, y): x<y,x, ye Z}
where ‘<’ has the usual meaning in Z. Since 3< 4, therefore (3, 4) €R or 3R4. But (4,
3)¢R, since 4>3.

Example:Let 4 and B be two finite sets having m and n elements respectively, Find the

number of distinct relations that can be defined from A to B. The number of distinct
relations from A to B is the total number of subsets of 4% 5.

2.4 Binary Relations in a Set

A biary relation R is said to be defined m a set A if for any ordered parr (x, y)ed x4, it
is meaningful to say that xRy is true or false, In other words, R= {(x, y) ed x A: xRy i8
true}.That is, a relation R in a set 4 is a subsetofd x 4. So, the binary relation is a
relation between two sets, these sets may be different or may be identical, For the sake of
convenience a bmary relation will be written as a relation.

2.5 Domain and Range of a Relation

The domain D of the relation R is defined as the set of elements of first set of the ordered
pairs which belongs to R, ie., D= {(x, ) €R, forxe4}.
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The range E ofthe relation R & define as the set of all elements of the second set of the
ordered pairs which belong to R, 1e., E= {y: {x, y)eR, for ye B}. Obviously, DC A and
ECB.

Example: LetA= {1, 2, 3,4} and B = {a, b, c}. Every subset of AxB is a relation from 4
to B. So, if R ={(2, a), (4, 4), (4, c}}, then the domain of R is the set {2,4} and the range
of R is the set {a, ¢}

Representation of a Relation by a Matrix and a Graph

A relation from a finite set 4 to a {inite set B can also be represented by a matrix called
relation matrix of R,

Let A={a,a,,..0. }and B={h,b,.b }and R be a relation from A to B. Define an mxn
matrix whose m rows correspond to the m elements in 4 and the » columns correspond to
the # clements in B as follows: The matrix clement

1 ifaRb,
0 if aRb,

%y

where raistheelnmsmﬁlthei'hmwmdj‘hcnhnnn.

Example:Lct A={a,b,c,d} and B={a,f,r} . Then R={(a,a),(&,7){c,7),{d, 8)} can be
represented in relation matrix as:

a By

a|ll1¢ 0
bjO 01
c|101
d{o1 0

A relation can also be represented pictorially by drawing its graph, Here we shall use the
term graphs only as a tool to represent relations. Let R be a relation i a set
A={a,a,,...a}. The clements of A are represented by small circles called vertices or

nodes. The vertices corresponding to the element 4, is labeled as g,. If g, Ra,, that is, if (g,
,a,}e R, then we join vertices g,and 4 by means of an are called edge and put an arrow on
the edge in the direction from g to s,. When all the vertices corresponding to the ordered
pairs in R are connected by edges with proper arrows, we get a graph of the relation R.
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Example:Let 4={1,2,3,4,5,} and

Let R={(1,2),(1,3),(L,4).(,5),(2,3), (2,402, 5),(3,4)3,5),(4,5)} .Then the relation R can be
represented in graph.

Domain and Range of a Relation: Let R be a relation from A to B. That is ,
Rc AxB. The domain D of the relation R is the set of all first elements of the ordered
pairs which belong to R. Symbolically,

D={x:xedand (x,y)eRforsome ye B}

The range E of the relation R is the set of all second clements of the ordered pairs which
belong to R. Symbolically,

E={y:yeBand (x,y)eRforsomexc 4}.
Obviously, for any relation Rc AxB, domangc 4 and range c B.
Example:let A={,2,3,4}and B={a,B8,y}.

Let R={(2,a),(4,4),(4,b)}be a relation. Then domain of R is the set {2,4} and range of R is
the set {a, 5}.

2.6 Types of Relations

(1) Power Set:

Suppose that the set 4 has m elements and the set B has n elements. Then the product
AxB has mn clements. Therefore the power set of 4x 5, that is, P(4xB)will have 2™

elements, Thus 4xphave 2™ different subsets. Now since every subset of 4xpis a
relation from A to B, therefore we shall have 2™ different relation from A4 to B.

(2) Inverse relation :

Let R be a relation from A to B, The inverse relation of R, denoted by R, is a relation
from B to A defined by:

RY(p,%): yeB,x € Aand(x,y) € R} . In other words, (x,y) < Rif and only if (y,x)eR.
Example s Let 4= {a,b,c},B= {1,2,3}3I1d R ={(4,1),(a,3),(b,3)} {c,3} .Then
R ={(1,a),(3,a),(3,8)} B,c}
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Example : Let 4 = {1,2,3}, B={a, b} and R={(La), (L, b), (3,a), (2, ) }be a relation
from A to B.The inverse relation of R is & = {(a,1), (5, 1), (a, 3), (5.2}

Example : [ ¢t 4= {2,3,4}, B={2,3,4} and R={x)): x —}| =1} beamlaimn from A to B.
That 55, R ={3,2), (2,3), (4.3), (3, 4)} The inverse relation of Ris R'={(3,2), (2, 3), (4,
3), (3, 4)}. It may be noted that R—R"".

Note : every relation has an mverse relation. If R be a relation from A to B, then
R'!is arelation from B to A and (R™Y'=R.

Theorem2.3.1: If R be a relation from A4 to B, then the domain of R is the range of R
and the range of R is the domain of R,

Proof: Let yedomain of R, Then there exist xe 4 and ye B, (y, x)eR". But (y, x)eR
'=5(x, y)eR. =ye range of R,

Therefore, ye domain R =>ye range of R. Hence domain of RS range of R. In a similar
way we can prove that range of RE domain of R, Therefore, domain of R™'=range of R.
In a similar manner it can be shown that domain of R=range of k"

Identity Relation: A relation R in a set A is said to be identity relation, if I,={x.x) :
xeA}. Generally it is denoted by I,

Example:Let A= {1,2,3} then R=4x4={(1,1),(1,2), (1,3), (2,1), (2.2), 2,3), 3,1),
(3,2),(3,3) }is a universal relation in A,

Void (empty) Relation : A relation R in a set 4 is said to be a void relation if Ris a
null set, ie., if R=¢.

Example:Let A= {2,3,7} and ket R be defined as ‘aRb if and only if 2a =1b * then we
observe that R=¢—A4 x 4 is a void relation.

Example: Let A = {1, 2, 3}. We consider several relations on 4.

(i) Let R bethe relation defined by m<n, that is, mR,» if and only if m<n.
(i) Let R,be the relation defined by mR,nif and only if [ — n| < 1.

(iii) Define R, bym =n (mod 3), so that mRsn if and only if m = n (mod 3).
{iv) Let E be the “equality relation’ on A, that is, mEn if and only if m=n.

Exampie: Let A= {1,2,3,4,5} and B={a, b, ¢} and ket R={(1, a), (2,a), (2, ¢), 3, 4,), 3,
b), 4, ), (4, b),(4, 9, (5, b)}.
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2.7.Difference between relation and functions

Suppose A and B are two sets. Let fbe a function from A to B. Then fis a subset of4x 5
satisfying the following two conditions:

1. Foreach g€ 4, the ordered parr (a,b) e fforsome be B.

2, X (a,b)e fand (a,c) e fthen b=c.
On the other hand, every subset of 4x zis a relation from 4 to B, Thus every finction is a
relation but every relation 5 not necessarily a function. In a relation from 4 to B an
clement of 4 may be related to more than one element in B. Also there may be some
elements of 4 which may not be related to any element of B. But in a function from A4 to

B each element of 4 must be associated to one and only one element of B,
Example:Let 4={23,4}and B={a,b,c}.Then R={{1,4),(2,0),(3,4)} {4,a}
is both relation and fumction from 4 to B. But §={(1,4),(2,5),(L¢),(3,4)}

15 a relation from A to B but not a function from A to B because the element 1 of 4 is
associated to two different elements g and ¢ of B,

2.8 Composition of Relations

Let A,.B and C be sets and let R be a relation from A to B and kt S be a relation from B to
C, that is , Rc AxB and S c BxC, Then the composition of R and §, denoted by Re5, &
the relation from 4 to C defined by setting (s,c)cRe§is any only if there exists an
clement 5 e Rsuchthat(a,b)eR and (b,c)es.

Suppose the R is a relation on a set 4, that is R Ax 4. Then r.r, the composition of R
with itself is always defined and ro.r is sometimes denoted by R’ .Similarly,
R =R*oR=RoRoR and so on. Hence R*is defined for all positive integers ».

Enm-]’]e: Let 4= {1r213:4}33 = {ﬂ,b,c,d},c = {x:}';z}
And kt R={(1,6),(2,d),3,0).(3,5),3,d)} and 5 ={(b,2),(b,2),(c,).(d,2)}.

Then ReS§={(2,2),(3,x),(3,2)} -
Example:Let X=>Set of all women, ¥=Set of all men, Z=Set of all luman beings.
Let R;bearelation from X to ¥ given by R, ={(x, ¥} : xeX, ye Yand x is wife ofy}
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And let R, be a relation from Yto Z given by R,= {{y, 2): ye ¥, zeZ and y is father ofz}.
Therefore R 0R = {{(x, z)e XxZ: forsome ye Y (x,y)eR; and (y, z)eR,}. Here R,0R; s
the relation ‘is mother of’ provided a man can have only wife.

Example:If R; be a relation form the set X to the set ¥, R ;a relation from the set ¥ to the
set Z and R; a relation from the set Z to the set W, Then R0 (R;0R,)={R,0R,)0R,, that

is composition of relation is associative :

Now R;oR;cXx Z and R, EZXW.Thﬂl'EfOTE R,o0 (RgOR;)QXXW,ﬂIﬂt iS, a relation
from X'to W. Similarly (R,0R;) o R; CXxW;that is, a relation from X'to W. Now (x, w)
eR0(R0R,) &dzeZ(x,z)eR, and (R, 2)eR, & (z, w)eR, & FzeZ, yeZ, ye¥ (x,

v) eR,and (y, z2)eR & (2, w)eR;

(Since (PAQ) AR=PA{QAR)) &3y €Y (x, y)eR; and (¥, w)eR;0R;. & (x,
w}e(R;0R,)oR ;. Therefore R;o(R;0R~(R;0R;)oR;.
Check vour progress
(2.1) Prove that (R )I=R.
(2.2) Prove that (R,0R;}-1=R; "oR;".

Reversal Rule: From the above we get the nverse of the composite of two relations is
the composite of their inverse in the reverse order

Solution :
(2.1). Let RcX %Y, then R’'c¥xY. Therefore (R)'cXxY. Now (x, y)eRe(y, x)eR & (x,
y)e(R}1 Hence R=R™).

(2.2). Let R, XY, R,c¥xZ. then R;0R ;< XxY. Hence (R0R ;) '<Z*X. Now R, oR;
1cZx Y (prove). Now (z, x}e(R;0R;) & (x, 2)eR,0R ;< (x, Y)eR,; and (y, 2)eR, for
some y ¥ (y, x)eR, " and (z, y)e R, for some y ¥ (z, y)eR,” and (3, x)eR;™ for
some ye¥e(z, x)eR;'oR ;" Hence (R ;0R,)'=R," oR ;™.

To find composition of Relations using Matrices

There is another way of finding R Susing matrix representations of R and S, Let M, and
M denote matrices of the relations R and § respectively. Conskler the matrix M obtained
by multiplying M, and M,. That is M =M M. Then the elements corresponding to the
non-zero enfries in M are related by Ro§. In other words M =M M, and M, , have the
same non-zero entries. That is (, /)*element in M 15 non-zero if and only if @, /)* element
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in M, .is non-zero. Note that the non-zero entries in M and M, ; may not have the same
values,

Example : Let us consider the above example. Then

abcd Xy z

1{1 000 al0 00

210 001 _bj1 01
M, = 5

3{1 101 c|010

410 000 d|o 01

Multiplying M, and M, we obtain the matrix

Xyz
000
001
M=MMs=11 02
000

Cormresponding to non-zerc entries in M, we obtain the relation

Reo§= {(292)1 (391)9(31 Z]} z

2.9 Properties of Relations on a Set

Comsider the given set 4. In this section we discuss a number of important types of
relations, which are defined on A.

Reflexive relation : A relation R ona setis said to be reflexive relation if
(a,8)e R Vae AThus relation R is reflexive if we have aRa, Vae 4.
A relation i8 not reflexive if there exists an g« 4 suchthat (g,a)eR.

Example : Let A be the set of positive integers. Define a relation R on A4 as follows:
aRbif and only if g divides 5.

Since every integer always divides itself, R is a reflexive relation.
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Example : Let 4=1{1,2,3,4}. Then R={(L1),(2,3),(2,4),(3,3),(4,1),(4,4)}on 4 is not reflexive
since 2 4but (2,2)¢R.

Clearly a relation on a set 4 represented by a matrix will be reflexive if and only if all the
entries on the main diagonal of the matrix are 1.

Symmetric relation : A relation R on a set 4 5 sail to be symmetric relation if
(a,b) e R= (b,a) € R.Thus R is symmetric if whenever aRb then bRa.

A relation R i§ not symmetric if there exists g,b e Asuch that (g,b)c Rbut (b,a)2 R.
Example:Let A={q,b,c}

R =1}

R, = {{a,0),(5,B)}

R, = {(a,b),(b,a)}and
R, = AxA

Then all four R, R,, R, ,and R, are symmetric relations. The relation Ris called empty
relation or the void relation on 4, while the relation R, which is eaual 4x 4 is called

universal relation on A.

Example : Let 4 be the set of positive integers, Define a relation R on A as follows:
(6,0 R fand only if a2 5.

Then the relation R is not symmetric because (10,9) < zbut (9,10) is not in B.

Clearly, a relation on set 4 represented by a matrix will be symmetric if the entries in the
matrix are symmetrical with respectto the mam diagonal.

Anti-symmetric relation : A relation R on a set A is said to be anti-symmetric
relation if (a, b) e rand (b,a) e R then a = 5.Thus R is anti-symmetric if (a,5)in R mplics
that (b,z)is notin R unless g=»5.

A rclation R on a set 4 is not anti-symmetric if there exists elements g,5in 4 such that
aRb,bRabut g 5
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Example : Let N be the set of natural numbers. Let R be the relation on N defined by “x
8 a divisor of y”. Then R & anti-symmetric since o divides b and b divides a implies
a=h.

Example : Let 4 be the set of positive integers and R be a relation on A4 such that (g,5) is
in R if and only ga>4. Then R is an anti-symmetric relation.

Example : Let 4={a,b,c}and let relation R on 4 is given by R=R={(a,b),{a,0),{c, @)} -
Then R is not anti-symmetric,

Transitive relation : A relation R on a set 4 is said to be transitive relation if

{a.bye Rand (b,c) e R=>(a,c)e R . Thus R is transitive if aRb, bRc then aRc.

A relation R on a set A 15 not transitive if there exists elements g, b and ce 4, ot
necessanly distinct, such that: (a,b)e R, (b,c) e RbUL (a,c) e R
If R is transitive relation on A then it is clear that RoRc R.

Example : The relation <is a transitive relation on the set of real mumbers.

Example : Let 4 be set of positive integers. Define a relation R on A as follows: aRb if
and only if a divides b. Then R is a transitive relation because if g divides & and b divides
¢ then g divides ¢,

Example : Let 4 = the set of all lines in the plane. Define the following relation R on A:
LRI,and only if ] i perpendicular to /,, where / and [ are lines in the plane, Then R is
not a transitive relation.

Transitive Extension and Transitive Closure of a rotation : Let R be a
relation on 4. Then the fransitive extension of R is a relation R on 4 defined by

R =RU(RoR), where RoRis the composition of relation R with itself. Thus R contains R
and moreover if (a,b)and (b,c)are in R then (a,c)is also i R,.

It is obvious that a relation R on 4 is transitive if and only if the transitive extension Rof
Risequalto R. Thatis R =R,

Difinition: Let R be a relation on A. The transitive closure R*of R 1s the relation on 4
suchthat. 1. R'is transitive

2 RcX
3. R*has the fewest possible elements.
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Thus the transitive closure of relation R is the smallest transitive relation on A4 containing
R. Given a relation R on a set A4, the transitive closure R'can be determined as follows:

Stepl. Cakulate R =RU(RoR)and R, =RU(RoR), where the relation R is the
transition extension of the relation R and so on.

Step2. If R =Rthen R is transitive and relation R itself is the transitive closure of R. If
R #R,cakulte R,.

Step3. If R, #Rcakulate next R.
Step4. if R =R stop. The transitive closure R*ofR is the relation R. Thatis, & =R.

Example:let 4-={,234 and let R be a rclation on A defned by
R={(L1,1,2),(2,4),{3,2),(4,3)}. Find the transitive closure of R.

Solution: The matrix of the relation R is given by
1234

1100
|ec o1
o100
001 0

Multiplying M, with itself, we obtain,
1234

11001100 11101
TR 0001|0001 2|0010
ERlpr1oojo100| 3(c001
001 ofjoo1 0] 4{010 0

Corresponding to non-zero entries in M, we obtain Ro R = {(1,1), (1, 2), (1,4),(2,3), (3,4),(4,2)}
< 'Rl = R U (R o R) = {(1:1)5 (]1 2)': (]: 4): (2, 3), (23 4): (392):(3: 4): (4: 2)5 (453)} X
Since R =R, we wil calculate R, =R U(R oR).
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The matrix of relation R is given by

11401

0011
M:
Bolo1 01

D110

Multiplying M, with itself, we obtain

11011101] 1222
M.=MM=0011 0011 |0111
BB O1p1 010101 (0121
p11¢jlo11 0f 0111

Corresponding to non-zero entries in M, we obtain

(R o R)={(1.1),(1,2),(1,3),(1,4),(2,2),(2,3),{(2,4),(3,2),(3,3), 3,9, (4,2),(4,3), (4, 4)}

Ry =R UR oR)={(11),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,2),3,3),(3,4),(4,2), (4,3), (4,41}
Again since R, # R, we will calculate R, =R, U(R,0R,).

The matrix of relation R, is given by

1111
_|e111
2 o111
0111
144 4
T ith itself, biain M 03 3 3
Multiplying thﬁh elf, we o M—Mnan,n3 3 3
03 3 3

Since non-zero entries in M, and M are same, therefore R,oR,=R,.Thus R, =R,.
Since R, = R,, the trangitive closure R*of R is the relation R,

Hence R*={(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,9),(3,2),(3,3),(3,4),(4,2),(4,3).(4. 9}
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2,10 Partially Ordered Sets

Definition : A relation R on a set A is said to be partial order if R 15 reflexive, anti
symmetric and transitive. Thus a relation R ona set A is partial order relation if the
following conditions hokl:

1. Reflexivity : aRaV acA
2. Anti-symmetry : if aRb, bRathen a=b.
3. Transitivity : If aRb, bRc then aRc

The set A together with the partial orderR is called partially ordered set.

For convenience, we generally dencte a partial order by the symbol < i place of R. We
read < as kss than or equal to. The symbol < does not necessarily mean usual “less than
ot equal to” as is used for real numbers, If < is partial order on A, then the ordered pair
(A, <} is called a partially ordered set or simply a poset.

Example : Let A be a collection of subsets of a set S. the relation € of set inclusion is a
partial order on A, Theu (A, ©) i3 poset.

Example : The relation < of divisibility is partial order on the set N of natural numbers.
Here a<bmeans a | b (a divides b).
Example : The relation < on N is not a partial order, since it is not reflexive.

Example : In the set [R of real numbers, the relation < having its usual meaning in R is a
total order relation. The proofis left as an exercise.

Example : If S be a set, then the relation in p () given by : for 4, Bep(S). A<B, is a
partial order relation but not a total order relation. The proofis left as an exercise.

Definition : Let (A, <) be a poset. The elements a and b of A are said to be comparable
if a<b or b<a.Thus a and b are non comparable if neither a<b nor b<a.

Example : Consider the poset in Example 2.51. The elements 1 and 5 are not comparable
since neither 2 divides 5 nor 5 divides 2. Thus in a poset every pair of elements need not
be comparable.

Let (A, <) be a poset, We say a <bifa<b and a=b, We also say b in larger than or equal
to a and write b<aaifa< b.

Definition : Let (S, <) be a partially ordered set. If x<y and x#y, then x is sail to be
strictly smaller than or strictly predecessor of y. We also say that y is strictly greater than
or strictly successorofy. denote it by x<y.

An element a<S is said to be a least or first (respectively greatest or last) element § if
as(respectively x<A)vxeS).
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An element geS is called minimal (respectively maximal) element of § & x<g
(respectively a <x) implies a=x where x&S.

Example : (¥, <), (the relation < having its usual meaning) is a partially ordered set. 2 is
stoctly smaller than 5 or 2 < 5. 1 s the least or first element of N. since, 1<mVmeN,
There is no greatest or last element of &V, 1 is the only minimal element since if xeN,
Then x< 1=3x=1.

Example : Consider the set S = {1, 2, 3, 4, 12}. Let < be defined by a<b if a divides 5.
Then 2 is strictly smaller than 4 or 2 < 4, 12 is strictly greatest than 4 or 4 < 12, Since 1
divides each of the number 1,2,3,4,12 s0 I<xVxeS, hence I i8 the kast element of S.
Again since x<12¥xeS§ ie. each clement of S divides 12, so 12 is the greatest or last
element of §. Here also I is the only minimal element, since xe §, then x<1 ie. x divides 1
implies x=1.

Example : Let § be a set. Then (p (5).<) where < & the set inclusion relation c, i§ a
partially ordered set. Then ¢ is the least element, since ¢cAVAep(S), and § is the
greatest element since ACSVAe p (S). Every singleton is a minimal element. Forif aes,
{a}e p(5) and if Xe p(S), then Xc{a}=>X={a}.

Definition : Infimum and Supermum : Let (S, <) be a partially ordered set and A
a subset of §. An element g is said to be a lower bound (respectively upper bound) of
Al a<x{respectively x<a) VxeA.

In case A has a lower bound, we say that A is bounded below or bounded on the left.
When A has an upper bound we say that A is bounded above or bounded on the right. Let
L(#b) be the set of all ower bounds of A, then greatest element of L if it exists is called
the greatest lower bound (g 1 b) or infimum of A. Similarly if U(zd) be the set of all
upper bounds of A, then the least clkement of U if it exists i5 called the least upper
bounded (£u.5.) or supremum of 4

Example : Consider the partially ordered set (¥, <), where m < if m divides n. Consider
the subset A={12, 18}. 2 is a lower bound of A gince 2 divides both 12 and 18, ie, 2<12
and 2<18. The set of al ower bounds of 4 viz 1={1,2,3,6} and 6 is the greatest element
of L. Hence g.Lb. or mfimum of 4=6. It is called the greatest common divisor (g.c.d} of
A. Now 36, 72, 108 etc. are upper bounds of 4 since x divides 36 or 72 or 108 VxeA thus
x< 36 or 72 or 108 YxeA. Now the set of upper bounds of 4 viz U = {36, 72, 108, ...},

the lest element of U= 36. Hence the Lu.b or supremum of 4= 36. It is alsc called the
L.CM. of 12 and 18.

Example : Set S be a non-empty set which i not a singleton, consider the set Y=P (¢, S}
partially ordered by the inclusion relation. Now ¥ has no least or no greatest ckement.
Bach singleton as in Ex. (5.6) is the minimal element.
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Let ACY, G=n {X, : XaeA). If G #6, then G & g.1b of 4. Similarly L=U {X, :
XaeA}is the Lu.b of 4 and exists if L2A.

Theorem : The least (respectively greatest) elkement of a partially set (s, <), if it exists, is
umijue.

Proof: If possible let / and I’ be two least element of §. Since / is the least element, so /
<xVxeS hence /<’ since I’.S. Similarly taking !’ as lest element /'<), Hence &I’
and !'<l. Therefore by anti-symmetry /=I’. Similar proof can be given for the greatest
clement.

Remark : In contrast to the above theorem, maximal and minimal ¢lements of a partially
ordered set X need not be unique, In example (5.6) or {5.8)* we have shown that every
singleton is a minimal element. Sometimes minimal element can also be a maximal
element. For example consider the partially ordered set {XA} where A is the diagonal
relation. Every element of X is a minimal as well as a maximal element of X For let
aeX, Then xAa=x=a, aAx=>x=a,

Definition : A partially ordered set (S, <) is said to be well ordered if every non empty
subset of S has a least element.

Theorem : A well ordered set (5, <) is always totally ordered or linearly ordered or a
chain.

Proof: Letx, y be any two element of S. Consiler the subset {x, ¥} of §, which is non
empty and hence has a least element either x or y, then x<y or y <x. Hence every two

element of § are comparable and so S i totally ordered. We now state two mportant
statements without proof.

Well ordering principle : Every setcan be well ordered.

Zorn’s Lemma: Let § be a non empty partially ordered set in which every chain ie.
every totally ordered subset has an upper bound, then § contains a maximal

Totally ordered set or chain : Let (A, <) be a poset. (A, <) is called chain or
totally ordered set if every two elements in A ac comparabl. That is, if a, beA then a<b
or b< a. Totally ordered sets are also called linearly orderly sets. Example 1: 1et Rbe a
relation in the set of natural mumbers N defined by “x is a nmltiple of ¥’, then R is a partial
order in N. 6 and 2, 15 and 3, 20 and 20 are all comparabk but 3 and 5, 7 and 10 are not
comparable. So N is not a totally ordered set.

Example : J.et 4 and B be totally ordered sets. Then Cartesian product 4 xB can be
totally ordered as follows: (g,b) < (@', &) if a<a’ or if @ = @’ and b<b'. This order is
called the lexicographical order of Ax B, since it is similar to the way words are arranged
in a dictionary.
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Theorem : Every subset of a well-ordered setis well-ordered.

Mustration:

Let R the set of real numbers and let < be the usual less than or equal to relation onR.
Then (R, <) i8 poset which is a chain whereas the posets in Example 2.50 and example
2.51 are not chain,

Hasse Diagram

It is possible, at least in principle, to draw a diagram which shows at a glance the order
relation on a finite poset. Let (S, <) be a poset. Define a relation < on 8 by ‘a <b if and
only if a < b but a #5b°, a, beS. given a partial order < on §, b & said to cover a if a<b
and there is no element ¢ in § such that a<c<5 holds. A Hasse diagram of a poset (8, <)
is a graphical representation consisting of points labeled by the members of §, with a line
segment directed generally upward from a to wherever b covers a.

Example : [¢t §={1,2, 3,4, 5, 6}. We define < as m < if ‘m divides n’, that is, n is an
integer multiple of m. The diagram in Figure 6 is a Hasse diagram of the poset (S, <).

Hasse diagram of Example 1

There is no segment between 1 and 6 because 6 does not cove 1. From diagram we see
that 2 covers 1 and 6 covers 2. Similarly, 4 doesnot cover 1 because 4 covers 2 and 2
covers 1.

Example:s be the set of all positive divisors of 12. That is, S= {1, 2, 3,4, 5, 6, 12}.(5,<)
15 a poset where g < b means ‘e is a divisor of b’ for a, beS.

Hasse diagram of Example 2

There is no segment between 6 and 1, because 6 doesnotcover1, as 1 <2 <6 and 1 prec
3 <6. Similarly, 12 doesnotcove2as2<4<12and 2<6<12.
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Example ‘Let Sbcﬂlepowm' SﬂtOf{lg 2, 3} Thatis §= {¢'= {1}: {2}: {3}:1:2}5 {1:3}:
{2,3}, {1,2,3}.

Hasse diagram of Example 3
The Hasse diagram ofthe poset(S, <), where A < B is ACB for 4, BeS, is shown m figure

Example:let X = {2, 3, 6, 12, 24, 36} and the relation < be such that x<y if x divides v
(written as x|y). Draw the Hasse diagram of (X, <).

Example:Let = {1, 2, 3}, Then power set of X, P(X) = {$, {1}, {2}, {3}, {1,3}, {2,3},
{1,2,3}. Let < be the inclusion relation on P(X}. Draw Hasse diagram of (P(X}, S).

Example:: Let X be the set of factors of 12 and let <be the relation divides, ie., x<yif
and only if xly. Draw the Hasse diagram of (X, <).

Example:Let P = {1, 2, 3, 4, 5} and < be the relation “less than or equal to”, Draw the
Hasse diagram of (P, < ).

Since any two elements of P are comparable, (P, <) is a totally ordered set. A totally
ordered set would always have the Hasse diagram consisting of circles {or dofs) one

below the other ag shown in the Hagse diagram of this poset. This justifies the name
“cham™ for a totally ordered set.

Check your progress

(1) Let R be the relation in 4 = {1, 2, 3, 4, 5} which is defined by ‘x and y are relative
prime’. Find the solution set of R and draw R on a coordinate diagram of 4 x4,

(2) Let R be the relation in the natural numbers N defined by ‘x— y is divisible 8. Prove
that R is an equivalence relation.

(3) Let L be the setof lines in the Euclidean plane and let
a. Rbethe relation in L defined by *x is paralkl to y’.
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b. R’ be the relation in L defined by “x is perpendicular to y°. State whether or not
R and R' are equivalence relation.

Each of the following relations in the natyral number N

a “xy
“x is a multiple ofy”
“x+3y=12"

me e o
HR
A
s

“x is the husband ofy”

whether or not cach of the relations are (a) reflexive (b) symmetric 9¢) anti-
symmetric (d) transitive.

Let Z be the set of all integers. Define a relation R on Z in the following way. R =
fa,b}eZ x Z: (a — b) i divisible by 7}.Show that R is an equivalence relation. Find
all the distinet equivakence classes of the relation R,

Show that if R and § be transitive relations on a set 4, then RS is not transitive on
A.

Prove that a relation R ona set 4 is syrmetric if and only if R'=R,

Find the equivalence classes determined by the equivalence relation R on Z defined
by ‘aRbif and only if g — b 1§ divisible by 5° for q, b €Z, the set of integer,

Prove that an equivalence relation R on a set § determines a partitions of S.
Conversely, each partitions of § yiekls and equivalence relation on S.

(10) Find all of the partitions of S= {p, g, r, s}
Suggested Further Readings

(1)
2)
(3)
@

)

Felix. H. (1978) Set theory, Chelsea publishing Co. New York.

P. T. Johnstone, (1987) Notes on Logic and set theory, Cambridge University Press.
L N. Herstein, (1983), Topic in Algebra, Vikas publishing house Pvt. Lid.

John B, Fraleigh, A first course in Abstract Algebra, Narosa publishing house Pvt.
Lid.

S. Ganguly and M. N. Mukherjee, A Treatise on basic Algebra, Academic
Publishers- Kolkata.
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Unit -3

Partitions and distributions

Structure

3.1 Introduction

3.2 Objectives

3.3 Equivalence Relations

3.4 Equivalence Classes

3.5 Propertis of Equivakence Classes
3.6 Quotient set

3.7 Partition

3.1 Introduction

This is most basic unit of this block as it imtroduces the concept of statements,

Statement variables and the five elementary operations and associated logical
connectives.

We introduce the well formed statement formulae, tautologies and equivalence of
formulae, The law of duality is explained and established, It has got tremendous
application m almost every field, social, economy, engmeering, technology etc. In
computer science concept of logic is a major tool to learn to understand it more clearly.
Mathematics has a language of its own like most other sciences, which 15 very precise
and communicates just what is required-neither more nor less. Language basically
consists of words and their combinations called ‘expression’ or ‘sentences’. However in
Mathematics any expression or statement will not be called a ‘sentence’.

3.2 Objectives

After reading this unit we should be ablke to
1. Understand the concept of statement and statement variables

2. Use ckmentary operations like Conjunction, Disjunction, Negation, Implication,
Double implication
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3. Understand statement formulae, tautologies to equivakence of formulae

4. Use law of duality and functionally complete set of connectives

Logic is a field of study that deals with the method of reasoning Logic provides rukes by
which we can determine whether a given argument or reasoning is valid (correct) or not.
Logical reasoning is used m Mathematics to prove theorems. In computer science logic i
used to verify the correctness of programs

3.3 Equivalence Relations

Let 4 be a non-empty set and kt R be relation on 4. Then R s sakl to be equivalent
relation if it is
1. Reflexive. That is, for everyae 4, aRa.

2. Symmetric. That s, arb, then bRa.
3. Tranmsitive. That is, if arband bRcthen aRe

The equivalence relation is usually denoted by the symbol~.
Illustrations: The following are some examples of equivalence relations:

1. Equalty of numbers on the set of real numbers
2.  Equality of subsets a universal set
3.

Congruency of triangles on the set of triangles.
4,  Relation oflines bemng parallel on the setoflines n a plane.

Example : Let I be the set of integers. Define a relation R on I as follows: xRyif and only
if x- yis divisible by 5, vx,y eI. Show that R is an equivalence relation on 1.

Sohtion : 1. R is reflexive: Since for any s <1, a—a=0which is divisible by 5, therefore
aRa. Thus R is reflexive,

2. R is symmetric: For any a,bel, if a-bis divisible by 5, then 5-q1s also divisible by 5.
Thus, aRb= bRa. Hence R is symmetric.

3. R is transifive. Suppose akband bRcforany a,b,cel

both a-pand b—care divisible by 5
(a—b)+(b—c)are divisible by 5
a—cis divisible by 5

aRe. Thus R 18 transitive.

LU 44
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Since R is reflexive, symmetric and transitive, therefore R is an equivalence relation.
Example : The diagonal or the equality relation A in a set §'is an equivalence relation in
S. Forff x, yeS the xAy iff x=y. Thus

(o) xAxVxeS (reflexivity)

(B} xAy=>x =y=ry=x=yAx (Symmetry)

() forx, y, zeS, [xAy, yAz]> =y, y=z=x ==xAz,

Hence [xAy, and yAz]=>A (transitivity).

Example : Let N be the set of natural numbers. Consider the relation R in NN given by
(a, b) R(c, d) if a+d=b+c, where a, b, cde N and + denotes addition of natural numbers, R
is an equivalence relation in NxN.

(a) (@, b)R{(a, b) since a+b=b+a(Reflexivity)

(B) (a, b)R(c, dy=>atd=btc=ctb=dta=(c,d)R(a,b) (Symmetry)

1) [(a, DRz, d), (c, DR(e, H] =latd=btc, ctfSf~dte]
=(at+d+ctf=b+ctdte)=>atf~bte(By cancellation laws in N) = (a, b)R(e, /)
(Earti)

Example : Let a relation R in the set N of natural numbers be defined by: If m, ne N, then
mRn if m and 7 are both odd. Then R is not reflexive, since 2 is not related to 2.Thus xR x
VxeN. But R 5 symmetric and transitive as can be verified.

Example : Let X be a set. Congider the relation R in p(x) given by : for 4, Bep(X). ARB
if AcB. Now R is reflexive, since AcA, VAep(X) R is transitive, since [ACE, BcC]
=A4AcC where 4, B, Cep(X). But R is not symmetric, since ACB #=BcA.

Example : Let S be the set of all lines L in three dimensional space. Consider the relation
R in § given by; for L;, L,€e8, L;RL if L,is coplanar with L ;, Now R 1 reflexive, since L,
is coplanar with L ;, R is symmetric, since L; coplanar with L ;=L coplanar with L ,. But
R is not transitive, since (L; coplanar with L, and L, coplanar with L ;)}==>L; coplanar
with L ;.

Example : (a) Let X ={x, x,, x3, x,}. Define the following relations m X :
RI= {(xb xi)l (‘xZJ xZ)! (Ij, x.?): (st x.ﬂ! (xj'J xi')}

Ry= { x1, x1), (%2, X3), (X3, X3}, (%4, X4}, (X2, X3), (X2, X4}, (X2, %)}
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Ry={(x1, x1), (x2, %2}, (%3, X3),( X4, X4), (%2, X3), (X3, X2), (3, Xg), (%4, X35)}

R is symmetric, transitive but not reflexive since{ x, x;) €R;

R; i8 reflexive, fransitive but not symmetric since x;Rx but{ x4 x,) €R2

R;is reflexive, symmetric but not transitive since x,Rx; and x;Rx, but(x; x, )} €R2.

Note : Examples prove that the three properties of an equivalence relation viz. reflexive,
symmetric and transitive are independent of each other, ie. no one of them can be
deduced from the other two.

Example : Let A be the set of all people on the earth. Let us define a relation R in 4, such
that xRy if and only if ‘x is father of y°, Examine R is (i} reflexive, (ii} symmetric, and
() transitive. We have

(i} For xeA, xRx does not holds, because, x is not the father of x. That & R i not
reflexive.

(ii) LetxRy, ie., x is father of y, which does not imply that y is father of x. Thus vRx
does not hold Hence R i not symmetric,

(i) LetxRy and yRz hold. ie., x is father of y and y is father of z, but x is not father
of z, i.e., xRz does not holds. Hence R is not transitive.

Example : Let A be the set of all people on the earth. A relation R is defined on the set 4
by aRb if and only if g loves b’ for g, be A Examine R i (i) reflexive, (i) symmetric, and
(ii) transitive. Here,

(i) R is reflexive, because, every people loves himself. That is, aRa holds.
(i) R is not symmetric, because, if a loves b then b not necessarily loves , iec., alh
does not always imply 5Ra. Thus, R ig not symmetric,

(i) R is not transitive, because, if a loves » and b loves ¢ then a not necessarily
loves ¢, ie., if aRb and bRc but not necessarily aRe. Thus R is not transitive.
Hence R is reflexive but not symmetric and transitive.

Example : Let NV be the set of all natural numbers. Define a relation & in N by ‘xRy if and
only if x + y =10, Examine R is (i) reflective, (i} symmetric, and (iii) transitive. Here,

(i) Since3+3+#10Le., 3R3 doesnothold. Therefore R is not reflexive.

(ii) Ifa+b—10ﬂ:|enb+a—10 Le., if aRb hold then bRa holds. Hence R is
symmetric.

(iii) We have, 2+8=10 and 8+2=10 but 2+2#10, ie. 2R8 and 8R2 holds but ZR2

does not hold. Hence R is not transitive therefore R 15 not reflexive and
transitive but symmetric.
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Example : Let I be the set of all integers and R be a relation defined on I such that ‘xRy if
and only if ¥>y’. Examine R is (i) reflexive, (i) symmetric and (iil)} transitive. Here,

(1) Ris notreflexive, because, x > x is not true, ie., xBx i3 not true,

(i) R is not symmetric also, because, if x>y then y#x. Le., R 5 not symmetric

(iii) R is transitive because if xRy and yRz holds then xRz hold. Therefore R is not
reflexive and symmetric but transitive,

Example : Let A be the set of all straight lines in 3-space. A4 relation R is defined on 4 by
‘IRm if and only if / lies on the plane of m’ for . meA. Examine R 5 (i) reflexive, (1)
symmetric and (iii) transitive. Here,

(1) Let/ €A. then! is coplanar with itself. Therefore IRi holds for all /e 4. Hence R
1§ reflexive,

(i) Let/meAand [Rm hold. Then / lies on the plane of m. Therefore m lies on the
plane of §. Therefore IRm=>mRI. Thus R is symmetric.

(i) Lelmn,cA and IRm and mRn both hold. The / lies on the plane of m and m
lies on the plane of n. This does not always imply that / lies on the plane of n.
e.g., if / is a straight line on the x — y plane and m be another straight line
parallel fo y axis and n be a line on the y — z plane then [Rm and mRn hold but
[Rn does not hold because / and » lie on x — y plne and y — z plane

respectively, Thus R is not transitive.
Hence R is reflexive and symmetric but not transitive.

Example : Let 4 be a family of sets and let R be the relation in A defined by ‘415 a
subsetof B”. Examine R is (1) reflexive, (i) symmetric and (tii) transitive. Then R is

(i) Reflexive, because, if A4 the ACA is true.
(ii) Not symmetric, because if A&B then B i8 not necessarily a subset of A.

(i) Transitive, because, if ACB and BCC then ACC,, ie., if ARB and BRC hold
then ARCholds. Thus R is reflexive and transitive but not symmetric.

Example : A relation R s defined on the set J, the set of integers, by ‘aRb if and only if
ab>0" for a#0, b# 0elExamine R is (i) reflexive, (i) symmetric and (iii) transitive.
Here,

(i) Let aeR. Then aa>0 holds. Therefore aRa holds for all gel, Thus R is
reflexive

(i) Leta, beland aRb holds. If ab> O then ba>0. Therefore, aRb=>bRa. Thus R is
symmetric.
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(iii) Let a, b, ¢ € I and aRb, bRc hold. Then ab> 0 and be > 0. Therefore, (ab)
(bc)>0. This implies ac> 0 since 5>>0. So aRb and hRc=> aRc. Thus R is
transitive. Hence R is reflecsive, symmetric and transitive, hence R is an
equivalence relation,

Example : Let R be a relation in a set S which is symmefric and transitive. Then
aRB=>bRa(by symmetry) [aRb and bRal=>aRa(by Transitivity)

From this it may not be concluded tht fefelxivity follows from symmetry and transitivity,
The fallacy involved in the above argument is:

for ae S, to prove aRa, we have started with aRb=>bRa.

Now it might happen that 3 no element <S8 suchthat aRb.

Example : Examine whether each of the following relations is an equivalence relation in
the accompanying set —

()  The geometric notion of similarity in the set of all triangles in the Euclidean
plane.

Hint : It is an equivalence relation

(i} The relation of divisibility of a positive integer by another, the relation being
defined in the set of all positive integers as follows:

a is divisibke by b if J a positive integer ¢ such that a=bc.

Hint : The relation is reflexive, transitive but not symmetric,

(i) The relation <in the setR ofall real numbers defined as follows :
a<h if 3 a non-negative number ¢ such that g+c=b.

Hint : The relation s reflexive, since a+0=aVaeR Sotherelation i not symmetric fora
<h z=2b<a (prove)

The relation is trangitive for a<bh and b<c=ag<c (Prove)

(iv) The relation <in the set of natural Numbers Nis defined as follows :
() a<asince a +x =g has no solution in N. Hence < is non-reflexive
(b} a<bnotimplies g<b, Hence < ig not-symmetric

(¢) a<band b<c=> g <c Hence < is transitive.
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Example : R is a relation in Z defined by: if x, y, € Z, then xR; if 10+~ 0, Prove that R
is reflexive, symmetric but not transitive.

Hint : 2R3nd 3R6but—2R6

Definition : Let m be a fixed integer. Two integers a and b are said to be congruent
module m, written as ¢ = b{modm)

if any only if m divides ¢-5. That is, a =b (modm)if and only if - b=4kn for some
integer k.

The relation a=>b{modm) defined on the set of infegers is called the relation of
‘congruence modulo m’

3.4 Equivalence Classes

Definition : Let R be an equivalence relation on A. For any acA, the set of all xeA
which are related to a is called equivalence class of a. We denote equivalence class of a
by the symbol [a]. Thus symbolically [a] = {x : xe A and aRx}

Example : Let A= {1, 2, 3, 4} and let relation R on A be given by R = {(1, 1), (1, 2), (1,
3), 2, 1), (2, 2),(2,3), (3, 1), (3, 2), (3, 3), (4, 4)}. Find the equivalence classes of
relation R,

Solntion : It is easy to verify that R is an equivalence relation. The equivalences class of
leAis [1]= {x: xeAand Rx}= {1, 2, 3}

Similarly, [2]= {1, 2, 3}, [3] = {1, 2, 3} and [4] = {4}

Example : Let R be the relation of congruence module 3’ on the set I of integers. Find
equivalence classes of R.

Solution: We start with the element 0L The equivalence class 0of0 is
[0] = {x: xeland ORx} = {x: xc] and x = 0 (mod 3)}
= {x: xe ] and x is multipk of3={....,-6,-3,0,3,6,.....}

Since [0] = I, we take an element in I which is notin [0]. Let us chooselel. Now we
compnte, equivakence class ofl,

[1]1= {x: xe I and IRx} = {x; xeland x =1 (mod 3}}
={x:xe land x=3k+], when kel} = {...,,-5,-2, 1,4, 7,...... }
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Since [0] U [1]# L, we choosein an element in I which is notin [0] U [1]. Let us choose
2€l. The equivalence class of 2is [2] ={....—4,- 1, 2, §,8,.....).

Since [0] U [1] U [2] =L, we sce that these are the only distinct equivakence classes with
respect to the relation ‘congruence modulo 3°,

3.5 Properties of Equivalence Classes

The following theorem containg some important properties of an equivalence relation,
Theorem: Let A be a non-empty set and ket R be an equivalence relation on A. Fora,

bes A

1. ae[a]

2. if be[a] then[b] =[a],

3. [a] = [b]if and only if (, b)<R.

4. Either [a] =[b] or [a] N [b] = ¢. That is, two equivalence classes are ether disjoint
or identical,

Proof: (1)
2

3

Since R is reflexive, we have aRa. Thus ac[a].

Suppose be[a], then bRa. Let x be any element of [a]. Then xRb, but R is
transitive, therefore xRb and bRa = xRa =>xe[a]. Thus [b] € [a].

Again let v be any element of [a], then yRa. Since R is symmetric, therefore
bRa = aRb.Now yRa and aRb =yRb =ye[b] Thus [a] € [b]. Hence [a]
<€ [b]and [b] € [a]=>{al=[b]

Suppose [a] = [b]. We show that aRb. Since R is reflexive, we have aRa
now aRa =ac[a] =ae[b] (since [a]=[b]) =aRb

Conversely, suppose that aRb. Then we show that [a] = [b]. Let x be any
element of[a]. Then xRa. But it is given that aRb. Therefore,xRa and aRb
= XRb [since R is transitive] =x<[b]. Therefore, [a] € [b]. Again let be
any element of [b]. then ye[b] =yRb. Now we are given that aRb.
=»bRa[since R is symmetric]

Now, yRb and bRa=> yRa [since R is transitive] = ye[a]. Therefore [b] € [a].
Finally, since [a] & [b] and [b] & [a], we have [a] = [b].

@

If [a] N [b] and [b] = ¢, hence we are nothing to prove. So ket us suppose
that [a] N [b] #¢.Since [a] N [b] ¢, supposex<[a]N[b]. Now xe[a] N[b]
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=xe[a] and xe[b]=>xRa and xRb =>xRx and xRb =aRb ={[a] = [b] [by
part (iif)] Thus [a]N[bl¢—{a]=[a].
Thus two equivalence classes [a] and [b] are either identical or disjoint.

3.6 Quotient set of a Set S :

The set of equivalence classes obtained from an equivalence relation in a set § is called
the quotient set of § which & denoted by 5 or by Sk, or by S|R when the equivalence
relation is denoted by R.

Example : Let S be the set of all points in the x.y plane, We define a relation R in S by:
For a, be§, aRb if the line through the point a parallel to the X-axis passes through the
point b.It can casily be proved that R 5 an equivalence relation m 8. Now the
equivalence class @ determined by the point a is the line through the point a parallel to the
x-axis and the quotient set S= set of all straight lines in the x-y plane parallel to the x-
axis.

Example : The diagonal relation or the relation of equality in a set S is an equivalence
relation proved ). If aeS, thena={a}. ie. each equivalence class is a singleton and
S=set of all singletons.

Example : If § is a set, then R=SxS i3 an equivalence relation in § and the only
equivalence clags is the get S, S={S}.

Example : If X be the set of points in a plane and R is a relation on X defined by A4, BeX,
ARB if 4 and B are equidistant from the origin. prove that R is an equivalence relation.
Describe the equivalence classes.

Hint : The equivalence class R ,~=Set of points on the circlke with centre as origin O and
radius OA. Hence the quotient set X]R is the set of circles on the plane with centre as O.

3.7 Partition

Definition : Let S be non-empty set. A collection P ={A,, A,, ....) or non empty subsets
of S is called a partition of § if

1. A] UAz Ag ...... =8.
2 IfAl #Aj then AlnA_] =¢.

Example: Let ={....,- 5, 4,-2,-1,0,1, 2, 3, 4,...}. Then the collection {A;, A;, A3},
where

A={.,6-303609 ...}
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Ay=1{..,521,4710,.  }andAs={..,4,-1,25811,...}
isa pm‘ﬂ of I because A UA;UA;=Tand AinAAj = q) when A Aj.

It may be seen that every equivalence relation on a set determines a unique partition of
the set and every partition of'a set defines an equivalence relation on the set.

Example: Let A= {1, 2, 3 4} and consider the partition P={{1, 2}, {3, 4}} of A. Find
the equivalence relation R on A determined by P,

Solution: The disjoint sets in P are {1, 2} and {3, 4}. Each clements in a disjoint sct is
related to every other element in the same disjoint set and only to those elements. Thus
R={(1, 1),{1,2),(2,1),(2,2), (3, 3), 3,4), 4 3), 4 4}

Quotient Set : Let A be a non-empty set and R be an equivalence relation on A,
The set of all equivalence classes is called the quotient set of A modulo R and is
denoted by A/R.

Check your progress

1. Give an example of a relation on the set {a, b, ¢} which is

a. Reflexive but is neither symmetric nor transitive.

b. Reflexive, symmetric but not transitive.

¢. Symmetric and transitive but not reflexive.
2. (@ Let A={1, 2, 3} and B = {r, 8}. Then write the matrix ofthe relation R from

A to B given byR={(1,1), (2, 8),(3, 1)}

(b) Let A= {1, 2, 3, 4}. Give the relation R on A that has relation matrix
(1 1 0 1]
0
1

0
3. LetA={1,2,3,4), B={1,4,6,8,9}. Let R be relation from A to B defined by aRb1
and only if b= a%. Find the domain and range of R.
4, Let A bethe set of real numbers. Consider the followmg relation R on A;
(2, b)eR if and only if a>+b?=25, Find the domain and range of R,
5. (@) Let Abeasetwith 10 distinct clements. How many relation are there on A?
How mahy of them are reflextive?
(b) Let A= {1,2,3}*%{a,b}. How many relations are there on A?

M, =

LB e B
o O e
Lo T O ]
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10.

11,

12,

13.

Let R be the following relation on A= {1, 2, 3, 4}:

R={(1,3),(1,4),(3,2).3,3,3,4

(a) Find the matrix My of R.

(b) Find the domain and range of R.

(c) Find theR",

(d) Draw the graph of R.

(e} Find the composition relation RoR.

If relation R and § are reflexive, symmetric and transitive them show that RNS is
also reflextiv, symmetric and transitive.

Given A= {a, b, ¢} and a relation R on A is defined by

R ={(a, a), (a, b}, {, ¢}, (c, ¢). Find transitive closure ofR.

Let A=[1,2,.....,9} and let ~ be the relation on AxA defined by (a,b)~(c,d)if
at+d=bc. Prove that ~ is an equivalence relation. Also find the equivalence class of
2. 3).

Let R be the relatiom onN defined by the equation x+3y=12 That i5, R={(x,y) :
x+3y =12}. Write R as a set of ordered pairs, Also find RoR.

Let A= {1, 2, 3, 4} and R = {(x, y}. Draw the graph of R and also given its
matrix,

If {{1, 2,3}, {4}} is a partition ofthe set A= {1, 2, 3, 4} then determine the
corresponding equivalence relation R on A

For a given partition of a set A, define a relation R on A suchthat Ris an
equivalence relation corresponding to the partition.

Answers

(@ R={(a a), (b, b), (¢, ¢), (2, b), (b,c)
)R = {(a, a), (b, b), (c, ), (a, b), (b, ), (b, c), (c, b)}
{©)R = {(a, b), (b, a), (a, a), (b, b)}

1{1 0

@M =20 1|MR={(1,1),(1,2),(1,4),(2,2),(2,3),(3,3). (3,4, (4 1)},

3(1 0

Domain of R = {1, 2, 3} and range of R = {1, 4, 9}
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10.

11.

12,

(1)
@)
&)
)

®)

Domain of R={x: -5<x < 5}, Range of R= {x:-5 < x< 5}
{a) number of relation on A=2"", number of reflexive relation on A=2%.
{(b) Since A contains 6 elements, number of relation on A = 2,

@ M,
0

(b) Domain ={1, 3}. Range={2,3,4}; (©)R"={(3, 1), (4, 1), (2, 3), 3, 3), (4, 3)};
(&) RoR = {(1, 2), (1, 3), (1, 4), (3, 2), (3,3). (3, H)}.

Transitive closure of R = {a, a), (a, b), (b, ¢), (¢, ¢), (a, c)}.
[2, 3)] = {(1, 4), (2,3), (3, 6), (4, 7), (5, 8), (6, I}
R={(9, 1), (6, 2), (3, 3)}, RoR = {(3, 3)}.

0 0 0]

0
1
1

1

et
—_— 0 gD
_— O

R={(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 10, (3, 2), (3, 3), (4, B}
Suggested Further Readings

Felix. H. (1978) Set theory, Chelsea publishing Co, New York.,

P.T. Johnstone, (1987) Notes on Logic and set theory, Cambridge University Press.
LN. Herstein, (1983), Topic in Algebra, Vikas publishing house Pvt, Lid.

John B, Fraleigh, A first course in Abstract Algebra, Narosa publishing house Pvt.
Ltd.

S. Ganguly and M. N. Mukherjee, A Treatise on basic Algebra, Academic
Publishers- Kolkata.
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Unit -4

Fuctions

Structure

4.1
4.2
4.3
4.4
45
4.6

Introduction

Objectives

Functions

Types of Functions

Connection between Equivalence relation and mapping
Binary Operations or Binary Compositions

4.1 INTRODUCTION

As we know fuction is one of the most findamental conceptin mathematics and is used
knowingly or unknowingly to our day to day life at every moment. Computer Science is
an arca where a mumber of applications of function can be seen. We thought 1 would bea
good idea to acquaint with some basic results about the finction. Perhaps, we are already
familiar with these results. But, a quick ook through the pages will help us in refreshing
our memory, and we will be ready to tackle the course. We will find a mimber of
examples of various types of functions,

4.2 Objectives

Afer reading this unit you should be able to:

Describe function ofits different forms

derive other properties with the help of the basic ones

define a fimction and examine whether a given function in one—one/onto
investigate whether a given function has an inverse ornot

define sum, difference, product, quotient of the given function and
determine whether a given finction 15 quotient map.
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4,3 Functions

Definition : Let X and Y be two sets. A function f from X to ¥ 15 a rule which associates
to each element x in X a unique element y of ¥. The function f from X to Y is denoted by
[: XY

The terms such as mapping transformation or comespondence are also used for function.

If fis a function from X to ¥, ie., f: X - ¥, then the set X is called the domain of the

function f and ¥'is called co-domain of /. The element xe X is called an argument of the
function and the element y<¥ which the function f associates to xe X'is denoted by f{x)

and is called the image of x under f or the value of the function f at x. The set
{f(x):x< X}is called the range of £ If Ac Xthen f(A)={f(x):xc4}.

Functions as Sets of Ordered Pairs

If X and Y be any two sets, then a function f from X fo Y is a subset fof x x¥ satisfying
the following two conditions:

(1) Foreach xeX,(x,y)e ffor some ye¥.

(2) H(x,y)ef and (x,z)e f then y==:
The first condition ensures that every x in X is associated with some y in ¥ and the second
condition guarantees that the image of each x in X is unique.

Equal function : Two functions f and g are said to be equal if their domains are same
and f{x) = g(x) for all x in the domain.

Enmple 1:Let x= {a,b,c} and Y= {1,2,3} .Then J={(a,1,(b,2),(a,3),(¢,3)}

Is not a fimction from X to Y because the second condition is not satisfied fors < x as both
(a,) and (,3)are in £

is not a function from X to X becanse 2 € x is not the first coordinate of any pair in f and
50 f does not assign any image to 2.

3. Let X={1,2,3,4),Y ={a,b,c,d}and ket £ = {(1,2),(2,a)3,4).(4,c}}.
Then fis a fimction from X to ¥.Here, we have
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f=a,  f(2)=a,
f@=d, f@#=c

We observe that the element g < ¥ appears as the second coordinate of two different
ordered pairs in £ This does not violate the definition of a function,

Note (13) : Mapping of set X to a set ¥, when X and ¥ are sets of mumbers are also
called fimctions,

Example : Let Z.. be the set of positive integers and E the set of even positive integers.
Let map £ Z,—Ebe defined by fim)=2m YmeZ,. Hence range f=fZ,)=E.

Example : Let R be the set of real numbers. Let function f: R—>R be given by fx) =
e*, xeR since &> 0 for VxeR, therefore range /= R.(set of positive real mumbers).

and range of f ={a,c,d}

Example : Let X'=set of all students of Allahabad University, ¥ = Set of ages in years.
Since every student has some unique age, so we can define a map

f X> Yby Aix)=y. Where x is student and y is his age in years.
Example : £ R—R defined by fx) = log x, xR is not a map or finction, since

f(-3 ) =log (- 3) is not a real number. But £ R*—>R where R"is the set of positive real
numbers defined by fix)=logx is a map.

Example : £ R*=R defined by f(x) =Vxis nota map, since f(4)= ¥4 = +2. Thus 4 has
two fimages. But f{x) =+ Vx (positive value of the square rootof x) will be a map or
function from R* toR.

Types of Function

Definition: A function f:X 5 Yis called onfo (or sutjective) if range of f =Y, That i,
each element ofy is the image of some element of X

If f: X - Yis notonto then it is called into.

Definition: A function f:X —»Yis called one-fo-one (or mjective or 1-1} if distinct
elements of X have distinct images under £ In other words, f is one-to-one if
x # %, = f(x) # f(x,) Or equivakently, f(x)=f(x)=>x#x,

A mapping f: X - Yis sakl to be manmy-one if at least two distinet elements in X have the
same image in ¥under fie., x #x,but f(x)=f(x,)

174



Definition : A mapping f: X > Yis said to be bijective if f is one-to-one and onto, A
bijective mapping is also called one-to-one correspondence,

Example : Let f: & — R be defined by f(x)==x". Then fis neither one-to-one nor onto.

f1s not one-to-one because both 2 and —2 are mapped on 4. fis not onto because range of
f={F:xeR}=R"U{0} # R, where R denotes the set of all positive real numbers,

Example : Let £:{,3,5,7,9 »{2,4,6,8,10} be given by f(x)=x+1.Then f is one-to-one
and onto. Thus i bijective.

Example : The map £ Z.— E given in exampl (6.1) is injective, because form, neZ,,
fim=f(n) = 2m =2n=>m =n. fi surjective also, since for Vye Edy/2 €Z. suchthat
Jo/2y. Thus fis a bijection or one-one correspondence from Z, to E,

Example : The map £ R—R given by f{x)=¢, xeR is injective but not surjective for if
X, yeR then fix) = fy)=¢" = x"=x =y therefore fis injective.

Again ¢*> 0 VxeR, hence 0 or any negative real number is not the f-image of any real
number of the domain set, and so f is not surfective.

Example : Let C be the set of complex numbers and R the set of real numbers. The map
f: C - R given by flx + &) =V (¥*+ y°) 5 neither injective nor surjective for £ (x+iy)= fix
-5) =V

Example : The function £ R > R given by fxJ sinx is neither injective nor
surjective for fix) =fx - x)=sin x and there does not exist xe R suchthat fix}=sih x=2.

Example : If 4 and B are two finite sets having the same rumber of elements, then
prove that fid— B is injective {one-ong} iff it is surjective (onto). Let 4 and B both have n
elements, If £ A—B is mjective then the n elements of A4 will have » distinct images in B
which will be the # elements of B and hence every element of B is the image of some
element of 4 and 50 fis surjective.

Again if f is surjective, then ach of the r element of B will be the image of at least one
element of 4, but any element of B cannot be the image of more than one element of 4,
for in that case 4 must have more than » clements. Hence ¢ach element of B is the image
of exactly one element of 4. So fis injective,

Example : Show that there exists a bijection between the set N of natural mumbers and
the set Z of integers. Define £ N—>Z as follows:
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fm)=m/2 when m is an even natural number,

Sfm)=- (m — 1)/2 when m is an odd natural number.

This map is one-one correspondence (bijective).

Identity function : A function 1: X - x is called an identity function if I(x)=xVxec X.
Under identity fimction, each element is mapped on itself,

Remainder function : Let m be any positive integer and k be any integer. We define
a fimction f;, from the set of integers Z to {0,1,2,......m-1} as follows:

Ju(k) = Kmod m)

where kA(mod m) denotes the remainder r, 0<r<m when £ is divided by m. Ths functions
is known as remainder function {or the mod m-function)

Given any integer k and a fixed positive integer m, the value of Xmod m) is obtained as
follows: If £ is positive then divide £ by m to obtain the remainder r. For example,

1. 25{(mod 7) = 4 becanse when we divide 25 by 7 then we get the remainder as 4.

2. 25(mod 5) = 0 because when we divide 25 by 5, then the remainder is 0.

3. 3(mod 8) = 3 because when we divide 3 by 8 the remainder is 3.

If k is negative then divide |k|by m to obtain remainder #, then k{mod m) = m —'

For example, —26(Mod 7} =7-5 = 2 and 371 (mod 8) = 8-2=5.

Example : The remainder function is onto but not one-to-one.

Solution : Let m be any position integer. Define £, :Z - {0,1,.....,m—1}as follows:
£.(k)=r=k(mod m).

Supposek ¢ Z s mapped on 7. Then we see that &+m, k+2m,.... are also mapped on 7.
Thus £, is not one-to-onebut £ is onto. Let »{0,1,2,....,m-1}. Then reZ and f (r)=
r.Thus £ is onto.

Inclusion and Identity Maps : Let XY and let £ X—Ybe given by flx) =x.
VxeX.Thenfis called inclusion map of X into ¥, An inclusion map is generally denoted
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by I, in place of £ the inclusion map of X into X s called the identity map on X and is
denoted by I,, Thus I,: X— X is given by I,(x) =x VxeX.

Equality of Mapping : Let fand g be two maps from X to ¥, that is both fand g
map the set X to the set Y. We define f= g if fx)=g (x) VxeX.

If f R— is defined as f()_ 4 when x#2and f{2)= 4 and g; R—>R is defined as g(x)
=x+2 VxeR. then f=g.

Direct and Inverse image : Let £ X—>Ybe a map and kt 4 X, B c¥, then the
direct image of A under f denoted f(4) is given by

Sdy={yeY: Ixed with () =y},

that is £ (A4) is the set of images of all the elements of 4. the above diagram illustrates it.
Thus xeA=f (x) €f{4) the reserve implication viz f(x) ef (4)=>xA is only true when f

is imjective. If xe X, ﬂ1ﬂ1f(’{x}) = {f(x)} and £X) = range fand f$)=¢. The mverse
image of B under f denoted f (B} is given by

f(B) = {xeX: fix)e B} thus xef'(B) IAx)eB.
The reserve implication viz fx) €B =xcf (B) is also true.

In case there 15 no element xe X such that fx) € B (which may happen when fis not
surjective), then £ (B9

Example : Let f: RoRbe given by fix}=r xeR.

Let A= {xeR:1<x<2} =1, 2] cR.

Then f(A) = {peR: 1 <y<4}=[1,4]. [since 1<x<2= 1< <4]
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Let B={ycR:4<y<9} =[4, 9]. Then f'(B) =[- 3, - 2] U [2, 3].

fC=[-4,-1], thcan(C)=¢, since XxeR such ﬂuatj(x)=xze[ -4, -1], does not exist.
Example : Let A = {nn: 7 is an integer} and R be the set of real numbers.

Let £ AR be defined by fla) =cos aVaecAFind f(4) andf {0},

Now finz) =cos nw=+ 1 or -1, Hence A4} ={- 1, 1}. If fa)=0or

cosae=0oraa=(2n+1} gHencef"{O} = (2n+1) g

Now (2n+1)ge {nn},S0, FI(0)=4¢.

Example : Let £ X ¥be a map and let A and B be subsets of X, then
() ASB=f(4) SAB)

(i) fAUB)=r{4) Uf(B)

(i) f(ANB) Sf(ANS(B). Equality holds when fis mjective.

Proof (i) If A GB, then xe A=>xcB. Now yef{d) =TAxcA st f(x) =y. DxeBsty=f
(x). =y =Ax)ef (B) since xe B=3fx)ef(B))

Therefore , yef(4) =yef(B) hence f{AHSf(B).

(i) ef (AUB)=>IxeAUBs.t.y=f(x}) =IAxedorxeBs.ty=f(x)=2v=F(x) ef(A)ory
=f(x) ef(B). (since xc A= (x) =f(4) and xe B=f(x}e [(B)).

Hence yef (AUB)=yef(4) Uf(B). Therefore f(AUBCSF(AHUS (B).

Again ACA UB, BEAUB therefore by (i) f(A)Sf (A4UB), f(B) Sf (AUB) therefore f
(DUF (B)S f(4UB).

From the above we get F(AUB)=£(4) Uf(B).
(i) ANBSA, ANBSB, therefore by () £ (ANB) SAA), AANB) SAB).
Hence {ANB) Sf (4) Nf(B).

Note: AAHNAB)SHAANS )is not true. Since ve AN (B)=>yef(4) and yef(B)=>3x; €4 |
fx; )y and Ax:€B| fix:)y #3IxeANB | Ax)=y. Since x; €4 but x;may not be an
element of B, similarly x;eB but x, may not be an element of A, so there may not exist a
common element x of 4 and B such that £x)=y.
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But if f is imjective, then {A)NAB) SAANB) will be true and hence in that case
SANBAANAB).

Example: When {4)NAB)EA4NB). Consider map £ R—R given by fx)= %, It is clear f
is not injective.

Let A= {-1, - 2, -3, 4} and B= {1, 2, -3} be subsets of Dom f. Then ANB = {-3}.
So, f (ANBY={-3*}. Now fld)={1%,2%,-32.4%), f (B)={1%,2,-3%}

So, () NfBY={1".2",-3"} & {3%}. Sof(4) N/(B) &f(ANB)

Example:let £ X>Ybe a map and let 4 and B be subsets of ¥.

Then ()} ASB=f'(A)=f"(B)

@ /' UB)=f"(4) U '®) (i) 1 (4NBY=1" (4) NS’ (B).

Proof. () xef (A)=>(x) ed=f (x)} B (since ASB) =xf"(B),

Therefore f/(4) SF'(B).

(i) xef (4 UB)=f ()4 UBSS(x) ed orf (x) e Boxef (4) orxef'(B)
exef(4) Ur'(B). Therefore f(4 UB) =7 (HUF (B).

(i) xef (ANB) SAx) cANBSS(xX) ed and f(x) eB=xef () and xef ' (B) &xef'(4)
Nf'(B). Therefore f'(ANB) =f'(4) Nf'(B).

Thus (ii) and (iii) show that union and intersection are pre served under inverse image.
Check vour progress

(1.1) Prove that £ XY is injective iff £'({y}) = {x} Vyef(X), xeX

(1.2) Prove that £ X—»Yis sujrective iff f'(B)# ¢ where BCYand B # ¢,

(1.3) Provethat £ X—Yis bijective iff Vye¥, f'({y}) = {x}, xeX.

(1.4) give examples when () £(f'(B)) is a propersubset of B

(i) A is a proper subsetof £ (£ (4))

(1.5) If £ X—>Yand ACX, BEY, prove that

(a). If (f'(B)) CB.

(b). 1 (R4)) =24.
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©-f(H=X.

(d) let £ X—>Y and let ACY, then prove f'(Y—A)=X—f" (A).
Inverse map : Let £ X—Y be a map. Let us define a map
¢: YeX given by 1f ye ¥, then ¢y) =x where f{x) =y.

if ¢ is to be map, then every yeY must be f image of some xeX, that is f must be
surjective. Further two different elements x; and x; of X must not have the same f-image

ye ¥, for in that case ¢{y) =x;also x, so ¢ cannot be a map. Hence f must be mjective.
Thus when f 15 bijective we can defme the above map gwhich is called inverse of fand
will be denoted by /. Thus the inverse of f'is defined as: f': ¥ 5.X given by Vye¥, f'(»)
= xe X such that f{x)= y.

Remarks (1.1) : Inverse map of { should not be confused with the inverse image of a
subsetunder f, denoted by the same symbol viz £

(1.2) Inverse of the map f: XY only exists when f is bijective and the mverse map £
X—Y only exdists when f is bijective and the inverse map f": ¥=.X is such that f'( ()
=afx)=y.

Example : [et X = [- /2, #/2], Y- 1, 1]. Let £ X—Ybe given by £ () =sinx, xeX
It can be easily proved that £is a bijection. So f': ¥X given by f' (= siny= xeX.
such that sin x=y. Thus sin” y =x. & sin x=y.

Example: 1f #: XY is a bijection, then the inverse map f: ¥>X is also a bijection, For
let 7'(y1)=x;, ¥ and x;e ¥ and x,eX. Then fix;) = yif (v.) = X2, ¥2 €Y and x,€X. Then
[ 2) = y2. Now f/y1)= f'@2)2%= %2 (61} = £ (x;)[since { is map] == y,.
Thereforef’ i8 sutjective. Again since fis bijective, every element ye ¥ is the f-image of
a unique element x<X. Hence every xeX is the £ image of an element ye Y. Therefore f”
is surjective.

Composite of Maps: Let £ X— Y and g: Y —>Z be two maps. Their composite denoted
by gof is the map gof: X—Z given by such that for some ye Yfx) = y and g (¥} = z. Thus
we get (gof) () =z= g0 g (F(x))-

Note (1.1): For the composite gof of maps fand g, range fSdom g.

Note (1.2): In general gof # fog.

Note (1.3): The maps being particular types of relations composite of maps has been
defined exactly in the same way as composite of relations.
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Example: let f: R Rbegiven by fix) =¢", xeR and
g2:R—>Rbegiven g (v) =sin y,yeR. Then go: R—>R given by
(gof) ) =g (f(x) =g (£) =sin (¢).
Here Range f=f (R) =R (the set of positive real numbers) ER.
Thus range f—domg. Here fog is also defined, viz
Jog:R—R given by (fog) () =fg(y)) =fsin y) = €™, 3V eR.
Hence (fog) (x) = ¢"™. So, fog maps x to sin (¢"), and fog maps x to £,
Thus gof# fog.
Example: Let £ R—>Rbe given by f{x) =x’ +3 and g: R—>R be given by
g(x)=x"-7. Thengoff RoR given by (gof (x) = g (f (¥)) = g(x'+3)
= (*+3)’ - 7. Now fog: R-R given by (fog) () =f (g (¥))
=0 -7 =" - 7+3. Thus gof# fog.
Remarks : If gofis defied, then fog need not be defined.
Example : Let X ={1,2,3tand fand g be functions from X to X given by:
f={1.2),(2,3),3.1)} and g={(L1).(2,2),3, )}
Find fogand gofand also show that fog# gof .
Solution: f: X > Xand g: X > X
gof :X > X defined by (gof X(x) = g(f ()
(gaND=g(f 1) =g2)=2, (gof)2)=g(f(2) =g(3)=1
(8aN)B) =g(fB)=g)=1.. gof ={(1.2).(2,1. 3, 1)}
Similarly, fog ={(1,2),(2,3).(3,2)} . We see that gof # fog

Example: Let £ X—Y, g: Y>Z, h: Z—>Whe three maps. Then ho (gof) =(hog) of, that
is composition of maps is associative just like the composition of relations, as shown
below. Both ho(gof) and (hog) of maps from X—>W.
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Now (ho (gof) (x) = k ((gof)x)= h(g (f (x)) and ((hog) of) x = (hog) {f (x)) =h(g (f (x))).
Hence ho(gof) = (hog) of.

Example: Let £ X—Ybe a bijection, prove that £ o f =1I, and fof'= L.
Solution: Let fix) =y, xeX.Thenx =f'().Now f” o f : XX, given by
(' of) @) =1 (Fx))=f G)x=L(x). Therefore (f"of) (x) = L(x) VxeX.
Hence f of= I,.The other part can similarly be proved.

Examlple: Let f: X—»>Yand g: Y->Z be both bijections, Prove that gofis bijection and
(gof) ~'=f "og”'(Reversal rule)
Solution: Ifx,, x,.X, then (go f) (x;) = (go f} (x;) =2g{fx: g (f (x,))

=f (x;F fx,) (since g is injective) = x;=x; (since f'1is injective), Hence gofis injective,
Now we prove gof is surjective.

Now gof: X— Z and (gof) (X)=g (f(X)) =g(¥) (since f(X)= T, fbemg surjective) =Z
(since g (Y= Z, (g being surjective)

Therefore, gofis sujrective. Hence gof'is bijective.

Now both (gofy 'and /' og”' map from Z—.X. Let {gof) '(z) = x where zeZ, xez. Then
(g9f) () =2. Let fix) =y and g(y) =z. Now {{'0g™) () =f (2" (2))

=f'(@)lsince g(y)= =g (2) =yl=x. [since f(x) =y =1 () =x].
Hence (gofi” (Fog™) (2) VzeZ. Consequently, (gofi’=f" og™.

Check your progress
(1) Let £ X—Y and g: Y—>.X be both bijection such that gof = Ix and fog = Ix. Prove
that g=f"and f=g . Also prove that
() gof injective =>fis njective and (i) gof sujrective =>g is sujrective.
(2) Let Z be the set of ntegers. Define £, Z>Z X Zby fim)=(m—-1, 1), meZ. g. Z %
Z-Zbyg(m,n)=m+n,m, neZ. Prove that gof=I,. Discuss the mapping fog.

4.5 Connection between Equivalence relation and mapping.

Natural map or quotient map : Let S be a set and S the quotient set of S relative to
an equivalence relation.~. We define a map v; S—>Sgiven by Wa)= &, where a<Sand d@is
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the equivalence class determined by a. The map v is called the natural map or the
quotient map or the canonical map of §to §. The map v is surjective but in general not
injective as proved below —

Let @<, then a@ since g ~ 4. Thus, Va@eS, 3ac$ such that Wa)=4a. Hence map vis
surjective. If a,#a,€ €Ss.t. a;~a, then Wa ;)= v(a;) = a@. Hence map v is not injective.

Equivalence relation induced by map : Let £ S>Theamap for 4, beS, we
define a relation ~ m Sa a ~ & if f{a) =fb). It can be easily proved that ~is an equivalenc
relation in S. Then ~is called an equivalence relation in S induced by the map F. The
equivalence class @ = {xeS: f(x) =fa)}.

Theorem(2.1): Let £ S—T'be a map and R the equivalence relation in S induced by f.
Define a correspondence f- SR—>Tby f(R.)=f{x) where Rx denoted the equivalence
class of xeS. Prove that. (i). fis amap. (). fis injective (ifl). f is surjective if fis
surjective. (iv) /= fov where v : S5 S|R is the natural map. (v) f is unique.

Proof. (i} R,= R, =xRy =f(x) = fiy) =f (Rx)= f(Ry). Hence f is a map.

@. f(R.)=FRy)=fx) =) =>xRy=>Rx=Ry.Hence f is imjective.

(). Let yeT,then IxS | f(x) =y (since {is sujrective)

Now f{x) = f (R.)=y. Thus VyeT, 3R, eS|Rs.t. f(R.)=y. Hence f is surjective.

(iv). v: S—S|R andf: SR — T. Therefore, fov: § -7, givenby ifxe§, then (f ov) (x)

fv ®)F f R)-fx). Consequently, fov—f. This can be ‘
represented by diagram as follows: g J o

Since fov = f, the image of each element of § along the two
viz. T or § &8 | RoT 18 the same. Such a diagram is said to "
commutative,

ways
be

S/R

(v). Now we prove that f is unique.Let f;: S|R—7be another map

such that fiov =J. Let, R, &5|R be the equivalence class determined by x€S. Then flx) =
ffa o) ® = F200))F f1(R). Now fix) = f(R,). Hence, £1(R,) = f(R.eSR.
Consequently, £, = f.
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Corollary : Let f: ST be a map and let R be the equivalence relation in S induced by F.
Let R“be any other equivalence relation in § with quotient set S|R “and v*: § [R “be the
natural map. Then there exists a unique map. f: SR > T suchthat f= fov iff R &R.

Proof, Let R'CR, Define f: SRS Thy F[%J:f(x).Now f is amap. For

% = % = xR'y=>x Ry {since RER= [(x, )RS (x, ¥y} eR]=xRy, =2/ (x)=f(y) =f
(2] 72 JNow Fov: S+ T given by (Fov) @)= Fve)= {2 =i vies.

Therefore, fov'=t.

Uniqueness of f can also be proved as in the above theorem.

Conversely, let f : S|R>Tbe the unique map such that fo’ =, Tﬁﬂ’ﬁ%:%
(2 )=F(2)=F 0t = F /6, [Since Fov'=/) Hence, (s, y)eR'5(x, y)eR.
Therefore, R'C R.

Example: Let S be the set of points in the x-y plane and T, the set fpoints on the x-axis.
Consider the map z,: S—T given by z, (a)=a”’

where ae§ and a’is the projection of a on the x axis. The equivalence relation ~ in S
induced by the map xis given by a~ b if m(a) ==, (b), that is, if projections of 2 and b
on the x-axis arc the same. Hence the equivaknce clss @ = straight line through a
perpendicular to x-axis. The natural map v: $—3 is _given by Wa) = @ that is, the straight
line through a perpendicular. to x-axis. Let x_ : ST be given by x_(a)= 7. (@) =4’
that is x_ send a line perpendicular to x-axis to its intersection point with x-axis. Clearly
7, is injective and m,=x_ov.

Invertible functions: Let f: X 5 Y be a one-to-one and onto mapping. Let y be any
element of ¥. Since the mapping f is onto, therefore there exists an element xe X such
that ¥ = £(x).

Since the mapping fis also one-to-one, there will be only one element x <X such that
¥ = f(x). Let us denote x by £7'(3). Thus we see that if f:X — ¥is one-to-one and onto
then we can define a new mapping called the inverse of fand denoted by f'from Yto X
which associates to each element y of ¥ a unique element in X. It can be seen that only
one-to-one and onto (Le. bijective) mappings possess inverse mappings. In other words, if
f:X - Y not bijective then ' does not exist.
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Imverse map: Let /:X > Ybe a bijective mapping. Then the mapping f*: ¥ x
defined by f7(y)=x, where f(x)=y is called the inverse mapping off.
It can be seen easily that if £ i bijective then f'is also bijective Moreover fof and fo
£ both are identity mappings on Xand and ¥ repectively.
Example: Let { be the set of rational number. Let f:0— gbe defined by f£:(x)=2x+3.
Show that fis bijective. Also find a formula that defines the inverse fimetion £~
Soultion: Let x; and x; be two distinct elements in O, then x, #2x, = 2x,+3#2x,+3

= f(x) # f(x,). Hence fis one-to-one
Iet y be any element in Q. If yp=f(x) then y=2x+3 and therefore

)7}
3

Hence fis onto. Solving y = £(x), we get =2=7_Thus f1)-x-73

defines the inverse function f'Q— @
4.6 Binary Operations or Binary Compositions

We are familiar with operations like addition, subtraction and multiplication. Wherever
we add two natural numbers we get a unique natural number. In other words, addition is
mapping for Nx N - N, where N i the set of natural numbers,

Definition: Let X be aset. Then a mapping f: X xX — X is called a binary operation (or
binary composition) on X,

Thus binary operations on X is a mapping from XxxXto X . In other words, binary
operation on X is a mapping which associates to each pair a,b, of elements of X, a unique
clement ¢ of X, We use symbols like *,+,0,8,A,v etc. for binary operations.

Illustration

1. Addition is a binary operation on the set of integers because addition of two
integers is again a unique integer.

2, Multiplication is a binary operation on the set ¥ of natural mumber.

3. Subtraction is a binary operation on the set Z of integers because subtraction of
two integers is again a unique mteger but subtraction is not a binary operation
on the set N of natural numbers because subtraction of two natural numbers is
not necessarily a natural nambers. For example 3—4¢gN.
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4. A set X is said to be closed under operation * if * is a binary operation on the set
X. That is, a*b is a unique element of X for all a, b n X. This property is often
called the closure property.

Properties of Binary Operations
Now we shall discuss some general properties of binary operations.

Commutative operation: A binary operation * on a set X is said to be commutative
x*¥y=y*x Vx,yelX.

Example : Addition and multiplication are commutative binary operations on the set R of
real mumbers. But subtraction is not a commutative binary operation on R because
a—b+b—a in general,

Associative operation: A binary operation * on a set X is said to be associative if
x*(y*2)=(x*y)*z Vx,y,zelX.

Example : Since x+(y+z)=(x+)y)+z Vx,y,z< R. Therefore addition is associative
binary operation on R. Similarly multiplication 1 also associative bary operation on R,

Distributive operations : Let * and o be two bmary operations on a set X. We say * is
left distributive over o if a*(bec) = (e*b)o(a*c) Va,beceX....... (48]

We say * is right distributive over o if (oc)*a = (p*a)o(c*a) VabceX .......(2)
When both (1) and (2) hold, we say that * is distributive over o,

Example: On the set R of real numbers, mukiplication 5 distributive over +, since
a(b+c) = a'b+a.c and (b+c).a = b.atc-a VabceR

But + is not distributive over (-) because a+b-¢ 2 (a+b8)-(a+c)forevery ab,ceR

Identity Element for a Binary Operation

Given a binary operation * on a set X, we now define identity element of X for the
operation *, Identity element may or may not exist.

Definition: Let * be a binary operation on X, If there exists an element ¢ x such that
a*e = e*ra=a VacX.Theneis called identity clement for *.
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Example: Addition is a binary operation on R, the set of real number. Since
a+0 0+a=a VaeR,therefore, the element 0 is the identity for+.

Example: We know that addition is a binary operation on &, the set of natural numbers.
But N has no identity element for + because there exists no natural mumber e such that
a+e = e+a=a VaeN

Invertible elements: Let * be a binary operation on the set X with the identity element
e. An clement a2 x is said to be mvertibke if there exists an element 5 x such that:
ash = brg=e

Moreover, b is then said o be inverse of g and is denoted by 4. The identity element i
always mvertible because ere=ewe=ce.

Example: We know the operation of addition is a binary operation on R and 0 is the
ilentity for +. Since for each g R, —q also belongs to R such that g+ (—a)=(-a)+a=0.
Therefore, every real number has inverse for the operation of addition,

Example: Consider the opemtion of multiplication on R. 1 i the identity for
multiplication and for every non-zero real number s R, 1/a is also a real number such

that: al=l.a=1
a a

Hence every non-zero real mumber i8 invertible. But (¢ is not invertible with respect to
multiplication. Similarly the operation of multiplication on N has identity element,
namely 1 butno element except 1 is invertible.

Composition Table

A binary composition on a finite set can be defined by means of a table called
composition table which may be described as follows:

Let 4 = {a,a,,a,....a }be a finibe set. We write the elements of the set 4 in a horizontal
row as well as in a vertical column. The element 4 »4,is entered at the intersection of the
i row and j" column

Example: Let 4 = {1,5,7,11} . We define the operation of multiplication module 12
denoted x,onA as follows: ax,b = r 0<r<12
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where 7 i5 the least non-negative remainder when the producta-bis divided by 12.
The composition table for x;; on 4 is given below:

X1z 1 5 7 11
1 1 5 7 11
3 3 1 11 7
7 7 11 1 5
11 11 7 5 1

In the body of the table, the second entry of the third row is 11 which i3 obtained as
follows: 7x,5=11since 7x5=35=2(12)+11

Similarly other entries of the table are obtained,
Example : Let * : IxI>], where 1 is the set of integers, be defined as x+y = x+y—xy

Show that the binary operation *is commutative and associative. Find the identity
clement and indicate the inverse of each element.

Solution: Let x and y be two integers. Then x+y and xy are also integers. Now since
subtraction of two integers is also are integer, we have x+y—xy is an integer. Thus x*y €
1. Hence * is binary operation on 1.

* is commutative :

Since X*¥y = Xx+y-W¥x
=x+y—yx the operation * is commutative

=yHx,
* is associative : Forany x,y and zin L, we have

xe(y*z) = x¢(y+z—yz)
= x+(y+z-yz)-x(y+z-y2)
= X+y+z-yz-xp-XX+xy2
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Similarly, (x*y)*z=x+y+z-yz-y-xz+132
Hence x+(y*z)=(x¢y)*z and * & therefore associative.

Identity element ; If ¢ is the identity element for * then ase=evg=0 VaecX

= a+e—ae=a
= e=0

Inverse of an element : Let 2 be any element of X. Let & the inverse of a. Then

a*bh =10
= at+b-ab=0
=5 b =al(a-1l)ifaxl

Thus if a#1,thena™ =a/(a-1).
Example : Let 1 be the set of positive integers. Let

#:I.xI, -1 bedefined as folows: xsy - kmofxandy.
Show that * is commutative and associative. Find the identity element.
Solution: We know that the least common multiple of two positive integers is again a
positive integer. Hence * is bnary operationon I..
* is commutative: We know that lcm of x and y = kkm of y and x. Hence
xwy = ysx, Thus *is commytative;
* i associative: For any three positive infegers x, y and z,
x*{yez)=x*(lcmof yandz) = lcm ofx, y and z
=(lcem of x and and y) *z = (x *y) *z. Thus * is associative.
Identity Element : We know that for any positive integer x, the least common
multiple ofx*1=x, Hence 1€, suchthat x+1=1«x¥xel, . Thus 1 is the identity element.
Example : Let X={0,1,2,3,4} and x, be the operation “multiplication modulo 5”, Give
composition table for the operation x,. Show that x, is commutative, Also indicate the
identity element.
Solution : For a,bc X, ax b=ab(mod5)=r, Where r is the remainder when ab is divided
by 5. The composition table is given below:
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X; 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

From the table, we see that ax bfor any 4,be Xis again in the set X. Hence the set is
closed under the operation x,. Since the entries in the table are symmetrical about main
diagonal, the operation is commutative. From the table it is evident that 1 is the identity
element,

Check vour progress

1. Showthat x+y=x-y is nota binary operation over the set of natural numbers but
it is binary operation on the set of integers. Is it commutative or asseciative?
2. How many distinct binary operations can be defined on the set {0,1}.
[Hint: Every binary operation * on {0,1} can be described by the table

* 0 1

0
1

3. Consider the binary operation * defined onthe set 4={a,5,c,4} by the following
table:
* a b c d

a a c b d

c c d a a

d d b a c

Compute ¢ #d, d *c, badand d+p.Is * commutative?
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4, Showthat x»y=xyis a binary operation on the set N of natural numbers.
Determine whether * is commuitative or associative,
5. Fill in the following table so that the binary operation * is comnmtative.

* a b ¢
a b

b ¢ b a
c a c

6. Let L ={0,1,2,3,4}. Give composition table for the operation +,defmed by
x+; y=(x+y)(mod 5). Indicate the identity element,

7. Let * denote a binary operation on N given by x*y=x. Show that * is not
commutative, but is associative,

Suggested Further Readings
(1) Felix. H. (1978) Set theory, Chelsea publishing Co. New York.

(2) P.T.Johnstone, (1987) Notes on Logic and set theory, Cambridge University
Press.

(3) L N. Herstein. (1983), Topicin Algebra, Vikas publishing house Pvt. Ltd.

(4) John B, Fraleigh, A first course in Abstract Algebra, Narosa publishing house
Pvt. Ltd.

(5) S.Ganguly and M. N. Mukherjee, A Treatise on basic Algebra, Academic
Publishers-Kolkata.
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Unit-1

Mathematical Induction

Structure
1.1 Introduction

1.2 Objectives
1.3 Mathematical Induction
1.4 Second Principle of Induction

1.5 Well ordering property
1.1 Introduction

(1) This 18 most basic unit of this block as it introduces the concept of The principle of
Mathematical induction i of great help in proving results involving a natural
member for every n or for every # 2> some positive integer m. If P(n) is a statement
involving a positive integer #. If P(f) i3 true = truth of PH1) V12 m,

Then P(r) i8 true for evety n > m. The particular case of this result for m = 1 is usuvally
referred to as the principle of mathematical induction and in fact the general version
stated above can be obtained from version stated above can be obtained from this
particular case. The above principle 15 popularly stated as if a statement holds forn =1
and whenever it is true for # = ¢ it holds forn = ¢ + 1, then it holds for all natural numbers
n. Therc was a reason for looking the further generalization, apart from mathematical
interest, The reason was the many applications. Apart from the ones we mentioned at the
begnning, the binomial theorem has several applications in probability theory, calculus
and approximating mumbers like (1.02)'®, We shall discuss a few of them in this unit.

1.2 Objectives

After reading this unit we should be abk to

1. Understand the Principle of Mathematical Induction
2, Understand Second Principle of Induction

4. Understand the Well ordering property
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1.3 Mathematical Induction

The principle of Mathematical induction is of great help i proving results involving a
natural member for every »n or for every n 2 some positive integer m.

Principle of Mathematical Induction: If P(n) is a statement involving a positive
integer n for which

(2) P(m)1s true for some integer m,
(3) Truth of P()) = Truth of P(H1) V IZm

Then P(n) is true for every n > m. The particular case of this result for m = 1 is usually
referred to as the principke of mathematical induction and in fact the general version
stated above can be obtained from version stated above can be obtained from this
particular case, The above principle is popularly stated as if a statement holds for n=1 and
whenever 1 i8 true for n =¢, it holds for =1+ 1, then it hokds for all natural numbers n.

Example: 2" > n’ forall n> 5. Clearly the statement does nothold forn=2, 3, 4.
2°=32>25= 5 & soif holds forn=S5.
Take any I> 5 and assume that 2' > £,
Then 2"'=2.2'=2'+ 2. > # + # (by hypothesis)
>F+51 (+~I25)
=F+20+3<F+2+3x5( [25)
>P+204+1( 15>1)
=(@+1)F ie. 2" >(@+1)Y VI25.

* Assumption of truth of the statement for / > 5 implies its truth for / + 1. . the above
statement is true for every /235 by the above result,

Example: Show that for all integers greater than zero : 2" >=nt1.

Solution:
Forn =1, the above equation evaluates to:

2 >= 1+ 1, which ig true,
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Now assume that the property is valid for n=k

Thus p(k) evaluates to:

2°>=k+1.

Now, we have to prove that property is valid for n=k+1
pQt1): 21 >=k+2

Now, multiplying p{k) by 2 on both sides we get,

252 >=(k+1).2

=>2kt+2 >=kt+2

Ako, we know that, 2°'=2" .2

Thus, 2" >=k +2

Thus, the property is true for p(k+1) and hence, true for all n.

Example: Apply mathematical induction rule to prove1 +2+3 +... +n=n (n+1)/2 for
all positive integers n

Solution:

Letp(n)bel+2+3+...+n=n(nt1)2

Step 1: First, we show p(1) is true

Left side=1

Right side=1 (1+1)2=1

Both sides are equal, hence p(1) is true

Step 2: Let us assume p(k} is true

1+2+3+...+k=k{kr1)2

Show that p(k + 1) is true by adding a(k + 1) on both the sides at the above statement
1+24+3+,..+kkk+ )=k &+1)2+ k+1)

taking (k+ 1} as common we get,

= (kt1)(k+2)/2

The above statement can be rewritten as

1+2+3+. . +kk+1)=(k+-1)}Kk+2)2

which is the statement for p(k+ 1).

Hence, proved.

Example: Apply mathematical induction ruke to prove 1° + 2° + 3°+.... + o = [n(n+1)/2]
forall positive mtegers n.

Solution:

Let p(n) be 1° +2° + 3+, +n’ = n® (n+1)24
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Step 1: First, we show p(1) is true.

Left side=1=1

Right side = 1% (1+1)24 =1

Both sides are equal. Hence, p(1) is true.

Step 2: Let us assume p(k) is true

P+2 +3+. 4K =¥ (k+1)24

Adding (k + 1)’ on both the sides

P+2+3+. A +&+ 1P =k HD2P + & +1)°
Factor (k + 1)° on the right side

=(k+ 1) [£4 + (k+1)]

= (k+ 1) [F+4k+41/4

= (k+ 1) [(k+2)")4

Thus, the above statement can be rewritten as
P42+ 3+, 413+ k+ 1P = [k + 1) (+2)2
which is the statement for p(k+ 1)

Hence, proved.

Example:
Prove that n 1 > 2" forall positive integers n greater than or equal to 4. (Note: n! is n

factorial and is given by 1 *2* ..* (n-1)*n.}
Solution:
Statement P (n) is defined byn! >2"

STEP 1: We first show that p (4) is true. Let n =4 and cakculate 4 ! and 2" and compare
them

4 =24

2*=16

24 is greater than 16 and hence p (4) is true.

STEP 2: We now assume that p (k) is true

kl>2"

Multiply both sides of the above nequality by k+1
kKl (k+1p>25&+1)
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The left side is equal to (k + 1)!. Fork >, 4, we can write
k+1>2

Multiply both sides of the above inequality by 2" to obtain
25k +1)>2%2F

The above mequality may be wrniten
zk(k_l_ 1) >2k+1

We have proved that (k + 1)! >2* (k+ 1) and 2* (k+ 1) >2*"! we can now write

We have assumed that statement P(k) is true and proved that statement P(k+1) is also
true.

Example:
Prove that for any positive integer number n, n® +2 n is divisble by 3

Solation

Statement P (n) is defined by
n’ +2 n is divisibke by 3

STEP 1: We first show that p (1) is true. Let n= 1 and calculate n” +2n
1 +2() =3
3 is divisible by 3

Hence, p (1) is true,

STEP 2: We now assume that p (k) is true

k? +2 k is divisibke by 3

is equivalent to

k*+2k=3M, where M is a positive integer.

We now consider the algebraic expression (k +1)* +2 (k + 1); expand it and group lke
terms

k+D°+2&k+D=k*+3k*+5k+3

=[k*+2k]+[3k*+3k+3]

=3M+3 [k’ +k+1]=3[M+k’+k+1]

Hence (k +1)* +2 (k+ 1) is also divisible by 3 and therefore statement P(k + 1) is true.
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Example: Prove 6'+4 is divisible by 5 by mathematical induction.
Step1l: Showit is true for n=0.
6"+4=>5, which is divisible by 5
Step2: Assume that it is true for =k
That is, 6“+4=5M, where MEL
Step3: Showit is true for n=k+1,
That is, 6 +4=5P, where P€L
6 +4=6x6"+4=6(SM-4)+4 6=5M—4
by Step 2, 30M-20=5(6M—4), which is divisible by 5
Therefore it is true for n=k+1 assummg that it is true for =k
Therefore 6"+4 is always divisible by 5.

Example: Prove 5"+ 2x11" is divisible by 3 by mathematical mduction.
Solution
Step1l: Showit is true forn=0. 0 is the first number for being true.
5°+2x11°=3, which is divisibke by 3.
Therefore it is true for n—=0.
Step 2: Assume that it is true for n—=k.
That is, 55+2x11%=3M.
Step 3: Show it is true for n=k+1.
That is, 55'+2x 11" i divisible by 3.
S 2% 119 =5 42x 1 1" 11

=5"1+(3M—55)x11 (2x113M-5* by assumption at Step 2)
=5%5+33M-5"%11=33M-5*x6

=3(11M-5"x2), which is divisible by 3
Therefore it is true for n=k+1 assuming that it is true for n=k.
Therefore 5+2x11" is always divisible by 3 for n>0.
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3.4 Second Principle of Induction :

If P(n) is a statement involving a natural mumber n and Truth of P(§) V I <m = Truth of
P(m), then the statement is true for all natural mumbers n. We shall illustrate its uses later
in this unit, The second principle of induction i8 a consequence of the well ordering
property of the set N of natural number or of N U {0}.

3.5 Well ordering property :

Every non empty subset A of N (orof N U {0} has a keast element ie. there is an element
le Aforwhich I<aforeverya e A,

We are omitting the proof but the reader may satisfy himself by considering various
subsets of N and obtain least clements of them.

This result does not hold for Z, @ or [R.

Check your progress

l. Provethat |m +n|=|m |+ |n |occurs if and only if m and n have same sign
(positive or negative) or one of them at least in zero and that

Im + n| <|m| + |n| if and only if they are of opposite sings.
2, Provethat |a|—|b|<|a—b|foranya,b € Z QorR.
3. Provethat3">2"+1foralln>2.

2 2
4. Provethat 1>+2°+.....n°= @ Va2l

5. Prove that for any real mumberx>-1, (1 +x)'>(1 +nx) Vn> 1.
6. Provethatn!>2"Vvnz4.
7. Provethatn! >4"vnz9,

8 Leta;=landa,= 1H3HH+1VHZZ.PI0VBﬂ]ataﬁ<%ViDt&gEIHZI.

9. Provethat 2> 7’ foralln2 10

10. Showthat n! > 3n forn>7,
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Suggested Further Readings
(1) Felix, H, (1978) Set theotry, Chelsea publishing Co. New York,
(2) P.T.Johnstone, (1987) Notes on Logic and set theory, Cambridge University Press.
(3) L N. Herstein. (1983), Topi in Algebra, Vikas publishing house Pvt. Lid.
(4) John B, Fraligh, A first course m Abstract Algebra, Narosa publishing house Pvt.
L.
(5) S.Ganguly and M. N. Mukherjee, A Treatise on basic Algebra, Academic
Publishers- Kolkata.
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Unit-2

Combinatorics

Structure

2.1 Introduction

2.2 Objectives

2.3 Basic counting principles

2.3.1 Principle of Disjunctive counting
2.3.2 Principle of Sequential counting
2.6 Ordered and Unordered Partitions

2.1 INTRODUCTION

Whole of the discipline of Mathematics evolved but of “counting” so much so as in
Indian language. The word for Mathematics is Gamiss which literally means counting or
counted. All the types of numbers like integers, rational, real or couplex numbers have
there origin in the concept of natural or counting mmbers: 1,2.3,........

In this unit we are primarily interested in counting certain finite sets arising in day to day
situations. We all want to know how but as the sets which we want to count become more
and more complicated, we have to be more precise and systematic. We first enunciate
certain “basic counting principle” by the help of which we can tackle most of the
situations we shall be interested in counting

2.2 Objectives

After reading this unit you should be able to

Recall the basic counting principles
Recall Principke of Disjunctive counting
Recall Principle of Sequentisl counting
Identify Ordered and Unordered Partitions
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2.3 Basic counting principles
2.3.1. Principle of Disjunctive counting (Sum Rule)

It simply states that if s;, 5,,..... 5, are finite sets which are paraise disjoint (Le. two of
them have a common clkement, then |§;US,U ....US, =[S HIS:| + ... + S,

Where we use the symbol [s| to denote the number of elements in a finite set 5. (n(s) or #
() are other standard notations for 5] ).

The above principle hardly needs a proof becomes in counting s;U.... U s, ww first
count the elements of s; followed by those of 5, etc and became these sets are par wise
disjoint, we element will be counted move than once and so R.H.S. gives |v;1)... Us,|

Example: If s)= {1, 2, ....... 7hs={ab,..... z}, 53={a, B, r, & €} then clearly these
are finite pairwise disjoint sets

O lesUsaUss|=sy| + |so] + 53| =7 +26 +5=38

Example: If a certain farmer has six cows, seven goats and four dogs then we first form

the sets of the respective animals, observe that these are pairwise disjoint, and then we
can find the total number of livestocks in his household.

This principle apparently is restrictive in the sense of pairwise digjointness, but we shall
see later n that we can derive the*Inclusion Exclusion principle” from the principle
stated above using which we can count the number of clement of a finite umion of

overlapping finite sets.
2.3.2, Principle of Sequential counting (Profit Rule)

We known that certain product of two, three or more sets are defined as the sets of
ordered pairs, triples orin general n sets (which are not necessarily distinct):
AxB={(a,b)|ac A, b e B}, AxBxC={(a,b,c) |acA, beB,cc(C}

Apxdyx.... X A= {(@;1, 8, ..... a,) | a;€4; V 1 £i< n). Herethe sets 4, B, 4,, 4; etc are
necessarily pairwise disjoint. This principle states that if 4;, 4, ...... A, arc finite sets
then |4,xA4,%....... %XA,| = |41]-43|-... |4} This 15 because we observe that to count the
ordered notables (¢;,a;, ....a,) with a,€4, for 1< 1< g, we note that a, can be any of the
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|4;| element of 4, and for each of the |4;| choice of a,, a; can be chosen in |4;| ways and
hence a, and a; can be chosen in [A[A,| way and so on, Indirectly we see that there are
altogether |4,|4;|...|4,| such elements in 4;X% ....x 4,.

Example: If S is a set having n elements, then S has 2" subsets.

Let § = {a,, a,,..... a,} each subset AC § iz a collection of some of the elements of §.
Here ‘some’ include the cases ‘none’ and ‘all’ also, We associate with 4, a unique
sequence (i.e. ordered listor .......... ) of length of 0’5 and I °s in the sense that the with
element of this sequence is taken as 1 in case are € 4 and o if € 4. For example, the

subset {a,, a,} is associated with the sequence ¢10100...0 D ig associated with 00...0 and

zern all reow

s with of T = {0, 1} then the set of all such ‘binary’ sequences is I"= IxT .... xT (n
copics). By this principle |17 =|T] .... [7] {n times}

=2x2x2 ... 2 (ntimes) =2"

By the one to one corresporxlence between the set of all subsets and the set of all binary
segment of length # we se that there are altogether 2" subsetofs ie.

|0 (5)| =2 Where O(s) is the set of all subsets of s {called the power set of s).

Exercise: Find the number of distinct positive integer <1000 which are even and have
distinet digit.

Note: All integer are of the form (a,,2,a;),¢ (& 100a,;+10,, ag) in which a,€ {0, 2, 4, 6,
8,a,€ 40,1, ...,a},a:e {0, 1, ...a} a,has s choices, a; has (10 — 2)~ 8 choices =
{ as#a.a,) by the prnciple of sequencial counting (product wle) there are sxaxb = 360
such sequences. the are 360 such positive integers.

Notations: 1. The product 1.2.3... (# — D)n of the first » positive integers is called
the factorial of # or n factorial and denoted by »/ . It appears naturally in counting
number of arrangements of n distinct objects and many other situations. We have already
encountered in the definition of determinant of ordre n xn. It s customary to put 0! = 1.
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2. Forintegers 1 < .. €£n, we define the binomial coefficient [nJor n, Orc{n,7)as
r

n!
nl{n—r)1

c{n,n)=

As we shall see that it appears nafurally in counting the number of ways of sekctmng »
distinct objects from a collection of n objects. Also it arises as coefficients of terms when
we expand (a+5)’ as a sum of terms of the form o &b’ where a, i, / are non negative
integers and g, b come from some number sets within which addition, multiplication etc
are possible like. Z, Q, R, C etc.

In case the partition blocks A, A,, ..... a,are all of equal size q (say) ie. |A;|=q V<1<
+ then n = qt and we have the following result.

2.4. Ordered and Unordered Partitions

Theorem: The number t-part unordered partition each of cell size is %
4,

This i3 becanse each such partition gives on arranging the t-subsets, t! ordered partition

whose total mmber is — ="
qig..qi (q)

Example: In how many ways 15 persons from a given set of 20 persons can be
distributed into four teams where the first team has 6 persons, the second has 4 persons

respectively.

Solution: We may first choose 15 persons from a setup 20 in C(20, 15) = C(20, 5)=20,
19, 18, 17, 16 / 2,3,4,5 = 3,17,19=969 ways and then the number of 4-part ordered

i . 13!
partition of type (6,4,3,2) is T
_ o 18]
.. the total number required 5 C(20,5) = TR
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Example: If instead, we want the mimber of ways of forming 5 team of 3 persons each,

L5t

then the number is C(20,5)=——"—. These are unordered partition as we have not called

S °

the teams first second etc.

Check your progress

Find the number of S-part ordered partition of the set {a;, a;...... a2} of the
type (5.3,2,1,1)

Find the mumber of all unordered 4-part partitions of set in the preceding
exercise into blocks of 3 each.

Find the mumber of arrangement of the letters of the word Book. Make a list of
them and sbw the correspondence between these and the set of all 3 part
ordered partitions of the type (1,1,2) of the set {a;, a5, a3, a,}.

Suggested Further Readings

M
@

&)
@

G

Felix, H. (1978) Set theory, Chelsea publishing Co. New York.

P. T. Johnstone, (1987) Notes on Logic and set theory, Cambridge University
Press,

L N. Herstein. (1983), Topic in Algebra, Vikas publishing house Pvt. Ltd.

John B, Fraleigh, A first course in Abstract Algebra, Narosa publishing house
Pvt. Lid.

S. Ganguly and M. N. Mukherjee, A Treatise on basic Algebra, Academic
Publishers- Kolkata.
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Unit-3

Permutation

Structure

3.1 Introduction

3.2 Objectives

3.3 Definition of Permmtation

3.1 Introduction

Permutation is a counting problem which comes under the branch of mathematics called
combinatorics, Let n > 1 be an integer and r < n, then the mumber of ways of arranging r
objects out of n objects, is denoted by P(n, ). Since each of the r objects can be arranged
in r! ways. The mumber of ways of amranging r objectsis rl. Thus by the counting
principle, the number of ways of choosing r objects and arranging the r objects chosen
can be done m C(n, r).r! ways. But this is precisely P(n, r). In other words, we have P(n,
1) = riC(n, 1). That 5 by permutation we mean an arrangement of objects in a particular
order, The total mumber of permutations of n objects is n(n-1)(n-2)........3.2.1 =nl,

In this unit we shall discuss some simple counting methods and use them in solving such
simple counting problems.

3.2 Objectives

After reading this unit we should be ablke to
1. Understand the conceptofP(n, 1).

2, Permutations with Repetitions

3. Destinguish between Conceptof permutation and combination.
4, Derive the formmla C(n, r).r! = P(n, 1),
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3.3 Definition of Permutation

Definition: A permutation is an arrangement of a fmite set of objects in a particular
order.

For example, there are six different permutations of the set {a, b, ¢}. They are abc, ach,
bac, bea, cab and cba.

Any arrangement on n distinct object taken r at a time {r (I n) is called r-permutation. The
mmmber of permutations of n distinct objects taken r at a time is given by

n!
(n-r1)

"P,=n(n—2a)(n—-2)....{a-r+1) =

Permutations with Repetitions

If out n objects in a set, p objects are exactly alike of one kind, q objects exactly alike of
second kind and r objects exactly alike of third kind and the remaining objects are all

n!
plq!1l

different then the number of permutation of n objects taken all at atime is =

(8) n=n!=!n= Factorial of any quantity n is a factor of that quantity in descending

order of infegral n upto unity from right to lefl,
ln=n{n-1){n-2)....3.2.1

A
e
L

s

— o0

Fig. 1.10
k=k(k-1){k-2}......3.2.1,if k=1
=meaningless,if k<0, kel
=1,if k=0,1

(b)({) =P, =Aprocess toarrange n different things taking r different things at a time
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- [n2r] [r2 0,n>0]

-5

(i) Number of permutations (arrangement) ofn different things =n.

(i} Number of permutations of n different things out of which P are alike but of
same type, q are alike but are of same type, r are alike but are of same type

and rest all are different =——

Fig. 1.11
(iv) mC,=Aprocess fo select n different things taking r different things at a time

(v) Number of selection ofr things (r <n) out of'n identical things is only one.

(vi) Number of permutations of n different things taking r at a time when things
can be repeated any rumber of times =n n.n....rtimes=n"

(vi) Total munber of selection of zero or more than zero things from P identical
thins =P + 1

Example: Cakulate

1. P,
PL=4/{@E-2)=2412=12
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2, °Ps
P 5=617(6-5)! = 6*5*4*3*2%1 [ 11=T720
3, *p,
P =41/ (4-41=41 /0! =41 =4*3%2*] =24

Example: How many two digit numbers can be formed using the digits 1, 2, 3 and 4
without repeating the digits?

Solution: Here we want to use 2 digits at a time to make 2 digit numbers.
For the first digit we have 4 choies and for the second digit we have 3 choices (4 - 1
used already). Using the counting principle, the number of 2 digit numbers that we can
make using 4 digits is given by

4*3=12

Example 5: How many 3 letter words can we make with the letters in the word LOAD?
Solution: There are 4 ketters in the word load and making 3 letter words is similar to
amranging these 3 ketters and order is important since LOA and AOL are different words
because of the order of the same letters L, O and A. Hence it 15 a permutation problem,
The mumber of words is given by 4P ;=41 /(4 -3)}! =24

Example: How many ways are there to arrange the nine letters in the word
‘ALLAHABAD’

Solution : Since the word ALLAHABAD contains 4A’s and 2L’s, therefore there arc

o
1 7560 ways,

Example: Find the mumber of words, with or without meaning, which can be formed
with the ketters of the word ‘CHAIR”.

Solution; ‘CHAIR’ contains 5 letters.
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Therefore, the mumber of words that can be formed with these 5 letters = 51 = 5*4*3*2*]
= 120,

Example: Find the number of words, with or without meaning, which can be formed
with the letters of the word ‘INDIA’,
Solution; The word ‘INDIA’ contains 5 letters and ‘I’ comes twice.

When a ketter occurs more than once in a word, then the permuation is obtained by
dividing the factorial of the number of all letters in the word by the number of
occurrences of each letter.

Therefore, the mamber of words formed by ‘INDIA’ = 51/21 = 60.

Example: How many different words can be formed with the letters of the wond
*SUPER?’ such that the vowels always come together?

Solution: The word ‘SUPER’ contains 5 letters.

In order to find the mmmber of permutations that can be formed where the two vowels U
and E come together.

In these cases, we group the letiers that should come together and consider that group as
one letter.

So, the ketters are S, P, R, (UE). Now the number of letters is 4.
Therefore, the mumber of ways in which these 4 letters can be arranged is 4!
In U and E, the number of ways in which U and E can be arranged is 2!

Hence, the total numbers of ways in which the letters of the ‘SUPER’ can be arranged
such that vowels are always together are 4! * 2! = 48 ways.

Example: Find the mumber of different words that can be formed with the letters of the
word ‘BUTTER’ so that the vowels are always together.

Solution: The word ‘BUTTER’ contains & letters.
The letters U and E should always come together, So the letters are B, T, T, R, (UE),
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Number of ways in which the letters above can be arranged = 51/2! = 60 (since the letter
*T’ is repeated twice).

Number of ways in which U and E can be arranged = 2! = 2 ways

Therefore, total mumber of permutations possbk = 60%2 = 120 ways.
Example: Find the number of permutations of the letters of the word ‘REMAINS’ such
that the vowels always occurin odd places.

Solution: The word ‘REMAINS’ has 7 letters.

There are 4 consonants and 3 vowels in it.

Writing in the following way makes it easier to solve these types of questions.
MA@ 6 @

No. of ways 3 vowels can occurin 4 different places = *P; = 24 ways.

After 3 vowels take 3 places, no. of ways 4 consonants can take 4 places = ‘P, = 41 = 24
Ways.

Therefore, total mmber of permutations possible = 24*24 = 576 ways.
Check your progress
(1) Find the of ways in which 12 diffferent beads can be arranged to form a necklace.

(2) Inhow many different ways can five boys and five girls form a circle such that the
boys and girls are to be alternate.

(3) How many permutations can be made out the lketters of the word “TRINGLE™?
How many of these will begin with T and end with E?

(4) How many permutations can be made out the letters of the word “INSURANCE”,
so that the vowels are never separated?
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How many permutations can be made out the letters of the word
“PATALIPUTRA” without changing the relative positions of the vowels and

consonants?

How many permutations can be made out the letters of the word “OMEGA”™
() Oand A can occupying end places, (ii).E being alawasys in the middle,
(i) Vowek occupying odd places, (iv). Vowels being never together.

Consider 21 different peark ona necklace. How many ways can be pearls be placed
in on this necklace such that 3 specific pearls always remain together?

In how many ways can 24 personsbe seated round a table, if there are 13 sets?

How many necklaceof 12 beads each can be made from 18 beads of various

colours?

Find the number of ways in which candidates 4,, A5, ....... A, can be ranked if
(1) A, and A, are next to each other (i) A, is always above A;,

Find the number of ways m which four different letters can be put in their four
addressed envelopes so that (i) at least two of them are in the wrong envelopes. (ii)
all the letters in the wrong envelopes.

Find the number of ways in which four fiiends can put up in 8 hotels of a town, if
(1) there is no restriction, (if) no two friends can stay together, (iii) all the friends do
not stay in same hotel,

Prove that P(n, 1) = P(n-1, 1} + P(n-1, r-1).
P(1,1) +2P(2,2) + 3P(3,3) +4P(44) + ......... +nP(n,n) =P(n+1,n+1)— 1,

If P(56, +6) : P(54, r+3) = 30800 : 1, find P(r, 2).
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UNIT -4

Combination

Structure

4.1 Introduction

4.2 Objectives

4.3 Defmition of Combinations

4.1 Introduction

Combonation is a counting problem which comes under the branch of mathematics
called combinatorics. Let n > 1 be an integer and r < n, then the mmmber of ways of

choosing r objects out of n objects, is denoted by c¢(n, r). Since each of the r objects
choosen can be arranged in r! ways. The number of ways of arranging r objectsis rl. Thus
by the counting principle, the mumber of ways of choosing r objects and arranging the r
objects chosen can be done in C{n, r).r! ways. But this is precisely P(n, r). In other words,
we have P(n, 1) =1!C(n, 1).

In this unit we shall discuss some simple counting methods and use them in solving such
simple counting problems.

4.2 Objectives

After reading this unit we should be able to

1. Understand the concept of C(n, r).

2. Destinguish between Concept of permutation and combination.
3. Derive the formula C(n, 1) = C(n, n-1).

4.3 Definition of Combination

Any sclection which can be made by taking some or all of the objects at a time out of a
given mumber of objects is called a combination.
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Example: A term of two player selected cut of five players is a combination of 5 players
taken 2 at a time,

In the case of a combination, the order of the objects does not matter. The objects n a
combination when arranged give rise to a permutation. The number of combination of n

t
distinct objects taken r (r<n) at a time is given by "C_= i
ri(n -r)!

It is ckear from the definitions or™P, and °C, that "P, ="C_xr!

Note: (i).Total number of selection of zero or more things from n different things

="Cy+*C,+"C, + "C, +....+ C_=2".

(i) Number of ways of distributing n identical things among r persons when

each personmay get any number of things =*-'C__,

(iii} Number of ways of dividing (m + n) different things in two groups containing
m and n things respectively.

III.-I-lI.C » nC ‘m+ n

[pm

(iv) Number of ways of dividng 2m different things in two groups each
containing m things

2“‘C x™C x = |2m
"2 jmmi2

(v) Number of ways of dividing 3m different things in three groups each having
m things
3m ol

Jmc xzmc xmc X =
|m‘m‘m |3

(vi) Number of circular arrangements ofn different things =‘n%1.
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(vii) Number of circular arrangements of n different things where both the

jo-1

directions — clockwise and anticlockwise occur =
Example: Find the number of diagonals which can be drawn by joining the angular
points of a heptagon,

Solution: A heptagon has seven angular points (vertices) and seven sides. The join of two
angular points 15 either a side or a diagonal. The number of lines joining the angular

1
points. 'C, =% = 21.Since this number inclndes the seven sides,

therefore, mumber of diagonals =21 -7 =14,

Example: In how many ways can a committee of 5 persons be formed from 6 men and 4

women so as the mclide at least 2 women?
Soluation: There are the following three cases. The committee may consist of

(i) 3 men and 2 women,
(ii) 2 men and 3 women,

(1) 1 man and 4 women.
We can select 3 men and 2 women in °C;% *C,=20%6=120 ways
We can select 2 men and 3 women in °C,x*Cy=15%4 = 60 was
We can select 1 men and 4 women in lEiC1><"C4= 6x1 = 6 ways.

Since all the three cases are disjoint, hence by sum rule, the required number of ways =
120 + 60 + 6 = 186.

Example: There are 10 balls in a bag numbered from 1 to 10. Three balls are selected at
random. How many different ways are there of selecting the three balls?
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¢, =101=10 % 9 x &= 120
31 (10-3)3 x2x1

Example: In how many ways can a commites of 1 man and 3 women can be formed
from a group of 3 men and 4 women?

Solution: No. of ways 1 man can be selected from a group of 3 men =7C;=3!/ 1!*(3-1)!
= 3 ways.

No. of ways 3 women can be selected from a group of 4 women =*C;=4! / (3!*1!) =4
ways.

Example: Among a set of 5 black balls and 3 red balls, how many selections of 5 balls
can be made such that at keast 3 of them are black balls.

Solution: Selecting at least 3 black balls from a set of 5 black balls in a total selection of
5 balls can be

3Band ZR
4B and 1 R and
5 B and 0 R balls.

Therefore, our solution expression Jooks like this.
5C1*3Cy+°Cy *7°C +7C5* °Cy = 46 ways.

Example: How many 4 digit numbers that are divisible by 10 can be formed from the
numbers 3, 3, 7, 8§, 9, 0 such that no number repeats?

Solution: If a number is divisiblke by 10, its units place should contain a 0.
After 0 is placed in the units place, the tens place can be filled with any of the other 5
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Selecting one digit out of 5 digits canbe donein °C;=5 ways.

After fillng the tens place, we are left with 4 digifs. Selecting 1 digit out of 4 digits can
be done in *C, =4 ways.

Afier filling the hundreds place, the thousands place can be filled in °C, =3 ways.
Therefore, the total combinations possible= 5%4%*3 =60,
Example: Ten people go to a party. How many different ways can they be seated?

Solution: In this case, the anti<lockwise and clockwise arrangements are the same.
Therefore, the total number of ways is % (10-1}! =181 440

Example: In how many ways can a selection of 3 men and 2 women ¢an be made froma
group of S men and § women?

Solution: °C; * °C, = 100
Example:

Six friends want to play enough games of chess to be sure everyone plays everyone else.
How many games will they have to play?

Solution: There are 6 players to be taken 2 at a time.
Using the formula:
They will need to play 15 games.

Example: How many numbers are there between 99 and 1000 having 7 in the units
place?

Solution: First note that all these mumbers have three digits. 7 is in the unit’s place. The
middle digit can be any one of the 10 digits from 0 to 9. The digit in hundred’s place can
be any one of the 9 digits from 1 to 9. Therefore, by the findamental principle of
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counting, there are 10 x 9 = 90 numbers between 99 and 1000 having 7 in the unit’s
place.

Example: How many numbers are there between 99 and 1000 having at least one of their
digits 77

Solution: Total number of 3 digit numbers having atleast one of their digits as 7 = (Total
numbers of three digit mmmbers) — (Total number of 3 digit numbers in which 7does not

appear at all).

=(Ox10x10)-(8x9%9)

= 900 — 648 = 252,

PERMUTATIONS AND COMBINATIONS 117

Example:

In how many ways can S children be arranged i a lme such that
(i  Two particular children of them are always together

(i) Two particular children of them are never together?
Solution:

() We consider the arrangements by taking 2 particular children together as one

and hence the remaining 4 canbe arranged in 4! =24 ways. Again two
particular children taken together can be arranged in two ways. Therefore, there

are 24 x 2 =48 total ways of arrangement.

(i) Among the 5! =120 permutations of § children, there are 48 in which two
children are together. In the remaining 120 — 48 = 72 permutations, two
particular children are never together.

Example: If all permmutations ofthe letters of the word AGAIN are arranged in the order
as in a dictionary. What is the 49 word?

Solution :

Starting with letter A, and arranging the other four letters, there are 4! = 24 words. These
are the first 24 words. Then starting with G, and arranging A, A, I and N in different
ways, there are
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—*_ — 12 words. Next the 37 word starts with I, There are again 12 words starting with

21111

1. This accounts up to the 48" word. The 49" word is NAAGL
Example

In how many ways 3 mathematics books, 4 history books, 3 chemistry books and 2
biology books can be arranged on a shelf so that all books of the same subjects are
together,

Solution :

First we take books of a particular subject as one unit. Thus there are 4 units which can be
arranged in 4! = 24 ways. Now in each of arrangements, mathematics books can be
arranged in 3! ways, history books in 4! ways, chemistry books in 3! ways and biclogy
books in 2! ways. Thus the total number of ways =4! x 31 x 4] x 3! x 21 =41472,

Example

A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If
there are 6 questions in Part A and 7 n Part B, in how many ways can the student choose
10 questions?

Soluticn

The possibilities are:

4 from Part A and 6 from Part B
or

5 from Part A and 5 from Part B

or
6 from Part A and 4 from Part B.
Therefore, the required number of ways is

SCax"Cot* Csx1CsH*Cex'Ca= 105+ 126 + 35 = 266.
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Example

A boyhas 3 library tickets and 8 books ofhis interest in the library. Of these 8, he does
not want to borrow Mathematics Part 11, unless Mathematics Part I &5 also borrowed. In
how many ways can he choose the three books to be borrowed?

Solution

Let us make the following cases:

Case (i)

Boy borrows Mathematics Part II, then he borrows Mathematics Part I also.

So the number of possible choices is

‘Cl=6.

Case (1)

Boy does not borrow Mathematics Part II, then the number of possible choices is 7C3 =
35.

Hence, the total number of possibk choices is 35+ 6 =41.

Check your progress

(1)  Prove that

® C n=Cn, .
(i C(n,1)+Cn o)+ Cntl, ).
(i) nC(n-1, r-1) = (nt+1-1} C(n, r-1).
(iv) C(n,1)=n/r C(n-1,r-1).
v) Cn 1yC(n, -1 nr+1/i.
(2) IfC(n,r-1 36, C(n,r) =84 and C(n, r+1) = 126, then find r and n.

(3) Froma class of 60 students, 11 to be chosen for a cricket toumament. In how many
ways can this be done?
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(15)

(16)

In how many ways can a cricket 11 by chosen out of a baich 15 players if (i) a
particular is always chosen. (ii) a particular player is never chosen?

How many different selections of 6 books can be made froml11 different books, if
(i} two particular books are always selected. (i) two particular books are never
selected?

Mohan has 8 friends, in how many ways he invite one or more of them for dinner?

Find the mumber of combinations that can be formed with 5 oranges, 4 mangoes
and 3 bananas when it is essential to take (i) at least one fruit (ii) one fruit of each
kind (i} all bananas arc taken together.

In how many ways can a pack of 52 cards be divided equally among 4 players m
order?

In how many ways can a pack of 52 cards be formed into 4 groups of 13 cards
each?

In how many ways can a pack of 52 cards be divided equally among 4 sets, 3 of
them having 17 cards each and fourth just one card?

In how many ways can 12 balls be divided between two boys, one receiving 5 and
the other 7 balls? Also in how many ways can thase 12 balls be divided into groups
of 5, 4 and 3 balls respectively?

In how many ways can 5 different balls can be arranged into 3 different boxes so
that no box remains empty?

In how many ways can 5 different balls can be distributed into 3 different boxes so
that no box remains empty?

In how many ways can 5 identical balls can be distributed into 3 different boxes so
that no box remains empty?

Four boys pickedup 30 mangoes, in how many ways can they divide them if all
mangoes be identical?

Find the positive number of solutionsof x+ y + z +w = 20 under the following
conditions: (i ) zero values of x, y, z, w are included. (i) zero values are excluded.
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Find the number of non- negative ntegral solutions of 3x+ y +z =24,

In how many ways can three persons, each throwing a single dice once, make a
sum of 157

Find the mumer of combinations and permmtationsof 4 letterstaken from the word
“EXAMINATION".

Find the number of positive emmequal integral solution of the equation
x+ y+zw=20.

Find the mumber of rectangles excluding squares from a rectangle of size 9 x 6.
Find the exponentof 3 in100!
Find the mumber of zeros at the end of 100!
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UNIT-1

Binomial Theorem

Structure

1.1 Introduction

1.2 Objectives

1.3 Binomial theorem for a natural index

1.4 General Term and Middle Term in a Binomial Expansion
1.5 Binomial Expansion for Rational Exponants

1.1 Introduction

Suppose we need to cakculate the amount of the interest we will get after 6 years on a sum
of moneythat we have invested at the rate of 12%compound interest per year. Suppose we
need to find the size of the populationof a country after 15 vears if we know that the
annual grouth rate. A result that will help i finding these quations i the binomial
theorem, This theorem as we will see, helping us to calkculate the mational powers of any
real binomial expression, that is any expression involving two terms.

The binomial theorem, was known to Indian and to greek mathematician in the 3
cenfury B.C. for some cases. The credit for the result for natural exponents goes to the
Arab poet and mathematician Omar Khayyam (A.D. 1048— 1122). Further
generalisationto rational exponents was done by the British mathematician Newton{A.D.
1642— 1727).

There was a reason for looking the further generalization, apart from mathematical
interest. The reason was the many applications. Apart from the ones we mentioned at the
beginning, the binomial theorem has several applications m probability theory, cakulus
and approximating numbers like (1.02)*, We shall discuss a few ofthem in this unit,
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1.2 Objectives

After reading this unit we shoukd be able to

1.

Understand the concept of binomial theorem for integral index and rational index for
two variabks

Write the binomial expression for expressions like (x + y)* for different values ofx
and y using binomial theorem.

Write the general term and muddle term of the binommal expression.

Apply the binomial theorem for finding the approximate values of the nth roots of
real numbers.

1.3 Binomial theorem for a natural index

We mmist have mmiltiplied a binomial by itself, or by another binomial. Let us use this

knowledge to do some expenssions.
1) &+y)i=xty
@ x+y)i=xtyi+xy

&)
@

)

(x+y)% = x%+y® + 3x%y +3y2x
(x+y)*=xy* +4x3y +4y3x + 6x2y? and so on

xn_l-y+nC -xn_z-y2+.......+nC "

(x+y)n=nCDxn+nC 2 i

1

In each of the equations above, the right hand side is called the binomial expangion of the
left hand side.

Note: In cach of the expansions, we have written the powers of the binomial in the
expanded form in such a way that the terms are in descending powers of the first term of
the binomial and the terms are in ascending powers of the second term of the binomial
expansion, The sum of the powers of the first term and the powers of the second term is
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equal to the exponent of the binomial If we use the combinatorial co-efficients, we can
write the above expansions as

(D &+y'=C(, 0x+C(, Dy
@)  (x+y)2=C(2,0)x2+C(2, 2)y? + C(2, Dxy
@  (x+y)*=CE0)x+CE3E, 3y +C3, Dx?y +C(3, 2)y*x

@ (x+y)=C4,0x*+Cd, 4y* +C@, Dxy +C(4, 3)y3x+ C(d, 2)x*y? and so

on.

Most generally, we can write the binomial expansion of {x + y)", where n is a positive
integer, as given in the binomial theorem

=2, 2

(x"‘J’)n:nCan"'nC In_l'}'+nC 'y +.......+nCny"

1 2

Example : (x + 3y)* = C(4,0)x*+C(4, 4)3*y* + C(4, 1)x33y +C(4, 3)33y%x + C(4,
2)x?3Py?= x*+81y* +12x3%y +108y3x + 36x%y?

Example : (1+a)'="C_ +"C, -a+"C,- P ic a

Example : (y/x+1/y)* = C(4,0)0)*+CW, HC)* + €&, DE*W/y) + C4
;a)(’%)2 (1/y)%+ C(4, 3)(%)3 ).
1.+ am+6() amrall) @)

2 3
-Gt +aQram+e ) ama() ()
Example: The population of a city grows at the annual rate of 3%. What percentage
increase is expected in 5 years? Give the answer upto 2 decimal places.
Solution: Supposethe population is a presently. By using of bmommual theorem we have
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a(l + 3/100)° =a[l+ (5, 1).03 +c(5, 2) (.03)* + (5, 3) (. 03)° +c(5,4) (.03)*+ (5,
5)(-03)°].

= a[1+ 5%.03 + 10% (.03)2+ 10% (.03)* + 5x (. 03)*+ 1x (,03)5 .
— a[1+ 5%.03 + 10% (.03)2].

= a[1+ 5%.03 + 10x (.0009) ].=ax 1.159.

Example: Using binomial theorem, evaluate (i) (102)%, (i) (97)°

Solution: (). (102)*= (100 + 2)* = ¢(4, 0) (100)*+ ¢(4, 1).2(100)? + c(4, 2) 4(100)?
+¢(4, 3) (2)%.100 + c(4, 4) (2)*

= 100000000 + 4x2x1000000 + 6x4x 10000 + 4x8x100+ 1x16
= 100000000 + 8000000 + 240000 + 3200 + 16 = 108343216

(). (97)° = (100— 3)® =c(3, 0) (L00Y*+c(3, 1).(—3)(100)2 +c(3, 2) 9(100) +c(3,
3) (—3)3.

= 1x1000000 +-3x3x 10000 +3 x9x 100 -1 x 27
= 1000000 — 90000 + 2700 — 27= 912673

Check your progress
1. Write the expansion of each of the following:

M. (2x+3y)* (@) x—3y)* (). 4a-5b)* @) (ax+by)°
2, Write the expansion of each of the following:
@. (1-y)” @ (1+x/y)° (@) (1+20°@). (/3 +b/2)° (). 3x—5/y)*

V. (x+1/%)° (vi). (x/y +y/%)*

3. Supposelinvest Rs. 100000 at 18% per year compound interest. What sum will I
get back after 10 years? Give your answer up to 2 decimal places.

4. The population of bacteria increases at the rate 0f 2% per hour™ If the count of
bacteria at 9 am, is 150000, find the number at 1p.m. on the same day.
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5. Using binomial theorem, evaluate each of the following;
@. (101)*(i). (99)7 (iii). (1.02)° (iv). (0.98)7 (v). (12)®

1.4 General term and middle term in a binomial expansion:

Let us examine various terms in this expansion

(-x"'J’)n:nchn"‘nC xn_l'y+ ncz'xn_z-y2+.......+n0 ¥

The first term is "C x™ = %7

The second term is B¢ x7~1. ) =mx" "y

The third term is ncz_xn—z_yz = n(n-1)2 xn—z,yz

And so on. From the above, we can generalise that the (r+1)th term is e(n, r) x™"y"
Le.T, i =c(m ) X" "y .T,,yis called the general term of the binomial expansion.
Example: Find the fifth term in the expansion of (x/y + y/x)®

Here n= 6, == §, the general term is Ty, = ¢(6,4)(x/¥)5 ™ (v/x)* = 15y /x?

We see that number terms in the binomial expansion is always one greater than the
exponent of the binomial This implies that if the exponent is even, the mmber of terms
is odd, and if the exponent is odd, the mmber of terms is even. Thus, while finding the
middle term in a binomial expangion, we come across two cases:

Casel:Whenn is even.

The number of terms is odd, the middle term is (€ + 1)®term

Case 2: When n 1 odd.

The mumiber of terms is even, the middle terms are (") term and (*2)*"
Example: Find the middle term of the expansion of (x? + y?)®.

Solution: Here 1= 8, 0 the number of terms (8+1)= 9, Hence middle term is (%+ 1)th
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= 5 term of the expantion. Middle term is Ty, = c(8, 4) x2" y2* =70 x®y®,
Example: Find the middk term of the expansion of (2xZ + 1/x)°.

Solution; Here n= 9, so the number of terms (9+1)= 10. Hence middle terms are (:Ll)”l

term and (9%3 i

=5 term and 6™ term of the expantion. Middle terms are T, =c(9, 4)
(2x2)5(1/x)* =4032x1%1 /x* = 4032x% and

Tepq =<9, 5) (22 )*(1/x)° = 2016 x®1/x5 = 2016x>.
Check your progress

1. Write the (r + 1)*"term of the expansion of each of the following;

(@). 2x+y)" (). (x—3y)" (). (4a—5b)" (). (ax + by)"
2.  Write the specified term of the expansion of each of the following:

. (1—y)7, 5thterm (). (1 +x/y)?, 7term (i). (1 + 2x)5, 4% term

@. G+ 2)5 4% term(y). (3x - ; * 4thterm

). (x+ 1/x)%, 7emm (vii). (x/y + y/x)%, 3™ term
3. Find the middle term in the expansionof each of the following:

@). 22°+ 1/x)*° (b). (2x* + ¥)° (c). (x + 1/x)° (d). (ax + by)"?
4, Find the middle term in the expansionofeach of the following:

5
O (-7 @. (1+x/5)° @, (1+29° ). (3+5) 0. (3x-2)"

(V). (x+1/x)° (vi). (x/y +y/x)"

1.5 Binomial expansion for rational exponants

If n be rational mumber and x i3 a real mumber such that [x|< 1, then
(1+x)"=1+nx +n(n-1)x2 /2! + n(0-1)(0-2)x3/3! +..ccvvvenne
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Example: 1. (1-x)" =l+x+x+x’+.....tow
2. (1-x)*=1+2x+3x*+4x* +.....tow
3. (—xy*=143x+6x* +10x* +.....tow
4, (1+ x)’i =l4+x+x?+x* +...... 10
5. (+x)7=1-2x+3x*—4x’ +....tow
6. (1+x)°=1-3x+6x2-10x’+.....too
T. (1-3)"'=1+3+3 +3" +....to
8. (1+2)"=14242% 42" +......tow0
9. (1+2)*=1-2,2432%-42°+__ tow

10, (145)°=1-3.5+6.52-10.5°+.....tow
Note: Itis very useful to find ™ root of any real number up to some decimal places
value

Use of Binomial applications on harder questions where identical things
occur,

D (a+xF="C,a"+"C,2"" x+"C,-a" 2 x* +..4"C X"

(i  c,+°C,+*C,+..+C, =2"

(i) *C,+°C,+"C,+.uptooddofn=2""

{(iv} *C,+"C,+*C, +...uptoevenof n=2""
Suggested Further Readings

(1) Felix. H. (1978) Set theory, Chelsea publishing Co. New York.
(2} P.T.Johnstone, (1987) Notes on Logic and set theory, Cambridge University Press.

(3} I N. Herstein. (1983), Topx in Algebra, Vikas publishing house Pvt. Ltd.

(4) John B, Fraleigh, A first course in Abstract Algebra, Narosa publishing house Pvt.
Ltd.

(5) S.Ganguly and M. N. Mukherjee, A Treatise on basic Algebra, Academic
Publishers- Kolkata.
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UNIT-2

Probability

Structure

2.1 Introduction

2.2 Objectives

2.3 Some fundamental definitions of probability

2.4 Definition of Probability
2.5 Addition law for counting
2.6 Productlaw for counting

2.1 Introduction

Indaytodaylifeweseethatbeforestartingacricketmatchorgamblingorplayingofludo,
diceetcalltheseareapartofprobability Tossing of a coin is an activity and getting either a
“Head” or a “Tail"are two posgible outcomes, If we throw a die the possible cutcomesof
this activity could be any one of is faces having numeral, namely 1, 2, 3, ...at the top
face.

An activity that yields a result or an occurance is called an experiment. Normaly there are
variety of outcomes of an experiment and it is a matter of chance as to which one of these
occurs when an experiment i performed. In this wnit, we propose to study various
experiments, their outcomes and its Probability.

2.2 Objectives
After reading this unit we should be able to

Understand the meaning of a random experiment
Explain a sample space cotresponding to an expetiment.
Differentiatcbetwwen various types of events as equally likely

Apply the binomial theorem for finding the approximate values of the nth roots of
real numbers.

Ll L.
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2,3 Some fundamental defmitions of probability

LY

®)

Random Experiment:
it is an experiment by which its outcome i8 not known in advance, however, the
possible outcome of the experiment is known,
For example, if we toss acoin, we can't say definitely that # will furn up a head or
a tail but we can say that it will turn up any of head or tail, 8o tossing a coin is a
random experiment. Similarly, if we throw a die randomly then # can't be said in
advance that the mumber appeared is 1 or 2 or 3 or 4 or 5 or 6, so it can be said that
the number throwing of dic 15 a random experniment.
Sample Space:
The set of all possible outcomes of an experiment or a trial is called a sample
space. It 5 denoted by S. Each cutcome is a point of the sample space and it is
called the sample point. For example, we consider the following trails:
(i) Fortossingacoin, S={H, T},
Where H and T denote Head and Tail, respectively.
(i) Fortwo coms, S= {(tL, H), (H, T), (T, T)}
Here the outcome (H, T) stands for the ordered pair, first Head and the Tail
or "Head on first com, Tail on the second.
(iii) Foradie, $§=1{1,2,3,4,5, 6}
Here 1, 2, 3, 4, 5 or 6, represent the number that appeared on die.
(iv) A person is selected at random and is asked about the day of the week on
which he was born,
S = {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}.
(v) Froma pack of cards, one card is selected then the outcome may be as
(@) S={Red, Black}
(b) 8= {Spade, Club, Heart, Diamond}
c) 8S={A,2,34,56748910,1Q,K}
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(v} A positive integer i8 selected at randome and is divided by 5 then the
outcome as remainder may be §= {0, 1, 2, 3, 4}

All the above cutcomes are as sample spaces.
(C) Discrete Sample Space:
A sample space having finite rumber of sample points, is said o be Discrete Sample
Space’, All the above examples of sample space are Discrete Sample space. Whike a
sample space confaining non-enumerable number of points is said fo be a continuous
space.
(D) Event:
A subset of a sample space 'S’ of the experiment E is said to be an 'Event' so that an event
may be defined as the subset of a containing no outcome is a mull or void set.
It represents an event which is impossibke to occur. However, an event containing all
sample points is an event that is certain to occur. Thus S itself is an event and so the
empty set ¢.
Example:

1. If8=4{1,2,3,4,54,6}and A={l1,3,5}

A B the subset of S and is, therefore, an event. Events are usually denoted by
capital alphabet A, B, C, ........

2. Consider the tossing of a fair coin twice. The possible oulcomes are (HH),
(HT), (HL.H), (T,T). The sample space S consists of four points
{e1, e, €3, €4).

The event A of getting at least one head is the set of outcomes.
{HI), HT), (T.H)} = {1, &2, €3}

3. Conmsider a single throw of a die. There are six possible outcomes, the sample
space S consists of six poimts {e;, e,, €3, €4, €5, €5}, Where ¢; comesponds to
the appearance of the number i. The event A: The outcome is even, is the set of
points {e;, 4, €}-



4. Consider an experiment in which a pair of dice are thrown. The sample space S
of this experiment consists of 36 points.
A : Event having score of the mumber appeared is > 12 equals ¢.
B: Event having "sum of numbers on the faces is 9"
={(6,3),5,4,4,5),G,6)}
Since the events are sets, it is clear that statements concemning events can be
translated. Thus, if A and B are events
(i) AuBis the event, read as "Either A or B or Both".
(i) AnBis the event, read as "Both A and B".
(iii) A'=A=A°=A"—read as "A dash" or "A bar" or "A complement” or "A
not",
(iv) A -Bis the event, read as "A but not B".
(E) Simple Event or Elementary Event:
Every singleton subset of a sample space is a Simple Event or Elementary Event, But a
subset of the sample space which has more than one element is said to be a mixed event.
e.g BB
For tossing a coin, {H} and {T'} are Simple Events.
(F) Mizxed Event:
Event subset of the sample space which has more than one element is called "Mixed
Event".
Example: In case of throwing a die, appearing of odd numbers up is a Mixed Event. E =
{1, 3, 5} which has three elements, All the above definitions can be consilered by the
figure drawn for throwing a die,
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Mixed event
S

S Sure event <

o 4
o ° 3
° b Sample points 5
o (outcomes)
o {}\
o o o
o o x v N
o o Simple event  Null event

(Impossible event)

Fig. 1.12
(G) Equally Likely Event:
Two or more than two events are said to be Equally likely if any one of them can not be
expected to occur in preference to the other but probability of occurrence of one is equal
to probability of occurrence of the other.
Those events, the chances of whose happening is neither less nor greater than others are
said to be "Equally likely Events".
¢.g () Intossinga coin, Head and Tail are equally likely to comeup.
(i) In throwing a dic, any number may appear up so numb<r appearing 1 is
equally likely to any of2, 3, 4, 5, and 6.

(H) Mutually Exclusive Events:
If the occurrence of one event prevents the occurrence of all other events then the events
are said to be mutually exclusive events or two or more than two events are said to be
mutually exclusive if these events can not occur simultanecusly ie. no member of these
events is common.
Consider the experiment of throwing a die. Let A be the event "the number appeared is
greater than zero but less than 4", Then A = {1, 2, 3}. Let B be the event, the number
appeared is at least 5. Then B = {5, 6}. Clearly
ANB=¢ The jomnt cccurrence of A and B is thus an impossible event. The event A and
B are said to be "Mintually Exclusive Events".
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.
Fig. 1.13 k

In general, if A and B are any two events defined on a sample space S and AnB=¢, then

the cvents A and B are said o be mutually exclusive. If A is any event and A' is the

complementary event of A, thenAnB=¢. Thus any event A and its complement A’ are

mutually exclusive events,

If AnB=¢, then P(AnB)=0,

(I Exhaustive set of Events:

The totality of all possible events of a random experiment is known as the exhaustive set

of events of the experiment.

For example; (1), In case of one, two and three tosses of a fair coin, the exhaystive set of
events are respectively.

HHH HHT
HH HT\ |HTH THH
(H’T);[TH Tr]and HTT THT
TTH TIT

(onecoin ), (two coins),{three coins)

(2). In case of throwing a dic only 1, 2, 3, 4, 5 and 6 may turn up but not any other
number, Fora single die 1,2, 3,4,5-. §={1,2,3,4,5, 6}

) Borel field of events:
If there exists a family T of certain subsets (the events) of S (the same space)
satisfying the following axioms
(i) SeTandgeT
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() | JAieT if AieT,i=1,23, ...
i=l
(i) AeT=A=S-AeT
Then the family of subsets T of subsets of S is said to be Borel field of events on S.

Impossible Event:

As stated earlier, the null set is also a subset of the sample space and such an event
15 said to be "impossible Event" denoted by §. It does not contain any sample point
and hence cannot happen. SinceSV/#=5

and these are mutually exchusive P(S#)=P(8)+P(¢)=P(S)

we getP(ﬂ:U’ the probability of an impossible event is always zero.

Complementary Event:

If A denotes an event, A' denotes an event which includes all the sample points not
included in A. The complementary event of an odd number falling up in the throw
of a die is the turning up of an even number,

e.z. Forasinglk throwofadieS = {1, 2, 3,4, 5, 6}

ifA={1,3,5},then  A'={2 4, 6}.
By pictorial representation,

Fig. 1.14
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(M) Probability of at least one event:

If A, A,, ..., A, are independent events with probabilities of success Py, P5, Py, ...,
P, respectively then the probabilities of their failures are (1-P,), (1-P;), ..., (1-Py)
and hence the probability of all failures is (1-P;). (1-P3)... (1-P,) therefore the
probability of at least one success is

1-(1-P){1-P3)...(1-Py).

2.4 Definition of probability

©

@)

Mathematical or a Priori Definition of Probability:

If there are n exhaustive, mutually exclusive and equally likely events and m of
which ar¢ favourabk to an event A, then the probability that the event. A happens
is given by
P(AL)=E=M

o nfS) [where m < n]
This gives the numerical measure of probability. Clearly, P Le. P(A) is a positive
number not greater than unity and never less than zero,
Sothat, 0<P{A)<1.
Statistical or Empirical Definition of Probability:
If trails be repeated a great number of times under the same conditions then the
limit of the ratic of the number of times that an event happens to the total number
of trails as the mumber of trails increases infinitely is said to be the probability of
the happening of that event, It % assumed that the ratio approaches a finite and a
unique hmit.
Symbolically, if m be the mumber of times in which the event A happens in a series
of n trials, then the probability, P, of the happening of this event is given by

P(A)=P=lim
provided that the limit is finite and unigue.
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(E) Axiomatic definition of Probability or Probability measures:
If for a given sample space S and Borel field T, we consider a set finction P on T,
Le. to every A, € T, we ascribe a real number P(A), such that

@ 0<P{A)<]
(i) Formutually exclusive event, Aj, A,, As, ..., Ay
P(A, VA, U..UA_)=F{A )+P(A, )+..+P(A )

e
i) P(S)=1

Then P(A;) is called the probability measure on T or simply the probability of the
event Ai.

The above are said to be three axioms of probability. From the first axiom we see
that the probability of an event can not be negative and ako can not exceed unity
the second axipm states that the probability of union of mutually exclusive event is
sum of the probabilities of the component events, The third axiom states that the
totality of probability of a sample space, ie. the probability of the whole sample
spaceis unity.

Although the above axioms give us the restrictions upon the probability measure,
they do not clearly state what could be the probability of an event, since in any
experiment, the above conditions are satisfied by an infinite mumber of values of
P(A). The probability of an event is determined by intuition, mathematical
reasoning or past experience, In most of the cases we take ideal situations, Thus, in
the roll of die, we regard the die to be perfectly cubical so that there & no reason to
suspect that one face should ordinarily come more frequently upwards than any
other. Since there are six possibilities and the total probability 5 1, we take the
probability of each face coming up as 1/6. Similarly, in the toss of a symmetrical
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coin, the probability of head turning up 8 1/2. It may be cautioned that all events
are not equally probable. Thus, if a fan is hung up in a ceiling and there are two
possibilities, one the fan is remaining hanging up and the other falling down, the
two events are not equally probable and we should be wrong in deducing that the
probability of the falling downis 1/2.

The probability of an event is the sum of the probabilitics of the sample points
contained in the subset.

Remarks: (i). If the sample space s is the union of the distinct simple events Ey, E,, ..., it
follows from axions IT and T that P{&)=PE )+ P(E }+..=1.

(ii). It is easy to conclude from axiom II that if E1 and E2 are mutually exclusive events,
go that E, nE,=¢, then P(El UE1)=P(E1)+P(E2)_

Limitations of mathematical definitions

In the mathematical definition of probability, the !term 'equally likely' is imvolved. Hence
when the cases are not equally likely the probability, in general, acconling to
mathematical definition can not be calculated.

For example: If a die is 30 based that it gives even numbers more often than odd mumbers,
then occurrence of numbers on the die is not at all equally likely,

The mathematical definition, therefore, does not serve our purpose when

(1) all the cases are not equally likely.

(iiy when total number of cases are infinite.

(iii} when probability is not a rational number.

(iv) when equally likely cases cannot be easily enumerated.
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Difference between mathematical probability and statistical probability

The two defmitions are apparently different. Mathematical probability is the relative
frequency of favourablecases to the total mumber of cases while according to statistical
definition probability is the kmit of the relative frequency of happening of the event.

Theorems on simple probability and formulated results

Theorem 1: Probability of the impossible event is zero ie. P(g)=0.
Proof: For any event A, we have Aug=A
P(Aug)=P(A)
Since A and ¢ are mutually exclusive it follows from Axioms
P(A)+P(g)=P(A)or P(¢)=0
i.e, the probability of the impossible event ¢is zero,
Theorem 2: Probability of a sure event S is always unity. ie. P(S)=1.

Proof: Let S be the sample space

P(s)=@=1 =P(S)-1

n(S)
Theorem 3: The probability of an event bes between 0 and 1.

Proof:Let S be the sample space and let

E be any event. Then by set theorygcEcS

=  nl(g)<n(E)n(s) = 05@5@
= 0<P{E)<l

Le. the probability of any event lies between 0 and 1.
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Theorem 4: The sun of the probabilities of an event and its complementary event is
unityi.e. P(A)+P(A )=1

Proof:Let Aand A be disjoint events, then by set theory,

AUA=S « o{AUR)=n(S)
=  nf{A)+n(A)=n(s) [ n(An&)=0]
o, nA) nla)_ = PANP(A)

n(s) ' n(S)
Theorem 5: If two events A and B are such that if A occurs, B necessarily occurs ie. if
AcB, then P(A)<P(B).

AcB

Proaf; B=A+(B-A)=Au(B-A)

Fig. 1.15

A and B — A being mutually exclusive events so that
n(B)=n[AU(B— A)]=n(A)+n(B— A)

n(B) n(A) n(B— A)

2 0" o)
Theorem 6: If A and B are two equivalent events then P(A) = P(B).

=P(B)2P(A) [-0<P(B-A)<]]
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Proof: Let S be the sample space and let A and B two equivalent events. By definition of
equivalent events, AcBand BcA

Notations in set form:

We have AUB= At least one of the events A and B occurs or occurrence of event either A
or B or both. ={e eS:ecAcreeB} i.e. eeAUB.

AuUB= Both the evenis A and B occur,

={eeS:ecAandeeB} i.e. e€AnB.

A = Complementary event of A. = feeS:e¢A} ic. ec(S-A)
AnB= Neither A nor B occur.={ecS:ezAandegB)} i.e.ecANB.
AnB = A occurs but B does not={ceS:ecAbut e¢B}i.c.ccAnB
A—B= {eeS:ecAbutegBj=ecANB_ AcB=VeeA,eeB

ie. if A occurs scdoes B.A and B are disjoint or mutually exclusive
= AnB=gwhere AUB=A+B [here AA B=(A-B)u(B-A)]

Not more than one of the events A or B occurs

= e€ {(Anﬁ)u(ﬁnB)u(Knﬁ)}

Out of three events A, B, Conly Aoccurs= ec AnBNC

A and Boccurbut Cdoesnot=>  ecAnBnC.
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A, B and Call three occur= ecAnBnC.

Out of A, Band C at least oneoccurs= eeAUBUC

= ecl-(AnBnC) [Ifall three are independent]

Out of A, B and C at least two occur

= ¢ E(AanE)u(Anﬁn C)U(KHB r\C) V(ANBNC)

Out of A, B and C only one occurs=> e c(AnBAC)u {ANBACIU(ANBNC)
Out of A, B and C only two occur= ¢ e(AnBAC)U{AnBNC)u(ANBAC)
None of A, Band Coceurs = ee{AnBNC) i.e. ANBAT

Factand results:

(i) IfE beany event and S be the sample space, then

P(E)=@=E= Fav.no.of cases
n(S) n Totalno.of cases

(i) Plg)=0,P(S)=1
(i) 0<P(E)<1

(iv) PA)+P(A)1 = P(A)=1-P(A)

2.5 Addition law for counting:

If Any work A can be done in m ways and another work B can be done in n ways and C
is 8 work which is done only when either A or B is done then number of ways of doing

thewortk C=m+n.

2.6 Product law for counting :

If any work A can be donc in m ways and another work B can be in 1L ways and C
15 @ work which is done only when both A and B are done then number of ways of doing

the work C=m x n,
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Designation of cards:

Pack
of §52
cards

l(ﬁé} 1(26)
Black Cards €1 Colours > Red Cards
¥ ¥
$(13) ya3)  §(13) $(13)
Spade Club Heart Diamond
Fig. 1.16

» Colours: There are two colours,
> Suits; There are four (4) suits (types).
» Each suit contains 13 cards.

Recognition of cards:

King Queen | Jack | Ace

> @€

Fig. 1.17
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(i} Facecards:
Face cards contain 12 cards all of K, Q and J having designed a figure of a
person.ie. Facecards=4+4+4=12
(i) Honours Cards:
It contains all face cards also a card marked A,
ie, Honours cards = (4 + 4 + 4) + 4 = 16 cards.
(i) Knave Cards:(10,],Q)=4+4+4=12 cards

Note: (A) For kanve cards, there has always been confusion to the students along with

guides. Knave does not have a meaning like Jack, For Jack, it s always considered as a
card of value I.

But for knave, it is considered as a slave card. Why the denomination (value) 10 is
included in slave ic. knave card? Answer is nation (value) 10 is included in slave ie.
knave card? Answer i because J is alphabetically in order 10. However J and Q are
always considered by knave cards.

(B) What is the game 'Bridge'?

It 15 a game in which there are four players and each player gets thirteen cards to operate
the game.The first person gets thirteen cards out of total fifty two (52) cards by *’Cy,
ways. Similarly the 2™, 3™ and 4™ players get cards by **C13,%C 13 and °C,; ways.

(C) In the supportof cards if a personhas to draw two cards of

(a) The same colour (i) at once he can draw as the favourable cases by *°C x 2 ways
(ii) one by one he can draw as the favourable cases by *°C, x ®C; x 2or ¢, x¥C,

ways.

(b) Of the different colour (i) at once he can draw as the favourable cases by *°C, x *C,
ways. (i) one by one he can draw as favourable cases by *C; x %C, or®*C, x *C,
X 2 ways.
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Example : If three coins are tosed randomly, then represent the sample space and the
event to turn up head and tail alternately.

Solution: Here, S — sample space
§={(H, H,H), ({, H, T), H, T, H), (T, K, H),, T, T), (T, H, T),(T, T, H), (T, T, T)}
Let, E be the event that head and tail tum up altemnately.

E={H, T,H), (T, H, T)}

Example: There are 30 tickets numbered consecutively as 1, 2, 3, ....30. Represent the
sample space and the event of drawing a ticket containing number which is
the multiple of 2.

Solution : If S represents the results of drawing all possible tickets numbered then,
S={1,2,3,4,....30}and event to draw a number multiple of2 will be
E={2,4,6,.....30}.

Example : If three coins are tossed randomly then the probability of getting

(i) all three tails

(ii) at kast one head

(iii) one head and two tails
(iv) exactly two tails

Solution : Fora single com, $; = {{H, T), n(8,)=2
Fortwo ¢0iﬂ5=Sz = {(Hs H)! (I-Is T)s (T: H): (Ts T)}1 D(Sg)=22=4
For three coins, S= {11, T}>{{13, T), (AL T), (T.1) (T, T)}

={H, LH,HHT),#HT,H,THH®HTT),THTHTT,H,TT,TH
. n(8)=2°=8
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(D Let E;=Event of getting all three tail {(T, T, T), n(E;) =1

n(E,) Fav.case 1
PIE, )= = =—
(&) n(3) Totalcase 8

() Let E, =Event of getting at least one head.
E;={(H, H, H), (H, H, T), (H, T,H), (T, H, H), (H, T, T), (T, H, T), (T, T, H}}
n(E, )7
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(1) Let E; =Event of getting one head and two tails.

E3={(H:T9T)9(T:H7T):(T:T:H)}!H(E3)=3

P(Ea) = nIE(E;)) =§

(iv) Let E, = Event of getting exactly two tails.
E,= {(I-I) T, T): (Ts H, T)s (Ts T, H)}IJ.(E4) =3
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Example: If two dice are thrown at a time, Find the probability of the following events:

(i) numbers shown are equal,

(ii) the sum of mumbers shown is 6.

(iii) the difference of the numbers shown is 2.
(iv) the sum of numbers shown is = 10.

() Let E, =Event that numbers shown are equal.

E,={(1,1), 2 2),3, 3), (4, 9, (5. 5), (6, 6)}, n(E;) =6
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(1) Let E; = Event that sum of numbers shown is 6.

E;={(L5), (2,4, (3, 3), (4, 2), (5, 1)}, n(Ez) =35

(i} Let E; =Event that differences ofthe numbers shown is 2,

E;=1{(1,3), (2 4).3,5).4,6),(3,1),4,2),(5,3), (6,4)}, n(Es) =8

n(Es)_i_E
nfS) 36 9

P(E,)=

{(iv) Let E; =Event that sum of numbers shown is 210,

Es=1{(4,6), (5, 3}, (3, 6), (6,4), (6, 5), (6, 6)}, n(Es) =6

-5

Example : If three fair and unbaised dice are rolled on the ludo board at once. Find the
probability that

(i) numbers shown are equal,

(i) numbers shown are (totally) different,
(iii) sum ofnumbers is 10,

(iv) sum ofnumbers is 15,

Solution : Here, n(S) = 6* =216
() E, =Event to show equal number on each.

Ei={(1,11),2.22),3,33),44,4,(5,5,5),(6,6,6)},nE; ) =6

oE)_6 _1
n(S) 216 36

P{El ) =
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(1} E; =Event to show different mumber on each.

n(E;) = °P; = To arrange any three different face out of six faces.
n{E,)_°B, _5

~aS) 216 9

P(E,)

(m) E; =Event to have sum ofall three dice appeared as 10.

- 3=6
) =6
(2,2,6) » [3/2=6
(2,3,5) » 3=6
(2,4,4) > [3/2=3
(3,3,4) > [3/2=3

n(E,)=27

Example: If one card is drawn from the pack of 52 cards at random. What is the
probability that it is(i) Red, (ii) Black, (iii) Heart, (iv) Red or Black, (v) Heart or spade,
{(vi) King or Queen, (vil) Queen or Jack orKing, (vii) Queen of Heart.

Solution : Here, n(S) = °C, (we have to select one card out of 52 cards)

(i) Required probability (for red card)

_ Fav.no.ofcases  *C
Totalno.of cases %C,

(i) Required probability (for black card)

_ Fav.no.ofcases  *C, 1
Totalno.of cases *C, 2

]
2

(iii) Required probability

_ Fav.no.of cases ¥c, 13 1

" Totalno.of cases ©C, 52 4




(iv) Required probability

_ Fav.no.ofcases _ °C,+*C, _52_,
Totalno.of cases  ™C 52

(v} Required probability

_ Fav.no.ofcases “C,+"C, 26 1

" Totalno.of cases ~ “C, 52 2
(v Required probability

_Fav.no.ofcases *‘C,+°'C, 8 2
Totalno.of cases  2C, 52 13

(vil) Required probability

_ Fav.no.ofcases  *C+°'C+'C, 12 3
Totalno.of cases e, 52 13

(viil) Required probability

_ Fav.no.of cases 1
Total no.of cases 52

Example : If three cards are drawn from a well shuffled pack of 52 cards randomly.

What i the probability that it has
() all three Kings?
(i) mnoKing at all?

(1) exactly one King?

(iv) oneKing and two Queens?

(v) oneKing, one Queen and one Jack?
(vi) all three of same colours?

(vii) all three of different honours?

(viii) all three of different honours?

(ix) all three of different suits?

(x) all three of same face?
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(xi) all three of same honours?
(xi) all three of same suit?
(xii) all three of same denomination?
(xiv) all three of different denominations?
(xv) at least one King?
Solution:Since, three cards can be drawn out of 52 cards="C; = 22100,
n(S) = 22100
() Al three King cards can be drawn out of four Kings by *C; ways.

e o 4
Required probab = — =0.
1 probsbitty 22100 22100 00”2

(i) Three non-King cards canbe dawn out of 48 non-King cards by *C; ways.

%, 4324
Required probability e 5525—0 782

(iii} Forexactly one King card; we can draw a King card out of 4 King cards and
other two non-King cards out of48 cards by *C, x **C, ways.Required

C x* €, 1125
robability = =0.203
P Mo 5525

(iv) One King card can be drawn out of 4 Kings by ‘C, ways and two Queen cards
can be drawn out of 4 Queen cards by ‘C, ways.

. . e xC 6
Required probability =1 ~2- =0.001
= pro 2C, 5525 0

(v) Number of ways of drawing a King, a Queen and a Jack

4 L) 4
=*Cy x“C; % *C;. Required probabifty -5 =1 —0.00028
3
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v)

(viD)

(viii)

(ix)

i)

(xil)

(xiii)

All three cards of same colour can be drawn by *°C; x 2

e x¥E,
5203

All three cards of different faces ie. one King, one Queen and on Jack card can
be drawn by *C, x *C, x*C, ways.

Requited probability =

om0 ol S o

Required probability = 50
3

Taking all three cards of different honours by *C; x *C; x *C, x *C, ways.

4 4 4 4
Required probability = Fav.no.of cases "C,x"Cx"C,x"C,

Totalno.of cases e,

Taking all three cards of different suits by *C5 x ®C, x BC,x ®C, ways.

; : Fav.no.of cases *C.xPC x *C, xBC
Required probability = M il Dl 1
= P Total no.of cases o

Taking all three cards of the same face by °C, x *C; ways.

; . Fav.no.of o
Requird probeblity ~ e 5,

Taking all three cards of same honours by *C, x *C; ways.

. . Fav.no.of cases *‘C,x'C
Required probability = =1~ i
. P Totalno.of cases  *C,

Taking all three cards of same suit by *C, x C; ways.

: . Fav.no.of cases *C,xBC
Required probability = =1 3
= P Totalno.of cases 2C;

Taking all three cards of same denomination by *C,x *C; ways.

Required probability = Fav.no.of cases _ "Cx°C,

Totalno.of cases  C,
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(xiv) Taking all three cards of different denomination by “C; x °C,; x *C,; x *C;
ways,

: . Fav.no.of cases C.x*C x*C x*C
Required probability = =it Rl i e
*d P Totalno.of cases -

(xv) Required probability = Fav.no.of cases

Total no.of cages

o0, x'Cx *C, + ', x ¥C,

Example : If five cards are drawn randomly from a pack of 52 cards, What i3 the chance
that these five cards will contain

(i) Justoneace?
(i) Atleast one ace?

Solution : Total no. of ways to draw 5 cards out of 52 cards = %C ; = 2598960.

() Here, we have to draw 5 cards among these just one ace out of 4 aces and 4 other
cards out of remaining 48 cards by *C, x **C, ways.

Required probability - Fav-10.of cases

Total no.of cases

_teyx®c, 778320
2C, 2598960 =0.2995

(i) No. of ways in which no ace card is drawn = “*C;s = 1712304

Probability of drawing no ace = Fav.no.of cases

" Totalno. of cases

_ 1712304 —0.6588
2598960 ~ Required probability = 1 — 0.6588 = 0.3412
Example : If four cards are drawn one by one without replacement method. What is the
probability that these are
(i) all aces?
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_2¢, "¢, *c¢, ®c,_ 2197
2c, 7C, *c, *C, 20825

=(,1054

()

lele :|4

: - ¢, x12C,x"C,x*C
Required probab ME} PCR KGR G,
equired probability n(§) ~ 2C,x"C,x ¥C,x °C,
_ 768
812175

() Since, 1"honours card can be drawn by any of 16 cards by °C, ways, then

=0.00095

the rest of three cards can be drawn out of remaining same honours of three
cards by ’C; % *C; x 'C, ways.

F
K
Q 16
J 3
2
A k. 1]
: i BC,x*C x*C,x!C
Required probab BB GG ee
equired probabillly = 8) "= x 7, x ¢, x G,
- % __o.000015
6497400
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(v Since, 1* card can be drawn out of any of 52 cards by *’C; ways, then the
rest of three cards of the same denomination can be drawn by ’C; x %C,
x 'C| ways.

B W NP

P

2
—_— D e

Ke—

Required probability =%
n
Tepetexie, 2

= = =0.000048
2CxMC,xTC, x®C, 6497400

(vi) By graph, we see
II.(E) =52C1 . 48C1 ., 44C1 x 40C1

A‘_|‘_

ity s a B
N
(]

]
Q

Ke < <

: s e, x®C x4C x*C
Required probab 05 Ml G L
equired probabilty =)~ =, xC,x C, x °C,

_ 4392560

= =0.6761
6497400

Example: Find the chance of drawing an ace, a king, a queen and a jack in order an
ordinary pack in four consecutive draws
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(ii)

After dropping two cards there remain 50 cards of which 26 are of suit,
different from those of dropped ones, so the chance of dropping a card of

*C,_26 13

different suit in third missing = o 50 25"
1

Here, events being dependent,

: . 13 13 169
Require probability =1x—="x-==""=0.3976
equire p 17 25 425

By similar fashion, the three missing cards arc one by one in condition of
dependent.

(_.
K
Q 12(—|
8
4
NN
Hence, required probability
By, b =0.00289

52751 50 132600

v IIC EIC !.C
(iii) Required probability (same face) = . 1x—Llx 1.

(v)

SIC ﬂlc
1 1

‘ 1 ? c:1 i c:1
OR, Required probability = XL x——1x3
2¢ "o Y0

Required probability that missing cards are of the same suit

13 12 11
= O, Gy Gy 888 0517
c, o, me T 132600

2C, BC, _UC, 6864
Or, Required probability = L 1 - =0.0517.
= E g o "Clx”q 132600

Example: From a pack of cards two cards are drawn, the first being replaced before the

second is drawn. Find the probability that the first is a diamond and the
second 1§ a king,
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Solation: Let A denote the event of drawing a diamond and B that of drawing a king
in the second draw, when the first drawn card has been replaced. Hence, there being 13

diamond cards and 4 king cards out 0of 52 cards, we have

13C1 _l

P(A) =Probability of drawing a diamond = P
1

C, 4 1

2, 52 13

P(B) =Probability of drawing a king =

1

Required pmbahi]ity:P{A)P{B):%-ls:é:ﬂ.ﬂw

Example : If all face cards are removed from a well defined full pack. If 4 cards are
drawn at random from remaining 40 cards. Find the probability that these
belong to

(a) different suits
(b) different suits and different denominations
Solation: After removal of 12 face cards, the remaining 40 cards consist of 10 cards of

each suit.

(2) The chance of drawing a card in the first draw =:g‘ =1.

1

Having drawn a card, there remain 39 cards of which 30 are of different suits from
that of drawn one. Therefore the chance of drawing a card of different suit in

30
second draw = NC‘ =E.
c, 19

Having drawn 3 cards, there remain 37 cards of which 10 are of suits, different from that
e 10

e, 37

drawn ones.So the chance of drawing a card of different suit in fouwrth draw =

.All the events being dependent.
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. . 10 10 16 1000
Required probability =Ix—x—x_—="—"
LR 13719737 9139

(b) The chance of drawing a card in the first draw = ¢, =1.

40
1

e ——

v
e 1
®

ol

| rr ||
ol | <

N o B

fo | T 5
et

Having drawn a card, there remain 3% cards of which 9 are of same suit and 3
are of the same denomination. So that 27 cards out of 39, are such as these arc
of different colours and different denominations from that of the drawn one.

-

: ) 7¢, 21 9
. The chance of drawing a card in seconddraw =5 ==
C, 39 13
- °C, _16_38
Similarly, chance of drawing a card in 3" draw =W=§=E.
1
7
And the chance of drawing a card in 4"draw = s::Cl =37
1
All event, being mutually dependent,
Required probabiity =1x—-x—-x_1= >0+ _ 055,

13 19 37 9139

Example: In a hand of bridge, what is the chance that all four queens out of 13 cards are
held by a particular players?



Sohttion: Since a particular player will have 1 cards out of 52 cards by *C;; ways, he
will have 4 queens and 9 other cards by *C, x *C, ways.

: . ‘e, x ¥
Required probability =f=0.[}026.

1

Example: What is the probability of getting 9 cards of the same suit in one hand in a
game of bridge?

Solution: The particular player can get 9 cards out of thirteen of one suit in *C,ways
and 4 cards of some other suit in *C, ways. Since, there are four suits in a
set of cards, the number of ways in which he can get nine cards of the same
suit = °Cy x ¥Cy x 4.

Also, the number of ways in which 13 cards can be given to the player
52
= Clg.

BC,x¥C, %4

2y

Required probability =

Example: In a deal for "bridge" the player A has to receive two aces. Find the probability
for each of the possible number of aces that may have been dealt to his
partner.

Solution: Since, A has to receive all his thirteen cards, his partner can have 13 cards
out of 39 cards.

In case, his partner does not have any ace, the partner can have 13 cards out
of 37 only. Since he cannot have any card out of A's and rest two aces.

Cy 28

Hence, the probability that A's partner does not have any ace. = e
JE]

TCux’C _26

Then probability that A's partner has one ace= B G =
13
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Since, he can have one ace out of the remaiing two and twelve cards out of the
remaining 37 Similarly, the probability that the partner has two aces.

_ STCH % 202 =£
2, 19

Note: (i When two dice are thrown, the rumber of ways of getting total 'r'ig

()

(i)

(v)

b)) r-1if2<r<7,
{€) 13-, if8<r<12
When three dice are thrown, the number of ways of gefting total 'r' is

@) w,iﬁ:srss

) %,ﬂ?msrsls

(c) 25,ifr=9%orl2

(d) 27,ifr=100rll

Out of n pairs of shoes, if k shoes are selected at random the probability that
there i no pair is p= Efénand the probability that there is at least one

k

pair is 1 —p.
If 'r' squares are selected at random from a chees board, the probability that

they fic on e diagonal is * C* cr:gc,ﬁz(*c,), 1<r<’.

If there are n ketters and n addressed envelopes

{a) Probability ofkeeping n letters in all wrong envelopes
21 3 n!

{b) Probability of at keast one in right envelope = 1 —p

(c) Probability ofall in right envelope =l!.

n



(d) Probability of at least one in wrong envelope=1— L

El
Check your progress
1. If two dice are thrown simultaneously. Represent the sample space and the

following events.
() numbers shown are equal

(i) sum of numbers turned up is 10.
(i) sum of numbers appeared up is greater than 10.
(iv) number appeared on 1® dice is even no.

(v) number appeared on 1* die is multiple of 2 and on second is multiple of
3.

2. A bag containing 20 tickets numbered consecutively. If a tickets is drawn at
random. Represent the sample space and the event that the ticket drawn has a
prime number,

3. There are 3 red 5 black balls in an urn, If one ball is taken out at random from
this urn, then represent, the sample space and the event of this ball being black.

4, Iftwo coins are tossed randomly, what is the chance that the turnings are
(i bothhead?
(ii) atlcast one head?
(ili)}) one head and one tail?
(iv) at mostone head?
(v) nohead at all?

5. Ifthree coins are tossed simultaneously, find the probability of getting
(i)  all three heads.
(i) one head and two tail.
(iif) head and tail alternately.
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9.

(iv) at least one head.

(v) at least two heads.

(vi) exactly two heads,

(vil) at mosttwo heads.

(viii) no heat at all,

If five coins are tossed randomly, find the chance that there are exactly four
heads.

If n coins are tossed randomly, find the chance that head will turn up odd
number of times.

If two dice are thrown simultanecusly, then find the chance of getting
(i} numbers shown are equal

(ii) mumbers shown are different.

(iii) sum of the numbers appeared is 7.

(iv) total scoreis a prime.

(v} sumis 10.

(vi) sumis 5.

(vil) sum of the mumbers appeared is kss than 6.

(viil) sum of the numbers shown is = 7.

(ix) sum of the numbers shown is = 10.

(x) sum of the numbers shown at the bottomof'the dice is 7.

A pair of fair dice are thrown simultaneously. Find the probability that
(i}  no appeared on first is > 3,

(ii) no appeared on secondis < 4.

(iii) difference of the number shown is one.

(iv) difference of the numbers shownis 2.

(v} sumis neither 7 nor 11,

(vi) firstis a multiple of2 and the other is a multiple of 3.
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10.
11,

12.

13.

14.

15.

(vi) oneis multipke of 2 and the other is multiple of 3.

(viii) sum of the numbers at the bottom of the dice is 7.

What is the probability of getting eight points with 2 dice in a single throw?

If three dice are rolled randomly, Find the probability that the number appeared
on the dice are

(1)  equal no. oneach,

(i) different number on each.

(i) sumis 10.

(iv) sumis 15.

(v) sumis 12.

If three pairs of fair dice are rolled randomly, find the probability that numbers
appeared on the dice are as

(1) equal oumber on each.

(i) different mumber in each.

(1liij) sumis 15.

(v} sumis 24.

If three identical dice are rolled, find the chance that the same number will
appear on ¢ach of them.

If two pairs of fair dice are casted, find the chance that

(1) different numbers appears on the dice.

(i) sum ofthe numbers shown is 18.

(i) sum of the numbers shown is 20,

(iv} sum of the numbers shown is 15,

A card is drawn at random from a pack of cards. Find the probability of getting.
(i) aking

(i) mnoking

(iii) a spade
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(iv) ablack

(v} king orqueen

(vi) heart orspade

(vi)) king or queen or jack

(viii) a two ofheart

(ix) aqueen of spade

(x) either a queen of heart of king of spade.
16. From a well shuffled pack of 52 card, two cards are drawn at random. Find the

chance that.

(i}  bothare aces.

(ii) bothare queens.

(iii) both are red.

(iv) bothare spade.

(v) oneis aking and the other is a queen.

(vi) oneis a spadeand the other is a heart.

(vil) both of different colour.

(viii) at least one black.

(ix) at least one king.

(x) exactly aking.

(x) oneis an ace and the other is honours.

(xil) one is red and the other one is spade.

(xii) none ofthe faces is drawn,

(xiv) neither knave nor honours cards are selected.
17. During shuffling of the pack of cards if two are misplaced, find the chance that

in the misplaced cards there will be.

(i}  at least one jack but no club.

(i) queen must not be misplaced.
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18.

19.

21,

(iii) at least one is ace of heart.

From a well shuffled pack of 52 cards, two cards are drawn one by one, the first
being replaced before the second is drawn, find the probability that

(1) The firstis a diamond and the other i3 a king,

(ii}  at least one jack is drawn, but no club,

(iii) at least one knave is drawn, but no spade.

If two cards are drawn one after another from a pack of 52 ondinary cards, find
the chance that the first card is an ace and the second is an honours card. The
first card is not replaced while drawing the second.

If three cards are drawn from a well shuffled ordinary pack, find the probability
that cards drawn are

(1) all three kings.

(i) el of different faces.

(iii) all of the same face.

(iv) ofthe same value.

(v) ofthe same honours.

(vi) ofdifferent honours.

(vi)) ofdifferent knave.

(viil) exactly two kings.

(ix) 2kings and 1 jack

(x) atelast one king.

(xi) at mostitwo queens,

(xi)) one is red and two are kings,

If four cards are drawn from a pack of 52 cands randomly, find the probability
that cards drawn are

(i) all four queens or kings.

(il  all of the same denomination.
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25,

26.

27,

28,

(iii} all of different denominations.

(iv) ofdifferent suits.

(v) ofthe same suit.

{vi) ofthe same honours,

{vil} ofdifferent henours,

{viii) at least two kings.

(ix) at mosttwo jacks.

{x) two are ofred colour and two are kings.

{xi) oneis an honours and the other three are queens.

{(xil) one is an honours and the other three of different faces.

If four cards are drawn at random from the full pack. Find the chance that these
will be

(i) fourhonours of the same suit.

(ii) fourhonours of different suits.

Two cards are drawn simultaneously from the same set. Find the probability that
at least one of them will be the ace ofhearts.

One card is drawn from each one of the two ordinary sets of 52 cards. Find the
probability that at least one of them will be the ace of hearts.

Find the probability of drawing cither the ace of spade or ace of hearts from a
pack of cards in a single draw.

If 7 cards are drawn at random from a pack of well shuffled 52 cards, what is the
chance that 3 will bered and 4 black?

A card manufacturer has supplied an incomplete pack of 50 cards. If two cards
are drawn at random, What is the chance that they will be diamond?

In shuffling a pack of playing cards, four are accidently dropped. Find the
chance that the missing cards should be one from each suit.
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29.

30.

31.

32.

33.

34.

35.

36.

A deck of cards contains 4 kings, 4 aces, 4 queens and 4 jacks. Two cards are
drawn at random. Find the probability that one ofthese is an ace.

From a well shuffled pack of cards, 2 cards are drawn at random and kept aside,
then one card is drawn from the remaining 50 cards. Find the chance that, it is an
ace.

From a pack of 52 carls, two cards are drawn one after another without
replacement. Find the probability that

(1}  the first is a king and the other is a queen.

(ii) oneis a king and the other is honours card.

Find the chance of drawing an ace, a king, a queen and a jack in order from an
ordmary pack m four consecutive draws, the card drawn bemg

(i} notreplaced.

(ii) replaced.

Two cards drawn one after the other without replacement method. What s the
chance that they will be of different colours and different denominations.

A person draws a card from a pack of playing cards, replaces it and shuffles the
pack. He continues this until he draws a spade. Find the chance that he will be
successfulin the third attempt.

Two cards are drawn successfully and successively with replacement from a
well shuffled deck of 52 cards. Find the probability of drawing two aces.

If 4 cards are drawn one by one without replacement, find the probability that
cards drawn are

(i} all aces,

(ii) ofthe same value.

(iii) ofthe same suit.

(iv) ofthe same honours,

(v) ofthe same faces.

(vi) of different denominations.

(vi) ofdifferent suits.

(vii) of different honours.
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(1)
2
(3)
@

)

37.

38,

39.

41.

(ix) allhonours ofthe same suit.

(x) allhonours of different suits.

(A} Iftwo cards are drawn from a pack of 52 cards one after another without
replacement, find the chance that one of these is an ace and the other is a
queen of opposite shade.

(B) A deck of 36 cards is divided at random into two equal parts. What is the
probability that both parts will have an equal number of red and black
cards?

In a hand at whist, what is the probability that the four king are held by a

specified player?

In a game of bridge, 4 players are distributed one card each by tumn so that each

player gets 13 cards. Find the chance of a player getting a black ace and a king.

What is the probability of getting 9 cards of the same suit in one hand in a game

of bridge?

What is the chance that at kast one of the players in a game of bridge will get a

complete suit of cards?
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UNIT -3

General Counting Methods

Structure

3.1 Introduction

3.2 Objectives

33 Sum and ProductRules
34 The Pigeonhole Principle

3.1 Introduction

This i most basic and useful unit of this block as it introduces the concept of sum rulefor
counting the mumbers,the concept of product ruke for counting the numbers, elementary
operations and associated logical connectives, We mtroduce the Pigeonhole Principleand
its applications In counting.

3.2 Objectives
After reading this unit we should be able to

1. Understand the concept of statement of sum rule and statement of productrulefor
counting

2,  Understand the statement ofPigeonhole Principleand its applications in counting.
Logic is a field of study that deals with the method of reasoning Logic provides ruks by
which we can determine whether a given argument or reasoning is valid (correct) or not.

Logical reasoning is used in Mathematics to prove theorems. In computer science logic is
used o verify the correctness of programs, Combinatorics is a branch of mathematics that
deals with counting, In this chapter, we shall study some topic which various
combination of objects can arise, The sum rule and the product rule give us the method
for counting. Pigeonhole Principle states that if there are more pigeons (objects) than the



pigeon holes (boxes), then some pigeonhole (box)} must contain two or more pigeons
(objects). It is more useful in counting,

3.3 Sum and Product Rules

We begin by stating two basic principks for counting the number of ways events can
happen.

Sum Rule : If one job can be done in m ways and another job cab be done in n ways
and if there is no way common to both jobs then the total mumber of ways in which either
of the two jobs can be done is equal to m+n.

In set-theoretic notatins, sum ruk states that if A and B are two finite sets such that
ANB= ¢ then |AUB[=|AHB|

Where [X] denotes then mmmber of clements m 3

Product Rule : If one job can be done in m ways and following this another ob can be
done in n ways then the total number of ways in which both the jobs can be done in the
stated order is mxn.In set-theoretic notations, product rule says that

|AXB| = |A| x[B|,where A and B are finite ses.

Example : Supposean institute offers seven different courses in the moming shift and six
different courses in the evening shift.
(a}) How many ways are there for students who want admission in one course only?

(b) How many ways arc there for students who want admission in one coursein the
morning shift and one in the evening shift?
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Solution

{a) By sum rule, students will have 8+6 = 13 choices if they want admission in only
one course,

{(b) By product rule there will be 706=42 choices for students who want to take
admission in one course in the moming shift and one in the evening shift.

Example : There are five different Hindi books, six different English books and eight
different Sanskrit books, How many ways are there to pick two books not both in the
same language?
Solution : There are three cases:

(i} 1Hindi and 1 English book

(i) 1 Hindi and 1 Sanskrit book

(ii) 1 English and 1 Sanskrit book

Since there are five Hindi books and six English books, we can select one Hindi and one
English book in 5x6 ways. Similarly, one Hindi and one Sanskrit books can be chosen in
5x8=40 ways and one English and one Sanskrit book can be chosen in 6x8=48 ways.
Smce the above three types of selections are disjomt, therefore by sum rule, there are
30+40+48=118 ways in all

Example : If A and B are finite sets then
1. JA-B|=|A|-|ANB
2. ]JA-B|=|A|-|B] if BcA
Solution :
1, We know from set theory that
(A-B) U (AN BF (AnB) u (AUB)
=An(BUB)= A
and A-B)Nn(AnB)=(AnB}'Nn{AB)=AnBnB'=¢

Therefore, by sum rule, [A| =|(A - B) W (AnB)=|A-B|+|ANB|
279



= |A-B|=|A|-AnB|

2, It follows from (1) because B — A implies A n B = B, Substiutng AnB=B in
(1), we get ja — B[ = |A| - [Bl.

3.4 The Pigeonhole Principle

It states that if there are more pigeons (objects) than the pigeon holes (boxes), then some
pigeonhole (box) must contain two or more pigeons (objects).

In set-theoretic terms, pigeonhole principle is equivalent to the following:

Let A and B be finite sets. Of |A| > [B| then any function f : A — B camot be one-to-one.
That is, there exists at least 2 elements x and y and A such that £x) = f{y).

Although the pigeonhole principle itself is trivial but when applied cleverly, it can yield
nontrivial results. The pigeonhole principle is ako called the Dirichlet drawer principle.
To apply the pigeonhole principle, we nmst identify pigeons (object) and pigeonholes
(categories of the desired charactersitcs) and be able to count the number of pigeons and
the number of pigeonholes.

Example: Show that among 13 peoplke, there are at least two people who were born in the

same month.

Solution: If we take 13 people as pigeons and the 12 months (Jammary, February, March,
.veeneny DECember ) as the pigeonholes then by the pigeonhole principle there will be at
least two people who were born in the same month,

Example : Show that in a set of five distinct integers, there must exist two integers with
the same remainder when divided by 4.

Solution : We know that when any integer i divided by 4 then the possible remaders
are 0,1,2 and 3. Assuming 5 given integers as pigeons and 4 remainders as pigeonhole,
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we get, by the pigeonholes principle, that there are at least two integers with same
remainder (when divided by 4).

Example : Suppose 14 students i a class appear at an examination. Prove that there exist
at least two among them whose seat numbers differ by a multiple of 13.

Solution : Let A be the set of seat mumbers of 14 students. We know that when we divide
any integer by 13 then the remainder can only have the values 0,1,2,.....,12. So, we
define a finction f: A > {0, 1, 2, ....,12} by

f{x) = remainder when x is divided by 13.

Since |A| =14 and | {0, 1, 2, ...., 12} 13, therefore by the pigeonhole principle, function
f cannot be one-to-one. Thus, there exists two distinct seat numbs x and y such that f (x0
=f{y). Now x and y can be written as (by Euclidean algorithm)

X =13a+f{x}) and y = 13b + £y} .Where a and b are integers.

=>x-y=13@-b) vfx)=1y)

Since a — b is an integer, x —y is a multiple of 13,

Hence, there exist at least two tudents whos seat numbers differ by a multiple of 13.

Example : If any 51 integers are chosen from that set (1,2,3,....., 100} then show that
among the chosen integers there exist two integers such that one is multiple of the other.

Solution : We know that every positive integer x can be written as = 2.1, where r I odd
integer rthe odd part of integer x.

Ifxisin {1,2,...,100} then its odd partr canoly bem 1,3,5,.....,99}.
Let s be any se of 51 integers chosen from the set {1,2,3....,100). Define a function

fs - {1,3,57,....,99} byF (x} = odd part of x.
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Since |S|= 51 and | {1,3,5,7....... ,99)1=50, it follows from the pigeonhole principle that f
cannot be one-to-one, Thus, there exist two integers x and i S such that their odd parts
f(x) and f{y} are same. That 1, f{x} = f{y). Therefore, we have

x = 2" r and y2Lr for some integes p and q.

If p > q then x = 2y and therefore x & a multiple of y. If q < q then y is a multiple of x.
Thus, either x is multiple of v ory is multiple of x.

Example : Find the minimum number of elements to be chosen from the set 8 =
{1,2,3,.....,9} such that two of them should add up to 10.

Solution : We first construct all possible different set {x, y} of two element from the
given set S such that x + y = 10. They are {1, 9], {2, 8}, {3, 7]. {4, 7}. Now consider the
following partition of S : {1, 9} {2, 8}, {3, 7}, {4, 6} and {5}

Observe that each element of S belongs to one and only one of the above five sets, If we
choose any six elements of the set S then it follows by the pigeonhole principle that two
of them must belong to the same set which add up to 10.

To Pigeonhole Principle can be generalized in many way. We give below two
generalizations. Another generalization is given in problem set.

Theorem 1 : if r O 2 is an integer and if n{r — 1} + 1 objects are placed inn boxes, then
there exists a box with at least r objects.

Proof : Suppose if possible, every box contains less then r objects. Then there wllbe
atmost n.(r — 1) objects. But this is contradiction to our assumption that there are n(r —1)
+1 objects. Hence, there exists a box with atleast r objects. Then there will be atmost
n (r— 1) objects.

But this is a contradiction to our assumption that there are n{r — 1) + 1 objects, Hence,
there exists a box with atleast r objects.
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Theorem2 : (Generalized pigeonhole principle). If there are n pigeons and m

(n—l)] +1 pigeons.
m

pigeonholes (n > m) then some pigeonols must contain at least |:
Then there will be atmost m{w] iin'.l.M =n —lpigeons.
m m

This is a contradiction to the agsumption that there are n pigeons.

Corollary: if pigeons are more than k times the pigeonhole then some pigeonhole must
contain at least k+1 pigeons.

Proof: Put n > km in the above theorem to get the result,

Example : Show that if seven colours are used to pamt 50 cars, at least eight cars will
have the same colour,

Solution : Here 50 cars (Pigeons) are to assign 7 colours (pigeonholes). Hence, b the
generalized pigeonhoke principke, at least [@}H% cars will have the same colour .

Example : How many letters one must choose from the set of 15A’s, 20B’s and 25C’s so
that 12 identical letters will always be include in the selection,

Solution ; Here there are three types of ketters (pigeonholes) each having more than 12
letters. We have to find number of letters (pigeons) n such that

[(n;].)]-p]_:lz:}[Q]:ll:) n=11x3+1=34

Thus, 34 15 the mmimum number of lefters to be selected from the set having 15 A’s,
20B’s and 25C’s so that 12 identical letter will always be included m the selection.
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Example : Show that at any party with six people, thee either exists a set of three mutual
friends or a set of three nutual strangers.

Solution : Let x be any person at the party. Let S, be the set of persons who are friends
of x and S, be the set of persons who are strangers to x. Then the remaining 5 persons
(pigeons) can be either in §,, or in ;. By the generalized pigeonhole principlk either S,

or S; contams at least [ST_I]H:S persons. We first consider the case when S, contains

3 persons a, b and c. If any two of a, b care friends then these two together with x form a
set of three mutual friends. On the other hand if no two of a, b, ¢ are friends of each other
then {a, b, ¢} is a set of nutual strangers. In the second case suppose S, contains 3
persons a, b and c. If two of a, b, ¢ are strangers to each other then these two together
with x form a set of tree mutual strangers. If no two of a, b, ¢ are strangers to each other
then they from a set of three mutual friends.

Example : Show that anyset of seven distinct integers containg two integers x any y such
that either x+y orx — y is divisible by 10,

Solution : Let A = {a;, a,,...., a;} be any set of seven distinct integers. Let r; be the
remainder when any element a; of A is divided by 10. Consider the following partition of
A. 8,={a; : a;€ A and remainder r; = 0}

So= {a; : a;€ A and remainder r; = 5}

S;= {a; : a;€ A and remainder 1; = 1 or 9}
S4= {a; : a;€ A and remainder 1; = 2 or 8}
S;= {a; : a;€ A and remainder 1; = 3 or 7}

S {a; : a;€ A and remainder r; =4 or 6}



We know that when we divide any integer by 10, then the remainder can only have the
values 0,1,2,....,9. Therefore, if we divide any integer by 10 then its remamder must
belong to one of the sets §;,i=1,2,.....,6.

Taking seven distinet integers a;, 1= 1,2,...... .7 as pigeons and six sets S, F1,2,...6 as
pigeonholes we conclude from the pigeonholes principle that some S; must contain at
least two integers a; and a; from A. If both a; and a; are in S, or S, then a; + a; and a; — a;
both are divisible by 10. If a; and a; are in one of the other four subsets then

a; = 10x+r; and a; = 10 y + r;,where r; and 1; are in one of the sets 83, 54, 85, S,.
Now a; —3;= 10 (x —y) +{(r; — r;) and a; +a;= 10 (x+ty) + (r; +1;).

If't; and r; are equal then a; — a; 5 divisible by 10. If 1;# r; then. Thus either a; — a,0r a; +
a; in divisible by 10.

Example : In a toumament in which each player against every other player, and each
player wins at least once, show that there are at least two palyers having the same number

of wins.

Solution : Let the number of players in a tournament be n, Since each players wins at
least once, the mumber of wins for a player is at least 1 and at most n— 1, Let us define a
function f from the set of players to the set {1, 2, ..., n} by f (x) = number of wins of the
player x. Since there are n players, it follows from the pigeonhole principle that atleast
two players have the same number of wins.

Example : Show that any sequence of n’+1 distinct integers contains an increasing
subsequence of kength n + 1 or a decreasing sequence of kngth n + 1

Solution : Let a, a, a;,....... A2+1 be a sequence of n’+1 distinct (xy, yi), where x, is
the length of a longest increasing subsequence starting at a; and y, be the length of a
longest decreasing subsequence starting at a,. Suppose if possible there 5 no mcreasing
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or decreasing subsequence of length n+1 in the sequence a; of n>+1 integers. Then the set
{(Xy, i)} has atmost n® distinct ordered pairs. It follows the pigeonhole principle that
there must exist two elements a; and a; in the sequence which corresponds to the same
ordered pair, It follows by the pigeonhole principle that there must exist two element a;
and a;in the sequence which correspond to the same ondered pair. In other words (x;, y;}
= (x;j, x;). But this is not possible because if a;< a; then we must have x> x; and if a,> a;
then we must have y;> y;. Contradiction proves that there is either an ncreasing
subsequence or a decreasing subsequence of length n+ 1.

Example : Given any five points in the interior of an equilateral triangle of side 1, show
that there exists two points with in a distance of at most %.

Solution : Divide the given equilateral triangle into four equal triangles as shown in the
figure. Now the given five points will be placed in these four triangles. By the pigeonhole
principle at least two of them must belong to one of the four small triangles. The distance
between these two points cannot exceed the side of the tnangle which 15 2. Thus, thee
exists two points within a distance of atmost 4.

Check your progress

1. Prove that if q,> 1, q»> l....., q,= 1 are integers and if qy+q,+...qn — 0+ 1
objects are put into n boxes, then either the first box contams atleast q; objects or
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10.

the second box contains at least q; objects, ....., or the n™ box contains at least Ga
objects.

Show that at a party of an peoplke (n > 1), there are 2 people who have the same
number of friends,

(Hint: Note that friendship i3 a symmetric relation. A personcan have 0, 1, 2,....
upto n — 1 friends. If any person at the party has O friends of a person are either
0.1, ieinn ,n—2}or {1, 2, ....,, n— 1), In either case we have n people and n —
1 choice for number of friends).

Show that any subset of nt+1 different integers between 1 and 2n (n0O2}) always
contains pair of mtegers with no common divisor.

Given 10A’s, 20B’s, 8C’s, 15D’s and 25E’s, how may letters must be chosen fo
guarantee that there are 12 identical letters.

A professor tells three jokes in his class each year. How many jokes does the
professor require in order to never repeat the exact same tripke of jokes over a

period of 12 years. [Ans.6]
Find the minimum number of elements to be chosen from {1,2,3......8) such that
two of them will add up to 9. [ans.5]

A student want to preparc for his final examination by solving some unsolved
questions papers in 77 days. He decides to solve at least one paper a day but not
morc than132 papers altogether. Show that there is a period of consecutive day
with iIn which he solves exactly 21 papers.

How many times must we throw two dice order to be sure that we obtain the same

total score atleast 7 times, [Ans 67]
How many cards must be drawn from a pack 52 cards to be sure that you have
seven cards of one suit. [Ans 25]

Given any five points inside a square of side 1, show that there exists two points
within a distance of at most 1/y2.
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11. Given any ten points inside an equilateral triangle of side 1, show that there are
two points within a distance of at must 1/3.
[Hint, Divide the given triangle into 9 equal triangles]
12, If p is prime mumber then show that there exists integers a and b such that p
divides 2™ +b™+1.
Suggested Further Readings

(1} Felx. H. (1978) Set theory, Chelsea publishing Co. New York.

(2} P.T.Johnstone, (1987) Notes on Logic and set theory, Cambridge University
Press.

(3} L N. Herstein. (1983), Topic in Algebra, Vikas publishing house Pvt. Ltd.

(4 John B, Frakigh, A first course in Abstract Algebra, Narosa publishing house Pvt.
Lid.

(5} S.Ganguly and M. N. Mukherjee, A Treatise on basic Algebra, Academic
Publishers- Kolkata.
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UNIT -4

The Inclusion — Exclusion Principle

Structure

4.1 Introduction

4.2. Objectives

4.3 The inclusion-exclusion principle

44 Alternative form of the inclusion-exclusion principle
4.5 Onto Functions

4.1 Introduction

This is most basic and important unit of this block as it introduces the concept of
counting, the inclnsion-exclusion principleand the elementary operations and associated
connections, We introduce the well formed formulae for finding of onto maps,

4.2 Objectives
After reading this unit we should be able to

1. Understand the conceptof the inclusion-¢xchusion principle
2. Understand the formulae for finding of onto maps
Logic is a field of study that deals with the method of reasoning Logic provides rules by
which we can determine whether a given argument or reasoning is valid {correct) or not.
Logical reasoning is used in Mathematics to prove theorems. In computer science logic is
used to verify the comrectness of programs. If A m B #¢, then sume rule]A « B| = [AHB|
does not hold. For example if A = {a, b,c}, B={c,d, ¢, f}

then |A| = 3 and [B| = 4 but |A U B| = 6 not 7. The general formula which is true for any
finite sets Aand Bis A B |=|A| +|B| -|[ANB] ... (1)
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Here to find |A U B| we included (added) |A| and |B| and we excluded (subtracted) |Am
B|. We shall see that formula (1) is a special case of the inclusion -exclusion principle.
Before stating the general inclusion-exchision principle for n sets we give it for three set,

Theorem: for any finite sets, A, B, C we have
AVBUWC|=Al+B[+[C[-|ANB|-]ANC|-BNC|+|ANBNC|
Proof: AUBUC|=|(AVB)UCHAUB|+|C|-([AuB)nC|
=|A|+|B[-ANB|+[C|-|AnC)uBNC)
=|A|+|B|+|C|-|AnB|-{|A~C+|BNC|-|A~BAC|}
=|A|+|B|+|C|-]ANB|-]ANC|-BNC|+|ANBC|

We now state and prove the inclision-exclusion principle.

4.3 The inclusion-exclusion principle

Let A, A,,....,A; be an n finite sets. Then

|A1UA1UA3 ..... UAR‘ ZlAil— ZlAlﬁAjl

1 15kt

+ YA NANA, [+9 I | AN AnAlL

isicjcksn

Proof. We shall prove the formula by showing that each element of A\ VAU, UA, 18
counted exactly once on the right hand side of the equation. Let x be any element n
AU AqU ....\UA,. Suppose x belongs in exactly m sets, I0mOn. Now, in YA, | it is
counted m times. In } | A; N A, |,x is counted “C, times and so on. Thus, the ell-;ment X i
counted exactly m —li%zﬁ‘mC; e O i T 09
—Cq — [FCo—"C 1+ Cy+..... (- D*2Cp] =1-1=0
Because "Cq - "C1+7Cy-"Cat.... (1)"Cp= 0.

Thus, each element of A, A,..... W A, is counted exactly once on the right-hand side of
the equation. This completes the proof.

Note: The above principle can also be proved by induction on n.



4.4 Altermative form of the inclusion-exclusion principle

Let S be a finite set and A, A,, ....., A, be subsets of S, Let A, denote the complement
of A;. Then we have the following theorem.

Theorem: If A;, A,,.....,A, arc subsets of a finite set S then
ArN AN As'L N A =18 - YA [+ YA NA|

i=1 Igi<ien
FooenH =1 Y JA1NA N NAY|

Proof: by De Morgan’s laws, wehaveﬁA: = S—GAi
imd iml

:‘QA; “[ACX=|X-A[=|X|-|A\]

-si-{Ja,

If we substitute the valne of

i1

GA.‘ from theorem 2, we get the result.

Example: Find the mimber of integers between 1 and 250 that are divisible by any of the
integers 2,3 and 7.

Solution : Let A denote the set of all integers between 1 and 250 that are divisible by 2,
A denote the set of integers that are divisible by 3 and A; denote th set of integers that are
divisible by 7. Then

1A, = [2;_0] _125,|A, |- [?] — 83and| A, |- [?] —35,

‘Where [x] denote the largest integer not greater than x.
Now |A;NA;| =no. of integers between 1 and 250 that are divisible b both 2 and 3.

—no. of infegers that arc divisible by 6.= [?] —41

250

. 250
Slmi]arly, ‘AlﬁA3| = m

3x7

=11

=17 and lAzﬁ Agl =
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[Ain AgnAy| =

250 ‘_
2x3x7

o [A1U AgU Ag| = 125483+35 —41 — 17— 11+5=179

Example : How many integer solutions are there to the equation x;+ X;+ X3+ x,=13,
0=x;<5

Solution : Let S be the set of all integer solutions of the given equation with each x;> 0
and let A; be the set of integer solutions with x> 5 or equivalently x;<6. Then number of
solutions with

0<x;<Swill be|A;'N Ay’ A’ A
Now [§| ="*'C3="5C5=560
Ay =, 0= 120
JAiNA;| = FEFHIC 5 ="C1=4
Since each x;<6, therefore sum of three x;" would exceed 13, Therefore,
AINANA 0.
Simikalry, |A;NANAINAL| 35 also zero.
Now from theorem 3, we have

A‘AANAYAAL] =5]- SIA, [+ TIA, A, [=560 -4 x 120 +°C,x4= 104
ol

Idjed

Note: This questions can also be done with the help of generating function.

4.5 Onto Functions

We know that the total mmmber of fimctions from a set A having n clements to a set B
having m elements is m", If m On then number of one-one functions i m!/m — n)!. With
the help of the mclusion-exclision principle we obtain the number of onto functions in

the following theorem,

Theorem 4: Let A and B be two sets having n and m elements respectively. Then the
number of onto functions from A to B is

m - "Cy(m — 1P+ "Cafm - 2 - ..o+ - ™ "Cany
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Proof : Let S be the set of all functions from A to B them [S=m". LetB = (b, ,b,,...., by).
For each F1,2,....m, let §; be the set of all functions from A to B — (b;). That is, §;
containg all functions fb;: A - B — {b;}. Since B — {b;}|=m—1,

ISl = (m-1)",

ForI =}, 8iS; is the set of functions which takes values in the set B — {b;, b;}. Again |B
— {bs, b;}| = m— 2, therefore , [S;M S;| = (m - 2)".In general, for any k-tuple {t;, iy, ...., iy}
with 1 <i<iy<iz.... <ih<m, we have [§ NS N..N§ |=(m-k)

We observe that a function from A to B 15 onto iff it does not belong to any S’ S, I=1,
2,....,m. Applying the principle of mchuision-exclusion, we get [S'n S2'M... Sy |

= |S| = il Si |+mCz |Si ﬁSj |- ng | S 8N Skl g (-l)m |Slf"|Sz.....f"'|Sm|
i

=" "Cy{(m— 1)™"C, (m — 2.+ (-1)™! "Cp ;. 1™+0
=mn - °C,(m— 1)*+ "C,(m—-2" 0 ...+ (- )™ °Cp,.

Example : In how many ways six different jobs can be assigned to four different persons
if each persons assigned at least one job.

Solution : In how the set of six jobs and B be the set of five persons. Now we have to
assign jobs to person such that each person gets at kast one job. This is equivalent to
finding onto functions from the set A o the set B, Here |A| = 6 and \B| = 5. Therefore,
there are 5° — °C1(5 — 1)* + °Co{5— 2)° — °C4(5- 3)*+°C,(5— 4= 1800

Ways to assign the jobs to the persons in the desired manmer.

Suggested Further Readings

(1} Felix H (1978) Set theory, Chelsea publishing Co. New York.

(2) P.T.Johnstone, (1987) Notes on Logic and set theory, Cambridge University
Press.

(3) L N, Herstein, (1983), Topicin Algebra, Vikas publishing house Pvt, Ltd,

(4) John B, Frakigh, A first course n Abstract Algebra, Narosa publishing house Pvt.
Ltd.

(5) 8. Ganguly and M, N, Mukherjee, A Treatise on basic Algebra, Academic
Publishers- Kolkata,
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