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Blocks & Units Introduction 

 

The intricate tapestry of mathematics is woven with threads of logic, patterns, and 

abstract thought. At its core, mathematical analysis seeks to understand and explain the 

continuous aspects of the mathematical world, from the behavior of functions to the properties of 

numbers. This SLM "Mathematical and Real Analysis," aims to unravel some of the key 

concepts that form the foundation of this vast and captivating realm. 

The present SLM on Mathematical and Real Analysis consists of eleven units with three blocks. 

 The Block - 1 – Mathematical Analysis, is the first block, which is divided into three 

units.  

In Block 1, we delve deep into the world of integrals and Fourier series. The Riemann 

Stieltjes Integral, a generalization of the well-known Riemann integral, opens the door to a 

broader class of functions and offers a more comprehensive integration technique. We further 

explore the harmonics of mathematics with Fourier Series, revealing the beauty of representing 

functions as infinite sums of sine and cosine functions. Finally, the concept of bounded variation 

is introduced, shedding light on functions whose variations are finite within given intervals. 

The Unit - 1 – Riemann Stieltjes Integrals, is the first unit of present self-learning 

material, which describes Absolutely continuous functions. Riemann Stieltjes integrals. Basic 

theorems. Definitions, Linear properties, integration by parts, change of variable in Riemann 

Stieltjes integrals, upper and lower integrals, necessary and sufficient conditions for existence of 

Riemann Stieltjes integrals, integral as a function of parameters, differentiation under the integral 

sign. 

In Unit – 2 – Fourier Series, the main emphasis on the Fourier Series, orthogonal system 

of functions, Fourier series of a function relative to an orthogonal system, properties of Fourier 

Coefficients, Reusz- Fischar theorem, convergence and representation problems for Fourier 

Metric Series, Sufficient conditions for convergence of Fourier Series at a particular point. 

In Unit – 3 – Bounded Variation, we have focussed mainly on Functions of bounded 

variation, total variation, function of bounded variation expressed as the difference of increasing 

functions, continuous functions of bounded variation, absolutely-continuous functions. 

The Block - 2 – Metric Spaces & Continuity is the second block with three units. 

Block 2 guides the learner through the elegant landscape of metric spaces. This block sets 

the stage by defining metric spaces, foundational to much of modern analysis. We subsequently 



dive into continuity, uncovering the nuanced dance of limits and function behavior. The final 

unit of this block takes us on a journey into the realm of analytic functions and transformations, 

presenting an interplay between complex and real analysis. 

In Unit – 4 – Metric Spaces, is being introduced the Metric Spaces, open and closed sets, 

limit and cluster points, Cauchy Sequences and completeness, Convergence of sequences, 

Completeness of R”. Baire’s theorem. Cantor’s ernary set as example of a perfect set which is 

now here dense. 

In Unit – 5 – Continuity is discussed with Continuity and uniform continuity of a 

function from a Metric space to a Metric space. Open and closed maps, Compact spaces and 

compact sets with their properties. Continuity and compactness under continuous maps.  

In Unit – 6 – Analytic Functions and Transformation has been introduced, Analytic 

function, Cauchy-Riemann equations, Cauchy equation formula, its applications, Fourier and 

Laplace transforms. 

The Block - 3 – Real Analysis has three units.   

The journey culminates in Block 3, where the real essence of Real Analysis is laid bare. 

Starting with foundational concepts, we quickly transition into the world of sequences and series, 

elucidating convergence, divergence, and the intricate ballet of infinite summations. The block 

concludes with a comprehensive view of integration, bringing together the threads of previous 

blocks and offering a unified perspective on the continuous aspects of mathematics. 

Unit – 7 – Basic Concepts dealt with Recap of elements of set theory; Introduction to real 

numbers, Introduction to n-dimensional Euclidian space; open and closed intervals (rectangles), 

compact sets, Bolzano - Weirstrass theorem, Heine – Borel theorem. 

Unit – 8 – Sequences and Series dealt with Sequences and series; their convergence. 

Taylor’s Series, Real valued functions, continuous functions; uniform continuity, sequences of 

functions, uniform convergence; Power series and radius of convergence, Singularities, Laurent 

Series. 

Unit – 9 – Integration, comprises the Differentiation, maxima - minima of functions; 

functions of several variables, constrained maxima - minima of functions, Multiple integrals and 

their evaluation by repeated integration. change of variables in multiple integration. Uniform 

convergence in improper integrals, differentiation under the sign of integral - Leibnitz rule, 

Residue and contour integration 

At the end of every block/unit the summary, self assessment questions and further 

readings are given.  



Throughout this SLM, concepts are introduced not merely as mathematical constructs but 

as tools for understanding the profound interconnectedness of the universe. Theoretical 

discussions are complemented with practical examples, exercises, and applications, bridging the 

gap between abstraction and real-world relevance. Whether a learner embarking on a journey 

into mathematical analysis, a researcher in search of a comprehensive resource, or simply a 

curious mind eager to delve deep into the mathematical realm, this SLM is crafted. Dive in, 

immerse yourself, and revel in the intricate beauty of mathematical analysis. 
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Block & Unit Introduction 

 

The Block - 1 – Mathematical Analysis, is the first block, which is divided into three 

units.  

In Block 1, we delve deep into the world of integrals and Fourier series. The Riemann 

Stieltjes Integral, a generalization of the well-known Riemann integral, opens the door to a 

broader class of functions and offers a more comprehensive integration technique. We further 

explore the harmonics of mathematics with Fourier Series, revealing the beauty of representing 

functions as infinite sums of sine and cosine functions. Finally, the concept of bounded variation 

is introduced, shedding light on functions whose variations are finite within given intervals. 

The Unit - 1 – Riemann Stieltjes Integrals, is the first unit of present self-learning 

material, which describes Absolutely continuous functions. Riemann Stieltjes integrals. Basic 

theorems. Definitions, Linear properties, integration by parts, change of variable in Riemann 

Stieltjes integrals, upper and lower integrals, necessary and sufficient conditions for existence of 

Riemann Stieltjes integrals, integral as a function of parameters, differentiation under the integral 

sign. 

In Unit – 2 – Fourier Series, the main emphasis on the Fourier Series, orthogonal system 

of functions, Fourier series of a function relative to an orthogonal system, properties of Fourier 

Coefficients, Reusz- Fischar theorem, convergence and representation problems for Fourier 

Metric Series, Sufficient conditions for convergence of Fourier Series at a particular point. 

In Unit – 3 – Bounded Variation, we have focussed mainly on Functions of bounded 

variation, total variation, function of bounded variation expressed as the difference of increasing 

functions, continuous functions of bounded variation, absolutely-continuous functions. 

At the end of block/unit the summary, self-assessment questions and further readings are 

given.  

  



UNIT 1:      REIMANN- STIELTJES INTEGRALS  

Structure 

1.1  Introduction 

1.2   Objectives 

1.3   Absolutely Continuous Functions 

1.4   Reimann- Stieltjes Integrals 

1.5   Basic theorems; Definitions  

1.6   Linear properties 

1.7   Integration by parts 

1.8   Change of variable in Reimann- Stieltjes Integrals 

1.9   Upper and lower integrals 

1.10 Necessary and Sufficient conditions for existence of Reimann- Stieltjes 

Integrals 

1.11 Differentiation under integral sign 

1.12 Self-Assessment Questions 

1.13 Summary 

1.14 Further Reading  

 

1.1          Introduction 

  

Welcome to Unit 1, where we embark on an explorative journey to understand the 

Riemann-Stieltjes integration, a fundamental concept in advanced calculus. This unit intends to 

build a solid foundation in understanding this integration method, diving deep into its intricate 

details, proofs, and applications through a structured approach. In the realm of mathematical 

analysis, integrals stand as crucial tools for calculating areas, volumes, and tackling a host of 

other analytical problems. Riemann-Stieltjes integrals, a generalization of the Riemann integrals, 



introduced a method to integrate a wider class of functions, providing an avenue to define 

integrals with respect to more general functions rather than just with respect to the length 

function. In this unit, we explore the intricacies of this form of integration, laying down its 

foundations and exploring its applications and properties. 

 

1.2         Objectives 

 

The learner should able to understand about the:  

• Understanding the concept of absolutely-continuous functions 

• Developing a foundational understanding of Riemann-Stieltjes integrals 

• Studying the basic theorems and linear properties associated with Riemann-Stieltjes 

integrals 

• Learning integration by parts and change of variables in Riemann-Stieltjes integrals 

 

1.3       Absolutely Continuous Functions 

 

Absolutely continuous functions can be regarded as an enhancement over uniformly 

continuous functions, sharing many properties with Lipschitz functions. These functions play a 

pivotal role in the integration theory, particularly in establishing the fundamental theorem of 

Lebesgue integration. We will delve into the conditions that a function must satisfy to be 

absolutely continuous and examine the implications of absolute continuity. 

In the field of mathematical analysis, understanding the notion of "absolute continuity" is 

pivotal as it stands at the intersection of integration and differentiation, harboring properties of 

both almost everywhere differentiability and uniform continuity. 

Definition 

A function 𝑓: [𝑎, 𝑏] → ℝ is said to be absolutely-continuous on [𝑎, 𝑏] if for every 𝜖 >

0;  ∃ 𝛿 > 0 such that, for any finite collection of pairwise disjoint sub-intervals of (𝑥𝑖, 𝑦𝑖) of 

[𝑎, 𝑏] satisfying 



∑|𝑦𝑖 − 𝑥𝑖| < 𝛿

𝑛

𝑖−1

 

We have  

∑|𝑓(𝑦𝑖) − 𝑓(𝑥𝑖)| < 𝜖

𝑛

𝑖−1

 

Properties and Characteristics: 

1. Uniform Continuity: Every absolutely continuous function is uniformly continuous, 

implying that it respects a uniform 𝛿 for a given 𝜖 across the interval of definition. 

2. Differentiability: Absolutely continuous functions are almost everywhere differentiable, 

and their derivatives are Lebesgue integrable. 

3. Integration and Differentiation: A function 𝑓 𝑖𝑠 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑙𝑦 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑠 𝑜𝑛 [𝑎, 𝑏] iff there 

exists function 𝑔 𝑖𝑛 𝐿1[𝑎, 𝑏] such that 

 𝑓(𝑥) = 𝑓(𝑎) + ∫ 𝑔(𝑡)𝑑𝑡;   𝑥 ∈ [𝑎. 𝑏]
𝑥

𝑎
. 

 

This relationship between absolutely continuous functions and integrable functions is 

central to the Fundamental Theorem of Lebesgue Integration. 

 

Relation with Other Forms of Continuity 

Absolutely continuous functions bridge the gap between Lipschitz continuity and uniform 

continuity, harbouring a richer set of properties that make them central in the study of 

integration theory. 

 

Examples:  

1. Every Lipschitz function is absolutely continuous. For instance consider the function 

𝑓(𝑥) = 𝑘𝑥, 𝑘 is a constant. It is easy to verify that it is Lipschitz and hence absolutely 

continuous. 



2. The Cantor function, also known as the Devil's Staircase, is an example of a function that 

is uniformly continuous and not absolutely continuous. 

Understanding absolutely continuous functions affords us a deeper insight into the nuances of 

integration theory, particularly Riemann-Stieltjes integrals. They stand as a central theme in this 

study, offering a rich ground of properties that interlink continuity, differentiability, and 

integrability, thus paving the way for a deeper exploration of Riemann-Stieltjes integrals in the 

forthcoming sections. 

 

1.4      Riemann-Stieltjes Integrals 

  

In this section, we introduce the Riemann-Stieltjes integral, a generalization of the 

Riemann integral that allows us to integrate with respect to a function other than the identity 

function. Here, we discuss the formulation of this integral and how it extends the theory of 

Riemann integration. 

The Riemann-Stieltjes integral is a generalization of the standard Riemann integral, 

allowing integration of a function with respect to another function. Given two functions 𝑓 and 

defined on an interval [a,b], the Riemann-Stieltjes integral of 𝑓 with respect to α is denoted as 

∫ 𝑓(𝑥)𝑑𝛼(𝑥)
𝑏

𝑎
.  

Here, α serves as the integrator, which need not be differentiable. This type of integral is 

particularly useful in various advanced mathematical contexts, including when the integrator α 

represents quantities like accumulated quantities or distribution functions. 

 

1.5     Basic Theorems  

 

We discuss the various fundamental theorems associated with Riemann-Stieltjes 

integrals, including the existence of such integrals under certain conditions and relationships 

between Riemann and Riemann-Stieltjes integrals. 



In the context of Riemann-Stieltjes integration, the term "Basic Theorems" refers to a 

collection of foundational results that characterize and provide tools for working with this form 

of integration. Here's a concise definition: 

 

Basic Theorems in relation to Riemann-Stieltjes Integration: 

 

These theorems provide foundational properties and results concerning the Riemann-

Stieltjes integral. They include: 

Existence Theorem: If f is continuous on [a,b] and α is of bounded variation on [a,b], then the 

Riemann-Stieltjes integral ∫ 𝑓(𝑥)𝑑𝛼(𝑥)
𝑏

𝑎
 exists. 

Linearity: The Riemann-Stieltjes integral respects linearity, i.e., for constants 𝑐1 𝑎𝑛𝑑 𝑐2 and 

function 𝑓 and 𝑔 we have  

∫ [𝑐1𝑓(𝑥) + 𝑐2𝑔(𝑥)]𝑑𝛼(𝑥)
𝑏

𝑎
=  𝑐1 ∫ 𝑓(𝑥)𝑑𝛼(𝑥) +  𝑐2 ∫ 𝑔(𝑥)𝑑𝛼(𝑥)

𝑏

𝑎

𝑏

𝑎
. 

Additive over intervals: if c is a point in the interval [a, b], then 

∫ 𝑓(𝑥)𝑑𝛼(𝑥)
𝑏

𝑎
= ∫ 𝑓(𝑥)𝑑𝛼(𝑥)

𝑐

𝑎
+ ∫ 𝑓(𝑥)𝑑𝛼(𝑥)

𝑏

𝑐
. 

Monotonicity : if  𝑓 ≤ 𝑔 𝑖𝑛 [𝑎, 𝑏], 𝑡ℎ𝑒𝑛  

∫ 𝑓(𝑥)𝑑𝛼(𝑥)
𝑏

𝑎
≤ ∫ 𝑔(𝑥)𝑑𝛼(𝑥)

𝑏

𝑎
. 

 

1.6         Linear Properties 

 

Exploring the linear properties of Riemann-Stieltjes integrals, we discuss the additive 

properties of these integrals and how they interact with scalar multiplication, laying the ground 

for a deeper understanding of their algebraic properties. The linear properties highlight a crucial 

aspect of the Riemann-Stieltjes integral – its compatibility with the basic algebraic operations of 



function addition and scalar multiplication. This compatibility is vital when applying the integral 

in various mathematical analyses and proofs. Understanding these properties helps in simplifying 

complex expressions and in recognizing when certain integrals can be broken down into more 

manageable parts. As given above, for constants 𝑐1 𝑎𝑛𝑑 𝑐2 and function 𝑓 and 𝑔 we have  

∫ [𝑐1𝑓(𝑥) + 𝑐2𝑔(𝑥)]𝑑𝛼(𝑥)
𝑏

𝑎
=  𝑐1 ∫ 𝑓(𝑥)𝑑𝛼(𝑥) +  𝑐2 ∫ 𝑔(𝑥)𝑑𝛼(𝑥)

𝑏

𝑎

𝑏

𝑎
. 

 

1.7       Integration by Parts 

  

The integration by parts formula is a powerful tool in the toolkit of integration, allowing 

for the integration of products of functions. We discuss how this formula is extended in the 

context of Riemann-Stieltjes integrals. 

Integration by parts is a fundamental technique in calculus, allowing us to transform one 

integral into another, often making it more manageable. This method finds its counterpart in the 

realm of Riemann-Stieltjes integrals, providing a powerful tool for evaluation. 

Formula: 

For functions 𝑓 and 𝑔 that are differentiable on an interval [a,b] and their derivatives are 

Riemann-Stieltjes integrable with respect to a function α on the same interval, the formula for 

integration by parts is: 

∫ 𝑓(𝑥)𝑑𝑔(𝑥)
𝑏

𝑎
= 𝑓(𝑏)𝑔(𝑏) − 𝑓(𝑎)𝑔(𝑎) − ∫ 𝑔(𝑥)𝑑𝑓(𝑥)

𝑏

𝑎
. 

Here, 𝑑𝑔  and 𝑑𝑓  represent the differential of functions 𝑔  and 𝑓 with respect to the 

integrator α, respectively. The formula effectively allows us to "swap" the roles of 𝑓 and 𝑔 in the 

integral, at the expense of introducing an additional term involving their values at the endpoints a 

and b. 

 

 



1.8      Change of Variable in Riemann-Stieltjes Integrals 

This section delves into the rules and methods of performing a change of variables in the context 

of Riemann-Stieltjes integrals, a technique that facilitates the simplification of complex integrals. 

The concept of change of variable for Riemann-Stieltjes integrals mirrors the idea for the 

standard Riemann integrals. By substituting a new variable, we often simplify the integral or 

transform it into a form where known methods can be applied. 

Procedure: 

Suppose we have a Riemann-Stieltjes integral of the form: 

∫ 𝑓(𝑥)𝑑𝛼(𝑥)
𝑏

𝑎
. 

1. We introduce a function 𝑢 = 𝑔(𝑥), that is continuously differentiable, with 𝑔(𝑎) = 𝑐 and 

𝑔(𝑏) = 𝑑. 

2. The differential 𝑑𝑢 is related to 𝑑𝑥 by 𝑑𝑢 = 𝑔′(𝑥). 

3. Substitute 𝑢 for 𝑥  in the integrand and 𝑑𝑢  for 𝑑𝑥  in the differential to transform the 

integral. 

Example: Let us consider a simple example, 

∫ 𝑥𝑑(𝑥2)
1

0
, here 𝑓(𝑥) = 𝑥 and 𝛼(𝑥)= 𝑥2 

Let’s perform change in variable 𝑢 = 𝑥2 , this implies 𝑑𝑢 = 2𝑥𝑑𝑥  or 
1

2
𝑑𝑢 = 𝑥𝑑𝑥 , where 𝑥 ∈

[0,1] implies 𝑢 ∈ [0,1]. Hence the limits remain unchanged. After substituting all these values in 

the integral 

∫ 𝑥𝑑(𝑥2)
1

0
= ∫

1

2
𝑑𝑢

1

0
=

1

2
. 

1.9      Upper and Lower Integrals 

Here, we define and discuss the concepts of upper and lower integrals in the realm of 

Riemann-Stieltjes integration, and their importance in determining the integrability of functions. 



When trying to find the area under a curve represented by a function, especially if the function 

behaves unpredictably in places, we use the concepts of upper and lower integrals.  

Imagine partitioning (dividing) the interval you're looking at into small subintervals or 

slices. For each slice:The upper sum is found by taking the highest value of the function in that 

slice and multiplying it by the width of the slice and the lower sum is found by taking the lowest 

value of the function in that slice and multiplying it by the width of the slice. 

Upper Integral: It's like finding the least amount of area you can cover if you always choose the 

highest points of the function within the slices. It's the smallest of all possible upper sums. i.e. 

the upper integral of 𝑓 over [a,b] is defined as the infimum of all possible upper sums: 

∫ 𝑓(𝑥)𝑑𝑥 = 𝑖𝑛𝑓{𝑈(𝑓, 𝑃): 𝑃 𝑖𝑠 𝑎 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 [𝑎, 𝑏]}
�̅�

𝑎

 

 

Lower Integral: 

 It's like finding the most area you can leave out if you always choose the lowest points of 

the function within the slices. It's the largest of all possible lower sums. i.e. the lower integral of 

𝑓 over [a,b] is defined as the supremum of all possible lower sums:  

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= 𝑠𝑢𝑝{𝐿(𝑓, 𝑃): 𝑃 𝑖𝑠 𝑎 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 [𝑎, 𝑏]} 

Riemann Integrability: 

A function f is said to be Riemann integrable on [a,b] if its upper and lower integrals 

coincide, i.e 

∫ 𝑓(𝑥)𝑑𝑥
�̅�

𝑎

= ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

If both these integrals give the same value, then the function can be integrated in the 

usual way over the interval, and their common value is the area under the curve. 



In simple words, the upper integral gives an overestimate of the area under a curve by 

taking the highest values of the function, while the lower integral gives an underestimate by 

considering the lowest values. If they match, we've found the exact area 

 

1.10        Necessary and Sufficient Conditions for Existence of Riemann- 

               Stieltjes Integrals 

 

In this section, we discuss the conditions under which a Riemann-Stieltjes integral exists, 

exploring both necessary and sufficient conditions that a function must satisfy to be Riemann-

Stieltjes integrable. 

The Riemann-Stieltjes integral is a generalization of the Riemann integral and extends the 

notion of integration in terms of another function, often denoted by alpha (α) instead of just the 

variable of integration. It is denoted as 

For the existence of the Riemann-Stieltjes integral, there are certain necessary and 

sufficient conditions. These conditions relate to the integrability of the function f with respect to 

α over an interval[a,b]. 

1. Necessary Condition: 

If f is Riemann-Stieltjes integrable with respect to α on [a,b], then f must be bounded on 

[a,b]. 

2. Sufficient Condition: 

If either f or α is of bounded variation and the other is continuous a.e. (almost 

everywhere) on [a,b], then f is Riemann-Stieltjes integrable with respect to α. 

 

Some Important Theorems and Results: 

 

 

 



Functions of Bounded Variation:  

If f is continuous on a closed interval [a,b] and α is of bounded variation on [a,b], then f 

is Riemann-Stieltjes integrable with respect to α. 

Monotonic Functions:  

Every monotonic function on a closed interval[a,b] is of bounded variation. Hence, if f is 

continuous on [a,b] and α is monotonic on [a,b], then f is Riemann-Stieltjes integrable with 

respect to α Integration with respect to Riemann Integrable Functions: If f and α are Riemann 

integrable over [a,b], then f is Riemann-Stieltjes integrable with respect to α. 

Pointwise Discontinuities:  

If α is a function of bounded variation on [a,b] and f has only a finite number of 

discontinuities in [a,b], then f is Riemann-Stieltjes integrable with respect to α. 

Integration and Differentiability:  

If f is continuous on [a,b] and α is differentiable with a derivative that's Riemann 

integrable, then f is Riemann-Stieltjes integrable with respect to α and 

∫ 𝑓(𝑥)𝑑𝛼(𝑥)
𝑏

𝑎

=  ∫ 𝑓(𝑥)𝛼′(𝑥)𝑑𝑥
𝑏

𝑎

 

The Riemann-Stieltjes integral is a powerful concept that generalizes the Riemann 

integral by allowing integration with respect to functions other than the identity. By 

understanding the necessary and sufficient conditions for its existence, we can better grasp when 

and how to use this type of integration. 

 

1.11      Differentiation Under the Integral Sign 

 

The technique of differentiating under the integral sign, often called the "Leibniz rule," 

allows for the interchange of the order of differentiation and integration. This can be especially 

helpful in evaluating certain integrals that are difficult to compute directly. The formula can be 

stated as: 



Let 𝑓(𝑥, 𝑡)𝑎𝑛𝑑 𝑖𝑡𝑠 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 
𝜕𝑓

𝜕𝑥
 be continuous on a rectangle ℛ in the plane 

given by 𝑎 ≤ 𝑥 ≤ 𝑏 𝑎𝑛𝑑 𝑐 ≤ 𝑡 ≤ 𝑑. If we have: 

𝐹(𝑥) = ∫ 𝑓(𝑥, 𝑡)𝑑𝑡
𝑑

𝑐
. Then 𝐹′(𝑥) = ∫

𝜕𝑓(𝑥,𝑡)

𝜕𝑥
𝑑𝑡

𝑑

𝑐
 

This formula essentially states that we can differentiate 𝐹  with respect to 𝑥  by 

differentiating 𝑓 with respect to 𝑥 and then integrating with respect to 𝑡. 

1.12           Self-Assessment Questions 

 

This section contains a variety of problems and questions designed to test your 

understanding of the concepts introduced in this unit, providing a space for practical application 

of the theory discussed. 

Problem 1:  

Let 𝑓(𝑥) = 𝑥2 𝑎𝑛𝑑 𝑔(𝑥) = 𝑥 𝑓𝑜𝑟 𝑥 ∈ [0,1]. 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑅𝑖𝑒𝑚𝑎𝑛𝑛-Stieltjes integral of 

𝑓 with respect to 𝑔. 

Problem 2:  

Let 𝑓(𝑥) = 𝑥 𝑎𝑛𝑑 𝑔(𝑥) = sin (𝑥) 𝑓𝑜𝑟 𝑥 ∈ [0, 𝜋]. 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑅𝑖𝑒𝑚𝑎𝑛𝑛 -Stieltjes 

integral of 𝑓 with respect to 𝑔. 

Problem 3:  

Let 𝑓(𝑥) = 𝑒𝑥 𝑎𝑛𝑑 𝑔(𝑥) = 𝑥2 𝑓𝑜𝑟 𝑥 ∈ [0,2]. 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑖𝑓 𝑓 𝑖𝑠 𝑅𝑖𝑒𝑚𝑎𝑛𝑛 -Stieltjes 

integrable with respect to 𝑔. If so, compute the integral. 

Problem 4:  

Compute the 𝑅𝑖𝑒𝑚𝑎𝑛𝑛 -Stieltjes integral of  𝑓(𝑥) = 𝑥3 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑔(𝑥) =

√𝑥 𝑓𝑜𝑟 𝑥 ∈ [0,1].  

 



Problem 5:  

Let 𝑓(𝑥) 𝑏𝑒 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑜𝑛 [0,1]𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑥) =

{
𝑥 𝑖𝑓 𝑥 ∈ ℚ

1 − 𝑥 𝑖𝑓 𝑥 ∉ ℚ
 𝑎𝑛𝑑 𝑔(𝑥) = 𝑥 . 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒𝑢𝑝𝑝𝑒𝑟 𝑎𝑛𝑑 𝑙𝑜𝑤𝑒𝑟 𝑅𝑖𝑒𝑚𝑎𝑛𝑛 -Stieltjes integral 

of 𝑓 with respect to 𝑔. 

Problem 6:  

Let 𝑓(𝑥) = cos(𝑥) 𝑎𝑛𝑑 𝑔(𝑥) = 𝑥2 𝑓𝑜𝑟 𝑥 ∈

[0,
𝜋

2
] .  𝑈𝑠𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝑝𝑎𝑟𝑡𝑠, 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑅𝑖𝑒𝑚𝑎𝑛𝑛 -Stieltjes integral of 𝑓  with 

respect to 𝑔. 

Problem 7:  

Prove that every absolutely-continuous function on [𝑎. 𝑏] is of bounded variation. 

Problem 8:  

Show that an absolutely-continuous function maps sets of Lebesgue measure zero to sets 

of Lebesgue measure zero. 

1.13     Summary 

 

Here, we summarize the pivotal concepts and theorems discussed in the unit, providing a 

concise recap of the material covered, and establishing a cohesive understanding of the topic. 

The Riemann-Stieltjes integral provides a means to integrate a function with respect to 

another function, extending the classical Riemann integral. It is particularly useful in advanced 

calculus, real analysis, and the foundational realms of probability. The integral involves defining 

upper and lower sums based on partitions, with the existence of the integral assured when the 

upper and lower integrals match. This integration technique exhibits typical properties like 

linearity and allows for integration by parts and variable changes, facilitating diverse 

applications and advanced mathematical exploration. 



 

1.14      Further Reading 

 

The Riemann-Stieltjes integral is an extension of the Riemann integral, defined with the help 

of a cumulative distribution function. It's a fundamental concept in real analysis and has 

applications in various fields such as probability theory, differential equations, and functional 

analysis. Here are some suggestions for further reading to deepen your understanding of the 

Riemann-Stieltjes integral: 

• "Principles of Mathematical Analysis" by Walter Rudin, McGraw-Hill. 

• "Real Analysis: Modern Techniques and Their Applications" by Gerald B. Folland, 

Wiley-InterScience 

• "Real and Complex Analysis" by Walter Rudin, McGraw-Hill. 

This structured breakdown of the topic into various subtopics will help in a gradual 

buildup of the understanding of Riemann-Stieltjes Integrals, aiming to cover the necessary 

details and subtleties associated with the topic. Each section is crafted to offer a detailed insight 

into the individual topics, thereby facilitating a comprehensive understanding of the unit as a 

whole 
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2.1       Introduction 

The world of mathematics and engineering is filled with signals: sounds, light waves, and 

the like. These can often be complex and hard to analyse. Enter the Fourier Series, a tool that 

decomposes these signals into simpler sinusoidal components. This unit delves deep into the 

underlying principles and applications of the Fourier Series. The Fourier Series, named after 

Jean-Baptiste Joseph Fourier, is an essential tool in mathematics and engineering to represent 

functions as an infinite sum of sines and cosines. It plays a foundational role in understanding 

signals, systems, and many physical phenomena. 

 



2.2     Objectives 

The learner should able to understand about the:  

• Understand the concept and foundation of the Fourier Series. 

• Represent functions using an orthogonal system. 

• Deduce properties of Fourier coefficients. 

• Recognize and apply the Reusz-Fischar theorem. 

• Comprehend the convergence criteria for Fourier series. 

2.3     Fourier Series 

Every periodic function, continuous or discontinuous, can be expanded in the form of an 

infinite series of sines and cosines, commonly referred to as the Fourier Series. 

Definition: The Fourier series is a way to represent a function as the sum of simple sine waves. 

More formally, it decomposes any periodic function or periodic signal into the sum of a set of 

oscillating functions, namely sines and cosines (or complex exponentials). 

The Fourier series makes use of the orthogonality relationships of the sine and cosine 

functions. The coefficients 𝑎𝑛  and 𝑏𝑛  are determined in such a way as to make the series 

converge to the function 𝑓(𝑡). 

Mathematical Representation:  

A function 𝑓(𝑡) can be represented as: 

𝑓(𝑡) = 𝑎0 +  ∑[𝑎𝑛 cos(𝑛𝜔𝑡) + 𝑏𝑛 sin (𝑛𝜔𝑡)]

∞

𝑛=1

 

where, 𝑎0  is the average value of the function 

𝑎𝑛  𝑎𝑛𝑑 𝑏𝑛 are Fourier Coefficients, 𝑛 is the harmonic number and 𝜔 is the angular frequency. 

The Fourier Coefficients 𝑎𝑛  𝑎𝑛𝑑 𝑏𝑛 can be calculated by using following equations 



𝑎𝑛 =
2

𝑇
∫ 𝑓(𝑡)cos (𝑛𝜔𝑡)𝑑𝑡

𝑇

0

 

𝑏𝑛 =
2

𝑇
∫ 𝑓(𝑡)sin (𝑛𝜔𝑡)𝑑𝑡

𝑇

0

 

where, 𝑇 is the period of the function. 

Example: 

Let's calculate the Fourier series of a simple function, the square wave. A square wave of 

period 𝑇 and amplitude 𝐴 can be defined as: 

{
𝐴 𝑓𝑜𝑟 0 < 𝑡 <

𝑇

2

−𝐴 𝑓𝑜𝑟 
𝑇

2
< 𝑡 < 𝑇

 

to find the Fourier series representation, we need to compute the Fourier coefficients 𝑎𝑛  and 𝑏𝑛 . 

For the square wave, all 𝑎𝑛 coefficients are zero, and the 𝑏𝑛 coefficients are calculated as 

𝑏𝑛 =
2𝐴

𝑛𝜋
(1 − cos (𝑛𝜋)) 

This simplifies to  

{

2𝐴

𝑛𝜋
𝑓𝑜𝑟 𝑜𝑑𝑑 𝑛

0 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑛
 

Hence the Fourier series representation of the square wave is:  

𝑓(𝑡) =
2𝐴

𝜋
∑ [

1

𝑛
 sin (𝑛𝜔𝑡)]

∞

𝑛=1,3,5…

 

This series will converge to the original square wave function as the number of terms increases. 

The Fourier series is a powerful tool for analysing and representing periodic functions. It 

decomposes a function into a sum of sines and cosines, allowing for analysis and 



synthesis of signals in various applications such as signal processing, heat conduction, 

vibration analysis, etc. By understanding and applying the Fourier series, we can gain 

insights into the harmonic content and behavior of different signals and functions. 

2.4      Orthogonal System of Functions 

Orthogonal functions provide a foundation for the Fourier Series. A set of functions { 

𝑓𝑛(𝑡)} is said to be orthogonal over the interval [𝑎, 𝑏] if for all m ≠ n. 

Definition: An orthogonal system of functions is a set of functions that are orthogonal to each 

other over a specific interval. Two functions 𝑓(𝑥) and 𝑔(𝑥) are said to be orthogonal over the 

interval [𝑎, 𝑏] if their inner product is zero: 

∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥 = 0
𝑏

𝑎

 

An orthogonal system of functions is important in various areas of mathematics and engineering, 

especially in solving ordinary differential equations, partial differential equations, and in Fourier 

series. 

Properties: 

Linearity: If 𝑓(𝑥) and 𝑔(𝑥) are orthogonal, any linear combination of these functions is also 

orthogonal to any linear combination of the other. 

Independence: The functions in an orthogonal system are linearly independent. 

Normalization: The functions in an orthogonal system can be normalized by dividing by the 

square root of their inner product with themselves. 

Solved Example: 

Consider a function 𝑓(𝑥) = 𝑥 𝑎𝑛𝑑 𝑔(𝑥) = 𝑥2 defined over the interval [0,1]. Determine 

whether these functions are orthogonal. 



Solution: to determine whether the functions are orthogonal, we compute their inner products 

over the given interval [0,1]: 

∫ 𝑥. 𝑥2𝑑𝑥 = ∫ 𝑥3𝑑𝑥 =
1

4

1

0

1

0

 

Since the inner product is 
1

4
 which is non-zero, hence the functions 𝑓(𝑥) 𝑎𝑛𝑑 𝑔(𝑥)  are not 

orthogonal over the interval [0,1].  

Orthogonal systems of functions play a crucial role in the representation and analysis of 

functions in mathematical and engineering contexts. The orthogonality property simplifies the 

analysis and computation of series representations, such as the Fourier series, by ensuring the 

independence and separability of each term in the series. Understanding and utilizing orthogonal 

systems allow for efficient solutions to a wide range of problems in applied mathematics. 

2.5      Fourier Series of a Function Relative to an Orthogonal System 

Given an orthogonal system, the Fourier series allows us to represent functions in terms 

of this system. The Fourier series is a powerful mathematical tool that allows us to express any 

periodic function as a sum of sines and cosines. When dealing with a function relative to an 

orthogonal system, the Fourier series becomes particularly insightful. 

Definition:  The Fourier series of a function 𝑓(𝑡) relative to an orthogonal system of functions 

{∅𝑛(𝑡)} is given by: 

𝑓(𝑡) = ∑ 𝑐𝑛

∞

𝑛=0

∅𝑛(𝑡) 

Here ∅𝑛(𝑡)  functions forms an orthogonal system on a given interval, and 𝑐𝑛  are Fourie 

coefficients defoned by inner product of 𝑓(𝑡) and ∅𝑛(𝑡): 

𝑐𝑛 =
1

‖∅𝑛‖
∫ 𝑓(𝑡) ∅𝑛(𝑡)𝑑𝑡 

Where ‖∅𝑛‖ is the norm of ∅𝑛(𝑡), defined as  



‖∅𝑛‖ = √∫  ∅𝑛(𝑡)2 𝑑𝑡 

Solved example: 

Consider the orthogonal system of system of functions given by ∅𝑛(𝑡) = cos (𝑛𝜋𝑡) and 

∅0(𝑡) = 1 defined on the interval [-1,1]. Let us find the Fourier series of the function 𝑓(𝑡) = 𝑡 

relative to this orthogonal system. 

Calculating the coefficients: for 𝑛 = 0 

𝑐0 =
1

2
∫ 𝑡

1

−1
𝑑𝑡= 0, 

And for 𝑛 ≥ 1, 

𝑐𝑛 =
1

2
∫ 𝑡

1

−1

cos (𝑛𝜋𝑡)𝑑𝑡 

This integral is zero for all 𝑛 since it involves the product of an odd function 𝑡 and an 

even function cos (𝑛𝜋𝑡), making the integrand an odd function on a symmetric interval. 

Therefore, the Fourier series of the function 𝑓(𝑡) = 𝑡 relative to the given orthogonal 

system is zero, which is consistent with the fact that 𝑓(𝑡) = 𝑡 is an odd function and we are 

expanding it in terms of even functions. 

This example illustrates the essence of representing a function as a Fourier series relative 

to an orthogonal system of functions. By doing this, we can analyse and approximate functions 

using the properties of the orthogonal system. Understanding how to work with an orthogonal 

system is crucial in various fields, including signal processing, vibration analysis, and quantum 

mechanics, providing a versatile approach to solving complex problems. 

2.6       Properties of Fourier Coefficients 

Fourier coefficients have properties that provide insight into the function's behavior. 

These properties can offer shortcuts in calculating and analyzing the Fourier Series 



representation. Fourier coefficients are essential components in the Fourier series representation 

of a function. They are calculated using the integrals: 

𝑎𝑛 =
2

𝑇
∫ 𝑓(𝑡)cos (𝑛𝜔𝑡)𝑑𝑡

𝑇

0

 

𝑏𝑛 =
2

𝑇
∫ 𝑓(𝑡)sin (𝑛𝜔𝑡)𝑑𝑡

𝑇

0

 

where, 𝑇 is the period of the function and 𝜔 =
2𝜋

𝑇
 is angular frequency. 

Properties of Fourier coefficients are given below 

1. Symmetry: 

Even Function: For an even function 𝑓(𝑡) = 𝑓(−𝑡), all the sine coefficients 𝑏𝑛 are zero, and the 

series consists only of cosine terms. 

Odd Function: For an odd function 𝑓(𝑡) = 𝑓(−𝑡),, all the cosine coefficients 𝑎𝑛 are zero, and 

the series consists only of sine terms. 

2. Linearity: 

Fourier coefficients are linear. If 𝑓(𝑡)  and 𝑔(𝑡)  have Fourier coefficients 𝑎𝑛, 𝑏𝑛  and  𝐴𝑛, 𝐵𝑛 

respectively, then the Fourier coefficients of  𝑐1𝑓(𝑡) + 𝑐2𝑔(𝑡) 𝑎𝑟𝑒 𝑐1𝑎𝑛 + 𝑐2𝐴𝑛  and 𝑐1𝑏𝑛 +

𝑐2𝐵𝑛. 

 

 

3.     Parseval’s Theorem: 

Statement: Given a function 𝑓(𝑥) that is integrable over the interval [0, 2𝜋] and has the Fourier 

series representation: 

 𝑓(𝑥) =
𝑎0

2
+ ∑ (𝑎𝑛cos (𝑛𝑥) + 𝑏𝑛sin (𝑛𝑥))∞

𝑛=1  



Where, 𝑎0 =
1

𝜋
∫ 𝑓(𝑥)𝑑𝑥

2𝜋

0
 

𝑎𝑛 =
1

𝜋
∫ 𝑓(𝑥)cos (𝑛𝑥)𝑑𝑥

2𝜋

0

 

𝑏𝑛 =
1

𝜋
∫ 𝑓(𝑥)sin (𝑛𝑥)𝑑𝑥

2𝜋

0

 

Then the following relation holds: 

1

𝜋
∫ |𝑓(𝑥)|2𝑑𝑥

2𝜋

0

=
𝑎0

2
+ ∑(𝑎𝑛

2 + 𝑏𝑛
2)

∞

𝑛=1

 

Proof: let us start by squaring both sides of the Fourie series expansion: 

|𝑓(𝑥)|2 = (
𝑎0

2
+ ∑(𝑎𝑛cos (𝑛𝑥) + 𝑏𝑛sin (𝑛𝑥))

∞

𝑛=1

)

2

 

Integrating both the side over the interval [0, 2𝜋], we get 

∫ |𝑓(𝑥)|2𝑑𝑥
2𝜋

0

= ∫ (
𝑎0

2
+ ∑(𝑎𝑛cos (𝑛𝑥) + 𝑏𝑛sin (𝑛𝑥))

∞

𝑛=1

)

2

𝑑𝑥
2𝜋

0

 

After the expansion, integration, and applying the trigonometric identities, most of the cross 

terms will vanish due to orthogonality properties. 

∫ cos(𝑛𝑥) sin(𝑚𝑥) 𝑑𝑥 = 0
2𝜋

0

 

∫ cos(𝑛𝑥) cos(𝑚𝑥) 𝑑𝑥 = 𝜋𝛿𝑛𝑚

2𝜋

0

 

∫ sin(𝑛𝑥) sin(𝑚𝑥) 𝑑𝑥 = 𝜋𝛿𝑛𝑚

2𝜋

0

 

Here, 𝛿𝑛𝑚 is the Kronecker delta which is 1 when 𝑛 = 𝑚 and 0 otherwise. 



Given these results, only the terms that square the Fourie Series components remain, leading us 

directly to Parseval’s relation: 

1

𝜋
∫ |𝑓(𝑥)|2𝑑𝑥

2𝜋

0

=
𝑎0

2
+ ∑(𝑎𝑛

2 + 𝑏𝑛
2)

∞

𝑛=1

 

Understanding the properties of Fourier coefficients is crucial as it allows for efficient 

and insightful analysis of signals and functions in both the time and frequency domains. These 

properties are foundational in various applications including signal processing, communications, 

and vibration analysis 

2.7       Riesz-Fischer Theorem 

This theorem is a critical underpinning in the study of Fourier series, detailing specific 

conditions under which the series converges. 

Statement: 

The Riesz-Fischer Theorem is fundamental in demonstrating the completeness of  𝐿2  

spaces. It states that if {𝑐𝑘} is a sequence of complex numbers such that 

∑ |𝑐𝑘|2

∞

𝑘=−∞

< ∞ 

Then thee exists a function 𝑓 ∈ 𝐿2([𝑎, 𝑏])  such that its Fourier series coefficients satisfy 

𝑐𝑘 =
1

𝑏 − 𝑎
∫ 𝑓(𝑥)

𝑏

𝑎

𝑒−𝑖𝑘𝑥𝑑𝑥 

And  ‖𝑓‖2 
2 = ∑ |𝑐𝑘|2∞

𝑘=−∞  where ‖𝑓‖2 denotes the 𝐿2  norm of  𝑓. 

Proof: The Riesz-Fischer theorem is an instrumental result in functional analysis and Fourier 

analysis, providing the mathematical foundation for representing square-integrable functions as 

Fourier series and ensuring the convergence of such series in  𝐿2  norm. The theorem has far-

reaching implications in various fields such as signal processing, quantum mechanics, and partial 



differential equations, where the completeness of function spaces and convergence of series are 

vital. Learner can practice it by themselves. 

The Riesz-Fischer theorem is pivotal as it establishes that the set of all Fourier series is complete 

in the space of square-integrable functions ( 𝐿2   spaces). This means that any function in 

𝐿2([𝑎, 𝑏]) can be approximated arbitrarily closely in the 𝐿2  norm by a Fourier series, which is 

the sum of sines and cosines or complex exponentials. 

Solved example: 

Consider the sequence {𝑐𝑘} defined by 𝑐𝑘 =
1

1+𝑘2 for 𝑘 in the set of integers. We can observe that 

∑ |𝑐𝑘|2

∞

𝑘=−∞

=  ∑ (
1

1 + 𝑘2
)

2

< ∞

∞

𝑘=−∞

 

Thus according to the Riesz- Fischer theorem, there exists a function 𝑓 ∈ 𝐿2([−𝜋, 𝜋]) 

such that its Fourie coefficients are 𝑐𝑘 and the function 𝑓 can be represented as a Fourier series  

which converges to it in the 𝐿2  norm. 

2.8      Convergence for Fourier Metric Series 

A crucial aspect of Fourier Series is understanding when and how they converge to the 

original function. This section studies the metrics and conditions of such convergences. The 

convergence of a Fourier series to a function is not as straightforward as the convergence of 

numerical series. A Fourier series of a function 𝑓(𝑥) is given by: 

𝑆𝑁(𝑥) =  𝑎0 + ∑ [𝑎𝑛 cos (
2𝜋𝑛𝑥

𝑃
) + 𝑏𝑛 sin (

2𝜋𝑛𝑥

𝑃
)]

𝑁

𝑛=1

 

Where 𝑎𝑛 , 𝑏𝑛 are Fourier coefficients, 𝑃 is the period of the function 𝑓(𝑥) and 𝑆𝑁(𝑥) is 

the 𝑁𝑡ℎ partial sum of the Fourier series. 

Convergence Criteria: 

The convergence of Fourier series is determined by several theorems and results: 



Pointwise Convergence: 

The Fourier series converges pointwise to 𝑓(𝑥) at a point 𝑥 if 𝑓(𝑥) is continuous at 𝑥 

 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑠𝑢𝑚 𝑆𝑁(𝑥) 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 𝑡𝑜 𝑓(𝑥) as 𝑁 tends to infinity. 

Uniform Convergence: 

The Fourier series converges uniformly to 𝑓(𝑥)   on an interval if the maximum 

difference between the partial sums 𝑆𝑁(𝑥) and 𝑓(𝑥) tends to zero as 𝑁 tends to infinity. 

Mean-Square Convergence: 

The Fourier series converges in mean square to 𝑓(𝑥) if the 𝐿2  norm of the difference between 

the partial sum 𝑆𝑁(𝑥) and 𝑓(𝑥) tends to zero as 𝑁 tends to infinity. 

Theorems: 

Dirichlet’s Theorem:  

If 𝑓(𝑥)  is piecewise smooth on a closed interval, then the Fourier series converges 

pointwise to 𝑓(𝑥)at every point of continuity and to the average of the left-hand and right-hand 

limits of 𝑓(𝑥)at points of discontinuity. 

Parseval’s Identity: 

If 𝑓(𝑥) is square-integrable, the Fourier series of 𝑓(𝑥) converges in mean-square to 

𝑓(𝑥), and Parseval’s identity relates the of 𝐿2  norm 𝑓(𝑥) to the sum of the squares of its Fourier 

coefficients. 

Example: 

Consider a piecewise smooth function 𝑓(𝑥) = 𝑥 on the interval [−π,π] and periodic with 

period 2π. According to Dirichlet’s theorem, the Fourier series of this function converges 

pointwise to 𝑓(𝑥) = 𝑥 at points of continuity and to the average of the left-hand and right-hand 

limits at points of discontinuity. 



Understanding the convergence of Fourier series is essential for analysing and approximating 

functions using harmonic series. The various criteria and theorems provide a comprehensive 

framework for studying the behaviour of Fourier series and their convergence to the represented 

functions in different senses, enabling applications in diverse areas such as signal processing, 

acoustics, and heat transfer. 

2.9   Sufficient Condition for Convergence of Fourier Series at a Particular  

Point 

 

Under what conditions does a Fourier Series converge to a function at a specific point? 

This section elaborates on these criteria. 

The convergence of Fourier series at a particular point is a crucial aspect of Fourier 

analysis, ensuring that the Fourier representation of a function is valid and accurate at that point. 

Various sufficient conditions can guarantee the convergence of Fourier series at a given point, 

and one of the most fundamental is outlined in Dirichlet's Theorem. 

Dirichlet's Theorem: 

Dirichlet's Theorem provides a set of sufficient conditions for the pointwise convergence 

of the Fourier series of a function at a particular point. The theorem states that if a periodic 

function 𝑓(𝑥) is piecewise continuous and has a piecewise continuous derivative on an interval 

[a, a+𝑃] (where 𝑃 is the period), then the Fourier series of 𝑓(𝑥)converges to 𝑓(𝑥)at every point 

of continuity within the interval. At points of discontinuity, the Fourier series converges to the 

average of the left-hand and right-hand limits of 𝑓(𝑥): 

log𝑥→𝑐+ 𝑓(𝑥) =  log𝑥→𝑐− 𝑓(𝑥) =
𝑓(𝑐+) + 𝑓(𝑐−)

2
 

Statement:  Dirichlet’s theorem asserts that if 𝑓 is a periodic function with period 2π and 𝑓 is 

piecewise continuous on [0, 2π] then the Fourier series of 𝑓 converges to 
𝑓(𝑐+)+𝑓(𝑐−)

2
 at every 

point 𝑐 ∈ [0, 2π]. Where 𝑓(𝑐+) 𝑎𝑛𝑑 𝑓(𝑐−) are right and left continuity points of 𝑓 at 𝑐. 



Proof of Dirichlet's Theorem: 

Due to the mathematical depth and specific notation required for a rigorous proof of Dirichlet's 

Theorem, a full detailed proof might be out of scope for this platform, but I'll give you an 

overview: 

Summation of the Fourier Series: 

The Fourier series of 𝑓 is 𝑓(𝑥)~
𝑎0

2
+ ∑ (𝑎𝑛cos (𝑛𝑥) + 𝑏𝑛sin (𝑛𝑥))∞

𝑛=1  

where the Fourier coefficients 𝑎𝑛 and 𝑏𝑛 are given by standard formulas involving integrals of 𝑓 

times trigonometric functions. 

Kernel Function: 

The Dirichlet Kernel, 𝐷𝑁(𝑥), is defined as the sum of the first N terms of the Fourier 

series of the function that is 1 in a certain interval around 0 and 0 elsewhere. It has a known 

expression involving trigonometric functions. 

Partial Sum: 

A partial Fourier sum 𝑆𝑁(𝑓) , of 𝑓  can be expressed as a convolution of 𝑓  with the 

Dirichlet Kernel, which means we can write it as an integral involving the product of 𝑓 and 

𝐷𝑁(𝑥) in a certain way. 

Controlling the Oscillations: 

The key part of the proof involves showing that the integral (or sum) of 𝑓 times 𝐷𝑁(𝑥) 

can be controlled in such a way that it approaches the average of the left-hand and right-hand 

limits of 𝑓 as N tends to infinity. This typically involves breaking the integral into parts where f 

is continuous and where f has jump discontinuities, and handling each part separately. 

Convergence of the Fourier Series: 

By controlling the limit of the partial sums 𝑆𝑁(𝑓), we demonstrate that they converge to 

the desired value 
𝑓(𝑐+)+𝑓(𝑐−)

2
 for all 𝑐. 



This overview skips over many mathematical details and specific calculations, but it 

gives a rough idea of how the proof goes. For a full, rigorous proof, one might refer to a textbook 

on Fourier analysis or a related mathematical resource. 

Example:  

Consider the function 𝑓(𝑥) = 𝑥 on the interval [−π,π] and extended periodically. This 

function is continuous and has a continuous derivative on the interval (except at the endpoints), 

fulfilling the conditions of Dirichlet's Theorem. Thus, the Fourier series of 𝑓(𝑥) converges to 

𝑓(𝑥) = 𝑥 at every point in the interval [−π,π]. At the points of discontinuity, 𝑥 =−π and 𝑥 =π, the 

Fourier series converges to the average of the left-hand and right-hand limits, which is zero in 

this case. 

Dirichlet's Theorem lays down a foundational set of sufficient conditions for the 

convergence of Fourier series at a particular point. A function that is piecewise continuous and 

possesses a piecewise continuous derivative on the interval of interest will have its Fourier series 

converge to the function value at points of continuity and to the average of the limits at points of 

discontinuity. Understanding this theorem is vital for ensuring the validity of Fourier 

representations and for analyzing the behaviour of functions in various applications such as 

signal processing, heat transfer, and vibrations. 

2.10    Self-Assessment Questions 

 

Question 1: Given a function 𝑓(𝑥) = 𝑥2 on the interval [−π,π], write down its Fourier series 

representation. What properties of Fourier coefficients can you observe from this example? 

Question 2: Explain the concept of an orthogonal system of functions. How does it relate to the 

representation of a function as a Fourier series relative to an orthogonal system? 

Question 3: The Riesz-Fischer theorem is crucial for demonstrating the completeness of 𝐿2   

spaces. Explain the statement of this theorem and discuss its significance in the convergence of 

Fourier series. 



Question 4: For a piecewise continuous function defined on a closed interval, under what 

conditions will its Fourier series converge at a point of discontinuity? Use Dirichlet’s Theorem to 

support your answer. 

Question 5: Consider a function 𝑓(𝑥) = sin(𝑥) on the interval [0,2π] and extended periodically. 

Discuss the pointwise, uniform, and mean-square convergence of its Fourier series 

representation. Reference the relevant convergence criteria and theorems in your discussion.  

2.11      Summary 

This unit discussed about the intricate theory and applications of Fourier Series, 

commencing with foundational concepts, and subsequently exploring advanced topics. Key 

aspects such as the formulation of Fourier Series, the properties and significance of Orthogonal 

Systems of Functions, and the representation of a Fourier series relative to an orthogonal system 

were discussed with illustrative examples. The unit further elucidated the properties of Fourier 

Coefficients, detailed the profound Riesz-Fischer theorem with its implications on completeness, 

and tackled various convergence criteria, emphasizing the conditions under which a Fourier 

Series converges at specific points. Essential for diverse applications in science and engineering, 

the unit underscored the theoretical pillars and practical considerations that render Fourier Series 

a quintessential tool in harmonic analysis. 

2.12       Further Reading 

 

For further exploration and in-depth understanding of Fourier Series and related concepts, 

consider the following resources: 

• "Fourier Series and Orthogonal Functions" by Harry L. Davis, Dover Publications. 

• "A First Course in Wavelets with Fourier Analysis" by Albert Boggess and Francis J. 

Narcowich, Wiley. 

• "Introduction to Fourier Analysis and Generalised Functions" by M.J. Lighthill, 

Cambridge University Press. 

• "Fourier Analysis: An Introduction" by Elias M. Stein and Rami Shakarchi, Princeton 

University Press. 



• "An Introduction to Harmonic Analysis" by Yitzhak Katznelson, Cambridge University 

Press. 

• "Fourier Analysis and Its Applications" by Gerald B. Folland, Brooks Cole. 
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3.1     Introduction 

In mathematical analysis, the concept of bounded variation is essential for defining 

integrals, studying function regularity, and understanding convergence of sequences of functions. 

A function is said to be of bounded variation if the total variation, a measure of the function's 

oscillation between its infimum and supremum, is finite within a certain interval. This unit delves 

into functions of bounded variation, their characteristics, and their connection to increasing 

functions, continuous functions, and absolutely continuous functions. 

Bounded variation serves as a cornerstone in the realm of mathematical analysis, playing 

a crucial role in the development of integral calculus, the investigation of function regularity, and 

the exploration of the convergence properties of function sequences. When we talk about a 

function having bounded variation, we refer to the finite nature of the total variation of the 

function within a specified interval. This total variation measures the oscillation of the function 



between its lowest (infimum) and highest (supremum) values. Throughout this unit, we will 

immerse ourselves in an in-depth study of functions characterized by bounded variation, 

exploring their distinctive traits, their representation as differences of increasing functions, and 

their interrelations with continuous and absolutely continuous functions. This exploration aims to 

build a foundational understanding and appreciation for the varied applications and implications 

of bounded variation in advanced mathematical concepts. 

3.2    Objectives 

The learner should able to understand about the:  

• To understand the fundamental concept and definition of a function of bounded variation. 

• To explore how functions of bounded variation can be expressed as differences of 

increasing functions. 

• To examine the properties of continuous functions of bounded variation. 

• To learn the relationship between functions of bounded variation and absolutely 

continuous functions. 

• To apply the knowledge in solving problems and understanding advanced mathematical 

concepts. 

3.3      Function of Bounded Variation 

Definition: 

A function 𝑓 ∶  [𝑎, 𝑏] → ℝ is considered to be bounded variation on the closed interval 

[𝑎, 𝑏] if there exists a constant  𝑀 such thaty for any partition 𝑃 = {𝑎 = 𝑥0 < 𝑥1 < 𝑥2 … < 𝑥𝑛 =

𝑏} of the interval [𝑎, 𝑏], the total variation of 𝑓 defined by: 

𝑉𝑃(𝑓) = ∑|𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)|

𝑛

𝑖=1

≤ 𝑀 

The smallest constant 𝑀 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓 on [𝑎, 𝑏] and it is denoted 

by 𝑉𝑎
𝑏(𝑓). 



Characteristics: 

Finite Total Variation:  

The defining characteristic of a function of bounded variation is that its total variation is 

finite across the interval [a,b]. 

Absolute Differences:  

The total variation is calculated based on the absolute differences of the function values 

at the partition points, reflecting the oscillation of the function within the interval. 

Representation as Difference of Increasing Functions:  

Any function of bounded variation can be expressed as the difference of two increasing 

functions. This property is fundamental in studying these functions and understanding their 

behaviour. 

Examples: 

Monotonic Functions:  

Any monotonic (either entirely non-decreasing or non-increasing) function on a closed 

interval is a function of bounded variation since the total variation equals the absolute difference 

between the endpoint values. 

Trigonometric Functions: 

 Sine and cosine functions are typical examples of functions of bounded variation within 

any closed interval, as their oscillatory nature results in a bounded total variation. 

Importance in Analysis: 

Functions of bounded variation have profound implications in various areas of analysis: 

Riemann-Stieltjes Integral: 

 Functions of bounded variation are closely related to the definition of the Riemann-

Stieltjes integral. If  𝑓 is of bounded variation on [a,b], then it is Riemann-Stieltjes integrable 

with respect to any other function defined on the same interval. 



Measure Theory: 

 In measure theory, functions of bounded variation are used to define signed measures. 

The total variation of a function also gives a measure, which is essential in the Lebesgue 

integration theory. 

Function Spaces: 

 The space of functions of bounded variation forms a Banach space when equipped with 

the total variation norm. This space is vital in the study of functional analysis. 

Understanding functions of bounded variation is fundamental to mathematical analysis. 

These functions, characterized by their finite total variation within a specified interval, exhibit 

unique properties and serve as building blocks for various advanced mathematical concepts and 

theories, such as integrals, measure theory, and functional analysis. Through the study of these 

functions, we gain deeper insights into the structure and behaviour of various types of functions 

and their applications across different fields of mathematics. 

3.5          Function of Bounded Variation Expressed as the Difference of     

        Increasing Functions 

One of the seminal properties of a function of bounded variation is that it can be represented 

as the difference between two increasing functions. This attribute provides a significant lens 

through which the behaviour and properties of such functions can be analysed and understood. 

Definition of Increasing Functions: 

Before diving into the main proposition, let’s elucidate what increasing functions are. A 

function 𝑔 ∶  [𝑎, 𝑏] → ℝ is said to be increasing on the interval  [𝑎, 𝑏] if, for any two points 

𝑥, 𝑦 ∈  [𝑎, 𝑏] with 𝑥 <  𝑦, we have 𝑔(𝑥) ≤ 𝑔(𝑦). 

Decomposition Theorem: 

For every function 𝑓 ∶  [𝑎, 𝑏] → ℝ of bounded variation, there exist increasing functions 

𝑔 , ℎ: [𝑎, 𝑏] → ℝ  such that 𝑓(𝑥) = 𝑔(𝑥) − ℎ(𝑥), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ [𝑎, 𝑏] 𝑎𝑛𝑑 𝑓(𝑏) − 𝑓(𝑎) = 𝑔(𝑏) +

ℎ(𝑏). . This is known as the decomposition theorem for functions of bounded variation. 



Proof: Definition of Variation: 

Define the variation of 𝑓 𝑜𝑣𝑒𝑟 [𝑎, 𝑥]𝑓𝑜𝑟 𝑎 ≤ 𝑥 ≤ 𝑏 as 

𝑉𝑎
𝑥(𝑓) = 𝑠𝑢𝑝 {∑|𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)|: 𝑎 = 𝑥0

𝑛

𝑖=1

< 𝑥1 < ⋯ < 𝑥𝑛 = 𝑥} 

Given that 𝑓 𝑖𝑠 𝑜𝑓 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 [𝑎, 𝑏], 𝑉𝑎
𝑥(𝑓) is a well-defined function of 𝑥 

and is non-decreasing on [𝑎, 𝑏]. 

Definition of increasing function: 

Now, define the function, 𝑔(𝑥) =
1

2
[𝑓(𝑥) + 𝑉𝑎

𝑥(𝑓)], where 𝑔(𝑥) is increasing since both 

𝑓(𝑥) 𝑎𝑛𝑑 𝑉𝑎
𝑥(𝑓) increase as 𝑥 increases. 

Next define, ℎ(𝑥) = 𝑔(𝑥) − 𝑓(𝑥) , it’s evident that 

ℎ 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑎𝑠 𝑤𝑒𝑙𝑙, 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑖𝑡′𝑠 the difference of 𝑔 (which is increasing) and 𝑓(which 

is bounded variation, thus does’t oscillate too wildly). 

Decomposition:  

clearly, for every 𝑥 ∈ [𝑎, 𝑏] we have 

𝑓(𝑥) = 𝑔(𝑥) − ℎ(𝑥) 

Verification:  

we need to verify the last part of the statement, for this, consider 

𝑓(𝑏) − 𝑓(𝑎) = 𝑔(𝑏) − ℎ(𝑏) − 𝑔(𝑎) + ℎ(𝑎) 

Since 𝑔(𝑎) =
1

2
[𝑓(𝑎) + 𝑉𝑎

𝑎(𝑓)] = 𝑓(𝑎)  𝑎𝑛𝑑 ℎ(𝑎) = 𝑔(𝑎) − 𝑓(𝑎) = 0. 

𝑓(𝑏) − 𝑓(𝑎) = 𝑔(𝑏) − ℎ(𝑏) 

Rearranging,  

𝑓(𝑏) − 𝑓(𝑎) = 𝑔(𝑏) + ℎ(𝑏) 



This concludes the proof of the theorem. 

The Decomposition Theorem is essential in real analysis because it provides a canonical 

way of representing functions of bounded variation in terms of increasing functions, which are 

simpler and well-understood. 

Constructing Increasing Functions: 

To find the increasing functions 𝑔 , 𝑎𝑛𝑑 ℎ, we can use the following approach. Define the 

positive variation  𝑃(𝑓, 𝑥) and negative variation 𝑁(𝑓, 𝑥)of 𝑓 at a point 𝑥 ∈  [𝑎, 𝑏] by 

𝑃(𝑓, 𝑥) = 𝑠𝑢𝑝𝑃∈℘ ∑ (𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1))+
𝑥𝑖∈𝑃,𝑥𝑖≤𝑥

 

𝑁(𝑓, 𝑥) = 𝑠𝑢𝑝𝑃∈℘ ∑ (𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1))−
𝑥𝑖∈𝑃,𝑥𝑖≤𝑥

 

where ℘ 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 [𝑎, 𝑏]𝑎𝑛𝑑 (𝑧)+ = max (𝑧, 0) and (𝑧)− = max (−𝑧, 0). 

Then the functions 𝑔(𝑥) = 𝑃(𝑓, 𝑥) anf ℎ(𝑥) = 𝑁(𝑓, 𝑥) are increasing, and 𝑓 = 𝑔 − ℎ. 

Importance of the Representation: 

This decomposition of a function of bounded variation into the difference of two 

increasing functions is not just a theoretical curiosity – it has significant practical applications: 

Analysing Properties:  

By studying the properties of 𝑔 and ℎ, we can deduce various attributes of the original 

function 𝑓, such as continuity, differentiability, and integrability. 

Defining the Riemann-Stieltjes Integral:  

This representation is essential in defining the Riemann-Stieltjes integral, a generalization 

of the Riemann integral, and is foundational in the study of integration. 

 



Understanding Variational Problems:  

The decomposition aids in solving variational problems in calculus of variations, by 

providing insights into the structural composition of functions. 

Signal Processing:   

In signal processing, representing a signal as the difference of two monotonic signals can 

be beneficial for analysing the signal’s variation and trend. 

Expressing a function of bounded variation as the difference of two increasing functions 

is a powerful tool in mathematical analysis. This representation unveils the intricate structure of 

such functions, paving the way for advanced studies in integration, functional analysis, and 

various applied fields. Understanding this decomposition is pivotal for anyone delving deeper 

into the realms of real analysis and its applications. 

3.6    Continuous Function of Bounded Variations 

Continuous functions of bounded variation are a subclass of functions of bounded 

variation that retain their bounded variation property while also being continuous across their 

domain. Such functions exhibit fascinating properties and are crucial in numerous branches of 

mathematical analysis. 

Definition: 

A function 𝑓 ∶  [𝑎, 𝑏] → ℝ is a continuous function of bounded variation if it satisfies the 

following two conditions: 

Continuity:  

The function 𝑓 is continuous on the closed interval [𝑎, 𝑏], meaning that for every 𝑥 ∈

[𝑎, 𝑏]and for every 𝜖 > 0 , there exists 𝛿 > 0 such that if  

|𝑥 − 𝑦| < 𝛿  for some 𝑦 ∈ [𝑎, 𝑏], then |𝑥𝑓(𝑥) − 𝑓(𝑦)| < 𝜖  . 

 



Bounded Variation:   

The total variation of the function 𝑓 on the interval [𝑎, 𝑏],  is finite. Formally, there exists 

a constant 𝑀,  such that for any partition 𝑃 = {𝑎 = 𝑥0 < 𝑥1 < 𝑥2 … < 𝑥𝑛 = 𝑏} of the interval 

[𝑎, 𝑏], the total variation 𝑉𝑃(𝑓) = ∑ |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)|𝑛
𝑖=1 ≤ 𝑀 

Properties: 

Uniform Continuity:   

Every continuous function of bounded variation on a closed interval [𝑎, 𝑏] is uniformly 

continuous. This implies that the 𝛿 in the definition of continuity can be chosen to work for all 𝑥 

in [𝑎, 𝑏]for a given 𝜖. 

Riemann-Stieltjes Integrability:   

Continuous functions of bounded variation are particularly important because they can be 

used as integrators in the Riemann-Stieltjes integral, thus generalizing the concept of the 

Riemann integral. 

Example: 

Consider the function 𝑓 ∶  [0,1] → ℝ  defined by 𝑓(𝑥) = sin(2𝜋𝑥) . This function is 

continuous on the closed interval [0,1] and exhibits bounded variation since its total variation on 

this interval is 2, corresponding to the amplitude of the sine function. Thus, 𝑓(𝑥) = sin(2𝜋𝑥) is 

a continuous function of bounded variation on [0,1]. 

Visualization: 

To visualize, you can plot the function 𝑓(𝑥) = sin(2𝜋𝑥) on the interval [0,1]. It is 

observed that the function is continuous (no breaks or jumps), and the total variation (the sum of 

the absolute differences of consecutive function values) is bounded by2. 

Continuous functions of bounded variation intertwine the concepts of continuity and 

bounded variation, enabling a deeper exploration of mathematical properties and theorems. They 

are integral in the development of the theory of integration, particularly in defining the Riemann-



Stieltjes integral, and serve as a foundational element in real analysis. Through understanding 

and analysing such functions, one uncovers a plethora of insights into the structural and 

behavioural patterns of continuous phenomena modeled by mathematical functions. 

3.7     Absolutely Continuous Functions 

Absolutely continuous functions are a special class of functions that generalize the 

concept of uniform continuity and play a pivotal role in real analysis, integration theory, and 

measure theory. They share some characteristics with functions of bounded variation, but also 

exhibit unique and stronger properties that make them an essential subject of study. 

Definition: 

A function 𝑓 ∶  [𝑎, 𝑏] → ℝ is said to be absolutely-continuous on the interval [𝑎, 𝑏] if for 

every 𝜖 > 0 , there exists 𝛿 > 0  such that whenever a finite collection of disjoint subintervals 

(𝑥𝑖, 𝑦𝑖) 𝑜𝑓 [𝑎, 𝑏] satisfies,  

∑ (𝑦𝑖 − 𝑥𝑖)𝑖 < 𝛿. 

then it follows that 

∑ (𝑓(𝑦𝑖) − 𝑓(𝑥𝑖))𝑖 < 𝜖. 

This definition implies that small changes in the input (in measure) lead to small changes 

in the output, showcasing the strength of absolute continuity. 

Properties: 

Uniform Continuity:  

Every absolutely-continuous function is uniformly continuous. However, the converse is 

not necessarily true, which illustrates that absolute continuity is a stronger condition. 

 

 



Bounded Variation:  

Absolutely-continuous functions have bounded variation. This property implies that they 

can be represented as the difference of two increasing functions and can be integrated in the 

Riemann-Stieltjes sense. 

Singular Functions:  

Not all functions of bounded variation are absolutely-continuous. Functions that are of 

bounded variation but not absolutely-continuous are called singular functions. 

Set of Measure Zero:  

An absolutely-continuous function maps sets of Lebesgue measure zero to sets of 

Lebesgue measure zero. This property is instrumental in measure theory and integration. 

Fundamental Theorem of Calculus: 

 If a function is absolutely continuous on an interval [𝑎, 𝑏], then it is almost everywhere 

differentiable on [𝑎, 𝑏], and its derivative is Lebesgue integrable. This result is a part of the 

Fundamental Theorem of Calculus for Lebesgue integrals. 

Or ,the theorem consists of two parts: 

Part 1 (First Fundamental Theorem of Calculus) 

If 𝑓 is a continuous on the closed interval [𝑎, 𝑏] 𝑎𝑛𝑑 𝐹 is an antiderivative of 𝑓 on [𝑎, 𝑏], 

then 

∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎)
𝑏

𝑎

 

Part 2 (Second Fundamental Theorem of Calculus) 

If 𝑓 is a continuous on the open interval 𝐼 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑎 𝑎𝑛𝑑 𝐹 is defined by 



𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
, for all 𝑥 𝑖𝑛 𝐼 and then 𝐹 is uniformly continuous and differentiable on 𝐼 and 

𝐹′(𝑥) = 𝑓(𝑥) for all 𝑥 𝑖𝑛 𝐼. 

Proof: (part 1)- Let for all 𝑃 be a partition on [𝑎, 𝑏] with points 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ <

𝑥𝑛 = 𝑏 and let 𝑀𝑖 be the supremum and 𝑚𝑖 be the infimum of 𝑓 𝑜𝑛 [𝑥𝑖−1, 𝑥𝑖]. Then by properties 

of the Riemann integral and since 𝐹′(𝑥) = 𝑓(𝑥). 

𝑚𝑖(𝑥𝑖 − 𝑥𝑖−1) ≤ ∫ 𝑓(𝑡)𝑑𝑡 ≤ 𝑀𝑖(𝑥𝑖 − 𝑥𝑖−1)
𝑥𝑖

𝑥𝑖−1

 

𝑚𝑖(𝑥𝑖 − 𝑥𝑖−1) ≤ 𝐹(𝑥𝑖) − 𝐹(𝑥𝑖−1) ≤ 𝑀𝑖(𝑥𝑖 − 𝑥𝑖−1) 

Summing over all subintervals: 

∑ 𝑚𝑖(𝑥𝑖 − 𝑥𝑖−1)

𝑛

𝑖=1

≤ 𝐹(𝑏) − 𝐹(𝑎) ≤ ∑ 𝑀𝑖(𝑥𝑖 − 𝑥𝑖−1)

𝑛

𝑖=1

 

The expression on the left and right approach the integral of 𝑓 over [𝑎, 𝑏] as the norm of the 

partition goes to zero (because 𝑓 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠). Thus,  

∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎)
𝑏

𝑎

 

(Proof part 2) 

Fix any point 𝑥 𝑖𝑛 𝐼. For ℎ not equal to zero and sufficiently small such that 𝑥 + ℎ is also in 𝐼, 

consider: 

𝐹(𝑥 + ℎ) − 𝐹(𝑥)

ℎ
=

1

ℎ
∫ 𝑓(𝑡)𝑑𝑡

𝑥+ℎ

𝑥

 

Because 𝑓 is continuous at 𝑥, 𝑎𝑠 ℎ → 0, the value of 𝑓(𝑡)𝑓𝑜𝑟 𝑡 𝑖𝑛 [𝑥, 𝑥 + ℎ] (𝑜𝑟 [𝑥 + ℎ, 𝑥]𝑖𝑓 ℎ <

0) gets close to 𝑓(𝑥). Therefore, 

logℎ→0

𝐹(𝑥 + ℎ) − 𝐹(𝑥)

ℎ
= 𝑓(𝑥) 



This means that 𝐹′(𝑥) = 𝑓(𝑥). 

Thus, both parts of the Fundamental Theorem of Calculus are proven. 

The Fundamental Theorem of Calculus is essential because it bridges the concepts of 

antiderivatives (indefinite integrals) with definite integrals and provides a way to compute 

definite integrals using antiderivatives. 

Examples: 

Linear Functions: Linear functions are simple examples of absolutely-continuous functions. For 

instance, 𝑓(𝑥) = 𝑚𝑥 + 𝑐 is absolutely-continuous on any interval [𝑎, 𝑏]since it is linear. 

Integration of Lipschitz Functions: The indefinite integral of any Lipschitz continuous function 

on an interval [𝑎, 𝑏] results in an absolutely-continuous function. Lipschitz continuity ensures 

that the function does not oscillate too wildly, which in turn guarantees absolute continuity of its 

integral. 

Absolutely continuous functions form a significant subclass of functions in mathematical 

analysis, embodying properties that are both rich and profound. They bridge the gap between 

uniform continuity and total variation, providing a more comprehensive perspective on function 

behaviour and integrability. The study of absolutely-continuous functions unravels deeper layers 

of understanding in analysis, measure theory, and the nuances of functional behaviour, paving 

the way for advanced mathematical exploration and application. 

3.8    Self-Assessment Questions 

Question 1: Define a function of bounded variation. How is the total variation of such a function 

calculated across an interval [𝑎, 𝑏]? 

Question 2: Explain with an example how every monotonic function on a closed interval is a 

function of bounded variation. 

Question 3: How can any function of bounded variation be represented as the difference of two 

increasing functions? Provide a proof or explanation for the decomposition theorem. 



Question 4: Illustrate with examples and counterexamples the relationship between continuous 

functions and functions of bounded variation. Are all continuous functions of bounded variation? 

Question 5: Define an absolutely continuous function. How does it relate to and differ from a 

uniformly continuous function? 

Question 6: Provide an example of a function that is absolutely continuous and explain why it 

satisfies the definition of absolute continuity. 

Question 7: Are all absolutely continuous functions also functions of bounded variation? 

Provide a justification for your answer. 

Question 8: Describe how the Fundamental Theorem of Calculus applies to absolutely 

continuous functions. What does it tell us about the differentiability and integrability of such 

functions? 

Question 9: Explain the significance of the property that an absolutely continuous function maps 

sets of Lebesgue measure zero to sets of Lebesgue measure zero. 

Question 10: Can a function be of bounded variation but not absolutely continuous? Provide an 

example or counterexample to justify your response. 

Question 11: Additional Challenge: Investigate and discuss the implications of the properties of 

functions of bounded variation and absolutely continuous functions in real-world applications, 

such as signal processing or solving variational problems. 

Question 12: Define a function of bounded variation and provide an example. 

Question 13: Demonstrate how a function of bounded variation can be expressed as the 

difference of two increasing functions. 

Question 14: Prove that every continuous function of bounded variation is uniformly 

continuous. 

Question 15: Differentiate between a function of bounded variation and an absolutely 

continuous function with examples. 



3.9     Summary 

Unit 3 delved into the nuanced study of Bounded Variation, introducing the foundational 

concept of a function of bounded variation and its pivotal properties. The unit shed light on the 

significant theorem that such a function can always be represented as the difference of two 

increasing functions, revealing implications for integrability and the study of variational 

problems. A special focus was placed on continuous functions of bounded variation, illustrating 

their essential role through examples and demonstrating their ubiquity in real analysis. The unit 

further explored the realm of absolutely continuous functions, elucidating their defining 

characteristics, intrinsic properties, and the myriad of ways they extend and interact with the 

notions of uniform continuity and bounded variation. These discussions were punctuated with 

practical examples, theoretical insights, and self-assessment questions, all aimed at fostering a 

deep, holistic understanding of the subject, laying the groundwork for advanced study and 

applications in mathematical analysis and beyond. 

3.10      Further Reading 

• "Principles of Mathematical Analysis" by Walter Rudin, McGraw-Hill 

• "Real Analysis: Modern Techniques and Their Applications" by Gerald B. Folland, 

Wiley-Interscience 

• "Real and Complex Analysis" by Walter Rudin, McGraw-Hill 

• "Measure Theory and Fine Properties of Functions" by Lawrence C. Evans and Ronald F. 

Gariepy, CRC Press 

• "A Course in Mathematical Analysis" by D. J. H. Garling, Cambridge University Press 

• "Functions of Bounded Variation and Free Discontinuity Problems" by Diego Pallara, 

Luigi Ambrosio, and Nicola Fusco, Oxford University Press 

• "Introduction to Measure Theory and Integration" by Luigi Ambrosio, Maria Colombo, 

and Alessio Figalli, Edizioni della Normale 

• "Lebesgue Integration on Euclidean Space" by Frank Jones, Jones & Bartlett Learning 

• "Mathematical Analysis I" by Claudio Canuto and Anita Tabacco, Springer 
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Block & Unit Introduction 

 

The Block - 2 – Metric Spaces & Continuity is the second block with three units. 

 

Block 2 guides the learner through the elegant landscape of metric spaces. This block sets 

the stage by defining metric spaces, foundational to much of modern analysis. We subsequently 

dive into continuity, uncovering the nuanced dance of limits and function behavior. The final 

unit of this block takes us on a journey into the realm of analytic functions and transformations, 

presenting an interplay between complex and real analysis. 

In Unit – 4 – Metric Spaces, is being introduced the Metric Spaces, open and closed sets, 

limit and cluster points, Cauchy Sequences and completeness, Convergence of sequences, 

Completeness of R”. Baire’s theorem. Cantor’s ernary set as example of a perfect set which is 

now here dense. 

In Unit – 5 – Continuity is discussed with Continuity and uniform continuity of a 

function from a Metric space to a Metric space. Open and closed maps, Compact spaces and 

compact sets with their properties. Continuity and compactness under continuous maps.  

In Unit – 6 – Analytic Functions and Transformation has been introduced, Analytic 

function, Cauchy-Riemann equations, Cauchy equation formula, its applications, Fourier and 

Laplace transforms. 

At the end of every block/unit the summary, self-assessment questions and further 

readings are given.  

  



UNIT 4 :      METRIC SPACES 

 

Structure  

 

4.1         Introduction 

4.2         Objectives 

4.3         Metric Spaces 

4.4         Open and Closed sets 

4.5        Limit and cluster points  

4.6         Cauchy Sequences Completeness 

4.7         Convergence of Sequences 

4.8          Completeness in ℝ 

4.9          Baire’s Theorem 

4.10      Perfect set; Cantor’s Emary set 

4.11      Self-Assessment Questions 

4.12     Summary 

4.13     Further Reading 

4.1         Introduction 

A metric space is a foundational concept in the study of topology and analysis, which 

underpin vast areas of mathematics. This unit delves deep into the core elements of metric 

spaces, including their structure, properties, and the convergence of sequences within them. We 

will explore open and closed sets, limit and cluster points, Cauchy sequences, completeness in ℝ, 

and Baire’s Theorem. 

4.2    Objectives 

By the end of this unit, learner should be able to: 



• Define and provide examples of metric spaces. 

• Distinguish between open and closed sets. 

• Understand the concepts of limit and cluster points. 

• Determine the convergence of sequences in metric spaces. 

• Discuss completeness in ℝ. 

• Explain Baire’s Theorem and its implications. 

• Solve problems related to metric spaces. 

4.3        Metric Spaces 

A metric space is a set X equipped with a function 𝑑: 𝑋 × 𝑋 →  ℝ, known as the metric, 

such that for any 𝑥, 𝑦, 𝑧 ∈ 𝑋 the following conditions are satisfied: 

Non-negativity:  

𝑑(𝑥, 𝑦) ≥ 0 and 𝑑(𝑥, 𝑦) = 0  if and only if 𝑥 = 𝑦. 

Symmetry:  

𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)Triangle Inequality:  

𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). 

Example: The set of real numbers R with the standard metric 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| is a metric space. 

Example: Euclidean Metric Space 

Let us consider the, most common examples of a metric space, the Euclidean space ℝ𝑛 

equipped with the Euclidean metric. 

the Euclidean space ℝ𝑛  consists of all ordered n-tuples of real numbers, and the 

Euclidean metric 𝑑: ℝ𝑛 × ℝ𝑛 →  ℝ is defined as: 

𝑑(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 



Where 𝑥 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) and 𝑦 = (𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛) are points in ℝ𝑛. 

Example: In ℝ2 , let 𝑥 = (0,0) and 𝑥 = (3,4). Then, the distance between 𝑥  and 𝑦  using the 

Euclidean metric is : 

𝑑(𝑥, 𝑦) = √(0 − 3)2 + (0 − 4)2 = 5 

This example demonstrates the application of the Euclidean metric to calculate the 

distance between two points in a two-dimensional space. 

Subspaces 

A subspace of a metric space (𝑋, 𝑑) is a non empty subset 𝑌 ⊆ 𝑋  with the metric 𝑑 

restricted to 𝑌. The subspace (𝑌, 𝑑|𝑦), itself forms a metric space. 

Example: consider the metric space (ℝ, |𝑥 − 𝑦|) of real numbers with the usual metric. The 

interval [0,1] with the restricted metric is a subspace of ℝ. 

Metric spaces are foundational in the study of topology, analysis, and geometry. They 

provide a structured framework to explore concepts of distance, convergence, continuity, and 

compactness. By exploring various examples of metric spaces and their properties, we gain 

insights into the diversity and applicability of this mathematical structure. 

4.4        Open and Closed Sets 

In metric spaces, the concepts of open and closed sets are foundational. They help define 

many other important concepts in topology, such as continuity, convergence, and compactness. 

In a metric space (𝑋, 𝑑), a set 𝑈 ⊆ 𝑋 is said to be open if, for every point , 𝑥 ∈ 𝑈 there 

exists some 𝜖 > 0 such that the 𝜖 -ball B(𝑥, 𝜖)={ 𝑦 ∈ 𝑋: 𝑑(𝑥, 𝑦) < 𝜖} is contained in 𝑈. 

Example: In ℝ, the interval (0,1) is open, while [0,1] is closed.   

Example: In a metric space (𝑋, 𝑑), ℝ 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑚𝑒𝑡𝑟𝑖𝑐 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|, 

𝑈 = (0,1) = {𝑥 ∈ ℝ: 0 < 𝑥 < 1}. Verify whether 𝑈 is an open set. 



Solution: for any point 𝑥 ∈ 𝑈 , we can choose 𝜖 = min(𝑥, 1 − 𝑥).  Then, the open interval 

(𝑥 − 𝜖, 𝑥 + 𝜖) is entirely contained in 𝑈, proving that 𝑈 is open. 

Closed sets  

set 𝐹 ⊂ 𝑋 is closed if its complement is open. Equivalently, a set is closed if it contains 

all its limit points (boundary points). 

Example: In a metric space (𝑋, 𝑑), ℝ 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑚𝑒𝑡𝑟𝑖𝑐 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|, 

𝐹 = [0,1] = {𝑥 ∈ ℝ: 0 ≤ 𝑥 ≤ 1}. Verify whether 𝐹 is a closed set. 

Solution: The complement of 𝐹 in ℝ = (−∞, 0) ∪ (1, ∞) both (−∞, 0) and (1, ∞) are open sets 

in ℝ, so their union is also open. Hence, 𝐹 is closed. 

Closure and Interior 

The closure of a set 𝐴, denoted by �̅�, is the smallest closed set containing 𝐴, which is the 

union of 𝐴 and its limit points. The interior of a set 𝐴, denoted by int(𝐴), is the largest open set 

contained in 𝐴. 

Solved Example : Closure and Interior 

Metric Space: ℝ2 with the Euclidean metric. 

Set: 𝐴 = {(𝑥, 𝑦) ∈ ℝ2: 𝑥2 + 𝑦2 < 1} (Open unit disk) 

Task: Find the closure and interior of 𝐴. 

Solution: 

Closure: The closure of 𝐴 is the closed unit disk 𝐴 = {(𝑥, 𝑦) ∈ ℝ2: 𝑥2 + 𝑦2 < 1}. 

Interior: The interior of 𝐴 is the set A itself, as 𝐴 is already an open set. 

Through these examples, we have explored how to verify whether a set is open or closed, 

and how to find the closure and interior of a set in a metric space. These concepts form the basis 

for further studies in topology and analysis within metric spaces. 



4.5      Limit and Cluster Points 

In a metric space, limit points and cluster points are crucial concepts, helping us 

understand the behaviour of sequences, series, and functions. Let's explore both of these 

concepts in detail, along with illustrative examples. 

Limit Points:  

A point 𝑥 in a metric space 𝑋 is called a limit point of a set 𝐴 ⊆ 𝑋 if, for every 𝜖 > 0, 

there exists a point 𝑎 ∈ 𝐴 such that 0 < 𝑑(𝑥, 𝑦) < 𝜖. In other words, every neighborhood of 𝑥 

contains some point of 𝐴 other than x itself. A point 𝑥 in a metric space 𝑋 is a limit point of a set 

𝐴 if every open set containing 𝑥  contains a point of 𝐴 different from 𝑥. 

Example : limit points in ℝ, 

In a metric space (𝑋, 𝑑), ℝ 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑚𝑒𝑡𝑟𝑖𝑐 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|. 

𝐴 = {
1

𝑛
: 𝑛 ∈ ℕ}.To show that 0 is the limit point of 𝐴.  

Let, for any 𝜖 > 0, choose 𝑛 such that 
1

𝑛
< 𝜖. Then 𝑑 (0,

1

𝑛
) =

1

𝑛
<  𝜖, showing that 0 is 

the limit point of 𝐴. 

Cluster Points:  

A point 𝑥  in a metric space 𝑋  is called a cluster point (or accumulation point) of a 

sequence (𝑎𝑛) if, for every 𝜖 > 0, there are infinitely many terms 𝑎𝑛 of the sequence within the 

𝜖 -neighborhood of 𝑥, i.e., 𝑑(𝑥, 𝑎𝑛) < 𝜖. 

A point 𝑥 is a cluster point of a sequence (𝑥𝑛) in 𝑋 if, for every 𝜖 > 0, there are infinitely 

many terms 𝑥𝑛 of the sequence within 𝜖 of 𝑥. 

Example: Cluster Point of a Sequence Metric Space: R with the standard metric. 

Sequence: (𝑎𝑛) = (−1)𝑛. To show that both 1 and −1 are cluster points of the sequence (𝑎𝑛). 



Solution: For any 𝜖 > 0, if 𝜖 > 2, both 1 and −1 are within 𝜖 -neighbourhood of infinitely many 

terms of the sequence. If 0 < 𝜖 ≤ 2, since the sequence oscillates between 1 and -1, there are 

still infinitely many terms within 𝜖 -neighbourhood of both 1 and -1, proving they are cluster 

points. 

Relationship between Limit and Cluster Points 

 A limit point of a set is also a cluster point of any sequence in the set that 

converges to it. However, a cluster point of a sequence is not necessarily a limit point of the set 

of values of the sequence, especially if the sequence doesn’t converge. 

Example: Limit Point not being a Cluster Point 

Metric Space:  

 ℝ with the standard metric. The sequence is (𝑎𝑛) = 𝑛. Discuss whether the 

sequence has a cluster point and whether ∞ is a limit point of the set of values of the sequence. 

Solution: The sequence (𝑎𝑛) = 𝑛 diverges to ∞, and thus, it does not have any cluster point in ℝ. 

However, ∞ can be considered a limit point of the set of values of the sequence in the extended 

real number system. 

 These examples illuminate the nuanced distinctions between limit points and 

cluster points in metric spaces, aiding in a nuanced understanding of convergence and 

accumulation in mathematical analysis. 

4.6 -     Cauchy Sequences and Completeness 

Cauchy sequences and completeness are foundational concepts in metric space theory, 

driving our understanding of convergence within a space. 

Cauchy Sequences: 

 A sequence (𝑥𝑛) in a metric space  (𝑋, 𝑑) is called a Cauchy sequence if for every 𝜖 >

0, there exists 𝑁 ∈ ℕ such that for all 𝑚, 𝑛 ≥ 𝑁, we have 𝑑(𝑥𝑛, 𝑥𝑚) < 𝜖. Intuitively, the terms of 

a Cauchy sequence become arbitrarily close to each other as the sequence progresses. A 



sequence (𝑥𝑛) in a metric space (𝑋, 𝑑), is Cauchy if, for every 𝜖 > 0, there exists an 𝑁 such that 

𝑑(𝑥𝑛, 𝑥𝑚) < 𝜖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛, 𝑚 > 𝑁. 

Example: In metric space ℚ (𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠) with the standard metric, the sequence 𝑥𝑛 =

1

𝑛
, show that (𝑥𝑛) is Cauchy sequence. 

Solution: for any 𝜖 > 0, choose 𝑁 such that 
1

𝑁
< 𝜖, for all 𝑚, 𝑛 ≥ 𝑁 we have 

𝑑(𝑥𝑛, 𝑥𝑚) = |
1

𝑚
−

1

𝑛
| <

1

𝑁
< 𝜖 

Therefore, (𝑥𝑛) is Cauchy sequence. 

Completeness:  

A metric space (𝑋, 𝑑) is called complete if every Cauchy sequence in 𝑋 converges to a 

limit in 𝑋. Completeness is a property that assures us that we won’t “fall out” of the space when 

we have a sequence that should converge based on the closeness of its terms. 

A metric space is complete if every Cauchy sequence in it converges to a limit in the space. 

Example: Completeness of ℝ and Incompleteness of ℚ  

Metric Space 1: ℝ (real numbers) with the standard metric.  

Metric Space 2: ℚ (rational numbers) with the standard metric. 

Sequence: 𝑥𝑛 = (1 +
1

𝑛
)

𝑛

. Discuss the completeness of ℝ and ℚ using the sequence (𝑥𝑛 ). 

Solution: The sequence ( 𝑥𝑛 ) is a Cauchy sequence in both ℝ  and ℚ.  In ℝ , this sequence 

converges to the number e, demonstrating that ℝ is complete. However, in ℚ, the sequence does 

not converge to any rational number, indicating that ℚ is not complete. 

Characterizing Completeness 



Completeness is essential for many results in analysis. For instance, the completeness of 

ℝ ensures the existence of solutions to a wide range of problems and underpins the construction 

of integral and differential calculus. 

In contrast, spaces that are not complete, like ℚ, can often be “completed” by filling in 

the “holes” (like the irrational numbers) to form a complete space (like ℝ). 

Through these examples, we gain a deeper appreciation for the concept of Cauchy 

sequences and completeness, which play a pivotal role in our exploration of convergence and the 

structure of metric spaces. 

4.7      Convergence of Sequences 

In metric spaces, the convergence of sequences is a fundamental concept that leads to the 

understanding of limits, continuity, and compactness. A sequence in a metric space converges to 

a limit if the distance between its terms and the limit becomes arbitrarily small as the sequence 

progresses. 

Definition 

A sequence (𝑥𝑛) in a metric space (𝑋, 𝑑) is said to converge to a limit 𝑥 in 𝑋 if for every 

𝜖 > 0 there exists 𝑁 ∈ ℕ such that for all 𝑛 ≥ 𝑁, we have 𝑑(𝑥𝑛, 𝑥) < 𝜖. Symbolically, this is 

represented as 

log𝑛→∞ 𝑥𝑛 = 𝑥 

A sequence (𝑥𝑛) in a metric space (𝑋, 𝑑), converges to a limit 𝑥 ∈ 𝑋 if, for every 𝜖 > 0, 

there exists an N such that 𝑑(𝑥𝑛, 𝑥) < 𝜖 for all 𝑛 > 𝑁. 

Example: Convergence in ℝ Metric Space: ℝ with the standard metric 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|. 

Sequence: 𝑥𝑛 =
1

𝑛
. Show that (𝑥𝑛) converges and find the limit. 



Solution: For any 𝜖 > 0, choose 𝑁 such that 
1

𝑁
 < 𝜖. For all 𝑛 ≥ 𝑁, we have 𝑑(𝑥𝑛, 0) = |

1

𝑛
− 0| =

1

𝑛
<

1

𝑁
< 𝜖 . Therefore, (𝑥𝑛 ) converges to 0. 

Convergence and Cauchy Sequences 

Every convergent sequence is a Cauchy sequence, but the converse is not always true 

unless the space is complete. In complete metric spaces, the notions of convergence and being 

Cauchy are equivalent for sequences. 

Example: Cauchy but Not Convergent in ℚ Metric Space: ℚ with the standard metric. 

Sequence: 𝑥𝑛 = 1 +
1

2
+

1

3
+ ⋯ +

1

𝑛
  (Harmonic sequence). Show that (𝑥𝑛) is Cauchy but does not 

converge in ℚ. 

Solution: The sequence (𝑥𝑛) is Cauchy as the difference between subsequent terms decreases. 

However, it is known to diverge to infinity in ℝ and hence does not have a limit in ℚ, illustrating 

a sequence that is Cauchy but does not converge in a non-complete metric space. 

Properties of Convergent Sequences 

• Uniqueness of Limits: A convergent sequence has a unique limit. 

• Boundedness: Every convergent sequence is bounded. 

• Algebraic Operations: Limits of sequences can be manipulated algebraically, like 

numbers. 

Subsequential Limits 

A subsequential limit is the limit of some subsequence of a given sequence. Every 

bounded sequence in ℝ𝑛  has at least one subsequential limit, which may be the limit of the 

sequence itself if the sequence converges. 

Example: Subsequential Limits 

Metric Space: ℝ with the standard metric. Sequence: 𝑥𝑛 = (−1)𝑛. Find a subsequential limit of 

(𝑥𝑛). 



Solution: The sequence (𝑥𝑛) does not converge as it oscillates between -1 and 1. However, it has 

two subsequential limits, -1 and 1, which are the limits of the sub-sequences  𝑥2𝑛 =1, and 

𝑥2𝑛+1 =  −1 respectively. 

Understanding the convergence of sequences, along with the related concepts and 

properties, is fundamental to studying metric spaces and serves as a cornerstone for real analysis, 

topology, and many other areas of mathematics. 

4.8     Completeness in ℝ 

Definition of Completeness 

A metric space (𝑋, 𝑑) is said to be complete if every Cauchy sequence in 𝑋 converges to 

a limit in 𝑋. In the context of ℝ, this means that for any Cauchy sequence (𝑥𝑛) of real numbers, 

there exists a real number L such that: 

log𝑛→∞ 𝑥𝑛 = 𝐿 

 

Why ℝ is Complete? 

The real numbers are constructed to “fill in the gaps” in the rational numbers, ensuring 

that there are no “missing points” and making ℝ complete. One way to construct ℝ is through 

Dedekind cuts or equivalence classes of Cauchy sequences of rational numbers, ensuring every 

Cauchy sequence of real numbers has a limit within ℝ. 

Completeness of ℝ: Key Properties and Results 

Least Upper Bound Property:  

Every non-empty subset of ℝ that is bounded above has a least upper bound (supremum) 

in ℝ. This property is equivalent to the completeness of ℝ. 



Nested Intervals Theorem: If [ 𝑎𝑛, 𝑏𝑛 ] is a sequence of nested closed intervals in ℝ, i.e., 

[𝑎𝑛+1, 𝑏𝑛+1] ⊆ [𝑎𝑛, 𝑏𝑛] for all 𝑛, and if the lengths of the intervals 𝑏𝑛 − 𝑎𝑛 approach 0, then the 

intersection of all the intervals contains exactly one point. 

Bolzano-Weierstrass Theorem: (discussed in Unit 7) 

Every bounded sequence of real numbers has a convergent subsequence. 

Intermediate Value Theorem: If 𝑓: [𝑎, 𝑏] → ℝ is a continuous function, then for any 𝑑 between 

𝑓(a) and 𝑓(b), there exists 𝑐 ∈ [𝑎, 𝑏] such that 𝑓(c)= 𝑑. 

Existence of Limits: 

Limit points of sequences and limits of functions are guaranteed to exist in ℝ, thanks to 

its completeness.  

Contrast with ℚ, the set of rational numbers, is not complete. There exist Cauchy 

sequences of rational numbers that do not converge to any rational number. For example, the 

sequence (𝑥𝑛 ) defined by 𝑥1 = 1  and   𝑥𝑛+1 =
1

2
(𝑥𝑛 +

2

𝑥𝑛
)  is a Cauchy sequence in Q that 

converges to 2 , which is not a rational number. 

The completeness of ℝ is a pivotal property that makes it the natural setting for calculus 

and real analysis. It ensures the existence of limits, the resolution of continuity, and the 

robustness of algebraic and order properties, thereby laying the foundation for numerous 

mathematical theories and applications. 

4.9     Baire’s Theorem 

Baire’s Theorem is a fundamental result in topology and analysis, providing significant 

insight into the structure of complete metric spaces. Named after René-Louis Baire, this theorem 

has several equivalent formulations, and its consequences are foundational for various results in 

functional analysis, measure theory, and point-set topology. 



Baire’s Theorem is a fundamental result in topology stating that in a complete metric 

space, the intersection of countably many dense open sets is dense. 

Statement of Baire’s Theorem : Let (𝑋, 𝑑)  be a complete metric space. Then, Baire’s Theorem 

states that the space 𝑋 is of second category in itself, which means that 𝑋 cannot be expressed as 

a countable union of nowhere-dense sets. A set A⊂X is said to be nowhere-dense if the interior 

of its closure is empty, i.e., int(A )=∅. 

Or, in other words, in a complete metric space, the intersection of countably many dense open 

sets is dense. 

Note: A set is said to be dense in a space if every open set in the space intersects it. In other 

words, the closure of the set equals the entire space. 

Proof: Let (𝑋, 𝑑) be a complete metric space and {𝐺𝑛} be a countable collection of dense open 

sets in 𝑋. We want to prove that ⋂ 𝐺𝑛
∞
𝑛=1  is dense in 𝑋. 

For ant 𝑥 ∈ 𝑋 and 𝑛 ∈ 𝑁, since 𝐺𝑛 is dense in 𝑋, there exists a ball 𝐵(𝑥, 𝑟𝑛) ⊆ 𝐺𝑛 where 

𝑟𝑛 <
1

𝑛
 (we choose 𝑟𝑛 this way to ensure that radii are getting smaller). 

Considering the intersection of all these balls from 𝑛 = 1 𝑡𝑜 ∞, we have a sequence of 

nested, decreasing, non-empty open sets:  

𝐵(𝑥, 𝑟1) ⊇ 𝐵(𝑥, 𝑟2) ⊇  𝐵(𝑥, 𝑟3) ⊇ ⋯ 

Given the way we have chosen our radii (𝑟𝑛 <
1

𝑛
) for any 𝑚 > 𝑛, 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑(𝑦, 𝑧) 

between two points 𝑦, 𝑧 𝑖𝑛 𝐵(𝑥, 𝑟𝑛) is less than 𝑟𝑚 . Therefore, the diameter of these balls is 

decreasing to 0. 

Now, using the fact that 𝑋 is a complete metric space, this sequence of nested balls with 

diameters tending to 0 will have a non-empty intersection. Let 𝑦 be a point in the intersection of 

all these balls. Thus, 𝑦 is in the intersection of all the 𝐺𝑛. Given the arbitrariness of 𝑥, we have 

shown that for any point 𝑥 in 𝑋, there exists a point y in ⋂ 𝐺𝑛
∞
𝑛=1 that's arbitrarily close to 𝑥. This 

means that the intersection of the 𝐺𝑛s is dense in 𝑋. 



Hence, Baire’s Theorem is proven. 

The implications of the Baire Category Theorem are profound in various areas of 

mathematics, especially in functional analysis where it's used to demonstrate the existence (or 

non-existence) of certain types of functions. 

Intuitive Understanding 

Intuitively, Baire’s Theorem implies that in a complete metric space, "large" subsets 

cannot be "covered" by a countable collection of "small" or "thin" sets. In other words, complete 

metric spaces are "rich" in the sense that they contain a dense set of points that cannot be 

accounted for by just countably many sparse sets. 

Consequences and Applications 

Density of Sets: 

Baire’s Theorem is instrumental in establishing the density of certain sets. For example, it 

proves that the set of rational numbers Q is dense in R, and the set of continuous functions is 

dense in the space of all regulated functions. 

Banach-Steinhaus Theorem: Baire’s Theorem is used in the proof of the Banach-Steinhaus 

Theorem, which gives conditions under which a family of continuous linear operators is 

uniformly bounded. 

Open Mapping Theorem: Baire’s Theorem plays a crucial role in proving the Open Mapping 

Theorem, which states that a surjective continuous linear operator between Banach spaces is 

open. 

Closed Graph Theorem: The Closed Graph Theorem, establishing criteria for the continuity of 

linear operators between Banach spaces, relies on Baire’s Theorem. 

Existence of Non-Continuous Linear Functionals: 

Baire’s Theorem aids in demonstrating the existence of linear functionals that are not 

continuous, a key result in functional analysis. 



Example: Density of the Rational Numbers. Use Baire's Theorem to show that the rational 

numbers Q are dense in R. 

Solution: Suppose, for the sake of contradiction, that Q is not dense in R. Then, there exists an 

interval (a,b)⊂R that contains no rational number. However, since every interval in R contains a 

rational number, we reach a contradiction. This implies that Q is dense in R, and every real 

number can be approximated by rational numbers. 

Baire's Theorem is a cornerstone in the field of mathematical analysis, offering profound 

insights into the structure and properties of complete metric spaces. The theorem's implications 

extend across a variety of mathematical disciplines, underscoring the ubiquity and importance of 

dense sets, the behavior of linear operators, and the intricate interplay between continuity and 

topology in the vast landscape of mathematical theory. 

4.10     Perfect Set; Cantor’s Ternary Set 

A perfect set in a metric space is closed and has no isolated points. Cantor’s ternary set is 

an example of a perfect set, constructed by removing the middle third of the interval [0,1] and 

continuing this process infinitely. 

Perfect Set 

A perfect set can be described as a subset of a metric space that has two key properties: it 

is closed, and every point in the set is a limit point of the set. 

Closed Set: 

A set is closed if it contains all its boundary points or limit points. In simpler terms, if 

you were to approach any point in the set by following a path within the set, you wouldn’t “step 

outside” the set even when you reach its “edge.” 

Limit Point: 

Every point in a perfect set is a limit point. A limit point of a set is a point that can be 

“approached” by other points in the set. Imagine you are standing at a point in the set, and no 



matter how small a circle you draw around yourself, there will always be other points from the 

set inside that circle. 

Cantor's Ternary Set 

Cantor’s Ternary Set is a famous example of a perfect set, and it’s constructed in a 

fascinating way within the real number line, specifically between 0 and 1. 

Construction: 

You start with the closed interval from 0 to 1. Then, you remove the open middle third of 

this interval, leaving two closed intervals: one from 0 to 1/3 and the other from 2/3 to 1. Next, 

you remove the open middle third of each of these remaining intervals. You keep repeating this 

process infinitely many times, removing the middle third of every interval you get. 

Properties: 

At the end of this infinite process, you are left with a set of points known as Cantor’s 

Ternary Set. This set has some intriguing properties. Despite removing infinitely many intervals, 

the total length of the removed intervals is still just 1, leaving behind a set with “zero length.” 

However, this remaining set is not empty! It’s uncountably infinite and dense with points, 

making it a perfect set. Every point in the Cantor set is a limit point of the set, and the set itself is 

closed. 

Fractal Nature: 

Cantor’s Ternary Set also introduces us to the concept of fractals. It has a self-similar and 

infinitely repeating structure, which are hallmarks of fractals in mathematics. 

Both perfect sets and Cantor's Ternary Set illustrate the richness and sometimes 

counterintuitive nature of mathematical concepts. They open doors to exploring the intricate 

structures and patterns that can be found within seemingly simple sets of numbers, providing a 

foundation for more advanced ideas in topology and real analysis. 

 



4.11    Self-Assessment Questions 

1. Prove that a closed interval in R is a closed set. 

2. Determine whether the sequence (1/n) in R is a Cauchy sequence. 

3. Provide an example of a non-complete metric space. 

4. Can you explain what a metric space is? Describe how it consists of a set of points and a 

way to measure distances between these points. Can you think of a real-world example of 

a metric space? 

5. Could you describe the difference between open and closed sets within a metric space? 

How would you determine whether a given set is open, closed, both, or neither? 

6. Can you explain what limit and cluster points are in the context of metric spaces? How 

would you identify the limit points of a given set? 

7. What is a Cauchy sequence, and how does it relate to the concept of completeness in a 

metric space? Can you describe how a sequence might be Cauchy but not convergent in a 

given space? 

8. Can you discuss what it means for a sequence to converge within a metric space? How 

does the space itself impact the convergence of a sequence, and can you think of any 

examples where a sequence converges in one space but not in another? 

4.12      Summary 

This unit introduced the foundational concepts of metric spaces, including their 

properties, structures, and various types of sets and sequences within them. The concepts of open 

and closed sets, limit and cluster points, Cauchy sequences, and completeness were explored 

with examples, laying the groundwork for further studies in analysis and topology. 

In this unit on metric spaces, we delved into the foundational concepts and properties that 

characterize such spaces, exploring how they are defined by a set of points and a metric function 

to measure distances. We examined the nature of open and closed sets, understanding their 

significance and how they contribute to the topology of a metric space. The unit also focused on 

limit and cluster points, illustrating their role in defining the convergence and boundaries of sets. 

We discussed Cauchy sequences and the essential notion of completeness, emphasizing how a 



metric space is complete if every Cauchy sequence within it converges to a limit in the space. 

Furthermore, we explored the convergence of sequences in different metric spaces, analysing 

how the properties of the space affect whether a sequence converges. Lastly, we touched on 

important theorems such as Baire's Theorem and concepts like perfect sets, exemplified by 

Cantor's Ternary Set, to gain deeper insights into the intricate structure and properties of 

complete metric spaces. 

4.13    Further Reading 

For further reading and deeper understanding of metric spaces and related concepts, the 

following resources are highly recommended: 

• "Topology" by James R. Munkres. This text book provides a comprehensive introduction 

to topology, including detailed discussions on metric spaces, continuity, compactness, and 

connectedness. 

• "Principles of Mathematical Analysis" by Walter Rudin. Often referred to as “Baby 

Rudin,” this SLM offers an in-depth exploration of real analysis and covers metric 

spaces, convergence, and completeness in detail. 

• "Introduction to Topology: Pure and Applied" by Colin Adams and Robert Franzosa. A 

well-balanced BOOK that introduces the fundamental concepts of topology with 

applications, including a dedicated section on metric spaces. 

• "Real Analysis: Modern Techniques and Their Applications" by Gerald B. Folland. This 

SLM is a valuable resource for understanding real analysis and includes comprehensive 

coverage of metric spaces and convergence of sequences. 

• "Elements of the Topology of Plane Sets of Points" by M.H.A. Newman. This classic text 

provides an accessible introduction to point-set topology, focusing on the topology of 

plane sets and metric spaces. 
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5.1     Introduction 

Continuity is a foundational concept in mathematical analysis and topology, which helps 

in understanding the behaviour of functions and sets in different spaces. In this unit, we explore 

the concept of continuity and uniform continuity in metric spaces, study open and closed maps, 

examine the properties of compact sets, and investigate the relationship between continuity and 

compactness under continuous maps. 

In the vast landscape of mathematical theory, the concept of continuity stands as one of 

the pillars, bridging gaps between intuition and formalism, and providing a robust framework for 

the exploration of functions, sequences, and spaces. The idea that a mathematical function could 

possess continuity — a seamless, unbroken nature — is fundamental to calculus, real analysis, 

and topology, finding applications across disciplines such as physics, computer science, and 

engineering. 



Continuity is intrinsically linked to the way we perceive change and transition. It offers a 

lens through which we can examine how quantities vary, how functions behave under 

transformations, and how structures in different spaces relate to each other. This unit, UNIT 5: 

Continuity, aims to delve deep into the essential aspects of continuity, exploring its facets, 

implications, and applications. 

The first section of this unit, 5.3, is dedicated to laying down the foundations by 

exploring Continuity and Uniform Continuity within the framework of metric spaces. A nuanced 

understanding of these concepts is indispensable as they enable us to discern the subtle 

distinctions and interrelations between different types of continuity, laying the groundwork for 

advanced study. 

Following this, we will venture into the realm of Open and Closed Maps in section 5.4. 

These concepts act as guiding lights, illuminating the paths through which continuity interacts 

with the topological structures of spaces, thereby enabling a richer and more detailed exploration 

of mathematical landscapes. 

In section 5.5, our journey takes us to the exploration of Compact Sets and their intrinsic 

properties. Compactness is a concept of central importance in topology and real analysis. It 

generalizes the intuitive notion of “boundedness” and provides a rigorous framework for 

discussing limit points, convergence, and the behavior of functions on sets. 

Our exploration continues in section 5.6, where we will study the interplay between 

Continuity and Compactness under Continuous Maps. This relationship holds keys to many 

doors within mathematical theory, uncovering the behavior of functions, the nature of sets, and 

the intricate dance between continuity and compactness. 

Throughout this unit, we will engage with self-assessment questions and practical 

examples, facilitating a comprehensive understanding of the theoretical concepts discussed. By 

the end of this journey, learners will have developed a solid grasp of the foundational and 

advanced aspects of continuity, armed with the knowledge to unlock further mysteries in the 

world of mathematics. 



Concluding the unit, a summary will encapsulate the core concepts and insights gained, 

providing a coherent overview and serving as a stepping stone for further exploration and study. 

Recommendations for further reading will offer avenues for learners to delve deeper into the 

intricate world of continuity, exploring its manifold applications and connections to other areas 

of mathematics. 

Embarking on this exploration of continuity, we invite learners to engage actively with 

the material, draw connections between concepts, and apply the acquired knowledge to solve 

complex problems. The journey through UNIT 5: Continuity promises to be intellectually 

enriching, offering a wealth of insights into the continuous nature of mathematical structures and 

their profound implications across disciplines. 

5.2      Objectives 

By the end of this unit, learners should be able to: 

• Understand the concepts of continuity and uniform continuity in metric spaces. 

• Define and differentiate between open and closed maps. 

• Explain the properties of compact sets. 

• Analyse the impact of continuous maps on continuity and compactness. 

 

5.3      Continuity and Uniform Continuity from a Metric Space to a Metric     

           Space 

Understanding continuity and uniform continuity in the context of metric spaces is 

pivotal for grasping the behavior of functions and their interactions within and across different 

spaces. Let's delve into these concepts in detail. 

Continuity 

A function 𝑓: 𝑋 → 𝑌  between two metric spaces (𝑋, 𝑑𝑋)  and (𝑌, 𝑑𝑌) is said to be 

continuous at a point 𝑥 ∈ 𝑋  if for every 𝜖 > 0 , there exists a 𝛿 > 0 such that whenever 



𝑑𝑋(𝑥, 𝑥′) < 𝛿 , it follows that 𝑑𝑌(𝑓(𝑥), 𝑓(𝑥′)) < 𝜖 . In essence, this means that points in the 

domain which are close to x are mapped to points in the codomain that are close to 𝑓(𝑥). A 

function is continuous on 𝑋 if it is continuous at every point 𝑥 ∈ 𝑋. 

Intuitively, a continuous function is one where small change in the input result in small 

changes in the output, with no abrupt or sudden jumps. 

Uniform Continuity 

Uniform continuity is a stronger form of continuity. A function 𝑓: 𝑋 → 𝑌 between two 

metric spaces is uniformly continuous if for every 𝜖 > 0, there exists a 𝛿 > 0  such that for all 𝑥 

, 𝑥′  ∈X, if 𝑑𝑋(𝑥, 𝑥′) < 𝛿, then  𝑑𝑌(𝑓(𝑥), 𝑓(𝑥′)) < 𝜖 . Notice that in uniform continuity, the δ 

does not depend on the choice of 𝑥 in 𝑋, making the continuity "uniform" across the space. 

In other words, uniformly continuous functions guarantee that the output points remain 

close for every pair of input points that are close to each other, irrespective of their location in 

the domain. 

Comparison and Examples 

Continuity ensures that the function behaves nicely, but the "closeness" of output points 

can depend on where you are in the input space. In contrast, uniform continuity provides a global 

guarantee, ensuring that the same level of "closeness" can be achieved everywhere in the domain 

with a suitable choice of δ. 

𝑓(𝑥) = 𝑥2. However, it is uniformly continuous on any closed and bounded interval [a,b] 

of real numbers. 

Importance in Analysis and Topology 

The concepts of continuity and uniform continuity are foundational in analysis and 

topology. Continuity serves as a basic building block for defining convergence, differentiability, 

and integrability. Uniform continuity, on the other hand, is crucial in establishing results related 

to function approximation, equicontinuity, and the Arzelà–Ascoli theorem, which characterizes 

the compactness of sets of functions. 



Understanding how continuity and uniform continuity operate within and between metric 

spaces enables us to investigate the properties and behaviours of functions in greater depth, 

laying down the groundwork for further exploration in mathematical analysis and topology. 

By analysing functions through the lens of continuity and uniform continuity in metric 

spaces, we can gain valuable insights into their structure and behaviour, which can be applied to 

solve problems across a wide spectrum of mathematical disciplines. 

“Uniform continuity implies continuity, but the converse is not always true. An 

understanding of these concepts is essential as they form the basis for many results in analysis 

and topology”. 

5.4      Open and Closed Maps 

Exploring open and closed maps is pivotal for understanding the preservation of 

topological properties under various mappings. These types of maps play a vital role in studying 

the structure of topological spaces and the relationships between them. In this section, we will 

delve deeper into the concepts of open and closed maps, providing definitions, examples, and 

discussing their significance in topology. 

Definitions 

Open Map: Let 𝑋 and 𝑌 be topological spaces. A function 𝑓: 𝑋 → 𝑌 is called an open 

map if for every open set 𝑈 in 𝑋, the image 𝑓(𝑈) is open in 𝑌. 

Closed Map: Similarly, a function 𝑓: 𝑋 → 𝑌 is termed a closed map if for every closed set 

𝐶 in 𝑋, the image 𝑓(𝐶) is closed in 𝑌. 

Properties and Characteristics 

Invariance:  

Open and closed maps are important for studying properties that are invariant under such 

mappings. For instance, if 𝑓: 𝑋 → 𝑌 is an open (or closed) map, and  

X has a certain topological property P, then it often implies that the image f(X) also has the 

property P. 



Composition: 

 The composition of two open maps is open, and the composition of two closed maps is 

closed. However, the composition of an open map and a closed map may be neither open nor 

closed. 

Continuous Maps:  

It is crucial to note that continuous maps are not necessarily open or closed, and open or 

closed maps are not necessarily continuous. However, there exist maps that are both continuous 

and open (or closed), such as homeomorphisms. 

 

Significance in Topology 

Open and closed maps hold significant importance in topology for several reasons: 

Quotient Topology:  

 

Closed maps play a key role in the definition and study of quotient topologies. The 

canonical projection map used in defining quotient spaces is a closed map, and it helps in 

transferring the topological structure from a space to its quotient. 

Topological Properties: 

 Studying open and closed maps allows mathematicians to understand how different 

topological properties are preserved or altered under various mappings. This is essential for 

classifying topological spaces and understanding their structure. 

Algebraic Topology: 

 In algebraic topology, open and closed maps are fundamental for exploring how 

algebraic invariants, such as homotopy groups and homology groups, behave under different 

mappings between topological spaces. 

 

 

 



Geometric Applications:  

In geometry, open maps are especially useful as they can locally resemble projections, 

enabling the study of manifolds and other geometric structures through projections and 

embeddings. 

open and closed maps are instrumental in uncovering the intricate relationships between 

topological spaces, providing insights into the preservation of topological properties and offering 

a framework for exploring the rich landscape of topology. Understanding these concepts is vital 

for anyone looking to delve deeper into the study of topological spaces and their multifaceted 

interactions. 

5.5      Compact Sets with their Properties 

Compactness is a fundamental concept in topology and real analysis, characterizing a 

specific type of "smallness" or "finiteness" for sets, which can be extremely useful in proving 

convergence and boundedness properties. Here, we delve into the nature of compact sets and 

explore some of their essential properties. 

Definition 

A subset K of a topological space X is said to be compact if, for every open cover of K (a 

collection of open sets whose union contains K), there exists a finite subcover (a finite subset of 

the collection whose union still contains K). In simpler terms, no matter how you try to cover a 

compact set with open sets, you can always find a finite number of those open sets that still cover 

the whole set. 

Examples 

Closed Intervals in Real Numbers: Any closed and bounded interval [a,b] in R is 

compact. This is a consequence of the Heine-Borel Theorem, which states that in Rn , a set is 

compact if and only if it is closed and bounded. 

Finite Sets:  



Any finite subset of a topological space is compact. This is because any open cover of a 

finite set will have a finite subcover, often consisting of the open sets containing each point. 

Unit Sphere in Rn:  

The unit sphere 𝑆𝑛−1 ={x∈R n :∣∣x∣∣=1} is a compact set. It is bounded and closed in the 

Euclidean space Rn. 

Properties of Compact Sets 

Compact sets have several remarkable properties that make them indispensable in 

mathematical analysis: 

Bounded and Closed:  

In Euclidean spaces, compact sets are always bounded and closed, as per the Heine-Borel 

Theorem. 

Limit Point Compactness:  

A set is compact if and only if every infinite subset has a limit point in the set. This 

property is particularly useful in proving the compactness of various sets. 

Nested Intersection Property:  

If {Kn } is a nested sequence of non-empty compact sets (i.e., 1⊇2⊇3⊇…K1 ⊇K2 ⊇K3 

⊇…), then the intersection of all Kn  is non-empty. 

Preservation under Continuous Maps: 

 If 𝑓: 𝑋 → 𝑌  is a continuous function, and K is a compact subset of X, then f(K) is 

compact in Y. 

Compactness in Product Spaces:  

The product of compact spaces is compact under the product topology. This is known as 

Tychonoff’s Theorem. 



Significance in Mathematics 

Compact sets are central to various results in analysis and topology due to their well-

behaved nature: 

Extreme Value Theorem:  

Compactness is crucial in proving the Extreme Value Theorem, which asserts that any 

continuous real-valued function defined on a compact set attains its maximum and minimum 

values. 

Uniform Continuity:  

Every continuous function defined on a compact set is uniformly continuous. This is an 

essential result, connecting compactness to uniform continuity discussed earlier. 

Sequence Compactness:  

In metric spaces, compactness is equivalent to sequential compactness, meaning every 

sequence in the set has a subsequence that converges to a limit in the set. This property is 

invaluable in studying convergence properties of sequences. 

Compact sets, through their various properties and characteristics, act as a cornerstone in 

topology and real analysis. Understanding the nature of compact sets and how they interact with 

other topological and analytical concepts is foundational for exploring advanced mathematical 

theories and applications. 

5.6    Continuity and Compactness under Continuous Maps 

Continuous maps preserve compactness; that is, the continuous image of a compact set is 

compact. This property is instrumental in proving results such as the Extreme Value Theorem, 

which states that a continuous real-valued function defined on a compact set attains its maximum 

and minimum values. 

Exploring the interaction between continuity and compactness under continuous maps 

can yield deeper insights into the behaviour of functions and sets in various spaces. 



Continuous maps play a significant role in preserving topological properties, especially 

when it comes to compactness. The interactions between continuity and compactness under the 

realm of continuous maps yield several fundamental theorems and results in topology and 

analysis. This section will elaborate on the relationship between continuity and compactness 

under continuous maps. 

Image of Compact Sets under Continuous Maps 

One of the fundamental properties of continuous maps is that they preserve compactness. 

That is, if 𝑓: 𝑋 → 𝑌 is a continuous map between two topological spaces, and if K is a compact 

subset of X, then the image f(K) is a compact subset of Y. This result is a cornerstone for many 

theorems in real analysis and topology, such as the Extreme Value Theorem, which asserts that a 

continuous real-valued function on a compact set attains its maximum and minimum values. 

Continuous Functions on Compact Sets 

When a function is continuous on a compact set, several beneficial properties arise: 

Uniform Continuity:  

Every continuous function defined on a compact set is uniformly continuous. This is 

crucial because uniform continuity is a stronger and more desirable property than pointwise 

continuity, and it ensures that the function does not have any "jumps" or "breaks" throughout the 

entire domain. 

Boundedness: 

 A continuous real-valued function defined on a compact set is bounded. This is a direct 

consequence of the Extreme Value Theorem and is essential in establishing the boundedness of 

function values in various contexts. 

Attaining Extrema:  



As mentioned earlier, the Extreme Value Theorem guarantees that a continuous function 

on a compact set attains its maximum and minimum values. This is fundamental in optimization 

problems and calculus, where finding extrema is a common task. 

Inverse Image of Compact Sets 

Another important aspect to consider is the behaviour of the inverse image of compact 

sets under continuous maps. While it is true that the direct image of a compact set under a 

continuous map is compact, the inverse is not always true. However, under certain conditions, 

such as when the map is a closed map, the inverse image of a compact set will also be compact. 

Applications and Implications 

The interaction between continuity and compactness under continuous maps has far-

reaching applications and implications: 

Function Analysis:  

The properties of continuous functions on compact sets are essential tools in analysing 

the behaviour, boundedness, and variation of functions. 

Topological Classification:  

The preservation of compactness under continuous maps aids in classifying topological 

spaces and understanding the relationships between different spaces. 

Differential Equations:  

In the field of differential equations, understanding the behavior of continuous functions 

on compact sets is vital for solving and analyzing boundary value problems. 

Optimization:  

The ability of continuous functions to attain extrema on compact sets is foundational in 

optimization, helping to find maximum and minimum values of functions under given 

constraints. 



The relationship between continuity and compactness under continuous maps forms a 

pivotal unit in topology and real analysis. It provides a rich tapestry of results and properties that 

illuminate the structure of functions and sets, acting as a gateway to deeper and more nuanced 

mathematical explorations. 

5.7    Self-Assessment Questions 

Question 1: Define what it means for a function to be continuous from a metric space to another 

metric space. 

Question 2: Explain the difference between continuity and uniform continuity. Provide an 

example of a function that is continuous but not uniformly continuous. 

Question 3: Explain why the given example is indeed an open map. 

Question 4: Define a closed map and give an example. Discuss why the composition of two 

closed maps is closed, providing relevant examples. 

Question 5: Image of Compact Sets If 𝑓: 𝑋 → 𝑌 is a continuous function and K is a compact 

subset of X, is f(K) always, sometimes, or never compact? Explain your answer. 

Question 6: Is the inverse image of a compact set always compact under a continuous map? 

Under what conditions would this be true? 

Question 7: Discuss at least one application of open maps and closed maps in topology or any 

other field of mathematics. How does the property of being open or closed help in this 

application? 

Question 8: Describe the properties of compact sets and explain why they are important in 

analysis. 

Question 9: How do continuous maps affect the continuity and compactness of sets in metric 

spaces? 

These self-assessment questions are designed to help you gauge your understanding of 

the key concepts discussed in this unit, test your ability to apply these concepts in different 



contexts, and explore further the implications and applications of continuity, compactness, open 

and closed maps in topology and mathematical analysis. Define continuity and uniform 

continuity in metric spaces. Provide examples to illustrate the difference between them. 

5.8     Summary 

This unit embarked on a profound exploration of continuity and its intricate relationship 

with compactness, open and closed maps, and uniform continuity within the framework of metric 

spaces. We delved into the subtleties that distinguish continuity from uniform continuity, 

elucidating the nuanced conditions that characterize uniformly continuous functions. Further, we 

scrutinized open and closed maps, unravelling their defining characteristics, properties, and 

implications in topology, notably their role in preserving topological properties and their 

significance in studying the structure of topological spaces. Compact sets were explored in 

detail, where their defining properties, examples, and significance in mathematics were 

discussed, highlighting their indispensable nature in proving convergence and boundedness. The 

unit also illuminated the interplay between continuity and compactness under continuous maps, 

underscoring the preservation of compactness and the resultant properties and behaviours of 

continuous functions on compact sets. Through this comprehensive exploration, the unit 

furnished a cohesive understanding of these pivotal concepts, laying a robust foundation for 

further study and application in various mathematical domains. 

5.9      Further Reading 

For a deeper understanding and exploration of the concepts discussed in this unit, the 

following resources are recommended: 

• "Topology" by James R. Munkres, Pearson 

• "Principles of Mathematical Analysis" by Walter Rudin, McGraw-Hill 

• "Introduction to Metric and Topological Spaces" by W.A. Sutherland, Oxford University 

Press 

• "Counterexamples in Topology" by Lynn Arthur Steen and J. Arthur Seebach Jr., Dover 

Publications 



• "Real and Complex Analysis" by Walter Rudin, McGraw-Hill 

• "General Topology" by Stephen Willard, Dover Publications 
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6.1     Introduction 

In the realm of mathematics and its multifarious applications, the field of Analytic 

Functions and Transformation holds a paramount position. It acts as a bridge connecting 

complex analysis, a study focused on complex numbers and functions of a complex variable, 

with various transformations, laying the foundation for signal processing and system analysis in 

engineering, physics, and applied mathematics. 

Analytic functions, characterized by their local representation through a convergent 

power series, offer insight into the intricate behavior of complex functions. The exploration of 

these functions reveals a world where functions are smooth, differentiable, and well-behaved, 

opening a gateway to a plethora of applications ranging from fluid dynamics to electrostatics. 

The introduction of Cauchy-Reimann equations in this unit furnishes a set of conditions 

that are both necessary and revealing. These equations serve as a litmus test for functions to be 

analytic, offering a glimpse into the harmonious relationship between real and imaginary parts of 



analytic functions. Through the exploration of these equations, we glean insights into the 

symmetries and properties that the real and imaginary parts of analytic functions exhibit. 

Moving forward, we encounter the Cauchy Equation and its manifold applications. The 

equation, a gem in the treasure trove of complex analysis, establishes a relationship between the 

values of an analytic function inside a contour and its values on the contour. It plays a pivotal 

role in evaluating definite integrals, computing residues, and even exploring bounds for functions 

that are not analytic, thus expanding our computational arsenal. 

As we delve deeper, we transition from the realm of analytic functions to the domain of 

transformations, particularly focusing on Fourier and Laplace Transforms. These transforms are 

quintessential, providing the tools to dissect functions and signals, representing them in different 

domains, and solving equations that would otherwise remain impenetrable. The Fourier 

Transform breaks down a function into its constituent frequencies, revealing the frequency 

components and their amplitudes. In contrast, the Laplace Transform shifts our perspective from 

the time domain to the complex frequency domain, aiding in solving differential equations and 

analyzing the stability of systems. 

The symbiosis between analytic functions and transformations is not just theoretical; it 

finds applications in various fields. Engineers utilize these concepts to analyze and design 

systems and signals, physicists employ them to solve problems related to heat conduction and 

quantum mechanics, and mathematicians use them to delve deeper into the abstract structures 

and relationships inherent in the mathematical world. 

In this unit, we embark on a journey through the landscapes of Analytic Functions and 

Transformation. We unravel the mysteries of analytic functions, explore the depth of Cauchy-

Reimann equations and Cauchy Equation, and traverse the realms of Fourier and Laplace 

Transforms. Through examples, applications, and self-assessment questions, we aim to provide a 

comprehensive and in-depth understanding of these essential mathematical concepts and tools, 

paving the way for further exploration and application in various scientific and engineering 

domains. 

6.2      Objectives 



By the end of this unit, the learner should be able to: 

• Understand and define what an analytic function is. 

• Apply and solve problems using the Cauchy-Reimann equations. 

• Utilize the Cauchy Equation and explore its applications. 

• Understand, differentiate, and apply Fourier and Laplace Transforms. 

 

6.3      Analytic Function 

An analytic function is a function that is locally given by a convergent power series. 

There exists a complex derivative at each point in its domain, implying that it is smooth and 

well-behaved. For example, the function 𝑓(𝑧) = 𝑧2 is analytic everywhere in the complex plane, 

which means it is entire. 

Definition: 

An analytic (or holomorphic) function is a complex function that is differentiable at every 

point in its domain. More precisely, a function 𝑓: ℂ → ℂ is said to be analytic at a point 𝑧0.  if it 

is differentiable at every point in some neighborhood of 𝑧0. The standard form of an analytic 

function is: 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) 

where 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦)are real-valued functions representing the real and imaginary 

parts of 𝑓(𝑧) respectively, and 𝑧 = 𝑥 + 𝑖𝑦 is a complex variable. 

Properties: 

Differentiability: 

Analytic functions are differentiable, meaning they have a derivative at every point in 

their domain. 

Power Series Representation: 



An analytic function can be represented as a power series. If 𝑓(𝑧) is analytic in a disk 

centered at 𝑧0 , then: 𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑧0)𝑛∞
𝑛=0  

Cauchy-Reimann Equations: 

For a function to be analytic, it must satisfy the Cauchy-Reimann equations: 

𝜕𝑥

𝜕𝑢
=

𝜕𝑦

𝜕𝑣
,  

𝜕𝑦

𝜕𝑢
= −

𝜕𝑥

𝜕𝑣
. 

Examples: 

Polynomial Function: 

The function 𝑓(𝑧) = 𝑧2 is analytic everywhere in the complex plane (entire). In this case, 

𝑢(𝑥, 𝑦) = 𝑥2 − 𝑦2  and 𝑣(𝑥, 𝑦) − 2𝑥𝑦 . We can verify that this function satisfies the Cauchy-

Reimann equations, thus confirming its analyticity. 

Exponential Function: 

The exponential function 𝑓(𝑧) = 𝑒𝑧   is also entire. Here, 𝑢(𝑥, 𝑦) = 𝑒𝑥cos (𝑦)   and 

𝑣(𝑥, 𝑦) = 𝑒𝑥sin(𝑦)  . This function, too, satisfies the Cauchy-Reimann equations across the 

entire complex plane. 

Trigonometric Function: 

The sine function 𝑓(𝑧) = sin(𝑧)is another example of an analytic function. It can be 

represented using Euler’s formula as: sin(𝑧) =
𝑒𝑖𝑧−𝑒−𝑖𝑧

2𝑖
 . 

Non-Example: 

The function 𝑓(𝑧) =  𝑧 ̅ (complex conjugate) is not analytic anywhere in the complex 

plane. This function does not satisfy the Cauchy-Reimann equations, thus serving as an example 

of a non-analytic function. 



Analytic functions play a crucial role in complex analysis and have applications across 

various fields of mathematics and engineering. They exhibit smoothness and differentiability and 

can be represented by a power series. The study of such functions, alongside their properties and 

applications, forms the basis for further exploration into complex analysis and its applications. 

6.4       Cauchy-Reimann Equations 

Definition: 

The Cauchy-Riemann equations are a pair of partial differential equations which are 

satisfied by a function of a complex variable if the function is differentiable, i.e., analytic. They 

are named after Augustin-Louis Cauchy and Bernhard Riemann and are given by: 

𝜕𝑥

𝜕𝑢
=

𝜕𝑦

𝜕𝑣
,  

𝜕𝑦

𝜕𝑢
= −

𝜕𝑥

𝜕𝑣
. 

 Here, 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) , represents a complex function, where 𝑢(𝑥, 𝑦)  and 

𝑣(𝑥, 𝑦) are the real and imaginary parts of 𝑓(𝑧), respectively, and 𝑧 = 𝑥 + 𝑖𝑦  is a complex 

variable. 

Significance: 

The Cauchy-Riemann equations serve as a fundamental criterion for a function to be 

analytic. If a function satisfies these equations in a domain D, then the function is analytic in D. 

These equations provide a mathematical tool to verify the differentiability of a complex function 

and hence explore its analytic properties. 

Examples: 

Exponential Function: 

Consider the function  

𝑓(𝑧) = 𝑒𝑧 , where 𝑧 = 𝑥 + 𝑖𝑦  Here, cos 𝑢(𝑥, 𝑦) = 𝑒𝑥cos (𝑦)  and 𝑣(𝑥, 𝑦) =

𝑒𝑥 sin(𝑦). Calculating the partial derivatives, we have: 



𝜕𝑥

𝜕𝑢
= 𝑒𝑥cos (𝑦). 

𝜕𝑦

𝜕𝑣
=𝑒𝑥cos (𝑦) 

Again, 
𝜕𝑦

𝜕𝑢
= −𝑒𝑥 sin(𝑦) and 

𝜕𝑥

𝜕𝑣
= 𝑒𝑥 sin(𝑦) 

As these satisfy the Cauchy-Riemann equations, 𝑓(𝑧) = 𝑒𝑧 is analytic. 

Trigonometric Function: 

 For the function 𝑓(𝑧) = sin (𝑧), using Euler’s formula, we get  

𝑢(𝑥, 𝑦) = sin(𝑥) cosh(𝑦) 𝑎𝑛𝑑 𝑣(𝑥, 𝑦) = cos(𝑥) sinh (𝑦). 

Computing the partial derivatives and verifying, we can confirm that sin (𝑧) also satisfies the 

Cauchy-Riemann equations, proving its analyticity. 

Non-Example: 

Consider the function 𝑓(𝑧) =  𝑧 ̅ = 𝑥 − 𝑖𝑦, where 𝑢(𝑥, 𝑦) = 𝑥 and 𝑣(𝑥, 𝑦) = −𝑦. In this case, 

the partial derivatives are: 

𝜕𝑥

𝜕𝑢
= 1 ≠ 0 =

𝜕𝑦

𝜕𝑣
 

𝜕𝑦

𝜕𝑢
= 0 ≠ 1 = −

𝜕𝑥

𝜕𝑣
 

Hence, 𝑓(𝑧) =  𝑧 ̅  does not satisfy the Cauchy-Riemann equations and is not analytic anywhere. 

The Cauchy-Riemann equations are pivotal in identifying whether a given function is 

analytic in a certain domain. They allow mathematicians to explore the differentiability and 

behaviours of complex functions and play a fundamental role in the field of complex analysis. 

The understanding and application of these equations form a cornerstone in the study of analytic 

functions and their multifarious applications in mathematics, physics, and engineering. 

6.5       Cauchy Equation and Its Applications 



Definition: The term "Cauchy Equation" often refers to the Cauchy Integral Formula in the 

context of complex analysis. This formula is a central theorem, which provides the value of a 

function at any point in its domain, given the function's values on the boundary. The formula is 

stated as follows for a function f that is analytic inside and on a closed curve C and 𝑧0 is a point 

inside C: 

𝑓(𝑧) =
1

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧−𝑧0)
𝑑𝑧. 

Applications: 

Evaluation of Definite Integrals: 

The Cauchy Integral Formula is a powerful tool to evaluate certain definite integrals, 

especially those involving rational functions of trigonometric or exponential functions. By 

choosing a suitable contour and applying the formula, integrals that are otherwise challenging 

can be computed easily. 

Computing Residues: 

The formula is fundamental in the calculation of residues, which are crucial for 

evaluating integrals using the Residue Theorem. The residues at the poles of a function give us 

valuable information about the behavior of the function and allow for the evaluation of integrals 

involving the function. 

Power Series Expansion: 

The Cauchy Integral Formula is employed to find the coefficients of the power series 

expansion of an analytic function. By differentiating the formula, we can find the derivatives of 

the function at any point and thus determine the Taylor or Laurent series representation of the 

function. 

Solving Boundary Value Problems: 

In physics and engineering, solving boundary value problems is of paramount 

importance, especially in fields like electrostatics and fluid dynamics. The Cauchy Integral 



Formula can be applied to solve Laplace’s equation (and related equations) in regions with 

specified boundary conditions. 

Analytic Continuation: 

The formula aids in analytic continuation, which is the process of extending the domain of an 

analytic function. By using the values of a function on a curve, the Cauchy Integral Formula 

enables the calculation of the function’s values inside the curve, thus extending the domain of 

definition. 

 

6.6      Fourier and Laplace Transforms 

 

Definition: the Fourier transformation is a mathematical transformation that decomposes a 

function (often a time-domain signal) into its constituent frequencies. It is defined as: 

𝐹(𝜔) = ∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞

 

Where 𝐹(𝜔) is the Fourier Transform of 𝑓(𝑡), 𝜔 is the angular frequency and 𝑖 is the imaginary 

unit. 

Applications: 

Signal Processing: 

Fourier Transform is essential in signal processing for analysing the frequency content of 

various signals and filtering. 

Image Analysis: 

It is used in image processing to analyse and filter images, including tasks like image 

compression and reconstruction. 

Quantum Mechanics: 

In quantum mechanics, it helps in transitioning between position and momentum space 

representations of wavefunctions. 



Example: 

For the function 𝑓(𝑡) = 𝑒−|𝑡|, the Fourier Transform is 

𝐹(𝜔) = ∫ 𝑒−|𝑡|𝑒𝑖𝜔𝑡𝑑𝑡 =
2

1 + 𝜔2

∞

−∞

 

𝐹(𝜔) = ∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞

 

Laplace Transform: 

Definition: 

The Laplace Transform is an integral transform used to convert a function of a real 

variable t (often time) into a function of a complex variable s (complex frequency). The 

transform is defined as: 

𝐹(𝑠) = ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0

 

where 𝐹(𝑠) is the Laplace Transform of 𝑓(𝑡), and s is a complex number. 

Applications: 

Differential Equations: 

The Laplace Transform is used to solve linear ordinary differential equations, making it 

useful in engineering and physics. 

Control Theory: 

It is essential in control theory to analyse and design control systems by simplifying the 

algebraic manipulation. 

Circuit Analysis: 

In electrical engineering, it is used for analysing electric circuits and designing filters. 



Example: 

Consider a unit step function 𝑢(𝑡). The Laplace Transform of 𝑢(𝑡) is: 

𝐹(𝑠) = ∫ 𝑒−𝑠𝑡𝑑𝑡
∞

0

=
1

𝑠
 

Where 𝑅𝑒(𝑠) > 0 

Comparison: 

While both Fourier and Laplace Transforms are integral transforms, they serve different 

purposes. Fourier Transform is used mainly for frequency domain analysis and is defined for 

both positive and negative infinity, while Laplace Transform is used for solving differential 

equations and is defined from zero to positive infinity. Moreover, Laplace Transform handles a 

broader class of functions, including those that grow exponentially. 

Fourier and Laplace Transforms are indispensable mathematical tools with a wide array 

of applications in various fields such as engineering, physics, and applied mathematics. Fourier 

Transform is invaluable for analysing the frequency content of signals and systems, while the 

Laplace Transform is pivotal for solving differential equations and studying the transient 

behaviour of systems. Both transforms provide a bridge between time and frequency domains, 

enabling the comprehensive analysis and design of diverse systems and signals. 

 

6.7       Self-Assessment Questions 

 

1. Define an analytic function and give two examples of functions that are analytic on the entire 

complex plane. 

2. Given the function f(z) = exp(x+iy), verify whether it satisfies the Cauchy-Reimann 

equations, and hence determine if it is analytic. Cauchy Integral. 

3. Using the Cauchy Integral Formula, compute the value of f(z) = z1 at z = 1+i given a suitable 

closed contour. 



4. Compute the Fourier Transform of the function f(t) = e−∣t∣ and discuss its significance in 

frequency domain representation. 

5. Solve the ordinary differential equation y′′ + y = δ(t) using the Laplace Transform, where δ(t) 

is the Dirac delta function.  

6. Provide an example of a function that does not satisfy the Cauchy-Reimann equations. 

Discuss the implications of a function not being analytic. 

7. Given a signal represented by the function f(t) = cos(2πt) + sin(4πt), compute its Fourier 

Transform and analyse the frequency components present in the signal. 

8. Discuss how the Laplace Transform can be used to analyse the stability of a linear time-

invariant system. Provide an example to illustrate your explanation. 

9. Discuss an application of the Cauchy Integral Formula outside the realm of complex analysis, 

illustrating how it can be used to solve a problem in another mathematical area. 

10.  Compare and contrast the Fourier and Laplace Transforms in terms of their applications, 

representation domains, and the types of functions they are suited for transforming. Provide 

examples to illustrate the differences and similarities. 

 

6.8        Summary 

  In this comprehensive unit, we delved into the intricate world of Analytic Functions and 

Transformation, exploring the foundational concepts and applications in various scientific 

domains. We commenced with an in-depth understanding of analytic functions, showcasing their 

differentiability and smooth behavior across their domain, followed by a detailed examination of 

the Cauchy-Reimann equations, which serve as a critical criterion for determining the analyticity 

of functions. The exploration of the Cauchy Equation unveiled its significant applications in 

evaluating definite integrals, computing residues, and providing insights into non-analytic 

functions. Further, the unit transitioned into the transformative realm of Fourier and Laplace 

Transforms, elucidating their pivotal roles in dissecting functions, solving differential equations, 

and analyzing signals and systems. Through illustrative examples and applications, the unit 

furnished a thorough insight into these mathematical tools and their indispensable utility in 



engineering, physics, and applied mathematics, thereby establishing a solid foundation for 

further academic and practical endeavors in these fields. 

 

6.9       Further Reading 

For further exploration and in-depth understanding of the topics discussed in this unit, 

readers are encouraged to consult the following resources: 

• ““Complex Analysis” by Elias M. Stein and Rami Shakarchi, Princeton University Press 

• “Introduction to Complex Analysis” by H. A. Priestley, Oxford University Press 

• “Signals and Systems” by Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab, 

Prentice Hall 

• “Fourier Analysis: An Introduction” by Elias M. Stein and Rami Shakarchi, Princeton 

University Press 

• “The Laplace Transform: Theory and Applications” by Joel L. Schiff, Springer 

• “Visual Complex Analysis” by Tristan Needham, Oxford University Press 
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Block & Unit Introduction 

 

The Block - 3 – Real Analysis has three units.   

 

The journey culminates in Block 3, where the real essence of Real Analysis is laid bare. 

Starting with foundational concepts, we quickly transition into the world of sequences and series, 

elucidating convergence, divergence, and the intricate ballet of infinite summations. The block 

concludes with a comprehensive view of integration, bringing together the threads of previous 

blocks and offering a unified perspective on the continuous aspects of mathematics. 

Unit – 7 – Basic Concepts dealt with Recap of elements of set theory; Introduction to real 

numbers, Introduction to n-dimensional Euclidian space; open and closed intervals (rectangles), 

compact sets, Bolzano - Weirstrass theorem, Heine – Borel theorem. 

Unit – 8 – Sequences and Series dealt with Sequences and series; their convergence. 

Taylor’s Series, Real valued functions, continuous functions; uniform continuity, sequences of 

functions, uniform convergence; Power series and radius of convergence, Singularities, Laurent 

Series. 

Unit – 9 – Integration, comprises the Differentiation, maxima - minima of functions; 

functions of several variables, constrained maxima - minima of functions, Multiple integrals and 

their evaluation by repeated integration. change of variables in multiple integration. Uniform 

convergence in improper integrals, differentiation under the sign of integral - Leibnitz rule, 

Residue and contour integration 

At the end of every block/unit the summary, self-assessment questions and further 

readings are given.  
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7.1      Introduction 

 

Real Analysis is a branch of mathematics that deals with the set of real numbers, 

including their structures, sequences, series, functions, and various notions of generalizations. It 

serves as the foundational pillar for calculus, differential equations, and much of applied 

mathematics. Real Analysis has wide-ranging applications and implications, both within and 

outside of mathematics, such as in physics, engineering, computer science, and economics. 

The primary objective of this unit, titled "Basic Concepts," is to establish a 

comprehensive understanding of the fundamental concepts in Real Analysis. This unit seeks to 



provide a concise yet thorough introduction to essential ideas and principles, serving as the 

stepping stone for more advanced topics and discussions in this field. The focus of the unit will 

be to develop a robust theoretical framework that can support the practical applications of these 

concepts. 

In section 7.3, we will explore the Elements of Set Theory. Set Theory is integral to 

understanding Real Analysis as it forms the basis for constructing number systems and defining 

sequences and functions. We will delve into the definitions and properties of sets, subsets, union, 

intersection, and complement. 

Section 7.4 introduces the concept of Real Numbers, which form the central object of 

study in Real Analysis. We will explore the characteristics, properties, and classifications of real 

numbers, providing the groundwork for understanding their behaviour and implications in 

various mathematical contexts. 

Moving on to section 7.5, we will study the n-dimensional Euclidean Space. This section 

extends the concepts from plane geometry and three-dimensional space to n dimensions, 

exploring the properties of vectors and the definition of distance in this generalized space. 

In section 7.6, the distinction between Open and Closed Intervals will be made clear, 

highlighting their importance in understanding the subsets of real numbers and their role in the 

development of calculus. 

Section 7.7 is dedicated to exploring Compact Sets. These sets are closed and bounded, 

and their understanding is vital for proving several important theorems and properties in Real 

Analysis. 

Following this, section 7.8 and 7.9 will present the Bolzano-Weirstrass and Heine-Borel 

Theorems, respectively. These theorems are cornerstones in Real Analysis, providing essential 

insights into the convergence of sequences and the characterization of compact subsets in 

Euclidean space. 

In concluding the unit, section 7.10 will feature Self-Assessment Questions designed to 

test and reinforce your understanding of the concepts discussed. Section 7.11 will summarize the 



key takeaways, and section 7.12 will recommend Further Reading materials for those interested 

in exploring these topics in more depth. 

By the end of this unit, students should possess a solid foundational understanding of the 

basic concepts in Real Analysis, preparing them for more advanced study and exploration of this 

rich and diverse field of mathematics. The unit aims not only to impart knowledge but also to 

cultivate curiosity, critical thinking, and a deep appreciation for the beauty and utility of Real 

Analysis. 

7.2     Objectives 

The learner should able to understand about the:  

• Familiarize students with the basics of set theory. 

• Introduce the concept of real numbers. 

• Explore n-dimensional Euclidean space. 

• Examine open and closed intervals. 

• Investigate compact sets. 

• Study the Bolzano-Weirstrass and Heine-Borel theorems. 

7.3      Elements of Set Theory 

Set Theory is the mathematical study of collections, termed as "sets," of objects, which 

are referred to as "elements" or "members." Developed in response to the need for a more 

rigorous foundation for mathematics, Set Theory forms the basis of nearly every other part of 

mathematics. Here, we will delve into the fundamental concepts and principles of Set Theory 

essential for understanding Real Analysis. 

 Definition of a Set 

A set is a well-defined collection of distinct objects, considered as an object in its own 

right. The objects in a set are called elements or members of the set. Sets are usually denoted by 

uppercase letters, and their elements are represented in curly brackets, for example, A={1,2,3}. 

 



Elements and Membership 

An element is a constituent of a set. The notation a ∈ A signifies that a is an element of 

the set A, whereas ∉b∈/A indicates that b is not an element of A. 

Subset and Superset 

A set A is a subset of set B, represented as A⊆B, if every element of A is also an element 

of B. If A is a subset of B, then B is a superset of A, represented as B⊇A. If A⊆B and there 

exists at least one element in B that is not in A, then A is a proper subset of B, denoted as A⊂B. 

Union and Intersection 

The union of two sets, A and B, denoted as A∪B, is the set of all elements that are in A, or in B, 

or in both. Mathematically, A∪B = {x :x ∈ A or x ∈ B}. 

The intersection of two sets, A and B, represented as A∩B, is the set of all elements that 

are both in A and in B. Formally,  

A∩B = {x: x ∈ A and x ∈ B}. 

Complement 

The complement of a set A, denoted as A′ or ∁A, is the set of all elements that are not in 

A. In the context of a universal set U that contains all elements under consideration, the 

complement of A is U−A. 

Power Set 

The power set of a set A, represented as P(A), is the set of all possible subsets of A, 

including A itself and the empty set. If A has n-elements, then P(A) has 2𝑛  elements. 

Cartesian Product 

The Cartesian product of two sets A and B, denoted as A×B, is the set of all ordered pairs 

(a,b) where a∈A and b∈B. If A has m elements and B has n elements, then A×B has m⋅n 

elements. 



Infinite Sets and Cardinality 

Sets can be finite or infinite, depending on whether they have a finite or infinite number 

of elements. The cardinality of a set is a measure of the "number of elements in the set." For 

finite sets, the cardinality is a non-negative integer, whereas, for infinite sets, cardinality can be 

represented by different sizes of infinity, such as countably infinite and uncountably infinite. 

Well-Ordering Principle 

The Well-Ordering Principle states that every non-empty set of positive integers contains 

a least element. This principle is foundational for proofs involving the existence of a smallest or 

minimal element in a set of positive integers. 

Axiom of Choice 

The Axiom of Choice is a fundamental principle in Set Theory, stating that, given any 

collection of non-empty sets, it is possible to form a new set containing exactly one element from 

each set in the collection. While seemingly intuitive, the Axiom of Choice has profound 

implications and leads to the existence of non-measurable sets and other counterintuitive results. 

Set Theory is an indispensable foundation for Real Analysis, providing the tools and 

principles necessary for constructing the real number system and exploring sequences, functions, 

and continuity. Understanding the elements of Set Theory allows for a deeper insight into the 

structure and properties of mathematical objects, thereby enriching the study of Real Analysis. 

 

7.4     Introduction of Real Numbers 

  

Real numbers are a fundamental concept in mathematics and form the backbone of Real 

Analysis. They can be visualized on the number line and include both rational and irrational 

numbers. In this section, we will delve into the definition, classification, properties, and 

significance of real numbers. 

 



Definition of Real Numbers 

Real numbers encompass both rational and irrational numbers. Rational numbers are 

those that can be expressed as a fraction 
𝑎

𝑏
 where a and b are integers, and b ≠ 0. Irrational 

numbers cannot be expressed as a fraction and have non-terminating, non-repeating decimal 

expansions; examples include √2  and π. 

Properties of Real Numbers 

Real numbers exhibit several fundamental properties, including: 

Closure Property: The sum or product of any two real numbers is a real number. 

Associative Property: For all real numbers a, b, c, we have (a+b)+c=a+(b+ c) and (ab)c=a(bc). 

Commutative Property: For all real numbers a, b, we have a+ b = b+ a and ab = ba. 

Distributive Property: For all real numbers a, b, c, we have a(b+c) = ab +ac. 

Identity Property: There exist two distinct identity elements; 0 for addition and 1 for 

multiplication, such that for any real number a+0=a and a×1=a. 

Inverse Property: Every real number a has an additive inverse −a and a multiplicative inverse 

1/a (if a≠0). 

 Completeness Axiom 

A critical property that distinguishes the real numbers from the rational numbers is the 

Completeness Axiom. It states that every non-empty set of real numbers that is bounded above 

has a least upper bound (supremum) in the real numbers. This axiom ensures that there are no 

"gaps" in the real number line. 

Decimal Expansion 

Every real number has a decimal expansion, which can be either terminating, such as 

1.25, or non-terminating. Non-terminating decimals can be either repeating, like  



1/3=0.3̅, or non-repeating, such as π. 

Irrational Numbers and Transcendental Numbers 

Irrational numbers are real numbers that cannot be expressed as a fraction of two 

integers. They possess non-terminating, non-repeating decimal expansions. Examples include 

2,e, and π. Among the irrational numbers, some are algebraic, meaning they are roots of 

polynomial equations with integer coefficients, while others are transcendental, meaning they are 

not algebraic. π and e are examples of transcendental numbers. 

Real Numbers and Real Analysis 

Understanding real numbers is pivotal to Real Analysis. Real Analysis explores the 

properties, structures, and relationships between real numbers, sequences, series, functions, and 

other mathematical constructs. Concepts such as convergence, continuity, differentiation, and 

integration are studied using the framework of real numbers. 

The introduction of real numbers is foundational to mathematics, especially in Real 

Analysis. Real numbers comprise rational and irrational numbers, each having unique properties 

and characteristics. The completeness axiom, decimal expansion, classification of irrational 

numbers, and the various properties of real numbers are essential aspects to comprehend for 

anyone venturing into the realm of Real Analysis. These concepts set the stage for exploring 

more advanced topics and understanding the beauty and intricacies of the mathematical universe.  

7.5   n-dimensional Euclidean Space 

n-dimensional Euclidean space, denoted as ℝ𝑛 , is an extension of the familiar two-

dimensional (2D) and three-dimensional (3D) spaces to n dimensions. It serves as a generalized 

framework for representing geometrical and analytical concepts, playing a crucial role in various 

branches of mathematics, physics, and engineering. 

Definition  



An n-dimensional Euclidean space is a set of all ordered n-tuples of real numbers, 

represented as (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛), where 𝑥𝑖 are real numbers and n is a positive integer. The value 

of n determines the number of dimensions of the space. 

Vectors and Coordinates 

In Rn, points are represented as vectors from the origin to the point in the space. Each 

vector 𝑣 = (𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛) has n components, representing the coordinates in each dimension. 

The operations of vector addition and scalar multiplication are defined component wise, giving 

the Euclidean space a vector space structure. 

Euclidean Norm and Distance 

The Euclidean norm (or length) of a vector 𝑣 = (𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛)  in ℝ𝑛  is given by: 

‖𝑣‖ = √(𝑣1
2 + 𝑣2

2 + 𝑣3
2 + ⋯ + 𝑣𝑛

2) 

 The Euclidean distance between two points 𝑣 and 𝑤 in ℝ𝑛 is the norm of their difference: 

 𝑑(𝑣, 𝑤) = ‖𝑣 − 𝑤‖ 

Dot Product and Orthogonality 

The dot product of two vectors 𝑣 = (𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛)  and 𝑤 = (𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛)  is 

defined as: 

𝑣. 𝑤 = 𝑣1𝑤1 + 𝑣2𝑤2 + 𝑣3𝑤3 + ⋯ + 𝑣𝑛𝑤𝑛 

Two vectors are orthogonal (perpendicular) if their dot product is zero. 

Basis and Dimension 

A basis of ℝ𝑛  is a set of 𝑛 linearly independent vectors  

  such that any vector 𝑣 ∈ℝ𝑛  can be uniquely expressed as a linear combination of the basis 

vectors. The dimension of ℝ𝑛  is the number of vectors in any basis, which is n. 



 Hyperplanes and Subspaces 

In ℝ𝑛  , a hyperplane is a flat affine subspace of dimension n−1. Subspaces are subsets of 

Rn that are also vector spaces with respect to vector addition and scalar multiplication. 

Subspaces include lines through the origin in  

ℝ2  , planes through the origin in ℝ3  , and more generally, hyperplanes in ℝ𝑛  . 

Applications 

n-dimensional Euclidean spaces have numerous applications across different fields. In 

physics, they are used to describe the state space of a system. In computer science and data 

science, high-dimensional spaces are used for representing data points with multiple features. In 

optimization and linear algebra, they provide a framework for solving systems of linear 

equations and linear programming problems. 

n-dimensional Euclidean space extends the concepts of geometry and linearity into higher 

dimensions, providing a versatile framework for exploring mathematical and physical 

phenomena. The understanding of vectors, norms, distances, dot products, basis, dimension, 

hyperplanes, and subspaces in this space is fundamental to advanced studies in mathematics, 

physics, engineering, computer science, and data science. The conceptual richness and wide 

applicability of n-dimensional Euclidean spaces make them an essential topic in Real Analysis 

and various other disciplines.  

7.6   Open and Closed Intervals 

Open and closed intervals are subsets of real numbers. An open interval does not include 

its endpoints, whereas a closed interval does. 

Open Interval (a, b): {x ∈ ℝ : a < x < b} 

Closed Interval [a, b]: {x ∈ ℝ : a ≤ x ≤ b} 

 



7.7    Compact Sets 

Compact sets are a fundamental concept in Real Analysis and Topology, playing a vital 

role in convergence properties and continuity. These sets have unique characteristics that make 

them particularly interesting and useful in various mathematical contexts. 

Definition 

In the realm of Real Analysis, a subset 𝑆 of ℝ𝑛  is said to be compact if it is both closed 

and bounded. This definition aligns with the Heine-Borel Theorem, which characterizes compact 

subsets of Euclidean spaces. 

However, in a more general topological setting, a set is compact if every open cover of 

the set has a finite subcover. That is, for any collection of open sets {Ui} such that 𝑆 ⊆⋃𝑈𝑖𝑗
 , 

there exists a finite subcollection{𝑈𝑖1
, 𝑈𝑖2

, 𝑈𝑖3
, … , 𝑈𝑖𝑘

} such that S⊆⋃𝑈𝑖𝑗
 

Closed and Bounded 

Being closed and bounded are crucial characteristics for a set to be compact in ℝ𝑛. A set 

is closed if it contains all its limit points, and bounded if there exists a real number M such that 

the distance between any two points in the set is less than M. 

Sequential Compactness 

A set is sequentially compact if every sequence in the set has a subsequence that 

converges to a limit within the set. In Euclidean spaces, sequential compactness is equivalent to 

compactness, serving as an alternative characterization. 

Importance of Compactness 

Compactness is a critical property with several implications: 

Extreme Value Theorem:  

Every continuous real-valued function defined on a compact set attains its maximum and 

minimum values. 



Uniform Continuity:  

Every continuous function on a compact set is uniformly continuous. 

Limit Point Finiteness:  

Compact sets in ℝ𝑛 are limit point finite, meaning they do not have an infinite number of 

limit points. 

Boundedness and Closedness: 

 Compact sets are always bounded and closed, which helps in analysing their properties 

and behaviour. 

Image of Compact Set:  

The image of a compact set under a continuous function is also compact. 

Examples 

Closed Interval:  

The closed interval [a,b] in ℝ   is compact as it is both closed and bounded. 

Unit Sphere:  

The unit sphere in ℝ𝑛 is an example of a compact set since it is closed and bounded. 

Finite Sets:  

Finite sets are trivially compact as they are closed and bounded. 

Cantor Set: 

 The Cantor set, constructed by repeatedly removing middle thirds from an interval, is a 

non-trivial example of a compact set. It is closed and bounded, albeit uncountably infinite and 

with zero length. 



Compact sets are a pivotal concept in Real Analysis, characterized by being closed and 

bounded in Euclidean spaces or by the property that every open cover has a finite subcover in 

general topological spaces. The compactness of a set has profound implications, leading to 

several important theorems and properties. These sets appear in various forms and complexities, 

from simple closed intervals to more intricate structures like the Cantor set, each exemplifying 

the rich and multifaceted nature of compactness in mathematics. 

7.8     Bolzano - Weirstrass Theorem 

 

The Bolzano-Weirstrass Theorem is a cornerstone in Real Analysis, primarily focusing 

on the convergence properties of sequences in R. It offers profound insights into the behavior of 

bounded sequences and serves as a precursor to various concepts and results in analysis. 

Theorem (Bolzano-Weirstrass):  

Every bounded sequence in R has a convergent subsequence. In other words, given any 

sequence (𝑎𝑛) such that there exist real numbers M and m with m≤an ≤M for all n, there exists a 

subsequence (𝑎𝑛𝑘 ) that converges to a limit L in R, where m≤L≤M. 

Or, in other words, Every bounded sequence in R has a convergent subsequence. 

Proof: Let's consider a bounded sequence {𝑎𝑛} in R. Since it's bounded, there exist real numbers 

𝑚 and 𝑀 such that 𝑚 ≤ 𝑎 𝑛 ≤ 𝑀 for all 𝑛. 

Divide the interval: Consider the closed interval [𝑚, 𝑀]. Divide this interval into two 

equal halves: [𝑚,
𝑚+𝑀

2
 ] and [

𝑚+𝑀

2
, 𝑀]. At least one of these subintervals must contain infinitely 

many terms of the sequence (because a finite number plus a finite number cannot cover an 

infinite sequence). 

Continue the process: Choose the subinterval with infinitely many terms and again divide 

it into two equal halves. Similarly, one of these smaller intervals will have infinitely many terms 

of the sequence. 

Constructing the subsequence: 



Continue this process indefinitely. At each stage, we will get a smaller closed interval 

with infinitely many terms of the sequence. This process constructs a decreasing sequence of 

nested intervals [𝑚1 , 𝑀1],[ 𝑚2 , 𝑀2],[ 𝑚3 , 𝑀3], ... such that the length of the n-th interval is 

𝑀−𝑚

2𝑛  and each interval contains infinitely many terms of {𝑎𝑛}. 

By the nested interval property, there exists a unique point x that belongs to all these 

intervals. 

Creating the convergent subsequence: For each n, since the interval [𝑚𝑛 , 𝑀𝑛] contains 

infinitely many terms of the sequence, we can pick a term 𝑎𝑛𝑘  from this interval such that 1nk 

>nk−1(this ensures that we're picking terms from further along in the sequence each time). The 

subsequence {𝑎𝑛𝑘 } is then contained within the shrinking intervals, and thus 𝑎𝑛𝑘 →x as k→∞. 

Thus, we have found a convergent subsequence of {𝑎𝑛}, and the Bolzano-Weierstrass 

theorem is proven. 

Implications of the Theorem 

The Bolzano-Weirstrass Theorem has several important implications and applications in 

Real Analysis: 

Existence of Accumulation Points:  

The theorem ensures the existence of accumulation (or limit) points for bounded 

sequences, facilitating the study of the convergence properties of such sequences. 

Compactness:  

The Bolzano-Weirstrass Theorem is closely related to the notion of compactness, and it 

can be used to prove the Heine-Borel Theorem, which characterizes compact sets in R. 

Function Limits:  

The theorem is instrumental in establishing the limits of functions and the uniform 

convergence of function sequences, significantly impacting the study of continuous and 

integrable functions. 



Optimization: 

 The Bolzano-Weirstrass Theorem is used in optimization, particularly in proving the 

existence of optimal solutions to certain optimization problems. 

Examples 

Consider the bounded sequence defined by 𝑎𝑛 = (−1)𝑛 . This sequence does not 

converge, but by the Bolzano-Weirstrass Theorem, it must have a convergent subsequence. 

Indeed, the subsequences (𝑎2𝑛 )=(1,1,1,...) and (𝑎2𝑛−1 ) = (−1,−1,−1,...) are both convergent, 

with limits 1 and -1, respectively. 

The Bolzano-Weirstrass Theorem is a pivotal result in Real Analysis, asserting the 

existence of convergent subsequences within every bounded sequence. The theorem’s proof 

employs the concept of monotone subsequences and boundedness to establish convergence. The 

implications of the Bolzano-Weirstrass Theorem are wide-ranging, influencing the study of limit 

points, compactness, function limits, and optimization. Through its applications and results, this 

theorem encapsulates the essence of convergence and the profound structure inherent in the set 

of real numbers. “The Bolzano-Weirstrass Theorem states that every bounded sequence in ℝ has 

a convergent subsequence. This theorem is fundamental for analysing the convergence of 

sequences and series.” 

 

7.9    Heine-Borel Theorem 

 

The Heine-Borel Theorem is a foundational result in Real Analysis, offering a 

characterization of compact subsets in Euclidean spaces. This theorem is crucial for 

understanding the properties of compactness, which has significant implications for continuity, 

convergence, and the existence of extrema. 

The Heine-Borel Theorem is formally stated as follows: 

Theorem (Heine-Borel):  



A subset S of ℝ𝑛  is compact if and only if it is closed and bounded. Here, a set is 

bounded if there exists a real number M such that the distance between any two points in the set 

is less than M, and a set is closed if it contains all its limit points. 

Or in other words, A subset E of Rn is compact if and only if it is closed and bounded. 

Note: "Compactness" means that every open cover of E has a finite subcover. An "open cover" 

of E is a collection of open sets such that E is a subset of the union of these open sets. A 

"subcover" is a sub-collection of these open sets that still covers E. 

Proof: The proof is typically broken into two parts: 

If E is compact, then E is closed and bounded: 

Boundedness:  

Assume E is not bounded. Then, for each natural number n, we can find a point xn  in E 

such that ∣xn ∣>n. Now consider the open cover given by the collection of open balls B(0,n) for 

each n. This cover has no finite subcover, contradicting compactness. Therefore, E must be 

bounded. 

Closedness:  

Suppose E is not closed. Then there exists a limit point x of E which is not in E. For 

every n, let's construct open balls B(x, 1/n ) and B(xn,1/n ), where xn is in E but not in B(x,1/n). 

This creates an open cover of E without a finite subcover, contradicting compactness. Therefore, 

E must be closed.  

If E is closed and bounded, then E is compact:  Let {Gα} be an open cover for E. Since E 

is bounded, it is contained in some closed ball B(0,R). We will use a method called "bisection" 

for R and its generalization for Rn. The idea is to successively divide the region containing E 

into smaller parts and determine which parts can be covered by finitely many sets from the open 

cover. 



The process will lead us to deduce that there must be a finite subcover. For Rn, this 

process involves dividing into smaller hypercubes and can be visualized as a multi-dimensional 

version of the bisection method on R. The process ensures that if a certain part (like a hypercube) 

cannot be covered by finitely many sets from the open cover, we subdivide further. Given the 

closed and bounded nature of E, this process can't continue indefinitely. We will eventually 

conclude that there exists a finite subcover for E. 

The detailed execution of the second part can get technical, especially for Rn where n>1, 

but the general strategy outlined remains consistent. 

Consequences of the Theorem 

The Heine-Borel Theorem has profound consequences in the field of Real Analysis: 

Extreme Value Theorem:  

Every continuous real-valued function defined on a compact set attains its maximum and 

minimum values, which is a direct consequence of the Heine-Borel Theorem. 

Uniform Continuity:  

Every continuous function on a compact set is uniformly continuous. This uniform 

continuity on compact sets is a significant result in analysis. 

Image of Compact Sets:  

The continuous image of a compact set is compact. This property is especially important 

when analysing functions and their behaviour over different domains. 

Nested Intervals:  

The theorem is instrumental in proving results like the Nested Interval Property, which 

asserts that the intersection of nested closed intervals is non-empty and contains exactly one 

point if the interval lengths tend to zero. 

Examples 



Closed Intervals:  

Any closed interval [a,b] in R is an example of a compact set as per the Heine-Borel 

Theorem, since it is both closed and bounded. 

Unit Sphere:  

The closed unit sphere in ℝ𝑛 is compact, as it is both closed and bounded. 

Finite Sets:  

All finite sets are trivially compact since they are both closed and bounded. 

Complement of Open Ball:  

The complement of an open ball in ℝ𝑛 is compact, being closed and bounded. 

The Heine-Borel Theorem stands as a central pillar in Real Analysis, characterizing 

compact subsets of Euclidean spaces as those that are closed and bounded. The proof of the 

theorem draws on concepts such as convergence, open covers, and the Bolzano-Weirstrass 

Theorem. The results stemming from the Heine-Borel Theorem, including the Extreme Value 

Theorem and uniform continuity on compact sets, are instrumental in furthering the 

understanding of Real Analysis, laying the groundwork for advanced mathematical exploration 

and applications. The Heine-Borel Theorem is a characterization of compact subsets of 

Euclidean space. It states that a subset of ℝⁿ is compact if and only if it is closed and bounded. 

7.10   Self-Assessment Questions 

 

Question 1: Define a compact set in the context of real analysis. Provide an example of a 

compact set and justify your choice. 

Question 2: State the Bolzano-Weirstrass Theorem. How does this theorem relate to the concept 

of compactness? 

Question 3: State the Heine-Borel Theorem. Why is this theorem considered a characterization of 

compact subsets in Euclidean spaces? 



Question 4: Explain the significance of the set of Real Numbers in analysis. How is it different 

from the set of Rational Numbers? 

Question 5: Describe an n-dimensional Euclidean Space. How does it generalize the concepts of 

lines, planes, and three-dimensional spaces? 

Question 6: Define an open interval and a closed interval in R. Provide examples of both and 

explain their differences. 

Question 7: Explain the concept of elements in Set Theory. How are elements related to subsets? 

Question 8: What is the relationship between compact sets and bounded sequences? How does 

compactness affect the convergence properties of a sequence? 

Question 9: Give an example of a function that attains its maximum and minimum values on a 

compact set. Use the Extreme Value Theorem to justify your answer. 

Question 10: Provide an example of a sequence in R that does not converge. Using the Bolzano-

Weirstrass Theorem, extract a convergent subsequence and state its limit. 

Question 11: Define a set and give an example. 

Question 12: What are the properties of real numbers? 

Question 13: Explain the concept of n-dimensional Euclidean space. 

Question 14: Differentiate between open and closed intervals. 

Question 15: What is a compact set? 

Question 16: State and explain the Bolzano-Weirstrass Theorem. 

Question 17: State and explain the Heine-Borel Theorem. 

These questions aim to assess your understanding of the concepts covered in this unit and to 

encourage you to think critically about the implications and applications of real analysis. 

 



7.11     Summary 

 

In this unit, we delved deep into the core concepts of Real Analysis, beginning with the 

exploration of Set Theory elements which serve as a foundation for understanding more 

advanced concepts. We introduced Real Numbers, detailing their properties and significance in 

contrast to Rational Numbers. This laid down the groundwork for the exploration of n-

dimensional Euclidean Space, where we generalized ideas of geometry to higher dimensions. 

Subsequently, we studied the concepts of open and closed intervals, illustrating the fundamental 

properties of sets in a real number context. Delving further, we explored Compact Sets, 

discussing their defining properties and relation to boundedness and closedness. The unit then 

focused on pivotal theorems, namely the Bolzano-Weirstrass Theorem, which asserts the 

existence of convergent sub-sequences in every bounded sequence, and the Heine-Borel 

Theorem, providing a characterization of compact sets in Euclidean spaces as those that are 

closed and bounded. Through examples and discussions, the implications of these theorems were 

elucidated, showcasing their impact on continuity, convergence, and the existence of extrema. 

The unit concluded with self-assessment questions designed to reinforce the learned concepts 

and encourage critical thinking about the applications and implications of Real Analysis. 

7.12     Further Reading 

 

For those wishing to delve deeper into the concepts explored in this unit, the following 

resources are recommended: 

• "Principles of Mathematical Analysis" by Walter Rudin, McGraw-Hill 

• "Introduction to Topology and Modern Analysis" by George F. Simmons, McGraw-Hill 

• "Real Mathematical Analysis" by Charles Chapman Pugh, Springer 

• "Elementary Real Analysis" by Brian S. Thomson, Judith B. Bruckner, and Andrew M. 

Bruckner, ClassicalRealAnalysis.com 

• "A First Course in Real Analysis" by Sterling K. Berberian, Springer 
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8.1      Introduction 

Sequences and series are fundamental concepts that lay the groundwork for 

understanding the intricate world of real analysis. They are the stepping stones that allow us to 

delve into the infinite, explore the continuity of functions, and understand the convergence of 

mathematical structures. This unit, focusing on Sequences and Series, aims to provide a 

comprehensive insight into these foundational concepts, thereby enriching our understanding of 

the vast and fascinating realm of mathematical analysis. 



The concept of a sequence involves an ordered arrangement of elements, typically 

numbers, indexed by natural numbers. Sequences help us understand the progression and 

arrangement of numbers and functions, allowing us to explore limits and study the behavior of 

mathematical constructs as they approach infinity. On the other hand, a series is the sum of the 

terms of a sequence, presenting us with a tool to accumulate values and study the sum of infinite 

terms. 

Convergence is a central theme when studying sequences and series. It enables us to 

evaluate whether a sequence or series approaches a specific limit, offering insights into the 

behavior of functions and the existence of limits in the infinite. Understanding convergence is 

crucial as it serves as a gateway to more advanced concepts such as continuity, differentiability, 

and integrability. 

In this unit, we will further explore specialized series such as Taylor’s Series, which are 

instrumental in representing functions and solving differential equations. We will delve into the 

properties of continuous functions, exploring the conditions under which they operate and how 

they interact with sequences and series. The concept of uniform continuity, a stronger form of 

continuity, will also be examined, shedding light on the uniform behaviour of functions across 

intervals. 

Furthermore, we will investigate the sequence of functions, a concept that extends the 

idea of a sequence to the realm of functions, offering insights into the convergence and 

behaviour of functions. Uniform convergence, a special form of convergence, will be explored, 

emphasizing its significance in interchangeability of operations and its role in real analysis. 

The exploration of power series will introduce us to a versatile tool used for representing 

functions, especially those that cannot be expressed using elementary functions. We will also 

study the radius of convergence, a concept that helps determine the domain of convergence for a 

power series. 

Lastly, we will venture into the study of singularities, points at which mathematical 

objects exhibit abnormal behaviour, thereby enhancing our understanding of the peculiarities and 

intricacies of mathematical functions. 



This unit is designed to be a journey through the realms of sequences and series, with the aim of 

fostering a deep and nuanced understanding of these fundamental concepts. Through exploration 

and inquiry, we aspire to unravel the mysteries of real analysis and appreciate the beauty and 

complexity of the mathematical landscape.  

8.2    Objectives 

By the end of this unit, the learner should be able to: 

• Understand and differentiate between sequences and series, and grasp the concept of 

convergence. 

• Develop a comprehensive understanding of Taylor’s Series and its applications. 

• Examine the properties of continuous functions and uniformly continuous functions. 

• Understand the concept of a sequence of functions and uniform convergence. 

• Analyse power series and determine the radius of convergence. 

• Identify and analyse singularities in mathematical functions. 

 

8.3      Sequence and Series: Convergence 

A sequence is an ordered list of elements, typically numbers, where each element is 

associated with a natural number. A series, on the other hand, is the sum of the terms of a 

sequence. Convergence refers to the property that a sequence or series approaches a specific 

value, called the limit, as the number of terms goes to infinity. 

Definition of Sequences and Series: 

A sequence is an ordered list of elements, usually numbers, indexed by natural numbers. 

Mathematically, a sequence {𝑎𝑛} is a function from the set of natural numbers N to a set S, 

where S is usually the set of real numbers ℝ. A series is an expression obtained by adding the 

terms of a sequence. If  {𝑎𝑛} is a sequence, then the corresponding series is given by 𝑆 =

 ∑ 𝑎𝑛
∞
𝑛=1 . 

 



Convergence of Sequences: 

A sequence {𝑎𝑛} is said to converge to a limit L if, for every 𝜖 >0, there exists a natural 

number N such that for all n ≥ N, ∣𝑎𝑛 − 𝐿∣< 𝜖. If such an L exists, we write  

log𝑛→∞ 𝑎𝑛 =  𝐿 

𝐿 and say that 𝐿 is the limit of the sequence. 

Bounded and Monotonic Sequences: 

A sequence is bounded if there exists a real number M such that  

∣𝑎𝑛∣≤ M for all n∈ N. A sequence is monotonic if it is either entirely non-increasing or non-

decreasing. The Monotone Convergence Theorem states that every bounded and monotonic 

sequence is convergent. 

Convergence of Series: 

A series ∑ 𝑎𝑛
∞
𝑛=1  is said to converge if the sequence of partial sums { 𝑆𝑁  },where 

∑ 𝑎𝑛
𝑁
𝑛=1 , converges. If the sequence of partial sums is convergent, the series is said to be 

absolutely-convergent. A series that is not absolutely-convergent but convergent is conditionally 

convergent. 

Tests for Convergence: 

Various tests can be used to determine the convergence of a series, such as the 

Comparison Test, Root Test, Ratio Test, Integral Test, and Alternating Series Test. These tests 

provide criteria to evaluate whether a given series converges or diverges. 

Applications of Convergence: 

Understanding the convergence of sequences and series is pivotal in real analysis and 

mathematics as a whole. It forms the basis for defining the integral and derivative in calculus, 

studying the properties of continuous functions, and solving differential equations. The 



convergence of power series is especially crucial in representing functions and approximating 

values in applied mathematics and engineering. 

In summary, convergence in sequences and series is a fundamental concept in real 

analysis, serving as a prerequisite for exploring more advanced mathematical notions and 

applications. By examining the convergence properties of sequences and series, we gain insights 

into the behaviour of mathematical structures and their limits, laying the groundwork for further 

exploration in analysis. 

8.4    Taylor’s Series 

Taylor’s Series is a representation of a function as an infinite sum of terms calculated 

from the values of its derivatives at a single point. It provides a way to predict the behaviour of 

functions and solve differential equations, serving as a cornerstone for numerical methods, 

calculus, and analysis. 

Definition and Formula 

Taylor’s Series is a representation of a function as an infinite sum of terms that are 

calculated from the values of the function’s derivatives at a single point. If f is a function that has 

derivatives of all orders at x=a, then the Taylor Series of f at x=a is given by: 

More generally, the formula for the Taylor Series of f at a is:  

𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) +
𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 +

𝑓′′′(𝑎)

3!
(𝑥 − 𝑎)3 + ⋯ 

More generally, the formula for the Taylor Series of 𝑓 at 𝑎 is  

𝑓(𝑎) + ∑
𝑓(𝑛)(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛

∞

𝑛=1

 

Here, 𝑓(𝑛)(𝑎) denotes the 𝑛 th derivative of 𝑓 evaluated at 𝑥 = 𝑎 and 𝑛! is the factorial of 𝑛. 

Convergence of Taylor’s Series 



A critical aspect of Taylor’s Series is the convergence of the series. Under certain 

conditions, the Taylor series of a function converges to the function itself within an interval. The 

convergence can be uniform, pointwise, or conditional, and the range of values for which the 

series converges to the function is known as the interval of convergence. 

Remainder and Error Estimation 

The difference between the function and its Taylor polynomial representation is given by 

the remainder term. The Lagrange form of the remainder, for instance, provides an upper bound 

for the error incurred when approximating the function using its Taylor Series: 

𝑅𝑛(𝑥) =
𝑓(𝑛+1)(𝑐)

(𝑛+1)!
(𝑥 − 𝑎)(𝑛+1)  

Here, c is a number between  𝑥 and 𝑎, and 𝑅𝑛(𝑥) represents the remainder. 

Applications 

Taylor’s Series has extensive applications across various fields of mathematics, physics, 

and engineering. It is used to approximate functions, solve differential equations, and simulate 

physical systems. In computer science, it is employed in numerical methods and algorithms for 

evaluating functions and solving equations. 

Taylor’s Series is a powerful mathematical tool for representing and approximating 

functions using the sum of infinite terms based on the function’s derivatives. Understanding the 

convergence, estimating the remainder, and applying the series to real-world problems are 

essential aspects of utilizing Taylor’s Series in mathematical analysis and beyond. 

 

8.5     Continuous Functions 

A function is continuous at a point if the limit of the function as it approaches that point 

from both sides is equal to the value of the function at that point. Continuous functions are those 

that do not have any jumps, breaks, or holes, and they play a crucial role in calculus and real 

analysis. 



 

Definition 

A function 𝑓: ℝ → ℝ is said to be continuous at a point c in its domain if, intuitively, the 

graph of 𝑓  does not have any breaks, jumps, or holes at 𝑥 = 𝑐 . Formally, a function f is 

continuous at c if for every ϵ>0, there exists a δ>0 such that for all x in the domain of f satisfying 

∣x−c∣<δ, we have   

|𝑓(𝑥) − 𝑓(𝑐)| < 𝜖 . If f is continuous at every point in its domain, it is simply said to be 

continuous. 

Properties 

Continuous functions have several important properties and preserve various operations, 

such as: 

Arithmetic Operations:  

The sum, difference, product, and quotient (when the denominator is not zero) of 

continuous functions are continuous. 

Composite Functions: 

 The composition of continuous functions is continuous. 

Inverse Functions:  

If a continuous function is invertible, its inverse function is also continuous, provided the 

original function is monotonically increasing or decreasing. 

Intermediate Value Theorem:  

If f is continuous on a closed interval [a,b] and k is any number between f(a) and f(b), 

then there exists a number c in [a,b] such that f(c)=k. 

Extreme Value Theorem:  



If f is continuous on a closed interval [a,b], then f attains both a maximum and a 

minimum value on [a,b]. 

Uniform Continuity: 

 A function is uniformly continuous on an interval if, roughly speaking, the function does 

not stretch vertically any more than a fixed amount, regardless of where we are in the horizontal 

axis. 

Types of Continuity 

Pointwise Continuity:  

A function is pointwise continuous at a point if it satisfies the formal definition of 

continuity at that point. 

Uniform Continuity:  

A stronger form of continuity, uniform continuity requires the same δ to work for all 

points in the domain, for a given ϵ. 

Lipschitz Continuity 

A function is Lipschitz continuous if there exists a constant L such that for all and y in its 

domain, ∣f(x)−f(y)∣≤L∣x−y∣. Lipschitz continuity is a stronger condition than uniform continuity, 

implying uniform continuity, but not every uniformly continuous function is Lipschitz 

continuous. 

Applications 

Continuous functions play a critical role in various branches of mathematics and its 

applications. They are fundamental in calculus, where they ensure the existence of derivatives 

and integrals. In differential equations, the concept of continuity is vital for existence and 

uniqueness theorems. Additionally, in optimization, the continuity of functions is essential for 

the study of optimal solutions and the behavior of optimization algorithms. 



Continuous functions form the foundational building blocks of real analysis and calculus. 

Understanding their properties, types, and applications is essential for exploring the more 

advanced concepts in mathematical analysis, solving real-world problems, and appreciating the 

inherent beauty and structure of the mathematical world. 

 

8.6      Uniformly Continuity 

Uniform continuity is a stronger form of continuity. A function is uniformly continuous 

on an interval if, for every pair of points in that interval, the change in the function's values can 

be made arbitrarily small by choosing the points sufficiently close together, irrespective of their 

location within the interval. 

Definition 

A function 𝑓: 𝐴 → ℝ is said to be uniformly continuous on 𝐴 if for every ϵ>0, there exists 

a δ>0 such that for all x,y∈ 𝐴 , whenever ∣x−y∣<δ, it follows that ∣f(x)−f(y)∣<ϵ. Notice the 

difference from pointwise continuity: in uniform continuity, the δ does not depend on the choice 

of x in the domain 𝐴. 

Intuitive Understanding 

Uniform continuity can be intuitively understood as a stronger form of continuity, where 

the function doesn’t stretch or contract too rapidly anywhere on its domain. In other words, the 

rate of change of the function is controlled throughout its domain, ensuring that small changes in 

the input result in small changes in the output, uniformly across the entire domain. 

Properties and Implications 

Preservation under Composition:  

The composition of uniformly continuous functions is uniformly continuous. 

Preservation under Limits:  



If a sequence of functions is uniformly continuous and converges uniformly to a limit 

function, then the limit function is also uniformly continuous. 

Extension Theorem:  

If a function is uniformly continuous on a dense subset of its domain, it can be uniquely 

extended to a uniformly continuous function on the whole domain. 

Heine-Cantor Theorem:  

Every continuous function defined on a closed and bounded interval is uniformly 

continuous on that interval. 

Examples 

Polynomials: Polynomials are uniformly continuous on any closed interval. 

Sine and Cosine Functions: The sine and cosine functions are uniformly continuous on the 

entire real line. 

Non-Examples 

Reciprocal Function: The function f(x)=1/x is continuous everywhere on its domain (0,∞), but 

it is not uniformly continuous on this interval, as it becomes infinitely steep as x approaches 0. 

Applications 

Uniform continuity is crucial in real analysis and functional analysis, especially in 

understanding the behavior of functions on compact sets and in dealing with function spaces. It is 

also fundamental in numerical analysis for developing algorithms for function approximation, 

integration, and solving differential equations. 

Uniform continuity is a refinement of the concept of continuity. It ensures that a function 

behaves in a controlled manner throughout its domain, with many important theoretical and 

practical applications across mathematics and its applied fields. Understanding this concept is 



essential for delving deeper into mathematical analysis and solving complex problems in science 

and engineering. 

8.7   Sequence of Functions 

A sequence of functions is a list of functions in a specific order. This concept is crucial in 

understanding how functions can converge to other functions and in studying the behavior of 

functions as they transform under certain conditions or operations. 

Definition 

A sequence of functions is a list of functions 𝑓𝑛: 𝐴 → ℝ  indexed by the natural numbers 

n. Such a sequence can be denoted as{𝑓𝑛}𝑛=1
∞ , and each function 𝑓𝑛 maps from the same domain 

𝐴 to the real numbers. 

Types of Convergence 

When dealing with a sequence of functions, one of the central topics is the different types 

of convergence. There are several ways a sequence of functions can converge to a limiting 

function f. 

Pointwise Convergence: 

A sequence of functions {𝑓𝑛} is said to converge pointwise to a function f on a set A if, 

for every x∈A and every ϵ>0, there exists a natural number N (possibly depending on x) such 

that for all n≥N, ∣𝑓𝑛(𝑥) − 𝑓(𝑥)|<ϵ. 

Uniform Convergence: 

A sequence of functions {𝑓𝑛 } converges uniformly to a function f on set A if, for every 

ϵ>0, there exists a natural number N such that for all n≥N and for all x∈A, ∣𝑓𝑛(𝑥) − 𝑓(𝑥)|< ϵ. 

Note the difference from pointwise convergence: for uniform convergence, the value of N works 

for all x in the domain. 

 



Almost Everywhere Convergence: 

A sequence of functions {𝑓𝑛 } converges almost everywhere to a function 𝑓 if the set of 

points 𝑥 in the domain where 𝑓𝑛 (x) does not converge to 𝑓(𝑥)  has measure zero. 

The Weierstrass M-test 

The Weierstrass M-test is a fundamental theorem providing a sufficient condition for the 

uniform convergence of a series of functions. It states that if ∑ 𝑀𝑛
∞
𝑛=1  converges, where 𝑀𝑛 is an 

upper bound on the absolute value of 𝑓𝑛(𝑥) for each 𝑥 in the domain, then the series ∑ 𝑓𝑛
∞
𝑛=1 (𝑥) 

converges uniformly. 

Statement: Suppose {𝑓𝑛} is a sequence of functions defined on 𝐸 such that 

|𝑓𝑛(𝑥)| ≤ 𝑀𝑛 ;  ∀ 𝑥 ∈ 𝐸 

Where, {𝑀𝑛} is a sequence of non-negative real numbers. If the series ∑ 𝑀𝑛
∞
𝑛=1  converges, the 

series ∑ 𝑓𝑛
∞
𝑛=1 (𝑥) converges uniformly on 𝐸 . 

Proof:  let 𝑺𝑵(𝒙) = ∑ 𝑓𝑛
𝑁
𝑛=1 (𝑥) be the Nth partial sum of the series. We want to show that the 

sequence {𝑆𝑁} is uniformly Cauchy, which would imply its uniform convergence. 

1. For any m, n with m>n, we have 

|𝑆𝑚(𝑥) − 𝑆𝑛(𝑥)| = | ∑ 𝑓𝑘(𝑥)

𝑚

𝑘=𝑛+1

| ≤ ∑ |𝑓𝑘(𝑥)|

𝑚

𝑘=𝑛+1

≤ ∑ 𝑀𝑘

𝑚

𝑘=𝑛+1

 

2. Given 𝜖 > 0, since the series ∑ 𝑀𝑛
∞
𝑛=1 , converges, there exists an N such that for all 𝑚 >

𝑛 ≥ 𝑁 ∑ 𝑀𝑘 < 𝜖𝑚
𝑘=𝑛+1  

3. Therefore ∀ 𝑥 ∈ 𝐸 and for all 𝑚 > 𝑛 ≥ 𝑁 

|𝑆𝑚(𝑥) − 𝑆𝑛(𝑥)| < 𝜖 

This means that the sequence of partial sums { 𝑆𝑁(𝑥) } is uniformly Cauchy on E. by a 

fundamental result in analysis, a sequence of functions that is uniformly Cauchy on a set 

converges uniformly on that set, thus the series ∑ 𝑓𝑛
∞
𝑛=1 (𝑥) converges uniformly on 𝐸 . 



This theorem, the Weierstrass M-test, is fundamental because it provides a powerful and 

straightforward tool to establish uniform convergence for series of functions, especially in 

complex analysis when dealing with power series and contour integrals. 

Exchange of Limits 

One of the significant benefits of uniform convergence is that it allows for the exchange 

of limits. If {𝑓𝑛 } converges uniformly to 𝑓  and if each 𝑓𝑛  is continuous (or integrable, or 

differentiable), then the limit function 𝑓 is also continuous (or integrable, or differentiable), and 

limits can be interchanged with these operations. 

Applications 

Sequences of functions appear frequently in various areas of mathematics and 

applications, such as approximating complex functions through simpler ones, solving differential 

equations, Fourier analysis, and in the study of function spaces in functional analysis. 

The concept of a sequence of functions and the study of their convergence types are 

foundational in real analysis. Understanding how these sequences converge and the implications 

of such convergence is crucial for exploring advanced mathematical theories and applications in 

various fields. 

8.8      Uniform Convergence 

 

Uniform convergence is a type of convergence of a sequence of functions that ensures the 

limit function is continuous if each function in the sequence is continuous. It provides a way to 

interchange limits, derivatives, and integrals, serving as a powerful tool in analysis. 

Definition: 

A sequence of functions {𝑓𝑛: 𝐴 → ℝ} is said to converge uniformly to a function 𝑓: 𝐴 →

ℝ on a set A if, for every ϵ>0, there exists a natural number N such that for all n≥N and for all 

x∈A, we have  



∣𝑓𝑛(𝑥) − 𝑓(𝑥)∣<ϵ. 

In simpler terms, uniform convergence ensures that all the functions 𝑓𝑛 in the sequence 

get arbitrarily close to the limiting function 𝑓 throughout the entire set A, uniformly, as n goes to 

infinity. 

Criteria for Uniform Convergence: 

Cauchy Criterion: 

A sequence of functions {f𝑓𝑛} converges uniformly on A if and only if for every ϵ>0, 

there exists a natural number N such that for all m, n≥N and for all x∈A, we have ∣𝑓𝑛(𝑥) −

𝑓𝑚(𝑥)∣<ϵ. 

Weierstrass M-Test: If   

∑ 𝑀𝑛

∞

𝑛=1

 

 

  is a convergent series and  |𝑓𝑛(𝑥)| ≤ 𝑀𝑛 

  for all 𝑥 in A and for all n, then the series ∑ 𝑓𝑛
∞
𝑛=1 (𝑥) converges uniformly. 

Importance and Consequences: 

Exchange of Limits:  

Uniform convergence allows the interchange of limits with integration and 

differentiation. If a sequence of functions {fn } converges uniformly to 𝑓 , and each 𝑓𝑛 is 

continuous (or integrable, or differentiable), then the limit function 𝑓 also has the same property. 

Continuity Preservation:  

A uniformly convergent sequence of continuous functions converges to a continuous 

function. This is not necessarily true for pointwise convergence. 



Trigonometric Series:  

Fourier series are an example where uniform convergence is essential for analysing the 

properties of the limit function in terms of the properties of the functions in the series. 

Uniform convergence is a fundamental concept in real analysis, with significant 

implications for the behaviour of the limit of a sequence of functions. It ensures that the 

convergence is uniform across the domain, allowing for the interchange of limits and 

preservation of key properties such as continuity, integrability, and differentiability, making it an 

invaluable tool in mathematical analysis and its applications. 

8.9       Power Series 

A power series is an infinite series of the form  

∑ 𝑎𝑛(𝑥 − 𝑐)𝑛∞
𝑛=0 , where the 𝑎𝑛 are real or complex numbers, and c is the centre of the 

series. Power series are used to represent functions and solve differential equations, especially 

when the function cannot be expressed using elementary functions. 

Power series are fundamental in many areas of mathematics and applied sciences. They 

are used to represent and approximate functions, solve ordinary and partial differential equations, 

compute integrals, and develop numerical methods and algorithms in computer science and 

engineering. 

Power series are an indispensable tool in mathematics, providing a way to represent, 

analyze, and approximate a wide variety of functions. Understanding the convergence, 

properties, and applications of power series is essential for anyone delving into advanced studies 

in mathematics, physics, engineering, and computer science. 

8.10     Radius of Convergence 

Each power series has an associated radius of convergence (𝑅) with which the series is 

converges to a meaningful value. For |𝑥 − 𝑐| < 𝑅 , the series is converges absolutely, for 



|𝑥 − 𝑐| > 𝑅  , the series diverges and when |𝑥 − 𝑐| = 𝑅, the series may converge, diverge or 

converge conditionally, depending on the series. 

The radius of convergence of a power series is the distance from the center of the series 

to the nearest point where the series does not converge. It is crucial for determining the interval 

or disk in which a power series converges to a function. 

The radius of convergence of a power series can be determined using Ratio test: 

𝑅 = log𝑛→∞ |
𝑎𝑛

𝑎𝑛+1
| 

 

Interval of convergence: 

The interval of convergence is the set oa all x for which the series converges. It is 

centered at c and extends 𝑅 units to the left and right (𝑐 − 𝑅, 𝑐 + 𝑅), although the behaviour at 

the endpoints needs to be checked separately. 

Properties and Operations: 

Differentiation and Integration:  

Within the radius of convergence, power series can be differentiated and integrated term 

by term, and the resulting power series also converges to the derivative or integral of the original 

function. 

Arithmetic Operations:  

Power series can be added, subtracted, multiplied, and divided within their radius of 

convergence to produce new power series. 

Uniqueness:  

If a power series converges to a function f(x) on an interval I, then the coefficients an  of 

the power series are uniquely determined by f, and no other power series can represent f on I. 



Trigonometric and Logarithmic Functions:  

Sine, cosine, and the natural logarithm functions also have power series representations 

with specific radii of convergence. 

8.11    Singularities 

Definition: 

In mathematics, particularly in complex analysis, a singularity of a function is a point at 

which the function is not defined or not well-behaved in some manner. For real functions, 

singularities could be points of non-differentiability or discontinuity. In the context of complex 

functions, singularities are more nuanced and can be classified into several types. 

Types of Singularities: 

Removable Singularities: 

A point 𝑧0 is a removable singularity for a function 𝑓 if 𝑓is bounded in a neighborhood of 

𝑧0  excluding 𝑧0  , and f can be redefined at 𝑧0   to make 𝑓 continuous at 𝑧0 . 

Pole or Non-Removable Singularity: 

A point 𝑧0  is a pole of order n if f(z) behaves like (
1

(𝑧−𝑧0)𝑛)  as 𝑧 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠 𝑡𝑜 𝑧0. The 

function 𝑓goes to infinity at a pole. 

Essential Singularity: 

A point 𝑧0  is an essential singularity if it is not a removable singularity or a pole. At an 

essential singularity, the function exhibits more chaotic behavior, and the limit of  f does not 

exist as 𝑧 approaches 𝑧0   

Branch Point: 

A branch point of a function is a point around which the function fails to be single-

valued, typically due to a multi-valued operation like a square root or logarithm. 



Isolated and Non-Isolated Singularities: 

A singularity is isolated if there exists a neighborhood around it containing no other 

singularities. Non-isolated singularities occur in clusters or accumulation points of singularities. 

Casorati-Weierstrass Theorem: 

The Casorati-Weierstrass theorem states that if 𝑧0  is an essential singularity of a function 

𝑓, then the image of any neighborhood of 𝑧0  under f is dense in the complex plane. 

Statement of Casorati-Weierstrass Theorem: 

Let f(z) be holomorphic (analytic) in a punctured neighborhood of 𝑧0    and assume that 

𝑧0    is an essential singularity of 𝑓(𝑧)Then, for any value 𝑤0   in the complex plane, there exists 

a sequence 𝑧𝑛   converging to 𝑧0  such that 𝑓(𝑧𝑛  ) converges to 𝑤0 . 

In other words, as z approaches the essential singularity 𝑧0 , f(z) comes arbitrarily close to 

every complex value. 

Proof: 

For the sake of contradiction, assume that the statement of the theorem is false. That is, 

there exists a value 𝑤0   in the complex plane such that no sequence 𝑧𝑛   approaching 𝑧0  has 

𝑓(𝑧𝑛  ) approaching 𝑤0 . 

Define a New Function: 

Let's consider the function 𝑔(𝑧) =
1

𝑓(𝑧)−𝑤0
 

 In the punctured neighborhood of 𝑧0 , 𝑔(𝑧) is holomorphic because f(z) never takes the 

value 𝑤0  in this neighborhood, by our assumption. Behavior of 𝑔(𝑧) at 𝑧0   Now, if 𝑔(𝑧) is 

bounded in the neighborhood of 𝑧0 , then by Riemann's Removable Singularity Theorem, 

𝑔(𝑧) can be extended to be analytic at 𝑧0 . This means that 𝑓(𝑧) − 𝑤0   has a pole at 𝑧0 , making 

𝑓(𝑧) meromorphic there, which is a contradiction because 𝑧0  is an essential singularity of 𝑓(𝑧). 



If g(z) has an essential singularity at 𝑧0 , then by our assumption (and hence by the 

Casorati-Weierstrass theorem itself), 𝑔(𝑧)will come arbitrarily close to every complex value in 

some neighborhood of 𝑧0 , including zero. This implies that f(z) will come arbitrarily close to 𝑤0   

, which is again a contradiction. 

Lastly, if 𝑔(𝑧)has a pole at 𝑧0 , then 𝑓(𝑧)has a zero of some order at z0, which again 

contradicts the fact that 𝑧0   is an essential singularity of 𝑓(𝑧). 

Our assumption that there exists a 𝑤0  not attained by 𝑓(𝑧) in a punctured neighborhood 

of an essential singularity 𝑧0  led to contradictions in all cases. Therefore, our assumption is 

false, and the theorem is proven. 

The Casorati-Weierstrass Theorem provides an essential understanding of how functions 

behave around their essential singularities. It tells us that they are "wild" in the sense that they 

come close to every complex value. 

Picard's Theorem: 

Picard's theorem asserts that if 𝑓 has an essential singularity at 𝑧0 , then 𝑓 takes on every 

complex value, with possibly one exception, infinitely often in any neighborhood of 𝑧0 . 

Statement: Let 𝑓(𝑧) (z) be a function that's holomorphic (analytic) in some punctured 

neighborhood of an essential singularity 𝑧0 . Then, in any neighborhood of 𝑧0 , f(z) takes on every 

complex value, with at most one exception, infinitely many times. 

In other words, near an essential singularity, the function behaves "wildly" and attains 

almost all possible values. 

Proof: The proof uses a contradiction approach. 

Assumption: Suppose, contrary to the statement of the theorem, that there are two complex 

numbers, say a and b (with a is not equal to b), such that neither is attained by f(z) in some 

neighborhood of 𝑧0  . 

Consider a New Function: Define a new function g(z)=f(z)−a1 + f(z)−b1  



Since neither a nor b is attained by f(z) in the neighborhood of 𝑧0 , both terms in the 

definition of g are well-defined and holomorphic.  

Behavior of g(z): At 𝑧0 , f(z) has an essential singularity. This means that g(z) must also 

have an essential singularity at 𝑧0 . This is because if g had a pole (or was bounded), f would be 

meromorphic (or bounded), which is a contradiction to the fact that f has an essential singularity 

at 𝑧0 . Applying Casorati-Weierstrass Theorem: Due to the essential singularity of g(z) at 𝑧0 , by 

the Casorati-Weierstrass theorem, g(z) comes arbitrarily close to every complex number in some 

neighborhood of 𝑧0 . However, since neither 1/(a−b) nor 1/(b−a) can be attained by g(z) (due to 

our definition of g), we reach a contradiction. 

Thus, our assumption that there exist two values which f(z) does not attain is false. 

Hence, about any essential singularity, f(z) must attain almost all complex values, with at most 

one exception, infinitely many times. 

Applications: 

Singularities are crucial in understanding the behavior and properties of functions, 

particularly in complex analysis. Identifying and classifying singularities enable mathematicians 

and physicists to analyze the structure of functions, solve complex integrals, and explore the 

behavior of physical systems in various scientific and engineering fields. 

Singularities play a vital role in the study of mathematical functions. They help identify 

points at which functions exhibit unusual behavior, leading to deeper insights into the properties 

and structure of functions. Understanding singularities is essential for solving complex problems 

in mathematics, physics, and engineering.  

8.12      Self-Assessment Questions 

At this point, a set of self-assessment questions will be provided to evaluate the learner's 

understanding of the key concepts discussed in this unit. 

1. Define a convergent sequence. Given a sequence, can you determine if it converges? If so, 

what does it converge to? 



2. State the Taylor series expansion for a function f(x). How is it related to the derivatives of  

f? Can you find the Taylor series expansion of the function ex at x=0? 

3. What is the definition of a continuous function at a point? Can you identify points of 

discontinuity for a given function? 

4. Differentiate between continuity and uniform continuity. Given a function, can you determine 

if it is uniformly continuous over a certain interval? 

5. Describe what is meant by a sequence of functions. How does the pointwise convergence of a 

sequence of functions differ from its uniform convergence? 

6. Define a power series. How do you determine its radius of convergence? Given a power 

series, can you determine if it converges at a specific value of x? 

8.13     Summary 

This unit has delved into the essential aspects of sequences and series in real analysis, 

exploring the notions of convergence, Taylor’s Series, continuous functions, and uniform 

continuity. We have also examined the sequence of functions, uniform convergence, power 

series, radius of convergence, and singularities, enriching our comprehension of the behavior and 

properties of mathematical functions. 

In this unit, we delved into the advanced concepts of sequences and series, beginning 

with a thorough examination of the convergence of sequences and series, which laid the 

foundation for exploring various types of series, notably Taylor’s series and Power series. We 

discussed the critical attributes of continuous functions, delving into the nuances of uniform 

continuity and its implications. The unit further explored sequences of functions and the pivotal 

concept of uniform convergence, which plays a vital role in interchanging limits and preserving 

continuity. The exploration of Power series illuminated its versatility in representing a myriad of 

functions and its convergence properties, followed by a detailed examination of singularities, 

revealing the different types and their significance in complex analysis. This comprehensive 



exploration of sequences, series, and their convergence, along with singularities, forms a 

cornerstone for understanding real analysis and its applications in various scientific disciplines. 

8.14      Further Reading 

To further explore the topics discussed in this unit, the learner is encouraged to consult 

additional resources, text books, and research papers, which delve deeper into sequences, series, 

convergence, and the intricacies of mathematical functions. analysis and provides detailed 

insights into sequences, series, continuity, and convergence. 

• "Introduction to Real Analysis" by Robert G. Bartle and Donald R. Sherbert:John Wiley 

& Sons. 

• "Complex Analysis" by Elias M. Stein and Rami Shakarchi Princeton University Press. 

• "Real and Complex Analysis" by Walter Rudin, McGraw-Hill 

In summary, this unit provides a comprehensive exploration of sequences and series, 

aiming to build a robust understanding of these fundamental concepts in real analysis and their 

applications in various mathematical fields. 
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9.1      Introduction 

In the realm of calculus, integration and differentiation serve as foundational pillars, 

enabling us to explore and comprehend the myriad nuances of mathematical functions and their 

applications across various disciplines. This unit delves deeper into these fundamental concepts, 

unveiling the layers of complexity and utility associated with advanced integration and 

differentiation techniques. We aim to explore the intricacies of these mathematical tools, 

highlighting their significance, applications, and the underlying principles that govern their 

behaviour. 



Differentiation provides a lens through which we can examine the rate at which a 

function changes, offering insights into the slope of the tangent at any given point on a curve. On 

the other hand, integration serves as a tool for accumulating quantities, allowing us to calculate 

areas under curves, volumes of solids of revolution, solutions to differential equations, and more. 

Together, these concepts form the bedrock of calculus, opening doors to a deeper understanding 

of mathematics and its applications in science, engineering, economics, and beyond. 

This unit ventures beyond the basics, introducing readers to advanced topics such as the 

maxima and minima of functions, functions of several variables, and multiple integrals. We will 

explore the nuances of evaluating multiple integrals through repeated integration and delve into 

the concept of change of variables in multiple integration, which involves Jacobians. 

Additionally, we will study the uniform convergence in improper integrals, a critical concept for 

ascertaining the convergence behaviour of such integrals. 

We also touch upon the Leibnitz Rule, a fundamental principle for differentiating 

products of functions, and explore the techniques of Residue and Contour Integration, which are 

integral to complex analysis. These techniques are pivotal for evaluating integrals over contour 

paths in the complex plane and demonstrate the versatility and depth of integration as a 

mathematical tool. 

The advanced techniques of differentiation and integration discussed in this unit have far-

reaching applications across various fields. From optimizing manufacturing processes and 

modelling physical phenomena to solving complex equations in engineering and analysing 

economic models, the concepts explored here are fundamental to both theoretical and applied 

mathematics. 

By understanding the differentiation of functions, we can analyse and optimize system 

performance, identify critical points, and solve real-world problems. Similarly, mastering 

multiple integrals and their evaluation techniques can aid in solving problems in physics, 

engineering, computer science, and many other disciplines. 

As we navigate through this unit, we aim to equip readers with a thorough understanding 

of advanced differentiation and integration concepts, enabling them to apply these techniques 



effectively in solving complex mathematical problems. We strive to foster a deeper appreciation 

for the elegance and utility of these mathematical tools, encouraging further exploration and 

study in the fascinating world of calculus. 

In summary, this introduction serves as a gateway to the rich and diverse landscape of 

advanced integration and differentiation techniques, setting the stage for a detailed exploration of 

each topic in the subsequent sections. By delving into these concepts, we hope to enrich the 

reader’s mathematical knowledge and inspire further inquiry into the limitless possibilities of 

calculus. 

9.2      Objectives 

The learner should able to understand about the:  

• Understand the concept of differentiation of functions. 

• Examine maxima and minima of functions. 

• Explore functions of several variables. 

• Learn the techniques of multiple integrals and their evaluations. 

• Study the change of variables in multiple integration. 

• Understand the concept of uniform convergence in improper integrals. 

• Investigate Leibnitz Rule, Residue, and Contour Integration. 

 

9.3      Differentiation of a Function 

Differentiation is a cornerstone in the field of calculus, providing a method to compute 

the rate at which a function’s value changes as its input changes. The process of differentiation 

yields a derivative, a new function that gives the slope of the tangent line to the graph of the 

original function at any point. This slope is often referred to as the "rate of change." 

Basic Concept  



Given a function 𝑓(𝑥), its derivative 𝑓′(𝑥) at a point 𝑥  represents the instantaneous rate of 

change of 𝑓 with respect to 𝑥 at that point. Geometrically, it gives the slope of the tangent to the 

curve represented by the function 𝑓(𝑥) at the point (𝑥, 𝑓(𝑥)), 

 𝑓′(𝑥) = logℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

Types of derivatives 

Partial Derivative:  

When dealing with functions of multiple variables, we compute the partial derivative of a 

function with respect to one variable, keeping the others constant. This is denoted as 
𝜕𝑥

𝜕𝑓
 for the 

partial derivative with respect to 𝑥. 

Higher-Order Derivative:  

The process of differentiation can be applied multiple times to the original function, 

resulting in higher-order derivatives. The second derivative, 𝑓′′(𝑥), represents the rate of change 

of the rate of change of the function. 

Applications 

Differentiation has myriad applications across multiple fields: 

Physics: Differentiation is used to find rates of change, such as velocity (rate of change of 

displacement) and acceleration (rate of change of velocity). 

Economics: In economics, differentiation is employed to optimize production levels, determine 

price elasticity, and analyse marginal cost and marginal revenue. 

Engineering: Engineers use differentiation to analyse and optimize systems, such as determining 

stress and strain in materials and analysing electrical circuits. 

Biology: In biology, differentiation is applied to model population growth, rates of infection 

spread, and changes in biological quantities over time. 



Computer Science: In machine learning and computer graphics, differentiation plays a crucial 

role in optimizing algorithms and rendering realistic animations, respectively. 

Techniques 

Several techniques are available for differentiating various types of functions: 

Power Rule:  

For any real number 𝑛, if  𝑓(𝑥) = 𝑥𝑛, then 𝑓′(𝑥) = 𝑛𝑥𝑛−1 

Product Rule:  

If a function is represented as the product of two other functions, the derivative is given 

by: (𝑓𝑔)′= 𝑓′𝑔+𝑓𝑔′. 

Quotient Rule: For the quotient of two functions, the derivative is given by: (
𝑓

𝑔
)

′

= 
𝑓′𝑔 − 𝑓𝑔′

𝑔2 . 

Chain Rule:  

If a function is composed of two other functions, the derivative is obtained by 

differentiating the outer function and multiplying it by the derivative of the inner function:  

(𝑓(𝑔(𝑥)))
′

= 𝑓′𝑔(𝑥)𝑔′(𝑥) 

Graphical Interpretation 

Graphically, the derivative at a specific point corresponds to the slope of the tangent line 

drawn at that point on the graph of the function. A positive derivative indicates an increasing 

function, a negative derivative indicates a decreasing function, and a derivative of zero suggests 

a potential maximum, minimum, or inflection point. 

Understanding the differentiation of a function is pivotal in calculus. It not only reveals 

the instantaneous rate of change and the nature of the function but also has diverse applications 

across several disciplines. The variety of techniques available for differentiation caters to the 



diverse types of functions encountered in real-world scenarios, making it an indispensable tool in 

the mathematical toolbox. 

9.4   Maxima-Minima of Functions 

Critical points are where a function reaches local maxima, minima, or remains constant. 

By setting the derivative of a function to zero and solving for x, we can locate these points and 

use the second derivative test to classify them as local maxima, minima, or saddle points. 

Maxima and minima of functions represent the highest and lowest values of the function, 

respectively, within a given domain. Identifying these values is crucial in various fields such as 

physics, economics, engineering, and optimization problems, as they often correspond to optimal 

solutions or critical points in the system or model. 

Identifying Maxima and Minima 

To identify local maxima and minima, we investigate the critical points of the function, 

where the first derivative is zero or undefined. 

First Derivative Test: 

If 𝑓′(𝑥) changes sign from positive to negative at 𝑐, then 𝑓(𝑐)is a local maximum. 

If 𝑓′(𝑥)changes sign from negative to positive at 𝑐, then 𝑓(𝑐)is a local minimum. 

If 𝑓′(𝑥)does not change sign at 𝑐, then 𝑓(𝑐)is not a local extremum. 

Second Derivative Test: 

If 𝑓′(𝑐) =0 and 𝑓′′(𝑐)>0, then 𝑓(𝑐) is a local minimum. 

if 𝑓′(𝑐) =0 and 𝑓′′(𝑐) <0, then 𝑓(𝑐)is a local maximum. 

If 𝑓′(𝑐)=0, the test is inconclusive. 

Global Maxima and Minima 



Global (or absolute) maxima and minima are the overall highest and lowest values of the 

function on its entire domain. To find them, evaluate the function at all critical points and 

endpoints of the domain and compare the values. 

Applications 

Optimization Problems: Maxima and minima are vital in optimization, where the goal is to 

maximize or minimize a given quantity, such as profit maximization or cost minimization in 

economics. 

Physics: In physics, these concepts are used to optimize systems and find stable equilibrium 

points, such as finding the highest and lowest points of a projectile’s trajectory. 

Engineering: Engineers use maxima and minima to optimize designs and systems for efficiency, 

safety, and performance, such as minimizing material usage while maintaining structural 

integrity. 

Biology: In biology, these concepts are used to model population dynamics, enzyme kinetics, 

and other phenomena, identifying peak populations and minimum resources, for example. 

Inflection Points 

In addition to maxima and minima, it’s also valuable to identify inflection points, where 

the concavity of a function changes. At an inflection point, the second derivative is zero or 

undefined. Inflection points are not necessarily maxima or minima but are crucial in 

understanding the overall behaviour of the function. 

The study of maxima and minima of functions is a fundamental aspect of calculus with 

widespread applications across various fields. Identifying these points provides essential insights 

into the nature and behaviour of functions, enabling the solving of a plethora of real-world 

problems and optimization scenarios. 

9.5      Functions of Several Variables 



Functions of several variables are a natural extension of functions of a single variable and 

are essential in modelling and solving problems in various fields such as physics, engineering, 

economics, and computer science. These functions take multiple inputs and produce a single 

output. A common example is 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 which represents the function of two variables  

𝑥 𝑎𝑛𝑑 𝑦. 

Definition: a function 𝑓 of 𝑛 variables 𝑥1 , 𝑥2, 𝑥3, … , 𝑥𝑛 is a rule that assigns to each ordered n-

tuple (𝑥1 , 𝑥2, 𝑥3, … , 𝑥𝑛) in the domain D a unique real number denoted by 𝑓(𝑥1 , 𝑥2, 𝑥3, … , 𝑥𝑛). 

Domain and Range 

The domain of a function of several variables is the set of all possible input values 

(ordered n-tuples) that the function can accept without resulting in any undefined expressions, 

while the range is the set of all possible output values of the function. 

Partial Derivatives 

In functions of several variables, we compute partial derivatives. A partial derivative of a 

function is the derivative of the function with respect to one variable, treating all other variables 

as constants. The notation 
𝜕𝑥

𝜕𝑓
 is used to denote the partial derivative of 𝑓 with respect to 𝑥. 

Gradient Vector 

The gradient of a function 𝑓 of several variables is a vector that contains all of the partial 

derivatives of𝑓. It is denoted by ∇𝑓 and points in the direction of the greatest rate of increase of 

the function. 

∇𝑓 = [
𝜕𝑓

𝜕𝑥1
,

𝜕𝑓

𝜕𝑥2
,

𝜕𝑓

𝜕𝑥3
, … ,

𝜕𝑓

𝜕𝑥𝑛
] 

Level Curves, Surfaces, and Sets 

For a function of two variables, level curves are curves in the xy-plane along which the 

function has a constant value. For functions of three variables, level surfaces are surfaces in 



space along which the function value is constant. In general, for functions of n variables, we 

have level sets. 

Optimization 

Optimizing functions of several variables is an essential task in various applications. 

Techniques include finding critical points by solving the system of equations given by setting all 

partial derivatives to zero and analysing the behaviour of the function along the boundary of its 

domain. 

Lagrange Multipliers 

Lagrange multipliers are a powerful technique used for constrained optimization of 

functions of several variables. This method allows us to find the local maxima and minima of a 

function subject to equality constraints. 

Applications 

Functions of several variables are ubiquitous across scientific disciplines: 

Physics: Used to describe physical quantities dependent on multiple variables, such as 

temperature distribution in a room dependent on three spatial variables. 

Economics: Utilized to model economic phenomena dependent on multiple factors, such as 

utility functions depending on various goods. 

Engineering: Applied in designing and optimizing systems that depend on multiple parameters, 

such as stress distribution in structures. 

Computer Science: Essential in machine learning and graphics, where functions often depend on 

numerous input features or parameters. 

Functions of several variables are a fundamental concept in advanced calculus, extending 

the idea of functions to multiple dimensions. These functions, along with the associated concepts 

of partial derivatives, gradient vectors, and optimization techniques, provide a versatile 

framework for modelling and solving complex problems in numerous fields. Understanding 



these concepts is pivotal for anyone looking to apply mathematical principles in real-world 

scenarios. 

9.6     Multiple Integral and Their Evaluation by Repeated Integration 

Multiple integrals extend the concept of integration to functions of more than one 

variable. They are used to calculate quantities such as area, volume, mass, and the average value 

of functions across a given region. The process of evaluating multiple integrals involves repeated 

integration, where one integral is performed after another. 

Definition of Double and Triple Integrals 

A double integral of a function f(x,y) over a region R in the xy-plane is represented as:  

∬ 𝒇(𝒙, 𝒚)𝒅𝑨 

Similarly, a triple integral of a function 𝑓(𝑥, 𝑦, 𝑧) over a region V is represented as 

∭ 𝒇(𝒙, 𝒚, 𝒛) 𝒅𝑽 

Change of Variables 

The method of changing variables, akin to substitution in single-variable calculus, can be 

used to simplify the evaluation of multiple integrals. For example, in polar coordinates, a double 

integral becomes:  

∬ 𝑓(𝑟𝑐𝑜𝑠𝜃, 𝑟𝑠𝑖𝑛𝜃)𝑟𝑑𝑟𝑑𝜃 

Applications 

Volume Calculation: Multiple integrals can be used to calculate the volume under a surface 

defined by a function of two variables. 

Centre of Mass: They are used to determine the centre of mass of a lamina or solid with variable 

density. 



Physics and Engineering: In physics and engineering, multiple integrals are used for solving 

problems related to heat flow, electric and magnetic fields, and fluid dynamics. 

Probability and Statistics: They are used to compute joint probability distributions and 

expectations in multivariate statistics. 

Computer Graphics: In computer graphics, multiple integrals are used in rendering and shading 

algorithms. 

Multiple integrals are a fundamental extension of integration in calculus, allowing for the 

computation of a variety of quantities in higher dimensions. The method of repeated integration, 

along with appropriate changes of variables, facilitates the evaluation of these integrals. With 

applications across numerous disciplines, understanding and applying multiple integrals are 

essential for those working in scientific, engineering, and mathematical fields. 

9.7     Change of Variable in Multiple Integration 

The change of variable in multiple integration is similar to substitution in single-variable 

calculus but involves Jacobians. It is a method to simplify the integration process by 

transforming the coordinates, which can make the integral easier to evaluate. 

9.8    Uniform Convergence in Improper Integrals 

Uniform convergence is a concept to determine if a sequence of functions converges to a 

limit function uniformly for every point in the domain. This concept is crucial for understanding 

the convergence behaviour of improper integrals, ensuring the interchangeability of limit 

processes. Uniform convergence is a critical concept in the analysis of sequences of functions, 

especially in dealing with improper integrals. It provides a framework to analyse the 

convergence behaviour of function sequences and is pivotal in ensuring the interchangeability of 

limit processes, such as differentiation and integration. 

Definition of Uniform Convergence 



A sequence of function 𝑓𝑛: 𝐷 → ℝ converges uniformly to a function 𝑓: 𝐷 → ℝ on a set 𝐷 

if for every 𝜖 > 0 there exists an N such that 𝑛 ≥ 𝑁 and for all 𝑥 ∈ 𝐷. 

|𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜖 

This definition ensures that the convergence of 𝑓𝑛 to 𝑓 occurs at the same rate for every x 

in the domain. 

Uniform Convergence and Improper Integrals 

Uniform convergence plays a vital role in analysing improper integrals of function 

sequences. An integral is termed “improper” when it involves infinite intervals or has integrands 

with infinite discontinuities. The convergence of such integrals is not always guaranteed, making 

the analysis of their convergence essential. 

If 𝑓𝑛 converges uniformly to 𝑓  on an interval [𝑎, 𝑏] , and if the improper integrals 

∫ 𝑓𝑛(𝑥)
𝑏

𝑎
𝑑𝑥 are convergent for each n, then 

log𝑛→∞ ∫ 𝑓𝑛(𝑥)
𝑏

𝑎
𝑑𝑥 = ∫ log𝑛→∞ 𝑓𝑛(𝑥)

𝑏

𝑎
𝑑𝑥=∫ 𝑓(𝑥)

𝑏

𝑎
𝑑𝑥 

This property indicates that the order of the limit process and integration can be 

interchanged under uniform convergence. 

Importance and Applications 

Analysis:  

Uniform convergence is crucial in real analysis for establishing results related to the 

interchange of limit processes. It aids in proving theorems like the term-by-term integration and 

differentiation of power series. 

Differential Equations:  

In the study of differential equations, uniform convergence ensures the existence and 

uniqueness of solutions to certain types of equations. 



Approximation Theory:  

It is used in approximation theory to guarantee that approximating functions (e.g., Fourier 

series, Taylor series) converge to the desired function. 

Statistics:  

In statistics, uniform convergence is employed in proving the law of large numbers and 

central limit theorem, foundational theorems in probability and statistics. 

Uniform convergence in improper integrals is a pivotal concept in the study of calculus 

and mathematical analysis. It guarantees that certain operations, such as integration, can be 

performed on the limit function when a sequence of functions converges uniformly. This concept 

is not only foundational in theoretical mathematics but also finds applications across various 

fields like physics, engineering, statistics, and computer science, wherever sequences of 

functions and their integrals are studied and applied. 

9.9       Leibnitz Rule 

Leibniz Rule, also known as the Product Rule for Differentiation, is a fundamental 

theorem in calculus, named after the German mathematician Gottfried Wilhelm Leibniz. The rule 

provides a formula to find the derivative of a product of two functions. It is essential in calculus, 

enabling the computation of derivatives and solutions to differential equations. 

Statement of the Rule 

Given two differentiable functions 𝑢(𝑥)  and 𝑣(𝑥), the Leibniz Rule states that the 

derivative of their product is given by: 

𝑑

𝑑𝑥
[𝑢(𝑥)𝑣(𝑥)] = 𝑢′(𝑥)𝑣(𝑥) + 𝑢(𝑥)𝑣′(𝑥) 

Here, 𝑢′(𝑥) and 𝑣′(𝑥) represent the derivatives of 𝑢(𝑥) and 𝑣(𝑥) respectively. 

Generalization of Multiple Integrals 



Leibniz Rule can also be generalized to the differentiation of integrals. For a function 

𝑓(𝑥, 𝑡) where a(𝑡) and b(𝑡) are differentiable, the generalized Leibniz Rule is : 

𝑑

𝑑𝑥
∫ 𝑓(𝑥, 𝑡)𝑑𝑥 = ∫

𝜕𝑓

𝜕𝑡
(𝑥, 𝑡)𝑑𝑥

𝑏(𝑡)

𝑎(𝑡)

+
𝑏(𝑡)

𝑎(𝑡)

𝑓(𝑏(𝑡), 𝑡)𝑏′(𝑡) − 𝑓(𝑎(𝑡), 𝑡)𝑎′(𝑡) 

Applications 

Differential Equations: Leibniz Rule is crucial in solving ordinary and partial differential 

equations, especially in finding solutions and applying boundary conditions. 

Physics: In physics, the rule is used in various domains, such as mechanics, electromagnetism, 

and thermodynamics, to derive relationships and equations involving rates of change. 

Engineering: Engineers use Leibniz Rule in the analysis and design of systems and structures, 

examining how changing one quantity affects another. 

Economics: In economics, it is employed to study the elasticity, marginal rate of substitution, 

and other rates of change in economic models and theories. 

Leibniz Rule is a cornerstone of calculus, providing an elegant and practical approach to 

finding the derivatives of product functions and parameter-dependent integrals. Its applications 

are vast and varied, spanning across different fields of science and engineering, making it an 

indispensable tool for anyone delving into the realms of applied and theoretical mathematics. By 

enabling the differentiation of products and integrals, the Leibniz Rule forms the backbone of 

many mathematical analyses and physical theories. 

9.10     Residue and Contour Integration 

Residue and Contour Integration are powerful techniques in complex analysis. They 

involve evaluating integrals over contour paths in the complex plane. The residue theorem relates 

the values of complex integrals to the sum of residues at the poles of a function, simplifying the 

evaluation of certain integrals. 

9.11      Self-Assessment Questions 



1. How is differentiation used to find the maxima and minima of a function? 

2. Explain the role of Jacobians in the change of variable in multiple integration. 

3. What is the significance of uniform convergence in improper integrals? 

4. How does the Residue Theorem aid in evaluating contour integrals? 

5. Given the function 𝑓(𝑥) = 𝑥2 + 3𝑥 + 2, find the derivative 𝑓′(𝑥). 

6. For the function 𝑔(𝑥) = 𝑥3 + 3𝑥2 + 2, determine the critical points and identify whether 

each is a local maximum, local minimum, or a saddle point. 

7. Find the partial derivatives of the function ℎ(𝑥, 𝑦) = 𝑥𝑦 + 𝑒𝑥𝑦 with respect to 𝑥 𝑎𝑛𝑑 𝑦. 

8. Evaluate the double integral  

∬ (3x+2y)dA, 

R 

where R is the rectangle defined by 0≤x≤1 and 0≤y≤2. 

9. Compute the double integral  

       ∬ xydA 

R 

using polar coordinates, where R is the unit circle cantered at the origin. 

10. Define uniform convergence and explain its significance in the context of improper 

integrals. 

11. Discuss an application of functions of several variables in any field of your choice, 

detailing how such functions are used to model real-world scenarios. 

 

9.12      Summary 

This unit embarked on a comprehensive exploration of advanced calculus topics, 

beginning with the foundational concept of differentiating functions. We dove into the 

applications and implications of finding the maxima and minima of functions, serving as an 

essential tool for optimization. Venturing into multivariable calculus, the study of functions of 

several variables was elaborated upon, followed by a detailed analysis of multiple integrals, 

emphasizing their evaluation through repeated integration. The unit further elucidated the 



nuances of changing variables in multiple integration, with particular emphasis on 

transformations like Cartesian to polar. The pivotal concept of uniform convergence in improper 

integrals was highlighted, detailing its significance in ensuring the valid interchange of limit 

operations. Leibniz's Rule was presented in both its basic and generalized forms, establishing the 

framework for differentiating products and parameter-dependent integrals. The unit culminated 

by offering self-assessment questions, facilitating the reinforcement of the concepts covered. 

9.13       Further Reading 

• Stewart, J. (2016). Calculus: Early Transcendentals. Cengage Learning. 

• Apostol, T. M. (1967). Calculus, Volume II. John Wiley & Sons. 

• Kreyszig, E. (2018). Advanced Engineering Mathematics. John Wiley & Sons. 

This further reading list provides deeper insights into the topics covered, offering a more 

detailed exploration of advanced integration and differentiation techniques for those wishing to 

expand their understanding. 

 

 

 


