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Blocks & Units Introduction 
 

The present SLM on Stochastic Process consists of sixteen Units with four Blocks. 

The Unit – 1 Introduction to Stochastic Process, introduces the concept of stochastic processes 

and discusses the related definitions and examples. 

The Block 1 Markov Dependent Trials or Two State Markov Chain Considers the two state 

Markov chain and discusses various related distributions, limiting distributions and behaviour of 

Markov trials. 

Unit – 2Markov Dependent Trials explains the basic concepts of Markovian property, two state-

Markov Chains/ Markov dependent trials and definitions of various terms. 

In Unit – 3n-step Transition Probabilities the n-step transition probabilities of a two state 

Markov Chain are derived when (i) the initial probability vector is given, (ii) when the initial 

probability vector is not given. 

The Unit – 4Stationary probability distributions and Expected Number of Visits to a State 

derives the limiting probability distribution of a two-state Markov Chain, discusses the 

stationarity property, and obtains the results related to expected number of visits to a state. 

The Block 2 Markov Chain with more than two states and Random Walk (Gambler’s ruin 

problem) Considers the Markov chains with more than two states and discusses various results 

related to it. The block also considers random walk model as a gambler’s ruin problem. 

In Unit – 5 n-step transition probabilities and Chapman-Kolmogorov Equations the n-step 

transition probabilities and Chapman Kolmogorov equations for a Markov Chain are derived. 

The Unit – 6 First Passage and First Return Probabilities focusses on the derivation of first 

passage and first return probabilities of a Markov Chain and presents various related results. 

The Unit – 7 Classification of States discusses classification of states such as periodic, aperiodic 

states, the property of ergodicity, recurrent or transient states etc. and various results related to 

them. 

In Unit – 8 Random Walk and Gambler’s Ruin Problem we discuss gambler’s ruin problem and 

derive the results related to probability of ruin. 

The Block 3 Poisson Process and Simple Branching Process covers two different topic, the 

Poisson process and simple branching process. 

The Unit – 9 Conditions and derivation of Poisson Process defines Poisson process, discusses its 

various conditions, and provides the derivation of the Poisson process. 

In Unit – 10 Interarrival Time Distributions the derivations of various results related to 

interarrival time distributions are given. 



 
 

The Unit – 11 Simple Branching Process Introduction, Probability Generating Function and 

Moments defines simple Branching process and gives definitions of various terms. The 

probability generating function of the process and its moments are derived. 

In Unit – 12 Probability of Extinction of Simple Branching Process the probability of extinction 

and various results related to the probability of extinction of the simple Branching Process are 

derived. 

The Block 4 Queuing Process and Martingales covers two different topics, the Queuing process 

and Martingales.  

In Unit – 13 M/M/1 Queuing Process: Introduction and Steady State Analysis the simple M/M/1 

queuing process is introduced and the definitions of various terms are given. The steady state 

analysis of the M/M/1 queuing model is also presented. 

The Unit – 14 Waiting time distributions of M/M/1 Queuing Process derives the waiting time 

distribution and different results related to waiting time distribution of the M/M/1 queuing 

process. 

The Unit – 15 Martingales: Introduction defines Martingales explains with several examples. 

In Unit- 16 Optimal Sampling Theorem the derivation of optimal sampling theorem is given and 

it has been explained with several examples. 

At the end of every block/unit the summary, self-assessment questions and further 

readings are given. 



 
 

Unit – 1:  Introduction to Stochastic Processes  

In various fields of physical and life we encounter with a random process running 

along in time. In such processes we study about the phenomenon changing with 

time (or some other parameter). We consider families of random variables (random 

variable), which are functions of time parameter, say t, i.e., families of r,v,’s of the 

type  𝑋𝑡 , 𝑡 ∈ 𝑇 , where T is some index set of possible values of t.  

Thus, we define a stochastic process as the family of random variables  𝑋𝑡 , 𝑡 ∈ 𝑇 . 

The set of all possible values of 𝑋𝑡 , say 𝑆, is called the State Space of the 

stochastic process. The index set T is called the parameter space. 

The elements 𝑡  ∈ 𝑇  are referred as the time parameter. However, it is not 

necessary that 𝑡 is always a time parameter. 

If 𝑇 is a singleton set, we have a single random variable If T is a finite set, say, 

𝑇 =   1,2, … . . , 𝑛 , then we have a random vector the study of which pertains to the 

multivariate statistical analysis.  

In stochastic processes we usually consider processes with 𝑇 an infinite set 

(countable infinite or uncountable). Also, the state space 𝑆 can be countable or 

uncountable. Hence, the following four situations may arise: 

(i) T countable, S countable 

(ii) T countable, S uncountable 

(iii) T uncountable, S countable 

(iv) T uncountable, S uncountable 

Examples: 



 
 

(i) 𝑋𝑡 : outcome of the 𝑡𝑡  throw in throning a die, 𝑡 ≥  1.Then  𝑋𝑡 , 𝑡 ≥ 1  

constitutes a stochastic process. Here𝑆 =  1,2, … . . ,6 ; 𝑇 =

 1,2,3, …… .  . Both S and T are countable. 

(ii) 𝑋𝑡  is the number of telephone calls received at a switchboard during the 

period  0, 𝑡 , 𝑡 ∈  0, ∞ . Then  𝑋𝑡 ;  𝑡 ∈  0, ∞   is a stochastic process 

Here 𝑆 =   1,2,3, … .  . Hence S is countable while𝑇 =  0, ∞  is 

uncountable. 

(iii) 𝑋𝑙 : number of weak spots in a textile fiber in a length  0, 𝑙  of the fiber. 

Then  𝑋𝑙 ; 𝑙 ∈ 𝐿 is a stochastic process for some index set 𝐿. 

(iv)  𝑁𝑣; 𝑣 ∈ 𝑉 , where 𝑁𝑣  is the number of insects in volume 𝑣 of the soil. 

(v) 𝑋𝑡 : number of radio active emissions recorded in a counter in the period 

 0, 𝑡 . 

(vi)  𝑁𝑡 , 𝑡 ∈ 𝑇  here 𝑁𝑡  is no of flowers in a plant at time t.  

(vii)  𝑋𝑡 , 𝑡 ∈ 𝑇 ,where 𝑋𝑡  is magnitude of the signal in an ECG at time t.  

(viii)  𝑋𝑛 , 𝑛 ∈ 𝑁 ,where 𝑋𝑛  is price of the share of some company on the n
th
 

day.  

(ix) Brownian motion   𝑋𝑡 , 𝑌𝑡 , 𝑍𝑡 ;  𝑡 ∈ 𝑇 , where  𝑋𝑡 , 𝑌𝑡 , 𝑍𝑡  is the position 

of a particle (in three-dimensional space) at time t. 

(x)  𝑁𝑡 , 𝑡 ∈ 𝑇 , where 𝑁𝑡 is size of the population of a country at time t. 

Definition: A stochastic process is an indexed family of random variables  𝑋𝑡 , 𝑡 ∈

𝑇 , so that we can write x(t) = X (t,w) in terms of a probability space  𝛺, ℱ, 𝑃 , 𝜔 ∈

𝛺. Here 𝛺 is the sample space, ℱis a field and 𝑃 is a probability measure.  

In some cases, the members of the family are mutually independent; see example 

(i), but in general, we come across processes whose members are mutually 

dependent. Different stochastic processes are described according to the nature of 

dependence among the members of the family. 



 
 

Block: 1 Markov Dependent Trials or Two State Markov Chain 

Unit –2:Markov Dependent Trials 

Example 1: Consider a sequence of mutually independent Bernoulli trails with 

𝛺 =   𝑆, 𝐹  and 𝑃 𝑆 =  𝑝, 𝑃 𝐹 = 𝑞 = 1 − 𝑝  in each trail. Define 

𝑋𝑛 =  
1 𝑖𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑜𝑓 𝑡𝑒 𝑛 𝑡 𝑡𝑟𝑎𝑖𝑙 𝑖𝑠 𝑆
2 𝑖𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑜𝑓 𝑡𝑒 𝑛𝑡 𝑡𝑟𝑎𝑖𝑙 𝑖𝑠 𝐹

  1  

Then  𝑋𝑛 , 𝑛 = 1,2, … is a stochastic process. 

Further 

𝑃 𝑋𝑛+1 = 𝑗𝑛+1|𝑋1 = 𝑗1 , … , 𝑋𝑛 = 𝑗𝑛 

= 𝑃 𝑋𝑛+1 = 𝑗𝑛+1 ,  because differnt trails are independent . 

𝑗𝑟 =  1,2;   𝑟 =  1, … . , 𝑛. The trials are independent and the outcome of the (n+1) 

trials does not depend on the outcomes of the previous n trials. 

Now we assume some kind of dependence between different Bernoulli trials. 

Definition: Consider a sequence of Bernoulli random variable’s  𝑋𝑛 , 𝑛 =

0,1,2, … , such that 𝑃  𝑋𝑛 = 1 =  𝑝 𝑎𝑛𝑑  𝑃 𝑋𝑛  = 0 = 𝑞  = 1 − 𝑝 , ∀ 𝑛 =

 0,1,2, …Further 𝑛 =  0,1,2 … and for each possible value of 𝑗0, 𝑗1, …𝑗𝑛 , 𝑗𝑛+1, we 

have  

𝑃 𝑋𝑛+1 =  𝑗𝑛+1|𝑋0 = 𝑗0, 𝑋1 = 𝑗1 , ……… , 𝑋𝑛 = 𝑗𝑛 ,   

= 𝑃 𝑋𝑛+1 =  𝑗𝑛+1|𝑋𝑛 =  𝑗𝑛  1  

Then  𝑋𝑛 , 𝑛 = 0,1,2, …  is called a two-stateMarket Chain or Markov development 

trails.  



 
 

In Markov dependent trails, the outcome of the  𝑛 + 1 𝑡  trail depends on the 

outcome of the 𝑛𝑡  trial and, given the outcome of the 𝑛𝑡  trial, it does not depend 

on the outcomes of the first  𝑛 − 1  trials.  

If we call outcome of the 𝑛𝑡  trial as “PRESENT”, outcome of the  𝑛 + 1 𝑡 trial 

as “FUTURE”, outcomes ofthe first  𝑛 − 1 trials as “PAST”, then the property (1) 

implies that the “FUTURE” depends only on “PRESENT” and not on the PAST.  

This is called the Markov property, memoryless property, forgetfulness property or 

loss of memory property. 

The Russian mathematician Markov considered such trials for the first time.  

The sequence of independent Bernoulli trials (see Example 1) is a trivial example 

of Markov dependent trials. 

Let 

𝑝𝑖𝑗 = 𝑃 𝑋𝑛+1 =  𝑗|𝑋𝑛 = 𝑖 ; 𝑖 = 1,2, 𝑗 = 1,2. ; 𝑛 = 0,1,2, … 

The independent of 𝑝𝑖𝑗 from 𝑛 is referred as the Markov sequence is (time or 

temporally) homogeneous. 

If 𝑋𝑛  = 𝑖, we say that the state of the process or the system at time 𝑛 is 𝑖. 

If 𝑋𝑛  = 𝑖 and 𝑋𝑛+1  = 𝑗, we say that there is a transition from the state 𝑖 to the 

state 𝑗 at time n+1,  𝑖, 𝑗 =  1,2 . Symbolically 𝑖 →  𝑗 at time (n+1); its probability 

is 𝑝𝑖𝑗 . 

The four probabilities 𝑝11 , 𝑝12 , 𝑝21  and p22are called the transition probabilities. 

However, 𝑝12 =  1 − 𝑝11  and 𝑝21 =  1 − 𝑝22 . Hence only two of the four 

probabilities are the independent parameters. We may write these transition 

probabilities in matrix from as 



 
 

 

𝑃 =  
𝑝11 𝑝12

𝑝21 𝑝22
 =  

𝑝11 1 − 𝑝11

1 − 𝑝22 𝑝22
  

P is called the matrix of transition probabilities or Transition Probability Matrix 

(TPM). The  𝑖, 𝑗 𝑡  element of P denotes the conditional probability of a transition 

to state 𝑗 at time  𝑛 + 1  given that the system is in state 𝑖 at time 𝑛. Note that we 

are assuming that the transition probabilities are independent of time  𝑛 . 

Given 𝑃 we should be able to study the behavior of the process over a passage of 

time provided that the initial condition is given,i.e., how the process started.  

Let 

𝑝1
 0 

=  prob of 𝑆 at the initial trial =  𝑃 𝑋0 = 1  

𝑝2
 0 

=  prob of 𝐹 at the initial trial =  𝑃 𝑋0 = 2  

=  1 −  𝑝1
 0 

 

Thus, the initial probabilities vector is given by  

𝑝 0 =  𝑝1
 0 , 𝑝2

 0   

Let 

𝑝𝑛 𝑆 = 𝑝1
 𝑛 

= 𝑃 𝑋𝑛 = 1 Probability of 𝑆 at the𝑛𝑡 trial 

𝑝𝑛 𝐹 = 𝑝2
 𝑛 

= 𝑃 𝑋𝑛 = 2 :  Probability of 𝐹 at the𝑛𝑡 trial 

=  1 −  𝑝1
 𝑛 

 

𝑝 𝑛 =  𝑝1
 𝑛 , 𝑝2

 𝑛   

If we write 

𝑝11
 𝑛 

= 𝑃 𝑋𝑛 = 1|𝑋0 = 1  



 
 

𝑝12
 𝑛 

= 𝑃 𝑋𝑛 = 2|𝑋0 = 1  

= 1 − 𝑝11
 𝑛 

 

𝑝22
 𝑛 

= 𝑃 𝑋𝑛 = 2|𝑋0 = 2  

𝑝21
 𝑛 

= 𝑃 𝑋𝑛 = 2|𝑋0 = 1  

= 1 − 𝑝22
 𝑛 

 

Then the matrix 

𝑃 𝑛  
𝑝11

 𝑛 
𝑝12

 𝑛 

𝑝21
 𝑛 

𝑝22
 𝑛 

  

is called the n-step transition probability matrix. 

  



 
 

Unit – 3:  n-step Transition Probabilities 

The following theorem derives the n-step transition probabilities of a two-state 

Markov Chain when the initial probability vector is given. 

Theorem1: Given a two state Markov chain with transition probability matrix 

(TPM) 

𝑃 =  
𝑝11 1 − 𝑝12

1 − 𝑝21 𝑝22
 , 0 ≤ 𝑝11 , 𝑝22 ≤ 1,  𝑝11 + 𝑝22 − 1 < | 

and initial provability vector  𝑝 0 =  𝑝1
 0 , 𝑝2

 0  , we have  

𝑝𝑛 𝑆 = 𝑝1
 𝑛 

=  𝑝11 + 𝑝22 − 1 𝑛  𝑝1
 0 

−
1 − 𝑝22

2 − 𝑝11 − 𝑝22
 +

1 − 𝑝22

2 − 𝑝11 − 𝑝22
 

and 𝑝𝑛 𝐹 = 1 −  𝑝𝑛 𝑆 , 𝑖. 𝑒., 𝑝2
 𝑛 

= 1 − 𝑝1
 𝑛 

.  

Proof: For n ≥1, we have 

𝑝𝑛 𝑆 = 𝑃 𝑋𝑛 = 1  

= P Xn = 1, Xn−1 = 1 + P Xn = 1, Xn−1 = 2  

= 𝑃 𝑋𝑛 = 1|𝑋𝑛−1 = 1 𝑃  𝑋𝑛−1 = 1 + 𝑃  𝑋𝑛 = 1|𝑋𝑛−1 = 2 𝑃 𝑋𝑛−1 = 2  

= 𝑝11𝑝𝑛−1 𝑆 + 𝑝21   𝑝𝑛−1 𝐹  

= 𝑝11𝑝𝑛−1 𝑆 + 𝑝21  1 − 𝑝𝑛−1 𝑆   

= 𝑝11𝑝𝑛−1 𝑆 +  1 − 𝑝22  1 − 𝑝𝑛−1 𝑆   

= 𝑎 𝑝𝑛−1 𝑆 + 𝑏 

where 𝑎 =  𝑝11 + 𝑝22 − 1,   𝑏 = 1 − 𝑝22 . 

Writing 𝑝𝑛 =  𝑝𝑛 𝑆  , we get the difference equation 

𝑝𝑛 = 𝑎 𝑝𝑛−1 + 𝑏 , 𝑛 ≥ 1                                                                 2  



 
 

For obtaining 𝑝𝑛we solve this difference equation under the restriction |a|<1, (|a|=1, 

if p11 = 1= p22 or if p11 = 0= p22. If p11=1 we get 1 1 …or 2 2 … with probability 1 

and if p11 = 0= p22 we get 12 12…or 2 1 2 1 …With probability 1.)  

Let us define 

𝑝𝑛 = 𝑢𝑛 +
𝑏

1 − 𝑎
, 𝑛 = 0,1,2 …                                                        3  

Hence from (2) and (3), we get 

𝑢𝑛 +
𝑏

1 − 𝑎
= 𝑎  𝑢𝑛−1 +

𝑏

1 − 𝑏
 + 𝑏 = 𝑎𝑢𝑛−1 +

𝑏

1 − 𝑎
 

or  

𝑢𝑛 = 𝑎  𝑢𝑛−1 = 𝑎 2𝑢𝑛−2 = ⋯ . . = 𝑎𝑛𝑢0 

Hence  

𝑝𝑛 = 𝑝𝑛 𝑆  

= 𝑢𝑛 +
𝑏

1 − 𝑎
 

= 𝑎𝑛𝑢0 +
𝑏

1 − 𝑎
 

= 𝑎𝑛  𝑝0 𝑆 −
𝑏

1 − 𝑎
 +

𝑏

1 − 𝑎
 

=  𝑝11 + 𝑝22 − 1 𝑛  𝑝0
 𝑆 −

1 − 𝑝22

2 − 𝑝11 − 𝑝22
 +

1 − 𝑝22

2 − 𝑝11 − 𝑝22
 

Interchanging the roles of S and F, we obtain 

𝑝𝑛 𝐹 =  𝑝11 + 𝑝22 − 1 𝑛  𝑝0
 𝐹 −

1 − 𝑝11

2 − 𝑝11 − 𝑝22
 +

1 − 𝑝11

2 − 𝑝11 − 𝑝22
 

= 1 − 𝑝𝑛 𝑆 . 

Hence the theorem follows■ 



 
 

If the initial probabilities 𝑝0 𝑆 and 𝑝0 𝐹 are not given then we can compute the 

transition probabilities  𝑝𝑖𝑗
 𝑛 

 = 𝑃 𝑋𝑛 = 𝑗 𝑋0 = 𝑖}; 𝑖, 𝑗 = 1,2. 

Theorem 2: For a two state Markov chain with the transition probability matrix 

(TPM) 

𝑃 =  
𝑝11 1 − 𝑝11

1 − 𝑝22 𝑝22
 , 0 ≤ 𝑝11 , 𝑝22 , ≤  𝑝11 + 𝑝22 − 1 < 1 

the n- step TPM is given by  

𝑃 𝑛 = 𝐴 +  𝑝11 + 𝑝22 − 1 𝑛  𝐵, 

where, 

𝐴 =
1

2 − 𝑝11 − 𝑝22
 
1 − 𝑝22 1 − 𝑝11

1 − 𝑝22 1 − 𝑝11
  

𝐵 =
1

2 − 𝑝11 − 𝑝22
 

1 − 𝑝11 − 1 − 𝑝11 

− 1 − 𝑝22 1 − 𝑝22
  

Proof: For n ≥ 2 

𝑝11
 𝑛 

= 𝑃 𝑋𝑛 = 1 𝑋0 = 1  

= 𝑃 𝑋𝑛 = 1, 𝑋𝑛−1 = 1 𝑋0 = 1 + 𝑃 𝑋𝑛 = 1, 𝑋𝑛−1 = 2 𝑋0 = 1  

= 𝑃 𝑋𝑛 = 1|𝑋𝑛−1 = 1 𝑃 𝑋𝑛−1 = 1|𝑋0 = 1 

+ 𝑃 𝑋 = 1|𝑋𝑛−1 = 2 𝑃 𝑋𝑛−1 = 2|𝑋0 = 1  

=  𝑝11𝑝11
 𝑛−1 

+ 𝑝21𝑝12
 𝑛−1 

 

=  𝑝11𝑝11
 𝑛−1 

+  1 − 𝑝21  1 − 𝑝11
 𝑛−1 

  

= 𝑎 𝑝11
 𝑛−1 

+ 𝑏                                                                         (4) 

where 𝑎 =  𝑝11 + 𝑝22 − 1,   𝑏 = 1 − 𝑝22    

For solving this difference equation (4), we write 



 
 

𝑝11
 𝑛 

= 𝑢 𝑛 +
𝑏

1 − 𝑎
, 𝑛 ≥ 1 

so that (4) reduces to 

𝑢 𝑛 = 𝑎𝑢 𝑛−1 = 𝑎2𝑢 𝑛−2 …… . . 𝑎𝑛−1𝑢 1 =  𝑎𝑛−1  𝑝11
 1 

−
𝑏

1 − 𝑎
  

Hence 

𝑝11
 𝑛 

= 𝑎𝑛−1  𝑝11
 1 

−
𝑏

1 − 𝑎
 +

𝑏

1 − 𝑎
 

=  𝑝11 + 𝑝22 − 1 𝑛−1  𝑝11 −
1 − 𝑝22

2 − 𝑝11 − 𝑝22
 +

1 − 𝑝22

2 − 𝑝11 − 𝑝22
,  𝑝11

 1 
= 𝑝11  

=  
 𝑝11 + 𝑝22 − 1 𝑛 1 − 𝑝11 

2 − 𝑝11 − 𝑝22
+

1 − 𝑝11

2 − 𝑝11 − 𝑝22

 5  

Interchanging the roles of S and F, we obtain 

𝑝22
 𝑛 

=  
 𝑝11 + 𝑝22 − 1 𝑛 1 − 𝑝22 

2 − 𝑝11 − 𝑝22
+

1 − 𝑝11

2 − 𝑝11 − 𝑝22

 6  

Further 

𝑝12
 𝑛 

= 1 − 𝑝11
 𝑛 

 

=  −
 𝑝11 + 𝑝22 − 1 𝑛 1 − 𝑝22 

2 − 𝑝11 − 𝑝22
+

1 − 𝑝11

2 − 𝑝11 − 𝑝22

 7  

𝑝21
 𝑛 

= 1 − 𝑝22
 𝑛 

 

= −
 𝑝11 + 𝑝22 − 1 𝑛 1 − 𝑝22 

2 − 𝑝11 − 𝑝22
+

1 − 𝑝22

2 − 𝑝11 − 𝑝22

 8  

Combining (5), (6) (7) and (8) we get 

𝑃 𝑛 =  
𝑝11

 𝑛 
𝑝12

 𝑛 

𝑝21
 𝑛 

𝑝22
 𝑛 

 = 𝐴 +  𝑝11 + 𝑝22 − 1 𝑛  𝐵, 



 
 

Here A and B are as defined in the theorem. Hence, we follow the theorem■ 

  



 
 

Unit – 4:  Stationary probability distributions and Expected Number of Visits 

to a State 

First, we derive the limiting n-step transition probability distribution as 𝑛 → ∞. 

Theorem 3: If |p11 + p22-1|<1 

lim
𝑛→∞

𝑃 𝑛 = 𝐴 =  
𝜋1 𝜋2

𝜋1 𝜋2
                                            (9) 

where 

𝜋1 =
 1 − 𝑝22 

 2 − 𝑝11 − 𝑝22 
, 𝜋2 =

 1 − 𝑝11 

 2 − 𝑝11 − 𝑝22 
.                 (10)   

Proof: Since  p11  +  p22 − 1 < 1, we have lim𝑛→∞ 1 − 𝑝11 − 𝑝22 
𝑛 = 0. Hence  

lim
𝑛→∞

𝑃 𝑛 = lim
𝑛→∞

 𝐴 +  1 − 𝑝11 − 𝑝22 
𝑛𝐵 = 𝐴. 

This proves the required result■ 

Notice that 𝜋1 + 𝜋2 = 1 from the above theorem 3 we see that  

lim
𝑛→∞

𝑝11
 𝑛 

= lim
𝑛→∞

𝑝21
 𝑛 

= 𝜋1 , and lim
𝑛→∞

𝑝22
 𝑛 

= lim
𝑛→∞

𝑝12
 𝑛 

= 𝜋2 

Therefore, for large n, the probability that system occupies the state i is 𝜋𝑖 =

 𝑖 = 1,2 irrespective of whether we started initially in state 1 or state 2. Thus, for 

large n, there is a state of “Statistical equilibrium” or “Steady State”. The steady 

state probabilities are independent of the initial state of the process. 𝜋 =  𝜋1, 𝜋2  

Gives the limiting probabilitydistribution of the process when the steady state 

arrives. The smaller the factor  𝑝11 + 𝑝22 − 1 , the faster the approach to the 

steady state.  

Notice that if 𝑝11 = 𝑝22  

 𝜋1 = lim
𝑛→∞

𝑝𝑛 𝑆 =
1

2
= lim

𝑛→∞
𝑝𝑛 𝐹 =

1

2
(= 𝜋2) 



 
 

Definition: Suppose 𝑎1 and 𝑎2are real numbers such that 0 < 𝑎1 , 𝑎2 < 1, 𝑎1 +

𝑎2 = 1. Then, the probability Distribution 𝑎 = (𝑎1, 𝑎2) is said to be Stationary 

with respect to a given two state Markov Chain with the TPM  

𝑃 =  
𝑝11 𝑝12

𝑝21 𝑝22
  

if the following condition holds:  

 𝑎1 = 𝑎1𝑝11 + 𝑎2𝑝21

𝑎2 = 𝑎1𝑝12 + 𝑎2𝑝22
  11  

Suppose 𝑃  𝑋0 = 1 = 𝑎1, 𝑃  𝑋0 = 2 = 𝑎2, where 𝑎1, 𝑎2 satisfy (11),then  

𝑃 𝑋1 = 1 = 𝑃 𝑋1 = 1|𝑋0 = 1 𝑃 𝑋0 = 1 + 𝑃 𝑋1 = 1|𝑋0 = 2 𝑃 𝑋0 = 2  

= 𝑝11𝑎1 + 𝑝21𝑎2 =  𝑎1 

Similarly  

𝑃 𝑋1 = 2 = 𝑝12𝑎1 + 𝑝22𝑎2 = 𝑎2 

𝑃 𝑋2 = 1 = 𝑃 𝑋1 = 1 𝑝11 + 𝑃 𝑋1 = 2 𝑝21  

=  𝑎1𝑝11 + 𝑎2𝑝21 = 𝑎1 

𝑃 𝑋2 = 2 = 𝑎2 

In general 

𝑃 𝑋𝑛 = 1 = 𝑎1 , 𝑃 𝑋𝑛 = 2 = 𝑎2  ∀𝑛 ≥ 0. 

Theorem 4:The limiting probabilitydistribution 𝜋 =  𝜋1, 𝜋2  of a two state Markov 

Chain is stationary. 

Proof. We have 

𝜋1𝑝11 + 𝜋2𝑝21 =
 1 − 𝑝22 

 2 − 𝑝11 − 𝑝22 
𝑝11 +

 1 − 𝑝11 

 2 − 𝑝11 − 𝑝22 
𝑝21  

=
𝑝11 1 − 𝑝22 +  1 − 𝑝11  1 − 𝑝22 

 2 − 𝑝11 − 𝑝22 
 



 
 

= 1 −
𝑝22

2 − 𝑝11 − 𝑝22
= 𝜋1 

Further 

𝜋1𝑝12 + 𝜋2𝑝22 =
 1 − 𝑝22  1 − 𝑝11 

 2 − 𝑝11 − 𝑝22 
𝑝12 +

 1 − 𝑝11 𝑝22

 2 − 𝑝11 − 𝑝22 
 

=
1 − 𝑝11

2 − 𝑝11 − 𝑝22
= 𝜋2 

Thus, the stationarity condition (11) holds for the probability distribution 𝜋, so that 

𝜋 =  𝜋1, 𝜋2  is a stationary probability distribution for the Markov Chain■ 

Theorem 5: The stationary distribution of a two state Markov Chain is unique. 

Proof. Suppose 𝜋 =  𝜋1, 𝜋2  is stationary with respect to the given two state 

Markov Chain with 

𝜋1 =
 1 − 𝑝22 

 2 − 𝑝11 − 𝑝22 
, 𝜋2 =

 1 − 𝑝11 

 2 − 𝑝11 − 𝑝22 
 

𝜋1𝑝11 + 𝜋2𝑝21 = 𝜋1 ,
𝜋2𝑝12 + 𝜋2𝑝22 = 𝜋2

𝜋1 + 𝜋2 = 𝜋1

  

Let 𝜋 ′ =  𝜋1
′ , 𝜋2

′   be any other stationary probability distribution. Then by the 

definition of stationarity  

𝜋1
′ 𝑝11 + 𝜋2

′ 𝑝21 = 𝜋1
′ , 

𝜋1
′ 𝑝12 + 𝜋2

′ 𝑝22 = 𝜋2
′  

Which implies that 

𝜋1
′ =

1 − 𝑝22

2 − 𝑝11 − 𝑝22
= 𝜋1 , 𝜋2

′ = 1 − 𝜋1
′ = 𝜋2 

This proves the theorem■ 

 

 



 
 

Expected Number of visits to a specified state in a time period: 

Let 𝑁𝑖𝑗
 𝑛  𝑖, 𝑗 = 1,2  be a random variable denoting the number of visits the 

Markov Chainmakes to state j starting initially in state i, in the first n transitions. 

Let  

𝜇𝑖𝑗
 𝑛 

= 𝐸  𝑁𝑖𝑗
 𝑛 

  

Theorem 6: For a two state Markov Chain. with TPM 𝑃 =  ((𝑝𝑖𝑗 )), 𝑖, 𝑗 = 1,2;  0 ≤

𝑝11 , 𝑝22 , ≤ 1,  𝑝11 + 𝑝22 − 1 < 1, the matrix  𝜇𝑖𝑗
 𝑛 

  , where 𝜇𝑖𝑗
 𝑛 

denotes the 

expected number of visits to state 𝑗 in the first 𝑛 transition starting initially from 

state 𝑖, is given by  

 

  𝜇𝑖𝑗
 𝑛 

  =  
𝑛𝜋1 +

𝑎 1 − 𝑎𝑛 𝜋2

1 − 𝑎
𝑛𝜋2 +

𝑎 1 − 𝑎𝑛 𝜋2

1 − 𝑎

𝑛𝜋1 +
𝑎 1 − 𝑎𝑛 𝜋1

1 − 𝑎
𝑛𝜋2 +

𝑎 1 − 𝑎𝑛 𝜋1

1 − 𝑎

  

where  

𝜋1 =
 1 − 𝑝22 

 2 − 𝑝11 − 𝑝22 
, 𝜋2 = 1 − 𝜋1 , 𝑎 = 𝑝11 + 𝑝22 − 1. 

Proof: Let be  𝑋0, 𝑋1 , … . .   a two state Markov Chain. Define a random variable 

𝑦𝑖𝑗
 𝑚 

=  
1   𝑖𝑓 𝑋𝑚 = 𝑗, 𝑋0 = 𝑖
0   𝑖𝑓 𝑋𝑚 ≠ 𝑗, 𝑋0 = 𝑖

 ;  𝑚 = 1,2, …  

For given m 

𝑃  𝑦𝑖𝑗
 𝑚 

= 0 = 1 − 𝑝𝑖𝑗
 𝑚 

 

𝑃  𝑦𝑖𝑗
 𝑛 

= 1 = 𝑝𝑖𝑗
 𝑚 

 



 
 

Hence  

𝐸  𝑦𝑖𝑗
 𝑚 

 = 𝑝𝑖𝑗
 𝑚 

 

Now 

𝑁𝑖𝑗
 𝑛 

= 𝑦𝑖𝑗
 1 

+ 𝑦𝑖𝑗
 2 

+ ⋯… . . 𝑦𝑖𝑗
 𝑛 

 

=   𝑦𝑖𝑗
 𝑚 

𝑛

𝑚−1

 

Therefore  

𝜇𝑖𝑗
 𝑛 

= 𝐸  𝑁𝑖𝑗
 𝑛 

  

=  𝐸   𝑦𝑖𝑗
 𝑚 

 

𝑛

𝑚−1

 

=  𝑝𝑖𝑗
 𝑚 

𝑛

𝑚−1

 

Hence 

𝜇𝑖𝑗
 𝑛 

=  𝑝𝑖𝑗
 𝑚 

=   
 𝑝11 + 𝑝22 − 1 𝑚 1 − 𝑝11 

2 − 𝑝11 − 𝑝22
+

1 − 𝑝22

2 − 𝑝11 − 𝑝22
 

𝑛

𝑚=1

𝑛

𝑚=1

 

= 𝜋2  𝑎𝑚 + 𝑛𝜋1

𝑛

𝑚=1

 

= 𝑛𝜋1 + 𝜋2

𝑎 1 − 𝑎𝑛 

1 − 𝑎
 

which is the  1,1 𝑡  element of   𝜇𝑖𝑗
 𝑛 

  . Similarly, we can find other elements of 

the matrix   𝜇𝑖𝑗
 𝑛 

  . Hence the theorem follows■ 



 
 

Notice that lim
𝑛→∞

𝜇 𝑖𝑗
 𝑛 

𝑛
= 𝜋1and lim

𝑛→∞

𝜇22
 𝑛 

𝑛
= 𝜋2. 

Therefore 𝜋2may be interpreted as the average fraction of time the process 

occupies the state 𝑖(𝑖 = 1,2) in the long run. Hence 𝜋2 has two interpretations:  

(i) At a single point of time, as 𝑛 → ∞, 𝜋𝑖  is the probabilitythat the system is 

in state 𝑖.  

(ii) Over a long passage of time 𝜋𝑖  is the average fraction of time the system 

is in state 𝑖.  

  



 
 

Block: 2  Markov Chain with more than two states and Random Walk (Gamblers 

ruin problem):  

In this block we will discuss the (i) Markov processes with more than two states 

and (ii) gambler’s ruin problem as a random walk model. 

Unit – 5: n-step transition probabilities and Chapman-Kolmogorov Equations 

So far, we have considered Markov chains with two possible outcomes in each 

trial. It can be extended to trials with more than two possible outcomes in each 

trial. 

Example 2: consider a component, such as a valve, which is subject to failure. Let 

the component be inspected each day and classified as being in one of three states: 

State 1: satisfactory 

State 2: unsatisfactory 

State 3: failed. 

Suppose that at time 𝑛, the process is at state 1 let the probabilities of being at time 

𝑛 + 1, in states 1,2,3 be 𝑝11 , 𝑝12 , 𝑝13;  𝑝11 + 𝑝12 + 𝑝13; = 1 and let these 

probabilities do not depend on n. Next, if the process is in state 2 at time 𝑛 let the 

probabilities of being at time 𝑛 + 1 in states 1,2,3, be 0, 𝑝22 , 𝑝23 , with 𝑝22 + 𝑝23 =

1. That is once the valve is unsatisfactory, it can never return to the satisfactory 

state. 𝑝22 , 𝑝23  are independent of 𝑛 and of the history of the process before 𝑛. 

Finally we suppose that if the process is is in state 3 at time 𝑛, it is certain to be in 

state 3 at time 𝑛 + 1. Thus, the transition probabilities for transition from time 𝑛 to 

time 𝑛 + 1 depend on the state given to be occupied at time 𝑛 and the final state at 

time 𝑛 + 1, but not on what happened before time n. The transition probability 

matrix is given by  



 
 

𝑃 =  

𝑝11 𝑝12 𝑝13

0 𝑝22 𝑝23

0 0 1
  

In general, the state space 𝑆 may consist of 𝑘 states or even a countably 

infinite number of states. 

Let  𝑋𝑛 ; 𝑛 = 0,1,2,3, … . .   be a stochastic process with 𝑋𝑛  taking discrete 

values 1,2,3, … 

Definition: The stochastic process  𝑋𝑛 ; 𝑛 = 0,1,2,3, … . .   is called a Markov chain 

if for 𝑛 = 1,2, … ;  𝑖0, 𝑖1 , 𝑖2, … 𝑖𝑛−1, 𝑗 ∈ 𝑆, 

𝑃 𝑋𝑛 = 𝑗| 𝑋𝑛−1 = 𝑖𝑛−1, … , 𝑋0 = 𝑖0  

= 𝑃 𝑋𝑛 = 𝑗| 𝑋𝑛−1 = 𝑖𝑛−1 . 

If 𝑋𝑛−1 = 𝑖 and 𝑋𝑛 = 𝑗, we say that/ the system has made a transition from 

state 𝑖 to the state 𝑗.  

The probability 𝑝𝑖𝑗 = 𝑝  𝑋𝑛 = 𝑗|𝑋𝑛−1 = 𝑖 , 𝑖, 𝑗 ∈ 𝑆  is called the (one step) 

transition probability𝑖 →j at time 𝑛. the transition probabilities may or may not be 

independent of 𝑛. if the transition probability𝑝𝑖𝑗 is independent of 𝑛, the Markov 

chain is said to be (time) homogeneous otherwise it is called non- homogeneous. 

We shall confine to homogeneous Markov chains.  

Let the state space 𝑆 =  {1,2,3, … }. Then 𝑝𝑖𝑗 ≥ 0 ∀ 𝑖, 𝑗 ∈ 𝑆 𝑎𝑛𝑑  𝑝𝑖𝑗 =𝑗∈𝑆

1∀𝑖 ∈ 𝑆 . The matrix 

𝑃 =  
𝑝11 𝑝12 𝑝13         …

𝑝21 𝑝22 𝑝23       ⋯

⋮ ⋮ ⋮         ⋯
  

is called the (one step) transition probability matrix. The sum of elements in each 

row of 𝑃 is unity and each element is non-negative. 



 
 

Definition: A square matrix satisfying, (i) each element is non-negative (ii) sum of 

elements in each row in unity, is called a stochastic matrix. If in addition to (i) and 

(ii), the sum of elements in each column is also unity, then the matrix is called a 

doubly stochastic matrix. 

𝑃 is a stochastic matrix. 

Let 

𝑝𝑗
 𝑛 

= 𝑃  𝑋𝑛 = 𝑗 ; 𝑛 = 0,1,2, …𝑗 ∈ 𝑆 =  1,2, … .   

𝑝𝑗
 0 

= 𝑝  𝑋0 = 𝑗 ; 𝑗 ∈ 𝑆: initial probability distribution 

The conditional probability 𝑃  𝑋𝑛 = 𝑗|𝑋0 = 𝑖 = 𝑝𝑖𝑗
 𝑛 

is called the 𝑛 −step 

transition probability, 𝑖, 𝑗 ∈ 𝑆. The matrix 

𝑃 𝑛 =  
𝑝11

 𝑛 
𝑝12

 𝑛 
⋯

𝑝21
 𝑛 

𝑝22
 𝑛 

⋯
⋮ ⋮ ⋯

  

is called the 𝑛 −step TPM of the MARKOV CHAIN. 

Higher Transition probabilities:  

Chapman – Kolmogorov Equation:  

For obtaining the 𝑛 − step transition probabilities, we have 

𝑝𝑖𝑗
 𝑛 

= 𝑃  𝑋𝑛 = 𝑗|𝑋0 = 𝑖  

=   𝑃  𝑋𝑛 = 𝑗, 𝑋𝑛−1 = 𝑟| 𝑋0 = 𝑖  𝑆 =  1,2,3, …  

𝑟∈𝑆

 

=   𝑃  𝑋𝑛 = 𝑗|𝑋𝑛−1 = 𝑟, 𝑋0 = 𝑖  𝑃 𝑋𝑛−1 = 𝑟| 𝑋0 = 𝑖 

∞

𝑟=1

 



 
 

=   𝑃  𝑋𝑛 = 𝑗|𝑋𝑛−1 = 𝑟  𝑃 𝑋𝑛−1 = 𝑟| 𝑋0 = 𝑖 

∞

𝑟=1

 

=   𝑝𝑖𝑟
 𝑛−1 

𝑝𝑟𝑗

∞

𝑟=1

                                                                  (1) 

Since 𝑝𝑟𝑗 ≤ 1, we have 

 𝑝𝑖𝑟
 𝑛−1 

𝑝𝑟𝑗

∞

𝑟=1

≤   𝑝𝑖𝑟
 𝑛−1 

∞

𝑟=1

= 1 < ∞ 

Therefore  𝑝𝑟𝑗 𝑝𝑖𝑟
 𝑛−1 

𝑟  is convergent. We can write (1) in matrix notation as  

 
𝑝11

 𝑛 
𝑝12

 𝑛 
⋯

𝑝21
 𝑛 

𝑝22
 𝑛 

⋯
⋮ ⋮ ⋯

 =  
𝑝11

 𝑛−1 
⋯

⋮ …
⋮ …

  
𝑝11 𝑝12 𝑝13         …

𝑝21 𝑝22 𝑝23       ⋯

⋮ ⋮ ⋮         ⋯
  

or 

𝑃 𝑛 = 𝑃 𝑛−1 𝑃 

=  𝑃 𝑛−2 𝑃2 

⋮ 

=  𝑃𝑛  

Thus 

𝑃 𝑛 =  𝑃𝑛 2  

Eq. (2) can be used for the computation of 𝑃𝑖𝑗
 𝑛 

. 

Again 

𝑃 𝑚+𝑛 =  𝑃𝑚+𝑛  

= 𝑃𝑚𝑃𝑛  



 
 

=  𝑃 𝑚 𝑃 𝑛  

=  𝑃 𝑛 𝑃 𝑚  

or 

𝑝𝑖𝑗
 𝑚+𝑛 

=   𝑝𝑖𝑟
 𝑚 

𝑟

𝑝𝑟𝑗
 𝑛 

 

=   𝑝𝑖𝑟
 𝑛 

𝑟

𝑝𝑟𝑗
 𝑚 

,     𝑖, 𝑗 ∈ 𝑆.                                                            3  

The set of equations (3) is known as the Chapman Kolmogorov (C-K) equations. 

The transition probabilities of a Markov Chain satisfy the Chapman- Kolmogorov 

equations. However, its converse is not always true, i.e., there exit non- Markovian 

Chains whose transition probabilities satisfy C-K equations.  

Counter Example: Consider the sample space 

{(1,2,3),(1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1), (1,1,1), (2,2,2), (3,3,3)} 

with a probability mass  
1

9
  attached to each triplet. Define the triplet (𝑋1, 𝑋2, 𝑋3) of 

random variables such that𝑋𝑖  is the number at the 𝑖𝑡  place (𝑖 =  1,2,3). The 

possible values of 𝑋𝑖are 1,2 and 3. The p.d. of 𝑋𝑖  is  

𝑃 𝑋𝑖 = 𝑟 =
1

3
    𝑟 = 1,2,3 

Further 

𝑃 𝑋𝑖 = 𝑟, 𝑋𝑗 = 𝑠  =
1

9
    𝑟, 𝑠 = 1,2,3 

𝑃 𝑋1 = 𝑟, 𝑋2 = 𝑠, 𝑋3 = 𝑡  =  

1

9
,    𝑟, 𝑠, 𝑡 = 1,2,3;   𝑟 = 𝑠 = 𝑡 𝑜𝑟 𝑟 ≠ 𝑠 ≠ 𝑡

0 𝑖𝑓 𝑟 = 𝑠 ≠ 𝑡 𝑜𝑟 𝑟 = 𝑡 ≠ 𝑠 𝑜𝑟  𝑟 ≠ 𝑡 = 𝑠

  

Hence 



 
 

𝑃  𝑋𝑖 = 𝑟, 𝑋𝑗 = 𝑠 = 𝑃 𝑋𝑖 = 𝑟 𝑃  𝑋𝑗 = 𝑠 =
1

9
 

but 

𝑃  𝑋1 = 𝑟, 𝑋2 = 𝑠, 𝑋3 = 𝑡 ≠ 𝑃 𝑋1 = 𝑟 𝑃  𝑋2 = 𝑠 , 𝑃 𝑋3 = 𝑡 . 

Therefore (𝑋1, 𝑋2 , 𝑋3)are pair wise independent but not mutually independent. 

Now start with the triplet (𝑋1, 𝑋2 , 𝑋3). Then define another triplet (𝑋4, 𝑋5, 𝑋6)of 

random variable’s exactly as we have defined (𝑋1, 𝑋2, 𝑋3) but independent of it. 

Then define another triplet (𝑋7, 𝑋8, 𝑋9) in the same manner as above but 

independent of the first two triplets and so on. Continuing in this manner we obtain 

a sequence (or family) of random variable’s {𝑋1, 𝑋2, 𝑋3, …𝑋𝑛 , … },i.e., a stochastic 

process. The sequence involves values 1,2 and 3 each with probability 
1

3
 . We thus 

have a stochastic process with state space 𝑆 = {1,2,3} and 

𝑝𝑖𝑗
 1 

= 𝑝𝑖𝑗 = 𝑃  𝑋𝑚+1 = 𝑗|𝑋𝑚 = 𝑖  

= 𝑃  𝑋𝑚+1 = 𝑗 =
1

3
 since𝑋𝑚 , 𝑋𝑚+1are pairwise independent  

𝑝𝑖𝑗
 2 

= 𝑃 𝑋𝑚+2 = 𝑗|𝑋𝑚 = 𝑖 =
1

3
 

For 𝑛 ≥ 3 

𝑝𝑖𝑗
 𝑛 

= 𝑃 𝑋𝑚+𝑛 = 𝑗|𝑋𝑚 = 𝑖 = 𝑃 𝑋𝑚+𝑛 = 𝑗 =
1

3
 

Thus ∀ 𝑚, 𝑛 ≥ 1 and (𝑖, 𝑗)  ∈  𝑆 

𝑝𝑖𝑗
 𝑚+𝑛 

=
1

3
 

and 



 
 

 𝑝𝑖𝑟
 𝑚 

𝑝𝑟𝑗
 𝑛 

=  
1

3
× 

1

3
=

1

3
=  𝑝𝑖𝑗

 𝑚+𝑛 

3

𝑟=1

3

𝑟=1

 

So that the C.K. equation holds for the stochastic process in eqestion. 

However, the stochastic process under consideration in non-Markovian. For 

verifying this, let the first transition takes the system to state 2. Then a transition to 

state 3 at the next step is possible if and only if the initial state was 1. Thus, the 

transition following the first step depend not only on the present state but also on 

the initial state, i.e. the process is non-Markovian. 

For obtaining the vector of State occupation probabilities at time n,  

𝑝 𝑛 =  𝑝1
 𝑛 

, 𝑝2
 𝑛 

, … .   

we have 

𝑝𝑗
 𝑛 

= 𝑃 𝑥𝑛 = 𝑗  𝑛 = 0,1, … . , 𝑗 = 1,2 …  

=  𝑃 𝑥𝑛 = 𝑗, 𝑥𝑛−1 = 𝑟 

𝑟

 

=  𝑃 𝑥𝑛 = 𝑗|𝑥𝑛−1 = 𝑟 𝑃 𝑥𝑛−1 = 𝑟 

𝑟

 

=   𝑝𝑟𝑗 𝑝𝑟
 𝑛−1 

𝑟

 

=   𝑝𝑟
 𝑛−1 

𝑝𝑟𝑗  4 

𝑟

 

There is no convergent difficulty as 

 𝑝𝑟
 𝑛−1 

𝑝𝑟𝑗 ≤   𝑝𝑟
 𝑛−1 

= 1

𝑟𝑟

< ∞ 

 In matrix notation we can express (4) as  



 
 

𝑝(𝑛) = 𝑝 𝑛−1 𝑃                                                   5  

On iteration, we obtain  

𝑝(𝑛) = 𝑝 𝑛−1 𝑃 = 𝑝 𝑛−2 𝑃2 = ⋯ = 𝑝 0 𝑃𝑛 ;  𝑛 = 1,2, ….    

Hence the initial probability vector 𝑝 0 and the TPM 𝑃 suffice to determine the 

marginal distribution 𝑝(𝑛).  

  



 
 

Unit – 6: First Passage and First Return Probabilities  

A state 𝑗 is called ephemeral if 𝑝𝑖𝑗 = 0 ∀ 𝑖 ∈ 𝑆. A chain can only be in an 

ephemeral state initially and pass out of it in the first transition. An ephemeral state 

can never be reached from any other state. The column of P corresponding to an 

ephemeral state is composed entirely of zeros. Let us exclude the ephemeral states 

from consideration.  

Suppose that the chain is initially in state 𝑗 and 𝑓𝑗𝑗
 𝑛 

 denotes the probability 

that next occurrence of state j is at time 𝑛, i.e. 𝑓𝑗𝑗
 1 

= 𝑝𝑗𝑗 and for 𝑛 =  2,3 … 

𝑓𝑗𝑗
 𝑛 

= 𝑃 𝑋𝑟 ≠ 𝑗, 𝑟 = 1,2, … , 𝑛 − 1; 𝑋𝑛 = 𝑗| 𝑋0 = 𝑗  

𝑓𝑗𝑗
 𝑛 

is called the first return probabilities to state 𝑗 at time 𝑛 or recurrence 

probabilities.  

Similarly, we define the first passage probability from state 𝑗 to state 𝑘 for 

time 𝑛 as 𝑓𝑗𝑘
 1 

= 𝑝𝑗𝑘 and for 𝑛 = 2,3 … 

𝑓𝑗𝑘
 𝑛 

= 𝑃  𝑋𝑟 ≠ 𝑘, 𝑟 = 1,2, …𝑛 − 1; 𝑋𝑛 = 𝑘|𝑋0 = 𝑗 . 

Now for n ≥ 2 

𝑝𝑗𝑗
 𝑛 

= 𝑃  𝑋𝑛 = 𝑗|𝑋0 = 𝑗  

=   𝑃 𝑋1 ≠ 𝑗, …𝑋𝑟−1 ≠ 𝑗, 𝑋𝑟 = 𝑗|𝑋0 = 𝑗 𝑃 𝑋𝑛 = 𝑗|𝑋𝑟 = 𝑗 

𝑛

𝑟=1

 

=  𝑓𝑗𝑗
 𝑟 

𝑝𝑗𝑗
 𝑛−𝑟 

𝑛

𝑟=1

 𝑝𝑗𝑗
 0 

= 𝑃  𝑋0 = 𝑗|𝑋0 = 𝑗 = 1  

= 𝑓𝑗𝑗
 𝑛 

𝑝𝑗𝑗
 0 

+  𝑓𝑗𝑗
 𝑟 

𝑝𝑗𝑗
 𝑛−𝑟 

𝑛−1

𝑟=1

 



 
 

= 𝑓𝑗𝑗
 𝑛 

 +  𝑓𝑗𝑗
 𝑟 

𝑝𝑗𝑗
 𝑛−𝑟 

𝑛−1

𝑟=1

 

Or  

𝑓𝑗𝑗
 𝑛 

=  𝑝𝑗𝑗
 𝑛 

−  𝑓𝑗𝑗
 𝑟 

𝑝𝑗𝑗
 𝑛−𝑟 

𝑛−1

𝑟=1

; 𝑛 = 2,3, …                                               6  

From (6),𝑓𝑗𝑗
 2 

𝑓𝑗𝑗
 3 

… can be calculated recursively.  

Similarly 

𝑝𝑗𝑘
 𝑛 

=  𝑓𝑗𝑘
 𝑟 

𝑝𝑘𝑘
 𝑛−𝑟 

𝑛−1

𝑟=1

 verify  it  

So that 

𝑓𝑗𝑘
 𝑛 

=  𝑝𝑗𝑘
 𝑛 

−  𝑓𝑗𝑘
 𝑟 

𝑝𝑘𝑘
 𝑛−𝑟 

𝑛−1

𝑟=1

;    𝑛 = 2,3 … .. 

Notice that 𝑛 = 1 𝑓𝑗𝑘
 1 

= 𝑝𝑗𝑘  

Given that the chain stats at state j, the sum 

𝑓𝑗𝑗
 𝑛 

=  𝑓𝑗𝑗
 𝑛 

∞

𝑛=1

 

is the probability That the process returns to state j at least once. 

Definition: Suppose the chain is initially at state 𝑗. if the ultimate return to this state 

is a certain event, the state is called recurrent; in this case the time of first return 

will be a random variable and called the recurrence time. 



 
 

Definition: if the ultimate return to a state has probability less than unity the state is 

called transient (or non-recurrent). 

For a recurrent state j fjj=1 and for a transient state j fjj<1. 1-fjj gives the probability 

that the initial state j is never visited again. 

In the case of a recurrent state {𝑓𝑗𝑗
 𝑛 

;  𝑛 =  1,2, … }  is a probability distribution. 

Thus, for a recurrent state, the expected number of steps required for the first 

return to state 𝑗 is given by 

𝜇𝑗𝑗 =   𝑛 𝑓𝑗𝑗
 𝑛 

∞

𝑛=1

 

𝜇𝑗𝑗 is called the mean recurrence time for the state j.  

If the mean recurrence time 𝜇𝑗𝑗 is finite, the state is called positive recurrent. 

If 𝜇𝑗𝑗 = ∞ , the state is called null recurrent. Similarly 

𝑓𝑗𝑘 =  𝑓𝑗𝑘
 𝑛 

∞

𝑛=1

 

is the probability of ever entering in state 𝑘 given that the chain starts in state 𝑗. we 

may call 𝑓𝑗𝑘 the first passage probability from state j to state k. If 𝑓𝑗𝑘 =1, then  

 𝑛 𝑓𝑗𝑘
 𝑛 

∞

𝑛=1

 

is the mean first passage time from state j to state k.  

Generating Function: 

 For a sequence of real numbers  𝑎𝑛 , 𝑛 ≥ 0  , let 



 
 

𝐴 𝑠 =   𝑎𝑗 𝑠
𝑗

∞

𝑗=0

 

converges in some internal –𝑠0 < 𝑠 < 𝑠0. Then A(s) is called the generating 

function of the sequence  𝑎𝑛 . If  𝑎𝑛  is bounded, i.e., 𝑎𝑗 < ∞, we have for 

 𝑠 < 1 𝐴 𝑠 ≤  𝑎𝑗 < ∞. 

So that 𝐴 𝑠 converges at least for  𝑠 < 1.  

Let  𝑝𝑛 , 𝑛 ≥ 0 be a probability distribution so that  𝑝𝑛 , 𝑛 ≥ 0 and  𝑎𝑗 = 1. 

Then 

𝑃 𝑠 =  𝑝𝑛𝑠
𝑛

∞

𝑛=0

 

is called the probability generating function (p g f) of the probability 

distribution{𝑝𝑛}. Obviously, for |s|<1 

 𝑃 𝑠  =   𝑝𝑛𝑠
𝑛  ≤  𝑝𝑛  𝑠 

𝑛 ≤  𝑝𝑛 = 1 < ∞ 

Therefore P(s) converges absolutely for at least |s|<1.  

Let X be a discrete random variable with p.d. {𝑝𝑛}, then P(s), the p g f of X, is 

given by  

𝑃(𝑠) = 𝐸[𝑠𝑋].  

Now the moment generating function of X is 

𝛹  𝑠 =  𝐸  𝑒𝑠𝑋   

=  𝐸   𝑒𝑠 𝑋  

= 𝑃 𝑒𝑠  

Therefore        
𝛹 𝑠 = 𝑃 𝑒𝑠 

𝑃 𝑠 = 𝛹 log(𝑠) .
  



 
 

Results: 

(i) 𝑝𝑘 =
1

𝑘 !

𝑑𝑘

𝑑𝑠𝑘
𝑃 𝑠   𝑠=0            𝑘 = 0,1,2, … 

(ii) 𝐸 𝑋 =
𝑑

𝑑𝑠
𝑃 𝑠 |𝑠=1 = 𝑃′ 1  

𝐸 𝑋 𝑋 − 1  = 𝑃′′  1  

In general, for 𝑟 = 1,2, … 

𝐸 𝑋 𝑋 − 1 …… .  𝑋 − 𝑟 + 1  = 𝑃 𝑟  1  

(iii) If X and Y are independently distributed random variables with p g f’s 

𝑃1(𝑠) and 𝑃2(𝑠) respectively then the p g f of X+Y is  

𝑃 𝑠 = 𝑃1 𝑠 . 𝑃2 𝑠  

(iv) lim𝑠→1.− 𝑃 𝑠 = 𝑃 1 = 1 

(v) Let  𝑋𝑛  be a sequence of i.i.d. discrete random variables with common p 

g f  

𝑔 𝑠 = 𝐸 𝑠𝑋𝑖 ,             𝑖 = 1,2, … 

Let N be a positive integer valued random variable with p g f 

 𝑠 = 𝐸 𝑠𝑁  

Define 𝑌𝑁 =  𝑋𝑖
𝑁
𝑖=1 . Then the p g f of 𝑌𝑁 is given by  

𝐺 𝑠 =  𝑔 𝑠   

Solution:  

(i) We have 

𝑃 𝑠 =  𝑝𝑛𝑠
𝑛

∞

𝑛=0

= 𝑝0 + 𝑝1𝑠 + 𝑝2𝑠
2 + ⋯ + 𝑝𝑘𝑠

𝑘 + ⋯ 

Now, differentiating 𝑠𝑘with respect to 𝑠, 𝑘 times we obtain 

𝑑𝑘

𝑑𝑠𝑘
𝑠𝑘 = 𝑘 𝑘 − 1  𝑘 − 2 … 1 = 𝑘! 

For 𝑟 < 𝑘, 



 
 

𝑑𝑘

𝑑𝑠𝑘
𝑠𝑟 = 0 

For 𝑟 > 𝑘, 

𝑑𝑘

𝑑𝑠𝑘
𝑠𝑟 = 𝑟 𝑟 − 1 …  𝑟 − 𝑘 + 1 𝑠𝑟−𝑘 , 

Which tends to 0 as 𝑠 → 0. Hence  

𝑑𝑘

𝑑𝑠𝑘
𝑃 𝑠   𝑠=0 = 𝑝𝑘𝑘! 

𝑜𝑟 𝑝𝑘 =
1

𝑘!

𝑑𝑘

𝑑𝑠𝑘
𝑃 𝑠   𝑠=0. 

(ii) We observe that 

𝑑𝑟

𝑑𝑠𝑟
𝑃 𝑠 =  𝑝𝑛  𝑛 𝑛 − 1 … (𝑛 − 𝑟 + 1)𝑠𝑛−𝑟

∞

𝑛=𝑟

 

Taking limit 𝑠 → 1, we obtain 

 𝑑
𝑟

𝑑𝑠𝑟
𝑃 𝑠  

𝑠=1
= 𝑃 𝑟  1  

=  𝑝𝑛  𝑛 𝑛 − 1 …  𝑛 − 𝑟 + 1 

∞

𝑛=𝑟

 

= 𝐸 𝑋 𝑋 − 1 …… .  𝑋 − 𝑟 + 1   

(iii) Since X and Y are independently distributed random variables with 

p g f’s 𝑃1(𝑠) and 𝑃2(𝑠) respectively, the p g f of X+Y is  

𝑃 𝑠 = 𝐸 𝑠 𝑋+𝑌   

= 𝐸 𝑠𝑋𝑠𝑌  

= 𝐸 𝑠𝑋 𝐸 𝑠𝑌   (since X and Y are independently distributed) 

= 𝑃1 𝑠 . 𝑃2 𝑠  



 
 

(iv) We can easily verify that 

lim
𝑠→1.−

𝑃 𝑠 = 𝑃 1  

=  𝑝𝑛

∞

𝑛=0

= 1 

 

(v) We have 

𝐺 𝑠 = 𝐸 𝑠𝑌𝑁   

= 𝐸 𝐸 𝑠𝑌𝑁 |𝑁   

= 𝐸 𝐸 𝑠𝑋𝑖 ……𝑠𝑋𝑁 |𝑁   

= 𝐸 𝐸 𝑠𝑋1 … . . 𝐸 𝑠𝑋𝑁  |𝑁  

= 𝐸 𝑔 𝑠 𝑁  

=  𝑔 𝑠  . 

Generating Functions of  𝒑𝒋𝒌
 𝒏 

; 𝒏 ≥ 𝟎  and 𝒇𝒋𝒌
 𝒏 

; 𝒏 ≥ 𝟏 : 

We have 

𝑝𝑗𝑘
 𝑛 

= 𝑃 𝑥𝑛 = 𝑘|𝑥0 = 𝑗  

𝑝𝑗𝑘
 𝑛 

= 𝑃 𝑥𝑛 = 𝑘|𝑥0 = 𝑗, 𝑥1 ≠ 𝑘, … . , 𝑥𝑛−1 ≠ 𝑘  

For |s|<1. the p.g.f. of {𝑝𝑗𝑘
 𝑛 

; 𝑛 = 0,1, … } is 

𝑃𝑗𝑘  𝑠 =  𝑝𝑗𝑘
 𝑛 

𝑠𝑛

∞

𝑛=0

 

Similarly, the p.g.f. of {𝑓𝑗𝑘
 𝑛 

; 𝑛 = 0,1, … } is 

 



 
 

𝐹𝑗𝑘  𝑠 =  𝑓𝑗𝑘
 𝑛 

𝑠𝑛

∞

𝑛=0

. 

Theorem 7: We have  

𝑃𝑗𝑘  𝑠 = 𝐹𝑗𝑘  𝑠 𝑃𝑘𝑘  𝑠 ;  𝑗 ≠ 𝑘                           (7) 

𝑃𝑗𝑗  𝑠 =
1

1 − 𝐹𝑗𝑗  𝑠 
.                                                (8) 

Proof.Let us define 

𝛿𝑗𝑘 =  
1 𝑖𝑓 𝑗 = 𝑘
0  𝑖𝑓 𝑗 ≠ 𝑘

  

We observe that 

𝑃𝑗𝑘  𝑠 =  𝑝𝑗𝑘
 𝑛 

∞

𝑛=0

𝑠𝑛  

= 𝑝𝑗𝑘
 0 

+  𝑝𝑗𝑘
 𝑛 

∞

𝑛=0

𝑠 𝑛      (𝑝𝑗𝑘
 0 

= 1 if 𝑗 = 𝑘 and 0 if 𝑗 ≠ 𝑘 or𝑝𝑗𝑘
 0 

= 𝛿𝑗𝑘 ) 

= 𝛿𝑗𝑘 +    𝑓𝑗𝑘
 𝑚 

𝑝𝑘𝑘
 𝑛−𝑚 

𝑛

𝑚=1

 𝑠𝑛−𝑚+𝑚

∞

𝑛=0

 

= 𝛿𝑗𝑘 +  𝑓𝑗𝑘
 𝑚 

𝑠𝑚  𝑠𝑛−𝑚𝑝𝑘𝑘
 𝑛−𝑚 

∞

𝑛=𝑚

∞

𝑚=1

 

= 𝛿𝑗𝑘 +  𝑓𝑗𝑘
 𝑚 

𝑠𝑚  𝑠𝑢𝑝𝑘𝑘
 𝑢 

∞

𝑢=0

∞

𝑚=1

 

= 𝛿𝑗𝑘 +  𝑓𝑗𝑘
 𝑚 

𝑠𝑚    𝑝𝑗 𝑗  𝑠 

∞

𝑚=1

 

= 𝛿𝑗𝑘 + 𝐹𝑗𝑘  𝑠 𝑃𝑘𝑘  𝑠  



 
 

If 𝑗 ≠ 𝑘, 𝛿𝑗𝑘 = 0 so that 

𝑃𝑗𝑘  𝑠 = 𝐹𝑗𝑘  𝑠 𝑃𝑘𝑘  𝑠  

If  𝑗 = 𝑘, 𝛿𝑗𝑘 = 1 and 

𝑃𝑗𝑗  𝑠 = 1 + 𝐹𝑗𝑗  𝑠 𝑃𝑗𝑗   𝑠  

or𝑃𝑗𝑗  𝑠 =
1

1 − 𝐹𝑗𝑗  𝑠 
 . 

Hence the theorem follows■ 

Theorem 8: The 𝑗𝑡  state is recurrent,i.e.,𝑓𝑗𝑗 = 1, iff  𝑝𝑗𝑗
 𝑛 

= ∞∞
𝑛=0  . If 𝑗𝑡  state is 

transient, i.e.,𝑓𝑗𝑗 < 1, we have  

 𝑝𝑗𝑗
 𝑛 

=
1

1 − 𝑓𝑗𝑗

∞

𝑛=0

. 

Proof: For s= 1, we have 

𝑃𝑗𝑗  1 =  𝑝𝑗𝑗
 𝑛 

,      

∞

𝑛=0

 

𝐹𝑗𝑗  1 =  𝑓𝑗𝑗
 𝑛 

= 𝑓𝑗𝑗

∞

𝑛=1

 

Since 

𝑃𝑗𝑗  1 =
1

1 − 𝐹𝑗𝑗  1 
 , 

we get 

 𝑝𝑗𝑗
 𝑛 

∞

𝑛=0

=
1

1 − 𝐹𝑗𝑗
 



 
 

Therefore 

 𝑝𝑗𝑗
 𝑛 

<  ∞ ⟺ 𝑓𝑗𝑗 < 1     

∞

𝑛=0

 

and  

 

 𝑝𝑗𝑗
 𝑛 

=  ∞ ⟺ 𝑓𝑗𝑗 = 1    

∞

𝑛=0

 

Hence, we get the result■ 

Theorem 9: If the 𝑘𝑡  state is transient, i.e., 𝑓𝑘𝑘 < 1then 𝑝𝑗𝑘
 𝑛 

<  ∞. ∀ 𝑗 ∈∞
𝑛=0

𝑆 . 

Proof: For 𝑗 = 𝑘, the proof is obvious from the previous theorem. If 𝑗 ≠ 𝑘, we 

have 

 𝑝𝑗𝑘
 𝑛 

=  𝑃𝑗𝑘  1 = 𝐹𝑗𝑘  1 𝑃𝑘𝑘  1 

∞

𝑛=0

 

= 𝐹𝑗𝑘  1 𝑃𝑘𝑘  1  

= 𝑓𝑗𝑘 𝑃𝑘𝑘  1 ≤  𝑃𝑘𝑘  1  since𝑓𝑗𝑘 ≤ 1  

=   𝑝𝑘𝑘
 𝑛 

<  ∞, since the𝑘𝑡state

∞

𝑛=0

is transient. 

Hence the theorem follows■ 

Corollary: if k is transient then lim𝑛→∞ 𝑝𝑗𝑘
 𝑛 

= 0 for every j.  

Proof. The proof follows from the convergence of  𝑝𝑗𝑘
 𝑛 ∞

𝑛=0 . 

  



 
 

Unit – 7: Classification of States 

Definition: A state 𝑗 is called accessible from the state 𝑖  iff ∃  a positive 𝑚 such 

that 𝑝𝑖𝑗
 𝑚 

> 0. We write symbolically 𝑖 → 𝑗.  

Definition:Two states 𝑖 and 𝑗 are called communicative if 𝑗 is accessible from 𝑖 and 

𝑖 is accessible from 𝑗.Thus, we say that the states 𝑖 and 𝑗 communicate if for some 

𝑚, 𝑛 > 0, 𝑝𝑖𝑗
 𝑚 

> 0, 𝑝𝑗𝑖
 𝑛 

> 0. Symbolically we write𝑖 ↔ 𝑗. Obviously, the 

communication is symmetric.  

Theorem 10: The communication is transitive, i.e., if 𝑖 ↔ 𝑗, 𝑗 ↔ 𝑘, then 𝑖 ↔ 𝑘. 

Proof: Let 𝑖 ↔ 𝑗 and 𝑗 ↔ 𝑘. Suppose 𝑚 and 𝑛 are two integers such that𝑝𝑖𝑗
 𝑚 

>

0, 𝑝𝑗𝑘
 𝑛 

> 0, then by Chapman Kolmogorov equations 

𝑝𝑖𝑘
 𝑚+𝑛 

=   𝑝𝑖𝑙
 𝑚 

𝑝𝑙𝑘
 𝑛 

≥ 𝑝𝑖𝑗
 𝑚 

𝑝𝑗𝑘
 𝑛 

> 0

𝑙∈𝑠

. 

so that𝑖 → 𝑘. Similarly, we can show that if 𝑘 → 𝑗, and  𝑗 → 𝑖, then 𝑘 → 𝑖. Hence 

𝑖 ↔ 𝑘■ 

Definition: For a given state 𝑗 of a Markov Chain, the set of all states 𝑘, which 

communicate with 𝑗, denoted by 𝐶(𝑗), is called the communication class of state 𝑗. 

Hence 𝑘 ∈ 𝐶 𝑗 iff   𝑘 ↔ 𝑗. 

Theorem 11: Let 𝐶1 and 𝐶2 be any two communicating classes of a Markov Chain. 

Then either 𝐶1 = 𝐶2 or 𝐶1 ∩  𝐶2 =  ∅.  

Proof. If 𝐶1 ∩  𝐶2 =  ∅ then ∃ a state 𝑘 of the Markov Chain belonging to both 𝐶1 

and 𝐶2. Let 𝑖, 𝑗 ∈  𝑆such that𝐶1  =  𝐶(𝑖) and 𝐶2 = 𝐶(𝑗). Consider any state 

𝑔 ∈  𝐶 (𝑖). Then 𝑔 ↔  𝑖. Since 𝑔 ↔ 𝑖, 𝑖 ↔  𝑘 by transitivity we have 𝑔 ↔  𝑘. But 



 
 

𝑘 ↔ 𝑗, so that 𝑔 ↔ 𝑗, i.e.𝑔 ∈  𝐶(𝑗). Hence 𝐶(𝑖) ⊂ 𝐶(𝑗). Similarly, we can show 

that 𝐶(𝑗) ⊂ 𝐶(𝑖). Therefore 𝐶(𝑖) ⊂ 𝐶(𝑗). or 𝐶1 = 𝐶2. This proves the theorem■ 

Definition: A state 𝑗 of a Markov Chain is said to be periodic with period 𝑑𝑗  if its 

return to the state is possible only at 𝑑𝑗 , 2𝑑𝑗 , 3𝑑𝑗 , …steps, where 𝑑𝑗  is the greatest 

integer with this property. In other words, if 𝑑𝑗  is the greatest common divisior of 

all integers 𝑛 (≥ 1) for which 𝑝𝑗𝑗
 𝑛 

> 0, then 𝑗 is said to be periodic with period 𝑑𝑗 . 

If 𝑝𝑗𝑗
 𝑛 

= 0 ∀ 𝑛 then we take 𝑑𝑗 = 0. The state 𝑗 is said to be aperiodic if no such 

𝑑𝑗 (> 1)) exists. Thus,𝑑𝑗 = 1 will correspond to the aperiodic case. 

If 𝑗 is not a recurrent state we do not define its period. 

Definition: A recurrent, non-null and a periodic state of a Markov Chain is said to 

be ergodic. A Markov Chain, all of whose states are ergodic, is called an ergodic 

chain. 

Theorem 12: If 𝑖 ↔ 𝑗 then 𝑑𝑖 = 𝑑𝑗 . 

Proof: Let 𝑖 ↔ 𝑗. Then ∃ integers 𝑚, 𝑛 > 0 such that𝑝𝑖𝑗
 𝑚 

> 0, 𝑝𝑗𝑖
 𝑛 

> 0. 

Let 𝑝𝑗𝑖
 𝑛 

> 0 then by Chapman Kolmogorov equations 

𝑝𝑗𝑖
 𝑛+𝑠+𝑚 

=   𝑝𝑗𝑙
 𝑛 

𝑝𝑖𝑢
 𝑠 

𝑝𝑢𝑗
 𝑚 

 ≥ 𝑝𝑗𝑖
 𝑛 

𝑝𝑖𝑙
 𝑠 

𝑝𝑖𝑗
 𝑚 

> 0

𝑢∈𝑆𝑙∈𝑆

 

Again, if 𝑝𝑖𝑖
 𝑠 

> 0, we have 

𝑝𝑖𝑖
 2𝑠 

=  𝑝𝑖𝑢
 𝑠 

𝑝𝑢𝑖
 𝑠 

𝑢∈𝑆

≥  𝑝𝑖𝑖
 𝑠 

 
2

> 0. 

Further 𝑝𝑖𝑖
 2𝑠 

> 0 implies that 

𝑝𝑗𝑖
 𝑛+2𝑠+𝑚 

> 0. 



 
 

It follows that 𝑑𝑗  divides  𝑛 + 2𝑠 + 𝑚 −  𝑛 + 𝑠 + 𝑚 = 𝑠. 

This is true ∀ 𝑠 for which 𝑝𝑖𝑖
 𝑠 

> 0 . Thus,𝑑𝑗  divides 𝑑𝑖 . Interchanging the roles of 

𝑖 and 𝑗 in the above proof, we also conclude that 𝑑𝑖  divides 𝑑𝑗 . Hence 𝑑𝑖 = 𝑑𝑗 . 

This leads to the required result■ 

Theorem 13: From a recurrent state a recurrent state can only be obtained. 

Proof. Let 𝑖 be a given recurrent state of the Markov Chain.Let 𝑗 be any other state 

which can be obtained from𝑖. Let 𝑘 be the smallest positive path (length) from 

𝑖 to 𝑗such that𝑝𝑖𝑗
 𝑘 

= 𝛼 > 0. Obviously, the transition from 𝑖 to 𝑗 in 𝑘 steps can not 

be through 𝑖. thus, the probability of a return from 𝑗 to 𝑖 must be greater than 0, 

otherwise the probability of the process not returning to state 𝑖 must be at least 𝛼so 

that the probability of eventual return to state 𝑖 is less than 1 − 𝛼  < 1  which 

contradicts the fact that the 𝑖𝑡  state is recurrent. Hence ∃ a least integer 𝑚such 

that 

𝑝𝑗𝑗
 𝑚 

= 𝛽  say > 0. 

Now for any integer 𝑛 

𝑝𝑖𝑖
 𝑘+𝑛+𝑚 

≥ 𝑝𝑖𝑗
 𝑘 

𝑝𝑗𝑗
 𝑛 

𝑝𝑗𝑖
 𝑚 

  ≥  𝛼 𝛽 𝑝𝑗𝑗
 𝑛 

 

𝑝𝑗𝑗
 𝑚+𝑛+𝑘 

≥ 𝑝𝑗𝑖
 𝑚 

𝑝𝑖𝑖
 𝑛 

𝑝𝑖𝑗
 𝑘 

  ≥  𝛼 𝛽 𝑝𝑖𝑖
 𝑛 

 

Thus lim𝑛→∞ 𝑝𝑖𝑖
 𝑛 

= 0 iff lim𝑛→∞ 𝑝𝑗𝑗
 𝑛 

= 0, so that  𝑝𝑖𝑖
 𝑛 

and  𝑝𝑗𝑗
 𝑛 

coverage or 

diverge together. Since 𝑖 is recurrent  𝑝𝑖𝑖
 𝑛 

diverges so that  𝑝𝑗𝑗
 𝑛 

also diverges. 

Hence state j is also recurrent. This leads to the required result■ 

Stability of a Markov Chain: 



 
 

Stationary Distribution: For a Markov Chain with transition probability {𝑝𝑗𝑘 ; 𝑗, 𝑘 ∈

𝑆}, a probability distribution  𝑢𝑗   is called stationary (or invariant) if 

𝑢𝑘 =  𝑢𝑗𝑝𝑗𝑘 .

𝑗

 𝑢𝑗 ≥ 0,  𝑢𝑗

𝑗

= 1  

Further, we obtain 

𝑢𝑘 =  𝑢𝑗

𝑗

𝑝𝑗𝑘  

   𝑢𝑖𝑝𝑖𝑗

𝑖

 

𝑗

𝑝𝑗𝑘  

=  𝑢𝑗

𝑗

  𝑝𝑖𝑗 𝑝𝑗𝑘

𝑖

  

=  𝑢𝑗

𝑗

𝑝𝑖𝑘
 𝑧 

 

In general, we can easily verify that 

𝑢𝑘 =  𝑢𝑗

𝑗

𝑝𝑖𝑘
 𝑛 

, 𝑛 ≥ 1. 

  



 
 

Unit – 8 : Random Walk and Gambler’s Ruin Problem 

Consider a gambler I who has an initial capital of 𝑘 rupees and plays against an 

opponent, gambler II, whose initial capital is Rs 𝑎 − 𝑘. They are playing a game 

which proceeds by stages. At each step the probability that gambler I wins Re 1 

from his opponent is 𝑝 and the probability that he losses Re 1 to his opponent is 

𝑞 (= 1 − 𝑝). The game continuous until the capital of one of the players reduced 

to zero (i.e., the capital of player I either reduced to zero or increased to “𝑎”). The 

capital possessed by, say, the player I, performs a random walk on non-negative 

integers {0,1,2, … , 𝑎}with absorbing barriers at 0 and 𝑎.The absorptions being 

interpreted as the ruin of the one, or the other player. Given the initial capital 𝑘, it 

is of player I, it is either 𝑘 − 1 or 𝑘 + 1 according as whether player I losses or 

wins the first game. Let 𝜇𝑘  be the probability that the gambler I, starting with the 

initial capital 𝑘ultimately ruins. Then  

𝜇𝑘 = 𝑝 𝜇𝑘+1 + 𝑞𝜇𝑘−1;   𝑘 = 2,3, … , 𝑎 − 2            1  

𝜇1 = 𝑞 + 𝑝 𝜇2 2  

𝜇𝑎−1 = 𝑞 𝜇𝑎−2 𝜇𝑎 = 0  3  

We can write equations (1), (2) and (3) jointly as  

𝜇0 = 1, 𝜇𝑎 = 0  boundary conditions  

𝜇𝑘 = 𝑝 𝜇𝑘+1 + 𝑞 𝜇𝑘−1; 1 ≤ 𝑘 ≤ 𝑎 − 1                         4  

Now we solve (4) under the boundary conditions. 

Case I: Let 𝑝 ≠  𝑞 (random walk is asymmetric) 

Let 𝜇𝑘 = 𝜆𝑘    be a particular solution of (4). Then auxiliary equations are 

𝑝 𝜆2 − 𝜆 + 𝑞 = 0                                                                       5  

or 



 
 

 𝜆 − 1  𝑝 𝜆 − 𝑞 = 0                                                          (6) 

Equation (6) leads to the roots 𝜆 = 1, 𝜆 =
𝑞

𝑝
. Hence, two particular-solutions for 

𝜇𝑘are 

𝜇𝑘 = 1𝑘 = 1, 𝜇𝑘 =  
𝑞

𝑝
 
𝑘

. 

Then a general solution is 

𝜇𝑘 = 𝐴 + 𝐵  
𝑞

𝑝
 
𝑘

                                                 (7) 

Utilizing the boundary conditions 𝜇0 = 1, 𝜇𝑎 = 0in (7), we have 

 
1 = 𝐴 + 𝐵

0 = 𝐴 + 𝐵  
𝑞

𝑝
 
𝑎
  

⟹ 𝐵 = −
1

 
𝑞

𝑝
 
𝑎
− 1

 

𝐴 =
 
𝑞

𝑝
 
𝑎

 
𝑞

𝑝
 
𝑎
− 1

 . 

Substituting the values of 𝐴 and 𝐵 in (7) leads to 

𝜇𝑘 =
 
𝑞

𝑝
 
𝑎
−  

𝑞

𝑝
 
𝑘

 
𝑞

𝑝
 
𝑎
− 1

.                                 8  

Similarly, we can obtain the following expression for the probability of ruin of 

player II: 



 
 

𝜈𝑘 =  
 
𝑞

𝑝
 
𝑘
− 1

 
𝑞

𝑝
 
𝑎
− 1

 9  

We can easily obtain 𝜈𝑘byreplacing 𝑞 by 𝑝, 𝑝 by 𝑞 and 𝑘 by 𝑎 − 𝑘 in 8 . 

Since 𝜇𝑘 + 𝜈𝑘 = 1, the probability of an unending game is 0, i.e.,  

𝑃(𝑢𝑛𝑒𝑛𝑑𝑖𝑛𝑔 𝑔𝑎𝑚𝑒) = 0 

Case II: Let 𝑝 = 𝑞 =
1

2
, then (5) reduces to 

𝜆2 − 2𝜆 + 1 = 0,                  (10) 

which has two equal roots 𝜆 = 1. Further when 𝑝 = 𝑞 = 1/2, if we substitute𝜇𝑘 =

𝑘in (4), we obtain 

𝑘 =
1

2
 𝑘 + 1 +

1

2
(𝑘 − 1) 

Hence 𝜇𝑘 = 𝑘is a second solution of (4).Hence a general solution is 

𝜇𝑘 = 𝐶 + 𝐷𝑘. 

Using boundary conditions, we have 

 𝐹𝑜𝑟 𝑘 = 0, 𝜇0 = 1 = 𝐶
𝐹𝑜𝑟 𝑘 = 𝑎, 𝜇𝑎 = 0 = 𝐶 + 𝐷𝑎

  

Hence 

𝐶 = 1, 𝐷 = −
1

𝑎
 

This leads to 

𝜇𝑘 = 1 −
𝑘

𝑎
 

Similarly we obtain 



 
 

𝜈𝑘 =
𝑘

𝑎
 

Again P (unending game) = 0.  

Suppose player II has infinite capital, i.e., 𝑎 → ∞. An example of player II with 

infinite capital is Casino. Then, for 𝑝 > 𝑞, lim𝑎→∞  
𝑞

𝑝
 
𝑎

= 0 and the probability 

that player I with initial capital 𝜇𝑘  ultimately ruins, is 

𝜇𝑘 =  
𝑞

𝑝
 
𝑘

 

The probability of an unending game is 

1 −  
𝑞

𝑝
 
𝑘

. 

If 𝑝 < 𝑞, lim𝑎→∞  
𝑝

𝑞
 
𝑎

= 0 and 𝜇𝑘 = 1. 

Further for 𝑝 = 𝑞, as 𝑎 → ∞. 𝜇𝑘 → 1. 

Hence for 𝑝 ≤ 𝑞, the probability of an unending game is 0 and the probability of 

ultimate ruin of player I is 1. 

  



 
 

Block 3:Poisson Processand Simple Branching Process 

 

Unit – 9: Conditions and derivation of Poisson Process 

Let 𝑁(𝑡) be the number of occurrences of an event E in an interval  0, 𝑡 . Let 

𝑃𝑛(𝑡)  =  𝑃[𝑁 (𝑡)  =  𝑛]  

This probability is a function of the time 𝑡. The possible values of 𝑛 are 𝑛 =

 0,1,2, … . Thus   

 𝑃𝑛(𝑡) =

∞

𝑛=0

1. 

The family of random variables {𝑁(𝑡), 𝑡 ≥  0} is a stochastic process. Here the 

time 𝑡 is continuous and the state space of 𝑁(𝑡) is discrete and interval valued. 

Such a process is called a counting process. In interval (0, 𝑡] the points at which 

the event occurs are distributed randomly. 

Definition: Let  𝑡1 < 𝑡2, < ⋯𝑡𝑛 < ⋯represent the time points at which the event 

occurs. The random variables 𝑇1  =  𝑡1 , 𝑡2 =  𝑡2 − 𝑡1 …𝑇𝑛 =  𝑡𝑛 − 𝑡𝑛−1are called 

interarrival times.  

The stochastic process {𝑁(𝑡), 𝑡 ≥  0}is a continuous time parameter stochastic 

process with state space {0,1,2, . . . }. 

Now we shall show that under certain conditions 𝑁(𝑡) follows a Poisson 

distribution.  

Conditions for Poisson Process: 

(i) Stationarity:The probability of 𝑛 occurrences (of event E) in an interval of 

length 𝑡 depends only on the length 𝑡 of the interval and 𝑛 and is 



 
 

independent of where the interval is situated. Thus 𝑝𝑛(𝑡) gives the number 

of occurrences (of E) in the interval (𝑇, 𝑇 +  𝑡) ∀ 𝑇 ≥  0.  

(ii) Independence: The probability of 𝑛 occurrences (of E) in interval (𝑇, 𝑇 + 𝑡) 

is independent of the number of occurrences (of E) before 𝑇. This implies 

the independence of various number of events occurring during non-

overlapping time intervals. Thus, for given 𝑛 and 𝑡1 < 𝑡2 …𝑡𝑛 , 𝑁𝑡1
, 𝑁𝑡2

−

𝑁𝑡1
, … , 𝑁𝑡𝑛

− 𝑁𝑡𝑛−1
 are independent random variables.  

(iii) Orderliness:The occurrence of two or more-point events at a single 

point of time is impossible. Let 𝑃>1   be the probability of more than one 

occurrence (of E) in a time interval of length . then 

lim
𝑛→0

𝑃>1  


= 0, 

𝑖. 𝑒.  𝑃>1  = 𝑜  . 

Note: Here o   represents a function 𝑔   defined for  > 0 with the 

property that 

lim
𝑛→0

𝑔  


= 0. 

𝑜𝑟   𝑃𝑘  = 𝑜  

∞

𝑘=2

 

Where of 𝑃𝑘   denotes the probability of 𝑘 occurrences (of E) in a time 

interval width h. 

(iv) 𝑃1()  = 𝜆 + 𝑜() where 𝜆(> 0) is a constant.  

We shall see later that (i), (ii) and (iii) imply (iv). 

Theorem1: Under the conditions (i), (ii), (iii) and (iv), 𝑁(𝑡) follows a Poisson 

distribution with mean𝜆𝑡, i.e,𝑃𝑛(𝑡) is given by.  



 
 

𝑃𝑛 𝑡 =
𝑒−𝜆𝑡  𝜆𝑡 𝑛

𝑛!
; 𝑛 = 0,1,2, …                                 (1) 

Proof: For 𝑛 ≥  0 consider 𝑃𝑛(𝑡 + ). The n events can happen in time interval 

(0, 𝑡 + ] in the following 𝑛 + 1 mutually exclusive ways: 

𝐴1, 𝐴2, … , 𝐴𝑛+1 

𝐴1: 𝑛 events in interval (0, 𝑡] and no event between (𝑡, 𝑡 + ] 

𝐴2: 𝑛 − 1 events in interval (0, 𝑡] and one event between (𝑡, 𝑡 + ] 

𝐴3: 𝑛 − 2 events in interval (0, 𝑡] and two event between (𝑡, 𝑡 + ] 

⋮ 

𝐴𝑛+1: no event in interval (0, 𝑡] and 𝑛 event between (𝑡, 𝑡 +  ] 

Now 

𝑃 𝐴1 = 𝑃[𝑁 𝑡 = 𝑛 ] 𝑃  𝑁  = 0 𝑁  𝑡 = 𝑛] 

= 𝑃𝑛 𝑡 𝑃0   from  ii   

𝑃 𝐴2 = 𝑃 𝑁 𝑡 = 𝑛 − 1 𝑃  𝑁  = 1 𝑁  𝑡 = 𝑛 − 1] 

= 𝑃𝑛−1 𝑡 𝑃1   

⋮ 

𝑃 𝐴𝑛+1 = 𝑃0 𝑡 𝑃𝑛   

Then 

𝑃𝑛 𝑡 +  =  𝑃𝑛−𝑘 𝑡 𝑃𝑘  

𝑛

𝑘=0

 

=   𝑃𝑛−𝑘 𝑡 𝑃𝑘  +  𝑃𝑛−𝑘 𝑡 𝑃𝑘  

𝑛

𝑘=2

1

𝑘=0

 



 
 

=  𝑃𝑛−𝑘 𝑡 𝑃𝑘  + 𝑅𝑘

1

𝑘=0

 

Now 

𝑅𝑘 =  𝑃𝑛−𝑘 𝑡 𝑃𝑘  

𝑛

𝑘=2

 

≤   𝑃𝑘  

𝑛

𝑘=2

 

≤   𝑃𝑘  

∞

𝑘=2

 

=  𝑃>1  = 𝑜   By condition  iii   

Hence  

𝑃𝑛 𝑡 +  = 𝑃𝑛 𝑡 𝑃0  + 𝑃𝑛−1 𝑡 𝑃1  + 𝑜                      (2) 

Again from (iv) 

𝑃1  = 𝜆 + 𝑜   

and  

 𝑃𝑛  = 1

∞

𝑛=0

 

Therefore 

𝑃0   = 1 −  𝑃𝑛  

∞

𝑛=1

 

= 1 − 𝑃1  −  𝑃>1   

= 1 − 𝜆 + 𝑜  .  



 
 

Thus, from (2), we have 

𝑃𝑛 𝑡 +  = 𝑃𝑛 𝑡  1 − 𝜆 + 𝑜   + 𝑃𝑛−1 𝑡  𝜆 + 𝑜    

=  𝑃𝑛 𝑡  1 − 𝜆 + 𝑃𝑛−1 𝑡 𝜆 + 𝑜  . 

Hence 

𝑃𝑛 𝑡 +  − 𝑃𝑛 𝑡 


= 𝜆 𝑃𝑛−1 𝑡 − 𝑃𝑛 𝑡  +

𝑜  


 

Taking limit as  →  0, we have 

𝑑

𝑑𝑡
𝑃𝑛 𝑡 =  𝑃𝑛

′ 𝑡 =  𝜆 𝑃𝑛−1 𝑡 − 𝑃𝑛 𝑡  ; 𝑛 ≥ 1                                            3  

Which is a differential-difference equation. For 𝑛 =  0 we get 

𝑃0 𝑡 +  = 𝑃0 𝑡 𝑃0   

= 𝑃0 𝑡  1 − 𝜆 + 𝑜   

or 

𝑃0 𝑡 +  − 𝑃0 𝑡 


= 𝜆𝑃0 𝑡 + 𝑜                                                         (4)  

As  →  0, (4) reduces to 

𝑃𝑛
′ 𝑡 =  −𝜆𝑃0 𝑡  

or 

𝑑

𝑑𝑡
log 𝑃0 𝑡 = −𝜆                                                                      5  

or 𝑙𝑜𝑔𝑃0 𝑡 = −𝜆𝑡 + 𝐾                                            (6)          

𝐾 is a constant. Writing 𝐶 = 𝑒𝐾, (6) gives 

𝑃0 𝑡 = 𝐶𝑒−𝜆𝑡  



 
 

Since the occurrence of no event in an interval of zero width is a sure event, we 

have𝑃0(0)  = 1. Hence, we obtain 𝐶 = 1. Therefore 

𝑃0 𝑡 = 𝑒−𝜆𝑡                                                        (7) 

For 𝑛 = 1 

𝑃𝑛
′ 𝑡 = 𝜆 𝑃0 𝑡 − 𝑃1 𝑡   

or  

𝑑

𝑑𝑡
𝑃1 𝑡 + 𝜆𝑃1 =  𝜆𝑒−𝜆𝑡  

𝑒𝜆𝑡  
𝑑

𝑑𝑡
𝑃1 𝑡 + 𝜆𝑃1 𝑡  = 𝜆 

or
𝑑

𝑑𝑡
 𝑒𝜆𝑡𝑃1 𝑡  = 𝜆 

Hence 

𝑒𝜆𝑡𝑃1 𝑡 = 𝜆𝑡 + 𝐶. 

Since 𝑃1 0 = 0, we obtain 𝐶 =  0. Therefore 

𝑃1 𝑡 = 𝜆𝑡 𝑒−𝜆𝑡 =
 𝜆𝑡 1𝑒−𝜆𝑡

1!
                                   (8) 

Hence theorem holds for 𝑛 = 0 and 𝑛 = 1. Suppose the result holds for 𝑛 = 𝑘 − 1, 

so that 

𝑃𝑘−1 𝑡 =  
 𝜆𝑡 𝑘−1𝑒−𝜆𝑡

 𝑘 − 1 !
                                          (9) 

Then, for 𝑛 = 𝑘, the equation (3) becomes 

𝑑

𝑑𝑡
𝑃𝑘 𝑡 +  𝜆 𝑃𝑘 𝑡 =

 𝜆𝑡 𝑘−1𝑒−𝜆𝑡

 𝑘 − 1 !
 



 
 

or𝑒𝜆𝑡
𝑑

𝑑𝑡
𝑃𝑘 𝑡 + 𝑒𝜆𝑡  𝜆 𝑃𝑘 𝑡 =

 𝜆𝑡 𝑘−1

 𝑘 − 1 !
 

or
𝑑

𝑑𝑡
 𝑒𝜆𝑡𝑃𝑘 𝑡  =  

 𝜆 𝑘𝑡𝑘−1

 𝑘 − 1 !
 

or𝑒𝜆𝑡𝑃𝑘 𝑡 =
 𝜆 𝑘

 𝑘 − 1 !
 𝑡𝑘−1 𝑑𝑡 + 𝐶   

=  
𝜆𝑘𝑡𝑘

 𝑘 − 1 ! 𝑘
+ 𝐶 

=
 𝜆𝑡 𝑘

𝑘!
+ 𝐶 

For 𝑘 ≥ 2, 𝑃𝑘 0 =  0, we have 𝐶 = 0. Hence 

𝑃𝑘 𝑡 =
 𝜆𝑡 𝑘𝑒−𝜆𝑡

𝑘!
 

Therefore, by induction we get the result of the theorem for all 𝑛■ 

Result: The assumptions (i), (ii) and (iii) imply assumption (iv).  

Proof: For proving this result, let us consider a time interval of unit length and let  

𝑝 = 𝑃0(1) 

Divide this time interval in 𝑛 equal parts, so that 

𝑝 =  𝑃0  
1

𝑛
  

𝑛

⇒ 𝑃0  
1

𝑛
 = 𝑝

1

𝑛  

Hence, for positive integer 𝑘 

𝑃0  
𝑘

𝑛
 = 𝑝

𝑘

𝑛  

For any positive number 𝑡 and positive integer 𝑛, ∃an integer 𝑘such that 

𝑘 − 1

𝑛
≤ 𝑡 ≤

𝑘

𝑛
 



 
 

Here,𝑘is the smallest integer greater than 𝑛𝑡. 

Since 𝑃0(𝑡) is a non-increasing function of 𝑡 

𝑃0  
𝑘 − 1

𝑛
 ≥ 𝑃0 𝑡 ≥ 𝑃0  

𝑘

𝑛
  

or 

𝑝
𝑘−1

𝑛 ≥ 𝑃0 𝑡 ≥ 𝑝
𝑘

𝑛  

Let  𝑛 → ∞ so that 

𝑙𝑖𝑚
𝑛→∞

𝑘

𝑛
=  𝑙𝑖𝑚

𝑛→∞

𝑘 − 1

𝑛
= 𝑡 

and we obtain 

𝑃0 𝑡 = 𝑝𝑡 0 ≤ 𝑝𝑡 ≤ 1  

Case I:Let p= 0. Hence 𝑃0 𝑡 = 0 ∀ 𝑡,i.e., the probability of at least one point 

event occurring in any time interval of length 𝑡 is 1. In other words, in an arbitrary 

length of time infinitely many events will occur with probability 1. This case is of 

no interest. 

Case II: 𝑝 = 1 hence 𝑃0 𝑡 = 1∀𝑡. Thus, there is no stream to be studied.  

Case III:0 < 𝑝 < 1 is of real interest. Here, substituting 𝑝 = 𝑒−𝜆 for some 𝜆 > 0, 

we have  

𝑃0 𝑡 =  𝑃0 1  𝑡  

= 𝑝𝑡  

= 𝑒−𝜆𝑡  

Now, for any time interval 𝑡 

𝑃0 𝑡 + 𝑃1 𝑡 + 𝑃>1 𝑡 = 1  



 
 

or  𝑃1 𝑡 = 1 − 𝑃0 𝑡 − 𝑃>1 𝑡  

       = 1 − 𝑒−𝜆𝑡 + 𝑜 𝑡  by assumption  iii   

        = 1 −   1 − 𝜆𝑡 +
 𝜆𝑡 2

2!
− ⋯ . .  + 𝑜 𝑡  

        = 1 −   1 − 𝜆𝑡 + 𝑜 𝑡  + 𝑜 𝑡  

=  𝜆𝑡 + 𝑜 𝑡 . 

Thus (i), (ii), (iii) imply (iv)■ 

  



 
 

Unit – 10: Interarrival Time Distributions 

Theorem 2: The interval between two successive occurrences of a Poisson process 

{𝑁(𝑡), 𝑡 ≥  0}with parameter λ has an exponential distribution with mean 1/λ. 

Proof: Let 𝑋 be the random variable representing the time interval between two 

successive occurrences of {𝑁(𝑡), 𝑡 ≥  0}and let 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) be its 

distribution function. 

Suppose 𝐸𝑖  and 𝐸𝑖+1 are two successive events and 𝐸𝑖  occurred at time 𝑡𝑖 . Then  

𝑃 𝑋 > 𝑥 = 𝑃  𝐸𝑖+1did not occur in (𝑡𝑖 , 𝑡𝑖 + 𝑥)| 𝐸𝑖occured at time𝑡𝑖  

= 𝑃  no event occurs in interval (𝑡𝑖 , 𝑡𝑖 + 𝑥)| 𝑁  𝑡𝑖 = 𝑖  

= 𝑃  𝑁 𝑥 = 0| 𝑁  𝑡𝑖 = 𝑖  

=  𝑃0 𝑥 =  𝑒−𝜆𝑡 ;  𝑥 > 0. 

Hence 

𝐹 𝑥 = 𝑃 𝑋 ≤ 𝑥  

= 1 − 𝑃 𝑋 > 𝑥  

= 1 − 𝑒−𝜆𝑥 ; 𝑥 > 0. 

The pdf of 𝑋 is  

𝑓 𝑥 =  𝜆𝑒−𝜆𝑥    𝑥 > 0. 

which is the pdf of an exponential with mean 1/𝜆. Hence the theorem follows. 

If 𝑋𝑖  denotes the interval between 𝐸𝑖  and 𝐸𝑖+1; 𝑖 = 1,2, then 𝑋1 , 𝑋2 …are 

independently distributed. We state this result in the following theorem without 

proof. 



 
 

Theorem 4: The inter arrival times (the interval between successive occurrences) of 

a Poisson process with mean 𝜆𝑡 are identically independently distributed random 

variables following the exponential distribution with mean 1/λ. 

The following theorem states that the converse of the above theorem is also 

true.  

Theorem 5: If the intervals between successive occurrences of an event 𝐸 are iid 

with common exponential distribution with mean 1/𝜆. Then the events 𝐸 form a 

Poisson process with mean 𝜆𝑡. 

Proof: Let 𝑍𝑛  be the interval between  𝑛 − 1 𝑡  and 𝑛𝑡  occurrences of a process 

{𝑁(𝑡)} having exponential distribution with mean 1/𝜆 and let 𝑍1, 𝑍2, … be iid 

random variables having exponential distribution with mean 1/𝜆. Then sum 

𝑊𝑛 =  𝑍𝑖
𝑛
𝑖=1  is the waiting time upto the 𝑛𝑡  occurrence, i.e., the time form origin 

to the 𝑛𝑡  subsequent occurrence. Them 𝑊𝑛  follows a gamma distribution with 

parameters 𝜆𝑛. the pdf of 𝑊𝑛  is given by  

𝑔 𝑥 =
𝜆𝑛𝑥𝑛−1𝑒−𝜆𝑥

Γ 𝑛 
;   𝑥 > 0. 

𝑃 𝑁 𝑡 < 𝑛 = 𝑃 𝑊𝑛 = 𝑍1 + ⋯ + 𝑍𝑛 > 𝑡  

= 1 − 𝑃 𝑊𝑛 ≤ 𝑡 . 

Therefore 

𝑃 𝑁 𝑡 = 𝑛 = 𝑃 𝑁 𝑡 < 𝑛 + 1 − 𝑃 𝑁 𝑡 < 𝑛  

= 𝑃 𝑊𝑛 ≤ 𝑡 − 𝑃 𝑊𝑛+1 ≤ 𝑡  

Since 

𝑃 𝑊𝑛 ≤ 𝑡 =  
𝜆𝑛𝑥𝑛−1𝑒−𝜆𝑥

Γ 𝑛 
𝑑𝑥

𝑡

0

 



 
 

=
1

Γ 𝑛 
 𝑦𝑛−1𝑒−𝑦𝑑𝑦

𝜆𝑡

0

 

= 1 −
1

Γ 𝑛 
 𝑦𝑛−1𝑒−𝑦𝑑𝑦

∞

𝜆𝑡

 

Integrating by parts we obtain 

 𝑦𝑛−1𝑒−𝑦𝑑𝑦

∞

𝜆𝑡

=  𝑛 − 1 !  
𝑒−𝜆𝑡  𝜆𝑡 𝑗

𝑗!

𝑛−1

𝑗 =0

 

= Γ 𝑛  
𝑒−𝜆𝑡  𝜆𝑡 𝑗

𝑗!

𝑛−1

𝑗 =0

. 

Hence 

𝑃 𝑊𝑛 ≤ 𝑡 = 1 −  
𝑒−𝜆𝑡  𝜆𝑡 𝑗

𝑗!

𝑛−1

𝑗 =0

 

Thus, the probability distribution of 𝑁(𝑡) is  

𝑝𝑛 𝑡 = 𝑃 𝑁 𝑡 = 𝑛  

= 𝑃 𝑊𝑛 ≤ 𝑡 − 𝑃  𝑊𝑛+1 ≤ 𝑡  

=  1 −  
𝑒−𝜆𝑡  𝜆𝑡 𝑗

𝑗!

𝑛−1

𝑗 =0

 −  1 −  
𝑒−𝜆𝑡  𝜆𝑡 𝑗

𝑗!

𝑛

𝑗=0

  

=  
𝑒−𝜆𝑡  𝜆𝑡 𝑛

𝑛!
;   𝑛 = 0,1,2, … 

Thus, the process  𝑁 𝑡  is a Poisson process with mean 𝜆𝑡■ 

Note: 𝑊𝑛 = 𝑊𝑛 𝑡 is the waiting time for the𝑛𝑡  arrival. The distribution function 

of 𝑊𝑛 𝑡 is given by 



 
 

𝑃 𝑊𝑛 ≤ 𝑡 = 𝐹𝑛 𝑡  say  

= 1 −  
𝑒−𝜆𝑡  𝜆𝑡 𝑗

𝑗!

𝑛−1

𝑗 =0

 

For obtaining the pdf of 𝑊𝑛 𝑡 we, have 

𝐹𝑛 𝑡 =
𝑑

𝑑𝑡
𝐹𝑛 𝑡  

= 𝜆 𝑒−𝜆𝑡   
 𝜆𝑡 𝑗

𝑗!

𝑛−1

𝑗 =0

−  
 𝜆𝑡 𝑗−1

𝑗!

𝑛−1

𝑗 =0

  

=  
𝜆 𝜆𝑡 𝑛−1𝑒−𝜆𝑡

Ѓ 𝑛 
;         0 < 𝑡 < ∞ , 

which is the pdf of a gamma distribution with parameters (𝜆, 𝑛). 𝑓𝑛(𝑡) is called the 

𝑛𝑡  Erlang density in the context of queueing theory. 

Theorem 6: Given only one occurrence of a Poisson process {𝑁(𝑡)} by the time 𝑇, 

the distribution of time point 𝛾 in [0, 𝑇]at which it occurred is uniform in [0, 𝑇].  

Proof: We have 

𝑃 𝛾 ≤ 𝑡 = 𝑃  The event occurs one time before the time 𝑡  

= 𝑃  𝑁 𝑡 = 1  

= 𝑒−𝜆𝑡  𝜆𝑡 

𝑃 𝑁 𝑇 = 1 = 𝑒−𝜆𝑇  𝜆𝑇 

and 

𝑃 𝑁 𝑇 = 1|𝛾 ≤ 𝑡  

= 𝑃 event does not occur in interval 𝑡, 𝑇   

= 𝑒−𝜆 𝑇−𝑡  

Therefore, 



 
 

𝑃  𝛾 ≤ 𝑡 𝑁 𝑇 = 1  

=
𝑃  𝛾 ≤ 𝑡  𝑁 𝑇 = 1|𝛾 ≤ 𝑡 

𝑃 𝑁 𝑇 = 1 
 

=
𝑡

𝑇
;  0 < 𝑡 ≤ 𝑇 

= 𝐺𝛾  𝑡 𝑁 𝑇 = 1    (say) 

𝐺𝛾  𝑡 𝑁 𝑇 = 1  is the conditional cdf of 𝛾 given {𝑁 𝑇 = 1}. Then the conditional 

pdf of 𝛾 given {𝑁 𝑇 = 1} is 

𝑔𝑟  𝑡|𝑁 𝑇 = 1 =
1

𝑇
;  0 < 𝑡 ≤ 𝑇 

Which is the pdf of a uniform distribution in [0, 𝑇]. Hence the theorem follows■ 



 
 

Unit – 11: Simple Branching Process Introduction, Probability Generating 

Function and Moments 

Galton and Watson (1874) developed a mathematical model for the problem 

of extinction of families. 

Let 𝑝𝑖be the probability that a man produces 𝑖 sons let each son has the same 

probability distribution for sons of his own and so on. What is the probability that 

the male line is the probability distribution of the number of descendants in the 𝑛𝑡  

generation.?  

The simple Branching Process has wide applications in the problems where 

one is concerned with objects (or individuals) that can generate objects of similar 

kind; such objects may be biological entities, such as human beings, animals, 

genes, bacteria and so on, which generate similar objects by biological methods or 

may be physical particles such as neutrons which yield new neutrons under a 

nuclear chain reaction. We can say that Branching processes are used to model 

reproduction.  

Assumptions of the Simple Branching Process: 

Suppose we start with a population of 𝑋0 individuals (or objects) which form 

the 0
th
 generation. These objects are called ancestors. The off springs reproduced 

or the object generated by the objects of the 0
th
 generation are the direct descendant 

of the ancestors and are said to form the 1
st
 generation; the objects generated by 

these of the 1
st
  generation form the 2

nd
 generation, and so on. Let 𝑋𝑛  be the 

number of individuals in the 𝑛𝑡  generation. These are composed of the 

descendents of the  𝑛 − 1 𝑡  generation. 

The model proposed by Watson was based on the following assumptions: 



 
 

(i) The objects reproduce independently of other objects,i.e., there is no 

interference; 

(ii) The number X of individuals produced by an individual has the 

probability distribution 

𝑃(𝑋 = 𝑘)  =  𝑝𝑘 ;  𝑘 =  0,1,2, … ;   𝑝𝑘  = 1 

(iii) The probability distribution{𝑝𝑘}remains the same from generation to 

generation.  

The sequence of random variable’s {xn; n= 0,1,2,….} constitutes a Galton-Watson 

(G.W.) branching process with off spring distribution {pk; k=0,1,2,……} 

Probability Generating Function (pgf) of the Branching Process: 

Let  

𝑔 𝑠 =  𝑝𝑘𝑠
𝑘 ;    0 ≤ 𝑠 ≤ 1

∞

𝑘=0

 

be the pgf of 𝑋 and 𝑔𝑛(𝑠) be the 𝑝𝑔𝑓 of 𝑋𝑛 ; i.e.  

𝑔𝑛 𝑠 =  𝑃 𝑋𝑛 = 𝑘 𝑠𝑘 ; 0 ≤ 𝑠 ≤ 1.

𝑘

 

without loss of generality, we assume that 𝑋0 = 1, i.e., the process starts with on 

individuals. Then  

𝑔0 𝑠 =  𝑠 

𝑔1(𝑠)  =  𝑔 (𝑠). 

Theorem 7: We have 

𝑔𝑛 𝑠 =  𝑔𝑛−1 𝑔 𝑆                                              (1) 

𝑔𝑛 𝑠 =  𝑔  𝑔𝑛−1 𝑠                                                (2)  



 
 

Proof: We can write 

𝑋𝑛 =  𝜉𝑟

𝑋𝑛−1

𝑟=1

 

Where 𝜉𝑟  are iidrandom variables with probability distribution{𝑝𝑘}. Now 

𝑃 𝑋𝑛 = 𝑘 =  𝑃 𝑥𝑛 = 𝑘|𝑥𝑛−1 = 𝑗 𝑃 𝑋𝑛−1 = 𝑗 

∞

𝑗=0

 

=   𝑃  𝜉𝑟 = 𝑘

∞

𝑟=1

 𝑃  𝑋𝑛−1 = 𝑗 

∞

𝑗=0

 

Therefore 

𝑔𝑛 𝑠 =  𝑃 𝑥𝑛 = 𝑘 𝑠𝑘

∞

𝑘=0

 

=   𝑠𝑘   𝑃  𝜉𝑟 = 𝑘

𝑗

𝑟=1

 𝑃 𝑋𝑛−1 = 𝑗 

∞

𝑗=0

 

∞

𝑘=0

 

=   𝑃 𝑋𝑛−1 = 𝑗   𝑃   𝜉𝑟 = 𝑘

𝑗

𝑟=1

 

∞

𝑘=1

𝑠𝑘 

∞

𝑗=0

 

Since 𝜉1 , 𝜉2,…are iidrandom variables each with pgf𝑔(𝑠), the pgf of  𝜉𝑟
𝑗
𝑟=1  is given 

by  

 𝑃   𝜉𝑟 = 𝑘

𝑗

𝑟=1

 𝑠𝑘

∞

𝑘=1

 

= 𝐸  𝑠 𝜉𝑟
𝑗
𝑟=1   

=   𝑔 𝑠  𝑗 . 



 
 

Thus 

𝑔𝑛 𝑠 =  𝑃 𝑥𝑛−1 = 𝑗  𝑔 𝑠  𝑗
∞

𝑗=0

 

=  𝑔𝑛−1 𝑔 𝑠   

which gives (1). 

Substituting 𝑛 =  2,3, … in (1) we get 

𝑔2 (𝑠)  =  𝑔1(𝑔(𝑠) 

=  𝑔 𝑔 𝑠   

𝑔3 𝑠 = 𝑔2(𝑔(𝑠) 

= 𝑔(𝑔 𝑔 𝑠   

= 𝑔(𝑔2(𝑠)) 

𝑔4 𝑠 = 𝑔3(𝑔(𝑠) 

=  𝑔 𝑔3 𝑠   

In general 

𝑔𝑛 𝑠 = 𝑔𝑛−1 𝑔 𝑠   

= 𝑔𝑛−2 𝑔 𝑔 𝑠    

= 𝑔𝑛−2 𝑔2 𝑠   

= 𝑔𝑛−3  𝑔 𝑔2 𝑠    

= 𝑔𝑛−3 𝑔3 𝑠   

= ⋯ 

= 𝑔𝑛−𝑘 𝑔𝑘 𝑠   𝑘 = 0,1,2, … , 𝑛  

For 𝑘 = 𝑛 − 1 

𝑔𝑛 𝑠 = 𝑔1 𝑔𝑛−1 𝑠  = 𝑔 𝑔𝑛−1 𝑠  . 



 
 

This proves result (2) of the theorem■ 

Moments of 𝑋𝑛 : 

Theorem 8: If we assume that 𝐸 𝑋1 =  𝑘∞
𝑘=0 𝑝𝑘 =  𝜇 and var (x1) =𝜍2 then,  

𝐸 𝑋𝑛 = 𝜇𝑛 3  

𝑉𝑎𝑟  𝑋𝑛 =  

𝜇𝑛−1 𝜇𝑛 − 1 

𝜇 − 1
𝜍2  𝑖𝑓 𝜇 ≠ 1  

𝑛𝜍2     𝑖𝑓     𝜇 = 1

  4  

Proof:We have 

𝑔𝑛 𝑠 = 𝑔𝑛−1 𝑔 𝑠   5  

Differentiating (5) with respect to𝑠 we get 

𝑔𝑛
′  𝑠 = 𝑔𝑛−1

′  𝑔 1  𝑔′ 𝑠  

So that 

𝑔𝑛
′  1 = 𝑔𝑛−1

′  𝑔 1  𝑔′ 1  

= 𝑔𝑛−1
′  1  𝜇  

On iterating, we get 

𝑔𝑛
′  1 = 𝑔𝑛−2

′  1 𝜇2 

= 𝑔𝑛−3
′  1 𝜇3 

= ⋯ 

= 𝑔1
′  1 𝜇𝑛−1 

= 𝜇𝑛 . 

Again 

𝑉𝑎𝑟  𝑋𝑛 = 𝐸 𝑋𝑛 𝑋𝑛 − 1  + 𝐸 𝑋𝑛 −  𝐸 𝑋𝑛  
2 

=  𝑔𝑛
′′  1 + 𝑔𝑛

′  1 −  𝑔𝑛
′  1  2 



 
 

Now 

𝑔𝑛
′′  𝑠 = 𝑔𝑛−1

′′  𝑔 𝑠   𝑔′ 𝑠  2 + 𝑔𝑛−1
′  𝑔 𝑠  𝑔′′  𝑠  

So that 

𝑔𝑛
′′  1 =  𝑔𝑛−1

′′  1  𝑔 𝑠   𝑔′ 𝑠  2 + 𝑔𝑛−1
′  𝑔 𝑠  𝑔′′  𝑠  

=  𝑔𝑛−1
′  1  𝜇2 + 𝜇𝑛−1𝑚 

where 

𝑚 = 𝑔′′  1  

= 𝐸 𝑋1 𝑋1 − 1   

=  𝜍2 +  𝜇2 − 𝜇. 

On iterating we obtain 

𝑔𝑛
′′  1 = 𝑚𝜇𝑛−1 + 𝜇2 𝑚𝜇𝑛−2 + 𝜇2𝑔𝑛−2

′′  1   

= 𝑚  𝜇𝑛−1 + 𝜇𝑛 + 𝜇4𝑔𝑛−2
′′  1  

= ⋯ 

= 𝑚 𝜇𝑛−1 + 𝜇𝑛 + ⋯… + 𝜇𝑛−2 + 𝜇2𝑛−2𝑔1
′′  1  

= 𝑚 𝜇𝑛−1 1 + 𝜇 + ⋯… + 𝜇𝑛−2 + 𝜇2𝑛−2 𝑚 

= 𝑚 𝜇𝑛−1 1 + 𝜇 + ⋯… + 𝜇𝑛−2 + +𝜇𝑛−1  

= 𝑚. 𝑛  𝑖𝑓 𝜇 = 1 

= 𝑚𝜇𝑛−1
 𝜇𝑛−1 

𝜇 − 1
        𝑖𝑓 𝜇 ≠ 1 

Hence 

𝑉𝑎𝑟  𝑋𝑛  

= 𝑚𝜇𝑛−1
 𝜇𝑛−1 

𝜇 − 1
+ 𝜇𝑛 − 𝜇2𝑛  



 
 

= 𝜍2𝜇𝑛−1
 𝜇𝑛−1 

𝜇 − 1
+

𝜇𝑛 𝜇 − 1  𝜇𝑛−1 

𝜇 − 1
+ 𝜇𝑛 − 𝜇2𝑛  

= 𝜍2𝜇𝑛−1
 𝜇𝑛−1 

𝜇 − 1
                    𝑖𝑓 𝜇 ≠ 1 

and  

𝑉𝑎𝑟  𝑥𝑛 = 𝜍2𝑛                     𝑖𝑓𝜇 = 1. 

Hence the theorem follows■ 

  



 
 

Unit – 12: Probability of Extinction of Simple Branching Process 

If 𝑋𝑛  =  0, the population is extinct by the 𝑛𝑡  generation. Obviously, if 𝑋𝑛  =  0 

for 𝑛 =  𝑚 then 𝑋𝑛  =  0for 𝑛 > 𝑚. Thus 𝑃{𝑋𝑛+1 = 0 |𝑋𝑛  =  0} = 1. The 

extinction of the process occurs when the random sequence {𝑋𝑛} is consist of zero 

for all except a finite number of values of 𝑛. 

Let 

𝑇 = 𝑚𝑖𝑛{𝑛: 𝑋𝑛 =  0}: time of extinction 

If 𝑇 < ∞, the population is extinct after a finite number of generations. 

Theorem 9(Fundamental Theorem of Probability of Extinction: If,𝜇  =

 𝑘∞
𝑘=0 𝑝𝑘 ≤ 1, the probability of ultimate extinction is 1. If μ>1, the probability 

of ultimate extinction is the the positive root less than unity of the equation 

𝑔 𝑠 =  𝑠                                                                            (6) 

Proof: Let 𝑞𝑛 = 𝑃{𝑋𝑛 = 0}. The pgf of 𝑋𝑛  is 𝑔𝑛 𝑠 =  𝑃 𝑋𝑛 = 𝑘 𝑠𝑘 ; 0 ≤∞
𝑘=0

𝑠 ≤ 1 

Hence 

𝑔𝑛(0) = 𝑃 {𝑋𝑛 = 0} = 𝑞𝑛  

𝑞𝑛 : probability that the population starts with one ancestor dies out before the 𝑛𝑡  

generation. Now, if  

𝑝0 = 𝑃 𝑋 = 0 = 0, then𝑋0 ≤ 𝑋1 ≤ 𝑋2 ≤ ⋯ 

and 𝑇 = ∞ almost surely, i.e., extinction can never occur.  

If 𝑝0 = 1 then the population extinct just after the zeroth generation. 

We exclude these trivial cases and assume that 0 < 𝑝0 <  1. 

If 𝑝0 >  0 and 𝑝0 + 𝑝1 = 1, then  



 
 

𝑃 𝑇 < 𝑛 + 1|𝑋0 = 1  

=  𝑝0 + 𝑝1𝑝0 + 𝑝1
2𝑝0 + ⋯ + 𝑝1

𝑛  𝑝0  

= 𝑝0

1 − 𝑝1
𝑛

1 − 𝑝1
 

= 1 − 𝑝1
𝑛 → 1 as 𝑛 →  ∞  

Hence 𝑇 <  ∞  almost surely. 

We exclude these trivial cases and assume that 0 < 𝑝0 < 𝑝0 + 𝑝1 < 1. 

Now  

𝑔 𝑠 =  𝑝0 + 𝑝1 , 𝑠 + 𝑝2𝑠
2 + ⋯… ;    0 ≤ 𝑠 ≤ 1 

𝑔 0 =   𝑝0 > 0 𝑎𝑛𝑑 𝑓𝑜𝑟 0 < 𝑠 ≤ 1 

𝑔′ 𝑠 > 0 

𝑔′′  𝑠 > 0, 

i.e. 𝑔 (𝑠) is a continuous, strictly increasing convex function of 𝑠 for  0 < 𝑠 ≤ 1. 

Since 𝑔(𝑠) is convex, the line 𝑦 = 𝑠 can intersect the curve 𝑦 = 𝑔(𝑠) in at most 

two points for 𝑠 > 0. One of these points is (1,1). Thus, there may or may not be 

another point of intersection. The two possibilities are shown in Figure I and II: 

 



 
 

Now  

𝑔𝑛+1 𝑠 =  𝑔 (𝑔𝑛(𝑠)) 

substituting 𝑠 =  0,we get  

𝑔𝑛+1 0 =  𝑔 𝑔𝑛 0  or𝑞𝑛+1 = 𝑔 𝑞𝑛                                     (7)  

substituting 𝑛 =  0,1,2, … respectively in (7), we get 

𝑞1 = 𝑔  0 = 𝑝0 > 0 = 𝑞1 > 0 

𝑞2 = 𝑔  𝑞1  

> 𝑔  0 =  𝑞1 since g s  is an increasing funciton of s  

⇒ 𝑞1 > 𝑞2 

Assuming that 𝑞𝑛 > 𝑞𝑛−1 

We have 

𝑞𝑛+1 = 𝑔 𝑞𝑛 > 𝑔  𝑞𝑛−1 =  𝑞𝑛  

Hence by induction  

𝑞𝑛+1 > 𝑞𝑛  ∀  𝑛 = 0,1,2, … 

i.e., the sequence  𝑞0 , 𝑞1, …… . 𝑞𝑛 , 𝑞𝑛−1 …   is an increasing sequence bounded 

above by unity. Hence 𝑞𝑛  must have a limit 

lim
𝑛→∞

𝑞𝑛 = 𝑞  say , 0 ≤ 𝑞 ≤ 1  

𝑞 is the probability of ultimate extinction. From (2) it follows that q satisfies  

𝑞 =  𝑔(𝑞)                                               (8) 

Thus, the probability of ultimate extinction is a solution of (8).  

Let 𝜆 be an arbitrary positive root of (8). At leat one such root exists which is λ=1. 

Then 



 
 

𝑞1 = 𝑔 0 < 𝑔  𝜆 = 𝜆                         λ is positive  

𝑖. 𝑒.  𝑞1 < λ 

𝑞2 = 𝑔 𝑞1 < 𝑔  𝜆 = 𝜆 ⇒  𝑞2 < λ 

By including𝑞𝑛 < 𝜆 ∀ 𝑛 = 1,2, …,  letting𝑛 → ∞, we observe that 𝑞 < λ. 

Since λ is an arbitrary positive root of (8), it follows that 𝑞 is the smallest positive 

root of (8). Thus, we examine the roots of the equation 𝑠 =  𝑔(𝑠) in (0,1]. The 

roots are intersection points of 𝑦 =  𝑠 and 𝑦 = 𝑔(𝑠). 

If 𝑔′ 1 = 𝜇 > 1 figure II prevails and ∃ a unique positive root q<1.  

Thus, if 𝜇> 1, the probability of extinction is <1. 

If 𝑔′ 1 = 𝜇 ≤ 1 then there is no root <1 and we have 𝑞 = 1. 

This proves the theorem■ 

  



 
 

Block: 4 Queuing Process and Martingales 

Unit – 13: M/M/1 Queuing Process: Introduction and Steady State Analysis 

A queue is formed when units (or customers, clients) needing some kind of 

service arrive at a service channel (or counter) which provides such service. Each 

customer on arrival goes directly into service if the server is free and if not, joins 

the queue and leaves the system after being served. The basic features 

characterizing a system are: 

(i) The inputs,  

(ii) The service mechanism  

(iii) The queue discipline and 

(iv) The number of service channels. 

The input describes the manner in which customers arrive and join the 

system. The system may have either a limited or an unlimited capacity of holding 

units. The source from which the customer come may be finite or infinite. The 

customers may arrive either singly or in group. The interval between two 

consecutive arrivals is called the interarrival time. 

The service mechanism describes the way the customers are being served. 

The customers may be served either singly or in batches. The time required for 

serving a unit is called the service time. 

The queue discipline indicates the way customers form a queue and are 

served. If the customer at the counter leaves the counter after being served and the 

next customer at the head of the queue enters the service system, the discipline is 

called the “First come First Service” (FCFS) or “First in First out (FIFO) queue 

discipline. Some other rules may be adopted, such as last come first served or 

random ordering before service. 



 
 

The system may have one channel or 𝑠-parallel channels for service. The 

interarrival and service times may be deterministic or random. Usually, we are 

concerned with random interarrival and service time. 

The following random variables or families of random variables provide 

important measures of performance of  stochastic queueing system: 

(i) The number of customers waiting in the queue including the one being 

served at time 𝑡, say 𝑁(𝑡). 

(ii) The busy period which means the duration of the interval from the 

moment the service starts with arrival of a customer at any empty counter 

to the moment the server becomes free for the first time. 

(iii) The waiting time 𝑊𝑛  for the 𝑛𝑡  arrival. 

(iv) The waiting time 𝑊(𝑡) of a customer in the queue which arrived at the 

instant t. 

{𝑁 𝑡 ; 𝑡 ≥ 0} and  𝑊 𝑡 ; 𝑡 ≥ 0  are stochastic processes with continuous time 

 𝑊𝑛  ; 𝑛 = 0,1,2, …  is a stochastic process with discrete time. 

Notation: A queueing system is denoted by a three part description A/B/C, where 

the first two symbols denote the interarrival and service time distributions 

respectively, and the third symbol denotes the number of channels or servers. 

The Simple Queueing Model: 

Suppose the customers arrive at a single server service system in according 

with a Poisson process having rate 𝜆 with FIFO discipline. Thus, the time between 

successive arrivals has exponential distribution with mean 1/𝜆. The successive 

service times are assumed to be iid exponential random variables with mean 1/𝜇. 

The service does not stop as long as there are customers to be served. The 

population of customers and the systems capacity are assumed to be infinite. We 



 
 

also assume that the customer does not leave before getting the service and the 

arrivals and service are independent. This is the simple queueing model denoted as 

M/M/1(∞, FIFO)model. 

Input  Service Number of Servers 

(Markovian)  (Poisson process 

 

  



 
 

Steady State Analysis of the M/M/1 (∞,FIFO) 

Consider the M/M/1 queueing model with the assumptions stated before: 

Let 𝑋𝑡  be the number of customers in the queue including the one being served. 

Let  

𝑃 𝑋𝑡 = 𝑛 =  𝑝𝑛 𝑡 . 

 𝑋𝑡 ; 𝑡 ≥ 0 is a stochastic process with continuous time parameter and dicrete state 

space. 

In many practical situations one needs to know the limiting distribution as 𝑡 → ∞ , 

i.e. 

𝑝𝑛 = lim
𝑡→∞

𝑝𝑛 𝑡  

which is referred to as the Steady state probability exactly 𝑛 customers in the 

system. 

Since the “arrival process” and the “completion process” are both Poisson with 

rates λ and 𝜇 respectively, we have the following:  

(i) In the time interval (𝑡, 𝑡 + ∆𝑡), the probability of one arrival is 𝜆∆𝑡 +

𝑜 ∆𝑡 . 

(ii) In the time interval (𝑡, 𝑡 + ∆𝑡), the probability of more than one arrival 

𝑜 ∆𝑡 . 

(iii) In the time interval (𝑡, 𝑡 + ∆𝑡), the probability of no arrival 1 − 𝜆∆𝑡 +

𝑜 ∆𝑡 . 

(iv) In the time interval  𝑡, 𝑡 + ∆𝑡 ,the probability of one departure is 

𝜇∆ 𝑡 + 𝑜 ∆𝑡 . 

(v) In the time interval (t, t+∆t), the probability of more than one departure is 

𝑜 ∆𝑡 . 



 
 

(vi) In the time interval (𝑡, 𝑡 + ∆𝑡)), the probability of no departure is 

1 − 𝜇∆𝑡 + 𝑜 ∆𝑡 . 

(vii) In the time interval(𝑡, 𝑡 + ∆𝑡), the probability of no arrival and no 

departure is 

 1 − 𝜆∆𝑡 + 𝑜 ∆𝑡   1 − 𝜇∆𝑡 + 𝑜 ∆𝑡  = 1 − 𝜆∆𝑡 − 𝜇∆𝑡 + 𝑜 ∆𝑡 . 

(viii) In the time interval(𝑡, 𝑡 + ∆𝑡), the probability of one arrival and one 

departure is 

 𝜆∆𝑡 + 𝑜 Δ𝑡   𝜇∆𝑡 + 𝑜 Δ𝑡  = 𝑜 𝑡 . 

(ix) In the time interval (𝑡, 𝑡 + ∆𝑡), the probability of one arrival and no 

departure is  

 𝜆∆𝑡 + 𝑜 ∆𝑡   1 − 𝜇∆𝑡 + 𝑜 ∆𝑡  = 𝜇 ∆  𝑡 + 𝑜 Δ𝑡 . 

(x) In the time interval(𝑡, 𝑡 + ∆𝑡), the probability of no arrival and one 

departure is 

 1 − 𝜆∆𝑡 + 𝑜 ∆𝑡   𝜇∆ 𝑡 + 𝑜 ∆𝑡  = 𝜇 ∆  𝑡 + 𝑜 Δ𝑡 . 

(xi) In the time interval (𝑡, 𝑡 + ∆𝑡), the probability of 𝑟 arrival and 𝑠 

departure is 𝑜 Δ𝑡 ,where at least one of 𝑟 and 𝑠 is ≥ 2. 

Equation for 𝑝𝑛 𝑡 : 

For 𝑛 = 0 

𝑝0 𝑡 + ∆𝑡  

=  𝑝0 𝑡 𝑃  no arrival in 𝑡, 𝑡 + ∆𝑡  + 𝑝1 𝑡 𝑃  1 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑖𝑛  𝑡, 𝑡 + ∆𝑡   

     +  𝑝𝑘 𝑡 𝑃(𝑘 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝑠 𝑖𝑛  𝑡, 𝑡 + ∆𝑡 

∞

𝑘=2

 

= 𝑝0 𝑡  1 − 𝜆∆𝑡 + 𝑜 Δ𝑡  + 𝑝1 𝑡  𝜇∆𝑡 + 𝑜 ∆𝑡  + 𝑜 Δ𝑡  

Then  



 
 

𝑝0 𝑡 + ∆𝑡 −  𝑝0 𝑡 

∆𝑡
= 𝜇𝑝1 𝑡 − 𝜆𝑝0 𝑡 +

𝑜 Δ𝑡 

∆𝑡
 

Let ∆ 𝑡 → 0, then 

𝑑

𝑑𝑡
𝑝0 𝑡 = 𝜇𝑝1 𝑡 − 𝜆𝑝0 𝑡  1  

For 𝑛 ≥ 1 

𝑝𝑛 𝑡 + ∆𝑡  

= 𝑝𝑛−1 𝑡 𝑃  one arrival, no departure 𝑖𝑛   𝑡 + 𝑡 + ∆𝑡   

+𝑝𝑛 𝑡 𝑃  no arrival, no departure in 𝑡, 𝑡 + ∆𝑡   

+𝑝𝑛+1 𝑡 𝑃 no arival, one departure in 𝑡, 𝑡 + ∆𝑡  + 𝑜 ∆𝑡  

= 𝑝𝑛−1 𝑡  𝜆∆ 𝑡 + 𝑜 ∆𝑡  + 𝑝𝑛 𝑡  1 − 𝜆∆ 𝑡 − 𝜇∆ 𝑡 + 𝑜 ∆𝑡   

+𝑝𝑛+1 𝑡  𝜇∆ 𝑡 + 𝑜 ∆𝑡  + 𝑜 ∆𝑡  

Hence 

𝑝𝑛 𝑡 + ∆𝑡 − 𝑝𝑛 𝑡 

∆𝑡
=  𝜆𝑝𝑛−1 𝑡 −  𝜆 + 𝜇 𝑝𝑛 𝑡 + 𝜇𝑝𝑛+1 𝑡 +

𝑜 ∆𝑡 

Δ𝑡
 

Letting∆𝑡 → 0, we obtain 

𝑑

𝑑𝑡
𝑝𝑛 𝑡 = 𝜆𝑝𝑛−1 𝑡 −  𝜆 + 𝜇 𝑝𝑛 𝑡 + 𝜇𝑝𝑛+1 𝑡  2  

The system of differential difference equations represented by (1) and (2) govern 

the stochastic behavior of the M/M/1 queueing process over a passage of time. 

Let us assume the existence of a “steady state”. Then, as 𝑡 → ∞, 𝑝𝑛(𝑡)) tends to a 

limit 𝑝𝑛 , independent of 𝑡. The equations of steady-state probabilities 𝑝𝑛  can be 

obtained by putting 𝑝𝑛
′  𝑡 = 0  and 𝑝𝑛(𝑡) = 𝑝𝑛  in (1) and (2) we get 

 0 = 𝜇 𝑝1 − 𝜆 𝑝0

0 =  𝜆 𝑝𝑛−1 −  𝜆 + 𝜇 𝑝𝑛 + 𝜇𝑝𝑛+1;   𝑛 ≥ 1 
  3  



 
 

or  

 
𝑝1 = 𝜌 𝑝0

𝑝𝑛+1 = 𝜌𝑝𝑛 +  𝑝𝑛 − 𝜌 𝑝𝑛−1 ;    𝑛 ≥ 1   4  

where  

𝜌 =
𝜆

𝜇
=  

1

𝜇

1

𝜆

=
mean service time

mean interarrival time
 5  

𝜌 is called the “traffic intensity”.  

𝜌 can be interpreted as the expected number of arrivals in the mean service time. 

 𝜆 ×
1

𝜇
 . Notice that 𝜆 is expected number of arrivals per unit time and 1/𝜇 is 

mean service time. Thus 𝜆 ×
1

𝜇
 is expected number of arrivals in the mean service 

time. 

From (4), we obtain 

𝑝0 = 𝑝0 

𝑝1 = 𝜌 𝑝0 

𝑝2 = 𝜌 𝑝1 +  𝑝1 − 𝜌 𝑝0  

=  𝜌 𝑝1 

= 𝜌2𝑝0 

𝑝3 = 𝜌 𝑝2 +  𝑝2 − 𝜌 𝑝1  

=  𝜌 𝑝2 = 𝜌3𝑝0 

⋮ 

𝑝𝑛 = 𝜌𝑛𝑝0 

Hence  

1 =  𝑝𝑛 = 𝑝0 1 − 𝜌 −1∞
𝑛=0 ; assuming 𝜌 < 1. 



 
 

Therefore, if𝜌 < 1, 

𝑝0 = 1 − 𝜌, 

𝑝𝑛 = 𝜌𝑛 1 − 𝜌 , 𝑛 ≥ 1. 

Notice that for the existence of a steady state solution 𝜌 must be less than 1. The 

steady state distribution is geometric. Further,as 𝑡 → ∞, let 𝐿𝑠 be the expected 

number of units in the system. Then 

𝐿𝑠 =  𝑛𝜌𝑛 1 − 𝜌 

∞

𝑛=0

 

=
𝜌

1 − 𝜌
=  

𝜆

𝜇 − 𝜆
.                                                             (6) 

The probability that the server is free = 1 − 𝜌. 

 

  



 
 

Unit – 14: Waiting time distributions of M/M/1 Queuing Process 

Queueing time for a customer is the time that lapses between his arrival and 

the departure on completion of his service. 

Theorem 1: For 𝑀/𝑀/1 (∞ , 𝐹𝐼𝐹𝑂) queueing model with 𝜌 < 1, the steady state 

probability distribution of the queueing time is exponential with mean  
1

𝜇 1−𝜌 
=

1

𝜇−𝜆
. 

Proof: Let 𝑇 be the queueing the for a customer and 𝑔(𝑡) be the pdf of 𝑇. Let 

𝑔(𝑡/𝑚) be the conditional pdf of 𝑇, given that there are 𝑛 customers on his arrival. 

Then, we have  

𝑔 𝑡 =   𝑔 
𝑡

𝑛
 𝑝𝑛

∞

𝑛=0

                                                                (7) 

𝑔  
𝑡

𝑛
  is the pdf of the sum of 𝑛, iid. exponential random variables with mean 1/𝜆 

plus the remaining service time of the customer being served, which is also 

exponential (by the memoryless property) with mean 1/𝜆. Hence  

𝑔  
𝑡

𝑛
 =  

𝜇 𝑒−𝜇𝑡  𝜇𝑡 𝑛

𝑛!
 0 < 𝑡 < ∞  8  

From (7) and (8), we have 

𝑔 𝑡 = 𝜇 𝑒−𝜇𝑡  
 𝜇𝑡 𝑛

𝑛!
𝑝𝑛

∞

𝑛=0

 

= 𝜇 𝑒−𝜇𝑡  
 𝜇𝑡 𝑛

𝑛!
 1 − 𝜌 𝜌𝑛

∞

𝑛=0

 

=  𝜇  1 − 𝜌 𝑒−𝜇𝑡   1−𝑒 ,     0 < 𝑡 < ∞ 



 
 

Hence the theorem follows■ 

Waiting Time in the Queueis the time from the arrival of the customer to the 

beginning of his service. Let W be the waiting time in the queue. Then 𝑃(𝑊 = 0) 

is theprobability of no customer on his arrival. Obviously 

𝑃 𝑊 = 0 = 1 − 𝜌 

If there is at least one customer on his arrival than he has to wait and the waiting 

time has the pdf 

𝑔 𝑤 =   𝑤|𝑛 𝑝𝑛

∞

𝑛=1

 

 𝑤|𝑛 ) is the conditional pdf of the waiting time given that there are n customers 

on his arrival. Hence 

𝑔 𝑤 =  
𝜇 𝑒−𝜇𝑤  𝜇𝑤 𝑛−1

 𝑛 − 1 !
 1 − 𝜌 𝜌𝑛

∞

𝑛=1

 

= 𝜌 1 − 𝜌 𝜇𝑒−𝜇 1−𝜌 𝑤 ;    0 < 𝑤 < ∞ 

Therefore, the waiting time 𝑊 has the pdf 

𝑔 𝑤 =  

0,                                                                         𝑖𝑓 𝑤 < 0 

1 − 𝜌 +  𝜌 1 − 𝜌 𝜇𝑒−𝜇 1−𝜌 𝑥𝑑𝑥
𝑤

0

, 𝑖𝑓 𝑤 ≥ 0.
  

or 

𝑔 𝑤 =  
0   𝑖𝑓 𝑤 < 0

1 − 𝜌 𝑒−𝜇 1−𝜌 𝑤                𝑖𝑓 𝑤 ≥ 0.   

 

  



 
 

Unit – 15: Martingales: Introduction 

ConditionalExpectation: 

Let𝑋1 , 𝑋2 , … beasequenceofrandomvariablesandℱ𝑛denotestheinformationcont

ainedin𝑋1 , 𝑋2 , … , 𝑋𝑛 .If Y is a function of 𝑋1 , 𝑋2, … , 𝑋𝑛 then 

𝐸(𝑌 | ℱ𝑛) = 𝑌; ∀  𝑌                  (1) 

𝐸 𝐸 𝑌  ℱ𝑛  ℱ𝑚 =  𝐸 𝑌  ℱ𝑚    ∀𝑚 < 𝑛                       (2) 

If 𝑌 is independent of 𝑋1 , 𝑋2, … , 𝑋𝑛 , then information about 

𝑋1 , 𝑋2 , … , 𝑋𝑛 .should not be useful in determining 𝑌 

𝐸(𝑌 | ℱ𝑛)  =  𝐸(𝑌)                                                                 (3) 

If 𝑌 is a random variable and 𝑍 is a random variable that is measurable with 

respect to𝑋1 , 𝑋2, … , 𝑋𝑛 , then 

𝐸 𝑌𝑍 ℱ𝑛 =  𝑍𝐸 𝑌                                                               (4) 

Example 1:Suppose 𝑋1 , 𝑋2 , …, are iidrandom variable(s) with mean µ and 

𝑆𝑛denote the partial sum 

𝑆𝑛 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛  

then, for 𝑚 < 𝑛 

𝐸(𝑆𝑛 | ℱ𝑚 )  =  𝐸(𝑋1 + 𝑋2+ . . . +𝑋𝑚 |ℱ𝑚 ) + 𝐸(𝑋𝑚+1+ . . . +𝑋𝑛 | ℱ𝑚 ) 

Since, 𝑋1 + 𝑋2+ . . . +𝑋𝑚 is measurable with respect to𝑋1 , 𝑋2, … , 𝑋𝑚 ,we obtain 

𝐸 𝑋1 + 𝑋2 + …  + 𝑋𝑚  ℱ𝑚  

= 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑚  

= 𝑆𝑚  

Since 𝑋𝑚+1+ . . . +𝑋𝑛 is independent of 𝑋1, 𝑋2, … , 𝑋𝑚 , we get 

𝐸(𝑋𝑚+1 +  …  + 𝑋𝑛 | ℱ𝑚 ) 



 
 

= 𝐸(𝑋𝑚+1+ . . . +𝑋𝑛) = (𝑛 − 𝑚)𝜇 

Therefore, 𝐸(𝑆𝑛 | ℱ𝑚 ) = 𝑆𝑚 + (𝑛 − 𝑚)𝜇. 

Example 2:Suppose 𝑋1 , 𝑋2 , …,and 𝑆𝑛are as defined in Example 1. Suppose 

µ = 0 and 𝑉𝑎𝑟(𝑋𝑖) = 𝐸(𝑋𝑖
2) = 𝜍2. For 𝑚 < 𝑛 we shall have  

𝐸 𝑆𝑛
2 ℱ𝑚 = 𝐸 {𝑆𝑚 +  𝑆𝑛 − 𝑆𝑚  2 ℱ𝑚   

= 𝐸 𝑆𝑚
2  ℱ𝑚 + 2𝐸 𝑆𝑚 𝑆𝑛 − 𝑆𝑚  ℱ𝑚  + 𝐸  𝑆𝑛 − 𝑆𝑚 2 ℱ𝑚  

Since ℱ𝑚depends only on 𝑋1, 𝑋2, … , 𝑋𝑚 and 𝑆𝑛 − 𝑆𝑚 is independent of 

𝑋1 , 𝑋2 , … , 𝑋𝑚  we have 

𝐸 𝑆𝑚
2  ℱ𝑚 = 𝑆𝑚

2
 

𝐸  𝑆𝑛 − 𝑆𝑚 2 ℱ𝑚 = 𝐸 𝑆𝑛 − 𝑆𝑚 2
 

= 𝑉𝑎𝑟 𝑆𝑛 − 𝑆𝑚  

=  𝑛 − 𝑚 𝜍2 

𝐸(𝑆𝑚 (𝑆𝑛 − 𝑆𝑚 )| ℱ𝑚 ) 

= 𝐸 𝑆𝑚 𝑆𝑛 − 𝑆𝑚   

= 𝑆𝑚𝐸 𝑆𝑛 − 𝑆𝑚  

= 0  

Therefore, 

𝐸 𝑆𝑛
2 ℱ𝑚 = 𝑆𝑚

2 +  𝑛 − 𝑚 𝜍2 

Example 3: Consider a special case of Example 1 where the random 

variable 𝑋𝑖has a Bernoulli distribution 

𝑃 𝑋𝑖 = 1 = 𝑝, 

 𝑃 𝑋𝑖 = 0 = 1 − 𝑝 



 
 

Again, assume that 𝑚 < 𝑛. For any 𝑖 ≤ 𝑚, consider 𝐸(𝑋𝑖|𝑆𝑛). If 𝑆𝑛 = 𝑘, 

then there are 𝑘 1’s in first 𝑛 trial. Given 𝑆𝑛 = 𝑘, we can showthat  

𝑃 𝑋𝑖 = 1 𝑆𝑛 = 𝑘 =
𝑘

𝑛
 

Hence 

𝐸 𝑋𝑖 = 1 𝑆𝑛 =
𝑆𝑛

𝑛
 

and 

𝐸 𝑆𝑚  𝑆𝑛 = 𝐸 𝑋1 𝑆𝑛 + ⋯ + 𝐸 𝑋𝑚  𝑆𝑛 = 𝑆𝑛

𝑚

𝑛
 

Martingale 

Definition:Let 𝑋0 , 𝑋1 , … be a sequence of random variables and ℱ𝑛denote the 

information contained in 𝑋1 , 𝑋2, … , 𝑋𝑛 . We say that a sequence of random 

variables 𝑀0, 𝑀1, 𝑀2, … with 𝐸(|𝑀𝑖|) <  ∞ is a martingale with respect to 

ℱ𝑛 if 

1. each 𝑀𝑛 is measurable with respect to 𝑋0, 𝑋1, … , 𝑋𝑛 ; 

2. and 

𝐸 𝑀𝑛  ℱ𝑚  =  𝑀𝑚 , ∀ 𝑚 <  𝑛                                   (5) 

• The condition 𝐸(|𝑀𝑖|) < ∞ is needed to guarantee that the conditional 

expectations are well defined. 

• Sometimes we say that 𝑀0, 𝑀1, … is a martingale without referring to the 

random variables 𝑋0, 𝑋1, …. It will mean that the sequence {𝑀𝑛} is a 

martingale with respect to itself where ℱ𝑛 is the information contained in 

𝑀0, 𝑀1, … , 𝑀𝑛 . 



 
 

Theorem 1:If 𝐸(𝑀𝑛+1 | ℱ𝑛) = 𝑀𝑛∀ 𝑛 then 𝑀0, 𝑀1, . .. is a martingale. 

Proof:We have 

𝐸(𝑀𝑛+2|ℱ𝑛) = 𝐸(𝐸(𝑀𝑛+2|ℱ𝑛+1) | ℱ𝑛)  

=  𝐸(𝑀𝑛+1 ℱ𝑛 = 𝑀𝑛  

and so on. Hence in general, 

𝐸(𝑀𝑛  | ℱ𝑚 ) = 𝑀𝑛 , ∀ 𝑚 < 𝑛 

Example 4 Suppose 𝑋1, 𝑋2, . . .,be independent random variables each with 

mean µ. Let 𝑆0 = 0 and for 𝑛 > 0, 𝑆𝑛be the partial sum 𝑆𝑛 = 𝑋1+. . . +𝑋𝑛 , then 

𝑀𝑛 = 𝑆𝑛 − 𝑛µ is a martingale with respect to ℱ𝑛 (information in 

𝑋1, 𝑋2, . . . , 𝑋𝑛 ). By using Example 1, 

𝐸 𝑀𝑛+1 ℱ𝑛 = 𝐸 𝑆𝑛+1 −  𝑛 + 1 µ ℱ𝑛  

= 𝐸 𝑆𝑛+1 ℱ𝑛 −  𝑛 + 1 µ  

=  𝑆𝑛 + µ −  𝑛 + 1 µ 

= 𝑀𝑛  

Example 5 Suppose𝑋1 , 𝑋2, . . .,are independent random variables with 𝑃 𝑋𝑖 = 1 =

𝑃 𝑋𝑖 = −1 = 1/2. For example, 𝑋𝑖  is a result of a game where one tosses a fair 

coin and wins Rs.1 if the outcome is head and loses Rs.1 otherwise. One way to 

beat the game is to keep doubling our bet until we eventually win. At this point we 

stop. Let 𝑊0 = 0 and 𝑊𝑛denote the winning (or loses) up to 𝑛tosses of the coin 

using this strategy. Whenever we win, we stop playing. Thus, our winnings stop 

changing and 

𝑃(𝑊𝑛+1 = 1|𝑊𝑛 = 1) = 1. 

Suppose tails turned up the first 𝑛tosses of the coin. After each toss we have 

doubled our bet, so we have lost rupees1 + 2+. . . +2𝑛−1 = 2𝑛 −1 and 



 
 

𝑊𝑛 = −(2𝑛 − 1).At this time we double our bet again and wager 2𝑛on the 

next toss. This gives 

𝑃 𝑊𝑛+1 = 2𝑛 −  2𝑛 − 1  𝑊𝑛 = − 2𝑛 − 1   

𝑃 𝑊𝑛+1 = 1 𝑊𝑛 = − 2𝑛 − 1   

=
1

2
 

𝑃 𝑊𝑛+1 = − 2𝑛+1 − 1  𝑊𝑛 = − 2𝑛 − 1  =
1

2
 

𝐸 𝑊𝑛+1 ℱ𝑛  =
1

2
× 1 +

1

2
×  − 2𝑛+1 − 1   

= − 2𝑛 − 1 = 𝑊𝑛 .  

Therefore𝑊𝑛 is a martingale with respect to ℱ𝑛 . 

Example 6 Suppose𝑋1, 𝑋2, . . ., areas in previous example 5 and on the 𝑛𝑡  toss 

we make a bet equal to 𝐵𝑛 . In determining the amount of bet, we may look at 

the results of the first (𝑛 −  1)tosses but cannot look beyond that. Thus, 𝐵𝑛 is a 

random variable measurable with respect to ℱ𝑛−1.We assume that 𝐵1is a 

constant. the winning after 𝑛 flips, 𝑊𝑛 , are given by 𝑊0 = 0 and 

𝑊𝑛 =  𝐵𝑗𝑋𝑗

𝑛

𝑗=1

 

For ensuring that the bet at time 𝑛always less than some constant 𝐶𝑛assume 

that 𝐸(|𝐵𝑛 |)  <  ∞. Then 𝑊𝑛 is a martingale with respect to ℱ𝑛 . Now 𝐸 𝐵𝑛 <

∞ ∀𝑛implies that𝐸(|𝑊𝑛 |)  <  ∞. Further, 𝑊𝑛 is ℱ𝑛measurable and 

𝐸 𝑊𝑛+1 ℱ𝑛 = 𝐸   𝐵𝑗𝑋𝑗 |ℱ𝑛

𝑛+1

𝑗=1

  



 
 

= 𝐸   𝐵𝑗𝑋𝑗 |ℱ𝑛

𝑛

𝑗=1

 + 𝐸 𝐵𝑛+1𝑋𝑛+1 ℱ𝑛  

Using result (1) of conditional expectations 

𝐸   𝐵𝑗𝑋𝑗 |ℱ𝑛

𝑛

𝑗=1

 =  𝐵𝑗𝑋𝑗

𝑛

𝑗=1

= 𝑊𝑛  

Again,𝐵𝑛+1is ℱ𝑛measurable. Hence using (3) and 

(4), we obtain 

𝐸(𝐵𝑛+1𝑋𝑛+1| ℱ𝑛) = 𝐵𝑛+1𝐸(𝑋𝑛+1 | ℱ𝑛)  

=  0 

Therefore, 

𝐸(𝑊𝑛+1|ℱ𝑛)  = 𝑊𝑛 . 

Example 7 (Pyola’s Urn):Consider an urn with balls of two colors, red and 

green. Assume that there is one ball of each color in the urn. We proceed as 

f0llows: 

At each time step, a ball is chosen at random from the urn. If a red ball 

is chosen, it is returned and in addition another red ball is added to the 

urn. Similarly, if a green ball is chosen, it is returned together with 

another green ball.  

Let 𝑋𝑛denote the number of red balls in the urn after 𝑛 draws. Then 𝑋0 = 1 

and 𝑋𝑛 is a (time homogeneous) Markov chain with transitions 

𝑃 𝑋𝑛+1 = 𝑘 + 1 𝑋𝑛 = 𝑘 =
𝑘

𝑛 + 2
 



 
 

𝑃 𝑋𝑛+1 = 𝑘 𝑋𝑛 = 𝑘 =
𝑛 + 2 − 𝑘

𝑛 + 2
 

Notice that at time n+1 there are n+2 balls in the urn. Let 

𝑀𝑛 =
𝑋𝑛

𝑛 + 2
 

Then 𝑀𝑛  is the fraction of red balls after 𝑛 draws. Then 𝑀𝑛 is a martingale.We 

have 

𝐸 𝑋𝑛+1 𝑋𝑛 = 𝑋𝑛

 𝑛 + 2 − 𝑋𝑛 

𝑛 + 2
+ 𝑋𝑛+1

𝑋𝑛

𝑛 + 2
 

=
1

𝑛 + 2
  𝑛 + 2 𝑋𝑛 + 𝑋𝑛   

= 𝑋𝑛 +
𝑋𝑛

𝑛 + 2
 

Since this is a Markov chain, all the relevant information in ℱ𝑛 for determining 

𝑋𝑛+1is contained in 𝑋𝑛 . Therefore, 

𝐸 𝑀𝑛+1 ℱ𝑛 = 𝐸  𝑛 + 3 −1𝑋𝑛+1 𝑋𝑛  

=
1

𝑛 + 3
 𝑋𝑛 +

𝑋𝑛

𝑛 + 2
  

=
𝑋𝑛

𝑛 + 2
 

= 𝑀𝑛  

Submartingale and Supermartingale 

Definition:A process 𝑀𝑛with 𝐸  𝑀𝑛 < ∞  is called a submartingale 

(supermartingale) with respect to 𝑋0 , 𝑋1, …  if∀ 𝑚 <  𝑛, 

𝐸(𝑀𝑛 | ℱ𝑛) ≥ (≤) 𝑀𝑚 . 



 
 

 A submartingale is a game in one’s favor and a supermartingale is an 

unfair game. 

 A martingale is a model of fair game. 

 𝑀𝑛 is a martingale if and only if it is both a submartingale and a 

supermartingale. 

  



 
 

Unit- 16: Optimal Sampling Theorem 

Theorem 1: (Optional sampling Theorem) Suppose 𝑀0, 𝑀1, ⋯ is a martingale with 

respect to 𝑋0 , 𝑋1 , ⋯ and 𝑇 is a stopping time satisfying 𝑃 𝑇 < ∞ = 1,  

𝐸  𝑀𝑛  < ∞  6  

and 

lim
𝑛→∞

𝐸   𝑀𝑛  𝐼 𝑇 > 𝑛  = 0                                                                 7  

Then, 𝐸 𝑀𝑇 = 𝐸 𝑀0 . 𝐼 ∙  is indicator function. 

Proof: Let 𝐹𝑛  be the information contained in 𝑋0, 𝑋1, ⋯ , 𝑋𝑛  and 𝐼 𝑇 > 𝑛 , 

indicator function of event  𝑇 > 𝑛 , is measurable with respect to ℱ𝑛  (Since we 

need only the information up to time 𝑛 to determine if we have stopped by time 𝑛). 

𝑀𝑇 is the random variable which equals 𝑀𝑗  if 𝑇 = 𝑗 we can write 

𝑀𝑇 =  𝑀𝑗 𝐼 𝑇 = 𝑗 

𝐾

𝑗=0

 

𝐸 𝑀𝑇|ℱ𝐾−1 = 𝐸 𝑀𝐾𝐼 𝑇 = 𝐾 |ℱ𝐾−1 +  𝐸 𝑀𝑗 𝐼 𝑇 = 𝑗 |ℱ𝐾−1 

𝐾

𝑗=0

 

For 𝑗 ≤  𝐾 − 1 , 𝑀𝑗 𝐼 𝑇 = 𝑗  is ℱ𝐾−1 measurable; hence 

𝐸 𝑀𝑗 𝐼 𝑇 = 𝑗 |ℱ𝐾−1 = 𝑀𝑗 𝐼 𝑇 = 𝑗  

Since 𝑇 is known to be no more than 𝐾, then event  𝑇 = 𝐾  is the same as the 

event  𝑇 > 𝐾 − 1 . The latter event is measurable with respect to ℱ𝐾−1. Hence 

using eq.  4  

𝐸 𝑀𝐾𝐼 𝑇 = 𝐾 |ℱ𝐾−1  

= 𝐸 𝑀𝐾𝐼 𝑇 > 𝐾 − 1 |ℱ𝐾−1  



 
 

= 𝐼 𝑇 > 𝐾 − 1 𝐸 𝑀𝐾|ℱ𝐾−1  

= 𝐼 𝑇 > 𝐾 − 1 𝐸 𝑀𝐾−1  

Therefore 

𝐸 𝑀𝑇|ℱ𝐾−1  

= 𝐼 𝑇 > 𝐾 − 1 𝐸 𝑀𝐾−1 +  𝐸  𝑀𝑗 𝐼 𝑇 = 𝑗  

𝐾−1

𝑗=0

 

= 𝐼 𝑇 > 𝐾 − 2 𝐸 𝑀𝐾−2 +  𝐸  𝑀𝑗 𝐼 𝑇 = 𝑗  

𝐾−2

𝑗=0

 

𝐸 𝑀𝑇|ℱ𝐾−2  

= 𝐸 𝐸 𝑀𝐾|ℱ𝐾−1 |ℱ𝐾−2  

= 𝐼 𝑇 > 𝐾 − 3 𝐸 𝑀𝐾−1 +  𝐸  𝑀𝑗 𝐼 𝑇 = 𝑗  

𝐾−3

𝑗=0

 

We continue this process until we get 𝐸 𝑀𝑇|ℱ0 = 𝑀0. Now, consider the 

stopping time 𝑇𝑛 = 𝑚𝑖𝑛 𝑇, 𝑛  

𝑀𝑇 = 𝑀𝑇𝑛 + 𝑀𝑇𝐼 𝑇 > 𝑛 − 𝑀𝑛𝐼 𝑇 > 𝑛  

𝐸 𝑀𝑇 = 𝐸 𝑀𝑇𝑛  + 𝐸 𝑀𝑇𝐼 𝑇 > 𝑛  − 𝐸 𝑀𝑛𝐼 𝑇 > 𝑛   

Since 𝑇𝑛  is a bounded stopping time, hence 𝐸 𝑀𝑇𝑛  = 𝑀0, the 𝑃 𝑇 > 𝑛 → 0 as 

𝑛 → ∞. If 𝐸 𝑀𝑇 < ∞ then 𝐸  𝑀𝑇 𝐼 𝑇 > 𝑛  → 0. If 𝑀𝑛  and 𝑇 are given so that 

lim𝑛→∞ 𝐸   𝑀𝑇 𝐼 𝑇 > 𝑛  , then, 𝐸 𝑀𝑇 = 𝐸 𝑀0 . Hence the theorem follows■ 

The third term 𝐸 𝑀𝑇𝐼 𝑇 > 𝑛   in 𝐸 𝑀𝑇  is troublesome. There are many 

examples of interest where the stopping time 𝑇 is not bounded. 

 



 
 

Consider the Example 5 again.  𝑇 > 𝑛  is the event that the first 𝑛tosses are 

tails and has probability 2−𝑛 . If this event occurs, the bettor has lost a total 

(2𝑛 − 1)rupees, i.e.,𝑀𝑛 = 1 − 2𝑛 . Hence 

𝐸 𝑀𝑇𝐼 𝑇 > 𝑛  = 2−𝑛 1 − 2𝑛  

which does not go to 0 as 𝑛 → ∞. 

Example 8:(Gambler’s ruin problem revisited) 

Let 𝑋𝑛be a simple random walk𝑝 =
1

2
 on {0,1,2, … } with absorbing barriers. 

Suppose 𝑋0 =  𝑎 and 𝑀𝑛 ≡ 𝑋𝑛 .Then,𝑋𝑛 is a martingale. Let stopping time 

𝑇 =  𝑚𝑖𝑛{𝑗 ∶  𝑋𝑗 = 0 or 𝑁} and since 𝑋𝑛 is bounded, we have, 

𝐸 𝑀𝑇 = 𝐸 𝑀0 = 𝑎. 

But in this case 

𝐸 𝑀𝑇 = 0𝑃 𝑋𝑇 = 0 + 𝑁𝑃(𝑋𝑇 = 𝑁) = 𝑁𝑃(𝑋𝑇 = 𝑁) 

Therefore, 

𝑃 𝑋𝑇 = 𝑁 =
𝑎

𝑁
 

This gives another derivation of gambler’s ruin result for simple random walk. 

Example 9 Let 𝑋𝑛be as in Example 8 and𝑀𝑛 = 𝑋𝑛
2 − 𝑛. Then, 𝑀𝑛 is a 

martingale with respect to 𝑋𝑛 . By using Example 2 

𝐸(𝑀𝑛+1 ℱ𝑛 = 𝐸 𝑋𝑛+1
2 −  𝑛 + 1  ℱ𝑛  

= 𝑋𝑛
2 + 1 −  𝑛 + 1  

= 𝑀𝑛 . 



 
 

Let stopping time 𝑇 = 𝑚𝑖𝑛{𝑗: 𝑋𝑗 = 0 or 𝑁} and since 𝑀𝑛 is not a bounded 

martingale so it is not immediate that (6) and (7) hold. However there exists 

𝐶 <  ∞ and 𝜌 < 1 such that 

𝑃(𝑇 > 𝑛)  ≤ 𝐶𝜌𝑛 . 

Since |𝑀𝑛 | ≤ 𝑁2 + 𝑛, 

𝐸  𝑀𝑛   < ∞  

and 

𝐸(|𝑀𝑛 |𝐼(𝑇 > 𝑛)) ≤ 𝐶𝜌𝑛(𝑁2 + 𝑛) → 0 

Hence, optional sampling theorem holds and 𝐸(𝑀𝑇) = 𝐸(𝑀0) = 𝑎2. 

𝐸 𝑀𝑇 = 𝐸 𝑋𝑇
2 − 𝐸 𝑇  

= 𝑁2𝑃 𝑋𝑇 = 𝑁 − 𝐸 𝑇  

= 𝑎𝑁 − 𝐸(𝑇) 

Hence, 𝐸(𝑇)  = 𝑎𝑁 − 𝑎2 = 𝑎(𝑁 − 𝑎). 


