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Blocks Introduction 

The present SLM on Probability Distribution and Statistical Inference consists of five 
Blocks. Block - 1 – Probability Theory has two units; Block - 2 – Probability Distributions and 
Expectations has three units; Block - 3 – Concepts of Probability Distributions has five units; Block 
- 4 – Basic Principles of Statistical Inference has three units and at the last Block - 5 Tests of 
Significance has three units.  
 The Block - 1 – Probability Theory consist two units. The first unit of this block describes 
the elementary principles and concepts of probability, along with their usefulness, and explains 
how tw mathematical definition of probability can be used to calculate. The probabilities of 
occurrence of events, certain basic theorems and results on probability are also given in this unit. 
The second unit, discusses the concept of conditional probability, independence of events and 
Baye’s theorem with applications.. 

The Block - 2 – Probability Distributions and Expectations is the second block having 
three units. The first unit of this block gives the concepts of random variable, distribution function, 
discrete and continuous random variables, probability mass function, probability density function 
and their properties. The second unit of this block discusses the concept of expectation along with 
additive and multiplicative theorems on expectation. The concept of moments in terms of 
expectation has also been defined in this unit. The third unit of this block provides some important 
inequalities concerning moments, Chebychew’s inequality and its applications are also given. 

The Block - 3 – Concepts of Probability Distributions consists of five units. The first unit
of this block introduces the concept of probability distribution, discrete probability distributions 
namely Bernoulli, Binomial and Poisson have been discussed in this unit along with their 
properties, applications and importance. The second unit of this block describes geometric, 
negative binomial and hyper geometric distributions with their applications, properties and 
importance. The third unit of this block defines normal distribution with its properties, applications 
and importance. The fourth unit of this block provides uniform and exponential distributions with 
their properties, applications and importance. The fifth unit of this block deals with the sampling 
distributions like χ2, t, F, z distributions, Beta, Gamma, Chauchy densities. 

The   Block - 4 Basic Principles of Statistical Inference concentrated on the study of 
inferential statistics which deals with taking judgement, drawing conclusion or inferences about a 
population on the basis of information available in a sample/s drawn from the population. 
Traditionally, the problems in statistical inference are classified into ‘problems of estimation’ and 
‘tests of hypothesis’. Although, in fact, they are decision problems and can be tackled by unified 
approach- decision problems and can be tackled by unified approach – decision theoretic approach. 
The estimations can be done in either of two ways: (i) Point estimation and (ii) confidence interval 
estimation. It consists of three units. The first unit of this block deals with the estimators of the 
parameters and properties of a good estimator, it also discussed briefly the confidence interval 
estimation. The second unit of this block discusses with the two methods of estimation of the 
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parameters-viz. method of moment's estimation (MME) and method of maximum likelihood 
estimation (MLE). The third unit of this block gives a brief account of the concepts of the tests of 
hypotheses. 

The Block - 5 – Tests of Significance consists of three units. The first unit of this contains 
exact tests with examples based on Chi-square, t and F-distributions. It also provides Fisher’s z-
transformation and its uses. The second unit of this block describes large sample tests with 
illustrations. The third unit of this block discusses one-sample, two samples, and non-parametric 
tests for location and scale along with run test for randomness. Illustrations and examples on these 
topics have also been given. 

At the end of every block/unit the summary, self-assessment questions and further readings 
are given.  
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Unit-1: Random Experiments and Probability 

Structure 

1.1 Introduction 
1.2 Objectives 
1.3 Deterministic and Random Experiments 
1.4 Sample Space 
1.5 Events 
1.6 Algebra of Events 
1.7 Axiomatic Definitions of Probability 
1.8 Classical or Mathematical definition of Probability 
1.9 Empirical or Statistical definition of Probability 
1.10 Some Important Results on Probability  
1.11 Self Assessment Exercises 
1.12 Answer/Suggestions 
1.13 Summary 
1.14 Further Readings 

1.1  Introduction 

In various fields of social, biological physical sciences etc., we come across with 
experiments and phenomenons in which some kind of uncertainty is involved. This unit introduces 
the basic idea of such random experiments, sample space and events associated with the help of 
several examples. Different algebraic operations like union, intersection, complement, Cartesian 
product etc. will also be explained to you. The probability associated with an event has been 
defined using axiomatic approach. The classical and empirical approach to probability will be 
explained and their shortcomings will be discussed. Different results associated with the 
probability will be derived.  

1.2  Objectives  

After going through this unit you shall be able to: 

Understand the difference between the deterministic and random experiments. 
Define sample space and events associated with a random experiment. 
Use different algebraic operations for the events.  
Define probability using axiomatic approach. 
Apply classical probability to solve problems with finite sample space and equally likely 
elementary events. 
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1.3  Deterministic and Random Experiments  

The experiments in various fields are fields are usually performed to derived adequate 
description on the basis of the measurements obtained. The major steps involved in any experiment 
are: 

Input: The input of an experiment may consist of equipments, material, input data 
etc. 
Action: The experiment is conducted using the input. 
Output: The action leads to result or results, called output of the experiment. 

The experiments can be divided into following two major classes on the basis of 
performance of their outputs. 

Deterministic Experiments: In deterministic experiments, a precisely deterministic input 
and action yields a precisely deterministic output. If input and action are fixed, we get the same 
output. We can even predict the output of the experiment. 

Examples of Deterministic Experiments: Some examples of deterministic experiments are 
the distance covered by a car travelling at a constant speed; Verifying Ohm’s law: determining 
gravitational constant at a place etc. 

In all the above mentioned experiments, for a fixed input and action, we get a fixed output. 
For instance if a car is traveling with a speed of 60 km./hr., it will cover a fixed distance of 120 
km. in two hours journey. In other words, a fixed input of speed v = 60 km/hr. and time t = 2 hr. 
will yield fixed output of distance d = v × t = 120 km. Similarly, if obtaining gravitational constant 
at a fixed place, if the experiment is conducted without any errors, each time it will lead to some 
output, i.e., the value of gravitational constant “g”. 

Non-deterministic or Random Experiments:  In non deterministic or random experiments, 
fixed input and action does not always yield fixed output. The exact knowledge of input and action 
does not allow exact prediction of outcome of the experiment. 

Examples of Random Experiments: Some examples of random experiments are, tossing a 
coin; throwing a dice; Life of an electric bulb; Number of road accidents in a day at Allahabad; 
Queue size at a railway reservation counter; time taken to download a particular website etc.

In all these examples of random experiments, fixed input and action does not yield fixed 
output. For instance, if life of 10 electric bulbs manufactured by the same company under similar 
conditions is measured, each bulb will have a different lifetime. Some kind of uncertainly is 
involved in output of these experiments. 

In probability theory we are mainly concerned with the random experiments, i.e. the 
experiments in which some kind of uncertainty is involved. 
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1.4  Sample Space 

In random experiments we cannot predict the exact outcome of the experiment but we 
know the set of all possible outcomes. 

Definition: Sample space is the set of all possible outcomes of a random experiment. 
Usually we denote it by  and a point belonging to  by ω є .  

Some examples of sample space associated with different random experiments: 

In tossing a coin the sample space is given by  = {H, T}. 

In throwing a dice the sample space is  = {1, 2, 3, 4, 5, 6}. 

Suppose we toss a coin until we obtain a Head. Then the sample space is given by  = {H, 

TH, TTH, TTTH……..}  

Here the sample space has countably infinite number of points. 

In observing the life of an electric bulb (in hrs), the sample space is given by 

= {t:0≤t<∞}.  

In this example the sample space has uncountable number of points. 

Suppose we toss a coin three times. Then the sample space is  

= {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}. 

If we toss a coin three times and count the number of H’s obtained, the sample space is = 

{0, 1, 2, 3}. 

If we toss a coin until we obtain two H’s in succession or two T’s (not necessarily in 

succession). Then the sample space becomes 

= {HH, TT, THH, THT, HTT, HTHH, HTHT} 

In observing the queue size at a railway reservation counter, the required sample space is 

= {0, 1, 2, ….} 

Let us consider the time taken (in minutes) to download a website. The sample space is 

observed as 

= {t : 0 < t <∞}. 
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1.5  Events 

Definition: An event is a set of possible outcomes of a random experiment. Obviously an 
event is a subset of the sample space. If we denote an event associated with a random experiment 
by A and  is the corresponding sample space then A  ⊂ .  

Some Examples of Events: 

In tossing a coin, let A be the event that outcome is “H”. Then A can be written as A = 

{H}. Obviously, A is a subset of the corresponding sample space  = {H, T}. 

In throwing a dice the event A that outcome is an even number is given by A= {2, 4, 6}. 

Let A be the event that lifetime of an electric bulb is more than 1000 hrs, then A = {t: 1000 

< 1 < ∞}. 

In tossing a coin until we obtain a “H”, let A be the event that number of tosses is more 

than 3. Then A = {TTTH, TTTTH}. 

The event that there is no customer in the queue at the railway reservation counter is given 

by A= {0}. 

An event A is said to occur if outcome of the random experiment under consideration has 
a description that is a member of A. 

Thus in throwing a dice, if A= {2, 4, 6}, and outcome of the throw is 4, then A occurs 
whereas if outcome is 3 then A does not occur. 

The sample space  of a random experiment is the sure event as the outcome of the 
experiment is bound to be a member of . In other words  is sure to occur. Further, the null or 
impossible event is denoted by ∅ .  

1.6  Algebra of Events 

Since an event is subset of the sample space, it is also a set and we can perform different 
algebraic operations like union, intersection, complement etc. on events. 

Union: For two events A and B, A∪B is an event which occurs when either A or B (or 

both) occur, Let A1, A2,…….,Ak events, Then ⋃  be an event which occurs when at 

least one of the events Ai occurs.

UGSTAT-102/15



Intersection: For two events A and B, A∩B is an event which occurs when both A or B 

occur. In general for k events A1, A2,…….,An events, Then ⋂  be an event which 

occurs when all of the events Ai occurs.

Complement:  The complement of an event A, denoted by Ac, is an event, which occurs 

whenever A does not occur.

Difference: For two events A and B, A~B = A∩Bc be an event which occurs when A 

occurs and B does not occur. Obviously Ac = Ω ~ A. 

Cartesian product: Let Ω be the sample space associated with a random experiment. If 

the experiment is repeated twice, The sample space for two repetitions of the random 

experiment is the Cartesian product. 

Ω× = {( , ) ∶ , }. In general the sample space for n repetitions of the 

random experiment is Ω× ………Ω (times). 

For example, in tossing a coin the sample space is Ω = {H,T}. However, the sample space 

in tossing a coin two times is the Cartesian product Ω× = {(H,H), (H,T), (T,H), (T,T)}. 

If occurrence of event A implies the occurrence of event B, i.e., whenever event A occurs 

event B also occurs, we denote it by A⇒B. In notation of set theory, If A⇒ B then A⊂B. 

For example, in throwing a dice let A= {2, 4} be the event that outcome is either 2 or 4 and 

B = {2, 4, 6} is the event the outcome is an even number then whenever A occurs, B also 

occurs, i.e., A⇒ B So that A⊂B. 

Mutually Exclusive Events:  Two events A and B are said to be mutually exclusive or disjoint 
events, if A ∩ B = ∅ . 

Example 1.1: In throwing a dice, if A is the event that outcome is an even number and B is the 
event that outcome is an odd number, then A and B are mutually exclusive events as A ∩ B = ∅ . 

Example 1.2: Let A be the event that life of an electric bulb is more than 1000 hours and B be the 
event that life of the bulb is more than 200 hours but less than 800 hours, then A and B are mutually 
exclusive as A ∩ B = ∅ . 

1.7  Axiomatic Definition of Probability 

Let Ω be the sample space associated with a random experiment. With each event A⊂ Ω, 
we associated a real number P(A), called the probability of A, satisfying the following four axioms:  

Axiom 1: 0 ≤ P(A) ≤ 1 
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Axiom 2: P(Ω)=1 

Axiom 3: For two mutually exclusive events A and B, (A ∩ B = ∅). 

P(A∪B) = P(A) + P(B) 

Axiom 4: For pair wise mutually exclusive events A1, A2,……… ∩ = ∅ ∀ ≠ ,     
= ( )

A function P satisfying above axioms is called a probability Measure. 

Note: Axiom 4 of the probability measure is also called countable additivity. 

Result I:  The probability of null event is zero, i.e., P(∅)=0. 

Proof:   We observe that ∅ ∪ = ∅,  i.e., ∅  and  are mutually exclusive. Further  ∅ ∪ = .
Hence, 

P(∅) + P( ) = P( ),  

which gives P((∅)= 0. 

P(A) is a measure of how confident we are that the outcome will be in A. 

1.8  Classical or Mathematical Definition of Probability 

Equally Likely Events:  Events A1, A2………An are said to be equally likely if  

P(A1) = P(A2) = …….= P(An). 

Elementary Events: Let Ω = { , , … . . } be the sample space associated with a random 
experiment. Then each single point event { };  j= 1, 2,…….n; is called an elementary event. 

 Let Ω = { , , … . . } be the sample space associated with a random experiment and 
each elementary event ;  j = 1, 2, …….n: be equally likely. Let event A consists of nA points 
of Ω . Then ( ) =

Thus probability of event A is equal to the number of favorable cases to event A, nA divided 
by the total number of all possible cases n. 
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Example 1.3: An unbiased dice is thrown. (Unbiased dice means all faces of the dice are 
equally likely). Let A be the event that we obtain a number less than 4. 

Then 
Ω = {1, 2, 3, 4, 5, 6} ; A= {1, 2, 3} 

So that, P(A) = 3/6 = 1/2. 

Drawbacks of Classical Probability: 

(i)  Circular definition – The term equally likely is defined is terms of probability and the 
term equally likely in used in defining probability. 

(ii) Fails when all the elementary events are not equally likely. 
(iii) Classical probability cannot be used when the sample space has countably infinite or 

uncountable number of points. 

Still classical probability can be used to solve many problems when the sample space is finite and 
all elementary events are equally likely. 

Result II: The classical Probability satisfies all the axioms of a probability measure. 

Proof: Let Ω = { , , … . . } be the sample space. 

1. Since 0 ≤ nA ≤ n,  if follows that  0 ≤ ≤ 1 0  0 ≤ ( ) ≤ 1
2. ( ) = = 1
3. Let A and B be two mutually exclusive events. Without loss of generality, we assume that 

event A consists of nA points of  and B of next nB points of  , i.e.,  = ,……… ……… . ,
Then ∪ =  , ……… , ……… .
Further, ( ) = , ( ) =  
and ( ∪ ) =  + = ( ) + ( ).
Hence, Axiom 3 is satisfied. 

We can easily generalize the proof for the case of more than two events. 
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1.9   Empirical or Statistical Definition of Probability 

Relative Frequency Ratio: Let an event A occurs nA times in n repetitions of a random 
experiment, Relative frequency ratio of event A is defined as  =
Obviously. 

(i) 0 ≤ fA ≤ 1 

(ii) fA = 1, iff, A occurs every time in n repetitions of the experiment; 

(iii) fA = 0 iff A never occurs in n repetitions; 

(iv) For two mutually exclusive events A and B ∪ =   +
As n→ ∞, fA converges to P(A) in certain probabilities sense. This property gives the 

empirical or statistical definitions of probability. 

Empirical or Statistical Probability: 

The statistical probability approach can be used for estimating probability of an event 
empirically but it also does not serve as a general definition of probability. 

It is only the axiomatic approach, which leads to proper definition of probability. Though 
the Mathematical and Statistical probability have their own importance, they do not provide a 
proper definition of probability. 

1.10   Some Important Results on Probability 

We have some important results as below. 

(i) P(Ac) = 1 - P(A) 

(ii) P (A ∩ Bc) + P(A∩B) = P(A)  

(iii) For two events A and B, not necessarily mutually exclusive. 

P (A ∪ B) = P(A) + P(B) - P(A∩B) 

(iv) If A ⇒ B i.e. A⊂ B the P(A) ≤ P(B).  

(v) Probability of occurrence of exactly one of the two events A and B is given by           P 

[(A ∩ Bc)∪ (Ac ∩ B)] = P(A) + P(B) - 2P(A∩B). 

Proof of the results: 
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(i) We have  
 A ∩ Ac = ∅
Thus A and Ac are mutually exclusive. Further 

A ∩ Ac = 

Hence , 

P (A ∩ Ac) = P ( ) 

P(A) + P(Ac) = 1, (by axioms 2 and 3) 

Or, 

P(A) = 1 - P(Ac) 

(ii) We observe that  

(A ∩ B) ∩ (A ∩ Bc) = ∩ ( ∩ )= ∩ ∅= ∅ℎ ( ∩ ) ( ∩ ) .    ℎ
(A ∩ B) ∪ (A ∩ Bc) = ∩ ( ∩ )
= A ∩  
= A 

Hence  

P [(A ∩ B) ∪ (A∩Bc)] = P(A)  

Or, 

P(A ∩ B) +  (A ∩ Bc) = P(A) (using axiom 3). 

(iii) We can write 

A ∪ B = A ∪ (Ac ∩ B)  A  ∪  (A  ∩  B) = ∅, so that A and A  ∩  B are mutually exclusive.
Hence, 

P(A∪B) 

= P[A ∪ (Ac ∩ B)] 

= P(A) + P(Ac ∩ B) 

Further, using result (ii) we have 
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P(Ac ∩ B) = P(A) + P(B) - P(A∩B) 

Hence we obtain 

P(A ∩ B) = P(A) + P(B) - P(A∩B) 

(iv) If A ⇒ B i.e. A⊂ B then we can write 

B = A ∪ (Ac ∩ B)    Since A and A  ∩  B are mutually exclusive, we have 

P(B) = P(A) + P(Ac ∩ B)   

Further, utilizing P(Ac ∩ B)  ≥ 0, the result immediately follows: 

(v) The occurrence of exactly one of the two events A and B can be written as (A ∩ Bc) ∪(A  ∩  B). Since (A ∩ Bc) (A  ∩  B) are mutually exclusive, 

We have, 

P (A ∩ Bc) ∪  (A  ∩  B)
= P (A ∩ Bc) +  (A  ∩  B)
Further, utilizing the result (ii), we have  

P (A ∩ Bc) ∪  (A  ∩  B)
= P(A) - P(A ∩ B) + P (B) - P (A ∩ B) 

This leads to the required result. 

1.11  Self Assessment Exercises 

1. An unbiased dice is thrown two times. What is the probability that (i) the two throws leads 

to the same number, (ii) the number obtained in the first throw is one more than the number 

obtained in the second throw, (iii) the sum of two number obtained is 5? 

2. Out of twenty lottery tickets, three tickets have a cash prize. If three tickets are selected at 

random, what is the probability that at least one ticket has a cash prize? 

3. From all two digit numbers (numbers between 10 and 99), a number is selected at random. 

What is the probability that (i) number is divisible by 5, (ii) the number is divisible by at 

least one of the numbers 5 and 7? 

4. A person can have birthday on any of the seven days of a week with equal probability. If 

two people are selected, what is the probability that they both have birthday on the same 

day of the week? 

5. An unbiased coin is tossed six times. What is the probability that (i) two heads are obtained, 
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(ii) even number of heads are obtained. 

6. A person can go from his home to this office using one of the four possible routes. If he 

selects the route randomly, what is the probability that there are different routes on four 

consecutive days 

7. Verify if the following assignment of probabilities is possible. Give the reason: 

i. P(A) = 0.4,  P(B) = 0.8,   P(A∩ B) = 0.7 

ii. P(A) = 0.6,  P(B) = 0.4,   P(A∪ B) = 0.5 

iii. P(A) = 0.45,  P(B) = 0.30,   P(A∩ Bc) = 0.50 

8. If P(A) = P(B) = 1/4 and P(A∩B)= 1/8, then obtain the probability of occurrence of  

(a) exactly one of the two events A and B, 

 (b) P(A∩ Bc). 

9. If A⊂ B,  B and C are mutually exclusive and P(A) = 1/3, P(B) = 1/2,  P(C) = 1/4, then 

obtain P(A∪B∪C).  

10. For two events A and B, if P(A) = 0.4,  P(B) = 0.6  and A⇒B. Find P(B/A). 

11. IF P(A) = 1/2 ,  P(A∪ B) = 5/6, and P(A∩ B) = 1/3, then obtain P(B). 

12. For three events A, B and C prove that  

P(A∪B∪C) = P(A) + P(B) + P(C) - P(A∩B) - P(A∩C) - P(B∩C) + P(A∩B∩C). 

13. For two events A and B, prove that  

P(A) + P(B) -1≤ P(A∩B) ≤ minimum of { P(A), P(B)} ≤ maximum of {P(A), P(B)} ≤
P(A∪B) ≤ P(A) + P(B). 

14. Let P(A) = P(B) = P(C) = 1/2, P(A∩B) = P(B∩C) = P(A∩C) = 1/4, and P(A∩B∩C) = 1/6.  

Find (i) P [exactly one of the events occur]  

(ii) P (at least two of the events occur),  

(iii) P (at most two of the events occur). 

15. Let P(A) = x,  P(B) = y,  and  P(A∩B) = z. In terms of x, y and z find the probability that 

(i) exactly one of the two events will occur, (ii) none of the two events A, B occur. 

16. A fair dice is thrown twice. Let A be the event that first throw shows an even number and 

B is the event that sum of the numbers obtained in two throws is an number then obtain 

P(A∩B). 

17. For k events A1,……..Ak, show that. 
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( ) ≤ ( )
( ) ≥ ( ) − ( − 1)
1.12   Answers/ Suggestions 

1. (i) 1/6  (ii)  5/12  (iii) 1/12 

2. The number of ways in which exactly one ticket one ticket with case prize can be selected 

is 31  . Similarly you can obtain number of ways in which exactly two or three tickets can be 

selected. Total number of possible ways in which is 3 tickets can be selected out of 20 tickets 

is 203 . The required probability is 7/1140. Since 7= 31 + 32 + 33 .
3. (i) =
4. 1/7  

5.    ( )
6.     =
7.     (i) No because P(A∩B) can not be greater than either P(A) or P(B). 
          (ii) No   (iii) No 
8.  (i)  1/4     (ii) 1/8 
9.  P(A∩B) = P(A), P(B∩C) = 0,  P(A∩C) is also 0 as A⊂B, P(A∩B∩C) = 0. Then P(A∪B∪C) 
= 3/4.  
10.  P(B-A) = 0.2 
11.   2/3 
14.  (i) P [exactly one of the three events occur] = P(A)- P(A∩B)- P(A∩C)+ P(A∩B∩C)+ [P 
(B)- P(A∩B)- P(B∩C)+ P(A∩B∩C)] + [P (C)- P(B∩C)- P(A∩C)+ P(A∩B∩C)] = 7/8. 

(ii) 3/8.  (iii) 1-P (all the three events occur) = 7/8 

15.  (i) x+y-2z,  (ii) 1- (x + y-z) 

16.    1/6 (Notice that A⊂B)  

17. Use method of indication to prove the result 

1.13  Summary 
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Those experiment in which outcome depends on chance are called random or non-
deterministic experiments. The set of all possible outcomes of a random experiment is known as 
sample space. A sub set of sample space is defined as an event. Various definitions of probability 
of occurrence of an event are given. In classical or mathematical definition of probability, it is 
defined as the ratio of favorable outcomes to the total number of outcomes provided outcomes in 
the sample space are mutually exclusive, exhaustive and equally likely to occur. In statistical 
definition, we calculate the probability by relative frequency or occurrence of event provided 
experiment has been repeated essentially under the similar condition for sufficiently large number 
of times. In axiomatic definition, it is defined as a real number lying between 0 and 1 (inclusive of 
both) provided following three conditions are satisfied (i) P(S) =1 (ii) P(∅)= 0 (iii) ⋃ 1 =∑ ( )1  where 5 are mutually exclusive events. 

1.15 Further Readings 
1. Cramer H, Mathematical Methods of Statistics, Princeton University Press, 1946 and Asia 

Publishing House, 1962. 

2. Hogg R.V. and Craig A.T., Introduction to Mathematical Statistics, Macmillan, 1978. 

3. Prazen E. Modern Probability Theory and its applications, John Wiley, 1960 and Wiley 

Eastern 1972. 

4. Rao C.R., Linear Statistical Inference and Its Applications, John Wiley, 1960 and Wiley 

Eastern 1974.  

5. Rahtagi V.K. (1984), An Introduction to Probability Theory and Mathematical Statistics, 

John Wiley, 1976 and Wiley Eastern 1985. 

6. Vikas S.S., Mathematical Statistics, John Wiley, 1962 Toppan. 
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Unit-2: Conditional Probability 

Structure 

2.1 Introduction 

2.2 Objectives 

2.3  Conditional Probability 

2.4 Multiplicative Theorem of Probability 

2.5 Independent Events 

2.6 Partition of the Sample Space and Baye’s Theorem 

2.7 Self Assessment Exercises 

2.8 Answers/ Suggestions 

2.9 Summary 

2.10 Further Readings 

2.1  Introduction 

In events associated with a random experiment, the information about the occurrence (or 
non occurrence) of an event may influence the probability of occurrence of some other events. The 
objective of present unit is to introduction the concept of conditional probability of an event subject 
to the information that some other event has already occurred. Various results regarding the 
conditional probability have been given. The basic concepts of independence of two events and 
mutual independence of several events have been introduced. 

2.2  Objectives 

After going through this unit you should be also to: 

Understand the basic concept of conditional probability and able to obtain conditional 
probabilities for events. 
Define and differentiate between pair wise independence and mutual independence of 
events. 
Prove and apply Bay’s theorem for solving problems. 

2.3  Conditional Probability 

Example 2.1:  Consider a box containing 100 computer chips out of which 40 are defective. Two 
chips are selected randomly (i) with replacement; (ii) without replacement. Let 
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A= {first item is defective} 

B= {second item is defective} 

In case of with replacement, P(A) = P(B) = 40/100 = 2/5. 

In case of without replacement,. P(A) = 2/5. If A has already occurred, probability of 
occurrence of B is 39/99. If A has not occurred, probability of occurrence of event B is 40/99. 
Hence the information about the occurrence of event A affects the probability of occurrence of 
event B. 

Definition:  Let A, B be two events defined on the same sample space Ω. Then conditional 
probability of B given A denoted by P(B|A), is defined as 

P(B|A)= 
( ∩ )( ) ,      ( ) ≠ 0.

For further motivation, consider mathematical probability. Let n be the total number of points in 
Ω, nA be the number of cases favorable to A, nB be the number of cases favorable to B and ∩
be the number of cases favorable to ∩ . Then 

( | ) =   ∩ = ∩ // =   ( ∩ )( )
Result:  The conditional probability satisfies all the axioms of a probability measures, that is, 

(i) 0 ≤ P(B/A) ≤1;  

(ii) P(A|A)= 1; 

(iii) ( 1 ∪ 2/ ) = ( 2/ ) + ( 1/ );      1 ∩ 2 = ;
(iv) (⋃ 1 / ) = ∑ ( / );1

If , provided are pair wise mutually exclusive. 

Poof: 

(i) Since ∩ ⊂ , we have 
P(A∩ B) ≤ P(A) 
Or, 
0 ≤ P(B|A) = P(A∩B) / P(A) ≤ 1 

(ii) We have 
P(A|A) 

= 
( ∩ )( ) =   ( )( ) = 1 
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(iii) Since B1 and B2 are mutually exclusive, A∩B1 and A ∩ B2 are also mutually exclusive. 
Hence 

P(B1 ∪B2|A)   = [ ∩ ( 1 ∪ 2)]( )= [( ∩ 1) ∪ ( ∩ 2)]( )= ( | ) +   ( | )
(iv) We can prove it along the same lines as (iii) 

Note: 

(i) For the conditional probability P(B|A), A behaves as a new sample space. 

(ii) The unconditional probability of an event A, P(A) may be viewed as a conditional 
probability of event A given Ω. 

2.4  Multiplicative Theorem of Probability 

From the definition of conditional probability, we observe that 

P(A∩B) = P(B|A) P(A) = P(A|B) P(B). 

This is called Multiplicative Theorem of Probability. 

Extension of Multiplicative Theorem:  For n events A1, A2…..An.  

P( 1 ∩ 2 ∩…∩ ) = ( 1) ( 2| 1) ( 3| 1 ∩ 2)…… ( | 1 ∩ …∩ 1)
Proof: Considering the right hand side, we observe that ( ) ( | ) ( | ∩ )…… ( | ∩ …∩ )

= ( ). 1∩ 21 . 1∩ 2∩ 31∩ 2 … . 1∩ 2∩…∩1∩ 2∩…∩ −1 =   ( ∩ ∩ …∩ )
= Left had side 

Example 2.2: In the example 2.1 for the without replacement case, P(A) = 40/100, P(B|A) = 39/99, 

P(B|AC) = 40/99. Then the probability that both the select chips are defective is given by 

P(A∩B) = P(B|A)P(A) = 39 × 40/99 100. = 40×39
100×99
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In fact, P(A∩B) is probability of simultaneous occurrence of events A and B. 

2.5  Independent Events 

 If A and B are two mutually exclusive events then P(B∩A)= 0 and P(B|A)= 0. If A⇒B  
then A⊂B and (A∩B) =A. So that P(B∩A) =  P(A) and P(B|A) = 1. In both the cases, knowledge 
about the occurrence of event A gives some definite information about the occurrence of event B. 
However, if P(B|A) = P(B), then we can say that the information about the occurrence of event A 
does not have any effect on the probability of event B and, in this sense A and B are independent 

Definition:  Two events A and B are said to be independent whenever  

P(A∩B) = P(A) P(B) 

Note:  If A and B are independent events then P(B|A) = P(B) and P(A|B) = P(A), provided  

P(A) > 0, P(B) > 0. 

Definition:  The n events A1, A2,……..An, are said to be mutually independent, if for all r = 2, 
3,…….. n. ∩ = 1 … . . ;  1 ≠ 2 ≠ ⋯… . .
We can write the above condition for mutual independence in detail as ∩ = ( ) ≠ .∩ ∩ = ( ) ( ) for ≠ ≠ .( 1 ∩ 2 ∩ 3 ……… .∩ ) =  P( 1) ( 2). … ( )
In all we have 2n-n-1 conditions for mutual independence. 

Note: Obviously, if A1, A2 ……,An are mutually independent, then they are pariwise independent 
also. However its converse is not always true. 

Example 2.3: (Counter example in which the events are pair wise independent but not mutually 
independent). 

A fair dice is thrown two times. Let A be the event that an even number comes up in the 
first throw. B be the event that an even number turns up in the second throw and C be the event 
that both the throws lead to the same number. Then total number of points in the sample space is 
6 × 6 = 36. Now 

A= {(2,1) ,(2,2), (2,3), (2,4), (2,5), (2,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (6,1) (6,2), 
(6,3) (6,4), (6,5), (6,6)} 
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B= {(1,2), (1,4), (1,6), (2,2) (2,4), (2,6), (3,2), (3,4), (3,6), (4,2), (4,4), (4,6), (5,2), (5,4), 
(5,6), (6,2) (6,4), (6,6)} 

C= {(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)} 

Then  

P(A) = 18/36 = 12 

P(B) = 18/36 = 1/2 

P(C) = 6/36 = 1/6 

A∩B is the event that both the throws lead to the even number, i.e. 

A∩B = {(2,2), (4,4), (6,6)} 

So that 

P(A∩B)= 3/36= 1/12. 

Further A∩C be the event that outcome of first throw is an even number and outcome of 
both the throws is same number. Thus A∩C = {(2,2), (4,4), (6,6)} and  P(A∩C) = 1/12 

Similarly B∩C be the event that outcome of second throw is an even number and outcome 
of both the throws is same number. Thus B∩C = {(2,2), (4,4), (6,6)} and  P(B∩C) = 1/12 

A∩B∩C is the event that both the throws lead to same event number and A∩B∩C = {(2,2), 
(4,4), (6,6)} thus A∩B∩C = 1/12. 

Hence we observe that P(A∩B) = P(A). P(B), P(B∩C) = P(B). P(C), and P(A∩C) = P(A). 
P(C) but P(A∩B∩C) = P(A). P(B). P(C), i.e. A, B and C are pair wise independent but not mutually 
independent. 

2.6  Partition of the Sample Space and Baye’s Theorem 

Theorem of total probability: 

Partition of the Sample Space: We say that the B1, ………. Bk define a partition of the sample 
space Ω if. ( ) ∩  1 =∅                                ∀ ≠

( ) =      
1
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( ) ( ) > 0                                  ∀
Result:  Let B1,…….……..,Bk be a partition of the sample space Ω and A be an event (A⊂ Ω), 

Then  

( ) =   ( | ) ( )
1

Proof: Since B1,…….……..,Bk define a partition of the  sample space Ω , we have 

Bi∩ Bj = ∅,   ∀  i ≠ j 

And 

=      
1

Further, A can be written as 

        A  = A ∩ Ω 

= A ∩   ⋃ 1

= ⋃ ∩1

Hence using axiom 4 of probability measure, for pair wise mutually exclusive events A1, A2, 
A3……………….An, we have 

=  ( ),
We observe that 

( ) =   ( ∩ )
1=  ∑ ( )1                                      (by multiplicative law of probability)

Baye’s Theorem:

Let B1,…….……..,Bk be a partition of the sample space Ω and A be an event  (A⊂ Ω), Then  
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( | ) =   ( | ) ( )∑ ( )1

Proof:  We have ( | ) = ( ∩ )( )
=   ( | ) ( )( )

Where the last equality follows form the multiplicative law of probability. Further, from the 
previous result, we have, 

( ) =   ( )
1

Substituting the value of P(A), we obtain 

( | ) = ( | ) ( )∑ ( )1

Hence the result 

Remark:

Here the probabilities P(Bj)’s are known as “a priori (or prior) probabilities”. They exist 
before we gain any information about A (the result of an experiment) 

The probabilities P(A|Bj)’s are known as  “likelihoods”. They indicate how likely event A 
to occur under the information that Bj occurs. 

The probabilities P(Bj|A)’s are known as ‘a posteriori (or posterior) probabilities”. They 
are determined after the results of the experiment are known. 

Example 2.4 A bag contains 10 coins out of which five coins of type 1 are unbiased and remaining 
five coins are biased. Among the biased coins, four coins of type II have probabilities of head  1/3 
are remaining one coins of type III have probability of head 9/10. A coin is selected at random and 
tossed three times. If we get heads in a row, what is the probability that the coin is of type III. 

Solution: Let 

B1 : Event the coin is of type I 

B2 : Event the coin is of type II 
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B3 : Event the coin is of type III 

A: Event that we get three heads in a row. 

Given that P(B1) = 0.5  P(B2) = 0.4,  P(B3) = 0.1 ( | ) =   (1/2)3,  ( | ) =   (1/3)3, ( | ) =   (9/10)3

Then the probabilities that the coin is of type III given that three heads have been obtained in a 
row, i.e., P(B3|A), is given by 

P(B3|A) = ( | ) ( 3)( | ) ( 1) +   ( | ) ( 2) + ( | ) ( 3)
=   9

10
3 × 0.1

1
2

3 × 0.5 + 1
3

3 × 0.4 + 9
10

3 × 0.1= 0.46

2.7 Self Assessment Exercises 

1. Let A, B and C be three events such that A and C are mutually exclusive, B and c are 
independent and P(A) = 1/12, P(B) = 1/3,  P(C) = 1/4 and P (A∩BC) = 0, Find 

(i) P(A∩B∩C)  

(ii) P(A∪B∪C)   

(iii) P(exactly one of the event A,B,C occur)  

(iv) P(C|A), (v) P(B|A). 

2. For two events A and B if A⇒B, P(A) = 1/3, P(B) = 1/2 then find  

(i) P(B|A),  (ii) P(A|B) 

3. If P(A) = P(B) = 1/3 and P(A∩B) = 1/6. Then obtain (a) P(B|A),  (b) P(A|BC). 

4. Prove that for three events A,B,C. 

(i) P(A∪B|C) = P(A|C) + P(B|C) - P(A∩B|C) 

(ii) P(A∩B|C) + P(A∩BC|C) = P(A|C) 

(iii) If B⇒C and P(A)>0 then P(B|A) ≤ P(C|A) 

(iv) If B⇒C  then P(C|B) = 1.  

5.  Prove that for two events A and B, if P(B|A) > P(A|B) > P(A). 

6. In throwing two fair dice the events A, B and C are defined as 
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A = “First toss results in a 1, 2, or 3.” 

B = “Second toss results in 4, 5, or 6.” 

C = “ The sum of the two face is 7.” 

Show that A, B and C are pair view independent but not mutually independent. 

7. Suppose that factory has to complete a project, which, which may get delayed 
because of a strike. The probability that there will be a strike is 0.20. The probability 
that the project will be completed in time if there is no strike is 0.90 and the 
probability that the project will be completed on time if there is a strike is 0.45. What 
is the probability that the project will be completed on time? If the project is 
completed on time, what is the probability that there was no strike? 

8. A machine hired by a company could have failed as the result of one of the four 

possible reasons. (i) due to voltage fluctuation in electricity supply, (ii) due to 

malfunctioning of equipment (iii) due to carelessness in handling the machine, 

(iv)due to sabotage. Interviews with manager analyzing the risks involved led to the 

conclusion that failure would occur with probabilities 0.15 as result of voltage 

fluctuation in electricity supply, with a probability 0.20 due to malfunctioning of 

equipment, with probability 0.60 due to carelessness and with probability 0.25 due to 

sabotage. The prior probabilities of the four causes of machine failure are, 

respectively, 0.15, 0.30, 0.35 and 0.20 based on this information. 

(a) Find the probability of a failure at the construction site. 

(b) If a failure has occurred at the construction site, what is the most likely 

cause of failure? 

9. An unbiased coin is tossed four times. Let A be the event that first, two tosses lead 

to the same outcome (both heads or both tails) and B is the event that last three tosses 

lead to the same outcome (all heads or all tails), then find P(B|A). 

10. A finite discrete sample space is consist of the four points denoted by {(100), (001), 
(010), (111)}. 

Each point has been assigned probability V4 and a point is selected randomly. Let Ai

(1=1,2,3) be the event, which occurs if there is a 1 at the i-th place. Thus A1 = {(100), 
(111)}. Show that A1, A2, A3 are pair wise independent but not mutually independent.  

 2.8  Answers/ Suggestions 
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1. (i) 0,  (ii) 7/12 (iii) 1/3 (iv) 0, (v) 1. 

2.  (i) 1, (ii) 2/3. 

3.  (a) 12   (b) V4 

7.   P (Project is completed on time) = 0.81, P(No strike | project is completed on time)= 

8/9 

8.  Let A be the event that machine has failed B1 is the event that cause of failure is 

voltage fluctuation, B2, is the event that cause of failure is malfunctioning, B3 is the 

event that cause of failure is carelessness and B4 is the event that cause of failure is 

sabotage. Then P(A|B1) = 0.15 , P(A|B2) = 0.2, P(A|B4) = 0.25, P(B1) = 0.15, P(B2) = 

0.3, P(B3) = 0.35, P(B4) = 0.2 Then 

(a) P(A) = 0.3425 

(b) P(B1|A) = 0.0657, P(B2|A) = 0.175, P(B3|A) = 0.613, P(B4|A) = 0.146  

Hence most likely cause of failure is Carelessness 

9.  A = {HHHH, HHHT, HHTH, HHTT, TTHH, TTHT, TTTH, TTTT} 

 B= {HHHH, HTTT, THHH, TTTT} 

 A∩B= {HHHH, TTTT} 

P(B|A)= ¼.  

2.9  Summary 

When occurrence of an event is affected by certain conditions and the numeric value of 
probability of occurrence of an event varies as per these conditions, then it is conditional 
probability. In this case, events are not mutually independent and occurrence of one event may 
affect the occurrence of others. 

Bays’s theorem revises the initial probabilities of occurrence of events (which partition the 
sample space) when as a particular event occurs.  

2.10  Further Readings 

1. Cramer H, Mathematical Methods of Statistics, Princeton University Press, 1946 and 
Asia Publishing House, 1962. 

2. Hogg R.V. and Craig A.T., Introduction to Mathematical Statistics, Macmillan, 1978. 
3. Prazen E., Modern Probability Theory and its applications, John Wiley, 1960 and 

Wiley Eastern 1972. 
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4. Rao C.R., Linear Statistical Inference and Its Applications, John Wiley, 1960 and 
Wiley Eastern 1974.  

5. Rohtagi V.K. (1984): An Introduction to Probability Theory and Mathematical 
Statistics, John Wiley, 1976 and Wiley Eastern 1985. 

6. Vikas S.S., Mathematical Statistics, John Wiley, 1962 Toppan. 
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Unit-3: Random Variables and Probability Distributions 

Structure 

3.1 Introduction 

3.2 Objectives 

3.3 Random Variables 

3.4 Cumulative Distribution Function and its Properties 

3.5 Discrete Random Variable and Probability Mass Function 

3.6 Continuous Random Variable and Probability Density function  

3.7 Self Assessment Exercises 

3.8 Solutions / Suggestions 

3.9 Summary 

3.10 Further Readings 

3.1  Introduction 

In the previous two units of block 1 you have noticed that in many examples of the random 
experiments, the outcomes are not numbers. In such situations, it is more convenient for further 
analysis to assign a real number to each  point of the sample Ω. The main objective of defining 
a random variable is to assign numerical values to different points of the sample space.  

3.2  Objectives 

After going through this unit the students should be able to 

Define random variable and understand the difference between discrete and continuous 
random variables. 

Define and obtain probability mass function and cumulative distribution function of a 
continuous random variable. 

Define and obtain probability density function and cumulative distribution function of a 
continuous random variable 
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Obtain different probabilities for discrete and continuous random variables using 
probabilities mass function/ probability density function. 

3.3  Random Variables 

Example 1:  In tossing a coin the sample space is = { , }.
We may assign number 1 to ‘H’ and number 0 to ‘T’. In other words, we define a function 

X(.), such that 

X(H)=1 and  X(T)=0. 

Definition: A random variable X is a real valued function defined on Ω satisfying the condition 
that for each real number x.  { : ( ) ≤ } ⊂ .
The domain of the random variable X is  and its range is entire real line or a subset of real line. 
We denote the range of X by Rx.  

Example 2: Suppose we toss an unbiased coin two times. Then the sample space is = { , , , }.
Let us write  = HH,  = HT, = TH, = TH. If we define X( ) = number of H in ,

then X( ) = 42, ( )= X ( ) = and X( ) = 0. Thus X assigns number 0 to TT, 1 to HT and 
TH and number 2 to HH. Then for each real x you observe that,  

{ : ( ) ≤ } =  ⎩⎨
⎧ ∅                           < 0{ }  0 ≤ < 1{ , , }  1 ≤ < 2> 2 ⎭⎬

⎫
The range of X is Rx = {0, 1, 2} 

3.4  Cumulative Distribution Function and its Properties 

For a random variable X, the function 

F(x) = P[{ : ( ) ≤ }] = P[X≤x] 

is called the Cumulative Distribution Function (cdf) of the random variable X. 

Example 3: Let X be the number obtained in throwing an unbiased dice. The cdf of X is given by 
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( ) =  
⎩⎪⎪
⎨⎪⎪
⎧ 0                < 11/6                 1 ≤ < 22/6                 2 ≤ < 33/6                3 ≤ < 44/6               4 ≤ < 55/6              4 ≤ > 61                     > 6

The graph of F(x) against x is given by 

Figure 1 
From the above graph, you observe that the cdf is a step function with jumps at the points 

of discontinuity of F(x), i.e., 1, 2, 3, 4, 5 and 6. The amount of jump at a point is equal to the 
probability of that point 1/6. 

Some properties of Cumulative Distribution Function are 

(i) 0 ≤ F(x) ≤ 1. 

(ii) For a < b, P(a < X ≤ b) = F(b) - F(a). 

(iii) If a < b, then F(a) ≤ F(b), i.e., cdf F(x) is monotonic non-decreasing function of x. 

(iv) F(x) is right continuous. 

(v) We have F(∞) = 0 and F(∞) = 1. 

Lim F(x) = F(∞) = 1; lim→ F(x) =   F(−∞) =  0.  

Proof: 

(i) Obvious as probability lies between 0 and 1. 
(ii) You can write (−∞, ] = (−∞, ] ∪ ( , ].

Since (−∞, ] and (a,b] are mutually exclusive you observe that { (−∞, ]} = { (−∞, ]} + { ( , ]}
Or 
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F(b) = F(a) + P[ a < X ≤ b} 
Which leads to the required result. 
(iii) In the previous result, since 0 ≤ P[a < X ≤ b] ≤ F(b). 

(iv) For showing that F(x) is right continuous you have to prove that for h > 0.  lim→ F[(x + h) −   F(x)] =  0. 

Since  
F (x + h) - F (x) = P (x < X ≤ x +h) 

We have lim→ F[(x + h) −   F(x)] =  0. 

(v) Notice that 
{ : X( ) < ∞} = ℎ { : ( ) <  ∞} = ( ) = 1, ℎ ℎ  ℎ (∞) = 1

Further 
{ : X( ) < −∞} = ∅  ℎ { : ( ) <  ∞} = (∅) = 0, ℎ ℎ  (−∞) = 0

Result: The cdf F(x) is left continuous at point x if and only if P(X = x) = 0.  

Proof: For left continuity of F(x) we have to show that for h > 0. lim→ F[(x) −   F(x − h)] =  0
Since  

F (x) - F (x-h) = P (x-h < X ≤ x) 
Taking limit h→0, you obtain,  lim→ [F(x) −  F(x − h) = P(X = x).
Note: For the cdf of a random variable to be continuous at a point X = x, P(X = x) must be equal 
to 0. 

3.5  Discrete Random Variable and Probability Mass Function 

A random variable X is called a discrete random variable if it takes finite or countable 
infinite number of values. Thus the range Rx of a discrete random variable has countable number 
of points.  

Let X be a discrete random variable with Rx = {x1, x2, ……xi, xj……}, with each possible 
outcome xi we associate a number P(xi) = P(X = xi); i= 1,2,…. Satisfying the following conditions:  

(i) p(xi)≥ 0 for all i = 1, 2,….. 

(ii) ∑ ( ) = 1
The function p(x) satisfying the above conditions is called the probability mass function (pmf) 

of the random variable X. 
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The collection of pairs (xi, p(xi)); i = 1, 2…. is called the probability distribution of X. the cdf 
of X is given by  ( ) =   ( ),

The values x1, x2….of X with which we associated positive probabilities are called mass 
points and p(xi) is the probability mass associated with mass point xi.  

Example 4: Let X takes values 0, 1, 2, 3, 4, with corresponding probabilities 1/4, 1/3, 1/8, 1/6, 1/8 
respectively, obviously X is a discrete random variable with Rx  = {0, 1, 2, 3, 4}. 

The pmf of X can be written as 

( ) =  
⎩⎪⎪⎪
⎨⎪
⎪⎪⎧ 14 = 013 = 118 = 2, 416 = 30       ℎ

The cdf of X is given by 

( ) =  
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎧ 0                                < 014  0 ≤ < 114 + 13 = 712  1 ≤ < 214 + 13 + 18 = 1724  2 ≤ < 314 + 13 + 18 + 16 = 2124  3 ≤ < 414 + 13 + 18 + 16 + 18 = 1         ≥ 4

If the possible values of X are arranged in ascending order so that x1 = x2, then the cdf of 
X can be written as 

( ) = 0                                                                 <( ) ≤ <( ) + ( ) ≤ <
Obviously F(x) is step function with jumps at mass points x1, x2……..The magnitude of 

jump at mass point xi is p(xi). 

The domain of the pmf p(x) is Rx and the range is interval [0, 1]. 
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Example 5: The range of r.v. X has a finite number of possible values, say, Rx = {x1, …….., xn} 
with x1 < …… < xn and equal probabilities associated with each mass point then find the pmf of x 
is given by 

( ) = 1 1 ,           =   , …… . .0                                    ℎ
Further the cdf of X is 

( ) =
⎩⎪⎪
⎨⎪
⎪⎧ 0             <1 ,        ≤ <2 ,      ≤ < ,.                                  .                                 1             ≥

Example 6:  The pmf of a r.v. X is given by 

( ) = 4 ,           = 0, 1, 2, … .0,                   ℎ
For obtaining the constant k, we use the property of the pmf which gives k = 3/4. Suppose 

we want to obtain the probabilities (i) P(x > 3.5) (ii) P(x < 6 | X > 3). Then 

P(X > 3.5) = ∑ =
Further, 

P(x < 6 | X > 3) = (3 < < 6)( > 3) =   (4) + (5)∑ ( ) =    34 14 + 34 14∑ 34 14 = 1516
3.6  Continuous Random Variable and Probability Density Function  

Let X be a random variable with the range Rx entire real line or an interval of the real line 
and the cdf F(x) of X is a continuous function of x over Rx. Then X is a continuous random variable. 
Some examples of continuous random variables are (i) time taken to download a particular website, 
(ii) survival time of a cancer patient after diagnosis. 

Notice that if F(x) is continuous over Rx, then probability of a particular point is 0 and, like 
discrete random variables, we can not associated positive probabilities with different possible 
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values of X. However, with each x, we define a function f(x), called the probability density 
function of X as follows: 

Definition: For continuous random variables, there exists a function f(x) called the probability 
density function (pdf) of X, such that 

(i) f(x) ≥ 0 for all x. 

(ii) ∫ ( ) = 1
(iii) For real number a, b with −∞ < a < b < ∞ , the probability that X lies in interval (a,b] 

is given by ( < ≤ ) = ( )
Since for a continuous random variable X, the probability of a single point P(X = x) = 0 

for all x, we have ( < ≤ ) = ( ≤ ≤ ) = ( < < )
The cdf of X is given by ( ) = ( ≤ ) = ( )
Conversely, the pdf of X, in terms of cdf, is given by ( ) = ( )
Example 7: Let us verify if the following function is the pdf of a random variable X. ( ) = 4 − 2 − 1,      0 <   < 2= 0 , ℎ

The above function is not a proper pdf as f(x) is negative for some values of X. For instance, 
if we take x = 1/4. Then f(x) = -1/8. 

Example 8: Suppose f(x) defined below is the pdf of a random variable. We obtain (i) the constant 
k       (ii) the cdf of X,                (iii) P(X > 5),                (iv) P(X > 5 | X > 3). ( ) = / , 0 < < ∞0, ℎ
Solution: 

(i) For obtaining the constant k, we use the property of the pdf that the integral of f(x) over 
the entire range of  X is 1. Using the transformation t = 10.x, we have 1 =   /
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=   /
= . 10    =   . 10, = 1/10.

(ii) The cdf of X is given by 
P(X ≤ x) = F(x) 

=  110 / =     ( = 10 )/
Therefore the cdf of X is given by ( ) =  0,                                           ≤ ∞1 − / ,                      0 < < ∞ 

(iii) We have 
P(X > 5) = 1 - F(5)  =  e-5/10   = e-1/2

and  P(X > 5 | X > 3) = P(3 ≤ X < 5)P(X ≤ 3)
=   F(5) − F(3)1 − F(3) = e / − e /e /

3.7  Self Assessment Exercises  

1. The pmf of a discrete random variable X is given by ( ) = . | |,                    =  −2,−1, 1, 20,                                      ℎ
Obtain the value of c. Also find the cdf of X. What is the probability that |X| ≤ 1. 

2. The pmf of a discrete random variable X is given by 

( ) = 4! ,                      = 0, 1, 2, … .0,                                 ℎ
Find the value of k. Also obtain the probability that X is greater than or equal to 3. 
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3. A fair coin is tossed until a head is obtained. Let X be the number of tosses. Write the 
pmf of X. Also obtain the probability that number of tosses is greater than or equal to 
two. 

4. For each of the following determine the value of c so that the functions can serve as 
the probability distribution of a random variable: ( ) ( ) = 3 = 1, 2, 3, …… ..

                                            =0 ,                         otherwise ( ) ( ) = > 0
= 0 ,                                   elsewhere 

5. The pdf of a random variable X is given by ( ) = 1|1 − |,                                    0 < < 20,                                                ℎ
Find the cdf of X.  Also obtain (i) P (X > 1), (ii) P (X > 1/2 | 0 < x <1). 

6. The pdf of  a random variable X is given by ( ) = . ,                             0 < < 10,                                 ℎ
Find the constant k. Also obtain  (i) the cdf of X.  (ii) P(1/4 < x <1/2   

(iii) P(1/3 < x < 1/2 | x > 1/4). 

7. Suppose the pdf of a random variable X, if (x), is given by 

( ) = ,  0 < < 1 1 ≤ < 20,                ℎ
Find the constant k and the cdf of X. Also find (a) P(X > 1/3) (b) P(1 < X < 2 | X > 1/2). 

3.8  Solutions/Suggestions  

1. c = 1/6. 
The cdf of X is 
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( ) =  
⎩⎪⎪⎪
⎨⎪
⎪⎪⎧ 0              < −213 − 2 ≤ < −112 − 1 ≤ < 123  1 ≤ < 21,                  ≥ 2

P (|X| ≤ 1) = 1/3 

2. k = e-4, P(X≥ 3) = 1 – 13 e-4

3. p(x) = 1 2 ,       x = 1, 2,……;     P(x≥ 2) = 1/2 

4.  (i) c = 2  (ii) c = 1 

5. The cdf of X is 

( ) =  
⎩⎪⎪⎨
⎪⎪⎧ 0,                         < 02 ,                    0 ≤ > 12 − 2 − 1        1 ≤ < 21                              ≥ 2

(i) 1/2     (ii)  3/4 

6. k = 3. 

(i) ( ) =  ⎩⎪⎨
⎪⎧ 0,                                   ≤ 0,                       0 < < 11,                                     ≥ 1

(ii) 7/64   (iii) 152/1701 

7. k = 6/17. 

( ) =  
⎩⎪⎨
⎪⎧ 0,                                   ≤ 0317 ,                       0 < < 11 − 217   1 ≤ < 21,                                     ≥ 2

(a)  50 / 51                (b)  56 / 65. 
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3.9  Summary 

A random variable is defined as a real valued function defined over the sample space. Each 
value of the random variable represents an event of a random experiment. The distribution of 
probability over the different values of the random variable is known as probability distribution. 

3.10  Further Readings 

1.  Cramer H, Mathematical Methods of Statistics, Princeton University Press, 1946 and 
Asia Publishing House, 1962. 

2. Hogg R.V. and Craig A.T., Introduction to Mathematical Statistics, Macmillan, 1978. 
3. Prazen E., Modern Probability Theory and its applications, John Wiley, 1960 and 

Wiley Eastern 1972. 
4. Rao C.R., Linear Statistical Inference and Its Applications, John Wiley, 1973 and 

Wiley Eastern 1974.  
5. Rohtagi V.K., An Introduction to Probability theory and Mathematical Statistics John 

Wiley, 1976 and Wiley Eastern 1985. 
6. Vikas S.S., Mathematical Statistics, John Wiley, 1962 and Toppan. 
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Unit-4: Mathematical Expectation 

Structure 

4.1 Introduction 
4.2 Objectives 
4.3 Mathematical Expectation and Types 

4.3.1 Discrete Random Variable 
4.3.2 Continuous Random Variable 
4.3.3 Expectation of a Function of a Random Variable 

4.4 Moments 
4.5 Theorems on Expectation 
4.6 Self Assessment Exercises 
4.7 Answers 
4.8 Summary 
4.9 Further Readings 

4.1  Introduction 

The notion of expectation or mean has its origin in the theory of games. The concept was 
first dealth by Huygens (1629-1695). A gambler may be interested to know the average winnings 
at a game while a businessman wishes to know his average profits on a product. The ‘average’ 
value of a random phenomenon is called its mathematical expectation or expected value. The 
statisticians prefer it due its property of statistical stability. If we know the probability distribution 
of a random variable/s then we can calculate the expected value of the random variable or the 
distribution. 

4.2  Objectives 

After going through this unit you shall be able to, 

Describe the expectation of random variables. X or mean of the distribution. 

Identify the raw moments of the distribution, 

Indentify the central moments of the distribution, 

Analyze expectation of sum of random variables and the product of independent r.v.’s. 

State covariance between two variables. 

Explain coefficient of correlation between two linearly dependent random variables. 

4.3  Mathematical Expectation and Types 
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Definition: A (real-valued) function defined on the sample space is called a random 
variable (r. v.) or a stochastic variable. Obviously to each value of a random variable x there 
corresponds a definite probability.  

 Let x1, x2, ……, xk be the possible values of x, and let p1, p2……….pk be the corresponding 
probabilities. A statement of the possible values together with the probabilities gives the 
probabilities distribution of x. 

Types of Random Variables: 

There are two types of random variables: 

Discrete Random Variable 
Continuous Random Variable. 

4.3.1   Discrete Random Variable 

If a random variable X assumes only a finite number or contutably infinite number of 
values then X is called discrete random variable. The possible values that X may take are x1, 
x2,……., xn in finite case and x1, x2……, in countably infinite case or {xi, i= 0,1,2,…..} 

4.3.2   Continuous Random Variable 

If a random variable X assumes any value in some interval or intervals it is called a 
continuous random variable. In other words, if a variate X can take an infinite set of values in a 
given interval, say a ≤ x ≤ b, it is a continuous random variable. 

4.3.3   Expectation of a Function of a Random Variable 

Let X be a random variable which takes the values x1, x2….., then the probability that     X 
= x, is denoted by P(X = xi). The function P(X= xi) denoted by P(xi) or pi is called probability 
function of X, we write P(xi) = P[X = xi] ,I = 1, 2……or  p(x) = p[X = x], for x = x1, x2, x3,……. 

The probability distribution of a discrete random variable is the set of order pairs [xi, p(xi)] 
which must satisfy the conditions. 

(1)   p(xi) ≥0, i = 1, 2, 3,…….    ............................... (2.1) 
(2) ∑ p(x ) =1.     ............................... (2.2) 

Example: 

(1) Let X be the number of points appearing in a toss of a die. Then probability distribution 
of the discrete random variable X is given by the probability function. ( ) =   1/6,                                      = 1, 2, 3, 4, 5, 60,                                         ℎ … . . ................(2.3) 
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This discrete probability distribution can be expressed as. 

X= x 1 2 3 4 5 6 
P(X = x) = p(x) 1/6 1/6 1/6 1/6 1/6 1/6 

(2) Let a coin be tossed two times. Let r. v. X = Number of heads Possible values of X are 
x = 0, 1, 2. The distribution of r.v. X is 

 X = x 0 1 2 
P(X = x) = p(x) 1/4 1/2 1/4 

(3) If a coin be tossed 4 times, the distribution of getting heads, 0, 1, 2, 3, 4, times is 

X = x 0 1 2 3 4 
P(X = x) = p(x) 1/16 4/16 6/16 4/16 1/16 

Expected Value or Mathematical Expectation: 

Discrete Distribution:  If X denotes a discrete random variable which can assume the values x1, 
x2, ….xn with respective probabilities p1, p2,….pn-----. 

Where  = ( ) = [ = ] ∑ p(x ) = 1, then the mathematical expectation of X or 
expected value of X, denoted by E(X), is  

( ) =   + +⋯… . =   ( ) = ( )         ……… (2.4)
The expectation exists if the series ∑ | |  ( ) is convergent, that is the condition is 

satisfied. 

| |  ( ) < ∞                        ………… (2.4.1)
The expectation of X may not always exist. You should check the condition (2.4.1) 

Please look at the sum (2.4). The summond xi p(xi) is the ith value of the r. v. X multiplied 
by the probability that [X = xi] and then the summation is taken over all values. Thus, E(X) is also 
an ‘average’ of the values that the r. v. assumes and each value is weighted by the probability with 
which it probable will receive correspondingly higher weight. 

Further, E(X) is the centre of gravity (or centraid) of the unit mass that is determined by 
the probability mass function (p.m.f.) of X. Hence, the mean E(X) of X is the measure of which in 
the values of r. v. X are “centred”.  
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Continuous random variable or distribution: 

If X is a continuous r. v. with pdf f(x), then expectation E(X) of r. v. X or expected value 
of the distribution is given by the integral ( ) = ( )
provided the condition | | ( ) < ∞
is satisfied. 

4.4  Moments 

Let X be a r.v. and ∅(X) be a function of X. Then expected value of ∅(X) denoted by 
E[∅(X)], is defined as 

[∅(X)] =   ∑∅( ) ( ),          . . ℎ  . . . ,      ( )∫ ∅( ) ( ) ,    . . ℎ  . . . ,     ( )
……(2.5) [∅(X)] ∅( ) ( ) ∅( ) ( ) ℎ .

If X is a r.v. which takes the value x1, x2, …….xn with corresponding probabilities p1, 
p2……pn respectively, then we may write [∅(X)]  =   ∅( )
In case ∅( ) = ,  we have ( ) =   + +⋯…… .+ =

This is defined as the rth moment of the discrete random variable X or of the prob. 
distribution about x = 0, or origin it is denoted by  for r = 0, 1, 2, 3,…., This  is the expected 
value of the rth power of the variate. In fact, = 1 (always) expectation of r.v. X or =∑ ( ) is the mean of the r.v. X or the prob. distribution is X. 

Central Moments 

Also rth central moment or moment about mean  
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= [ − ( )] = [ − ( )]= ( ) . .
[ − ( )] ( ) . .

In particular, = ( ) = + +⋯… .= =
=   [ − ( )] = ( ) ==   [ − ( )] = [ − ( )]

=   [ − ( )] = [ − ( )]
If pi is replaced  by where ∑ = N then  

( ) = ∑ =   ,                ℎ ℎ  ℎ . ∴ ( ) ℎ . 

Theorem 2.1   If x = a, a constant then E(x) = a. 

Proof:   Since X = a, we have xi = a and P[X = xi] = P[X = a] = 1 for all i. Hence it gives 

for discrete random variable 

E(X) = p[X = a] = a.1= a   ……………(2.6) 
or 
for continuous random variable 

E(X) = ∫ ( ) = ( ) = ∫ ( ) = .
Example 1:  What is the expected value of the number of points, X, that will be obtained in a 
single throw with an ordinary die? Find its variance also. 

Solution: Here the variance X is the number of pointed that comes up on a die. It assumes the 
values Xi = 1, 2, 3, 4, 5, 6 with probability p(xi) = P[X = xi] = 1/6 in each case. 
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Hence ( ) = + +⋯…… .+ = (1/6)*1 + (1/6)*2 + …. + (1/6)*6 = 3.5 

Also Var (X) = E(X2) - [E(X)]2 = 1/6 (12 + 22 + ….. + 62) - (7/2)2 = 35/12 

Example 2:  Thirteen cards are drawn simultaneously from a deck of 52. If aces count 1, face 
cards 10 and others according to denomination, find the expectation of the total score on the 13 
cards. 

Solution: Let Xi be the number on the cord corresponding to the ith draw, then Xi takes the values 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10; 10; 10; 10; each having the selection probability = 4/52 = 1/13 

Hence Let X be the total score on the 13 cards. Then X = X1 + X2 + X3 + …… X13. 

E(Xi) = (1/13)*1 + (1/13)*2 + (1/13)*3 …………….+ (1/13)*9 + (1/13)*10 + (1/13)*10 +  
(1/13)*10 + (1/13)*10 

=1/13 (1 + 2 + 3 +…..+ 9 + 10 + 10 + 10 + 10) = 85/13 and 

( ) =   ( ) = 8513 = 85
Theorem:   Show that (a) |E(X)| ≤ E(|X|) and   

(b) E(X) = ∑ ( ≥ ),                     = 0, 1, 2, ……
Proof: 

(a)    E(X) = ∑ = ∑ ,          ⇒ | ( )| ≤ |∑ |⇒ | ( )| ≤ |∑ | |                    [∵ ≥ 0  ]⇒ | ( )| ≤ (| |).                    [∵   ≤ 1]
Hence proof of r. v. X is 

Px = P[X = x] = p(x),                        for X = 0, 1, 2, 3,    …………… 

(b)  Let 

               P(X = x) = p(x): p0, p1, p2……… 
By def.  

E(X) = ∑ 0. p0 + 1. p + 2. p + 3. p +⋯……                                             …… (2.7)
= p + 2p + 3p +⋯…………
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But 

P(X ≥ 1) = p[X = 1] + p[X = 2] + p[X = 3] +…….+……. 

P(X ≥ 2) = p[X = 2] + p[X = 3] + ……. 

P(X ≥ 3) = p[X = 3] + p[X = 4] +…….                                   and so on 

Adding all, we have 

( ≥ ) = p + 2p + 3p +⋯                       (2.8)
From (2.7) and (2.8), we have 

( ) =    ( ≥ )……………(2.9)
4.5  Theorems on Expectation 

Theorem 2.2   Consider two r.v.s X and Y defined on the same sample space. 

The expectation of the sum of two random variables is equal to the sum of their expectation, 
mathematically, 

E (X + Y) = E (X) + E(Y).                       …….(2.10) 

Let p1, p2, ….., pm be the probabilities of m values x1, x2, …..xm of the variate X and p1’, 
p2, ……., pm’ be the probabilities of n values y1, y2…..yn of the variate Y respectively. Then X + 
Y is a variate which can take mn values xi + yj (i = 1, 2,…., m; j = 1, 2,……., n), since any of the 
m values of X may be associated with any of the n values of Y. 

Let pij be the probability corresponding to that variate when X assumes the value xi and Y 
assumes the value yj. That is, p[X = xi, Y = yj] = pij, for i = 1, 2, ….., m, j = 1, 2, ……, n. 

Mathematically the marginal proof of X is 

Pi = pi = p[X = xi] = p[X = xi, Y = y1] + p[X = xi, Y = y2] + …….+ p[X = xi, Y = yn] 

 = pi1 + pi2 + …….+ pin

Similarly the marginal proof of 

=  =
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As X assumes a define value xi, Y assumes one of the values y1, y2, ….., yn so that the sum ∑ =   represents the probability pi of X assuming the value xi, i.e. 

=   =   , ℎ
( + ) = ( + )                   ………………… . (2.11)

=   + .
=   +

= +∴ ( + ) = ( ) + ( ).
Thus the expected value of the sum of two variates is equal to the sum of their expected 

values. 

Similarly:         E(X + Y + Z +….) = E (X) + E(Y) + E(Z) +……                       ……. (2.12) 

Theorem 2.3: Expected Value of a Constant is a constant. 

i.e., if m is a constant, then E(m) = m.                       ………. (2.13) 

Proof: ∵  P(m = m) = 1 

And   P(m≠ m) = P(m = n) = 0, where n≠ m 

Then  E(m) = 1.m + 0.n = m.  

Mathematical Expectation for Multiplication of two Discrete Random Variables: 

Theorem:   If X and Y are independent random variables, then 

E(XY) = E(X) E(Y).                              ………………. (2.14) 

Proof: Using the notation already introduced the expectation of the product XY may be written 
as ( ) =          …………….   (2.15)
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Where we are taking formula for expectation. (The values xi  yi may not be all different, 
but they arise from an exhaustive set of mutually exclusive cases.) Now, since x and y are supposed 
to be independent, pij = pio poj for all i, j. Hence ( )  =             …………….    (2.16)

Since xi yi  pio poj = (xi pio) (yi poj), where the first factor depends on i alone and the second 
depends on j alone, we may write the above double sum as the product of two sums: 

( ) =               …………… ..    (2.17)
But the first factor on the right hand side is by definition (7.16), the expectation of x and 

the second factor is similarly the expectation of y. As such,  

E(XY) = E(x) E(y). 

Thus the expected value of the multiplication of two independent variates is equal to the 
product of their expected values. 

In general if X, Y, Z, …………. are independent r.v.s                  ……      (2.18) 

E(XYZ…….) = E(X) E(Y) E(Z)……….. 

Theorem:  If Y = bX, then var (Y) = b2var (X). 

Proof:    From theorem E(Y) = b E(X). 

Hence              y - E(Y) = b[x - E(X)]           ………………….. (2.19) 

and               [y - E(Y)]2  = b2  [ X - E(X)]2

on applying theorem again, we have 

E[y - E(Y)]2 = b2 [X - E(X)]2, 

i.e., var (Y) = b2 var(X).                      ……………… (2.20) 

Theorem:  If y = a + bx, then var (y) = b2 var(x). 

Proof:   From theorem gives  E(Y) = a + b E(X)  

Hence   y - E(Y) = b[x - E(X)].  

Next, proceeding as in the proof of theorem, we have the stated result. 
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Theorem:   First moment about mean is zero. 

Proof:   Let X have the probability distribution 

x: x1 x2 ------- xn

p: p1 p2 ------- pn

Then  ( ) =  ∑ = ∑
and     ∵ E(X) = mean = constant = ( − ( )] …………(2.21) = ( + {− ( )}]               = ( ) + [− ( )][ ∵ ( + ) = ( ) + ( ) ( ) = ]                (∵m is a constant) 

= E(X) - E(X) =0. 

Similarly, for variance = ( ) = ( − )                   ……………(2.22)= [ − 2 ( ) + { ( )} ]= ( ) − 2 ( ) ( ) + [ ( )]= ( ) − 2[ ( )] + [ ( )]= ( ) − [ ( )]
Since Var (X) ≥ 0  ∴ ( − [ ( )] ≥ 0 ⇒ ( ) ≥ [ ( )] ………… (2.23) 

Example 4:  Find for the following probability distribution: 

x 8 12 16 20 24 
p(x) 1/8 1/6 3/8 1/4 1/2 

Solution:  By definition 

            E(X) = ∑ . ( )
= 8. 18 + 12. 16 + 16. 38 + 20. 14 + 24. 112= 16 = =
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This represent the mean of the distribution i.e., E(x) =16. 

E(X2) = ∑ . ( )
= 8 . 18 + 12 . 16 + 16 . 38 + 20 . 14 + 24 . 112= 276 = =

This is represents the second moment about the origin zero. = ( ) = {( − ) } =   ( − ̅) ( )
             = (8 − 16) . 18 + (12 − 16) . 16 + (16 − 46) . 38 + (20 − 16) . 14 + (24 − 16) . 112                             = 20. ,     ( − ) = − ̅ = 276 − 256 = 20.

This is represents the variance of the distribution. 

Example 5:  Four balls are drawn from a bag containing 5 black, 6 white and 7 red balls. Let X 
denote the number of white balls drawn find E(X). 

Solution: 

Total number of balls in the bag = 5 + 6 + 7 = 18 

The number of white balls is drawn may be 0, 1, 2, 3, 4. 

∴ ( − ) = 6 × 1218 , ℎ = 0, 1, 2, 3, 4.
Then we have ( = 0) = 6 × 1218 = 4953060

( = 1) = 6 × 1218 = 13203060( = 2) = 6 × 1218 = 9903060
( = 3) = 6 × 1218 = 2403060
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( = 4) = 6 × 1218 = 153060
∴ ( ) = 0. 4953060 + 1.13203060 + 2.9903060 + 3.2403060 + 4.153060= 40803060 = 136102 = 43

Example 6.   The probability function of a discrete random variable is as follows: 

X= x 0 1 2 3 4 5 6 7 
p(x) 0 k 2k 2k 3k k2 2k2 k2+k 

 Find (i) k (ii) P(X < 6) and P(X ≥ 6)  (iii) P(0 < X < 5) and (iv) Distribution function of X. ( ) =   ( ) = 0.0 + 1( ) + 2(2 ) + 3(2 ) + 4(3 ) + 5( ) + 6 (2k ) + 7( + )=  24  + 30  = 24 110 + 30  110 = 3.24 
Solution: 
(i) Since ( ) = 1                              …………….  (2.23)⇒                0 + + 2 + 2 + 3 + + 2 + 7 + = 1⇒                                                             10 + 9 − 1 = 0⇒                                                   10 + 10 − − 1 = 0⇒                                            10 ( + 1) − ( + 1) = 0⇒                                               (10 − 1) − ( + 1) = 0∴                                                                               = 110

[ k = -1 is not possible] 

(ii) P(X < 6) = P(X= 0) + P(X=1) +……+ P(X = 5) 

= 0 + + + + + = = 0.81
P(X ≥ 6) = P(X = 6) + P(X =7) 

= + + = = 0.19
(iii) P(0 < X < 5) = P(X=1) + P(X = 2) + P(X= 3) + P(X = 4) 
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= + + + = = 0.8
(iv) Distribution F(x) = P(X ≤ x) 

F(0) = 0, F(1) = 1/10, F(2) = 3/10, F(3) = 5/10. 

F(4) = 8/10, F(5) = 81/100, F(6) = 83/100, F(7) = 1 

Example 7:
A bag contains 9 balls which are numbered from 1 to 9. Three balls are drawn without 

replacement from this find the expectation of the sum of the numbers on these balls. 

Solution:  
Let Xi, denote the number on the ith ball drawn, 

                S = Sum of the numbers on the three balls  

                   = X1 + X2 + X3

               E(S) = E(X1 + X2 + X3)           …………………………  (2.24) 

Now Xi = 1, 2, 3, 4, 5, 6, 7, 8, 9 with probability 1/9 each. 

E(Xi) = 1/9 (1 + 2 + 3 + 4 + ….. + 8 + 9)                            

= 1/9.9x 10/2 = 5 for i = 1, 2, 3 

E(S) = 5 + 5 + 5 = 15, from (1).

Covariance in Term of Expectation: 

If X and Y are two variates with the respective expected values (or means) E(X) and E(Y), 
the covariance between X and Y is defined as 

Cov (X,Y) = E[{X - E(X)} {(Y - E(Y)}]. 

 Thus the expected value of product of the deviations of the two variates from their 
mean is called their covariance. 

Cov. (X,Y) = E[{(X – E(X)} {Y-E(Y)}] 

= E[(XY - E(X).Y- E(Y) X + E(X) E(Y)] 

= E(XY) - E(X)E(Y) - E(Y) E(X) + E(X)E(Y) 

= E(XY) - E(X) E(Y).                               ……………   (2.25) 

Theorem:   The covariance of two independent variates is equal to zero. 
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Proof:   If X and Y are independent variates, then their functions are also independent. 

E{X - E(X)} = E (X) - E(X) = 0, 

E{Y - E(Y)} = E(Y) - E(Y) = 0. ∴ Cov (X, Y) = E[{X - E(X)}{ Y - E(Y)] = 0. 

Alternative Method:  We know that 

Cov (X,Y) = E[{X - E(X)}{Y - E(Y)}] 

= E(XY) - E (X) E(Y) 

= E(X) E(Y) - E(X) E(Y)   [if X and Y are independent then E (XY) = E(X) E(Y) 
= 0.         …………………   (2.26) 

Cor. 3:  If X1 and X2 are independent then 

Var (x1 - x2) = var (x1 + x2) = var (x1) + var(x2)      ………………….  (2.27) 

Cor. 4:   If x1, x2,  ……xn are independent and = ± ± ±⋯…… .±
We have  var(u) = ( ) + ( ) + …… . . +  ( ) ………...(2.28) ( , ) =  ( , )( )  ( ) ℎ

Between X and Y. Thus = [{( − ( )}{( − ( )}]{( − ( )} {( − ( )} ]
=   ( ) −   ( ) ( )[{ ( ) − {( ( ) }{ ( ) −  {( ( ) }              …… ..  (2.29)

We have, if X and Y are independent. Then = 0.
Also ( ± ) = ( ) +   (( ) ± 2  ( , )= ( ) +   (( ) ± 2 ( )  ( )=   + + 2 .                   ………….  (2.30)
Example 8:   

 A box contains a white and b black balls; (< a + b) c balls are drawn. Show that the 
expectation of the number of white balls drawn is ca/a + b. 
Solution:  
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  Let a variate xi be defined as the colour of the ball at the 1th drawn and as follows: 

Xi = 1 if the ith ball drawn is white = 0 if the ith ball drawn is black. 

Then the number of white balls, X among the c drawn balls is given by  

X =  x1 + x2 + ….. + xc. 
Now  ( = 1) + , ( = 0) = +( ) = 1. + + 0. + =   1+
Therefore, 

E(X) = E(x1) + E(x2) + …..+ E(xc)  

= + +⋯… .   = 

Example 9:   A coin tossed until the head appears. What is expectation of the number of tosses? 

Solution:   Let X denote the number of tosses until the first head appears. The values of X with 
their probabilities are tabulated as follows: 

Favorable Events : H, TH, TTH, ……… 

[X = x] : 1,2,3,….. ( = ) = ( ):     12 , 12 , 12 ,……. ∴ ( ) =   ( ) = 1. 12 + 2. 12 + 3. 12 +⋯……        ( )
Also, 12 ( ) =   12 . 1 + 12 . 2 + ⋯ ..
Subtracting: ( ) − 12 ( ) = 12 ( ) = 12 + 12 + 12 +⋯….=   /( / ) = 1 ⇒ ( ) = 2
Example 10:      What is the mathematical expectation of the sum of points, if n dice are tossed? 

Solution:   Denoting by xi the number of points on the ith dice, the sum of points on n dice is  
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X = x1 + x2 + …..+ xn.                                ∴  E ( +  +⋯…… . +  ) = E ( ) + E ( ) + …..+ E ( )  
But for every single dice ( ) = 72 ,                 = 1, 2, 3, … .                               ∴  E (  +    + ……… . +  ) = (7/2) + (7/2) + …..+ (7/2)  n times  = 72 .
Example 11:    Find the expected value of the product of points on n dice tossed. 

Solution:  Denoting by xi the number of points on the ith dice the product of points on n dice 
is x1, x2, x3, ……. , xn

For every single dice. ( ) = 72 ,                      = 1, 2, 3, … . ,∴ ( … . . ) = ( ). ( ). ( )…… . ( )= 72 ∗ 72 ∗ 72 ∗ ……… . .  
=   72

4.6    Self Assessment Exercises 

1.   A coin is tossed three times. If X is a random variable giving the number of heads which 
arise, obtain the probability distribution of X. Hence or otherwise, determine the means 
of the distribution. 

2.  Define a random variable and its Mathematical expectation. Prove that  

(i)   E(X + Y + …..T) = E(X) + E(Y) +…..+ E(T). and 

(ii)  E(XY….T) = E(X) E(Y)……..;             X, Y, …..T are independent. 

3.  A random variable X is defined by 

=  −2                             ℎ   1/33                               ℎ    1/21                                 ℎ   1/6
 Find  (i) E(X);  (ii) E (2X + 5) and  (iii) Var (X). 
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4.  If X is a random variable, is any function of X and a, b, c are constants. Show that 

(i)  E (a) = a   

(ii)  E(a X) = a E (X) 

(iii)  E[  ᴪ ( )] = a E[ᴪ (X)] 

(iv)  Var (aX + b) = a2 var (X) 

(v) Var =   ( )
(vi) Cov (X, X) =  var (X) 
(vii) E[ᴪ(X) + a] = E [ᴪ(X)] + a 

5.  If X and Y are two random variables and a, b, c are constant, show that 

(i)  Cov (aX , b Y) = a b Cov (X,Y) 

(ii)  Cov (X + a, Y + b) = Cov (X, Y) 

(iii)  Cov (aX + bY, c X + d Y) = ac var (X) + bd Var (Y) + (ad + bc) Cov (X,Y) 

6.  If x is a random variable for which E (x) = 10 and var (x) = 25. Find the positive 
values of a and b such that y = ax - b has expectation 0 and variance 1. 

7.  The probability function of a random variable X is given by 

( ) =   = 02 = 13 = 20                                        ℎ
 Find (a) the value of k  (b) P(X < 2), P(X ≤ 2), P(0 < X < 2)    

  (c) Distribution functions of X.  

8.  Define random variable and its expectation. The probability function of a random 
variable X is as follows: 

X = x -2 -1 0 1 2 3  
P(X=x)  0.1 k 0.2 2k 0.3 3k 

  Find the value of the constant k and E(X). 

4.7  Answers 
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1.    X=x  0 1 2 3 

p(x=X)  1/8 3/8 3/8 1/8  and E(X) = 3/2. 

2.  (i) e(x) = 1,  (ii)  E (2X+5)= 7  (iii) Var (X) = 5. 

6.  a= 1/5, b =2 

7.  (a) k=1/6    (b) (i) 1/2  (ii) 1    (iii) 1/3 

(c)   ( ) = ⎩⎪⎨
⎪⎧ ,                                                      < 0= 0   0  ≤ < 1,                            = 1   0 ≤ < 21,                                                    ≥ 2

8.   k = 0.1,  E(X) = 0.8 

4.8  Summary 

This unit gives an overview of theory of expectation, moments, their application and 
importance. 

4.9  Further Readings 

1. Cramer H, Mathematical Methods of Statistics, Princeton University Press, 1946 and 

Asia Publishing House, 1962. 

2. Hogg R.V. and Craig A.T., Introduction to Mathematical Statistics, Macmillan, 1978. 

3. Prazen E., Modern Probability Theory and its applications, John Wiley, 1960 and 

Wiley Eastern 1972. 

4. Rao C.R. Linear Statistical Inference and Its Applications, John Wiley, 1960 and 

Wiley Eastern 1974.  

5. Rohtagi V.K., An Introduction to Probability theory and Mathematical Statistics, John 

Wiley, 1976 and Wiley Eastern 1985. 

6. Vikas S.S., Mathematical Statistics, John Wiley, 1962 Toppan.  

UGSTAT-102/67



Unit-5: Inequalities for Moments 

Structure 

5.1 Introduction 
5.2 Objectives 
5.3 Cauchy- Schwarz Inequality 
5.4 Markov’s Inequality 
5.5 Chebyshev’s Inequality (also spelled as T chebycheff’s inequality) 
5.6 Self Assessment Exercises 
5.7 Summary 
5.8 Further Readings 

5.1  Introduction 

In the last two units you studied about r.v., its d.f. (or c.d.f.) its natures in discrete and 
continuous r.v.’s p.m.f, p.d.f. and their properties, theory of expectation and moments. This unit 
describes different inequalities concerning moment along with Chebychev’s inequality and its 
applications. 

5.2  Objectives 

After going through this unit you shall be able to understand,  

Cauchy- Schwarz Inequality 
Markov Inequality 
Chebychev’s  Inequality 
Applications and importance of above mentioned inequalities. 

5.3  Cauchy –Schwarz Inequality 

Statement: For any two random variables X and Y having finite variances, we have  [E(XY)] ≤ ( ) . ( )
Proof: 

 For any non negative real valued constant a, we have 

(aX - Y)2 ≥ 0. 
Or 

E(aX - Y)2 ≥ 0 
Or 

E{a2 X2 + Y2 - 2aXY] ≥ 0 
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Or    a2 E(X2) + Y2 - 2aE(XY) ≥ 0     ………(3.2.1) 

(As constant can be written outside expectation sign) 

Taking ‘a’ as a = 
( )( ) and putting it in (3.2.1), we get 

{ ( )}( ) + ( ) − 2 { ( )}( ) ≥ 0
Or ( ) ≥ { ( )}( )

i.e.,  { ( )} ≤ ( ). ( )       Proved 

Problem 3.3.1:   For two random variables X and Y, show that { ( + ) } / ≤ { ( )} / . { ( )} /
Solution:  Here we are to prove that { ( ) + ( ) + 2 ( )} ≤ { ( )} / . { ( )} /
Squaring both sides, we have ( ) + ( ) + 2 ( ) ≤   ( ) + 2 ( ). ( )
Or ( ) ≤ ( ). ( )
Or { ( )} ≤ ( ). ( )

Which is true by virtue of Cauchy-Schwarz Inequality. Hence, the given inequality is true. 

Problem 3.3.2: For a random variable X whose all moments are finite, we have | | ≤ { | | | | } / ;    .
Solution:    Let |X| = Y 

Then we have to prove that | | ≤ { | | . | | } /
Similarly Y is a positive random variable. 

Let a = m and a + b = .      Then, b = 
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As Y is positive, we may write [ ( − 1) ] ≥ 0                     .
Or  ( + 1 − 2 ) ≥ 0
Or [ ] +   [ ] − 2 ( ) ≥ 0
Or, [ ] +   [ ] − 2 ( ),         = ( )( ) ,         ℎ

( )( ) ( ) ≥   ( ) ≥ 2 ( )( ) ( )
Or, ( )( ) ( ) ≥   ( )
Or { ( )} ( ) ≥ ( ){ ( )}
Or, ( ). ( ) ≥ { ( )}
Let   a = m and b =    (i.e., 2b = n-m) 

So that  a + b =     and a + 2b = n 

We get,  ( ) ( ) ≥
( ) ( ) ≥

Or, { ( ) + ( )} / ≤  
Or, { [| | ]. [| | } ./ ≤ (| | )[ = | |] .
5.4  Markov’s Inequality 
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 For a non negative r.v. X having finite mean, we have 

Pr( ≥ ) ≤ ( )
Where  is any real positive number. 

Proof: Let X be a continuous non-negative r.v. with p.d.f. f(x). Then, 

( ) =   ( )
=  ( ) + ( )           (0 < < ∞)

≥ ( )
≥ ( )≥ Pr ( ≥ )

Pr( ≥ ) ≤ ( )
5.5  Chebyshev’s Inequality 

 (Also spelled as Tchebycheff’s Inequality) 

This inequality is a deduction from Markov’s Inequality. The theorem was discovered in 
1853 by Chebyshev and was later on discussed in 1856 by Bienayme. Here Chebyshev has 
precisely interpreted the role of standard deviation (as a parameter) in Statistical Analysis to 
characterize variation in the variate value. 

For a.r.v. X having finite mean and variance, we have 

P[ | − ( )| ≥ ] ≤ ( )
Or, P[ | − ( )| ≥ ] ≥ 1 − ( )
Where λ is any real positive integer.  

Proof:  For a positive r.v. X having finite mean, we have by Markov’s inequality. 
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P [ ≥ ] ≤ ( )
If we substitute {X-E( ) } in place of X and  in this inequality, we have 

[{ − ( ) } ≥ ] ≤ { − ( )}
or, P[ | − ( )| ≥ ] ≤ ( )
We know that P(A) + P( ̅) =1. Hence the above expression may also be written as 

P[ | − ( )| < ] ≥ 1 − ( )
Applications: 

Problem 3.5.1:  Let X denotes the number obtained on tossing of an unbiased die. Then 
prove that Chebyshev inequality gives. P[ | − ( )| > 2.5] < 0.47
While the actual probability is nearly zero. 

Solution:    We have ( ) = 16 (1 + 2 + 3 + 4 + 5 + 6) = 216 = 72 = 35
and ( ) = ( ) − { ( )}( ) = 16 (1 + 2 + 3 + 4 + 5 + 6 )

= 16 (1 + 4 + 9 + 16 + 25 + 36) = 916( ) = 916 − 494 =  182 − 14712 = 3512 = 2.9167
By Chebyshev Inequality, we have 

P [ | − ( )| > ] < ( )
Or,  P[ | − 35| > 2.5] < 2.9167)6.25 =  0.47
We have P[|−3.5| > 2.5] = 1 − P[| − 3.5| ≤ 2.5]
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= 1− Pr[−2.5 ≤ ( − 3.5) ≤ 2.5]= 1 − Pr[ 1 ≤ ≤ 6]= 1 − [P( = 1) + P( = 2) + P( = 3) + P( = 4) + P( = 5) + P( = 6)]
= 1 − 16 + 16 + 16 + 16 + 16 + 16 = 0

Problem 3.5.2   For a.r.v. X with finite variance. 

P[ | − ( )| > ] ≤ 1 > 0
Solution:  For a r.v. X having finite mean and variance, we have by Chebyshev inequality. 

P[ | − ( )| > ] ≤ ( ) ;          >= ℎ = ( )
We have P[ | − ( )| > ] ≤ ;

i.e., P[| − ( )| > ] ≤
Proved. 

Problem 3.5.3:  A random variable X has a mean value 3 and variance 2. What is the least value 
of   P[| − 3| < 2]  ?
Solution:  We have (by Chebyshev’s inequality) P[| − ( )| < ] ≥ 1 − ( )
Here,  E(X) = 2,  λ = 2 and Var (X) = 2 

Hence,   P[| − 3| < 2] ≥ 1 − 24≥ 12
So the lest value is 1/2.  

Problem 3.5.4:  Use Chebyshev’s inequality to determine how many times an unbiased coin must 
be tossed in order that the probability will be at least 0.9 that the ratio of observed number of heads 
to the number of tosses will be between 0.4 and 0.6. 
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Solution:  Let X be the observed number of heads and n be the number of tosses of an unbiased 
coin. Then, ( ) = = 2 ℎ = = 12( ) = = 4=
Then, ( ) =   ( ) = 12 = 5( ) =    ( ) = 14 = . 25
Applying Chebyshev’s inequality to T, we have P[| − ( )| ≤ ] ≥ 1 − ( )= 0.1    ( ) =  0.5,       ℎP[| − 5| ≤ 0.1] ≥ 1 − 0.25× 0.01
Or, P[ 0.4 ≤ ≤ 0.6] ≥ 1 − 25
According to the question 1 − 25 = 0.9      0.1 = 25 = 25. 1 = 250
Hence the coin must be tossed 250 times. 

Problem 3.5.5:  For geometric distribution ( ) =  12 ;    = 1, 2, 3, …… ..
Prove that the Chebyshev’s inequality gives. P[| − 2| ≤ 2] > 12
While actual probability is 15/16.  

Solution:  In the case E(X) = 2, E(X2) = 6 and Var (X) = 2. 

By Chebychev’s inequality P[| − ( )| ≤ ] > 1 − ( )= 2    ( ) ( ) ℎ     P[| − 2| ≤ 2] > 1 − 24
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,        > 12P[| − 2| ≤ 2] = Pr [−2 ≤ ( − 2) ≤ 2]= Pr [0 ≤ ≤ 4]= (1) + (2) + (3) + (4)
= 12 + 14 + 18 + 116 =  8 + 4 + 2 + 116 = 1516

5.6  Self Assessment Exercises 

1. A symmetric die is thrown 600 times find the lower bound for the probability of 
getting 80 to 120 sixes. 

2.  An unbiased coin is tossed 100 times. Show that the probability that the number of 
heads will be between 30 and 70 is greater than 0.93.  

5.7  Summary 

This unit gives an over view of some inequalities (namely Cauchy Schwarz, Markov and 
Chebyshev) with their applications and importance. 

5.8  Further Readings 

1. Cramer H, Mathematical Methods of statistics, Princeton University Press, 1946 
and Asia Publishing House, 1962. 

2. Hogg R.V. and Craig A.T., Introduction to Mathematical Statistics, Macmillan, 
1978. 

3. Prazen E. Modern Probability Theory and its Applications, John Wiley, 1960 and 
Wiley Eastern 1972. 

4. Rao C. R., Linear Statistical Inference and Its Applications John Wiley, 1973 and 
Wiley Eastern 1974.  

5. Rohtagi V. K., An Introduction to Probability Theory and Mathematical Statistics 
John Wiley, 1976 and Wiley Eastern 1985. 

6. Vikas S.S., Mathematical Statistics, John Wiley, 1962 and Toppan. 
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Unit - 6:  Univariate Distribution  

Structure 
6.1   Introduction 
6.2 Objectives 
6.3 Distribution Function 
6.4 Properties of Distribution Function 
6.5 Discrete Random Variable 
6.6 Probability Mass Function 
6.7 Discrete Distribution Function 
6.8 Continuous Random Variable 
6.9 Probability Density Function 
6.10 The Bernoulli Distribution 
6.11 Moments of Bernoulli Distribution 
6.12 Moment Generating Function 
6.13 Binomial Distribution 
6.14 Moments 
6.15 M.G.F. of Binomial Distribution 
6.16 Additive Property of Binomial Distribution 
6.17 Recurrence Relation 
6.18 Poisson Distribution 
6.19 Poisson Distribution as a Limiting case of Binomial Distribution 
6.20 Moments of Poisson Distribution 
6.21 M.G.F. of  Poisson Distribution 
6.22 Additive Property of Poisson Variate 
6.23 Recurrence Relation of Poisson Distribution 
6.24 Fitting of Poisson Distribution 
6.25 Self Assessment Exercises 
6.26 Summary 
6.27 Further Readings 

6.1   Introduction 

In this unit, we first introduce the concept of a distribution function of a random variable 
and its properties. In section 1.4 to 1.8, we have discussed discrete and continuous random 
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variables, probability mass function and probability density function. The discrete distributions 
Bernoulli, Binomial and Poisson are discussed in section 6.9 to 6.23. 

6.2   Objectives 

After reading this unit you should be able to: 

Define the distribution function for a random variable, p.m.f. of discrete 

random variable, and p.d.f. of continuous random variable. 

Identify the properties of distribution function. 

Describe the situations underlying the Bernoulli, Binomial and Poisson 

distribution. 

Compute their means and variances. 

Obtain distribution of the sum of two independent binomial variates. 

Obtain Poisson distribution as limiting case of Binomial distribution. 

Work out the additive property of independent Poisson variates. 

6.3   Distribution Function 

The distribution function F for a random variable X is a function defined on the real line 
by  ( ) = [ ≤ ], ℎ   − ∞ < ∞.

The definition makes sense because if X is a random variable, then [X ≤ x] is an event in 
sample space Ω. This function is sometimes called the cumulative univariate distribution function. 
Corresponding random variable is one variable that is why it is called univariate.  

Let us now try to understand the distribution function by looking at some of its properties. 

6.4   Properties of a Distribution Function F(X) 

We derive a number of properties common to all distribution functions. 

Property 1:  If F is a distribution function (d.f.) of the random variable (r.v.) X and if a < b, then  

(i) 0 ≤ F(x)  ≤ 1      (ii)  F(x) ≤ F(y)       if x < y 
P[a < X ≤ b] = F(b) - F(a) 

Proof:   The event a < X ≤ b and X ≤ a are disjoint and their union is the event X ≤ b. Hence 
by addition theorem of probability. 
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[ < ≤ ] + [ ≤ ] =   [ ≤ ]⇒ [ < ≤ ] = [ ≤ ] −   [ ≤ ] =   ( ) − ( )
Property 2:  If F is the d.f. of one dimensional random variable X, then 

(i) 0 ≤ F(x) ≤ 1      (ii) F(x) ≤ F(y)           if x < y 

Proof:   Using the axioms of certainty and non- negative for the probability function part (i) 
follows from the definition of F (x). 

For part (ii), we have x < y, 

F(y) - F(x) = P [x< X ≤ y] ≥ 0 ⇒ F(y) ≥ F(x) ⇒ F(x) ≤ F(y)           when  x < y 

Property 3: If F is d.f. of one dimensional random variable X, then (−∞)= lim→∞ ( ) = 0.(∞) =   lim→∞ ( ) = 1
Proof:   Let us express the whole sample space Ω as a countable union of disjoint events as 
follows:  = (− < ≤ − + 1)∞ ( < ≤ + 1)∞

= ( ) =   (− < ≤ − + 1) + ( < ≤ + 1)∞∞

( )1 =   lim→∞ [ (− − 1) − (− ) + lim→∞ [ ( + 1) − ( )]
=   lim→∞[ (0) − (− ) + lim→∞[ ( + 1) − (0)]= [ (0) − (∞)] + [ (0), 1 = (∞) −   (−∞)                                                     (1.1)

Since −∞ < ∞, (−∞) < (∞).  
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,      (−∞) = 0              (∞) ≤ 1              ∴      ≤ (−∞) ≤ (∞) ≤ 1                                                  (1.2)
Equ. (1.1) and (1.2) gives (−∞) = 0   (∞) = 1.
6.5   Discrete Random Variable 

If a random variable takes at most a countable number of real values, it is called a discrete 
random variable. 

In other words a real valued function defined on a discrete sample space is called a discrete 
random variable. 

6.6   Probability Mass Function (p.m.f.): 

  Suppose X is a one dimensional discrete random variable taking at most accountably 
infinity number of values X1, X2 …………… With each possible outcome Xi has a number pi = 
P(X = xi) = P(xi) called the probability of Xi, The number p(xi), i = 1, 2,…….. must satisfy the 
following conditions: ( ) ( ) ≥ 0          ∀ ( ) ( ) = 1∞

This function p in called the probability mass function of the random variable X and set {p 
(Xi)} is called the probability distribution (p.d.) of the random variable X. 

6.7   Discrete Distribution Function 

In this case there are countable numbers of points X1, X2……..and  

≥ 0, = 1           ℎ  ℎ ( ) =∞

Theorem: ( ) = = = ( ),            where F in the d.f. of X. 

Proof:   Let X1 < X2 < …….     we have 

F(Xj) = P[X - Xj]  = ∑ ( = ) =  ∑ ( )                                (1.3)
= ≤ = ( )                                (1.4)
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∴          − = .
Thus, if the d.f. discrete r.v. are given, we can calculate probability mass function. 

6.8   Continuous Random Variable 

If a random variable X takes all possible values between certain intervals then it is called 
continuous random variable. 

In other words, if a variable can take an infinite set of values in given interval say, a~X~
b it is called a continuous random variable and its distribution is accordingly known as continuous 
distribution. 

6.9   Probability Density Function (p.d.f.)

Consider the small interval − , +  of length dx round the point x. Let f(x) be 
any continuous function of x so that f(x) dx represents the probability that x falls in the 
infinitesimal interval , [x - (dx/2), x + (dx/2)] Symbolically ( ) = − 2 ≤ ≤ + 2

In the figure fx (x) dx represents the area bounded by the curve y = f(x), x axis and the 
ordinates at points − +  . The function fx(x) so defined is known as probability 
density function of random variable X and is usually abbreviated by p.d.f.  Further since total 
probability is unity, we have ∫ ( ) = 1, where [a, b] is the range of the random variable X. 
Range may be finite or infinite.  

The probability density function of random variable X usually denoted by fx (x) or simply f(x) 
has the following obvious properties: 

(i) f(x) ~ 0 V× ER 

(ii) 1= P(R) = ∫ ( ) = ∫ ( )∞

Where R is the collection of all points in the entire range of the variable X. 
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Example:  A continuous random variable X has p.d.f. ( )~5 ,   0 ≤ ≤ 1.     ℎ  ℎ[ , ≤ ] = [ > ]
Solution:   Since P[X, S: a] = P[X > a], each must be equal to ½ because total probability is 
always one. 

 ∴ [ ≤ ] = 12⇒ ( ) = 12
⇒ 5 = 12⇒ 5 5 = 12⇒ = 12∴ =  12

6.10   The Bernoulli Distribution 

It is simplest probability distribution. It is the distribution of a r.v. X which assumes two 
values, 0 and 1. 

Let P[X = 1] = p   and  P[X = 0] = 1 - p = q 

Or  P[X = x] = (1 − ) =   ,                           = 0, 1                       (1.5)
Where p is the number such that 0 ≤ p ≤ 1. 

The random variable X and its probability distribution specified by the p.m.f. eq. (1.5) are 
respectively, called Bernoulli variable and the Bernoulli distribution in honour of Jacob Bernoulli. 
He made a systematic study of problem connected with this distribution. 

6.11   Moments of Bernoulli Distribution 

The rth moment about origin is  = ( ) =   . + 1 . = ,                         = 1, 2, …… ..
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ℎ = ( ) = ,                   . . == ( ) =∴   = = ( ) − [ ( )]= ( − ) =
6.12  Moment Generating Function (m.g.f.)

The m.g.f. is  ( ) = [ ] = . + . ′ = + ′

6.13   Binomial Distribution 

Definition:  The binomial distribution can be defined in terms of the expression of the binomial 
(q + p)n, where p > 0, q > 0 and n is the positive integer. The (x + 1)+n term in the expansion of (q 
+ p)n is  = !! ( − )!

The binomial distribution with parameter n, p distribution of random variable X for which, [ = ] =                              ( = 0, 1, 2, … . . , )
We can interpret binomial distribution as the distribution of the total number of successes 

in n independent trials, each with same probability p, of success. The probability of x success and 
consequently (n - x) failures in n trials in a specified order (say) SSS FFS….FS (where S represents 
success and F failure) is given by the compound probability theorem by expression 

P[SSSFFS…..FS] = P (S). P(S).P(S).P(F).P(F).P(S)………P(F).P(S) 

= p.p.p.q.q.p   ………………q.p 

= p.p           p.      q.q       q= px  qn-x

{x factors}   {(n-x) factors} 

But x successes in n trial can occur in  ways and probability for each of these ways is 
px  qn-x . Hence the probability of x successes in n trials in any order what so ever is given by the 
addition theorem of probability by expression p   q , x = 0, 1, 2, …… . . n.
Example 1: Ten coins are throwing simultaneously. Find the probability of getting at least eight 
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heads. 

Solution: 

p = probability of getting a head = 1/2 

q = probability of not getting a head = 1/2 

The probability of getting x heads in a throw of 10 coins is 

( ) = 10 12 12 =  10 12 . = 0, 1, 2, …… . , 10
∴ Probability of getting x heads is given by 

P[x ≥ 8] = P(8) + P(9) + P(10) 

= 12 108 + 109 + 1010 = 45 + 10 + 11094 = 561024 = 7128
Example 2:   The probability that a person recovers from a serious decrease is 0.30. Find the 
probability that at least one of 5 persons admitted to a hospital will survive. 

Solution:  If X denotes the number of persons recovered from decrease. Then we have to find 
P[X~1]. X has binomial distribution with n = 5, p = 0.30. 

We have [ ≥ 1] = 1 − [ = 0]= 1 − 50 (0.30) (0.70) = 1 − 0.168 = 0.832
6.14   Moments 

The first four moments about origin of binomial distribution are obtained as follows: 

= ( ) = . p   q = np − 1− 1 p   q
= ( + ) =                 (∵ = 1)

Thus the mean of binomial distribution is np. 
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= ( ) = p   q
[ ( − 1) + ] ( − 1)( − 2) − 2− 2 p  q

= ( − 1) − 2− 2 p  q + p   q
= ( − 1) ( + ) + = ( − 1) +

= ( ) = p   q
= [ ( − 1)( − 2) + 3 ( − 1) + ] p  q

= ( − 1)( − 2 ) − 2− 2 p  q +
3 ( − 1) − 2− 2 p  q + p   q

= ( − 1)( − 2) ( + ) +3 ( − 1) ( + ) += ( − 1)( − 2) + 3 ( − 1) +
= ( ) = p   q                      (1.6)

Now we have = ( − 1)( − 2)( − 3) + 6 ( − 1)( − 2) + 7 ( − 1) +         (1.7)
Putting x4 as from eqn. (1.7) in eqn. (1.6) we have = ( − 1)( − 2)( − 3) + 6 ( − 1)( − 2) + ( − 1) + +
(on simplification) 
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Central Moments of Binomial Distribution = − ( ) = ( − 1) + − = − + −= (1 − ) == − 3 + 2( )= [ ( − 1)( − 2) + 3 ( − 1) + ] − 3[{ ( − 1) + } ] + [2( ) ]= [ − 3 + 2 + 3 − 3 + 1 − 3 − 3 − 3 + 2 ]= [2 − 3 + 1] = (1 − (1 − 2 )) = (1 − 2 ) = ( + − 2 )= ( − )= − 4 + 6 ( ) − 3( ) = [1 + 3( − 2) ]
Hence, 

= = ( − ) = (1 − 2 )
= = [ (1 + 3)( − 2) ] = 3 + 1 − 6
=   = 1 − 2
= − 3 = 1 − 6

Example 1: Comment on the following:  

The mean of a binomial distribution is 4 and variance is 5. 

Solution:   If the given binomial distribution has parameter n and p then we have  

mean = n p = 4                              (1.8) 

and variance = n p q = 5               (1.9) 

Dividing eqn. (1.9) by (1.8), we get 

q= 5/4 
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which is impossible, since probability cannot exceed unity. Hence given statement is 
wrong. 

Example 2:  The mean and variance of binomial distribution are 3 and 3/4 respectively. Find 
P[X ≥ 1]. 

Solution: 

Mean = E(X) = nq = 3 

Var (x) = npq = 3/4 

Dividing we get q = 1/4                                              ∴ =
Now we have  n p = 3 

⇒ 34 = 3
⇒ = 43 × 3 = 4∴ [ ≥ 1] = 1 − [ = 0] = 1 −
= 1 − 14 = 1 − 1256 = 255256 = 0.996

Example 3:  If =  denotes the proportion of success in n independent Bernoulli trials with 
constant p of success then ( ) = ( ) =   (1 − )
6.15   Moment Generating Function of Binomial Distribution 

The moment generating function Mx (t) of the binomial distribution with parameter n and 
p is ( ) = ( ) = ∑ p   q = ∑ ( ) q= (q + ) = [1 + ( − 1)]
6.16   Additive Property of Binomial Distribution 

Let X ~ B(n1, p1) and Y ~ B(n2, p2) are independent random variables. 
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Then  ( ) = ( + ′) ,     ( ) = ( + ′)               (1.10)
We have ( ) = ( ). ( )               ( )= ( + ′) ( + ′)                                 (1.11)

Since equ. (1.11) cannot be expresses on the form (q + pet)n

From uniqueness theorem of m. g. f it follows that X + Y is not a binomial variate. Hence 
in general the sum of independent binomial variates is not a binomial variate. In other words, 
binomial distribution not posses the additive or reproductive property.  

Corollary:  However if   p1 = p2 = p. (say), then from equ. (1.11) we have ( ) = ( + ′) /( + ′) = + ′

Which is m. g. f. of binomial distribution with parameter (n1 + n2, p) i.e., when p1 = p2, 
binomial distribution posses the additive property.  

6.17   Recurrence Relation for the Probabilities of Binomial  
                      Distribution (Fitting of Binomial Distribution) 

We have ( ) =( + 1) =   + 1
∴                    ( + 1)( ) = + 1
 ∴                    ( + 1) = −+ 1 . . ( )

This is a required recurrence formula. 

To fit a binomial distribution to the given data, the first step is to estimate the parameter p 
if not given otherwise. The parameter p is estimated      ̂ = ̅ ,      ℎ ̅ = the mean of observed 
distribution. The expected frequency of x successes is computed by . , = 0, 1, 2, 3… . . ,
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6.18   Poisson Distribution 

Let X be a discrete random variable with probability mass function 

px = P[X = x] = !  ,                  x = 0, 1, 2,……, ∞= 0                         ℎ ,
Where λ > 0 is a constant. 

The probability distribution having p(x) = p(x, λ) = ! , as its probability mass function 
is known as Poisson distribution with parameter λ.  

This distribution was discovered by Simen Denis Poisson in 1837. Poisson distribution is a 
limiting case of binomial distribution under the following conditions: 

(i) n, the number of trails is indefinitely large, i.e., n→ ∞.
(ii) p, the constant probability of success for each trial is indefinitely small i.e., p→ 0. 
(iii) np = λ (say), is finite. Thus = = 1 −  , where is a positive real number.  

6.19   Poisson Distribution as a limiting case of Binomial Distribution 

The probability of x successes in a series of n independent trails is 

P(X = x) = b(x; n, p) = ,                      = 0, 1, 2, 3… . . ,
 Can be written as !! ( − )! 1 − =   ! 1 − . !( − )! 1 −
We know that n → ∞.lim→∞ 1 − = ,                         lim→∞ 1 − = 1 
Hence by making n→ ∞ , the probability of x successes is 

= ! lim→∞ !( − )!
Using Strling’s formula for n!, viz., lim→∞ ! = 2 /
We have probability of x successes is 
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=  ! lim→∞ √2 /√2 ( − ) / ( )
⇒   ! lim→∞ /

/ 1 − /

=  ! lim→∞ 11 − 1 − /
=   ! 1. 1 = !

The following are some examples of Poisson Variate: 

(i) The number of defective screws per box of 100 screws. 
(ii) The number of printing mistakes at each page of a book.  
(iii) The number of deaths in a district in one year by rare disease. 
(iv) The number of air accidents in some unit of time. 
(v) The number of suicides reported in a particular city. 
(vi) The number of cars passing through a certain street in time. 

Note 1: ( ) = = 0  = 3 is probability distribution. 

( ) = ! = 1 + 1! + 2! + ⋯ . = . = 1∞∞

Note 2:    Characteristics of Poisson Distribution

(i) It is a limiting form of the Binomial Distribution. 

(ii) Hence p (or it may be q as well) is very small close to zero. So it assumes a J shaped 

distribution. 

(iii) It consists of a single parameter , only. Thus entire distribution can be obtained by 

knowing the volume of   alone. 

6.20   Moments of the Poisson Distribution 

= ( ) = . ( )∞ = . !∞ = . ( − 1)!∞
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= . 1 + + 2 +⋯ . . = . = .
Hence the mean of Poisson Distribution is λ. 

= ( ) = ∞ = {2 ( − 1) + } ! = ( − 2)! +
= 1 + 1! + 2! + ⋯… + = + = +

= ( ) = ( ) = ! = [ ( − 1)( − 2)] ! + != + 3 + ,  = + 3 +
= ( ) = ( )  = !

= [ ( − 1)( − 2)( − 3) + 6 ( − 1)( − 2) + 7 ( − 1) + ] !
= ( − 4)! + 6 ( − 2)! + 7 ( − 2)! +

=  + 6 + 7 . + = + 6 + 7 +
The four central moments are now obtain as follows: = − ( ) = ( + ) − =
Thus the mean and variance of Poisson distribution are equal to λ. = − 3 + 2( ) = ( + 3 + ) − 3 ( + ) + 2 == − 4 +6 − 3( )= ( + 6 + 7 + ) − 4 ( + 3 + ) − 3 = 3 +
Coefficients of Skewness and Kurtosis: 

= = = = 3 + = 3 + 1
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Also, = = 1√ = − 3 = 1
Note: As λ→ ∞ we have = 0                   = 3 
6.21   Moment Generating Function of Poisson Distribution (m.g.f.)

(t) = [ ] = ! = !
= 1 + 1! + ( )2! + ⋯… . = = ( − 1)

6.22 Additive Property or Reproductive Property of Independent 
Poisson Variate  

Statement:  Sum of independent Poisson variates is also a Poisson variate. More 
elaborately, if Xi (i =  1, 2, 3,…., n) are independent Poisson variates with parameters Ai, i = 1, 
2,…., n respectively, then ∑  is a Poisson variate with parameter∑

Proof:   We have (t) = ( − 1),            = 1, 2, … . ,∴ ⋯… (t) = ( ) ( )…… ( )( = 1, 2, … . )= ( − 1). ( − 1)…… . ( − 1)= ⋯ ( − 1) = ∑ ( − 1)
Which is the m.g.f. of a Poisson variate with parameters ∑ ……Hence, by uniqueness 

theorem of m.g.f., ∑  is also a Poisson variate with parameters∑
6.23   Recurrence Relation for the Moments of the   Poisson Distribution 

By definition 
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= [ − ( )] = ( − ) = ( − ) !
Differentiating with respect to λ we get  

= Г( − ) (−1) ! + ( − )! [ − ]
= −Г ( − ) ! + ( − )! [ ( − )]

= −Г ( − ) ! = −Г + 1
= +

Putting r = 1, 2 and 3 successively, we get 

= + = ,      ( = 1,   = 0)
= 2 + =
= 3 + = 3 +

Example:   If X is a Poisson variate such that;  P[X = 2] = 9P[X = 4] + 90P[X = 6] 

Find           (i) λ, the mean of X.      (ii)  ,  the coefficient of skewness 

Solution: If X is a Poisson variate with parameter λ, then 

[ = ] =   ! , = 0, 1, 2, ……∞, > 0.
∴ [ = 2] =   2![ = 4] =   4![ = 6] =   6!
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∴  ℎ
2! = 9. 4! + 90 6!

2! = 4! 9 + 90 30
                          1 = 12 [9 + 3 ]
                  1 = 4 [3 + ]+ 3 − 4 = 0

∴                    = −3 ± √9 + 162 =  −3 + 52
Since λ > 0, we get = 1 ⇒   = 1

Hence mean = λ = 1, = variance = λ = 1     and       = coefficient of skewness = 1/λ 
= 1. 

6.24   Recurrence Formula for the Probability of Poisson Distribution 

(Fitting of Poisson Distribution) 

For a Poisson distribution with parameter λ we have 

( ) = ! , = 0,1,2, ……∞, 
( + 1) = ( + 1)! , = 0,1,2, …∞

∴   ( + 1)( ) = + 1
⇒ ( + 1) = + 1 . ( ),

This is required recurrence formula. 

Here first of all we calculate p(0) which is given by, 
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P(0) =  where ‘A’ is estimated from given data. The other probabilities. viz. p(1). 
p(2)……. can now be easily obtained as below:  (1) = [ ( + 1)] = + 1 (0),(2) = [ ( + 1)] = + 1 (2),(3) = [ ( + 1)] = + 1 (3),
And so on 

6.25   Self Assessment Exercises 

1. If 1% of bolts produced by a certain machine are defective, find the probability that in a 
random sample of 200 bolts, all are good.  [Ans: e-2] 

2. The probability that a certain component survives a given stock is 3/4. Find the probability 
that 2 of the next 4 components tested survive.  [Ans.: 27/128] 

3. Between 2 pm to 4 p.m., the average number of phone calls received at a telephone 
exchange per minute is 3. Calculate the probability that during one minute, chosen at 
random, there will be no incoming phone call.  [Ans.: 0.0498] 

6.26   Summary 

  This unit discusses d.f., p.m.f., Bernoulli, Binomial and Poisson distribution with their 
importance and applications. 

6.27   Further Readings 

1. Cramer H, Mathematical Methods of Statistics, Princeton University Press, 1946 and Asia 

Publishing House, 1962. 

2. Hogg R.V. and Craig A.T., Introduction to Mathematical Statistics, Macmillan, 1978. 

3. Prazen E., Modern Probability Theory and its Applications, John Wiley, 1960 and Wiley 

Eastern 1972. 

4. Rao C.R., Linear Statistical Inference and Its Applications, John Wiley, 1960 and Wiley 

Eastern 1974.  
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Unit-7:   Discrete Distribution 

Structure 

7.1 Introduction 
7.2 Objectives 
7.3 The Geometric Distribution 

7.3.1 Mean and Variance of Geometric Distribution 
7.3.2 M.G.F. of Geometric Distribution 

7.4 Negative Binomial Distribution 
7.4.1 M.G.F. of Negative Binomial Distribution 
7.4.2 Poisson Distribution as a limiting case of Negative Binomial Distribution 
7.4.3 Recurrence Formulae for Negative Binomial Distribution 

7.5 The Hyper Geometric Distribution 
7.5.1 Mean and Variance of Hyper Geometric Distribution 
7.5.2 Recurrence Relation for Hyper Geometric Distribution 

7.6 Self Assessment Exercises 
7.7 Summary 
7.8 Further Readings 

7.1   Introduction 

Suppose we toss a coin until head turn up and denote by X and number of tosses required 
for this purpose. Then X = 1, 2,….., and in general we can specify an upper bound k such that 
P[x ~ k] = 1. An obvious extension for the above example is the following. Suppose we decided 
to toss the coin until a specified number, r (say) of heads turns up. In this situation the number x 
of tosses required is r, r + 1, r + 2. 

Although both these examples seem mainly to be of theoretical interest, they are useful in 
many statistical and probabilistic problems of an advanced nature. Since they are concerned with 
waiting times (number of trials) required for the first or rth occurrence of specific event the 
associated distribution are called waiting time distribution. We shall discuss tow simple waiting 
time distribution in sections 7.2 to 7.8: the geometric and negative binomial distribution. In section 
7.9 to 7.11 we have discussed the Hyper Geometric distribution.  

7.2   Objectives 

After reading this unit you should be able to: 

Define the geometric, negative binomial and hyper geometric distribution

Calculate the mean and variance of these distributions.
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Obtain the Recurrence relations for negative binomial distribution and hyper geometric 

distribution. 

7.3   The Geometric Distribution 

In this section we discuss the geometric distribution. Let us see first how such a distribution 
arises. 

Let p denote the probability of a success in a Bernoulli trial 0 < p < 1. Consider independent 
repetitions of such a trial. Let X denote the number of trials required for first success. Then r. v. X 
takes the values 1, 2, 3…… and by definition 

P [ X = 1] = p 

In order to obtain P [ X = x ] for x  ≥2, observe that the event [ X = x] occurs if the first 
(x-1) trials result in a failure and xth trial is success. Thus the probability of first (x-1) failures 
followed by a success is   

( ) = − − , = 0, 1, 2, ……0                   ℎ (2.14)
The r. v. X here is said to have a geometric distribution. 

Definition:   A random variable X is said to have the geometric distribution with parameter p, 0 
< p < 1, if its p.m.f. is given by [ = ] = ,                  = 0, 1, 2, 3……0                  ℎ                          ………………(2.1) 

Remark:   1. Since the various probabilities for x = 1,2,…….are the various terms of geometric 
progression, hence the name geometric distribution.  

2.  Clearly assignment of probabilities is permissible since [ = ] = ,                  = 0,1,2,3……0            ℎ
7.4.1   Mean and Variance of the Geometric Distribution 

By definition, ( ) =  ∑ = ∑                     (2.3.1)
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 =  = (1 + 2 + 3 + 4 +⋯…)
= (1 + 2 + + +⋯) + ( + + + +⋯) + (1 + + +⋯) +⋯.= (1 + 2 + + +⋯)( + + + +⋯)
=   11 − . 11 − =   1   (2.3.2)
Putting (2.3.2) in (2.3.1) we get 

∴ ( ) = . 1 = 1  (2.4)
The variance V(X), will be obtained as ( ) = ( ) −  [ ( )], ( ) = [ ( − 1)] + ( )

[ ( − 1)] =   ( − 1) = ( − 1)
Let = ( − 1)
Put r = x-1 
We have = ( + 1)
Hence (1 − ) = (1 − ) ( + 1) = ( + 1) − ( + 1)

= (2 + 2.3 + 3.4 + 4.5 … ) − (1.2 + 2.3 + 3.4 +⋯)= (2 + 4 + 6 + 8 +⋯) = 2( + 2 + 3 + 4 +⋯)=  2 (1 + 2 + 3 + 4 +⋯)
= 2 . 1  (  ℎ (9.11), 
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= 1 = 2
     ∴ =  2

Thus [ ( − 1)] = .  2 =  2             (2.5)
And therefore, ( ) =    2 + 1 − 1

= 2 + − 1 = 2 − =                  (2.6)
The mean = 1/p and V(X) = q/ p2

7.3.2   Moment Generating Function (m.g.f.) of the Geometric  
  Distribution 

By definition (t) = [ ] = = [ ]
= [ ] ,     ℎ = − 1
=  1 − = 1 − (2.7)

Which is valid only if qet < 1. 

7.4   Negative Binomial Distribution (N.B.D)

In this section we discuss the properties of negative binomial distribution which is a 
generalization of the geometric distribution. We know that geometric distribution gives the 
distribution of the number of trials required to obtain first success in independent repetitions of a 
Bernoulli trials. Now suppose we want to find the distribution of the number of trials required to 
obtain the rth success in independent repetition of a Bernoulli trial with probability p of success at 
every trial. 
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Suppose we have a success of n Bernoulli trials. We assume that (a) trial are independent 
(b) the probability of success p in a trial remains constant from trial to trial. 

Let f (x, r, p)~ denote the probability that there are x failure preceding the rth success in (x 
+ r) trials. Now last trial must be success whose probability is p. In the remaining (x + r - 1) trials 
we must have (r - 1) successes whose probability is given by + − 1− 1    ( ) ( ) = + − 1− 1                          (2.8)∴ (x, r, p) is given by product of probability of (r - 1) success in (x + r - 1) trials and probability of 
success  in last (x + r)th trial, i.e.,  ( , , ) = + − 1− 1    .  = + − 1− 1              (2.9)
Definition:  A random variable X is said to follow a negative binomial distribution if its probability 
mass function is given by: 

( ) = [ = ] = + − 1− 1 ,      = 0, 1, 2, ……   0,                                 ℎ                  (2.10)
Also + − 1− 1 = + − 1− 1 = == ( + − 1)( + − 2) + ( + 1)!= (−1) (− )( − 1)(− − + 2) + (− − + 1)!= (−1) −                       (2.11)
Therefore, an alternative form of the p.m.f of N.B.D. is: 

∴ ( ) =   − (− )0   ℎ                                           (2.12) 

Which is the (x + 1)th term  in the expansion of pr (1 - q)-r, binomial expansion with a 
negative index. Hence this distribution is known as Negative Binomial Distribution. It is also 
known as Pascal’s distribution. 

Note: (i)  The sum of the negative binomial probabilities p(x) is one i.e., 
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( ) =   − (− ) = (1 − ) = 1 { (1 − ) = }
(ii) = = ℎ − = 1 ( + = 1)        (2.13)
Then the third form of the p.m.f of NBD is: 

( ) =   − − , = 0,1,2, … .0   ℎ                                (2.14)
This is the general term in negative binomial expansion (Q-P)-r

(iii)   If we take r = 1 in equ. (2.2) we have p(x) = qx,            x = 0, 1, 2, ……. 

Which is the probability function of geometric distribution. Hence negative binomial 
distribution may be regarded as generalization of geometric distribution. 

7.4.1   Moment Generating Function (m.g.f.) of Negative Binomial  
           Distribution 

(t) = [ ] = ( ) =   − − = ( − )
= (t) =   [− (− )( − ) ] = [ (( − ) )]= . ( − ) = − ( − = 1)                   (2.17)∴   = ( ) = + ( + 1) −= + + − = (1 + ) =                          (2.18)

As Q > 1, rP < rPQ, i.e. Mean < Variance which is a distinguishing characteristic of this 
distribution. 

7.4.2  Poisson Distribution as Limiting Case of the Negative Binomial  
           Distribution 

Negative binomial distribution tends to Poisson distribution as → 0 , → ∞                 ℎ  ℎ = ( ).
Now we have p.m.f. of negative distribution. 
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( ) =   + − 1− 1lim ( ) = lim→ + − 1− 1 ( / )
= 1!   lim→ ( + − 1)( + − 2)…… ( − 1)! (1 + ) 1 += 1!   lim→ (1 + ) 1 += !   lim→ (1 + ) lim→ (1 + )            (Since rp = λ) 

= !    lim→ (1 + ) lim→ (1 + ) = !
Which is the p.m.f. of Poisson distribution with parameter λ. 

7.4.3  Recurrence formula for Negative Binomial Distribution 

( , , ) =   + − 1− 1( + 1, , ) = +− 1∴ ( + 1, , )( , , ) = ( + 1)! !( + 1)! ( + − 1)! .    =   ( + )+ 1⇒ ( + 1, , ) =   ++ 1 . ( , )                 (2.19)
This is the recurrence relation and is useful for fitting of the negative binomial distribution. 

7.5   The Hyper geometric Distribution 

Let there be N items of which M are defective and N-M are good. We select n items without 
replacement and want to find the probability that j of them are defective. When j of n are defective 
then remaining n-j must be good items. But since M defective and N-M good items. We must have 

j ≤ m and n-j ≤ M-N. We can choose n items of out of N in  ways. The defective can be chosen 

out of M defectives in ways and (n-j) good items can be chosen out of (N-M) good items in −− ways. Hence , if X denotes the number of defective items selected. 
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[ = ] = −−           (2.20)
for j = 0, 1, 2,………n,  j ≤  N - M. Here, n, N M are positive integers, n ≤ N, M ≤ N. 

Definition:  A random variable X has the hyper-geometric distribution with parameters (n, N, 
M) if its p.m.f. is 

[ = ] = ℎ( , , , ) = −−         …………… . (2.21)
for j = 0, 1, 2,………n, j ≤  M, (n - j) ≤ N - M. Here, n, N, M are positive integers, n ≤ N, M ≤ N. 

7.5.1   Mean and Variance of Hyper geometric Distribution 

= ( ) = ℎ( , , , )
= −− = !( − 1)! ( − )! −−

=  ( − 1)!( − 1)! [( − 1) − ( − 1)]! ( − )( − 1) − ( − 1)
=   − 1 ( − 1) − ( − 1)− 1 − ,        = − 1

Now, 

− =  +
ℎ  (1 + ) = (1 + ) (1 + )ℎ ℎ

Using this result we get ( ) = − 1− 1 =            ……………   (2.22)
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We have ( ) = ( ) − [ ( )]
Now ( ) = [ ( − 1)] + ( )
Also 

[ ( − 1)] = ( − 1) −−
=  ( − 1) − 2− 2 −−

=  ( − 1) − 2− 2 =  ( − 1) ( − 1)( − 1)
∴ ( ) =   ( − 1) ( − 1)( − 1) +       …………… . (2.23)

Hence  ( ) =   ( − 1) ( − 1)( − 1) + −
=  ( − )( − )( − 1) ( )   …………    (2.24)

7.5.2   Recurrence Relation for the Hyper Geometric Distribution 

We have 

( , , , ) = −−             ……………   (2.25)
( + 1, , , ) = + 1 −− − 1

∴ ( + 1, , , )ℎ( , , , ) = ( − )( − )( + 1)( − − + 1) ( )
ℎ( , , , ) = ( − )( − )( + 1)( − − + 1) . ℎ( , , , )     ………  (2.26) 
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7.6  Self Assessment Exercises 

1. Cards are drawn at random with replacement from a well shuffled pack of 52 playing 
cards. Find the probability that the first ace will appear before the fifth selection. [Ans.: 
0.269] 

2. The probability of having a male child or female child is both 0.50. Can you find the 
probability that a family’s fourth child is the second daughter. [Ans.: 3/16]. 

3. Find the probability that a person tossing an unbiased coin gets fourth head on seventh 

toss. [Ans.  6 ] 
4. A quality control engineer inspects two randomly selected units from a lot of 20 units. 

If the both units are in working conditions, the lot is accepted; otherwise all the 
remaining units are inspected. Let us find the probability that a lot of 20 units containing 
8 detective units are accepted without further inspection. [Ans. 0.347.] 

5. For the geometric distribution with p.m.f. f(xt2- X, x= 1,2,3,… show] that chebyshev’s 
inequality gives [| − 2| ≤ 2] >  while actual probability is 15/16.  

7.7   Summary 

This unit provides a brief idea about Geometric, Negative, Binomial and Hyper Geometric 
distribution with their applications and importance. 

7.8   Further Readings  

1. Cramer H, Mathematical Methods of statistics, Princeton University Press, 1946 and 
Asia Publishing House, 1962. 

2. Hogg R.V. and Craig A.T., Introduction to Mathematical Statistics, Macmillan, 1978. 
3. Prazen E. Modern Probability Theory and its applications, John Wiley, 1960 and Wiley 

Eastern 1972. 
4. Rao C.R., Linear Statistical Inference and Its Applications John Wiley, 1960 and Wiley 

Eastern 1974.  
5. Rohtagi V.K. (1984), An Introduction to Probability theory and Mathematical Statistics 

John Wiley, 1976 and Wiley Eastern 1985. 
6. Vikas S.S., Mathematical Statistics John Wiley, 1962 Toppan. 
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Unit - 8:   Normal Distribution 
Structure 

8.1 Introduction 
8.2 Objectives 
8.3 Normal Probability Distribution 

8.3.1 Normal Distribution and its Parameters 
8.3.2 Standard Normal Distribution 

8.3.2.1 Moments of the Normal Distribution 
8.3.2.2 Moments Generating Function of Normal Distribution 

8.4 Normal Curve 
8.4.1 Properties of a Normal Curve 
8.4.2 Standard Scores or Standard Normal Variate 
8.4.3 Further Illustration of Normal Area Table 

8.4.3.1 Advantages of Z Scores 
8.4.3.2 Characteristics of Z Scores 

8.5 Self Assessment Exercises 
8.6 Solutions/Answers 
8.7 Summary 
8.8 Further Readings 

8.1   Introduction 

In order to fully understand the interpretation of the standard deviation and its relationship 
to the mean, it is important to learn about the shape of a distribution. A histogram, or a polygon, 
is a helpful tool in evaluating the shape- the pattern in which scores vary-of a distribution. Only 
after knowing the shape does one know the precise location of scores in relation to the central 
tendency and standard deviation. The distribution of scores may be shaped in many different ways. 
Of all these shapes, the most interesting one is called the normal curve.  

8.2   Objectives 

After studying this unit you will be able to understand: 

The meaning of normal distribution and its properties.

The application of normal curve to observed distribution.

The importance of standard scores and normal area distribution.

The advantages and characteristics of Z scores.
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8.3   Normal Probability Distribution 

It has been observed that most business and economic variables result in continuous data 
whose behavior is often best described by a bell-shaped continuous curve. Since most populations 
on these variables normally yield a bell-shaped curve, such a curve has come to be universally 
known as a normal curve. Accordingly, the probability distribution described by normal curve is 
called the normal (probability) distribution. 

8.3.1   The Normal Distribution and its Parameters 

The normal distribution is defined by the probability density function. ( ) = 1√2 ; − ∞ ≤ ≤ ∞                    …………… (3.1)
Where r,  and > are two parameters of the distribution.  

A continuous r.v. X having above pdf is called normal random variable. We write it as 
X~N ( , ) and  are the parameters of the distribution. We shall see  that is mean 2and 

is variance of the distribution.  

Here ∫ ( ) = 1.           [  =   = ]
=   1√2 = 1                      …………… . . (3.2)12 = 1

The curve = ( ) =   1√2
is called normal probability curve. 

This curve is bell-shaped and symmetric about mean ., As the curve is symmetrical about 
the ordinal at x = , The curve is concave down wards in the centre , but after x = ±  is 
becomes concave upwards. The two points of inflexion are given by x = ± ,  

Figure: 3.1  Normal Distribution 

UGSTAT-102/109



It shows the deviations of the values of normal variables X from its mean . The larger 
these deviations, the higher are the value of standard deviations  (or variance ) which is the 
denominator in the exponent. 

The shape of the curve shows that the observations occur most frequently in the 
neighborhood of the mean and their frequency decreases as they move away from the mean. From 
(3.1) it is seen that the distribution is symmetrical about the point  = . ( + ) = ( − ) =
√ (− ). whatever may be. Hence  is mean as well as median of the distribution. 

Again  is also mode of the distribution, since ( ) = 0  . Also exp −  decreases 
monotonically  as increase from zero, i.e., as a deviates from zero in either direction. 

Thus the mean, median and mode of the distribution coincide at , Thus the mode of the 
distribution also coincides with mean and median .  

Approximately 68% of the area under the cure lien in the region [ − , + ], 
approximately 95% in [ − 2 , + 2 ] and almost all in the region [ − 3 , + 3 ]. In fact 
approximately 0.27% area lies outside region [ − 3 , + 3 ]. This fact is stated by the following 
relations-  

Mean:  By definition, ( ) = ( ) = 1√2 ( ) /              … . (3.3)
=   1√2 +  ( − = )
=   1√2 + 0                        ∵ = 0 …… . (3.3.1)

=                               (3.4)
Let X be a continuous random variable with a normal distribution and with pdf given by (3.1) then 
a continuous random variable with ( − ) = 1√2 ( − )  ( ) /

=∫ √                  …… (3.6)
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ℎ = − =
= 0√2= 0 [ ℎ ]∴ ( ) =                       ………(3.7)

Thus the parameter  is the mean of the normal distribution 

Variance:  By definition  ( ) =   ( − ) = 12√2 ( − ) ( ) /         …… (3.8)
=  √2          (where z =   − )

=   2√2 =             …… . . (3.9)
Thus the parameter is the variance of the normal distribution. Normal Distribution with 

mean  and variance  is also denoted by N ( , ) or N ( , ) Mean, Median and Mode of this 
distribution, coincide at the .  

8.3.2   Standard Normal Distribution 

If X~N ( , ) then its pdf is given by equ. (3.1) using transformed  z =  −
We obtain the pfd of ≥ as ( ) = 1√2   − ∞ < < ∞                  (3.1 )

Obviously E(z) = 0 and var (Z)=1 

Hence, z is standard normal variable and the pdf given by equ. (3.1a) is called standard 
normal distribution. 

Quartiles:  The first quartile Q1 is given by  
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[ ≤ ] = 1√2 ( ) / = 14
Solving this equation with the help of Normal Probability integral Table’ we found = − 0.6745 .               …………… ..      (3.10)
Similarly, the third quartile  is [ ≤ ] = 1√2 ( ) / = 34                    (3.11)

1√2 ( ) / = 14               (3.12)
Solving the above equation with the help of ‘Normal probability Integral Table’ we found. = + 0.6745.    ℎ − = −= 0                                (3.13)
8.3   Properties of Normal Distribution 

8.3.2.1  Moments of the Normal Distribution 

Moments about the mean:  In case of normal distribution  ( ) = 1√2 ( ) / , −∞ < < ∞,−∞ < < ∞, > 0
It may be observed that 

(i) The odd moments about mean are zero i.e.,  + 1 = 0  and 
(ii) The even moments about mean are given by the recurrence formula  = (2 − 1) = = (2 − 1)(2 − 3)…3.1      …… . . (3.14)

Thus all odd moments are zero, i.e. ⇒ = = = ⋯… = = 0    …… (3.15)
The first four central moments are: 
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In particular: = 0;   = ;   = 0;   = 3 ; ……… . (3.16)
Thus Beta and Gamma ratios of this distribution are 

= = 0           [  = 0]
= = 0        ………………(3.17)⇒ The normal distribution is symmetrical about X =  i.e., there is no skewness in normal 

distribution and 

= = 3( ) = 3   
∴    = − 3 = 0    ……………(3.18)        ⇒ The normal distribution is mesokurtic i.e., Kurtosis of a normal distribution vanish; it is neither 

play kurtic nor leptokurtic. 

You may remember that the Kurtosis or Flatness of the probability curve at the maximum ∅ is 
compared with the normal curve.  

8.3.2.2  Moment Generating Function of Normal Distribution  

(i)  Moment generating function (about origin): 

(t) = [ ] = . 1√2 ( ) /
=   1√2 ( ) , = − ;   = …… . (3.19)

1√2 ( ) = + …… . . (3.20)
(ii)  Moment generating function (about mean) ( ) =  ( )

Example 3.1:       Show that any linear function of normal variate is also normally distributed. 

Solution:  Let Y~ N ( , ). Then  
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( ) = ……………… . . (3.21)
Let X = a Y + b., (a≠0) be any linear function of Y. 

Then ( ) = ( )=   ( ) =  ( )                       [  (3.21)]
=   . ( )                (3.22)= ( )
On comparing (3.2) with (3.21), we find that (3.2) is the p.d.f. of normal variate with mean +

 variance. Hence   ~ ( + , )
Example 2:   If X and Y are two independent random variable with probability density function ( ) = 1√2 −∞ < < ∞   ( ) = 1√8 ( ) . − ∞ < < ∞
Solution: 

Comparing the pdf’s giving by normal dist. N ( , )given by Eqn. (3.1) we observe that   ~ (0,1) ~ (5,4) ……………… . . (3.23)
Therefore = 0, = 1= 0, = 2
Respectively, find the variance of the random variable (U= 2X+Y. ∴ Var (U) = Var (2X+Y) = Var (2X) + Var (Y), [ X and Y are independent] 

= 4 Var (X)+ Var (Y) =  4 + = 4 × 1 + 2 = 8…………..(3.24) 

8.4   Normal Curve 

 As mentioned above one of the most important models in statistics is the normal curve. It 
is a symmetric, unimodal bell-shaped curve with a fixed proportion of area between any given 
points under the curve. Symmetric means half the area is on each side of the mean (which is in the 
centre) and unimodal bell shaped means there is only one hump (in the centre). The normal curve 
is a mathematical conception described by a precise mathematical formula and based on the 
theoretical by a precise mathematical formula and based on the theoretical distribution of the 
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population scores. This abstract curve describes the frequency with which observations can be 
expected to occur. The normal curve is frequently used as a model in statistics not because of any 
inherent quality but because many real world variables such as IQ, height and weight, have 
distribution that real closely approximate it. If one is able to assume that a set of scores 
approximates a normal distribution, then properties of normal distribution can be used to facilitate 
interpretation of data. 

Normal Curve: A curve by = ( ) =   √  is known as normal probability 

curve = when = = √  origin is taken at mean  then we get. 

Figure 3.2: Normal Curve 

Table of ordinates:    The maximum ordinate or height of the normal curve is  = 1√2 ( )
If we use transformation =  that is shift original the point  and change the scale by 

 then we get curve. = ∅( ) = 1√2
This is known as standard normal probability curve.  

The standard deviation plays an important role in determining the shape of the curve. The 
mean  lies at the centre of the normal curve and indicates the central value of the normal 
distribution. The standard deviation  measures the extent of spread of X values from the central 
value . Thus, while  fixes the position or the level of the distribution on the X- axis and 
determines the dispersion of the distribution along the X axis 
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Figure 3.3: Normal Curves with different Means and Standard Deviations 

In the light of the above, consider the following three situations as shown in figs. 3 and 4.  

1. A change in  standard deviation or  remaining the same shifts the curve along the X axis 

without changing its spread. This is shown in fig. 3. 

2. A change in  mean  remaining the same, changes the shape or spread of the normal 

curve. This is shown in fig. 4. 

3. An increase in  increases the spread of the normal curve equally on both sides of the 

central value it lowers is any change in . A decrease in  on the contrary reduces the 

spread of the normal curve and increase its height.  

Figure 3.4: Normal Curves with different standard deviations ( > ) and ( = ) 

8.4.1   Properties of a Normal Curve 

(i)  Normal curve is symmetric; bell shaped and unimodal. 

(ii)  The mean, median and mode all coincide. 

(iii) Theoretically, the tails of the curve extend out to infinity in both directions without 
touching the horizontal axis, (x axis is asymptote to the curve) but in practice the curve 
can be ended at definite points. Usually at = ±3 infact, x- axis is asymptote to the 
curve.  
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(iv) Given the mean and standard deviation, the proportion of area (or cases between) any 
given points under the curve can be determined. 

More specifically the normal curve is determined only by the values of  and  it means 
there are different normal curves (different in spread and positioning) for different values of these 
two parameters. Moreover,  

(a) The normal curve is not a single curve representing only one continuous distribution. 
It represents a family of normal curves for different value of  and /or .

(b) A change in the value of  displays the entire curve to a different level, whereas a 
change in the value of  changes the spread and determines its height. 

(c)  The mode of the radical distribution occurs at a point on the X-axis where the curve 
reaches the maximum height. Since most observation tend to cluster around the mean 
value, the point of mode coincides with the point of mean. That is mean and mode are 
equal at the point where the curve attains the maximum height.   

Example 3.3:  Suppose a researcher obtained the weights of all male college students in 
India. The frequency for each value of weight that occurred in the data could be counted and plotted 
on a graph. Then a smooth curve can be drawn through the points that represent the frequency for 
each value of weight. The shape of this curve is determined according to the data collected. 
Suppose the mean weight and standard deviations are found to be 150 pounds and 10 pounds 
respectively. Past research shows that for variable such as weight the result will be a normally 
shaped curve such as the one shown below. 

Figure 3.5 

Because the above shown curve was generated by fitting it to the data, it covers all the 
observations. Since all the observations are given equal amounts of space on the graph, there exists 
a correspondence between various areas under the curve and the proportion of observations in 
these areas. For example, the mean weight of 150 pounds divides the area of the curve in half: 50% 
of the total area under the curve, whatever that might be, lies on either side of the mean. If any side 
of the distribution is taken the proportion of the area under the curve in that slice to the total area 
under the curve will be equal to the proportion of the number of observations in the slice to the 
total number of observations in the distribution. This means the proportion of observations that 
fall into any interval in the distribution can be determined by calculating the area of that interval 
under the curve by using some properties of the standard deviation. 

UGSTAT-102/117



It so happens that about 68.25% of the observations in a normal distribution fall within 1 
standard deviation of the mean (above and below). Suppose that the distribution in the above figure 
was based on 1 million observations. This would mean that 682,600 college males (68.26% of 1 
million) had weights fall into the interval from 140 pounds (~-10 = 150 -1×10 = 140) to 160 
(~+10” = 150 + 1 × 10 = 160). It also means that 68.26% of the area under the curve lies in the 
interval on the graph from 140 pounds to 160 pounds. Since 68.26% of the observation lie inside 
this interval the remaining 31.74% (100-68.26= 31.74) must lie outside it. And because the curve 
is symmetric, half of 31.74% of observation lie on either side of the mean: about 15.87% of college 
males weight less than 140 pounds and 15.87% weigh more than 160 pounds. Similar statements 
hold for the corresponding area under the curve: 15.87% of the area of the area under the curve 
lies to the left of a line drawn at 140 pounds and 15.87% of the area under the curve lies to the 
right of a line drawn at 160 pounds. Similarly, the percentage of scores between any given points 
can be determined. For example about 95% of the observation, under a normal curve, falls within 
2 standard deviations and about 99% of the observations fall within 3 standard deviations of the 
mean. 

Example: 

Suppose a population consists of 10,000 IQ scores. The distribution of IQ scores in 
normally shaped with a mean of 100 and SD of 16. If a person has an IQ score of 132 would he/she 
be happy or sad? 

Solution : 

Since the scores are normally distributed, 34.13% of the scores are contained, between the 
scores of 84 and 116 where 84 is 1 SD below the mean and 116 is 1 SD above the mean; 13.59% 
of the scores fall between 116 and 132; 2.15% between 132 and 148; and 0.13% are greater than 
148. Similarly, 34.13% of the scores fall between 84 and 100; 13.59% between 68 and 84; 2.15% 
between 52 and 68; and 0.13% are lower than 52. To calculate the number of scores in each area, 
all that is needed is to multiply the relevant by the total number of scores. Thus there are (.3413). 
(10000) = 3412 scores between 100 and 116; (.1359) (10000) = 1359 scores are greater than 148. 
For the other half of the distribution, there are 3413 scores between 84 and 100; 1359 scores 
between 68 and 84; 215 scores between 52 and 68; and 13 scores are below 52. These answers 
would be true only if the distribution is exactly normally distributed.    

In the absence of additional information it is difficult to say whether a score of 132 is good 
or not so good. A score is not very meaningful unless there is a reference group of compare against. 
Without such a group it is difficult- say whether soccer of 132 is high, average or low. Referring 
to the above example, assume a score out of a total of 10,000 scores. The percentage of scores less 
than 132 can now be determined. Recall that this is similar to determining the percentile rank of 
the scores of 132. It can be seen that 132 is two standard deviations above the mean. In normally 
shaped distribution, 34.13+13.59= 47.72% of the scores are between the mean and a score that is 
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two standard deviations above the mean. To find the percentile rank of 132 and 47.72%  to 50% 
because 50% of the scores fall below the mean. Thus 47.72+50.00= 97.72% of the scores an below 
an IQ score of 132. Thus a score of 132 is pretty good. The person should feel happy. 

In order to make sense of raw data, the mean and the standard deviation of a distribution 
must be known. But different distributions have different means and standard deviations. It would 
be nice if one can find a way to control for differing means and standard deviations that is if all 
distribution have the same mean and SD. Luckily, this can be done by calculating the standard 
scores, also called the z scores.  

8.4.2   Standard Scores or Standard Normal Variate 

As shown above, a z scores is transformed score that designates how many standard 
deviation units the corresponding raw score is above or below the mean. That is  =  − ̅ = −                  ……… . (3.25)

This process of converting raw scores into scores is called scores transformation. . After 
converting all the X scores into z scores, the sum of all z scores is always zero. Therefore the mean 
will be zero. Similarly, if variance of z scores are calculated, its value turn out to be. 1.0. Thus Z 
scores are pure, unit free numbers ranging from -00 to 00. 

i.e. if  ~ ( , ) then ~ (0,1)
The standardized Z normal variate can be understood from the following figure. It shows 

that when X falls between any two values x1 and x2. Z falls between the corresponding z1 and z2

values where =  − = − ……… . (3.26)
Thus, values of X falling between x1 and x2 will have corresponding Z values falling 

between z1 and z2. The area under the normal curve for X bound by the two ordinates at x1 and x2

will be the same as the area under the standardized Z normal curve bound by the corresponding 
two ordinates at z1 and z2.  ( < < ) = − < < − …… . . (3.27)= ( < < )

Because the events [x1 < x < x2] and [z1 < z < z2] are equivalent. Further the total area 
below the standard normal curve. 
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( ) = 1
The distribution of z scores is referred to as standard distribution. For a normally distributed 

variable, the distribution or raw scores is called normal distribution and the corresponding 
distribution of z scores is called the standard normal distribution. 

A standard normal curve is shown below: 

The standard scores express the raw scores (actual scores) in terms of standard deviation 
units. A z scores tell how for away (above or below) from the mean does a score lie in standard 
deviation units. For example a z score of 1.46 means the actual score is 1.46 standard deviations 
above the mean. Similarly, a z score of -0.87 means the score falls 0.87 standard deviations below 
the mean. A positive z scores means  the scores is above the mean a negative z scores means the 
scores is below the mean and a zero scores means the score is exactly to the mean. 

Example: 

The average height of women in survey was found to be 63 inches with standard deviations 
of 2.5 inches. Convert the following to standard scores (or standard units): 63 inches, 65.5 inches, 
and 58 inches. Find the height which is -1.2 in standard units. 

Solution: 

To answer the first question: 63 inches is the average and therefore, it is 0 standard 
deviations away from the mean and is 0 in standard units: 

. .     = − = 63 − 632.5 = 02.5 = 0
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The height of 65.5 inches is 2.5 inches above the mean, that is 1 SD above the mean, In 
standard units (or z scores units), 65.5 inches is +1: 

= − = 65.5 − 632.5 = 2.52.5 = +1
The height of 58 inches is 5 inches below the mean that is 3 SD below the mean. In standard 

units (or z scores units), 58 inches is -2. 

= − = 58 − 632.5 = −52.5 = −2
To answer the second question: This height is 1.2 standard deviations below the mean that 

is 1.2 × 2.5 inches = 3 inches below the mean. So it must be equal to 63 – 3 = 60 inches. That is, = −
( − ) = ( )( )=  + ( )( ) = 63 + (−1.2)(2.5) = 63 − 3 = 60  ℎ .

8.4.3   Further Illustration of Normal area table 

The use of normal area tables may now be illustrated by obtaining the range probabilities under 
different situations referring to the normal distribution of the weight characteristic with = 55 kg 
and = 5 kg to understand and facilitate the use of these tables. It is always useful to draw a normal 
curve and show the desired area on it.   

(a) Probability that a person will have weight between 60.5 and 64.5 kg and also of the 
one who will have weight between 45.5 and 49.5 kg. 
Here the Z values are 
Thus the desired probability is the shaded area under the right tail of the normal curve 

in Fig. 7(a) which is = 60.5 − 555 = 1.1  = 64.5 − 555 = 1.9.(60.5 < < 64.5) = (1.1 < < 1.9) = (0 < < 1.9) − (0 < < 1.1)= 0.4713 − 0.3643 = 0.1070
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Similarly the probability that a person will have weight between 45.5 and 49.5kg is the 
shaded are under the left tail of the normal curve in Fig. 7(a). Here, 

= 45.5 − 555 = −1.9  = 49.5 − 555 = −1.1.ℎ (45.5 < < 49.5) = (−1.9 < < −1.1)
= P(-1.9 < Z < 0) – p (1.1 < Z < 0) = 0.4713- 0.3645 = 0.1070 

(b) The probability that a person will have weight more than 65kg is the shaded area under the 
normal curve in Fig. 7(b). Since z = (65-55)/5 =2 the required probability is = 0.1070 

P(X > 65) = p (Z > 2) = 0.5000 – p (0 < Z < 2) = 0.5000-0.4772 = 0.0228 

Similarly the probability that a person will weigh less than 50 kg is the shaded area under 
the normal curve in Fig. 7(c). Since z= (50-55)/5= -1, required probability. Therefore, 

P(X<50)=p(Z<-1)= 0.5000-p(-1<z<0)= 0.5000-0.3413= 0.1587. 

(c) The probability that a person will weight between 45 and 65kg. the required probability is 
the shaded area under the normal curve in Fig. 7(d). Here Z values being. 

= 45 − 555 = −2  = 65 − 555 = 2.
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ℎ ℎ
N(45<X<65)=N(-2<Z<2)= 2N(0<Z<2) = 2(0.4772)= 0.9544. 

(d)  The probability that a person will weigh between 47 an 58kg. the corresponding Z values 
are 

= 47 − 555 = −1.6  = 58 − 555 = 0.6ℎ ℎ ℎ ℎ ℎ  7( )
N(47<X<58)=N(1.6<Z<0.6)= N(-1.6<Z<0) = N(0<Z<0.6)= 0.4452+0.2257= 0.6709 

The area lies equally divided on two sides of the central value of the normal curve. The 
resultant half is then located in the body of the normal area tables to find the corresponding Z 
values. 

8.4.3.1  Advantages of Z Scores  

(i) z scores have no unit of measurement and thus they allow comparison among scores in, 
different distributions even when the units of measurement of the distribution are 
different. For example using z scores one can compare income with height because after 
standardizing the scores in the two distributions both have the same mean and SD.  

(ii) In conjunction with a normal curve, z scores helpful in determining the number or 
percentage of scores that fall above or below a particular score in the distribution. 

8.4.3.2  Characteristics of Z Scores  

(i) The z scores have the same shape as the set of raw scoters. 
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(ii) z scores can be calculated for distribution of any shape using the z formula. 
(iii) The mean of the z scores is always equal to 0; and the standard deviation of z scores is 

1. 
Example 

The scores on a nationwide mathematics aptitude exam are normally distributed, with the 
mean being 80 and SD 12. What percentages of scores fall between 64 and 90? 

Solution 

Following diagram shows the relevant area (area of interest) 

Distribution of Mathematics Aptitude Exams Scores 

The shaded areas are on the either side of the mean. To solve this problem, Find the area 
between 64 and 80 and add up it to the area between 80 and 90. To determine area of interest, 
calculate the corresponding z scores for x1 64 and x2 = 90. 

= 64 − 8012 = −1612 = −1.33  = 90 − 8012 = 1012 = 0.83
From standard normal tables determine the two areas: between mean and z of -1.33 on the 

left and the left area between mean and z of .83 on the right. The area corresponding to a z score 
of -1.33 is .4082 and the area corresponding to a z score of .83 is .2967. The total area equals the 
sum of these two areas. Thus proportion of scores falling between 64 and 90 is .4082+ .2967= 
.7049 or about 70%. Note that one cannot just subtract 64 from 90 and divide by 12. Also one 
cannot simply subtract one z value from the other because the curve is not rectangular but has 
differing amounts of area under various points of the curve. 

Example 7 

Referring to the same distribution of aptitude exam scores discussed above, find the 
percentage of scores falling between the scores of 95 and 110. 

Solution: 

First Find the areas between 110 and mean and 95 and mean. By subtracting these two 
areas, area between 95 and 110 can be calculated. First convert X scores into Z scores as: 
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= 110 − 8012 = 3012 = 2.50  = 95 − 8012 = 1512 = 1.25
Referring to the normal curve table, the area between mean 0 and z of 2.50 is .4938 and 

the area between mean 0 and z of 1.25 is .3944. 

The proportion of scores falling between 95 and 110 = .4938 - .3944 = .0994 or 9.94%. 

8.5   Self Assessment Exercises 

1. The mean production for a company is 662 with the standard deviation 32. 
Assuming Normal distribution how many productions over 1000. 

a) Over 700            b) below 650 
2. if Y is normal variate with mean 30 and variance 25. Find the probabilities. 

(i) 26 ≤ x ≤ 40   (ii) X ≥ 45   (iii) |X-30| > 5 
3. if X is normal variate with mean 6 and variance 9. And also Y is a normal variate 

with mean 7 and variance 16. Then find the value of a. give a that (2 + ≤ ) = P(4X-3Y≥ 4 ) 
4. In an admission test of B.Ed. of 100 candidates. The average marks obtained by 

them are 42 and standard deviation is 24. Then estimate 
(a) No. of candidates more than 60 marks. 
(b) No. of candidates who have marks between 20 and 40.  (assume the normal 

distribution) 
5. The first and third quartiles of normal distribution are 8 and 14 respectively. 

Calculate the mean and standard deviation of the above normal distribution. 
6. In a normal distribution the 3rd deciles is 5 and the upper quartile is 63. Find mean 

and variance. 
7. If X1 and X2 are two normal variate with respective mean 1 and 2 and also 

respective variance 4 and 3. Estimate the distribution of X1+ 2X2 with mean and 
variance.  

8.6   Answers 

1. a) 117       1.b)  352 

2. a) 0.7653   b)  .00135   c) 0.3174.    

3) 7.51 

4.a)   227    b) 289 

5) mean =  11 variance = 4.4 

6) mean = 30.40  variance = 47.934 
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7) (x1+2x2)~N (5,16) 

8.7   Summary 

Normal Distribution has been defined with its properties and applications. 

8.8   Further Readings 

1. Cramer H, Mathematical Methods of Statistics, Princeton University Press, 1946 
and Asia Publishing House, 1962. 

2. Hogg R.V. and Craig A.T., Introduction to Mathematical Statistics, Macmillan, 
1978. 

3. Prazen E. Modern Probability Theory and its applications, John Wiley, 1960 and 
Wiley Eastern 1972. 

4. Rao C.R., Linear Statistical Inference and Its Applications, John Wiley, 1960 and 
Wiley Eastern 1974.  

5. Rohtagi V.K. (1984), An Introduction to Probability Theory and Mathematical 
Statistics, John Wiley, 1976 and Wiley Eastern 1985. 

6. Vikas S.S., Mathematical Statistics, John Wiley, 1962 Toppan. 
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Unit - 9:  Continuous Distribution  

Structure 

9.1 Introduction 
9.2 Objectives 
9.3 Moments of Uniform Distribution 
9.4 Moment Generating Function of Uniform Distribution 
9.5 Exponential Distribution (Definition) 

9.5.1  Second form Exponential Distribution 
9.6  Moments Generating Function of Exponential Distribution 
9.7 Moments Generating Function of Exponential Distribution 
9.8 Lack of Memory Property of Exponential Distribution  
9.9 Some  Solved Examples 
9.10 Self Assessment Exercises 
9.11 Summary 
9.12 Further Readings 

9.1   Introduction- Uniform (Rectangular) Distributions (Definition) 

It is simplest of all theoretical continuous probability distributions in which the probability 
density function of a continuous random variable is constant over a finite interval. 

Definition: 

A continuous random variable X is said to follow a uniform distribution over an interval 
(a, b) if its probability density function is constant over entire range (a, b) of X i.e., p.d.f.  of X is 
given by ( ) = ,       ≤ <0,          ℎ ………………….. (4.1) 

Here K is some positive constant. Since function given by (4.1) of p.d.f  

( ) = 1
⇒ = [ ] = [ − ] = 1 

. .      =   1−
Therefore the p.d.f uniform distribution can be written as 
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( ) = 1− ;             ≤ ≤0,                        ℎ               ………… . (4.2)
The density curve of uniform distribution is given in Fig 4.1 

Figure 4.1 Density function of Uniform Distribution 

Since density curve of a uniform distribution describes a rectangle (see Fig. 4.1), the 
distribution is also known as rectangular distribution. Here constants a and b are two parameters 
of uniform distribution and we denote by X~U (a, b) or X~R (a, b). 

Some important form of uniform distribution is 

(a) Uniform between 0 and 1 i.e., ( ) = 1, 0 ≤ ≤ 10, ℎ            ………..(4.3) 

(b) Uniform between 0 and  i.e., ( , ) = , 0 ≤ ≤0, ℎ ………..(4.4) 

(c) Uniform between -  and  i.e., ( , ) = , −0 ≤ ≤0, ℎ ……..(4.5) 

9.2   Distribution Function of Uniform Distribution 

The distribution function of a random variable is defined as ( ) = [ ≤ ] =   ( )
The distribution function of uniform distribution between a and b is 

( ) = 0,           < 0−− , ≤ ≤1                   >
The distribution function of R (a,b) is shown by Fig 4.2 
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Figure 4.2 Distribution function of uniform distribution 

9.3   Moments of Uniform Distribution 

 rth raw moment of X, about origin is defined as = ( ) =   1−
=   1− + 1 =  1− −+ 1 ……… . (4.6)

In particular =  = +2 …………… . . (4.7)
= 13 [ + + ]

So that ( ) = = − = 112 ( − )    ………………(4.8)
Therefore . . =   ( − )√12
Mean deviation about mean 

. . = − ( + )2 =   1( − ) − ( + )2 ;    =   − ( + )2
=   1− | |–( ) =   2− =  −4                 ………………(4.9)
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9.4   Moment generating function of Uniform Distribution 

Moment generating function of a random variable X is defined as 

Mx(t) = E (etx) 

Where t is any arbitrary real constant. 

If X is uniform variate in (a, b) ( ) = 1−
=   1− =  −( − )                ………… . (4.10)

9.5   Exponential Distribution (Definition) 

Exponential distribution plays important role in statistics. It has been used as potential 
model for lifetimes of many things. Exponential distribution is also used for continuous waiting 
time random variable of various events whereas geometric distribution is used for discrete waiting 
time random variable.  

Definition: A continuous random variable X is said to follows an exponential distribution if it 
assumes non negative values with probability density function (p.d.f.) given by ( , 0) = , ≥ 0, > 00, ℎ …………..(4.11) 

Here  is the parameter of exponential distribution it is easy to verify that the function given in 
(4.11) is a p.d.f. i.e. ( , ) = ;     ≥ 0

( , ) =      = 1
Mean of the exponential distribution is  = ( ) = ∫ ;    = 1 and =

= = 1 =     ( )
Another form of exponential distribution can be written in terms of mean . 
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9.5.1   Second form of Exponential distribution: 

A non negative continuous random variable X is said to follow an exponential distribution 
with if its p.d.f. is given by  ( , ) = 1 ;    ≥ 0> 0            …… . . (4.12)

The graph of p.d.f given in (4.12) is given in Fig 4.3. The f(x, ′) is maximum at x = 0 and 
then decreases as x increased and tends to zero as x → ∞. Similar shape is also obtained for p.d.f. 
is given in (4.11).  

The distribution function of exponential distribution is given by ( ) = [ ≤ ] = = 1 − ; ≥ 0              ……… . . (4.13)
9.6   Moments of Exponential Distribution 

Since the two forms of exponential distribution given in (4.11) and (4.12) are 
reparametrization by putting = 1/  , it is sufficient to obtain the moments for the p.d.f. given in 
(4.12). The rth raw moments about origin is defined as 

= ( ) = 1 ;   
= =   =  
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= ( ) =   =   Г ( + 1)
=   !                         …………… . . (4.14)

Putting r = 1, 2, We get  =  = ( ) =  = 2= = = 2 − =. . . (4.11)
= 1
= 1                       ……………… . . (4.15)

9.7   Moment Generating Function of Exponential Distribution 

M.G.F. of X is defined as 

Mx(t) = E (etx) 
For p.d.f. given in (4.11) ( ) =
For p.d.f. given in (4.12) = ( )

= − = 1 −
( ) = 1 −            ……………… . . (4.16)

( ) = (1 − ′ ) = ( ′ )
= !
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9.8   “Lack of Memory” Property of the Exponential Distribution 

  The exponential distribution is said to have “lack Memory” property in a certain sense. 
Suppose an event E can occur at any time x and occurrence (waiting) time has exponential 
distribution. Suppose we know that E has not occurred before K i.e., X ≥ K. Let Y = X - K, thus 
Y is additional time needed for E to occur. Then a distribution is said to have “lack memory” 
property if conditional distribution of Y given X ≥ K is same as distribution of X i.e.,  ≤ ≥ = [ ≤ ]          …… (4.17)

As an illustration if Mr. A were waiting for the event E and is relieved by Mr. B after time 
K, the waiting time distribution of Mr. B is same as that of Mr. A. Here we will prove that 
exponential distribution “Lacks Memory”. 

Proof:  The p.d.f. of an exponential distribution with parameter  is given by  ( , ) = ;   x  ≥  0,     ≥ 0
Then  [ ≤ ] = = 1 −                 …… . (4.18)  

≤ ≥ = [ ≤ ∩ ≥ ][ ≥ ]
Here [ ≤ ∩ ≥ ] = [ − ≤ ∩ ≥ ]= [ ≤ + ∩ ≥ ] = [ ≤ ≤ + ]

= =  
= ( ) + =   1 −                 ……… (4.19)

From (4.18), we have [ < ] = 1 −⇒ [ ≥ ] =  
∴   ≤ ≥ = 1 − = 1 − = [ ≤ ]∴ Lacks Memory"  .
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9.9   Some Solved Examples 

Example 1:  Suppose that X is a uniform random variable over the interval (0,1). Find- 

(i) >
(ii) [ < 0.7]
(iii) [0.3 ≤ ≤ 0.8]

Solution: 
X~ U (0,1) its p.d.f. is given by  ( ) = 1   0 ≤ ≤ 1= 0       ℎ

(i) > = ∫ 1  = [ ] / = 1 − =/
(ii) [ < 0.7] = ∫ 1  = [ ] . = 0.7.
(iii) [0.3 ≤ ≤ 0.8] = ∫ 1  = 0.8 − 0.3 = 0.5..

Example 2: Subway trains on a certain line run every half hour. What is probability that a man 
entering the station at a random time will have to wait at least twenty minute? Assume that waiting 
time is uniformly distributed between (0,30). 

Solution:  Let us denote X, the waiting time in minutes and it follows U (0,30) i.e., of X is given 
by ( ) = 130 ;      0 ≤ ≤ 30= 0       ℎ∴ [ ≥ 20] = 130 = 130 [ ]

= 130 [30 − 20] = 13 .
Example 3:  If X is uniformly distribution with mean 1and variance 1/3.  Find P[X<1]. 
Solution: ~ ( , )

( ) =   +2 = 1  ⇒ + = 2……… . (1)
( ) =   ( − )12 = 13 ⇒  ( − ) = 4
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( − ) = ±2.   − > 0   − = 2                         ……… (2)
From equation (1) and (2) 

a = 0,   b = 2. ∴ ( ) = 12 ;       0 ≤ ≤ 2= 0       ℎ
[ < 1] = 12 = 12 [ ] = 12 .

Example 4.4:  If X has exponential distribution with mean 2. Find P[X<1]. 

Solution:  From (4.12) the p.d.f. of exponential distribution with mean − 2 is ( , ′) = 1 / = 12 ≥ 0
Then [ < 1] = 12 2 =∴ = 2

=   = [− ] = 1 − .
Example 4.5:  If X has a uniform distribution on (0, 1). Show that Y= - log x follows exponential 
distribution. Obtain mean and variance of Y. 

Solution: The p.d.f. of uniform distribution on (0, 1) is ( )  = 1      0 ≤ ≤ 1= 0  ℎ
Consider transformation Y = - log x ⇒ =  . .    =  − log .
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| | =   = |− | =   → 1    → 0
Thus range of Y is (0, ∞) 

The p.d.f. of Y is given by  ( ) = ( )| | = 1.   0 ≤ ≤ ∞( ) =  ;     ≥ 0
Which is exponential distribution with parameter 1. Thus 

Mean = E(Y) = 1 

Variance = E(Y) = 1   Ans. 

Example 4.6:     If X is a continuous random variable with distribution function F, prove that 
Y= F(x) has a uniform distribution on [0, 1]. 

Solution: Since F is a distribution function, it is non decreasing function and takes values value in 
the range [0, 1] and inverse also exists. The distribution function of Y is given by ( ) = [ ≤ ] = [ ( ) ≤ ] = [ ≤ ( )] =∴ . . . ( ) = ( ) = = 1
Thus range of y is [0, 1] ∴ . . . ( ) = 1                   0 ≤ ≤ 1

= 0                 otherwise ∴  ℎ [0,1]. .
9.10   Self Assessment Exercises 

1.     A random variable X has a uniform distribution over (-3, 3), compute 

(i) P(X=2),   P(X<2),   P(|X|<2) 
(ii) Find K for which P [X>k]= 1/3 

Ans. (i): 0, 5/6,   4/6 (ii):   K=1 

2.    Suppose that X is uniformly distributed over (−∞,∞) where(∞ > 0. ) Determine ∞ so that  
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(i) P (X > 1) = 1/3  (ii)   P[X < 1/2] = 0.3  and (iii) P(|X| < 1) = P(|X| > 1) 
Ans.  (i) ∞ = 3 ( )∞ = ( )∞ = 2.

3.  Calculate the coefficient of coefficient of variation for rectangular distribution in [0,b] 

4.  Show that whatever be the distribution function F(x) of a continuous random variable X [ ≤ ( ) ≤ ] = − :    0 ≤ ,    ≤ 1
5.  If X has uniform distribution in (-a, a), show that odd order moments (central) are zero 

and even order moments = ( ).
6.  If X has exponential distribution with parameter  such that p[x ≤ 1] = P[X > 1]. Find 

mean and variance of X. 
Ans. Mean = 1/log 2, and var (X) = 1/(log2)2

7. Show that Y= - (1/λ) log F(x) is exponential variate with parameter λ. F(x) is distribution 
function. 

8.  A random variable X has density function ( ) 500500 − ( ) 1500 − ( ) 1500 − ( ) 11 − 500( ) = , > 00, < 0
The value of the constants C is 

(a) 3    (b)   4  (c)  1/3   (d)   9. 

9. If X is uniformly distributed in -2≤ ≤ 2, ℎ [ ≤ 1]
(a) 3/4    (b)   1/4  (c)  1/2   (d)   0. 

10.  The number of hours of satisfactory operation of a certain brand of T.V. set is a r.v. with 
p.d.f. ( ) =  −500 ,     > 0. ℎ( ) 500500 − ( ) 1500 − ( ) 1500 − ( ) 11 − 500

9.11   Summary 

Uniform and Exponential distributions have been defined with their properties and 
applications.  

9.12   Further Readings 
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1. Cramer H, Mathematical Methods of Statistics, Princeton University Press, 1946 and 
Asia Publishing House, 1962. 

2. Hogg R.V. and Craig A. T., Introduction to Mathematical Statistics, Macmillan, 1978. 
3. Prazen E. Modern Probability Theory and its applications, John Wiley, 1960 and Wiley 

Eastern 1972. 
4. Rao C.R., Linear Statistical Inference and Its Applications, John Wiley, 1960 and Wiley 

Eastern 1974.  
5. Rohtagi V. K. (1984), An Introduction to Probability Theory and Mathematical 

Statistics John Wiley, 1976 and Wiley Eastern 1985. 
6. Vikas S. S., Mathematical Statistics John Wiley, 1962 Toppan. 
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Unit-10:   Sampling Distribution 

Structure 

10.1 Introduction 
10.2 Objectives 
10.3 The Chi Squire Distribution 

10.3.1 M.G.F. of Chi Squire Distribution 
10.3.2 Skewness of Chi Squire Distribution 
10.3.3 Additive property of Chi Squire Distribution 
10.3.4 Probability Curve of Chi Squire Distribution 
10.3.5 Applications of Chi Squire Distribution 

10.4 t  Distribution 
10.4.1 Student’s t Distribution 
10.4.2 Fisher’s t Distribution 
10.4.3 Probability Curve of t Distribution 
10.4.4 Applications of t Distribution 

10.5 The F Distribution 
10.5.1 Mean, Mode, Variance and Skewness of F Distribution 
10.5.2 Relationship between t and F distribution 
10.5.3 Relationship between Chi squire and F distribution 
10.5.4 Applications of F Distribution 

10.6 The z Distribution 
10.6.1 Moment Generating Function of z Distribution 
10.6.2 Applications of z Distribution 

10.7 Self Assessment Exercises 
10.8 Summary 
10.9 Further Readings 

10.1   Introduction 

if n is small the ‘normal test’ cannot be applied and if the sample size n is small the 
distribution of the various variates follows as are far from normally. In such cases sample 
distributions are useful. In the following sections we shall discuss: Chi square distribution, t 
distributions, F distribution and z distribution. 

These sample distributions can; however be applied to large samples also though the 
converse is not true. In all the sample distributions have a basic assumptions which is that “the 
population(s) from which sample(s) is (are) drawn is (are) normal, i.e. the parent population(s) is 
(are) normally distributed.” 
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A sampling distribution is also a probability distribution of any test statistic which obtained 
from samples drawn from a specific population. The study of sampling distributions is very 
important for inferential statistics. In practice, if we collect sample data and, from these data, 
estimate parameters of the population distribution. Thus, knowledge of the sampling distribution 
can be very useful in making inferences about the overall population. 

10.2   Objectives 

After reading this unit you should be able to: 

Define the chi square, t, F and z distribution.

Calculate the different parameters of these distributions.

Obtain the relations between them.

10.3   The Chi Square Distribution 

In this section we discuss the chi square distribution.  

The Chi-square variate (χ is pronounced as chi square) with 1 degree of freedom (d.f.) is 
the square of a standard normal variate. Mathematically Thus if X~N(μ, σ ),   then Z = ~N(0,1)   and Z =  is a chi-square 
variate with 1 d.f. 

In general if Xi (i=1,2,…,n) are n independent normal variates with means and variance σ
(i= 1,2,…,n) then  

χ = X − μσ , is a chi − square variate with n d. f.
Through Method of Moment Generating Function the Derivation of the Chi-Square ( ) 
Distribution is  

If Xi (i=1,2,…,n) are independent ( , ) we want the distribution of  

= − = , ℎ = − ~ (0,1)
Since ′  are independent, ′ are also independent. Therefore,  
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( ) = ∑ ( ) = ( ) = ( ) , ′ . . . (0,1)
( ) = [ ( )] = exp( ) ( )∞

∞

= exp( ) 1√2 exp{−( − ) /2 }∞

∞

= 1√2 exp( ) (− /2)∞

∞

= −
= 1√2 exp − 1 − 22 = 1√2 . √1 − 22 / = (1 − 2 ) /∞

∞

  ∵   = √
∴       ( ) = (1 − 2 ) /

Which is the m.g.f. of a Gamma variate with parameters ½ and . Hence by uniqueness theorem 
of m.g.f.’s, = ∑ is a Gamma variate with parametes ½ and 

∴ ( ) = 12
Г 2 . exp −12 ( )

= 12 / Г 2 [exp( /2)]( ) , 0 ≤ < ∞

Which is the p.d.f of chi-square distribution with n degrees of freedom. 

Note: 1.   if a r.v. X has a chi-square distribution with n.d.f we write X~ ( ) and its p.d.f. is: 

( ) = 12 Г 2 ,0 ≤ < ∞
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Theorem:   If ~ ( ),                    ℎ ~ .
Proof:   The p.d.f. of = , is given by: 

( ) = ( ). = 12 Г 2 . (2 ) . 2 = 1
Г 2 ; 0 ≤ < ∞

= 12 ~ 12
10.3.1  M.G.F.  of  Distribution  

If X~  then 

( ) = (exp( )} = exp( ) ( )∞

= 12 Г( /2) − 1 − 22 ( ) = 12 Г( /2) Г( /2)[(1 − 2 ) 2⁄ ] ⁄∞

≅                         ( ) = (1 − 2 ) /
Note: mean and variance of the chi-square distribution are n and 2n. 

10.3.2   Skewness of  Distribution  

Karl Pearson’s coefficient of skewness is  given by: 

= −. . = − ( − 2)√2 = 2
Since Pearson’s coefficient of skewness is greater than zero for n≥1, the  distribution 

is positively skewed distribution. Further since skewness is inversely proportion to the square root 
of d.f., it rapidly tends to symmetry as the d.f. increases. 

10.3.3  Additive Property of −variates  

Theorem:  The sum of independent chi-square variates is also a –variates. More 
precisely, if , (1,2, … , )are independent –variates with d.f. respectively, then the sum ∑  is also a chi-square variate with ∑ d.f. 
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Proof:   We have   ( ) = (1 − 2 ) / ; = 1,2, … . .
The m.g.f. of the sum ∑ is given by: 

∑ ( ) = ( ) ( ) … . . ( ) [ ]
= (1 − 2 ) (1 − 2 ) …… . (1 − 2 ) = (1 − 2 )( ⋯. )/

Which is the m.g.f. of −variate with ( + +⋯ .+ ) d.f. Hence by uniqueness 
theorem of m.g.f.’s  ∑ is a variate with ∑ d.f.  

Note:  Converse is also true,  

Mathematically : i=1,2,……., k are  variates with ;=1,2,…., and k d.f. 
respectively and if ∑  is a  variate with ∑ d.f., then , (1,2, … , )are independent. 

10.3.5  Probability Curve of Chi-Square Distribution  

Figure: Probability Curve of Chi-Square Distribition 

from pdf, 

′( ) = − 2 −2 ( )
Since x>0 and f(x) being p.d.f is always non-negative,  

′( ) < 0  ( − 2) ≤ 0,
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For all values of x. thus the probability curve for 1 and 2 degrees of freedom is 
monotonically decreasing When n>2., 

( ) = > 0,                < ( − 2)= 0,                =    ( − 2)< 0,                >    ( − 2)
This implies that fro n>2, f(x) is monotonically increasing for 0<x<(n-2) and 

monotonically decreasing for (n-2) <x<∞, while at x= n-2, it attains the maximum value. 

For n ≥1 as x increase f(x) decrease rapidly and finally tends to zero as x→ ∞. Thus for 
n>1, the probability curve is positively skewed towards higher values of x. Moreover, x-axis is 
asymptote to the curve. The shape of the curve for n=1,2,3,….,6 is given in figure. For n=2 the 
curve will meet y =  f(x) axis at x= 0, i.e., at f(x)= 0.5. For n=1, it will be an inverted J-shaped 
curve.  

Note: In practice for n ≥ 30 the chi-square distribution tends to normal distribution. 

10.3.5  Application of Chi-Square Distribution                   In Statistics  -distribution has a large number of applications, some of which most 
popular are given below: 

(i) To test if the hypothetical value of the population variance = ( ) is. 
(ii) To test the ‘goodness of fit’. 
(iii) To test the independence of attributes. 
(iv) To test the homogeneity of independent estimates of population variance. 
(v) To combine various probabilities obtained from independent experiments to give a 

single test of significance. 
(vi) To test the homogeneity of independent estimates of the population correlation 

coefficient.  

10.4 t Distribution 

10.4.1  Student’s t Distribution 

Suppose ( = 1,2, … . , ) be a random sample of size n from a normal population with 
mean  and variance . Then the student’s t test is defined by the statistic: = ̅ −/√
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Where ̅ = ∑ is the sample mean and = ∑ ( − ̅)  is an unbiased 
estimate of the population variance  . the above statistic follows students’s t-distribution with = ( − 1)  d.f. with probability density function:  ( ) = 112 , 12 . 1( + ) = 1 . 1( + ) ;−∞ < < ∞ Г

12 = √
Note: 1  A statistic t following student’s t-distribution with n d.f. will be defined as ~
2. in above pdf,  if we take v=1, we get: ( ) = 112 , 12 . 1( + ) = 1 . 1( + ) ;−∞ < < ∞ ,     Г 12 = √

Which is the p.d.f of standard Cauchy distribution. Hence when v=1, Student’s 
distribution reduces to Cauchy distribution. 

Derivation of Student’s t-distributon:   The above test statistic can be rearranged as: 

= ( ̅ − ) = ( ̅ − )− 1⇒ ( − 1) = ( ̅ − )/ . 1/ = ( ̅ − ) /( / )/
Since xi (i=1,2,……..,n) is a random sample from the normal population with mean  and 

variance ̅~ ( , / ) ⇒ ( ̅ )/√ ~ (0,1)
Hence ( ̅ )/  being the square of a standard normal variate is a chi-square variate with 1 

d.f.    Also  is a  variate with (n-1) d.f.  

Further since ̅  are independently distributed,  being the ratio of two 

independent variates with 1 and (n-1) d.f. respectively is a ,  variate and its 
distribution is given by:  
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( ) = 112 , 2 . 1 + , 0 ≤ < ∞                  [ ℎ = ( + 1)]
= 1√ (12 , 2) . 11 + ; −∞ < < ∞

Which is the required probability density function of student t- distribution with v = (n-1) d.f. 

10.4.2  Fisher’s t Distribution 

It is the ratio of a standard normal variate to the square root of an independent chi-square 
variate divided by its degrees of freedom. if ξ is a N(0,1) and  is an independent chi-square 
variate with n.d.f. then Fisher’s t is given by:  = /
and it follows student’s ‘t’ distribution with n degrees of freedom. 

Derivation of Fisher’s t-distributon:  Since ξ and  are independent, their joint probability 
differential is given by:  

( , ) = 1√2 (− /2) exp − 2 ( )2 Г 2
Let us transform to new variates t and u by the substitution: 

= / = ⇒ = / =
Jacobian of transformation J is given by: 

= Ə( , )
Ə( , ) = 0   2√1 =

The joint p.d.f  g(t, u) of t and u becomes: 

( , ) = 1√2  2 Г 2 √ −2 1 +
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≥ 0  − ∞ < < ∞, ≥ 0  − ∞ < < ∞.
Integrating w.r. to ‘u’ over the range 0 to , the marginal p.d.f. g1 (.) of t becomes: 

( ) = 1√2  2 Г 2 √ − 2 1 + ( )/∞

= 1√2 2 Ґ 12 . 112 1 + ( )/
= Ґ( + 1)/2√ Ґ 2 Ґ(1/2) . 11 + ( )/ , −∞ < < ∞

= 1√ 12 , 2 1 + ( )/ , −∞ < < ∞

Which is the probability density function of student’s t-distribution with n d.f. 

Note 1:   In Fisher’s ‘t’ the d.f. is the same as the d.f. of chi-square variate.  

Theorem:  Students’s ‘t’ is the particular case of Fisher’s ‘t’. 

Proof:  Since ̅~ ( , / ), = /̅√ ~ (0,1) = = ∑ ( ̅)  is 

independently distributed as chi-square variate with (n-1) d.f. Hence Fishers’s is given by:  

= /( − 1) = √ ( ̅ − ) . ∑( − ̅) /( − 1) = √ ( ̅ − ) = ̅ −/√
Which is Student’s t-distribution with (n-1) d.f. Hence Students ‘t’ is the particular case 

of Fisher’s ‘t’. 

10.4.3 Probability Curve of t Distribution  
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Figure: Probability curve of t distribution 

The p.d.f. of t - distribution with n d.f. is: 

( ) = . 1 + ( )/ , −∞ < < ∞

Since f (-t) = f(t) the probability curve is symmetrical about the line t = 0. As t increases, 
f(t) decreases rapidly and tends to zero at → ∞  so that t-axis is an asymptote to the curve. as = − 2 , > 2;  = 3( − 2)( − 4) , > 4

Hence for n > 2, > 1 i.e. the variance of t- distribution is greater than that of standard 
normal distribution and for n > 4,  > 3 and thus t- distribution is more flat on the top that the 
normal curve. In fact for small n, we have (| | ≥ ) ≥ (| | ≥ ), ~ (0,1)

i.e., the tails of the t - distribution have a greater probability (area) than the tail of standard 
normal distribution. Moreover it has been seen, that for large n ≥ 30, t - distribution tends to 
standard normal distribution.  

Note: 1. Mean and Variance of t distribution is 0 and 

2. The MGF of t distribution does not exist.

10.4.4  Application of t- Distribution  

The t - distribution has a large number of applications in Statistic, some of which are given 
below: 

(i) To test the sample mean ( ̅) differs significantly from the hypothesis value  of the 
population mean.  

(ii) To test the significance of the difference between two samples means. 
(iii) To test the significant of an observed sample correlation coefficient sample regression 

coefficient. 
(iv) To test the significance of observed partial correlation coefficient. 

10.5  F- Distribution  

If X and Y are two independent chi-square variate with v1 and v2 d.f. respectively then F- 
statistic is defined as 
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= //
means, F is defined as the ratio of two independent chi-square variates divided by their 

respective degrees of freedom and it follows Snedector’s F- distribution with (v1, v2) d.f. with 
probability function given by:  ( ) = ( / )( / )2 , 2 . 1 + ( )/ , 0 ≤ < ∞

Note:  1.  The sampling distribution of F-statistic does not involve any population parameters 
and depends only on the degrees of freedom v1 and v2.  

2.  A statistic F following Snedector’s F distribution with (v1, v2) d.f. will denoted by F ~ F 
(v1, v2). 

Derivation of Snedecor’s F-distribution:  Since X and Y are independent chi-square variates 
with v1 and v2 d.f. respectively, their joint probability density function is given by:  (, ) = 12( )Ґ 2 exp −2 ( ) × 12( )Ґ 2 exp − 2 ( )

= 12( )/ Ґ 2 Ґ 2 {−( + )/2} × ( ) ( ) , 0 ≤ ( − ) < ∞

make the following transformation of variables: 

= = , ℎ  0 ≤ < ∞, 0 < < ∞    ∴ = =
= Ə( , )
Ə( , ) = = 0= 1 =

Thus the joint p.d.f. of the transformed variable is: 

( , ) = 12( )/ Ґ 2 Ґ 2 − 2 1 + ( / ) ( / )

= ( / )
2( )/ Ґ 2 Ґ 2 − 2 1 + × 12 ( 1/2)−1 ( 2/2)−1| |
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= 12
12

2( 1+ 2)2 Ґ 12 Ґ 22 − 2 1 + × ( 1+ 2)2 −1 12 −1
; 0 < < ∞, 0 ≤ < ∞

Integrating w.r.t  over the range 0 to ∞ , the p.d.f of F becomes: 

( ) = ( / )( / )2( )Ґ( /2) × −2 1 +∞ ( )/

= ( / )( / )2( )Ґ( /2) × Ґ[( + )/2]12 1 + ( )/
( ) = ( / )( / )2 , 2 . 1 + ( )/ , 0 ≤ < ∞

Which is the probability density function of F-Distribution with ( , )d.f. 

10.5.1  Mean, Mode, Variance and skewness of the F Distribution 

1. Mean = , which is always greater than unity. 

2. Variance = 
( )( ) ( )

3. Mode = 2( 2+2) ( 1−2)1   , which is always less than unity. 

4. Since mean is always less than unity and mode is always less than unity than, the 
curve of F distribution is highly positively skewed. 

10.5.2   Relation between t and F- Distribution  

In F-distribution with (v1,v2) d.f., take v1= 1, v2= v and t2 = F, i.e., dF= 2t dt. Thus the 
probability differential of F- transforms to: 

( ) = 112 , 2 . ( )1 + ( ) 2 , 0 ≤ < ∞
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= 1√ 12 , 2 . 11 + ( ) , −∞ < < ∞

since the total probability in the range (−∞,∞) is unity, the probability function of 
Students’s t-distribution with v d.f.  

If a statistic t follows Student’s distribution with n d.f. then t2 follows snedecor’s F- 
distribution with (1,n) d.f. mathematically, ~ ( )ℎ ~  ( , )
10.5.3  Relation between F and  Distribution  

In F (n1, n2) distribution if let n2 → ∞ then =  F follows  distribution with n1 d.f.  

Proof.  It is given ( ) = ( / ) / ( / )
Г( /2)Г( /2) → Г[( + )/2]1 + ( )/ , 0 < < ∞

In the limit as → ∞, we have 

Г[( + )/2]/ Г( /2) → ( /2) // = 12 /
∵ Г( + )

Г( ) → → ∞

lim→∞ 1 + ( )/ = lim→∞ 1 + / × lim→∞ 1 + /
= exp 2 = exp 2 (∵ = )

Hence in the limit, on using both equations the p.d.f of =  becomes: 

= 2
Г 2 .

= 12 Г 2 . ( )( / ) , 0 < < ∞
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Which is the required p.d.f. of chi-square distribution with n1 d.f.  

10.5.4  Application of F Distribution  

The F distribution has a large number of applications in Statistic, some of which are given 
below: 

(i) To test the equality of two population variance.  
(ii) To test the significance of the observed multiple correlation coefficient. 
(iii) To test the significance of the observed sample correlation coefficient 
(iv) To test the linearity of regression. 

10.6  z Distribution 

In F distribution if  F = exp (2z)  ≅  Z = logF 

Than the distribution of Z becomes 

( ) = ( ). = ( / )( / )2 , 2 . ( )( / ) 2 :1 + ( )/
= 2 ( / )( / )2 , 2 . 1 + ( )/ ; −∞ < < ∞

Which is the probability function of Fisher’s z-distribution with (v1,v2) d.f.,   

10.6.1  Moment Generating Function of z-distribution  

( ) = ( ) = ( ) = ( ) [∴ = ]∞∞

∞

Since ′  (about origin) for F-distribution is ∫ ′ ( ) ,∞  we can find m.g.f of the z-
distribution by putting r= t/2 in the expression for ′  for-distribution.  

( ) = / .Г{( + )/2}Г{( − )/2}
Г( /2)Г( /2)= 12 1 − 1 , 
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= 12 1 + 1 + 1 + 1
Note:          as large , the Z distribution tends to be normal. 

10.6.2 Applications of z distribution 

The z distribution has a large number of applications in Statistic, some of which are given 
below: 

(i) To test the significance of hypothetical population correlation coefficient.  
(ii) To test the significance of the difference between two independent sample correlation 

coefficients. 

10.8  Summary 

This unit provides a brief idea about chi square, t, F and z distribution with their 
applications and importance. In detail the applications of all distributions will be studied in the 
next block. 

10.9  Further Readings  

1. Cramer H, Mathematical Methods of Statistics, Princeton University Press, 1946 and Asia 
Publishing House, 1962. 

2. Hogg R.V. and Craig A.T., Introduction to Mathematical Statistics, Macmillan, 1978. 
3. Prazen E. Modern Probability Theory and its Applications, John Wiley, 1960 and Wiley 

Eastern 1972. 
4. Rao C.R., Linear Statistical Inference and its Applications John Wiley, 1960 and Wiley 

Eastern 1974.  
5. Rohtagi V.K. (1984), An Introduction to Probability Theory and Mathematical Statistics 

John Wiley, 1976 and Wiley Eastern 1985. 
6. Vikas S.S., Mathematical Statistics, John Wiley, 1962 Toppan. 
7. Gupta S.C.and V. K. Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand and 

Sons.  
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Unit-11: Estimation 

Structure 

11.1 Introduction 
11.2 Objectives 
11.3  Point Estimation 
11.4  Properties of a good Estimator 
11.5  Consistency  
11.6  Unbiasedness 
11.7  Efficiency 
11.8  Sufficiency 
11.9  Confidence Interval Estimation 
11.10 Solutions and Answers 
11.11  Summary 
11.12 Further Readings 

11.1  Introduction 

The investigator may be interested in the study of the behavior of some of the 
characteristics of the elements of a population. A collection of objects (some elements or 
individuals) under a statistical enquiry, such that each element can be characterized by one more 
characteristics, is called a population. Thus if each element of a population is characterized by K- 
characteristics, then they constitute a K- variate population. For K = 1, we get a Uni- variate 
population. A characteristic describing the behavior of the elements is represent by a random 
variable say X, Y, Z, …. A characteristic may be discrete or continuous according as the 
corresponding random variable (r.v.) is discrete or continuous. Similarly, a population is discrete 
or continuous, if its elements are associated with a discrete or continuous r.v. In most of the surveys 
an the experiments it is not possible to take observations on each elements of the population, that 
is complete enumeration is not possible, but observations can be taken on a part or subset of 
population called a sample. A sample consists of a small collection of elements drawn from a 
larger aggregate (population) of elements, about which we wish we wish to take information. 
Obviously, it is the sample which we observe but it is the population about which we went to study. 
The reason for studying a sample may be the shortage of resources, such as budget, manpower and 
time or on the nature of the experiment. If the population is infinite (viz, number of cement bags, 
produced in a previous year, number of candidates applying for admission in IIT, Management 
Courses and medical colleges taken together voters in General Election in India for opinion survey 
etc.) hypothetical (tossing of coins of die etc.) or destructive (production of bulbs, electronic goods, 
etc.) then, too, complete enumeration cannot be undertaken. We have to resort to sampling in such 
cases. The sampled data is analyzed and the conditions are drawn about the population. 
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Statistical inference is a process of drawing conclusions about the population characteristic 
on the basis of available information in the sample obtain from the population. Suppose the 
population characteristic X follows normal distribution N (  , ), where both parameters and are 
unknown. We shall write it as follows: “X ~ N (  , ), both  unknown”. We cannot 
proceed further unless we have some estimates ̂   of respectively. For this a 
random sample X1, X2,…..Xn of size  n is drawn from the population. Let X1 = x1,  X2= 
x2,……….Xn= xn be the observed values of the sample. Since in normal population mean, median 
and mode are at  is population variance. Therefore, either sample estimate mean ̅ =∑  or median may be taken as an estimate of  where as sample variance =∑ ( − ̅)"  a an estimate of population variance. In this way the population characteristic 
(parameters ) are estimated by the available information/ conclusions (sample mean 
and the sample variance ) provided by the sample drawn from the population. We have obtained 
a point estimates ̅ of unknown  for respectively. Of course, one have to decide 
between ̅ and for choosing an estimate of we shall in this unit discuss some of the criteria for 
choosing between contending estimators of a parameters say .  

We may choose a random interval ̅ − 1.96 , ̅ + 1.96 ,
as a possible interval estimator of which includes the actual mean  in 95% cases is repeated 
sampling if sample size n is large enough. This type of estimation is known as confidence interval 
estimation. Here, too, the sample information is used to gather the information about the population 
(parameter). A third type of problem of inference is on “test of hypothesis”, a subject matter of 
Unit III. An electric light bulb manufacturer may claim that the average length of life of 
manufactured bulb is more than 2 years. To test this claim a sample of bulb of size say n =20 is 
taken and their mean life is computed. This ̅  is used to test whether the hypothesis is true or false. 
In this case the sample the sample observation is used to justify the claim of the company. Thus 
the problems of statistical inference are classified into “problems of Estimation” and “test of 
hypothesis.” The “estimation” can be done in either of the two ways: (1) “Point estimation” and 
(2) Interval Estimation.” 

11.2  Objectives 

After going through this unit you will be able to understand: 

The role of statistical inference in statistics. 
Consisting property of estimators 
Unbiasedness property of estimators 
Sufficiency of estimators 
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How to compare among two estimators 
How to construct interval estimate of a parameter. 

11.3  Point Estimation 

The theory of estimation was first founded by Prof. R.A. Fisher through a series of papers 
around 1930. 

Some definitions are given below to prepare a background to understand the problem of 
point estimation. 

Let us suppose that our interest lies in a characteristic X of the population. Let X be 
random variable having a probability density function (p.d.f.) ( ;   , ∈ . . Suppose further 
that the functional form f (x; ) is known except for a finite number of parameters out of =( , , … . . ), we shall write 

Definition 1.1 

The set of all admissible values of the parameters  of a distribution f(x, ) is called the 
parametric space  of . 

If  χ~ (  , ) both be unknown then parametric space is : {(  , ): −∞ << ∞, > 0}
For the different combinations of = ( , , … . . ), we get different distributions having 

the form of p.d.f (x; ) and as such get a family of distribution. For example { (  , ), (  , ): −∞ < < ∞, > 0} is a family of normal distributions. 

Definition 1.2  Random Sample: A set of n random variables X1, X2,…..Xn are said to be a random 
sample of size n from the population f (x; ), if their joint distribution f (X1, X2,…..Xn; X1, 
X2,…..Xn) can be factorise as  

f X1, X2,…..Xn  (X1, X2,…..Xn) = f(X1) f(X2)……., f(Xn) 
or 

x1, x2,………. xn are independent identically distribution random variables having common 
p.d.f. f (x; ), 

If X1 = x1,  X2= x2, X3=x3,……….Xn= xn then  (X1, X2,…..Xn) is an observed sample.  

Definition 1.4   Statistic Any function T= T(X1, X2,…..Xn) of a random sample X1, 
X2,…..Xn which is independent of the unknown parameters is called a statistic. 

Clearly a statistic T is a random variable having its distribution function say g (t, ): 
although statistic is independent of any unknown parameters, its distribution may dependent upon 
unknown parameters. 
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Definition 1.5   Sampling distribution of a statistic. Let T= T(X1, X2,…..Xn) be a statistic 
where X1, X2,…..Xn is a random variable from the popular ~ ( , ) ∈ ~. The probability 
distribution is known as the sampling gT(t, ) distribution of Statistic T. 

If T is continuous r.v. then ( ) = ( , ) .
and ( ) = [ ( ) ] = [ − ( ) ] ( , ) .
An important Result (without proof): 

If X1, X2,…..Xn be a random sample of size n from the normal population (  , )  both 
 be unknown, then  

(i) Sample mean ̅ = ∑  and sample variance = ∑ ( − ̅)  are 
independent.  

(ii) ~ (  , / )
(iii) ( ) = ∑ ( − ̅) ~ ( − 1) 

Where X stands for  distribution with (n-1) d.f. 

This result gives sampling distribution of sample mean X and sample variance . Here 

( ) =   ( ) =  
And  ( − 1) = − 1  . ( − 1) =  2( − 1)
So that ( ) = ( ) = 2− 1

Definition 1.6   Standard Error of statistic  The Standard deviation, calculated from the 
sampling distribution if a statistics is called its standard error (S.E.), that is,  ( ) =    ( )
So that for sampling from normal population (  , )( ) =   ( ) =  √
And 
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( ) = ( ) =  = 2− 1
Definition 1.7   Estimator and Estimate  

Any Statistic T= T(X1, X2,…..Xn) of a  random sample X1, X2,…..Xn is a random variable 
from the population ( , ), which is used to estimate unknown parameter  of the population is 
called are estimator of   whereas the value of estimator T is an estimate of . 

The estimate T(X1, X2,…..Xn)  of  is a point estimate of .
There may be more than one point estimators of a parameter. For example in normal 

population (  , )   with known  sample mean = ∑
Sample mean  mid range =  ( ) ( ) are the estimator of mean . 

Where X(1) = min (X1, X2,…..Xn)  and max (X1, X2,…..Xn)  

Thus the problem of estimation may be stated as follows;  

Let the characteristic X having density function f (x; ) , = ( , , … . . ), ∈  of the 
population be under investigation. Suppose that the functional form f (x; )  be either known or 
can be determined from the conditions of the experiment but some of  (1≤m≤k) or all the 
parameters , , … . .  may not be known. 

The density f (x;  , , … . . function is said be completely specified if all the parameters , , … . .  are known. In this case there is no need of estimation of parameter(s). For example, 
normal distribution N (3,4) is completely specified.  

The problem of estimation arises if some or all of the parameters are unknown 

Draw a random sample X1, X2,…..Xn of size n form the population. 
Choose m (one- dimensional) statistics T1=  (X1, X2,…..Xn), T2=  (X1, 
X2,…..Xn)……   Tm=  (X1, X2,…..Xn), 

As point estimators of unknown parameters , , … . .  where 1≤m≤k, 

Such that their distributions are concerted as closely as possible about the true values of 
the parameters , , … . .

By putting x1, x2,…..xn in place of X1, X2,…..Xn an estimate of is obtained as T1=  (x1, 
x2,…..xn) for i= 1,2,……m. 
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11.4   Properties of Good Estimator 

 Some of the criteria for a good estimators are 

(i) Unbiasedness 
(ii) Consistency 
(iii) Sufficiency 
(iv) Efficiency 

The last three are known as Fisher’s criteria of a good estimator. 

11.5   Consistency 

Definition 1.8

Let X1, X2,…..Xn be a sequence of independent identically distributed (i.i.d.) random 
variables r.v.’s with common p.d.f. function f (x, ), ∈ , A sequence of point estimators T1, 
T2,…..Tn will be called consistent for ,if  ⃗   → ∞  ℎ  ∈                            ( )

Or 

If for every ∈ > 0. (| − | >∈) →   → ∞                        …………… . . ( )
Or lim→ (| − | <∈) → 1    ∈ > 0 ……………………( )
Or lim→ (| −∈< | < +∈) → 1    ∈ > 0 ……………………( )
Where estimator = (X1, X2,X3,….…..Xn) 

Is a function of sample observations (or a random sample of size n) X1, X2,…..Xn, The 
expressions (i), (ii),  (iii) and (iv) are equivalent, Since they have same meanings. 

It is pointed out that an estimate of parameter  obtained on the basis of a random sample 
is often different from true value of . A consistent estimator provides an estimate of   that lies 
close to the true value of  with probability one as the sample size increase indefinitely. 
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Consistency is limiting property of an estimator, since it explains the behavior of an estimator Tn, 
based on n independent observations, as n increases indefinitely.  

If there exists a consistent estimator Tn of  then infinitely many consistent estimators can 
be constructed for example.  

Tn = a 

Are all consistent estimator of . Hence consistent estimators are not unique. 

11.5.1   Sufficient conditions for consistency 

Theorem- (without proof): Let {Tn} be a sequence of consistent estimators of  such that for    ∈
,  ( ) ( )  →( ) ( ) → 0  → ∞

Then Tn  =  (x1, x2,…..xn) is consistent for . 

Example 1.1 
Let be a sequence of i.i.d. normal N( , ) variables. Then sample mean ̅ = ∑  is 

consistent estimator of .
 Solution: 

 Here, ~ ( , )
Therefore, ( ) =   . ( ) =   = 1,2,3…

( ) = 1 = 1 ( ) =  
And 

( ) = 1 = 1 ( ) =   1 =
Obviously, 

( ) = ( ) = → 0   → ∞.
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Hence, sample mean  is a consistent estimator for .
Example 1.2

If X1, X2,…..Xn be a random observations of size n on Bernoulli Variable X taking the 
value 1 with probability p and the value 0 with the probability (1-p), show that  ∑ 1 − ∑ =  (1 − )
Is a consistent estimator or p (1-p). 

Solution: 

Since X1, X2,…..Xn are i.i.d. Bernoulli variable with parameters p, therefore 

~   ( , )
So that 

=
1 = = ( ), 

Whereas 

. = (1 − )
Or 

. 1 = (1 − ) = (1 − )
Or 

. ( ) = (1 − ) → 0 → ∞
Therefore 
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= 1
is a consistent estimator for p. Hence by the invariance property of consistent is a consistent 
estimator (1 − ) for p(1-p).  

Example 1.3:  

 Show that the sample mean is a consistent estimator of the population mean even for 
non-normal population.  

Solution:

Here parent population is not mentioned. By chebyshev’s inequality, we have for ∈ > 0.  

(| − | < ) ≥ 1 − ( )∈ = 1 −
Where = ( ) = 1,2,3, ….
Since 

( ) =   1 = 1 ( ) = 1 =
And 

( ) =
Therefore, as n→ ∞ (| − | < ) → 1
Thus,   P . 

Hence the result. 

Alternative Proof;

By central limit theorem,  

=  lim→ − ~ (0,1)
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Is true whatever to be form of the parent population where  are population mean and 
variance respectively, Now for > ,

lim→ (| − | < ) ⇒ lim→ | | < ∈ √
⇒ lim→ −∈√ < < ∈√

⇒ lim→ 1√2
∈√
∈√

Hence sample mean  is a consistent of . Proved 

Example 1.4: 

Let X1, X2,…..Xn be a sequence of i.i.d. r.v.’s distributed as normal N( , ), then show 
that the sample median  is a consistent estimator of .
Or 

Prove that the sample median  is a consistent estimator of the of a normal population .  

Solution:

 For large samples the sample median  is distributed normally with mean   and variance  

. 

Thus for large n, 

=  −
2 ~N(0,1)

Therefore, for ∈ > 0.
lim→ − < ⇒ lim→ | | < ∈ √2√
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⇒ lim→ 1√2
∈√√
∈√√

Hence Proved 

1. You may attempt the following problem: 

E-1.1   Show that the sample variance is consistent estimator for the population variance 
of a normal population. 

E-1.2   Fill up the suitable word(s) or phrase (s) in the blanks- 

(a) If a estimator Tn converges in probability to the parametric function ( ) . Then 
Tn is said to be a ……………………estimator of | |.   

(b) ………………………estimator may not be true. 
(c) The best estimator implies that the distribution of an estimator be 

………….around the true parameter. 
(d) Consistency ensure that the difference between the estimator Tn and parametric 

function ( ) ………………………….as n increases. 
(e) An estimator Tn which is most concentrated about a parameter  is the 

………………………. estimator.  
(f) An estimator is itself a …………… 
(g) A value of the estimator is called……………………………… 

11.6  Unbiasedness 

Consistency is a large sample property of an estimator that is it holds when n is sufficiently large.  

Definition 1.9 Let  X1, X2,…..Xn be a random sample from a population having p.d.f. f(x, ). Let  ( ) be some function of . An estimator  

  =  (x1, x2,…..xn) is said to unbiased for ( ), if  
  E ≠ ( ) ℎ

If  

E > ( )
and 

E | < ( )
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Further, if lim→  E ≠ ( )
Then the estimator  is said to asymptotically unbiased for ( ) . this property holds for 

large samples only.  

Here, ( ) =      ( ) −   ( )
It is observed that there is no perfect estimator of ( ) which always gives an estimate. 

Equal to ( ), but an unbiased estimator does so on the average since its E ( ) mean coincides 
with ( ). It means that “if we go on drawing various samples of size n form a population and 
evaluate the estimates of ( ) using the proposed estimator  then the average E( ) of these values 
of the unbiased estimator  or the mean of the sampling distribution of , is equal to the parameter 
value ( ).

Unbiasedness of an estimator  of ( )dose not mean that the estimate given by  is close 
to the correct value of the parameter ( ). the chance of being close to ( ) depends not only upon 
the mean E( ) of the sampling distribution g (t, ( )) but also upon the mean distribution. We 
know that the standard deviation is frequently used to measure dispersion. In case of unbiasedness 
of the statistics  a small standard error indicates a large chance of the estimate to be close to ( ).
Example 1.5:

Show that sample mean is unbiased estimate of population mean in binomial population. 

Solution:  

 Let  X1, X2,…..Xn be a random sample from a binomial distribution with parameters n and 
p. then  ~ ( ; , )( ) = = 1,2, …… . .
So that 

( ) =   1 = 1 ( ) = 1 ( )
np= population mean 

hence proved 
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Example 1.6: 

If  is an unbiased estimator of  then show that  is a biased estimator of .  

Solution:  

 If  is unbiased for , then, =   > 0
But =    [  −   ]= −  [ ( )]= − 
Since > 0, ℎ , >  
Which means that  is a positively biased estimator of . 

Proved 

Example 1.7

Let  X1, X2,…..Xn be a random samples of size n from a normal population P N( , ), 
then show that-  

( ) = 1 ( − ̅)
( ) = 1− 1 ( − ̅)

Solution: 

Here  = ( , )
So that                                                                                 for i= 1,2,….n ( ) = ( ) =  
giving ( ) =
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So that is an unbiased estimator of mean .
and ( ) =   /
but E( ) = Var ( ) + ( ) =   +
Therefore, 

( ) =   1 ( − ̅) = 1 {( − ) − ( − )}
= 1 ( − ) − ( − ) = 1 −  

= 1 [ − ] =   − 1      ≠  
Hence,  is not unbiased for .

But  ( ) = = ( ) =   ≠  
Shows that S2 is unbiased for . 

Proved 

Alternative Proof:  Form result (A), for sampling from normal population N( , ) ( − ) ~ − 1
So that ( − 1) ~ − 1
There, ( − 1) = − 1

⇒ ( ) =
That is  is unbiased for 
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Since = ( )
Therefore E( )= ( ) = ( ) = (1 − ) ≠ 0
Thus,  is a biased estimator of 

Hence proved. 

You may attempt the following problems. 

E-1.3 Show that the sample  mean is unbiased for estimate for estimate for population means 
is passion distribution. 

E-1.4 Let X1, X2,…..Xn be a random sample from a normal population with unknown mean  and 
standard deviation 1. Show that.  

= 1 + 1.
E-1.5 Let  T= T(X1, X2,…..Xn ) is an unbiased estimator of  . Show that √  is not unbiased for √ . 

E-1.6 (i) If  is a consistent estimator of ℎ
(a) Would also be   (b) would not be 

a consistent estimator of 

E-1.7 (i) If  is a consistent estimator of ℎ
(a) Would also be   (b) would not be 

   a unbiased estimator of 

11.7   Efficiency 

Consider the sample from a normal population N ( , ), where is known. Then sample 
mean and sample median  are two unbiased and consistent estimators of the population mean , 
since  

( ̅) = ,    ( ̅) =   lim→ ( ̅) → 0
= ,    ( ) = 2   lim→ ( ) → 0
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This leads us to conclude that a need of some further criterion to be satisfied by the 
contending estimators. of course, in the above example of Sampling from Normal population, we 
observe that 

For all n,   ( ̅) =
And for a large n ( ) = 1.57 
So that ( ) < ( )

Therefore, the sample mean has less spread than the sample median, Thus sample mean is 
more efficient than the same median. Hence sample mean of ̅ should be preferred against sample 
medina as an estimator of population mean  in N ( , ) population.  

Prof. R.A. Fisher (1921) introduced the concept of efficiency for estimator, which is based 
on the variances of the sampling distribution of the contending estimators. 

Definition 1.10:

If  be two consistent estimators of some parameter   and  <
Then for all samples sizes  is more efficient than 

The relative efficiency of  w.r.t. is defined as 

=  × 100
Definition 1.11  Mean square error (MSE).

Let =  (X1, X2,X3…....Xn) be an estimator of , where  is some function of . Then 
the mean square error of  is defined as  = −
Which is the second moment of  about 

Now, = − + −
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= − + −= +
If  is unbiased for . Then =
In fact  is also a measure of the concentration of the sampling distribution of  about . 

 is also used for the same purpose. Hence the relative efficiency of  w.r.t. may in this 
cases of biased estimators is 

=  × 100
The measures of efficiency is the relative number of observations required to achieve equality 
same variance (or mean square error ) by the two estimators. 

For example consider the above example of estimation of mean  of normal population, 

=  ( ̅)( ) =   2 = 2 =  2227 = 711 = 0.637 < 1.
This mean that we may obtain same precision from a sample mean based of 637 observations as 
we do from a sample median based on 1000 observations. 

The sample mean ̅ is more efficiency than the sample median .  

Definition 1.12  Efficiency of the estimator 

 If  is the most efficient estimator with variance V1 and  is any other estimator with variance 
V2, then the efficiency  of is given as 

= = 
Obviously E cannot exceed unity (≤ 1). 

Example 1.8

Show than the estimator = ∑  computed from a random sample of size n for 

normal population N ( , ) with known is more efficiency for than sample mean = ∑
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through biased.  
Solution:  ( ) = 1 = 1 ( ) = 1 =

( ) =  
Now, 

= 1 =   + 1
gives ( ) = + 1 ( ) =   + 1 ≠
Therefore T is biased estimator  but  

( ) = + 1 = ( + 1) ( )
Therefore, ( ) <   ( )
Hence, T is more efficiency than sample mean  for  through it is a biased estimator.  

You may attempt the following problems. 

E-1.7 Let X1, X2, and X3 be a random sample from a population with unknown mean  and known 

variance. T1, T2, T3 are the estimators used to estimate where T1= X1-X2+X3, T2= 5X1 + 3X2- 7X2

and T3= ¼ (λX1+X2+X3) 

(a) Are T1 and T2 unbiased estimators. 

(b) Find he value of λ so that T3 is unbiased for . 

(c) Which is the best estimator? 

E-1.8  If  are two is independent estimators of then is less efficient then =  +
both  . 
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11.8   Sufficiency 

We know that in estimation of parameter  of the population f (x; ), ∈ , a random 
sample X1, X2,X3…....Xn of known size, say n is drawn from the population f(x, ). A statistics 
(X1, X2,…....Xn) is chosen as an estimator  of which satisfies some nice properties. The statistic 
is a function of sample observations X1, X2,…....Xn which condenses the random variables (X1, 
X2,…....Xn) in a single random variable =   (X1, X2,…....Xn). The domain of is the set Ж 
which is the range of values that (X1, X2,…....Xn) may take while its range is real time R. Thus 
this condension reduce or maps the n-dimensional quantities  = (x1, x2,…....xn) ∈ Ж into a one 
dimensional point =   (X1, X2,…....Xn) ∈ . through the statistic  there is a possibility that 
some information about the parameter contained in the sample may be lost in this process. A 
statistic will be preferred if it contains as much information about the unknown parameter  as 
contained in the sample and no information is lost.  

 A statistic S =S (X1, X2,…....Xn) is said to be a sufficient statistic for  if it contains (or 
exhausts) all the information about  that is contained in the sample. It gives as much about  as 
the sample itself and no information is lost.  

Definition 1.13  Sufficient statistic:

Let X1, X2,…....Xn be a random sample from the population having density function f (x; 
), ∈ . A statistic T= T (X1, X2,…....Xn) is said to be a sufficient statistic for  or for a family 

of distribution    {  (x; ), ∈ } if and only if, the conditional distribution of X1, X2,…....Xn

given T=t does not depend on  . 

The above definition asserts that if the value of the sufficient statistic T is known then we 
should concentrate on T itself. The sample values themselves are not needed thereafter. It can tell 
you nothing more about  because by the conditional distribution of the sample X1, X2,…....Xn

given the sufficient statistics does not depend on . The above definition is not helpful for practical 
application. It requires to chose a statistics and then to test whether it is sufficient or not. Secondly, 
how should you choose such as statistic is not suggested in the definition. 

Example 1.9 

Let X1, X2,X3……....Xn be a random sample from Bernoulli population with parameter p, 
that is  x = 1, with probability p             0 < < 1.0, with probability 1 − p
Show that the statistic = ∑  is sufficient for p.  

Solution:  
Let, 
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= 1
Then X1+ X2+X3+……...+Xn follows binomial distribution with parameter (n, p). 

The p.m.f. of T is  [ = ] =   (1 − ) ,     = 1,2, … . ,
=   , =   ,   =   =

=  
⎣⎢⎢
⎢⎢⎢
⎡ { =   , =   ,   =   , = }(1 − )∑ = ℎ

Thus for ∑ =  we have 

=  , =   ,   =   =
=  ∑ (1 − )∑(1 − )

=   1
Which is independent of p. 

Hence, ∑  is sufficient for p.  

Definition 1.13  Joint sufficient statistics 

Let X1, X2,…....Xn be a random sample of size n from the population having density 
function f (x; , , …… . ); = ( , …… ) ∈ . The  statistic T1, T2,…....Tr are jointly 
sufficient for ( , , …… . ) if and only if the conditional distribution of X1, X2,…....Xn  given 
T1=t1, T2=t2, T3= t3, ……Tr = tr does not depend on .  

It may be noted that 
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(i)  By conditional p.d.f. being independent of , it means that the p.d.f. does not involve . it 
also means that the domain does not involve . For example the p.d.f. ( ) = 12 − < < + ; −∞ < < ∞
Depends on . Since  appears in the range. 

(ii)  The most general form of the distribution that admits sufficient statistic is Koopman’ form 
of exponential family of distributions. 

Definition 1.15

A family of density functions f (x; ), ∈  is said to be a one parameter exponential 
family of densities if p.d.f. f (x; ) can be expressed as ( ) = ( ) ( ) [ ( ) ( )] − ∞ < < ∞; ∈
When a ( ) & c (Ə) and b (x) & d(x) are functions of a and x.  

Note: if X1, X2,…....Xn be a random sample from an exponential family of distribution f(x; ) then 
the joint p.d.f. of X1, X2,…....Xn can be written as  

 f(x;   ) = [a(θ)] ( ) exp c(θ) ( )
Hence by factorization criterion 

= 1 ( )
is a sufficient statistic for .
Thus under random sampling there exist a sufficient statistic for parameter if the density belongs 
to the one parameter exponential family. 

The Neyman factorization criterion given below is of helps in determining sufficient statistics.  

Theorem  (Factorization theorem):

Let X1, X2,…....Xn be a random sample of size n from the densities f (x; ),  may be a 
rector. A statistic T- T (X1, X2,…....Xn) is sufficient for if and only if the joint p.d.f. of X1, 
X2,…....Xn can be factorised as 
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, ,……. , , , …… . ;   = f (x;   ) = g [T( , , …… . ); θ]
h ( , , …… . ) = g(T; θ)h( , , , …… . )
where the function h ( , , , …… . ) is a non negative function of , , , …… .  only and 
does not depend on and g the function g (T; ) is non negative and depends on   and 
T( , , , …… . ) only. 

Remarks 1.  If T is sufficient for  any one to one function of T is also sufficient for .
Remarks 2. If T1 and T2 are two distinct sufficient statistics then T1 is a function of T2.  

For example, If ∑ ∑  are jointly sufficient for mean  and variance  then 
and ∑ − = ∑ −  are also jointly sufficient for ( , ) 

Example 1.10: 

 Let X1, X2,…....Xn be a random sample   from a population with p.d.f. ( ; ) = < < 1,    > 0
Show that  

=  , .
Solution: 

The joint p.d.f. for X1, X2,…....Xn is 

( , ) = ( , ) =
=  , 1[∏ ]= ( , )ℎ ( , , …… . )

Where 

( , ) =  
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And  

ℎ ( , , …… . ) =   1(∏ )
Hence by factorization criterion, 

=  , .
Example 1.11:  

 Let X1, X2,…....Xn be a random sample of size n from a normal population N ( , ) show 
that  

(a) Sample mean  is sufficient for mean  if is known,  
(b) = ∑( − )  Sufficient for variance =  is known,  
(c) ( , )Are jointly sufficient for ( , ) if   both  and are unknown.   

Solution: 

the joint p.d.f. of X1, X2,…....Xn is  

( , , …… . ;   , ) =   1(2 ) − 12 ( − ) … . ( )
Expression (A) may be re-arranged as below: 

Part (a)  

( , , …… . ;   , ) = 1√2 − 12 ( − ) ×
− 12 ( − )

= (factor independent of ) × (factor involving ̅  ) only 

Thus by factorization criterion, sample mean is sufficient for  if  is known.  

Part (b) 

Let |mean| = be known  
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( , , …… . ;   , ) =   1 −2 ℎ = 1 ( − )
= ( , )ℎ ( , , …… . )

Where 

( , ) =   12 −2  ℎ( , , …… . ) = 1
Hence 

= 1 ( − )
Part (C) when both mean  and variance  are unknown. 

( , , …… . ;   , ) = 12 1 − 12 [( − 1) + ( ̅ − ) ]= ( ̅ ,  , , )                         ℎ( , , …… . )
                              Functions of  ,             Independent of ,
Where  

( ̅ ,  , , ) = 1 − 12 [( − 1) + ( ̅ − ) ]
Is a function of  , ,  and ℎ( , , …… . ) = is independent of 

= 1− 1 ( − )
Proved 

From the above example, it may be noted that 

(i) is not sufficient for  is unknown, 

(ii) is not sufficient for if  is unknown.  
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In the following example the whole sample is jointly sufficient for a single parameter . 

Example 1.12: 

Let X1, X2,X3……....Xn be a random sample of size n from a normal population following 
Cauchy distribution. ( , ) = 1 , 11 + ( − ) − ∞ < < ∞,−∞ < < ∞
Examine of there exist a sufficient statistics for parameter . 

Solution:

The joint p.d.f. of X1, X2,X3……....Xn is 

( , , …… . ;   ) =   1 11 + ( − ) ≠   ( , )  ( , , …… . )
Hence by factorization theorem there is no single statistic which alone is sufficient estimator of 
parameter . 

However, ( , , …… . ;   ) ( , , …… . ;   )ℎ ( , , …… . )
Holds which implies that the whole set (X1, X2,…....Xn) is jointly sufficient for . 

The following example is on the discrete population. 

Example 1.13:

Let X1, X2,…....Xn be three independent observations drawn from a Poisson distribution 
with parameter . Show that 

=  , =   + + .
Solution:

Here, , ,  are i.i.d. r.v.s’s having common p.m.f.  

[ = ] = . ! , = 1,2,3:    = 0,1,2, …… . , > 0
Now the conditional p.m.f. , , of given + + = can be expressed as 
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[ = , = , = , | + + = ]
= { = , = , = − − }[ + + = −   + + = , = 0,1,2, . .ℎ

= . ! ! !(3 )!
=   ! ! ( − − )! 13

Which is independent of hence T= + +  is sufficient for . 

Proved 

You may attempt the following exercises. 

E-1.9 (a) Is sufficient estimator is always consistent/ 

(b) Is sufficient estimator is always unbiased? 

E-1.10 Obtain a sufficient statistic for  in the following population.  ( , ) = 1 ,    0 < <
11.9   Confidence Interval Estimation 

Let X be some characteristic of the population under study, where X is a random  variable 
having the p.d.f ( , ), ∈ . suppose that the function form ( , ) known but the parameter 
is unknown, In the point estimation, a random sample X1, X2,X3……....Xn is drawn from the 
population  and a point estimate  (x1, x2,x3……....xn) of is the value of estimator =  (X1, 
X2,X3……....Xn). The point estimate , based on the sample observations is a single number does 
not always equal to the true value of the parameter and may vary from Sample to sample. The 
estimator  is a random variable having its own sampling distribution g(t; ) with P[ = ]= 0. We 
do not have an idea how close  is to . Of course one may like to have some measure of closeness 

of to . The method of confidence interval estimation provides an answer to this objection. In 
this technique a point estimate together with some measure of assurance that the true value of 
parameter  lies within the interval. Thus, in interval estimation of parameter one estimates an 
interval estimation of a parameter one estimates an interval which contains the true value of the 
parameter and specify the confidence with which it is suppose to do so. 
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As an illustration, consider the problem of interval estimation of population mean  with variance 
. 

We know that sample mean = ∑  of a random sample X1, X2,X3……....Xn of size n from 
the population is point estimator of the unknown mean . 

If population is normal N ( , ) then 

=
So that ( ) = ,           ( ) =   /
and  

=  −/√ ~ (0,1)
Even if the understanding distribution is non normal we have seen that for large samples −/√ ≈ (0,1)
These facts are used to construct of confidence intervals for unknown mean .  

Form the normal area table, Zo could be obtained such that  

− ≤ −/√ ≤ = ……………… . . ( )
For example, if  = 0.95 then Zo= 1.96 and  = 0.90 then Zo= 1.645 

Since  > 0 therefore the following four inequalities 

− ≤ −/√ ≤ , − √ ≤ [ ] − ≤ √ ,
− − √ ≤ ≤ + √ − − √ ≤ ≤ + √

are equivalent. Here the last inequality is true if and only if the first inequality is true therefore 
probabilities of occurrence of both the inequalities must be equal to  .  

thus, we may write (A) as: 
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− − √ ≤ ≤ + √ = ……………… . . ( )
In equation (B), the ends limits − √ + √  are known as lower and upper 

confidence limits, respectively, of (parameter) mean  and  is called the confidence of the 
confidence interval estimate − √ , + √  of mean .  

For non-normal population, Equation (B) − √ ≤ ≤ + √ ≅ ……………… . . ( )
Holds for large n, − √ , + √
As well as its estimate ̅ − √ , ̅ + √
Obtained by sample values called 100  % confidence Interval Estimates of population mean . 

It is customary to write  interval estimates as + √
It may be of worth to note that  is not the probability that the mean a constant takes values from + √  to − √  . In fact the probability that lies in a certain interval is either 1 

or 0 and it cannot be 0 <  < 1 is a measure of confidence (or our belief) allotted to the  statement 
that the random interval  − √ , + √  includes the unknown mean .  

Once the sample is obtained and the sample mean is computed, the interval ̅ ± √  is known.  

Example 1.14:

Suppose that the sources of certain group of candidates in a competitive examination 
follows normal distribution with  = 16. A random sample of size 25 has yielded mean ̅ = 69.6. 
Obtain 90% confidence interval for average score .  
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Solution:  

Let X= Score of the group of candidates in the examination. 

Then, 

~ , ℎ = 25,     = (16) = 256.
For  = 0.90 Zo= 1.645, therefore, 90% confidence interval for mean  is 

̅ ± 1.645 √ = 69.6 ± 1.645 16√25 = [64.336, 74, 864]
Definition 1.16: 

 Let X1, X2, X3……....Xn be a random sample of size n from the densities f (x; ), ∈ .
Let T1= T (X1, X2,…....Xn) and T2= T (X1, X2,…....Xn) be two statistic satisfying T1 = T2 for which  ( ≤ ) =  
Where  does not depend upon , then the random interval ( , ) is called a 100  percent 
confidence interval for. 

 is called the confidence coefficient, T1 and T2 are called the lower and upper confidence limits, 
respectively for  and the difference( − )  is known as width (or length) of the interval. 

A value ( , ) of the random interval ( , ) is also called 100  percent confidence interval 
for . 

One of the two ends point T1 and T2 of the interval ( , ) may be constant. In other words, there 
may be one-sided confidence interval.  

Further the width of the confidence interval is controlled by two factors: 

(i) As sample size n increase, the interval gets narrower due to term involving √  . 
(ii) The larger the sample standard deviation, the larger is the confidence interval.  

Example 1.15

Obtain 100 (1- )% confidence intervals for the parameters (a) mean  of the normal 
population N ( , )  if both   and are unknown,  

Solution:

Let X1, X2, X3……....Xn be a random sample of size n from the density function 
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( ;   , ) =   1√2 ( ) −∞ < ∞, > 0,−∞ < < ∞
and define 

= 1 , = 1 ( − ) = 1 ( − )
The statistic 

= −/√ ~ ℎ ( − 1)  . .
Hence 100 (1- %) confidence interval for  is given by  [| | ≤ ]                     = 1 −⇒ | − | ≤ √ . = 1 −
Where gives 

√ ≤ ≤ + √ = 1 −
Where is the tabulated valued of t for (n-1) df at significance level .  Hence the required 
confidence interval for  is given by.  

−  √ , + √
Example 1.16:

 Obtain 100 (1- )% confidence interval for of the normal population N ( , )   if  

(a)  is unknown 
(b) =   is known 

Solution:  

Part (a) Here the p.d.f of r.v. X is ( ;   , ) =   1√2 ( ) − ∞ < < ∞,−∞ < < ∞,   > 0
You know that 
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− =  =   ( − 1) ~ ( − 1)
If ( − 1) be value of such that 

− =  ( ) =
Where p( ) is the p.d.f of  with n.d.f. then the required confidence interval is given by 

− < ( − 1) < = 1 − 2 − 2 = 1 −
⇒ ( − 1)

/ ; < < ( − 1)/ ; = 1 −
Hence the random interval for the variance of a normal population is ( − 1)

/ ; , ( − 1)/ ;
Part (b):  If menu  is known and equal to  then 

= − ~
Where 

= 1 ( − )
The required 100(1- )% confidence interval is given by 

; < < / ; = 1 −
/ < < / ; = 1 −

/ ; < < / ; = 1 −
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Where / ; / ;  are obtain from the Table fro Critical values under Chi-square 
distribution. 

You may try the following exercises. 

E- 1.11 A random sample of size 40 from a normal population with known = 10 has yielded 
mean ̅ = 7.164 obtain 80% confidence interval of population mean  . 

E- 1.12 Let a random sample of size 17 form the normal distribution N ( , )    yields ̅= 4.7 and 
= 5.76. Determine a 90% confidence interval for mean  .  

11.10   Solution/ Answers 

E- 1.2 )    (a)          (b)       (c)       (d)    (e)    (f)     (g)    (h) 

E- 1.7 )    (a)  E (T1) =  = E(T2); T1 and T2 are unbiased 

(b) λ =2     (c) Var (T1) = 3 , Var (T2) = 83 , Var (T3)= ¼  T3 is best among them. 

E- 1.9)  (a)        (b) 

E- 1.10) 

E-1.11)   7.164±1.284  or (6.523, 7.805) 

E- 1.12 )     (3.7, 5.7) 

11.11   Summary 

In this unit an attempt is made to cover the concepts of statistical inference and its role in 
deciding the unknown value of parameter. We understood how to decide the quality of an 
estimator. In this respect the unbiasednedd and the Fisher’s Criteria of a good estimator namely 
consistency, efficiency are dealt with. A brief we have also studied the method of development of 
confidence interval estimates for a population parameter with a given confidence level, which is 
conceptualized as the probability that a random interval will contain the true value of the 
parameter. 

11.12   Further Readings 

1. Rahtagi V.K. (1984): An Introduction to Probability theory and Mathematical Statistics 
chapter VIII, IX & X Pub; John Wiley & Sons, New York. 

2. Goon A.N., Gupta M.K. & Das Gupta B (1987) Fundamentals of Statistics Vol. I The 
World Press Pvt. Ltd., Kolkata. 

3. Kapoor V.K. & S.C. Saxena: Fundamentals of Mathematical Statistics, Chapter 
Seventeen, Pub: S. Chand.  
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Unit-12:   Methods of Estimation 

Structure 

12.1 Introduction 
12.2 Objectives 
12.3  Procedures of Estimation 

12.3.1 Methods of Moments (MME) 
12.3.2 Methods of Maximum Likelihood (MLE) 
12.3.3 Method of Scoring 

12.4  Properties of Estimator 
12.4.1 MME 
12.4.2 MLE 

12.5 Solutions and Answers 
12.6  Summary 
12.7 Further Readings 

12.1   Introduction 

An investigator may be interested in the study of the behavior of some of certain 
characteristics say X of the elements of a population under consideration. The behavior of the 
random variable X is explained by its  . . .   ( , ) =    ( , )  ( . . ) 
Or . . .   ( , ) =    ( , )  ( . . ) 
For simplicity we shall use the same notation ( ; ) for both pdf and pmf and confine our 
discussion on estimation problem on univariate (one dimensional) case only.  

 The density function f (x, ) of a r.v. X may depend upon certain number say k, of 
parameters , …… . ℎ = ( , …… )may be vector. , …… may take any value on a set . 

The  set  is the collection of all possible values of , …… associated with the population f 
(x, ) it is known as parameter space . For different combinations , …… ∈  we get 
different densities having the given form f ( , , …… ).  

The set { f (x, ): ∈  } is called the family of distribution of r.v. X.  
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Ex 2.1  Let X~ b (n,p.) with known n and unknown p. Then = { :< < 1} is he family of 
possible p.m.f. s of the Poisson variable X. 

Ex 2.2  Let X~ Poisson P(x; λ) Then = { : 0 < < ∞} is the parameter space and { ( ; ): 0 < < ∞} { ( ; ): > 0}is the family of possible p.m.f. of the Poisson variable 
X.  

Ex 2.3  Let X ~ Normal N( , ) and  and  be the parameters of the distribution  

(a) If both  and  be unknown then the parameters space is  ={ ( , ): ∞ − << ;  > 0}and the family of normal distribution is N( , ) : − < <;  > 0}.
(b) If = 1 the family of normal distribution is given by ( ( , 1): ∈ }  ℎ ={ :−∞ < < ∞}. )
(c) If  =  (known), but is unknown then the parameter space is{   =( , ): > 0} or simply   = {σ > 0} = (0,∞),  while family of normal 

distribution is { N( , ) : > 0 } 

It may be noted that N (2.1), N (-3,1), N (1.5.1) are member of the family given in Ex. 2.3 
(b) and N (2,1), N (2,4), N (2,16) are the members of the family of distributions { N (2, ) : 

>0}.  

The general family of distributions may be expressed by  { f ( , , …… ) : ∈ ; =1,2…… }. 

In the most of the practical applications, the functional from f (x, )  of the density of the 
r.v. X is either known or assumed to be known from the past experience or the conditions of the 
experiment, but the a few or all the past experience or the conditions of the experiment but a few 
or all the parameters , ……  may not be known. 

If all the parameters , …… as well as the functional form of the density ( ;   , …… ) are known then we say that the density ( ;   , …… ) is completely 
specified and there is no need to make inference about it.  

The problem of estimation of parameters arises if either some or all the parameters of the 
density of the r.v.X are unknown although the functional form of the density function { f (x; ) : ∈  be known.  

The problem of estimation may be stated as follows: 

Suppose that the random variable of interest X has p.d.f. f (x; ) : ∈  where the 
functional form f (x; ) of is known but some or all the parameters , ……  are unknown. 
We have to get estimates of unknown parameters. 
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Let X1, X2,…....Xn be a random sample from the population under consideration. Let X1=x1

X2=x2…....Xn= Xn be the observed values of a random sample X1, X2,…....Xn  .There will be a 
infinite number  of functions T (X1, X2,…....Xn) of the sample X1, X2,…....Xn .These functions T 
(X1, X2,…....Xn) of sample  observations are called Statistics. The statistics used to estimate a 
parameter  is known as estimator of .  

The problem of estimate is to choose a statistic =  (X1, X2,…....Xn) for r = 1,2,….k to 
be used as estimator of unknown parameters , …… or of the functions ( ), ( )… . ( ) =  ( , …… ) as the case may be. The numerical value of =

 (X1, X2,…....Xn) is called the estimate of , r= 1,2,…k.  

There may be more than one estimator of a parameter. We prefer the best estimator among 
them according to certain criterion. One of the criteria is that the estimate should fall nearest to the 
true value of the parameters to be estimated. In other worlds the distribution of the statistic should 
concentrate as closely as possible near the true value of the parameter. Some of the other properties 
like unbiasedness, consistency, sufficiency and efficiency, MVUE have been discussed in UNIT-
1. 

Our aim in this section is to determine the functions of the sample observations =
(X1, X2,…....Xn), =  (X1, X2,…....Xn)……. =  (X1, X2,…....Xn) population under 
consideration such that their sampling distributions are concentrated as closely as possible near the 
true value of , ……  the parameters. 

12.2   Objectives 

After going through this unit you will be able to -   

Obtain estimators of the unknown parameters based on method of moments estimation. 
Obtain estimators of the unknown parameters which maximizes the likelihood function 
L ( | x1, x2,…....xn) of the observed sample x1, x2,…....xn

Know the properties of the estimate obtained by above methods of estimation.  

12.3   Procedures of Estimation 

 Suppose that we are interested in the study of behavior of the random variable X which 
has the density function ( ;   , …… ) where = =   , …… ∈  . Suppose we know 
the function form of ( ;   , …… ) . But some or all of the parameters are unknown.  

For making any inference about the population having pdf f (x; ) random sample X1, 
X2,…....Xn of predetermined size n is drawn from the population. Let X1=x1 X2=x2…....Xn= Xn be 
the observed values of the sample. Our objective is to determine estimators.  
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=  =  (X1, X2,…....Xn), = =  (X1, X2,…....Xn)……. = =  (X1, 
X2,…....Xn)  and as such the point estimates =  (X1, X2,…....Xn), =  (X1, 
X2,…....Xn)……. =  (X1, X2,…....Xn) of the unknown parameters , …… ∈  whose 
distribution ( ;   , …… )  for i= 1,2,……, k is concentrated as closely as possible near 
the true value of the parameters and satisfy other desired nice properties. 

The following are the methods of estimation: 

(i) Methods of Moments (MME) 
(ii) Maximum Likelihood Method of Estimation (MLE) 
(iii) Method of Minimum Variance (MMV) 
(iv) Method of Least Squares (MLS) 
(v) Method of Minimum Chi-squares (MCS) 
(vi) Method of Inverse Probabilities 

We shall discuss only two methods of estimation viz. Method of moments (MME) and 
Method of Maximum Likelihood (MLE). 

12.3.1  Method of Moments (MME) 

 This oldest but simple method was proposed and studied, in detail by Prof. Karl Pearson. 

The r-th moment about origin of the parent population ( ;   , …… )  is defined as = ( ) = ∫ ( ;   , …… ) dx for r 1,2,….k     (2.1)  

In general, , , …… . .  will be the functions of the parameters , ……
Let m’1, m’2, …..m’r  be the sample moments about origin of the sample x1, x2, …..xn, that 

is = ∑ …………………(2.2)
The method of moments consists of solving the k-equations (2.1) for , …… in terms 

of , , …… . . and thereafter replacing these moments  r= 1,2,3….k by corresponding 
sample moments  , r= 12, ….k respectively so that, = ( , …… ) =   ( , …… ) = 1,2, ……               (2.3)
are there required MME of  , r= 1,2,……k. 

The estimates of , …… are the values of , , … . . given by replacing X1, 
X2,…....Xn by their sample values x1, x2,…....xn . Some illustrations are given to explain the 
technique. 

Example 2.4  Let the random variable X take the values 
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x: 0 1 2 
P(x) 4 + 12 1 − 2 + 2 1 − 4 + 1 −2 1 −

Observed f: 27 38 10 
Estimate and by the method of moments.  

Solution:  Here, = ( )
= 0 4 + 12 1 − + 1 2 + 2 1 − + 2 4 + 1 −2 1 −
= + 1 − 2 + (1 − )
= 1 − 2 1 −                                                     (2.4)= ( )
= 0 4 + 12 1 − + 1 2 + 2 1 − + 2 4 + 1 −2 1 −
= 3 + 1 − 2 + 2(1 − )
= 2 − 2 − 32 1 −                                                     (2.5)
We also have, 

= ∑∑ = 5875
= ∑∑ = 7875                          (2.6)

To get MME for  and  we have to solve  

1 − 2 1 − = 5875
2 − 2 − 32 1 − = 7875
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We finally get the estimates as 

= 3433,    = 4275  ( )
Example 2.5   Let the sample values from the population with pdf ( ) = (1 + ) . 0 < < 1, > 0  .

0.46, 0.38, 0.61, 0.82, 0.59, 0.53, 0.72, 0.44, 0.59, 0.60. 

Find out the estimate of  by method of moments . 

Solution: Here,  = ( , …… )  ℎ ℎ  ℎ  ( )
= ( ) = (1 + ) =  1 +2 +
= 110 = 5.7410 = 0.574  

Now, by solving = 0.574, we get the MM estimate for  as 0.3474 

Example 2.6:  Obtain estimate of  and  for the Pearson type III distribution ( ; , ) = Г , 0 < < ∞ by method of moments based on a random sample size n.  

Solution:  Here, r-th raw moments is  

( ; , ) = Г , 0 < < ∞
We get 

( ) = + 1 = 1 + 1 ⇒ = − = = −
You may attempt the following problems: 

E-2.1  Let X1, X2, ……....Xn be a sample from a population with pdf 

( ; , ) = 1− , ≤ ≤,           ℎ
Obtain estimator of a and b by method of moments. 
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E-2.2 Let X1, X2, ……....Xn be i.i.d. b(x; n’, p) random variable, where both n’ and p are unknown. 
Obtain the estimates of n’ and p by method of moments. 

E-2.3 Let X1, X2, ……....Xn be a random sample from N ( , ). Obtain the method of moments 
estimates for ( , ). 

E- 2.4  Let X1, X2, ……....Xn be a random sample of size 10 from N (3, ).Obtain the method of 
moments estimates for . 

E- 2.5  Let X1, X2, ……....Xn be a random sample from a Poisson population P (x;λ) having pmf 

p(x) !  , x= 0,1,2,……… Obtain the method of moments estimates for . 

E- 2.6  Let X1, X2, ……....Xn be a random sample from an exponential population 

( ; , ) = 1 , ≥,           ℎ
Find out estimates of A and  by method of moments. 

12.3.2   Method of Maximum Likelihood (MLE) 

 C.F. Gauss had initially formulated the maximum likelihood method of estimation. Prof. R.A. 
Fisher develop this technique as a general method of estimation by showing that it yields a 
sufficient estimator whenever it exists and that the estimators are asymptotically minimum 
variance unbiased estimator. 

Definition 2.1:   Likelihood Function  

 Let x1, x2, ……....xn be the observed values of the random sample X1, X2, ……....Xn drawn 
from the population with pmf (pdf) f(x, ).  

In the discrete case, the probability of getting this sample observation is L=L( )= P [X1=x1

X2=x2…....Xn= Xn] = f (x1, x2, ……....xn, ) 

= ( , )[ , , …… . . . ]   (2.7)
X1, X2, ……....Xn at X1=x1 X2=x2…....Xn= Xn. Since the sample values x1, x2, ……....xn are 
observed and therefore fixed number, Hence L is a function of . 

We refer to the function (2.7) as a function of and is denoted by L( ). In the continuous case f (x1, 
x2, ……....xn; ) is the joint pdf of random variables , , …… therefore the likelihood 
function is  
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L= L( ) = f (x1, x2, ……....xn; )= ∏ ( , )                          (2.8)
Which is the relative likelihood that the random variables X1, X2, ……....Xn assumes the particular 
set of values x1, x2, ……....xn.  

The principle of maximum likelihood method of estimation (MLE) consists of choosing an 
estimator = ( , …… ) of the unknown parameter. = ( , …… ) which maximizes the likelihood function L( ) for variations in  .   

Procedure: 

Draw a random sample X1, X2, ……....Xn from the population under consideration ( , ), ∈ where  is a single unknown parameter. 
The likelihood function for the observed sample values x1, x2, ……....xn will be L( ) = 
L( ; )= ( , ), ( , )…….. ( , )
The maximum likelihood principal suggests to choose that value of the estimator of in the 
admissible range of which maximizes L( ). 

Thus =  (x1, x2, ……....xn) is said to be a m.l.e. of  if 

L( )> L( ) for all ∈⇒ L( )= sup L( ) for all ∈                            (2.9) 

Hence if L( ) is twice differentiable (i.e. if the first and second derivative of L( ) and then 
differentiate it and solve it by equating it to zero since ( ) = 0  ℎ  ℎ ( ) | < 0                                  (2.10)
In practice the estimation process becomes easier if one takes the logarithm of L ( ) and 
then differentiate it and solve it by equating it to zero, since ( ) =   ( ) Being a probability function L( )>0 and   ( )is a non decreasing function of L. Therefore ( )land ( )attain extreme values 

(maxima or minima) at the same value of  . Hence solving eqn. (2.10) is equivalent to solving ( )=0 such that  ( ) | < 0                                  (2.11)
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If Θ=( , …… ) be a k- dimensional parametric vector. Then the estimator =( , …… ) which maximizes. 

L (x; , …… ) will be obtained by differentiating partially  

{L (x; , …… )}w.r.t. , ……  respectively and equating it to zero. 

The estimation = ( , …… )  so obtained by solving the k simultaneous equations.  

{ L (x;  , …… )} = 0
{ L (x;  , …… )} = 0

…………….. 

……………… { L (x;  , …… )} = 0
In k unknowns are known as maximum likelihood estimates (m.l.e.) of =( , …… provided the matrix  

 is negative definite.  

Now, we shall explain this procedure through some illustrations 

Example 2.7:  Obtain the MLE for parameters ( , ) is normal population N ( , ) when  

(a) is known 
(b) is known 
(c) are unknown 

Solution:  ( ;   , ) =   √ ( ) − ∞ < < ∞,−∞ < < ∞,   > 0
X1, X2, ……....Xn be a random sample of size n from N ( , ) population. Then the likelihood 
function 

L= L ( , ) 

= ( ;   , ) =   1(2 ) ∑( ) = (2 ) −2 {( ̅ − ) + }
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Where = ∑( − ̅) ̅ = ∑
We gives = − 2 (2 ) − 2 − 2 [( ̅ − ) + ]
Part (a) if =  is known  = .− 2 − [( ̅ − ) + ]
Differentiating w.r.t  and equating the derivative to zero we get the likelihood equation as 

= 0 ⇒ −2 = 0 ⇒ −2 {2( ̅ − )(−1)} = 0 ⇒ ̅ − = 0 
⇒ = ̅
So that maximum likelihood estimator (MLE) of  is ̂ = = ∑  and maximum likelihood 

estimate (m.l.e) of  is ̂ = = ∑
In fact 

( ) = . | ̅ = − < 0. 
Part (b) if =  is known = .− 2 − 2 [( ̅ − ) + ]
Differentiating w.r.t  and equating the derivative to zero we get the likelihood equation in as = 0
Or −2 + 2 [( ̅ − ) + ] = 0
Or 

= 1 ( ̅ − ) = 1 ( + ̅ + ̅ − ) = 1 [( − 1) + ( ̅ − ) ]
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As the maximum likelihood estimate of , since 

( ) = 2 − 2 {( ̅ − ) + }
( ) | = 2 − = 2 < 0

Further Var 

( ) = 2
Part (c)  Both are unknown 

Corresponding simultaneous equations are  

= 0 ⇒ {2( ̅ − )(−1)} = 0
And  

= 0 ⇒ 2 ( − ) − 2 = 0
Which gives the m.l.e. of as  

̂ = 1 = = 1 ( − ) = =
L ,    ̅ = 1 ( − ) | ,    ̅ = − 1

L ̅, =   1 2( − ̅) = 0
L( ) ̅, =  − ( ) + 2( ) = 2( )

Giving, 
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L LL L( ) = 0            − 1
− 1      − 2( ) =  − 1( ) < 0

It may be noted that the ML estimate of is the sample mean ̅ which is unbiased consistent 
and Best Asymptotically Normal (BAN) estimate, but the estimate of is = ∑ ( −̅) which is not unbiased but consistent. Further ̅ is minimum variance bound estimate of  with 
variance / ̅ Again, the estimators and = ∑ ( − ̅) are jointly sufficient for and .  

Example 2.8:  Consider a binomial population: X ~ b (x; n,p) where n is known and p is unknown. 
Let X1, X2, ……....Xn be a random sample of size N drawn from this population. Obtain the 
maximum likelihood estimator of p.  

Solution:  The likelihood function is ( ) =nCx1, nCx2,……. nCkn, ∑  (1 − ) ∑
So that, 

L(p) = log n , n , ……n + log p + − log (1 − p)
ℎ ℎ L(p) = 0

Or 1 − − 1(1 − p) = 0
Or 

+ 1(1 − p) = pNn
Or 

̂ = 1 ̂ = ̅ ,       ℎ ̅ = 1
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Since the sample mean ̅is an unbiased consistent and sufficient estimate of the population mean 
 therefore it implies that ̂ is an unbiased and consistent estimate of p.  

Example 2.9:  Suppose that the random variable X has pdf ( ) = , < 0 < < 1        0, ℎ
Obtain the maximum likelihood estimate of  if X1, X2, ……....Xn be a random sample of size N 
from the population. 

Solution:  If f(x) is a pdf, then 

( ) =   ( ) = − 1 ⇒ = + 1
Likelihood function is:  

( ) = ( ) = ( + 1) …… . .
So that, 

( ) = ( + 1) +
Likelihood equation:  ( ) = 0
Or 

( + 1) + = 0
Giving m.l.e. of  as = −1 − ∑
You may try the following problems 

E 2.7  If X is a Poisson random variable with parameter λ, obtain the MLE of λ based on a random 
sample X1, X2, ……....Xn from the population.  
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E-2.8  Assuming known obtain the maximum likelihood estimate of for Gamma G (x; ,λ) whose 
pdf  is given by  

E 2.9 A random Variable X has a distribution with the density function f(x)= ( +1)    for 0<x<1 

= 0     otherwise 

A random sample of size 8 produces the data 

0.2, 0.4, 0.8, 0.5, 0.7, 0.9, 0.8, 0.9 

Obtain the m.l.e. of the unknown parameter . It is given that  0.0145152 = −4.2326.
E 2.10  Determine the m.l.e of the parameter λ of the Weibull distribution ( ) =
for x > 0 using a sample of size n, assuming that is known. 

So far we have considered the determination of the MLE of the parameters where the density ( ; ) has range independent of the unknown parameter . If the range of the distribution is not 
independent of unknown parameter , the differentiation method fails to give a maximum of L 
( ). We apply other method to obtain mle of , which maximizes L ( ).  

Example 2.10 A random sample x1, x2, ……....xn of n independent observations is drawn from the 
rectangular population ( ; , ) = 1− , < < < ∞

= 0 ,    ℎ
Obtain the maximum likelihood estimates for  and .  

Solution: The likelihood function of observed values x1, x2, ……....xn is  

= ( , ) = ( ; , ) = 1( − )
And ( , ) = ( − )
The likelihood equations for  and  are = 0  = 0 which leads to ( ) =0  ( ) = 0
This implies the ( − ) → ∞, which is impossible 
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Here, the differentiation method to obtain maxima of ( , ) fails. We have to adopt the logical 
approach to get MLE for ,  . 

The likelihood function ( , ) = ( )  attains maxima if ( − ) is minimum; that is  takes 

the maximum possible value and  takes the maximum possible value in the sample. 

Let ≤ ( ) ≤ ( ) ≤ ⋯ . . ( ) ≤  be the ordered sample corresponding to the observed sample 
x1, x2, ……....xn . 

Then ( ) =  (x1, x2, ……....xn) and ( ) =  (x1, x2, ……....xn) will be the maximum 
possible value of  and possible value of  respectively.  

Hence ( , ) = ( ) is maximum if  = ( )  and  = ( ). 
Therefore, MLE for  and  are given by= ( ) =  (x1, x2, ……....xn) = smallest sample observations = ( ) =  (x1, x2, ……....xn) = largest sample observation, respectively. 

Now you may attempt the following problems: 

E-2.11 Obtain the maximum likelihood estimate of based on a random sample of size n form the 
population 

( ; , ) = − 12 ≤ ≤ + 120,            ℎ
E- 2.12 The life-time of an electronic device has a pdf ( ; ) = 3 , ≥  . For a random 
sample X1, X2, ……....Xn of size n from this population, obtain the MLE of . 

E-2.13:  A random sample X1, X2, ……....Xn of size n is drawn from the population having pdf  ( ; , ) = 1 ( ) − ∞ < < ∞,−∞ < , > 0=  0,            ℎ
Obtain the MLE for a and b. 

E-2.14 Let X~b (1p), ∈ , . Obtain the maximum likelihood estimate of p. 

E-2.15 Let X1, X2, ……....Xn be i.i.d. Bernoulli variables having pmf p(x) = (1 − ) , =0,1;   0 < 1 < 1
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=  0,            ℎ
Obtain the MLE for p. 

What happens if either (a) (0,0,….,0)   (b)  (1,1,….1) is our observed sample? 

12.3.3  Method of Scoring 

It may sometimes happen that the maximum likelihood leads to complicated equations. In 
such case we may employ the iterative or successive approximation (Newton Raphson) method to 
get the solution. The method is known as ‘Method of Scoring”. The estimator so obtained is 
consistent but less efficient. Some correction is to be applied to bring the solution nearer to the 
desired form. 

If t= t ( , , … . ) be MLE for and = ( , , … . )be another estimate of  which is less 

efficient. Then  = 0 and E = − ( )  at least for large n.  

By Taylor’s expansion L = L + ( = ) L +  ℎ ℎ
Since ( = ) is small and ≅ = − ( )
Therefore, we have ≅ +  ( )
Example 2.11 Obtain an approximate estimator of the parameter for the Cauchy 
distribution having pdf ( | ) = 1 + 11 + ( − ) −∞ < < ∞
Solution:  The likelihood function for observed random sample ( , , … . ) is given by 
L=L( | )=∏ + ( )
So that,  

L(θ) = −n − {1 + ( − ) }
Therefore,  
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L(θ) = ( − )1 + ( − ) .
We observe that ( )  is a polynomial in degree in  of degree (2n-1) but is difficult to be 
solved. We know that  1( ) = − f = 2 − 1 = 1− 1 ( − ̅)
So that Var (t) = 2/n. 

Again the sample median  is an estimator of . Therefore efficiency of sample median w.r.t. t is 

= ( )( ) = 2
4 = 8 = 0.8   .

Here, the appropriate estimator  of is  given by  

= ( , , … . ) = t + 4n x − t1 + (x − θ) .
12.4   Properties of Estimators obtained by MME & MLE 

Some properties of the MME and MLE are outlined below. The proof of a few of few of these 
properties are also given. 

12.4 .1  Properties of MME  

Prop. 2.1   MME’s are consistent estimators. 

Proof:   Let (X1, X2,….Xn) be a random sample of size n form the population with density 
function f(x; ). Therefore X1, X2,….Xn are i.i.d. r.v.’s with common pdf f(x; ). So that , …… are i.i.d.r.v.’s. Thus if uj = E( ) exists, then by WLLN we have 

= 1 →E = μ     for j = 1,2…
i.e. the sample moments are consistent estimators of the corresponding population moments. 
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The MME of k unknown parameters , …… are obtained by solving first K simultaneous 
equations in k parameters , ……  in terms of , …… and then replacing these moment μ by sample moments , …… .  

Hence → = 1,2,… , hence the property. 

Prop 2.2   Under quite general conditions the estimates obtained by method of moments are 
asymptotically normal. 

Prop. 2.3  In general, the estimators obtained by method of moments are less efficient. 

Prop 2.4  the estimates obtained by method of moments (MME) are less efficient than the 
those obtained by method of maximum likelihood (MLE) 

Example 2.12   Let us consider U(0, ) population having pdf  ( ) = 1 , 0 ≤ ≤     = 0, ℎ
X1, X2,….Xn be a random sample form the population. 

Now we have E(X) =  /2   and Var (X) = 

To get MME we consider = ⇒ = 2
Now Var (X) = ⇒ = (2 ) = 4 ( ) =  
Here we know that = =  (  , …… ) The distribution of is given by 

( ) = , 0 ≤ ≤
So that, 

( ) = + 1 ( ) = + 2 − ( )( + 1)
Giving 

( ) = 2( + 1)( + 2)
Here ( ) <  ( ) i.e. Mme is less efficient than MLE.  
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Prop. 2.5  The two estimator MME and MLE are identical if the help p.d.f. (or p.m.f.) of the 
parent population f(x; ) is of the form  ( ; ) = exp [ + + +⋯ . ] where ′ s are independent of x but may dependent on = ( , …… )
Note:  In this case, the M.L.E.’s may be obtained as linear function of sample moments. 

Remarks: ( ; ) = exp [ + + +⋯ . ]⇒ (  , …… ; ) = exp [ + ∑ + ∑ +⋯ . ]
⇒ L = + + +⋯ . .

Thus both the methods yields identical estimators if MLE’s are obtained as linera functions of the 
moments. 

12.4.2   Properties of MLE 

Regularity Conditions of MLE: 

  The following conditions are known as the regularity conditions of the maximum 
likelihood estimators. The students are advised to only note them. In the discussion rigorous proofs 
of the theorems are avoided. 

(i) , …… are mutually independent observations. 
(ii) The distribution function f(x| ) admits a pdf f(x| ). 

(iii) The first and second derivatives, viz exist and are continuous 
functions of  in the range R (including true value  of the parameter ) for almost all 
x.  

(iv) Further for every ∈ R <  ( ) <   ( )are integrable 
function over (−∞,+∞). 

(v) The third order derivates  exists, such that <   ( )where E [M(X)] < 
K, a positive quality 

(vi) For every  ∈ R, E − = ∫ = ( )is finite and non-zero.  

Here I( ) is called by R.A. fisher as the amount of information on supplied by the sample (  , …… ) and its reciprocal 1/ I( ) is known as the information limit. In fact 1/ I( ) is the 
Cramer Rao lower bound for the unbiased estimator of .  
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(iii) The range of integration is independent of . But, if the range of integration depends 
on , then f(x; ) vanishes at the extremes depending on . This assumption justifies 
the differentiation under the integral sign. 
Under the above assumptions MLE’s possess a number of important properties. Some 
of them are mentioned below. 

Prop. 2.6 (Cramer, 1946) with probability approaching unity as → ∞. the likelihood equation 
= 0 has a solution which converges in probability to the true value  of the parameters . 

In otherwords the MLE,s are consistent estimators.  

Prop 2.7:  The MLE’s are always consistent (Prp.1) but need not be unbiased. 

Example 2.13:  In sampling from N( , ) population with both unknown we know that  ̂   = ∑ = = ∑ ( − ) = are MLE of  respectively.  

Here 

( ) = ( ) = ( ) =   ( − 1) = (1 − 1)
Therefore, MLE ̂ = is a consistent and unbiased estimators of  while MLE = is a 
consistent and biases estimator of .  

Prop. 2.8  (Huzurbazar’s Theorem) Any consistent solution of the likelihood equations provides 
a maximum of the likelihood with probability tending to unity as the sample size n tends to infinity.  

Prop. 2.9 The maximum likelihood estimator is asymptotically normally distributed about the true 
value . Thus, ~  , ( ) → ∞. It may be noted that 

= 1( ) =   1 L .
Prop. 2.10:  When maximum likelihood estimator exists, it is most efficient. 

Prop. 2.11:  If a sufficient estimator exists, then maximum likelihood estimator is a function of 
the sufficient estimator. 

Proof:  Let t ( , …… ) be a sufficient estimator of . Then the likelihood function can be 
expressed as  

= ( , ) = ( , )ℎ( , …… ) ℎ ℎ  .
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Therefore,  

(i) L = g(t, θ) + h(  , …… |t)
(ii) = ( , ) = ᴪ( , ) which is a function of t and  only.  
(iii) The MLE of  is the solution of the likelihood equation  
(iv) = 0
(v) ⇒ᴪ(t, )=0 
(vi) Therefore = ( ) = some function of sufficient estimator t of 

Hence the property. 

Remark  From equn. (v) and we obtain t=k( ) ⇒The sufficient statistic t of  is some function of MLE . 

This property is helpful in obtaining the sufficient statistic of . It is further used to determine 
whether a sufficient statstics exists or not.  In fact, if can be expressed in the for (ii) that 

is = ᴪ( , ) a function of a statistic t and parameter  alone,  then the statistics t can be 
regarded as a sufficient statistic for .
No sufficient statistic of  exist if cannot be expressed in the form (ii). 

This property does not say that an MLE is itself a sufficient statistic although this will always be 
the case. 

Example 2.14:  Let  , ……  be a random sample of size n from the uniform population 
U[ , + 1], ∈ . Show that MLE is not sufficient. 

Solution:  Here, ( ; ) = 1, ≤ min ≤ + 1
O= otherwise 

It can be shown that (min Xi, max Xi) is jointly sufficient for . Any value of  satisfying max Xi-
1< <min Xi is an MLE of .
In particular, min  is not an MLE of  but it is not sufficient.  

Theorem If for a given population with pdf f(x; ), an MVB estimator T exists for , then the 
likelihood  equation will have a solution  =T=T ( , …… ) 

Proof Since T an MVB estimator of therefore,  
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= − = ( − ) ( )
Hence the theorem. 

Prop. 2.12 (Invariance property of MLE) Let be  the MLE of  and be a one-to-one function 
of  . Then MLE of ᴪ( ) is ᴪ ( ). 

Example 2.15  Let , …… be normal distribution with mean  and known variance . 
Obtain the MLE of (i)  + 5  (ii)

Solution:  The MLE is . By the property of invariance, we have 

(h) = + 5  ( ) =
The maximum likelihood solution attempts to determine the mode of the likelihood 

L( |  , …… )over the variation in the value of  in Θ. In estimation theory, mode is in 
general inferior to either mean or median for small samples. Therefore the performance of MLE is 
poor for small samples. However for large samples the mode tends to mean and median provide 
they exist. Therefore the MLE has many optimum large sample properties such as, Prop. 2.6, 2.7, 
2.9 and 2.10 mentioned above. In fact the MLE is a consistent asymptotically normal and 
asymptotically efficient estimator of for large samples. 

Bias of MLE 

 For a finite population MLE is biased estimate of parameter  for f(x; ), ∈ .  
However a slight modification in may eliminate the bias and we may get an unbiased estimate 
of .
Example 2.16 Consider a random sample , …… of size n form the normal population 
N( , ) with both  unknown.  

Then MLE of ̂ = ∑ =  and 

̂ = 1 ( = ) = , .
( ̂) = ( ) =   − 1 , . .

,     − 1 =
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− 1 = =  1− 1 ( = ̅) .
Hence ̂ = and ∑ ( = ̅)  .are the unbiased estimates of respectively.  

Example 2.17:  Consider a set of n Bernoulli trials with probability of success p. The pmf is ( | ) = (1 − ) , = 0, 1; 0 < < 1. obtain the MLE of p. 

Solution:  The likelihood function of sample observations ( , …… ) is ( ) =( | , …… ) =   ∑ (1 − ) ∑
So that  ( ) = ∑ − ∑
The likelihood equation is  ( ) = 0 ⇒ ∑ − ∑ = 0 giving solution as ̂ =∑ = ̅  0 < ∑ <
The MLE of p is ̂ = ̅. 
Example 2.18:  Let , …… be a random sample drawn from the population having pdf ( | ) = ⌈ ⌉, −∞ < < ∞. Obtain the MLE for .
Solution:  The likelihood function is = ∑| |maximum, if ∑ | − |  is 
minimum.  

Hence, the MLE of  is = Median of , ……
You may attempt the following problems: 

E-2.16  Let , ……  be a random sample from B( , ). Obtain the method of moment 
estimators of ( , ). 

E-2.17  Let , ……  be a random sample from Poisson population P(x; ) with 
parameter . obtain the method of moment (MME) and maximum likelihood (MLE) Estimates 
of . 

E-2.18  Let , ……  be an Bernoulli trials with parameter (0 ≤ ≤ 1)  ᴪ( ) =(1 − ) be a function of p. Obtain the MLE of ᴪ (p). 

E 2.19  Obtain the MLE of  based on a random sample of size n from the population ( ; ) =⌈ ⌉, 0 ≤ < ∞,−∞ < < ∞
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E 2.20  Let , ……  be i.i.d binomial variates b(k,p). Obtain estimate of k & p using 
method of moments. 

12.5   Solutions/ Answers 

Solution/ answers of some of the Exercises are given below. 

E 2.1 = − ∑ ( − ) = + ∑ ( − )  are MME of a and b, 

respectively 

E 2.2  T1 and T2 are the MME for p and n’, respectively where 

= ( , …… ) = ( , …… )
= ( , …… ) = ( )+ ( ) − 1∑ ℎ = 1

E 2.3 ̂ = and = ∑ ( − )
E 2.4 = ∑ ( − 3)
E 2.5 −
 E 2.6 = − = ( ) = min(  , …… )
E 2.7 −
E 2.8 = ∑
E 2.9 ( , …… ) =  − = ..
E 2.10 = ∑
E 2.11  Every statistics t = t ( , …… ) such that ( ) − ≤ ≤ ( ) +  provides an MLE 
for .  

E 2.12 ( ) = 3 [∏ ] and likelihood equation   ( ) = 0 ⇒ 3 = 0  ℎ ℎ 
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= ( , …… ) = ( )
E 2.13 = = ∑ = ∑ ( − )  are the estimators of  respectively. 

E 2.14 ( ) = (1 − ) , = 0,1. We can not differentiate L(p) to get MLE of p, since 
it gives ̂ = ℎ ∄ ,  . 

̂ ( ) = 14 = 0
L(p) is maximized if = 3/4 if x=1 

Thus MLE of p is given by ̂ ( ) =
E 2.15  For sample (0,0,…….0) ̂ = 0 and sample (1,1,…….1) ̂ =1.  

12.6   Summary 

After studying this unit we have learnt about the different procedures of the estimation namely 
method of moments, method of maximum likelihood fo method of scoring. We also learnt about 
the properties of Estimators.  

12.7   Further Readings 

1. Rahtagi V.K. (1984): An Introduction to Probability theory and Mathematical Statistics 
chapter VIII, IX & X Pub; John Wiley & Sons, New York. 

2. Goon A.N., Gupta M.K. & Das Gupta B (1987) Fundamentals of Statistics Vol. I The 
World Press Pvt. Ltd., Kolkata. 

3. Kapoor V.K. & S.C. Saxena: Fundamentals of Mathematical Statistics, Chapter 
Seventeen, Pub: S. Chand. 
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Unit-13:  Testing of Hypotheses  

Structure 

13.1 Introduction 
13.2 Objectives 
13.3  Statistical Hypotheses 
13.4  Simple and Composite Hypotheses 
13.5 Null Hypotheses and Alternative Hypotheses 
13.6 Critical (Rejection) Region 
13.7 Two kinds of Error 
13.8 One- side and two side or one-tailed and two tailed tests 
13.9 Test of Significance 
13.10 Examples 
13.11 Most powerful test 
13.12 Uniformly most powerful test 
13.13 Solutions and Answers 
13.14  Summary 
13.15 Further Readings 

13.1   Introduction 

There are two major areas of statistical inference namely the estimation of parameter and 
the testing of hypotheses. Our present aim is to introduce to concepts involved in the development 
of general methods for testing of hypotheses. Some illustrations are taken from population having 
the common known distributions. In all the problems of statistical inference there is generalization 
of the results or conclusions of a sample(s) from the population to the population itself. The error 
is possible. We shall explain the two kinds of error in the context. In testing to hypotheses a 
decision is taken on the basis of a samples (s) whether to accept or to reject a specified value 
Ho: =  or a set of specified values Ho: ∈  where  On the basis of the results of 
sample (s) from the population f(x; ), ∈    where  may be vector and  is the parameter space 
of , for example in exponential distribution  f(x; )= , > 0, > 0;    is a single parameter 

and but in normal density  f(x; )=  √ ( )
Where , −∞ < < ∞, > 0,−∞ < < ∞
Unknown parameter  and  are unknown the = ( , ) and its parameter space is : (−∞ << ∞, > 0 ). 
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In the present discussion the sample size n is considered fixed in the advance, The case of 
sequential analysis, discussed by A. Wald, where are is used are not considered. 

Some common situations where of the testing of hypotheses are is used are cited below. 

Suppose a new hybrid variety of a grain is introduced. One may wish to estimate the average yield 
per ace of this variety, (problem of estimation) and if agriculturist decided to test whether the 
average yield of new variety is higher than the usual sown variety <  then it is problem of 
testing of hypothesis. A Farmer may like to decide on the basis of samples whether Nitrogen 
fertilizer T1 poorer than (Nitrogen & Potassium) the mixed fertilizer T2. For the production of 
wheat. An engineer may want to know whether the average life time of a certain kind of type is at 
least 50,000 km. or the production manager of a steel factory may like to compare the breaking 
strength of a steel bar manufactured by process I with that produced by new process II.  

A pharmaceutical concern may be interested to find if a new drug is really effective for treatment 
of an element say cancer or in reducing blood pressure or inducing sleep; One may want whether 
a new foodstuff is really effective in increasing weight; or which of the two brands of particular 
product say, food stuff, fertilizers, etc. is more effective; such practical problems may be quoted, 
where the modern probability theory plays a vital role in decision making and the branch of statistic 
which helps us in arriving at a criterion for such decision known as testing of hypothesis. The 
theory of testing of hypothesis was first given a mathematical sound footings by J. Neyman and 
E.S. Pearson through series of papers. They dealt with the statistical techniques to arrive at decision 
in certain situations where there is an element of doubt, on the basis of a sample whose size is 
fixed in advance. There is another technique known as sequential testing pro-founded by Abraham 
Wald where the sample size is not fixed I advance but is regarded as a random variables. 

We shall deal here with Neyman and Pearson Approach only.  

13.2   Objectives 

 After studying this unit you shall be able to: 

Understand testing of hypothesis. 
Decide a null hypothesis and alternative hypothesis. 
Understand the meaning of level of significance, size of a test and power of a test. 
Understand the most powerful (MP) test and uniformly most powerful (UMP) test 
We shall define some terms associated with testing of hypothesis. 

13.3   Statistical Hypotheses 

Definition 3.1 A statistical hypothesis is some assumption or statement about a population, or 
probability distribution characterizing the given population. It is frequently denoted by H.  
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A hypothesis is not accepted without being supported by evidence from the population. A 
hypothesis needs to be verified and is therefore, put to test; and based on the evidences provided 
by a random sample (which are set of independent observations) from the population a decisions 
is taken to accept or reject  it. In fact the evidence provided by the sample is the value of a test 
statistic which will decided the course of the action – to accept or to reject H.  

For example if r.v. X ~N ( , 25) then the statement that the mean of the population is 
greater than 20, is a statement about the population mean with known variance  = 25 and 
therefore is a hypothesis. We write H:  >20.  

13.4   Simple and Composite Hypotheses 

Definition 3.2:  A hypothesis is known as simple hypothesis if it completely specifies the 
population; otherwise it is known as a composite hypothesis. 

In sampling from a normal population N ( , ), the hypothesis.  

(i) : = ,     =
is a simple hypothesis. It specifies values to both parameter  and ;and  therefore, it completely 
specifies the distribution, On the other hand each of the following hypotheses is composite 
hypothesis:  

(ii) : =  (No statement about  ) 

(iii) H: =    ( )
(iv) H: < ,     =
(v) :  > ,     =
(vi) :  = ,     >

13.5   Null hypothesis and Alternative Hypotheses 

Definition 3.3:  A null hypothesis  is a statistical hypothesis which is put to test for possible 
rejection under the assumption that it is true; it is denoted by Ho.  

For example in sampling from normal population N ( , ) the hypothesis : =  is 
a null hypothesis if it is to be tested. It is said to be a null hypothesis since it states that there is no 
difference between : .   

It is very important to state the alternative hypothesis H1 explicitly in respect to any null 
hypothesis Ho because the acceptance or rejection of Ho is meaningful only if it is being tested 
against the rival hypothesis H1.  
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The concept of simple and composite hypothesis applies also to alternative hypothesis. For 
example in comparing the mean effect on the yield of soyabean of two fertilizer say A and B, we 
may formulate the null and alternative hypothesis as Ho: =    against H1: <   . Ho is a 
simple hypothesis and H1 is a composite hypothesis . 

If we want to test the null hypothesis Ho that the population N ( , ) has specified mean 
let be known then 

H1: =  is a simple hypothesis and all the possible alternative: 

(i) : ≠  ( . . > < )
(ii) : >
(iii) : <

are composite hypothesis: while 

(iv)  : =
is a simple hypothesis. 

The normal population : X~ N ( , ) both  are unknown has parameter space.  : {( , ) : − ∞ < < ∞, > 0}. Here 

The null hypothesis 

: = , > 0
and alternative hypothesis 

: > , < 0
and both composite hypothesis. 

If = be known, then the null hypothesis 

: =
is a simple hypothesis. 

The above definition can be symbolically written as follows:  

For population: X~f (x; ), ∈
Ho: ∈ ⊂
is simple if is singleton set otherwise it is composite hypothesis. Similarly the alternative 
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H1: ∈ ℎ =  ′ − ′
is simple if =  ′ − ′ is a singleton set otherwise it is composite. 

It is worth to note that sometimes one has to formulate the hypothesis exactly opposite of what is 
to be tested in the problem. For instance if it is required to show that the students of one school 
has a higher IQ than those of another school, i.e. > . In this case also the null hypothesis 
must be Ho: =  instead of H: > we formulate the null hypothesis that there is “no 
difference” in the IQ’s of the two schools. Now a days the null hypothesis is being used to “any 
hypothesis we may want to test.” 

Definition 3.5: A test of a statistical hypothesis H is a rule or  procedure, based on the observed 
values of random sample from the  population to accept or reject the hypothesis H. 

Thus test is a two actions decisions – rule where the actions are either to accept or to reject the 
hypothesis Ho. The truth or falsity of the statistical hypothesis H depends upon whether the 
information contained in the sample is consistent with or hypothesis. If the sample information is 
inconsistent with the hypothesis then the hypothesis is rejected; otherwise it is accepted. 

13 . 6   Critical (Rejection) Region 

Let the population be X~ f (x; ) ∈  where Q is the parameter space of the parameter  .  

Let : (  , …… )be n independent sample observations corresponding to a random sample : (  , …… )of size n from the population. 

The n-dimensional space S which is the aggregate of all sample points : (  , …… ) is called 
a sample space and is denoted by S. 

The test for a hypothesis divides the whole sample S into two disjoint (mutually exclusive) regions; 
one region A for acceptance of hypothesis H and another region R (or C) for rejection of hypothesis 
H.  

A- Figure 3.1 Sample Space, Acceptance (A) and Rejection (R) region 
B- Acceptance region (ACS) 

R- Rejection (or critical) region (RCS) 
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With A∪R = S and A∩R = ∅
Thus the test for hypothesis H is; 

Rejected Ho     if (  , …… ) ∈ R 

Accepted Ho     if(  , …… ) ∈ A  

Definition 3.6:  If a statistics T = T(  , …… ) is used as an estimator for a parameter (-), 
then T=T ( ) is known as estimator of   . if a statistic T is used to define a test of a hypothesis H, 
then it is known as a test statistic for H. 

Thus a statistic associated with the test is called a test statistic. 

A statistic R =T (  , …… ) condenses the experimental data : (  , …… )to a point t-
T( ) = T (  , …… ). In other words it maps the n-dimensional sample space S into a real line 
(one-dimensional) R1: (−∞,∞). There will be a region R and a region A on he real line R1

corresponding to region R and region A, respectively in sample space S. Thus, a test  partitions 
the real R1 or the range of the test statistic T ( ) into two disjoint sets: The acceptance region A 
and rejection Region R.  

If g (t,  ) be the sampling distribution of the test statistic T(X) or test of hypothesis H, then we 
may get following types of rejection regions for H: =

Figure 

Definition 3.7:  Let X~ f (x;  ) ∈ . A subset R of sample space S, such that if R then Ho is 
rejected (with probability 1) is called the critical region (or rejection region) C of the test, where  = ∈ :         ∈
The complementary set A or R is said to acceptance region of the test. 
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13.7  Two kinds of Error 

The decision of the test for hypothesis H is taken on the basis of the information of a sample 
from the population: X~ f (x; ) ∈ . As such there is an element of risk – the risk of taking 
wrong decisions. In any test procedure, there are four possible mutually exclusive and exhaustive 
decisions:  

(i) Reject Ho when actually Ho is not true (false) 

(ii) Accept Ho when it is true 

(iii) Reject Ho when it is true 

(iv) Accept Ho when it is false 

The decisions in (i) and (ii) are correct while the decisions (iii) and (iv) are wrong decisions. These 
decisions may be expressed in the following dichotomons table. 

True state in The 
nature 

Decision 

Ho True Wrong 
 (Type I error) 

Correct 

Ho False 
 (H1 True) 

Correct Wrong 
 (Type II error) 

Thus in testing hypothesis may lead to following two kinds of errors. 

Definition 3.8:  An error of type I is made if the null hypothesis Ho is rejected when Ho is true; 
and the error of Type II is made if the null hypothesis Ho is accepted when Ho is false. 

Type I Error =  [Reject Ho | Ho is true] 

Type II Error =  [Accept Ho | Ho is false] 

=  [Accept Ho | Ho is true] 

=  [Reject H1 | Ho is true] 

The probabilities of type I and Type II errors  are denoted by respectively.  

Definition 3.9:  The size of a Type I error is the probability of type I error  similarly, the size of 
a type II error is the probability of type II error

Thus, 

 = Probability of Type I error 
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= Prob. [Reject Ho |Ho] 

= Prob. [ ∈ |  ] where = (  , …… )
= ∫
= Prob. [T ( )∈ |  ] 

=∫ ( ) ( , | )
Where Lo is the likelihood of the sample observations under Ho and∫  stands for n-fold integral ∫∫…………∫ …… . . .
g (t, |  ) is sampling distribution of test statistic T= T ( ) under Ho: 

Similarly, 

 = Probability of Type II error 

= Prob. [Accept  Ho |H1] 

= Prob. [ ∈ |  ]  

= ∫
= 1-∫          [Since ∫ + ∫ = 1] 

=1 − ∫ ( ) ( , | )
When L1 is the likelihood function of the sample ( ) observations under H1. 

Hence we define a power function of the test as  

P( )= [Prob. (Reject Ho |H1) = Prob. ( ∈ | )=1- ( )]  and the power of the test for H0: =
  against H1: = as P( )= [Prob. (Reject Ho |H1) = Prob. ( ∈ | )=1- . 

Definition 3.10:  Level of significance:  

 The level of significance is the maximum of probability of the type I error with which one 
is prepared to reject Ho when Ho is true. It is also called the size of critical region. 

Definition 3.10:  Power of the test:  

 It is the probability with which the test reject Ho when H1 is true. It is denoted by 1-  where  is 
the probability of type II error. 
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 Power of the test  = Prob. [Reject Ho |Ho] 

= Prob. [Accept  H1 |H1] 

= 1-

= Prob. ( ∈ | ) 

The power of the test provides a basis for the comparison of two or more tests for simple hypothesis 
Ho against the sample alternative H1. The power function P() is a function P( ) is a function of 
; therefore the power curve will be the basis for comparison betweens tests for Ho Vs. H1. 

An idea test would be one for which both of the probabilities  are zero, but  there exists 
no test with fixed sample size n for which both  are zero. Consequently for fixed sample 
size n it is not possible to minimize both the error simultaneously. In general type I error is 
supposed to be more serious than type II error.  

Hence for a fixe sample size n the usual practice in testing of a hypothesis Ho against alternative 
H1 is to keep  at a pre-determined low level say 0.01 or 0.05 and the test which has a more power 
or lesser  is said to be better than the other one. 

A level of significance = .05, implies that if a very large number of samples, each of size n, be 
taken from the population the event [T ( ) ∈ ] is observed then in about 5 out of 100 cases, the 
hypothesis Ho is rejected when Ho is true.  

13.8  One-sided and two sided or One-tailed and Two tailed Test.  

  Consider a situation in which we want to test the null hypothesis Ho: =  against H1 = ≠ . it appears logical to accept the null hypothesis if the point estimate  of  is closed to 
and to reject Ho if is much larger or much smaller than , it would be reasonable to let the 
critical region R consists of both tails of the sampling distribution g ( , ) of the chosen test 
statistic . The alternative hypothesis H1 = ≠  is two sided, since the alternative consists of 
values of  both below and above . Further, the critical region lies on both tails or ends of the 
sampling distribution of test statistic  Such a test is said to be two sided test or two tailed test. 

On the other hand, the test for the null hypothesis Ho: = against the one sided 
alternative H1 = < is said to be one sided test. In this situation it appears reasonable to reject 
Ho only when estimate  is much smaller than . Therefore, in this situation, the critical region. 
R consists of only left-hand tail of the sampling distribution of test statistic . The test for null 
hypothesis Ho with one sided alternative H1:  <  is said to be one sided test or left hand (one 
tailed) test. 
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Similarly in testing Ho: =  against the one sided alternative H1:  > , the null 
hypothesis Ho could be rejected only for large values  of. So that the critical region consists only 
of  the right tail of the sampling distribution of . The test for null hypothesis Ho with one sided 
alternative H1: >  is said to be one sided test or right tailed test.  

Definition 3.12:  Any test where the critical region R consists of only of one tail of the sampling 
distribution of the test statistic is said to me one sided test while, it is said to be sided test if the 
critical region consists of the both tails of the sampling distribution of the test statistic.  

13.9   Test of Significance 

Suppose that the problem is to test the hypothesis that the mean of the normal population ( , )with known variance is different from .  

As explained above the null hypothesis Ho and the alternative hypothesis H1 will be set up as 
follows:  :  = = ≠
Let us chosen level of the significant at which is a smaller number.  

Let X1, X2, X3, ……….Xn be a random sample of size n drawn from the population. Now the 
problem is to obtain a test for  :  = .       = ≠
at level of significance  based on a sample random of size n. It is reasonable to accept Ho if the 
estimate ̂ of is close enough to .  

We know that the sample mean = ∑  is an estimator of population mean and has sampling 
distribution.  

~ ,
So that 

= −/√ ~ (0,1)
Further, 100 (1- )% confidence internal for mean  is  ̅ + √
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Where, [| | < ] = 1 −
Or (− < < ) = 1 −
The value of  may be obtained from the Normal area Table for given .  

It is reasonable to take = if the estimate ̅ is close enough to  . Obviously, it is 
reasonable accept Ho if lies in the interval ̅ ± √
That is, ̅ − √ < ≤ ̅ + √
Or equivalently,  −/√ ≤
In this case we do not reject the hypothesis Ho: if, on the other hand, is not in the interval or 
equivalently. −/√ ≥
Then reject Ho. 

Our test for :  = .    = ≠   at the level of significance  is, | ̅ − | > √
| ̅ − | ≤ √

Where, √ is the standard error of . 

Prob [Type I error] = P [Reject Ho |Ho] = 
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−/√ ≥ | = −/√ ≤ =
Hence critical region R and Acceptance A are = ( , …… ): − √ ≤ ̅ ≤   + √
and 

= ( , …… ): ̅ < − √ , ̅ +   √
Such a test is known as test of significance. 

Here the sample value of the statistic differ from the given value of the parameter by more than 
certain amount in our case, Z0SE ( ) is held important or significant to reject Ho at level of 
Significance . 

The value of |Z| = /̅√  under the assumption that :  = holds is  

|Z| − 1 /√ . ℎ /√
at level of significance  then we say that computed value of Z is significant at  and we reject 
the null hypothesis Ho.  

It may worth to note that the rejection of a hypothesis Ho at - level of significance does not 
implies the disapproval of the hypothesis. It only implies that the data or the sample information 
does not support the hypothesis at level of significance . Similarly, the acceptance to Ho should 
be understood. The acceptance of the implies that x does not deviate from by so much amount 
that we reject Ho. It does not imply that is actually equal to but that it is close to  .  

Further the difference | − | between and  is inevitable produce of sampling fluctuations. 
The acceptance of Ho implies that this difference | − |  is due to sampling fluctuations alone.  

Definition 3.13:  A test of significance for hypothesis Ho: is a procedure to assess the difference 
between the sample statistic and the value of parameter given by Ho or differences between two 
independent statistic to be significant or to reject or accept Ho at the given level of significance .  

We say that 

(i) the difference between a statistic and the corresponding population parameters.  
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Or 

(ii) the difference between two independent statistics 

is not significant at the given level of significance, say  if it can be attributed only to the sampling 
fluctuations; otherwise it is said to be significant.  

The procedure to be adopted for test of significance is outlined below- 

(1) Propose the null hypothesis Ho and alternative hypothesis H1: 
(2) Fix a level of significance  for the test and a sample size n. 
(3) Then choose a statistic T(x) whose sampling distribution is known under Ho. 
(4) Keeping the value of  in mind decide upon those values of the test statistic (i.e. rejection 

region) that lead to its acceptance. In other words, define the test for Ho Vs. H1 at level .
(5) Now draw a random sample of size in from the population and compute the value of the 

test statistic. 
(6) Finally on the basis of the value of the test statistic take the decision to accept or reject Ho. 

Example 3.1:  The mean of sample of size 25 from a normal population with mean and s.d. 4 is 
found to be 15. Do you accept or reject Ho:  = 20 at the 10% level of significance?  

Solution:  Here ̅ = 15, n = 25, =4, = 0.1  

Since  

~ , = , 425
So that 

|Z| = /√ ~  (0,1)
Under Ho:   = 20 

|Z| = /√ = /√ =  − = −6.25
Case I : Let Ho:  = 20 against H1: ≠ 20. We have to use a two tailed test. The test is as follows:  ,    ̅ −/√ < / ̅ −/√ > /

, − / < ̅ −/√ > /
For  = 0.01,  /2= 0.05, we get from normal areas table,  
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> = 1− 2 = 0.95
gives 

/ = −1.645, =  +1.645 
Test at  = 0.10 level of significance is  > −1.645    < 1.645      − 1.645   < <   1.645
Here, computed Z = -6.25 

Hence we reject Ho at 10% level of significance. 

Case II Let Ho =  = 20 be tested against H1: Here right tailed test is to be used.  

The test is  >   ≤     /
Where is obtained by,  

0.1= Prob. [Reject Ho|Ho|] = P [Z > |Ho] 

= . ̅ −/√ >
Which gives 

= 1.282 

Observed Z= - 6.25 

We conclude that the does not support Ho at 10% level of significance. You may try the following 
problems- 

E- 3.1 Let population be ~ ( , ). To test Ho:  = .5 we take a random sample of size n= 17 
and observe that ̅ = 78.8 and S = 12.8. Do you accept or reject Ho at 5% level of significance.  

[Ans. 1.19<2.1 accept/ Ho 94 and times] 

Hint: Here is unknown = ∑ ( − ̅) is an unbiased estimator of therefore  
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= −/( /2)~  − .
E- 3.2 Assume that IQ scores for a certain population are approximately ( , 100). To test Ho: =  against the one sided alternative hypothesis H1:  > 110, we take a random sample of size 
n = 16 from this population and observer ̅ = 113.5 Do you accept or reject Ho at-  

(a) 5% significance level 
(b) 10% significance level, 

Ans.: (a) 1.4< 1.1645 accept 

(b) 1.4 > 1.282 reject. 

13.10  Examples 

Example 3.2 Given the frequency function ( ; ) = 1    0 ≤ ≤= 0           ℎ
It is required to test the null hypothesis Ho  = 1 against H1:  = 2, b means of a single observed 
value of x. What would be the sizes of the type I and Type II error if you choose the intervals.  

(i) 0.5 ≤ x 

(ii) 1≤ ≤ 1.5
as the critical regions W? Also obtain the power of the test. 

Solution: 

Here we want to test Ho  = 1 against H1:  = 2. 

Part (i) For critical region 

W = {x: 0.5≤ x}= {x:x≥ 0.5}   = { : < 0.5}
The test is as follows: 

Reject Ho    if x ≥ 0.5 

Accept Ho  if x < 0.5 
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Now,            = [ ]              = [ ∈ |  ]               = [ ≥ 0.5|  = 1]               = [0.5 ≤ ≤ |  = 1]               = [0.5 ≤ ≤ 1]
                 = [ ( ; ].
                = 1.               = 0.5
Similarly,            = [ ]              = [ ∈ |  1]               = [ ≤ 0.5|  = 2]
               = [ ( ; ].
                = 1.               = 0.25
The power of the test 

= 1-

= 0.75 

Thus the size of type I and type II errors and powers of the test are 0.5, 0.25, 0.75 respectively. 
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Part (ii) for critical region 

W= {x: 1≤ x ≤ 1.5}and Acceptance region W= {x:x< 1, or x> 1.5} 

The test is for Ho :  = 2 is: 

Reject Ho    if 1≤ x ≤ 1.5 

Accept Ho     otherwise   

Since under Ho,  

F(x; ) = 0   for 1≤ x ≤ 1.5 

Therefore,            = [ ∈ |   = 1]
               = [ ( ; ].
              = 0. 

Whereas,            = [ ∈ |   = 2]             = 1 − [ ∈ |   = 2]
               = 1 − [ ( ; ].

= 1 − .
              = 0.75 

Giving power of the test 

= 1- = 0.25 

Thus the sizes of type I and type II errors and power of the test are 0., 0.75 and .25 respectively. 

Example 3.3  If x ≤ 1, is the critical region W for testing Ho:  = 2 against the alternative H1:  =  
1, on the basis of the single observation from the population, 
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( ; ) =            0 ≤ ≤ 1= 0      ℎ
Obtain the values of Type I and Type II errors. 

Solution:  Here, the critical region = { : ≥ 1}
and acceptance region = { : < 1}
The test for Ho: = 2 against H1: = 1 is:  

Reject Ho             if    x ≥1 

Accept Ho            if   x < 1. 

Now,            = [ ]              = [ ∈ |  ]               = [ ≥ 1|  = 2]
               = 2 [ ( ; ]
                = 2
               = 2 (−2)
= = 1

Similarly,            = [ ]              = [ ∈ |  ]
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             = [ < 1|  = 1]
             =
             = ⌈ ⌉
              = 1 − = − 1
Thus, = = 1 −
13.11   Most Powerful Test (MP- Test) 

In the test of significance for Ho against alternative H1, we have used an intuitive approach, where 
a test statistic is chosen whose sampling distribution is known, at least under null hypothesis Ho 
and a critical region is defined using the level of significance . Thereafter a random sampling of 
given size n is drawn for the population and the value of test statistic is computed. If this value lies 
in the critical region then the hypothesis is rejects. Neyman and Pearson has profounded a more 
rational treatment to the tests of hypothesis by considering the probabilities of to two types of 
errors, that is  respectively, that one may commit in accepting or rejecting a hypothesis on 
the basis of sample observations. For all practical purposes, then the sample size n and the 
probabilities of a type I error are fixed and look for a test statistic which minimize the probability 
of a type II error, or, equivalently, which maximizes the power of the test 1- . 

Consider the problem of testing a simple null hypothesis Ho; = ; For this purpose one has to 
draw a random sample of size n from the population: ~ ( ; ) . The present problem is to decide 
of whether the sample has come from the completely specified populations, ( ; ) ( ; ) ( ; ) In other words, if X1, X2, ………….Xn be a sample then our 
object is to test Ho: Xi is distribution as ( ; ) Versus H1: Xi is distributed as ( ; ) .   
Obviously, when testing the simple null hypothesis is Ho: = against sample alternative 
hypothesis, H1: = power of the test = at is 1- .  

Definition 3.14: The critical region W is the best most powerful critical region of size  (and the 
corresponding test a most powerful test of level ) for testing simple null hypothesis Ho : =
against simple alternative hypothesis H1: =  if the power of the test at =  is maximum. 
That is if W satisfies  ∈ |  − ,                               ( )
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∈ |  ≥ ∈ |                    ( )
For every critical region W1 satisfying (A). 

To construct a more powerful critical region we refer to the likelihood of Lo a random sample of 
size n from the population under consideration when = =   say Lo and L1

respectively that is  

= ( )
= ( )

Intuitively, speaking, it seems reasonable that / should be small for sample points inside the 
critical region which leads to Type I errors when = and to correct decision when = .  

13.12   Uniformly Most Powerful (UMP) Test 

Let us now take up the case of testing a simple null hypothesis Ho: =  against a composite 
hypothesis H1: ≠  is such a case for a predetermined  the best test for Ho is called uniformly 
most powerful test level ,  

The critical region W is called uniformly most powerful (UMP) Critical region of size {and the 
corresponding test as uniformly most powerful (UMP) test of level  } for testing Ho = =
against H1: ≠  if ∈ |  − =.                                ( )

∈ |  ≥ ∈ |  ( )=
Whatever the region W1 satisfying (c) may be. 

13.13   Solution / Answers 

P- 3.1    1.19<2.12; Accept Ho 

P- 3.2  (a)  1.4≤ 1.645; Accept Ho 

(b)  1.4> 1.28; Reject Ho 

13.14   Summary 
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In this unit an attempt is made to explain the basis concepts related to the testing of 
hypotheses. 

13.15   Further Readings 

1. A.M. Mood, F. Ar. Graybill & D.C. Boes. Introduction to the theory of Statistics, III. 
Editions  Pub: Mac.Graw Hill.   

2. Rahtagi V.K. (1984): An Introduction to Probability theory and Mathematical Statistics 
chapter VIII, IX & X Pub; John Wiley & Sons, New York. 

3. Goon A.N., Gupta M.K. & Das Gupta B (1987) Fundamentals of Statistics Vol. I The 
World Press Pvt. Ltd., Kolkata. 

4. Kapoor V.K. & S.C. Saxena: Fundamentals of Mathematical Statistics, Chapter 
Seventeen, Pub: S. Chand. 
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Unit-14:  Exact Tests and Fisher’s z- Transformation 

Structure 

25.1 Introduction 
25.2 Objectives 
25.3 Test of significance based on Chi-square Distribution. 
25.4 Test of significance based on t-distribution 
25.5 Test of significance based on F-distribution 
25.6 Test of significance based on Fisher’s z-transformation distribution 
25.7  Self Assessment Exercises 
25.8 Solutions and Answers 
25.9  Summary 
25.10 Further Readings 

14.1   Introduction 

The statistics on which our testing procedure is based in particular situation, is known as test 
statistic. If the probability distribution of this statistic is Chi-square, it is known as Chi-square test. 
In different situation we have different test-statistics and they follow different probability 
distributions and accordingly the name of the tests. If the probability distribution of the test statistic 
is t (or F) in a particular situation, it is known as t (or F) test. When probability distribution of test 
statistic is not approximated and it is exactly a specific probability distribution, these are called 
exact tests. 

14.2   Objectives 

After going through this unit you should be able to apply exact tests based on Chi-square, 
t and F distribution along with Fisher’s z transformation. 

14.3   Test of significance based on Chi-square Distribution. 

(a) To test the signification of variance from a normal population. 

Let X1, X2,…….Xn be random sample of size n taken from N ( , ) and w wish to test Ho: = .
If   is known then H0 ∑( − )
Follows Chi-square distribution with n degree of freedom. 
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If is not known then under Ho ∑( − )
Follows Chi-square distribution with (n-1) degree of freedom; = ∑ Is the sample mean. 

(b) To test goodness of fit. 

Here we test the null hypothesis that data follow a particular probability distribution (like 
Binomial, Poisson, Normal etc.). 

Let O1, O2, be the observe frequencies and e1, e2,… are the expected frequencies corresponding 
to these observed frequencies then  (0 − ) = − ℎ = =
follows a chi-square distribution with certain say v degrees of freedom. If expected frequencies 
are less than 5, then pooling is done. 

Example 1.1:  Five dice were thrown 192 times and the number of times 4, 5 or 6 were as 
follows:  

No. of dice throwing 4,5,6 5 4 3 2 1 0 Total 
Observed frequency: Oi 6 46 70 48 20 2 192 

 Calculation the value of Chi-Square on the hypothesis that dice were unbiased and hence test 
whether the data are consistent with the hypothesis. 

Solution: Probability of throwing 4,5,6 is 3/6= ½= p 

Therefore from binomial distribution the theoretical frequencies of getting 5,4,3,2,1,0 successes 
with 5 dice re respectively the successive terms of : 

N (p+q)5= 192(1/2+1/2)5 

Which are as follows:     6,30,60,30, 6 respectively 

Table showing observed and expected frequency after clubbing (Pooling) the frequency which 
are less than 5. 

No. of dice throwing 4,5,6 5 4 3 2 1or 0 Total 
Observed frequency: Oi 6 46 70 48 22 192 
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Expected frequency: ei 6 30 60 60 36 192 = (0 − )
= (6 − 6)6 + (46 + 30)30 + (70 + 60)60 + (48 + 40)60 + (22 + 36)36= 0 + 8.53 + 1.66 + 2.4 + 5.44 = 18.03

There are n= 6 cells and k =1 cell, i.e., “0” is polled with cell “1”, therefore the degree of 
freedom of is 

V=n-1-k, = 6-1-1=4. 

The tabulated value of Chi-square ( ) on 4 degrees of freedom and at 5 % level of significance 
is 9.488. Since the calculated value of  is greater than the tabulated value hence null hypothesis 
may will be rejected. Therefore the observed frequency distribution is not consistent with the 
hypothesis.  

(c) Testing of independence or Association between two (attributes) (characters): 

If a character (factor, attribute) A is classified into A1, A2, Ai, …..Ar classes and second character 
(factor/ attribute) B into B1, B2,….Bi….Bc classes and if Oij is the observed frequency due to Ai 
class of A and Bi class B which are shown in the following table:  

Character B 

Character 
A 

 B1 B2 Bj Bc R1

A1 O11 O12 O2j O1c R1

A2 O21 O22 O2j O2c R2

Ai Oi1 Oi2 Oij Oic Ri

Ar Or1 Or2 Otkj Orc Rr

Total C1 C2 Cj Crc N 
Where, 

= =
Then this table is called r x c contingency table. 

We are interested in testing the null hypothesis.  

H0: Character (attributes) A and B are independence, i.e., there is no associated between two 
character A and B. 
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Let eij denotes the expected frequency due to ith class of A and j-th class of character B, i= 1, 
2,……r, j= 1,2,……,c, Then 

= × =
Thus, the expected frequency of any cell is equal to the product of the class totals of the two classes 
to which the cell belongs divided by the total number of observations.  

Hence to test the above null hypothesis, we use Chi-square as given by: 0 − =   −  
It is a Chi statistic with (r-1) (c-1) degrees of freedom.  

The calculated value of is compared against the table value of  on (r-1) (c-1) degrees of freedom 
and 5% probability level. If calculated value of  is greater than its table value then the null 
hypothesis H0 is  rejected, otherwise H0 will be accepted.  

Rejecting the null hypothesis means that there is association between two factors (attributes/ 
character). 

Example 1.2: From a village 200 persons were randomly selected and data about their income and 
education achievement were recorded, which are given in the following table. 

Education 

 High Medium Low Total 
Income High 60 20 20 R1=100 

Low 20 20 60 R2=100 
             Total e1=80 e2=40 e3=80 N= 200 

Test whether education depends upon income. 

Null Hypothesis 

Against the alternative 

H1; There is association between education and income. 

Expected frequencies 

= 100 × 200200 = 40
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= 100 × 40200 = 20
= 100 × 80200 = 40
= 100 × 80200 = 40
= 100 × 40200 = 20
= 100 × 80200 = 40

Table of expected frequencies: 

Education 

 High Medium Low Total 
Income High 40 20 40 100 

Low 40 20 40 100 
             Total 80 40 80 200 

=  0 −
= (60 − 40)40 + (20 − 20)20 + (20 − 40)40 + (20 − 40)40 + (20 − 20)20 + (60 − 40)40= 20 × 2040 + 200 + 20 × 2040 + 20 × 2040 + 0 + 20 × 2040= 10 + 0 + 10 + 10 + 0 + 10 = 40
d.f.= (r-1) (c-1)= (2-1) (3-1)= 1×2 = 2 

The tabulated value of and 2 d.f. and at 5% level of significance is 5.991. 

Since the calculated value of  is greater than the table value of  on 2 degrees of freedom and 
at 5% probability level so our null hypothesis will be rejected. Therefore, it can be concluded from 
the above data that there between education and income. 

(d) in 2×2 contingency table: 
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A table in which each of the two characters or attributes are divided into two subgroups giving rise 
to four total number of cells is called a 2×2 contingency table. Here, r=2, c=2. Suppose there are 
two characters A and B each being divided into two groups A1, A2 and B1, B2 respectively and the 
observed frequencies of four cells are a,b,c,d which are arranged in the following table:  

B 

A:  

 B1 B2 Total 
A1 a b  R1=a+b 
A2 c  d  R2=c+d 

Total C1=a+c C2=b+d N= a+b+c+d 
We wish to test the null hypothesis. 

H0: There is no association between two character A and B.  

Under Ho, 

=  ( − ) ×( + )( + )( + ) = ( − )× × ×
Follows Chi-square distribution with one degree of freedom, i.e., r=1. 

Where R1, R2 are row table and C1 and C2 are the column totals. 

Derivations of 

=  ( − )× × ×
We know that 

=  0 −
So we need of find the expected frequencies of a, b, c and d which are given as ( ) = . ( + ) × ( + ) =  ( + )( + )
Similarly, ( ) =   ( + )( + )

( ) =   ( + )( + ) ( ) =   ( + )( + )
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Therefore, 

= [ − ( )]( ) + [ − ( )]( ) + [ − ( )]( ) + [ − ( )]( )
=   − ( + )( + )+ + +( + )( + ) + − ( + )( + )+ + +( + )( + ) + − ( + )( + )+ + +( + )( + )

+ − ( + )( + )+ + +( + )( + )
=   ( − ) 1( + )( + ) + 1( + )( + ) + 1( + )( + )+ 1( + )( + )
=   ( − ) . 1( + )( + )( + ) + 1( + )( + )( + )
= ( − ) + + +( + )( + )( + )( + )

= ( − ) .( + )( + )( + )( + ) = ( − ) .× × ×
Example on 2×2 Contingency table 

Example 1.3 From the following table, test whether flower colour is independent of flatness of 
leaves. 

 Flat leaves Curled leaves Total 
White flowers 80=a 20=b R1=100 
Red flowers 40=c 60=d R2=100 

Total C1=40 C2=80 N= 200 
H1: flower colour is independent of flatness of leaves.  

Against 

H1: flower color dependent on the flatness of leaves.  

To test the above null hypothesis, we shall calculated the statistics as:  
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= ( − ) .× × ×
= [(80 × 60) − (20 × 40)]100 × 100 × 120 × 80 × 200 = [(4800 × 800)] × 200100 × 100 × 120 × 80= 4000 × 4000 × 200100 × 100 × 120 × 80 = 1003 = 33.33

This is calculated value of Chi-square ( ). 

The tabulated value of Chi-square at 5% level of significance for one d.f. is 3.841. 

The calculated value of is greater than the table value of on 1 degree of freedom and at 5% 
probability level, so our null hypothesis is rejected and we can conclude that flower colour depends 
upon flatness of leaves. 

Yates Correction continuity in 2×2 contingency table. 

The distribution of is continuous while the distribution is frequencies is by its very nature 
discontinuous. The continuous may be regarded as the limit to which the true discontinuous 
distribution tends as the sample size increases. 

So in case of any cell frequency is less than 5, Prof. F. Yates (1934) suggested the following 
adjustment in a 2×2 contingency table. 

B 

A:  

 B1 B2 Total 
A1 a b  R1=a+b 
A2 c  d  R2=c+d 

Total C1=a+c C2=b+d N= a+b+c+d 
1) Calculate the ad and bc 
2) If ad > bc, then add ½  to both b and c 

And subtrach ½ from both a and d 
So that the marginal totals are not affected. 

B 

A:  

 B1 B2 Total 
A1 a-1/2=a1 B+1/2=b1  R1=a+b 
A2 c +1/2= c1 d-1/2=d1  R2=c+d 

Total C1=a+c C2=b+d N= a+b+c+d 
3) Then the following formula of  is used.  
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= ( − ) .× × × ~ ℎ 1  .
Note: The alternative formula for  with Yate’s correction is: 

= | − | − 2 ×× × ×
Example 1.4: From the following data test the association between colour of flowers and character 
of fruit. 

  Flower violet Flower white Total 
Fruits prickly 40=a 20=b R1=60 
Fruits smooth 16=c 04=d R2=20 

Total C1=56 C2=24 N= 80 
H0: colour of flowers and character of fruits are not associated. 

ad= 40 × 4= 160 

bc = 20 × 16= 320 

so ad < bc 

 using 

= | − | − 2 ×× × ×
= |320 − 160| − 802 × 8060 × 20 × 56 × 14=   120 × 120 × 8060 × 20 × 56 × 24 = 1014 = 57 = 0.71ℎ . , = 3.841

After comparing the calculated value of  against its tabulated value, it is found that the calculated 
value of  is smaller than the tabulated value at 5% probability level. 

Hence it can be concluded from the above data that colour of flower and character of fruits are not 
associated. 

You may try the following exercises.  
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Exercises on Chi- square 

Inoculated Not-
inoculated 

Not attacked Attacked Total 
430 10 440 
60 100 160 
490 110 N=600 

 Is there significant association between inoculation and attack. 

E 1.2) In an experiment on immunization of goats from antrax, the following results were obtained.  

Inoculated with 
vaccine Not-
inoculated 

Not attacked Attacked Total 
4 16 20 

12 8 20 
 Derive your inference on the efficiency of vaccine. 

E 1.3) From a village 100 persons were randomly selected and their education achievements were 
recorded. The data recorded are given in the following table:- 

Education 
Gender  Middle High school Graduation Total 

Male 10 15 25 50 
Female 25 10 15 50 

     N=100 
Hint: Based on the above data can you say that education depends on sex.  

Ans. : = (col)= 9.93 

14.4   Tests of Significance based on t-distribution 

t- distribution is used 

i) To test the significance of mean from a normal population 
ii) To test the significant different between two population means of normal population. 
iii) To test the significance of correlation coefficient from a bivariate normal population. 
iv) To test the significance of regression coefficient. 

(i) Testing the significance of mean from a normal population. 

Suppose x1, x2 , x3……..xn is a random sample of size n from a normal population with mean 
and variance  ( hot known) and one wishes to test. Ho:  

Under Ho: = 
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= ( ̅ − )√
t distribution with (n-1) degrees of freedom. Here, ̅  is the sample mean and 

= 1− 1 ( − ̅)
Where  is an unbiased estimate of. 

The calculated of |t| is compared against the tabulated value of t. If the calculated value of |t| is 
greater than the table value of t on (n-1) degrees of freedom and at ∝ % probability level, the above 
null hypothesis will be rejected at ∝–level of significance otherwise, H0 will be accepted. 

Example 1.5 

 Ten rice plants were randomly selected from a small research plot having 100 plants. The height 
of these plants was recorded to study the effect of a bio-fertilizer on the growth behavior of plants 
which are given below- 

Height in cm: 80,76,78,84,82,83,77,80,81,79 

In the light of the above data, test whether the average height of plants in the population in 82.5 
cm. 

X= height in cm − ( − ) Ho: = 82.5
= ∑ ( − ̅)− 1

= 60/9  = 6.666 
S= √6.666

S= 2.58= 2.58 

80 0 0 
76 -4 16 
78 -2 4 
84 +4 16 
82 +2 4 
83 +3 9 
77 -3 9 
80 0 0 
81 +1 1 
79 -1 1 

Total 800= ∑ - 60=∑( − )
=  ∑ = 80010 = 80
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= ̅ −√ =   (80 − 82)√102.58
=  2.5 × 3.162.58 = −3.07 | | = 3.07

Table value of t on 9 d.f. and at 5% level of significance is 2.262. 

Since the calculated value of |t|  is greater than the table value of t on 9 degrees of freedom and at 
5% probability level, so our null hypothesis Ho will be rejected. Therefore it can be concluded 
from the given data that population mean is significantly different from = 82.5 cm., in other words 
the average height of plants in the population cannot be regarded as 82.5 cm from which a random 
sample of 10 plants have been selected with sample mean 80 cm. 

Exercise on t-tests 

E-1.4  Ten boxes are selected at random from a godown and their weights are found to be in kgs 
as xi= 15.75, 16.0, 15.75, 16.25, 16.50, 17.25, 17.50, 17.50, 17.76 

E-1.5 Discuss the suggestions that the mean weight in the population is 16.25kgs. 

Give that t9 (5%)= 2.262  

(Ans. t calculated = 1.93) 

(ii) Testing the significant different between two population means 

Suppose x1, x2, x3,….xn1., is a random sample from 1st Normal population with mean  and 
variance 1  and another independent random sample y1, y2, ……yn2 from 2nd normal population 
with mean and variance. It is further assumed that 1 = 2 = ,  (say) unknown 

Which is unknown. 

We wish to test the null hypothesis H0= : = 
Under Ho ̅ −1 + 1
Follows t-distribution with (n1-n2) degrees of freedom. Where 
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= ∑ ( − ̅) + ∑ ( − )+ − 2 =  ( − 1) + ( − 1)+ − 2
Is an unbiased estimated of 

The calculated value of |t| is compared against tabulated value of t on ( + − 2) d.f. and at % 
level of significance. 

If cal. |t|> , + − 2then the null hypothesis Ho is rejected otherwise Ho is accepted.  

The above procedure is called as two sample t-test. 

Example on Two sample t-test 

Example 1.6 

 Ten red plants were randomly selected from 1st plot and 8 yellow plants were randomly selected 
from second rose plot. The height of these selected were separately recorded and are given below 
in cm. 

Heights of red 
rose plants in 
cm=xi 

− ( − ) Heights of yellow 
rose plants in 
cm=yi 

− ( − )
60 0 0 62 0 0 
64 4 16 60 -2 4 
61 1 1 63 +1 - 
56 -4 10 64 +2 4 
59 -1 1 61 -1 1 
62 2 4 63 +1 1 
58 -2 4 63 +1 1 
60 0 0 61 -1 1 
63 3 9    
57 -3 9    ∑ =600 ∑( −) =60 

∑ =496 ∑( −) =12 

Discuss the suggestion whether there is significant different between the mean height of red and 
yellow row plants. 

Ho: There is no different between the mean heights of red and yellow rose plants. 

̅ = ∑ = 60010 = 60                      = ∑ = 4968 = 62
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= ∑ ( − ̅) + ∑ ( − )+ − 2=  60 + 1210 + 8 − 2 = 7216 = 4.5= 4.5=  √4.5 = 2.12
Therefore, 

= ̅ −1 + 1 =   60 − 622.12 18 + 110=   −22.12 × 3.5 = −20.742 =  −2.7       | | = 2.7
The calculated value of |t| is greater than the table value of t on 16 d.f. and at 5% probability level, 
so our null hypothesis is rejected. Therefore it can be concluded that our null hypothesis is rejected, 
hence there is significant different between the mean heights or red and yellow rose plants. 

You may try the following Exercise. 

E-1.6 In a rat feeding experiment the following results were obtained gain in weight in gm. 

High Protein 13 14 10 11 12 14 10 8 11 12 9 12 
Low Protein 7 11 10 8 10 12 9  

 Find  if there is any evidence of superiority of one diet over the other. 

Given t (5%) on 17 d.f. is 2.11 

Ans. t= 1.77 

(iii) Paired t-test 

Let (x1,y1), (x2,y2), …… (xn, yn) be a random sample of size n drawn from a bivariate normal 
population , , , ,  we wish to test 

Ho:  =  
In this case, under Ho: ̅√
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Follows t-distribution with (n-1) degrees of freedom. 

Where = −̅ = 1
= 1 − ̅

Example of paired observations 

If we want to compare the effects of two drugs D1 and D2 for the same disease, then first of all 
drug D1 should be administered to a set of certain patients (i= 1,2,3, n) and its effect should be 
recorded. After a reasonable interval of time, the drug D2 should be administered to the same set 
of patients and its effect should be recorded. The observations so obtained are said to be paired. 

Example 1.7:- The scores of 10 cadets before and after training given below: 

Cadet No. 1 2 3 4 5 6 7 8 9 10 
Score before training xi 8 3 2 4 6 8 5 8 7 9 
Score after training yi 7 5 7 5 3 9 5 10 6 10 
Based on the above data can you say whether training is effective in improving the performance 
of cadets. 

Solution:  

Since observation under x and y are paired, so to test the null hypothesis. 

Ho: Training is not effective in improving the performance of cadets i.e., 

Ho:  =    against the alternative H1:  ≠    we use the paired t-test and test statistic. 

=  ̅/√= − -1 2 5 1 -2 1 0 2 -1 1 ∑ =7 
1 4 25 1 4 1 0 4 1 1 ∑ = 

47 ̅ =  ∑ = 710 = 0.7
=  ∑ − ̅− 1 =  ∑ − ̅− 1
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= 47 − 10 × 4.99 =  47 − 4.99=  4.219 = 2.15
Here, = √4.65 = 2.15
We have 

= ̅√ =  0.7 × √102.15 =  0.7 × 3.162.15 = 1.28
Table value of t (5%) on 9 d.f. is 2.262 

The calculated value of t is less than the table value of t on 9 degrees of freedom and at 5% 
probability level. Therefore, null hypothesis may be accepted and it can be conducted that training 
is not very effective in improving the performance of cadets. 

You may try the following exercise. 

Exercise on paired to t-test: 

Ex- 1.7  Certain stimulus administered to each of 12 patients resulted in the following increases of 
blood pressures: 

5,2,8,-1,3,0,6,-2,1,5,0,4. 

Test whether stimulus can increases the blood pressure given t(5%) on 11 degrees of freedom is 
2.201. 

Ans. Sd= 3.08 

Computed t= 2.94 

iii) Test of significance of correlation coefficient 

Suppose a pair of random sample (x1,y1); (x2,y2)….(xn,yn) is drawn from a bivariate normal 
population with population correlation . 

Let the sample correlation between x and y be r 

Then we wish to test the null hypothesis: 

Ho: p=0 (i.e. population correlation effective is zero) against the alternative H1: p≠0. 
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Under Ho; √√  follows a t-distribution with (n-2) degrees of freedom.  

Example 1.8: 

A random sample of size 18 form a bivariate normal population gave a correlation coefficient 0.6. 
Does it indicate the existence of correlation in the population? 

Ho: p=0 Here, we with to test Ho: p=0 Vs H1: p≠0. 

The value of t= √√  is 

= √ − 2√1 − = 0.6√18 − 2√1 − .36 = 0.6 × 4. 80 = 2.4. 8 = 3.0
The tabulated value of t on 16 degrees of freedom at 5% level of significance is 2.12. 

Since the calculated value of t is greater than the table value of t on 16 d.f. and at 5% level of 
significance so our null hypothesis Ho is rejected. Therefore, it can be concluded that the sample 
correlation coefficient r=0.6 is significant and it indicates the existence of correlation in the 
population. 

(iv) To test the significance of Regression Coefficient: 

Suppose (x1,y1); (x2,y2)….(xn,yn) is a  random sample from a bivariate normal population with 
regression coefficient , of y and x 

We know that the regression equation of y on x from the sample is: − = ( − ̅).̅ ,  are sample means and is the sample regression coefficient of y or x. 

So that the estimated value of y corresponding to given xi is = + ( − )
We wish to test the null hypothesis: 

Ho: =  where  is known 

Under Ho: − √ − 2∑( − ̅)∑( − )
Follows t- distribution with (n-2) defines of freedom. 
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Example 1.9: 

 A random sample of size 27 gave ∑( − ̅)( − ) = 599.62∑( − ̅) = 2247.5  ∑( − ) = 1020.6 test the significance of regression coefficient of 
y on x. 

Ho: = 0. Vs  H1: ≠ 0 is known 

= ∑( − ̅)( − )∑( − ̅) = 599.621020.6 = 0.27
And ( − ) = ( − ) − ( − ̅)

= 1020.6-(.27)2 ×2247.5=1020.6-159.97= 860.59 

So 

=  ( − 2)∑( − ̅)∑( − ) = 5 × 2247.5√860.59 = 2.261
The table value of t (5%) on 25 degrees of freedom is 2.06 

The calculated value of t is greater than the table value of t on 25 degrees of freedom and at 5% 
probability level so our null hypothesis is rejected and it is concluded that the observed value of 
regression coefficient  is significant.  

14.5   Tests of Significance Based on F-Distribution 

(a) Testing of equality between two population standard deviations: 

If x1, x2, x3,………..  is a random sample from a normal population with mean and variance 1  and another random sample y1, y2, y3…….  From another normal population with mean 2
and variance 2  then to test the null hypothesis.  

Ho: 1 = 2 (on the assumption that = ) =  ( ℎ >  ) is a F statistic on (n1-1) and (n2-1) 

Degrees of freedom 

Where 
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= ∑( − ̅)− 1
= ∑( − )− 1

If >  then = ~  With (n2-1) and (n1-1) degrees of freedom.  

If F calculated is greater than the table value of F at 5% probability level and on (n1-1) and (n2-1) 
degrees of freedom, the null hypothesis Ho will be rejected otherwise H0 will be  accepted.  

Example 1.10: 

Two random samples of sizes 11 and 10 give the sum of square of deviations from their respective 
means equal to 180 and 144 respectively. Can they regarded as draw from two normal populations 
with same standard deviation. 

Ho: 1 = 2
= ∑( − ̅)− 1 = 18010 = 18.0
= ∑( − )− 1 = 14410 = 14.4

Since > = = .. = 1.25
Table value of F on 10 and 9 degrees of freedom and at 5% prob. Level is = 3.14 

Since the calculated value of F is less than the table value of F at 5% prob. Level and on 10 and 9 
degrees of freedom null hypothesis Ho is accepted and it may be concluded that there is no 
significant difference between standard deviations of two normal populations. Hence two sample 
can be regarded as drawn from two normal populations with same variances. 

14.6   Tests of Significance Based on Fisher’s z- Transformations 

(a)  To test the significance of correlation coefficient: 

Let (x1,y1); (x2,y2)….(xn,yn) be random sample of size n taken from bivariate normal population 
and r be the sample correlation coefficient. We wish to test the null hypothesis. 
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Ho: =  Vs  H1: ≠
Where  is the population correlation coefficient and  be again specified value for  which is 
different from zero. 

To test Ho a testing procedure is suggested by Prof. R.A. Fisher. He suggested to use following Z: 
transformation. 

= 12 1 +1 − = 12 (1 + )(1 − )
Or = 1.1513  1 +1 − = 1.15131 1 +1 −
For testing Ho 

The variable z found to be normally distribution with mean z0 and variance 1/ (n-3) under the null 
hypothesis for large n. 

In other words, under Ho we have =  −1/( − 3)
Which is S.N.V., i.e., 

Z~ N (0,1) 

So if calculated value of Z is greater than the table of Z= 1.96 at 5% significance level, then our 
null hypothesis will be rejected otherwise, Ho will be accepted.  

B.  Testing significance difference between two population correlation coefficients: 

Suppose n1, r1, p1 are sample size sample correlation coefficient and population correlation 
coefficient for one set of a random sample taken from a bivariate normal population while n2, r2, 
p2 are the same values for another random sample taken from other bivariate normal population. 

If we wish to test ho: p1=p2 then we calculate, 

= 12 1 +1 − = 1.15131 (1 + )(1 − )
and 

UGSTAT-102/259



= 12 1 +1 − = 1.15131 (1 + )(1 − )
Under  H0 we have =  −1( − 3) + 1( − 3)
Following N (0,1) 

Thus if calculated value of |Z| is greater than the table value of Z= 1.96 at 5% probability level, 
then we reject our null hypothesis H0, otherwise Ho will be accepted. 

The above Z is also a Fisher’s Z-transformation. 

Example 1.11: 

The value of sample correlation coefficient obtained from a sample of size 19 drawn a bivariate 
normal population is 0.8. Is this value consistent with the hypothesis that the correlation in the 
population is 6 at 5% level of significance? 

Solution 

There 

= 12 1 +1 − = 1.15131 (1 + )(1 − )
= 1.15131 1 + .8(1 − .8)= 1.15131  9= 1.15131(. 9542) = 1.0985
and 

= 12 1 +1 − = 1.15131 (1 + )(1 − )
= 1.1513  1 + .6(1 − .6)= 1.1513   4= 1.1513(. 6021) = 1.0985
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Under Ho =  −1( − 3) =  1,0985 − .6932119 − 3= 4(. 4053) = 1.6212
For two side alternative :  ≠ .8 the tabulated value of z at 5% level of significance is 1.96. 

As calculated value falls in the region of acceptance, Ho may be accepted at 5% of the significance 
and we may say that at 5% level of significance, the value of sample correlation coefficient is 
consistent with the hypothesis that the population correlation is 0.6. 

Example 1.12: 

 A sample of size 67 gave a correlation of 0.6 whereas another sample of 39 gave a correlation of 
0.8 can these two samples be considered as coming from population having equal correlation 
coefficients? 

Solution: 

We have to test the null hypothesis 

Ho:  = 

Now, Z1= 1.1513 log 

=  −1( − 3) =  1,0985 − .6932119 − 3= 1.1513 × 0.6021 = 0.6932= 1.1513  1.8100.2 = 1.1513 × (9.0)
= 1.1513 × 0.9542 = 1.099=   −1( − 3) + 1( − 3) =  . 6932 − 1.099164 + 136= (−.4058) × 4.8 =  −1.948
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|Z|= 1.948 

Since the calculated value of |Z| is smaller than the table value of Z = 1.96 at 5% probability level 
so null hypothesis Ho will be accepted. Therefore it can be concluded that there is no significant 
difference between correlations of two population i.e. two samples come from population having 
equal correlations. 

(C)   To test the homogeneity of correlation coefficients 

Let ri be the sample correlation coefficient based on a random sample of size ni taken from the 
bivariate normal population with correlation coefficient p1, i= 1,2,3…., k (k>2). We wish to test 
Ho: p1=p2= ……pk. We define, 

= 12 1 +1− = 1.15131 (1 + )(1 − )
and 

̅ =  ∑ ( − 3)∑ ( − 3)
Then under Ho: 

( − 3)( − ̅)
Follows chi-square distribution with (k-1) degrees of freedom. 

If Ho is accepted at % level significance, then an strate of population correlation coefficient is 
given by 

̅ = 12 1 +1 −
Or 

= 1 +1 −
Or (1 − ) = 1 +
Or − = 1 +
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Or − 1 = (1 + )
Or 

= + 1− 1
= tan h ( ̅) 
(D)   Testing the significance of the ratio to two independent estimates of the        

population variance (The variance- ratio test) 

Let there be two independent samples of sizes n1 and n2 taken from normal population with 
variance  respectively and ,  are the unbiased standards of respectively 
based on these samples. Under H0: the statistic /   follows Snedecor’s F-distribution. 

In fact, R.A. Fisher had originally defined the statistics z as 

= 12
For testing Ho: = 
The distribution of this =  follows a less skewed distribution than F.  

So this test may be used for testing Ho: = 
Remark: 

Fisher’s z transformation should not be confused with SNV.  You may try the following 
Exercises. 

14.7   Self Assessment Exercises 
1. Talcom Powder is packed into tins by a machine. The weights of a random sample of 10 

tins were taken in lbs as .46, .45, .49, .50., .49, .51, .50, .43, .44, .48. Examine at 5% level 
of significance if the variability in weights can be expressed by a standard deviation of 0.3 
lbs.? 

2. A random sample 9  out of a very large number of mass produced components gives a 
mean dimensions of 68 inches and an unbiased standard of population variance as (4.5) 
(inches)2. Are these data consistent with the assumption that the mean dimension in the 
population (assuming normal) is 68.5 inches at 5% level of significance? 

3. Eight plots growing three wheat plants each were exposed to a high tension discharge while 
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nine similar plots were enclosed an earthen ware cage. The number of tillers in each plot 
were as follows: 

Caged 17 26 18 25 28 26 23 17 
Electrified 16 16 22 16 21 18 15 20 

Discuss whether electrification makes a significant difference in the average tillers at 1% level of 
significance. 

4. A correlation coefficient of 0.3 is obtained from a random sample of 27 pairs of 
observations from a bivariate normal population. Is this value is significantly different from 
zero correlation at 5% level of significance/ 

5. Random samples of sized 10 and 12 taken from two normal population with variances 
 respectively. These gave the values of their unbiased estimators as 144 and 324 

respectively. Test the null hypothesis. Ho: =  at 5% level of significance. 

14.8  Solutions and Answers  

9.  Cal = 7.83′
Ho: may be accepted at 5% level of significance and we may concluded that s.d. of the wrights of 
ten’s can be taken as .03 lbs. 

10.  cal |t| = .7 

Ho: may be accepted at 5% level of significance and it ma be concluded that sample has been from 
the population having mean of 68.5 inches. 

11: Cal |t| = 2.75 

Degrees of freedom = 15 

Ho: may be accepted at 1% level of significance and it may be concluded that there is zero 
correlation in the population 

12.  Here , = = = 2.25
Degrees of freedom (11,9) 

F.05 (11,9) = 3.15 

Ho: is accepted at 5% level of significance.  

14.9  Summary 
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The statistic on which our testing procedure is based is known as test statistic. The 
probability distribution of this statistic determines the nature of the test. If the probability of this 
statistic is Chi-square or t or F then the tests are reffered ad Chi-square, t or F tests. The statistic 
differs from one situation to another. The various tests in detail have been discussed alongwith 
situations where they are applicable. 

14.10  Further Readings 

1. Fundamentals of Statistics volume I by A.N. Goon, B.D. Gupta and Das gupta. Pub; 
Calcutta Publishing House, Kolkata 

2. Introduction to Mathematical statistics by Hogg and Craig. 
3. Introduction to Mathematical Statistics by Mood, Graybill and Boes. Pub: Mac. 

Graw Hill 
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Unit-15: Large Sample Tests 

Structure 

14.1 Introduction 
14.2 Objectives 
14.3 Testing significance of mean 
14.4 Testing equality of means 
14.5 Testing significance of Proportion 
14.6 Testing equality of proportions 
14.7 Testing Significance of standard deviation 
14.8 Testing Equality of standard deviations. 
14.9 Self Assessment Exercises 
14.10 Solutions and Answers 
14.11 Summary 
14.12 Further Readings 

15.1   Introduction 

An important aspect of the sampling theory is to study the test of significance which enable us to 
decide (on the basis of a random sample of size n taken from the parent population) whether- 

(i) The different between the observed sample statistic and the hypothesis parameter value, 
or 

(ii) The difference between two sample statistics. 
Is significant or might be attributed due to chance or the fluctuations of the sampling. 
For applying tests of significance, one first sets up hull and alternative hypothesis and 
takes decision regarding critical region, level of significance critical (or significant) 
value of the test statistic as per given conditions/ situation. 
For large samples, corresponding to test statistic T, the variable Ƶ =   − ( )( )

Is assumed to be normally distributed with mean zero and variance unity. 

Generally, a random sample of size more than 30 is regarded as a large sample. 

15.2   Objectives 

After going therefore this unit, you will be able to apply large sample tests for 

Testing significance of mean 
Testing equality of means 
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Testing significance of proportion 
Testing equality of proportions 
Testing significance of s.d. 
Testing equality of standard deviations. 

15.3   Testing significance of mean 

Let x1, x2, x3,………..  be random sample of size n taken from N( , ). The sample mean ̅ =∑  follows normal distribution with mean  and variance / . For large samples, (i.e. where 
sample size is more than 30), it is true even if population is not normal. Thus, 

Ƶ =   ( ̅ − )√
be have like a S.N.V. incase of large samples. However, if the parent population is normal then 
the result is true even for small samples. 

With an increased sample size, the sample variance = ∑( − ̅)  can safely be taken as an 
approximation to population variance = (if not known). Thus without any significant error 
approximation in large samples we have, 

Ƶ =   ( ̅ − )√
As S.N.V. 

So if one wishes to test H0: =   in case of large samples with unknown population variance 
one may use the test statistic 

Ƶ =   ( ̅ − )√
For known variance one uses Ƶ =   ( ̅ − )√

To reject or accept the above null hypothesis, the calculated value of Ƶ is compared with 1.96 
which is table value of a standard normal variate at 5% probability level for two tail test and 1.645 
for one sided test. 

If the calculated value of | Ƶ | is greater than 1.96, then we reject our null hypothesis Ho and 
otherwise it is accepted. 
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Example: (2.1) A machine is expected to produce nails of length 5.00cm. A random sample of 64 
nails gave an average length of 5.8 cm. with standard deviation of 0.80 cm., can it be said that the 
machine is producing nails as per specification.? 

Here ̅ = 5.8cm,    = 5.00cm     = 0.80cm.  

The null hypothesis is  

H0: = = 5.00 .
To test the above null hypothesis we use: 

Ƶ =   ( ̅ − )√ =  (5.8 − 5.0)0.8 × √64 = 0.8 × 80.8 = 8.0
The calculated value of Ƶ is greater than the table value of Ƶ = 1.96 at 5% probability level, so our 
null hypothesis Ho is rejected. The calculated value of Ƶ = 8.0 is also greater than the table value 
of Ƶ = 2.58 at 1% probability level. Therefore the value is also significant at 1% level of 
significance. Therefore the value is also significant at 1% level of significance. Therefore from the 
above available data it can be concluded that machine is not performing up to specification.  

Example 2.2 A random sample of 400 male students is found to have a mean height of 168 cm. 
Can it be reasonable regarded as a sample from a population with mean height = 167.8cm. and 
standard deviation 3.25cm? 

Here ̅ = 168,    = 167.8cm,  = 3.25,    = 400.  

So 

Ƶ =   ( ̅ − )√ =  168 − 167.83.25√400 =  0.2 × 203.25 = 4.003.25 = 123
The calculated value of is smaller than the table value of Ƶ = 1.96 at 5% probability level, so our 
null hypothesis will be accepted. Hence there is no significant difference between sample mean 
and population mean. Therefore it can be reasonably regarded as a random sample from a 
population with mean 167.8cm and  = 3.25 

15.4   Testing equality of means 

Suppose x1, x2,…………xn is an random sample from a normal population with  as mean and 
variance  and another random sample y1, y2,….yn2 from second normal population with mean 

 and  . It is assumed that and are large two random samples are independent. Then we wish 
to test the null hypothesis. 
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n1 and n2 are large and two random samples are independent. Then we wish to test the null 
hypothesis. 

Ho: =
Now we know that 

̅~ ,
~ ,

Hence, 

=  ( ̅ − ) − ( − )
+  ( . . . )

So, if Ho: = is true then 

=  ( ̅ − )
+  ( . . . )

Hence if calculated value of | Ƶ | is greater than 1.96 which is table value of Ƶ at 5% probability 
level, then our null hypothesis Ho will be rejected, otherwise accepted. The table value of Ƶ at 1% 
level of significance is 2.58. 

Example 2.3: A random sample of 150 village was taken from district A and the average 
population per village of was found to be 440 and standard devotion 32. Another random 
population of 250 villages from the same district gave an averaged population 480 per village with 
standard 

Here    n1= 150        ̅  = 440       s1= 32 

n1= 250          = 480       s2= 56 

We want to test the null hypothesis 

Ho: =
Under Ho, 
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=  ( ̅ − )
+ =  (440 − 480)(32)150 + (56)250

= −40√6.83 + 12.542 =   −40√19.372 =  − 404.42 =  −9.09
Hence | Ƶ |= 9.09 

Since the calculated value of | Ƶ | is greater than the table value of Ƶ = 2.58 at 1% level of 
significance. Therefore the different between the means is highly significant. 

You may try the following exercise. 

Example P- 2.1: The potential buyer of light bulbs purchased 50 bulbs of each of two brands. 
After testing these bulbs he found that brand A had a mean life of 1282 hours with a standard 
deviation of 80 hours, where as brand B had a mean life of 1208 hours, with a standard deviation 
of 94 hours. Can the buyer be quite certain that the two brands differ in quality? 

14.5   Testing Significance of Proportion 

If a random sample of size n is drawn from a population with population proportion P. then we 
wish to test the null hypothesis 

Ho: P= Po  where Po is a particular specified value of P 

Standard error of sample proportion is 

( ) =   ℎ = 1 −
and n is large 

Then to test the above null hypothesis, under Ho, = − ( );  = 1 −
if calculated value of | Ƶ | is greater than the table value of Ƶ at 5% level of significance, our null 
hypothesis will be rejected, otherwise accepted. (the table value of Ƶ = 1.96 at 5% level for two 
sided test and the table value of Ƶ = 1.645 for one sided test ) 
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Example 2.4 In a sample of 400 burners, there were 12 burners whose internal diameters were not 
within tolerance. Is this sufficient evidence for concluding that the manufacturing process is 
turning out more than 2% defective burners? 

Here   P= .02,    Q= 1-P= 0.98 and p= 12/400= .03 

The null hypothesis is: 

Ho: P= 0.02 

To test the above null hypothesis we use: 

= − =  (. 03 − .02). 02 × .98400= 0.01√. 000049 =  . 01. 007=  1.429
The calculated value of is less than the table value of = 1.645 (for one tail test) at 5% probability 
level, so our null hypothesis is accepted. Therefore, it can be concluded that the process is under 
control. 

14.6   Testing Equality of Proportions 

Let n1 and n2 be two large samples taken from two different population and we wish to test Ho: 
P1=P2, where P1 and P2 are population proportions of two quality characteristics. Suppose p1 and 
p2 be the corresponding sample proportions obtained from the two random samples drawn these 
populations. If n1 and n2 are sufficiently large, then under Ho: = −+ ~ (0,1)
When q1= 1-p1 and q2= 1-p2

However if n1 and n2 are moderately large with define = ++ = 1 − .
In this case under Ho, 
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= −1 + 1 ~ (0,1)
Example 2.5: A machine produced 20 defective articles in a batch of 400. After overhauling it 
produced 10 defectives in a batch of 300. Has the machine improved? 

Ho: there is no difference in the improvement of the machine before and after overhauling. 

Or Ho: p1-p2= 0 

P1= 20/400= .05      so q1 = 1-p1= 1-.05= .95  

P2 = proportion of defective articles after overhauling = 10/300= .033 

So q2= 1-p2= 1-.033= 0.97 

( − ) = +
= . 05 × .95400 + . 033 × .967300= √0.00023 = 0.015 

Then 

= −( − ) =   . 05 − .033. 015 = . 017. 015 = 1.134
The calculated value of | Ƶ | is smaller than the table value of Ƶ at 5% level of significance, so our 
null hypothesis Ho is accepted. Therefore, it can be concluded that the machine has not improved 
after overhauling  

You may try the following exercise 

Exercise P- 2.2: In a sample of 800 men from a certain city, 500 men are found to be smokers. In 
a sample of 900 from another city, 450 are found to be smokers. Do the data indicate that the two 
cities are significantly different with respect to prevalence of smoking habits among men? 

14.7   Testing significance of standard derivation 

The variance of a sample standard deviation say’s is  if a large sample of size n is drawn from a 
normal population of variance. It is to be noted that if parent population is not normal then this 
formula is not to be relied upon. Thus, for normal parent population to test Ho: =
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Under Ho: = −
2 . . .

14.8   Testing Equality of Standard Deviations 

Let s1 and s2 be the sample standard deviation of the two large samples of sizes n1 and n2 taken 
from two normal population with variance  respectively. For testing Ho: =  under 
Ho, we have =  −

2 + 2      ( , )
Or =  −

2 + 2      ( , )
Or =  −1 + 1
Where 

= 1+ [ + ]
as standard Normal Variate (S.N.V.). 

Example 2.6: Random samples of sizes 300 and 270 taken from two normal population with 
variance  respectively gave sample standard deviations as 240 and 202. 

Test the hypothesis Ho: =  at 1% level of significance. 

Solution: 

Here Ho: =
Against H1: ≠
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Under Ho, =  −
2 + 2

=  240 − 202(240)2 × 300 + (202)2 × 270 =
3813 ≈ 3

For two sided test the tabulated value of Z at 1% level of significance is 2.58. 

As calculated value falls in the critical region, Ho may be rejected at 1% level of significance and 
we may conclude that the difference between the standard deviations is significant at 1% level of 
significance. 

You may try the following exercises. 

15.9  Self Assessment Exercises 

E-2.3 A random sample of 900 members  is found to have a men of 3.4cms. Could it be regarded 
as a sample from a large population with mean 3.25cms. and s.d. 2.61 cm. at 5% level of 
significance/ 

E-2.4 A random sample of 6400 Englishmen has mean height of 67.85 inches with s.d. 2.56 inches 
while a sample of 1600 Austrians has a mean height of 68.55 inches with s.d. 2.52 inches. Do the 
date indicate that the Austrians are on average taller than Englishmen at 5% (or 1%) of 
significance? 

E- 2.5 If the expectation is that 2% of men of exact age 60 years will die within the year and if out 
of 900 such men, 24 die within the year, can the group be regarded as a random sample of such 
men at 5% level of significance? 

E- 2.6 In a large city A, 20% of a random sample of 900 school boys had a slight physical defect. 
In another city B, 18.5% of a random sample of 1600 school boys had the some defect. Test 
whether the difference between the two properties is significant at 5% level of significance? 

15.10   Solutions and Answers 

E-2.3 Cal. |Z|= 1.72 

Ho is accepted at 5% level of significance and are may conclude that sample belongs to a large 
population with mean 3.25cms and s.d. 2.61cms.  
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E-2.4 Cal. |Z|= 9.21 (One sided test) 

Ho is rejected at 5% (or 1%) level of significance and are may conclude that Austrian on an 
overage, taller than Englishmen. 

E- 2.5 Cal. |Z|= 1.43 

Ho is accepted at 5% level of significance and it may be concluded that the difference between the 
proportions is insignificant. 

E- 2.6 Cal. |Z|= 0.94 

Ho is accepted at 5% level of significance and it may be concluded that the difference between the 
proportions is insignificant. 

15.11   Summary 

A random sample of size n where n>30 is regarded as a large sample. In case of large samples the 
probability distribution of test statistic is approximately normal. The various tests have been 
discussed along-with illustrations and situations where they are applicable.  

15.12   Further Readings 

1. Fundamentals of Statistics volume I by A.N. Goon, B.D. Gupta and Dasgupta. Pub; 
Calcutta Publishing House, Kolkata 

2. Introduction to Mathematical Statistics by Mood, Graybill and Boes. Pub: Mac. Graw Hill 
3. Introduction to Mathematical statistics by Hogg and Craig. 
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Unit-16:  Non- Parametric Tests  

Structure 

16.1   Introduction 
16.2   Objectives 
16.3   Non- parametric Tests  
16.4   Sign Test  
16.5   Wilcoxon Signed- Rank Test  
16.6   Mann- Whitney- U-Test  
16.7   Run Test 
16.8   Solutions and Answers 
16.9   Appendix 
16.10   Summary 
16.11   Further Readings 

16.1   Introduction 

In this unit we will be introduce you with non- parametric tests. In section 3.3, an attempt is made 
to explain the difference between parametric and non- parametric inferences highlighting the wider 
scope of latter to the former in terms of its use with less restrictive assumptions. In the following 
sections some of the non- parametric tests have been discussed. We will start with sign test 
discussed in section 3.4, which is two sample tests. It is an alternative to paired t-test, which is 
used only if sampling is form normal population. For same problem, Wilcoxon test is also 
developed in section 3.5. If the samples are independent, Mann Whitney- Wilcoxon Test 
(discussed in section 3.5) is used to test the run test has been testing the randomness of a series. It 
can also be used to test the equality of populations form which two independent samples are drawn. 
For your convenience, table are provided in the last as appendix to be used for the calculation of 
P-values. A summary is also provided to check whether you have achieved the objectives or not. 

At the end of each sub section few unsolved problems are given. Solve these and check whether 
you have achieved the following objectives.  

16.2   Objectives 

After reading this unit you should be able to : 

Discriminate between parametric and non parametric inference 
Formulate the null and alternative non- parametric hypothesis 
Choose a non parametric test for the formulated hypothesis 
Draw inference after calculation of the test statistics 
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16.3   Test of significance based on Chi-square Distribution. 

You have already studied the tests of significance in the earlier units. You may not that the 
test discussed so far are mostly concerned with testing the validity of certain statement about the 
parameter of the population from which the sample is drawn. For example, you have studied the 
tests for testing the mean/ variance of a normal population, equality of means/ variances of two 
normal populations. In most of these situations, we assume that the samples comes from a 
population having a known specific mathematical form of the distribution function (through its 
probability distribution function or probability mass function); the only thing unknown is the 
parameters (arbitrary constants involved in the distribution). Therefore, we consider for the 
population a family of distribution F (X| ). A particular value of  completely determines a unique 
member of the family. Since these are related to the parameter of the population, these are called 
parameter tests. 

Often however we may not have enough information to specify a family of distribution for 
the population from which sample is drawn. For example we may not be able to decide whether 
the sample is from normal family of distribution or exponential family of distribution or from any 
other distribution. Naturally, a question that arises at this stage is “Can we still develop tests”? The 
answer is yes. We may develop tests, consider a non-parametric model for the population. By a 
non-parametric model, we mean a much wider class of distribution whose mathematical form is 
unspecified. We only make general assumptions about the distribution; for example, family of all 
distributions having finite mean, family of all distributions having unique mode and family of 
distributions symmetric about their median etc. The tests based on such assumptions about 
distribution of the population from which sample is drawn are called non parametric tests or 
distribution free tests. 

The terms non-parametric and distribution free are used interchangeably. It should be noted 
however, that non parametric does not mean that there is no parameter and distribution free does 
not mean that there is no distribution involved in the test procedure.  

In non parametric or distribution free test procedure, the most that we will assume is that 
the underlying distribution is of the continuous type. This is a mathematically convenient 
assumption that allows us to assume that the observations can be arranged in increasing 
(decreasing) order with no ties (you know that for continuous random variables P(X=Y) =0). This 
family is so wide that it general the non- parametric or distribution free test procedures may not be 
as sharp and powerful as those developed for specific parametric or distribution-free test 
procedures are almost as good as the parametric test procedure we must make sure that the 
underlying assumption about the distribution is true or at least reasonably justified. If it is felt that 
there is not enough information available to choose a specific parametric distribution, it is 
advisable to use a non parametric or distribution free test procedure. 

In the following sections, we will discuss a few non parametric or distribution free test 
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procedures; namely Sign Test, Wilcoxon Signed- Ranks Test, Mann- Whitney Test and Run Test. 

16.4  Sign Test 

Suppose we want to test whether a particular type of coaching helps the students to improve 
their performance in the examination. For this purpose a group (say, n) of students was selected 
randomly and two examinations were conducted for them, one before providing the coaching and 
the other after the coaching. The marks obtained by the ith student (i= 1,2,…..,n) in the two 
examinations are Xi and Yi respectively. How do we go about testing whether the coaching has 
improved the performance of the students in general? Without giving a deeper thought to the 
problem one can suggest the use of paired t-test. But you should note that the test is valid if we 
assume that (Xi, Yi) follows bi-variate normal distribution and the marks of the students may 
follow some skewed distribution. Under such a suspicion one can proceed in a very simple way as 
described below. 

Let us consider the difference Di= Xi-Yi. If Di is positive, it indicates that the performance 
of the ith student has improved. On the other hand, if Di is negative, it is an indicator of deterioration 
of the performance of the student. If most of the Di is positive, it indicates that in general the 
performance of the students have increased. In the light of the above arguments, one can develop 
a test procedure as given below.  

Let us consider the null hypothesis to be no significant improvement in the performance 
hence probability of increase in the mark is same as the probability of a decrease i.e. P (X>Y) = P 
(X<Y). Therefore, the null hypothesis is specified as Ho: P (X>Y) = P (X<Y). The alternative 
hypothesis is, naturally, that there is improvement in the performance after the coaching i.e. H1: P 
(X>Y) < P (X<Y). We assume here that (X, Y) has jointly continuous distribution so that P (X=Y) 
= 0, that is, ties occur with zero probability. In that case 

1= P (X>Y) + P (X<Y) 

Therefore, under Ho

P(X>Y) = ½ =  P(X-Y<0) 

Similarly we may see that under H1

P(Y-X<0)>1/2.  

Let S is the number of pairs of (Xi, Yi) for which Xi >Yi i.e., the difference, Di= Yi-Xi, is negative. 
Then under Ho: S has binomial distribution with parameter n and p =P (X>Y)= ½. Since, positive 
values Di indicates improvement therefore, we may reject the null hypothesis if the values of S is 
small and define the test procedure as: 
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Reject Ho: if S ≤ C Where C is to be chosen such that P (S≤C|H0) is less than or equal to  the 
prefixed level of significance (say, ). Now,  

P (S ≤ C|H0) = 12 nk
and, hence C is chosen to be the largest value such that 12 nk ≤  α
Since the test statistic count the number of negative (or positive) sign of Di, the resulting test is 
called Sign test.

It should be noted that to perform the sign test we do not need the numerical values of  Di= Yi-Xi, 
i= 1,2,……n. We only need to know the sign of Di= Yi-Xi for each i. Also even though we have 
assumed that P(Yi-Xi= 0)=0, ties do occur in practice. In case of ties, we remove the tied pairs 
from consideration and perform the test with remaining n observations. 

n* = n- number of ties observations 

Example 3.1:  

To test the effectiveness of a new medicine in reducing the weight, nine randomly selected persons 
were weighted before and after they took the medicine for three months. Their weights (in 
kilograms) before and after taking the medicine were recorded as follows: 

S. No. Weight before use of 
medicine (X) 

Weight after use of 
medicine (Y) 

Sign of 
D= Y-X 

1 80 79 - 
2 82 83 + 
3 75 75 Tie  
4 90 81 - 
5 98 95 - 
6 87 86 - 
7 100 101 + 
8 107 105 - 
9 103 100 - 

The null hypothesis that we wish to test here is that the medicine is ineffective that is Ho p = P 
(X>Y) + P (X<Y) = ½ 

Against the hypothesis that medicine is effective, that is 
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H1:  P (X>Y)> 1/2 (or P (X<Y) < ½) 

Since there is one tie (S. No. 3), we drop that observation and use the remaining 8 pairs of 
observation only. We may also note that negative sign of D is indicator of effectiveness of the 
medicine. Therefore lesser the number of positive differences (Say, S), greater chances of 
effectiveness of the medicine and hence we may reject the null hypothesis of non effectiveness in 
favor of alternative hypothesis of effectiveness of the medicine if positive differences are less in 
number. Here the number of positive differences are less in number. Here the number of positive 
differences are less in number. Here the number of positive differences is 2. Further, if we decide 
to reject the null hypothesis for S≤C, 

P (S ≤ C|H0) = 12 8k =   0.1446 for C = 20.0352 for C = 2
If the level of significance  is prefixed at 0.10, the test procedure may be defined as reject Ho at 
10% level of significance if S is less than or equal to 1. Here, S=2, therefore we may conclude that 
data do not provide enough evidence for the rejection null hypothesis. Calculating the p value, we 
arrive at the same conclusion because p-value, P(S≤2|Ho)= 0.1446, is greater than the prefixed 
level of significance. 

Remark: 

1. The test discussed above consider one type of one sided alternative hypothesis. Similarly 
for other type of one sided alternative or two sided alternative we can develop the test 
procedures. The test are presented below. 

To test null hypothesis Ho P (X<Y) = P (X>Y) = ½ for jointly continuous random variables X and 
Y (based on the number S of alternative differences of D= Y-X in a sample of size n, without ties) 
against the alternative hypothesis. 

(i) H1:  P (X<Y)> ½, reject Ho at  ∝ % level of significance if 0≤S≤C where C is chosen 
such that 12 nk ≤  α

(ii) H1:  P (X<Y)< ½, reject Ho at  ∝ % level of significance if n-C≤ S≤ n where C is chosen 
such that 12 nk =   12 nk ≤  α.
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(iii) H1:  P (X<Y)≠ ½, reject Ho at  ∝ % level of significance if 0≤S≤C or n-C ≤ S≤ n where 
C is chosen such that 

12 nk + 12 nk =  12 nk ≤  α.
2. In many applications X’s and Y’s independent. This happens, for example when we need 

to compare two treatments or drugs to ascertain which is better. In this case the two drugs 
cannot, in general be administered the first drug and choose n other patients who receive 
the second drug. We may select n pair of patients in such a way that patients in such are 
matched as closely as possible for similar characteristics. In such pair we randomly select 
one to receive the first drug and the other to receive the second drug. Let Xi’s and Yi’s 
i=1,2,…n are the responses who receive the first and second drug respectively. Even now, 
the X’s and Y’s are independent. Under the null hypothesis that both the drugs are equally 
effective, we note that P(X<Y)= P(X>Y)= 1/2 and we can use the sign test described above. 
The above discussion should not be misunderstood as sign test can be used for two 
independent samples. It is only indicated that independent sample situation can be 
converted in paired observation case by prober planning before taking the actual 
observation. 

3. Test of location:
Suppose the we have a sample X1, X2,….Xn from a continuous population and wish to test 
that the sample comes from a population having kp as the quantile of order p i.e. p= P(X≤ 
ko). Let us denote the unknown population quantile of order p by . In other words, we 
wish to test the null hypothesis Ho: = ko. The alternative hypothesis H1 can be one sided 
H1; < ko or H1: = > ko or it can be two sided alternative H1: ≠ ko. Let S be the 
number of negatives in Di= Xi- ko. Following the arguments given above we may reject 
Ho at % level of significance against the alternative hypothesis.  

(i) H1: > ko if 0≤S≤C where C is chosen such that nk q p ≤  α
(ii) H1: < ko if n-C≤ S≤ n where C is chosen such that nk q p =   nk q p ≤  α.
(iii) H1: ≠ ko if 0≤S≤C or n-C ≤ S≤ n where C is chosen such that nk q p + nk q p ≤  α.

Or 
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2 nk q p ≤  α.
It may be noted here that for testing H0: ≥ ko against H1: > ko the test (i) and for 

testing H0: ≤ ko against H1: < ko the test (ii) give above to be used. 

Example 3.2: 

A bank manager claims that the average waiting time in getting a demand draft prepared is 
20 minutes. In order to verify his claim a random sample of 12 customers showed waiting times 
25, 25, 19, 16, 21, 24, 28, 18, 24, 28, 15, and 11 minutes. Does the data support the claim? 

Here the null hypothesis to be tested is that the average waiting time ( , say) is 20 minutes  
i.e. Ho:  = 20 and the alternative hypothesis is H1: ≠ 0. Let us assume that the waiting time X 
has a symmetric distribution about  . Therefore the null hypothesis can equivalently be expressed 
as P(X<20) = P(X>20)= ½. There are seven negative signs in Xi-20, i= 1,2,…12 that is S=7. For 
given level of significance the say, .10., the rejection region for null hypothesis is 0 ≤ S ≤ C or 
n-C ≤ S ≤ n where C is chosen such that 

2 12k 12 ≤ .10
It follows that C=2 and the actual size of the test is 0.0386. For C=3, the size of the test become 
0.2534. Since the calculated value of S= 7 is not in the rejection region we conclude that the data 
do not provide evidence for the rejection of the null hypothesis at 10% level of significance. 

The same conclusion is arrived at through P-value calculation also because under Ho, 

P(S ≥ 7) = 12k 12 = 0.3871
And hence the P-value is 2(.3871)= 0.7742. 

Now you can solve the following problem on your own. Check your answers given in the section 
3.9. 

Ex- 3.1:  Ten chickens are fed an experimental diet for four weeks and their weight gains in grams 
are recorded as given below: 

80,75,65,84,40,60,49,50,38,39. 

Test the manufacturer’s claim that average weight increase is 48 grams or more. 
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Ex-3.2 A course was taught by two methods: the classroom instruction method A and the self 
study method B. Ten students each are selected randomly and carefully matched according to their 
background and ability prior to instruction. At the end of the course ten pairs of scores are recorded 
as follows: 

Pair No. Score  
 Method A Method B 
1 96 99 
2 112 110 
3 115 111 
4 98 103 
5 95 90 
6 110 95 
7 98 100 
8 111 92 
9 97 99 
10 98 93 

Do the data indicate any significant different between the two methods at 10% level of 
significance? 

E- 3.3 Eleven students are given a course designed to improve their I.Q. on a standard test. Their 
scores before and after the course are recorded as follows: 

I.Q. before 95 110 120 98 99 95 
I.Q. after 98 114 124 93 99 106 
I.Q. before 89 93 95 116 95  
I.Q. after 106 95 103 124 111  

What can you say about the effectiveness of the course? 

The sign test discussed above is a test of median or for comparing two population based on paired 
observation. It is in fact rather crude in the sense that it used only the sign of the difference but 
ignores the magnitude of these differences. Thus it provides equal weight to the differences. Let 
us recall the example of improvement in the performance of the student after coaching. It looks 
illogical to give equal weight to greater gains and marginal loss and vice-a versa. An alternative 
test to sign test is Wilcoxon test, which takes into account both the magnitude and the sign of the 
differences. 

16.5   Wilcoxon Signed- Rank Test 

Let X1, X2,…..Xn be a random sample from a continuous symmetric population and m (unknown) 
is the population median. We wish to test the hypothesis Ho: m = mo (assumed median). Consider 
the differences Di = Xi – mo. Clearly under null hypothesis Di has continuous and symmetric 
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distribution bout zero. Consequently, under null hypothesis, we expect negative and positive 
differences to be about evenly spread out and hence number of positive and negative differences 
should be more our less equal as expected in median test also. In addition to this positive and 
negative differences of equal absolute magnitude should occur with equal probability. Since Xi’s 
have a continuous distribution P(Di=0) =0 and we assume that |Di|>0 for i=1,2,……,n and Di ≠ Dj

for i ≠ j. Now consider the absolute value of the differences and rank them from. 1 (for smallest) 
to n (for the  largest) keeping track of the original sign. Now, find sum of the ranks of the positive 
differences W+ and sum of the ranks of the negative differences W-. Obviously 

  +   =   =   ( + 1)2
So that W+ and W- offer equivalent test statistics. Under null hypothesis we expect W+ and W- to 
be more or less same. A large value of W+ indicate that most of the larger ranks are assigned to 
the positive Di’s hence it follows that large values of W+ support the true median m is greater than 
the assumed median mo. Therefore if we have to test the null hypothesis Ho: m=mo against the 
alternative hypothesis H1: m>mo, we may reject Ho if W+ is large. Let Wo be the observed value 
of W+ then  p-value (probability that W+ ≥ Wo under the null hypothesis) can be obtained from 
the table of Cumulative Right Tail Probability For Wilcoxon Signed Rank Test’ given in the 
appendix as Table I. A similar argument applies to the alternative hypothesis H1: m<mo and H1: 
m≠ mo to get the corresponding region of rejection of null hypothesis and associated p-values. The 
various region of rejection with corresponding null hypothesis and associated Ho, alternative 
hypothesis Hi and p-value is given in following table:  

Wilcoxon Signed Rank test

Null Ho Alternative H1 Reject Ho if p-value 
m= mo m> mo W+ is large P(W+≥Wo(c) Ho) 
m= mo m< mo W- is large P(W-≥Wo(c) Ho) 
m= mo m≠ mo W+ or W- is large 2 (smaller tail probability 

The table mentioned above provides the cumulative right tail probability P(W≥W0 |Ho) for values 
of W0 ≥n(n+1)/4 and n=2,3,…..15. Here W is either W+ or W- as the case may be. For large n we 
use the normal approximation. Under H0, the common distribution of W+ and W- is symmetric 
about the mean n(n+1)/4 with variance n(n+1)(2n+1)/24, therefore 

=  − ( + 1)/4( + 1)(2 + 1)/24
Follows standard normal distribution and p-values can be obtained. For example 

P(W+ ≥ W0 |Ho) = P(W≥W0 -1/2 |Ho)       (continuity correction) 
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= ≥  − .5 − ( + 1)/4( + 1)(2 + 1)/24
Problem of Ties and Zeroes: 

Even though we assume that the distribution is continuous, ties and zero do occur in practice. As 
in the case of sign test, the recommended procedure is to drop the zeros and use the reduced sample 
size. If there are ties i.e. if some of the Di’s are equal, assign to each such Di a rank equal to the 
simple arithmetic average of the ranks, which these Di’s would have received if they were not 
equal. For example an ordered observations 2,2,5,5,7,8,8,8,10 are assigned respectively the ranks 
1.5, 1.5, 3.5, 3.5, 5, 7,7,7, 9. 

Example 3.3:  

A random sample of 15 infants shows the following pulse rate (beats per minute): 

119, 120, 125, 122, 118, 117, 126, 114, 115, 123, 121, 120, 124, 127, 126 

Does the data confirm that the median pulse rate of infants is different from 120 beats per minute? 

We assume that the distribution of pulse rate is symmetric and continuous. The null hypothesis to 
be tested here is H0: m=120 against the alternative H1; m ≠120.Let us compute the Di = Xi -120 
|Di| and rank of |Di|. 

Di:   -1, 0, 5, 2, -2, -3, 6, -6, -5, 3, 1, 0, 4, 7, 6 

|Di| :  1, 0, 5, 2, 2, 3, 6, 6, 5, 3, 1, 0, 4, 7, 6  

Excluding the two O’s we arranged the observations in increasing order as 

1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 6, 7  

With ranks 

1.4, 1.5, 3.5, 5.5, 5.5, 7, 8.5, 11, 11, 11, 13 

Hence 

W- = 1.5+3.5+5.5+8.5+11= 30 

So that 

W+= 13(13+1)/2-30= 61 

For the reduced sample size 13, from the table mentioned above we get P(W+ > Wo |Ho|) = .153 
so that the associated p- value is 2(.153) = .306. Thus under Ho the chance of observing as large a 
value of W+ as 61 is .306 and hence we can hardly reject Ho.  
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It may be interesting to see what would have happened if we would have used sign test. The 
number of negative signs are 5 so that p- value under Ho: p = ½ is 

2P (S≤5) = 2(.295) = .59 

We note that the result remains the same but sign test looks Ho: = 120 against H1; ≠ 120 using 
two tailed t- test and compare the result. 

Remarks: 

1. In general, the sign test performs worse than the t-test and Wilcoxon signed- rank test, at 
least for large samples. For large samples, Wilcoxon signed rank test performs relatively 
well in comparison with the t-test (even when the underlying distribution is normal). For 
small samples from non-normal populations either the sign test or Wilcoxon signed rank 
test may be more powerful than t-test. However the Wilcoxon signed rank test should be 
preferred to sign test in the situations when the underlying distribution is symmetric.  

2. The Wilcoxon signed rank test can also be used as a test for symmetry. Suppose X1, 
X2,….Xn is a random sample from a continuous population is symmetric about m. we can 
test either 
Ho: distribution is symmetric about m (known) 
Or 
Ho: distribution is symmetric and m= mo

By using W+ or W- exactly in the same way as described above.   
3. The Wilcoxon signed rank test can be used for paired (Xi, Yi), i=1,2,….,n. The null 

hypothesis to be tested in this case is Ho: median of D= (X-Y) = mo. The alternative 
hypothesis may one sided or two sided as per need. In this case the assumption is that D 
has a continuous and symmetric distribution about their mean m. The test is performed 
exactly as above by taking Di= Xi-Yi- mo. In most of the cases mo= o. To clear this point 
let us consider the following example. 

Example 3.4: 

In order to determine if smoking results in increased heart activity a random sample of 20 
people was taken. Their pulse rate before and after smoking was taken. The results thus obtain 
is given below:  

S. No Pulse rate 
 Before After 
1 70 69 
2 69 72 
3 72 71 
4 74 74 
5 66 68 
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6 68 67 
7 69 72 
8 70 72 
9 71 72 

10 69 70 
11 73 75 
12 72 73 
13 68 71 
14 72 72 
15 67 69 
16 70 71 
17 68 72 
18 69 70 
19 70 71 
20 71 71 

Define Di = Xi-Yi i= 1,2,3,…..20, assuming that Di have continuous symmetric distribution. If the 
pulse rates do not increase the population median m should be zero. Hence the null hypothesis in 
this case should be Ho: m=0 and it is to be H1: m<o. We can use Wilcoxon signed rank test for this 
purpose. Ignoring the three observation where Di = 0, Di, |Di| and rank of |Di| in increasing order 
of magnitude is given in the following table:  

Di |Di| Rank of |Di| 
1 1 5 
-3 3 15 
1 1 5 
-2 2 11.5 
1 1 5 
-3 3 15 
-2 2 11.5 
-1 1 5 
-1 1 5 
-2 2 11.5 
-1 1 5 
-3 3 15 
-2 2 11.5 
-1 1 5 
-4 4 17 
-1 1 5 
-1 1 5 

Thus W+ = 5+5+5+=15 
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So that 

W-= 17(17+1)/2-15= 153-15= 138 

Since n>15, we use normal approximation. We have under the null hypothesis 

E(W-) = 17(17+1)/4 = 76.5 

And V (W-) = 17(18) (35)/24 = 446.25 

Hence 

P(W≥138| Ho) = >  . .√ .
= P (Z>2.89) = .0019 

Since p-value is highly significant, it is reasonable to conclude that smoking does increase the 
pulse rate. 

The students are advised to check that if we use sign test the p-value comes to be .0064 if we use 
t-test the p-value < .005. 

Now you can solve the following problems on your own. Check your answer given in the section 
3.3.8. 

E 3.4 A private technical college brochure claims that the average amount needed for boarding 
and lodging is Rs. 75/- per day. A random sample of nine students from the college showed the 
following daily expenditure:  

75, 92, 80, 84, 73, 60, 84, 91, 78 

Is there evidence to suggest that the college estimate is not correct? Assume that the daily 
expenditures are normally distributed, analyze the same data using t-test. 

E-3.5 In order to keep the track of the inflation, a Network News program visited 10 selected 
supermarkets on 1.10.2006 and 1.10.2007 and purchage 30 pre selected items. The total cost data 
were as follows: 

Super Market Total Cost (in Rs.) on 
 1.10.2006 1.10.2007 
1 5016 5318 
2 5284 5694 
3 4938 5242 
4 4985 4982 
5 5547 5486 
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6 5351 5642 
7 5149 5100 
8 4920 5210 
9 5310 5580 

10 5070 5475 
Is there evidence to suggest that the average market cost remained the same over the year? Analyze 
the data using t-test also.  

E-3.6 A group of 10 students is given a task to perform. Each student is then watched T.V. for an 
hour and asked to repeat the task. The time taken to perform the task before and after watching the 
T.V. is as follows: 

Student’s S. No. Time taken to perform the task (min) 
 Before watching T.V. After watching T.V. 
1 5.0 8.5 
2 3.5 4.0 
3 6.5 6.0 
4 8.5 8.0 
5 4.5 6.0 
6 5.0 5.0 
7 2.5 4.0 
8 3.0 5.5 
9 4.5 4.0 

10 3.5 6.0 
How strong is the evidence that watching T.V. adversely effect the performance of the students? 

E 3.7 The following observations were taken from a table of random numbers from a distribution 
F with median 0: 

0.464 0.137 2.455 -.323 -0.068 
0.906 -0.513 -0.525 0.595 0.881 
-0.482 1.678 -0.057 -1.229 -0.486 
-1.787 -0.261 1.237 1.046  

Is it reasonable to conclude that F is symmetric distribution? 

The sign and the Wilcoxon signed rank test are in fact one sample tests (note that the paired 
observation case discussed above are actually converted into one sample problem by defining the 
difference) that are the non-parametric analogs of one one sample t-test. We will now discuss some 
non-parametric analogs of two sample t-test. 

16.6   Mann- Whitney- U- Test  
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Let X1, X2,……Xm and Y1, Y2, …..Yn

Be two independent samples from continuous distribution functions F and G respectively. We want 
to test Ho: f(x) = G(x) for all x ∈R against one or two sided alternative hypothesis. Let us define.  

= 1, <  0, <  
Hence, ∑ ∑  is the number of Yj’s < Xi and the statistic Ux is defined as  

=
Since rank of Xi is the number of Y’s and X’s less than Xi 

R (Xi) = (number of Yj’s < Xi) + rank of Xi in the sample of X’s  

Therefore we have 

=  ( ) =   + =  + ( + 1)2
It follows that 

=  − ( + 1)2
Example 3.5:  Consider the example 3.4. It may be noted that there is no Y less than X1 and X2

three values of Y less than X3 and two values of Y less than X4. Therefore  = 0+0+3+2= 5 which 
is equal to Tx – m(m+1)/2 = 15-4(5)/2= 15-10= 5. 

Thus  and Tx are equivalent test statistics. Therefore we can also define Mann- Whitney 
Wilcoxon test based on  as follows:  

Mann-Whitney- Wilcoxon test for testing 

Ho: f(x) = G(x) 

Alternative H1 Reject Ho if p-value 
f(x) ≥ G(x) Ux ≤ c1 (Ux is too small) P(Ux ≤ ux |H0) 
f(x) ≤ G(x) Ux ≥c1 (Ux is too large) P(Ux ≥ux |H0) 
f(x) ≠G(x) Ux ≥c3 and Ux ≤ c4 (Ux is either 

too large or too small) 
2 (smaller tail probability) 

In the above table ux is the observed value of Ux. 
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In order to compute p-values (or to find the critical region if size is given), one needs the 
distribution Tx (or Ux) under null hypothesis. For the distribution of the test statistics you may refer 
Mann and Whitney (1947) and note that under Ho. Tx is m n (m+n+1)/2. Moreover, table for right 
tail probability P(Tx≥ tx |Ho) are available and can be for the calculation of p-values. The left tail 
probabilities are obtained from the relation 

P(Tx ≤ tx |Ho) = P (Tx ≥ m(m+n+1) – tx |Ho)  

It may be noted that leveling of X and Y can be interchanged, we assume the sample than X’s 
(ranks of X vary from 1 to m) and largest Y’s are smaller than X’s (ranks of X vary from n+1 to 
m+n). Thus,  

M (m+1)≤ Tx ≤ ∑ ( + ) =  ( + 2 + 1)/2.
For large values of m or n, 

=  −  ( + + 1)2( + + 1)12
Follows approximately standard normal distribution. Since Tx is an integer the application of 
continuity correction (subtracting 0.5 form the numerator) results in an improved approximation. 

Example 3.6: 

 Seventeen students were randomly selected participate in an educational research project. A group 
of eight students was asked to attend a traditional lecture course for four weeks. The remaining 
nine students were provided self instructional material on videocassettes. At the end of four weeks 
all the students took the same test with the following results: 

Lecture:                75  82   28  82  94  78  76  94 

Self – instruction: 78  95  63  37  48  74  65  77  63 

The null hypothesis is this case is that there is no difference between the two methods of 
instruction. Thus if F(x) and G(x) are the distribution functions of the scores of the students taking 
lecture and self instruction courses respectivel, Ho: F(x) ≠ G(x) against the alternative hypothesis 
H1; F≠ G. Represent the lecture scores by X and the self-instruction scores by y, so that m = 8 and 
n=9, m<n. Combining the scores arranging in increasing order assigning average rank to tired 
observing we have.  

Scores Rank X or Y 
28 1 X 
37 2 Y 
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48 3 Y 
63 4.5 Y 
63 4.5 Y 
64 6 X 
65 7 Y 
74 8 Y 
75 9 X 
76 10 X 
77 11 Y 
78 12.5 X 
78 12.5 Y 
82 14.5 X 
82 14.5 X 
94 16 X 
95 17 Y 

The calculated value of Tx is 

Tx= 1+6+9+10+12.5+14.5+16= 83.5 

Since the mean is 8(8+9+1)/2= 72, we see that tx is in the right tail and from the table we see that 
P(Tx≥84 |Ho) = .161 and P(Tx≥84 |Ho) = .138. Therefore we may estimate P(Tx≥84 |Ho) as the 
average of P (Tx≥84 |Ho) and P (Tx≥84/Ho) to get P (Tx≥84 |Ho) = (.161+.138)/2. Therefore P- 
value comes out to be 0.299. Since the p-value shows that there is about 30% chance of observing 
as large a value of Tx as 83.5 in random sampling under Ho, we may conclude that that data do not 
provide enough information for the rejection of the hypothesis. 

Example 3.7: In order to check that the breading strength of copper wire of brand Y is more than 
that of brand X, 6 measurements were taken for each with the following results: 

X: 3.7 2.8 7.1 8.4 6.2 2.7 

Y: 6.4 6.8 9.1 7.4 6.9 6.8 

Let us test null hypothesis of equality of median strength of the two brands i.e., Ho : mx = my

against and alternative hypothesis H1: mx<  my. 

Combining the two samples and arranging them in increasing order of magnitude we have 

Observation Rank X or Y 
2.7 1 X 
2.8 2 X 
3.7 3 X 
6.2 4 X 
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6.4 5 Y 
6.8 6.5 Y 
6.8 6.5 Y 
6.9 8 Y 
7.1 9 X 
7.4 10 Y 
8.4 11 X 
9.1 12 Y 

Thus, tx = 1+2+3+4+9+11=30 with p-value P (Tx ≤ 30/Ho) = P (Tx ≥ 48 | Ho) = .09. We may 
conclude that the data do not substantiate the claim that mx < my at 5% level they do not 
substantiate it at 10% level of significance. 

Example 3.8:  The failure times (in hundred hours) of a certain type of light bulb manufactured by 
two different companies, X and Y, are given below: 

X: 1.7 1.8 1.9 1.1 0.7 0.9 2.1 

Y: 2.1 2.7 1.6 1.8 1.7 1.8 1.6 

X:  1.6 1.7 1.3 

Y: 2.2 2.4 1.3 1.9 1.8 2.0 

Do the data indicate a significant different between live of light bulbs manufactured by two 
different companies? 

Here m = 10 and n = 13. If we denote the distribution of the life of the bulbs produced by 
the company X as F and that by company Y by G, the null hypothesis to be tested is Ho: F =G and 
the alternative hypothesis is H1: F ≠ G. Combine the data and arrange in increasing order of 
magnitude, keeping the trace that observation is related  to which company. It gives the following:  

Observation Rank X or Y 
0.7 1 X 
0.9 2 X 
1.1 3 X 
1.3 4.5 X 
1.3 4.5 Y 
1.6 7 X 
1.6 7 Y 
1.6 7 Y 
1.7 10 X 
1.7 10 X 
1.7 10 Y 
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1.8 13.5 X 
1.8 13.5 Y 
1.8 13.5 Y 
1.8 13.5 Y 
1.9 16.5 X 
1.9 16.5 Y 
2.0 18 Y 
2.1 19.5 X 
2.1 19.5 Y 
2.2 21 Y 
2.4 22 Y 
2.7 23 Y 

Thus Tx = 1+2+3+4.5+7+10+10+13.5+16.5+19.5= 87 

Here, we use the normal approximation. We may note that under Ho  

E(Tx) = m (m+n+1/2) = 10 (10+13+1) = 120, 

and 

V (Tx) = m n (m+n+1)/2 = 10 (13) (24)/2 = 260. 

Since Tx < 120, the calculated value of the statistic lies in the left tail, Hence the p- value is 

2P (Tx ≤ 87/Ho) = 2P (Tx ≥ 87.5/ Ho) (for continuity correction) 

= 2 ≤  87.5 − 120√2602 ( ≤  −2.02) = 2(. 0217) =   .0434
Now, if the level of significance is fixed at = .05, we conclude the null hypothesis Ho: F = G may 
be rejected and we say with 5% level of significance that lifetime of the bulbs produced by the two 
companies can not be regarded as similar. On the other hand, if  = .01, we have to conclude that 
data do not provide enough information for rejection of the null hypothesis. 

Now you can solve the following problems on your own. Check your answers given in the section 
3.3.8. 

E- 3.8:  Two laboratory cultures are to be compared for the difference in bacteria counts. 
Independent random samples of six from culture A and eight from culture B are taken. The number 
of bacteria per unit of volume is recorded as follows: 

Culture A :  32 29 34 47 33 27 
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Culture B : 38 36 33 42 34 40 39 32 

Is there any evidence to conclude that bacteria counts for the two populations are not same? 

E-3.9  The order in which the test questions are asked, affect the student’s ability to answer them 
correctly and hence affect the student’s total grade. In order to check this proposition, two were 
made. Test A had questions set in increasing order of differently; in test B the order was reversed. 
A random sample of 20 students was selected in such a way that 10 pairs of students were matched 
in ability. From each pair, one student was assigned randomly to take test A and other test B. The 
following scores were obtained: 

Test A:  83 82 95 92 91 60 89 69 70 72 

Test B: 76 62 70 74 52 63 48 80 76 74 

Is there any evidence to indicate that the score on test B are lower than on test A? Use both Mann- 
Whitney – Wilcoxon and t-tests. 

E- 3.10  Nineteen pieces of flint were collected, nine from area A and ten from area B. The object 
of the study was to determine if the pieces of the flint were of equal hardness. For the purposes of 
the study, nineteen pieces of flints of equal hardness from a third area were brought in. Each of the 
sample pieces was then rubbed against a pieced from the third area. The nineteen sample pieces 
were then ordered according to the amount of damage sustained from the softest (most damaged) 
to the hardest (least damaged): 

A A B B A A B B B B 

A A B A A A B B B 

Is there any evidence to suggest that the flints from area A and B are of equal hardness? 

The equality of two distribution from which the samples has been drawn can also be tested using 
“run” as a test statistics. 

Now we will consider tests based on runs. 

16.7  Run Test  

Let us see first explain the meaning of “run” and “length of a run”.  

Run:  If there is a sequence of two types of symbols a run means one or more identical symbols 
preceded and followed by a different symbol (or no symbol). 

Length of a run:  It is number of like symbols in a run. 
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Example 3.9: 

The sexes of 15 children in order of their birth in hospital are recorded with the following result: 

G G  B B B  G  B B  G G G G  B G G 

Where G stand for girl and B stand for boy. We see that at the beginning there are two ‘G’ followed 
by ‘B’ and preceded by none; thus if forms a run of length 2. Then there are three ‘B’ preceded 
and followed by ‘G’ thus is also forms a run and the length of this run in 3. Similarly other runs 
are underlined above. We may also note that there are in all 7 runs in this sequence. 

The tests based on total number of runs can be used for testing the equality of the distributions 
from which the samples are drawn. Besides this, runs are also used for testing the randomness of 
a series of observations. These tests discussed below: 

Wald- Wolfowith Run test for testing of equality of two distributions: 

 Let X1, X2,…., Xm and Y1, Y2,….Yn be independent random samples with respective continuous 
distribution F and G respectively. If we combine the sample and arranged the observation in order 
of increasing magnitude writing X for the m observations on X and Y for Y- observations, we get 
a sequences of X and Y symbols. As explained above we may count the total number of runs in 
this sequence (m + n) symbols of  X and Y. We assume for the time being that there are no ties. 
Under the null hypothesis Ho: F(x) = G(x) for all x, we expect the symbols X and Y to be well 
mixed giving rise to large number of runs. On the other hand if X’s tend to be larger than Y’s (i.e., 
F(x) > G(x)) then most of the Y’s preceded the X’s and therefore the total number of runs will 
lesser than expected under Ho. Similarly lesser number of runs is expected if Y’s tend to be larger 
X’s (i.e., F (x) > G(x)). Therefore we see that smaller values of total number of runs only indicate 
that F(x) and G(x) are not equal; it cannot be an indicator of F(x) > G(x) [or F(x) < G(x)]. In other 
words, the above discussion clearly establishes that run test can only be used for two sided 
alternative. 

The run test for testing the null hypothesis Ho: F(x) = G(x) for all x, against the alternative 
hypothesis H1: F(x) ≠G(x)  for at least one x, based on the total number of runs R of X and Y in 
the combined ordered sample is to reject Ho if the calculated number of runs r is small i.e., r ≤ C 
where C is to be chosen such that P (R ≤ C |Ho) is equal to or less than the prefixed level of 
significance  . Alternative we may reject Ho, if the P-value P(R≤ r |Ho) is less than  .  

In order to perform the test (or to compute the P-value), we need the distribution of R under the 
null hypothesis. Tables are available for left tail cumulative probabilities (i.e. P (R ≤ r/ Ho)) for all 
values of m ≤ n with m + n 20. For larger values of m or n, we use the normal approximation. We 
have, under the null hypothesis Ho. 

E (R) = 1+ [2 m n / (m + n) ] 
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and ( ) =  2  (2 − − )( + − 1) ( + )
Therefore, the statistic 

=  + 0.5 − 1 + 2( + )2  (2 − − )( + − 1) ( + )
Is approximately distributed as standard normal variable. Note that for continuity, .5 is added in 
the numerator of the above statistic because we are considering here the left tail critical region. 

Problem of ties: 

 In case of ties between X’s and Y’s conservative procedure is to break the ties in all possible 
ways. For each such resolution of ties, compute the values of R. then choose that value of R, 
which is largest. Naturally it will give the largest p-value. For example if one of X and on of Y 
are tied, there are two possible resolutions: 

….XY… 

and 

….YX…. 

Each may give different value of R. We take the larger of the two R-values. 

Example 3.10: 

Let us consider example no. 3.6, where we used Mann – Whitney- Wilcoxon test to compare two 
methods of instruction. You may note from the table showing the ordered arranged of the 
observations that 63, 78 and 82 are the repeated observations. But both the 63’s are observations 
for self instruction method (Y) and both the 82’s correspond to lecture method (X); therefore these 
do not effect the number of runs and the problem of ties do not arise because of these. However 
one to the 78’s corresponds to X and the other to Y there is one tie between X and Y values at 78.  
Thus we can have two ways of breaking the tie. Taking the X value corresponding to 78 first, we 
have the sequence of X, Y in the combined sample as follows: 

X  Y Y Y Y  X  Y Y  X X  Y  X  Y  X X X  Y 

So that R = 10. Taking Y value corresponding to 78 first, we have 
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X  Y Y Y Y  X  Y Y  X X  Y  X  Y  X X X  Y 

to give R = 8. Thus, the larger of the two, i.e., R = 10 is to be taken for testing of the hypothesis. 
The p-value is therefore, P(R ≤ 10’Ho) = .702. You may note that it is considerably larger than the 
corresponding p-values obtained in using the Mann-Whitney-Wilcoxon test. In any case the data 
do not provide enough evidence for the rejection of the null hypothesis and therefore we may 
accept that there is no difference between the two methods of instruction. 

Run test for testing of randomness: 

 Suppose that we wish to ascertain that the sex of the children in order of their births in random. 
The data for this purpose may be collected from a hospital by noting the sex of the children in 
order of their births. Now suppose that we get the data as given below for ten consecutive births: 

MMMMMFFFFF 

Or 

MFMFMFMFMF 

We notice that in the first data set male and female births are clustered at one place giving total 
number of runs as 2. On the other hand in the text data set male and female birth is alternate and 
total number of runs is 10. But, neither of the above series supports the view that sex of the child 
in order of birth is random because pattern follows in both the data set and in its turn the number 
of runs are either too large or to small to accept the hypothesis of randomness. Note that in each 
case the number of male and female births is equal to 5 and hence the lack of randomness could 
not have been noted by the use of chi-square or binomial tests on the frequencies. Thus it is only 
a run test, focusing on the order of the event, which reveals the striking feature of lack of 
randomness. 

From the above discussions you may have got an idea that the statistic R can be used for testing 
whether an ordered sequences of two types of symbols is random arrangement or not. The null 
hypothesis to be tested here is 

Ho: The sequences is random. 

It is to be tested against the alternative hypothesis 

H1: sequences is non random.  

As discussed above a large value of R or a small value of R indicates non randomness of the 
sequence and thus critical region is two sided. The hull hypothesis is rejected if the observed 
numbers of runs ro form the data (consisting of m symbols of one type and n symbols of other 
type) is either too large or too small and the P-value is therefore, 2P (smaller tail probability). 
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Example 3.11: 

Students were asked to toss a fair coin 20 times and report the result. A student reported the 
following sequences of head (H) and tail (T): 

HH T H T H TH TT H T H TTT HH T H  

Does this sequence of 10 heads and 10 tails indicate departure from randomness? 

We observe that there here m= 10, n= 10 and there are 15 runs in all in the sequence which is 
greater than  

E (R) = 1+2 m n/ (m + n) 

= 1+2 (10) (10) (10) 

=11 

Hence p-value is 2P (R ≥15/Ho). From the table we get  

P (R ≥15/Ho) = 1- P (R≤ 14/ Ho) = 1- .949 = .051 

= P (R ≤ 7/ Ho)  

So that the P-value is 2 (.051) = .102 and hence at 5 % level of significance, we may conclude that 
data do not provide the evidence against the randomness. 

Now you can solve the following problems on your own. Check your answers given in the section 
3.3.8. 

E- 3.11 Use run test to analyze the data given in E. 10 

E- 3.12: In a study to test the equipotentiality theory, the learning (in a brightness – discrimination 
task) of 21 normal rats was compared with the relearning of 8 postoperative rats with cortical 
lesions. That is, the number of trials to relearning required postoperative by the 8 E rates was 
compared with the number of trials to learning required by the 21 C rates. 

Trials required to learning/ relearning by E and C rats:   

E rats: 20 55 29 24 75 56 31 45 

C rats: 23, 8, 24, 15, 8, 6, 15, 15, 21, 23, 16, 15, 24, 15, 21, 15, 18, 14, 22, 15, 14 

Is there no difference between normal rats and postoperative rats with cortical lesions with respect 
to rate of learning/ relearning in the brightness- discrimination task? 
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E- 3.13 Seventeen items emerging from a production line are tested and classified as defective (D) 
or non defective (N). The following sequence is obtained: 

D D N D N N N N D D N N N N D N D 

How strong is the evidence that there is lack of randomness in the series? 

16.8   Summary 

In this unit we have described four non parametric tests. The sign test is a test of median or quintiles 
is one sample case and for testing the equality of two population based on paired observations. 
However, the sigh test only utilizes the sign of the differences and ignores the  

 The number of positive signs is 7, the number of negative signs is 3 and n= 10. 

P- value is 0.1718 

Data do not provide enough evidence for rejection of Ho even at 10% level of significance. 

E- 3.2 Ho: P(X>Y) = P(X<Y) 

           H1: P(X>Y) ≠ P(X<Y)  

The number of positive signs is 6, the number of negative signs is 4 and n= 10. 

P- value is 0.7538 

Data do not provide enough evidence for rejection of Ho even at 10% level of significance. 

E- 3.3 Ho: P(X>Y) = P(X<Y) 

           H1: P(X>Y) ≠ P(X<Y)  

The number of positive signs is 1, the number of negative signs is 9 and n= 10 (one dite). 

P- value is 0.0056 

Data provide enough evidence for rejection of Ho even at 1% level of significance. 

E- 3.4  The null hypothesis is Ho:  = 75. It is to be tested against H1: ≠ 75. 

W+ = 29    calculated t= 1.424 

E- 3.5  The null hypothesis is Ho:  = 0. It is to be tested against H1: ≠ 0. 

W- = 49    calculated t= -3.76 

E- 3.6  The null hypothesis is Ho:  = 0. It is to be tested against H1: < 0. 
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W- = 37.5.     

E- 3.7  The null hypothesis is Ho: F is symmetric.  It is to be tested against H1: F is not 
symmetric  

Data provide evidence for rejection of Ho even at 1% level of significance. 

E- 3.4  The null hypothesis is Ho:  = 75. It is to be tested against H1: ≠ 75. 

W+ = 29    calculated t= 1.424 

E- 3.5  The null hypothesis is Ho:  = 0. It is to be tested against H1: ≠ 0. 

W- = 49    calculated t= -3.76 

E- 3.6  The null hypothesis is Ho:  = 0. It is to be tested against H1: < 0. 

W- = 37.5.     

E- 3.7  The null hypothesis is Ho: F is symmetric.  It is to be tested against H1: F is not 
symmetric  

W+ = 111. 

E-3.8 The null hypothesis is Ho: F(x) = G(x). It is to be tested against H1: F(x) ≠ G(x) 

m = 6 and n = 8 

tx = 33.5 

The tx is in the left tail. Therefore P-value is 3P (Tx ≤ 33.5 |Ho)] = 2P (Tx ≥ 56.5 | Ho) = [P (Tx ≥
56 |Ho)+ P (Tx ≥ 57 | Ho)] =  0.162. 

E-3.9 The null hypothesis is Ho: F(x) = G(x). It is to be tested against H1: F(x) ≥ G(x) 

m = 10 and n = 10 

tx = 130.5 

P-value = .029 

E-3.10 The null hypothesis is Ho: F(x) = G(x). It is to be tested against H1: F(x) ≠ G(x) 

m = 9 and n = 10 

tx = 82 

P-value = .604 
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m = 7 and n = 10 

R = 9 

P-value = .549 

16.9   Appendix 

Table 3.1: Table for Right Tail probabilities of Mann Whitney- Wilcoxon Test Statistic.  

Right tail probabilities are given for tx ≥ m (m +n+1)/2 for m ≤ n. 

Left tail probabilities are obtained from the relation P(Tx ≤ tx) = P (Tx ≥m (m+n+1)/2- tx) 

---------------------------------------------------------------------------------------------------- 

n tx P(Tx≥tx) n tx P(Tx≥tx) n tx P(Tx≥tx) 
m=1 m=2 m=3 

1 2 .500  7 .400  15 .291 
2 2 .667  8 .200  16 .218 

3 .333  9 .100  17 .164 
3 3 .500 4 7 .600  18 .109 

4 .250  8 .400  19 .073 
4 3 .600  9 267  20 .036 

4 .400  10 .133  21 .018 
5 .200  11 .067 10 13 .545 

5 4 .500 5 8 .571  14 .455 
5 .333  9 .429  15 .379 
6 .167  10 .286  16 .303 

6 4 .571  11 .190  17 .242 
5 .429  12 .095  18 .182 
6 .286  13 .048  19 .136 
7 .143 6 9 .571  20 .091 
4 .250  8 .400  19 .073 

4 3 .600  9 .267  20 .036 
4 .400  10 .133  21 .018 
5 .200  11 .067 10 13 .545 

5 4 .500 5 8 .571  14 .455 
5 .333  9 .429  15 .379 
6 .167  10 .286  16 .303 
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4 .571  11 .190  17 .242 
5 .429  12 .095  18 .182 
6 .286  13 .048  19 .136 
7 .143 6 9 .571  20 .091 

7 5 .500  10 .429  21 .061 
6 .375  11 .321  22 .030 
7 .250  12 .214  23 .015 
8 .125  13 .143  

8 5 .556  14 .071 M=3 
6 .444  15 .036 3 11 500 
7 .333 7 10 .556  12 .350 
8 .222  11 .444  13 .200 
9 .111  12 .333  14 .100 

9 6 .500  13 .250  15 .050 
7 .400  14 .167 4 12 .578 
 .300  15 .111  13 .429 
9 .200  16 .056  14 .314 

10 .100  17 .028  15 .200 
10 6 .545 8 11 .556  16 .114 

7 .455  12 .444  17 .057 
8 .364  13 .356  18 .029 
9 .273  14 .267 5 14 .500 

10 .182  15 .200  15 .393 
11 .091  16 .133  16 .286 

17 .089  17 .196 
M=2   18 .044  18 .125 

2 5 .667  19 .022  19 .071 
6 .333 9 12 .545  20 .036 
7 .167  13 .455  21 .018 

3 6 .600  14 .364 6 15 .548 
M=3 .  M=3   M=5  
16 .452  31 .018  25  
17 .357  32 .009  26  
18 .274  33 .005  27  
19 .190 10 21 .531  28  
20 .131  22 .469  29  
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21 .083  23 .406  30  
22 .048  24 .346  31  
23 .024  25 .287  32  
24 .012  26 .234  33  

7 17 .500  27 .185  34  
18 .417  28 .143 7 24  
19 .333  29 .108  25  
20 .258  30 .080  26  
21 .192  31 .056  27  
22 .133  32 .038  28  
23 .092  33 .024  29  
24 .058  34 .014  30  
25 .033  35 .007  31  
26 .017  36 .003  32  
27 .008  33  

8 18 .539   M=4  34  
19 .461 4 18 .557  35  
20 .388  19 443  36  
21 .315  20 .343  37  
22 .248  21 .243  38  
23 .188  22 .171 8 26  
24 .139  23 .100  27  
25 .097  24 .057  28  
26 .067  25 .029  29  
27 .042  26 .014  30  
28 .024 5 20 .548  31  
29 .012  21 .452  32  
30 .006  22 .365  33  

9 20 .500  23 .278  34  
21 .432  24 .206  35  
22 .364  25 .143  36  
23 .300  26 .095  37  
24 .241  27 .056  38  
25 .186  28 .032  39  
26 .141  29 .016  40  
27 .105  30 .008  41  

UGSTAT-102/304



28 .073 6 22 .543  42  
29 .050  23 .457 9 28  
30 .032  24 .381  29  

M=4   M=5   M=5  
30 .413  32 .210  36 .472 
31 .355  33 .155  37 .416 
32 .302  34 .111  38 .362 
33 .252  35 .075  39 311 
34 .207  36 .048  40 .262 
35 .165  31 .028  41 .218 
36 .130  38 .016  42 .177 
37 .099  39 .008  43 .142 
38 .014  40 .004  44 .111 
39 .053 6 30 .535  45 085 
40 .038  31 .465  46 .064 
41 .025  32 .396  47 .047 
42 .017  33 .331  48 .033 
43 .010  34 .268  49 .023 
44 .006  35 .214  50 .015 
45 .003  36 .165  51 .009 
46 .001  37 .123  52 .005 

10 30 .527  38 .089  53 .003 
31 .473  39 .063  54 .002 
32 .420  40 .041  55 .001 
33 .367  41 .026 9 38 .500 
34 .318  42 .015  39 .449 
35 .270  43 .009  40 .399 
36 .227  44 .004  41 .350 
31 .187  45 .002  42 .303 
38 .152  33 .500  43 .259 
39 .120  34 .438  44 .219 
40 .094  35 378  45 .182 
41 .071  36 .319  46 .149 
42 .053  37 .265  47 .120 
43 .038  38 .216  48 .095 
44 .027  39 .172  49 .073 
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45 .018  40 .134  50 .056 
46 .012  41 .101  51 .041 
47 .007  42 .074  52 .030 
48 .004  43 .053  53 .021 
49 .002  44 .037  54 .014 
50 .001  45 .024  55 .009 

46 .015  56 .006 
M=5   47 .009  57 .003 

5 28 .500  48 .005  58 .002 
29 .421  49 .003  59 .001 
30 .345  50 .001  60 .000 
31 .274 8 35 .528  40 .523 

M=5   M=6   M=6  
41 .477  57 .001  67 .001 
42 .430 7 42 .527  68 .001 
43 .384  43 .473  69 .000 
44 .339  44 .418 9 48 .523 
45 .297  45 .365  49 .477 
46 .257  46 .314  50 .432 
47 .220  47 .267  51 .388 
48 .185  48 .223  52 .344 
49 .155  49 .183  53 .303 
50 .127  50 .147  54 .264 
51 .103  51 .117  55 .228 
52 .082  52 .090  56 .194 
53 .065  53 .069  57 .164 
54 .050  54 .051  58 .136 
55 .038  55 .037  59 .112 
56 .028  56 .026  60 .091 
57 .020  57 .017  61 .072 
58 .014  58 .011  62 .057 
59 .010  59 .007  63 .044 
60 .006  60 .004  64 .033 
61 .004  61 .002  65 .025 
62 .002  62 .001  66 .018 
63 .001  63 .001  67 .013 
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64 .001 8 45 .525  68 .009 
65 .000  46 .475  69 .006 

47 .426  70 .004 
M=6   48 .377  71 .002 

6 39 .531  49 .331  72 .001 
40 .469  50 .286  73 .001 
41 .409  51 .245  74 .000 
42 .350  52 .207  75 .000 
43 .294  53 .172 10 51 .521 
44 .242  54 .141  52 .479 
45 .197  55 .114  53 .437 
46 .155  56 .091  54 .396 
47 .120  57 .071  55 .356 
48 .090  58 .054  56 .318 
49 .066  59 .041  57 .281 
50 .047  60 .030  58 .246 
51 .032  61 .021  59 .214 
52 .021  62 .015  60 .184 
53 .013  63 .010  61 .157 
54 .008  64 .006  62 .132 
55 .004  65 .004 10 63 .110 
56 .002  66 .002  64 .090 

M=6   M=7   M=7  
65 .074  57 .478  77 .036 
66 .059  58 .433  78 .027 
67 .047  59 .389  79 .021 
68 .036 9 60 .347  80 .016 
69 .028  61 .306  81 .011 
70 .021  62 .368  82 .008 
71 .016  63 .232  83 .006 
72 .011  64 .198  84 004 
73 .008  65 .268  85 .003 
74 .005  66 .240  86 .002 
75 .004  67 .116  87 .001 
76 .002  68 .095  88 .001 
77 .001  69 .076  89 .000 
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78 .001 70 .060 90 .000 
79 .000 71 .047 91 .000 
80 .000 72 .036 10 63 .519 
81 000 73 .027 64 .481 

74 .020 65 .443 
M=7 75 .014 66 .406 

7 53 .500 76 .010 67 .370 
54 .451 77 .007 68 .335 
55 .402 78 .005 69 .300 
56 .355 79 .003 70 .268 
57 .310 80 .002 71 .237 
58 .267 81 .001 72 .209 
59 .228 82 .001 73 .182 
60 .191 83 .000 74 .157 
61 .159 84 .000 75 .135 
62 .130 60 .500 76 .115 
63 .104 61 .459 77 .097 
64 .082 62 .419 78 .081 
65 .064 63 .379 79 .067 
66 .049 64 .340 80 .054 
67 .036 65 .303 81 .044 
68 .027 66 .268 82 .035 
69 .019 67 .235 83 .028 
70 .013 68 .204 84 .022 
71 .009 69 .176 85 .017 
72 .006 70 .150 86 .012 
73 .003 71 .126 87 .009 
74 .002 72 .105 88 .007 
75 .001 73 .087 89 .005 
76 .001 74 .071 90 .003 
77 .000 75 .057 91 .002 

8 56 .522 76 .045 92 .002 
M=7 M=8 M=8 
93 .001 76 .371 88 .158 
94 .001 77 .336 89 .137 
95 .000 78 .030 90 .118 
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96 .000 79 .271 91 .102 
97 .000 80 .240 92 .086 
98 .000 81 .212 93 .073 

82 .185 94 .061 
83 .161 95 .051 

8 68 .520 84 .138 96 .042 
69 .480 85 .118 97 .034 
70 .439 86 .100 98 .027 
71 .399 87 .084 99 .022 
72 .307 88 .069 100 .017 
73 .323 89 .057 101 .013 
74 .287 90 .046 102 .010 
75 .253 91 .037 103 .008 
76 .221 92 .030 104 .006 
77 .191 93 .023 105 .004 
78 .164 94 .018 106 .003 
79 .139 95 .014 107 .002 
80 .117 96 .010 108 .002 
81 .097 97 .008 109 .001 
82 .080 98 .006 110 .001 
83 .065 99 .004 111 .000 
84 .052 100 .003 112 .000 
85 .041 101 .002 113 .000 
86 .032 102 .001 114 .000 
87 .025 103 .001 115 .000 
88 .019 104 .000 116 .000 
89 .014 105 .000 
90 .010 106 .000 M=9 
91 .007 107 .000 9 86 .500 
92 .005 108 .000 87 .466 
93 .003 10 76 .517 88 .432 
94 .002 77 .483 89 .398 
95 .001 78 .448 90 .365 
96 .001 79 .414 91 .333 
97 .001 80 .381 92 .302 
98 .000 81 .348 93 .273 
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99 .000 82 .317 94 .245 
100 .000 83 .286 95 .218 

9 72 .519 84 .257 96 .193 
73 .481 85 .230 97 .170 
74 .444 86 .204 98 .149 
75 .407 87 .180 99 .129 

M=9 M=9 M=10 
100 .111 105 .121 114 .264 
101 .095 106 .106 115 .241 
102 .081 107 .091 116 .218 
103 .068 108 .078 117 .197 
104 .057 109 .067 118 .176 
105 .047 110 .056 119 .157 
106 .039 111 .047 120 .140 
107 .031 112 .039 121 .124 
108 .025 113 .033 122 .109 
109 .020 114 .027 123 .095 
110 .016 115 .022 124 .083 
111 .012 116 .017 125 .072 
112 .009 117 .014 126 .062 
113 .007 118 .011 127 .053 
114 .005 119 .009 128 .045 
115 .004 120 .007 129 .038 
116 .003 121 .005 130 .032 
117 .002 122 .004 131 .026 
118 .001 123 .003 132 .022 
119 .001 124 .002 133 .018 
120 .001 125 .001 134 .014 
121 .000 126 .001 135 .012 
122 .000 127 .001 136 .009 
123 .000 128 .000 137 .007 
124 .000 129 .000 138 .006 
125 .000 130 .000 139 .004 
126 .000 131 .000 140 .003 

10 90 .516 132 .000 141 .003 
91 .484 133 .000 142 .002 
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92 .452 134 .000 143 .001 
93 .421 135 .000 144 .001 
94 .390 145 .001 
95 .360 M=10 146 .001 
96 .330 105 .515 147 .000 
97 .302 106 .485 148 .000 
98 .274 107 .456 149 .000 
99 .248 108 .427 150 .000 
100 .223 109 .398 151 .000 
101 .200 110 .370 152 .000 
102 .178 111 .342 153 .000 
103 .158 112 .315 154 .000 
104 .139 113 .279 155 .000 

Table 3.2: Right Tail probabilities for Wilcoxon Signed Rank Statistic. 
Right tail probabilities P(W ≥Wo/Ho) are given for Wo ≥ n(n+1)/4. Here W is interpreted 

as either as either W+ or W-. Left tail probabilities are obtained from the relation P(W≤ Wo/Ho) = 
P (Wo ≥ n(n+1)/2- Wo/Ho) 

n Wo (W ≥Wo/Ho) n Wo (W ≥Wo/Ho) 
n Wo (W ≥Wo/Ho) 

2 2 .500 26 .023 44 .004 
3 .250 27 .016 45 .002 

3 3 .625 28 .008 10 28 .500 
4 .375 8 18 .527 29 .461 
5 .250 19 .473 30 .423 
6 .125 20 .422 31 .385 

4 5 .562 21 .371 32 .348 
6 .438 22 .320 33 .312 
7 .312 23 .273 34 .278 
8 .188 24 .230 35 .246 
9 .125 25 .191 36 .216 

10 .062 26 .156 37 .188 
5 8 .500 27 .125 38 .161 

9 .406 28 .098 39 .138 
10 .312 29 .074 40 .116 
11 .219 30 .055 41 .097 
12 .156 31 .039 42 .080 
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13 .094 32 .027 43 .065 
14 .062 33 .020 44 .053 
15 .031 34 .012 45 .042 

6 11 .500 35 .008 46 .032 
12 .422 36 .004 47 .024 
13 .344 9 23 .500 48 .019 
14 .281 24 .455 49 .014 
15 .219 25 .410 50 .010 
16 .156 26 .367 51 .007 
17 .109 27 .326 52 .005 
18 .078 28 .285 53 .003 
19 .047 29 .248 54 .002 
20 .031 30 .213 55 .001 
21 .016 31 .180 11 33 .517 

7 14 .531 32 .150 34 .483 
15 .469 33 .125 35 .449 
16 .406 34 .102 36 .416 
17 .344 35 .082 37 .382 
18 .289 36 .064 38 .350 
19 .234 37 .049 39 .319 
20 .188 38 .037 40 .289 
21 .148 39 .027 41 .260 
22 .109 40 .020 42 .232 
23 .078 41 .014 43 .207 
24 .055 42 .010 44 .183 
25 .039 43 .006 45 .160 

44 46 .139 12 64 .026 13 77 .013 
47 .120 65 .021 78 .011 
48 .103 66 .017 79 .009 
49 .087 67 .013 80 .007 
50 .074 68 .010 81 .005 
51 .062 69 .008 82 .004 
52 .051 70 .006 83 .003 
53 .042 71 .005 84 .002 
54 .034 72 .003 85 .002 
55 .027 73 .002 86 .001 
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56 .021 74 .002 87 .001 
57 .016 75 .001 88 .001 
58 .012 76 .001 89 .000 
59 .009 77 .000 90 .000 
60 .007 78 .000 91 .000 
61 .005 13 46 .500 14 53 .500 
62 .003 47 .473 54 .476 
63 .002 48 .446 55 .452 
64 .001 49 .420 56 .428 
65 .001 50 .393 57 .404 
66 .000 51 .368 58 .380 

12 39 .515 52 .342 59 .357 
40 .485 53 .318 60 .335 
41 .455 54 .294 61 .313 
42 .425 55 .271 62 .292 
43 .396 56 .249 63 .271 
44 .367 57 .227 64 .251 
45 .339 58 .207 65 .232 
46 .311 59 .188 66 .213 
47 .285 60 .170 67 .196 
48 .259 61 .153 68 .179 
49 .235 62 .137 69 .163 
50 .212 63 .122 70 .148 
51 .190 64 .108 71 .134 
52 .170 65 .095 72 .121 
53 .151 66 .084 73 .108 
54 .133 67 .073 74 .097 
55 .117 68 .064 75 .086 
56 .102 69 .055 76 .077 
57 .088 70 .047 77 .068 
58 .076 71 .040 78 .059 
59 .065 72 .034 79 .052 
60 .055 73 .029 80 .045 
61 .046 74 .024 81 .039 
62 .039 75 .020 82 .034 
63 .032 76 .016 83 .029 
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14 84 .025 15 66 .381 15 94 .028 
85 .021 67 .360 95 .024 
86 .018 68 .339 96 .021 
87 .015 69 .319 97 .018 
88 .012 70 .300 98 .015 
89 .010 71 .281 99 .013 
90 .008 72 .262 100 .011 
91 .007 73 .244 101 .009 
92 .005 74 .227 102 .008 
93 .004 75 .211 103 .006 
94 .003 76 .195 104 .005 
95 .003 77 .180 105 .004 
96 .002 78 .165 106 .003 
97 .002 79 .151 107 .003 
98 .001 80 .138 108 .002 
99 .001 81 .126 109 .002 

100 .011 82 .115 110 .001 
101 .000 83 .104 111 .001 
102 .000 84 .094 112 .001 
103 .000 85 .084 113 .001 
104 .000 86 .076 114 .000 
105 .000 87 .068 115 .000 

15 60 .511 88 .060 116 .000 
61 .489 89 .053 117 .000 
62 .467 90 .047 118 .000 
63 .445 91 .042 119 .000 
64 .423 92 .036 120 .000 
65 .402 93 .032 
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