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UNIT-1 

METHODS OF INTEGRATION 

Structure  
1.1 Introduction  

Objective 

1.2 Basic Definitions  

1.3 Standard Integrals  

1.4 Algebra of Integrals 

1.5 Integration by Substitution 

1.5.1 Method of Substitution 

1.5.2  Integrals using Trigonometric formula 

1.5.3  Trigonometric and Hyperbolic Substitution 

1.6 Two properties of Definite integrals 

1.7 Integration by Parts 

1.7.1 Evaluation of  ∫eax sinbx and ∫eax cosbx dx 

1.7.2 Evaluation of  ∫
22 xa − dx, ∫

22 xa + dx, and

∫ 
22 ax − dx

1.7.3 Evaluation of  the type ∫ axe [f(x) + f′(x)] dx

1.8 Summary  

1.9 Terminal Questions/Answers 

1.1  Introduction 

In this unit we have seen that the definite integral ∫
b

)x(f dx
a 

represents the signed area bounded by the curve y = f(x), the x-axis and 
the lines x = a and x = b. The fundamental theorem of Calculus gives us 
an easy way of evaluating such an integral, by first finding the 
antiderivative of the given function, whenever it exists. Starting from this 
unit, we shall study various methods and techniques of integration. In this 
unit, we shall consider two main methods:  
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(1)  The method of substitution and  

(2)  The method of integration by parts.  

Objectives:  
After reading this unit we should be able to: 

• Define the indefinite integral of a function

• Evaluate certain standard integrals by finding the antiderivatives of
the integrands

• Use the rules of the algebra of integrals to evaluate some integrals

• Integrate a product of two functions, by parts.

1.2  Basic Definitions 

The anti derivative of a function is not unique. More precisely, we 
have seen that if a function F is an anti derivative of a function f, then F+c 
is also an anti derivtive of f, where c is any arbitrary constant. Now we 
shall introduce a notation here. We shall use the symbol ( )  f x dx∫  to
denote the class of all anti derivatives of f. We call it the indefinite integral 
or just the integral of f. You must have noticed that we use the same sign 

∫ here that we have used for definite integrals in Unit 9. Thus, if F(x) is

an anti derivative of f(x), then we can write ∫ += c)x(Fdx)x(f

This c is called the constant of integration. As in the case of definite 
integrals, f(x) is called the integrand and dx indicates that f(x) is integrated 
with respect to the variable x. For example, in the equation 

5
4 ( )( )

5
av bav b dv c

a
+

+ = +∫
(av + b)4 is the integrand, v is the variable of integration, and 

c
a5

)bav( 5

+
+

 is the integral of the integrand (av + b)4. 

You will also agree that the indefinite integral of cosx is sinx +c, since we 
know that sin x is an antiderivative of cos x. Similarly, the indefinite 

integrals of 2 21
2

x xe dx e c= +∫ , and the indefinite integral of

∫ ++=++ cx
4
xdx)1x(is1x

4
33 . You have seen in Unit 9 that the 

definite integral ∫
b

a
)x(f dx is a uniquely defined real number whose value 

depends on a, b and the function f.  
UGMM-103/6
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On the other hand, the indefinite integral ∫ dx)x(f is a class of functions

which differe from one another by constants. It is not a definite number, it 
is not even a definite function. We say that the indefinite integral is unique 
upto an arbitrary constant. Unlike the definite integral which depends on a, 
b and f, the indefinite integral depends only on f.  

All the symbols in the notation ( )
b

a
f x dx∫  for the definite integral have an

interpretation. 

The symbol ∫ reminds us of summation, a and b give the limits for x for

the summation. And f(x) dx shows that we are not considering the sum of 
function values multiplied by small increments in the values of x.  

In the case of an indefinite integral, however, the notation ∫ dx)x(f  has

no similar interpretation. The inspiration for this notation comes from the 
fundamental theorem of Calculus.  

Thus, having defined an indefinite integral, let us get acquainted with the 
various techniques for evaluating integrals.  

1.3  Standard Integrals 

Integration would be a fairly simple matter if we had a list of 
integral formulas, or a table of integrals, in which we could locate any 
integral that we ever needed to evaluate. But the diversity of integrals that 
we encounter in practice, makes it impossible to have such a table. One 
way to overcome this problem is to have a short table of integrals of 
elementary functions, and learn the techniques by which the range of 
applicability of this short table can be extended. Accordingly, we build up 
a table (Table 1) of standard types of integrals formulas by inverting 
formulas for derivatives, Check the validity of each entry in Table 1, by 
verifying that the derivative of any integral is the given corresponding 
function. 

Table 1 

S.No. Function Integral 

1. xn

1n,c
1n

x 1n

−≠+
+

+

 

2. sinx - cos x + c 

3. cosx sinx + c 
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4. sec2x tanx +c 

5. cosec2x -cotx+c 

6. secx tanx secx+c 

7. Cosecx cot x -cosecx+c 

8. 
2x1

1
−

Sin-1x+c, or –cos-1x+c 

9. 
2x1

1
+

-cot1x+c 

10. 

1xx
1

2 −

Sec-1x+c 

11. 

x
1 In|x|+c 

12. ex ex+c 

13. ax (ax/lna).+c 

14. sinhx coshx+c 

15. coshx sinhx+c 

16. Sech2x tanhx+c 

17. cosech2x -cotx+c 

18. sechx tanhx -sechx+c 

19. cosech cothx -cosechx+c 

1.4  Algebra of Integrals 

We are familiar with the rule for differentiation which says 

[ ]( ) ( ) [ ( )] [ ( )]d d daf x bg x a f x b g x
dx dx dx

+ = +
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There is a similar rule for integration:  

Rule 1: [ ]( ) b ( ) ( ) ( )af x g x dx a f x dx b g x dx+ = +∫ ∫ ∫
Theorem 1: If f is an integrable function, then so is kf(x) and  

∫ ∫= dx)x(fkdx)x(fk

Proof:  Let ∫ kf(x) = F(x) +c. Then by definition 
dx
d

[F(x) + c] = f(x)

)x(kf}]c)x(F{k[
dx
d

=+∴ . Again, by definition, we have ∫ kf(x) dx

= k[F(x) + c] 

= k ∫ f(x)dx

Theorem 2: If f and g are two integrable functions, then f+g is integrable, 
and we have  

∫ [f(x) + g(x)]dx = ∫ f(x)dx + ∫ g(x)dx

Proof:  Let ∫ f(x)dx = F(x) +c . ∫ g(x)dx = G(x) +c

Then, 
dx
d

[{F(x) + c}+{G(x)+c}] = f(x) + g(x)

Rule (1)  may be extended to include a finite number of functions, that is, 
we can write  

Rule (2)  ∫ [k1f1(x) + k2f2(x)+….+knfn(x)dx

=k1 ∫ f1(x)dx+ k2 ∫ f2(x)dx  ………..+kn ∫ fn(x)dx

We can make use of rule (2) to evaluate certain integrals which are not 
listed in Table 1. 

Example 1: Let us evaluate ∫ + dx
x

x 3)1(

We know that 3
33 133)1(

xx
xx

x
x +++=+  therefore 

∫ ∫ +++=+ dx)
x
1

x
3x3x(dx)

x
1x( 3

33
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∫ ∫∫ +++= 3
3

x
dx

x
dx3xdx3dxx ……Rule 2 

Using integrals formulas 1 and 11 from Table 1, we have 

∫ +
−

+++













+++=+

−

)
2

()||(3
2

3)
4

)1( 4

2

32

2

1

4
3 cxcxIncxcxdx

x
x  

c
x2
1|x|in3x

2
3x

4
1

2
24 +−++=

Note that c1+ 3c2+3c3+c4 has been replaced by a single arbitrary constant 
c.  

Example 2:  Suppose we want to evaluate ∫  (2+3 sin x + 4ex)dx

This integral can be written as 2 ∫ dx + 3 ∫ sin x dx + 4 ∫  ex dx

= 2 x – 3 cosx + 4ex+c. Note that ∫ dx = ∫ 1dx = ∫  x0 dx = x + c

Example 3:  To evaluate the definite integral ∫
1

0
(x+2𝑥2)2 dx, 

Thus, ∫ ( x+2𝑥2)2 dx dx = ∫ (x2 + 4x3 + 4x4) dx

= ∫ x2 dx + 4 ∫ x3 dx + 4 ∫ x4 dx 
3
1

= x3 + x4 + 
5
4

x5 + c 

According to our definition indefinite integral, this gives an antiderivative 
of  

(x + 2x3)2 for a given value of c. By using the fundamental Theorem of 
Calculus we can now evaluate the definite integral.  

1

0

5431

0

22 cx
5
4xx

3
1dx)x2x( 










 +++=+∫

15
32)c)c

5
41

3
1( =−+++=

Note that for the purpose of evaluating a definite integral, we could take 
the antiderviative corresponding to c = 0, that is, 

543 x
5
4xx

3
1

++ , as the constants cancel out. 
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We could evaluate a number of integrals. But still there are certain 

integrals like ∫ sin2x dx which cannot be evaluated. The method of

substitution which we are going to describe in the next section will come 
in handy in these cases. 

1.5  Integration by Substitution 

In this section we shall study the first of the main methods of 
integration dealt with in this unit the method of substitution. This is one of 
the most commonly used techniques of integration.  

1.5.1 Method of Substitution 

Theorem 3: If ∫ f(v)dv = F(v) + c, then on substituting g(x) for v, we get

∫ f[g(x)]g′(x′)dx = ∫ f (v)dv.

Proof: We shall make use of the chain rule for derivatives to prove this 

theorem. Since ∫ f(v)dv = F(v) + c, we can write 
dv

)v(dF
=f(v). Now if we

write v as a function of x, say v = g(x), then 

dx
)x(dg.

)x(dg
)]x(g[dF)x(g[F

dx
d

=  by chain rule

=f[g (x). 
dx

)x(dg
 ] since v = g(x) =f[g(x). g′(x)

This shows that F[g(x)] is an antiderivative of f{g(x)′(x). The means that 

∫ f[g(x)]g′(x)dx = F[g(x)] + c = F(v) + c = ∫  f(v)dv.

Evaluate ∫ Sin2x dx, we could take v = g(x)= 2x and get

∫ sin2x dx = 
2
1

∫  sin 2x (2) dx

2
1

= ∫  sinvdv, since g(x) = 2x and g′(x) = 2.

c
2

vcos
+

−
= c

2
x2cos

+=  

We make a special mention of the following three cases which follow 
from theorem 3.  UGMM-103/11
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Case (i) if f(v) = vn, n ≠ - 1 and v = g(x), then 

∫ [g(x)]n g′(x) dx = c
1n

)]x(g[ 1n

+
+

+

 

Case( ii) If f(v) = 1/v and v = g(x). 

Then by formula c|)x(g|Indx
)x(g
)x(g

+=
′

∫  

Case (iii) ∫ f(x) dx = F(x) + c, then

∫
b

a
f[g(x)]g′ (x) dx = ∫

)b(g

)a(g

f(v) dv, where v = g(x) [The limits of 

  ] )b(g
)a(g)v(F=  Since x = a      v = g(x) = g(a), integration are g(a) and g(b) 

and x = b    g(x) = g(b).] 

Example 4: Let us integrate (2x + 1) (x2 + x + 1)5 

For this we observe that 
dx
d

(x2 + x + 1) = 2x + 1 

Thus, ∫ (2x+1) (x2 +x + 1)5 dx is of the form  ∫[g(x)]n g′(x) dx and hence 
can be evaluated as in (1) above 

Therefore, ∫(2x+1) (x2+x+1)5 dx = 
6
1

 (x2+x+1)6 +c 

Alternatively, to find ∫(2x + 1) (x2+x+1)5 dx we can substitute x2+x+1 by u 

This means  1x2
dx
du

+= .

Therefore ∫(2x+1)(x2+x+1)5 dx = ∫ u5 du 
6
1

= (x2+x+1)6 + c 

Example 5: Let us evaluate ∫ (ax + b)n dx 

=∫ (ax + b)n dx = 
a
1

 (ax + b)n dx.

Therefore, when n ≠ 1, ∫(ax+b)n

)1n(a
)bax(dx

1n

+
+

=
+

And when n= - 1,  ∫(ax+b)n dx = ∫ 
a
1

bax
dx

=
+

In |ax+b| +c

Example 6: Suppose we want to evaluate the definite integral 

⇒

⇒

UGMM-103/12
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∫ ++
+2

0 2 dx
3x2x

1x
. We put x2 + 2x + 3 = u. This implies 

).1x(2
dx
du

+= Further, 

When x = 0, u = 3, and when x = 2, u = 11. Thus 

∫ ∫∫ ===
++

+2

0

11
3

11

3

2

02 |u|in
2
1

u
du

2
1dx

dx
du

u
1

2
1dx

1x2x
1x

2
1

= (In 11 -

In3)= 
2
1

 In
3

11

Example 7: To evaluate ∫
2x2xe dx, we substitute 2x2 = u. Since

x4
dx
du

= , we can write, ∫ ∫∫ == dx
dx
due

4
1dxx4x

4
1dxxe ux2x2 22

4
1

= ∫eu du=
4
1

eu + c. cx
4
1 2x2 +=

Check your progress 
(1)  Write down the integrals of the following 

(i)  x4 (ii)  x-3/2  (iii)  4x-2 (iv) 3 

(a) (i)   1 – 2x+x2  (ii) 2)
2
1x( − (iii) (1+x)3 

(b) (i)   ex + e-x+4   (ii) 4cosx – 3sinx + ex+x 

(iv) 4sech2x+ex – 8x . 

(c) (i) 
x
5

x1
2

2
+

−
(ii) 

1x
5x2

2

2

+
+

(d) (i) ax3+ bx2 + cx + d (ii) 2)
x

1x( −

(e) (i) 
xcosxsin

x4coshxsin
22

4 +
(ii) (2 + x ) (3 - x ) 

(2) Evaluate the following definite integrals 

(a) (i) ∫
6

5

4dxx  (ii) dx
x

x12

1 2∫
+

UGMM-103/13
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(b) (i) dx)
2
1x(

4

2

2∫ + (ii) ∫ +
1

0

3dx)1x(

3) Evaluate

(a) ∫ − dx3x5  (b) ∫ + dx)1x2( 6  (c) ∫ +
3

1 x54
dx

(d) ∫ + 7x10
dx5

(e) ∫ ++
+

7x2x
1x

2 (f) ∫ −++
++3

2 22

2

8xxx
1x2x3

(g) ∫ − dx1xx 3/43/1  (h) ∫ − 2x31
dxx

Example 8: To evaluate ∫ sin ax dx, we proceeded in the same manner as 
we did for ∫sin 2xdx. We make the substitution ax = u 

This gives 
dx
du

=a. Thus,∫ sin ax dx =
a
1

∫sin u.
dx
du

.dx
4
1

=  cos ax +c

Example 9: Suppose we want to evaluate 

(i) ∫cotx dx (ii) ∫tanx dx and (iii) ∫cosec2x dx 

(i) we can write  ∫cotx dx, = 
xsin

cox
dx. Now since

dx
d

sin x = cosx, this

integral falls in the category of case (ii) mentioned earlier, and thus, ∫cotx 
dx – In |sinx|+c 

(i) to evaluate ∫tanx dx, we write 

∫tan x dx = dx
sec

xtanxsec
=In|sec x| + c, as 

dx
d

sec x = sec x

tan x 

(iii) to integrate cosec 2x we write 

∫cos ec 2x dx = dx
x2cotx2eccos

)x2cotx2ec(cosx2eccos2
2
1

∫ −
−

Here again, 
dx
d

(cosec2x – cot2x) = 2cosec2x (cosec2x – cot 2x)

This means ∫cosec2dx = 
2
1

In |cosec2x – cot 2x| +c

Example 10: Let us evaluate ∫ xsin2

e  sin 2x dx 

UGMM-103/14
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If we put sin2x = u the 2
dx
du

= sin x cosx = sin 2x

Therefore, ∫ xsin2

e sin2x dx = ∫eu du =eu+c = cxe x +
2sin  

1.5.2 Integrals using Trigonometric Formulas 
In this section, we shall evaluate integrals with the help of the following 

trigonometric formulas )x2cos1(
2
1xsin2 −= ,

)x2cos1(
2
1xcos2 += .  

xxx 3sin
4
1sin

4
3sin3 −= x3cos

4
1xcos

4
3xcos3 +=

sinmx cosnx = 
2
1

[sin(m+n)x+ sin( m – n)x], cosmx cosnx =
2
1

[cos

(m+n) x + cos (m – n)x ], sinmx sinnx = 
2
1

[cos(m – n)x – cos(m + n)x]

Example 11: To evaluate ∫cos3 ax dx. We write 

∫cos3 ax dx = ∫ (
4
3

 cos ax +
4
1

 cos 3ax) dx
4
3

= ∫ cos ax dx +
4
1 

∫cos 3ax

dx 

a4
3

=  sin ax + 
a12

1
 sin 3ax + c 

Example 12: Let us evaluate (i) ∫ sin3x cos4x and (ii) ∫sinx sin2x sin3x dx 

Here the integrand is the form of a product of trigonometric functions. We 
shall write it as a sum of trigonometric functions so that it can be 
integrated easily. 

(i) ∫sin3x cos4x dx = ∫
2
1

(sin7x – sin x) dx =
2
1

(sin7x  dx -
2
1

∫sin x

14
1

−=  cos7x+
2
1

cos x + c

(ii) To evaluate∫sin2x cos3x dx, again we express the product sinx sin2x 
sin3x as a sum of trigonometric functions. 

Sin sin2x sin3x = 
2
1

sinx (cos x – cos5x)
2
1

= sinx cosx sinx cos5x
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4
1

= sin2x -
4
1

 (sin 6x – sin 4x)

Therefoe, ∫sin x sin2x sin3x dx 
4
1

= ∫sin2x dx +
4
1

∫sin4x dx -
4
1

∫ sin6x

dx 

8
1

−= cos 2x
16
1

− cos4x +
24
1

cos 6x +c

Check your progress 
(4)  Proceeding exactly as in Example 8, full up the blanks in the table 

below. 

S.No. f(x) ∫f(x) dx 

1. Sin ax 
a
1

− cos ax +c

2. cos ax 
a
1

sin ax +c

3. sec2ax ………. 

4. cosex2ax ………. 

5. Cosec ax cot ax ………. 

6. secax tanx ………. 

7. emx ………. 

8. anx ………. 

(5)  Evaluate the following integrals 

(a)  ∫sec x dx  (b) ∫
π 2/

0
sin2x cos x dx  (c) ∫etanxsec2x dx 

(6)  Evaluate each of the following integrals.  

(a)  (i) ∫sin5x cosx dx,    (ii) ∫ dx
xsin
xcos

3 (iii) ∫
π

π

3/

6/
cot2x cosec22xdx 

(iv) ∫sin2 θecos2θdθ (v) ∫
π 2/

0
sinθ(1+cos4θ)dθ 

(a)  (i) ∫ (1+cosθ)4 sin θ dθ  (ii) ∫
π

θ−
θθ3/

0

2

)tan51(
dsin
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(b)  (iii) ∫
π 4/

0
secθtanθ(1+secθ)3 dθ 

(c)     (i)  ∫sin4θdθ (ii) ∫sin 3θ cosθ dθ 

(iii) ∫
π 2/

0
cos5θ cosθdθ (iv) ∫

π 2/

0
cosθ cos2θ cos4θ dθ 

1.5.3  Trigonometric and Hyperbolic Substitution 
Various trigonometric and hyperbolic identities like sin2θ + cos2θ=1 

1+ tan2θ = sec2θ, tanhθ = 
θ
θ

cosh
sinh

 and so on, prove very useful while 

evaluating certain integrals. In this section we shall see how. 

A trigonometric or hyperbolic substitution is generally used to integrate 

expressions involving 2222 ax,xa −−  or a2 + x2. We suggest the 
following substitutions  

Expression involved Substitution 

22 xa − x=a sinθ 

22 xa +  x = a tanθ or a sinh θ 

22 ax − x = a secθ or a chshθ 

a2+x2 x = a tan θ 

Thus to evaluate ∫ − 22 xa
dx

,put x = a sinθ. Then we know that 
θd

dx
=a

cosθ. This means we can write 

∫ ∫ θ−
θθ

=
− 22222 sinaa

dcosa
xa

dx
∫ ∫ +θ=θ=

θ
θθ

= cd
cosa

dcosa
 =sin-1 

(x/a)+c 

Similarly to evaluate ∫ + 22 xa
dx

, we shall put x = a tan θ 

Since 
θd

dx
=sec2θ dθ, we get  ∫ ∫

θθ
=

+ 22

2

22 a + a  . tan2θ
dseca

xa
dx

∫ ∫ +
θ

=θ=
θ

θθ
= c

a
d

a
1

seca
ddseca

22

2

a
1

=  tan-1(x/a)+c 
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We can also evaluate ∫ + 22 xa
dx

, by substituting x = a tan θ.This gives 

θd
dx

=a sec2θ. Thus, 

∫ ∫ ∫ θθ=
θ+

θθ
=

+
dsec

tanaa
dseca

a
dx

222

2

22
= In |secθ + tan θ|+c 

c
a

xaxIn
22

+
++

=

We can also evaluate this integral by putting x = sinhθ. With this 

substitution we get, ∫ + 22 xa
dx

=sinh-1(x/a) +c, and we know that 

Sin h-1

(x/a) = in.
a

axx 22 ++
similarly, ∫ − 22 ax

dx
=cosh-1(x/a)+c, 

c
a

axx.In
22

+
−+

=  and 
aaxx

dx 1
22

=
−∫ sec-1(x/a)+c 

Let us put these results in the form of a table 3 

Table 3 

S.No. f(x) ∫f(x)dx 

1. 
22 xa

1
−

Sin-1(x/a)+c 

2. 
22 xa

1
+ a

1
tan-1(x/a)+c 

3. 
22 axx

a
− a

1
sec-1(x/a)+c 

4. 
22 xa

1
− c

a
axxIn

22

+
++

Or sinh-1(x/a)+c 

5. 
22 ax

1
− c

a
axxIn

22

+
−+

 

Or cosh-1(x/a)+c 
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Sometimes the integrand does not seem to fall in any of the types 
mentioned, but it is possible to modify or rearrange it so that it conforms 
to one of these types.  

Example 13: Suppose we want to evaluate ∫ −

2

1 2xx2
dx

Let us try to rearrange the terms in the integrand 
2xx2

1
−

to suit us. We 

will see that ∫∫ −−
=

−

2

1 2

2

1 2 )1x(1
dx

xx2
dx

If we put x – 1 = v, 1
dx
dv

=  and  ∫∫ −
=

−

2

1 2

2

1 2 v1
dv

xx2
dx

. Note that 

new limits of integration. We get ∫ 
=

−
−2

1

1

0

1

2
vsin

xx2
dx

 = sin-1 1 – 

sin-10 = 
2
π

Example 14: The integration in ∫ +
dx

x1
x

6

2

If we put x3=u, 
dx
du

=3x2, thus ∫ ∫ +
=

+
1

0

1

0 6

2

6

2

dx
x1

x3
3
1dx

x1
x

dx
dx
du

u1
1

3
1 1

0 2∫ +
=

∫ +
=

1

0 2u1
1

3
1

du, by Theorem 3 (u = 1 when x = 1 and u = 0 when x = 0)  

Here the integrand 2u1
1

+
 can be evaluated. Thus, we get 

∫ 

=
+

−1

0

1
6

3

utan
3
1dx

x1
x3

3
1

12
)0

4
(

3
1 π

=−
π

=

1.6  Properties of Definite Integrals 

We have already derived some properties of the definite integrals. 
These are the  

(i) Constant Function Property: ∫ −=
b

a
)ab(ccdx
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(ii) Constant Multiple Property: ∫∫ =
b

a

b

a
dx)x(fkdx)x(kf

(iii) Interval Union Property: ∫ ∫ ∫+=
b

a

c

a

b

c

dxxfdxxfdxxf )()()(  where

a≤c≤b. 

(iv) Comparison Property: If if c ≤ f(x) ≤ d ∀ d ∀ x ∈ [a, b], 

then c(b – a) ≤ ∫
b

a
f(x) dx ≤ d(b – a) 

Now we shall use the method of substitution to derive two more properties 
to add to this list. Let’s consider them one by one  

(v) ∫∫∫ −+=
2/a

0

2/a

0

a

0
dx)xa(fdx)x(fdx)x(f  for any integrable 

function f. 

We already known that ∫
a

0
f(x)dx = ∫

2/a

0
f(x) dx + ∫

2/a

0
f(a – x) dx for 

any integrable function f.  We already know that ∫
a

0
f(x)dx =  ∫

2/a

0
)x(f

dx + ∫
a

a
dxxf

2/
)(

Now if we put x = a – y in the second integral on the right hand side, then 

since ,1
dx
dy

−=  we get 

∫ ∫ ∫∫ −=−=−−=
a

2/a

2/a

0

2/a

0

0

2/a
dx)xa(fdy)ya(fdy)ya(fdx)x(f  

Since x is a dummy variable. Thus ∫
a

0
f(x) dx = ∫

2/a

0
f(x) dx + ∫

2/a

0
f(a 

– x ) dx.

Example 15: Let us evaluate (i) ∫
π

0
sin4 x cos5 x dx and  (ii) ∫

π2

0
cos3x 

dx 

(i) Using property (v), we can write 

∫
π

0

2sin x cos5 x dx = ∫
π 2/

0

4sin x cos5 x dx + ∫
π 2/

0
sin4 (π-x)

= ∫
π 2/

0

4sin x cos5 x dx + ∫
π 2/

0

4sin x (- cos x)5 dx 

= ∫
π 2/

0

4sin x cos5 x dx - ∫
π 2/

0

4sin x (cos5x) dx = 0 

(ii) ∫
π2

0

3cos x dx = ∫
π

0

3cos (2π - x dx) = ∫
π

n

3cos x dx + ∫
π

0
cos3  

= 2 ∫
π

0

3cos x dx =2[ ∫
π 2/

0

3cos x d + ∫
π 2/

0

3cos (π - x) dx] 

cos5 (π – x)dx

(2π – x)dx
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= 2 [ ∫
π 2/

0

3cos x dx - ∫
π 2/

0

3cos x dx] = 0

Our next property greatly simplifies some integrals when the integrands 
are even or odd function.  

(vi) If f is even function of x, i.e., f( - x) = f(x), then  ∫
b

a
)x(f dx= 2 

d)x(f
a

0∫

And if f is an odd function i.e. f(- x) = f(x), then  ∫ =
a

0dx)x(f
a

We shall prove the result for even functions. The result for odd 
functions follows easily and is left to you as an exercise.  

Then ∫−

a

a
f(x) dx = ∫−

0

a
)x(f dx+ ∫

0

a
f (x)dx 

If we put x = - y in the first integral on the right hand side, we get 

∫ ∫∫∫ ==−−=
−

0

a

a

0

a

0

0

a
.dx)x(fdy)y(fdy)y(fdx)x(f  Thus 

∫ ∫−

−
=

a

a

a

0
dx)x(f2dx)x(f

Using this property we can directly say that 

]∫ ∫ ∫
π

π−

π

π−

ππ−
====

2/

2/

2/

2/

2/

0

2/

0
2xsin2dxdcos2xdxcos0xdxsin  

Check your progress 
(7)  The cost of a transistor radio is Rs. 700/-. Its value is depreciating 

with time according to the formula 
)1(

500
2tdt

dv
+

−
=  where Rs. V is its 

value at t years after its purchase. What will be its value 3 years after 
its purchase? (Don’t’ forget the constant of integration. Think how 
you can find it which the help of the given information).  

 (8)  Integrate each of the following with respect to the corresponding 
variable 

(i) 
2x9

1
−

(ii) 
4u

1
2 −

(iii) 
2x41

1
+

(iv) 
52xh2

1
+
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(v) 
1x

x
−4

(vi) 
16t

t
6

2

+
(vii) 

6

2

u4
u
−

(viii) 
3xx2

1
−

(ix) 
2xx1

1
++

(x) 
5y6y

1
2 ++

(xi) 2

2

x1
x
+

 (hint: 32

2

x1
11

x1
x

+
−=

+
) 

(9)  (a)  Evaluate ∫
π

0

5sin x cos3 x d x 

(b)  Show that ∫
π 2/

0
sin 2x In (tan x) dx = 0 

(c)  Prove that ∫−a
f(x)dx = 0 if f is an odd function of x.

In this section we have seen how the method of substitutions enables us to 
substantially increase our list of integrable functions. (Here by “integrable 
function” we mean a function which we can integrate)  

1.7  Integration By Parts 

In this section we shall evolve a method for evaluating integrals of 
the types  

∫ u(x)v(x) dx, in which the integrand u(x)v(x) is the product of two 
functions. In other words, we shall first evolve the integral analogue of  

)x(u
dx
d)x(v)x(v

dx
d)x(u)]x(v)x(u[

dx
d

+=  

and then use that result to evaluate some standard integrals. 

Integrals of a Product of Two Functions 

We can calculate the derivative of the product of two functions by the 
formula  

dx
d

[u(x)v(x)]= u(x)
dx
d 

v(x) + v(x)
dx
d

u(x)

Let us rewrite this as  u(x)
dx
d

v(x)) dx = ∫ dx
d

[u(x)v(x)] – v(x)
dx
d

u(x)

Integrating both the sides with respect to x, we have 
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∫u(x)
dx
d

(v (x)) dx = ∫
dx
d

(u(x)v(x))dx - ∫v(x)
dx
d

(u(x)dx. Or

∫u(x)
dx
d

 (v(x)) dx = u(x) v(x) - ∫ v(x) 
dx
d

(u(x))dx …….(1) 

To express this in a more symmetrical form, we replace u(x) by f(x), and 
put  

).x(g)x(v
dx
d

=  This means v(x) = ∫g(x) dx. 

As a result of this substitution, (1) takes the form 

∫f(x)g(x) dx = f(x) ∫ g(x) dx - ∫ {f1(x) ∫g(x) dx} dx 

This formula may be read as:  

The integral of the product of two functions = First factor × integral 
of second factor – integral of (derivative of first factor × integral of 
second factor)  

It is called the formula for integration by parts. This formula may appear a 
little complicated to you. But the success of this method depends upon 
choosing the first factor in such a way that the second term on the right 
hand side may be easy to evaluate. It is also essential to choose the second 
factor such that it can be easily integrated. 

Example 16: Let us use the method of integration by parts to evaluate ∫xex 
dx. 

In the integrand xex we chose x as the first factor and ex as the second 
factor. Thus, we get  

∫xex dx = x ∫ex dx – ∫
dx
d

(x) ∫ ex dx} dx = xex - ∫ ex dx 

Example 17: To evaluate ∫
π 2/

0

2x  cos x dx. We shall take x2 as the first
factor and cos x as the second. Let us first evaluate the corresponding 
indefinite integral.  

∫x2 cos x dx = x2∫ cos x dx – ∫{
dx
d

(x2)cos x dx} dx = x2 sin x – ∫2x sin x 

dx 

= x2 sin x – 2 ∫ x sin x dx 

We shall again use the formula of integration by parts to evaluate ∫ x sin x 
dx. Thus ∫ x sin x dx = x ( - cos x) - ∫ (1) ( - cos x) dx as (f(x) = x, g(x) = 
sin (x)  

= - x cos x + ∫ cos x dx = - x cos x + sin x + c UGMM-103/23

R
IL

-1
46



Hence,  ∫ x2 cos x dx = x2 sin x + 2x cos x – 2 sin + c 

Note that we have written the arbitrary constant as c instead of 2c 

Now ∫
π 2/

0
x2cos x dx = (x2 sin x + 2x cos x – 2 sin x +c) 2/

0]
π

Example 18: Let us now evaluate ∫ x ln |x| dx 

Here we take ln |x| as the first factor since it can be differentiated easily, 
but cannot be integrated that easily. We shall take x to be the second 
factor.  

∫x ln |x| dx = ∫ln |x| x dx  ∫ 













−= dxx

x
xxIn

2
1

2
||(

22

∫−= xdxxx
2
1||ln

2
1 2 cxxx −−= 22

4
1||ln

2
1

While choosing ln |x| as the first factor, we mentioned that it cannot be 
integrated easily. The method of integration by pats, in fact, helps us in 
integrating lnx too. 

Example 19: We can find ∫ lnx dx by taking lnx as the first factor and 1 as 
the second factor. Thus, ∫1n x dx =  ∫(1n x) (1) dx 

= 1n x ∫ 1dx - ∫(
x
1

∫1dx) dx = (1n x) (x) - ∫
x
1

 (x) dx

= x 1n x – ∫ dx = x 1n x – x + c = x 1n x – x 1n e + c since 1ne = 1 = x1n 
(x/e)+c 

1.7.1 Evaluations of ∫eax sinbx and ∫eax cosbx dx 

To evaluate ∫eax sin bx dx and ∫ eax cosbx dx, we use the formula for 

integration by parts. ∫eax sin bx dx = (eax) (-
b
1

cos bx) – (acax) (- 
b
1

cos bx)

dx 
b
1

−= eax cos bx +
b
a

∫ eax cos bx dx 
b
1

−= eax cos bx + 2b
a

eax sin bx - 

2b
a

∫ sin bx dx

We obtain. (1+ 2

2

b
a

) ∫eax sin bx dx = eax ( 2b
a

sin bx -
b
1

 cos bx)

This means, ∫ eax sin bx dx = ax
22 e

ba
1
+

 (a sin bx – b cos bx) + c 
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We can similarly show that  ∫eax cos bx dx = ax
22 e

ba
1
+

 (a cos bc – b sin 

bx) +c  

If we put a = rcosθ, b = rsinθ, these formulas become 

∫eax sin bx dx = ax

22
e

ba
1
+

sin (bx - θ) + c 

∫eax cos bx dx = ax

22
e

ba
1
+

 cos (bx - θ) + c, where θ = tan-1

a
b

.

Example  20: using the formula discussed in this sub-section, we can 
easily check that 

(i) ∫ex sin x dx = 
2

1
ex sin (x - 

4
π

)+ c. and 

(ii) ∫ex cos dxx3 = 
2
1

ex cos (
3

x3 π
− )+c 

Example 21: To evaluate ∫e2x sin x cos 2x dx, we shall first write 

sin x cos 2x = 
2
1

(sin 3x – sin x). Therefore, ∫e2x sin x cos2x dx

= 
2
1

∫e2x sin 3x dx  -
2
1

∫e2x sin x dx

Now the two integrals on the right hand side can be evaluated. We see that 

∫e2x sin 3x dx = x2e
13
1

 sin (3x + tan-1

2
3

) +c and

∫e2x sin x dx = x2e
5

1
sin (x – tan-1

2
1

) + c. Hence

∫e2x sin x cos2x dx = e2x [
13
1

sin (3x – tan-1
2
3

) = 
5

1
sin (x – tan-1

2
1

)]+c 

Example 22: Suppose we want to evaluate ∫x3 sin (a 1n x) dx 

Let 1nx = u, This implies x = eu and du/dx = 1/x 

Then, ∫x3 sin (alnx) dx = ∫ x4 sin (alnx) (1/x) dx 
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=∫e4u sin au du = 
2a16

1
+

e4u sin (au) – tan-1 (a/4) +c 

= 4

2
x

a16
1
+

sin (aln x) – tan-1

4
a

+c

Check your progress 
(10)  Evaluate 

(a) ∫x2 1n x dx           Take f(x) = 1nx and g(x) = x2 

(b) ∫ (1 + x) ex dx  Take f(x) = 1 + x and g(x) = ex 

(c) ∫(1 + x2) ex dx 

(d) ∫x2 sin x cos x dx Tak f(x) = x2 and g(x) = 

sin x cos x 
2
1

= sin2x

(11) Evaluate the following integrals by choosing 1 as the second factor. 

(a)  ∫sin-1 x dx  (b) ∫ −1

0

1 xdxtan (iii) ∫ cot-1x dx 

(12) Integrate: (a) x sin-1x  (b) 1n (1+x2) w.r.t.x. 

(13) Evaluate the following integrals  

(a)  ∫a2x cos4x dx (b) ∫e3x sin 3x dx (c) ∫e4x cos x cos2x dx 
(d)  ∫e2x cos2xdx  

(e) ∫ cos h ax sin bx dx (write cosh ax in terms of the exponential function) 

(f) ∫xeax sin bx dx 

1.7.2 Evaluation of ∫ 22 xa − dx, ∫ 22 xa + dx, and ∫ 22 ax − dx 

In this sub-section, we shall see that integrals like ∫ ,dxxa 22 − ∫

dxxa 22 + and ∫ 22 ax −  dx can also be evaluated with the help of 
the formula for integration by parts and table 3. 

(1)dx ∫ ∫ +=− 2222 xadxxa

∫ ×
−

−
−×−= dx)x

xa
x(xxa

22

22
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Shifting the last term on the right hand side to the left we get 

Using the formula =sin-1( )+c, we obtain 

Similarly, we shall have

 

 and  

cosh-1( ) +c 

 

Example 23: Let us evaluate 

Now  Let , 

ln (3+2 ) 

∫ −
+−= dx

xa
xxax

22

2
22 ∫ −

−
−−= dx

xa
)xa(xax
22

22
22

∫ ∫ −−
−

+−= dxxa
xa

dxaxax 22

22

222

∫ ∫ −
+−=−

22

22222

xa
dxaxaxdxxa2

∫ − 22 xa
dx

a
x

∫ ++−=− c)
a
x(sin

2
axax

2
1dxxa 1

2
2222

∫ +++=+ − c)
a
x(sin

2
axax

2
1dxxa 1

2
2222

c
a

xaxln
2
axax

2
1 222

22 +
++

++=

∫ −−=−
2
aaxx

2
1dxax

2
2222

a
x

c
a

axxln
2
aaxx

2
1 222

22 +
−+

−−=

∫ +
1

0

2 dxxx

∫∫ −+=+
1

0

21

0

2 dx4/1)2/1x(dxxx u
2
1x =+

∫∫ −=+
2/3

2/1

21

0

2 du4/1udxxx
2/3

2/1

2
2

2/1
4/1uuln

8
14/1uu

2
1{ 



−+
−−=

8
1

4
23

== 2
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1.7.3 Integrals of the Type [f(x) + f′(x) ]dx 

We first prove that formula [f(x)+f′(x)]dx = ex f(x) +c and see how it

can be used in integrating some functions.  

By the formula for integration by parts f(x) dx = 

[f(x) + f ′(x)] dx = ex f(x) + 

c 

Example 24 Let us evaluate the following integrals. 

(i)  (ii) 

We take up (i) first, 

 

Now we shall evaluate (ii) 

(a) 

. Now 

sec e-x/2 dx = (sec ) (- 2e-x/2) - ( sec ) (- 2e-x/2)dx 

= -2 sex e-x/2 + sec tan e-x/2dx. Thus, 

 

∫ xe

∫ xe

∫ xe ∫ dxe)x(f x

= f(x) ex - ∫ f ′ (x) ex dx + c. This implies ∫ ex

∫ +
+ dxe

)x2(
x1 x

2 ∫ −

+
− dxe

xcos1
xsin1 2/x

∫ ∫ +
−+

=
+
+ dxe

)x2(
1)x2(dxe

)x2(
x1 x

2
x

2 ∫ +
−

+
+

= dxe
)x2(

1
x2

1[ x
2









+
=

+
−

+
+

=
x2

1
dx
d

)x2(
1cesin,ce

x2
1

2
x

∫ −

+
− dxe

xcos1
xsin1 2/x ∫ −

−
= dxe

xcos2
2
xsin

2
xcos

2/x
2

∫ ∫ −− −= dxe
2
xsec

2
xtan

2
1dxe

2
xsec

2
1 2/x2/x

∫ 2
x

2
x

∫ 2
1

2
x

2
x

∫ 2
x

2
x

∫ −

+
− dxe

xcos1
xsin1 2/x

∫ ∫ −− −+−= dxe
2
xtan

2
xsec

2
1dx

2
xsec

2
1e

2
xsec 2/x2/x

ce
2
xsec 2/x +−= −
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Check your progress 
(14)  Verify that 

         (a) 

        (b)  

 (15)  Evaluate the following integrals 

         (a) (2x3 + 2x + 3) dx (b) ,         

(c) (x/2) cosh (x /2) dx 

(d) (ex – e-x)2 dx              (e) 

(f) (g) sin xecosx dx 

        (h) (i) dx 

(j) (x2+x)6 x3 dx                    (k) 

(l) (m) 

(16) Prove that  and use it to 

evaluate sin x dx 

Note: 

The results, dx = [F(x) - F(b) – F(a) 

c
a

xaxln
2
axax

2
1dxxa

222
2222 +

++
++=+∫

∫ +
−+

−−=− c
a

axxln
2
aaxx

2
1dxax

222
2222

∫ ∫
+ dx
x

2x2

∫ sinh

∫ dx
1x

x4

2 3

2

∫ +

∫ +
dx

)2x(
x

82 ∫

∫ +
dx

x91
1

2 ∫
π

+
2/

0 3)xsin1(
xcosxsin

∫ ∫ ++ dx2x2xx 24

∫ +

−

dx
)x1(
xtanx

2/32

1

∫ +
−− dx)

x1
x1(cos 2

1

2

∫ ∫−= ,dx
dx

udvv
dx
dvudx

dx
vdu 2

2

2

2

∫ 3x

∫
b

a
)x(f b

a]
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Where F(x) is the antiderivaties of f(x), F(x) will make sense only if f(x) 
exists at every point of the interval. Hence we have to be careful in using 
this result. 

Thus,  dx = [ln |x| = ln 

But 1/x is not defined at x = 0, and ln |x| is also not differentiable at x = 0. 
As such, at this stage, we should use the result only if the interval [a, b] 
does not include x ≠ 0. 

Thus, dx = ln =in 2 is not valid. is 

valid 

Again, consider dx= [sin-1x

However  does not exist at x = 1, and  sin-1 x is not differentiable 

at x = 1. L (sin-1x) exists at x = 1, but R(sin-1x)does not exist, since sin-1 x 
itself does not exist when x > 1. 

The antiderivtive of every function need not exist, i.e. it need not be any of 
the functions we are familiar with. For example, there is no function 
known to us whose derivative is e-x2. However the value of the definite 

integral dx of every function, where f(x) is continuous on the 
interval [a, b], can be found out by numerical methods to any degree of 

approximation. We can find the approximate value of  dx, for all 
real values of a and b. In fact, this integral is very important in probability 
theory and you will use it very often if you take the course on probability 
and statistics. 

1.8  Summary 

In this unit we have covered the following points  

(1) If F(x) is an antiderivtive of f(x), then the indefinite integral (or 
simply, integral) of f(x) is 

dx = F(x) + c, where c is an arbitrary constant 

(2) (x) + k2f2(x) + ……..+kn fn(x)] dx = 

k1 f1(x)dx + k2 f2(x)dx + …….+kn fn(x)dx 

∫ 2
1 b

a] |a|
|b|

∫−

2

1 x
1

|1|
|2|

− ∫−
=

−
−

=
1

2 2
1ln

|2
|1|lndx

x
1

∫ −

1

0 2x1
1

2
]1

0

π
=

2x1
1
−

∫
b

a
)x(f

∫
b

a

2ex

∫ )x(f

∫ 11fk[
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(3) The method of substitutions gives “ 

[g(x)g′ (x)dx = (u) du, if u = g(x) 

In particular 

[f(x)n f′(x) dx = +c, n ≠ -1, and  dx = ln |f(x)|+c 

(x) dx = (x) dx + (a – x) dx 

(x)dx = 

(4) Standard formulas 

 

 

(5) Integration of a product of two functions (integration by parts), 

This leads us to: 

 

sin bx dx =  sin (bx – tan-1 )+c 

cos bx dx =  cos (bx – tan-1 )+c 

[f(x) + f′(x)]dx = ex f(x) + c 

∫
b

a
f ∫

)b(g

)a(g
f

∫ 1n
)x(f[ 1n

+

+

∫ )x(f
)x(f

∫
a

0
f ∫

2/a

0
f ∫

2/a

0
f

∫
a

a
f





 ∫

oddisfif,0
evenisfif,dx)x(f2

a

0

∫ +=
−

− c
a
xsin

xa
dx 1

22

∫ +
++

=
+

c
a

xaxln
xa

dx 22

22

∫ +
−+

=
−

c
a

axxln
ax

dx 22

22

∫ ∫ ∫′− dx}dx)x(v)}x(u{dx)x(v u(x) =(x)v(x)dx  

∫ ++−=− − c
a
xsin

2
axa

2
1dxxa 1

2
2222

∫ +
++

+−=− c
a

xaxln
2
axax

2
1dxxa

222
2222

∫ +
++

−−=− c
a

axxln
2
aaxx

2
1dxax

222
2222

∫ axe ax

22
e

ba
1
+ a

b

∫ axe ax

22
e

ba
1
+ a

b

∫ xe
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Solution and answers  of check your progress 

(1) (a)  i)     (ii) -2x-1/2 (iii) -4x-1+c (iv) 3x +c 

(b) (i)  (ii) 

      (iii) 

(c) (i) ex – e-x + 4x + c  (ii) 4sin x + 3 cos x + ex + +c 

(iii) 4tanh x + ek – 4x2 +c 

(d) (i) 2sin-1 x + 5ln |x| +c   

(ii) 

=2 x + 3tan-1 x +c 

(e) (i) (ii) -2x + ln |x|+c 

(f) (i) =

 = - cot x + tab x – 2x +c 

(iii)  

(2)  (a)   (i) (ii)  (b) (i) (ii) 

(3) (a)   ∫(5x – 3)1/2 dx= ∫5(5x – 3)1/2 dx if 5x – 3 = u,  

∫u1/2 du= (5x – 3)3/2 + c 

c
5
x5

+

c
3
xxx

3
2 ++− c

x
1x2

3
x3

+−−

c
4
xx

1
x3x

4
3

2

++++

2
x2

∫ ∫ ∫ +
+=

+
++ dx

1x
13dx2dx

1x
3)1x(2

22

2

cdx
2

cx
3

bx
4

ax 234

++++
2
x2

∫
+ dx

xcosxsin
xcosxsin

22

44

∫
−+

xcosxsin
xcosxsin2)xcosx(sin

22

22222

∫ ∫ ∫−+= dx2dx
xcos

1dx
xsin

1
22

cx
3
2x

3
4

2
x3x6 2/52/3

2

+−−+

4
5

5
5
6

− 2ln
2
1

+
12
275

5
14

5
1 5

dx
du

=

5
1

=
15
2c

2/3
u

5
1 2/3

=+
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(b) (2x+1)7 + c  (c) (d) ln |10x + 7|+c 

(e) ln|x2 + 2x + 7| + c 

(f) ln |x3 + x2 + x – 8|

 (g) 

(h) 

(4) 

S.No. f(x) ∫f(x) dx 

1. sin ax cos ax+c 

2. cos ax sin ax +c 

3. sec2ax tan ax +c 

4. cosec2ax cotax +c 

5. sec ax tan ax  sec ax + c 

6. cosec ax cot ax  cosec ax +c 

7. eax eax+c 

8. amx

(5) `(a) sec x dx = =ln |sec x + tan x | +c 

(b) 

14
1

9
19ln

5
1

2
1

2
1

6
31ln

3

2

=




c)1x(
2
1c

2/3
)1x)(4/3( 2/33/4

2/33/4

+−=+
−

cx31
3
1 2 +−−

a
1

−

a
1

a
1

a
1

−

a
1

a
1

−

a
1

c
aln

a
m
1 mx

+

∫ ∫ dx
xtanxsec

xtanx(secxsec
+
+

3
1

3
xsinxdxcosxxsin

2/

0

2/

0

3
2 =

=
π

π

∫
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(c) if u = tanx, =sec2 x ⇒∫etanx sec2 x dx = ∫eu du = eu = etanx+c 

(6)  (a) (i)  (ii) 

(iii) cot2x cosec2 2x dx = cot2x (2 cosec2 2x) dx

(iv) Put cos 2θ = u, then = - 2 sin 2θ 

sin 2θ ecos2θdθ =  

(v) sinθ (1 + cos4θ) dθ = sinθ dθ+ sinθ cos4θdθ 

(b) (i)  

(ii) 

(iii) 

(c) (i) sin4θ =  sin3θ sinθ dθ =  ( sin2θ - sin θ sin3θ)dθ 

     = dθ -  cos2θdθ - cos2θ dθ +  cos4θ dθ 

dx
du

c
6

xsin6

+ c
xsin

2
2 +

−

∫
π

π

3/

6/ ∫
π

π

3/

6/2
1

0
2

x2cot
2
1

3/

6/

2

=

×=
π

π

θd
du

∫ ce
2
1due

2
1 uu +−=− ce

2
1 2cos +−= θ

∫
π 2/

0 ∫
π 2/

0 ∫
π 2/

0

2/

0

52/

0 5
coscos

ππ



θ
−




θ−=

5
6

5
11 =+=

c
5

)cos1( 5

+
θ+

−

3/

0
2)tan51(

1
10
1

π





θ− 2)351(

1532
2
1

−
−

=

4
2121

4
2)21(

4
)sec1( 444/

0

4 +
=

−+
=

θ+
π

∫ ∫ ∫
4
3

4
1

8
3

∫ 8
3

∫ 8
1

∫ 8
1

∫

∫ (cos2 – cos4dθ
8

– (1– 2sin θ)}dθ – 1
= ∫{1

8
3 2
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(ii) sin 3θ cosθ dθ =  [ sin4θ dθ + sin2θ dθ] 

(iii) cos5θ cosθ dθ =  

(iv) cosθ cos2θ cos4θdθ =

or 

(iii) 

(iv)   =  x – tan-1 x + c 

(7 )  = - 500 tan-1t+c, v(0)= 700  

= - 5000 tan-1 0 + c = c ⇒ c = 70, v(3) = 700 – 500 tan-1 3 

c
4
4sin

8
1

2
2sin

2
1

8
3

+
θ

+
θ

−θ=

c)4sin
8
12sin

2
3(

4
1

+θ+θ−θ=

2
1 ∫ ∫

]c2cos
2

4cos[
4
1

+θ−
θ−

=

∫
π 2/

0
0

12
6sin

8
4sin 2/

0

=
θ

−
θ

π

∫
π 2/

0 105
19

∫ ∫ +
+

=
++

=
++

− c)
2/3

)2/1(xsin
)2/1x(4/3(

dx
xx1

dx 1
22

c
2/3

)2/1x(4/3)2/1x(ln
2

+
++++

c
2/3

1xx)2/1x(ln
2

+
++++

=

3
1xx21x2ln

2 ++++
=

∫ ∫ +
+

=
+

=
++

− c)
2

3y(cosh
)3y(

dy
5y6y

dy 1

22

∫ ∫∫ +
=

+
dx

x1
1dxdx

x1
x

22

2

∫ +
+

−
= cdt

t1
500v 2
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(9)  (a) x cos3 x dx = x cos3x dx + (π-x)cos2(π-   

x)dx 

= xcos3xdx - cos3 x dx = 0 

(b) sin2x ln tan x dx = 2x ln tan x dx 

2x ln cot x dx 

sin2x ln (tan x cot x) dx sin 2x ln 1dx = 0 

(c) 

Put x = -y in 

(10)  (a) x2 ln x dx = lnx x2 dx - ∫x2 dx) dx 

 

(b) xex+c 

 (c)  (1+x2)ex dx = (1 + x2)ex - 2  xex dx = (1+x2)ex – 2[xex - ex 
dx] 

  = (1+x2) ex – 2xex+ 2ex +c = ex (x2 – 2x + 3) + c 

(d) [-x2 cos2 2x + x sin2x + cos2x] +c 

(11)  (a) 1.sin-1 x dx = sin-1 x.x -  = x sin-1 x + 

(b)  (c) x cot-1 x + ln (1+ x2) 

∫
π

0

5sin ∫
π 2/

0

5sin ∫
π 2/

0

5sin

∫
π 2/

0

5sin ∫
π 2/

0

5sin

∫
π 2/

0 ∫
π 4/

0
sin

∫
π

−
πsin2x   (− 

π
=

4/

0
dx)x

2
tan(ln x)

2

∫ ∫
π π

+=
4/

0

4/

0
sinxdxtanln2sin

∫
π

=
4/

0 ∫
π

=
4/

0

∫ ∫∫ −−
+=

0

a

a

0

a

a
x)x(fdx)x(fdx)x(f

∫−

0

a
dx)x(f

∫ ∫∫ =+−==
a

0

a

0

a

0
0dx)x(fdx)x(fdx)x(f

∫ ∫ ∫
x
1(

∫−= dx)dxx
3
1

3
xxln 2

3

c
9
xxln

3
x 33

+−=

∫ ∫ ∫

4
1

2
1

∫ ∫ xdx
x1

1
2−

cx1 2 +−

2ln
2
1

4
−

π
2
1
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(12) (a) x sin-1 x dx = sin-1 x - dx 

Put x = sin u in ∫

=  sin2 u du = 

[sin-1 x – x cos (sin-1 x)]+c 

∴∫ x sin-1 x dx = sin-1 x -  [ sin-1 x - x ]+c 

(b) ln (1+x2) dx =  1. ln (1+x2) dx = x ln (1+x2) - 

= ln (1 + x2) -  2[1 - ]dx = x ln (1 + x2) – 2[ x – tan-1 x] +c 

(13)  (a) a2x (2 cos 4x + 4 sin 4x) + c (b) e3x(3 sin 3x – 3cos 3x) + c 

(c) e4x cos x cos 2x dx = e4x (cos3x + cosx)dx [∫e4x cos 3x 

dx + 

∫e4xcos x dx] e4x (4 cos 3x + 3sin 3x) e4x (4 cos x + 

sin x)] + c 

(d) e2x cos2 x dx =  e2x [ e2x cos2x dx + 

e2x dx] 

 

∫
2
x2

2
1 ∫

2

2

x1
x
−

∫=
−

duucos
ucos
usin

dxx1
x 2

2

2

∫ ∫ du
2

u2cos1−

cucosusin
2
1u

2
1cu2sin

4
1u

2
1

+−=+−=

2
1

=

2
x2

4
1 2x1−

∫ ∫ dx
x1

x2
2

2

+

∫
2x1

1
+

20
1

18
1

∫
2
1 ∫

2
1

=

25
1[

2
1

=
17
1

+

∫ ∫ dx)
2

1x2cos( +
2
1

= ∫ ∫

c]e
2
1)x2sin2x2cos2(e

8
1[

7
1 x2x2 +++=
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(e) cosh ax sin bx dx= sin bx dx [ eax sin bx dx + e-

ax sin bx dx] [eax ( a sin bx – bcos bx ) + e-ax (- a sin bx – b 

cos bx)]+c 

(f) xeax sin bx dx = x eax sin bx dx  (a sin bx – b cos 

bx) dx 

(a sin bx – b cos bx) [aeax ( a sin bx – b cos 

bx) 

–beax ( acosbx + bsinbx)]+c

(14) (a) 

 

∴∫  

(b) 

∴∫  

(15) (a) (b) 

(a) cosh x + c (d) 

∫ ∫
2

)ee(
axax −+

2
1

= ∫ ∫

)ba(
1

2
1

22 +
=

∫ ∫ ∫ +
− ax

22 e
ba

1

ax
22 e

ba
x
+

= 222 )ba(
1
+

−

∫ ∫ +
−+=+ dx

xa
xxaxdxxa

22

2
2222

∫ ∫ +
+

+
+

−+= dx
xa

adx
xa

xaxax
22

2

22

22
22

cdxxa
a

xaxlna2xax 22
22

22 ++−
++

++= ∫

c
a

xaxln
2
axa

2
xdxxa

222
2222 +

++
++=+

∫ ∫ −
−−=− dx

ax
xaxxdxaxx

22

2
2222

∫ ∫ −
−−−−= dx

ax
adxaxaxx
2

2
2222

c
a

axxln
2
aaxaxx

2
1dxax

222
222222 +

−+
−−−=−

cx3x
2
x 2

4

+++ c|x|ln2
2
x2

++

2
1 c

2
ex2

2
e x2x2

+−−
−
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(b) (f)  

(f) –ecosx+c  (h)  

(i) 

(j)  (x2 + 2)6 x3 dx =  t6 (t – 2) dt  

[ t7 dt – 2  t6 dt ] 

(k) 

sin-1 

(x2 + 1) +c 

(l) 

= - θ cos θ +  cos θ dθ (integration by parts) = - θ cos θ + sin θ + 
c 

(m) Put x = tan θ in = 2[θ tan θ + ln |cosθ|] + c 

where θ tan-1 x 

(n) ex (in sin x + cot x) dx =  ex ln sin x dx +  ex cot x dx 

= ln sin x ex -  cot x ex dx +  ex cot x d x= ex ln sin x. 

 (16) 

)965(
3
21x

3
2 4

2

3 −=
+ c

7
)2x(

2
1 2

+
+−

c)x3(tan
3
1 1 +−

∫
π

=
+

2/

0 3 dx
)xsin1(
xcosxsin

∫
2
1 ∫

2
1

= ∫ ∫ c
7
t

16
t 78

+−=

c
7

)xx(
16

)2x( 7282

+
+

−
+

=

∫ ∫ ∫ +++=++ dt1t
2
1dx1)1x(xdx2x2xx 22224

ctsinh
4
1t1t

4
1 12 +++= −

4
12x2x)1x(

4
1 242 ++++=

∫ = ∫ θsin θdθ, ifx = tan θ
+

−

dx
)x1(
xtanx

2/32

1

∫

∫ +
−− dx)

x1
x1(cos 2

2
1

∫ ∫ ∫

∫ ∫

∫   ∫= dx
dx
dv,

dx
du

dx
dvudx

dx
vdu 2

2

∫ ∫++−= dx
dx

vdv
dx
du

dx
duv

dx
dvu 2

2

⇒
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 = – x3 cos x + 3x2 sin x – 6 

x sin x dx 

= – x3 cos x + 3x2 sin x – 6 [- x cos x +  cos x dx] = – x3 cos + 3x2 
sin x + 6(x cos x – in x) + c 

1.9 Terminal Questions and Answers 

(1) Evaluate 

i. ʃ 𝑥𝑑𝑥
1+𝑥4

ii. ʃ 𝑒𝑚 𝑠𝑖𝑛𝜃−1𝑥

√1−𝑥2 𝑑𝑥 

iii. ʃ 𝑥+𝑠𝑖𝑛𝑥
1+𝑐𝑜𝑠𝑥

𝑑𝑥 

iv. ʃ 1−𝑥
1+𝑥

𝑑𝑥  

v. ʃ√1 + 𝑠𝑖𝑛𝑥.dx

∫ ∫ −= dx)xsin(
dx
dxdxxsinx 2

2
33

∫

∫

UGMM-103/40

R
IL

-1
46



UNIT-2 

REDUCTION FORMULAS 

Structure  
2.1.  Introduction  

2.2.  Objective 

2.3.  Reduction formula  

2.4.  Integrals Involving trigonometric functions 

2.4.1.  Reduction Formulas for sinnx dx and  cosnx dx 

2.4.2.  Reduction Formulas for tannx dx and  secnx dx 

2.5.  Integrals involving products of trigonometric functions 

2.5.1. Integrand of the Type sinmxcosnx 

2.5.2. Integrand of the type eaxsinx 

2.6.  Integrals Involving Hyperbolic Functions 

2.7.  Summary  

2.8.  Terminal Questions   

2.1  Introduction 

In this unit we have introduced the concept of a definite integral 
and have obtained the values of integrals of some standard forms. We 
have also studied two important methods of evaluating integrals, namely, 
the method of substitution and the method of integration by parts. In the 
solution of many physical or engineering problems, we have to integrate 
some integrands involving powers or products of trigonometric functions. 
In this unit we shall devise a quicker method for evaluating these integrals. 
We shall consider some standard form of integrands one by one, and 
derive formulas to integrate them. 

The integrands which we will discuss here have one thing in common. 
They depend upon an integer parameter. By using the method of 
integration by parts we shall try to express such an integral in terms of 
another similar integral with a lower value of the parameter. We will see 
that by the repeated use of this technique, we shall be able to evaluate the 
given integral.   

∫ ∫

∫ ∫
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2.2  Objective 

• Study of xn ex dx

• Study of sinn x dx, cosn x dx  tann x dx, etc.

• Study of sinm x cosn x dx’

• Study of eax sinn x dx

• Study of sinhn x dx,  coshn xdx

2.3  Reduction Formula 

Sometimes the integrand is not only a function of the independent 
variable, but it also depends upon a number n (usually an integer). For 
example, in sinn xdx, the integrand sinn x depends on x and n. Similarly, 
in ex cosmx depends on x and m. The numbers n and m in these two 
examples are called parameters. We shall discuss only integer parameter 
here.  On integrating by parts we sometimes obtain the value of the given 
integral in terms of another similar integral in which the parameter has a 
smaller value. Thus, after a number of steps we might arrive at an 
integrand which can be readily evaluated. Such a process is called the 
method of successive reduction, and a formula connection an integral with 
parameter n to a similar integral with a lower value of the parameter, is 
called a reduction formula.  

Definition 1: A formula of  the form f (x, n) dx = g(x) +  f(x, k) dx. 

where k < n, is called a reduction formula. 

Example 1: The integrand in  xn ex dx depends on x and also on the 
parameter n which is the exponent of x, Let ln=  xn ex dx. 

Integrating this by parts, with xn as the first function and ex as the second 
function gives us In = xn  ex dx -  (nxn-1  ex dx) dx = xn ex – n  (xn-1 ex 
)dx 

Note that the integrand in the integral on the right hand side is similar to 
the one we started with. The only difference is that the exponent of x is n -
1, Or, we can say that the xponent of x is reduced by 1, Thus, we can write  

ln = xn ex – n ln-1.  ----- (1). The formula (1) is a reduction gives us 

∫x4 ex dx = x4 ex – 4x3ex – 12x2 ex + 24xex + 24ex + c 

∫

∫ ∫ ∫

∫

∫

∫ ∫

∫
∫

∫ ∫

∫
∫

∫ ∫ ∫ ∫
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in five simple steps. This became possible because of formula (1). In this 
unit we shall derive many such reduction formulas. These fall into three 
main categories according as the integrand 

(i)  A power of trigonometric functions. 

(ii)  A product of trigonometric function, and  

(iii)  Involves hyperbolic functions. 

2.4  Integrals involving Trigonometric Function 

There are many occasions when we have to integrate powers of 
trigonometric functions. In this section we shall indicate how to proceed in 
such cases.  

2.4.1 Reduction Formulas for  sinn x dx 
In this sub-section we will consider integrands which are powers of either 
sinx or cosx. Let us take a power of sinx first. For evaluating sinn x dx, 
we write  

1sin x

 

.sin  dx   ,  1.

n

x i

I

f n−= >

= ∫
∫

n

n

sin x dx

Taking sinn–1x  as the first function and sin x as the second and  then 
integrating by parts, we get  In = sinn–1x (-cos x) – (n – 1) sinn–2x cos x ( - 
cosx ) dx  

= – sinn–1x cos x + (n – 1) sinn–2x cos2 x dx 

= – sinn–1x cos x + (n – 1) [sinn–2x (1 – sin2x) dx 

= – sinn–1x cosx + (n – 1) [sinn–2x dx - sinn x) dx]  

= – sinn–1x cos x + (n – 1) [In–2 – In] 

Hence, In + (n – 1) In = - sinn–1 x cosx + (n – 1) In–2 

 nIn = - sinn–1 x cos x + (n – 1)In-2  

or 

Hence the reduction formula for  ∫ nsin x dx is

1
2sin cos 1sin sin

n
n n

n
x x nI xdx xdx

n n

−
−− −

= = +∫ ∫  , This is (value for 

n ≥2)……..(1) 

∫

∫

∫

∫

∫

2n

1n

n I
n

1n
n

xcosxsinI −

− −
+

−
=
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1

2
sin cos 1sin

n
n

n n
x x nI xdx I

n n

−

−

− −
= = +∫

Now evaluate the definite integral 2
0

 
π

∫ nsin x dx

With the help of reduction formula (1) we can write 

22
22

0
00

2
2

0

2

2 2
2

0 0

–1 1 sin

1 sin sin 0 0, cos 0 0.

1 ..........(2)

1. . sin si

    

n ..............

 

......(3)

n

n

n

n

n

n

n

n xdx
n n

n xdx because a

sin x c

nd
n

nI I
n

ni e xdx x

os x

dx
n

ππ
π

π

π π

−

−

−

−

  −
= − + 

 

−
= = =

−
=

−
=

∫ ∫

∫

∫ ∫

nsin x dx

Replacing n by n-2 in equation (2), we have 

2 2 2 4
( 2) 1 ( 3) ..........(4)

2 2n n n
n nI I I

n n− − − −

− − −
= =

− −

again replaing n = n-2 in equation (4), we have 

4 6
( 5) ..........andsoon.

4n n
nI I
n− −

−
=

−

Then we have 6
1 3 5

2 4n n
n n nI I

n n n −

− − −   =    − −   

So

2

2
0

0 2

0

1 3 5 4 2........... . sin , . and n 3
2 4 5 3

sin

1 3 5 3 1........... . , . 2
2 4 4 2

n

n n n xdx if n is anodd no
n n n

xdx

n n n dx if n is aneven no and n
n n n

π

π

π


− − −    ≥    − −   =


− − −    ≥    − −   

∫
∫

∫

…….(5)

Since we have 
1

2
sin cos 1sin

n
n

n n
x x nI xdx I

n n

−

−

− −
= = +∫

Putting n = 3 in above equation, we get UGMM-103/44
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3 1
3

3 2

2

1

2

2

sin cos 3 1sin
3 3

sin cos 2
3 3

sin cos 2 sin
3 3

sin cos 2 cos
3 3

x xxdx I

x x I

x x xdx

x x x

−

−

− −
= +

−
= +

−
= +

−
= −

∫

∫  

Similarly, putting n= 4 we have 
4 1

4
4 2

3
2

3
0

3

sin cos 4 1sin
4 4

sin cos 3 sin
4 4

sin cos 3 sin cos 1 sin
4 4 2 2

sin cos 3 3sinx cos
4 8 8

x xxdx I

x x xdx

x x x x xdx

x x x x

−

−

− −
= +

−
= +

 = − + − +  

= − − +

∫

∫

∫

Example 1: We shall now use the reduction formula for ∫ sinn x dx to 

evaluate the definite integral .. We first observe that  

sinn-2 xdx, n ≥ 2. 

Thus, 

2.4.2 Reduction Formulas for  cosn x dx 

To find a reduction Formulas for cos xdx∫ n where n is a positive 

integer and also deduced 2
0

cos xdx
π

∫ n

Method 1: By property of definite integral, we have 

0 0
( ) (a )

a a
f x dx f x dx= −∫ ∫

∫
π 2/

0

5 xdxsin

xdxsin
n

1n
n

xcosxsinxdxsin
2/

0

2n2/

0

1n
n ∫∫

π −π
− −

+

−
= ∫

π−
=

2/

n
1n

∫ ∫
π π

=
2/

0

2/

0

35 xdxsin
5
4xdxsin ∫

π
=

2/

0
xdxsin

3
2.

5
4

2/

0

)xcos(
15
8 π


−=

15
8

=

∫
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2 2
0 0

2
0

. . sin sin
2

cosn

i e xdx x dx

xdx

π π

π

π = − 
 

=

∫ ∫

∫

n n

Therefore from equation (5), we have 

2
2

0
0

1 3 5 4 2........... . .1, .
2 4 5 3

cos sin
1 3 5 3 1........... . . , .

2 4 4 2 2

n n

n n n if n is anodd no
n n n

xdx xdx
n n n if n is aneven no

n n n

π
π

π

 − − −   
    − −   = =

 − − −   
   − −   

∫ ∫

Method 2: 

Let us now derive the reduction formula for  cosn x dx. Again let us write 

In =  cosn x dx = cosn-1 x cos xdx, n > 1. Integrating this integral by 
parts we get 

In = cosn-1 x sin x -  (n – 1) cosn–2 x (- sinx ). Sin x dx 

= cosn-1 x sin x + (n + 1)  cosn-2 x sin2 xdx 

= cosn-1 x sin x + (n – 1)  cosn-2 x (1 – cos2 x) dx= cosn-1 x sin x + (n -1) 
(In-2 – In) 

By rearranging the terms we get In = cosn x dx = 

This formula is valid for n≥2. What happens when n = 0 or 1? 

As we have .Using this 

formula repeatedly we get 

This means 

We can reverse the order of the factors, and write this as 

∫

∫ ∫

∫ ∫

∫

∫

∫

2n

1n

I
n

1n
n

xsinxcos
−

− −
+

∫ ∫
π π − ≥

−
=

2/

0

2/

0

2nn 2n,xdxsin
n

1nxdxsin









≥⋅
−
−

⋅
−
−

⋅
−

≥⋅
−
−

⋅
−
−

⋅
−

=
∫

∫
∫ π

π

0

2/

0

n

.2n,numbervenanisnif,dx
2
1

4
3........

4n
5n

2n
3n

n
1n

.3n,numberoddanisnif,xdxsin
3
2

5
4........

4n
5n

2n
3n

1
1n

xdxsin









≥
π

⋅
−
−

⋅
−

≥⋅
−
−

⋅
−

=
∫

∫
π

2nevenisnif,
22

1
4
3........

2n
3n

n
1n

.3n,numberoddanisnif
3
2

5
4........

2n
3n

1
1n

xdxsin
2/

0

n
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Arguing similarly for cosn xdx we get 

Check your progress 

(1) Prove

(2) Evaluate (a)  (b) using the 
reduction formula 

2.4.2 Reduction Formulas for  tann xdx and  secn xdx 

In this sub-sectioin we will tak up two other trigonometric functions tanx 
and secx. This is, we will derive the reduction formulas for tann xdx, n > 
2. We start in a slightly different manner. Instead of writing tann x = tanx
tann-1x, as we did in the case of sinnx, we shall write tannx = tann-2x.tan2x. 
So we write In= tann x dx  

= tann-2x tan2xdx =  tann-2 x (sec2 x – 1) dx  = tann-2 x sec2xdx - tann-2 
xdx----(2) 

We must have observed that the second integral on the right hand side is 
In-2. Now in the first integral on the right hand side, the integrand is of the 
form 

[𝑓(𝑥)]𝑚𝑓′(x)dx=

This tann-2 x sec2 xdx = . Therefore, (2) give 

∫
π









≥
π−

≥
−

−
−

=
2/

0

n

2n,evenisnif,
2

...
n

1n........
4
3

2
1

3,oddisnif
n

1n.
2n
3n..........

5
4

3
2

xdxsin

∫
π 2/

0

∫ ∫
π π









≥
π−

≥
−

⋅
==

2/

0

2/

0

nn

2n,evenisnif,
2

.
n

1n..........
4
3

2
1

3nand,oddisnif.
n

1n..........
5
4

3
2

xdxsnxdxcos

∫
π









≥
π−

≥
−

⋅
=

2/

0

n

2n,evenisnif,
2

..
n

1n..........
4
3

2
1

3n,oddisnif.
n

1n..........
5
4

3
2

xdxcos

∫
π 2/

0

2 ,xdxcos ∫
π 2/

0

6 ,xdxcos

∫ ∫

∫

∫

∫ ∫ ∫ ∫

c
1m

)]x(f[ 1m

+
+

+

∫ c
1n
xtan 1n

+
−

−

2n

1n

n l
1n

1tanI −

−

−
−

−
=
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Thus the reduction formula for  tann x dx = 

To derive the reduction formula for secn xdx (n > 2). We first write 

secnx= secn-2x 𝑠𝑒𝑐2x, and then integrate by parts. Thus  

In =  secn xdx = secn-2x sec2 xdx = secn-2 x tan x – (n – 2)  secn-3x sec x 
tan2 xdx 

= secn-2 x tan x – (n – 2)  secn-2 xtan2 xdx 

= secn-2 x tan x – (n- 2)  secn-2 x (sec2 x – 1) dx = secn-2 x tan x – (n – 2) 
(ln – ln-2) 

After rearranging the terms we get secn xdx = In = 

These formulas  tann xdx and  secn xdx are valid for n > 2. For n = 0, 1 
and 2, the integral  tann xdx and secn xdx can be easily evaluated. 

Example 3:  Let’s calculate (i) tan5 xdx and  (ii) 

(i) tan5xdx =  tan3xdx 

(ii) sec6 xdx = 

∫ 2n

1n

n l
1n

1tanI −

−

−
−

−
=

∫

∫ ∫ ∫

∫

∫

∫

2n

2n

I
1n
2n

1n
xtanxsec

−

−

−
−

+
−

∫ ∫
∫ ∫

∫
π 4/

0 ∫
π 4/

0

6 xdxsec

∫
π 4/

0 ∫
π

π

−

 4/

0

4/

0

4

4
xtan

∫
π

+

−=
4/

0

4/

0

2

xdxtan
x

xtan
4
1

∫
π

+−=
4/

0
dx

xcos
xsin

2
1

4
1 4/

0

)xln(cos
4
1 π


−= 1ln

2
1ln

4
1

+−=

2ln
4
1

−=

∫
π 4/

0 

+


∫

π
π

4/

0

2

4/

0

4

xdxsec
3
2

5
xtansec

∫
π

++=
4/

0

2 xdxsec
15
8

15
8

5
4

15
28xtan

15
8

3
4 4/

0

=
+=

π
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2.5 Integrals Involving products of trigonometric functions 

In this section we have seen the reduction formulas for the case where 
integrands were powers of a single trigonometric function. Here we shall 
consider some integrands involving products of powers of trigonometric 
functions. The technique of finding a reduction formulas basically 
involves integration by parts. Since there can be more than one way of 
writing the integrand as a product of two functions, we will see that we 
can have many reduction formulas for the same integrals.  

2.5.1 Integrand of the Type sinm xcosn x 
The function sinm xcosn x depends on two parameters m and n. To find a 
reduction formula for sinm x cosndx, let us first write  Im,n =  sinm x cosn 
xdx 

Since we have two parameters here, we shall take a reduction formula 
mean a formula connecting Im-n and Ip,q, where either p < m, or q < n, or 
both p < m, q < n hold. In other words, the value of at least one parameter 
should be reduced.  

If n = 1, Im,1= sinmx cos x dx  

Hence we assume that n > 1. Now, 

Im,n=  sinmx cosnx dx =  cosn-1x (sinm x cos x) dx 

Integrating by parts we get 

if m ≠ - 1 

1.  

sinm x cosn-2x (1 – cos2x) dx 

.  Therefore, 

This gives us, 

…. (3) 

∫ ∫

∫






=+

−≠+
+

+

1mwhen,c|xsin|ln

1mwhen,c
1m
xsin 1m

∫ ∫

,dx
1m

sin)xsin(cos)1n(
1m
sin,.x,cosI

1m
2n

1m1n

n,m +
−−∫−

+
=

+
−

+−

∫
+
−

+
+

=
+−

1n
1n

1m
xsin.xcos 1m1n

]II[
1m
1n

1m
xsin.xcos

n,m2n,m

1m1n

−
+
−

+
+

= −

+−

2n,m

1m1n

n,mn,mn,m I
1n
1n

1m
xsinxcosI,

1m
nmI

1m
1nI −

+−

+
−

+
+

=
+
+

=
+
+

+

2n,m

1m1n

n,m I
nm
1n

lnm
xsinxcosI −

+−

+
−

+
+

=
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But, surely this formula will not work if m+n =0. So, what do we do if m 
+ n =  0? Actually we have a simple way out. If m+n =0, then since, n is 
positive, we write m = -n. 

Hence I-n,n= sin-n xcosn x xdx =  cotn xdx, which is easy to evaluate 
using the reduction formula.  

To obtain =  sinm x cosn xdx =  sinm-1 x (cosn x sin x) dx. Integrating 
this by parts we get 

x dor n 

≠ - 1.  

sinm-2x cosn x cosn x (I – sin2x) dx 

. Form this we obtain 

 ………. (4)

If m or n is a positive odd integer, we can proceed as follows:  

Suppose m = 2p + 1, p > 0, then  Im,n = sinm x cos2p+1xdx 

=   sinm x (l – sin2x)p cos x dx  = ∫ tm (l – t2)p dt we put t = sin x 

Expanding (1 – t2)p by binomial theorem and integrating term by term, we 
get  

 

If m and n are positive integers, by repeated applications of formula (3) or 
formula (4), we keep reducing n or m by 2 at each step. Thus, eventually, 
we come integral of the form Im,0 or Im.1 or Il.n or I0.n. In the previous 
section we have seen how these can be evaluated. This means we should 
be able to evaluate Im.n in a finite number of steps.  

Example4: Let us evaluate 

∫ ∫

∫ ∫

∫ +
−

−−
+

−
=

+
−

+−

1n
)xcos(xcosxsin)1m(

1n
cosxsinI

1n
2m

1n1m

n,m

∫
+
−

+
+

−
=

+−

1n
1m

1n
xcosxsin 1n1m

)II(
1n
1m

1n
xcosxsin

n,m,n2m

1n1m

−

++

+
−

+
+

−=

)I(
nm
1m

nm
cosxsinI n,2m

1n1m

n,m −

+−

+
−

+
+

−
=

∫

∫

c
1p2m

t)1(......
5m

t)2,p(C
3m

t)1,p(
1m

tI
1p2mp5m3m1m

n,m +
++

−
+

+
−

+
−

+
=

+++++

+−
+

+
+

−
+

=
+++

.......
5m
xsin)2,p(C

3m
xsin)l,p(C

1m
xsin 5m3m1m

c
1p2m

xsin)1( 1p2mn

+
++

− ++
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. 

Using formula (4) again   = 

Check your progress 

(3) Derive the following reduction formulas for  cotn x dx and  cosecn 
xdx 

(a) cotn xdx = 

(b) cosecn xdx = 

(4) Evaluate (a)  (b) (c) sec3θdθ 

 (5) In deriving formula (4) we had assumed that m > 1. How would you 
evaluate, Im,n if m = l?  

(6) Formulas (3) and (4) fail when m +n = 0. We have seen how to 
evaluate Im,n if m+n=0 and n is a positive integer. How would we evaluate 
it if m+n=0 and n is negative integer.  

(7) Evaluate (a)  (b) 

2.5.2 Integrand of the Type eax sinn x 
In this sub-section we will conside the evaluation of those integrals, where 
the integrand is a product of a power of a trigonometric function and an 
exponential function. That is, we will consider integrands of the type eax 
sinx. Let us denote 

eax sinn xdx by Ln, and integrate it by parts, taking sinnx as the first 
function and eax as the second function. This gives us  

∫∫
π

π
π

+

−
=

2/

0

62

2/

0

2/

0

73
64 xdxcosxsin

10
3

10
xcosxsinxdxcosxsin

∫
π

=
2/

0

62 xdxcosxsin
10
3 }∫

π
π

+






−
=

2/

0

6

2/

0

7

xdxcos
8
1

8
xcosxsin

10
3

∫
π

=
2/

0

6 xdxcos
80
3

96
15

80
3 π

×=
512
3π

∫ ∫

∫ 2n
1n

n Ixcot
1n

1I −
− −

−
−

=

∫ 2n

2n

n I
1n
2n

1n
xcotxeccosI −

−

−
−

+
−

−
=

∫
π

π

2/

2/

3xdxeccos ∫
π 2/

0

8 xdxsin ∫

∫
π 2/

0

53 xdxcosxsin ∫
π 2/

0

28 xdxcosxsin

∫

xdxcosxsine
a
n

a
xsineL 1nax

nax

n
−∫−=
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We shall now evaluate the integral on the right hand side, again by parts, 
with  

sinn-1 cosx as the first function and eax as the second one. Thus,  

This means 

Rearranging the terms we get 

 ‘ 

Given any Ln, we use this reduction formulas repeatedly, till we get L1 or 
L0 (depending on whether n is odd or even). Since L1 and L0 are easy to 
evaluate, we are sure we can evaluate them (see E8). This means that Ln 
can be evaluated for any positive integer n. 

Remark 1 If we put a = 0 in Ln, it reduce to the integral sinn xdx. This 
suggest that the reduction formula for  sinn xdx which we have derived is 
a special case of the reduction formula for In.  

Check your progress 

(8Prove that  (a)  (b) 

(9) Prove : If Cn = eax cosn xdx, then 

(10) Verify that the reduction formula for  cosnxdx 
(10) Verify that the reduction formula for  cosnxdx 
 (11) Prove the following reductioin formula: 

sinhn xdx = 

(12) Derive a reduction formula for coshn xdx 






 −−∫−−= −
−

dx}xsinxcosxsin)1n{(e
s
1

a
xcosxsina

a
n

a
xsineL n22nax

1naxnax

n






 −−∫−−= −
−

dx}xsinnxsin)1n{(e
a
1

a
xcosxsina

a
n

a
xsine n2nax

1naxax

n2

2

2n22

1naxnax

n L
a
nL

a
)1n(n

a
xcosxsinne

a
xsineL −

−
+−= −

−

2n22

1nax

22

nax

n L
an

xcosxsinne
an

xsinaeL −

−

+
−

+
=

∫
∫

c
a

cL
ax

0 +=

c)xcosxsina(
a1

exdxsineL 2

ax
ax

1 +−
+

=∫=

∫

2n2222

1nax

22

nax

n C
an

)1n(n
an

xsinxcosne
an

xcosaeC −

−

+
−

+
+

+
+

=

∫
∫

∫ xdxsinh
n

1n
n

xcoshxsinh 2n
1n

−
−

∫
−

−

∫
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2.6  Integrals Involving Hyperbolic Functions 

In this section we shall discuss the evaluation of integrals of the type 

sinhnxdx, coshn xdx, etc. If In = tanhn xdx, we can write 

In = tanhn-2xtanh2xdx  = tan hn-2 x( 1- sec h2x) dx , 

=  tanh-2 xdx -  tanhn-2 x sech2 xdx 

2.7  Summary 

A reduction formula is one which links an integral dependent on a 
parameter with a similar integral with a lower value of the parameter.  

In this unit we have derived a number of reduction formulas.  

1. xn ex dx = xn ex – n  xn-1 ex dx

2. sinn xdx = sinn-2 xdx, n ≥ 2 

3. cosn xdx = cosn-2 xdx, n≥2 

4. tann xdx = tann-2xdx, n > 2 

5. secn xdx = secn-3 xdx, n > 2 

6. 

7. sinm x cosn xdx = sinm xcosn-2 xdx, 

n > 1 

sinm-2 x cosn xdx, m > 1 

∫ ∫

∫ ∫

xhsecxtanh
dx
d 2=

∫ ∫
1n

xtanhI
1n

2n −
−=

−

−

∫ ∫

∫
n

1n
n

xcosxsin 1n −
+

− −

∫

∫
n

1n
n

xsinxcos4 1n −
+

−

∫

∫ −
−

− −

1n
tan 1n

∫

∫
1n
2n

1n
xtanxsec 2n

−
−

+
−

−

∫

∫ ∫
π π









≥
−

≥
−

==
2/

0

2/

0

nn

2n,evenisnif,
n

1n......
4
3

2
1

3n,oddisnif,
n

1n......
5
4

3
2

xdxcosxdxsin

∫
nm
1n

nm
xsinxcos 1m1n

+
−

+
+

+−

∫

nm
1m

nm
xcosxsin 1n1m

+
−

+
+

−
=

−−

∫
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8. eax sinn xdx

= 

9. tanhn xdx =

We have noted that the primary technique of deriving reduction formulas 
involved integration by parts. We have also observed that many more 
reduction formulas involving other trigonometric and hyperbolic functions 
can be derived using the same technique.  

Solution and Answers of check your progress 

(1) we have 

. 

(2) (a) (b) 

(3) (a) In= cotn xdx = cotn-2 x (cosec2x – 1) dx n > 2 

= cotn-2 xcosec2xdx – In-2 . Therefore 

(b) In = cosecn xdx =  cosecn-2 x cosec2xdx n > 2 
= - cosecn-2 x cot x =  (n – 2) cosecn-2 xcot2 x dx 
= - cosecn-2 x cot x – (n – 2)  cosecn-2 x cosec2 xdx= - cosecn-2 xcot x – (n 
– 2) In + (n – 2) In-2 

∫

dxsine
an

)1n(n
an

xcosxsinne
1n

xsinae 2nax
2222

1naxnax
−

−

∫
+
−

+
−

∫ xdxtanh
1n

tanh 2n
1n

−
−

∫+
−

−

∫ ∫
π π −

π−

≥
−

+

+
=

2/

0

2/

0

2n

2/

0

1n
n 2n,xdxcos

n
1n

n
xsinxcosxdxcos

∫
π −−

=
2/

0

2n xdxcos
n

1n
∫

π −

−
−

⋅
−

=
2/

0

4n xdxcos
2n
3n

n
1n









−
−

−
−−

−
−

−
−−

=
∫

∫
π

π

2/

0

2/

0

0

oddisnnif,xdxcos
3
2.

5
4.....

4n
5n

2n
3n

n
1n

evenisnif,xdxcos
2
1.

4
3.....

4n
5n

2n
3n

n
1n









−
−

−
−−

π
−
−

−
−−

=
oddisnif

3
2.

5
4.....

4n
5n

2n
3n

n
1n

evenisnif
22

1.
4
3.....

4n
5n

2n
3n

n
1n

∫
π

==
2/

0

5

15
8

3
2

5
4xdxcos

∫
π π

=
π

=
2/

0

6

32
5

2
.

2
1.

4
3.

6
5xdxcos

∫ ∫

∫ 2n

1n

n I
1n

xcotI −

−

−
−

=

∫ ∫
∫

∫

2n

2n

n I
1n
2n

1n
xcotxeccosI −

−

−
−

+
−

−
=
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(4) (a) 

(b) 

(c) sec3θdθ= secθdθ ln (sec x + tan 

x) +c

(5) If m = 1, 𝐼𝑚,𝑛= 𝐼1,𝑛 =  sin x cosn xdx 

(6) m+n = 0 ⇒ n = - m ⇒ m is a positive integer. 

Im,n =  sinm xcos-m xdx = tanm xdx 

Now use the formulas for  tanm xdx 

(7) (a) xcos5 xdx = x cos5 xdx

(b)  

(8) (a) L0 =  eax dx = (b) L1= eax sin xdx = eax 

cos xdx  

eax . sin xdx = 

∫∫
π

π

π

π

π

π
+

−
=

2/

4/

4/

4/

4/

4/

3 ecxdxcos
2
1

2
xcotecxcosxdxeccos

2/

4/2
xtanln

2
1

2
1 π

π

+=

)
8

tanln1(ln
2
1

2
1 π

−+=
8

tanln
2
1

2
1 π

−−=

∫
π π

=
π

⋅⋅⋅⋅=
2/

0

8

256
35

22
1

4
3

6
5

8
7xdxsin

∫ ∫+
θθ

2
1

2
tansec

2
1

2
tansec

+
θθ

=

∫






−=+−

−≠+
+=

+

1nifc|xcos|ln

1nifc
1n
xcos 1n

∫ ∫ =dx
xcos
xsin

m

m

∫

∫

∫
π 2/

0

3sin ∫
π

π

+

− 2/

0

2/

0

62

sin
8
2

8
xcosxsin

24
1

6
xcos

8
2xdxcosxsin

8
2

2/

0

2/

0

6
5 =

−
==

π
π

∫

∫ ∫
π π

π

+

−
=

2/

0

2/

0

8

2/

0

62
53 xdxsin

10
1

8
xcosxsinxdxcosxsin

∫
π

=
2/

0

5 xdxsin
10
1

512
7

2
,

2
1,

4
3,

6
5,

8
7

10
1 π

=
π

⋅=

∫ c
a

eax

+ ∫
a
1

a
xsineax

− ∫

xdxsine
a
1

a
xcose

a
xsine ax

22

axax

∫−−=

∫ c
a1

xcose
a1

xsinae
2

ax

2

ax

+
+

−
+

c)xcosxsina(
a1

xsine
2

ax

+−
+

=
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(9) eax cosn-1 x sin xdx 

eax{(b – 1) cosn-2 x – n cosn 

x} dx 

(10) Put a = 0 in the formula for Cn. Cn =  cosn x dx = 

cosn-2 xdx 

Which is the reduction formulas for  cosn xdx 
(11)  sinhn xdx =  sinhn-1 x sinh x dx = sinhn-1 x x cosh x – (n – 1) 
sinhn-2 x cosh2 xdx 
= sinhn-1 x cosh x – (n – 1)  sinhn-2 x (1+sinh2 x) dx 
= sinhn-1 x coshx – (n – 1)In-2 – n (n – 1)In , 

(12) In = coshn xdx =  coshn-1 x cosh xdx= coshn-1 x sinh x – (n – 1) 
coshn-2 x sinh2 x dx 
= coshn-1 x sinh x – (n – 1)  coshn-2 x(cosh2 x – 1) dx= coshn-1 x sinh x – 
(n – 1) In + (n – 1) In-2 

2.8  Terminal Questions 

1. Evaluate

i. ∫ 𝑠𝑖𝑛4𝑥 𝑐𝑜𝑠2𝑥 𝑑𝑥
𝜋
2
0

ii. ∫ 𝑠𝑖𝑛4𝜃  𝑑𝜃
𝜋
4
0

a
nxcos

a
eC n

ax

a += ∫



 ++=
−

a
xsinxcose

a
n

a
xcose 1naxnax


−−∫ − dx}xcosxsinxcos)1n{(e

a
1 n22nax

++= − xsinxcose
a
n

a
xcose 1nax

2

nax

2a
n ∫

n2

2

2n2
1nax

2

nax

C
a
nC

a
)1n(nxsinxcose

a
n

a
xcose

−
−

++= −
−

2n2222

1nax

22

nax

a C
an

)1n(n
an

xsinxcosne
an

xcosaeC −

−

+
−

+
+

+
+

∴

∴ ∫

n
1n

n
xsinxcos 1n −

+
−

∫

∫
∫ ∫ ∫

∫

2n

1n

n I
n

1n
n

xcoshxsinhI −

− −
−=

∫ ∫

∫

2n

1n

n I
n

1n
n

xsinxcoshI −

− −
+=

UGMM-103/56

R
IL

-1
46



iii. ∫ 𝑠𝑖𝑛5𝑥. 𝑐𝑜𝑠8𝑥𝑑𝑥
𝜋
2
0

iv. ∫ 𝑥2(1 −1
0 𝑥2)

3
2.𝑑𝑥       (put x=sin𝜃) 

v. ∫ 𝑥
9
2(2𝑎 −2𝑎

0 𝑥)
3
2..𝑑𝑥  (put x=2a si𝑛2𝜃) 

vi. If  m & n are integers, prove that

 ∫ cos𝑚𝑥. sin𝑛𝑥 𝑑𝑥 = 2𝑛
𝑛2−𝑚2 𝑜𝑟   0𝜋

0  

according as n-m is odd or even. 

vii. ∫ (𝑎2 + 𝑥2)
5
2 .𝑑𝑥.𝑎

0

viii. ∫ 𝑑𝜃
5+3𝑐𝑜𝑠𝜃

.𝜋
0  

ix. ∫ 𝑑𝑥
1+𝑐𝑜𝑠2𝑥

x. ∫ 𝑑𝑥
(5+4 𝑐𝑜𝑠𝑥)2

(Hint: put 𝑡 = tan 𝑥
2
 then cos

x=1−𝑡
2

1+𝑡2
 &𝑑𝑥

𝑑𝑡
= 2
1+𝑡2

 ) 
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UNIT-3 

INTEGRATION OF RATIONAL AND 
IRRATIONAL FUNCTIONS  

Structure 
3.1 Introduction 

Objective 

3.2  Integration of Rational Function  

3.3 Some simple Rational Function 

3.4  Partial Fraction Decomposition 

3.5  Method of Substitution 

3.6 Integration of Rational Trigonometric Functions  

3.7  Integration of Irrational Functions 

3.8 Summary 

3.9  Terminal Questions 

3.1  Introduction 

In the previous unit we have come across various methods of 
integration. In this block, we will complete the discussion of methods of 
integration in this course. Here we shall deal with the integration of 
rational functions in detail.  

Later on we shall consider some simple types of irrational functions. 
While going through this unit you will need to recall several standard 
forms like.  

dx etc, 

Objective: 
After reading this unit you should be able to :  

• Recognise proper and improper rational functions

• Integrate rational functions of a variable by using the method of
partial fractions

• Integrate certain types of rational functions of sinx and cosx

22

22
ax

ax
dx

+∫⋅
+

∫
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• Evaluate the integrals of some specified types of irrational
functions

• Decide upon the method of integration to be used for integrating
any given function.

3.2  Integration of Rational Functions 

W know by now that it is easy to integrate any polynomial 
function, that is, a function f given by f(x) = an xn + an-1 x + …..+ a0.  

Definition1: A function R is called a rational function if it is given by 
R(x) = Q(x)/ P(x), where Q(x) and P(x) are polynomials. It is defined for 
all x for which P(x)≠0. 

If the degree of Q(x) is less than the degree of P(x), we say the R(x) is a 
proper rational function. Otherwise, it is called an improper rational 
function, thus,  

is a proper rational function, and  

 is an improper one. But g(x) can also be written as  

g(x) = (x2 + 2x + 6) + 

Here we have expressed g(x), which is an improper rational function, as 
the sum of a polynomial and a proper rational function. This can be done 
for any improper rational function. Thus, we can always write  

  

As we have already observed, a polynomial can be easily integrated. This 
means that the problem of integrating an improper rational function is 
reduced to that of integrating a proper rational function. Therefore, it is 
enough to study the techniques of integrating proper rational functions.  

3.3   Some Simple Rational Function 

Now we shall consider some simple types of proper rational 

functions, like  and  .  

2xx
1x)x(f

2 ++
+

=

2x
5xx)x(g

3

−
++

=

2x
17
−

k)ba(
1,

ax
1

−− cbxax
mx

2 ++
−

An improper 
rational 
function 

A 
polynomial 

A proper 
rational 
function 

= + 
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Example1: The simplest proper rational function is of the type . 

We already know that dx = ln |x – a| +c 

Example 2: Consider the functioin f(x) = 

To integrate this function we shall use the method of substitutions. Thus, if 

we put and we can write 

 

Example 3: Consider the function  

Now dx can be written 

Thus, dx=ln |x2 – 4x+5| > c1 

To evaluate the second integral on the right we write 

Now, if we put x – 2 = u, =1 and 

 = tan-1 (x – 2) + c2

This simples, dx= ln |x2 – 4x + 5| + 7 tan-1 (x – 2) +c 

)ax(
1
−

)ax(
1
−

∫

4)2x(
1
+

1
dx
du2xu =+=

duudu
u
1dx

)2x(
1 4

44
−∫=∫=

+
∫

c
)2x(3

1c
3

u 3

+
+

=+
−

=
−

c
3x2–4x+5

3x2)x(f 3 +
+

=

5x4x
3x2

2 +
+

∫

dx
5x4x

7dx
5x4x

4x2
22 +−

∫+
+−

−
∫

5x4x
4x2

2 +−
−

∫

dx
1)2x(

1dx
)4x4x(

1dx
5x4x

1
222 +−

∫=
+−

∫=
+−

∫

dx
du

2
1

22 cutandu
1u

1dx
5x4x

1
+=

+
∫=

+−
∫ −

x2 – 4x + 5
3x2 +

∫
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Check your progress 
(1) Which of the following function are proper rational function? Write 
the improper ones as a sum of a polynomial and a proper rational function.  

(a) (b) (c) 

(2) Evaluate: 

(a) (b) 

(c)  (d) 

3.4  Partial Fraction Decomposition 

In School you must have studied the factorisatin of polynomials. 
For example, we know that x2 – 5x + 6 =(x – 2) (x – 3) 

Here (x – 2) and (x – 3) are two linear factors of x2 – 5x + 6. 

The polynomials like x2 + x + 1, which cannot be factorised into real 
linear factors. Thus, it is not always possible to factorise a given 
polynomial into linear factors. But any polynomial can, in principle, be 
factored into linear and quadratic factors. We shall not prove this 
statement here. It is a consequence of the Fundamental theorem of 
Algebra. The actual factorization of a polynomial may not be very easy to 
carry out. But, whenever we can factorise the denominator of a proper 
rational function we can integrate it by employing the method of partial 
fractions. 

Example4: Let us evaluate . Here the integrand is a 

proper rational function. Its denominator x2 – 1 can be factored into linear 
factors as:  

x + x
1x

4

3 +
1x

3xx
2

2

+
−+

8x5x
8x

2 ++
+

∫ + 3x2
dx

∫ + 2)5t(
dt

∫ ++
+ dx

1x8x
1x2

2 ∫ ++
+

2xx
1x4

2

∫ −
− dx

1x
1x5

2 1x
1x5

2 −
−

dx
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x2 -  1 = (x – 1)(x +1). This suggests that we can write the decomposition 

of  into partial fractions as: 

If we multiply both sides by (x – 1) x + 1), we get  

5x – 1 = A (x +1) + B(x – 1). That is, 5x – 1 = (A + B) x + A – B 

By equating the coefficients of x we get A + B = 5 

Equating the constant terms on both sides we get A – B = - 1. 

Solving these two equations inA and B we get A = 2 and B = 3 

Thus 

Integrating both sides of this equations, we obtain,  

= 2ln |x – 1| + 3ln | x + 1| + c 

The most important step in the evaluation of  was the 

decomposition of the integrand into a partial fractions. The procedure for 
finding the values of the two unknowns A and B. involved two simple 
simultaneous equations in two unknows. But the higher the degree of the 
denominator, the more will be the number of unknowns, and it might be 
very tedious to find them.  

In the equation 5x – 1 = A (x + 1)+B(x-1), if we put x = -1, we get – 6 = -
2B, or B=3. Similarly, if we put x = 1, se gt 4 = 2A or A = 2.  

Example 5: Suppose we want to integrate 

We first observe that the denominator factors as x(x+1) (x – 2). 

We first observe that the denominator factors as x(x + 1) (x – 2) 

This means we can write 

Multiplying by x3 – x2 – 2x we get 

2x2 + x – 4 = (x + 1) (x – 2) A + Bx (x – 2) + Cx (x + 1) 

Now, it we put x = 0 in this equations, we get – 4 = -2 A or A = 2 

Putting x = - 1 gives is – 3 = +.B, or B = - 1 . 

1x
1x5

2 −
−

)1x(
B

)1x(
A

)1x)(1x(
1x5

1x
1x5

2 +
+

−
=

+−
−

=
−
−

1x
3

1x
2

xx
1x5

+
+

−
=

−
−

∫ ∫ ∫ +
+

−
=

−
− dx

1x
3dx

1x
2dx

1x
1x5

2

∫ −
− dx

1x
1x5

2

x2xx
4xx2

23

2

−−
−+

2x
c

1x
B

x
A

x2xx
4xx2

23

2

−
+

+
+=

−−
−+

UGMM-103/63

R
IL

-1
46



Putting x = 2, we get 6 = 6C, or C = 1 

Thus, 

= 2 ln |x| - ln | x + 1| + ln | x – 2 | +c. 

Example6: Take a look at the denominator of the integrand 

. In factors into (x – 1)2 (x + 2). The linear factor (x – 

1) is repeated twice in the decomposition of x3 – 3x+ 2.

In this case we write 

From this pont we proceed as before to find A, B and C. We get 

x = A (x – 1)2 + B (x + 2) (x – 1) + C(x + 2) 

We put x = 1 and x = - 2 and get C = 1/3 and A = -2/9 

Then to find B, let us put any other convenient value, say x = 0 

This give us 0 = A – 2B + 2C Or, . This implies B = 

2/9 

Example 7: To evaluate dx 

We factorise x4 – 2x3 + x2 – 2x ax x (x – 2) (x2 – 1). Then we write 

Thus, 6x3 – 11x3 + 5x – 4 = A(x – 2) (x2 + 1) + Bx (x2 + 1) + (Cx + D) x(x 
– 2)  

Next, we substitute x = 0 and x = 2 to get A = 2 and B = 1. 

Then we substitute x = 0 and x = 2 to get A = 2 and B = 1. 

∫ ∫ ∫ ∫ −
+

+
−−=

−−
−+ dx

2x
1dx

1x
1dx

x
1dx

x2xx
4xx2

23

2

∫ +−
dx

2x3x
x

3

23 )1x(
C

1x
B

2x
A

2x3x
x

−
+

−
+

+
=

+−

3
2B2

9
20 +−

−
=

∫∫∫ ∫ −
+

−
+

+
−

=
+−

dx
)1x(

1
3
1dx

)1x(
1

3
1dx

2x
1

9
2dx

2x3x
x

223

c
1x

1
3
1|1x|ln

9
2|2x|ln

9
2

+







−
−−++

−
=

c
)1x(3

1
2x
1xln

9
2

+
−

−
+
−

=

∫ −+−
−+−

x2xx2x
4x5x11x6

234

23

1x
DCx

2x
B

x
A

x2xx2x
4x5x11x6

2234

23

+
+

+
−

+=
−+−

−+−
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Then we put x = 1 and x = - 1 (some convenient values ) to get C = 3 and 
D = - 1  

Thus 

= 2 ln |x| + ln |x – 2| + 

= 2 ln |x| + ln |x – 2| +  ln |x2 + 1| - tan-1 x + c. 

Example 8: let us evaluate 

Since the integrand is an improper rational function, we shall first write it 
as the sum of polynomial and a proper rational functions.  

Thus, 

Therefore,

Now let us decompose  into partial fraction as 

5x + 2 = A (x +1) + B(x – 2) If x = - 1 , we get – 3 = -3 = -3B, that is, B=1 

If x = +2, we get 12 = +3A, that is A = 4 

Therefore =4 ln |x – 2| + ln | x + 

1| + c 

Hence + x + 4 ln |x – 2| + ln |x + 1| +c 

3.5  Method of Substitution 

The method of partial fraction decomposition which we studied in 
the last sub section can be applied all rational functions. We can say this 

∫ ∫ ∫ ∫ +
−

+
−

+=
−+−

−+− dx
1x
1x3dx

2x
1dx

x
12dx

x2xx2x
4x5x11x6

2234
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2
3

∫ ∫ +
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+ 1x
dxdx

1x
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22

2
3
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+ dx
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2

3

2xx
2x51x

2xx
x2x

22

3

−−
+

++=
−−

+

∫ −−
+

++= dx
2xx

2x5x
2
x

2

2

2xx
2x5
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+

1x
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2x
A

)1x)(2x(
2x5

1xx
2x5

2 +
+

−
=

+−
+

=
−−

+

∫ ∫ ∫ +
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−
=

−−
+
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dx

2x
dx4dx

2xx
2x5
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∫ =
−−

+
2
xdx

2xx
x2x 2
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3
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because as we have mentioned earlier, the fundamental theorem of 
Algebra guarantees the factorization of any polynomial into linear and 
quadratic factors. But the actual process of factorizing a polynomial is 
sometimes not quite simple. In such cases it would be a good idea to 
critically examine the integrand to check if the method of substitution can 
be applied.  

Example 9: Suppose we want to integrate  with respect to x. 

For this we write x5 = t. 

 

Example 10; Let us integrate w.r.t.x 

(division by x2) 

 

Check your progress 
(3) Evaluate: (a) (b) 

(c) 

(d) (e) 

(f) (g) 

 (4) Integrate the following function w.r.t.x. 

(a) (b) 

)1x(x
1
5 +

∫ ∫ +
=

+ )1t(t
dt

5
1

)1x(x
dxx
55

4

∫ +
−= dt]

1t
1

t
1[

5
1 c

1t
tln

5
1

+
+

= c
1x

xln
5
1

5

5

+
+

=

1xx
1x

24

2

++
−

∫ ∫ ++
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=
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− dx
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22

2

24

2
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= dx
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2

2

∫ +=
−
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1
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1

2
1 c
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1tln

2
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−

= e
1xx
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2
1

2

2

+
++
+−

=
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dx

x2x
2

2 ∫ −− 3x2x
xdx

2

∫ −+
−

10x3x
13x3

3

∫ −+−
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3.6 Integration of Rational Trigonometric Functions 

A polynomial in sinx and cosx is an expression of the form  

p(sin x, cosx ) =  

The integratin of f(sinx, cosx ) can be carried out easily as we have 
already integrated sinm x cosn x. An expression, which is the ratio of two 
polynomials, P(sinx, cosx) and Q(sinx, cosx) is called a rational function 
of sinx and cosx. In this section we shall discuss the integration of some 
simple rational functions in sinx and cosx. We shall first indicate a general 
method for integrating these functions. Let f(sinx, cos x) be a rational 

function in sin x and cosx.Thus, If t = tan    them . Since sinx = 

2sin

and cosx = cos2

we get, 

Where 

is a rational function of t. Now we can use the method of partial fraction 
decomposition to integrate F(t). In principle then, we can integrate any 
rational function is sinx and cosx.  

Example 11 : Let us integrate 

Now a + bcosx = a (sin2  

= (a + b) cos2  + (a – b) sin2

∑∑
==

∈
p

0m
n,m

nm
n,m

k

0n
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2
xsec

2
1

dx
dt 2

2 +
==

2
2 t1

t2

2
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2
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+
−

=
−

=−

∫ ∫ +
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= dt
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2
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2

∫= ,dt)t(F 22
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+
=
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)
2
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2
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2
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x 222 −++
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2
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2
x–
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Therefore, 

. If we put tan , we get 

If a > b > 0, then  and we get 

If 0 < a < b, then , and  

Example 12 : To evaluate 

∫ ∫
−++

=
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2
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dx
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∫
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 (tan ) 

Thus,  

 (put tan ) 

Not 1+ 6t2 + t4 = (2 + +t2) (3 - +t2) 

In ,if we make the substitution 1 + sin2x = t, we get 

ln(1+sin2x) +c. 

3.7   Integration of Irrational Functions 

The task of integrating functions gets toughe if the given function 

is an irrational one, that is, it is not of the form . In this section we 

shall give you some tips for evaluating some particular types of irrational 
functions. In most cases our endeavour will be to arrive at a rational 
function through an appropriate substitution. This rational function can 
then be easily evaluated.  

(I) Integration of functions containing only fractional powers of x: 

In this case we put x = tn, when n is the lowest common multiple (1cm) of 
the denominators of powers of x. This substitution reduces the function to 
a rational function of t.   

Example 13:  Let us evaluate . 

We put x = t6, as 6 is the l.c.m. of 2 and 3. We get 
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+12tan-1 x1/6+c 

(II) Integral of the type 

Here we shall have to consider two case (i)  > 0 and (ii) a < 0. 

In each cae we will try to put the given integrand in a form which we have 
already seen have to integrate.  

(i)

If we put t = x + b/2a, we get 

 (ii) a < 0 ; If we put – a = d, then d . 0, and we cane write 

, if t = x – b /2d 

 (III) Integration of dx. 

Example 14: Suppose we want to to evaluate 

. Let us put  

∫ ∫ 
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x = 1 /y. Then Now we will try to express x2 + 4x+2 in terms 

of y. For this we write x2 + 4x + 2 (x + 1)2 + 2(x + 1) – 1 

. Therefore 

 

This example suggests that in integrating 

we should make the substitution fx +c = , and then simplify the 

expression. 

 (IV) integration of 

We break Ax + B into two parts such that the first part is a constant 
multiple of the differential coefficient of ax2 + bx +c, that is, 2ax + b, 
and the second part is independent of x. thus,  

and  

 (v) integration of (Ax + B) 
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. 

Example 15: To evaluate  

We note that 

and write 

 

Example 16:  To evaluate 

we note that x2+2x+3=x2+x+1+x+2=x2+x+1+ (2x+1)+

hence 
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Check your progress 

(5) Evaluate 

(6) Integrate (a) (b) w.r.t.x. 

 (7) Integrate the following (a) (b) 

3.8  Summary 

In this unit we have covered the following points: 

1. A rational function f of x is given by f(x) = P(x)/Q(x), where P(X)
and Q(x) are polynomials called improper.

2. A proper rational expression can be resolved into partial fractions
with linear or quadratic denominators.

3. A rational function can be integrated by the metho of partial
fractions.

4. Integration of rational function of sinx and cosx can be done b

putting t=tan .  

5. Integration of irrational function of the following types is
discussed.

(i) (ii) 

(iii) (v) 

c)1xx
2
1x(

3
2ln

2
31xx 22 +++++++++

c1xx
2
1x(

3
2ln

8
151xx)5x2(

4
1 22 +++++++++=
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xcos54
1
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−

4 x1
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2
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1

2 ++ cbxax)efx(
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A check list of points to be considered while evaluating any integral is 
given.  

Note: When  we are faced with a new integrand, the following 
suggestion are required:  

Check the integrand to see if it fits one of the patterns 

(1) See if the integrand fits any one of the patterns obtained by the 
reversal of differentiation formulas (We have considered these in 
Unit 3)  

(2) If none of these patterns is appropriate, and if the integrand is a 
rational functions, then our theory of partial fraction enables us to 
integrate it.  

(3) If the integrand is a rational function of sinx and cosx, and 
simpler methods of previous units fail, the substitution 

 will make the integrand into a rational function of t, 

which can then be evaluated. 

(4) If the integrand is a radical of one of the form 

. then  the trigonometric 
substitution x = asinθ, x = acosθ or x = asecθ will reduce the 
integrand to a rational functions of sinθ and cosθ. If the radical is 

of the form as square completion 

 will reduce it essentially to one of 
the above radicals. 

(5) If the integrand is an irrational function of x, try to express it as a 
rational function or an integrable radical through appropriate 
substitution. 

(6) Inspect the integrand to see if it will yield to integration by parts. 

Finally  we would like to remind you again that a log of practice 
is essential if you want to master the various techniques of 
integration. We have already mentioned that a proper choice of 
the method of integration is the key to the correct evaluation of 
any integral. Now let us briefly recall what we have covered in 
this limit. 

∫ ∫ u
duorduun

2
xtant =

222222 ax,xa,xa −+−
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UGMM-103/74

R
IL

-1
46



Solution and Answers of check your progress 

(1) (a) and (c) are proper (b) 

(d) =x3+ 3x2 + 6x2 + 12 + 

(2) (a)   (b) 

(c) 

= ln |x2 + 8x+1| - 7  = ln |x2 + dx + 1| - 7 , 

if u = x + 4 

= ln |x2 + 8x + 1| - = ln |x2 + dx + 1| - 

(d) 

= 2 ln|x2 + x + 2| -  = 2 ln |x2 + x + 2| -

 

 

(3) (a) ⇒2 = A (x + 2) + BX
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x = 0 ⇒ 2 = 2A ⇒ A = 1, x = - 2 ⇒ = - 2B ⇒ B = - 1 

= ln |x| - lu | x+ 2| + c  = ln 

(b) 

x = A (x + 1) + B(x – 3) , x = 3 ⇒ 3 = 4A ⇒ A = 

x = - 1 ⇒ - 1 = -4B ⇒ B = 

 =

 

(c) 

∴3x – 13 = A (x – 2)  B( x + 5)  

x = 2 ⇒ - 7 = 7B ⇒ B = - 1 , x – 5 ⇒ - 28 = -7A ⇒ B = - 1 

⇒

⇒  = 4 ln |x+5| - ln|x – 2 | + 

c 

(d) 

6x2 + 22x – 23 = A(x+3) (x – 2) (2x – 1) + C(2 – 1)(x+3) 

x = 2 ⇒ 45 – 15C ⇒ C = 3 , x= - 3 ⇒ - 35 = 35B ⇒ B = - 1 

x = ½ ⇒ ⇒A = 2
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ln|2x – 1| - ln| x + 3| +3ln| x – 1|+C 

(e) 

 -3x + 

8ln|x+2| + ln| x – 1|+c 

(f) 

∴x2 + x – 1 = A(x2 – x + 1) + (Bx +c) (x – 1 ). x = 1⇒ 1 =  A  

we have x2 + x – 1 =x2 – x+1 + Bx2 + (C – B) x -  C thus – 1 = 1 – C ∴C 
= 2 

  = ln |x – 1| + 

 

(g) 

∴x3 – 4x = (Ax + B) (x2 + 1) + (Cx + D)  

∴x3 – 4x = Ax3+Bx2 + (A+C) x + (B +D)  ∴A = 1, B = 0, C = - 5, D = 0 
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(b) 

 

(5) ,if t = tan x / 2 

 

(6) (a) 

 

(b) 
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then 1 – t2 = 9At + B) (3t2 + 1) + (Ct + D) (t2+1) 

∴ 1 = B + D,  0 = A + C ,  -1 = 3B + D , 0 = 3A + C  ∴ A = C 0, B 
= - 1, D = 2 

= - 2 tan-1 (t) +  tan-1( )+c 

 

(7) (a) 4t dt if 

 

(b) put 2 –x = . Then 
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1t
1tttt4 234

c|1t|lnt
2
t

3
t

4
t

5
t4

2345

+




 +−+−+−=

c1x|lnx
2

x
3

x
4
x

5
x4 4/14/1

2/14/34/5

+




 +−−+−+−=

∫ +−− 2x3x21)xx2(
dxIn

t
1

2t
1

dt
dx

=

∫ ∫ +−−−−=+−− 9)x2(10)x2(3)x2(
dx

x3x21)x3(
dx

22

∫
+−

= dt
t
1

9
t

10
t
3

t
2

2

∫ ∫
+−

=
+−

=

9
2

3
5t3(

dt
3t10t9

t
2

∫ +





 −

=
−

= − c
9/2
9/5tsinh

3
1

)
9
2()

9
5t(

dt
3
1 1

22
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3.9 Terminal Questions 

1. Evaluate
i. ʃ 𝑥𝑑𝑥

(𝑥−1)2.(𝑥+2)

ii. ʃ 𝑑𝑥
𝑥(𝑥+1)2)

iii. ∫ 𝑑𝑥
1−𝑥+𝑥2

1
0

iv. ʃ (𝑥+2)
(2𝑥2+4𝑥+8)2

𝑑𝑥 

v. ʃ 1
𝑥(𝑥4+1)

𝑑𝑥 

vi. ʃ 𝑑𝑥
(𝑥2+3)3

vii. ʃ 𝑥𝑑𝑥
(𝑥−3)√𝑥+1.

viii. ʃ 1+𝑥
1
2

1+𝑥
1
3
𝑑𝑥  

ix. ʃ 𝑑𝑥
(𝑥−1)√𝑥2+𝑥+1.

   (put x-1=1
𝑡
) 

x. ʃ 𝑑𝑥
 (𝑥2+1)√𝑥2−1.

(put x-1=𝑙
𝑡
)

c
9
5

x2
1

2
9sin

3
1 1 +






 −

−
= − c

)x2(2
1x5sin

3
1 1 +








−
−

= −
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UNIT-4 

TANGENT AND NORMAL OF THE 
CURVES  

Structure 
4.1 Introduction 

Objectives 

4.2 Equations of tangents and normal 

4.2.1  Equation of a Tangent Line 

4.2.2  Equation of a Normal Line 

4.2.3  Vertical Tangents 

4.3 Angles of intersection of two curves 

4.4 Polar Coordinate System 

4.4.1  Transformations between Polar and Rectangular 
Coordinates 

4.5 Tangents at the origin 

4.6 Summary 

4.7 Terminal Questions 

4.1  Introduction 

In this unit, our aim is to re-acquaint with some essential elements 
of two dimensional geometry. The French philosopher mathematician 
Rene Descartes (1596--1650) was the first to realize that geometrical 
ideas can be translated into algebraic relations. The combination of 
Algebra and Plane Geometry came to be known as Coordinate Geometry 
or Analytical Geometry. A basic necessity for the study of Coordinate 
Geometry is thus, the introduction of a coordinate system and to define 
coordinates in the concerned space. We will briefly touch upon the 
distance formula and various ways of representing a straight line 
algebraically. Then we shall look at the polar representation of a point in 
the plane. Next, we will talk about symmetry with respect to origin or a 
coordinate axis. Finally, we shall consider some ways in which a 
coordinate system can be transformed.This collection of topics may seem 
random to us . 
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Objectives: 
After studying this section, the students should be able to 

• Determine the equations of tangent, normal and angle between the
curves

• Locate the tangent at the origin and singular points of the given
equation of the curve.

• Determine the asymptotes parallel to X-axis, Y-axis and oblique
asymptotes.

• Draw the curve for the equation by using these properties.

• Relate the polar coordinates and cartesian coordinates of a point.

• Obtain the polar form of an equation.

4.2  Equations of tangent and normal 

In this section we study, how differentiation can be used to 
calculate the equations of tangent and normal to the curve.  

‘The tangent is a straight line which just touches the curve at a given point 
without intersecting it’. If the curve is of sceond degree.  

‘The normal is a straight line which is perpendicular to the tangent at the 
point of tangency’. 

To calculate the equations of tangent and normal lines, we make use of the 
fact that equation of a straight line passing through the point with co-
ordinates ),( 11 yx or ))(,( afa having the slope (or gradient) given by 

)(1 afor
dx
dym = at the point ax = . Where )(1 af  is the instantaneous

rate of change at that point. 

4.2.1  Equation of a Tangent Line 

It is given by m
xx
yy

=
−
−

1

1  Or  )()( 11 xxmyy −=− . 

Equivalently, 

)()()( 1 af
ax

afxf
=

−
−  Or ))(()()( 1 axafafxf −=−  
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4.2.2  Equation of a Normal Line 

We can find the equation of the normal line at the point ax =  by taking
the negative inverse of the slope of the tangent line equation.If the slope 
(or gradient) of the tangent is )(1 afor

dx
dym = at the point ax = . The

negative inverse is 
)(

1
/
11

1 af
or

dxdy
or

dy
dx

m
−

−−=− . 

As such the equation of the normal line is given by 

It is given by 
mxx

yy 1

1

1 −
=

−
−

 Or  )(1)( 11 xx
m

yy −
−

=− . 

Equivalently, 

)(
1)()(

1 afax
afxf −

=
−
−

 Or )(
)(

1)()( 1 ax
af

afxf −
−

=−

Example 1: Find the equations of tangent and normal lines to the curve 

given by the equation )3,5(12 atxy −= . 
UGMM-103/83

R
IL

-1
46



Solution: We have 12 −= xy

Slope
dx
dy

xxdx
dy

x

==
−

=







−
=⋅

−
=∴

= 3
1

1)5(2
1

12
1)2(

122
1

5

Now, Equation of the tangent line is given by 

043)5(
3
1)3(

)()( 11

=+−−=−∴

−=−

yxOrxy

xxmyy

And equation of the normal line is given by 

0123)5(3)3(

)(1)( 11

=−+−−=−∴

−
−

=−

yxOrxy

xx
m

yy

Example 2: Find the equations of tangent and normal lines to the curve 
given by the equation )0,0(atxey x= .

Solution: We have xxey =

Slope
dx
dy

xeexe
dx
dy

x

xxx

==







+=+=∴

=

1

)1(

0

Now, Equation of the tangent line is given by 

0)0(1)0(
)()( 11

=−−=−∴
−=−

yxOrxy
xxmyy

And equation of the normal line is given by 

0)0(1)0(

)(1)( 11

=+−−=−∴

−
−

=−

yxOrxy

xx
m

yy

Example 3: Find the equations of tangent and normal lines to the curve 
given by the equations 

4
intsincos πθθθ === potheatbyandax .

Solution: We have θθ sincos byandax ==
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Slope
a
b

dx
dy

a
b

a
b

ddx
ddy

dx
dy

=
−

=







−=
−

==∴

= 4/

cot
sin

cos
/
/

πθ

θ
θ

θ
θ
θ

Now, Equation of the tangent line is given by 

02)(2

22
22

2
4/sin

2
4/cos

)()(

11

11

=−+

+−=−







−

−
=








−∴

====

−=−

abbxayOr

abbxabayOrax
a
bby

bbyandaaxWhere

xxmyy

ππ

And equation of the normal line is given by 

0)(2

22
22

)(1)(

22

22

11

=+−−

−=−







−=








−∴

−
−

=−

babyaxOr

aaxbbyOrax
b
aby

xx
m

yy

Example 4: Find the equations of tangent and normal lines to the curve 
given by the equations )4,3(2522 −=+ atyx . 

Solution: We have 2522 =+ yx  

Differentiate w. r. t. ‘ x ’, we obtain

022 =+
dx
dyyx

Slope
dx
dy

y
x

dx
dy

==







−
=∴

− 4
3

)4,3(

Now, Equation of the tangent line is given by 

02543)3(
4
3)4(

)()( 11

=+−+=−∴

−=−

yxOrxy

xxmyy

And equation of the normal line is given by 
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034)3(
3
4)4(

)(1)( 11

=++
−

=−∴

−
−

=−

yxOrxy

xx
m

yy

Exercise Problems: 

Find the equations of tangent and normal lines of the following equations 
of the curves; 

1) ),(2 00 yxataxy = 2) )4,1(122 atxxy ++=  3)

)1,0(atey x=  

4) 
4

intsincos 33 πθθθ === potheatayandax  5)

),(0633 baatxyyx =−+

4.2.3  Vertical Tangents 
A vertical tangent to the graph of a function f  occurs at a point 
( ))(, afa  if f  is continuous but not differentiable at ''a . i.e., derivative 

of )(xf  denoted by 
dx
dyOrxf )(/ may not exists at some points. At such

points either tangent does not exists or else it is parallel to the Y-axis (i.e., 
vertical tangent). To examine the existence of vertical tangents at 
( ))(, afa , we examine 

dx
dyOrxf )(/  at ax =  must tend to infinity from

both left and right side. 

The normal corresponding to a vertical tangent will obviously be 
horizontal or parallel to X-axis. This means we can write its equation as 

)(afy =  as it passes through (a, f(a)) 

Equivalently, 

The curve )(xfy =  has a vertical tangent line at the point ( ))(, afa  if 

1) )(xf is continuous at ax = .

2) ∞=
→

)(lim / xf
ax

or equivalently, 0
)(

1lim
/

=
→ xfax

. (When a  is an end

point of the domain of )(xf , the limit should be an appropriate 
side limit. 

When both the conditions are satisfied, the vertical line ax =  is a tangent
line of the curve )(xfy = at the point ( ))(, afa . 

For Example: Consider the function, 0int)( 3/1 == xpotheatxxf . 
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Solution: We have, 0int)( 3/1 === xpotheatxxfy  

∞=





⇒

=∴

=

−

0

3/2

3
1

xdx
dy

x
dx
dy

Graphically, this means that the tangent is vertical. In this case the vertical 
tangent coincides with the Y-axis, as it is attained at the point 0. 

Example 1: Find all the points on the graph 24 xxy −=  where the 
tangent is parallel to either axis. 

Solution:We first observe the domain of the given function 24 xxy −=
is [-2, 2]. 

Since the horizontal tangent occur when 0=
dx
dy

2222

.2024

0
)4(

24
)4()4(

)4(

)2()4(
2
1)4(

2

2/12

2

2/12

2

2/12

2

2/122/12

−=−===

±==−∴

=
−
−

=
−

−
−

−
=

−⋅−⋅+−=⇒ −

ythenxForandythenxFor

xOrx

x
x

x
x

x
x

xxxx
dx
dy

Therefore, 24 xxy −=  has the tangent parallel to X-axis (Horizontal 

tangent) at ))2(,2( −− f  and ))2(,2( f . 

And, 

i) 24 xxy −= is right continuous at 2−=x  and left continuous at 2=x
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ii) ∞=
−
−

→ 2/12

2

2 )4(
24lim
x

x
x

 and ∞=
−
−

−→ 2/12

2

2 )4(
24lim
x

x
x

Therefore, 24 xxy −=  has the tangent parallel to Y-axis (vertical 
tangent) at ))2(,2( f  and ))2(,2( −− f . 

Example 2: Find all the points on the graph xxxy 223 −−=  where the 
tangent is parallel to either axis. 

Solution:We first observe the domain of the given function 
xxxy 223 −−=  is [-∞, ∞]. 

Since the horizontal tangent occur when 0=
dx
dy .

3
171

6
1722

6
2442

0223 2

±
=

±
=

+±
=∴

=−−=⇒

x

xx
dx
dy

Therefore, xxxy 223 −−=  has the tangent parallel to X-axis (Horizontal 

tangent) at 






 ++ )
3

171(,
3

171 f  and 






 −− )
3

171(,
3

171 f . 

And, 

i) xxxy 223 −−= is discontinuous at −∞=x  and ∞=x
ii) ∞=−−

∞→
223lim 2 xx

x
 and −∞=−−

−∞→
223lim 2 xx

x
 

Therefore, xxxy 223 −−=  has the no tangent parallel to Y-axis (vertical 
tangent). 

Example 3: 
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Example 4: 

Example 5: 

Check Your Progress 
Find all the points on the following graphs, where the tangent lines is 
either horizontal or vertical. 

1)
21 x

xy
−

=   Hint: Domain is [-1, 1] 2) 2/32/1 xxy −= Hint:

Domain is [0,∞] 

3) xxxy 223 −−=  Hint: Domain is [-∞, ∞] 4) xy sin= Hint:
Domain is [-∞, ∞]. 
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Some More illustrations on Tangents and Normals: 

Example 1: Find the equations of the tangents to the curve 3xy = , which 
are parallel to the line 0312 =−− yx . 

Solution: Here, we should observe that the slope of any line parallel to the 
given line 0312 =−− yx is equal to 012 =−

dx
dy  or 12=

dx
dy

---------(1) 

Slope of the tangent to the curve 3xy =  is given by 23x
dx
dy

=  ---------

(2) 

From equations (1) and (2), we obtain 24123 22 ±=== xOrxOrx . 

Now, for 8)2(2 3 === ythenx  and for 8)2(2 3 −=−=−= ythenx . 

Therefore, the points at which the tangents are required are (2, 8) and (-2, -
8) 

The equations of the tangents are given by 

03212)2(128 =+−−=− yxOrxy and 
01612)2(128 =+−+=+ yxOrxy respectively. 

Example 2: Find the equations of the tangent and normal to thecurve given 
by the equations x = at 2 and y = 2at at the point ‘t’. 

Solution: Wehave 2atx =  and aty 2= . 

tat
a

dtdx
dtdy

dx
dySlope 1

2
2

/
/

====∴

Therefore, the equation of the tangent at the point ‘t’ is given by 

22 )(1)2( atxytOratx
t

aty +=−=−

And the equation of the normal at the point ‘t’ is given by 

)2()()2( 22 +=+−−=− tattxyOratxtaty  

Example 3: Find the equation of the tangent to the curve 
016422 =−+++ yxyx  at the point ),( ba .

Solution:Wehave 016422 =−+++ yxyx . Then, it’s slope is given by 
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)3(
)2(

)3(
)2(

)42()62(06422

),( +
+−

=





⇒

+
+−

=

+−=+=+++

b
a

dx
dy

y
x

dx
dyOr

x
dx
dyyOr

dx
dy

dx
dyyx

ba

Therefore, the equation of the tangent to the curve at the point ),( ba is 
given by 

)(
)3(
)2()( ax

b
aby −
+
+−

=− . 

Example 4: Prove that the line 132 =+ yx  touches the curve xey 23 −=
at a point whose X-coordinate is zero. 

Solution:We have, the equation of the curve as xey 23 −= . It’s slope is
given by 

3
223

0

2 −
=






⇒−=

=

−

x

x

dx
dye

dx
dy

The point on the curve is given by ; at 
3
1

3
,0

2

===
−

ygiveseyx
x

∴ The point is 







3
1,0 . 

Therefore, the equation of the tangent is given by 

132213)0(
3
2)

3
1( =+−=−−

−
=− yxOrxyOrxy . Hence proved. 

Example 5: Prove that the equation of the normal to the hyperbola

12

2

2

2

=−
b
y

a
x

 at a point ( )ba ,2  is . 

Solution: We have, the equation of the curve as 12

2

2

2

=−
b
y

a
x

. To find the 

slope, 

a
b

ba
ab

dx
dy

ya
xb

y
b

a
x

dx
dy

dx
dy

b
y

a
x

ba

2)2(

2
2022

2

2

),2(

2

22

222

==





∴

=×
−

=





⇒=−

Therefore, equation of the normal at the point ( )ba ,2  is given by

2)(2 22 baybax +=+
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.2)()2(22)2(

2)(2)2(
2

)(

2222

2

baybaxOraaxbybOr

aaxbybOrax
b
aby

+=++−=−

+−=−−
−

=−

Hence Proved. 

Check Your Progress
1. Find the equations of the tangent andnormal to thecurve given

by the equations )sin( ttax +=  and )cos1( tax −=  at the point
‘t’.

2. Find the equation of the tangent to the curve axy =  at the point
),( ba .

4.3  Angles of intersection of two curves

When two curves intersect at a point, their angle of intersection at that 
point is defined with the help of their tangents at that point. 

i.e., the angle of intersection of two curves is the angle between their
tangents at their point of intersection. 

Here two curves )(xfy =  and )(xgy =  are intersecting at the point 
),( 11 yxP . The angle of intersection of these two curves at the point P is 

an angle between the tangents T1 and T2 to these curves at P such that 

2
0 πφ ≤≤ . 

In other words, 
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In order to measure the angle between two curves, we measure the angle 
between the tangents to the curves at that point.  It is obtained by the 
formula, )tan(tan 21 ψψφ −=  (From the figure). 

Now, by trigonometry, 
21

21

tantan1
tantantan

ψψ
ψψ

φ
+

−
= . Where 1tanψ  and 2tanψ

are slopes of the tangent lines T1 and T2 to thecurves )(xfy =  and 
)(xgy =  at their point of intersection ),( 11 yxP . 

Note: 
1) The above figure shows that 21 ψψ −  to be an acute angle. Then 

angle )( 21 ψψπθ −−= , since we take angle of intersection as an 
acute angle. 

2) But in the following figure, it is difficult to decide about whether
we should take )tan(tan 21 ψψφ −=  or

)tan()tan(tan 2121 ψψψψπφ −−=−−= . Therefore , we decide 

to take )tan(tan 21 ψψφ −=  if 
2

0 πφ ≤≤  

3) Two curves )(xfy =  and )(xgy = touch each other at the point
),( 11 yxP , then they will have a common tangent at ),( 11 yxP .

This is possible iff 0=θ  and 21 tantan ψψ = . 

4) Two curves )(xfy =  and )(xgy =  intersect each other at the
point ),( 11 yxP  at right angles or orthogonally iff

1tantan 21 −=⋅ ψψ .

Example 1:Find the angle of intersection of the parabola xy 22 =  and the 

circle 822 =+ yx . 

Solution: Let’s find the points of intersection of the given curves. 

Consider, 822 =+ yx  put xy 22 =  then 4,20822 −=⇒=−+ xxx . UGMM-103/93
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For 22,2 2 ±=== ygivesxyx  and For

222,4 2 iygivesxyx ±==−= (Imaginary values). 

Therefore, the considerable values of points of intersection are only (2, 2) 
and (2, -2). 

Now, differentiate both equations of curves xy 22 =  and 822 =+ yx  

with respect to ‘ x ’, we obtain,
ydx

dyOr
dx
dyyxy 12222 ==⇒=

2
1

2
1

)2,2()2,2(

−=





=






∴

−dx
dyand

dx
dy

And, 
y
x

dx
dyOr

dx
dyyxyx −

==+⇒=+ 022822

11
)2,2()2,2(

=





−=






∴

−dx
dyand

dx
dy . 

At the point (2, 2), let 
2
1tan 1 =ψ  and 1tan 2 −=ψ  

The angle of intersection of the given two curves at the point (2, 2) is; 

3tan

3
2/1
2/3

)1(
2
11

)1(
2
1

tantan1
tantantan

1

21

21

−=∴

==
−⋅+

−−
=

+
−

=

φ

ψψ
ψψ

φ

Similarly, 

At the point (2, -2), let 
2
1tan 1 −=ψ  and 1tan 2 =ψ . 

The angle of intersection of the given two curves at the point (2, -2) is; 

).3(tan

3
2/1
2/3

)1()
2
1(1

1
2
1

tantan1
tantantan

1

21

21

−=∴

−=
−

=
⋅−+

−−
=

+
−

=

−φ

ψψ
ψψ

φ

Example 2:Find the angle of intersection of the parabolas xy 42 =  and 

the circle yx 42 = . 

Solution: Let’s find the points of intersection of the given curves. 
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Consider, yx 42 =  put 4/2yx =  then 

4,00)64(0644
4

34
22

=⇒=−=−=







yyyOryyOryy

. 

For 44,404,0 22 ±====== xgivesyxyandxgivesyxy . 

Therefore, the points of intersection are (0, 0) and (4, 4)  

Now, differentiate both equations of curves xy 42 =  and yx 42 =  with 

respect to ‘ x ’, we obtain, 
ydx

dyOr
dx
dyyxy 24242 ==⇒= .

2
1

)4,4()0,0(

=





∞=






∴

dx
dyand

dx
dy

And, 
2

04242 x
dx
dyOr

dx
dyxyx ===⇒=

20
)4,4()0,0(

=





=






∴

dx
dyand

dx
dy . 

At the point (0, 0), let ∞=1tanψ  and 0tan 2 =ψ  

The angle of intersection of the given two curves at the point (0, 0) is; 

2
)(tan

)0).((1
0

tantan1
tantantan

1

21

21

πφ

ψψ
ψψ

φ

=∞=∴

∞=
∞+
−∞

=
+

−
=

−

Similarly, 

At the point (4, 4), let 
2
1tan 1 =ψ  and 2tan 2 =ψ . 

The angle of intersection of the given two curves at the point (4, 4) is; 

)
4
3(tan

4
3

2
2/3

)2()
2
1(1

)2(
2
1

tantan1
tantantan

1

21

21

−
=∴

−
=

−
=

⋅+

−
=

+
−

=

−φ

ψψ
ψψ

φ

Example 3: Show that the curves 84 22 =+ yx (Ellipse) and 42 22 =− yx
(Hyperbola) cut each other orthogonally at four points. 

Solution: Let’s find the points of intersection of the given curves. 
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Consider, 84 22 =+ yx  put 22 24 yx +=  then 

3
2

3
2

6
4468424 2222 ±=====++ yOryOryOryy . 

For 

3
4

3
168

3
2484,

3
2 2222 ±===






+=+±= xOrxOrxgivesyxy . 

Therefore, the four points of intersection are 







±

3
2,

3
4

 and 









±−

3
2,

3
4

. 

Now, the condition for two curves )(xfy =  and )(xgy =  to intersect each 
other at the point ),( 11 yxP  at right angles or orthogonally is

1tantan 21 −=⋅ ψψ . 

Where, 
dx
dy

=1tanψ  of the curve 84 22 =+ yx . 

2
1

4
082

3
2,

3
4

−=





⇒

−
==+∴










dx
dy

y
x

dx
dyOr

dx
dyyx . 

And, 
dx
dy

=2tanψ of the curve 22 24 yx +=

2
2

2
2

42
3
2,

3
4

==





⇒==∴










dx
dy

y
x

dx
dyOr

dx
dyyx

Thus, 12
2
1tantan 21 −=⋅

−
=⋅ ψψ . Therefore, the curves intersect 

orthogonally. 

Similarly, it can be shown in remaining three points also. 

Example 4: Show that the curves 2axy =  and 222 2ayx =+ touch each 
other at two points. 

Solution: Let’s find the points of intersection of the given curves. 
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Consider, 222 2ayx =+  put 
x

ay
2

=  then 

axOraxOraxaxOra
x

ax ±==−=+−=







+ 0)(022 22242242

22
2

(Twice). 

For aygives
x

ayaxForandaygives
x

ayax −==−====
22

,,

Therefore, the four points of intersection are (a, a) and (-a, -a). 

Now, the condition for two curves )(xfy =  and )(xgy =  totouch each 
other at the point ),( 11 yxP  at right angles or orthogonally is

21 tantan ψψ = . 

Where, 
dx
dy

=1tanψ  of the curve 2axy = . 

10
),(

−=





⇒

−
==+∴

aadx
dy

x
y

dx
dyOr

dx
dyxy . 

And, 
dx
dy

=2tanψ of the curve 222 2ayx =+  

1022
),(

−=





⇒

−
==+∴

aadx
dy

y
x

dx
dyOr

dx
dyyx  

Thus, 1tantan 21 −== ψψ . Therefore, the curves touch each other. 

Similarly, it can be shown at another point. 

4.4.  Polar Coordinate System 

We already know that, for a given pair of axes in a plane, the 
position of a point in the plane (known as Cartesian plane or Cartesian 
coordinate system) can be determined if we know its distances from the X-
axis and Y-axis. The coordinates (x, y) are also known as rectangular 
coordinates. There is one more way in which we can determine the 
position of the point by its initial line OX in a plane known as polar plane 
or polar coordinate system. 

A coordinate system in which the position of a point P(r, θ) called as polar 
coordinates of the position of the point P (known as polar coordinate 
system or polar plane) is given by its radial distance ‘r’ from the origin ‘O’ 
and the angle ‘θ’ measured counter clockwise from a horizontal line OX 
called the polar axis to the line OP as shown in the figure. The line OP 
from the origin to the point is called the radius vector, the angle θ is called 
the polar angle, and the origin O is called the pole. UGMM-103/97
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Polar coordinate system 

4.4.1  Transformations between Polar and Rectangular 
Coordinates 

The formulae for conversion from rectangular to polar coordinates Or vice 
versa are given by θcosrx =  and θsinry = . 

These relations gives 22 yxr +=  and 





= −

x
y1tanθ . 

The equation of a curve in polar form is expressed as )(θfr = . 

For example: The equation of the circle having Centre at origin O and 
radius r is given by ar =
Remarks: 

1) The slope of the polar coordinates is given by

θ
θ

θ

θ
θ

θ

θ
θ

sincos

cossin

/
/

r
d
dr

r
d
dr

ddx
ddy

dx
dy

−

+
==

UGMM-103/98

R
IL

-1
46



2) The angle between the radius vector and the tangent to the curve
(measured counterclockwise) is an important angle that plays a
role in polar coordinates somewhat similar to that of the slope in
rectangular coordinates. It is given by

dr
dr θψ =tan . It is show in 

the following figure.

3) The angle of intersectionφ between two curves C1 and C2 meeting

at a point P, is given by 
21

12

tantan1
tantantan

ψψ
ψψ

φ
+

−
=  where 1ψ  and 2ψ

are the angles from the radius vector OP to the respective tangents 
to the curves at the point P. φ is the angle measured 
counterclockwise from the tangent of the curve C1 to the tangent of 
the curve C2 as shown in the following figure. 

4) The angle φ is also given by 12 ψψφ −=
5) If 1tantan 21 −=ψψ , then the curves cut orthogonally. 

Example 1: Find the angle between the radius vector and tangent to the 
curve θ2cos22 ar =  

Solution: Theangle between the radius vector and tangent to the curve is 
given by

θ
θ

θθ
θ

θψθψ 2cot
2sin2

2cos22cos2
2sin2

2costantan 2

2

2 −=
−

=⋅
−

=⇒=
a

aa
a

a
dr
dr  
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θπψθπψθψ 2
2

)12(2
2

)12(tantan2cottan ++=



 ++=⇒−=∴ nOrn

Example 2: Find the angle between the radius vector and tangent to the 
curve )cos1(1 θe

r
+=

Solution: Theangle between the radius vector and tangent to the curve is 

given by ( )





 +

=

+
=

+
+

=

−⋅
+

−
⋅

+
=⇒=

−

θ
θψ

θ
θ

θθ
θ

θ
θ

θ
ψθψ

sin
)cos1(tan

sin
)cos1(

cos1sin
)cos1(

)sin(
)cos1(

1
1

cos1
1tantan

1

2

2

e
eOr

e
e

ee
e

e
e

edr
dr

Example 3: Find the angle between the radius vector and tangent to the 
curve θmar m cos=  

Solution: Theangle between the radius vector and tangent to the curve is 
given by  

θ
θ

θψθψ m
mmma

ma
dr
dr m

m cot1
sin

1costantan −=
−

⋅=⇒=  





 ++=⇒



 ++= θπψθπψ mnmnmOr

2
)12(

2
)12(tantan

Example 4: Find the angle between the radius vector and tangent to the 
curve )sin(cos θθ mmar m −=

Solution: Theangle between the radius vector and tangent to the curve is 
given by  







 −=⇒






 −=







 −=






 −

−
=

−

−
⋅−=

+
−

−=
+

−
−=

+−
⋅−=⇒=

44
tantan

4
tan1

4
tan1

tan
4

tan1

tan
4

tan1

)tan1(
)tan1(

)sin(cos
)sin(cos

)cossin(
1)sin(costantan

πθψπθψ

πθθπ

θπ

θπ
θ

θ
θθ

θθ
θθ

θθψθψ

mmmOr

m
m

m
mm

m

m

mm
m

mmm
mm

mmmma
mma

dr
dr m

m





 ++=⇒



 ++= θπψθπψ mnmnmOr

2
)12(

2
)12(tantan
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Illustrations on Angle of intersection of polar curves: 
Example 1: Find the angle of intersection of the curves θ2cosar =  and 

θ2sinar = . 

Solution:We havethe equations of the curves; θ2cosar =  and 
θ2sinar =  

obtain,Solving both we a cos 2θ = asin 2θ ⇒ cos 2θ = 
sin 2θ Or tan 2θ = 1. 

Now, 

Let 1ψ be the angle beteween the radius vector and tangent to th curve 
θ2cosar = . Then,

2
12tan

2
1

2sin2
2cos

/
2costan 1

−
=

−
=

−
=== θ

θ
θ

θ
θθψ

a
a

ddr
a

dr
dr  

and let 2ψ be the angle beteween the radius vector and tangent to th curve 
θ2sinar = . Then, 

2
12tan

2
1

2cos2
2sin

/
2costan 2 ===== θ

θ
θ

θ
θθψ

a
a

ddr
a

dr
dr

Therefore the angle of intersection of given two polar curves is;

21

12

tantan1
tantantan

ψψ
ψψ

φ
+

−
=







=−==

−
=







 −

⋅+







 −

−
=∴ −

3
4tan

3
4

4
11

1

2
1

2
11

2
1

2
1

tan 1
21 ψψφφ Or

Example 2: Find the angle of intersection of the curves θaer =  and 
bre =θ . 

Solution:We havethe equations of the curves; θaer =  and bre =θ . 

Solving both we obtain,

Now, 

Let 1ψ be the angle beteween the radius vector and tangent to th curve 

θaer = . Then, 1
/

tan 1 ==== θ

θθ

θ
θψ

ae
ae

ddr
ae

dr
dr  

and let 2ψ be the angle beteween the radius vector and tangent to th curve 
θ−= ber . Then, 

1
/

tan 2 −=
−

=== −

−−

θ

θθ

θ
θψ

be
be

ddr
be

dr
dr  







=






==⇒= −

a
bOr

a
bOr

a
bebeae log

2
1log22 θθθθθ
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Therefore the angle of intersection of given two polar curves is;

21

12

tantan1
tantantan

ψψ
ψψ

φ
+

−
=

2
tan

)1(11
11tan 1

21
πψψφφ =∞=−=∞=

−+
−−

=∴ −Or

Note: Here it is observed that 1tantan 21 −=ψψ this implies 
that the curves cut orthogonally. 

Example 3: Find the angle of intersection of the curves )sin1( θ+= ar  
and )sin1( θ−= ar . 

Solution:We havethe equations of the curves; )sin1( θ+= ar  and 
)sin1( θ−= ar  

Solving both we obtain, 00sin2)sin1()sin1( ==⇒−=+ θθθθ Oraa . 

Now, 

Let 1ψ be the angle beteween the radius vector and tangent to th curve 
)sin1( θ+= ar . Then,

1
cos

)sin1(
cos

)sin1(
/

)sin1(tan 1 =
+

=
+

=
+

==
θ

θ
θ

θ
θ
θθψ

a
a

ddr
a

dr
dr  

and let 2ψ be the angle beteween the radius vector and tangent to th curve 
)sin1( θ−= ar . Then, 

1
cos

)sin1(
cos

)sin1(
/

)sin1(tan 2 −=
−

−=
−

−
=

−
==

θ
θ

θ
θ

θ
θθψ

a
a

ddr
a

dr
dr  

Therefore the angle of intersection of given two polar curves is;

21

12

tantan1
tantantan

ψψ
ψψ

φ
+

−
=

2
tan

)1(11
11tan 1

21
πψψφφ =∞=−=∞=

−+
−−

=∴ −Or

Note: Here it is observed that 1tantan 21 −=ψψ this implies that the 
curves cut orthogonally. 

4.5  Tangents at the origin 

To find the nature of the multiple points it is required to find the 
tangent or tangents at that point.   The following rule is very helpful in this 
case:   
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Rule: If a curve passing though the origin and is given by a rational, 
integral, algebraic equation then the equation of the tangent or tangent at the 
origin is obtained by equating to zero the lowest degree times in the curve. 

Let the equation of the curve be written as: 

(𝑎1𝑥 + 𝑎2𝑦) + (𝑏1𝑥2 + 𝑏2𝑥𝑦 + 𝑏3𝑦2) + (𝑐1𝑥3 + 𝑐3𝑥𝑦2 + 𝑐4𝑦3) + ⋯
= 0 … . . (1) 

Let 𝑝(𝑥,𝑦) be any point on the curve. The slope of curve is 𝑦. Then the 
𝑥 

equation of OP is  
Equation of the tangent at O is given by 

𝑌 = �lim𝑥→0 �
𝑦
𝑥
� .𝑋�… … … … … . (2)  

Here we exclude the case when the tangent is Y axis i.e. lim𝑥=0( 𝑦
𝑥

)  =
 ±∞)  we now have:  

Case 1:   Let 𝑎2 ‡ 0  𝑑𝑒𝑣𝑖𝑑𝑒𝑑 (1) 𝑏𝑦 𝑥 and taking limit 𝑥 → 0 we get 

𝑎1 + 𝑎2 �lim𝑥=0( 𝑦
𝑥

)� = 0   …………….. (3) 

Eliminating  lim𝑥=0( 𝑦
𝑥

)  between (2) & (3), we get 

𝑎1𝑋 + 𝑎2𝑌 = 0 

Or  written 𝑥,𝑦  for  X and Y, the tangent  at the origin  to (1) is 

𝑎1𝑥 + 𝑏2𝑦 = 0 

which is obtained by equating to zero the terms of the lowest degree term 
in (1) of 𝑎2 = 0  then 𝑎1 = 0 by (3) so we have the next case. 

Case 2:  when   𝑎1 = 0  , 𝑎2 = 0   but 𝑏2 &  𝑏3  both are not zero, then 
dividing (1) by 𝑥2 & taking the limit 𝑥 → 0   we get  

𝑏1 + 𝑏2  lim𝑥→0 �
𝑦
𝑥
�+ 𝑏3 lim𝑥→0 �

𝑦
𝑥
�
2

= 0

Or 𝑏1 + 𝑏2 𝑚 + 𝑏3𝑚2 = 0  ……………… (4) 

So we get two value of 𝑚 in general giving two tangents at the origin. The 
equation of tangents is obtained by elimination of 𝑚 between (2) and (4) 
so we get                                 𝑏1 + 𝑏2𝑥𝑦 +  𝑏3𝑦2 = 0  

which is the same by equating to zero the terms of the lowest degree term 
in equation of the curve. 

Also if 𝑏2 = 0 , 𝑏3 = 0 then from (4)  𝑏1  = 0 
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Case 3:  If 𝑎1 = 𝑎2 = 𝑏1 =  𝑏2 = 𝑏3 = 0  we can show as above that the 
Rule is true. 

 Hence by equating to zero the terms of the lowest degree term all the 
tangents at origin are obtained including Y  axis (if it is tangent ). 

Example 1:           Show that origin is a node for the curve 

𝑦2(𝑎2 + 𝑥2) = 𝑥2(𝑎2 − 𝑥2)  

Solution:   Equating to zero the lowest degree terms in the equation of the 
curve the tangents at the origin are given by  

𝑎2𝑦2 − 𝑎2𝑥2 = 0  or 𝑦 =  ±𝑥 

               ∴  the tangents are real & distinct and so the origin is a node. 

Example 2:   Show that origin is a conjugate point for the curve 

𝑥4 − 𝑎𝑥2𝑦 + 𝑎𝑥𝑦2 + 𝑎2𝑦2 = 0 

Solution:           Equating to zero the lowest degree terms in the given 
equation, the tangent at the origin is given by: 

𝑎2𝑦2 = 0    𝑜𝑟 𝑦2 = 0   , 𝑜𝑟 𝑦 = 0 ,𝑦 = 0  

So the tangents are real & coincident at  (0, 0) 

Therefore origin is either a cusp or a conjugate point . 

Now equation of the curv can be  written as  

𝑎𝑦2(𝑥 + 𝑎) − 𝑎𝑥2𝑦 + 𝑥4 = 0 

∴ 𝑦 = 𝑎𝑥2±�𝑎2𝑥4−4𝑎𝑥4(𝑥+𝑎)
2𝑎(𝑥+𝑎)

= 𝑎𝑥2±𝑥2√−4𝑎𝑥−3𝑎2

2𝑎(𝑥+𝑎)

Since for very small value of 𝑥(≠ 0) 

  -−4𝑎𝑥 − 3𝑎2 < 0 

∴   𝑦  is imaginary in the neighborhood of origin. Hence origin is a 

conjugate points.  

4.6  Summary 

In this unit, we have discussed and studied the equation of tangent 
and normal to a curve at given point in Cartesian form, parametric form, 
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tangent parallel to the X axis or a given, angle of intersection of two 
curves and equation of tangent at origin.  

4.7  Terminal Questions 
1. Find the equation of the tangent at the point (p,q) on the curves.

i. 𝑥𝑚

𝑎𝑚
+𝑦

𝑚 
𝑏𝑚 

= 1

ii. (𝑥2 + 𝑦2)2=𝑎2(𝑥2 − 𝑦2)

2. Find the point on the curve  y=𝑥
2
3.(𝑥 + 𝑎)

1
3 at which the tangent is 

(a) parallel to x axin (b) parallel to y axis. 

3. Find the equation of tangent at the point ’t’ on the curve

x= a(t+sint), y=a(1-cost).

4. Show that the condition that the curves 𝑎𝑥2+𝑏𝑦2=1 &
a1𝑥2+b1𝑦2=1 should cut orthogonally is 1

𝑎
− 1

𝑏
= 1

𝑎1
 - 1
𝑏1

. 

5. Find the equation of the normal to the curve y(x-2)(x-3)-x+7= 0 at
the point where it cuts the axis of X .

6. Show that the normal at any point on the curve x=a cos𝜃+a 𝜃 𝑠𝑖𝑛𝜃,
y=a sin𝜃 − 𝑎𝜃 𝑐𝑜𝑠𝜃 is at a constant distance from the origin.
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UNIT-5 

TRACING OF CURVES 

Structure  
5.1 Introduction 

Objectives 

5.2 Singular points 

5.3 Double points and its classification 

5.4 Nature of the cusp at the origin  

5.5 A necessary condition for the existence of the double points on a 
curve 

5.6 Asymptotes 

5.6.1 The (oblique) asymptotes of the general algebraic curves  

5.6.2 Simple method to find the asymptotes of a given curve 

5.6.3 Two parallel asymptotes 

5.7 Curve Tracing 

5.7.1 Procedure  

5.8 Summary 

5.9 Terminal Questions 

5.1  Introduction 

In this unit, the concept of regular points, singularity points and 
multiple points are explained. The double point and its classification, types 
of cusps and its explanation of nature at the origin is explained which is 
very essential to trace the curve. Whether double points exist in a curve is 
explained and what is the necessary condition for the existence is 
discussed. A detailed study of asymptotes for general algebraic curve is 
provided along with the simple steps to find the asymptotes of a given 
curve.  At last, we will see the procedure t tace the curve using the 
concepts studied in the unit.  

Objectives 
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After reading this unit you should be able to :  

• Understand the concept of singular points and regular points

• Knows Double points and its classification

• Understand the different types of cusp and nature of cusp at origin

• Understand the concept of asymtotes

• Able to trace the curve for given algebraic expression.

5.2  Singular points 

A singular point of an algebraic curve is a point where the curve 
has "nasty" behavior such as a cusp or a point of self-intersection or more 
specifically, a point on the curve at which the curve behaves an unusual 
behavior is called singular points. A cusp is a point at which two branches 
of a curve meet such that the tangents of each branch are equal. The plot 
shown in Figure 1 is the semi cubical parabola curve , which 
has a cusp at the origin.  

Figure 1: semi cubical parabola curve , which has a cusp at 
the origin. 

There are two types of singular points: 

(1) Point of inflection: Inflexion is a point on a continuous plane 
curve at which the curve changes from being concave (concave 
downward) to convex (concave upward), or vice versa. Simply, 
Inflection points are the points of the curve where 
the curvature changes its sign. Figure 2 shows a point of inflection 
for the curve y = x3 . 
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Figure 2: Plot of y = x3 with an inflection point at (0,0), which is also 
a stationary point. 

(2) Multiple points: A Point on the curve through which more than one 
branch of the curve pass is called Multiple Point. A point on the curve 
through which two branches of the curve pass is called Double Point. A 
Point on the curve through three branches of the curve pass is called Triple 
Point. Similarly, if a point on the curve through which n branch of the 
curve passes is called Multiple Point of nth order. 

4. Node
In simple words; a double point P on a curve is called a Node if two real 
branches of a curve pass through P and two tangents at which are real and 
different. Thus the point P shown in Figure 6. is a Node. 

Q 

O 

Y 

X 
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Example 1:  Find the nature of the origin of  the curve 

𝑎4𝑦2 = 𝑥4(𝑥2 − 𝑎2)     

Solution:  We observe that the curve pass  though the origin and 

𝑦 = ± 𝑥2

𝑎2
√𝑥2 − 𝑎2

Therefore the value of 𝑦  are imaginary whether 𝑥 > 𝑜𝑟 𝑥 < 0 & when 𝑥 
is small then origin is a conjugate point on the curve.  Further  

𝑑𝑦
𝑑𝑥

 =  ± �2𝑥
𝑎2
√𝑥2 − 𝑎2 + 𝑥2

𝑎2
𝑥

√𝑥2−𝑎2
�    

Therefore 𝑑𝑦
𝑑𝑥

= 0 at (0, 0) ,  and so the tangent at (0, 0) is 

𝑦 − 0 = 0(𝑥 − 0)        𝑜𝑟  𝑦 = 0 which is real. Then the tangent may be 
real at a conjugate point.   

5.5 Species of cusps 

 If the curve lies entirely on one side of the normal than the cusp is called 
a single cusp and if the curve lies on both the side of the normal it is 
called double cusp (Figure 7). Therefore, we have following types of 
cusps: 

(a) Single cusp of first species 

(b) Single cusp of second species 

(c) Double cusp of first species 

(d) Double cusp of second species 

O 

X 

Q 

Figure 5 
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If the two branches of the curve at cusp lie on opposite sides of the 
common tangent then cusp is of first species, also known as keratoid cusp 
(Figure 8).  

If the two branches of the curve at cusp lie on same sides of the common 
tangent then cusp is of second species, also known as rhampoid cusp 
(Figure 9).  
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At a double cusp, if species change for the two sides of the cusp, then 
double cusp is called a point of osculinflexion (Figure 10). 

5.6  Nature of the cusp at the origin 

If the origin is a cusp i.e. the two branches through the double point are 
real and have coincident tangents. Then the equation of the curve must be 
of the form: 

(𝑎𝑥 + 𝑏𝑦)2 + terms of third degree and higher degree = 0 

………………. (1) 

Therefore the common tangent at the origin is  

𝑎𝑥 + 𝑏𝑦 = 0                ………………... (2)  

Let p be the length of perpendicular from any point  (𝑥 ,𝑦) on (1) to the 
line 𝑎𝑥 + 𝑏𝑦 = 0 Then  

  𝑝 =  𝑎𝑥+𝑏𝑦
√𝑎2+𝑏2

which is proportional to 𝑎𝑥 + 𝑏𝑦  

So we take   𝑝 = 𝑎𝑥 + 𝑏𝑦  𝑜𝑟 𝑦 =  𝑝−𝑎𝑥
𝑏

   

Putting y in curve we get a relation between 𝑝 𝑎𝑛𝑑 𝑥. Since 𝑝 is small so 
the terms having power of 𝑝 above second degree will be  neglected  and 
so  we get a quadratic  equation. 

𝐴𝑝2 + 𝐵𝑝 + 𝐶 = 0 where 𝐴 ,𝐵,𝐶 ………………(3) 

are function of 𝑥  

if  𝑝1& 𝑝2  be the roots of equation   (3) 

Then 𝑝1𝑝2 = 𝐶
𝐴

………………………..(4) UGMM-103/114
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So we have the following cases: 

Case 1: If for all values of 𝑥 such that x < 𝑝 where 𝑝 is given by (3). The 
values of 𝑝 are imaginary so the origin will be a conjugate point.  

Case 2:  If the values of 𝑝 in case 1 are real then there will be double cusp 
at the origin. 

Case 3: If the values of 𝑝 depend on the sign of 𝑥 there will be single cusp 
at the origin. 

Case 4: If   𝑝  is real for numerically small values of  x,  𝑝1𝑝2 > 0 then 
𝑝1 ,𝑝2 will be of the same sign and so there will be a cusp of second 
species. And if 𝑝1𝑝2 < 0  𝑎𝑛𝑑  𝑝1 , 𝑝2  are of opposite sign and therefore 
there will be a cusp of  first species.    

Example 1:  Show that the curve 𝑥3 + 𝑥2𝑦 = 𝑎𝑦2 has a single cusp of the 
first species . 

Solution:           The curve may be written as 

𝑎𝑦2 − 𝑥2𝑦 − 𝑥3 = 0  ………………. (1) 

Equating to zero the  terms of lowest degree  in (1), the tangents at the 
origin are given by 𝑦2 = 0   𝑜𝑟   𝑦 = 0 & 𝑦 = 0 

 Therefore origin is either a cusp or a conjugate point . 

From (1)  𝑦 = 𝑥2‡√𝑥4+4𝑎𝑥3

2𝑎

For smaller value of 𝑥 (𝑥 ≠ 0);      𝑥4 + 4𝑎𝑥3 has the same sign as of 
4𝑎𝑥3 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 positive  

when  𝑥 > 0 and negative  when 𝑥 < 0. Therefore when 𝑥 > 0 then 𝑦 has 
two  

real values which are positive and negative and when 𝑥 < 0 then y is 
imaginary.  

Hence there is a single cusp of the first species at the origin.   

5.7  A necessary condition for the existence of the 
double points on a curve  

Let 𝑓(𝑥 ,𝑦) = 0  be the equation of the curve. On transferring  the origin 
to the point (ℎ,𝑘)  the  equation of the curve becomes  

𝑓(𝑥 + ℎ  ,𝑦 + 𝑘) = 0 

 Expanding by Taylor’s theorem 

𝑓(𝑥 + ℎ  ,𝑦 + 𝑘) = 𝑓(ℎ, 𝑘) + �𝑥 𝜕𝑓
𝜕𝑥

+ 𝑦 𝜕𝑓
𝜕𝑦
� (ℎ,𝑘) +

1
2!
�𝑥2 𝜕

2𝑓
𝜕𝑥2

+ 2𝑥𝑦 𝜕2𝑓
𝜕𝑥2𝑦

+ 𝑦2 𝜕
2𝑓

𝜕𝑦2
� (ℎ ,𝑘)   + …..

………. (1) UGMM-103/115
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Now in order that the new origin may be a double point the constant term 
and the terms of the first degree must be absent in equation (1) & so we 
must have. 
𝜕𝑓
𝜕𝑥

= 0  , 𝜕𝑓
𝜕𝑦

= 0  , 𝑓(𝑥, 𝑦) = 0  

If these conditions are satisfied then tangents at new origin are given by 

𝑥2.
𝜕2𝑓
𝜕𝑥2

+ 2𝑥𝑦.
𝜕2𝑓
𝜕𝑥 𝑦

+ 𝑦2.
𝜕2𝑓
𝜕𝑦2

= 0   𝑎𝑡 (ℎ ,𝑘) 

Therefore in general a double point will be a node , cusp or conjugate 
point according as  

�𝜕
2𝑦

𝜕𝑥2
�
2

> , =, < �𝜕
2𝑦

𝜕𝑥2
� �𝜕

2𝑦
𝜕𝑦2

�   

Example 1:     Show that the curve  

𝑥3 + 2𝑥2 + 2𝑥𝑦 − 𝑦2 + 5𝑥 − 2𝑦 = 0  

has a single cusp & first species at the point (-1  , -2) 

Solution:   let 𝑓(𝑥 ,𝑦) = 𝑥3 + 2𝑥2 + 2𝑥𝑦 − 𝑦2 + 5𝑥 − 2𝑦 = 0   

Then  𝜕𝑓
𝜕𝑥

= 3𝑥2 +  4𝑥 + 2𝑦 + 5    …………………………. (1) 

𝜕𝑓
𝜕𝑥

= 2𝑥 − 2𝑦 − 2    ……. …………………..(2) 

For double point;   𝜕𝑓
𝜕𝑥

= 0  & 𝜕𝑓
𝜕𝑦

= 0  

∴                 3𝑥2 +  4𝑥 + 2𝑦 + 5 = 0 

& 2𝑥 − 2𝑦 − 2 = 0    𝑜𝑟 𝑦 = 𝑥 − 1 

Solving these equation we get 𝑥 = −1 ,−1  & 𝑦 = −2 & so (-1 , -2) in the 
double point. Because this point also satisfy the equation of the given 
curse we new shift the origin to the point (-1 , -2) and therefore  putting 
𝑥 = 𝑋 − 1 & 𝑌 − 2 the equation of the curse because  

(𝑋 − 1)3 + 2(𝑋 − 1)2(𝑋 − 1)(𝑋 − 2) − (𝑌 − 2)2 + 5(𝑋 − 1) − 2 (𝑌
− 2) = 0 

Or   𝑋3 − 𝑋2 + 2𝑋𝑌 − 𝑌2 = 0  𝑜𝑟 (𝑌 − 𝑋)2 = 𝑋3    
………………………  (3) 

Equating to zero the lowest degree terms in equation and the tangents at 
the new origin (-1 , -2) are  given by (𝑌 − 𝑋)2 = 0 𝑒. 𝑖  𝑌 − 𝑋 = 0  ,𝑌 −
𝑋 = 0  which are coincident tangents at the new origin (-1 , -2) and 
therefore at point (-1 , -2) may be a cusp or a conjugate point. 

Now considering the tangent 𝑌 − 𝑋 = 0, putting 𝑌 − 𝑋 = 𝑝 in (3) we get 

   𝑝2 = 𝑋3      ……………………. (4) 
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Then for very small value of the  𝑋 > 0 the value of 𝑝 are real and of 
opposite sign and for 𝑋 < 0 the value of 𝑝 are imaginary & so the point (-
1 , -2) is a single cusp of first species for the given curve. 

Example 2:       Show that the point (2, 1)  is a node for the curve 
(𝑥 − 2)2 = 𝑦(𝑦 − 1)2  

Solution:        Let  𝑓(𝑥 ,𝑦) = (𝑥 − 2)2 − 𝑦(𝑦 − 1)2 = 0 

∴             𝜕𝑓
𝜕𝑥

= 2(𝑥 − 2) … … … . (1)   𝑎𝑛𝑑 𝜕𝑓
𝜕𝑦

=
−(𝑦 − 1)2 − 2𝑦(𝑦 − 1 … … . . (2) 

     For the double point 𝜕𝑓
𝜕𝑥

= 0          &     𝜕𝑓
𝜕𝑦

= 0 

∴     from (1) we get 𝑥 = 2 & from (2) 

−(𝑦 − 1){(𝑦 − 1) + 2𝑦} = 0 

Or  𝑦 = 1  , 1
3
    

∴       The double point may be (2 , 1) & (2, 1
3
)  

But only (2 , 1) lies on the given curve and so (2 , 1) is the only double 
point.  

We now shift the origin to the point  (2 , 1)  & so putting x + X +2 & y = 
Y+1 in the curve we get 

𝑋2 = (𝑌 + 1)2.𝑌2   ………………. (3) 

Equating to zero the lowest degree terms in equation (2) the tangents at the 
new origin (2 , 1) are given by  

𝑌 = 𝑋2   𝑜𝑟 𝑌 =  ±𝑋 

So the two tangents are real and distinct hence double point is a node . 

Check Your progress 

Write down the equation of the tangents at origin for the 
following curse  

(1)     𝑥4 + 3𝑥3𝑦 + 2𝑥𝑦 − 𝑦2 = 0 

(2)      𝑥3 + 3𝑥𝑦 + 7𝑥2 = 0 

2. show that the origin is a node , a cusp  or a configate
point on the curse 

𝑦2 − 𝑎𝑥2 − 𝑏𝑥3 = 0 

According or 𝑎 > 0  , 𝑎 = 0   𝑜𝑟 𝑎 < 0 

3. Find the position and nature of double points in the UGMM-103/117
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curse 

𝑥4 + 4𝑦3 +  12𝑦2 − 8𝑥2 + 16 = 0 

4. find the position and nature of double points on the
curse 

𝑎4𝑦2 = 𝑥4(2𝑥2 − 3𝑎2) 

5.8 Asymptotes 

Consider the curves which are extended to infinity and consider a tangent 
to some point on the curve. If the point of contact is allowed to tend to 
infinity than tangent may tends to a definite straight line. This straight line 
is called asymptotes of the curves. 

 “Thus an asymptote is a straight line at a finite distance from the origin to 
which the tangent to the curve tends when the points of contact tends to 
infinity”  

5.8.1 The (oblique) asymptotes of the general algebraic 
curves 
 Let equation of the curve be 

1 2 2 1
0 1 2 1

1 2 2 1
1 2 1

2
2

............

..............

................ 0 ..........(1)

n n n n n
n n

n n n n
n n

n

a y a y x a y x a yx a x
b y b y x b yx b x

c y

− − −
−

− − − −
−

−

+ + + + +

+ + + + +

+ =

Or   

1
1 ................. 0 (2)n n

n n
y yx f x f
x x

−
−

   + + =      

where r
yf
x

 
  

 is an expression of the rth degree is
y
x

 
  

Dividing by nx   we get 

1 22

1 1 ................. 0 (3)n n n
y y yf f
x x x x x

φ− −
     + + + =          

Now excluding the case in (3) in which is lim
x

y
x→∞

 is infinite, equation (3) 

gives ( ) 0 (4)nf m =
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Where lim
x

ym
x→∞

 =   

From equation (4) we get the value of m in the asymptote .y mx c= +   

Note: - Since equation (4) is of degree n in m so there will be n values of 
m corresponding to the n branch of the curve (1). Some value of m may be 
imaginary or coincident. 

Now differentiating (3), we get 

1 2

1 22 3

1 '' ' ........

1 2 ................. 0

n n

n n

y y y x yf f
x x x x

y yf f
x x x x

−

− −

  −     + +           
   − − =      

 Now multiplying this by 2x and taking limit 𝑥 →  ∞ 𝑎𝑛𝑑 lim𝑥→ ∞(𝑦′𝑥 −
𝑦) = −𝑐  

 We get 1' ( ) ( ) 0 (5)n ncf m f m−+ =   

(since if y= = mx + c is an asymptote to the curve y = f(x) then 𝑚 =
lim𝑥→ ∞  �𝑦

𝑥
� 𝑎𝑛𝑑 𝑐 = lim𝑥→ ∞  (𝑦 −𝑚𝑥) ) 

where  ( )lim '
x

y x y c
→∞

− = −  

 From (5) we get value of c for different value of m obtaining from (4). 

Hence the asymptotes are y mx c= +  where m is a root of (4) and the 
corresponding value of c is obtained from (5). 

5.82. Simple methods to find the asymptotes of a given 
curve 
Method 1: 

1. Put mx+ c for y in the equation of the curve and arrange it in the
descending power of x.

2. Equating the coefficient of two highest power of x to zero find m
and c (i.e. the coefficient of nx   and 1nx − )

3. Put these values of m and c in y = mx + c to get the equation of the
asymptotes
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4. If for some value of  m the coefficient of 1nx −  is zero then we find
c from the equation obtained by equating to zero  the coefficient of
the next highest power i.e. the coefficient of 2nx − .

OR 

Method 2: 

1. Put x = 1 and y = m in the nth degree term and get ( )mf m  . Put
( ) 0mf m =  and solve it for m. Let m1 , m2 , m3 …… mn  be its roots 

2. Find 1( )nf m−  by putting x = 1 and y = m in the terms of degree 
(n – 1) and find the value of c by putting m = m1 , m2 , m3 …… mn  in 

the formula 1( )
' ( )

n

n

f mc
f m
−= −

Then the asymptotes are 1 1 2 2,y m x c y m x c= + = +  etc. 

Example 1: Find the asymptotes of the curve 
3 3 3 0x y axy+ − =   

Putting x = 1 and y = m in the third degree terms and second degree terms 
separately we get, 𝑓3(𝑚) =  1 +  𝑚3 𝑎𝑛𝑑𝑓2(𝑚) =  −3𝑎𝑚  

We solve  
3

2

0 . . 1 0

(1 )(1 ) 0
mf i e m

or m m m
= + =

+ − + =

Which gives m = -1 as the only real root next to find c we use the formule 
2

2
3

( ) 3
' ( ) 3

f m am ac
f m m m

−
= − = =

Now putting m = -1 we get, c = -a 

∴equation of the asymptotes is  

0
y mx c or y x a
or x y a
= + = − −

+ + =

Example 2: Find the asymptotes of  
3 2 2 3 2 24 4 3 2 7 0x x y xy y x xy y− − + + + − − =   

Putting x = 1 and y = m in the third degree terms and second degree terms 
separately, we get 
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2 3
3 ( ) 4 4f m m m m= − − +

 
2

2 ( ) 3 2and f m m m= + −

We now solve 
2 3

3( ) 4 4f m m m m= − − + =0
2(4 )(1 ) 0

1, 1, 4
m m

or m
− − =

= −

Also 
2

3' ( ) 1 8m 3mf m = − − +

∴
2

2
2

3

( ) 3 2 m
' ( ) 1 8m 3m

f m mc
f m

+ −
= − =

+ −

Now putting m = 1 we get, c = 2
3

And whene m = -1 we get, c = 0 

And m = 4 we get, c = 1
3

Thus the asymptotes are y = mx + c 

2 1, , 4
3 3

y x y x and y x= + = − = +

Example 3:  Find the asymptotes of 
3 2 2 3 23 3 2 2 4 5 6 0y x y xy x y xy x y− + − + + + + + =   

Putting x = 1 and y = m in the third degree terms and second degree terms 
separately, we get 

3 2
3 ( ) 3 3f m m m m= + − −

2
3' ( ) 3m 2 3f m m= + −∴  

 
2

2 ( ) 2( )and f m m m= +  

Now putting 3( ) 0f m =    we get
3 2

2

3 3 0
( 1)( 3) 0

1, 3

m m m
m m

m m

+ − − =

+ − =

= − = ±

Next to find c ,we get  
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2
2

2
3

( ) 2( m )
' ( ) 3m 2 3

f m mc
f m m

− +
= − =

+ −

Now putting m = -1 we get, c = -2 

And whene m = 3  we get, c = -1 

And m = - 3  we get, c = -1 

Thus the asymptotes are y = mx + c 

2 , 3 1, 3 1y x y x and y x= − = − = − −   

Example 4: Show that the curve  
3 2 3y x x= +  has no asymptotes 

The curve is 3 2 3 0y x x− − =  

Putting x = 1 and y = m in the third degree terms and second degree terms 
separately, we get 

3
3 ( )f m m=

2
2 3( ) 1 ' ( ) 3and f m so f m m= − =

We now solve 3( ) 0f m =  

3 0 0,0,0,1m m= ⇒ =   

∴ 2
2

3

( ) 1
' ( ) 3m

f mc
f m

−
= − =

which is infinity for m = 0. 

Therefore the given curve has no asymptotes. 

5.8.3 Two parallel asymptotes 

Suppose that the equation ( ) 0nf m =  gives two equal values of m. These 
values of m makes ( ) 0nf m = and 1( ) 0mf m− ≠ then 
𝑓𝑛′(𝑚) =  0 𝑎𝑛𝑑 𝑓𝑚−1(𝑚) ≠ 0

1( )
' ( )

n

n

f mc
f m
−= −

and so we get the value of c to be infinity so the asymptotes does not exist. 
Therefore for the existence of the asymptotes for this value of m it is 
necessary that  UGMM-103/122
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1( ) 0nf m− =  then the equation 

1' ( ) ( ) 0n ncf m f m−+ =  

 from which c reduces to identity 

0. 0 0c + =   

and so we can not find the value of c. To find the value of c in the case we 
equate to zero the efficient of 2nx −  in the equation (3) of section 5.8.1 of 
topic. And we get on differenciating  it twice and multiplying by suitable 
power of x and taking the limit 

2
1 2

1 '' ( ) ' ( ) ( ) 0
2 n n nc f m cf m f m− −+ + =

 which quadratic in c and so we get two values of c. Let them be 1c  and 2c  
corresponding to the  repeated value of m. Therefore the asymptotes will 
be 1 2y mx c and y mx c= + = +  which are parallel.   

Example 1: Find the asymptotes of  
3 2 22 1 0y x y xy y+ + − + =  

Putting 1x and y m= =  in the third degree term and second degree term 
separately. We get, 

3 2
3 ( ) 2f m m m m= + +

2 ( ) 0...................(1)and f m =  
2

3' ( ) 3m 4 1f m m= + +∴  
We now solve  

3 2
3 ( ) 0 . . m 2m 0f m i e m= + + =  

3 2. . (m 2 1) 0 ( 1) 0i e m m m m+ + = ⇒ + =  
So we get  m = 0, -1, -1 

The value of c is given by
2

3

( ) 0
' ( )

f mc
f m

= − =  (since f2(m) = 0)

and when m=0 we get c=0 therefore the asymptotes is ( y = mx+c) ∴  y=0 

when m = -1 we get c = -0/0 

(from c  = - f2(m)/f1(m) ) 

which is inderminate form. In this case is c is obtained from the equation 
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2

3 2 1''( ) cf ' ( ) ( ) 0 ........(2)
2
c f m m f m+ + =   

Putting  x = 1 and y = m in the first degree term of the equation of the 
curve, we get 

1 3( ) m and also ''' ( ) 6 4f m f m m= − = +  

From (1) and 2'' ( ) 0f m =   

therefore for m = -1 , c is given by 
2

2

(6 4) .0 0 (2)
2

or (3m 2)c 0

c m c m from

m

+ + − =

+ − =

 Putting m = -1,   we get 
2 1 0 1c or c− + = = ±    

So the asymptotes are  

y = -x +1 and y = -x -1 which are parallel asymtotes 

5.8.4 Asymptotes Parallel to X-axis 
The general equation of the curve of degree (equation (1) of 12.1 ) can be 
arranged according to the power of x as  

1 2 2
1 2 1( ) ( y c ) ....... 0n n n

n n n n n na x a y b x a y b x− −
− − −+ + + + + + =  …………… (1) 

Putting x = 1 and y = m in the highest degree term of the equation, we get 

 2
1 2 ...... 0 .........(2)n n na a m a m− −+ + + =

therefore  if 0na =   then m = 0 will be the root  of the equation (2) and so 
the corresponding asymptotes is      y = c ………(3) 

where c is obtained by putting 0.y x c or y c= + =  in (1) and equating to 
zero the cofficient of 1nx −  and so the value of c in (3) is obtained by  

a n-1.c + bn = 0  ………………. (4) 

Now putting the value of c form equation (4) in (3) we get the same  as 
eliminating c from (4) and (3).  

Hence asymptote is 1 0n na y b− + =   

Which is the same as equating to zero the coefficient of 1nx −  in (1). 

Note:-Hence the asymptotes parallel to the axis of X can be obtained by 
equating to zero the coefficient of the highest power of x. (if it is not a 
constant). Similarly the asymptotes parallel to the axis of Y are obtained UGMM-103/124
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by equating to zero the coefficient of the highest power of y. (if it is not a 
constant). 

Example 1: - Find the asymptotes parallel to the coordinate axes of the 
curve 

2 2 2 2 2 2( ) ( ) 0x x y a x y a xy− + − − =  

equating to zero the coefficient of the  highest power of y (i.e. if 2y   ) the 
asymptotes parallel to y axis are given by 

2 2 0x a or x a− = = ±

Since the coefficient of the  highest power of x (i.e. if 4x   ) is a constant 
and so there are no asymptotes parallel to X- axis . 

5.9 Curve Tracing 
 The objective of curve tracing is to find the approximate shape of a curve 
without the labor of plotting a large number of points.   

Cartesian Equations:  If the Cartesian Equation is given, you can 
invariably solve it either for y, or for x, or for r (in terms of 𝜃 in the last 
case), otherwise the curve will be too difficult for you to trace. 

Only curves in which we can solve for y need be considered here because, 
if the equation cannot be solved for y, but can be solved for x, we have 
only to regard y as the independent variable. If the equation can be solved 
for r, the rules for tracing polar curves will apply.  

5.9.1  Procedure 
1. Symmetry: Notice if the curve is symmetrical about any line, by

applying the following rules, whose truth is evident:

(i) If the powers of y which occur in the equation are all even,
the curve is symmetrical about the axis of x. 

(ii) If the powers of x are all even, the curve is symmetrical about 
the axis of y. A curve might, of course, be symmetrical about 
both axes. 

(iii) If x and y can be interchanged without altering the equation, 
the curve is symmetrical about the line y = x. 

(iv) If on changing the signs of x and y both, the equation to the 
curve is not altered, the curve after being turned through two 
right angles will coincide with its old trace. (This is generally 
denoted by saying that there is symmetry in opposite 
quadrants.) 

2. At the Origin: Notice if the curve passes through the origin. If it
does, write down the equation of the tangent, or tangents, there. If
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the origin is a singular point, find its nature. Remember that the 
higher powers of x in the expression for y can be neglected when 
tracing the curve for (numerically) very small values of x. 

3. Solve for y: Solve for y (which, by supposition, is possible).
Choose any convenient value of x for which y is finite, and if
possible zero (generally x = 0 is convenient). Consider how y will
vary as x increases and then tends to infinity, paying particular
attention to those values of x for which y = 0, or →∞.

If the curve is symmetrical about the x-axis, or if there is symmetry
in opposite quadrants, only positive values of y need be considered.
The curve for negative values of y can be drawn from symmetry.

4. Consider All Values of x: Starting from the chosen valued of x,
repeat the above procedure as x decrease and then → –∞.

Of course, if the curve is symmetrical about the y–axis, it can be
drawn for negative values of x by symmetry, so such values of x
need not be considered afresh.

5. Imaginary Values of y: In the above procedure, if y is found to be
imaginary for a certain range of valued of x, say for values of x
between a and b, it would mean that the curve does not exist in the
region bounded by the lines x = a,x = b.

6. Asymptotes: If the curve extends to infinity, and there is
approximately a linear relation between x and y for numerically
large values of x, there is an oblique asymptote. This should now
be found, and also, if necessary, it should be investigated on which
side of it the curve lines.

Note: When x and y are numerically very large, only the highest powers of 
these may be retained to find the approximate shape of the curve. The 
presence of asymptotes parallel to the axes and their positions can be 
found as given in section asymptotes.. 

7. Special Points: Find the coordinates of a few points on the curve if
it appears necessary.

For example, if y is 0 at x =0, and against at x =b, and is positive
for the intermediate values, it might be desirable to find the
maximum (greatest) value of y between a and b. At the point for
which y is maximum, the tangent (as is evident from geometry)
will be horizontal and so dy/dx will be zero. Hence this points can
be easily found. Even if the maximum value is not found, it would
be desirable to find the value of y when x is equal to, say, )(2

1 ba + . 
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8. Inflexion: If the curve as traced appears to possess a point of
inflexion, that point can be more accurately located by putting
d2y/dx2 or d2x/dy2  equal to zero and solving the equation thus
obtained.

9. One should remember that merely a knowledge of symmetry,
asymptotes, tangents at the origin, points of inflexion, double
points, and the coordinates of a few other points will never enable
him to trace a curve. His difficulties regarding curve-tracing will
vanish only if he realizes that we have solved for y and expressed
it as a function of x whose valued can be easily found for every
value of x, and that his task is to save time by picking out the most
important values of x (say those at which y is a minimum or a
maximum, or is zero or infinity, or just begins to be imaginary or
ceases to be so): then, by noticing how y varies (i.e. increases or
diminishes) as x is made to vary continuously from –∞ to ∞, the
curve is easily traced. We need not begin from – ∞ (if that is
inconvenient) provided later we consider the remaining values also
of x.

NOTE: An equation of the second degree in x and y gives merely one of 
the conic sections, and so can be traced. 

Example 1: Trace the curve y2 (a + x) = x2 (3a – x) 

Solution: 

(i) This curve is symmetrical about the axis of x. 

(ii) The curve passes through the origin. The tangents there are given 
by y2 = 3x2, which represents two non-coincident straight lines. 
Hence we may expect a node at the origin. 

(iii) Solving for y, and considering only the positive value, 

xa
xaxy

+
=

–3

-----(1)

If x = 0, then y = 0. When x is positive and small, y is real. We 
notice also that as 

.3..3–3
<<

+
ei

a
a

xa
xa yis less than 3x . Hence the curve lies below 

the tangent y = 3x  for small positive value of x. As x goes on 
increasing, y next becomes zero at x = 3a. When x is greater than 
3a.the expression under the radical sign is negative and so y is 
imaginary. To trace the curve more exactly we find the following 
also: UGMM-103/127
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When x =a, y =a; and when x = 2a, y = 2a/ 3  = 1.2a nearly. 

Also, if we transfer the origin to (3a,0) the equation to the curve 
will become )(–)3()4( 22 xaxxay +=+ , and the tangent at the new 
origin will be x =0, obtained by equating to zero the terms of the 
lowest degree.  

Hence the curve must be of the shape shown in fig.1  

(iv) If(x) is negative and numerically small, (1) shows that y is real. 
Also, for values of x under consideration, ),(3–3 xaxa +> . Hence 

y is numerically greater than )3(– x, i.e. the curve lies above the 

tangent y= )3(– x, in the second quadrant. As we move still 
more to the left a +x gets still smaller and so y gets larger. In fact 
as x → – a from the right of the point x = –a, the positive value of 
y tends to + ∞.  x + a = 0 is evidently as asymptote. 

When x < – a, the quantity under the radial is negative and so y is 

imaginary. 

Therefore, taking symmetry into account, the curve is shown 
below: 

The curve of equation y2 (a + x) = x2 (3a – x)is shown next: 

Fig. 1 

Example 2: Trace the curve y2(x2+y2) -4x(x2+2y2) + 16x2 =0 

Solution: 

(i) The curve is symmetrical about the x–axis. 

(ii) The curve passes through the origin, the tangents there being 
02 =x , which represents two coincident straight lines. Hence we 

may expect a cusp there. UGMM-103/128
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(iii) The equation to the curve is a quadratic in y2, and can be written as 
0164–)8( 23224 =+−+ xxxxyy . Hence 

}641616416––8{ 332342
2
12 xxxxxxxy −++±=

2–4or4}238{2
1 xxxxxx =±−=

Hence the curve consists of the parabola y2 = 4x and the circle 
xyx 422 =+ . 

Fig. 2 

Example 3: Trace the curve x = (y –1) (y – 2) (y – 3). 

Solution: 

(i) The curve is not symmetrical about the axes or about x = y. 

(ii) It does not pass through the origin. 

(iii) It is difficult to solve it for y. But it is already solved for x. Hence 
we take y as the independent variable.  When y = 0, x = –6. 

When y =1, x = 0. Between y =0 and y =1, x is negative as then all 
the three factors are negative.  

When y lies between 1 and 2, x is positive as one factor is positive 
and two are negative x next becomes zero at y = 2. Between y =2 
and y = 3, x  is negative. 

X next becomes zero at y = 3. 

When y >3, x is positive. As y →∞, x→∞. For very large valued of 
y, x is approximately equal to y3. Hence there is no linear 
asymptote for this branch. 

(iv) When y is negative, x is negative. As y →– ∞,  x → – ∞. As in the 
last paragraph, we can see that there is no linear asymptote for this 
branch also. 
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(v) When ;,1 8
3

2
1 == xy when 8

3
2
1 –,2 == xy . Hence the shape of the 

curve is as shown in fig.3 

Fig. 3 

If we like we can also find where the tangent is parallel to the y–axis. At 
these points dx/dy= 0, i.e. (y –1) (y –2) + (y –1) (y – 3) + (y –2) (y – 3) = 0 

Or 3y2 – 12y + 11 = 0 i.e. the tangent is parallel to the y –axis where 

263/32
3

33366
=±=

−±
=y and 1.4, nearly. 

We can now find the values of x for these values of y, and thus find the 
shape of the curve a little more exactly. 

5.10  Summary 

In this Unit, we studied singular points and their types and regular 
points. Also, double points and there classification is described for better 
understanding. Cusp and their species are discussed in detail with several 

examples. Nature of cusp and necessary condition for the existence of the

double points on a curve is described with examples. An important section 
is devoted on asymptotes and method to find the asymptotes of a given 
curve. The curve tracing procedure is also discussed in detail with many 
examples.  

5.11  Terminal Questions 

1. Trace the curveUGMM-103/130
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(i) 𝑦2(𝑎 + 𝑥) = 𝑥2 (3𝑎 − 𝑥) 

(ii) 𝑥 = (𝑦 − 1)(𝑦 − 2)(𝑦 − 3) 

(iii) 𝑎𝑦2 = 𝑥2(𝑎 − 𝑥) 

(iv) 𝑎𝑦2 = 𝑥2(𝑥 − 𝑎) 

2. Prove that the curves

a𝑦2 = (𝑥 − 𝑎)2(𝑥 − 𝑏) has

(i) a conjugate point at  x=a   if  a< 𝑏

(ii) a node at x =a if   𝑎 > 𝑏 & 

(iii) cusp at  x=a if   a=b. 

3. Trace the curve

I. 𝛾= a cos 3𝜃 

II. 𝛾 = 𝜃(𝜃 + 𝑠𝑖𝑛𝜃)

4. Trace the curve  𝑦2(𝑎2 + 𝑥2) =  𝑥2(𝑎2 − 𝑥2) and show that the
origin is a node.

5. Trace the curve 𝑎4𝑦2 = 𝑥5. (2𝑎 − 𝑥)
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UNIT-6 

AREA UNDER A CURVE 

Structure 
6.1 Introduction 

Objective  

6.2 Area in Cartesian form  

6.3 Area in Polar form 

6.4 Area Bounded by a closed curve 

6.5 Length of a plane curve 

6.5.1  Cartesian form 

6.5.2 Parametric form 

6.5.3 Polar form 

6.6 Summary  

6.7 Terminal Questions 

6.1  Introduction 

In this section we shall  show  how the area under a curve can be 
calculated when the equation of the curve is given in the  

(i) Cartesian form 

(ii) Polar form 

(iii) Parametric form 

Some curves may have a simple equation in one form, but complicated 
ones in others. So, once we have considered all these forms, we can 
choose an appropriate form for a given curve, and then integrate it 
accordingly. Let us consider these forms of equations one by one. 

Objective: 

After reading this unit you should be able to : 

• Recognize area of the curve in Cartesian form

• Recognize area of the curve in Polar form and in parametric form
UGMM-103/133
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6.2  Area in Cartesian form 

We shall quickly recall what we studied in earlier. Let y = f(x) 
define a continuous function of x on the closed interval [a, b]. For 
simplicity, we make the assumption that f(x) is positive for x ∈ [a, b]. Let 
R be the plane region in Fig. 1(a) bounded by the graphs of the four 
equations: y = f(x), y = 0, x = a and x = b.  

We divide the region R into n thin strips by lines perpendicular to the x-
axis through the end points x =a and x=b, and through many intermediate 
points which we indicate by x1, x2,,…….  xn-1. Such a subdivision, as we 
have already seen  a partition Pn of the interval [a, b] is indicated briefly 
by writing. Pn = [a = x0<x1< x2< ….< xn –1<< xn = b] 

Fig. 1 

We write ∆xi = xi –  xi-1 for i = 1, 2,….., n, and take the set of n 
points on x-axis. Tn = {t1, t2, ……tn –1, tn},such that xi –1≤ ti≤ xi for i = 1, 2, 
……, n. We now construct the n rectangles (Fig. 1 (b)) whose bases are 
then n sub-intervals [xi –1, xi], i = 1, 2,……, n induced by the partition  Pn, 
and whose altitudes are f(t1), f(t2),……f(t1),….., f(tn – 1), f(tn). The  

∑
=

∆
n

1i
ii x)t(fsum of the areas of these n rectangles will be an 

approximation to the “area of R”. Notice (Fig. 2(a) and (b)) that if we 
increases the number of sub-intervals, and decrease the length of each sub-
interval, we obtained a closer approximation of the “area of R” 
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Fig. 2 

Thus, we have  

Definition 1: Let f be a real valued function continuous on [a, b], and let 

f(x) ≥ 0 ∀ x ∈ [a, b]. If the limit of ∑
=

∆
n

1i
ii x)t(f  exists as the lengths of 

the sub-intervals. ∆xi→ 0, then that limit is the area A of the region R. 

n,....,2,1i
i 0x

limA
=

→∆
= ∑

=

∆
n

1i
ii x)t(f

Compare this definition with that of a definite integral given in Block 3. 
Over there we had seen that the definite integral.  

∫
b

a
dx)x(f is the common limit of ∑

=
∆

n

1i
ii xm and ∑

=

∆
n

1i
ii xM as the ∆xi’ 

Now since m1≤ f(ti) ≤ Mi∀ i, we have 

∑
=

∆
n

1i
ii xm ∑∑

==

∆≤∆≤
n

1i
ii

n

1i
ii xMx)t(f

s→0. 
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Hence if the limit of each of these as ∆xi’ s→0 exists, then by the 
Sandwich Theorem  

n,....,2,1i
i 0x

limA
=

→∆
= ∑

=

∆
n

1i
ii xm ≤

n,....,2,1i
i 0x

lim
=

→∆
∑

=

≤∆
n

1i
i x)t(f

n,....,2,1i
i 0x

lim
=

→∆
∑

=

∆
n

1i
ii xM

Now, if ∫
b

a

)x(f dx exists, then the first and the third limits here are equal, 

and therefore we get .dx)x(fA
b

a
∫= _________(1) 

The equality in (1) is a consequence of the definitions of the area of R and 

the definite integral .dx)x(fA
b

a
∫=  Since f(x) is assumed to be 

continuous on the interval [a, b], the integral in (1) exists, and hence yields 
the area of the region R under consideration. From the Interval Union 
Property of definite integrals, we have 

Fig. 3 

This means if b
a

b
c

c
a A,A,A  denote the areas under the graph of y = f(x) 

above the x-axis from a to c, from c to b and from a to b, respectively, 
(Fig. 3) then, if c is in between a and b, then we have 

b
a

b
c

c
a AAA =+ __________(3)

If we define 0A,0A b
b

a
a == , then above equation is true for c = a and c 

= b too. 

Till now, we have assumed the function f(x) to be positive in the interval 
[a, b]. In general, function f(x) may assume both positive and negative 
values in the interval [a, b]. To cover such a case, we introduce the 
convention about signed areas. 

The area is taken to be positive above the x-axis as we go from left to 
right, and negative if we go from right to left. The function f(x) may be 
defined beyond the interval [a, b] also. In that (3) is true even if c is UGMM-103/136
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beyond b, Since according to our convention o signed areas, b
cA  will turn 

out to be a negative quantity (Fig. 4). 

Fig. 4 

Thus, , Or c
a

c
b

b
a AAA =+

Not, if f(x) ≤ 0 for all x in some interval [a, b] then by applying the 
definition of “area of R” to the function – f(x), we get the area 

∫−=
b

a

d)x(fA x 

If we do not take the negative sign, the value of the areas will some out to 
be negative, since f(x) is negative for all x∈ [a, b]. to avoid a “negative” 
area, we follow this convection. Thus, if f(x) ≤ 0 for x ∈ [a, b] (Fig. 5), 
then the area between the ordinates x = a and x = b will be 

∫−=
b

a

d)x(fA x

The following example will illustrate how our knowledge of evaluating 
definite integral can be used to calculate certain areas.  

Fig. 5 

Example 1: Suppose we want to find the area of the region bounded by 
the curve y = 16 – x2, the x-axis and the ordinates x = 3, x = - 3. The 
region R, whose area is to be found, is shown in Fig. 6. 
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Fig.6 

The area A of the region R is given by 

∫
−

−−=
3

3

2 dx)x16(A
3

3

3

3
xx16

−





 −= =78 

Example 2: Consider the region R in Fig. 7. 

Fig.7 

R is composed of two parts, the region R1 and the region R2. We have 
Area R = Area R1+ Area R2 

The region R1 is bonded above the x-axis by the graph of y=x3+ x2 – 2x, x 

= - 2 and x = 0.  Hence, Area ∫
−

−+=
0

2

23
1 dx)x2xx(R = 

1

2

2
34

x
3
x

4
x

−





 −+
3
8

=
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The region R2 is bounded below the x-axis by the graph of y = x3 + x2 – 

2x, x = 0 and x = 1.Area 
1

3 2
2

0

( 2 )R x x x dx= − + −∫  =
14 3

2

0

5
4 3 12
x x x

 
− + − = 

 

Therefore, Area 
12
37

12
5

3
8R =+=

Area ∫=
1

0
2 dx)x(fR . If we calculate ∫

−

=
1

2
2 dx)x(fR , it will amount to 

calculating 

∫
−

1

2

dx)x(f + ∫
1

0

dx)x(f = area R1 – area R2, which would be a wrong 

estimate of area R. 

Example 3: Let us find the area of the smaller region lying above the x-
axis and included between the circle x2+ y2=2x and the parabola y2=x in 
the first quadrant. 

Solution: On solving the equation x2+y2=2x and y2=x simultaneously, we 
get (0, 0), (1, 1), (1,-1) as the points of intersection of the given curves. 
We have to find the area of the region R bounded OAPBO (Fig. 8). 

Fig. 8 

From the figure we see that area of region OAPBO 

= area of region OCPBO – area of region OCPAO 

= ∫ ∫−−
1

0

1

0

2 dxxdxxx2

Now, ∫ ∫ −−=−
1

1

1

0

22 dx)x1(1dxxx2 ∫
π

θθ−θ=
0

2/

d)cos(cos , on 

putting 1 – x = sin θ UGMM-103/139
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∫∫
π

π

π
=θθ=θθ−=

2/

0

2
0

2/

2

4
dcosdcos . Also ∫ =

1

0 3
2dxx

Therefore, the required area = 





 −

π
3
2

4
 

 In this sub-section we have derived a formula (Formula (1)) to find the 
area under a curve when the equation of the curve is given in the cartesian 
from. With slight modifications  we can use this formula to find the area 
when the curve is described by a pair of parametric equations.  

We shall take a look at curves given by parametric equation is little late. 
But fist, let us consider the curve given by a polar equation.  

6.3 Area in Polar form 

Sometimes the cartesian equation of a curve is very complicated, but its 
polar equation is not so. Cardioids and spirals are examples of such 
curves. For these curves it is much simpler to work with their polar 
equation rather than with the cartesian ones. In this sub section we shall 
see how to find the area under a curve if the equation of the curve is given 
in the polar form. Here we shall try to approximate the given area through 
the areas of a series of circular sectors. These circular sectors will perform 
the same function here as rectangles did in cartesian coordinates.  

Let r = f(θ) determine a continuous curve between the rays θ = α and θ = 
β, (β - α≤ 2π). We want to find the area A(R) of the shaded region R in 
Fig 9(a) 

Fig. 9 

Imagine that the angle AOB is divided into n equal parts, each measuring 
∆θ, 

Then 
n

α−β
=θ∆ . This amounts to slicing R into n smaller regions, 

R1.R2,……Rn, as shown in Fig. 9(b), Then clearly 
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A(R) = A(R1) + A(R2) + …..+ A(Rn).  ∑
=

=
n

1i
1)R(A  

Now let us take the ith slice Ri, and try to approximate its area. Look at 
Fig. 10. Suppose f attains its minimum and maximum values on [θi-1, θi] at 
ui and vi .  

Then 
2
1

 [f(ui)]2 ∆θ≤ A(Ri)≤
2
1

 [f(vi)]2 ∆θ.

From this we get ∑
=

n

1i 2
1

[f(ui)]2∆θ≤∑ ∑
= =

≤
n

1i

n

1i

2
i1 )]v(f[

2
1)R(A ∆θ 

The first and the third sums in this inequality are equal to ∫
β

α 2
1

[f(θ)]2 dθ.

Therefore, by applying the sandwich theorem as ∆θ→ 0, we get 

( ) [ ]2 21 1 ( )
2 2

A R f d r d
β β

α α

θ θ θ= =∫ ∫   

We shall illustrate the use of this formula through some examples. Study 
them carefully, so that you can do the exercises that follows late. 

Example 4: Suppose we want to find the area enclosed by the cardioids 
r = a (1 – cos θ). We have r = 0 for θ = 0 and r = 2a for θ = π. 

Since cose θ = cos (- θ), the cardioids is symmetrical about the initial lines 
AOX (Fig. 11). 

Fig.11 
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Hence the requirement area A, which is twice the area of the shaded 

region in Fig. 11, is given by ∫
π

θ=
0

2dr
2
12A ∫

π

θ
θ

=
0

42 d
2

sinx4 , since 

cos θ = cos2

2
θ

- sin2

2
θ

∫
π θ

=φφφ=
2/

0

42

2
where,dsina8

42
1

4
3a8 2 π

=  applying the reduction 

formula π= 2a
2
3

In the case of some Cartesian equations of higher degree it is often 
convenient to change the equation into polar form. The following example 
gives one such situation.  

Example 5 : To find the area of the loop of the curve. x5+y5 = 5ax2y2. 

We change the given equation into a polar equation by the transofmration 

x = r cosθ, and y= r sinθ, then we obtain 
θ+θ
θθ

= 55

22

sincos
sincosa5r

Which yields r = 0 for θ = 0 and θ = π/2. Hence, area A of the loop is that 
of a sectiorial area bounded by the curve and radius vectors θ = 0 and θ = 
π/2, that is, the area swept out by the radius vector as it moves from θ = 0 
to θ = π/2. See Fig. 12 

Fig.12 

Thus, ∫
π

θ+θ
θθ

=
2/

0
255

442

)sin(cos
sincosa25

2
1A ∫

π

θ
θ+

θθ
=

2/

0
5

24
2 d

)tan1(
sectana

2
25

 

∫
∞

θ+==
1

5
2

2 tan1twhere,
t
dta

2
5 2

1
2 a

2
5]t/1[a

2
5

=−= ∞
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Check your progress 

(1)   Find the area under the curve y = sin x between x = 0 and x = π. 
(2)   Find the area bounded by the x-axis, the curve y = ex, and the 

ordinate x = 1 and x = 2. 

(3)   Find the area of the region bounded by the curve = 5x – x2, x = 0, x 
= 5 and lying above the x-axis. 

(4)  Find the area cut off from the parabola y2 = 4ax by its latus rectum, 
x=a. 

(5)   Find the area between the parabola y2= 4ax and the chord y = mx. 

(6)   Find the area of a loop of the curve r= a sin3θ. 

(7)    Find the area enclosed by the curve r=a cos 2θ and the radius 
vectors 

(8)   Find the area of the region outside the circle r= 2 and inside the 
lemniscates r2=8 cos 2θ. [hint: First find the points of intersection. 
Then the required area = the area under the lemniscates – the area 
under the circle]. 

UGMM-103/143

R
IL

-1
46



Check your progress 
(9)  Find the area of the curve x = a (3 sin θ - sin3θ), y = a cos3θ, 0 ≤θ≤ 

2π. 
(10) Find the area enclosed by the curve x = a cos θ + b sin θ + c 

Y = a′ cos θ + b′ sin θ + c′, where 0 ≤θ≤ 2 π 
(11) Find the area of one of the loops of the curve x = a sin 2t, y = a 

sint.  
(Hint : first two values of t which give the same values of x an y, 
and take these as the limits of integration) 

6.4 Area Bounded by a Closed Curve 
Now we shall turn our attention to closed curves whose equations are 
given in the parametric from. Let the parametric equations. x = φ (t), y = Ψ 
(t), t ∈ [α, β], 
Where φ(α) = φ(β), and Ψ (α) = Ψ (β), represent a plane closed curve 
(Fig. 13). 

Fig. 13 
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This means that as the parameter t increases from a value α to a value β, 
the point P(x, y) describes the curve completely in the counter clockwise 
sense. Since the curve is closed, the points on it corresponding to the value 
β is the same as the point corresponding to the value α. This is reflected 
by the conditions φ(α) = φ(β) and Ψ(α) = Ψ(β).  

Suppose further that the curve is cut at most in two points of every line 
drawn parallel to the x or y-axis. We also assume that the functions φ and 
Ψ are differentiable, and that the derivatives φ′ and Ψ′ do not vanish α and 
β i.e., at R we have φ(α) = φ(α) = φ(β) and Ψ(α) = Ψ(β).  

Now suppose A is a point on the curve which has the least x-coordinate, 
say a. Similarly, suppose B is a point on the curve which has the greatest 
x-coordinate, say b. thus the lines x = a and x = b touch the curve in points 
A and B, respectively. Further let t1 and t2 be the values of t that 
correspond to A and B, respectively. Then.  α < t2 < t1 < β 

Let a point Q correspond to t = t3 such that t2 < t3 < t1. The area of the 
region enclosed is S = S1 – S2 and S1 are the areas under the arcs AQB and 
ARB, respectively. The minus is because one is clockwise and other is 
anti-clockwise (see Fig. 13). Hence.  

∫=
b

a
2 dxyS  and ∫

b

a
1 dxyS

Now, as a point P(x, y) moves from B to A along BQA, the value of the 

parameter increases from t2 to t1. Therefore  ∫ ∫=
b

a

1t

t2

dt
dt
dxydxy . Hence 

∫
−

−=
1

2

t

t
2 dt

dt
dxyS

Now the movement of P form A to B along ARB, can be viewed in two 
parts. From A to R and from R to B. As P moves from A to R, the value of 
the parameter increases from t1 to β, and as P moves from R to B, t 
increase from α to t2. 

Therefore, ∫∫
β

=−=
1t

b

a
1 dt

dxydxyS dt+ ∫
β

α

dt
dt
dxy

Thus, we have ∫∫ −=−−=
b

a
12

b

a
1 SSydxdxyS

(AQB) (ARB) 

∫ ∫∫∫ −=−−−=
b

a

b

a

b

a

b

t

dt
dt
dxy

dt
dxydt

dt
dxydt

x
dy0

1       ___________(i)
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Note that the negative sign is due to the direction in which we go round 
the curve as marked by arrows in Fig. 13 

Similarly, by drawing tangents to the curve that are parallel to the x-axis, 

it can be shown that ∫
β

α

= dt
dt
dyxS . _________(ii) 

From (i) and (ii), we get 

dt
dt
dxy

dt
dyxS2 ∫

β

α







 −= . Hence, the area enclosed is 

∫
β

α

−= )ydxxdy(
2
1S

______(5)

We can use any of the formulas (i), (ii) and (5) above for calculating S. 
But in many cases you will find that formula (5) is more convenient 
because of its symmetry. 

Example 6: Let us find the area of the asteroid x = a cos3t, y = sin3t, 0 ≤ t 
≤ 2π 

The region bounded by the astroied is shown in Fig. 14. 

The area A of the region is given by 

∫
π







 −

1
=

2

0

dt
dt
dxy

dt
dyx

2
A ∫

π

α

=
2

3 tcosa
2
1

=  (3b sin2t cos t) – b sin3 (- 3 a cos2tsin t)dt ∫
π

=
2

0

22 dttsincos
2
ab3

Fig.14 

∫
a2

0

dx)x(f  ∫=
a

0

)x(f2 dx, if f(2a – x )= f(x). 
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Here cos2 (2 π - t) sin2 (2π - t) = cos2 t sin2t. Hence 

∫∫
ππ

=
0

22
2

0

22 .dttsintcos2tdtsintcos Therefore, A=3ab 

.dttsintcos 2
2/

0

2∫
χ

Now, by a similar argument we can say that 

,dttsintcosab6A 2
2/

0

2∫
π

=
8
ab3π

= , by using the reduction formula. 

Check your progress 
(12)  Find the area of the curve x = a (3 sin θ - sin3θ), y = a cos3θ, 0 ≤ θ 

≤ 2π. 

(13) Find the area enclosed by the curve x = a cos θ + b sin θ + c 

Y = a′ cos θ + b′ sin θ + c′, where 0 ≤ θ ≤ 2 π 

(14) Find the area of one of the loops of the curve x = a sin 2t, y = a 
sint. 

(Hint : first two values of t which give the same values of x an y, 
and take these as the limits of integration)  

6.5  Length of A Plane Curve 

In this section we shall see how definite integrals can be used to 
find the lengths of plane curves whose equations are given in the 
Cartesian, polar or parametric from. A curve whose length can be found is 
called a rectifiable curve and the process of finding the length of a curve is 
called rectification. You will see here that to find the length of an arc of a 
curve, we shall have to integrate an expression which involves not only 
the given function, but also its derivative. Thereofore, to ensure the 
existence which determines the arc length, we make an assumption that 
the function defining the curve is derivable, and is derivative is also 
continuous on the interval of integration. 

Let’s first consider a curve whose equation is given in the Cartesian form. 

6.5.1 Cartesian Form 

Let y = f(x) be defined on the interval [a, b]. We assume that f is derivable 
and its derivative f′ is continuous. Let us consider a partition Pn of [a, b], 
given by Pn = [a = x0< x1< x2< ….<xn = b] 

The ordinates x = a and x = b determine the extent of the arc AB of the 
curve y = f(x). [Fig. 1(a)]. Let Mi = 1, 2, ….., n – 1, be the points in which 
the lines x = xi meet the curve. Join the successive points A, M1, M2, UGMM-103/147

R
IL

-1
46



M3,……, Mn –1, B by straight line segments. Here we have approximated 
the given curve by a series of line segments.  

Fig.1 

If we can find the length of each line segment, the total length of this 
series will give us an approximation to the length of the curve. But how do 
we find the length of any of these line segments? Take M2, M3, for 
example (Fig. 1(b) shows an enlargement of the encircled portion in Fig. 
1(a). Looking at it we find that  

2
3

2
332 )y()x(MM ∆+∆= . Where ∆x3= M2Q is the length (x3 – x2),

and  ∆y3 = M3Q = f(x3) – f(x2) = y3 – y2. In this way we can find the 
lengths of the chords AM1, M1M2,……., Mn-1 B, and take their sum 

∑
=

∆+∆=
n

1i
i

2
in )y()x(S , 

Sn gives an approximation to the length of the arc AB. When the number 
of division points is increased indefinitely, and the length of each segment 
tends to zero, we obtained the length of the arc AB as 

∑
=∞→

∆+∆=
n

1i

2
i

2

n

B
A )y()x(limL

____(1)
  provided this limit exists. Our
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assumptions that f is derivable on  [a, b], and that f′ is continuous. Thus, 
there exists a point )yx(P *

i
*
i

*
i between the points Mi-1 and Mi on the 

curve, where the tanget to the curve is parallel to the chord Mi-1 Mi. That 
is,  

i

i*
i x

y)x(f
∆
∆

=′  or, ∆yi = f′ (xi
*) ∆xi.  Hence we can write (1) as 

∑
=∞→

∆′+∆=
n

1i

2
i

*
i

2
in

A
B ]x)x(f[)x(limL  = . 

This is nothing but the definite integral  ∫ ′+
b

a

2 dx])x(f[1( or, 

dx
dx
dy1L

b

a

2
B
A ∫ 






+=

_________(2)

Remark 1: It is sometimes convenient to express x as a single valued 
function of y. In this case we interchange the roles of x and y, and get the 
length 

∫ 







+=

d

c

2

B
A dx

dy
dx1L , where the limits of integration are with respect to 

y. 

Note that the length of an arc of a curve is invariant since it does not 
depend on the choice of coordinates, that is, on the frame of reference. Our 
assumption that f′ is continuous on [a, b] ensure that the integrals in (2) 
and (3) exist, and their value B

AL  is the length of the curve y = f(x) 
between the ordinates x = a and x = b. 

Example 1: Suppose we want to find the length of the arc of the curve y = 
lnx intercepted by the ordinates x = 1 anx x = 2. We have drawn the curve 
y = 1n x in Fig.2 

Fig.2 

_________(3)
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Using (2), the required length L1
2 is given by  ∫ 






+=

2

1

2
1 dx

dx
dy1L

∫ =





 +

2

1
2 x

1
dx
dycesin,dx

x
11

If we put 1 + x2 = t2, we get 
x
t

dt
dx

= , and therefore,

∫ 







−

+=
5

2
2

2
1 dt

1t(
11L ∫∫ −

+=
5

2
2

5

2

dt
1t

1dt
5

21t
1tn1

2
1t 





+
−

+=

12
12n1

2
1

15
15n1

2
125

+
−

−
+
−

+−= = 
15

)12(2n125
+
+

+−

We can also use (3) to solve this example. For this we write the equation y 
= 1nx as x = ey. The limits x = 1 and x = 2, then correspond to the limits y 
= 0 and y = 1n 2, respectively. Hence, using (3), we obtain  

∫ +=
2n1

0

y22n1
0 dye1L ∫ −

=
5

2
2

2

1u
u

 du, on putting 1 + e2y  = u2 

15
)12(2n125,du

1u
11

5

2
2 +

+
+−=








−
+= ∫

Check your progress 

(1)  find the length of the line x = 3y between the points (3, 1) and (6, 
2). Verify your answer by using the distance formula. 

(2)  find the length of the curve y = 1n sec x between x = 0 and  = π/2. 

(3)  find the length of the arc of the catenary y = C cosh (x/c) measured 
from the vertex (0, c) to any point (x, y) on the catenary. 

(4)  Find the length of the semi cubical parabola ay2= x3 from the 
vertex to the point (a, a). 

(5)  Show that the length of the arc of the parabola y2 = 4ax cut off by 
the line 3y = 8x is a(1n2+15/16). 

6.5.2  Parametric Form 
Sometimes the equation of a curve cannot be written either in the form y = 
f(x) or in the form x=g(y). A common example is a circle x2 + y2 = a2. In 
such cases, we try to write the equation of the curve in the parametric 
form. For example, the above circle can be represented by the pair of 
equations x = a cos t, y = a sin t. Here, we shall derive a formula to find 
the length of a curve given by a pair of parametric equations.  Let x = φ(t), UGMM-103/150
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y = Ψ (t), α≤ t ≤β be the equation of a curve in parametric form. As in the 
previous sub section, we assume that the functions φ and Ψ are both 
derivable and have continuous derivatives φ′ and Ψ′ on the interval [α, β]. 

We have )t(
dt
dyand),t(

dt
dx

ψ′=φ′= . Hence,   , and 

22

)t(
)t(1

dx
dy1 








φ′′
ψ′

+=





+ (we assume that φ′ (t) ≠ 0). 

Now, using (3) we obtain the length ∫
βφ=

αφ=







 +=

)(x

)(x

2

dx
dx
dy1L

∫
β=

α= φ′
φ′

ψ′+φ′=
t

t

22 dt
)t(
)t()]t([)]t([ . Thus, ∫

β

α

ψ′+φ′= dt)]t([])]t([L 22

Example 2: Let us find the whole length of the curve 

1
b
y

a
x 3/23/2

=





+






 . By substitutions, you can easily check that x =  a 

cos3t, y = b sin3t is the parametric form of the given curve. The curve lies 
between the lines x = - ± a and y = ± b since – 1 ≤ cos t ≤ 1, and – 1 ≤ sin t 
≤ 1. The curve is symmetrical about both the axes since its equation 
remain unchanged if we change the signs of x and y. The value t = 0. The 
value t = 0 corresponds to the point (a, 0) and t = π/2 corresponds to the 
point (0, b). By applying the curve tracing methods discussed in Unit 9 we 
can draw this curve (see Fig. 3). 

Fig.3 
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Since the curve is symmetrical about both axes, the total length of the 
curve is four times its length in the first quadrant. 

tcostsinb3
dt
dy;tsintcosa3

dt
dx,Now 22 =−=

9
dt
dy

dt
dx 22

=





+






  sin2 tcos2 t (a2cos2t + b2 sin2t) Hence, the length of 

the curve is 

π 3/

0

L = 4 ∫sin t cost a2 cos2 t  + b2 sin2 t dt ∫
π

=
2/

0

12 sin t cos t 

dttsinbtcosa 2222 +

Putting u2 = a2 cos t + b2 sin2 t, we obtain  2u = (2b2 – 2a2) sin t cos t 
du
dt

And the limits t = 0, t = π/2 correspond to u = a, u = b, respectively. Thus, 
we have  

b

a

3

22

b

a
22

2

3
u

ab
12

ab
duu12 





−

=
−

= ∫ ba
)abba(4

3
ab

ab
12 2233

22 +
++

=
−

−
=

6.5.3  Polar Form 

In this sub section we shall consider the case of a curve whose equation is 
given in the polar form. Let r = f(θ) determine a curve as θ varies from θ = 
α to θ = β, i.e., the function f is defined in the interval [α, β] (see Fig. 4). 
As before, we assume that the function f is derivable and its derivative f′ is 
continuous on [α, β]. This assumption ensures that the curve represented 
by r = f(θ) is rectifiable.  

Fig. 4 
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Transforming the given equation into Cartesian coordinates by taking x = r 
cos θ, y = r sin θ, we obtain x = f(θ) cos θ, y = f(θ) sin θ. 

Now we proceed  as in the case of parametric equations, and 

get,
θ









θ
+








θ=





+

d/dx
d
dy

d
dx

dx
dy1

22

2

Hence, the length of the arc of the curve r = f(θ) from θ = α to θ = β is 
given by  

∫ ∫
ββ=

αα=

β

α

θ







θ
+








θ
=






+=

cos)(fx

cos)(fx

222

d
d
dy

d
dxdx

dx
dy1L . Changing the 

variable x to 

θ ∫
β

α

θθθ+θθ′+θθ−θθ′= d)cos()(fsin)(f[]sin)(fcos)(f[ 22

∫
β

α

θθ+θ= d)]()(f[ 22 ∫
β

α

θ







θ
+= d

d
drr

2
2

Example 3:  To find the perimeter of the cardioids r = a (1 + cos θ) we 
note that the curve is symmetrical about the initial line (Fig. 5). Therefore 
it perimeter is double the length of the arc of the curve lying above the x-
axis.  

Fig.5 

Now, 
θd

dr
= - a sin θ. Hence, we have ∫

π









θ
=

0

2
2

d
drr2L dθ = 

2a 

∫
π

θθ+θ+
0

22 dsin)cos1( ∫ ∫
π

θ
θ

=θθ+=
0

d
2

cosa4d)cos1(2a2

a8
2

sin2a4
0

=
θ

=
π
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Table 1 : Length of an arc of a curve 

Equation of the Curve Length L. 

y = f(x) 
∫ ′+
b

a

2 dx)x(f1

x=g(y) 
∫ ′+
b

a

2 dy)y(g1

x=φ(t), y = Ψ (t) 
∫
β

α

ψ′+φ′ dt)t()t( 22

r = f(θ) 
∫
β

α

θθ′+θ d)(f)(f 22

Check your progress 

(6)   Find the length of the cycloid x = a (θ - sin θ); y = a(1 – cos θ) 

(7)  Show that the length of the arc of the curve x = et sin t, y = et cos t 
from t = 0 to t =  π/2 is 2 (eπ/2 – 1) 

 (8)  Find the length of the curve r =a cos3 (θ/3). 

(9)  Find the length of the circle of radius 2 which is given by the 
equations x = 2 cos t + 3, y = 2 sin t + 4, 0 ≤ t ≤ 2π. 

(10)  Show that the arc of the upper half of the curve r = a (1 – cos θ) is 
bisected by θ = 2 π/3 

(11)  Find the length of the curve r = a (θ2 – 1) from θ = - 1 to θ = 1. 

Solution and Answers of Check your Progress 

(1) ∫ +=
d

c

2 dy]dy/dx[1L ∫ +=
2

1

2 dy)3(1 ∫ ==
2

1

10dy10

By distance formula,
2

12
2

12 )yy()xx(L −+−= 22 )21()63( −+−=

22 )1()3( −+−= 10=

(2)







 ==+= ∫ xtanxtanxsec.

xsec
1

dx
dydx)dx/dy(1L

b

a

2
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∫
π

+=
3/

0

2 dxxtan1

∫
π

π
+==

3/

0

3/

0
xtanxsecn1dxxsec

0tan0sec
3/tan3/secn1

+
π+π

=

)32(n1 +=

(3)

dx)c/x(hsin1L
x

0

2∫ += ∫=
x

0

dx)c/x(cosh

] )c/xsinh(cc/x(sinhc x
0 ==

(4) 
a
x20/3(dx/dy

a
xy

3

=∴=

∫ +=
a

0

dx
a4
x91L dxx9a4

a2
1 a

0
∫ += ]a

0
2/3)x9a4(

a27
1

+=

)813(
27
a)a4()a13[

a27
1 2/3232/3 −=−= −  

(5) 3y = dx ⇒ y = 
3
x8

. Substituting this in y2=4ax we get

ax4
9
x64 2

=  

i.e., 64x2 – 36ax = 0  ⇒ x = 0 or x =
16

a9
⇒ y = 0 or y =

2
a3

Hence (0, 0) and 







2
a3,

16
a9

are the points of intersection . Now 4ax = 

y2⇒
a2
y

dy
dx

=

∫ +=
2/a3

0
2

2

dy
a4
y1L ∫ +=

2/a3

0

22 dyya4
a2

1

2/a3

0

22222 ya4yn1a2ya4
2
y

a2
1





 ++++=






 += 2n1a2
8
a15

a2
1 2

2

= 2n1
16
15







 +
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(6) θ=
θ

θ−=
θ

sina
d
dy),cos1(a

d
dx

 

22

d
dy

d
dx









θ
+








θ
∴ = a2[1+cos2θ - 2 cosθ + sin2θ] = 2 a2(1 – cos θ) 

= 4a2 sin2 (θ/2) ∫
π

=∴
2

0

a2L sin 

(θ/2)dθ ∫
π

φφ=
0

dsina4 ∫
π

=φφ=
2/

0

a8dsina8

(7) 
dt
dx

=e1(cos t + sin t),
dt
dy

= e1(cos t – sin t)

t2
22

e2
dt
dy

dt
dx

=





+






∴ 2/

0
1

2/

0

t ]e2dte2L π
π

∫=∴ )1e(2 2/ −= π  

(8) 
3

sin
3

cosa
d
dr

3
cosar 23 θθ

−=
θ

⇒
θ

=

3
sin

3
cosa

3
cosa

d
drr 24262

2
2 θθ

+
θ

=







θ
+∴

3
cosa 42 θ

=

∫∫
ππ

φφ=θ
θ

=∴
2/

0

2
2/3

0

2 dcosa6d
3

cosa2L  =
2
a3 π

(9)

tcos2
dt
dytsin2

dt
dx

=−=

2tcostsin2
dt
dy

dt
dx 22

22

=+=





+






∴  

∫
π

π==∴
2

0

4dt2L  Note that L = 2 πr since, here, r = 2 

(10) r = a(1 – cos θ), 
θd

dr
=a sin θ

2
sina2

d
drr

2
2 θ

=







θ
+∴

The length of the curve in the upper half = ∫
π

0

2a sin (θ/2)dθ 

The length from θ = 0 to θ = 2π/3 
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(11) r = a(θ2 – 1), θ=
θ

a2
d
dr

 , 







θ
+

d
drr2 =a2 [θ4 - 2θ2 + 1 + 4θ2] = a2 

(θ2 + 1)2. 

∴ ∫
−

=
1

1

aL (θ2 + 1)2 dθ

1

1

3

3
a

−












 θ+
θ

=
3
a81

3
11

3
1a =






 +++=

6.6  Summary 

In this Unit, area of a curve in Cartesian form, in polar form and in 
parametric form is discussed. Area bounded by a closed curve, area 
common to two given curves, length of a plane curves in Cartesian form, 
in polar form and in parametric form from a given point to another given 
point s discussed.  

6.7  Terminal Questions 

1. Find the whole area of the curve

( Answer: πa2 ) 

2. Trace the curve  and find the whole area within 
it  .

3. Find the common area of the curves

(Ans: 2

4. Find the area bounded by the curve

( ) 

5. Find the area bounded by the curve

( ) 

6. Find the length of the arc 
of semicubical parabola from the vertex to the point (a, 
a).  

(Ans: 

7. Find the length of the arc of the cycloid x=a(t-sin t), y=a(1-cos t)
(Ans: 8a ) 

8. Find the length of the arc of equiangular spiral  r
between the point for which the radii vectors are . 

      (Ans:  ( )sec ) UGMM-103/157
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UNIT-7 

VOLUME OF A SOLID OF REVOLUTION 

Structure 
7.1 Introduction 

Objective  

7.2 Volume of A solid of Revolution 

7.2.1  Cartesian Form 

7.2.2 Parametric Form 

7.2.3  Polar form 

7.3 Area of Surface of Revolution 

7.3.1  Cartesian Form 

7.3.2.1 Parametric Form 

7.3.2.2 Polar form 

7.4 Summary 

7.5 Terminal Questions 

7.1  Introduction 

In the last unit we have seen how definite integrals can be used to 
calculate areas. In fact, this application of definite integrals is not 
surprising. Because, as we have seen earlier, the problem of finding areas 
was the motivation behind the definition of integrals. In this unit we shall 
see that the length of an arc of a curve, the volume of a cone and other 
solids of revolution, the area of a sphere and other surfaces of revolution, 
can all be expressed as definite integrals. This unit also brings us to the 
end of this course on calculus.  

Objective 
• Find the volumes of some solids of revolution

• Find the areas of some surfaces of revolution

7.2  Volume of A solid of Revolution 

In this unit, we were concerned with only plane curves and 
regions. In this section we shall see how our knowledge of integration can UGMM-103/159
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be used to find the volume of certain solids. Look at the plane region in 
Fig. 6(a). it is bounded by x = a, x = b, y =f(x) and the x-axis. If we rotate 
this plane region about the x-axis, we get a solid. See Fig. 6(b) . 

Fig.6 

Fig.7 

The solid in Fig. 7(a) is obtained by revolving the region ABCO around 
the y-axis. The solid of revolution in Fig. 7(b) differs from the others in 
that its axis of rotation does not form a part of the boundary of the plane 
region of PQRS which is rotated.We see many examples of solids of 
revolution in every day life. The various kinds of post made by a potter 
using his wheel are solids of revolution. See Fig. 8(a). Some objects 
manufactured with the help of lathe machine are also solids of revolution. 
See Fig. 8 (b). 

Fig.8 (a) (b) UGMM-103/160
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Now, let us try to find the volume of solid of revolution. The method 
which we are going to use is called the method of slicing. The reason for 
this will be clear in a few moments.  

Fig.9 

Let ∆ xi denote the length of the ith sub-interval [xi –1, xi ]. Further, let P 
and Q be the points on the curve, y =f(x) corresponding to the ordinates x 
= xi –1 and x = xi respectively. Then, as the curve revolves about the x-axis, 
the shaded strip PQNP (Fig. 9(a)) generates a disc of thickness ∆xi. In 
general, the ordinates PM and QN may not be of equal length. Hence, the 
disc is actually the frustum of a cone with its volume ∆vi, lying between π 
PM2MN and πQN2MN, that is between π[f(xi –1)]2∆ xi and π[f(xi)]2∆xi 

[Fig. 9(b) and (c)] 

If we assume that f is a continuous function on [a,b], we can apply the 
intermediate value theorem and express this volume as ∆vi = π {f(ti)}2∆xi, 
where ti is a suitable point in the interval [xi –1, xi]. Now summing up over 
all the discs, we obtain  

∑∑ ∆π=∆=
=

n

i
i

2
i

n

1i
ia x)]t(f[vV  xi-1 ≤ ti ≤ xi as an approximation 

As we have observed earlier while defining a definite integral, the 
approximation gets better as the partition Pn gets finer and finer and ∆xi 
tends to zero. Thus, we get the volume of the solid of revolution as 

∑
=∞→∞→

∆π==
n

1i
i

2
innn

x)]t(f[limVlimV
, 

V ∫ ∫π=π=
b

a

b

a

22 dxydx)]x(f[

….(6) 

Example 1: Let us find the volume of the solid of revolution formed when 
the arc of the revolution y2 = 4ax between the ordinates  x = 0, and x = a is 
revolved about its axis. The solid of the volume V of the cap is given by  

3

a

0

2a

0

a

0

2 a2
2
xa4dxax4dxyV π=




π=π=π= ∫∫
UGMM-103/161
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Fig. 10 

Our next example illustrates a slight modification of Formula (6) to find 
the volume of a solid obtained by revolving a plane region about the y-
axis. 

Example2: Suppose the ellipse )ba(,1
b
y

a
x

2

2

2

2

>=+  is revolved about 

the minor axis, AB (see Fig. 11). Let us find the volume of the solid 
generated.  

In this case the axis of rotation  is the y-axis. The area revolved about the 
y-axis is shown by the shaded region in Fig. 11. You will agree that we 
need to consider only the area to the right of the y-axis. 

Fig.11 

To find the volume of this solid we interchange x and  y in (6) and get 

UGMM-103/162
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 −=






 −π=π= ∫∫
−−

2

2
22

2

2b

b

2
b

b

2

b
y1axcesin,dy

b
y1adyxV

dy
b
y1a2

b

2

2
2 ∫

0








 −π= , (since 2

2

b
y1−  is an even function of y)

b

0
2

3
2

b3
yya2 




 −π= ba
3
4 2π= .

We can also modify formula (6) to apply to curves whose equations are 
given in the parametric or polar forms. Let us tackle these one by one. 

7.2.2  Parametric Form 
If a curve is given by x = φ(t), y = Ψ(t), α≤t≤β, then the volume of the 
solid of revolution about the x-axis can be found by substituting x and y in 

formula (6) by φ(t) and Ψ(t), respectively. Thus, ∫
β

α

ψπ= dt
dt
dx)]t([V 2

or ∫
β

α

φ′ψπ= dt)t()]t([V 2

we’ll now derive the formula for curves given by polar equations.  

7.2.3  Polar Form 
Suppose a curve is given by r = f(θ), θI≤θ≤θ2. The volume of the solid 
generated by rotating the area bounded by x = a, x = b, the x-axis and r = 

f(θ) about the axis is ∫
θ

θ

θθ
θ

θπ=
2

1

d)cosr(
d
d)sinr(V 2 . Thus, 

∫
θ

θ

π=
2

1

[V f(θ) sin θ]2 [f′ (θ) cos θ - f(θ) sin θ] dθ 

Let’s use this formula to find the volume of the solid generated by a 
cardioid about its initial line. 

Example 3: The cardioid shown in Fig. 12 is given by r = a (1 + cos θ). 

Fig. 12 
UGMM-103/163
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The points A and O correspond to θ = 0 and θ = π, respectively. Here, 
again, we need to consider only the part of the cardioids above the initial 
line. Thus, 

θθ
θ

θπ= ∫
π

d)cosr(
d
d)sinr(V

0
2  

∫
π

π=
0

3a (1+ cos θ)2 sin3θ (1 + 2 cos θ) dθ, since r = a (1 + cos θ) 

∫ θ





 −

θθθθ
π=

a

0

2333 d1
2

cos4
2

cos4
2

cos
2

sin8

∫∫
ππ

θ
θθ

π−θ
θθ

π=
0

73

0

3933 d
2

cos
2

sina32d
2

cos
2

sina128  

3
2/

0

933 a32dcossina256 π−φφφπ= ∫
π

∫
π

φφφ
2/

0

73 dcossin , where φ=θ/2. 

5
a8

15
a64 33 π

−
π

=  on applying a reduction formula. 

 In all the example that we have seen till now, the axis of rotation formed a 
boundary of the region which was rotated. Now we take an example in 
which the axis touches the region at only one point.  

Example 4: Let us find the volume of the solid generated by revolving the 
region bounded by the parabolas y = x2 and y2 = 8x about the x-axis. We 
have shown the area rotated and the solid 

(a) (b) 

Fig. 13 UGMM-103/164
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Here, the required volume will be the difference between the volume of 
the solid generated by the parabola y2= 8x and that of the solid generated 
by the parabola 

 y = x2. Thus 
5

48
5
xx4dxxdxx8V

2

0

5
2

2

0

4
2

0

π
=




 −π=



 −π= ∫∫

Check your progress 
(1) Find the volume of the right circular cone of height h and radius 

of the circular base t. (Hint.: The cone will be generated by 
rotating the triangle bounded by the x-axis and the line y = 
(t/h)x).  

(2)    Show that the volume of the solid generated by revolving the 
curve x2/3+y2/3=a2/3 about the x-axis is 32πa3/105. 

(3)    The arc of the cycloid x = a (t – sint), y = a (1 – cos t) in [0, 2π] 
is rotated about the y-axis. Find the volume generated. (Hint: the 
rotation is about the y-axis). 

(4)    Find the volume of the solid obtained by revolving the limacon r 
= a+b cos θ about the initial line. 

(5)    The semicircular region bounded by y – 2 = 2x9 −  and the 
line y = 2 is rotated about the x-axis. Find the volume of the 
solid generated.  

7.3  Area of Surface of Revolution 

Instead of rotating a plane region, if we rotate a curve about an x-axis, we 
shall get a surface of revolution. In this section we shall find a formula for 
the area of such a surface. Let us start with the case when the equation of 
the curve is given in the Cartesian form. 

7.3.1  Cartesian Form 

Suppose that the curve y = f(x) [Fig. 14] is rotated about the x-axis. To 
find the area of the area of the generated surface, we consider a partition 
Pn of the interval [a, b], namely, Pn = {a = x0< x1< x2< ….<xn –1<  xn= b} 

Fig. 14 UGMM-103/165
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Let the lines x = xi intersect the curve in points Mi, i = 1, 2, ……, n. If we 
revolve the chord Mi –1Mi about the x-axis, we shall get the surface of the 
frustum of a cone of thickness ∆xi = xi xi-1 . Let ∆si be the area of the area 
of the surface of this frustum. Then the total surface area of all the frusta is 

∑
=

∆=
n

1i
in sS

This Sn is approximation to the area of the surface of revolution. The area 
of the surface of revolution generated by the curve y = f(x), is the limit of 
Sn (if it exist), as n →∞ and each ∆xi→ 0.   

Fig. 15 

To find the area A of the curved surface of a typical frustum, we use the 
formula A = π (r1 + r2) l, where l is that slant height of the frustum and r1 
and r2 are the radii of its bases (Fig. 15). 

In the frustum under consideration the radii of the bases are the ordinates 
f(xi-1) and f(xi). We assume that f is derivable on [a, b] and f ′ is 
continuous. Then by the mean value theorem we obtained ∆yi = f ′ (ti) xi, 

for some ti∈ [xi-1, xi]. 2
i

2
i

i1i
1 )y()x(

2
)]x(f)x(f[2s ∆+∆

+
π=∆ −

where f(xi-1) + f(xi))/2 is the mean radius of revolution 

i
2

1
i1i x)]t(f[1

2
yy2 ∆′+

+
π= − and 

i
2

1

n

1i

11i
n x)]t(f[1

2
yy2S ∆′+

+
π= ∑

=

−

Proceeding to the limit as n →∞, and 
each ∆ xi→0, we have 

∫ ′+π=
b

a

2 dx)]x(f[1)x(f2S
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∴in the lim ∆xi→0, →f(x),  → f(x), →f(x)and f′ (ti) → 

f(x) ∫ +π=
b

a

2 dx)dx/dy(1y2

Example 5 : Let us find the area of the surface of revolution obtained by 
revolving the parabola y2 = 4ax from x = a to x = 3a, about the x-axis.  

Fig. 16 

The area of the surface of revolution. ∫ 





+π=

a3

a

2

dx
dx
dy1y2S . 

where y2= 4ax, 
y
a2

dx
dy

= . Hence,  ∫ +π=
a3

a

22 dxy/a41y2S

∫∫ +π=+π=
a3

a

2
a3

a

22 dxa4ax42dxa4y2

[ ] a3

a
3/2

a3

a

)ax(
3
2a4dxaxa4 +π=+π= ∫

[ ]232/3
2

24
3
a8 −−

π
=

Instead of revolving the given curve about the x-axis, if we revolve it 
about the y-axis, we get another surface of revolution. The area of the 
surface of revolution generated by the curve x = g(y), c ≤ y ≤ d, as it 

revolves about the y-axis is given by,  ∫ +π=
d

c

2 dy)dy/dx(1x2S  
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7.3.2  Parametric Form 
Suppose a curve is given by the parametric equations x = φ (t), y = Ψ(t), 

t∈ [aα, β]. Then  
)t(
)t(

dx
dy

φ′
ψ′

=

Substituting this in formula (10), we get the area of the surface of 
revolution generated by the curve as it revolves about the x-axis, to be  

∫
β

α

ψ′+φ′ψπ= dt)]t([)]t([)t(2S 22

7.3.3  Polar form 
If r = h (θ) is the polar equation of the curve, then the area of the surface 
of revolution generated by the arc of the curve for θ1≤θ≤θ2, as it revolves 

about the initial line, is  ∫
θ

θ

θ+θπ=
2

1

dt)d/dr(r)sinr2S 22

Example 6:  Suppose the asteroid x = a sin3t, y = a cos3t, is revolved 
about the x-axis. Let us find the area of the surface of revolution. You will 
agree that we need to consider only the portion of the curve above the x-
axis.  

For this portion y > 0, and thus t varies from - π/2 to π/2. 

a3
dt
dx

=  sin2t cost,
dt
dy

= - 3a cos2t sin t

Therefore, 
22

dt
dy

dt
dx







+






 =9a2 sin2 t cos2 t. We therefore get, 

∫
π

π−

π=
2/

2/

2223 dttcostsina9tcosa2S

∫
π

π−

π=
2/

2/

3 dt|tcostsina3|tcosa2

∫
π

π−

π=
2/

2/

32 dt|tsin|tcosaa6
2/

0

52/

0

242

5
tcosa12dttsintcosa12

ππ

∫ π−=π= 5a
5

12
π=  

Example 7: suppose we want to find the area of the surface generated by 
revolving the cardioid r = a (1 + cos θ) about its initial line.  

Notice that the cardioid is symmetrical about the initial line , and extends 
above this line from θ = 0 to θ = π. The surface generated by revolving the UGMM-103/168
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whole curve about the initial line is the same as that generated by the 
upper half of the curve. Hence.   

θθ+θπ= ∫
π

d)d/dr(rsinr2S 22

0

∫
π

θθ+θθ+π=
0

22 d)d/dr(rsin)cos1(a2  

Since r = a (1 + cos θ), and 
θd

dr
 = - a sin θ, we have

2
2

d
drr 








θ
+  = a2 ( 1 + cos θ)2 + a2 sin2θ = 4a2 cos2

2
θ

Therefore, 

∫
π

θ
θ

θθ+π=
0

d
2

cosa2sin)cos1(a2S ∫
π

θ
θθ

π=
0

42 d
2

cos
2

sin4a4  

∫
π

π=
2/

0

2 sina32 φ cos4φ d φ, where φ = θ/2 

5
a32

5
cosa32

22/

0

5
2 π

=
φ−

π=
π

Check your progress 
(1)   Find the area of the surface generated by revolving the circle r = a 

about the x-axis thus verify that the surface area of a sphere of 
radius a is4πa2. 

(2)   The arc of the curve y = sin x, from x = 0 to x = π is revolved 
about the x-axis. Find the area of the surface of the solid of 
revolution generated.  

(3)   The ellipse x2/a2+y2/b2= 1 revolves about the x-axis. Find the area 
of the surface of the solid of revolution thus obtained. 

(4)   Prove that the surface of the solid generated by the revolution 

about the x-axis of the loop of the curve x = t2, 






 −−
3
tty

3

 is 

3π. 

(5)   Find the surface area of the solid generated by revolving the 
cycloid x = a (θ - sin θ), y = a (1 – cos θ), about the line y = 0. 
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7.4  Summary 

In this unit we have seen how to find 

(1) The lengths of curves 

(2) Volumes of solids of revolution and 

(3) The areas of surfaces of revolution 

In each case we have derived formulas when the equation of the curve is 
given in either the cartesian or parametric or polar form. We give the 
results here in the form of the following tables  

Length of an arc of a curve 

Equation Length 

y = f(x) 
∫ ′+
b

a

2 dx)]x(f[1

x = g(y) 
∫ ′+
d

c

2 dy)]y(g[1

x = φ (t) 

y = Ψ (t) ∫
β

α

ψ′+φ′ dy)]t([])t([ 22

r = f(θ) 
∫
β

α

θθ′+θ d)](f[)](f[ 22

Volume of the solid of revolution 

Equation Volume 

y = f(x) 

about x –axis ∫π
b

a

2dxy

x = g(y) 

about y – axis ∫π
d

c

2dxy

x = φ(t), y = Ψ(t) 

about x – axis ∫ φ′ψπ
b

a

2 dt)t()]t([

r = h (θ) 

about the initial line ∫
θ

θ

π
2

1

[h(θ) sin θ]2 [h′(θ)cosθ - h(θ) 

sincθ]dθ 
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Area of the surface of revolutions 

Equation Area 

y = f(x) 

about x –axis 
dx)]x(f[1)x(f2

b

a

2∫ ′+π

x = g(y) 

about y – axis ∫ ′+π
d

c

2 dy)]y(g[1)y(x2

x = φ(t), y = Ψ(t) 

about x – axis ∫
β

α

ψ′+φ′ψπ dt)]t([)]t([)t(2 22

r = h (θ) 
about the initial line ∫

θ

θ

θθ+θπ
2

22

1

d)d/dr(rsinr2

7.5  Terminal Questions 

1. Find the volume of the paraboloid generated by the revolution
about X- axis of the parabola  from x=0 to x=h.

(A

2. Find the volume of the spherical cap of height h cut off  from a

sphere of radius a.

(Ans ) 

3. Find the volume of the solid generated by revolving the ellipse
 X-axes 

( Ans ) 

4. Find the volume when part of the ellipse  cut of by    a 

latusrectum revolves about the tangent at the nearest vertex .

(Ans  ) 
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NOTE  
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