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UNIT-1

SET AND RELATION

Structure
1.1 Introduction
Objectives
1.2 Set Theory
1.3 Types of sets
1.4 Operations on Sets
1.5 Laws Relating Operations
1.6 De Morgan’s Laws
1.7  Venndiagram
1.8 Cartesian product of two sets
1.9  Relation, Definition and Examples
1.10 Domain and Range of a Relation
1.11 Types of Relations in a set
1.12 Composition of Relation
1.13 Equivalence relation in a set
1.14 Partition of a Set
1.15 Quotient set of a set
1.16 Oder Relation and Examples
1.17 Summary

1.1. INTRODUCTION

The notations and terminology of set theory which was originated
in the year 1895 by the German mathematician G. Cantor. In our daily life,
we often use phrases of words such as a bunch of keys, a pack of cards, a
class of students, a team of players, etc. The words bunch, pack, class and
team all denote a collection of several discrete objects. Also, the
dictionary meaning of set is a group or a collection of distinct, definite and
distinguishable objects selected by means of some rules or description.

In this unit we will introduce set and various examples of sets.
Then we will discuss types and some operations on sets. We will also
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introduce Venn diagrams, a pictorial way of describing sets. Cartesian
product of two sets, relation, equivalence relation, order relation,
equivalence class, partition of a set. Knowledge of the material covered in
this unit is necessary for studying any mathematics course, so please study
this unit carefully.

Objectives
After studying this unit you should be able to:
% Use the notation of set theory;

+«¢  Find the union, intersection, difference, complement, and Cartesian
product of sets;

s ldentify a set, represent sets by the listing method, property
method and Venn diagrams;

s Prove set identities, and apply De Morgan’s laws;

¢ Recall the basic properties of relations;

s+ Derive other properties with the help of the basic ones;
s ldentify various types of relations;

% Understand the relationship between equivalence classes and
partition;

1.2 Set Theory

It was first of all used by George Cantor. According to him, ‘A
set is any collection into a whole of definite and distinct objects of our
intuition or thought’. However, Cantor’s definition faced controversies
due to the forms like “‘definite’ and ‘collection into a whole’. Later on, a
single word ‘distinguishable’ used to make the definition acceptable. ‘A
set is any collection of distinct and distinguishable objects around us’.
By the form “distinct’, we mean that no object is repeated and some lack
the term ‘distinguishable’ we mean that whether that object is in our
collection or not. The objects belonging to a set are called as elements or
members of that set. For example, say A is a set of stationary used by any
student i.e.

A = {Pen, Pencil, Eraser, Sharpener, Paper}

A set is represented by using all its elements between bracket {}
and by separating them from each other by commas (if there are more than
one element). As we have seen sets are denoted by capital letters of
English alphabet while the elements are divided in general, but small
letters. If x is an element of a set A, we write xeA (read as “x belongs to
A’). If x is not an element of A, we write x¢A (read as x does not belong to
A). Examples:



(i) Let A= {4, 2, 8 2, 6}. The elements of this collection are
distinguishable but not distinct, hence A is not a set. Since 2 is
repeated in A.

(i) Let B ={a, e ,i, 0, u} i.e. B is set of vowels in English. Here
elements of B are distinguishable as well as distinct. Hence B is a
set.

Two Forms of Representation of a Set
1.  “Set-builders from’ representation of set, and
2. ‘Tabular form’ or “‘Roaster form’ representation of set.

In ‘set-builder form’ of representation of set, we write between the braces
{ } a variable x which stands for each of the elements of the set, then we
state the properties possessed by x. We denote this property of p(x) by a
symbol: or (read as ‘such that”)

A={xp ()}
A ={x: x is Capital of a State}
A = {x: xisanatural number and 2 < x <11}

‘“Tabular Form’ or ‘Roaster Form’, the elements of a set listed one by
one within bracket { } and one separated by each other by commas.

B = {Lucknow, Patna, Bhopal, Itanagar, Shillong}, B={3, 4,5, 6, 7, 8,
9,10}

1.3 Types of Set

I1. Finite Set: A set is finite if it contains finite number of different
elements. For examples,

a) The set of months in a year.

b)  The set of days in a week.

c) Thesetof riversin U.P.

d) The set of students in a class.

e) The setof vowels in English alphabets.

f)  A={1,2,4,6}is afinite set because it has four elements.

g) B =anullset ¢, is also a finite set because it has zero number of
elements.

H1.  Infinite Set: A set having infinite number of elements i.e. a set
where counting of elements is impossible, is called an infinite set.
For examples,

a) A={x:xisthesetofall points in the Euclidean planes}.

Set And Relation
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Set, Relation, b) B ={The set of all straight lines in a given plane}.
Function And Its

Property C) A ={x: xis asetof all natural numbers}.

IV.  Null set (or Empty Set or Void Set) : A set having no element is
called as empty set or void set. It is denoted by ¢ or { }. For
examples,

a) A={x:xisaneven number not divisible by 2 }.
b) A={x:x*+4=0, x is real}.

C) @ = set of all those x which are not equal to x itself ie. =
{x: x # x}.

V. Singleton Set: A set having single element is called a singleton set.
For examples,

a) A={x:xispresent Prime Minister of India}.
b) N={2}

c) A={x:4<x < 6,xisaninteger}.

VI.  Pair Set: A set having two elements is called a pair set.
Examples: {1, 2}, {0, 3}, {4, 9} etc.
VII. Equality of sets: Two sets A and B are said to be equal if every

element of A is an element of B and also every element of B is an
element of A. The equality of two sets A and B is donated by A
=B. Symbolically,

A=Bifandonlyifxe A © x€B
Examples: A={4,3,2,1}and B={1,3, 2,4}
Then A =B, because both have same and equal numbers.

VIIIl. Subsets and Supersets: Let A and B be two non-empty sets. The
set A is a subset of B if and only if every element of A is an
element of B. In other words, the set A is a subset of Bifxe A=
x € B. Symbolically, this relationship is written as

AcBifxeA=>xeB
which is read as ‘A is a subset of B’or’ A is contained in B’. If A € B, then
B is called the superset of A and we write B € A which isread as ‘B is a
superset of A’ or B contains A’.

If the set A is not a subset of the B, that is, if at least one element

of A does not belong to B and we write, A ¢ B. In other words, if

X € A © x & B which is read as “A is not a subset of B’.
UGMM-101/8



Properties of subsets

a)

b)

c)

IX.
(@)
(b)

XI.

If the set A is a subset of the Set B, then the set B is called superset
of the set A.

If the set A is subset of the Set B and the Set B is a subset of the
set A, then the sets A and B are said to be equal , i.e., A< B. and
B € A= A=B.

If the set A is a subset of the B and the set B is a subset of C, then A
isasubsetof C,i.e, AcBand B&€c C=>AcC.

Example: Let A={4,5,6,9}and B=4{4,5, 7, 8, 6}then we write
A g Bl

another example A={1,23}, B={2,3,1}= AcBalsoB C A.

Here A € B can also be expressed equivalently be writing B 2 A,
read as B is a superset of A. So, a set A is said to be superset of
another set B, if set A contains all the element of Set B.

Proper Subset: Set A is said to be a proper subset of a set B if
Every element of set A is an element of set B, and
Set B has at least one element which is not an element of set A.

This is expressed by writing A € B and read as A is a proper subset
of B, if A'is not a proper subset of B then we write it as A ¢ B.

Examples
(i) LetA={4,56}and B={4,5,7,8,6} So, AcB
(i) LetA={1,2,3},and B={3,2,9} So, A B.

Comparability of Sets: Two sets A and B are said to be
comparable if either one of these happens.

() AcB
(i) BcA
(i) A=B

Similarly if neither of these above three existi.e. A¢ B, B ¢ A and
A # B, then A and B are said to be incomparable.

Example A = (1, 2, 3}, and B = {1,2}. Hence set A & B are
comparable.

ButA={1, 2,3} and B = {2,3,6,7} are incomparable

Universal Set: Any set which is super set of all the sets under
consideration is known as the universal set and is either denoted by
Qor SoruU. Itisto note that universal set can be chosen arbitrarily
for discussion, but once chosen, it’s is fixed for the discussion.

Set And Relation
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Example: Let A={1,2,3} B={3,4,6,9}and C={0,1}

We can take S = {0,1,2,3,4,5,6,7,8,9} as Universal Set for these
sets A, B and C.

Power Set: The set or family of all the subsets of a given set A is
said to be the power set of A and is expressed by
P(A).Mathematically, P(A)={B :B < A} So,B eP(A)=BCcA

Example: If, A = {1} then P(A) ={¢, {1}} If, A = {1,2}, then
P(A) {d, {1}, {2}, {1,2}} Similarly if A = {1, 2, 3}, then P(A) =
{0, {1}, {2}, {3}, {1.2}, {1,3}, {2,3}, {1,2,3}} So, trends show

that if A has n elements then P(A) has 2" elements.

Complements of Set: The complement of a set A, also known as
‘absolute complement” of A is the sets of all those elements of the
universal sets which are not element of A. it is denoted by A° or
A'. Infact A'or A°= U - A. Symbolically A'={x: x € U and
X & A}.

Example: Let U ={1,2,3,4,5,6,7,8,9} and A = { 2,3,5,6,7}, then
A'=U-A={143809}

Set, Relation,

Function And Its

Property
XI1I.
XIII.
1.4

Operations on sets

We will discuss mainly three operations on sets i.e. Union of sets,

Intersection of sets and Differences of Sets.

Union of Sets: The union of two sets A and B is the set of all those
elements which are either in A or in B or in both. This set is denoted by A
w B and read as ‘A union B’. Symbolically, AUB ={x:x € Aorx eB}

Example: Let, A = {456}, and B = {2,138} then A U B =
{1,2,3,4,5,6,8}.

Properties of Union of Sets:

(@)

(b)

(©

(d)
(€)

The Union of Sets is commutative, i.e. A and B are any two sets,
then AUB =B UA.

The Union of Sets is associative ,i.e. A ,B and C are any three sets,
thenAu(BuC)=(AuB)uUC.

The Union of Sets is idempotent i.e., if A is any set, then
AUA=A

A U ¢ = A. where ¢ is the null set.

AuU=U.

Intersection of sets: The intersection of two sets A and B is the set of all
UGMM-101/10 the elements, which are common in A and B. This set is denoted by A N B



and read as ‘A intersection of B’. i.e. Symbolically A~B ={x:x € A and
X € B}

Example: Let, A={1,2,3}, and B = {2,1,5,6} then A n B = {1,2}.
Properties of Intersection of Sets:

(@) The Intersection of Sets is commutative, i.e. A and B are any two
sets,then AnB =B N A.

(b) The Intersection of Sets is associative ,i.e. A ,B and C are any three
sets,then An(BNnC)=(AnB)nC.

(c) The Intersection n of Sets is idempotent i.e., if A is any set, then
ANnA=A

(d) And =d¢. where @ is the null set.

) AnU=A.

Difference of Sets: The difference of two sets A and B, is the set of all
those elements of A which are not elements of B. Sometimes, we call
difference of sets as the relative components of B in A. It is denoted by A —
B. i.e. Symbolically,

A-B={x:xe Aandx & B} similarly B-A={x:x e Bandx ¢ A}

Example: if A = {4,5,6,7,8,9}, and B ={3,5,2,7} then A-B = {4,6,8,9}
and B — A = {3,2} It is mention that A-B # B — A So, difference of two
sets is not commutative.

Properties of Difference of Sets:
(@) A-A=¢.
(b) A-¢ =A.
(c) (A-B)nB=¢.
(d) (A-B)UA=A.
(e) A-B,B-A, and A n B are mutually disjoint.

Symmetric Difference : They symmetric difference of two sets A and B is
the set of all those elements which are in A but not in B, or which are in B
but not in A. It is denoted by A A B. Symbolically AAB=(A-B)u (B
-A).

Itisto note that AAB =B AA, i.e. symmetric difference is commutative
in nature.

Examples: LetA={1,23,45}and B ={3,5,6,7} then A-B ={1,2,4}

and B-A={67},~AAB=(A-B)uU ((B-A =
{1,2,4,6,7}

Set And Relation
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Set, Relation,
Function And Its
Property

1.5 Laws Relating Operations

These two laws are known as associative law of union and
intersection. This law holds even for three sets i.e.

i) AuBulC)=AuB)uUC
(i) AnBNC)=(AnB)NnC.

Theorem 1: For any three sets A, B and C, the following distributive laws
hold:

a AUBNC=AUBNAUC)
b. An (BuC)=(AnB)UANC)

i.e. union and intersection are distributive over intersection and union
respectively.

1.6 De Morgan’s Law

For any two sets A and B the following laws known as De Morgan’s Law.
1. (AuB)=A"nB',and
2. (AnB)Y=A"uUDPB.

Proof: (1) Ifxe (AuB)Y=>x¢(AuB)=x¢Aand x¢ B=>xe
A'and xeB'=2xe AAnB" =>xe(AuB) =>xeA' N
B’ So,(AUB)' =A' "B’

2 Sayxe ANnB)Y =xXx¢AnNB = x¢Aor x¢gB=>xe A’
or xeB' Soxe (AnB)Y=A"uUB Hence (AnB) =A"uU
Br

Some more results on operations on sets
Theorem 2: If A and B are any two sets, then
(@) (A-B) =AeANB=¢.
(b) (A-B)uB=AUB.

UGMM-101/12



Check your progress

(1) (i) Representthe set A={a,e, i, 0, u}in set builder form.

(ii) Represent the set B ={x: x is a letter in the word
‘STATISTICS’} in tabular form.

(iii) Represent the set A = {x : X is an odd integer and 3 <X <
13} in tabular form.

(2) Are the following sets equal?
A ={x:xis a letter in the word ‘wolf’}

B = {x: xis a letter in the word “follow’}
C ={x:xisa letter in the word How}

(3) Find the proper subset of following sets

M ¢
(i)  {1,2,3}
(iii)  {0,2,3,4}
(4) Find the power sets of the following sets
@ {0}
(i) {123}
(i)  {4,1,8}

(5) IfA= {2,3,4,56}, B={3,4,5,6,7}, C={4,5,6,7,8}, then find
B (AuB)n (AUC)
(i) (AnB) U (ANC)
(i) (A-B)and (B-C)

1.7 Venn Diagram

Here we will learn the operations on sets and its applications with
the help of pictorial representation of the sets. The diagram formed by
these sets is said to be the Venn Diagram of the statement.

A set is represented by circles or a closed geometrical figure inside
the universal set. The Universal Set S, is represented by a rectangular
region.

Set And Relation

UGMM-101/13



Set, Relation, First of all we will represent the set or a statement regarding sets with the
Function And Its  help of Venn Diagram. The shaded area represents the set written.

Property 1.7(a) Subset:

O

B

AcB

1.7 (b) Union of sets: Let A U B = B. Here, whole area represented by B
represents A u B.

AUB when neither AUB when A and B are

AuB  whenAcB AcBnorBec A disjoint events

1.7 (c) Intersection of Sets: (A N B): A n B represents the common area

of A and B.
S S
e
A B
AnBwhenAcBand A N B when neither A < B nor
AnB=A BcA
S
AnB=¢

UGMM-101/14



1.7 (d) Difference of sets: (A —B) represents the area of A that is not in

0

A = B when neither A-BwhenAandBare.
AcBnorBcA disjoint sets
(A-BcA)
S

%’?

A-B,whenAcB ‘A—B.whenBcA
(A-B=¢)

1.7(e)l Complement of Sets (A’): A’ or A° is the set of those elements of
Universal Set S which are not in A.

From the above Venn-Diagram, the following results are clearly true n(A)
=n(A-B) + n(AnB)

(@ n(B)=n(B-A)+n(AnB)
(b) n(A) u(B)=n(A-B) +n(B-A)+n(AnB)

Then result, n(AnB) = n(A) + n(B) — n(AnB) can be generalized
as,

n(AuUBUC)=n(A)+n(B) + n(C) — n(AnB) — n(BNC) — n(ANC) +
n(AnBNC)

1. n(AnB’) =n(A) - n(AnB)
2. n(BnA’) =n(B) —n(AnB)
3. n(AnBn C’)=n(AnB) -n(A~BNC)

Set And Relation

UGMM-101/15



Set, Relation,
Function And Its
Property

UGMM-101/16

n(ANCn B")= n(ANC) -n(AnBNC)
n(BNCn A’)=n(BNC) -n(AnBNC)
n(AnB'nC") =n(A)-n(A~B) - n(ANC) + n(AnBNC)
n(BNnA'nC") =n(B)—n(BNA) —n(BNC) + n(AnNBNC)
8. n(CnA nB')=n(C)—n(CnA)-n(CnB) +n(AnBNC)

N o a &

Example:- In a college there are 100 students, out of them 60 study
English, 50 study Hindi, and 40 study Bengali and 40 study both English
and Hindi, 35 study Hindi and Bengali, and 20 study Bengali and English
and 15 study all the subjects . Is this record accurate?

Solution:- Let E — English, H »Hindi and B —Bengali.
Then (EUHUB)= 100, n(E) = 60, n(H) = 50, n(B) = 40,
n(EnH) =40, n(HMB) =35, n(BNE) =20, n(ENHNB) = 15

we have
n(EuUHUB) = nl+n(H) + n(B) — n(ENH) - n(HNB) — n(BNE) +
n(ENHNB).
100 =60+50+40-40 -35-20+15
=165-95
=70

Therefore data are not correct.

Example:- In a college 20 play Football, 15 play Hockey and 10 play
both Football and Hockey. How many play only Football? Or only
Hockey?.

n(FNH’) = n(F) — n(FNH)
=20-10=10

n(HNF’) = n(H) = n(HNF)
=15-10=5

1.8 Cartesian product of two sets

Ordered pair: An ordered pair consisting of two elements, say a
and b in which one of them is designated as the first element and the other
as the second element. An ordered pair is usually denoted by (a, b).

The element is a called the first coordinate (or first member) and
the element b is called the second coordinate (or second member) of the



ordered pair (a, b). There can be ordered pairs which have the same first  Set And Relation
and the second elements such as (1,1),(a, a), (2, 2), etc.

Two ordered pair (a, b) and (c, d) are said to be equal if and only if a=c
andb=d.

Let us understand it by an example; the ordered pairs (1, 2) and (2, 1)
though consist of the same elements 1 and 2, are different because they
represent different points in the co-ordinate plane.

Cartesian product: The Cartesian product of two sets A and B is the set
of all those pairs whose first co-ordinate is an element of A and the second
co-ordinate is an element of B. The set is denoted by AxB and is read as ‘A
cross B or product set of Aand B’. i.e.

AxB={(x,y):xe Aandy € B}

Example: let A={1, 2, 3},and B ={3, 5}

AxB ={1, 2, 3} x {3, 5} = {(1,3), (1,5), (2,3), (2,5), (3.3), (3.5)}
And B xA ={(3, 1), (3, 2), (3,3), (5,1), (5,2), (5,3)}

So, itis clear that AXB #B x A

Similarly, we can define the Cartesian product for n set A;, Ay, ...., Aq

Arx Ay X Ag, X An= {(X1, X2, X3,...., Xn)} : X1€ A, Xo€ Ap X3z€

Note:-1.AX ¢ =@ X A = ¢.
Ax A={(xy): xy€ A}
o} #¢
{2y =0
3. Let A={1,2,3} and B= {¢}

4. ThenAx B ={(1,9),2,9),3,¢)}

Example: If A = {a, b}, and B = {b, c, d} then, find AxB and B xA and
also show that it is not commutative.

Example: If A={1, 2,3}, B={3,4,5}and C ={1, 3, 5} then, find AxB
and B xA, A x (BUC), Ax (BNC).

UGMM-101/17
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1.9 Relations

Definition ;- Let X and Y be two sets, then a relation R from X to Y, that
is between x €X and y €Y is defined to be a subset R of XxY, that is Rc X
xY.

If (X, y)e R, we say that x does stand in relation R to y or briefly as xRy. In
case (X, Y)¢R we say xRy (that is x is not R related to y). Similarly we may
define a relation R between two elements of the same set X or a relation R
in X by ReXxX. If (x1, X2) € R, then x;Rx,.

Let X be the set of all women and Y the set of all men. Then the relation ‘is
wife of” between women (element of X) and men (element of Y) will give
us a set of ordered pairs R=(X, y) : xeX, yeY, and x is wife of y}.

The ordered pairs (Kamla Nehru, Jawahar Lal Nehru), (Kasturba Gandhi,
Mahatma Gandhi) are elements of R. It is clear that R € X x Y.

A relation is binary if it is between two elements. Thus ‘is wife of’ is a
binary relation involving two persons, viz Kamla Nehru is the wife of
Jawahar Lal Nehru). Conversely if we are given the set R of ordered pairs
(x, y) which correspond to the relation “is wife of” man y and when not, we
are only to find if (x, y) does or does not belong to R. Hence we find if we
know the relation we know the set R and if we know the set R we know
the relation. Thus we are led to the following definition.

A relation is binary operation between two sets. Thus ‘is wife of’ is a
binary relation involving two persons, viz Kamla Nehru is the wife of
Jawahar Lal Nehru).

Example 1; LetS be a set. Let R be a relation in p(S), R < p(S)xp(S) given
by
R={(A, B) : A, Bep(S) and AcB}, Now (A, B)eR=AcB. Or ARB=>ACB.

Example 2: Let X be a set and let A is called the relation of equality or
diagonal relation in X and we write X Ay iff x =y.

Example 3: IfR=Xx X - A. Then (x, y)eR=(x, y)eXxX, (x, y)g A i.e.
XRy iff x#y

R is called the relation of inequality in X. Thus we can say that the relation
R of inequality in a set X is the complement of the diagonal relation A in
XxX.

Example 4: LetR be a relation in the set Z of integers given by R={x, y) :

X<y, X,Yye Z} where ‘<’ has the usual meaning in Z. Since 3<4, therefore
(3,4) eRor 3R4. But (4,3)¢ R, since 4> 3.



% Let A and B be two finite sets having m and n elements
respectively. Find the number of distinct relations that can be
defined from A to B. The number of distinct relations from A to B
is the total number of subsets of AxB. Since AxB has mn elements
so total number of subsets of AxB is 2™ . Hence total number of
possible distinct relations from Ato B 2™",

Definition:- Let R be a relation between sets X, Y, that is R =XxY. Then
the domain and the range of R written as dom R, range R are defined by :

Dom R = {xeX: for some yeY, (x,y) € R or xRy}, range R ={yeY : for
some x€ X, (x,¥) € Ror xRy }.

If R is the relation ‘is wife of between the set X of women and the setY
of men, then dom R= set of wife, range R = set of husbands.

Binary Relations in a Set

A binary relation R is said to be defined in aset Athen R € A x A. jf for
any ordered pair (X, y)e A x A, it is meaningful to say that xRy is true or
false. In other words, R = {(x, y) € A x A: xRy is true.

That is, a relation R in a set A is a subset of A x A. So, the binary relation
is a relation between two sets, these sets may be different or may be
identical, For the sake of convenience a binary relation will be written as a
relation.

1.10 Domain and Range of a Relation

The domain D of the relation R is defined as the set of elements of
first set of the ordered pairs which belongs to R, i.e., D = {(x, y) €R, for
xeA}.

The range E of the relation R is define as the set of all elements of
the second set of the ordered pairs which belongto R, i.e., E={y: (X, y)e
R, fory € B}. Obviously, D € A and E SB.

Example: Let A = {1,2,3,4} and B = {a,b,c}. Every subset of AxB is a
relation from A to B. So, if R={(2, a), (4, a), (4, ¢)}, then the domain of R
is the set {2,4} and the range of R is the set {a,c}

Remark:- Total number of Distinct Relation from a set A to a set B

Let the number of elements of A and B be m and n respectively. Then the
number of elements of AxB is mn. Therefore, the number of elements of
the power set of AxB is 2™. Thus, AxB has 2™ different subsets. Now
every subset of AxB is a relation from A to B. Hence the number of
different relations A to B is 2™".

Set And Relation
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Relations as Sets of Ordered Pairs

Let R* be any subset of AxB. We can define a relation R where xRy ready
‘(x,y)eR*’. The solution set of this relation R is the original set R*. Thus,
to every relation R there corresponds a unique solution set R* € AxB and
to every subset of R* of AxB there corresponds a relation R for which R*
is its solution set.

1.11 Types of Relation in a set

We consider some special types of relations in a set.

1.

Reflexive relation:- Let R be a relation in a set A that is R is
subset of A cross A then R is called a reflexive relation if each
element of the set A is related to itself. i.e

(X, ¥)eR, VxeA or xRx,VxeA .
Example Let A= {1,2,3} and consider a relation R in A such that
R: = {(1,1), (2,2), (3,3)} is reflexive relation (same element)
But R, = {(1,1), (2,2)} is not reflexive because (3,3) # R>
Rs= {(1,1),(2,2),(3,3),(1,2)} is reflexive .

Symmetric relation:- Let R be a relation in a set A that is R <
AxA. then R is said to be symmetric relation if

(x, y)eR, =(y, X) €R,

Or xRy = yRx.

Example Let A= {1,2,3} and consider a relation R in A such that
R: = {(1,2),(2,1),(3,3)} then R;is symmetric relation.

But R, = {(1,1),(3,3)(1,2)}is not symmetric and Rs= {(1,1)}is
symmetric.

Transitive relation:- Let R be a relation in a set A that is R
AXxA. then R is said to be a transitive relation if

(x,y)eR, (v, z) R, then (x, z) R,

Or xRy and yRz then xRz .

Example Let A = {1,2,3} and consider a relation R in A such that
R: = {(1,2),(2,3),(1,3)} then Ry is transitive relation because
(1,2)and (2, 3) =(1, 3) eR

But R, ={(1,2),(2,3),(3,1),(1,3)} is not transitive because 1R2,
2R3=1R3 <R, but (2,3), (3,1)eR but (2,1) # Rs.



Identity Relation: A relation R in a set A is said to be identity ~ Set And Relation
relation, if 1a={(x,x) : xeA}. Generally it is denoted by Ia.

Example : Let A = {1,2,3} then R=AxA={(1,1), (1,2), (1,3), (2,1),
(2,2), (2,3), (3,1), (3,2),(3,3) }is a universal relation in A.

Void (empty) Relation: A relation R in a set A is said to be a void
relation if R is a null set, i.e., if R= 9.

Example: Let A ={2,3,7} and let R be defined as ‘aRb if and only
if 2a = b’ then we observe that R=¢ — A x A is a void relation.

Antisymmetric Relation: Let A be any set. A relation R on set A
is said to be an antisymmetric relationiff (a,b) e Rand (b, a)

eR=>a=Db forabea

Example The identity relation on a set A is an antisymmetric
relation.

Inverse Relation: Let R be a relation from the set A to the set B,
then the inverse relation R™ from the set B to the set A is defined

by R ={(b, a) : (a, b)€R}.

In other words, the inverse relation R consists of those ordered
pairs which when reversed belong to R. Thus every relation R from
the set A to the set B has an inverse relation R from B to A.

Example 1: Let A = {1,2,3}, B={a,b} and R={(1,a), (1, b), (3,a),
(2, b) }be a relation from A to B.The inverse relation of R is R™* =
{(@1), (b, 1), (a 3), (b,2)}

Example 2: Let A= {2,3,4}, B={2,3,4} and R={x,y) : [x—y| = 1} be
a relation from A to B. That is, R = {3,2), (2,3), (4,3), (3, 4)}. The
inverse relation of R is R™= {(3,2), (2, 3), (4, 3), (3, 4)}. It may be
noted that R=R™.

Note: Every relation has an inverse relation. If R be a relation from
Ato B, then

R is a relation from B to A and (R™)=R.

Theorem: If R be a relation from A to B, then the domain of R is
the range of

R and the range of R is the domain of R™.

Proof: Lety edomain of R™. Then there exist xeA and yeB, (y,
x)eR™. But (y, X)eR™?=(x, y)eR. = ye range of R.

Therefore, ye domain R™'= ye range of R. Hence domain of R*c
range of R. In a similar way we can prove that range of RE domain
of R™. Therefore, domain of R™= range of R. In a similar manner
it can be shown that domain of R=range of R™.

Example: Let A = {1,2,3}. We consider several relations on A. UGMM-101/21
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(4) Let R;be the relation defined by m < n, that is, mRin if and only if
m<n.

(i) Let R be the relation defined by mRzn if and only if |m — n|
<
=1,

(5) Define Rz by m=n (mod 3), so that mRsn if and only if m=n
(mod 3).

(6) Let E be the ‘equality relation’ on A, that is, mEn if and only if
m=n.

Example : Let A = {1,2,3,4,5} and B={a, b, c} and let R= {(1, a),
(2,a), (2,¢), (3,a,), (3,h), (4,a), (4,b), (4,c), (5 b)}.

1.12 Composition of Relation

Let Ry be a relation from the set A to the set B and R, be a relation
from the set B to the set C. That is R; cAxB and R, cBxC. The composite
of the two relations R; and R, denoted by R,0R; is a relation from the set A
to C, that is R, 0R;cAXC defined by : R,0R1= {(a, c) € AxC : for some
beB, (a, b) eR;and (b, ¢) € Ry}. a(R20R;)c = for some beB, aR;b and
szC.

Examplel; Let X = Set of all women, Y= Set of all men, Z=Set of all
human beings.

Let Ry be a relation from X to Y given by Ry ={(X, y) : xeX, yeY and x is
wife of y}

And let R, be a relation from Y to Z given by R,= {(y, 2): yeY, zeZand y
is father of z}. Therefore R,0R;= {(X, z) eXXZ : for some yeY (X, y)eR:
and (y, z)eR,}. Here R,0R; is the relation ‘is mother of” provided a man
can have only wife.

Example2: If Ry be a relation form the set X to the set Y, R, a relation
from the set Y to the set Z and Rs is a relation from the set Z to the set W.
Then R30 (R20R;) = (R30R)0R;, that is composition of relation is
associative.

Now R,0 Ric X x Z and R, < Z xW. Therefore R, 0 (R,OR;) < XxW, that
is, a relation from X to W. Similarly (R20R1)oR;cXxW; that is, a relation
from X to W. Now (X, w) €R,0 (R20R;) & JzeZ|(x,z)eRiand (y, 2)eR, &
(z,Ww)eRy, & FzeZ,yeZ,yeY (X, ¥)eRiand (y, 2) eRy & (z, w) €R;

Examp|e3: (Since (P AN Q) A R=PA (Q/\R) ) <=)Ely ey | (X, y)ER]_ and (y,
W) eR30R,. & (X, W)e(R30R2)0R;1. Therefore R30(R,0R1)=(R30R2)0R;.

Definition :- Inverse of a relation: If R be a relation from a set X to a
set Y then R™is a relation from Y to X defined by R™*={(y, x) € YxX : (X,
y)eR}. Thus(x, y)eRe(y, X)eR™ or xRYe yRx.



Check your progress

Example: A relation which is reflective but not symmetric and not
transitive.

Solution: Let A={1,2,3} and R is reflective in A as

R: = {(1,1),(2,2),(3,3),(1,2),(2,3)} then
1 R is reflexive relation
2 Risnot symmetric because (1,2) )eRbut(2,1)# R
3 Ris not transitive because (1,2),(2,3) € Rbut (1,3) € R

Example: A relation which is symmetric but not reflective and not
transitive.

Solution: Let A={1,2,3}and R= {(1,2),(2,1)} then

R is symmetric.

R is not reflexive relation.

R is not transitive because (1,2),(2,1) € Rbut (1,1 ) & R.

Example: A relation which is reflective and symmetric but not
transitive.

Solution: Let A={1,2,3} and R={(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3,2)}
then, R is reflexive and symmetric relation.
R is not transitive because (1,2), (2,3) € Rbut (1,3) ¢ R.

Example: A relation which is symmetric and transitive but not
reflective.

Solution: Let A={1,2,3} and R= {(1,1)} then

R is not reflexive relation since { (2,2),(3,3)} ¢ R

R is symmetric and transitive
Example: A relation which is reflective, symmetric and transitive.
Solution: Let A={1,2,3}and R= {(1,1),(2,2), (3,3)}

Example: A relation which is reflective and transitive but not
symmetric.

Solution : Let A={1,2,3} and R= {(1,1), (2,2), (3,3),(1,2)}
Example: Prove that (RY)*=R.

Set And Relation
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Solution: Let Rc XxY. then R*cYxY. Therefore (R)*cXxY.
Now (X, y)eRe(y, X)eR™? &(x, y)e(R™)-1 Hence R=(R™Y)™.
(1.2) Prove that (R,0R1) =R, 0R,™.
Solution: Let RicXxY, R,cYxZ. then R,0R1c XxZ.
Hence (R,0R1)*cZxX. Now R;?oR,*cZxX (prove)

Now (z, X)e(R:0R1) & (X, 2)eR20R; < (X, y)eR; and (y,
z)eR, for some yeY

&(y, X)eRitand (z, y)eRy™ for some yeY &(z, y)eR,™ and
(y, X)eR;™ for some yeY &(z, x)eR:™ oR, ™ .Hence (R.0R:)
'=R; " oR,™.

Reversal Rule: From the above we get the inverse of the composite of two
relations is the composite of their inverse in the reverse order.

1.13 Equivalence relation in a set

Definition:- A relation R in a set S is called an equivalence relation if
(o) Risreflexive, that is VxeS, xRx or (x,x)eR that is, ACR;

(B) R is symmetric, that is, X, yeS, XRy=yRx or (X, y)eR&(y, X)eR i.e. R
'=R.

(y) R is transitive, that is, X, y,zeS, [XRy, yRz]=xRz Or (X, y)eR, (y,
2)eR=(X, 2)eR., i.e. RORCR.

Example 1: Prove that if R is an equivalence relation then R™is also an
equivalence relation.

Solution: Reflexive: Since R is reflexive = (X,X) € R, ¥xeR
= (x,x) ER™1, VxeR

Therefore R™1 is reflexcive.

Symmetric: Let (x,y) € R™1,

= (y,x) €ER

= (x,y¥) € R because R is symmetric

= (y,x) ER7!



Therefore R™1 is symmetric.

Transitive: Let (x,y) and (y,z) € R™t,
= (y,x)and (z,y) € R
= (z,y)and (y,x) €R

= (z,x) € Rsince R is transitive.

= (x,z) eR™?

Therefore R™1 is transitive

Hence R™1 is equivalence relation.

Example: Define a relation R in the set of integer Zsuch that aRb iffa = b
(mod m) (read a is congruent to b or m divides a-b) where m is a positive
integers. Is R is an equivalence relation?

1.  For Reflexive R is reflexive if aRa Va €Z
i.e if m/a-a i.e. m/0
therefore R is reflexcive.

2. For symmetric Let aRb
= mdividesa-b
= m divides b- a
= bRa

Therefore R is symmetric.

3. For Transitive Let aRband bRc
= mdividesa—band mdividesb-c
= mdivides (a-b)+(b-c)
= mdividesa-c
= aRc
Therefore R is transitive .
Hence R is an equivalence.

Example 2: The diagonal or the equality relation A in a set S is an
equivalence relation in S. For if x, yeS the xAy iff x=y. Thus

(o) xAx VxeS (reflexivity)

(B) xAy = x =y =y=x=Y AX (Symmetry)

Set And Relation
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(y) for x, y, zeS, [xAy, yAz]=[x=y, y=z =X ==XAz. Hence [xAy, and
yAz]= A (transitivity).

Example 3: Let N be the set of natural numbers. Consider the relation R
in NxN given by (a, b) R(c, d) if a+d=b+c, where a, b, c deNand +
denotes addition of natural numbers, R is an equivalence relation in NxN.
(o) (a, b)R(a, b) since atb=b+a (Reflexivity)

(B) (a, b)R(c, d)= a+d=b+c=c+b=d+a=(c,d)R(a, b) (Symmetry)

() [(a, b)R(c, d), (c, d)R(e, )] =[a+d=b+c, c+f=f=d+e]

=(a+d+c+f=b+c+d+e)=a+f=b+e (By cancellation laws in N) = (a, b)R(e,
f) (transitivity)

Example 4: Let arelation R in the set N of natural numbers be defined
by: If m, neN, then mRn if m and n are both odd. Then R is not
reflexive, since 2 is not related to 2. Thus (x,x) € R VxeN. But R is
symmetric and transitive as can be verified.

Example 5: Let X be a set. Consider the relation R in p(x) given by : for

A, Bep(X). ARB if AcB. Now R is reflexive, since AcA, VAep(X) R is
transitive, since [AcB, Bc(C] =AcC where A, B, Cep(X). But R is not
symmetric, since ACB # =BcA.

Example 6: Let S be the set of all lines L in three dimensional space.

Consider the relation R in S given by; for Li, L2€S, LiRLz if L; is
coplanar with L;. Now R is reflexive, since L; is coplanar with L;, R is
symmetric, since L; coplanar with L= L2 coplanar with L;. But R is not
transitive, since (L; coplanar with L; and L2 coplanar with L3)#= L;
coplanar with Ls.

Example 7: (a) Let X ={x, X2, x3, x4}. Define the following relations in X :

Ri={(x1, x1), (x2 X2), (3, X3), (x2, X3), (x3, X2)}

Ro={x1, x1), (X2, X2), (X3, X3), (X4, X4), (X2, X3), (X2, Xa)}

Rs={(x1, x1), (x2 X2), (X3, X3),( X4, X4), (X2, X3), (X3, X2), (X3, X4), (X4, X3)}
R; is symmetric, transitive but not reflexive since( x4 x4) €R:

R: is reflexive, transitive but not symmetric since xzR2xs+ but (x4 x2

) €R;

Rz is reflexive, symmetric but not transitive since x2R3x3 and x3Rs3x4
but ( x2, x4) €R3.



Note: Examples prove that the three properties of an equivalence
relation viz. reflexive, symmetric and transitive are independent of each
other, i.e. no one of them can be deduced from the other two.

Example8: Let A be the set of all people on the earth. Let us define a
relation R in A, such that xRy if and only if “x is father of y’, Examine R is
(i) reflexive, (ii) symmetric, and (iii) transitive. We have

(7) For x€A, xRx does not holds, because, x is not the father of x. That
is R is not reflexive.

(if) Let xRy, i.e., x is father of y, which does not imply that y is father
of x. Thus yRx does not hold. Hence R is not symmetric.

(8) Let xRy and yRz hold. i.e., x is father of y and y is father of z, but x
is not father of z, i.e., xRz does not holds. Hence R is not transitive.

Example 9: Let A be the set of all people on the earth. A relation R is
defined on the set A by aRb if and only if a loves b’ for a, b € A. Examine
R is (i) reflexive, (ii) symmetric, and (iii) transitive. Here,

(9) R is reflexive, because, every people loves himself. That is, aRa
holds.

(i) R is not symmetric, because, if a loves b then b not necessarily
loves, i.e., aRb does not always imply bRa. Thus, R is not
symmetric.

(10) R is not transitive, because, if a loves b and b loves ¢ then a not
necessarily loves c, i.e., if aRb and bRc but not necessarily aRc.
Thus R is not transitive. Hence R is reflexive but not symmetric
and transitive.

Example 10: Let N be the set of all natural numbers. Define a relation R in
N by ‘xRy if and only if x + y = 10’. Examine R is (i) reflective, (ii)
symmetric, and (iii) transitive. Here,

(11) Since 3 + 3 # 10 i.e., 3R3 does not hold. Therefore R is not
reflexive.

(i) Ifa+b=10then b + a =10, i.e., if aRb hold then bRa holds.
Hence R is symmetric.

(12) We have, 2+8=10 and 8+2=10 but 2+2+#10, i.e. 2R8 and 8R2 holds
but 2R2 does not hold. Hence R is not transitive therefore R is not
reflexive and transitive but symmetric.

Example 11: Let | be the set of all integers and R be a relation defined on
I such that “xRy if and only if x > y’. Examine R is (i) reflexive, (ii)
symmetric and (iii) transitive. Here,
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(13) R is not reflexive, because, X > x is not true, i.e., XRx is not true.

(i) R is not symmetric also, because, if x >y then y» x. i.e., R is not
symmetric

(14) R is transitive because if xRy and yRz holds then xRz hold.
Therefore R is not reflexive and symmetric but transitive.

Example 12: Let A be the set of all straight lines in 3-space. A relation R is
defined on A by ‘IRm if and only if | lies on the plane of m’ for I. m
e A. Examine R is (i) reflexive, (ii) symmetric and (iii) transitive.
Here,

(15) Let| € A. then | is coplanar with itself. Therefore IRI holds for all
I< A. Hence R is reflexive.

(i) Letl, m € Aand IRm hold. Then | lies on the plane of m. Therefore
m lies on the plane of |. Therefore, IRm=mRIl. Thus R is
symmetric.

(16) Le I,m,n,€A and IRm and mRn both hold. The I lies on the plane of
m and m lies on the plane of n. This does not always imply that |
lies on the plane of n. e.g., if | is a straight line on the x — y plane
and m be another straight line parallel to y axis and n be a line on
the y — z plane then IRm and mRn hold but IRn does not hold
because | and n lie on x —y plane and y — z plane respectively. Thus
R is not transitive. Hence R is reflexive and symmetric but not
transitive.

Example 13: Let A be a family of sets and let R be the relation in A
defined by ‘A is a subset of B’. Examine R is (i) reflexive, (ii)
symmetric and (iii) transitive. Then R is

(17) Reflexive, because, A € A is true.

(if) Not symmetric, because if A € B then B is not necessarily a
subset of A.

(18) Transitive, because, if A Band B < Cthen A< C,, i.e, if ARB
and BRC hold then ARC holds. Thus R is reflexive and transitive
but not symmetric.

Example 14: A relation R is defined on the set I, the set of integers, by
‘aRb if and only if ab > 0” for a#0, b# Oecl. Examine R is (i)
reflexive, (ii) symmetric and (iii) transitive. Here,



(19) Let a € R. Then a.a.>0 holds. Therefore aRa holds for all a€ I.  Sét And Relation
Thus R is reflexive.

(ii) Let a, b € I and aRb holds. If ab > 0 then ba > 0. Therefore,
aRb = bRa. Thus R is symmetric.

(20) Let a, b, ¢ € I and aRb, bRc hold. Then ab > 0 and be > 0.
Therefore, (ab) (bc)>0. This implies ac > 0 since b?>0. So aRb and
bRc=. Thus R is transitive. Hence R is reflecsive, symmetric and
transitive, hence R is an equivalence relation.

() Let R be a relation in a set S which is symmetric and transitive.
Then aRb=bRa (by symmetry) [aRb and bRa]=aRa (by
Transitivity).

From this it may not be concluded tht fefelxivity follows from
symmetry and transitivity. The fallacy involved in the above
argument is : for aeS, to prove aRa, we have started with
aRb=bRa. Now it might happen that 3 no element beS such that
aRb.

Check your progress

1. Examine whether each of the following relations is an
equivalence relation in the accompanying set —

(i) The geometric notion of similarity in the set of all triangles in
the Euclidean plane. [Ans: It is an equivalence relation]

(if) The relation of divisibility of a positive integer by another, the
relation being defined in the set of all positive integers as
follows: a is divisible by b if 3 a positive integer ¢ such that
a=bc.

[Ans: The relation is reflexive, transitive but not symmetric. ]

2. Risarelation in Z defined by: if x, y, €Z, then xRy if 10+xy >
0. Prove that R is reflexive, symmetric but not transitive.
Hint: -2R3 and 3R6 but (- 2, 6) ¢ R

1.14 Partition of a Set

Let X be a set. A collection C of disjoint non-empty subsets of X
whose union is X is called a partition of X. For example, let X={a, b, c,
d, e, f}. Then a partition of X is [{a}, {b, c, d}, {e, f}], since intersection of
any two subset of this collection is ¢ and their union is X. There may be UGMM-101/29
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other partitions of X. An equivalence relation in a set S may be denoted b
~. Then “x~a’ will be read as ‘x is equivalent to a’.

Example: Let A= {a,b,c} Then A; ={a}. A,={b, c} are the partition
of A.

Example: Find all the partition of X = {a, b, ¢, d }.

Definition Equivalence Class: If ~ is an equivalence relation in a set S
and aeS, the set {xeS : x ~ a} is called an equivalence class of
determined by a and will be denoted by a. If the equivalence relation ~ is

denoted by R, then the equivalence class of S determined by a may be
denoted by Ra.

Theorem: If ~is an equivalence relationinaset S, and a, b €S, then
(21) a, b are not empty.
(iiy  ifb~a,then a=b.
Proof : Since a ~ a by reflexive property, aca, hence a is a not
empty. similarly b is not empty.

(22) Now xea = x~a. b~a=~b (by symmetry). Hence we get x~a, and
a~b. Therefore x ~ b (by transitivity)

Consequently xeb thus xea=xe b. Therefore ac b. Similarly
bca. Hence a =b.

Theorem:- Any equivalence relation in a set S partition S into equivalence
classes. Conversely any partition of S into non-empty subsets,
induces an equivalence relation in S, for which these subsets are
the equivalence classes.

(23) Given an equivalence ~ in S. We are to prove that the collection of
equivalence classes is a partition of S. Let X1 X, Xj, etc. be the
equivalence classes where x;eS. We are to prove Ux=S.

Now xeU xi=xe xj, for some x;. =xeS [since xicS]. Hence U x
cS
Again xeS=xex, =xie Ux, Therefore U xi=S. Now we prove

that any two equivalence class x, ¥ where x, yeS are disjoint or
identical. Letx Ny # ¢ zex Ny, then zex and zey. Now zex=
z ~X =X ~ z (by symmetry) zey =z ~y. Hence zex n y = [x ~ z,
z ~y]. =x ~ vy (by transitivity) 2>x=y.Thusx Ny = ¢ = x=7.
Hence x=y = X N y =¢.This completes the proof of the first part
of the theorem.



(24)

Let the collection C = {Ai} be a partition of S. Then S =U A; and
Ai’s are mutually disjoint non-empty subsets of S. Now XxeS
=xeAi for exactly one i.

We define a relation R in S by : for x, yeS. xRy if x and y are
element of the same subset Ai. It can be proved that R is an
equivalence relation is S and the subsets Ai are the equivalence
clauses.

1.15

Quotient set of a set S

Definition: The set of equivalence classes obtained from an equivalence

relation in a set S is called the quotient set of S which is denoted by
5 or by S|~, or by S|R when the equivalence relation is denoted by R.

(1). Let S be the set of all points in the x.y plane. We define a relation R

(25)

@)

(3)

in S by: For a, beS, aRb if the line through the point a parallel to
the X-axis passes through the point b. It can easily be proved that R
IS an equivalence relation in S. Now the equivalence class a
determined by the point a is the line throughthe point a parallel to
the x-axis and the quotient set.

S= set of all straight lines in the x-y plane parallel to the x-axis.

The diagonal relation or the relation of equality in a set S is an
equivalence relation. If a€S, then

a={a}. i.e. each equivalence class is a singleton and S=set of all
singletons.

If S is a set, then R=SxS is an equivalence relation in S and the
only equivalence class is the set S. S={S}.

If X be the set of points in a plane and R is a relation on X defined
by A, BeX, ARB if A and B are equidistant from the origin. prove
that R is an equivalence relation. Describe the equivalence classes.
The equivalence class Ra=Set of points on the circle with centre as
origin O and radius OA.

Hence the quotient set X|R is the set of circles on the plane with
centre as O

1.16

Order relation

Definition: A relation, R in a set A is called a partial order or partial

1)
@)

ordering relation if and only if it following three conditions
R is reflexive i.e. XRx VxeA

R is anti symmetric i.e. XRy and yRx iff x =y, where x, y, €A

Set And Relation
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(3) Ristransitive i.e. for x, y, zeA. [XRy, yRz]=>xRz.

If in addition VX, yeA, either xRy or yRx, then R is called a linear
order or total order relation. A set with a partial order relation is
called a partially ordered set and a set with a total order relation is
called a totally ordered set or a chain.

Note. 1. Generally the partial order relation is denoted by the
symbol < and is read as ‘less than or equal to’.

In the set Z. of positive integers, the relation given by for m,
neZ., mn if m divides n, is a partial order relation not a total
order relation. For (1) m<m Vm €Z, since m divides m.

(2) m<nandn<m= mdivides n and n divides m =>m =n.

(3) [m<n,n<1] k= mdivides n, n divides k= m divides k= m <
k.Thus the relation is a partial order relation.

But it is not a total order relation, since for m, neZ. it may happen
that neither m divides n nor n divides m i.e. neither m <n nor n <
m.

Example: In the set R of real numbers, the relation < having its usual
meaning in R is a total order relation. The proof is left as an exercise.

Example: If S be a set, then the relation in p (S) given by : for A, Bep(S).
ACB, is a partial order relation but not a total order relation. The proof is
left as an exercise.

Definition Let (S, <) be a partially ordered set. If x<y and x=y, then x is
said to be strictly smaller than or strictly predecessor of y. We also say that
y is strictly greater than or strictly successor of y. denote it by x <\y.

An element aeS is said to be a least or first (respectively greatest or last)
element S if a<(respectively x < A)vxeS). An element aeS is called
minimal (respectively maximal) element of S is x<a (respectively a < x)
implies a=x where xeS.

Check your progress

(1) (N, <), (the relation < having its usual meaning) is a partially
ordered set. 2 is strictly smaller than 5 or 2 < 5. 1 is the least or
first element of N. since, 1< m ¥V meN, There is no greatest or last
element of N. 1 is the only minimal element since if xeN, Then x
<1=x=1.

(2) Consider the set S = {1, 2, 3, 4, 12}. Let < be defined by a<b if a
divides b. Then 2 is strictly smaller than 4 or 2 < 4. 12 is strictly
greatest than 4 or 4 < 12. Since | divides each of the number 1, 2,
3, 4, 12 so 1<x VxeS, hence 1 is the least element of S. Again
since x<12VxeS i.e. each element of S divides 12, so 12 is the




greatest or last element of S. Here also | is the only minimal
element, since xeS, then x<1 i.e. x divides 1 implies x= 1.

(3) LetSheaset. Then (p (S).<) where < is the set inclusion relation
c, is a partially ordered set. Then ¢ s the least element, since ¢
cAVAe p (S), and S is the greatest element since ACSV Ae p

(S). Every singleton is a minimal element. For if a€S, {a}< p (S)

and if Xep (S), then Xc{a}=X={a}.

Definition) Infimum and Supermum: Let (S, <) be a partially ordered
set and A a subset of S. An element aeS is said to be a lower bound
(respectively upper bound) of A if a<x (respectively x<a) VxeA.

In case A has a lower bound, we say that A is bounded below or bounded
on the left. When A has an upper bound we say that A is bounded above
or bounded on the right. Let L(=¢) be the set of all lower bounds of A,
then greatest element of L if it exists is called the greatest lower bound (g |
b) or infimum of A. Similarly if U(=¢) be the set of all upper bounds of A,
then the least element of U if it exists is called the least upper bounded
(l.u.b.) or supremum of A

Example: Consider the partially ordered set (N, <), where m < n if m
divides n. Consider the subset A={12, 18}. 2 is a lower bound of A since 2
divides both 12 and 18. i.e. 2<12 and 2<18. The set of al lower bounds of
A viz L={1,2,3,6} and 6 is the greatest element of L. Hence g.l.b. or
infimum of A=6. It is called the greatest common divisor (g.c.d) of A. Now
36, 72, 108 etc. are upper bounds of A since x divides 36 or 72 or 108 Vx
€A thus x <36 or 72 or 108 VxeA. Now the set of upper bounds of A viz
{36, 72, 108, ...}, the least element of 36. Hence the l.u.b or supremum of
A= 36. It is also called the L.C.M. of 12 and 18.

Example: Set S be a non-empty set which is not a singleton, consider the
set Y= P (¢, S} partially ordered by the inclusion relation. Now Y has no
least or no greatest element. Each singleton as in Ex. (5.6) is the minimal
element.

Let ACY, G=n{X,: X,eA}. If G = ¢, then G is g.l.b of A. Similarly
L=U {X,: XaeA} is the l.u.b of A and exists if L#A.

Theorem : The least (respectively greatest) element of a partially set (s,
<), if it exists, is unique.

Proof. If possible let | and I” be two least element of S. Since | is the least
element, so | < x ¥xeS hence | < I’ since I’.S. Similarly taking I’ as lest
element I’ < I. Hence | < I’ and I’ < I. Therefore by anti-symmetry I=I".
Similar proof can be given for the greatest element.

Set And Relation
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Remark : In contrast to the above theorem, maximal and minimal
elements of a partially ordered set X need not be unique. In example (5.6)
or (5.8)* we have shown that every singleton is a minimal element.
Sometimes minimal element can also be a maximal element. For example
consider the partially ordered set {X A} where A is the diagonal relation.
Every element of X is a minimal as well as a maximal element of X. For
let aeX. Then xAa=Xx=a, aAXx=>x=a.

Definition : A partially ordered set (S, <) is said to be well ordered if
every non empty subset of S has a least element.

Theorem : A well ordered set (S, <) is always totally ordered or linearly
ordered or a chain.

Proof: Let x, y be any two element of S. Consider the subset {x, y} of S,
which is non empty and hence has a least element either x or y, then x <y
or y < x. Hence every two element of S are comparable and so S is totally
ordered. We now state two important statements without proof.

Well ordering principle: Every set can be well ordered.

Zorn’s Lemma: Let S be a non empty partially ordered set in which
every chain i.e. every totally ordered subset has an upper bound, then S
contains a maximal

Totally Ordered Sets: Two elements a and b are said to be not
comparable if a £ b and b £ a, that is, if neither element precedes the
other. A total order in a set A is a partial order in A with the additional
property that a < b, a=b or b < a for any two elements a and b belonging to
A. A set A together with a specific total order in A is called a totally
ordered set.

Example : Let R be a relation in the set of natural numbers N
defined by ‘x is a multiple of y’, then R is a partial order in N. 6 and 2, 15
and 3, 20 and 20 are all comparable but 3 and 5, 7 and 10 are not
comparable. So N is not a totally ordered set.

Example : Let A and B be totally ordered sets. Then Cartesian
product A xB can be totally ordered as follows: (a, b) < (a’, b") ifa<a’
orifa=a’and b <b’. This order is called the lexicographical order of Ax
B, since it is similar to the way words are arranged in a dictionary.

Theorem: Every subset of a well-ordered set is well-ordered.

1.17 Summary

In this Unit, we have studied the types of sets, union and
intersection of sets. Cartesian product of sets i.e. A x B, A x A, definition



of relation as a subset of A x B and as subset of A x A. Types of relation
in a set A i.e. reflexive, symmetric and transitive relation, equivalence
relation and equivalence classes are also studied. Domain and range of a
relation is also described. Partition of a set and partition theorem,
composition of two relations R and S, inverse of relation R, and its
properties are studied. Quotient, set, order relation, partially ordered sets
and totally ordered set, infimum and supremum of a set A is described.

1.18 Terminal Questions

1.  Define a relation R in NxN where N is the set of natural numbers
such that (a, b) R (c, d) iff a+ d =b + c. Prove that the relation
IS an equivalence relation.

2. How many relations can be defined in a set containing 10
elements? If A = {1, 2, 3} then write down the smallest and biggest
reflexive relations in the set A.

3. Define a relation R in NxN such that R={(x,y) such that 2x + vy
=10}. find the relation R and its inverse R™. (Answer: R = {(1,8),

(26), 34), (4.2)}

4.  Give examples of the following relations:
Q) Reflexive but not symmetric & not transitive
(i) Symmetric but not reflexive & not transitive
(iii)  Transitive but not reflexive & not symmetric

5. If Rl and R2 be two equivalence relation then prove that R1 N R2
is an equivalence relation but R; U R, need not be an equivalence
relation.

6. Define a relation in a plane such that any two points of the plane
are related if they are equidistant from the origin. Is R an
equivalence relation?
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FUNCTIONS

Structure

2.1  Introduction
Objectives

2.2 Functions or mapping
2.2.1 One to one function (or Injective function)
2.2.2 Onto function (Or Surjective function)
2.2.3 One-to-one Correspondence (Or Bijection)

2.3 Direct and inverse images of subsets under maps

2.4  Real valued Functions

2.5  Inverse functions

2.6 Graphs of functions and their algebra

2.7 Operations on functions

2.8 Composite of functions

2.9  Evenand odd functions

2.10 Monotone functions

2.11 Periodic functions

2.12  Axiomatic introduction of Real Numbers

2.13  Absolute value

2.14 Intervals on the real line

2.15 Summary

2.16  Terminal Questions/ Answers

2.1 INTRODUCTION

As we know the notion of a function is one of the most
fundamental concepts in mathematics and is used knowingly or
unknowingly to our day to day life at every moment. Computer Science
and Mathematics is an area where a number of applications of functions
can be seen. We thought it would be a good idea to acquaint with some
basic results about functions. Perhaps, we are already familiar with these
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results. But, a quick look through the pages will help us in refreshing our
memory, and we will be ready to tackle the course. We will find a number
of examples of various types of functions, and also we are introduced to
whole numbers, integers, rational and irrational numbers leading to the
notion of real numbers. The integers and rational numbers arise naturally
from the ideas of arithmetic. The real numbers essentially arise from
geometry.

Greeks in 500 BC discovered irrational numbers a consequence of
Pythagoras theorem. Actually this discovery shook their understanding of
numbers to its foundations. They also realized that several of their
geometric proofs were no longer valid. The Greek mathematician Eudoxus
considered this problem and mathematicians remained unsettled by
irrational numbers. Geometrically, rational numbers when represented by
points on the line, do not cover every point of the line.

The modern understanding of real numbers began to develop only
during the 19" century. The mathematicians were forced to invent a set of
numbers which is bigger than that of rational numbers and which satisfy

the equation of the type x" =2 forall n.

A set of axioms for the real numbers was developed in a middle part of the
19™ century. These particular axioms have proven their worth without
doubt.

Objectives
After reading this unit you should be able to:
»  Describe a function in its different forms
»  Derive other properties with the help of the basic ones

>  Define a function and examine whether a given function is one —
one/onto

Recall the basic and other properties of real numbers.
Recognize the different types of intervals.
Define the function and recognize its types and inverse functions.

Define and determine even and odd functions.

YV V V V V

Define and test the period of the given function.

N
N

Functions or (Mapping)

A function is a kind of relation between various objects with
certain conditions.
OR
A function is a rule which maps a number to another unique number. In
other words, if we start with an input, and we apply the function, we get an
output.



For example: 1) The volume V of a cube is a function of its side x.

2) The velocity v of a moving body at any time t is a

function of its initial velocity vo and time t.

Mathematically, a function is defined as follows;

1)

2)

3)

For the sets A and B, a function from A to B is denoted by
f:A— B, is a correspondence which assigns to every element

x € A, a unique element f(x) € B. The value of the function f at
an element x in A is denoted by f(X), which is an element in B.

For a function f : A— B, the set A is called the domain of f and
the subset f(A)={f(x):x e A} of B (i.e., set of images of f) is
called the range of f .

If B< R then f is said to be real valued. If A < R, then domain
of f isthesetofall xe R for which f(x)eR.

Function is also known as mapping.
Alternatively

Let A and B are two sets. A function f from A to B is a rule that

assigns every element xe A to a unique yeB . It is written as
f:A—> B and y= f(x).

V xeA JyeB, suchthat y=1f(x) and ¥ x,x, €A f(x)#f(X)=>x#X,.

one element of A can be mapped to more than one element of B.

A is called domain and B is called co-domain. y is image of xunder f
and X is pre-image of y under f . Range is subset of B with pre-images.

Equivalently,

Let f:X =Y, where X and Y are two sets, and consider the

subset S < X . The image of the subset S is the subset of Y that consists
of the images of the elements of S: f(S)={f(s), seS}

SRIL-145
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Property 1.  If we consider f: R — R is a function then f is called a real valued

function of a real variable.

2. f:R*"->R(n>1)is called a real valued function of a vector
variable.

3. f:R->R™(m>1)is called a vector valued function of a real
variable.

4. f:R™ — R™ iscalled a vector valued function of a vector variable.

Example 1: Domain X = {1, 2, 3, 4} and Co-domain Y = { 2, 3, 5,6} also
Rangeis Y ={5, 6, 3, 2}

Solution: g: X — Yis not a function because the element 1 in set X is
assigned to two elements 5and 6 in Y

Arrow diagram of the given mapping is

A ¥

BWoN M
Now oo W

Example 2: Domain X ={a, b, ¢} and Codomain Y ={1, 2, 3, 4} also
Range is Y = {2,4}
Solution: f : X —Y is a function because every element in set X is

assigned to exactly one elementin Y.
Arrow diagram of the given mapping is

Example 3: If A={2,4,6,9} and B=1{4, 6,18, 27,54}, ac A beB,
find the set of ordered pairs such that 'a’ is factor of 'b'and a <b.

UGMM-101/40




Solution: We have to find a set of ordered pairs (@, b) such that 'a' is Functions
factor of 'b'and a <b. Since 2 is a factor of 4 and 2< 4. So (2, 4) isone
such ordered pair.

Similarly, (2, 6), (2,18), (2, 54), (6, 18), etc are other such ordered pairs.

Thus, the required set of ordered pairs is;
{2, 4), (2, 6), (2,18), (2, 54), (6, 18), (6, 54), (9, 18), (9, 27), (9, 54)}.

Example 4: Find the domain and range of the function f:Z —>Z
defined by f(x) = x*where Z is set of integers.

Solution: Domain and codomain of the given function f:Z > Z is Z.
Its range is {0, 1, 4, 9, 16, .......

The Functions Vs Non Functions

Consider X ={a, b, ¢} and Y ={1, 2, 3,4}. Then we can observe the
following,

F E=) r
Mo, o, Yes,
& has no image o has two images each lement of X has exacthy
" one image
Fig-1 .
= Fig.2 Fig-=

Fig.1 and Fig.2 f is not a function but in fig.3, f is a function.

2.2.1 One To One Function (or Injective Function)

A function f:X —Y is one-to-one (or injective), iff f(x)=f(y)
implies x = y for all xand y in the domain X of f. In other words “All
elements in the domain of f have different images”.

Equivalently; VX, ye X [ f(x) = f(y) =x=yY].
If f:X —Y issubjective then Range = Co-domain

Example 1: Consider the function f:A—>B with A={a, b, c} and
l 2,3, 4

8 69

o not one-to-aone
{all elements in A hawve a

{a and b have the same image)
different image)
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Set, Relation, Example 2: Is the function f:R —>%R defined by f(x)=5x-3
Function And Its  jnjective? Where, R is the set of real numbers .

Property
Solution: Consider
f(x)=f(y)
—5x—-3=5y—-3
— 5X =5y

— X=Y — 'f'is injective
Example 3: Is the function f:R—> R defined by f(x)=x>
injective?

Solution: Consider

f(x)=f(y)
= 2x% = 2y?
= x* =y?

= Xx==xy Or y=+x="f"isnot an injective function

2.2.2 Onto Function (or surjective function)

A function f : X —Y is onto (or surjective), if for every element
y €Y there is an element x e X with f(X)=1y. In other words
“Each element in the co-domain of f has pre- image”.
Equivalently; if f:X —Y is surjective then range = co-domain
VyeY Ixe X suchthat f(x)=y].

Example 1: Consider the function f : A— B with
A={a,b,c,djand B={, 2, 3}

not onto

{all elements in Y have a (1 has no pre-image]}

pre-imageae)

Example 2: Is the function f : R — R defined by f (x) = x*onto?
Solution: Take an element y = -1, then for any
XxXeR, f(X)=x>=z-1=y

UGMM-101/42 Therefore, f :R — R is not onto.



2.2.3 One-to-one Correspondence (Or Bijection) Functions

A function f is one-to-one correspondence (or bijection), iff f is both
one-one (or injective) and onto (or surjective).

In other words;

“ No element in the co-domain of f has two (or more) pre-images” and
“Each element in the co-domain of f has pre-image”.

Example 1: Consider the function f:A— B with A={a, b, c} and
B={l, 2 3 4}

{not onto, 2 {not one-to- (each element (neither one- (not a function,
has no pre- one, 1 has has exactly one to-one nor a has two
image) two pre- pre-image) onto) images)
images})

Example 2: Consider an identity function on set A= {a, c, e} defined as
I:A> A I(X)=x VXxeA

Note: Identity map is bijective

2.3 Direct and Inverse image of sets

Definition: Letf: X—Y be a map and let A — X, B c Y, then the direct
image of A under f denoted by f (A) and is given by f (A) ={yeY | 3 xeA
with f (x) =y},

X 7 ¥

) \_7
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that is f (A) is the set of images of all the elements of A. the above diagram
illustrates it. Thus xeA = f (x) f (A) the reserve implication viz

f (xX)ef (A) = xeAis only true when f is injective. If xeX, then f ({x}) = {f
()} and f(X) = range f and f (¢) =¢.

Note : We shall write f*(B) for f *(B) etc

The inverse image of B under f denoted by f!(B) is given by f!(B) =
{xeX: f(x)eB } thus xef*(B) =3 xeX such that f(x)B.

The reverse implication viz f(x) eB = xef* (B) is also true.
Note : We shall write f* (B) for f * (B) etc.
X f y

—_—

() _[®

In case there is no element xe X such that f(x) B

(which may happen when f is not surjective), then f1(B) =¢.
Examplel: Let f: R—>R be given by f(x) =x°, xeR.

Let A={xeR: 1=x<2} =1, 2] cR.

Then f (A) = {yeR: 1 <y<4} =1, 4]. [Since 1< x<2= 1<x? <4]
Let B={yeR: 4 <y <9} =[4,9]. Thenf*(B)=[-3,-2] U [2, 3].

If C= [- 4, -1], then £*(C) =¢, since xR such that f(x) =x° is positive.

Example2: (a) Let A = {nm: n is an integer} and R be the set of real
numbers.

Let f: A — R be defined by f (@) = cos a VaeA. Findf(A)and f* ({0}).
Now f (nz) =cosnz=+ 1or-1, Hence f (A) = {- 1, 1}.

If f () =0 or cos o =0 or o = (2n + 1} %
Hence F1({0})= {(2n+1) g| n ez}

Now (2n+1)g ¢ {nr}, So, £(0) = ¢.

Example3:Let f: X — Y be a map and let A and B be subsets of X, then
0] AcB=f(A) cf(B)
(i) f(AUB)=f(A)Uf(B)



(iii)

(i)

(iii)

f (ANB) <f (A)N f (B). Equality holds when f is injective.
Proof: (i) If A € B, then xe A =xeB. Now ye f (A)

= 3IxeAstf(X)=y.

= IAxeBs.ty=1(x). >y =1(X)e f(B) since xeB, = f(x)f (B)
Therefore yef (A) = yef (B) hence f (A)< f (B).

yef (AU B)=3 xe(AUB)s.t.y =1 (x)
=3IxeAorxeBst.y=1f(x)

=y =f(x) ef (A) ory =f (x) f(B). (since xeA =f (x) f (A) and
xeB=f (x)e f (B)).

Hence,y € f (AUB) =y e f (A) Uf (B).

Therefore f (AU B) = f (A) U f (B).

Again ACA U B, BSA U B therefore by (i) f (A) < f (A U B),

f (B) < f (AUB) therefore, f (A)U f (B)< f (A UB).

From the above we get f (AU B) =f (A) U f (B).

AN BCSA, AN B <€ B, therefore by (i) f (AN B) S f (A),

f (ANB) < f (B). Hence, f (ANB) < f(A) N f (B).

Note: f(A) Nf(B) <f (ANB) is not true. Since ye f (A) Nf (B)
=yef (A) and yef (B) =3x;€A | f(x1) =y and

3 x,eB such that f(x2) =y # 3 x €A NB such that f(x) =y.

Since x;€ A but x; may not be an element of B, similarly x,eB but
X, may not be an element of A, so there may not exist a common
element x of A and B such that f(x)=y.

But if f is injective, then f(A)Nf(B) Sf(ANB) will be true and
hence in that case f(ANB)=f(A)Nf(B).
Example4: When f (A) Nf (B) € f (ANB).

Consider map f: R—>R given by f(x) = X% It is clear f is not
injective.

Let A={-1, - 2,-3,4} and B={1, 2, -3} be subsets of Dom f.
Then ANB = {-3}. So, f (A N B) = {(-3)°}.

Now f(A)={(-1)", (2 (3" @’} F B)={1" 2% (3}, (=
(X))
So, f(A) Nf(B)={1% 2 (-3)°} 2 {(-3)’}.

Functions
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Function And Its because f is injective).

Property
Example5: Letf: X — Y be a map and let A and B be subsets of Y.
Then (i) A € B = f}(A) = f(B)
iy (A UB)=f'(A) Uf'(B)
(i) 1A NB)=f'(A) NFH(B).
Proof: (i) xef(A) =f(x) eA =f (x) B (since ASB)
So, xef?*(B). Therefore f!(A) € £!(B).
(i) Xef'AUB)=f(x)cAUB
o=f (x) eAor f(x) eB =xef'(A)
or xef'(B) & xe f1(A) U f* (B).
Therefore f*(A U B) = f}(A)U £1(B).
(i) xef'ANB)=f(x)eANB
& f(x) eAand f (x) eB < xef! (A) and
xef(B) =xef(A) N £ (B).
Therefore f* (AN B) = f*(A) N *(B).

Thus (ii) and (iii) show that union and intersection are preserved
under inverse image.

Check your progress

(2.1) Prove that f: X — Y is injective iff £({y}) = {x} Yy f (X),
and some xeX

(2.2) Prove that f: X — Y is sujrective iff f*(B)# ¢ V¥ BS Y and B #
d.

(2.3) Prove that f: X — Y is bijective iff vyeY, F1({y}) = {x}, xe X.
(24) f:X—>YandAc X,BCY, prove that

(a). f(f*(B)) € B.

(b). £1(f(A)) 2 A.

(c). F1Y)=X.
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(d) letf: X —> YandletACY,thenprove f{(Y-A)=X-f!
(A).

(2.5) Give examples when

(i) f(f*(B))isa proper subset of B
(i) A'is a proper subset of f(f (A)).

(2.6) Consider f: R — R such that f (x) = 4x +1. Is f injective,
Is f surjective. Also find £ (1/2).

(2.7) Consider f: R — R such that f (x) = 2x* +7. Is f injective,
Is f surjective.

2.5

Answer/solution

(i) Consider map f: R—>R given by f (x) = X2 So f is not
surjective

Let B={-1,-2,3,4} S co-domf. Then f!(B) = {ty3 £2},
hence f (FL(B)) = {(x V32 (+2)%} = {3, 4}.

Thus f (F(B)) is a proper subset of B.

(ii) Consider the above map. Let A= {- 1, -2, 3, 4}c dom (f).
Then f (A) = {12, 2%, 3%, 4%}

Hence f* {f (A)} = { +1, +2, +3, +4} (Prove).

Thus A is a proper subset of f*((f (A)).

Functions
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2.5 Inverse Functions

Let f:A— B be a one-to-one correspondence (i.e., one-one and onto Or
bijection). Then the inverse function of f, f*:B — A is defined as
f *(b) such that f(a)=b for an unique element a < A. Here f is also
known as invertible.

Note:
1) Functions that are one-to-one are invertible functions.

2)  The inverse of one to one function f is obtained from f by
interchanging the coordinates in each ordered pair of f .

3) if f is to be map, then every b€B must be the f image of some
ac€A, that is f must be surjective. Further two different

elements x; and x, of A must not have the same f-image y<B,
for in that case f (y) =x; also x,, so f cannot be a map. Hence f
must be injective. Thus when f is bijective we can define the
above map f which is called inverse of f and will be denoted
by f*. Thus the inverse of a bijective map f is defined as: f*:

B— A given by Vy<B, f1(y) = x€A such that f(a) = b.

Remarks (2.1): Inverse map of f should not be confused with the inverse
image of a subset under f, denoted by the same symbol viz f*.

Example 1: Find the inverse function of f :A— B with A={a, b, c,d}
and B = {1, 2, 3, 4} Defined by

Solution: The function f : A — Bis bijective. Therefore
f':B— A exists.



RIL-145

Then,
f'b)=a<b=f(a) VbeBand V aeA. Itisgiven by
Example 2: Find the inverse of f :R — R defined by
f(x)=4x-1.
Solution: Let y e R. Then, y = f(X) gives

y="1(x)

y=4x-1 Or 4x=y+1 Or x:yTJrl

fly) = yTH is the inverse of f.

Example 3: Find the inverse of f :R — R defined by f(x) = 4x*

Jy

Solution: y = f(x) gives two values for x = iT' Therefore its
inverse doesn’t exists.

Note: y = f(X) can be made to have inverse with restricted
domain to [0, o).

Example 4: Find the inverse of f :R — R defined by
f(x)=(x-3)? for x>3.

Solution: f is a one-to-one function with domain [3, «0) and the
range [0, ). Therefore the domain of the inverse function is

[0, ) and its range is [3, ). Now consider,

y=f(x

y=(x=3 Or x-3=+y Or x=3+.y

We can have only x=3+ \/V with domain of f* to be [0, )

Inverse of the map f: X — Y only exists when f is bijective that is
the inverse map f*: X — Y only exists when f is bijective and the
inverse map f': Y - X issuch that fi((y)=x #X)=v.

Functions
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Example 5: | et X = [- n/2, n/2], Y = [- 1, 1]. Let f: X — Y be
given by f (x) = sin x, xeX. It can be easily proved that f is a
bijection. So f*: Y — X given by

1 (y) = sin™ y= xeX. such that sin x=y. Thus sin™ y =x. %= yin

Example 6: |f f: X — Y is a bijection, then the inverse map f*; Y
— X is also a bijection. For let f*(y;) = X1, where y;eY and x;eX.
Then f(x;) =y and £1(y2) = X2, y2€Y and xoeX. Then f (x2) = ya.
Now fi(y1)= fi(y2) @xi= X2 = f(x1) = f (X2) =y1= 2.

[since f is map Therefore f* is injective.

Again since f is bijective, every element yeY is the f-image of a
unique element xeX. Hence every xeX is the ' image of an
element yeY. Therefore f* is surjective.

Example7: Check whether the map f; R —, R such that f (x) = Sinx

is bijective? If we take f: [- /2, /2], — [- 1, 1] as f (X) = Sinx.
Then f is bijective check it.

2.6

Graphs of Functions and Inverse Functions

Horizontal Line Test: It says that a function is a one-to-one
function if there is no horizontal line that intersects the graph of the
function at more than one point.

Note: By applying the Horizontal Line Test, we can not only determine
if a function is a one-to-one function, but more importantly we can
determine if a function has an inverse or not.

Example 1: Determine if the function f(x) = —%x + 2 is one-to-
one function.

Solution: To determine if f (x)is an one-to-one function, we need
to look at the graph of f(X).

f(x) | 5185|3527 | 2 |125| 05 |-025| -1




It can be seen in the graph that, any horizontal line drawn on the
graph will intersect the graph of f (x)only once. Therefore, f(x)
is an one-to-one function and it has an inverse.

Example 2: Determine if the function g(x) = x* —4x is one-to-
one function.

Solution: To determine if g(x)is an one-to-one function, we need
to look at the graph of g(x).

X -2 -1 0 1 2 3

g(x) 0 3 0 -3 0 15

v

It can be seen in the graph that, any horizontal line drawn on the
graph intersects the graph of g(X) more than once. Therefore,

g(x) is not an one-to-one function and it does not have an
inverse.

Example 3: Determine inverse of f(x) if the function f(x) = x?
and draw the graphs of f(x) and f *(x) .

Functions
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Solution: y = f(x) then y=x* Or x==,/y.

Let’s consider f(x)=x? for x>0 and f*(x)= VX s one-to-
one
To look at the graphs of f(x) and f *(x) .

Example 4: Determine inverse of the function f(x)=+/x-1 and
graph the f(x) and f ™ (x) on the same pairs of axes.

Solution: y = f(x) then y=,/x-10r x=y?+1.

Let’s consider f(x)=+x-1 and f*(x)=x>+1 for x>0.
Since range of f(x) is the set of nonnegative real numbers [0,0).
Therefore we must restrict the domain of f ~(x) to be [0,c0).

2.1

Operations on function

1)

2)

3)

Addition of two real functions:
Let f:A—> R and g: A—> R be any two real functions, where
AcR : Then, f+g:A>R defined by
(f+g)x)= f(X)+g(x) V xeA.
Example: Let f(x)=x"+2x*+1 and g(x)=2-x? then,
(f+9)(x) = f(x)+9(x)

:(x4 +2x° +1)+(2—x2): x* +x%+3
Subtraction of real function from another real function:

Let f:A— R and g: A— R be any two real functions, where
Ac R.Then, f —g:A— Rdefined by

(f-9)x) = F(0-g(x) V xeA.
Example: Let f(x)=x*+2x*+1 and g(x)=2-x? then,

(f—9)(x)=f(x)—g(x)
- (x4 +2x%° +1)—(2—x2)= x*+3x? -1

Multiplication by a scalar:

Let f: A— R be any real function and « be any scalar
belonging to R, Then, af : A — R defined by

(of JX)=a f(X) ¥V xeA.
Example: Let f (x)=x*+2x*+1and a =5then,

(af )(X) = (B)(x* +2x? +1)=5x* +10x* +5



4)  Multiplication of two real functions: Functions

Let f:A—>R and g: A—> R be any two real functions, where
Ac R . Then, product of these two functions is fg:A—>R
defined by (f g)(x) = f(X)g(x) V x € A.

Example: Let f(x)=x*+2x*+1 and g(x)=2-x” then,
(fa)(x) = £ () g(x)
= (x4 +2x° +1X2—x2)
=2x" = xP +4x? —2x" +2-x* =—x" +3x* +2
5)  Quotient of two real functions:
Let f:A— R and g: A— R be any two real functions, where

A c R. Then, the quotient of these two functions is i: A—>R
g

defined by (ij(x) _ 0 , provoded g(x) #0 V xe A.
g 9(x)

Note:

1) Domain of the sum function f + g, difference function f —g and
the product function fg is {x: xe D Dg}, where D, isthe
domain of the function f and D, is te domain of the function g .

2) Domain of the quotient function i IS
g

{x:XE D, ﬂDg}and g(x)=0

Example 1: If f(x)=x*-x-2 and g(x)=x+1 . Evaluate
f(x) and g(x) at x=-3, hence find (f +g)(-3).

Solution: We have f(x) =x*-x-2 and g(x)=x+1.

. f(=3)=(-3)*-(-3)-2 and g(-3)=(-3)+1
=9+3-2 and =-3+1
=10 and =-2

Now, Consider
(f+9)(=3)=f(-3)+9(-3)
=10+ (-2)
=8

Example 2: If f(x)=2x-1 and g(x)=x+4.Find (f +g)(x?). UGMM-101/53
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Solution:  We have f(x)=2x-1 and g(x)=x+4.

Consider,

(f +9)(x*) = f(x*)+g(x?)
=[2(x?) -1]+ [(x?) + 4]
=2x* -1+ x*+4
=3x%*+3

Example 3: If f(x)=2x-4 and g(x)=x*-x+5.Find (f —g)(x).
Solution:  We have f(x)=2x—-4 and g(x)=x*-x+5.

Consider,
(f—9)() = f(x)-9(x)
=(2x—4) - (x* = x+5)
=—x*+3x-9
Example 4: If f(x)=2x-4 and g(x) =-3x+1. Evaluate
f(x) and g(x) at x=5, hence find (f.g)(5).

Solution:  We have f(x)=2x-4 and g(x)=-3x+1.
o f(5)=2(5)-4 and g(5)=-3(5)+1
=10-4 and =-15+1
=6 and =-14
Now, Consider

(f.9)(5) = £(5-.9(5)
— 6.(-14)
— -84

Example 5: If f(x)=2x-1 and g(x)=x+4.Find (f.g)(3x).
Solution: We have f(x)=2x-1 and g(x)=x+4.

Consider,
(f.9)(3x) = f(3x).9(3x%)
=[2(3x) —1}[(3x) + 4]
=(6x—1).(3x+4)
=18x?* +21x — 4



) : f Functions
Example 6: If f(x)=x"-4x-5 and g(x)=x-5.Find | — |(x).
g
Solution: We have f(x)=x*-4x-5 and g(x)=x-5.

Consider,
f f(x)

(gj(x) 90
_x*—4x-5
T x—5 X# 5
_ (x=5).(x+1)
~ (x=5)
=(x-1)

Exercise Problems:
1. Let f(z) =12 — 1 and g(z) = 4z — 3. Find:

) F+9B3) @ (F+9(=2) @) T-90) @) -9(=3)
6 (f-H6) 6 (a2 @ (=9 6 F+90)

2.8 Composite Function ( Or Composition of
Functions )

It is nothing but the function of function. If f(x) and g(x) are

two functions, then composition of these two functions is defined as
(fog)(x) = f[g(x)]. The domain of (fog)(x)is the set of all numbers X in

the domain of g such that g(x) is in the domain of f

To calculate the composition of function, we evaluate the inner function
and substitute the answer into the outer function.

Example 1: If f(x)=x?-2x+1 and g(x) =x-5. Evaluate (fog)(3)
Solution: Consider,

(fog)(x) = f[g(x)]
= (fog)(3) = f[g(3)]
Where g(3)=(3)-5=-2
= (fog)@3) = f[-2]
=(-2)? -2(-2) +1
=4+4+1
=9
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Function And Its  (fog)(x)  (gof )(x) Solution: Consider,
Property
(fog)(x) = f[g(x)]
Where g(x)=x+3
w. (fog)(x) = f[(x+3)]
=(x+3)* —(x+3)
=X +6X+9-x-3

=x>+5x+6

And consider,
(gof)(x) = g[f (%]
Where f(x)=x*-x
~ (gof)(x) = g|(x* ~x)]
=(x*-x)+3

=x>-x+3

Thus, (fog)(x) = (gof )(x)

Example 3: If f(x)=2x-1 and g(x) :il.Then, find (fog)(2) and
X_
(gof )(=3)

Solution: Consider,

(fog)(x) = f[g(x)]
= (fog)(2) = f[g(2)]

4
Where ¢(2) = 71 4
= (fog)(2) = f[4]
=2(4)-1=8-1=7

And consider,

(gof )(x) = g[ f (x)]
= (gof )(-3) = g[f (-3)]
Where f(-3)=2(-3)-1=-7
- (gof )(=3) = g[- 7]
4 4 -1

T 71 8 2
Thus, In general (fog)(x) # (gof )(x).

Problem: Letf: R > Randg: R — R be defined as f (x) = 2Sinx+ 1 and
UGMM-101/56 g(x) = e*. Find (gof)(x) and (fog)(x).
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2.9 Even and Odd Functions
1)  Even Function: The function y = f(x) is said to be even (or

symmetric), if for each x in the domain of f(x) , f(-x)= f(x) .
Geometrically, the graph of an even function is symmetrical about
Y-axis.
For Example: (i) f(x) =x* (ii) f(x) =x*+1 (iii)
f(x) = cosx

Even Functiomns:

Hawve a graph that is

sy rmumeatric with respect

T the Y-Axis.

I W-Auwis — acts like a mirmosr
\‘-.
1 = T
1__\:-#"‘; o
For Example: The graph of the function f(x) = x? is given by
y =
H
A5 3 3 T T 7 i
2) Odd Function: The function y= f(x) is said to be odd ( or

antisymmetric), if for each x in the domain of f(x) |,
f(=x)=—1(x) .

Geometrically, the graph of an odd function is symmetrical about
origin or in opposite quadrants ( i.e., the graph has 180 degrees
rotational symmetry about origin). UGMM-101/57
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For Example: (i) f(x) =x® (ii) f(x) =x>+3 (iii) f(x) =sinx

Odd Functions:

Hawe a graph that is
syrmimetric with respect
to the Origimn.

Oriigim — If youw spin the picture upside dowwen
about the Origin, the graph looks the same!?

Drig—-in \ )

For Example: The graph of the function f(x) = x?® is given by

-,
a0 ==

104

=110

=3

Some useful properties of even and odd functions, which are easy
to verify from their definitions:

)
i)
i)

The product of two even functions is even
= (even) x (even) = even,

The product of two odd functions is even
= (odd) x (odd) = even.

The product of an odd function with an even functions is odd
= (odd) x (even) = odd .

The sum of two even functions is even = (even) + (even) = even

The sum of two odd functions is odd = (odd) + (odd) = odd .
The sum of an odd function with an even functions is neither
odd nor even=> (odd) + (even) = neither odd nor even.




Example 1: Determine algebraically the function f(x) = x* +8 is even or
odd or neither.

Solution: Consider,

f(x) =x*+8
= f(-x)=(-x)*+8
=x*+8=f(x)

Thus, f(x) = x*+8 isan even function.
Example 2: Determine algebraically the function f(x) =x*-3x+1 is
even or odd or neither.

Solution: Consider,

f(x) =x*-3x+1
= f(=x) = (—x)* =3(-x) +1
=x? +3x+1
Thus, f(x) =x*—3x+1 is neither even nor odd function.

Example 4: Determine graphically the following function is even or odd
or neither.

Solution: As symmetry is in opposite quadrants. Therefore, the function is
odd.

Example 5:  Determine graphically the following function is even or
6dd or neither.

Functions
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Solution: As symmetry is about Y-axis. Therefore, the function is even.
Example 6: Determine graphically the following function is even or odd
or neither.
: |
Solution: As symmetry is not about Y-axis nor in opposite quadrants.
Therefore, the function is neither even nor odd.
Practice Problems:
Determine algebraically the function f(x) = x* —3x+1 is even or odd
or neither. |5 f (x) = Sinx+ cosx is an even fuction?.
1. f(x) = x*—x*+4x+ 2
2. f(x)= —x2+10
3. f(x) = x* + 4x
4. f(x)= —x*+5x—2
5 f(x) = vx*—x2+4
6. f(x) = |x+ 4|
7. f(x) = |x|+4
3 8. flx)=x*—2x2+4
z 9. f(x) = ¥x

10.f(x) = xvx2 —1

UGMM-101/60
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2.10 Monotone (Or Monotonic) Functions

»  Afunction is said to be increasing, if x, < X, implies

>

>

f(x,) < F(X,).
OR

if x, >x, implies f(x,)> f(x,) .

A function is said to be strictly increasing, if X, <X, implies
f(x)<f(x,) .

OR
if x, >x, implies f(x,)> f(x,) .

R L L L L T T

A function is said to be decreasing, if X, <X, implies
f(x)=f(x,) .

OR
if x, >x, implies f(x,)< f(x) .

e[ T [ T
FOF = ) S b N
b e L] . - [
: I
E xq : X I
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Function And Its » A function is said to be strictly decreasing, if X, <X, implies

Property f(x)> f(x,) .
OR

if x, >x, implies f(x,)< f(x,) .

oI

» A function is said to be monotonic if it is either increasing or
decreasing.

» A function is said to be strictly monotonic if it is either strictly
increasing or strictly decreasing.

Example 1: The function f(X)=sinx is strictly monotonic in

IS strictly increasing in the interval

[—%+ kr, %+ k;z}; k=0,£2, %4, %6, ..... And it is strictly

decreasing in the interval {—%+ kz, %+ k;z}; k=+1 +3 %5, .....

UGMM-101/62



2.11 Periodic Functions

A function f(t) is periodic if the function values repeat at regular

intervals of the independent variable t. The regular interval is referred to
as the period.

If P denotes the period, then f(t+P)= f(t) for any value of t .

f(t)

AANANA

Vet g

~— period —

The most obvious examples of periodic functions are the
trigonometric functions sint and cost, both of which have period 27 .
This follows since sin(t + 2z) =sint and cos(t + 2z) = cost .

y=sint y = cost
1 1
x /\ ‘. AN
VARV VALV
-

penu-d period

The amplitude of these sinusoidal ( or trigonometric ) functions is
the maximum displacement from y =0.

Consider y = Asinnt , which has maximum amplitude A and
period 2—”

n
For example:

Q) y =sin 2t is a sinusoid of amplitude 1 and period 27” =7

since sin 2(t + z) =sin(2t + 2z) = sin 2t for any value of t.

/\ Wﬂ N
VAYAVE

penod

Functions
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Set, Relation, We can observe that y =sin 2t has half the period of sint, 7z as opposed

Function And Its g 2 in the following figure.
Property

Some standard results on periodic functions

Functions Periods
1. Sin" x, Cos" x, Sex" x, Cosec" x n; ifnis even
2n ; if n is odd or
fraction
2. tan"x, Cot" x n; ifnis even or odd
3. |sinx |, |cosx | T

|tanx |, |cotx ||secx |, |cosecx |

4. Algebraic function e. g.+/x, x2,x3 + | Period does not exists.
Setc

Examplel : Find period for
(i) Cos®x, has period 7 as n is even.
(i) Sin®x, has period 2 7 as n is odd.
(il1) +/cosx has the period 2 m as n is in fraction.
(iv) cosvx , is not periodic.

Properties of periodic function:-

(i) Iff(x) is periodic with period T, then:
(i1) c. f(x) is periodic with period T.
(i) f(x+c) is periodic with period T.
(iv) f(x)+c is periodic with period T.

Where ¢ is any constant i.e. If constant is added, subtracted,
UGMM-101/64 multiplied or divided in periodic function, period remains same.



Example 2: We know that sinx has period 2, then f(x) = 3sinx+2 is also

periodic with period 27 .

If f(X) is periodic with period T, then

f(cx) is periodic with period ITTI

i.e. period is only affected by coefficient of x.

f(x) = sinx period 2=« then period of sin2x = 2;“ =T
2 2T

sin3x = ==, sindx = ==, tandx ==
3 4 4

Example 3: State the amplitude and period of y = 2cos5t

y =2cos5t is a sinusoid of amplitude 2 and period 2?7[ since

cosS(t + 2?”) = cos(5t + 27) = cos5t for any value of t

State the amplitude and period of the following:

21
(a) y = Heosdl (b) y = 6Gsin 3"

Non- Sinusoidal Periodic Functions:

These non-sinusoidal periodic functions are often called “waves”
1) Square Wave:
This fuction is defined as;

-1 ;—-7<t<0
(1) = i
+1 0<t<rx

f(t+27)=f(t)

(1)
= = e
. —— !
-SRI 0 S TPRR:

2) Saw-tooth wave:
This fuction is defined as;
fH)=2t ; 0<t<2
f(t+2)=f(t)

Functions
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3)

Triangular wave:

This fuction is defined as;

-t ;-7 <t<0
()= i
+t  ;0<t<»rx
Or more concisely,
f (&) =1t

f(t+27)=f(t)

Practice Problems:

1)

2)

3)

Write down the function for the following graph;

]

-5 I\ B

Sketch the graph of the periodic function defined by;

2

L 0<t<4
2

8 4<t<6
0 6<t<8

f(t+8)=f(t)

Sketch the graph of the periodic function defined by;

f(t)=2t-t°
f(t+2)=f(t)

t0<t<?2



2.12 Axiomatic introduction of Real Numbers

Basic Properties of Real Numbers:

The basic properties of real numbers include:

1.

2
3
4.
5
6

Closure Property
Commutative Property
Associative Property
Distributive Property
Ordered Property
Completeness Property

7. Archimedean Property

These are known as algebraic properties of real numbers.

There are two binary operations defined on ‘R, one called addition,
denoted by (a, b) > a+b, and other called multiplication, denoted by

(a,

b) > a-b.

Closure Property
a+be® anda,b €R foreverya,b €R

Commutative Property:
Forall @be® then a+b=b+a and a-b=b-a

(a) The commutative property of addition:
Example : a-b # b-a i.e. difference is not commutative

There exists an element in R, denoted by 0 read as zero is known as
additive identity with the following properties;

(i) o+a=a+0=a for all acRk ( Existence of additive
identity )
(ii) Forevery a <R, there exists an unique element
—a e R Such that

a+(—a)=—-a+a=0 for all acRp (Existenceof addi
(iii)  Also there exist an element 1 in R known as multiplicative

identities with the following properties

(i) 1.a=a.1,for ever aen

. . 1
(i) forever a <R (a # 0) there exwt% e RS.L. g.a:a. 1=1

a

Functions
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(b) The commutative property of Multiplication:
Example:

@) é.b =b.~ (a£0)

(b) (Xx+2)-3=3-(x+2)=3(x+2)

(c) 5-y-Xx=5-Xx-y=5-xy

There exists an element in R, denoted by 1 read as one or unity
is known as multiplicative identity with the following properties;

(i) 1-a=a for all ae R (Existence of multiplicative identity)

(if) Forevery a =0 e R, there exists an unique element
a‘1[= 1] c® suchthat a-(@a™)=1 for all ae® ( Existence of
a
multiplicative inverse)

Associative Property:

For all
a,b,ceR then (a+b)+c=a+(b+c) and (a-b)-c=a-(b-c)
(a) The Associative property of addition:
Example:
2+3)+6=2+(3+6)

Let A={1,2,3,4,5} then addition holds in A. i.e. closed in A and addition is
associative in A.

(b) Associative property of Multiplication:
Example:

(3:%X)-x=3-(x-x)=3x"
(X-y)-5xy =5-(x-X)(y-y) =5xy’

Distributive Property:

For all
a,b,ceR then a-(b+c)=ab+acand (b+c)-a=ba+ca

Example:
(a) (a+b).(c+d)= (a+b).c+(a+b).d
ac+bc+ad+hd
(b) difference is not associative since (a —b) —c+*a— (b — c)
Remarks:
On the basis of addition property, one can define the operation of
subtraction by a—b =a+ (—b) .

On the basis of multiplication property, one can define the operation

1) .
of division by %:a-(gj (if b=0).




5 Ordered Properties of Real Numbers: Functions

There exists an order, denoted by <, between the elements of R
with the following properties;

i) For a,b e, oneand only one of the following relations hold,;
a<hb, a=b, b<a
This is known as Law of Trichotomy

ii) a,b>0=a-b>0 and a+b=>0
iii) a>b and b>c = a>c

Geometrically, set of all points on a line represent the set of all real
numbers. There are some special subsets of R which are important.
These are the familiar number systems as shown in the above
flowchart.

Completeness Property

Geometrically, rational numbers when represented by points on the
line, do not cover every point of the line. Therefore, the property of
the real numbers that distinguishes them from the rational numbers is
called the completeness property.

Archimedean Property
For every a e %, there exists ne N such that n>a

2.13 Absolute Value

The absolute value of a, denoted by \a\, read as “the absolute

value of d”, describes the distance ‘d’ on the number line from
zero without considering which direction from zero the number
lies. The absolute value the number is never negative.

Example 1: ‘5‘:5, as 5 is five units to the right of zero. But also

-5/ =5, because -5 is five units to the left of zero,

The absolute value does get a little more complicated when dealing
with variables, since we don’t know the sign of the variable.

For example: If \a\ =5, then we need to consider d is 5 or -5. Therefore
solution to the equation is 5 or -5.

Definition: The absolute value of a real number “d’ is denoted by ‘a‘
and is defined as

a if a>0
|a|: -a if a<0
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Property For example: (i) [7|=7 (i) ‘ c ‘ ( 5] c (iii) |0]=0

Note:

1 The effect of taking the absolute value of a number is to strip
away the minus sign if the number is negative and to leave the
number unchanged if it is nonnegative.

2 lal=b—>a=+b—>|a|l=|b|>a==b

Example 1: Solve [X—3 =2

Solution: Consider,

Positive side if x> 3 Negative side if x < 3
X=-3=2 X=3=-2
X-3+3=2+3 X—3+3=-2+3
X=95 x=1

-3=2 -3=2

o [5-3=2 o p-3=2

Verification: Verification:

2] =2 -2=2

Example 2: Solve ‘ZX—B‘ =15ifx< 0

Solution: Consider,

Positive side Negative side
2x—-3=15 2x—-3=-15
2x—-3+3=15+3 2X—-3+3=-15+3
2x =18 2x =-12

x=9 X=—6

Since solution of ‘ZX —3‘ =15isx=-6
Example 3: Solve [3x—1| =|x+7]

Solution: Since [a| =|b| > a = +b
UGMM-101/70




Consider,

Positive side Negative side
3X—-1=x+7 3x—1=—(x+7)
3X-1+1=x+7+1 3x—1+1=—(x+7)+1
3Xx=x+8 3X=-x-6
2x=8 4x = -6
X=——
2

Check Your Progress

Solve the following

1) [x=3=5 2)[2x-5=10  3) px+1=5
4) Bx-7)=11 5) [x+3 =1

6) [3x—2 =[px+4  7) [x-2/=[3x+]  8) [6x+1=[3x+4
9) Bx—1=|x+4

Properties of Absolute Value

If d and b are real numbers, then

1)

2)

3)
4)
5)

6)

7)

/>0 if and only ifa=0, [ that is |a|=0 if a=0and conversely
a=0if | =0

-4 =|a| [A number and its negative have the same
absolute value]

la/<b if and only if ~b<x<b
la+b|<|al+]o] [ The Triangle Inequality]
]~ Jo] <[a~b]

‘a-b‘ = ‘aHb‘ [The absolute value of a product is the product of
the absolute values]

% = %;b #0 [The absolute value of a ratio is the ratio of
the absolute values]

Functions
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Function And Its

Property The notion of absolute value arises naturally in distance problems.
Suppose A and B are the points on a real number line that have
coordinates d and b respectively. Depending on the relative positions of
the points as shown in the figure, the distance between them will be

Geometric Interpretation of Absolute Value:

S S S
Ta—b—u—-{ il'—ﬂ-&—:i

b-a a-b

In either case, the distance can be written as d = ‘b - a‘

Inequalities with Absolute values

i) For k>0, \x—a\<k, X is within k units of a;
—k<x—a<k Or a—k <x<a+k . Itcanbe shown

geometrically
|o-k LnitS==t=k unlt&-l

a—k a x a+k

(Figure)

i) For k>0, \x—a\>k, X is more than Kk units away from a;
x—a<-k Or x—a>k OR x<a-k Or x>a+k.ltcanbe

shown geometrically (Figure);
Example 1: Solve for x and express the solution in terms of intervals;

x+6/<3
Solution: We have |x+6|<3 . Then,
-3<Xx+6<3
Adding (-6) throughout we obtain
-3-6<x<3-6
-9<x<-3
Which can be written in the interval notation as (-9, -3).
Example 2: Solve for X and express the solution in terms of intervals;
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Solution: We have ‘7—X‘S5 . Then,
(7-x)<5 Or (7-x)>-5 Adding (-7) throughout
—-Xx<-2 Or —-x2>2-12= x>2 Or x<12

Which can be written in the interval notation as (2, 12).
Example 3: Solve for X and express the solution in terms of intervals;

|2X_1|Z4,X-'/—'E

3
Solution: We have ———— >4 . Then,

2x-1~
2X —
%g Or |2x-1<12
-12<(2x-1) <12 Adding 1 throughout -11<2x<13
-11 13

Diving thriughout by 2, S <X S?

Which can be written in the interval notation as (-11/2, 13/2).

Check Your Progress

Solve for X and express the solution in terms of intervals for the
following;

1) [x-3<4, 2)[x+4>2, 3)[2x-3 <86,

2) 4),L>5, 5)@25, 6). 4.

<
|2x—3| |x+3|

2.14 Intervals on the real line

A useful way of describing the set of real numbers is by using
interval notation [ In spite there exists many other ways viz, rosters, tables,
number lines etc].

Interval notation is a frequent option to express a set of numbers between
two values, aand b. Basically used two symbols are parentheses ( ) and
brackets [ ].

() is used for less than <, or greater than >. This means that specified
values for a or b are not included.

[ ]is used for less than or equal to <, or greater than or equal to 2. This
means that specified values for a or b are included.

Functions
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Definition:

i)

i)

Given any two extended real numbers a<b , the set;
(a,b) ={x:x e N, a< x <b} is called an open interval.

Thus, Open Interval: (a,b) ={x:xeR, a<x <b}

Half Open Intervals: [ab)={x:xe®R, a<x<b} and
(a,b]={x:xeR, a<x<b}

Infinite Open Intervals: (—oo,b) ={x:xeR,—o<x<b} Or

(a,+0) ={x:xeR, a< X<}

Given any two finite real numbers a<b , the set;
[a,b] ={x:xe R, a<x<b} , (—oo,bl={x:xeR, x<b} and
[a,+) ={x:xe R, x=>a} arecalled closed intervals.

Thus, Closed Interval: [a,b]={x:x e R, a< x<b}

Infinite Closed Intervals: (—wo,b]={x:xe®R, x<b} Or
(—oo,b] ={x: x e R,—0 <x < b}

And [a,+ o) ={x:xeR, x=2a}Or [a,+0) ={Xx: xR, a< X<}
Empty Open Interval: (a,a) = ¢

Singleton Closed Intervals: [a,a] ={a} Or
(a,+0)={X:xeR, a< X<oo}

Hence, We can summarize as follows

A closed interval [a, b] describes all real numbers X where
a<x<b.

An open interval (a, b) describes all real numbers X where
a<x<b.

A half-open (or half-closed) interval describes one of the following

e [a, b) describes all real numbers X wherea < x <b.
. (a, b] describes all real numbers X wherea < x<b.

We use oo and - oo to signify that the values continue
getting larger without end (unbounded to the right on the real
number line) and smaller without end (unbounded to the left on the
real number line) respectively.

> [a, ») describes all real numbers X wherex > a.
> (a, o) describes all real numbers X where X >a.

>  (—oo, a] describes all real numbers X wherex<a.



>  (—oo, a) describes all real numbers X wherex<a.

As stated above, shall assume that the set of real numbers can be identified
with points on the straight line. If the point O represent the number 0, then
the points on the left of O represent negative real numbers and points on
the right of O represent positive real numbers. Intervals are part of the real
number line.

This identification of the real numbers is useful in visualizing various
properties of real numbers. An open interval of the type (a — &, a + &)

is called an 6- neighborhood of a € R .

Example 1: The inequality —3<x<3 reflects all the real numbers
between -3 and 3 without including both. Using interval notation, this
inequality is written as (—3, 3) . The graph of the solution set is given by

£ -4 2 -1 g1 2 4 &

Example 2: The inequality —3<x<3 reflects all the real numbers
between -3 and 3 including both. Using interval notation, this inequality is
written as [ 3, 3]. The graph of the solution set is given by

-5—45—2—11]12!45

Example 3: The inequality —3<x<3 reflects all the real numbers
between -3 and 3 including -3 but not 3. Using interval notation, this
inequality is written as [ 3, 3). The graph of the solution set is given by

5 4 21 g1 12 4 §

Example 4: The inequality —3<x<3 reflects all the real numbers
between -3 and 3 including 3 but not -3. Using interval notation, this
inequality is written as (— 3, 3]. The graph of the solution set is given by

-E-flg-l-ll]ll!-ii

Example 5: Write the inequality —oo < x <2 in interval notation and
graph it.

Solution: The in equality —oo < x <2 reflects all the real numbers
between -co and 2 including both. This inequality is written in the interval
Rotation as [— o, 2]. The graph of the solution set is given by

—5—4-3—2—1[]13345
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Exercise Problems:
Write the following inequalities in interval notation and graph it.
1. x<3 2)-2<x<4 3)-9<x<0 4 x>-4
5 x<-3 6) x>6
Express each of the following intervals in set-builder notation.
) (28 2J[-50 3B o)  4) (- -4]
5) [-7, 3]

2.15 Summary

Function or mapping as a relation with some conditions, types of
mapping i.e. injective map , surjective map, bijective map is described in
the unit. Direct image and inverse image of a subset i.e. f(A) and f “(B)
and operation of union and intention on them is discussed . Inverse map
and condition when it is defined, Graph of a function, Composite of two
function f and g i.e. gof and fog properties are explained in the unit. Even
and odd function, monotonic increasing and mono-tonic deceasing
functions, periodic functions, axiomatic introduction for the set of real
numbers as complete ordered field is explained. Basic properties of the set
of real, absolute value and its properties are explained. Meaning of |x-a| <
b is studied in this unit.

2.16 Terminal Questions

1. Define a map f: R & R such that f(x) = -5x +3. Is f bijective? If
yes find f “(-1/2).

2. Consider f: R > R such that f(x) = 4x* - 3. is f injective?
3. Letf: A-> B &g: B> Cbe maps. Show that

(i) IfgOfisinjective then fis injective

(i) 1f g Ofissubjective the g is surjective

4.  Let A and B be two sets containing m and n elements respectively,
then

(i)  How many maps can be defined from A to B?



(i) If m=n then how many bijective maps can be defined from
AtoB?

Let A= {nm:nisan integer}
Define amap f : A = R such that f(x) = Sin x. then find f(A)

Define f : R © R such that f(x) = x/(1+x?). find the range of the
function f.

Answers to Selected terminal Questions

Yes, f‘(-1/2) = 7/10

No

(i) nm (i) n!

f(A) = {0}

o g A DN

[-1/2, %]
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UGMM-101/77



RIL-145

UGMM-101/78



UNIT-3

LIMITS

Structure

3.1.  Introduction

3.2.  Objectives

3.3.  Definition of limit

3.4.  Algebra of Limits

3.5.  Infinite Limits (Limits as x —» )
3.6.  One Sided Limits

3.7.  Summary

3.8 Terminal Questions/Answers

3.1 INTRODUCTION

We begin the study of calculus, starting with the concept of “limit’.
As we read the later units, we will realize that the seeds of calculus were
sown as early as the third century B.C. But it was only in the nineteenth
century that a rigorous definition of a limit was given by Weierstrass.
Before him, Newton, D’Alembert and Cauchy had a clear idea about
limits, but none of them had given a formal and precise definition. They
had depended, more or less, on intuition or geometry.

The introduction of limits revolutionized the study of calculus. The
cumbersome proofs which were used by the Greek mathematicians have
given way to neat, simpler ones. We already have an intuitive idea of
limits. In Section.3 of this unit, we shall give a precise definition of this
concept. This will lead to the study of continuous functions. We shall also
give some examples of discontinuous functions in section 7 and section 8.

In the early development of mathematics the concept of limit was
very vague. The calculation of a limit was so fundamental to understand
certain aspects of calculus, that it required the precise definition. A more
formal €-0 (read epsilon-delta) definition of a limit was finally developed
around the 1800’s. This formalization resulted from the combined research
into into limits developed by the mathematicians Weierstrass, Bolzano and
Cauchy.
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fact, early mathematicians used a limiting process to obtain better and
better approximations of areas of circles. Yet the formal definition of the
limit- as we know and understand it today-did not appear until the 19"
century.

3.2 Objectives

After reading this unit students should be able to:

. understand the need and use of limits and its algebra
e  calculate the limits of functions whenever they exits.

. Identify and evaluate one sided limits and infinite limits

3.3 Definition of Limit

In this section we will introduce you to the notion of ‘limit’. We
start with considering a situation which a lot of us are familiar with, such
as train travel. Suppose we are travelling from Delhi to Agra by a train
which will reach Agra at 10.00am. As the time gets closer and closer to
10.00 am., the distance of the train from Agra gets closer and closer to
zero (assuming that the train is running on time!). Here, if we consider
time as out independent variable, denoted by t and distance as a function
of time, say f(t), then we see that f(t) approaches zero as t approaches 10.
In this case we say that the limit of f(t) is zero as t tends to 10.

Now consider the function f: R —>R defined by f(x) = x*+1. Let us
consider Tables 1(a) and 1(b) in which we give the values of f(x) as x
takes values nearer and nearer to 1. In Table 1(a) we see values of x which
are greater than 1. We can also express this by saying that x approaches 1
from the right. Similarly, we can say that x approaches 1 from the left in
Table 1(b).

Table 1(a)
X 1.2 11 1.01 1.001
f(x) 2.44 2.42 2.02 2.002
Table 1(b)
X 0.8 0.9 0.99 0.999
f(x) 1.64 1.81 1.9801 1.9989

We find that, as x gets closer and closer to 1, f(x) gets closer and closer to
2. Alternatively, we express this by saying that as x approaches 1 (or tends
to 1), the limit of f(x) is 2. Let us now give a precise meaning of ‘limit’.




To show that the limit of f(x) as x — p equals the number L, we need to
show that the gap between f(x) and L can be made “as small as we
choose” if x is kept “close enough” to p. Let us see what this would
require if we specified the size of the gap between f(x) and L.

Let’s consider the following example.

Example 1:Consider the function y = 2x — 1 near x = 4, Intuitively it
appears that y is close to 7 when x is close to 4, so limex-y=7.

Xx—4

However, how close to X = 4 does x have to be so that y = 2x — 1 differs
from 7 by, say, less than 2 units?.

Solution: We are asked: For what values of X is ‘y—?‘ <2?.To find the

answer we first express \y - 7‘ in terms of x:
ly-7|=[2x-1-7|=[2x-§].

The question then becomes: what values of x satisfy the inequality
‘2x —8‘ < 27. To find out we solve the inequality:

2x -8/ <2
—-2<2x-8<2
6<2x <10
3<x<5
-l<x-4<1

Keeping x with 1 unit of x = 4 will keep y within 2 units of y = 7 as shown
in the following figure.

To aatisiy

éigure: Keeping x within 1 unit of x = 4will keep y within 2 units of y = 7

Limits
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In the above example we determined how close x must be to a particular
value p to ensure that the outputs f(x) of some function lie within a
prescribed interval about a limit value L. To show that the limit of f(x) as
X — p actually equals L, we must be able to show that the gap between
f(x) and L can be made less than any prescribed error, no matter how
small, by holding x close enough to p.

Definition 1: Let f be a function defined at all points near p (except
possibly at p). Let L be a real number. We say that f approaches the limit
L as x approaches p if, for each real number ¢> 0, we can find a real
number 6> 0 such that

O<|x—p|<d=>|f(x)-L|<e.

As you know from Unit 1, [x — p| <d meansthatx e ][ p-6,p+d[and 0
< |x — p| means that x= p. That is, 0 < |x — p| <& means that x can take any
value lying between p — 6 and p + & except p.

The limit L is denoted by Ixiﬂ; f(x). We also write f(x) > L as x — p.

Note that, in the above definition, we take any real number &> 0 and then
choose some & > 0, so that L — e< f(x) < L + &, whenever |x — p| <5 that is,
pPp-0<X<p+9o .

In unit 1 we have also mentioned that |x — p| can be thought of as the
distance between x and p.

Equivalently,
Let f(x) be defined on an open interval about p, except possibly at p itself.

We say the limit of f(x) as x approaches p is the number L, and write

||m f(x) =L, if, for every number & > 0, there exists a corresponding
X—>p

number & > 0 such that for all x, 0<‘X—p‘<5:>‘f(X)—L‘<8.

The relation of 6 and ¢ in the definition of the limit is shown as in the
following figure;

*'e

F 4+ e

Flxh s
I. ll__.f-:l'-_,_l‘} m hene

r.— el

Four mll x = o
-l]'l]:l‘cm

&

[
80

>+ x
e 4+ 8



Figure : The relation of 8 and ¢ in the definition of limit
Remark 1: The number ¢ is given first and the number & is to be
produced. An important point to note here is that while taking the limit of
f(x) as x — p, we are concerned only with the values of f(x) as x takes

values closer and closer to p, but not when x = p. For example, consider
2

X
the function f(X) = . This function is not defined for x = 1, but is

x-1
defined for all other x € R. However, we can still talk about its limit as x

—1. This is because for taking the limit we will have to look at the values
of f(x) as x tends to 1, but not when x = 1.

Example 2: Consider the function f : R >R defined by f(x) = x>. How can
we find Iirgf(x)? Solution:We will see that when x is small, x® is also

small. As x comes closer and closer to 0, x* also comes closer and closer
to zero. It is reasonable to except that lim f(x) = 0 as —0. Let us prove that
this is what happens. Take any real number &> 0.Then, | f(x) - 0 | <e= ||
<ge |x| <e'®. Therefore, if we choose & = ¢* we get | f(x) — 0 | <¢
whenever 0 < |x — 0| < 8. This gives us IXiH)\ f(x) = 0.

A useful general rule to prove lim f(x) = L is to write down f(x) — L and

then express it in terms of (X — a) as much as possible.

Let us now see how to use this rule to calculate the limit in the following
examples.

Example 3: Show that lim®Gx-3)=2.

x—1

Solution: Set p=1, f(x)=5x-3 and L = 2 in the definition of the limit.
For any given € > 0, we have to find a suitable 6 > 0 so that if x # 1 and x
is within distance & of p = 1, that is, whenever 0 < ‘X —l‘ < 0. Itis true that
f(x) is within distance ¢ of L = 2, so ‘f(X) - 2‘ < &. We find § by working
backward from the g-inequality:

5x—3-2=[5x—-5 <&
=5|X—]4<g
=|X—]4<5/5.

Thus, we can take 0 =&/5 (as shown in the following figure). If
O<|x-1<5=¢/5 then |(5x—3)-2/=|5x—5=5x-1<5(c/5)=¢ ,
which proves that lim®Gx-3)=2. The value of 6 = ¢/5 is not the only

x—1
value that will make 0<‘X—1‘<5 simply ‘5X—5‘<g . Any smaller

positive & will do as well. The definition does not ask for a “best” positive
d, just one that will work.

Limits
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V4
Figure: If (x)=5x -3, then 0<|x—1/ < &/5 guarantees that
F(0-2|<e.

Examples 4: Prove that limx=c-

X—>C

Solution: Let € > 0 be given. We must find 6 > 0 such that for all x,
0<|x—¢| <& Implies|x —¢|< ¢

This implication will hold if 6 equals € or any smaller positive number (as
shown in the following figure).

¥
y=x
o+ e
c+ &
00 e e e e e
c— & '
[
11!
[ 1 "L
[
[
[
sy B
1 x
1] c—8c e+ 8

Figure: For the function f(x) = x, we find that 0 < ‘X —c‘ <0 will guarantee
‘ f(x)- C‘ < & whenever § <e.

Remark 2: If f is a constant function on R, that is, if f(xX) = k V x € R,
where k is some fixed real number, then lim f(x) = k.

X—p

RIL-145

Examples 5: Prove that limk =k .Where K is constant
UGMM-101/84 x—c



Solution: Let € > 0 be given. We must find 6 > 0 such that for all x,
0<|x—c|<5Implies [k —k| < &.

Since k — k = 0, we can use any positive number for & and the implication
will hold ('as shown in the following figure). This proves that |jmk =k

X—>C

¥
=k
E+e 7
k_,f'E-
i
e
et JHAT
et
T i
T LR
| I I x
0 e—8 ¢ c+8

Figure: For the function f(x) = k, we find that ‘f (x)- k‘ < ¢ forany

positive 0.

Remark 3:In the above examples 2.3.2, 2.3.3 and 2.3.4, the interval of
values about ¢ (or p) for which ‘f(x) — L‘ was less than € and we could

take O to be half the length of the interval. When such symmetry is absent,
as it usually is, we can take o to be the distance from c¢( or p) to the
interval’s nearer endpoint.

Examples 6: For the limit, |[Jm+X—1=2, find a5> 0 that works for & =

Xx—5

1. That is, find & > 0 such that for all x, O<|x—5|<5 = ‘\/x—1—2‘<1.

Solution: We organize the search into two steps.

i.  Solve the inequality ‘«/x—l—Z‘ <1 to find an interval containing
x =5 on which the inequality holds for all x # 5.

‘«/x—1—2‘<1
—l<a/x-1-2<1
1<4/x=1<3

1<x-1<9

2<x<10
ii.  Find a value of > 0 to place the centered interval 5 -6 <x <5+ 6
(centered at x = 5) inside the interval (2, 10). The distance from 5
to the nearer endpoint of (2, 10) is 3 (as shown in the following

RIL-145
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figure 1). If we take 6 = 3 or any smaller positive number, then the

inequality 0<[x—5 <& will automatically place x between 2 and

10 to make ‘«/x “1- 2‘ <1 (as shown in the following figure 2):

O<\x—5\<3:>‘\/H—2‘<1 .

Figure 1: An open interval of radius 3 about Figure 2: The function and intervals in the

x=5 will lie inside the open interval (2, 10) example.

2

. X I
Examples 7: Let us calculate lim . We know that division by

x—1 X—l

2

X
zero is not defined. Thus, the function f(X) = is not defined at x =

1. But, as we have mentioned earlier, when we calculate the limit as x

approaches 1, we do not take the value of the function at x = 1. Now, to
2

Lo x -1
obtain lim
x—1 X—l

, we first note that

2

X
x> —1=(x-1) (x + 1), so that = x + 1 for x #1. Therefore

2

. X ) o
lim = lim(x + 1). As x approaches 1, we can intuitively see that

x-1 oy _1 x—1

this limit approaches 2. To prove that the limit is 2, we first write f(x) — L
=X+ 1-2=x-1, which is itself in the form x — a, since a = 1 in this
case. Let us take any number €> 0. Now,

|(x+1)-2|<ece | x-1| <e
Thus, if we choose 6 = ¢= | f(x) = L | =| x — 1 | <e. This shows that Iirrll (x

. XP-1
+1) = 2. Hence, lim =
x—1 X—l

2



Example 8: Let us prove that Ye> 0 38> 0 such that [x* + 4 — 13 |< ¢
whenever | x — 3| <5. Here, f(x) - L= (x*+4)-13=x*-9,and x—a=x
-3.

Now we write [x? — 9| in terms of | x = 3| : [x* = 9] = [x + 3| [x — 3|

Thus, apart from |x — 3|, we have a factor, namely |x + 3| of [x* — 9]. To
decide the limits of |[x + 3|, let us put a restriction on &.

Remark 4: we have to choose 6. So let us say we choose a 6< 1. |[x — 3|
<WB=>X-3|<1=>3-1<x<3+1=22<x<4=5<x+3<7.

Thus, we have [x* — 9] < 7 | x — 3 | <e. Now when will this be true? It will
be true when 8< 1. This means that given &> 0, the & choose should
satisfyd< 1 and also 6<e/7. In other words, 6 = min {1, €/7}, should serve
our purpose.

2
Examples 9: Prove that |jm f (x) =4,iff(x)={x : X¢2
1, x=

X—2

Solution: our aim is to show that given & > 0 there exists 6 < 0 such that
for all x,

O<[x-2 <6 = [f(x)-4<e

i. Solve the inequality ‘f (x) - 4‘ <¢ to find an open interval
containing Xo = 2 on which the inequality holds for all x # xq.

For x # xo = 2, we have f(x) = x% and the inequality to solve is
‘X2—4‘<g .

‘xz —4‘ <¢

—g<x?*-4<s¢

4—c<x’<db+¢

Jbd—¢ <|X|<«/4+g
ANAd—g <X<Ad+e

The inequality ‘f(X)—4‘<8 holds for all x # 2 in the open interval
(V4 —-¢&, V4 +¢) (as shown in the following figure).

i1) Find a value of 6 > 0 that places the centered interval (2 - 3, 2 + 0)

inside the interval (W4—¢&, V4 +¢).

Take & to be the distance from xo = 2 to the nearer endpoint of

(\/4 &,V4+¢). In other words, take 0 = mln{ —(\/4—3,\/4+5—2)}

the  minimum  (the smaller) of the two  numbers

Limits
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Property inequality 0<\x—2\<5 will automatically place x between

Vd-¢ and Vd+e to make |[f(X)-4<e . For al x,
0<[x-2/<s = [f(x)-4<¢ .

¥
4 4 e
e ]
¥
4 — g —
L
1 b
| 812, 1
N
1 1 o
0 L TN
Vid—e Vadge

Figure: An interval containing x = 2 so that the function satisfies ‘ f(x)- 4‘ <€ .

3.4. Algbera of Limits

Let us state some basic properties of limits (their proofs are beyond the

scope of this course).

Theorem 1: Let f and g be two functions such that limf(x) = L and lim
X—>p X—p

g(x) = M exist. Where L, M, k, p are real numbers. Then,

I. lim[f(x) + g(x)] = lim f(x) + limg(x) =L+ M  (Sum Rule)
X—>p X—=p X—p
[i.e., Limit of the sum is sum of the limits]

i, lim[f(x) - g(x)] = lim f(x) - limg(x) =L - M (Difference Rule)
X—>p X—p X—p
[i.e., Limit of the difference is difference of the limits]

i, lim [Kf(x)] = k [lim f(x)] [limg(x) = kL
X—p X—p X—p

(Constant Multiple Rule)

[i.e., Limit of the constant times the function is the constant time
the limit of the function]

iv. Ixim [f(x) g(x)] = [Ixig)l f(x)] [Ixim g(x)] =LM (Product Rule)

[i.e., Limit of the product is product of the limits]
UGMM-101/88
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V. - _ L provided limg (x) = M= 0
g(x) limg(x) M Xx—p
X—>p
(Reciprocal Rule)
[i.e., Limit of the reciprocal relation exists provided limit of the
denominator is non zero]
lim f (x)
Vi lim F(x) _ 2P _L , provided limg (X) = M= 0
e 900 limg() M *p
(QuotientRule)
[i.e., Limit of the quotient is quotient of the limits provided limit of
the denominator is non zero]
vii.  |im [f(x)]" = L", na positive integer (Power Rule)

X—=>p

viii. |im [n‘/f(x)]n =%/L =1Y", nis a positive integer  (Root Rule)

X—=>p

[ If nis even, we assume that lim f(x) = L > 0]

X—=p

We have already proved two more results in the above Theorem
2.3.3 and Theorem 2.3.4 in addition to these. Those are :

iXx. limk=Kk

X—=>p

(Constant Function Rule)

X.  limx=p (Identity Function Rule)

X—p

We now state and prove a theorem whose usefulness will be clear to you
in Unit 4.

Theorem 2: lim f(x)=L and lim f(x) = M, then L = M.

X—p X—p

Proof. Suppose L = M, then |L — M | > 0. Since limf(x) = L. If we take &=
X—p

|IL-M]
2

then 35,> 0 such that |x — p| <6:= |[f (X) — L| <e

Similarly, since lim f(x) = M, 35,>0 such that [x — p | <&,= |[f (X) = M |

X—p

<g

If we choose & = min |81,8;], then 6> 0 and |x — p | <6 we mean that [Xx — p
|[<8iand |x — p | <5,.

In this case we will have both |f(x) — L | <g, as well as, |f(x) - M | <e.

Limits
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Sothat|L-M|=L-f(X) +f(x) +f(x) -M |<|f(X)-L|+|f(X) - M| <e
+eg=2¢=|L-M]|. Thatis,weget|[L-M|<|L-M],

Which is a contradiction. Therefore, our supposition is wrong. Hence L =
M.

The Sandwich Theorem

This theorem enables us to calculate a variety of limits. It is called the
Sandwich Theorem because it refers to a function f whose values are
sandwiched between the values of two other functions f and h that have
the same limit L at a point c. Being trapped between the values of two
functions that approach L, the values of f must also approach L (as shown
in the following figure).

e

I S W

fAfg========
L 3
-

0

The graph of f is sandwiched between the graphs of g and h
Theorem 3: (The Sandwich Theorem):

Suppose that g(x) < f (x) < h(x) for all x in some open interval containing
c, except possibly at x = c itself. Suppose also that

limg(x) =limh(x)=L. Then, limf(x)=L.

Equivalently,

Theorem 4: Let f, g, and h be functions defined on an interval |
containing a, except possibly at a, Suppose

Q) f(x) <g (X) <h(x) Vxe I'\]a

(i)  limf(x)=L=Ilimh(x)

(ili)  Then limg(x) exist and is equal to L.
Proof. By the definition of limit &> 0, 36,> 0 and &,> 0 such that |f(x) — L
| <e for 0< | x —a|<d;and |h(x) — L | <e for 0 <|x —a| <d,.

Let & = min {81, 62}. Then0<|x—-a|<6=|f(X) - L|<eand|h(x) - L |
<e

=>L-e<f(x)<L+¢and L-e<h(x)<L+e
We also have f(x) < g(x) <h(x) V x € I/{a}. Thus, we get 0 < | x —a| <&



= L - e<f(X) £g(x) <h (x) <L + €. In other words, 0 < | x —a| <&
= | g(x) — L | <e. Therefore limg(x) = L. Theorem 2 is also called the

sandwich theorem (Or the Squeeze theoremOr the Pinching Theorem),
because g is being sandwiched between f and h.

Let us see how this theorem can be used.

Example 1: Given that [f(x) -1| < 3(x + 1)V x e R, can we calculate lim
f(x)?

We know that — 3 (x + 1)< f(x) - 1< 3 (x + 1)?V x. This means that

—3(x + 1)*+1 < f(x) < 3 (x + 1)+1 V x. Using the sandwich theorem and
the fact that

lim[-3 (x+1)>+1] = 1= lim [3 (x + 1)*+1], we get lim f(x) = 1.
Xx—-1 X—-1 x—>-1

[f (X) - L|=]x-p|<ewhenever |x—p | <8, if we choose § = «.

_ G X2
Example 2:Given that 1_TSU(X)£1+7 for all x # 0. Find

limu()-

x—0

2 2
Solution: Since |im{1_%}=1 and |im{1+x7}=1. Then by

x—0 x—0

Sandwich Theorem, it implies that |jmu(x)=1. [ We can observe the

x—0

following figure).

- (] 1
x>
Figure: Any function u(x) whose graph lies in the region between Y = 1+7 and
%2
y :1_7 has limit 1 as x — 0.
3x* +4x

Example 3: Let us evaluate lim
-2 2x+1
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Function And Its b o X2 x
Property y using (if)

.we can use (V) of theorem 2.4.1. Then the required limit is

Iirr21(2x2 + 4X) Iir’g3x2 +lim4x

: = X2 22— by using
|II’T21(2X+1) I|m2x+I|r1211
X—2
lim3limxlimx + lim4limx )
(|) — X—2 x-—>2 x-—>2 x-—>2 X—2 by USlng
lim2limx + lim1
X—2 X—2 X—2
o 3x2x2+4x2 20
(“) = :—:4
2x2+1 5

Check your progress

(1) Show that

1
lim==1
i. x—1 X
- ooxi-1
i. lim =
x—1 X—l

3.

.3
(2) Show that I|n11—=3.
X—)X

: X
(3) Calculate lIm2x + 5( Zj
x>t 1+ X

lim1

X—2

(4) The following graph of the function fsatisfies |jm f(x)=2. In

X—2

the following exercises, determine a value of >0 that satisfies

each statement.

N W b o

-5 -4 -3 -2 -1 1 2 3 4 B=X

UGMM-101/92



i. 1f0<|x=2/<& then |[f(x)-2 <1

ii. 1f 0<|x—2 <& then |f(X)-2/<05

4) The following graph of the function fsatisfies |jmp f (x) = —1. In the

following exercises, determine a value of 6>0 that satisfies each statement.
»

RN

Xx—3

-5 —a4 —3 —2 —1 0O
— 1

1 2w, 3 a4 s5X

. If 0<[x=3 < then |f(x)+1<1

i. 1 0<|x-3 <3 then |f(x)+1<2

5)  The following graph of the function fsatisfies |jmp f(x)=2. In

the following exercises, for each value of ¢, find a value of 6>0

x—3

such that the precise definition of limit holds true.

£t

H M W A

o

—1
—
—
-]
-

i. €=1.5

ii. e=3

6) In the following exercises, use the precise definition of limit to

prove the given limits

i limGx+8)=18

X—2

Limits
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2
. 9
i, ||mX =6

X—3 X_3

. 2X2-3x-2
iii. IImL:S

X—2 X_2

iv. |lim®*+2x)=8

X—2

3.5 Infinite Limits (Limits as x - +o0) Or Limits
as X —oo (Or - )

Take a look at the graph of the function f(x):l, x > 0.This is a decreasing
X

function of x. In fact, we see f(x) comes closer and closer to zero as x gets
larger and larger. This situation is similar to the one where we have a
function g(x) getting closer and closer to a value L as x comes nearer and
nearer to some number p, that is when IXiLrp] g(x) = L. The only difference is

that in the case f(x), x is not approaching any finite value , and is just
becoming large and larger. We express this by saying that f(x) -0 as x
—o0, or limf(x)=0.

Note that, oo is not a real number. We write x —o0 merely to indicate that x
becomes larger and larger.

Let us look again at the function f (x) = Las x — 0*, the values of f grow
X

without bound, eventually reaching and surpassing every positive real
number. That is, given any positive real number B, however large, the
values of f become larger still (as shown in the following figure). Thus, f
has no limit as x — 0*. It is nevertheless convenient to describe the
behavior of f by saying that f(x) approaches o as x — 0*. We write
limf(0=lim>==

x—0* x—0" X

In writing this equation, we are not saying that the limit exists. Nor are we
saying that there is a real number oo, for there no such number. Rather, we

.1
are saying that ||m; does not exists because 1 becomes arbitrarily
x—0* X

large and positive as x — 0*.



You can pel s hagh
as you want hy
imking x closs covongh
s 0, MNo malier hoer
high B is, the graph
8% | poes higher.

You can petd s low as) & — 5
o want by aking
x closc covourgh. ey O

. 1 .1
Figure: One sided infinite limits: ||m;=00 and ||m;=—OO

x—0" x—0"

As x — 07, the values of f(x) = L become arbitrarily large and negative.
X

Given any negative real number —B, the values of f eventually lie below —
B (as shown in the just above figure). We write

lim () =lim~ = .

X—>0" x—>0- X
Again, we are not saying that the limit exists and equals the number -co.
There is no real number -o. We are describing the behavior of a function
whose limit as x — 0~ does not exist because its values become arbitrarily
large and negative.

. 1 . 1
Example 1: Find the||m— and ||mX—

x-1F AT -1 AT 1

Solution: Geometrically, the graph of y :Ll is the graph of y:l
X — X

shifted 1 unit to the right (as shown in the following figure). Therefore

y:L behaves near 1 exactly the way y:l behaves near O;
X

x—1

. 1 . 1
lim-— ==and [im-—=->.

g1t XK~ ol X—

Limits
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Analytically, we can think about the number x — 1 and its reciprocal. As
x 1", we have (X-1)—>0" and %—)oo . As x 1, we have
X_

(x-1) >0 and 1.
x—1

Example 2: Discuss the behavior of the function f (x) = iz as X —> 0.
X

Solution: As x approaches zero from either side, the value of iz are
X

positive and become arbitrarily Iarge (as shown in the just below figure).
This means that |jm f(x) = ||m

x—0 x—0

¥
No matier how
high B is, the graph
goes higher,
fy =
il
Col o
Y0 3 *

Figure: The graph of f (x) = iz approaches infinity as x — 0
X



The function y:l shows no consistent behavior as X — 0. We have
X

l—>ooifx—>0+ but * — —ooif x— 0. All we can sayabout||m
X X x—0

that it does not exist. The function y = iz is different. Its values approach
X

infinity as x approaches zero from either side, so we can say that

1
lim—=

x—0 X

Example 3: The following examples illustrate that rational functions can
behave in various ways near zeros of the denominator.

(x-2)° i (x-2)° i (x-2) _

LM imE s T IiMa)
. (x—2) (x-2) 1
i imy = lime =0 2 = lim (x+2) 4
-3) .. x-3)
. 'X'Il‘x S IMG o
y X —3) -1 (x-3)
. X—2~ _4 X—2~ (X 2)(X+2)
v ||m =1 m& does not exists
. X—2 X 4 x—2 (X—2)(X+2)
X—2 -1
vi. I|m ==lim = )—Ilm -

x—2" (X 2) x—2" (X_Z) x—2" (X 2)

Precise Definitions of Infinite Limits:

Instead of requiring f(x) to lie arbitrarily close to a finite number L for all
x sufficiently close to Xo, the definition of the infinite limit require f(x) to
lie arbitrarily far from zero. (See the figures below).

Definition 1:We say that f(x) approaches infinity as x approaches xo, and
write |jm f(X) =0, if for every positive real number B there exists a

X—Xg

corresponding & > 0 such that for all x,

0<|x=X%|<6 = f(x)>B,

Limits
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Definition 2: We say that f(x) approaches minus infinity as x approaches
xo, and write |jm f (X) = —o, if for every negative real number - B there

X—Xg

exists a corresponding & > 0 such that for all x,

0<|x-x|<6 = f(x)<-B.

3 ¥
\ xp— 8 + 8 //-
N N o Y ;
i} i H
i ' 1 ]
5ok B
i I Eo
8 " ) ! i o
| [ -8
] 1 ]
] 1 ]
n i ]
] 1
] I ]
r 7 0
/ﬂ xg— 8 *a Xg 4+ 8
For xo — 6 <x <Xg+ 9, the graph of f(x) Forxg — 6 <x <xg+ 9, the graph of f(x)
lies above the liney =B lies below the liney =- B
Equivalently,

Definition 3: A function f is said to tend to a limit L as x tends to oo if, for
each &> 0 it is possible to choose K > 0 such that |f (x) — L | <e whenever x
> K.

In this case, as x gets larger and larger, f(x) gets nearer and nearer to L.
We now give another example of this situation.

Example 4: Let f be defined by setting f(x) = 1/x* for all xeR -{0}. Here f
is defined for all real values of x other than zero. Let us substitute larger
and larger value of x in f(x) — 1/x* and what happens (see table 2)

Table 2

X 100 1000 100,000

f(x) = 1/%? 0001 000001 0000000001

We see that as x becomes larger and larger, f(x) comes closer and closer to

zero. Now, let us choose any &> 0. If x > 1/«/3 we find that x > K = |[f
(x) | <e. Thus, limf(x) = 0.



Sometimes we also need to study the behavior of a function f(x), as x
takes smaller and smaller negative values. This can be examined by the
following definition.

Definition 4: A function f is said to tend to a limit L as x — - oo if, for
each &> 0, it is possible to choose K > 0, such that |f(x) — L| <e¢ whenever x
<-K.

2

1
Example 5: Consider the function f : R —R defined by f(X) = .
_|_

What happens to f(x) as x takes smaller and smaller negative values? Let
us make a table (Table 3) to get some idea.

Table 3
X -10 -100 -1000
1 1/101 1/10001 1/1000001
f(X)=—
1+X

We see that x takes smaller and smaller negative values, f(x) comes closer
and closer to zero. In fact 1/1(1 + x?) <e whenever 1 + x*> 1/, that is,

whenever x> (1/e) - 1, that is, whenever either
1|2 1|2 1 12
x<———4 or x>——4 . Thus we find that if we take K=——J.‘
& & €

, then x < - k = | f(x)] <e. Consequently, lim f(x)=0. In the above

example we also find that limf(x) = 0.

X—>00

In the above example, we have the function f(x) = 1/(1+x%), and as x—»,
or x— - oo, f(x) > 0. From Fig. 5 you can see that , as X —o0 0Or X — - o,
or X — - oo, nearer and nearer the straight line y = 0, which is the x-axis.

Similarly, if we say that limg(x) = L, then it means that, as x —oo the

curve y = g(x) comes closer and closer to the straight liney = L.

2
Example 6: Let us show that lim X =
x>e (14 x?)

Now, [x% (1 + x%) -1 | = 1/ (1 + x®). In the previous example we have
shown that |1/ (1 +x%)} <e for x > K, when K = |1/¢ - 1 [Y2 Thus, given

2
X )
—].‘ < &. This

g>0 we choose K=[1/¢ - 1]*?, so that x > K then >
1+ X

2

=1

means that lim

e 14 X

Limits
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_ - 3X+1
Example 7: Suppose, we want to find lim
e 2X+5

Note: We cannot apply Theorem 3 directly since the limits of the
numerator and the denominator as x —oo cannot be found.
Instead, we rewrite the quotient by multiplying the numerator and

3x +1 = 3+(17%) . For x# 0. Now
2x+5 2+ (5/x)

denominator by 1/x for x #0. Then,

we use theorem 3 and the fact that lim 1/x = 0, to get lim

X—>00 x—>o 2x 4+ 5 X—>00
3+@x) lmB+1/x) 3+0 3
2+((B/x) lim(2+5/x) 2+0 2

Remark 1: In case we have to show that a function f does not tend to a

limit L as x approaches p, we shall have to negate the definition of limit.

Let us see what this means. Suppose we want to prove that lim f(x) =L.
X—>00

Then, we should find some &> 0 such that for every &> 0, there is some x
el p-9d, p+d6 forwhich |f(X) — L | >8. Through our next example we
shall illustrate the negation of the definition of the limit of f(x) as X —oo.

Example 8: To show that Iiml;tl, we have to find some &> 0 such that

X—o ¥

for any K (however large) we can always find an x > K such that
1

—-1>e¢.

X 4

This clearly shows that Iiml #1.

X—0 ¥

Example 9: Prove that |imi2 =0o0.

x—0

Solution: Given B > 0, we want to find & > 0 such that

0<[x-0/<5 = X—12>B.

Now, iz> B ifand only if x? <l
X B
Or equivalently, [X < L
VB

Thus choosing 0 = ﬁ (or any smaller positive number), we see that



1 1
|X|<5 27>?2 B.

Therefore, by definition, |imi2 = 0.

x—0 X

Check your progress

(1) Inthe following exercises, use the precise definition of the limit to
prove the given infinite limits.

1
Llim— ==

x>0 X
3

i. lim

= 0
ot (X+1)?

i lim =
1. XI_II' (X—2)2 =

3.6. One-Sided Limits

In the last section, we consider limits at infinity (or negative
infinity) by letting x approach the imaginary point oo (or - o). In this
section we consider the limits at the point p on the real line by letting x
approach p. Because x can approach p from the left-side or from the right
side, we have left-side and right-side limits. They are called one-sided
limits.

In this section we extend the limit concept to one sided limits,
which are limits as x approaches the number p from the left-hand side
(where x < p) or the right- hand side (x > p) only.

To have a limit L as x approaches p, a function f must be defined
on both sides of p and its values f(x) must approach L as x approaches
pfrom either side. Because of this, ordinary limits are called two-sided.

If f fails to have a two-sided limit at p, it may still have a one-sided
limit, that is, a limit if the approach is only from one side. If the approach
is from the right, the limit is a right-hand limit. From the left, it is a left-
hand limit.

X
The function f(X) :M (see the following figure) has limit 1 as x
approaches 0 from the right, and limit — 1 as x approaches 0 from the left.
Since these one sided limit values are not the same, there is no single
number that f(x) approaches as x approaches 0. So f(x) does not have a
(two-sided) limit at 0.

Limits
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Figure: Different right-hand and left-hand limits at the origin

Intuitively, if f(x) is defined on an interval (c, b), where ¢ < b, and
approaches arbitrarily close to L as x approaches ¢ from within that
interval, then f has right-hand limit L at c. We write ||m f(X)=L. The

x—c*

symbol x — ¢* means that we consider only values x greater than c.

This informal definition of right-hand (one-sided) limit is illustrated in the
below figure.

0 € 4 X

Figure : [im f(x) =L

x—c*

Similarly, if f(x) is defined on an interval (a, c), where a < ¢, and
approaches arbitrarily close to M as x approaches ¢ from within that
interval, then f has left-hand limit M at c. We Write|im f(xX)=M . The

X—C~

symbol x — ¢ means that we consider only values x less than c.

This informal definition of left-hand (one-sided) limit is illustrated
in the below figure.



y Limits

T

wd |

0 ——

Figure : [jm f(x) =M

X—C"

X
The function f(x) = M has limit 1 as x approaches 0 from the right, and

limit — 1 as x approaches 0 from the left. Since these one sided limit values
are not the same, there is no single number that f(x) approaches as x
approaches 0. So f(x) does not have a (two-sided) limit at 0. Therefore,

wehave [im f(X) =1 and |jm f(X) =-1. (lllustrated in the following

x—0" x—0"

figure).

Figure: Different right-hand and left-hand limits at the origin
Consider the following example

Example 3.6.1: The domain of f(x)=+4—x*is[-2, 2]; its graph is the
semicircle in the following figure, we have

limv4-x* =0and|jm~v4-x* =0.

x—2" X—2"

The function does not have a left-hand limit at x = -2 or a right-hand limit
at x = 2. It does not have ordinary two- sided limits at either -2 or 2.
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— 0

Figure: |jmv4-x®> =0 and |jmv4-x*=0

x—2* x—2~

Remark 3.6.1: One sided limits have all the properties listed in Theorem
2.4.1 in section 2.4. The right-hand limit of the sum of two functions is the
sum of their right-hand limits, and so on. The theorems for limits of
polynomials and rational functions hold with one-sided limits, as do the
Sandwich Theorem.

Theorem 3.6.1: A function f(x) has a limit as x approaches c if and only if
it has left-hand and right-hand limits there and these one-sided limits are
equal:

limfx=L < |imfx =L and |jmf(x)=L.

Xo>e e gt

Equivalently,

Theorem 3.6.1: The following statements are equivalent:
Q) lim f(x) exists

X—p

(i) lim f(x) and limexist and are equal
x—p*

X—p

Proof. To show that (i) and (ii) are equaling, we have to show that (i) =
(it) and (ii) = (i). We first prove that (i) = (ii). For this we assume that
lim f(x) = L. Then given =¢> 0.36> 0 such that |f (X) — L | <¢ for 0 < | x

X—>p

-p|<a.

Now,0<|Xx—-p|<d=>p<x<p+dandp-do<x<p. Thus, we have [f(x)—

Li<e forp<x<p+3dandp-d6<x<p. This means that lim f(x) =L ELT
X—p

f(x). we now prove the converse, that is, (ii) = (i). For this, we assume
that lim f(x) = !'rp f(x) = L. Then given &> 0, 35;> 0. Such that
X—p =

[f(X)—L|<eforp-81<x<p=f(x)—L|<eforp<x<p+0;

Let & = min {81, 62}. Then for both p-6<x <pandp<x<p+ 3, we have
[f(x) — L| <e. Hence limf(x) = L.
X—p



Thus, we have shown that (i) = and (ii) = (i), proving that they are Limits

equivalent. Also exist and further. limf(x) = )I("P f(x) = 1irpf(x) .
X—p — —

Example 3.6.2: Consider the graph of the function y = f(x)

At x=0:

At x=1:

At x=2:

At x=3:

At X =4:

ol I 2 3 4

lim f(x)=1,

x—0"

|im f(X) and lim f(®) do not exists. The function is not

x—0" x—0

defined to the left of x = 0.

lim f(x) =0, even though f@)=1

x—1"

limf0=1,

x-1"

lim f (x) does not exists. The right and left-hand limits are

x—1

not equal.

lim f(x) =1,

X—2"

Iirpf(X)=1, lim 109 =1.

Even though f(2) = 2.

limfe)=limfe)=limf)=f@=2.

X—3" x—3" x—3

[im f(x) =1 even though £ (4) =1

X4~

lim f(x) and lim f (x) do not exists. The function is not defined

x—4

to the right of x = 4.

At every other point ¢ in [0, 4], f(x) has limit f(c). UGMM-101/105
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Property Definition 3.6.1: We say that f(x) has right-hand limit L at xo, and write

lim f(x) = L (see the figure below)

X—X%g"

If for every number € > 0 there exists a corresponding number & > 0 such
that for all x

Xo <X<X+6 = [f(x)-L<e.

>
L 4+ &« 4~
* x>
Sy Tae=
L = inn hecaa
P
For all x 7= xpn
&5
o -3 3 x
L g q].'l-l-ﬂ

Figure: Intervals associated with the definition of right hand limit

Definition 3.6.2: We say that f(x) has left-hand limit L at X,, and write

lim f(x) = L (see the figure below)

X=Xy~

If for every number € > 0 there exists a corresponding number & > 0 such
that for all x

X, —d<x<X = [f(X)-L<e,

¥
r 4+ e 4~
e L)
r Flx) laes
- im hene
L — e -
For all x == xg
i here
&5
x
+ S L =
o xg — & xp

UGMM-101/106 Figure: Intervals associated with the definition of left hand limit



Equivalently,

Definition 3.6.1: Let f be a function defined for all x in the interval ]p, q[,
f is said to approach a limit L as x approaches p from right if, given any &>
0, there exist a number 6> 0suchthatp<x<p+ &= |f(X) - L | <e.

In symbols we denote this limit by lim f(x) = L.
x—p*

Similarly, the function f: Ja, p[ — R is said to approach a limit L as x
approaches p from the left if, given any €> 0, 36> 0 such that p - < x < p
=|f(x) - L | <e.
This limit is denoted by lim f(x).

X—>p
If we consider the graph of function f(x) = [x], (as shown in the figure) we
see that f(x) does not see to approached any fixed value as x approaches 2.
But from the graph we cansay that if x approaches 2 from the left then f(x)
seems to tend to 1. At the same time, if x approaches 2 from the right, then
f(x) seems to tend to 2. This means that the limit of f(x) exists if x
approaches 2 from only one side (left or right) at a time. This example
suggests that we introduce the idea of a one-sided limit.

Note that in computing these limits the values of f(x) for x lying on only
one side of p. Let us apply this definition to the function f(x) = [x], we
know that for x ex [1, 2], [X] = 1. That is, [X] is a constant function [1, 2[,
Hence Iirg] [x] = 1. Arguing similarly, we find that since [x] = 2 for all x e

[2, 3], x [X] is, again, a constant function on [2, 3[, and lim[x] = 2.
x—2"

Remark 3.6.1: if you apply theorem 3.6.1 to the function f(x) = x — [x] {
see example 3.6.2), you will see that Iirrl1 { x = [x]} does not exist as lim

£ Dy #lim - (3 -

Let us improve our understanding of the definition of one-sided limits by
looking at some more examples.

X
Example 3.6.1: Let be defined on R by setting f(x) = u when x =0 .
X

f(0)=0

we still show that lim f(x) equals -1 . When x < 0, |x| = - x, and therefore,
x—0"

f(x)=(-x)/x= -1. In order to show that lim f(x) exists and equal — 1. We

x—0"
have to start with any €> 0 and then find a 6> 0 such that, if - 6< x < 0,
then [f(xX) — (- 1) | <e.

Limits
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Since f(x) =- 1 for all x <0, [f(x) — (- 1) | = 0 and, hence any number 6> 0
will work. Therefore, whatever 6> 0 we may choose, if - 6< x <0, then |f
(X) = (- 1) |=0 <&. Hence lim f(x) = - 1.

x—0"

Example 3.6.2: f is a function defined on R by setting f(x) = x — [x], for
all x e R.

Let us examine whether lim f(x) exists. This function is given by f(x) = x,

x—1"
ifO<x<1f(x)=x-1if1l<x<2, and, ingeneral f(x) =x-nifn<x<n
+1

Since f(x) = x for values of x less than 1 but close to 1, but it is reasonable
to except that lim f(x) = 1. Let us prove this by taking any > 0 and
x—-1"

choosingd=min|1,e|. Wefind1l-6<x<1=f(x)=xand|[f(x)-1|=x

—1| <d<e.

Therefore lim f(x) = 1. Processing exactly as above, the noting that f(x) =
x—1"

x—=1if 1 <x <2, we can similarly prove that f(x) = 0.

Example 3.6.3: Prove that |[jm+/x =0

x—0"

Solution: Let € > 0 be given. Here xo =0 and L = 0, so we want to find a &
> 0 such that for all x

0<x<s8 = ‘\/;—0‘<g,0r0<x<5 = \/;<€

Squaring both sides of this last inequality gives x < £2 iIf 0<x<&s .

If we choose s = £2 we have

2
0<X<d=6> = JX<E0ro<x<s? :‘&—0‘«9

According to the definition, this shows that ||mx/_ =0 (see the figure

x—0"

below)

Figure: |jm~/x =0

x—0"



The functions examined so far have had some kind of limit at each point
of interest. In general, that need not be the case. Let’s consider the

following example to see this fact.

. (1
Example 3.6.4: Show thaty = Sln(;j has no limit as x approaches zero

from either side.

Solution: As x approaches zero, its reciprocal, 1/x , grows without bound
(1
and the values of Sln(;j cycle repeatedly from -1 to 1. There is no single

number L that the function’s values stay increasingly close to as x
approaches zero. This is true even if we restrict X to positive values or to
negative values. The function has neither a right-hand nor a left-hand limit

atx=0.

(1
Figure: The function y = Sln(;) has neither a right-hand nor a left-hand

In the following exercises, use the precise definition of limit to prove the

U,

limit as x approaches zero.

Check your progress

given one-sided limits.

limvx-4=0.

x—4*

|im\/5— =0.

X—5"

. 8x-3, if x<0
f(X) =-2 where f(x)= ’

IXLrOn ) where  (x) {4x—2, if x>0

. 5x—-2, if x<0
f(X) =3 where f(x)= ’

Ierln ) where 1(x) {7x—1, if x>0

]

Limits
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3.7 Summary

Definition of limit of a function at a given point and to find 6 > 0
for given & > 0, uniqueness of limit of a function is discussed. Algebra of

limits i.e. the limit of sum of two functions i.e. f(x)+g(x), limits of

production of two function i.e. f(x).g(x), limit of %when g(x) #0 etc.

is also described in the unit. Infinite limits i.e. limit of f(x) when x— o0,
one sided limit i.e. left hand limit and right hand limit at a given point is
studied.

3.8 Terminal Questions

1. By & -0 method prove the following:
(i) lim,_,xSin i =0
(i) limy_ox?Sin =0
(i) lim,_,|3x—1| =5
2. If lim,_, f(x) = [ then show that lim,_,| f(x)} = ||
(Hint: Use |f(x) 1| > | | f(x) | - |I] |
3. By & -0 method show that

ox?-1
lim =2
x-1x—1

4.  Give an example to show that if lim,_,, |f (x)] exists then
lim,_,, f(x) may not exist.

Selected Answers To Terminal Questions

1. (i)8=¢ (i)o="e  (iii)5=¢/3

3. 0=¢




UNIT-4

CONTINUITY

Structure

4.1. Introduction

4.2.  Objectives

4.3.  Continuity (Definitions and Examples)

4.4.  Algebra of continuous functions

4.5.  Properties of continuous functions

4.6. Local Boundedness supremum and infimum of a function

4.7.  Boundedness and intermediate value properties of continuous
functions over closed intervals

4.8  Type of discontinuity
4.9. Image of a closed interval under continuous maps.
4.10. Summary

4,11 Terminal Questions/Answers

4.1 INTRODUCTION

A continuous process is one that goes on smoothly without any
abrupt change. Continuity of a function can also be interpreted in similar
way.

Continuous functions play a very important role in calculus. As
you proceed, you will be able see that many theorems which we have
stated in this course are true only for continuous functions. You will also
see that continuity is a necessary condition for the derivability of a
function. But let us give a precise meaning to “a continuous function”
now.

4.2. Objectives

After reading this unit students should be able to:
o Define and evaluate the continuity of a function

e understand the need and use of algebra and properties of
continuous functions

e  Understand the Local boundedness and local maintenance of sign
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o Understand the Boundedness and intermediate value properties of
continuous functions over closed intervals

e Understand the Image of a closed interval under continuous maps

4.3 Continuity (Definitions and Examples)

In this section we shall give you the definition and some examples
of a continuous function. We shall also give you a short list of conditions
which a function must satisfy in order to be continuous at a point.

Definition 4.3.1: let f be a function defined on a domain D, and let r be a

positive real number such that the interval Jp—r, p + rf[c D. f is said to be

continuous at x = p if lim f(x) = f(p). By the definition of limit this
X—>p

means that f is continuous at p is given ¢> 0,3 &> 0 such that [f(x) — f(p)|
<g whenever |x — p| <d.

Example 4.3.1: Let us check the continuity of the function f: R —R such
that f(x) = x at the point x = 0. Now, f(0) = 0. Thus we want to know if
limf(x) = 0. This is true because given ¢> 0, we can choose 6= ¢ and

x—0

verify that |x| <6= [f(x)| <e Thus f is continuous at x = 0.

Remark 4.3.1: f is continuous at x = p provided the following two criteria
are met :

Q) limf(x) exists

(i) Ixii? f(x) =f(p)

Criterion (i) is not met by f, whereas f fails to meet criterion (ii). If you
read Remark 4.3.1 again, you will find that f(x) = x — [x] is not continuous

asx=1. [x] is the largest integer < x. But we have seen that we can

calculate one-side limits of f(x) = x — [x] at x = 1. This leads us to the
following definition.

Definition 4.3.2: A function f :]p, g[ — R is said to be continuous from
the right at x=p

if !(Lrp f(x) = f(p). We say that f is continuous from the left at q if lLrP
f(x) = f(a).

Thus, f(x) = x — [X] is continuous from the right but not from the left at x =
1

since lim f(x) = f(1) = 0.



Definition 4.3.3: Let f be a real valued function defined on an interval 1.
Then,

(i) The function f is continuous at the point pe1 if

[im f(x) = f(p)

X—>p

(i) The function f is said to be continuous on I if f is continuous
atevery peil

Using this definition of the limit, it follows that

e F is continuous at p < 1 if and only if for every e> 0, there
exists 6>0 such that ‘f(X) - f(p)‘ <€  whenever
xel, \x—p\<5.

Remark 4.3.2: Suppose the domain of the function f is not specified
explicitly. Even then we can say that f is continuous at a point p < % to

mean that f is defined on an interval containing p and f is continuous at p.

Theorem 4.3.1: A function f :1 — % is continuous at p < 1 if and only if

for every sequence < X, > in I withX, = P we have f(Xn) - f(p).

Remark 4.3.3: The greatest integer function f : R >R : f(x) = [X] is

discontinuous at x = 2. To prove this lim f(x) = 1 and lim f(x) = 2.

X—2~ x—2"

Thus, since these two limits are not equal Iin;n f(x) =1. Therefore, f is not

continuous at x = 2. In fact f(x):[x] is discontinues at each integral

point.

Example 4.3.2: Let f(x) = |x| for all x € R. This is continuous at x = 0.

Here f(x) = x, if x >0, and f(x) = -x if x < 0. You can show that lim f(x)
x—0"

= lim (- x) = 0 = f(0). Thus Iingf(x) exists and equal f(0). Hence f is

continuous at x = 0.

| Note: f is also continuous at every other point of R. \

4.4. Algebra of Continuous Functions

Suppose f and g are defined on an interval | and both f and g are
continuous at p e 1 . Then we have the following facts.

i. f + g IS continuous at p
ii. k f Iscontinuous at p

iii. fg is continuous at p

Continuity
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f
iv. — for g(p) # 0 is continuous at p

Example 4.4.1: If f(x) IS a polynomial say
f(X) =8, +aX+ e, +a,X", then f is continuous on 3 .

Example 4.4.2: Let f(x) = x" for all xeR and an n € Z*. Show that f(x) is
continuous at x = p for all pe R. We know that lim x = p for any p € R.

X—p

Then, by the product rule in 4.4.3, we get limx" =(limx) (lim X) ....... (
X—p X—p X—p

lim x) (n times)

X—p

=ZPP e p (n times) = p". Therefore, lim f(x) exists and equals f(p).
X—p

Hence f is continuous at x = p. Since p was any arbitrary number in R, we
can say that f is continuous.

Example 4.4.3: For given X, € R, let (X) :‘x—xo‘, xeR. Then fis
continuous on R . To see this, note that, for pewr ,

£ = F(p)| =[x = Xo| =[P = Xo|| <|(X=%,) = (P = %,)| =[x p|.

Hence, for every £>0, we have ‘X - p\ <E> ‘ f(x)-f (p)‘ <&

2

x-1
continuous at x = 0. It is the line y = x + 1 except for the point (1, 2).

is

Example 4.4.4: Suppose we want to find whether f(x) =

2
X" —4
Example 4.4.5: Let f(X)= 5 for x e 92 \{23and f(2) = 4. Then, f
is continuous on R .
_ _ X +3x% +5%°
Example 4.4.6: The function f : 9 — % given by f(X)=——F——
1+X°+Xx

is continuous on R since it is a rational function whose denominator
never vanishes.

Theorem 4.4.1: Suppose f and g are defined on an interval | and both f
and g are continuous at pe1 . Then, if g(p)=0, then there exists

0,>0 such that g(x)=0 for every x in the interval

f
I, =1N(p-35, p+3), and the function . defined on lo is continuous

at p.



Theorem 4.4.2: Suppose f : A— R and g:B — RWhere f(A)=B. Iff
IS continuous at peA and g is continuous at f(p)eB then
go f : A— R IS continuous at p.

Theorem 4.4.3: Suppose f : A— R and g:B — RWhere f(A)=B. Iff
Is continuous on A and g is continuous at f (A) then go f IS continuous
on A.

Theorem 4.4.4: Every polynomial function is continuous on %R and every
rational function is continuous on its domain.

Proof: The constant function f(x)= 1 and the identity function g(x) = x are
continuous on R . Repeated application of the article 4.4 for scalar
multiples, sums and products implies that every polynomial is continuous

on M. It also follows that a rational function 5 is continuous at every

point whereg = 0.

sin(lj if x=#0
Example 4.4.4: The function, f(X)= X

0 if x=0
Is continuous on R \ {0},

xsin(lj if x=0
Example 4.4.5: The function, f(X)= X

0 if x=0

IS continuous on 93\ {0}, since it is the product of the functions that are
continuous on kR \{0} and y - sin y, which is continuous on R . f is also

!

Example 4.45: Using ¢-0 definition to show that the function

continuous at 0 as |f(x)— f(0) = <|x| for x=0. So f is

continuous on R.

f : (0, ) — % defined by f(X)= \/; is continuous on (0, ).

Solution: Leta > 050 a < (0, «) . Given & > 0 we want ‘f (x) _\/E‘ <s .

This is true

o X —a <
[x-4|

&S ——F—=<¢€
Jx+a

Continuity
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So let 55:5\/5 . With this choice, if \x—a\<5€ we have

‘f (x)—f (a)‘ < & . To show this we need a chain of implications.

Because ,
x—a| <&,
= |x-a|< era
x-a  |x—a

7 Jxiva Aa ¢

= [f()-f(a)<e

Therefore f is continuous at x = a. Since this is true for every a in the open
interval (0, o), f'is continuous on (0, o).

Check your progress

i. Show that lim (1/x + 3/x*+5)=5

X—>0

ii. If for some &> 0, and for every K,3 x > K s.t.|f(x) — L | >¢,
what will you infer?

iii. If lim f(x) = L, how can you express it in the ¢ - 5 form?.

. | X
iv. Prove that (@) lim x [x] = 1 (b) |Irp% =1 (¢
X—3" X—
_(X*+2)|x
Ilm—( JIxI_ -2
x—0" X
V. Give ¢ - § definition of continuity at a point from the right
as well as from the left.
Vi. Show that function f: Jp—r, p + r [ > R is continuous at X

= p if and only if f is continuous from the right as well as
from the left at x = p (use theorem 4).

i. Let f:9 —» % be defined by, f(X)=x". Show that
is continuous on R .
ii. Let f:®—>9n be defined by, f(x)=0. If x is

rational and f(x)=1 if x is irrational. Show that f is not
continuous at any point of R .(see the example 4.8.5)
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4.5. Properties of Continuous Functions

Theorem 4.5.1: (Intermediate value theorem). The function which is
continuous on an interval and which is positive at some point and negative
at another must be zero somewhere on the interval. (Proved in Theorem
4.7.3)

Theorem 4.5.2: (Boundedness theorem). A continuous function on a
closed bounded interval is bounded and attains its bounds. (Proved in
Theorem 4.7.2)

Equivalently, Suppose f is a real valued function defined on a closed and
bounded interval [a, b]. Then f is a bounded function.

4.6. Local Boundedness supremum and infimum of
a function

Definition 4.6.1: Let f : 1 — % be a function defined on some set | < R
. The supremumof f on I, denoted by Sup,, f(X) , is defined as
SUp, f(X) = the smallest M such that f(x)<m forallx € 1.

If the function is bounded above, its supremum is finite. If f is not
bounded above on I , then we set SUp,_, f(X)=o,

Definition 4.6.2: Let f :1 — % be a function defined on some set | < R
. The infimumof f on 1, denoted by Inf,_, f(X), is defined as inf,_, f(X) =
the largest m such that f (x) > m forallx € L.

If the function is bounded below, its infimum is finite. If f is not bounded
below on I, then we set Inf,_, f(X)=-o,

Remark 4.6.1:
i) We say that f attains its upper bound if there is some ¢ € I such
that f(C)= sup, f(X) . In this case we also write

max,_, =sup,., f(X), f(c) is called maximum of the function f on
l.

i) We say that f attains its lower bound if there is some d € I such
that f(d) = |an€| f(X) . In this case we also write
min,, =inf,_, f(X), f(d) is called minimum of the function f on I.

However, in many situations it is important to talk about local
maximum or a local minimum. Hence,

Continuity
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Definition 4.6.3: We can say that functionf has a local maximum at c if
there is some interval containing ¢ such that f attains its maximum in this
interval at the point c, note that the interval may be very small so no
information about the behavior of f outside this interval is included in the
definition.

Thus,

We define f(c) to be local maximum of the function f if there is & > 0 such
that [x —c| < & implies £ (x) <  (c).

Definition 4.6.4: We can say that functionf has a local minimum at d if
there is some interval containing d such that f attains its minimum in this
interval at the point d, note that the interval may be very small so no
information about the behavior of f outside this interval is included in the
definition.

Thus,

We define f(d) to be local minimum of the function f if there is 6 > 0 such

that [x—d|< & implies f(x) > f(d).

Equivalently,

Definition 4.6.5: If f defined on some deleted neighborhood D of a point p
or on some open interval with endpoint p (i.e., some set of the form (p-6,
p) or (p, ptd), but f is not necessarily defined at p, then f is locally
unbounded at p if and only if f is unbounded on every deleted
neighborhood of p.

Symbolically, f is “locally unbounded at p” if and only if for every M > 0
and & > 0 there exists x such that 0 < ‘X - p‘ <dand ‘ f (X)‘ >M .

Definition 4.6.6: If f defined on some deleted neighborhood D of a point p
or on some open interval with p as endpoint, then f is locally bounded at p
if and only if f is bounded on some deleted neighborhood of p.

Symbolically, f is “locally bounded at p” if and only if IM >0, §> 0 and
forevery x, 0<|x—p|<d& and |f(X)|<M .

Remark 4.6.2: The basic property of continuous functions is
“Continuous functions are locally bounded”.

Example 4.6.1: consider the function defined by f (x) = 1 can be locally
X

bounded at every point of (0, 1), since it is continuous at every point of (0,
1).



Example 4.6.2: Consider the function f :(0,11—»> %  defined by
f(x):1 for xe(0,1] is continuous, but does not attain its

X

supremum.

Example 4.6.3: Consider the function f :[0,1] —» %  defined by

1 oxe©1]
f(x)=<x" ’ is neither continuous nor the domain is
1 ,x=0

closed and bounded.

Example 4.6.4: Consider the function f :[0,1) —> %  defined by

0, xe[0,1/2) . . _ .
f(x)= is neither continuous nor the domain is
1, xe[l/2,))

closed, but f attains both its maximum and minimum.

4.7. Boundedness and Intermediate VValue Properties
of Continuous Functions over Closed Intervals

Continuous functions on closed intervals not only have to be
bounded, but much more is true: they also have to attain their bounds.

Definition 4.7.1: A real valued function f defined on a set S of R is said
to be bounded if and only if there exists some real number M > 0 such

that for every x e S, [f(X)| <M |

Remark 4.7.1:

i) A real valued function f defined on a finite set S of R ,
thenevery function defined on S is bounded on S.

i) If S is bounded subset of |, then S has infimum and
supremum

iii) Suppose S is bounded, and let inf S =« and sups = g, then
there exists the sequences <S, > and <t, > in S such that

S, = & and tn—)ﬂ_

iv) A subset S of R is unbounded is and only if there exists a
sequence < S, > in S such that [s,| - coas N —> o0,

Definition 4.7.2: A real valued function f defined on a set S is unbounded
if and only if it is not bounded on S, i.e., iff no matter how large we take

M to be, there is always some point x in S with ‘f (X)‘ >M .

Continuity
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Equivalently,

Definition 4.7.3: A real valuedfunction defined on a set S — R is said to
be a bounded function if the set {f (x): x e S} is bounded.

A function is said to be an unbounded if it is not bounded.

N
FIN\L 9=+%

— S G

R

An unbounded continuous function on (0, 1].

Remark 4.7.2:
i) A function f : s — 93 is bounded if and only if there exists
M>0 such that | f (X) <M V xe$ .

i) A function f : s — 9t is unbounded if and only if there exists
a sequence (X,) €S such that ‘f(xn )‘ —0o0 as N— o,

Theorem 4.7.1: Let f is a real valued function defined on a closed and
bounded interval [a, b]. Then, f is a bounded function.

The following result explains why closed bounded interval have nicer
properties than other ones.

Theorem 4.7.2: (Boundedness Theorem): A continuous function on a
closed bounded interval is bounded and attains its bounds.

Proof: Suppose f is defined and continuous at every point of the interval
[a, b].

Let us assume f is not bounded above. Then, we could find a point x; with
f(x1)>1, a point x, with f(x,)>2,.........,.. . Now look at the sequence (Xy).
By the Bolzano Weierstrass theorem it has a subsequence (xi) which
converges to a point « €[a, b]. By our construction the sequence (f(x;)) is
unbounded, by the continuity of f, this sequence should converge to f(a)
and we have a contradiction.

Similarly it can be proved that f is bounded below.



Now, to show that f attains its bounds. Let M be the least upper bound of
the set S={f(x)/x¢[a b]}. We need to find a point S <[a, b] with
f(B)=M . To do this, we can construct the sequence in the following

. . 1
manner. For each n € N, let x, be a point for which |M —f (Xn)| < . Such

a point must exists otherwise M —— would be an upper bound of X.

Some subsequence of (X, X2, ....... ) converges to B (say) and
(f(x), f(x,),.....) > M and by continuity f(8)=M as required.

Similarly, it can be proved that f attains its lower bound.

Let us consider the following examples to show why we must have a close
bounded interval for the above result to work.

Example 4.7.1: Consider the cases where interval is not closed

) The function f : (0, 1] —> R defined by f(x) :% is continuous
but not bounded as it does not attain its supremum.

i) The function f :[0, 1) —> R defined by f(X) = x is continuous
and bounded but does not attain its least upper bound of 1

Example 4.7.2: Consider the cases where interval is not bounded

i) The function f:[0, ) >R defined by f(X)=x s
continuous but not bounded as it does not attain its infimum.

i) The function f:[0, ©) >R defined by f(x)=1L is

continuous and bounded but it does not attain its least upper
bound of 1.

Theorem 4.7.3: (Intermediate Value Theorem): Let f be continuous real
valued function defined on a set S — R in the closed interval [a, b].
Suppose c is a real number lying between f(a) and f(b). (That is, f(a) < ¢ <
f(b) or f(a) > ¢ > f(b)). Then there exists some xoe]a, b[, such that f(xg)=c.

Proof: Without loss of generality, assume that a<b . Let
S={xela, b]: f(x)<c}. Then,

S is non-empty (since a € S) and bounded above (since x <X, for all
XeS).

Let sup S = a. Then there exists a sequence (X,) in S such that x, - «.

Note that & € [a, b].

Hence, by continuity of f, f(x,) > f(«). Since f(x,)<c forall ne N,
we have f(a)>c. Note that o = bsince f(a)<c< f(b).

Continuity
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Now, let (y,) be a sequence in (&, b) such that y, — « . Then, again by
the continuity of f, f(y,) > f(«). Since y, >a, y, ¢S and hence
f(y,)>c. Therefore, f(a)>cC.

Thus, we have proved that there exists X, =« such that
f(x,) <c< f(x,) so that f(xo)=c.

Note: How can we interpret this geometrically? We have already seen
that the graph of a continuous function is smooth. It does not have any
breaks or jumps. This theorem says that, if the points {a, f(a)) and (b,
f(b)) lie on two opposite sides of a line y = ¢ then the graph of f must
cross the liney = c.

The following corollaries are immediate consequences of the above
theorem.

Corollary 4.7.1: Let f be a continuous function defined on an interval.
Then range of f is an interval.

Corollary 4.7.2: Suppose f is a continuous real valued function defined on
an interval 1. If a, b € I satisfy a < b and f(a)f(b) < 0, then there exists
X, € | suchthat a < x, <b and f(xo) = 0.

Example 4.7.3: Consider the continuous function f :[0, 1] — [0, 1]. Then
there is some point ¢ [0, 1] such that f(c) = c.

Solution: First we observe that clearly f(c) = ¢ means f(c) — ¢ = 0. This
motivates one to introduce function g(x) = f(x) — x. We immediately see
that g is continuous ( on [0, 1] ) as the difference of two continuous
functions. We also have g(0) = f(0) > 0 and g(1) = f(1) -1 < 0 because of
the assumption that 0 < f(x) < 1 for all x € [0, 1]. But now the
intermediate value theorem assures us that there is some ¢ € [0, 1] such
that g(c)=0, i.e., we have f(c) = c as required.

Theorem 4.7.4 Let a function f be defined and is continuous on a closed
interval[a,b] then f attains its supremum.



Proof Let M be the supremum of f on the interval[a,b] then we show

that there exist a point X, €[a,b] such that f(x,)=M if possible let
f(x) <M, forall xe |

then M — f(x) >0 forallx e [a,b].

Let g be the function defined on [a,b]as

g(x) = forall xe[a,b]

1
M — f (%)

since f(x) is continuous on[a,b] and therefore g(x) is also continuous on

[a,b]. Since every continuous function on a closed interval is bounded

therefore g(x) is bounded that is there exist a real number k such that
g(x)<k forall x € [a,b]

therefore ;S k forall xe[a,b]
M — f(x)

or f(X)<M —% forall x e[a,b]

and soM —% IS an upper bound of f and this contradicts the fact that M is

the supremum of f and therefore there exist some x, € [a,b] such that f(
X,) =M.

Theorem 4.7.5. Let a function f be defined and continuous on a closed
interval[a,b] then f attains its infimum.

Proof Let m be the infimum of f then we show that there exist a point
X, € [a,b]

such that f(x,) =m.

Now we apply the theorem 4.7.5 to the function — f

Note: If the interval is not closed then there 4.7.4 and 4.7.5 will not
old. For example

Example4.7.4: Let f be defined on open interval (0, 1) such that f(x) =x,
for all xe (0,1) then f is continues in (0,1). It is bounded above in (0,1).
The supf = 1but there is no point in (0,1) at which f(x) = 1.

Example 4.7.5: Let f be defined as
1'e

1

v for all XxeR.
+X

f(x)=

Continuity
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then f is continous on R. It is bounded both below and above. Supf =1
and inf f = 0 supf is attend at x = 0 but inf f i.e. not attained is there is no
point in R at which

f(x)=Inf f=0

Example 4.7.6: Show that there exists an x,e(0,1) such that
CoS(X,) = X, -

Solution: Let f :[0, 1] - R be defined by f(Xx) =cosx—x. Then, f(x) is
continuous function on [0, 1] and f(1) < 0 < f(0). Therefore by the
intermediate value theorem there exist a point x, € (0,1) such that

f(x,)=0.1.e., cos(x,) =X,.

A
J=x
A ks

'3=Cﬂ‘!-t:}

Using Intermediate VValue Theorem to show the root exists

Remark4.7.3: Continuous functions on closed interval are bounded.

Example 4.7.7: The function f(x) = x? is bounded on the interval | = (-1,
1). Indeed, we have

0<f(x)<lforallx €1l

Example 4.7.8: The function f (X) =10n I = (0, 1) is bounded below but
X

not above. Indeed the image of I under fis f (I) = (1, ), so f on I is
bounded below but not above.

Example 4.7.9: The function f(x)=tanx on | =(-x/2, 7/2) is

bounded neither above nor below on I. Indeed we can easily see that f (I) =
(o0, 0).

Note: Thus, we may have all the possibilities of functions being bounded
or unbounded on open intervals. However, this changes completely if the
interval 1 is closed.



4.8 Type of discontinuity Continuity

Definition 4.8.1: Let f be a function defined on an interval [a,b]. of fis
discontinuous at a point pe [a,b] then we have the following types of
discontinuity

1. Removable discontinuity:- f has removable discontinuity at the
point p if lim f(x) exist but is not equal to the value f(p).
X—=>p

2. Discontinuity of the first kind:- f has discontinuity of the first
kind at the point p if the left hand limit ( LHL) and right hand
limit(RHL) limit exist at p but they are not equal.

3. Discontinuity of the second kind:- f has discontinuity of the
second kind at the point p if neither left hand limit nor right hand
limit exist at the point p.

4. Infinite discontinuity:- A function is said to have infinite
discontinuity at a point x = p if f(x) is infinite at x = p

Example 4.8.1: Let f be defined on R as

fo)=21X x40
X
thenlim f (x) = lim 22X —1
x—0 x—0 X

Iirr(} f (x) exist but is not equal to f(0).
=~ T has a removable discontinuity.

Example 4.8.2: Let f be defined on R as

0, when x=0
1
f(X) = e;
1
1+ex

when x =0

1

h

.
- =0 (~lime"=0)

_= h—0
l+e "
1

h

thenat x=OLHL = lim f (0—h) = lim

thenat x=0RHL = Ihmg f(o+h):Lin3

1

RIL-145
I
3
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~ LHL and RHL at x = 0 both exist but they are not equal. Therefore, f
has discontinuity of first kind.

Example 4.8.3: Let f be defined on R such that
0, when x=0
f(x)=

sin1 when x =0
X

Here none of the limits Lirrg f(o—h)and Ihirrg f (0 + h) exists. Therefore,

f has discontinuity of second kind.

SOME TYPICAL EXAMPLES
Example 4.8.4: (Dirichlet function) Let f defined on R as

1, when xis rational
f(x)= .
-1, when xisirrational

then f is discontinuous at every point in R

Case 1 Let p be a rational number, for each positive integer n let p, be an

o 1

irrational number such that |pn - p| <— then the sequence{ pn} Converse
n

topitisgiventhat f(p,)=-1,foralln (- pyisirrational)

lim f(p,)=-1and f(p)=1since p is rational

Thus lim f(p,) = f(p) so fis discontinuous at p.

Case 2 Let p be irrational. Now for each positive integer n let p, be a
rational number such that

| p, — pl < %Then {p,} convergestop

Now lim f(p,)=1 (science p, is a rational number) and f(p) = - 1
science p is irrational Thereforelim f(p,) = f(p).Thus f is discontinuous
at p.

Example 4.8.5: Let f be defined on the interval[-1,1] such that

0, if xisrational
f(x)= e
X, if xisirrational
Thus f is continuous only at x = 0.

Let p be any point of [—1,1] for each positive integer n choose a rational
numbera, and irrational number b, belonging to[-1,1] such that



1 Continuit
|an—;o|<%and|bn—p|<H nuity

Then lima, =p=Ilimb, ... @

n—o0 n—oo

f is continuous at the point p then we must have
Lm f(a,)=f(p)= Lm f(b,) foralln

But f(a,)=0 (~a,is rational )

And f(b,)=b, (+Db,is irrational)
Therefore we have

0= f(p)=lim f (b,)
or0=f(p)=p form(1)

Therefore 0 is the only positive point of discontinuity we show that f is
discontinuous at the point 0

For >0 let& =¢€/2then

x=0] <8 =|f(x)- f(0)|=0 ifx s rational
And |x—0|<5 = |f(x)— f(0)|=|x| <5 < 3 if x is irrational
Therefore [x—0| <5 =|f(x) - f(0)| < 3 and so fis continuous at x = 0.

Bracket function:-

Definition 4.8.21: Let x be a real number then[x] (bracket x ) is defined

as largest integer < x. i.e. if x is an integer then [x] = x

And if x# an integer but x lies between the integer n and n+1 then[x] =X

Example 4.8.6:

[0]=0, [1.9]=1 [-1.9]=-2
0<x<1=[x]=0,
2<x<3=[x]=2,

—2<x<-1=[x]=-2etc.

Example 4.8.7: Let f(x)=[x] where [x] is the largest integer < x then
f(x) is continuous at each point in R except at the integral points.

éasel First we show that if x = a is an integer then f (x) is discontinuous

atx=a
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LHL(atx =a) = Ihmg f(a—h)
= Ling[a— h] (~where h— 0 then a-h lies between the

=a-1
integer a—1 and a)

RHL (atx =a) = LILTJ f(a+h)
= IhiLrg[a+ h] (~where h— 0 thena + h lies between the
=a
integer a and a +1)
Since LHL#= RHL atx =a

Therefore f is not continues at X = a.

Case 2 Let X, # aninteger. We show that f is continues at X,
Let x, lies between the integer x and x+1
LHL (atx = x;) = lim £ (x, —h)
= Ihiirg[x0 —h]  (~where h— 0 then x, — h lies between
=X
the integer x and x+1)
RHL(atx =X,) = Llirg f(x,+h)

= Ihirrg[x0 +h]  (~where h— 0 thenx, + h lies between the

=X
integer X and x +1)

Value atx = x;, = f(x,)

[%]=x Since X, lies between the integer x and x +1

Example 4.8.8: Let f defined on R as

—x? where x<0

5x-4 where 0 < x<1
4x* —3x wherel<x<?2
5x+4 where x> 2

f(x) =

Discuss for continuity

(Hint test for continuity at the points x = 0, 1, 2 the function will be
continuous at all other points).



Example 4.8.9: Let fdefined on R as
0, when x =0
1

f(X) =1 exsin1/x

1
1+ex

when x#0

Test for continuity at the point x = 0.

Example 4.8.10: Let f defined on R as

f@ =0
f(x0)=%—xwhereo<x< 5
1 1
r(3)=3
3 1
f(xO)—E—xwhere§<x< 1
f=1

Show that f is discontinues at X = O,% 1

4.9. Image of a Closed Interval under Continuous
Maps

Theorem 4.9.1: The image of an interval under a continuous map is also
an interval.

Proof: Let f :1 = R be a function defined on some interval | — R. If
f(a), f(b) e f(l)and c lies between them, then by the intermediate value
theorem there is an x between a and b with

f(x) = c.

Theorem 4.9.2: The image of a closed bounded interval under a
continuous map is closed and bounded.

Proof: By theTheorem 4.7.1, the image of an interval | = [a, b] is bounded
and is a subset of [m, M], where m and M are the least upper bound and
greatest lower bound of the image. Since the function attains its bounds,
m, M € f(l) and so the image is [m, M].

Continuity
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4.10 Summary

Definition of continuity by &-6 method, to find 6 > 0 for a given
function for a given €> 0 is studied. Algebra of continuous function i.e.

continuity of a f(x) + g(x), f(x).g(x),% ,g(x) # 0 c.f(x) is discussed.

Continuity of composite of two functions, properties of a continuous
function on a closed interval with reference to bounded function is
described. Supermem and infemum of a function, intermediate value
theorem, image of a closed interval under continuity is described.
Examples of continuous function with the help of left hand limit and right
hand limit, types of discontinuity of a function at a given point is
discussed. Examples to be done with the help of LHL & RHL are also
provided for better understanding.

4.11 Terminal Questions

1 -1

ex—ex

1.  Show that lim,_,, ————= does not exist.

ex+ex

2. Letfbe defined on R as

1
_ 7,Xx #0
flx) = 1 —ex
0, x=0
Is f continuous at x = 0? (Answer: No)
3. Letfbedefined on R as
1 if x>0
fx)=4-1, if x<0
0, ifx=0

Show that f has a discontinuity of the first kind at x =0.
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UNIT-5

DIFFERENTIABILITY AND
DERIVATIVES

Structure

5.1.  Introduction

5.2.  Objectives

5.3.  Differentiability of a function at a point

5.4. Definition of derivative of a function and its geometrical
interpretation

5.5.  Differentiability on an interval; One-Sided Derivatives
5.6.  Derivatives of some simple functions

5.7.  Algebra of derivatives

5.8.  Continuity versus Differentiability

59. Chain Rule

5.10. Sign of derivatives and monotonicity of functions

5.11. Derivatives of Exponential Functions

5.12. Derivatives of Logarithmic Functions

5.13. Summary

5.14. Terminal Questions

INTRODUCTION

The history of mathematics presents the development of calculus
as being accredited to Sir Isaac Newton (1642-1727) an English physicist,
mathematician and Gottfried Wilhelm Leibnitz (1646-1716) a German
physicist, mathematician. The introduction of calculus created an
explosion in the development of physical sciences and other areas of
science as calculus provided a way of describing natural and physical laws
in a mathematical format which is easily understood.

It is another property of a functions. The co-founders of calculus
are generally recognized to be Gottfried Wilhelm von Leibnitz (1646-
1716) and Sir Isaac Newton (1642-1727). Newton approached calculus by
solving a physics problem involving falling objects, while Liebnitz
approached calculus by solving a geometry problem. Surprisingly,
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solution of these two problems led to the same mathematical concept
called the derivative.

In the previous units we have studied the concepts of limits and
continuity. In this unit we can see the interpretations of the derivative of a
function at a point. We then extend the concept of derivative from a single
point to the derivative of a function; we develop the rules of finding
derivatives of functions easily, without having to calculate any limits
directly. These rules are used to find derivatives of most of the common
functions as well as various combinations of them.

The differentiability (Or derivative) is one of the key ideas in
calculus, and is used to study a wide range of problems in mathematics,
science, economics, medicine, engineering etc.

5.2. Objectives

After reading this unit you should be able to:

» define the differentiability of a function and its geometrical
interpretation

evaluate the derivative of the given function

identify the rule of differentiation to find the derivative of a given
function

>  Differentiate the trigonometric, inverse trigonometric, hyperbolic
and inverse hyperbolic functions.

» Understand the need of logarithmic differentiation, implicit
functions differentiation and chain rule.

5.3. Differentiability of a function at a point

Definition 5.3.1: The derivative of a function f at a point a, denoted by
f’(a) is defined as

Provided this limit must exist

'@ =lim

f(a+h)-f(a)
h—0 h
OR
Geometrically,

The important generalization of the ‘the tangent line to the graph of a
function y = f(x) at a point P =(c, f(c))on its graph is defined as the

line containing the point P whose slope is m = Iim—f () - 1(c)
X—C X_C

provided



this limit exists. If the slope m exists, an equation of the tangent is given
by y—f(c)=m(x-c).

A ¥

Q== flxy )}
L,
/- F= e flc))
'..l"'

i
L =

Now, let’s define the derivative of the function y = f (x) at the point c .

5.4. Definition of derivative of a function and its
geometrical interpretation

Definition 5.4.1: Let f be a function defined on an interval | containing a.
f(x)-f(a)

X—a

If X+ a isin I, then the expression mg, = is called

difference quotient.

Geometrically, This gives the slope of the secant line by choosing a value
of x near a and drawing the line through the points (a, f(a)) and (x, f(x)) as
shown in the following figure

¥

Mgnc N = &

Also, if h = 0is chosen so that a+h isin I, then the difference quotient

Is given by m_, = fla+ hr: -~ @,

Differentiability
And Derivatives
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We can also obtain the slope of the secant line by replacing the value of x

with a + h , where h ia a value close to a and drawing a line through the
points (a, f(a)) and (a+h, f(a+h)) with the increment h as shown in the
following figure.

(& + h. fla + hy)

(a, fla})

a4

H

x
x!

Definition 5.4.2: The derivative of the function f(x) with respect to the
variable x is the function f’ whose value at x is

£ = [im O hr: ~T™) provided this limit must exist
h—0

We use the notation f(x) in the definition to emphasize the independent
variable x with respect to which the derivative function f’(x) is being

defined. The domain of f’ is the set of points in the domain of f for
which the limit exists, which means that the domain may be the same as or
smaller than the domain of f. If f’exists at a particular x, we say that f is

differentiable ( has a derivative) at x. If f’ exists at every point in the
domain of f, we call f is differentiable.

If we write z=x+h then h=2z-x and h approaches to zero if and only
if z approaches to x. Therefore, an equivalent definition of the derivative is
as follows ( see the figure). This formula is sometimes more convenient to
use when finding a derivative function, and focuses on the point z that
approaches X.

w = fflx)
Socanl shopss 15
Fizy — fxy

T — x

Sy — =y
l

]
:-q—h=z—:l:—_-l
n

—_ e e
x z=x+ k

===

Denvatve of fal x is
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Thus, the alternate formula for the derivative is given by Differentiability
f(z)—f(x And Derivatives

Z—)X —-X

Remark 5.4.1: The process of calculating a derivative is called
differentiation. To emphasize the idea that differentiation is an operation

performed on a function y= f(x), we use the notation %f(x) as

another way to denote the derivative f’(x) . Thus, for the function
= f(x) each of the following notations represents the derivative of f(x):

f/(x), —,y, X(f(x))-

Equivalently,

. d . )
. The notation d—y , often referred to as the Leibnitz’s notation.

X

o ltcan also be written as g_x = —( )= [f (x)]. Where —[f (x)]

IS an instruction to compute the derlvatlve of the functlon f with
respect to its independent variable X .

e A change in the symbol used for the independent variable does not
affect the meaning. If s= f(t) is a function of t, then % IS an

instruction to differentiate f with respect to t.

5.5. Differentiability on an interval; One-Sided
Derivatives

A function y = f(x) is differentiable on an interval (finite or infinite) if it

has a derivative at each point of the interval. It is differentiable on a closed
interval [a, b] if it is differentiable on the interior (a, b) and if the limits

f(a+h)-f(a)

|im . Right-hand derivative at a and, h > 0
h—0*

lim b+ hr)] ~T®) | ¢ft-hand derivative at b, h< 0

h—0~

exist at the endpoints (as shown in the following figure).

Right-hand and Left-hand derivatives may be defined at any point of a
function’s domain. Because, a function has a derivative at a point if and
only if it has left-hand and right-hand derivatives there, and these one-
sided derivatives are equal.
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Note:

If h > 0 then left hand derivative at ‘a’ is |m

h—0"

f(a+h)- f(a)

f (a_ Ii)h_ f (a) — Lf l(a)

And right hand derivative at ‘a’ is |jm h =Rf '(a)
h—0*
f will be differenciable at x=a
if Lf ‘() = Rf ()
Slope =
i T+ #: — Sl
Slope =
fim fla + k) — fila) é.' :
) & i i
1 ]
1 ]
1 ]
1 ]
1 ]
1 1 ]
1 | 1 ]
1 | 1 ]
1 | 1 ]
1 | 1 ]
a a4+ h b+ h [ *
h =10 h-=0

Figure: Derivatives at the end points are one sided limits Consider the
following example,

Example 5.5.1: Show that the function y = |x| is differentiable on (-0, 0)
and (0, o) but has no derivative at x = 0.

Solution: From the section 3.3, the derivative of y = mx+b is the slope
m. Thus, to the right of the origin,

d d d
—A\X|)=—(X)=—(@1..X) =1.
dxq |) dx( ) dx( )
And, to the left of the origin,

d d d
—I\[X])=—(-x) =—(-1..x) =-1.
dx(H) dx( ) dx( )

There is no derivative at the origin (See the following figure), because the

one-sided derivatives differ there.




Differentiability
3"; And Derivatives

Y

¥ not defined at x = 0
nght-hand denvatve
# kedt-hand denvative

Right-hand derivative of |x at zero = |im P-+nl-pf = lim i
h—0* h h-0* h

lim~ lh[=h when h>0

h-o0* h
=liml=1
h—0*
. 0—-h|[-[0 h
Left-hand derivative of |x| at zero = im w — lim ﬂ =-1
h—0* - h h—0" — h
0, when x=0
Example 5.5.2: Show that f (x) =< . 1 Is continuous but
xsin= when x%0
X
not differentiable at x = 0.
First we check limitatx =0
LHL lim f(x)=Ilim f(O—h)—Iim—hsin(—l)—Iim hsini
X—0" N h—0 - h—0 h - h—0 h
= 0x ( finite number between —1to +1)
=0
RHL lim f(x):limf(0+h)=limhsinl
x—0" h—0 h—0 h

= 0x ( finite number between —1to +1)
=0

LHL = RHL = Value of the functionat x =0is 0 i.e. f(0) = 0.

This shows that function is continuous at x =0 .

Now we check differentiability at x = 0.
UGMM-101/139



Differential
Calculus

UGMM-101/140

.1
L ~hsin(->-)-0
LHD Iimf(0 ) 1:(()):Iim—h
h—0 _h h—0 _h
: .1
= lim-sin)

= anumber which s oscillates btween—-1tol
=dose not existy

1
RHD lim 0+ =T _ i, heinty)=0

h—0 h h—0

o1
= LI_I’)I’(}SIH(F)
=anumber whichis oscillates btween—1tol

=dose not existy

RHD and LHD does not exists, thus f(x) is not differentiable at x = 0 but it

is continuous.

Example 5.5.3:
X sin1 when x =0
Show that f (x) = X Is continuous and differentiable
0, when x=0
atx =0.
First we check limit at X = 0
- _ - _ _ - _ 2 - 1 _ - 2 - _ 1
LHL XILT f(x)_m f(0 h)_Ihlgg(O h) sm(ﬁ)_lhlggh sin "
= 0x ( finite number between—1to +1)
=0
. i . -1 .1
RHL lim f(x)=1lim f(0+h)=I1im(0+h)°sin——=Ilimh“sin—
x—0* h—0 h—0 O+h h—0 h

= 0x ( finite number between—1to +1)
=0
LHL = RHL = Value of the function at x =0 = f(0) = 0.

This shows that function is continuous at x = 0.

Now to check differentiability at x = 0.



s ., 1 Differentiability
(=h) Sm(_ﬁ)_o And Derivatives

LHD 1im =M= _ i,
h h—0 —h

h—0 —

. .1
= Ihlm hsm(ﬁ)
= 0x (anumber whichis oscillates btween—1to1)
=0
¢ hzsin(l)—o
im0 =TO) _yp, h

h—0

RHD

h—0
: .1
= Ihlgg hsm(ﬁ)
= 0x (anumber whichis oscillates btween—1to1)

=0
RHD and LHD are exists, thus f(x) is differentiable at x = 0 and it is

continuous
.1
F(x)=x*sin=
(x) =" sin-_
f(x)= xz.cosli—izjﬁin 1 ox
X\ X X
, 2xsin£—cosi forx=0
f'(x)= X X
0 forx=0

To check continuity of f’(x) at x = 0.

: e L .1 1
LHL XILT f(x)=L|Lr(1)f (O—h)_lhlir(} 2(0—h)sm(ﬁ)—cos(ﬂ)

=lim2h sini—cosi
h—0 h h

=0-1Ilim cosi
h—0 h

=0-does not exist
=does not exist

PP e 1
RHL XILr(r;f (x)_Ll_r)rgf (O+h)_L|£g2(0+h)smﬁ—cosF
== 0-does not exist

= does not exist

Hence f’(x) are not continues at x = 0.
UGMM-101/141
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Find the derivatives of the following functions at their given points

1)  f(x)=x*+9x at the point x = 2
2) f(x) =+4/x—2 atthe pointx =6

3) f(x) :L at the point x = -1
X—3

1
4)  f(x)=—= atthe pointx = 4
Jx
5  f(x) =i3 at the point x = 1
X

6)  Discuss the continuity and differentiability of f(x) at x =0

1. ,
—sinx® when x#0
f(X)=<x

0, when x=0
7)  Todiscuss the nature of the function f(x) atx =1

(x—l)sinL when x #1
x-1

f(x) =

0, when x =1

5.6 Derivatives of some simple functions

Example 5.6.1: Differentiate the functionil.
X —

Solution: Consider, f(x) :Ll.
X —

By the definition 5.4.2; '(x) = |im f(x+h)-f(x)

h—0 h
X+h X
) 2 limXth=l x=1 e (X )(x=1) - x(x+h-1)
v Ihlm h Ih'fp h.(x=1)(x+h-1)

i xz—x+hx—h—x2—xh+x_|. - _ 1
M an-y) MGy xeh-1 ~ (x-1)

Example 5.6.2: Find the derivative of the function f(x) :12_—)( at the
X

point x = -1.

Solution: By the definition 5.3.1; f'(a) = |im flarh - f(a)

h—0 h

UGMM-101/142




f(~1+h)— f(=1)

LD =1im

h—0 h
[1-(-1+ h)]+1
i 2L
h—0 h
(2=h)+(2h—2) h 1
“lim— oy “limigh 2 ~limy ==

Example 5.6.3: Differentiate the function sin x.
Solution: Consider, f(x)=sinx.

By the definition 5.4.2; f/(x) = |im f(x+h)—f(x)

h—0 h
TINRT sin(x+h)—sinx . sinxcosh+ cos xsinh—sin x
-0 =1im . =lim :
h—0 h—0
sin X + cos xsinh—sin x sinh sin x
= _cosx||m——cosx since [im——=1
h—0 h h—0 h x—0 X

Example 5.6.4: Find the derivative of the function f(x) = Jx at the point
X=4.

Solution: By the definition 5.3.1; f'(a) = |im flaxh - f(a)

h—0 h

1@ =im f(4+hr)]—f(4)

Jih-a
h

i V4+h—2xV4+h+2
M= V4+h+2

(4+h)—4 h 1

zlr!mh(\/4+h+2)_Il!mh«/4+h+2 "4

Example 5.6.5: Differentiate the function +/x—3.

Solution: Consider, f(x) = +/x-3.

By the definition 5.4.2; £ (x) = [jm - = ()

h—0 h
. f,(x):”m\/x+h—3—\/x—3:Iime+h—3—Jx—3X\/x+h—3+\/x—3
. h—0 h h—0 h \/X+h—3+\/x—3
. X+h-3)-(x-3 . h 1
=lim ( ) - (x_39 lim =

150 h(VX+h—3+/x-3) n50 h(Wx+h—-3+/x-3) 2Jx—3

Differentiability
And Derivatives
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Calculus Example 5.6.6: Differentiate the function —.

Ix

1
Solution: Consider, f(x)=—.
Jx

By the definition 5.4.2; f'(x) = |im f(x+h)-f(x)

h—0 h

1 1
x+h 4x “lim Wx)-(x+h) (x)+@x+h)
h s hX(yx +h) (\/_)+(\/x+ h)
X—(x+h)

“limy G (V) + (Vx )

B f’(x)=|im

h—0

1

) —h - _ -1
= 0+ (em) O ) 2xix

Example 5.6.7: Differentiate the function f(x) =+/x . Graph both f(x)
and f'(x)

Solution: By the definition 5.4.2; f'(x) = |im o) = 100

h—0 h
) f’(x):|' «/x+h—\/§:|. «/x+h—\/;x«/x+h+\/§
. r!m h r!m h Ix+h+4/x

i X+h-x i h 1
r!mh(«/x+h+\/;)_ r!mh(«/x+h+\/;)_2\/;

It we graph the functions f(x) and f’(x) as shown in the following
figure. First we notice that f(x) is increasing over its entire domain,
which means that the slopes of its tangent lines at all points are positive.
Consequently, we expect f'(x)>0 for all values of x in its domain.
Furthermore, as X increases, the slopes of the tangent lines to f(x) are
decreasing and we expect to see a corresponding decrease in f’(x). We
also observe that f(0) is undefined and that |jm f(x) =+~ ,

x—>0*

corresponding to a vertical tangentto f(x) atO.

UGMM-101/144




The derivative is positive everywhere because function f(x) is increasing. Differentiability

: : : ) And Derivatives
Example 5.6.8: Differentiate the function f(x)=x"—-2x. Graph both

f(x) and f'(x).

Solution: By the definition 5.4.2; f'(x) =|im o) = 1)

h—0 h
) X +h)? = 2(x +h)]-(x? = 2x
y f/(x):“m[( ) ( 4 ) =( )
h—0
. X>+2xh+h?—-2x—2h—x? +2x
=lim .
h—0
. 2xh+h?=2h .. h(@x+h-2)
=I|mf=llmf=2x—2-
h—0 h—0

The graphs of f(x) and f'(x) as shown in the following figure. Observe
that f(x) is decreasing fir x < 1. For these same values of x, f'(x)<0.
For values of x > 1, f(x) is increasing and f'(x)>0. Also f(x) has
horizontal tangentat x =1 and f'(1)=0.

The derivative f’(x) <0 where the function f(x) is decreasing and
f/(x) >0 where f(x) is increasing. The derivative is zero where the
function has a horizontal tangent.

Example 5.6.9: To graph the derivative of the function y= f(x) as
shown in the figure (a).

Solution: We sketch the tangents to the graph of f at frequent intervals and
use their slopes to estimate the values of f’(x) at these points. We plot

the corresponding (x, f’(x)) pairs and connect them with a smooth curve
ds shown in the figure (b).
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The following points can be noted from the graph of y = f/(x).

I. where the rate of change of f is positive, negative or zero;

ii. the rough size of the growth rate at any x and its size in relation
to the size of of f(x);

ii. where the rate of change itself is increasing or decreasing.

jl Y
Slope
|
3 y=F "'Lrl/
o 1y
f T Iy
s ]
— ; llr-x
-2 Vertical coordinpte -1
®

In the above figures, we made the graph of y = f'(x) in (b) by plotting
slopes from the graphy = f(x) in (a). The vertical coordinate of B’ is the

slope at B and so on. The slope at E is approximately 8/4 = 2. In (b) we
see that the rate of change of f is negative for x between A’ and D' the rate
of change is positive for x to the right of D'.

Differentiate the following functions and graph it

X
D t0=2n
2) f(x)=—
X
3) ()=

4) f(x)=cosx

5.7. Algebra of derivatives

5.7.1. Derivative of a Constant Function

If f has the constant value f(x)=c then, ar = i(c) =0.
dx dx

Proof: By the definition 5.4.2; f'(x)=]im f(x+h)—f(x)

h—0 h

. C-cC . 0 .
g fl(X)ZlImTZHmH:lImO:O

h—0 h—0 h—0



5.7.2. Derivative of a Positive Integer Power Differentiability
And Derivatives

If ‘n’ is a positive integer, then di(x”) =nx""!
X

Proof: By the definition 5.4.2; f'(X)=|im o) =109

h—0 h
n_ yn n n-1 n n-2p,2 n no_yn
y f/(x):“m(XJrh) X :Iimx +nx""h+"C,x"“h* +...+"C h". =X
h—0 h h—0 h
. nX"*h+"C,x"?h? +....+"C h".
=lim ™
h—0
n-1,n n-2 n n-1
:Iimh(nx +'C,Xx :+ ..... +"C,h )':nx”’l.
h—0

Example 5.7.2 (i): Find the derivative of the function f(x) = x?
Solution: f'(x) = di(xﬁ) = J2x72 1,
X
Example 5.7.2 (ii): Find the derivative of the function f(x) = x™*'3
Solution: f'(x) = i(x“”3) S Ay By
dx 3 3
5.7.3. Derivative of a Constant Multiple Rule

If u is a differentiable function of x, and ¢ is a constant, then
d du

—(cu)=c—.
dx( ) dx

Proof: By the definition 5.4.2; f'(X)=]im o) =109

h—0 h

. h) — . h) — d
. f,(X):“mcu(x+ r)] CU(X)=C|Imu(X+ r)] u(x) :Cd_l)J(
h—0 h—0

Example 5.7.3: Find the derivative of the function f(x) =5x°
H / d 3 d 3 2 2
Solution: f’(x) =—(5x") =5—x =5(3x") =15x".
dx dx

5.7.4. Derivative Sum/Difference Rule

[f uand v are differentiable functions of x, then their sum u=+v is
differentiable at every point where u and v are both differentiable. At such
points, UGMM-101/147
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Proof: By the definition 5.4.2; f'(x)=]im f(x+h)—f(x)

h—0 h
. f,(X):lhim[u(x+h)iv(x+:)]—[u(x)iv(x)]
=Ihirpu(x+hr)]—u(x)ilhirpv(x+hr)]—v(x) 3[)1( SZ

Example 5.7.4(i): Find the derivative of the function
f (x) = (sin® x + tan® x)

Iy = 9 d d
Solution: | (X)_d (sin®x+tan® X)_d (sin’ X)+d (cos® x)

= 25iNn X.COSX— 2 COSX .SinX

5.7.5. Derivative Product Rule

If uand vare differentiable at x, then so is their product uv and

Proof: By the definition 5.4.2; f'(x)=]im ot hz — )
h—0
-~ U00=1im [u(x+h)v(x+ :)]—[u(x)v(x)]
Add and Subtract u(x + h)v(x) in the numerator, we obtain,
[u(x + h)v(x + h) ]+ u(x + h)v(x) — u(x + h)v(x) — [u(x)v(x)]

00 =lim .
oy u(x+h)[v(x +h) = v(x)] + v(x)[u(x +h) —u(x)]
=lm h
:|hir!f‘“(x+h)ljmwﬂjmv(mjmw
u(x)dv(x)+v( )du(x) uﬂ+vd—u
dx dx

Example 5.7.5: Find the derivative of the function
f(x) = (x> =3)(5x"* +3x%)

Solution: Consider,
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=(x° —3)1(5x4 +3x%) + (5x* +3x2)i(x5 -3)
dx dx
= (x® —3)(20x°® + 6x) + (5x* +3x?)(5x*)

5.7.6. Derivative Quotient Rule

If uand vare differentiable at x and if v(x) # 0, then the quotient Yis
v
differentiable at x, and

du dv

Ve —U-—

i(ﬂ) __dx dx
dx \ v v2

Proof: By the definition 5.4.2; f'(x)=]im f(x+h)—f(x)

h—0 h

u(x+h) u(x)
e e V(x+h) v(x) . u(xX+h)v(x) —u(x)v(x +h)
- Peo=lim h =lin hv()V(x + h)
Add and Subtract u(x)v(x) in the numerator, we obtain,
u(xX + h)v(x) —u(x)v(x) + u(x)v(x) —u(x)v(x + h)

reo=lim VOOV(X + hy
i v(X)[u(x+h) —u(x)] —u(x)[v(x + h) —v(x)]
-im VOOV(X + h)
- V(X)u(x+hr)]—u(x)_u(x)v(x+hr)]—v(x)
=lim vOOV(x + h)
v(x) du(x) U dv(x) Vd7U_ dv
) = dx dx _ _dx dx
v(X)V(X) v?

5.8. Continuity versus Differentiability

Differentiable functions are continuous. In other words, a function is
continuous at every point where it has a derivative.

Definition 5.8.1: A function f(x) is called differentiable at the point x =
c if f/(x) exists and f(x) is called differentiable on an interval if the
derivative exists for each point in the interval.

Theorem 5.8.1: (Differentiability implies continuity). If f has a derivative
at x = ¢, then f is continuous at x = c. UGMM-101/149



Differential Proof: Given that f’(c) exists, we must show that |jm f(x) = f(c). If
Calculus x->¢

h =0, then
f(c+h)= f(c)+(f(c+h)— f(c))

)+ f(c+hr)]—f(c)‘h

Now, take limits as h — 0, then

. . . fc+h)-f -
lim e+ =1im f©)+1im (C+,2 <. limn
—0 —0

h—0 h—0

=f(c)+ f'(c)-0
=f(c)+0
= f(c).
Similar arguments with one-sided limits show that if f has a derivative

from one side (right or left) at x = ¢ then f is continuous from that side at x
=C.

If a function has a discontinuity at a point, then it cannot be differentiable
there.

The converse of this theorem is not true. “A function need not have a
derivative at a point where it is continuous”.

To show this, consider the following example. To discuss the continuity of
f(x)=|x| at x=0.

The function f(x) =|x| at x =0 is defined as follows,

-X ; x<0 L
f(x)=|x= . x>0 The graph of the function is given by,

o W A
L
T

-
1
I

- 1

¥

The left hand limit of f(x) as X approaches O is given by,
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lim f(x) = lim | -x| Differentiability
x=0 x>0 And Derivatives
- lim|~(0~h) |- 0

The right hand limit of f(x) as X approaches O is given by,
lim f(x) = lim | x|
o om
=1lim|(0-h)|=0
The value of the function f(x) at x =0 is given by, f(0)=[0[=0.

Thus, lim f(x) = lim f(x) = f (0) =0. Therefore, the function f (x) =|x]
IS continuous.

Now, We know that, the Derivative of the function y = f(x) at X is
f(x+h)—f(x)
h .

givenby f'(x) = lim

Therefore, the derivative of the function y = f(x) at x =0 is given by
f(0+h)—f(0)
h

f/(0) = lim , to evaluate this limit ,
-

Consider, the left hand limit of it; f/(0) = lim

h—0"

fO-n-1©) .
h

The right hand limit of it; f’(0) = lim

h—0*

f(0+h)— f(0)
- .

NS el PO L
=lim— —=lim, =, =1

h—0* h—0*

Since the left and right hand limits are not equal.

Fx+ hk)] —f(x) does not exists.

C ) — i
.f(x)_ngg

Thus, the function defined by f (x) =|x| is continuous but not

differentiable at a point x =0.
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5.9. Chain Rule

If f(u) is differentiable at the point u = g(x) and g(x) is differentiable
at X, then the composite function (fog)(x) = f(g(x)) is differentiable at
X, and

(fog)'(x) = £'(g(x))- 9" (%).
In Leibnitz’s notation, if y = f(u) and u = g(x), then

v :ﬂd_u where dy is evaluated at u = g(x).
dx du dx du
The derivative of the composite function f(g(x)) at X is the derivative of
f at g(x) times the derivative of g at x. This is known as the Chain

Rule ( See the following figure).

Composiie |« g

Raic of change at
x8 fglx)) - gileh

B

Rate of change m .
¢ atx s g'x). . at gle) is f{g(e). ¥ <) = Fiaten

Note: The chain rule provides us to decompose the composite function
into simple functions to find its derivative.

“Qutside-Inside” Rule

A difficulty with the Leibniz notation is that it doesn’t state specifically
where the derivatives in the chain rule are supposed to be evaluated. So it
sometimes helps to think about the Chain Rule using functional notation.

If y = f(g(x)), then %= t(g(x)-g' (x

In words, differentiate the “outside” function f and evaluate it at the
“inside” function g(x) left alone; then multiply by the derivative of the
“inside function”.

Example 5.9.1: Find di(sint) if t = x°
X

d

(sint) :i(sin t).E = cost.2X = CoS X*.2X
dx dt dx



- d Differentiability
Example 5.9.2: Find E(tanx) And Derivatives

d d dx
— (tanx) =— (tanx) —
du( ) dx( )du

Loy
Example 5.9.3: Find dx

=5(5t—9)*.5=25(5t —9)*

5.10. Sign of derivatives and monotonicity of
functions

5.10.1 Monotone Function:

We consider two types of functions: (i) Increasing and (ii) Decreasing

Any function which conforms to any one of these types is called a
monotone function. Does the profit of a company increase with
production? Does the volume of gas decrease with increase in pressure?
Problems like these require the use of increasing or decreasing functions.
Now let us see what we mean by an increasing function. Consider the
-x, 1f x<0

function g defined b X) =
nction g defined by g(x) {1,ifx>0

Note that whenever x> X1, implies g(x2) > g(X1).
A Y

A
4
3
2

1
0
2 -1 1 2

Y

Fig. 15

In other words, as x increases, g(x) also increases. In this case we see that
if x,>Xx;, Equivalently, we can say that g(x) increase (or does not
decreases) as x increases. Function like g is called increasing or non-
decreasing function.
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Differential Thus, a function f defined on a domain D is said to be increasing (or non-

Calculus decreasing) if, for every pair of elements x; Xoe D, Xo> X1= f(X2) > f(X31).
Further, we say that f is strictly increasing if x;> x;= f(x2) > f(x1) (strict
inequality).

Clearly, the function g (x) = x* , is a strictly increasing function We shall
now study another concept which is, in some sense, complementary to that
of an increasing function. Consider the function f; defined on R by setting.

Lif x<-1
f,(X) =< —Xx,if —1< x <1 The graph of f; is as shown in
—-1if x>1
Y A
L X
-1 1 =
-1
Fig. (16)

From the graph we can easily see that as x increases f; does not increase.

That is, Xo> x;= fi(x2) < fi(x1). Now consider the function f, (x) = - X
(xe R)

The graph of f; is shown in

Graph of f;
Fig. (17).

Since x> X1= X2° < Xi® 2 X°=2< fo(X) < fo(x1), we find that as x
UGMM-101/154 increases, fo(x) decreases. Functions like f, and f, are called decreasing or



non-increasing functions. A function f defined on a domain D is said to be
decreasing (or non-increasing) if for every pair of elements xi, Xz, Xo>
x1=> f(x2) < f(xy). Further, f is said to be strictly decreasing if x> x;=
f(x2) < f(x1).

We have seen that, f, is strictly decreasing, while f; is not strictly
decreasing.

A function f defined on a domain D is said to be a monotone function if it
is either increasing or decreasing on D. The functions (g, f1, f;) discussed
above are monotone functions. The word ‘monotonically increasing’ and
‘monotonically decreasing’ are used for ‘increasing’ and ‘decreasing’,
respectively.

There are many other functions which are not monotonic. f (x)= x* (x e
R).

This function is neither increasing nor decreasing. If we find that a given
function is not monotonic, we can still determine some subsets of the
domain on which the function is increasing or decreasing. The function
f(x) = x? is strictly decreasing on] - o, 0] and is strictly increasing in [0,

[

5.11. Derivatives of Exponential Functions

Exponential and logarithmic functions are pivotal mathematical concepts;
they play central roles in advanced mathematics including calculus,
differential equations and complex analysis.

If we apply the definition of the derivative to f(x) =a*, we obtain

x+h X

d . al-a
—(a*) = - -
o @ =lim=—

i a*-a"-a*
im— ——

h—0

« . a -1 .oa'- .
e e £
h—0 h—0

a fixed number

Thus, we see that the derivative of a* is a constant multiple of a*. The
constant multiple is a limit unlike any we have encountered earlier section.

Note, however, that it equals the derivative of f(x)=a* at x=0.

h 0 h

. a —a . a -1
f'0) = lim = lim

h—0 h h—0

= Constant.

This limit is therefore the slope of the graph of f(x) =a* where it crosses
the Y-axis. In earlier section, we have seen the logarithmic and

Differentiability
And Derivatives
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exponential functions, we prove that the limit L exists and has the value

Ina (i.e.,log, a) . For now we investigate the values the limit by graphing
h

the function y = a and studying its behavior as h approaches 0.

a=3a=¢ g=1235

h

. . a
Figure: The position of the curve y =

,a> 0, varies continuously with ‘@’

a" -1

The figure shows the graphs of y = for four different values of a.

The valu of the limit is approximately 0.69 if a = 2, about 0.92 if a = 2.5,
and about 1.1 if a = 3. It appears that the value of L is 1 at some number a
chosen between 2.5 and 3. That number is given by a =e = 2.718281828.
With this choice of base we obtain the natural exponential function

f (x) = e*and it satisfies the property,

h
. e
£0)=lim> =1,

h—0

This limit is 1 implies an important relationship between the natural
exponential function e* and its derivative.

h—0

h
%(ex) = Iim(e h_lj-ex =1.e" =¢"

Therefore the natural exponential function is its own derivative.

Consider, y = f(x) =¢*



Derivative of the function y = f(x) at X is given by Differentiability
f(x+h)—f(x) And Derivatives

/ i
00l

d . exh _ex
f'(x)=—(E)=lim ~—~
(x) IX( ) | O[ |

eXeh —eX
=lim —— | =
h—0 h

h
:exlim[(e —1
h

h—0

I Iy S—

\—r

Since Iim[a _1}_Iogea ‘a>o

X—>0 X

Geometrically,

flx) =

=Y

tantx

Example 5.11.1 Find the derivative of a

a (@™ *)=a""* log ad (tan* x)
dx dx
=a™ *loga. 1 -
1+x

x*-2x2+8

Example 5.11.2 Find the derivative of e

i(ele‘zxz“’) = i(e‘)i(x4 —2x*+8) wheret=x"-2x"+8
dx dt dx

=e'.(4x° —4x)
_ e(X4_2X2+8).(4X3 —4X)

Example 5.11.3 Find the derivative of

x+1

a). 2%, b). 7%, o). ex.
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5.12. Derivatives of Logarithmic Functions
Calculus

Derivative of the natural logarithmic function log, x

We know that the function e*and log, x are inverse to each other.

Therefore, Finding derivative of e* is relatively easier than it’s inverse
function, log, x

Consider,

y =log, x then x=e?Y, Taking derivativeson both sides

d , d
—()7 (e)Orl edi

Ta 12
L

T dx  eY

d 1
Thus, &[Ioge x]= =

1 du
udx

Note: di[loge =

Derivative of the general logarithmic function log, x

To find the derivative of log, x for an arbitrary base (a >0, a=1
), we use the change of base formula for logarithms to express

: . log x
log, x in terms of a natural logarithms, as log, x = ogx . Then

loga
d d | logx
dx ax 109 %)= dx[loga}

Li(mg X): 1

loga dx xloga

Note: If u is a differentiable function of x and u > 0, the formula is
as follows.

1 du
uloga dx’

For a>0 and a =1, then di(loga )=
X

Example 5.12.1. Find the differential coefficient of (cos x)"?*.

Lety = (cos x)"9*.

Taking logs, log y = log x.logcosx
Differentiating onboth sides, we get
1dy

1 1
=log X.——.(-sin x) +—Iogcos X
y dx COS X
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log x

Therefore % = (cos x)*** [log x.(—tan x) + (logcos x) / ]
X

5.13 Summary

Differentiability of a function at a point, Left hand dentine L f “(a)
and right hand derivative R f “(a) at a given point x=a, Geometrical
meaning of differentiability is discussed in the unit. Examples of
differentiability with the help of left hand derivative & right hand
derivatives, algebra of derivatives are studied in the unit. Differentiability
implies continuity but not the converse. Chain rule, sign of derivatives and
their implications for monotonic increasing and decreasing functions are
also described. Derivative of exponential and logarithmic functions,
derivative of function of the type [f(x)]9® is also described.

5.14 Terminal Questions

. dy x 1
1. Flnda wheny = x* + xx

[Hint: Letu=xx & v=x1/xthey =u +v

dy _ du , dv_
Therefore, == = —+ — (1

= log u=x log x
Therefore differentiating %Z—z = xi +logx =1+ logx
d
Therefore == = u(1 + x)
. . dv
similarly find E]
g dy _ \x (1+%)
2. Find ™ wheny = (1+ x) +x
[Hint: Do as above]

3. If y = (cot X' ¥ + (tan x) °** then find j—i’

[Hint: Do as above]

4. Differentiate tan ™' x with respect to log x°.

-1, 1
2

= = etc]
52X

d
Jd(tan™1x) _ Zetan

[Hint

'd(logxz ) %logx2 2

sinx

5. Differentiate x *™ with respect to (tanx )*.

[Hint: Do as above]

Differentiability
And Derivatives
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Y=gXV v _ _logx
6. Ifx’=e™ then prove that — = Trlogn)?

[Hint: Taking lograthimic on both sides;
y log x = (x-y) (since log e =1)

therefore, y =

x . d
,Now find e
1+logx dx
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UNIT-6

DERIVATIVE OF HYPERBOLIC FUNCTIONS
AND SOME SPECIAL FUNCTIONS

Structure
6.1 Introduction / Objectives
6.2 Definition of Hyperbolic Functions
6.3  Derivative of Inverse Hyperbolic Functions
6.4  Methods of Differentiation (Derivative of x")
6.5  Logarithmic Differentiation
6.6 Derivatives of functions defined in terms of a parameter
6.7 Derivatives of Implicit Functions
6.8 Derivatives of Trigonometric Functions
6.8.1. Derivative of the Sine Function
6.8.2. Derivative of the Cosine Function
6.8.3. The Derivatives of the other trigonometric functions
6.8.4. Derivative of the Tangent Function
6.9 Derivatives of Inverse Functions
6.10 Derivatives of Inverse Trigonometric Functions
6.11 Use of Transformations
6.12 Summary

6.13 Terminal Questions/Answers

INTRODUCTION

In many of the applications of advance mathematical sciences, we
very often come across with the functions involving the combinations of
e” and e .These are known as hyperbolic functions. Therefore,
hyperbolic functions are nothing more than simple combinations of the
exponential functions e* and e™ . The basic hyperbolic functions are
kyperbolic sine denoted by sinhx and hyperbolic cosine denoted by
cosh x . These name suggests that hyperbolic functions are analogs of
trigonometric functions and they will have similar properties to
trigonometric functions. The first systematic consideration of hyperbolic
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functions was done by Swiss mathematician Johana Heinrich Lambert in
17" century. Now let’s define these functions. Why these functions are
called “hyperbolic™?.

For the trigonometric functions, if we substitute x =cosé and
y =sin@. Then we get x* + y? =1, this is an equation of an unit circle.

On the same lines, if we substitute x =coshd and y=sinh@ .
Then we get x> —y® =1, this is an equation of an hyperbola.

For any real number x, the hyperbolic sine and the hyperbolic
cosine functions are defined as the following combination of exponential
functions.

The derivatives of the hyperbolic functions follow immediately
from their basic definitions as simple combinations of exponential
functions. For any real number 'x', we define the their derivative results.

Objectives

After studying this unit you should be able to;

»  find the derivative of exponential and logarithmic functions.

»  define hyperbolic functions and discuss the existence of their
inverse.

»  differentiate hyperbolic functions and Inverse hyperbolic
functions.

» use the method of logarithmic differentiation for solving some
problems.

»  differentiate implicit function and also those functions which are
defined with the help of a parameter.

6.2 Definition of Hyperbolic functions

Definition 6.2.1: The hyperbolic sine function, written as sinhx , is

defined by the relation sinh x = €

. It graph is shown as below

oy — sinh =

A




Theorem 6.2.1: Prove that, %(sinh X) = cosh x Deﬁ;’gg;’&ﬁz

Functions
“—e™ And Some Special
Functions

Proof: By the definition, we have sinh x = ¢

di(sinh x):di(e & j

X X 2
1d

- eX _e—X
2 dx( )

11d, ., d,
ZE[&(G )—&(e )}

1, ] e +e”
=Slen-e]- 25

= cosh X

Definitions 6.2.2: The hyperbolic cosine function, written as cosh x, is

X —X

defined by the relation cosh x = ° . Its graph is as shown below,

o — cosh

£

i

7]

Theorem 6.2.2: Prove that, di(cosh X) = sinh x
X

X —X

+€

Proof: By the definition, we have coshx = €

di(cosh x):i(e e j

X dx 2

1 d X -X
=—— (" +e
2dx( )

1ld, . d, _,
==|—(")+—(e
2 {dx( ) dx( )}

1 X =X
=2l + (e
We can define four additional hyperbolic functions from hyperbolic sine
and hyperbolic cosine as follows.

gf —e™
2

=sinh x
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Definitions 6.2.3: tanhx = = . Its graph is as shown
Calculus coshx e +e* grap
below,
y — tanh T
............... 1---__--_.-
-3 =32 -1 1 2 3

Theorem 6.2.3: Prove that, di(tanh x) = sech®x
X

X —X

Proof: By the definition, we have tanh x = € —F¢

e’ +e”
di(tanh X) = i(ex —e"j

X dx{e*+e™

(e” jte’x)i(eX —e ) —(e" —e’x)i(eX +e7)
dx dx

d
- —(tanh x) =
dx( ) (e*+e™)?
_ (T +e ) +e ) —(e" e ) (e —e )
(e*+e™)’
(e +2+4e ) —(e¥-2+e7)
(e*+e7)?

2
= 47X -=|— 2 — | =sech’x
(e"+e™) e"+e™)
Alternatively,

sinh x
cosh x

Consider, tanh x =

(cosh x)i (sinh x) — (sinh x)i(cosh X)
dx dx

i(tanh X)= ,
dx (cosh x)
_ (cosh x)(cosh x) — (sinh x)(sinh x)
(cosh x)?
cosh? x —sinh? x 1 )
= =sech”x

UGMM-101/164 cosh? x ~ cosh? x



Similarly, we can also define cosechx, sechx and coth x as follows

1)  cosechx =— =— 2 —
sinhx e*-e

2) cosechx = = 2
coshx e*+e™

3)  cothx = 1  coshx e"+e

tanhx sinhx e* —e™*
Remark 6.2.1: The derivatives of remaining hyperbolic functions can be
proved. Thus, they are given as follows

1) di (cosechx) = —cosechxcoth x
X
d
2) v (sechx) = —sec hx tanh x
X

3) i(coth X) = —cosech’x
dx

Remark 6.2.2: Like trigonometric identities, we can have hyperbolic
identities also. For this purpose there exists a rule called Osborn’s Rule,
this rule is to find the formula for hyperbolic functions from the
corresponding identity for trigonometric function. “Replace the
trigonometric function by the corresponding hyperbolic function, and
change the sign of every product of sine terms”.

Example 6.2.1: consider the trigonometric identity sin® x + cos® x =1.
To get the hyperbolic identity by using the Osborn’s rule as follows.

Step 1: Wtrite down the given trigonometric identity in terms of
hyperbolic functions as; sinh? x +cosh® x =1

Step 2: Change the sign of every product of sine terms;
—sinh? x+cosh®x =1

Therefore, the required hyperbolic identity is cosh? x —sinh® x =1.
Alternate Method:

Consider,

LHS = cosh? x —sinh? x

X 7X2 X 7X2
_(e*+e™) (e'-e

_e¥42+e e -2+e7

4 4

_izj_: RHS
4

Derivative Of
Hyperbolic
Functions

And Some Special
Functions
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Example 6.2.2: consider the trigonometric identity
CoS(X + Yy) =CcosXxcosy—sinxsiny.

To get the hyperbolic identity by using the Osborn’s rule as follows.

Step 1: Write down the given trigonometric identity in terms of
hyperbolic functions as; cosh(x + y) = cosh xcosh y —sinh xsinh y

Step 2: Change the sign of every product of sine terms;
cosh(x + y) = cosh xcosh y +sinh xsinh y

Therefore, the required hyperbolic identity is
cosh(x + y) = cosh xcosh y +sinh xsinh y .

Alternate Method:
Consider,
LHS =cosh(x+y)

ex+y + e—(x+y)
- 2

RHS = cosh xcosh y +sinh xsinh y

SR e ey

e e+ e Y (e -e e R

4 4
e e 4ol e U LY etV —gl e )
B 4
2e*Y + 270 @Y 4 g t)
B 4 2

Thus, LHS = RHS

Example 6.2.3: Consider the trigonometric identity
sin(x—y) =sin Xcosy —cos xsiny .

To get the hyperbolic identity by using the Osborn’s rule as follows.

Step 1. Witrite down the given trigonometric identity in terms of
hyperbolic functions as; sinh(x —y) = sinh xcosh y —cosh xsinh y

Step 2: Change the sign of every product of sine terms; as there are no
such terms to change the sign, therefore identity remains as it is
sinh(x — y) = sinh xcosh y — cosh xsinh y

Therefore, the required hyperbolic identity is
sinh(x — y) = sinh xcosh y — cosh xsinh y .



Alternate Method: Derivative Of

Hyperbolic

LHS =sinh(x-y) Functions

Consider XY g ) And Some Special
| = (—2 ] Functions

RHS =sinh xcosh y —cosh xsinh y

(e e

ex-¢—y + e><—y _ ey—x _ e—(x+y) e><+y _ ex—y + ey—x _ e—(x+y)

4 4
ex+y + ex—y _ ey—x _ e—(x+y) _ex+y + ex—y _ ey—x + e—(x+y)
S RHS =
4
26"V -2 eV —g Y

4 2
Thus, LHS = RHS.
Further, we can notice the following results,
] sinh(-x) = —sinh x_

—X

) ) e¥—e
Proof: Since,sinh x =
: e —e
= sinh(—x) =
2
et —e* —(ef-e™ .
= = ( ) = —sinh x
2 2
i cosh(—x) = cosh x
. e¥+e™
Proof: Since, cosh x =
e X+ (™
= cosh(—X) = ———
2
el +e* ef4+e .
= > = =sinh x

Similarly, we can prove, tanh(-x)=-tanhx , sech(-—x)=sechx ,
tosech(—x) = —cosechx and coth(—x) = —coth x.
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6.3. Derivative of Inverse hyperbolic functions

For a function to have an inverse, it must be one-to-one. Just like
in case of inverse trigonometric functions, by restricting the domains on
which they are one-to-one. The notations we will use for the hyperbolic

inverses are sinh*x , cosh*x , tanh*x, cosech™x , sech™x and

coth™ x. Since the hyperbolic functions are defined as the combinations
of exponential functions. It would seem reasonable to expect that their
inverses could be expressed in terms of logarithmic functions.

Definition 6.3.1: The Inverse Hyperbolic Sine Function (sinh™ x):
It is defined as y =sinh™ x iff sinhy = x with y € (-0, ) and
X € (—0, ).
To obtain an expression for sinh™ x;
Consider,

X _e—x ey _efy

. e
sinh X =

gl —e”
2

wX=

s 2x=¢’—-e” Or 2x:ey—i
ey

2xe’ =e? —1
Let ¥ =zthen 2x2=2%-10r 22 -2xz2-1=0

This represents a quadratic equation in z.

| 2
ZZZX—_}_#:Xi”XZ‘Fl

[ 2
Since z=e’ >0 =>Z = X/ X" +1

e =X+4/x2+1 Or y= Ioglxh/x2 +1 J
Thus, y=sinh™x= Iog[x+1/x2 +1 ]



Derivative of Inverse Hyperbolic Sine Function:

1

Theorem 6.3.1: Prove that di(sinh‘1 x): ; —O<X<o0,

X x? +1

Proof: Consider y =sinh™ x then sinhy = x

d . d
s —I(sinhy)=—(x
o (sinhy)=—=(x)
coshy-d—yzl Or @ __ 1
dx dx coshy

By using cosh® y =1+sinh®y
dy 11
dx 1+sinh?y 1+ x?

1

X2 +1

Thus, i(sinh‘l x): C 0 < X <0
dx
Alternatively;

We have, Y =sinh™x =log {X2+ X +1}

dy _d

X &(sinh’1 x):%{log[xh/x%l]}
=(ﬁ)-%(x+1/x2+l )

= L J1e— 1 -i(x2 +1)J

(x+,/x2+1) 2. /x? +1 dx

= 11+

_ 1 2X
(x+1/x2+1) 2,/x% +1
_dy =i(sinh‘1 ) = X+4/%X° +1 1
dx

" dx (x+\/x2+1 )\/x2+1 :\/x2+1

Definition 6.3.2: The Inverse Hyperbolic Cosine Function

(cosh™x):

It is defined as y=cosh™x iff coshy=x with ye[0, ©) and

X e[l ).
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Differential To obtain an expression for cosh™ x;
Calculus )
Consider,

X —X

e*+e e’ +e”’
cosh x =

2

= coshy =

e’ +e”’
. X=coshy =

1
So2X=e"+ e’0r2x =¢’ +=
e

2xe¥ =e?¥ +1

Let e =zthen 2xz=2°+10r z> - 2xz+1=0

This represents a quadratic equation in z.

| 2
sz#zxidxz -1

Since z=e">0=z=x++/x*-1

el =Xx+4x* =1 Or y:Iog{xh/x2 -1 J
Thus, y=cosh™ x = Iog[x+w/x2 -1 ]

Derivative of Inverse Hyperbolic Cosine Function:

Theorem 6.3.2: Prove that i(cosh’l x): 21
X X“ -1

;o Xx>1.
Proof: Consider y = cosh™ x then coshy = x

%(cosh y)= %(x)

d_y:l Or o__1

sinhy- =
y dx dx sinhy

By using cosh®y—1=sinh?y
ﬂ_ 1 1
dx Jcosh?y—-1 +/x?-1

1

x2 -1

Thus, i(cosh‘1 x): cx>1
dx
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We have, y =cosh™ x = Iog[x +4x° -1 J Functions
And Some Special

dy d d Functi
d_iza(COShl x)za{log[xh/x2 -1 ]} unctions

g e
_ 1 : 1 de
_(x+1/x2—1)[1+2 x2 -1 dX(X DJ

1 2X
_ R
(x+w/x2 -1 ) ( +2w/x2 -1 }
Cdy X+4/x* -1 1

= ox>1

Cdx (x+\/x2—1 )\/xz—l :\/x2—1 ’

Definition 6.3.3: The Inverse Hyperbolic Tangent Function (tanh™ x):

It is defined as y=tanh™*x iff tanhy=x with ye[-11] and

X €[—o0, o] .

To obtain an expression for tanh™ x;

Consider,
ex_ -X y_e*y
tanh x = = tanhy =
X =X y -y
e’ +e e’ +e
1
el - 4y
. _ _ eV _e -1
o Xx=tanhy= 1 =g

Let’s solve for y, then we obtain

(¥ +D)x=e* -1

- (X=1)e¥ =—(x+1) Or e =1FX
X

1+Xx 1 1+Xx

Thus, tanh™ x = 1 Iog(“—xj
2 1-x
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Derivative of Inverse Hyperbolic Tangent Function:

-1<x<1.

Theorem 6.3.3: Prove that i(tanh’1 X)= =
dx 1-x

Proof: Consider y =tanh™ x then tanhy = x

; %(tanh y)= i(x)

sech’y-

dy _10r dy 1
X dx sech?y
By using, 1—tanh®y =sech®y
dy _ 1 1
dx 1-tanh’y T1-x?

d g
Thus, &(tanh tx)= 5

Alternatively;

We have, y= —IogGJr Xj

3 ﬂ:i(tanh‘l x):i EIOQ(H_XJ
dx dx dx | 2 1-x

_11-x d(l+x
2 1+x dx\1-x

1 1-x a- x) (1+x) (1+x)—(1 X)
T2 1+x (1-x)?

1 1-x(@=0®-@+X)(D
2 14X (1—x)?
Cdy  20-% 1

. = = ; —l<xx<l
dx  2(1+x)1-x)*> 1-x?

Definition 6.3.4: The Inverse Hyperbolic Secant Function (sech™x):
It is defined as y =sech™'x iff sechy = x with y [, o) and x [0, )

To obtain an expression for sech™x;

Consider,



sechx = -
e +e

— =>sechy =

el +e”

. X=sechy =

e’ +e”’

y
2 Or x= 2

2y
oy L e? +1
ey
Or xe?’—2e’+x=0
Let z=¢’ then xz°—2z+x=0

L 2+\4-4x* _1£\1-%*

X=

2X X
[ 2
Since z=e’>0=> z:u
X
1+4/1-x? 1+4/1-x2
eV=—>+—— Or y_Iog{—}
X X

Thus, y=sech™x = Iog[“— lexz} = Iog(1+ NEe )— log x

Derivative of Inverse Hyperbolic Secant Function:

Theorem 6.3.4: Prove that i(sec h‘lx)=

dx x+/1— x?

Proof: Consider y =sech™'x then sechy = x

c 0<x<1.

%(sec hy)= %(x)

Y_jor ¥ -1

—sechytanhy.-— =
dx dx sechytanhy

By using 1—tanh? y =sech’y
) ﬂ_ -1 -1
dX  sechy1-sech’y  x1—x’

Thus, i(sech‘lx)=_—l; O<x<1
dx x/1—x2

Alternatively;

We have, y =sech™x = Iog{“— “1)()(2} = Iog(1+1/1— x? )— log x
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C:,jll:urﬁ?stla d_i dX(sech {Iogbh/l x° ] Iogx}

= 1 = %(14_ 11— x2 )__

+4/1—X X

1 1 1
= : 2 1-x?) ==
(1+\/1—x2 ) [2\/1—x2 dX( )J X

o1 [ ~2x J_z

‘;L+\/l—x2 ) 2\/l—x2 X

Cdy _ 1

- dx (1+\/1 x? )\/1 x? X
_—X —[\/ﬁﬂl X )] .
l\/ﬁﬂl x)Jx X 1 X2

Similarly, we can prove the following two more results.

. y:cosech1x=log{l+“1+x } Iog@+1/1+x ) log x

x>1

d ( -1 _1
e —|cosech x): ; X0
dx X1+ x?
. coth‘1x=%log(x—+ij
X_
d ; -1 1

6.4. Methods of differentiation (Derivative of x")

Already we know that, for any rational number ‘r”, di(x’): r-x.
X

Now we will see this result, when “r ’ any real number.
Consider y=x"; x>0 and forany r e R

We can write it as y = %) =g"'o

dy_d rlog x
..&_&(e log )

rlogx

(r log x)

1 _
rIOgX-r-—(Iogx) =x"-r-==r-x"
dx X

=€
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6.5. Logarithmic Differentiation

This rule provides the method to differentiate the algebraically
complicated functions or functions for which the ordinary rules of
differentiation do not apply. For example, the problems those involve
expressions where the variable is raised to a variable power.

Let’s see some illustrations of this method.

Example6.5.1. Find the differential coefficient of (sin x)"%* .

Lety = (sin x)"%*.

Taking logs, log y = log x.logsin x
Differentiating onboth sides, we get
1dy

1 1
=log x.——.cos x +—logsin x
y dx sin x X

Therefore % = (sin x)"***[log x.cot x + (logsin x) / X]
X

Example6.5.2. Find the differential coefficient of (sin x)"%* .

Do your self

Methods of finding differencial coefficient of logarithmic function of

[1,00]"

Let y=[f,(x)]""
Taking log, logy = f,(x)log f,(x)
Differentiating w.r.t.x we have

1dy

Vo f, (X).—— f( ) () + £,(x).logf,(X)
%——[f( )" =[£,00]"7 | £,(0. = () £,(x)+ £,(x).logf, (x)
™ [f (0] =[£,09]" 71,00 £, () +[ £,00] [ £,(x).logf,(x)]

i:e. to differentiate [fl(x)]w) (differentiate first as if f,(x) were

constant,then differentiate as if f,(x)were costant, and add the two results.
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sin x

Example6.5.3. Find the differential coefficient of 1. x™*,

COsX

2. tan X%,

3. X*+(sin x)"¥*.

6.6. Derivatives of functions defined in terms of a
parameter

Some relationships between two quantities or variables are so complicated
that sometimes, it is essential to introduce a third quantity or variable in
order to make things simple to handle. In mathematics this third quantity
or variable is called parameter.i.e., Instead of a function y being defined
explicitly in terms of the independent variable X, it is sometimes useful to
define both x and y in terms of a third variable t (say), known as a
parameter. In other words, Instead of single equation relating two
variables x and y, we have two equations, one relating x with the

parameter and another relating y with parameter.

The process of differentiating such functions is known as parametric
differentiation.

Working Method

2
If x=f(t)and y = 4(t) Thenfind Y and 9
dx dx
Here, x = f(t)and y = ¢(t)

ax ... dy
0 =1 05=20

at

dy _dy jdx_¢®) _¢

Now consider —= = ===
dx dt/ dt f () f

) e
again differentintion 2 Y T _.f L )
dx ()Y |'f

_ {44t
()

Example6.6.1. Find g_y if x =at®, y = 2at wheretis parameter.
X

We differentiate the given equations w.r.t.,t, and get

ﬂ =2a, d_x =2at
dt dt

Nowconsiderﬂzd—y %zﬁzl
dx dt/ dt 2at t

Example6.6.2. If x=acosd,y=hsin& where & is parameter.



2
Find—= dy and d Z/
dx dx

We differentiate the given equations w.r.t.,t, and get

dy =bcosa, ﬁz—asine
déo dé
dy dy /dx bcos@ b

Now consider = = — —=——cotd
d do dH -asin@ a

X
Again find d g_i(d_yjd_@
dx

dx \ dx /) dx
:Ecotecosece. .
a —-asind
2
Example6.6.3. If x=logg,y=¢"-1. Find ﬂandd—zl
dx dx
dy_dy jox_ 29
d« dg/ d¢ Vg
dzy d 2 d 2y do 2
=— (24°) =— (2¢°).—==4
™ dx(¢) d¢(¢)dx ¢

2
Example6.6.4. Ifx=t°+1,y =t +1. Find (; Z
X

9
Nowconsiderﬂzﬂ %:105 :Et2
dx dt dt 8t 4

d’y 56
2 4y ( __t
dx® dt 4 dx 16
. . _dy d?y
Example 6.6.51f x =2cost—cos2t,y =2sint—sin 2t. Find — 5 and 0
X X

6.7 Derivatives of Implicit Functions

Instead of expressing y as a direct function of x written as y = f(x), is
known as explicit function, if the relation between x and y is expressed
implicitly, written as f(x, y)=0 or f(x, y)=c. Then also it is possible

to find the derivative.

A function which we cannot representy = f(x) is called implicit

function. Suppose f(x, y) =c isaimplicit functioni.e. f(x, y)=c

Then by differentiation of total differential coefficient of | (% ¥)=C

Derivative Of
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of dx of dy

oxdx oydx

of dy of

dydc  ax

dy of /of

A ox/ oy
_ differenctionof f w.rt.x, treated yascnstant
~ differenctionof f w.rt. y, treated x as cnstant

Example 6.7.1.1f X +y* =c. Find (;l_y
X
dy of Jof

dx  ox/ ay
_ differenctionof f w.r.t.x,treated yascnstant
~ differenctionof f w.ri. y, treated x as cnstant
oy +y*logy
T X log x+ xy*t

Example 6.7.2 Find % if x and y are related by
ax® + 2hxy +by? + 2gx+2fy+c=0

Here f(X, y)=ax’+2hxy+by?+2gx+2fy+c
dy of Jof

dx  ox
_ differenctionof f w.rt.x,treated yascnstant
~ differenctionof f w.rt. y, treated x as cnstant
_ax+hy+g
" hxtby+f

Example 6.7.3 Find % if x and y are related by
X

ax® +2hxy +by? + 2gx+2fy+c=0

Example 6.7.4 Find % if x and y are related as
X

3%y —2xy +y

XCy2 +x2y? +xy+1=0 Ans —
y y X 3x°y? 4+ 2xy + X
X +y*=1 Ans—2
y



6.8 Derivatives of Trigonometric Functions

Trigonometry is the branch of Mathematics that has made itself
indispensable for other branches of higher mathematics. Otherwise just
cannot be processed without encountering trigonometric functions. Further
within the specific limit, trigonometric functions give us the inverses as
well. The purpose is to explore the rules of finding the derivatives studied
by us so far in developing the formulae for derivatives of trigonometric
functions and their inverses.

Let us note the important limits of trigonometric functions.

e limsinx=0

x—0

. sinX
o |im——=1

x—0 X
e limcosx=1
x—0

. nx
Ilmta—:l

° x=0 X

Many phenomena of nature are approximately periodic (electromagnetic
fields, heart rhythms, tides, weather). The derivatives of sines and cosines
play a key role in describing periodic changes. This section shows how to
differentiate the six basic trigonometric functions.

6.8.1 Derivative of the Sine Function

To calculate the derivative of f(x)=sinx for x measured in radians, we
combine the limits with the angle sum identity for the sine function:

sin(x + h) = sin x cosh+ cos xsinh
If f(x)=sinx, then

fx+h) = f(x)

f/(x) = |Imf by the definition of derivative
h—0
_y- . sin(x+h)—sinx
lim=""",
~1lim (sin xcosh+ cos xsinh) —sin x

h—0 h

sin x(cosh—1) + cos xsinh

h—0 h
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Differential i [ : (cosh—l)}
sinx-~——~~

. sinh
Calculus =lim + ||m[COSX'Tj

h—0

: . | cosh-1 . (sinh
=sinx-|im " +cosx-|im = =0+Cosx-1=cosx

h—0 h—0

Thus, i(sin X) = COSX.
dx

6.8.2 Derivative of the Cosine Function

Consider,

di(cos X)=lim cos(x+ E) —c05X by the definition of derivative
X

h—0

Using cos(x + h) = cos x cosh—sin xsinh

- d . (cosxcosh—sin xsinh) — cos x
s —(cosx)=|im
dx h—0 h
. cosx(cosh—1) —sin xsinh
=lim "
h—0
. cosh-1 . . sinh
=limecosx- -limsinx-—
h—0 h—0 h
. __cosh-1 . . sinh
=cosx-|im —-sinx-|lim-——
h—0 hso N

=c0sX-0-sinx-1=-sinx

Thus, i(cos X) = —sin x
dx

6.8.3 The derivatives of the other trigonometric
functions

i. i(tan X) = sec’ x
dx
. d )
ii. —(cot x) = —cosec“x
dx

d
iii. —(sec x) = sec x tan x
dx
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Let’s now find the derivative of tanx and remaining are left as an exercise.  And Some Special
Functions

6.8.4 Derivative of the Tangent Function

Consider,

i(tan X) = i[_sm X}
dx dx| cos x

cos xi(sin X) —sin xi (cos x)
dx dx

cos? X

_ cos x(cos x) —sin x(—sin x)
- cos’ X
_cos’x+sin’x 1

~ cos’x  cos’x

=sec? X

i(tan X) =sec’ X.
dx

6.9. Derivatives of inverse functions

Theorem 6.9.1: (Immediate consequence of inverse function and chain
rule of derivatives)

Let f be a function defined in the interval (a, b). If f has an inverse
function f *(x) = g(x) (say), then g(x) is differentiable for all x (a, b).

Moreover, g(x):m Or (f_l)/(x)=ﬁ[fll—(x)]-

Proof: Since f(x) and f *(x) = g(x)are inverse functions of each other
and x is in the domain of f *(x) = g(x).

Then, f[g(x)]= f[f *()|=x,

Taking the derivative w.r.t. x on both sides

f/lo] o' (0 = £/[F 200 (2 (0) =1
1

0 _ 1 -1 /-
H9O ) )
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F !

FLF(=)) d

\_~f -~
i -1

7
o

iyt - A (F—1p ()

e .
- 1. P g

Fi{zx)

Theorem 6.9.2: (Inverse Function Theorem)

If f is differentiable and strictly monotonic on an interval, then f ™ is

differentiable at the corresponding point y = f(x) and (f ‘l)/(y) = f/l( 3
X
This can also be written as o = i.
dy dy
dx

Equivalently,

Let f:[a,b]—> % be a continuous function. If f is differentiable on
(a,b) and f'(x)>0V xe(a, b) (Or f'(x)<0V xe(a, b)) then f has
an inverse function f which is differentiable. If y= f(x) then,

1Y _ 1 . %_i
(F2) (y) = 00 Or equivalently, Y
dx

Proof: We begin by noting that if f’is always positive then f is strictly
increasing on (a, b) . Therefore it is one to one function also. Hence an
inverse function f ™ exists. To find the derivative of f ™ at the point
y = f(x). We are required to look at,

i 00200 10K

: _f-1
e " \m since x=f(y).
If we take h=f 7 (y+k)—x then x+h=f7(y+k)

sothat f(x+h)=(y+k) Or f(x+h)—y=k=f(x+h)-f(x).

For k #0,weget h=0.



Ry k)= () h . 1
h k f(x+h)—f(x) f(x+h)—f(x)
h
o : o PRy - YY) 1 1
This gives rise to; Ikm = lim =00~ 700
h
This shows that f ™ (y) is differentiable.
1 d 1 dx 1
f_l/ = Or—fﬁl = Or - =
=gy org o) Gy Ay
dx dx

6.10. Derivatives of inverse trigonometric functions

Already we are familiar of the inverse function theorem. Now we
shall see the how this theorem is useful in finding the derivatives of
inverse trigonometric functions. Inverse of a function exists if the function
is one-to-one and onto (i.e., bijective). Since the trigonometric functions
are many one over their domains. We restrict their domains and
codomains in order to make them one-to-one and onto and then find their
inverses.

Theorem 6.10.1: Derivative of Inverse Sine function (sin™x):

In order to define the inverse sine function, we will restrict its domain to

{—%, %} The function f(x)=sinx is an increasing function in the

interval [—% %} Therefore f(x) =sin x is one-to-one and consequently

it has an inverse written as f ~(x) =sin™ x . This function is called as

inverse sine function with domain [— 1 1] and range [—% %}
Proof: By inverse function theorem, we have
1
1) (y) =
i.e.,di[f ‘1(y)]: d; = di(sin‘1 y): _r
y —(f(x y —(sin x
(1) £ (6inx)
d (. 1
Or —(sin?y)=——
dy( y) COS X

Ysing the identity, sin® x +cos? x =1 Or cosx = vy1—sin® x
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d /. _
Thus, &(sm lx):z

Remark 6.10.1:

2)

3)

4)

di(sin‘1 y):

11
Vi-sin?x  41-y?
1

NJ1-x?

- 71 - 1
sinx™ =sin—
X

sinsin? x) =x V xe[-1,1]

sin(sinx) =x V X€|:—£, E}
2 2

y=sinx ifand only if x=siny

¥

1) sin™ x = (sinx)™. Where as , (sinx)™ :_L and

SIn X

- }
)

5

Theorem 6.10.2: Derivative of Inverse Cosine function (cos™x)
In order to define the inverse cosine function, we will restrict the function

f (x) = cosx over the interval [0, 7r] as it is always decreasing in this
interval. Therefore f(x) is ono-to —one function. Hence its inverse is

written as  f ~(x) = cos™ x. This is called as inverse cosine function.

Proof: By inverse function theorem, we have

(F*)(y)=

Codi,
m.,w[f (y)]—d—

d - —
Or E(COS ! y)_

UGMM-101/184

1
£ (%)

1

&(f (x)

—sin x

= i(cos’1 y):

1

™ (cos x)

X

Using the identity, sin® x +cos? x =1 Or sin x = v/1—cos® x



i(cos‘1 y)= -t !
dy Vl1-cos?x  41-y?
Thus, i(cos’1 x):: -1
dx 1-x?

Remark 6.10.2: 1) cos™ x # (cosx) ™. Where as , (cosx)™ = Col and
SX

4 1
COSX ™~ =COS—
X

2) cos(cos* x)=x ¥V xe[-1,1]
3) cos*(cosx)=x V xe[-0, 7]

4) y =cos™' x ifand only if x = cosy

Theorem 6.10.3: Derivative of Inverse Tangent function (tan™x)

In order to define the inverse tangent function, we will restrict the function
f (x) = tan x over the interval {—% %} as it is increasing in this interval.

Therefore f(x) is one-to —one function. Hence its inverse is written as
f 7 (x) = tan™* x. This is called as inverse tangent function.

Proof: By inverse function theorem, we have

(F) (v = f,l(x)

d 1 d 1

|.e.,—[f _1(y)]: - = —(tan‘l Y)= -
dy jx(f(x)) dy < (tanx)
d( .\

Or d—y(tan y)_ soc’ x

Using the identity, 1+ tan® x = sec? x
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Differential 'i(tan’l ) 1 1

Calculus oy T1ttan?x 1ty
Thus, i(tan’1 X)== 1 -
dx 1+x

Remark 6.10.3: 1) tan~' x = (tanx)™". Where as , (tanx)™ :tL and
an x

1
tanx* =tan=—
X

2) tan(tan'x)=x VX

3) tan'(tanx)=x VXG[—%,%}

4) y=tan"'x ifand onlyif x=tany

Theorem 6.10.4: Derivative of Inverse Secant function (sec™x):

In order to define the inverse cosine function, we will restrict the function
f(x)=secx over the domain ®—(-11) and the range |0, 7[]—% .
Therefore f(x) is ono-to —one function. Hence its inverse is written as

f 1 (x) =sec™ x. This is called as inverse secant function. Consider,

y=sec"x Or secy=x
.-.—1 =x Or cosy:1
cosy X

1
. _ af 4
UGMM-101/186 -y =008 [XJ



Using the result di(cos x)
X

dy d (1) -1 d (1}

cOoS™ -— - |z

dx dx X 1) dx\ x
X

=X (_1 _ 1
x2—1 X XA/ x? =1
d ( 1
so—IsecT x)=————=  for x>1
dx xx? -1

Theorem 6.10.5: Derivative of Inverse Cosecant function (cosec™x):

In order to define the inverse cosine function, we will restrict the function
f (x) = cosecx over the domain R — (-1, 1) and the range {—E —} -{0}

.Therefore f(x) is ono-to-one function. Hence its inverse is written as

f (x) = cosec™*x. This is called as inverse cosecant function. Consider,

y =cosec'x Or cosecy = X

.'._i:x Or siny:1
siny X

Ly = sin‘l(lj
X

Using the result i(sin‘1 x) ==
dx 1-x2

2 sx{sm W et

(cos ec” x)

dx Xy x% -1

Theorem 6.10.6: Derivative of Inverse Cotangent function (cot™x):

for x>1

In order to define the inverse cotangent function, we will restrict the
function f(x) =cot x over the interval [0, 72'] . Therefore f(x) is one-to —

Derivative Of
Hyperbolic
Functions

And Some Special
Functions
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Differential one function. Hence its inverse is written as f ~*(x) =cot™ x. This is
Calculus called as inverse cotangent function.

Proof: By inverse function theorem, we have

aY _ 1

(f ) (y) - f /(X)
. d 1 d 1
e Ll L= oty

dy d dy d

dx (f(x)) i (cotx)

d/ .\ 1

or @(COt y)— —cosec?x

Using the identity, 1+ cot® x = cosec?x

L feotty) e a2
-~ dy(cot Y)—_(1+Cotzx)_1+ y?
Thus, %(wt_l x)= 1; >l<2

List of Derivatives of Inverse Trigonometric Functions:

g gL
-
g ;I]I_x(t"’m1)()::1+1x2
> %(seclx): X\/ﬁ for x>1
> —X(cosec-lx): X\/% for x>1
- it

6.11. Use of transformations

We can observe by considering some illustrations here, how the making
use of suitable transformations reduces the process of finding the

derivatives to simplest form.
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1. X“+a’, NS Functions

1 And Some Special

x* +a’ Functions

Putting x =atand or x=acoté

X" —a", ———

Putting x =asecd or x =acosecd

3. a?-x?

2 2 1

a’—X —
Jai—x°

Putting x =asiné or x=acosd

>

Example6.11.1 If y=tan

PRV ﬁndd_y
J1+x? —1-x2 " dx

putting x* = cos 26

o V1+2c08? 01 +41-1+2sin? 6
J1+2c0s? 0 -1 —1-1+2sin’ @

L \2c0s? @ ++/2sin2 @
J2c0s2 0 —~/2sin? 6

2 cosO(1+ tan 6)
J2cosf(1-tan 6)

=tan‘tan(z/4+0)
y=x/4+0

y =tan

=tan

=tan

. _ 1
since x%=c0s26 s0260 =cos* x’and @ =§COS 12

Therefore y = 7z/4+%cos‘1 X

Now differentiating , we getd—y:1 1 2X
dx 2 l—X4
dy _ X

dx 1-x*
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SV X 1= X2 . ddy
V4% +41-x " ax

Example6.11.2 If y=tan

Ansﬂ: X
dx 1-x*
Example6.11.3 If y=tan™ it X —Vi-X ,findd—y
V1+X +4/1-x dx
y=tan V1+X —v1-x
V1+X +4/1-X

putting x = cos 26then
L N2cos? 0 —+/2sin?2 6
J2c0s? 0 ++/2sin? 0
L1-tané
1+tanéd

= tan'tan (1 — 0)
4

y = tan

= tan

T

y= 4
r 1 .

y= ——=C0S X since x=c0s20
4 2

dy 1
dx  241-x?

6.12 Summary

Definition of hyperbolic function and the differentiation,
logarithmic differentiation, differentiation of a function defined in
parametric form x=f(t) ,y=g(t), differentiation of an implicit function,
differentiation of trignometrical function, derivative of inverse function
f~1, derivative of inverse trignometrical function, differentiation by using
transformation in polar coordinates i.e. taking x=rcosf & y=r siné is
discussed and studied in this unit.

6.13 Terminal Questions

Find the derivatives of the fallowing functions using suitable
transformations



1) sin"(3x-4x%)
2) cos'(4x*-3x)
3) cost(1-2x%)

4) sin

5) cos

6) tan

7) lfx=a(t-sint),y = a(l- cost) then find =

8) Find%ifx:acosat,y:asin3t

Answers to Selected Terminal Questions

[Hint for Q1): Put x = sin®, then y = sin*(3x — 4x®) = sin"}(sin36 ) =
30 = 3 sin "] rest step do your self

[Hint for Q1): Put x = cos6, then y = cos ™ (cos30 ) =30 =3 cos ]
rest step your self

[Hint for Q4): Put x =tan 0

[Hint for Q5): Put x =tan 0

[Hint for Q6): Put x =tan 0

Derivative Of
Hyperbolic
Functions

And Some Special
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UNIT-7

SUCCESSIVE DIFFERENTIATION

Structure
7.1. Introduction
Objectives

7.2. Second and Third order Derivatives
7.3.  n" Order Derivatives

7.3.1 Some Standard Results of the nth derivative
7.4. Leibnitz’s Theorem

7.4.1. Value of the nth derivative of a function for x = 0.
7.5.  Expansion of Functions

7.5.1 Infinite series

7.5.2  Maclaurin’s Theorem
7.6. Taylor’s Theorem
7.7. Summary

7.8.  Terminal questions

7.1 Introduction

Derivative is one of most important idea of differential calculus
which measures rate of change of variable. Derivative is very useful in
engineering, science, medicine, economic and computer science. The
higher order derivatives of a given function used in Taylor’s Theorem by
which we can express any differentiable function in power of series form.

In this unit we will introduce second, third and higher order
derivatives. Then we will discuss Leibnitz’s Theorem. We will also
introduce Taylor’s Series and Maclaurin’s Series.

Objectives:
After reading this unit you should be able to;
. Calculate higher order derivatives of a given function.

° Use maxima and minima of functions.

RIL-145

. Use increasing and decreasing functions.
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. Use the Leibnitz’s formula to find the n"™ order derivatives of
products of functions.

. Use in curve tracing for concavity and convexity of curves.

. Calculate velocity, acceleration, rate of change of temperature,
curvature of curves etc.

7.2 Second and third order Derivatives

Let us consider y = f(x) be a function of x, then %:% f(x) is called

the first derivative of y with respect to x. If this derivative is again

differentiable, then its derivativedi(%) is called the second derivative
X\ dx

. . d’y . L d’y .
of y with respect to x and is denoted byW. Similarly, IfW IS

2
differentiable then its derivativedi(%] is called the third derivative of
x| dx

. d’y
y and is denoted byW and so on.

The different notations are used for the successive derivatives of y
with respect to x. They are as follows

Let y=f(x) then
dy d d
L =—1f(X)=Dy=f(xX)=y'=y. where D=—
prviairm (X)=Dy=f(x)=y'=y, ™
d(dy) d’
O—| — |= :D = ":f"X =
dx(dxj dx? y=y 0=,

. d (d? d?
Slmllal’|y &(dng:dXZ:Day:y :f (X):y3

this shows that the process of differentiating given again and again in

succession is called successive differentiation

Example7.2.1: If y = a cos (log x) + bsin(log x), show

2
That de_y+ xd—y+ y=0

dx2 dx
We have y = acos (log x) + b sin (log x)

Differentiating w.r.t. x, we get

d_y =[-asin(log x)].1 +[bcos(log x)].l
dx X X



xg—y = —asin(log x) + bcos(log x)
X

Differentiating again w.r.t. x, we get

2
. [-acos(log x)]. - + [~bsin(log x).~
dX2 dx X X
! i y
=—=[cos(log x) +bsin(log x)] =-=
X X
2
Hence de_y+ xﬂJ, y=0
dx2 X

Example7.2.2: If y=6x*+11x+2 Find %
X

Here y =6x°+11x+2

Differentiating w.r.t. x, we get

ﬂ =18x%+11
dx

Again differentiating w.r.t. x, we have

2
1Y _36x
dx
3
Y _36
dx
Example 7.2.3: If x1-y* +yy1-x* =a, show that
d’y a

dXZ - (1_ X2)3/2

We have x\/l— yZ+yvl-x2 =a .., (1)

Let x = cosa and y = cosp, then (1) becomes
cosa/1—cos” B +cospyl-cos’a =a
or, cosa sin B + cosPsina =a or, sin (a0 +f) =a

or, 0. +p=sinraor cosx +cosy =sin"a

Successive

Differentiation
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Differential . - -1 1 dy/ _
Calculus Differentiating w.r.t., X, N 2_\/1—y2 AX—Oor.

)
Differentiating again w.r.t.x, we get

2 1 . dl_ _y?2 1 _
ay vl X'zﬂ(zy)dx il y.2m(2x)

dx? 1-x2

_\/1—x [ \/1 y} 1—y2.X

~ JI-y2 L 1-x 1-x°
- 1-x?
yv1-x2 +x\/1— y?
=- LX) [by (2)]
Jdy_ -a

" dx? - (1_X2)3/2

7.3 n" Order Derivatives

Definition and Notation: If y be a function of x, its differential
coefficient dy/dx will be in general, a function of x which can be
differentiated. The differential coefficient of dy/dx is called the second
differential coefficient of y. Similarly, the differential coefficient of the
second differential coefficient is called the third differential coefficient,
and so on. The successive differential coefficients of y are denoted by

dydydy
dx ' dx? ' dx®

then nt"differential coefficient of y being (;le

Alternative methods of writing the nth differential coefficient are

dy d"y
- an ) ’ ) ™
(dx] Y:LY: ¥, ax" y

In the last case, the first, second, third etc, differential coefficients would
be written as yi, Yz, Y3, etc. The value of a differential coefficient at x = a

is usually indicated by adding a suffix; thus (yn)x=a Or (Yn)a. Ify =
same thing can also be indicated by f™ (a).
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7.3.1 Some Standard Results of the n™ derivative Differentiation
(1) Ify =e*,
then y; = ae™,
Vo = aZeax’
ys = a’e™ etc.

In general, D"e® = a"e®. Or y, = a"e®

(2) Ity =(ax +b)",
theny; =m. a (ax + b)™™.
Y, = a?m(m - 1). (ax + b)™?
ys = a’m(m - 1)(m-2). (ax + b)™*
Hence
D"(ax+b)™ =m(m-1)(m-2)......(m-n+2)aM (ax+b)" "
In particular ifm=n
ie. y=(ax+b)"
D"(ax+b)" =nta"
if a=1b=0wegety=x"
y=n!

If m is a positive integer, the (m +1)th and all the
successive differential coefficients of (ax +b)™ would be zero.

(3) If y=a"to find the n™" differential co-efficient.
y=a'

then y, =a”“log, a,

y, =a’(log, a)’

y, =a*(log, a)"

(4) If y=log(ax+b),then Y = a(ax+b)_1

Y, = (-Da’(ax+b) %,
Vg = (-1)*2! a3(ax + b)_3,

Y. = (=1)(=2)(=3)........— (N—1)(ax +b) "a"

)" n-1a"

n _
In general, yn=D""log(ax +b) = (@ax+b)’ UGMM-101/197




Differential Cor. ifa=1b=0, y=Ilogx
Calculus
)" -1y

X

theny, _
(5) If y =sin (ax + b) then

ylzacos(ax+b):asin(ax+b+%7rj’

y2:azCOS(&X-I—b-}-%ﬂ'j=8.28in(aX+b+7Z'),
_ a3 3 ).

yz=2 Sln(ax+b+27z')etc,

In general, D"sin(ax+b) = y, =a''sin (ax+ b +%nnj

(6) To find the n™ differential co-efficient of cos(ax+h)

If y = cos(ax+b) then

Y1 = —asin(ax+b) = acos(ax+b+%;zj’

2

2 . 1
y,=-a sm(ax+b+§7rj:a cos(ax+b+7),

Y, = a3 cos(ax+b+§7rj ;etc.
In general ; 2

D" cos(ax+b)=y, =a" cos(ax+b+%nnj

Note: Puttinga=1andb =0, we have D" sin x :sin(x+%nnj,

And D" cosx = cos(x+%nnj

(7) To find the n™ differential  co-efficient of

y =1/(ax+b)=(ax+b)71 where x;t—g

Then vy, = (-1)(ax+b)a
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Y, = (-1)(-2)(ax +b) *a? = (~1)*2!(ax + b) *a?
Y, = (-1)(-2)(-3)(ax +b)“*a’® = (-1)*3!(ax +b) *a’

similarly y_ = (=1)(-=2)(=3)......(~n)(ax+b) "Pa" = —
(ax+Db)

(8) If y = ¥ sin (bx + ¢), to find y,
then y;= e®bcos (bx + c) + ae** sin (bx + c).
y1= e*pcos (bx + ¢) +asin (bx + c)).

Putting a=rcosa and b =rsina,
r? =a?+b? > r =+/a’+b?

tanoz:E—me:tan’12
a a

y, =e¥[rcosa.sin (bx + c)+rsina cos(bx+c)]
=re*[cosa.sin (bx + c)+sina cos(bx+c)]
= \/meax[sin (bx + c+a)]

we have vy, =re¥sin (bx + c+a).

Similarly 'y, =r?sin (bx + ¢+ 2a); etc. In general,

Putting a = rcosd and b = rsing, we have y; = re® sin (bx + ¢ +¢).

Similarly y, = r’e® sin (bx + ¢ +2¢); etc. In general

Dn{eax sin(bx+c)}= rNeX sin(bx + ¢+ n) , where
r=(@2+b%)Y2 and o =tan~L(b/a)
(9) To find the n™ differential co-efficient of

y, (e cos(bx +¢)) = D cos(bx +c)}

If y= e cos(bx +c))
theny, = aeX cos(bx+c)— be?X sin(bx +c)

= e [acos(bx +c) - bsin(bx+¢)]

_(-D"nta"

Successive
Differentiation
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Differential Putting a=rcosa and b =rsina,

Calculus
r2 =a?+b? —» r =+/a?+b?
b b
tana=——oa=tant—
a a

y, =e*[rcosa.cos (bx + c)—rsinasin(bx+c)]

=re*[cosa.cos (bx + c)+sinasin(bx+c)]
= va’+b® e®[cos(bx + c+a)]

Thus y; is obtained from y on multiplying it by the constant
r and increasing the angle by the constant « repeating the same
rule to yi1, we have

Yo = r’e® cos (bx + c +2 2 );
ys=re®sin (bx +c+2a );

Similarly

y, (€ cos(bx+c)) = D" cos(bx + )} = r"e® cos(bx+c+na)
Example 7.3.1: Find the nt" differential coefficient of tan™(x/a).

If y = tan~1(x/a), then y; = a/(a® +x°)

1 1 1( 1 1 j
Now, 5 5 = - = T
a‘ +x (x+ia)(x—ia) 2ai\x—ia X+ia
N TP
Therefore, ynza( Y - (n-D t 1 .
2ia (x—ia)"  (x+ia)"

Put x = rcos¢, a = rsin ¢; then

Yy :%(—1)”(n—1)!ir‘”{(cos¢—isin $)”" - (cosg+ising)™"}
=%(—1)n(n -Dlir™ n{(cos ng—isinng)—(cosng+isinng)}
:%(—1)n+1(n ~tir~ "sinng

But r "=a Msin" ¢ [since a = rsing]

Hence D" tan_l(x/a) = (—1)n _1(n -Dla™ Nsin" gsinng,



Example 7.3.2: Find the nthe differential coefficient of y = cosx cos2xcos
3X

Hence,y = cosx c0s2xcos 3X
=+ (2C0s 3X.C0S X).C0S 2X = 5 (COS4X + COS 2X).COS 2X

=1(2c0s4x0s2x +2c0s” 2X) =1 (2cos4xcos 2x + 2 cos® 2X)

= ;(cos6xcos2x+1c0s4x)i. e. y=(CoS6X+COS4X+C0S2xX+1)

Hence, y :1 6" cos| 6x+n |+4" cos| 4x+nZ |+2" cos| 2x+nZ
Ny 2 2 2

Check your progress

1. Find the second differential coefficients of

.2
x*e2X eSINX™ sin(cos x), x3 tan "1 x2, tan e>*

2. If y = Asin mx + B cos mx, prove that, y, + m% = 0.
3. If y = e sin bx, prove that y, — 2ay; + (&° + b?) y =0.
4, y=e**P

5. y=sin’x

6. y= cos’X.

7. y= e*cos?bx.

8. If y=tan~x,

7.4 Leibnitz’s Theorem:

This theorem is useful for finding the n'" differential coefficient of
product of two functions. This theorem states that if u and v be two
functions of x, then

dn n n n n n
v (uv) =" Cou v+"Cu, v, +" Cou, LV, F e Cu, Vv, +........ +"Cuv,.

or

B"(uv) = (D "u). v + "C;D"*u. Dv + "C,D"?u. D?+.....+ "C,D" " u. D'v
+...+u D"V

Successive
Differentiation
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Differential Remark Theorem is true for all positive integral values of n.

Calculus ) ) . .
Proof: This theorem will be proved by induction method, by actual

differentiation we know that

d(uv)

=Uuv, + UV

d? d

—(uv) =—(uv, +u,v

(W) = (U )
=uv, +2u,V; + U,V
=uv, + C,u,V, + U,V

Thus, the theorem is true forn =1, 2.

Now Let us assume that the theorem is true for n = m.

dx™

(uv) ="ColV+" Ciuy vy +" CoUy oV, + e, "C.u, .V, + +"C_uv

r

Differentiating both sides, we get

d m+1

W(UV) =" Cy(Uy, VAUV )+ Co(u,Vy U, V) +" Co(Uy Vo + Uy oVa) e +

+"C, (u
=" CoU,V+("Cy+" C Y, + ("C+" Cu, oV, + ("C, " Co)U Vs e

m m m
+("C,,+"Cuv, +"C.uv, ..

VU, V) T +"C, (UVv, +uv,,,,)

m-r+1

_m m+1 m+1 m+1 m+1 m+1
="CoU, v+ Cu v+ Cu v, + CoU Vs e +"Cuv, +"C, L uv

m+1*

Therefore, Theorem is true forn =m +1

1/m

Example.7.4.1.  If y"™+y™™ =2x,

prove that (x? —1)y. ., + (2n+1)xy, , +(n* —m?)y_=0
We have yY™+y™™ =2x

e, yUM—2xyY""+1=0
OI", yl/m —

2
2Xi\/;‘rx -4 =Xim

ie. y=(x£yx*-1)"

Differentiating w.r.t. X, we get
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B Successive
=m(x+Vx* -1)" 1[ 2\/x——J Differentiation
_ m(xEvx* -1)"

Jx2 -1
VxZ -1

Or (VXZ =1)y, =my

Squaring both sides, we get (x* - 1)y1* = m%?

Differentiating again w.r.t. x, we get 2(x* =1) y1y» + 2xy1* = 2 myy,
=" -1) y2 + Xy - m?yy; = 0.

Applying Leibnitz’s Theorem, we get (differentiating n times)

(x> =1)y,., +"C,y,,.2x+"C,y. .2+ xy.,'C,y, —m’y =0

= (¢ =1)yn+2 + (20 +1) Xynar (0°_ M) y,= 0

=1
Example.7.4.2. If y:eaSIn X,

Prove that (1 = X%y n+2—(2n + 1)xyns 1 —(n* + a2y =0

=1
Since y:eaSIn X

asin_lx a ay

\/1— x2 ) V1-x*

Squaring both sides, we get (1 — x%)y.% = a® y?

we have y,=¢e

Differentiating w.r.t. x, we get (1 — X*)2y1 y» —=2xy1% = 2a%y

or(1 — X%y, — xy; = a?%.

Applying Leibnitz’s theorem, we get (differentiating n times)
(1= X*)Yn.2 =200V, ,n(N=1)Y, = XY, —NY, =%y,

(1_ Xz)yn+2 - (2n +1)Xyn+l - (n2 + az)yn =0
Example7.4.3.Differentiate n times the equation

d? d
(1_X2)dx¥ OI3):+ay 0

Here D" {(1-x%)y,}=
(L= X*)Ypup +N(=2X) Y, +{N(N 1)/ 2}(-2)y,

D"(-xy,) =—xy,,, —ny,' D"(@’y)=a’y,. UGMM-101/203



Differential

Calculus Adding 0=(1-x?)y,,, - (2n+1)xy,,, —(n* -a%)y,
dn+2 nal n
e 1-x) 2 —@n+x Y (7 -a) 9V o
d Xn+2 an+ an

Example7.4.4. If y=log{x++1+x’},

Prove that (1+x%)y,,, +(2x+1xy_, +n’y =0

Let vy=log{x++1+x%},
Differentiating w.r.t. X, we get

dy 1

dX x4 14 %2

{1+%(1+ x2)V2.2x}

1 X+ 1+ X?

- X+1+x2 1%
1

V1+ X2

Squaring both sides, we get (1 + x9)yi* =1,

By differentiation, we get (1 + X%)2y,y, + 2xy;° = 0.

Or, 1+x¥)y,+xy; =0.  [Dividing by y; throughout]
Differentiating this n times, using Leibnitz*s theorem, we get
L+ x3)y,., +n2xy, , +{n(n-1)/2}.2.y, +Xxy,,,+ny, =0
Or' (1+ Xz)yn+2 + (2n +1)Xyn+1 + nzyn = O

Value of the n-derivative of a function for x =0

Working rule to find the value of n" derivative of a function
forx=0

Step1  Equate the given function toy.
Step2 Findy;
Step3  Again find y,
Step 4 Differentiate both sides n times by Leibnitz theorem
Step 5 Put x = 0 two cases arises
(1) When n =0 odd integer

UGMM-101/204 (2) When n =0 even integer



Example7.4.5 y =sin(msin™ x)
Then provethat (1-x?)y, , —(2n+1)xy., — (n*~m?)y, =0.
and also find the value of y, when x = 0.

We have Y =sin(msin™x)

Then y, = cos(msin™ x).

V1-x2.y, = mcos(msin ™ x)

@L-x*)y? =m2 (1= y?).....(2)
Differentiating w.r.t. X, we get

(1-x")2y,.y, = 2xy; =-m*.2y.y,
(L-x?).y, —xy,+m’y =0........... (3)

Differentiating n times using Leibnitz rule, we get

Q-x*)y,,,—2nxy , —n(n=1)y —xy ,—ny +m’y =
(1_X2)yn+2_(2n+1)xyn+1_(n2_mz)yn :0 """" (4)
So we have y =sin(msin™ X)........(1)

@=x")y; =m* L= y*).n(2)

(1-%2).y, = XY, + M2y =0........... €)

L-x%)Y,., —(2n+D)xy., — (N> —m?)y, =0........(4)
Putting x = 0 in equation (1), (2), (3) and (4), we get
y(0) =sin(msin™"0)=0= y(0)=0

(1-0)y; (0)=m*(1-y*(0))
¥; (0)=m*=y,(0)=m

Y, (0)=0

Yoo = (n2 - mz)yn

Forn=1, 2, 3,4, ..... we have

Successive
Differentiation
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Differential Forn=1
Calculus
For n=1y,(0) = -m?)y, =(1” -m*)y,(0) = m(1’ - m”)
For n=2, Yoi2 (0)= y4(0) = (22 - mz)yZ (0) = (12 - mz)-o =0
For n=3, y,.,(0)= y;(0) = (3° —m?)y,(0) = m(1* —m*)(3* —m?)
Forn=4, vy,, 0)= Ys (0) = (42 - mz)y4(0) = (42 - mz)-o
For n=5, y,,,(0)=y,(0) = (5* -m*)y;(0) = (5" —m*).m(l* - m*)(3* —m?)

So, we have y(0) =¥,(0) = y,(0) = Y5 (0) = ¥3(0) = ¥;4(0)-........... =0
and
Y1 (O) =m

Y;(0) =m(t’ -m°)
¥5(0)= (3 -m*)(L" ~m*)m
¥ (0) =(

m2
0)=(5*-m?) (3 -m?)(1* -m*)m
S0y,(0) if nisodd = (1-2)° =’ ][ (1=4)° = ]......(5" = m’)(&* ~m*)(3" -’ )¢’ ~m") m
0; whenniseven
0)=
50 [(1-2 =0 [ (14 =1 .. (8 =) =) ~ )@ )
Example7.4.6 Iflog y = tan™" x show that
(l+ Xz)yn+2 + (2(n +1)X _1) yn+l + n(n +1) yn =0
and hence find y,,y,,and y;atx=0
Solution We have log y = tan™ x

1
If y=e@ "X .0

Differentiating w.r.t. X, we get

Again differentiating w.r.t. X, we have
(1 +X%) Yo +2XY1 = Yieuvnnnnnn. (3)

Differentiating n times applying Leibnitz’s theorem, we get

@+ xz)yn+2 +2nxy,, +n(n=-1)y, +2Xxy, ,+2ny, =Y,
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(1_ Xz)yn+2 - (2n +1)Xyn+l - (n2 + a2) yn =0 Successive
Differentiation
(1+ Xz)yn+2 + (2(n +1)X_l)yn+l + n(n +1) yn = O

So we have

(1+ Xz)yn+2+(2(n+1)x_1)yn+l+n(n+1) yn =0..... (4)
Putting x = 0 in equation (1), (2), (3) and (4), we get

-1
y=e@ "0 _e0 1 y0)=1

By equation (2), we get
(1+0)y,(0)=y(0)=1=y,(0) =1
By equation (3), we get
y,(0) =1
and by equation (4), we get by puttingx =0
Yorz = You +N(N+1)y, =0
Forn=1,2 3,4, ... we have

Forn=1 y,,- Y., +11+1)y, =0, y;(0)-y,(0)+2y, =0
=>Y¥,-1+2=0=>y,=-1

Forn=2, v,,,(0)-y,(0)+6y,(0)=0=y,(0)=-7

For n :3, y3+2(0): y5(0)— y4(0)+12y3(0) = ys(o) =95

. =1
Example.7.4.7. If y=eaSIn X

Then prove that (1 — X%y n+2 —=(2n + 1)Xyns 1 =(n* + @9y, = 0

Deduce that lim 222 = n? + a? Hence find y,(0).

x—0 yn
. asin~1x
Since y=e“>" T D)
y, = easin_l x_a _ &
! \/l— 2 N1-x°
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Differential Squaring both sides, we get (1 -x%)y:2=a?y>........ 2)
Calculus
Differentiating w.r.t. x, we get (1 — x*)2y1 y» —2xy:> = 2a%y y;
or(L =X2)Y2—Xy1 - @Y. ...ove.eon(3)
Applying Leibnitz’s theorem, we get
(1= X*)Ypp =200, N(N =1) Y, = XY,y —NY, =8°Y,
A-x3)y,..,—@n+Dxy , —(n*+a’)y, =0.... (4)

Putting x = 0 in equation (1), (2), (3) and (4), we get
y(0) =easin_lo —1
¥:(0)=ay(0)=y,(0)=2a
y,(0)=a’
Yoo =(n*+2%)y,
Forn=1,2 3,4, ... we have

Forn=1 vy,,(0)=y,(0)=1*+a%)y, =" +a%)a

Forn=2, v,,(0)=y,(0)=(2°+a%y,(0)=(2* +a*)a’

For n=3, y,,(0)=y,(0) = (3° +a%)y,(0) = (3 +a*)(* +a°)a
Forn=4, vy, ,(0)=y,(0)=(4"+m?)y,(0) = (4 +a%*).a’

a’(2> +a%)(4* +a%)......((n—2)* —a*) when niseven
a1’ +a*)(3* +a%)(5° +a’).......((n—2)* +a*) whennisodd

So m&0)={
Divides equation (4) by y, and then taking limit* ~° ,we get

a—xﬁifé—an+nfﬁi—oﬁ+a6=o

n n

|m1{a—xﬁiu&—gn+nfﬁi—oﬁ+a6:o}
y

x—0
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Check your progress

1. If y=acos (log x) + b sin (log x), show that

Xzyn+2 + (2n +1)Xyn+l + (n2 +1)yn = O

+ 2k

dy

dx

+n’y=0

2
2.1f  y=Ae"cos (pt + c) showthat?jTy
where n? = p® + Kk
3. If y = x%e*, show that
dy 1 d?y dy 1
=—n(h-1)—--n(n-2)—+—=(n-1)(n-2)y.
v 2( )dx2 ( )dx 2( )(n-2)y

Successive
Differentiation

7.5 Expansion of Functions

7.5.1 Infinite series

We have seen that the ordinary processes of addition, subtraction,
multiplication, division, rearrangement of terms, raising to a given power,
taking limits, differentiation, etc., though applicable to the sum of a finite
number of terms, may break down for an infinite series. The expansions in
the form of infinite series obtained by the methods given below therefore
to be regarded merely as formal expansion, which may not be true in
exceptional cases

7.5.2 Maclaurin’s Theorem

Let f(x) be a function of x which can be expanded in ascending powers of
x and let the expansion be differentiable term by term any number of
times. Then f(x) can be expanded as

f(X) = Ao + AX + AP + A + ... AX" +.
where Ag, A1 Az As....... Anooenne. are constants.

Then by successive differentiation we have

fX) = A + 28X + 3AX% + 4AC....... ,

f1x) = 2.1 Ap + 3.2A5x + 4.3A° + ... ,

f71(x) =3.2.1 Az + 4.3.2Ax + ....... , etc.

Putting x = 0 in each of these, we get

f(0) = A, T'(0)=A;, f'(0) =21 Ay, f7(0) =31 A3, ... etc.

Substituting all these values in f(x), we have UGMM-101/209



Differential 2

Calculus Hence  f(x)= f(0)+xf'(0)+% £(0)
3 n
X O) et £ (0)
3 n

This result is generally known as Maclaurin’s Theorem.

Working Rule for Maclaurin's Theorem

Step1  Put the given function equal to step to f(x).

Step 2  Differentiate f(x), a number of times and find f(x),
7(x), f7°(x), f’”’(X) ..... and show on.

Step3  Put x =0 in the results obtained in step 2 and find f(0).
f(0), £°(0), f7°(0), f’’(0) ..... and so on.

Step 4  Now substituting the values of f(0), (0), f”’(0), f’’(0),
f7>’(0) ..... and so on.

3

In f(x)= f(0)+xf '(O)+X—2 f "(O)+X— f"(0)+....... +X—nf”(0)+ ......
2! 3! n!

Example:7.5.1. Expand tan™ x by Maclaurin’s theorem.

Let f(x)= tan'x then f(0)=tan'0=0,

f(x)= ! —=(14+x) T =1-x"+x =X, f(0)=1
1+x

f"(x)=-2x+4x*-6x°....., f(0)=0

f"(x)=—-2+12x* -30x* +....., f"(0)=-2

f "(x) =24x-120x° +...., f"(0)=0

Putting these values in

3

f(x)=f(0)+xf'(O)+X—2f"(0)+x—f"'(0)+ ....... )
2! 3l n!

3 5
_04x1+0-22 124X
31 75l
X} x°
=X——+—........
35

Example:7.5.2. Expand sinx by Maclaurin’s theorem.
Let f(x)=sinxthen f(0) =0,

UGMM-101/210 f{x) = cosx f10)=1,



2

f(x) =-sinx, f 10) =0,

f(x) = — cosx, f 710) = -1, etc.
M (y) — i 1 M () — sin —0ifn=
f (x)_sm(x+§n7r), f (0)_S|n+5n7r =0ifn=2m,
and = (-1)"if n = 2m +1.

Putting these values in

Successive
Differentiation

. X2 . X3 . Xn ;
f(x)=f0)+xf'(0)+—f"(0)+— f "(0) +....... +— f"(0)+
2! 3! n!
X3 X2m+l
sinx=0+x1+0+—(-1)+0+...+0+(-)" +.
3! (2m+1)!
3 3 2m+1
:x—X—+X——....+(—1)m X .
31 5l (2m+21)!
Example7.5.3. Expand tan x ascending powers of x by
Maclaurin’s theorem.
Lety=tanx then y(0)=1
y1 = sec’x y1(0)=1

y2 = 2sec’x tan x = 2yy1, y» (0)=0

Y3 =2y1y1 + 2yy2 = 2y ° +2yy2  y3(0) =2

Ya = 4y1y2 — 2y1Y2+2yys = 6y1y2 + 2yys, Y4 (0) =0

Ys = 6Y2y2 + 6Y1yst 2Y1ys—Y1ya = 6Y," + 8Yy1ys + 2yYa , y5(0)
Using Maclaurin’s theorem, we get

2
tanx =0+ x.1+X2—|.0+X??.2+—.0+—.16+

13

Or,tanx:x+§x 5

2
+-—X
15

Example7.5.4. Apply Maclaurin’s theorem to obtain

expansion of log (1 + sin x).
Lety =log (1 +sinx), theny (0)=0

_ COSX
1+sinx’

1

=16

the

_ (=sinx)(L+sinx)—cos’x _ —(sin x—(sin? x + cos? x) _ (L+sinx)

(1+sinx)® (1+sin )2

(@+sin x)2
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Y3

_ (I+sinx).0+cosx

Or, y2 == y2 (0) =-1

1+sinXx

COS X

5 On Y3 =—y1Ya, ¥3(0) = 1 - 3)

(@+sin x)2 (1+sinx)

Using (1), (2) and (3), we get ya = —y2y» — Yiys = — Y2* — Y1V
Ya (0) = =2 -omsemsenes 4)

Using (1), (2), (3) and (4), we get ys = —2yoy3 — Yay3 = — Y1y3 — Y1Ya
= =3Yy2Y3 — Y1Ya

ys (0) = 5, Hence by Maclaurin’s theorem,

2 5
. X X3 X4 X
|Og(1+SIn X) = O+ X1+?(—1)+§1+E(—2)+35+
2 3 4 5
or, log(l+sinx) = x———+ 2 X, X o
2 6 12 24

Example:7.5.5. Expansion of cos™ x

Let y=cos'x
differenction w.r t.x,
dy 1

~\L
o)

we get

By integration between limits O to x, we get

2 3 4
Idy:f(1+x?+%+ I )dx

NOTE: When the nth differential coefficient of the function
cannot be found, the n th term of the expansion cannot be
ascertained. It is possible, however, that the n th differential
coefficient be known for x = 0.
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Check your progress Differentiation
Expand the fallowing function by Maclaurin’s theorem.
1. COSX,
2. secx
3. sin"'x
4, cot'x
5. cos 'x
6. Secx
7. (1+x)"
8. log (1 +x)
9, eXlog(1+ x)
10. log(1+ sin? X)

1
Remark logx, cotx, cosecexand x?> cannot be expanded by
Maclaurin’s theorem because function and its derivative does not
existat x = 0.

7.6

Taylor’s Theorem

Let f (a + h) be a function of h which can be expanded in powers
of h, and let the expansion be differentiable any number of times
with respect to h. Its expansion is given as

f(a+h)=A+Ah+Ah?+Ash+.....

By successive differentiation with respect to h, we have
. _ 2 3
f(a+h)—A1+2A2h+3A3h +4A4h -

since a4 f(a+h) :i f (t).i,where t=a+h,
dh dh dh

1] — 2
f (a+h)_2.1A2 +3.2A3h+4.3A4h +....
f"'(a+h) :3.2.1A3+4.3.2A4h+... etc.
Puttingh=0in f(a+h) and its derivatives, we get
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fa)= Ay,
fia)=A

f"(a) _

M

%z% ....... SO on

Putting all these values in equation (1), we get

h2 h3 L
Hence f(a+h)=f(a)+hf'(a)+—— f"(@)+— f"'(a) +...s—fN(@) ...
2! 3 n! (1)

This is known as Taylor’s Theorem, If we puta=0and h =x we
get the particular case know as Maclaurin’s Theorem. A more
useful form is obtained on replacing h by (x —a ). Thus

2 3
(X_a) f u(a)_l_ (X_a) +
2! 3! nl

F(x) = f @)+ (x-a)f @)+

Which is an expansion in powers of (x —a).

Example:7.6.1. Expand log(x+h) in powers of h by Taylor’s
Theorem.

Here we have expand log(x+h) in powers of Xx. hence we
shall ues the following form of Taylor’s theorem.

2 3

n
F(x+h) = f(h)+xF () + 2 F(h)+ 2 £ "(h) 4.t 2 £N(R) 5.
2! 31 !
Let f(x+h)=log(x+h) @
~.f(x)=logx hence f(h)=Ilogh
f‘(x):1 hence f'(h):%

X

. 1 . 1
f(x):—7 hence f(h):—F

1 1
f (x)=F hence f"(h) =13

Substituting these values of f(h) f'(h) f'(h),f"(h)etc. in (1), we get

2 3
f(x+h)= Iogh+x%+x—{—i}+x—[£} T

2! h*] 31| h
2 3
X X5 X
~log(x+h)=logh+ ———+—......
glx+h)=log h 2h*> 3h°

Example7.6.2. Expand log sin x in powers of (x — 2)



Let f(x)=logsinx........... (D).
This can be written as f (2 + x =2) = log sin (2 + x =2) = f(a +h)
where a=2 & h = x-2, we apply (1)

since (1) is to be expanded in powers of (x —2). Then

f (x) = log sin x f(2) =log sin 2
' (x) = cot X, ' (2) = cot 2,
" (x) = — cosec’, ' (2) = cosec? 2

f'" (x) = 2cosec. cotx, f’ (2) = 2cosec’ 2 cot 2, etc.
Hence by Taylor’s theorem, we have
F(X) = F(24x=2) = f(2)+(x=2)F'(2)

Lx=2)° f"(2)+—(x_3'2)3 £ (2) 4.

2!
2
Or, logsinx=logsin2+ (x—-2)cot2+ (x 2|2) (-cosec’2)
_7\3
+ (x 3|2) (2cosec®2cot2) +....

Example:7.6.3. Expand sin x in powers of (x—%} :
Let  f(x)=sinx then f(%)zl
f '(x) = cos x f'(ﬁj:o
) = —s (2]
(x) sin X (2)
f """ (x) = —cos x f'”(szo

f (x) =sin x f‘V(%jzletc.

By applying Taylor’s theorem, we get

Sinx= sin(z/2+x-7x12)

Therefore,

Successive
Differentiation
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a=x/2 h=x-7x/2
and

therefore from (1)
sinx = f(72/2)+(X—7r/2)f'(7r/2)+%(x—7r/2)2 (7 12)

b (=12 ] 2) (= ]2)F £ 2D

Or,sinx=1—£(x—7z/2)2+£(x—7z/2)4— .....
2! 4
Example:7.6.4. Expand 3x* + 7x* + x — 6 in powers of x — 2.

Let f(X)=f(Q+x-2)=2x>+7x*+x-6
Then f(2)=22°+72°+2-6=40

f'(x) =6x*+14x+1, f'(2) =53
fr(x)=12x+14  f"(2)=38

fr(x) =12 frr(2) =12

andf" £, ...... are all zero. Hence by Taylor’s theorem,
1 1 2 £ l 3 g
fxX)=f(2)+(x-2)f (2)+§(X—2) f (2)+§(X—2) f"'(2)+...

=40+ 53 (x—2) + 19(x — 2)* + 2(x — 2)°

7.7 Summary

Second and third order differentiations order differentiation, n™ order
differentiation of some standard functions as: f(x)=e** ,f(x)=(ax + b)™,
f(x) = log(ax+b), f(x) = a*, f(x) = sin(ax+b), f(x) = cos (ax+b), f(x) = e
sin(bx+c), f(x) = e™cos(bx+c), Leibritiz theorem for nth derivatives of
product of two functions, n™ derivative at origin, expansion of functions
like Maclaurin’s theorem, Taylor’s theorem for expansion of f(x+h) or
f(a+h), expansion of function in some given power is discussed in this

unit.



7.8 Terminal Questions

Expand log (x + a) in powers of x by Taylor’s theorem.

1

2 tan (x +h) in powers of h up to h*
3. tan™ x in powers of (x -1 7)
4

Prove that

f(mx) = f(x)+(m—1)x.f'(x)+%(m—1)2x2.f"(x)+%(m—1)3x3f”‘(x)+...

5 Prove that ! —1 + +
' x+h x x> x¥ x* 77

Successive
Differentiation
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UNIT-8

MEAN VALUE THEOREMS

Structure
8.1  Introduction

Objectives
8.2 Rolle’s Theorem
8.3 Lagrange mean value theorem
8.4  Cauchy mean value theorem
8.5  General mean value theorem
8.6 Summary
8.7  Terminal Questions
8.1 Introduction

In the unit we shall study four important theorems in differential

calculus which are Roll’s theorem, Lagrange form of mean value theorem,
Cauchy form of mean value theorem and General mean value theorem.
For this we shall need the concept of continuity & differentiability of a
function in an interval.

(i)

(i)

A function is said to be continuous at a given pointc € R If
lirnh—>0 f(C - h) = lirnh—>0 f( c+ h) = f(C)
Left limitat (x = c¢) =right limitat (x = ¢) = value at (x = ¢)

A function is said to be continuous in an interval if it is continuous
at each point of the interval.

A function is said to be differentiable at given point ¢ € R if
LF'(©) = limy o LEDTO _ iy, LEWTO - gy

Left derivations at (x = ¢) = Right derivations at (x = ¢)

A function is said to be differential in an interval if it is
differentiable at each point in the interval.

Note: - Every differentiable function is continuous but a continuous
function need not be differentiable.

Objectives: After reading this unit you should be able to;
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Familiarize with the concept of continuity & differentiability of a
function in an interval

Understand Roll’s theorem and its proof.
Understand Lagrange form of mean value theorem and its proof.
Understand Cauchy form of mean value theorem and its proof.

Understand General mean value theorem and its proof

8.2

Rolle’s Theorem

Let

f be defined on the closed in table [a, b] such that

(i) f(x)is continuous in the closed interval [ a, b]
ie. a<x<b

(i) f(x) is differentiable is an open interval (a, b)
e a<x<b

If f(a) = f(b) then there exist a real number x, between a & b
such that f'(x,) = 0

e a<x,<b

(or tangent at x = x, is parallel to X axis)

Rolle’s Theorem

If a function f is

a) Continuousin [a,b]
b) Differentiable in (a,b)
¢) fla)=f(b)

=
L]
o

Then there exists a number ¢ € (a, b) such that f'(c) = 0

Proof:- since f is continues on the closed interval [a,b] and therefore
f(x) is bounded ns [a,b].

Let M be the least upper bound (or supremum) & m be the greatest lower
bound (or infenum) at [a, b]
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Then we have the following cases: Mean Value
Theorems

Case 1- When M = m then f(x) is a constant function and there for
f'(x) =0, Vx € |a,b]
Case 2-M #m
Now suppose that M # f(a) where f(a) = f(b)
Since f is continuous in the closed interval [a, b]

Therefore f attains its supremum & so there exist a real number x,
in [a, b] such that f(x,) = M

Since f(a) £ f(b) therefore x, is different from a & b therefore
X, exists in the open interval (a, b)

Since f(xy) = Mis the supremum of f in [a, b]
~f(x) S flx) , Vx€]a b]
& therefore f(xy — h) < f(xo)

= flxo—h) = f(x0) <0

f(xo—h)—f(x0)
—-h

= >0

f(xo—h)—f(x0)

>0
~h

= limh_,o

= Lf'( %)=0

Also  f(xo+h) < f(xg) ( f(xg) = M = supremum f)

= flxo+h)—f(x) <0

f(xo+h)—f(x0)
h

= <0

o limh_>0 <0

f(xo+h)—f(x0)
h

Or = Rf'(xg) <0 (2)

Since f is differentiable at x,,

Therefore L f'(xy) = Rf'(x0) = f'(x0)

& so from (1) and (2) f'(x9) = 0

Note 1:- In Rolle’s theorem there exist at least one point or more that one
point at which f'(x) =0

Note 2: if f(x) is polynomial and all the condition of the Roll’s theorem
are satisfied and f(a) = f(b) =0

Then between any two roots of the equation f(x) = 0

There is at least one root of f'(x) = 0 UGMM-101/221



Differential Example 1: Examine the validity and conclusion of the roll’s theorem for
Calculus the function f(x) =(x-1)*.

Solution ;- (i) f(x) is continuous at each point in [0,2]

2

(i) f'0)=2(c-1D7 =

1
3(x—1)3

f'(x) does not existat x = 1 or f(x) is not
differentiable is [0, 2]
(i) f(0) = f(2)
From (ii) roll’s theorem is not valid for the given function f(x)

Example 2: Is the roll’s theorem valid for f(x) = sinx in the interval
[0, m]?

Solution:- f(x) = sinx is continuous & differentiable at each point in
the interval also

f(0) =sin0 =0 & f(m) = sinm = 0) therefore the
conditions &of the Roll’s

theorem are satisfied & so there exist x,between 0 & = for which

f'(x0) =0
Or cosxy = 00rx, = g

Test your knowledge

(1)  Examine the validity & conclusion & the roll’s theorem in the
following function

@ f(x)= 1xIis[-1,1]
(b) f(x) =x3—6x2 +§— 6is[1,3]

() f(x) = cosxis [—%,%]

8.3 Langrange’s mean value theorem

Theorem:- let f be a function defined in [a, b] such that
(1) f(x) is continuous is the closed interval [a, b]
(2) f(x) isdifferentiable in the open interval (a, b)

Then there exist a real number x,e€ (a, b)
Such that L2219 = ()

Orf(b) = f(a) = (b — a)f'(x0)
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Lagrange’s Mean Value Theorem

If a function f is
a) Continuous in [a, b]
b) Differentiable in (a,b)

Then there exists a number ¢ € (a, b) such that

f0)-f@) i —
'—-bT-f(C)

In other words, there is at least one tangent line in the interval
that is parallel to the line segment that goes through the
endpoints of the curve in {a,b].

Proof:- Let @ be a function defined on [a, b] such that @(x) = f(x) +x.x

Where X is a constant to be chosen suitably. From (1), since f is
continuous on the closed interval [a, b] & f;(x) =X x is also continuous
on [a, b] therefore

From (1)
(i)

(ii)

@(x) is continuous because sum & two continuous functions is
continuous

since f is differentiable on (a, b) and fi(x) =x x is also
differentiable & so

from (1) @(x) is differentiable is (a, b) as the sum of two
differentiable function is differentiable.

We now choose the constant x such that
?(a) = @(b)
~from(Q)f(a) +>a = f(b) +x b

. fB)-fla) _
TR i (2)

Then for this value of X the function @(x) satisfied the
conditions of Roll’s theorem. & therefore there exist a point x,
is (a, b)

Such that @'(x,) = 0
~from (1) f'(xg) +x=10
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f(b) f(a) = ' (xo)

Orf(b) - f(a) = (b —a)f"(xo)
Note:- In the above theorem of we takes b = a + h then b -a = h therefore
X, =a+ 6h,0<60<1
Where 6 is a real number than the roll’s theorem can be written or
f(a+h)—f(a) = hf'(a+ 6h)

Example 1: Discuss the applicability of Langrange’s mean value theorem

for f(x) = Vx2 — 4 inthe interval [2, 4]

Solution:-
(@D f(x) = vx% —4 iscontinuous in [2, 4] and
2 f'lx) = |s defined is (2, 4)

f (x) is differential is (2, 4)

Therefore the conditions of the mean value theorem are satisfied
and so there exist a number x, € (2, 4) such that

f&) = f2) = f'(x0).-(4-2)

Or2v3—0=2
x3-4
Or V3 =
x%—4
Or 2x2 =12 orx, = +V6

Hence the value /6 lies between 2 & 4 hence the Lagrange
mean value theorem is applicable in the given interval .

Example 2: Find x, of the mean value theorem if f(x) = x(x — 1)
(x — 2) isinterval [0 ,%]
Since f(x)is a polynomial in x and so f is continuous in [0, %2 ] &

differentiable in (0 , %2 ) therefore all the conditions of mean value
theorem are satisfied for fis [0, Y2 ]. Therefore by language’s mean

value theorem these exist a point x,e (0 %) such that
fb) = f(0) = f'(x0)(b — @)

Orf(5) = f(0) = F' (@) (5-0)rrivriirrn 2
Now for (1), foy=0,(;)=2



Also f'(x) = 3x% — 6x + 2
o f’(xo) = 3x02 - 6x0 + 2

~ From (2); ;0= % f'(xo) = %(ng — 6xy + 2)

Or 12x§ —24x,+5=0

6+v21 6+v2

Orx, =

but x, =

- ¢ (0, -)

Therefore x, = o= \/_ €0, %)

Test your knowledge

Example 3: Verify the hypothesis’ and conclusion of the Langrange’s
mean value theorem of the following function

Q) fx)= x2—2x+3 in[l,%]
@ fG)=1+x: in [-8, 1]
@) flx)= Ix1 in [-1,2]

Geometrical interpretation of Langrange’s mean Value theorem
|

B
)/v
n D

C

In the adjacent diagram.

b-a=AC

f(b) = f(a) = BCs

f(b)-f(a) _ BC
b—a T Ac

= tan(£BCA) = tan6 where 8 is the angle made by chord AB with X
axis.

—f(b) 2@ in the slope of tangent at D = £ (x;)

f)-f(a)
= = (%)
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8.4 Cauchy’s means value theorem

Theorem : Let f & g be functions defined on the interval [a, b] such that

(1) f(x)and g(x) are continuous are [a, b]

(2) f(x) and g(x) are differentiable in (a, b)

3) gx)+0 , Vxe(ab)

Then there exist a real number x,e (a, b) such that

fB)=f(@) _ fr(xo)
9(b)-g(@ ~ g'(xo)

Proof: Consider a function @ defined m [a, b] such that

O(x) = f(x) +x.g(x) for xe [a, b].
Where X isaconstant ................. (1)

Now (1) since f(x)and g(x)are continuous on the interval [a, b],
therefore From (1) @(x) is continuous in [a, b]

(2) since f(x) & g(x) are differentiable in (a, b) therefore from (1)
@(x) is differentiable in (a, b)

(3) we now choose the number x such that @(x) = @(b)

from f(a) +x g(a) = f(b) +» g(b)

fb)-f(a)
T = — N e
© g(a)—g(b) @)

Therefore for this value of X & from (1) & (2) the function @(x)
satisfies the conditions of the

Roll’s theorem in [a, b] & so there exist a real number x, in (a, b)

such that .
@'(xo) =0
form (1) f'(xg +x g'(xg) =0
SN (€7
FTNE O s (3)

~ form (2) & (3)

fB)—f(@) _ f'(x0)
g@-gx)  g'(x0)

Note: (1) if b=a+h, & xo=a+06h ,0<0<I

Then above theorem can be stated as follows: if f & g are continues or
[a,a + h] and differentiable in (a, ath) & g'(x) % 0 for all xe(a,a + h)
then there in a real number 8 between 0 & 1 such that



flath—f@ _ f'(a+6n)
gla+h)-g(a) g'(a+6h)

Note : if we take g(x) = x forall x in [a, b] then from the Cauchy’s
mean value theorem.

f)=f(a) _ f'(x0)
b-a 1

or BTG _ e, %o < (a,b)

b—a -

Which is the Langrange’s mean value theorem
Example 1: Calculate the value of x, for which.

f)=f(@ _ f'Gxo)
9(b)-g(@ ~ g'(xo)

For the following function
1. f(x) =sinx, g(x) = cosx in [—g ,0]

2. f(x)=¢e* gx)=e*in[0,1]

8.5 General mean value theorem

Theorem: Let the three function f ,g & h be defined on [a, b] such that
1. f,g&harecontinuousin[a, b]
2. f, g & hare differentiable in (a, b)

Then 3 a real number x,e(a, b) such that-
f'(x0) g'(x0) h'(xo)

fl@  g(@ h(a)
f) g)  hb)

Proof : We define a function @(x) such that
fx) gx) h(x)

fl@ g(a) h(a)
f(b) g(b) h(b)

Since the function f(x), g(x) & h(x) are continuous is [a, b] and
differentiable in (a, b)

Therefore from (1) @ is continuous in [a, b] and differentiable in (a, b)

Also,

=0

O(x) = for xe[a,h] ................. (1)

f@) g(a) h(a)
f@ g(a) h(a)
fb) g(b) h(b)

Similarly:- @(b) =0 & so @(a) = @(b)

?(a) = =0 (two rows are same)
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Differential Therefore @(x) satisfied the conditions of the Roll’s theorem & so there
Calculus exist xoe(a,b) suchthat @' (xg) =0 .oovevvnvvininnnnnnn. (2)

fl) g'(x) h'(x)
f@ g(@) h(a)
f) g®) h(b)

From (1) @'(x) =

f'(x0) g'(x0) h'(x0)
o @B (xg) = f@ g@ h(a)]|=0 ....c........... (3)
f®) g() hb)
This proves the theorem.
Note 1: Ifwetake g(x) =x & h(x) =1 , Vxe[a,b] thenform (3)
ff(x) 1 0
0'(Xo) fl@ a 1[{=0
fb)y b 1

Or f'(xo){a—b} = 1{f(a) - f(b)} =0

/ fl@-fm) _ f)-f(a)
Or f(x0)= a—b = b—a

which is Langrange’s form of mean value theorem.

Note 2: If we take h(x) =1, Vxe[a, b] then from (3)

f'(x0) g'(x0) O
fl@ g@ 1]1=0
f(b)y gb) 1

Or f'(xo){g(a) — g(b)} — g'(xo){f (@) = f(B)} = O

fl@-f) _ f'(x0)
g(@)—-gd) g’ (x0)

f)—f(a) _ f'(x0)
gb)—-gla)  g'(xo)

Or

Which in Cauchy’s form of the mean value theorem.
Note 3: if Cauchy’s form of mean value theorem we have —

fb)-f(a) _ f'(x0)
g)—g(a)  g'(xo)

Hence g(a)  g(b). because If g(a) = g(b) then function g(x)
will satisfy all the

Conditions of the Roll’s theorem in the interval [a, b] and therefore
for some x in (a, b)

we must have g'(x) =0 which contradicts that g'(x) f

0,Vxe(a,b)
UGMM-101/228



Example 1: Show that there is no real number k for which the equation
x3 — 3x + k = 0 has two distend roots is [0,1]

Solution:-  we know that if f(x) isa polynomial and all the conditions
of the roll’s theorem

are satisfied is [a, b] & f(a) = f(b) = 0 then between any
two roots of the equation f(x) = 0 there is at least one root of

ffx)=0
on the contrary suppose that there is a number kj such that the equation

x3 —3x + k; = 0 has two distinct root’s x; & x, is [0, 1 where
x1 < X3 [x1 F x5]

Since x4, x, are roots of equation (1)
-'-xf_3x1+k1=0 &x§—3x2+k1=0 ........... (2)
Now let f(x) = x> — 3x + k' for x e[xq, x;]

Then f(x) is continuous on [x;,x,] and differentiable is (x;,x;) ,
also f(x;) = f(xy,) =0 from (2)

Therefore all the condition of the Roll’s theorem are satisfied for the
function f(x) in (3)

And so 3 xpe(xq,xy)suchthat f'(xg) =0 .oovvvviiinniennnns 4)
Or 3x2-3=0 or x(=1 ,or xo ==+1

& therefore x, € 0,1)

=> xo & (X1,%2)

Which is a contradiction to (4)

Therefore there exist no real number k for which the given equation has
two distinct roots in [0, 1].

Example 2: Find the value of c in the Cauchy’s mean value theorem for
the functions

f(x)=e* & g(x) = e on]|a,b]
Solution: We have f'(x) = e* & g'(x) = —e ™+ 0, Vxe(a,b)

Theorem by Cauchy’s mean value theorem there exist a number ce(a, b)
such that

fB)—f@ _ f'©
gb)-g(a)  g'(c)

o) eb—ea _e€
r e—b_e-a = _pg—c
b ay,a+b
(e’—eYe 2¢
Or —=e
eb_ea
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Or edtb — p2c
Or a+b=2c or c= azﬁ €(a, b) is the required value
Example 3: Verify Roll’s theorem.

For f(x) = e *(sinx — cosx) in [” ,S—n] ................. (1)

4 4

Solution :- since e™, sinx , cosx are all continuous function and the
product & difference of two continuous function is continuous and also
e ™ sinx ,cosx are differentiable therefore;

f(x) = e ™™ (sinx — cosx) is continuous in

T 51

[Z ’T] and differentiable in E %’T] also
f G) = e_% (sin%— cosg) =0
f (%T) = e’%ﬂ (sin%ﬂ — cos%ﬂ) =0

Therefore f G) =f (‘%’T) =0

Thus all the conditions of the Roll’s theorem are satisfied therefore there is

51

at leat one value of x, € G ’T) such that

f'(x) =0 oviiiinen, (2)
But f'(x) = e *(cosx + sinx)—e *(sinx — cosx)
= e *[cosx + sinx — sinx + cosx]
= e *[2cosx]

o f'(xg) = e [2cosxg]
From (1) e *°[2cosx,] =0
Or e *ocosx, =0

Or cosxy =0 (~ e %0)

5
orry =2 ez e[ 2]

8.6 Summary

Rolle’s Theorem and its geometrical meaning and applications i.e.
to find roots of f ’(x)=0 if roots of f(x) =0 is given. Langrang’s mean value
theorem and its geometrical meaning, Cauchy mean value theorem, the
general mean value theorem and deduction of Langrang’s form of mean
value theorem and Cauchy form of mean value theorem from the general
mean value theorem is discussed. Applicability and conclusion of the



above theorems for the given function f(x) or functions f(x) and g(x) in a
given interval is also discussed.

8.7 Terminal Questions
1. Verify the truth of Rolle’s theorem for the functions
(@) f(x)=x*-3x+2o0n[12]
(b)  f(x) = (x-1)(x-2)(x-3) on [1,3]
(©) f(x) = sin x on [0,7]
2. The function f(x) = 4x® + x* -4x -1 has roots 1 and -1. Find the root
of the derivative f ’(x)mentioned in Rolle’s theorem.
3. Verify Lagrange’s formula for the function f(x) = 2x —x? on [0,1].
4.  Apply Lagrange theorem and prove the inequalities
(i) e*>1+x (ii) In(1+x) <x (x> 0)
(i) b"—a"<nb"*(b-a) for (b>a)
5. Using Cauchy’s mean value theorem show that lim,._,, &% =1.
6.  Write the Cauchy formula for the functions f(x) = x%, g(x) = x® on

[1, 2].
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