30 %o

v = g i
Uttar Pradesh Rajarshi Tandon SCIence

Open University

EJ%% MCS - 113

S Master of Computer

Theory of Computation

Theory of Computation

Block - 1 Introduction to Finite Automata 3
Unit-1 Alphabet, Strings and Languages 6
Unit-2 Finite Automata 26
Unit -3 Introduction to Machines 48
Block -2 Regular Expressions and Languages 67
Unit-4 Regular Expressions 70
Unit-5 Properties of Regular Language 89
Block - 3 Context Free Grammar 97
Unit-6 Context Free Grammar 100
Unit-7 Normal Forms 110
Unit- 8 Context Free Languages (CFL) 123
Block - 4 Pushdown Automata and Turing Machine 133
Unit—9 Push Down Automata 136
Unit— 10 Turing Machine 149
Unit— 11 Undecidability 175

MCS-113/1

MCS-113/2

go% MCS - 113

sy Y- 2\

| s e f I :

\® J Y Master of Computer

Uttar Pradesh Rajarshi Tandon Theory Of Computation
Open University

Block

1

Introduction to Finite Automata

Unit - 1
Alphabet, Strings and Languages 6
Unit - 2
Finite Automata 26
Unit-3
Introduction to Machines 48

MCS-113/3

MCS - 113

Course Design Committee

Prof. Ashutosh Gupta Chairman
Director (In-charge)
School of Computer and Information Sciences, UPRTOU Prayagraj

Prof. R. S. Yadav Member
Department of Computer Science and Engineering

MNNIT Pryagraj

Dr. Marisha Member

Assistant Professor (Computer Science),

School of Sciences, UPRTOU Pryagraj

Mr. Manoj Kumar Balwant Member
Assistant Professor (computer science),

School of Sciences, UPRTOU Pryagraj

Course Preparation Committee

Dr. Ravi Shankar Shukla Author
Associate Professor

Department of CSE, Invertis University

Bareilly-243006, Uttar Pradesh

Prof. Abhay Saxena Editor
Professor and Head, Department of Computer Science

Dev Sanskriti Vishwavidyalya, Hardwar, Uttrakhand

Prof. Ashutosh Gupta

Director (In-charge)

School of Computer and information,

Sciences, UPRTOU Prayagraj

Mr. Manoj Kumar Balwant Course Coordinator

Assistant Professor (computer science),
School of Sciences, UPRTOU Pryagraj

© UPRTOU, Prayagraj - 2023
© MCS - 113 Theory of Computation
ISBN :

All Rights are resurved. No Part of this work may reprouduced in any form, by mimeograpn or
any other means, without permission in writing from the Uttar pradesh Rajarshi Tandon Open
University.

Printed and Published by Vinay Kumar Registrar, Uttar Pradesh rajarshi Tandon Open
University, Prayagraj - 2023

Printed By. — M/s K.C.Printing & Allied Works, Panchwati, Mathura -281003.

MCS-113/4

Block Introduction

At the time of transition, the automata can either move to the next state or stay
in the same state. Finite automata have two states, Accept state or Reject state.
When the input string is processed successfully, and the automata reached its
final state, then it will accept.

Finite automata can be represented by input tape and finite control. Input tape
is a linear tape having some number of cells. Each input symbol is placed in
each cell. The finite control decides the next state on receiving particular input
from input tape. The tape reader reads the cells one by one from left to right,
and at a time only one input symbol is read.

So we will begin the first unit on Alphabet, Strings and Languages. In this unit
firstly we discussed about Set, Relations, Alphabet, Strings, Languages, Finite
Representation of Languages, and Chomsky Hierarchy.

Second unit begins with finite automata. In this unit you will know all about
basic functionality of finite state system, Basic Definitions of Non-
Deterministic finite automata (NDFA), Deterministic finite automata (DFA).
In this unit you will also learn about the designing of DFA and NDFA
machines. We will also describe the Equivalence of DFA and NDFA. You
will learn about Finite automata with epsilon transitions and Removal of
epsilon transitions.

In the third unit, we will provide another important topic i.e. Introduction to
Machines. In the unit we will describe about the Concept of basic Machine,
Properties and limitations of FSM (finite state machine), Moore and mealy
Machines. In the Moore and mealy machines, you will learn about the
designing of these machines and the conversion from Moore to mealy machine
and mealy to Moore machine. We will also describe about the Equivalence of
Moore and Mealy machines. The last topic of this unit will be the
Minimization of DFA.

As you study the material, you will find that figures, tables are properly used
and these will help to understand the concept. There are many sections in the
units to easily understand the topic. Every unit has summary and review
questions in the end of the unit which will help you to review yourself.

In your study, you will find that every unit has different equal length and your
study time will vary for each unit. You will enjoy studying the material and
once again wish you all the best for your success.

MCS-113/5

UNIT-I Alphabet, Strings and Languages

Structure

1.0 Introduction

1.1 Set

1.2 Relations

1.3 Alphabet

1.4 Strings

1.5 Languages

1.6 Finite Representation of Languages
1.6.1 Regular Expressions
1.6.2 Language Represented by a Regular Expression
1.6.3 Regular Languages

1.7 Chomsky Hierarchy

1.8 Summary

1.9 Review Questions

MCS-113/6

1.0 Introduction

This is the first unit of this block. This unit is divided into many sections.
Section 1.1 you will learn about Set. Section 1.2 explain Relations. Section
1.3, 1.4 and 1.5 describe Alphabet, Strings and languages respectively. You
will also learn about Finite Representation of languages in the section 1.6.
This section has some sub sections like Regular Expressions, Language
represented by a regular expression and regular languages. In the section 1.7
you will know about Chomsky Hierarchy. Last two section describes summary
and Review questions.

Objectives
After studying this unit, you should be able to:
e Define basics of Finite automata.

e Learn Alphabet, Strings and Languages.
e Describe finite representation of languages and Chomsky Hierarchy

1.1 Set

A set is a collection of elements. To indicate that x is an element of the set S,
we write X€S. The statement that x is not in S is written as x &S. A set is
specified by enclosing some description of its elements in curly braces; for
example, the set of all natural numbers 0,1, 2... denoted by

N=1{0, 1,2 3.....}

We use ellipses (i.e....) When the meaning is clear thus J, = {1, 2, 3..., n}
represents the set of all from 1 to n.

When the need arises, we use more explicit notation, in which we write
S={ili=0,iiseven}

For the last example. We read this as “S is the set of all i, such that i is greater
than zero, and 1 is even.”

Considering a “universal set” U, the complement S’ of S is defined as
S'=&xlxeUAx €8}

The set with no elements, called the empty set is denoted by @. It is obvious
that

Sugd=S-g=S8

SNg=0

MCS-113/7

A set S1 is said to be a subset of S if every element of S1 is also an element of
S. We write this as

S1 €8

If SI € S, but S contains an element not in S1, we say that S1 is a proper
subset of S; we write this as

SI cS
The following identities are known as the de Morgan’s laws,
1. S1 U S2=S1NS2,

2. S1 n S2=S1uU S2,

1.S1 U S2=S1NS2
X€S1 U S2
&x€Uand x ¢ ST U S2
©x€ Uand ~(x € S1 or x € S2) (def. Union)
©x€ U and (—(x € S1) and ~(x € S2)) (negation of disjunction)
©x€ Uand (x ¢ S1 and x ¢ S2)
o (xeUandx ¢ Sl)and (x € Uand x € S2)

& (x €51 and x €52) (def.complement)

©x€S1 N S2 (def. Intersection)
If S1 and S2 have no common element, that is,
SINS2=0,

Then the sets are said to be disjoint.
MCS-113/8

A set is said to be finite if it contains a finite number of elements; otherwise it
is infinite. The size of a finite set is the number of elements in it; this is
denoted by |S| (is or called #S). the power set of S and is A set may have many
subsets. The set of all subsets of a set denoted by 2° or P(S). Observe that 2° is
a set of sets.
Example
IfS is the set {1,2,3}, then its power set is

2°=1{0, {1}, {2}, {3}, {1,2}, {1,3}, {23}, {1,2.3}}

Here |S| = 3 and |2°| = 8. This is an instance of a general result, if S is finite,
then

2% = 2%
Proof: (By induction on the number of elements in S).
Basis: [S|=1=2°={@,S} = [25|=2'=2

Induction Hypothesis: Assume the property holds for all sets S with k
elements.

Induction Step: Show that the property holds for (all sets with) k + 1
elements. Denote

Sk+1 = {Y1, Y2..., YKe1}
= SkU {yk+1}
Where Sk = {y1,¥2,¥3,---,Yk}
25 295Uty
U ¥yt U y2Yier) U U {Yio Vi fU
Uxyesk {X,Y,Yk+1} U ...
USk+1
25 has 2* elements by the induction hypothesis.
The number of sets in 2Sk+1 which contain Yy is also 2k,

Consequently [2Sk+1| = 2 * 2k = 2k+1.

MCS-113/9

MCS-113/10

A set, which has as its elements ordered sequences of elements from other
sets, 1s called the Cartesian product of the other sets. For the Cartesian product
of two sets, which itself is a set of ordered pairs, we write
S=S1x82={(xy)|x€SI,yeS2}
Example:
Let S; = {1,2} and S, = {1,2,3}. Then
S1 xSy ={(L1),(1,2), (1,3), (2,1), (2,2), (2,3)}

Note that the order in which the elements of a pair are written matters; the pair
(3,2) is not in S;XS,.

Example:
If A is the set of throws of a coin, i.e., A = {head, tail}, then

A x A = {(head, head), (head, tail), (tail, head), (tail, tail)}
the set of all possible throws of two coins.

The notation is extended in an obvious fashion to the Cartesian product of
more than two sets; generally

S; XSy Xeee xS = {(X],Xz,'" ,Xn) | X;E Sl}

1.2 Relations

A relation in mathematics defines the relationship between two different sets
of information. If two sets are considered, the relation between them will be
establish, if there is a connection between the elements of two or more non-

empty sets.

In the morning assembly at schools, students are supposed to stand in a queue
in ascending order of the heights of all the students. This defines an ordered

relation between the students and their heights.

Therefore, we can say,

‘A set of ordered pairs is defined as a relation.’

Figure 1.1: Relation

This mapping depicts a relation from set A into set B. A relation from A to B
is a subset of A x B. The ordered pairs are (1, ¢), (2, n), (5, a), (7, n). For

defining a relation, we use the notation where,

Set {1, 2, 5, 7} represents the domain.

Set {a, ¢, n} represents the range.

Sets and relation are interconnected with each other. The relation defines the
relation between two given sets.

If there are two sets available, then to check if there is any connection between
the two sets, we use relations.

For example, an empty relation denotes none of the elements in the two sets is
same.

In Mathematics, the relation is the relationship between two or more set of
values.

Suppose, x and y are two sets of ordered pairs. And set x has relation with set
y, then the values of set x are called domain whereas the values of set y are
called range.

Example:

For ordered pairs= {(1,2), (-3,4), (5,6), (-7,8), (9,2)}

The domain is = {-7, -3,1,5,9}

And range is = {2,4,6,8}
MCS-113/11

MCS-113/12

Types of Relations
There are 8 main types of relations which include:

Empty Relation
Universal Relation
Identity Relation
Inverse Relation
Reflexive Relation
Symmetric Relation
Transitive Relation
Equivalence Relation

Empty Relation
An empty relation (or void relation) is one in which there is no relation
between any elements of a set. For example, if set A = {1, 2, 3} then, one of
the void relations can be R = {x, y} where, |x — y| = 8. For empty relation,
R=¢@cAxA
Universal Relation
A universal (or full relation) is a type of relation in which every element of a
set is related to each other. Consider set A = {a, b, ¢c}. Now one of the
universal relations will be R = {x, y} where, |x —y| > 0. For universal relation,
R=AXA
Identity Relation
In an identity relation, every element of a set is relating to itself only. For
example, in a set A = {a, b, c}, the identity relation will be I = {a, a}, {b, b},
{c, c}. For identity relation,
I={(a,a),a€ A}
Inverse Relation
Inverse relation is seen when a set has elements which are inverse pairs of
another set. For example, if set A = {(a, b), (c, d)}, then inverse relation will
be R-1 = {(b, a), (d, ¢)}. So, for an inverse relation,

R-1= {(b, a): (a, b) € R}

Reflexive Relation

In a reflexive relation, every element maps to itself. For example, consider a
set A = {1, 2,}. Now an example of reflexive relation will be R = {(1, 1), (2,
2), (1, 2), (2, 1)}. The reflexive relation is given by-

(a,a) ER
Symmetric Relation
In a symmetric relation, if a=b is true then b=a is also true. In other words, a
relation R is symmetric only if (b, a) € R is true when (a,b) € R. An example

of symmetric relation will be R = {(1, 2), (2, 1)} for aset A= {1, 2}. So, fora
symmetric relation,

aRb=>bRa,V a,be A
Transitive Relation

For transitive relation, if (X, y) € R, (y, z) € R, then (X, z) € R. For a transitive
relation,

aRb and bRc=>aRcV a,b,c € A
Equivalence Relation

If a relation is reflexive, symmetric and transitive at the same time it is known
as an equivalence relation.

1.3 Alphabet

An alphabet, in the context of formal language theory, is a finite non-empty
set. Typically, it is denoted X or V (where V stands for vocabulary). Examples
range from the binary alphabet {0,1} to the keywords for a particular
programming language.

Examples:

> =1{0, 1} is an alphabet of binary digits
> ={A,B,C,....,Z} is an alphabet.

The components of an alphabet are stated as the letters (or symbols) of the
alphabet. With the help of an alphabet we may acquire strings (or words)
which are sequences of finite letters over X. The empty string, denoted A or €,
is also deliberated as a string having no letters.

The set of all words over X (including the empty word) is symbolized by Z*
and is denoted as the Kleene star (or closure) of £ (or monoid closure) after
the American Mathematician S. C. Kleene. The set X*\ {A} is denoted X+ and
is referred to as the Kleene plus (or semigroup closure) of X. The names

MCS-113/13

monoid and semigroup closure being justified by £ and X+ forming a monoid
and semi-group under concatenation respectively.

1.4 Strings

A string is a finite sequence of symbols selected from some alphabet. It is
generally denoted as w. For example, for alphabet Y’ = {0, 1} w= 010101 is a
string.

Length of a string is denoted as |[w| and is defined as the number of positions
for the symbol in the string. For the above example length is 6.

The empty string is the string with zero occurrence of symbols. This string is
represented as € or A.

The set of strings, including the empty string, over an alphabet) is denoted by
2%

For > = {0, 1} we have set of strings as > * = {e, 0, 1, 01, 10, 00, 11,
10101...}. And X1 = {0, 1}, >2= {00, 01, 10, 11} and so on.

> * contains an empty string €. The set of non- empty string is denoted by > +.
From this we get:

2¥=2+U{¢g
Operations on Strings

8) Length of a String:

e Definition — It is the number of symbols present in a string. (Denoted
by |S)).
e Examples —
o IfS=‘cabcad’, |S|=6
o If|S|=0, it is called an empty string (Denoted by A or €)

2) Substring:
e Definition — A sequence of symbols from any part of the given
string over an alphabet is called a “substring of a string”.
e Examples —
For string abb over Y = {a,b}. The passive substrings are:
o Zero length substring: €

o One length substring: a,b
MCS-113/14 o Two length substring: ab,aa

o Three length substring: aab, baa

3) Concatenation:

o Definition — combines two strings by putting them one after the other.
o Example — x = abc, y = mnop, then x ¢ y = abcmnop, or simply xy =
abcmnop

The concatenation of the empty string with any other string gives the string
itself: xe=ex =x

4) Reversal:

e Definition — Reversal of a string w denoted w R is the string spelled
backwards
e Formal definition:
o Ifwisastring of length 0, thenw R=w=¢
o Ifwis a string of length n+1 > 0, then w = ua for some a €}, and w
R=auR.

5) Prefix of a string:

e Definition — A substring with the sequence of beginning symbols of a
given string is called a “prefix”.
e Example —

For a string abb, the possible prefixes of abb are:

€ (zero length prefix)

a (one length prefix)

ab (two length prefix)
abb (three length prefix)

O O O O

6) Suffix of a string:

o Definition — A substring with the sequence of ending symbols of a given
string is called a “suffix”.
e Example —

For a string abb, the possible suffixs of abb are:

¢ (zero length suffix)

b (one length suffix)

ba (two length suffix)
bba (three length suffix)

O O O O

MCS-113/15

MCS-113/16

7) Proper prefix of a string:

e Definition —Proper prefix is a prefixes except the given string.
e Example —

For a string abb, the possible proper prefixes are: ¢, a, ab.
8) Proper suffix of a string:

e Definition —Proper suffix is a suffix except the given string.
e Example —

For a string abb, the possible proper suffix is: €, b, ba.

Check your progress

Q1.What is set in theory of computation? Explain with example.
Q2.Define the term relation in theory of computation?

Q3.How many strings of length 2 and starting with “a” are possible over
alphabet {a,b}?

1.5Language

The language, that is used with a regular expression or deterministic finite
automata or non-deterministic finite automata or a state machine is known is a
regular language.

In other words, we can say that a language is a set of strings. This strings are
created with characters from specified alphabet, or set of symbols.From these
strings we can get Regular language. In this case we can say that the subset of
the set of all string is known as regular language. This regular language can be
used in parsing and designing programming languages. These languages are
beneficial for facilitating computer scientists to identify patterns in data and
group certain computational problems together — once they do that, they can
take similar approaches to solve the problems grouped together. Regular

languages are very important and useful topic in computability theory.

We start with a finite, nonempty set £ of symbols, called the alphabet. From
the individual symbols we construct strings (over X or on X), which are finite
sequences of symbols from the alphabet. The empty string € is a string with no

symbols at all. Any set of strings over/on X is a language over/on X.

Example:
2 ={c}
L1 = {cc}
L2 = {cccccc}
L3I={ww=ckk=012,..}
= {e,c,ccccc, ...}

Example:

2 ={ab}

L1 = {ab,ba,aa,bb,&}

L2 = {wlw= (ab)kk =0,1,23,...}
= {e,ab,abab,ababab, ...}

The concatenation of two strings w and v is the string obtained by appending
the symbols of v to the right end of w, that is, if
w=aa;...a,
and
v =b;b,...by,

then the concatenation of w and v, denoted by wv, is
wWv = a;dz...a,b1b>...b,

If w is a string, then w" is the string obtained by concatening w with itself n
times. As a special case, we define
w =g,

for all w. Note that ew = we = w for all w. The reverse of a string is obtained
by writing the symbols in reverse order; if w is a string as shown above, then
its reverse w" is

wr = a,...axa,
If

w = uv,
then u is said to be prefix and v a suffix of w.

The length of a string w, denoted by |w|, is the number of symbols in the
string. Note that,
e[=0

If u and v are strings, then the length of their concatenation is the sum of the
individual lengths,

MCS-113/17

MCS-113/18

|uv] = |u + |v]

Let us show that |uv| = |u|+|v|. To prove this by induction on the length of
strings, let us define the length of a string recursively, by
ja| =1
|lwa| = |w| + 1
For all a € X and w any string on X. This definition is a formal statement of
our intuitive understanding of the length of a string: the length of a single
symbol is one, and the length of any string is incremented by one if we add

another symbol to it.

Basis©uv| = |u| + |v| holds for all u of any length and all v of length 1 (by

definition).

Induction Hypothesis: we assume that |uv| = |u| + |v| holds for all u of any

length and all v of length 1, 2..., n.

Induction Step: Take any v of length n + [and write it as v = wa. Then,
vl = 1wl + 1,

luv| = |luwa| = |luw| + 1.

By the induction hypothesis (which is applicable since w is of length n).
|uw| = |ul + [wl.
So that

|uv] = |u +w| + 1= [ul + |v]
Which completes the induction step?

If X is an alphabet, then we use X* to denote the set of strings obtained by
concatenating zero or more symbols from X. We denoteX = > {e}.

The sets £ and X" are always infinite.

A language can thus be defined as a subset of > A string w in a language.
EL is also called a word or a sentence of L

Example:
> = {a,b}. Then
3= {e,a,b,aa,ab,ba,bb,aaa,aab, ...}.

The set
{a,aa,aab).
Is a language on . Because it has a finite number of words, we call it a finite
language. The set
L={ad"b"In>0}

is also a language on X. The strings aabb and aaaabbbb are words in the
language L, but the string abb is not in L. This language is infinite.

Since languages are sets, the union, intersection, and difference of two
languages are immediately defined. The complement of a language is defined
with respect to Xx; that is, the complement of L is

L'=32"-L

The concatenation of two languages L; and L, is the set of all strings obtained
by concatenating any element of L; with any element of L,; specifically,
LiL;={xy|x€L;andy € L,}
We define Ln as L concatenated with itself n times, with the special case
L' ={g}
for every language L.

1.6Finite Representation of Language

Languages may be infinite sets of strings. We need a finite notation for them.

There are at least four ways to do this:

1. Language generators: The language can be represented as a mathematical
sequencew]l, w2, w3...such that the language is equal to the set{wl, w2,
w3...}. Given an integer i, the generator will produce the string wi.

2. Language acceptors: The language can be represented as a mathematical
predicate, a membership tester. Given a string, this will tell ifthe string is
in the language.

3. Mathematical descriptions, like {a"b":n>0}.

4. Explicit listings, like {0,1,00,01}.

MCS-113/19

MCS-113/20

Some other ways are also noticed.

o Explicit listings work only for finite languages.

e Math descriptions are very general, but it may be hard to know if astring is
in the language.

e Language acceptors have a hard time answering some questions, suchas,
whether the language is empty.

o Language generators have a hard time testing if a string is in the language.

There are uncountable many languages over a nonempty set X but only
countable many representations in a finite set of symbols. Therefore, most

languages will never have a finite representation.
1.6.1 Regular Expressions

Regular expressions are one way to represent languages. They are analogous
to arithmetic expressions for representing quantities. This notation will turn
out to be useful for describing programming languages and also for text

searching applications.

There are rules of inference for constructing regular expressions over an

alphabet X.

e Ifa € X then a itself is a regular expression over X.

e (is a regular expression over X.

e IfE and F are regular expressions over X then so is (EF).

e IfE and F are regular expressions over X then so is (EUF).
o IfE is a regular expression over X then so is (E*).

o Parentheses can often be omitted.
Example: Suppose X = {0,1}.
Then 0 is a regular expression over {0, 1} by 1.
So (0%) is a regular expression over {0, 1} by 5.
Also, 1 is a regular expression over {0, 1} by 1.

So 1(0#) is a regular expression over {0, 1} by 3.

Also (1%) is a regular expression over {0, 1} by 5.
So 0(1x) 1s a regular expression over {0, 1} by 3.
Thus 1(0%) UO(1%) is a regular expression over {0, 1} by 4

This regular expression represents the language ({1} {0} *) U ({0} {1} *). This
language contains strings like {1,10,100, 1000...,0,01,011, 0111...}. Note that

{0,1}+is not a regular expression over the alphabet{0,1}.
1.6.2 Language Represented by a Regular Expression

If E is a regular expression, then letL € be the language it represents. We have

the following rules:

If a€X then L(a) ={a}.
L9 =0

L(EF) =L€°L(F)
L(EUF) =LEUL(F)
L(E") =L€"

Note that L€°L(F) is the concatenation of two languages, LEUL(F)is the union

of two languages, and L€"is the Kleene star of a language. Thus for example

L (1(0%) W0(1%) =
L (1(0#) UL (0(1%) =

(L (1)L (0%) U(L(0)°L (1%) =
({1} {0} % U {0} = {1} .

1.6.3 Regular Languages

A language L is said to be regular if there is a regular expression E such that

L=LE, that is, if L can be represented by a regular expression. MCS-113/21

MCS-113/22

1.7Chomsky Hierarchy

According to Noam Chomsky, there are four types of grammars — Type 0,
Type 1, Type 2, and Type 3. The following table shows how they differ from

each other —

Grammar Type Grammar Language Automaton
Accepted Accepted

Type 0 Unrestricted Recursively Turing Machine

grammar enumerable
language

Type 1 Context- Context- Linear-bounded
sensitive sensitive automaton
grammar language

Type 2 Context-free Context-free Pushdown
grammar language automaton

Type 3 Regular Regular Finite state
grammar language automaton

Table 1: Chomsky Hierarchy Table

Take a look at the following illustration. It shows the scope of each type of
grammar —

Recursively Enumerable

s)

e \
I.'f Context-Sensitive

|

| /

t‘n Context - Free

Figure 1.2: Chomsky Hierarchy

Type - 3 Grammar

Type-3 grammars generate regular languages. Type-3 grammars must have
a single non-terminal on the left-hand side and a right-hand side consisting
of a single terminal or single terminal followed by a single non-terminal.

The productions must be in the form X — a or X — aY

Where X, Y € N (Non terminal) and a € T (Terminal)
The rule S — ¢ is allowed if S does not appear on the right side of any
rule.

Example
X—e¢
X—al|aY
Y—b

Type - 2 Grammar

Type-2 grammars generate context-free languages. The productions must
be in the form A — y where A € N (Non terminal)and y € (T UN) " (String
of terminals and non-terminals).

These languages generated by these grammars are be recognized by a non-
deterministic pushdown automaton.

Example:

S—Xa
X—a
X —aX
X — abc
X—e¢

Type - 1 Grammar

Type-1 grammars generate context-sensitive languages. The productions
must be in the form

oAp—oayp

Where A € N (Non-terminal)and a, B, y € (T UN) " (Strings of terminals
and non-terminals)

The strings o and 3 may be empty, but y must be non-empty.

The rule S — ¢ is allowed if S does not appear on the right side of any
rule. The languages generated by these grammars are recognized by a
linear bounded automaton.

Example:
AB — AbBc

A — bcA
B—b

MCS-113/23

Type - 0 Grammar

Type-0 grammars generate recursively enumerable languages. The
productions have no restrictions. They are any phase structure grammar
including all formal grammars.

They generate the languages that are recognized by a Turing machine.

The productions can be in the form of o — [where a is a string of
terminals and non-terminals with at least one non-terminal and o cannot be
null. B is a string of terminals and non-terminals.

Example:

S — ACaB
Bc — acB
CB — DB
aD — Db

1.8 Summary

In this unit you have learnt about Set, Relations, Alphabet, Strings, Languages,

Finite Representation of Languages, and Chomsky Hierarchy.

e A set is said to be finite if it contains a finite number of elements;
otherwise it is infinite.

e The size of a finite set is the number of elements in it; this is denoted
by [S| (or #S). A set may have many subsets.

e The set of all subsets of a set S is called the power set of S and is
denoted by 2S or P(S).

e A relation between two sets is a collection of ordered pairs containing
one object from each set. If the object x is from the first set and the
object y is from the second set, then the objects are said to be related if
the ordered pair (x,y) is in the relation.

e A finite Language can be representative by exhaustive enumeration of

MCS-113/24 all the string in the languages.

1.9 Review Questions

Q1.Where are sets used in theory of computation? Elaborate your answer.
Q2.Define the relations in theory of computation with suitable example.
Q3.How many strings of length less than 4 contains the language?
Q4.Show that for any language L, L"= (L") "= (L") "=(L""
Q5.Describe the language corresponding to following: (1+01) ‘(0+01) "
Q6.Find a grammar generating L = {a,bnci}n> 1, >0}

Q7.Construct a grammar which generates all even integers up to 998.
Q8.If each production in a grammar G has some variables on its right

hand side, what can you say about L(G)?

MCS-113/25

MCS-113/26

UNIT-2 Finite Automata

Structure

2.0 Introduction

2.1 Finite State Systems

2.2 Basic Definitions Non-Deterministic finite automata (NDFA)
2.3 Deterministic finite automata (DFA)

2.4 Equivalence of DFA and NDFA

2.5 Finite automata with epsilon transitions

2.6 Removal of epsilon transitions.

2.7 Summary

2.8 Review Questions

2.0 Introduction

Finite Automata is the second unit of this block. In this unit, there are eight
sections. First section i.e. section 2.1, describe finite state systems. Section 2.2
explain about basic definition of Non-Deterministic finite automata (NDFA).
Next section 2.3 is Deterministic finite automata (DFA). In the next section,
1.e. section 2.4, you will study about Equivalence of DFA and NDFA. Finite
automata with epsilon transitions describe in the section 2.5. There is an
important section, 2.6 describe Removal of epsilon transitions. Last two
sections describe summary and review questions.

Objectives

After studying this unit, you should be able to:

Understand Finite State Systems

Basics of Non-Deterministic finite automata (NDFA), Deterministic
finite automata (DFA).

Equivalence of DFA and NDFA.

Finite automata with epsilon transitions.

Removal of epsilon transitions.

MCS-113/27

2.1 Finite State Systems

A finite-state machine (FSM) or finite-state automaton (FSA, plural:
automata), finite automaton, or simply a state machine, is a mathematical
model of computation. It is an abstract machine that can be in exactly one of a
finite number of states at any given time. The FSM can change from one state
to another in response to some inputs; the change from one state to another is
called a transition. An FSM is defined by a list of its states, its initial state, and
the inputs that trigger each transition. There are two types of state machine,
one is deterministic finite-state machines and second is non-deterministic
finite-state machines. A deterministic finite-state machine can be built
corresponding to any non-deterministic one.

Finite Automata(FA) is the simplest machine to recognize patterns. The finite
automata or finite state machine is an abstract machine which have five
elements or tuple. It has a set of states and rules for moving from one state to
another but it depends upon the applied input symbol. Basically, it is an
abstract model of digital computer. Following figure shows some essential
features of a general automation.

I P In | Input
Automata
¢ States of
Automata
Qq.,fg,===——— Qn
Q4 | O2 On | Output

Figure 2.1: Features of Finite Automata

The above figure shows following features of automata:

e Input

e Output

e States of automata
e State relation

e Output relation

A Finite Automata consists of the following:

MCS-113/28 Q: Finite set of states.

2 set of Input Symbols.
q: Initial state.

F: set of Final States.
o. Transition Function.

Formal specification of machine is

{0, 2, q F d}

2.2Non-Deterministic finite automata

NFA is a state machine consisting of states and transitions that can either
accept or reject a finite string. And like a DFA, we must use circles to
represent states, and directed arrows to represent transitions.

Formal Definition of an NFA

The formal definition of an NFA consists of a 5-tuple, in which order matters.

Similar to a DFA, the formal definition of NFA is: (Q, Z, 9, q0, F), where

Q is a finite set of all states

X is a finite set of all symbols of the alphabet

0: Q x X — Q is the transition function from state to state

q0 € Q is the start state, in which the start state must be in the set Q
F € Q is the set of accept states, in which the accept states must be in
the set Q

SNk W=

For our NFA above, the formal definition would be:

e Q- {sf}

e X — {ab}

e Start state — s

« Fo(f}

e { functions:
ofs, a) ={f}
ofs, b) ={}
ofs, & ={}
of, a) ={f}
of, b) ={f}
of, & =1{}

MCS-113/29

Graphical Representation of an NFA
An NFA can be represented by digraphs called state Diagram, In which:

e The state is represented by vertices.
e The arc labelled with an input character show the transitions.
e The initial state is marked with an arrow.
e The final state is denoted by the double circle.
Example:
Q=1{q0, ql, g2}
>=10,1}
q0 = {q0}
F={q2}
Solution:

Transition diagram:

0 0.1

Start ﬂ

o

Figure 2.2: NFA

Transition Table:

MCS-113/30

Present State

Next state for Input 0

Next State of Input 1

—q0 q0, ql ql
ql q2 q0
*q2 q2 ql, q2

Table 2: Transition Table

In the above diagram, we can see that when the current state is g0, on input 0,
the next state will be q0 or ql, and on 1 input the next state will be q1. When

the current state is q1, on input 0 the next state will be g2 and on 1 input, the

next state will be q0. When the current state is g2, on 0 input the next state is

g2, and on 1 input the next state will be q1 or g2.

2.3Deterministic finite automata (DFA)

A DFA is a state machine consisting of states and transitions that can either
accept or reject a finite string, which consists of a series of symbols, and
compare it to a predefined language across a predetermined set of characters.
We use circles to represent states, and directed arrows to represent transitions.
Every state must have each symbol going outwards from the state, or else it
will not be defined as a DFA.

DFAs allow for an easier use of certain projects and applications that switch
between states of validity and invalidity. DFAs are useful in the functionality
of applications such as:

e Speech recognition and processing

o Pattern matching

o Applications that consist of some sort of on/off functionality
e Compilers for modern programming languages

Formal definition of a DFA

The formal definition of a DFA consists of a 5-tuple, in which order matters.

The formal definition of DFA is: (Q, Z, 9, q0, F), where

Let’s take a look at what a DFA actually looks like. Suppose we wanted to
only accept strings that begin with the letter a. For simplicity, our language
will only consist of the characters {a, b}. So, what would our language look
like?

It would look something like this-
{ax | x €{a, b}*}

This language states that we will only accept strings that begin with a, such
that x consists of the language {a, b}. The star (*), more specifically known as
the Kleene star, specifies that x can consist of any order of characters, any
number of times, of the alphabet {a, b}. So, if you look back at our language,
we are specifically stating, “our string MUST begin with an a, and can be
followed by literally anything after that.” We don’t care what comes after the
initial a.

Here is a DFA for this language...

MCS-113/31

MCS-113/32

\
7\

a,b C . .D ab

Figure 2.3: DFA

How do we draw a DFA? (Components of a DFA) [1]

Let’s take a look at our DFA and look at each component to see what is
actually going on.

First we must begin with the initial arrow.

This is the
starting arrow,

which points to
our start state

q0

Figure 2.4: Starting arrow

The starting arrow is the first thing we must look at in our DFA. This arrow
points to our start state. Now that we know our start state, we can begin
tracing the occurrences of each symbol.

The start state cannot be an accepting state, because that would imply that an
empty string (¢) would accept the language. However, because we need at
least an a in the string, an empty string cannot be valid.

Our language consists of the symbols {a, b}, our start state can only transition
on those two symbols. So, we have...

\
AN

Figure 2.5: Transition on two symbols

From this position, if we get an a in the beginning of the string, that means we
can accept the string. An accepting state is depicted by two double circles. See

N
7N\

Figure 2.6: An accepting state is depicted by two double circles

If we get the letter b as the first symbol in the string, we must reject the string.
See below...

\
7N\

Figure 2.7: Reject the string in case of b

We are still not finished yet. We still must state in our DFA that, in our
accepting state, anything can come after the initial a in our string, because we
only care that a was the initial string. Also, let’s say we get a b as our first
character, we must also state that any symbol after that must also reject the
string, because the string will always start with 5. See below.

MCS-113/33

MCS-113/34

N
y b

N\
a,bC :) a5

Figure 2.8: The complete DFA

We have now successfully created a DFA that only accepts strings that begin
with the symbol a.

Check your progress

Q1. What are the tuples of NFA? Define with example.
Q2. How do you create a DFA in automata? Elaborate your answer.

Q3. Compare and contrast NFA and DFA with a suitable example.

2.4Equivalence of DFA and NDFA [2]

The term Finite state automata (FSA) is also known as finite state machines
(FSM). The finite state machines are generally categorized as being
deterministic (DFA) or non-deterministic (NFA). A deterministic finite state
automaton has exactly one transition from every state for each possible input.
In other words, whatever state the FSA is in, if it encounters a symbol for
which a transition exists, there will be just one transition and obviously as a
result, one follows up state. For a given string, the path through a DFA is
deterministic since there is no place along the way where the machine would
have to choose between more than one transitions.

Given this definition, it isn’t too hard to figure out what an NFA is. Unlike in
DFA, it is possible for states in an NFA to have more than one transition per
input symbol. Additionally, states in an NFA may have states that don’t
require an input symbol at all, transitioning on the empty string €.

Superficially, it would appear that deterministic and non-deterministic finite
state automata are entirely separate beasts. It turns out, however, that they are
equivalent. For any language recognized by an NFA, there exists a DFA that
recognizes that language and vice versa. The algorithm to make the conversion
from NFA to DFA is relatively simple, even if the resulting DFA is
considerably more complex than the original NFA. After the jump I will

prove this equivalence and also step through a short example of converting an
NFA to an equivalent DFA.

NFA and DFA Equivalence Theorem Proof
Before continuing, let’s formally state the theorem we are proving:
Theorem

Let language L € X*, and suppose L is accepted by NFA N = (Z, Q, q0, F, 9).
There exists a DFA D= (%, Q’, q’0, F’, 9’) that also accepts L. (L(N) = L(D)).

By allowing each state in the DFA D to represent a set of states in the NFA N,
we are able to prove through induction that D is equivalent to N. Before we
begin the proof, let’s define the parameters of D:

e Q’ is equal to the power set of Q, Q” =29

* q0={qo}

e F’ is the set of states in Q’ that contain any element of F, F’ = {q €Q’|q
NF+#0}

e &’ is the transition function for D. d°(q, a) = Upgqé(p, a) forq € Q’
and a € X.

Remember that each state in the set of states Q’ in D is a set of states itself
from Q in N. For each state p in state q in Q” of D (p is a single state from Q),
determine the transition d(p,a). 9(q,a) is the union of all 5(p,a).

Now we will prove thatd’ (q'0,X) =6 (qo, x) for every x. i.e., L(D) = L(N)

Basis Step
Let x be the empty string €.
§@ox) =8(doe)
=qlo
= {qo}
=5 (qo. ®)
=5 (90, %)

Inductive Step

Assume that for any y with |y| > 0,8 (0, ¥) =6 (qo, Y).

If we let n = |y|, then we need to prove that for a string z with
[zl =n+1,8 (9, 2) =5 (q0. 2).

We can represent the string z as a concatenation of string y (Jy] = n) and
symbol a, from the alphabet X (a € X). So, z =y,.

§ (02 =8 (qo ya)

MCS-113/35

MCS-113/36

:6’(8@1'0, Y)’ a)

=68'(6(qo, y), a) (by assumption)

U A
“pe (6(q0,y) o(p, a) (by definition of &)

= g (qoa aY)
= g (qoa Z)

DFA D accepts a string x iff§(q'y, x) in F'. From the above it follows that D
accepts x iff6(qlo, x) NF£P.

So a string is accepted by DFA D if, and only if, it is accepted by NFA N.

NFA to DFA Conversion Example

From the proof, we can tease out an algorithm that will allow us to convert any
non-deterministic finite state automaton (NFA) to an equivalent deterministic
finite state automaton (DFA). That is, the language accepted by the DFA is
identical that accepted by the NFA.

Algorithm

Given NFA N = (%, Q, q0, F, 8) we want to build DFA D= (Z, Q’, q°0, F’, 9°).
Here’s how:

e Initially Q’ = @.

e Addq0toQ’.

e For each state in Q find the set of possible states for each input symbol
using N’s transition table, 6. Add this set of states to Q’, if it is not
already there.

e The set of final states of D, F’, will be all of the states in Q’ that
contain in them a state that is in F.

Working through an example may aid in understanding these steps.

Consider the following NFA N = (Z, Q, qo, F, d)

Figure 2.9: NFA

Y={ab,c}
Q=1{q0,ql, q2}
F={q2}

We wish to construct DFA D= (%, Q’, q’, F’, &’). Following the steps in the
conversion algorithm:

Q=0
Q= {qo}

For every state in Q, find the set of states for each input symbol using N’s
transition table, 6. If the set is not Q, add it to Q’.We can start building the
transition table &’ for D by first examining qo.

qo {Qo, qi} qo Q@

Table 3

(o is already in Q” so we don’t add it. {qo, qi} is considered a single state, so
we add it and q» to Q’.

Q’ = {qo, {90, q1}, Q2

0’ now looks like:

State A
qo {Qo, a1} Qo Q@
{q0, q1} ? ? ?
Q2 ? ? ?
Table 4

To fill in the transitions for {qo, q:}, you need to determine per symbol how
each individual state in the set transitions and take the union of these states.

0'({q0, q1}, @) =6 (qo, @) U (q1, @) = {q0, q1} UD = {q0, q1}
0'({q0, 1%, b) =5 (qo. b) U (q1, b) = ¢ U{qz} = {q0, q2}
0'({q0, q1}, ©) =0 (q0, ¢) U (q1, ¢) ={q2} UD = {q>}

The only new state here is {qo, q2}. We add it to Q’:

MCS-113/37

MCS-113/38

Q"= {qo, {do, 91}, q2, {qo, q2}}

And update the transition table 6’

State A b c
qo {Qo, a1} Qo Q
{qo, q1} {Qo, a1} {Qo, @2} Q

q2 ? ? ?

{Q0, 92} ? ? ?

qz has no outgoing transitions so the transition table is simple to update.

A
qo {Qo; qu} Qo Q2
{qo, q1} {Q, a1} {Q0, @2} Q2
q2 - - -
{qo, q2} ? ? ?
Table 6

Now calculate the transitions for {qo, q2}:

6'({90, g2}, @) =& (qo, @) U 8 (q2, a) = {qo, @1} UD = {qo, q1}
8'({qo, g2}, b) = 6 (qo, b) U 3 (q2, b) ={qo} UD ={qo

8'({qo, 92}, ©) =8 (qo, ©) U B (q2, ©) = {qa} UD = {qp}

There are no new states to add to Q’. The updated transition table looks like:

State A b C
qo {Qo, q1} do 0}
{q0, q1} {q0, q1} {q0, 92} Q@

a - : -
{q0, 92} {90, q1} do Q@

Table 7

Since we’ve inspected all of the states in Q and no longer have any states to
add to Q’, we are finished. D’s set of final states F’ are those states that
include states in F. So, F’ = {qy, {qo, Q2} }.

For our completed DFA D= (%, Q’, q’o, F’, 9°):
2= {a, b}
Q= {qo, {q0. q1}, 92, {Qo, 2} }

q’0=q0
F”=1{q, {qo, q2} }
0’ 1s:
State A b C
Qo {90, q1} o Q@
{qo, q1} {qo, q1} {q0, q2} Q@
q - - -
{qo, 92} {q0, q1} do Q@

Table 8
The transition graph for this DFA looks like:

B Figure: 2.10: transition graph for DFA

MCS-113/39

MCS-113/40

2.5 Finite automata with epsilon transitions

Non-deterministic finite automata(NFA) is a finite automaton where for some
cases when a specific input is given to the current state, the machine goes to
multiple states or more than 1 states. It can contain € move. It can be
represented as M = {Q,)., 3, qo, F}.

Where

e Q: finite set of states

e ' finite set of the input symbol
e (o: initial state

o F: final state

e §: Transition function

NFA with € move: If any FA contains ¢ transaction or move, the finite
automata is called NFA with € move.

e-closure: e-closure for a given state A means a set of states which can be
reached from the state A with only g(null) move including the state A itself.

Steps for converting NFA with ¢ to DFA:

Step 1: We will take the e-closure for the starting state of NFA as a starting
state of DFA.

Step 2: Find the states for each input symbol that can be traversed from the
present. That means the union of transition value and their closures for each
state of NFA present in the current state of DFA.

Step 3: If we found a new state, take it as current state and repeat step 2.

Step 4: Repeat Step 2 and Step 3 until there is no new state present in the
transition table of DFA.

Step 5: Mark the states of DFA as a final state which contains the final state of
NFA.

Example:

Convert the NFA with € into its equivalent DFA.

Figure: 2.11: transition graph for NFA with ¢ into its equivalent DFA

Solution:

Let us obtain e-closure of each state.

e-closure {qo} = {qo, q1, Q2}

e-closure {q;} = {q:}

e-closure {qz} = {q2}

e-closure {qs} = {q3}

e-closure {qs} = {q4}

Now, let e-closure {qo} = {qo, qi, 92} be state A.

Hence

0'(A, 0) = e-closure {3 ((qo, q1, q2), 0)}
= g-closure {0 (qo, 0) Ud (q1, 0) US (q2, 0)}
= g-closure {q3}

= {qs} call it as state B.

0'(A, 1) = e-closure {5 ((qo, q1, 92), 1)}
= g-closure {6 ((qo, 1) Ud (q1, 1) U (q2, 1)}

= g-closure {q3}

={g:} =B.

The partial DFA will be

MCS-113/41

MCS-113/42

1
Figure 2.12: Partial DFA

Now,

0'(B, 0) = e-closure {0 (q3, 0)}
=¢

0'(B, 1) = e-closure {0 (qs, 1)}

= g-closure {qa}

= {qu} i.e. state C

For state C:
0'(C, 0) = e-closure {0 (qa4, 0)}

=4
0'(C, 1) = e-closure {0 (qu, 1)}

=4
The DFA will be,

0

©

Figure 2.13: DFA

2.6 Removal of epsilon transitions

NFA with € can be converted to NFA without €, and this NFA without € can
be converted to DFA. To do this, we will use a method, which can remove all

the ¢ transition from given NFA. The method will be:

1. Find out all the ¢ transitions from each state from Q. That will be
called as e-closure {q1} where qi € Q.

2. Then o' transitions can be obtained. The ¢' transitions mean a g-closure
on § moves.

3. Repeat Step-2 for each input symbol and each state of given NFA.

4. Using the resultant states, the transition table for equivalent NFA

without € can be built.

Example:

Convert the following NFA with € to NFA without €.

Figure 2.14: NFA with ¢

b

Solutions: We will first obtain g-closures of qo, q; and q, as follows:
e-closure(qo) = {qo}
e-closure(q) = {qi, q2}
e-closure(qz) = {q2}

Now the ¢' transition on each input symbol is obtained as:

0'(qo, @) = e-closure (6 (3" (qo, €), a))
= g-closure(d(e-closure(qo), a))
= g-closure (5 (qo, 2))
= g-closure(q)

= 1{q1, q2}

0'(qo, b) = e-closure (3 (6" (qo, €), b))

MCS-113/43

= g-closure(d(e-closure(qo), b))
= g-closure (3 (qo, b))
=0

Now the ¢' transition on ql is obtained as:

0'(q1, @) = e-closure (6 (3" (qi, €), a))
= g-closure(d(e-closure(q)), a))
= g-closure (3 (qi1, q2), @)
= g-closure (3 (q1, a) U (q2, 2))
= g-closure (© U @)
=0

0'(q1, b) = e-closure (8 (6" (q1, €), b))
= g-closure(d(e-closure(q), b))
= g-closure (3 (qi1, q2), b)
= g-closure (3 (q1, b) Ud (q2, b))
= g-closure (@ U qy)

={q}

The ¢' transition on q, is obtained as:

0'(qz, @) = e-closure (6 (3" (qa, €),))
= g-closure(d(e-closure(qy), a))
= g-closure (3 (qz, a))
= g-closure(®D)

=0

0'(q2, b) = e-closure (0 (6" (q2, €), b))
= g-closure(d(e-closure(qz), b))
= g-closure (3 (qz, b))

MCS-113/44 = g-closure(qy)

={q}

Now we will summarize all the computed o' transitions:

6'(qo, @) = {qo, qi}
0'(qo, b) =D
d'(q,a)=d
0'(q1, b) = {qu}
0'(qp, a) =D
0'(q2, b) = {qx}

The transition table can be:

State a b
qo {q1, g} ¢
*q ¢ {q2}
“q2 ¢ {q2}
Table 9

State q; and g, become the final state as e-closure of q; and g, contain the final
state qo. The NFA can be shown by the following transition diagram:

Figure 2.15: Transition diagram of NFA

MCS-113/45

MCS-113/46

2.7 Summary

In this unit you have learnt about Finite State Systems, Basic Definitions Non-

Deterministic finite automata (NDFA), Deterministic finite automata (DFA),

Equivalence of DFA and NDFA, Finite automata with epsilon transitions,

Removal of epsilon transitions.

Finite Automata (FA) is the simplest machine to recognize patterns.
The finite automata or finite state machine is an abstract machine
which have five elements or tuple.

It has a set of states and rules for moving from one state to another but
it depends upon the applied input symbol.

In DFA, for each input symbol, one can determine the state to which
the machine will move. Hence, it is called Deterministic Automaton.
As it has a finite number of states, the machine is called Deterministic
Finite Machine or Deterministic Finite Automaton.

In NDFA, for a particular input symbol, the machine can move to any
combination of the states in the machine. In other words, the exact
state to which the machine moves cannot be determined. Hence, it is
called Non-Deterministic Automaton. As it has finite number of states,
the machine is called Non-Deterministic Finite Machine or Non-

Deterministic Finite Automaton.

2.8 Review Questions

Q1.How do you create a DFA in automata? Explain with example

Q2.Can NFA have multiple final states? Elaborate your answer.

Q3.Design FA with), = {0, 1} accepts the set of all strings with three
consecutive 0's.

Q4.Design a DFA L(M) = {w | we {0, 1} } and W is a string that does not
contain consecutive 1's

Q5.Design an NFA in which all the string contains a substring 1110.

Q6.Under which of the following operation, NFA is not closed?

a) Negation
b) Kleene
c¢) Concatenation
d) None of the mentioned
Q7.Which of the following is an application of Finite Automaton?
a) Compiler Design
b) Grammar Parsers
c¢) Text Search

d) All of the mentioned

MCS-113/47

UNIT-3 Introduction to Machines

Structure

3.0 Introduction

3.1 Concept of basic Machine

3.2 Properties and limitations of FSM

3.3 Moore and mealy Machines

3.4 Equivalence of Moore and Mealy machines.

3.5 Minimization of DFA.

3.6 Summary

3.7 Review Questions

MCS-113/48

3.0 Introduction

This is the third and last unit of this block. In this unit, there are seven
sections. First section explains about the basic concept of machine. Second
section that is Section 3.2 define properties and limitations of FSM. Section
3.3 provide the detail knowledge of Moore and mealy Machines; Equivalence
of Moore and Mealy machines describe in the section 3.4. You will learn
about Minimization of DFA in the Section 3.5. Last two sections i.e. Section
3.6 and 3.7 provide summary and review questions of the unit respectively.

Objectives
After studying this unit, you should be able to:

Basic Concept of Machine

Properties and limitations of FSM.

Moore and mealy Machines

Equivalence of Moore and Mealy machines
Minimization of DFA.

3.1 Concept of basic Machine

Automata Theory is an exciting, theoretical branch of computer science. It
established its roots during the 20th Century, as mathematicians began
developing - both theoretically and literally - machines which imitated certain
features of man, completing calculations more quickly and reliably. The word
automaton itself, closely related to the word "automation", denotes automatic
processes carrying out the production of specific processes. Simply stated,
automata theory deals with the logic of computation with respect to simple
machines, referred to as automata. Through automata, computer scientists are
able to understand how machines compute functions and solve problems and
more importantly, what it means for a function to be defined as computable or
for a question to be described as decidable.

Automatons are abstract models of machines that perform computations on an
input by moving through a series of states or configurations. At each state of
the computation, a transition function determines the next configuration on the
basis of a finite portion of the present configuration. As a result, once the
computation reaches an accepting configuration, it accepts that input. The
most general and powerful automata is the Turing machine.

The major objective of automata theory is to develop methods by which
computer scientists can describe and analyse the dynamic behaviour of
discrete systems, in which signals are sampled periodically. The behaviour of
these discrete systems is determined by the way that the system is constructed
from storage and combinational elements. Characteristics of such machines
include:

MCS-113/49

MCS-113/50

e Inputs: assumed to be sequences of symbols selected from a finite set |
of input signals. Namely, set I is the set {x, X, X3... Xk} where k is the
number of inputs.

e Outputs: sequences of symbols selected from a finite set Z. Namely,
set Z is the set {y1, y2, ¥3 ... ym} Where m is the number of outputs.

o States: finite set Q, whose definition depends on the type of automaton.

There are four major families of automaton:

Finite-state machine
Pushdown automata
Linear-bounded automata
Turing machine

The families of automata above can be interpreted in a hierarchal form, where
the finite-state machine is the simplest automata and the Turing machine is the
most complex. The focus of this project is on the finite-state machine and the
Turing machine. A Turing machine is a finite-state machine yet the inverse is
not true.

Finite State Machines

The exciting history of how finite automata became a branch of computer
science illustrates its wide range of applications. The first people to consider
the concept of a finite-state machine included a team of biologists,
psychologists, mathematicians, engineers and some of the first computer
scientists. They all shared a common interest: to model the human thought
process, whether in the brain or in a computer. Warren McCulloch and Walter
Pitts, two neurophysiologists, were the first to present a description of finite
automata in 1943. Their paper, entitled, "A Logical Calculus Immanent in
Nervous Activity", made significant contributions to the study of neural
network theory, theory of automata, the theory of computation and
cybernetics. Later, two computer scientists, G.H. Mealy and E.F. Moore,
generalized the theory to much more powerful machines in separate papers,
published in 1955-56. The finite-state machines, the Mealy machine and the
Moore machine, are named in recognition of their work. While the Mealy
machine determines its outputs through the current state and the input, the
Moore machine's output is based upon the current state alone.

An automaton in which the state set Q contains only a finite number of
elements is called a finite-state machine (FSM). FSMs are abstract machines,
consisting of a set of states (set Q), set of input events (set I), a set of output
events (set Z) and a state transition function. The state transition function takes
the current state and an input event and returns the new set of output events
and the next state. Therefore, it can be seen as a Function, which maps an
ordered sequence of input events into a corresponding sequence, or set, of
output events.

State transition function: [— Z

Finite-state machines are ideal computation models for a small amount of
memory, and do not maintain memory. This mathematical model of a machine
can only reach a finite number of states and transitions between these states.
Its main application is in mathematical problem analysis. Finite-machines are
also used for purposes aside from general computations, such as to recognize
regular languages.

In order to fully understand conceptually a finite-state machine, consider an
analogy to an elevator:

An elevator 1s a mechanism that does not remember all previous requests for
service but the current floor, the direction of motion (up or down) and the
collection of not-yet satisfied requests for services. Therefore, at any given
moment of time, an elevator in operated would be defined by the following
mathematical terms:

o States: finite set of states to reflect the history of the customer’s
requests.

e Inputs: finite set of input, depending on the number of floors the
elevator 1s able to access. We can use the set I, whose size is the
number of floors in the building.

e Outputs: finite set of output, depending on the need for the elevator to
go up or down, according to customers' needs.

A finite-state machine is formally defined as a 5-tuple (Q, I, Z, 0, W) such
that:

e (= finite set of states

o | =finite set of input symbols

o 7 = finite set of output symbols

e (0 =mapping of [x Q into Q called the state transition function, i.e. [x
Q—-Q

e W =mapping W of [x Q onto Z, called the output function

e A =setofaccept states where F is a subset of Q

From the mathematical interpretation above, it can be said that a finite-state
machine contains a finite number of states. Each state accepts a finite number
of inputs, and each state has rules that describe the action of the machine for
ever input, represented in the state transition mapping function. At the same
time, an input may cause the machine to change states. For every input
symbol, there is exactly one transition out of each state. In addition, we can
say that any 5-tuple set which is accepted by nondeterministic finite automata
can also accepted by deterministic finite automata.

MCS-113/51

When considering finite-state machines, it is important to keep in mind that
the mechanical process inside the automata that leads to the calculation of
outputs and change of states is not emphasized or delved into detail; it is
mstead considered a "black box", as illustrated below:

Input symbol Output symbol
Id m ‘1B| k m : d ICtL
state ac x" depiction
L J of finite automata

Figure 3.1: Black Box

Having finite, constant amounts of memory, the internal states of an FSM
carry no further structure. They can easily be represented using state diagrams,
as seen below:

State Input Output New State
q() X 0 q()
Jo a 1 qi
o b 1 qi
qi X 0 do
qi a 0 qi
qi b 0 qi
Table 10
< }L Qs
zb 1=
< a8 0=
- P 1=
2 0=

Figure 3.2: State diagram of FSM

The state diagram illustrates the operation of an automaton. States are
represented by nodes of graphs, transitions by the arrows or branches, and the
corresponding inputs and outputs are denoted by symbols. The arrow entering

MCS-113/52 from the left into q0 shows that qO is the initial state of the machine. Moves

that do not involve changes of states are indicated by arrows along the sides of
individual nodes. These arrows are known as self-loops.

There exist several types of finite-state machines, which can be divided into
three main categories:

e acceptors: either accept the input or do not
e recognizers: either recognize the input or do not
e transducers: generate output from given input

Applications of finite-state machines are found in a variety of subjects. They
can operate on languages with a finite number of words (standard case), an
infinite number of words (Rabin automata, Birche automata), various types of
trees, and in hardware circuits, where the input, the state and the output are bit
vectors of a fixed size.

Finite State vs. Turing Machines

The simplest automata used for computation is a finite automaton. It can
compute only very primitive functions; therefore, it is not an adequate
computation model. In addition, a finite-state machine's inability to generalize
computations hinders its power.

The following is an example to illustrate the difference between a finite-state
machine and a Turing machine:

Imagine a Modern CPU. Every bit in a machine can only be in two
states (0 or 1). Therefore, there are a finite number of possible states.
In addition, when considering the parts of a computer a CPU interacts
with, there are a finite number of possible inputs from the computer's
mouse, keyboard, hard disk, different slot cards, etc. As a result, one
can conclude that a CPU can be modelled as a finite-state machine.

Now, consider a computer. Although every bit in a machine can only
be in two different states (0 or 1), there are an infinite number of
interactions within the computer as a whole. It becomes exceeding
difficult to model the workings of a computer within the constraints of
a finite-state machine. However, higher-level, infinite and more
powerful automata would be capable of carrying out this task.

World-renowned computer scientist Alan Turing conceived the first "infinite"
(or unbounded) model of computation: The Turing machine, in 1936, to solve
the Entschein dungs problem. The Turing machine can be thought of as a
finite automaton or control unit equipped with an infinite storage (memory).
Its "memory" consists of an infinite number of one-dimensional array of cells.
Turing's machine is essentially an abstract model of modern-day computer
execution and storage, developed in order to provide a precise mathematical
definition of an algorithm or mechanical procedure.

MCS-113/53

MCS-113/54

While an automaton is called finite if its model consists of a finite number of
states and functions with finite strings of input and output, infinite automata
have an "accessory" - either a stack or a tape that can be moved to the right or
left, and can meet the same demands made on a machine.

A Turing machine is formally defined by the set [Q, X, I, 3, q0, B, F] where

Q = finite set of states, of which one state q0 is the initial state

¥ = a subset of I" not including B, is the set of input symbols

I = finite set of allowable tape symbols

0 = the next move function, a mapping function from Q x I' to Q x I' x
{L, R}, where L and R denote the directions left and right respectively
q0 = in set Q as the start state

e B =asymbol ofT, as the blank

o F C Q the set of final states

Therefore, the major difference between a Turing machine and two-way finite
automata (FSM) lies in the fact that the Turing machine is capable of changing
symbols on its tape and simulating computer execution and storage. For this
reason, it can be said that the Turing Machine has the power to model all
computations that can be calculated today through modern computers.

3.2 Properties and limitations of FSM

FSMs are most commonly represented by state diagrams, which are also called
state transition diagrams. The state diagram is basically a directed graph where
each vertex represents a state and each edge represents a transition between
two states.

Another common representation of FSMs is state transition tables. In these
tables, every column corresponds to a state, every row corresponds to an event
category. Values in the table cells give the states resulting from the respective
transitions. Table cells also can be used for specifying actions related to
transitions.

e

"-.,E_,/’ e

b
_®
K‘-\.__ _,a-"'j

d

FSMs are used in games; they are most recognized for being utilized in
artificial intelligence, and however, they are also frequent in executions of
navigating parsing text, input handling of the customer, as well as network
protocols.

These are restricted in computational power; they have the good quality of
being comparatively simple to recognize. So, they are frequently used by
software developers as well as system designers for summarizing the
performance of a difficult system.

The finite state machines are applicable in vending machines, video games,
traffic lights, controllers in CPU, text parsing, analysis of protocol, recognition
of speech, language processing, etc.

Advantages of Finite State Machine
The advantages of Finite State Machine include the following.

o Finite state machines are flexible

e FEasy to move from a significant abstract to a code execution
e Low processor overhead

o Easy determination of reachability of a state

Limitations
The disadvantages of the finite state machine include the following

o The expected character of deterministic finite state machines can be
not needed in some areas like computer games

e The implementation of huge systems using FSM is hard for managing
without any idea of design.

e Not applicable for all domains

o The orders of state conversions are inflexible.

Check your progress

Q1. What is the role of Finite state machine in theory of automata?

Q2. Define all the properties and limitations of automata.

MCS-113/55

MCS-113/56

3.3Moore and mealy Machines

Finite automata may have outputs corresponding to each transition. There are
two types of finite state machines that generate output —

e Mealy Machine
e Moore machine

Mealy Machine

A Mealy Machine is an FSM whose output depends on the present state as
well as the present input.

It can be described by a 6 tuple (Q, >, O, d, X, qo) where —

e Qs a finite set of states.
e > isa finite set of symbols called the input alphabet.
e O is a finite set of symbols called the output alphabet.

e 9 is the mput transition function where 3: Q X Y. — Q
e X is the output transition function where X: Q X ' — O
® (o is the initial state from where any input is processed (qo€ Q).

Next state

input=10 input=1
State Output State Output
— b X1 c X1
b b X2 d X3
c d X3 c X1
d d X3 d X2
Table 11
The state diagram of the above Mealy Machine 1s —
O
0 /xz. 1

‘“\.

N

/\A

Figure 3.3: State diagram of Mealy Machine

Example:

Design a Mealy machine for a binary input sequence such that if it has a
substring 101, the machine output A, if the input has substring 110, it outputs
B otherwise it outputs C.

Solution: For designing such a machine, we will check two conditions, and
those are 101 and 110. If we get 101, the output will be A. If we recognize
110, the output will be B. For other strings the output will be C.

©

The partial diagram will be:

@ e g O

1/C
1/C

Figure 3.4 Partial diagram of Mealy Machine

1/A

b .4

Now we will insert the possibilities of 0's and 1's for each state. Thus the
Mealy machine becomes:

0/C

1 fC

Figure 3.5: Mealy Machine

Moore Machine
Moore machine is an FSM whose outputs depend on only the present state.

A Moore machine can be described by a 6 tuple (Q, >, O, 8, X, q0) where —

e Qs a finite set of states. MCS-113/57

MCS-113/58

e > is a finite set of symbols called the input alphabet.

e O is a finite set of symbols called the output alphabet.

e s the input transition function where 6: Q X > — Q

e X is the output transition function where X: Q — O

e (o is the initial state from where any input is processed (q0 € Q).

The state table of a Moore Machine is shown below —

Present state Input = 5\1 ext Statelnpu =1 Output
—a b c X2
b b d X]
c c d Xo
d d d X3
Table 12

The state diagram of the above Moore Machine is —

/31

/\
&9 0.1
b .

Figure 3.6: The State diagram of Moore Machine

Example:

Design a Moore machine for a binary input sequence such that if it has a
substring 101, the machine output A, if the input has substring 110, it outputs

B otherwise it outputs C.

Solution: For designing such a machine, we will check two conditions, and
those are 101 and 110. If we get 101, the output will be A, and if we recognize

110, the output will be B. For other strings, the output will be C.

The partial diagram will be:

Figure 3.7: Partial diagram of Moore Machine

Now we will insert the possibilities of 0's and 1's for each state. Thus the
Moore machine becomes:

Figure 3.8: Moore Machine Transition Diagram

Mealy Machine vs. Moore Machine

The following table highlights the points that differentiate a Mealy Machine
from a Moore Machine.

Sr. Mealy Machine Moore Machine
No

Output depends both upon the Output depends only upon the

1 present state and the present present state.
input.

) Generally, it has fewer states Generally, it has more states
than Moore Machine. than Mealy Machine.

3 The value of the output function | The value of the output function

is a function of the transitions

is a function of the current state

MCS-113/59

MCS-113/60

and the changes, when the input
logic on the present state is
done.

and the changes at the clock
edges, whenever state changes
occur.

Mealy machines react faster to
inputs. They generally react in
the same clock cycle.

In Moore machines, more logic
is required to decode the
outputs resulting in more circuit

delays. They generally react one
clock cycle later.

Table 13

3.4 Equivalence of Moore and Mealy machines

Moore Machine to Mealy Machine

Algorithm:

Input — Moore Machine

Output — Mealy Machine

Step 1 — Take a blank Mealy Machine transition table format.

Step 2 — Copy all the Moore Machine transition states into this table format.

Step 3 — Check the present states and their corresponding outputs in the Moore
Machine state table; if for a state Qi output is m, copy it into the output
columns of the Mealy Machine state table wherever Qi appears in the next
state.

Example

Let us consider the following Moore machine —

Next State
Present state 2= 0 b=1 Output
—a d b 1
b a d 0
c c c 0
d b a 1
Table 14
Now we apply above Algorithm to convert it to Mealy Machine.
Step1 & 2-
Present Next state
state a=0 b=1
State Output State Output
—a d b
b a d
c c c
d b a

Table 15

Step 3 -
Present Next state
state a=0 b=1
State Output State Output
—a d 1 b 0
b a 1 d 1
C C 0 C 0
d b 0 a 1
Table 16

Mealy Machine to Moore Machine
Algorithm

Input — Mealy Machine

Output — Moore Machine

Step 1 — Calculate the number of different outputs for each state (Qi) that are
available in the state table of the Mealy machine.

Step 2 — If all the outputs of Qi are same, copy state Qi. If it has n distinct
outputs, break Qi into n states as Qin where n=0, 1, 2.......

Step 3 — If the output of the initial state is 1, insert a new initial state at the
beginning which gives 0 output.

Example

Let us consider the following Mealy Machine —

Present Next state
state a=0 b=1
State Output State Output

—a d 0 b 1

b a 1 d 0

c c 1 c 0

d b 0 a 1

Table 17

Here, states ‘a’ and ‘d’ give only 1 and 0 outputs respectively, so we retain
states ‘a’ and ‘d’. But states ‘b’ and ‘c’ produce different outputs (1 and 0). So,
we divide b into by, b; and ¢ into ¢y, ¢;.

Present state a=0 Next State b=1 Output
— a d b 1
b() a d 0
b1 a d 1

MCS-113/61

MCS-113/62

Co Ci Co 0

[E—

Ci Ci Co

d b() a 0

Table 18
3.5 Minimization of DFA

Minimization of DFA means reducing the number of states from given FA.
Thus, we get the FSM (finite state machine) with redundant states after
minimizing the FSM.

We have to follow the various steps to minimize the DFA. These are as
follows:

Step 1: Remove all the states that are unreachable from the initial state via any
set of the transition of DFA.

Step 2: Draw the transition table for all pair of states.

Step 3: Now split the transition table into two tables T1 and T2. T1 contains
all final states, and T2 contains non-final states.

Step 4: Find similar rows from T1 such that:
1.3(q,a)=p
2.0(r,a)=p

That means, find the two states which have the same value of a and b and
remove one of them.

Step 5: Repeat step 3 until we find no similar rows available in the transition
table T1.

Step 6: Repeat step 3 and step 4 for table T2 also.

Step 7: Now combine the reduced T1 and T2 tables. The combined transition
table is the transition table of minimized DFA.

Example: Minimize the DFA

Figure 3.9: Transition diagram of Minimization of DFA

Solution:

Step 1: In the given DFA, q2 and g4 are the unreachable states so remove

them.

Step 2: Draw the transition table for the rest of the states.

Step 3: Now divide rows of transition table into two sets as:

1. One set contains those rows, which start from non-final states:

State 0] |
ql q0 q3
*q3 q5 q5
*q5 q5 q5
Table 19

2. Another set contains those rows, which starts from final states.

State 0 1

—qo ql q3

ql q0 q3
Table 20

Step 4: Set 1 has no similar rows so set 1 will be the same.

Step 5: In set 2, row 1 and row 2 are similar since q3 and g5 transit to the same

State 0 1
q3 qs qs
q5 q5 q5

Table 21

state on 0 and 1. So skip g5 and then replace q5 by g3 in the rest.

q3 q3 q3

Table 22

Step 6: Now combine set 1 and set 2 as:

‘ State) 1
—qq ql q3
ql q0 q3
*q3 q3 q3

Table 23

MCS-113/63

Now it is the transition table of minimized DFA.

0

0,1

Figure 3.10: Transition diagram of minimized DFA

3.6 Summary

In this unit you have learnt about the concept of basic Machine, Properties and
limitations of Finite State Machine. Moore and mealy Machines, Equivalence
of Moore and Mealy machines and Minimization of DFA.

e A system where particular inputs cause particular changes in state can
be represented using finite state machines. This example describes the
various states of a turnstile. Inserting a coin into a turnstile will unlock
it, and after the turnstile has been pushed, it locks again.

e Moore machine is a finite state machine in which the next state is
decided by the current state and current input symbol. The output
symbol at a given time depends only on the present state of the
machine.

e A Mealy machine is a machine in which output symbol depends upon
the present input symbol and present state of the machine. In the Mealy
machine, the output is represented with each input symbol for each
state separated by /.

3.7 Review Questions

Q1.What are finite state machines used for? Is a computer a finite state

MCS-113/64 machine?

Q2.Design a mealy machine that scans sequence of input of 0 and 1 and
generates output 'A' if the input string terminates in 00, output 'B' if the
string terminates in 11, and output 'C' otherwise.

Q3.Design a Moore machine with the input alphabet {0, 1} and output
alphabet {Y, N} which produces Y as output if input sequence
contains 1010 as a substring otherwise, it produces N as output.

Q4.Minimize the given DFA-

Q5.Convert the following Moore machine into its equivalent Mealy
machine.

BIBLIOGRAPHY

https://medium.cony/swlh/introduction-to-deterministic-finite-automata-dfa-
40aac64b9895

https://www.neuraldump.net/2017/11/nfa-and-dfa-equivalence-theorem-proof-
and-example/

MCS-113/65

MCS-113/66

.....

Uttar Pradesh Rajarshi Tandon
Open University

Block

2

MCS - 113

Master of Computer

Science
Theory of Computation

Regular Expressions and Languages

Unit - 4
Regular Expressions 70
Unit - 5
Properties of Regular Language 89

MCS-113/67

MCS - 113

Course Design Committee

Prof. Ashutosh Gupta Chairman
Director (In-charge)
School of Computer and Information Sciences, UPRTOU Prayagraj

Prof. R. S. Yadav Member
Department of Computer Science and Engineering

MNNIT Pryagraj

Dr. Marisha Member

Assistant Professor (Computer Science),

School of Sciences, UPRTOU Pryagraj

Mr. Manoj Kumar Balwant Member
Assistant Professor (computer science),

School of Sciences, UPRTOU Pryagraj

Course Preparation Committee

Dr. Ravi Shankar Shukla Author
Associate Professor

Department of CSE, Invertis University

Bareilly-243006, Uttar Pradesh

Prof. Abhay Saxena Editor
Professor and Head, Department of Computer Science

Dev Sanskriti Vishwavidyalya, Hardwar, Uttrakhand

Prof. Ashutosh Gupta

Director (In-charge)

School of Computer and information,

Sciences, UPRTOU Prayagra;j

Mr. Manoj Kumar Balwant Course Coordinator

Assistant Professor (computer science),
School of Sciences, UPRTOU Pryagraj

© UPRTOU, Prayagraj - 2023
© MCS - 113 Theory of Computation
ISBN :

All Rights are resurved. No Part of this work may reprouduced in any form, by mimeograpn or
any other means, without permission in writing from the Uttar pradesh Rajarshi Tandon Open
University.

Printed and Published by Vinay Kumar Registrar, Uttar Pradesh rajarshi Tandon Open
University, Prayagraj - 2023

Printed By. — M/s K.C.Printing & Allied Works, Panchwati, Mathura -281003.

MCS-113/68

Block Introduction

This is the second block on Regular Expressions and Languages of theory of
automata. The language accepted by finite automata can be easily described by
simple expressions called Regular Expressions. A regular expression can also
be described as a sequence of pattern that defines a string. Regular expressions
are used to match character combinations in strings.

A regular language is a language that can be expressed with a regular
expression or a deterministic or non-deterministic finite automata or state
machine. A language is a set of String, which are made up of characters from a
specified alphabet, or set of symbols.

So, we will begin the first unit on Regular Expressions. In this unit firstly we
will discuss about Regular Expressions-Definition, Algebraic Laws of RE,
Finite Automata and Regular expressions, Conversion from RE to FA,
Conversion from FA to RE, and Arden’s Theorem. Therefore, if we talk about
the relationship between finite automata and regular expression it says that
finite automata are formal (or abstract) machines for recognizing patterns.
These machines are used extensively in compilers and text editors, which must
recognize patterns in the input. Regular expressions are a formal notation for
generating patterns.

Second unit begins with Properties of Regular Language. In this unit you will
know all about the pumping lemma for regular sets, applications of the
pumping lemma, and closure properties of regular Sets. In the theory of formal
languages, the pumping lemma may refer to: Pumping lemma for regular
languages, the fact that all sufficiently long strings in such a language have a
substring that can be repeated arbitrarily many times, usually used to prove
that certain languages are not regular.

As you study the material, you will find that figures, tables are properly used
and these will help to understand the concept. There are many sections in the
units to easily understand the topic. Every unit has summary and review
questions in the end of the unit, which will help you to review yourself.

In your study, you will find that every unit has different equal length and your
study time will vary for each unit.

We hope you will enjoy studying the material and once again wish you all the
best for your success.

MCS-113/69

MCS-113/70

UNIT-4 Regular Expressions

Structure

4.0 Introduction

4.1 Regular Expressions-Definition

4.2 Algebraic Laws of RE

4.3 Finite Automata and Regular expressions

4.4 Conversion from RE to FA

4.5 Conversion from FA to RE

4.6 Arden’s Theorem

4.7 Summary

4.8 Review Questions

4.0 Introduction

This is the first unit of this block. In this block there are two units. In this unit,
you will learn about regular expression. In the section 1.1 you will know about
definition of regular expressions, Algebraic Laws of RE dines in the section
1.2, Next section ie. section 1.3 defines Finite Automata and Regular
expressions. There is another very important section i.e. section 1.4 explain
conversion from RE to FA. You will know the details about conversion from
FA to RE. Arden’s Theorem is define in the section 1.6. Summary and Review
question has shown in the section 1.7 and 1.8 respectively.

Objective
After studying this unit, you should be able to explain:
e Definition of Regular Expressions

e Algebraic Laws of RE
e Finite Automata and Regular expressions

e Conversion from RE to FA
e Conversion from FA to RE
e Arden’s Theorem.

4.1 Regular Expressions Definition

e The language recognized by finite automata can also be described by
simple expressions known as Regular Expressions. It is the most
effective and efficient way to represent any language.

e The languages recognized by some regular expression are stated as
Regular languages.

e A regular expression can also be termed as a sequence of pattern that
defines a string.

e Another important use of Regular expressions is to match character
combinations in strings. This pattern can be used by String searching
algorithm to find the operations on a string.

For instance:

In a regular expression, x* means zero or more occurrence of x. It can
generate {e, X, XX, XXX, XXXX...... }

In a regular expression, X+ means one or more occurrence of x. It can generate
{X, XX, XXX, XXXX......}

Formal Definition
An expression R is a regular expression if R is

A for some a in some alphabet

€,

?,

(R1UR;) for some regular expressionsR;andRy,
(Ri°R;) for some regular expressionsR;andR,, or
(Ry) *for some regular expressionR;.

A S e

When the meaning is clear from the context, () and can be removed from the
expression.

Operations on Regular Language

The various operations on regular language are:

Union: IfL and M are two regular languages then their union L U M is also a

union. MCS-113/71

MCS-113/72

I.LUM={s|sisinL orsisin M}

Intersection: If L and M are two regular languages then their intersection is
also an intersection.

I.LIM={st|sisinLandtisin M}

Kleen closure: If L is a regular language then its Kleen closure L1* will also
be a regular language.

1. L* = Zero or more occurrence of language L.
Example:

Write the regular expression for the language accepting all combinations of
a's, over the set), = {a}

Solution:
All combinations of a's mean a may be zero, single, double and so on. If a is

appearing zero times, that means a null string. That is, we expect the set of {g,
a, aa, aaa,}. So we give a regular expression for this as:

R=a*
That is Kleen closure of a.

4.2 Algebraic Laws of RE

Associative Law:

It is the property of an operator that allows us to regroup the operands when
operator is applied twice.

An example for arithmetic associative law is
(X+Y) +Z = X+(Y+Z)

Similarly, for an RE, the associative law for union is (L+M) +N=L+(M+N)
The associative law for concatenation states that (LM)N=L(MN)

Commutative Law:

It is the property of an operator that allows us to switch the order of its
operand and get the same result.

An example for arithmetic commutative law is

X+Y=Y+X

Similarly, for an RE, the commutative law for union is L+M=M+L
But, the commutative law for concatenation does not hold good, i.e., LM#ML
Distributive Law:

It involves two operators and asserts that one operator can be pushed down to
beapplied to each argument of other operator individually.

An example for arithmetic distributive law is
X*(Y+Z) = X*Y+X*Z

In the case of RE, the distributive law is stated in two forms, that are, Left
Distributive law of concatenation over union, which states that

L(M+N) =LM+LN
Idempotent law:
An operator is said to be idempotent if the result of applying it to two of the
same values as arguments is that value itself. This law is not analogous to
arithmetic laws.

As an example, X+X # X or, X*X # X

Although there are some cases for the values of X when the equality holds true
suchas 0+0 =0

For an RE, the idempotent law for union is L+L=L which means if we take
two identical copies of an expression, we can replace them by only one copy
of the expression.

Identity Law:

Let us see the Identity for Regular Expressions.
P+A=A+P=AandeA=Ac=A

Annihilator Law:

Let us see the Annihilator for Regular Expressions

D.A=AD=0

Closure Laws:

Let us see the Closure Laws for Regular Expressions.

MCS-113/73

MCS-113/74

(A¥)* =A% Q* =g e* =g A+t =AA*=A*A,and A*=A++e¢.

De Morgan Law:

(L+B) *=(L*B*) *

4.3 Finite Automata and Regular expressions

Given any regular expression as a pattern for string searching, we might want
to change this pattern into a deterministic finite automaton (DFA) or
nondeterministic finite automaton (NDFA)for effective string searching; a
deterministic automaton only has to scan each input symbol once.

Theorem 1.1 IfL;=L(M;)andL,=L(M,)for languages Li SX* then

1. There is a mechanism for machine Mrecognizingl;UL,

2. There is an automaton for machine MrecognizingL°L,

3. There is an automaton recognizing the language L;”

4. There 1s an automaton recognizing X*—L1

5. There is an automaton recognizinglL; L,

6. If a€X then there is an automaton recognizing {a}

7. There is an automaton recognizing@.

From all of the above points it follows that if A is a regular language then
there is a finite automaton recognizing A.

For example, justify why there would be a finite automaton recognizing the
language represented by aU(ab)*.

Proof: We will proof for nondeterministic automata as we know that
deterministic and nondeterministic automata are of equivalent power.

4.3.1Union
For union, supposeM;is (K, X, Ay, s1, F1) andMais (K, Z, Ay, s;, F2). Then let
Mbe (K, Z, A, s, F) where

K=K1UK2U{S}
F=F1UF2
A=AUNU{(s, e 51), (5, e 52))

And s is a new state. Then L(M) =L(M;)UL(M;). Diagram:

ML D

M2

One important point must be noted that € arrows are suitable for this
construction.
Example:

a Recognizes a*

> b Recognizes b*

MCS-113/75

MCS-113/76

HOD;

e
> Recognizes a* U b*
e
b

4.3.2Concatenation

K1

The states inF;are no longer accepting states. ThenL (M) = L(M,°L (M)

Example:

a Recognizes a*

> b Recognizes b*

o, a @ b Recognizes a*b*

4.3.3 Kleene star

K1

M1 @

MCS-113/77

MCS-113/78

Then L (M) =L (M1) "

Example:

a,b

Recognizes {a,b}

e a,b
> . Recognizes {a,b}*

Now the question arise here how would you modify this automaton to
recognize{a, b} +?

The solution 1s shown blow:

4.3.4 Complementation

LetM=(K, Z, 9, s, F) be a deterministic finite automaton. Let M be (K, Z, 9, s,
K-F). Then L(M) = Z*-L(M,).

Ml O

Example:

B
b
Recognizes strings with even number of a’s
M .
T
b b
Recognizes strings with odd number of a’s

Why does the automaton have to be deterministic for this to work? An
example showing thatM;has to be deterministic for this construction to work:

MCS-113/79

MCS-113/80

4.3.5 Intersection

If there are two types of context free languages L1 and L2, their intersection
L; N L, need not be context free. For example,

L;={a""c" |n>=0and m>=0} and L, = (a"b"c" | n>= 0 and m >= 0}
L;=L; NL,= {a"b"c" | n>= 0} need not be context free.

L, says number of a’s and the number of b’s should be equal L2 says number
of b’s and number of ¢’s should be equal. Their intersection says both the
conditions must be true, but push down automata can compare only two. So it
cannot be accepted by pushdown automata, hence not context free.

Check your progress

Q1.Define all the algebraic laws of Regular expression with suitable
example.

Q2.What is the relation between finite automata and regular expression?
Elaborate your answer.

4.4 Conversion from RE to FA

In this topic we will learn about the conversion from regular expression to finite
automata. For this purpose, we will use a method called subset method. With the help
of this method, we can acquire finite automata (FA) from the given regular
expression. The method is given blow:

Step 1: Design a transition diagram for given regular expression, using NFA with ¢
moves.

Step 2: Convert this NFA with & to NFA without €.

Step 3: Convert the obtained NFA to equivalent DFA.

Example:

Design a FA from given regular expression 10 + (0 + 11)0* 1.

Solution: First we will construct the transition diagram for a given regular
expression.

Step 1:
10+(0+11)0*
Step 2:
10
(0+11)0*1
Step 3:

MCS-113/81

MCS-113/82

Step 4:

Step S:

Now we have got NFA without €. The next step will be the conversion from
NFA to required DFA for that, we will first write a transition table for this

NFA.

State 0 1
—q0 q3 {ql, q2}
ql qf ()]
q2 ¢ q3
q3 q3 Qf
*qf ¢ @

The equivalent DFA will be:

State 0 1
—[q0] [93] [q1, q2]
[q1] [qf] ¢
[92] ¢ [93]
[93] [93] [qf]
[q1, q2] [qf] [qf]
*[qf] ¢ ¢

In this unit you have learnt about Context Free Grammar and its properties.
You have also learnt about sensational forms, derivations of left most and
right most, and the language of context free grammar.

* Context Free Grammars or CFGs define a formal language. Formal
languages work strictly under the defined rules and their sentences are
not influenced by the context.

e Every string of symbols in the derivation is a sentential form

e A sentence is a sentential form that has only terminal symbols

e A leftmost derivation is one in which the leftmost nonterminal in each
sentential form is the one that is expanded next in the derivation

o A rightmost derivation works right to left instead

e Some derivations are neither leftmost nor rightmost

4.5 Conversion from FA to RE

The two popular methods for converting a DFA to its regular expression are-

Converting FA to
RE

State Elimination
Method

Arden's Method

1. State Elimination Method
2. Arden’s Method

State Elimination Method-

Stepl: If the start state is an accepting state or has transitions in, add a new
non-accepting start state and add an €-transition between the new start state

and the former start state.
MCS-113/83

MCS-113/84

Step2: If there is more than one accepting state or if the single accepting state
has transitions out, add a new accepting state, make all other states non-
accepting, and add an €-transition from each former accepting state to the new
accepting state.

Step3: For each non-start non-accepting state in turn, eliminate the state and
update transitions accordingly.

Example: Find regular expression for the following DFA-

Solution-
Step-01:

o Initial state A has an incoming edge.
e So, we create a new initial state q;.

The resulting DFA is-

Step-02:

e Final state B has an outgoing edge.
e So, we create a new final state qr.

The resulting DFA is-

Step-03:
Now, we start eliminating the intermediate states.
First, let us eliminate state A.

o There is a path going from state qi to state B via state A.

e So, after eliminating state A, we put a direct path from state qi to state
B having cost €.0 =0

o There is a loop on state B using state A.

e So, after eliminating state A, we put a direct loop on state B having
cost 1.0 = 10.

Eliminating state, A, we get-

10

—»@ ’ B —E

Step-04:

Now, let us eliminate state B.

o There is a path going from state qi to state qr via state B.
e So, after eliminating state B, we put a direct path from state qi to state
gr having cost 0(10) *€ =0(10) *

Eliminating state B, we get-

__@ 0(10)*

From here,

Regular Expression = 0(10) *

4.6 Arden’s Theorem

The Arden's Theorem is useful for checking the equivalence of two
regular expressions as well as in the conversion of DFA to a regular
expression.

Let us see its use in the conversion of DFA to a regular expression.

MCS-113/85

Following algorithm is used to build the regular expression form given
DFA.

1. Let q; be the initial state.

2. There are qy, q3, g4qn number of states. The final state may be some
qj where j<=n.

3. Let o represents the transition from g to ;.
4. Calculate g; such that
qgi = G
If qj is a start state, then we have:
qi=0;i* gte
5. Similarly, compute the final state which ultimately gives the regular

expression 'r'

Example:

Construct the regular expression for the given DFA
0 1 0.1
Start 1 0

Let us write down the equations

Solution:

q1:q10+8

Since q; is the start state, so € will be added, and the input 0 is coming to q
from q; hence we write

State = source state of input x input coming to it
Similarly,
@2=ql+q1

MCS-113/86 g3 =q2 0+ g3 (0+1)

Since the final states are q; and q,, we are interested in solving q; and g, only.
Let us see q; first

qr=q:10+¢

We can re-write it as

qr=¢+q:0

Which is similar to R = Q + RP, and gets reduced to R = OP*.
AssumingR=q;,Q=¢,P=0

We get

qr=¢.(0)*

q: = 0* (e.R*=R%*)

Substituting the value into q», we will get
q@=0*%1+q,1

q:=0*1(1) *(R=Q+RP—QP%

The regular expression is given by
r=q+q

=0*+0*1.1*

r=0%+0* I+ (1.1*=1+)

4.7 Summary

In this unit you have learnt about Regular Expressions definition, Algebraic
Laws of Regular Expression, Finite Automata and Regular expressions,
Conversion from Regular Expression to Finite Automata, Conversion from
Finite Automata to Regular Expression and Arden’s Theorem.

e A simple example for a regular expression is a (literal) string. For
example, the Hello World regex matches the "Hello World" string.

e . (Dot) is another example for a regular expression. A dot matches any
single character; it would match, for example, "a" or "1".

e Short for regular expression, a regex is a string of text that allows you
to create patterns that help match, locate, and manage text. Perl is a
great example of a programming language that utilizes regular

expressions. MCS-113/87

e A finite automaton (FA) is a simple idealized machine used to
recognize patterns within input taken from some character set (or
alphabet) C.

e The job of an FA is to accept or reject an input depending on whether
the pattern defined by the FA occurs in the input.

4.8 Review Questions

Q1.Design a NFA from given regular expression 1 (1* 01* 01%*) *.
Q2.Construct the FA for regular expression 0*1 + 10.
Q3.Find regular expression for the following DFA-

Q4.Find regular expression for the following DFA-
b

a b ab
@ a : o :% a :@

Q5.Construct a regular expression corresponding to the automata given
below with the help of Arden’s Theorem—

Q6. Construct a DFA with reduced states equivalent to the R.E.

10 + (0+11))0*1.
MCS-113/88

UNIT-5 Properties of Regular Language

Structure
5.0 Introduction
5.1 The Pumping Lemma for Regular Sets
5.2 Applications of the pumping lemma
5.3 Closure properties of regular sets.
5.4 Summary

5.5 Review Questions

5.0 Introduction

This is the second unit of this block. This unit is divided in to five sections
and explain all the properties of regular language. In the section 2.1, you
will learn about the Pumping Lemma for Regular Sets. Section 2.2 provide
Applications of the pumping lemma. Closure properties of regular sets
define in the Section 2.3. Section 2.4 has Summary and Review Questions
is providing in the Section 2.5.

Objective
After studying this unit, you should be able to define:

e The Pumping Lemma for Regular Sets
e Applications of the pumping lemma
e Closure properties of regular sets.

5.1 The Pumping Lemma for Regular Sets

In the theory of formal languages, the pumping lemma for regular languages is
a lemma that describes an essential property of all regular languages.
Informally, it says that all sufficiently long words in a regular language may
be pumped—that is, have a middle section of the word repeated an arbitrary
number of times—to produce a new word that also lies within the same
language.

Specifically, the pumping lemma says that for any regular language L there
exists a constant p such that any word w in L with length at least p can be split

MCS-113/89

MCS-113/90

into three substrings, w = x y z, where the middle portion y must not be empty,
such that the wordsx z, x yz, x yyz, x y y y z, . . . constructed by repeating y
zero or more times are still in L. This process of repetition is known as
"pumping". Moreover, the pumping lemma guarantees that the length of xy
will be at most p, imposing a limit on the ways in which w may be split. Finite
languages vacuously satisfy the pumping lemma by having p equal to the
maximum string length in L plus one.

Let L be a regular language. Then there exists an integer p > / depending only
on L such that every string w in L of length at least p (p is called the "pumping
length") can be written as w = x y z (i.e., w can be divided into three
substrings), satisfying the following conditions:

e =1

* |[wl=p
e (Vn>0) (v'z€L)

yis the substring that can be pumped (removed or repeated any number of
times, and the resulting string is always in L.

(1) Means the loop yto be pumped must be of length at least one;

(2) Means the loop must occur within the first p characters. |x| must be smaller
than p (conclusion of (1) and (2)), but apart from that, there is no restriction on
x and z. In simple words, for any regular language L, any sufficiently long
word w (in L) can be split into 3 parts. i.e. w=xyz, such that all the strings x)"z
for n > 0 are also in L. Below is a formal expression of the Pumping Lemma.

VL Sy *
(regular (L) =>

(Fp=1) (vweL) (Wl 2p) =>

(D y,z€X¥)w=xyzN\N(y|=1N |xy| <p A\ (VYn>0) (xynz €L))))))))

The Pumping Lemma: Examples
Consider the following three languages:
Ly ={d"b"|0<n<100}
L, ={d"b" |n>0}

L; ={d"b" | n,m >0}

The first language is regular, since it contains only a finite number of strings.

The third language is also regular, since it is equivalent to the regular
expression (a*) (b*).

The second language consists of all strings which contain a number of "a's
followed by an equal number of "b's.

Lemma: L; is not regular
Strategy: Proof by contradiction

Proof: Let us assume that it is regular; then we must have some set of strings
of the form

xy'z|i>0} L
Suppose such a subset did exist.

e Obviously, y could not contain a mixture of a's and b's, since this
would mean that xy'z would have "b's before “a's. Thus, y must consist
solely of a's or solely of "b's.

o Let us assume then that y consists solely of “a's. Then if, for some n we
have that x)'z is in the language, there is no way that x)"" "'z can be in
the language, since this will contain extra “a's without any extra 'b's.
Thus there will be no way for xy'z to be in the language for every i >0.

e We can use exactly the same argument to refute the supposition that y
can consist entirely of 'b's.

Thus we have shown that y cannot consists of "a's "b's or their mixture; i.e. no
such y exists, and so the Pumping Lemma is not satisfied. Thus L, is not
regular.

5.2 Applications of the pumping lemma

Not all languages are regular. For example, the language L = {a"b": n> 0} is
not regular. Similarly, the language {a’: p is a prime number} is not regular. A
pertinent question therefore is how do we know if a language is not regular.

Proving languages non-regular
1. The language L = {a"b": n # 0} is not regular.

Before proving L is not regular using pumping property, let's
see why we can't come up with a DFA or regular expression for
L.

L = {e, ab, aabb, aaabbb....}

It may be tempting to use the regular expression a*b* to
describe L. No doubt, a*b* generates these strings. However, it
is not appropriate since it generates other strings not in L such
as a, b, aa, ab, aaa, aab, abb, ...

Let's try to come up with a DFA. Since it has to accept ¢, start
state has to be final. The following DFA can accept a'b" for n <
3.1e. {g, a, b, ab, aabb, aaabbb}

MCS-113/91

MCS-113/92

The basic problem is DFA does not have any memory. A
transition just depends on the current state. So it cannot keep
count of how many a's it has seen. So, it has no way to match
the number of a's and b's. So, only way to accept all the strings
of L is to keep adding newer and newer states which makes
automaton to infinite states since n is unbounded.

Now, let's prove that L does not have the pumping property.

Let’s assume L is regular. Let p be the pumping length.
Consider a string w = aa.... abb....b such that |w| = p.
=w=a"b"

We know that w can be broken into three terms xyz such that y
#¢and xy'z € L.

There are three cases to consider.

e Case 1: yis made up of only a’s Then xy2z has more a's
than b's and does not belong to L.

e Case 2: y is made up of only b's Then xy2z has more b's
than a's and does not belong to L.

e C(Case 3: y is made up of a's and b's Then xy2z has a's
and b's out of order and does not belong to L.

Since none of the 3 cases hold, the pumping property does not
hold for L. And therefore L is not regular.

2. The language L = fuu®: u € fa,b)*} is not regular.

Let us assume L is regular. Let p be the pumping length.

Consider a string w = a’bba".

W =2p+2>p

Since, xy < p, xy will consist of only a's.

= y is made of only a's

= y* is made of more number of a's than y since |y| > 0
(Let's say y* has m a's more than y where m > 1)

= xy’z = a" ™bba’ where m > 1

= xy’z = a”™bba’ cannot belong to L.

Therefore, pumping property does not hold for L. Hence, L is
not regular.

3. The language L = {a": n is prime} is not regular.

Let’s assume L is regular. Let p be the pumping length. Let q >
p be a prime number (since we cannot assume that pumping
length p will be prime).

Consider the string w = aa.... a such that |w| = g >p.

We know that w can be broken into three terms xyz such that y
#¢and xyiz € L

= xy¥"'z must belong to L
= |xy?®"'z| must be prime
xy®'z] = [xyzy|
= [xyz| + [y
=q+q.yl

=q (1 +|y|]) which is a composite number.

Therefore, xy?"'z cannot belong to L. Hence, L is not regular.

Check your progress

Q1.Define Pumping Lemma for Regular Sets using suitable example.
Q2.What are the Applications of the pumping lemma? Elaborate your
answer with suitable example. MCS-113/93

MCS-113/94

5.3 Closure properties of regular sets.

Closure properties on regular languages are defined as certain operations on
regular language which are guaranteed to produce regular language. Closure
refers to some operation on a language, resulting in a new language that is of
same “type” as originally operated on i.e., regular.

Regular languages are closed under following operations.

Consider L and M are regular languages:

1.

Kleen Closure:
RS is a regular expression whose language is L, M. R* is a regular
expression whose language is L *.

Positive closure:
. . . +.
RS is a regular expression whose language is L, M. R'is a regular
. . +
expression whose language isL .

Complement:

The complement of a language L (with respect to an alphabetE such
that £~ contains L) is E -L. Since E_ is surely regular, the complement
of a regular language is always regular.

Reverse Operator:

Given language L.L" is the set of strings whose reversal is in L.
Example: L = {0, 01, 100};

L*={0, 10, 001}.

Proof: Let E be a regular expression for L. We show how to reverse E,
to provide a regular expression E® for L.

Union:
Let L and M be the languages of regular expressions R and S,
respectively. Then R+S is a regular expression whose language is(L U

M.

Intersection:
Let L and M be the languages of regular expressions R and S,
respectively then it a regular expression whose language is L
Intersection M.

Proof: Let A and B be DFA’s whose languages are L and M,
respectively. Construct C, the product automaton of A and B make the
final states of C be the pairs consisting of final states of both A and B.

Set Difference operator:
If L and M are regular languages, then so is L — M = strings in L but not
M.

Proof: Let A and B be DFA’s whose languages are L and M,
respectively. Construct C, the product automaton of A and B make the
final states of C be the pairs, where A-state is final but B-state is not.

8. Homomorphism:

A homomorphism on an alphabet is a function that gives a string for
each symbol in that alphabet. Example: h (0) = ab; h (1) =E. Extend to
strings by h (al...an) =h(al) ...h(an). Example: h (01010) = ababab.

If L is a regular language, and h is a homomorphism on its alphabet,
then h(L)= {h(w) | wis in L} is also a regular language.

Proof: Let E be a regular expression for L. Apply h to each symbol in
E. Language of resulting R, E is h(L).

Inverse Homomorphism:
Let h be a homomorphism and L a language whose alphabet is the
output language of h. h'(L) = {w | h(w) is in L}.

Note: There are few more properties like symmetric difference operator, prefix
operator, substitution which are closed under closure properties of regular
language.

5.4 Summary

In this unit you have learnt about the pumping lemma for regular sets,
applications of the pumping lemma, and closure properties of regular sets.

Pumping Lemma is to be applied to show that certain languages are not
regular. It should never be used to show a language is regular. If L is
regular, it satisfies Pumping Lemma. If L does not satisfy Pumping
Lemma, it is non-regular.
The pumping lemma is often used to prove that a particular language is
non-regular: a proof by contradiction (of the language's regularity) may
consist of exhibiting a word (of the required length) in the language
that lacks the property outlined in the pumping lemma.
Closure properties on regular languages are defined as certain
operations on regular language which are guaranteed to produce
regular language.
Consider L and M are regular languages:

o Kleen Closure
Positive closure
Complement
Reverse Operator
Complement
Union
Intersection
Set Difference operator
Inverse Homomorphism

O O O O O O O O

MCS-113/95

5.5 Review Questions

Q1.How pumping lemma can be applied to prove that certain sets are not
regular?

Q2.Prove that the language of palindromes over {0, 1} is not regular.

Q3.Prove that the language containing strings of balanced parentheses is
not regular.

Q4.Prove that Language L = {d"b" for n>=0} is not regular.

Q5.How do you use pumping lemma for context free languages? Explain
with suitable example.

MCS-113/96

N
N emre Master of Computer
e Science

par radesh fajaril Tandon Theory of Computation

Open University

Block

3

Context Free Grammar

=S MCS - 113

Unit - 6
Context Free Grammar 100
Unit - 7
Normal Forms 110
Unit - 8
Context Free Languages (CFL) 123

MCS-113/97

MCS - 113

Course Design Committee

Prof. Ashutosh Gupta Chairman
Director (In-charge)
School of Computer and Information Sciences, UPRTOU Prayagraj

Prof. R. S. Yadav Member
Department of Computer Science and Engineering

MNNIT Pryagraj

Dr. Marisha Member

Assistant Professor (Computer Science),

School of Sciences, UPRTOU Pryagraj

Mr. Manoj Kumar Balwant Member
Assistant Professor (computer science),

School of Sciences, UPRTOU Pryagraj

Course Preparation Committee

Dr. Ravi Shankar Shukla Author
Associate Professor
Department of CSE, Invertis University
Bareilly-243006, Uttar Pradesh
Prof. Abhay Saxena Editor
Professor and Head, Department of Computer Science
Dev Sanskriti Vishwavidyalya, Hardwar, Uttrakhand
Prof. Ashutosh Gupta
Director (In-charge)
School of Computer and information,
Sciences, UPRTOU Prayagraj
Mr. Manoj Kumar Balwant Course Coordinator
Assistant Professor (computer science),
School of Sciences, UPRTOU Pryagraj
© UPRTOU, Prayagraj - 2023
© MCS - 113 Theory of Computation
ISBN :

All Rights are resurved. No Part of this work may reprouduced in any form, by mimeograpn or
any other means, without permission in writing from the Uttar pradesh Rajarshi Tandon Open
University.

Printed and Published by Vinay Kumar, Registrar, Uttar Pradesh rajarshi Tandon Open
University, Prayagraj - 2023

Printed By. — M/s K.C.Printing & Allied Works, Panchwati, Mathura -281003.

MCS-113/98

Block- Introductions

This is the third block on Theory of computation and having detail description
of context free grammar. A Context Free Grammar is a set of rules that define
a language. Here, we would like to draw a distinction between Context Free
Grammars and grammars for natural languages like English.

Context Free Grammars or CFGs define a formal language. Formal languages
work strictly under the defined rules and their sentences are not influenced by
the context. And that's where it gets the name context free.

Languages such as English fall under the category of Informal Languages
since they are affected by context. They have many other features which a
CFG cannot describe.

Even though CFGs cannot describe the context in the natural languages, they
can still define the syntax and structure of sentences in these languages. In
fact, that is the reason why the CFGs were introduced in the first place.

So we will begin the first unit on context free grammar itself. In this unit
firstly we discussed about grammar. A grammar is a set of rules for putting
strings together and so corresponds to a language. If we talk about context free
grammar, it is a set of recursive rules used to generate patterns of strings. A
context-free grammar can describe all regular languages and more, but they
cannot describe all possible languages.

Second unit begins with Normal forms. In this unit you will know all about
simplifications of context free grammar, removal of useless symbols, and
removal of epsilon and unit production. You will also learn about Chomsky
Normal Form and Grammar to Greibach Normal Form.

In the third unit, we provide another important topic i.e. context free language.
In the context free language, we described about closure properties of context
free grammar, decision properties of context free language, and applications of
context free grammar. We have also discussed about pumping lemma for
context free language.

As you study the material, you will find that figures, tables are properly used
and these will help to understand the concept. There are many sections in the
units to easily understand the topic. Every unit has summary and review
questions in the end of the unit which will help you to review yourself.

In your study, you will find that every unit has different equal length and your
study time will vary for each unit.

We hope you enjoy studying the material and once again wish you all the best
for your success.

MCS-113/99

UNIT-6 Context-free Grammar

Structure

6.0 Introduction
6.1 Context Free Grammar (CFG)-Formal definition
6.2 Sentential forms

6.3 Derivations

6.3.1. Leftmost Derivations
6.3.2. Rightmost Derivations

6.4 The language of CFG

6.5 Summary
6.6 Review Questions

6.0 Introduction

This is the first unit of this block. This unit has six sections. Each section has
detail knowledge of their topics. Section 1.1 has Context Free Grammar
(CFG) and its Formal definition. Section 1.2 describe sentential form. Next
section i.e. Section 1.3 define derivation. It has two sub section, explaining left
most and right most derivations. In the Section 1.4, you will learn about the
language of CFG. Summary is given in the Section 1.5 and Review questions

has asked in the section 1.6

Objective

After studying this unit, you should be able to define:

e Formal definition of Context Free Grammar (CFG)
e Sentential forms
e [Leftmost and rightmost derivations

e The language of CFG.
MCS-113/100

6.1 Context Free Grammar (CFG):

Context free grammar: Context-free grammars (CFGs) are used to describe
context-free languages. A context-free grammar is a set of recursive rules used
to generate patterns of strings. A context-free grammar can describe all regular
languages and more, but they cannot describe a// possible languages.

Context-free grammars most commonly used in theoretical computer science,
compiler design, and linguistics. CFG’s are used to define programming
languages and parser programs in compilers and can be generated
automatically from context-free grammars.

Context-free grammars can generate context-free languages. They do this by
taking a set of variables which are defined recursively, in terms of one
another, by a set of production rules. Context-free grammars are named as
such because any of the production rules in the grammar can be applied
regardless of context—it does not depend on any other symbols that may or
may not be around a given symbol that is having a rule applied to it.

Formal Definition:

A context-free grammar can be described by a four-element tuple (V, X, R, S),
where

e Vs a finite set of variables (which are non-terminal);

e X is a finite set (disjoint from V) of terminal symbols;

e R is a set of production rules where each production rule maps a
variable to a string sE(VUX)*;

S (which is in V) which is a start symbol.

Example
e The grammar ({A}, {a, b, c}, P, A), P: A — aA, A — abc.
e The grammar ({S, a, b}, {a, b}, P, S), P: S —aSa,S — bSb, S — ¢
e The grammar ({S, F}, {0, 1}, P, S),P: S— 00S | 11F, F — O0F | ¢
A CFG for Arithmetic Expressions

An example grammar that generates strings representing arithmetic
expressions with the four operators +, -, *, /, and numbers as operands is:

<expression> --> number

<expression> --> (<expression>)
<expression> --><expression> + <expression>
<expression> --><expression> - <expression>

<expression> --><expression> * <expression>

MCS-113/101

MCS-113/102

<expression> --><expression> / <expression>
The only non terminal symbol in this grammar is <expression>, which is also
the start symbol. The terminal symbols are {+, -, *, /, (,), number}. (We will

interpret "number" to represent any valid number.)

The first rule (or production) states that an <expression> can be rewritten as
(or replaced by) a number. In other words, a number is a valid expression.

According to the second rule, an <expression> enclosed in parentheses is also
an <expression>. One important point should be notedhere that this rule
describes an expression in terms of expressions, an example of the use of

recursion in the definition of context-free grammars.

The remaining rules say that the sum, difference, product, or division of two
<expression>s is also an expression.

Generating Strings from a CFG

In our grammar for arithmetic expressions, the start symbol is <expression>,
so our initial string is:

<expression>
Using rule 5 we can choose to replace this non terminal, producing the string:
<expression> * <expression>

We now have two non-terminals to replace. We can apply rule 3 to the first
non terminal, producing the string:

<expression> + <expression> * <expression>
We can apply rule two to the first non terminal in this string to produce:
(<expression>) + <expression> * <expression>

If we apply rule 1 to the remaining non-terminals (the recursion must end
somewhere!), we get:

(number) + number * number
This is a valid arithmetic expression, as generated by the grammar.
When applying the rules above, we often face a choice as to which production
to choose. Different choices will typically result in different strings being
generated.
Given a grammar G with start symbol S, if there is some sequence of

productions that, when applied to the initial string S, result in the string s, then
s is in L(Q), the language of the grammar.

CFG Examples

A CFG describing strings of letters with the word "main" somewhere in the

string:

<program> --><letter*>m a i n <letter*>

<letter*> --><letter><letter*> | epsilon
<letter>-->A|B|..|Z|a|b..|z

A CFG for the set of identifiers in Pascal:

<id> --><LL><LorD*>

<LorD*> --><[.><LorD*> | <D><LorD*> | epsilon
<>-->A|B|..|Z|a|b..|z

<D>-->0[1[2]3[4[5]6]7[8]9

A CFG describing real numbers in Pascal:
<real> --><digit><digit*><decimal part><exp>
<digit*> --><digit><digit*> | epsilon

<decimal part> -->"." <digit><digit*> | epsilon
<exp> -->'E' <sign><digit><digit*> | epsilon
<sign> --> + | - | epsilon

<digit>-->0]1]2]3]4]5]6]7]8]9

A CFG for C++ compound statements:
<compound stmt> --> {<stmt list>}
<stmt list> --><stmt><stmt list> | epsilon
<stmt> --><compound stmt>

<stmt> --> if (<expr>) <stmt>

<stmt> --> if (<expr>) <stmt> else <stmt>

MCS-113/103

MCS-113/104

<stmt> --> while (<expr>) <stmt>

<stmt> --> do <stmt> while (<expr>);

<stmt> --> for (<stmt><expr>; <expr>) <stmt>

<stmt> --> case <expr>: <stmt>

<stmt> --> switch (<expr>) <stmt>

<stmt> --> break; | continue;

<stmt> --> return <expr>; | goto<id>;

Finding all the Strings Generated by a CFG

There are several ways to generate the (possibly infinite) set of strings
generated by a grammar. We will show a technique based on the number of
productions used to generate the string.

Find the strings generated by the following CFG:
<§>->wcd<S>|b<L>e]|s

<L> --><L> ;<S> | <S>

0. Applying at most zero productions, we cannot generate any strings.

1. Applying at most one production (starting with the start symbol). With the
help of this we can generate {wcd<S>, b<L>e, s}. Only one of these strings
contains entirely of terminal symbols, so the set of terminal strings we can
generate using at most one production is {s}.

2. Applying at most two productions, we can generate all the strings we can
generate with one production, plus any additional strings we can generate with
an additional production.

{wedwed<S>, wedb<L>e, wcds, b<S>e, b<L>;<S>e,s}

The set of terminal strings we can generate with at most two productions is
therefore {s, weds}.

3. Applying at most three productions, we can generate:
{wedwedwed<S>, wedwedb<L>e, wedweds, wedb<L>;<S>e,
wcdb<S>e, bwcd<S>e, bb<L>ee, bse, b<LL>;<S>Se,

b<S><S>e, b<L>wcd<S>e, b<L>b<L>ee, b<L>Se}

The set of terminal strings we can generate with at most three productions is
therefore {s, weds, wedweds, bse}.

We can repeat this process for an arbitrary number of steps N, and find all the
strings the grammar can generate by applying N productions.

6.2 Sentential Forms

A sentential form is the start symbol S of a grammar or any string in (V _IT)*
that can be derived from S.

For example: Consider the linear grammar

({S, B}, {a, b}, S, {S —*aS, S—B, B—bB, B—}l}).
A derivation using this grammar might look like this:

S —aS—aB—abB—abbB—*abb

Each of {S, aS, aB, abB, abbB, abb} is a sentential form.

Because this grammar is linear, each sentential form has at most one variable.
Hence there is never any choice about which variable to expand next.

6.3 Derivation

Derivation is a sequence of production rules. It is used to get the input string
through these production rules. During parsing, we have to take two decisions.
These are as follows:

e We have to decide the non-terminal which is to be replaced.
e We have to decide the production rule by which the non-terminal will

be replaced.

We have two options to decide which non-terminal to be placed with
production rule.

6.3.1. Leftmost Derivation:
According to the leftmost derivation, the input in the production rule can be
scanned and replaced from left to right. So in lefimost derivation, we read the
input string from left to right.

Example:

Production rules:

E+E
E-E
alb

W N =
eslieslies!
Il

MCS-113/105

Input
1. a-b+a

The leftmost derivation is:

1. E=EE+E

2. E=EE-E+E
3. E=a-E+E
4. E=a-b+E
5. E=a-b+a

1.3.2. Rightmost Derivation:

In rightmost derivation, the input is scanned and replaced with the production
rule from right to left. So in rightmost derivation, we read the input string from
right to left.

Example 1:

Production rules:

1. E=E+E

2. E=E-E

3. E=a|b
Input

1. a-b+a

The rightmost derivation is:

1. E=E-E

2. E=E-E+E
3. E=E-E+a
4. E=E-b+a
5. E=a-b+a

When we use the leftmost derivation or rightmost derivation, we may get the
same string. This type of derivation does not effect on getting of a string.

Example 2:

Derive the string "aabbabba" for leftmost derivation and rightmost derivation
using a CFG given by,

1. S—aB|bA
2. S—a|aS|bAA
MCS-113/106 3. S—>blaS|aBB

Solution:

Leftmost derivation:

S

aB S —aB
aaBB B — aBB
aabB B—b
aabbS B — bS
aabbaB S —aB
aabbabS B — bS
aabbabbA S — bA
aabbabba A —a

XN R W=

Rightmost derivation:

S

aB S —aB
aaBB B — aBB
aaBbS B — bS
aaBbbA S — bA
aaBbba A—a
aabSbba B — bS
aabbAbba S — bA
aabbabba A —a

XN R W=

Example 3:

Derive the string "00101" for leftmost derivation and rightmost derivation
using a CFG given by,

1. S—AIB
2. A—0A e
3. B—>OB|IB|e

Solution:

Leftmost derivation:

S

AlB
0A1B
00A1B
001B
0010B
00101B
00101

e Al

Rightmost derivation: MCS-113/107

MCS-113/108

S

AlB
Al10B
Al101B
A101
0A101
00A101
00101

PN PR =

Check your progress

Q1. What is context-free grammar? Explain with suitable example.
Q2. Define sensational form in CFG.

Q3. For the string 00110101, find the leftmost derivation, right most
derivation.

1. S—0B] 1A,

2. A—0]0S|lAA,
3. B—1]1S|0BB

6.4 The Language of CFG

In the theory of automata, context-free grammars generate Context-free
languages (CFLs). The set of all context-free languages is same as the set of
languages accepted by pushdown automata, and the set of regular languages is
a subset of context-free languages. A computational model accepts an inputted
language if it runs with the help of the model and ends in an accepting final
state. One important point must be noted here that all regular languages are
context-free languages, but not all context-free languages are regular. Most
arithmetic expressions are generated by context-free grammars, and are
therefore, context-free languages. Context-free languages and context-free
grammars have applications in computer science and linguistics such as

natural language processing and computer language design.

recursively enumerable

context-sensitive

context-free

regular

Fig 1: Language Design

6.5 Summary

In this unit you have learnt about Context Free Grammar and its properties.
You have also learnt about sensational forms, derivations of left most and
right most, and the language of context free grammar.

* Context Free Grammars or CFGs define a formal language. Formal
languages work strictly under the defined rules and their sentences are
not influenced by the context.

o Every string of symbols in the derivation is a sentential form

o A sentence is a sentential form that has only terminal symbols

o A leftmost derivation is one in which the leftmost nonterminal in each
sentential form is the one that is expanded next in the derivation

o A rightmost derivation works right to left instead

o Some derivations are neither leftmost nor rightmost

6.6 Review Questions

Q1. What is the use of context-free grammar in the theory of automata?
Q2. Why do we use sensational forms in derivation?

Q3. Derive the string "00101" for leftmost derivation and rightmost derivation
using a CFG given by,

S — AIB
A—0A|e
B—0B|1B|e¢
Q4. Prove that Context-free languages are closed under the union operation.

Q5. Use the Pumping Lemma to prove that L= {a"b"c"|n>0} is not a context-
free language.

MCS-113/109

MCS-113/110

UNIT-7 Normal Forms

Structure

7.0 Introduction

7.1 Simplifications of CFG’s

7.1.1 Removal of Useless Symbols

7.1.2 Removal of epsilon

7.1.3 Removal of Unit Production

7.2 Normal Forms

7.2.1 CNF

7.2.2 GNF.

7.3 Summary

7.4 Review Questions

7.0 Introduction

This 1s the second unit of this block. There are four sections in this unit. There
are some sub-sections of these sections. In the section 2.1, you will learn about
Simplifications of CFG’s. This section also has three sub-sections. Removal of
Useless Symbols, Removal of epsilon and Unit Production has been defined in
these sections. In the section 2.2, you will get normal forms of context free
grammar. Under this section, there are two sub-sections, i.e. Section 2.2.1 and

2.2.2. In these sections you will learn about CNF and GNF. Last two sections

provide summary and review questions.

Objective
After studying this unit, you should be able to define:

e Simplifications of CFG’s i.e. Removal of Useless Symbols, Removal
of epsilon and Unit Production

e Normal Forms-CNF and GNF.

7.1 Simplifications of CFG

As we have seen, various languages can efficiently be represented by a
context-free grammar. All the grammars are not always optimized that means
the grammar may consist of some extra symbols (non-terminal). Having extra
symbols, unnecessary increase the length of grammar. Simplification of
grammar means reduction of grammar by removing useless symbols. The
properties of reduced grammar are given below:

e Each variable (i.e. non-terminal) and each terminal of G appears in the
derivation of some word in L.

e There should not be any production as X — Y where X and Y are non-
terminal.

e Ifeisnot in the language L, then there need not to be the production X
— €.

Let us study the reduction process in detail.

Reduced Grammar

Removal of Elimination of Removal of
Useless Symbol € Production Unit Production

Fig: 2.1 Simplification diagram of CFG

7.1.1 Removal of Useless Symbols

A symbol can be useless if it does not appear on the right-hand side of the
production rule and does not take part in the derivation of any string. That
symbol is known as a useless symbol. Similarly, a variable can be useless if it MCS-113/111

MCS-113/112

does not take part in the derivation of any string. That variable is known as a
useless variable.

For Example:
T — aaB | abA | aaT
A —aA
B—ab|b
C—ad

In the above example, the variable 'C' will never occur in the derivation of any
string, so the production C — ad is useless. So we will eliminate it, and the
other productions are written in such a way that variable C can never reach
from the starting variable 'T".

Production A — aA is also useless because there is no way to terminate it. If it
never terminates, then it can never produce a string. Hence this production can
never take part in any derivation.

To remove this useless production A — aA, we will first find all the variables
which will never lead to a terminal string such as variable 'A'. Then we will
remove all the productions in which the variable 'B' occurs.

7.1.2 Removal of Epsilon

The productions S — ¢ are called ¢ productions. The production can only be
removed from those grammars that do not generate €.

Step 1: First find out all null able non-terminal variable which derives «.

Step 2: For each production A — a, construct all production A — x, where X is
obtained from a by removing one or more non-terminal from step 1.

Step 3: Now combine the result of step 2 with the original production and
remove € productions.

Example:

Remove the production from the following CFG by preserving the meaning of
it.

S — XYX
X—-0X]|e
Y—-1Y ¢

Solution:

Now, while removing € production, we are deleting the rule X — ¢and Y —
€. To preserve the meaning of CFG we are actually placing € at the right-hand
side whenever X and Y have appeared.

Let us take
S — XYX

If the first X at right-hand side is €. Then
S—YX

Similarly, if the last X in R.H.S. = &. Then
S — XY

IfY = ¢ then
S — XX

If Y and X are € then,
S—X

If both X are replaced by ¢
S—=Y

Now,
S—>XY|YX|XX|X|Y

Now let us consider
X —0X

If we place ¢ at right-hand side for X then,
X—0
X—-0X|0

Similarly, Y — 1Y | 1

Collectively we can rewrite the CFG with removed € production as
S—>XY|YX|XX|X|Y
X—-0X|0
Y—-1Y |1

7.1.3 Removal of Unit Production

The unit productions are the productions in which one non-terminal gives
another non-terminal. Use the following steps to remove unit production:

MCS-113/113

Step 1: To remove X — Y, add production X — a to the grammar rule
whenever Y — a occurs in the grammar.

Step 2: Now delete X — Y from the grammar.

Step 3: Repeat step 1 and step 2 until all unit productions are removed.

For example:
S—0A|1B|C
A —0S|00
B—1]A
C—01

Solution:

S — C is a unit production. But while removing S — C we have to consider
what C gives. So, we can add a rule to S.

S — 0A|1B]01

Similarly, B — A is also a unit production so we can modify it as

B — 10S |00

Thus finally we can write CFG without unit production as

S—0A|1B|01
A—0S]00
B—1]0S|00
C—0l1

MCS-113/114

Check your progress

Q1. What is the role of simplifications of CFG in the theory of automata?
Q2. What is the use of removal of useless symbols?
Q3. S —AB,

A —a,

B—C]|b,

C—-D,

D — E and

E—a

Eliminate unit productions and get an equivalent grammar.

7.2 Normal Forms

A normal form F for a set C of data objects is a form, i.e., a set of syntactically
valid objects, with the following two properties:

e For every element ¢ of C, except possibly a finite set of special cases,
there exists some element f of F such that f is equivalent to ¢ with
respect to some set of tasks.

e F is simpler than the original form in which the elements of Care
written. By “simpler” we mean that at least some tasks are easier to
perform on elements of F than they would be on elements of C.

Normal Forms

! !

Chomsky Normal Form Greibach Normal Form
{CNF) (GNF)

Fig 7.1: Normal Forms classification

7.2.1 CNF (Chomsky Normal Form)

CNF stands for Chomsky normal form. A CFG (context free grammar) is in
CNF (Chomsky normal form) if all production rules satisfy one of the
following conditions: MCS-113/115

MCS-113/116

Start symbol generating €. For example, A — €.
A non-terminal generating two non-terminals. For example, S — AB.

A non-terminal generating a terminal. For example, S — a.

For example:

Gl={S— AB,S —>c,A—a,B—Db}
G2={S—>aA,A—a,B—c}

The production rules of Grammar G1 satisfy the rules specified for CNF, so
the grammar G1 is in CNF. However, the production rule of Grammar G2
does not satisfy the rules specified for CNF as S — aZ contains terminal
followed by non-terminal. So the grammar G2 is not in CNF.

Steps for converting CFG into CNF

Step 1: Eliminate start symbol from the RHS. If the start symbol T is at the
right-hand side of any production, create a new production as:

SI — S

Where S1 is the new start symbol.

Step 2: In the grammar, remove the null, unit and useless productions. You
can refer to the Simplification of CFG.

Step 3: Eliminate terminals from the RHS of the production if they exist with
other non-terminals or terminals. For example, production S — aA can be
decomposed as:

S — RA

R—a

Step 4: Eliminate RHS with more than two non-terminals. For example, S —
ASB can be decomposed as:

S — RS
R — AS

Example:

Convert the given CFG to CNF. Consider the given grammar G1:

S—alaA|B
A —aBB ¢
B—Aa|b

Solution:

Step 1: We will create a new production S1 — S, as the start symbol S appears
on the RHS. The grammar will be:

S1 —S
S—alaA|B
A —aBB e
B—Aa|b

Step 2: As grammar G1 contains A — ¢ null production, its removal from the
grammar yields:

S1—S
S—alaA|B
A — aBB
B— Aa|b|a
Now, as grammar G1 contains Unit Production S — B, its removal yield:
S1—S
S—alaA|Aa|b

A — aBB
B— Aa|b|a

Also remove the unit production S1 — S, its removal from the grammar
yields: MCS-113/117

MCS-113/118

SO —alaA|Aa|b
S—alaA|Aa|b
A — aBB

B— Aa|bla

Step 3: In the production rule SO — aA | Aa, S — aA | Aa, A— aBBand B —
Aa, terminal a exists on RHS with non-terminals. So we will replace terminal
a with X:

SO0 —a|XA|AX |b
S—al|XA|AX|b
A — XBB

B— AX|bj|a
X—a

Step 4: In the production rule A — XBB, RHS has more than two symbols,
removing it from grammar yield:

SO0 —a|XA|AX |b
S—al|XA|AX|b
A — RB
B—AX|b|a
X—a

R — XB

Hence, for the given grammar, this is the required CNF.

7.2.2 Greibach Normal Form (GNF)

In the theory of automata, a CFG (context free grammar) is in GNF (Greibach
normal form) if there are following conditions satisfy all the production rules.
The conditions is given blow:

e A start symbol producing €. For example, S — e.

e A non-terminal producing a terminal. For example, A — a.

¢ A non-terminal generating a terminal which is followed by any number
of non-terminals. For example, S — aASB.

For example:

Gl ={S —>aAB|aB, A — aA|a, B—> bB|b}
G2={S —>aAB|aB,A —aA|e, B—>DbB|¢}

The production rules of Grammar G1 satisfy the rules specified for GNF, so
the grammar G1 is in GNF. However, the production rule of Grammar G2
does not satisfy the rules specified for GNF as A — ¢ and B — ¢ contains ¢
(only start symbol can generate €). So the grammar G2 is not in GNF.

Steps for converting CFG into GNF
Step 1: Convert the grammar into CNF.

If the given grammar is not in CNF, convert it into CNF. You can refer the
following topic to convert the CFG into CNF: Chomsky normal form

Step 2: If the grammar exists left recursion, eliminate it.

If the context free grammar contains left recursion, eliminate it. You can refer
the following topic to eliminate left recursion: Left Recursion

Step 3: In the grammar, convert the given production rule into GNF form.
If any production rule in the grammar is not in GNF form, convert it.
Example:

S — XB|AA

A —a|SA

B—b

X —a

Solution:

As the given grammar G is already in CNF and there is no left recursion, so
we can skip step 1 and step 2 and directly go to step 3.

The production rules A — SA is not in GNF, so we substitute S — XB | AA in
the production rule A — SA as:

S— XB|AA
A —a| XBA | AAA
B—b

X—a

MCS-113/119

The production rule S — XB and B — XBA is not in GNF, so we substitute X
— a in the production rule S — XB and B — XBA as:

S—aB|AA

A —a|aBA| AAA
B—b

X—a

Now we will remove left recursion (A — AAA), we get:
S—aB|AA
A — aC | aBAC
C— AAC | ¢
B—b

X —a

Now we will remove null production C — &, we get:

S—aB|AA

A — aC|aBAC |a|aBA
C— AAC| AA

B—b

X —a

The production rule S — AA is not in GNF, so we substitute A — aC | aBAC |
a | aBA in production rule S — AA as:

S — aB|aCA | aBACA | aA | aBAA
A —aC|aBAC |a|aBA

C— AAC

C — aCA | aBACA | aA | aBAA
B—b

MCS-113/120 X—a

The production rule C — AAC is not in GNF, so we substitute A — aC |
aBAC | a | aBA in production rule C — AAC as:

S — aB |aCA | aBACA | aA | aBAA
A —aC|aBAC |a|aBA

C — aCAC | aBACAC | aAC | aBAAC
C — aCA |aBACA | aA | aBAA
B—b

X—a

Hence, this is the GNF form for the grammar G.

7.3 Summary

In this unit you have learnt about Normal Forms of Context Free Grammar.
You have also learnt about simplifications of CFG like removal of useless
symbols, removal of epsilon and rightmost derivations. You have also learnt
about Chomsky normal forms and Greibach normal forms.

In a CFG, it may happen that all the production rules and symbols are
not needed for the derivation of strings. Besides, there may be some
null productions and unit productions. Elimination of these productions
and symbols is called simplification of CFGs.

The productions that can never take part in derivation of any string, are
called useless productions.

The productions of type ‘A -> A’ are called A productions (also called
lambda productions and null productions). These productions can
only be removed from those grammars that do not generate A (an
empty string). It is possible for a grammar to contain null productions
and yet not produce an empty string.

The productions of type ‘A -> B’ are called unit productions.

7.4 Review Questions

Q1. What do you understand by simplifications of context-free grammar?
Elaborate your answer.

Q2. Remove unit production from the following string:

S—>XY,X—>aY—->Z|bZ->M,M—>N,N—a

Q3. Remove null production from the following string:

MCS-113/121

S— ASA|aB|b,A—B,B—b]|€
Q4. Convert the following CFG into GNF
S—> XY |Xn|p
X - mX | m
Y — Xn|o
Q5. Convert the following grammarGinto Greibach Normal Form (GNF).
S—XABB
B—b|SB
X—b
A—a
Q6. Reduce the following grammars to Chomsky normal form:
a. S—1A| 0B,
A — 1AA| 0S| 0,
B—0BB| 1S |1

b. S— abSb |a | aAb,
A— bS [aAAb

Q7. Reduce the following grammars to Greibach Normal Form:

a. S—SS,S—0S1]01
b. S— A0,

A — 0B,

B— A0,

B—1

MCS-113/122

UNIT-8 Context Free Languages (CFL)

Structure

8.0 Introduction

8.1 Context-free Languages

8.2 Closure Properties

8.3 Decision Properties of CFL

8.4 Application of CFG

8.5 The Pumping Lemma for Context-Free Languages
8.6 Summary

8.7 Review Questions

8.0 Introduction

This is the third and last unit of this block. In this unit, there are seven
sections. In the section 3.1, you will learn about context-free languages.
Section 3.2. Closure Properties of CFL has been define. Decision Properties of
CFL has been defined in the Section 3.3. You will know all about of
application of CFG in the section 3.4. Another section i.e. Section 3.5 defines
Pumping Lemma for CFL. Section 3.6 has summary and Section 3.7 has

review questions.

Objective

After studying this unit, you should be able to define:

e (Closure Properties of CFL
e Decision Properties of CFL
e Application of CFG

e Pumping Lemma for CFL.

MCS-113/123

MCS-113/124

8.1 Context-free Languages

In formal language theory, a language is defined as a set of strings of symbols
that may be constrained by specific rules. Similarly, the written English
language is made up of groups of letters (words) separated by spaces. A valid
(accepted) sentence in the language must follow particular rules, the grammar.

A context-free language is a language generated by a context-free grammar.
They are more general (and include) regular languages. The same context-free
language might be generated by multiple context-free grammars.

The set of all context-free languages is identical to the set of languages that are
accepted by pushdown automata (PDA).

Here is an example of a language that is not regular but is context-free:

{a"b"|In>0}. This is the language of all strings that have an equal number of a’s
and b’s.

In this notation, a*b* can be expanded out to aaaabbbb, where there are four
a’s and then four b’s. (So this isn’t exponentiation, though the notation is
similar).

8.2 Closure Properties

Context-free languages have the following closure properties. A set is closed
under an operation if doing the operation on a given set always produces a
member of the same set. This means that if one of these closed operations is
applied to a context-free language the result will also be a context-free
language.

e Union: Context-free languages are closed under the union operation. This
means that if L and P are both context-free languages, then LU is also a
context-free language.

Proof:
Here is a proof that context-free grammars are closed under union.

1. Let L and P be generated by the context-free grammars, Gy = (Vi, Zi,
Ry, Sp) and Gp= (Vp, Xp,Rp,Sp) respectively.

2. Without loss of generality, subscript each nonterminal symbol in Gp
with an L, and each nonterminal of Gp with a P such that VL N\Vp=0

3. Define the CFG, G, that generates LUP as follows:
G=(VLUVpU{S},Z UZp,RLURpU {S—>S|Sp},S)

e Concatenation: If L and P are both context-free languages, then
LP is also context free. The concatenation of a string is defined as
follows: S1S;=vw:v€S; and weS,.

Proof:

Here is a proof that context-free grammars are closed under concatenation.
This proof is similar to the union closure proof.

1. Let P be generated by the context-free grammars, Gr=(V,Z1,Rr,S1)
and Gp=(Vp,Zp,Rp,Sp)respectively.

2. Without loss of generality, subscript each nonterminal symbol in Gr,
with an L, and each nonterminal of Gp a P such that VL NVp=0.

3. Define the CFG, G, that generates LUP as follows:
G=(VLUVpU{S},Z UZp,RL URpU {S—>S Sp},S).

Every word that G generates is a word in L followed by a word in P, which is
the definition of concatenation.

e Kleene Star: If L is a context-free language, then Lx is also context
free. The Kleene star can repeat the string or symbol it is attached to
any number of times (including zero times). The Kleene star basically
performs a recursive concatenation of a string with itself. For example,
{a,b}*={€,a,b,ab,aab,aaab,abb--- } and so on. We've already proved
that CFLs are closed under concatenation.

Context-free languages are not closed under complement or intersection.

If CFL's were closed under intersection, then there would be CFLs that violate
the pumping lemma for context-free languages (see the next section for more
details) which cannot be.

Proof:

Take two context-free languages L= {a"b’c™} and P= {a"b"c™}. The
intersection of L and P, LNP= {a"b’c"}, which we will see below in the
pumping lemma for context-free languages, is not a context-free language.

8.3 Decision Properties of CFL

In the theory of automata, there are many decision problems are solvable for
simple machine models, such as finite automata or pushdown automata if we
talk about deterministic finite automata, problems similar to equivalence can
be resolved even in polynomial time. Also there are effective parsing
algorithms for context-free grammars.

As we know that the following important characterization:
Regular languages = languages denoted by regular expressions
= languages accepted by DFAs (deterministic finite automata)

= languages accepted by NFAs (nondeterministic finite automata).

MCS-113/125

MCS-113/126

The class of regular languages is firmly confined in the deterministic context-
free languages (DCFL) which in turn are strictly contained in the (general)
context-free languages. The class DCFL consists of languages recognized by
deterministic pushdown automata.

We recall the following basic notions. A decision problem is a restricted type
of an algorithmic problem where for each input there are only two possible
outputs.

A decision problem is a function that acquaintances with each input
instance of the problem a truth value true or false.

A decision algorithm is an algorithm that computes the correct truth
value for each input instance of a decision problem. The algorithm has
to terminate on all inputs!

A decision problem is decidable if there exists a decision algorithm for
it. Otherwise it is undecidable.

Context-freelanguages

e ——— —_————
-
- -~

Languages accepted
bydeterministicPDAS

Regular languages

~ -
S —— ==

Figure 8.1: Regular, context-free and deterministic context-free languages

To prove that a decision problem is decidable it is sufficient to give an
algorithm for it. On the other hand, the question is arising that how could we

possibly establish (= prove) that some decision problem is undecidable?

Decidability properties of regular languages

There are some important decision problems for finite automata include the
following:

1. Membership of DFA

Instance: A DFAM =(Q, Y, §, q0, F) and a string w € > *
Question: Is w € L (M)?

Proposition. DFA membership is decidable.

Proof. To be explained in class: the algorithm simulates the given DFA on the
given input.

2. DFA emptiness

Instance: A DFAM =(Q, Y, 8, qo, F)
Question: Is L (M) =¢?

Theorem. DFA emptiness is decidable.

Proof. We note that L (M) =@ iff there is no path in the state diagram of M
from q to a final state. If F=@, then clearly L (M) =@. Otherwise, we use a
graph reachability algorithm to enumerate all states that can be reached from
q0 and check whether this set contains some state of F. The algorithm
terminates because the state diagram is finite.

3. DFA universality

Instance: A DFAM =(Q, Y, 3, qo, F)

Question: Is L (M) =) *

Theorem. DFA universality is decidable.

4. DFA containment

Instance: Two DFAs M; = (Qy, Y1, 01, q1, F1) and My = (Q2, D2, 62, @, F2)
Question: Is L (M;)S L (M,)?

Theorem. DFA containment is decidable.

5. DFA equivalence

Instance: Two DFAs M; =(Qy, Y1, 01, q1, F1) and My = (Q2, D2, 62, @, F2)
Question: Is L (M) =L (M,)?

Theorem. DFA equivalence is decidable.

Regular languages are useful for many practical applications due to the fact
that all natural" questions concerning regular languages are decidable. The

downside is that the family of regular languages is quite small.
MCS-113/127

MCS-113/128

Check your progress

Q1. What is the role of Context Free language in the theory of automata?
Q2. Define Kleene Star with proof.

8.4 Applications of Context-free grammar

Grammars are used to describe programming languages. Most importantly,
there is a mechanical way of turning the description as a Context Free
Grammar (CFQG) into a parser, the component of the compiler that discovers
the structure of the source program and represents that structure as a tree.

For example, The Document Type Definition (DTD) feature of XML
(Extensible Mark-up Language) is essentially a context-free grammar that
describes the allowable HTML tags and the ways in which these tags may be
nested. For example, one could describe a sequence of characters that was
intended to be interpreted as a phone number by<PHONE> and </PHONE>

Example-1:

Typical programming languages use parentheses and or brackets in a nested
and balanced fashion. That is, we must be able to match some left parenthesis
against a right parenthesis that appears immediately to its right, remove both
of them and repeat. If we eventually eliminate all the parenthesis, then the
string will be balance. Example of strings with balanced parenthesis are (()), ()
0, (O O), while) (, and (() are not balanced. A grammar with the following
productions generates all and only the strings with balanced parenthesis:

B—BB| (B) |

The first production, B—BB, says that concatenation of two strings of
balanced parenthesis is balanced. That is, we can match the parenthesis in two
strings independently. The second production, B— (B), says that if we place a
pair of parenthesis around a balanced string, then the result is balanced. The
third production, B—A is the basis, which says that an empty string is
balanced.

Example-2:

There are numerous aspects of typical programming language that be-have
like balanced parentheses. Beginning and ending of code blocks, such as begin
and end in Pascal, or the curly braces {. ..} of C, are examples. There is a
related pattern that appears occasionally, where “parentheses” can be balanced
with the exception that there can be unbalanced left parentheses. An example
is the treatment of if 'and else in C. An if-clause can appear unbalanced by any
else-clause, or it may be balanced by a matching else-clause. A grammar that
generates the possible sequence of if and else (represented by i and e,
respectively) is:

S—SS[iS[iSe|r

For instance, ieie,iie, and ieiare possible sequences of if and else’s and each of
these strings is generated by the above grammar. Some examples of illegal
sequences not generated by the grammar are ei,ieeii,iee.

Example-3:

We give below CFG that describes some parts of the structure of
HTML(Hypertext Mark-up Language).

Char—alA|. . .

Text—A|Char Text

Doc—A|Element Doc

Element—Text|< EM > Doc |< P > Doc|< OL > List
List—A|ListItem List

Listltem—< LI > Doc

Example-4:
LetGbe a grammar with the set of variables:

V= {S, < Noun phrase >, < Verb phrase >, < Adjective phrase >, < Noun >, <
Verb >, < Adjective >}

The alphabet set:

¥ = {big, stout, John, bought, white, car, Jim, cheese, ate, green} with the
rules:

(1) S—>< Noun phrase >< Verb phrase >

(2) < Noun phrase >—< Noun >|< Adjective phrase >< Noun >[A
(3) < Verb phrase >—< Verb >< Noun phrase >

(4) < Adjective phrase >—< Adjective phrase >< Adjective >|A
(5) < Noun >—John|car|Jim|cheese

(6) < Verb >—bought|ate

(7) < Adjective >—big|stout|white|green

Then the grammar generates, in particular, the following strings:
John bought car

Jim ate cheesebig

Jim ate green cheese

John bought big carbig stout John bought big white car

MCS-113/129

MCS-113/130

Unfortunately, the grammar also generates sentences like:
Big stout car bought big stout car
Big cheese ate Jim

Green Jim ate green big Jim

8.5 The Pumping Lemma for Context-Free Languages

In the theory of automata, if we want to prove that something is not a context-
free language, it requires either finding a context-free grammar to describe the
language or using another proof technique. For the second purpose the
pumping lemma is the most commonly used concept. There is a common
lemma to prove that a language is not context-free is the Pumping Lemma
for Context-Free Languages.

Theorem:

In the context-free languages the pumping lemma states that if there is a
language L is context-free, there exists some integer pumping length p>1 such
that every string s€EL has a length of p or more symbols, |s|>p, that can be
written s=uvwxywhere u,v,w,X, and y are substrings of s such that:

o |vwx|<p
o |vx|=1|
e uv'wx'yeELVn>0

In the field of theory of automata, we know that all context-free languages are
“pumpable”. It means that the pumping lemma constraints hold true for all
context-free languages. In the case of a language is not pumpable, then it is not
a context-free language. However, if a language is pumpable, it is not
necessarily a context-free language. Because the set of regular languages is
contained in the set of context-free languages, all regular languages must be
pumpable too.

Basically, the pumping lemma grasps that arbitrarily long strings s € L can be
pumped without ever generating a new string that is not in the language L.

For the purpose of proving that a language is not context-free, there are two
ways one is proof by contradiction and second is the pumping lemma. Set up a
proof that claims that L is context-free, and show that a contradiction of the
pumping lemma’s constraints arises in at least one of the three constraints
listed above.

Essentially, the idea behind the pumping lemma for context-free languages is
that there are certain constraints a language must adhere to in order to be a
context-free language. For testing purpose, you can use the pumping lemma if
all of these constraints hold for a particular language, and if they do not, you
can prove with contradiction that the language is not context-free.

8.6 Summary

In this unit you have learnt about Closure Properties of Context Free
Language, Decision Properties of Context Free Language, Application of
Context Free Grammar, and Pumping Lemma for Context Free Language.

A context-free grammar (CFG) consisting of a finite set of grammar
rules is a quadruple (N, T, P, S) where N is a set of non-terminal
symbols. T is a set of terminals where N N T = NULLL.P is a set of
rules, P: N — (N UT) *, i.e., the left-hand side of the production rule P
does have any right context or left context. S is the start symbol.
Context-free languages are closed under — Union, Concatenation,
Kleene Star operation.

Decision Properties of CFG are Test for Membership: Decidable. Test
for Emptiness: Decidable, Test for finiteness: Decidable.

Pumping Lemma for CFL states that for any Context Free Language L,
it is possible to find two substrings that can be ‘pumped’ any number
of times and still be in the same language. For any language L, we
break its strings into five parts and pump second and fourth substring.
Pumping Lemma, here also, is used as a tool to prove that a language is
not CFL. Because, if any one string does not satisfy its conditions, then
the language is not CFL.

8.7 Review Questions

Q1.What are the closure properties of CFL? Define with suitable example.
Q2.Prove that the language L = {0i12'] i > 0} over the alphabet {0, 1, 2} is

recursive and deterministic CFL

Q3. What are the decision properties of CFL? Explain.
Q4.Write the regular expression for the language over) = {0} having

even length of the string.

Q5. Write the regular expression for the language containing the string over

{0, 1} in which there are at least two occurrences of 1's between any
two occurrences of 1's between any two occurrences of 0's.

MCS-113/131

MCS-113/132

oot Master of Computer

.-'/-

o Science
Uttar Pradesh Rajarshi Tandon

Open University Theory of Computation

Block

4

Pushdown Automata and Turing Machine

Unit -9

Push down Automata 136
Unit - 10

Turing Machine 149
Unit - 11

Undecidability 175

MCS-113/133

MCS - 113

Course Design Committee

Prof. Ashutosh Gupta Chairman
Director (In-charge)
School of Computer and Information Sciences, UPRTOU Prayagraj

Prof. R. S. Yadav Member
Department of Computer Science and Engineering

MNNIT Pryagraj

Dr. Marisha Member

Assistant Professor (Computer Science),

School of Sciences, UPRTOU Pryagraj

Mr. Manoj Kumar Balwant Member
Assistant Professor (computer science),

School of Sciences, UPRTOU Pryagraj

Course Preparation Committee

Dr. Ravi Shankar Shukla Author
Associate Professor
Department of CSE, Invertis University
Bareilly-243006, Uttar Pradesh
Prof. Abhay Saxena Editor
Professor and Head, Department of Computer Science
Dev Sanskriti Vishwavidyalya, Hardwar, Uttrakhand
Prof. Ashutosh Gupta
Director (In-charge)
School of Computer and information,
Sciences, UPRTOU Prayagraj
Mr. Manoj Kumar Balwant Course Coordinator
Assistant Professor (computer science),
School of Sciences, UPRTOU Pryagraj
© UPRTOU, Prayagraj - 2023
© MCS - 113 Theory of Computation
ISBN :

All Rights are resurved. No Part of this work may reprouduced in any form, by mimeograpn or
any other means, without permission in writing from the Uttar pradesh Rajarshi Tandon Open
University.

Printed and Published by Vinay Kumar, Registrar, Uttar Pradesh rajarshi Tandon Open
University, Prayagraj - 2023.

Printed By. — M/s K.C.Printing & Allied Works, Panchwati, Mathura -281003.

MCS-113/134

Block-Introduction

This is the fourth block on Theory of computation and having detail
description of Pushdown Automata and Turing Machine. Pushdown Automata
is a finite automaton with extra memory called stack which helps Pushdown
automata to recognize Context Free Languages. A Pushdown Automata (PDA)
can be defined as:In a given state, PDA will read input symbol and stack
symbol (top of the stack) and move to a new state and change the symbol of
stack.

If we talk about Turing Machine, A Turing Machine (TM) is a mathematical
model which consists of an infinite length tape divided into cells on which
input is given. ... After reading an input symbol, it is replaced with another
symbol, its internal state is changed, and it moves from one cell to the right or
left.

So we will begin the first unit withPushdown automata. In this Unit, firstly we
will discuss about formal definition of pushdown automata. We will also
discuss about automata accepted by final state and empty state and finally we
will cover equivalence between CFG and PDA.

Second unit begins with Turing Machine. In this Unit, you will know all about
Turing machine and its formal definitions, and the behavior of Turing
machine. You will also learn about how to draw transition diagram. After that,
you will know about instantaneous description and language of a Turing
Machine. In this unit you will learn about the variants of Turing machine and
Universal Turing Machine. This unit covers about the Halting Problem and
Church Thesis.

In the third unit, we provide another important topic i.e. Undecidability. In this
unit we will provide the complete knowledge of recursive enumerable and un
decidable problem about Turing Machines. We will also provide the complete
information about unsolvable problems in Turing machines.

As you study the material, you will find that figures, tables are properly used
and these will help to understand the concept. There are many sections in the
units to easily understand the topic. Every unit has summary and review
questions in the end of the unit which will help you to review yourself.

In your study, you will find that every unit has different equal length and your
study time will vary for each unit.

We hope you enjoy studying the material and once again wish you all the best
for your success.

MCS-113/135

MCS-113/136

UNIT-9 Push Down Automata

Structure

9.0 Introduction

9.1 Formal Definition of Pushdown Automata

9.2 Pushdown Automata accepted by final state and empty state
9.3 Equivalence between CFG and PDA.

0.4 Summary

0.5 Review Questions

9.0 Introduction

This is the first unit of this block. This unit explain the concept of push down
automata. There are five sections in this unit. In the section 1.1, you will know
about Formal Definition of Pushdown Automata. In the Section 1.2, you will
learn about Pushdown Automata accepted by final state and empty state.
Section 1.3 provide the detail knowledge about the Equivalence between CFG
and PDA. Summary and review questions has been provided in the section 1.4
and 1.5 respectively.

Objective
After studying this unit, you should be able to know about:

e Formal Definition of Pushdown Automata
e Pushdown Automata accepted by final state and empty state
e Equivalence between CFG and PDA.

9.1 Pushdown Automata:

Pushdown automata is a way to implement a CFG in the same way we design
DFA for a regular grammar. A DFA can remember a finite amount of
information, but a PDA can remember an infinite amount of information.

Pushdown automata is a part of an NFA which increased with an "external
stack memory". With the help of stack, you can get a last-in-first-out memory
management capability to Pushdown automata. Pushdown automata can store

an unbounded amount of information on the stack. It can access a limited
amount of information on the stack. A PDA can push an element onto the top
of the stack and pop off an element from the top of the stack. To read an
element into the stack, the top elements must be popped off and are lost.

If we compare PDA and FA than we will find that a PDA is more powerful
than FA. Any language which is accepted by FA can also be accepted by PDA
but one important point is also noted here that a PDA also accepts a class of
language which even cannot be accepted by FA. Thus PDA is much more
powerful and superior to FA.

Input

:“> AEEEP[or R.E'jEl:l
Finite Control :>

u Push or Pop

Input Tape

Stack

Figure 9.1: Pushdown Automata
PDA Components:

Input tape: The input tape is divided in many cells or symbols. The input head
is read-only and may only move from left to right, one symbol at a time.

Finite control: The finite control has some pointer which, points the current
symbol which is to be read.

Stack: The stack is a structure in which we can push and remove the items

from one end only. It has an infinite size. In PDA, the stack is used to store the
items temporarily.

Formal Definition:

The PDA can be defined as a collection of 7 components:

Q: the finite set of states

> : the input set MCS-113/137

MCS-113/138

I': a stack symbol which can be pushed and popped from the stack
qO: the initial state

Z: a start symbol which is in T".

F: a set of final states

0: mapping function which is used for moving from current state to next state.

The following diagram shows a transition in a PDA from a state ql to state g2,
labelled as a,b — ¢ —

Input Stack top Push
Symbol Symbol Symbol

_H/’"““\I a,b—=c /"'\
\ 3/ "

Figure 2: Transition in PDA

This means at state q1, if we encounter an input string ‘a’ and top symbol of
the stack is ‘b’, then we pop ‘b’, push ‘c’ on top of the stack and move to state

q2.

Instantaneous Description (ID)

ID is an informal notation of how a PDA computes an input string and make a
decision that string is accepted or rejected.

An instantaneous description is a triple (q, w, o) where:
q describes the current state.
w describes the remaining input.

a describes the stack contents, top at the left.

Turnstile Notation:
Fsign describes the turnstile notation and represents one move.

F* sign describes a sequence of moves.

For example,

(P, b, T) F(q, w, o)

In the above example, while taking a transition from state p to q, the input
symbol 'b' is consumed, and the top of the stack 'T' is represented by a new
string a.

Example 1:
Design a PDA for accepting a language {anb2n | n>=1}.

Solution: In this language, n number of a's should be followed by 2n number
of b's. Hence, we will apply a very simple logic, and that is if we read single
'a', we will push two a's onto the stack. As soon as we read 'b' then for every
single 'b' only one 'a' should get popped from the stack.

The ID can be constructed as follows:
0 (q0, a, Z) = (q0, aaZ)
0 (q0, a, a) = (q0, aaa)

Now when we read b, we will change the state from q0 to q1 and start popping
corresponding 'a'. Hence,

6 (q0, b, a)=(ql, ¢)

Thus this process of popping 'b' will be repeated unless all the symbols are
read. Note that popping action occurs in state ql only.

6 (ql, b, a)=(ql,)

After reading all b's, all the corresponding a's should get popped. Hence when
we read ¢ as input symbol then there should be nothing in the stack. Hence the
move will be:

6(ql, e, 2)=(q2, ¢

Where

PDA = ({q0, q1, 42}, {a, b}, {a, Z}, 8, 40, Z, {q2})

We can summarize the ID as:

0 (q0, a, Z) = (q0, aaZ)

0 (q0, a, a) = (q0, aaa)

d(q0, b, a)=(ql, ¢)

d(ql,b,a)=(ql,)

d0(ql, & Z)=(q2, ¢)

Now we will simulate this PDA for the input string "aaabbbbbb".

MCS-113/139

0 (q0, aaabbbbbb, Z) d (q0, aabbbbbb, aaZ)
o (g0, abbbbbb, aaaaZ)
0 (q0, bbbbbb, aaaaaaZ)
o (ql, bbbbb, aaaaaZ)
o (ql, bbbb, aaaaZ)

Fo (ql, bbb, aaaZ)

Fo (ql, bb, aaZ)

o (ql, b, aZ)

o (ql, &, Z)

Fo (g2, €)

ACCEPT

Example 2:
Design a PDA for accepting a language {On1mOn | m, n>=1}.

Solution: In this PDA, n number of 0's are followed by any number of 1's
followed n number of 0's. Hence the logic for design of such PDA will be as
follows:

Push all 0's onto the stack on encountering first 0's. Then if we read 1, just do
nothing. Then read 0, and on each read of 0, pop one 0 from the stack.

For instance:

0011100 A [0] Pushingg
T
0011100 A i Pushing g
t 0 .
oo*uooa o] Skip?
0 .
0011100 A o] Skip!
t 0 cps
0011100 A o| Skipl
t 0
0011100 A g Por0
t 0
0011100 A g| Por?0
f 0
0011100? o] Accept

MCS-113/140

This scenario can be written in the ID form as:

3 (q0, 0, Z) =3 (q0, 0Z)

3 (q0, 0, 0) =6 (q0, 00)

d(q0,1,0)=06(ql, 0)

3(q0,1,0)=06(ql, 0)

0(ql,0,0)=06(ql,¢)

0(q0,¢,72)=0(q2, Z2) (ACCEPT state)

Now we will simulate this PDA for the input string "0011100".

3 (q0, 0011100, Z) +& (q0, 011100, 0Z)
+o (q0, 11100, 00Z)

+o6 (q0, 1100, 00Z)

o6 (ql, 100, 00Z)

+o (ql, 00, 00Z)

o (ql, 0, 0Z)

o (ql, &, Z)

o (q2, Z)

ACCEPT

Check your progress

Q1. What do you understand by PDA? Explain with suitable example.

Q2. How do you write PDA?

9.2 PDA Acceptance

A language can be accepted by Pushdown automata using two approaches:

1. Final State acceptance: The PDA is supposed to accept its input by the final
state if it enters any final state in zero or more moves after reading the entire

input.

Let P=(Q, >, T, 5, q0, Z, F) be a PDA. The language acceptable by the final

state can be defined as:

MCS-113/141

MCS-113/142

L(PDA) = {w| (q0, w, Z) F*(p, ¢, ¢), q €EF}

2. Acceptance by Empty Stack: On reading the input string from the initial
configuration for some PDA, the stack of PDA gets empty.

Let P=(Q, >, T, 0, q0, Z, F) be a PDA. The language acceptable by empty
stack can be defined as:

N(PDA) = {w | (q0, w, Z) -*(p, &, &), € Q}
Equivalence of Acceptance by Final State and Empty Stack

e IfL =N(PI) for some PDA PI, then there is a PDA P2 such that L =
L(P2). That means the language accepted by empty stack PDA will
also be accepted by final state PDA.

e Ifthere is a language L = L (P1) for some PDA P1 then there is a PDA
P2 such that L = N(P2). That means language accepted by final state
PDA is also acceptable by empty stack PDA.

Example:

Construct a PDA that accepts the language L over {0, 1} by empty stack
which accepts all the string of 0's and 1's in which a number of 0's are
twice of number of 1's.

Solution:

There are two parts for designing this PDA:

e [f1 comes before any 0's
e [f0 comes before any 1's.

We are going to design the first part i.e. 1 comes before 0's. The logic is that
read single 1 and push two 1's onto the stack. Thereafter on reading two 0's,
POP two 1's from the stack. The 6 can be

0(q0,1,Z2)=(q0, 11, Z) Here Z represents that stack is empty

6 (90, 0, 1) =(q0, &)

Now, consider the second part i.e. if 0 comes before 1's. The logic is that read
first 0, push it onto the stack and change state from q0 to ql. [Note that state
ql indicates that first 0 is read and still second 0 has yet to read].

Being in ql, if 1 is encountered then POP 0. Being in ql, if O is read then
simply read that second 0 and move ahead. The ¢ will be:

6 (q0, 0, Z) = (ql, 0Z)

6(ql1,0,0)=(ql,0)

0 (ql, 0,Z)=(q0, ¢

(indicate that one 0 and one 1 is already read, so simply read the second ()
d(ql, 1,0)=(ql, ¢)

Now, summarize the complete PDA for given L is:

0 (q0, 1, Z)=(q0, 11Z)

8 (q0,0, 1)=(ql, ¢)

0 (q0,0,Z)=(ql, 0Z)

0 (ql,0,0)=(ql, 0)

0 (ql, 0,Z)=(q0, ¢)

0 (q0, &, Z) = (q0, ¢) ACCEPT state

Non-deterministic Pushdown Automata

The non-deterministic pushdown automata is very much similar to NFA. We
will discuss some CFGs which accepts NPDA.

The CFG accepts both deterministic PDA and non-deterministic PDAs as
well. In the same manner, there are some CFGs which can be accepted only by
NPDA and not by DPDA. Thus NPDA is more commanding than DPDA.

Example:

Design PDA for Palindrome strips.
Solution:

Suppose the language consists of string

L = {aba, aa, bb, bab, bbabb, aabaa, }.

The string can be odd palindrome or even palindrome. The logic for
constructing PDA is that we will push a symbol onto the stack till half of the
string then we will read each symbol and then perform the pop operation. We
will compare to see whether the symbol which is popped is similar to the
symbol which is read whether we reach to end of the input, we expect the
stack to be empty.

This type of PDA is a non-deterministic PDA because it finds the mid from
the given string and start reading from left and matching it with from right
(reverse) direction leads to non-deterministic moves. Here is the ID.

MCS-113/143

1. d(gl.a. Z)=(ql.aZ)™ |
2. 8(q0, b, Z) =(ql. bZ)
3. 8(q0,a, a)=(ql, aa)
4. 3(al.a b)=(ql.ab) Pushing the symbols onto the stack
5. 8(gl, a b)=1(ql, ba)

6. &(gl. b, b)=1(gl. bb)

7. o(gl,a a)=1(g2.g8) —
8. d(gl.b,b)=1(g2.5)

9. &q2, a a)=1(q2. &)

Popping the symbols on reading the same kind of symbol

10. 5(g2. b, b) = (g2, €)

11. 8(q2, . Z) =(g2,8) —

Simulation of abaaba

0 (ql, abaaba, Z) Apply rule 1
Fo (ql, baaba, aZ) Apply rule 5
Fo (ql, aaba, baZ) Apply rule 4
Fo (ql, aba, abaZ) Apply rule 7
F0 (g2, ba, baZ) Apply rule 8
o (q2, a, aZ) Apply rule 7
o (92, €, Z) Apply rule 11
0 (q2, €) Accept

9.3 Equivalence between CFG and PDA.

The first symbol on R.H.S. production must be a terminal symbol. The
following steps are used to obtain PDA from CFG is:

Step 1: Convert the given productions of CFG into GNF.
Step 2: The PDA will only have one state {q}.

MCS-113/144 Step 3: The initial symbol of CFG will be the initial symbol in the PDA.

Step 4: For non-terminal symbol, add the following rule:
0(q, e A)=(q, 0)
Where the production rule is A — o
Step 5: For each terminal symbols, add the following rule:
0 (q, a, @) = (q, €) for every terminal symbol
Example 1:
Convert the following grammar to a PDA that accepts the same language.
S—0S1|A
A—1A0|S|¢
Solution:
The CFG can be first simplified by eliminating unit productions:
S—0S1|1S0 ¢
Now we will convert this CFG to GNF:
S— 0SX|1SY | ¢
X—1
Y—-O0
The PDA can be:
R1:5(q, & S)={(q, 0SX) [(q, ISY) [(q, &)}
R2:8(q, & X) = {(q, 1)}
R3:5(q, 8 Y) = {(q, 0)}
R4:5(q,0,0) = {(q, &)}
R5:3(q, 1, 1) = {(q, &)}
Example 2:

Construct PDA for the given CFG, and test whether 0104 is acceptable by
this PDA.

MCS-113/145

MCS-113/146

S — 0BB

B—0S|1S|0

Solution:

The PDA can be given as:
A=1{(q),(0,1),(S,B,0,1),95, q, S?}

The production rule 6 can be:

R1:6(q, &, S) = {(q, 0BB)}

R2:5(q, &, B) = {(q, 0S) [(q, 1S) | (g, 0)}

R3:68(q, 0,0) = {(q, &)}

R4:6(q, I, 1) = {(q, &)}

Testing 0104 1.e. 010000 against PDA:

§ (g, 010000, S) 5 (q, 010000, 0BB)

8 (q, 10000, BB) R1
& (q, 10000,1SB) R3
& (q, 0000, SB) R2
& (q, 0000, 0BBB) R1
& (q, 000, BBB) R3
& (q, 000, 0BB) R2
3 (q, 00, BB) R3
o (q, 00, 0B) R2
F3 (g, 0, B) R3
=3 (q, 0, 0) R2
Fo (g, €) R3
ACCEPT

Thus 0104 is accepted by the PDA.

Example 3:
Draw a PDA for the CFG given below:

S — aSb

S—al|b|e
Solution:

The PDA can be given as:

P={(q), (a, b), (S, a, b, 20), 3, q, 20, q}
The mapping function o will be:
R1:0(q, &, S)= {(q, aSb)}

R2:5(q, & S) = {(q;) [(g, b) [(q, &)}
R3:5(q, 3, a) = {(q, &)}

R4:5(q, b, b) = {(q, &)}

R5: 9 (q, &, 20) = {(q, &)}

Simulation: Consider the string aaabb
0 (g, eaaabb, S) 0 (q, aaabb, aSb)

0 (q, eaabb, Sb)

+d (q, aabb, aSbb)

Fd (q, €abb, Sbb)

o (g, abb, abb)

o (q, bb, bb)

3 (q, b, b)

Fo (g, €, z0)

o (q, €)

R3
RI
R3
R2
R3
R4
R4
RS

ACCEPT MCS-113/147

MCS-113/148

9.4 Summary

In this unit you have learnt about pushdown automata and formal definition
about pushdown automata. You have also learnt about Pushdown Automata
accepted by final state and empty state, and finally you have learnt about
Equivalence between CFG and PDA.

e In the theory of computation, a branch of theoretical computer science,
a pushdown automaton (PDA) is a type of automaton that employs a
stack.

e Pushdown automata are used in theories about what can be computed
by machines. They are more capable than finite-state machines but less
capable than Turing machines.

e Deterministic pushdown automata can recognize all deterministic
context-free languages while nondeterministic ones can recognize all
context-free languages, with the former often used in parser design.

o Every context-free grammar can be transformed into an equivalent
nondeterministic pushdown automaton.

e The derivation process of the grammar is simulated in a lefimost way.
Where the grammar rewrites a nonterminal, the PDA takes the topmost
nonterminal from its stack and replaces it by the right-hand part of a
grammatical rule (expand). Where the grammar generates a terminal
symbol, the PDA reads a symbol from input when it is the topmost
symbol on the stack (match). In a sense the stack of the PDA contains
the unprocessed data of the grammar, corresponding to a pre-order
traversal of a derivation tree.

9.5 Review Questions

Q1. Give pushdown automata that recognize the following languages. Give
both a drawingand6-tuple specification for each PDA.

A = {w€ {0, 1} Hw contains at least threels}
Q2. Define the pushdown automata for language {a"b" | n > 0}
Q3. Construct a PDA for language L = {0"1"2"3" | n>=1, m>=1}
Q4. Construct a PDA for language L = {0"1™ |n>= 1, m>= 1, m > n+2}
Q5. Draw a PDA for the CFG given below:
S — aSb
S—alble

UNIT-10 Turing Machine

Structure

10.0 Introduction

10.1 Turing Machine (TM) —Formal Definition

10.2 Behaviourof Turing Machine

10.3 Transition diagram of Turing Machine

10.4 Instantaneous Description

10.5 Language of a TM

10.6 Variants of TM

10.7 Universal Turing Machine
10.7.1 Interchangeability of program and behaviour: a notation
10.7.2 Interchangeability of program and behaviour: a basic set of functions

10.8 Halting Problem

10.9 Church Thesis.

10.10 Summary

10.11 Review Questions

10.0 Introduction

This unit is the second unit of this block. This unit provide complete
knowledge of Turing Machine. There are eleven sections in this unit. Formal
definition has been defined in the section 2.1. Next section 2.2 describe
behaviour of Turing machine. In the section 2.3, you will learn about
transition diagram of Turing machine. Section 2.4 explain Instantaneous
Description of Turing machine. In the section 2.5, you will get the Language
of a Turing Machine. Variants of Turing Machine explain in the section 2.6,
Next section i.e. Section 2.7 Universal Turing Machine also have two sub
sections. These sub sections provide a notation of Interchangeably of program
and behaviour and basic set of functions of Interchangeably of program and
behaviour. Section 2.9 shows Halting Problem and Section 2.9 provide Church
Thesis. Last two sections i.e. Section 2.10 and 2.11 provide summary and
reviews questions.

Objective
After studying this unit, you should be able to define:

e Formal Definition of Turing Machine and behaviour of Turing
Machine.
e Transition diagram of Turing Machine.

MCS-113/149

MCS-113/150

¢ Instantaneous Description and Language of a Turing Machine.
e Variants of Turing Machine and Universal Turing Machine.
e Halting Problem and Church Thesis.

10.1 Turing Machine (TM):

A Turing machine is a mathematical model of computation that defines an
abstract machine, which manipulates symbols on a strip of tape according to a
table of rules. Despite the model's simplicity, given by any computer
algorithm, a Turing machine is capable of simulating that algorithm's logic can
be construct.

The machine operates on an infinite memory tape divided into discrete "cells".
The machine positions its "head" over a cell and "reads" or "scans" the symbol
there. Then, as per the symbol and the machine's own present state in a "finite
table"of user-specified instructions, the machine

(1) Writes a symbol (e.g., a digit or a letter from a finite alphabet) in
the cell (some models allow symbol erasure or no writing

(i1) Either moves the tape one cell left or right (some models allow no
motion, some models move the head)

(1) Either proceeds to a subsequent instruction or halts the
computation.

The Turing machine was invented in 1936 by Alan Turing, who called it an
"a-machine" (automatic machine). With this model, Turing was able to answer
two questions:

(1) Does a machine exist that can determine whether any arbitrary machine on
its tape is "circular" (e.g., freezes, or fails to continue its computational task)?

(2) Does a machine exist that can determine whether any arbitrary machine on
its tape ever prints a given symbol?

Thus by providing a mathematical description of a very simple device capable
of arbitrary computations, he was able to prove properties of computation in
general—and in particular, the uncomputability of the Entschei dungs problem
('decision problem").

With the help of Turing machines, it has been proved the existence of
fundamental limitations on the power of mechanical computation. Although
they can express arbitrary computations, their minimalist design makes them
unsuitable for computation in practice: real-world computers are based on
different designs that, unlike Turing machines, use random-access memory.

For any System Turing completeness is the capability of instruction to
simulate a Turing machine. A programming language that is Turing complete
is theoretically capable of stating all tasks accomplishable by computers; if the
limitations of finite memories are ignored then all programming languages
will be Turing complete.

A Turing machine can be used as a general example of a central processing
unit (CPU) that handles and manipulate all data, with the help of canonical
machine to store data using sequential memory.

More specifically, it is an automaton machine which is capable of counting
some arbitrary subset of valid strings of an alphabet; these arbitrary subset of
strings is part of a recursively enumerable set. A Turing machine can perform
read and write operations with the help of a tape of infinite length.

Let us assume a black box, the Turing machine cannot recognise whether it
will eventually count any one specific string of the subset with a given
program, because of the halting problem. As we know Halting problem is
unsolvable, which has major implications for the theoretical limits of
computing.

The Turing machine is also accomplished of handling an unrestricted
grammar, which further implies that it is capable of robustly evaluating first-
order logic in an infinite number of ways. This is demonstrated with the help
of lambda calculus.

The term Universal Turing machine is able to simulate any other Turing
machine. It is also known as UTM. This mathematically oriented definition
with a similar "universal" nature was introduced by Alonzo Church. It works
on lambda calculus intertwined with Turing's in a formal theory of
computation known as the Church-Turing thesis. With the help of the thesis,
we can understand that Turing machines truly capture the informal concept of
effective methods in logic and mathematics. It also delivers an exact definition
of an algorithm or "mechanical procedure". Studying their abstract properties
yields many insights into computer science and complexity theory.

Formal definition of Turing machine

A Turing machine can be defined as a collection of 7 components:
Q: the finite set of states

> : the finite set of input symbols

T: the tape symbol

qo: the initial state

F: a set of final states

B: a blank symbol used as an end marker for input

d: a transition or mapping function.

The mapping function shows the mapping from states of finite automata and
input symbol on the tape to the next states, external symbols and the direction
for moving the tape head. This is known as a triple or a program for Turing
machine.

(qoa a) - (qla A7 R)
MCS-113/151

MCS-113/152

That means in qo state, if we read symbol 'a' then it will go to state q;, replaced
a by X and move ahead right (R stands for right).

Example:
Construct TM for the language L ={0"1"} where n>=1.
Solution:

We have already solved this problem by PDA. In PDA, we have a stack to
remember the previous symbol. The main advantage of the Turing machine is
we have a tape head which can be moved forward or backward, and the input
tape can be scanned.

The simple logic which we will apply is read out each '0' mark it by A and
then move ahead along with the input tape and find out 1 convert it to B. Now,
repeat this process for all a's and b's.

Now we will see how this Turing machine work for 0011.

The simulation for 0011 can be shown as below:

Now, we will see how this Turing machine will work for 0011. Initially, state
is q0 and head points to 0 as:

0
1
|

The move will be & (q0, 0) =6 (ql, A, R) which means it will go to state ql,
replaced 0 by A and head will move to the right as:

A 0 1 1 A

1
|

The move will be 6 (q1, 0) =6 (ql, 0, R) which means it will not change any
symbol, remain in the same state and move to the right as:

A 0 1 1 A

The move will be & (ql, 1) =8 (q2, B, L) which means it will go to state g2,
replaced 1 by B and head will move to left as:

A

0
)
|

Now move will be & (g2, 0) =8 (g2, 0, L) which means it will not change any
symbol, remain in the same state and move to left as:

A
!

The move will be & (q2, A) = 6 (q0, A, R), it means will go to state q0,
replaced A by A and head will move to the right as:

A

0
1
|

The move will be 6 (q0, 0) =06 (ql, A, R) which means it will go to state ql,
replaced 0 by A, and head will move to right as:

A A B 1 A
A
|

The move will be & (ql, B) = d(ql, B, R) which means it will not change any
symbol, remain in the same state and move to right as:

A A B 1 A
T
The move will be & (ql, 1) =8 (g2, B, L) which means it will go to state g2,
replaced 1 by B and head will move to left as:

A A

B
T

The move 6 (q2, B) = (q2, B, L) which means it will not change any symbol,
remain in the same state and move to left as:

MCS-113/153

MCS-113/154

A A B B A
A
|

Now immediately before B is A that means all the 0’s is market by A. So we
will move right to ensure that no 1 is present. The move will be § (g2, A) =
(q0, A, R) which means it will go to state q0, will not change any symbol, and
move to right as:

A A B B A
A

The move & (q0, B) = (q3, B, R) which means it will go to state q3, will not
change any symbol, and move to right as:

A A B

B
A
|

The move 6 (q3, B) = (g3, B, R) which means it will not change any symbol,
remain in the same state and move to right as:

A A B B

A
1
|

The move & (q3, A) = (g4, A, R) which means it will go to state g4 which is
the HALT state and HALT state is always an accept state for any TM.

A A B B

A
I
The same TM can be represented by Transition Diagram.

10.2 Behaviour of Turing Machine:

A Turing machine is deterministic or non-deterministic, it is depending upon
the number of moves in transition. A transition is called deterministic (DTM)
if a Turing Machine has at most one move in it. If there are one or more
moves, then it is called non-deterministic TM (NTM or NDTM).

¢ A non-deterministic TM is equivalent to a deterministic TM.

e Some single tape TM simulates every two PDA (a PDA with 2 stacks).

e The read only TM may be considered as a Finite Automata (FA) with
additional property of being able to move its head in both directions
(left and right).

10.3 Transition Diagram of Turing Machine

The transition diagram for a Turing machine is similar to the transition
diagram for a DFA. How- ever, there are no “accepting” states (only a halt
state). Furthermore, there must be a way to specify the output symbol and the
direction of motion for each step of the computation. We do this by labelling
arrows with notations of the form (o,1,L) and (o,7,R), where ¢ and t are
symbols in the Turing machine’s alphabet. For example,

(a,b,L)

OO

Figure 10.1: Transition diagram of Turing Machine

Indicates that when the machine is in state q0 and reads an a, it writes ab,
moves left, and enters state h.

Here, for example, is a transition diagram for a simple Turing machine that
moves to the right, changing a’s to b’s and vice versa, until it finds ac. It
leaves blanks (#’s) unchanged. When and if the machine encounters ac, it
moves to the left and halts:

(a,b,R)
(c,c,L)

(b,H,R} h

O

(##,R)

Figure 10.2: Turing Machine transition diagram movement from right

MCS-113/155

MCS-113/156

To simplify the diagrams, we will leave out any transitions that are not
relevant to the computation that we want the machine to perform. You can
assume that the action for any omitted transition is to write the same symbol
that was read, move right, and halt.

For example, shown below is a transition diagram for a Turing machine that
makes a copy of a string of a’s and b’s. To use this machine, you would write
a string of a’s and b’s on its tape, place the machine on the first character of
the string, and start the machine in its start state, q0. When the machine halts,
there will be two copies of the string on the tape, separated by a blank. The
machine will be positioned on the first character of the leftmost copy of the
string. Note that this machine uses ¢’s and d’s in addition to a’s and b’s. While
it is copying the input string, it temporarily changes the a’s and b’s that it has
copied to ¢’s and d’s, respectively. In this way it can keep track of which
characters it has already copied. After the string has been copied, the machine
changes the c’s and d’s back to a’s and b’s before halting.

(a,a,Rp, [H'a'ly" ™
L W F
Fala F "
) h__lj ql : {#1#1-1{. » |. q', : —_— . {’#ﬁl,l:]
(a,c,R)” e R '
¥l 7 {]}.h.R} h|h1R:
N —(aa,L) (a,a,L)
Uy |~ e B LF [\ /
T &
. WdRT g ' T q.)2
##L) f 67 ST
\,) I ™
r N “—(b,b,L) “(b,b,L)
- PN !\h,d.ﬂ} \
LN qT.. / H"l - (aa,R)— @,a,R) '
TN ’ f r |
{C|H1I“j "dthl-’} - \'\--' == .l'\--- " '[#hl
'“_ .'/ l#'l#iR 1./ 3 z'; y0, L)
(#,#,R ~\ 4) as Yy
o)
I.» h \ ~—(h,b,R) " (h,h,R)

Figure 10.3: Transition diagram for a Turing machine that makes a copy
of a string of a’s and b’s

In this machine, state qO0 checks whether the next character is an a, a b, or a #
(indicating the end of the string). States q1 and g2 add an a to the end of the
new string, and states q3 and g4 do the same thing with a b. States q5 and q6
return the machine to the next character in the input string. When the end of
the input string is reached, state q7will move the machine back to the start of
the input string, changing c¢’s and d’s back toa’s and b’s as it goes. Finally,
when the machine hits the # that precedes the input string, it moves to the right
and halts. This leave it back at the first character of the input string. It would
be a good idea to work through the execution of this machine for a few sample

input strings. You should also check that it works even for an input string of
length zero.

Our primary interest in Turing machines is as language processors. Suppose
that w is a string over an alphabet £. We will assume that £ does not contain
the blank symbol. We can use w’as input to a Turing machine M= (Q, A, q0,
d)provided that ZEA. To use w’ as input for M we will write w” on M’s tape
and assume that the remainder of the tape is blank. We place the machine on
the cell containing the first character of the string, except that if w=¢ then we
simply place the machine on a completely blank tape. Then we start the
machine in its initial state, q0and see what computation it performs. We refer
to this setup as “running M with input w.”

When M is run with input w, it is possible that it will just keep running forever
without halting. In that case, it doesn’t make sense to ask about the output of
the computation. Suppose however that M does halt on input w. Suppose,
furthermore, that when M halts, its tape is blank except for a string x of non-
blank symbols, and that the machine is located on the first character of x. In
this case, we will say that “M halts with output x.” In addition, if M halts with
an entirely blank tape, we say that “M halts with output €. Note that when we
run M with input w, one of three things can happen: (1) M might halt with
some string as output; (1) M might fail to halt; or (3) M might halt in some
configuration that doesn’t count as outputting any string.

The fact that a Turing machine can produce an output value allows us for the
first time to deal with computation of functions. A function f: A—B takes an
input value in the set A and produces an output value in the set B. If the sets
are sets of strings, we can now ask whether the values of the function can be
computed by a Turing Machine? That is, a Turing machine M such that, given
any string w’ as an input, M will compute as its output the string f{w). If this is
the case, then we say that f is a Turing-computable function.

Example 1:
Construct a TM for the language L = {0"1"2"} where n>1
Solution:

L = {0"1"2" | n>1} represents language where we use only 3 character, i.e., 0,
1 and 2. In this, some number of 0's followed by an equal number of 1's and
then followed by an equal number of 2's. Any type of string which falls in this
category will be accepted by this language.

The simulation for 001122 can be shown as below:

Now, we will see how this Turing machine will work for 001122. Initially,
state is q0 and head points to 0 as: MCS-113/157

MCS-113/158

0 0 1 1 2 2 X
A

The move will be 8 (q0, 0) =3 (ql, A, R) which means it will go to state q1,
replaced 0 by A and head will move to the right as:

A 0 1 1 2 2 X
A

The move will be 8 (q1, 0) =& (ql, 0, R) which means it will not change any
symbol, remain in the same state and move to the right as:

A 0 1 1 2 2 X
A

The move will be 6 (ql, 1) = d (g2, B, R) which means it will go to state g2,
replaced 1 by B and head will move to right as:

A 0 B 1 2 2 X
A

The move will be 6 (q2, 1) =6 (g2, 1, R) which means it will not change any
symbol, remain in the same state and move to right as:

A 0 B 1 2 2 X

4
|

The move will be 6 (g2, 2) = 6 (q3, C, R) which means it will go to state q3,
replaced 2 by C and head will move to right as:

A 0 B 1 C 2 X

4
|

Now move 0 (q3,2)=0(q3,2,L)and 6 (93, C) =03 (q3,C,L)and 6 (g3, 1) =
0(q3, 1, L)and 3 (g3, B) =6 (93, B, L) and 3 (g3, 0) =6 (q3, 0, L), and then
move 6 (q3, A) =0 (q0, A, R), it means it will go to state q0, replaced A by A
and head will move to right as:

A 0 B 1 C 2 X
A

The move will be 6 (q0, 0) =6 (ql, A, R) which means it will go to state ql,
replaced 0 by A, and head will move to right as:

A A B 1 C 2 X

4
|

The move will be 6 (q1, B) =06 (ql, B, R) which means it will not change any
symbol, remain in the same state and move to right as:

A A B 1 C 2 X

4
|

The move will be & (ql, 1) = 6 (g2, B, R) which means it will go to state g2,
replaced 1 by B and head will move to right as:

A A B B C 2 X

.T.
|

The move will be § (g2, C) =6 (g2, C, R) which means it will not change any
symbol, remain in the same state and move to right as:

A A B B C 2 X

4
|

The move will be 6 (g2, 2) =6 (q3, C, L) which means it will go to state q3,
replaced 2 by C and head will move to left until we reached A as:

A A B B C C X

+
|

Immediately before B is A that means all the 0's are market by A. So we will
move right to ensure that no 1 or 2 is present. The move will be § (q2, B) =
(g4, B, R) which means it will go to state q4, will not change any symbol, and
move to right as:

MCS-113/159

MCS-113/160

A A B B C c X

T
|

The move will be (g4, B) = & (q4, B, R) and (g4, C) = § (g4, C, R) which
means it will not change any symbol, remain in the same state and move to
right as:

A A B B C C X

.T.
l

The move & (g4, X) = (95, X, R) which means it will go to state q5 which is
the HALT state and HALT state is always an accept state for any TM.

A A B B C C X

—

The same TM can be represented by Transition Diagram:

(C.CR)

(BAR) (1,1R) (1,1.1)

(0.0R) oD

E :Q (BBL)

Start /q\ OAR 7y (1B,R) ()

e

(B.B.R)
(AAR)

a2\
8
n=
nw
= Z

(X.X,R)

Figure 10.4 Transition Diagram of Turing Machine.

10.4 Instantaneous Description of Turing Machine:

All symbols to left of head, State of machine, symbol head is scanning and all
symbols to right of head, i.e.

X1 Xa.o. Xitg Xie... Xu).

Example of Turing machine accepting a string with equal numbers of zeros
and ones - this can't be done with FA, as was previous shown.

Programming Turing machine can be done entirely in finite state logic, but can
also be done with information on tape.

Finite state logic can also be used to store information, by including tape
symbol dependent states.

Check your progress

Q1. How would you describe a Turing machine?

Q2. What are the components of Turing machine?

10.5 Language accepted by Turing machine

If all the languages are recursively enumerable than these languages will
accept by the Turing machine. The term recursive state that repeating the same
set of rules for multiple times and enumerable means a list of elements. The
computable functions also accepted by the Turing machine, such as addition,
multiplication, subtraction, division, power function, and many more.

Example:

Construct a Turing machine which accepts the language of aba over

2. ={a, b}.

Solution:

We will assume that on input tape the string 'aba’ is placed like this:

The tape head will read out the sequence up to the A characters. If the tape
head is readout 'aba’ string, then TM will halt after reading A.

Now, we will see how this Turing Machine will work for aba. Initially, state is
q0 and head points to a as:

MCS-113/161

MCS-113/162

The move will be 8 (q0, a) =9 (q1, A, R) which means it will go to state ql,
replaced a by A and head will move to right as:

A b a i}

T
|

The move will be 6 (q1, b) =6 (q2, B, R) which means it will go to state g2,
replaced b by B and head will move to right as:

A B a A

T
|

The move will be 6 (q2, a) =93 (q3, A, R) which means it will go to state g3,
replaced a by A and head will move to right as:

A B A A

T
|

The move 6 (q3, A) = (g4, A, S) which means it will go to state g4 which is the
HALT state and HALT state is always an accept state for any TM.

The same TM can be represented by Transition Table:

States A B A

q0 (a1, A/R) - -

q2 (q3 > A: R) - -

s - - -

The same TM can be represented by Transition Diagram:

Start <q> (aaR) @ (bbR) @ @aR) e
o AN

(AAS)

Figure 2.5: Turing machine which accepts the language of aba over) =

{a, b}.

10.6 Variants of TM:

1.

Multiple track Turing Machine:

e A k-tack Turing machine (for some k>0) has k-tracks and one R/W
head that reads and writes all of them one by one.

e A k-track Turing Machine can be simulated by a single track
Turing machine

Two-way infinite Tape Turing Machine:

¢ Infinite tape of two-way infinite tape Turing machine is unbounded
in both directions left and right.

e Two-way infinite tape Turing machine can be simulated by one-
way infinite Turing machine (standard Turing machine).

Multi-tape Turing Machine:

e [t has multiple tapes and controlled by a single head.

e The Multi-tape Turing machine is different from k-track Turing
machine but expressive power is same.

e Multi-tape Turing machine can be simulated by single-tape Turing
machine.

Multi-tape Multi-head Turing Machine:

e The multi-tape Turing machine has multiple tapes and multiple
heads

e Each tape controlled by separate head

e Multi-Tape Multi-head Turing machine can be simulated by
standard Turing machine.

Multi-dimensional Tape Turing Machine:

MCS-113/163

MCS-113/164

e [t has multi-dimensional tape where head can move any direction
that is left, right, up or down.

e Multi-dimensional tape Turing machine can be simulated by one-
dimensional Turing machine.

6. Multi-head Turing Machine:

e A multi-head Turing machine contain two or more heads to read
the symbols on the same tape.

e In one step all the heads sense the scanned symbols and move or
write independently.

e Multi-head Turing machine can be simulated by single head Turing
machine.

7. Non-deterministic Turing Machine:

¢ A non-deterministic Turing machine has a single, one-way infinite
tape.

e For a given state and input symbol has at least one choice to move
(finite number of choices for the next move), each choice several
choices of path that it might follow for a given input string.

¢ A non-deterministic Turing machine is equivalent to deterministic
Turing machine.

10.7 Universal Turing Machine

The universal Turing machine is a Turing machine that is able to compute any
other Turing machine computes, which, was created to prove the un-
computability of certain problems, assuming that the Turing machine can be
used to fully captures computability (and so that Turing’s thesis is valid). It is
also implied that anything which can be “computed” by any other machine,
can also be computed by the Universal Turing Machine. On the contrary, any
problem that is not computable by the universal machine is deliberated to be
un-computable.

This is power of the universal machine concept is that it is relatively simple
formal device captures all “the possible processes which can be accepted by
computing a number” (Turing 1936-37). It is also one of the main motives
why Turing has been retrospectively recognised as one of the founding fathers
of computer science.

So one question has arisen that how to construct a universal machine U out of
the set of basic operations we have at our disposal? Regarding this question
Turing’s two approaches are the construction of a universal Turing Machine
U. In the first approach, it is able to ‘understand’ the program of any other
machine T, and, second approach says that, based on the “understanding”,
‘mimic’ the behaviour of T,. To this end, a method is required which permits
to handle the program and the behaviour of T, interchangeably since both

approaches are handled on the same tape and by the same machine. This is
achieved by Turing in two basic steps: the development of (1) a method with
the help of notational method (2) a set of basic functions which delights that
notation—independent of whether it is formalizing the program or the
behaviour of T, as text to be compared, copied down, erased, etc. In other
words, we can say that, Turing develops a procedure that permits to handle the
program and performance on the same level.

10.71 Inter change ability of program and behaviour: a notation

Given some machine T,, Turing’s basic idea is to construct a machine T',
which, rather than directly printing the output of T, prints out the successive
complete configurations or instantaneous descriptions of Tn. In order to
achieve this, T';:

[...] could be made to depend on having the rules of operation [...] of [Ty]
written somewhere within itself [...] each step could be carried out by
referring to these rules. (Turing 1936—7: 242)

In other words, T'; prints out the successive complete configurations of T, by
having the program of T, written on its tape. Thus, Turing needs a notational
method which makes it possible to ‘capture’ two different aspects of a Turing
machine on one and the same tape in such a way they can be treated by the
same machine, viz.:

(1) Its description in terms of what it should do—the quintuple
notation

(2) Its description in terms of what it is doing—the complete
configuration notation.

Thus, a first most important step, regarding the construction of U are the
quintuple and complete configuration notation and the idea of placing them on
the same tape. More particularly, the tape is divided into two regions which
we will call the A and B region here. The A region contains a notation of the
‘program’ of T, and the B region a notation for the successive complete
configurations of T,. In Turing’s paper they are separated by an additional
symbol “::”.

To simplify the creation of U and in order to encode any Turing machine as a
unique number, Turing develops a third notation which allows to precise the
quintuples and complete configurations with letters only. This is determined
by [Note that we use Turing’s original encoding. Of course, there is a broad
variety of possible encodings, including binary encodings]:

e Replacing each state qi in a quintuple of T,, by

so, for instance q3 becomes DAAA.

e Replacing each symbol Sj in a quintuple of Tn by

MCS-113/165

MCS-113/166

so, for instance, S1 becomes DC.

Using this method, each quintuple of some Turing machine T, can be
expressed in terms of a sequence of capital letters and so the ‘program’ of any
machine T, can be expressed by the set of symbols A, C, D, R, L, N and; This
is the so-called Standard Description (S.D.) of a Turing machine. Thus, for
instance, the S.D. of Tsimpic 1s:

: DADDRDAA; DADCDRDAA; DAADDCRDA; DAADCDCRDA

This is, essentially, Turing’s version of Gédel numbering. Indeed, as Turing
shows, one can easily get a numerical description representation or
Description Number (D.N.) of a Turing machine Tn by replacing:

“A” by “1”
“C” by “2”
“D” by “3”
“L” by “4”
“R” by “5”
“N” by “6”
2 by ©77
Thus, the D.N. of Tsimple 18:
7313353117313135311731133153173113131531

Note that every machine Tphas a unique D.N.; a D.N. represents one and one
machine only.

Clearly, the method used to determine the S.D.of some machine T, can also be
used to write out the successive complete configurations of Tn. Using “:” as a
separator between successive complete configurations, the first few complete

configurations of Tsimpie are:
:DAD: DDAAD: DDCDAD: DDCDDAAD: DDCDDCDAD

10.72 Inter change ability of program and behaviour: a basic set of
functions

Having a notational method to write the program and successive complete
configurations of some machine T,on one and the same tape of some other
machine T', is the first step in Turing’s construction of U. However, U should
also be able to “emulate” the program of T, as written in region A so that it
can actually write out its successive complete configurations in region B.
Moreover, it should be possible to “take out and exchange [...] [the rules of
operations of some Turing machine] for others” (Turing 1936-7: 242). Viz., it
should be able not just to calculate but also to compute, an issue that was also
dealt with by others such as Church, Godel and Post using their own formal
devices. It should, for instance, be able to “recognize” whether it is in region

A or B and it should be able to determine whether or not a certain sequence of
symbols is the next state qi which needs to be executed.

Turing achieved this with the help of the construction of a sequence of Turing
computable problems such as:

¢ Finding the sequence of symbols from the leftmost or rightmost.

e With the help of some symbols, marking a sequence of symbols.
(remember that Turing uses two kinds of alternating squares)

e Comparing two symbol sequences

e Copying a symbol sequence

Turing develops a notational technique, called skeleton tables, for these
functions which serves as a kind of shorthand notation for a complete Turing
machine table but can be easily used to construct more complicated machines
from previous ones. The technique is quite reminiscent of the recursive
technique of composition.

To illustrate how such functions are Turing computable, we discuss one such
function in more detail, viz. the compare function. It is constructed on the
basis of a number of other Turing computable functions which are built on top
of each other. In order to understand how these functions work, remember that
Turing used a system of alternating F and E-squares where the F-squares
contain the actual quintuples and complete configurations and the E-squares
are used as a way to mark off certain parts of the machine tape. For the
comparing of two sequences S1 and S2, each symbol of S1 will be marked by
some symbol a and each symbol of S2 will be marked by some symbol b.

Turing defined nine different functions to show how the compare function can
be computed with Turing machines:

FIND (q;,qj,a): this machine function searches for the leftmost occurrence of a.
If a is found, the machine moves to state qi else it moves to state q;. This is
achieved by having the machine first move to the beginning of the tape
(indicated by a special mark) and then to have it move right until it finds a or
reaches the rightmost symbol on the tape.

FINDL (qi,qj,a): the same as FIND but after a has been found, the machine
moves one square to the left. This is used in functions which need to compute
on the symbols in F-squares which are marked by symbols a in the E-squares.

ERASE (qi,q;,a): the machine computes FIND. If a is found, it erases a and
goes to state qi else it goes to state g

ERASE ALL (gj,a) =ERASE (ERASE ALL,qj,a): The machines computes
ERASE on a repeatedly until all a’s have been erased. Then it moves to q;.

EQUAL (q;,qj,a): the machine checks whether or not the current symbol is a. If
yes, it moves to state qi else it moves to state g

CMP_XY(q1qj,b)=FINDL(EQUAL(qi,qj,x),qj,b): whatever the current
symbol x, the machine computes FINDL on b (and so looks for the symbol
marked by b). If there is a symbol y marked with b, the machine computes

MCS-113/167

MCS-113/168

EQUAL on x and y, else, the machine goes to state gj. In other words,
CMP_XY(qiqj,b) compares whether the current symbol is the same as the
leftmost symbol marked b.

COMPARE _MARKED(qi,qj,qn,a,b): the machine checks whether the
leftmost symbols marked a and b respectively are the same. If there is no
symbol marked a nor b, the machine goes to state qn; if there is a symbol
marked a and one marked b and they are the same, the machine goes to state
qi, else the machine goes to state qj. The function is computed as

FINDL(CMP_XY(qi,qj,b),FIND(gj,qn,b),a)

COMPARE_ERASE(q;,qj,qn,a,b): the same as COMPARE MARKED but
when the symbols marked a and b are the same, the marks a and b are erased.
This is achieved by computing ERASE first on a and then on b.

COMPARE_ALL(qj,qn,a,b) The machine compares the sequences A and B
marked with a and b respectively. This is done by repeatedly computing
COMPARE_ERASE on a and b. If A and B are equal, all a’s and b’s will have
been erased and the machine moves to state g, else, it will move to state qn. It
is computed by

COMPARE ERASE(COMPARE ALL(q;qna,b),q;qna,b)
And so by recursively calling COMPARE ALL.
In a similar manner, Turing defines the following functions:

COPY/(qi,a): copy the sequence of symbols marked with a’s to the right of the
last complete configuration and erase the marks.

COPY.(qi, aj,a,...,ay): copy down the sequences marked al to an to the right
of the last complete configuration and erase all marks a;.

REPLACE(qi,a,b): replace all letters a by b

MARK NEXT CONFIG(qi,a): mark the first configuration qiSjto the right of
the machine’s head with the letter a.

FIND RIGHT(qi,a): find the rightmost symbol a.

Using the basic functions COPY, REPLACE and COMPARE, Turing
constructs a universal Turing machine.

Below is an outline of the universal Turing machine indicating how these
basic functions indeed make possible universal computation. It is assumed that
upon initialization, U has on its tape the S.D. of some Turing machine T,.
Remember that Turing uses the system of alternating F and E-squares and so,
for instance, the S.D. of Tsimpic Will be written on the tape of U as:

Where “ ” indicates an unmarked E-square.

INIT: To the right of the rightmost quintuple of T n, U prints:: :
D A , where indicates an unmarked E-square.

FIND NEXT STATE: The machine first marks (1) with y the
configuration qcc,iScc,) of the rightmost (and so last) complete
configuration computed by U in the B part of the tape and (2) with x
the configuration qqmSqn of the leftmost quintuple which is not
preceded by a marked (with the letter z) semicolon in the A part of the
tape. The two configurations are compared. If they are identical, the
machine moves to MARK OPERATIONS, if not, it marks the
semicolon preceding qqmSqn With z and goes to FIND NEXT STATE.
This is easily achieved using the function COMPARE ALL which
means that, whatever the outcome of the comparison, the marks x and
y will be erased. For instance, suppose that T,=Tsimplc and that the last
complete configuration of Tsimple as computed by U is:

(1) : D.DC.D DAAD
[N
So 5 5o T2 S¢

Then U will move to region A and determine that the corresponding
quintuple is:

DAADDC R DA
e 5p 5 h

MARK OPERATIONS: The machine U marks the operations that it
needs to execute in order to compute the next complete configuration
of Tn. The printing and move (L, R, N) operations are marked with u
and the next state with y. All marks z is erased. Continuing with our
example, U will mark (2) as follows:

D A A D DuCuRuDyAy

MARK COMPCONFIG: The last complete configuration of Tn as
computed by U is marked into four regions: the configuration
qce»iSce,] itself is left unmarked; the symbol just preceding it is marked
with an x and the remaining symbols to the left or marked with v.
Finally, all symbols to the right, if any, are marked with w and a *“:” is
printed to the right of the rightmost symbol in order to indicate the
beginning of the next complete configuration of Tn to be computed by

U. Continuing with our example, (1) will be marked as follows by U:

DvDvCvDxD A A D :_
W
S S5 S s Se

U then goes to PRINT

PRINT. It is determined if, in the instructions that have been marked in
MARK OPERATIONS, there is an operation Print 0 or Print 1. If that
is the case, 0: respectively 1: is printed to the right of the last complete
configuration. This is not a necessary function but Turing insisted on
having U print out not just the (coded) complete configurations

MCS-113/169

MCS-113/170

computed by T, but also the actual (binary) real number computed by
Th.

e PRINT COMPLETE CONFIGURATION. U prints the next complete
configuration and erases all marks u, v, w, x, y. It then returns to
FIND NEXT STATE. U first searches for the rightmost letter u, to
check which move is needed (R, L, N) and erases the mark u for R, L,
N. Depending on the value L, R or N will then write down the next
complete configuration by applying COPYS to u, v, w, X, y. The move
operation (L, R, N) is accounted for by the particular combination of u,
V, W, X,

When ~L: COPYS(FIND NEXT STATE,v,y,x,u,w)
When ~R: COPY5(FIND NEXT STATE,v,x,u,y,w)
When ~N: COPYS5(FIND NEXT STATE,v,x,y,u,w)

Following our example, since Tsimple needs to move right, the new
rightmost complete configuration of Tsimple Written on the tape of U is:

D DC_D_DC_D_A_
N A e P —
S 5 S5 5 0

Since we have that for this complete configuration the square being
scanned by Tsimple 1S one that was not included in the previous
complete configuration (viz. Tsimple has reached beyond the rightmost
previous point) the complete configuration as written out by U is in
fact incomplete. This small defect was corrected by Post (Post 1947)
by including an additional instruction in the function used to mark the
complete configuration in the next round.

As is clear, Turing’s universal machine indeed requires that program and
‘data’ produced by that program are manipulated interchangeably, viz. the
program and its productions are put next to each other and treated in the same
manner, as sequences of letters to be copied, marked, erased and compared.

10.8 Halting Problem:

As we know that the deterministic Turing machines are accomplished of doing
any computation that computers can do, that is they are equally powerful as
computationally, and that any of their variations do not exceed the
computational power of deterministic Turing machines. It is also conjectured
that any "computation" human beings perform can be done by Turing
machines according to the Church's thesis.

In this section we will learn that some of the problems that cannot be solved
by Turing machines hence by computers. Here "un-solvability" is in the
following sense:

First recall that the problem solving of a computation can be viewed as
recognizing a language. So we will look at the un-solvability in terms of

language recognition. Assume that there is a language that is recognized but
not decidable. Then the string is given by a Turing machine thatreceive the
language starts the computation. In this situation, if the Turing machine is
running, there will be no way of telling whether it is in an infinite loop or
along the way to a solution and it needs more time. Thus if a language is not
decidable, a string is in the language may not be answered in any finite
amount of time. Since we cannot wait forever for an answer, the question is
unanswerable that is the problem is unsolvable. Below we are going to see
some well-known unsolvable problems and see why we can say they are
unsolvable.

Halting Problem

One of well-known unsolvable problems is the halting problem. It asks the
following question: Given an arbitrary Turing machine,

M’ over alphabet = {a,b}, and an arbitrary string w over, does M halt when it
is given w’ as an input.

It can be shown that the halting problem is not decidable, hence unsolvable
Theorem 1: The halting problem is undecidable.

Proof (by M. L. Minsky): This is going to be proven by "proof by
contradiction".

Suppose that there is a decidable halting problem. Then there is a Turing
machine T that resolves the halting problem. That is, given a description of a
Turing machine M (over the alphabet) and a string w, T writes "yes" if M halts
on w and "no" if M does not halt on w, and then T halts.

d (My’w Mhalts on w » Accept & halts

MR T

M does not halts on w

» Reject & halts

Figure 10.6: Turing Machine T
We are now going to construct the following new Turing machine T..

First we construct a Turing machine T, by modifying T so that if T accepts a
string and halts, then Ty, goes into an infinite loop (Ty, halts if the original T
rejects a string and halts).

3 M halts on w
d (M)'w » Loop

- T

M does not halts on

» Halt

Figure 10.7: Turing Machine T,,

MCS-113/171

MCS-113/172

Next using Ty, we are going to construct another Turing machine T, as
follows:

T, takes as input a description of a Turing machine M, denoted by d(M),
copies it to obtain the string d(M)*d(M), where * is a symbol that separates
the two copies of d(M) and then supplies d(M)*d(M) to the Turing machine
T

3] M halts on w
d M)y'w d (M) T > Loop
L p.[Copier - m

M does not halts on
> Halt

Figure 10.8: Turing Machine T,

Let us now see what Tc does when a string describing Tc itself is given to it.

When Tc gets the input d(Tc), it makes a copy, constructs the string
d(Tc)*d(Tc) and gives it to the modified T. Thus, the modified T is given a
description of Turing machine Tc and the string d(Tc).

Tc halt d(T.
d (Te) ¢ halts on d(T.) » Loop

T, does not halt on d(T,)
» Halt

Figure 10.9: Turing Machine T, on Input d(T,)

The way T was modified the modified T is going to go into an infinite loop if
Tc halts on d(Tc) and halts if Tc does not halt on d(Tc).

Thus, Tc goes into an infinite loop if Tc halts on d(Tc) and it halts if Tc does
not halt on d(Tc). This is a contradiction. This contradiction has been deduced
from our assumption that there is a Turing machine that solves the halting
problem. Hence that assumption must be wrong. Hence there is no Turing
machine that solves the halting problem.

10.9 Church’s Thesis for Turing Machine

In computability theory, the Church-Turing thesis (also known as
computability thesis, the Turing—Church thesis, the Church-Turing conjecture,
Church's thesis, Church's conjecture, and Turing's thesis) is a hypothesis about
the nature of computable functions. It states that the natural number’s
functioncan be calculated with the help of an effective method if and only if it
is computable through the Turing machine. The thesis is named after
American mathematician Alonzo Church and the British mathematician Alan

Turing. Before the precise description of computable function, mathematicians
often used the informal term efficiently calculable to define functions that are
computable with the help of paper-and-pencil methods. In the 1930s, several
independent attempts were made to formalize the notion of computability:

e In 1933, Kurt Godel, with Jacques Herbrand, created a formal
definition of a class called general recursive functions. The class of
general recursive functions is the smallest class of functions (possibly
with more than one argument) that includes all constant functions,
projections, the successor function, and which is closed under function
composition, recursion, and minimization.

e In 1936, Alonzo Church developed a method for declaring a functions
called the A-calculus. Within A-calculus, he defined the Church
numerals. According to the Church numerals an encoding of the
natural numbers is done in this numerals. A method on the natural
numbers is called A-computable if the equivalent method on the
Church numerals can be denoted by a term of the A-calculus.

e Also, in 1936, before learning of Church's work, Alan Turing
developed a theoretical model for machines, now called Turing
machines that could move calculations from inputs by manipulating
symbols on a tape. Given a suitable encoding of the natural numbers as
sequences of symbols, a function on the natural numbers is called
Turing computable if some Turing machine computes the
corresponding function on encoded natural numbers.

Church and Turing proved that these three formally defined classes of
computable functions coincide: a function is A-computable if and only if it is
Turing computable, and if and only if it is general recursive. This has led
mathematicians and computer scientists to believe that the concept of
computability is accurately characterized by these three equivalent processes.
Other formal attempts to characterize computability have subsequently
strengthened this belief.

On the other hand, the Church-Turing thesis defines that the above three
functions coincide with the informal notion of an effectively calculable
function. Since, as an informal notion, the idea of actual calculability does not
have a formal definition, the thesis, although it has near-universal acceptance,
cannot be formally proven.

Since its commencement, deviations on the original thesis have arisen,
including statements about what can actually be realized by a computer in our
universe (physical Church-Turing thesis) and what can be proficiently
calculated (Church-Turing thesis (complexity theory)). These variations are
not due to Church or Turing, but arise from later work in complexity theory
and digital physics. The thesis also has implications for the philosophy of
mind.

10.10 Summary

In this unit you have learnt about Turing Machine (TM) —Formal Definition
and behavior, you have also learnt about Transition diagram and Instantaneous

MCS-113/173

MCS-113/174

Description. We have also described about Language of a TM, Variants of
TM, Universal Turing Machine, Halting Problem and Church Thesis.

A Turing Machine is an accepting device which accepts the languages
(recursively enumerable set) generated by type 0 grammars. It was
invented in 1936 by Alan Turing.

A Turing Machine (TM) is a mathematical model which consists of an
infinite length tape divided into cells on which input is given. It
consists of a head which reads the input tape. A state register stores the
state of the Turing machine. After reading an input symbol, it is
replaced with another symbol, its internal state is changed, and it
moves from one cell to the right or left. If the TM reaches the final
state, the input string is accepted, otherwise rejected.

A TM accepts a language if it enters into a final state for any input
string w. A language is recursively enumerable (generated by Type-0
grammar) if it is accepted by a Turing machine.

A TM decides a language if it accepts it and enters into a rejecting state
for any input not in the language. A language is recursive if it is
decided by a Turing machine.

There may be some cases where a TM does not stop. Such TM accepts
the language, but it does not decide it.

10.11 Review Questions

QI1.How do you solve a Turing machine? Explain with example
Q2.Design a TM to recognize all strings consisting of an odd number of

a’s.

Q3. Construct a TM machine for checking the palindrome of the string of

even length.

Q4.Construct TM for the addition function for the unary number system.
Q5.Construct a TM for subtraction of two unary numbers f(a-b) = ¢ where

a is always greater than b.

UNIT-11 Undecidability

Structure
11.0 Introduction
11.1 Recursive enumerable
11.2 Undecidable Problem about Turing Machines
11.3 Unsolvable Problems.
11.3.1 Blank Tape Halting Problem
11.3.2 Undecidability of the Blank Tape Halting Problem
11.4 Summary

11.5 Review Questions

11.0 Introduction

This is the last unit of this block. This unit defines about Undecidability. In
this unit, there are five sections. Section 3.1 explain about Recursive
enumerable. In the section 3.2, you will learn about Undecidable Problem
About Turing Machines. Section 3.3 explain about Unsolvable Problems. This
section has two sub sections i.e. section 3.3.1 and 3.3.2. these sections provide
the complete knowledge of blank tape halting problem and Undecidability of
the Blank Tape Halting Problem. Section 3.4 provide summary and Section
3.5 provide Review Questions.

Objective
After studying this unit, you should be able to define:
e Recursive enumerable

e Undecidable Problem About Turing Machines
e Unsolvable Problems.

MCS-113/175

MCS-113/176

11.1 Recursive enumerable

If any Turing Machine can be designed to accept all string of the given
language, then the language is called recursively enumerable language.

Recursively enumerable languages are the formal languages that can be
decide-able, (fully or partially). According to the Chomsky hierarchy of
formal languages, we can see the recursively enumerable languages as a type 0
languages. Some examples of recursively enumerable languages are;

e Recursive languages

e Regular language is

o Context sensitive languages

o (Context-free languages and many more.

If any recursively enumerable language accepted by Turing machine than it is
called recursively enumerable. So we can say that a recursively enumerable
languages are also called as Turing recognizable languages. If we compare
Turing machine with finite state machine or pushdown automata, we will find
that the Turing machine is a very strong machine. In fact, Turing machine is
very strong as compared to any other machines.

Properties of Recursively enumerable languages
e Union
e Intersection
o Complement
Union of RE languages
Let’s revise union of sets;
Set 1= {a, b, ¢}
Set 2= {b, c, d}
Set 1 Union Set 2 = {a, b, c, d}
Now let’s understand the same concept in Turing Machine;
Suppose a system has 2 Turing Machines, TM;, and TM,.
e [f TMhalts, then all the system halts.
o [f TMcrash, then system checks that TM, is ready to halt or not? If
TMhalts, then system halts because this is union and the union means

that
o If TMhalts, then system halts

o If TM,; does not halt, and TM, halts then system halts
o IfTM; and TM; or TM,halts, then system halts

——» Halt——>» Halt
™,

————» Crash

+—%» Halt —1—» Halt
™,

+—%» Crash —+—» Crash

Figure 11.1: Union of RE Language
The intersection of RE languages
Let’s revise the intersection of sets;
Set 1= {a, b, ¢}
Set 2= {b, c, d}
Set 1 Intersection Set 2 = {b, c}
Now let’s understand the same concept in Turing Machine;
Suppose a system has 2 Turing Machines, TM;, and TM,.
If TM,crash, then all the system crash.
If TM, halts, then system checks that TM, is ready to halt or not? After
this, If TM; halts then system halts because this is intersection and the
intersection means that
o If TMcrash, then system crash
o If TM; halts then check TM, or TM,, and if TM, is also halted,

the system halts.
o IfTM, and TM; or TMcrash, then the system crash

— Crash ——» Crash
™,

——» Halt

T—> Halt — > Halt
T™, a a

+—» Crash ——» Crash

MCS-113/177

MCS-113/178

Figure 11.2: Intersection of Recursive Enumerable languages
The complement of RE languages
Suppose a system has 2 Turing Machines, TM1, and TM2.

e [fTMI crash, then all the system crash.
e [f TMI halts, then system check TM2 or TM,,. If TM1 halts and TM2
also halts, then system crash.

e [f TMI halts, then system check TM2 or TM,,. If TM1 halts and TM2
crash, then system halts.

——» Crash —+— Crash
™,

——» Halt

T—% Halt — 1+ Crach
™,

+—» Crash —1—» Halt

Figure 11.3: Complement of recursively enumerable languages

11.2 Undecidable Problem about Turing Machines

In this section, we will discuss all the undecidable problems regarding Turing
machine. The reduction is used to prove whether given language is desirable
or not. In this section, we will understand the concept of reduction first and
then we will see an important theorem in this regard.

Reduction

In this technique, if there is a problem P1 is condensed to a problem P2 then
any solution of P2 solves P1. In general, if we have an algorithm, and we want

tochange an instance of a problem P1 to an instance of a problem P2 that have
the same answer then it is called as Pl reduced P2. Hence if P1 is not
recursive then P2 is also not recursive. Similarly, if P1 is not recursively
enumerable then P2 also is not recursively enumerable.

Theorem: if Pl is reduced to P2 then

1. If Pl is undecidable, then P2 is also undecidable.
2. If Pl is non-RE, then P2 is also non-RE.

Proof:

1. Consider an instance w of P1. Then construct an algorithm such that
the algorithm takes instance w as input and converts it into another
instance x of P2. Then apply that algorithm to check whether x is in
P2. If the algorithm answer 'yes' then that means x is in P2, similarly
we can also say that w is in P1. Since we have obtained P2 after
reduction of P1. Similarly, if algorithm answer mo' then x is not in P2
that also means w is not in P1. This proves that if P1 is undecidable,
then P1 is also undecidable.

2. We assume that Pl is non-RE but P2 is RE. Now construct an
algorithm to reduce P1 to P2, but by this algorithm, P2 will be
recognized. That means there will be a Turing machine that says 'yes' if
the input is P2 but may or may not halt for the input which is not in P2.
As we know that one can convert an instance of w in P1 to an instance
x in P2. Then apply a TM to check whether x is in P2. If x is accepted
that also means w is accepted. This procedure describes a TM whose
language is P1 if w 1s in P1 then x is also in P2 and if w is not in P1
then x is also not in P2. This proves that if P1 is non-RE then P2 is also
non-RE.

Empty and non-empty languages:

There are two types of languages empty and non-empty language. LetL.
denotes an empty language, and L. denotes non empty language. Let w be a
binary string, and M; be a TM. If L(M;) = ®@ then M; does not accept input,
then w is in Le. Similarly, if L(M;) is not the empty language, then w is in Le.
Thus we can say that

Le= {M|L(M) = ®}
Loe = {M | L(M) # @}

Both L. and L, are the complement of one another.

Check your progress

Q1. Which grammar produces recursive enumerable?

Q2. What makes a problem Undecidable? Elaborate your answer.

11.3 Unsolvable Problems.

A computational problem that cannot be solved by a Turing machine. The
associated function is called an un-computable function. This is important to
know, because it protects us the effort of trying to find unsolvable algorithms. MCS-113/179

MCS-113/180

For these types of problems, one can get solutions for special cases, or get
imprecise solutions or solutions that work some of the time.

We illustrate the idea of finding other unsolvable problems on the blank tape
halting problem, then give the general approach.

11.3.1 Blank Tape Halting Problem

The blank tape halting problem is, given a Turing machine T, does T halt
when it starts on a blank tape? That is, does T halt when its input is @, the
empty string? As a language, this problem can be expressed as

BTHP ={encode(T): T halts when started on blank tape}

And the question is whether this language is decidable. It is conceivable that
deciding halting on blank tape might be easier than deciding it in general; after
all, in some cases, the halting problem is easier. For example, the halting
problem can be decided if the Turing machine never writes on the tape, or if it
has only one state.

11.3.2 Undecidability of the Blank Tape Halting Problem

Now, to show that the language BTHP is undecidable (that is, not decidable),
consider a Turing machine

sim(T,x)

Which, given an input y on the tape, erases y, writes X on the tape, and
transfers control to T. (The book calls this machine Tx.) Thus if sim(T,101)
were called with an input of 11101 on the tape, then it would erase the 11101
from the tape, write 101 on the tape, and then transfer control to T. So initially
the tape would look like this:

sim(T,101): ...

<(Uj1|1j1jo0f1|jujUujUujuijufd

Then the input would be erased:

sim(T,101): ... <

=
C
C
C
C
C
C
C
C
C
C
C
C

T: ..

slu|l|ofll|u|lujulu|lu|lu|uluy

Then either 7 would halt on the input 101, or 7" would not halt. Thus

sim(7T,101) halts on input 11101 iffT halts on input 101.

Now, suppose that instead of the input 11101, sim(7,101) is given a blank tape
as input. Initially the tape would look like this:

sim(7,101): ... |U|U|jU|U|U|U|U|Uu|lu|lu|lu|u

Then the input would be erased; of course, there is nothing to erase, so after
this the tape would look the same:

sim(T,101): ... <|U|jUjUjUjUjUlUlUlU|lUjU]|U

Then 101 would be written on the tape and control would be transferred to 7:

T: ..

a{u|l|ofl|ju|ju|ulululu|ulu

Then either 7 would halt on the input 101, or 7" would not halt. Thus

sim(7T,101) halts on blank tape iffT halts on input 101.

Suppose we had a “blank tape halting tester” that could test if an arbitrary
Turing machine halted when started on blank tape. Then we could use this
“blank tape halting tester” to test if sim(7,101) halts on blank tape. Because
sim(7T,101) halts on blank tape iffT halts on input 101, we can use this “blank
tape halting tester” to test if 7 halts on input 101. If sim(7,101) halts on blank
tape, then T halts on input 101, and if sim(7,101) does not halt on blank tape,
then 7 does not halt on input 101.

This result really does not depend on the input 101 at all, or on T; it would
work for any Turing machine 7" and any input x to 7:

sim (T,x) halts on blank tape iffT halts on input x.

Thus, a “blank tape halting tester” would give us a way to test if an arbitrary
Turing machine 7 halts on an arbitrary input x by testing if sim (7,x) halts on
blank tape using the “blank tape halting tester.” If sim (7,x) halts on blank
tape, then T halts on input x, and if sim (7,x) does not halt on blank tape, then
T does not halt on input x. But the halting problem is unsolvable, which means
that it is impossible to test if an arbitrary Turing machine 7 halts on an
arbitrary input x. Therefore, there can be no such “blank tape halting tester,”
so the blank tape halting problem, the problem of testing if an arbitrary Turing
machine halts on blank tape, is also unsolvable.

MCS-113/181

MCS-113/182

So here is our method to test if 7" halts on input x:
1. Construct the encoding of sim (7,x) from the encodings of 7 and x
2. Test if sim (T,x) halts on blank tape
3. Ifsim (T x) halts on blank tape, halt in state y else halt in state n

This shows that if the blank tape halting problem is solvable, the original
halting problem is solvable. Therefore, the blank tape halting problem is not
solvable (not decidable).

Note that this method depends on the fact that the encoding of sim (T, x) is
computable from the encodings of 7 and x. So the method of finding new
unsolvable problems, depends on the existing of a computable function from
the old problem to the new problem, in some sense. Later this idea is made
more formal by the concept of a reduction.

Problem: Take an example Turing machine 7 from the text and compute the
description of the Turing machine sim(7,101).

Problem: In some high level language, write a program which, when given the
description of a Turing machine 7" and an input x, outputs the description of
sim (T,x). Run the program on a few examples to check its correctness.

Problem: Write the description of a Turing machine M which, when given the
description of a Turing machine 7 and an input x, outputs the description of
sim (T,x). Run the machine M on a few examples to check its correctness.

11.4 Summary

In this unit you have learnt about Recursive enumerable. You have learnt also
undecidable Problem about Turing Machines and finally you have studies
about unsolvable problems.

o A language is recursive if there exists a Turing machine that accepts
every string in the language and rejects if it is not in the language.

e Recursive languages are decidable by some Turing Machine, i.e., there
is a TM that can, given any input string (over the appropriate alphabet)
correctly answer yes if the string is in the language, or no if it isn't.

e A problem is undecidable if there is no Turing machine which will
always halt in finite amount of time to give answer as ‘yes’ or ‘no’. An
undecidable problem has no algorithm to determine the answer for a
given input.

e In computability theory, the halting problem is the problem of
determining, from a description of an arbitrary computer program and
an input, whether the program will finish running, or continue to run
forever.

11.5 Review Questions

Q1.What is the difference between recursive and recursively enumerable?
Q2.How do you prove a language is recursively enumerable?

Q3. What makes a problem Undecidable? Elaborate your answer.
Q4.What is halting problem in Turing machine? Explain with example.
Q5.Who first showed that there are undecidable decision problems?

MCS-113/183

Notes

MCS-113/184

NOTE

MCS-113/185

NOTE

MCS-113/186

NOTE

MCS-113/187

NOTE

MCS-113/188

NOTE

MCS-113/189

NOTE

MCS-113/190

NOTE

MCS-113/191

NOTE

MCS-113/192

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184

