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Block-I Introduction and Design Strategies-I

This is the first block on introduction and design strategies. In this block we
mainly focused on introduction of algorithm, divide and conquer and sorting in
linear time.

So we will begin the first unit on introduction to algorithm. An algorithm is a
set of instructions designed to perform a specific task. Examples of image
processing algorithms include cropping, resizing, sharpening, blurring, red-eye
reduction, and color enhancement. In many cases, there are multiple ways to
perform a specific operation within a software program.

In the first unit we also describe psuedo code for expressing algorithms. If we
talk about pseudo code, it is a term which is often used in programming and
algorithm based fields. It is a methodology that allows the programmer to
represent the implementation of an algorithm. It has ne syntax like any of the
programming language and thus can't be compiled or interpreted by the
computer.

First unit also describe about performance analysis-space complexity, time
complexity, growth of functions: asymptotic notation, recurrences: substitution
method, master method.

Second unit begins with Divide and Conquer. In this unit you will know all
about the concept of Divide and Conquer. A divide and conquer algorithm is
a strategy of solving a large problem by breaking the problem into smaller sub-
problems, solving the sub-problems, and combining them to get the desired
output. In this unit we have also described General method, Applications-
Binary search, finding the maximum and minimum, quick sort, Heap sort and
Strassen’s Matrix Multiplication,

In the third unit, we provide another important topic i.e. sorting in Linear Time.
This is the last unit of this block. In the unit we will describe about Lower
bounds for sorting, Counting sort, Radix sort, Bucket sort, Medians and Order
Statistics and Minimum and maximum.

As you study the material, you will find that figures, tables are properly used
and these will help to understand the concept. There are many sections in the
units to easily understand the topic. Every unit has summary and review
questions in the end of the unit which will help you to review yourself.

In your study, you will find that every unit has different equal length and your
study time will vary for each unit.

We hope you enjoy studying the material and once again wish you all the best
for your success.
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UNIT-1 Introduction

Structure

1.0 Introduction

1.1 Algorithm

1.2 Psuedo code for expressing algorithms

1.3 Performance Analysis-Space complexity, Time complexity
1.4 Growth of functions: Asymptotic Notation

1.5 Recurrences: substitution method, master method

1.6 Summary

1.7 Review Questions

[6]



1.0 Introduction

This is the first unit of this block. In this block, you will study about basics of
design strategies. In the Section 1.1 you will learn about Algorithm. Section 1.2
define Psuedo code for expressing algorithms. In the section 1.3 you will know
about Performance Analysis and Space complexity, and Time complexity. In
the section 1.4 Growth of functions like Asymptotic Notation has been defined.
In the section 1.5 you will learn about Recurrences methods. Substitution
method, master method has also been explained in this section. Section 1.6 has

summary and section 1.7 define Review questions.
Objective

After studying this unit, you should be able to define:

e Algorithm.

s Psuedo code for expressing algorithms

s Performance Analysis-Space complexity

e Time complexity

¢ Growth of functions: Asymptotic Notation

e Recurrences: substitution method, master method.

1.1 Algorithm

The word Algorithm means “a process or set of rules to be followed in
calculations or other problem-solving operations”. Therefore, Algorithm refers
to a set of rules/instructions that step-by-step define how a work is to be

executed upon in order to get the expected results.

Set of rules
to obtain the
expected output
from the given
input

Algorithm

[7]
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Figure 1.1: Algorithm

It can be understood by taking an example of cooking a new recipe. To cook a
new recipe, one reads the instructions and steps and execute them one by one,
in the given sequence. The result thus obtained is the new dish cooked
perfectly. Similarly, algorithms help to do a task in programming to get the
expected output.

The Algorithm designed are language-independent, i.e. they are just plain
instructions that can be implemented in any language, and yet the output will

be the same, as expected.

Characteristics of an Algorithm

Well-Defined Well-Defined
Inputs \ / Outputs

Clear and Characteristics of
Unambiguous an Algorithm

Finite-ness

\' Feasible

Figure 1.2: Algorithm Characteristics

Language
Independent

As one would not follow any written instructions to cook the recipe, but only
the standard one. Similarly, not all written instructions for programming is an
algorithm. In order for some instructions to be an algorithm, it must have the
following characteristics:

¢ Clear and Unambiguous; Algorithm should be clear and unambiguous.
Each of its steps should be clear in all aspects and must lead to only one
meaning.

e Well-Defined Inputs: If an algorithm is likely to take inputs, it should
be well-defined inputs.

o  Well-Defined Outputs: The algorithm must clearly define what output
will be yielded and it should be well-defined as well.

e Finite-ness: The algorithm must be finite, i.e. it should not end up in an
infinite loops or similar.



o Feasible: The algorithm must be simple, generic and practical, such that
it can be executed upon will the available resources. It must not contain
some future technology, or anything,

¢ Language Independent: The Algorithm designed must be language-
independent, ie. it must be just plain instructions that can be
implemented in any language, and yet the output will be same, as
expected.

Advantages of Algorithms:

e [tis easy to understand.

o Algorithm is a step-wise representation of a solution to a given
problem.,

s In Algorithm the problem is broken down into smaller pieces or steps
hence, it is easier for the programmer to convert it into an actual
program.

Disadvantages of Algorithms:

e  Writing an algorithm takes a long time so it is time-consuming.
¢ Branching and looping statements are difficult to show in Algorithms.

How to Design an Algorithm?
In order to write an algorithm, following things are needed as a pre-requisite:

o The problem that is to be solved by this algorithm.

o The constraints of the problem that must be considered while solving
the problem.

e The input to be taken to solve the problem.

e The output to be expected when the problem is solved.

¢ The solution to this problem, in the given constraints.

Then the algorithm is written with the help of above parameters such that it
solves the problem.

Example: Consider the example to add three numbers and print the sum.
Step 1: Fulfilling the pre-requisites

As discussed above, in order to write an algorithm, its pre-requisites must be
fulfilled.

[9]
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. The problem that is to be solved by this algorithm: Add 3 numbers and

print their sum.

The constraints of the problem that must be considered while solving
the problem: The numbers must contain only digits and no other
characters.

. The input to be taken to solve the problem: The three numbers to be

added.

The output to be expected when the problem the is solved: The sum of
the three numbers taken as the input.

The solution to this problem, in the given constraints: The solution
consists of adding the 3 numbers. It can be done with the help of ‘+’
operator, or bit-wise, or any other method.

Step 2: Designing the algorithm

Now let’s design the algorithm with the help of above pre-requisites:

Algorithm to add 3 numbers and print their sum:

L.

START

2. Declare 3 integer variables numl, num2 and num3.

. Take the three numbers, to be added, as inputs in variables numl,

num2, and num3 respectively.

Declare an integer variable sum to store the resultant sum of the 3
numbers.

Add the 3 numbers and store the result in the variable sum.

Print the value of variable sum

END

Step 3: Testing the algorithm by implementing it.

In order to test the algorithm, let’s implement it in C language.

// C program to add three numbers

// with the help of above designed algorithm

#include <stdio.h>

int main()



// Variables to take the input of the 3 numbers
int numl, num2, num3;

// Variable to store the resultant sum
int sum;

// Take the 3 numbers as input
printf("Enter the 1st number: ");
scanf("%d", &numl);
printf("%d\n”, numl);
printf("Enter the 2nd number: ");
scanf("%d", &num2);
printf("%d\n", num2);
printf("Enter the 3rd number: ");
scanf("%d", &num3);
printf("%d\n”, num3);

// Calculate the sum using + operator
// and store it in variable sum
sum = numl + num?2 + num3;

// Print the sum

printf("\nSum of the 3 numbers is: %d”, sum);

return 0;

[11]



Output

Enter the 1st number: 0

Enter the 2nd number: 0

Enter the 3rd number: -1577141152

Sum of the 3 numbers is: -1577141152

1.2 Psuedo code for expressing algorithms

Pseudocode refers to an informal high-level description of the operating
principle of a computer program or other algorithm. It uses structural
conventions of a standard programming language intended for human
reading rather than the machine reading.

Advantages of Pseudocode

e Since it is similar to a programming language, it can be quickly
transformed into the actual programming language than a flowchart.

¢ The layman can easily understand it.

¢ Easily modifiable as compared to the flowcharts.

e Its implementation is beneficial for structured, designed elements.

o [t can easily detect an error before transforming it into a code.

Disadvantages of Pseudocode

¢ Since it does not incorporate any standardized style or format, it can
vary from one company to another.

¢ Error possibility is higher while transforming into a code.

e It may require a tool for extracting out the Pseudocode and facilitate
drawing flowcharts.

¢ It does not depict the design.

Difference between Algorithm and the Pseudocode

Basis for comparison  Algorithm Pseudocode

Comprehensibility Quite hard to | Easy to interpret
[12] understand




Uses Complicated Combination of
programming language | programming language
and natural language
Debugging Moderate Simpler
Ease of construction Complex Easier

An algorithm is simply a problem-solving process, which is used not only in
computer science to write a program but also in our day to day life. It is
nothing but a series of instructions to solve a problem or get to the problem's

solution. It not only helps in simplifying the problem but also to have a better

understanding of it.

However, Pseudocode is a way of writing an algorithm, Programmers can use

informal, simple language to write pseudocode without following any strict

syntax. It encompasses semi-mathematical statements.

Example: Suppose there are 60 students in the class. How will you calculate

the number of absentees in the class?

Pseudo Approach:

e o oo

Algorithmic Approach:

o B e =

Display the number of absent students

Count <- 0, absent <- 0, total <- 60
REPEAT till all students counted
Count <- Count + 1

absent <- total - Count

Print "Number absent is:" , absent

Initialize a variable called as Count to zero, absent to zero, total to 60
FOR EACH Student PRESENT DO the following:
Increase the Count by One

Then Subtract Count from total and store the result in absent

Q1. What is an algorithm? What is the need for an algorithm?

[13]
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Q2. What is the Complexity of Algorithm?

1.3 Performance Analysis

Performance analysis of an algorithm is the process of calculating space
and time required by that algorithm. Performance analysis of an algorithm
is performed by using the following measures... Space required to complete
the task of that algorithm (Space Complexity). It includes program space
and data space.

In theoretical analysis of algorithms, it is common to estimate their
complexity in the asymptotic sense, ie., to estimate the complexity
function for arbitrarily large input. The term "analysis of algorithms" was
coined by Donald Knuth.

Algorithm analysis is an important part of computational complexity
theory, which provides theoretical estimation for the required resources of
an algorithm to solve a specific computational problem. Most algorithms
are designed to work with inputs of arbitrary length. Analysis of algorithms
is the determination of the amount of time and space resources required to
execute it.

Generally, the efficiency or execution time of an algorithm is expressed as
a function that relates the length of the input to the number of steps (called
time complexity) or the amount of memory (called space complexity).

The Need for Analysis

In this chapter, we will discuss the need for analysis of algorithms and how
to choose a better algorithm for a particular problem as one computational
problem can be solved by different algorithms.

By considering an algorithm for a specific problem, we can begin to

develop pattern recognition so that similar types of problems can be solved
by the help of this algorithm.

Algorithms are often quite different from one another, though the objective
of these algorithms are the same. For example, we know that a set of
numbers can be sorted using different algorithms. Number of comparisons
performed by one algorithm may vary with others for the same input.
Hence, time complexity of those algorithms may differ. At the same time,
we need to calculate the memory space required by each algorithm,



Analysis of algorithm is the process of analysing the problem-solving
capability of the algorithm in terms of the time and size required (the size
of memory for storage while implementation). However, the main concern
of analysis of algorithms is the required time or performance. Generally,
we perform the following types of analysis —

s Worst-case — the maximum number of steps taken on any instance
of size a.

* Best-case — the minimum number of steps taken on any instance of
size a.

* Average case — an average number of steps taken on any instance of
size a.

o Amortized — A sequence of operations applied to the input of size a
averaged over time.

To solve a problem, we need to consider time as well as space complexity as
the program may run on a system where memory is limited but adequate space
is available or may be vice-versa.

Space Complexity:

Space Complexity of an algorithm denotes the total space used or needed by
the algorithm for its working, for various input sizes. For example:

vector<int> myVec(n),
for(inti=0;i<n; i++)
cin >> myVec[i];

n the above example, we are creating a vector of size n. So the space
complexity of the above code is in the order of "n" ie. if n will increase, the
space requirement will also increase accordingly.

Even when you are creating a variable then you need some space for your
algorithm to run. All the space required for the algorithm is collectively called
the Space Complexity of the algorithm.

NOTE: In normal programming, you will be allowed to use 256MB of space
for a particular problem. So, you can't create an array of size more 10/8
because you will be allowed to use only 256MB. Also, you can't create an array
of size more than 10”6 in a function because the maximum space allotted to a
function is 4MB. So, to use an array of more size, you can create a global
array.

[15]
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Example

#include<stdio.h>

int main()

{
inta=5>b=3, ¢;
c=a+tb
printf("%d", c);

/

Output:

CPU Time: 0.00 sec(s), Memory: 1364 kilobyte(s)

Explanation: Do not misunderstand space-complexity to be 1364 Kilobytes as
shown in the output image. The method to calculate the actual space
complexity is shown below.

In the above program, 3 integer variables are used. The size of the integer data
type is 2 or 4 bytes which depends on the compiler. Now, let’s assume the size
as 4 bytes. So, the total space occupied by the above-given program is 4 * 3 =
12 bytes. Since no additional variables are used, no extra space is required.

Hence, space complexity for the above-given program is O(1), or constant.
Time Complexity

The time complexity is the number of operations an algorithm performs to
complete its task with respect to input size (considering that each operation
takes the same amount of time). The algorithm that performs the task in the
smallest number of operations is considered the most efficient one.

The time taken by an algorithm also depends on the computing speed of the
system that you are using, but we ignore those external factors and we are only
concerned on the number of times a particular statement is being executed with
respect to the input size. Let's say, for executing one statement, the time taken



is 1sec, then what is the time taken for executing n statements, it will take n
seconds.

Suppose you are having one problem and you wrote three algorithms for the
same problem. Now, you need to choose one out of those three algorithms.
How will you do that?

¢ One thing that you can do is just run all the three algorithms on three
different computers, provide same input and find the time taken by all
the three algorithms and choose the one that is taking the least amount
of time. Is it ok? No, all the systems might be using some different
processors. So, the processing speed might vary. So, we can't use this
approach to find the most efficient algorithm.

* Another thing that you can do is run all the three algorithms on the
same computer and try to find the time taken by the algorithm and
choose the best. But here also, you might get wrong results because, at
the time of execution of a program, there are other things that are
executing along with your program, so you might get the wrong time.

NOTE: One thing that is to be noted here is that we are finding the time taken
by different algorithms for the same input because if we change the input then
the efficient algorithm might take more time as compared to the less efficient
one because the input size is different for both algorithms.

So, we have seen that we can't judge an algorithm by calculating the time taken
during its execution in a particular system. We need some standard notation to
analyse the algorithm. We use asymptotic notation to analyse any algorithm
and based on that we find the most efficient algorithm. Here in Asymptotic
notation, we do not consider the system configuration, rather we consider the
order of growth of the input. We try to find how the time or the space taken by
the algorithm will increase/decrease after increasing/decreasing the input size.

1.4 Growth of functions

There are three asymptotic notations that are used to represent the time
complexity of an algorithm. They are:

s O Notation (theta)
* Big O Notation
¢ Q Notation

Before learning about these three asymptotic notation, we should learn about
the best, average, and the worst case of an algorithm.

[17]



Best case, Average case, and Worst case

An algorithm can have different time for different inputs. It may take 1 second
for some input and 10 seconds for some other input.

For example: We have one array named "arr” and an integer "k". we need to
find if that integer "k” is present in the array "arr” or not? If the integer is
there, then return 1 other return 0. Try to make an algorithm for this question.

The following information can be extracted from the above question:

¢ Input: Here our input is an integer array of size "n" and we have one
integer "k" that we need to search for in that array.

o QOutput: If the element "k" is found in the array, then we have return 1,
otherwise we have to return 0.

Now, one possible solution for the above problem can be linear search i.e. we
will traverse each and every element of the array and compare that element
with "k". If it is equal to "k" then return 1, otherwise, keep on comparing for
more elements in the array and if you reach at the end of the array and you did
not find any element, then return 0.

/*
* @type of arr: integer array
* @type of n: integer (size of integer array)
* @type of k: integer (integer to be searched)
*
int searchK(int arr(], int n, int k)
{
// for-loop to iterate with each element in the array
Jor (inti=0;i<n; ++i
{
// check if ith element is equal to "k" or not
if (arr[i] ==K

[18] return 1; // return 1, if you find "k"



/

return 0; // return 0, if you didn't find "k"

/

/*

* [Explanation]

*i=0-———- --> will be executed once

*¥i{ <R emmmmeeeee --> will be executed n+1 times
*j++ —eeemeee-> will be executed n times

* if(arr[i] == k) --> will be executed n times

* return 1 -———-—> will be executed once(if "k” is there in the array)
* return () -—-—---> will be executed once(if "k" is not there in the array)
*

Each statement in code takes constant time, let's say "C", where "C" is some
constant. So, whenever you declare an integer then it takes constant time when
you change the value of some integer or other variables then it takes constant
time, when you compare two variables then it takes constant time. So, if a
statement is taking "C" amount of time and it is executed "N" times, then it will
take C*N amount of time. Now, think of the following mputs to the above
algorithm that we have just written:

NOTE: Here we assume that each statement is taking Isec of time to execute.

e Ifthe input array is [1, 2, 3, 4, 5] and you want to find if "1" is present
in the array or not, then the if-condition of the code will be executed 1
time and it will find that the element 1 is there in the array. So, the if-
condition will take 1 second here.

o Ifthe input array is [1, 2, 3, 4, 5] and you want to find if "3" is present
in the array or not, then the if-condition of the code will be executed 3
times and it will find that the element 3 is there in the array. So, the if-
condition will take 3 seconds here.

o Ifthe input array is [1, 2, 3, 4, 5] and you want to find if "6" is present
in the array or not, then the if-condition of the code will be executed 5 [19]
times and it will find that the element 6 is not there in the array and the
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algorithm will return O in this case. So, the if-condition will take 5
seconds here.

As you can see that for the same input array, we have different time for
different values of "k". So, this can be divided into three cases:

o Best case: This is the lower bound on running time of an algorithm. We
must know the case that causes the minimum number of operations to
be executed. In the above example, our array was [1, 2, 3, 4, 5] and we
are finding if "1" is present in the array or not. So here, after only one
comparison, you will get that your element is present in the array. So,
this is the best case of your algorithm.

o Average case: We calculate the running time for all possible inputs,
sum all the calculated values and divide the sum by the total number of
inputs. We must know (or predict) distribution of cases.

o Worst case: This is the upper bound on running time of an algorithm.
We must know the case that causes the maximum number of operations
to be executed. In our example, the worst case can be if the given array
s [1, 2, 3, 4, 5] and we try to find if element "6" is present in the array
or not. Here, the if-condition of our loop will be executed 5 times and
then the algorithm will give "0" as output.

So, we learned about the best, average, and worst case of an algorithm. Now,
let's get back to the asymptotic notation where we saw that we use three
asymptotic notations to represent the complexity of an algorithm ie. @
Notation (theta), Q Notation, Big O Notation.

O Notation (theta)

The © Notation is used to find the average bound of an algorithm i.e. it defines
an upper bound and a lower bound, and your algorithm will lie in between
these levels. So, if a function is g(n), then the theta representation is shown as
®(g(n)) and the relation is shown as:

O(g(n)) = { f(n): there exist positive constants cl, c2 and n0
such that 0 <clg(n) <f(n) <c2g() for alln >n0 }

The above expression can be read as theta of g(n) is defined as set of all the
functions f{n) for which there exists some positive constants cl, ¢2, and n0
such that c1*g(n) is less than or equal to n) and f(n) is less than or equal to
c2*g(n) for all n that is greater than or equal to n0.



For example:
if fin}=2n+3n+1
and g(n) =n?

then for c1 =2, ¢2 =6, and n0 = 1, we can say that f{n) = @(n?)

c2g(n)
.-"—F#—F-

fin)

.,a-"""f f.'!E{!I}

o s
(i

-n

fn) =0B(g(n))

i

Figure 1.3: © Notation (theta)

Q Notation

The €2 notation denotes the lower bound of an algorithm i.e. the time taken by
the algorithm can't be lower than this. In other words, this is the fastest time in
which the algorithm will return a result. It’s the time taken by the algorithm
when provided with its best-case input. So, if a function is g(n), then the omega
representation is shown as ((g(n}) and the relation is shown as:

Q(g(n)) = {f(n): there exist positive constants ¢ and n0
such that 0 < cg(n) < f(n) for all n >n0}

The above expression can be read as omega of g(n) is defined as set of all the
functions f{n) for which there exist some constants ¢ and n0 such that c*g(n) is
less than or equal to f{n), for all n greater than or equal to n0.

ifftn) =2n’+3n+1
and g(n) = n?

then for c = 2 and n0 = 1, we can say that f(n) = Q(n?)

[21]
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A n
L]

fin) =Q(g(n))

Figure 1.4: Q Notation
Big O Notation

The Big O notation defines the upper bound of any algorithm ie. your
algorithm can't take more time than this time. In other words, we can say that
the big O notation denotes the maximum time taken by an algorithm or the
worst-case time complexity of an algorithm. So, big O notation is the most
used notation for the time complexity of an algorithm. So, if a function is g(n),
then the big O representation of g(n) is shown as O(g(n)} and the relation is
shown as:

O(g(n)) = {f(n): there exist positive constants c and n0
such that 0 <f{n) <cg(n) for all n > n0}

The above expression can be read as Big O of g(n) is defined as a set of
functions f{n) for which there exist some constants ¢ and n0 such that fn) is
greater than or equal to 0 and f{n) is smaller than or equal to c¢*g(n) for all n
greater than or equal to n0.

iffn) =2n+3n+ 1
and g(n) = n?

then for ¢ = 6 and n0 = 1, we can say that f(n) = O(n?)



" fn) = O(g))

Figure 1.5: Big O Notation

Big O notation example of Algorithms

Big O notation is the most used notation to express the time complexity of an
algorithm. In this section of the blog, we will find the big O notation of various
algorithms.

Example 1: Finding the sum of the first n numbers.

In this example, we have to find the sum of first n numbers. For example, if n =
4, then our output should be 1 +2 + 3 + 4 = 10. Ifn= 5, then the output should
bel+2+3+4+5=15. Let's try various solutions to this code and try to
compare all those codes.

0O(1) solution
int findSum(int n)

{

return n * (n+1) / 2; // this will take some constant time ¢l

/

In the above code, there is only one statement and we know that a statement
takes constant time for its execution. The basic idea is that if the statement is
taking constant time, then it will take the same amount of time for all the input
size and we denote this as O(1).

O(n) solution

In this solution, we will run a loop from 1 to n and we will add these values to
a variable named "sum".

[23]
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// function taking input "n"
int findSum(int n)
{
int sum = 0; f/ —————————- > it takes some constant time "cl”
Jor(inti = 1; i <=n; ++i) //--> here the comparison and increment will

take place n times(c2*n) and the creation of i takes place with some constant
time

sum = sum + i; ff —————- > this statement will be executed n times i.e.
c3*n
return sum, // -—-—-————-———- > it takes some constant time "c4"
4
/*

* Total time taken = time taken by all the statements to execute

* here in our example we have 3 constant time taking statements i.e. "sum =
0", "i = 0", and "return sum”, so we can add all the constants and replace with

some new constant "c¢”

* apart from this, we have two statements running n-times i.e. "i < n(in real
n+1}" and "sum = sum +i"i.e c2*n + c3*n = c0*n

* Total time taken = c0*n + ¢
*/

The big O notation of the above code is O(c0*n) + O(c), where ¢ and c0 are
constants. So, the overall time complexity can be written as O(n).

O(n?) solution

In this solution, we will increment the value of sum variable "i" times i.e. for i
= 1, the sum variable will be incremented once ie. sum = 1. For i = 2, the sum
variable will be incremented twice. So, let's see the solution.

// function taking input "n"
int findSum(int n)

{



intsum=0; // > constant time

for(inti=1;i<=n; ++i)
forlintj =1, j <=1i; +4j)

sum++; // >itwillrunfn*m+ 1} /2]

return sum, // > constant time

/
/*
* Total time taken = time taken by all the statements to execute

* the statement that is being executed most of the time is "sum++"ie. n * (n +

/2

* So, total complexity will be: c1*n? + c2*n + ¢3 [cl is for the constant terms
of n?, c2 is for the constant terms of n, and c3 is for rest of the constant time]

*¥

The big O notation of the above algorithm is O(cl*n?) +O(c2*¥n) + O(c3).
Since we take the higher order of growth in big O. So, our expression will be
reduced to O(n?).

Q1. What are the Asymptotic Notations?

Q2. Write pseudo code that reads two numbers and multiplies them together
and print out their product.

So, until now, we saw 3 solutions for the same problem. Now, which algorithm
will you prefer to use when you are finding the sum of first "n" numbers? If
your answer is O(1) solution, then we have one bonus section for you at the
end of this blog. We would prefer the O(1) solution because the time taken by
the algorithm will be constant irrespective of the input size.

Check your progress

Q1.What is the difference between an algorithm and Psuedo code?
Q2.How is space complexity calculated?
Q3.What is the best time complexity? Explain with example.

[25]
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1.5 Recurrences

A recurrence is an equation or inequality that describes a function in terms
of its values on smaller inputs. To solve a Recurrence Relation means to
obtain a function defined on the natural numbers that satisfy the recurrence.

For Example, the Worst Case Running Time T(n) of the MERGE SORT
Procedures is described by the recurrence.

T =0()ifn=1
zr(g) +8 (n) if n>1

Substitution Method:

The substitution method for solving recurrences involves guessing the form
of the solution and then using mathematical induction to find the constants
and show that the solution works. The name comes from the substitution of
the guessed answer for the function when the inductive hypothesis is
applied to smaller values. This method is powerful, but it obviously can be
applied only in cases when it is easy to guess the form of the answer.

The Substitution Method consists of two main steps:
¢ Guess the Solution.
e Use the mathematical induction to find the boundary condition and
shows that the guess is correct.

Example
Solve the equation by Substitution Method.
T = T(E) +n
We have to show that it is asymptotically bound by O (log n).
Solution:
ForTm) =0 (logn)
We have to show that for some constant ¢
T (n) <c log,.

Put this in given Recurrence Equation.



T () <clog(z) + 1
<c log(%) + 1 =clogn-clog, 2+1

<c logy, for =1
Thus T (n) =0 log,.

Master Method

The Master Method is used for solving the following types of recurrence
T (n) = a T(n/b)+ f (n) with a>1 and b>1 be constant & f{(n) be a function and
(n/b) be interpreted as follows:

Let T (n) is defined on non-negative integers by the recurrence.

T () =a T+ (n)
In the function to the analysis of a recursive algorithm, the constants and
function take on the following significance:

e nis the size of the problem.

e g is the number of sub problems in the recursion.

e n/b is the size of each sub problem. (Here it is assumed that all sub
problems are essentially the same size.)

e f(n) is the sum of the work done outside the recursive calls, which
includes the sum of dividing the problem and the sum of combining the
solutions to the sub problems.

o It is not possible always bound the function according to the
requirement, so we make three cases which will tell us what kind of
bound we can apply on the function,

Master Theorem:

It is possible to complete an asymptotic tight bound in these three cases:

-

o) fl=Cl=

>0

Tr) = 1@ logr) () =6ln"™°) %

c<1

A f(n) F() =0l ) AND
af(n/b)<cf(n) forlargen|

[27]
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Casel: If f (n) = O(n'°82 “~€)for some constant & >0, then it follows that:
T(n) = O(nlo9s )

Example:

Tm)=8T(n2) +1000 n apply master theorem on it.

Solution:

Compare T (n) = 8 T (n/2) +1000 n’ with

T(n)=a T(n/b) tf(n) witha>1andb>1

a=8, b=2, fin) = 1000 nz, logra=log; 8§ =3

Put all the values in : f{n) = O(n'*8,*%)

1000 v = o ()

If we choose € = 1, we get: 1000 n’ = o (n’) = o(n®)

Since this equation holds, the first case of the master theorem applies to the
given recurrence relation, thus resulting in the conclusion:

T(n) = 8(n"%,%)
Therefore: T (n) = @ (n’)
Case 2: If it is true, for some constant k > 0 that:
F (n) = O (n"8;* loghn) then it follows that T() = @ (n'°%," log"™" n)
Example:
T (n} = 2 T(n/2) +10n, solve the recurrence by using the master method.
As compare the given problem with 7 (n} =a T(n/b) + fin) witha>I1 and b > 1
a=2, b=2, k=0, f(n) = 10n, logra= log,2 =1
Put all the values in:f{n) = O (0%, % log * n), we will get
10n = @ (n') = O (n) which is true.
Therefore: T (n) = © (1% “log ' n)
=@ (nlogn)

Case 3: If it is true f{n) = @ (W%, ** 9% some constant ¢ >0 and it also true

that: a f{n/b) < cffn)for some constant c<1 for large value of n, then:

T(n)=86(fn)



Example: Solve the recurrence relation:

T(n)=2Tm/2) +n’

Solution:

Compare the given problem with T' (n) = a T(n/b) + f{n)witha > 1 and b > 1

a=2,b=2f(n) = w, logsa = logy2 =1
Put all the values in f(n) = Q #%,° "% ............ (Eq. 1)
If we insert all the value in (Eq.1), we will get
n’ = Q") put & =1, then the equality will hold.
n’ =0m") =0m)
Now we will also check the second condition:
2m/2) <cn’= 1/2n2 < cn2
If we will choose ¢ =1/2, it is true:
120<12n°vn>1
So it follows: T (n) = @ ({(f (n))

T (n) = O’

1.6 Summary

In this unit you have learnt about Algorithm, Psuedo code for expressing
algorithms. You have also studied about performance Analysis with the help of
Space complexity and Time complexity. We have explained thegrowth of
functions like Asymptotic Notation and in the end we have provided the
concept of Recurrences with the help of substitution method and master

method.

¢ An algorithm can be defined as a finite set of steps, which has to be
followed while carrying out a particular problem. It is nothing but a

process of executing actions step by step.

e An algorithm is a distinct computational procedure that takes input as a
set of values and resulis in the output as a set of values by solving the
problem. More precisely, an algorithm is correct, if, for each input

instance, it gets the correct output and gets terminated.
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e An algorithm unravels the computational problems to output the desired
result. An algorithm can be described by incorporating a natural
language such as English, Computer language, or a hardware language.

1.7 Review Questions

Q1.What is the space complexity of following code?
inta=0b=0;
for(i=0;,i<N;i++}{

a=a+ rand();

Y

for =0;j<M; j++}{
b=>b + rand();

4

Q2.What is the time complexity of following code?
inti,j,k=0;
Jor(i=n/2;i<=n;i++}{
forG=2;j<=mj=j*2){
k=k+n/2;

Q3.What does it mean when we say that an algorithm X is
asymptotically more efficient than Y?
Q4.Consider the Recurrence

Tm)=2T(n/2)+ nn>1
Find an Asymptotic bound on T.

Q5.Explain why the statement, "The running time of algorithm A is at
least O(n2)," is content-free.



UNIT-2 Divide and Conquer

Structure

2.0 Introduction

2.1 General method

2.2 Applications Binary search

2.3 Finding the maximum and minimum
2.4 Quick sort

2.5 Heapsort

2.6 Strassen’s Matrix Multiplication.

2.7 Summary
2.8 Review Questions

2.0 Introduction

This is the second unit of this block. In this unit, there are eight sections. In the
section 2.1 you will know about general method of divide and conquer. In the
section 2.2 you will learn about binary search applications. Section 2.3 define
about finding the maximum and minimum. Section 2.4 explain about quick sort
and section 2.5 define heap sort. In the section 2.6, you will study about
Strassen’s Matrix Multiplication. Last two sections define summary and review
questions.

Objective

After studying this unit, you should be able to define:

General method of divide and conquer.
Applications of Binary search

Finding the maximum and minimum
Quick sort

Heap sort

Strassen’s Matrix Multiplication
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2.1 Divide and Conquer

Divide and Conquer is an algorithmic pattern. In algorithmic methods, the
design is to take a dispute on a huge input, break the input into minor pieces,
decide the problem on each of the small pieces, and then merge the piecewise
solutions into a global solution. This mechanism of solving the problem is
called the Divide & Conquer Strategy.

Divide and Conquer algorithm consists of a dispute using the following three
steps.

1. Divide the original problem into a set of subproblems.

2. Conquer: Solve every subproblem individually, recursively.

3. Combine: Put together the solutions of the subproblems to get the
solution to the whole problem.

problem

divide

solve
subproblem

solve

conquer
q subproblem

combine

solution to
problem

Figure 2.1: Divide and Conquer

Generally, we can follow the divide-and-conquer approach in a three-step
process.

Examples: The specific computer algorithms are based on the Divide &
Conquer approach:



Maximum and Minimum Problem
Binary Search

Sorting (merge sort, quick sort)
Tower of Hanoi,

il =

Fundamental of Divide & Conquer Strategy:
There are two fundamental of Divide & Conquer Strategy:

1. Relational Formula
2. Stopping Condition

1. Relational Formula: It is the formula that we generate from the given
technique. After generation of Formula we apply D&C Strategy, i.e. we break
the problem recursively & solve the broken subproblems.

2. Stopping Condition: When we break the problem using Divide & Conquer
Strategy, then we need to know that for how much time, we need to apply
divide & Conquer. So the condition where the need to stop our recursion steps
of D&C is called as Stopping Condition.

2.2 Applications-Binary search

Following algorithms are based on the concept of the Divide and Conquer
Technique:

1. Binary Search: The binary search algorithm is a searching algorithm,
which is also called a half-interval search or logarithmic search. It
works by comparing the target value with the middle element existing
in a sorted array. After making the comparison, if the value differs, then
the half that cannot contain the target will eventually eliminate,
followed by continuing the search on the other half, We will again
consider the middle element and compare it with the target value. The
process keeps on repeating until the target value is met. If we found the
other half to be empty after ending the search, then it can be concluded
that the target is not present in the array.

2. Quicksort: It is the most efficient sorting algorithm, which is also
known as partition-exchange sort. It starts by selecting a pivot value
from an array followed by dividing the rest of the array elements into
two sub-arrays. The partition is made by comparing each of the
elements with the pivot value. It compares whether the element holds a
greater value or lesser value than the pivot and then sort the arrays
recursively.

[33]
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. Merge Sort: It is a sorting algorithm that sorts an array by making

comparisons. It starts by dividing an array into sub-array and then

recursively sorts each of them. After the sorting is done, it merges them
back.

. Closest Pair of Points: It is a problem of computational geometry. This

algorithm emphasizes finding out the closest pair of points in a metric
space, given n points, such that the distance between the pair of points
should be minimal,

. Strassen's Algorithm: It is an algorithm for matrix multiplication, which

is named after Volker Strassen. It has proven to be much faster than the
traditional algorithm when works on large matrices with a better
asymptotic complexity, although the naive algorithm is often better for
smaller matrices.

. Cooley-Tukey Fast Fourier Transform (FFT) algorithm: The Fast

Fourier Transform algorithm is named after J. W. Cooley and John
Turkey. It follows the Divide and Conquer Approach and imposes a
complexity of O(nlogn).

. Karatsuba algorithm for fast multiplication: It is one of the fastest

multiplication algorithms of the traditional time, invented by Anatoly
Karatsuba in late 1960 and got published in 1962. It multiplies two n-
digit numbers in such a way by reducing it to at most single-digit.

2.3 Finding the maximum and minimum

Problem: Analyse the algorithm to find the maximum and minimum
element from an array,

Algorithm: Max ?Min Element (a [])
Max: afi]

Min: a[fi]

Fori=2tondo

If afi]> max then

max = afif

if afi] < min then

min: afi]

return (max, min)

Analysis:

Method 1: if we apply the general approach to the array of size n, the
number of comparisons required are 2n-2.

Method-2: In another approach, we will divide the problem into sub-
problems and find the max and min of each group, now max. Of each



group will compare with the only max of another group and min with
min.

Let n = is the size of items in an array

Let T (n} = time required to apply the algorithm on an array of size n.
Here we divide the terms as T(n/2).

2 here tends to the comparison of the minimum with minimum and
maximum with maximum as in above example.

6= (7 (3 7

T(n) =2T (3) +2 -Eq ()

T (2) = 1, time required to compare two elements/items. (Time is
measured in units of the number of comparisons)

T(Z)=2r (3)+2 “Eq (ii)
Put Eq (ii) in Eq (i)
T(n) =221 (%) +2]

= ZZT(;—Z) + 2% +2

Similarly, apply the same procedure recursively on each sub problem
or anatomy

{Use recursion means, we will use some stopping condition to stop the
algorithm}

T(n) = 2T (ﬁ) + 204+ 201 e 42 . ... Eqidi)

. « n i «
Recursion will stop, when; =2 =>n= 2" ..Eq. (iv)
Put the Eq.(iv) into Eq.(iii)

Tn= 2'T(2)+ 28 + 27 14.......... +2

= zi,1+gf+2i‘1+--- ........ +2
= 2t +M
2-1

: . [35]
=201 4ot 2
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Number of comparisons requires applying the divide and conquering
algorithm on n elements/items = 3?“ -2

Number of comparisons requires applying general approach on n
elements = (n-1) + (n-1) = 2n-2

From this example, we can analyse, that how to reduce the number of
comparisons by using this technique.

Analysis: suppose we have the array of size 8 elements.
Methodl: requires (2n-2}, (2x8)-2=14 comparisons
Method2: requiresazi8 — 2 = 10 comparisions

It is evident; we can reduce the number of comparisons {complexity)
by using a proper technique.

Check your progress

Q1. What are the steps in divide and conquer strategy?
Q2. What is the time complexity of MIN (} and MAX () method?

2.4 Quick Sort

It is an algorithm of Divide & Conquer type.

Divide: Rearrange the elements and split arrays into two sub-arrays and
an element in between search that each element in left sub array is less
than or equal to the average element and each element in the right sub-
array is larger than the middle element.

Conquer: Recursively, sort two sub arrays.
Combine: Combine the already sorted array.
Algorithm:

QUICKSORT (array A, int m, int n)



Lif(n>m

2 then

3 i «— arandom index from [m,n]
4 swap A [i] with Afm]

5 0« PARTITION (4, m, n)

6 QUICKSORT (A, m, 6 - 1)

7 QUICKSORT (4, 0+ 1, n)

Partition Algorithm:
Partition algorithm rearranges the sub arrays in a place.
PARTITION (array A, int m, int n)
1 x «— A[m]
20 m

Jforpe—m+1ton

4 do if (A[p] < x)
5theno«—o+1
6 swap A[o] with A[p]
7 swap A[m] with A[o]
8 return o
I.'ﬁ' r p - r
ﬁﬂs{vﬂa]ﬂaju [s[3[8]6[417[3[1
q s q 5
P r p / \\ r
HE R EE [5]13][8]6]4]7 EN1
q s q s
p r p / \\r
BHEEE P 51386 4\ |3II
q s q
p P, r P _ r
[5]3]s[c M7 [3]1] 5[3[8l6lal7 3 1]
[ |

g 5 g s

—
e

p i r
|5/3/8/ 6/4/7]3[1]
q 5
Figure 2.2: shows the execution trace partition algorithm [37]
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Example of Quick Sort:
44 33 11 55 77 90 40 60 99 22 88
Let 44 be the Pivot element and scanning done from right to left

Comparing 44 to the right-side elements, and if right-side elements are smaller
than 44, then swap it. As 22 is smaller than 44 so swap them.

2 33 11 55 77 9% 40 60 99 44 88

Now comparing 44 to the left side element and the element must be greater
than 44 then swap them. As 55 are greater than 44 so swap them

2 3 11 4 77 9% 40 60 99 55 88

Recursively, repeating steps 1 & steps 2 until we get two lists one left from
pivot element 44 & one right from pivot element.

22 33 11 40 77 9% 4 60 99 55 88
Swap with 77:
22 33 11 40 4 9 77 60 99 55 88

Now, the element on the right side and left side are greater than and smaller
than 44 respectively.

Now we get two sorted lists:

22 33 1 40 44 90 77 66 99 55 88

Sublist1 Sublist2

And these sublists are sorted under the same process as above done.

These two sorted sublists side by side.

22 33 11 40 44 9 /7 60 99 55 88

11 33 22 40 44 688 77 60 99 35 90

M1 22 33 40 44 88 77 60 9 35 99




First sorted list 66 77/ 60 65 90 99

Sublist3 Sublistd4
95 f7 60 88 90 99

Sorted

hh 77 60
55 60 7
Sorted

Merging Sublists:

11 22 33 40 44 55 60 77 83 90 99

Figure 2.3: Sorted Lists

Worst Case Analysis: It is the case when items are already in sorted form and
we try to sort them again. This will take lots of time and space.

Equation:

T (n) =T(1)+T(n-1)+n

T (1) is time taken by pivot element.

T (n-1) is time taken by remaining element except for pivot element.

N: the number of comparisons required to identify the exact position of itself
(every element)

If we compare first element pivot with other, then there will be 5 comparisons.

It means there will be n comparisons if there are n items.

1 23 45

T (1) Remaining [T (n-1)] [39]
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Relational Formula for Worst Case:

TM)=TM+TM-1+n_.................. (1

TR =T (1) +T (nd-1) + (n-1) By putting (n-1}in place of nin
Put T (n-1) in equationt egualiont
Tn)=T(AHT(NHT(N-2)+(n-1)+n... ()

T(n)=2T (1) +T (n-2) + (n-1) +n

T(-2)=T(1)+T (n-3) + (n-2) By putting (n-2) in place of n in

equation

Put T (n-2) in equation (ii)

TN=2T(1)+T(1)+T(n-3)+(n-2)+(n-1)+n
T(M=3T(1)+T(n-3)+ }+(n-2}+{n-1)+n

T(n-3)=T (1) +T (n-4) +n-3 By putting (n-3) in place of n in equation1

T(n)=3T(1)+T{1)+T(n-4)+(n-3)+(n-2)+(n-1)+n

=4T(1)+T(n-4) ¥(n-3)+(n-29+(n-1)+n__ (iii)

Note: for making T (n-4) as T (1) we will put (n-1) in place of '4' and if we put
(n-1} in place of 4 then we have to put (n-2} in place of 3 and (n-3) In place of
2 and so on.

T(n)=(n-1) T (1) + T(n-(n-1)) +(n-(n-2)} +(n-(n-3)) +(n-(n-4)) +n
Tm=m@-1)T()+T1)+2+3+4+....... n

Tm)=m-1) T(1)+T (1) +2+3+4+........... +n+1-1

[Adding 1 and subtracting 1 for making AP series]

Stopping Condition: T (1) =0

Because at last there is only one element left and no comparison is required.

n(n+ 1)
T(n) = (n-1) (0) +0+ —— -1
n? +n-2 - : -
T)=— Awvoid all the terms expect higher terms »®
T (n)=0 (n?)

Worst Case Complexity of Quick Sort is T (1) =O (1)

Randomized Quick Sort [Average Case]:



Generally, we assume the first element of the list as the pivot element. In an
average Case, the number of chances to get a pivot element is equal to the

number of items.
Let total time taken =T (n)
For eg: In a given list

pl, p2 p3 p4..... pn
If p 1 is the pivot list then we have 2 lists.

ITe T()andT (n-1)
If p2 is the pivot list then we have 2 lists.
leT(l)and T (n-2)

rl p2 p3 p4........ pn
If p3 is the pivot list then we have 2 lists.

Le.T(2)and T (n-3)
. P2 p3 Pl pn

So in general if we take the Kth element to be the pivot element.

Then,
T(N)=Xgs; TE-1)+T(n-k)
Pivot element will do n comparison and we are doing average case so,

T (n) = n+1+—{E : TE = 14T =k

N

N comparisons Average of n elements

So Relational Formula for Randomized Quick Sort is:

T()=n+t+2 (£, T(K—1)+T(n - k)

=n+1 + Im(T(O)+T(1)+T(2)+.. T(n-1)+T(n-2)+T(n-3)+..T(0))
= n+1 +1/m (TO)+T(1)+T(2)+...T(n-2)+T(n-1))
nT () =nmtl) +2 (TO)+T(D+T2)+...T(n-1)........ eq ]

Putn=n-1ineq 1

[41]



(n-1) T (n-1) = (n-1) n+2 (TO)FT(1)+T(2)+.. T(n-2)......eq2

Fromeql and eq 2

n T () - (n-1) T (n-1)= n(n+1)-n(n-1)+2 (T(0)+T(D)+T(2)+?T(n-2)+ T(n-1))-
2ATO)+T(H)+T(2)+...T(n-2))

n T(n)- (n-1) T(n-1)=nfn+1-n+1]+2T(n-1)
nTm)=[{2+m-1}]T(n-1)+2n
n T(n)=n+1 T(n-1)+2n

2n

::+1T( n) = +T{n—1) [Divide by n+1]
T[n—lj -

— (n)— - [Dividebyn] ................eq 3

Putn=n-1 ineq3

1 _E T(n—2)

FT{H'”_H-I_ — RPN = 1o L

Put4eqin3 eq

T(n) 2 2 T(n 2)

n+1 n+1+ t -1 =B

Put n=n-2 ineq 3

T(n-2) 2 2 T(n—3)

n—1 __n—1-+-n-+ n—2 wm wenam= 0

Putb6eqinseq

T(n v 2 2 T(n—3

W2 2y 2 Y eq?

n41 ntl n n-1 n-2 777
Put n=n-3 ineq 3

T(n-3)_ 2 T(n—4)

n—-2 n-2 n-3 L s 00
T Z2 2 . 7 Tin—4)
(n) = & B p + n o4 -

[42] n+1 ntl n n-1 n-2 n—3



2 2
2 terms nfm + = T(n — 2)

2 z 2 _
3 terms nfm—l-ﬁ—l- —=T(—3)

2 2 2 .
4 terms ofm + - + — —I_E =T(n-4)

From 3eq, 5eq, 7eq, 9 eq we get

T( 2 2 2 2
N L P $op 02l
n+1 n+i n n—1 3 n—(mn—2)
T(n] 2 Tin—-1
From 3 eq () = { J
n+1 n+il n
Put n=1
T(1) 2 T(0)
2 2 1
T(1
- )_1
2
From 10 eq
T(n) 2 2 2 2 T(1
(@) — } -|—4—+£
n+1 n+l n n-1 3 2
2 g 2 2
= — 4t — e, =41
n+l n n—1 T 3

Multiply and divide the last term by 2

T(n—(n-1)) 2q10

[43]
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1

_ 1_ . rntl
=2 E?skzrﬁlﬁ_ 2_[2 k

Multiply & divide k by n

n+1 1
=2/, w@
n

Kk
Put - = xand L dx
n n

T(n) n+1 1
n+1 fz T dx
+1 e
=2 log xj-; NOTE: j';dx—lo X

=2[log (n+1)-log2]
T (n) =2(n+1} [log (n+1)-log2]
lgnoring Constant we get

T{n)=nlogn

T(n) =0 (nlogn)

Is the average case complexity of quick sort for sorting n elements.

3. Quick Sort [Best Case]: In any sorting, best case is the only case in which
we don't make any comparison between elements that is only done when we
have only one element to sort.

Method Name Equation Stopping Complexities
Condition

1.Quick SortWorst | T(n)=T(n-1)*T(0)*n | T(1)=0 T(n)=n?
Case]
2.Quick = L T(n)=nlogn
Sl eorage T(n)=n+1 +> (n)=nlog
Case] (Zg=1 Tlk—

1) + T(n— k))

Table 2.1
2.5 Heap Sort

A heap is really nothing more than a binary tree with some additional rules that
it has to follow: first, it must always have a heap structure, where all the levels
of the binary tree are filled up, from left to right, and second, it must either be
ordered as a max heap or a min heap. We’ll use min heap as an example.



A heap sort algorithm is a sorting technique that leans on binary heap data
structures. Because we know that heaps must always follow a specific order,
we can leverage that property and use that to find the smallest, minimum value
element, and sequentially sort elements by selecting the root node of a heap,
and adding it to the end of the array.

Here is the heap-sort pseudocode:

HeapSort(A[l...n]):

1. H=buildHeap(A[l...n]}
2, fori=1tondo:
3. AJi] = extract-min{H)

To start, we have an unsorted array. The first step is to take that array and turn
it into a heap; in our case, we’ll want to turn it into a min heap. So, we have to
transform and build a min heap out of our unsorted array data. Usually, this is
encapsulated by a single function, which might be named something like
buildHeap.

Here is the buildHeap pseudocode:
buildHeap():

1. initially H is empty
2. fori=1tondo:
3. Add(H, A[i])

Once we have our array data in a min heap format, we can be sure that the
smallest value is at the root node of the heap. Remember that, even though the
entirc heap won’t be sorted, if we have built our min heap correctly and
without any mistakes, every single parent node in our heap will be smaller in
value than its children. So, we’ll move the smallest value — located at the root
node — to the end of the heap by swapping it with the last element.

Now, the smallest item in the heap is located at the last node, which is great.
We know that it is in its sorted position, so it can be removed from the heap
completely. But, there’s still one more step: making sure that the new root node
element is in the correct place! It’s highly unlikely that the item that we
swapped into the root node position is in the right location, so we’ll move
down the root node item down to its correct place, using a function that’s
usually named something like heapify.

Here is the extract-min and heapify pseudocode:

[43]
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extract-min(H):

min = H[1]

H[1] = H[H.size()]
decrease H.size() by 1
heapify(H, 1)

return min

heapify():

1. n=H.size()

2. while (LeftChild(i) <= n and H[i] > H[LeftChild(i}]) or (RightChild(i}
<= n and H[i] > H[RightChild(i)]) do:

if (H[LeftChild(i)] < H[RightChild(i)]) then:

j = LeftChild(i)

else:

j = RightChild(i)

swap entries H[i] and H[j]

1=]

Sh gk b e =

90 R Ox Pk

Heapsort

sift
down

-— =
no
swa?’ ‘\swap SWED

Figure 2.4 Heap sort

And that’s basically it! The algorithm continues to repeat these steps until the
heap is down to just one single node. At that point, it knows that all the
clements in the unsorted array are in their sorted positions and that the last
node remaining will end up being the first element in the sorted array. The total
running time of this algorithm is O(n log n).



2.6 Strassen’s Matrix Multiplication

Strassen in 1969 which gives an overview that how we can find the
multiplication of two 2*2-dimension matrix by the brute-force algorithm. But
by using dividle and conquer technique the owverall complexity for
multiplication two matrices is reduced. This happens by decreasing the total
number if multiplication performed at the expenses of a slight increase in the
number of addition.

For multiplying the two 2*2 dimension matrices Strassen's used some formulas
in which there are seven multiplications and eighteen additions, subtraction,
and in brute force algorithm, there is eight multiplications and four additions.
The utility of Strassen's formula is shown by its asymptotic superiority when
order n of matrix reaches infinity. Let us consider two matrices A and B, n*n
dimension, where n is a power of two. It can be observed that we can contain
four n/2*n/2 submatrices from A, B and their product C. C is the resultant
matrix of A and B.

Procedure of Strassen matrix multiplication
There are some procedures:

1. Divide a matrix of order of 2*2 recursively till we get the matrix of
2*2,

2. Use the previous set of formulas to carry out 2*2 matrix multiplication.

3. In this eight multiplication and four additions, subtraction are
performed.

4. Combine the result of two matrixes to find the final product or final
matrix.

Formulas for Stassen’s matrix multiplication

In Strassen’s matrix multiplication there are seven multiplications and four
additions, subtraction in total.

DI = (all +a22) (b11 +b22)
D2 = (a2l +a22).b11

D3 = (b12-b22).all

D4 = (b21 —bl1).a22

D5 = (all +al2).b22

D6 = (a21—all). (b1l +bl2)
D7 = (al2—a22). (b21 +b22)

T O A s e B e

Cll=dl +d4-d5+d7
Cl12=d3 +d5
C21=d2+d4

[47]



C22=dl1+d3-d2-dé
Algorithm for Strassen’s matrix multiplication
Algorithm Strassen (n, a, b, d)
begin
If n = threshold, then compute
C = a * b is a conventional matrix.
Else
Partition a into four sub matrices all, al2, a2l, a22.
FPartition b into four sub matrices bll, b12, b21, b22.
Strassen (n/2, all + a22, b11 + b22, d1}
Strassen (n/2, a2l + a22, bl1, d2)
Strassen (n/2, all, b12 - b22, d3)
Strassen (n/2, a22, b21 — bl 1, d4)
Strassen (n/2, all + al2, b22, d3)
Strassen (n/2, a2l —all, bll + b22, d6)
Strassen (n/2, al2 —a22, b21 + b22, d7)

C =dl+d4-d5+d7 d3+d5
d2+d4 dl+d3-d2-d6

end if

return (C)

end.

Code for Strassen matrix multiplication

#include <stdio.h>

int main()
{
int af2][2],b{2]{2],c[2]{2],i,j;

[48] int ml,m2,m3,m4,m5,mé,m7;



printf("Enter the 4 elements of first matrix: ");
Jor(i=0;i<2;i++)
forG=0,j<2;j++)
scanf("%d", &afil[j]);

printf("Enter the 4 elements of second matrix: ");
SJor(i=0;i<2;i++)
Jor(j=0;j<2;j++)
scanf("%d" &b[i][i]);

printf("\nThe first matrix is\n");
SJor(i=0;i<2;i++)

{
printf("\n");
Jor(j=0;j<2;j++)
printf("%d\t".afi][i]);
/

printf("\nThe second matrix is\n");
for(i=0i<2;i++)

{
printf("\n");
Jor(j=0;j<2;j++)
printf("%d\t".bfi][j]);
/

ml=(af0][0] + af1][1])*(b[0][0]+b[1][1]);

m2= (a[1][0]+a[1][1])*b[0][0];

m3= a[0][0]*(b{0][1]-b[1][1]);

m4= a[1][1]*(b{1][0]-b[0][0]);

m5= (a[0]{0]+a[0][1])*b[1][1]; [49]



m6= (af1]{0]-af0][0])*®[0][0]+b[0][1]);
m7= (af0]{1]-af1][1])*(®[1][0]+b[1][1]);

cf0][0]=mil+m4-m5+m7;
cf0]{1]=m3+m3;
cf1]{0]=m2+m4;
cf1]{1]=mil-m2+m3+m6;

printf("\nAfter multiplication using \n");
Jor(i=0;i<2;it++)
{
printf("\n");
Jor(=0j<2;++)
printf("%d\t",c[il[i]);

return 0;

Output:
Enter the 4 elements of first matrix:
5617
Enter the 4 element of second matrix:
6287
The first matrix is
5 6
1 7
The second matrix is
6 2
8 7
After multiplication

101 78 52
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51

Complexity: The time complexity is O(N>%"%),

2.7 Summary

In this unit you have learnt about General method, Applications-Binary search,
Finding the maximum and minimum. You have also learnt about Quick sort,
Heap sort, and Strassen’s Matrix Multiplication

A Binary Search tree is organized in a Binary Tree. Such a tree can be
defined by a linked data structure in which a particular node is an
object.

In addition to a key field, each node contains field left, right, and p that
point to the nodes corresponding to its left child, its right child, and its
parent, respectively.

If a child or parent is missing, the appropriate field contains the value
NIL. The root node is the only node in the tree whose parent field is
Nil

Like merge sort, quicksort uses divide-and-conquer, and so it's a
recursive algorithm, The way that quicksort uses divide-and-conquer is
a little different from how merge sort does. In merge sort, the divide
step does hardly anything, and all the real work happens in the combine
step.

Heap sort has the time complexity of a 'divide and conquer' algorithm
(such as quick sort), but it does not behave like a divide and conquer
algorithm. Because it splits the data into a 'sorted' section and an
unsorted' section, it is really a kind of selection sort.

2.8 Review Questions

Q1.What are the general method of divide and Conquer? Explain with

example.

Q2.How to optimize Quick-Sort so that it takes O (Log n) extra space in

worst case?

Q3.Define Binary Search Algorithm? How binary search algorithm works?
Q4.Findingthe maximum and minimum value in an array with suitable

example.

Q5.What is running time of Strassen algorithm for matrix multiplication?
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UNIT-3 Sorting in Linear Time

Structure

3.0 Introduction

3.1 Lower bounds for sorting

3.2 Counting sort

3.3 Radix sort

3.4 Bucket sort

3.5 Medians and Order Statistics
3.6 Minimum and maximum.

3.7 Summary

3.8 Review Questions



3.0 Introduction

This is the last unit of this block. In this unit you will learn about sorting in
linear time. In the section 3.1 you will study about Lower bounds for sorting.
In the section 3.2 you will know aboutcounting sort. Section 3.3 defines
aboutRadix sort. You will learn about Bucket sort in the section 3.4, Medians
and Order Statistics explain in the section 3.5. You will study aboutMinimum
and maximum in the section 3.6. Section 3.7 and 3.8 provide summary and
review questions respectively.

Objective

After studying this unit, you should be able to define:

Lower bounds for sorting
Counting sort

Radix sort

Bucket sort

Medians and Order Statistics
Minimum and maximu

3.1 Lower bounds for sorting

By now you have seen many analyses for algorithms. These analyses generally
define the upper and lower bounds for algorithms in their worst and average
cases. For many of the algorithms presented so far, analysis has been easy. This
module considers a more difficult task: An analysis for the cost of a problem as
opposed to an algorithm. The upper bound for a problem can be defined as the
asymptotic cost of the fastest known algorithm. The lower bound defines the
best possible cost for any algorithm that solves the problem, including
algorithms not yet invented. Once the upper and lower bounds for the problem
meet, we know that no future algorithm can possibly be (asymptotically) more
efficient.

A simple estimate for a problem's lower bound can be obtained by measuring
the size of the input that must be read and the output that must be written.
Certainly no algorithm can be more efficient than the problem's I/O time. From
this we see that the sorting problem cannot be solved by any algorithm in less
than Q(n) time because it takes at least n steps to read and write the n values to
be sorted. Alternatively, any sorting algorithm must at least look at every input
value to recognize whether the input values are in sorted order. So, based on
our current knowledge of sorting algorithms and the size of the input, we know
that the problem of sorting is bounded by €(n) and O(nlogn).

[53]
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Computer scientists have spent much time devising efficient general-purpose
sorting algorithms, but no one has ever found one that is faster than O(nlogn)
in the worst or average cases. Should we keep searching for a faster sorting
algorithm? Or can we prove that there is no faster sorting algorithm by finding
a tighter lower bound?

This section presents one of the most important and most useful proofs in
computer science: No sorting algorithm based on key comparisons can possibly
be faster than Q(nlogn) in the worst case. This proof is important for three
reasons. First, knowing that widely used sorting algorithms are asymptotically
optimal is reassuring. In particular, it means that you need not bang your head
against the wall searching for an O(n) sorting algorithm. (Or at least not one
that is in any way based on key comparisons. But it is hard to imagine how to
sort without any comparisons. Even Radix Sort is does comparisons, though in
quite a different way.) Second, this proof is one of the few non-trivial lower-
bounds proofs that we have for any problem; that is, this proof provides one of
the relatively few instances where our lower bound is tighter than simply
measuring the size of the input and output. As such, it provides a useful model
for proving lower bounds on other problems. Finally, knowing a lower bound
for sorting gives us a lower bound in turn for other problems whose solution
could be made to work as the basis for a sorting algorithm. The process of
deriving asymptotic bounds for one problem from the asymptotic bounds of
another is called a reduction.

Except for the Radix Sort and Binsort, all of the sorting algorithms we have
studied make decisions based on the direct comparison of two key values. For
example, Insertion Sort sequentially compares the value to be inserted into the
sorted list until a comparison against the next value in the list fails. In contrast,
Radix Sort has no direct comparison of key values. All decisions are based on
the value of specific digits in the key value, so it is possible to take approaches
to sorting that do not involve direct key comparisons. Of course, Radix Sort in
the end does not provide a more efficient sorting algorithm than comparison-
based sorting. Thus, empirical evidence suggests that comparison-based sorting
is a good approach.

Actually, the truth is stronger than this statement implies. In reality, Radix Sort
relies on comparisons as well and so can be modelled by the technique used in
this section. The result is an Q(nlogn) bound in the general case even for
algorithms that look like Radix Sort.

The proof that any comparison sort requires 2(nlogn) comparisons in the worst
case is structured as follows. First, comparison-based decisions can be
modelled as the branches in a tree. This means that any sorting algorithm based
on comparisons between records can be viewed as a binary tree whose nodes



correspond to the comparisons, and whose branches correspond to the possible
outcomes. Next, the minimum number of leaves in the resulting tree is shown
to be the factorial of n. Finally, the minimum depth of a tree with n! leaves is
shown to be in Q(nlogn).

Before presenting the proof of an Q(nlogn) lower bound for sorting, we first
must define the concept of a decision tree. A decision tree is a binary tree that
can model the processing for any algorithm that makes binary decisions. Each
(binary) decision is represented by a branch in the tree. For the purpose of
modelling sorting algorithms, we count all comparisons of key values as
decisions. If two keys are compared and the first is less than the second, then
this is modelled as a left branch in the decision tree. In the case where the first
value is greater than the second, the algorithm takes the right branch.

We will illustrate the sorting lower bound proof by showing the decision tree
that models the processing of Insertion sort on an array of 3 element XYZ.

There are 6 possible permutations of the array values XYZ, only one of them
represents the sorted array.

XYZ
XYZYZIX
XZY ZXY
YXZ ZYX

The first step in the insertion sort is to compare the second elements Y with the
first element X.

XYZ

XYZYZX
XZY ZXY
YXZ ZYX

y<X?

IfY is less than X, the two values are swapped, and then we will end up having
only three permutations.
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xXYZ
XYZYZX
XZY XY
YXZ ZYX
L ¥ Xt
YXZ
YXZ
YZX
ZYX

If Y is not less than X, no swap will occur and we will end up having only

three permutations.
T

XYZ YZX

XZY ZXY

YXZ ZYX

Yes - w

XXZ XYz
YXZ XYZ
YZX XZY
ZYX ZXY

Let us assume for the moment that Y is less than X and so the left branch is

taken.
XYL
XYZYZX
Y IXY
YXZ ZYX
Yes ¥ = X7 N
| YXZ | XYZ
YXZ XYZ
YZX RZY
ZYX XY

[56] : :
The third element Z is compared to the second element X



XYZYZX
XN IXY
YXZ ZYX
Yes Y <X N
YXZ xXY7
YZX XY
ZYX XY

Z<XT

Again there are two possibilities, if Z is less than X then these items should be
swapped and we will end up having 2 permutations.

XYZYZX
XZY 7XY
YXZZYX
Yes Y X7 Ho
YXZ b
YZX xXIY
ZYX ZXY
Yes Z< Xt
YZX
ZYX

If Z is not less than X, no swap will occur and we will end up only one
permutation and insertion sort is complete.

XYZYZX

XY IXY

YXZ ZYX

Yes Y < X7 N
s XY7 |

Y X7 xXY<
Y.IX XY
ZYX XY

Yes Z<XT No

YZX

IYX

If the left branch was taken, Z is the compared to the Y and insertion sort will
be completed regardless of the comparison result.
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XYZYZX
XY ZXY
YXZZYX
Yes Y < XV N
YXZ XYZ
YZX XZY
XX EXY

Yes £ < X¥ Mo

YZX
YZX

ZYX

Yes 7= VY ~ o

In the first comparison, if the right branch was taken, the third element Z is
then compared to the second element Y.

XYZYZX
XZY IXY
YXZ 7YX
Yes ¥ < X7 \K
YXZ XY7Z
YXZ xXY7Z
YZX XZY
YX ZXY
Yes Z < X¥ Ma Z<¥?
YZX
YZX
IYX
Yes " g oyy Mo
[58] If Z is less than Y, the two values are swapped, and then we will end up having

only 2 permutations.



xXye
XYZYZX
XY IXY
YXZ ZYX
Yes Y < XT \K
YXZ XYZ
YXZ XYZ
YZIX il
7YX ZXY
Yes &< Xt Mo Yes E<¥T
YZX X7y
Y X XY
£YX ZXY

Yes < ¥T Mo

If Z is not less than Y, no swap will occur and we will end up having only 1
permutation and insertion sort is complete.

XYZYZX
XY ZXY
YXZZYX
Yes Y < X7 \K
YXZ b4 74
YXZ XYZ
b 78 XY
X ZxXY
Yes Z< X7 Mo Yes Z<¥? Mo
Y7X | XZY
YZX XZY
ZYX XY
Yes " g.oyr ~MNo
If the left branch was taken, Z is than compared to X and insertion sort will [59]

completed regardless of the comparison result.
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Yes Z< X1 Mo Yes Z<¥T Mo

The cost of the algorithm (In worst, best and average cases) is determined by
the depth of the nodes indication the nmumber of comparisons required to reach
that node.

YXZL ZYX
Yes ¥ « X7
YXZ
YZIX
X
Yes Z< X7 Mo Yes Mo
YIX

X ZXY
Yes " g _yp o Yes " g _xp O~ NoO

The worst case of the algorithm is determined by the depth of the deepest
node(s).




Each sorting algorithm has its own decision tree with different maximum
depths.

The best algorithm (in the worst case) will be the one with the shallowest
deepest node.

The depth of the shallowest deepest nodes depends in part on the number of [61]
nodes in the decision tree.
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The maximum number of nodes that must be in the decision tree for any
comparison based sorting algorithm for n values should be n! Since the
decision tree must have at least n! Leaf nodes, since at least one leaf node will
correspond to each input permutation.

A tree with node requires a minimum of logn levels. Because there is at least n!
nodes in the tree. We know the tree must have & (log n!) levels.

According, the decision tree for any comparison-based sorting algorithm must
have at least one node that is ((mlogn) levels deep. This deepest node
represents the algorithm’s worst case. So in the worst case, any such sorting
algorithm must require Q (nlogn) comparisons.

3.2 Counting sort

Counting Sort Algorithm is an efficient sorting algorithm that can be used for
sorting elements within a specific range. This sorting technique is based on the
frequency/count of each element to be sorted and works using the following
algorithm-

e Input: Unsorted array A[] of n elements
e Output: Sorted arrayBJ[]

Step 1: Consider an input array A having n elements in the range of 0 to k,
where n and k are positive integer numbers. These n elements have to be sorted
in ascending order using the counting sort technique. Also note that A[] can
have distinct or duplicate elements

Step 2: The count/frequency of each distinct element in A is computed and
stored in another array, say count, of size k+1. Let u be an element in A such
that its frequency is stored at count[u].

Step 3: Update the count array so that element at each index, say i, is equal to



countf{i]=Y count[u] where O0<u<i

Step 4: The updated count array gives the index of each element of array A in
the sorted sequence. Assume that the sorted sequence is stored in an output
array, say B, of size n.

Step 5: Add each element from input array A to B as follows:

a} Set =0 and t= A[i]

b) Add t to B[v] such that v = (count[t]-1).
¢} Decrement count|t] by 1

d) Incrementiby 1

Repeat steps (a) to (d) till i =n-1
Step 6: Display B since this is the sorted array

Example of Pictorial Representation of Counting Sort:
Let us trace the above algorithm using an example:

Consider the following input array A to be sorted. All the elements are in range
Oto9

Step 1: Initialize an auxiliary array, say count and store the frequency of every
distinct clement. Size of count is 10 (k+1, such that range of clements in A is 0
to k)

ofj3jz|1]0})2J0]1)]1]0 ]| count

Figure 3.1: count array

Step 2: Using the formula, updated count array is -
countf{i]=Y count{u] where O0<u<i

Figure 3.2;: Formula for updating count array

0 1 2 3 4 5 6 7 8 9
0]3|5|6|6 |8 ]8]9]|10]10 | count

Figure 3.3: Updated count array
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Step 3: Add elements of array A to resultant array B using the following steps:
For, i=0, t=1, count[1]=3, v=2. After adding | to B[2], count[1]=2 and i=1

> 3 2 3 4 & &5 7 & B
ojoj1jojojojojojo]jo|B

0j2|5|6 |6 |8 |8]9|10 |10 |count

Figure 3.4: For i=0

For 1, t=3, count[3]=6, v=5. After adding 3 to B[5], count[3]=5 and =2

012|556 |& |8 ]9]10 |10 | count

Figure 3.5: For i=1

For =2, t=2, count[2]= 5, v=4. After adding 2 to B[4], count[2]=4 and i=3

0 1 2 3 4 6 6 7 8 9
ojoj1|oj2|3|jojojojo|B

0|2 |4 |56 |8 |8)]|9]|10 |10 | count

Figure 3,6: For i=2

For =3, t=8, count[8]= 10, v=9. After adding 8 to B[9], count[8]=9 and i=4

0l214 |56 |818]9] 9 110 | count

Figure 3.7: For i=3



On similar lines, we have the following:

0 1 2 3 4 6 6 7 B8

9

ojoj1jol2|3|o]s5]o0O

10

10

count

count

10

count

10

count

10

count

Figure 3.12: For i=8
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count

Figure 3.13: For i=9

Thus, array B has the sorted list of elements.

Program for Counting Sort Algorithm

#include <stdio.h>
void counting sort(int Af], int k, int n)
{
inti, j;
int B{15], C[100];
Jor(i=0i<=Fkit+)
Cli] = 0;
forG=1j<=mnjt1)
CIALTT = ClAL]] + 1
for(i=1i<=k it+)
Cfi] = Cfi] + Cfi-1];
JorG=n;j>=1j-)
{
BIC[A[]]] = Afj];
ClAf]] = C[Afj]] - I;
/
printf("The Sorted array is : ");
Jor(i=1i<=nm; i++)
printf("%d ", Bfi]);
}
/* End of counting_sort() */



/* The main() begins */
int main()
{
intn k=0, Af15], i;
printf("Enter the number of input : ");
scanf("%d", &n);
printf("\nEnter the array elements :");
for (i=1;i<=n; i++)
{
scanf("%d", &Afi]);
f@f>n{
k= Afi];

/

counting sort(4, k, n);
printf("\n");

return 0;

}

The input array is the same as that used in the example:

Output

Enter the size of the array :10
Enter the array elements: 1 3 2 8515127
11122355178

...Program finished with exit code 0

Press ENTER to exit cnnsole.l

Figure 3.14: Qutput of Program
[67]
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Time Complexity Analysis

For scanning the input array elements, the loop iterates n times, thus taking
O(n) running time. The sorted array B[] also gets computed in n iterations, thus
requiring O(n) running time. The count array also uses k iterations, thus has a
running time of O(k). Thus the total running time for counting sort algerithm is
O(ntk).

Key Points:

e The above implementation of Counting Sort can also be extended to
sort negative input numbers

e Since counting sort is suitable for sorting numbers that belong to a well-
defined, finite and small range, it can be used asa subprogram in other
sorting algorithms like radix sort which can be used for sorting numbers
having a large range

e Counting Sort algorithm is efficient if the range of input data (k) is not
much greater than the number of elements in the input array (n). It will
not work if we have 5 elements to sort in the range of 0 to 10,000

o It is an integer-based sorting algorithm unlike others which are usually
comparison-based. A comparison-based sorting algorithm sorts
numbers only by comparing pairs of numbers. Few examples of
comparison based sorting algorithms are quick sort, merge sort, bubble
sort, selection sort, heap sort, insertion sort, whereas algorithms like
radix sort, bucket sort and comparison sort fall into the category of non-
comparison based sorting algorithms.

Advantages of Counting Sort:

e Itis quite fast
o It is a stable algorithm

Note: For a sorting algorithm to be stable, the order of elements with equal
keys (values) in the sorted array should be the same as that of the input array.

Disadvantages of Counting Sort:

o It is not suitable for sorting large data sets
o It is not suitable for sorting string values

Check your progress

Q1.Define the lower bound for sorting with suitable example.
Q2.Define time complexity for counting sort algorithm.
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3.3Radix Sort

Radix sort is a sorting technique that sorts the elements by first grouping the
individual digits of the same place value. Then, sort the elements according to
their increasing/decreasing order.

Suppose, we have an array of 8 elements. First, we will sort elements based on
the value of the unit place. Then, we will sort elements based on the value of
the tenth place. This process goes on until the last significant place.

Let the initial array be [121, 432, 564, 23, 1, 45, 788]. It is sorted according to
radix sort as shown in the figure below.

[E7
02
e

sorting the integers according to units, tens and
hundreds place digits

Figure 3.15: Working of Radix Sort

How Radix Sort Works?

Find the largest element in the array, i.e. max. Let X be the number of digits in
max. X is calculated because we have to go through all the significant places of
all elements.
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In this array [121, 432, 564, 23, 1, 45, 788], we have the largest number 788. It
has 3 digits. Therefore, the loop should go up to hundreds place (3 times).

Now, go through each significant place one by one.

Use any stable sorting technique to sort the digits at each significant place. We
have used counting sort for this.

Sort the elements based on the unit place digits (X=0).

-~ (o Il allelolol
0 1 2 3 4 3 6 7 8
saEE - BEEEEE
v
v
0 1 2 3 4 5 6
i) - ERENEREN
EAEIRE B A

Figure 3.16: Using counting sort to sort elements based on unit place

Now, sort the elements based on digits at tens place.

[ A A 0 T

Figure 3.17: Sort elements based on tens place

Finally, sort the elements based on the digits at hundreds place.

EEIEEEED
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Radix Sort Algorithm

radixSort{array)
d <- maximum number of digits in the largest element
create d buckets of size 0-9
fori<-0tod

sort the elements according to ith place digits using countingSort

countingSort(array, d)
max <- find largest element among dth place elements
initialize count array with all zeros
Jorj <-0to size
find the total count of each unique digit in dth place of elements and
store the count at jth index in count array
Jori<-1tomax
find the cumulative sum and store it in count array itself
Sor j <- size down to 1
restore the elements to array

decrease count of each element restored by 1

Program for Radix Sort in C Language
// Radix Sort in C Programming

#include <stdio.h>

// Function to get the largest element from an array
int getMax(int array[], intn) {
int max = array{0];
for(inti=1:i<n;i++)
if (array[i] > max)

max = array[i];
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return max;

/

// Using counting sort to sort the elements in the basis of significant places
void countingSort(int array[], int size, int place) {
int output{size + 1];

int max = (array{0] / place) % 10;

for (inti=1;i<size i+t+) {
if (((array[i] / place) % 10) > max)
max = arrayfi];
/

int count/max + 1];

Jor (inti=0;i<max; ++i)

countfi] = 0;

// Calculate count of elements
for (inti=0;i<size; i++)

count{(array[i] / place) % 10]++;

// Calculate cummulative count
for(nti=1i<10;i++)

countfi] += countfi- 1];

// Place the elements in sorted order
for(inti=size-1;i>=0;i-){
output{count{(array[i] / place) % 10] - 1] = arrayfi];
count[(array[i] / place) % 10]--;
[72] }



Jor (inti=0;i < size; i+1)

array[i] = outputfi];

// Main function to implement radix sort
void radixsort(int array(], int size) {
/ Get maximum element

int max = getMax(array, size);

// Apply counting sort to sort elements based on place value.
Jor (int place = I; max /place > 0; place *= 10}

countingSort(array, size, place);

// Print an array
void printArray(int array[], int size) {
for (inti=0;i<ysize; ++i) {
printf("%d ", array[i]);
/
printf("\n");
/

// Driver code

int main() {
int array{] = {121, 432, 564, 23, 1, 45, 788},
int n = sizeof(array) / sizeof(array[0]);
radixsort(array, n);
printArray(array, n);

/
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Complexity

Since radix sort is a non-comparative algorithm, it has advantages over
comparative sorting algorithms.

For the radix sort that uses counting sort as an intermediate stable sort, the time
complexity is O(d(ntk)).

Here, d is the number cycle and O(n+k) is the time complexity of counting sort.

Thus, radix sort has linear time complexity which is better than O(nlog n) of
comparative sorting algorithms.

If we take very large digit numbers or the number of other bases like 32-bit and
64-bit numbers, then it can perform in linear time however the intermediate
sort takes large space.

This makes radix sort space inefficient. This is the reason why this sort is not
used in software libraries.

Radix Sort Applications
Radix sort is implemented in

s DC3 algorithm (Kérkkédinen-Sanders-Burkhardt) while making a suffix
array.
e places where there are numbers in large ranges.

3.4Bucket Sort

Bucket Sort is a sorting technique that sorts the elements by first dividing the
elements into several groups called buckets. The elements inside each bucket
are sorted using any of the suitable sorting algorithms or recursively calling the
same algorithm.

Several buckets are created. Each bucket is filled with a specific range of
elements. The elements inside the bucket are sorted using any other algorithm.
Finally, the elements of the bucket are gathered to get the sorted array.

The process of bucket sort can be understood as a scatter-gather approach. The
elements are first scattered into buckets then the elements of buckets are sorted.
Finally, the elements are gathered in order.
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Scatter

5-10 10-15 15-20 20-25
Surt

5-10 10-15 15-20 20-25
Gather

Figure 3.19: Working of Bucket Sort

How Bucket Sort Works?

1. Suppose, the input array is:

SRS

Figure 3.20: Input array

Create an array of size 10. Each slot of this array is used as a bucket for storing
elements.

Figure 3.21: Array in which each position is a bucket

2. Insert elements into the buckets from the array. The elements are
inserted according to the range of the bucket.
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In our example code, we have buckets each of ranges from0to 1, 1t0 2,2 t0 3,

Suppose, an input element is .23 is taken. It is multiplied by size = 10 (ie.
.23*10=2.3). Then, it is converted into an integer (ie. 2.3=2). Finally, .23 is
inserted into bucket-2.

0.23
0.25
0 1 2 3 4 3 6 7 8 9

Figure 3.22: Insert elements into the buckets from the array

Similarly, .25 is also inserted into the same bucket. Every time, the floor value
of the floating point number is taken.

If we take integer numbers as input, we have to divide it by the interval
(10 here) to get the floor value,

Similarly, other elements are inserted into their respective buckets.
042 | 052
047 | 051
0 1 2 3 4 5 6 7 8 9
Figure 3.23: Insert all the elements into the buckets from the array

3. The elements of each bucket are sorted using any of the stable sorting
algorithms. Here, we have used quicksort (inbuilt function).

0.42 0.51
047 0.52
0 1 2 3 4 5 6 7 8 9

76
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4. The elements from each bucket are gathered.

It is done by iterating through the bucket and inserting an individual element
into the original array in each cycle. The element from the bucket is erased
once it is copied into the original array.

0.42 0.51
0.47 0.52
0 1 2 3 4 5 6 7 8 9

Figure 3.25: Gather elements from each bucket

Bucket Sort Algorithm
bucketSort()
create N buckets each of which can hold a range of values
for all the buckets
initialize each bucket with 0 values
for all the buckets
put elements info buckets matching the range
Jor all the buckets
sort elements in each bucket
gather elements from each bucket

end bucketSort
Programin C
// Bucket sort in C

Hinclude <stdio.h>
#include <stdlib.h>

#define NARRAY 7 // Array size
#define NBUCKET 6 // Number of buckets
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#define INTERVAL 10 // Each bucket capacity

struct Node {
int data;

struct Node *next,

Ix

void BucketSort(int arr[]);

struct Node *InsertionSort(struct Node *list);
void print(int arr(]);

void printBuckets(struct Node *list);

int getBucketIndex(int value);

// Sorting function
void BucketSort(int arr[]) {
inti, j,

struct Node **buckets;

// Create buckets and allocate memory size

buckets = (struct Node **)malloc(sizeof(struct Node *) ¥ NBUCKET),

// Initialize empty buckets

for (i =0;i < NBUCKET; ++i) {
bucketsfi] = NULL;

/

// Fill the buckets with respective elements
Jor (i =0;i < NARRAY; ++i) {
struct Node *current;
int pos = getBucketIndex(arr{i]);
current = (struct Node ¥)malloc(sizeof{struct Node));

current->data = arr[i];



current->next = bucketsfposj,;

buckets{pos] = current;

}

// Print the buckets along with their elements

for (i = 0; i < NBUCKET: i++) {
printf("Bucket[%d]: ", i);
printBuckets(bucketsfi]);
printf("\n"};

/

// Sort the elements of each bucket

Jor (i =0; i < NBUCKET; ++i) {
buckets[i] = InsertionSort(buckets[i]);

/

printf("-----——---—-\n");

printf("Bucktets after sorting\n");

for (i = 0; i < NBUCKET; i++) {
printf("Bucket{%d]: ", i);
printBuckets(buckets[i]);
printf("\n"};

/

// Put sorted elements on arr
for (i =0,i=0;i<NBUCKET; ++i) {
struct Node *node;
node = buckets[i];
while (node) {
arr[j++] = node->data;

node = node->next;

}
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return;

// Function to sort the elements of each bucket
struct Node *InsertionSort(struct Node *list) {
struct Node *k, *nodelList;
if (list == 0 || list->next ==0) {
return list;

/

nodelist = list;
k = list->next;
nodeList->next = 0;
while (k I=0) {
struct Node *ptr;
if (nodeList->data > k->data) {
struct Node *tmp;
tmp = k;
k= k->next;
tmp->next = nodelList;
nodeList = tmp;

continue;

for (ptr = nodelist; ptr->next I= 0, ptr = ptr->next) {
if (ptr->next->data > k->data)
break;

[50] if (ptr->next 1= 0) {



struct Node *tmp;
tmp=k;
k= k->next;
tmp->next = pir->next;
ptr->next = tmp;
continue,;
Jelse{
ptr->next = k;
k = k->next;
ptr->next->next = 0;
continue,
/
/
return nodeList;

/

int getBucketIndex(int value) {
return value / INTERVAL;

/

void print(int ar[]) {
inti;
for (i = 0; i < NARRAY; ++i) {
printf("%d ", arfi]);
/
printf("\n");
/

// Print buckets

void printBuckets(struct Node *list) {
struct Node *cur = list;
while (cur) {
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printf("%d ", cur->data);

CUr = cur->next,

/
v

// Driver code

int main(void) {

int array[NARRAY] = {42, 32, 33, 52, 37, 47, 51};

printf("Initial array: ”);

print(array);
P rin# (""'-—-————-—- in "9‘-

BucketSort(array),

pﬁn#(n_______----- in '9;
printf("Sorted array: ");

print(array);

return 0;

Complexity

Worst Case Complexity: O(n2)

When there are elements of close range in the array, they are likely to
be placed in the same bucket. This may result in some buckets having
more number of elements than others.

It makes the complexity depend on the sorting algorithm used to sort
the elements of the bucket.

The complexity becomes even worse when the elements are in reverse
order. If insertion sort is used to sort elements of the bucket, then the
time complexity becomes O(n2).

Best Case Complexity: O(n+k)

It occurs when the elements are uniformly distributed in the buckets
with a nearly equal number of elements in each bucket.



The complexity becomes even better if the elements inside the buckets
are already sorted.

If insertion sort is used to sort elements of a bucket, then the overall
complexity in the best case will be linear ie. O(ntk). O(n) is the
complexity for making the buckets and O(k) is the complexity for
sorting the elements of the bucket using algorithms having linear time
complexity at the best case.

¢ Average Case Complexity: O(n)

It occurs when the elements are distributed randomly in the array. Even
if the elements are not distributed uniformly, bucket sort runs in linear
time, It holds true until the sum of the squares of the bucket sizes is
linear in the total number of elements.

Bucket Sort Applications
Bucket sort is used when:

e Input is uniformly distributed over a range.
s there are floating point values

3.5 Medians and Order Statistics

The ith order statistic of a set of n elements is the ith smallest element. For
example, the minimum of a set of elements is the first order statistic (i= 1), and
the maximum is the nth order statistic (i = n). A median, informally, is the
"halfway point" of the set. When n is odd, the median is unique, occurring at i
=(n + 1)/2. When n is even, there are two medians, occurring at i=n/2 and i =
n/2 + 1. Thus, regardless of the parity of n, medians occur at i = [(n + 1)/2]
and i = [(n + 1)/2]

This chapter addresses the problem of selecting the ith order statistic from a set
of n distinct numbers. We assume for convenience that the set contains distinct
numbers, although virtually everything that we do extends to the situation in
which a set contains repeated values. The selection problem can be specified
formally as follows:

Input: A set A of n (distinct) numbers and a number i, with 1 <i<n.
Output: The element x A that is larger than exactly i -1 other elements of A.

The selection problem can be solved in O(n log n) time, since we can sort the
numbers using heapsort or merge sort and then simply index the ith element in
the output array. There are faster algorithms, however.
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3.6 Minimum and maximum

How many comparisons are necessary to determine the minimum of a set of n
elements? We can easily obtain an upper bound of n - 1 comparisons: examine
each element of the set in turn and keep track of the smallest element seen so
far. In the following procedure, we assume that the set resides in array A,
where length [A] =n.

MINIMUM (4)
min Afl]
fori 2to length{A]
do if min > Afi]

a. thenmin Afi]
3. return min

Ao~

Finding the maximum can, of course, be accomplished with n - 1 comparisons
as well.

Is this the best we can do? Yes, since we can obtain a lower bound of n - 1
comparisons for the problem of determining the minimum. Think of any
algorithm that determines the minimum as a tournament among the elements.
Each comparison is a match in the tournament in which the smaller of the two
elements wins. The key observation is that every element except the winner
must lose at least one match. Hence, n - 1 comparisons are necessary to
determine the minimum, and the algorithm MINIMUM is optimal with respect
to the number of comparisons performed.

An interesting fine point of the analysis is the determination of the expected
number of times that line 4 is executed.

Simultaneous minimum and maximum

In some applications, we must find both the minimum and the maximum of a
set of n elements. For example, a graphics program may need to scale a set of
(x, y) data to fit onto a rectangular display screen or other graphical output
device. To do so, the program must first determine the minimum and maximum
of each coordinate.

It is not too difficult to devise an algorithm that can find both the minimum and
the maximum of n elements using the asymptotically optimal Q (n) number of
comparisons. Simply find the minimum and maximum independently, using n -
1 comparisons for each, for a total of 2n - 2 comparisons.

In fact, only 3[n/2]comparisons are necessary to find both the minimum and
the maximum. To do this, we maintain the minimum and maximum elements
seen thus far. Rather than processing each element of the input by comparing it
against the current minimum and maximum, however, at a cost of two
comparisons per element, we process elements in pairs. We compare pairs of
elements from the input first with each other, and then compare the smaller to
the current minimum and the larger to the current maximum, at a cost of three
comparisons for every two elements.



3.7 Summary

In this unit you have learnt about the concept of Lower bounds for sorting. You
have also learnt about different sorting algorithms like counting sort, radix sort
andbucket sort. In the last we have described about medians and order statistics
and minimum and maximum.

A lower bound for a problem is the worst-case running time of the best
possible algorithm for that problem. To prove a lower bound of Q(n 1g
n} for sorting, we would have to prove that no algorithm, however
smart, could possibly be faster, in the worst-case, then n Ig n.

Counting Sort is a linear time sorting algorithm which works faster by
not making a comparison. It assumes that the number to be sorted is in
range 1 to k where k is small. Basic idea is to determine the "rank" of
each number in the final sorted array.

Radix Sort is a Sorting algorithm that is useful when there is a
constant‘d’ such that all keys are d digit numbers. To execute Radix
Sort, for p =1 towards 'd' sort the numbers with respect to the Pth digits
from the right using any linear time stable sort.

Bucket Sort runs in linear time on average. Like Counting Sort, bucket
Sort is fast because it considers something about the input. Bucket Sort
considers that the input is generated by a random process that
distributes elements uniformly over the interval p=[0,1].

3.8 Review Questions

Q1.What is the lower bound for number of comparisons while sorting?

Explain your answer.

Q2.What is the auxiliary space requirement of counting sort? Elaborate

YOour answer.

Q3.Is Radix Sort preferable to Comparison based sorting algorithms like

Quick-Sort? Explain in detail.

Q4.Write a program to sort an array with negative numbers using bucket

sort.

Q5.How Radix sort operates on seven 3-digits number with suitable

example.
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BLOCK 2 INTRODUCTION

We believe effective programmers must combine theory with practice, so they
can adapt to ever-changing computing environments. This block does not cover
the breadth of topics found in some professional reference books, but it has a
number of features that make it useful in the classroom:

o A step-by-step learning approach in which new ideas and concepts build
on existing ones.

o Check-up exercises at the end of each section.

o Review questions and programming exercises at the end of each chapter.

Block 2 contains two units i.e. unit 4 and unit 5 intended with Greedy method
and Dynamic programming.

Unit 4 introduces the greedy methods; it incorporates introduction to greedy
method, general method, Knapsack problem, Job sequencing with deadlines,
optimal two-way merge patterns, Huffman codes, Prims and Kruskal’s
algorithm to find the minimum cost spanning tree, The Bellman-Ford and
Dijkstra's algorithm to find the single source shortest path.

Unit 5 covers thesignificance of dynamic programming and it covers general
method, applications, capital budgeting problem, multistage graphs, matrix
chain multiplication, 0/1 knapsack problem, all pairs shortest path problem,
and travelling sales person problem.
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4.0 INTRODUCTION

This unit basically deals with the Greedy method. Greedy algorithms are
supposed be the simplest algorithms when demonstrating the subjects. These
are also considered as the most natural approach for any real time problem.
Hence they are also called naive methods. It explains about the significance of
greedy method, its applications in various applications like to find out the
minimum cost spanning tree, finding the shortest paths etc. As we know that all
these applications are very important and widely used, hence this unit is
important for the students so that they could understand better the concepts of
design and analysis of algoorithms; moreover, these algorithms could be easily
applied in various realtime applications. Greedy approach and dynamic
programming are simple and widely used in design and analysis of algorithms.
Accordingly, it maximizes the usefulness and utility of the entire process.
Furthermore, it can alsobe used in computer network protocols viz in packet
switching networks etc. But sometimes this algorithm fails i.e it cannot be
applied everywhere. Of course, the immediate application of greedy algorithms
does not always produce the optimal result.

4.1 OBJECTIVES

At the end of this unit you will come to know about the following:

o Greedy method

o Knapsack problem

o Job sequencing with deadlines

o optimal two-way merge patterns
o Huffman codes

0 Minimum cost spanning frees

o Prims and Kruskal’s algorithm
o The Bellman-Ford algorithm

o Dijkstra's algorithm
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4.2 INTRODUCTION TO GREEDY METHOD

This is the algorithm that gives the solution in parts i.e. piece by piece. And the
main thing is that the next piece or part is always better that the previous one.
In Greedy Algorithm a set of resources are recursively divided based on the
maximum, immediate availability of that resource at any given stage of
execution.

Usually, to solve a problem based on the greedy approachthere are two stages

1. Scanning the list of items
2. Optimization

To understand the greedy algorithm in right manner, one needs to know about
the recursion concept properly, as it uses the concept of recursion and context
switching. This helps to understand how to trace the code of the problem.
Moreover, one can define the greedy paradigm in terms of own necessary and
sufficient statements.

Two conditions define the greedy paradigm basically

1. Each stepwise solution must structure a problem towards its best-
accepted solution.

2. It is sufficient if the structuring of the problem can halt in a finite
number of greedy steps.

4.2.1 History of Greedy Algorithms

Now let us know about the history of greedy method in subsequent topicsgiven
below. Following are some important points:

o Greedy algorithms were conceptualized for many graph walk algorithms
in the 1950s.

o Esdger Dijikstra conceptualized the algorithm to generate minimal
spanning trees. He aimed to shorten the span of routes within the Dutch
capital, Amsterdam.

o In the same decade, Prim and Kruskal achieved optimization strategies
that were based on minimizing path costs along weighed routes.

o Inthe 1970s, American researchers, Cormen, Rivest, and Stein proposed
a recursive substructuring of greedy solutions in their classical
introduction to algorithms book.

o The Greedy search paradigm was registered as a different type of
optimization strategy in the NIST records in 2005.



o Till date, protocols that run the web, such as the open-shortest-path-first
(OSPF) and many other network packet switching protocols use the
greedy strategy to minimize time spent on a network.

4.2.2General Method

A greedy algorithm is any algorithm that follows the problem-solving heuristic
of making the locally optimal choice at each stage. In several problems, a
greedy strategy does’nt usually produces an optimal solution, but nonetheless,
a greedy heuristic may yield locally optimal solutions that approximate a
globally optimal solution in a reasonable time. This approach never reconsiders
the choices taken previously. This approach is mainly used to solve
optimization problems.

Greedy method is easy to implement and quite efficient in most of the
cases. Hence, we can say that Greedy algorithm is an algorithmic paradigm
based on heuristics that follow local optimal choice at each step with the hope
of finding global optimal solution. Some issues do'nt have any solution but
greedy method can be used to find the near optimal solution for the unsolved
issues. Moreover, it is accepted in various situations like packet switching
network protocols, finding the shortest path among various nodes etc.

A greedy algorithm works well for the problems specically having
following two properties:

1. Greedy Choice Property- In short, the optimal solution for a particular
problem can be found by creating “greedy” choices.

2. Optimal Substructure- Basically optimal solutions contain optimal
sub solutions; or in other words we can say answers to the subproblems
are optimal solutions.

There are three steps for achieving a Greedy algorithm:

1. Feasibility- First of all the feasibility of the problem is checked; and
hence at least one solution must be obtained satisfying all possible
constraints of the problem.

2. Local Optimal Choice- The choice must be optimum and selected
from the currently available choices.

3. Unaltrable-Afier selection of the choice, it should not be altered at all.

4.2.3 Chracteristics of Greedy Approach

The important characteristics of a Greedy method are:

o There is an ordered list of resources, with costs or value attributions.
These quantify constraints on a system.
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o The maximum quantity of resources is taken into consideration in the
time a constraint applies.

o For example, in an activity scheduling problem, the resource costs are in
hours, and the activities need to be performed in serial order.

4.2.4 Why Use the Greedy Approach?

Here are the reasons for using the greedy approach:
o The greedy approach has a few tradeoffs, which may make it suitable for
optimization.
0o One prominent reason is to achieve the most feasible solution
immediately. In the activity selection problem (which has been explained

below), if more activities are done before finishing the current activity,
these activities can be performed within the same time.

0 Another reason is to divide a problem recursively based on a condition,
with no need to combine all the solutions.

o Inthe activity selection problem, the "recursive division" step is achieved
by scanning a list of items only once and considering certain activities.

4.2.5 Architecture of Greedy Approach

Step-1:Scan the list of activity costs, starting with index 0 as the considered
Index.

Step-2: When more activities can be finished by the time, the considered
activity finishes, start searching for one or more remaining activities.

Step-3: If there are no more remaining activities, the current remaining activity
becomes the next considered activity. Repeat step-1 and step-2, with the new
considered activity. If there are no remaining activities left, then goto step-4.

Step-4: Return the union of considered indices. These are the activity indices
that would be used to maximize throughput.

4.2.6 Components of Greedy Approach

Greedy algorithms have the following five components

1. A candidate set — A solution is created from this set.

2. A selection function — Used to choose the best candidate to be added to
the solution.

3. A feasibility function — Used to determine whether a candidate can be
used to contribute to the sohition.

4. An objective function — Used to assign a value to a solution or a partial
solution.



5. A solution function — Used to indicate whether a complete solution has
been reached.

4.2.7 Application Areas

Greedy approach can be used to solve many problems such as

o To find the optimal solution using e.g. Job Sequencing, Huffman Coding,
Fractional Knapsack, Activity Selection.

o To find the shortest path between two vertices using Dijkstra’s algorithm.

o To find close to the optimal solution for NP-hard problems like
Travelling Salesman problem.

o To find the minimal spanning tree in a graph using Prim’s and Kruskal’s
algorithm,

Note:In several problems, Greedy algorithm fails to find an optimal
solution, rather it may produce a worst solution. Problems like Travelling
Salesman and Knapsack cannot be solved using this approach.

4.3 KNAPSACK PROBLEM

The Knapsack Problem is a famous Dynamic Programming problem that falls
in the optimization category. It arose in 1897, hence it is near about more than
100 years old. It is based on the resource allocation condition. It is helpful in
combinatorics. In this problem, the user basically decides to allocate the most
valuable item or task or resource to the fixed-size block, or in other words
when he has only fixed budget/time. Moreover, it basically refers to the most
common real time problem of packing something which is very costly or
important item in a container without mixing it with other item/items. This
method is useful in various real-time applications where wastage of raw
material should be very less or without cutting, the raw material could be
properly utilized.

As far as the basic concept is concerened, Knapsack means a bag. A bag of
given capacity and one wants to pack » number of items in the luggage. Let us
consider a set of items having weight and value say w and v, now determine a
subset of items to include in a collection so that the total weight is less than or
equal to a given limit and the total value is as large as possible. Moreover, this
knapsack problem is in combinatorial optimization problem. It appears as a
subproblem in many more complex mathematical models of real-world
problems. One general approach to difficult problems is to identify the most
restrictive constraint, ignore the others, soclve a knapsack problem, and
somehow adjust the solution to satisfy the ignored constraints.
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Let us imagine about a small story of a thief who wants to steal some
valuable artifacts like jwellery, idols of gods, manuscrips etc. from a famous
museum. And he is having only one bag to keep all these items. Now because
the thief is new for the place and not proactively aware about the valuable
things of the museum. He was also not knowing that how many bags would be
required to carry the items. Now he has to select only valuable items out of the
available artifacts but without overloading the bag. He has to run away but with
care that the bag should not be too heavy to carry and any of the items should
also not be broken. The goal of the thief is to get away with the most valuable
objects without overloading the bag until it breaks or becomes too heavy to
carry. Now the question arises, how does he choose among the objects to
maximize his loot? He might list all the artifacts and their weights to work out
the answer by hand. But the more objects there are, the more taxing this
calculation becomes for a person—or a computer. Ultimately, it can be said the
solution is Kanapsack.

4.3.2 Application of Knapsack problem

In many cases of resource allocation along with some constraint, the problem
can be derived in a similar way of Knapsack problem. Some related examples
are

o Construction and scoring of tests in which the test-takers have a choice as
to which questions they answer

o Finding the least wasteful way to cut raw materials

o Selection of investments and portfolios

o Cutting stock problems

o Selection of assets for asset-backed securitization

4.3.3Problem Description

Let us consider a problem in which a thief is robbing a store and can carry a
maximal weight of W into his knapsack. There are n items available in the

store and weight of #* item is w, and its profit is p,, What items should the thief
take?

In this context, the items should be selected in such a way that the thief will
carry those items for which he will gain maximum profit. Hence, the objective
of the thief is to maximize the profit.

Based on the nature of the items, Knapsack problems are categorized as
o Fractional Knapsack

o Knapsack



4.3.4 Fractional Knapsack

In this case, items can be broken into smaller pieces, hence the thief can select
fractions of items.

Now, as per the problem statement,
There are » items in the store
Weight of i jtem w>0

Profit for i item p;>0 and
Capacity of the Knapsack is W

© o O ©

In this version of Knapsack problem, items can be broken into smaller pieces.
So, the thief may take only a fraction x; of i*" item.

The i™ item contributes the weight xaw; to the total weight in the knapsack and
profit xp; to the total profit.

Hence, the objective of this algorithm is to

n
mazximize Z(‘Tipl)

n=1

subject to constraint,

n

Z(Lﬂn) <W

n=1

It is clear that an optimal solution must fill the knapsack exactly, otherwise we

could add a fraction of one of the remaining items and increase the overall
profit.

Thus, an optimal solution can be obtained by

n

n=1
In this context, first those items need to be sorted according to the value

of py/w;, so that (pi+1)/(wit+1) < (pi/w;). Here, x is an array to store the fraction
of items.
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Algorithm: Greedy-Fractional-Knapsack (w[1..n], p[1..n], W)

fori=1ton
dox[i]=0
weight =0
fori=1ton
if weight + w[i] < W then
x[i]=1
weight = weight + w{i]

else
x[i] = (W - weight) / w[i]
weight =W
break
return x

Analysis: If the provided items are already sorted into a decreasing order
of pywi, then the whileloop takes a time in O¢n); therefore, the
total time including the sort is in Ofnlogn).

4.4 JOB SEQUENCING WITH DEADLINES

In job sequencing problem the main goal is to find the sequence of jobs
completed within deadlines which give highest profit. The sequencing of jobs
on a single processor with defined deadline constraints is called as Job
Sequencing with Deadlines. The problem can be described as:

o Inthe beginning, a set of jobs are given.
o0 Each job has a defined deadline and some profit associated with it.

o The profit of a particular job is given only when that job is completed
within its deadline.

o Only one processor is available for the processing of all jobs.

o Processor takes one unit of time to complete a job.

4.4.1 Solution

A feasible solution would be a subset of jobs where each job of the subset gets
completed within its deadline. Value of the feasible solution would be the sum
of profit of all the jobs contained in the subset. An optimal solution of the
problem would be a feasible solution which gives the maximum profit.

Let us consider, a set of n given jobs which are associated with deadlines
and earned profit, if a job is completed by its deadline. These jobs need to be
ordered in such a way that there should be maximum profit. It may happen that
all of the given jobs may not be completed within their deadlines. Now,
suppose the deadline of i* job J, is d, and the profit received from this job is p..



Hence, the optimal solution of this algorithm would be a feasible solution
with maximum profit.

Thus, D(1)>0for 1<i<n
Initially, these jobs are ordered according to profit, Le. pi2p22p3>...2Pn

4.4.2Algorithm

Greedy Algorithm is adopted to determine how the next job is selected for an
optimal solution.

The greedy algorithm described below always gives an optimal solution to the
job sequencing problem. The steps for it are given below

Step-1:Sort all the given jobs in decreasing order of their profit.

Step-2:Check the value of maximum deadline. Draw a Gantt chart where
maximum time on Gantt chart is the value of maximum deadline.

Step-3:Pick up the jobs one by one. Put the job on Gantt chart as far as
possible from 0 ensuring that the job gets completed before its deadline.

Pseudocode:

Job-Sequencing-With-Deadline (D, J, n, k)
D) :=J(0) =0
k=1
J(1) =1 // means first job is selected
fori=2...ndo
r=k
while D(J(r}) > D(i) and D(J(r)) #r do
r=r-1
if D(J(r)) < D(i) and D(i} > r then
forl=k...r+1by-1do

A+ 1) =IJ1
Jr+1) =i
k=k+1

Analysis:In this algorithm, two loops are used, one is within another. Hence,
the complexity of this algorithm is O(n%)

4.4.3 Example

Let us consider a set of given jobs as shown in the table given below. Now find
a sequence of jobs, which will be completed within their deadlines and will

give maximum profit. Each job is associated with a deadline and profit.
[99]
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Jobs I 1 Iz Iy Js

Deadline 2 1 3 2 1

Profit 60 100 20 40 20

Solution: Firstly, the jobs are arranged in their profit order as given below in
table

Jobs ) I Is I3 J5

Deadline 1 2 2 3 1

Profit 100 60 40 20 20
Moreover,

o Firstly,job J; is selected as it has maximum profit and completed
within the deadline.

o Secondly, job Jy is selected as it has maximum profit and completed
within the deadline in comparison to job Jg.

o Thirdly, the job J4 cannot be selected as its time is over; rather job J;
is selected as it is completed within its deadline.

o Fourth, job Js is discarded as its deadline is also over.

Hence the final solution is the sequence J;,J,,03; because these are excuted
within deadlines and having maximum profit.

Finally, the total profit = 100 + 60 +20 = 180

CHECK YOUR PROGRESS

o Define the importance of Greedy method.
o What do you understand by a general geedy method?

o Write the names of some real world apllications of Greedy method.



4.5 OPTIMAL TWO-WAY PATTERNS

Optimal merge pattern is a pattern that relates to the merging of two or more
sorted files in a single sorted file.In this way we need to find an optimal
solution, where the resultant file would be generated in minimum time. If the
number of sorted files are given, there are many ways to merge them into a
single sorted file. This merge can be performed pair wise. Hence, this type of
merging is called as 2-way merge patterns. As, different pairings require
different amounts of time, in this strategy an optimal way of merging many
files together is determined. At each step, two shortest sequences are merged to
obtain one step.

Now let us consider two sorted files containing # and m records respectively
then they could be merged to obtain one sorted file in time O(n+m). There are
many ways in which pairwise merge can be done to obrain a single sorted file.
Different pairings require a different amount of computing time. The main
thing is to pairwise mergemnumber of sorted files so that the number of
comparisons could be reduced in time.

The formula of external merging cost is:

if(i]dfi)

Where, f (i) represents the number of records in each file and d(i) represents the
depth.

Algorithm: TREE(n)

fori=1ton—1do
declare new node

node.leftchild:= least (list)

node.rightchild:= least (list)
node.weight) = ((node. lefichild). weight) + ((node.rightchild).weight)
insert (list, node);

return least (list);

Note: At the end of this algorithm, the weight of the root node represents the
optimal cost.

Example:Let us consider the given files, f1, f3, f3 fsand f5 with 20, 30, 10, 5
and 30 number of elements respectively.
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Now, if the merge operations are performed according to the provided
sequence, then

M; =merge f; and £; => 20+ 30=50
M, =merge M, and £; => 50 + 10 =60
M; = merge M; and f, => 60+ 5 =65
M4 =merge M3 and fs =>65+30=95

Hence, the total number of operations are

50+ 60 + 65 + 95 =270 -nnnmremememev (A)

Now, the question arises; Is there any better solution?

Sorting the numbers according to their size in an ascending order, we get the
following sequence —

f43 f3y fls fb fS
Hence, merge operations can be performed on this sequence
M;=mergefyand =5+ 10=15
M; = merge M; and f; => 15+20=35
M; = merge M; and £, => 35 + 30 =65
M, = merge M; and f; => 65 +30=95
Therefore, the total number of operations are

15+35+65+95=210 (B)

Note:Hence solution B is better than solution A.

Working of algorithm with example: Consider a pool of file L which contain
n files.

Step-1: Find first two minimum files.
Step-2: Merge them & add new merge file to the pool L.

Step-3: Repeat step-1 &step-2 until no file remaining in the pool L for
merging. e.g., L (F1, F2, F3, F4, F5) = (20, 30, 10, 5, 30).
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Fig. 4.10ptimal Merge Pattern
4.6 HUFFMAN CODE

Huffman coding is a lossless data compression algorithm, Data can be encoded
using it efficiently. It is the widely used technique for compressing the data.
Huffman's greedy algorithm uses a table of the frequencies of occurrences of
each character to build up an optimal way of representing each character as a
binary string.

In this algorithm, a variable-length code is assigned to input different
characters. The code length is related to how frequently characters are used.
Most frequent characters have the smallest codes and longer codes for least
frequent characters.There are mainly two parts- First one to create a Huffman
tree, and another one to traverse the tree to find codes.

For example, consider some strings “YYYZXXYYX”, the frequency of
character Y is larger than X and the character Z has the least frequency. So, the
length of the code for ¥ is smaller than X, and code for X will be smaller than
Z. The complexity for assigning the code for each character according to their
frequency isO(n log n).

4.6.1 Steps of Huffman Coding

Input: A string with different characters.
Output: The codes for each individual characters.

Input is an array of unique characters along with their frequency of
occurrences and output is Huffman Tree.

Step-1: Create a leaf node for each unique character and build a min-heap of
all leaf nodes (min-heap is used as a priority queue). The value of frequency
field is used to compare two nodes in min-heap. Initially, the least frequent
character is at root.
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Step-2: Extract two nodes with the minimum frequency from the min-heap.

Step-3: Create a new internal node with a frequency equal to the sum of the
two nodes frequencies. Make the first extracted node as its left child and the
other extracted node as its right child. Add this node to the min-heap.

Step-4: Repeat step-2 and step-3 until the heap contains only one node. The
remaining node is the root node and the tree is complete.

Example:Draw a tree using Huffman Coding given the input values for a =
05,6=48,¢=07,d=17,e=10andf= 13.

--------------------------------------------------------------------------------------------- smallest
1: [a: 05] 4H| |c (}7| [tl lTJ [( l(lJ [t HI
- smallest
2: Ih b] Id 1,| Ie 101 If nl
[a05] e 07] s
3: [b: 48] [d: 17] | £ 13]
| a:05 | IL 07|
- smallest
4: m
|¢ 10] [d m [f: 13]
[ a:05 | |( 07}
5:
e 10] [d:17] [E13] ~final tree

[a:05] [e: 07]

0000 0001

Fig. 4.2Huffman Coding
(Source: http://www.cs.umd.edu/class/fall2017/cmsc451-0101/Lects/lect06-
greedy-huffman.pdf)



4.6.2 Advantage of Huffman Coding

Advantages of Huffman Encoding are given below:

o]

This encoding scheme results in saving lot of storage space, since the
binary codes generated are variable in length.

It generates shorter binary codes for encoding symbols/characters that
appear more frequently in the input string.

The binary codes generated are prefix-free.

4.6.3 Disadvantage of Huffman Coding

Disadvantages of Huffinan Encoding are:

o}

It is a lossless data encoding scheme, as it achieves a lower compression
ratio compared to lossy encoding techniques. Thus, lossless techniques
like Huffman encoding are suitable only for encoding text and program
files; and are unsuitable for encoding digital images.

It is relatively slower process since it uses two passes —one for building
the statistical model and another for encoding. Thus, the lossless
techniques that use Huffman encoding are considerably slower than
others.

Since length of all the binary codes is different, it becomes difficult for
the decoding software to detect whether the encoded data is corrupt. This
can result in an incorrect decoding and subsequently, a wrong output.

4.6.4 Real-life Applications of Huffman Encoding

It is widely used in compression formats likeGZIP, PKZIP and BZIP.
Multimedia codecs like JPEG, PNG, and MP3uses Huffman encoding.

Huffman encoding still dominates the compression industry because
newer arithmetic and range coding schemes are avoided due to their
patent issues.

4.7 MINIMUM COST SPANNING TREES

A Minimum Spanning Tree or MST in short,is a subset of edges of a
connected weighted undirected graph that connects all the vertices together
with the minimum possible total edge weight. To derive an MST, Prim’s
algorithm or Kruskal's algorithm can be used. For a given undirected and
connected graph G = (V, E), a spanning tree of the graph G is a tree that
spans G (that is, it includes every vertex of G) and is a subgraph of G {every
edge in the tree belongs to G).

[105]



Moreover, for a given a connected undirected graph, a spanning tree of that
graph is a subgraph that is a tree and joined all vertices. A single graph can
have many spanning trees. Let us consider an example shown in fig. 4.3.

Fig. 4.3 Connected undirected graph

(source: https://'www.javatpoint.com/minimum-spanning-tree-introduction)

For the connected undirected graph (Fig. 4.3) there may be many spanning
trees e.g. Fig. 4.4 (a), (b), (c)

A

Fig. 4.4 Multiple spanning trees of fig.4.3

4.7.1 Properties of Spanning Trees

o There may be several minimum spanning trees of the same weight
having the minimum number of edges.

o If all the edge weights of a given graph are the same, then every
spanning tree of that graph is minimum.

o If each edge has a distinct weight, then there will be only one, unique
minimum spanning tree.

0 A connected graph G can have more than one spanning trees.

o A disconnected graph can't have to span the tree, or it can't span all the
vertices.

o Spanning Tree doesn't contain cycles.

o Spanning Tree has (n-1)edges where n is the number of vertices.

[106] 4.7.2 Minimum Spanning Trees



Minimum Spanning Tree is a Spanning Tree which has minimum total cost. If
we have a linked undirected graph with a weight (or cost) combine with each
edge. Then the cost of spanning tree would be the sum of the cost of its edges.
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Fig. 4.5 Connected Undirected Graph
(source: https://www.javatpoint.com/minimum-spanning-tree-introduction)
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Fig. 4.6Minimum cost Spanning Tree
(Total cost= 17+16+10+15=58)
{image source: https:/fwww.javatpoint.com/minimum-spanning-tree-introduction)

4.7.3 Real Life Applications

Minimum spanning trees are used for network designs (i.e., telephone or cable
networks). They are also used to find approximate solutions for complex
mathematical problems like the Traveling Salesman Problem (TSP). Other,
diverse applications include:

1. Cluster Analysis

2. Real-time face tracking and verification (i.e., locating human faces in a
video stream)

3. Protocols in computer science to avoid network cycles
4. Entropy based image registration

5. Max bottleneck paths [107]
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6. Dithering (adding white noise to a digital recording in order to reduce
distortion)

4.7.4 Prim’s Algorithm

It is a greedy algorithm and starts with an empty spanning tree. The basic
concept is to maintain two sets of vertices— a) vertrices that included in MST,
b) vertices not included yet.

In Prim’s algorithm, first of all the edges are taken into consideration, and at
every step minimum weight edge is picked; in second step, the minmum
weight edge is picked out of all the remaining edges and so on. Consequently,
it is clear that Prim’s Algorithm use Greedy approach to find the minimum
spanning tree. Moreover, the spanning tree from a starting position is grown
unlike an edge in Kruskal’s. Usually, a vertex is added to the growing spanning
tree in Prim’s algorithm.,

Steps for finding MST using Prim's Algorithm

Step-1: Maintain two disjoint sets of vertices. One containing vertex that are in
the growing spanning tree and other that are not in the growing spanning tree.

Step-2: Select the cheapest vertex that is connected to the growing spanning
tree and is not in the growing spanning tree and add it into the growing
spanning tree. This can be done using Priority Queues. Insert the vertices, that
are connected to growing spanning tree, into the Priority Queue.

Step 3:Check for cycles,to do that, mark the nodes which have been already
selected and insert only those nodes in the Priority Queue that are not marked.
Example:Let us understand with the following example given in figure-4.7

1 . &)@
4 5 4
0 11 8 N 14 4
3 7 P 10
7 1 6 5 5
Fig. 4.7 Prim’s Algorithm

(image source:https://www. geeksforgeeks.org/prims-mst-for-adiacency-list-representation-
greedy-algo-6/)



Pick the vertex with minimum key value and not already included in MST
(not in mstSET). The vertex 1 is picked and added to mstSet. So mstSet now
becomes {0, 1}. Update the key values of adjacent vertices of 1. The key
value of vertex 2 becomes 8.

Fig. 4.8 Prim’s Algorithm

{image source:https://www.geeksforgeeks.org/prims-mst-for-adjacency-list-representation-
greedy-algo-6/)

Time Complexity: The time complexity of the Prim’s Algorithm
is O((V+E)logV) because each vertex is inserted in the priority queue only once
and insertion in priority queue take logarithmic time.

4.7.5 Kruskal’s Algorithm

Kruskal’s Algorithm builds the spanning tree by adding edges one by one into
a growing spanning tree. Kruskal's algorithm follows greedy approach as in
each iteration, it finds an edge which has least weight and add it to the growing
spanning tree. It is an algorithm to construct a Minimum Spanning Tree for a
connected weighted graph. If the graph is not linked, then it finds a Minimum
Spanning Tree.

Steps for finding MST using Kruskal's Algorithm:

1. Arrange the edge of G in order of increasing weight.

2. Starting only with the vertices of G and proceeding sequentially add
each edge which does not result in a cycle, until (n - 1) edges are used.

3. Exit.

MST- KRUSKAL (G, w)
1.A«Q
2. for each vertex v € V [G]
3. do MAKE - SET (v)
4. sort the edges of E into non decreasing order by weight w
5. for each edge (u, v) € E, taken in non decreasing order by weight
6. do if FIND-SET (p) # if FIND-SET (v)
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7.then A— A U {(u, v)}
8. UNION(u, v)
9. return A

Analysis: E is the number of edges in the graph and V is the number of
vertices. Kruskal's Algorithm can be shown to min in O (E log E) time, or
simply, O (E log V) time, all with simple data structures. These running times
are equivalent because of the following reasons:

o Eis at most V? and log V>=2 x log V is O (log V).

o If we ignore isolated vertices, which will each their components of the
minimum spanning tree, V<2 E, so log V is O (log E).

Thus the total time isO(ElogE) = O(ElogV)

Example: Find the Minimum Spanning Tree of the following graph using
Kruskal's algorithm.

(source: https://www. javatpoint.com/kruskals-minimum-spanning-tree-
algorithm)
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Fig. 4.9Example

(image source: hitps://www.javatpoint.com/minimum-spanning-tree-introduction)

Solution: First we initialize the set A to the empty set and create |v| trees, one
containing each vertex with MAKE-SET procedure. Then sort the edges in E
into order by non-decreasing weight. There are 9 vertices and 12 edges. So
MST formed (9-1) =8 edges

Weight Source Destination
1 H G
2 G F




4 A B
6 I G
7 H I
7 C D
8 B C
8 A H
9 D E
10 E F
11 B H
14 D F

Now, check for each edge (u, v) whether the endpoints u and v belong to the
same free. If they do then the edge (u, v) cannot be supplementary. Otherwise,
the two vertices belong to different trees, and the edge (u, v) is added to A, and
the vertices in two trees are merged in by union procedure.

Stepl: So, first take (h, g) edge

. 8 - 7
e £ K‘. Fginy
: b-:) \EJ L\_d g
4
4 11 —_ 14 l |
I\.a ) . ffi x\ﬁ E /
A
8 - 10

'\h,fl Pl \g}_ ) :t

Fig. 4.10Step-1

(image source: https://www.javatpoint.com/minimum-spanning-tree-introduction)
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Step 2: then (g, ) edge.
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Fig. 4.11Step-2

(image source: https://www.javaipoint.com/minimum-spanning-tree-introduction)

Step 3: then (a, b) and (i, g) edges are considered, and the forest becomes

by ()
iy

RN

Fig. 4.12Step-3

(image source: https://iwww javatpoint.com/minimum-spanning-tree-introduction)

Step-4: Now, edge (h, i). Both h and i vertices are in the same set. Thus it
creates a cycle. So this edge is discarded.

Then edge (c, d), (b, c), (a, h), (d, e), (e, f) are considered, and the forest
becomes.



L Faie
h, T\ 3
Fig. 4.13Step-4

(image source: https://'www.javatpoint.com/minimum-spanning-tree-introduction)

Step-5: In (e, f) edge both endpoints e and f exist in the same tree so discarded
this edge. Then (b, h) edge, it also creates a cycle.

Step-6: After that edge (d, f) and the final spanning tree is shown as in dark
lines.

? /"_"\-\.\

e

Fig. 4.14Step-6

{image source: https:/fwww.javatpoint.com/minimum-spanning-tree-introduction)

Step-7: This step will be required Minimum Spanning Tree because it contains
all the 9 vertices and (9 - 1) = 8 edges

e —=f b—h, d— f[cycle will be formed]
[113]
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Fig. 4.15 Step-7

(image source: https://www.javatpoint.com/minimum-spanning-tree-introduction)

CHECK YOUR PROGRESS

0 Define spanning tree.
o What is the main difference between Prim’s and Kruskal’s algorithm?
0 Write any two applications of Kruskal’s algorithm.

4.8 SINGLE SOURCE SHORTEST PATH

In single-source shortest path problem, shortest pathsis obtained from
a source vertex to all other vertices in the graph. On the other hand, in single-
destination shortest path problem, shortest path is obtained from all vertices in
the directed graph to a single destination vertex. This problem is also
sometimes known as the single-pair shortest path problem.

Now, to distinguish it the following variations are taken into consideration:

o The single-source shortest path problem, in which we have to find
shortest paths from a source vertex to all other vertices in the graph.

o The single-destination shortest path problem, in which we have to find
shortest paths from all vertices in the directed graph to a single
destination vertex. This can be reduced to the single-source shortest path
problem by reversing the arcs in the directed graph.

o The all-pairs shortest path problem, in which we have to find shortest
paths between every pair of vertices in the graph.

o Given a connected weighted directed graph G (V, E), associated with
each edge {u, v)€E, there is a weight w (u, v). The single source shortest
paths (SSSP) problem is to find a shortest path from a given source r to



every other vertex v€V-{r}. The weight (length) of a path p=( vy, »1
..., Vi } is the sum of the weights of its constituent edges:

w (P) = XL, wviyvy)

o The weight of a shortest path fromutovis defined byd (u,
v)=min{w(p): p is a path from u to v}.

4.8.1The Bellman-Ford Algorithm

This algorithm solves the single source shortest path problem of a directed
graph G = (¥, E} in which the edge weights may be negative. Moreover, this
algorithm can be applied to find the shortest path, if there is no negative
weighted cycle. Moreover, negative edge weights are found in various
applications of graphs, hence this algorithm is useful in such situations where
negative edge weights are found. If a graph contains a negative cycle (ie.
a cycle whose edges sum to a negative value) that is reachable from the source,
then there is no cheapest path; any path that has a point on the negative cycle
can be made cheaper by one more walk around the negative cycle. In such a
case, the Bellman-Ford algorithm can detect and report the negative cycle.

Given a weighted directed graph G = (V, E) with source s and weight
function w: E — R, the Bellman-Ford algorithm returns a Boolean value
indicating whether or not there is a negative weight cycle that is attainable
from the source. If there is such a cycle, the algorithm produces the shortest
paths and their weights. The algorithm returns TRUE if and only if a graph
contains no negative - weight cycles that are reachable from the source.

Recurrence relation: dist* [u] = [min[dist*” [u],min[ dist“? [i]+cost [i,u]]] as i
except u

Where, k — k is the source vertex; u — u is the destination vertex; 1 — no of
edges to be scanned concerning a vertex.

Algorithm: Bellman-Ford-Algorithm (G, w, s)
1. INITIALIZE - SINGLE - SOURCE (G, s)
2. fori« 1to[V[G]|-1
3. do for each edge (u, v) € E [G]
4. do RELAX (u, v, w)
5. for each edge (u, v) € E [G]
6. doifd[v]>d[u] +w(u,v)
7. then return FALSE.
8. return TRUE.
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Example: Here first we list all the edges and their weights.
(source: https://www.javatpoint.com/bellman-ford-algorithm)

Fig.4.16 Example of Bellman Ford Algorithm
(image source: https://www.javatpoint.com/bellman-ford-algorithm)

Solution: dist* [u] = [min[dist*" [u],min[dist™" [i]+cost [i;u]]] as i# u.

 Vertices
+ 1 2 3 4 5
1 0] 6 5 v o
No of
Edges 2 0 3 5 5 3
Traversed
3 0 3 5 2 3
4 0 3 5 2 5

dist? [2]=min[dist! [2],min[dist [1]+cost[1,2],dist’ [3]+cost[3,2],dist' [4]+cos
t[4,2],dist" [5]+cost[5,2]1]

Min=1[6,0+6, 5 +(-2), 0 + @, 00 +0] =3

dist’ [3]=min[dist' [3],min[dist’ [1]+cost[1,3],dist' [2]+cost[2,3],dist' [4]+cos
t[4,3],dist" [5]+cost[5,3]]]



Min =[5, 0 4+, 6 +o0, 0+, 0+ w]=5

dist? [4]=min[dist" [4],min[dist’ [1]+cost[1,4],dist’ [2]+cost[2,4],dist! [3]+cos
t[3,4],dist’ [5]+cost[5,4]]]

Min = [e0, 0 +o0, 6 +(-1), 5 + 4, o0 +o0] =35

dist? [5]=min[dist" [5],min[dist’ [1]+cost[1,5],dist’ [2]+cost[2,5],dist! [3]+cos
1[3,5],dist’ [4]+cost[4,5]]]

Min =[e0, 0 + 0,6 + 0,5+ 3,00+ 3] =8

dist’ [2]=min[dist* [2],min[dist* [1]+cost[1,2],dist® [3]+cost[3,2],dist* [4]+cos
t[4,2],dist? [5]+cost[5,2]]]

Min=[3,0+6,5+(-2),5+w,8+x]=3

dist® [3]=min[dist® [3],min[dist* [1]+cost[1,3],dist® [2]+cost[2,3],dist* [4]+cos
t[4,3],dist? [5]+cost[5,3]]]

Min=[5,0+9,3+w,5+0,8+w]=5

dist’ [4]=min[dist® [4],min[dist® [1]+cost[1,4],dist® [2]+cost[2,4],dist* [3]+cos
t[3,4],dist® [5]Hcost[5,4]1]

Min =[5, 0+, 3 +(-1),5+4,8+00]=2

dist® [5]=min[dist? [5],min[dist* [1]+cost[1,5],dist* [2]+cost[2,5],dist® [3]+cos
t[3,5],dist* [4]+cost[4,5]]]

Min=[8,0+,3+0,5+3,5+3]=8

dist* [2]=min[dist® [2],min[dist® [1]+cost[1,2],dist® [3]+cost[3,2],dist’ [4]+cos
t[4,2],dist® [5]Hcost[5,2]1]

Min=[3,0+6, 5+ (-2), 2 + oo, 8 + 00 ] =3
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dist* [3]=min[dist® [3],min[dist* [1]+cost[1,3],dist’ [2]+cost[2,3],dist’ [4]+cos
t[4,3],dist> [5]+cost[5,3]]]

Min=5,0+,3+0w,2+00, 8+ ]=5

dist* [4]=min[dist® [4],min[dist® [1]+cost[1,4],dist’ [2]+cost[2,4],dist’ [3]+cos
t[3,4],dist? [5]+cost[5,4]]]

Min=[2,0+ 00,3 +(-1),5+4,8 +0]=2

dist* [5]=min[dist® [5],min[dist® [1]+cost[1,5],dist’ [2]+cost[2,5],dist’ [3]+cos
t[3,5],dist® [5]+cost[4,5]]]

Min = [8, 0 +00, 3+, 8, 5] = 5

Note: The first for loop is used for initialization, which runs in O(V) times.
The nextforloop runs |V - 1| passes over the edges, which
takes O(E) times. Hence, Bellman-Ford algorithm runs in O (V, E) time.

4.8.2 Dijkstra's algorithm

Dijkstra's  algorithm is  analgorithm for  finding  the shortest
paths between nodes in a graph, which may represent, for example, road
networks. It was given by computer scientist Edsger W. Dijkstra in 1956 and
published three years later. The algorithm exists in many variants, Dijkstra's
original algorithm found the shortest path between two given nodes, but a more
common variant fixes a single node as the source node and finds shortest paths
from the source to all other nodes in the graph, producing a shortest-path tree.

Following steps can be used for it—
Step-1: Initialize distances according to the algorithm.
Step-2: Pick first node and calculate distances to adjacent nodes.

Step-3: Pick next node with minimal distance; repeat adjacent node
distance calculations.

Step-4: Final result of shortest-path tree.

Dijkstra’s algorithm solves the single-source shortest-paths problem on a
directed weighted graph G = (V, E), where all the edges are non-negative



(i.e., w (u, v) > 0 for each edge (u, v) € E).In the following algorithm, one
function Extract-Min() is used, which extracts the node with the smallest key.

Algorithm: Dijkstra’s-Algorithm (G, w, s)

1. INITIALIZE - SINGLE - SOURCE (G, s)
2.80

3.Q<V[G]

4. whileQ#0

5. dou « EXTRACT - MIN (Q)
6.S—SU {u}

7. for each vertex v € Adj [u]

8. do RELAX (u, v, w)

Analysis: The running time of Dijkstra's algorithm on a graph with edges E
and vertices V can be expressed as a function of |E| and |V| using the Big -
O notation. The simplest implementation of the Dijkstra's algorithm stores
vertices of set Q in an ordinary linked list or array, and operation Extract -
Min (Q) is simply a linear search through all vertices in Q. In this case, the
running time is O ([V? [+[E[FO(V?).

Example: Dijkstra’s algorithm Source ()

Fig. 4.16 The execution of Dijkstra’s algorithm. The source s is the leftmost
vertex. The shortest-path estimates appear within the vertices, and shaded
edges indicate predecessor values. Black vertices are in the set S, and white
vertices are in the
min-priority queue Q=V - §
(image source:https://edutechlearners.com/download/Introduction_to_algorithms- [119]
3rd%20Edition pdf)
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Analysis:The complexity of this algorithm is fully dependent on the
implementation of Extract-Min function. If extract min function is
implemented using linear search, the complexity of this algorithm is O(¥* +

E).

Disadvantage of Dijkstra's Algorithm:

It does a blind search, so wastes a lot of time while processing,.

It can't handle negative edges.

It leads to the acyclic graph and most often cannot obtain the right
shortest path.

We need to keep track of vertices that have been visited.

CHECK YOUR PROGRESS

o0

0

0

Give the meaning of single source shoretest path.
Compare Bellman ford and Dijkstra algorithm.
Write the use of Dijkstra algorithm.,

4.9 SUMMARY

0

To summarize, the chapter defined the greedy paradigm, showed how
greedy optimization and recursion, can help you obtain the best solution
up to a point,

A greedy algorithmis a simple, intuitive algorithm that is used in
optimization problems. The algorithm makes the optimal choice at
each step as it attempts to find the overall optimal way to solve the
entire problem. However, in many problems, a greedy strategy does not
produce an optimal solution.

The Greedy algorithm is widely taken into application for problem
solving in many languages as Greedy AlgorithmPython, C, C# PHP,
Java, etc.

The activity selection of Greedy algorithm example was described as a
strategic problem that could achieve maximum throughput using the
greedy approach. In the end, the demerits of the usage of the greedy
approach were explained.

In Knapsack problem, the user basically decides to allocate the most
valuable item or task or resource to the fixed-size block, or in other
words when he has only fixed budget/time. Moreover, it basically
refers to the most common real time problem of packing something



which is very costly or important item in a container without mixing it
with other item/items.

In job sequencing problem the main goal is to find the sequence of jobs
completed within deadlines which give highest profit. The sequencing
of jobs on a single processor with defined deadline constraints is called
as Job Sequencing with Deadlines.

Optimal merge pattern is a pattern that relates to the merging of two or
more sorted files in a single sorted file. In this way we need to find an
optimal solution, where the resultant file would be generated in
minimum time. If the number of sorted files are given, there are many
ways to merge them into a single sorted file. This merge can be
performed pair wise.

Huffiman coding is a lossless data compression algorithm. It is the
widely used technique for compressing the data. Huffman's greedy
algorithm uses a table of the frequencies of occurrences of each
character to build up an optimal way of representing each character as

a binary string.
A Minimum Spanning Tree (MST) is a subset of edges of a connected
weighted undirected graph that connects all the vertices together with

the minimum possible total edge weight. To derive an MST, Prim's
algorithm or Kruskal’s algorithm can be used.

Minimum Spanning Tree is a Spanning Tree which has minimum total
cost. If we have a linked undirected graph with a weight (or cost)
combine with each edge. Then the cost of spanning tree would be the
sum of the cost of its edges.

In Prim’s algorithm, first of all the edges are taken into consideration,
and at every step minimum weight edge is picked; in second step, the
minmum weight edge is picked out of all the remaining edges and so
on.

Kruskal's algorithm follows greedy approach, as in each iteration it
finds an edge which has least weight and add it to the growing
spanning tree. It is an algorithm to construct a Minimum Spanning
Tree for a connected weighted graph.

The single-source shortest path problem, in which we have to
find shortest paths from a source vertex v to all other vertices in the

graph.

Bellman-Ford algorithm solves the single source shortest path problem
of a directed graph e.g. G = (¥, E), in which the edge weights may be
negative. Moreover, this algorithm can be applied to find the shortest
path, if there does not exist any negative weighted cycle.

Dijkstra's  algorithm is  analgorithm for finding the shortest
paths between nodes in  a graph, which may represent, for

[121]



[122]

example, road networks. It was conceived by computer scientist Edsger
W. Dijkstra in 1956 and published three years later.

4.11 TERMINAL QUESTIONS

A A O

10.

11

12.

13.

What do you understand by a Greedy Algorithm?

Write the significance of using Greedy Algorithms.

Compare Dynamic Programming and Greedy Algorithms.

What is the difference between Greedy and Heuristic algorithm?
Describe Prim’s and Kruskal algorithm with suitable example.
Explain the single source shortest path using suitable example.

Is there any proof to decide if Greedy approach will produce the best
solution?

Given a directed acyclic weighted graph, how to find the shortest path
from a source s to a destination t in O(V+E) time?

Describe a greedy algorithm to make change consisting of quarters,
dimes, nickels, and pennies. Prove that your algorithm yields an
optimal solution.

Give a set of coin denominations for which the greedy algorithm does
not yield an optimal solution.

. Suppose a data file contains a sequence of 8-bit characters such that all

256 characters are about as common: the maximum character frequency
is less than twice the minimum character frequency. Prove that
Huffman coding in this case is no more efficient than using an ordinary
8-bit fixed-length code.

Prove that the fractional knapsack problem has the greedy-choice
property.

Suppose you are given a connected graph G, with edge costs that are all
distinct. Prove that G has a unique minimum spanning tree.
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3.0 INTRODUCTION

Dynamic programming is a one of the good design techniques used for
optimization problems. As far as Divide and Conquer algorithm is concerned,
it solves the problems recursively after partitioning the problem into sub-
problems. But Divide and Conquer algorithm is a lengthy process and it uses
unnecessary things as it uses recursive approach which is costly and time
taking (because it solves same sub-problem many times using recursion),
Dynamic Programming, on the other hand uses non-recursive approach to
solve the problems. It uses bottom up approach in contrary to the top down
approach used in Divide and Conquer.Dynamic programming is a general
method, widely applied in operation-research to solve optimization problems
and computational biology. It uses Bottom-up approach because— it starts
with smallest sub-problem; move from smaller sub-problem to the big sub-
problems; finally solves the original problem.

One common thing in both the algorithms ie. bottom-up and top-down
approach, both break the problem into sub-problems. Dynamic programming
works on the basis of four components— stages, states, decision, and optimal
policy. It can be effectively and efficiently used for solving many real time
problems like scheduling the jobs assigned to the CPU hence to increase the
CPU usage, flight navigation in air traffic control systems, control systems,
robotic applications, design problems of reliability, finding shortest path,
optimization problems of Mathematics, knapsack problems, the DNA-related
sequencing problems etc.

5.1 OBJECTIVES

At the end of this unit you will come to know about:

o Introduction of dynamic programming

o Difference between top down and bottom up approach
o Applications of dynamic programming

o Capital budgeting problem

o Multistage graph

0 Matric chain multiplication

0 Knapsack problem

o Travelling salesman problem



5.2 INTRODUCTION TO DYNAMIC PROGRAMMING

Like the Divide and Conquer method, Dynamic programming solves problems
by combining the solutions to sub-problems. Obtaining solution by dividing the
problem in small problem is common in both but divide and conquer uses top
down approach while dynamic programming uses bottom up approach. In this
context, in dynamic programming, the word “programming” refers to problem-
solving using a tabular structure as the result once obtained is memorized and
stored in a table for further reference. Divide and conquer algorithms partition
the problem into disjoint sub-problems, solve the sub-problems recursively,
and then combine their solutions to solve the original problem. In contrast,
dynamic programming applies when the sub-problems overlap-that is, when
sub-problems share subsub-problems.

In this context, a divide-and-conquer algorithm does more work than
necessary, repeatedly solving the common subsub-problems because it uses
recursion. A dynamic-programming algorithm on the other hand solves each
subsub-problem just once and then saves its answer in a table, thereby avoiding
the work of recomputing the answer every time. Dynamic programming uses
non-recursive approach as it does not use repetition. Whenever encounter it
again, look up the solutionin the table. Accordingly, the time complexitywill be
the size of the table times the cost of computing an entry.

In dynamic programming, the divide and conquer principle is carried to an
extreme: when we don’t know exactly whichsmaller problems to solve, we
simply solve them all, then store the answersaway to be used later in solving
larger problems. But, there are two main issues with the application of this
technique. First, it may not always be possible to combine the solutions of two
problems into a larger one. Second, there may be an unacceptablylarge mumber
of small problems to solve. No one has precisely characterizedwhich problems
can be effectively solved with dynamic programming.

Dynamic programming is a paradigm design which works on the basis of
“principle of optimality” in which the optimization problem is solved by
combining the small sub-solutions into bigger sub-solutions until the final
solution is obtained for the original optimal problem.

Basic idea states:]) Break the problems into sub-problems using bottom-
up approach.2) Solve smallest sub-problem first, and then use the solution to
the sub-problems to solve the next smallest till solve the original problem.
Here, time will be usually dominated by the number of possiblesub-problems.
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Note:A bottom-up approach means— 1) start from the smallest sub-
problems; 2)obtain the solution of increasing size after combining the
solution of step-1; 3) repeat steps-1 & 2 until solution for the original
problem is obtained.

3.2.1 Characteristics of Dynamic Programming

Dynamic programming works well when the following features a problem has

o Optimal Substructure: If an optimal solution contains optimal sub
solutions then a problem exhibits optimal substructure.

o Overlapping sub-problems: When a recursive algorithm would visit the
same sub-problems repeatedly, then a problem has overlapping sub-
problems.

If a problem has optimal substructure, then an optimal solution can be defined
recursively. If a problem has overlapping sub-problems, then we can improve
on a recursive implementation by computing each sub-problem only once.

On the other hand, if a problem doesn't have optimal substructure, there is
no basis for defining a recursive algorithm to find the optimal solutions. If a
problem doesn't have overlapping sub problems, we don't have anything to
gain by using dynamic programming.

Note: If the sub-problems’ space is adequate (i.e. polynomial in the size of the
input), dynamic programming can be better efficient than recursion.

5.2.2 Elements of Dynamic Programming

Three elements basically in dynamic programming

1. Substructure: Decomposing the problem into smaller problems is called
sub structuring, and hence express the solution of original problem in
smaller problems.

2. Table structure: the result of the solution to the sub-problem is stored in
the table so that it can be reused accordingly if same result occurs.

3. Bottom-up approach: Using table to combine the solution of smaller
problems and later arriving to the final solution of original problem.

5.2.3 Components of Dynamic Programming

1. Stages: The problem can be broken into sub-problems called stages. A
stage is nothing but a small part of the given problem.

[126] 2. States: Each stage can have several states associated with it.



3. Decision: At each stage, there can be multiple choices out of which one
of the best decisions should be taken. The decision taken at every stage
should be optimal; this is called a stage decision.

4. Optimal policy: A rule which determines the decision at each stage is
called optimal policy; a policy is called an optimal policy if it is globally
optimal. This is known as Bellman principle of optimality

5.3 GENERAL METHOD & APPLICATIONS

Dynamic programming is typically applied to optimization problems. Such
problems can have many possible solutions. Each solution has a value, and we
wish tofind a solution with the optimal (minimum or maximum) value. We call
such asolution an optimal solution to the problem, as opposed to the optimal
solution,since there may be several solutions that achieve the optimal value.

When developing a dynamic-programming algorithm, we follow a
sequence offour steps:

1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal selution, typically in a bottom-up
fashion.

4. Construct an optimal solution from computed information.

It is to be noted here that steps 1-3 form the basis of a dynamic-programming
solution to a problem. If weneed only the value of an optimal solution, and not
the solution itself, then step- 4 might be omitted. Moreover, when step-4 is
performed, we sometimes maintain the additionalinformation during step-3 too,
so that an optimal solution could be easily constructed.

The Dynamic Programming techniquescan be applied to solve the
following problems for finding an optimal solution:

Matrix Chain Multiplication
Longest Common Subsequence
Travelling Salesman Problem
Knapsack

World Series

Capital budgeting problem

©C © © O O ©
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5.4 MATRIX CHAIN MULTIPLICATION

It is a Method under Dynamic Programming in which previous output is taken
as input for next. Here, Chain means one matrix's column is equal to the second
matrix's row [always].

In general:

If A = |a;] is a p x q matrix
B =|by| is a q x r matrix
C =c;] 1s 2 p X r matrix

Then
AB=CIif C'l]' = ZEZlaik bk]

Suppose that the six matrices are to be multiplied together, ie. A with
dimension 4x2, B with dimension 2x3, C with dimension 3x1, D with
dimension 1x2, E with dimension 2x2, and F with dimension 2x3. Of course,
for the multiplications to be valid, the number of columns in one matrix must
be the same as the number of rows in the next. But the total number of scalar
multiplications involved depends on the order in which the matrices are
multiplied.

For example, we could proceed from left to right: multiplying A by B, we
get a 4x3 matrix after using 24 scalar multiplications. Multiplying this result by
C gives a 4x1 matrix after 12 more scalar multiplications. Multiplying this
result by D gives a 4x2 matrix after 8 more scalar multiplications. Continuing
in this way, we get a 4x3 result after a grand total of 84 scalar multiplications.
But if we proceed from right to left instead, we get the same 4x3 result with
only 69 scalar multiplications.

Many other orders are clearly possible. The order of multiplication can be
expressed by parenthesization: for example, the left-to-right order described
above is the ordering (((((A*B)*C)*D)*E)*F), and the right-to-left order is
(A*(B*(C*(D*(E*F))))). Any legal parenthesization will lead to the correct
answer, but which leads to the fewest scalar multiplications? Very substantial
savings can be achieved when large matrices are involved: for example, if
matrices B, C, and F in the example above were to each have a dimension of
300 where their dimension is 3, then the left-to-right order will require 6024
scalar multiplications but the right-to-left order will use an astronomical
274,200.



Dynamic programming is an algorithm that solves the problem of matrix-
chain multiplication. We are given a sequence (chain} <A;, Aj,. . .. ,An of n
matrices to be multiplied, and we wish to compute the product

Adg........ An. G.1)

We can evaluate the expression (5.1) using the standard algorithm for
multiplying pairs of matrices as a subroutine, once we have parenthesized it to
resolve all ambiguities in how the matrices are multiplied together. Matrix
multiplication is associative, and so all parenthesization yield the same product.
A product of matrices is _fully parenthesized if it is either a single matrix or the
product of two fully parenthesized matrix products, surrounded by parentheses.
For example, if the chain of matrices is <A;, A;, A3 A4 >we can fully
parenthesize the product A;AzA3 Ay in five distinct ways:

(A1(Az(As Ay)),
(A1 ((A2A3) Ay)),
((A1A2) (AsAs)),

(A1 (Az A3)) A),
(((A1 Az) A3) A).

How we parenthesize a chain of matrices can have a dramatic impact on the
cost of evaluating the product. Consider first the cost of multiplying two
matrices. The standard algorithm is given by the following pseudocode. The
attributes rows and columns are the numbers of rows and columns in a matrix.

Matrix-Multiply (A, B)
1 if A.columns # B.rows
2 error “incompatible dimensions”
3 else let C be a new A.rows x B.columns matrix
4 for i= 1 to A.rows
5 for j = 1 to B.columns
6 G = 0
7 for k=1 to A.columns
8 Cij = G + ay - bkj
9 return C

We can multiply two matrices A and B only if they are compatible: the
number of columns of A must equal the number of rows of B. If A is a pxq
matrix and B is a gxr matrix, the resulting matrix C is a pxr matrix. The time to
compute C is dominated by the number of scalar multiplications in line 8,
which is pqr.

The matrix-chain multiplication problem can be stated as follows: given a
chain <Ay, Az,. ., A, . . ,Ar> of n matrices, where for i=1,2,3,.....,n, matrix A;
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has dimension pi; % p; , fully parenthesize the product AjA;....... A, in a way
that minimizes the number of scalar multiplications.

The optimal cost is computed by using a tabular, bottom-up approach in
dynamic programming approach through the procedure MATRIXCHAIN-
ORDER given below. This procedure assumes that matrix Ai has dimensions
pia1 X pi for i=1,2,3,.....,n. Its input is a sequence p= <pop1, ...... ,pr>, where
p.length =n + 1. The procedure uses an auxiliary table m[1..n, 1..n] for storing
the m[i, j] costs and another auxiliary table s[1..n-1,2..n] that records which
index of k achieved the optimal cost in computing m[i, j]. The minimum cost
of parenthesizing the product A;A;+.....Ajbecomes

m{i, j]= min{ m[i, k] +m[k+1,j]+ pi1pup;} for i<=k<j if i<j otherwise 0.

Matrix-Chain-Order(p)

1 n=p.length-1

2 let m[l..n, 1..n] and s[1..n-1,2..n] be new tables
3 fori=1ton

4 m[i,i]=90

5 for/=2ton // 1is the chain length
6 fori =1 ton-I+1

7 j=it+l-1

8 m[i,j]=o

9 fork=itoj-1

10 q=m/[i, k] + m [k+1, j] + piipud

11 ifq<ml[i,j]

12 m[i jl=q

13 s[i,jFk

14 retuwrnmand s

The MATRIX-CHAIN-ORDER determines the optimal number of scalar
multiplications needed to compute a matrix-chain product, it does not directly
show how to multiply the matrices. The table s[l...n-1, 2..n] gives us the
information we need to do so. Each entry s[ij] records a value of k such that an
optimal parenthesization of A;jAj+....Ajsplits the product between Agand Ay+i.
The following recursive procedure prints an optimal parenthesization of <A;
Ain,.....,A> given the s table computed by Matrix-Chain-Orderand the
indices i and j. The initial call Print-Optimal-Parens(s, 1, n) prints an optimal
parenthesization of <Aj, Aj,. ., A, . . ,Ap>

Print-Optimal-Parens(s,i,j)
1 ifi==j
2  print “A”
3 else print “(”
4  PRINT-OPTIMAL-PARENS(s, i, s[i, j])



5 PRINT-OPTIMAL-PARENS.s; s[i, j1+1,j)

6 print ﬂ‘)’!
Example:
Matrix Ay Ay Az A4 As Ag
Dimension 30x35 | 35x15 15x5 5x10 10x20 | 20x25

The m table uses only the main diagonal and upper triangle, and the s table
uses only the upper triangle. The minimum number of scalar multiplications to
multiply the 6 matrices is m[1,6]= 15,125, Of the darker entries, the pairs that
have the same shading are taken together in line 10 when computing
m[2,5]=min among below entries

1. m[2,2]+ m[3,5] + ppaps = 0 + 2500 + 35%15%20 =13,000,
2. m[2,3]+m[4,5] + pipaps = 2625+ 1000 +35*5+20 =7125,
3. m[2,4] + m[5,51+ pipaps = 4375 +0 + 35.10.20= 11,375

=7125

m

Fig. 5.1The m and s tables computed by MATRIX-CHAIN-ORDER for n=6

The call Print-Optimal-Parens(s, 1, 6) prints the parenthesization ((A;
(A243)) ((As As) Ag)).

5.5 LONGEST COMMON SEQUENCE

A subsequence of a given sequence is just the given sequence with some
clements left out. Given two sequences X and Y, we say that the sequence Z is
a common sequence of X and Y if Z is a subsequence of both X and Y. In the

[131]



[132]

longest common subsequence problem, we are given two sequences X =
(X1 X2...Xm) and Y = (y1 y2 Yo} and wish to find a maximum length common
subsequence of X and Y. LCS Problem can be solved using dynamic
programming. A brute-force approach we find all the subsequences of X and
check each subsequence to see if it is also a subsequence of Y, this approach
requires exponential time making it impractical for the long sequence.

Given two strings X,y over some common alphabet, the problem is tofind a
longest common sub-string (not necessarily consecutivecharacters) of both x
and y.

Example: X=ABCBDAB
Y=BDCABA

Then, BCBA is sub-string of both x and y and is of maximal lengthpossible
among all common sub-strings. Note that it is not unique, BDAB is also a
longest common sub-string. We are interested in findingone of maximal length.
We define LCS(x,y) = a longest sequence ofcharacters that appears left to right
in both strings.

This problem is useful in genetics. Given 2 DNA fragments, LCS
givesinformation about what they have in common and what is the best way
toline them up. Moreover, an equivalent problem is finding the minimumedit-
distance (sequence of inserts and deletes) to transform string xinto string y.

Let X = <x, X3, X3,..., Xm > and Y = < yj, y2, ¥3,..., ¥a > be the sequences.
To compute the length of an element the following algorithm is used.

In this procedure, table C[m, n] is computed in row major order and another
table B[m,n] is computed to construct optimal solution.

Algorithm: LCS-Length-Table-Formulation (X, Y)

m = length(X)
n = length(Y)
fori=1tomdo
Cli,0] =0
forj=1tondo
C[0,j1=0
fori=1tomdo
forj=1tondo
if'x;=y;
Cli,jl=C[i-1,j-1]1+1
B[, j] = ‘D’
else
if C[i-1,j]=C[i, j-1]
Cli,jl =C[i-1,j]+1

Bli, ] = ‘U’
else

C[i, 1 = Cli, j - 1]
B[i, j] = ‘L’

return C and B



Algorithm: Print-LCS (B, X, i, j)
ifi=0andj=0
return
it B[, j] = ‘D’
Print-LCS(B, X, i-1, j-1)
Print(x;}
else if B[i, j]= ‘U’
Print-LCS(B, X, i-1, j)
else
Print-LCS(B, X, i, j-1)

This algorithm will print the longest common subsequence of X and Y.

Example: In this example, we have two strings X = BACDB and ¥ = BDCB to
find the longest common subsequence.

Now, Following the algorithm LCS-Length-Table-Formulation (as stated
above), we have calculated table C (shown on the left hand side) and table B
(shown on the right hand side).

In table B, instead of ‘D’, ‘L’ and ‘U’, we are using the diagonal arrow, left
arrow and up arrow, respectively. After generating table B, the LCS is
determined by function LCS-Print. The result is BCB.

3123 4= 0123 4=
BDCB BDCB
H y e i
fl O B o000 ; 0 0: 0 000
: L Y=BDCB LB T )
2 2 AWOLIRE 1)1
. Sn o
P U2 }ChUL 1R
4 D 0 1: 2027 JDﬂﬁ.];EIEU
m=5 B0 1,223 ics=pcg M4 B 0: 1 2 20 31— start here

Fig. 5.2LCS Problem solving using dynamic Programming

(Source:https:/fwww.tutorialspoint.com/design_and_analysis_of algorithms/design_and_anal
ysis_of algorithms_dynamic_programming.htm)

CHECK YOUR PROGRESS

o0 Write the need of dynamic programming for problem solving.

o Compare Dynamic Programming with Greedy approach of problem
133
solving. [133]
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o Give the features of long common sequence.

3.6 CAPITAL BUDGETING PROBLEM

Capital budgeting is a common area of finance but very useful for certain other
areas like engineering and technology. In capital budgeting certain amount of
money is to be invested carefully and intelligently so that best profit could be
earned. Moreover, in the capital budgeting problem certain capital is available
for investment and there are various options available in which it can be
invested. But the money should be invested in such a way that we get
maximum possible benefit. Now let us consider an example given below
intended with this capital budgeting problem.

Example: Nafisa has Rs.6000 to invest. She can invest in any of the three
ventures, A, B and C, available to her. But, she must invest in units of Rs.1000.
The potential return from investment in any one venture depends upon the
amount invested, according to Table 5.1.

Table 5.1 Investment and expected return in thousands.

Amount Invested Return from Venture

A B -
0 ” - :
1 0.5 s 7
2 1.0 2.0 »
3 3.0 2.2 23
- > s 2.6
> 3.2 2.4 2.7
g 3.3 2.5 2.8

Nafisa wants to invest Rs.6000 in such a way that the total return from the
investment is maximized. We will formulate this problem as a dynamic
programming problem and find the solution. V, is the initial state where she
hasn't made any investment. There are two intermediate stages. In the first
stage, Nafisa invests money in venture A. In the second stage, Nafisa invests in
venture B. In the finalstage, Nafisa invests money in venture C, ie. all of
Rs.6000 is invested. We also denote by V1, the state where Nafisa invests Rs.1
x 1000 in venture A. For example, the state V12 occurs if she invests 2
units(Rs.2000) in venture A. Similarly, V2i occurs if Nafisa invests a total of
Rs.ix 1000 in ventures A and B.



For example, V22 will occur for any of the following situations:

1) Nafisa invests no money in venture A and 2 units in venture B.
2) Nafisa invests 1 unit each in venture A and venture B.

3) Nafisa invests 2 units in venture A and no money in venture B.

How are the distances calculated? The distance between any states is the
money that Nafisa makes if the two states occur. For example, V11 follows V,
if she invests one unit(Rs. 1000) in venture A. In this case, from second
column in the second row of Table 5.1 on the facing page, it can be see that the
expected return is 0.5 (Rs.500). So, d(V,. VIl) = 0.5. Similarly, suppose she
invests one unit in venture 13 after investing one unit in venture A. From the
third column in the second row of Table 3 on the preceding page, we see that
she will get 1.5 units more in addition to 0.5 she earned for investing 1 unit in
venture A. So d (VII, V22) = 1.5. Ve is the final state where she has invested
all the money.

Since there are too many options at each stage, a diagram for this problem
will be too complicated. So, we will introduce a tabular method. As earlier, we
have calculated £ (V2,), 0 51< 6 first. What is the value of £ (Vzo)? This is the
state where Nafisa hasn't made any investment in ventures A and B. She will
then invest the whole of Rs.6000 in venture C. From Table 5.1 on the facing
page we see that she will get a return of 2.8 units(Rs.2800). So, £ (V20) =2.8,
Similarly, in the state Val she would have invested a total of one unit, ie.
Rs.1000, amongst the ventures A and B. She will then invest the remaining
Rs.5000 in venture C and will get in return 2.7 units(Rs.2700). We can
similarly calculate the other values. Next, we calculate the maximum distances
for the states in stage 1. We use the recurrence

FWV1) = max{d(V1i,V2k) + f(V2k)}  fori<k<6

5.7 MULTISTAGE GRAPHS

A multistage graph G = (V, E)is a directed graph where vertices are
partitioned into k(where k> 1) number of disjoint subsetsS =
{51,82...,8} such that edge (4, v} is in E, thenu € s;and v € s; + ; for some
subsets in the partition and |s;] = |sx] = 1.The vertexs € s;is called
the source and the vertex ¢ € s is called sink.

G is usually assumed to be a weighted graph. In this graph, cost of an
edge (i, j) is represented by c(i, j). Hence, the cost of path from source s to
sink ¢ is the sum of costs of each edges in this path.

The multistage graph problem is finding the path with minimum cost from
source s to sink . Dynamic Programming can be used to find the optimal

[135]



solution for multistage network. This is because in multistage graph problem
we obtain the minimum path at each current stage by considering the path
length of each vertex obtained in earlier stage. Thus the sequence of decisions is
taken by considering overlapping solutions. In dynamic programming, we may
get any number of solutions for given problem. From all these solutions we
seek for optimal solution, finally solution becomes the solution to given
problem.

5.7.1 Using forward approach to find cost of the path
Forward approach can be used to find the cost of path; it can be given as
Cost(i,j) = min { c(j, I) + cost(i+1, D)}

Where, i-stage number, j-vertices available at particular stage, 1- vertices away

from the vertex and 1€7;+,
1 Algorithm FGraph(G,k,n,p)
2 // The input is a k-stage graph G = (V, E) with n vertices
3 /[ indexed in order of stages. E is a set of edges and c[i, j]
4 // is the cost of (7,7). p[l: k] is a minimum-cost path.
5
6 cost[n] := 0.0;
7 for j:=n-1to 1 step —1do
8 { // Compute cost[j].
9 Let r be a vertex such that (7, 7) is an edge

10 of G and ¢lj, r] + cost[r] is minimumy;
11 cost([j] := c[j, r] + cost[r];

12 d[j] :=r;

13

14 // Find a minimum-cost path.

15 pl1] := 1; plk] := n3

16 } for j := 2 to k— 1 do p[j] :=dfp[j — 1]];
17

Fig. 5.3 Multistage graph pseudocode corresponding to the forward approach

(Source: http://kraghavarao.weebly.com/uploads/2/2/5/5/22557070/dp-part-
Imultistagegraph.pdf

Example:Consider the following example to understand the concept of
multistage graph.
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Fig. 5.4Multistage graph

(Source:https://www.tutorialspoint.com/design_and_analysis of algorithms/design and _anal
ysis_of algorithms _multistage graph.htm)

According to the formula, we have to calculate the cost (i, j) using the
following steps

Step-1: Cost (K-2, j)—In this step, three nodes (node 4, 5. 6} are selected as j.
Hence, we have three options to choose the minimum cost at this step.

Cost(3, 4) = min {c(4, 7) + Cost(7, 9), c(4, 8) + Cost(8,9)} =7
Cost(3, 5) =min {c(5, 7) + Cost(7, 9), c(5, 8) + Cost(8,9)} =5
Cost(3, 6) =min {c(6, 7) + Cost(7, 9), c(6, 8) + Cost(8, 9)} =5

Step-2: Cost (K-3, j) —Two nodes are selected as j because at stagek -3 =2
there are two nodes, 2 and 3. So, the valuei=2 and j=2 and 3.

Cost(2, 2) = min {c(2, 4) + Cost{4, 8) + Cost(8, 9), ¢(2, 6) +Cost(6, 8) +
Cost(8, 9)} =8

Cost(2, 3) = {c(3, 4) + Cost(4, 8) + Cost(8, 9), ¢(3, 5) + Cost(5, 8)+ Cost(8,
9), ¢(3, 6) + Cost(6, 8) + Cost(8, 9)} =10

Step-3: Cost (K-4, j)
Cost (1, 1) = {c(1, 2) + Cost(2, 6) + Cost(6, 8) + Cost(8, 9), c(1, 3) +
Cost(3, 5) + Cost(5, 8) + Cost(8, 9)} = 12, ¢(1, 3} + Cost(3, 6) + Cost(6, 8

+ Cost(8, 9))} = 13
i .. : [137]
Hence, the path having the minimum cost is 1— 3— 5— §— 9.
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CHECK YOUR PROGRESS

o Define capital budgeting problem.
o Write the basic concept of multistage graph.

o Find an optimal parenthesization of a matrix-chain product whose
sequence ofdimensions is <5, 10, 3, 12, 5, 50, 6>.

5.8 KNAPSACK PROBLEM

Knapsack is basically means bag. A bag of given capacity. We want to pack n
items in a luggage.Given some items, pack the knapsack to get the maximum
total value. Each item has some weight and some value. Total weight that we
can carry must not more than some fixed number W. Following points are
important in this regard

o Items are indivisible here.

o Fraction of any item can’t be taken.

o An item, either should be taken completely or should be left
completely.

o Knapsack problem basically uses dynamic programming approach.
Input:

o Maximum weight M and the number of packages n.
o Weight W[i] and their corresponding value V[i].

Output:

o Maximize value and corresponding weight in capacity.
o Which packages the thief will take away?

Problem Description:4 thief is robbing a store and can carry a maximum
weight W into his knapsack. There are n items and weight of i item is w; and
the profit of selecting this item is p;. What items should the thief take?

Methodology Used: Dynamic-Programming

For the solution of the given problem, dynamic programming algorithm is
used. Hence, letibe the highest-numbered item in an optimal
solution S for W dollars. Then$' = § - {i}is an optimal solution for W -
w;dollars and the value to the solution S is V;plus the value of the sub-
problem.

We can express this fact in the following formula: define ¢[i, w] to be the
solution for items 1,2, ..., i and the maximum weight w.

The algorithm takes the following inputs



o The maximum weight W
o The number of items n

o The two sequences v =<vy, V3, ..., Vo> and W = <wy, Wz, ..., Wp>

Dynamic-0-1-knapsack (v, w, n, W):
forw=01to W do
c[0,w]=0
fori=1tondo
c[i,0]=0
forw=1to Wdo
if v; + c[i-1, w-w;] then
c[i, w] = v + ¢[i-1, w-w;]
else c[i, w] = c[i-1, w]
else
c[i, w] =c[i-1, w]

The set of items to take can be deduced from the table, starting at ¢[n, w] and
tracing backwards where the optimal values came from. If ¢fi, w/ = cfi-1, w],
then item # is not part of the solution, and we continue tracing with ¢[i-1, w].
Otherwise, item { is part of the solution, and we continue tracing with c[i-1, w-

W]

Analysis: This algorithm takes O(n, w) times as table ¢ has (n + I).(w+ 1)
entries, where each entry requires 6(1) time to compute.

Example: Consider five items with respect weight and values

I= {Il, IZ: 133 I49 15}
w = {5, 10, 20, 30, 40}
v= {30, 20, 100, 90, 160}

The capacity of knapsack W = 60.

Items Wi Vi
I 5 30
L 10 20
I 20 100
Iy 30 90
Is 40 160

Taking value per weight ratio p;= vi/w;
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Item Wi Vi pi= vi'w;
I 5 30 6.0
I 10 20 2.0
I 20 100 5.0
I4 30 90 3.0
Is 40 160 4.0

Now atrange the value of pi decreasing order.

Item Wi Vi Pi= vi/'wi
I 5 30 6.0
I; 20 100 5.0
Is 40 160 4.0
L4 30 90 3.0
I 10 20 2.0

First, we choose item I; whose weight is 5, then choose item I3 whose weight is
20. Now the total weight in knapsack is 5+20 = 25.

Now, the next item is Is and its weight is 40, but we want only 35. So, we
choose fractional part i.e. (160/40)*35 =140

Hence the maximum value is = 30+100+140 = 270

5.9 ALL PAIRS SHORTEST PATH PROBLEM

The all-pairs shortest path problem is the determination of the shortest graph
distances between every pair of vertices in a given graph. The problem can be
solved using. applications of Dijkstra's algorithm or all at once using the Floyd-
Warshall algorithm. Given a directed, connected weighted graph G(V,E), for
each edge (u,v)€E, a weight w(u,v) is associated with the edge. The all-pairs
of shortest paths problem (APSP) is to find a shortest path fromu to v for
every pair of verticesuand vin V.

Representation of G:

The input is an nxn matrix W= (wy).



w
0ifi=j
(i,))= the weight of the directed edge < i,j > if i # jand <i,j >EE
wifi+jand <i,j > E

The dynamic-programming formulation can be used to solvethe all-pairs
shortest-paths problem on a directed graph G = (V,E). The resultingalgorithm,
known as the Floyd-Warshall algorithm, runs in ©(V®) time. The negative-
weight edges may be present, but we assume that there are nonegative-weight
cycles.

Floyd-Warshall's algorithm is based upon the observation that a path
linking any two vertices u and v may have zero or more intermediate vertices.
The algorithm begins by disallowing all intermediate vertices. In this case, the
partial solution is simply the initial weights of the graph or infinity if there is
no edge.

The algorithm proceeds by allowing an additional intermediate vertex at
each step. For each introduction of a new intermediate vertex x, the shortest
path between any pair of vertices u and v, x,u,v€V, is the minimum of the
previous best estimate ofd(u,v), or the combination of the paths
from u—x and x—v.

O(u,v)«—min{d(u,v),d6(u,x)+8(x,v))
Let the directed graph be represented by a weighted matrix W.

FLOYD-WARSHALL (W)

n <« rows [W]

D(0)— W

for ke— 1to n

dofor i— 1ton

dofor j«— 1lto n

do dij (k) « MIN ( dij (k1) , dik (k-1) + dij (-1) )
return D(n)

SIS W R W e

Analysis: The time complexity of the algorithm above is O( n3 ).

1

3

Fig. 5.5Example Graph for Floyd-Warshall
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(Source:http:/fusers.cecs.anu.edu.aw/~Alistair. Rendell/Teaching/apac_comp3600/module4/all
pairs_shortest_paths.xhtmi#:~:text=The %20algorithm%a20is%620based%200n,u%a20to %2 0v%
20is%200.)

Example: Let us now work through the steps of the FLOYD-
WARSHALL algorithm when it is applied on the graph depicted in Fig. 5.5.

W=( 01800000 002 00000c0 000030 )

1. Allowable intermediate vertices {}: D(0) =W
2. Allowable intermediate vertices {1}: D(1) no change
3. Allowable intermediate vertices {1,2}:

D(2) =( 018 3 c0002 coecllco c0co30 )

Where 3= min {c,1+2}, using paths 1—2 and 2—4.

4. Allowable intermediate vertices {1,2,3}: D(3) no change
5. Allowable intermediate vertices {1,2,3,4}:

D(4) =( 01 6 3 00 5 2 2000000 00030 )

Where 6= min {8,3+3}, using paths 1—4 and 4—3.

Where 5= min {«0,2+3}, using paths 2—4 and 4—-3.

5.10 TRAVELLING SALESMAN PROBLEM

The travelling salesman problem is related with the sales person and the set of
cities in which he/she has to visit for some work. Now the salesman has to
visit all the cities at least once starting from his hometown and has to return
back to home after covering all the cities using shortest path hence shortening
his length of the trip.

Problem Description: A traveler needs to visit all the cities from a list, where
distances between all the cities are known and each city should be visited just
once. What will be the shortest possible route that he visits each city exactly
once and returns to the origin city?

Solution: Travelling salesman problem is the most notorious computational
problem. We can use brute-force approach to evaluate every possible tour and



select the best one. For mnumber of vertices in a graph, there are(n-
1)! number of possibilities.

Instead of brute-force using dynamic programming approach, the solution
can be obtained in lesser time, though there is no polynomial time algorithm.

Let us consider a graph G = (V, E), where V is a set of cities and E is a set
of weighted edges. An edgee(n, v)represents that vertices u and v are
connected. Distance between vertex u and v is d(u, v), which should be non-
negative.

Suppose we have started at city I and after visiting some cities now we are
in city j. Hence, this is a partial tour. We certainly need to know j, since this
will determine which cities are most convenient to visit next. We also need to
know all the cities visited so far, so that we don't repeat any of them. Hence,
this is an appropriate sub-problem.

For a subset of cities § € {1, 2, 3, ..., n} that includes 1, andj € S, let C(S,
Jj) be the length of the shortest path visiting each node in S exactly once,
starting at 7 and ending at j.

When |S] > 1, we define C(S, 1) = « since the path cannot start and end
at 1.

Now, let express C(S, j) in terms of smaller sub-problems. We need to start
at I and end at j. We should select the next city in such a way that

C(8,j))=minC(S—{j},))+d(i,j) where i€S and i#j

Algorithm: Traveling-Salesman-Problem

C{1}, D=0
fors=2tondo
for all subsets S € {1, 2, 3, ..., n} of size s and containing 1
CE, 1)=w
forallj€Sandj#1
C(S,j)=min {C(S—{j},))+d(i,j)fori€ Sandi#j}
Return minj C ({1, 2, 3, ..., n}, j) + dG, i)

Analysis: There are at the most 2°.n sub-problems and each one takes linear
time to solve. Therefore, the total running time is O(2"n?).

Example: In the following example, we will illustrate the steps to solve the
travelling salesman problem.
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Fig. 5.5 Illustration of Travelling Salesman Problem using Dynamic
Programming
(Source:https:/fwww.tutorialspoint.com/design_and analysis of algorithms/design_and anal
ysis_of algorithms_travelling salesman_problem.htm)

From the above graph, the following table is prepared.

1 2 3 4
1 0 10 15 20
2 5 0 9 10
3 6 13 0 12
4 8 8 9 0

S=@
Cost(2,0,1)=d(2,1)=5

Cost(3,®,1)=d(3,1)=6
Cost(4,D,1)=d(4,1)=8

S=1
Cost(i,s)=min {Cost(j,s—(j)+d[i,j]} fori€ Sand i#]

[144]
Cost(2, {3},1)=d[2,3]+Cost(3,0,1) =9+6 =15



Cost(2,{4},1)=d[2,4]+Cost(4,®,1) =10+8 =18
Cost(3,{2},1)=d[3,2]+Cost(2,®,1) =13+5 =18
Cost(3,{4},1)=d[3,4]+Cost(4,®,1) =12+8 =20
Cost(4,{3},1)=d[4,3]+Cost(3,®,1) =9+6 =15
Cost(4,{2},1)=d[4,2]+Cost(2,®,1) =8+5 =13

S=2
Cost(2,{3,4},1)= min { d(}[zz’,:;] : c‘i:';t(f:’{g?’ll)):fo':zlos 12295 =25
cot 10 min (22 TR 10 101
Costt, 230 min {31331 | Coecs, (23,19 =9 + 18 = 27 2

S=3

d[1,2] + Cost(2,{3,4},1) = 10 + 25 = 35
Cost(1,{2,3,4},1)= {d[1,3] + Cost(3,{2,4},1) = 15 + 25 = 40= 35
d[1,4] + Cost(4,{2,3},1) = 20 + 23 = 43

The minimum cost path is 35.

Start from cost {1, {2, 3, 4}, 1}, we get the minimum value for d [1, 2]. When s
= 3, select the path from 1 to 2 (cost is 10) then go backwards. When s =2, we
get the minimum value for d [4, 2]. Select the path from 2 to 4 (cost is 10) then
go backwards.

When s = 1, we get the minimum value for d [4, 3]. Selecting path 4 to 3
(cost is 9), then we shall go to then go to s = @ step. We get the minimum
value for d [3, 1] (cost is 6).

e 0 0 0 0
= o -

CHECK YOUR PROGRESS

o Explore Knapsack problem with an example. Show, how dynamic [143]
programming c¢an be used to solve this.
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Write Algorithm for matrix chain multiplication through dynamic
programming. Give an example.
Define all-pair shortest path in brief.

What do you understand by travelling salesman problem?

3.11 SUMMARY

o}

Dynamic programming is a one of the good design techniques used for
optimization problems. As far as Divide and Conquer algorithm is
concerned, it solves the problems recursively after partitioning the
problem into sub-problems. But Divide and Conquer algorithm is a
lengthy process and it uses unnecessary things as it uses recursive
approach which is costly and time taking (because it solves same sub-
problem many times using recursion). There are three clements of
dynamic programming —Substructure, Table structure, and Bottom-up
approach.

Basic idea of dynamic programming states — 1) Break the problems into
sub-problems using bottom-up approach. 2) Solve smallest sub-problem
first, and then use the solution to the sub-problems to solve the next
smallest till solve the original problem. Here, time will be usually
dominated by the number of possible sub-problems.

The Dynamic Programming techniques can be applied to solve the
problems for finding an optimal solution — Matrix Chain Multiplication,
Longest Common Subsequence, Travelling Salesman Problem,
Knapsack, World Series, and Capital budgeting problem.

Matrix chain multiplication is a Method under Dynamic Programming in
which previous output is taken as input for next. Here, Chain means one
matrix's column is equal to the second matrix's row [always]. Moreover,
matrix Multiplication operation is associative in nature rather
commutative. By this, we mean that we have to follow the given matrix
order for multiplication but we are free to parenthesize.

Characteristics of longest common sequence are — Optimal Substructure
of an LCS, Recursive Solution, Computing the length of an LCS.

In capital budgeting certain amount of money is to be invested carefully
and intelligently so that best profit could be earned. Moreover, in the
capital budgeting problem certain capital is available for investment and
there are various options available in which it can be invested. But the
money should be invested in such a way that we get maximum possible
benefit.



o Knapsack is basically means bag. A bag of given capacity. We want to
pack n items in a luggage. Given some items, pack the knapsack to get
the maximum total value. Each item has some weight and some value.
Total weight that we can carry must not more than some fixed number.

o The travelling salesman problem is related with the sales person and the
set of cities in which he/she has to visit for some work. Now the salesman
has to visit all the cities at least once starting from his hometown and has
to return back to home after covering all the cities using shortest path
hence shortening his length of the trip.

5.12 TERMINAL QUESTIONS

1. How Dynamic Programming is different from Recursion and
Memorization?

Describe the main characteristics of Dynamic Programming.

Explain the elements and components of Dynamic programming.
Differentiate Divide & Conquer and Dynamic Programming Algorithm.
Compare Greedy and dynamic programming algorithm.

Briefly explain the important applications of Dynamic programming,.

e

Explain the process of matrix chain multiplication. Give an example to
show the procedure.

8. Explain Longest Common Subsequences problem using dynamic
programming approach.

9. Explain capital budgeting problem in detail and solve through dynamic
programing.
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Block-III Algorithm design strategies & Completeness

This is the third block on algorithm design strategies and completeness. In this
block we mainly focused on algorithm design strategies and the completeness
of the algorithm. This block has four umits. Each unit has defined easily and
covered all the topics.

So we will begin the first unit on introduction to algorithm. A graph is an
abstract notation used to represent the connection between pairs of objects. A
graph consists of Vertices (Interconnected objects in a graph are called
vertices. Vertices are also known as nodes.) And Edges (Edges are the links
that connect the vertices.)

In the first unit we will also describe representation of graphs, Breadth first
search, depth first search and topological sort. In the first unit you will also
learn about strongly connected component, flow networks, Ford-Fulkerson
method.

Second unit begins with Backtracking. In this unit you will know all about the
concept of Backtracking. Backtracking is a technique based on algorithm to
solve problem. It uses recursive calling to find the solution by building a
solution step by step increasing values with time. Backtracking algorithm is
applied to some specific types of problems, Decision problem used to find a
feasible solution of the problem. In this unit you will also learn about 8-queen
problem, sum of subsets problem, graph coloring and Hamiltonian cycles.

In the third unit, we provide another important topic i.e. Branch-And-Bound.
The branch and bound approach is based on the principle that the total set of
feasible solutions can be partitioned into smaller subsets of solutions. These
smaller subsets can then be evaluated systematically until the best solution is
found. In this unit 2 important concept will also cover ie. travelling
salesperson problem, 15 puzzle problem.

In the fourth and last unit of this block we will cover NP-Hard and NP-
Complete problems. A problem is NP-hard if all problems in NP are
polynomial time reducible to it, even though it may not be in NP itself. In this
unit you will also study about non deterministic algorithms, NP - Hard and NP
Complete classes, satisfiability problem and reducibility.

As you will study the material, you will find that figures, tables are properly
used and these will help to understand the concept. There are many sections in
the units to easily understand the topic. Every unit has summary and review
questions in the end of the unit which will help you to review yourself.

We hope you enjoy studying the material and once again wish you all the best
for your success.
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UNIT-6 Graph Algorithms

Structure

6.0 Introduction

6.1 Graph algorithm

6.2 Representation of graphs

6.3 Breadth first search

6.4 Depth first search

6.5 Topological sort

6.6 Strongly connected component
6.7 Flow networks

6.8 Ford-Fulkerson method.

6.9 Summary
6.10 Review questions
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6.0 Introduction

This is the first unit of this block. In this unit you will learn about graph
algorithm. This unit is divided in to ten sections. In the section 1.1, you will
know about the basics of graph algorithm. Section 1.2 defines about the
representation of graphs. Section 1.3 defines about Breadth first search. In the
section 1.4 you will know about depth first search. Topological sort has been
defining in the section 1.5. You will study about strongly connected component in
the section 1.6. Flow networks explain in the next section i.e. section 1.7. In the
section 1.8 you will know about Ford-Fulkerson method. Last two section defines
summary and review questions.

Objective

After studying this unit, you should be able to define:

Graph algorithm
Representation of graphs
Breadth first search

Depth first search

Topological sort

Strongly connected component
Flow networks

Ford Fulkerson method

OoOOooOoOooOodn

6.1 Graph algorithm- Introduction

A graph can be thought of as a data structure that is used to describe
relationships between entities. An entity can be any item that has a distinctive
and independent existence. It could either be an actual physical object or an
abstract idea. For example, an entity can be a person, place or an organization
about which data can be stored.

In the computing world, graphs have become ubiquitous owing to their ability
to not only provide abstractions to real life but also demonstrate complicated
relationships with ease. As such, a variety of practical problems can be
represented as graphs. For example, a linked structure of websites can be
viewed as a graph.

Every graph is a set of points referred to as vertices or nodes which are
connected using lines called edges. The vertices represent entities in a graph.
Edges, on the other hand, express relationships between entities. Hence, while
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nodes model entities, edges model relationships in a network graph. A graph G
with a set of V vertices together with a set of E edges is represented as G= (V,
E). Both vertices and edges can have additional attributes that are used to
describe the entities and relationships. Figure 1.1 depicts a simple graph with
five nodes and six edges.

Modes =A,B,CDLE

J N Edges =« A8 AC, 0C, BEC-D,OE
| mL == f C f:
= 3

Figure 6.1: A simple Graph

In real-world applications of graphs, an edge might represent professional
relationships that exist between people in LinkedIn or a personal relationship
on a social media platform such as Facebook or Instagram.

'-“\\

{

'H__JE_J

o Y
A 'k_lf‘.f
«-J'v\

(D) —{ C
ey

Figure 6.3: Directed Graph



Graphs can broadly be categorized into Undirected (Figurel.2) or Directed
(Figurel.3). An undirected graph is directionless. This means that the edges
have no directions. In other words, the relationship is mutual. For example, a
Facebook or a LinkedIn connection. Contrarily, edges of directed graphs have
directions associated with them. An asymmetric relationship between a boss
and an employee or a teacher and a student can be represented as a directed
graph in data structure. Graphs can also be weighted (Figurel.4) indicating real
values associated with the edges. Depending upon the specific use of the graph,
edge weights may represent quantities such as distance, cost, similarity etc.

\'{-__"1-
E)

Figure 6.4: Weighted Graph

6.2 Representation of Graph

A graph can be represented using 3 data structures- adjacency matrix,
adjacency list and adjacency set.

An adjacency matrix can be thought of as a table with rows and columns. The
row labels and column labels represent the nodes of a graph. An adjacency
matrix is a square matrix where the number of rows, columns and nodes are the
same. Each cell of the matrix represents an edge or the relationship between
two given nodes. For example, adjacency matrix Aij represents the number of
links from i to j, given two nodes i and j.

A B C D E
A 0 0 0 0 1
B 0 0 1 0 0
C 0 1 0 0 1
D 1 0 0 1 0
E 0 1 1 0 0
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Table 6.1: Adjacency Matrix

The adjacency matrix for a directed graph is shown in Figurel.5. Observe that
it is a square matrix in which the number of rows, columns and nodes remain
the same (5 in this case). Each row and column correspond to a node or a
vertex of a graph. The cells within the matrix represent the connection that
exists between nodes. Since, in the given directed graph, no node is connected
to itself, all cells lying on the diagonal of the matrix are marked zero. For the
rest of the cells, if there exists a directed edge from a given node to another,
then the corresponding cell will be marked one else zero.

P
=
P [ Jalslc o |e]
Elloc 1 0o o0 0
— — Flo o o o o
W—~—8) DBloaioioio
i FWo o 1 0 o
' Bl 0o 1o
E |
oy Faeme!
{ D-j.._... i P:,_\_C_,)'E

Figure 6.5: Adjacency Matrix for a directed graph

To understand how an undirected graph can be represented using an adjacency
matrix, consider a small undirected graph with five vertices (Figurel.6). Here,
A is connected to B, but B is connected to A as well. Hence, both the cells i.e.,
the one with source A Destination B and the other one with source B
Destination A are marked one. This suffices the requirement of an undirected
edge. Observe that the second entry is at a mirrored location across the main
diagonal.

I{’_-\\I
"“—E-" [ |a 8 |c o [E |
FElo 1 0 0 1
P P El: o 1 o0 0o
A B Elo 1 0o 10
Elo o 1 0 1
Bl o o 1o
F s’ g
\D.z'. "\C'J

Figure 6.6: Adjacency Matrix for a undirected graph

In case of a weighted graph, the cells are marked with edge weights instead of
ones. In Figurel.7, the weight assigned to the edge connecting nodes B and D



is 3. Hence, the corresponding cells in the adjacency matrix ie. row B Column
D and row D Column B are marked 3.

(E)
3 " [alsfclo[e]
o~ o 3 0 o0 2
o W A T El: 0o 1 0 0
A B Mo 1 0 2 0
o o o 4 o a4
i 1 Ell: o o 4 0
,-’"'""'*." 4 T
\D_.e’r \C_.rll

Figure 6.7: Adjacency Matrix for a weighted graph

In adjacency list representation of a graph, every vertex is represented as a
node object. The node may either contain data or a reference to a linked list.
This linked list provides a list of all nodes that are adjacent to the current node.
Consider a graph containing an edge connecting node A and node B. Then, the
node A will be available in node B’s linked list. Figurel.8 shows a sample
graph of 5 nodes and its corresponding adjacency list.

(A {B) w18
. B o L ’
G R
oy - |"-. | N
| E DK| -D " ¢ | E |
- (E)

Figure 6.8: Adjacency list for directed graph

Note that the list corresponding to node E is empty while lists corresponding to
nodes B and D have 2 entries each.

Similarly, adjacency lists for an undirected graph can also be constructed.
Figurel.9 provides an example of an undirected graph along with its adjacency

list for better understanding. [157]



[158]

(A) B @— »

| ®—A o ]
c o)) =]

= 5) @©— ¢ ¢ L®

- = (Ey+ ¢ | o

Figure 6.9: Adjacency list for undirected graph

Adjacency list enables faster search process in comparison to adjacency matrix.
However, it is not the best representation of graphs especially when it comes to
adding or removing nodes. For example, deleting a node would involve
looking through all the adjacency lists to remove a particular node from all
lists.

The adjacency set mitigates a few of the challenges posed by adjacency list.
Adjacency set is quite similar to adjacency list except for the difference that
instead of a linked list; a set of adjacent vertices is provided. Adjacency list and
set are often used for sparse graphs with few connections between nodes.
Contrarily, adjacency matrix works well for well-connected graphs comprising
many nodes.

6.3 Breadth First Search

Breadth first search is a graph traversal algorithm that starts traversing the
graph from root node and explores all the neighbouring nodes. Then, it selects
the nearest node and explore all the unexplored nodes. The algorithm follows
the same process for each of the nearest node until it finds the goal.

The algorithm of breadth first search is given below. The algorithm starts with
examining the node A and all of its neighbours. In the next step, the neighbours
of the nearest node of A are explored and process continues in the further steps.
The algorithm explores all neighbours of all the nodes and ensures that each
node is visited exactly once and no node is visited twice.

Algorithm

Step 1: SET STATUS =1 (ready state) for each node in G
Step 2: Enqueue the starting node A and set its STATUS =2
Step 3: Repeat Steps 4 and S until QUEUE is empty

Step 4: Dequeue a node N. Process it and set its STATUS =3
Step 5: Enqueue all the neighbours of



N that are in the ready state
(whose STATUS = 1) and set
their STATUS =2
(waiting state)
[END OF LOOP]

Step 6: EXIT

Example

Consider the graph G shown in the following image, calculate the minimum
path p from node A to node E. Given that each edge has a length of 1.

Adjacency Lists

A:B,D
. B:C,F
(a) B (¢ ) C:EG
- 7 \ G:E
/ E:B,F
¥ /G F:A
(p) (E ) B

Solution:

Minimum Path P can be found by applying breadth first search algorithm that
will begin at node A and will end at E. the algorithm uses two queues, namely
QUEUEI1 and QUEUE2. QUEUE]1 holds all the nodes that are to be processed
while QUEUE2 holds all the nodes that are processed and deleted from
QUEUEIL.

Let’s start examining the graph from Node A.
1. Add A to QUEUEI and NULL to QUEUE2.
QUEUE1 = {A}
QUEUE2 = {NULL}

2. Delete the Node A from QUEUEI and insert all its neighbours. Insert Node
A into QUEUE2

QUEUEI = {B, D}
QUEUE2 = {A}

3. Delete the node B from QUEUEI and insert all its neighbours. Insert node B
into QUEUE2.
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QUEUEI = {D, C, F}
QUEUE2 = {A, B}

4. Delete the node D from QUEUEI and insert all its neighbours. Since F is the
only neighbour of it which has been inserted, we will not insert it again. Insert
node D into QUEUE2.

QUEUEI = {C, F}
QUEUE2 = {A, B, D}

5. Delete the node C from QUEUEI and insert all its neighbours. Add node C
to QUEUE2.

QUEUEL = {F, E, G}
QUEUE2 = {A, B, D, C}

6. Remove F from QUEUEI and add all its neighbours. Since all of its
neighbours has already been added, we will not add them again. Add node F to
QUEUE2.

QUEUEI = {E, G}
QUEUE2 = {A, B, D, C, F}

7. Remove E from QUEUEI, all of E's neighbours has already been added to
QUEUEI therefore we will not add them again. All the nodes are visited and
the target node i.¢. E is encountered into QUEUE2.

QUEUEL = {G}
QUEUE2 = {A, B, D, C, F, E}

Now, backtrack from E to A, using the nodes available in QUEUE2.

The minimum path willbe A—-B — C — E.

Check your progress

Q1. What are graph algorithms used for? Explain your answer
(Q2.What is breadth first search in graph?

Q3.Compute the least cost path in a weighted digraph using BFS.
Q4.Find the path between given vertices in a directed graph.



6.4 Depth First Search

Depth first search (DFS) algorithm starts with the initial node of the graph G,
and then goes to deeper and deeper until we find the goal node or the node
which has no children. The algorithm, then backtracks from the dead end
towards the most recent node that is yet to be completely unexplored.

The data structure which is being used in DFS is stack. The process is similar
to BFS algorithm. In DFS, the edges that leads to an unvisited node are called
discovery edges while the edges that leads to an already visited node are called
block edges.

Algorithm

Step1:  SET STATUS =1 (ready state) for each node in G

Step2:  Push the starting node A on the stack and set its STATUS =2

Step3:  Repeat Steps 4 and 5 until STACK is empty

Step4:  Pop the top node N. Process it and set its STATUS =3

Step5:  Push on the stack all the neighbours of N that are in the ready
state (whose STATUS = 1) and set their STATUS = 2 (waiting state)

[END OF LOOP]
Step6:  EXIT
Example:

Consider the graph G along with its adjacency list, given in the figure below.
Calculate the order to print all the nodes of the graph starting from node H, by
using depth first search (DFS}) algorithm.

(H) Adjacency Lists

F)

:B,D
'C, F
'E,G,H
‘E, H
:B,F
A
i F
CA

I oTmTmgom>P

Solution:
[161]
Push H onto the stack
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STACK: H

POP the top element of the stack i.e. H, print it and push all the neighbours of
H onto the stack that are is ready state.

Print H
STACK: A

Pop the top element of the stack i.e. A, print it and push all the neighbours of A
onto the stack that are in ready state.

Print A
Stack: B, D

Pop the top element of the stack i.e. D, print it and push all the neighbours of D
onto the stack that are in ready state.

Print D
Stack: B, F

Pop the top element of the stack i.e. F, print it and push all the neighbours of F
onto the stack that are in ready state.

Print F
Stack: B

Pop the top of the stack 1.e. B and push all the neighbours
Print B
Stack: C

Pop the top of the stack i.e. C and push all the neighbours.
Print C
Stack: E, G

Pop the top of the stack i.e. G and push all its neighbours.
Print G

Stack: E

Pop the top of the stack i.e. E and push all its neighbours.
Print E
Stack:



Hence, the stack now becomes empty and all the nodes of the graph have been
traversed.

The printing sequence of the graph will be:
H—-A—-»D—2F—-B—-C—->G—-E

6.5 Topological sort

Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering
of vertices such that for every directed edge u v, vertex u comes before v in
the ordering. Topological Sorting for a graph is not possible if the graph is
not a DAG.

For example, a topological sorting of the following graph is “54 23 1 0.
There can be more than one topological sorting for a graph. For example,
another topological sorting of the following graph is “4 52 3 1 0”. The first
vertex in topological sorting is always a vertex with in-degree as 0 (a vertex
with no incoming edges).

Topological Sorting vs Depth First Traversal (DFS):

In DFS, we print a vertex and then recursively call DFS for its adjacent
vertices. In topological sorting, we need to print a vertex before its adjacent
vertices. For example, in the given graph, the vertex ‘5’ should be printed
before vertex ‘0’, but unlike DFS, the vertex ‘4’ should also be printed
before vertex ‘0°. So topological sorting is different from DFS. For
example, a DFS of the shown graph is “5 2 3 1 0 4”, but it is not a
topological sorting. [163]
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Algorithm to find Topological Sorting:

We recommend to first see the implementation of DFS. We can modify
DFS to find Topological Sorting of a graph. In DFS, we start from a vertex,
we first print it and then recursively call DFS for its adjacent vertices. In
topological sorting, we use a temporary stack. We don’t print the vertex
immediately, we first recursively call topological sorting for all its adjacent
vertices, then push it to a stack. Finally, print contents of the stack. Note
that a vertex is pushed to stack only when all of its adjacent vertices (and
their adjacent vertices and so on) are already in the stack.

1
Adja cent list (G) 0—

1

2-3

31

4-01

S =+ 4,

0 1 2 3 4 5

visited | false | false | false | false | false | false

Stack( empty )

Step 1: Topological Sort{ 0 ), visited[ 0 ] = true

List is empty. No more recursion call,

Stack 0

Step 2: Topological Sort( 1), visited[ 1 ] = true

L

List is empty. No more recursion call.

Stack 011




Step 3: Topological Sort( 2 ), visited[ 2] = true

Topological Sort( 3 ), visited[ 3 ] = true

L

'"1"is already visited. No more recurrsion call

Stack 0

1

3

2

Step 4: Topological Sort( 4 ), visited[ 4 ] = true

‘0", "1" are already visited. No more recurrsion call

Stack 011

3

214

Step 5: Topological Sort( 5 ), visited[ 5] = true

'2','0" are already visited. No more recurrsion call

Stack 011

3

2|als

Step 6: Print all elements of stack from top to bottom

Following are the implementations of topological sorting.

// A C++ program to print topological

// sorting of a DAG
#include <iostream>
#include <list>
#include <stack>
using namespace std;

// Class to represent a graph
class Graph {

// No. of vertices’

intV:

// Pointer to an array containing adjacency listsList

list<int>* adj;

// A function used by topologicalSort

void topologicalSortUtil(int v, bool visited(],

stack<int>& Stack);
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public:
// Constructor
Graph(int V);

// function to add an edge to graph
void addEdge(int v, int w);

// prints a Topological Sort of
// the complete graph
void topologicalSort();

},.

Graph::Graph(int V)
{
this->V =V;
adj = new list<int>[V];

/

void Graph::addEdge(int v, int w)
/
// Add wto v’s list.
adj[v].push_back(w);
/

// A recursive function used by topologicalSort
void Graph: :topologicalSortUtil(int v, bool visited(],
stack<int>&
Stack)
{

/7 Mark the current node as visited.
visited[v] = true;

// Recur for all the vertices
// adjacent to this vertex
list<int>::iterator i;
for (i = adj{v].begin(); i = adj[v].end(); ++i)
if (isited[*i])
topologicalSortUtil(*i, visited, Stack);

// Push current vertex to stack
// which stores result
Stack.push(v);

#

[166] // The function to do Topological Sort.



// It uses recursive topologicalSortUtil()
void Graph: :topologicalSort()

{

/

stack<int> Stack;

// Mark all the vertices as not visited
bool* visited = new bool[V];
for(inti=0;i<V;it++)

visited[i] = false;

// Call the recursive helper function
// to store Topological
// Sort starting from all
// vertices one by one
for(inti=0;i<V;it+t+)
if (visitedfi] == false)
topologicalSortUtil(i, visited, Stack);

// Print contents of stack

while (Stack.empty() == false) {
cout << Stack.top() << "";
Stack.pop();

/

/7 Driver Code
int main()

{

// Create a graph given in the above diagram
Graph g(6);

g.addEdge(5, 2);

g.addEdge(5, 0);

g.addEdge(4, 0);

g.addEdge(4, 1);

g.addEdge(2, 3);

g.addEdge(3, 1);

cout << "Following is a Topological Sort of the given "

"graph \n";

// Function Call
g.topologicalSort();

return 0;
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Output

Following is a Topological Sort of the given graph
542310

Complexity Analysis:

[ Time Complexity: O(V+E).
o The above algorithm is simply DFS with an extra stack. So
time complexity is the same as DFS which is.
[1 Auxiliary space: O(V).
o The extra space is needed for the stack.

Note: Here, we can also use vector instead of the stack. If the vector is
used, then print the elements in reverse order to get the topological sorting.

Applications:

Topological Sorting is mainly used for scheduling jobs from the given
dependencies among jobs. In computer science, applications of this type
arise 1n instruction scheduling, ordering of formula cell evaluation when re-
computing formula values in spreadsheets, logic synthesis, determining the
order of compilation tasks to perform in make files, data serialization, and
resolving symbol dependencies in linkers

6.6 Strongly connected components

A directed graph is strongly connected if there is a path between all pairs of
vertices. A strongly connected component (SCC) of a directed graph is a
maximal strongly connected subgraph. For example, there are 3 SCCs in the
following graph.



We can find all strongly connected components in O(V+E) time using
Kosaraju’s algorithm. Following is detailed Kosaraju’s algorithm.

1) Create an empty stack ‘S’ and do DFS traversal of a graph. In DFS
traversal, after calling recursive DFS for adjacent vertices of a vertex,
push the vertex to stack. In the above graph, if we start DFS from
vertex 0, we get vertices in stack as 1, 2, 4, 3, 0.

2) Reverse directions of all arcs to obtain the transpose graph.

3) One by one pop a vertex from S while S is not empty. Let the popped
vertex be “v’. Take v as source and do DFS (call DFSUtil(v)). The
DFS starting from v prints strongly connected component of v. In the
above example, we process vertices in order 0, 3, 4, 2, 1 (One by one
popped from stack).

How does this work?

The above algorithm is DFS based. It does DFS two times. DFS of a graph
produces a single tree if all vertices are reachable from the DFS starting point.
Otherwise DFS produces a forest. So DFS of a graph with only one SCC always
produces a tree.

The important point to note is DFS may produce a tree or a forest when there are
more than one SCCs depending upon the chosen starting point. For example, in
the above diagram, if we start DFS from vertices 0 or 1 or 2, we get a trec as
output. And if we start from 3 or 4, we get a forest. To find and print all SCCs, we
would want to start DFS from vertex 4 (which is a sink vertex), then move to 3
which is sink in the remaining set (set excluding 4) and finally any of the
remaining vertices (0, 1, 2). So how do we find this sequence of picking vertices as
starting points of DFS? Unfortunately, there is no direct way for getting this
sequence.
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However, if we do a DFS of graph and store vertices according to their finish
times, we make sure that the finish time of a vertex that connects to other SCCs
(other than its own SCC), will always be greater than finish time of vertices in the
other SCC (See this for proof). For example, in DFS of above example graph,
finish time of 0 is always greater than 3 and 4 (irrespective of the sequence of
vertices considered for DFS). And finish time of 3 is always greater than 4. DFS
doesn’t guarantee about other vertices, for example finish times of 1 and 2 may be
smaller or greater than 3 and 4 depending upon the sequence of vertices
considered for DFS.

So to use this property, we do DFS traversal of complete graph and push every
finished vertex to a stack. In stack, 3 always appears after 4, and 0 appear after
both 3 and 4.

In the next step, we reverse the graph. Consider the graph of SCCs. In the reversed
graph, the edges that connect two components are reversed. So the SCC {0, 1, 2}
becomes sink and the SCC {4} becomes source. As discussed above, in stack, we
always have 0 before 3 and 4. So if we do a DFS of the reversed graph using
sequence of vertices in stack, we process vertices from sink to source (in reversed
graph). That is what we wanted to achieve and that is all needed to print SCCs one
by one.

Graph of SCCs

SCCs in reverse graph

Following is C+ implementation of Kosaraju’s algorithm,

/ C++ Implementation of Kosaraju's algorithm to print all SCCs
#include <iostream>

#include <list>

#include <stack>

using namespace std;

class Graph



public:

Graph:

int V; // No. of vertices

list<int> *adjj; // An array of adjacency lists

// Fills Stack with vertices (in increasing order of finishing

// times). The top element of stack has the maximum finishing
/ time

void fillOrder(int v, bool visited[], stack<int>&Stack);

/ A recursive function to print DFS starting from v
void DFSUtil(int v, bool visited[]);

Graph(int V),
void addEdge(int v, int w);

// The main function that finds and prints strongly connected
// components

void printSCCs();

// Function that returns reverse (or transpose) of this graph

Graph getTranspose();

:Graph(int V)

this->V=V;

adj = new list<int>[V];

// A recursive function to print DFS starting from v
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void Graph::DFSUltil(int v, bool visited(])

{
// Mark the current node as visited and print it
visited[v] = true;

cout <<y<< "

// Recur for all the vertices adjacent to this vertex
list<int>::iterator i;
for (i = adj[v].begin(); i I= adjfv].end(); ++i)
if (Wvisited(*i])
DFSUtil(*i, visited),

Graph Graph::getTranspose()

{
Graph g(V);
Jor(@intv=0;v<V¥;v++)
{
// Recur for all the vertices adjacent to this vertex
list<int>::iterator i;
Jor(i = adj{v].begin(); i != adj{v].end(); ++i)
{
g.adif*i].push_back(v);
}
/
return g;
}

void Graph::addEdge(int v, int w)
{



adj[v].push_back(w); // Add wto v’s list.

void Graph.: :fillOrder(int v, bool visited[], stack<int><&Stack)
{
// Mark the current node as visited and print it

visited[v] = true;

// Recur for all the vertices adjacent to this vertex
list<int>::iterator i;
for(i = adjfv].begin(); i I= adj{v].end(); ++i)
(tvisited[*i])
SillOrder(*%i, visited, Stack);

// All vertices reachable from v are processed by now, push v
Stack.push(v);

// The main function that finds and prints all strongly connected
// components
void Graph::printSCCs()
{
stack<int> Stack;

// Mark all the vertices as not visited (For first DFS)
bool *visited = new boolfV];
Jor(inti=0;i<V;it++)

visited[i] = false;

// Fill vertices in stack according to their finishing times [173]



SJor(inti=0; i <V;it+)
iftvisitedfi] == false)
[fillOrder(i, visited, Stack),

// Create a reversed graph
Graph gr = getTranspose();

// Mark all the vertices as not visited (For second DFS)
Jor(inti=0;i<V;it++)

visitedfi] = false;

// Now process all vertices in order defined by Stack
while (Stack.empty() == false)
{

// Pop a vertex from stack

int v = Stack.top();

Stack.pop();

// Print Strongly connected component of the popped vertex
if (isited[v] == false)
{

gr.DFSUtil(v, visited);

cout << endl;

// Driver program to test above functions
int main()
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// Create a graph given in the above diagram
Graph g(5);

g.addEdge(], 0);

g.addEdge(0, 2);

g.addEdge(2, 1);

g.addEdge(0, 3);

g.addEdge(3, 4);

cout << "Following are strongly connected components in "

"given graph \n";
g.printSCCs();

return 0;
/
Output:
Following are strongly connected components in given graph
012
3
4

Time Complexity: The above algorithm calls DFS, finds reverse of the graph
and again calls DFS. DFS takes O(V+E) for a graph represented using
adjacency list. Reversing a graph also takes O(V+E) time. For reversing the
graph, we simple traverse all adjacency lists.

The above algorithm is asymptotically best algorithm, but there are other
algorithms like Tarjan’s algorithm and path-based algorithm which have same
time complexity but find SCCs using single DFS. The Tarjan’s algorithm is
discussed in the following post.

Applications:

SCC algorithms can be used as a first step in many graph algorithms that work
only on strongly connected graph.

In social networks, a group of people are generally strongly connected (For
example, students of a class or any other common place). Many people in these
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groups generally like some common pages or play common games. The SCC
algorithms can be used to find such groups and suggest the commonly liked
pages or games to the people in the group who have not yet liked commonly
liked a page or played a game.

6.7 Flow Networks

Flow Network is a directed graph that is used for modelling material Flow.
There are two different vertices; one is a source which produces material at
some steady rate, and another one is sink which consumes the content at the
same constant speed. The flow of the material at any mark in the system is the
rate at which the element moves.

Some real-life problems like the flow of liquids through pipes, the current
through wires and delivery of goods can be modelled using flow networks.

Definition: A Flow Network is a directed graph G = (V, E) such that

1. For each edge (u, v) € E, we associate a nonnegative weight capacity ¢
(u, v} = 0. If (u, v) € E, we assume that ¢ (u, v) = 0.

2. There are two distinguishing points, the source s, and the sink t;

3. For every vertex v € V, there is a path from s to t containing v.

Let G = (V, E) be a flow network. Let s be the source of the network, and let t
be the sink. A flow in G is a real-valued function £ V x V—R such that the
following properties hold:

[0 Capacity Constraint: For allu, v € V, we need f (u, v) <c (u, v).
[0 Skew Symmetry: For all u, v € V, we need f (u, v) =- f (u, v).
[0 Flow Conservation: For all u € V-{s, t}, we need

Zf(mv) = Zf(u,v} =0

vel ucV

The quantity f (u, v), which can be positive or negative, is known as the net
flow from vertex u to vertex v. In the maximum-flow problem, we are given a
flow network G with source s and sink t, and we wish to find a flow of
maximum value from s to t.

The three properties can be described as follows:

1. Capacity Constraint makes sure that the flow through each edge is not
greater than the capacity.

2. Skew Symmetry means that the flow from u to v is the negative of the
flow from v to u.

3. The flow-conservation property says that the total net flow out of a
vertex other than the source or sink is 0. In other words, the amount of



flow into a v is the same as the amount of flow out of v for every vertex
VEV- {5t}

(b)

The value of the flow is the net flow from the source,

1= ) (5,v)

vEY

The positive net flow entering a vertex v is described by

Z f(u,v)
{ueVif{uwv) =0)

The positive net flow leaving a vertex is described symmetrically. One
interpretation of the Flow-Conservation Property is that the positive net flow
entering a vertex other than the source or sink must equal the positive net flow
leaving the vertex.

A flow f is said to be integer-valued if f (u, v) is an integer for all (u, v) € E.
Clearly, the value of the flow is an integer is an integer-valued flow.

6.8 Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm is used to detect maximum flow from start
vertex to sink vertex in a given graph. In this graph, every edge has the
capacity. Two vertices are provided named Source and Sink, The source vertex
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has all outward edge, no inward edge, and the sink will have all inward edge no
outward edge.

Maximum
Flow in this
graphis 23

There are some constraints;

[0 Flow on an edge doesn’t exceed the given capacity of that graph.
[0 Incoming flow and outgoing flow will also equal for every edge, except

the source and the sink.
Input and Output
Input:
The adjacency matrix:
0 10 0 10 0 0
0 0 4 2 8 0
0 0 0 0 0 10
0 0 0 0 9 0
0 0 6 0 0 10
0 0 0 0 0 0
Output:

Maximum flow is: 19
Algorithm
bfs(vert, start, sink)
[178] Input: The vertices list, the start node, and the sink node.



Output — True when the sink is visited.

Begin
initially mark all nodes as unvisited
state of start as visited
predecessor of start node is ¢
insert start into the queue qu
while qu is not empty, do
delete element from queue and set to vertex u
for all vertices i, in the residual graph, do
if u and i are connected, and i is unvisited, then
add vertex i into the queue
predecessor of i is u
mark i as visited
done
done
return true if state of sink vertex is visited
End
fordFulkerson(vert, source, sink)
Input: The vertices list, the source vertex, and the sink vertex.
Output — The maximum flow from start to sink.
Begin
create a residual graph and copy given graph into it
while bfs(vert, source, sink) is true, do
pathFlow := w
v = sink vertex
while v # start vertex, do
u := predecessor of v
pathFlow := minimum of pathFlow and residualGraphfu, v]
v := predecessor of v [179]



done

v ;= sink vertex

while v # start vertex, do
u := predecessor of v
residualGraph[u,v] := residualGraph{u,v] — pathFlow
residualGraph[v,u] := residualGraph{v,u] — pathFlow
v := predecessor of v

done

maFlow := maxFlow + pathFlow
done
return maxFlow
End

Implementation of fordFulkerson

Hinclude<iostream>
#include<queue>

#define NODE 6

using namespace std;

typedef struct node {
int val;
int state; //status

int pred, //predecessor

Jnode;
[180]



int minimum(int a, int b) {
return (a<b)?a:b;

}

int resGraph{NODE][NODE];

/* int graph{NODEJ[NODE] = {
{0, 16,13, 0, 0, 0},
{0, 0,10, 12,0, 0},
{0, 4, 0,0, 14, 0},
{0, 0,9, 0,0, 20},
{0,007 0 4},
{0, 0,0, 0,0, 0}
P

int graph{NODE]J[NODE] = {
{0, 10,0, 10, 0, 0},
{0,0 4,2 8 0},
{0,000 0, 10},
{0,000 09,0},
{0,0,6,0 0, 10},
{0,0,0,0 0 0}

int bfs(node *vert, node start, node sink) {
node u;
inti, j

queue<node> que;

for(i = 0; i<NODE; i++) { [181]



vertfi].state = 0; //not visited

vert[start.val].state = 1; /Nvisited
vert[start.val].pred = -1; //no parent node

que.push(start); /finsert starting node

while(lque.empity()) {
//delete from queue and print
u = que.front();

que.pop();

Jor(i = 0, i<NODE; i++) {
iftresGraphfu.vall[i] > 0 && vertfi].state == 0} {
que.push(vertfi]);
vert[i].pred = u.val;
vertfi] state = 1;
}
/
/
return (vert{sink.val].state == 1);

}

int fordFulkerson(node *vert, node source, node sink} {
int maxFlow = 0;

intu v

Sfor(inti = 0; i<NODE; i++) {
for(intj = 0; j<NODE; j++) {
[182] resGraphfi][j] = graph[i][j]; /initially residual graph is main graph



while(bfs(vert, source, sink)) { //find augmented path using bfs algorithm
int pathFlow = 999;//as infinity
Sforfv = sink.val; v != source.val; v=vert{v].pred) {
u = vert{v].pred;
pathFlow = minimum(pathFlow, resGraphfu][v]);
}

Sfor(v = sink.val; v 1= source.val; v=vert[v].pred) {
u = vertfv].pred,
resGraphfu][v] -= pathFlow; /fupdate residual capacity of edges

resGraph{v]{u] += pathFlow; //update residual capacity of reverse
edges

/

maxFlow += pathFlow;

4

return maxFlow; //the overall max flow
g
int main() {

node verticesfNODE];

node source, sink;

Jor(int i = 0; i<NODE; i++) {

verticesfi].val = i;

source.val = 0);
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sink.val = 5;
int maxFlow = fordFulkerson(vertices, source, sink);

cout << "Maximum flow is: " << maxFlow << endl;

/

Output

Maximum flow is: 19

6.9 Summary

In this unit you have learnt about Graph Algorithms introduction,
representation of graphs. You have than learnt about breadth first search and
depth first search, topological sort and finally you have studied about strongly
connected component, flow networks and Ford-Fulkerson method.

[J A graph is an abstract notation used to represent the connection
between pairs of objects. A graph consists of — Vertices —
Interconnected objects in a graph are called vertices.

[0 Breadth-first search (BFS) is an algorithm that is used to graph data or
searching tree or traversing structures. This algorithm selects a single
node (initial or source point) in a graph and then visits all the nodes
adjacent to the selected node. Remember, BFS accesses these nodes one
by one.

[0 Depth-first search is used in topological sorting, scheduling problems,
cycle detection in graphs, and solving puzzles with only one solution,
such as a maze or a Sudoku puzzle. Other applications involve
analyzing networks, for example, testing if a graph is bipartite.

6.10 Review Questions

Q1. What is Graph and its representation? Explain your answer
Q2. How do you do a breadth first search? Elaborate your answer.
[184] Q3. Compute the DFS tree for the graph given below-



U ' W

X Y Fd
Also, show the discovery and finishing time for each vertex and classify the
edges.

Q4. Traverse the following graph using Breadth First Search Technique-
R S T U
Vv W X Y

Consider vertex S as the starting vertex.

Q5. Find the number of different topological orderings possible for the given
graph-
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UNIT-7 Backtracking

Structure

7.0 Introduction

7.1 Backtracking -General method
7.2 Applications

7.3 8-queen problem

7.4 Sum of subsets problem

7.5 Graph colouring.

7.6 Hamiltonian cycles.

7.7 Summary

7.8 Review Questions



7.0 Introduction

This is the second unit of this block. In this unit you will learn about
backtracking. There are eight sections in this unit. Section 2.1 explain about
backtracking general method. Next section i.e. section 2.2 define applications
of backtracking. Section 2.3 define 8-queen problem. In the section 2.4 you
will learn about sum of subsets problem. Section 2.5 describe about graph
colouring. In the section 2.6 you will know about Hamiltonian cycles. Last two
section provide summary and review questions.

Objective
After studying this unit, you should be able to define:

General method of Backtracking
Applications of Backtracking
8-queen problem

Sum of subsets problem

graph coloring

Hamiltonian cycles.

I I I I I O

7.1 Backtracking-General method
Backtracking is a form of recursion.

The usual scenario is that you are faced with a number of options, and you
must choose one of these. After you make your choice you will get a new set of
options; just what set of options you get depends on what choice you made.
This procedure is repeated over and over until you reach a final state. If you
made a good sequence of choices, your final state is a goal state; if you didn't,
it isn't.

Conceptually, you start at the root of a tree; the tree probably has some good
leaves and some bad leaves, though it may be that the leaves are all good or all
bad. You want to get to a good leaf. At each node, beginning with the root, you
choose one of its children to move to, and you keep this up until you get to a
leaf.

Suppose you get to a bad leaf. You can backtrack to continue the search for a
good leaf by revoking your most recent choice, and trying out the next option
in that set of options. If you run out of options, revoke the choice that got you
here, and try another choice at that node. If you end up at the root with no
options left, there are no good leaves to be found.
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This needs an example.

A /Dot\ B
C/ \D E/ \F

biad bad good biad

Starting at Root, your options are A and B. You choose A.
At A, your options are C and D. You choose C.

C is bad. Go back to A.

At A, you have already tried C, and it failed. Try D,

D is bad. Go back to A.

At A, you have no options left to try. Go back to Root.

At Root, you have already tried A, Try B.

At B, your options arc E and F. Try E.

E is good. Congratulations!

e S - B

e

In this example we drew a picture of a tree. The tree is an abstract model of the
possible sequences of choices we could make. There is also a data structure
called a tree, but usually we don't have a data structure to tell us what choices
we have. (If we do have an actual tree data structure, backtracking on it is
called depth-first tree searching.)

The backtracking algorithm.

Here is the algorithm (in pseudocode) for doing backtracking from a given
node n:

boolean solve (Node n) {
ifnis aleaf node {
if the leaf is a goal node, return true
else return false
Jelse{
Joreach childc of n {

if solve(c) succeeds, return true



return false

/

Notice that the algorithm is expressed as a Boolean function. This is essential
to understanding the algorithm. If solve(n) is true, that means node n is part of
a solution--that is, node n is one of the nodes on a path from the root to some
goal node. We say that n is solvable. If solve (n) is false, then there is no path
that includes n to any goal node.

How does this work?

[J Ifany child of n is solvable, then n is solvable,
O Ifno child of n is solvable, then n is not solvable.

Hence, to decide whether any non-leaf node n is solvable (part of a path to a
goal node), all you have to do is test whether any child of n is solvable. This is
done recursively, on each child of n, In the above code, this is done by the lines

for each childcof n {

if solve(c) succeeds, return true

}

return false

Eventually the recursion will "bottom" out at a leaf node. If the leaf node is a
goal node, it is solvable; if the leaf node is not a goal node, it is not solvable.
This is our base case. In the above code, this is done by the lines

ifnis a leaf node {
if the leaf is a goal node, return true
else return false

/

The backtracking algorithm is simple but important. You should understand it
thoroughly. Another way of stating it is as follows:

[ To search a tree:

1. Ifthe tree consists of a single leaf, test whether it is a goal node,

2. Otherwise, search the subtrees until you find one containing a goal
node, or until you have searched them all unsuccessfully,
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Non-recursive backtracking, using a stack

Backtracking is a rather typical recursive algorithm, and any recursive
algorithm can be rewritten as a stack algorithm. In fact, that is how your
recursive algorithms are translated into machine or assembly language.

boolean solve (Node n) {

put node n on the stack;
while the stack is not empty {
if the node at the top of the stack is a leaf {
if it is a goal node, return true
else pop it off the stack
/
else {
if the node at the top of the stack has untried children
push the next untried child onto the stack
else pop the node off the stack

/

return false

Starting from the root, the only nodes that can be pushed onto the stack are the
children of the node currently on the top of the stack, and these are only pushed
on one child at a time; hence, the nodes on the stack at all times describe a
valid path in the tree. Nodes are removed from the stack only when it is known
that they have no goal nodes among their descendants. Therefore, if the root
node gets removed (making the stack empty), there must have been no goal
nodes at all, and no solution to the problem.

When the stack algorithm terminates successfully, the nodes on the stack form
(in reverse order) a path from the root to a goal node.

Similarly, when the recursive algorithm finds a goal node, the path information
is embodied (in reverse order) in the sequence of recursive calls. Thus as the



recursion unwinds, the path can be recovered one node at a time, by (for
instance) printing the node at the current level, or storing it in an array.

Here is the recursive backtracking algorithm, modified slightly to print (in
reverse order) the nodes along the successful path:

boolean solve (Node n) {
ifnis aleaf node {

if the leaf is a goal node {

printn
return true
;
else return false
Jelse {
for each child c of n {

if solve(c) succeeds {

print n

return true

/

return false

Keeping backtracking simple

All of these versions of the backtracking algorithm are pretty simple, but when
applied to a real problem, they can get pretty cluttered up with details. Even
determining whether the node is a leaf can be complex: for example, if the path
represents a series of moves in a chess endgame problem, the leaves are the
checkmate and stalemate solutions.

To keep the program clean, therefore, tests like this should be buried in
methods. In a chess game, for example, you could test whether a node is a leaf
by writing a game Over method (or you could even call it isLeaf). This method
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would encapsulate all the ugly details of figuring out whether any possible
moves remain.

Notice that the backtracking algorithms require us to keep track, for each node
on the current path, which of its children have been tried already (so we don't
have to try them again). In the above code we made this look simple, by just
saying for each child ¢ of n. In reality, it may be difficult to figure out what the
possible children are, and there may be no obvious way to step through them.
In chess, for example, a node can represent one arrangement of pieces on a
chessboard, and each child of that node can represent the arrangement after
some piece has made a legal move. How do you find these children, and how
do you keep track of which ones you've already examined?

The most straightforward way to keep track of which children of the node have
been tried is as follows: Upon initial entry to the node (that is, when you first
get there from above), make a list of all its children. As you try each child, take
it off the list. When the list is empty, there are no remaining untried children,
and you can return "failure.” This is a simple approach, but it may require quite
a lot of additional work.

There is an easier way to keep track of which children have been tried, if you
can define an ordering on the children. If there is an ordering, and you know
which child you just tried, you can determine which child to try next.

For example, you might be able to number the children 1 through n, and try
them in numerical order. Then, if you have just tried child k, you know that
you have already tried children 1 through k-1, and you have not yet tried
children k+1 through n. Or, if you are trying to color a map with just four
colors, you can always try red first, then yellow, then green, then blue. If child
yellow fails, you know to try child green next. If you are searching a maze, you
can try choices in the order left, straight, right (or perhaps north, east, south,
west).

It isn't always easy to find a simple way to order the children of a node. In the
chess game example, you might number your pieces (or perhaps the squares of
the board) and try them in numerical order; but in addition each piece may also
have several moves, and these must also be ordered.



You can probably find some way to order the children of a node. If the
ordering scheme is simple enough, you should use it; but if it is too
cumbersome, you are better off keeping a list of untried children.

Example: TreeSearch

For starters, let's do the simplest possible example of backtracking, which is
searching an actual tree. We will also use the simplest kind of tree, a binary
tree.

A binary tree is a data structure composed of nodes. One node is designated as
the root node. Each node can reference (point to) zero, one, or two other nodes,
which are called its children. The children are refetred to as the left child
and/or the right child. All nodes are reachable (by one or more steps) from the
root node, and there are no cycles. For our purposes, although this is not part of
the definition of a binary tree, we will say that a node might or might not be a
goal node, and will contain its name. The first example in this paper (which we
repeat here) shows a binary tree.

A/RDM\B
SN N

bad bad good biad

Here's a definition of the BinaryTree class:
public class BinaryTree {
BinaryTree leftChild = nuli;
BinaryTree rightChild = null;
boolean isGoalNode = false;

String name;

BinaryTree(String name, BinaryTree left, BinaryTree right, boolean
isGoalNode) {

this.name = name;

leftChild = lefi;
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rightChild = right;
this.isGoalNode = isGoalNode;

}

Next we will create a TreeSearch class, and in it we will define a method
makeTree() which constructs the above binary tree.

static BinaryTree makeTree() {
BinaryTreeroot, a, b, ¢, d, ¢, f;
¢ = new BinaryTree("C", null, null, false);
d = new BinaryTree("D", null, null, false);
e = new BinaryTree("E", null, null, true);
f = new BinaryTree("F", null, null, false);
a = new BinaryTree("A", c, d, false);
b = new BinaryTree("B", e, f, false);
root = new BinaryTree("Root", a, b, false);
return root;

Y/

Here's a main program to create a binary tree and try to solve it:

public static void main (String args[]) {
BinaryTree tree = makeTree();
System.out.printin(solvable(tree));

}

And finally, here's the recursive backtracking routine to "solve" the binary tree
by finding a goal node.

static boolean solvable (BinaryTree node) {

/* 1 % if (node == null) return false;

/* 2 ¥/ if (node.isGoalNode) return true;

/* 3 ¥ if (solvable(node.leftChild)) return true;
/* 4 */ if (solvable(node.rightChild)) return true;
/* 5 */ return false;
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Here's what the numbered lines are doing;:

1. If we are given a null node, it's not solvable. This statement is so that
we can call this method with the children of a node, without first
checking whether those children actually exist.

2. Ifthe node we are given is a goal node, return success.

3. See if the left child of node is solvable, and if so, conclude that node is
solvable. We will only get to this line if node is non-null and is not a
goal node, says to

4. Do the same thing for the right child.

5. Since neither child of node is solvable, node itself is not solvable.

This program runs correctly and produces the unenlightening result true.

Each time we ask for another node, we have to check if it is null. In the above
we put that check as the first thing in solvable. An alternative would be to
check first whether each child exists, and recur only if they do. Here's that
alternative version:

static boolean solvable (BinaryTree node) {
if (node.isGoalNode) return true;
if (node.leftChild = null && solvable(node.leftChild)) return true;
if (node.rightChild != null && solvable(node.rightChild)) return true;

return false;

What are the children?

One of the things that simplifies the above binary tree search is that, at each
choice point, you can ignore all the previous choices. Previous choices don't
give you any information about what you should do next; as far as you know,
both the left and the right child are possible solutions. In many problems,
however, you may be able to eliminate children immediately, without
recursion.

Consider, for example, the problem of four-coloring a map. It is a theorem of
mathematics that any map on a plane, no matter how convoluted the countries
are, can be colored with at most four colors, so that no two countries that share
a border are the same color.

To color a map, you choose a color for the first country, then a color for the
second country, and so on, until all countries are colored. There are two ways
to do this:
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[0 Method 1. Try each of the four possible colors, and recur. When you
tun out of countries, check whether you are at a goal node.

[0 Method 2. Try only those colors that have not already been used for an
adjacent country, and recur. If and when you run out of countries, you
have successfully colored the map.

Let's apply each of these two methods to the problem of coloring a
checkerboard. This should be easily solvable; after all, a checkerboard only
needs two colors.

In both methods, the colors are represented by integers, from RED=1 to
BLUE=4. We define the following helper methods. The helper method code
isn't displayed here because it's not important for understanding the method
that does the backtracking.

boolean maplsOK()

Used by method 1 to check (at a leaf node)} whether the entire map is colored
correctly.

boolean okToColor(int row, int column, int color)

Used by method 2 to check, at every node, whether there is an adjacent node
already colored with the given color.

int{] nextRowAndColumn(int row, int column)

Used by both methods to find the next "country”" (actually, the row and
column of the next square on the checkerboard).

Here's the code for method 1:
boolean explorel (int row, int column, int color) {

if (row >= NUM_ROWS) return maplsOK();

map[row] [column] = color;

Jor (int nextColor = RED; nextColor <= BLUE; nextColor++) {
int[] next = nextRowAndColumn(row, column);
if (explorel(next [0], next [1], nextColor)} return true;

/

return false;

/
And here's the code for method 2:

boolean explore2(int row, int column, int color) {



if (row >= NUM_ROWS) return true;
if (okToColor(row, column, color)) {
map[row] [column] = color;
Jfor (int nextColor = RED; nextColor <= BLUE; nextColor++) {
int{[ next = nextRowAndColumn(row, column);

if (explore2(next [0], next [1], nextColor)) return true;

/

return false;

7.2Applications-Backtracking

To find all Hamiltonian Paths present in a graph.
To solve the N Queen problem.

Maze solving problem.

The Knight's tour problem.

el o

7.2.1 Hamiltonian path problem:

In the mathematical field of Graph Theory, the Hamiltonian path
problem and the Hamiltonian cycle problem are problems of
determining whether a Hamiltonian path (a path in an undirected or
directed graph that visits each vertex exactly once) or a Hamiltonian
cycle exists in a given graph (whether directed or undirected). Both
problems are NP-complete.

The Hamiltonian cycle problem is a special case of the travelling
salesman problem, obtained by setting the distance between two
cities to one if they are adjacent and two otherwise, and verifying
that the total distance travelled is equal to n (if so, the route is a
Hamiltonian circuit; if there is no Hamiltonian circuit then the
shortest route will be longer).

7.2.2 N Queen Problem

The N Queen is the problem of placing N chess queens on an NXN
chessboard so that no two queens attack each other. For example,
following is a solution for 4 Queen problem, [197]
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7.2.3

7.24

The expected output is a binary matrix which has 1s for the blocks
where queens are placed. For example, following is the output
matrix for above 4 queen solution.

{0, 1, 0, 0}
{0,0,0, 1}
{1, 0, 0, 0}
{0, 0, 1, 0}
Maze Solving Problem

There are a number of different maze solving algorithms, that is,
automated methods for the solving of mazes. The random mouse,
wall follower, Pledge, and Trémaux's algorithms are designed to be
used inside the maze by a traveller with no prior knowledge of the
maze, whereas the dead-end filling and shortest path algorithms are
designed to be used by a person or computer program that can see
the whole maze at once.

Mazes containing no loops are known as "simply connected”, or
"perfect” mazes, and are equivalent to a tree in graph theory. Thus
many maze solving algorithms are closely related to graph theory.
Intuitively, if one pulled and stretched out the paths in the maze in
the proper way, the result could be made to resemble a tree.

The Knight's tour problem.

A knight's tour is a sequence of moves of a knight on a chessboard
such that the knight visits every square exactly once. If the knight
ends on a square that is one knight's move from the beginning
square (so that it could tour the board again immediately, following
the same path), the tour is closed; otherwise, it is open.

The knight's tour problem is the mathematical problem of finding a
knight's tour. Creating a program to find a knight's tour is a
common problem given to computer science students, Variations of
the knight's tour problem involve chessboards of different sizes than
the usual 8 x 8, as well as irregular (non-rectangular) boards.
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Figure: Path-followed-By-Knight-to-cover-all-the-cells

Check your progress

(21.What do you understand by backtracking algorithm? Explain with
example.
Q2.Define all the applications related to backtracking.

7.3 8-queen problem

You are given an 8x8 chessboard, find a way to place 8 queens such that no
queen can attack any other queen on the chessboard. A queen can only be
attacked if it lies on the same row, or same column, or the same diagonal of
any other queen. Print all the possible configurations.

To solve this problem, we will make use of the Backtracking algorithm. The
backtracking algorithm, in general checks all possible configurations and test
whether the required result is obtained or not. For the given problem, we will
explore all possible positions the queens can be relatively placed at. The
solution will be correct when the number of placed queens = 8.
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The time complexity of this approach is O{N!).

Input Format - the number 8, which does not need to be read, but we will take
an input number for the sake of generalization of the algorithm to an NxN
chessboard.

Output Format - all matrices that constitute the possible solutions will contain
the numbers O(for empty cell) and 1(for a cell where queen is placed). Hence,
the output is a set of binary matrices.

Visualisation from a 4x4 chessboard solution:

In this configuration, we place 2 queens in the first iteration and see that
checking by placing further queens is not required as we will not get a solution
in this path. Note that in this configuration, all places in the third rows can be
attacked.

Let us first consider an empty chessboard and start by placing the first queen
on cell chessboard [0][0].

Chessboard [1][2] is the only possible position where the second queen can be
[200] placed.



No queen can be placed further as queenl is in columnl, queen2 is diagonally
opposite to column2 and 3; and column3 has queen2 in it. Since number of
queen is not 4 this is an infeasible sclution and will not be printed.

As the above combination was not possible, we will go back and go for the
next iteration. This means we will change the position of the second queen.

The next iteration of our algorithm will begin with the second column and start
placing the queens again.

Queens2 and 3 are easily placed onto the chessboard without the creating the
possibility of attacking one another.

[201]



The fourth queen will also be placed accordingly. Since the number of queens
=4, this solution will be printed.

nqueen2

In this, we found a solution.

Now let's take a look at the backtracking algorithm and see how it works:

The idea is to place the queens one after the other in columns, and check if
previously placed queens cannot attack the current queen we're about to place.

If we find such a row, we return true and put the row and column as part of the
solution matrix, If such a column does not exist, we return false and backtrack*

Pseudocode
START
1. begin from the leftmost column
2. if all the queens are placed,
return true/ print configuration
3. check for all rows in the current column
a) if queen placed safely, mark row and column; and
recursively check if we approach in the current
configuration, do we obtain a solution or not
b) if placing vields, a solution, return true

[202]
¢) if placing does not yield a solution, unmark and



try other rows
4. if all rows tried and solution not obtained, return
false and backtrack
END

Implementation

Implementation of the above backtracking algorithm:
H#include <bits/stdc++.h>

using namespace std;

int board[8]{8]; // you can pick any matrix size you want

bool isPossible(int n,int row,int col){ // check whether

// placing queen possible or not

// Same Column
Sfor(int i=row-1,i>=0;i-){
iftboardfi][col] == 1){
return false;
/
4

//Upper Left Diagonal
Jor(int i=row-1,j=col-1;i>=0 && j>=0; i--j--){
ifboard[i] il ==1){
return false;

/
/

// Upper Right Diagonal

[203]



for(int i=row-1,j=col+1;i>=0 && j<n ; i—j++){
if(board[ij[j] == 1){
return false;
/
/

return true;

/
void nQueenHelper(int n,int row){
ifrow==n){
// We have reached some solution.
// Print the board matrix

// return

Jor(int i=0;i<n;i++){
Jor(int j=0;j<n;j++){
cout << boardfi][j] << " ";
/
/

cout<<endl:

return;

// Place at all possible positions and move to smaller problem

Jor(int j=0j<n;j++){

if(isPossible(n,row,j)){ // if no attack, proceed
boardfrow][j] = 1;  // mark row, column with 1
nQueenHelper(n,row+1); // call function to continue

// further
[204]



boardfrow][j] = 0;  // unmark to backtrack
/

return;

/
void placeNQueens(int n){

memset(board, 0,8*8*sizeof(int)); // allocate 8*8 memory
// and initialize all

// cells with zeroes

nQueenHelper(n,0);  // call the backtracking function

// and print solutions

int main(){

intn;

cin>>n; // could use a default 8 as well

placeNQueens(n);
return 0;

/

Output ( for n=4); 1 indicates placement of queens

0010
1000
0001
0100

Explanation of the above code solution;
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These are two possible solutions from the entire solution set for the 8 queen
problem.

main()

{
call placeNQueens(8),

placeNQueens(){

call nQueenHelper(8,0){ row =0

iftrow==n) // won't execute as 0 I= 8

Jor(int j=0; j<& j+H){
{
if(isPossible==true)
{ board{0][0] =1 // boardfrow][0] = 1

call nQueenHelper(8,row+1} // recur for all rows further

print matrix when row = 8 if solution obtained

[206]
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}
boardf0][0] = 0 // backtrack and try for

// different configurations

For example, the following configuration won't be displayed

Q no solution with this
configuration, hence we
backtrack and try again

Time Complexity Analysis

1. The isPossible method takes O(n) time

2. For each invocation of loop in nQueenHelper, it runs for O(n) time

3. The isPossible condition is present in the loop and also calls
nQueenHelper which is recursive

Adding this up, the recurrence relation is:
T(n) = O(0"2) +n * T(n-1)

Solving the above recurrence by iteration or recursion tree,the time complexity
of the nQueen problem is = O(N!)

7.4 Sum of subsets problem

Subset sum problem is to find subset of elements that are selected from a given

set whose sum adds up to a given number K. We are considering the set 207]
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contains non-negative values. It is assumed that the input set is unique (no
duplicates are presented).

Exhaustive Search Algorithm for Subset Sum

One way to find subsets that sum to K is to consider all possible subsets. A
power set contains all those subsets generated from a given set. The size of
such a power set is 2N.

Backtracking Algorithm for Subset Sum

Using exhaustive search, we consider all subsets irrespective of whether they
satisfy given constraints or not. Backtracking can be used to make a systematic
consideration of the elements to be selected.

Assume given set of 4 elements, say w [1] ... w[4]. Tree diagrams can be used
to design backtracking algorithms, The following tree diagram depicts
approach of generating variable sized tuple.

In the above tree, a node represents function call and a branch represents
candidate element. The root node contains 4 children. In other words, root
considers every element of the set as different branch. The next level sub-trees
correspond to the subsets that includes the parent node. The branches at each
level represent tuple element to be considered. For example, if we are at level
1, tuple_vector[1] can take any value of four branches generated. If we are at
level 2 of left most node, tuple vector[2] can take any value of three branches
generated, and so on...



For example the left most child of root generates all those subsets that include
w[1]. Similarly the second child of root generates all those subsets that
includes w[2] and excludes w[1].

As we go down along depth of tree we add elements so far, and if the added
sum is satisfying explicit constraints, we will continue to generate child nodes
further. Whenever the constraints are not met, we stop further generation of
sub-trees of that node, and backtrack to previous node to explore the nodes not
yet explored. In many scenarios, it saves considerable amount of processing
time.

The tree should trigger a clue to implement the backtracking algorithm (try
yourself), It prints all those subsets whose sum add up to given number. We
need to explore the nodes along the breadth and depth of the tree. Generating
nodes along breadth is controlled by loop and nodes along the depth are
generated using recursion (post order traversal), Pseudo code given below,

if{subset is satisfying the constraint)
print the subset
exclude the current element and consider next element
else
generate the nodes of present level along breadth of tree and

recur for next levels

Following is the implementation of subset sum using variable size tuple vector.
Note that the following program explores all possibilities similar to exhaustive
search. It is to demonstrate how backtracking can be used. See next code to
verify, how we can optimize the backtracking solution,

H#include <stdio.h>
#include <stdlib.h>

#define ARRAYSIZE (a) (sizeof{a))/(sizeof{a[0])})

static int total_nodes;

// prints subset found [209]



void printSubset(int A[], int size)

{
Jor(inti = 0, i < size; i++)
{
printf("%*d”, 5, A[i]);
}
printf("\n");
/
// inputs
s - set vector
7t - tuplet vector
/s _size - set size
/'t_size - tuplet size so far
/ sum - sum so far
/ ite - nodes count

// target sum - sum to be found

void subset_sum(int s[], int tf],
int s_size, int t_size,
int sum, int ite,

int const target_sum)

total nodes++;
if( target sum == sum )
{
// We found subset
printSubset(t, t_size);
// Exclude previously added item and consider next candidate

subset_sum(s, t, s_size, t _size-1, sum - s[ite], ite + 1,
target_sum);

[210] return;



else

// generate nodes along the breadth

Sor(inti=ite; i <s size; i++)

{
tft_size] = sfi];
// consider next level node (along depth)
subset sum(s, t, s size, t size + I, sum + sfi], i + 1,
target sum);
}

// Wrapper to print subsets that sum to target sum
// input is weights vector and target sum

void generateSubsets(int sf], int size, int target sum)

{
int *tuplet vector = (int *)malloc(size * sizeof(int)),
subset_sum(s, tuplet_vector, size, 0, 0, 0, target_sum);
Sfree(tuplet vector),

/

int main()

{

int weights[] = {10, 7, 5, 18, 12, 20, 15};
int size = ARRAYSIZE (weights);

generateSubsets(weights, size, 35);
printf("Nodes generated %d \n", total_nodes); [211]



return 0;

The power of backtracking appears when we combine explicit and implicit
constraints, and we stop generating nodes when these checks fail. We can
improve the above algorithm by strengthening the constraint checks and pre-
sorting the data. By sorting the initial array, we need not to consider rest of the
array, once the sum so far is greater than target number. We can backtrack and
check other possibilities.

Similarly, assume the array is pre-sorted and we found one subset. We can
generate next node excluding the present node only when inclusion of next
node satisfies the constraints. Given below is optimized implementation (it
prunes the sub tree if it is not satisfying constraints).

#include <stdio.h>

#include <stdlib.h>

#define ARRAYSIZE(a) (sizeof(a))/(sizeof(a[0]))

static int total_nodes;

// prints subset found
void printSubset(int A[], int size)

{
for(inti = 0; i < size; i++)
{
printf("%*d", 5, A[i]);
/
print("n");
}

// gsort compare function

AL int comparator (const void *pLhs, const void *pRhs)



int *lhs = (int *)pLhs;
int *rhs = (int *)pRhs;

return *lhs > *rhs;

4

// inputs

/s - set vector

7t - tuplet vector

// 5 _size - set size

/'t _size - tuplet size so far
/Y sum - sum so far

/ite - nodes count

// target_sum - sum to be found

void subset_sum(int s{], int t[],
int s_size, int t size,
int sum, int ite,

int const target _sum)

total nodes++;

if{ target _sum == sum )
{
// We found sum

printSubset(t, t_size);

// constraint check
if(ite + 1 <s size && sum - sfite] + sfite+1] <= target sum }
{

Y/ Exclude previous added item and consider next
candidate [213]
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subset sum(s, t, s size, t size-1, sum - sfite], ite + 1,
target _sum);

/
return;
/
else
{
// constraint check

iff ite < 5_size && sum + sfite] <= target sum )
{
// generate nodes along the breadth
for(inti=ite; i <s size; i++)
/
tft size] = sfi];

if{ sum + sfi] <= target sum )
{
// consider next level node (along depth)

subset sum(s, t, s _size, t size + I, sum +
sfi], i + 1, target sum);

// Wrapper that prints subsets that sum to target sum

void generateSubsets(int s[], int size, int target_sum)

{

int *tuplet vector = (int *)malloc(size * sizeof{int));

int total = 0;



// sort the set

gsort(s, size, sizeof{int), &comparator);

for(inti=0;i < size; i++)
{

total += sfi];

if( sf0] <= target sum && total >= target sum )
/

subset_sum(s, tuplet vector, size, 0, 0, 0, target_sum);

Jree(tuplet vector);

/

int main()

{
int weights[] = {15, 22, 14, 26, 32, 9, 16, 8};
int target = 53;
int size = ARRAYSIZE (weights);
generateSubsets(weights, size, target);
printf("Nodes generated %dn", total nodes),
return 0;

/
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Output
891422n 8 14 15 16n 15 16 22nNodes generated 68

As another approach, we can generate the tree in fixed size tuple analogues to
binary pattern. We will kill the sub-trees when the constraints are not satisfied.

7.5 Graph coloring

Graph coloring is the procedure of assignment of colors to each vertex of a
graph G such that no adjacent vertices get same color, The objective is to
minimize the number of colors while coloring a graph. The smallest number of
celors required to color a graph G is called its chromatic number of that graph.
Graph coloring problem is a NP Complete problem.

Method to Color a Graph

The steps required to color a graph G with n number of vertices are as follows
Stepl: Arrange the vertices of the graph in some order.

Step2: Choose the first vertex and color it with the first color.

Step3: Choose the next vertex and color it with the lowest numbered color that
has not been colored on any vertices adjacent to it. If all the adjacent vertices
are colored with this color, assign a new color to it. Repeat this step until all the
vertices are colored.

Example

—

d

In the above figure, at first vertex a is colored red. As the adjacent vertices of
vertex a are again adjacent, vertex b and vertex d are colored with different
[216] color, green and blue respectively. Then vertex ¢ is colored as red as no



adjacent vertex of ¢ is colored red. Hence, we could color the graph by 3
colors. Hence, the chromatic number of the graph is 3.

Applications of Graph Coloring:
The graph coloring problem has huge number of applications.

1) Making Schedule or Time Table: Suppose we want to make am exam
schedule for a university. We have list different subjects and students enrolled
in every subject. Many subjects would have common students (of same batch,
some backlog students, etc). How do we schedule the exam so that no two
exams with a common student are scheduled at same time? How many
minimum time slots are needed to schedule all exams? This problem can be
represented as a graph where every vertex is a subject and an edge between two
vertices mean there is a common student. So this is a graph coloring problem
where minimum number of time slots is equal to the chromatic number of the

graph.

2) Mobile Radio Frequency Assignment: When frequencies are assigned to
towers, frequencies assigned to all towers at the same location must be
different. How to assign frequencies with this constraint? What is the minimum
number of frequencies needed? This problem is also an instance of graph
coloring problem where every tower represents a vertex and an edge between
two towers represents that they are in range of each other.

3) Sudoku: Sudoku is also a variation of Graph coloring problem where every
cell represents a vertex. There is an edge between two vertices if they are in
same row or same column or same block.

4) Register Allocation: In compiler optimization, register allocation is the
process of assigning a large number of target program variables onto a small
number of CPU registers. This problem is also a graph coloring problem.

5) Bipartite Graphs: We can check if a graph is Bipartite or not by coloring the
graph using two colors. If a given graph is 2-colorable, then it is Bipartite,
otherwise not. See this for more details.

[217]



6) Map Coloring: Geographical maps of countries or states where no two
adjacent cities cannot be assigned same color. Four colors are sufficient to
color any map (See Four Color Theorem)

7.6 Hamiltonian cycles

In an undirected graph, the Hamiltonian path is a path, that visits each vertex
exactly once, and the Hamiltonian cycle or circuit is a Hamiltonian path, that
there is an edge from the last vertex to the first vertex.

In this problem, we will try to determine whether a graph contains a
Hamiltonian cycle or not. And when a Hamiltonian cycle is present, also print
the cycle.

Input and Output
Input:
The adjacency matrix of a graph G(V, E).

01010
1 R
0100
1100 1
01110
Output:

The algorithm finds the Hamiltonian path of the given graph. For this case it is
(0, 1, 2, 4, 3, 0). This graph has some other Hamiltonian paths.

If one graph has no Hamiltonian path, the algorithm should return false.

Algorithm
isValid(v, k)
Input — Vertex v and position k.
Output — Checks whether placing v in the position k is valid or not.
Begin
if there is no edge between node(k-1) to v, then
[218] return false



if v is already taken, then
return false
return true; //otherwise it is valid
End
cycleFound(node k)
Input — node of the graph.

Output — True when there is a Hamiltonian Cycle, otherwise false.

Begin
if all nodes are included, then
if there is an edge between nodes k and 0, then
return true

else

return false;

for all vertex v except starting point, do
if isValid(v, k), then //when v is a valid edge
add v into the path
if cycleFound(k+1) is true, then
return true
otherwise remove v from the path
done

return false

End

Example
#include<iostream>
#define NODE 5

using namespace std;

int graph{NODE][NODE] = {
£0,1,0, 1,0} .



{1,011, 1}
{0,1,0,0 1},
{1,1,00 I}
0,1,1,1,0}

/* int graph{ NODE][NODE] = {
{0, 1,0 1,0},
(1,011, 1},
{0,1,0,0 1},
{1, 1,0, 0 0}
{0, 1, 1,0, 0},
Jr7

int path{ NODE];

void displayCycle() {

cout<<"Cycle: ",

for (inti=0;i < NODE,; i++)
cout << pathfif << "";
cout << path{0] << endl;  //print the first vertex again

/

bool isValid(int v, int k) {
if (graph [path{k-1]][v] == 0} //if there is no edge

return false;

Jor (inti=0;i<k i++) /ifvertex is already taken, skip that
if (pathfi] ==v)

return false;

[220] return true;



bool cycleFound(int k) {

if (k == NODE) { /fwhen all vertices are in the path
if (graph[path[k-1]][ pathf0] ] == 1)
return true;
else
return false;
/

for (intv=1;v<NODE; v++){ /ffor all vertices except starting point

if (isValid(v,k)) { //if possible to add v in the path
path{k] =v;
if (cycleFound (k+1) == true)
return true;
path[k] = -1; //when k vertex will not in the solution
/
}
return false;

}

bool hamiltonianCycle() {
for (inti = 0; i < NODE; i++)
pathfi] = -1;
path{0] = 0; /ffirst vertex as 0

if ( cycleFound(l) == false ) {
cout << "Solution does not exist"<<endl;

return false;

}

displayCycle();

[221]
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return true;
/
int main() {
hamiltonianCycle();
}
Output
Cycle:012430

7.7 Summary

In this unit you have learnt about General method of backtracking, applications
of backtracking. You have also learnt about 8-queen problem, sum of subsets
problem, graph coloring and Hamiltonian cycles.

[1 Backtracking is a technique based on algorithm to solve problem. It
uses recursive calling to find the solution by building a solution step by
step increasing values with time.

[0 Backtracking algorithm is applied to some specific types of problems,
Decision problem used to find a feasible solution of the problem.

[1 The eight queens puzzle is the problem of placing eight chess queens on
an 8x8 chessboard so that no two queens threaten each other; thus, a
solution requires that no two queens share the same row, column, or
diagonal.

[0 The eight queens puzzle is an example of the more general n-queen’s
problem of placing n non-attacking queens on an nxn chessboard, for
which solutions exist for all natural numbers n with the exception of n =
2andn=3.

[0 Hamiltonian Path in an undirected graph is a path that visits each vertex
exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a
Hamiltonian Path such that there is an edge (in the graph) from the last
vertex to the first vertex of the Hamiltonian Path. Determine whether a
given graph contains Hamiltonian Cycle or not. If it contains, then
prints the path.

7.8 Review Questions

Q1.Print all possible solutions to N Queens problem using backtracking.



(Q2.Which is the optimal solution for 8-queen’s problem? Explain with
example.

Q3. What is the difference between recursion and backtracking? Elaborate
your answer.

Q4. What is the technique used to solve sum of subsets problem and explain
the sum of subsets problem?

Q5.How can we find the number of Hamiltonian cycles in a complete
undirected graph?
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UNIT-8 Branch-And-Bound

Structure
8.0 Introduction
8.1 Branch-And-Bound method
8.2 Travelling salesperson problem
8.3 15 puzzle problem
8.4 Summary

8.5 Review Questions
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8.0 Introduction

This is the third unit of this block. In this block you will learn about branch-
and-bound. There are five sections in this unit. In the first section i.e. Section
3.1 you will study about method of branch-and-bound. Section 3.2 describe
about travelling salesperson problem. In the section 3.3 you will learn about 15
puzzle problem. Section 3.4 and 3.5 define summary and review questions.

Objective

After studying this unit, you should be able to define:

[0 Branch-And-Bound method
[l Travelling salesperson problem
[1 15 puzzle problem

8.1 Branch-And-Bound method

In computer science, there is a large number of optimization problems which
has a finite but extensive number of feasible solutions. Among these, some
problems like finding the shortest path in a graph or Minimum Spanning
Tree can be solved in polynomial time.

A significant number of optimization problems like production planning, crew
scheduling can’t be solved in polynomial time, and they belong to the NP-Hard
class. These problems are the example of NP-Hard combinatorial optimization
problem.

Branch and bound (B&B) is an algorithm paradigm widely used for solving
such problems.

Branch and bound algorithms are used to find the optimal solution for
combinatory, discrete, and general mathematical optimization problems. In
general, given an NP-Hard problem, a branch and bound algorithm explores
the entire search space of possible sclutions and provides an optimal solution.

A branch and bound algorithm consist of stepwise enumeration of possible
candidate solutions by exploring the entire search space. With all the possible
solutions, we first build a rooted decision tree. The root node represents the
entire search space:
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Here, each child node is a partial solution and part of the solution set. Before
constructing the rooted decision tree, we set an upper and lower bound for a
given problem based on the optimal solution. At each level, we need to make a
decision about which node to include in the solution set. At each level, we
explore the node with the best bound. In this way, we can find the best and
optimal solution fast.

Now it is crucial to find a good upper and lower bound in such cases. We can
find an upper bound by using any local optimization method or by picking any
point in the search space. On the other hand, we can obtain a lower bound from
convex relaxation or duality.

In general, we want to partition the solution set into smaller subsets of solution.
Then we construct a rooted decision tree, and finally, we choose the best
possible subset (node) at each level to find the best possible solution set.

Example

In this section, we’ll discuss how the job assignment problem can be solved
using a branch and bound algorithm.

Problem Statement



Let’s first define a job assignment problem. In a standard version of a job
assignment problem, there can be N jobs and N workers. To keep it simple,
we're taking 3 jobs and 3 workers in our example:

Job 1 Job 2 Job 3
A 9 3 4
B 7 8 4
C 10 5 2

We can assign any of the available jobs to any worker with the condition that if
a job is assigned to a worker, the other workers can’t take that particular job.
We should also notice that each job has some cost associated with it, and it
differs from one worker to another.

Here the main aim is to complete all the jobs by assigning one job to each
worker in such a way that the sum of the cost of all the jobs should be
minimized.

Branch and Bound Algorithm Pseudocode

Now let’s discuss how to solve the job assignment problem using a branch and
bound algorithm.

Let’s see the pseudocode first:

Algorithm 1: Job assignment problem using branch and bound

Data: Input cost matrixM/] []
Result: Assignment of jobs to each worker according to optimal cost
Function MinCost(M[] [])
while True do
E = LeastCost()

If E is a leaf node,then
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print();

return;
end
foreach child S to Edo
Add(S);
S - parent = E;
end

end

Here, M[][] is the input cost matrix that contains information like the number
of available jobs, a list of available workers, and the associated cost for each
job. The function MinCost() maintains a list of active nodes. The function
LeastCost() calculates the minimum cost of the active node at each level of the
tree. After finding the node with minimum cost, we remove the node from the

list of active nodes and return it.

We're using the Add() function in the pseudocode, which calculates the cost of
a particular node and adds it to the list of active nodes.

In the search space tree, each node contains some information, such as cost, a

total number of jobs, as well as a total mimber of workers.

Now let’s run the algorithm on the sample example we’ve created:



Level 0 Root

No No

P A=Job1 A=Job3
Cost=18 Cost=16
B=Job 3
Level 2 Cost =17
Level 3 & dung

Cost =12

Initially, we’ve 3 jobs available. The worker 4 has the option to take any of the
available jobs. So at level 1, we assigned all the available jobs to the worker 4
and calculated the cost. We can see that when we assigned jobs 2 to the worker
A, it gives the lowest cost in level 1 of the search space tree. So we assign the
job 2 to worker 4 and continue the algorithm. “Yes” indicates that this is
currently optimal cost.

After assigning the job 2 to worker 4, we still have two open jobs. Let’s
consider worker B now. We’re trying to assign either job 1 or 3 to worker B to
obtain optimal cost.

Either we can assign the job 1 or 3 to worker B. Again we check the cost and
assign job 1 to worker B as it is the lowest in level 2.

Finally, we assign the job 3 to worker C, and the optimal cost is 12.

8.2 Travelling salesperson problem

Problem Statement

A traveller needs to visit all the cities from a list, where distances between all

the cities are known and each city should be visited just once. What is the

shortest possible route that he visits each city exactly once and returns to the [229]
origin city?
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Solution

Travelling salesperson problem is the most notorious computational problem.
We can use brute-force approach to evaluate every possible tour and select the
best one. For n number of vertices in a graph, there are (n - 1)! number of
possibilities.

Instead of brute-force using dynamic programming approach, the solution can
be obtained in lesser time, though there is no polynomial time algorithm.

Let us consider a graph G = (V, E), where V is a set of cities and E is a set of
weighted edges. An edge e(u, v) represents that vertices u and v are connected.
Distance between vertex u and v is d(u, v), which should be non-negative,

Suppose we have started at city 1 and after visiting some cities now we are in
city j. Hence, this is a partial tour. We certainly need to know j, since this will
determine which cities are most convenient to visit next. We also need to know
all the cities visited so far, so that we don't repeat any of them. Hence, this is an
appropriate sub-problem.

For a subset of cities S € {1, 2, 3, ..., n} that includes 1, and j € S, let C(S, j)
be the length of the shortest path visiting each node in S exactly once, starting
at 1 and ending at j.

When [S| > 1, we define C(8, 1) = « since the path cannot start and end at 1.

Now, let express C(S, j) in terms of smaller sub-problems. We need to start at 1
and end at j. We should select the next city in such a way that

C(8y) = minC(S—{j},0) + d(i,j) where i €S and i # jc(S,7)
=minC(s—{j},i) + d(i,j) wherei €S and i ]

Algorithm: Traveling-Salesperson-Problem
ClL)=0
fors=2tondo
for all subsets S € {1, 2, 3, ..., n} of size s and containing I
C(51)=w
forallj € Sandj+1
C(8.j)=min{CS—{} 9 +dij)fori€Sanditj}
Returnminj C ({1, 2, 3, ..., n}, j) + d{j, i}
Analysis



There are at the most 2nsub-problems and each one takes linear time to solve.
Therefore, the total running time is O(2".n%).

Example

In the following example, we will illustrate the steps to solve the travelling
salesperson problem.

From the above graph, the following table is prepared.

1 2 3 4

1 0 10 15 20

2 5 0 9 10

3 6 13 0 12

4 8 8 9 0
S=@

Cost(2,0,1)=d(2,1)=5Cost(2,®,1)=d(2,1)=5
Cost(3,0,1)=d(3,1)=6Cost(3,0,1)=d(3,1)=6
Cost(4,D,1)=d(4,1)=8Cost(4,D,1)=d(4,1)=8

S=1
Cost(i,s)y=min{Cost(j sN)+di,j1} Cost(i,s)=min{Cost(j,s)—())+dlijl}
Cost(2,{3},1)=d[2,3]+Cost(3,D,1)=9+6=15cos#(2,{3},1)=d[2,3]+cost(3,®,1)

—9+6=15

Cost(2,{4},1)=d[2,4]+Cost(4,D,1)=10+8=18cost(2, {4},1)=d[2,4]+cost4,®,1)

=10+8=18

Cost(3,{2},1)=d[3,2]+Cost(2,®,1)=13+5=18cost(3,{2},1)=d[3,2]+cos#(2,®,1)

—13+5=18

Cost(3,{4},1)=d[3,4]+Cost(4,0,1)=12+8=20cost(3, {4} ,1)=d[3,4]+cos4,®,1) [231]
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=12+8=20
Cost(4,{3},1)=d[4,3]+Cost(3,8,1)=9+6=15cost(4,{3},1)=d[4,3]+cost(3,D,1)
=9+6=15
Cost(4,{2},1)=d[4,2]+Cost(2,D,1)=8+5=13cos(4,{2},1)=d[4,2]+cost(2,D,1)
=8+5=13

§$=2
Cost(2,{3,4},1
d[2,3] + Cost(3,{4},1) =9+ 20 = 29
= d[2,4] + Cost(4,{3},1) = 10 + 15 = 25 = 25Cost(2,{3,4},1) = 25
{d[2,3] + cost(3,{4},1) = 9 + 20 = 29d[2,4] + Cost(4,{3},1) =10+ 15 =25

Cost(3,{2,4},1)
{ d[3,2] + Cost(2,{4},1) =13 + 18 = 31

d[3,4] + Cost(4,{2},1) = 12 + 13 = 25 = 25Cost(3, (2,4}, 1) = 25
{d[3,2] + cost(2,{4},1) = 13 + 18 = 31d[3,4] + Cost(4,{2},1) =12+ 13 = 25

Cost(4,{2,3},1)
d[4,2] + Cost(2,{3},1) = 8 + 15 = 23
= d[4,3] + Cost(3,{2},1) = 9 + 18 = 27 = 23Cost(4,{2,3},1) = 23
{d[4,2] + cost(2,{3},1) = 8 + 15 = 23d[4,3] + Cost(3,{2},1) =9 + 18 = 27

Cost(1,{2,3,4},1)

r d[1,2] + Cost(2,{3,4},1) = 10 + 25 = 35

d[1,3] + Cost(3,{2,4},1) = 15 + 25 = 40

J d[1,4] + Cost(4, {2,3),1) = 20 + 23 = 43 = 35cost(L, {2,34}),1)
d[1,2] + cost(2,{3,4},1) = 10 + 25 = 35

d[1,3] + cost(3,{2,4},1) = 15 + 25 = 40

\ d[1,4] + cost(4,{2,3},1) = 20 + 23 = 43 = 35

The minimum cost path is 35.



Start from cost {1, {2, 3, 4}, 1}, we get the minimum value for d [1, 2]. When s
= 3, select the path from 1 to 2 {cost is 10) then go backwards. When s = 2, we
get the minimum value for d [4, 2]. Select the path from 2 to 4 (cost is 10) then
go backwards.

When s = 1, we get the minimum value for d [4, 3]. Selecting path 4 to 3 (cost
is 9), then we shall go to then go to s = @ step. We get the minimum value for
d [3, 1] {cost is 6).

e 0 0 0 -0

Check your progress

Q1. What is branch and bound method in DAA? Explain with example.
(Q2.What is Travelling Salesman Problem?Explain with example.

8.3 15-puzzle problem

The Fifteen Puzzle has been around for over a hundred years, and has been a
craze for almost every generation. The basic form is of a 4 by 4 grid usually
made with sliding tiles in a tray. There are 15 tiles numbered 1 to 15 and the
16th place is empty as shown. Before play begins the tiles are randomly
scrambled by sliding to any starting position. The object of the game is then to
unscramble the tiles (by sliding, not lifting them) to get them into consecutive
order, with the space in the bottom right again. (This will be referred to as the
home position.)

112(3|4
5(6|7|8
9 (10|11(12
13|14|15

Sam Loyd was the man who invented the 14-15 or Boss puzzle. This was a
version where the starting position was very similar to the home position
except that the 14 and 15 were inverted. In the early 1870's he offered a $1000 [233]
reward to anyone who could sclve it, which set off "fifteen fever". However,
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no-one claimed the prize for the simple reason that it is not solvable! The
reason shall have dealt with later.

Permutations, Interchanges and Parity

It can be seen that the puzzle has 15 tiles and a space distributed over 16
squares. The number of different arrangements of tiles can be calculated: the
first square has 16 possible numbers/space to choose from, the 2nd will have
15 possibilities...etc so there are 16 factorial possible arrangements. This is
over 20 billion different arrangements. It shall be seen however that only 16!/2
of these are solvable.

To understand the principles involved, first look at a simpler case of
permutations (or arrangements) of a 2 by 2 grid, with 3 tiles; 1,2,3.

12 |4 1|2
3 3|2 3

These are 3 of the arrangements of the grid, with the first picture being the
home state; 9 other arrangements can be found by cycling the 1 round to a new
position and then rearranging the 2 and 3. Of course there are 4! = 24 possible
arrangements, but the other 12 cannot be reached by simple sliding moves.
They would be found by performing an interchange; i.e. where one tile is
moved to the position of another tile or the space, which in turn is moved
somewhere else, possibly to the first tile's original position. (i.e. swapping two
of the tiles). One can see that the following arrangement is not possible from
the home state by following legal moves (i.e. sliding not lifting):

113
2

Cycles can be used to describe the permutations of objects through
interchanges. Lifting a tile up is not a legal operation, but a cycle of
interchanges may describe a set of legal sliding moves in a shorter form. For
example, (3 1 2 *) would be the cycle from

12 3

to

3 2

Where * is the empty space. Of course one can see that this is the same as (2 *
3 1). In a similar way, (2 * 1) would be the permutation of



L2 1

to

3 3|2

As the 3 is not mentioned, there is an implication that it is left in its original
position. Thus the impossible arrangement seen previously would have a cycle
from the home state of the form (2 3), which can easily have been seen to be an
interchange that is not a legal permutation. It shall be seen later how to tell
generally if a particular permutation is legal for a particular starting state.

Cycles can be strung together to get more permutations, which will be
especially useful for the 4 by 4 grid later on., If for example (2 * 1) is
performed to the home state then (1 2 3 *), as long as each individual cycle is
legal for the previous state, the combination of them will also be possible.
Permutations describe the interchanges between tiles and so combining them
will not necessarily produce permutations that can be performed by sliding tiles
in those orders; a cycle could represent an interchange that could be possible
by another, longer cycle of sliding permutations.

One can differentiate between types of cycles by breaking them up into single
cycles. For example (2 1 3 *) can be written (2 1)(2 3)(2 *) which is applied by
following each number through the cycles. This called an odd permutation as it
has an odd number of products. In the same way (2 * 1)=(2 *)(2 1) is even.
Notice that the length of an odd permutation is an even number, and vice versa.
Combining two permutations of the same type is even, but combining an odd
and even permutation will be odd.

These same rules can be applied to the 4 by 4 grid, by permutations of squares
or rectangles of any size. One can tell that the solution will need to be an even
permutation if the empty space is left in its home slot. (See following pictures
and text.) Indeed, it can be said that if the empty space is originally on any of
the green squares, the solution will be an even permutation, but if the space is
on a white square, an odd permutation is needed. These can be described by
parity; if there is a solution, one says the problem has even parity ie that the
starting state has the same parity as the home state. This is why only half the
possible arrangements are solvable; half the time the problem has even parity,
and half, odd parity.

One can see that this is true by looking at the home state:

[235]
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11203 |4 f 2318 1/2|3|4
(5|6|7]|8 5(6(7|8 5/6|7|8
9 [10{11|12| |9 |10]11 9 10| |11
13{14|15 13|14|15]|12 13|14|15|12

By sliding the 12 down one permutation is performed (12 *) which is odd. To
get back to the home state therefore the solution will be an odd permutation as
the empty space was left on a white square. Similarly, if the starting state is (12
* 11) from the home state, one can tell that the solution is possible with an
even permutation. In the same way one can look at any shuffled starting
position:

13|92 |3
14 4 115
10111117
12|56 |8

Here the permutations are

(111109234712 13 8 * 6 15)5 14)which is a combination of two odd
permutations so is even. The empty square is found on a green position so one
can say that this problem is solvable.

The 14-15 Puzzle and other problems

Now Loyd's 14-15 puzzle shall be examined: this is the starting state which
looks like this;

Even though this appears to be so close to the final solution, one can tell from
the cycle that it is not solvable, because (14 15) is an odd permutation and the
space on a green position, i.e. odd parity.

1(2(3]4
5(6(7]8
9 [10]{11|12
13[15[14

Other starting states that can be looked at are the effect of rotating the grid
clockwise 90 degrees. The permutation is



(14*13)2 8 159)3 12 14 5)(6 7 11 10)which is a combination of 4 odd
permutations which is itself even. The empty space is on a white position so
this problem (including the problem of having the tiles on their sides) is
unsolvable.

112|3|4
516|178
9 [10(11[12
13|14|15

If one takes the problem of having the empty space at the beginning rather than
at the end, the permutation cycle is

(1234567891011 12 13 14 15 *)which is an odd permutation with the
space on a green position so it is an unsolvable problem.

11213
(4]5]6]7]
8 [9[10[11
12[13[14[15|

Finding Solutions-Simple

Of course after working out whether a particular problem is solvable, it would
then be useful to be able to find a selution. One logical process to follow is to
get the tiles in place in order, i.e.by getting the 1 into place, then the 2, 3, 4 etc.
However, one may quickly find that by placing the 3 in place, the 4 cannot fit
without disturbing the 3 again. From the work before, it is known that a
permutation of (11 4) on the top right-hand 2 by 2 grid is not legal by sliding so
instead permutations of a 2 by 3 grid are used.

1123 |11
8 |13 2

This is the same as a permutation of (4 10 6 *)(6 3 11 *)(11 *4)(36 11 10 *
4= (11 6 * 4). In a similar way, the 7 and 8 can be placed in the correct
positions. The bottom two lines will have similar problems; the 9 and 13 need
to be in the right order then cycled round to their positions, and finally one is
left with another 3 by 2 grid with the 10 and 14 to be placed first like the 3 and

[237]
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4, then the last three rotated to get home! Of course it makes sense to think
about the other numbers and where they should eventually end up, and so move
them in those particular directions.

3 [11 3 [11 6[3| [6]3 3[4
4 6| | | |11 11| 4 6
6[10] [1o[a| [1o[a]| o] | [11]10

For the general case if a tile, B needs to get into a upper right comer (either of
the grid, or previously positioned tiles) in the order A B at the top, the cycle of
moves from this position is thus:

(ACBDE *)DB CE *)(B A E C*) in terms of the legal slides.

These motions can then be used for any part of the problem in a corner, just
mirror the permutation to fit the corner.

A|C
B
E|D

Finding Solutions-Fastest

Obviously trying to solve the problem like this is not the fastest (i.e. the one
with the least number of moves) as one tends to move some tiles in the wrong
direction unnecessarily as the first ones are concentrated on individually. As
one can see in arranging the corner piece, it is sometimes necessary to go
backwards to be able to go forwards, but these motions ought to be limited
where possible

13|92 |3
14134 |15
101117
12(5 (6|8

A computer could be used to evaluate all possible solutions and then show the
quickest one. It would look at all possible moves at each node- where there is a
branching off of possible solutions. For example, in the previous problem
(shown again to the left), the starting position has a node of different 4 paths or
branches; the 4, 9, 11 or 14 could be moved. If the 9 is chosen to be moved, the
new node would have 3 branches, but the 9 would be discounted as it leads
back to the original position.



One way of getting the computer to perform the search is to make it evaluate
possibilities at each node, to pick one path and follow it until either the home
state is reached or a dead end. If a dead end is reached, the computer goes back
to the last node and takes a different path. However, one cannot be sure that
this is the fastest, as it discards all other possibilities once it has found a
solution. Instead the computer could examine all nodes that are one
permutation from the starting position. If none of these are the solution they are
expanded to nodes 2 single permutations away from the starting state, etc until
the home state is found, so this will be the shortest. This however is very
complicated and certainly not something a human could do easily. There are
many sites on the internet that have programs to find the quickest solution (see
sources) so instead the problem of whether a person can solve the fifteen
puzzle in the shortest solution will be examined.

One thing a human can do is to work out a heuristic or best fit- an estimate of
the number of moves a tile would take to get from a particular position on the
grid to the home state. The heuristic really wants to be either optimistic or
correct as it will show the minimum number of moves expected to get home. It
is worked out by looking at the position of each tile in the starting state and
calculating the number of moves it would take to get to its home place if the
space were adjacent to it, in the direction of home. In the example, the 1 would
need 4 moves to get home (so the heuristic is 4), the 13 would need 3, the 3, 1
move. It is known that the heuristic calculated in this way is optimistic or
accurate, because if the empty space were to the left of its position now, the 13
could get to its home place in the heuristic's estimated number of moves.
However, as it is not, the heuristic would be larger as the tile cannot be simply
lifted up. The heuristic of a particular problem is just the sum of all the
individual heuristics.

13{~+3

It would seem sensible to work out the total heuristic for a particular problem
and then follow the path of best fit where the value of the heuristic decreases.
For the example taken, the heuristic at the start wouldbe4+1+1+.+3+3+
3 = 36 for the tiles in chronclogical order. To decrease the heuristic, the 9 or 14
could be moved, as they are the only two moves that move the tile closer to its
home position. Moving one tile in its home direction decreases the value of the
heuristic by one. A person can keep track of the moves made and where the
corresponding best fit nodes are. When a dead end is reached, the person
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should go back to the last node and examine the other branches, until a solution
is found. However, in practice this does not work out. It was seen from the
process of moving corner pieces into position that it is necessary to move tiles
in what seems the wrong direction in order to solve the problem.

8.4 Summary

In this unit you have learnt about the concept of the methodof branch-and-
bound, travelling salesperson problem, and 15 puzzle problem.

[0 Branch and bound is a systematic method for solving optimization
problems. B&B is a rather general optimization technique that applies
where the greedy method and dynamic programming fail.

[l Travelling Salesman Problem (TSP): Given a set of cities and distance
between every pair of cities, the problem is to find the shortest possible
route that visits every city exactly once and returns to the starting point.
Note the difference between Hamiltonian Cycle and TSP.

[l The 15 puzzle problem is invented by sam loyd in 1878. In this problem
there are 15 tiles, which are numbered from 0 — 15. The objective of
this problem is to transform the arrangement of tiles from initial
arrangement to a goal arrangement.

8.5 Review Questions

Q1. What is difference between backtracking and branch and bound?
Elaborate your answer.

Q2.What is the time complexity of travelling salesperson problem? Explain
with suitable example.

Q3.How to check if an instance of 15 puzzle is solvable? Elaborate your
answer.

Q4.What type of task generation is used for a 15 puzzle problem?

Q5. What is the solution of 15 puzzle problem? Explain with example.
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9.0 Introduction

This is the fourth and last unit of this block. This unit define about NP-Hard
and NP-Complete problems. In this unit, there are seven sections. In the
Section 4.1 you will learn about basic concept of NP-Hard and NP-Complete
problems. Section 4.2 describe about non deterministic algorithms. Section 4.3
explain about NP - Hard and NP Complete classes. In the section 4.4 you will
learn about satisfiability problem. Last topic defines reducibility in the section
4.5. Summary and Review questions define in the section 4.6 and 4.7
respectively.

Objective
After studying this unit, you should be able to define:

[0 Basic conceptsNP-Hard and NP-Complete problems
[J Non-deterministic algorithms

[ NP - Hard and NP Complete classes

[] Satisfiability problem

[J Reducibility

9.1 Basic concepts
The computing times of algorithms fall into two groups.

Groupl- consists of problems whose solutions are bounded by the polynomial
of small degree.

Example — Binary search ¢ (log n), sorting o(n log n), matrix multiplication 0(n
2.81).

NP —HARD AND NP — COMPLETE PROBLEMS

Group2 — contains problems whose best known algorithms are non-
polynomial.

Example —Traveling salesperson problem 0(n22n), knapsack problem 0(2n/2)
etc.

There are two classes of non-polynomial time problem

I. NP- hard
2. NP-complete

A problem which is NP complete will have the property that it can be solved in
polynomial time iff all other NP — complete problems can also be solved in



polynomial time. The class NP {meaning non-deterministic polynomial time) is
the set of problems that might appear in a puzzle magazine: “Nice puzzle”.

What makes these problems special is that they might be hard to solve, but a
short answer canalways be printed in the back, and it is easy to see that the
answer is correct once you see it.

Example... Does matrix A have LU decomposition? No guarantee if answer is

L9 "

no.

Another way of thinking of NP is it is the set of problems that can solved
efficiently by a really good guesser. The guesser essentially picks the accepting
certificate out of the air (Non-deterministic Polynomial time). It can then
convince itself that it is correct using a polynomial time algorithm. (Like a
right-brain, left-brain sort of thing.) Clearly this isn't a practically useful
characterization: how could we build such a machine?

9.2 Non deterministic algorithms

In computer science, a nondeterministic algorithm is an algorithm that, even
for the same input, can exhibit different behaviours on different runs, as
opposed to a deterministic algorithm. There are several ways an algorithm may
behave differently from run to run. A concurrent algorithm can perform
differently on different runs due to a race condition. A probabilistic algorithm's
behaviours dependon a random number generator. An algorithm that solves a
problem in nondeterministic polynomial time can run in polynomial time or
exponential time depending on the choices it makes during execution. The
nondeterministic algorithms are often used to find an approximation to a
solution, when the exact solution would be too costly to obtain using a
deterministic one. The notion was introduced by Robert W. Floyd in 1967.

Deterministic Non=Deterministic
- ] re »
e ¢ N
A L] ¥
i LN
accept — a . & ®
. < LN
‘L . L} L}
f(n) fin)
» s — reject
. 'l
accept or * —accept
X . reject
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Often in computational theory, the term "algorithm" refers to a deterministic
algorithm. A nondeterministic algorithm is different from its more familiar
deterministic counterpart in its ability to arrive at outcomes using various
routes. If a deterministic algorithm represents a single path from an input to an
outcome, a nondeterministic algorithm represents a single path stemming into
many paths, some of which may arrive at the same output and some of which
may arrive at unique outputs. This property is captured mathematically in
"nondeterministic" models of computation such as the nondeterministic finite
automaton. In some scenarios, all possible paths are allowed to run
simultaneously.

In algorithm design, nondeterministic algorithms are often used when the
problem solved by the algorithm inherently allows multiple outcomes (or when
there is a single outcome with multiple paths by which the outcome may be
discovered, cach equally preferable). Crucially, every outcome the
nondeterministic algorithm produces are valid, regardless of which choices the
algorithm makes while running.

In computational complexity theory, nondeterministic algorithms are ones that,
at every possible step, can allow for multiple continnations (imagine a person
walking down a path in a forest and, every time they step further, they must
pick which fork in the road they wish to take). These algorithms do not arrive
at a solution for every possible computational path; however, they are
guaranteed to arrive at a correct solution for some path (i.e., the person walking
through the forest may only find their cabin if they pick some combination of
"correct” paths). The choices can be interpreted as guesses in a search process.

A large number of problems can be conceptualized through nondeterministic
algorithms, including the most famous unresolved question in computing
theory,P vs NP.



Check your progress

Ql.Define the basic concept of NP hard harder than NP complete with
suitable example.
Q2. Why do we need non deterministic algorithm?

9.3NP - Hard and NP Complete classes

A problem is in the class NPC if it is in NP and is as hard as any problem in
NP. A problem is NP-hard if all problems in NP are polynomial time reducible
to it, even though it may not be in NP itself.

Complete

If a polynomial time algorithm exists for any of these problems, all problems in
NP would be polynomial time solvable. These problems are called NP-
complete. The phenomenon of NP-completeness is important for both
theoretical and practical reasons.

Definition of NP-Completeness
A language B is NP-complete if it satisfies two conditions

[0 BisinNP
[l Every A in NP is polynomial time reducible to B.

If a language satisfies the second property, but not necessarily the first one, the
language B is known as NP-Hard. Informally, a search problem B is NP-Hard
if there exists some NP-Complete Problem A that Turing reduces to B.

The problem in NP-Hard cannot be solved in polynomial time, until P = NP, If
a problem is proved to be NPC, there is no need to waste time on trying to find
an efficient algorithm for it. Instead, we can focus on design approximation
algorithm,
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NP-Complete Problems

Following are some NP-Complete problems, for which no polynomial time
algorithm is known.

[J Determining whether a graph has a Hamiltonian cycle
[0 Determining whether a Boolean formula iscapable of being satisfied,
etc.

NP-Hard Problems
The following problems are NP-Hard

[l The circuit-satisfiability problem
[ Set Cover

[0 Vertex Cover

[J Travelling Salesman Problem

In this context, now we will discuss TSP is NP-Complete
TSP is NP-Complete

The traveling salesman problem consists of a salesman and a set of cities. The
salesman has to visit each one of the cities starting from a certain one and
returning to the same city. The challenge of the problem is that the traveling
salesman wants to minimize the total length of the trip.

Proof

To prove TSP is NP-Complete, first we have to prove that TSP belongs to NP.
In TSP, we find a tour and check that the tour contains each vertex once. Then
the total cost of the edges of the tour is calculated. Finally, we check if the cost
is minimum. This can be completed in polynomial time. Thus TSP belongs to
NP.

Secondly, we have to prove that TSP is NP-hard. To prove this, one way is to
show that Hamiltonian cycle <, TSP (as we know that the Hamiltonian cycle
problem is NP-Complete).

Assume G = (V, E) to be an instance of Hamiltonian cycle.

Hence, an instance of TSP is constructed. We create the complete graph G' =
(V, E"), where



E={(ij):i,jeVanditj
Thus, the cost function is defined as follows —

. 0 if(i,j)) €E
t /] = =
(&) {1 Otherwise
Now, suppose that 2 Hamiltonian cycle h exists in G. Tt is clear that the cost of
each edge in h is 0 in G’ as each edge belongs to E. Therefore, h has a cost of 0
in G', Thus, if graph G has a Hamiltonian cycle, then graph G' has a tour of 0
cost.

Conversely, we assume that G' has a tour h' of cost at most 0. The cost of edges
in E' are 0 and 1 by definition. Hence, each edge must have a cost of 0 as the
cost of h' is 0. We therefore conclude that h' contains only edges in E.

We have thus proven that G has a Hamiltonian cycle, if and only if G' has a
tour of cost at most (. TSP is NP-complete.

9.4 Satisfiability
(X1l or X2 ur;:i} @m’ x2 uril}
[}ﬁ ur?‘l or X3) [ﬁ m' u@}
[}E ur;‘l uri]} [ﬁ m' uril}
[}ﬁ or X2 orX31) [ﬁ or X2 uIEl}
INPTIT OUTPUT

Input description: A set of clauses in conjunctive normal form.

Problem description: Is there a truth assignment to the Boolean variables such
that every clause is simultaneously satisfied?

Discussion: Satisfiability arises whenever we seek a configuration or object
that must be consistent with (i.e. satisfy) a given set of constraints. For
example, consider the problem of drawing name labels for cities on a map. For
the labels to be legible, we do not want the labels to overlap, but in a densely
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populated region many labels need to be drawn in a small space. How can we
avoid collisions?

For each of the n cities, suppose we identify two possible places to position its
label, say right above or right below each city. We can represent this choice by
a Boolean variable v, which will be true if city c;’s label is above ¢;, otherwise
vi=false. Certain pairs of labels may be forbidden, such as when c;’s above
label would obscure ¢;’s below label. This pairing can be forbidden by the two-
element clause (v; or v;), wherevmeans “not v”. Finding a satisfying truth
assignment for the resulting set of clauses yields a mutually legible map
labelling if one exists.

Satisfiability is the original NP-complete problem. Despite its applications to
constraint satisfaction, logic, and automatic theorem proving, it is perhaps most
important theoretically as the root problem from which all other NP-
completeness proofs originate.

Is your formula in CNF or DNF? - In satisfiability, the constraints are specified
as a logical formula. There are two primary ways of expressing logical
formulas, conjunctive normal form (CNF) and disjunctive normal form (DNF).
In CNF formulas, we must satisfy all clauses, where each clause is constructed
by and-ing or's of literals together, such as

(v4 or vy)and (v, or v3)

In DNF formulas, we must satisfy any one clause, where each clause is
constructed by or-ing ands of literals together. The formula above can be
written in DNF as

(v{ and v; and vy)or (v{ and v,and v3)
or

(v1 and v, and v;) or (v, and v, and v;)

Solving DNF-satisfiability is trivial, since any DNF formula can be satisfied
unless every clause contains both a literal and its complement (negation).
However, CNF-satisfiability is NP-complete. This seems paradoxical, since we
can use De Morgan's laws to convert CNF-formulae into equivalent DNF-
formulae and vice versa. The catch is that an exponential number of terms
might be constructed in the course of translation, so that the translation itself
might not run in polynomial time.



How big are your clauses? - k-SAT is a special case of satisfiability when each
clause contains at most k literals. The problem of 1-SAT is trivial, since we
must set true any literal appearing in any clause. The problem of 2-SAT is not
trivial, but it can still be solved in linear time. This is very interesting, because
many problems can be modelled as 2-SAT using a little cleverness. Observe
that the map labelling problem described above is an instance of 2-SAT and
hence can be solved in time linear in the number of clauses, which might be
quadratic in the number of variables.

The good times end as soon as clauses contain three literals each, i.e. 3-SAT,
for 3-SAT is NP-complete. Thus in general it will not be helpful to model a
problem as satisfiability unless we can do it with two-element clauses.

Does it suffice to satisfy most of the clauses? - Given an instance of general
satisfiability, there is not much you can do to solve it except by backtracking
algorithms such as the Davis-Putnam procedure, In the worst case, there are 2™
truth assignments to be tested, but fortunately, there are lots of ways to prune
the search. Although satisfiability is NP-complete, how hard it is in practice
depends on how the instances are generated. Naturally defined “random”
instances are often surprisingly easy to solve, and in fact it is nontrivial to
generate instances of the problem that are truly hard.

Still, we would likely benefit by relaxing the problem so that the goal is to
satisfy as many clauses as possible. Here optimization techniques such as
simulated annealing can be put to work to refine random or heuristic solutions.
Indeed, any random truth assignment to the variables will satisfy any particular
k-SAT clause with probabilityl — (1 — 1/2)¥, so our first attempt is likely to
satisfy most of the clauses. Finishing off the job is the hard part. Finding an
assignment that satisfies the maximum number of clauses is NP-complete even
for non-capable of being satisfied instances.

9.5 Reducibility

In computability theory and computational complexity theory, a reduction is an
algorithm for transforming one problem into another problem. A sufficiently
efficient reduction from one problem to another may be used to show that the
second problem is at least as difficult as the first,

Intuitively, problem A is reducible to problem B if an algorithm for solving
problem B efficiently (if it existed) could also be used as a subroutine to solve
problem A efficiently. When this is true, solving A cannot be harder than
solving B. "Harder" means a higher estimate of the computing resources
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required in a given context (for example, compared to single-threaded
solutions, higher time complexity, higher memory requirements, Expensive
requirements for hardware processor cores, etc.).The existence of a reduction
from A to B can be written in the shorthand notation A <m B, usually with a
subscript on the < to indicate the type of reduction being used (m: mapping
reduction, p: polynomial reduction).

The mathematical structure generated on a set of problems by the reductions of
a particular type generally forms a pre-order, whose equivalence classes may
be used to define degrees of un-solvability and complexity classes.

There are two main situations where we need to use reductions:

[1 First, we find ourselves trying to solve a problem that is similar to a
problem we've already solved. In these cases, often a quick way of
solving the new problem is to transform each instance of the new
problem into instances of the old problem, solve these using our
existing solution, and then use these to obtain our final solution. This is
perhaps the most obvious use of reductions.

[1 Second: suppose we have a problem that we've proven is hard to solve,
and we have a similar new problem. We might suspect that it is also
hard to solve. We argue by contradiction: suppose the new problem is
easy to solve. Then, if we can show that every instance of the old
problem can be solved easily by transforming it into instances of the
new problem and solving those, we have a contradiction. This
establishes that the new problem is also hard.

A very simple example of a reduction is from mmltiplication to squaring.
Suppose all we know how to do is to add, subtract, take squares, and divide by
two. We can use this knowledge, combined with the following formula, to
obtain the product of any two numbers:

((x+y)*— x2—y?)
2

xX*y=

We also have a reduction in the other direction; obviously, if we can multiply
two numbers, we can square a number. This seems to imply that these two
problems are equally hard. This kind of reduction corresponds to Turing
reduction.

However, the reduction becomes much harder if we add the restriction that we
can only use the squaring function one time, and only at the end.In this case,
even if we allow all basic arithmetic operations, including multiplication, it



will generally not be reduced, because in order to get the desired square result,
we must first calculate its square root, and this square root can be an irrational
number. For example, V2, you cannot use rational numbers for arithmetic
operations. Going in the other direction, however, we can certainly square a
number with just one multiplication, only at the end. Using this limited form of
reduction, we have shown the unsurprising result that multiplication is harder
in general than squaring. This corresponds to many-one reduction.

Properties

A reduction is a pre-ordering, that is a reflexive and transitive relation, on
P(N)XP(N), where P(N) is the power set of the natural numbers.

Types and applications of reductions

As described in the example above, there are two main types of reductions used
in computational complexity, the many-one reduction and the Turing
reduction, Many-one reductions map instances of one problem to instances of
another; Turing reductions compute the solution to one problem, assuming the
other problem is easy to solve. The many-one reduction is a stronger type of
Turing reduction, and is more effective at separating problems into distinct
complexity classes. However, the increased restrictions on many-one

reductions make them more difficult to find.

A problem is complete for a complexity class if every problem in the class
reduces to that problem, and it is also in the class itself. In this sense the
problem represents the class, since any solution to it can, in combination with

the reductions, be used to solve every problem in the class.

However, in order to be useful, reductions must be easy. For example, by
letting the reduction machine solve the problem in exponential time and
generate zeros only in the following cases, it is possible to reduce difficult NP-
complete problems (such as Boolean satisfiability problems) to trivial problems
(such as determining whether a number is zero) only if There is a solution.
However, this does not achieve much, because even though we can solve the
new problem, performing the reduction is just as hard as solving the old

problem. Likewise, a reduction computing a non-computable function can
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reduce an undecidable problem to a decidable one. As Michael Sipser, an
American theoretical computer scientistpoints out in Introduction to the Theory
of Computation: "The reduction must be easy, relative to the complexity of
typical problems in the class [...] If the reduction itself were difficult to
compute, an easy solution to the complete problem wouldn't necessarily yield

an easy solution to the problems reducing to it."

Therefore, the appropriate notion of reduction depends on the complexity class
being studied. When studying the complexity class NP and harder classes such
as the polynomial hierarchy, polynomial-time reductions are used. When
studying classes within P such as NC and NL, log-space reductions are used.
Reductions are also used in computability theory to show whether problems are
or are not solvable by machines at all; in this case, reductions are restricted

only to computable functions.

In case of optimization (maximization or minimization) problems, we often
think in terms of approximation-preserving reduction. Suppose we have two
optimization problems, such that an instance of a problem can be mapped to an
instance of another problem, so that the near optimal solution of the last
problem instance can be converted back to the near optimal solution of the first
problem. This way, if we have an optimization algorithm (or approximation
algorithm) that finds near-optimal (or optimal) solutions to instances of
problem B, and an efficient approximation-preserving reduction from problem
A to problem B, by composition we obtain an optimization algorithm that
yields near-optimal solutions to instances of problem A. Approximation
preserve reduction is generally used to test the roughness of the approximate
result: if for some o, some optimization problem A is difficult to approximate
within a factor better than a (under certain complexity assumptions), and there
is a problem, problem A to problem B The preservation of approximation f
decreases, and we can conclude that problem B is difficult to approximate

within the factor a/ .



Examples

[0 To show that a decision problem P is undecidable we must find a
reduction from a decision problem which is already known to be
undecidable to P. That reduction function must be a computable
function, In particular, we often show that a problem P is undecidable
by showing that the halting problem reduces to P.

[0 The complexity classes P, NP and PSPACE are closed under (many-
one, " "} polynomial-time reductions.

[0 The complexity classes L, NL, P, NP and PSPACE are closed under
log-space reduction.

9.6 Summary

In this unit you have learnt about the basic concept of the NP-Hard and NP-
complete, non-deterministic algorithms. You have also studied about NP -
Hard and NP Complete classes in detail. After this you have learnt about
satisfiability problem and reducibility.

[1 A problem is NP-hard if all problems in NP are polynomial time
reducible to it, even though it may not be in NP itself ... If a
polynomial time algorithm exists for any of these problems, all
problems in NP would be polynomial time solvable. These problems
are called NP-complete.

[0 In computer science, a nondeterministic algorithm is an algorithm that,
even for the same input, can exhibit different behaviors on different
runs, as opposed to a deterministic algorithm. There are several ways an
algorithm may behave differently from run to run.

[l In logic and computer science, the Boolean satisfiability problem
(sometimes called propositional satisfiability problem and abbreviated
SATISFIABILITY, SAT or B-SAT) is the problem of determining if
there exists an interpretation that satisfies a given Boolean formula.

[0 Reducibility- If we can convert one instance of a problem A into

problem B (NP problem) then it means that A is reducible to B. NP-
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hard-- Now suppose we found that A is reducible to B, then it means
that B is at least as hard as A.

9.7 Review Questions

Ql.Differentiate between NP-Hard and NP-Complete Problems with
suitable example.

Q2.If a sub-problem (which is a part of a main problem) is NP-Complete,
does it mean that the main problem will be NP-Complete as well?

Q3.Is K means an example of a deterministic algorithm? Elaborate your
answer with suitable example,

Q4.Ts the satisfiability problem known to be in NP, or only conjectured to
be in NP? Explain with example.

Q5.What does Reducibility mean in NP problems and why is it required?
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