Master of Computer Science

MCS-109

[T Database Management
Uttar Pradesh Rajarshi Tond
N iy, System

Database Management System

Block - 1 Basic concepts of DBMS 3
Unit-1 Introduction 6
Unit-2 Relational Data Model 16
Unit-3 ER Model 25
Block - 2 Query Language and Database Design Concepts 41
Unit-4 Relational Algebra 44
Unit-5 Structured Query Language 59
Unit-6 Functional Dependency Theory 74
Unit-7 Normalization 89
Block — 3 Transaction Management & Emerging Databases 103
Unit-8 Transaction Processing Concepts 106
Unit-9 Emerging Trends in DBMS 129

[1]

[2]

1\ TR T R
Uttar Pradesh Rajarshi Tondon

Master of Computer Science

MCS-109

Database Management

open Universi
i y System
Block
Basic concepts of DBMS
Unit-1 Introduction 6
Unit-2 Relational Data Model 16
Unit-3 ER Model 25

[3]

[4]

Course Design Committee

Prof. Ashutosh Gupta

Director (In-charge}
School of Computer and Information Science, UPRTOU Prayagraj

Chairman

Prof. Suneeta Agarwal Member
Department of CSE

MNNIT, Prayagraj

Dr. Upendra Nath Tripathi Member

Associate Professor, Department of Computer Science
Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur

Dr. Ashish Khare Member

Associate Professor, Department of Computer Science

University of , Prayagraj

Ms. Marisha Member
Assistant Professor (Computer Science)

School of Science, UPRTOU Prayagraj

Mr. Manoj Kumar Balwant Member
Assistant Professor {(Computer Science})
School of Science, UPRTOU Prayagraj

Course Preparation Committee

Mr. Manoj Kumar Balwant Author(Bleck 1: Unit 1, 2, 3)
Assistant Professor (computer science)

School of Sciences, UPRTOU Prayagraj

Dr. Abhay Sexena Editor
Professor and Head, Department of Computer Science

Dev Sanskriti Vishwavidyalya, Haridwar, Uttrakhand

Prof. Ashutosh Gupta
Director (In-Charge)
School of Computer & Information Sciences, UPRTOU Prayagraj

Assistant Professor (computer science)

School of Sciences, UPRTOU, Prayagraj

UPRTOU, Prayagraj-2021
MCS -109 , Database Management System
ISBN -

All Rights are resurved. No Part of this work may reprouduced in any form, by mimeograpn or
any other means, without permission in writing from the Uttar pradesh Rajarshi Tandon Open
University

Printed and Published by Vinay Kumar Registrar, Uttar Pradesh Rajarshi Tandon

Open University, 2024.
Printed By : Chandrakala Universal Pvt. Ltd. 42/7 Jawahar Lal Neharu Road,
Prayagraj.

BLOCK INTRODUCTION

This block is organised into 3 units. The first unit introduces basic concepts of
database and databasc management system. It starts with the need of DBMS over
traditional file processing systems. After that, it presents the architecture and the data
models on which they are designed. Then it briefly describes database language to
create and maintain databases on the computer. Finally, it explains various components
of DBMS such as query optimizer, DDL compiler, DML compiler, runtime database
processor and stored data manager. The second unit presents entity-relationship
diagram to represent a database. This ER diagram is then used to synthesis relational
schemas and identify their attributes along with primary key and foreign key. The third
unit illustrates the basic building blocks of relational data model which includes
attributes, tuples and relations. It explains various types of constraints in a relational
database table such as domain constraints, key constraints entity integrity constraints
and referential integrity constraints. It gives understanding of what are the constraints
that violate during insertion, deletion and updation operation. It describes how DBMS
handles when these constraints violate.

[3]

[6]

UNIT-1 Introduction

Structure

1.1 Introduction

1.2 Objectives

1.3 Examples of database approach

1.4 Characteristics of database approach

1.5 Advantage of using database approach

1.6 Schemas and Instances

1.7 DBMS architecture and database independency
1.8 Data model

1.9 Database languages and interfaces

1.10 Database system environment

1.11 Summary
1.12 Terminal Questions

1.1 Introduction

A Database is a collection of interrelated data. The data here refers to some known
facts with implicit meaning. For example, consider you want to maintain the names,
phone numbers, and addresses of your friends and relatives. You may store these data
in computer software such as MS Excel or MS access. This collection of similar data
with implicit meaning is called as database. Large commercial companies such as
Flipkart and Amazon maintain their own large databases that contain data of over
millions of books, movies, games, DVDs, electronics and other items. For example,
the Flipkart database takes over many terabytes of spaces which is stored on varied
computers (called servers). Around millions ofpeople daily visit Flipkart and use the
database to make their purchase. The database is updated every time whenever a new
item is purchased to reflect the updated stocks in the database. A softwarewhich store
interrelated data into the database and access themwhen required is called database
management system (DBMS). The primary goal of a DBMS is to conveniently store
data and efficiently access it. The datais most important for many organizations, the
DBMS system must ensure the safety of stored data against system crash or
unauthorized access to the data.

1.2 Objectives

After studying this unit you will able to

s Differentiate between database and database management system.
Explain advantages of DBMS over traditional file processing systems.
Describe the architecture upon which DBMS is designed.
Explain various data models on which database is designed.
Learn Database language to create and maintain databases on the computer.
Describe different interfaces to DBMS.

1.3 Examples of database approach

Consider a University database which maintains data related to its students, their
courses and their grades. The database organises student data into several tables, each
of which stores data as data records. Figure 1.1 shows database structure and a few
data records for each database table.

SID S_name Contact_no Date_of Birth Branch
5003 Dinesh 9915633342 03-03-1996 IT
S004 Anil 9915633987 07-03-1893 EC
8005 Pankaj 9915633325 05-03-1894 Cs
a. Student Table

cib Course_name SID Credit
co1 Algorithm S003 4
co2 DBMS 8004 3
C03 Java 8005 4

b. Course Table
cip sSib GRADE
co1 5003 B
co2 8004 A
€03 S005 A

C.

Grade Table.

Figure 1.1: A university database to store student’s details, enrolled courses and

faculties information of a university.

Here, the student table stores student details. The course table stores details of each
subject being taught and its associated department. The grade table grades of each
student. Each record in a table stores different types of data elements. For example, the
student table's record contains student name, student id and branch (such as IT for
information technology, CS for computer science or EC for electronics &

[7]

[8]

communication). Each data record in the course table contains course name, course id,
credit and student ID(a student which enrols this course). Each data record in the grade
table contains student id, course id, and grade (from a set {*A’,‘B’,*C’,‘D’,‘F’,‘T’}.).
You notice that the records in varicus files are interrelated. For example, data records
of Dinesh and Saukat are related to their corresponding data records in the grade table.
Similarly, the course table contains data records corresponding to CS and IT branches.
The database can be manipulated whenever is required. The database manipulation
involves querying and updating which include:

Querying

Retrieve a list of all courses and grades.
Retrieve names of students who have taken data structures courses.

Updating

14

The main characteristics of database approach over traditional file processing
approach are as follows:

1

Add a new student to the student table,

Enter grade A to Dinesh in data structure course.

Delete record of Sandeep from student table.

Change the grade of Shaukat from B to A.

These are informal queries which must be specified precisely in a query
language (which we will discuss later) so that the DBMS can process it.

Characteristics of Database Approach

Supports multiple views of the data: A database presents different views of the
database for different types of users. A view is a subset of a database or may be
derived from the database and it is not separately stored in the database. For
example, staffs working in the account department require different views (parts)
of data than the staffs working in the sales department.

Multi user and concurrent access: DBMS allows several users to access a
database at the same time. DBMS supports concurrency control whichfacilitate
simultaneous updates on the same data item by several users in a controlled
manner. For example, when multiple users are booking a seat in a train, it should
not be allotted to more than one person.

Self-describing nature of a database system:A database system contains a
database but along with descriptions of the database structure and its constraints
in DBMS catalog. The information stored in the database catalog is called
metadata,

Programs and data independency: DBMS approach allows changing data
storage structures without changing DBMS access programs.

1.5 Advantage of using database approach

In earlier days, the traditional file processing system was an alternative to DBMS. In
traditional file processing systems, all the data and information related to an
organization are stored in different files. For example, the university's admission
department maintains details of its students in one file while the examination
department maintains results of students in another file. Similarly, the library unit
maintains books issued to different students in different files. This way, each file
carries information specific to a department or unit. This needs different application
programs to extract records from appropriate files. The DBMS software has a number
of major advantages over traditional file processing systems.

1L

Data redundancy: In a traditional file processing system, each user group
such as admission, examination and library maintain different files for
students as per their needs. This causes data redundancy because the same
information may be placed at several files. For example, the admission
department stores the name, student ID, age, date of registration, which are
also present in the file maintained by the examination department. This
redundancy of data leads to higher storage and access cost. In DBMS, all user
groups store information in only one single place.

Data inconsistency: In a file processing system, since there are various copies
of the same data present over different files, a change in the data in one file
will not reflect the change in all other places. For example, a change in student
address in one file maintained by the admission section will not reflect the
change in the address of the same student in another file maintained by the
library department. This causes data inconsistency which is eliminated in
DBMS.

Data dependency: The file processing system requires the user group to
know the physical details of a file such as name of the file, the format of the
file and location of the file in order to access data. DBMS hides these low
level physical details from the user group and offers a more convenient
approach to access data from the database.

Integrity constraints: DBMS offers integrity constraints to a database where
the user group may specify a type of data or condition on data to be entered
into the database. For example, in a banking database, each account number
must be positive integers and should be exactly 12 digits. Such integrity
constraints are not possible in a file processing system.

Concurrency control: To improve overall system performance and faster
response time, multiple users are allowed to simultaneously access and update
data. But, this concurrent update results in inconsistent data. The file
processing systems may overcome this problem by locking a whole file even
if only a small piece of data is needed. DBMS provides locks at record level to
allow concurrent updates without resulting inconsistent data.

Atomicity problem: Atomicity means either executes an operation entirely or
not at all. For example, if a program is transferring Rs 5000 from account A to
account B, but meanwhile during the execution of the program a system
failure occurs. Due to this, Rs 5000 was debited from account A but it was not
credited to account B. So, we must ensure either both debit and credit occur or
none of them occur. It is difficult to provide atomicity in a file processing
system.

[9]

[10]

Check your progress

1. Why do the big commercial companies like Flipkart need database?
2. What are the capabilities provided by a DBMS?

3. What do you mean by data inconsistency and data redundancy?

1.6 Schemas and Instances

A database changes over time as we insert and delete information but its data types
and constraints are generally fixed. A collection of records stored in a relation (or
table) at any particular time is known as an instance of the relation. The description of
the overall design of the relation which includes its name, data type of each attribute
and constraints is called schema. The schema is considered as a template for
describing data to be stored in the relation and it changes infrequently. For example,
Figure 1.2 shows the schema for a student database which specifies the structure of
each relation in the database but not the actual records. When we store student records
in the schema, it will be referred to as its instances.

Data ltem Name Starting Position in Record Length in Characters (bytes)
Name 1 30
StudentNumber 31 4
Class 35 4
Major 39 4

Figure 1.2- Internal storage format for student record.

1.7 DBMS architecture and database independency

Now, we will discuss three-schema architecture of DBMS which achicves three of the
four important characteristic as discussed in section 1.4. Most DBMS including the
modern DBMS are based on this architecture. The major goal of this architecture is to
separate user applications from physical databases. This architecture describes data
stored in a database at three levels of abstractions as shown in Figure 1.1. The data
description at conceptual and external are defined by data definition language (DDL)
of SQL. The three-schema architecture contains following are three levels:

1. Logical schema or Conceptual level:It describes stored data in a database in
terms of the data model of a DBMS. For example in a relational model, it
describes all relations in a database in terms of their data types, constraints
and user operations. It describes relationships between different relations as
separate relations. The Logical schema hides physical storage structure details
of the database from the user and provides physical data independence. The
process of designing a good logical schema is a part of conceptual database
design.

2. Physical schemaor internal level:Physical schemadescribes how the

relations described at conceptual level are actually stored on storage devices
(e.g. disk). It specifies what file organisations and data structures (indexes) are
used to speed up data access from the database. The process of designing a
good physical schema is a part of physical database design.

External schema or View level:It is the highest level of abstraction which
provides only a part of a database as per the need of the external user because
many users require some parts of information from the database.Each database
has only one logical and physical schema because it has only one set of
relations in the database. But, it has many external schemas and each is
designed for a particular user. Each external schema is not actually stored in
the database, rather it is computed on demand for each type of usersusing
existing relations in the database.

View Level

view 1 view 2 LR view n

|

Conceptual Level

|

Physical Level

Figure 1.1- Three schema architecture

The important benefit offered by three-schema architecture of DBMS is data
independency which provides the ability for DBMS to modify schemas at one level
without modifying schemas at the next higher level. This architectureprovides two
types of data independency:

1.

Logical data independency:It provides the ability for DBMS to modify
logical schemas of a database without modifying its external schemas. The
logical schemas are generally modified to incorporate new data types and
constraints to a database.For example,changes in logical schemas include:
adding a record type or data item, reduce the database size by removing record
type or data item or changing constraints. The change in logical schemasonly
results in change in view definitions and mappings. After the reorganization of
the logical schemas, the external schemas that refers to the user group works
as before.

Physical data independency:It provides ability for DBMSto modify physical
schemas of a database without modifying its logical schemas.Changes to
physical schemas such as reorganization of files are required to improve

[11]

[12]

retrieval and update performance. For example, reorganization of files helps in
improving retrieval performance of some sections of records, while query to
access these records remain unchanged. However, the query will execute
faster in this scenario.

1.8 Data model

One fundamental characteristic of a DBMS approach is to hide data organization and
storagefor providing an improved view of data. This is referred to as data abstraction.
Data model is a high-level description of the overall structure of a database to achieve
this data abstraction and provide how to store and access the data. The structure of the
database refers to the data types, relationships and constraints that apply to the data to
be stored in its relation. Today, several data models exist which are categorized below
based on the type of concepts used for describing thestructure of the database.

Relational data model: Relational data model is the most popular data model which
stores data in tables consisting of rows and columns. Each column has an atfribute
such as student [D and student name. Each row which is also called a tuplecontains
data related to attributes. Majority of current database systems are based on relational
data models. Throughout this book, we will discuss relational data models. The
relational data model was givenby E.F. Codd in 1970.

Object oriented data model: It is developed to store audio, video, graphics files in a
relational database. This data model uses tables to store data, but it is not only limited
to table. This data model is sometimes also called a hybrid data model.

Hierarchical data model: organizes data in a trec like structure where each record
has a single parent. This model was good for describing many real world entities. This
data model was initially used by IBM in the 60s. But due to the operational efficiency,
it is rarely used now.

Networked data model: Network data model is built on the top of the hierarchical
data model which allows many to many relationships between linked records. This
allows multiple parents to record. This data model consists of sets of related records.
Each set has one patent record and one or more member or child records. A record can
be a member or child in multiple sets. It was popular in the 70s, but rarely used now.

1.9 Database languages and interfaces

Database language provides ability to users to design and maintain databases on
computers. There exist a number of database languages which includes Oracle,
MySQL, MS Access, dBasc and FoxPro. However, SQL is the most widely used
database language for both commercial and experimental purposes. We will study
SQL in more detail in unit V. A database language broadly consists of two parts: Data
definition language (DDL) and Data manipulation language (DML). DDL is used to
specify schema of a database. Once the database schema is specified, the database is
stored with data. DML offers insertions, deletions, retrievals and modifications of the
data stored in the database.

Data Definition Language: Data definition language is used to create modify and
remove the structure of database tables.

Data Manipulation Language: Data Manipulation Language provides access and
manipulation of data organised in the database. DML offers four types of operations
on the data:

Insertion of new information in the database
Deletion of existing information from the database.
Modification of stored information in the database.
Retrieval of stored information from the database.

DML is further classified as procedural and non-procedural DML,

Procedural DML: The procedural DML requires a programming language construct
such as looping and conditional statements to retrieve and process each record from a
set of records. A user needs to specify bothwhat type of data is needed and how to get
those data?

Non procedural DML or high level DML: This can be used to specify complex
database operations concisely. The non-procedural DML can be issued from monitor
or terminal, A user is only required to specify what data is needed and there is no need
to specify how to get those data.

DBMS provides a number of user friendly interfaces which are the following:

1 Menu-Based Interfaces for Web Clients or Browsing:These interfaces offer a
list of options called menu to users that help them in formation of requests. A
query is formed by a step by step process of picking options from the menu.
Here, users do not need to memorize the command and Syntax of the query

language.

2 Forms-Based Interfaces:These interfaces offer a form to users where they can
fill all entries to add new data or only some entries to retrieve matching data.
These interfaces are designed especially for naive users.

3 Graphical User Interfaces:They display database schema in diagrammatic form
on screen where users specify a query by manipulating the schema diagram.
Users use pointing devices like 2 mouse to select a part of the schema diagram,

4 Interfaces for the DBA:Most DBMS provide special commands such as
creating an account, granting account authorization, changing schema and
changing system parameters. These commands are only used by DBA staff.

Check your progress

1. How a database schema differs from a databaseinstance?
2. What is the purpose of three schema architecture of DBMS?
3. Which database language is commercially and widely used for DBMS?

1.10 Database system environment

DBMS is a complex software which consists of several software components. Figure
1.3 shows these software components in simple form. The top portion of the figure
shows various users and interfaces with which they interact with DBMS. The DBA

[13]

[14]

staff designs database schema using DDL and other special commands. The casual
users use interactive interfaces such as menu based and form based interaction to
generate queries automatically. These queries are parsed by the query compiler to
check their correctness as per the query syntax. These queries are then optimized by
query optimizer which rearrange the possible operations of the queries and eliminates
the redundancies. It consults with system catalog for physical information about stored
data and generates executable queries. The parametric users who are responsible for
data entry supply parameters through predefined transactions. The lower part of the
figure shows the internal components that are responsible for data storage and
transactions processing. The database is usually stored on disk which is controlled by
the operating system through disk read/write operation. A stored data module of the
DBMS controls access to information stored in the database. The DDL compiler is
responsible for processing of schema definitions (as specified by DDL language) and
storing schema descriptions into DBMS catalog. The DBMS catalog also holds other
information such as names and datatypes of data items, constraints, mapping
information among schema, names and size of files. Application programmers write
application programs in high level languages such as ¢, ¢ct++ and Java. A precompiler
then extracts DML commands from these application programs. Finally, these
commands are converted into object code by the DML compiler. In the lower part of
the figure, the runtime database processor is responsible for the execution of special
commands, executable queries, and transactions with runtime parameters. The runtime
database processor during ite working interacts with the system catalog and stored data
manager. The stored data manager uses basic operating system services to perform
read/write operation between disk and main memory. In the Figure 1.3, Concurrency
and backup and recovery are integrated into a single module which helps in
transaction management by runtime database processor.

Users: DBA Staff Casual Users Application Parametric Users

/] Programmers
\ ' .
DDL Privileged (Interactive Application
Statements L Commands L Query Programs
DOL i l Host
: uery . |_... Language
Compiler Compiler Precampiler Compiler
T T
L ¥ ‘ ¥

| Query DML Compiled
Optimizer Compiler Transactions

n‘l ”
s e

¥
’
Fd o oE
i S DBA Commands,
” 7 Queries, and Transactions
> - *
-

R s Runtime Stored
System [# Sl _ . | Database Data
Catalog/ |a” i . Proc:assor Concurrency Controlf Manager

Data === p=smaoa Backup/Recovery L
Dictionary Subsystems
Input/Output

Query and Transaction

Execution:

from Database

Figure 1.3- Component modules of DBMS and their interactions!"!

1.11

Summary

In summary you have learned

1.12

v el

% = o

9.

About database and database management system.,

Advantages of DBMS over traditional file processing systems.
Different interfaces of DBMS which varies from menu and form based
interfaces to commands and query based interfaces.

Various software components of DBMS such as query optimizer, DDL
compiler, DML compiler, runtime database processor and stored data
manager.

Terminal Questions

What are various advantages of DBMS over traditional file processing
systems?

What do you understand by database and database management system?
What do you mean by atomicity?

Explain the Three-Schema Architecture.

What are the purposes of physical data independence and logical data
independence?

‘What do you understand about data models?

Briefly explain various types of data models?

How does database definition language differs from database manipulation
language?

What is the purpose of database language? Explain types of database
Language.

10. Describe the database system environment with appropriate diagrams,

1.

‘What are the characteristics of the DBMS approach?

BIBLIOGRAPHY

1.

2.

R Elmasri, S Navathe, Fundamentals of Database Systems, 6th edition,
Addison-Wesley, 2010.

R Ramakrishnan, J Gehrke, Database Management Systems, 3rd Ed.,

McGraw-Hill, 2002,

A Silberschatz, H Korth and S Sudarshan, Database System Concepts,
6th Ed., McGraw-Hill, 2010.

[15]

[16]

UNIT-2 Relational Data Model

Structure

2.1 Introduction

2.2 Objectives

2.3 Basic Relational data model Concepts

2.4 Relational Databases and Relational Database Schemas
2.5 Relational Model Constraints

2.6 Update Operations and Dealing With Constraint Violations

2.7 Summary
2.8 TerminalQuestions

2.1 Introduction

Earlier,network and hierarchical data models were quiet popular in 70’s
decade.However, today relational data model is used as the primary data model in
almost all commercial data processing applications. The relational data model
represents a database as a group of one or more relations where each relation is a table
with rows and columns. This simple database representation allows even naive person
to understand the content of the database and allows us to easily express even complex
data access operations in a high level language. This chapter will give you basic
concepts of a relational data model. In this chapter, we will discuss how to represent
the relational data model and what are relational constraints. Later, we will describe
how the relational data model handles the violation of integrity constraints.

2.2 Objectives

After studying this unit you will able to:

¢ Understand basic concepts of relational data model which includes attributes,
tuples and relations, domain of attributes.

e Analyse various types of constraints in a relational data model: domain
constraints, key constraints, entity Integrity constraints and referential integrity
constraints.

s Know which constraints violate during insertion, deletion and updation operation.
And how does DBMS handle when one or more constraints violate.

2.3 Basic Relational data model Concepts

Relational data model represents a database as a collection of tables. Each table is
given a unique name and each row of a table represents a collection of related data
values. The row represents a real world entity or relationship. A table name and
column name help in interpreting meaning of data values of a row. For example,
consider a STUDENT table which contains attributes; SID, Age, Branch and Marks.
The data values of any row can be interpreted with its corresponding column names.

SID Age Branch Marks
S01 19 IT 68
502 20 EC 66
S03 18 EC 67
S04 22 CS 73
805 23 IT 74
S06 19 CS 76

Figure 2.1- A STUDENT table,

In the relational data model terminology, a table is called a relation, a row is called a
tuple, and a column is called an attribute, Each attribute can take values from its
domain. A domain D is a set of allowed individual values by its attribute and it can be
specified by a data type. For example, a domain of an attribute Age is a set of all
possible ages of students and each age can take integer value between 18 and 30.

2.4 Relational Databases and Relational Database Schemas

In the previous section, we have learnt about a single relation and its characteristics. A
relational database consists of many such relations and each relation contains many
tuples. A relational database schema S={R1,R2..Rn} is a sct of rclational schema
R1,R2.Rn and a set of integrity constraints IC. A relational database state
DB={rl,12...rn} of a rclational database schema S is a sct of relational states rl,12...m
of relational schemas R1,R2..Rn respectively such that each ri satisfies integrity
constraints specified in IC. For example, figure 2.2 shows a relational database schema
UNIVERSITY={STUDENT, COURSE, TEACHERS} of a university. The primary
keys are underlined attributes. The STUDENT schema contains attributes SID which
is unique to each student, S_name refers to names of students, Contact_no refers to
telephone number of students, Date of Birth symbolizes the birth date of students and
Branch refers to the name of the department. Attribute SID is the primary key of the
relation. The SID uniquely identifies each tuple of the STUDENT table. The
TEACHERS schema consists of attributes FID which contains faculty identifiers of
each faculty, F name refers to name of faculty, Course id refers to the course taught
by a faculty, Salary refers to monthly salary of a facility. In this relational schema
attributes {FID,Course _id} is a candidate key of the relational schema.

SID S name Contact_no Date_of Birth Branch

a) STUDENT relational schema

CID SID Course_name FID

[17]

[18]

b) COURSE relational schema

FID F_name Course_id Salary

¢) Teachers relational schema

Figure 2.2- A database schema UNIVERSITY={STUDENT, COURSE,
TEACHERS} of a university.

Generally, when we refer to a relational database, we mean both its database schema
and its current database state. The figure 2.3 shows a database state of the
UNIVERSITY database which contains relational states corresponding to each
relational schema STUDENT, COURSE and TEACHERS. Most DBMS provides
SQL to define database schema and various integrity constraints.

SID S _name Contact_no Date_of Birth Branch
5002 Sharad 9915633565 07-04-1994 T
5003 Dinesh 9915633342 03-03-1996 EC
5004 Anil 9915633987 07-03-1993 EC
S005 Nikhil 9915633325 05-03-1994 Cs
5006 Vikash 9915633127 23-08-1993 T
5007 Pankaj 9915633675 27-09-1993 CS
5008 Krishna 9915633872 07-12-1995 IT
5009 Sanjeev 9915633971 17-04-1993 EC
a) Relational states of STUDENT schema
CID SID Course_name FID
Co1 $003 Algorithm FO1
Co2 S004 DBEMS FO2

Co03 S005 Java F03

C04 S006 Basic Electronics F04

Co0s5 S003 Mathematics Fo1

b) Relational states of COURSE schema.

FID F_name Course_id Salary
FO1 Arun Co1 70,000
F02 Anupma €02 80,000
F03 Pradeep C03 75,000
F04 Denesh C04 90,000

¢) Relational states of Teacher schema

Figure 2.3- A database state for database schema UNIVERSITY={STUDENT,
COURSE, TEACHERS]} of a university.

2.5 Relational Model Constraints

During the database design, we put several restrictions on the values to be inserted and
what types of modification and deletion to be allowed. Constraints are a set of rules
that ensures accuracy and reliability of data stored in a database table. Generally there
are four types of constraints in a relational database: Domain Constraints, Key
constraints, Entity Integrity Constraints and Referential Integrity Constraints.

1. Domain Constraints
It states that each attribute's value of a relation should be individual (not multiple
values) and should belong to its valid set of values. A domain constraint of an attribute
is specified by its data type. The data type can be numeric (such as integer, long
integer), real numbers (such as float), characters, Booleans, date, time etc.

2. Key constraints
The key constraints inchude super key, candidate key and primary key.
Super key: A relation consists of many tuples and no two tuples can contain the same
combination of values for all attributes.A set of attributes of a relation which ensures
no two tuples can contain the same combination of values corresponding to these
attributes is called a super key. For example, consider two tuples t1 and t2 of a relation
R with a super key SK= {Al, A2...An}as some set of attributes, then

tl [Al, A2...An] #t2 [Al, A2,, An]
There may exist multiple sets of attributes {or subset of attributes) which hold this

property. For example, {SID, Age}, {SID, Branch} are two super keys of the Student
relation shown in Figure 2.1.

[19]

Candidate key:A set of minimum number of attributes of a relation that uniquely
identifies each tuple of the relation is called candidate key.The values of these
attributes of the candidate key are different for their corresponding tuples of the
relation and there exists no subset of these attributes such that their values are different
for all the tuples of the relation.It is one of the super keys of a relation that has a
minimum set of attributes. In any relation, every candidate key is a super key. For
example, {SID} and {Age, Branch} are two candidate keys of Student relation shown
in Figure 2.1.

Primary key: A primary key is one of the candidate keys of a relation which is
chosen by the database administrator. Similar to the candidate key, the values of
attributes of a primary key are different for all tuples of a relation and hence it
uniquely identifies each tuple of the relation.The primary key is generally shown
underlined in ER diagram and database schema. It is chosen from any one of the
candidate keys but generally it is one of the candidate keys with single attribute or
minimum attributes. The other remaining candidate keys are called unique keys or
alternate keys.

3. Entity Integrity Constraints
It ensures that a value of a primary key of a relation cannot be NULL. If two or more
tuples of a relation contain NULL values in their primary key, then it cannot uniquely
identify these tuples. And it is not possible to access these tuples.

4. Referential Integrity Constraints
So far we have seen constraints such as key and integrity constraints that are
applicable on a single relation. A set of attributes FK of a relation Rl is called a
foreign key of R1 which references another relation R2 (or same relation R1) if it

satisfies two properties:
1. The foreign key FK must reference the primary key PK of relation R2 and
both keys have the same domains.

2. Each value of FK in a tuple t1 of R1 either occurs as a value of PK in a tuple
12 of R2 (i.e. t1[FK]=t2[PK]) or is NULL.

In the above definition of foreign key, the relation R1 is called referencing relation and
the relation R2 is called referenced relation. A referential integrity constraint from R1
to R2 holds if the above two properties. For example, consider the SUBJECT and
STUDENT relation shown in Figure 2.4,2.1. The primary key for SUBJECT relation
is {SID,Subject code}.

SID Subject_code Subject_name
502 Co1 Operating System
502 co2 DBMS

S04 Cco3 Algorithm

S04 co2 DBMS

S05 Co1 Operating System

[20] Figure 2.4- A SUBJECT relation.

The attribute SID of SUBJECT relation refers to the student in STUDENT relation
who opted subject in SUBJECT relation. The SID attribute in SUBJECT relation
serves as foreign key which references the primary key SID of STUDENT relation. A
referential integrity constraint from SUBJECT to STUDENT hold if the values of
foreign key SID of SUBJECT for each tuple in SUBJECT should have a matching
value in primary key SID of STUDENT relation for some tuple. Otherwise, the value
of the foreign key SID of SUBJECT relation should be NULL.

Illustrative Question:Given a relation R(ABCDE) with A and BC are its candidate
keys. How many super keys are possible for the relation?
Solution:
Total number of super keys = number of super keys with candidate key A
+ number of super keys with candidate key BC
- number of super keys with both A and BC.
= number of subsets of attributes of R which contain A
+ number of subsets of attributes of R which contain BC
- number of subsets of attributes of R which contain ABC
— 95D} 56D _ (5D
=16+8-4

=20

Check your progress

1. How many super keys are possible for a relation R with n attributes?

2. Which of the following is NOT a superkey in a relational schema with
attributes V,W,X,Y,Z and primary key VY?
a) VXYZ
b) VWXZ
¢) VWXY
d) VWXYZ

3. Which one is correct with respect to RDBMS?
a) primary key € super key € candidate key
b) primary key € candidate key € super key
¢) super key € candidate key € primary key
d) super key € primary key € candidate key

[21]

[22]

2.6 Dealing With Constraint Violations in Relational
Database

There are three basic operations i.e. insert, delete and update that cause constraints
violation in a database. Whenever these operations are performed, DBMS must ensure
that they should not lead to constraints viclation. In case of constraints violation,
DBMS must perform the necessary actions.

On Insert Operation: When we insert a new tuple into a relation, we provide a list of
values for each attribute. An insert operation can violate one or more constraints i.c.
domain constraints, key constraints, entity integrity constraints and referential
integrity constraints. If an insert operation violates one or more constraints, a default
action is to reject the insert operation. The domain constraint violates if an attribute
value provided during insert operation does not belong to its domain. The key
constraint violates if an attribute value given during an insert operation already exists
in another tuple for the same attribute. The entity Integrity constraintviolates if a
NULL value is given to a primary key during a tuple insertion. The referential
integrity constraint violates during a tuple insertion if the value of foreign key of a
relation does not refers to any value of the primary key of another relation.

On Delete Operation: A delete operation removes a one or more tuple from a
relation. The delete operation can violate only referential integrity constraints when a
deleted tuple is referenced by some value of foreign key. If a referential imtegrity
constraint violates with delete operation, we can choose several options. The first
option is to reject the delete operation. The second option is to perform cascade
(propagate) delete operation which removes all those tuples also that reference to a
deleted tuple. For example, consider again STUDENT and SUBJECT relation shown
in Figure 2.1 and 2.4. If we delete a tuple containing SID S04 from the STUDENT
table, this violates the referential integrity constraints because this tuple is referenced
by other two tuples of SUBJECT relation which contain foreign key values S04. So
we need to delete these two tuples also from SUBJECT relation which contain 04
value in its foreign key.

On Update Operation: An update operation changes values of one or more attributes
of a relation. We handle constraints violation during update operation by following
ways:

¢ When the value of an attribute which is neither primary key nor foreign key
modifies, the DBMS only ensures that the new value belongs to the domain of
the attribute.

s If an attribute is being modified is primary key of a relation, then DBMS
ensures that the new value is not NULL and unique.

o If we modify a value of foreign key, then DBMS ensures that the new value
refers to some tuple in the referenced relation or it is NULL.

¢ If the update operation violates referential integrity constraints, then DBMS

has all those options which we discussed in the delete operation.

Mustrative Question: The following table has two attributes A and C where A is the
primary key and C is the foreign key referencing A with on-delete cascade.

o w (M| g
ENIVAISTI SN E NN T

What are the tuples that must be additionally deleted to preserve referential integrity
when the tuple (2,4) is deleted.

Solution: We are given that C is a foreign key which references to primary key A
within the same table with delete on cascade. Therefore when the tuple (2,4) is
deleted, all those tuples which contain 2 as the value of attribute C are also be deleted.
Hence tuples (5,2) and (7,2) are deleted. The tuple (7,2) do not result to any other
tuple which contain 7 as the attribute value of C, so this does not cause deletion of any
other tuple. But when the tuple (5,2) is deleted, only tuple (9,5) is deleted because it is
only tuple which contain value 5 for the attribute C. Therefore, tuples (5,2), (7,2) and
(9,5) must be additionally deleted to preserve referential integrity when the tuple (2,4)
is deleted.

Check your progress

1. LetRl1 (a, b, c) and R2 (%, y,) be two relations in which a is the foreign key
of R1 that refers to the primary key of R2. Consider following four operations.
a) InsertintoR 1
b) InsertintoR 2
¢) Delete fromR 1
d) Delete fromR 2

Explain which of the above operations violate the referential integrity
constraint.

2. Match the following with respect to RDBMS:

(a) Entity integrity (i) enforces some specific business rule that do not fall
into entity or domain

(b) Domain integrity (ii) Rows can’t be deleted which are used by other
records

(€) Referential integrity (iii) enforces valid entries for a column

(d) Userdefined integrity (iv) No duplicate rows in a table

2.7 Summary

» We understand basic building blocks of a database which includes attributes,
tuples and relations, domain of attributes.
e We explained key constraints: primary key, candidate key, super key and
foreign key. [23]

s We discussed various types of constraints in a database relation such as
domain constraints, key constraints entity Integrity constraints and referential
integrity constraints,

s We illustrated which constraints violate during insertion, deletion and
updation operation. And how does DBMS handle when one or more
constraints violate.

2.8 Terminal Questions

[a—y

What are the constraints, whichviolate when a tuple is inserted in a relation?

2. How does DBMS deal when a deletion of a tuple causes violation of
referential integrity constraints?

3. What are the constraints violated during the update operation and how does

DBMS handle it?

Explain referential integrity constraints with a suitable example.

Explain the various constraints of database relations.

Briefly explain the following terms:

Super key

Candidate key

Primary key

Foreign key

Dth

pooe

BIBLIOGRAPHY

1. R Elmasri, S Navathe, Fundamentals of Database Systems, 6th edition,
Addison-Wesley, 2010.

2. R Ramakrishnan, J Gehrke, Database Management Systems, 3rd Ed.,
MecGraw-Hill, 2002.

3. A Silberschatz, H Korth and S Sudarshan, Database System Concepts,
6th Ed., McGraw-Hill, 2010.

[24]

UNIT-3Entity Relationship model

Structure

3.1 Introduction

3.2 Objectives

3.3 Basic ER Model Concepts

3.4 Initial conceptual design of the company dataset

3.5 Relationship Types, Relationship Sets, Roles, and Structural Constraints
3.6 Weak Entity Types

3.7 Refining ER Design for the company Database

3.8 Summary of ER Diagram

3.9 Conversion of ER Diagram to tables (or Relational Schema) Summary

3.10 Summary
3.11 Terminal Questions

3.1 Introduction

In the last unit, you studied database schema. Now, in this unit you will learn how to
design database schema. We will discuss Entity Relationship (ER) Model which helps
in identifying entities to represent a database and relationships among these entities.
ER model is a tool to model conceptual design of an organisation's database in terms
of objects and their relationships. It allows us to develop the initial database design of
an organisation and describe what the user wants from his database in a formal and
precise way. In this unit, we will discuss relational database design and associated set
of constraints. We will see how we can transform an entity relationship design to a set
of relational schemas along with an associated set of constraints.

3.2 Objectives

After studying this unit you will able to:
¢ Understand each component of an ER diagram for any application.

¢ Draw an ER diagram for any database application.

e Transform any ER diagram to relational schemas and identify their attributes,
primary key and foreign key.

3.3 Basic ER Model Concepts

Consider the database of NTPC limited company to illustrate basic concepts of ER
model. Assume the database designers after collecting requirements and performing
detailed analysis, provide the following description of the database:

1. The company has several departments and each department is identified by its
unique name and number. There is an employee in each department who
manages it and we need to keep track of when the employee starts managing
the department.

[25]

[26]

;__..Fr':_ullr;._.:: l

2. A department manages several projects and each project is identified by a

unique name and number and has a single location.

3. We need to store each employee's name,sex, date of birth, social security

number, address and salary and. An employee is appointed to only one
department but may work for several projects. In addition to this, there is a
need to keep track of each employee's supervisor and number of hours per
week an employee works on each project.

4, There is also a need to maintain dependant of each employee for insurance

purposes. Each dependent includes name, sex, date of birth and relationship
with the employee.

In the subsequent sections we will discuss the step by step process to derive schemas
from above requirements. The Figure 3.1 shows final schemas for the above company
database through .ER Diagram Each component of the ER diagram will be explained
gradually as we introduce the concepts of the ER model.

e

- .-r'.-':'I; |.. .:".L.-,;_|ra"2-f::..:_T

s a5 o
o —— . T _ _,_:_’ e s e .
= h s o
{ Bdate 3 Mame (Address 3{ Salary
B —=%, o " - T A
',
—_— - = ——==
= ¢ Locations 37
— ‘“\ o, gy o
. S = =
k T Mame | Mumber
: —— L
", . ot

)
S T

A1 1
LU

EMPLOYEE | DEPARTMENT |

_.-'-._1

; = MAMAGES 3
\\‘ \ - e :__:lj|l.'-l.|-_‘_?__ l""-.._,-::
'\"._ \JI .L " 1

< WORKS OM = PROJECT

Supervigor | | Superizee T —

< CONTROLS >

. ;
S— & r

i ,-""'" ‘I"H-.‘ \ L N -._‘_« y
L SUPERWVISION N (MName 3 - |
\"-. .--""I -~ e — ol
i | ___I_;;i.;u: on_,
<< DEPENDENTS_OF (tumber) =——
e
| DEPENDENT
" MName _1: Y Sex) " Birth ::-r.-::u‘_':_‘,l ’Ht ationsh E,

Figure 3.1 - An ER schema for the COMPANY database''l,

Entity:An entity is a real world object or thing that is different from other objects. For
example, each employee in accompany is an entity. Attributes:Each entity is described

by asset of properties called attributes. A set of values (one for each attribute)

corresponds to an entity. Or example,an employee entity elcan be described by values

of its attributes name, sex, date of birth, mobile as Raghav ,male,

06/08/1986,6765436785. While, another entitye 2 can be described with its attribute
values Vishal,male, 02/04/1985, 5643345678. An attribute is represented in the ER
diagram with an oval containing the name of the attribute.The values of the seen tities
corresponding to its attributes become part of data in the database.

There are several types of attributes present in ER model:

Simple and Composite attributes: So far we have discussed simple attributes in our
examples such as sex, date of birth and mobile. But, some attributes can further be
divided into sub parts {or two or more attributes). For example, the attribute name can
be further divided into three attributes: first name, middle name, last name.
Similarly, the address attribute can be divided into four subparts or attributes: Street,
city, state, postal code. In the ER diagram, a composite attribute is attached to its
component attributes with straight lines as shown in Figure 3.2.

/ \\ e

Street_address City State Zip

N,

Mumber Strest Apartment_number

Figure 3.2- Address is a composite attribute of employee entity set™\

Single valued and multivalued attributes: We have seen that each attribute has
single value for its entity. For example, the attribute name and sex can have only
single values. Such attributes are known as single valued attributes. But, there are
many cases where an attribute can have several values possible for a specific entity.
For example, an employee entity el may have one or more than one phone numbers.
Such types of attributes are known as multivalued attributes. As another example, an
attribute colour for a car entity ¢1 may have one or more colours. In an ER diagram a
multivalued attribute is shown by a double oval containing the name of the
multivalued attribute.

Derived attributes: The value of this attribute can be derived from the value of
another attribute. For example, an atiribute age for employee entity el can also be
determined from its date_of birth attribute. The date _of birth attribute is referred to
as base attribute or stored attribute.

An attribute may take null value, if an entity does not have a value for it. The null
value may be treated as "not applicable”, as the value does not exist for some entity.
For example, some employees may not have middle_name. A null value may also
indicate "unknown value" or "missing value" for its attribute. For example, if the
date_of birth attribute of an employee is null, then it is treated as missing value
because every employee must have a date of birth.

Entity Types, Entity Sets: A collection of entities with the same attributes is called
entity type. For example, an "employee" entity type will have the

same attributes for each of its employee entities but have different attribute's values.
Each entity type in a database is described by its name and attributes. In the ER

[27]

[28]

diagram, an entity type is represented by a rectangular box contain in gentity type
name as shown in figure 3.3.An entity set is a set of the same type of entities that have
the same attributes.In other words,an entity set is a collection of all entities that
correspond to the same entity type in a database. For example,a set of all departments
in a company is known as an entity set department. Similarly,a set of all employees in
a company form an entity set employee.

EMPLOYEE
Name, Age, Salary

el: Denesh Singh, 32, 49000
¢2: Vikash Kamal, 31, 42000

en: SharadVarshney, 30, 45000

Figure 3.3- An EMPLOYEE entity type has an entity set with entities el, ¢2...en
as elements of the entity set.

Key attributes of an entity type: Anattribute in an entity type that has district
values for each entity in an entity set is called key attribute. There can be one or more
key attributes in an entity type. In an ER diagram, a key attribute is denoted by its
underlined name inside an oval.The key attribute is capable of uniquely identifying
each entity in an entity set.For example, department name is a key attribute for entity
type departments since not we department shave the same name.Similarly,social
security number attributes no is a key attribute for employee entity type.Some
times,acombination of several attributes serveasa key attribute.This type of
key attribute is called composite key.The composite key is also capable of uniquely
identifying each entity in an entity set.

3.4 Initial conceptual design of the company database

We can now start ER diagram with initial design of the company database which will
be further refined after introduction of relationship concept. Based on the requirements
described in in section 3.3, we have identified four entities for the company database:

1. Department: The entity type department has several attributes. These
attributes are Name, Number, Locations, Manager, and Manager start date.
Here, the attribute name and number are key attributes while, Locations is a
multivalued attribute as shown in Figure 3.4,

Manager_start_date

Figure 3.4- A Department entity typel'l,

2. Project: The entity type Project has attributes: Name, Number, Location, and
Controlling department. Here, both Name and Number are key attributes as
shown in Figure3.5.

Figure 3.5- A Project entity type'.

3. Employee: The entity type Employee has Name, Ssn, Sex, Address,
Salary,Birth date, Department, and Supervisor as attributes (as shown in
Figure3.6). Here, the Name attribute is a composite attribute. While, the
attribute Ssn is the only key attribute in it.

Figure 3.6- An Employee entity type!'l

4, Dependent: The entity type Dependent has attributes: Employee,
Dependent_name, Sex, Birth date, and Relationship as shown in Figure 3.7.

Relationship

DEPENDENT
Figure 3.7- A Dependent entity type!'.

Check your progress

1. Given the basic ER and relational models, which of the following is
INCORRECT?

a) An attribute of an entity can have more than one value

b) An attribute of an entity can be composite

¢) In a row of a relational table, an attribute can have more than one
value

d) In a row of a relational table, an attribute can have exactly one value
ot a NULL value

3.5 Relationship Types, Relationship Sets,Roles, and
Structural Constraints

In the previous section, we noticed several relationships which exist among different

entity types.These relationships exist whenever one entity type is associated with

another entity type in some way. For example, there exists a relationship that

associates an employee Vikash Kamal as the manager of the HR Department.

Similarly, we can specify a relationship that associates a project "e-training" that is [29]

[30]

controlled by the IT department. In the ER model these associations among different
entity types are represented through relationships. Each relationship is formally called
a relationship type R that shows association among in entity types E1, E2,

En. A relationship set is a set of the same type of relationships. Formally,

a relationship set R consists of a set of tuples where each tuple consists of entities (el,
€2, ..., en) representing a relationship such that €1,e2.....en €E1,E2,....En respectively
.In other words, the relationship set R is a subset of the Cartesian product of entity set
E1xE2,....xEn. Each tuple in the relationship containg exactly one entity from each
participating entity type and they all are related to each other in some way.

EMFLOYEE WORKS FOR DEFARTMENT
. / . -.\\\ P9
;-’f“ o e \4' — 7-‘;_ s E“‘.__ T == _"';.T'J‘ o ‘..
\ ra 'i//
[o=
I oo | i II-_ ry "’) f[
[‘ . ..

@) (b)

Figure 2.8- (a) A relationship set WORK_FOR between two entity types
EMPLOYEE and DEPARTMENT. (b} A relationship set SUPPLY among three
entity types SUPPLIER, PROJECT and PART"".

For example, the Figure 2.8 shows a relationship set WORK _FOR between two entity
types Employee and Department. In this relationship set, employee entities el,e3 and
e6 works for the department dl; employee e2 and e4 work for department d2;
employee €5 and e7 work for department d3. In ER diagrams, the relationship types
are represented with diamond shaped boxes which are connected to participating entity
types by straight lines. A relationship name is shown inside the diamond shaped box.

Structure Constraints on Binary Relationship Types

Degree of a Relationship Type: The degree of a relationship type R is the mumber of
entity types participating in the relationship type R. A relationship type of degree 2 is
called binary relationship and a relationship type of degree 3 is called ternary
relationship.

For example, the WORK_FOR relationship type shown in Figure 2.8(a) is a binary rel

ationship because it involves two entity types EMPLOYEE and DEPARTMENT.
The relationship type SUPPLY as shown in Figure 2.8(b) involves three entity types
SUPPLIER, PROJECT and PART is a ternary relationship. The relationships can be
of any degree but, binary relationships are most common.

Cardinality Ratio for Binary Relationship: The cardinality ratio for a binary
relationship is the number of entities of an entity type to which another entity of
another entity type can be associated via a relationship type. For example, the binary
relationship type WORK _FOR involving entity types DEPARTMENT: EMPLOYEE
is one to many (1:N) because each department employs many employees, but an
employee works for only one department. Similarly, the relationship type MANAGES
(as shown in Figure 3.9) between entity types DEPARTMENT and EMPLOYEE is
one to one (1:1) because a department is managed by only one employee called
manager and an employee as a manager manages only one department. Likewise, the
relationship type WORK _ON (as shown in Figure 3.9) between two entity types
EMPLOYEE and PROJECT has a cardinality ratio many to many (M:N) because an
employee works for several projects and a project has several employees. This way,
the possible cardinality ratios for binary relationship types are one-to-one,one to many,
many to one and many to many. In the ER diagram, the cardinality ratio between two
entity types related by a relationship is written on their respective lines connecting to
each other by the relationship.

Participation Constraints: A participation of an entity set E in a relationship set R
can be either total or partial participation. The participation is said to be total if each
entity in E participates in at least one relationship in R. Otherwise, the participation is
said to be partial, if only some entity in E participates in relationship set R, For
example, the participation of an EMPLOYEE entity set in a relationship set
WORK_FOR (as shown in figure 3.9) is total because every employee works for a
department. There is no employee who does not work for any department. But, the
participation of the entity the set Employee in relationship set MANAGES (as shown
in Figure 3.9) is partial because every employee is not a manager who manages a
department. In the ER diagram, a partial and a total participation is represented by a
single solid line and double solid lines respectively. The cardinality ratio and
participation constraints together are called structural constraints of a relationship set.

3.6 Weak Entity Types

An entity type that does not contain sufficient attributes to form a primary key
is known as a weak entity type. Onthe other hand, an entity type that has a primary
key is called as strong entity set. The entities of a weak entity type cannot be uniquely
identified by their own. 8o, it must be associated with a strong entity
type. The strong entity type associated with the weak entity type is called an
identifying or owner entity set. The relationship type that associates the weak entity
type with the identifying entity type is called an identifying relationship. For example,
consider Figure 3.9 where a weak entity set DEPENDANT is associated with a strong
entity set or identifying entity set EMPLOYEE with an identifying relationship
DEPENDANT _OF.

[31]

[32]

A weak entity set always has a total participation with its identifying relationship
because the weak entity set cannot be identified without its identifying entity set. So,
the participation of the weak entity set DEPENDENT with its identifying relationship
DEPENDENT OF is total (indicated by double lines) as shown in figure 3.9. This
means that every dependent entity must be related to some employee entity.

Although, a weak entity type does not have a primary key, it has a partial key or
discriminator which can differentiate among all those entities that are dependent on a
strong entity. It is a set of one or more attributes which can uniquely identify each
weak entity for a given owner entity. In our example, the dependent name is unique
for every employee, however it is not unique for dependent entities. In ER diagram,
weak entity type and identifying relationship are represented by double rectangle and
double diamond respectively. The partial key of a weak entity type is denoted by a
dashed line.

3.7 Refining ER Design for the company Database

We can now refine the ER diagram shown in Figure 3.1 by removing some attributes
from entity types that are refined into relationships. The following relationship types
along with its cardinality ratic and participation constraint are identified from the
requirements specified in section 3.3.

1. MANAGES: It is a one to one relationship between EMPLOYEE and
DEPARTMENT. The EMPLOYEE participation in the relationship
MANAGES is partial because every employee cannot be manager for some
department. However, DEPARTMENT participation is total because every
department must have a manager. WORKS FOR: is a one to many
relationship between DEPARTMENT and EMPLOYEE entity types. The
participation of both department and employee entities are total because every
department must have some employees and each employee must be associated
to a department.

2. CONTROLS: It is a one to many relationship between DEPARTMENT and
PROJECT entity types. The participation of DEPARTMENT 1is partial
because some departments may not conirol any projects. While, the
participation of PROJECT in CONTROLS relationship type is total because
each project must be controlled by a department.

3. SUPERVISION: It is a one to many relationship between EMPLOYEE (as
supervisor role) and EMPLOYEE (as supervisee role). The participation of
both side entity types in the SUPERVISION relationship is partial because
every employee cannot have a supervisor or can be a supervisor.

4., WORKS ON: It is a many to many relationship between EMPLOYEE and
PROJECT because a project can have several employees working on it and
vice versa. There is total participation for both EMPLOYEE and PROJECT
because every employee must work on some project and every project must
have some employees.

5. DEPENDANTS_OF: It is a one to many relationship between EMPLOYEE

and DEPENDANT. The participation of EMPLOYEE is partial, while that of
DEPENDANT is total in the DEPENDANT _OF relationship type.

Figure 3.9 shows a refined ER Diagram after including the above refinement process.

— — —
Frame Mint)} Lname

I DI
€Y, <>

: {11} : Name Numbser
: Eminw@ Department
AW/ @;}r"i@@;ﬁ};;;ﬁ-l—&ﬁk: -
EMPLOYEE _date) . Number_of_employees ~ ~ DEPARTMENT

WORKS_FOR (4 M)

0,1 _ Departrent " (0,N)| Controlling
Manager Managed _1,1) Depariment
= CONTROLS
“.N] HEH..II’S ' i
| | Worker
Controlied
4 per{zi:l}! fg-” : (1,1} | Project
[V illg’s Felig s P
WORKS_ON »T?iufl PROJECT
SUPERVISION > N,
Employee

DEPENDENTS_OF

(1,1) || Dependent

DEPENDENT

Figure 3.9- Refined ER Diagram of the company database!".,

Check your progress

1. In an Entity-Relationship (ER) model, suppose R is a many-to-one
relationship from entity set E1 to entity set E2. Assume that E1 and E2
participate totally in R and that the cardinality of E1 is greater that the
cardinality of E2, Which one of the following is true about R?

a) Every entity in E1 is associated with exactly one entity in E2.
b) Some entity in El is associated with more than one entity in E2.
¢) Every entity in E2 is associated with exactly one entity in E1.
d) Every entity in E2 is associated with at most one entity in E1.

3.8 Summary of ER Diagram

The set of various notations of ER diagram that we have used so far are summarized in

Figure 2.10. [33]

[34]

Symbal Meaning

Entlsty

Refationship

Indentifyng Relatonshis

—<1___.> Adtribarte
@ Ky Atiribate

Multivalued Attnbute
<

C%ip Composite Atinbuls

_' - Derved Atiribute

— Total Participabon of £, in &
"“ [E | Cardinalty Ratin 1:Nior 55, in R
{mmin, max)
_‘.i“? E""*] Structural Constraind (min, max)
on Particepaton of £n &

Figure 2.10- Summary of notation of ER diagram'.

Naming Conventions: In the ER Diagram, we choose names of entity types and
relationship types that convey meaning of them. Singular names are given to each
entity type because this name represents to each individual entity of the entity type.
The name of each entity type and relationship type is written with capital letters and its
attributes name is written with capitalized letters. The role names in the relationships
are written with lowercase letters. Commonly, entity types attributes names are nouns,
while relationship types names are verbs. The relationship types names are chosen in
such a way that the ER diagram is readable from left to right and top to bottom.

Design Choices for ER Diagram:

The schema design in the ER Diagram is an iterative refinement process. Initially, an
initial design of schema is proposed which is then refined iteratively until the desired
design is achieved. This refinement process is described through following
considerations:

1. A concept is first modelled as an attribute and then it is refined into a
relationship. Often, two complementary attributes are refined to a relationship
type and these attributes are then removed from respective entity types.

2. An attribute which exists in several entity types is refined as a new entity type.
For example, if an attribute Dependent occurs in multiple entity types
STUDENT, INSTRUCTOR and COURSE, then we will make a new entity
type DEPARTMENT,

3. An entity type which relates to only one entity type is refined as an attribute of
the other entity type. For example, if an entity type DEPARTMENT relates to
another entity type STUDENT, then it is refined as a new attribute in
STUDENT entity type.

3.9 Conversion of ER Diagram to tables (or Relational
Schema)

In this section, you will learn how an ER Diagram can be converted to relational
schemas. The relational schemas also incorporate various constraints as represented in
ER Diagram,

Representation of strong entity set:
1. Strong Entity Set with simple attributes-

A strong entity set E containing only simple descriptive attributes al,a2.........an can
be converted inte a relational schema E with attributes al,a2......an. The primary key
of the strong entity set serves as the primary key of the relational schema. For
example, consider the entity set PROJECT of the ER diagram in Figure 3.9, which
contains three attributes: Name, Number and Location. This entity set can be mapped
to a relational schema PROJECT with the attributes:

PROJECT(Name, Number, Location)

Any one of the attributes: Name or Number (as chosen by database administrator) can
serve as a primary key for the relational schema. Here, Name is the primary key for
the relational schema PROJECT.

2. Representation of Strong Entity Set with complex attributes-
An entity Set E containing composite attributes is transformed to a relational schema
by separating each composite attribute to its component attributes. For example, the
entity set EMPLOYEE in Figure 3.9contains a composite attribute Name and its
component attributes are FName, Mname and Lname. The relational schema derived
from the entity set EMPLOYEE includes attributes Fname, Mname and Lname along
with other simple attributes.

EMPLOYEE (S8n, Bdate, Fname,Mname,Lname, Address, Salary, Sex)

Representation of weak entity set: Consider a weak entity set A with
attributes al,a2,...am and its identifying entity set B consists of attributes
bl,b2......bm. The weak entity set A is transformed into a relational schema A with its
primary key as a combination of its discriminator attribute and the primary key of B
along with following attributes:

{al,a2.......am} Union {bl,b2...bn}
While creating the primary key of the weak entity set, we also create a foreign key

constraint on A. The attributes bl,b2.....bn reference the primary key of another
relation B.

[35]

[36]

For exanmple, consider the weak entity set DEPENDANT and its identifying entity set
EMPLOYEE in Figure 7.15. The weak set DEPENDENT is transformed to a
relational schema DEPENDANT with the following attributes:

DEPENDANT (Name, Ssn, Sex, Birth_date, Relationship)

Here, the primary key is Name, Ssn and the foreign key Ssn references the primary
key of the EMPLOYEE relation.

Representation of Relationship set: Consider a relationship set R with
attributes al,a2,....am formed from union of primary keys of participating entity sets in
R and bl,b2....bn are its deceptive attributes (if any). We can represent the schema of
relational set R with following attributes:

{al,a2........am} Union {bl,b2...bn}

A. Primary Key: The primary key of the relation schema R can be chosen as
follows:

1. Inabinary one to many or many to one relationship set, its primary key
is the same as the primary key of the participating entity set from many
side of the relationship set.

2. The primary key of a binary one to one relationship set is taken from
the primary key of either of the participating entity sets.

3. The primary key of a many to many relationship set is the umion of
the primary keys of each participating entity set.

B. Foreign Key:We can also create a foreign key constraint on the relationship
set R. The attributes of R which are the primary key of its participating
entity set act as a foreign key of the relational schema R. For example
consider the relationship set MANAGES (shown if Figure 3.9) which involves
two participating entities EMPLOYEE and DEPARTMENT. The primary keys of
the EMPLOYEE and DEPARTMENT entity sets are Ssn and Name respectively.
Start data is a descriptive attribute of the relationship set R. The primary key of
the relation schema R will be the union of the primary keys {Ssn, Name}. We can
create Ssn attribute as the foreign key of relation schema R which referencing the
primary key of EMPLOYEE entity set.

Redundancy of schemas: A relational schema of a relationship set R will be
redundant and does not present in the database, if the relational set R links a weak
entity set to a strong entity set (ie. one of the participating entity set is weak).For
example, consider the relationship set DEPENDENTS OF which involves
EMPLOYEE and DEPENDENT as the participating entity sets. Since, the
DEPENDENT is a weak entity set, its relational schema contains attributes: Name,
Ssn, Sex, Birth date, Relationship. The relational schema of DEPENDENTS OF
contains attributes: Name, Ssn. So every tuple which present is DEPENDENTS_OF
relation would also be present in DEPENDENT relation. Hence, DEPENDENTS OF
schema is redundant and should not be presented in the database.

Combination of schemas:

Consider a relationship set AB involving entity set A and B. As discussed earlier, we
require three schemas A, B and AB to represent these entity and relationship sets. In
order to reduce redundancy further, we can combine the schema of relationship set as
follows:

1. Many to one relationship set: If the relationship set AB is many to one from
entity set A to entity set B and participation of entity set A in the relationship
set AB is total (i.e. every entity in the entity set A participates in the
rclationship set AB). Then we can combine the schema of relational set AB
with the schema of entity set A and its attributes are the union of attributes of
both schemas A and AB.

2. One to one relationship set: If the relationship set AB is one to one from an
entity set A to entity set B, then we can combine the schema of relationship
set AB with either entity set A or B. The primary key of the combined schema
is the primary key of the participating entity set schema into which the
relationship set schema is merged.

We remove the foreign key constraint of the relationship schema, if it references to the
primary key of the entity set schema into which the relationship schema is merged. We
add other foreign key constraint to the combined schema which referencing to other
remaining entity set schema.

Representation of Composite and Multi valued Attributes: If an entity
set consists of a composite attribute, then each component attribute is included asa
scparate atiribute in the entity set schema. We discards the composite attribute itself in
the schema. For example, the EMPLOYEE entity set containing a composite attribute
“Name” will contain attributes in its schema: Fname, Minit and Lname.

If an entity set E contains a multivalued attribute M, then a separate schema is created
for M, which contains an attribute M along with the attributes of the primary key of
the entity set E. All the attributes of the new relation M serve as its primary key. The
attributes of schema M that acts as the primary key of entity set E serve as foreign key
referencing to primary key of the entity set E. For example, consider the multivalued
attribute Locations of DEPARTMENT entity set. We create a relation Locations with
following attributes:

Locations(Locations, Name)
The primary key of the relation Locations is Locations, Name. The Name attribute of

Location schema is the forcign key referencing the primary key Name of the
DEPARTMENT schema.

IMustrative Question: Consider the following ER diagram.

[37]

[38]

b) What is minimum number of tables needed to represent M, N, P, R1,
R2.
¢) What are the attribute set for these tables?

Solution:

Entity set: In the above ER diagram M and P are strong entities set, while N is a weak
entity set. We require 3 tables to represent cach entity set. The weak entity set when
mapped to relational table, its discriminator attribute N1 along with the primary key
P1 of entity set P act as the primary of table N. The relation schemas of these three
tables are:

M(M1,M2,M3)
P(P1,P2)
N(N1,P1,N2)

Relationship set: The above ER diagram contains two relationship sets R1 and R2.
Also, the participation of the entity set M and N are from many side of relationship set
R1 and R2 respectively. The participation of entity set M and N are total which are
indicated by double lines without arrow. So the relational schema of R1 and R2 can be
merged with relation schema of entity sets M and N respectively. The primary key of
the combined schema is the primary key of the entity set schema into which the
relationship set schema is merged. Each combined schema M and N also requires an
additional attribute P1 as a foreign key. Therefore relationship set R1 and R2 do not
requirc any table scparately but the table M and N will now contain additional
attribute P1 which is the foreign key.

M(M1,M2,M3,P1)
N(N1,P1,N2,P1)
P(P1,P2)

Therefore the above ER diagram requires minimum 3 tables.

Check your progress

1. What is the min and max number of tables required to convert an ER diagram
with 2 entities and 1 relationship between them with partial participation
constraints of both entities?

2. Let El and E2 be two entities in an E/R diagram with simple single-valued
attributes. R1 and R2 are two relationships between E1 and E2, where R1 is
one-to-many and R2 is many-to-many. R1 and R2 do not have any attributes
of their own. What is the minimum number of tables required to represent this
situation in the relational model?

3.10 Summary

In summary:

3.11

W

Lh

10.
LT,

12.
13;
14.
15.

Entity type, entity set, weak entity set and strong entity set in ER diagram.

We explained different types of attributes in ER diagram which includes:
Single valued attribute, multivalued attribute, simple attribute, composite
attribute, derived attribute.

We discussed Relationship Types, Relationship Sets, Roles, and Structural
Constraints of ER diagram along with total and partial participation in a
relationship set.

We illustrated how the cardinality ratio and participation constraints of a
relationship set are represented in the ER diagram.

We learned various notations and naming convention in ER diagram.

We explained how an ER diagram can be reduced to relational schemas and
how their attributes, primary key and foreign key are determined.

Terminal Questions

Differentiate between the following:

a. Single valued attribute vs multivalued attribute

b. Simple attribute vs composite attribute

What is the derived attribute?

Explain briefly the following terms.

a. Entity

b. Attribute

¢. Key attribute

d. Composite key

¢. Degree of a relationship type

Describe the purpose of ER modelling.

How do the cardinality ratio and participation constraints of a relationship set

are represented in the ER diagram.
How does the total participation differ from partial participation in a
relationship set?
What is a weak entity set? How a weak entity set is represented in the ER
diagram?
What do you mean by partial key or discriminator of a weak entity set? How is
it represented in the ER diagram?
How any entity set in an ER diagram can be transformed into a relational
schema.
Ilustrate with an example how the primary key of a relational schema derived
from a weak entity set is chosen.
Explain with a simple example how an entity set containing a composite
attribute is transformed to a relational schema.
What are various naming conventions in ER Diagram?
What are Design Choices for an ER Diagram?
How is a primary key and foreign key of a binary relation schema determined?
Briefly explain redundant schema during reduction to relational schema from
ER diagram. [39]

[40]

16. Explains the scenario when a relational schema can be combined with one of
its participating entity sets.

17. How do we represent composite and multivalued attributes in the schema of the
entity set?

BIBLIOGRAPHY

1. R Elmasri, S Navathe, Fundamentals of Database Systems, 6th edition,
Addison-Wesley, 2010.

2. R Ramakrishnan, J Gehrke, Database Management Systems, 3rd Ed.,
McGraw-Hill, 2002.

3. A Silberschatz, H Korth and S Sudarshan, Database System Concepts,
6th Ed., McGraw-Hill, 2010.

Master of Computer Science
MCS-109
V1 T T e mEn N
MitariFiedesh Reforshl Tondon Database Management
System

Block

2

Query Language and Database Design Concepts

Unit-4 Relational Algebra 44
Unit-5 Structured Query Language 59
Unit- 6 Functional Dependency Theory 74

Unit-7 Normalization 89

[41]

[42]

Course Design Committee

Prof. Ashutosh Gupta

Director (In-charge}
School of Computer and Information Science, UPRTOU Prayagraj

Chairman

Prof. Suneeta Agarwal Member
Department of CSE

MNNIT, Prayagraj

Dr. Upendra Nath Tripathi Member

Associate Professor, Department of Computer Science
Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur

Dr. Ashish Khare Member
Associate Professor, Department of Computer Science
University of , Prayagraj

Ms. Marisha Member
Assistant Professor (Computer Science)
School of Science, UPRTOU Prayagraj

Mr. Manoj Kumar Balwant Member
Assistant Professor {(Computer Science})
School of Science, UPRTOU Prayagraj

Course Preparation Committee

Mr. Manoj Kumar Balwant Author(Block 2 : Unit 4, 5,6, 7)
Assistant Professor (computer science)

School of Sciences, UPRTOU Prayagraj

Dr. Abhay Sexena Editor

Professor and Head, Department of Computer Science
Dev Sanskriti Vishwavidyalya, Haridwar, Uttrakhand

Prof. Ashutosh Gupta
Director (In-Charge)
School of Computer & Information Sciences, UPRTOU, Prayagraj

Assistant Professor (computer science)

School of Sciences, UPRTOU, Prayagraj

UPRTOU, Prayagraj-2021
ISBN —
All Rights are resurved. No Part of this work may reprouduced in any form, by mimeograpn or

any other means, without permission in writing from the Uttar pradesh Rajarshi Tandon Open
University.

BLOCK INTRODUCTION

The second block is organized into four units. The fourth unit gives a basic idea of
rclational algebra upon which the database language SQL is designed. This unit
explains use of unary relational operations (Select, Project and Rename), binary
relational operations (CROSS PRODUCT, JOIN, DIVISION) and rclational algebra
operation from Set Theory (union, intersection, set difference). The fifth unit starts
with similarities between SQL and relational algebra. It illustrates the order in which
any SQL query evaluates. After that it explains nested query and correlated nested
query and demonstrates how these queries are evaluated. Finally, it introduces various
SQL commands for defining schema, changing schema and specifying basic
constraints. The sixth unit presents the concept of functional dependencies. It
illustrates how to determine these functional dependencies of any relational instance.
It introduces attribute closure which helps in finding candidate keys of a relation from
its functional dependencies. It presents functional dependency set closure,
minimization of a functional dependency set and determining when two functional
Dependency Sets are said to be equal. The last unit discusses various anomalies which
arise due to the redundancy of data and the concept of normalization to get rid of
anomalies and the data redundancies. It explains decomposition of a relational schema
to different normal forms to ecnsure lossless and dependency preserving
decomposition. Finally, it discusses multivalued functional dependency and join
dependency upon which the fourth and fifth normal form are based.

[43]

[44]

UNIT-4 Relational Algebra

Structure

4.1 Introduction

42 Objectives

43 Unary Relational Operations: Select, Project and Rename

4.4 Binary Relational Operations: CROSS PRODUCT, JOIN and DIVISION
4.5 Relational Algebra Operation from Set Theory

4.6 Summary
4.7 Terminal Questions

4.1 Introduction

SQL is considered as major reason for success of the relational database. It is a
database language for data definitions, manipulations and updates. SQL is based on
relational algebra and tuple relational calculus because it borrowed concepts from
them. The relational algebra provides a basis for implementing and optimizing query
langnages such as SQL. In this unit, we will discuss various relational algebra
operations such as o(Segma), 7 (pi) and p(rho}. The result of any relational algebra
expression always gives a Relation. The operations o(Segma), = (pi) and p(rtho) are
unary operations because they work on the single relation while others are binary
operations.

4.2 Objectives

After study of this unit you will able to

Understand basic ideas of relational algebra.

Use unary relational operations: Select, Project and Rename.

Analyze binary relational operations: CROSS PRODUCT, JOIN, DIVISION.
Explain relational algebra operation from Set Theory: union, intersection, set
difference.

4.3 Unary Relational Operations: Select, Project and
Rename

Selection: The SELECT operation chooses only those tuples from a relation R that
satisfy a sclection condition. In other words, it picks some of the rows of a table and
discard so there rows based on a specified condition. A general syntax of the selection
operation is:

O<gelection conditionP-(R)

Here, the symbol ¢ called as segma represents selection operation. The selection
condition is specified with an expression that puts a condition on the attributes of
relation R. The R can also be any relation algebra expression whose result is a relation.
For example, consider the two statements given below.

% ratl No2(STUDENT)
O Marks PERCENTAGE>80(S TUDENT)

The first statement retrieves the tuple of STUDENT relation where student roll
number is 2. The second statement selects those tuples from STUDENT relation
whose percentage of marks is greater than 80. The result of these statements are shown
in Figure 4.1.

Roll no Name Stream Percentage Marks
1 Sharad Mathematics 77
2 Anil Mathematics 76
3 Dinesh Biology 82
4 Pankaj Commerce 81
(a) STUDENT Table
Roll no | Name | Stream Percentage
Marks
2 Anil Mathematics | 76
(b 0Rnl1_No=2(STUDENT)
Roll no | Name | Stream Percenta
ge Mark
]
3 Dinesh | Biology 82
4 Pankaj | Commerce | 81

(¢) © marks percentace-so(STUDENT)

Figure 4.1 — Result of selection operator on STUDENT Table.

The general structure of <selection condition™> of selection operation consists of

following clauses:

<attribute name><comparison op><constant value>

or

<attribute name><comparison op><attribute name>

Here <attribute name> can be any attribute of relation R, <comparison op> can be any

one of the operators {=, <, <, >, >, #}, and <constant value> is a constant value from

<

2 —r

[43]

[46]

the attribute domain. The multiple selection conditions can also be combined by the
standard Boolean operators {and, or, and not} or {A, v, —}. For example, to retrieve
students from STUDENT relation who opted for mathematics and their percentage of
marks less than 40 with the following SELECT operation:

O(Subject=mathematics' AND Percentage Marke<a0) (STUDENT)

A sequence of SELECT operations can also be applied and this can be done in any
order. The sequence of SELECT operations can be specified with AND conjunctive as
shown below:

o<condl>{oc<cond2>(...(c<condn>(R)) ...}} = o<condl> AND<cond2> AND...AND
<condn> (R)

In SQL query, the SELECT condition is specified with WHERE clause. For example,
the SQL query for the relational algebra expression "Gsusject=mathematios AND
Percentage_Marks<40) {5 T UDENT)" would be:

SELECT *
FROM STUDENT
WHERE Subject="mathematics' AND Percentage Marks<40;

Projection: The PROJECT operation retrieves tuples with certain attributes as
specified in the operation and discards others. In other words, if we want to select
tuples containing only certain column so fatablethen we use the PROJECT operation.
A general syntax of the PROJECT operation is:

Tcatiribute lis>(R)

Here, = (pi) symbol is the PROJECT operation, and the <attribute list> is a set
of desired attributes of the relation R that we want to include in the final relation.
The R can be any relational algebra expression whose result is a relation. The
result of the PROJECT operation is a new relation which contains all tuples of the
specified relation but corresponding to attributes specified in the <attribute list> and
they will appear in the same order. For example, the following statement as
shown in Figure 4.2 will give tuples with student's Name and Percentage Marks
from STUDENT relation.

Name Percentage Marks
Sharad 77
Anil 76
Dinesh 82
Pankaj 81

Figure 4.2 —Txame, Percentage Maris(STUDENT)
If <attribute list> contains only nonkey attributes of R then duplicate tuples are
possible. The PROJECT operation removes duplicate tuples so that it results in a set of
distinct tuples to form a valid relation.

In SQL query, the attribute list is specified with SELECT clause. For example, the

SQL query for relational algebra expression "Tname and Percentage Marks(S T UDENT)" would
be:

SELECT DISTINCT Name, Percentage Marks FROM STUDENT;

Rename(p): Rename operator p(rho) is used to give a new name to a relation. A
general syntax for rename operation is:

p(Relation2, Relationl)

For example, to rename a STUDENT relation tc ALUMNI, we can use rename
operator as follows:

p(ALUMNI, STUDENT)

We can also use rename operator to create a relation STUDENT NAMES with
Roll no and Name from STUDENT relation and this can be done as follows:

PMMATHSTUDENT, i roLr, N0 Name)(Osubjeot=mathematics)(S TUDENT)))

In SQL query, the rename operation is specified with an AS clause. For example, the
SQL query for above relational algebra expression would be:

SELECT DISTINCT Roll_No, Name FROM STUDENT AS
MATHSTUDENT WHERE Subject="mathematics’

Check your progress

1. Suppose Ri(A, B) and Ry(C, D) are two relation schemas. Let r; and 7, be the
corresponding relation instances. B is a foreign key that refers to C in R,.
Consider the relational alzebra expression given below:
a1 y-nc(r2)=0
If data in r, and », satisfy referential integrity constraints, Explain is the above
expression ALWAYS TRUE?

2. What is the optimized version of the relation algebra
expression ma1(Taz(or(orA(r)))) where A1, A2 are sets of attributes in » with 41
C A2 and F1, F2 are Boolean expressions based on the attributes in 7?
a) wa(OEiary (1)
b) 7ma(oEvey (1)
) RaxSiam) (1))
d) waxoEve(I))

4.4 Binary Relational Operations: CROSS PRODUCT,
JOIN and DIVISION

CARTESIAN PRODUCT (CROSS PRODUCT) Operation: The cross
product operation is denoted by x. For two relation R(Al, A2, ..., An) and S(B1, B2,

[47]

[48]

..., Bm), the cross product operation R(Al, A2, ..., An) x §(B1, B2, ..., Bm) joins these
two relations to give a new relation Q such that tuples in the relation Q is combination
of each tuple from relation R with every other tuples from relation S. The new relation
Q(Al, A2, ..., An, Bl, B2, ..., Bm) contains n+m atfributes and in the same order as
they appear in the product operation. If the relation R has nR tuples and the relation S
has nStuples then R x 8 give nR * nS tuples. The general syntax of product operation
is:

Relationl X Relation2

For example, consider the relations STUDENT and SPORT shown in Figure 4.3, The
result of cross product operation STUDENT X SPORT is shown in Figure 5.4,

Roll_no Name Stream Percentage Marks
1 Sharad Mathematics 77
2 Anil Mathematics 76
3 Dinesh Biology 82
4 Pankaj Commerce 81

a) STUDENT relation

Roll_no Sports

1 Badminton
3 Chess

5 Chess

7 Cricket

b) SPORT relation

Figure 4.3- a) STUDENT relation b) SPORT relation

Roll no | Name Stream Percentage Marks Roll no | Sports

1 Sharad Mathematics 77 1 Badminton
1 Sharad Mathematics 77 3 Chess

1 Sharad Mathematics 77 5 Chess

1 Sharad Mathematics 77 7 Cricket

2 Anil Mathematics 76 1 Badminton

2 Anil Mathematics 76 3 Chess

2 Anil Mathematics 76 5 Chess

2 Anil Mathematics 76 7 Cricket

3 Dinesh Biology 82 1 Badminton
3 Dinesh Biology 82 3 Chess

3 Dinesh Biclogy 82 5 Chess

3 Dinesh Biology 82 7 Cricket

4 Pankaj Commerce 81 1 Badminton
4 Pankaj Commerce 81 3 Chess

4 Pankaj Commerce 81 5 Chess

4 Pankaj Commerce 81 7 Cricket

Figure 4.4- Result of cross product operation STUDENT X SPORT

In SQL, the query for cross product operation of two or more relations is specified
with relation names after FROM clause. For example, the SQL query for relational
algebra expression "STUDENT X SPORT" would be:

SQL> SELECT STUDENT.Roll no, Name, Stream, Percentage Marks,
SPORT.Roll no, Sports FROM STUDENT, SPORT;

Join Operation: The join operation or Conditional Join ™ is used to join two or
more relations based on some condition. The general structure of a JOIN operation on
two relations R(Al, A2, ..., An) and S(B1, B2, ..., Bm) is given as:

Rma<join condition>S

The result of the JOIN operation gives a new relation Q(Al, A2, ..., An, B1, B2,...,
Bm) with n + m attributes and in the order of attributes of R followed by S. The
relation Q has all possible combinations of tuples from R and S, which satisfy the join
condition. The tuples of Q contains each tuple from relation R combined with every
other tuples from relation S but the tuples combinations for which the join condition
evaluates to true are included in relation Q. While, the CARTESTIAN PRODUCT give
all combinations of tuples included in the result. A general form of join condition can
be expressed as:

<¢ondition> AND <condition> AND...AND <condition™>

Here, each <condition> is of the form Ai 8 Bj where Ai and Bj are attributes of R and
S having the same domain, and 0 (theta) is one of the comparison operators {=, <, <,
>, 2, #}.

[49]

For example, consider the relations STUDENT and SPORT shown in Figure 4.3. The
result of conditional join operation STUDENT ™ grupenTROLL ne> SPORTRoll no SPORT is

shown in Figure 4.5.
Roll_no Name Stream Percentage Marks Roll_no Sport
2 Anil Mathematics 76 1 Badminton
3 Dinesh Biology 82 1 Badminton
4 Pankaj Commerce 81 1 Badminton
4 Pankaj Commerce 81 3 Chess

[50]

Figure 4.5- Result of conditional join operation
STUDENTNSTUDENT.ROIL_nvSPORT.RoIl_noSPORT-

The conditional join operation is similar to cross product followed by selection and
projection operation. For example, the above join operation can also be specified as
given below:

O(STUDENT. Roll no=SPORT.Roll No)(S TUDENT*SPORT)

Eqijoin: An equijoin is a special type of the conditional join operation where the only
join condition allowed is the equality condition between a pair of attributes. The result
of eqiijoin contain same values for the two attributes, but still both attributes appears
in the final result.

Natural Join: A natural join is a special type of equijoin where the join condition
equality is imposed on only those attributes that appear in both relations andthe
commeon attributes appear only one time in the final result.Since, the result of natural
join contains the same values for the two attributes, only one of the two attributes
appears in the final result. For example, consider the relation STUDENT and SPORT
shown in Figure 4.3. The result of natural join operation STUDENT ra SPORT is
shown in Figure 4.6.

Roll no | Name Stream Percentage_Marks Sports
1 Sharad Mathematics 77 Badminton
3 Dinesh Biology 82 Chess

Figure 4.6- Result of the natural join operation STUDENT ~ SPORT.

The join condition for above relational expression is equality condition on common
attribute i.e. Roll no. If the join attributes have the same names then there is no need
to specify equality of attributes explicitly as the join condition.

Inner and Outer Join: The join operations that we have seen so far ignore the tuples
that do not match the join condition. These join operations are generally called as
inner joins. If we want a join operation to also include all tuples of R or all tuples of S
or all tuples of both R and 8§ that do not match the join condition is called as outer join.
There are three outer joins: Left outer Join, Right Outer Join and Full outer Join.

Left outer Join: The left outer join on two relation R and S contains all tuples of
inner join RS along with the tuples of left side relation R that fail the join condition.
The tuples of R that fail the join condition will have null values for corresponding to
values of attributes of relation S. For example, consider the relation STUDENT and
SPORT shown in Figure 4.3. The result of left outer join operation STUDENT
P<STUDENT, ROLL_wSPORT.Roﬂ_mSPORT is shown in Flgure 4.7.

Roll no | Name Stream Percentage Marks Roll_no | Sports

2 Anil Mathematics | 76 1 Badminton
3 Dinesh | Biology 82 1 Badminton
4 Pankaj Commerce 81 1 Badminton
4 Pankaj Commerce 81 3 Chess

1 Sharad Mathematics | 77 Null Null

Figure 4.7- Result of the left outer join operation STUDENT
NSTUDENT.ROLL_no:-SPORT.RuIl_noSPORT-

Right Outer Join: The right outer join on two relation R and S contains all tuples of
inner join RS along with the tuples of right side relation R which fail the join
condition. The tuples of S that fail the join condition will have null values for
attributes values of relation R. For example, consider the relation STUDENT and
SPORT shown in Figure 4.3. The result of right outer join operation STUDENT
PLSTUDENT ROLL_wSPORT.RolI_mSPORT is shown in Flgure 4.8,

Roll no | Name Stream Percentage_Marks | Roll_no | Sports

2 Anil Mathematics | 76 1 Badminton
3 Dinesh | Biology 82 1 Badminton
4 Pankaj Commerce 81 1 Badminton
4 Pankaj Commerce 81 3 Chess
Null Null Null Null 5 Chess
Null Null Null Null 7 Cricket

[51]

Figure 4.8- Result of the right outer join operation
STUDENT PLSTUDENT.ROLL no>SPORT.Rell_no SPORT.

Full outer Join: The full outer join on two relation R and S contains all tuples of
inner join RS along with the tuples of left and right side relation which fail the join
condition. The tuples of R which fail the join condition will have null values for
attributes of relation S and vice-versa. For example, consider the relation STUDENT
and SPORT shown in Figure 4.3. The result of full outer join operation STUDENT
I{STUDENT, ROLL_n&SPORT.Ro]]_mSPORT is shown in F1gure4.9

Roll no | Name Stream Percentage Marks | Roll_no | Sports

2 Anil Mathematics | 76 1 Badminton
3 Dinesh | Biclogy 82 1 Badminton
4 Pankaj Commerce 81 1 Badminton
4 Pankaj Commerce 81 3 Chess

1 Sharad | Mathematics | 77 Null Null

Null Null Null Null 5 Chess

Null Null Null Null 7 Cricket

Figure 4.9- Result of the full outer join operation
STUDENT NSTUDENT.ROLL_nw-sPonT.Rnn_mSPORT-

Check your progress

1. Consider two relations R1{A,B) with the tuples(1, 5), (3, 7) and R2(A, C) =
(1, 7}, (4, 9). Assume that R(A,B,C) is the full natural outer join of R1 and R2.
What are the tuples present in R(A,B,C)?

2. Consider the relations r(A, B) and s(B, C), where relation s contains B as a

primary key and B of relation r is a foreign key referencing B of relation s. Let
4 denote the natural left outer-join operation. Assume that r and s contain no
null values. Consider the query given below:
rX{op<s(S))

GB<5(1'N S)
Op<s(rI8)

Op<s(r) 3 8
Explain why do the above four queries are equivalent?

Division Operator: The division operation is denoted by /. Consider the relations

SUBJECT and COURSE shown in Figure 4.10. Suppose we want to retrieve names of

[52] subjects which are taught in all courses. We can get this result by using division

operation / between names of subjects taught in some courses and names of all courses
running, This can be expressed with relational algebra shown below:

nSubject_Nme(SUBJECT) / ncom_Nm(COIJRSE)

The result of full outer join operation Msubjcet Name(SUBJECT) / tcourse Name(COURSE) is
shown in Figure4.11.

Subject_Name Course_Name
Mathematics BCA
Database BCA
C language BCA
Database MCA

a) SUBJECT relation

Course_Name

MCA

BCA

b} COURSE relation

Figure 4.10- a) SUBJECT and b) COURSE relation

Subject_Name

Database

Figure 4.11- Result of division operation msupject Name(SUBJECT) /
“Cnnne_Name(COURSE)-

In general, the division operation on two relation A(X,Y) / B({Y) retrieves values of X
for which there exist <X, Y>> tuples for all Y values of relation B. The operation will be
only valid if attributes of relation B are subsct of relation A. The division operation
can also be expressed by a sequence of m, X, and — operations as follows:

AX,Y)/ B(Y) =mx(A) —7x (nx(A) X B— A)

Mustrative Example: Consider the following relations:
Supplier (Sid, Sname, rating)

Parts (Pid, Pname, colour)

Catalog(Sid, Pid, cost)

[53]

What are the relational alzebra expressions for following queries?
a. Retrive Sid of all suppliers whose rating greater than 7.
Solution: 7s;a(Geaing-7(Supplier))

b. Retrive Sid of all suppliers who supplies some red part.
Solution;
Tsid(Ccolor—rea’{Parts 04 Catalog))
or
Tsid(Cuctor—rea(Parts) dCatalog)
or
Tsid(Ocotor—rear(PAItS) MTs;4piq (Catalog)

¢. RetriveSname of all suppliers who supplies some red parts
Solution:fspame{Ccoor—rea’(Parts 04 Catalog) 4 Supplier)

d. Retrive Sid of suppliers who supply some red parts or some green parts.
Solution:sid(Geotor="red veolor="green (PATS) DT 51414 (Catalog)

e. Retrive Sid of suppliers who supply some red parts and some green parts.
Solution:®sig(Gcoler="red’A color="green (PATtS) N gigpig (Catalog)

f. Retrive Sid of suppliers who supply most expensive part.
Solution:
p (T1, Catalog)

p (T2, Catalog)
Tsia(Msia piaf{ Catalog) — Ty sig, T1.pid (OT1.cost<r2.contl{ T 1 X T2))

Check your progress

1. Consider the relational schema given below, where eld of the relation
dependent is a foreign key referring to empld of the relation employee.
Employee (empld, empName, empAge)
dependent (depld, eld, depName, depAge)

Assume that every employee has at least one associated dependent in the
dependent relation. Consider the following relational algebra query:

Templa(SMPLOYEE) Termpra(SMPlOYEEH (empla—em)rempAgesdepag Dependent

The above query evaluates to the set of emplds of employees whose age is
greater than that ofall of his/her dependents. Is this statement true?

2. Consider a database that has the relation schema CR (Student Name, Course
Name).An instance of the schema CR is as given below.

StudentName CourseName
SA CA
SA CB
SA CcC
SB CB
SB CC
SC CA
[54] SC CB

SC CC
SD CA
SD CB
SD CC
SD CD
SE CD
SE CA
SE CB
SF CA
SF CB
SF CcC

The following query is made on the database.

T1 ‘_“ComseNme(USmdeuﬂN' H.IJJF'SA'(CR))
T2«—CR+T1
‘What are the rows in the result of T2?

4.5 Relational Algebra Operation from Set Theory

Union(U), Interaction (1) and set difference (-) are relational algebra operations from
set theory. These operations can be applied on binary relations which are union
compatible. Two relations R(Al, A2, ..., An) and S(B1, B2, ..., Bn) are said to be
union compatible if:

1. They have the same number of attributes.
2. Each corresponding pair of similar attributes has the same domain or
datatype.

For example, relations S1(Roll no, Name) and S2(Roll no, Name , Percentage Mark)
are not union compatible because S1 has 2 attributes while S2 has 3 attributes. Also,
S2 (Roll no, Name) and S2(Roll no, Percentage Marks) are not union compatible
because datatype of Name is string while that of Percentage Marks is integer
numbers. But, relations S5(Roll no, Name) and S6(S ID, § Name) are UNION
COMPATIBLE because both have 2 attributes and their domains are also same which
are integer and string respectively.

s« Union{l)): The union operation of two relations RUS is a relation which
includes all tuples of relation R, all tuples of relationS and removes duplicate
tuples. For example, consider the relations SUBJECT1 and SUBJECT?2 shown
in Figure 4.12.The result of SUBJECT1 U SUBJECT?2 is shown in Figure
4.13.

o Intersection (N): The intersection of two relation R and S is represented by
RNS and it is a relation which includes all tuples that are present in both
relations R and S. For example, the result of SUBJECT1 NSUBJECT2 is
shown in Figure 4.14.

» Set Difference (-): The set difference of two relations R and S is represented
by R-S gives a new relation which includes all tuples that are present in R but
not in S. For example, the result of SUBJECT1 - SUBJECT?2 is shown in
Figure 4.15.

[53]

[56]

Subject_Name

Course_Name

Mathematics BCA

Database BCA

C language BCA

Database MCA
a) SUBIJECTI1

Subject Name

Course_Name

Mathematics BCA
Operating System MCA
Computer Network MCA

b) SUBJECT2
Figure 4.12- Relations SUBJECT1 and SUBJECT?2 stores subjects and courses
information.
Subject Name Course_Name
Mathematics BCA
Database BCA
C language BCA
Database MCA
Operating System MCA
Computer Network MCA

Figure 4.13- Result of SUBJECT1USUBJECT?2 operation.

Subject Name

Course_Name

Mathematics

BCA

Figure 4.14- Result of SUBJECT1NSUBJECT2 operation.

Subject Name Course_Name
Database BCA
C language BCA
Database MCA

Figure 4.15- Result of SUBJECT1-SUBJECT?2 operation.

Check your progress

1.

Given two union compatible relations R,{A,B) and R,(C,D). The result of the
operation Ry™-cap-p Rz is equivalent to which one of the following.

a) R] U Rz

b R XR,

C) R] = Rg

d) R;NR,

2. LetR(P,Q,R1,R2,R3)and 8(P,Q,81,S2) be two relations schema, where

4.6

4.7

P b =

Sl

{P,Q} is the key for both schemas. Consider the following two relational
algebra expressions:
. m(RmnS)

I 7 (e, (R) N 7 p,of8S))
Explain whether the above two expressions are equivalent or not?

Summary

We acquired basic ideas of relational algebra.

We illustrated how to use unary relational operations: Select, Project and
Rename work.

We explained Binary relational operations: CROSS PRODUCT, JOIN,
DIVISION and saw their applications.

We discussed relational algebra operators from Set Theory: union,
intersection, set difference,

Terminal Questions

Differentiate between entity Integrity constraints and key constraints.

What do you mean by union compatible relations?

Explain the differences between inner join and outer join.

Explain differences between left outer join, right outer join and full join with a
suitable example.

Discuss division operation with a suitable example.

Write short notes on following relational algebra operations:

i. Selection

ii. Projection

iii. Rename

What is the condition that the set operations must satisfy before it can be
applied on any binary relations? [57]

BIBLIOGRAPHY

1. R Elmasri, § Navathe, Fundamentals of Database Systems, 6th edition,
Addison-Wesley, 2010.

2. R Ramakrishnan, J Gehrke, Database Management Systems, 3rd Ed.,
McGraw-Hill, 2002.

3. A Silberschatz, H Korth and S Sudarshan, Database System Concepts,
6th Ed., McGraw-Hill, 2010,

[58]

UNIT-5 Structure Query Language

Structure
5.1 Introduction
5.2 Objectives
5.3 Similarity between SQL and Relational Algebra
54 Set Operations
5.5 Nested Query and Correlated Nested Query
5.6 Comparison with NULL
5.7 SQL Commands
5.8 INSERT, DELETE, and UPDATE
5.9 SQL Data Definition and Data Types
5.10 Attribute Data Types and Domains in SQL
5.11 Schema Change Statements in SQL
5.12 View and Trigger in SQL
5.13 Terminal Questions
5.14 Summary

5.1 Introduction

SQL is a standard language designed for accessing and manipulating data in relational
databases. Generally, we refer to SQL as a query language. But, it can perform more
than just querying a database. It can be used for defining structure of database,
modifying data in database and specifying security constraints. SQL is based on
relational algebra and tuple relational calculus because it borrowed concepts from
them for implementing and optimizing query. All relational databases such as Oracle,
MySql and MS access use SQL as their standard language. This unit gives you basic

concepts for understanding SQL and its working,

5.2 Objectives

After study of this unit, you will able to:

e Understand similarity between SQL and relational algebra and the order in which

any SQL query evaluates.

e Apply the set operators and check union compatible condition that must be

satisfied by set operators.

e Use nested query and correlated nested query and understand how these queries

are evaluated.

e Apply various SQL commands for different operations: Schema Change
Statements, Specifying Basic Constraints in SQL, Data Definition and Data

Types, INSERT, DELETE, and UPDATE.

[59]

[60]

5.3 Similarity between SQL and Relational Algebra

SQL uses the terms table, row, and column for relation, tuple, and attribute,
respectively. There are lots of similarities between SQL and relational algebra
expression because SQL borrows many concepts from relational algebra. This
similarity can be illustrated with the following basic structure of SQL and its
equivalent relational algebra expression,

SELECT DISTINCT AyA;...A; FROM R, R;..R, WHERE P
1l

Ta1,a2...a0(0p (R1,Rz...Rp))

The SQL performs relational algebra product operation (X} with FROM clause,
performs selection operation (¢) with WHERE clause and projection operation (x)
with select clause.

Basic Structure: The result of any SQL query is not a relation because duplicate
tuples are possible in the result. A general structure of an SQL expression contains
basic clauses select, from and where along with optional clauses. The optional clauses
can be used with the SQL to get desired results. The general structure of an SQL query
has following form:

SELECT [DISTINCT] AjA,...A, FROM Ry,R,.R, [WHERE P] [GROUP BY
attribute] [HAVING condition] [ORDER BY attributes [DESC]]

HereAy,A,. .. Anare attributes from relationsRy,R,...Rqand P is predicate condition on
attributes of relations. The order of execution of each clause is as follows:

1. FROM Clause: In the SQL query, FROM clause is evaluated first. The FROM
clause gives relational algebra product operation x of relations in the SQL clause.
For example, consider the relations Book and Book Price shown in Figure 5.1.

ID Title Author Publisher

001 Operating System Galvin Wiley India

002 Algorithm Sahani Universities Press
003 Computer Network Forouzan Tata McGraw-Hill
004 DBMS Navathe Pearson

¢) Book relation

D Price Quantity
001 669 50
002 595 70
004 885 60

d) Book Price relation
Figure 5.1- The details of books are stored in relations Book and Book Price.
The SQL query to retrieve the publisher of all books which are present in Library:

SELECT Publisher FROM Book, Book Price WHERE Book.ID= Book_Price.ID

Publisher

Wiley India

Universities Press

Pearson

Figure 5.2- Result of SQL query when applied on Book and Book Price
relations.

Result of the above SQL query is shown in Figure 5.2. Similar to Relational Algebra,
SQL also uses relation_name.attribute_name to avoid ambiguity if a same attribute
name appears in more than one participating relations. For example, Book.ID=
Book Price.ID are used to differentiate between ID attribute of Book and Book Price
relation,

2. WHERE clause: The WHERE clause is executed next after FROM clause in SQL
query. WHERE clause performs selection operation ¢ (segma) on attributes of
participating relations. For example, the SQL query to retrieve title and author of
all books whose price is greater than Rs 600 is given by:

SELECT Title, Author FROM Book, Book Price WHERE Book.ID= Book Price.ID
AND Price>600.

The result of the above SQL query is shown in Figure 5.3, SQL uses the logical
connectives AND, OR, NOT in WHERE clause to combine more than one predicate
conditions. SQL allows us to compare strings and arithmetic expressions in predicate
conditions with comparison operators <, <=, >, >=, = and<.

Title Author
Operating System Galvin
DBMS Navathe

Figure 5.3- Result of SQL query when applied on Book and Book Price relations.

[61]

[62]

3. GROUP BY:

Aggregation Operations: SQL offers several aggregate functions which take a set of
values as input and produce a single value as output. SQL supports five aggregate
functions which can be applied on any attribute of a relation. These functions are

following:

*

The DISTINCT clause is optional in all these functions. For example, consider the
STUDENT relation shown in Figure 5.4.

SUM([DISTINCT] attribute-name): It finds the sum of values in the specified

attribute of a relation.

COUNT{[DISTINCT] attribute-name):It finds the number of values in a

specified attribute.

AVG([DISTINCT] attribute-name): It finds the average of all values in the
specified attribute of a relation.
MAX(attribute-name): It finds the maximum value in the specified attribute of

a relation,

MIN(attribute-name): It finds the minimum value in the specified attribute of

a relation.

SID Branch Marks
So1 IT 68
S02 EC 66
S03 EC 67
S04 CS 73
S05 IT 74
S06 Cs 76

Figure 5.4- STUDENT relation containing branch and mark details of each

student.

The SQL query to find average marks of CS branch of the relation is given by:
SELECT AVG{Marks) from STUDENT where branch = 'CS§’

Result of the above SQL query is shown below.

Marks

74.5

Sometimes, we want to apply aggregate operation to multiple groups instead of a
single group. We can specify this by using GROUP BY clause. The SQL GROUP BY
clause is used to form groups which place the attribute entries with the same values

into one group. For example, the SQL query to find average marks of each branch is
given below:

SELECT Branch, AVG (Marks) from STUDENT GROUP BY Branch

The result of above SQL query is given in Figure5.5.

Branch Marks
CS 74.5
IT 71

EC 66.5

Figure 5.5- Result showing average marks of each branch of the STUDENT table.

If we wish to apply some condition on groups rather than tuples, then HAVING clause
can be used after the groups are formed. For example, the SQL query to find only
those branches whose average marks are greater than 70 is given as:

SELECT Branch, AVG (Marks) FROM STUDENT GROUP BY Branch HAVING
AVG (Marks) > 70

The result of above SQL query is given below:

Branch Marks
CS 74.5
IT 71

If a SQL query contains both WHERE and HAVING clause then it applies WHERE
clause first. The tuples which satisfy WHERE predicate condition are then placed into
groups by GROUP BY clause. SQL then applies HAVING clause which removes
groups that do not satisfy HAVING condition. In the end, the SELECT clause
retrieves tuples from remaining groups. For example, the SQL query to display only
those branches which belong to CS or EC and their average marks are greater than 70
is given as:

SELECT Branch, AVG (Marks) FROM STUDENT WHERE Branch='CS' OR
branch="EC' GROUP BY Branch HAVING AVG (Marks) > 70

The result of above SQL query is given below:

Branch Marks

CS 74.5

[63]

[64]

4. HAVING clause: As discussed above, the HAVING clause evaluates after the

GROUP BY clause. The HAVING clause applies a predicate condition on each
group and selects only those groups which satisfy the predicate condition.

. SELECT: The asterisk symbol “ * ” after SELECT clause gives result from all

attributes. The SELECT may also contain arithmetic operations on attributes of a
relation. For example consider the STUDENT relation shown in Figure 5.4. The
SQL query to find detail of all students with Mark attribute is added 10 for each
tuple in the result is given by:

SELECT SID, branch, Marks+10 FROM STUDENT

We can also specify desired attributes to be displayed as tuples in the result. This is
specified with attribute names after the SELECT clause as given in above SQL

query.

. DISTINCT: This clause is optional and it is used to remove duplicate tuples in the

result of SQL query. The DISTINCT clause comes after the SELECT clause. For
example consider the STUDENT relation shown in Figure 5.4. The SQL query to
list all Branches in the college is given as:

SELECT DISTINCT Branch FROM STUDENT

. ORDER BY: SQL offers ORDER BY clause which is executed in the end and it is

used to control the order in which the tuples are displayed in the result. For
example consider the STUDENT relation shown in Figure 5.4. The SQL query to
display the details of student in ascending order of branch is as follows:

SELECT * FROM STUDENT ORDER BY Branch

By default, the ORDER BY clause lists the result in ascending order. We may
specify sort order ASC for ascending order and DESC for descending order. For
example, SQL query to list the tuples of student details in descending order is:

SELECT * FROM STUDENT ORDER BY Branch DESC

Check your progress

1. Which of the following is aggregate function in SQL?
a) Avg
b) Select
¢) Ordered by
d) Distinct

2. The employee information in a company is stored in the relation
Employee (name, sex, salary, deptName)
Consider the following SQL query:
select deptNamefrom Employee
where sex ='M'

group by deptName
having avg (salary) > (select avg (salary) from Employee)

5.4 Set Operations

SQL offers UNION, INTERSECTION and EXCEPT operations to perform relational
algebra v, N,and—. Similar to relational algebra set operation, the participating
relations in SQL query must also be union compatible for applying these operations.
The SQL UNION operation between two relations gives a set of all tuples from both
relations and removes duplicate tuples. The SQL Intersection operation between two
relations gives all tuples that are present in both relations. The Except operation
between two relations R-S gives all tuples that are present in R but not in S. For
example, consider Book and Book Price relations shown in Figure 5.1. The SQL
query to display all book IDs of both Book and Book Price relations is given as:

(SELECT ID FROM Book) UNION (SELECT ID FROM Book_Price)

UNION operation automatically removes duplicate tuples from the result. But if we
want to retain duplicates in the result, then the UNION ALL clause can be used as
given below.

(SELECT ID FROM Book) UNION ALL (SELECT ID FROM Book_Price)

The SQL query to display all book IDs that are present in both Book and Book Price
relations is given as:

(SELECT ID FROM Book) INTERSECTION (SELECT ID FROM Book_Price)

The first part of the above SQL query gives SID of books 001,002,003 and 004.
While, the second part gives 001,002 and 004. So the final result of the above
INTERSECTION query gives SID 01,002 and 004. As discussed earlier, if we want
to retain duplicates in the final result then INTERSECTION ALL and EXCEPT ALL
can be used in place of INTERSECTION and EXCEPT. One important thing to note
that UNION, INTERSECTION and EXCEPT can be used on any two tables which are
union compatible. This means the number of columns in both tables should be equal
and when columns of both tables considered in an order both should have the same
data types.

5.5 Nested Query and Correlated Nested Query

Nested Query: A nested query is a query which has another query inside it. The inner
query fetches existing values from a table and then it is used as a comparison
condition for execution of outer query. The Nested query executes from innermost
query to outermost query. The execution of each inner query is independent of its
subsequent outer query. But, the result of each inner query is used as a comparison
condition for execution of its subsequent ocuter query. The "IN" and "NOT IN"
keywords are used to combine each outer query with its subsequent nested query. For
example consider the Book and Book Price table shown in Figure. The SQL query to
retrieve IDs of books whose quantity is either 50 or 60 is given as.

SELECT ID from Book where ID

[63]

[66]

IN
(SELECT ID from Book Price where Quantity = 50 OR Quantity=60)

In the above SQL query, the inner query will give a set with IDs 001 and 004 because
their quantities are 50 and 60 respectively. The outer query will return IDs of books
which are equal to any member of the set with IDs 001 and 004 (as returned by inner
query). So, the final result will contain the ID of books 001 and 004.

If we wish to find Title of books whose quantity is neither 50 nor 60, its SQL query is
given by:

SELECT Title from Book where ID
NOT IN
(SELECT ID from Book Price where Quantity = 50 OR Quantity=60)

In the above SQL query, the inner query will give a set with IDs 001 and 004 because
their quantitics are 50 and 60 respectively. The outer query will return Titles of books
whose IDs are not the member of the set with IDs 001 and 004 (as returned by inner
query). So, the final result will contain Titles of books "Operations System" and
"DBMS",

+ "IN" Equivalent to " =ANY": The IN" operator is equivalent to " =ANY".
So, both keywords have the same effect and give the same result when used in
SQL query.

« "NOT IN" Equivalent to "<>All": The "NOT IN" operator is equivalent to
"<>ANY". Both keywords have the same effect and give the same result when
used in a SQL query.

The keywords "ANY" and "ALL" can also be combined with >, >=, <, <=, and <
with nested query to get desired results. But, this will give different results as
compared to "IN"and "NOT NOT" operators.

Correlated Nested Query: In nested query, we have seen that an inner query is
completely independent of its subsequent cuter query. In Correlated Nested Query, the
inner query is dependent on its subsequent outer query. More precisely, the inner
query executes every time for each tuple of the table in the outer query. The "EXIST"
operator is used to compare for each tuple of the outer query table whether the result
of the inner query is non empty. In the correlated query, the where clause of the nested
query contains some attribute of the table of the outer query. For example, again
consider the tables shown in Figure. The correlated nested query to find Titles of
books whose price less than Rs 600 is given by:

SELECT Title from Book where
EXISTS
(SELECT * from Book Price where Book.ID=— Book Price.ID AND Price<600)

In the above SQL query, for each tuple of Book table, it finds a set of tuples from
Book_Price table where Book.ID— Book_Price.ID AND Price<600 by executing the
inner query. If the set contains at least one tuple, then the inner query returns true and
the book ID contains in the final result. This happens for each book ID of the Book
table. The final result of the above query contains book titles "Algorithm".

We can also use "NOT EXISTS" operator in the correlated nested query. For example,
if we want to find Book Titles whose price is not less than Rs 600, the correlated
nested query can be given as:

SELECT Title from Book where
NOT EXISTS
(SELECT * from Book_Price where Boock.ID— Book_Price.ID AND Price<600)

The result of the above SQL query contains book titles "Operations System" and
"DBMS".

Check your progress

1. Consider the table employee(empld, name, department, salary). Assuming that
department 5 has more than one employee. What is the output of following
SQL query:

Select e.empld From employee ¢
Where not exists
(Select * From employee s where s.department = “5” and s.salary >=e.salary)

2. Consider the following relation
Cinema (theater, address, capacity)
What is the output of the following SQL query?
SELECT P1. AddressFROM Cinema P1
WHERE P1. Capacity> = All (select P2, Capacity from Cinema P2)

5.6 Comparison with NULL

SQL supports a special value called NULL, There are three different interpretations
of NULL in SQL.

1. Unknown value (a value exists but not known): If a person does not know
his date of birth then the Date of Birth attribute would be NULL for this
person.

2. Unavailable value (a value exists but intentionally not shown): An attribute
Personal Mobile would be NULL for a person if he does not want to show his
personal mobile number in the database.

3. Not applicable (a value is undefined for some tuples under an
attribute): An attribute Spouse Name would be NULL for a person who is
unmatrried.

So each NULL value is different from other NULL values when used in a table. It is
impossible for SQL to determine which of the meanings of NULL is intended when
NULL is used in the database table. When SQL encounters any NULL value in
comparison, the result is considered as Unknown. The SQL uses three logic values:
TRUE, FALSE, and UNKNOWN. The result of any comparison in SQL can be TRUE
or FALSE or UNKNOWN when logical connectives AND, OR, and NOT are used.

[67]

[68]

SQL offers "IS" and "IS NOT" operators to check whether an attribute value is NULL.
For example, the SQL query to find Book ID whose quantity is not NULL is:

SELECT ID from Book Price where Quantity IS NOT NULL

5.7 SQL Commands

SQL offers various commands to interact with relational databascs. These commands
are broadly classified into three groups based on their nature: DDL - Data Definition
Language, DML - Data Manipulation Language, DCL - Data Control Language

Command Description
CREATE Creates a new table, a view of a table,
or other object in the database.
DDL - Data
Definition
Language ALTER Modifies an existing database object,
such as a table.
DROP Deletes an entire table, a view of a table
or other objects in the database.
SELECT Retrieves certain records from one or
more tables.
INSERT Inserts a new tuple in a table.
DML - Data
Manipulation
Language UPDATE Modifies tuples of a table.
DELETE Deletes tuples.
GRANT Gives a privilege to users.
DCL - Data
Control Language REVOKE Takes back privileges granted to users.

5.8 INSERT, DELETE, and UPDATE Statements in SQL
SQL offers three commands to modify a database: INSERT, DELETE, and UPDATE.

INSERT: This command is used to add single tuples in an existing table. The Insert
command takes the table name and a list of values for all attributes in the same order
in which attributes appear in the table. For example, the SQL query to insert a new
book in the Book table is:

INSERT INTO Book
VALUES (003, Let Us C', 'yashwantkanetkar’, 'BPB Publication")

DELETE: The delete command is used to delete tuples from a relation. The where
clause in delete command is used to specify tuples to be deleted. Based on the
condition specified with where clause, zero or more tuples are deleted by a single

delete command. For example, the below statement removes all those tuples from the
Book table in which author is “Galvin”.

DELETE FROM Bock
WHERE Author='Galvin’

If the WHERE clause is not specified in the delete command, it will delete all tuples
from the table. For example, the below statement deletes all records from the Book
table.

DELETE FROM Book

However, the table still remains in the database with empty tuples. If we wish to delete
table definition, DROP command can be used. For example, the below statement
completely removes the Book table from the database.

DROP TABLE Book

UPDATE: The update command is used to modify attributes values of a table. A
WHERE clause is used in an update command to select tuples to be modified in a

table. For example, the following command modified values of a book tuple with ID=
005.

UPDATE Book
SET Title = °C Programming Language’, Author = 'Dennis Ritchie'
WHERE ID=005;

The update command can also be used to modify several tuples with a single update
command. For example, the below SQL query modifies several tuples from the Book
table that contain Publisher as ' PHI Learning'.

UPDATE Book Price
SET Quantity = Quantity + 50
WHERE Publisher =' PHI Learning'

5.9 SQL Data Definition and Data Types

In SQL, a new table is created with CREATE TABLE command by specifying table
name, its attributes and initial constraints. Each attribute is specified with an attribute
name, its data type and an attribute constraint (such as NOT NULL) which is optional.
The data type specifies the domain of values for an attribute. The key, entity integrity,
and referential integrity constraints are specified within the CREATE TABLE
statement after all the attributes of the table are declared. The key and various
constraints can also be declared later using ALTER TABLE command. For example,
the following SQL statements create two tables, Book and Book Price.

CREATE TABLE Book (ID INT, Title VARCHAR(15), Author VARCHAR(15),
Publisher VARCHAR(15),

[69]

[70]

PRIMARY KEY ID)

CREATE TABLE Book Price (ID INT, Price INT, Quantity INT,
PRIMARY KEY ID,
FOREIGN KEY({ID) REFERENCES Book(ID))

5.10 Specifying Basic Constraints in SQL

1. Specifying Attribute Constraints and Attribute Defaults: We can specify

an attribute constraint on an attribute such as NOT NULL, if we do not want
NULL values for this attribute. For example, the primary key of any relation
can never be NULL value. An attribute ID with INT data type can be set NOT
NULL with the following statement in CREATE TABLE command.

ID INT NOT NULL

Another constraint can be to restrict the domain of attribute values. For
example, if we want to restrict integer values for an attribute Quantity between
50 to 100, then we can declare the attribute Quantity of Book Price table as
follows:

Quantity INT NOT NULL CHECK (Quantity > 50 AND Quantity<100)

We can also define a default value for an attribute with DEFAULT<value>
clause, if an explicit value is not provided for the attribute. For example,
consider we wish to specify a default value of 1 to Price attribute of the
Book Price table when price is not provided during tuple insertion. This can
be specify with following statement:

Price INT NOT NULL DEFAULT 1

Specifying Key and Referential Integrity Constraints:

primary key: SQL offers a primary key clause to define one or more
attributes as a primary key of a table. For example, consider the student table
with the following attributes and SID as a primary key.

Student (SID INT NOT NULL, S Name VARCHAR(15) NOT NULL,
Gender CHAR, Class INT,
PRIMARY KEY (SID))

Referential integrity constraints: It is a property of a data which states that
if a value of an attribute references another value of other atiribute of either
same or different table, then the referenced value must exist and valid. A
referential integrity constraint is also specified with FOREIGN KEY clause.
For example, we can define SID as foreign key of Marks table that references
primary key SID of Student table with following statement:

Marks (SID INT NOT NULL, Subject VARCHAR(15), Marks FLOAT,
PRIMARY KEY (SID, Subject),

FOREIGN KEY(SID) REFERENCES Student(SID)

ON DELETE SET NULL ON UPDATE CASCADE)

When a tuple is inserted or deleted or a primary key or foreign key value is
modified in a table, then the referential integrity constraint is vielated. Under
this scenario an action must be specified which includes SET NULL, or
CASCADE or SET DEFAULT for both ON DELETE and ON UPDATE
operations. For example, consider the previous SQL statement. The SET
NULL clause sets those values of foreign key to NULL that references the
deleted value of the primary key of Student table. We also use the SET
DEFAULT clause to set the default value of foreign key if primary key value
of referenced tuple in the Student table is updated. ON UPDATE operation.
The ON DELETE CASCADE operation deletes all those tuples of the Marks
table that references the deleted value of primary key of Student table. The
ON UPDATE CASCADE operation changes the values of the foreign key in
Book relation with new value of the primary key of Student table.

5.11 Schema Change Statements in SQL

Even after a table is created, we can change the schema of the table i.¢. adding and
dropping table, attributes, constraints and other schema elements. SQL offers DROP
and ALERT commands to perform these operations.

1. DROP command: DROP TABLE command is used to remove a table
including all its data and constraints. The table will no longer be available in
the database and it cannot be accessed. For example, the following SQL
statement permanently removes the Student table from the database.

DROP TABLE Student

2. ALTER command: The alter table is used to add, delete and modify columns
as well as constraints on an existing table. It can be used to perform following
operations:

a, Add column: A general syntax of SQL statement to add a new
column in an existing table is:
ALTER TABLE table nameADD column name data type

b. Drop column: A general syntax of a SQL statement to drop an
existing column in an existing table is:
ALTER TABLE table nameDROP COLUMN column name

¢. Modify column: A general syntax of a SQL statement to alter a
column in an existing table is:
ALTER TABLE table name ALTER COLUMN column name data
type

d. Add and Drop constraints:
The general syntax of a SQL statement to add a check constraint to an
existing table is:
ALTER TABLE table name ADD CONSTRAINT Constraint_name
CHECK (CONDITION)

The general syntax of a SQL statement to drop or remove a constraint
from an existing table is:

[71]

[72]

ALTER TABLE table_ name DROP CONSTRAINT
Constraint_name;

e. Add and Drop primary key: The general syntax of a SQL statement
to add a new primary key constraint to an existing table is:
ALTER TABLE table name ADD CONSTRAINT MyPrimaryKey
PRIMARY KEY (columnl, column?2...)

The general syntax of a SQL statement to drop a primary key
constraint from an existing table is.
ALTER TABLE table name DROP CONSTRAINT MyPrimaryKey;

Check your progress

1. Which SQL command is used to delete a table in SQL?
2. DBMS provides the facility of accessing data from a database through
a) DDL
b) DML
¢) DBA
d) Schema
3. Select operation in SQL is equivalent to which one of the following:
a) the selection operation in relational algebra
b) the selection operation in relational algebra, except that select in SQL
retains duplicates
¢) the projection operation in relational algebra
d) the projection operation in relational algebra, except that select in
SQL retains duplicates

5.12 View and Trigger in SQL

A view in SQL is a virtual table, whose tuples are computed when needed from a base
table. The view does not physically exist while the base table physically exists and its
tuples are actually stored in a database. A view is an alternate way of specifying a
table, which is accessed frequently during frequent issues of query on the view. For
example, consider a SQL query which takes a table that is a natural join of two tables:
Student and Marks. Every time when the query executes, it retrieves two base tables
Student and Marks from the database and performs natural join of these two tables.
Instead, we can use a view that holds the result of join operation of these two tables
and act as a single virtual table. A view can be used to store the result of a SQL query
and it can be used as a table in another SQL query.

Trigger: A trigger in SQL is a stored procedure which automatically invokes an
action when an event such as database update operation occurs. For example, consider
a Student table which has attributes age and date of birth along with other attributes.
We can create a trigger which automatically computes and inserts age whenever a new
tuple is inserted.

3.13 Summary

e We understand similarity between SQL and relational algebra and the order in
which any SQL query evaluates.

e We learned the set operators and union compatible condition that must be
satisfied by set operators before applying on any two relations.

e We explained nested query and correlated nested query and how these queries
are evaluated.

e Wesee that how SQL treats NULL values.

o We illustrated how to use various SQL commands which includes: Schema
Change Statements, Specifying Basic Constraints in SQL, Data Definition and
Data Types, INSERT, DELETE, and UPDATE.

5.14 Terminal Questions

1. Briefly describe the order in which any SQL query evaluates.
2. What are the conditions that must be satisfied by set operators before applying
on any two relations?
3. What do you mean by union compatible?
4. Explain with example how SQL evaluates nested query and correlated nested
query.
How does SQL treat NULL values?
Which of the following is/are true with reference to ‘view’ in DBMS?
a) A ‘view’ is a special stored procedure executed when certain event
occurs.
b) A ‘view’ is a virtual table, which occurs after executing a pre-
compiled query.

&

How SQL checks NULL values of any particular attribute?

‘What do you mean by view and trigger in SQL?

Explain with suitable examples how we change schemas of a relation.

0. Describe the various constraints offered by SLQ which we can apply on
attributes of a relation?

11. Ilustrate how we can apply different constraints offered by SLQon attributes

of a relation,

sXxN

BIBLIOGRAPHY

1. R Elmasri, S Navathe, Fundamentals of Database Systems, 6th edition,
Addison-Wesley, 2010.

2. R Ramakrishnan, J Gehrke, Database Management Systems, 3rd Ed.,
McGraw-Hill, 2002.

3. A Silberschatz, H Korth and S Sudarshan, Database System Concepts,
6th Ed., McGraw-Hill, 2010.

[73]

[74]

UNIT-6 Functional Dependency Theory

Structure

6.1 Introduction

6.2 Objectives

6.3 Functional Dependency

6.4 Trivial Functional Dependency and Properties of Functional Dependency
6.5 Attribute Closure (X+)

6.6 Functional Dependency Set Closure

6.7 Equality Between two Functional Dependency Sets

6.8 Minimization of a Functional Dependency Set

6.9 Properties of Decomposition

6.10 Summary
6.11 Terminal Questions

6.1 Introduction

So far, we have seen that a relation scheme contains a number of attributes and a
relational database schema consists of many such relational schemes. We discussed
how to derive a database schema using the ER data model. The model helps us to
identify entity types, relationship types and their attributes in any real world database.
It provides us a tool for logical grouping of attributes into their respective relations.
However, it still does not provide us any way to measure the quality of a relation
schema. We still need a formal way to measure goodness of a relation schema. In this
unit, we will discuss theories that have been developed to evaluate qualities of a
relational schema. This includes information preservation and minimum redundancy
that forms the ultimate goal of a good relation schema. The information preservation
means maintaining all ER model concepts including entity types, relationship types
and attribute type. Minimum redundancy means minimizing multiple copies of the
same data. We will start this unit with illustration of some good and bad relation
schemas. After that, we will introduce the concept of functional dependency which
forms criteria for decomposition of relation schemes. In the next unit, we will see
various types of decomposition in normal formsto reduce the redundancy of data.

6.2 Objectives
After study of this unit you will able to:

» Understand functional dependencies and how to determine these functional
dependencies from a given relational instance.

¢ Explain attribute closure and how we can use the attribute closure to find
candidate keys of a relation from its functional dependencies.

¢ Describe functional dependency set closure of any relation with given
functional dependency set and how to minimize any functional dependency
set.

¢ Find when two functional Dependency Sets are said to be equal.

6.3 Functional Dependency

In the previous section, we informally discussed various issues and their solutions in
database design. Now, we introduce a tool called Functional Dependency (FD) to
formally discuss all the above database design issues. This forms a basis for Normal
Forms of relation schemas.

Let us consider a relation schema R = {Al, A2, ..., An}. Assume X and Y are two
subsets of attributes of relation schema R. A functional dependency from X to Y
represented by X-—>Y exists, if and only if for any two tuples t1 and 12:

Iftl. X=12.X, then t1.Y=t2.Y

This means the values of attributes set X of a tuple t1 uniquely determine the values of
attributes set Y. Or, the values of attributes set Y of a tuple is uniquely determined by
the values of attributes set X. The functional dependency is usually abbreviated as FD.
The set of attributes X is called the left side of the FD and the set of attributes Y is
called the right side of the FD.

X Y
al bl
al bl

Figure 6.1 — XY1 table.

In the above relation XY1 shown in figure 6.1, a functional dependency X---->Y
exists because when values of attribute X for tuple tl and t2 are equal, this implies
values of attribute Y for tuples t1 and t2 are also equal.

X Y
al bl
al b2

Figure 6.2 — XY2 table.

In the above relation XY2 shown in figure 6.2, a functional dependency X--—>Y does
not exist because the values of attribute X for tuples t1 and t2 are equal but values of
attribute Y for tuples t1 and {2 are not equal.

W X Y y A

al bl cl di
al b2 c2 d2
a2 b2 c2 d3
a3 b3 c4 d3

[75]

Figure 6.3 —- WXYZ table.

Now consider the relation shown in Figure 6.3. Here, a functional dependency {W, X}
— Y exists because the attributes values corresponding to these attributes do not
violate the FD constraint. The FD Y — X also exists because if t2.Y=t3.Y, then
t2X=t3.X and the attributes values for other tuples also do not violate the FD
constraint. But the FD W— X does not exist because t1.W=t2.W but t1.X # 12.X.
Similarly, the FD Z — Y also does not exist because here t3.Z=t4.Z but t3.Y #t4.Y.

For convenience, an attribute set is simply represented with all attributes concatenated
together with removed parentheses and commas. Now, consider the STUDENT table
shown in Figure 6.4.

Student_ID Student_Name Course_ID Course_Name Faculty ID F_Salary
S01 Sharad CS01 DBMS FO03 80,000
S02 Denesh Cs04 Algorithm F02 60,000
S03 Vikash Cs501 DBMS FO3 80,000
S04 Saukat CS04 Algorithm F02 60,000
S05 Surender CS04 Algorithm F02 60,000
Figure 6.4 - A STUDENT table.
We can verify that the following functional dependencies:
1. Student ID-—-—> Student Name (This FD holds because the values of
Student_ID attribute are unique)
2. Course ID, Course Name---->Faculty ID(This FD also holds because if
Course ID and Course Name are same for any two tuples in the table, the
values of corresponding Faculty ID are also same)
3. Faculty ID --——->F Salary(This FD also holds because any two tuples with
same Faculty ID will also have same values of F_Salary)
6.4 Trivial Functional Dependencyand Properties of
Functional Dependency
Trivial Functional Dependency:Consider two attribute sets P and Q over a relation
R. A functional dependency P—>Q is said to be trivial FD if Q is a subset of P (P2
Q). For example consider a relation R(ABC) with following FDs are trivial:
A---->A (A s already subset of A)
AB-->A (Ais asubset of AB)
AB--->B (Bis a subset of AB)
But, the following FDs are not trivial:
A--->B (B is not subset of A)
[76] AB-->C (C is not subset of AB)

A--->BC (BC is not subset of A)

Inference Rules for Functional Dependencies: Given a relation schema R with
attribute sets x,y and z. The following properties of functional dependency are called
Armstrong’s axioms which hold true for any relation schema.

Reflexive: If x 2 y then x--->y

Transitivity: If x--->y and y--->z then x--->z
Augmentation: If x--->y then xz--->yz

Union: If x--—>y and x--->z then x—>yz
Decompeosition: If x--->yz then x--->y and x—-->z

S 1 B e

6.5 Attribute Closure (X+)

Attribute closure of a set X of attributes of a relation R with FD set F is a set of all
attributes that are functionally determined from X using the functional dependencies
present in F. The attribute closure can be determined by following procedure:

1. X=X
2. repeat
oldX' =X";

For each functional dependency Y—»Z in F do
fYcX then X'=X'UZ
until (X" == oldX");

The above procedure starts with first assigning all attributes of X to X". Next, we use
the inference rules of FD and add attribute to X' recursively using each functional
dependency in F. We repeat this process unless no new attribute can be added to
X" For example, consider a relation schema R(ABCD) with functional dependency set
{A-—>B, B-->C, C—>D}. The attribute closure of A and BC can be obtained as
follows:

(A)'={A}

={A,B}(using functional dependencyA--->B)
={A,B,C} (using functional dependencyB--->C)
={A,B,C,D}(using functional dependencyC--->D)

(BCY={B,C}
={B,C.D} (using functional dependencyC--->D)

Super keys: Let us consider a relational schema R with an attribute set X. If the
attribute closure of X (i.e. X) determines all attributes of the relation R, then X is
super key for the relation R.

For example, if R(ABCD) is a relation schema with functional dependencies {A--->B,
B--->CD}, then AB is super key of relation R(ABCD) because (AB)Y+={A,B,C,D}. [77]

[78]

Candidate Key: A candidate Key is a minimum number of attributes whose closure
gives all the attributes of a relation. In other words, if a closure of any proper subset of
a super key does not give all attributes of the relation then the super key becomes the
candidate key for the relation. So, a candidate key is the minimal super key and all
candidate keys are super keys but not all super keys are candidate keys.

For example, consider a relational schema R(ABCD)with functional dependencies
{AB--->C, C--->D, B--—>EA}. Let us find the candidature key of R. Since, attribute B

is not present on the right side of any functional dependencies. Start with B and find
its attribute closure.

(By+={B,E,A,C,D}.

Because, attribute closure of B gives all attributes of the relation, it is a candidate
key.Since the attribute B cannot be obtained from any functional dependency, it is the
only candidate key of the relation.

Mustrative question: Consider a relation scheme R = (A, B, C, D, E, H) on which the
following functional dependencies hold: {A—>B, BC—D, E—>C, D—>A}. What arc
the candidate keys of R?

Solution: Since attributes E and H are not present in the right hand side of any

functional dependency, every candidate key must contain E and H. Start with EH and
find their attribute closure.

(EH)'= {EHC}

So it is not a candidate key. Add left side attributes of any functional dependency and
then find their attributes closure.

(AEH)'= {B,C,D,A,E,H}

(AY= {A,B}

So AEH is the candidate key.

Attribute A can be obtained from D—>A.

(DEH)'= {D,A,B,E,H,C}

So DEH is also a candidate key.Attribute D can be obtained from BC—>D
(BCEH)'={BCDAEH}

But attribute C can be obtained from E—>C. So, BEH is also a candidate key.

Check your progress

1. Consider the following table.

Which of the following finctional dependencies are satisfied by the above table?
@XY>ZandZ->Y
B)YZ>XandY >Z
©YZ>XandX>Z
{)XZ->YandY > X

2. Consider the relation X(P, Q, R, S, T, U) with functional dependenciesF =
{{P,R} — {S,T}, {P, S, U} — {Q, R}}. Which of the following is the trivial
functional dependency in F+ is closure of F?

(A) {P.R}—{5,T}
(B) {P.R}—{R,T}
(C) {P,8}—{S}

(D) {£.8,U}—{Q}

3. Consider a relation R(ABCDEF) with the following functional dependency set
{C->F, E-=>A, EC->D, A->B}. Which of the following are false?
a) (CD)+={C,DJF}
b) (EC)+={E.C;F,A,D,B}
¢) (AE)+={ABE}
d (AC)+={AE}

6.6 Functional Dependency Set Closure

A closure of any functional dependency set is a set of all functional dependencies
logically implied from the original functional dependency set. Given a relation R with
functional dependency set F, a closure of F represented by F' can be determined by
following procedure:

1. Initialize the functional dependency set closure with empty F'={}.
2. For each subset X CR.
¢ Find attribute closure X
o ForeachYEX'
¢ Adda functional dependency X >Yto F'

To illustrate the above procedure, consider a FD set {A—>B, C—>B} for a relation
R(ABC). Closure of the given FD set can be found by finding closure of all possible
subsets of attributes of the relations.

1. Initialize an empty functional dependency closure set F*.

2. =0
It is also counted as a functional dependency. Add these functional
dependencies to F".

3. A'=AB
This attribute closure gives 2 attributes, so it gives total] 20> of ==butes) —4
functional dependencies which are as follows:
A—>Q

[79]

[80]

A—A

A—B

A—AB

Add these finctional dependencies to F".

. B+=B

Now, this closure also contains 1 attributes which gives total 2@ °f

atbutes)—) functional dependencies:
B>
B->B

Add these functional dependencies to F*.

C+=CB

The atribute closure C* contains 2 attributes, it gives tota] 2(mber of stubutes) 4
functional dependencies which are as follows:

C—>0

C—>C

C—>B

C—>BC

Add these functional dependencies to F',

AB+=AB

This attribute closure gives 2 atributes. It gives total 2(mber of mimbucs) g
functional dependencies which are as follows:

AB—>®

AB—>A

AB—>B

AB—>AB

Add these functional dependencies to F*.

BC+=BC

This attribute closure gives 2 attributes. It gives tota] 2(mber of ambusl_y
functional dependencies which are as follows:

BC—>@

BC—B

BC—=>C

BC—BC

Add these functional dependencies to F*.

AC+=ACB

This attribute closure gives 3 attributes. It gives tota] 2®mber of smbuies_g
functional dependencies which are as follows:
AC—>0D

AC—A

AC—>B

AC—>C

AC—>AC

AC—>BC

AC—>AB

AC—>ABC

Add these functional dependencies to F*.

8. ABC+= ABC
This attribute closure also gives 3 attributes. It gives total 2mber of atrbutes)_g
functional dependencies which are as follows:
ABC—>0
ABC—A
ABC—B
ABC—>C
ABC—>AC
ABC—>BC
ABC—>AB
ABC—>ABC

So, the total number of functional dependencies logically implied from the given FD
set is 1+4+2+4+4+4+8+8=35.

Membership Test:

6.7 Equality Between two Functional Dependency Sets

Any two functional dependency sets F and G are said to be equal if closure of FD set F
(ie. F+) is equal to the closure of FD set G (i.e. G*). Alternately, we can also say the
two FD set F and G are equal if
1. F covers G: This means all FDs of G are logically implied from the FD set F.
2. G covers F: This means all FDs of F are logically implied from the FD set G.

For example, consider two FD set F and G as follows:
F={A—>B, AB->C, D->ACE}
G={A—BC,D—>AE}
We can check whether the two FD sets are equal or not by applying following steps:
1. Check whether F covers G: Take left side attributes of each FD of G and find
its attribute closure using FDs of F.
(A)={AB,C}
Since, the attribute closure A" contains BC attributes, this implies that the
functional dependency A—>BC can be derived from existing FD set of F.

(Dy+={D,A,C,E}

Since, the attribute closure D' contains attributes AE, this means the
functional dependency D—>AE can also be derived from existing FD sct of F.
So, all FDs of G are logically implied from FD set F.

2. Check whether G covers F: Take left side attributes of each FD of F and find
its attribute closure using FDs of G.
(Ay={AB,C}
So, the functional dependency A—>B, can be obtained from existing FDs of G.

(ABY+={A,B,C}
So, the functional dependency AB—>C, can be obtained from existing FDs of
G.

(Dy+={D,A,E,B,C}
So, the functional dependency D—>ACE, can be obtained from existing FDs
of G.

[81]

[82]

Also, all FDs of F are logically implied from FD set G.

Therefore two FDs F and G are equal.

Check your progress

4. Consider following functional dependencies are given:
AB->CD, AF->D, DE->F, C->G,F->E, G>A
Which one of the following options is false?
(a)CF+= {ACDEFG} (b)BG+ = {ABCDG}
(c)AF+ = {ACDEFG} (HAB+ = {ABCDFG}

5. Consider the relation scheme R=(E,F,G,H,LJ. K,L,M,N) and the set of
functional dependencies {EF—@G, F—IJ], EH—KL, K—M, L—N}on R. What
is the key for R?
(a) {EF}
(b) {EFH}
(c) {EHKL}
(d) {E}

6. Find closure of a functional dependency set F={A—>B, B—>A} of relation
R(AB).

6.8 Minimization of a Functional Dependency Set

Minimal Functional Dependency Set:A sct of functional dependencies F is said to
be minimal if it satisfies following conditions:
1. Each FD in F contains a single attribute on its right hand side.
2. Any proper subset of X in FD X--->Y does not determine Y.
3. Wec cannot remove any FD from F which is equivalent to the original FD sct
F.

A minimal set of functional dependencies set F can be determined by following steps:

1. Replace each FD X — {Al, A2, ..., An} in F by the n functional dependencies
X —-Al,X—-A2,..,X— An

2. Remove extraneous or redundant attributes from the left hand side of each FD.
This can be found by finding attribute closure of each attribute of LHS.

3. Remove the redundant functional dependency X—Y if any from the
functional dependency set obtained from step 2.

For example, assume that after applying step 1, we get the following FD: {A — C, AB
— C,C— D, C—E, CD — E}. Find attribute closure of each attribute on the LHS.
(i) A+ = ACDE

(i) B+=B

(iiiy C+=CDE

(ivyiD+=D

(vVE+=E

From (i), the attribute closure of A gives the attribute C. So, the FD AB — C contains
redundant attribute B and it can be removed.

Similarly, from (iii), the attribute closure of C contains attribute E. This means the FD
CD — E contains D as a redundant attribute and so D can be removed from it.

Now, no more redundant attributes can be found in any FD. So the final result after
applying step 2 is as follows:
{(A-C,A—-C,C—D,C—E}

Finally, remove redundant functional dependency if any present. For example, after
applying step 2, the FD set contains A — C as redundant FD which can be removed
safely.

Explanatory Question: Find the minimal FD set of F:
F= {A —> BC, B—>C, A -->B, AB -->C}

Solution: Minimal set of FD can be found by following steps:

1. Rewrite the FD set F such that the Right Hand Side (RHS) of each FD should
contain a single attribute,
{A —>B, A --—>C,B--—>C, A-—>B, AB ——>C}

2. Remove redundant attributes: Find attribute closure of each attribute of the
LHS of FD set F.
(i) A+=ABC
(i) B+ =BC
(iii)) C+=C
From (i), the attribute closure of A gives attribute C. This means B is a
redundant attribute in AB— C, and so B can be removed. Now, no more
redundant attributes can be found. So the final result after applying step 2 is as
follows:
{A—>B, A-—>C,B-—>C, A-->B, A—>C}

3. Remove redundant functional dependency if any. The FD set we get after
applying step 2 contains A ---> B two times and A—->C also two times. So
these FDs can be removed safely without loss of any FD in the given FD set.
Now the FD set becomes {A ---> B, A ---> C, B--->C}. By transitive property
of FD, A ---> C is logically implied from A ---> B and B--->C. So the final
minimal FD set contains :{A ---> B, B-->C}.

Check your progress

1. Find the minimal cover of following functional dependency set:
{A — B, ABCD — E, EF — GH, ACDF — EG)

2. What is the minimal cover of following functional dependency set F?
F={A—-BC, B »CE, A—>E}

6.9 Properties of Decomposition

We decompose a relation R into a set of sub relation {R1,R2,R3...Rn} if the relation R
is not in appropriate normal form. When a relation R is decomposed into a set of sub

[83]

[84]

relations {R1,R2,R3..Rn}, then the decomposition should be lossless as well as
functional dependency preserving decomposition.

1. Lossless Join Decomposition: Let a relational schema R is decomposed
into R1,R2,R3.. Rn. In general the natural join of among the decomposed relations R1
 R2 & R3 ... Rnis superset of R i.e. R1 & R2 » R3...Rn 2 R. The decomposition is
said to be lossless if the natural join among decomposed relations is exactly equal to
original relation R i.¢ R1 & R2 = R3.....Rn=R. This means a lossless decomposition
does not contain any false tuples after performing the natural join operation among
decomposed relations. The false tuples represent erroneous information. If a
decomposition is not lossless decomposition, then it is called lossy decomposition,

e Decomposition is lossy if R1 ® R2..Rn> R
¢ Decomposition is lossless if R1 0 R2..Rn=R

For example, consider a relation R(ABC) is decomposed into relations R1{AB) and
R2(BC) as given below in figure 6.5 :

A B C

2) R(ABC)

b) RI(AB)

¢) R2(BC)

A B C
2 5 4
2 5 3
4 3 2
1 5 4
1 5 3
4 3 2

d) Resultof R1 w R2

Figure 6.5-The decomposition of R(ABC) into R1(AB),R2(BC) is lossy becaunse
RlxR2DR.

We can clearly see that the Result of R1 ¢ R2 o R, which mean the result, contains
false tuples. So it is a lossy decomposition.

Consider the same relation R, but now it is decomposed into two relation R1(AB) and
R2(AC) as shown below in Figure 6.6.

A B
2 5
1 5
4 3
a) RI(AB)
A C
2 4
1 3
4 2
b) R2(AC)
A B C
2 5 4

1 5 3 [85]

[86]

¢} Result of R1 x R2

Figure 6.6-The decomposition of R(ABC) into R1(AB),R2(BC) is lossless because
R1 x R2=R.

Ifwe are given functional dependencies of a relation. We can use the functional
dependencies of the relation to show when a decomposition is lossless. Let a relation
R is decomposed into two relations R1 and R2. The decomposition is said to be
lossless if it satisfy following conditions:

1. Attributes of R1 U Attributes of R2 = Attributes of R

2. Attributes of R1 N Attributes of R2 £ @

3. Common attributes of R1 and R2 must be a super key of at least one relation

(R1 or R2).

For example, consider the decomposition of R(ABC) into R1(AB) and R2(AC) as
shown in figure 6.6. We can clearly see that the common attribute A is supet key of
both relations R1 and R2. So it is a lossless decomposition.

Mustrative question: Identify whether the following decomposition with given
functional dependencies are lossy or lossless.

a. R(ABCD) with FD={AB--->C, C--->A, C—-->D}
Decomposition={R1(AB), R2(ACD)}

b. R(ABCD) with FD={A--->B, B--->C, C--->D}
Decomposition={R1{AB),R2(BCD)}

Solution;

a. The decomposition will be lossless if
1. AB U ACD = ABCD, which is true.
2. AB N ACD # @, which is true.
3. The common attribute between R1(AB), R2(ACD) is A. A is not the super
key of either R1 or R2 because

The attribute closure of A does not gives all attributes of either R1 and R2

At=A
So, the decomposition is lossy.

b. The decomposition will be lossless if
1. AB U BCD = ABCD, which is true.
2. AB N BCD £ ®, which is true.
3. The common attribute between R1{AB), R2(BCD) is B which is the super
key of R2. This is because the attribute closure of B gives all attributes of
R2 table :
B+=BCD

So, the decomposition is lossless.

2. Dependency Preserving Decomposition: Let a relational schema R
with functional dependency set F is decomposed into R1,R2,R3...Rn with functional
dependency set F1,F2,F3..Fn respectively. In general the union of all functional
dependency set F1,F2,F3,. Fn is subset of F i.e F1 U F2 U F3,,,U Fnc F. If a union of
all functional dependency set F1,F2,F3...Fn is proper subset of F i.e F1 UF2 U F3..U
Fnc F, then the decomposition is dependency not preserving decomposition. But if,
the union of all functional dependencies set F1,F2,F3..Fnis equaltoF i.¢e F1 UF2 U
F3...u Fn=F, then the decomposition is dependency preserving decomposition.

e Dependency preserving decomposition if F1 UF2 U F3..U Fn=F
¢ Dependency not preserving decomposition if F1 UF2 U F3..U Fnc F

Illustrative question: Let R (A, B, C, D) be a relational schema with the following
functional dependencies: {A — B, B — C, C — D and D — B}. The relation R is
decomposed into

R1(AB), R2(BC), R3(BD). Determine whether it is dependency preserving or
dependency not preserving decomposition.

Solution: Let F1, F2 and F3 after functional dependency set of R1(AB), R2(BC),
R3(BD).

Find functional dependency set F1 by finding attribute closure of each combination of
attributes of R1(AB).

A+=ABCD

B+=BCD

AB+= ABCD

F1={A—B} (only consider the attributes which are part of R1)

Now, find functional dependency set F2 from the attribute closure of each
combination of attributes of R2(BC).

B+=BCD

C+=CDB

BC+=BCD

So F2= {B—C,C—B} (only consider the attributes which are part of R1).

Finally find functional dependency set F3 from the attribute closure of each
combination of attributes of R3(BD).

B+=BCD

D+=DBC

BD+=BCD

SO, F3= {B—D, D—B} which are the part of R3(BD).

In the functional dependency set of R(ABCD), A — B is present in F1, B —» C
presents in F2, D — B presents in F3, and C — D can be obtained indirectly from
C—B of F2 and B—D of F3. So this decomposition is functional dependency
preserving decomposition.

Check your progress

1. Let R(X)Y,Z,W) be a relational schema with the following functional
dependencies:
{X—>Y,Y-Z,Z-WX->Y,YoZZ->Wand W>YW—-Y}

[87]

[88]

The decomposition of R into (X,Y),(Y,Z),(Y,W) is
a) Lossy join, but is dependency preserving

b) Lossless join, but is not dependency preserving
¢) Lossless join and dependency preserving
d) Lossy join and not dependency preserving

Given R(A,B,C,D,E)with the FD Set F(A->B, A->C, DE->C, DE->B, C->D).
Consider this decomposition : R1(A,B,C), R2(B,C,D,E) and R3(A,E). Then,
which of the following is true for this decompositions:

a) Lossy join, but is dependency preserving

b) Lossless join, but is not dependency preserving

¢) Lossless join and dependency preserving

d) Lossy join and not dependency preserving

6.10 Summary

In summary:

6.11

—_

We learned Functional Dependencies and how to determine these functional
dependencies from the given relational instance.

We understand attribute closure and how we can use the attribute closure to
find candidate keys of a relation from its functional dependencies,

We illustrated to find functional dependency closure of any relational
instance.

We described equivalence of two functional Dependency Sets and learned to
find when two functional Dependency Sets are said to be equal.

We learned to find minimization of a functional dependency set of a relation.

Terminal Questions

Explain the two properties that the decomposed relations should satisfy.

How do you determine whether the decomposed relations satisfy lossless and
dependency preserving decomposition ot not?

What are the differences between attribute closure and functional dependency
closure?

When do any two functional Dependency Sets are said to be equal?

Find the minimal functional dependency set of {PQ-->R, PR-->Q, Q---
>8,QR—->P, PQ—>T}.

Explain with suitable example how you find candidate keys of a relation from
its functional dependencies.

What do you mean by Functional Dependencies of a relation?

BIBLIOGRAPHY

1.

2.

3

R Elmasri, S Navathe, Fundamentals of Database Systems, 6th edition,
Addison-Wesley, 2010.

R Ramakrishnan, J Gehrke, Database Management Systems, 3rd Ed.,
McGraw-Hill, 2002,

A Silberschatz, H Korth and S Sudarshan, Database System Concepts,
6th Ed., McGraw-Hill, 2010.

UNIT-7 Normalization

Structure

7.1 Introduction

7.2 Objectives

7.3 Problems Caused by Redundancy of Data

7.4 Normalization

7.5 Second Normal Form

7.6 Third Normal Form

7.7 BOYCE-CODD NORMAL FORM (BCNF)

7.8 Multivalued Dependencies and Fourth Normal Form
7.9 Join Dependencies and Fifth Normal Form

7.10 Summary
7.11 Terminal Questions

7.1 Introduction

In this unit, we will discuss other database design concepts that are used extensively in
commercial database design. The very first step in a database design involves
designing of an ER model which is later mapped to relational model. In the
subsequent step, functional dependencies are identified and then primary keys are
determined from these functional dependencies. Later, the undesirable functional
dependencies are removed through the normalization process. In the previous unit, we
discussed concepts of functional dependency, lossless join and dependency preserving
decomposition. Now based on these concepts, we will discuss normal forms such as
2NF, 3NF, and BCNF and use them to achieve desired decompositions. A good
database design should satisfy two properties: lossless join and dependency preserving
decomposition. Further, we will discuss the concept of multivalued dependency
(MVD) and explain fourth and fifth normal form.

7.2 Objectives
After studying this unit, you will able to:

¢ Explain various types of anomalies, which area rising due to the redundancy
of data.

¢ Understand normalization process and apply various normal forms on any
relational schema.

¢ Decompose a relational schema which is not in third normal form to a set of
decomposed relations in third normal form such that each decomposed
relation satisfies both lossless and dependency preserving decomposition.

¢ Perform decomposition of a relational schema which is not in BCNF into a set
of decomposed relations where each one is in forth normal forms.

¢ Explain multi valued functional dependency and forth normal form along with
join dependency and fifth normal form.

[89]

7.3 Problems Caused by Redundancy of Data

Redundancy is multiple copies of the same data present in a databasc table. For
example, consider the STUDENT table shown in Figure 7.1. The attributes
Course_ID, Course_Name, Faculty ID and Faculty Salary contain multiple entries of
cs-01, Java, F-01 and 70,000. This redundancy of data causes basically three

problems:

Student ID | Student Name | Course_ID | Course_Name |Faculty ID | Faculty Salary

001 Sharad cs-01 Java F-01 70,000

002 Dinesh ¢s-01 Java F-01 70,000

003 Anil ¢s-02 Python F-02 70,000

004 Nikhil cs-01 Java F-01 70,000
Figure7.1- A sample STUDENT table of a student database.

1. Update Anomaly: When a database table contains multiple copies of the
same data, an update of the data requires change at multiple places or all
copies of the data, This causes an update operation costly and results in update
anomaly. For example, consider the STUDENT table shown in Figure7.1.

Student_ID | Student Name | Course ID | Course Name | Faculty ID | Faculty Salary

001 Sharad cs-01 Java F-01 80,000

002 Dinesh cs-01 Java F-01 80,000

003 Anil cs-02 Python F-02 70,000

004 Nikhil cs-01 Java F-01 80,000
Figure 7.2- Result of updation in salary of F-01 from Rs 70,000 to 80,000 in
STUDENT table.
If we want to change the value of one of the attributes, say salary of F-01 from Rs
70,000 to 80,000, then we must update all records of students who are taught by F-01.
In other words, we must update the salary of F-01 in all places (as shown in above
Figure7.2). Otherwise, if we make changes in some places, then it causes different
salaries of the same faculty. Updation of redundant copies of the same data makes the
update operation too costly.

2. Insertion Anomaly: Redundancy of data causes insertion of some unexisted
dummy data when a new data is inserted. This causes insertion anomaly. For

[90] example, consider again the STUDENT table shown in Figure7.1.

Student ID | Student Name Course ID | Course Name | Faculty ID | Faculty Salary
001 Sharad cs-01 Java F-01 70,000
002 Dinesh cs-01 Java F-01 70,000
003 Anil cs-02 Python F-02 70,000
004 Nikhil cs-01 Java F-01 70,000
NULL NULL cs-03 c F-03 55,000

Figure 7.3- Result of adding a new faculty F-03 in STUDENT table.

If we want to add a new faculty F-03 who is not yet teaching, we need to insert some
dummy value like NULL for other attributes as shown in Figure 7.3, This forces the
NULL values for Student ID aftribute also, but it cannot be NULL because it is a

primary key.

3. Deletion Anomaly:In delete anomaly, deletion of some data causes deletion
of other useful data also. For example, inSTUDENT table shown in

Figure7.1.
Student ID | Student Name Course ID | Course Name Faculty ID | Faculty Salary
001 Sharad cs-01 Java F-01 70,000
002 Dinesh cs-01 Java F-01 70,000
003 Anil cs-02 Python F-02 70,000
004 Nikhil cs-01 Java F-01 70,000

Figure 7.4- Result of deleting a student with Student_Name Anil in STUDENT
table.

If we delete the record of Anil, this also forces the deletion of faculty information of
F-02. So, the deletion of one record results in the deletion of other useful information
also.

Decomposition of a relation schema:We saw that the three anomalies cause
difficulties in maintaining consistency of the data during updation, insertion and
deletion of some data. During updation and insertion of new data, some redundant
work needs to be done. Sometimes, the deletion of a data causes accidental loss of
other data. There is also wastage of storage space duc to dummy data like NULLs. The
various problems arise due to these three anomalies can be overcome by splitting the
original table into two or more tables. For example, consider the STUDENT table
shown in Figure7.1 is decomposed into two separate tables as given in Figure7.5. The
first table StudentDetail consists of attributes: Student ID, Student Name and
Course_ID. The Other table Course Detail consists of attributes: Course_ID,
Course Name, Faculty ID and Faculty Salary.

[91]

Student ID Student Name Course_ID
001 Sharad cs-01
002 Dinesh cs-01
003 Anil cs-02
004 Nikhil cs-01
a) StudentDetail table
Course ID Course_Name Faculty ID Faculty Salary
cs-01 Java F-01 70,000
cs-02 Python F-02 70,000
b) Course Detail table
Figure7.5 - Decomposition of a student table into two tables.
We can easily examine that:

1. An update will take place at only one place i.e. in a single tuple. For example
if we consider the decomposed tables, a change in salary of a faculty requires
updating only one record.But, in case of STUDENT table, this requires
changes in several records.

2. Any insertion of a data does not insert an unexisted dummy data. For example,
in the decomposed tables, insertion of a new faculty does not require the
addition of dummy data for attributes Student ID and Student Name.But, in
case of STUDENT table, this requires addition of NULL values corresponding
to other attributes.

3. Deletion of any data does not cause removal of any other useful information.
For example in decomposed tables, if we delete the record of Anil, it does not
remove faculty information of F-02.

7.4 Normalization
Normalization is a process of structuring a relation based on normal forms to achieve
following properties:

1. Minimizing redundancy of data.

[92] 2. Minimizing the insertion, deletion and update anomalies.

A normal form is a condition which indicates the degree to which a relation is
normalized. The relation that does not satisfy the condition of normal form is
decomposed into smaller relations. The main goals of the normalization process are:

1. 0% redundancy
2. Lossless Join Decomposition
3. Dependency Preserving Decomposition

There are six normal forms: 1NF, 2NF, 3NF, BCNF, 4NF and SNF.

First Normal Form(1NF): A relation is in first Normal form if it contains only
single valued attributes. If a relation contains any multi valued attribute, then the
relation is not in first normal form. For example, consider the STUDENT]1 table with a
primary key S ID shown in Figure7.6. It contains a multivalued attribute C Name
which contains multiple values for C Name in each tuple. So this table is not in the
first normal form.

S ID S Name C_Name

So1 Sharad Algorithm, DBMS
S02 Denesh Algorithm, Java
S03 Vikash DBMS, Java

Figure7.6 - STUDENT1 table.

We can convert STUDENT1 table to first normal form in any one of the three ways:

1. If we remove the multivalued attribute C Name from STUDENT]1 table and
place it in a new table along with the primary key of the STUDENT1 table.
Now, both STUDENT?2 and STUDENT3 tables are in first normal form which

is shown in Figure7.7.
S ID S _Name
S¢1 Sharad
S02 Denesh
S03 Vikash

a. STUDENT2 table.

S ID C_Name
S01 Algorithm
S01 DBMS
S02 Algorithm

[93]

502 Java

S03 DBMS

S03 Java

b. STUDENTS3 table.

Figure7.7- STUDENT?2 and STUDENTS3 tables.

2. If we expand each value of the attribute C_Name as a separate tuple, the table
becomes first normal form. The restructured table STUDENT4 is shown in
Figure 7.8 where {S ID, C Name} serves as its primary key. Since it contains
all single valued attributes, it is in first formal form.

S ID S Name C_Name
501 Sharad Algorithm
801 Sharad DBMS

S02 Denesh Algorithm
S02 Denesh Java

803 Vikash DBMS

503 Vikash DBMS, Java

Figure7.8 - STUDENT4 table.

3. If we know the maximum number of courses any student can opt, let us say 2,
then we can replace the C_Name attribute with two attributes: C Namel and
C Name?2. The resulting table STUDENTS shown in Figure 7.9 is in first

formal form.
s ID S_Name C_Namel C_Name2
01 Sharad Algorithm, DBMS DBMS
S02 Denesh Algorithm Java
503 Vikash DBMS Java

Figure7.9 - STUDENTS table.

In the above three solutions, the first is the best solution because it does not suffer
[94] from redundancy. The second solution suffers from redundancy of data.

7.5 Second Normal Form(2NF)

A relation R is in second normal form if it satisfies two conditions:
1. Itis in first normal form

2. It does not contain any partial functional dependency. The partial functional
dependency means if any proper subset of a candidate key functional
determines any non prime attribute (attribute which are not a part of the
candidate key) it is called partial functional dependency.

For example, consider a relation R(ABCD) with a candidate key {BC}. The attributes
B and C are prime attributes while A and D are non-prime attributes. The functional
dependencies B--->D and C-—>AD are partial functional dependencics.

A relational schema that is not in second normal form can be decomposed into a set of
second normal form relations as follows:

1. Create a new relation for each partial functional dependency which contains
all the participating attributes of the partial functional dependency.

2. There should be a relation with the original primary key and attributes which
are fully functionally dependent on the original primary key.

In a functional dependency BC---> D, if neither B--> D nor C-——>D holds true, then the
attribute D is fully functionally dependant on the candidate key BC.The
decomposition by the above algorithm is both lossless-join and dependency-
preserving.

IMustrative questions: Consider a relation R(ABCDE) with functional dependencies
{AB-—>C, C--->D, B-—->E}. Is this relation is in second normal form. If not then
decompose it into second normal form.

Solution: First we need to find candidate keys of relation R(ABCDE). Since attributes
AB do not contain on the right side of any functional dependency, every candidate key
must contain AB. So, start with AB and find attribute closure of it.

AB+= {ABCDE}

A'= {A)

B'= {BE}

Closure of attributes AB gives all attributes of relation R while closure of its subset A
and B does not gives all atiributes of the relation. So, AB is candidate key of the
relation. Since, attributes A and B cannot be obtained from any functional
dependencies, AB is the only candidate key of the relation,

The functional dependency B--->E is a partial functional dependency because B is a
proper subset of candidate key and E is non-prime attribute (E is not a part of
candidate key). So, the relation is not in second normal form.

The relation R can be decomposed into a set of relations such that each of them is in
second normal form as follows:

1. Since, B--->E is partial functional dependency, create a new relation R1(BE)
with attributes B and E.

2. The other relation R2(ABCD) should contain original candidate key AB and

other attributes CD that are fully functionally dependent on it. The attribute E

[93]

[96]

is not fully functionally dependant on AB because the functional dependency
B—>E holds true, so E is not included in R2,

The resulting R1(BE) and R2(ABCD) are in second normal form,

Check your progress

1. Consider a relation R(ABCD) with functional dependency F:{ AD — B, AB
— C }. Is the functional dependency AB — C partial or total dependency?

2. Given the following relational schemes for a library database:
Book (Title, Author, Catalog_no, Publisher, Year, Price)
The following functional dependencies hold in above relation:
a) Title Author > Catalog_no
b) Catalog no -> Title, Author, Publisher,Year
c) Publisher, Title,Year -> Price
If {Author, Title} is the candidate key for the above relational scheme. Is this
relational schema in second normal form?

3. Consider arelational schema R(A,B,CD,EP,G) with following FDs:
{AB->CD, DE->P, C->E, P->C, B->G}. Whether relation schema R is in
second normal form or not?

7.6 Third Normal Form(3NF)

A relational schema R with any non trivial functional dependency X--->Y is in third
normal form if cither of the following conditions holds:

a) Xis a super key of R
OR
b) Y is a prime attribute of R.

The redundancy of data on third normal form is less than second normal form. A
relation which is not in third normal form can be converted into third normal form by
decomposition of the original relation and set up a new relation for each functional
dependency that violates third normal form condition. The other relation contains
candidate keys of original relation along with candidate keys of each decomposed
relations. The resulting decomposed relations are in 3NF that satisfy bothlossless-join
and dependency-preserving decomposition.

Mustrative Question: Consider a relation R(ABCDE) with functional dependencies
A--->BCDE, BC--->ADE and D--->E. Check whether it is in third normal form or
not. If not, decompose it into third normal form,

Solution: In order to check if the relation is in third normal form, first we need to find
its candidate keys. Since, all attributes of the relation are covered by the right side of
all functional dependencies. Take left side attributes of any functional dependency and
find its attribute closure.

(Ay+= {BCDEA)}

Since, closure of attribute A gives all attributes of the relation, so it is a candidate key.
The attribute A can also be obtained from functional dependency BC--->ADE. Check
whether BC is also the candidate key.

(BC)+= {BCADE}
(B)+= {B}
(Cyr={C}

So, BC is also a candidate key of the relation.

The candidate keys of the relation are {A} and {BC}.The functional dependency D
— E violates the third normal form because neither D is a super key nor E is a prime
attribute.

We can convert it to third normal form by decomposing the relation R(ABCDE) and
set up a new relation R(DE) containing participating attributes of functional
dependency D--->E. The other relation contains candidate key of original relation R
and the candidate key of decomposed relation R(DE). Now decomposed relations
R(ABCD) and R(DE) ar¢ in third normal form.

7.7 BOYCE-CODD NORMAL FORM (BCNF)

A relational schema R is in BCNF if for each functional dependency X-->Y that holds
in R, X should be the super key of the relation.

BCNF normal form is stricter than third normal form. Every BCNF relation is also in
third normal form but every third normal form is not in BCNF. For example, consider
a relation TEACHER(Student, Course, Faculty} with functional dependencies
{Student, Course}--->Faculty, Faculty--->Course and a candidate key {Student,
Course}. The functional dependency Faculty--->Course violates BCNF condition.
However, it satisfies the third normal form condition because Course is a prime
attribute.

A relational schema R with a set of functional dependencies F which is not in BCNF
can be decomposed into a set of BCNF relations as follows:

1. SetD={R}

2. For cach relational schema Q in D that is not in BCNF do
o find a functional dependency X — Y in Q which violates BCNF;
e replace Q in D by two relation schemas R1{(Q - Y) and R2(X,Y);

The resulting decomposition from the above algorithm islossless-join but may or may
not be dependency-preserving decomposition. If a lossless-join and dependency
preserving decomposition are not possible with BCNF, we may consider
decomposition with 3NF.

Illustrative Question: Consider a relation R = (ABCDE) with functional
dependencies A-—>B, BC--->D3}. Is this relation in the BCNF?

Solution: First we need to find the candidate keys of the relation. Attributes ACE are
not present on the right side of any functional dependency. Start with the attribute
closure of ACE.

[97]

[98]

(ACE)'= {ACEBD}

The attribute closure (ACE) gives all attributes of the relation, so ACE is a candidate
key of the relation. Since, we do not get any attribute of the candidate key from the
functional dependencies of R. So ACE is the only candidate key of the relation.

We know that all candidate keys are super keys. The functional dependencies A--->B
and BC--->D violate BCNF condition because Left side attributes of both FDs are not
the super keys.

We can decompose R = (ABCDE) into a set of BCNF relations as follows:

1.
p

R(ABCDE)
Take the functional dependencyA--->B which violates the BCNF condition
and decompose R into R1 and R2 by removing attribute B from R.

R1(ACDE) and R2(AB)

Now consider the functional dependencyBC—>D that violates the BCNF
condition. Itcan also be written as AC--->D because B can be obtained from
A--->B. Now, decompose R1 into R11 and R12by removing attribute B from
R as follows:

R11(ACE), R12(ACD) and R2(AB)

Stop the further decomposition because all relations R11(ACE), R12(ACD)
and R2(AB) are in BCNF.

A binary relation which contains only two attributes is always in BCNF. This is
because there are only four scenarios possible:

L.

2

3.

R(AB} with functional dependency A--->B and candidate key A. So it is in
g?ANBF) with functional dependency B--->A and candidate key B. So it is in
Ili(CAP]IBF) with functional dependency A-->B,R(AB) with functional
dependencies A--->B and B--->A with candidate key A and B. So it is in
E?Czi:é with no functional dependency with candidate key AB. So it is in

Check your progress

L.

Consider the relation schema Student Performance (name, courseNo, roliNo,
grade) has the following FDs:

¢ name,courseNo->grade

¢ rollNo,courseNo->grade

¢ name->rollNo

¢ rollNo->name
‘What is the highest normal form of this relation scheme?

Let the set of functional dependencies F = {QR — §, R — P, S — Q} hold on
a relation schema X = (PQRS). X is not in BCNF. Suppose X is decomposed

into two schemas and Z where Y = (PR) and Z = (QRS). Consider the two
statements given below:

S51. Both Y and Z are in BCNF

S2. Decomposition of X into Y and Z is dependency preserving and a lossless.
Explain whether the above two statements are true or false?

3. Given the following two statements:
S1: Every table with two single-valued attributes is in INF, 2NF, 3NF and
BCNF.
S52: The FD set {AB->C, D->E, E->C} is a minimal cover of the set of
functional dependencies {AB->C, D->E, AB->E, E>C}.
Explain whether the above two statements are true or false?

7.8 Multivalued Dependencies and Fourth Normal Form

In the previous section, we learned that in a functional dependency A -> B, each value
of attribute A corresponds to only a single value of B. In other words, in a functional
dependency A->>B, each value of A determines exactly one value of B. But, if for
each value of A there exists multiple values of B then B is multivalued facts about A
and it is represented as A >> B. A multivalued dependency exists if there exists at
least two multivalued facts A ->> B and A >> C on the same attribute A within the
same table R and attributes B and C are independent of each other. So, a multivalued
dependency requires at least three attributes such that two attributes are dependent on
a third attribute. For example consider a relation STUDENT (S Name, Phone,
C_name) as shown in Figure 7.10:

S_Name Hobbies C_name
Sandeep Chess C+
Sandeep Badminton Python
Nikhil Table tennis Java
Krisna Badminton C+t
Krishna Table tennis Python

Figure7.10- A STUDENT (S_Name, Phone, C_name) table.

The above table contains two multivalued facts: S Name->> Hobbies and S Name-
>>C pame. They are read as S Name multi determines Hobbies and S Name
multidetermines C_name. So, there exists multivalued dependencies: S_Name->>
Hobbies and S Name->>C name in STUDENT table.

Fourth normal form(4NF): A relational schema R with a set of functional
dependencies and multivalued functional dependencies is in fourth normal form, if
each non trivial multivalued dependency X->>Y contains X as super key of the
relation R. A multivalued dependency X —— Y in R is called a trivial multivalued
dependency if Y € X, or X U Y = R. Otherwise it is non trivial functional
dependency.

A relation which is not in fourth normal form can be converted to forth normal form
by creating a new relation for each non trivial multivalued dependency that violates

[99]

[100]

4NF condition. For example, the STUDENT table shown in Figure 4.14 is not in
fourth normal form because it contains non trivial functional dependencies: S Name-
>> Hobbies and S Name->>C name and S Name is not a super key. It can be
converted to fourth normal form by decomposing it into two tables
STUDENT HOBBIES(S Name, Hobbies) and
STUDENT COURSE(S Name,C name). Now, the non ftrivial functional
dependencies S Name->> Hobbies and S Name->>C name become trivial in their
respective tables.

7.9 Join Dependencies and Fifth Normal Form

We have seen the process of repeated decomposition during the normalization process

to achieve INF, 2NF, 3NF and BCNF relations. Every 4NF relation also satisfies all
the properties of BCNF. The relationship among these normal forms is shown in
Figure 7.11. These relations always follow the property of lossless join decomposition.
We can also achieve 4NF relation by removing each non trivial multivalued
dependency which violates 4NF condition by repeated binary decomposition.
However, sometimes it is not possible to obtain a lossless join decomposition of R
by splitting into two relational schemas, but we can achieve by decomposition of R
into more than two relational schemas.

Join Dependency: A join dependency represented by JD (R1,R2,R3..Rn) of a
relational schema R exists if there exists lossless join decomposition of R into
R1,R2,R3..Rn such that natural join among these relations equals to original relation
R that is (R1xR2R3...Rn)=R.

Fifth Normal Form(SNF): A relational schema R is in Fifth Normal with
respect to a set of functional dependencies including multivalued dependencies and
join dependency JD(R1, R2, ... Rn), if

1. JD(R1, R2, ... Rn) is non frivial join dependency. A join dependency JD(R1,
R2, ... Rn) is said to be frivial if any relational schema Ri is equal to R.

2. EachRiof ID(R1, R2, ... Rn) is a super key of R.

Most commercial applications use normal forms up to BCNF. The fifth normal is
rarely used in practice because it is difficult to identify join dependency. If we
consider all the groups of relations in first, second, third, BCNF, fourth and fifth
normal form are represented by sets. Then, the relationship among various normal
forms can be analyzed by following diagram shown in Figure 7.11.

Figure7.11 - Relatiohip ong various normal forms.

7.10 Summary

711

Y
.

ARl ol

We had seen various types of anomalies arise due to the redundancy of data.
We explained normalization process and how it helps to get rid of redundancy
of data through various normal forms.

We learned first and second normal form and how to determine a relational
schema in first and second normal forms or not.

We understand about third normal form and learned to decompose a relational
schema which is not in third normal form to a set of decomposed relations in
third normal form which are both lossless and dependency preserving
decomposition.

We discussed BCNF normal form which is stricter than 3NF and performed
decomposition of a relational schema which is not in BCNF into a set of
decomposed relations all in forth normal forms. We seen that the decomposed
relations are lossless but may or may not be dependency preserving
decomposition.

We explained multivalued functional dependency and forth normal form along
with join dependency and fifth normal form.

Terminal Questions

‘What do you mean by redundancy of data? Explain various types of anomalies
arisc due to the redundancy of data.

‘What do you mean by transitive functional dependency?

When schema is said to be in second normal form?

Explain the third normal form with suitable example.

Is it possible to decompose a relational schema which is not in third normal
form to a set of decomposed relations in third normal form? If possible, then is
this decomposition is both lossless and dependency preserving
decomposition?

‘What is the condition for a relational schema to be in BCNF?

[101]

[102]

8.
9.
10.
11.

Describe whether the decomposition of a relational schema which is not in
BCNEF in to a set of decomposed relations all in forth normal forms is possible
which are both lossless and dependency preserving decomposition.

Explain multivalued functional dependency with suitable examples.

What do you mean by trivial multivalued functional dependency?

‘When a relation is said to be in fourth normal form?

Describe join dependency and fifth normal form.

BIBLIOGRAPHY

1.

2.

R Elmasri, S Navathe, Fundamentals of Database Systems, 6th edition,
Addison-Wesley, 2010.

R Ramakrishnan, J Gehrke, Database Management Systems, 3rd Ed.,
McGraw-Hill, 2002,

A Silberschatz, H Korth and S Sudarshan, Database System Concepts,
6th Ed., McGraw-Hill, 2010,

Master of Computer Science

MCS-109

[o Database Management

Uttar Pradesh Rajarshi Tondon

open University System

Block

3

Transaction Management & Emerging Databases

Unit-8 Transaction Processing Concepts 106

Unit-9 Emerging Trends in DBMS 129

[103]

Course Design Committee

Prof. Ashutosh Gupta

Director (In-charge}
School of Computer and Information Science, UPRTOU Prayagraj

Chairman

Prof. Suneeta Agarwal Member
Department of CSE

MNNIT, Prayagraj

Dr. Upendra Nath Tripathi Member

Associate Professor, Department of Computer Science
Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur

Dr. Ashish Khare Member
Associate Professor, Department of Computer Science
University of , Prayagraj

Ms. Marisha Member
Assistant Professor (Computer Science)
School of Science, UPRTOU Prayagraj

Mr. Manoj Kumar Balwant Member
Assistant Professor {(Computer Science})
School of Science, UPRTOU Prayagraj

Course Preparation Committee

Dr. Parth Gautam Author(Block 3 : Unit 8, 9)
Assistant Professor, Department of Computer Science
Dev Sanskriti Vishwavidyalya, Haridwar, Uttrakhand

Dr. Abhay Sexena Editor
Professor and Head, Department of Computer Science
Dev Sanskriti Vishwavidyalya, Haridwar, Uttrakhand

Prof. Ashutosh Gupta
Director (In-Charge)
School of Computer & Information Sciences, UPRTOU Prayagraj

Assistant Professor (computer science)

School of Sciences, UPRTOU, Prayagraj

UPRTOU, Prayagraj-2021
ISBN -

All Rights are resurved. No Part of this work may reprouduced in any form, by mimeograpn or
any other means, without permission in writing from the Uttar pradesh Rajarshi Tandon Open
University.

[104]

BLOCK INTRODUCTION

This block deals with Transaction Management and Emerging DBMS. Here firstly, we
are going to study about various transaction management strategies and mechanism, In
the second phase, we will learn about emerging databases that are required to meet the
nceds of the emerging software applications and to manage varied data.

In the next unit of Transaction management, the concept of transaction and its
properties along with states are discussed. We will understand, how concurrent
transactions execute in the database by using the concept of serializability and other
concurrency control techniques. Along with this we are going to cover recovery
management mechanism which helps in attaining atomicity and durability of the
database.

Further, in the unit of Emerging DBMS, we are going to understand the basic concept
of some emerging databases. Here, our emphasis will be on discussing the design
rules, architecture and user needs of these databases. This unit will also cover the
applications and advantages of each of the databases

[105]

[106]

Unit- 8 Transaction Processing Concepts

Structure

8.1 Introduction to Transaction Processing

8.2 Objectives

8.3 Transaction and System Concept

8.4 Desirable Properties of Transactions

8.5 Scheduling and Recoverability

8.6 Serializability of Scheduling

8.7 Transaction Support in SQL

8.8 Concurrency Control Techniques

8.9 Concurrency Technigues for Concurrency Control

8.10 Concurrency Control Based On Timestamp Based Protocol
8.11 Validation Based Protocol

8.12 Deadlock Handling

8.13 Database Recovery Techniques Based On Immediate Update
8.14 Failure Classification

8.15 Shadow Paging

8.16 Log Based Recovery

8.17 Failure with Loss of Nonvolatile Storage

8.18 Summary

8.1 Introduction to Transaction Processing

A user might see several operations on a database as a single unit. For
Example, a very basic example of transferring funds from one account to another
account looks like a single operation but from the view point of database it consists of

several operations.

So, the collections of operations that form a single logical unit of work are
called as Transactions. It is required here that every transaction that initiates must
ensure its proper execution, not leaving the system in an inconsistent state. It would be

unacceptable if one account is debited and another one is not credited.

Here, we will discuss all the basic concepts of transaction processing, its

properties, state, managing concurrent transaction processing and recovery strategies.

8.2 Objectives

After studying this unit, students can understand the concept of transaction its
properties and states. We also discuss how concurrent transactions execute in the
database by using the concept of serializability and other concurrency control
techniques. This unit is also going to cover recovery management mechanism which
helps in attaining atomicity and durability of the database.

8.3 Transaction and System Concept

A transaction is a sequence of read and writes operations on data items that
logically functions as one unit of work. It provides and —*all-or-noting” proposition
stating that each work —unitperformed in database must either complete in its entirety
or have no effect whatsoever. There are some points to consider related with
transaction processing:

¢ All actions of transactions will take place or none of all.

e If it succeeds, the effects of write operations persist (commit}; if it fails, no
effects of write operations persist (abort).

¢ It ensures consistent state despite of concurrent activity in the system, and

despite failures that may occur.

After transaction

Database before processing Database after
transaction transaction

A ftransaction is initiated by a user program wrapped in high level data
manipulation language or programming language like SQL. Here, a transaction

consists of all operations between the begin transaction and end transaction.

8.3.1 Transaction States
The transaction must be in one of the following states:-
1. Active:- This is a initial state, the transaction stays in this state while it is
executing
2. Partially committed: The transaction is in this state when it has executed
the final statement.
3. Failed: A transaction is in this state once the normal execution of the
transaction cannot proceed.

[107]

[108]

4. Aborted: A transaction is said to be aborted when the transaction has
rolled back and the database is being restored to the consistent state prior
to the start of the transaction.

5. Committed: a transaction is in this committed state once it has been
successfully executed and the database is transformed in to a new

consistent

Transaction
END

Transaction
Begin

i Comm [
Part'?"y t Committed
committed

.

Abort

Failed]—[Aborted]

Figure 6.1 Transaction States

Active

8.4 Desirable Properties of Transactions

To maintain integrity of data, the database system must follow four key
properties of transactions.

8.4.1 Atomicity: It says “All or None “. This means either all operations of the

transactions are reflected properly in the database, or none are.

8.4.2 Consistency: it ensures correctness of the database. This is achieved by
execution of transaction in isolation i.e. No other transaction running concurrently.

This preserves the consistency of the database.

8.4.3 Isolation: it indicates actions performed by a transaction are hidden or isolated
from outside the transaction until it terminates. Suppose if two transactionsTi and Tj
are executing, then in this case it appears to Ti that either Tj finished its execution
before Ti started or Tj started execution after Tifinished.In this way, each transaction is
unaware of the other transactions executing concurrently in the system

8.4.4 Durability: After successful completion of transaction, the changes that are
made by all transaction should persist in the database even if the system goes down or
crashes. All updates that done by transaction must become permanent on disk after

commit action of transaction.

These properties are called as ACID properties. For better understanding of these
properties, consider a simple banking system which have several accounts and allow
set of transaction that access and make updates to these accounts. These transactions
access the data using two operations:

¢ Read(X), it transfers data item X from the database to a local buffer of the

transaction that call the read operation.

e Write(X), it transfers the data item X from the local buffer of the transaction

that call the write operation to the database.

Let’s assume Ti be a transaction that transfers 500 Rs from Account A to Account
B. At begin of transaction balance in account A= 2000/- and B=3000/-. these
transactions can be defined as:

Ti= read(A);
A= A-500;
Write(A);
Read(B);
B:=B+500;
Write(B);

Now, we will understand ACID properties by taking an example of banking
system.Suppose, during the execution of transaction Ti, any type of failure occurs that
prevents the transaction Ti to complete successfully. It may also possible, that the
write{A) operation executes but write(B) operation does not occur due to some system
failure, in that case account A is debited but the account B is not credited.

A=1500;
B=3000;
Sum(A+B)=4500;

Here, the sum of A+B is not same as when the transaction Ti begins. This type
of situations can lead the database in an inconsistent state.

So, these types of inconsistencies are deal by the property of Atomicity which

ensures all operations of the transaction are reflected in the database or none are.

As consistency property of the database says, if the database is in consistent
state before execution of transaction, then or termination, the database will alsobe ina
consistent state.

Sum(A,B) == sum(A,B)
Before transaction begins after transaction terminates
So, to ensure consistency of the database, integrity constraints are applied

which prevents database from an inconsistent state.

[109]

[110]

In the same example we discussed above of transferring funds from account A
to B, we find the data base in an inconsistent state and in the same situation any other
transaction running concurrently try to read the data of account A and B, it will find
the incorrect data and may again leave the system in an inconsistent state.

So, avoid this type of problems, Isolation property of the transaction allows

concurrently executing transactions is to execute serially- that is one after another.

As in the above example, a system failure takes place after the amount is
deducted from the account A and not credited in account B. In this case loss of data
takes place in main memory but data on disk is still present which guarantees
durability of transaction.

Durability ensures the all the updates carried out on the database will persist
even if there is a system failure. These updates are made before the execution of the
transaction or after the successful completion of the database.

Check your Progress

1. Describe the Transaction States.

2. Explain the Properties of Transactions.

8.5 Scheduling and Recoverability

As transactions consists of set of operations and these operations make
updates in database. These operations are executed in some order to make the
transaction complete and to leave the system in a consistent state.

So, when multiple transactions are running concurrently then there is a need to
maintain some sequence in which these transactions will execute. This process of
sequencing transaction is termed as Scheduling of transaction.

8.5.1 Scheduling: when several transactions such as (T1, T2,...... Tn) are running
concurrently then the order of execution of each operation is known as Schedule. This
can be understood by taking an example:

Suppose, there are two transactions T1 & T2 which are running concurrently
and each transaction has own set of read and write operations on the database, then in
this case, schedules determines the exact order of operations that are going to be
performed on the database.

™ | T2
R(A)
R(B)

In the above table it is shown that operations of T1 are followed by T2.

However, this order of execution of operations of transactions may change. So, to deal
with this, there are various types of serial and non-serial schedules.

8.5.1.1 Serial Schedule: Serial Schedule are those where for each pair of transaction
T1 and T2, if T2 followed by T1, then T2 can only initiates its operation after the

R(A)

R(B)

completion of T1.The given schedule is a serial schedule:

T1 T2
Read(A)
A:AT500;
Write(A)
Read(A)
A:A+500;
Write(A)

8.5.1.2 Non-Serial Schedule: In this type of schedules, interleaving of operations
takes place. Here, the order of operations of the transaction can interleave the order of

operations of other transaction and that result leaves the database in consistent state.

T1 T2
Read(A)
A:A+500;
Read(A)
A:A+500;
Write(A)
Write(A)

[111]

[112]

8.5.2 Recoverability

As in scheduling of transactions we have come across the order of execution
of operations of transaction by maintaining the consistency of the database, assuming
that there will be no transaction failure.

Now, if in any case, a transaction may not complete its execution due to any
hardware failure, system crash or any software issue. So, in that case, system has to
roll back the failed transaction. Here, it may also possible that any other transaction is
dependent on failed transaction or used the data written by failed transaction type of
schedules that are followed by the database system. So, there are schedules that are
then it is also required to rollback those transactions too. To ensure this, we have to
determine the applied from the view point of recovery from transaction failure. These
schedules are discussed below:
8.5.2.1 Recoverable schedule is one where, for each pair of transaction Tin ad Tj,
such that Tj reads a data item that was previously written by Ti, the the commit
operation of Ti appears before the commit operation of Tj.

In other words, if a transaction Tj reads a value that is updated by Ti, then the

commit of Tj must occur after the commit of Ti.

Ti Tj
Read(A)
Write(A)
Read(A)
Write(A)
Commit
Commit

Suppose, if due to some reason Ti fails before it commit, then in this situation
Tj can be aborted and data can be recovered. Hence given schedule is recoverable.
8.5.2.2 Cascade less schedule are those where for each pair of transactions Ti and Tj
,such that Tj reads a data item previously written by Ti, then the commit operation of
Ti appears before the read operation of Tj.
Ti Tj

Read(A)

Write(A)

Commit
Read(A)
Write(A)
Commit

These types of schedules are recoverable and eliminate the drawback of cascading
rollback.
In cascading rollback, due to failure of single transaction, a series of transaction that

are dependent on failed transaction rolled back that leads to unnecessary work head.

Check your Progress

1. Explain Scheduling and its types.
2. What is Recoverability?

8.6 Serializability of Scheduling

In the previous topic of scheduling, we have seen there are serial and non-
serial schedules. Serial schedules are those in which another transaction starts only
after the completion of first transaction, it means it does not allow concurrent
execution of transactions while the non-serial schedule, multiple transactions are
running concurrently then there is a possibility that the database may be left in an
inconsistent state, So, serial schedules are always serializable but non serial schedules
are needed to be checked for Serializability.

8.6.1 Serializability is a process of testing the schedules whether they are serializable
or not. A Serializable schedule is a schedule which leaves the database system in a
consistent state,

8.6.2 Types of Serializability

There are two types of Serializability of scheduling.

1. Conflict Serializability

2. View Serializability

8.6.2.1 Conflict Serializability: tells us whether a non-serial schedule is conflict
serializable or not. Conflict serializable schedule is a schedule which can be converted
to serial schedule after swapping its non-conflicting operations. Two operations are

said to be conflicting if all conditions satisfy:

[113]

[114]

» They belong to different transactions
¢ They operate on the same data item

s At Least one of them is a write operation

Let’s consider a schedule:-

T1 T2
R(A)
R(A)
R(B)
W(B)
R(B)
W(A)

After swapping non-conflicting operations we get a serial schedule.

T1 T2
R(A)
R(B)
W(B)
R(A)
R(B)
W(A)

So, the above given schedule is conflict Serializable.
6.6.2.2 View Serializabilitytells us whether a non-serial schedule is view serializable
or not. A schedule is said to be View serializable schedule if it is equivalent to its View

Equivalent.Let’s consider a non-serial schedule and its Serial schedule: -

T1 T2
RX)
W)
RX)
W)
R(Y)
W)
R(Y)
W)
T1 T2

The non-serial(S1) and its scrial schedule(S2) are view equivalent, if they satisfy all

the following conditions:

Initial Read; Initial read of each data item in transactions must match in both

schedules.

Final Write: Final write operations on each data item must match in both the

schedules.

RX)
W(X)
R(Y)
W)
R(X)
W(X)
R(Y)
W(Y)
Non Serial Serial
S1 S2
T1 T2 T1 T2
R(X) R(X)
W(X) W(X)
RX) | R(Y)
WXy | W(Y)
R(Y) R(X)
W(Y) W(X)
R(Y) R(Y)
W(Y) W(Y)
S2 is the serial schedule of S1

[115]

[116]

¢ Update Read: If in schedule S1, the transaction T1 is reading a data item
updated by T2 then in schedule S2, T1 should read the value after the write
operation of T2 on same data item.

So, in the above given example two schedules S1 and S2 are view equivalent. Hence,

the schedule S1 is view serializable schedule.

8.7 Transaction Support in SQL

As discussed earlier in the previous sections that transaction executes set of
operations as single logical unit. Each of the transaction begins with a specific
operation and ends when all the tasks in the given set of transaction complete
successfully.

These set of operations performed against a database wrapped in Transaction SQL
statements. If all the operations are executed successfully then the transaction is
complete and then it will be committed and updates the database permanently. But, if
any of the operation fails then the entire transaction will fail and complete transaction
will be cancelled or rolled back.

So, to manage and control the transaction in the database following SQl

commands are used.

+ BEGIN TRANSACTION

o SET TRANSACTION

» COMMIT

« ROLLBACK

¢ SAVEPOINT

These transaction control commands are only used with the DML Commands
such as - INSERT, UPDATE and DELETE only. They cannot be used while creating
tables or dropping them because these operations are automatically committed in the
database.
8.7.1 BEGIN TRANSACTION: It tells the starting point of a transaction.

Syntax:BEGIN TRANSACTION transaction_name;
Example: BEGIN TRANSACTION T1;

8.7.2 SET TRANSACTION Command:It is used to specify the read and write

characteristics for the transaction.

Syntax:SET TRANSACTION [READ WRITE | READ ONLY];
Example:SETTRANSACTION Tl1rw;

8.7.3 COMMIT Command: It is used to save all the changes made by a transaction
to the database. Let’s understand it with the help of an example:

ID NAME AGE CITY | SALARY
101 Akhilesh 25 Lucknow | 15000.00
102 Roshan 22 Agra 10000.00
103 Ramesh 23 Varanasi | 20000.00
104 Himanshu 21 Kanpur | 25000.00
105 Ajay 25 Prayagraj | 25000.00

Syntax:COMMIT;

Example:

SQL> DELETE FROM CUSTOMERS WHERE AGE = 25;

Output:

SQL> COMMIT;

ID NAME AGE CITY SALARY
102 Roshan 22 Agra 10000.00
103 Ramesh 23 Varanasi | 20000.00
104 Himanshu 21 Kanpur | 25000.00

8.7.4 ROLLBACK Command: This command is used to undo the changes made by

a transaction that are not committed or not permanently saved to the database.

Syntax:ROLLBACK;

Example:

SQL> DELETE FROM CUSTOMERS WHERE AGE = 25;

Output:

SQL>ROLLBACK;

ID NAME AGE CITY | SALARY
101 Akbhilesh 25 Lucknow | 15000.00
102 Roshan 22 Agra 10000.00
103 Ramesh 23 Varanasi | 20000.00
104 Himanshu 21 Kanpur | 25000.00
105 Ajay 25 Prayagraj | 25000.00

[117]

8.7.5 SAVEPOINT Command: This command allows a transaction to rollback a
certain operation in a transaction without rolling back the entire transaction. Here, it is
required to create save points for all operation of the transaction. The ROLLBACK

command is used to undo a mentioned save point

Syntax: SAVEPOINT savepoint_name;
ROLLBACK TO savepoint_name;
Example:
SQL> SAVEPOINT SP1;
Savepoint created.
SQL> DELETE FROM CUSTOMERS WHERE ID=101;
1 row deleted.
SQL> SAVEPOINT SP2;
Savepoint created.
SQL>DELETE FROM CUSTOMERS WHERE ID=102;
1 row deleted.
SQL> SAVEPOINT SP3;
Savepoint created.
SQL> DELETE FROM CUSTOMERS WHERE ID=103;
1 row deleted.

SQL>ROLLBACK TO SP2;
Rollback complete.
Output:
SQL> SELECT * FROM CUSTOMERS;
ID NAME AGE CITY SALARY
102 Roshan 22 Agra 10000.00
103 Ramesh 23 Varanasi | 20000.00
104 Himanshu 21 Kanpur | 25000.00
105 Ajay 25 Prayagraj | 25000.00

4 rows selected.

Check your Progress
1. Explain Serializability and its type.
2. Describe SET TRANSACTION Command with example.
3. Explain Transaction Support in SQL.

[118] 8.8 Concurrency Control Techniques

As we have secen when databasc system allows concurrent execution of
transaction then it is difficult to maintain Isolation property of transaction. However,
to ensure that interleaving of transaction will not leave the system in inconsistent state,

system follow some mechanism called as concurrency control techniques.

Concurrency control is a process of managing concurrent operations without

conflicting each other and to ensure integrity of the database.
8.9 Concurrency Techniques for Concurrency Control

As in above discussed examples we have seen Read and Write operations on
databases are applies in an interleaving manner, In this case, there are possibilities of
some conflicts such as WW Conflicts, RW Conflicts and so on.

So, to overcome these types of issues, database system has some concurrency
control techniques. These are:

¢ Lock-Based Protocols

o Timestamp-Based Protocols

o Validation-Based Protocols

8.9.1 Concurrency Control Based on Lock-Based Protocols

In this protocol, a transaction cannot read or write until it acquires an
appropriate lock on the data item. In this way, while one transaction is accessing a data
item, no other transaction can modify the same data item.

Here, lock is data variable which is related with data item that tells any
operation is performing on the data item. A request for the lock is made to the
concurrency control manager. Once the lock is granted, then only the transaction
proceeds its execution, There are two types of lock:

Shared lock:It is a read only lock. It can be shared among transaction as in this data
can only read but cannot be modified by the transaction.
Exclusive lock: In this transaction can read as well as write a data item. Here, multiple
transactions cannot modify the same data at a time. There are following types of lock-
based protocols:
1. Simplistic Lock Protocol: In this lock is granted to a transaction before
beginning of transaction and it is released after completing the transaction.
2. Pre-claiming Lock Protocol: This protocol evaluates all the data items on
which they need locks. If all the required locks are granted then the

[119]

ETH-119

PEPE-149

transaction begins otherwise it rolls back till all required locks are not granted.
After completion of the transaction it releases all the issued locks.
3. Two-phase locking (2PL): This protocol works in three steps-
» Firstly,when the transaction begins to execute, it requires permission
for the locks it needs.
¢ In second phase, all locks are granted to a transaction. The third
phase is started as soon as the transaction releases its first lock.
¢ In the third phase, the transaction cannot demand any new locks. It
only releases the acquired locks.

Locked
Point

Acquire Release
Acqu're IOCk c Release
l | Lock

Time1l

Start End
operatlons

Growing phase

Shrinking phase

Locked phase

This protocol as termed as 2PL as it involves two phases:

Growing Phase: In this phase transaction may obtain locks but may not release any
locks.

Shrinking Phase: In this phase, a transaction may release locks but cannot obtain any

new lock

8.10 Concurrency Control Based on Timestamp Based

Protocol

As Lock based protocol solved the problem of arising conflict among
transaction of first lock at execution time. But sometimes this leads to incompatible

database.

There is another method for determining the serializability order among
[120] transaction called as Timestamp Ordering Protocol.

Timestamp Ordering Protocol serializes the execution of concurrent
transactions based on their Timestamps.

8.10.1 Timestamps

As with the creation of transaction Ti in the database system, a unique fixed
timestamp TS(Ti) is attached to it. This timestamp is assigned in two ways:

1. Using the value of the system clock as a timestamp.

2. Using logical counter that is incremented after a new timestamp has been

assigned.

Here, transactions are executed on the basis of the ascending order of the

transaction creation. A transaction with older timestamp will execute first.

Let’s assume, there are two transactions Ti and Tj, Where Ti has entered the
system at time 0010 and Tj at 0020. Here, TS(Ti)< TS(Tj), so the transaction Ti will

execute first.

Timestamp Values of data item Q can be of two types:

1. R TS(Q) it denotes the largest timestamp of any transaction that executed
Read (Q) successfully.

2. W_TS(Q) it denotes the largest timestamp of any transaction that executed
Write (Q) successfully.

8.10.2 Timestamp Ordering Protocol ensures that any conflicting read/ write
operations of a transaction are executed in timestamp order.

Conditionl: Whenever a transaction Ti issues a Read (Q) operation and:

If W _TS(Q) >TS(Ti) then the operation is rejected.

If W_TS(Q) <=TS(Ti) then the operation is executed.

Timestamps of all the data items are updated.

Condition 2: when a transaction Ti issues a Write(Q) operation and :

If TS(Ti) < R_TS(X) then the operation is rejected.

If TS(Ti) < W_TS(X) then the operation is rejected and Ti is rolled back

otherwise the operation is executed.

8.11 Validation Based Protocol

This protocol is known by optimistic concurrency control technique. This
technique minimizes transaction conflicts. Here, transactions are allowed to execute

without restrictions until it is committed. It involves three phases:

[121]

[122]

1. Read Phase: during this phase, a transaction can read the data item from
the database but the update data item is stored in a local buffer, not in the
actual database.

2. Validation Phase: here, transaction is validated to ensure that the changes
made will not affect the integrity and consistency of database. If in the
validation phase, database is consistent then a transaction goes to write
phase otherwise transaction is rolled back.

3. Write Phase: as in this phase, all updates are reflected in the database

permanently after successful validation.

Check your Progress

1. What is Concurrency Control?
2. Explain Timestamp Ordering Protocol.
3. Discuss Validation Based Protocol with its phases.

8.12 Deadlock Handling

Deadlock is a unwanted situation of a database, when n number of
transactions are running and cach transaction is waiting for another transaction for
releasing a locked data item. Example Suppose, there are T1, T2,T3 transaction exists
and these transactions are in a situation such that T1 is waiting for a data item (Q1)
that is hold by T2, T2 is waiting for a data item(Q2) that is hold by T3 and T3 is
waiting for a data item(Q3) that T1 holds.

BA 8
z| T2

In figure none of the transaction can complete its execution and leaving the systern in

a deadlock state.So, to recover from this situation system follows some deadlock
handling mechanism:
¢ Deadlock Prevention

e Deadlock Detection

e Deadlock Recovery
8.12.1 Deadlock Prevention

This helps in prevention of deadlock situation by avoiding condition of mutual
exclusion, circular wait, no preemption for a data item. Prevention For deadlock
prevention, system uses timestamp-based prevention mechanism is used. Here, the
system uses timestamps to decide whether a transaction should wait or roll back.
There are mainly two deadlock prevention schemes using timestamps are:

1. Wait-Die scheme: If T1 is older than T2, T1 is allowed to wait. Otherwise, if

T1 is younger than T2, T1 is aborted and later restarted.

2. Wound wait scheme:If T1 is older than T2, T2 is aborted and later restarted.

Otherwise, if T1 is younger than T2, T1 is allowed to wait.

8.12.2 Deadlock Detection
As a deadlock in database system occurs when a transaction waits for a

indefinite time to obtain a lock. To detect a deadlock situation, a wait -for graph is
used.If a wait-for graph contains a circular wait loop, then each transaction involved in
the graph is said to be in deadlocked.Let’s understand a situation by taking an
example: There are three transactions T1, T2 and T3. T1 is waiting for T2; T2 is

waiting for T3 to release the lock. Here a circular waiting loop exists in the wait for

graph.

A %
=] T2

Hence, to resist the system from deadlock situation, system keeps on checking
for the circular wait loop in the graph. If there is no cycle in the graph, the system is
not in a deadlock state.

[123]

[124]

8.12.3 Deadlock Recovery
After detection of a deadlock in a system, recovery mechanism is applied to

recover a database from a deadlock state, Most commonly transactions are rolled back
to break a deadlock. There are three actions which are taken for deadlock recovery:
¢ Selection of a Victim: From a set of transaction which occurs deadlock, it is a
process to select those transactions which are to be rolled back.
¢ Rollback: It is to determine how far a particular transaction is rolled back. A
transaction can be either rolled back partial to a specific point or can be rolled
back completely.
e Starvation: When a victim fransaction never completes its execution, then it

is termed as a starvation.

Check your Progress

1. What is Deadlock?
2. Describe the concept of Deadlock Handling.
3. Explain Deadlock Recovery.

8.13 Database Recovery Techniques Based On Immediate
Update

A database system can face failure due to various reasons such as disk crash,
power outage, software error, catastrophe and so on. But in all these situations,
database systems should robust enough to recover the lost data to maintain the

atomicity and durability of the transactions.

8.13.1 Database recovery on immediate update

Database recovery techniques are applied before the commit point or the
transaction. In an immediate update scheme, the database may be updated by some
opetations of a transaction before the transaction reaches its commit point. However,
these operations are recorded in a log on disk before they are applied to the database,
making recovery still possible.If a transaction fails to reach its commit point, the effect
of its operation must be undone i.e. the transaction must be rolled back. This recovery
scheme follows two recovery procedures:

» undo(Ti): it restores the value of the data items updated by transaction Ti to its
old values.

¢ redo(Ti): it sets the value of the data items updated by transaction Ti to its new
values.

This technique is known as undo/redo algorithm,

8.14

Failure Classification

A failure of the database system can be of following types:

8.15

Transaction Failure: A transaction can be failed or aborted due to two types
of errors:

Logical errors: errors in the logic of a program resist a transaction from
execution.

System Errors: undesirable state such as deadlock, resist a transaction to
execute normally.

System Crash: this failure can be raised due to hardware malfunction, failure
of a database software or operating system corruption that results into loss of
data of the volatile storage and lefts the transaction processing to a halt.

Disk Failure: it involves formation of bad sectors, head crash, unreachability
of the disk or data transfer loss.

Shadow Paging

Shadow paging is a database recovery technique. Here, database is considered

as made up of fixed size of logical units of storage which are as pages. Pages are
mapped into physical blocks of storage, with help of the page table which allow one
entry for each logical page of database. This method uses two-page tables named
current page table and shadow page table.

Current page table - used to point to most recent database pages on disk.
Entries present in current page table may be changed during execution.
Shadow page table - Shadow page table is used when the transaction starts
which is copying current page table. It resides on disk, and is never modifies
during execution,

After successful execution of transactions, both tables become identical. The

concept of shadow Paging is illustrated with the help of given example:

[125]

[126]

Databasedisk
Block

Page 3 (old)

Page 4 Shadow page
Current page table table (Not
after updating (3, 5) Page 1 Updated)

Page 5 (old)

Page 2

Page 6

Page 3 (new) \
Page 5 (new)
\% Free Block

Here, two write operations are performed of Page 3 and 5. Before execution of

Q||| W| N[

o|lu|s|lw|im|-

write operation, current page table is pointing to old page on disk. When write
operation of Page 3 starts, following steps takes place:

1. Firstly, it searches for available free block on disk.

2. After finding a free block, it copies page 3 to free block which is represented
by Page 3 (New).

3. Now current page table points to Page 3 (New) on disk but shadow page table
points to old page 3 because it is not modified.

4. The changes are now propagated to Page 3 (New) which is pointed by current
page table.

To commit transaction following steps should be followed:

1. Flush all modified pages in main memory to physical database.

2. Output current page table to disk.

3. Make the current page table the new shadow page table. For this, keep a
pointer to the shadow page table at a fixed (known) location on disk. And
update the pointer to point to current page table on disk.

Once pointer to shadow page table has been written, transaction is committed.In
case of failure during execution of transaction before committing, it is only needed to
free modified database pages and discard current page table. The modified pages are
available through the shadow page table.If the transaction is performed successfully,
the entries of the shadow page table are discarded and the current page table is again
copied to the shadow page table.

8.16 Log Based Recovery

As it is the most common recovery mechanism. Here, it maintains a structure
for recording database updates termed as log. This log maintains a sequence of log

records, which is it a file that comtains all read, write, and commit activities of
transaction in the database. A log record holds following fields:

e Transaction identifier (Ti): Unique Identifier of the transaction that
performed the write operation.

e Data item(X): Unique identifier of the data item written, a location of the data
item on the disk.

e Old value(V1): Value of data item prior to write.

o New value(V2): Value of data item after write operation.

There are log records to record significant events during transaction
processing such as start, commit or abort of a transaction. We denote these types of
records as:

e <Ti start>: when a transaction Ti starts.
o <Ticommit>: when a transaction Ti commits.
e <Ti abort>: when a transaction Ti aborts.

These records allow undo and redo operations in case of failure of a transaction.
For log-based recovery database system consults the log record to identify which
transaction needs to be redo and which needs to be undo. We can see situations, when
undo and redo operations are applicd on a database;

e Transaction Ti needs to be undone if the log contains the record <Ti start>
but does not contain either the record <Ti commit> or the record <Ti
abort>.

e Transaction Ti needs to be redone if log contains record <Ti start> and
either the record <Ti commit> or the record <Ti abort>.

For log records to be useful for recovery from system and disk failures, these
log records must reside on stable storage.

8.17 Failure with Loss of Nonvolatile Storage

In the above recovery mechanisms, we had discussed about the recovery of
data loss from volatile memory. But in some rare situations, failure of nonvolatile
storage results in data loss.So, to recover data from failure of non-volatile storage
dump scheme is used. It dumps the entire content of the database to stable memory
periodically. No transaction can be active during the dump procedure. Procedure to
dump the database follows steps:

Output all log records currently residing in main memory onto stable storage.
Output all buffer blocks onto the disk.

Copy the contents of the database to stable storage.

Output a record <dump> to log on stable storage.

b e

To recover from disk or non-volatile storage, the system-

1. Restore database from most recent dump.
2. Consult the log and redo all transactions that committed after the dump

[127]

[128]

This is also known as an archival dump.
Check your Progress

1. Discuss on Failure Classification.

2. Explain Log Based Recovery.

8.18 Summary

Transaction refers to a unit of program execution that accesses and updates a
data item. The transaction processing takes place in such a way that any failure cannot
leave the database in an inconsistent state. Transaction is required to maintain the
ACID (atomicity, consistency, isolation and durability) properties. As concurrent
transactions have the ability to use the CPU cycle to its fullest but execution of
concurrent transactions can lead to inconsistency.

It is therefore mandatory for the system to control the interleaving
transactions. Schedules are maintained by system to achieve consistency. Serial
schedules are consistent while non-serial schedules can cause inconsistency in
database. So, the concept of Serializability is introduced to make the database
consistent by testing the schedules whether they are serializable or not. Along with this
concurrency control techniques based on locking, timestamp and validation are used.
Some techniques result into deadlocks which is also deal by database systems using
deadlock handling techniques.

As a computer system like any other electrical device are prone to failure.
These failures cab be because of disk crash, power loss, software errors or any
catastrophe. In case of any failure, state of database system may no longer be
consistent. Then it is necessary to recovery the data loss. Recovery schemes such as
logs, shadow paging, periodic dumps are followed by data bases to maintain the
atomicity and durability property.

Terminal Questions
1. What isTransaction Processing?
2.Why we need of Concurrency Control in Transaction Processing.
3. Discuss the Database Recovery Techniques.
4. What does the ACID acronym for? Describe each property individually.
5. What is the difference between the following transaction states: Aborted vs Failed
and Active vs Committed?
6. What do you understand by Deadlock? Explain its features with an example.
7. what is concurrency control 7 Explain it with a suitable technique.
8. What is shadow paging? How it is differ from Log based recovery?

Unit 9 - Emerging Trends in DBMS

Structure:

9.1 Introduction

9.2 Objectives

9.3 Introduction to object oriented Database Management System
9.4 Introduction to client/Server Database

9.5 Introduction to Distributed Database

9.6 Introduction to Knowledge Databases

9.7 Summary

9.1 Introduction

From the last four decades, businesses relied on relational database
management systems (RDBMSs)—that used Structured Query Language (SQL) as the
programming language. But the recent applications and emergence of network demand
a completely different set of requirements in terms of the underlying database models.
The conventional relational database model is no longer appropriate for these types of
applications. Therefore, this unit will introduce emerging databases such as Object -
oriented, distributed databases, client server database and knowledge database, their
functionality and requirement.

9.2 Objectives

By the end of this unit, you should be able to understand about the various
database models and their basic functioning. This will give you a view how these
databases are different from conventional database systems and helps the application
programs.

9.3 Introduction to object-oriented Database Management

System

In early 1960s computerized databases were there with the availability of
disks and drums that helps in maintaining data. Then in 1970s, Databasc technology
improves and aims to make the data independent from the logic of application
programs. This enables the different application programs to access the data
concurrently. The first-generation databases were navigational; here data was accessed

through record pointers moving from one record to another. With more advent of

[129]

[130]

technology, this was followed by relational model, which focused on data than
pointers for data retrieval. These kinds of databases are more popular till date.

The Relational databases have many features and support in maintain data and
information of commercial systems and business applications. RDBMS are capable to
handle simple and fixed collection of data types, support high level queries, query
optimization, transaction backup and crash recovery.

Despite all the above features, a number of limitations exist with relational
model:

e Many other application domains need complex kinds of data such as
CAD/CAM, multimedia repositories, and document management. To
support such applications, DBMSs must support complex data
types.The lack of support for new data types such as graphics, xml,
2D and 3D data.

s With the advent of Object-Oriented methodologies and languages,it
was quite difficult to map data of application programs.

Hence, to cope up with all arising problems and to meet out the needs of complex

data, object database systems were developed.

Object Oriented Database (OODB) implements OO concepts such as object
identity, polymorphism, encapsulation and inheritance to provide access to persistent
objects using any OO-programming language.

OODB also provides a unified environment when dealing with complex data
such as 2D and 3D graphics by proper mapping of object orientation and databases.
These databases are designed to work well object oriented programming languages
such as Objective-C, Java, and Python.

9.3.1 Basic Object Oriented concepts - object, attribute, OID, class, method,
encapsulation, class hierarchy, single/multiple inheritance, extensibility, complex
object, overloading, overriding, polymorphism, user-defined typeAs OODB follow the
concepts of Object data model. So, in this both data and its relationship are combined
together in a single data structure. This data structure as a whole is termed as object.

9.3.1.1 Object: it is an abstraction of real-world entity. This entity conceptually exists
and can be identified distinctly such as person, employee, student, book etc. these
objects have structural properties which are defined by set of attributes and
behavioural properties which are defined by methods. Each object is associated with a

logical non-reusable and unique object identifier (OID). The OID of an object is
independent of the values of its attributes

9.3.1.2 Attributes: the properties of objects which help in identifying the objects are

termed as attributes.
Object
Class

-

Name

Age Attribute

DOB

Figure 7.1 — Attribute & Object

9.3.1.3 Class: Objects which are similar in nature or have same attributes are grouped
together in a class. So, we can say class is a collection of similar objects which have
same attributes and behavior.
Classcs are classified as lexical classes and non-lexical classes.

1. A lexical class contains objects that can be directly represented by their values.

2. A non-lexical class contains objects, each of which is represented by a set of
attributes and methods. Instances of a non-lexical class are referred to by their OIDs,
Example person and employee part are non-lexical classes.

9.3.1.4 Method:These are the procedures which modify the objects state and it allows
one object to communicate with other. A message passing system is used to call a
method of an object. A method’s specification is represented by a method signature,
which have the method name and information on the types of the method’s input
parameters and its functionality and output.

Object A

Methods

Object B

Figure 7.2 Methods

E.g. when an employee is fired, we need to delete the employee information
from the employee file, delete the employee from the employee-project file, and insert

[131]

[132]

the employee information into a history file, etc. One method called “Fire-employee”
can be defined that incorporates this sequence of actions.

9.3.1.5 Class Hierarchy: when classes are arranged that represents an upside down
tree and have parent child relationship. By this it supports Inheritance.

9.3.1.6 Inheritance: As like parent child relationship, it allows a class to inherit
properties (attributes and methods) from its super classes.

Course

Offline Online
Course Course

Full Time Part Time
Course Course

In this figure full time and part time course Inheritthe
properties (attributes and methods) of class Course.

Figure 7.3 Inheritance

9.3.1.7 Abstraction:in this some aspects of an entity are detailed which are needed
and rest are ignored.

9.3.1.7 Encapsulation: it is a binding mechanism by which we can bind
state(attributes) and behaviour(methods) of an object together.

9.3.1.8 Generalization: It is method to create a superclass is called generalization.
9.3.1.9 Specialization: It is process of forming a sub class is called specialization.
9.3.1.10 Polymorphism: It means —many forms. It is dynamic feature which

executes at run time of program. It involves the concept of overriding and overloading.

9.3.2 Object Definition Language:There is a standardized language for defining the
structure of object oriented databases. ODL defines three components of the object-
oriented data model: Abstraction, Inheritance and Encapsulation

9.3.3 Object Query Language: As like SQL, it includes declarative statements.
Besides this OQL includes more language constructs which permit for object-oriented
design such as operation invocation and inheritance. Syntax or OQL query structure
locks very similar to SQL but the results returned are different. As OQL query returns
a set of objects.Example: OQL query to obtain Voter names who are from the state of
Uttarakhand

Select distinct v.name From voters v Where v.state = “Uttarakhand”

Voter Id Name State
V1 Ramesh Uttarakhand
V2 Harish Uttarakhand
V3 John Goa
Result from SQL Result from OQL
table with rows collection of Objects
Name String String
Ramesh

3 Ramesh Harish
Harish

9.3.4 Applications for OO databases
The applications that use complex data types and needed high performance include:
s Computer-aided design and manufacturing (CAD/CAM)
s Computer-integrated manufacturing (CIM)
» Computer-aided software engineering (CASE)
+ Geographic information systems (GIS)
¢ Many applications in science and medicine

+ Document storage and retrieval

Check your Progress

1. What is OO database?

2. Describe the Basic Object Oriented concepts.
3. Explain Object Query Language with example.
4. Explain the application of OO Database.

9.4 Introduction to client/Server Database

As the name suggests these type of databases have two components that are client and
the server.
9.4.1 Client: A client represents any end user which makes a request. It may be a

application program, computer -mobile with a software application.

[133]

[134]

Client

Device
[Request
% >

Figure 7.4 Client

9.4.2 Server:Server is a cenfralized computer that provides services to all attach
clients. Itaccepts the request of clients and maintains a connection according to a
defined protocol. For example file server, web server, mail server etc.
9.4.3 Working of Client-server Database Architecture in DBMS

In client / server architecture many clients connected with one server. The
server is centralized; it provides services to all clients. All clients request to the server
for different Service. The server responds according to the client’s request.

Client/server architecture is a computing model in which the server hosts
(computer), send and manages most of the resources and works to be required by the
client. In this type of architecture has one or more client computers attached to a
central server over a network. This system shares different resources.

Client/server architecture is also called as a networking computing model and
client-server network because all the requests and demands are sent over a network.

Client server

—

Figure 7.5 Client/server architecture
This architecture is basically working on three layers/ levels which shows how
client access the data or response at each level. This is also termed as threetier
architecture as it follows three basic layers that are:
» Presentation tier
s Application tier
» Database tier

9.4.3.1 Presentation tier: this is a top most layer which provides a user interface.
Here, a user makes a request without knowing about the existence of the database
beyond this layer. In this user sends a request by using an application program or any
software.

Presentation Tier

Output ! ! i i Request

Application Tier

Output i I Analysis

Database Tier

Figure 7.6 Client/server architecture
9.4.3.2 Application tier: This layer behaves as a middle man between presentation
and database layer. It takes the request from above layer and validates the request then
forwards it to database tier. Then in reverse manner, it takes the response from

database layer and forwards it to presentation layer.

Request Forward

h 4

Application Tier > Database
Request

PresentationTier

Forward Response

Response [output

9.4.3.3 Database tier: This layer consistsofdatabase, which allows storage and
retrieval of data. This layer process the request arrived from the application layer and

take a response and forward that response to the application layer.

Check your Progress
1. What is Client / server database?
2. Describe the Basic Client-server Database concepts.

3. Explain Client-server Database Architecture.

[135]

[136]

9.5 Introduction to Distributed Database

Initially when database came into existence, it was single system architecture.
But with the increasing demand of data base applications, voluminous amount of data
and with the dispersed users around the worldcreates a heavy load on a single database
server. Hence all these increasing factors influence the performance, reliability,
concurrency and security of the database.

So, to overcome these issues, a new mechanism of allocating users and DB
server is introduced. This new concept is known as Distributed database system
(DDB).

9.5.1 Distributed Database: it is collection of multiple, logically interrelated
databases that are distributed over a computer network.

Database Database

Figure 7.8 Distributed Database

Here, different database server is created and are placed at different locations
rather than at single location. All these remote or distributes server kept in sync with
each other in order to maintain consistency. In this user can access any of database
without knowing its location.

9.5.2 Distributed Data Storage:

There are two data storage processes involved in order to ensure that the
distributed database is reliable and are working efficiently. These are replication and
Fragmentation.
9.5.2.1 Replication:In this multiple copy of data are stored at different locations for
faster retrieval and fault tolerance.
9.5.2.2 Fragmentation: In this, a relation is portioned into several fragments and
stored at different locations. It is of two types horizontal(tuples) fragmentation and
vertical(attributes) fragmentation.

9.5.3 Features of Distributed database systems:

¢ Data is stored at multiple locations rather than on a single location.

All database servers are interconnected to any computer network.
Distributed database logically seems a single database.
It provides full functionality of database management system.

9.5.4 Types of Distributed Database Systems
DDBs are classified in two types:

1. Homogeneous DDB
2. Heterogeneous DDB

Distributed
Database

Homogeneous Heterogeneous

Figure 7.9 Types of Distributed
Database

9.5.4.1 Homogeneous DDB: in this, all interconnected databases have identical
database systems in terms of software, hardware, operating systems, database
management software’s and all components that are essential for having a database.
These DDBs also have common global schema over DDBMS.

9.5.4.2 Heterogeneous DDB: this is contrast to homogeneous DDBs. Here, databases
over the network may be different along with other components that are required for
the managing database. In this, Database schema at one location can differ from
another location.

9.5.4.4 Advantages of Distributed Databases

Allows sharing of data by maintaining location transparency, network
transparency, naming transparency.

Improves availability and reliability of data even on failure of any of the
system.

Providing better performance by reducing network load and time.

It also reduces the operating cost.

It is easier to expand DDBs by adding new database server at different
location.

9.5.4.5 Disadvantages of Distributed Databases

Increases the complexity, asits difficult to maintain all of them to work
together, to keep them in sync, coordinate and make them work efficiently.
Difficult to maintain integrity.

Security of data is also an issue as data is scattered over the network.
Deadlock handling is difficult in DDBs.

Fragmentation of data and its distribution is also challenge.

[137]

[138]

Check your progress
1. What is Distributed database?
2. Describe the Basic types of Distributed Databases.
3. Write down the advantages and disadvantages of Distributed Database.

9.6 Introduction to Knowledge Databases

Knowledge databases are the database management system that manages the
knowledge in a specific domain and exhibits reasoning power as like human
behaviour. It facilitates the collection, organization and retrieval of knowledge.

Most of the knowledge database is based on Artificial intelligence that helps
databases in not only storing and retrieving data efficiently but also in making
decisions smartly. Knowledge databases use the techniques ranging from traditional
relational databases to data warehousing. It also uses the data from previous
experiences as a part of knowledge base.

9.6.1 Knowledge

Knowledge can be defined as evidences and ideologies collected by human-
kind or the act, fact or state of knowing. Knowledge is stored in computer systems in
symbolic structures as like neurons of human being, Here these structures are in the
form of collections of magnetic spots and voltage states. There are some examples that
are representing facts:

1. Meera is clever then geeta.
2. Rajesh wedded to Rashmi.

These statements express some facts. To understand and make use of this
knowledge, a person needs other world knowledge and the ability to reason with it.
So, to make decisions on complex problems, knowledge-based databases come into
picture.

9.6.2 Knowledge Databases

Knowledge based database (KBDB) are systems that depend on a rich base of
knowledge to perform difficult tasks. KBDB use database concepts and models to
store and refrieve knowledge. As these systems helps in managing the knowledge then
termed as Knowledge management systems.

These database systems typically can help link and integrate all available
knowledge sources, including explicit knowledge (various kinds of databases stored in
existing information systems) and inexplicit knowledge (practical experience, skills,
thought and thinking method in the brain of the experts / people) to form knowledge
databases of various kinds. These databases facilitate the people:

¢ To find out the knowledge they need from disordered information.

» In providing most optimal knowledge to the most optimal people in
the most optimal time to enable them to make the most appropriate
decision-making.

o Solve complicated problems with relative ease.

9.6.3 Types of Knowledge Database
There are two types of knowledge database:

1.

Human Readable KBDB: as they enable people to access and use the
knowledge stored in documents, manuals, troubleshooting information
and frequently answered questions.

Machine ReadableKBDB: the information stored is machine readable.
The solutions provided by them are based onautomated deductive
reasoning, Here, information shared is linear and is limited in interactivity,
unlike the human interaction which is query based.

9.6.4 Components ofKnowledge Databases

Four main components of Knowledge Databases

L.

2
3.
4

Input / query

Inference Control Unit

Knowledge Bascs

Output / Advice
R
e TR

—NJ
Inference Control _I/ Knowledge
Unit Bases

o, SOV

9.6.4.1 Input / query - With the help of a user interface, a user makes input/output

query to communicate with the knowledge base system to find a solution.

9.6.4.2 Inference Control Unit - The inference engine is known as the brain of the

system as it is the main processing unit of the system. It applies inference

rules to the knowledge base to derive a conclusion or deduce new information.

It helps in deriving an error-free solution of queries asked by the user.
9.6.4.3 Knowledge bases - It is similar to a database that contains information and
rules of a particular domain or subject. The more the knowledge makes more

precise decision.

[139]

[140]

9.6.4.4 Output / Advice - After getting the response from the inference engine, it
displays the output to the user.

9.6.5 Advantages of Knowledge Databases

It helps in making precise and faster decision making.

Resolves the problem quickly.

Minimizes the possibility of errors.

The performance of these systems remains steady as it is not affected
by emotions, tension, or fatigue.

Enhances performance by better and expert knowledge.

9.6.,6 Limitations of Knowledge Databases

It is difficult to maintain accurate and precise knowledge.

It cannot produce a creative output for different scenarios as a human
being can.

Its maintenance and development costs are very high.

Knowledge acquisition for designing is much difficult.

It cannot learn from itself and hence requires manual updates.

It’s also difficult to choosing and implementing knowledge
management technology

9.6.7 Applications of Knowledge Databases
Knowledge based database systems are used in various fields such as:

Medical Diagnosis Systems

Engineering Systems

Quality Management Systems

Geographical Information Systems

Expert Systems

Client Service Software /Incident Management System

Check your progress

1. What is Knowledge Databases?
2. Describe the Basic types of Knowledge Databases.
3. Write down the advantages and disadvantages of Knowledge Databases.

4. Explain the main Components of Knowledge Databases.

9.7 Summary

In the past few years, however, there has been an increasing need for handling
new data types in databases, such as temporal data, spatial data, multimedia data, and
geographic data and so on. This has resulted into the development of new database
technologies to handle new data types and applications.

Object Oriented Database (OODB) implements QOO concepts such as object
identity, polymorphism, encapsulation and inheritance to provide access to persistent
objects using any OO-programming language.

Client/server database is a computing model in which the server hosts
(computer), send and manages most of the resources and works to be required by the

client.

Distributed Database is collection of multiple, logically interrelated databases
that are distributed over a computer network.

Knowledge databases are the database management system that manages the
knowledge in a specific domain and exhibits reasoning power as like human behaviour

and helps in making intelligent solutions.

Terminal Question

1. Define DDBs and state is advantages and disadvantages.

2. How would you define object orientation? What are some of its benefits?

3. What is the difference between an object and a class in the object-oriented data
model?

4. Define Knowledge Databases and its main Components.

5. Explain applications of Knowledge Databases.

6. Explain the data storage process in Distributed Database.

7. Discuss the working of Client-server Database.

8. Define Client in Client-server Database.

9. Differentiate between Object Definition Language and Object Query Language.
10. Define Object Query Language in OO database.

[141]

Notes

[142]

Notes

[143]

Notes

[144]

