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Blocks & Units Introduction 

The present SLM on Multivariate Analysis consists of twelve units with three Blocks. 

The Block 1- Multivariate Normal Distribution and Estimation of Parameters is the first 

block of said SLM, which is divided into three units. 

The Unit 1 - Multivariate Normal Distribution, is the first unit of present self-learning 

material, which describes Multivariate normal distribution, Moment generating function, 

Characteristic function, marginal and conditional distributions, multiple and partial correlation 

coefficient. 

In Unit 2 - MLE of Parameters and Different Coefficients, deals with the Maximum 

Likelihood Estimation of Parameters. In particular the maximum likelihood estimators of the mean 

vector and covariance matrix, sample Multiple and partial correlation coefficients, regression 

coefficient have been derived. 

In Unit 3 - Sampling Distributions, we discuss Sampling Distributions of sample mean 

vector, Null sampling distributions of Multiple and Partial Correlations, distribution of sample 

regression coefficient. Distribution of the matrix of sample regression coefficients and the matrix 

of residual sum of squares and cross products, Rao’s U-statistic, its distribution, and applications. 

The Block 2 - Distributions Related to the Multivariate Normal Distribution and Their 

Applications is the second block of said SLM, which is divided into four units. 

The Unit 4 - Wishart Distribution, is discusses the Wishart distribution derives its 

characteristic function, proves the additive property of Wishart distribution and Cochran theorem 

and derives the distribution of characteristic roots and vectors of Wishart matrices. 

   The Unit 5 - Hotelling’s 𝑻𝟐 Statistic, is discusses Hotelling’s T2 Statistic and obtains its 

distribution. The unit also gives various applications in tests for the mean vector of one and more 

multivariate normal population.  

   The Unit 6 - Mahalnobis 𝑫𝟐, discusses Equality of the component of a mean vector in a 

multivariate normal population, discusses the Mahalanobis 𝐷2 and its various applications. 



The Unit 7 - Discriminant Analysis, is focuses on the Discriminant analysis and 

classification and discrimination. The procedures for discrimination between two multivariate 

normal populations, the sample discriminant function, and the tests associated with discriminant 

functions are given. The probabilities of miss classification and their estimation and classification 

into more than two multivariate normal populations are also discussed along with the Fisher-

Behrens Problem. 

The Block 3 – Advance Multivariate Analysis discusses some advanced level topics of 

Multivariate Analysis. 

In Unit 8 – Advance Analysis, we consider an improved shrinkage estimator for the 

multivariate normal mean vector. The inadmissibility of maximum likelihood estimator of mean 

vector of multivariate normal distribution is shown when dimension is greater than three, James-

Stein estimator of the mean vector and improved estimation of dispersion matrix of a MN is given 

and its dominance over the MLE is established. 

The Unit 9 – Principal Component Analysis, considers the principal component analysis 

for the multivariate data. The interpretation of principal components, their maximum likelihood 

estimators, sample variances, canonical correlation and variable, the procedures for selecting 

appropriate number of principal components have been discussed. Also discussed the Interference 

on canonical correlations. 

The Unit 10 – Factor Analysis, discusses the factor Analysis, linear factor models, 

estimation of factor loadings, factor rotation, and the estimation of factor scores. 

The objective of Unit 11 – Tests of Hypothesis, is to discuss the tests for the equality of 

covariance matrices, sphericity tests for covariance matrix, equality of mean vector and covariance 

matrix to specified vector and matrix.  

The Unit 12 – Linear Regression Model, considers the Multivariate analysis of variance 

[MANOVA] of one-way classified data. Wilk’s lambda criterion and other testing criterion for 

testing the equality of means of different groups of categorical data. 

At the end of every block/unit the summary, self-assessment questions and further readings 

are given. 
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1.8      Summary 

1.9       Self-Assessment Exercises 
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1.1          Introduction 

In Multivariate analysis we consider statistical analysis of data consisting of sets of 

measurements on a number of individuals or objects. If each member of the population exhibits a 

set of values, one for each of the variables under consideration, then such type of population is 

called a Multivariate population. A sample drawn from such type of population is called a 

multivariate sample. 

Example:  

1. A dietician collects patient data on cholesterol, blood pressure, sugar levels and weight. 

She also collects data on dietary habits. Using Multivariate Data Analysis, she can 

determine how much each element of diet influences health outcomes. 

2. A researcher has collected data on three demographic variables and four academic variables 

(let’s say standardized test scores) for 1,000 students along with the programmes they are 

enrolled for. The researcher wants to determine how demographics and academic variables 

are related with the choice of program. 

3. The football league table is an example of multivariate data. Here 𝑊 = number of wins, 

𝐷 = number of draws, 𝐹 = number of goals scored and 𝐴 = number of goals conceded for 

four teams. In this example we have 𝑝 = 4 variables (𝑊,𝐷, 𝐹, 𝐴)′ measured on 𝑛 = 4 

cases (teams). 

Team W D F A 

Argentina 1 2 4 3 

Portugal 1 2 2 1 

USA 1 1 3 3 

France 0 1 0 2 

 

The data vector for the Argentina is 𝑥𝑇 = (1,2,4,3). 

  



1.1.1        Notations of Multivariate Distribution 

1.  If 𝑋1, 𝑋2. . . , 𝑋𝑝 are 𝑝 random variables then Cumulative distribution function (cdf) is given 

by 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑝) =  𝑃{𝑋1 ≤ 𝑥1, 𝑋2 ≤ 𝑥2, . . , 𝑋𝑝 ≤ 𝑥𝑝} 

Defined for every set of real numbers 𝑥1, 𝑥2, ⋯ 𝑥𝑝. 

2.   If 𝐹(𝑥1, 𝑥2, … , 𝑥𝑝) is absolutely continuous, the joint density function of 

𝑋1, 𝑋2. . . , 𝑋𝑝is  

𝜕𝑝𝐹(𝑥1, 𝑥2, … , 𝑥𝑝)

𝜕(𝑥1, 𝑥2, … , 𝑥𝑝)
= 𝑓 (𝑥1, 𝑥2, … , 𝑥𝑝)            

and 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑝) = ∫ …∫ 𝑓(𝑢1, 𝑢2, … , 𝑢𝑝)𝑑𝑢1, 𝑑𝑢2, … , 𝑑𝑢𝑝

𝑥1

−∞

𝑥𝑝

−∞

 

3.        The probability of falling in any measurable set R in the 𝑝-dimensional Euclidean 

space: 

𝑃 {(𝑋1, 𝑋2, … , 𝑋𝑝) ∈  𝑅} = ∫ 𝑓(𝑥1, 𝑥2, … , 𝑥𝑝)𝑑𝑥1, 𝑑𝑥2, … , 𝑑𝑥𝑝
𝑅

 

4.     Joint moments: 

𝐸 [𝑋1
ℎ1 , 𝑋2

ℎ2 , … , 𝑋𝑝
ℎ𝑝
] =  ∫ …∫ 𝑥1

ℎ1 , 𝑥2
ℎ2 , … , 𝑥𝑝

ℎ𝑝
∞

−∞

∞

−∞

 𝑓(𝑥1, 𝑥2, … , 𝑥𝑝)𝑑𝑥1, 𝑑𝑥2, … , 𝑑𝑥𝑝 



5.  The marginal cdf of 𝑋1, 𝑋2, … , 𝑋𝑝 (𝑟 <  𝑝) is given by 

Pr{𝑋1 ≤ 𝑥1, … , 𝑋𝑟 ≤ 𝑥𝑟 , 𝑋𝑟+1 < ∞ ,… , 𝑋𝑝 < ∞} =  𝐹(𝑥1, 𝑥2, … , 𝑥𝑟 , ∞, … ,∞) 

                             = ∫ … ∫ ∫ …∫ 𝑓(𝑢1, 𝑢2, … , 𝑢𝑝)
∞

−∞

∞

−∞

𝑥𝑟

−∞

𝑥1

−∞

𝑑𝑢1, 𝑑𝑢2, … , 𝑑𝑢𝑝 

6.  Random variables 𝑋1, 𝑋2. . . , 𝑋𝑝 are said to be mutually independent if 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑝) =  𝐹1(𝑥1)𝐹2(𝑥2)…𝐹𝑝(𝑥𝑝) 

where 𝐹𝑖(𝑥𝑖) is the marginal cdf of 𝑋𝑖(𝑖 = 1,2, … , 𝑝). 

Similarly, the set 𝑋1, 𝑋2. . . , 𝑋𝑟 is said to be independent of set 𝑋𝑟+1, . . . , 𝑋𝑝 if 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑝) = 𝐹(𝑥1, 𝑥2, … , 𝑥𝑟 , ∞, … ,∞)𝐹(∞,∞,… ,∞, 𝑥𝑟+1, … , 𝑥𝑝) 

If 𝑋1, 𝑋2. . . , 𝑋𝑝 are mutually independent 

𝐸 [𝑥1
ℎ1𝑥2

ℎ2 …𝑥𝑝
ℎ𝑝
] =∏𝐸(𝑥𝑖

ℎ𝑖)

𝑝

𝑖=1

 

7.  The conditional density of 𝑋1, 𝑋2, . . . , 𝑋𝑟 given 𝑋𝑟+1 = 𝑥𝑟+1, … , 𝑋𝑝 = 𝑥𝑝, is 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑝)

∫ …∫ 𝑓(𝑢1, 𝑢2, … , 𝑢𝑟,𝑥𝑟+1, 𝑥𝑟+2, … , 𝑥𝑝)𝑑𝑢1, 𝑑𝑢2, … , 𝑑𝑢𝑟
∞

−∞

∞

−∞

 

If we write 𝑋 = (𝑋(1)
′    𝑋(2)

′ )
′
, where 𝑋(1) is consist of first 𝑟 elements of 𝑋 and 𝑋(2) is consist of 

last (𝑝 − 𝑟) elements of 𝑋 then we have 

𝑓(𝑥(2)|𝑥(1)) =  
𝑓(𝑥(1), 𝑥(2))

𝑓1(𝑥(1))
 



𝑓(𝑥(1), 𝑥(2)): Joint pdf of 𝑋(1), 𝑋(2). 

𝑓1(𝑥(1)): Marginal pdf of 𝑋(1). 

8.  Transformation of variables: Let 

𝑦𝑖 = 𝑦𝑖(𝑥1, 𝑥2, … , 𝑥𝑝);                               𝑖 = 1,2,… , 𝑝  

We assume that transformation from the 𝑥-space to the 𝑦- space is one to one.  

The inverse transformation is 

𝑥𝑖 = 𝑥𝑖(𝑦1, 𝑦2, … , 𝑦𝑝);                            𝑖 = 1,2,… , 𝑝 

The random variables 𝑌1, 𝑌2, … , 𝑌𝑝 are defined as 

𝑌𝑖 = 𝑌𝑖(𝑋1, 𝑋2, … , 𝑋𝑝);                           𝑖 = 1,2,… , 𝑝  

The joint density of 𝑌1, 𝑌2, … , 𝑌𝑝 is  

𝑔(y1, y2, … , 𝑦𝑝) = 𝑓(x1, x2, … , xp)𝐽(y1, y2, … , yp) 

The Jacobean of the transformation is given by 

𝐽(𝑦1, 𝑦2, … , 𝑦𝑝) = 𝑚𝑜𝑑
|

|

𝜕𝑥1
𝜕𝑦1

𝜕𝑥1
𝜕𝑦2

⋯
𝜕𝑥1
𝜕𝑦𝑝

⋮ ⋱ ⋮
𝜕𝑥𝑝
𝜕𝑦1

𝜕𝑥𝑝
𝜕𝑦2

⋯
𝜕𝑥𝑝
𝜕𝑦𝑝

|

|
 

1.2             Objectives  

After going through this unit, learner should be able to:  

• Understand the basic concepts of multivariate normal distribution 



• Obtain the moment generating function and characteristic function 

• Finding the marginal distribution and conditional distribution 

• Get basic concept of multiple and partial correlation coefficient 

1.3                  Multivariate Normal Distribution 

The pdf of univariate normal distribution is 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒−

1
2
(
𝑥−𝜇
𝜎
)
2

  ;     −∞ < 𝑥 < ∞ 

𝑋: random vector of dimension 𝑝 

𝑋 = [

𝑋1
⋮
𝑋𝑝
] , 

𝐸(𝑋) = 𝜇 

          = [

𝐸(𝑋1)
⋮

𝐸(𝑋𝑝)
] 

         = [

𝜇1
⋮
𝜇𝑝
] 

Variance: Measure of variation of random variable. 

Covariance: Measure of joint variation of two random variables simultaneously.  

𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗) = 𝐸[(𝑋𝑖 − 𝜇𝑖)(𝑋𝑗 − 𝜇𝑗)] 

Variance-Covariance Matrix: 

Σ = [

𝐶𝑜𝑣(𝑋1, 𝑋1) ⋯ 𝐶𝑜𝑣(𝑋1, 𝑋𝑝)

⋮ ⋱ ⋮
𝐶𝑜𝑣(𝑋𝑝, 𝑋1) ⋯ 𝐶𝑜𝑣(𝑋𝑝, 𝑋𝑝)

] 



    =

[
 
 
 
 
𝜎1
2 𝜎12 ⋯ 𝜎1𝑝

𝜎21 𝜎2
2 ⋯ 𝜎2𝑝

⋮ ⋮ ⋮ ⋮
𝜎𝑝1 𝜎𝑝2 ⋯ 𝜎𝑝

2 ]
 
 
 
 

 

Σ is a symmetric, positive definite matrix and is non-singular. 

A 𝑝 × 1 vector 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑝)
′
  is said to have a 𝑝-variate (non-singular) normal distribution 

if its p.d.f. is of the form 

𝑓(𝑥 ) =  𝑘. 𝑒𝑥𝑝 {−
1

2
(𝑥 − 𝑏)′𝐴(𝑥 − 𝑏)} ; −∞ <  𝑥𝑖 < ∞   (𝑖 = 1,2,… , 𝑝)                                (1.1) 

where 𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑝)
′
 is a 𝑝 × 1 vector (−∞ < 𝑏𝑖 < ∞ , 𝑖 =  1,2, … , 𝑝), 

𝐴 = (

𝑎11 ⋯ 𝑎1𝑝
⋮ ⋱ ⋮
𝑎𝑝1 ⋯ 𝑎𝑝𝑝

)                                                                                                                             (1.2) 

is a positive definite, symmetric matrix of order 𝑝.  

Further, 𝑘 (> 0) is a constant chosen so that the integral of 𝑓(𝑥 ) over the entire 𝑝-dimensional 

Euclidean space of 𝑥1, 𝑥2, … , 𝑥𝑝 is unit. 

𝑏, 𝐴: parameters of this distribution  

Result 1.3.1: The value of the normalizing constant 𝑘 =  |𝐴|
1

2 (2𝜋)−
𝑝

2 

Proof: Since 𝐴 is positive definite we have 

(𝑥 −  𝑏)′𝐴(𝑥 −  𝑏) ≥ 0                                                                                                                            (1.3) 

There exists a non-singular matrix 𝐶 such that 

𝐶′𝐴 𝐶 = 𝐼 



where 𝐼 denote a 𝑝 × 𝑝 identity matrix. 

Let (𝑥 − 𝑏) = 𝐶𝑦 

(𝑥𝑖 = 𝑏𝑖 + ∑𝑐𝑖𝑗𝑦𝑗

𝑝

𝑗=1

) 

where 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑝)
′
. 

Then  

(𝑥 −  𝑏)′𝐴(𝑥 −  𝑏) 

= 𝑦′𝐶′𝐴𝐶𝑦 

= 𝑦′𝑦 

The Jacobean of the transformation from 𝑥 to 𝑦 is 

𝐽(𝑦1, 𝑦2, … , 𝑦𝑝) 

= 𝑚𝑜𝑑

[
 
 
 
 
 
𝜕𝑥1
𝜕𝑦1

𝜕𝑥1
𝜕𝑦2

⋯
𝜕𝑥1
𝜕𝑦𝑝

⋮ ⋮ ⋯ ⋮
𝜕𝑥𝑝

𝜕𝑦1

𝜕𝑥𝑝

𝜕𝑦2
⋯

𝜕𝑥𝑝

𝜕𝑦𝑝]
 
 
 
 
 

 

= 𝑚𝑜𝑑|𝐶| 

Since |𝐶′𝐴𝐶| = 1, we obtain |𝐶| = |𝐴|−1 2⁄ . 

The integral of (1.1) over the 𝑝 dimensional space is one, we shall evaluate 

𝑘∗ = ∫ ⋯∫ 𝑒−
1
2
(𝑥− 𝑏)′𝐴(𝑥− 𝑏) 𝑑𝑥1…𝑑𝑥𝑝

∞

−∞

∞

−∞

 𝑚𝑜𝑑 |𝐶| 



      = ∫ ⋯∫ 𝑒−
1
2
𝑦′𝑦  𝑑𝑦1…𝑑𝑦𝑝

∞

−∞

∞

−∞

|𝐴|−
1
2 

      = |𝐴|−
1
2∫ ⋯∫ (∏𝑒−

1
2
𝑦𝑗
2

𝑝

𝑗=1

)
∞

−∞

∞

−∞

 𝑑𝑦1…𝑑𝑦𝑝 

      = |𝐴|−
1
2  ∏∫ 𝑒−

1
2
𝑦𝑗
2

𝑑𝑦𝑗

∞

−∞

𝑝

𝑗=1

 

      = |𝐴|−
1
2  ∏√(2𝜋)

𝑝

𝑗=1

 

       = |𝐴|−
1
2 (2𝜋)

𝑝
2                                                                                                                                     (1.4) 

Substituting the values of integral from (4) into (3), we obtain 

𝑘 =
1

𝑘∗
⇒ 𝑘 = |𝐴|

1
2 (2𝜋)−

𝑝
2                                                                                                                    (1.5) 

Therefore, the density function of 𝑝-variate normal distribution is 

𝑓(𝑥) = |𝐴|
1
2 (2𝜋)−

𝑝
2 exp {−

1

2
(𝑥 −  𝑏)′𝐴(𝑥 −  𝑏)} 

The pdf of 𝑌 is 

𝑓(𝑦) =  
|𝐴|

1
2

(2𝜋)
𝑝
2

 {|𝐴|−
1
2𝑒−

1
2𝑦
′𝑦} 

          =
1

(2𝜋)
𝑝
2

 {𝑒−
1
2𝑦
′𝑦} 

        =∏
1

√2𝜋

𝑝

𝑗=1

 𝑒−
1
2 𝑦𝑗

2

 



Therefore 𝑦1, 𝑦2, … , 𝑦𝑝 are independently distributed. 

Theorem 1.3.2: The density of 𝑝 dimensional random vector 𝑋 is  

𝑓(𝑥) = |𝐴|
1
2 (2𝜋)−

𝑝
2 exp {−

1

2
(𝑥 −  𝑏)′𝐴(𝑥 −  𝑏)} 

The expected value of 𝑋 is 𝑏 and the covariance matrix is 𝐴−1. Conversely, given a mean vector 𝜇 

and positive definite vector Σ, the multivariate normal density is, 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑝) =
1

(2𝜋)
𝑝
2|𝛴|

1
2

 𝑒𝑥𝑝 {−
1

2
(𝑥 − 𝜇)′ 𝛴−1(𝑥 − 𝜇)} 

Show that 𝐸(𝑋) = 𝜇 and 𝑉𝑎𝑟(𝑋) = 𝛴 

Proof: Let 

𝑋 = 𝐶𝑌 + 𝑏                                                                                                                                                (1.6) 

where 𝐶 and 𝑦 are as defined in theorem 1.3.1. Taking expectation on both sides, we get 

𝐸(𝑋) =  𝐶𝐸(𝑌) +  𝑏                                                                                                                                 (1.7) 

The expected value of 𝑖𝑡ℎ component 𝑦𝑖 of 𝑌 is 

𝐸(𝑦𝑖 ) = ∫ …∫ 𝑦𝑖 {∏
1

√2𝜋

𝑝

𝑗=1

 𝑒−
1
2 𝑦𝑗

2

} 
∞

−∞

∞

−∞

 𝑑𝑦1⋯𝑑𝑦𝑝 

            = {
1

√2𝜋
 ∫ 𝑦𝑖 

∞

−∞

𝑒−
1
2 𝑦𝑖

2
𝑑𝑦𝑖} { ∏ ∫

1

√2𝜋

∞

−∞

𝑝

𝑗(≠𝑖)=1

 𝑒−
1
2 𝑦𝑗

2

 𝑑𝑦𝑗  } 

           =
1

√2𝜋
 ∫ 𝑦𝑖 

∞

−∞

𝑒−
1
2 
𝑦𝑗
2

 𝑑𝑦𝑗  

           = 0 



Notice that 𝑦𝑖 𝑒
−12 𝑦𝑗

2

 is an odd function of 𝑦𝑖  leading to 

∫ 𝑦𝑖 

∞

−∞

𝑒−
1
2 𝑦𝑗

2

 𝑑𝑦𝑗 = 0. 

Thus 𝐸(𝑌) =  0. Putting this value in (1.7), we have 

𝐸(𝑋) =  𝑏 = 𝜇 (say). 

The variance-covariance matrix of 𝑋 is  

𝐸(𝑋 −  𝜇) (𝑋 −  𝜇)′ = 𝐶𝐸(𝑌𝑌′) 𝐶′                                                                                                      (1.8) 

If 𝑖 = 𝑗,  

𝐸𝑌𝑖
2 = ∫ …∫ 𝑦𝑖

2 {∏
1

√2𝜋

𝑝

𝑘=1

 𝑒−
1
2 𝑦𝑘

2
} 

∞

−∞

∞

−∞

 𝑑𝑦1⋯𝑑𝑦𝑝 

          =  {
1

√2𝜋
 ∫ 𝑦𝑖

2
∞

−∞

𝑒−
1
2 𝑦𝑖

2
𝑑𝑦𝑖} { ∏ ∫

1

√2𝜋

∞

−∞

𝑝

𝑘=1≠𝑖

 𝑒−
1
2 𝑦𝑘

2
 𝑑𝑦𝑘  } 

          =
1

√2𝜋
 ∫ 𝑦𝑖

2
∞

−∞

𝑒−
1
2 𝑦𝑖

2
𝑑𝑦𝑖  

          =
1

√2𝜋
2 ∫ yi

2
∞

0

𝑒−
1
2 𝑦𝑖

2
𝑑𝑦𝑖                                    (𝑠𝑖𝑛𝑐𝑒 𝑦𝑖 

2𝑒−
1
2 𝑦𝑗

2

 𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑦𝑖) 

          =  
2√2

√2𝜋
 ∫ 𝑧𝑖 𝑒

−𝑧𝑖 𝑑𝑧𝑖

∞

0

                                    (
1

2
𝑦𝑖
2 = 𝑧𝑖   ⇒ 𝑦𝑖  𝑑𝑦𝑖 =  𝑑𝑧𝑖) 

          =
1

√2𝜋
 2√2Γ (

3

2
) =

1

√2𝜋
 2 
1

2
Γ (
1

2
) = 1 

If 𝑖 ≠ 𝑗 



𝐸(𝑌𝑖𝑌𝑗) 

= {
1

√2𝜋
 ∫ 𝑦𝑖 

∞

−∞

𝑒−
1
2 𝑦𝑖

2
𝑑𝑦𝑖} {

1

√2𝜋
∫ 𝑦𝑗

∞

−∞

 𝑒−
1
2 𝑦𝑗

2

 𝑑𝑦𝑗  } 

= 0 

Therefore, 

𝐸(𝑌𝑌′) 

=

[
 
 
 
 
𝐸(𝑌1

2) 𝐸(𝑌1𝑌2) ⋯ 𝐸(𝑌1𝑌𝑝)

𝐸(𝑌2𝑌1) 𝐸(𝑌2
2) ⋯ 𝐸(𝑌2𝑌𝑝)

⋮ ⋮ ⋮ ⋮
𝐸(𝑌𝑝𝑌1) 𝐸(𝑌𝑝𝑌2) ⋯ 𝐸(𝑌𝑝

2) ]
 
 
 
 

 

= 𝐼 

Since 𝐶′𝐴𝐶 = 𝐼 ⇒ 𝐴−1 = 𝐶𝐶′ 

Then 

𝐸(𝑋 − 𝑏) (𝑋 − 𝑏)′ 

= 𝐶𝐶′ 

= 𝐴−1 

If we write 𝜇 as the mean vector of 𝑥 and Σ as the variance covariance matrix of 𝑥, then 

𝜇 = 𝑏, 

 Σ =  𝐴−1 = ((𝜎𝑖𝑗)) 

𝜎𝑖𝑗 = 𝐸(𝑋𝑖 − 𝜇𝑖)(𝑋𝑗 − 𝜇𝑗) 

We denote the p.d.f. 



𝑓(𝑥1, 𝑥2, … , 𝑥𝑝) =
1

(2𝜋)
𝑝
2|Σ|

1
2
  
exp {−

1 

2
 (𝑥 − 𝜇 )′Σ−1(𝑥 −  𝜇)} 

Example: Find mean vector 𝜇 and variance covariance matrix or dispersion matrix Σ of the 

following density functions: 

(i) 𝑓(𝑥, 𝑦) =
1

2𝜋
𝑒𝑥𝑝 [−

1 

2
 {(𝑥 − 1 )2 + (𝑦 −  2)2}] 

(ii) 𝑓(𝑥, 𝑦) =
1

2.4 𝜋
𝑒𝑥𝑝 {−

1 

0.72
 (
𝑥2

4
− 1.6

𝑥𝑦

2
+ 𝑦2)} 

Solution: If (𝑋, 𝑌)~𝑁2(𝜇1, 𝜇2, 𝜎1
2, 𝜎2

2, 𝜌), then 

𝑓(𝑥, 𝑦) 

=
1

(2𝜋)𝜎1𝜎2√1 − 𝜌2
𝑒𝑥𝑝 [−

1

2(1 − 𝜌2)
{(
𝑥 − 𝜇1
𝜎1

)
2

− 2𝜌 (
𝑥 − 𝜇1
𝜎1

) (
𝑦 − 𝜇2
𝜎2

) + (
𝑦 − 𝜇2
𝜎2

)
2

}] 

(i)  We have 

𝑓(𝑥, 𝑦) 

=
1

2𝜋
𝑒𝑥𝑝 [−

1 

2
 {(𝑥 − 1 )2 + (𝑦 −  2)2}] 

⇒ 𝜇1 = 1, 𝜇2 = 2, 𝜎1 = 1, 𝜎2 = 1, 𝜌 = 0 

i.e. 𝜇 = (
𝜇1
𝜇2
) = (

1
2
) and Σ = (

𝜎1
2 𝜌 𝜎1𝜎2

𝜌 𝜎2𝜎1 𝜎2
2 ) = (

1 0
0 1

) 

(ii)  We have 

𝑓(𝑥, 𝑦) =
1

2.4 𝜋
𝑒𝑥𝑝 {−

1 

0.72
 (
𝑥2

4
− 1.6

𝑥𝑦

2
+ 𝑦2)} 

or 𝑓(𝑥, 𝑦) 



      =
1

(2𝜋)(2)(1)(0.6)
𝑒𝑥𝑝 [−

1 

2 × 0.36
 {(
𝑥

2
)
2

− 2 × 0.8 (
𝑥

2
) (
𝑦

1
) + (

𝑦

1
)
2

}] 

⇒ 1 − 𝜌2 = 0.36   

⇒ 𝜌2 = 1 − 0.36 = 0.64   

⇒ 𝜌 = ±0.8  

Hence 𝜇1 = 0, 𝜇2 = 0, 𝜎1 = 2, 𝜎2 = 1, 𝜌 = 0.8 

i.e., 𝜇 = (
𝜇1
𝜇2
) = (

0
0
) 

Σ = (
𝜎1
2 𝜌 𝜎1𝜎2

𝜌 𝜎2𝜎1 𝜎2
2 ) = (

4 1.6
1.6 1

) 

1.4              Moment Generating Function 

The moment generating function of 𝑋 is 

Ψ(𝑡) == 𝑀𝑋(𝑡) = 𝐸[𝑒
𝑡′𝑋] 

Let 𝑋 =  𝜇 +  𝐶𝑌 

where 𝐶 is the non-singular matrix such that 𝐶′Σ−1𝐶 = 𝐼 

Therefore Σ = 𝐶𝐶′. Then, 𝑌~ 𝑁𝑝(𝑦|0, 𝐼𝑝) 

Now 

Ψ(𝑡) = 𝐸[𝑒𝑡
′𝑋] 

= 𝐸[𝑒𝑡
′𝜇+𝑡′𝐶𝑌] 

= 𝑒𝑡
′𝜇 𝐸[𝑒𝑡

′𝐶𝑌] 



Let 𝑢 = 𝐶′𝑡 

Then  

Ψ(𝑡) = 𝑒𝑡
′𝜇𝐸[𝑒𝑢

′𝑌] = 𝑒𝑡
′𝜇𝐸 [∏𝑒𝑢𝑗𝑌𝑗

𝑝

𝑗=1

] 

          = 𝑒𝑡
′𝜇∏𝐸(𝑒𝑢𝑗𝑌𝑗)

𝑝

𝑗=1

            (𝑠𝑖𝑛𝑐𝑒 𝑌1, 𝑌2, … , 𝑌𝑝 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑) 

          = 𝑒𝑡
′𝜇∏𝑒

1
2
𝑢𝑗
2

𝑝

𝑗=1

                     (𝑠𝑖𝑛𝑐𝑒 𝑦𝑗~𝑁(0,1)) 

⇒ Ψ(𝑡) = 𝑒𝑡
′𝜇𝑒

1
2𝑢
′𝑢 = 𝑒𝑡

′𝜇+
1
2
𝑡′𝐶𝐶′𝑡

 

⇒ Ψ(𝑡) = 𝑒𝑡
′𝜇+

1
2
𝑡′𝐶𝐶′𝑡

 

1.5                  Characteristic Function 

The characteristic function of 𝑋 is 

ϕ(𝑡) = 𝐸[𝑒𝑖𝑡
′𝑥] 

= 𝐸[𝑒𝑖𝑡
′(𝐶𝑦+𝜇)] 

= 𝑒𝑖𝑡
′𝜇 𝐸[𝑒𝑖𝑢

′𝑦] 

where 𝑢 = 𝐶′𝑡 = (𝑢1, 𝑢2, … , 𝑢𝑝)
′
. 

Since 𝑦𝑗 ∼ 𝑁(0,1) and 𝑦𝑗
′𝑠 are independently distributed 

𝐸[𝑒𝑖𝑢
′𝑦] 



= 𝐸 [∏𝑒𝑖𝑢𝑗𝑦𝑗

𝑝

𝑗=1

] 

=∏𝐸[𝑒𝑖𝑢𝑗𝑦𝑗]

𝑝

𝑗=1

 

=∏𝑒−
1
2𝑢𝑗
2

𝑝

𝑗=1

 

(Characteristic function of 𝑦𝑗 with 𝑢𝑗 as the argument is 𝑒−
1
2𝑢𝑗
2

) 

⇒ 𝐸[𝑒𝑖𝑢
′𝑌] = 𝑒−

1
2𝑢
′𝑢 = 𝑒−

1
2𝑡
′ Σ𝑡 

Therefore 

ϕ(𝑡) = 𝑒𝑥𝑝 (𝑖𝑡′𝜇 − 
1

2
𝑡′ Σt). 

We can obtain the first two moments of 𝑋 using the characteristic function as follows: 

𝐸(𝑋𝑗) =  
1

𝑖
[
𝜕ϕ(𝑡)

𝜕𝑡𝑗
]
𝑡=0

= 𝜇𝑗 

𝐸(𝑋𝑗𝑋𝑘) 

= 
1

𝑖2
[
𝜕𝜙

𝜕𝑡𝑗𝜕𝑡𝑘
]
𝑡=0

 

= 𝜎𝑗𝑘 + 𝜇𝑗𝜇𝑘 

1.5.1       Correlation Coefficient 

The 𝑖𝑡ℎ diagonal element of Σ, 𝜎𝑖𝑖, is the variance of 𝑋𝑖, and the (𝑖, 𝑗)𝑡ℎ element of Σ, 𝜎𝑖𝑗, 

is the covariance between 𝑋𝑖 and 𝑋𝑗. The correlation coefficient between 𝑋𝑖 and 𝑋𝑗  is given by 



𝜌𝑖𝑗 =
𝜎𝑖𝑗

(𝜎𝑖𝑖 . 𝜎𝑗𝑗)
1
2

 

1.5.2        Multiple Correlation Coefficients 

If 𝑋1 is the first component of 𝑋 and 𝑋(2) the vector of remaining (𝑝 − 1) components. 

Here first expression 𝑋1 as a linear combination of 𝑋(2) defined by the relation 

𝑋1
∗ = 𝜇1 + 𝛽

′(𝑋(2) − 𝜇(2))                                                                                                                     (1.9) 

The coefficient vector 𝛽 is determined by minimizing 

𝑈 = 𝐸[𝑋1 − 𝑋1
∗]2 = 𝐸[𝑋1 − 𝜇1 − 𝛽

′(𝑋(2) − 𝜇(2))]
2
 

Differentiating with respect to 𝛽 and equating to zero, we have 

𝜕𝑈

𝜕𝛽
= 0 

⇒ −2𝐸[(𝑋1 − 𝜇1) − 𝛽
′(𝑋(2) − 𝜇(2))](𝑋(2) − 𝜇(2))

′
= 0 

⇒ 𝐸(𝑋1 − 𝜇1)(𝑋
(2) − 𝜇(2))

′
− 𝛽′𝐸(𝑋(2) − 𝜇(2))(𝑋(2) − 𝜇(2))

′
= 0 

⇒ 𝜎12
′ = 𝛽′Σ22 

Or 

�̂�′ = 𝜎12
′ Σ22

−1 

Here 𝜎12
′ = 𝐸(𝑋1 − 𝜇1)(𝑋

(2) − 𝜇(2))
′
,   

Putting this value in (1.9), we get 

𝑋1
∗ = 𝜇1 + 𝜎12

′ Σ22
−1(𝑋(2) − 𝜇(2)) = �̂�1 



The correlation coefficient between 𝑋1 and 𝑋(2) is called Multiple correlation between 𝑋1 and 

𝑋2, 𝑋3, … , 𝑋𝑝. It is denoted by 

𝜌1.(2,3,…,𝑝) =
𝐶𝑜𝑣 (𝑋1, �̂�1)

√𝑉𝑎𝑟(𝑋1) 𝑉𝑎𝑟 (�̂�1)

                                                                                                      (1.10) 

Now 

𝑉𝑎𝑟(𝑋1) = 𝐸[𝑋1 − 𝐸(𝑋1)]
2 = 𝜎11 

𝑉𝑎𝑟 (�̂�1) = 𝐸[�̂�1 − 𝐸(�̂�1)][�̂�1 − 𝐸(�̂�1)]
′
 

                  = 𝐸[𝜇1 + 𝜎12
′ Σ22

−1(𝑋(2) − 𝜇(2)) − 𝜇1][𝜇1 + 𝜎12
′ Σ22

−1(𝑋(2) − 𝜇(2)) − 𝜇1]
′
 

                  = 𝜎12
′ Σ22

−1 𝐸 [𝜎12
′ Σ22

−1(𝑋(2) − 𝜇(2))(𝑋(2) − 𝜇(2))
′
] Σ22

−1 𝜎12 

⇒  𝑉𝑎𝑟 (�̂�1) = 𝜎12
′ Σ22

−1 𝜎12 

𝐶𝑜𝑣 (𝑋1, �̂�1) = 𝐸[𝑋1 − 𝐸(𝑋1)][�̂�1 − 𝐸(�̂�1)]
′
 

                         = 𝐸[𝑋1 − 𝜇1][𝜇1 + 𝜎12Σ22
−1(𝑋(2) − 𝜇(2)) − 𝜇1]

′
 

                         = 𝐸 [(𝑋1 − 𝜇1)(𝑋
(2) − 𝜇(2))

′
] Σ22

−1σ21 

⇒  𝐶𝑜𝑣 (𝑋1, �̂�1) = 𝜎12
′ Σ22

−1 𝜎12 

Putting this value in (1.10), we get 

𝜌1.(2,3,…,𝑝) 

=
𝜎12
′ Σ22

−1 𝜎12

√𝜎11( 𝜎12
′ Σ22

−1 𝜎12)
 



= √
𝜎12
′ Σ22

−1 𝜎12
𝜎11

 

= √
𝛽′ 𝛴22 𝛽

𝜎11
 

1.5.3       Partial Correlation Coefficient 

If 𝑋1 and 𝑋2 are considered in conjunction with (𝑝 − 2) other variables 𝑋3, 𝑋4, ⋯ , 𝑋𝑝, we 

may regard the variation of 𝑋1 and 𝑋2 as to certain extents due to the variation of the other 

variables. Let 𝑋1.3,⋯𝑝 and 𝑋2.3,⋯𝑝 represent these parts of variation of 𝑋1 and 𝑋2 respectively, which 

remains after subtraction of the best linear estimate in terms of 𝑋3, 𝑋4, ⋯ , 𝑋𝑝. Thus, the correlation 

coefficient between 𝑋1.3,⋯𝑝 and 𝑋2.3,⋯𝑝 as a measure of correlation between 𝑋1 and 𝑋2 after 

removal of any part of the variation due to the influence of 𝑋3, 𝑋4, ⋯ , 𝑋𝑝, is called partial 

correlation of 𝑋1 and 𝑋2 with respect to 𝑋3, 𝑋4, ⋯ , 𝑋𝑝. It is denoted by 

𝜌12.(3,…,𝑝) =
𝐶𝑜𝑣 (𝑋1.3,⋯𝑝, 𝑋2.3,⋯𝑝)

√𝑉𝑎𝑟 (𝑋1.3,⋯𝑝)𝑉𝑎𝑟(𝑋2.3,⋯𝑝) 

                                                                                      (1.11) 

Let 

𝑋 = (

𝑋1
𝑋2
𝑋(3)

) , Σ = (

𝜎11 σ12 𝜎13
′

𝜎21 𝜎22 𝜎23
′

𝜎31 𝜎32 Σ33

) 

Without loss of generality, we assume that 𝜇 = 0. 

The best linear estimates of 𝑋1 and 𝑋2 in terms of 𝑋(3) are �̂�1 = 𝜎13
′  Σ33

−1 𝑋(3) and �̂�2 =

𝜎23
′  Σ33

−1 𝑋(3) respectively. 

Define, 

𝑋1.3,⋯𝑝 = 𝑋1 − �̂�1 and 𝑋2.3,⋯𝑝 = 𝑋2 − �̂�2, then 



𝑉𝑎𝑟(𝑋1.3,⋯𝑝) = 𝐸[𝑋1 − �̂�1][𝑋1 − �̂�1]
′
 

                          = 𝐸[𝑋1 − 𝜎13
′  Σ33

−1 𝑋(3)][𝑋1 − 𝜎13
′  Σ33

−1 𝑋(3)]
′
 

                         = 𝐸[𝑋1
2 − 2𝜎13

′  Σ33
−1 𝑋1 𝑋

(3) + 𝜎13
′  Σ33

−1 𝑋(3)𝑋(3)
′
 Σ33
−1𝜎13 ] 

                         = 𝐸(𝑋1
2) − 2𝜎13

′  Σ33
−1𝐸[𝑋1 𝑋

(3)] + 𝜎13
′  Σ33

−1𝐸[𝑋(3)𝑋(3)
′
]Σ33
−1𝜎13 

                         = 𝜎11 − 2𝜎13
′  Σ33

−1 𝜎13 + 𝜎13
′  Σ33

−1 Σ33Σ33
−1𝜎13 

⇒  𝑉𝑎𝑟(𝑋1.3,⋯𝑝) = 𝜎11 − 𝜎13
′  Σ33

−1 𝜎13 

𝑉𝑎𝑟(𝑋2.3,⋯𝑝) = 𝐸[𝑋2 − �̂�2][𝑋2 − �̂�2]
′
 

                         = 𝐸[𝑋2 − 𝜎23
′  Σ33

−1 𝑋(3)][𝑋2 − 𝜎23
′  Σ33

−1 𝑋(3)]
′
 

                         = 𝐸[𝑋2
2 − 2𝜎23

′  Σ33
−1 𝑋1 𝑋

(3) + 𝜎23
′  Σ33

−1 𝑋(3)𝑋(3)
′
 Σ33
−1𝜎23 ] 

                         = 𝐸(𝑋2
2) − 2𝜎23

′  Σ33
−1𝐸[𝑋1 𝑋

(3)] + 𝜎23
′  Σ33

−1𝐸[𝑋(3)𝑋(3)
′
]Σ33
−1𝜎23 

                         = 𝜎22 − 2𝜎23
′  Σ33

−1 𝜎23 + 𝜎23
′  Σ33

−1 Σ33Σ33
−1𝜎23 

⇒  𝑉𝑎𝑟(𝑋2.3,⋯𝑝) = 𝜎22 − 𝜎23
′  Σ33

−1 𝜎23 

𝐶𝑜𝑣 (𝑋1.3,⋯𝑝, 𝑋2.3,⋯𝑝) 

= 𝐸[𝑋1 − 𝜎13
′  Σ33

−1 𝑋(3)][𝑋2 − 𝜎23
′  Σ33

−1 𝑋(3)]
′
 

= 𝐸[𝑋1𝑋2
′ − 𝜎13

′  Σ33
−1 𝑋(3)𝑋2

′ −  𝜎23 Σ33
−1 𝑋(3)

′
𝑋1 + 𝜎13

′  Σ33
−1 𝑋(3)𝑋(3)

′
Σ33
−1 𝜎23] 

= 𝐸(𝑋1𝑋2
′) − 𝜎13

′  Σ33
−1 𝐸[𝑋(3)𝑋2

′ ] −  𝜎23 Σ33
−1 𝐸 [𝑋(3)

′
𝑋1] + 𝜎13

′  Σ33
−1 𝐸[𝑋(3)𝑋(3)

′
]Σ33
−1 𝜎23 

= 𝜎12 − 𝜎13
′  Σ33

−1  𝜎23 −  𝜎23 Σ33
−1 𝜎13

′ + 𝜎13
′  Σ33

−1 Σ33 Σ33
−1 𝜎23 



⇒  𝐶𝑜𝑣 (𝑋1.3,⋯𝑝, 𝑋2.3,⋯𝑝) = 𝜎12 − 𝜎13
′  Σ33

−1  𝜎23 

Putting these values in (1.11), we get 

𝜌12.(3,…,𝑝) =
𝜎12 − 𝜎13

′  Σ33
−1  𝜎23

√(𝜎11 − 𝜎13
′  Σ33

−1 𝜎13)( 𝜎22 − 𝜎23
′  Σ33

−1 𝜎23)

. 

Theorem 1.5.1: Let 𝑋 ~ Np(𝑥|𝜇, Σ) and 𝑌 = 𝐴𝑋 where A is any 𝑚 × 𝑝 matrix of rank m(≤ 𝑝). 

Then the distribution of 𝑌 is 𝑁𝑚(𝑌|𝐴𝜇, 𝐴Σ𝐴
′′). 

Proof: Let 𝐶 be a non-singular matrix such that 

𝐶′Σ−1𝐶 = 𝐼 

or, Σ = 𝐶𝐶′ 

Then 

𝐴Σ𝐴′ = (𝐴𝐶)(𝐴𝐶)′ 

Since the post multiplication by a non-singular matrix does not alter the rank 

𝑟𝑎𝑛𝑘 (𝐴Σ𝐴′) 

= 𝑟𝑎𝑛𝑘(𝐴𝐶) 

= 𝑟𝑎𝑛𝑘 (𝐴) 

= 𝑚 

Thus 𝐴Σ𝐴′ is a positive definite matrix. 

Now characteristic function of 𝑌 = 𝐴𝑋 is given by 

𝐸(𝑒𝑖𝑡
′𝑌) = 𝐸[𝑒𝑖𝑡

′𝐴𝑋] 

                 = 𝐸[𝑒𝑖𝑢
′𝑋];             𝑡 = (𝑡1, 𝑡2, … , 𝑡𝑚)

′ 



                  = 𝑒𝑥𝑝 (𝑖𝑢′𝜇 − 
1

2
𝑢′Σ 𝑢)          (𝑤ℎ𝑒𝑟𝑒 𝑢 = 𝐴′𝑡) 

                  = exp (𝑖𝑡′𝐴𝜇 −
1

2
𝑡′𝐴𝛴𝐴′𝑡) 

which is the characteristic function of 𝑁𝑚(𝑌|𝐴𝜇, 𝐴Σ𝐴
′′). 

Theorem 1.5.2: If 𝑋~𝑁𝑝(𝜇, Σ), then 𝑍 = 𝐷𝑋 and 𝑍~𝑁𝑞(𝐷𝜇, 𝐷
′ΣD), where 𝐷 is 𝑞 × 𝑝 matrix of 

rank 𝑞, 𝑞 ≤ 𝑝. 

Proof: Consider, the transformation, 𝑍 = 𝐷𝑋. Here, 𝑍 has 𝑞-components and 𝐷 is 𝑞 × 𝑝 real 

matrix. The expected value of 𝑍 is, 

𝐸(𝑍) = 𝐸(𝐷𝑋) = 𝐷𝐸(𝑋) = 𝐷𝜇 

The variance-covariance matrix is 

𝐸[(𝑍 − 𝐷𝜇)(𝑍 − 𝐷𝜇)′] = 𝐷′ΣD 

If 𝑞 = 𝑝 and 𝐷 is non-singular has been prove. 

If 𝑞 < 𝑝 and 𝐷 is a 𝑞 × 𝑝 matrix of rank 𝑞, then we can find a (𝑝 − 𝑞) × 𝑝 matrix 𝐸. Such that 

[
𝑍
𝑊
] = [

𝐷
𝐸
]𝑋 

is a non-singular transformation thus 𝑍 and 𝑊 have a joint normal distribution and 𝑍 hs marginal 

distribution 𝑍 = 𝐷𝑋, i.e. 𝑍~𝑁𝑞(𝐷𝜇, 𝐷
′ΣD). 

Theorem1.5.3: If 𝑋~𝑁𝑝(𝑥|𝜇, Σ), a necessary and sufficient condition that one subset of 𝑋 and the 

subset consisting of the remaining variables be independent is that each covariance of a variable 

from one set and a variable from the other set be 0. 

Proof: Without loss of generality, we assume that the first set consists of first 𝑞 variables 𝑋1, … , 𝑋𝑞 

and the other set consists of remaining (𝑝 − 𝑞) variables 𝑋𝑞+1, … , 𝑋𝑝. Let  

𝑋(1) = (𝑋1, … , 𝑋𝑞)
′
, 𝑋(2) = (𝑋𝑞+1, … , 𝑋𝑝)

′
 



so that, 𝑋 = [𝑋
(1)

𝑋(2)
] 

𝐸(𝑋) = 𝜇 = [
𝜇(1)

𝜇(2)
] 

𝐸(𝑋 − 𝜇)(𝑋 − 𝜇)′ = Σ = [
Σ11 Σ12
Σ21 Σ22

] 

where 𝐸(𝑋(1) − 𝜇(1))(𝑋(1) − 𝜇(1))
′
= Σ11 

𝐸(𝑋(1) − 𝜇(1))(𝑋(2) − 𝜇(2))
′
= Σ12 

𝐸(𝑋(2) − 𝜇(2))(𝑋(1) − 𝜇(1))
′
= Σ21 = Σ12

′  

𝐸(𝑋(2) − 𝜇(2))(𝑋(2) − 𝜇(2))
′
= Σ22 

Necessary: Let two sets be independent so that 

𝑓(𝑋1, … , 𝑋𝑝) = 𝑓(𝑋1, … , 𝑋𝑞)𝑓(𝑋𝑞+1, … , 𝑋𝑝) 

where 𝑓(𝑋1, … , 𝑋𝑞) is the Marginal pdf of 𝑋1, … , 𝑋𝑞 

𝑓(𝑋𝑞+1, … , 𝑋𝑝) is the Marginal pdf of 𝑋𝑞+1, … , 𝑋𝑝 

Therefore, for 1 ≤ 𝑖 ≤ 𝑞, 𝑞 + 1 ≤ 𝑗 ≤ 𝑝 

𝜎𝑖𝑗 = ∫ …∫ (𝑋𝑖 − 𝜇𝑖)(𝑋𝑗 − 𝜇𝑗)
∞

−∞

∞

−∞

𝑓(𝑋1, … , 𝑋𝑝)𝑑𝑋1⋯𝑑𝑋𝑝 

      = ∫ …∫ (𝑋𝑖 − 𝜇𝑖)
∞

−∞

∞

−∞

𝑓(𝑋1, … , 𝑋𝑞)𝑑𝑋1…𝑑𝑋𝑝 

      = ∫ …∫ (𝑋𝑗 − 𝜇𝑗)
∞

−∞

∞

−∞

𝑓(𝑋𝑞+1, … , 𝑋𝑝)𝑑𝑋𝑞+1⋯𝑋𝑥𝑝 



      = 0 

Since 𝜎𝑖𝑗 = 𝜌𝑖𝑗√𝜎𝑖𝑖𝜎𝑗𝑗 and by the assumption that Σ is non-singular, 𝜎𝑖𝑖 ≠ 0, 𝜎𝑗𝑗 ≠ 0 the condition 

that 𝜎𝑖𝑗 = 0 ⇒ 𝜌𝑖𝑗 = 0, i.e., one set of variates is uncorrelated with the remaining variates. 

Suppose the two sets are uncorrelated, i.e., Σ12 = 0, Σ21 = Σ12
′ = 0. then  

Σ = [
Σ11 0
0 Σ22

] 

Σ−1 = [
Σ11
−1 0

0 Σ22
−1] 

𝑄 = (𝑋 − 𝜇)′Σ−1(𝑋 − 𝜇) 

= [(𝑋(1) − 𝜇(1))
′
(𝑋(2) − 𝜇(2))

′
] [
Σ11
−1 0

0 Σ22
−1] [

(𝑋(1) − 𝜇(1))

(𝑋(2) − 𝜇(2))
] 

    = 𝑄1 + 𝑄2 

where 

𝑄1 = (𝑋
(1) − 𝜇(1) )

′
Σ11
−1 (𝑋(1) − 𝜇(1)) 

𝑄2 = (𝑋
(2) − 𝜇(2))

′
Σ22

−1(𝑋(2) − 𝜇(2)) 

|Σ| = |Σ11||Σ22| 

Therefore, pdf of 𝑋 can be written as 

𝑓(𝑋) 

=
1

(2𝜋)
𝑝
2|Σ|

𝑒𝑥𝑝 (− 
1

2
𝑄) 

=
1

(2𝜋)
𝑞
2|Σ11|

𝑒𝑥𝑝 (− 
1

2
𝑄1) ×

1

(2𝜋)
(𝑝−𝑞)
2 |Σ22|

𝑒𝑥𝑝 (− 
1

2
𝑄2) 



= 𝑓{𝑋(1)}𝑓{𝑋(2)} 

Now, marginal distribution of 𝑋(1) is 

∫ …∫ 𝑓(𝑋)
∞

−∞

∞

−∞

𝑑𝑋𝑞+1….𝑑𝑋𝑝 = 𝑓{𝑋
(1)}∫ …∫ 𝑓{𝑋(2)}

∞

−∞

∞

−∞

𝑑𝑋𝑞+1….𝑑𝑋𝑝 

∫ …∫ 𝑓(𝑋)
∞

−∞

∞

−∞

𝑑𝑋𝑞+1….𝑑𝑋𝑝 = 𝑓{𝑋
(1)} 

Similarly marginal distribution of 𝑋(2) is 𝑓{𝑋(2)}. 

Thus, the joint distribution of 𝑋 is the product of marginal distribution of 𝑋(1) and 𝑋(2). Therefore, 

the two sets of random variables are independently distributed. 

𝑋(1)~𝑁𝑞(𝑋
(1)|𝜇(1), 𝛴11) 

𝑋~𝑁𝑞  𝑋
(2)|𝜇(2),Σ22) 

1.5 Marginal Distribution 

The Marginal distribution of 𝑋 is 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑟) 

= ∫ ∫ ⋯

𝑥2

−∞

∫ [ ∫ ⋯

∞

𝑥(𝑟+1)=−∞

∫ 𝑓(𝑥1, 𝑥2, … , 𝑥𝑝)𝑑𝑥𝑟+1…𝑑𝑥𝑝

∞

𝑥𝑝=−∞

]

𝑥𝑟

−∞

𝑑𝑥1…𝑑𝑥𝑟

𝑥1

−∞

 

= 𝑃(𝑋1 ≤ 𝑥1, 𝑋2 ≤ 𝑥2, … , 𝑋𝑟 ≤ 𝑥𝑟 , 𝑋𝑟+1 ≤ ∞… < 𝑝 ≤ ∞) 

= 𝐹(𝑥1, 𝑥2, … , 𝑥𝑟 , ∞, … ,∞) 

Differentiating partially, we will get pdf. If we integrate pdf of (𝑥1, 𝑥2, … , 𝑥𝑝) for whole range then 

we will get equal to one. 



Theorem 1.6.1: If 𝑋~𝑁𝑝(𝑥|𝜇, Σ), the marginal distribution of any set of components of 𝑋 is 

multivariate normal with mean vector and variance-covariance matrix obtained by taking the 

proper components of 𝜇 and Σ respectively. 

Proof: Let 

𝑋 = [𝑋
(1)

𝑋(2)
]
𝑝−𝑞

𝑞

 

Since the numbering of the components of 𝑋 is arbitrary, without loss of generality we assume that 

we must obtain the marginal distribution of last (𝑝 − 𝑞) components of 𝑋, i.e., marginal 

distribution of 𝑋(2). Consider the non-singular linear transformation to sub vectors 

𝑦(1) = 𝑥(1) +𝑀𝑥(2) 

𝑦(2) = 𝑥(2) 

Matrix 𝑀 is chosen so that components of 𝑦(1) are uncorrelated with the components of 𝑦(2) =

 𝑥(2), i.e., 

0 = 𝐸[𝑦(1) − 𝐸(𝑦(1))][𝑦(2) − 𝐸(𝑦(2))] 

    =  𝐸[𝑥(1) +𝑀𝑥(2) − 𝜇(1) −𝑀𝜇(2)][𝑥(2) − 𝜇(2)]
′
 

    = Σ12 +𝑀Σ22 

Thus 𝑀 = −Σ12Σ22
−1 and 

𝑦(1) = 𝑥(1) − Σ12Σ22
−1𝑥(2) 

[
𝑦(1)

𝑦(2)
] = 𝑦 = [𝐼 −Σ12Σ22

−1

0 𝐼
] 𝑥 



The vector 𝑌 is a non-singular transform of 𝑋. Therefore 𝑌 follows a normal distribution with 

mean vector 

𝐸 [
𝑦(1)

𝑦(2)
] 

= 𝐸 [𝐼 −Σ12Σ22
−1

0 𝐼
] [𝑥

(1)

𝑥(2)
] 

= [
𝜇(1) − Σ12Σ22

−1𝜇(2)

𝜇(2)
] 

= [𝜈
(1)

𝜈(2)
] = 𝜈  (𝑠𝑎𝑦) 

and variance covariance matrix  

𝐸[𝑌 − 𝜈][𝑌 − 𝜈]′ = [
Σ11 − Σ12Σ22

−1Σ21 0
0 Σ22

] 

Since  

𝐸[𝑌(1) − 𝜈(1)][𝑌(1) − 𝜈(1)]
′
 

                   = 𝐸[(𝑥(1) − 𝜇(1)) − Σ12Σ22
−1(𝑥(2) − 𝜇(2))][(𝑥(1) − 𝜇(1)) − Σ12Σ22

−1(𝑥(2) − 𝜇(2))]
′
 

                   = Σ11 − Σ12Σ22
−1Σ21 

Thus 𝑌(1) and 𝑌(2) are independent and hence the marginal distribution of  

𝑋(2) = 𝑌(2)~𝑁𝑝−𝑞(𝑥
(2)|𝜇(2), Σ22) 

Example: Let 𝑌 = (𝑦1, 𝑦2, 𝑦3)
′~𝑁3(𝜇, Σ), where 

𝜇 = [
1
−1
0
] , Σ = [

4 1 2
1 4 2
2 2 4

]. 



(i) Find the marginal of 𝑦1, 𝑦2 𝑎𝑛𝑑 𝑦3. 

(ii) Find the marginal of 𝑍1 = (
𝑦1
𝑦3
). 

Solution:  

(i)𝑓(𝑦1) =
1

(2𝜋)
1
2|4|

1
2

 𝑒𝑥𝑝 {−
1

2×4
(𝑦1 − 1)

2} =
1

2(2𝜋)
1
2

 𝑒𝑥𝑝 {−
1

8
(𝑦1 − 1)

2} 

𝑓(𝑦2) =
1

2(2𝜋)
1
2

 𝑒𝑥𝑝 {−
1

8
(𝑦2 + 1)

2} 

𝑓(𝑦3) =
1

2(2𝜋)
1
2

 𝑒𝑥𝑝 {−
1

8
(𝑦3)

2} 

𝑦1 ~𝑁(1,4), 𝑦2 ~𝑁(−1,4), 𝑦2 ~𝑁(0,4) 

(ii) 𝑓 [
𝑦1
𝑦3
] =

1

(2𝜋)|Σ|
1
2

 𝑒𝑥𝑝 {−
1

2
(𝑥 − 𝜇)′ 𝛴−1(𝑥 − 𝜇)} 

𝜇 = (
1
0
) , Σ = (

4 2
2 4

) , Σ−1 = (
4 −2
−2 4

) =
1

12
 

[
𝑦1
𝑦3
]~ 𝑁2 [(

1
0
) (

4 2
2 4

)] 

1.6 Conditional Distribution 

Let 

𝑋 = [𝑋
(1)

𝑋(2)
]
𝑝−𝑞

𝑞

 

The conditional distribution 𝑋(1)|𝑋(2) is 

𝑓{𝑋(1)|𝑋(2)} =
𝑓{𝑋(1), 𝑋(2)}

𝑓{𝑋(2)}
 



Now, consider the transformation, 

𝑦(1) = 𝑥(1) − Σ12Σ22
−1𝑥(2) 

= 𝑥(1) +𝑀𝑥(2) 

𝑦(2) = 𝑥(2) 

The joint distribution of 𝑋(1), 𝑋(2) is 

𝑓{𝑥(1), 𝑥(2)} = 𝑓(𝑥) 

                        =
1

(2𝜋)𝑝 2⁄ |Σ|1 2⁄
𝑒𝑥𝑝 [−

1

2
{(𝑥 − 𝜇)′Σ−1(𝑥 − 𝜇)}]                                                 (1.12) 

Now, consider the transformation and the joint pdf of 𝑌(1) and 𝑌(2) is 

𝑔(𝑦(1), 𝑦(2)) =
1

(2𝜋)
𝑞
2|𝛴11.2|

1
2

𝑒𝑥𝑝 [−
1

2
(𝑦(1) − 𝜈(1))

′
𝛴11.2
−1 (𝑦(1) − 𝜈(1))] 

                             ×
1

(2𝜋)
(𝑝−𝑞)
2 |𝛴22|

1
2

𝑒𝑥𝑝 [−
1

2
(𝑦(2) − 𝜈(2))

′
𝛴22
−1(𝑦(2) − 𝜈(2))] × 1 

𝑔(𝑦(1), 𝑦(2)) 

=
1

(2𝜋)
𝑝
2|𝛴11.2|

1
2|𝛴22|

1
2

𝑒𝑥𝑝 [−
1

2
{(𝑦(1) − 𝜈(1))

′
𝛴11.2
−1 (𝑦(1) − 𝜈(1))

+ (𝑦(2) − 𝜈(2))
′
𝛴22
−1(𝑦(2) − 𝜈(2))}] 

=
1

(2𝜋)
𝑝
2|𝛴11.2|

1
2|𝛴22|

1
2

𝑒𝑥𝑝 [−
1

2
(𝑦(1) − 𝜈(1))

′
𝛴11.2
−1 (𝑦(1) − 𝜈(1))] 

                              𝑒𝑥𝑝 [−
1

2
(𝑦(2) − 𝜈(2))

′
𝛴22
−1(𝑦(2) − 𝜈(2))}] 



Hence the joint pdf of 𝑋(1), 𝑋(2) is  

𝑓(𝑥(1), 𝑥(2)) = 𝑔(𝑦(1), 𝑦(2))|𝐽| 

                         =
1

(2𝜋)𝑝 2⁄ |Σ11.2|1 2⁄ |Σ22|1 2⁄
 𝑒𝑥𝑝 [−

1

2
(𝑦(1) − 𝜈(1))

′
𝛴11.2
−1 (𝑦(1) − 𝜈(1))] 

                            × 𝑒𝑥𝑝 [−
1

2
(𝑦(2) − 𝜈(2))

′
𝛴22
−1(𝑦(2) − 𝜈(2))}]                                                      (1.13) 

The marginal density of 𝑋(2) is 

𝑓(𝑥(2)) =
1

(2𝜋)(𝑝−𝑞) 2⁄ |Σ22|1 2⁄
× 𝑒𝑥𝑝 [−

1

2
(𝑦(2) − 𝜈(2))

′
Σ22
−1(𝑦(2) − 𝜈(2))]                         (1.14)  

From (1.13) and (1.14), we get the conditional distribution, 

𝑓(𝑥(1)|𝑥(2)) =
1

(2𝜋)𝑞 2⁄ |Σ11.2|1 2⁄
𝑒𝑥𝑝 [−

1

2
{(𝑦(1) − 𝜈(1))

′
Σ11.2
−1 (𝑦(1) − 𝜈(1))}]                    (1.15) 

Now consider, 

(𝑦(1) − 𝜈(1))
′
𝛴11.2
−1 (𝑦(1) − 𝜈(1)) 

= {𝑥(1) − 𝛴12𝛴22
−1𝑥(2) − 𝜇(1) + 𝛴12𝛴22

−1𝜇(2)}
′
𝛴11.2
−1 {𝑋(1) − 𝛴12𝛴22

−1𝑥(2) − 𝜇(1) + 𝛴12𝛴22
−1𝜇(2)} 

= {(𝑥(1) − 𝜇(1)) − 𝛴12𝛴22
−1(𝑥(2) − 𝜇(2))}

′
𝛴11.2
−1 {(𝑥(1) − 𝜇(1)) − 𝛴12𝛴22

−1(𝑥(2) − 𝜇(2))} 

Putting these values in (1.15), we get 

𝑓(𝑥(1)|𝑥(2)) 

=
1

(2𝜋)𝑞 2⁄ |Σ11.2|1 2⁄
 × 

    𝑒𝑥𝑝 [−
1

2
{𝑥(1) − 𝜇(1) − 𝛴12𝛴22

−1(𝑥(2) − 𝜇(2))}
′
𝛴11.2
−1 {𝑥(1) − 𝜇(1) − 𝛴12𝛴22

−1(𝑥(2) − 𝜇(2))}] 



This is the pdf of a multivariate normal distribution with mean vector 

𝐸[𝑋(1)|𝑋(2)] = 𝜇(1) + 𝛴12𝛴22
−1(𝑋(2) − 𝜇(2)) 

The conditional variance covariance matrix is 𝐶𝑜𝑣(𝑋(1)|𝑋(2)) = Σ11.2 = Σ11 − Σ12Σ22
−1Σ21. 

Example: Let 𝑋~𝑁4(𝜇, Σ), where 

𝜇 = [

5
6
7
8

] , Σ = [

2 0 1 0
0 3 2 0
1 2 4 0
0 0 0 9

] 

(i) Find the distribution of (
𝑋2
𝑋4
). 

(ii) Find the distribution of (𝑋1 − 𝑋4). 

(iii) Find the conditional distribution of (𝑋1, 𝑋2)|𝑋3. 

Solution:  

(i) Let 𝐶 = [
0 1 0 0
0 0 0 1

], then (
𝑋2
𝑋4
) = [

0 1 0 0
0 0 0 1

] [

𝑋1
𝑋2
𝑋3
𝑋4

], so 𝐶𝜇 = (
6
8
) , 𝐶Σ𝐶′ = (

3 0
0 9

). 

Thus 

(
𝑋2
𝑋4
)~ 𝑁2 [(

6
8
) , (

3 0
0 9

)] 

(ii) Let 𝐶 = (1 0 0 −1), then 𝑋1 − 𝑋4 = 𝐶𝑋, So 𝐶𝜇 = 5 − 8 = −3, 𝐶Σ𝐶′ = 11. Thus  

(𝑋1 − 𝑋4) ~𝑁(−3,11). 

(iii) Let 𝑋1 = (𝑋1, 𝑋2)
′  and 𝑋3 = 𝑋3, then{(𝑋1, 𝑋2)

′|𝑋3 = 𝑥3}, 𝑡ℎ𝑒𝑛  𝜇1 = (
5
6
) , 𝜇2 = 7,  

Σ12 = (
1
2
) , Σ22 = 4, Σ11 = (

2 0
0 3

). Mean of {(𝑋1, 𝑋2)
′|𝑋3 = 𝑥3} is 



𝜇(1) + 𝛴12𝛴22
−1(𝑋(2) − 𝜇(2)) 

= (
5
6
) + (

1
2
)
1

4
(𝑥3 − 7) 

= (

1

4
𝑥3 +

13

4
1

2
𝑥3 +

5

2

) 

The covariance matrix of {(𝑥1, 𝑥2)
′|𝑋3 = 𝑥3} is 

Σ11.2 = Σ11 − Σ12Σ22
−1Σ12

′ = (
2 0
0 3

) − (
1
2
)
1

4
(1 2) =

1

4
(
7 −2
−2 8

) 

1.7 Summary 

The multivariate normal distribution is an extension of the univariate normal distribution 

to higher dimensions. It is characterized by its mean vector and covariance matrix. The moment 

generating function and characteristic function provide alternative representations of the 

distribution, and the properties of marginal and conditional distributions allow for the study of 

subsets and dependencies within the multivariate distribution. 

This unit covers the basic concepts of multivariate normal distribution. The procedure of 

finding the moment generating function and characteristic function is discussed in detail. Also, the 

marginal distribution and conditional distribution are derived and their properties are studied. 

1.8 Self-Assessment Exercises 

 

1. Find 𝜇 mean vector and Σ variance covariance matrix or dispersion matrix of the following 

density functions: 

               (i) 𝑓(𝑥, 𝑦) =
1

2𝜋
𝑒𝑥𝑝 [−

1 

2
 {𝑥2 + 𝑦2 + 4𝑥 − 6𝑦 + 13}] 

               (ii) 𝑓(𝑥, 𝑦) =
1

2𝜋
𝑒𝑥𝑝 {−

1 

2
 (2𝑥2 + 𝑦2 + 2𝑥𝑦 − 22𝑥 − 14𝑦 + 65)} 



2. Let 𝑓(𝑥) = 𝐶 exp (−
𝑄

2
), where 

(i) 𝑄 = 3𝑥2 + 2𝑦2 − 2𝑥𝑦 − 32𝑥 + 4𝑦 + 92, and 

(ii) 𝑄 = 2𝑥1
2 + 3𝑥2

2 + 4𝑥3
2 + 2𝑥1𝑥2 − 2𝑥1𝑥3 − 4𝑥2𝑥3 − 6𝑥1 − 2𝑥2 + 10𝑥3 + 8 

               Find 𝜇 and Σ. 

3. Derive the characteristic function of a multivariate normal distribution. Using the 

characteristic function, obtain the mean vector. 

4. Let 𝑋 be partitioned as 𝑋 = (𝑋(1)
′
, 𝑋(2)

′
)
′
. Derive the marginal distribution of 𝑋(1) and 

conditional distribution of 𝑋(2) given 𝑋(1). 

5. Let 𝑋 = (𝑋1, 𝑋2, 𝑋3)
′ follows a 3-variate normal distribution with mean vector 0 and 

variance-covariance matrix 

[
 
 
 
 
 1

1

3
0

1

3
1

1

4

0
1

4

1

2]
 
 
 
 
 

 

Find 

(i) The marginal distribution of (𝑋1, 𝑋2)
′ 

(ii) The conditional distribution of (𝑋1, 𝑋2)
′ given 𝑋3 

(iii) 𝐸(𝑋3|𝑋1, 𝑋2) 

(iv) 𝐸[(𝑋1 + 𝑋2 − 𝑋3)𝑋3] 

(v) Obtain the correlation coefficient between 𝑋2and𝑋3. 

6. Prove that 𝑋(1) and 𝑋(2) are independently distributed if and only if Σ12 = 0. 

7. Obtain the mean vector and variance covariance matrix of the random variable 𝑋 = (
𝑋1
𝑋2
) 

with pdf 𝑓(𝑋) =
1

2𝜋
𝑒𝑥𝑝(2𝑋1

2 + 𝑋1
2 + 2𝑋1𝑋2 − 22𝑋1 − 14𝑋2 + 65). 

8. Suppose 𝑦~𝑁4(𝜇, Σ), where 



𝜇 = [

−2
3
−1
5

] , Σ = [

11 −8 3 9
−8 9 −3 6
3 −3 2 3
9 6 3 9

]. 

(i) Find the distribution of 𝑍 = 4𝑦1 − 2𝑦2 + 𝑦3 − 3𝑦4. 

(ii) Find the joint distribution of 𝑍1 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 and 𝑍2 = −2𝑦1 + 3𝑦2 + 𝑦3 −

2𝑦4. 

(iii) Find the joint distribution of 𝑍1 = 3𝑦1 + 𝑦2 − 4𝑦3 − 𝑦4, 𝑍2 = −𝑦1 − 3𝑦2 + 𝑦3 − 2𝑦4 

and 𝑍3 = 2𝑦1 + 2𝑦2 + 4𝑦3 − 5𝑦4. 

(iv) What is the distribution of 𝑦3. 

(v) What is the joint distribution of 𝑦2 and 𝑦4. 

(vi) Find the joint distribution of 𝑦1,
1

2
(𝑦1 + 𝑦2),

1

3
(𝑦1 + 𝑦2 + 𝑦3) and 

1

4
(𝑦1 + 𝑦2 + 𝑦3 +

𝑦4). 

9. Suppose 𝑦~𝑁3(𝜇, Σ), where 

(i) Find the distribution of 𝑍 = 2𝑦1 − 𝑦2 + 3𝑦3. 

(ii) Find the joint distribution of 𝑍1 = 𝑦1 + 𝑦2 + 𝑦3 and 𝑍2 = 𝑦1 − 𝑦2 + 2𝑦3. 

(iii) Find the distribution of 𝑦2. 

(iv) Find the joint distribution of 𝑦1 and 𝑦3. 

(v) Find the joint distribution of 𝑦1, 𝑦3 and 
1

2
(𝑦1 + 𝑦2) 

10. If 𝑋~𝑁𝑝 (𝜇, Σ). Show that 𝑀𝑋−𝜇(𝑡) = exp (
1

2
𝑡′Σ 𝑡). 

11. Prove that 

(i) 𝐸(𝑥𝑗 − 𝜇𝑗)(𝑥𝑘 − 𝜇𝑘) =  𝜎𝑗𝑘                                ∀𝑗 = 1,2, …… , 𝑝;   𝑘 = 1,2, …… . , 𝑝 

(ii) 𝐸(𝑥𝑗 − 𝜇𝑗)(𝑥𝑘 − 𝜇𝑘)(𝑥𝑙 − 𝜇𝑙) = 0 

(iii)𝐸(𝑥𝑗 − 𝜇𝑗)(𝑥𝑘 − 𝜇𝑘)(𝑥𝑙 − 𝜇𝑙)(𝑥𝑚 − 𝜇𝑚) = 𝜎𝑗𝑘𝜎𝑙𝑚 + 𝜎𝑗𝑙𝜎𝑘𝑚 + 𝜎𝑗𝑚𝜎𝑘𝑙 
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2.11 Further Reading 

2.1 Introduction 

Maximum Likelihood Estimator is a method of estimating the parameters of a probability 

distribution by finding the values that make the observed data most likely, given the model. In 

multivariate analysis, it is used to estimate the parameters of a model, such as regression 

coefficients, covariance matrices, and mean vectors. 

Here is a step-by-step explanation: 

1. Specify the model: Define the multivariate model, such as a multivariate normal distribution 

or a linear regression model. 

2. Define the likelihood function: The likelihood function is the probability of observing the data 

given the model parameters. 

3. Define the log-likelihood function: The log-likelihood function is the logarithm of the 

likelihood function, which is used for computational convenience. 

4. Find the maximum likelihood estimates: Find the values of the model parameters that 

maximize the log-likelihood function. This is typically done using numerical optimization 

methods, such as the Expectation-Maximization algorithm or gradient-based methods. 

5. Estimate the model parameters: The maximum likelihood estimates are the values of the 

model parameters that maximize the log-likelihood function. These estimates are used to 

summarize the data and make inferences about the population. 

2.2 Objectives 

After studying this unit, you should be able to: 

• Describe the likelihood function and the role of maximum likelihood estimation in deriving 

the estimators of parameters of multivariate normal distribution. 

• Derive the sufficient statistic for the multivariate normal distribution. 



• Compute the sample multiple correlation coefficients, partial correlation coefficients and 

regression coefficient. 

2.3 Estimation of Parameters in Multivariate Normal Distribution 

The multivariate normal distribution is completely specified if its mean vector 𝜇 and 

dispersion matrix Σ. In case of unknown parameters, the problem of their estimation arises. We 

can estimate these parameters by the method of maximum likelihood estimation. 

Let 𝑥1, 𝑥2, … , 𝑥𝑁, be a random sample of size 𝑁 from 𝑁𝑝(𝜇, 𝛴), where 𝑁 > 𝑝 and 𝑥𝛼 is 

𝑝 × 1 vector, 𝛼 = 1, 2,⋯ ,𝑁.  

Notation 

Suppose observations on 𝑝 characteristics 𝑋1, 𝑋2, ⋯ , 𝑋𝑝 of 𝑁 individuals 𝛼 = 1, 2,⋯ ,𝑁 

are as given in the following table: 

Characteristic Individuals Mean 

𝟏 𝟐 ⋯ 𝜶 ⋯ 𝑵 

𝑋1 𝑥11 𝑥12 ⋯ 𝑥1𝛼 ⋯ 𝑥1𝑁 �̅�1 

𝑋2 𝑥21 𝑥22 ⋯ 𝑥2𝛼 ⋯ 𝑥2𝑁 �̅�2 

⋮ ⋮ ⋮ ⋯ ⋮ ⋯ ⋮ ⋮ 

𝑋𝑖 𝑥𝑖1 𝑥𝑖2 ⋯ 𝑥𝑖𝛼 ⋯ 𝑥𝑖𝑁 �̅�𝑖 

⋮ ⋮ ⋮ ⋯ ⋮ ⋯ ⋮ ⋮ 

𝑋𝑝 𝑥𝑝1 𝑥𝑝2 ⋯ 𝑥𝑝𝛼 ⋯ 𝑥𝑝𝑁 �̅�𝑝 

𝑥1 𝑥2 ⋯ 𝑥𝛼 ⋯ 𝑥𝑁 

 

Therefore, the sample mean vector is 



�̅� =
1

𝑁
 ∑ 𝑥𝛼

𝑁

𝛼=1

=

(

 
 
 
 
 
 
 
 

1

𝑁
 ∑ 𝑥1𝛼

𝑁

𝛼=1

⋮

1

𝑁
  ∑ 𝑥𝑖𝛼

𝑁

𝛼=1

⋮

1

𝑁
  ∑ 𝑥𝑝𝛼

𝑁

𝛼=1 )

 
 
 
 
 
 
 
 

=

(

 
 

�̅�1
⋮
�̅�𝑖
⋮
�̅�𝑝)

 
 

 

The sample variance and covariance matrix is 

S = (

𝑠11 𝑠12 ⋯ 𝑠1𝑝
𝑠21 𝑠22 ⋯ 𝑠2𝑝
⋮ ⋮ ⋯ ⋮
𝑠𝑝1 𝑠𝑝2 ⋯ 𝑠𝑝𝑝

) 

Where 

𝑠𝑖𝑗 =
1

𝑁 − 1
∑(𝑥𝑖𝛼 − �̅�𝑖)(𝑥𝑗𝛼 − �̅�𝑗)

𝑁

𝛼=1

,        ∀ 𝑖 𝑎𝑛𝑑 𝑗 

Also 

S =
1

𝑁 − 1
(

𝑎11 𝑎12 ⋯ 𝑎1𝑝
𝑎21 𝑎22 ⋯ 𝑎2𝑝
⋮ ⋮ ⋯ ⋮
𝑎𝑝1 𝑎𝑝2 ⋯ 𝑎𝑝𝑝

) =
𝐴

𝑁 − 1
 

The matrix 𝐴 is called the sum of squares and cross products of deviations about the mean. 

Here 

𝑎𝑖𝑗 = ∑(𝑥𝑖𝛼 − �̅�𝑖)(𝑥𝑗𝛼 − �̅�𝑗)

𝑁

𝛼=1

,        ∀ 𝑖 𝑎𝑛𝑑 𝑗 

Remark: 

(i) For a quadratic form 



𝑄 = 𝑥′ 𝐴 𝑥 =  ∑ 𝑎𝑖𝑗  𝑥𝑖  𝑥𝑗

𝑝

𝑖,𝑗 =1

 

We have 

𝜕𝑄

𝜕𝑥
=

(

 
 
 
 
 

𝜕𝑄

𝜕𝑥1
𝜕𝑄

𝜕𝑥2
⋮
𝜕𝑄

𝜕𝑥𝑝)

 
 
 
 
 

= 2 𝐴𝑥  

(ii) If 𝑄 = (𝑥 − 𝑏)′𝐴(𝑥 − 𝑏) = (𝑏 − 𝑥)′𝐴(𝑏 − 𝑥), then 

𝜕𝑄

𝜕𝑥
= 2 𝐴(𝑥 − 𝑏) 

And 

𝜕𝑄

𝜕𝑏
= 2 𝐴(𝑏 − 𝑥) 

(iii) A submatrix of 𝐴 is a rectangular array obtained from 𝐴 by deleting rows and columns. 

A minor is the determinant of the square submatrix of 𝐴. 

|𝐴| =∑𝑎𝑖𝑗  𝐴𝑖𝑗

𝑝

𝑖=1

=∑𝑎𝑗𝑘 𝐴𝑗𝑘

𝑝

𝑗=1

 

where 𝐴𝑖𝑗, is (−1)𝑖+𝑗 times the minor of 𝑎𝑖𝑗, and the minor of an element 𝑎𝑖𝑗 is the determinant 

of the submatrix of a square matrix 𝐴 obtained by deleting the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column. 

If |𝐴| ≠ 0, there exists a unique matrix 𝐵 such that 𝐴𝐵 = 𝐼, 𝐵 is called the inverse of 𝐴 and it is 

denoted by 𝐴−1. 

Let 𝑎𝑖𝑗 be the element of 𝐴−1 in the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column, then 

𝑎𝑖𝑗 =
𝐴𝑗𝑖
|𝐴|

    𝑎𝑛𝑑    𝑎𝑖𝑗 =
𝐴𝑗𝑖

|𝐴−1|
 



Example 2.3.1: Let 

𝐴 = [
2 4
3 7

] 

The Determinant of Matrix 𝐴 is 

|𝐴| = 2 × 7 − 3 × 4 = 14 − 12 = 2 

The inverse of the matrix 𝐴 is 

𝐴−1 =
𝑎𝑑𝑗𝐴

|𝐴|
 

the adjoint matrix is 

𝑎𝑑𝑗 𝐴 = [
7 −4
−3 2

] 

∴ 𝐴−1 =
[
7 −4
−3 2

]

2
= [

7

2
−
4

2

−
3

2

2

2

]  = [

7

2
−2

−
3

2
1

] 

          =
7

2
−
6

2
  =

1

2
 

Also 

𝑎11 =
𝐴11

|𝐴−1|
   =

1

1/2
= 2 

𝑎12 =
𝐴21

|𝐴−1|
=

2

1/2
= 4 

𝑎21 =
𝐴12

|𝐴−1|
 =

3/2

1/2
= 3 

𝑎22 =
𝐴22

|𝐴−1|
 =

7/2

1/2
= 7 



(iv) A square matrix 𝐴𝑚×𝑚 is said to be orthogonal if 𝐴′𝐴 = 𝐴𝐴′ = 𝐼, and if the 

transformation 𝑌 = 𝐴 𝑋 transform 𝑋′𝑋 to 𝑌′𝑌 . Also 

∑𝑎𝑖𝑘

𝑚

𝑘=1

×
1

√𝑛
= 0 

⇒∑𝑎𝑖𝑘

𝑚

𝑘=1

= 0   ,   𝑖 = 1,2,⋯ , (𝑚 − 1) 

and 

∑𝑎𝑖𝑘

𝑚

𝑘=1

× 𝑎𝑗𝑘 = {
0 , 𝑖 ≠ 𝑗
1 ,        𝑖 = 𝑗

 𝑓𝑜𝑟   𝑖, 𝑗 = 1,2,⋯ ,𝑚 

Example 2.3.2: Consider an orthogonal matrix of order 3 

𝐴 =

[
 
 
 
 
 
 

1

√2 × 1

−1

√2 × 1

1 × 0

√2 × 1
1

√2 × 3

1

√2 × 3

−2

√2 × 3
1

√3

1

√3

1

√3 ]
 
 
 
 
 
 

 

The transpose of the matrix 𝐴 is 

𝐴𝑇 =

[
 
 
 
 
 
 

1

√2 × 1

1

√2 × 3

1

√3
−1

√2 × 1

1

√2 × 3

1

√3
1 × 0

√2 × 1

−2

√2 × 3

1

√3]
 
 
 
 
 
 

 

Now 



𝐴𝐴𝑇 =

[
 
 
 
 
 
 

1

√2 × 1

−1

√2 × 1

1 × 0

√2 × 1
1

√2 × 3

1

√2 × 3

−2

√2 × 3
1

√3

1

√3

1

√3 ]
 
 
 
 
 
 

[
 
 
 
 
 
 

1

√2 × 1

1

√2 × 3

1

√3
−1

√2 × 1

1

√2 × 3

1

√3
1 × 0

√2 × 1

−2

√2 × 3

1

√3]
 
 
 
 
 
 

 

         = [
1 0 0
0 1 0
0 0 1

]  = 𝐼 

Here 𝑚 = 3 

∑𝑎𝑖𝑘

3

𝑘=1

= 𝑎11 + 𝑎12 + 𝑎13 

              =
1

√2 × 1
−

1

√2 × 1
+ 0 = 0 

∑𝑎𝑖𝑘

𝑚

𝑘=1

× 𝑎𝑗𝑘 = 𝑎11𝑎11 + 𝑎12𝑎12 + 𝑎13𝑎13 

                 =
1

2
+
1

2
+ 0 = 1 

∑𝑎𝑖𝑘

𝑚

𝑘=1

× 𝑎𝑗𝑘 

= 𝑎11𝑎21 + 𝑎12𝑎22 + 𝑎13𝑎23 = 0 

∑𝑎𝑖𝑘

𝑚

𝑘=1

× 𝑎𝑗𝑘 

= 𝑎11𝑎31 + 𝑎12𝑎32 + 𝑎13𝑎33 = 0 

∑𝑎𝑖𝑘

𝑚

𝑘=1

× 𝑎𝑗𝑘 



= 𝑎21𝑎11 + 𝑎22𝑎12 + 𝑎23𝑎13 = 0 

∑𝑎𝑖𝑘

𝑚

𝑘=1

× 𝑎𝑗𝑘 

= 𝑎21𝑎21 + 𝑎22𝑎22 + 𝑎23𝑎23 =
3

3
= 1 

∑𝑎𝑖𝑘

𝑚

𝑘=1

× 𝑎𝑗𝑘 

= 𝑎21𝑎31 + 𝑎22𝑎32 + 𝑎23𝑎33 = 0 

∑𝑎𝑖𝑘

𝑚

𝑘=1

× 𝑎𝑗𝑘 

= 𝑎31𝑎31 + 𝑎32𝑎32 + 𝑎33𝑎33 =
3

3
= 1 

∑𝑎𝑖𝑘

𝑚

𝑘=1

× 𝑎𝑗𝑘 

= 𝑎31𝑎21 + 𝑎32𝑎22 + 𝑎33𝑎23 = 0 

∑𝑎𝑖𝑘

𝑚

𝑘=1

× 𝑎𝑗𝑘 

= 𝑎31𝑎11 + 𝑎32𝑎12 + 𝑎33𝑎13 = 0 

(v) Trace: The sum of diagonal elements of a matrix is called its trace. We have the 

following results for the trace of matrices: 

1. 𝑡𝑟(𝐴 + 𝐵) = 𝑡𝑟(𝐴) + 𝑡𝑟(𝐵) 

2. 𝑡𝑟 (𝐴𝐵) = 𝑡𝑟(𝐵𝐴) 



3. The trace of a scalar quantity will be the same number. For example: 𝑡𝑟𝑎𝑐𝑒 𝑜𝑓 [6]1×1 = 6  

(vi) Differentiation Rules: 

1. 
𝜕|𝑋|

𝜕𝑋
= |𝑋|𝑋−1 

2. 
𝜕𝑡𝑟 𝐴𝑋

𝜕𝑋
= 𝐴 

3. 
𝜕(𝑋′𝐴𝑋)

𝜕𝑋
= 2𝐴𝑋   or 

𝜕(𝑋′𝐴𝑋)

𝜕𝑋′
= 2𝑋′𝐴 

Lemma 2.3.1.: Let 𝑓(𝜃) be a real-valued function defined on a certain set S and let 𝜙 be a single-

valued function, with a single-valued inverse on S to some other set 𝑆∗, i.e., to each 𝜃 ∈ 𝑆 there 

corresponds a unique 𝜃∗ = 𝜙(𝜃) ∈ 𝑆∗ and conversely to each 𝜃∗ ∈ 𝑆∗ there corresponds a unique 

𝜃 = 𝜙−1(𝜃∗) ∈ 𝑆. Let 

𝑔(𝜃∗) = 𝑓[𝜙−1(𝜃∗)] 

Then if 𝑓(𝜃) attains a maximum at 𝜃 = 𝜃0, 𝑔(𝜃
∗) attains a maximum at 𝜃∗ = 𝜃0

∗ = 𝜙(𝜃0). If the 

maximum of 𝑓(𝜃) at 𝜃0 is unique so as the maximum of 𝑔(𝜃∗) at 𝜃0
∗. 

Proof:  𝑓(𝜃0) ≥ 𝑓(𝜃)  ∀ 𝜃 ∈ 𝑆 

Then ∀𝜃∗ ∈ 𝑆∗ 

𝑔(𝜃∗) = 𝑓[𝜙−1(𝜃∗)] =  𝑓(𝜃) ≤ 𝑓(𝜃0) 

= 𝑔[𝜙(𝜃0)] = 𝑔(𝜃0
∗) 

Hence 𝑔(𝜃∗) attains a maximum at 𝜃0
∗. If maximum of 𝑓(𝜃) at 𝜃0 is unique, there is a strict 

inequality above for 𝜃 ≠ 𝜃0 and the maximum of 𝑔(𝜃∗) is unique. 

We have the following corollary: 

Corollary 2.3.1.: Let 𝜃1̂, 𝜃2̂, … , 𝜃�̂� are the MLE of the parameters 𝜃1, 𝜃2, … , 𝜃𝑚 and the 

transformation from 𝜃1, 𝜃2, … , 𝜃𝑚 to 𝜙1, … , 𝜙𝑚 is one to one. Then  



𝜙1(𝜃1̂, 𝜃2̂, … , 𝜃�̂�),… , 𝜙𝑚(𝜃1̂, 𝜃2̂, … , 𝜃�̂�) 

Are, respectively, the MLE’s of  

𝜙1(𝜃1, 𝜃2, … , 𝜃𝑚), … , 𝜙𝑚(𝜃1, 𝜃2, … , 𝜃𝑚). 

If the estimators of 𝜃1, 𝜃2, … , 𝜃𝑚 are unique then the estimators of 𝜙1, … , 𝜙𝑚 are also unique. 

2.3.1   Maximum Likelihood Estimates of the Mean Vector when 

Variance-Covariance Matrix is Known 

Let 𝑥1, 𝑥2, … , 𝑥𝑁, be a random sample of size 𝑁 from 𝑁𝑝(𝜇, 𝛴). The likelihood function is 

𝐿(𝜇, Σ | 𝑥𝛼) =
|Σ|

−𝑁
2

(2𝜋)
𝑁𝑝
2

exp [−
1

2
∑{(𝑥𝛼 − 𝜇)

′Σ−1(𝑥𝛼 − 𝜇)}

𝑁

𝛼=1

] 

Taking log on both sides, we get 

log 𝐿 =
𝑁

2
log|Σ−1| −

𝑁𝑝

2
log 2𝜋 − [

1

2
∑{(𝑥𝛼 − 𝜇)

′Σ−1(𝑥𝛼 − 𝜇)}

𝑁

𝛼=1

] 

Consider 

∑(𝑥𝛼 − 𝜇  )
′ Σ−1(𝑥𝛼 −  𝜇)

𝑁

𝛼=1

= 𝑡𝑟 ∑  Σ−1(𝑥𝛼 −  𝜇)(𝑥𝛼 − 𝜇  )
′

𝑁

𝛼=1

 

                                                        = 𝑡𝑟  Σ−1∑(𝑥𝛼 −  𝜇)(𝑥𝛼 − 𝜇  )
′

𝑁

𝛼=1

                                                (2.1) 

Now 

∑(𝑥𝛼 −  𝜇)

𝑁

𝛼=1

(𝑥𝛼 − 𝜇)
′ + (�̅� −  𝜇)(�̅� −  𝜇)′} 



= ∑(𝑥𝛼 − �̅�)(𝑥𝛼 − �̅�)
′ + (�̅� −  𝜇)∑(𝑥𝛼 − �̅�)

′

𝑁

𝛼=1

+ {∑(𝑥𝛼 − �̅�)

𝑁

𝛼=1

} (�̅� −  𝜇)′
𝑁

𝛼=1

+ 𝑁(�̅� −  𝜇)(�̅� −  𝜇)′ 

Since∑ (𝑥𝛼 − �̅�)
𝑁
𝛼=1 = ∑ 𝑥𝛼

𝑁
𝛼=1 −𝑁�̅� = 0, we have 

∑(𝑥𝛼 − 𝜇  )(𝑥𝛼 −  𝜇)
′

𝑁

𝛼=1

= 𝐴 + 𝑁(�̅� −  𝜇)(�̅� −  𝜇)′ 

Putting this value in (2.1), we have 

∑(𝑥𝛼 − 𝜇  )
′

𝑁

𝛼=1

 Σ−1(𝑥𝛼 −  𝜇) 

= 𝑁(�̅� −  𝜇)′ Σ−1(�̅� −  𝜇) + 𝑡𝑟  Σ−1𝐴 

Hence 

𝑙𝑜𝑔𝐿  

=
𝑁

2
𝑙𝑜𝑔|Σ−1| −

𝑁𝑝

2
𝑙𝑜𝑔 2𝜋 − [

1

2
𝑁(�̅� −  𝜇)′ Σ−1(�̅� −  𝜇) + 𝑡𝑟  Σ−1𝐴] 

Differentiating 𝑙𝑜𝑔 𝐿 with respect to 𝜇, and equating it to 0, we get 

𝜕

𝜕𝜇
𝑙𝑜𝑔 𝐿 = 0 

⇒ −0 − 0 −
1

2
2Σ−1(𝜇 − �̅�) − 0 = 0                                                       (∵

𝜕𝑋′𝐴𝑋

𝜕𝑋
= 2𝐴𝑋) 

⇒ Σ−1(𝜇 − �̅�) = 0 

⇒ �̂� = �̅� 



2.3.2 Maximum Likelihood Estimates of Variance-Covariance Matrix 

when the Mean Vector is Known 

The log-likelihood function is 

𝑙𝑜𝑔𝐿 

=
𝑁

2
𝑙𝑜𝑔|𝛴−1| −

𝑁𝑝

2
𝑙𝑜𝑔 2𝜋 − [

1

2
𝑁(�̅� − 𝜇)′ 𝛴−1(�̅� − 𝜇) + 𝑡𝑟  𝛴−1𝐴] 

Now substituting the value of �̂� = �̅�, in the above equation, it can be written as 

𝑙𝑜𝑔𝐿 

=
𝑁

2
𝑙𝑜𝑔|𝛴−1| −

𝑁𝑝

2
𝑙𝑜𝑔 2𝜋 −

1

2
𝑡𝑟 𝛴−1∑(𝑥𝛼 − 𝜇  )(𝑥𝛼 −  𝜇)

′

𝑁

𝛼=1

   

Differentiating the log-likelihood with respect to Σ−1 and equating it to 0, we get 

𝜕 𝑙𝑜𝑔 𝐿

𝜕𝛴−1
= 0     

⇒
𝑁(|Σ−1|)

2|Σ−1|
Σ̂ − 0 −

1

2
∑(𝑥𝛼 − 𝜇)(𝑥𝛼 −  𝜇)

′

𝑁

𝛼=1

= 0                  ( from differantiation rules)    

⇒
𝑁

2
Σ̂ =

1

2
∑(𝑥𝛼 − 𝜇)(𝑥𝛼 −  𝜇)

′

𝑁

𝛼=1

 

⇒ Σ̂ =
1

𝑁
∑(𝑥𝛼 − 𝜇  )(𝑥𝛼 −  𝜇)

′

𝑁

𝛼=1

. 

2.3.3   Maximum Likelihood Estimates of 𝝁 𝒂nd 𝚺 when both are 

Unknown 

We can write the log likelihood function as 



log L =
𝑁

2
𝑙𝑜𝑔|Σ−1| −

𝑁𝑝

2
𝑙𝑜𝑔 2𝜋 − [

1

2
𝑁(�̅� −  𝜇)′ Σ−1(�̅� −  𝜇) + 𝑡𝑟  Σ−1𝐴] 

Differentiating 𝑙𝑜𝑔 𝐿 with respect to 𝜇, and equating it to 0, we get 

𝜕

𝜕𝜇
𝑙𝑜𝑔 𝐿 = 0 

⇒ Σ−1(𝜇 − �̅�) = 0 

⇒ �̂� = �̅� 

Further differentiating 𝑙𝑜𝑔 𝐿 with respect to Σ, equating it to 0, and replacing 𝜇 by �̂� = �̅�, we get 

𝑁

2
Σ̂ =

1

2
∑(𝑥𝛼 − �̅�)(𝑥𝛼 − �̅�)

′

𝑁

𝛼=1

 

⇒ Σ̂ =
1

𝑁
∑(𝑥𝛼 − �̅�  )(𝑥𝛼 − �̅�)

′

𝑁

𝛼=1

 

        =
1

𝑁
𝐴 

𝐴 = ∑(𝑥𝛼 − �̅�  )(𝑥𝛼 − �̅�)
′

𝑁

𝛼=1

 

Theorem 2.3.1.: Let 𝑥1, 𝑥2, … , 𝑥𝑁, be a random sample of size 𝑁 from 𝑁𝑝(𝜇, 𝛴). Then  

𝐸(�̅�) = 𝜇,     

𝐸(�̅� − 𝜇)(�̅� − 𝜇)′ =
1

𝑁
Σ. 

Proof: We have 

𝐸(�̅�) 



= 𝐸 (
1

𝑁
∑𝑥𝛼

𝑁

𝛼=1

) 

=
1

𝑁
𝐸( 𝑥1 + 𝑥2 +⋯+ 𝑥𝑁) 

=
1

𝑁
(𝑁 𝜇) 

= 𝜇 

Further 

𝐸(�̅� − 𝜇)(�̅� − 𝜇)′   

= 𝐸 [
1

𝑁
( 𝑥1 + 𝑥2 +⋯+ 𝑥𝑁) − 𝜇] [

1

𝑁
( 𝑥1 + 𝑥2 +⋯+ 𝑥𝑁) − 𝜇]

′

 

=
1

𝑁2
𝐸[( 𝑥1 + 𝑥2 +⋯+ 𝑥𝑁) − 𝑁𝜇][( 𝑥1 + 𝑥2 +⋯+ 𝑥𝑁) − 𝑁𝜇]

′ 

=
1

𝑁2
[𝐸(𝑥1 − 𝜇)(𝑥1 − 𝜇)

′ + 𝐸(𝑥2 − 𝜇)(𝑥2 − 𝜇)
′ +⋯+ 𝐸(𝑥𝑁 − 𝜇)(𝑥𝑁 − 𝜇)

′ + 0]  

=
1

𝑁2
(𝑁 Σ) 

=
1

𝑁
Σ 

2.4 Sufficient Statistics 

  Let 𝑥1, … , 𝑥𝑁 be a random sample of size 𝑁 from a distribution having p.d.f. 𝑓(𝑥, θ), where 

𝜃 is an unknown population parameter. Then 𝑡 = 𝑡(𝑥1, … , 𝑥𝑁) is a sufficient statistic for 𝜃 if 

∏𝑓(𝑥𝛼, 𝜃)

𝑁

𝛼=1

= 𝑔 (𝑡, 𝜃)ℎ(𝑥1, … , 𝑥𝑁), 

where ℎ(𝑥1, … , 𝑥𝑁) does not depend on 𝜃. 



2.4.1 Sufficient Statistics for the Parameters of a Multivariate Normal 

Distribution 

The p.d.f. of a random vector 𝑋~𝑁𝑝(𝑥|𝜇, Σ) is given by 

𝑓(𝑥|𝜇, Σ) =
1

(2𝜋)
𝑝
2|Σ|

1
2
  
exp {−

1 

2
 (𝑥 −  𝜇  )′ Σ−1(𝑥 −  𝜇  )} 

Now, the likelihood function of 𝑥1, … , 𝑥𝑁 can be written as 

𝐿 =∏𝑓

𝑁

𝛼=1

(𝑥|𝜇, Σ) 

=
1

(2𝜋)
𝑁𝑝
2 |Σ|

𝑁
2
  
exp {−

1 

2
 ∑(𝑥𝛼 − 𝜇  )

′ Σ−1(𝑥𝛼 −  𝜇)

𝑁

𝛼=1

} 

It can be shown that 

∑(𝑥𝛼 − 𝜇  )
′ Σ−1(𝑥𝛼 −  𝜇)

𝑁

𝛼=1

= 𝑡𝑟 ∑  Σ−1(𝑥𝛼 − 𝜇  )(𝑥𝛼 −  𝜇)
′

𝑁

𝛼=1

 

                                                        = 𝑡𝑟  Σ−1∑(𝑥𝛼 − 𝜇  )(𝑥𝛼 −  𝜇)
′

𝑁

𝛼=1

                                              (2.2. ) 

Consider 

∑(𝑥𝛼 − 𝜇)(𝑥𝛼 −  𝜇)
′

𝑁

𝛼=1

= ∑{(𝑥𝛼 − �̅�) + (�̅� −  𝜇)}

𝑁

𝛼=1

{(𝑥𝛼 − �̅�) + (�̅� − 𝜇)}
′ 

= ∑{(𝑥𝛼 − �̅�)(𝑥𝛼 − �̅�)
′ + (�̅� − 𝜇)(𝑥𝛼 − �̅�)

′ + (𝑥𝛼 − �̅�)(�̅� − 𝜇)
′

𝑁

𝛼=1

 

                  +(�̅� −  𝜇)(�̅� −  𝜇)′ 



= ∑(𝑥𝛼 − �̅�)(𝑥𝛼 − �̅�)
′

𝑁

𝛼=1

+ (�̅� −  𝜇)∑(𝑥𝛼 − �̅�)
′

𝑁

𝛼=1

+ {∑(𝑥𝛼 − �̅�)

𝑁

𝛼=1

} (�̅� −  𝜇)′ 

                  +𝑁(�̅� −  𝜇)(�̅� −  𝜇)′ 

Since∑(𝑥𝛼 − �̅�)

𝑁

𝛼=1

= ∑𝑥𝛼

𝑁

𝛼=1

− 𝑁�̅� = 0 

Thus  ∑(𝑥𝛼 − 𝜇)(𝑥𝛼 −  𝜇)
′

𝑁

𝛼=1

= 𝐴 + 𝑁(�̅� −  𝜇)(�̅� −  𝜇)′ 

Where 

𝐴 = ∑(𝑥𝛼 − �̅�)(𝑥𝛼 − �̅�)
′

𝑁

𝛼=1

 

Putting this value in (2.2), we get 

∑(𝑥𝛼 − �̅�)
′Σ−1(𝑥𝛼 − �̅�)

𝑁

𝛼=1

= 𝑡𝑟[ Σ−1{𝐴 + 𝑁(�̅� −  𝜇)(�̅� −  𝜇)′}] 

⇒∑(𝑥𝛼 − �̅�)
′Σ−1(𝑥𝛼 − �̅�)

𝑁

𝛼=1

= 𝑁(�̅� −  𝜇)′ Σ−1(�̅� −  𝜇) + 𝑡𝑟  Σ−1𝐴 

Using the above equation, we get 

∏𝑓

𝑁

𝛼=1

(𝑥|𝜇, 𝛴) 

=
1

(2𝜋)𝑁𝑝/2|𝛴|
𝑁
2
  
𝑒𝑥𝑝 [−

1 

2
 {𝑁(�̅� −  𝜇)′ Σ−1(�̅� −  𝜇) + 𝑡𝑟  Σ−1𝐴}] 

=
1

(2𝜋)𝑁𝑝/2|𝛴|
𝑁
2
  
 𝑒𝑥𝑝 [−

𝑁

2
 (�̅� −  𝜇)′ Σ−1(�̅� −  𝜇)] 𝑒𝑥𝑝 [−

1 

2
 𝑡𝑟 (𝛴−1𝐴)] 



Using the factorization theorem, we observe that �̅� and (
1

𝑁
)𝐴 form the sufficient set of statistics 

for 𝜇 and Σ. However, if 𝜇 is known, then 
1

𝑁
∑ (𝑥𝛼 − 𝜇)(𝑥𝛼 −  𝜇)

′𝑁
𝛼=1  is a sufficient statistic for Σ. 

If Σ is known, then �̅�  is a sufficient statistic for 𝜇. 

2.5 Sample Multiple Correlation Coefficients 

  Sample Multiple Correlation Coefficient in multivariate analysis measures the strength of 

the relationship between multiple independent variables 𝑋 and a single dependent variable 𝑌. It 

indicates how well the independent variables collectively predict the dependent variable. In 

essence, it assesses the combined effect of multiple variables on a single outcome variable. 

2.5.1      Applications 

1. Predictive Modelling: It helps to evaluate the collective predictive power of multiple 

independent variables on a dependent variable. 

2. Feature Selection: In multiple regression, it is applied to identify the most important 

independent variables contributing to the dependent variable. 

3. Multivariate Analysis: It is used in techniques like multiple linear regression, principal 

component regression, and canonical correlation analysis. 

4. Data Reduction: It helps to select a subset of variables that capture most of the variation in the 

data. 

5. Inference: Make inferences about the population multiple correlation coefficient (𝜌) based on 

the sample estimate (sample multiple correlation coefficient). 

6. Comparison: Compare the strength of relationships between different sets of independent 

variables and a dependent variable. 

7. Identification of Relationships: Detect and quantify the relationships between multiple 

variables in various fields, such as social sciences, healthcare, and finance. 



8. Evaluation of Model Performance: Assess the goodness of fit of a model and compare the 

performance of different models. 

2.5.2      Advantages 

1. Measures Collective Impact: It evaluates the combined effect of multiple independent 

variables on a dependent variable. 

2. Identifies Strong Relationships: Helps to identify the independent variables that have a strong 

relationship with the dependent variable. 

3. Useful in Predictive Modelling: It is essential in building predictive models, such as multiple 

linear regression. 

4. Quantifies Correlation: Provides a numerical measure to quantify the strength of the 

relationship. 

5. Wide Applicability: Can be applied in various fields, including social sciences, healthcare, 

finance, and more. 

2.5.3     Disadvantages 

1. Assumes Linear Relationships: It assumes linear relationships between variables, which may 

not always be the case. 

2. Sensitive to Outliers: It can be affected by outliers or extreme values in the data. 

3. Does not Imply Causality: A high magnitude of multiple correlation coefficient does not imply 

causality between variables, but only correlation. 

4. Can be Influenced by Multicollinearity: It can be affected by multicollinearity among 

independent variables. 

5. Requires Large Samples: It requires a large sample size to produce reliable estimates. 

  



2.6 Sample Partial Correlation Coefficients 

  Sample Partial Correlation Coefficients in multivariate analysis measure the association 

between two variables while controlling for the effect of a set of controlling random variables. 

  In the case of variables 𝑋𝑖 , 𝑋𝑗 and 𝑋(2) = (𝑋𝑞+1, … , 𝑋𝑝)
′
, it examines the extent of the 

relationship between variables 𝑋𝑖 and 𝑋𝑗, after removing the effect of 𝑋(2). 

  The partial correlation coefficient between 𝑋𝑖 and 𝑋𝑗  (1 ≤ 𝑖, 𝑗 ≤ 𝑞) given 𝑋(2) is given by  

𝜌𝑖𝑗.𝑞+1,…,𝑝 =
𝜎𝑖𝑗.𝑞+1,…,𝑝

(𝜎𝑖𝑖.𝑞+1,…,𝑝)
1 2⁄
(𝜎𝑗𝑗.𝑞+1,…,𝑝)

1 2⁄
 

where, Σ11.2 = ((𝜎𝑖𝑗.𝑞+1,…,𝑝)). 

The maximum likelihood estimator of Σ is 

Σ̂ =
1

𝑁
∑(𝑋𝛼 − �̅�)

𝛼

(𝑋𝛼 − �̅�)
′ 

where, 𝑋 =
1

𝑁
∑ 𝑋𝛼
𝑁
𝛼=1 .  

The correspondence between Σ = (
Σ11 Σ12
Σ21 Σ22

) and (Σ11.2, 𝐵, Σ22) is 

Σ12 = 𝐵Σ22 

Σ11 = Σ11.2 + 𝐵Σ22𝐵
′ 

It follows that the maximum likelihood estimates of Σ11.2, 𝐵 and Σ22 are  

Σ̂11.2 = Σ̂11 − Σ̂12Σ̂22
−1Σ̂21;  

�̂� = Σ̂12Σ̂22
−1 

and Σ̂22.  



Hence MLE of 𝜌𝑖𝑗.𝑞+1,…,𝑝 is  

�̂�𝑖𝑗.𝑞+1,…,𝑝 =
�̂�𝑖𝑗.𝑞+1,…,𝑝

√�̂�𝑖𝑖.𝑞+1,…,𝑝. �̂�𝑗𝑗.𝑞+1,…,𝑝
(𝑖, 𝑗 = 1,2, … , 𝑞) 

where �̂�𝑖𝑗.𝑞+1,…,𝑝 is the (𝑖, 𝑗)𝑡ℎ element of Σ̂11.2. Let 

A=∑ (𝑋𝛼 − 𝑋)(𝑋𝛼 − 𝑋)
′

𝑁
𝛼=1 = (

A11 A12
A21 A22

) 

and 

𝐴11.2 = ((𝑎𝑖𝑗.𝑞+1…𝑝)) 

          = 𝐴11 − 𝐴12𝐴22
−1𝐴21 

Then  

�̂�𝑖𝑗.𝑞+1,…,𝑝 =
𝑎𝑖𝑗.𝑞+1,…,𝑝

√𝑎𝑖𝑖.𝑞+1,…,𝑝. 𝑎𝑗𝑗.𝑞+1,…,𝑝
 

                   = 𝑟𝑖𝑗.𝑞+1…𝑝 (say) 

The estimate 𝑟𝑖𝑗.𝑞+1…𝑝 is called the sample partial correlation coefficient between 𝑋𝑖  𝑎𝑛𝑑 𝑋𝑗 

holding 𝑋𝑞+1, … , 𝑋𝑝 fixed. 

2.6.1     Applications 

1. Control for Confounding Variables: In observational studies, it helps to control for the effect 

of confounding variables, allowing researchers to examine the relationship between two variables 

of interest while accounting for the impact of additional variables. 

2. Mediation Analysis: It is used to examine the relationship between two variables while 

adjusting for the effect of a mediating variable, helping to understand the underlying mechanisms 

and pathways. 



3. Identification of Unique Relationships: It helps identify the unique relationship between two 

variables, independent of the effect of other variables, which is essential in understanding complex 

systems and relationships. 

4. Data Reduction: It can be used to reduce data dimensionality by identifying the most important 

variables related to an outcome variable, while controlling for the effect of other variables. 

5. Path Analysis: It is used in path analysis to examine the direct and indirect relationships 

between variables, helping to understand the causal relationships and pathways. 

6. Structural Equation Modelling: The partial correlation coefficient is used in structural 

equation modelling to examine the relationships between latent variables while controlling for the 

effect of other variables. 

7. Feature Selection: It can be used to select the most relevant features (variables) related to an 

outcome variable while controlling for the effect of other variables. 

8. Causal Inference: It can be used to make causal inferences about the relationships between 

variables while controlling for the effect of other variables. 

2.6.2  Advantages 

1. Controls for Confounding Variables: It helps to isolate the relationship between two variables, 

controlling for the effect of additional variables. 

2. Identifies Unique Relationships: It reveals the unique relationship between two variables, 

independent of the effect of other variables. 

3. Handles Multiple Variables: It can handle multiple variables, allowing for the examination of 

complex relationships. 

4. Robust to Noise: It is robust to noise and outliers in the data. 

5. Wide Applicability: It can be applied in various fields, including social sciences, healthcare, 

finance, and more. 



2.6.3     Disadvantages 

1. Assumes Linear Relationships: It assumes linear relationships between variables, which may 

not always be the case. 

2. Sensitive to Multicollinearity: It can be affected by multicollinearity among independent 

variables. 

3. Requires Large Samples: It requires large sample sizes to produce reliable estimates. 

4. Difficult to Interpret: It can be challenging to interpret, especially for non-experts. 

5. Computer-Intensive: Its calculations can be computationally intensive, especially for large 

datasets. 

2.7     Regression Coefficient 

  In multivariate analysis, a regression coefficient (also known as a beta coefficient or 

parameter estimate) is a numerical value that represents the change in the dependent variable 

(outcome variable) in response to a unit change in an independent variable (predictor variable), 

while holding all other independent variables constant. 

Let 

𝑋 = [𝑋
(1)

𝑋(2)
]
𝑝−𝑞

𝑞

~𝑁((
𝜇(1)

𝜇(2)
) , (

Σ11 Σ12
Σ21 Σ22

)) 

Then 

 𝐸(𝑋(1)|𝑋(2)) = 𝜇(1) + 𝐵(𝑋(2) − 𝜇(2)) 

with 𝐵 = Σ12Σ22
−1. 𝐵 is the matrix of regression coefficients of 𝑋(1) on 𝑋(2) and its MLE is 

�̂� = Σ̂12Σ̂22
−1. 

The regression coefficients describe the relationship between each independent variable and the 

dependent variable, while controlling for the effects of all other independent variables in the model. 



For example, in a multiple linear regression model predicting stock prices (dependent variable) 

based on economic indicators (independent variables), a regression coefficient of 0.5 for the 

"GDP" variable means that for every one-unit increase in GDP, the stock price is expected to 

increase by 0.5 units, holding all other independent variables constant. 

Regression coefficients are essential in multivariate analysis because they help to 

1. Understand the relationships between variables 

2. Predict outcomes 

3. Identify important predictors 

4. Control for confounding variables 

2.7.1     Applications 

1. Prediction: Use regression coefficients to predict dependent variable values for new 

observations. 

2. Variable Selection: Identify significant predictors by examining the magnitude and significance 

of regression coefficients. 

3. Relationship Interpretation: Understand the direction and strength of relationships between 

independent variables and the dependent variable. 

4. Control for Confounding: Hold constant the effects of confounding variables to isolate the 

relationship between a specific independent variable and the dependent variable. 

5. Mediation Analysis: Examine the indirect effects of independent variables on the dependent 

variable through a mediator variable. 

6. Moderation Analysis: Investigate how the relationship between an independent variable and 

the dependent variable changes based on the level of a moderator variable. 

7. Path Analysis: Examine complex relationships between variables using regression coefficients 

to estimate path coefficients. 



8. Structural Equation Modelling: Use regression coefficients to estimate the relationships 

between latent variables and observed variables. 

9. Feature Selection: Select the most important independent variables based on the magnitude of 

their regression coefficients. 

10. Model Building: Use regression coefficients to develop and refine multivariate models that 

explain the relationships between variables. 

Regression Coefficients are Essential in Various Fields, Including: 

1. Business: Predict stock prices, sales, or customer behaviour. 

2. Healthcare: Analyse the relationship between health outcomes and risk factors. 

3. Social Sciences: Examine the relationships between social variables, such as crime rates and 

economic indicators. 

4. Marketing: Understand the impact of advertising on sales. 

5. Finance: Predict credit risk or stock performance. 

2.7.2      Advantages 

1. Quantifies Relationships: Regression coefficients provide a numerical measure of the strength 

and direction of relationships between variables. 

2. Controls for Confounding: Regression coefficients help in controlling the effects of 

confounding variables, allowing for a more accurate understanding of relationships. 

3. Predictive Power: Regression coefficients enable predictions of dependent variable values for 

new observations. 

4. Identifies Important Predictors: Regression coefficients help identify the most important 

independent variables contributing to the dependent variable. 



5. Flexibility: Regression coefficients can be used in various multivariate techniques, such as path 

analysis and structural equation modelling. 

6. Interpretability: Regression coefficients are easily interpretable, allowing for a clear 

understanding of relationships. 

7. Wide Applicability: Regression coefficients are widely used in various fields, including 

business, healthcare, social sciences, and more. 

2.7.3      Disadvantages 

1. Assumes Linear Relationships: Regression coefficients assume linear relationships between 

variables, which may not always be the case. 

2. Sensitive to Multicollinearity: Regression coefficients can be affected by multicollinearity 

among independent variables. 

3. Requires Large Samples: Regression coefficients require large sample sizes to produce reliable 

estimates. 

4. Can be Misleading: Regression coefficients can be misleading if the underlying assumptions 

are not met or if the model is poorly specified. 

5. Difficult to Interpret: Regression coefficients can be challenging to interpret in complex 

models or with non-significant results. 

6. Computer-Intensive: Regression coefficient calculations can be computationally intensive for 

large datasets. 

7. Assumes no Measurement Error: Regression coefficients assume no measurement error in the 

variables, which may not always be the case. 

2.8     Summary 



In this unit, we have covered the estimation of parameters of multivariate normal 

distribution using maximum likelihood estimation. The maximum likelihood estimation gives a 

unique and easy-to-determine solution in the case of multivariate normal distribution. 

2.9    Self-Assessment Exercises 

1. Let 𝑋𝛼; 𝛼 = 1,2, … , 𝑁 be 𝑝 component random sample from 𝑁(𝜇, Σ). Obtain of the 

maximum likelihood estimate of 𝜇 𝑎𝑛𝑑 Σ. 

2. Let 𝑋𝛼; (𝛼 = 1,2, … ,𝑁) be a i.i.d. random sample from 𝑁𝑝(𝜇, Σ). Obtain the M.L.E. of 𝜇 

when Σ is known. 

3. Let 𝑋𝛼; (𝛼 = 1,2, … ,𝑁) be a i.i.d. random sample from 𝑁𝑝(𝜇, Σ). Obtain the M.L.E. of Σ 

when 𝜇 is known. 

4. If 𝑎1𝑋1 + 𝑎2𝑋2 +⋯+ 𝑎𝑝𝑋𝑝 = 𝑘 (constant), then find 𝜌12.3,4,…,𝑝 and 𝑟1.2,3,…,𝑝 

5. Let 𝑋 be a random vector with the mean vector 𝜇 and dispersion matrix Σ. Using Markov’s 

inequality, show that 

        𝑃[(𝑋 − 𝜇)′Σ−1(𝑋 − 𝜇) > 𝜆] <
𝑝

𝜆
    for 𝜆 > 0 
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3.11  Further Readings 

3.1      Introduction 

Any function 𝑇(𝑋) of a random sample 𝑋 that does not depend on any unknown parameter, 

is called a Statistic. 

Since a statistic 𝑇(𝑋) is a function of 𝑋, it is a random variable with an associated 

probability distribution. 

The probability distribution of a statistic is called its sampling distribution. 

3.2 Objectives 

After studying this unit, you should be able to: 

• Define the correlation coefficients. 

• Calculate the multiple and partial correlation coefficients. 



• Describe the distribution of multiple correlation coefficients. 

• Describe the distribution of partial correlation coefficients. 

3.3 Distribution of the Matrix of Sample Regression Coefficients 

Theorem 3.3.1.: Let 𝑋1, 𝑋2, … , 𝑋𝑁 be independently distributed with 𝑋𝛼~𝑁𝑝(𝜇𝛼 , Σ). Let 𝐶 =

(𝐶𝛼𝛽) be 𝑁 × 𝑁 orthogonal matrix. Then 𝑦𝛼 = ∑ 𝐶𝛼𝛽𝑋𝛽
𝑁
𝛽=1  is distributed according to 𝑁(𝜃𝛼 , Σ), 

where 𝜃𝛼 = ∑ 𝐶𝛼𝛽𝜇𝛽
𝑁
𝛽=1  and 𝑦1, 𝑦2, … , 𝑦𝑁 are independently distributed. 

Proof: Since 𝑦𝛼 is a set of linear combinations of the components of {𝑋𝛼}, which have a joint 

normal distribution, the set of vectors {𝑦𝛼} have a joint normal distribution. The expected value 

of 𝑦𝛼 is  

𝐸(𝑦𝛼) = 𝐸 [∑𝐶𝛼𝛽𝑋𝛽

𝑁

𝛽=1

] = 𝜃𝛼 

𝑐𝑜𝑣 (𝑦𝛼 , 𝑦𝛾) = 𝐸(𝑦𝛼 − 𝜃𝛼)(𝑦𝛾 − 𝜃𝛾)
′
 

= 𝐸 [∑𝐶𝛼𝛽(𝑋𝛽 − 𝜇𝛽)

𝑁

𝛽=1

] [∑ 𝐶𝛾𝛽∗(𝑋𝛽∗ − 𝜇𝛽∗)
′

𝑁

𝛽∗=1

]

′

 

= ∑ ∑ 𝐶𝛼𝛽𝐶𝛾𝛽∗𝐸(𝑋𝛽 − 𝜇𝛽)(𝑋𝛽∗ − 𝜇𝛽∗)
′

𝑁

𝛽∗=1

𝑁

𝛽=1

 

Notice that 

𝐸(𝑋𝛽 − 𝜇𝛽)(𝑋𝛽∗ − 𝜇𝛽∗)
′
= {

Σ, if 𝛽 = 𝛽∗

0,   if 𝛽 ≠ 𝛽∗
 

                                               = 𝛿𝛽𝛽∗Σ 

where 𝛿𝛽𝛽∗ = 1 if 𝛽 = 𝛽
∗and 0 otherwise. 



Hence 

𝑐𝑜𝑣 (𝑦𝛼 , 𝑦𝛾) = ∑ ∑ 𝐶𝛼𝛽𝐶𝛾𝛽∗𝛿𝛽𝛽∗Σ

𝑁

𝛽∗=1

𝑁

𝛽=1

 

= (∑𝐶𝛼𝛽𝐶𝛾𝛽

𝑁

𝛽=1

)Σ 

Since C is an orthogonal matrix, ∑ 𝐶𝛼𝛽𝐶𝛾𝛽
𝑁
𝛽=1 = 1 if 𝛼 = 𝛾 and 0 if 𝛼 ≠ 𝛾. Therefore 

𝑐𝑜𝑣 (𝑦𝛼 , 𝑦𝛾) = 𝛿𝛼𝛾Σ 

Hence 𝑦𝛼 and 𝑦𝛾 are independent for 𝛼 ≠ 𝛾 and covariance matrix of 𝑦𝛼 is Σ. This implies that 

𝑦𝛼~𝑁(𝜃𝛼 , Σ) 

Let 𝐶 = ((𝐶𝛼𝛽)) be orthogonal and 𝑦𝛼 = ∑ 𝐶𝛼𝛽𝑋𝛽 ,
𝑁
𝛽=1  then 

∑𝑦𝛼𝑦𝛼
′ = ∑[∑𝐶𝛼𝛽𝑋𝛽∑𝐶𝛼𝛾𝑋𝛾

′

𝛾𝛽

]

𝛼

𝑁

𝛼=1

=∑(∑𝐶𝛼𝛽𝐶𝛼𝛾
𝛼

)

𝛽,𝛾

𝑋𝛽𝑋𝛾
′  

                 =  ∑𝛿𝛽𝛾𝑋𝛽𝑋𝛾
′

𝛽,𝛾

=∑𝑋𝛽𝑋𝛽
′

𝛽

 

Hence ∑ 𝑦𝛼𝑦𝛼
′ =𝑁

𝛼=1 ∑ 𝑋𝛼𝑋𝛼
′𝑁

𝛼=1  

Theorem 3.3.2.: The mean of a sample of size N from 𝑁(𝜇, 𝛴) is distributed according to 𝑁(𝜇, 1
𝑁
Σ) 

and independent of Σ̂. Further, NΣ̂ is distributed as ∑ 𝑍𝛼𝑍𝛼
′𝑁−1

𝛼=1  where 𝑍𝛼 is distributed according 

to 𝑁(0, 𝛴) independently of 𝑍𝛽(𝛼 ≠ 𝛽). 

Proof: There exists as 𝑁 × 𝑁 orthogonal matrix 𝐶 = ((𝐶𝛼𝛽)) with the last row ( 1

√𝑁
, 1
√𝑁
, … , 1

√𝑁
). 

Define 



𝑍𝛼 =∑𝐶𝛼𝛽𝑋𝛽
𝛽

 

Then 

𝑍𝑁 =∑
1

√𝑁
𝑋𝛽

𝛽

 

= √𝑁𝑋 

𝐴 = ∑𝑋𝛼𝑋𝛼
′ −𝑁 𝑋 𝑋

′
𝑁

𝛼=1

 

= ∑𝑍𝛼𝑍𝛼
′ − 𝑍𝑁𝑍𝑁

′

𝑁

𝛼=1

 

= ∑𝑍𝛼𝑍𝛼
′

𝑁−1

𝛼=1

 

Since, 𝑍𝑁 is independent of 𝑍1, … , 𝑍𝑁−1, this implies that 𝑋 is independent of A. 

𝐸𝑍𝑁 = √𝑁𝜇 

𝐸(𝑍𝑁 − √𝑁𝜇)(𝑍𝑁 − √𝑁𝜇)
′
= Σ 

Hence 𝑍𝑁~𝑁(√𝑁𝜇, Σ) and 𝑋 = (
1

√𝑁
)𝑍𝑁~𝑁(𝜇,

1

N
Σ) 

Further ∀𝛼 ≠ 𝑁 

𝐸𝑍𝛼 =∑𝐶𝛼𝛽𝐸𝑋𝛽
𝛽

 

=∑𝐶𝛼𝛽𝜇

𝛽

 



= (∑𝐶𝛼𝛽𝐶𝑁𝛽
𝛽

)√𝑁𝜇 

= 0 

Hence 𝐴 is distributed according to ∑ 𝑍𝛼𝑍𝛼
′𝑁−1

𝛼=1 , where 𝑍𝛼~𝑁(0, 𝛴). Then 

𝐸(Σ̂) =
1

𝑁
𝐸 (∑ 𝑍𝛼𝑍𝛼

′

𝑁−1

𝛼=1

) 

=
𝑁 − 1

𝑁
Σ 

Hence Σ̂ is a biased estimator of Σ. We shall, therefore, define  

𝑆 =
1

𝑁 − 1
𝐴 

    =
1

𝑁 − 1
∑(𝑋𝛼 − 𝑋)(𝑋𝛼 − 𝑋)

′
𝑁

𝛼=1

 

as the sample covariance matrix. It is an unbiased estimator of Σ.  

Now, the likelihood function of 𝑋1, … , 𝑋𝑁 can be written as 

1

(2𝜋)
𝑁
2 |Σ|

𝑁
2

 𝑒𝑥𝑝 [−
1

2
∑(𝑋𝛼 − 𝜇)

′Σ−1(𝑋𝛼 − 𝜇)

𝑁

𝛼=1

] 

=
1

(2𝜋)
𝑁
2 |Σ|

𝑁
2

  𝑒𝑥𝑝 [−
1

2
{𝑁(𝑋 − 𝜇)

′
Σ−1(𝑋 − 𝜇) + 𝑡𝑟(Σ−1𝐴)}] 

Using the factorization theorem, we observe that 𝑋 and (
1

𝑁
)𝐴 form a sufficient set of statistics for 

𝜇 and Σ. However, if 𝜇 is known (
1

𝑁
)∑ (𝑋𝛼 − 𝜇)(𝑋𝛼 − 𝜇)

′𝑁
𝛼=1  is a sufficient statistic for Σ. 

 



3.4    Distribution of Sample Correlation Coefficients 

  If 𝑋~𝑁𝑝(𝑋|𝜇, Σ) then the conditional distribution of sub-vector 𝑋(1) given 𝑋(2) is 

𝑁(𝜇(1) + 𝐵(𝑋(2) − 𝜇(2)), Σ11.2), with 

𝐵 = Σ12Σ22
−1 

Σ11.2 = Σ11 − Σ12Σ22
−1Σ21 

Multiple Correlation Coefficients 

 For the sake of convenience, we will treat the case of multiple correlation coefficients between 

𝑋1 and the set 𝑋2, … , 𝑋𝑝. Let 𝑅 denotes the population multiple correlation coefficient between 𝑋1 

and 𝑋2, … , 𝑋𝑝. Then 

𝑅 = 𝜌1.2,3…,𝑝 =
𝛽Σ22𝛽

′

√𝜎11𝛽Σ22𝛽′
= √

𝛽Σ22𝛽′

𝜎11
= √

𝜎(1)Σ22
−1𝜎(1)

′

𝜎11
 

where 

Σ = (
𝜎11 𝜎(1)
𝜎(1)
′ Σ22

) 

The sample multiple correlation coefficients between 𝑋1 and the set 𝑋2, … , 𝑋𝑝 is 

𝑅 = √
�̂�Σ̂22�̂�′

�̂�11
= √

�̂�(1)Σ̂22
−1�̂�(1)

′

�̂�11
= √

𝑎(1)𝐴22
−1𝑎(1)

′

𝑎11
 

where 

�̂� = �̂�(1)Σ̂22
−1 

=
𝑎(1)

𝑁
(
𝐴22
𝑁
)
−1

 

= 𝑎(1)𝐴22
−1 



Σ̂ =
1

𝑁
𝐴 = (

�̂�11 �̂�(1)

�̂�(1)
′ Σ̂22

)  

𝐴 = (
𝑎11 𝑎(1)
𝑎(1)
′ 𝐴22

) 

Since we can define 𝑅, 𝜎(1), Σ22 as a one-to-one transformation of Σ, 𝑅 is the MLE of 𝑅. 

Further, we obtain  

1 − 𝑅2 = 1 −
𝑎(1)𝐴22

−1𝑎(1)
′

𝑎11
 

              =
𝑎11 − 𝑎(1)𝐴22

−1𝑎(1)
′

𝑎11
 

              =
|𝑎11 − 𝑎(1)𝐴22

−1𝑎(1)
′ ||𝐴22|

𝑎11|𝐴22|
 

              =
|𝐴|

𝑎11|𝐴22|
 

Result: Determinant of partitioned matrix: 

|𝐴| = |
𝐴11 𝐴12
𝐴21 𝐴22

| 

       = |𝐴11||𝐴22 − 𝐴21𝐴11
−1𝐴12| 

       = |𝐴22||𝐴11 − 𝐴12𝐴22
−1𝐴21| 

Proof: We have 

𝐴 = [
𝐴11 𝐴12
𝐴21 𝐴22

] 

     = [
𝐴11 0
𝐴21 𝐼

] [
𝐼 𝐴11

−1𝐴12
0 𝐴22 − 𝐴21𝐴11

−1𝐴12
] 



     = [
𝐼 𝐴21
0 𝐴22

] [
𝐴11 − 𝐴12𝐴22

−1𝐴21 0

𝐴22
−1𝐴21 𝐼

] 

    = [𝐴22][𝐴11 − 𝐴12𝐴22
−1𝐴21] 

Taking determinant, we have  

|𝐴| = |𝐴22||𝐴11 − 𝐴12𝐴22
−1𝐴21| 

Note: R and �̂� have the same properties in the sample that 𝑅 and 𝛽 have in the population.  

Result: Among all (𝑝 − 1) component row vectors 𝑑 defining linear combination 𝑑𝑋𝛼
(2)

 of the 

components of 𝑋𝛼
(2)

 the vector 𝑑 = �̂� is the one that minimizes  

∑[(𝑋1𝛼 − 𝑋1) − 𝑑 (𝑋𝛼
(2) − 𝑋

(2)
)]
2

𝑁

𝛼=1

 

Proof: Since �̂� = 𝑎(1)𝐴22
−1 

∑[(𝑋1𝛼 − 𝑋1) − 𝑑 (𝑋𝛼
(2) − 𝑋

(2)
)]
2

𝑁

𝛼=1

 

=∑[(𝑋1𝛼 − 𝑋1) − �̂� (𝑋𝛼
(2) − 𝑋

(2)
)]
2

+ (�̂� − 𝑑)𝐴22(�̂� − 𝑑) 

≥∑[(𝑋1𝛼 − 𝑋1) − �̂� (𝑋𝛼
(2) − 𝑋

(2)
)]
2

 

The equality occurs when (�̂� − 𝑑)𝐴22(�̂� − 𝑑), i.e., when 𝑑 = �̂� = 𝑎(1)𝐴22
−1. 

Since 

∑[(𝑋1𝛼 − 𝑋1) − �̂� (𝑋𝛼
(2) − 𝑋

(2)
)] (𝑋𝛼

(2) − 𝑋
(2)
)
′

𝑁

𝛼=1

 

= 𝑎(1) − �̂�𝐴22 = 0 



Hence the minimum value is 

∑[(𝑋1𝛼 − 𝑋1) − �̂� (𝑋𝛼
(2) − 𝑋

(2)
)]
2

 

= 𝑎11 − 𝑎(1)𝐴22
−1𝑎(1)

′ = 𝑎11.2. 

3.5 Distribution of the Sample Multiple Correlation Coefficient 

 The Distribution of the Sample Multiple Correlation Coefficient when the population multiple 

correlation coefficient is zero. 

The sample multiple correlation coefficients between 𝑋1 and the set 𝑋2, … , 𝑋𝑝 is 

𝑅2 =
𝑎(1)𝐴22

−1𝑎(1)
′

𝑎11
 

and 

1 − 𝑅2 =
𝑎11 − 𝑎(1)𝐴22

−1𝑎(1)
′

𝑎11
 

              =
𝑎11.2
𝑎11

 

Therefore 

𝑅2

1 − 𝑅2
 

=
𝑎(1)𝐴22

−1𝑎(1)
′

𝑎11
(
𝑎11 − 𝑎(1)𝐴22

−1𝑎(1)
′

𝑎11
)

−1

 

=
𝑎(1)𝐴22

−1𝑎(1)
′

𝑎11 − 𝑎(1)𝐴22
−1𝑎(1)

′  

=
𝑎(1)𝐴22

−1𝑎(1)
′

𝑎11.2
 

Theorem 3.3.3: If 𝑅 = 0 , 𝑖. 𝑒. , (𝜎12, … , 𝜎1𝑝)
′
= 𝜎(1) = 0 = 𝛽, then 

(𝑁−𝑝)𝑅2

(𝑝−1)(1−𝑅2)
 is distributed as 𝐹 

with (𝑝 − 1) and (𝑁 − 𝑝) degrees of freedom. 



Proof: If 𝑦𝛼~𝑁(Γ𝑤𝛼 , Φ), 𝐺 = 𝑌𝐻
−1, 𝐻 = ∑ 𝑤𝛼𝑤𝛼

′𝑚
𝛼=1 , then ∑ 𝑦𝛼𝑦𝛼

′𝑚
𝛼=1 − 𝐺𝐻𝐺′ is distributed as 

∑ 𝑈𝛼𝑈𝛼
′𝑚−𝑟

𝛼=1  where 𝑈𝛼 ~𝑁(0,Φ). 

If Γ = 0, 𝐺𝐻𝐺′ is distributed as ∑ 𝑈𝛼𝑈𝛼
′𝑚

𝛼=𝑚−𝑟+1 . 

When 𝛽 = 0, i.e., 𝑅 = 0,  𝑎11.2 = 𝑎11 − 𝑎(1)𝐴22
−1𝑎(1)

′  is distributed as ∑ 𝑉𝛼
2𝑁−𝑝

𝛼=1  and 𝑎(1)𝐴22
−1𝑎(1)

′  is 

distributed as∑ 𝑉𝛼
2𝑁−1

𝛼=𝑁−𝑝+1 , where 𝑉𝛼 are independent, each with distribution 𝑁(0, 𝜎11).  

Then 

𝑎11.2
𝜎11

~𝜒𝑁−𝑝
2  

Consider 

𝑎11
𝜎11

=
𝑎11 − 𝑎(1)𝐴22

−1𝑎(1)
′

𝜎11
+
𝑎(1)𝐴22

−1𝑎(1)
′

𝜎11
 

or 

𝑄 = 𝑄1 + 𝑄2 

where 

𝑄~𝜒𝑁−1
2  

and 

𝑄1~𝜒𝑁−𝑝
2  

From the Fisher Cochran Theorem 𝑄2 is independently distributed of 𝑄1 and follows 𝜒𝑁−1−𝑁+𝑝
2 . 

Hence 

𝑎(1)𝐴22
−1𝑎(1)

′

𝜎11
~𝜒𝑝−1

2  



Since 
𝑎11.2

𝜎11
 and 

𝑎(1)𝐴22
−1𝑎(1)

′

𝜎11
 are independently distributed, we have 

𝐹 =
𝑅2

1 − 𝑅2
×
𝑁 − 𝑝

𝑝 − 1
 

    =

𝑎(1)𝐴22
−1𝑎(1)

′

𝜎11
𝑎11.2
𝜎11

×
𝑁 − 𝑝

𝑝 − 1
 

   =
𝜒𝑝−1
2

𝜒𝑁−𝑝
2 ×

𝑁 − 𝑝

𝑝 − 1
 

   ~𝐹𝑝−1,𝑁−𝑝 

The p.d.f. of the statistic 𝐹 is 

𝑓(𝐹) =
(
𝜈1
ν2
)

𝜈1
2
 𝐹
𝜈1
2
−1

𝐵 (
𝜈1
2 ,
ν2
2 ) (1 +

𝜈1
ν2
𝐹)

𝜈1+ν2
2

  

Substituting 

𝜈1 = 𝑝 − 1, 

𝜈2 = 𝑁 − 𝑝, 

𝐹 =
𝑅2

1 − 𝑅2
(
𝜈2
𝜈1
)  

and observing that 

𝑑𝐹

𝑑𝑅2
=

1

(1 − 𝑅2)2
(
𝜈2
𝜈1
) 

we get the pdf of 𝑅2 as 



𝑔𝑅2(𝑟
2) =

(
𝜈1
ν2
)

𝜈1
2
 {

𝑟2

1 − 𝑟2
(
𝜈2
𝜈1
)}

𝜈1
2
−1

𝐵 (
𝜈1
2 ,
ν2
2 ) (1 +

𝑟2

1 − 𝑟2
)

𝜈1+ν2
2

× 
1

(1 − 𝑟2)2
(
𝜈2
𝜈1
) 

            =
(
𝜈1
ν2
)

𝜈1
2
−
𝜈1
2
+1−1

 (
𝑅2

1 − 𝑅2
)

𝜈1
2
−1

𝐵 (
𝜈1
2 ,
ν2
2 ) (

1
1 − 𝑅2

)

𝜈1+ν2
2

× 
1

(1 − 𝑅2)2
 

            =
 (𝑅2)

𝜈1
2
−1(1 − 𝑅2)

𝜈1+ν2
2

−
𝜈1
2
+1−2

𝐵 (
𝜈1
2 ,
ν2
2 )

   

            =
 (𝑅2)

𝜈1
2
−1(1 − 𝑅2)

ν2
2
−1

𝐵 (
𝜈1
2 ,
ν2
2 )

   

Putting 
𝑑𝑅2

𝑑𝑅
= 2𝑅 , we get the pdf of 𝑅 as 

𝑔𝑅(𝑟) =
 2(𝑟)𝜈1−1(1 − 𝑟2)

ν2
2
−1

𝐵 (
𝜈1
2 ,
ν2
2 )

 

or 

𝑔𝑅(𝑟) =
2(𝑟)𝑝−2(1 − 𝑟2)

𝑁−𝑝−2
2

𝐵 (
𝑝 − 1
2 ,

𝑁 − 𝑝
2 )

. 

Note: If 𝑅 ≠ 0, the distribution of 𝑅 is much more difficult to derive. 

Example: Derive the coefficient of correlation of bivariate case from the multiple correlation 

coefficient. Solution: Let the predictor variable be 𝑋 and the response variable be 𝑌. Then, we have  

Σ = [
𝜎𝑋
2 𝜌 𝜎𝑋𝜎𝑌

𝜌 𝜎𝑋𝜎𝑌 𝜎𝑌
2 ] 

where 𝜎𝑋 and 𝜎𝑌 be variances of 𝑋 and 𝑌 and the correlation coefficient between them be 𝜌. 



Then 

𝑉𝑎𝑟(𝑌|𝑋) = 𝜎𝑌
2(1 − 𝜌2), 

𝑅𝑋𝑌
2 =

𝜎𝑌
2 − 𝜎𝑌

2(1 − 𝜌2)

𝜎𝑌
2  

        = 𝜌2 

and hence 

𝑅 = |𝜌| 

Example: Consider the mean vector be 𝜇𝑋 = [
3
−2
] and 𝜇𝑌 = 4 and the variance-covariance 

matrices are 

Σ𝑋𝑋 = [
2 1
1 1

] , 𝜎𝑌𝑌 = 9 , 𝜎𝑋𝑌 = [
3
1
] 

i) Fit the equation 𝑌 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 as best linear equation 

ii) Find the multiple correlation coefficient 

iii) Also obtain the mhe mean square error. 

Solution: (i) 

𝑏 = Σ𝑋𝑋
−1 𝜎𝑋𝑌 

    = [
2 1
1 1

]
−1

[
3
1
] 

    = [
1 −1
−1 2

] [
3
1
] 

    = [
2
−1
] 

𝑏0 = 𝜇𝑌 − 𝑏
′𝜇𝑋 

     = 4 − [2 −1] [
3
−2
] 

     = 4 − 8 

     = −4 



Therefore, 

𝑌 = 𝑏0 + 𝑏
′𝑋 

    = −4 + 2𝑋1_𝑋2 

(ii) The multiple correlation coefficient is 

𝑅2 =
𝜎𝑋𝑌
′ Σ𝑋𝑋

−1 𝜎𝑋𝑌
 𝜎𝑌𝑌

 

      =
[3 1] [

2 1
1 1

]
−1

[
3
1
]

9
 

      =
1

9
[[3 1] [

2 1
1 1

]
−1

[
3
1
]] 

      =
1

9
[[3 1] [

2
−1
]] 

      =
5

9
 

⇒ 𝑅 = √
5

9
= 0.75 

(iii) The mean square error is 

𝑀. 𝑆. 𝐸.= 𝜎𝑌𝑌(1 − 𝑅
2) 

               = 9 (1 −
5

9
) 

               = 4 

⇒ 𝑀. 𝑆. 𝐸. = 4 

Likelihood Ratio Criteria 



Now we derive the likelihood ratio test of testing the hypothesis 𝐻0: 𝑅 = 0. Since 𝑅 ≥ 0, the 

alternative hypothesis is 𝐻1: 𝑅 > 0.  

𝑅 = √
𝜎(1)Σ22

−1𝜎(1)
′

𝜎11
= 0 

⟺ 𝜎(1)Σ22
−1𝜎(1)

′ = 0 

⟺ 𝜎(1) = 0 

Ω: parameter space 

𝜔: region in the parameter space specified by 𝐻0 

The likelihood function is 

𝐿(𝜇, Σ) =
1

(2𝜋)
1
2𝑝𝑁|Σ|

1
2𝑁
exp [−

1

2
∑(𝑋𝛼 − 𝜇)

′

𝛼

Σ−1(𝑋𝛼 − 𝜇)] 

We compute 

𝜆 =
𝑚𝑎𝑥(𝜇,Σ)∈𝜔𝐿(𝜇, Σ)

𝑚𝑎𝑥(𝜇,Σ)∈Ω𝐿(𝜇, Σ)
 

The likelihood ratio criterion is that if 𝜆 ≤ 𝜆0, 𝜆0 is some specified value, then we reject the 

hypothesis 𝐻0. 

Now, Maximum of 𝐿(𝜇, Σ) over Ω occurs is 

𝐿(𝜇, Σ) =
1

(2𝜋)
1
2𝑝𝑁 |

A
N|

1
2𝑁
exp [−

1

2
∑(𝑋𝛼 − �̅�)

′

𝛼

(
A

N
)
−1

(𝑋𝛼 − �̅�)] 

𝐿(𝜇, Σ) =
|N|

1
2
𝑁

(2𝜋)
1
2
𝑝𝑁|A|

1
2
𝑁
𝑒𝑥𝑝 [−

1

2
𝑡𝑟 (

A

N
)
−1

 ∑(𝑋𝛼 − �̅�)
′

𝛼

(𝑋𝛼 − �̅�)] 

𝜇∗ = 𝑋, 



Σ∗ = (
1

𝑁
)𝐴 

      =
1

𝑁
∑(𝑋𝛼 − �̅�)

𝛼

(𝑋𝛼 − �̅�)
′ 

and 

𝑚𝑎𝑥𝜇∗,Σ∗∈Ω𝐿(𝜇
∗, Σ∗) =

𝑁
1
2𝑝𝑁𝑒−

1
2𝑝𝑁

(2𝜋)
1
2𝑝𝑁|𝐴|

1
2𝑁

 

In region 𝜔, Σ = (
𝜎11 0
0 Σ22

) and the likelihood function is 

𝐿(𝜇∗, Σ∗|𝜎(1)
∗ = 0) 

=
1

(2𝜋)
1
2
𝑁𝜎11

∗
1
2
𝑁
exp [−

1

2𝜎11
∗ ∑(𝑋1𝛼 − 𝜇1

∗)2
] 

     ×
1

(2𝜋)
1
2
(𝑝−1)𝑁|Σ22|

1
2
𝑁
exp [−

1

2
∑(𝑋𝛼

(2) − 𝜇(2))
′
Σ22
−1(𝑋𝛼

(2) − 𝜇(2))

𝛼

] 

The first factor is maximized at 𝜇1
∗ = 𝑋1 𝑎𝑛𝑑 𝜎11

∗ =
1

𝑁
𝑎11, and the second factor is maximised 

when 𝜇(2) = 𝑋
(2)
, Σ22 =

1

𝑁
𝐴22. The maximized function is 

𝑚𝑎𝑥𝜇∗,Σ∗∈ω𝐿(𝜇
∗, Σ∗) =

𝑁
1
2𝑁𝑒− 

1
2𝑁

(2𝜋)
1
2𝑁𝑎11

1
2𝑁
×
𝑁
1
2
(𝑝−1)𝑁𝑒− 

1
2
(𝑝−1)𝑁

(2𝜋)
1
2(𝑝−1)𝑁|𝐴22|

1
2𝑁

 

The ratio 

𝜆 =
|𝐴|

1
2𝑁

|𝑎11|
1
2𝑁|𝐴22|

1
2𝑁

 

⇒ 𝜆
(
2
𝑁
)
=

|𝐴|

|𝑎11||𝐴22|
= 1 − 𝑅2 



The Critical region is 𝜆 < 𝜆0 where 𝜆0 is chosen so that 

𝑃(𝜆 < 𝜆0|𝐻0) = 𝛼. 

It is clear that an equivalent test is 

𝜆
2
𝑁 < 𝜆0

2
𝑁 

⇒   1 − 𝜆
2
𝑁 = 𝑅2 > 1 − 𝜆0

2
𝑁 = 𝑅0

2 

Since  

𝐹 =
𝑅2

1 − 𝑅2
 ×  

𝑁 − 𝑝

𝑝 − 1
, 

we have 

𝑅2

1 − 𝑅2
 ×  

𝑁 − 𝑝

𝑝 − 1
>

𝑅0
2

1 − 𝑅0
2  ×  

𝑁 − 𝑝

𝑝 − 1
 

⇒ 𝐹 > 𝐹𝑝−1,𝑁−𝑝(𝛼) 

𝐹 is a monotone increasing function of 𝑅2, an equivalent test is  

If 𝐹 > 𝐹𝑝−1,𝑁−𝑝(𝛼)                 reject 𝐻0 

where 𝐹𝑝−1,𝑁−𝑝(𝛼) is chosen so that 𝛼 = 𝑃(𝐹 > 𝐹𝑝−1,𝑁−𝑝(𝛼)|𝐻0). 

3.6     Distribution of Sample Partial Correlation Coefficient 

  For finding the distribution of sample partial correlation coefficient, we shall use the 

following result. 

Theorem 3.3.4.: Suppose 𝑦1, 𝑦2, … , 𝑦𝑚 are independent with 𝑦𝛼~𝑁(Γ𝑤𝛼 , Φ), where 𝑤𝛼 is an 

𝑟 × 1 vector. Let  



𝐺 =∑𝑦𝛼𝑤𝛼
′𝐻−1

𝛼

 

     = 𝑌𝑊′𝐻−1 

where 

𝐻 = ∑ 𝑤𝛼𝑤𝛼
′𝑚

𝛼=1  ; {𝑌 = (𝑦1, … , 𝑦𝑚): 𝑝 × 𝑚,𝑊 = (𝑤1, … , 𝑤𝑚): 𝑟 × 𝑚} 

is non-singular. Then ∑ 𝑦𝛼𝑦𝛼
′ − 𝐺𝐻𝐺′𝑚

𝛼=1  is distributed as ∑ 𝑈𝛼𝑈𝛼
′𝑚−𝑟

𝛼=1  where 𝑈𝛼 are independently 

distributed each according to 𝑁(0,Φ) and independently of G. 

Proof: Let 𝑊 = (𝑤1, 𝑤2, … , 𝑤𝑚). There exists a non-singular square matrix 𝐹 such that 

𝐹𝐻𝐹′ = 𝐼  

or 𝐹′−1𝐻−1𝐹−1 = 𝐼 

Further, let 𝑃2 = 𝐹𝑊, then 

𝑃2𝑃2
′ = 𝐹𝑊𝑊′𝐹′ 

          = 𝐹∑𝑤𝛼𝑤𝛼
′𝐹′

𝑚

𝛼=1

 

          = 𝐹𝐻𝐹′  = 𝐼 

Thus 𝑚 component rows of 𝑃2 are orthogonal and of unit length. It is possible to find a (𝑚 −

𝑟)  ×  𝑚 matrix 𝑃1 such that 

𝑃 = (
𝑃1
𝑃2
) 

is orthogonal. Let 𝑈 = 𝑌𝑃′ or 𝑌 =  𝑈𝑃. Then columns of 𝑈, say 𝑈𝛼, are independently and 

normally distributed, each with covariance matrix 𝛷. The means are given by 

𝐸𝑈 = 𝐸(𝑌𝑃′) 

       = Γ𝑊𝑃′ 

       = Γ𝐹−1𝑃2(𝑃1
′ 𝑃2

′) 



       = (0 Γ𝐹−1) 

Now 

∑𝑦𝛼𝑦𝛼
′

𝑚

𝛼=1

= ∑𝑈𝛼𝑈𝛼
′

𝑚

𝛼=1

 

𝐺𝐻𝐺′ = (𝑌𝑊′𝐻−1)𝐻(𝑌𝑊′𝐻−1)′ 

            = 𝑌𝑊′𝐻−1𝑊𝑌′ 

            = 𝑈𝑃𝑃2
′(𝐹−1)′𝐻−1𝐹−1𝑃2𝑃

′ 

            = 𝑈 (
𝑃1
𝑃2
)𝑃2

′(𝐹−1)′𝐻−1𝐹−1𝑃2(𝑃1
′ 𝑃2

′)𝑈′ 

            = 𝑈 (
0
𝐼
) (𝐹−1)′𝐻−1𝐹−1(0 𝐼)𝑈′ 

Since 𝐹𝐻𝐹′ = 𝐼,we have  {(𝐹−1)′𝐻−1𝐹−1 = 𝐼}. Hence 

𝐺𝐻𝐺′ = 𝑈 (
0
𝐼
) (0 𝐼)𝑈′ 

            = ∑ 𝑈𝛼𝑈𝛼
′

𝑚

𝛼=𝑚−𝑟+1

 

Thus 

∑𝑦𝛼𝑦𝛼
′

𝑚

𝛼=1

− 𝐺𝐻𝐺′ = ∑ 𝑈𝛼𝑈𝛼
′

𝑚−𝑟

𝛼=1

 

𝑈𝛼 ~𝑁(0,Φ)            ∀𝛼 = 1,2, … ,𝑚 − 𝑟 

Hence ∑ 𝑦𝛼𝑦𝛼
′𝑚

𝛼=1 − 𝐺𝐻𝐺′ is distributed as ∑ 𝑈𝛼𝑈𝛼
′𝑚−𝑟

𝛼=1  where 𝑈𝛼 ~𝑁(0,Φ). 

If 𝛤 = 0, then 𝐸𝑈 = 0. Hence the matrix 𝐺𝐻𝐺′is distributed as ∑ 𝑈𝛼𝑈𝛼
′𝑚

𝛼=𝑚−𝑟+1 , where the 𝑈𝛼 

are independently distributed, each according to 𝑁(0,Φ). 



We obtain the distribution of 𝐴11.2 in the following theorem. 

Theorem 3.3.5.: The matrix 𝐴11.2 = 𝐴11 − 𝐴12𝐴22
−1𝐴21 is distributed as ∑ 𝑈𝛼𝑈𝛼

′𝑁−1−(𝑝−𝑞)
𝛼=1 , where 

𝑈𝛼 are independently distributed, each according to 𝑁(0, Σ11.2). If Σ12 = 0 then 𝐴12𝐴22
−1𝐴21 is 

distributed as ∑ 𝑈𝛼𝑈𝛼
′𝑁−1

𝛼=𝑁−(𝑝−𝑞) , . 

Proof: Now 𝐴 is distributed as ∑ 𝑍𝛼𝑍𝛼
′𝑁−1

𝛼=1 , where 𝑍𝛼 are independent, each with distribution 

𝑁(0, 𝛴). 

Let 

𝑍𝛼 = (
𝑍𝛼
(1)

𝑍𝛼
(2)
)

𝑞
𝑝 − 𝑞 

The conditional density of 𝑍𝛼
(1)

 given 𝑍𝛼
(2)

 is 𝑁(𝐵𝑍𝛼
(2)
, Σ11.2). 

Now we apply the previous theorem with 

𝑍𝛼
(1) = 𝑦𝛼 , 𝑍𝛼

(2) = 𝑤𝛼 , 

 𝑁 − 1 =  𝑚, 𝑝 − 𝑞 =  𝑟 

𝐵 = Γ, 

 Σ11.2 = Φ, 

𝐴11 =∑𝑦𝛼𝑦𝛼
′ , 

𝐴12𝐴22
−1 = 𝐺,              

𝐴22 = 𝐻.  

We find the conditional distribution of 𝐴11 − (𝐴12𝐴22
−1)𝐴22(𝐴22

−1𝐴12
′) =  𝐴11.2 given 𝑍𝛼

(2)
 as that 

of ∑ 𝑈𝛼𝑈𝛼
′𝑁−1−(𝑝−𝑞)

𝛼=1  where 𝑈𝛼 are independent, each with distribution 𝑁(0, Σ11.2). 

If Σ12 = 0 ⇒ 𝐵 = 0, then 𝐴11.2 is distributed as ∑ 𝑈𝛼𝑈𝛼
′𝑁−1−(𝑝−𝑞)

𝛼=1  and 𝐴12𝐴22
−1𝐴21 is distributed 

as ∑ 𝑈𝛼𝑈𝛼
′𝑁−1

𝛼=𝑁−(𝑝−𝑞) . 



It follows that the distribution of 𝑟𝑖𝑗.𝑞+1,…,𝑝 based on 𝑁 observations is the same as an ordinary 

correlation coefficient based on 𝑁 − (𝑝 − 𝑞) observations with a corresponding population 

correlation value 𝜌𝑖𝑗.𝑞+1,…,𝑝. 

If the cdf of 𝑟𝑖𝑗 is 𝐹(𝑟|𝑁, 𝜌𝑖𝑗) then the cdf of 𝑟𝑖𝑗.𝑞+1,…,𝑝(1 ≤ 𝑖, 𝑗 ≤ 𝑞) is  

𝐹(𝑟|𝑁 − (𝑝 − 𝑞), 𝜌𝑖𝑗.𝑞+1,…,𝑝). 

Here 𝑟𝑖𝑗 and 𝑟𝑖𝑗.𝑞+1,…,𝑝 are based on sample of size 𝑁 from a normal distribution. 

Example: If all the correlation coefficients in a 𝑝-variate normal distribution are equal to 𝜌 ≠ 0, 

show that 

𝜌 ≥ − 
1

𝑝 − 1
 

Solution: Given that 

𝜌𝑖𝑗 = 𝜌 ,       𝑖, 𝑗 = 1,2, … , 𝑝 ; 𝑖 ≠ 𝑗, 

we have 

𝜌𝑖𝑗.𝑘 =
𝜎𝑖𝑗 − 𝜎𝑖𝑘𝜎𝑘𝑘

−1𝜎𝑗𝑘

(𝜎𝑖𝑖 − 𝜎𝑖𝑘𝜎𝑘𝑘
−1𝜎𝑖𝑘)1 2⁄ (𝜎𝑗𝑗 − 𝜎𝑗𝑘𝜎𝑘𝑘

−1𝜎𝑗𝑘)
1 2⁄

 

          =
𝜎𝑖𝜎𝑗𝜌𝑖𝑗 − 𝜎𝑖𝜎𝑘𝜌𝑖𝑘(𝜎𝑘𝜎𝑘)

−1𝜎𝑗𝜎𝑘𝜌𝑗𝑘

{𝜎𝑖𝑖 − 𝜎𝑖𝜎𝑘𝜌𝑖𝑘(𝜎𝑘𝜎𝑘)−1𝜎𝑖𝜎𝑘𝜌𝑖𝑘}1 2⁄ {𝜎𝑗𝑗 − 𝜎𝑗𝜎𝑘𝜌𝑗𝑘(𝜎𝑘𝜎𝑘)−1𝜎𝑗𝜎𝑘𝜌𝑗𝑘}
1 2⁄

 

          =
𝜎𝑖𝜎𝑗(𝜌𝑖𝑗 − 𝜌𝑖𝑘𝜌𝑗𝑘)

𝜎𝑖𝜎𝑗{1 − 𝜌𝑖𝑘
2 }1 2⁄ {1 − 𝜌𝑗𝑘

2 }
1 2⁄

 

          =
𝜌 − 𝜌2

(1 − 𝜌2)
1
2(1 − 𝜌2)

1
2

 

          =
𝜌

1 + 𝜌
 

Thus, every partial correlation coefficient of order 1 is 
𝜌

1+𝜌
. Similarly, 



𝜌𝑖𝑗.𝑘1 =
(𝜌𝑖𝑗.1 − 𝜌𝑖𝑘.1𝜌𝑗𝑘.1)

{1 − 𝜌𝑖𝑘.1
2 }1 2⁄ {1 − 𝜌𝑗𝑘.1

2 }
1 2⁄

 

           =
(
𝜌

1 + 𝜌) − (
𝜌

1 + 𝜌)
2

1 − (
𝜌

1 + 𝜌)
2  

          =
𝜌

1 + 2𝜌
 

Thus, every partial correlation coefficient of order 1 is 
𝜌

1+2𝜌
. 

The partial correlation coefficient of the highest order in 𝑝 variate distribution is (𝑝 − 2). By the 

method of induction, every partial correlation coefficient of order (𝑝 − 2) is  

𝜌

1 + (𝑝 − 2)𝜌
 

Since  |𝜌𝑖𝑗.(𝑝−1) 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠| ≤ 1, we have  

−1 ≤
𝜌

1 + (𝑝 − 2)𝜌
≤ 1 

Consider lower limit 

−1 ≤
𝜌

1 + (𝑝 − 2)𝜌
 

or 

−1 − (𝑝 − 2)𝜌 ≤ 𝜌       

 or                − 1 ≤ 𝜌 − 2𝜌 +  𝑝𝜌      

or           − 1 ≤ (𝑝 − 1)𝜌  

⇒ 
−1

(𝑝 − 1)
≤ 𝜌  

3.7      The Matrix of Residual Sum of Squares and Cross Products 

The observational equivalent of the effects model is 

𝑥𝑖𝑗 = �̅� + (𝑥𝑖 + �̅�) + (𝑥𝑖𝑗 − 𝑥𝑖) 



=overall sample mean + treatment effect + residual (under univariate ANOVA) 

After manipulation 

∑∑(𝑥𝑖𝑗 − �̅�)

𝑁𝑖

𝑗=1

ℎ

𝑖=1

(𝑥𝑖𝑗 − �̅�)
′
=∑𝑛𝑖

ℎ

𝑖=1

(𝑥𝑖 − �̅�)(𝑥𝑖 − �̅�)
′ +∑∑(𝑥𝑖𝑗 − �̅�)

𝑁𝑖

𝑗=1

ℎ

𝑖=1

(𝑥𝑖𝑗 − 𝑥𝑖)
′
 

Where 

∑ ∑ (𝑥𝑖𝑗 − �̅�)
𝑁𝑖
𝑗=1

ℎ
𝑖=1 (𝑥𝑖𝑗 − �̅�)

′
is the total corrected sums of squares and cross products matrix, 

∑ 𝑛𝑖
ℎ
𝑖=1 (𝑥𝑖 − �̅�)(𝑥𝑖 − �̅�)

′ is the treatment sums of squares and cross products matrix, 

∑ ∑ (𝑥𝑖𝑗 − �̅�)
𝑁𝑖
𝑗=1

ℎ
𝑖=1 (𝑥𝑖𝑗 − 𝑥𝑖)

′
 is the residual sums of squares and cross products matrix 

3.8     Summary 

In this unit, we have covered the following points: 

1. Define the correlation coefficients. 

2. Describe the sample multiple and partial correlations. 

3. Derive the central distributions of multiple correlation coefficients. 

4. Derive the central distribution of partial correlation coefficients. 

  



3.9     Self-Assessment Exercises 

1. Let 𝑋1, 𝑋2, … , 𝑋𝑁 be independently distributed with 𝑋𝛼~𝑁𝑝(𝜇𝛼 , Σ). Let 𝐶 = (𝐶𝛼𝛽) be 

𝑁 × 𝑁 orthogonal matrix. Then prove that 𝑦𝛼 = ∑ 𝐶𝛼𝛽𝑋𝛽
𝑁
𝛽=1  is distributed according to 

𝑁(𝜃𝛼 , Σ), where 𝜃𝛼 = ∑ 𝐶𝛼𝛽𝜇𝛽
𝑁
𝛽=1  and 𝑌1, 𝑌2, … , 𝑌𝑁 are independently distributed. Also, 

find the sufficient statistic for Σ if 𝜇 is known. 

2. Derive the null distribution of sample multiple correlation coefficients. 

3. Derive the null distribution of sample partial correlation coefficients. 

4. If all the correlation coefficients in a 𝑝-variate normal distribution are equal to 𝜌 ≠ 0, show 

that 

𝜌1(2,3,…,𝑝)
2 =

(𝑝 − 1)𝜌2

1 + (𝑝 − 2)𝜌
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UNIT: 4    WISHART DISTRIBUTION 

Structure 

4.1  Introduction 

4.2  Objectives 

4.3  Wishart Distribution 

4.4 Some Properties of the Wishart Distribution 

4.4.1  Characteristic Function 

4.4.2  Reproductive Property 

4.4.3 Marginal Distribution 

4.4.4  Conditional Distribution 

4.5  Cochran Theorem 

4.6 Distribution of Characteristic Roots and Vectors of Wishart Matrices 

4.7 Summary  

4.8  Self-Assessment Exercise 

4.9 References 

4.10  Further Readings 

4.1  Introduction 

The Wishart distribution is a probability distribution used in statistics and probability 

theory to describe the behaviour of a sample covariance matrix or a sample correlation matrix. It 

is named after John Wishart, who first introduced it in 1928. 

Given a set of 𝑝-dimensional multivariate normal random vectors, the Wishart distribution 

describes the probability distribution of the sample covariance matrix, which is a 𝑝 × 𝑝 matrix. 

The distribution is characterized by two parameters: the degrees of freedom (𝑛) and the scale 

matrix (Σ). 



The Wishart distribution has several important applications in statistics and data analysis, 

including: 

(i) Covariance Matrix Estimation 

(ii) Multivariate Analysis of Variance (MANOVA) 

(iii)             Principal Component Analysis (PCA) 

(iv)              Factor Analysis 

(v) Bayesian Analysis 

The Wishart distribution is a generalization of the Chi-Squared distribution and is closely 

related to other distributions, such as the multivariate gamma distribution and the inverse Wishart 

distribution. 

4.2  Objectives 

After studying this unit, you should be able to: 

• Discuss the Wishart distribution. 

• Define the distribution of mean and sample covariance. 

• Derive the conditional distribution and marginal distribution of Wishart distribution. 

• Discuss the Cochran theorem. 

• Also discuss the distribution of characteristic roots and vectors of the Wishart matrix. 

4.3 WISHART DISTRIBUTION 

Theorem 4.3.1.: Suppose 𝑝-components 𝑍1, 𝑍2, … , 𝑍𝑛 (𝑛 ≥ 𝑝) are independent, each distributed 

according to 𝑁(0, Σ). Then the p.d.f. of 𝐴 = ∑ 𝑍𝛼𝑍𝛼
′𝑛

𝛼=1  is 

|𝐴|
1
2
(𝑛−𝑝−1)𝑒−

1
2𝑡𝑟 𝐴𝛴

−1

2
1
2
𝑛𝑝𝜋𝑝(𝑝−1) 4⁄ |𝛴|

1
2
𝑛∏ 𝛤[12(𝑛+1−𝑖)]

𝑝
𝑖=1

 

for A positive definite and zero otherwise. 

This distribution is called Wishart distribution and is a generalization of χ2- distribution. 

By pdf of A = ∑ ZαZα
′n

α=1  we mean the joint distribution of 𝑝(𝑝 + 1)/2 different elements of 𝐴. 

Proof: We shall use the following results: 



If scalars 𝑈𝛼 are independently distributed and 𝑈𝛼~𝑁(Γ𝑤𝛼 , 𝜙) where, 𝑤𝛼 is the 𝑟 

component vectors and 𝐺 = ∑ 𝑌𝛼𝑤𝛼𝐻
−1𝑚

𝛼=1  where, 𝐻 = ∑ 𝑤𝛼
𝑚
𝛼=1 𝑤𝛼

′  is a non-singular matrix then 

∑ 𝑈𝛼
𝑚
𝛼=1 𝑈𝛼

′ − 𝐺𝐻𝐺′~∑ 𝑈𝛼
𝑚−𝑟
𝛼=1 𝑈𝛼

′  where, 𝑈𝛼 are independently distributed according to 𝑁(0, 𝜙) 

and independent of 𝐺. 

Suppose scalar 𝑈𝛼 are independently distributed and it is follows 𝑈𝛼~𝑁(Γ𝑤𝛼 , 𝜙) then 

∑ 𝑈𝛼
2𝑛

𝛼=1 − ∑ 𝑈𝛼𝑤𝛼
′ (∑𝑤𝛼𝑤𝛼

′ )−1𝑛
𝛼=1 ∑ 𝑈𝛼𝑤𝛼

𝑛
𝛼=1 ~∑ 𝑉𝛼

2𝑛−𝑞
𝛼=1  where, 𝑞 is the number of components 

of 𝑤𝛼,  𝑉𝛼 are independent and 𝑉𝛼~𝑁(0, 𝜙) and 𝑉𝛼 are independent of ∑ 𝑈𝛼𝑤𝛼
𝑛
𝛼=1   In particular if 

𝜙 = 1, then 𝑡 = ∑ 𝑈𝛼
2 − ∑ 𝑈𝛼𝑤𝛼

′ (∑𝑤𝛼𝑤𝛼
′ )−1∑𝑈𝛼𝑤𝛼𝛼𝛼  has the 𝜒2- distribution with (𝑛 − 𝑞) 

degrees of freedom and pdf is 

𝑓(𝑡) =
𝑒−𝑡 2⁄ 𝑡{(𝑛−𝑞) 2⁄ }−1

2(𝑛−𝑞) 2⁄ Γ (
𝑛 − 𝑞
2 )

  ;   𝑡 ≥ 0 

Further ∑𝑈𝛼𝑤𝛼~Normal distribution.  

If Γ = 0 then 𝐸(∑𝑈𝛼𝑤𝛼) = 0 and variance-covariance matrix is 

𝐸 (∑𝑈𝛼

𝑛

𝛼=1

𝑤𝛼∑𝑈𝛽

𝑛

𝛽=1

𝑤𝛽
′) = ∑∑𝑤𝛼

𝑛

𝛽=1

𝑤𝛽
′

𝑛

𝛼=1

𝛿𝛼𝛽 = ∑𝑤𝛼

𝑛

𝛼=1

𝑤𝛼
′   

𝛿𝛼𝛽 = {
1   𝑖𝑓 𝛼 = 𝛽
0  𝑖𝑓 𝛼 ≠ 𝛽

: Kronecker delta 

Hence 

∑𝑈𝛼𝑤𝛼~ 𝑁(0,∑𝑤𝛼𝑤𝛼
′

𝛼

) 

Now 

𝐴 = ∑𝑍𝛼𝑍𝛼
′

𝑛

𝛼=1

, 𝑍𝛼~𝑁(0, Σ) 



Since 𝛴 is positive definite there exist a non-singular triangular matrix 𝐶 such that 

𝐶Σ𝐶′ = 𝐼   

⇒ 𝐶𝐶′ = Σ−1 

Now we use the transformation 

𝐵 = 𝐶𝐴𝐶′ 

= 𝐶 (∑𝑍𝛼𝑍𝛼
′ )𝐶′ 

=∑𝑈𝛼𝑈𝛼
′  

Here 

𝑈𝛼 = 𝐶𝑍𝛼~𝑁(0, 𝐼) 

Jacobean of the transformation is 

|𝐶|𝑝+1 = |Σ|−
1
2(𝑝+1) 

𝑏𝑖𝑗 =∑𝑐𝑖𝑘𝑎𝑘𝑙𝑐𝑗𝑙
𝑘,𝑙

                             (𝑐𝑖𝑗 = 0, if 𝑖 > 𝑗)   

Since 𝐶 is a triangular matrix, its determinant is equal to the product of its diagonal elements, i.e., 

|𝐶| =∏𝑐𝑖𝑖

𝑝

𝑖=1

  

Further, the partial derivatives of 𝑏11, … , 𝑏1𝑝, 𝑏22, … , 𝑏2𝑝, … , 𝑏𝑝𝑝 with respect to 𝑎11, … , 𝑎1𝑝,

𝑎22, … , 𝑎2𝑝, … , 𝑎𝑝𝑝 are given by 

𝜕𝑏𝑖𝑗
𝜕𝑎𝑘𝑘

= 𝑐𝑖𝑘𝑐𝑗𝑘;  
𝜕𝑏𝑖𝑗
𝜕𝑎𝑘𝑙

= 𝑐𝑖𝑘𝑐𝑗𝑙 + 𝑐𝑖𝑙𝑐𝑗𝑘                   𝑙 ≠ 𝑘 



Hence, the Jacobian of the transformation 𝐽(𝐵 → 𝐴) is obtained as 

𝐽(𝐵 → 𝐴) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑏11
𝜕𝑎11

⋯
𝜕𝑏11
𝜕𝑎1𝑝

𝜕𝑏11
𝜕𝑎22

⋯
𝜕𝑏11
𝜕𝑎2𝑝

𝜕𝑏11
𝜕𝑎33

⋯
𝜕𝑏11
𝜕𝑎3𝑝

⋯
𝜕𝑏11
𝜕𝑎𝑝𝑝

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝜕𝑏1𝑝
𝜕𝑎11

⋯
𝜕𝑏1𝑝
𝜕𝑎1𝑝

𝜕𝑏1𝑝
𝜕𝑎22

⋯
𝜕𝑏1𝑝
𝜕𝑎2𝑝

𝜕𝑏1𝑝
𝜕𝑎33

⋯
𝜕𝑏1𝑝
𝜕𝑎3𝑝

⋯
𝜕𝑏1𝑝
𝜕𝑎𝑝𝑝

𝜕𝑏22
𝜕𝑎11

⋯
𝜕𝑏22
𝜕𝑎1𝑝

𝜕𝑏22
𝜕𝑎22

⋯
𝜕𝑏22
𝜕𝑎2𝑝

𝜕𝑏22
𝜕𝑎33

⋯
𝜕𝑏22
𝜕𝑎3𝑝

⋯
𝜕𝑏22
𝜕𝑎𝑝𝑝

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝜕𝑏2𝑝
𝜕𝑎11

⋯
𝜕𝑏2𝑝
𝜕𝑎1𝑝

𝜕𝑏2𝑝
𝜕𝑎22

⋯
𝜕𝑏2𝑝
𝜕𝑎2𝑝

𝜕𝑏2𝑝
𝜕𝑎33

⋯
𝜕𝑏2𝑝
𝜕𝑎3𝑝

⋯
𝜕𝑏2𝑝
𝜕𝑎𝑝𝑝

𝜕𝑏33
𝜕𝑎11

⋯
𝜕𝑏33
𝜕𝑎1𝑝

𝜕𝑏33
𝜕𝑎22

⋯
𝜕𝑏33
𝜕𝑎2𝑝

𝜕𝑏33
𝜕𝑎33

⋯
𝜕𝑏33
𝜕𝑎3𝑝

⋯
𝜕𝑏33
𝜕𝑎𝑝𝑝

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝜕𝑏3𝑝
𝜕𝑎11

⋯
𝜕𝑏3𝑝
𝜕𝑎1𝑝

𝜕𝑏3𝑝
𝜕𝑎22

⋯
𝜕𝑏3𝑝
𝜕𝑎2𝑝

𝜕𝑏3𝑝
𝜕𝑎33

⋯
𝜕𝑏3𝑝
𝜕𝑎3𝑝

⋯
𝜕𝑏3𝑝
𝜕𝑎𝑝𝑝

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝜕𝑏𝑝𝑝
𝜕𝑎11

⋯
𝜕𝑏𝑝𝑝
𝜕𝑎1𝑝

𝜕𝑏𝑝𝑝
𝜕𝑎22

⋯
𝜕𝑏𝑝𝑝
𝜕𝑎2𝑝

𝜕𝑏𝑝𝑝
𝜕𝑎33

⋯
𝜕𝑏𝑝𝑝
𝜕𝑎3𝑝

⋯
𝜕𝑏𝑝𝑝
𝜕𝑎𝑝𝑝]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

=

[
 
 
 
 
 
 
 
 
 
 
𝑐11
2 2𝑐11𝑐12 ⋯ 2𝑐12𝑐1𝑝 𝑐12

2 ⋯ 𝑐1𝑝
2

0 𝑐11𝑐22 ⋯ 𝑐11𝑐2𝑝 𝑐12𝑐22 ⋯ 𝑐1𝑝𝑐2𝑝
0 0 ⋯ ⋯ ⋯ ⋯ ⋯
⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 𝑐11𝑐𝑝𝑝 0 ⋯ 𝑐1𝑝𝑐𝑝𝑝

0 0 ⋯ 0 𝑐22
2 ⋯ 𝑐2𝑝

2

⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮
0 ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 0 ⋯ 𝑐𝑝𝑝

2 ]
 
 
 
 
 
 
 
 
 
 

 

 

=∏ 𝑐𝑗𝑗
𝑝+1

𝑝

𝑗=1
 

= |𝐶|𝑝+1 

= |Σ|−
1
2(𝑝+1) 



Let 

𝐵𝑖𝑖 = ((𝑏𝑗𝑘))      𝑗, 𝑘 = 𝑖, … , 𝑝 

𝑏(𝑖) = (𝑏𝑖,𝑖+1, 𝑏𝑖,𝑖+2, … , 𝑏𝑖,𝑖+𝑝) 

𝐵𝑖𝑖 = (
𝑏𝑖𝑖 𝑏(𝑖)
𝑏(𝑖)
′ 𝐵𝑖+1,𝑖+1

) 

𝑏𝑖𝑖.𝑖+1,…,𝑝 = 𝑏𝑖𝑖 − 𝑏(𝑖)𝐵𝑖+1,𝑖+1
−1 𝑏(𝑖)

′  

𝑈𝛼
(𝑗)′

= (𝑈𝑗𝛼 , 𝑈𝑗+1,𝛼 , … , 𝑈𝑝𝛼) 

Then 

𝐵𝑖𝑖 =∑𝑈𝛼
(𝑖)
𝑈𝛼
(𝑖)′

𝛼

=

(

 
 

∑𝑈𝑖𝛼
2

𝛼

∑𝑈𝑖𝛼𝑈
(𝑖+1)′

𝛼

∑𝑈𝑖𝛼
𝛼

𝑈(𝑖+1) ∑𝑈(𝑖+1) 𝑈(𝑖+1)′

)

 
 

 

𝑏𝑖𝑖 =∑𝑈𝑖𝛼
2

𝛼

 

𝑏(𝑖) =∑𝑈𝑖𝛼𝑈
(𝑖+1)′

𝛼

 

𝐵𝑖+1,𝑖+1 =∑𝑈(𝑖+1) 𝑈(𝑖+1)′ 

Hence 

𝑏𝑖𝑖.𝑖+1,…,𝑝 =∑𝑈𝑖𝛼
2

𝛼

− {∑𝑈𝑖𝛼𝑈
(𝑖+1)′

𝛼

} {∑𝑈(𝑖+1)𝑈(𝑖+1)′}
−1

{ ∑𝑈𝑖𝛼
𝛼

𝑈(𝑟+1)} 



Since 𝛴 = 𝐼, the set (𝑈𝑖1, 𝑈𝑖2, … , 𝑈𝑖𝑛) is distributed independently of (𝑈𝑗1, 𝑈𝑗2, … , 𝑈𝑗𝑛), 𝑗 ≠

𝑖. Therefore, conditional on 𝑈(𝑖+1), each element 𝑈𝑗𝛼 (𝑗 ≠ 𝛼, 𝛼 = 1,2, … , 𝑛), is distributed 

according to 𝑁(0,1).  

Hence given 𝑈(𝑖+1), 𝑏𝑖𝑖.𝑖+1,…,𝑝  has a 𝜒2 − distribution with 𝑛 − (𝑝 − 𝑖) degrees of 

freedom and distributed independently of 𝑏(𝑖) (= ∑ 𝑈𝑖𝛼𝑈
(𝑖+1)′

𝛼 ). 

Given 𝑈(𝑖+1), 𝑏(𝑖) is conditionally distributed according to 𝑁(0, 𝐵𝑖+1,𝑖+1). 

Observe that the conditional distribution depends on 𝑈𝛼
(𝑖+1)

 only through 𝐵𝑖+1,𝑖+1, i.e., the 

conditional density is of the form 𝑓𝑖(𝑏𝑖𝑖.𝑖+1,…,𝑝, 𝑏(𝑖)|𝑈𝛼
(𝑖+1)) = 𝑓𝑖(𝑏𝑖𝑖.𝑖+1,…,𝑝, 𝑏(𝑖)| 𝐵𝑖+1,𝑖+1). Thus, 

the joint density of 𝑏11.2,…,𝑝, 𝑏(1), 𝑏22.3,…,𝑝, 𝑏(2), … , 𝑏𝑝−1,𝑝−1.𝑝, 𝑏(𝑝−1), 𝑏𝑝𝑝 is 

𝑏𝑝𝑝

1
2𝑛−1𝑒−

1
2𝑏𝑝𝑝

2
1
2𝑛Γ(1

2
𝑛)

 ∏{
𝑏
𝑖𝑖.𝑖+1,…,𝑝

1
2
[𝑛−(𝑝−𝑖)]−1

𝑒−
1
2𝑏𝑖𝑖.𝑖+1,…,𝑝

2
1
2[𝑛−(𝑝−𝑖)]Γ{1

2
[𝑛−(𝑝−𝑖)]}

×
𝑒−

1
2𝑏(𝑖)𝐵𝑖+1,𝑖+1

−1 𝑏(𝑖)
′

(2π)
1
2(𝑝−𝑖)| 𝐵𝑖+1,𝑖+1|

1
2

}

𝑝−1

𝑖=1

                                             (4.1) 

We find the density of 𝑏11, 𝑏(1), 𝑏22, 𝑏(2), … , 𝑏𝑝𝑝  by substituting in (4.1) 

𝑏𝑖𝑖.𝑖+1,…,𝑝 = 𝑏𝑖𝑖 − 𝑏(𝑖)𝐵𝑖+1,𝑖+1
−1 𝑏(𝑖)

′ . 

Jacobian of the transformation is one. The exponent of 𝑒 in (4.1) is 

−
1

2
[𝑏𝑝𝑝 +∑𝑏𝑖𝑖.𝑖+1,…,𝑝

𝑝−1

𝑖=1

+∑𝑏(𝑖)𝐵𝑖+1,𝑖+1
−1 𝑏(𝑖)

′

𝑝−1

𝑖=1

] 

= −
1

2
[𝑏𝑝𝑝 +∑𝑏𝑖𝑖

𝑝−1

𝑖=1

−∑𝑏(𝑖)𝐵𝑖+1,𝑖+1
−1 𝑏(𝑖)

′

𝑝−1

𝑖=1

+∑𝑏(𝑖)𝐵𝑖+1,𝑖+1
−1 𝑏(𝑖)

′

𝑝−1

𝑖=1

] 

= −
1

2
[𝑏𝑝𝑝 +∑𝑏𝑖𝑖

𝑝−1

𝑖=1

] 

= −
1

2
𝑡𝑟𝐵 



Again 

|𝐴| = |𝐴11 − 𝐴12𝐴22
−1𝐴21||𝐴22| 

𝐵𝑖𝑖 =|
𝑏𝑖𝑖 𝑏(𝑖)
𝑏(𝑖)
′ 𝐵𝑖+1,𝑖+1

|, where 𝐵𝑖𝑖 = 𝐴, 𝑏𝑖𝑖 = 𝐴11, 𝑏(𝑖) = 𝐴12, 𝐵𝑖+1,𝑖+1 = 𝐴22  

𝑏𝑖𝑖.𝑖+1,…,𝑝 = 𝑏𝑖𝑖 − 𝑏(𝑖)𝐵𝑖+1,𝑖+1
−1 𝑏(𝑖)

′ =

|
𝑏𝑖𝑖 𝑏(𝑖)
𝑏(𝑖)
′ 𝐵𝑖+1,𝑖+1

|

|𝐵𝑖+1,𝑖+1|
=

|𝐵𝑖𝑖|

|𝐵𝑖+1,𝑖+1|
 

We find 

𝑏𝑝𝑝∏𝑏𝑖𝑖.𝑖+1,…,𝑝

𝑝−1

𝑖=1

= 𝑏𝑝𝑝∏
|𝐵𝑖𝑖|

|𝐵𝑖+1,𝑖+1|

𝑝−1

𝑖=1

 

= 𝑏𝑝𝑝 [
|𝐵11|

|𝐵22|
 
|𝐵22|

|𝐵33|
…
|𝐵𝑝−1,𝑝−1|

|𝐵𝑝𝑝|
] 

 = 𝑏𝑝𝑝 [
|𝐵11|

|𝐵𝑝𝑝|
]                                                                         (Since 𝐵𝑝𝑝 = 𝑏𝑝𝑝) 

= |𝐵11| = |𝐵| 

Then 

𝑏𝑝𝑝

1
2𝑛−1∏

𝑏
𝑖𝑖.𝑖+1,…,𝑝

1
2
[𝑛−(𝑝−𝑖)]−1

|𝐵𝑖+1,𝑖+1|
1
2

𝑝−1

𝑖=1

 

= [𝑏𝑝𝑝∏𝑏𝑖𝑖.𝑖+1,…,𝑝

𝑝−1

𝑖=1

]

1
2
(𝑛−𝑝−1)

[𝑏𝑝𝑝

1
2
(𝑝−1)

∏
𝑏
𝑖𝑖.𝑖+1,…,𝑝

1
2
(𝑖−1)

|𝐵𝑖+1,𝑖+1|
1
2

𝑝−1

𝑖=1

] 

= |𝐵|
1
2
(𝑛−𝑝−1)𝑏𝑝𝑝

1
2
(𝑝−1)

∏
|𝐵𝑖𝑖|

1
2
(𝑖−1)

|𝐵𝑖+1,𝑖+1|
𝑖
2

𝑝−1

𝑖=1

 



= |𝐵|
1
2
(𝑛−𝑝−1)𝑏𝑝𝑝

1
2
(𝑝−1)

[
1

|𝐵22|
1
2

 
|𝐵22|

1
2

|𝐵33|
1
2

…
|𝐵𝑝−1,𝑝−1|

1
2
(𝑝−1+1)

|𝐵𝑝𝑝|
𝑝−1
2

] 

= |𝐵|
1
2
(𝑛−𝑝−1)𝑏𝑝𝑝

1
2
(𝑝−1)

[
|1|

1
2
(𝑝)

|𝐵𝑝𝑝|
(𝑝−1)
2

] 

= |𝐵|
1
2(𝑛−𝑝−1) 

The power of 𝜋 is 

∑ (𝑝 − 𝑖)
𝑝−1
𝑖=1

2
=
1

2
[(𝑝 − 1) + (𝑝 − 2) +⋯+ 1] =

𝑝(𝑝 − 1)

4
 

The power of 2 is 

1

2
[𝑛 +∑[𝑛 − (𝑝 − 𝑖)]

𝑝−1

𝑖=1

+∑(𝑝 − 𝑖)

𝑝−1

𝑖=1

] =
1

2
[𝑛 +∑𝑛

𝑝−1

𝑖=1

] =
1

2
[𝑛 + (𝑝 − 1)𝑛] =

𝑛𝑝

2
 

The power of Γ is 

Γ (
1

2
𝑛)∏Γ

𝑝−1

𝑖=1

{
1

2
[𝑛 − (𝑝 − 𝑖)]} = Γ (

𝑛

2
) Γ (

𝑛 − 𝑝 + 1

2
) Γ (

𝑛 − 𝑝 + 2

2
)…Γ (

𝑛 − 1

2
) 

                                                          =∏Γ

𝑝−1

𝑖=1

{
1

2
[𝑛 − 𝑖 + 1]} 

Thus, the density of 𝑏11, … , 𝑏1𝑝, 𝑏22, … , 𝑏2𝑝, … , 𝑏𝑝𝑝 is 

|𝐵|
1
2(𝑛−𝑝−1)𝑒−

1
2𝑡𝑟𝐵

2
1
2𝑛𝑝π𝑝(𝑝−1) 4⁄ ∏ Γ

𝑝−1
𝑖=1 {

1
2 [𝑛 − 𝑖 + 1]}

 

Therefore the p.d.f. of 𝐴 = 𝐵Σ is  



𝑊(𝐴|Σ, 𝑛) 

=

{
 

 |𝐴|
1
2
(𝑛−𝑝−1)𝑒−

1
2𝑡𝑟𝐴Σ

−1

2
1
2𝑛𝑝Π𝑝(𝑝−1) 4⁄ |Σ|

1
2
(𝑛−𝑝−1)∏ Γ

𝑝−1
𝑖=1 {

1
2
[𝑛 − 𝑖 + 1]}

              if 𝐴 is positive definite

0                                                                                                 otherwise

 

Hence, if the 𝑝-component vectors 𝑋1, … , 𝑋𝑝  (𝑁 > 𝑝) are independent, each with the distribution 

𝑁(𝜇, Σ),  then the density of 

𝐴 = ∑ (𝑋𝛼 − 𝑋)(𝑋𝛼 − 𝑋)
′

𝑁
𝛼=1  is 𝑊(𝐴|Σ, 𝑁 − 1). 

Remark: Let the symmetric matrix 𝐵 be transformed into the symmetric matrix 𝐴 by 𝐵 = 𝐶𝐴𝐶’, 

where 𝐶 is a non-singular triangular matrix (i.e. 𝑐𝑖𝑗 = 0   for 𝑖 > 𝑗). Then the Jacobian of the 

transformation is 𝑚𝑜𝑑|𝐶|(𝑝+1). 

Here 𝑊(𝐴|Σ, 𝑛) denotes the 𝑝. 𝑑. 𝑓. and 𝑊(Σ, 𝑛) denotes the associated distribution 

Theorem 4.3.2.: Let 𝑋1, 𝑋2, … , 𝑋𝑛(𝑛 ≥ 𝑝 + 1) be distributed independently, each according to 

𝑁(𝜇, Σ), then the distribution of 𝑆 =
1

𝑁−1
𝐴 is 𝑊(

1

𝑁−1
Σ,𝑁 − 1). 

Proof: Let 𝑛 = 𝑁 − 1 

𝑆 =
1

𝑛
𝐴 =

1

𝑛
∑𝑍𝛼𝑍𝛼

′

𝑛

𝛼=1

= ∑(
1

√𝑛
𝑍𝛼) (

1

√𝑛
𝑍𝛼)

′𝑛

𝛼=1

= ∑𝑈𝛼𝑈𝛼
′

𝑛

𝛼=1

 

𝑈𝛼~𝑁(0,
1

𝑛
Σ) 

𝑈𝛼
′ 𝑠 are independent. 

Hence, 𝑆 = ∑ 𝑈𝛼𝑈𝛼
′𝑛

𝛼=1 ~𝑊 (
1

𝑛
Σ, 𝑛), with 𝑛 = 𝑁 − 1 and we follow the theorem. 

4.4  Some Properties of the Wishart Distribution 

There are some following properties: 

4.4.1   Characteristic Function 



Theorem 4.4.1.: Let 𝐴 = ∑ 𝑍𝛼𝑍𝛼
′𝑛

𝛼=1 = ((𝑎𝑗𝑘))                     𝑎𝑗𝑘 = 𝑎𝑘𝑗 

Here, 𝑍𝛼~𝑁(0, Σ). Then the characteristic function of 𝑎11, … , 𝑎𝑝𝑝, 2𝑎12, … , 2𝑎𝑝−1,𝑝 is given by  

𝐸{𝑒𝑥𝑝[𝑖 𝑡𝑟(𝐴Θ)]} =
|Σ−1|

1
2𝑛

|Σ−1 − 2𝑖Θ|
1
2
𝑛
= |1 − 2𝑖ΘΣ−1|

−𝑛
2  

where Θ is a real symmetric matrix of order 𝑝 × 𝑝. 

Proof: The characteristic function of 𝐴 is given as 

𝜙𝐴(Θ) = 𝐸{𝑒𝑥𝑝[𝑖 𝑡𝑟(𝐴Θ)]} 

= 𝐸 {𝑒𝑥𝑝 [𝑖 𝑡𝑟 (∑𝑍𝛼𝑍𝛼
′

𝑛

𝛼=1

Θ)]} 

= 𝐸 {𝑒𝑥𝑝(𝑖∑𝑍𝛼Θ𝑍𝛼
′

𝑛

𝛼=1

)} 

=∏𝐸 𝑒𝑥𝑝(𝑖𝑍𝛼Θ𝑍𝛼
′ )

𝑛

𝛼=1

= [𝐸 𝑒𝑥𝑝(𝑖𝑍𝛼Θ𝑍𝛼
′ )]𝑛                                                                                    (4.2) 

Notice that 𝑍𝛼  are independently and identically distributed 𝑍𝛼~𝑁(0, 𝛴).  

There exists a non-singular matrix 𝐶 such that 

𝐶′𝛴−1𝐶 = 𝐼 

𝐶′𝛩𝐶 = 𝐷  

𝐷 is a diagonal matrix. 

Let 𝑍 = 𝐶𝑦 

Then 

𝐸[exp(𝑖𝑍′Θ𝑍)] = 𝐸[exp(𝑖𝑦′𝐷𝑦)] = 𝐸 [exp(𝑖∑𝑑𝑗𝑗𝑦𝑗
2

𝑝

𝑗=1

)] =∏𝐸[exp(𝑖𝑑𝑗𝑗𝑦𝑗
2)]

𝑝

𝑗=1

  



Since 𝑍~𝑁(0, Σ) 

𝑌~𝑁(0, (𝐶′Σ−1C)−1) 

𝑌~𝑁(0, 𝐼) 

Thus 𝑦𝑗~𝑁(0, 𝐼) for every 𝑗 = 1, … , 𝑝 and 𝑦𝑗
2 ~ 𝜒2 with one d. f. 

Therefore 

𝐸[exp(𝑖𝑍′Θ𝑍)] =∏(1 − 2𝑖𝑑𝑗𝑗)
−12

𝑝

𝑗=1

 

= |𝐼 − 2𝑖𝐷|−
1
2 = |𝐶′Σ−1𝐶 − 2𝑖𝐶′Θ𝐶|−

1
2     

= |𝐶′|−
1
2|Σ−1 − 2𝑖Θ|−

1
2|𝐶|−

1
2 = |𝐶′𝐶|−

2
2|Σ−1 − 2𝑖Θ|−

1
2 

= |𝐶′𝐶|−1|Σ−1 − 2𝑖Θ|−
1
2 

= |Σ|−1|Σ−1 − 2𝑖Θ|−
1
2 

Hence from (4.2) 

𝐸 exp[𝑖(𝑡𝑟𝐴Θ)] 

=
|Σ−1|

1
2𝑛

|Σ−1 − 2𝑖Θ|
1
2
𝑛

 

= |𝐼 − 2𝑖ΘΣ|−
1
2
𝑛

 

Note: We can obtain the moments of the elements of 𝐴 either using the characteristic function or 

from the original normal distribution. 

𝐸𝑎𝑖𝑗 = 𝐸∑𝑍𝑖𝛼𝑍𝑗𝛼

𝑛

𝛼=1

 



= ∑𝜎𝑖𝑗

𝑛

𝛼=1

 

= 𝑛𝜎𝑖𝑗 

or 𝐸(𝐴) = 𝑛Σ 

𝐸𝑎𝑖𝑗𝑎𝑘𝑙 = ∑ 𝐸(𝑍𝑖𝛼𝑍𝑗𝛼𝑍𝑘𝛽𝑍𝑙𝛽)

𝑛

𝛼,𝛽=1

 

= ∑𝐸(𝑍𝑖𝛼𝑍𝑗𝛼𝑍𝑘𝛼𝑍𝑙𝛼)

𝑛

𝛼=1

+ ∑ 𝐸(𝑍𝑖𝛼𝑍𝑗𝛼𝑍𝑘𝛽𝑍𝑙𝛽)

𝛼,𝛽,𝛼≠𝛽

 

= 𝑛(𝜎𝑖𝑗𝜎𝑘𝑙 + 𝜎𝑖𝑘𝜎𝑗𝑙 + 𝜎𝑖𝑙𝜎𝑘𝑗) + 𝑛(𝑛 − 1)𝜎𝑖𝑗𝜎𝑘𝑙 

= 𝑛2𝜎𝑖𝑗𝜎𝑘𝑙 + 𝑛𝜎𝑖𝑘𝜎𝑗𝑙 + 𝑛𝜎𝑖𝑙𝜎𝑘𝑗 

Hence 

𝐸(𝑎𝑖𝑗 − 𝐸𝑎𝑖𝑗)(𝑎𝑘𝑙 − 𝐸𝑎𝑘𝑙) 

= 𝑛(𝜎𝑖𝑘𝜎𝑗𝑙 + 𝜎𝑖𝑙𝜎𝑗𝑘) 

𝐸(𝑎𝑖𝑗 − 𝐸𝑎𝑖𝑗)
2
= 𝑛(𝜎𝑖𝑗

2 + 𝜎𝑖𝑖𝜎𝑗𝑗)            for 𝑙 = 𝑖, 𝑘 = 𝑗 

4.4.2   Reproductive Property of Wishart Distribution 

Theorem 4.4.2.: If the 𝐴1 and 𝐴2 are two independent Wishart matrices and it follow 𝑊𝑝(Σ, 𝑛1) 

and 𝑊𝑝(Σ, 𝑛2), respectively, then sum of (𝐴1 + 𝐴2)~𝑊𝑝(Σ, 𝑛1 + 𝑛2). 

Proof: If 𝐴1~𝑊𝑝(Σ, 𝑛1) then the characteristic function of 𝐴1 is 𝜙𝐴1(𝑈) = |𝐼 − 2𝑖𝑈Σ|
−
𝑛1

2⁄ . 

Similarly, 𝐴2~𝑊𝑝(Σ, 𝑛2) implies that 𝜙𝐴2(𝑈) = |𝐼 − 2𝑖𝑈Σ|
−
𝑛2

2⁄ . 

Further 𝐴1 and 𝐴2 are independently distributed. Therefore  

𝜙𝐴1+𝐴2(𝑈) = 𝜙𝐴1(𝑈)𝜙𝐴2(𝑈) 



= |𝐼 − 2𝑖ΘΣ|−
(𝑛1+𝑛2)

2⁄  

Hence (𝐴1 + 𝐴2)~𝑊𝑝(Σ, 𝑛1 + 𝑛2). 

Note: The Wishart distribution is a multivariate extension of 𝜒2-distribution.  

If 𝑀~𝑊1(𝑛, 𝜎
2) then 

1

𝜎2
𝑀 = 𝜒𝑛

2. 

Theorem 4.4.3.: If the 𝐴𝑖(𝑖 = 1, … , 𝑞) are independently distributed with 𝐴𝑖~𝑊(Σ, 𝑛𝑖), 𝑖 =

1,2,… , 𝑞, then  

𝐴 =∑𝐴𝑖

𝑞

𝑖=1

 

is distributed according to 𝑊(Σ, 𝑛), 𝑛 = ∑ 𝑛𝑖
𝑞
𝑖=1 . 

Proof: 𝐴1 is distributed as ∑ 𝑍𝛼𝑍𝛼
′𝑛1

𝛼=1  

           𝐴2 is distributed as ∑ 𝑍𝛼𝑍𝛼
′𝑛1+𝑛2

𝛼=𝑛1+1
 

           𝐴𝑞 is distributed as ∑ 𝑍𝛼𝑍𝛼
′𝑛1+⋯+𝑛𝑞

𝛼=𝑛1+⋯+𝑛𝑞−1−1
 

where 𝑍𝛼~𝑁(0, Σ) are 𝑍𝛼 are independently distributed. 

Hence 𝐴 = ∑ 𝐴𝑖
𝑞
𝑖=1  is distributed according to ∑ 𝑍𝛼𝑍𝛼

′𝑛
𝛼=1  where 𝑛 = ∑ 𝑛𝑖

𝑞
𝑖=1 , 𝑍𝛼~𝑁(0, Σ) and 𝑍𝛼 

are independent. 

Theorem 4.4.4.: If 𝐴~𝑊(Σ, 𝑛) and 𝐿 is any (𝑝 × 1) vector. Prove that 
𝐿′𝐴𝐿

𝐿′Σ𝐿
~𝜒(𝑛)

2 . 

Proof: Let 𝐴 = ∑ 𝑍𝛼𝑍𝛼
′𝑛

𝛼=1  and we write 𝑣𝛼 = ∑ 𝐿′𝑍𝛼
𝑛
𝛼=1 . Obviously 𝑣𝛼 is a scalar so that 𝑣𝛼 =

𝑣𝛼
′ . Then 

𝐿′𝐴𝐿 = 𝐿′ (∑𝑍𝛼𝑍𝛼
′

𝑛

𝛼=1

)𝐿 



= (∑𝐿′𝑍𝛼

𝑛

𝛼=1

(𝐿′𝑍𝛼)
′) 

= ∑𝑣𝛼𝑣𝛼
′

𝑛

𝛼=1

 

= ∑𝑣𝛼
2

𝑛

𝛼=1

 

Where  

Since 𝑍𝛼~𝑁(0, Σ), we have  𝑣𝛼~𝑁(0, 𝐿
′Σ𝐿). Therefore 

 
𝑣𝛼

(𝐿′Σ𝐿)1 2⁄
~𝑁(0, 𝐼) 

or 
∑ 𝑣𝛼

2𝑛
𝛼=1

(𝐿′Σ𝐿)
~𝜒(𝑛)

2  

or 
(𝐿′A𝐿)

(𝐿′Σ𝐿)
~𝜒(𝑛)

2 . 

Hence we follow the result. 

4.4.3        Marginal Distribution 

Let 𝐴~ 𝑊(Σ, 𝑛). Now we derive the marginal density function of any arbitrary set of elements of 

𝐴 using the following two theorems: 

Theorem4.4.5.: Let  

A = (
A11 A12
A21 A22

)

𝑞 𝑝 − 𝑞

𝑞
𝑝 − 𝑞               

Σ = (
Σ11 Σ12
Σ21 Σ22

) 

If 𝐴~ 𝑊(Σ, 𝑛) then A11~𝑊(Σ11, 𝑛). 



Proof: We can write  

𝐴 = ∑𝑍𝛼𝑍𝛼
′

𝑛

𝛼=1

 

where 𝑍𝛼 are independently distributed each according to 𝑁(0, Σ). Let 

𝑍𝛼 = (
𝑍𝛼
(1)

𝑍𝛼
(2)
)

𝑞
𝑝 − 𝑞 

A11 = ∑𝑍𝛼
(1)
𝑍𝛼
(1)′

𝑛

𝛼=1

 

where 𝑍𝛼
(1)
~𝑁(0, Σ11) and 𝑍𝛼

(1)
 are mutually independently distributed. 

Hence A11~𝑊(Σ11, 𝑛). 

Theorem 4.4.6.: Let 𝐴 and Σ be partitioned into 𝑝1, … , 𝑝𝑞 rows and columns as 

A =

[
 
 
 
A11 A12 ⋯ A1𝑞
A21 A22 ⋯ A2𝑞
⋮ ⋮ ⋯ ⋮
A𝑞1 A𝑞2 ⋯ A𝑞𝑞]

 
 
 

  , Σ =

[
 
 
 
Σ11 Σ12 ⋯ Σ1𝑞
Σ21 Σ22 ⋯ Σ2𝑞
⋮ ⋮ ⋯ ⋮
Σ𝑞1 Σ𝑞2 ⋯ Σ𝑞𝑞]

 
 
 

 

If 𝛴𝑖𝑗 = 0 for 𝑖 ≠ 𝑗 and if 𝐴~ 𝑊(Σ, 𝑛) then A11, A22, … , A𝑞𝑞 are independent and A𝑖𝑖~𝑊(Σ𝑖𝑖 , 𝑛). 

Proof: Let 𝐴 = ∑ 𝑍𝛼𝑍𝛼
′𝑛

𝛼=1  

where 𝑍𝛼 are independent and each distributed according to 𝑁(0, Σ). Let 

𝑍𝛼 =

[
 
 
 
 𝑍𝛼

(1)

𝑍𝛼
(2)

⋮

𝑍𝛼
(𝑞)
]
 
 
 
 

 



Since Σij = 0, hence 𝑍𝛼
(𝑖)

 are independent of 𝑍𝛼
(𝑗)

 for 𝑖 ≠ 𝑗. Then A𝑖𝑖 = ∑ 𝑍𝛼
(𝑖)
𝑍𝛼
(𝑖)′𝑛

𝛼=1  are 

independent of A𝑗𝑗 = ∑ 𝑍𝛼
(𝑗)
𝑍𝛼
(𝑗)′𝑛

𝛼=1 , and distributed as 𝑊(Σ𝑗𝑗, 𝑛). 

4.4.4     Conditional Distribution 

If 𝐴~ 𝑊(Σ, 𝑛), 

A = (
A11 A12
A21 A22

)

𝑞 𝑝 − 𝑞

𝑞
𝑝 − 𝑞               Σ = (

Σ11 Σ12
Σ21 Σ22

) 

Let 𝐴11.2 = 𝐴11 − 𝐴12𝐴22
−1𝐴21 and Σ11.2 = Σ11 − Σ12Σ22

−1Σ21. Then the conditional distribution of 

𝐴11.2|𝐴22. 

A11.2~𝑊(Σ11.2, 𝑛 − (𝑝 − 𝑞)) 

A11.2~ ∑ 𝑈𝛼𝑈𝛼
′

𝑛−(𝑝−𝑞)

𝛼=1

 

where 𝑈𝛼 are independent and each distributed according to 𝑁(0, Σ11.2). 

Proof: Let 𝐴~ 𝑊(Σ, 𝑛). We consider 𝐴 = ∑ 𝑍𝛼𝑍𝛼
′𝑛

𝛼=1 , where 𝑍𝛼 are independent and each 

distributed according to 𝑁(0, Σ). Let 

𝑍𝛼 = (
𝑍𝛼
(1)

𝑍𝛼
(2)
)

𝑞
𝑝 − 𝑞 

𝐴 =

[
 
 
 
 
 ∑ 𝑍𝛼

(1)
𝑍𝛼
(1)′

𝑛

𝛼=1

∑𝑍𝛼
(1)
𝑍𝛼
(2)′

𝑛

𝛼=1

∑𝑍𝛼
(2)
𝑍𝛼
(1)′

𝑛

𝛼=1

∑𝑍𝛼
(2)
𝑍𝛼
(2)′

𝑛

𝛼=1 ]
 
 
 
 
 

= [
𝑊𝑊′ 𝑊𝑌′

𝑌𝑊′ 𝑌𝑌′
] 

where  



𝑊 =∑𝑍𝛼
(1)

𝑛

𝛼=1

= [𝑍1
(1) 𝑍2

(1) ⋯ 𝑍𝛼
(1)]

𝑞×𝑛
, 

𝑌 = ∑𝑍𝛼
(2)

𝑛

𝛼=1

= [𝑍1
(2)

𝑍2
(2)

⋯ 𝑍𝛼
(2)]

(𝑝−𝑞)×𝑛
 

Since 𝑌𝑌′ = 𝐴22 is a non-singular matrix, ∃ a matrix 𝐹 such that 

𝐹𝑌𝑌′𝐹′ = 𝐼(𝑝−𝑞)×(𝑝−𝑞) 

Writing 𝐺2 = 𝐹𝑌, we have 

𝐺2𝐺2
′ = 𝐼(𝑝−𝑞)×(𝑝−𝑞) 

Thus, ∃ a matrix 𝐺 such that 𝐺 = [
𝐺1
𝐺2
] is an orthogonal matrix.  

Where 𝐺2 is a matrix of order (𝑛 − 𝑝 + 𝑞) × 𝑛. 

Consider, a transformation 

𝑈 = 𝑊𝐺′ 

where, 𝑈′ = [𝑈1 𝑈2 ⋯ 𝑈𝑛] 

Since 𝐺 is orthogonal matrix, we have 

𝐺𝐺′ = 𝐼𝑛 

⇒ [
𝐺1
𝐺2
] [𝐺1

′ 𝐺2
′ ] = [

𝐼{𝑛−(𝑝−𝑞)} 0

0 𝐼(𝑝−𝑞)
] 

⇒ [
𝐺1𝐺1

′ 𝐺1𝐺2
′

𝐺2𝐺1
′ 𝐺2𝐺2

′] = [
𝐼{𝑛−(𝑝−𝑞)} 0

0 𝐼(𝑝−𝑞)
] 



Let 𝐺 = [

𝑔1
𝑔2
⋮
𝑔𝑛

] 

Then 

𝑈1 = 𝑊𝑔1
′  

𝑈2 = 𝑊𝑔2
′  

⋮ 

𝑈𝑛 = 𝑊𝑔𝑛
′  

or 

𝑈𝛼 = [𝑍1
(1)

𝑍2
(1)

⋯ 𝑍𝑛
(1)] [

𝑔𝛼1
𝑔𝛼2
⋮
𝑔𝛼𝑛

] 

= ∑𝑔𝛼𝛽

𝑛

𝛽=1

𝑍𝛽
(1)

 

is a linear combination of 𝑛 independent normal vector. Therefore, the distribution of 𝑈𝛼 is 

multivariate normal with 

𝐸[𝑈𝛼] = 0 

𝐶𝑜𝑣[𝑈𝛼 , 𝑈𝛽] = 𝐸(𝑈𝛼𝑈𝛽
′ ) 

= 𝐸(𝑊𝑔𝛼
′ 𝑔𝛽𝑊

′ ) 

Since 𝐺 is an orthogonal matrix 𝑔𝛼
′ 𝑔𝛽 = 0 ∀𝛼 ≠ 𝛽. Thus 

𝐶𝑜𝑣[𝑈𝛼 , 𝑈𝛽] = 0                      if   𝛼 ≠ 𝛽 

𝑈1, 𝑈2, … , 𝑈𝑛 are independently distributed.  

𝑈𝛼 = 𝑊𝑔𝛼
′  



The conditional distribution of 𝑋(1) given 𝑋(2) is 

𝑓(𝑋(1)|𝑋(2))~𝑁𝑞(𝜇1 + Σ12Σ22
−1(𝑋(2) − 𝜇2), Σ11.2) 

Since 𝑍𝛼~𝑁(0, Σ), the conditional distribution of 𝑍(1) given 𝑍(2) is 

𝑍𝛼
(1)|𝑍𝛼

(2)~𝑁𝑞(Σ12Σ22
−1 𝑍𝛼

(2), Σ11.2). 

Consider 

𝐸[𝑈|𝑌] = 𝐸[𝑊𝐺′|𝑌] = 𝐸[𝑊|𝑌]𝐺′ = Σ12Σ22
−1𝑌𝐺′ 

Since 𝐺2 = 𝐹𝑌 ⇒ 𝑌 = 𝐹−1𝐺2, 

We have 

𝐸[𝑈|𝑌] = Σ12Σ22
−1𝐹−1𝐺2𝐺

′ 

= 𝛽𝐹−1       (𝛽 = Σ12Σ22
−1) 

The conditional distribution of 𝑈{𝑛−(𝑝−𝑞)}+𝛼 , 𝛼 = 1,… , (𝑝 − 𝑞) is 𝑁𝑞(𝜈𝛼 , Σ11.2), where, 𝜈𝛼 is the 

𝛼𝑡ℎ column of 𝛽𝐹−1. 

(i) 𝑈1, 𝑈2, … , 𝑈𝑛 are independent. 

(ii) 𝑈1, 𝑈2, … , 𝑈{𝑛−(𝑝−𝑞)}~𝑁𝑞(0, Σ11.2) 

(iii) 𝑈{𝑛−(𝑝−𝑞)}+1, 𝑈{𝑛−(𝑝−𝑞)}+2, … , 𝑈𝑛~𝑁𝑞(𝜈𝛼 , Σ11.2) 

Then 

A11 = 𝑊𝑊
′ = 𝑈𝐺𝐺′𝑈′ = 𝑈𝑈′ 

Therefore, 𝐺 is an orthogonal matrix (𝐺′)−1 = 𝐺 ⇒ 𝐺𝐺′ = 𝐼 

A11 = [𝑈1 𝑈2 ⋯ 𝑈𝑛] [

𝑈1
𝑈2
⋮
𝑈𝑛

] 



= ∑𝑈𝛼𝑈𝛼
′

𝑛

𝛼=1

    

and 

A12A22
−1A21 = (𝑊𝑌

′)(𝑌𝑌′)−1(𝑌𝑊′) 

= (𝑈𝐺)(𝐺′𝑈′) 

= 𝑈 [
𝐺1
𝐺2
] [𝐺1

′ 𝐺2
′ ]𝑈′ 

 = 𝑈 [
𝐺1𝐺1

′ 𝐺1𝐺2
′

𝐺2𝐺1
′ 𝐺2𝐺2

′] 𝑈
′ 

= [𝑈1 𝑈2 ⋯ 𝑈𝑛] ((𝑎𝑖𝑗)) [

𝑈1
′

𝑈2
′

⋮
𝑈𝑛
′

] 

=∑∑𝑈𝑖

𝑛

𝑗=1

𝑛

𝑖=1

𝑎𝑖𝑗𝑈𝑖
′    

When 𝑖 = 𝑗 𝑎𝑖𝑖 = 0 and for 𝑖 = 1,2,… , 𝑛 − (𝑝 − 𝑞), 𝑎𝑖𝑗 = 0 for 𝑖 ≠ 𝑗, and 𝑎𝑖𝑖 = 1, ∀ 𝑖 =

{𝑛 − (𝑝 − 𝑞)} + 1, {𝑛 − (𝑝 − 𝑞)} + 2,… , 𝑛. 

Hence 

A12A22
−1A21 = ∑ 𝑈𝛼𝑈𝛼

′

𝑛

𝛼={𝑛−(𝑝−𝑞)}+1

 

So that 

A11.2 = A11 − A12A22
−1A21 

= ∑𝑈𝛼𝑈𝛼
′

𝑛

𝛼=1

− ∑ 𝑈𝛼𝑈𝛼
′

𝑛

𝛼={𝑛−(𝑝−𝑞)}+1

 



= ∑ 𝑈𝛼𝑈𝛼
′

{𝑛−(𝑝−𝑞)}

𝛼=1

 

where 𝑈𝛼~𝑁𝑞(0, Σ11.2). 

Hence A11.2~𝑊𝑞(Σ11.2, {𝑛 − (𝑝 − 𝑞)}). 

Since A12A22
−1A21 = ∑ 𝑈𝛼𝑈𝛼

′𝑛
𝛼={𝑛−(𝑝−𝑞)}+1  and 𝑈𝛼 are independent. This implies that A11.2 and 

A12A22
−1A21 are independently distributed. 

Further 𝑈𝛼~𝑁(𝜈𝛼 , Σ11.2), it implies that A12A22
−1A21 follows a ‘non-central Wishart distribution’. 

Theorem 4.4.7.: If 𝐴~𝑊𝑝(𝑛, Σ) and 𝐵 is any (𝑞 × 𝑝) matrix of rank 𝑞(𝑞 ≤ 𝑝) then 

𝐵𝐴𝐵′~𝑊𝑞(𝑛, 𝐵ΣB
′). 

Proof: 𝐴~𝑊𝑝(𝑛, Σ) ⇒ 𝐴 = ∑ 𝑍𝛼𝑍𝛼
′𝑛

𝛼=1 , 𝑍𝛼~𝑁(0, Σ), 𝑍𝛼
′ 𝑠 are independently distributed. 

Then 

𝐵𝐴𝐵′ = 𝐵(∑𝑍𝛼𝑍𝛼
′

𝑛

𝛼=1

)𝐵′ = ∑𝐵𝑍𝛼𝑍𝛼
′ 𝐵′

𝑛

𝛼=1

= ∑(𝐵𝑍𝛼)(𝐵𝑍𝛼)
′

𝑛

𝛼=1

= ∑𝑍𝛼
∗ (𝑍𝛼

∗ )′
𝑛

𝛼=1

        

where 𝑍𝛼
∗ = 𝐵𝑍𝛼 . Further, 

𝑍𝛼~𝑁𝑝(0, Σ) 

Thus 

𝐵𝑍𝛼~𝑁𝑝(0, 𝐵ΣB
′) 

𝑍𝛼
∗~𝑁𝑝(0, 𝐵ΣB

′) 

⇒ 𝐵𝐴𝐵′~𝑊𝑞(𝑛, 𝐵ΣB
′) if 𝑍𝛼

∗ ′𝑠 are independent.  



Since 

𝐶𝑜𝑣(𝑍𝛼
∗ , 𝑍𝛽

∗) = 𝐸 [𝑍𝛼
∗(𝑍𝛽

∗)
′
] 

⇒ 𝐶𝑜𝑣(𝐵𝑍𝛼 , 𝐵𝑍𝛽) = 𝐸 [𝐵𝑍𝛼(𝐵𝑍𝛽)
′
] 

= 𝐸[𝐵𝑍𝛼𝑍𝛽
′𝐵′] 

= 𝐵𝐸[𝑍𝛼𝑍𝛽
′]𝐵′ 

Since 𝐶𝑜𝑣(𝑍𝛼 , 𝑍𝛽
′ ) = 𝐸[𝑍𝛼𝑍𝛽

′] = 0     𝑖𝑓 𝛼 ≠ 𝛽 

We have 

𝐶𝑜𝑣(𝐵𝑍𝛼 , 𝐵𝑍𝛽) 

= 𝐵𝐸[𝑍𝛼𝑍𝛽
′]𝐵′ = 0 

Therefore 𝑍𝛼’s are i.i.d.~𝑁𝑝(0, Σ) implies that 𝑍𝛼
∗  (𝛼 = 1,2,… , 𝑛) are i.i.d. 𝑁𝑞(0, 𝐵ΣB

′). 

4.5 Cochran theorem (From where you have taken this portion. 

Cochran’s theorem is different.) 

Cochran's Theorem (1952) is a fundamental result in multivariate analysis that states: 

"If a quadratic form 𝑄 = 𝑋𝑇𝐴𝑋 is distributed as a chi-square with 𝑝 degrees of freedom, 

then the matrix 𝐴 is idempotent (𝐴2 = 𝐴) and rank(𝐴) = 𝑝." 

Conversely, 

"If a matrix 𝐴 is idempotent (𝐴2 = 𝐴) and rank(𝐴) = 𝑝, then the quadratic form 𝑄 =

𝑋𝑇𝐴𝑋 is distributed as chi-squared with 𝑝 degrees of freedom." 

Proof: 1. Suppose 𝑄 = 𝑋𝑇𝐴𝑋 ~ 𝜒𝑝
2  



a. Show that A is idempotent: 

𝐸(𝑄) = 𝐸(𝑋𝑇𝐴𝑋) 

= 𝑡𝑟 (𝐴 Σ) 

where 𝛴 is the covariance matrix of 𝑋. 

Since 𝐸(𝑄) = 𝑝, we have 

𝑡𝑟 (𝐴 Σ) = 𝑝 

Using the trace operator's properties, we get: 

𝑡𝑟 (𝐴2 Σ) = 𝑡𝑟 (𝐴 Σ) = 𝑝 

Thus, 𝐴2 = 𝐴. 

b. Show that rank(𝐴)  =  𝑝 

Since 𝐴 is idempotent, we have 

𝐴2 = 𝐴 

Taking the determinant of both sides, we get 

|𝐴2| = |𝐴|. 

Using the property det(𝐴𝐵) = det(𝐴) det(𝐵), we get 

det(𝐴) det(𝐴) = det(𝐴) 

Since 𝑑𝑒𝑡(𝐴)  ≠  0 (otherwise, 𝑄 would not be chi-squared), we have 

𝑑𝑒𝑡(𝐴)  =  1 

Thus, rank(𝐴)  =  𝑝. 



1. Conversely, suppose 𝑨 is idempotent (𝑨𝟐 = 𝑨) and rank(𝑨) = 𝒑. 

a. Show that 𝑄 = 𝑋𝑇𝐴𝑋 ~ 𝜒𝑝
2. 

Since 𝐴 is idempotent, we have: 

𝐴2 = 𝐴 

Multiplying both sides by 𝑋𝑇 and 𝑋, we get 

𝑋𝑇𝐴2𝑋 = 𝑋𝑇𝐴𝑋  

Using the quadratic form 𝑄 = 𝑋𝑇𝐴𝑋 , we have 

𝑄 = 𝑋𝑇𝐴𝑋 = 𝑋𝑇𝐴2𝑋 

Thus, 𝑄 is a quadratic form in the variables 𝑋, and its distribution is chi-squared with 𝑝 degrees of 

freedom. 

Therefore, Cochran's Theorem is proved. 

4.6     Distribution of Characteristic Roots and Vectors of Wishart Matrices 

The distribution of characteristic roots and vectors of Wishart matrices is a fundamental 

concept in statistics and random matrix theory. 

In brief, a Wishart matrix is a random matrix formed from the Gram matrix of a multivariate 

normal distribution. Its characteristic roots (eigenvalues) and vectors (eigenvectors) have the 

following distributions: 

• Roots (eigenvalues): Follow a Wishart distribution, which is a generalization of the chi-

squared distribution. 

• Vectors (eigenvectors): Are uniformly distributed on the unit sphere, independent of the 

roots. 



These distributions play a crucial role in various areas, such as multivariate analysis, 

principal component analysis, and signal processing. 

A Wishart matrix, denoted by 𝑊, is a random 𝑝 × 𝑝 matrix formed from the Gram matrix 

of a multivariate normal distribution 

𝑊 = 𝑋𝑇𝑋 

where 𝑋 is a 𝑛 × 𝑝 matrix, with each row independently drawn from a 𝑝-variate normal 

distribution with mean vector 𝜇 and covariance matrix Σ. 

Distribution of Characteristic Roots (Eigenvalues) 

The characteristic roots (eigenvalues) of a Wishart matrix, denoted by 𝜆1, 𝜆2, … , 𝜆𝑝 , follow 

a Wishart distribution, which is a generalization of the chi-squared distribution. 

The Wishart distribution is characterized by two parameters: 

• 𝑛 (degrees of freedom) 

• Σ (covariance matrix) 

The probability density function (pdf) of the Wishart distribution is: 

|𝐴|
1
2
(𝑛−𝑝−1)𝑒−

1
2𝑡𝑟 𝐴𝛴

−1

2
1
2𝑛𝑝𝜋𝑝(𝑝−1) 4⁄ |𝛴|

1
2𝑛∏ 𝛤[12(𝑛+1−𝑖)]

𝑝
𝑖=1

 

𝑄 = 𝑋𝑇𝐴𝑋 ~ 𝜒𝑝
2 

where Γ𝑝 is the multivariate gamma function. 

The characteristic vectors (eigenvectors) of a Wishart matrix, denoted by 𝑣1, 𝑣2, … , 𝑣𝑝 are 

uniformly distributed on the unit sphere, independent of the roots. 

4.6  Summary 

In this unit, we have covered the concepts of Wishart distribution under following 

situations: 

1. Drive the distribution 

2. Discuss properties of Wishart distribution. 



3. State and proved Cochran theorem 

4. Also derive the distribution of roots and vectors of Wishart Matrix. 

4.7  Self-Assessment Exercises 

1. State Wishart distribution. Obtain its characteristic function; hence deduce its reproductive 

properties. 

2. Let 𝐴 follows wishart distribution 𝑊𝑝(𝑛, Σ) what is the distribution of 𝑊1(𝑛, Σ). 

3. If 𝐴~𝑊𝑞(𝑛, Σ) i.e. Wishart distribution and 𝑙′ is a non-null (𝑝 × 1) vector. What is the 

distribution of 𝑙′𝐴𝑙. 

4. If 𝑋~𝑊(𝑛, Σ) then what will be distribution of 𝑌 = 𝐶𝑋 where 𝐶 is real vector. 

5. Let 𝐴 is distributed according to 𝑊𝑝(𝑛, Σ) and 𝐴 and Σ be partitioned into 𝑞 and (𝑝 − 𝑞) 

rows and column  

6. 𝐴 = [
𝐴11 𝐴12
𝐴21 𝐴22

]. Then prove that 𝐴11 is distributed according to 𝑊(𝑛, Σ11). 

7. Define the Wishart distribution. Starting from your definition, prove its reproductive 

property. Give a random sample 𝑋𝛼  , 𝛼 = 1,2, … , 𝑁 from a 𝑝-variate normal population 

with unknown means 𝜇1, 𝜇2, … , 𝜇𝑝 and unknown dispersion, give the standard procedure 

for testing the hypothesis 𝐻0: 𝜇1 = 𝜇2 = ⋯ ,= 𝜇𝑝 = 0. Obtain the non-null distribution of 

your statistic. 

8. Obtain the characteristic function of the Wishart distribution 𝑊𝑝(𝑛, Σ). 

9. What is reproductive property of Wishart distribution? 

10. If 𝐴 has wishart 𝑊𝑝(𝑛, Σ) then write down the characteristic function of 𝐴. 

11. Write down the characteristic function of Wishart distribution. 

12. Define Wishart distribution. Derive its distribution and also obtain transformation. 

13. Define Wishart distribution. Derive its distribution and also obtain its moments. 

14. Define Wishart matrix. Write down its probability density function. Obtain its 

characteristic function. State and prove its reproductive property. 

15. Let a 𝑝 × 𝑝 matrix symmetric random matrix 𝐴~𝑊𝑝(𝑛, Σ) and let be partitioned into 𝑞 and 

(𝑝 − 𝑞) rows and column as 

𝐴 = [
𝐴11 𝐴12
𝐴21 𝐴22

]. Then derive the distribution of 𝐴11.2 = 𝐴11 − 𝐴12𝐴22
−1𝐴21 



16. Define the characteristic function of the Wishart distribution. Mention any two properties 

of the Wishart distribution. 

17. Suppose that the 𝐴𝑖(𝑖 = 1,2,3) are independently distributed according to Wishart 

distribution 𝑊𝑝(𝑛𝑖 , Σ) respectively, then write down the distribution of 𝐴 = 𝐴1 + 𝐴2 + 𝐴3 

for 𝑛1 = 1, 𝑛2 = 5, 𝑛3 = 2. 

19. State and prove the additive property of Wishart distribution. 

20. State and prove the Cochran theorem. 

21. Let 𝐴~𝑊𝑝(Σ, 𝑛𝑖) and 𝐴 and Σ be partitioned into 𝑞 and (𝑝 − 𝑞) rows and columns, 𝐴 =

[
𝐴11 𝐴12
𝐴21 𝐴22

] , Σ = [
Σ11 Σ12
Σ21 Σ22

]. Then prove that 𝐴11.2~𝑊𝑞(Σ11.2, 𝑛 − (𝑝 − 𝑞)). 

22. Given 𝐴~𝑊(𝛴, 𝑛), find the density of inverted Wishart Distribution. 
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UNIT 5:                  HOTELLING’S T2 STATISTIC  

Structure 

5.1  Introduction 

5.2  Objectives 

5.3  Hotelling’s 𝑇2 Statistic 

5.3.1  Assumptions for Hotelling’s 𝑇2 

5.3.2  Importance of Hotelling’s 𝑇2 

5.4  Hotelling’s 𝑇2 Distribution  

5.4.1  𝑇2-Statistic as a Function of Likelihood Ratio Criterion 

5.4.2  Invariance Property of 𝑇2 

5.5  Applications 

5.6  Summary  

5.7  Self-Assessment Exercises 

5.8  References 

5.9  Further Readings 

5.1 Introduction 

Hotelling’s 𝑇2, is the multivariate counter part of the t-test. “Multivariate” means that you 

have data for more than one parameter for each sample. For example, let’s say you wanted to 

compare how well two different sets of students performed in school. You could compare (e.g. 

mean test scores) with a t-test. Or, you could use Hotelling’s T-squared to compare multivariate 

data, e.g. the multivariate mean of test scores, GPA, and class grades. 

5.2  Objectives 

After reading this unit, you should be able to: 

• formulate the null and alternative hypothesis for mean vector when Σ is known or unknown;  

• derive a test statistic for testing the hypothesis of mean vectors;  

• Apply the tests to the given data. 

https://www.statisticshowto.com/probability-and-statistics/t-test/
https://www.statisticshowto.com/probability-and-statistics/t-test/
https://www.statisticshowto.com/probability-and-statistics/multivariate-analysis/
https://www.statisticshowto.com/probability-and-statistics/multivariate-analysis/


5.3  Hotelling’s 𝑻𝟐 Statistic 

The Hotelling’s 𝑇2 was develop by Harold Hotelling (1895 − 1973) to extend the 

univariate t-test with one dependent variable to a multivariate t-test with two or more dependent 

variables (Hotelling, 1931). 

Hotelling's 𝑇2 test is indeed an extension of the univariate t-test to analyze data with 

multiple response variables. It is commonly used in multivariate analysis to compare means across 

groups or to test hypotheses about the mean vector of multivariate data. The power of Hotelling's 

𝑇2 tests for one-group and two-group designs can be calculated based on sample sizes, alpha level, 

effect size, and the variance-covariance structure of the data. Options are provided to specify these 

parameters and solve for required sample sizes. 

Let 𝑥1, … , 𝑥𝑁 is a random sample from 𝑁(𝜇, 𝜎2) and 

𝑥 =
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

      , 𝑠2 =
1

𝑁 − 1
∑(𝑥𝑖 − 𝑥)

2

𝑁

𝑖=1

 

Then the distribution of 

𝑡 =
√𝑁(𝑥 − 𝜇)

𝑠
 ,      

is 𝑡-distribution with (𝑁 − 1) degrees of freedom. 

Let 𝑥1, … , 𝑥𝑁 be a random sample from the multivariate normal distribution 𝑁(𝜇, Σ). Then the 

multivariate analogue of the square of 𝑡 is 

𝑇2 = 𝑁(𝑥 − 𝜇)′𝑆−1(𝑥 − 𝜇) 

Here 

𝑥 =
1

𝑁
∑𝑥𝛼

𝑁

𝛼=1

   ∶ sample mean vector 

𝑆 =
𝐴

𝑁 − 1
        ∶ sample covariance matrix 



𝐴 = ∑(𝑥𝛼 − 𝑥)(𝑥𝛼 − 𝑥)′ 

𝑁

𝛼=1

 

5.3.1  Assumptions for Hotelling’s 𝑻𝟐 

The following assumptions are made when using Hotelling’s 𝑇2 to analyze one or two 

samples of data: 

(i) Multivariate Normality: The data should follow a multivariate normal distribution 

within each group. 

(ii) Homogeneity of Covariance Matrices: The covariance matrices of the groups should 

be equal (homoscedasticity). 

(iii) Independence: Observations within and between groups should be independent. 

5.3.2  Importance of Hotelling’s 𝑻𝟐 

Hotelling’s 𝑇2is an important tool for identifying changes in means between multiple 

populations. By using linear combinations of variables, it allows us to compare multiple samples 

at once, instead of having to run separate tests for each sample. This makes it much easier and 

faster to identify any meaningful changes in means between populations over time or across 

different groups of people. Additionally, because it uses a chi-squared test statistic, it helps us 

determine whether or not these changes are statistically significant something that traditional 𝑡-

tests cannot do on their own. 

Example 5.3(1): Random sample with 𝑁 = 20, were collected. The sample mean vector and 

covariance matrix are given bellow: 

�̅� = [
10
20
] , 𝑆 = [

40 −50
−50 100

]  

Obtain the value of Hotelling’s 𝑇2 statistic. 

Solution: Given that, 𝑁 = 20 

�̅� = [
10
20
] , 𝑆 = [

40 −50
−50 100

]  

https://math.ryerson.ca/~danziger/professor/MTH141/Handouts/Slides/depend.pdf
https://www.statisticshowto.com/probability-and-statistics/chi-square/
https://www.statisticshowto.com/what-is-statistical-significance/


We have 

𝑆−1 = [
0.0667 0.0333
0.0333 0.0267

] 

 Hence 

𝑇2 = 𝑁(𝑥 − 𝜇)′𝑆−1(𝑥 − 𝜇) 

= 20 [(
10
20
) − (

𝜇1
𝜇2
)]
′

[
0.0667 0.0333
0.0333 0.0267

] [(
10
20
) − (

𝜇1
𝜇2
)] 

= 20[0.0667(10 − 𝜇1) + 0.0333(20 − 𝜇2) 0.0333(10 − 𝜇1) + 0.0267(20 − 𝜇2)] [
10 − 𝜇1
20 − 𝜇2

] 

⇒ 𝑇2 = 1.334(10 − 𝜇1)
2 + 1.332(10 − 𝜇1)(20 − 𝜇2) + 0.534(20 − 𝜇2)

2 

5.4  Distribution of Hotelling’s 𝑻𝟐 

Theorem 5.4.1: Let 𝑇2 = 𝑦′𝑆−1𝑦,where 𝑦~𝑁(υ, Σ) and 𝑛𝑆 is independently distributed as 

∑ 𝑍𝛼𝑍𝛼
′𝑛

𝛼=1  with 𝑍𝛼 independent, each with distribution 𝑁(0, Σ). Then (𝑇2 𝑛⁄ )[(𝑛 − 𝑝 + 1) 𝑝⁄ ] is 

distributed as a non-central 𝐹 with 𝑝 and (𝑛 − 𝑝 + 1) degrees of freedom and non-centrality 

parameter 𝜈′Σ−1𝜈. If 𝜈 = 0, the distribution is central 𝐹-distribution. 

Proof: By definition 

𝑇2 = 𝑁(𝑥 − 𝜇)′𝑆−1(𝑥 − 𝜇) 

Let 𝑦 = √𝑁(�̅� − 𝜇0), then  

𝐸(𝑦) = √𝑁𝐸(�̅� − 𝜇0) 

= √𝑁(𝜇 − 𝜇0) = 𝜈, 

and 

Σ𝑦 = 𝐸[𝑦 − 𝐸(𝑦)][𝑦 − 𝐸(𝑦)]
′ 



= Σ 

Therefore 𝑦~𝑁(𝜈, Σ). Then 

𝑇2 = 𝑦′𝑆−1𝑦 .         

Let 𝐷 be a non-singular matrix such that  

𝐷Σ𝐷′ = 𝐼 

⇒ 𝐷𝐷′ = Σ−1 

Define 

𝑦∗ = 𝐷𝑦 , 

 𝑆∗ = 𝐷𝑆𝐷′. 

Then 

𝐸(𝑦∗) = 𝐷𝐸(𝑦) = 𝐷𝜈 = 𝜈∗ 

Σ𝑦∗ = 𝐸[𝑦
∗ − 𝐸(𝑦∗)][𝑦∗ − 𝐸(𝑦∗)]′ 

= 𝐷Σ𝐷′ = 𝐼 

Therefore 𝑦∗~𝑁(𝜈∗, I). Hence 

𝑇2 = 𝑦∗′𝑆∗−1𝑦∗ 

𝑛. 𝑆∗ = ∑𝑍𝛼
∗

𝑛

𝛼=1

𝑍𝛼
∗′ =∑(𝐷𝑍𝛼)(𝐷𝑍𝛼)

′ 

𝑍𝛼
∗ = 𝐷𝑍𝛼~𝑁(0, 𝐼) 

Let us define a 𝑝 × 𝑝 orthogonal matrix 𝑄 such that its first row is defined by 



𝑞1𝑖 =
𝑦𝑖
∗

√𝑦∗′𝑦∗
 ,   𝑖 = 1,2, … , 𝑝 

This is permissible since ∑ 𝑞1𝑖
2

𝑖 = 1. Remaining (𝑝 − 1) rows can be defined by some arbitrary 

rule. Since 𝑄 depends on 𝑦∗ it is a random matrix.  

Let 𝑈 = 𝑄𝑦∗ be an orthogonal transformation, also 

𝐵 = ((𝑏𝑖𝑗)) 𝑛 𝑄𝑆
∗𝑄′ 

Then the first element of 𝑈 is given by 

𝑈1 =∑𝑞1𝑖𝑦𝑖
∗

𝑝

𝑖=1

=∑
𝑦𝑖
∗2

√𝑦𝑖
∗′𝑦𝑖

∗

𝑝

𝑖=1

= √𝑦𝑖
∗′𝑦𝑖

∗ 

and ∀ 𝑗 = 2,… , 𝑝 

𝑈𝑗 =∑𝑞𝑗𝑖𝑦𝑖
∗

𝑝

𝑖=1

 ,                      𝑦𝑖
∗ = 𝑞1𝑖√𝑦𝑖

∗′𝑦𝑖
∗ 

       = √𝑦𝑖
∗′𝑦𝑖

∗  ∑𝑞𝑗𝑖

𝑝

𝑖=1

𝑞1𝑖           (since 𝑄 is an orthogonal matrix) 

       = 0                                        (by using the property of an orthogonal matrix) 

Thus 

𝑇2 = 𝑦∗′𝑆∗−1𝑦∗ = (𝑄−1𝑈)′𝑆∗−1(𝑄−1𝑈) = 𝑈′(𝑄𝑆∗𝑄′)−1𝑈 = 𝑛𝑈′(𝑄 𝑁𝑆∗𝑄′)−1𝑈 = 𝑛 𝑈′𝐵−1𝑈 

Then 



𝑇2

𝑛
= 𝑈′𝐵−1𝑈 = (𝑈1 0 ⋯ 0)(

𝑏11 𝑏12 ⋯ 𝑏1𝑝

𝑏21 𝑏22 ⋯ 𝑏2𝑝

⋮ ⋮ ⋯ ⋮
𝑏𝑝1 𝑏𝑝2 ⋯ 𝑏𝑝𝑝

)(

𝑈1
0
⋮
0

) = 𝑈1
2𝑏11 

where, 𝐵−1 = ((𝑏𝑖𝑗)). 

𝐵 = (
𝑏11 𝑏(1)

𝑏(1)
′ 𝐵22

) 

Now 

𝐵−1𝐵 = 𝐼 

( 𝑏
11 𝑏(1)

𝑏(1)′ 𝐵22
) (
𝑏11 𝑏(1)

𝑏(1)
′ 𝐵22

) = [
1 0
0 𝐼

] 

(𝑏
11𝑏11 + 𝑏

(1)𝑏(1)
′ 𝑏11𝑏(1) + 𝑏

(1)𝐵22
⋯ ⋯

) = [
1 0
0 𝐼

] 

Hence, 

𝑏11𝑏11 + 𝑏
(1)𝑏(1)

′ = 1 

𝑏11𝑏(1) + 𝑏
(1)𝐵22 = 0 

𝑏(1) = −𝑏11𝑏(1)𝐵22
−1 

𝑏11𝑏
11 − 𝑏11𝑏(1)𝐵22

−1𝑏(1)
′ = 1 

or 

𝑏11 =
1

𝑏11 − 𝑏(1)𝐵22
−1𝑏(1)

′
=

1

𝑏11.2,…,𝑝
 

Therefore 



𝑇2

𝑛
=

𝑈1
2

𝑏11.2,…,𝑝
=

𝑦𝑖
∗′𝑦𝑖

∗

𝑏11.2,…,𝑝
 

Now conditional distribution of 𝐵 is given 𝑄 is that of 𝐵 = 𝑄 𝑛 𝑆∗ 𝑄′ =

𝑄∑ 𝑍𝛼
∗𝑛

𝛼=1 𝑍𝛼
∗′𝑄′ = ∑ 𝜈𝛼𝜈𝛼

′𝑛
𝛼=1 , where conditionally 𝜈𝛼 = 𝑄𝑍𝛼

∗  are independent each following 

distribution 𝑁(0, 𝐼). Hence, 𝑏11.2,…,𝑝 is conditionally distributed as ∑ 𝑊𝛼
2𝑛−(𝑝−1)

𝛼=1 , where 

conditionally 𝑊𝛼 are independent, i.e. 𝑊𝛼~𝑁(0,1).  

Hence 𝑏11.2,…,𝑝 is a conditionally distributed as 𝜒2 with 𝑛 − (𝑝 − 1) degree of freedom. 

Since the conditional distribution of 𝑏11.2,…,𝑝 does not depend on 𝑄, therefore the unconditional 

distribution of 𝑏11.2,…,𝑝 is 𝜒𝑛−(𝑝−1)
2 . 

Since 𝑦∗ ~ 𝑁(𝜈∗, 𝐼), 𝑦∗′𝑦∗~non central − 𝜒2 with 𝑝 degrees of freedom and non-

centrality parameter 𝜈∗′𝜈∗ = 𝜈′Σ−1𝜈 = 𝜆2. Hence 
𝑇2

𝑛
 is a ratio of a non central − 𝜒2 with 𝑝 degree 

of freedom to an independent 𝜒2 with (𝑛 − 𝑝 + 1) degree of freedom. Therefore 

𝑛 − 𝑝 + 1

𝑝
(
𝑇2

𝑛
) =

𝜒𝑝
2(𝜆2)

𝑝

𝜒𝑛−(𝑝−1)
2

𝑛 − 𝑝 + 1

~𝑛𝑜𝑛 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝐹 𝑤𝑖𝑡ℎ 𝑝 & 𝑛 − 𝑝 + 1 𝑑. 𝑓. 

If 𝜇 = 𝜇0, then 𝐹-distribution is central. 

We shall call this distribution as 𝑇2 − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 with 𝑛 d.f. 

Corollary 5.4.2: Let 𝑥1, … , 𝑥𝑁 be a sample from 𝑁(𝜇, Σ) and  

𝑇2 = 𝑁(𝑥 − 𝜇0)
′𝑆−1(𝑥 − 𝜇0), then distribution of 

𝑇2

𝑁−1

𝑁−𝑝

𝑝
  is 

noncentral 𝐹𝑝,𝑁−𝑝[𝑁(𝜇 − 𝜇0)
′Σ−1(𝜇 − 𝜇0)]. If 𝜇 = 𝜇0, the distribution is central. 

5.4.1   𝑻𝟐-Statistic as a Function of Likelihood Ratio Criterion 

Let 𝑥1, … , 𝑥𝑁 be a random sample from 𝑁𝑝(𝜇, Σ) (𝑁 > 𝑝). The likelihood function is 



𝐿(𝜇, Σ) =
|Σ−1|

1
2𝑁

(2π)
1
2𝑝𝑁

exp [−
1

2
∑(𝑥𝛼−𝜇)

′Σ−1(𝑥𝛼−𝜇)

𝑁

𝛼=1

] 

For testing 𝐻0: 𝜇 = 𝜇0 against 𝐻1: 𝜇 = 𝜇1, the likelihood ratio criterion is 

𝜆 =
 𝐿(𝜇0, Σ

−1)Σ−1
𝑚𝑎𝑥

 𝐿(𝜇, Σ−1)𝜇,Σ−1
𝑚𝑎𝑥  

 𝐿(𝜇0, Σ
−1)Σ−1

𝑚𝑎𝑥  : maximum of the likelihood function for 𝜇, 𝛴−1 in the parameter space restricted 

by the null hypothesis. 

 𝐿(𝜇, Σ−1)𝜇,Σ−1
𝑚𝑎𝑥  : maximum of L over the entire parameter space (𝜇, Σ−1  

Maximum of 𝐿(𝜇, Σ−1) over the entire parameter space are defined by the maximum likelihood 

estimates of 𝜇 and Σ 

�̂�Ω = 𝑥 , Σ̂Ω =
1

𝑁
∑(𝑥𝛼 − 𝑥)(𝑥𝛼 − 𝑥)

′

𝛼

=
𝐴

𝑁
 

When 𝜇 = 𝜇0, the likelihood function is maximized at  

Σ̂𝜔 =
1

𝑁
∑(𝑥𝛼 − 𝜇0)(𝑥𝛼 − 𝜇0)

′

𝑁

𝛼=1

 

Therefore, 

 𝐿(𝜇, Σ−1)𝜇,Σ−1
𝑚𝑎𝑥 =

1

(2π)
1
2𝑝𝑁|Σ̂Ω|

1
2
𝑁
𝑒[−

1
2
∑ (𝑥𝛼−𝑥)(Σ̂Ω)

−1
(𝑥𝛼−𝑥)

′
𝛼 ] =

1

(2Π)
1
2𝑝𝑁|Σ̂Ω|

1
2
𝑁
𝑒−

1
2
𝑝𝑁 

 𝐿(𝜇0, Σ
−1)Σ−1

𝑚𝑎𝑥  



             =
1

(2π)
1
2𝑝𝑁|Σ̂𝜔|

1
2𝑁
exp [−

1

2
𝑡𝑟 𝑁 {∑(𝑥𝛼 − 𝜇0)(𝑥𝛼 − 𝜇0)

′

𝑁

𝛼=1

}

−1

{∑(𝑥𝛼 − 𝜇0)(𝑥𝛼 − 𝜇0)
′

𝑁

𝛼=1

}] 

             =
1

(2π)
1
2𝑝𝑁|Σ̂𝜔|

1
2𝑁
exp [−

𝑝𝑁

2
] 

Consider 

∑(𝑥𝛼 − 𝜇0)(𝑥𝛼 − 𝜇0)
′

𝑁

𝛼=1

= ∑{(𝑥𝛼 − �̅�) + (�̅� − 𝜇0)}{(𝑥𝛼 − �̅�) + (�̅� − 𝜇0)}
′

𝑁

𝛼=1

 

                                              = 𝐴 + 𝑁(�̅� − 𝜇0)(�̅� − 𝜇0)
′ 

Thus  

𝜆 =
|Σ̂Ω|

1
2𝑁

|Σ̂𝜔|
1
2𝑁
=

|∑ (𝑥𝛼 − 𝑥)(𝑥𝛼 − 𝑥)
′

𝛼 |
1
2𝑁

|∑ (𝑥𝛼 − 𝜇0)(𝑥𝛼 − 𝜇0)′𝛼 |
1
2𝑁
=

|𝐴|
1
2𝑁

|𝐴 + 𝑁(𝑥 − 𝜇0)(𝑥 − 𝜇0)′|
1
2𝑁
     ; 

Hence  

|𝐴 + 𝑁(𝑥 − 𝜇0)(𝑥 − 𝜇0)
′| = |𝐴 + {√𝑁(𝑥 − 𝜇0)}{√𝑁(𝑥 − 𝜇0)

′}| 

=
|

𝐴 √𝑁(𝑥 − 𝜇0)

−√𝑁(𝑥 − 𝜇0)
′ 1

|

𝑝         1

𝑝
1
= |𝐴||1 + 𝑁(𝑥 − 𝜇0)

′𝐴−1(𝑥 − 𝜇0)| 

Notice that |Σ| = |Σ11||Σ11 − Σ12Σ22
−1Σ21|. 

Therefore 

𝜆2 𝑁⁄ =
1

1 + 𝑁(𝑥 − 𝜇0)𝐴−1(𝑥 − 𝜇0)′
=

1

1 +
𝑁

𝑁 − 1
(𝑥 − 𝜇0)𝑆−1(𝑥 − 𝜇0)′

=
1

1 + 𝑇2 (𝑁 − 1)⁄
 



where 𝑇2 = 𝑁(𝑥0 − 𝜇0)
′𝑆−1(𝑥0 − 𝜇0) , 𝑆 =

𝐴

𝑁−1
 

The likelihood ratio test is defined by the critical region  𝜆 ≤ 𝜆0, where 𝜆0 is chosen, so that 

𝑃(𝜆 ≤ 𝜆0|𝐻0) = 𝛼: level of significance. 

Thus 

𝜆
2
𝑁 ≤ 𝜆0

2
𝑁 

⇒
1

1 + 𝑇2 (𝑁 − 1)⁄
≤ 𝜆0

2
𝑁 

⇒ 𝜆0
−
2
𝑁 ≤ 1 + 𝑇2 (𝑁 − 1)⁄   

⇒ 𝑇2 ≥ (𝑁 − 1) {𝜆0
−(
2
𝑁
)
− 1} = 𝑇0

2  

Hence the critical region is  

𝑃[𝑇2 ≥ 𝑇0
2| 𝐻0] = 𝛼 

where 𝑇0
2 = (𝑁 − 1)(𝜆0

−2 𝑁⁄ − 1) 

This test is the likelihood ratio test for testing the hypothesis 𝐻0: 𝜇 = 𝜇0. 

5.4.2   Invariance Property of 𝑻𝟐 

Let 𝑋~𝑁(𝜇, Σ), then 𝑇𝑥
2 = 𝑁(𝑥 − 𝜇)′𝑆𝑥

−1(𝑥 − 𝜇) 

Where 

𝑆𝑥 =
1

𝑁 − 1
∑(𝑥𝑖 − 𝑥)(𝑥𝑖 − 𝑥)

′

𝑁

𝑖=1

 



=
1

(𝑁 − 1)
(𝑥1𝑥1

′ +⋯+ 𝑥𝑁𝑥𝑁
′ −𝑁�̅��̅�′) 

Make a non-singular transformation 

𝑌 = 𝐷𝑋   

⇒ 𝑦𝑖 = 𝐷 𝑥𝑖 

Now 

𝑆𝑦 =
1

𝑁 − 1
∑(𝑦𝑖 − 𝑦)(𝑦𝑖 − 𝑦)

′

𝑁

𝑖=1

=
1

(𝑁 − 1)
(𝑦1𝑦1

′ +⋯+ 𝑦𝑁𝑦𝑁
′ − 𝑁�̅��̅�′) 

     =
1

(𝑁 − 1)
(𝐷𝑥1𝑥1

′𝐷′ +⋯+ 𝐷𝑥𝑁𝑥𝑁
′ 𝐷′ −𝑁.𝐷�̅��̅�′𝐷′) 

     = 𝐷 [
1

(𝑁 − 1)
(𝑥1𝑥1

′ +⋯+ 𝑥𝑁𝑥𝑁
′ −𝑁�̅��̅�′)] 𝐷′ 

⇒ 𝑆𝑦 = 𝐷𝑆𝑥𝐷
′ 

By definition 

𝑇𝑦
2 = 𝑁(𝑦 − 𝜇)′𝑆𝑦

−1(𝑦 − 𝜇) = 𝑁(𝐷𝑥 − 𝐷𝜇)′(𝐷𝑆𝑥𝐷
′)−1(𝐷𝑥 − 𝐷𝜇) 

      = 𝑁(𝑥 − 𝜇)′𝐷′𝐷′
−1
(𝑆𝑥)

−1(𝐷−1𝐷)(𝑥 − 𝜇) 

= 𝑁(𝑥 − 𝜇)′(𝑆𝑥)
−1(𝑥 − 𝜇) 

= 𝑇𝑥
2 

⇒ 𝑇𝑦
2 = 𝑇𝑥

2 

Hence 𝑇𝑥
2 is invariant under nonsingular transformation 𝑌 = 𝐷𝑋. 

5.5.    Application of 𝑻𝟐-Statistic 



 

(i) One Sample Problem 

Let 𝑥1, … , 𝑥𝑁 be a random sample from 𝑁(𝜇, Σ). Suppose Σ is unknown and we test 𝐻0: 𝜇 =

𝜇0. Let 𝑦 = √𝑁(𝑥 − 𝜇0), then, under null hypothesis, 𝐸(𝑦) = 0, and Σ𝑦 = Σ. Thus 𝑦~𝑁(0, Σ) 

Further  

𝑆 =
1

𝑁 − 1
∑(𝑥𝛼 − 𝑥)(𝑥𝛼 − 𝑥)

′

𝑁

𝛼=1

 

⇒ 𝐴 = ∑(𝑥𝛼 − 𝑥)(𝑥𝛼 − 𝑥)
′

𝑁

𝛼=1

= ∑ 𝑍𝛼𝑍𝛼
′

𝑁−1

𝛼=1

 

where 𝑍𝛼~𝑁(0, Σ). Therefore, by the definition 𝑇2 = 𝑦∗′𝑆∗−1𝑦∗ and 

𝑁 − 𝑝 + 1

𝑝
(
𝑇2

𝑁
)~ 𝐹 with 𝑝 & 𝑁 − 𝑝 + 1 𝑑. 𝑓. 

Thus, adopting a level of significance 𝛼, we reject the hypothesis if 𝑇2 ≥ 𝑇0
2, where 

𝑇0
2 =

(𝑁 − 1)𝑝

𝑁 − 𝑝
𝐹𝑝,𝑁−𝑝(𝛼) 

𝑇2 = 𝑁(𝑥 − 𝜇0)
′𝑆−1(𝑥 − 𝜇0) 

= 𝑁(𝑁 − 1)(𝑥 − 𝜇0)
′𝐴−1(𝑥 − 𝜇0) 

𝐴−1(𝑥 − 𝜇0) = 𝑏 

𝐴𝑏 = (𝑥 − 𝜇0)                                                                                                                                           (5.1) 

Thus, the computation of 𝐴−1 or 𝑆−1 is not required. The vector b can be directly obtained by 

solving (5.1), and then  



𝑇2

𝑁 − 1
= 𝑁(𝑥 − 𝜇0)

′𝑏 

Example 5.5.1: The length of Centrum (𝑥1) and width of Centrum (𝑥2) of a sample of 12 fishes 

of Serrandae family were observed as given in Table 

𝑖 𝑥1 𝑥2 

1 7.5 6.7 

2 6.8 6.2 

3 8.5 7.1 

4 5.8 6 

5 5.2 5.8 

6 7 6.2 

7 8.2 7.5 

8 6.9 7.3 

9 7.4 6.8 

10 8.4 7.3 

11 7.6 7 

12 9.2 7.8 

Test the researcher's claim about mean length and width of Centrum for Serrandae fishes to be 

8.94 and 6.76 respectively at 5% level of significance and no information is available about the 

population covariance matrix. 

Solution: We have to test the null hypothesis 𝐻0: 𝜇 = (
8.94
6.76

) = 𝜇0 against the alternative 

hypothesis 

𝐻1: �̅� ≠ (
8.94
6.76

). 

The sample covariance matrix 𝑆 is calculated as 

𝑆 = [
1.191 0.5877
0.5877 0.3741

] 

Where 

mailto:8.94@6.76))=μ


𝑠11 =
1

𝑁
∑(𝑥𝑖 − �̅�)(𝑥𝑖 − �̅�)

′

𝑁

𝑖=1

=
1

12
× 14.3025 = 1.191 

𝑠12 = 𝑠21 =
1

𝑁
∑ (𝑥𝑖 − �̅�)(𝑥𝑗 − �̅�)

′
𝑁

𝑖≠𝑗=1

=
1

12
× 7.0525 = 0.5877 

𝑠22 =
1

𝑁
∑(𝑥𝑖 − �̅�)(𝑥𝑖 − �̅�)

′

𝑁

𝑖=1

=
1

12
× 4.4892 = 0.3741 

The test statistic under 𝐻0 can be calculated as 

𝑇2 = (𝑁 − 1)(�̅� − �̅�)′S−1(�̅� − �̅�) 

The sample mean is 

�̅� = (
7.375
6.808

) 

Where 

�̅�1 =
1

12
∑𝑥𝑖

12

𝑖=1

=
88.5

12
= 7.375 

�̅�2 =
1

12
∑𝑥𝑖

12

𝑖=1

=
81.7

12
= 6.808 

�̅� = (
8.94
6.76

) 

S−1 =
|S|

𝑎𝑑𝑗 S
= [

3.73496 −5.86751
−5.86750 11.89075

] 

Thus 

𝑇2 = 11(1.565 −0.048) [
3.735 −5.868
−5.868 11.891

] (
7.375 − 8.94 = 1.565
6.808 − 6.76 = −0.048

) 



     = 11(6.127 −9.754) (
1.565
−0.048

) = 11 × 10.057 = 110.63 

And 

𝐹(𝑝,𝑁−𝑝+1) =
𝑁 − 𝑝 + 1

𝑝
(
𝑇2

𝑁
) 

=
12 − 2 + 1

2
×
110.63

12
 

=
9 × 110.63

24
=
995.643

24
 

= 41.485  

⇒ 𝐹(𝑝,𝑁−𝑝+1) = 41.485 

Now 𝐹(2,11) tabulated value is 3.98. Therefore 𝐹𝑐𝑎𝑙 > 𝐹𝑡𝑎𝑏 i.e. we reject hypothesis at 5% level of 

significance and conclude that the researcher claim is not true in the light of observed data. 

(ii) Two Sample Problem 

Let 𝑥𝛼
(𝑖) (𝛼 = 1,2,⋯ ,𝑁𝑖  ; 𝑖 = 1,2) be a random sample from 𝑁(𝜇(𝑖), Σ) respectively. 

The hypothesis is 

𝐻0: 𝜇
(1) = 𝜇(2) 

Let 

�̅�(𝑖) =
1

𝑁𝑖
∑𝑥𝛼

(𝑖)

𝑁𝑖

𝛼=1

 

be the sample mean vector, and �̅�(𝑖)~𝑁(𝜇(𝑖), Σ/𝑁𝑖), then {�̅�(1) − �̅�(2)}~𝑁 {0, (
1

𝑁1
+

1

𝑁2
) Σ}, 

under 𝐻0 

Let 



𝑦 = √
𝑁1𝑁2
𝑁1 + 𝑁2

{�̅�(1) − �̅�(2)} 

Then, under null hypothesis, 𝐸(𝑦) = 0, and 

Σ𝑦 =
𝑁1𝑁2
𝑁1 +𝑁2

𝐸 [{�̅�(1) − �̅�(2)}{�̅�(1) − �̅�(2)}
′
] 

= Σ 

Thus 𝑦~𝑁(0, Σ) 

Let 

𝑆(𝑖) =
1

𝑁𝑖 − 1
∑(𝑥𝛼

(𝑖) − 𝑥
(𝑖)
) (𝑥𝛼

(𝑖) − 𝑥
(𝑖)
)
′

𝑁𝑖

𝛼=1

 

and  

𝑆 =
1

𝑁1 + 𝑁2 − 2
∑∑(𝑥𝛼

(𝑖) − 𝑥
(𝑖)
) (𝑥𝛼

(𝑖) − 𝑥
(𝑖)
)
′

𝑁𝑖

𝛼=1

2

𝑖=1

 

⇒ 𝑆 =
(𝑁1 − 1)𝑆

(1) + (𝑁2 − 1)𝑆
(2)

𝑁1 +𝑁2 − 2
 

𝑆 is the pooled sample variance covariance matrix. Hence 

(𝑁1 +𝑁2 − 2)𝑆 = (𝑁1 − 1)𝑆
(1) + (𝑁2 − 1)𝑆

(2) 

= 𝐴(1) + 𝐴(2) 

= ∑ 𝑍𝛼𝑍𝛼
′

(𝑁1+𝑁2−2)

𝛼=1

 



where 𝑍𝛼~𝑁(0, Σ). Therefore, (𝑁1 + 𝑁2 − 2)𝑆 is distributed as ∑ 𝑍𝛼𝑍𝛼
′(𝑁1+𝑁2−2)

𝛼=1 . By the 

definition 

𝑇2 = 𝑦′𝑆−1𝑦 

= (
𝑁1𝑁2
𝑁1 + 𝑁2

) {�̅�(1) − �̅�(2)}
′
𝑆−1{�̅�(1) − �̅�(2)} 

is distributed as 𝑇2 with (𝑁1 + 𝑁2 − 2) degree of freedom, i.e. 

𝑁1 +𝑁2 − 2 − 𝑝 + 1

𝑝
{

𝑇2

(𝑁1 + 𝑁2 − 2)
}~ 𝐹 with 𝑝 and (𝑁1 +𝑁2 − 𝑝) 𝑑. 𝑓. 

Thus, adopting a level of significance 𝛼, we reject the hypothesis if 𝑇2 ≥ 𝑇0
2, where 

𝑇0
2 =

{𝑁1 +𝑁2 − 1}𝑝

𝑁1 +𝑁2 − 𝑝
𝐹𝑝,𝑁1+𝑁2−𝑝(𝛼) 

(iii)  𝒌-Sample Problem 

Let 𝑥𝛼
(𝑖) (𝛼 = 1,2,⋯ ,𝑁𝑖  ; 𝑖 = 1,2,⋯ , 𝑘) be a random sample from 𝑁(𝜇(𝑖), Σ) respectively. 

Suppose we are required to test 

𝐻0:∑𝛽𝑖

𝑘

𝑖=1

 𝜇(𝑖) = 𝜇 

Where 𝛽1, 𝛽2, ⋯ , 𝛽𝑘 are scalars and 𝜇 is mean vector. Let 

�̅�(𝑖) =
1

𝑁𝑖
∑𝑥𝛼

(𝑖)

𝑁𝑖

𝛼=1

 

Be the sample mean vector, and �̅�(𝑖)~𝑁(𝜇(𝑖), Σ/𝑁𝑖). Then ∑ 𝛽𝑖
𝑘
𝑖=1 �̅�(𝑖)~𝑁(𝜇(𝑖), Σ/𝐷) under 𝐻0, 

where 𝐸(∑ 𝛽𝑖
𝑘
𝑖=1 �̅�(𝑖)) = 𝜇 and the variance covariance matrix is 



𝐶𝑜𝑣 (∑𝛽𝑖

𝑘

𝑖=1

�̅�(𝑖)) =∑𝛽𝑖
2

𝑘

𝑖=1

 𝐶𝑜𝑣(�̅�(𝑖)) =∑
𝛽𝑖
2

𝑁𝑖

𝑘

𝑖=1

Σ =
Σ

𝐷
 

Let 𝑦 = √𝐷(∑ 𝛽𝑖
𝑘
𝑖=1 �̅�(𝑖) − 𝜇), then 𝐸(𝑦) = 0, under null hypothesis and Σ𝑦 = Σ. Thus 

𝑦~𝑁(0, Σ), and 

𝑆(𝑖) =
1

𝑁𝑖 − 1
∑(𝑥𝛼

(𝑖) − 𝑥
(𝑖)
) (𝑥𝛼

(𝑖) − 𝑥
(𝑖)
)
′

𝑁𝑖

𝛼=1

 

𝑆 =
1

∑ 𝑁𝑖
𝑘
𝑖=1 − 𝑘

∑∑(𝑥𝛼
(𝑖) − 𝑥

(𝑖)
) (𝑥𝛼

(𝑖) − 𝑥
(𝑖)
)
′

𝑁𝑖

𝛼=1

𝑘

𝑖=1

 

⇒ (∑𝑁𝑖

𝑘

𝑖=1

− 𝑘)𝑆 =∑∑(𝑥𝛼
(𝑖) − 𝑥

(𝑖)
) (𝑥𝛼

(𝑖) − 𝑥
(𝑖)
)
′

𝑁𝑖

𝛼=1

𝑘

𝑖=1

= ∑ 𝑍𝛼𝑍𝛼
′

(∑ 𝑁𝑖
𝑘
𝑖=1 −𝑘)

𝛼=1

 

where 𝑍𝛼~𝑁(0, Σ) 

Therefore by the definition, 𝑇2 = 𝑦′𝑆∗−1𝑦 = 𝐷(∑ 𝛽𝑖
𝑘
𝑖=1 �̅�(𝑖) − 𝜇)

′
𝑆−1(∑ 𝛽𝑖

𝑘
𝑖=1 �̅�(𝑖) − 𝜇)  is 

distributed as 𝑇2 with (∑ 𝑁𝑖
𝑘
𝑖=1 − 𝑘) degree of freedom, i.e. 

(∑ 𝑁𝑖
𝑘
𝑖=1 − 𝑘) − 𝑝 + 1

𝑝
{

𝑇2

(∑ 𝑁𝑖
𝑘
𝑖=1 − 𝑘)

}~ 𝐹 with 𝑝 & (∑𝑁𝑖

𝑘

𝑖=1

− 𝑘) − 𝑝 + 1 𝑑. 𝑓. 

Thus, adopting a level of significance 𝛼, then, we reject the hypothesis if 

𝑇2 ≥ 𝑇0
2 

where 

𝑇0
2 =

{(∑ 𝑁𝑖
𝑘
𝑖=1 − 𝑘) − 1}𝑝

(∑ 𝑁𝑖
𝑘
𝑖=1 − 𝑘) − 𝑝

𝐹
𝑝,(∑ 𝑁𝑖

𝑘
𝑖=1 −𝑘)−𝑝

(𝛼) 



5.6  Summary 

In this unit, we have covered the concepts of Hotelling’s 𝑇2 under following situations: 

1. Derived its distribution. 

2. Discuss likelihood criterion. 

3. Test for mean vector for one sample case when population covariance is known. 

4. Test for mean vector for one sample case when population covariance is unknown. 

5. Test for mean vector for 𝑘 sample case when population covariance is known. 

5.7  Self-Assessment Exercises 

1. Define Hotelling’s T2 statistic. How is it related with F-distribution? For a multivariate 

normal distribution𝑁𝑝(𝜇, Σ), derive a likelihood ratio test for testing 𝐻0: 𝜇 = 𝜇0 against the 

alternative 𝐻1: 𝜇 ≠ 𝜇0. 

2. Derive the null distribution of Hotelling’s 𝑇2 statistic. 

3. Discuss various applications of Hotelling’s 𝑇2 statistic in testing for the mean vector of one 

and more multivariate normal population. 

4. A sample of 10 industrial corporations was considered for the pairs of observations of their 

sales (𝑥1) and profits (𝑥2). The observations are given in the following Table: 

Corporation No. 𝑥1 (Rs. In Lakhs) 𝑥2 (Rs. In Lakhs) 

1 40 8 

2 42 10 

3 34 6 

4 16 6 

5 50 10 

6 24 4 

7 37 6 

8 42 8 

9 25 7 

10 20 5 

The expected mean vector and variance-covariance matrix is 



�̅� = [
40
10
] and Σ = [

13 10
10 6

] 

Test whether the sample confirms its truth ness of mean vector at 5% level of significance. 

5. Two samples of size 50 bars and 60 bars were taken from the lots produced by method 1 and 

method 2. Two characteristics 𝑋𝐼 = lather and 𝑋𝑧 = mildness were measured. The summary 

statistics for bars produced by methods 1 and 2 is given by 

�̅�(1) = [
8
4
] , �̅�(2) = [

10
4
] 

          𝑆1 = [
2 1
1 5

] , 𝑆2 = [
2 1
1 6

] 

         Test at 5% level of significance whether 𝜇(1) = 𝜇(2) or not. 
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6.1  Introduction 

Let 𝑋 be a (𝑝 × 1) vector random variable having 𝑁(𝜇, Σ) distribution. Let 𝑋 (𝑝 × 𝑛) be a 

data matrix observed from a random sample of size 𝑛. The population distribution involves as 

parameters 𝑝 components of mean 𝜇 and 
1

2
𝑝(𝑝 + 1) components of variance-covariance Σ. For 



these parameters, minimum {2𝑝(𝑝+3) − 1} null hypothesis can be formulated. These null 

hypotheses can specify the values of a subset of parameters. In this unit, we shall consider the 

problem of testing hypothesis about the mean 𝜇 under both the situations when variance-

covariance matrix Σ is known and when variance-covariance matrix Σ is unknown. 

6.2    Objectives 

After reading this unit, you should be able to: 

• Formulate the null and alternative hypothesis for mean vector when Σ is known or unknown 

• Derive a test statistic for testing the hypothesis of mean vectors 

• Apply the tests to the given data. 

• Derive the Mahalanobis 𝐷2. 

6.3    Equality of the Component of a Mean Vector in a Multivariate   

                     Normal Population 

Suppose 𝑥1
(1)
, … , 𝑥𝑁1

(1)
 𝑎𝑛𝑑 𝑥2

(2)
, … , 𝑥𝑁2

(2)
 are samples from 𝑁(𝜇1, Σ) and 𝑁(𝜇2, Σ) 

respectively First, we will consider the two hypotheses about the equality of mean vectors sample 

problem under the various assumptions about the covariance matrices. 

6.3.1   Test for Equality of Two Mean Vectors when Covariance Matrices      

                     are known 

Let 𝑥1
(1)
, … , 𝑥𝑁1

(1)
 𝑎𝑛𝑑 𝑥2

(2)
, … , 𝑥𝑁2

(2)
 be the random sample of sizes 𝑁1 and 𝑁2 drawn from 

𝑁(𝜇1, Σ) and 𝑁(𝜇2, Σ) respectively. If 𝑥 is the sample mean, then it is unbiased estimate of 

corresponding mean vector 𝜇 and covariance matrix (𝑁𝑖
−1Σ𝑖)𝑖 = 1,2. Let us define a new variable 

𝑥𝑑̅̅ ̅ = 𝑥1̅̅̅ − 𝑥2̅̅ ̅. Then �̅�𝑑 will be follow a multivariate normal distribution with mean vector 𝜇 =

𝜇1 − 𝜇2 and covariance matrix Σ = (𝑁1
−1Σ1 +𝑁2

−1Σ2). Therefore,  

(�̅�𝑑 − 𝜇)
′Σ−1(�̅�𝑑 − 𝜇) be a chi-square distribution with 𝑝 degrees of freedom. Under the 

null hypothesis 𝐻0: 𝜇 = 𝜇1 − 𝜇2 = 0, it reduces to (�̅�𝑑)
′Σ−1(�̅�𝑑), and shall follow a chi-square 

distribution. Hence, we reject null hypothesis 𝐻0, if calculated value of(�̅�𝑑)
′Σ−1(�̅�𝑑) is greater 



than the tabulated value of chi-square with 𝑝 degrees of freedom and at specified level of 

significance. 

Example 6.3.1: The length of Centrum (𝑥1) and width of Centrum (𝑥2) of a sample of 12 fishes 

of Serrandae family were observed as given in Table 

𝑖 𝑥1 𝑥2 

1 7.5 6.7 

2 6.8 6.2 

3 8.5 7.1 

4 5.8 6 

5 5.2 5.8 

6 7 6.2 

7 8.2 7.5 

8 6.9 7.3 

9 7.4 6.8 

10 8.4 7.3 

11 7.6 7 

12 9.2 7.8 

A researcher claims that the mean length and width of Centrum of fishes belonging to Serrandae 

family is 8.94 and 6.76, respectively with a variance-covariance matrix of 𝑥1, 𝑥2 as 

Σ = [
13.2496 9.0418
9.0418 7.6176

] 

Test this claim at 5% level of significance. 

Solution: The null hypothesis is 𝐻0: �̅� = (
8.94
6.76

) = �̅�0 against the alternative hypothesis 

𝐻1: �̅� ≠ (
8.94
6.76

). 

The population covariance matrix Σ is known as claimed by researcher. The value of test statistics 

under 𝐻0 is 

𝜒2 = 𝑁(�̅� − �̅�)′Σ−1(�̅� − �̅�) 

The sample mean is 



�̅� = (
7.375
6.808

) 

Where 

�̅�1 =
1

12
∑𝑥𝑖

12

𝑖=1

=
88.5

12
= 7.375 

�̅�2 =
1

12
∑𝑥𝑖

12

𝑖=1

=
81.7

12
= 6.808 

�̅� = (
8.94
6.76

) 

Σ−1 =
|Σ|

𝑎𝑑𝑗 Σ
= [

0.3972 −0.4715
−0.4715 0.6909

] 

Thus 

𝜒2 = 12(1.565 −0.048) [
0.3972 −0.4715
−0.4715 0.6909

] (
7.375 − 8.94 = 1.565
6.808 − 6.76 = −0.048

) 

     = 12(0.64425 −0.77106) (
1.565
−0.048

) = 12 × 1.045 = 12.54 

⇒ 𝜒2 = 12.54 

Since 𝜒2 tabulated value is 10.60. 

Therefore 𝜒𝑐𝑎𝑙
2 > 𝜒𝑡𝑎𝑏

2  i.e. we reject hypothesis at 5% level of significance and conclude that the 

data contradicts the claim of the researcher. 

6.3.2  Test for Equality of Two Mean Vectors when Covariance Matrices  

                     are Equal and Unknown 

Let 𝑥1
(1)
, … , 𝑥𝑁1

(1)
 𝑎𝑛𝑑 𝑥2

(2)
, … , 𝑥𝑁2

(2)
 be the random sample of sizes 𝑁1 and 𝑁2 drawn from 

𝑁(𝜇1, Σ1) and 𝑁(𝜇2, Σ2) respectively. Assume that Σ1 = Σ2 = Σ (unknown). Then Mahalanobis 

distance is defined as 

∆2= (𝜇(1) − 𝜇(2))
′
Σ−1(𝜇(1) − 𝜇(2)) 



The value of ∆2 cannot be calculated, as the parameters 𝜇1, 𝜇2 and Σ are not known. 

However, Mahalanobis Distance for sample observations is given by  

𝐷2 = (𝑥1̅̅̅ − 𝑥2̅̅ ̅)
′𝑆−1(𝑥1̅̅̅ − 𝑥2̅̅ ̅) 

where, 

𝑥𝑖  (𝑖 = 1,2) is the mean of 𝑖𝑡ℎ sample and 

𝑆 =
𝑁1𝑆1 +𝑁2𝑆2
𝑁1 +𝑁2 − 2

 

Here 𝑆𝑖 is the sample covariance matrix of 𝑖𝑡ℎ sample (𝑖 = 1,2). It may be noted here that 

for the given situation, 𝑥1̅̅̅ and 𝑥2̅̅ ̅, are the unbiased estimators of 𝜇1 and 𝜇2 respectively. Similarly, 

𝑁1𝑆1 and 𝑁2𝑆2 are maximum likelihood estimators of Σ and the pooled unbiased estimator of Σ is 

𝑆. Further 𝑥1, 𝑥2, 𝑆1 and 𝑆2, are independently distributed. 

It may be recalled that if we denote 𝑥𝑑 = 𝑥1 − 𝑥2, then it follows multivariate normal 

distribution with mean vector (𝜇1 − 𝜇2) and covariance matrix (𝑁1
−1 + 𝑁2

−1)Σ, under the null 

hypothesis 𝐻0: 𝜇1 = 𝜇2 , 𝑥𝑑~{0, (𝑁1
−1 +𝑁2

−1)Σ}. Since the samples are independent, 𝑁1𝑆1 and 

𝑁2𝑆2 are independently distributed, following Wishart distribution, i.e. 

𝑁𝑖𝑆𝑖~𝑊(Σ,𝑁𝑖 − 1) (𝑖 = 1,2) 

   ∴      (𝑁1
−1 + 𝑁2

−1)(𝑁1𝑆1 +𝑁2𝑆2)~𝑊[(𝑁1
−1 + 𝑁2

−1)Σ, (𝑁1 +𝑁2 − 2)] 

and is independent of 𝑥𝑑. 

From the definition of Hotelling's 𝑇2-statistics, we get that 

(𝑁1 +𝑁2 − 2)(𝑥 𝑑)
′[(𝑁1

−1 + 𝑁2
−1)(𝑁1𝑆1 + 𝑁2𝑆2)]

−1𝑥𝑑  

is distributed as 𝑇2(𝑝, 𝑁1 +𝑁2 − 2) . 

We may note that 𝐷2 = (𝑥 𝑑)
′𝑆−1𝑥𝑑  and 

(𝑁1 +𝑁2 − 2)(𝑥 𝑑)
′[(𝑁1

−1 + 𝑁2
−1)(𝑁1𝑆1 + 𝑁2𝑆2)]

−1𝑥𝑑 =  (𝑁1
−1 +𝑁2

−1)−1(𝑥 𝑑)
′𝑆−1𝑥𝑑 



Hence, 𝐷2 can be transformed to 𝑇2, by the relation 

𝑇2(𝑝, 𝑁1 +𝑁2 − 2) =
𝑁1𝑁2
𝑁1 +𝑁2

𝐷2 

Therefore, the significance of the hypothesis 𝐻0: 𝜇1 = 𝜇2 is tested by the statistic 

𝐹 =
𝑁1 + 𝑁2 − 𝑝 − 1

(𝑁1 +𝑁2 − 2)𝑝
 𝑇2{𝑝, (𝑁1 + 𝑁2 − 2)} 

   =
𝑁1 + 𝑁2 − 𝑝 − 1

(𝑁1 +𝑁2 − 2)𝑝
 (

𝑁1𝑁2
𝑁1 + 𝑁2

) [(𝑥1̅̅̅ − 𝑥2̅̅ ̅)
′𝑆−1(𝑥1̅̅̅ − 𝑥2̅̅ ̅)] 

which follows 𝐹-distribution with [𝑝, (𝑁1 +𝑁2 − 𝑝 − 1)] degrees of fieedom. Therefore, 

the test procedure would be to reject the null hypothesis 𝐻0 if calculated value of the above 

statistics is greater than tabulated value of 𝐹-statistics at specified level of significance and above-

mentioned degree of freedom. 

Example 6.3.2.: The following data show the number of ever born children and dead children to 

a number of couples belonging to low and medium socio-economic status: 

Low Socio Economic Medium Socio Economic 

Number of Children Number of Children 

10 3 2 0 

3 0 5 0 

5 0 4 1 

2 0 6 1 

12 2 3 0 

1 0 4 0 

8 1 5 1 

7 2 10 2 

4 0 8 3 

2 0 6 1 

1 0 7 0 



5 1 6 0 

4 0 5 0 

6 2 4 0 

7 1 8 1 

4 1 7 2 

8 2 3 0 

3 1 2 0 

6 1 3 0 

5 0 1 0 

 

2 0 

4 1 

5 1 

4 0 

6 0 

9 0 

6 0 

5 0 

 

𝐻0: 𝜇
(1) = 𝜇(2) against 𝐻1: 𝜇

(1) ≠ 𝜇(2) assuming that Σ = Σ1 = Σ2 (unknown) 

Here 𝑁1 = 20 , 𝑁2 = 28 and 𝑝 = 2. 

�̅�(1) = [
5.15
0.85

] , �̅�(2) = [
5.00
0.50

] 

Where 

�̅�(1) =
1

𝑁1
∑𝑥𝛼

(1)

𝑁1

𝛼=1

 

�̅�(2) =
1

𝑁2
∑𝑥𝛼

(2)

𝑁2

𝛼=1

 



𝑆1 = [
8.555 2.181
2.181 0.871

] , 𝑆2 = [
4.888 0.962
0.962 0.629

] 

where 

𝑆1 =
1

𝑁1 − 1
∑(𝑥𝛼

(1)
− 𝑥(1))(𝑥𝛼

(1)
− 𝑥(1))

′
𝑁1

𝛼=1

 

𝑆2 =
1

𝑁2 − 1
∑(𝑥𝛼

(2)
− 𝑥(2))(𝑥𝛼

(2)
− 𝑥(2))

′
𝑁2

𝛼=1

 

The pooled dispersion matrix is  

𝑆 =
1

𝑁1 + 𝑁2 − 2
[∑(𝑥𝛼

(1) − 𝑥(1))(𝑥𝛼
(1) − 𝑥(1))

′
𝑁1

𝛼=1

+∑(𝑥𝛼
(2)
− 𝑥(2))(𝑥𝛼

(2)
− 𝑥(2))

′
𝑁2

𝛼=1

] 

𝑆 = [
6.403 0.068
0.068 0.729

] 

And 

𝑆−1 = [
0.156 −0.014
−0.014 1.373

] 

𝐷2 = (�̅�(1) − �̅�(2))
′
𝑆−1(�̅�(1) − �̅�(2)) = [0.15 0.35] [

0.156 −0.014
−0.014 1.373

] [
0.15
0.35

] = 0.17025 

Hence  

𝑇2 =
𝑁1𝑁2
𝑁1 + 𝑁2

𝐷2 =
20 × 28

20 + 28
× 0.17025 = 1.986 

𝐹 =
𝑁1 + 𝑁2 − 𝑝 − 1

𝑝(𝑁1 + 𝑁2 − 2)
𝑇2 =

20 + 28 − 2 − 1

2(20 + 28 − 2)
× 1.986 = 0.971 

The tabulated value 𝐹(2, 45) at 5% level of significance is 3.27. Since calculated value is less 

than tabulated value at 5% level of significance, we conclude that data provide no evidence for 

rejection of hypothesis. 

6.4  Fisher-Behrens Problem 



The Fisher-Behrens Problem is the problem of testing for the equality of means from two 

multivariate normal distributions when the covariance matrices are unknown and possibly not 

equal. Since this is a generalization of the univariate Fisher-Behrens Problem, it inherits all the 

difficulties that arise in the univariate problem. The main challenge lies in the fact that unequal 

covariance matrices (in the multivariate case) introduce additional complexity, making traditional 

methods like the Student’s t-test inapplicable. 

6.4.1   Two samples Problem 

Let 𝑥1
(1)
, … , 𝑥𝑁1

(1)
 𝑎𝑛𝑑 𝑥2

(2)
, … , 𝑥𝑁2

(2)
 be the random sample of sizes 𝑁1 and 𝑁2 drawn from 

𝑁(𝜇(1), Σ1) and 𝑁(𝜇(2), Σ2. Under the null hypothesis 𝐻0: 𝜇
(1) = 𝜇(2). The mean (𝑥) ̅^((1) ) of 

the first sample is normally distributed with expected value 

𝐸(�̅�(1)) = 𝜇(1) 

and covariance matrix is 

𝐸(�̅�(1) − 𝜇(1))(�̅�(1) − 𝜇(1))
′
=
1

𝑁1
Σ1. 

Thus 

�̅�(1)~𝑁 (𝜇(1),
Σ1
𝑁1
) 

The mean �̅�(2) of the second sample is normally distributed with expected value 

𝐸(�̅�(2)) = 𝜇(2) 

and covariance matrix is 

𝐸(�̅�(2) − 𝜇(2))(�̅�(2) − 𝜇(2))
′
=
1

𝑁2
Σ2 

Therefore 

�̅�(2)~𝑁 (𝜇(2),
Σ2
𝑁2
) 

Thus, 

https://en.wikipedia.org/wiki/Multivariate_normal


(�̅�(1) − �̅�(2))~𝑁 [𝜇(1) − 𝜇(2), (
Σ1
𝑁1
+
Σ2
𝑁2
)] 

If 𝑁1 = 𝑁2 = 𝑁 

Let 

𝑦𝛼 = 𝑥𝛼
(1) − 𝑥𝛼

(2)
 

Then 

 𝑦𝛼~𝑁(0, Σ1 + Σ2) 

⇒ �̅� =
1

𝑁
∑𝑦𝛼

𝑁

𝛼=1

 

         = (�̅�(1) − �̅�(2))~𝑁 (0,
Σ1 + Σ2
𝑁

 ) 

⇒ √𝑁�̅�~𝑁(0, Σ1 + Σ2 ) 

Let 

𝑆𝑦 =
1

𝑁 − 1
∑(𝑦𝛼 − �̅�) (𝑦𝛼 − �̅�)

′
𝑁

𝛼=1

 

⇒ (𝑁 − 1)𝑆 = ∑ 𝑍𝛼𝑍𝛼
′

𝑁−1

𝛼=1

 

By definition, 

𝑇2 = 𝑁�̅�′𝑆𝑦
−1�̅�~𝑇(𝑁−1)

2  

The critical region is  

𝑇2 ≥
(𝑁 − 1)𝑝

𝑁 − 𝑝
𝐹𝑝,(𝑁−𝑝) (𝛼) 



If 𝑁1 ≠ 𝑁2 and 𝑁1 < 𝑁2. 

Define, 

𝑦𝛼 = 𝑥𝛼
(1) −√

𝑁1
𝑁2
 𝑥𝛼
(2) +

1

√𝑁1 𝑁2
∑𝑥𝛽

(2)

𝑁1

𝛽=1

−
1

𝑁2
∑𝑥𝛾

(2)

𝑁2

𝛾=1

 

Then 

𝐸(𝑦𝛼) = 𝜇
(1) −√

𝑁1
𝑁2
 𝜇(2) +

1

√𝑁1 𝑁2
∑𝜇(2)
𝑁1

𝛽=1

−
1

𝑁2
∑𝜇(2)
𝑁2

𝛾=1

 

            = 𝜇(1) −√
𝑁1
𝑁2
 𝜇(2) +√

𝑁1
𝑁2
 𝜇(2) − 𝜇(2) 

           = 𝜇(1) − 𝜇(2) 

The covariance matrix of 𝑦𝛼 and 𝑦𝛽 is 

𝐸[𝑦𝛼 − 𝐸(𝑦𝛼)][𝑦𝛽 − 𝐸(𝑦𝛽)]
′
 

= 𝐸 [(𝑥𝛼
(1)
− 𝜇(1)) − √

𝑁1
𝑁2
 (𝑥𝛼

(2)
− 𝜇(2)) +

1

√𝑁1 𝑁2
∑(𝑥𝛽

(2)
− 𝜇(2))

𝑁1

𝛽=1

−
1

𝑁2
∑(𝑥𝛾

(2)
− 𝜇(2))

𝑁2

𝛾=1

] 

        [(𝑥𝛼
(1) − 𝜇(1))

′
−√

𝑁1
𝑁2
 (𝑥𝛼

(2) − 𝜇(2))
′
+

1

√𝑁1 𝑁2
∑(𝑥𝛽

(2) − 𝜇(2))
′

𝑁1

𝛽=1

−
1

𝑁2
∑(𝑥𝛾

(2) − 𝜇(2))
′

𝑁2

𝛾=1

] 

= 𝐸(𝑥𝛼
(1)
− 𝜇(1))(𝑥𝛼

(1)
− 𝜇(1))

′
+
𝑁1
𝑁2
𝐸(𝑥𝛼

(2)
− 𝜇(2))(𝑥𝛼

(2)
− 𝜇(2))

′
 

+
1

𝑁1𝑁2
∑(𝑥𝛽

(2) − 𝜇(2))(𝑥𝛽
(2) − 𝜇(2))

′
𝑁1

𝛽=1

+
1

𝑁2
2∑(𝑥𝛾

(2) − 𝜇(2))(𝑥𝛾
(2) − 𝜇(2))

′
𝑁2

𝛾=1

 



−2√
𝑁1
𝑁2

1

√𝑁1 𝑁2
𝐸(𝑥𝛼

(2) − 𝜇(2))(𝑥𝛼
(2) − 𝜇(2))

′
+ 2√

𝑁1
𝑁2

1

𝑁2
𝐸(𝑥𝛼

(2) − 𝜇(2))(𝑥𝛼
(2) − 𝜇(2))

′
 

−2
1

√𝑁1 𝑁2

1

𝑁2
∑𝐸(𝑥𝛽

(2) − 𝜇(2))

𝑁1

𝛽=1

(𝑥𝛽
(2) − 𝜇(2))

′
 

+terms having expectation zero 

= Σ1 +
𝑁1
𝑁2
Σ2 +

1

𝑁1𝑁2
𝑁1Σ2 +

1

𝑁2
2𝑁2 Σ2 − 2√

𝑁1
𝑁2
 

1

√𝑁1 𝑁2
 Σ2 + 2√

𝑁1
𝑁2
(
1

𝑁2
) Σ2 

      −2
1

√𝑁1 𝑁2
(
1

𝑁2
)𝑁1Σ2 

= Σ1 + [
𝑁1
𝑁2
+
1

𝑁2
+
1

𝑁2
 −

2

𝑁2
+ 2√

𝑁1
𝑁2
(
1

𝑁2
) − 2√

𝑁1
𝑁2
(
1

𝑁2
)] Σ2 

= Σ1 +
𝑁1
𝑁2
Σ2 

Hence, under 𝐻0 

𝑦𝛼~𝑁 (0, Σ1 +
𝑁1
𝑁2
Σ2) 

⇒ �̅� =
1

𝑁1
∑𝑦𝛼

𝑁1

𝛼=1

 ~ 𝑁 [0,
1

𝑁1
(Σ1 +

𝑁1
𝑁2
Σ2) ] 

⇒ √𝑁1�̅�~𝑁 (0, Σ1 +
𝑁1
𝑁2
Σ2 ) 

Let 



𝑆 =
1

𝑁1 − 1
∑(𝑦𝛼 − �̅�)(𝑦𝛼 − �̅�)

′

𝑁1

𝛼=1

 

⇒ (𝑁1 − 1)𝑆 = ∑ 𝑍𝛼𝑍𝛼
′

𝑁1−1

𝛼=1

 

By definition, 

𝑇2 = 𝑁1 �̅�
′𝑆𝑦
−1�̅�~𝑇(𝑁1−1)

2  

The critical region is  

𝑇2 ≥
(𝑁1 − 1)𝑝

𝑁1 − 𝑝
𝐹𝑝,(𝑁1−𝑝) (𝛼) 

6.4.2   𝒌-Sample Problem 

Let 𝑥𝛼
(𝑖)
 (𝛼 = 1,2, … , 𝑁𝑖  ; 𝑖 = 1,2, … , 𝑘) be the random sample from 𝑁(𝜇(𝑖), Σ𝑖 

respectively. Under the null hypothesis 

𝐻0:∑𝛽𝑖𝜇
(𝑖)

𝑘

𝑖=1

= 𝜇 

where 𝛽1, 𝛽2, … . , 𝛽𝑘 are given scalars and 𝜇 is a given vector. If 𝑁𝑖 are unequal take 𝑁1 to be the 

smallest. 

Define, 

𝑦𝛼 = 𝛽1𝑥𝛼
(1) +∑𝛽𝑖

𝑘

𝑖=2

√
𝑁1
𝑁2
 [𝑥𝛼

(𝑖) −
1

𝑁1
∑𝑥𝛽

(𝑖)

𝑁1

𝛽=1

+
1

√𝑁1 𝑁𝑖
∑𝑥𝛾

(𝑖)

𝑁𝑖

𝛾=1

]      , 𝛼 = 1,2, … . , 𝑁1 

Then 



𝐸(𝑦𝛼) = 𝐸 [𝛽1𝑥𝛼
(1) +∑𝛽𝑖

𝑘

𝑖=2

√
𝑁1
𝑁2
 {𝑥𝛼

(𝑖) −
1

𝑁1
∑𝑥𝛽

(𝑖)

𝑁1

𝛽=1

+
1

√𝑁1 𝑁𝑖
∑𝑥𝛾

(𝑖)

𝑁𝑖

𝛾=1

} ] 

             = 𝛽1𝜇
(1) +∑𝛽𝑖

𝑘

𝑖=2

√
𝑁1
𝑁2
 [𝜇(𝑖) −

1

𝑁1
𝑁1𝜇

(𝑖) +
1

√𝑁1 𝑁𝑖
𝑁𝑖𝜇

(𝑖)] 

             = 𝛽1𝜇
(1) +∑𝛽𝑖

𝑘

𝑖=2

𝜇(𝑖) 

             = ∑𝛽𝑖

𝑘

𝑖=1

𝜇(𝑖) 

The covariance matrix of 𝑦𝛼 and 𝑦𝛽 is 

𝐸[𝑦𝛼 − 𝐸(𝑦𝛼)][𝑦𝛽 − 𝐸(𝑦𝛽)]
′
=∑

𝑁1𝛽𝑖
2

𝑁𝑖

𝑘

𝑖=1

Σ𝑖 

Hence, under 𝐻0 

𝑦𝛼~𝑁(𝜇,∑
𝑁1𝛽𝑖

2

𝑁𝑖

𝑘

𝑖=1

Σ𝑖) 

And 

�̅� =
1

𝑁1
∑𝑦𝛼

𝑁1

𝛼=1

 ~ 𝑁 (𝜇,∑
𝑁1𝛽𝑖

2

𝑁𝑖

𝑘

𝑖=1

Σ𝑖) 

⇒ √𝑁1(�̅� − 𝜇)~𝑁 (0,∑
𝑁1𝛽𝑖

2

𝑁𝑖

𝑘

𝑖=1

Σ𝑖) 

Let 



𝑆 =
1

𝑁1 − 1
∑(𝑦𝛼 − �̅�)(𝑦𝛼 − �̅�)

′

𝑁1

𝛼=1

 

⇒ (𝑁1 − 1)𝑆 = ∑(𝑦𝛼 − �̅�)(𝑦𝛼 − �̅�)
′

𝑁1

𝛼=1

 

By definition, 

𝑇2 = 𝑁1 (�̅� − 𝜇)
′𝑆−1(�̅� − 𝜇)~𝑇(𝑁1−1)

2  

The critical region is  

𝑇2 ≥
(𝑁1 − 1)𝑝

𝑁1 − 𝑝
𝐹𝑝,(𝑁1−𝑝) (𝛼) 

6.5  Mahalanobis 𝑫𝟐 

The Mahalanobis 𝐷2 is a distance measure used in statistics to calculate the distance 

between a point and a distribution, or between two distributions, in a multivariate space. It accounts 

for correlations between variables, making it more general and robust than the standard Euclidean 

distance in high-dimensional spaces. 

Given the mean vectors 𝜇1 and 𝜇2 of two multivariate normal populations and their 

common covariance matrix Σ, the quantity ∆2= (𝜇(1) − 𝜇(2))
′
Σ−1(𝜇(1) − 𝜇(2)) was proposed by 

Mahalanobis as a measure of the divergence or distance between the two population 𝑁(𝜇1, Σ) and 

𝑁(𝜇2, Σ). The corresponding sample quantity, obtained by replacing (𝜇1 − 𝜇2) and Σ by their 

sample estimates is denoted by 𝐷2, which is given by 

𝐷2 = (�̅� − �̅�)′𝑆−1(�̅� − �̅�) and is known as Mahalanobis Studentized 𝐷2. 

Here 

𝑆 =
(𝑁1 − 1)𝑆

(1) + (𝑁2 − 1)𝑆
(2)

𝑁1 +𝑁2 − 2
 



𝑆(1) =
1

𝑁1 − 1
∑ (𝑥𝛼 − �̅�)(𝑥𝛼 − �̅�)

′
𝑁1

𝛼=1
 

𝑆(2) =
1

𝑁2 − 1
∑ (𝑦𝛼 − �̅�)(𝑦 − �̅�)

′
𝑁2

𝛼=1
 

Obviously 

𝑇2 =
𝑁1𝑁2
𝑁1 + 𝑁2

𝐷2 

So that 𝑇2 and 𝐷2 are almost same, except for the constant 
𝑁1𝑁2

𝑁1+𝑁2
.  

Let 

𝑈 =
𝑁1𝑁2
𝑁1 + 𝑁2

(�̅� − �̅�) 

Then the expected value of 𝑈 is 

𝐸(𝑈) 

=
𝑁1𝑁2
𝑁1 +𝑁2

(𝜇(1) − 𝜇(2)) 

= 𝛿 (say) 

The variance covariance matrix of𝑈 is 

Σ𝑈 

= (
𝑁1𝑁2
𝑁1 + 𝑁2

)
2

𝐸[(�̅� − �̅�) − (𝜇(1) − 𝜇(2))][(�̅� − �̅�) − (𝜇(1) − 𝜇(2))]
′
 

= (
𝑁1𝑁2
𝑁1 + 𝑁2

)
2

(
1

𝑁1
+
1

𝑁2
)
2

Σ 

= (
𝑁1𝑁2
𝑁1 + 𝑁2

)
2

(
𝑁1 +𝑁2
𝑁1𝑁2

)
2

Σ 

= Σ 



Therefore, 𝑈~𝑁(𝛿, Σ). Further 

(
𝑁1𝑁2
𝑁1 + 𝑁2

)
2

𝐷2 = 𝑈′𝑆−1𝑈 

Since Σ is positive definite matrix there exist a non-singular matrix 𝐶 such that 

𝐶Σ𝐶′ = 𝐼  

⟹ 𝐶𝐶′ = Σ−1 

Define 

𝑈∗ = 𝐶𝑈, 

𝑆∗ = 𝐶𝑆𝐶′ 

and 

𝛿∗ = 𝐶𝛿. 

Then, 

(
𝑁1𝑁2
𝑁1 + 𝑁2

)
2

𝐷2 = 𝑈∗
′
𝑆∗

−1
𝑈∗, 

and the expected value is 

𝐸(𝑈∗) = 𝐶𝐸(𝑈) 

             = 𝐶𝛿 

           = 𝛿∗ 

The variance covariance matrix is 

Σ𝑈∗ = 𝐶𝐸[𝑈 − 𝐸(𝑈)][𝑈 − 𝐸(𝑈)]
′𝐶′ 

        = 𝐶Σ𝐶′ 

        = 𝐼 



Thus, 

𝑈∗~𝑁(𝛿∗, 𝐼), 

⇒ 𝑈∗
′
𝑈∗~𝜒𝑝

2(𝛿∗
′
𝛿∗) 

where 

𝛿∗
′
𝛿∗ = 𝛿′𝐶′𝐶𝛿 

           = 𝛿′Σ−1𝛿 

           = 𝜆2 

Let 

(𝑁1 +𝑁2 − 2)𝑆 = ∑ (𝑍𝛼)( 𝑍𝛼)
′

𝑁1+𝑁2−2

𝛼=1

 

Where 𝑍𝛼~𝑁(0, Σ). Then 

(𝑁1 +𝑁2 − 2)𝑆
∗ = ∑ (𝐶 𝑍𝛼)(𝐶 𝑍𝛼)

′

𝑁1+𝑁2−2

𝛼=1

 

(𝐶 𝑍𝛼)~𝑁(0, 𝐼). 

Therefore, under 𝐻0 

(
𝑁1𝑁2
𝑁1 + 𝑁2

)
2

𝐷2 = 𝑍∗
′
𝑆∗

−1
𝑍∗ 

                             = (𝑁1 + 𝑁2 − 2)
𝜒𝑝
2(𝜆2)

𝜒𝑁1+𝑁2−𝑝−1
2  

𝑁1 +𝑁2 − 𝑝 − 1

𝑝
(
𝑁1𝑁2
𝑁1 +𝑁2

)
𝐷2

𝑁1 + 𝑁2 − 2
 

=
𝜒𝑝
2(𝜆2)/𝑝

𝜒𝑁1+𝑁2−𝑝−1
2 /𝑁1 +𝑁2 − 𝑝 − 1

~𝐹𝑝,𝑁1+𝑁2−𝑝−1 



6.6   Applications 

1. Outlier Detection: It helps identify outliers in multivariate data, which are points that are far 

away from the center of the distribution. 

2. Classification: It is used in classification algorithms, such as discriminant analysis, to determine 

the class membership of a new observation. 

3. Clustering: It is used in clustering algorithms, such as k-means and hierarchical clustering, to 

determine the similarity between observations. 

4. Dimensionality Reduction: It is used in dimensionality reduction techniques, such as principal 

component analysis, to select the most important variables. 

5. Anomaly Detection: It is used in anomaly detection to identify data points that are far away 

from the normal data points. 

6. Quality Control: It is used in quality control to detect deviations in multivariate data. 

7. Image Processing: It is used in image processing to detect outliers and anomalies in images. 

8. Finance: It is used in finance to detect fraud and anomalies in financial data 

6.7   Summary 

In this unit, we have covered the concepts of testing of hypothesis regarding population 

mean vector under following situations: 

1.  Test for mean vector for two independent sample cases when population covariances are 

known. 

2.  Test for mean vector for two independent sample cases when population covariances are 

equal but unknown. 

3.  Discuss about Fisher-Behrens Problems. 

4.  Also discuss Mahalanobis 𝐷2 and its application. 

6.8  Self-Assessment Exercises 



1. Explain the equality component of mean vector when covariance matrix is known. 

2. Explain the equality component of mean vector when covariance matrix is unknown. 

3. Two samples of size 50 bars and 60 bars were taken from the lots produced by method 1 and 

method 2. Two characteristics 𝑋1 = lather and 𝑋2 = mildness were measures. The summary 

statistics for bars produced by methods 1 and 2 is given by 

�̅�(1) = [
8
4
] , �̅�(2) = [

10
4
] 

          𝑆1 = [
2 1
1 5

] , 𝑆2 = [
2 1
1 6

] 

           Test at 5% level of significance whether 𝜇(1) = 𝜇(2) or not. 

4. Derive the relation between 𝑇2 and 𝐷2. 

5. Define Mahalanobis 𝐷2 and its application. 

6.9   References 

• Anderson, T. W. (2003): An Introduction to Multivariate Statistical Analysis. United 

Kingdom: Wiley. 

• Johnson, R. A., Wichern, D. W. (2019): Applied Multivariate Statistical Analysis. United 

Kingdom: Pearson 

• Brenner, D., Bilodeau, M. (1999): Theory of Multivariate Statistics. Germany: Springer. 

• Dillon William R & Goldstein Mathew (1984): Multivariate Analysis: Methods and 

Applications.  

• Giri Narayan C. (1995): Multivariate Statistical Analysis.  

• Kshirsagar A. M. (1979): Multivariate Analysis, Marcel Dekker Inc. New York. 

6.10   Further Reading 

• Khatri C G.: Multivariate Analysis. 

• Mardia K V.: Multivariate Analysis. 

• Seber G.A.F.: Multivariate Observations, Wiley, New York. 

  



UNIT - 7:  DISCRIMINANT ANALYSIS 

Structure 

7.1  Introduction 

7.2 Objectives 

7.3 Discriminant analysis 

7.4.  Classification and Discrimination Procedures for Discrimination Between Two 

Multivariate Normal Populations 

7.4.1  Standards of Good Classification 

7.4.2  The Two Kinds of Error 

7.4.3  Two Cases of Two Populations 

7.4.4  Some Definitions 

7.4.5  Procedure of Classification into one of two Populations with known 

Probability Distribution 

7.5  Sample Discriminant Function 

7.6 Classification into One of Two Known Multivariate Normal Populations 

7.6.1  Classification into One of Two Multivariate Normal Populations 

When the Parameters are Estimated (Fisher Procedure) 

7.7 Rao U-Statistic 

7.7.1  Procedure 

7.7.2  Benefits 

7.7.3  Mathematical Formulation 

7.7.4  Summary of Notations 

7.8  Summary  

7.9  Self-Assessment Exercise 

7.10 References 

7.11 Further Readings 

7.1   Introduction 



Discriminant Analysis is a statistical technique used for classifying a set of observations 

into predefined classes or groups based on predictor variables. It is primarily used when the 

dependent variable is categorical (i.e., it represents groups or classes), and the independent 

variables are continuous or interval in nature. The objective of discriminant analysis is to build a 

predictive model that best separates the groups based on the independent variables.  

The key components of discriminant analysis are  

(i) Dependent Variable (Grouping Variable): This is categorical and defines the groups 

or classes into which the data will be classified. For example, the type of customer 

(high, medium, low). 

(ii) Independent Variables (Predictor Variables): These are continuous or interval 

variables used to differentiate between the groups. For example, Age, income, 

expenditure, etc. on the basis of which one may categorize the type of customer. 

 We may broadly divide the Discriminant Analysis into two types, (i) the Linear 

Discriminant Analysis (LDA), which is used when there are two or more groups, and it assumes 

that the independent variables are normally distributed and that the variance-covariance matrices 

of each group are equal. Here the goal is to find a linear combination of the independent variables 

that best separates the groups., and (ii) Multiple Discriminant Analysis (MDA), which is an 

extension of LDA that deals with more than two groups. Here, multiple discriminant functions are 

created to best separate the observations into multiple classes and each discriminant function 

maximizes the separation between the groups. 

7.2   Objectives 

Upon completion of this unit, you should be able to: 

• Determine whether linear or quadratic discriminant analysis should be applied to a given 

data set 

• Be able to apply the linear discriminant function to classify a subject by its measurements; 

• Understand how to assess the efficacy of discriminant analysis. 



7.3   Discriminant Analysis 

The problem of discriminant analysis deals with assigning an individual to one of several 

categories based on measurements on a 𝑝 component vector of variable 𝑥 on that individual. For 

example, we take certain measurements on the skull of an animal and want to know whether it was 

male or female, a patient is to be classified as diabetic or not, a person has to be classified as 

successful or unsuccessful on different psychological tests. 

7.4  Classification and Discrimination Procedures for Discrimination 

between Two Multivariate Normal Populations  

Classification  Several measurements on an individual are available and objective is to classify 

the individual into one of several categories based on these measurements. 

Examples: 

➢ An anthropologist tries to identify a jaw bone excavated from a burial ground as having 

belonged to a male or a female. 

➢ A doctor decides based on some diagnosis tests whether a patient suffering from Jaundice 

requires surgery or not. 

➢ A biologist wants to identify an observed specimen as a member of one out of k possible 

known spices. 

➢ Based on gene expression data, one wants to classify the stage of a cancer patient. 

In above examples, the decision must be taken among several alternative hypotheses.  

We assume that there are finite numbers of categories or populations for which an 

individual may have come and each population is characterized by a probability distribution of the 

measurements. An individual is considered as a random observation from this population. Given 

an individual with certain measurements, the decision must be taken regarding the population from 

which the individual arise. 

If probability distributions of the measurements are completely known then the categories 

are specified beforehand.  

If of each distribution may be known, but the parameters of the distribution are unknown, 

we use estimators of parameters from a sample from that population. 



7.4.1   Standards of Good Classification 

Minimize the probability of misclassification or, equivalently, it is desired to minimize the 

bad effects of misclassification. 

Let an individual be an observation from either population Π1 or population Π2. 𝑥′ =

(𝑥1, … , 𝑥𝑝): Vector of observations on that individual.  

We set up a rule that if an individual is characterized by certain sets of values of 𝑥1, … , 𝑥𝑝 

he will be classified as from Π1; if he has other values he is classified as from Π2. 

We consider the observation vector 𝑥 as a point in a p-dimensional space. We divide the 

space into two regions, say, R1 and R2. If 𝑥 ∈ R1, we classify it as coming from population Π1, 

and if 𝑥 ∈ R2, we classify it as coming from Π2. 

7.4.2  The Two Kinds of Error 

I. The individual is from Π1 but classified as coming from the population Π2. 

II. The individual is from Π2 but classified as coming from the population Π1. 

𝐶(2|1)(> 0): Cost of first kind of misclassification 

𝐶(1|2)(> 0): Cost of second kind of misclassification 

 

 

 

 

 

7.4.3  Two Cases of Two Populations 

Case I: Assume that prior probabilities of two populations are given: 

Let  

q𝑖: probability that an individual comes from Π𝑖  (𝑖 = 1,2) 

P
o
p
u
la

ti
o
n

 

Statistician’s Decision 

 Π1 Π2 

Π1 0 𝐶(2|1) 

Π2 𝐶(1|2) 0 



𝑝1(𝑥): density of Π1 

𝑝2(𝑥): density of Π2 

𝑅1: region of classification as from Π1 

𝑅2: region of classification as from Π2 

Then, probability of correctly classifying an observation that is drawn from population Π1, is 

𝑃(1|1, 𝑅) = ∫ 𝑝1(𝑥)𝑑𝑥
𝑅1

 

Probability of misclassification of an observation from Π1 is 

𝑃(2|1, 𝑅) = ∫ 𝑝1(𝑥)𝑑𝑥
𝑅2

 

Probability of correctly classifying an observation from Π2 is 

𝑃(2|2, 𝑅) = ∫ 𝑝2(𝑥)𝑑𝑥
𝑅2

 

Probability of misclassifying an observation from Π2 is 

𝑃(1|2, 𝑅) = ∫ 𝑝2(𝑥)𝑑𝑥
𝑅1

 

The probability of drawing an observation from Π𝑖 is q𝑖; 𝑖 = 1,2. 

q𝑖 = 𝑃(𝑖|𝑖, 𝑅)= Probability of drawing an observation from Π𝑖 and correctly classifying it (𝑖 =

1,2). 

q2𝑃(1|2, 𝑅)= Probability of drawing an observation from Π2 and misclassifying it. 

q1𝑃(2|1, 𝑅)= Probability of drawing an observation from Π1 and misclassifying it. 

Expected cost of misclassification=𝐶(2|1)𝑃(2|1, 𝑅)q1 + 𝐶(1|2)𝑃(1|2, 𝑅)q2. 

We wish to divide the space R into regions R1and R2 such that expected loss is as small as possible. 

A procedure that minimizes expected cost is called a Bayes procedure. 



Case II: No known a priori probabilities: 

The expected loss if the observation is from Π1 is 

𝐶(2|1)𝑃(2|1, 𝑅) = 𝑟(1, 𝑅) 

and the expected loss if the observation is from Π2 is 

𝐶(1|2)𝑃(1|2, 𝑅) = 𝑟(2, 𝑅) 

We do not know whether the observation is from Π1 or from Π2, and we do not know probabilities 

of these two instances.  

For two procedure R and R∗, R is said to be as good as R∗if  

𝑟(1, 𝑅) ≤ 𝑟(1, R∗) and 𝑟(2, 𝑅) ≤ 𝑟(2, R∗). 

If at least one of these inequalities is strict, then R is said to be better than R∗. Usually, there is no 

procedure which is better than or as good as all other procedures. 

7.4.4   Some Definitions 

(1) For two procedure R and R∗, R is said to be as good as R∗if  

𝑟(1, 𝑅) ≤ 𝑟(1, R∗) and 𝑟(2, 𝑅) ≤ 𝑟(2, R∗) 

If at least one of these inequalities is strict, then R is said to be better than R∗. Usually, there 

is no procedure that is better than or as good as all other procedures. 

(2) A procedure R is said to be admissible if there is no procedure better than R. Under certain 

conditions the class of all admissible procedures is same as the class of Bayes procedures. 

(3) A class of procedure is complete if for any procedure outside this class there is one in the 

class which is better. 

(4) A minimal complete class (if it exists) is a complete class such that no proper subset of it 

is a complete class. A similar definition holds for a minimal essentially complete class. 

Under certain conditions we shall show that the admissible class is minimal complete. 

(5) A procedure is minimax if the maximum expected loss, 𝑟(𝑖, 𝑅), is a minimum. 



(6) A class is called of procedures is essentially complete if for any procedure outside the class, 

there is at least one in the class which is at least as good. 

7.4.5 Procedure of Classification into One of Two Populations with 

Known Probability Distribution  

Case I: When A Priori Probabilities are Known 

We now turn to the problem of choosing regions R1andR2 so as to minimize the expected loss.  

Theorem 7.4.1: If q1 and q2 are a priori probabilities of drawing an observation from population 

Π1 with density 𝑝1(𝑥) and Π2 with density 𝑝2(𝑥) respectively, and if the cost of misclassifying an 

observation from Π1 as from Π2 is 𝐶(2|1) and an observation Π2 as from Π1 is 𝐶(1|2). Consider 

the regions of classification R1andR2, defined by 

R1: [𝐶(2|1)q1]𝑝1(𝑥) ≥ [𝐶(1|2)q2]𝑝2(𝑥) 

R2: [𝐶(2|1)q1]𝑝1(𝑥) < [𝐶(1|2)q2]𝑝2(𝑥) 

Then these regions minimize the expected loss. 

If 

𝑃 {
𝑝1(𝑥)

𝑝2(𝑥)
=
q2𝐶(1|2)

q1𝐶(2|1)
| Π𝑖} = 0; 𝑖 = 1,2 

then the procedure is unique except for sets of probability zero. 

Proof: The posterior probability that an x observation came from Π1 is 

q1𝑝1(𝑥)

q1𝑝1(𝑥) + q2𝑝2(𝑥)
 

Similarly, the posterior probability that an observation 𝑥 came from Π2 is 

q2𝑝2(𝑥)

q1𝑝1(𝑥) + q2𝑝2(𝑥)
 

For a moment, we take 𝐶(1|2) = 𝐶(2|1) = 1. Then the expected loss is  



q1∫𝑝1(𝑥)𝑑𝑥 + q2∫𝑝2(𝑥)𝑑𝑥 

This is also the probability of misclassification and we have to minimize it. 

For a given observed point 𝑥 we minimize the probability of misclassification by assigning it to 

the population that has the higher posterior probability. Thus, if 

q1𝑝1(𝑥)

q1𝑝1(𝑥) + q2𝑝2(𝑥)
≥

q2𝑝2(𝑥)

q1𝑝1(𝑥) + q2𝑝2(𝑥)
 

we choose population Π1 otherwise Π2. Since we minimize the probability of misclassification at 

each point, we minimize it over the whole space. Thus, the rule is 

R1: q1𝑝1(𝑥) ≥ q2𝑝2(𝑥) 

R2: q1𝑝1(𝑥) < q2𝑝2(𝑥) 

If q1𝑝1(𝑥) = q2𝑝2(𝑥), the point could be classified as either from Π1 or Π2. We have arbitrarily 

put it into R1. 

If q1𝑝1(𝑥) + q2𝑝2(𝑥) = 0 for a given 𝑥, that point also may go into either region.  

To show that this procedure is best, we consider any other procedure, which partitions R into 

(R1
∗ , R2

∗ ). 

The probability of misclassification is 

q1∫ 𝑝1(𝑥)𝑑𝑥
𝑅2
∗

+ q2∫ 𝑝2(𝑥)𝑑𝑥
𝑅1
∗

= ∫ [q1𝑝1(𝑥) − q2𝑝2(𝑥)]
𝑅2
∗

𝑑𝑥 + q2∫ 𝑝(𝑥)𝑑𝑥
𝑅

                (7.1) 

On the RHS of second term of (7.1) is a fixed number. The first term is minimized if R2
∗  includes 

the points x such that q1𝑝1(𝑥) − q2𝑝2(𝑥) < 0 and excludes the points for which q1𝑝1(𝑥) −

q2𝑝2(𝑥) > 0. If we assume that 

𝑃 {
𝑝1(𝑥)

𝑝2(𝑥)
=
q2
q1
| Π𝑖} = 0; 𝑖 = 1,2 

then the Bayes procedure is unique except for sets of points with probability zero. 

Now, we consider the general case. The problem is to minimize 



[𝐶(2|1)q1] ∫ 𝑝1(𝑥)𝑑𝑥𝑅2
+ [𝐶(1|2)q2] ∫ 𝑝2(𝑥)𝑑𝑥𝑅1

, 

We choose R1andR2 according to 

R1: [𝐶(2|1)q1]𝑝1(𝑥) ≥ [𝐶(1|2)q2]𝑝2(𝑥) 

R2: [𝐶(2|1)q1]𝑝1(𝑥) < [𝐶(1|2)q2]𝑝2(𝑥) 

or, 

R1 : 
𝑝1(𝑥)

𝑝2(𝑥)
≥
q2𝐶(1|2)

q1𝐶(2|1)
 

R2:
𝑝1(𝑥)

𝑝2(𝑥)
<
q2𝐶(1|2)

q1𝐶(2|1)
 

Case II: When No a Priori Probabilities are Known 

In this case when a priori probabilities are not given, we shall look for the class of admissible 

procedures. 

Theorem 7.4.2.: If 𝑃{𝑝1(𝑥) = 0|Π1} = 0 = 𝑃{𝑝2(𝑥) = 0|Π2} then every Bayes procedure is 

admissible. 

Proof: Let 𝑅 = (R1, R2) is a Bayes procedure for a given a priori probability q1, q2. Since R is a 

Bayes procedure, for any other procedure R∗ = (R1
∗ , R2

∗ ), we have 

q1𝑃(2|1, 𝑅) + q2𝑃(1|2, 𝑅) ≤ q1𝑃(2|1, 𝑅
∗) + q2𝑃(1|2, 𝑅

∗)                                                         (7.2) 

or, q1[𝑃(2|1, 𝑅) − 𝑃(2|1, 𝑅
∗)] ≤ q2[𝑃(1|2, 𝑅

∗) − 𝑃(1|2, 𝑅)]                                                      (7.3) 

Now, we have to prove that there exists no procedure 𝑅∗ such that 

𝑃(1|2, 𝑅∗) ≤ 𝑃(1|2, 𝑅)and𝑃(2|1, 𝑅∗) ≤ 𝑃(2|1, 𝑅) 

If 𝑃(1|2, 𝑅∗) ≤ 𝑃(1|2, 𝑅) then by (7.2), if  q2 > 0, 𝑃(2|1, 𝑅) ≤ 𝑃(2|1, 𝑅
∗). 

Similarly, for q1 > 0, 𝑃(2|1, 𝑅
∗) ≤ 𝑃(2|1, 𝑅) implies 𝑃(1|2, 𝑅) ≤ 𝑃(1|2, 𝑅∗).  

Thus 𝑅∗is not better than R and R is admissible. If q1 = 0, then (7.3) implies  

𝑃(1|2, 𝑅∗) − 𝑃(1|2, 𝑅) ≥ 0 



For a Bayes procedure, R1 includes only points for which 𝑝2(𝑥) = 0. Therefore, 

𝑃(1|2, 𝑅) = 0 and if 𝑅∗ is to be better 𝑃(1|2, 𝑅∗) = 0. If 𝑃{𝑝2(𝑥) = 0|Π1} = 0, then 𝑃(2|1, 𝑅) =

𝑃{𝑝2(𝑥) > 0|Π1} = 1. 

If 𝑃(1|2, 𝑅∗) = 0, then R1
∗  contains only those points for which 𝑝2(𝑥) = 0. Then 𝑃(2|1, 𝑅∗) =

𝑃{R2
∗ |Π1} = 𝑃{𝑝2(𝑥) > 0|Π1} = 1, and 𝑅∗ is not better than R. 

Now let us prove the converse. 

Theorem 7.4.3.: If 

𝑃 {
𝑝1(𝑥)

𝑝2(𝑥)
= 𝑘|Π𝑖} = 0; 𝑖 = 1,2; 0 ≤ 𝑘 ≤ ∞                                                                                    (7.4) 

then every admissible procedure is a Bayes procedure. 

Proof: Under (7.4), for any q1 Bayes procedure is unique. Moreover, the cdf of 
𝑝1(𝑥)

𝑝2(𝑥)
 for Π1 and 

Π2 is continuous. Let R be an admissible procedure. Then there exists a k such that 

𝑃(2|1, 𝑅) = 𝑃 {
𝑝1(𝑥)

𝑝2(𝑥)
≤ 𝑘|Π1} = 𝑃(2|1, 𝑅

∗) 

where 𝑅∗ is the Bayes procedure corresponding to 
q2

q1
= 𝑘    [𝑖. 𝑒. , q1 =

1

1+𝑘
, q2 =

𝑘

1+𝑘
]. 

Since R is admissible, 

𝑃(1|2, 𝑅) ≤ 𝑃(1|2, 𝑅∗) 

Since, by previous theorem, 𝑅∗ is admissible, 𝑃(1|2, 𝑅) ≥ 𝑃(1|2, 𝑅∗). By uniqueness of Bayes 

procedure R is the same as 𝑅∗. 

Theorem 7.4.4.: If (7.4) holds, the class of Bayes procedure is minimal complete. 

Proof: Let R be any procedure outside the class of Bayes Procedures. We can construct a Bayes 

procedure 𝑅∗ so that 𝑃(2|1, 𝑅) =  𝑃(2|1, 𝑅∗). Then, since 𝑅∗ is admissible 𝑃(1|2, 𝑅) ≥

𝑃(1|2, 𝑅∗). Furthermore, the class of Bayes procedures is minimal complete since it is identical 

with the class of admissible procedures.  



Let us now consider the minimax procedure. Let 

𝑃(𝑖|𝑗, q1) = 𝑃(𝑖|𝑗, 𝑅) 

where R is the Bayes procedure corresponding to q1. 𝑃(𝑖|𝑗, q1) is a continuous function of q1. 

As q1 varies from 0 to 1, 𝑃(2|1, q1) varies from 1 to 0 and 𝑃(1|2, q1) varies from 0 to 1. Thus, 

there is a value of q1, say. Q1
∗ , such that 𝑃(2|1, q1

∗) = 𝑃(1|2, q1
∗). This is the minimax solution, 

for if there is another procedure 𝑅∗ such that 

Max{𝑃(2|1, q1
∗), 𝑃(1|2, q1

∗)} ≤ 𝑃(2|1, q1
∗) = 𝑃(1|2, q1

∗) 

this would contradict the fact that every Bayes solution is admissible. 

7.5  Sample Discriminant Function 

Suppose that we have a sample 𝑥1
(1), … , 𝑥𝑁1

(1) 𝑎𝑛𝑑 𝑥2
(2), … , 𝑥𝑁2

(2)
 be the random sample of 

sizes 𝑁1 and 𝑁2 drawn from 𝑁(𝜇(1), Σ) and 𝑁(𝜇(2), Σ) respectively and the unbiased estimate of 

𝜇(1) is  

𝑥
(1)
=
1

𝑁1
∑𝑥𝛼

(1)

𝑁1

𝛼=1

 

and 𝜇(2) is 

𝑥
(1)
=
1

𝑁1
∑𝑥𝛼

(1)

𝑁1

𝛼=1

 

and Σ is 𝑆 defined by 

𝑆 =
1

𝑁1 + 𝑁2 − 2
[∑ {𝑥𝛼

(1)
− 𝑥

(1)
} {𝑥𝛼

(1)
− 𝑥

(1)
}
′

𝑁1

𝛼=1

+∑{𝑥𝛼
(2)
− 𝑥

(2)
} {𝑥𝛼

(2)
− 𝑥

(2)
}
′

𝑁2

𝛼=1

] 

Substitute these estimates for the parameters in the function 𝑥′𝛿, Fisher’s discriminant function 

becomes 

𝑥′𝑆−1 (𝑥
(1)
− 𝑥

(2)
) 



This is known as sample discriminant function. The classification procedure now becomes i) 

Compute  

𝑥′𝑆−1(𝑥
(1)
− 𝑥

(2)
) = 𝑥′𝛿 

ii) Compute 

 
1

2
(𝑥

(1)
+ 𝑥

(2)
)′𝑆−1(𝑥

(1)
− 𝑥

(2)
) =

1

2
(𝑥

(1)
+ 𝑥

(2)
)′𝛿 

iii) Assign the individual with measurements 𝑥 to population first or population second, according 

as 𝑥′𝛿 −
1

2
(𝑥

(1)
+ 𝑥

(2)
)′𝛿 is ≥ 0 or < 0. 

7.6  Classification into One of Two Known Multivariate Normal Populations 

(Wald’s Procedure,1944) 

Suppose we have two normal populations 𝑁(𝜇(1), Σ)𝑎𝑛𝑑𝑁(𝜇(2), Σ) with common 

variance-covariance matrix Σ. 𝜇(1), 𝜇(2) and Σ are known. Then 

𝑝𝑖(𝑥) =
1

2𝜋𝑝/2|Σ|
1
2

exp {−
1 

2
 (𝑥 − 𝜇(𝑖) )′Σ−1(𝑥 − 𝜇(𝑖))}     ; 𝑖 = 1,2                                           (7.5) 

Theorem 7.6.1.: If Π𝑖 has the density (7.5) (i=1,2), the best regions of classification are given by  

{
R1: 𝑥

′Σ−1(𝜇(1) − 𝜇(2)) −
1

2
(𝜇(1) + 𝜇(2))

′
Σ−1(𝜇(1) − 𝜇(2)) ≥ log 𝑘

R2: 𝑥
′Σ−1(𝜇(1) − 𝜇(2)) −

1

2
(𝜇(1) + 𝜇(2))

′
Σ−1(𝜇(1) − 𝜇(2)) < log 𝑘

                                     (7.6) 

ratio of densities is  

𝑝1(𝑥)

𝑝2(𝑥)
= exp {−

1 

2
[(𝑥 − 𝜇(1))

′
Σ−1(𝑥 − 𝜇(1)) − (𝑥 − 𝜇(2))

′
Σ−1(𝑥 − 𝜇(2))]}                          (7.7) 

The region of classification into Π1, R1, is the set of x’s for which 

𝑝1(𝑥)

𝑝2(𝑥)
≥ 𝑘(𝑘 suitably choosen)                                                                                                            (7.8) 



Since logarithmic function is monotonic increasing, the inequality (7.6) can be written in terms of 

the logarithm of (7.8) as 

−
1 

2
[(𝑥 − 𝜇(1))

′
Σ−1(𝑥 − 𝜇(1)) − (𝑥 − 𝜇(2))

′
Σ−1(𝑥 − 𝜇(2))] ≥ log 𝑘 

or,  

𝑥′Σ−1(𝜇(1) − 𝜇(2)) −
1

2
(𝜇(1) + 𝜇(2))

′
Σ−1(𝜇(1) − 𝜇(2)) ≥ log 𝑘 

The first term is a linear function of components of 𝑥 and is called the discriminant function. 

If a priori probabilities q1 and q2 are know, then 𝑘 is given by 

𝑘 =
q2𝐶(1|2)

q1𝐶(2|1)
 

If two population are equally likely (q1 = q2) and costs being equal, k=1 and log k=0 

Then the region of classification into Π1 is - 

R1: 𝑥
′Σ−1(𝜇(1) − 𝜇(2)) ≥

1

2
(𝜇(1) + 𝜇(2))

′
Σ−1(𝜇(1) − 𝜇(2)) 

And the region of classification into Π2 is - 

𝑅2: 𝑥
′Σ−1(𝜇(1) − 𝜇(2)) <

1

2
(𝜇(1) − 𝜇(2))

′
Σ−1(𝜇(1) − 𝜇(2)) 

If priori probabilities q1𝑎𝑛𝑑q2 are not given, we may select log k= c (say) based on making 

expected losses due to misclassification equal. 

Theorem7.6.2.: If the Π𝑖 have densities (7.5) (i=1,2), the minimax regions of classification are 

given by (7.6) where C = log k is chosen by the condition 

𝐶(1|2)∫
1

√2Π
𝑒−

1
2𝑦
2
𝑑𝑦 =

∞

(𝑐+
1
2
𝛼)

√𝛼

𝐶(2|1)∫
1

√2Π
𝑒−

1
2𝑦
2
𝑑𝑦

(𝑐−12𝛼)

√𝛼

−∞

 

Proof: Let 

𝑈 = 𝑥′Σ−1(𝜇(1) − 𝜇(2)) −
1

2
(𝜇(1) + 𝜇(2))

′
Σ−1(𝜇(1) − 𝜇(2)), 

When 𝑥 is distribution according to 𝑁(𝜇(1), Σ), the distribution of U is normal with mean 



𝐸𝜋1(𝑈) = 𝜇
(1)′Σ−1(𝜇(1) − 𝜇(2)) −

1

2
(𝜇(1) + 𝜇(2))

′
Σ−1(𝜇(1) − 𝜇(2)) 

= (𝜇(1) −
1

2
𝜇(1) −

1

2
 𝜇(2))

′

Σ−1(𝜇(1) − 𝜇(2)) 

=
1

2
(𝜇(1) − 𝜇(2))

′
Σ−1(𝜇(1) − 𝜇(2)) 

=
𝛼

2
. 

Here, the distance between 𝑁(𝜇(1), Σ) and 𝑁(𝜇(2), Σ) is 

𝛼 = (𝜇(1) − 𝜇(2))
′
Σ−1(𝜇(1) − 𝜇(2)) 

The variance covariance matrix is 

𝑣𝑎𝑟𝜋1(𝑈) = 𝐸𝜋1[𝑈𝑈
′] 

                   = 𝐸𝜋1[𝑈 − 𝐸(𝑈)]
2 

                   = 𝐸𝜋1[{𝑈 − 𝐸(𝑈)}{𝑈 − 𝐸(𝑈)}
′] 

                   = 𝐸𝜋1 [(𝜇
(1) − 𝜇(2))

′
Σ−1(𝑥 − μ(1))(𝑥 − μ(1))

′
Σ−1(𝜇(1) − 𝜇(2))]     

                    = (𝜇(1) − 𝜇(2))
′
Σ−1𝐸𝜋1(𝑥 − μ

(1))(𝑥 − μ(1))
′
Σ−1(𝜇(1) − 𝜇(2)) 

                     = (𝜇(1) − 𝜇(2))
′
Σ−1ΣΣ−1(𝜇(1) − 𝜇(2)) 

                     = (𝜇(1) − 𝜇(2))
′
Σ−1(𝜇(1) − 𝜇(2)) 

                     = 𝛼 (distance between the two populations) 

Thus, 𝑈~𝑁(
1

2
𝛼, 𝛼). if 𝑥~𝑁(𝜇(1), Σ) 

If 𝑥~𝑁(𝜇(2), Σ), then 

𝐸𝜋2(𝑈) 

= 𝜇(2)
′
Σ−1(𝜇(1) − 𝜇(2)) −

1

2
(𝜇(1) + 𝜇(2))

′
Σ−1(𝜇(1) − 𝜇(2)) 



= (𝜇(2) −
1

2
𝜇(1) −

1

2
 𝜇(2))

′

Σ−1(𝜇(1) − 𝜇(2)) 

=
1

2
(𝜇(1) − 𝜇(2))

′
Σ−1(𝜇(1) − 𝜇(2)) 

= −
𝛼

2
 

 and variance covariance matrix is 

𝑣𝑎𝑟𝜋2(𝑈) = 𝐸𝜋2[𝑈𝑈
′] = 𝐸𝜋2[𝑈 − 𝐸(𝑈)]

2 = 𝐸𝜋2[{𝑈 − 𝐸(𝑈)}{𝑈 − 𝐸(𝑈)}
′] 

                                          = 𝐸𝜋2 [(𝜇
(1) − 𝜇(2))

′
Σ−1(𝑥 − μ(2))(𝑥 − μ(2))

′
Σ−1(𝜇(1) − 𝜇(2))]     

                                          = (𝜇(1) − 𝜇(2))
′
Σ−1𝐸𝜋2(𝑥 − μ

(2))(𝑥 − μ(2))
′
Σ−1(𝜇(1) − 𝜇(2)) 

                                          = (𝜇(1) − 𝜇(2))
′
Σ−1ΣΣ−1(𝜇(1) − 𝜇(2)) 

                                          = (𝜇(1) − 𝜇(2))
′
Σ−1(𝜇(1) − 𝜇(2)) = 𝛼 

If 𝑥~𝑁(𝜇(2), Σ), then 𝑈~𝑁(−
1

2
𝛼, 𝛼). 

If the observation is from Π1, the probability of misclassification is 

𝑃(2|1) 

= ∫
1

√2π𝛼

𝑐

−∞

𝑒−
1
2(𝒖−

1
2𝛼)

2

𝑑𝑢 

= ∫
1

√2π
𝑒−

1
2𝑦
2
𝑑𝑦

(𝑐−12𝛼)

√𝛼

−∞

                                           𝑦 =
𝑢 −

1
2𝛼

√𝛼
       and 𝑑𝑦 =

𝑑𝑢

√𝛼
 

If observation is from Π2, the probability of misclassification is 

𝑃(1|2) 

= ∫
1

√2π𝛼

∞

𝑐

𝑒−
1
2
(𝑢+

1
2
𝛼)
2

𝑑𝑢 



= ∫
1

√2𝜋
𝑒−

1
2𝑦
2
𝑑𝑦                                    𝑦 =

𝑢 +
1
2
𝛼

√𝛼
       and 𝑑𝑦 =

𝑑𝑢

√𝛼

∞

(𝑐+
1
2𝛼)

√𝛼

 

For the minimax solution we choose c, so that 

𝐶(1|2)𝑃(1|2) = 𝐶(2|1)𝑃(2|1) 

𝐶(1|2) ∫
1

√2Π
𝑒−

1
2𝑦
2
𝑑𝑦 =

∞

(𝑐+
1
2
𝛼)

√𝛼

𝐶(2|1) ∫
1

√2Π
𝑒−

1
2𝑦
2
𝑑𝑦

(𝑐−
1
2
𝛼)

√𝛼
−∞

  

If 𝐶(1|2) = 𝐶(2|1), then 𝑐 = 0 and the probability of misclassification is given by 

𝑃(1|2) 

= ∫
1

√2Π
𝑒−

1
2𝑦
2
𝑑𝑦

∞

√𝛼
2

 

= ∫
1

√2Π
𝑒−

1
2𝑦
2
𝑑𝑦

√𝛼
2

−∞

 

= 𝑃(2|1) 

In case the costs of misclassification are unequal, 𝑐 is determined by trial and error method using 

normal tables. 

The term 

𝛿 = Σ−1(𝜇(1) − 𝜇(2)) 

may be obtained as a solution of 

Σ𝛿 = (𝜇(1) − 𝜇(2)) 

If we have a sample of size N either from Π1orΠ2, we use the mean of the sample and classify it 

as from 

𝑁 (𝜇(1),
1

𝑁
Σ)  or 𝑁 (𝜇(2),

1

𝑁
Σ). 



7.6.1   Classification into One of Two Multivariate Normal Populations  

                      When the Parameters are Estimated (Fisher Procedure) 

Generally,𝜇(1), 𝜇(2)and Σ are unknown and we infer them from the samples, one from each 

population and we want to use that information in classifying another observation as coming from 

one of the two populations. 

Let a sample 𝑥1
(1)
, … , 𝑥𝑁1

(1)
 be taken from 𝑁(𝜇(1), Σ) and another sample 𝑥1

(2)
, … , 𝑥𝑁2

(2)
 from 

𝑁(𝜇(2), Σ). Based on this information, we wish to classify the observation x as coming from 

Π1 or Π2. We estimate 𝜇(1) by 

𝑥
(1)
=
1

𝑁1
∑𝑥𝛼

(1)

𝑁1

𝛼=1

, 

and 𝜇(2) by 

𝑥
(2)
=
1

𝑁2
∑𝑥𝛼

(2)

𝑁2

𝛼=1

 

Further, estimator of Σ, say S, is given by 

𝑆 =
1

(𝑁1 +𝑁2 − 2)
[∑ (𝑥𝛼

(1) − 𝑥
(1)
) (𝑥𝛼

(1) − 𝑥
(1)
)
′

𝑁1

𝛼=1

+∑(𝑥𝛼
(2) − 𝑥

(2)
) (𝑥𝛼

(2) − 𝑥
(2)
)
′

𝑁2

𝛼=1

] 

Hence, we classify the observation into Π1 if 

R1: 𝑥
′S−1(𝑥(1) − 𝑥(2)) −

1

2
(𝑥(1) + 𝑥(2))

′
S−1(𝑥(1) − 𝑥(2)) ≥ 𝑐 

and in Π2 if 

R2: 𝑥
′S−1(𝑥(1) − 𝑥(2)) −

1

2
(𝑥(1) + 𝑥(2))

′
S−1(𝑥(1) − 𝑥(2)) < 𝑐 



c is chosen suitably.  

The first term is the Fisher’s discriminant function based on two samples 

Suppose we have a sample 𝑥1, … , 𝑥𝑁 from either Π1orΠ2 and we wish to classify the sample as a 

whole. Then we define 𝑆 by 

𝑆 =
1

(𝑁1 +𝑁2 +𝑁 − 3)
[∑ (𝑥𝛼

(1) − 𝑥
(1)
) (𝑥𝛼

(1) − 𝑥
(1)
)
′

𝑁1

𝛼=1

+∑(𝑥𝛼
(2) − 𝑥

(2)
) (𝑥𝛼

(2) − 𝑥
(2)
)
′

𝑁2

𝛼=1

+∑(𝑥𝛼 − 𝑥)

𝑁

𝛼=1

(𝑥𝛼 − 𝑥)
′] 

7.7  Rao's U-Statistic 

It is used in the context of discriminant analysis to determine whether adding a set of 

additional variables (𝑞 variables) to an existing set (𝑝 variables) enhances the discrimination 

between two populations. 

A measure used to test whether the addition of a new set of variables provides significant 

additional discriminative power. 

7.7.1   Procedure 

1. Initial Setup: 

• Let 𝑋𝑝 be the initial set of 𝑝 variables. 

• Let 𝑋𝑞 be the additional set of 𝑞 variables. 

2. Hypotheses: 

• Null Hypothesis (𝐻0): The additional set of 𝑞 variables do not provide significant 

additional discrimination. 



• Alternative Hypothesis (𝐻1): The additional set of 𝑞 variables provide significant 

additional discrimination. 

3. Calculate Discriminant Functions: 

• Construct discriminant functions using 𝑋𝑝 and 𝑋𝑝 + 𝑋𝑞. 

4. Compute Rao's U-Statistic: 

• Rao's U-Statistic is calculated based on the eigenvalues of the covariance matrices 

of the discriminant functions. 

5. Test Statistic: 

• The U-Statistic follows a chi-square distribution under the null hypothesis. 

• Compare the calculated U-Statistic to the critical value from the chi-square 

distribution with appropriate degrees of freedom. 

6. Decision Rule: 

• If the U-Statistic is greater than the critical value, reject 𝐻0, suggesting that the 

additional variables provide significant additional discrimination. 

• If the U-Statistic is less than or equal to the critical value, do not reject 𝐻0, 

suggesting that the additional variables do not provide significant additional 

discrimination. 

7.7.2   Benefits 

• Reduction in Computational Load: By identifying unnecessary variables, the 

computational complexity of the analysis can be reduced. 

• Efficiency in Discrimination: Focuses on variables that contribute most to the 

discrimination, enhancing the effectiveness of the model. 



Rao's methodology is particularly useful in high-dimensional data where the number of 

variables can be large, and it is important to determine the most informative subset for effective 

discrimination. 

7.7.3  Mathematical Formulation 

The mathematical formulation of Rao's U-Statistic in the context of discriminant analysis 

involves the use of eigenvalues derived from the covariance matrices of the data. Here is a step-

by-step outline of the formulation: 

1. Initial Setup 

• Let 𝑋 be the 𝑁 × (𝑝 + 𝑞) data matrix, where 𝑁 is the number of observations, 𝑝 is the 

number of initial variables, and 𝑞 is the number of additional variables. 

• Partition 𝑋 into 𝑋𝑝 (the initial 𝑝 variables) and 𝑋𝑞 (the additional 𝑞 variables). 

2. Compute Sample Covariance Matrices 

• Compute the sample covariance matrix for the initial set of variables 𝑆𝑝 and the augmented 

set 𝑆𝑝+𝑞. 

3. Discriminant Functions 

• Construct the within-group and between-group scatter matrices for both sets of variables: 

• 𝑊𝑝 and 𝐵𝑝 for the initial set. 

• 𝑊𝑝+𝑞 and 𝐵𝑝+𝑞 for the augmented set. 

4. Eigenvalue Problem 

Solve the eigenvalue problem for the ratio of between-group to within-group scatter matrices: 

• For the initial set: 𝐵𝑝𝑤 = 𝜆𝑊𝑝𝑤  



• For the augmented set: 𝐵𝑝+𝑞𝑤 = 𝜆𝑊𝑝+𝑞𝑤 

5. Rao's U-Statistic 

• Let 𝜆 1, 𝜆2, … , 𝜆𝑝 be the eigenvalues from the initial set. 

• Let 𝜆1
′ , 𝜆2

′ , … , 𝜆𝑝+𝑞
′  be the eigenvalues from the augmented set. 

• Compute Rao's U-Statistic using the following formula: 

                𝑈 = 𝑁 ( ∑ 𝑙𝑜𝑔(1 + 𝜆𝑖
′)

𝑝+𝑞

𝑖=1

− ∑𝑙𝑜𝑔(1 + 𝜆𝑖)

𝑝

𝑖=1

) 

6. Test Statistic 

• Under the null hypothesis H0H_0H0, the U-Statistic asymptotically follows a chi-square 

distribution with 𝑞(𝑝 + 1) degrees of freedom. 

7. Decision Rule 

Compare the calculated U-Statistic to the critical value from the chi-square distribution with 𝑞(𝑝 +

1) degrees of freedom: 

If U is greater than the critical value, reject 𝐻0, indicating that the additional variables provide 

significant additional discrimination. 

If U is less than or equal to the critical value, do not reject 𝐻0, indicating that the additional 

variables do not provide significant additional discrimination. 

7.7.4   Summary of Notations 

• 𝑁: Number of observations 

• 𝑝: Number of initial variables 



• 𝑞: Number of additional variables 

• 𝑋𝑝 Data matrix for the initial p variables 

• 𝑋𝑞: Data matrix for the additional q variables 

• 𝑆𝑝: Sample covariance matrix for the initial p variables 

• 𝑆𝑝+𝑞: Sample covariance matrix for the augmented set of 𝑝 + 𝑞 variables 

• 𝑊𝑝, 𝐵𝑝: Within-group and between-group scatter matrices for the initial set 

• 𝑊𝑝+𝑞 , 𝐵𝑝+𝑞: Within-group and between-group scatter matrices for the augmented set 

• 𝜆𝑖: Eigenvalues from the initial set 

• 𝜆𝑖
′: Eigenvalues from the augmented set 

By using this formulation, Rao's U-Statistic helps determine the additional discriminative 

power provided by a new set of variables in discriminant analysis. 

7.8  Summary 

In this unit, we have covered the concepts of Discriminant Analysis under following situations: 

1. Define classification and discrimination procedure. 

2. Discuss sample discriminant analysis. 

3. Derive the classification into One of Two Multivariate Normal Population. 

4. Derive the classification into One of Two Multivariate Normal Populations when the 

Parameters are Estimated. 

5. Discuss Rao U statistic and its procedure. 

7.9  Self-Assessment Exercises 

1. What is the probability of misclassification? 

2. Define Rao U-statistic and explain its mathematical formulation. 



3. If 𝑞1 and 𝑞2 are a priori probabilities of drawing an observation from population Π1 with 

density 𝑝1(𝑥) and Π2 with density 𝑝2(𝑥) respectively, and if the cost of misclassifying an 

observation from 𝛱1 as from Π2 is 𝐶(2|1) and an observation from Π2 as from Π1 is 

𝐶(1|2). Consider the regions of classification: 

𝑅1: [𝐶(2|1)𝑞1]𝑝1(𝑥) ≥ [𝐶(1|2)𝑞2]𝑝2(𝑥) 

𝑅2: [𝐶(2|1)𝑞1]𝑝1(𝑥) < [𝐶(1|2)𝑞2]𝑝2(𝑥) 

Show that these regions minimize the expected loss. 

4. A researcher has enough data available to estimate the density functions 𝑝1(𝑥) and 𝑝2(𝑥) 

associated with the populations 𝛱1 & 𝛱2 , respectively. Suppose 𝐶(2|1) = 5 units and 

𝐶(1|2) = 10 units. In addition, it is known that about 20% of all objects (for which the 

measurements 𝑋 can be recorded) belongs to 𝛱2. Obtain the classification rule. 

5. Consider the two data sets 

𝑋1 = [
3 2 4
7 4 7

]  , 𝑋2 = [
6 5 4
9 7 8

] 

from two bivariate normal populations with same covariance matrix. Calculate the linear 

discriminant function. 
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8.1   Introduction 

The Stein estimator is a key result in the field of statistical estimation, particularly in the 

context of estimating the mean of a multivariate normal distribution. It is a fundamental example 

of how traditional estimators can be improved by considering both bias and variance, leading to 

more efficient estimators in high-dimensional settings. It was introduced by Charles Stein in 1956, 

and later expanded by James and Stein in 1961, demonstrating that the commonly used maximum 

likelihood estimator (MLE) for the mean of a multivariate normal distribution can be improved 

upon when considering the mean squared error (MSE) loss function. These estimators are obtained 

by multiplying the maximum likelihood estimator by properly chosen shrinkage factors and known 

as the Stein estimators. A refinement of the James-Stein estimator is the positive part estimator, 

where the shrinkage factor is truncated to be non-negative and it provides further improvement in 

terms of mean squared error. 

8.2   Objectives 

After going through this unit, you will be able to: 

• Inadmissibility of maximum likelihood estimator of mean vector of multivariate normal 

distribution when dimension is greater than three 

• James-Stein estimator of the mean vector 

• Improved estimation of dispersion matrix of an MND. 



8.3 Inadmissibility of Maximum Likelihood Estimator of Mean Vector of 

Multivariate Normal Distribution when Dimension is Greater than Three 

In classical statistics, the maximum likelihood estimator (MLE) is often considered a 

natural and efficient estimator for parameters of a distribution. However, in the case of estimating 

the mean vector of a multivariate normal distribution, Charles Stein proved that the MLE is 

inadmissible when the dimension of the mean vector is greater than 2. This result, later developed 

in collaboration with James, forms the basis of the James-Stein estimator, which dominates the 

MLE in terms of mean squared error (MSE). 

8.4   James-Stein Estimation 

The James-Stein estimator is a shrinkage estimator used to estimate the mean of a 

multivariate normal distribution. It's particularly notable in high-dimensional statistics for 

outperforming the traditional sample mean estimator under certain conditions. 

8.4.1   Background 

Let's consider a multivariate normal distribution: 

𝑋~𝑁𝑝(𝜇, 𝜎
2𝐼𝑝) 

Where 𝑋 =  (𝑋1, 𝑋2, … 𝑋𝑝) is a p-dimensional random vector. Obviously, on the basis of a single 

observation vector 𝑋, the MLE of 𝜇 is 𝑋.  

Note: In case we have a set of 𝑛 observation vectors from 𝑁𝑝(𝜇, 𝜎
2𝐼𝑝), we simply replace 𝑋 by 

the sample mean vector and proceed. 

8.4.2   James-Stein Estimator 

The James-Stein estimator is given by: 

�̂�𝐽𝑆 = [1 −
(𝑝 − 2)𝜎2

||𝑋||
2 ] 𝑋 



where ||𝑋||
2
 is the squared Euclidean norm of the sample mean vector and defined as 

||𝑋||
2
=∑ 𝑋𝑖

2
𝑝

𝑖=1
 

            = 𝑋′𝑋  

The James-Stein estimator "shrinks" the sample mean vector 𝑋 towards the origin (or some 

other fixed point if modified). The amount of shrinkage depends on the ratio 
(𝑝−2)𝜎2

||𝑋||
2 . The larger 

the 
(𝑝−2)𝜎2

||𝑋||
2 ., the less shrinkage is applied, and conversely, the smaller the 

(𝑝−2)𝜎2

||𝑋||
2 , the more 

shrinkage is applied. 

The James-Stein estimator works due to a phenomenon known as Stein's Paradox, where 

the combined estimation of several parameters can lead to more accurate results than estimating 

each parameter separately. For 𝑝 ≥ 3, the shrinkage reduces the variance more than it increases 

the bias, resulting in a lower overall mean squared error compared to the sample mean estimator. 

Stein (1956) and James and Stein (1961) showed that, if 𝑝 ≥ 3, 𝑋 is inadmissible and, 

under the mean squared error 𝐸(�̂� − 𝜇)′(�̂� − 𝜇), it has lower risk than 𝑋. For proving this result, 

we use the following lemma. 

8.4.3   Stein’s Multivariate Lemma  

Let 𝑍(𝑘×1)~𝑁(0, 𝐼𝑘) and 𝑔:𝑅𝑘 → 𝑅 be an absolutely continuous and differentiable with derivative 

𝜕𝑔(𝑧)

𝜕𝑧
= 𝛻𝑔(𝑧). 

Then 

𝐸[𝑍𝑔(𝑍)] = 𝐸[𝛻𝑔(𝑧)].                                                                                                                            (8.1) 

Proof: Let 𝑍𝑖 be the 𝑖𝑡ℎ component of 𝑍. Then, using integration by parts, we obtain 

𝐸𝑍𝑖[𝑍𝑖𝑔(𝑍)] = ∫ 𝑧𝑖𝑔(𝑧)
1

√2𝜋
𝑒−

1
2
𝑧𝑖
2

𝑑𝑧𝑖

∞

−∞

 



                        = 𝑔(𝑧)∫ 𝑧𝑖
1

√2𝜋
𝑒−

1
2
𝑧𝑖
2

𝑑𝑧𝑖| 
∞
−∞

−∫
𝜕

𝜕𝑧𝑖
(𝑔(𝑧))∫

1

√2𝜋
𝑒−

1
2
𝑧𝑖
2

𝑑𝑧𝑖

∞

−∞

 

                        = −𝑔 (𝑧)
1

√2𝜋
𝑒−

1
2
𝑧𝑖
2

|
∞
−∞

+∫
𝜕

𝜕𝑧𝑖
(𝑔(𝑧))

1

√2𝜋
𝑒−

1
2
𝑧𝑖
2

∞

−∞

 

                        = 0 + 𝐸𝑍𝑖 [
𝜕

𝜕𝑍𝑖
(𝑔(𝑍))]. 

Hence 

𝐸[𝑍𝑔(𝑍)] = 𝐸[𝛻𝑔(𝑧)] 

Which leads to the required result . 

We state the following result, which can be easily proved using the previous Stein’s lemma. 

Theorem 8.4.1.: When 𝑋~𝑁(𝜇, 𝐼𝑝), we have 

𝐸[(𝑋 − 𝜇)𝑔(𝑋)] = 𝐸[𝛻𝑔(𝑋)].                                                                                                               (8.2) 

Result 8.4.1.: Under the under the mean squared error 𝐸(�̂� − 𝜇)′(�̂� − 𝜇), the Stein-rule estimator 

�̂�𝐽𝑆 has lower MSE than the MLE 𝑋 as long as 𝑘 ≥ 3. 

Proof: The MSE for �̂� is given by 

M( �̂�𝐽𝑆, 𝜇) 

= 𝐸(�̂�𝐽𝑆 − 𝜇)
′
(�̂�𝐽𝑆 − 𝜇) 

= 𝐸 [𝑋 − 𝜇 −
𝑝 − 2

𝑋′𝑋
𝑋]

′

[𝑋 − 𝜇 −
𝑝 − 2

𝑋′𝑋
𝑋] 

= {𝐸(𝑋 − 𝜇)′(𝑋 − 𝜇) − 2(𝑝 − 2)𝐸 [(𝑋 − 𝜇)′𝑋
1

𝑋′𝑋
] + (𝑝 − 2)2𝐸 [

1

(𝑋′𝑋)2
𝑋′𝑋]} . 

Hence 

Δ = 𝐸(𝑋 − 𝜇)′(𝑋 − 𝜇) − E(�̂�𝐽𝑆 − 𝜇)
′
(�̂�𝐽𝑆 − 𝜇) 



= {2(𝑝 − 2)𝐸 [(𝑋 − 𝜇)′𝑋
1

𝑋′𝑋
] − (𝑝 − 2)2𝐸 [

1

(𝑋′𝑋)2
𝑋′𝑋]} 

= 2(𝑝 − 2)𝐸 [(𝑋 − 𝜇)′𝑋
1

𝑋′𝑋
] − (𝑝 − 2)2𝐸 [

1

𝑋′𝑋
] 

= 2(𝑝 − 2)𝐸 [
𝜕

𝜕𝑋′
1

(𝑋′𝑋)2
𝑋] − (𝑝 − 2)2𝐸 [

1

𝑋′𝑋
] 

= (𝑝 − 2)𝐸 [2𝑝
1

𝑋′𝑋
− 4

𝑋′𝑋

(𝑋′𝑋)2
− (𝑝 − 2)

1

𝑋′𝑋
] 

= (𝑝 − 2)2E (
1

𝑋′𝑋
) ≥ 0. 

Therefore Δ > 0, whenever 𝑝 ≥ 3. This leads to condition. 

Since 𝑋 is the minimax estimator for 𝜇, (8.2) is the condition for �̂�𝐽𝑆 to be a minimax estimator.  

The above result also shows that the maximum likelihood estimator 𝑋 is inadmissible under the 

mean squared error criterion and uniformly dominated by the JS estimator. 

8.4.4  Key Properties 

1. Dominance: The James-Stein estimator dominates the sample mean estimator in terms of lower 

risk (mean squared error) for any 𝜇 when 𝑝 ≥ 3. 

2. Shrinkage: It shrinks estimates towards the origin, effectively reducing the variance of the 

estimator. 

3. Bias-Variance Trade-off: The estimator introduces some bias, but the reduction in variance 

typically outweighs this, leading to a lower total mean squared error. 

8.4.5   Practical Considerations 

The original James-Stein estimator assumes 𝜎2 is known. In practice, 𝜎2 might need to be 

estimated from the data, which leads to a modified version of the estimator. 

The choice of shrinkage target (origin in the classical case) can be generalized to other 

values, depending on prior knowledge or other considerations. 



The James-Stein estimator illustrates a counterintuitive result in statistics: sometimes, by 

pooling information across different components and allowing for some bias, one can achieve 

better overall estimation accuracy. 

8.4.6   Applications 

The James-Stein (JS) estimator has a range of applications across different fields, 

particularly where high-dimensional data and estimation problems are common. The main idea 

behind using the JS estimator is to improve the estimation accuracy by shrinking the estimates 

toward a central point, thus reducing variance and improving mean squared error (MSE). Here are 

some key applications of the JS estimator: 

1. Genomics and Bioinformatics 

 

Gene Expression Analysis: In genomics, researchers often estimate the expression levels 

of thousands of genes simultaneously. Since the number of genes (parameters) is large 

compared to the number of samples (observations), the sample mean can be a poor 

estimator. The JS estimator can be used to improve the accuracy of these estimates by 

shrinking the estimated expression levels toward a central value, thereby reducing variance. 

 

DNA Microarray Data: Similar to gene expression analysis, microarray data analysis 

involves estimating a large number of parameters (gene expressions). The JS estimator 

helps in obtaining more accurate estimates of gene activity levels by borrowing strength 

across different genes. 

 

2. Econometrics and Finance 

 

Portfolio Optimization: In finance, estimating the expected returns of various assets is 

crucial for portfolio optimization. When the number of assets (stocks, bonds, etc.) is large 

relative to the available data points, the sample mean of returns can be unreliable. The JS 

estimator can provide more stable estimates by shrinking the returns toward the mean 

return of all assets, which can lead to more robust portfolio choices. 

 



Risk Management: The JS estimator can be applied to estimate risk metrics, such as Value 

at Risk (VaR) and expected shortfall, more accurately when dealing with high-dimensional 

risk factor models. 

 

3. Machine Learning and Data Mining 

 

Regularization in High-Dimensional Models: The concept of shrinkage in the JS 

estimator is related to regularization techniques (like Lasso and Ridge regression) used in 

machine learning. In situations where models have a large number of features compared to 

observations, shrinkage estimators can help prevent overfitting and improve predictive 

performance. 

 

Ensemble Learning: In ensemble methods, the JS estimator can be used to combine 

different models by shrinking their predictions towards a common central model, thus 

reducing variance and improving overall predictive accuracy. 

 

4. Sports and Epidemiology 

 

Player Performance Metrics: In sports analytics, the performance of players (like batting 

averages in baseball or shooting percentages in basketball) often needs to be estimated 

based on a limited number of observations. The JS estimator can improve these estimates 

by shrinking individual performance metrics towards the league average, leading to more 

reliable performance assessments. 

 

Disease Rate Estimation: In epidemiology, estimating disease rates in small populations 

(e.g., rare diseases in small towns) can suffer from high variance. The JS estimator can 

provide more reliable estimates by shrinking the rates toward the overall mean rate, which 

helps in understanding disease prevalence more accurately. 

 

5. Psychometrics and Social Sciences 

 

Test Scores and Ability Estimation: In psychometrics, when estimating abilities or traits 

based on test scores, especially in small sample settings, the JS estimator can provide more 



accurate estimates by shrinking individual scores toward the group mean. This can help in 

obtaining more stable assessments of abilities or personality traits. 

 

Survey Data Analysis: In the analysis of survey data, where multiple related outcomes or 

questions are analyzed simultaneously, the JS estimator can be used to improve the 

estimation of mean responses by shrinking towards a common overall mean, thus reducing 

estimation error. 

 

6. Image Processing and Computer Vision 

 

Denoising: In image processing, estimating pixel intensities in noisy images can benefit 

from shrinkage techniques like the JS estimator. It can reduce noise by shrinking pixel 

intensity estimates towards a global mean or a structured model, improving the clarity of 

the image. 

 

Reconstruction: In computer vision tasks like 3D reconstruction, where estimates of 

spatial coordinates are made from multiple noisy observations, the JS estimator can reduce 

the variance of the estimated coordinates, leading to more accurate reconstructions. 

 

7. Astronomy and Astrophysics 

 

Star Luminosity Estimation: When estimating the brightness of stars or other celestial 

bodies from telescope data, especially when dealing with high-dimensional data sets (e.g., 

spectra), the JS estimator can provide more reliable estimates by shrinking the luminosity 

estimates towards a central value. 

8.4.7   Drawbacks 

The James-Stein estimator is widely applicable in fields dealing with high-dimensional 

data and estimation problems where the number of parameters is large relative to the number of 

observations. It improves estimation accuracy by introducing a bias (shrinking toward a central 

point) that is more than compensated by a reduction in variance, leading to lower overall mean 



squared error. This makes it valuable in many scientific, engineering, and social science 

applications where robust estimation is crucial. 

While the James-Stein (JS) estimator offers significant advantages in terms of reducing the 

mean squared error (MSE) compared to the standard sample mean estimator, especially in high-

dimensional settings, it also has some drawbacks and limitations. Here are some key drawbacks of 

the JS estimator: 

1. Assumption of Known Variance: The standard form of the JS estimator assumes that the 

variance 𝜎2of the underlying normal distribution is known. In practice, 𝜎2 is often 

unknown and must be estimated from the data. Estimating 𝜎2 introduces additional 

variability, which can affect the performance of the JS estimator. The estimator needs to 

be adjusted when 𝜎2 is unknown, potentially reducing its effectiveness. 

 

2. Shrinkage Toward the Origin: The JS estimator shrinks the estimates towards a common 

point, typically the origin (zero vector) or the overall mean. This is based on the assumption 

that the true means are closer to the origin or that there is some prior belief about the central 

tendency of the parameters. However, in cases where the true mean vector is far from the 

origin, this shrinkage can introduce significant bias, leading to poor estimates. 

 

3. Lack of Interpretability: The amount of shrinkage applied by the JS estimator is 

determined by the ratio of the number of parameters and the squared Euclidean norm of 

the data vector. This can make the estimator less interpretable because the shrinkage factor 

is data-dependent and may change significantly with small changes in the data. It can be 

difficult to explain why the estimator behaves a certain way for particular datasets. 

 

4.  Only Applicable for 𝒑 ≥ 𝟑: The JS estimator is only advantageous for (𝑝 ≥  3), meaning 

it’s only useful when estimating at least three parameters. For  (𝑝 =  1 )or  (𝑝 =  2 ), the 

sample mean is actually the optimal estimator in terms of MSE. Thus, the JS estimator is 

not applicable in low-dimensional settings. 

 

5. Bias Introduction: Although the JS estimator reduces the variance of the estimates, it 

introduces bias. The trade-off between bias and variance may not always result in a lower 

mean squared error for every dataset or application. In cases where unbiasedness is a 



critical requirement (e.g., in certain inferential statistical tasks), the bias introduced by the 

JS estimator can be seen as a drawback. 

 

6. Sensitivity to Outliers: The JS estimator’s shrinkage mechanism can make it sensitive to 

outliers. If the data vector 𝑋 contains extreme values, the squared norm ||𝑋||
2
 can become 

disproportionately large, reducing the shrinkage effect. Consequently, the estimator may 

perform poorly in the presence of outliers, which can skew the results and reduce the 

benefits of shrinkage. 

 

7. Less Effective in Small Samples: The JS estimator assumes that shrinkage will improve 

estimation accuracy by reducing variance. However, in small sample sizes, the 

effectiveness of shrinkage may be limited because the estimator relies on having enough 

data to accurately determine how much to shrink. In cases with very few observations, the 

JS estimator may not provide substantial gains over the sample mean, or its performance 

could even deteriorate. 

 

8. No Clear Choice of Shrinkage Target: The standard JS estimator shrinks towards the 

origin, but this choice is somewhat arbitrary and may not always align with the underlying 

structure of the data. Other shrinkage targets (e.g., the grand mean or some other central 

point) could be more appropriate depending on the context. However, selecting an 

appropriate target is not straightforward and often requires domain knowledge or subjective 

judgment. 

 

9. Computational Considerations: While the JS estimator itself is not computationally 

expensive, in practice, its performance needs to be evaluated against other estimators or 

methods. This involves additional computation, especially when dealing with high-

dimensional data or when selecting the optimal shrinkage factor. As a result, the 

implementation and validation of the JS estimator may require more computational 

resources and expertise compared to simpler estimators. 

 

10.  Limited Applicability in Non-Gaussian Settings:  The JS estimator is specifically 

designed for multivariate normal distributions. Its effectiveness relies on the assumption of 

normally distributed data with a common variance structure. If the data do not follow a 



multivariate normal distribution (e.g., heavy-tailed distributions, skewed distributions), the 

performance of the JS estimator may degrade, and other estimators or robust techniques 

might be more appropriate. 

8.4.8   Some Notable Alternatives to the JS Estimator 

1.  Empirical Bayes Estimators: Empirical Bayes (EB) methods estimate the shrinkage parameter 

(or hyperparameters) from the data itself rather than using a fixed formula. This makes EB methods 

flexible and well-suited to situations where prior information or a reasonable prior distribution can 

be estimated. 

(i)  Stein’s Estimator with Empirical Bayes: This method adapts the shrinkage factor by 

estimating it from the data, which can improve performance, especially when the underlying 

variance ( 𝜎2) is unknown or needs to be estimated. 

(ii)  Generalized Empirical Bayes Estimators: These extend the EB framework to different types 

of data and priors, providing flexibility and robustness in various settings. 

2.  Ridge Regression:  Ridge regression is a regularization method used primarily in linear 

regression but also for estimating parameters in multivariate settings. It penalizes large coefficients 

by adding a shrinkage penalty to the least square’s estimation. 

(i)  Application: Ridge regression is useful when multicollinearity exists among predictor 

variables or when the number of predictors is large relative to the number of observations. 

3.  Lasso (Least Absolute Shrinkage and Selection Operator): Lasso is another shrinkage and 

selection method that, unlike ridge regression, can produce sparse models by setting some 

coefficients exactly to zero. This is particularly useful when variable selection is desired along 

with parameter estimation. 

(i)   Application: Lasso is particularly useful in high-dimensional settings where it helps in both 

reducing variance and performing variable selection, thus providing a more interpretable model. 

4. Bayesian Shrinkage Estimators: Bayesian shrinkage estimators provide a principled 

framework for incorporating prior information into the estimation process. The posterior 

distribution is used to derive estimates, often leading to shrinkage towards the prior mean. 



(i)   Bayesian Linear Models: For a normal prior on the regression coefficients, the posterior 

mean can provide shrinkage similar to ridge regression but with more flexibility to include other 

types of priors and hierarchical models. 

(ii) Hierarchical Bayesian Models: These models allow for varying degrees of shrinkage 

depending on the grouping of data, which can be particularly useful in cases with nested or 

hierarchical structures. 

5. Tikhonov Regularization: Tikhonov regularization (a generalization of ridge regression) 

applies to ill-posed problems, particularly in inverse problems and other contexts where direct 

estimation is not feasible. 

(i)  Application: Useful in image reconstruction, signal processing, and other fields where the 

model is often under-determined, and regularization is needed to stabilize the solution. 

6. Principal Component Analysis (PCA) and Factor Analysis: While not shrinkage estimators 

per se, PCA and factor analysis reduce dimensionality by identifying the main directions (principal 

components) that capture the most variance in the data. By focusing on the principal components, 

one effectively performs shrinkage in the direction of these components, reducing the impact of 

less informative directions. 

(i)  Application: Commonly used in data preprocessing for high-dimensional data, particularly 

when noise reduction is needed. 

7.  Shrinkage Towards a General Target: Shrinkage towards a general target allows for the 

shrinkage of estimates towards a target other than the origin or the grand mean, which might be 

more appropriate in specific applications. 

(i) Application: Used when there is prior knowledge about the true mean being close to some 

known vector, not necessarily the origin. 

8. Adaptive Shrinkage Estimators: Adaptive shrinkage estimators adjust the amount of 

shrinkage based on the data, often using methods like cross-validation to find the optimal shrinkage 

parameter. 

(i)  Application: Useful in non-parametric settings and when a data-driven approach is needed to 

determine the appropriate amount of shrinkage dynamically. 



9. Stein-type Shrinkage Estimators: Stein-type shrinkage estimators are a broad class of 

estimators inspired by the original James-Stein estimator, but they adapt the shrinkage based on 

different loss functions or constraints. 

(i)  Application: These are useful when the assumptions of the JS estimator are not fully met or 

when the loss function differs from the quadratic loss. 

10.  Nonparametric and Semi-parametric Methods: In some cases, nonparametric methods 

(e.g., kernel density estimation) and semi-parametric methods (e.g., partially linear models) may 

provide better estimates than parametric shrinkage estimators when the underlying distribution 

does not meet the normality assumption or is highly skewed. 

(i)  Application: Used in settings where the form of the underlying distribution is unknown or 

cannot be easily specified. 

Estimating the variance-covariance matrix of a multivariate distribution is a fundamental 

task in statistics and data analysis, especially when dealing with multivariate normal data.  

Stein estimation for the variance-covariance matrix is a powerful method that extends the 

principles of the James-Stein estimator to the covariance matrix, offering more stable and accurate 

estimates, especially in high-dimensional settings. It is designed to improve the estimation 

accuracy by shrinking the sample covariance matrix towards a structured target. By shrinking the 

sample covariance matrix towards a structured target, these estimators reduce variance, ensure 

positive definiteness, and improve overall estimation accuracy. 

8.5  Improved Estimation of Dispersion Matrix of an MND 

 

8.5.1  Background and Motivation 

The sample covariance matrix �̂� is the most common estimator for the covariance matrix 

𝛴 of a multivariate normal distribution. However, in high-dimensional settings (where the number 

of variables 𝑝 is large relative to the number of observations 𝑛), �̂�  becomes unstable, can be 

singular, and typically has high variance. Stein-type estimators aim to address these issues by 



shrinking �̂� towards a more stable target, similar to how the James-Stein estimator shrinks mean 

vectors. 

8.5.2  Challenges with the Sample Covariance Matrix 

While the sample covariance matrix �̂� is an unbiased estimator of the true covariance 

matrix Σ, it has several drawbacks, especially when the number of variables 𝑝 is large relative to 

the number of observations n: 

• High Variance: The sample covariance matrix can have high variance, leading to noisy 

estimates. 

• Instability: When 𝑝 approaches or exceeds 𝑛, �̂� becomes ill-conditioned or singular, 

making it difficult to invert or use in further analyses. 

• Overfitting: In high dimensions, �̂� can overfit the sample data, capturing noise rather than 

the true underlying structure. 

8.5.3   Stein's Loss Function 

One of the key components in Stein estimation is the use of Stein's loss function, which 

measures the difference between the true covariance matrix 𝛴 and an estimator �̂� . The most 

common form of the Stein’s Loss (Risk) Function is 

𝐿(�̂�, 𝛴) = 𝑡𝑟(�̂�−1𝛴) − 𝑙𝑜𝑔𝑑𝑒𝑡(�̂�−1𝛴) − 𝑝 

This loss function has some desirable properties: 

• It is invariant under linear transformations of the data. 

• It penalizes both underestimation and overestimation of the eigenvalues of 𝛴. 

• It encourages shrinkage of the estimator towards a more structured form, reducing the risk 

associated with the high variability of the sample covariance matrix. 

8.5.4  James-Stein-Type Shrinkage Estimators for Covariance Matrices 



The James-Stein-type shrinkage estimator for the covariance matrix takes a form similar 

to the James-Stein estimator for the mean vector, shrinking the sample covariance matrix towards 

a target matrix 𝑇. The general form is: 

�̂�𝑆𝑡𝑒𝑖𝑛 = (1 − 𝜆)�̂� + 𝜆𝑇 

where: 

�̂� is the sample covariance matrix. 

𝑇 is the target covariance matrix (often chosen as the identity matrix, 𝐼, or a diagonal matrix). 

𝜆 is the shrinkage parameter, typically estimated from the data. 

8.5.5  Choosing the Shrinkage Target T 

The target matrix T is chosen based on prior knowledge or assumptions about the structure of 

the covariance matrix: 

• Identity Matrix (I): Assumes that variables are uncorrelated and have unit variance. This 

is a common choice in the absence of strong prior information. 

• Diagonal Matrix: Assumes that variables are uncorrelated, but allows for different 

variances for each variable. 

• Scaled Identity Matrix: Shrinks towards an identity matrix scaled by the average variance. 

• Average of the Sample Covariance Matrices: In a hierarchical or multi-group setting, 

this could be the average of the sample covariance matrices across groups. 

8.5.6   Estimating the Shrinkage Parameter λ 

The optimal shrinkage parameter λ is typically estimated to minimize the mean squared error or 

Stein's loss. There are various methods for estimating λ including: 

• Ledoit-Wolf Estimator: A popular method that provides an analytic solution for the 

optimal shrinkage parameter λ by minimizing the Frobenius norm or a similar loss function. 

• Cross-Validation: A data-driven approach where λ is chosen to minimize an empirical 

risk measure (e.g., cross-validated Stein’s loss). 



8.5.7  Properties and Advantages 

• Improved Estimation in High Dimensions: The shrinkage reduces the variance of the 

estimator, making it more stable in high-dimensional settings. 

• Guaranteed Positive-Definiteness: Shrinkage towards a positive definite target ensures 

that the resulting covariance matrix is positive definite, which is crucial for many 

applications (e.g., portfolio optimization, multivariate analysis). 

• Reduced Sensitivity to Sampling Variability: By shrinking the covariance matrix, the 

estimator becomes less sensitive to sampling noise and outliers. 

8.5.8   Applications 

• Finance: Covariance matrix estimation is crucial in portfolio optimization, where accurate 

estimates of the covariance matrix of asset returns are necessary to construct efficient 

portfolios. Stein shrinkage estimators are widely used to improve the stability of these 

estimates. 

• Genomics: In gene expression studies, covariance matrices are used to understand the 

relationships between genes. High-dimensional data (many genes, few samples) make 

shrinkage techniques particularly valuable. 

• Multivariate Statistics: In various multivariate techniques like Principal Component 

Analysis (PCA) and Canonical Correlation Analysis (CCA), accurate estimation of the 

covariance matrix is crucial, and shrinkage estimators provide more reliable estimates. 

8.6  Summary 

In this unit, we have covered the concepts of Linear Regression Model under following situations: 

• We have discussed Inadmissibility of maximum likelihood estimator of mean vector of 

multivariate normal distribution when dimension is greater than three. 

• We have derived James-Stein estimator of the mean vector. 

• We have explained Improved estimation of dispersion matrix of an MND. 

 



8.7  Self-Assessment Exercises 

1. Show that 𝐸[𝑍𝑔(𝑍)] = 𝐸[𝛻𝑔(𝑧)] where 𝑍(𝑘×1)~𝑁(0, 𝐼𝑘) and 𝑔: 𝑅𝑘 → 𝑅 be an absolutely 

continuous and differentiable with derivative 
𝜕𝑔(𝑧)

𝜕𝑧
= 𝛻𝑔(𝑧). 

2. Under the under the mean squared error 𝐸(�̂� − 𝜇)′(�̂� − 𝜇), prove that the Stein-rule 

estimator �̂�𝐽𝑆 has lower MSE than the MLE 𝑋 as long as 𝑘 ≥ 3. 

3. Write down the application and Drawbacks of James-Stein (JS) estimator. 

4. Explain some notable alternatives to the JS estimator. 

5. Discuss the estimation of the Shrinkage Parameter λ in Shrinkage Estimators for 

Covariance Matrix. 
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9.1  Introduction 

Analysis of various fields of sciences involve high-dimensional data sets. We adopt 

possible projection methods to project it to a lower-dimensional subspace without losing important 

information regarding some characteristic of variables. One way is by creating a reduced set of 

linear or nonlinear transformations of the input variables. Linear methods such as principal 

component analysis (PCA) (Hotelling, 1933) and canonical variate and correlation analysis (CVA 

or CCA) (Hotelling, 1936), are two of the most popular dimensionality-reducing techniques. Both 

PCA and CVA are eigenvalue-eigenvector problems. 

Principal Component Analysis is a technique for deriving a reduced set of orthogonal linear 

projections of a single collection of correlated variables where projections are ordered by 

decreasing variance. The variance is an important measure of amount of information in that 

variable. 

Canonical correlation is a technique to identify and quantify the association between two sets 

of variables. Each set can contain several variables. Simple and multiple correlations are special 

cases of canonical correlation in which one or both sets contain a single variable. This technique 

was given by H. Hotelling in 1935-36, for relating the arithmetic speed and arithmetic power to 

reading speed and reading power based on a sample data received from 140 seventh grade students. 

Other examples where canonical correlations can be helpful are: relating governmental policy 

variables with economic goal variables; relating college performance variables (grades in courses 

in different subjects) with pre-college achievement variables (percentage of marks in high school, 

number of extracurricular activities in height school, etc.); relating yield attributing parameters 

(test weight, plant height, number of grains per panicle, etc.) and quality parameters (protein 

content, carbohydrate content, etc.) in case of a certain crop; relating job satisfaction variables 

(supervisor satisfaction, workload satisfaction, general satisfaction, etc.) and job characteristic 

variables (feedback, task identity, task variety, etc.); relating physiological variables (weight in kg, 

waist in inches, pulse rate, etc.) with exercise variables (number of sit ups, jumps, etc.) and many 

others such pairs. Canonical correlation analysis focuses on the correlation between a linear 

combination of the variables in one set and a linear combination of the variables in the second set. 

The idea is first to determine the pair of linear combinations having the largest correlation. Next, 

we determine the pair of linear combinations having the largest correlation among all pairs 



uncorrelated with the initially selected pairs. This process continues until the number of pairs of 

canonical variables equals the number of variables in the smaller group. The pairs of linear 

combinations are called the canonical variables and their correlations are called canonical 

correlations. The canonical correlations measure the strength of association between the two sets 

of variables. The maximization aspect of the technique represents an attempt to concentrate a high-

dimensional relationship between two sets of variables into a few pair of canonical variables. The 

purpose of canonical correlation is to explain the relation of the two sets of variables, not to model 

the individual variables. 

9.2  Objectives 

After studying this unit, one will be able to 

• define principal components 

• derive principal components from covariance matrix  

• derive principal components from a correlation matrix  

• understand the meaning and concept of canonical correlation 

9.3  Principal Component Analysis 

Principal component are linear combinations of random and statistical variables which 

have special properties in terms of variances. For examples, the first principal component is the 

normalized linear combination (the sum of square of the coefficient being one) with maximum 

variance. The principal components turn out to be the characteristic vectors of the covariance 

matrix. Thus, the study of principal component can be considered as the usual developments of 

characteristic roots and vectors (for positive semi-definite matrices). In statistical practice the 

method of principal component is used to find the linear combination with large variance. In many 

exploratory studies where the numbers of variables are too large, a way of reducing the number of 

variables to be treated is to discard the linear combinations which have small variances and study 

only those with large variances. 

 

 



 

9.3.1   Uses of Principle Component Analysis 

PCA has also been referred to as a method for decorrelating the observation matrix. PCA 

can be used for lossy data compression (compress data to be transmitted without losing much 

information), pattern recognition, and image analysis.  

The first few principal component scores reveal whether most of the data live on a linear 

subspace of 𝑅𝑟  and can be used to identify outliers, distributional peculiarities, and clusters of 

points. The last few principal component scores can be used to detect collinearity. 

9.4  Derivation 

Theorem 9.4.1: Let 𝑋 be a 𝑝 × 1 random vector with mean vector 𝐸(𝑋) = 0 and covariance 

matrix 𝐸(𝑋𝑋′) = .. Then there exists a linear transformation 𝑈 = 𝛽′𝑋, such that the covariance 

matrix of 𝑈 is 𝐸(𝑈𝑈’) = Λ = 𝑑𝑖𝑎𝑔(𝜆1, … , 𝜆𝑝),with 𝜆1 ≥ ⋯ ≥ 𝜆𝑝, where 𝜆1, … , 𝜆𝑝 are roots of 

|Σ − 𝜆𝐼| = 0. The 𝑟𝑡ℎ column of B, say 𝛽(𝑟) satisfies (Σ − 𝜆𝑟𝐼)𝛽
(𝑟) = 0. The 𝑟𝑡ℎ component of 𝑈 

is 𝑢𝑟 = 𝛽
(𝑟)′𝑋. 

Proof: Let  be a 𝑝 × 1 normalized vector (𝛽′𝛽 = 1), then variance of 𝛽′𝑋 is  

𝑉(𝛽′𝑋) = 𝐸(𝛽′𝑋)2 

= 𝐸(𝛽′𝑋𝑋′𝛽) 

= 𝛽′𝐸(𝑋𝑋′)𝛽 = 𝛽′Σ𝛽 

To determine normalized linear combination with maximum variance, we find , such that 𝛽′𝛽 =

1, which maximizes 𝛽′𝛽. Let  

𝜑1 = 𝛽
′− 𝜆(𝛽′𝛽 − 1) 

=∑∑𝛽𝑖𝜎𝑖𝑗𝛽𝑗

𝑝

𝑗=1

− 𝜆(∑𝛽𝑖
2 − 1

𝑝

𝑖=1

)

𝑝

𝑖=1

 

𝜆 is the Lagrange’s multiplier. 



Then, for maximizing 𝛽′ subject to 𝛽′𝛽 = 1, the vector of partial derivatives is 

𝜕

𝜕𝛽
𝜑1 = 0 

⇒ 2𝛴𝛽 − 2𝜆𝛽 = 0                                                                                                                                    (9.1) 

⇒ 𝛴𝛽 − 𝜆𝛽 = 0 

⇒ (𝛴 − 𝜆𝐼)𝛽 = 0                                                                                                                                      (9.2) 

To have solution of (9.2) for 𝛽′ = 1,  must satisfy 

|𝛴 − 𝜆𝐼| = 0                                                                                                                                               (9.3) 

|Σ − 𝜆𝐼| is a polynomial of degree 𝑝 in  and thus has 𝑝 roots. Let these roots be 𝜆1 ≥ ⋯ ≥ 𝜆𝑝. 

Since 𝛴 is positive definite, all these roots are real and positive. If we pre multiply (9.4.2) with 𝛽′, 

we get 

𝛽′Σ𝛽 − 𝜆𝛽′𝛽 = 0 

⇒ 𝛽′Σ𝛽 = 𝜆                                                                                                                                                (9.4) 

Thus if  satisfies (9.2), then variance of 𝛽′𝑋 is . Thus, for maximum variance, we should use 

the largest eigenvalue 𝜆1. Let 𝛽(1) be the corresponding normalized solution (normalized eigen 

vector) of (Σ − 𝜆1𝐼)𝛽 = 0. Then 𝑢1 = 𝛽
(1)′𝑋 is a normalized linear combination (first principal 

component) with maximum variance. i.e.  

𝑉(𝑢1) = 𝛽
(1)′Σ𝛽(1) = 𝜆 

(If 𝛴 − 𝜆𝐼 is of rank (𝑝 − 1), then there is only one solution to (Σ − 𝜆𝐼)𝛽 = 0 and 𝛽′ = 1). 

Let us obtain linear combination 𝛽′𝑋 which has maximum variance among all linear combinations 

uncorrelated with 𝑢1. Then 

0 = 𝐶𝑜𝑣(𝛽′𝑋, 𝑢1) = 𝐸{𝛽
′𝑋 − 𝐸(𝛽′𝑋)} {𝛽(1)

′
𝑋 − 𝐸(𝛽(1)′𝑋)}

′
= 𝐸(𝛽′𝑋𝑋′𝛽(1)) = 𝛽′Σ𝛽(1) 



Since Σ 𝛽(1) = 𝜆 𝛽(1), we have 

𝛽′Σ𝛽(1) = 𝜆1𝛽
′𝛽(1) = 0                                                                                                                          (9.5) 

Which implies that 𝛽 is orthogonal to 𝛽(1), i.e., 𝛽′𝛽(1) = 0 since 𝜆1 ≠ 0.  

Consider 

𝜑2 = 𝛽
′− 𝜆(𝛽′𝛽 − 1) − 2𝛾1𝛽

′Σ𝛽(1) 

where 𝜆 and 𝛾1 are Lagrange multipliers. The vector of partial derivatives is 

𝜕

𝜕𝛽
𝜑2 = 0     

⇒   2 − 2𝜆𝛽 − 2𝛾1Σ𝛽
(1) = 0 

Pre multiplying by 𝛽(1)
′
, we obtain 

2𝛽(1)
′
− 2𝜆𝛽(1)

′
𝛽 − 2𝛾1𝛽

(1)′Σ𝛽(1) = 0 

Since 𝛽(1)
′
Σ𝛽 = 𝜆1𝛽

(1)′𝛽 = 0, so that −𝛾1𝛽
(1)′Σ𝛽(1) = 0 or 𝛾1𝜆1 = 0, because 𝛽(1)

′
Σ𝛽(1) = 𝜆1. 

This implies that 𝛾1 = 0, because 𝜆1 ≠ 0. 

This means that the condition of uncorrelated ness is itself satisfied when 𝛽 satisfies (9.2) 

and 𝜆 satisfies (9.3). 

Let 𝜆(2) be the maximum of 𝜆1, … , 𝜆𝑝 such that 𝛽 is a vector satisfying  

( − 𝜆(2)𝐼)𝛽 = 0, 𝛽
′𝛽 = 1, 

and (9.5). 

Let this vector be 𝛽(2) and corresponding linear combination is 𝑢2 = 𝛽
(2)′𝑋. This will be 

shown later that 𝜆(2) = 𝜆2. Continuing this way, at the (𝑟 + 1)𝑡ℎ step, we find a vector  such that 

𝛽′𝑋 has maximum variance of all normalized linear combinations which are uncorrelated with 

𝑢1, … , 𝑢𝑟 , i.e.,  



0 = 𝐶𝑜𝑣 (𝛽′𝑋, 𝑢𝑖) 

= 𝐸(𝛽′𝑋𝑢𝑖) 

= 𝐸(𝛽′𝑋𝑋′𝛽(𝑖)) 

= 𝛽′Σ𝛽(𝑖) = 𝜆(𝑖)𝛽
′𝛽(𝑖), 𝑖 = 1,2, … , 𝑟                                                                                                   (9.6)  

We want to maximize 

𝜑𝑟+1 = ’− 𝜆(𝛽′𝛽 − 1) − 2∑𝛾𝑖𝛽
′Σ𝛽(𝑖)

𝑟

𝑖=1

                                                                                   (9.7) 

Then 

𝜕

𝜕𝛽
𝜑𝑟+1 = 2 − 2𝜆𝛽 − 2∑𝛾𝑖Σ𝛽

(𝑖)

𝑟

𝑖=1

= 0                                                                                        (9.8) 

Pre multiplying (9.8) by 𝛽(𝑗)
′
 (𝑗 = 1, … , 𝑟), we obtain 

2𝛽(𝑗)
′
 − 2𝜆𝛽(𝑗)

′
𝛽 − 2𝛾𝑗𝛽

(𝑗)′Σ𝛽(𝑗) = 0 

Which leads to 𝛾𝑗 = 0 (𝑗 = 1,… , 𝑟). Σ𝛽
(𝑗) = 𝜆(𝑗)𝛽

(𝑗) = 0 and the 𝑗𝑡ℎ term in the sum is 

(9.8) vanishes. Thus  must satisfy (9.2) and (9.3). Let 𝜆(𝑟+1) be the maximum of 𝜆1, … , 𝜆𝑝 such 

that 𝛽 is a vector satisfying ( − 𝜆(𝑟+1)𝐼)𝛽 = 0, 𝛽
′𝛽 = 1,  and (9.6), call it 𝛽(𝑟+1) and the 

corresponding linear combination as 𝑢(𝑟+1) = 𝛽
(𝑟+1)′𝑋. If 𝜆(𝑟+1) = 0 and 𝜆(𝑗) = 0, then 

𝛽(𝑗)
′


(𝑟+1) = 0 does not imply 𝛽(𝑗)
′

(𝑟+1) = 0. However, 

(𝑟+1)
 can be replaced by a linear 

combination of 
(𝑟+1)

 and 𝛽(𝑗)’s with 𝜆𝑗’s being 0 so that new 
(𝑟+1)

 is orthogonal to all 𝛽(𝑗); 𝑗 =

1,2,… 𝑟. The procedure is continued until at the (𝑚 + 1)𝑡ℎ stage one cannot find a vector 𝛽 

satisfying 𝛽′𝛽 = 1, (9.2) and (9.6). 𝛽(1), … , 𝛽(𝑚) must be linearly independent. Then either 𝑚 <

𝑝 or 𝑚 = 𝑝. Since 𝛽(1), … , 𝛽(𝑚) must be linearly independent. Later we will show that 𝑚 = 𝑝. 

Let 𝐵 = (𝛽(1), … 𝛽(𝑝)) and Λ = 𝑑𝑖𝑎𝑔(𝜆(1), … 𝜆(𝑝)). 

In matrix notations, the equation Σβ(r) = 𝜆(𝑟)𝛽
(𝑟) can be written as 

𝛴𝐵 = 𝐵𝛬 



Further 𝐵’𝐵 = 𝐼. Hence B′Σ𝐵 = 𝐵′𝐵Λ = Λ. Further 

|Σ − 𝜆𝐼| = |𝐵′||Σ − 𝜆𝐼||𝐵| = |𝐵′Σ𝐵 − 𝜆𝐵′𝐵| = |Λ − 𝜆𝐼| =∏ (𝜆(𝑖) − 𝜆)
𝑝

𝑖=1
                         (9.9) 

Hence roots of (9.9) are diagonal elements of Λ. Thus 𝜆(𝑖) = 𝜆𝑖 for all 𝑖. 

The vector 𝑈 is defined as the vector of principal components of 𝑋. 

Now we show that 𝑚 = 𝑝. If 𝑚 < 𝑝, there exist 𝑝 −𝑚 vectors 𝑒𝑗  (𝑗 = 𝑚 + 1 , … , 𝑝) such 

that 𝛽(𝑖)
′
𝑒𝑗 = 0 ∀𝑗,  𝑒𝑖

′𝑒𝑗 = 1 if 𝑖 = 𝑗 and 0 if 𝑖 ≠ 𝑗. Let 𝐸 = (𝑒𝑚+1, … 𝑒𝑝). Then there exist a (𝑝 −

𝑚) component vector 𝑐 such that 𝐸𝑐 = ∑ 𝑐𝑖𝑒𝑖
(𝑝−𝑚)
𝑖=1  is a solution to (− 𝜆𝐼)𝛽 = 0 with 𝜆 = 𝜃. 

Consider a root of |𝐸′Σ𝐸 − 𝜃𝐼| = 0 and a corresponding vector 𝑐 satisfying 𝐸′Σ𝐸 = 𝜃𝑐. The 

vector Σ𝐸𝑐 is orthogonal to 𝛽(1), … , 𝛽(𝑚), as 𝛽(𝑖)
′
Σ𝐸𝑐 = 𝜆(𝑖)∑ 𝑐𝑗𝛽

(𝑖)′𝑒𝑗 = 0
𝑝−𝑚
𝑗 . Hence 𝛽(𝑖) is a 

vector spanned by 𝑒𝑚+1, … 𝑒𝑝 and can be written as 𝐸𝑔, where 𝑔 is a (𝑝 − 𝑚) component vector. 

Multiplying Σ𝐸𝑐 = 𝐸′𝐸𝑔 by 𝐸’ we obtain 𝐸′Σ𝐸𝑐 = 𝐸′𝐸𝑔 = 𝑔. Thus 𝑔 = 𝜃𝑐 and we have Σ𝐸𝑐 =

𝜃𝐸𝑐. Thus (𝐸𝑐)′𝑋 is uncorrelated with 𝛽(𝑗)
′
𝑋; 𝑗 = 1,… ,𝑚 and this leads to a new 𝛽(𝑚+1). This 

contradicts the assumption that 𝑚 < 𝑝 and hence we must have 𝑚 = 𝑝. 

Notes: 1. Contribution of first principal component is 

𝜆1

∑ 𝜆𝑖
𝑝
𝑖=1

 

Contribution of first and second principal component is 

𝜆1 + 𝜆2

∑ 𝜆𝑖
𝑝
𝑖=1

 

Corollary: Suppose 𝜆(𝑟+1) = 𝜆(𝑟+2) = ⋯ = 𝜆(𝑟+𝑚) = 𝜐 (i.e. 𝜐 is a root of multiplicity m); then 

|Σ − 𝜐𝐼| is of rank (𝑝 − 𝑚). Further ℬ∗ = (𝛽(𝑟+1), … 𝛽(𝑟+𝑚)) is uniquely determined except for 

multiplication on the right by an orthogonal matrix. 

Proof: From the derivation of theorem, we have |Σ − 𝜐𝐼|𝛽(𝑖) = 0, 𝑖 = 𝑟 + 1, 𝑟 + 2,… , 𝑟 + 𝑚,

𝑖. 𝑒.  𝛽(𝑟+1), 𝛽(𝑟+2), … , 𝛽(𝑟+𝑚), are linearly independent solutions of |Σ − 𝜆𝐼|𝛽 = 0. To show there 

cannot be another linearly independent solution, take ∑ 𝑥𝑖𝛽
(𝑖)𝑝

𝑖=1 , where 𝑥𝑖 are scalars. If it is a 

solution, we have  



𝜐 ∑ 𝑥𝑖𝛽
(𝑖) = Σ (∑ 𝑥𝑖𝛽

(𝑖)𝑝
𝑖=1 )

𝑝
𝑖=1 = ∑ 𝑥𝑖Σ 𝛽

(𝑖)𝑝
𝑖=1 = ∑ 𝑥𝑖𝜆𝑖𝛽

(𝑖)𝑝
𝑖=1   

Since 𝜐𝑥𝑖 = 𝜆𝑖𝑥𝑖, we must have 𝑥𝑖 = 0 unless 𝑖 = 𝑟 + 1, 𝑟 + 2,… 𝑟 + 𝑚. Thus, the rank is 

(𝑝 − 𝑚). If 𝐵∗ is one set of solution to |Σ − 𝜐𝐼|𝛽 = 0 then anyother set of solution are linear 

combinations of the others, i.e. are 𝐵∗𝐴 for A is non-singular. However, orthogonality conditions. 

𝐵∗𝐵 = 𝐼, applied to the linear combinations give 𝐼 = (𝐵∗𝐴)′(𝐵∗𝐴) = 𝐴′𝐵∗′𝐵∗𝐴 = 𝐴′𝐴 and thus 

A must be orthogonal. 

9.5   Sample Principal Components 

{𝑋𝑖 , 𝑖 =  1, 2, . . . , 𝑛}: 𝑛 independent observations on X. 

�̂�𝑋 = �̅� = 𝑛
−1∑𝑋𝑖

𝑛

𝑖=1

 

Let 𝑋𝑐𝑖  =  𝑋𝑖 − �̅�, 𝑖 =  1, 2, . . . , 𝑛,  

𝑋𝑐  =  (𝑋𝑐1,· · · , 𝑋𝑐𝑛) be a (𝑝 ×  𝑛)-matrix 

�̂�𝑋𝑋  =  𝑛
−1 𝑆 =  𝑛−1𝑋𝑐𝑋𝑐

′  

The ordered eigenvalues of �̂�𝑋𝑋 are denoted by 

�̂�1 ≥ �̂�2 ≥ . . . ≥ �̂�𝑝 ≥ 0 

and �̂�𝑗 is the sample eigenvector associated with the 𝑗𝑡ℎ largest sample eigenvalue �̂�𝑗 ∀ 𝑗 ∈

{1,2, . . , 𝑝}. Hence, 

�̂�(𝑘)  =  (�̂�1,· · · , �̂�𝑘)  =  �̂�
(𝑘)′ 

where �̂�𝑗 is the 𝑗𝑡ℎ sample eigenvector of Σ̂XX, 𝑗 = 1, 2, … , 𝑘 (𝑘 ≤ 𝑝).  

The best rank-𝑘 reconstruction of 𝑋 is given by 

�̂�(𝑘)  = �̅� + �̂�(𝑘)(𝑋 – �̅�), 

Where �̂�(𝑘) = 𝐴(𝑘)𝐵(𝑘)  = ∑ �̂�𝑗�̂�𝑗
𝑘
𝑗=1  

The 𝑗𝑡ℎ  sample PC score of 𝑋 is given by 

𝜉𝑗 = �̂�𝑗
′𝑋𝑐 



A sample estimate of the measure of how well the first 𝑘 principal components represent the 𝑝 

original variables is given by the statistic 

𝑉𝑝
(𝑘) =

�̂�𝑘+1 + · · ·  + �̂�𝑝

�̂�1  + · · ·  + �̂�𝑝
. 

𝑉𝑝
(𝑘)

 is the proportion of the total sample variation that is explained by the last 𝑝 − 𝑘 sample 

principal components. 

9.5.1   How many PC to Retain? 

Scree Plot: The plot of ordered eigen values against ordered numbers shows the amount of 

variance explained by each eigen value. 

Principal component analysis can be applied to covariance matrix or correlation matrix 

(rescaled data). Rescaling is required when different variables measure different characteristics. 

9.5.2   PC Rank Trace 

𝑘: number of PC retain 

𝑝: total number of PC 

∆�̂�(𝑘) = (1 −
𝑘

𝑝
)

1
2⁄

 

∆𝛴(𝑘) = (
𝜆𝑘+1
2 +⋯+ 𝜆𝑝

2

𝜆1
2 +⋯+ 𝜆𝑝2

)

1
2⁄

 

Plot of ∆𝛴(𝑘) against ∆�̂�(𝑘) is called PC Rank Trace plot. 

𝑘 is chosen as smallest positive integer between 1 and 𝑝 at which an elbow can be detected in PC 

rank trace plot. 

Example: Let 𝑅 = (
1 𝑟12
𝑟12 1

). Solve |𝑅 − 𝜆𝐼| = 0 or |
(1 − 𝜆) 𝑟12
𝑟12 (1 − 𝜆)

| = 0 

or (1 − 𝜆)2 − 𝑟12
2 = 0 

or (1 − 2𝜆 + 𝜆2 − 𝑟12
2 ) = 0 



𝜆 =
2 ± √4 − 4(1 − 𝑟2)

2
= 1 ± 𝑟                                                           as 𝑟12

2 = 𝑟2 

If 𝑟 > 0                             𝜆1 = 1 + 𝑟, 𝜆2 = 1 − 𝑟 

If 𝑟 < 0                             𝜆1 = 1 − 𝑟, 𝜆2 = 1 + 𝑟 

If 𝑟 = 0                             𝜆1 = 1 = 𝜆2 

Thus, in case of perfect correlation, we need one principal component which explains fully but in 

case of zero correlation, no principal component. 

9.6   Canonical Correlation Analysis 

In Canonical Correlation analysis, we consider the correlation between a linear 

combination of the variable in one set and a linear combination of the variables in another set. 

9.6.1   Assumptions 

Most of the multivariate technique assumptions apply to Canonical Correlation. 

• Assumes the linear relationship between the dependent and independent variables 

• Independent variables should not be highly correlated 

• Uniform variability 

• Additionally, multivariate normality is necessary to perform a statistical test. 

9.6.2   Canonical Correlations and Canonical Variables 

                Suppose the random vector 𝑥 has covariance matrix Σ (which is assumed to be positive 

definite) without loss of generality. Let 𝐸(𝑥) = 0. Since we are interested only in variances and 

covariances. Suppose 

𝑥 = [𝑥
(1)

𝑥(2)
]                                                                                                                                                (9.10) 

For covariance, let us assume 𝑝1 ≤ 𝑝2. Then  



Σ = [
Σ11 Σ12
Σ21 Σ22

]                                                                                                                                      (9.11) 

Consider an arbitrary linear combination 𝑈 = 𝛼′𝑥(1) of the components of 𝑥(1) and an 

arbitrary function 𝑉 = 𝛾′𝑥(2) of the components of 𝑥(2). We first look for the linear functions that 

have maximum correlation. Since the correlation of a multiple of 𝑈 and multiple of 𝑉 is the same 

as that of 𝑈 and 𝑉, we can make an arbitrary normalization of 𝛼 and 𝛾. Thus 𝛼 and 𝛾 are such that 

𝑈 and 𝑉 have unit variance. i.e. 

1 = 𝐸(𝑈2) = 𝐸 (𝛼′𝑥(1) 𝑥(1)
′
α) = 𝛼′𝐸 (𝑥(1) 𝑥(1)

′
) α 

    = 𝛼′Σ11α                                                                                                                                               (9.12) 

1 = 𝐸(𝑉2) = 𝐸 (𝛾′𝑥(2) 𝑥(2)
′
𝛾) = 𝛾′𝐸 (𝑥(2) 𝑥(2)

′
) 𝛾 

    = 𝛾′Σ22𝛾                                                                                                                                               (9.13) 

Note that 𝐸(𝑈) = 𝐸(𝛼′𝑥(1) ) = 𝛼′𝐸(𝑥(1) ) = 0 and similarly 

𝐸(𝑉) = 𝐸(𝛾′𝑥(2) ) = 𝛾′𝐸(𝑥(2) ) = 0  

The correlation coefficient between U and V is 

𝑟(𝑢, 𝑣) =
𝑐𝑜𝑣(𝑈, 𝑉)

√𝑉𝑎𝑟(𝑈)𝑉𝑎𝑟(𝑉)
 

= 𝐶𝑜𝑣(𝑈, 𝑉) 

= 𝐸(𝑈𝑉′) 

= 𝐸 (𝛼′𝑥(1) 𝑥(2)
′
γ) 

= 𝛼′𝐸 (𝑥(1) 𝑥(2)
′
) γ 

= 𝛼′Σ12γ                                                                                                                                                         (9.14) 



Thus, the algebraic problem is to find 𝛼 𝑎𝑛𝑑 𝛾 to maximise (9.14) subject to (9.12) and (9.13). 

Let 

ψ = 𝛼′Σ12γ −
1

2
λ(𝛼′Σ11α − 1) −

1

2
μ(𝛾′Σ22𝛾 − 1)                                                                       (9.15) 

where 𝜆 𝑎𝑛𝑑 𝜇 are Lagrange’s multipliers. Differentiating ψ w.r.t. 𝛼 and 𝛾 and equating to zero, 

individually, we get 

𝜕Ψ

𝜕α
= Σ12𝛾 − 𝜆Σ11𝛼 = 0                                                                                                                      (9.16) 

𝜕Ψ

𝜕γ
= Σ12

′ 𝛼 − 𝜇Σ22𝛾 = 0                                                                                                                      (9.17) 

Multiplying (9.16) on the left by α′ and (9.17) by γ′, we have 

α′Σ12𝛾 − 𝜆α
′Σ11𝛼 = 0                                                                                                                          (9.18) 

γ′Σ12
′ 𝛼 − 𝜇γ′Σ22𝛾 = 0                                                                                                                           (9.19) 

Since α′Σ11𝛼 = 1 and γ
′Σ22𝛾 = 1, then α′Σ12𝛾 = 𝜆 and (α

′Σ12𝛾)
′ = 𝜇. From (9.16) and (9.17), 

(9.18) and (9.19) can be written as 

−𝜆Σ11𝛼 + Σ12𝛾 = 0                                                                                                                               (9.20) 

Σ21𝛼 − 𝜆Σ22𝛾 = 0                                                                                                                                  (9.21) 

In matrix notation,  

[
−𝜆Σ11 Σ12
Σ21 −𝜆Σ22

] [
𝛼
𝛾] = 0                                                                                                                     (9.22) 

In order that there be a non-trivial solution, and then matrix on left should be singular are. i.e. 

[
−𝜆Σ11 Σ12
Σ21 −𝜆Σ22

] = 0                                                                                                                            (9.23) 

The determinant on the left is a polynomial of degree 𝑝 and has 𝑝 roots say, 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑝. 



        We see that 𝜆 = a′Σ12𝛾 is the correlation between 𝑈 = 𝛼′𝑥(1) and 𝑉 = 𝛾′𝑥(2). Since 

we want the maximum correlation, we take 𝜆 = 𝜆1. Let a solution to (9.6.13) for 𝜆 = 𝜆1 be 

𝛼(1), 𝛾(1) and let 𝑈1 = 𝛼
(1)′𝑥(1) and 𝑉1 = 𝛾

(1)′𝑥(2). Then 𝑈1 and 𝑉1 are normalized linear 

combinations of 𝑥(1) and 𝑥(2) respectively with maximum correlation. 

                We now find a second linear combination of 𝑥(1), say 𝑈 = 𝛼′𝑥(1) and a second linear 

combination of 𝑥(2), say 𝑉 = 𝛾′𝑥(2) such that of all linear combination uncorrelated with 𝑈1 

and 𝑉1, having maximum correlation. 

             This procedure is continued and at the 𝑟𝑡ℎ step we have obtained linear combinations 

𝑈1 = 𝛼
(1)′𝑥(1), 𝑉1 = 𝛾

(1)′𝑥(2), … , 𝑈𝑟 = 𝛼
(𝑟)′𝑥(1),  

𝑉𝑟 = 𝛾
(𝑟)′𝑥(2) with corresponding correlations 𝜆(1) = 𝜆1, 𝜆

(2), … 𝜆(𝑟). We now seek a linear 

combination of 𝑥(1), 𝑈 = 𝛼′𝑥(1) and a linear combination of 𝑥(2) 𝑉 = 𝛾′𝑥(2) that of all linear 

combinations uncorrelated with 𝑈1, 𝑉1, … , 𝑈𝑟 , 𝑉𝑟 have maximum correlation. The condition that 

𝑈 be uncorrelated with 𝑈𝑖 is 

0 = 𝐸(𝑈𝑈𝑖) = 𝐸 (𝛼
′𝑥(1) 𝑥(1)

′
a(i)) = 𝛼′𝐸 (𝑥(1) 𝑥(1)

′
) a(i) = 𝛼′Σ11a

(i)                            (9.24) 

0 = 𝐸(𝑈𝑉𝑖) = 𝐸 (𝛼
′𝑥(1) 𝑥(2)

′
𝛾(𝑖)) = 𝛼′𝐸 (𝑥(1) 𝑥(2)

′
) 𝛾(𝑖) = 𝛼′Σ12𝛾

(𝑖)                                   

Note that  

𝐸(𝑈) = 𝐸(𝛼′𝑥(1) ) = 𝛼′𝐸(𝑥(1) ) = 0 

and similarly  

𝐸(𝑉) = 𝐸(𝛾′𝑥(2) ) = 𝛾′𝐸(𝑥(2) ) = 0. 

0 = 𝐸[𝑈𝑉𝑖] = 𝐸[ 𝛼
′𝑋(1)𝑋(2)

′
𝛾(𝑖)] =  𝛼′Σ12 𝛾

(𝑖) = 𝜆(𝑖) 𝛼′Σ11 𝛼
(𝑖) = 0                             (9.25) 

The condition that 𝑉 is uncorrelated with 𝑉𝑖 is 

0 = 𝐸[𝑉𝑉𝑖] =  𝛾
′𝐸[𝑋(2)𝑋(2)

′
]𝛾(𝑖) =  𝛾′Σ22 𝛾

(𝑖) = 0                                                              (9.26) 



Again, by the same argument, 

0 = 𝐸[𝑉𝑈𝑖] = 𝐸[ 𝛾
′𝑋(2)𝑋(1)

′
𝛼(𝑖)] =  𝛾′Σ21 𝛼

(𝑖) = 0                                                             (9.27) 

We now maximize 𝐸[𝑈𝑟+1𝑉𝑟+1], choosing 𝛼 and 𝛾 to satisfy (9.12), (9.13), (9.25) and (9.26) 

for 𝑖 = 1,2, . . . , 𝑟. For this consider 

𝜓𝑟+1 = 𝛼
′Σ12γ −

1

2
λ(𝛼′Σ11a − 1) −

1

2
μ(𝛾′Σ22𝛾 − 1) +∑𝜐𝑖𝛼

′

𝑟

𝑖=1

Σ11𝛼
(𝑖)

+∑𝜃𝑖

𝑟

𝑖=1

 𝛾′Σ22 𝛾
(𝑖)  

𝜆, 𝜇, 𝛾1, … , 𝛾𝑟 , 𝜃1, … , 𝜃𝑟 are Lagrange’s multipliers. The vector of partial derivatives of 𝜓𝑟+1 

with respect to 𝛼 and 𝛾 are set equal to zero, giving  

𝜕𝜓𝑟+1
𝜕𝛼

= Σ12𝛾 − 𝜆Σ11𝛼 +∑𝜐𝑖

𝑟

𝑖=1

Σ11𝛼
(𝑖) = 0                                                                           (9.28) 

𝜕𝜓𝑟+1
𝜕𝛾

= Σ12
′ 𝛼 − 𝜇Σ22𝛾 +∑𝜃𝑖

𝑟

𝑖=1

Σ22 𝛾
(𝑖) = 0                                                                          (9.29) 

Multiplying (9.28) on the left by 𝛼(𝑗)
′
 and (9.29) on the left by 𝛾(𝑗)

′
, we have 

0 = 𝜐𝑗𝛼
(𝑗)′Σ11𝛼

(𝑗) = 𝜐𝑗                                                                                                   

0 = 𝜃𝑗 𝛾
(𝑗)′Σ22 𝛾

(𝑗) = 𝜃𝑗                                                                                                 

Equations (9.28) and (9.29) are simply (9.20) and (9.21) or alternatively (9.22). Hence, we 

take the largest 𝜆, say 𝜆(𝑟+1) such that there exists a solution (13) satisfying (9.12), (9.13), 

(9.14) and (9.16) for 𝑖 = 1,2, . . . , 𝑟. Let this solution be 𝛼(𝑟+1), 𝛾(𝑟+1) and let 𝑈𝑟+1 =

𝛼(𝑟+1)
′
𝑋(1) and 𝑉𝑟+1 = 𝛾

(𝑟+1)′𝑋(2). 

This procedure is continued step by step as long as a successive solution can be found which 

satisfy (9.22) for some 𝜆𝑖, (9.12), (9.13), (9.24) and (9.26). Let 𝑚 be the number of steps 

for which this can be done. Now it can be shown that 𝑚 = 𝑝1(≤ 𝑝2). Let 



𝐴 = (𝛼(1), 𝛼(2), … , 𝛼(𝑚)), 

Γ = (𝛾(1), 𝛾(2), … , 𝛾(𝑚)) 

 and 

Λ = (

λ(1) 0 ⋯ 0
0 λ(2) ⋯ 0
⋮ ⋮ ⋯ ⋮
0 0 ⋯ λ(m)

)     

Conditions (9.12) and (9.24) can be summarized as  𝐴′Σ11𝐴 = 𝐼  

Here Σ11 is of rank 𝑝1 and 𝐼 is of rank m, (𝑚 ≤ 𝑝1). Now if 𝑚 < 𝑝1, then there is another 

vector satisfying the conditions. Since  𝐴′Σ11 is of order 𝑚 × 𝑝1, there exists a 𝑝1 × (𝑝1 −𝑚) 

matrix E (of rank 𝑝1 −𝑚) such that  𝐴′Σ11𝐸 = 0. Similarly, there exists a 𝑝2 × (𝑝2 −𝑚) 

matrix F (of rank 𝑝2 −𝑚) such that  Γ1
′Σ22𝐹 = 0. Also Γ1

′Σ21𝐸 = Λ 𝐴
′Σ11𝐸 = 0 and 

 𝐴′Σ12𝐹 = Λ Γ1
′Σ22𝐹 = 0. Since 𝐸 is of rank (𝑝1 −𝑚), 𝐸

′Σ11𝐸 is non-singular (if 𝑚 < 𝑝1) and 

similarly 𝐹′Σ22𝐹 is non-singular. Thus, there is at least one root of  

|
−𝛾𝐸′Σ11𝐸 𝐸′Σ12𝐹

𝐹′Σ21𝐸 −𝐹′Σ22𝐹
| = 0     

Because |𝐸′Σ11𝐸||𝐹
′Σ22𝐹| ≠ 0. From the preceding algebra, there exists vectors 𝑎 and 𝑏 such 

that  

𝐸′Σ12𝐹 𝑏 = 𝛾𝐸
′Σ11𝐸 𝑎                                                                                                                   (9.30) 

𝐹′Σ21𝐸 𝑎 = 𝛾𝐹
′Σ22𝐹 𝑏    

Let 𝐸 𝑎 = 𝑔 and 𝐹 𝑏 = ℎ. Now, to obtain 𝜐, 𝑔  and  ℎ for a new solution 

𝜆(𝑚+1), 𝛼(𝑚+1) and 𝛾(𝑚+1), let Σ11
−1Σ12ℎ = 𝑘. Since 𝐴′Σ11𝑘 = 𝐴

′Σ12𝐹 𝑏 = 0, 𝑘 is orthogonal 

to the rows of 𝐴′Σ11 and therefore is a linear combination of 𝐸, say 𝐸𝑐.Thus the equation 

Σ12ℎ = Σ11𝑘 can be written as  

Σ12𝐹 𝑏 = Σ11𝐸 𝑐   

Multiplying by 𝐸′ on the left, 

𝐸′Σ12𝐹 𝑏 = 𝐸
′Σ11𝐸 𝑐                                                                                                                      (9.31) 



Since 𝐸′Σ11𝐸 is non-singular, comparison of (9.30) and (9.31) shows that 𝑐 = 𝜐𝑎 and 

therefore, 𝑘 = 𝜐𝑔. Thus 

Σ12ℎ = 𝜐Σ11𝑔      

Similarly, Σ21𝑔 = 𝜐Σ22ℎ  

Therefore 𝜐 = 𝜆(𝑚+1), 𝑔 = 𝛼(𝑚+1), ℎ =  𝛾(𝑚+1) is another solution But this contradicts the 

fact that 𝜆(𝑚), 𝛼(𝑚) 𝑎𝑛𝑑 𝛾(𝑚) was the last possible solution. Hence 𝑚 = 𝑝1. 

The conditions on the 𝜆′𝑠, 𝛼′𝑠 𝑎𝑛𝑑 𝛾′𝑠 can be summarized as  

𝐴′Σ11𝐴 = 𝐼                        

𝐴′Σ12Γ1
′ = Λ         

Γ1
′Σ22Γ1

′ = I          

Let Γ2
′ = (𝛾(𝑝1+1), 𝛾(𝑝1+2), … , 𝛾(𝑝2)) be a 𝑝2 × (𝑝2 − 𝑝1) matrix satisfying 

Γ2
′Σ22Γ1 = 0 

Γ2
′Σ22Γ2 = I  

This matrix can be formed one column at a time, 𝛾(𝑝1+1) is a vector orthogonal to Σ22Γ1 and 

normalized so 𝛾(𝑝1+1)
′
Σ22 𝛾

(𝑝1+1) = 1 , 𝛾(𝑝1+2) is a vector orthogonal to Σ22 (Γ1𝛾
(𝑝1+1)) and 

normalized so 𝛾(𝑝1+2)
′
Σ22 𝛾

(𝑝1+2) = 1 and so on. Let Γ′ = (Γ1
′ Γ2

′). This is a square matrix and 

is non-singular as Γ′Σ22Γ = I. 

Consider the determinant 

|
𝐴′ 0
0 Γ1
0 Γ2

| |
−𝜆Σ11 Σ12
Σ21 −𝜆Σ22

| |
𝐴 0 0
0 Γ1 Γ2

| = |
−𝜆𝐼 Λ 0
Λ −𝜆𝐼 0
0 0 −𝜆𝐼

| = (−𝜆)𝑝2−𝑝1 |
−𝜆𝐼 Λ
Λ −𝜆𝐼

| 

= (−𝜆)𝑝2−𝑝1|−𝜆𝐼||−𝜆𝐼 − Λ(−λI)−1Λ| = (−𝜆)𝑝2−𝑝1|𝜆2𝐼 − Λ2| 

= (−𝜆)𝑝2−𝑝1∏(𝜆2 − 𝜆(𝑖)
2
)

𝑝1

𝑖=1

                                                                                                       (9.32) 



Except for a constant factor the above polynomial is same as 

|
−𝜆Σ11 Σ12
Σ21 −𝜆Σ22

|  

Thus, the roots of (9.23) are roots of (9.32) set equal to zero, namely 𝜆 = ±𝜆(𝑖), 𝑖 = 1,2, … , 𝑝1 

and 𝜆 = 0 (of multiplicity 𝑝2 − 𝑝1). Thus 

(𝜆1, … , 𝜆𝑝2) = (𝜆1, … , 𝜆𝑝1 , 0, … ,0,−𝜆𝑝1 , … , −𝜆1) 

The set {𝜆(𝑖)
2
}, 𝑖 = 1,2,… , 𝑝1 is the set {𝜆𝑖

2}, 𝑖 = 1,2, … , 𝑝1. To show that {𝜆(𝑖)} is {𝜆𝑖}, 𝑖 =

1,2,… , 𝑝1, it is sufficient to show that 𝜆(𝑖) are non-negative and therefore is one of 𝜆𝑖 , 𝑖 =

1,2,… , 𝑝1. Observe that 

Σ12𝛾
(𝑟) = −𝜆(𝑟)Σ11(−𝛼

(𝑟))             

Σ21(−𝛼
(𝑟))  = −𝜆(𝑟)Σ22𝛾

(𝑟) 

If 𝜆(𝑟), 𝛼(𝑟), 𝛾(𝑟) is a solution, then so is – 𝜆(𝑟), −𝛼(𝑟), −𝛾(𝑟). If 𝜆(𝑟) were negative, then – 𝜆(𝑟) 

would be non-negative and – 𝜆(𝑟) ≥ 𝜆(𝑟). But 𝜆(𝑟) was supposed to be maximum, which implies 

𝜆(𝑟) ≥ −𝜆(𝑟) and hence 𝜆(𝑟) cannot be negative, i.e., 𝜆(𝑟) ≥ 0.  

Since the set {𝜆(𝑖)} is same as the set {𝜆𝑖}, 𝑖 = 1,2, … , 𝑝1, we must have 𝜆(𝑖) = 𝜆𝑖, let 

𝑈 = (

𝑈1
⋮
𝑈𝑝
) = 𝐴′𝑋(1)                

𝑉(1) = (

𝑉1
⋮
𝑉𝑝1

) = Γ1
′𝑋(2)        

𝑉(2) = (

𝑉𝑝1+1
⋮
𝑉𝑝2

) = Γ2
′𝑋(2)   

The components of U are one set of canonical variates and the components of 𝑉 = (𝑉
(1)

𝑉(2)
) are 

the other set. We have  



𝐸 {(
𝑈
𝑉(1)

𝑉(2)
) (𝑈′𝑉(1)

′
𝑉(2)

′
)} 

= 𝐸 {(
𝐴′ 0
0 Γ1

′

0 Γ2
′
)(𝑋

(1)

𝑋(2)
) (𝑋(1)

′
𝑋(2)

′
) (
𝐴 0 0
0 Γ1 Γ2

)} 

= (
𝐴′ 0
0 Γ1

′

0 Γ2
′
)(
Σ11 Σ12
Σ21 Σ22

) (
𝐴 0 0
0 Γ1 Γ2

) 

= (

𝐼𝑝1 Λ 0

Λ 𝐼𝑝1 0

0 0 𝐼𝑝1−𝑝2

) 

where Λ = (

λ1 0 ⋯ 0
0 λ2 ⋯ 0
⋮ ⋮ ⋯ ⋮
0 0 ⋯ λp1

)                                                                                             

Definition: Let 𝑋 = (𝑋
(1)

𝑋(2)
), where 𝑋(1) has 𝑝1 components and 𝑋(2) has 𝑝2 (= 𝑝 − 𝑝1 ≥ 𝑝1) 

components. The 𝑟𝑡ℎ pair of canonical variates is the pair of linear combinations 𝑈𝑟 = 𝛼
(𝑟)′𝑋(1) 

and 𝑉𝑟 = 𝛾
(𝑟)′𝑋(2) each of unit variance and uncorrelated with the first (𝑟 − 1) pairs of canonical 

variates and having maximum correlation. The correlation is the 𝑟𝑡ℎ canonical correlation. 

Theorem 9.6.1: Let 𝑋 = (𝑋
(1)

𝑋(2)
) be a random vector with covariance matrix Σ. The 𝑟𝑡ℎ  canonical 

correlation between 𝑋(1) and 𝑋(2) is the 𝑟𝑡ℎ  largest root of 

|
−𝜆Σ11 Σ12
Σ21 −𝜆Σ22

| = 0 

The coefficients 𝑈𝑟 = 𝛼
(𝑟)𝑋(1) and 𝑉𝑟 = 𝛾

(𝑟)𝑋(2) defining the 𝑟𝑡ℎ   pair of canonical variates 

satisfy 

 [
−𝜆Σ11 Σ12
Σ21 −𝜆Σ22

] [
𝛼
𝛾] = 0. 

For 𝜆 = 𝜆𝑟, α′Σ11𝛼 = 1 and γ
′Σ22𝛾 = 1 



Proof: First, we show that 𝑈1, 𝑉1 have maximum correlation.  

Let 

𝑈′ = (𝑈1, 𝑈2, … , 𝑈𝑝1)
′
,  

𝑉′ = (𝑉1, 𝑉2, … , 𝑉𝑝2)
′
,  

𝐴 = (𝛼(1), 𝛼(1), … , 𝛼(𝑝1)), 

 Γ = (𝛾(1), 𝛾(2), … , 𝛾(𝑝2)) 

Then 𝐴 and Γ are non-singular, and 𝑈 = 𝐴′𝑋(1), 𝑉 = Γ′𝑋(2). The linear combinations are  

𝑎′𝑈 = (𝑎′𝐴′)𝑋(1),  

𝑏′𝑉 = (𝑏′Γ′)𝑋(2) 

These linear combinations are normalized by 𝑎′𝑎 = 1 and 𝑏′𝑏 = 1.  

Since 𝐴 and Γ are non-singular, any vector 𝛼 can be written as 𝐴𝑎, i.e. 𝛼 = 𝐴𝑎 and any vector 𝛾 

can be written as Γ𝑏, i.e. 𝛾 = Γ𝑏. Hence any linear combination 𝛼′𝑋(1) and 𝛾′𝑋(2) can be written 

as 𝑎′𝑈 𝑎𝑛𝑑 𝑏′𝑉. The correlation between them is 

𝐸(𝑎′𝑈 𝑉′𝑏) = 𝑎′𝐸(𝑈 𝑉′)𝑏 

= 𝑎′𝐸 (𝐴′𝑋(1)𝑋(2)
′
Γ) 𝑏 

= 𝑎′𝐸(𝐴′Σ12Γ)𝑏 

= 𝑎′[Λ 0]𝑏 

=∑𝜆𝑖𝑎𝑖𝑏𝑖

𝑝1

𝑖=1

 

Λ = (

𝜆1 0 … 0
0 𝜆2 … 0
… … … …
0 0 … 𝜆𝑝1

) 

Let 



𝐶𝑖 =
𝜆𝑖𝑎𝑖

√∑ (𝜆𝑖𝑎𝑖)2
𝑝1
𝑖=1

 

Then the maximum of 𝑎′[Λ 0]𝑏 = ∑ 𝐶𝑖𝑏𝑖
𝑝1
𝑖=1 √∑ (𝜆𝑖𝑎𝑖)2

𝑝1
𝑖=1  with respect to 𝑏 is for 𝑏𝑖 = 𝐶𝑖, since 

∑ 𝐶𝑖𝑏𝑖
𝑝1
𝑖=1  is the cosine of the angle between the vector 𝑏 and 𝐶 = (𝐶1, 𝐶2, … , 𝐶𝑛, 0,0, … ,0). Then 

∑𝐶𝑖
2

𝑝1

𝑖=1

√∑(𝜆𝑖𝑎𝑖)2

𝑝1

𝑖=1

 

= √∑𝜆𝑖
2𝑎𝑖

2

𝑝1

𝑖=1

 

= √∑(𝜆𝑖
2 − 𝜆1

2)𝑎1
2 + 𝜆1

2𝑎1
2

𝑝1

𝑖=2

 

And this is maximized by taking 𝑎𝑖 = 0, 𝑖 = 2,3,… , 𝑝1. Thus, maximized linear combination are 

𝑈1, and 𝑉1. To verify 𝑈2, 𝑎𝑛𝑑 𝑉2  from the second pair of canonical variates, we note that 𝑈1 will 

be uncorrelated with a linear combination 𝑎′𝑈 if  

0 = 𝐸(𝑈1𝑎
′𝑈) = 𝐸 (𝑈1∑𝑎𝑖𝑈𝑖

𝑝1

𝑖=1

) = 𝑎1 

Similarly, 𝑉1 will be uncorrelated with a linear combination 𝑏′𝑉 if  

0 = 𝐸(𝑉1𝑏
′𝑉) = 𝐸 (𝑉1∑𝑏𝑖𝑉𝑖

𝑝2

𝑖=1

) = 𝑏1 

This proves the theorem. 

Theorem 9.6.2: The canonical correlations are invariant with respect to transformations 𝑋(𝑖)
∗
=

𝐶𝑖𝑋
(𝑖), where 𝐶𝑖  is non-singular, 𝑖 = 1,2 and any function of Σ that is invariant is a function of 

canonical correlation. 



Proof: 𝑋(𝑖)
∗
= 𝐶𝑖𝑋

(𝑖) ⇒ 𝑋∗ = (𝑋
(1)∗

𝑋(2)
∗) = (

𝐶1𝑋
(1)

𝐶2𝑋
(2)
) 

Σ = 𝐸(𝑋𝑋′) = (
Σ11 Σ12
Σ21 Σ22

) 

𝐸(𝑋∗𝑋∗′) = 𝐸 (𝑋
(1)∗

𝑋(2)
∗) (𝑋(1)

∗ ′
𝑋(2)

∗ ′) = (
Σ11
∗ Σ12

∗

Σ21
∗ Σ22

∗ ) = (
𝐶1Σ11𝐶1

′ 𝐶1Σ12𝐶2
′

𝐶2Σ21𝐶1
′ 𝐶2Σ22𝐶2

′) 

Hence  

−𝜆Σ11𝛼 + Σ12𝛾 = 0                                                                                                                                     

Σ21𝛼 − 𝜆Σ22𝛾 = 0                                                                                                                                      

The above equations can be written as 

−𝜆𝐶1Σ11𝐶1
′𝛼 + 𝐶1Σ12𝐶2

′𝛾 = 0                                                                                                                    

𝐶2Σ21𝐶1
′𝑎 − 𝜆𝐶2Σ22𝐶2

′𝑏 = 0                                                                                                                        

In order that there is non-trivial solution, we should have 

0 = |
−𝜆𝐶1Σ11𝐶1

′ 𝐶1Σ12𝐶2
′

𝐶2Σ21𝐶1
′ −𝜆𝐶2Σ22𝐶2

′| 

= |
𝐶1 0
0 𝐶2

| |
−𝜆Σ11 Σ12
Σ21 −𝜆Σ22

| |
𝐶1
′ 0

0 𝐶2
′| 

⇒ 0 = |
−𝜆Σ11 Σ12
Σ21 −𝜆Σ22

| 

⇒ Roots are unchanged. 

Conversely, let 𝑓(Σ11, Σ12, Σ22) be a vector valued function of 𝛴 such that 

𝑓(𝐶1Σ11𝐶1
′,  𝐶1Σ12𝐶2

′ ,  𝐶2Σ22𝐶2
′) 

= 𝑓(Σ11, Σ12, Σ22) ∀ non singular 𝐶1 and 𝐶2 



If 𝐶1 = 𝐴 and 𝐶2 = Γ
′ = (Γ1

′   Γ2
′), then 

0 = |
𝐴′ 0

0
Γ1
Γ2

| |
−𝜆𝛴11 𝛴12
𝛴21 −𝜆𝛴22

| |
𝐴 0
0 Γ1

′Γ2
′| 

= |
−𝜆𝐼 𝛬 0
𝛬 −𝜆𝐼 0
0 0 −𝜆𝐼

| 

This depends only on the canonical correlation. Then 𝑓 = 𝑓(𝐼, (Λ 0), 𝐼). 

Suppose 𝑝 ≤ 𝑞 and let the 𝑝 −dimensional random vectors 𝑋(1) and 𝑞 −dimensional 𝑋(2) have  

𝐶𝑜𝑣(𝑋(1)) =  𝛴11, 

 𝐶𝑜𝑣(𝑋(2)) = 𝛴22, 

𝐶𝑜𝑣(𝑋(1), 𝑋(2)) = 𝛴12 

The covariance matrix of 𝑋 = (𝑋(1)
′
𝑋(2)

′
)
′
 is 

𝛴 = (
Σ11 Σ12
Σ21 Σ22

) 

We assume that 𝛴 has full rank. For coefficients 𝑝 ×  1 vector 𝑎 and 𝑞 ×  1 vector 𝑏, consider the 

linear combination 𝑈 =  𝑎′𝑋(1)and 𝑉 = 𝑏′𝑋(2). Then 

𝑉𝑎𝑟(𝑈) = 𝐸(𝑈𝑈′) 

= 𝐸{𝑎′𝑋(1)𝑋(1)
′
𝑎} 

= 𝑎′𝐸{𝑋(1)𝑋(1)
′
}𝑎 = 𝑎′Σ11𝑎  ,   

𝑉𝑎𝑟(𝑉) = 𝐸(𝑉𝑉′) 

= 𝐸{𝑏′𝑋(2)𝑋(2)
′
𝑏} 

= 𝑏′𝐸{𝑋(2)𝑋(2)
′
}𝑏 = 𝑏′Σ22𝑏. 

Since 



𝐸(𝑈) = 𝐸(𝑎′𝑋(1)) = 𝑎′𝐸(𝑋(1)) = 0 and 𝐸(𝑉) = 𝐸(𝑏′𝑋(2)) = 𝑏′𝐸(𝑋(2)) = 0 

We have 

𝐶𝑜𝑟𝑟 (𝑈, 𝑉) = 𝐶𝑜𝑣(𝑈, 𝑉) = 𝐸{𝑈 − 𝐸(𝑈)}{𝑉 − 𝐸(𝑉)} = 𝐸(𝑈 𝑉) = 𝐸{𝑎′𝑋(1)𝑋(2)
′
𝑏}

= 𝑎′Σ12𝑏,   

We shall seek coefficient vectors 𝑎 and 𝑏 such that 

(i) The first pair of canonical variables is the pair linear combination 𝑈1 and 𝑉1 having unit 

variances, which maximize the correlation 𝐶𝑜𝑟𝑟 (𝑈, 𝑉). 

(ii) The second pair of canonical variables is the pair of linear combinations 𝑈1 and 𝑉2 having 

unit variances, which maximize the correlation 𝐶𝑜𝑟𝑟 (𝑈, 𝑉) among all choices that are 

uncorrelated with the first pair of canonical variables. 

(iii) In general, the 𝑘𝑡ℎ pair of canonical variables is the pair of linear combinations 𝑈𝑘 and 𝑉𝑘 

having unit variances, which maximize the correlation 𝐶𝑜𝑟𝑟(𝑈, 𝑉) among all choices 

uncorrelated with the previous (𝑘 −  1) canonical variable pairs. 

The correlation between the 𝑘𝑡ℎ pair of canonical variables is called the 𝑘𝑡ℎ canonical correlation. 

The maximum of correlation, say, 

max𝐶𝑜𝑟𝑟 (𝑈, 𝑉) = 𝜌1 (𝑎, 𝑏) = 𝜌1
∗ (𝑠𝑎𝑦) 

is attained by the linear combinations (first canonical variate pair), when 

𝑈1 = 𝑒1
′Σ11
−
1
2𝑋(1), 

 𝑉1 = 𝑓1
′Σ22
−
1
2𝑋(2) 

In general, the 𝑘𝑡ℎ pair of canonical variates, 𝑘 =  2,3, . . . , 𝑝 

𝑈𝑘 = 𝑒𝑘
′Σ11

−
1
2𝑋(1), 

𝑉𝑘 = 𝑓𝑘
′Σ22
−
1
2𝑋(2), 



maximize 

𝑚𝑎𝑥 𝐶𝑜𝑟𝑟(𝑈, 𝑉) = 𝜌𝑘(𝑎, 𝑏) = 𝜌𝑘
∗  (𝑠𝑎𝑦) 

among all those linear combinations uncorrelated with the preceding 1,2, . . . , 𝑘 − 1 canonical 

variables. 

Here 

(i) 𝜌1
∗2 ≥ 𝜌2

∗2 ≥ ⋯ ≥ 𝜌𝑝
∗2 are the eigen values of Σ11

−
1

2Σ12Σ22
−1Σ21Σ11

−
1

2 and 𝑒1, … , 𝑒𝑝 are 

corresponding 𝑝 ×  1 eigenvectors. 

(ii) 𝜌1
∗2, 𝜌2

∗2, … ≥ 𝜌𝑝
∗2 are also the 𝑝 largest eigenvalues of the matrix Σ22

−
1

2Σ21Σ11
−1Σ12Σ22

−
1

2 

with corresponding 𝑞 ×  1 eigenvectors 𝑓1, 𝑓2, . . . , 𝑓𝑝. 

(iii) 𝑓𝑖 is proportional to Σ22
−
1

2Σ21Σ11
−
1

2𝑒𝑖  ∀𝑖. 

(iv) The canonical variates have the properties 

𝑉𝑎𝑟(𝑈𝑘) = 𝑉𝑎𝑟(𝑉𝑘) = 1, 𝑘 =  1, … , 𝑝, 

𝐶𝑜𝑟𝑟(𝑈𝑘, 𝑈𝑙) =  𝐶𝑜𝑟𝑟(𝑉𝑘 , 𝑉𝑙) = 𝐶𝑜𝑟𝑟(𝑈𝑘, 𝑉𝑙) = 0∀ 𝑘, 𝑙 = 1,2, . . . , 𝑝; 𝑘 ≠ 𝑙 

9.7   Sample Canonical Variates and Sample Canonical Correlation 

Consider a sample of random vectors 

𝑋𝑖 = (
𝑋𝑖
(1)

𝑋𝑖
(2)
) ; 𝑖 = 1,2,… , 𝑁. 

Let 

𝑆 =
1

𝑁
∑(𝑋𝑖 − �̅�)(𝑋𝑖 − �̅�)

′

𝑁

𝑖=1

= (
𝑆11 𝑆12
𝑆21 𝑆22

). 

Finding canonical variables and canonical correlations, replace population distribution by 

empirical distribution, replace Σ by 𝑆, and replace 𝜌 by 𝑅. Then the results the same as above. 



Let �̂�1
∗2 ≥ �̂�2

∗2 ≥ ⋯ ≥ �̂�𝑝
∗2 be the 𝑝 ordered eigen-values of 𝑆11

−
1

2𝑆12𝑆22
−1𝑆21𝑆11

−
1

2 with corresponding 

eigenvectors �̂�1, … , �̂�𝑝, (𝑝 ≤ 𝑞). Further, 𝑓1, … , 𝑓𝑝 be the eigenvectors of 𝑆22
−
1

2𝑆21𝑆11
−1𝑆12𝑆22

−
1

2. Then 

the 𝑘𝑡ℎ sample canonical variate pair is 

�̂�𝑘 = �̂�𝑘
′  𝑆11

−
1
2𝑥(1), �̂�𝑘 = 𝑓𝑘

′ 𝑆22
−
1
2𝑥(2) 

where 𝑥(1)and 𝑥(2)are specific values of 𝑋(1)and 𝑋(2) respectively. Further, for the 𝑘𝑡ℎ pair, 

(𝑘 = 1,… , 𝑝), 𝑟�̂�𝑘,�̂�𝑘 = �̂�𝑘
∗ . 

�̂�1
∗, �̂�2

∗, … , �̂�𝑝
∗  are the sample canonical correlations. 

9.7.1  Difference between Multiple Correlation and Canonical 

Correlation 

Generally, we study the relationship between one dependent and independent variable in a 

simple correlation. Similarly, we study the relationship between one dependent variable and 

multiple independent variables in Multiple Correlations. In other words, it investigates the 

relationship between a variable 𝑌 and a set of variables (𝑋1, 𝑋2, ⋯ , 𝑋𝑛). In Canonical Correlation, 

we study the relationship between two sets of variables. It is like simple correlation coefficient 𝑟. 

However, we have more than one dependent variable. 

9.7.2  Application of Canonical Correlation 

1. Psychology: Canonical Correlation Analysis can be used to explore the relationship between 

personality traits and job performance. It can also be used to understand the relationship 

between mental health factors and academic achievement. 

2. Economics: It can help to analyse the relationship between various economic indicators (like 

GDP, inflation, etc.) and social indicators (like education levels, healthcare access, etc.) to 

understand their interdependencies. 

https://sixsigmastudyguide.com/multiple-linear-regression/


3. Medicine: In medical research, it can be applied to study the relationship between genetic 

factors and disease outcomes, or to explore the relationship between different treatment 

methods and patient outcomes. 

4. Ecology: It is useful for studying the relationship between environmental variables (like 

temperature, humidity, etc.) and biological variables (like species diversity, population sizes, 

etc.) to understand ecological processes. 

5. Neuroscience: It can be used to analyse brain imaging data (like fMRI or EEG) to understand 

the relationship between brain activity patterns and cognitive processes. 

6. Marketing and Customer Relationship Management: It can help to identify the underlying 

factors that govern customer behaviour and preferences, which can be useful for targeted 

marketing strategies. 

7. Social Sciences: It can be used to explore the relationship between different social factors 

(like income, education, etc.) and outcomes (like happiness, well-being, etc.) to understand 

societal trends. 

8. Climate Science: It can be applied to study the relationship between climate variables (like 

temperature, precipitation, etc.) and their impacts on ecosystems and human populations. 

9.7.3  Advantages of Canonical Correlation 

1. Identifying Relationships: Canonical Correlation Analysis can reveal underlying 

relationships between two sets of variables, even when the variables within each set are highly 

correlated. 

2. Dimensionality Reduction: It can reduce the dimensionality of the data by identifying the 

most important linear combinations of variables in each set. 

3. Interpretability: The results of canonical correlation analysis are often easy to interpret, as 

the canonical variables represent the most correlated pairs of variables between the two sets. 

4. Multivariate Analysis: Canonical correlation analysis allows for the analysis of multiple 

variables simultaneously, making it suitable for studying complex relationships. 



5. Robustness: Canonical correlation analysis is robust to violations of normality assumptions 

and can handle small sample sizes. 

9.7.4  Limitations of Canonical Correlation 

1. Linear Relationships: Canonical correlation analysis assumes that the relationships between 

variables are linear, which may not always be the case in real-world data. 

2. Sensitivity to Outliers: It can be sensitive to outliers, which can affect the estimation of the 

canonical correlations and vectors. 

3. Interpretation of Canonical Variables: While the canonical variables are easy to interpret, 

interpreting the original variables in terms of these canonical variables can be challenging. 

4. Assumption of Equal Covariances: It assumes that the two sets of variables have same 

population covariance matrices, which may not hold true in practice. 

9.8  Summary 

In this unit, we have covered the following points.  

• Principal Component Analysis is a dimensional reduction technique in which we derive a 

small number of linear combinations (principal components) of a set of variables that retain 

as much information in the original variables as possible. 

• Principal Components can be derived from covariance matrix or correlation matrix. 

• For obtaining principal components, one must know the eigenvalues of the sample 

covariance/ correlation matrix. 

• Canonical correlation is a technique to identify and quantify the association between two 

sets of variables. 

• Canonical correlation analysis focuses on the correlation between a linear combination of 

the variables in one set and a linear combination of the variables in the second set. 

9.9  Self-Assessment Exercises 

1. Find the variance of the first principal component of the covariance matrix  defined by 

    Σ = (1 − 𝜌)𝐼 + 𝜌𝑒𝑒′ 



   Where 𝑒′ = (1 1 ⋯ 1) 

2. Find the characteristic vector of [
1 𝜌
𝜌 1

] corresponding to the characteristic roots (1 + 𝜌) and 

   (1 − 𝜌). 

3. What is the main objective of principal component? If 𝑋~𝑁𝑝(0, Σ) then prove that there exists   

a linear transformation 𝑈 = 𝐵𝑋, such that the covariance matrix of 𝑈 is 𝐸(𝑈𝑈′) = Λ =

𝑑𝑖𝑎𝑔(𝜆1, … , 𝜆𝑝) with 𝜆1 ≥ ⋯ ≥ 𝜆𝑝, where 𝜆1, … , 𝜆𝑝 are roots of |Σ − 𝜆𝐼| = 0, and the rth column 

of 𝐵, say 𝛽(𝑟) satisfies (Σ − 𝜆𝑟𝐼)𝛽
(𝑟) = 0. How do we select the appropriate number of principal 

components. 

4. Define canonical correlation and canonical variables. How do we estimate different canonical 

correlations. 

5. Show that square of canonical correlations is invariant under nonsingular linear transformation. 
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10.1  Introduction 

The objective of Factor Analysis is to model the observed variables, and their covariance 

structure, in terms of a smaller number of underlying latent factors. It is a descriptive method like 

the principal components. Factor analysis may be considered as an inversion of principal 

components. In principal components, we create new variables that are linear combinations of the 

observed variables whereas in factor analysis we model the observed variables as linear functions 

of the factors. Both Principal Component Analysis and Factor Analysis aim at reducing the 

dimension of the data. Different areas where factor analysis is frequently used are psychology, 

health sciences, medicine, sociology, ecology, blind source separation in data mining, etc. 

10.2  Objectives 

Upon completion of this unit, you should be able to: 

• Understand the terminology of factor analysis, including the interpretation of factor 

loadings, specific variances, and commonalities; 

• Understand factor rotation, and interpret rotated factor loadings. 

10.3  Factor Analysis 

Factor analysis is used to uncover the latent structure of a set of variables. It reduces 

attribute space from a large no. of variables to a smaller no. of factors and as such is a non-

dependent procedure. 

Factor analysis could be used for any of the following purpose 

1. To reduce a large number of variables to a smaller number of factors for modelling purposes, 

where the large number of variables precludes modelling all the measures, individually. As such 

factor analysis is integrated with structural equation modelling, helping create the latent variables 

modelled by SEM (structure equation model). 

2. To select a subset of variables from a large set based on which original variables have the highest 

correlations with the principal component factors. 



3. To create a set of factors to be treated as uncorrelated variables as one approach to handling 

multicollinearity regression. 

10.3.1  Purpose of Factor Analysis 

The main purpose of factor analysis is: 

1. To identify the underlying structure of the relationship among variables and classify them into 

homogeneous groups or clusters, that is referred to as factors. 

2. Data reduction as it decreases the number of variables and clusters them under factors. 

3. To summarize and understand the data by identifying the relationship among the variables. 

4. To understand and confirm the latent variables of Structural equation modeling. 

5. To remove redundancy or duplicity from a set of correlated variables. 

6. To identify and distinguish between Latent variables (that are called factors) and Observed 

variables within the data set. 

7. To identify orthogonal factors that are independent of each other. 

10.3.2  Assumptions of Factor Analysis 

There is a simple list of fundamental assumptions that underlie factor analysis and 

distinguish it from principal component analysis. 

1) The correlations and covariances that exist between 𝑚 variables are a result of 𝑝 underlying, 

mutually uncorrelated factors, i.e. 𝑝 < 𝑚. 

2) Usually, 𝑝 is known in advance. The number of factors, hidden in the data set, is one of the 

pieces of a priori knowledge that is brought to the table to solve the factor analysis problem. 

3) The rank of a matrix and the number of eigenvectors are interrelated, the eigenvalues are the 

square of the non-zero singular values. The eigenvalues are ordered by the amount of variance 

accounted for. 

Factor analysis starts with the basic principal component approach, but differs in two 

important ways. First of all, factor analysis is always done with standardized data. This implies 

that we want the individual variables to have equal weight in their influence on the underlying 



variance-covariance structure. In addition, this requirement is necessary for us to be able to convert 

the principal component vectors into factors. Secondly, the eigenvectors must be computed in such 

a way that they are normalized, i.e. of unit length or orthonormal. 

10.3.3  Uses of Factor Analysis 

1. Scale Construction: Factor analysis could be used to develop concise multiple-item scales for 

measuring various constructs. For example: a 15-item scale to measure job satisfaction. 

• At the first step-Generate large number of statements, numbering say 100 or so as a part 

of exploratory research. 

• Assume that we get 3 factors out of it. 

• We want to construct a 15-item scale to measure job satisfaction. 

• Separate 5 items from each factor having the highest factor loading. 

2. Establish Antecedents: This method reduces multiple input variables into grouped factors. 

Thus, the independent variables can be grouped into broad factors. For example, the variables that 

measure safety clauses in mutual funds could be reduced to a factor called SAFETY CLAUSE. 

3. Psychographic Profiling: Different independent variables are grouped to measure independent 

factors. These are then used for identifying personality types. 

▪ Psychographics can be defined as a quantitative methodology used to describe consumers 

on psychological attributes. 

▪ When a relatively complete profile of a person or group's psychographic makeup is 

constructed, this is called a "psychographic profile". 

▪ Some categories of psychographic factors used in market segmentation include activity, 

interest, opinion (AIOs), attitudes, values, behaviour, etc. 

4. Segmentation Analysis: Factor analysis could also be used for segmentation. For example: 

There could be different sets of two-wheeler customers owning two-wheelers because of the 

different importance they give to factors like prestige, economy consideration, Traffic, Time, 

functional features, etc. 



5. Marketing Studies: The technique has extensive use in the field of marketing and can be 

successfully used for new product development; product acceptance research, development of 

advertising copy, pricing studies, and for branding studies. For example: It can be used to: 

• Identify the attributes of brands that influence consumer’s choice; 

• get an insight into the media habits of various consumers; 

• identify the characteristics of price-sensitive customers etc. 

10.3.4  Types of Factor Analysis 

The factor analysis is of two types: 

1. Exploratory Factor Analysis (EFA): It is the most common factor analysis method used in 

multivariate statistics to uncover the underlying structure of a relatively large set of variables. It 

assumes that any indicator or variable may be associated with any factor to identify the underlying 

relationship between measured variables. It is not based on any prior theory and uses Multiple 

Regression and partial correlation theory to model sets of manifest or observed variables. 

2. Confirmatory Factor Analysis (CFA): It is the second most preferred method to extract the 

common variance and put them into factors. It determines the factor and factor loading of measured 

variables. It also confirms what is expected from the basic or pre-established theory by assuming 

that each factor is associated with a specified subset of measured variables. 

Steps in Exploratory Factor Analysis 

1. Collect Data: choose relevant variables. 

2. Extract initial factors (via principal component). 

3. Choose the number of factors to retain. 

4. Choose estimation method, estimate model. 

5. Rotate and interpret. 

6. (a) Decide on changes that need to be made (e.g. drop items include items) 

    (b) Repeat (4), (5). 

7. Construct scales and use them for further analysis. 

https://www.statswork.com/services/data-mining/multiple-regression-analysis/
https://www.statswork.com/services/data-mining/multiple-regression-analysis/


10.3.5   Methods of Factor Analysis 

The basic data used for factor analysis is the same for the correlation matrix when using 

the different procedures of analysis. Though there may be procedures that make use of the matrix 

of covariance. The major methods of factor analysis used are: 

1.  Principal Component Method 

2.  Principal Axes Method 

3.  Summation Method 

4.  Centroid Method 

Principal Component Method: In this method, factors are selected one at a time such that each 

factor best fits the data. The first fraction is created such that it represents the most highly 

correlated set of variables. Each subsequent selected factor explains less variance than its 

predecessor. This procedure is continued till all the factors are selected. All the factors selected 

explain the largest amount of residual variance in the entire set of standardized response scores. 

Principal Axis Method: This is a method that tries to find the lowest number of factors that can 

account for the variability in the original variables that are associated with these factors (this is in 

contrast to the principal components method which looks for a set of factors which can account 

for the total variability in the original variables). These two methods will tend to give similar 

results if the variables are quite highly correlated and/or the number of original variables is quite 

high. Whichever method is used, the resulting factors at this stage will be uncorrelated. 

Centroid Method: It is the method that extracts the largest sum of absolute loadings for each 

factor in turn. 

It is defined by linear combinations in which all weights are either +1.0 or −1.0. 

The purpose of this method is to maximize the sum of loadings, disregarding signs.  

Example-Suppose the average student’s aptitude in the field of astronomy is 



{10 × the student′s verbal intelligence} + {6 × the student′s mathematical intelligence}. 

The numbers 10 and 6 are the factor loadings associated with verbal intelligence and mathematical 

ability in aptitude towards astronomy. 

Steps involving in the Centroid Method: 

1) Obtain the correlation matrix. 

2) Obtain grand matrix sum, row sum, and column sum. 

3) Calculate  

       𝑁 =
1

√𝐺𝑟𝑎𝑛𝑑 𝑇𝑜𝑡𝑎𝑙
 

4) Multiply each column sum with 𝑁, which gives the first-factor loading. 

5) To find the second-factor loading, find the cross-product matrix of the factor 1 by testing the 

first factor loading horizontally and vertically and then multiplying corresponding rows and 

columns. 

6) Find the first-factor residual matrix is given as, 

Residual Matrix=Correlation Matrix-Cross Product Matrix 

7) Reflection: Reflection means that each test vector retains its length but extends in opposite 

directions. The major purpose of reflection is to get a reflected cost matrix having the highest 

possible total. This step is taken due to the reason that some of the factors loading are with 

total. The method of reflection is by trial and error. This can be done by changing the signs of 

the variables from positive to negative and negative to positive column wise and row wise. The 

outcome we get is a reflective residual correlation matrix. 

8) Repeat steps from (3) to (7). 

Example 10.3.5(1): In the Centroid method of factor analysis, the correlation matrix is replaced 

by the factor matrix. A correlation matrix is square in nature where rows and columns are denoted 

by variables. Theoretically factor matrix can be square or rectangular, but practically, a factor 

matrix is mostly rectangular. The columns represent the factors and the rows represent the 

variables. 



To understand the Centroid condensation method to extract factors, consider the correlation matrix 

(𝑟𝑖𝑗) given below: 

Tests 1 2 3 4 5 

1 (0.54) 0.50 0.23 0.39 0.28 

2 0.50 (0.49) 0.31 0.47 0.37 

3 0.23 0.31 (0.54) 0.60 0.39 

4 0.39 0.47 0.60 (0.74) 0.59 

5 0.28 0.37 0.39 0.59 (0.54) 

STEP 1: Add values column-wise and row-wise and denote by symbol 𝐶 and 𝑅, respectively to 

calculate the total 

Tests 1 2 3 4 5 Row Total (𝑅) 

1 (0.54) 0.50 0.23 0.39 0.28 1.94 

2 0.50 (0.49) 0.31 0.47 0.37 2.14 

3 0.23 0.31 (0.54) 0.60 0.39 2.07 

4 0.39 0.47 0.60 (0.74) 0.59 2.79 

5 0.28 0.37 0.39 0.59 (0.54) 2.40 

Column 

Total (𝐶) 

1.94 2.14 2.07 2.79 2.40 Grand Total 

(GT) =11.34 

 

STEP 2: Find the value of 𝑁 by the following formula, 

                 𝑁 =
1

√𝐺𝑟𝑎𝑛𝑑 𝑇𝑜𝑡𝑎𝑙
=

1

√11.34
=

1

3.37
= 0.297 

STEP 3: Multiply each column sum with 𝑁 to get the first factor loadings 𝐿𝑖 of each test i.e. 

                𝐿𝑖 = 𝐶 × 𝑁 



First-factor loadings for 

(i) Test 1 is 𝐿1 = 1.94 × 0.297 = 0.58 

(ii) Test 2 is 𝐿2 = 2.14 × 0.297 = 0.64 

(iii) Test 3 is 𝐿3 = 2.07 × 0.297 = 0.62 

(iv) Test 4 is 𝐿4 = 2.79 × 0.297 = 0.83 

(v) Test 5 is 𝐿5 = 2.40 × 0.297 = 0.71 

STEP 4: To obtain the second-factor loadings, one must find the cross-product matrix. List all the 

first factor loadings on the horizontal and vertical sides of a table. Multiply corresponding 

rows and columns to obtain the cross-product matrix (𝐿𝑖𝑗). 

𝐿𝑖 0.58 0.64 0.62 0.83 0.71 

0.58 0.34 0.37 0.36 0.48 0.41 

0.64 0.37 0.41 0.40 0.53 0.45 

0.62 0.36 0.40 0.38 0.52 0.44 

0.83 0.48 0.53 0.52 0.69 0.60 

0.71 0.41 0.45 0.44 0.60 0.50 

 

STEP 5: First-factor Residual 

To find the first factor residual subtract the first factor cross-product matrix (𝐿𝑖𝑗) from the original 

correlation matrix (𝑟𝑖𝑗) 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 =  𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 –  𝑐𝑟𝑜𝑠𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 

Tests 1 2 3 4 5 

1 0.20 0.13 −0.13 −0.09 −0.13 

2 0.13 0.08 −0.09 −0.06 −0.08 



3 −0.13 −0.09 0.16 0.08 −0.05 

4 −0.09 −0.06 0.08 0.05 −0.01 

5 −0.13 −0.08 −0.05 −0.01 0.27 

 

STEP 6: Add values column-wise and row-wise and denote by symbol 𝐶 and 𝑅, respectively to 

calculate the total. 

Tests 1 2 3 4 5 Row Total (𝑅) 

1 0.20 0.13 −0.13 −0.09 −0.13 0.02 

2 0.13 0.08 −0.09 −0.06 −0.08 −0.02 

3 −0.13 −0.09 0.16 0.08 −0.05 −0.03 

4 −0.09 −0.06 0.08 0.05 −0.01 −0.03 

5 −0.13 −0.08 −0.05 −0.01 0.27 0.00 

Column Total (𝐶) 0.02 −0.02 −0.03 −0.03 0.00 GT=−0.10 

 

STEP 7: Reflection In the above matrix, the total is negative indicating the need of reflection i.e. 

the test vectors need to be extended in the opposite direction but maintaining their length. 

For each factor to account for as much variance as possible, the reflection of vectors is 

done so as to maximize the GT. The method of reflection works best by inspecting the 

factor loadings in the residual matrix. The variables with the most negative factor loadings 

are reflected by changing the sign from positive to negative and vice-versa both row- wise 

and column-wise. Hence, a reflected residual matrix is obtained. Since the variables 3, 4 

and 5 in the above residual matrix needs reflection, therefore, the reflected residual matrix 

is: 

Tests 1 2 3 4 5 Row Total (𝑅) 

1 0.20 0.13 0.13 0.09 0.13 0.68 



2 0.13 0.08 0.09 0.06 0.08 0.44 

3 0.13 0.09 0.16 0.08 −0.05 0.41 

4 0.09 0.06 0.08 0.05 −0.01 0.27 

5 0.13 0.08 −0.05 −0.01 0.27 0.42 

Column 

Total 

(𝐶) 

0.68 0.44 0.41 0.27 0.42 GT=2.22 

 

STEP 8: Second Factor Loadings 

The second factor loadings are calculated similarly as for the first factor loadings i.e. Step 1 to 

Step 3. 

Here  

𝑁 =
1

√𝐺𝑟𝑎𝑛𝑑 𝑇𝑜𝑡𝑎𝑙
=

1

√2.22
=

1

1.49
= 0.67 

Second-factor loadings for 

(i) Test 1 is 𝐿1 = 0.68 × 0.67 = 0.46 

(ii) Test 2 is 𝐿2 = 0.44 × 0.67 = 0.30 

(iii) Test 3 is 𝐿3 = 0.41 × 0.67 = 0.28 

(iv) Test 4 is 𝐿4 = 0.27 × 0.67 = 0.18 

(v) Test 5 is 𝐿5 = 0.42 × 0.67 = 0.28 

Once the second-factor loadings are obtained, the variables that were reflected are reflected to their 

original signs. Hence, the second-factor loadings are 0.46, 0.30,−0.28,−0.18 and −0.28. 

A similar method could be continued with the residual matrix and the reflected residual matrix for 

3𝑟𝑑 , 4𝑡ℎ , … , 𝑛𝑡ℎ factor extraction. 

Hence, the obtained factor matrix is: 



Tests Factor I Factor II 

1 0.58 0.46 

2 0.64 0.30 

3 0.62 −0.28 

4 0.83 −0.18 

 

10.3.6   Methods for Finding the Number of Factors to be Extracted 

In theory, the maximum number of factors that can be extracted from a set of correlation 

coefficients is equal to the number of variables/ tests involved. For example, for a 10 × 10 

correlation matrix, the maximum number of factors that can be extracted are 10. However, in factor 

analysis, these latent factors are constructed in such a way that they account for as much variance 

in the observed variables as possible. Hence, it becomes vital to decide the number of factors that 

can be extracted for a specific research problem. The following methods are: 

1)  Thumb Rule 

2)  Eigen Value Index 

3)  Fruckter Formula 

4)  Residual correlation matrix 

5)  Scree Plot 

1) Thumb Rule: All the interrelated factors must explain at least as much as variances as an 

average variable. Check, if a variable is under a factor, then the percentage of variable explaining 

variance should be less than the percentage of factor explaining.  

2) Eigen Value Index: The number of factors that have to be extracted can be determined by 

calculating the Eigen Value Index for each factor till an Eigen value of 1 is obtained i.e. those 

factors are to be extracted whose Eigen values are either 1 or more than 1. Factors with Eigen 

value less than 1 are not considered for contributing to the variance and hence are not given 

importance. 



Example 10.3.6(1): For the following factor matrix, determine the number of factors that can be 

extracted on the basis of the Eigen Value of the factors.  

 Factor I Factor II Factor III Factor IV 

Variable I 0.81 0.64 0.64 0.01 

Variable II 0.80 0.69 0.39 0.06 

Variable III 0.92 0.57 0.17 0.11 

Variable IV 0.79 0.04 0.13 0.12 

Variable V 0.17 0.72 0.11 0.16 

Variable VI 0.12 0.11 0.05 0.31 

Variable VII 0.81 0.23 0.04 0.49 

Solution: 

Eigen value of Factor I 

                       = (0.81)2 + (0.80)2 + (0.92)2 + (0.79)2 + (0.17)2 + (0.12)2 + (0.81)2 = 3.466 

Eigen Value of Factor II 

                        = (0.64)2 + (0.69)2 + (0.57)2 + (0.04)2 + (0.72)2  + (0.11)2 + (0.23)2 = 1.80 

Eigen value of Factor III 

                         = (0.64)2 + (0.39)2 + (0.17)2 + (0.13)2 + (0.11)2 + (0.05)2 + (0.04)2 = 0.70 

Eigen value of Factor IV 

                         = (0.01)2 + (0.06)2 + (0.11)2 + (0.12)2 + (0.16)2 + (0.31)2 + (0.49)2 = 0.39 

Since, only those factors are accounted for whose Eigen value is 1 or more than 1, therefore, only 

factor I and factor II will be extracted. Hence, only two factors are to be extracted. 

3) Fruckter Formula: Fruckter proposed the following formula to decipher the number of factors 

that can be extracted for a research problem: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 =
(2𝑛 + 1) − (√8𝑛 + 1)

2
 



Here 𝑛 is the number of variables in the correlation matrix. 

Example 10.3.6(2): Identify the number of factors that can be extracted in a research problem with 

15 variables. 

Solution: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 =
(2𝑛 + 1) − (√8𝑛 + 1)

2
=
(2 × 15 + 1) − (√8 × 15 + 1)

2
= 10.525 

Hence, in a research problem with 15 variables, 11 (rounding up) factors are important to be 

extracted. 

4) Residual Correlation Matrix Method: In this method, it is observed that when most of the 

correlation coefficients i.e. more than fifty percent of the correlation coefficients in the residual 

correlation matrix are zero or approaching zero, then one should stop further extraction of factors. 

Example 10.3.6(3): Factor extraction will be continued in the following kind of residual 

correlation matrix 

 1 2 3 4 

1 0.40 −0.22 −0.23 −0.10 

2 −0.22 0.46 −0.26 −0.11 

3 −0.23 −0.26 0.69 −0.09 

4 −0.10 −0.11 −0.09 0.95 

In the following residual correlation matrix, further factor extraction will be stopped as most of 

the correlation coefficients are either zero or approaching zero. 

 1 2 3 4 

1 0.00 0.01 −0.02 0.00 

2 0.01 0.00 0.00 −0.01 

3 −0.02 0.00 0.00 0.01 

4 0.00 −0.01 0.01 0.00 



 

5) Scree Plot: A scree plot is a graphical method used to determine the number of factors to retain 

in a factor analysis. It is named after the shape of the graph, which resembles the steep slope of a 

scree (rock debris) on a mountain 

To create a scree plot, you plot the eigenvalues of the factors in descending order on the y-

axis, and the factor numbers on the x-axis. The resulting graph typically shows a steep drop in 

eigenvalues for the first few factors, followed by a more gradual decline. The point where the slope 

changes from steep to shallow is known as the elbow point. 

The scree plot can help to identify the number of factors to retain in factor analysis, as the 

elbow point represents the point where the added explanatory power of additional factors 

diminishes. Factors before the elbow point are considered significant, while those after the elbow 

point are considered to be of less importance. 

10.3.7   Applications of Factor Analysis 

1. Multiple Regressions: Using factor scores in place of independent variables in a multiple 

regression estimation overcomes the problem of multicollinearity. 

2. Simplifying the Discrimination Solution: If the discriminant model involves a large number 

of independent variables, these variables can be replaced by a set of manageable factors before 

estimation. 

3. Simplifying the Cluster Analysis Solution: To make the data manageable, the variables 

selected for clustering can be reduced to a smaller number using factor analysis, and obtained 

factor scores can be used to cluster the objects/cases under study. 

4. Perceptual Mapping in Multidimensional Scaling: Factors can be used as dimensions with 

the factor scores as the coordinates to develop attribute-based perceptual maps where one can 

comprehend the placement of brands or products according to the identified factors under study. 

10.3.8   Terminology of Factor Analysis 

Factor Loading: The correlation between the factor/component and independent variable is 

known as factor loading. 



The observed variables are thought to be influenced by one or more underlying factors that 

are not directly observable. Factor loading represents the strength of the relationship between each 

observed variable and the latent factor. 

Factor loading values range from -1.0 to +1.0. The positive values indicate a positive 

relationship between the observed variable and the latent factor, and the negative values indicate 

a negative relationship. The closer the factor loading value is to +1.0 or -1.0, the stronger the 

relationship between the observed variable and the latent factor. Factor loadings close to zero 

indicate that the observed variable is not strongly related to the latent factor. 

Factor loadings provide information about the relative importance of each observed 

variable in measuring the underlying factor. Variables with high factor loadings on a particular 

factor are thought to be more closely related to that factor than variables with lower factor loadings. 

Factor loadings are also used to determine which observed variables should be included in a final 

factor solution, and to evaluate the reliability and validity of the factor solution. 

Eigen Values: The eigenvalue (or characteristics root or latent root) of a factor is obtained by 

summing the squares of all the factor loadings in that factor. It indicates the amount of variance of 

the independent variables explained by the factor. Using the magnitude of the eigenvalue, a 

decision about retaining the factor in the model is made. A higher eigenvalue magnitude indicates 

more usefulness of the factor in explaining the group characteristics. Eigenvalue indicates the 

relative importance of each factor in accounting for the particular set of variables being analyzed. 

Communality: It indicates the proportion of variance in responses to the statement which is 

explained by the identified factors. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
𝑒𝑖𝑔𝑒𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑎𝑐𝑡𝑜𝑟

𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑖𝑔𝑒𝑛 𝑣𝑎𝑙𝑢𝑒𝑠
× 100 

If any variable is not combined in any of the groups, then it can be left or can be considered 

as another factor. To remove a different variable, use rotation, i.e., we are changing its direction. 

10.3.9   Advantages of Factor Analysis 

1. Both objective and subjective attributes can be used. 



2. It can be used to identify the hidden dimensions or constraints, which may or may not be 

apparent from direct analysis. 

3. It is not extremely difficult to do and at the same time it's inexpensive and gives accurate results. 

4. There is flexibility in naming and using dimensions. 

10.3.10  Disadvantages of Factor Analysis 

1. The usefulness depends on the researcher’s ability to develop a complete and accurate set of 

product attributes. If important attributes are missed, the value of the procedure is reduced 

accordingly. 

2. Naming of the factors can be difficult. Multiple attributes can be highly correlated for no 

apparent reason. 

3. If the observed variables are completely unrelated, the factor analysis is unable to produce a 

meaningful pattern. 

4. It is not possible to know what factors represent, only theory can help the user on this. 

10.4  Linear Factor Model 

General Factor Analysis Problem: 

In general, we assume that a 𝑝 − dimensional random vector 𝑋 is generated by 

𝑋 = 𝑓(𝑆) + 𝑒 

where 𝑆 = (𝑆1, … , 𝑆𝑚)
′is 𝑚 × 1 vector of unobservable sources of independent latent variables. 

Here 

𝑆𝑗  is the 𝑗
𝑡ℎ latent variable with mean 0. 

𝑓: ℝ𝑚 → ℝ𝑝is an unknown mixing function 

𝑒(𝑝×1) is the measurement noise 

We assume that 𝐸(𝑆) = 0,    𝐶𝑜𝑣(𝑆) = I𝑚 but the distribution of S is unknown. The problem is to 

invert 𝑓 and estimate latent variables 𝑆. 

Centring and Sphering of Observations: 



Consider the random vector 

𝑋 = (

𝑋1
⋮
𝑋𝑝
) 

With 𝐸(𝑋) = 𝜇,    𝐶𝑜𝑣(𝑋) = Σ𝑋𝑋. 

Before applying factor analysis, we apply centering so that the mean becomes zero and 

sphering (whitening) so that components are uncorrelated and have variance 1. 

Let 𝑈 be an orthogonal matrix of eigenvectors of Σ𝑋𝑋(𝑈𝑈
′ = 𝐼, 𝑈′𝑈 = 𝐼). Further 𝛬 is a 

diagonal matrix of eigenvalues of Σ𝑋𝑋. Columns of 𝑈 and diagonal elements of 𝛬 are ordered by 

decreasing magnitude of eigenvalues of Σ𝑋𝑋. Then, we have 

𝛴𝑋𝑋 = 𝑈𝛬𝑈
′ 

The centered and sphere version of 𝑋 is 

Λ−
1
2U′(X − μ) 

In practice μ and Σ𝑋𝑋 are unknown. Suppose 𝑋1, … , 𝑋𝑛 are 𝑛 observation vectors with 

�̅� =
1

𝑛
∑𝑋𝑖

𝑛

𝑖=1

,    

 Σ̂𝑋𝑋 =
1

𝑛
∑(𝑋𝑖 − �̅�)(𝑋𝑖 − �̅�)

′

𝑛

𝑖=1

= �̂�Λ̂�̂�′ . 

Then centering and sphering of data is done by using the transformation 

𝑋 ← Λ̂−
1
2Û′(Xi − X̅)   ,      i = 1,… , n. 

Linear Factor Model: 

The linear factor model is defined as  

𝑋 = 𝐴𝑆 + 𝑒 

Here 𝑆 and 𝑒 are uncorrelated, 𝑆 has mean 0 and covariance matrix 𝐼𝑚, e has mean 0 and 

covariance matrix  

𝜓 = 𝑑𝑖𝑎𝑔 (𝜓1, … , 𝜓𝑝) 



Input variable 𝑋 = (𝑋1, … , 𝑋𝑝)
′ has been standardized to have zero mean and unit variance. Then 

𝑋𝑗 = 𝑎1𝑗𝑆1 +⋯+ 𝑎𝑚𝑗𝑆𝑚 + 𝑒𝑗                    (𝑗 = 1, … , 𝑝) 

Here 𝑆1, … , 𝑆𝑚 are the latent variables or common factors and 𝑎1𝑗 , … , 𝑎𝑚𝑗  are the factor loadings. 

Further, 𝑒𝑗′𝑠 are called specific (or unique) factors. If 𝑆𝑗′𝑠 are uncorrelated, they are called 

orthogonal factors otherwise oblique factor. 

Σ𝑋𝑋 = 𝐴𝐴
′ + 𝜓 

The exploratory factor analysis problem is to estimate 𝐴 and recover 𝑆. 

10.4.1   Assumptions of Factor Analysis Model  

1) Measurement error has mean zero and constant variance, i.e., 

       𝐸(𝑒𝑖) = 0 and 𝑉𝑎𝑟 (𝑒𝑖) = 𝜎𝑖
2  

2) No association between the factor and measurement error, 𝐶𝑜𝑣(𝐹, 𝑒𝑗) = 0 

3) No association between errors, 𝐶𝑜𝑣(𝑒𝑗 , 𝑒𝑘) = 0 

4) Local (i.e., conditional independence): Given factor, observed variables are independent of 

one another, 𝐶𝑜𝑣(𝑋𝑗 , 𝑋𝑘| 𝐹) = 0 

10.5  Estimation of Factor Loadings 

Consider the linear factor model  

𝑋 = 𝐴𝑆 + 𝑒 

Let 

𝐵 = (𝐴′𝐴)−1𝐴′.  

Then 

𝐴𝐵𝑋 = 𝐴𝑆 + 𝐴𝐵𝑒 

= (𝑋 − 𝑒) + 𝐴𝐵𝑒 

or 𝑋 = 𝐴𝐵𝑋 + (𝐼 − 𝐴𝐵)𝑒 



𝑋 = 𝐶𝑋 + 𝐸 is the reduced rank model. Here 𝐶 = 𝐴𝐵, 𝐸 = (𝐼 − 𝐶)𝑒,  and 𝐶 has rank 𝑚. From 

standardized input data (centering and sphering have been already done for data standardization) 

�̃�1, … , �̃�𝑛, we find estimate 

Σ̂𝑋𝑋 =
1

𝑛
∑(�̃�𝑖 − �̅̃�)(�̃�𝑖 − �̅̃�)

′
𝑛

𝑖=1

 

Let �̂�1 ≥ �̂�2 ≥ ⋯ ≥ �̂�𝑚 be m ordered eigenvalues of �̂�𝑋𝑋 and �̂�1… �̂�𝑚 are the corresponding 

eigenvectors. Then, estimates of 𝐴 and 𝐵 are given by 

�̂� = (�̂�1, … , �̂�𝑚) = �̂�
′ 

The 𝑚 vector of estimated factor scores are 

𝑓 = �̂�𝑋 = (�̂�1
′𝑋,… , �̂�𝑚

′ 𝑋)′. 

10.6   Factor Rotation 

The unrotated output maximizes variance accounted for by the first and subsequent factors 

and forces the factors to be orthogonal. This data compression comes at the cost of having most 

items load on the early factors, and usually, of having many items load substantially on more than 

one factor. Rotation serves to make the output more understandable, by seeking the so-called 

“Simple Structure” which is a pattern of loadings where each item loads strongly on only one of 

the factors, and much more weakly on the other factors. It is of two types: 

1.  Orthogonal rotation 

2.  Oblique rotation 

1.  ORTHOGONAL ROTATION 

It is a transformational system used in factor analysis in which the different underlying or 

latent variables are required to remain separated from or uncorrelated with one another. Three 

different methods can be used for orthogonal rotation: 

1. Varimax Rotation: It is an orthogonal rotation of the factor axes to maximize the variance of 

the squared loadings of a factor (column) on all the variables (rows) in a factor matrix, which has 

the effect of differentiating the original variables by extracted factor. A varimax solution yields 



results that make it as easy as possible to identify each variable with a single factor. This is the 

most common and most frequently used rotation method. 

2. Quartimax Rotation: It is an orthogonal alternative that minimizes the number of factors 

needed to explain each variable. This type of rotation often generates a general factor on which 

most variables are loaded to a high or medium degree. 

3. Equimax Rotation: It is a compromise between Varimax and Quartimax criteria. 

2.  OBLIQUE ROTATION  

It is a transformational system used in factor analysis when two or more factors (i.e., latent 

variables) are correlated. Oblique rotation reorients the factors so that they fall closer to clusters 

of vectors representing manifest variables, thereby simplifying the mathematical description of the 

manifest variables. There are two methods used for the oblique rotation: 

1.  Direct oblimin rotation 

2.  Promax Rotation 

Note: The Promax method is like the Direct Oblimin method but is computationally faster than it. 

10.7   Estimation of Factor Scores 

Factors scores are measures of principal components or common factors. Under the 

principal components model, the factor scores are uniquely determined; under the common factor 

model, they are not. In the latter situation, the factor scores are indeterminate; potentially having 

an infinite number of solution sets, and thus their true values can only be estimated. Three methods 

of factor score estimation are: 

(a)  Regression method 

(b)  Ordinary Least Squares 

(c)  Weighted Least Squares 

10.8   Summary  

In this lesson, we learned about: 



• The interpretation of factor loadings. 

• The principal component and maximum likelihood methods for estimating factor loadings 

and specific variances. 

• The Centroid condensation method of factor extraction involves the calculation of the 

grand-total by adding the correlation coefficients of each column. This total is then used to 

calculate N which is multiplied with each column sum to obtain the first factor loadings of 

each test. Following this, a cross-product matrix is obtained that is subtracted from the 

correlation matrix to obtain the residual correlation matrix. 

• The residual correlation matrix may have to be reflected to maximize the total of the matrix. 

This is done by changing the signs of the factor loadings in the residual matrix from positive 

to negative or vice-versa for the variables both row-wise as well as column-wise. The 

second factor loadings are then calculated from the reflected residual factor loadings and 

they are reflected to their original signs. Further factor loadings may be obtained similarly. 

• The decision about the number of common factors to extract and retain must steer between 

the extremes of losing too much information about the original variables on one hand and 

being left with too many factors on the other. Various criteria have been suggested to 

understand the number of factors that can be extracted. These are the Fruckter Formula 

method, the Eigenvalue index method, and the residual correlation matrix method. 

• How commonalities can be used to assess the adequacy of a factor model. 

• A likelihood ratio test for the goodness-of-fit of a factor model. 

• The methods for estimating common factors. 

10.9  Self-Assessment Exercises 

1. What is meant by a factor in the context of factor analysis? 

2. How many types of Factor analysis are there? Explain. 

3. Sketch the three basic matrices involved in the factor analysis procedure: Input data matrix, 

Correlation matrix, and Factor matrix. 

4. Discuss the meaning of factor loading. What is its maximum and minimum value? 



5. What is accomplished by rotating a factor-loading matrix? 
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11.1   Introduction 

In multivariate statistical analysis, understanding the structure of relationships among 

multiple variables is often of paramount importance. One key aspect of this structure is captured 

by the covariance matrix, which provides a comprehensive summary of the variances and 

covariances between pairs of variables. Testing hypotheses about the equality of covariance 

matrices is a fundamental problem in this context, as it has broad applications in various fields, 

including finance, biology, and social sciences. 

This unit explores the problems and methods associated with testing the equality of 

covariance matrices. In many cases, these problems are multivariate generalizations of simpler 

univariate problems, extending concepts that are well understood in single-variable contexts to the 



more complex scenarios involving multiple variables. Among the various tests employed, 

likelihood ratio tests (LRTs) and their modifications play a significant role due to their powerful 

statistical properties. 

The consideration of invariance, which refers to properties of statistical tests that remain 

unchanged under certain transformations, also leads to the development of alternative test 

procedures. These procedures are often designed to be robust to specific assumptions or to provide 

more powerful tests under specific conditions. 

Initially, we will focus on testing the equality of multiple covariance matrices without 

assuming a specific form for the common covariance matrix. This analysis is closely related to the 

multivariate analysis of variance (MANOVA) in scenarios involving random factors. 

Subsequently, we will explore the problem of testing whether a covariance matrix is equal to a 

specified matrix, and, further, the simultaneous testing of the equality of a covariance matrix to a 

given matrix and the equality of a mean vector to a specified vector. 

This exploration provides a comprehensive framework for understanding and applying 

hypothesis tests in the context of covariance matrices, equipping researchers and practitioners with 

the tools needed to address complex multivariate problems. 

11.2   Objectives 

After reading this unit, you should be able to: use the tests for the following situations: 

1. Equality of covariance matrices, 

2. Sphericity for covariance matrix 

3. Testing 𝐻0: Σ = 𝜎
2[(1 − 𝜌)𝐼 + 𝜌𝐽] 

4. Multivariate Tests of Equality of Several Covariance Matrices 

5. Mean vector and covariance matrix are equal to given vector and matrix 

11.3   Tests of Hypothesis 

 There is always some contention about the values of a parameter or the relationship 

between parameters. When parametric values are unknown, we estimate them through sample 

values. If the sample value is exactly the same as per our contention, there is no hitch in accepting 

it. And if it is far from our contention, there is no reason to accept it. But the problem arises when 



the sample provides a value which is neither exactly equal to the parametric value, nor too far. In 

that situation one has to develop some procedures which enables one to decide whether to accept 

a contended(hypothetical) value or not on the basis to sample values. Such procedure is known as 

Testing of hypothesis. 

11.4   Tests of Hypothesis of Equality of Covariance Matrices 

Test the hypothesis 𝐇𝟎: 𝚺 = 𝚺𝟎 against 𝐇𝟏: 𝚺 ≠ 𝚺𝟎: Let X = (X1, … , Xp)
′
 be a random 

vector from the 𝑝-variate normal distribution 𝑁𝑝(𝜇, Σ). Consider the hypothesis 𝐻0: Σ =

Σ0 against 𝐻1: Σ ≠ Σ0. For testing 𝐻0, we obtain a random sample of 𝑛 observation vectors 

𝑋1, 𝑋2, … , 𝑋𝑛. Let 

𝑆 =
1

𝜈
∑(𝑋𝑗 − �̅�)(𝑋𝑗 − �̅�)

′
𝑛

𝑗=1

,  

where 𝜈 = 𝑛 − 𝑝 represents the degrees of freedom. 

For observing if 𝑆 is significantly different from Σ0, we use the following test statistic: 

𝑢 = 𝜈[ln|𝛴0| − ln|𝑆| + 𝑡𝑟(𝑆Σ0
−1) − 𝑝]                                                                                       (11.1) 

For a single sample of size 𝑛, the degrees of freedom are 𝜈 = 𝑛 − 1. Notice that for 𝑆 =

𝛴0, we obtain 𝑢 = 0 and 𝑢 increases with the distance between 𝑆 and 𝛴0. For large 𝜈, under 

𝐻0, the statistic 𝑢 is approximately distributed as 𝜒2 (
1

2
𝑝(𝑝 + 1)). Notice that the degrees 

of freedom 
1

2
𝑝(𝑝 + 1) of 𝜒2-distribution is the number of distinct parameters in 𝛴. 

For moderate 𝜈,  

𝑢′ = [1 −
1

6𝜈 − 1
(2𝑝 + 1 −

2

𝑝 + 1
)] 𝑢 

is a better approximation to the𝜒2 (
1

2
𝑝(𝑝 + 1)) distribution. 

We reject 𝐻0 at 100 𝛼% level of significance if 𝑢 𝑜𝑟 𝑢′is greater than 𝜒2 (𝛼;
1

2
𝑝(𝑝 + 1)). 



We can express 𝑢 in terms of the eigenvalues 𝜆1, … , 𝜆𝑝of  𝑆𝛴0
−1. We have 

𝑡𝑟(𝑆𝛴0
−1) =∑𝜆𝑖

𝑝

𝑖=1

 

𝑙𝑛|𝛴0| − 𝑙𝑛|𝑆| 

= − 𝑙𝑛|𝛴0
−1| − 𝑙𝑛|𝑆| 

= −𝑙𝑛|𝛴0
−1𝑆| 

= −𝑙𝑛(∏𝜆𝑖

𝑝

𝑖=1

) 

Thus 

𝑢 = 𝜈 [− 𝑙𝑛 (∏𝜆𝑖

𝑝

𝑖=1

)+∑𝜆𝑖

𝑝

𝑖=1

−𝑝] 

    = 𝜈 [∑(𝜆𝑖 − 𝑙𝑛𝜆𝑖)

𝑝

𝑖=1

−𝑝] 

For testing the hypothesis that the variables are independent and have unit variance, i.e., 

𝐻0: 𝛴 = 𝐼𝑝, we simply set 𝛴0 = 𝐼𝑝. 

11.5   Sphericity Tests for Covariance Matrix 

Suppose we are interested in testing the hypothesis that the individual variables of 𝑋 =

(𝑋1, . . , 𝑋𝑝)
′
 are independent and have common variance 𝜎2. The hypothesis can be expressed 

as 𝐻0: Σ = 𝜎
2𝐼𝑝 against 𝐻1: Σ ≠ 𝜎

2𝐼𝑝, where 𝜎2 is the unknown common variance. Under 𝐻0, 

the ellipsoid (𝑋 − 𝜇)′Σ−1(𝑋 − 𝜇) = 𝑐2 reduces to (𝑋 − 𝜇)′(𝑋 − 𝜇) = 𝜎2𝑐2, which is the 

equation of a sphere. Thus, the covariance structure 𝜎2𝐼𝑝 is called spherical. Based on a 

random sample 𝑋1, … , 𝑋𝑛 of size 𝑛, the likelihood ratio test for testing 𝐻0: Σ = 𝜎
2𝐼𝑝 against 

𝐻1: Σ ≠ 𝜎
2𝐼𝑝 is 



𝐿𝑅 = [
|𝑆|𝑝

(
𝑡𝑟 (𝑆)
𝑝 )

𝑝]

𝑛
2

 

We have, for large 𝑛 

−2𝑙𝑛(𝐿𝑅) is approximately 𝜒𝜈
2. 

The degrees of freedom 𝜈 is the total number of parameters minus the number estimated 

under the restrictions imposed by 𝐻0. 

Here 

−2 ln(𝐿𝑅) 

= −𝑛𝑙𝑛

[
 
 
 
 

|𝑆|𝑝

(𝑡𝑟 (
𝑆
𝑝))

𝑝

]
 
 
 
 

 

= −𝑛𝑙𝑛(𝑢) 

where 

𝑢 = (𝐿𝑅)
2
𝑛 

    =
𝑝𝑝|𝑆|𝑝

(𝑡𝑟𝑆)𝑝
 

    =
𝑝𝑝∏ 𝜆𝑖

𝑝
𝑖=1

(∑ 𝜆𝑖
𝑝
𝑖=1 )

𝑝. 

Here 𝜆1, … , 𝜆𝑝 are the eigen values of S. 

An improved test statistic is given by 

𝑢′ = −(𝜈 −
(2𝑝2 + 𝑝 + 2)

6𝑝
) 𝑙𝑛 𝑢                                                                                                       (11.2) 



          where 𝜈 is the degrees of freedom for 𝑆. The statistic u' has an approximate 𝜒2-

distribution with 
1

2
𝑝(𝑝 + 1) − 1degrees of freedom. We reject 𝐻0  if 𝑢

′ > 𝜒2 (𝛼,
1

2
𝑝(𝑝 +

1) − 1). For obtaining the degrees of freedom in the 𝜒2-approximation, notice that the 

total number of distinct parameters under 𝐻1is 𝑝(𝑝 + 1) and under 𝐻0 is 1. Thus 𝜈 =

1

2
𝑝(𝑝 + 1) − 1. We can easily verify that if all the eigen values 𝜆𝑖

′𝑠 are equal, 

say 𝜆, then 𝑢 = 1, and 𝑢′ = 0. Hence, this statistic can be used to test the hypothesis of 

equality of the population eigenvalues. 

Example 11.5.1: John reported the results of an experiment where subjects responded to 

“probe words” at five positions in a sentence. The variables are response times for the 𝑖𝑡ℎ probe 

word, 𝑋𝑖  ; 𝑖 = 1,2, … ,5. The data are given in below table: 

Subject Number 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 

1 51 36 50 35 42 

2 27 20 26 17 27 

3 37 22 41 37 30 

4 42 36 32 34 27 

5 27 18 33 14 29 

6 43 32 43 35 40 

7 41 22 36 25 38 

8 38 21 31 20 16 

9 36 23 27 25 28 

10 26 31 31 32 36 

11 29 20 25 26 25 

The hypothesis is 𝐻0: 𝜇1 = 𝜇2 = ⋯ = 𝜇5. 

First test 𝐻0: Σ = 𝜎
2𝐼. The sample mean �̅� and sample covariance matrix 𝑆 are 

�̅�1 =
1

𝑛
∑𝑋1𝑖

𝑛

𝑖=1

 



=
397

11
 

= 36.09 

�̅� =

[
 
 
 
 
 
�̅�1
�̅�2
�̅�3
�̅�4
�̅�5]
 
 
 
 
 

=

[
 
 
 
 
36.09
25.55
34.09
27.27
30.73]

 
 
 
 

 

𝑠11 =
1

𝑛 − 1
∑(𝑋1𝑖 − �̅�1)(𝑋1𝑖 − �̅�1)

′

𝑛

𝑖=1

 

=
1

10
(650.90) 

= 65.09 

𝑆 =

[
 
 
 
 
65.09 33.65 47.59 36.77 25.43
33.65 46.07 28.95 40.34 28.36
47.59 28.95 60.69 37.37 41.13
36.77 40.34 37.37 62.82 31.68
25.43 28.36 41.13 31.68 58.22]

 
 
 
 

 

The trace of a matrix 𝑆 is the sum of its diagonal elements, so the trace 𝑆 is 

65.09 + 46.07 + 60.69 + 62.82 + 58.22 = 292.89 

Determinant of 𝑆 is 27230647.96 

Then 

𝑢 =
𝑝𝑝|𝑆|

(𝑇𝑟𝑎𝑐𝑒 𝑆)𝑝
 

    =
55 × 27230647.96

(292.89)5
 

    = 0.0395 

Using (11.1), we have 



𝑢′ = −(𝜈 −
(2𝑝2 + 𝑝 + 2)

6𝑝
) 𝑙𝑛 𝑢  

      = − (10 −
(2(5)2 + 5 + 2)

6 × 5
) 𝑙𝑛(0.0395) = −(10 − 1.9) × (−3.2315) 

      = 8.1 × 3.2315 = 26.175 

The approximate 𝜒2 −test has 

1

2
𝑝(𝑝 + 1) − 1 =

1

2
(5 × 6) − 1 

=
30

2
− 1 

= 15 − 1 = 14 

degrees of freedom. Therefore compare 𝑢′ = 26.175 with 𝜒0.05,14
2 = 23.68 and reject 𝐻0: Σ =

𝜎2𝐼. To test 𝐻0: 𝐶ΣC
′ = 𝜎2𝐼, we use the following matrix of orthonormalized contrasts: 

𝐶 =

[
 
 
 
 4/√20 −1/√20 −1/√20 −1/√20 −1/√20

0 3/√12 −1/√12 −1/√12 −1/√12

0 0 2/√6 −1/√6 −1/√6

0 0 0 1/√2 −1/√2 ]
 
 
 
 

 

Then 

𝑢 =
(𝑝 − 1)(𝑝−1)|𝐶𝑆𝐶′|

(𝑇𝑟𝑎𝑐𝑒 𝐶𝑆𝐶′)(𝑝−1)
 

=
44 × 146204.65

(94.03)5
 

=
256 × 146204.65

78174613.8
 

= 0.48 

Hence 



𝑢′ = − [𝜈 −
{2(𝑝 − 1)2 + (𝑝 − 1) + 2}

6(𝑝 − 1)
] 𝑙𝑛 𝑢  

      = − [10 −
{2(4)2 + 4 + 2}

6 × 4
] 𝑙𝑛(0.48) = −(10 − 1.58) × (−0.73) 

      = 8.42 × 0.73 = 6.15 

For degrees of freedom, we now have 
1

2
(4)(5) − 1 = 9, and the critical value is 𝜒0.05,9

2 = 16.92. 

Hence, we do not reject 𝐻0: 𝐶ΣC
′ = 𝜎2𝐼, and a univariate 𝐹-test of 𝐻0: 𝜇1 = 𝜇2 = ⋯ = 𝜇5 may 

be justified. 

11.6  Testing 𝑯𝟎: 𝚺 = 𝝈𝟐[(𝟏 − 𝝆)𝑰 + 𝝆𝑱] 

                The univariate ANOVA approach has been found to be appropriate under less 

stringent conditions than Σ = 𝜎2𝐼. Wilks (1946) showed that the ordinary F-tests of ANOVA 

remain valid for a covariance structure of the form 

Σ = 𝜎2 [

1 𝜌 ⋯ 𝜌
𝜌 1 ⋯ 𝜌
⋮ ⋮ ⋱ ⋮
𝜌 𝜌 ⋯ 1

]                                                                                                                  (11.3) 

      = 𝜎2[(1 − 𝜌)𝐼 + 𝜌𝐽]                                                                                                                 (11.4) 

Here 𝐽 is a square matrix of 1′𝑠, as defined in below: 

𝐽 = [
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

] 

And 𝜌 is the population correlation between two variables. 

Consider the hypothesis 



𝐻0: Σ =

[
 
 
 
𝜎2 𝜎2𝜌 ⋯ 𝜎2𝜌

𝜎2𝜌 𝜎2 ⋯ 𝜎2𝜌
⋮ ⋮ ⋱ ⋮
𝜎2𝜌 𝜎2𝜌 ⋯ 𝜎2 ]

 
 
 
 

We obtain the sample covariance matrix 𝑆 and also estimates of 𝜎2 and 𝜎2𝜌 under 𝐻0 are given 

by 

𝑠2 =
1

𝑝
∑𝑠𝑗𝑗

𝑝

𝑗=1

 

And 

𝑠2𝑟 =
1

𝑝(𝑝 − 1)
∑𝑠𝑗𝑘
𝑗≠𝑘

 

where 𝑠𝑗𝑗 and 𝑠𝑗𝑘 are the 𝑗𝑡ℎdiagonal and (𝑗, 𝑘)𝑡ℎ off-diagonal elements of 𝑆. 

𝑠2 is an average of the variances on the diagonal of 𝑆, and 𝑠2𝑟 is an average of the off-diagonal 

covariances in 𝑆. An estimate of 𝜌 can be obtained as 𝑟 =
𝑠2𝑟

𝑠2
. The estimate of Σ under 𝐻0 is then 

S0 = 𝑠
2 [

𝑠2 𝑠2𝑟 ⋯ 𝑠2𝑟
𝑠2𝑟 𝑠2 ⋯ 𝑠2𝑟
⋮ ⋮ ⋱ ⋮
𝑠2𝑟 𝑠2𝑟 ⋯ 𝑠2

] 

      = 𝑠2[(1 − 𝑟)𝐼 + 𝑟𝐽]       

To compare 𝑆 and 𝑆0, use the following function of the Likelihood Ratio 

𝑢 =
|𝑆|

|𝑆0|
 

Alternative form is 

𝑢 =
|𝑆|

(𝑠2)𝑝(1 − 𝑟)𝑝−1[1 + (𝑝 − 1)𝑟]
                                                                                                (11.5) 

Using (11.2), the test statistic is given by 



𝑢′ = − [𝜈 −
𝑝(𝑝 + 1)2(2𝑝 − 3)

6(𝑝 − 1) (𝑝2 + 𝑝 − 4)
] 𝑙𝑛 𝑢                                                                                          (11.6) 

where 𝜈 is the degrees of freedom of 𝑆. The statistic 𝑢′ is approximately 𝜒2 [
1

2
𝑝(𝑝 + 1) − 2], and 

we reject 𝐻0 if 𝑢′ > 𝜒2 [𝛼,
1

2
𝑝(𝑝 + 1) − 2]. 

Note that 2 degrees of freedom are lost due to estimation of 𝜎2 and 𝜌. 

Alternative approximate test that is more precise when 𝑝 is large and 𝜈 is relatively small is given 

by 

𝐹 =
−(𝛾2 − 𝛾2𝑐1 − 𝛾1)𝜈

𝛾1𝛾2
𝑙𝑛 𝑢 

where 

𝑐1 =
𝑝(𝑝 + 1)2(2𝑝 − 3)

6 𝜈(𝑝 − 1)(𝑝2 + 𝑝 − 4)
 

𝑐2 =
𝑝(𝑝2 − 1)(𝑝 + 2)

6 𝜈2(𝑝2 + 𝑝 − 4)
 

𝛾1 =
1

2
𝑝(𝑝 + 1) − 2 

𝛾2 =
𝛾1 + 2

𝑐2 − 𝑐1
2 

 

We reject the null hypothesis 𝐻0: 𝛴 = 𝜎
2[(1 − 𝜌)𝐼 + 𝜌𝐽]  at  𝛼 level of significance if 𝐹 > 𝐹(𝛼,𝛾1,𝛾2). 

Example 11.6.1.: Rao (1948) measured the weight of cork borings taken from the north (N), east 

(E), south (S), and west (W) directions of 28 trees. A comparison is made of average thickness, 

and hence weight, in the four directions. A standard ANOVA approach to these repeated measures 

design would be valid if (11.1) holds. To Test 𝐻0: 𝛴 = 𝜎
2[(1 − 𝜌)𝐼 + 𝜌𝐽] for the data of below 

table: 



Tree N E S W 

1 72 66 76 77 

2 60 53 66 63 

3 56 57 64 58 

4 41 29 36 38 

5 32 32 35 36 

6 30 35 34 26 

7 39 39 31 27 

8 42 43 31 25 

9 37 40 31 25 

10 33 29 27 36 

11 32 30 34 28 

12 63 45 74 63 

13 54 46 60 52 

14 47 51 52 43 

15 91 79 100 75 

16 56 68 47 50 

17 79 65 70 61 

18 81 80 68 58 

19 78 55 67 60 

20 46 38 37 38 

21 39 35 34 37 

22 32 30 30 32 

23 60 50 67 54 

24 35 37 48 39 

25 39 36 39 31 

26 50 34 37 40 

27 43 37 39 50 

28 48 54 57 43 

 



The sample mean �̅� is 

�̅�1 =
1

𝑛
∑𝑋1𝑖

𝑛

𝑖=1

 

=
1415

28
= 50.54 

�̅�2 =
1

𝑛
∑𝑋2𝑖

𝑛

𝑖=1

 

=
1293

28
= 46.18 

�̅�3 =
1

𝑛
∑𝑋3𝑖

𝑛

𝑖=1

 

=
1391

28
= 49.68 

�̅�4 =
1

𝑛
∑𝑋4𝑖

𝑛

𝑖=1

 

=
1265

28
= 45.18 

And sample covariance matrix 𝑆 is 

𝑆 = [

𝑠11 𝑠12 𝑠13 𝑠14
𝑠21 𝑠22 𝑠23 𝑠24
𝑠31 𝑠32 𝑠33 𝑠34
𝑠41 𝑠42 𝑠43 𝑠44

] 

𝑠11 =
1

𝑛 − 1
∑(𝑋𝑖1 − �̅�1)

2

𝑛

𝑖=1

 

=
1

27
(7840.96) = 290.41 



𝑠21 = 𝑠12 

=
1

𝑛 − 1
∑(𝑋𝑖1 − �̅�1)(𝑋𝑖2 − �̅�2)

𝑛

𝑖=1

 

=
1

27
(6041.32) = 223.75 

Similarly, 

𝑠13 = 𝑠31 = 288.44, 

𝑠41 = 𝑠14 = 226.27, 

 𝑠22 = 219.93, 

 𝑠33 = 350.00, 

 𝑠44 = 226.00, 

 𝑠43 = 𝑠34 = 259.54, 

 𝑠42 = 𝑠24 = 171.37, 

 𝑠32 = 𝑠23 = 229.06 

𝑆 = [

290.41 223.75 288.44 226.27
223.75 219.93 229.06 171.37
288.44 229.06 350.00 259.54
226.27 171.37 259.54 226.00

] 

The determinant of 𝑆 is 

|𝑆| = 25617563.28 

And 

𝑠2 =
1

𝑝
∑𝑠𝑗𝑗

𝑝

𝑗=1

 



=
1

4
(290.41 + 219.93 + 350.00 + 226.00) 

=
1086.34

4
= 271.59 

𝑠2𝑟 =
1

𝑝(𝑝 − 1)
∑𝑠𝑗𝑘
𝑗≠𝑘

 

=
1

4 × 3
(223.75 + 223.75 + 288.44 + 288.44 + 226.27 + 226.27 + 229.06 + 229.06

+ 171.37 + 171.37 + 259.54 + 259.54) 

=
2796.86

12
= 233.072 

𝑟 =
𝑠2𝑟

𝑠2
=
233.072

271.59
= 0.858 

Using (11.4) and (11.5), we have 

𝑢 =
|𝑆|

(𝑠2)𝑝(1 − 𝑟)𝑝−1[1 + (𝑝 − 1)𝑟]
 

=
25,617,563.28

(271.59)4(1 − 0.858)4−1[1 + (4 − 1)0.858]
 

=
25,617,563.28

(5440704019)(0.003)(3.574)
 

=
25,617,563.28

55676853.2
 

= 0.461 

𝑢′ = − [𝜈 −
𝑝(𝑝 + 1)2(2𝑝 − 3)

6(𝑝 − 1) (𝑝2 + 𝑝 − 4)
] 𝑙𝑛 𝑢 



= − [27 −
4(4 + 1)2(2 × 4 − 3)

6(4 − 1) (42 + 4 − 4)
] 𝑙𝑛 0.461 

= − [27 −
4(5)2(5)

6(3) (16)
] (−0.774) 

= (25.26)(0.774) 

= 19.55 

Since 𝜒(0.05,8)
2 = 15.5 

Hence, 𝜒𝑐𝑎𝑙
2 = 19.55 > 15.5 = 𝜒𝑡𝑎𝑏(0.05,8)

2 , we don’t accept the null hypothesis, i.e., Σ does not 

have pattern (11.3). 

11.7   Multivariate Tests of Equality of Several Covariance Matrices 

Suppose there are 𝑘 multivariate populations each of dimension 𝑝, with covariance 

matrices Σ1, Σ2, . . . , Σ𝑘. The hypothesis of equality of covariance matrices is 

𝐻0: Σ1 = Σ2 . . . = Σ𝑘 

For 𝑘 = 2, the test reduces to 𝐻0: Σ1 = Σ2. Suppose we have independent samples of size 

𝑛1, 𝑛2, … , 𝑛𝑘 from multivariate normal distributions, 𝜈𝑖 = 𝑛𝑖 − 1 and covariance matrix of the 𝑖𝑡ℎ 

sample is 𝑆𝑖, which is an an unbiased estimator of Σ𝑖. Further  

𝑆𝑝𝑙 =
∑ 𝜈𝑖𝑆𝑖
𝑘
𝑖=1

∑ 𝜈𝑖
𝑘
𝑖=1

 

       =
𝐸

𝜈𝐸
 

Where 𝑆𝑝𝑙 is the pooled sample covariance matrix, 𝐸 = ∑ 𝜈𝑖𝑆𝑖
𝑘
𝑖=1 , 

 𝜈𝐸 =∑ 𝜈𝑖
𝑘

𝑖=1
 



       = ∑ 𝑛𝑖
𝑘

𝑖=1
− 𝑘. 

Then the test statistic is 

𝑀 =
|𝑆1|

𝜈1
2 … |𝑆𝑘|

𝜈𝑘
2

|𝑆𝑝𝑙|
(∑ 𝜈𝑖

𝑘
𝑖=1 )/2

                                                                                                                              (11.7) 

Obviously 𝜈𝑖 > 𝑝 ∀ 𝑖 otherwise |𝑆𝑖| = 0 for some 𝑖 leading to 𝑀 = 0. 

The statistic M is a modification of the likelihood ratio with 0 ≤ 𝑀 ≤ 1. Let us write 

𝑀 = (
𝑆1
𝑆𝑝𝑙
)

𝜈1
2

…(
𝑆𝑘
𝑆𝑝𝑙
)

𝜈𝑘
2

                                                                                                                       (11.8) 

If 𝑆1 = 𝑆2 = ⋯ = 𝑆𝑘 = 𝑆𝑝𝑙, then 𝑀 = 1. Further, as the disparity among 𝑆1, 𝑆2, … , 𝑆𝑘 increases, 

M approaches to zero. Thus, the values near 1 favor 𝐻0 while values near 0 leading to rejection of 

𝐻0. If we assume 𝜈1 = 𝜈2 = 𝜈3 = 𝜈, then for the first set, 

𝑀1 = {(
1

3
) (
2

3
) (
6

3
)}

𝜈
2

 

= {(0.33)(0.67)(2.00)}
𝜈
2 

= {0.44}
𝜈
2 

For the Second set, 

𝑀2 = {(
3

3
) (
2

3
) (
4

3
)}

𝜈
2

 

= {(1)(0.67)(1.33)}
𝜈
2 

= {0.89}
𝜈
2 

In 𝑀1, the smallest value, 0.33 reduces the product proportionally more than the largest value, 2, 

increase it. 



Box M Test: Box has given 𝜒2 and 𝐹-approximations for the distribution of 𝑀. Both the 

approximations referred as Box's M-test. First, we consider the 𝜒2 approximation. Consider 

𝑐1 = [∑
1

𝜈𝑖

𝑘

𝑖=1

−
1

∑ 𝜈𝑖
𝑘
𝑖=1

] [
2𝑝2 + 3𝑝 − 1

6(𝑝 + 1)(𝑘 − 1)
] 

Then, approximately 

𝑢 = −2(1 − 𝑐1)𝑙𝑛𝑀~𝜒
2(𝜂) 

where 

𝜂 =
1

2
(𝑘 − 1)𝑝(𝑝 + 1) 

Taking ln on both sides in (11.7), we have 

𝑙𝑛 𝑀 =
1

2
∑ 𝜈𝑖ln |𝑆𝑖|

𝑘

𝑖=1
−
1

2
(∑ 𝜈𝑖

𝑘

𝑖=1
) ln |𝑆𝑝𝑙| 

We reject 𝐻0 if 𝑢 > 𝜒𝛼
2(𝜂), where 𝜒𝛼

2(𝜂), is the upper 100𝛼% point of the 𝜒2 distribution with 𝜂 

degrees of freedom. For 𝜈1 = ⋯ = 𝜈𝑘 = 𝜈 

𝑐1 = [
𝑘

𝜈
−
1

𝑘𝜈
] [

2𝑝2 + 3𝑝 − 1

6(𝑝 + 1)(𝑘 − 1)
] 

     =
(𝑘 + 1)(2𝑝2 + 3𝑝 − 1)

6𝑘𝜈(𝑝 + 1)
 

For the 𝐹-approximation, we define 

𝑐2 =
(𝑝 − 1)(𝑝 + 2)

6(𝑘 − 1)
[∑

1

𝜈𝑖
2

𝑘

𝑖=1

−
1

(∑ 𝜈𝑖
𝑘
𝑖=1 )

2] 

𝑎1 =
1

2
(𝑘 − 1)𝑝(𝑝 + 1), 



 𝑎2 =
𝑎1 + 2

|𝑐2 − 𝑐1
2|
, 

𝑏1 =

1 − 𝑐1 − (
𝑎1
𝑎2
2)

𝑎1
, 

𝑏2 =

(1 − 𝑐1 + (
2
𝑎2
))

𝑎2
. 

If 𝑐2 > 𝑐1
2, 𝐹 = −2𝑏1ln (𝑀) is approximately 𝐹(𝑎1, 𝑎2). 

If 𝑐2 < 𝑐1
2, 

𝐹 = −
2𝑎2𝑏2ln (𝑀)

𝑎1(1 + 2𝑏2 ln(𝑀))
 

is approximately 𝐹(𝑎1, 𝑎2). In both cases we reject 𝐻0 if 𝐹 > 𝐹(𝛼; 𝑎1, 𝑎2). If 𝜈1 = ⋯ = 𝜈𝑘 = 𝜈, 

we have 

𝑐1 =
(𝑘 + 1)(2𝑝2 + 3𝑝 − 1)

6𝑘𝜈(𝑝 + 1)
 

𝑐2 =
(𝑝 − 1)(𝑝 − 2)(𝑘2 + 𝑘 + 1)

6𝑘2𝜈2
 

11.8 Mean Vector and Covariance Matrix are Equal to Given Vector and   

Matrix 

Lemma 11.8.1: Let Y be an observation vector on a random vector with density 𝑓(𝑦, 𝜃), where 𝜃 

is a parameter vector in a space Ω. Let 𝐻𝑎 be the hypothesis 𝜃 ∈ Ω𝑎 ⊂ Ω, let 𝐻𝑏 be the hypothesis 

𝜃 ∈ 𝛺𝑏 ⊂ 𝛺𝑎, and let 𝐻𝑎𝑏 be the hypothesis 𝜃 ∈ Ω𝑏 ⊂ Ω. If 𝜆𝑎, the likelihood ratio criterion for 

testing 𝐻𝑎, 𝜆𝑏, the likelihood ratio criterion for testing 𝐻𝑏 and 𝜆𝑎𝑏, the likelihood ratio criterion 

for testing 𝐻𝑎𝑏 are uniquely defined for the observation vector Y, then 𝜆𝑎𝑏 = 𝜆𝑎𝜆𝑏. 



Criteria: Suppose 𝑌 is a 𝑞-component random vector with mean vector 𝜉𝑌 = 𝜈 covariance matrix 

is 𝜉(𝑌 − 𝜈)(𝑌 − 𝜈)′ = Ψ, then 

(𝑌 − 𝜈)′Ψ−1(𝑌 − 𝜈) = 𝑞 + 2 

This is called concentration ellipsoid of 𝑌. If Ψ is known, then the statistic (�̅� − 𝜈0)
′Ψ−1(�̅� − 𝜈0) 

is used for testing hypothesis 𝐻0: 𝜈 = 𝜈0. 

Combine the hypothesis 𝐻1: Ψ = Ψ0 and 𝐻2: 𝜈 = 𝜈0 and test 𝐻: 𝜈 = 𝜈0 , Ψ = Ψ0 

Where Ψ0is positive definite matrix. 

Given a sample 𝑌1, 𝑌2, … , 𝑌𝑁 from 𝑁(𝜈,Ψ). 

Let 𝑋 = 𝐶(𝑌 − 𝜈0) 

where 

𝐶Ψ0𝐶
′ = 𝐼 

Then 𝑋1, 𝑋2, … , 𝑋𝑁 constitute a sample from 𝑁(𝜇, Σ) and the hypothesis is 𝐻: 𝜇 = 0 , Σ = 𝐼. 

The likelihood ratio criterion for 𝐻: 𝜇 = 0 given  Σ = 𝐼 is 𝜆2 = 𝑒𝑥𝑝 (−
1

2
𝑁�̅�′�̅�). 

The likelihood ratio criterion for 𝐻 is (by Lemma 11.8.1) 

𝜆 = 𝜆1𝜆2 

    = (
𝑒

𝑁
)
𝑝𝑁/2

|𝐴|𝑁/2𝑒𝑥𝑝 (−
1

2
𝑡𝑟 𝐴) 𝑒𝑥𝑝 (−

1

2
𝑁�̅�′�̅�) 

     = (
𝑒

𝑁
)
𝑝𝑁/2

|𝐴|𝑁/2𝑒𝑥𝑝 {−
1

2
𝑡𝑟(𝐴 + 𝑁�̅�′�̅�)} 

      = (
𝑒

𝑁
)
𝑝𝑁/2

|𝐴|𝑁/2𝑒𝑥𝑝 {−
1

2
∑𝑋𝛼

′ 𝑋𝛼} 

The two factors 𝜆1 and 𝜆2 are independent because 𝜆1 is a function of 𝐴 and 𝜆2 is a function of �̅� 

and 𝐴 and �̅� are independent.  



𝜉𝜆2
ℎ = 𝜉 exp (

1

2
ℎ𝑁∑�̅�𝑖

2) 

        = 𝜉 exp (
1

2
ℎ 𝜒𝑝

2) 

        = (1 + ℎ)−𝑝/2 

The ℎ𝑡ℎ moment of 𝜆 is 

𝜉𝜆ℎ = 𝜉𝜆1
ℎ𝜉𝜆2

ℎ 

        = (
2𝑒

𝑁
)
𝑝𝑁ℎ/2 1

(1 + ℎ)𝑝𝑁(1+ℎ)/2

Γ𝑝 {
1
2 (𝑛 + 𝑁ℎ)}

Γ𝑝 (
𝑛
2)

 

Under the null hypothesis, then 

−2 log 𝜆 = −2 log 𝜆1 − 2 log 𝜆2 

An asymptotic expansion of the distribution of −2 log 𝜆 is 

𝑃[−2𝜌 log 𝜆 ≤ 𝑍] 

= 𝑃[𝜒𝑓
2 ≤ 𝑍] +

𝛾2
𝜌2𝑁2

[𝑃(𝜒𝑓+4
2 ≤ 𝑍) − 𝑃(𝜒𝑓

2 ≤ 𝑍)] + 𝑂(𝑁−3) 

𝜌 = 1 −
2𝑝2 + 9𝑝 − 11

6𝑁(𝑝 + 3)
 

𝛾2 =
𝑝(2𝑝4 + 18𝑝3 + 49𝑝2 + 36𝑃 − 13)

288(𝑝 − 3)
 

Let us define 𝑋𝛼 = 𝐶(𝑌𝛼 − 𝜈0), 𝛼 = 1,… ,𝑁, then 

∑𝑋𝛼
′ 𝑋𝛼 =∑(𝑌𝛼 − 𝜈0)

′ 𝐶′𝐶(𝑌𝛼 − 𝜈0) 

                  = ∑(𝑌𝛼 − 𝜈0)
′Ψ0

−1(𝑌𝛼 − 𝜈0) 



                  = 𝑡𝑟 𝐴 + 𝑁�̅�′�̅�   (𝐴 =∑(𝑋𝛼 − �̅�)(𝑋𝛼 − �̅�)
′ ) 

                  = 𝑡𝑟 (𝐵Ψ0
−1) + 𝑁(�̅� − 𝜈0)

′Ψ0
−1(�̅� − 𝜈0) 

where |𝐴| = |𝐵Ψ0
−1|. 

11.9   Summary 

In this unit, we have covered the concepts of Testing of Hypothesis under following situations: 

• We have test of equality of covariance matrices, 

• We have discussed Sphericity tests for covariance matrix, 

• We have explained 𝐻0: Σ = 𝜎
2[(1 − 𝜌)𝐼 + 𝜌𝐽],  

• We have discussed Multivariate Tests of Equality of Several Covariance Matrices, 

• We have derived Mean vector and covariance matrix are equal to given vector and 

matrix. 

11.10  Self-Assessment Exercises 

1. Show that if 𝑆 = Σ0 in (11.1), then 𝑢 = 0. 

2. (i) Calculate 𝑀 as given in (11.5) for  

𝑆1 = [
2 1
1 4

]  , 𝑆2 = [
4 3
3 6

] 

Assume 𝜈1 = 𝜈2 = 5. 

(ii) Calculate 𝑀 for  

 𝑆1 = [
2 1
1 4

]  , 𝑆2 = [
10 15
15 30

] 

Assume 𝜈1 = 𝜈2 = 5. 

In (ii), 𝑆1 and 𝑆2 differ more than in (i) and 𝑀 is accordingly much smaller. 

3. Show that 𝑀 in (11.7) can be expressed in the form given in (11.8). 



4. Rao (1948) measured the weight of cork borings taken from the north (N), east (E), south 

(S), and west (W) directions of 28 trees. Test 𝐻0: Σ = 𝜎
2𝐼 and 𝐻0: 𝐶ΣC

′ = 𝜎2𝐼 for the data 

in Example 11.6.1. 

5. Test 𝐻0: Σ = 𝜎
2𝐼 and 𝐻0: 𝐶ΣC

′ = 𝜎2𝐼 for the calculator speed data of below table. 

Calculator Speed Data 

Subjects 𝐴1 𝐴2 

𝐵1 𝐵2 𝐵1 𝐵2 

𝑆1 30 21 21 14 

𝑆2 22 13 22 5 

𝑆3 29 13 18 17 

𝑆4 12 7 16 14 

𝑆5 23 24 23 8 

 

6. Test 𝐻0: Σ = 𝜎
2[(1 − 𝜌)𝐼 + 𝜌𝐽] for the calculator speed data in above Table. Use both 𝜒2 

and 𝐹 approximations. 
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12.1   Introduction 



In many fields of study, it is common to explore the relationship between one or more 

dependent (or response) variables and one or more independent (or predictor) variables. 

This is often achieved using linear models, which provide a mathematical framework for 

understanding how changes in the predictor variables influence the response variables. 

In this unit, we will focus on constructing multivariate linear models, estimating their 

parameters, and determining which predictor variables to include when building the model. 

We will explore the different scenarios where one or multiple response and predictor 

variables are involved, and examine methods for selecting the most relevant variables. This 

is important to create models that are both interpretable and capable of making accurate 

predictions. 

By the end of this unit, you will understand how to apply linear regression techniques, 

evaluate the significance of predictors, and refine models to ensure they are useful for real-

world applications. 

We can distinguish three cases according to the number of variables: 

1. Simple linear regression: One 𝑦 and one 𝑥. For example, suppose we wish to predict college 

grade point average (GPA) based on an applicant’s high school GPA. 

2. Multiple linear regression: One 𝑦 and several 𝑥′𝑠. We could attempt to improve our 

prediction of college GPA by using more than one independent variable, for example, high 

school GPA, standardized test scores (such as ACT or SAT), or rating of high school. 

3. Multivariate multiple linear regression: Several 𝑦′𝑠 and several 𝑥′𝑠. In the preceding 

illustration, we may wish to predict several 𝑦′𝑠 (such as number of years of college the person 

will complete or GPA in the sciences, arts, and humanities). As another example, suppose the 

Air Force wishes to predict several measures of pilot efficiency. These response variables 

could be regressed against independent variables (such as math and science skills, reaction 

time, eyesight acuity, and manual dexterity). 

Multivariate Analysis of Variance (MANOVA) is a statistical technique used when we 

are interested in understanding the relationship between one or more independent variables 

and multiple dependent (outcome) variables. Unlike ANOVA, which focuses on a single 

outcome, MANOVA allows us to analyse several outcomes simultaneously, taking into account 

the potential interrelationships between them. 



The principles of the linear model naturally extend to MANOVA, making it a versatile 

tool for examining complex data. 

12.2  Objectives 

After going through this unit, you will be able to: 

• Multivariate linear regression model 

• Estimation of parameters and their properties 

• Multivariate analysis of variance [MANOVA] of one-way classified data 

• Wilk’s lambda criterion 

12.3   Multivariate Linear Regression Model 

Multivariate regression is a sophisticated technique used to determine the extent to which 

various independent variables are linearly related to multiple dependent variables. This linear 

relationship is established through the correlation between the variables. By applying multivariate 

regression to the dataset, researchers can then predict the behaviour of the response variable based 

on its corresponding predictor variables. 

12.3.1   Characteristics of Multivariate Regression 

• Multivariate regression allows one to have a different view of the relationship between 

various variables from all the possible angles. 

• It helps to predict the behaviour of the response variables depending on how the predictor 

variables move. 

• Multivariate regression can be applied to various machine learning fields, including 

economics, science, and medical research studies. 

12.3.2   Example of Multivariate Regression 

1. In a hypothetical scenario, a doctor has meticulously gathered data on individuals’ blood 

pressure, weight, and red meat consumption to investigate the correlation between health 



and dietary habits. This extensive dataset offers valuable insights into how choices such as 

red meat intake may impact physiological factors like blood pressure and weight. 

2. An agricultural expert is determined to uncover the reasons behind the destruction of crops 

in a particular area. By examining recent weather patterns, water availability, irrigation 

methods, chemical usage, and other relevant factors, the expert aims to elucidate why the 

crops have been wilting and failing to produce fruit. 

12.3.3   Advantages of Multivariate Regression 

• The multivariate regression method helps to find a relationship between multiple variables 

or features. 

• It also defines the correlation between independent variables and dependent variables. 

12.3.4  Disadvantages of Multivariate Regression 

• Multivariate regression technique requires high-level mathematical calculations. 

• It is complex. 

• The output of the multivariate regression model is difficult to analysis. 

• The loss can use errors in the output. 

• Multivariate regression yields better results when used with larger datasets rather than small 

ones. 

12.4  Estimation of Parameters and their Properties 

The multivariate regression model with 𝑝 independent variables is 

𝑌 = 𝑋𝐵 + 𝜖                                                                                                                                              (12.1) 

where 

𝑌 is 𝑛 × 𝑝 matrix of observations on dependent or response variable given by 

𝑌 = [

𝑦11 𝑦12 ⋯ 𝑦1𝑝
𝑦21 𝑦22 ⋯ 𝑦2𝑝
⋮ ⋮ ⋯ ⋮
𝑦𝑛1 𝑦𝑛2 ⋯ 𝑦𝑛𝑝

] 



𝑋 is 𝑛 × 𝑞 matrix of observations on independent variables with 𝑞 predictors and given by 

𝑋 = [

𝑥11 𝑥12 ⋯ 𝑥1𝑞−1 𝑥1𝑞
𝑥21 𝑥22 ⋯ 𝑥2𝑞−1 𝑥2𝑞
⋮ ⋮ ⋯ ⋮ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑞−1 𝑥𝑛𝑞

] 

𝐵 is 𝑞 × 𝑝 matrix of regression parameters given by 

𝐵 =

[
 
 
 
𝛽11 𝛽12 ⋯ 𝛽1𝑝
𝛽21 𝛽22 ⋯ 𝛽2𝑝
⋮ ⋮ ⋯ ⋮
𝛽𝑞1 𝛽𝑞2 ⋯ 𝛽𝑞𝑝]

 
 
 

 

𝜀 is 𝑛 × 𝑝 matrix of error term, defined as 

𝜖 = [

𝜀11 𝜀12 ⋯ 𝜀1𝑝
𝜀21 𝜀22 ⋯ 𝜀2𝑝
⋮ ⋮ ⋯ ⋮
𝜀𝑛1 𝜀𝑛2 ⋯ 𝜀𝑛𝑝

] 

12.4.1   Assumptions 

(1) 𝐸[𝑌] = 𝑋𝐵 or 𝐸(𝜖) = 0 

(2) 𝐶𝑜𝑣(𝑦𝑖) = Σ for all 𝑖 = 1,2,… , 𝑛 

(3) 𝐶𝑜𝑣(𝑦𝑖 , 𝑦𝑗) = 0 for all 𝑖 ≠ 𝑗 

The covariance matrix Σ in assumption (2) contains the variances and covariances of 

𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑝 in any 𝑦𝑖, the 𝑖𝑡ℎ column of 𝑌 and given by 

𝐶𝑜𝑣 (𝑦𝑖) = Σ 

= [

𝜎11 𝜎12 ⋯ 𝜎1𝑝
𝜎21 𝜎22 ⋯ 𝜎2𝑝
⋮ ⋮ ⋯ ⋮
𝜎𝑝1 𝜎𝑝2 ⋯ 𝜎𝑝𝑝

] 

12.4.2   An Estimator for 𝑩 



The least squares estimate of 𝐵 minimize the sum of squares of deviations of the 𝑛 observed 

𝑦’𝑠 from their “modeled” values, that is, from their values �̂�𝑖 predicted by the model. We start with 

the equation corresponding to the 𝑖𝑡ℎ response variable: 

𝑌(𝑖) = 𝑍𝛽(𝑖) + 𝜖(𝑖); 𝑖 = 1,… , 𝑝. 

Here 𝑌(𝑖) is the 𝑖𝑡ℎ column of 𝑌, 𝛽(𝑖) is the 𝑖𝑡ℎ column of 𝐵, and 𝜖(𝑖) is the 𝑖𝑡ℎ column of 𝜖. 

 Thus, the least squares estimator of 𝛽(𝑖), �̂�(𝑖), is obtained by minimizing 

𝑆𝑆𝐸𝑖 = (𝑌(𝑖) − 𝑋𝛽(𝑖))′(𝑌(𝑖) − 𝑋𝛽(𝑖))  

The value of 𝛽(𝑖)̂  that minimizes 𝑆𝑆𝐸𝑖 in above equation is given by 

�̂�(𝑖) = (𝑋
′𝑋)−1𝑋′𝑌(𝑖);   𝑖 = 1, … , 𝑝. 

Then, the least squares estimator of 𝐵, denoted by �̂� is 

�̂� = (�̂�(1), … , �̂�(𝑝)) 

    = (𝑋′𝑋)−1𝑋′𝑌 

The predicted value of 𝑌 is 

�̂� = 𝑋�̂� 

    = 𝑋(𝑋′𝑋)−1𝑋′𝑌 

Further, the matrix of estimated residuals is 

𝜖̂ = 𝑌 − �̂� 

    = 𝑌 − 𝑋�̂� 

    = [𝐼 − 𝑋(𝑋′𝑋)−1𝑋′]𝑌 

We observe that  

𝑋′[𝐼 − 𝑋(𝑋′𝑋)−1𝑋′] = 0 

This implies that 

�̂�′𝜖̂ 



= 𝑌′𝑋′(𝑋′𝑋)−1𝑋′[𝐼−𝑋(𝑋
′𝑋)

−1
𝑋′] 

= 0. 

12.4.3   Properties of Least Squares Estimators �̂� 

�̂� has the following properties: 

1. The estimator �̂� is unbiased, that is, 𝐸(�̂�) = 𝐵. This means that if repeated random samples 

from the same population, the average value of �̂� would be 𝐵. 

2. The least squares estimators �̂�𝑗𝑘 in �̂� have minimum variance among all possible linear unbiased 

estimators. This result is known as the Gauss–Markov theorem. The restriction to unbiased 

estimators is necessary to exclude trivial estimators such as a constant, which has variance equal 

to zero, but is of no interest. This minimum variance property of least squares estimators is remark 

able for its distributional generality; normality of the 𝑦’𝑠 is not required. 

3. All �̂�𝑗𝑘′𝑠 in �̂� are correlated with each other. This is due to the correlations among the 𝑥’𝑠 and 

among the 𝑦’𝑠. The �̂�′𝑠 within a given column of �̂� are correlated because 𝑥1, 𝑥2, … , 𝑥𝑞 are 

correlated. If 𝑥1, 𝑥2, … , 𝑥𝑞 were orthogonal to each other, the �̂�′𝑠 within each column of �̂� would 

be uncorrelated. Thus, the relationship of the 𝑥’𝑠 to each other affects the relationship of the �̂�′𝑠 

within each column to each other. On the other hand, the �̂�′𝑠 in each column are correlated with 

�̂�′𝑠 in other columns because 𝑦1, 𝑦2, … , 𝑦𝑝 are correlated. 

12.4.4   An Estimator for 𝚺 

The matrix of error sum of squares and cross products matrices is 

𝜖̂′ 𝜖̂ = (𝑌 − 𝑋�̂�)
′
(𝑌 − 𝑋�̂�). 

It can be shown that 

𝐸(𝜖̂′ 𝜖̂) = (𝑛 − 𝑞)Σ 

An unbiased estimator of Σ is given by 



𝑆𝑒 =
𝜖̂′ 𝜖̂

𝑛 − 𝑞
 

     =
(𝑌 − 𝑋�̂�)

′
(𝑌 − 𝑋�̂�)

(𝑛 − 𝑞 − 1)
 

     =
𝑌′𝑌 − �̂�′𝑋′𝑌

(𝑛 − 𝑞 − 1)
 

Further 

𝑌′𝑌 = (�̂� + 𝜖)̂′(�̂� + 𝜖)̂ 

        = �̂�′�̂� + 𝜖̂′ 𝜖̂ + 0 + 0 

𝑌′𝑌: Total Sum of squares and cross products 

�̂�′�̂�: predicted sum of squares and cross products 

𝜖̂′ 𝜖̂: residual (error) sum of squares and cross products 

12.5  Multivariate Analysis of Variance [MANOVA] of One-Way Classified 

Data 

In the univariate case, the one-way ANOVA investigates the effects of a categorical variable 

(the classes or groups or treatments, i.e., independent variables) on a continuous outcome variable, 

i.e., the dependent variable. We have, 𝑚 random variables 𝑥1, … , 𝑥𝑚(groups or treatments). For 

𝑗𝑡ℎ group sample is, say, {𝑥1𝑗 , 𝑥2𝑗 , … , 𝑥𝑛𝑗}. Group 𝑗 is said to have 𝑛𝑗observations with 𝑛 =

∑ 𝑛𝑗
𝑚
𝑗=1 . 

Our objective is to test the null hypothesis of equality of means of all the groups 𝐻0: 𝜇1 =

𝜇2 = ⋯ = 𝜇𝑚. 

We use the ANOVA for one-way classification and then the F-test statistic is 

𝐹𝐶𝑎𝑙 =
𝑀𝑆𝐵

𝑀𝑆𝑊
~𝐹(𝑚 − 1, 𝑛 − 𝑚)(𝑢𝑛𝑑𝑒𝑟 𝐻𝑜). 

Here MSB denotes the mean sum of squares between classes (or groups or treatments) and 

MSW denotes the mean sum of squares within classes (or mean error sum of squares). 



We reject the null hypothesis at 𝛼 level of significance if  

𝐹𝐶𝑎𝑙 > 𝐹𝑐𝑟𝑖𝑡(𝛼;𝑚 − 1, 𝑛 − 𝑚).  

Multivariate analysis of variance (MANOVA) considers the effects of a categorical variable 

(the groups, i.e., independent variables) on a vector of dependent variables. One of the options is 

to perform multiple ANOVA one for each dependent variable. However, the problems in 

performing multiple ANOVA, one for each dependent variable, are  

(i) it would introduce additional experiment-wise error and  

(ii) it would not consider the correlations between the dependent variables.  

It is, therefore, possible that MANOVA shows a significant difference between the means while 

the individual ANOVA do not. 

MANOVA can also be used when one has repeated measures. In this case, the repeated levels 

are taken as dependent variables. 

12.5.1   Assumption 

• Observation Independence: Each observation should be independent of one another. For 

example, one student’s performance should not influence another’s. 

• Multivariate Normality: The combined dependent variables should be approximately 

normally distributed for each group of the independent variable. 

• Homogeneity of Variance-Covariance Matrices: The variance-covariance matrix of the 

dependent variables should be similar for all groups. This means that the spread and 

relationship between variables should be consistent across groups. 

• Linear Relationships: There should be a linear relationship between each pair of 

dependent variables for each group of the independent variable. 

• Absence of Multicollinearity: The dependent variables should not be too highly 

correlated. If two variables are very similar, it doesn’t add value to have both. 

12.5.2   Notations 

In One-way MANOVA, suppose we have 𝑚 random vectors 𝑋1, … , 𝑋𝑚 (representing 

groups or treatments). Each 𝑋𝑗is a 𝑘 × 1 column vector of form 



(

𝑥𝑗1
⋮
𝑥𝑗𝑘
) 

where each 𝑥𝑗𝑝, 𝑗 = 1, … ,𝑚; 𝑝 = 1,… , 𝑘 is a random variable. 

For each random vector 𝑋𝑗we collect a sample {𝑋1𝑗 , … , 𝑋𝑛𝑗𝑗} of size 𝑛𝑗 with 𝑛 = ∑ 𝑛𝑗
𝑚
𝑗=1 =

𝑛. Each 𝑋𝑖𝑗is a 𝑘 × 1 vector  

(

𝑥𝑖𝑗1
⋮
𝑥𝑖𝑗𝑘

) ; 𝑖 = 1,… , 𝑛𝑗; 𝑗 = 1, … ,𝑚; 𝑝 = 1,… , 𝑘. 

Here index  𝑖 refers to the subject in the experiment, index 𝑗 refers to the group and index 

𝑝 refer to the position (i.e., dependent variable) within the random vector. 

Our objective is to test the null hypothesis 𝐻0: 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑚, where 

𝜇𝑗 = (

𝜇𝑗1
⋮
𝜇𝑗𝑘

) , 𝑗 = 1,… ,𝑚 

Thus, the null hypothesis is equivalent to 𝐻0: 𝜇1𝑝 = 𝜇2𝑝 = ⋯ = 𝜇𝑚𝑝 ∀ 𝑝 = 1,… , 𝑘. The 

alternative hypothesis is 𝐻1: 𝜇𝑟 ≠ 𝜇𝑗for some  𝑟 ≠  𝑗, 1 ≤ 𝑟, 𝑗 ≤ 𝑚, or equivalently, 𝜇𝑟𝑝 ≠

𝜇𝑗𝑝for some  𝑟 ≠  𝑗, and 𝑝, 1 ≤ 𝑟, 𝑗 ≤ 𝑚, 1 ≤ 𝑝 ≤  𝑘. 

We define various means as in the univariate case, except that now these means become 

k×1 vectors.  

The total (or grand) mean vector is  

�̅�𝑇 = (
�̅�1
⋮
�̅�𝑘

) , 

�̅�𝑝 =
1

𝑛
∑ ∑ 𝑥𝑖𝑗𝑝

𝑛𝑗

𝑖=1

𝑚

𝑗=1
 

The sample group mean vector for group 𝑗 is 

�̅�𝑗 = (

�̅�𝑗1
⋮
�̅�𝑗𝑘

) , 



�̅�𝑗𝑝 =
1

𝑛𝑗
∑ 𝑥𝑖𝑗𝑝

𝑛𝑗

𝑖=1
 

We define the following total cross products: 

𝐶𝑃𝑝𝑞 =

{
 

 ∑ ∑ (𝑥𝑖𝑗𝑝 − �̅�𝑝)
𝑛𝑗

𝑖=1
(𝑥𝑖𝑗𝑞 − �̅�𝑞)

𝑚

𝑗=1
  𝑖𝑓𝑝 ≠ 𝑞

∑ ∑ (𝑥𝑖𝑗𝑝 − �̅�𝑝)
2𝑛𝑗

𝑖=1

𝑚

𝑗=1
if 𝑝 = 𝑞                     

 

For 𝑝 = 𝑞, 𝐶𝑃𝑝𝑝 is the total sum of squares and measures the total variation in the 𝑝𝑡ℎ 

dependent variable. 

For 𝑝 ≠ 𝑞, 𝐶𝑝𝑞 , is the total cross-product term, which measure the dependence between the 

𝑝𝑡ℎ and 𝑞𝑡ℎ variables across all observations. 

The multivariate equivalent of the total sum of squares is the matrix of total sum of squares 

and cross products, say T, and is defined as 

𝑇 = (
𝑆𝑆11 ⋯ 𝑆𝑆1𝑘
⋮ ⋱ ⋮

𝑆𝑆𝑘1 ⋯ 𝑆𝑆𝑘𝑘

) 

Alternatively, we can write 𝑇 as 

𝑇 =∑ ∑ (𝑥𝑖𝑗 − �̅�𝑇)(𝑥𝑖𝑗 − �̅�𝑇)
′𝑛𝑗

𝑖=1

𝑚

𝑗=1
 

The diagonal terms of 𝑇 are 𝑆𝑆11, … , 𝑆𝑆𝑘𝑘.  

The hypothesis cross products for p and q are defined as: 

𝐶𝑃𝑝𝑞 =∑ 𝑛𝑗(�̅�𝑗𝑝 − �̅�𝑝)(�̅�𝑗𝑞 − �̅�𝑞)
𝑚

𝑗=1
 

The matrix of hypothesis sum of squares and cross products H is defined as 

𝐻 = (
𝐶𝑃11 ⋯ 𝐶𝑃1𝑘
⋮ ⋱ ⋮

𝐶𝑃𝑘1 ⋯ 𝐶𝑃𝑘𝑘

) 

Alternatively 



𝐻 =∑ 𝑛𝑗(�̅�𝑗 − �̅�𝑇)(�̅�𝑗 − �̅�𝑇)
𝑚

𝑗=1
 

The error (or residual) cross products for groups p and q is defined as follows: 

𝐸𝐶𝑃𝑝𝑞 =∑ ∑ (𝑥𝑖𝑗𝑝 − �̅�𝑗𝑝)(𝑥𝑖𝑗𝑞 − �̅�𝑗𝑞)
′𝑛𝑗

𝑖=1

𝑚

𝑗=1
 

Then the matrix of the error (or residual) sum of squares and cross products, denoted by 𝐸, is 

defined as 

𝐸 = (
𝐸𝐶𝑃11 ⋯ 𝐸𝐶𝑃1𝑘
⋮ ⋱ ⋮

𝐸𝐶𝑃𝑘1 ⋯ 𝐸𝐶𝑃𝑘𝑘

) 

Alternatively, we can write 𝐸 as 

𝐸 =∑ ∑ (𝑋𝑖𝑗 − �̅�𝑗)(𝑋𝑖𝑗 − �̅�𝑗)
′𝑛𝑗

𝑖=1

𝑚

𝑗=1
 

Theorem 12.5.1: We have 

𝑇 =  𝐻 +  𝐸 

Proof: We can write 

𝑇 =∑ ∑ (𝑥𝑖𝑗 − �̅�𝑇)(𝑥𝑖𝑗 − �̅�𝑇)
′𝑛𝑗

𝑖=1

𝑚

𝑗=1
 

=∑ ∑ ((𝑥𝑖𝑗 − �̅�𝑗) + (�̅�𝑗 − �̅�𝑇)) ((𝑥𝑖𝑗 − �̅�𝑗) + (�̅�𝑗 − �̅�𝑇))
′𝑛𝑗

𝑖=1

𝑚

𝑗=1
 

=∑ ∑ [(𝑥𝑖𝑗 − �̅�𝑗)(𝑥𝑖𝑗 − �̅�𝑗)
′
+ (𝑥𝑖𝑗 − �̅�𝑗)(�̅�𝑗 − �̅�𝑇)

′
+ (�̅�𝑗 − �̅�𝑇)(𝑥𝑖𝑗 − �̅�𝑗)

′𝑛𝑗

𝑖−1

𝑚

𝑗=1

+ (�̅�𝑗 − �̅�𝑇)(�̅�𝑗 − �̅�𝑇)
′
] 

=∑ 𝑛𝑗(�̅�𝑗 − �̅�𝑇)(�̅�𝑗 − �̅�𝑇)
′𝑚

𝑗=1
+∑ ∑ (𝑥𝑖𝑗 − �̅�𝑗)(𝑥𝑖𝑗 − �̅�𝑗)

′𝑛𝑗

𝑖−1

𝑚

𝑗=1
 

= 𝐻 + 𝐸. 



The last result follows using the fact that ∑ (𝑥𝑖𝑗 − �̅�𝑗)
𝑛𝑗
𝑖=1

= 0. Hence the theorem follows. 

For testing the null hypothesis𝐻0: 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑚, the following test statistics can be used. 

12.5.3  Applications of MANOVA 

• Profile analysis is a specialized application of multivariate ANOVA that allows researchers 

to examine how different groups differ across multiple dependent variables. Rather than 

focusing on overall group differences, profile analysis explores the unique patterns of 

means across the dependent variables. This technique is particularly useful when 

researchers are interested in understanding how groups differ in terms of their profiles or 

patterns of performance. For example, imagine a study that investigates the effects of three 

different teaching methods on students' academic performance across multiple subjects. By 

using profile analysis, researchers can identify if the groups show different patterns of 

performance across subjects, highlighting the effectiveness of each teaching method in 

specific subject areas. 

• Multivariate analysis of covariance (MANCOVA) is an extension of MANOVA that 

incorporates one or more covariates into the analysis. Covariates are additional 

independent variables that are related to the dependent variables but are not the primary 

focus of the study. By including covariates in the analysis, researchers can control for their 

effects and better isolate the relationship between the independent variables and the 

dependent variables. For example, in a study examining the impact of a new medication on 

patients' physical and psychological well-being, researchers may include age, gender, and 

pre-existing medical conditions as covariates. MANCOVA allows them to assess the 

effects of the medication on the dependent variables while accounting for the potential 

influence of these covariates. 

• In some research designs, it is necessary to measure the dependent variables multiple times 

over a period to capture changes or trends over time. Multivariate analysis of variance with 

repeated measures (MANOVA-RM) is a specialized technique that allows researchers to 

analyze data collected in this manner. This approach is particularly useful when studying 

longitudinal or within-subject designs. For example, imagine a study that investigates the 

effects of a new exercise program on individuals' physical fitness across three different 
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time points: before the program, midway, and after completion. By using MANOVA-RM, 

researchers can examine how the exercise program influences multiple dependent variables 

(e.g., cardiovascular endurance, muscular strength) over time, providing valuable insights 

into the program's effectiveness. 

• Multivariate Profile Analysis is an advanced technique that combines the concepts of 

profile analysis and MANOVA-RM. It allows researchers to examine how different groups 

differ in their profiles across multiple dependent variables measured repeatedly over time. 

This technique is particularly useful when studying interventions or treatments that aim to 

change individual’s profiles over time. For example, consider a study that investigates the 

effects of a mindfulness-based therapy on individual’s well-being over a 12-week period. 

By using multivariate profile analysis, researchers can examine if the therapy leads to 

different profiles of well-being across the treatment group compared to the control group, 

providing insights into the therapy's efficacy. 

12.5.4  Advantages of MANOVA 

• It effectively condenses intricate correlations between several independent and dependent 

variables, assisting in the identification of interactions that univariate testing would 

overlook. 

• By enabling to compare many dependent variables at once, MANOVA can help lower the 

possibility of Type I errors that might arise from running individual univariate tests for 

each variable. 

• It maintains statistical power by controlling experiment-wise error rates more efficiently 

by considering all dependent variables collectively. 

• A deeper comprehension of the data and underlying patterns can be facilitated by using 

MANOVA, which can shed light on the linkages and interactions between variables. 

12.5.5   Disadvantages of MANOVA 

• Complexity: Performing and interpreting a MANOVA can be challenging, particularly for 

researchers who are not familiar with multivariate statistics. It necessitates a solid grasp of 

the data and the methodology. 
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• Assumption Stringency: The assumptions of MANOVA are linearity, homogeneity of 

variance-covariance matrices between groups, and multivariate normality. Results that are 

not trustworthy may arise from breaking these presumptions. 

12.6   Wilk’s Lambda Criterion 

Wilk’s lambda distribution is a probability distribution used in multivariate hypothesis 

testing. It is defined from two independent Wishart distributed variables as the ratio distribution of 

their determinants, it is given by 

Λ =
|H|

|H + E|
 

Wilks' lambda is a test statistic used in multivariate analysis of variance (MANOVA) to 

test whether there are differences between the means of identified groups of subjects on a 

combination of dependent variables. 

Wilk’s lambda is a direct measure of the proportion of variance in the combination of 

dependent variables that is unaccounted for by the independent variable. If a large proportion of 

the variance is accounted for by the independent variable, then it suggests that there is an effect 

from the grouping variable and that the groups have different mean values. Wilk’s lambda statistic 

can be transformed to a statistic which has approximately an F distribution. This makes it easier to 

calculate the P-value. 

There are a number of alternative statistics that can be calculated to perform a similar task 

to that of Wilk’s lambda, such as Pillai's trace criterion and Roy's criterion. 

Here 𝐻 is large compared to 𝐸 when the numerator of Λ is small compared to the 

denominator. We reject the null hypothesis when Wilk’s Lambda is close to zero. 

Hotelling-Lawley Trace: 

The Hotelling Trace coefficient (also called Lawley-Hotelling or Hotelling-Lawley Trace) 

is a statistic for a multivariate test of mean differences between two groups. 

𝑇0
2 = 𝑡𝑟𝑎𝑐𝑒(𝐻𝐸−1) 

𝐻 is large compared to 𝐸 when Hotelling-Lawley Trace is large. Thus, we reject the null 

hypothesis when Hotelling-Lawley trace is large. 
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Pillai-Bartlett Trace: 

𝑉 =  𝑡𝑟(𝐻(𝐻 + 𝐸)−1) 

If H is large compared to Ethen statistic 𝑉 will be large. Thus, we reject the null hypothesis 

when 𝑉 is large. 

Roy’s Largest Root: 

𝛩 =  largest eigenvalue of 𝐻𝐸−1 

We reject the null hypothesis when 𝛩 is large. If 𝜆𝑝 is the largest eigenvalue of 𝐻𝐸−1, the 

following alternative version can also be used: 

𝜆𝑝
1 + 𝜆𝑝

 

Now we prove the following results: 

Result 12.6.1: We can write 

𝛬 =
1

|𝐼 + 𝐻𝐸−1|
 

Proof: Since 𝐸 and 𝐻 are symmetric matrices, we have 

𝐻𝐸−1 = 𝐸−1𝐻 

Then 

𝐸(𝐼 + 𝐻𝐸−1) = 𝐸(𝐼 + 𝐸−1𝐻) = 𝐸 + 𝐻 

Hence, taking determinant, we obtain 

|𝐸|  |𝐼 +  𝐻𝐸−1| = |𝐸(𝐼 + 𝐻𝐸−1)| =  |𝐸 +  𝐻|. 

Therefore 



𝛬 =
|𝐸|

|𝐸 + 𝐻|
 

=
1

|𝐼 + 𝐻𝐸−1|
 

Which leads to the required result. 

Result 12.6.2.: Let λ1, … , λk be the eigen values of HE−1. Then 

Wilk’s Lambda: 

Λ =∏
1

1 + λp

k

p=1

 

Hotelling-Lawley Trace: 

T0
2 =∑λp

k

p=1

 

Pillai-Bartlett Trace: 

V =∑
λp

1 + λp

k

p=1

 

Proof: The eigenvalues of 𝐼 + 𝐻𝐸−1 are  

1 + 𝜆1, … , 1 + 𝜆𝑘 

Hence 

|𝐼 + 𝐻𝐸−1| = ∏ (1 + 𝜆𝑝)
𝑘
𝑝=1 . 

Therefore 

𝛬 =∏
1

1 + 𝜆𝑝

𝑘

𝑝=1

 

For any matrix A, trace(A)=sum of its eigenvalues. Hence 𝑇0
2 = 𝑡𝑟(𝐻𝐸−1) = ∑ 𝜆𝑝

𝑘
𝑝=1 . 



Finally, we have 

𝐻(𝐻 + 𝐸)−1 = (𝐻−1𝐻 +𝐻−1𝐸)−1 = (𝐼 + 𝐻−1𝐸)−1 

Now, if 𝜆𝑝 is an eigen value of 𝐻𝐸−1, then 
1

1+𝜆𝑝
 is an eigen value of (𝐼 +  𝐻𝐸−1)−1. Thus 

𝑉 =  𝑡𝑟(𝐻(𝐻 + 𝐸)−1) =∑
1

1 + 𝜆𝑝

𝑘

𝑝=1
. 

Hence the result follows. 

The Pillai-Barlett Trace is like multiple correlation coefficient 𝑅2 = 𝑆𝑆𝐵 𝑆𝑆𝑇⁄ , which and 

is the proportion of the variance explained by the model. It is the most robust in cases of violation 

of the assumptions at least for balanced models. 

Wilk’s Lambda is like 𝑅2 = 𝑆𝑆𝐸 𝑆𝑆𝑇⁄ . 

The Hotelling-Lawley Trace is like F-test used in ANOVA 𝐹 = 𝑆𝑆𝐵 𝑆𝑆𝐸⁄ . 

We state the following results without proof: 

Result 12.6.3.:  

(i) Let 

𝑎 = 𝑛 −𝑚 −
𝑘 −𝑚 + 2

2
, 

𝑏 = {√
𝑘2(𝑚 − 1)2 − 4

𝑘2 + (𝑚 − 1)2 − 5

1,        otherwise

,  if𝑘2 + (𝑚 − 1)2 − 5 > 0 

𝑐 =
𝑘(𝑚 − 1) − 2

2
 

Then, under the null hypothesis 

𝐹 =
1 − Λ

1
𝑏

Λ
1
𝑏

𝑑𝑓2
𝑑𝑓1

~𝐹(𝑑𝑓1, 𝑑𝑓2)   



where 𝑑𝑓1 = 𝑘(𝑚 − 1), 𝑑𝑓2 = 𝑎𝑏 − 𝑐. 

(ii) Let 

𝑠 =  min(𝑘,𝑚 − 1) =  number of non − zero eigenvalues in 𝐻𝐸−1 

𝑡 =
|𝑘 − 𝑚 + 1| − 1

2
 

𝑢 =
𝑛 −𝑚 − 𝑘 − 1

2
 

Under the null hypothesis 

𝐹 =
𝑇0
2

𝑠
.
𝑑𝑓2
𝑑𝑓1

~𝐹(𝑑𝑓1, 𝑑𝑓2) 

with 𝑑𝑓1 = 𝑠(2𝑡 + 𝑠 + 1) = 𝑠.max(𝑘,𝑚 − 1) , 𝑑𝑓2 = 2(𝑠𝑢 + 1) 

(iii) We have under the null hypothesis 

𝐹 =
𝑉

𝑠 − 𝑉

𝑑𝑓2
𝑑𝑓1

~𝐹(𝑑𝑓1, 𝑑𝑓2) 

with 𝑑𝑓1 = 𝑠(2𝑡 + 𝑠 + 1), 𝑑𝑓2 = 𝑠(2𝑢 + 𝑠 + 1). 

The above distributions of various statistics can be used to form the critical regions for 

testing the null hypothesis 𝐻0: 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑚. 

12.7   Summary 

In this unit, we have covered the concepts of Linear Regression Model under following situations: 

• We have discussed Multivariate linear regression model. 

• We have derived Estimation of parameters and their properties. 

• We have explained Multivariate analysis of variance [MANOVA] of one-way classified 

data. 



• We have discussed Wilk’s lambda criterion 

12.8  Self-Assessment Exercises 

1. Show that 𝐸(𝑌 − 𝑋�̂�)
′
(𝑌 − 𝑋�̂�) = (𝑛 − 𝑞)Σ 

2. Show that  

 𝑌′𝑌 = �̂�′�̂� + 𝜖̂′ 𝜖̂ 

3. Discuss the multivariate analysis of variance for one-way classified data. How can we test 

the equality of means of several groups using MANOVA? 

4. Show that Wilks’ Λ can be expressed in terms of the eigenvalues of 𝐸−1𝐻 as in  

 Λ =∏(
1

1 + 𝜆𝑝
)

𝑘

𝑝=1

 

5. Show that 

 𝛬 =
1

|𝐼 + 𝐻𝐸−1|
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