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Blocks & Units Introduction 
 

The present SLM on Stochastic Process consists of sixteen Units with four Blocks. 

The Block 1-Types of Processes is the first block of said SLM, which is divided into four 

units. 

The Unit-1 - Poisson Process, is the first unit of present self-learning material, which 

describes Poisson (point) process, Brownian motion process, thermal noise, Markov short noise, 

two valued processes, Model for system reliability, mean value function and covariance kernel of 

Poisson process, Increment process of a Poisson process, Stationary and evolutionary process. 

In Unit–2 - Branching Process, introduction to Simple Branching Process, Probability 

Generating Function, Moments, define simple Branching process and give definitions of various 

terms. The probability-generating function of the process and its moments are derived. 

In Unit–3 - Wiener Process, discusses the mean value function and covariance kernel of 

Wiener process, Arc-sine law, Martingales, Stopping time, and optional sampling theorem. 

The Unit–4 Renewal Process, deals with the distribution and asymptotic distribution of 

renewal process, elementary renewal theorem, and the delayed and equilibrium renewal process. 

The Block – 2 - Markov Chains and Markov Process is the second block of said SLM, 

which is divided into four units. 

In Unit-5 - Markov Dependent Trials, discuss Two state Markov sequences and Markov 

chains. Also explain chain recurrent events and delayed recurrent event. 

The Unit-6 - Transition Probabilities, Deal with determination of n-step transition 

probabilities, Chapman-Kolmogorov equations, first return and first passage probabilities, 

fundamental theorem of probability of extinction, higher transition probabilities in Markov 

classification of states and chain.  



 
 

The Unit-7 - Classification of States, explain Classification of states, communication 

states, periodicity, stationary probability distributions, limit theorems, Ergodic chains and 

Irreducible Ergodic chains. 

The Unit-8 - Continuous Time Markov Processes, Markov processes in Continuous time. 

Interval arrival time, stopping time, optional stopping theorem, wald’s equation, forward and 

backward equations for homogeneous case, random variable technique. 

The Block – 3 - Random Walk and Queuing Process is the third block of said SLM, which 

is divided into four units. 

The Unit – 9 - Random Walk and Gambler’s Ruin Problem deals with the Random walk, 

Brownian motion as a random walk, one-dimensional, two-dimensional and three-dimensional 

random walks, duality in random walk and gambler’s ruin problem. 

The Unit – 10 - Queuing Process deals with the Birth and death processes, renewal 

process, Queuing models- Specification & Effectiveness, Measures, the Ek/M/1, M/Ek/1; M/M/1; 

M/M/k & M/G/1 queuing process. 

The Unit – 11- Distributions deals with the Compound distribution, Machine Interference 

Problem, Waiting Time Distribution for M/M/1 and M/M/k models,  

The last unit of this Block is Unit – 12 – Martingales discussed about the Martingales, 

Boob – Decomposition, Martingale convergence theorems.  

The Block – 4 - Applied Stochastic Process is the last fourth block of said SLM, which is 

divided into three units. 

The Unit – 13 - Homogeneous Process deals with the random variable technique, 

homogeneous birth and death process, divergent birth process, the general birth and death process, 

multiplicative process, effect of immigration for homogeneous process. 

 



 
 

The Unit – 14 - Non-Homogeneous Process is discussed about Simple non homogeneous 

process, Polya process, effect of immigration for non-homogeneous process, Diffusion, Backward 

Kolmogorov diffusion equation, Fokker-Planck equation. 

The unit of this SLM is Unit – 15 – Non-Markovian Process is discussed about Some 

multi-dimensional prey and predator, Non-Markovian Process, Embedded Markov Process, 

Application to population growth, epidemic and counter models. 

At the end of every block/unit the summary, self-assessment questions are given. 
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Blocks & Units Introduction 
 

The present SLM on Stochastic Process consists of sixteen Units with four Blocks. 

The Block 1-Types of Processes is the first block of said SLM, which is divided into four 

units. 

The Unit-1 - Poisson Process, is the first unit of present self-learning material, which 

describes Poisson (point) process, Brownian motion process, thermal noise, Markov short noise, 

two valued processes, Model for system reliability, mean value function and covariance kernel of 

Poisson process, Increment process of a Poisson process, Stationary and evolutionary process. 

In Unit–2 - Branching Process, introduction to Simple Branching Process, Probability 

Generating Function, Moments, define simple Branching process and give definitions of various 

terms. The probability-generating function of the process and its moments are derived. 

In Unit–3 - Wiener Process, discusses the mean value function and covariance kernel of 

Wiener process, Arc-sine law, Martingales, Stopping time, and optional sampling theorem. 

The Unit–4 Renewal Process, deals with the distribution and asymptotic distribution of 

renewal process, elementary renewal theorem, and the delayed and equilibrium renewal process. 

At the end of every block/unit the summary, self-assessment questions are given. 

  



 
 

UNIT – 1  POISSON PROCESS 

Structure 

1.1 Introduction 

1.2 Objectives  

            1.3       Poisson (Point) Process 

            1.4       Brownian Motion Process 

1.5 Thermal Noise 

1.6 Markov Short Noise 

1.7 Two Valued Process 

1.8 Model for System Reliability 

1.9 Mean value Function and Covariance Kernel of Poisson Process 

1.10 Increment Process of a Poisson Process 

1.11 Stationary and Evolutionary Process 

1.12 Summary  

1.13 Self-Assessment Exercise 

1.14 References  

1.15 Further Reading 

1.1  Introduction 

In various fields of physical and life we encounter with a random process running along in 

time. In such processes we study about the phenomenon changing with time (or some other 

parameter). We consider families of random variables (random variable), which are functions of 

time parameter, say t, i.e., families of r.v.’s of the type {𝑋𝑡, 𝑡 ∈ 𝑇}, where T is some index set of 

possible values of t.  

Thus, we define a stochastic process as the family of random variables {𝑋𝑡, 𝑡 ∈ 𝑇}. The set 

of all possible values of 𝑋𝑡, say 𝑆, is called the State Space of the stochastic process. The index set 

T is called the parameter space. 

The elements 𝑡 (∈ 𝑇) are referred as the time parameter. However, it is not necessary that 

𝑡 is always a time parameter. 



 
 

If 𝑇 is a singleton set, we have a single random variable If T is a finite set, say, 𝑇 =

 {1,2, … . . , 𝑛}, then we have a random vector the study of which pertains to the multivariate 

statistical analysis.  

In stochastic processes we usually consider processes with 𝑇 an infinite set (countable 

infinite or uncountable). Also, the state space 𝑆 can be countable or uncountable. Hence, the 

following four situations may arise: 

T countable, S countable 

T countable, S uncountable 

T uncountable, S countable 

T uncountable, S uncountable 

Examples: 

𝑋𝑡: outcome of the 𝑡𝑡ℎ throw in throning a die, 𝑡 ≥  1. Then {𝑋𝑡, 𝑡 ≥ 1} constitutes a 

stochastic process. Here 𝑆 = {1,2, … . . ,6}; 𝑇 = {1,2,3, …… . }. Both S and T are countable. 

  𝑋𝑡 is the number of telephone calls received at a switchboard during the period (0, 𝑡), 𝑡 ∈

(0,∞). Then {𝑋𝑡;  𝑡 ∈ (0,∞)} is a stochastic process Here 𝑆 =  {1,2,3, … . }. Hence S is countable 

while 𝑇 = (0,∞) is uncountable.  

𝑋𝑙 : number of weak spots in a textile fiber in a length (0, 𝑙) of the fiber. Then {𝑋𝑙; 𝑙 ∈ 𝐿} 

is a stochastic process for some index set 𝐿. 

{𝑁𝑣; 𝑣 ∈ 𝑉}, where 𝑁𝑣 is the number of insects in volume 𝑣 of the soil. 

𝑋𝑡: number of radioactive emissions recorded in a counter in the period (0, 𝑡). 

{𝑁𝑡, 𝑡 ∈ 𝑇} here 𝑁𝑡 is no of flowers in a plant at time t.  

{𝑋𝑡, 𝑡 ∈ 𝑇}, where 𝑋𝑡 is magnitude of the signal in an ECG at time t.  

{𝑋𝑛, 𝑛 ∈ 𝑁}, where 𝑋𝑛 is price of the share of some company on the nth day.  

Brownian motion {(𝑋𝑡, 𝑌𝑡 , 𝑍𝑡);  𝑡 ∈ 𝑇}, where (𝑋𝑡, 𝑌𝑡, 𝑍𝑡) is the position of a particle (in 

three-dimensional space) at time t. 

{𝑁𝑡, 𝑡 ∈ 𝑇}, where 𝑁𝑡 is size of the population of a country at time t. 

Definition: A stochastic process is an indexed family of random variables {𝑋𝑡, 𝑡 ∈ 𝑇}, so 

that we can write x(t) = X (t, w) in terms of a probability space {𝛺, ℱ, 𝑃}, 𝜔 ∈ 𝛺. Here 𝛺 is the 

sample space, ℱ is a field and 𝑃 is a probability measure.  



 
 

In some cases, the members of the family are mutually independent; see example (i), but 

in general, we come across processes whose members are mutually dependent. Different stochastic 

processes are described according to the nature of dependence among the members of the family. 

A Poisson process is a model for a series of discrete events where the average time between 

events is known, but the exact timing of events is random. The arrival of an event is independent 

of the event before.  

We know the average time between events, but the events are randomly spaced in time 

(Stochastic). We might have back-to-back failures, but we could also go years between failures 

because the process is stochastic. 

Criteria: 

• Events are independent of each other. The occurrence of one event does not affect the 

probability another event will occur. 

• The average rate (events per time period) is constant. 

• Two events cannot occur at the same time. 

For example, Customers calling a help centre, visitors to a website, radioactive decay in 

atoms, photons arriving at a space telescope, and movements in a stock price. Poisson processes 

are generally associated with time, but they don’t have to be. In the case of stock prices, we might 

know the average movements per day (events per time), but we could also have a Poisson process 

for the number of trees in an acre (events per area). 

1.2  Objectives 

After studying this unit, you should be able to 

• Define and derive the Poisson process 

• Discuss Brownian Motion Process, thermal Noise, and Markov Short Noise 

• Explain the two-valued Process and Model for System Reliability 

• Evaluate mean value Function and Covariance Kernel of Poisson Process and Increment 

Process of a Poisson Process 

• Discuss Stationary and Evolutionary Process 

https://en.wikipedia.org/wiki/Stochastic_process
https://en.wikipedia.org/wiki/Poisson_distribution#Occurrence


 
 

1.3  Poisson (Point) Process 

Let 𝑁(𝑡) be the number of occurrences of an event E in an interval (0, 𝑡]. Let 

𝑃𝑛(𝑡) = 𝑃[𝑁 (𝑡)  =  𝑛]  

This probability is a function of the time 𝑡. The possible values of 𝑛 are 𝑛 =  0,1,2, … . 

Thus 

∑𝑃𝑛(𝑡) =

∞

𝑛=0

1. 

The family of random variables {𝑁(𝑡), 𝑡 ≥  0} is a stochastic process. Here the time 𝑡 is 

continuous and the state space of 𝑁(𝑡) is discrete and interval-valued. Such a process is called a 

counting process. In interval (0, t] the points at which the event occurs are distributed randomly. 

Definition: Let 𝑡1 < 𝑡2, < ⋯ 𝑡𝑛 < ⋯ represent the time points at which the event occurs. The 

random variables 𝑇1  =  𝑡1, 𝑡2 = 𝑡2 − 𝑡1…𝑇𝑛 = 𝑡𝑛 − 𝑡𝑛−1 are called interarrival times.  

The stochastic process {𝑁(𝑡), 𝑡 ≥  0} is a continuous time parameter stochastic process 

with state space {0,1,2, . . . }. 

Now we shall show that under certain conditions 𝑁(𝑡) follows a Poisson distribution.  

Conditions for Poisson Process: 

(i) Stationarity: The probability of n occurrences (of event E) in an interval of length 

𝑡 depends only on the length 𝑡 of the interval and 𝑛 and is independent of where the interval 

is situated. Thus 𝑃𝑛(𝑡) gives the number of occurrences (of E) in the interval (𝑇, 𝑇 +

 𝑡) ∀ 𝑇 ≥  0.  

(ii) Independence: The probability of n occurrences (of E) in interval (T, T + t) is 

independent of the number of occurrences (of E) before 𝑇. This implies the independence 

of various number of events occurring during non-overlapping time intervals. Thus, for 



 
 

given 𝑛 and 𝑡1 < 𝑡2…𝑡𝑛, 𝑁𝑡1 , 𝑁𝑡2 − 𝑁𝑡1, … , 𝑁𝑡𝑛 − 𝑁𝑡𝑛−1 are independent random 

variables.  

(iii)Orderliness: The occurrence of two or more-point events at a single point of time is 

impossible. Let 𝑃>1(ℎ) be the probability of more than one occurrence (of E) in a time 

interval of length ℎ. then 

lim
𝑛→0

𝑃>1(ℎ)

ℎ
= 0, 

𝑖. 𝑒.  𝑃>1(ℎ) = 𝑜(ℎ). 

Note: Here o(ℎ) represents a function 𝑔(ℎ) defined for ℎ > 0 with the property that 

lim
𝑛→0

𝑔(ℎ)

ℎ
= 0. 

𝑜𝑟  ∑𝑃𝑘(ℎ) = 𝑜(ℎ)

∞

𝑘=2

 

Here 𝑃𝑘(ℎ) denotes the probability of 𝑘 occurrences (of E) in a time interval width h. 

(iv) 𝑃1(ℎ)  = 𝜆ℎ + 𝑜(ℎ) where 𝜆(> 0) is a constant.  

We shall see later that (i), (ii) and (iii) imply  (iv). 

Theorem 1.3.1: Under the conditions (i), (ii), (iii) and (iv), 𝑁(𝑡) follows a Poisson distribution 

with mean 𝜆𝑡, i.e, 𝑃𝑛(𝑡) is given by.  

𝑃𝑛(𝑡) =
𝑒−𝜆𝑡(𝜆𝑡)𝑛

𝑛!
; 𝑛 = 0,1,2, …                                (1.1) 

Proof: For 𝑛 ≥  0 consider 𝑃𝑛(𝑡 + ℎ). The n events can happen in time interval (0, 𝑡 + ℎ] in the 

following 𝑛 + 1 mutually exclusive ways: 

𝐴1, 𝐴2, … , 𝐴𝑛+1 

𝐴1: 𝑛 events in interval (0, 𝑡] and no event between (𝑡, 𝑡 + ℎ] 



 
 

𝐴2: 𝑛 − 1 events in interval (0, 𝑡] and one event between (𝑡, 𝑡 + ℎ] 

𝐴3: 𝑛 − 2 events in interval (0, 𝑡] and two event between (𝑡, 𝑡 + ℎ] 

⋮ 

𝐴𝑛+1: no event in interval (0, 𝑡] and 𝑛 event between (𝑡, 𝑡 +  ℎ] 

Now 

𝑃(𝐴1) 

= 𝑃[𝑁(𝑡) = 𝑛 ] 𝑃 [𝑁(ℎ) = 0|𝑁 (𝑡) = 𝑛] 

= 𝑃𝑛(𝑡)𝑃0(ℎ)                                  (from condition (ii)) 

𝑃(𝐴2) 

= 𝑃[𝑁(𝑡) = 𝑛 − 1]𝑃 [𝑁(ℎ) = 1|𝑁 (𝑡) = 𝑛 − 1] 

= 𝑃𝑛−1(𝑡)𝑃1(ℎ) 

⋮ 

𝑃(𝐴𝑛+1) = 𝑃0(𝑡)𝑃𝑛(ℎ) 

Then 

𝑃𝑛(𝑡 + ℎ) = ∑𝑃𝑛−𝑘(𝑡)𝑃𝑘(ℎ)

𝑛

𝑘=0

 

                  =  ∑𝑃𝑛−𝑘(𝑡) 𝑃𝑘(ℎ) +∑𝑃𝑛−𝑘 (𝑡) 𝑃𝑘(ℎ)

𝑛

𝑘=2

1

𝑘=0

 

                  = ∑𝑃𝑛−𝑘 (𝑡) 𝑃𝑘(ℎ) + 𝑅𝑘

1

𝑘=0

 

Now 



 
 

𝑅𝑘 =∑𝑃𝑛−𝑘 (𝑡) 𝑃𝑘(ℎ)

𝑛

𝑘=2

 

≤ ∑  𝑃𝑘(ℎ)

𝑛

𝑘=2

 

≤ ∑  𝑃𝑘(ℎ)

∞

𝑘=2

 

= 𝑃>1(ℎ) 

= 𝑜(ℎ)    (By condition (iii)) 

Hence 

𝑃𝑛(𝑡 + ℎ) = 𝑃𝑛(𝑡)𝑃0(ℎ) + 𝑃𝑛−1(𝑡)𝑃1(ℎ) + 𝑜(ℎ)                                                                       (1.2) 

Again from (iv) 

𝑃1(ℎ) = 𝜆ℎ + 𝑜(ℎ)     

and 

∑𝑃𝑛(ℎ) = 1

∞

𝑛=0

 

Therefore 

𝑃0 (ℎ) = 1 −∑𝑃𝑛(ℎ)

∞

𝑛=1

 

= 1 − 𝑃1(ℎ) − 𝑃>1(ℎ) 

= 1 − 𝜆ℎ + 𝑜(ℎ).  

Thus, from (1.2), we have 



 
 

𝑃𝑛(𝑡 + ℎ) 

= 𝑃𝑛(𝑡)[1 − 𝜆ℎ + 𝑜(ℎ)] + 𝑃𝑛−1(𝑡) [𝜆ℎ + 𝑜(ℎ)] 

= 𝑃𝑛(𝑡)(1 − 𝜆ℎ) + 𝑃𝑛−1(𝑡)𝜆ℎ + 𝑜(ℎ). 

Hence 

𝑃𝑛(𝑡 + ℎ) − 𝑃𝑛(𝑡)

ℎ
= 𝜆[𝑃𝑛−1(𝑡) − 𝑃𝑛(𝑡)] +

𝑜(ℎ)

ℎ
 

Taking limit as ℎ →  0, we have 

𝑑

𝑑𝑡
 𝑃𝑛(𝑡) =  𝑃𝑛

′ (𝑡) 

=  𝜆[𝑃𝑛−1(𝑡) − 𝑃𝑛(𝑡)]; 𝑛 ≥ 1                                                                                    (1.3) 

Which is a differential-difference equation. For 𝑛 =  0 we get 

𝑃0(𝑡 + ℎ) 

= 𝑃0(𝑡)𝑃0(ℎ) 

= 𝑃0(𝑡) [1 − 𝜆ℎ] + 𝑜(ℎ) 

or 

𝑃0(𝑡 + ℎ) − 𝑃0(𝑡)

ℎ
= 𝜆𝑃0(𝑡) + 𝑜(ℎ)                                                       (1.4)  

As ℎ →  0, (1.4) reduces to 

𝑃𝑛
′(𝑡) =  −𝜆𝑃0(𝑡) 

or 

𝑑

𝑑𝑡
log 𝑃0(𝑡) = −𝜆                                                                     (1.5) 



 
 

or 𝑙𝑜𝑔𝑃0(𝑡) = −𝜆𝑡 + 𝐾                                                             (1.6)          

𝐾 is a constant. Writing 𝐶 = 𝑒𝐾, (1.6) gives 

𝑃0(𝑡) = 𝐶𝑒−𝜆𝑡 

Since the occurrence of no event in an interval of zero width is a sure event, we have 𝑃0(0) = 1.  

Hence, we obtain 𝐶 = 1. Therefore 

𝑃0(𝑡) = 𝑒−𝜆𝑡                                                        

For 𝑛 = 1 

𝑃𝑛
′(𝑡) = 𝜆[𝑃0(𝑡) − 𝑃1(𝑡)] 

or  

𝑑

𝑑𝑡
𝑃1(𝑡) + 𝜆𝑃1 =  𝜆𝑒−𝜆𝑡 

𝑒𝜆𝑡 [
𝑑

𝑑𝑡
𝑃1(𝑡) + 𝜆𝑃1(𝑡)] = 𝜆 

or 
𝑑

𝑑𝑡
[𝑒𝜆𝑡𝑃1(𝑡)] = 𝜆 

Hence 

𝑒𝜆𝑡𝑃1(𝑡) = 𝜆𝑡 + 𝐶. 

Since 𝑃1(0) = 0,  we obtain 𝐶 =  0. Therefore 

𝑃1(𝑡) = 𝜆𝑡 𝑒
−𝜆𝑡 

=
(𝜆𝑡)1𝑒−𝜆𝑡

1!
                                    

Hence theorem holds for 𝑛 = 0 and 𝑛 = 1. Suppose the result holds for 𝑛 = 𝑘 − 1, so that 



 
 

𝑃𝑘−1(𝑡) =  
(𝜆𝑡)𝑘−1𝑒−𝜆𝑡

(𝑘 − 1)!
                                           

Then, for 𝑛 = 𝑘, the equation (1.3) becomes 

𝑑

𝑑𝑡
𝑃𝑘(𝑡) +  𝜆 𝑃𝑘(𝑡) =

(𝜆𝑡)𝑘−1𝑒−𝜆𝑡

(𝑘 − 1)!
 

or   𝑒𝜆𝑡
𝑑

𝑑𝑡
𝑃𝑘(𝑡) + 𝑒

𝜆𝑡 𝜆 𝑃𝑘(𝑡) =
(𝜆𝑡)𝑘−1

(𝑘 − 1)!
 

or   
𝑑

𝑑𝑡
[𝑒𝜆𝑡𝑃𝑘(𝑡) ] =  

(𝜆)𝑘 𝑡𝑘−1

(𝑘 − 1)!
 

or    

𝑒𝜆𝑡𝑃𝑘(𝑡) 

=
(𝜆)𝑘 

(𝑘 − 1)!
 ∫ 𝑡𝑘−1 𝑑𝑡 + 𝐶   

= 
𝜆𝑘𝑡𝑘

(𝑘 − 1)! 𝑘
+ 𝐶 

=
(𝜆𝑡)𝑘

𝑘!
+ 𝐶 

For 𝑘 ≥ 2, 𝑃𝑘(0) =  0, we have 𝐶 = 0. Hence 

𝑃𝑘(𝑡) =
(𝜆𝑡)𝑘𝑒−𝜆𝑡

𝑘!
 

Therefore, by induction we get the result of the theorem for all 𝑛. 

Result 1.3.1.: The assumptions (i), (ii) and (iii) imply assumption (iv).  

Proof: For proving this result, let us consider a time interval of unit length and let  

𝑝 = 𝑃0(1) 



 
 

Divide this time interval in 𝑛 equal parts, so that 

𝑝 = [𝑃0 (
1

𝑛
)]
𝑛

⇒ 𝑃0 (
1

𝑛
) = 𝑝

1
𝑛 

Hence, for positive integer 𝑘 

𝑃0 (
𝑘

𝑛
) = 𝑝

𝑘
𝑛 

For any positive number 𝑡 and positive integer 𝑛, ∃ an integer 𝑘 such that 

𝑘 − 1

𝑛
≤ 𝑡 ≤

𝑘

𝑛
   

Here, 𝑘 is the smallest integer greater than 𝑛𝑡. 

Since 𝑃0(𝑡) is a non-increasing function of 𝑡  

𝑃0 (
𝑘 − 1

𝑛
) ≥ 𝑃0(𝑡) ≥ 𝑃0 (

𝑘

𝑛
) 

or 

𝑝
𝑘−1
𝑛 ≥ 𝑃0(𝑡) ≥ 𝑝

𝑘
𝑛 

Let  𝑛 → ∞ so that 

𝑙𝑖𝑚
𝑛→∞

𝑘

𝑛
=  𝑙𝑖𝑚

𝑛→∞

𝑘 − 1

𝑛
= 𝑡 

and we obtain 

𝑃0(𝑡) = 𝑝𝑡                  (0 ≤ 𝑝𝑡 ≤ 1) 

Case I: Let 𝑝 = 0. Hence 𝑃0(𝑡) = 0 ∀ 𝑡, i.e., the probability of at least one point event occurring 

in any time interval of length 𝑡 is 1. In other words, in an arbitrary length of time infinitely many 

events will occur with probability 1. This case is of no interest. 

Case II: 𝑝 = 1 hence 𝑃0(𝑡) = 1∀𝑡. Thus, there is no stream to be studied.  



 
 

Case III: 0 < 𝑝 < 1 is of real interest. Here, substituting 𝑝 = 𝑒−𝜆 for some 𝜆 > 0, we have  

𝑃0(𝑡) = [𝑃0(1)]
𝑡 

= 𝑝𝑡  

= 𝑒−𝜆𝑡 

Now, for any time interval 𝑡 

𝑃0(𝑡) + 𝑃1(𝑡) + 𝑃>1(𝑡) = 1  

or  

𝑃1(𝑡) = 1 − 𝑃0(𝑡) − 𝑃>1(𝑡) 

            = 1 − 𝑒−𝜆𝑡 + 𝑜(𝑡)  {by assumption (iii)} 

            = 1 − {1 − 𝜆𝑡 +
(𝜆𝑡)2

2!
− ⋯ . . } + 𝑜(𝑡) 

            = 1 − {1 − 𝜆𝑡 + 𝑜(𝑡)} + 𝑜(𝑡) 

            =  𝜆𝑡 + 𝑜(𝑡). 

Thus (i), (ii), (iii) imply (iv). 

Theorem 1.3.2.: The interval between two successive occurrences of a Poisson process {𝑁(𝑡), 𝑡 ≥

 0} with parameter λ has an exponential distribution with mean 1/λ. 

Proof: Let 𝑋 be the random variable representing the time interval between two successive 

occurrences of {𝑁(𝑡), 𝑡 ≥  0} and let 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) be its distribution function. 

Suppose 𝐸𝑖 and 𝐸𝑖+1 are two successive events and 𝐸𝑖 occurred at time 𝑡𝑖. Then  

𝑃{𝑋 > 𝑥} 

= 𝑃 {𝐸𝑖+1 did not occur in (𝑡𝑖, 𝑡𝑖 + 𝑥)| 𝐸𝑖 occured at time 𝑡𝑖} 

= 𝑃 {no event occurs in interval (𝑡𝑖, 𝑡𝑖 + 𝑥)| 𝑁 (𝑡𝑖) = 𝑖} 

= 𝑃 {𝑁(𝑥) = 0| 𝑁 (𝑡𝑖) = 𝑖} 



 
 

= 𝑃0(𝑥) =  𝑒
−𝜆𝑡;  𝑥 > 0. 

Hence 

𝐹(𝑥) 

= 𝑃{𝑋 ≤ 𝑥} 

= 1 − 𝑃{𝑋 > 𝑥} 

= 1 − 𝑒−𝜆𝑥; 𝑥 > 0. 

The pdf of X is  

𝑓(𝑥) =  𝜆𝑒−𝜆𝑥   𝑥 > 0. 

which is the pdf of an exponential with mean 1/λ. Hence the theorem follows. 

If 𝑋𝑖 denotes the interval between 𝐸𝑖 and 𝐸𝑖+1; 𝑖 = 1,2, … then 𝑋1, 𝑋2… are independently 

distributed. We state this result in the following theorem without proof. 

Theorem 1.3.3.: The interarrival times (the interval between successive occurrences) of a Poisson 

process with mean 𝜆𝑡 are identically independently distributed random variables following the 

exponential distribution with mean 1/λ. 

The following theorem states that the converse of the above theorem is also true.  

Theorem 1.3.4.: If the intervals between successive occurrences of an event 𝐸 are iid with 

common exponential distribution with mean 1/𝜆. Then the events 𝐸 form a Poisson process with 

mean 𝜆𝑡. 

Proof: Let 𝑍𝑛 be the interval between (𝑛 − 1)𝑡ℎ and 𝑛𝑡ℎ occurrences of a process {𝑁(𝑡)} having 

an exponential distribution with mean 1/𝜆 and let 𝑍1, 𝑍2, … be iid random variables having an 

exponential distribution with mean 1/𝜆. Then sum 𝑊𝑛 = ∑ 𝑍𝑖
𝑛
𝑖=1  is the waiting time up to the 𝑛𝑡ℎ 

occurrence, i.e., the time from origin to the 𝑛𝑡ℎ subsequent occurrence. Them 𝑊𝑛 follows a gamma 

distribution with parameters 𝜆𝑛. the pdf of 𝑊𝑛 is given by  



 
 

𝑔(𝑥) =
𝜆𝑛𝑥𝑛−1𝑒−𝜆𝑥

Γ(𝑛)
;   𝑥 > 0. 

𝑃{𝑁(𝑡) < 𝑛} = 𝑃{𝑊𝑛 = 𝑍1 +⋯+ 𝑍𝑛 > 𝑡} 

= 1 − 𝑃{𝑊𝑛 ≤ 𝑡}. 

Therefore 

𝑃{𝑁(𝑡) = 𝑛} = 𝑃{𝑁(𝑡) < 𝑛 + 1} − 𝑃{𝑁(𝑡) < 𝑛} 

= 𝑃{𝑊𝑛 ≤ 𝑡} − 𝑃{𝑊𝑛+1 ≤ 𝑡} 

Since 

𝑃{𝑊𝑛 ≤ 𝑡} = ∫
𝜆𝑛𝑥𝑛−1𝑒−𝜆𝑥

Γ(𝑛)
𝑑𝑥

𝑡

0

 

=
1

Γ(𝑛)
∫ 𝑦𝑛−1𝑒−𝑦𝑑𝑦

𝜆𝑡

0

 

= 1 −
1

Γ(𝑛)
∫ 𝑦𝑛−1𝑒−𝑦𝑑𝑦

∞

𝜆𝑡

 

Integrating by parts we obtain 

∫ 𝑦𝑛−1𝑒−𝑦𝑑𝑦

∞

𝜆𝑡

 

= (𝑛 − 1)!∑
𝑒−𝜆𝑡(𝜆𝑡)𝑗

𝑗!

𝑛−1

𝑗=0

 

= Γ(𝑛)∑
𝑒−𝜆𝑡(𝜆𝑡)𝑗

𝑗!

𝑛−1

𝑗=0

. 

Hence 



 
 

𝑃{𝑊𝑛 ≤ 𝑡} = 1 −∑
𝑒−𝜆𝑡(𝜆𝑡)𝑗

𝑗!

𝑛−1

𝑗=0

   

Thus, the probability distribution of 𝑁(𝑡) is  

𝑝𝑛(𝑡) = 𝑃{𝑁(𝑡) = 𝑛} 

= 𝑃{𝑊𝑛 ≤ 𝑡} − 𝑃{ 𝑊𝑛+1 ≤ 𝑡} 

= (1 −∑
𝑒−𝜆𝑡(𝜆𝑡)𝑗

𝑗!

𝑛−1

𝑗=0

) − (1 −∑
𝑒−𝜆𝑡(𝜆𝑡)𝑗

𝑗!

𝑛

𝑗=0

) 

= 
𝑒−𝜆𝑡(𝜆𝑡)𝑛

𝑛!
;   𝑛 = 0,1,2, … 

Thus, the process {𝑁(𝑡)}is a Poisson process with mean 𝜆𝑡. 

Note: 𝑊𝑛 = 𝑊𝑛(𝑡)is the waiting time for the 𝑛𝑡ℎ arrival. The distribution function of 𝑊𝑛(𝑡)is 

given by 

𝑃{𝑊𝑛 ≤ 𝑡} = 𝐹𝑛(𝑡)     (say) 

= 1 −∑
𝑒−𝜆𝑡(𝜆𝑡)𝑗

𝑗!

𝑛−1

𝑗=0

 

For obtaining the pdf of 𝑊𝑛(𝑡) we, have 

𝐹𝑛(𝑡) =
𝑑

𝑑𝑡
 𝐹𝑛(𝑡) 

= 𝜆 𝑒−𝜆𝑡 {∑
(𝜆𝑡)𝑗

𝑗!

𝑛−1

𝑗=0

−∑
(𝜆𝑡)𝑗−1

𝑗!

𝑛−1

𝑗=0

} 

= 
𝜆(𝜆𝑡)𝑛−1 𝑒−𝜆𝑡

Ѓ(𝑛)
;       (0 < 𝑡 < ∞), 



 
 

which is the pdf of a gamma distribution with parameters (𝜆, 𝑛). 𝑓𝑛(𝑡) is called the 𝑛𝑡ℎ Erlang 

density in the context of queueing theory. 

Theorem 1.3.5.: Given only one occurrence of a Poisson process {𝑁(𝑡)} by the time 𝑇, the 

distribution of time points 𝛾 in [0, 𝑇] at which it occurred is uniform in [0, 𝑇].  

Proof: We have 

𝑃[𝛾 ≤ 𝑡] = 𝑃 [The event occurs one time before the time 𝑡] 

= 𝑃 [𝑁(𝑡) = 1] 

= 𝑒−𝜆𝑡 𝜆𝑡 

𝑃[𝑁(𝑇) = 1] = 𝑒−𝜆𝑇  𝜆𝑇 

and 

𝑃[𝑁(𝑇) = 1|𝛾 ≤ 𝑡] 

= 𝑃[event does not occur in interval (𝑡, 𝑇)] 

= 𝑒−𝜆(𝑇−𝑡) 

Therefore, 

𝑃[|𝛾 ≤ 𝑡|𝑁(𝑇) = 1] 

=
𝑃 [𝛾 ≤ 𝑡] [𝑁(𝑇) = 1|𝛾 ≤ 𝑡]

𝑃[𝑁(𝑇) = 1]
 

=
𝑡

𝑇
;  0 < 𝑡 ≤ 𝑇 

= 𝐺𝛾[𝑡|𝑁(𝑇) = 1]   (say) 

𝐺𝛾[𝑡|𝑁(𝑇) = 1] is the conditional cdf of 𝛾 given {𝑁(𝑇) = 1}. Then the conditional pdf of 

𝛾 given {𝑁(𝑇) = 1} is 



 
 

𝑔𝑟[𝑡|𝑁(𝑇) = 1] =
1

𝑇
;  0 < 𝑡 ≤ 𝑇 

which is the pdf of a uniform distribution in [0, 𝑇]. Hence the theorem follows. 

1.4  Brownian Motion Process 

 When a particle of microscopic size is immersed in a fluid, it is subjected to a great  

number of random independent impulses owing to collisions with molecules. The resulting vector 

function  {𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡)} representing the position of the particle as a function of time is known 

as Brownian motion. 

1.5 Thermal Noise 

 Thermal noise Consider a resistor in an electric network. Because of the random  

motions of the conduction electrons in the resistor, there will occur small random fluctuations in  

the voltage 𝑋(𝑡) across the ends of the resistor. The fluctuating voltage 𝑋(𝑡) is called thermal  

noise. 

1.6 Markov Shot Noise 

 Let 𝑁(𝑡) be the number of shocks by 𝑡, 𝑋𝑖 be the value of the 𝑖𝑡ℎ shock and 𝑆𝑖 be the  

time of the 𝑖𝑡ℎ shock. 

The Total shock value at time 𝑡 is 

𝑋(𝑡) = ∑ 𝑋𝑖

𝑁(𝑡)

𝑖=1

𝑒𝑥𝑝{−𝛼(𝑖 − 𝑆𝑖} 

 Where 𝛼 is a constant that determines the exponential rate of decrease. When 𝑋𝑖, 𝑖 ≥

1, are assumed to be i.i.d. and {𝑋𝑖, 𝑖 ≥ 1} is independent of the Poisson process {𝑁(𝑡), 𝑡 ≥ 0},  is 

called a shot noise process. 

 A Shot noise process possesses the Markovian property that given the present state 

the future is conditionally independent of the past. 



 
 

1.7 Two Valued Process 

Class of stochastic processes are taken only two values, which may be taken to be real 

numbers A and B. Such a stochastic process will be called a two-valued process. A typical sample 

function of a two-valued process is graphed in below figure 

 

 

 

 

 

 

A two-valued process {𝑋(𝑡), 𝑡 > 0} whose possible values are 1 and (-1) will be called a 

one-minus-one process. If 𝑋(𝑡) is a one-minus-one process, then 

𝑌(𝑡) =
𝐵 + 𝐴

2
+ (

𝐵 − 𝐴

2
)𝑋(𝑡) 

is a two-valued process, its possible values are A and B. 

Case I: It represents a one-minus-one process {𝑋(𝑡), 𝑡 > 0} is as follows. Define 𝑁(0) = 0 for  

𝑡 > 0, let 𝑁(𝑡) be the number of times in the interval (0, 𝑡] that the one-minus-one process 𝑋(•) 

has changed its value. Then {𝑁(𝑡), 𝑡 > 0} the counting process of the one-minus-one process. It 

writes 

𝑋(𝑡) = 𝑋(0)(−1)𝑁(𝑡) 

where 𝑋(0) is the initial value of the one-minus-one process. 

If {𝑁(𝑡), 𝑡 > 0} is a Poisson process, then {𝑋(𝑡), 𝑡 > 0} a random telegraph, signal. A stochastic 

process {𝑋(𝑡), 𝑡 > 0} is called a random telegraph signal if 

(i) Its values are 1 and (-1) successively 



 
 

(ii) The times at which the values change is distributed according to a Poisson process 

{𝑁(𝑡), 𝑡 > 0} at mean rate 𝜈 

(iii) 𝑋(0) is a random variable, independent of the Poisson process {𝑁(𝑡), 𝑡 > 0}, such that 

𝑃[𝑋(0) = 1] = 𝑃[𝑋(0) = −1] =
1

2
 

Case II: It represents a two-valued process in terms of the time between changes of values. Let 

{𝑋(𝑡), 𝑡 > 0} be a zero-one process (that is, a stochastic process, which takes only the values 0 

and 1). 

1.8 Model for System Reliability 

Consider a system that can be in one of two states, “ON” or “OFF”. If it is “ON” it serves 

for a random time before breakdown. If it is “OFF”, it is off for a random time before being 

repaired. Let 𝑋(𝑡) be equal to 1 or 0 depending on whether the system is “ON” or “OFF” at time 

t. 

1.9  Mean Value Function and Covariance Kernel of Poisson Process 

For a single random variable, the role of its mean and variance is played for a stochastic 

process by its mean value function and its covariance kernel. 

Let {𝑋(𝑡), 𝑡 ∈ 𝑇} be a stochastic process with finite second moments. Its mean value function is 

defined for all 𝑡 in 𝑇 by 

𝑚(𝑡) = 𝐸[𝑋(𝑡)] 

and its covariance kernel defined for all 𝑠 and 𝑡 in 𝑇 by 

𝐾(𝑠, 𝑡) = 𝐶𝑜𝑣[𝑋(𝑠), 𝑋(𝑡)] 

Example: Suppose 𝑋(𝑡) represents the position of a particle in motion with a constant velocity. 

One may assume that 𝑋(𝑡) is of the form 

𝑋(𝑡) = 𝑋0 + 𝑉𝑡 



 
 

where 𝑋0 is a random variable for its initial position and 𝑉 is random variables for the velocity 

respectively. The mean value function of {𝑋(𝑡), 𝑡 > 0} is given by 

𝑚(𝑡) = 𝐸[𝑋(𝑡)] = 𝐸[𝑋0] + 𝑡𝐸[𝑉] 

and covariance kernel of {𝑋(𝑡), 𝑡 > 0} is given by 

𝐾(𝑠, 𝑡) = 𝐶𝑜𝑣[𝑋(𝑠), 𝑋(𝑡)] = 𝑉𝑎𝑟[𝑋0] + (𝑠 + 𝑡)𝐶𝑜𝑣[𝑋0, 𝑉] + 𝑠𝑡 𝑉𝑎𝑟 [𝑉] 

Note: Obtain the mean value function and covariance kernel of {𝑋(𝑡), 𝑡 > 0}, one does not need 

to know the joint probability law of 𝑋0 and 𝑉, but only their means, variances, and covariance. 

1.10  Increment Process of a Poisson Process 

Let {𝑁(𝑡), 𝑡 > 0} be a Poisson process of intensity 𝜈, and let 𝐿 be a positive constant. A 

new stochastic process {𝑋(𝑡), 𝑡 > 0} can be defined by 

𝑋(𝑡) = 𝑁(𝑡 + 𝐿) − 𝑁(𝑡)                                       (1.7) 

For example, if 𝑁(𝑡) represents the number of events of a certain kind occurring in the 

interval 0 to t, then X(t) represents the number of events occurring in a time interval of length 𝐿 

beginning at t. In principle, one could determine the joint probability law of 𝑋(𝑡1), 𝑋(𝑡2),… , 𝑋(𝑡𝑛) 

for any choice of n time points 𝑡1, 𝑡2, … , 𝑡𝑛. However, it is usually more convenient to begin one's 

study of a stochastic process by computing its mean value function and covariance kernel. 

For the process {𝑋{𝑡), 𝑡 > 0} defined in (1.7), the mean value function is 

𝑚(𝑡) = 𝐸[𝑋(𝑡)] = 𝐸[𝑁(𝑡 + 𝐿) − 𝑁(𝑡)] = 𝜈𝐿 

The covariance kernels 

𝐾(𝑠, 𝑡) = 𝐶𝑜𝑣[𝑋(𝑠), 𝑋(𝑡)] 

Assume that 𝑠 ≤ 𝑡, two cases are 

(i)  𝑡 < 𝑠 + 𝐿 



 
 

(ii)  𝑡 > 𝑠 + 𝐿. In case (ii), 𝑋(𝑠) and 𝑋{𝑡) are independent random  

variables and consequently have zero covariance. In case (i), we write 

𝐾(𝑠, 𝑡) = 𝐶𝑜𝑣[𝑁(𝑠 + 𝐿) − 𝑁(𝑠),𝑁(𝑡 + 𝐿) − 𝑁(𝑡)] 

              = 𝐶𝑜𝑣[𝑁(𝑠 + 𝐿) − 𝑁(𝑡) + 𝑁(𝑡) − 𝑁(𝑠), 𝑁(𝑡 + 𝐿) − 𝑁(𝑡)] 

              = 𝐶𝑜𝑣[𝑁(𝑠 + 𝐿) − 𝑁(𝑡), 𝑁(𝑡 + 𝐿) − 𝑁(𝑡)]                                                   (1.8) 

The last step follows as 𝑁(𝑡) − 𝑁(𝑠) and 𝑁(𝑡 + 𝐿) − 𝑁(𝑡) have zero covariance. 

Consider 𝑁(𝑡 + 𝐿) − 𝑁(𝑡) = 𝑁(𝑡 + 𝐿) − 𝑁(𝑠 + 𝐿) + 𝑁(𝑠 + 𝐿) − 𝑁(𝑡). Putting this value in 

(1.8), we have 

𝐾(𝑠, 𝑡) = 𝑉𝑎𝑟[𝑁(𝑠 + 𝐿) − 𝑁(𝑡)]  

= 𝜈(𝑠 + 𝐿 − 𝑡) 

= 𝜈{𝐿 − (𝑡 − 𝑠)} 

Thus, the covariance kernel of the process {𝑋{𝑡), 𝑡 > 0} defined by (1.7) is 

𝐾(𝑠, 𝑡) = {
𝜈(𝐿 − |𝑡 − 𝑠|)                        𝑖𝑓 |𝑡 − 𝑠| ≤ 𝐿 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠, 𝑡 ≥ 0

0                                                𝑖𝑓 |𝑡 − 𝑠| > 𝐿 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠, 𝑡 ≥ 0
 

1.11 Stationary and Evolutionary Process 

A stationary process is one whose distribution remains the same as time progresses, 

because the random mechanism producing the process is not changing as time progresses. An 

evolutionary process is one, which is not stationary. 

A Poisson process {𝑁(𝑡), 𝑡 > 0} is evolutionary since the distribution of 𝑁(𝑡) is 

functionally dependent on 𝑡. On the other hand, the process {𝑋(𝑡), 𝑡 >  0} defined by (1.7) 

appears as if it might be stationary, because the distribution of the number of events occurring in 

a time interval of fixed length 𝐿 does not functionally depend on the time t at which the interval 

begins. 

An index set T is said to be a linear index set if it has the property that the sum (𝑡 + ℎ) is 

a member of T, of any two members 𝑡 and ℎ of 𝑇. 



 
 

Examples of such index sets are 𝑇 = {1,2, … }, 𝑇 = {0,±1, ±2,… }, 𝑇 = {𝑡: 𝑡 ≥ 0} and 𝑇 =

{𝑡:−∞ < 𝑡 < ∞}. 

A stochastic process {𝑋(𝑡), 𝑡 ∈ 𝑇}, whose index set T is linear, is said to be 

(i) Strictly stationary of order 𝑘, where 𝑘 is a given positive integer, if, for any 𝑘 points 

𝑡1, 𝑡2, … , 𝑡𝑛 in T, and any ℎ in T, the 𝑘-dimensional random vectors 

{𝑋(𝑡1), 𝑋(𝑡2),… , 𝑋(𝑡𝑛)} and {𝑋(𝑡1 + ℎ), 𝑋(𝑡2 + ℎ),… , 𝑋(𝑡𝑛 + ℎ)} are identically 

distributed, 

(ii) Strictly stationary if for any integer 𝑘 it is strictly stationary of order 𝑘. 

For example, consider the stochastic process {𝑋(𝑡), 𝑡 >  0} defined by (1.7). One easily 

verifies that it is strictly stationary of order 1. With a little more effort, one could prove that it is 

strictly stationary of order 2.  

Covariance Stationarity Process:  

A stochastic process {𝑋(𝑡), 𝑡 ∈ 𝑇} is said to be covariance stationary if it possesses finite 

second moments, if its index set T is linear, and if its covariance kernel 𝐾(𝑠, 𝑡) is a function only 

of the absolute difference |𝑠 − 𝑡|, in the sense that there exists a function 𝑅(𝜈) such that for all 𝑠 

and 𝑡 in 𝑇 

𝐾(𝑠, 𝑡) = 𝑅(𝑠 − 𝑡) 

or, more precisely, 𝑅(𝜈) has the property that for every 𝑡 and 𝜈 in T 

𝐶𝑜𝑣 [𝑋(𝑡), 𝑋(𝑡 + 𝜈)] = 𝑅(𝜈), 

where 𝑅(𝜈) is the covariance function of the covariance stationary time series {𝑋(𝑡), 𝑡 ∈ 𝑇}. 

1.12  Summary 

In this unit, we have covered the following points: 

• We have Defined Poisson process and explain the conditions of Poisson process. 

• We have Defined Brownian Motion Process, thermal Noise and Markov Short Noise. 



 
 

• We have explained the two Valued Process and Model for System Reliability 

• We have described Mean value Function and Covariance Kernel of Poisson Process and 

Increment Process of a Poisson Process 

• We have discussed Stationary and Evolutionary Process 

1.13   Self-Assessment Exercise 

1. The stochastic processes {X(t), t > 0} is defined 𝑋(𝑡) = 𝐴 + 𝐵𝑡, in which A and B are 

independent random variables, each uniformly distributed on the unit interval. Compute 

(i) The mean value function 𝑚(𝑡) = 𝐸[𝑋(𝑡)] 

(ii) The covariance kernel 𝐾(𝑠, 𝑡) = 𝐶𝑜𝑣[𝑋(𝑠), 𝑋(𝑡)] 

(iii) The covariance function 𝑅(𝜈) if the process is covariance stationary. 

2. The stochastic processes {X(t), t > 0} is defined 𝑋(𝑡) = 𝐴 + 𝐵𝑡 + 𝐶𝑡2, in which A B and C are 

independent random variables, each with mean 1 and variance 1. Compute 

(i) The mean value function 𝑚(𝑡) = 𝐸[𝑋(𝑡)] 

(ii) The covariance kernel 𝐾(𝑠, 𝑡) = 𝐶𝑜𝑣[𝑋(𝑠), 𝑋(𝑡)] 

(iii) The covariance function 𝑅(𝜈) if the process is covariance stationary. 

3. The stochastic processes {X(t), t > 0} is defined 𝑋(𝑡) = 𝐴 𝑐𝑜𝑠 𝑤𝑡 + 𝐵 𝑠𝑖𝑛 𝑤𝑡, in which 𝑤 is a 

positive constant, and A and B are uncorrelated random variables with means 0 and variances 𝜎2. 

Compute 

(i) The mean value function 𝑚(𝑡) = 𝐸[𝑋(𝑡)] 

(ii) The covariance kernel 𝐾(𝑠, 𝑡) = 𝐶𝑜𝑣[𝑋(𝑠), 𝑋(𝑡)] 

(iii) The covariance function 𝑅(𝜈) if the process is covariance stationary. 



 
 

4. Show that if {𝑋(𝑡), 𝑡 ∈ 𝑇} is strictly stationary of order 𝑘, then {𝑋(𝑡), 𝑡 ∈ 𝑇} is strictly stationary 

of order 𝑘′, for any integer 𝑘′ < 𝑘. 

5. Let 𝑋(𝑡) = sin𝑤𝑡, where 𝑤 is uniformly distributed on 0 to 2𝜋. 

(i) Show that {𝑋(𝑡), 𝑡 = 1,2, … } is covariance stationary but is not strictly stationary 

(ii) Show that {𝑋(𝑡), 𝑡 ≥ 0} is neither covariance stationary nor strictly stationary. 
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2.1  Introduction 

A simple branching process is a mathematical model that describes the evolution of a 

population where each individual can produce a random number of offspring in the next 

generation. This model is often used in biology, genetics, and other fields to study phenomena 

such as population growth, species extinction, and the spread of genes. 

In a simple branching process, the population evolves in discrete steps called generations. 

The individuals in one generation give rise to the individuals in the next. Each individual in the 

population produces a random number of offspring according to a specified probability 

distribution. A common choice is the Poisson distribution, but other distributions can be used as 

well. The process starts with an initial population, typically consisting of a single individual, 

though more complex initial conditions can be considered. The process can lead to extinction, 

where the population dies out, or survival, where the population grows indefinitely or stabilizes. 



 
 

The history of the study of branching processes dates back to 1874, when a mathematical 

model was formulated by Galton and Watson for the problem of ‘extinction of family’. Later, the 

model has not attracted much attention for a long time. However, the situation gradually changed 

during the last 60 years and much attention has been devoted to it. This is because of the 

development of interest in the applications of probability theory, in general, and its applications in 

a variety of biological, physical, and other problems where one is concerned with objects that can 

generate similar objects. Such objects may be biological entities, such as human beings, animals, 

genes, bacteria, neutrons yielding new neutrons under a nuclear chain reaction or in the process of 

nuclear fission.  

This model provides a foundation for understanding more complex stochastic processes 

and can be extended in various ways, such as considering different types of individuals, varying 

offspring distributions, or adding immigration and emigration. 

2.2  Objectives 

After reading this unit, you should be able to: 

• Describe the branching process with examples. 

• Obtain the probability-generating function, expectations, and variance for a branching 

process. 

• Derive the probabilities of extinction. 

• Express various limiting properties for the probability of extinction. 

2.3.  Simple Branching Process 

Let 𝑝𝑖 be the probability that a man produces 𝑖 sons. Let each son have the same probability 

distribution for sons of his own and so on. One may be interested in the probability that the male 

line extinct in a generation, or the probability distribution of the number of descendants in the 𝑛𝑡ℎ 

generation. 

2.3.1  Assumptions of the Simple Branching Process 



 
 

Suppose we start with a population of 𝑋0 individuals (or objects), which form the 0th 

generation. These objects are called ancestors. The offspring reproduced or the object generated 

by the objects of the 0th generation are the direct descendants of the ancestors and are said to form 

the 1st generation; the objects generated by those of the 1𝑠𝑡 generation form the 2nd generation, and 

so on. Let 𝑋𝑛 be the number of individuals in the 𝑛𝑡ℎ generation. These are composed of the 

descendent of the (𝑛 − 1)𝑡ℎ generation.  

The model proposed by Watson was based on the following assumptions: 

(i) The objects reproduce independently of other objects, i.e., there is no interference. 

(ii) The number X of individuals produced by an individual has the probability distribution  

𝑃(𝑋 = 𝑘)  =  𝑝𝑘;  𝑘 =  0,1,2,… ; ∑𝑝𝑘 = 1. 

(iii) The probability distribution {𝑝𝑘} remains the same from generation to generation. 

The sequence of random variables {𝑋𝑛; 𝑛 = 0,1,2, … } constitutes a Galton-Watson (G.W.) 

branching process with offspring distribution {𝑝𝑘; 𝑘 = 0,1,2, … } 

2.4  Probability Generating Function of the Branching Process 

Let 

𝑔(𝑠) = ∑𝑝𝑘 𝑠
𝑘;    0 ≤ 𝑠 ≤ 1

∞

𝑘=0

 

be the 𝑝𝑔𝑓 of 𝑋 and 𝑔𝑛(𝑠) be the 𝑝𝑔𝑓 of 𝑋𝑛; i.e.  

𝑔𝑛(𝑠) =∑𝑃{𝑋𝑛 = 𝑘}𝑠𝑘; 0 ≤ 𝑠 ≤ 1.

𝑘

 

Without loss of generality, we assume that 𝑋0 = 1, i.e., the process starts with one 

individual. Then  

𝑔0(𝑠) =  𝑠 

𝑔1(𝑠)  =  𝑔 (𝑠). 



 
 

 

Theorem 2.4.1.: We have 

𝑔𝑛(𝑠) =  𝑔𝑛−1[𝑔(𝑆)]                                            (2.1) 

𝑔𝑛(𝑠) =  𝑔[𝑔𝑛−1(𝑠)]                                              (2.2)  

Proof: We can write 

𝑋𝑛 = ∑ 𝜉𝑟

𝑋𝑛−1

𝑟=1

 

Where 𝜉𝑟 are iid random variables with probability distribution {𝑝𝑘}. Now 

𝑃{𝑋𝑛 = 𝑘} 

=∑𝑃{𝑥𝑛 = 𝑘|𝑥𝑛−1 = 𝑗}𝑃{𝑋𝑛−1 = 𝑗}

∞

𝑗=0

 

= ∑𝑃 {∑𝜉𝑟 = 𝑘

∞

𝑟=1

} 𝑃 {𝑋𝑛−1 = 𝑗}

∞

𝑗=0

 

Therefore 

𝑔𝑛(𝑠) 

=∑𝑃{𝑥𝑛 = 𝑘}𝑠𝑘
∞

𝑘=0

 

= ∑𝑠𝑘 [∑𝑃{∑𝜉𝑟 = 𝑘

𝑗

𝑟=1

}𝑃{𝑋𝑛−1 = 𝑗}

∞

𝑗=0

]

∞

𝑘=0

 

= ∑𝑃{𝑋𝑛−1 = 𝑗} [∑𝑃{∑𝜉𝑟 = 𝑘

𝑗

𝑟=1

}

∞

𝑘=1

𝑠𝑘]

∞

𝑗=0

 



 
 

Since 𝜉1, 𝜉2, … are iid random variables each with pgf 𝑔(𝑠), the pgf of ∑ 𝜉𝑟
𝑗
𝑟=1  is given by  

∑𝑃 {∑𝜉𝑟 = 𝑘

𝑗

𝑟=1

} 𝑠𝑘
∞

𝑘=1

= 𝐸 [𝑠∑ 𝜉𝑟
𝑗
𝑟=1 ] 

= [𝑔(𝑠)]𝑗. 

Thus 

𝑔𝑛(𝑠) 

=∑𝑃{𝑥𝑛−1 = 𝑗} [𝑔(𝑠)]
𝑗

∞

𝑗=0

 

= 𝑔𝑛−1(𝑔(𝑠)) 

which gives (2.1). 

Substituting 𝑛 =  2,3, … in (2.1) we get 

𝑔2 (𝑠) =  𝑔1(𝑔(𝑠) =  𝑔(𝑔(𝑠)) 

𝑔3(𝑠)  = 𝑔2(𝑔(𝑠) = 𝑔(𝑔(𝑔(𝑠))  = 𝑔(𝑔2(𝑠)) 

𝑔4(𝑠) = 𝑔3(𝑔(𝑠) =  𝑔(𝑔3(𝑠)) 

In general 

𝑔𝑛(𝑠) = 𝑔𝑛−1(𝑔(𝑠)) = 𝑔𝑛−2[𝑔(𝑔(𝑠))] = 𝑔𝑛−2(𝑔2(𝑠))  = 𝑔𝑛−3 (𝑔(𝑔2(𝑠)))  = 𝑔𝑛−3(𝑔3(𝑠)) 

= ⋯ = 𝑔𝑛−𝑘(𝑔𝑘(𝑠))              (𝑘 = 0,1,2, … , 𝑛) 

For 𝑘 = 𝑛 − 1 

𝑔𝑛(𝑠) = 𝑔1[𝑔𝑛−1(𝑠)] = 𝑔[𝑔𝑛−1(𝑠)]. 



 
 

This proves result (2.2) of the theorem. 

2.5  Moments of 𝑿𝒏 

Theorem 2.5.1.: If we assume that 𝐸(𝑋1) = ∑ 𝑘∞
𝑘=0 𝑝𝑘 =  𝜇 and 𝑉𝑎𝑟 (𝑋1)  = 𝜎

2, then  

𝐸(𝑋𝑛) = 𝜇
𝑛                                                                           (2.3) 

𝑉𝑎𝑟 (𝑋𝑛) = {

𝜇𝑛−1(𝜇𝑛 − 1)

𝜇 − 1
𝜎2  𝑖𝑓 𝜇 ≠ 1  

𝑛𝜎2    𝑖𝑓     𝜇 = 1

                   (2.4) 

Proof: We have 

𝑔𝑛(𝑠) = 𝑔𝑛−1(𝑔(𝑠))                                                             (2.5) 

Differentiating (2.5) with respect to 𝑠 we get 

𝑔𝑛
′ (𝑠) = 𝑔𝑛−1

′ (𝑔(1))𝑔′(𝑠) 

So that 

𝑔𝑛
′ (1) = 𝑔𝑛−1

′ (𝑔(1))𝑔′(1)  = 𝑔𝑛−1
′ (1)(𝜇) 

On iterating, we get 

𝑔𝑛
′ (1) = 𝑔𝑛−2

′ (1)𝜇2 = 𝑔𝑛−3
′ (1)𝜇3 = ⋯ = 𝑔1

′ (1)𝜇𝑛−1  = 𝜇𝑛. 

Again 

𝑉𝑎𝑟 (𝑋𝑛) 

= 𝐸[𝑋𝑛(𝑋𝑛 − 1)] + 𝐸(𝑋𝑛) − [𝐸(𝑋𝑛)]
2 

= 𝑔𝑛
′′(1) + 𝑔𝑛

′ (1) − [𝑔𝑛
′ (1)]2 

Now 

𝑔𝑛
′′(𝑠) 



 
 

= 𝑔𝑛−1
′′ (𝑔(𝑠))[𝑔′(𝑠)]2 + 𝑔𝑛−1

′ (𝑔(𝑠)) 𝑔′′(𝑠) 

So that 

𝑔𝑛
′′(1) 

= 𝑔𝑛−1
′′ (1)(𝑔(𝑠))[𝑔′(𝑠)]2 + 𝑔𝑛−1

′ (𝑔(𝑠)) 𝑔′′(𝑠) 

= 𝑔𝑛−1
′ (1) 𝜇2 + 𝜇𝑛−1𝑚 

where 

𝑚 = 𝑔′′(1) 

= 𝐸[𝑋1(𝑋1 − 1)] 

= 𝜎2 +  𝜇2 − 𝜇 

= 𝜎2 + 𝜇(𝜇 − 1). 

On iterating we obtain 

𝑔𝑛
′′(1) 

= 𝑚𝜇𝑛−1 + 𝜇2[𝑚𝜇𝑛−2 + 𝜇2𝑔𝑛−2
′′ (1)] 

= 𝑚 (𝜇𝑛−1 + 𝜇𝑛) + 𝜇4𝑔𝑛−2
′′ (1) 

= ⋯ 

= 𝑚(𝜇𝑛−1 + 𝜇𝑛 +⋯…+ 𝜇𝑛−2) + 𝜇2𝑛−2𝑔1
′′(1) 

= 𝑚 𝜇𝑛−1 (1 + 𝜇 +⋯…+ 𝜇𝑛−2) + 𝜇2𝑛−2 𝑚 

= 𝑚 𝜇𝑛−1 (1 + 𝜇 +⋯…+ 𝜇𝑛−2 + 𝜇𝑛−1) 

= {

𝑚. 𝑛                            𝑖𝑓 𝜇 = 1

𝑚𝜇𝑛−1  
(𝜇𝑛 − 1)

𝜇 − 1
        𝑖𝑓 𝜇 ≠ 1

 

Hence, for 𝜇 ≠ 1 



 
 

𝑉𝑎𝑟 (𝑋𝑛) 

= 𝑚𝜇𝑛−1  
(𝜇𝑛 − 1)

𝜇 − 1
+ 𝜇𝑛 − 𝜇2𝑛 

= (𝜎2 + 𝜇(𝜇 − 1))𝜇𝑛−1  
(𝜇𝑛 − 1)

𝜇 − 1
+ 𝜇𝑛 − 𝜇2𝑛 

= σ2𝜇𝑛−1  
(𝜇𝑛 − 1)

𝜇 − 1
+ 𝜇2𝑛 − 𝜇𝑛 + 𝜇𝑛 − 𝜇2𝑛 

= σ2𝜇𝑛−1  
(𝜇𝑛 − 1)

𝜇 − 1
   

and for 𝜇 = 1 

𝑉𝑎𝑟 (𝑋𝑛) = 𝜎2𝑛. 

Hence the theorem follows. 

 

Example 2.5.1.: A branching process {𝑋𝑛: 𝑛 = 0,1,2, … } with offspring distribution given by 

𝑃0 =
1

6
 , 𝑝1 =

1

2
 , 𝑝2 =

1

3
 

Determine Expectation and variance of the population at generation 8. 

Solution: Let 𝑋 be the number of offspring produced by one individual. 

𝐸[𝑋] =∑𝑘 𝑝𝑘
𝑘

 

= 1 ×
1

2
+ 3 ×

1

3
 

=
1

2
+ 1 

= 1.5 = 𝜇 



 
 

𝑉𝑎𝑟[𝑋] =∑(𝑘 − 𝜇)2 𝑝𝑘
𝑥

 

= (0 − 1.5)2 ×
1

6
+ (1 − 1.5)2 ×

1

2
+ (3 − 1.5)2 ×

1

3
 

 =
2.25

6
+
0.25

2
+
2.25

3
 

=
2.25 + 0.75 + 4.50

6
 

= 1.25 = 𝜎2 

We know 

𝐸[𝑋𝑛] = 𝜇
𝑛 

= (1.5)8 

= 25.63 

𝑉𝑎𝑟 (𝑋𝑛) = 𝜎2𝜇𝑛−1  
(𝜇𝑛 − 1)

𝜇 − 1
                    𝑖𝑓 𝜇 ≠ 1 

= (1.25)2(1.5)8−1
{(1.5)8−1 − 1}

(1.5 − 1)
 

= (1.56) × (17.09) ×
{17.09 − 1}

(1.5 − 1)
 

= 26.66 ×
16.09

0.5
=
428.96

0.5
= 857.92 

If 𝑋𝑛  =  0, the population is extinct by the 𝑛𝑡ℎ generation. Obviously, if 𝑋𝑛  =  0 for 𝑛 =

 𝑚 then 𝑋𝑛  =  0 for 𝑛 > 𝑚. Thus 𝑃{𝑋𝑛+1 = 0 |𝑋𝑛  =  0} = 1. The extinction of the process 

occurs when the random sequence {𝑋𝑛} is consist of zero for all except a finite number of values 

of 𝑛. 



 
 

Let, 𝑇 = 𝑚𝑖𝑛{𝑛: 𝑋𝑛 =  0}: time of extinction 

If 𝑇 < ∞, the population is extinct after a finite number of generations. 

Theorem 2.5.2. (Fundamental Theorem of Probability of Extinction):  

If,𝜇 (= ∑ 𝑘∞
𝑘=0 𝑝𝑘) ≤ 1, the probability of ultimate extinction is 1. If μ>1, the probability 

of ultimate extinction is the positive root less than unity of the equation 

𝑔(𝑠) =  𝑠                                                                            (2.6) 

Proof: Let  

𝑞𝑛

= 𝑃robability that the population starting with one ancestor dies out before the 𝑛𝑡ℎ generation 

Therefore 

𝑞𝑛 = 𝑃{𝑋𝑛 = 0} 

The pgf of 𝑋𝑛 is 

𝑔𝑛(𝑠) = ∑𝑃{𝑋𝑛 = 𝑘}𝑠𝑘; 0 ≤ 𝑠 ≤ 1

∞

𝑘=0

 

Hence 

𝑔𝑛(0) 

= 𝑃 {𝑋𝑛 = 0} = 𝑞𝑛 

Now, if  

𝑝0 = 𝑃{𝑋 = 0} = 0, then 

𝑋0 ≤ 𝑋1 ≤ 𝑋2 ≤ ⋯ 

and 𝑇 = ∞ almost surely, i.e., extinction can never occur.  



 
 

If 𝑝0 = 1 then the population extinct just after the zeroth generation. 

We exclude these trivial cases and assume that 0 < 𝑝0 < 1. 

If 𝑝0 >  0 and 𝑝0 + 𝑝1 = 1, then  

𝑃{𝑇 < 𝑛 + 1|𝑋0 = 1} 

= 𝑝0 + 𝑝1𝑝0 + 𝑝1
2 𝑝0 +⋯+ 𝑝1

𝑛 𝑝0 

= 𝑝0
1 − 𝑝1

𝑛

1 − 𝑝1
= 1 − 𝑝1

𝑛 

→ 1 as 𝑛 →  ∞  

Hence 𝑇 <  ∞  almost surely. 

We exclude these trivial cases and assume that 0 < 𝑝0 < 𝑝0 + 𝑝1 < 1. 

Now  

𝑔(𝑠) =  𝑝0 + 𝑝1, 𝑠 + 𝑝2 𝑠
2 +⋯… ;    0 ≤ 𝑠 ≤ 1 

𝑔(0) =   𝑝0 > 0  

and for 0 < 𝑠 ≤ 1 

𝑔′(𝑠) > 0 

𝑔′′(𝑠) > 0, 

i.e., for  0 < 𝑠 ≤ 1, 𝑔 (𝑠) is a continuous, strictly increasing convex function of 𝑠. 

Since 𝑔(𝑠) is convex, the line 𝑦 = 𝑠 can intersect the curve 𝑦 = 𝑔(𝑠) in at most two points 

for 𝑠 > 0. One of these points is (1,1). Thus, there may or may not be another point of intersection. 

The two possibilities are shown in Figure I and II: 

                  

  



 
 

    Figure I                                                          Figure II 

                               

Now  

𝑔𝑛+1(𝑠) =  𝑔 (𝑔𝑛(𝑠)) 

substituting 𝑠 =  0, we get  

𝑔𝑛+1(0) =  𝑔(𝑔𝑛(0)) 

or 𝑞𝑛+1 = 𝑔(𝑞𝑛)                                                                                                                (2.7)  

Substituting 𝑛 =  0,1,2, … respectively in (2.7), we get 

𝑞1 = 𝑔 (0) 

= 𝑝0 > 0 

= 𝑞1 > 0 

𝑞2 = 𝑔 (𝑞1) 

> 𝑔 (0) 

= 𝑞1{since g(s) is an increasing funciton of s} 

⇒ 𝑞1 > 𝑞2  

Assuming that 𝑞𝑛 > 𝑞𝑛−1 



 
 

We have 

𝑞𝑛+1 = 𝑔(𝑞𝑛) 

> 𝑔 (𝑞𝑛−1) =  𝑞𝑛 

Hence by induction  

𝑞𝑛+1 > 𝑞𝑛 ∀  𝑛 = 0,1,2, … 

i.e., the sequence {𝑞0, 𝑞1, …… . 𝑞𝑛, 𝑞𝑛−1… } is an increasing sequence bounded above by 

unity. Hence 𝑞𝑛  must have a limit 

lim
𝑛→∞

𝑞𝑛 = 𝑞 (say), 0 ≤ 𝑞 ≤ 1  

𝑞 is the probability of ultimate extinction. From (2.2) it follows that 𝑞 satisfies  

𝑞 =  𝑔(𝑞)                                                                                             (2.8) 

Thus, the probability of ultimate extinction is a solution of (2.8).  

Let 𝜆 be an arbitrary positive root of (2.8). At least one such root exists which is λ=1. 

Then 

𝑞1 = 𝑔(0) 

< 𝑔 (𝜆) = 𝜆                        (λ is positive) 

𝑖. 𝑒.  𝑞1 <  λ  

𝑞2 = 𝑔(𝑞1) 

< 𝑔 (𝜆) = 𝜆 

⇒ 𝑞2 < λ  

By induction 𝑞𝑛 < 𝜆 ∀ 𝑛 = 1,2, …  .  Letting 𝑛 → ∞, we observe that 𝑞 < λ. 



 
 

Since λ is an arbitrary positive root of (2.8), it follows that 𝑞 is the smallest positive root 

of (2.8). Thus, we examine the roots of the equation 𝑠 =  𝑔(𝑠) in (0,1]. The roots are intersection 

points of 𝑦 =  𝑠 and 𝑦 = 𝑔(𝑠).  

If 𝑔′(1) = 𝜇 > 1 figure II prevails and ∃ a unique positive root q<1.  

Thus, if 𝜇  > 1, the probability of extinction is <1. 

If 𝑔′(1) = 𝜇 ≤ 1 then there is no root <1 and we have 𝑞 = 1. 

This proves the theorem. 

Example 2.5.2.: Let 

𝑝0 =
1

4
, 𝑝1 =

1

3
, 𝑝2 =

5

12
 

i.e., 

𝑃[𝑋1 = 0|𝑋0 = 1] =
1

4
 , 

𝑃[𝑋1 = 1|𝑋0 = 1] =
1

3
  

and 𝑃[𝑋1 = 2|𝑋0 = 1] =
5

12
 

Such that 

𝑃[𝑋1 = 0|𝑋0 = 1] +  𝑃[𝑋1 = 1|𝑋0 = 1] +  𝑃[𝑋1 = 2|𝑋0 = 1] 

=
1

4
+
1

3
+
5

12
 

=
3 + 4 + 5

12
 

=
12

12
= 1 

Then 



 
 

𝜇 = ∑𝑘

∞

𝑘=0

 𝑝𝑘 

= 0 ×
1

4
+ 1 ×

1

3
+ 2 ×

5

12
 

=
2 + 5

6
 

=
7

6
> 1 

The probability of extinction is  

𝑞 =  ∑𝑞𝑠
∞

𝑠=0

𝑝𝑠 

= 𝑞0 ×
1

4
+ 𝑞1 ×

1

3
+ 𝑞2 ×

5

12
 

or 5𝑞2 + 4𝑞 + 3 = 12𝑞 

or 

 5𝑞2 − 8𝑞 + 3 = 0 

or (5𝑞 − 3)(𝑞 − 1) = 0 

or 𝑞 =
3

5
 and 𝑞 = 1 

Hence the probability of ultimate extinction is 0.6. 

Example 2.5.3.: Consider a branching process originating from a single element, where each 

individual element either replaces itself with probability 𝑝1, or fails to replace itself (i.e., dies out 

without producing an offspring) with probability 𝑝0 = 1 − 𝑝1, 0 < 𝑝0 < 1. Obviously, 𝜇 =

0 × (𝑝0) = 1 × (𝑝1) = 𝑝1 < 1. 

𝐸(𝑋𝑛) = 𝜇
𝑛 → 0 as 𝑛 → ∞ 

Here 



 
 

𝑔(𝑠) = 𝐸(𝑠𝑋) 

= 𝑠0(𝑝0) + 𝑠
1(𝑝1) 

= 𝑝0 + 𝑠𝑝1 

So that 𝑠 = 1 is the only solution of the equation 𝑔(𝑠) = 𝑠 as 𝑝0 + 𝑝1 = 1. As such, the 

probability 𝑞 that the process will be extinct is 1. 

Example 2.5.4.: Consider a branching chain originated by a single element, where each individual 

element either replaces itself by 𝑘 offspring with probability 𝑝𝑘, or fails to replace itself (i.e., dies 

out without producing an offspring) with probability 𝑝0 = 1 − 𝑝𝑘, 0 < 𝑝0 < 1. Obviously,  

𝜇 = 0 × (𝑝0) + 𝑘 × (𝑝𝑘) 

= 𝑘𝑝𝑘 

Hence 

𝐸(𝑋𝑛) = 𝜇
𝑛 

= (𝑘 𝑝𝑘)
𝑛 

→ 0 , 1 𝑜𝑟 ∞  𝑎𝑠 𝑛 → ∞, depending on whether 𝑘 𝑝𝑘 < 1, or =1, or > 1.  

Here,  

𝑔(𝑠) = 𝐸(𝑠𝑋) 

= 𝑠0(𝑝0) + 𝑠
𝑘(𝑝𝑘) 

= 𝑝0 + 𝑝𝑘𝑠
𝑘 

Now the equation 𝑔(𝑠) = 𝑠 would imply that we need to solve 𝑠 − 𝑝𝑘𝑠
𝑘 − 𝑝0 = 0, i.e., 

𝑠(1 − 𝑝𝑘𝑠
(𝑘−1)) = 𝑝0 for 𝑠. For 𝑘 > 1, from fundamental theorem, as 𝑝0 < 1 (since 𝑝1 = 0), the 

probability 𝑞 of extinction of the process is 1, if and only, if 𝜇 = 𝑘 𝑝𝑘 ≤ 1. 



 
 

Example 2.5.5.: Consider the probability distribution of the number of offspring in a branching 

chain originated by a single individual, where each individual element generates three offspring, 

following the Poisson law, with an average 𝜆 > 0, which is given by 

𝑝𝑘 = (
𝜆𝑘

𝑘!
) 𝑒−𝜆 , 𝑘 = 0,1,2, … 

Thus, 

𝑔(𝑠) = 𝐸(𝑠𝑋) 

= 𝑠0(𝑝0) + 𝑠(𝑝1) + 𝑠
2(𝑝2) + ⋯ 

= {𝑠0 (
𝜆0

0!
) + 𝑠 (

𝜆1

1!
) + 𝑠2 (

𝜆2

2!
) + ⋯}𝑒−𝜆 

= 𝑒𝑠𝜆𝑒−𝜆 

= 𝑒𝑥𝑝{−𝜆(1 − 𝑠)} 

And 

𝜇 = 𝜆. 𝐸(𝑋𝑛) 

= 𝜆𝑛 

→ 0 or 1, or ∞ according as 𝜆 < 1, or = 1, or > 1. 

Here 

𝑔(𝑠) = 𝑒𝑥𝑝{−𝜆(1 − 𝑠)} 

Notice that 

𝑝0 + 𝑝1 = 𝑒−𝜆 + 𝜆𝑒−𝜆 

= (1 + 𝜆)𝑒−𝜆 

≤ 1 



 
 

So that from fundamental theorem, the probability 𝑞 of extinction of the process is 1 

provided 𝜆 ≤ 1; otherwise 𝑞 < 1. 

Example 2.5.6.: A branching process starts from 10 individuals, and each reproduces according 

to the probability distribution (𝑝0, 𝑝1, 𝑝2, … ), where 

𝑝0 =
1

4
, 𝑝1 =

1

4
, 𝑝2 =

1

2
, 𝑝𝑛 = 0 𝑓𝑜𝑟 𝑛 > 2 

Find the extinction probability for the whole population. 

Solution: The extinction probability for the population starting from each of the 10 initial 

individuals is given by the smallest solution of 

1

4
+
1

4
𝑠 +

1

2
𝑠2 = 𝑠 

which is 𝑠 =
1

2
. Since the population starts with 10 individuals, the extinction probability 

for the whole population is (
1

2
)
10

=
1

1024
. 

Example 2.5.7.: Let the distribution of the number of offspring be geometric with 𝑝𝑘 =

𝑝(1 − 𝑝)𝑘, 𝑘 = 0,1,2, …      ; 0 < 𝑝 < 1. Find the probability of extinction of the process. 

Solution: We know that 

𝑔(𝑠) = ∑𝑝𝑘 𝑠
𝑘

∞

𝑘=0

 

=∑𝑝(1 − 𝑝)𝑘 𝑠𝑘
∞

𝑘=0

 

= 𝑝∑[(1 − 𝑝)𝑠]𝑘 

∞

𝑘=0

 

= 𝑝 {
1

1 − (1 − 𝑝)𝑠
} 



 
 

Consider, 

𝑔(𝑠) = 𝑠 

⇒ {
𝑝

1 − (1 − 𝑝)𝑠
} = 𝑠 

⇒ 𝑝 = 𝑠 − (1 − 𝑝)𝑠2 

⇒ (1 − 𝑝)𝑠2 − 𝑠 + 𝑝 = 0 

⇒ 𝑠 =
−(−1) ± √(−1)2 − 4(1 − 𝑝)𝑝

2(1 − 𝑝)
      {∵ 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 ;⇒ 𝑥 =

−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
} 

⇒ 𝑠 =
1 ± √1 − 4(1 − 𝑝)𝑝

2(1 − 𝑝)
 

⇒ 𝑠 =
1 ± √{𝑝 + (1 − 𝑝)}2 − 4(1 − 𝑝)𝑝

2(1 − 𝑝)
 

⇒ 𝑠 =
1 ± √𝑝2 + (1 − 𝑝)2 + 2𝑝(1 − 𝑝) − 4(1 − 𝑝)𝑝

2(1 − 𝑝)
 

⇒ 𝑠 =
1 ± √𝑝2 + (1 − 𝑝)2 − 2𝑝(1 − 𝑝)

2(1 − 𝑝)
 

⇒ 𝑠 =
1 ± √{𝑝 − (1 − 𝑝)}2

2(1 − 𝑝)
 

⇒ 𝑠 =
1 ± {𝑝 − (1 − 𝑝)}

2(1 − 𝑝)
 

⇒ 𝑠 =
1 ± {2𝑝 − 1}

2(1 − 𝑝)
 

⇒ 𝑠 =
1 + {2𝑝 − 1}

2(1 − 𝑝)
 ,
1 − {2𝑝 − 1}

2(1 − 𝑝)
 



 
 

⇒ 𝑠 =
𝑝

(1 − 𝑝)
 , 1 

Hence the probability of extinction = 𝑚𝑖𝑛 {
𝑝

(1 − 𝑝)
 , 1} 

= {

𝑝

(1−𝑝)
          𝑖𝑓    0 ≤ 𝑝 <

1

2

1                𝑖𝑓  
1

2
≤ 𝑝 ≤ 1

c 

2.6   Total Progeny in Branching Process 

Let 𝑋𝑛 be the size of 𝑛𝑡ℎ generation, 𝑛 = 0,1,2, … and 𝑋0 = 1. 

The random variables 𝑍𝑛 , 𝑛 ≥ 1 defined as 

𝑍𝑛 = 1 + 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛 

where (𝑋𝑛) is a branching process. 

Here 𝑍𝑛 is the total number of descendants up to and including the 𝑛𝑡ℎ generation. Let 𝑌 =

∑ 𝑋𝑛
∞
𝑛=0 = lim

𝑛→∞
𝑍𝑛 be the total number of individuals ever born. 

The probability generating function (PGF) of the total progeny in a simple branching 

process is an essential tool for understanding the distribution of the total number of individuals 

ever born in the process. Here, we prove the PGF of the total progeny. 

PGF of Total Progeny: 

Let 𝑅𝑛(𝑠) be the PGF of 𝑍𝑛 and 𝑔(𝑠) be the PGF of the offspring distribution. 

Theorem 2.6.1.: The probability generating function 𝑅𝑛(𝑠) of 𝑍𝑛 satisfies the recurrence relation 

𝑅𝑛(𝑠) = 𝑠 𝑔{𝑅𝑛−1(𝑠)} 

Proof: Let 𝑌𝑛 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛 and let 𝐺𝑛(𝑠) be its p.g.f., then 



 
 

𝑅𝑛(𝑠) =∑𝑃[𝑍𝑛 = 𝑗]𝑠𝑗
∞

𝑗=0

 

           = ∑𝑃[1 + 𝑌𝑛 = 𝑗]𝑠
𝑗

∞

𝑗=0

 

           = ∑𝑃[𝑌𝑛 = 𝑗 − 1]𝑠𝑗
∞

𝑗=1

 

           = 𝑠∑𝑃[𝑌𝑛 = 𝑗 − 1]𝑠𝑗−1
∞

𝑗=1

 

           = 𝑠∑𝑃[𝑌𝑛 = 𝑗]𝑠𝑗
∞

𝑗=0

 

∵ 𝐺𝑛(𝑠) =∑𝑃[𝑌𝑛 = 𝑗]𝑠
𝑗

∞

𝑗=0

  

⟹ 𝑅𝑛(𝑠) = 𝑠𝐺𝑛(𝑠)                                                (2.9)            

Now by conditioning on the size 𝑋1 of the 1𝑠𝑡 generation, we get 

𝑃[𝑌𝑛 = 𝑘] = 𝑃(𝑋1 + 𝑋2 +⋯+ 𝑋𝑛 = 𝑘) 

                    = ∑𝑃[𝑋1 + 𝑋2 +⋯+ 𝑋𝑛 = 𝑘|𝑋1 = 𝑖] × 𝑃[𝑋1 = 𝑖]]

∞

𝑖=0

 

=∑𝑃[total number of descendants in the succeeding (𝑛

∞

𝑖=0

− 1)  generations following the 1st generation is (𝑘 − 𝑖)|𝑋1 = 𝑖] × 𝑃[𝑋1 = 𝑖]  

i.e. 



 
 

𝑃[𝑌𝑛 = 𝑘] =∑𝑃[𝑋2 +⋯+ 𝑋𝑛 = 𝑘 − 𝑖|𝑋1 = 𝑖] × 𝑃[𝑋1 = 𝑖]]

∞

𝑖=0

 

If the process starts with one ancestor, then the probability of having 𝑟 descendants in 

succeeding m generations is the coefficient of 𝑠𝑟𝑖𝑛 𝐺𝑚(𝑠); and if it starts with i ancestors then the 

probability of having 𝑟 descendants in succeeding m generations will be the coefficient of 

𝑠𝑟𝑖𝑛 [𝐺𝑚(𝑠)]
𝑖. Thus 

𝑃[𝑌𝑛 = 𝑘] =∑[𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑠(𝑘−𝑖)𝑖𝑛 {𝐺𝑛−1(𝑠)}
𝑖] × 𝑝𝑖

∞

𝑖=0

 

                    = ∑[𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑠(𝑘)𝑖𝑛 {𝑠 𝐺𝑛−1(𝑠)}
𝑖] × 𝑝𝑖

∞

𝑖=0

 

                    = 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑠(𝑘)𝑖𝑛∑𝑝𝑖

∞

𝑖=0

{𝐺𝑛−1(𝑠)}
𝑖 

∵ 𝑔(𝑠) =∑𝑝𝑖𝑠
𝑖

∞

𝑖=0

⇒ 𝑔{𝑠𝐺𝑛−1(𝑠)} =∑𝑝𝑖{𝑠𝐺𝑛−1(𝑠)}
𝑖

∞

𝑖=0

 

Hence 𝑃[𝑌𝑛 = 𝑘] = 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑠
(𝑘)𝑖𝑛  𝑔{𝑠𝐺𝑛−1(𝑠)} 

∴ 𝐺𝑛(𝑠) = ∑𝑃[𝑌𝑛 = 𝑘]𝑠
𝑘

∞

𝑘=0

 

= 𝑔{𝑠𝐺𝑛−1(𝑠)} 

From (2.9), we have 

𝑅𝑛(𝑠) = 𝑠𝐺𝑛(𝑠) 

= 𝑠 𝑔[𝑅(𝑛−1)(𝑠)] 

Hence proved the theorem. 

For example, if 𝑛 = 1, then 



 
 

𝑅1(𝑠) = 𝑠 𝑔[𝑅0(𝑠)]                      (2.10) 

where 

𝑅0(𝑠) = ∑𝑃[𝑍0 = 𝑘]𝑠𝑘
∞

𝑘=0

 

=∑𝑃[𝑋0 = 𝑘]𝑠𝑘
∞

𝑘=0

 

= 𝑠 

Using (2.10), we get 

𝑅1(𝑠) = 𝑠 𝑔(𝑠) 

= 𝑠∑𝑝𝑗𝑠
𝑗

∞

𝑗=0

 

=∑𝑝𝑗𝑠
𝑗+1

∞

𝑗=0

 

⇒∑𝑃[𝑍1 = 𝑗]𝑠
𝑗

∞

𝑗=0

 

=∑𝑝𝑗𝑠
𝑗+1

∞

𝑗=0

 

= 𝑝0𝑠 + 𝑝1𝑠
2 +⋯ 

⇒ 𝑃[𝑍1 = 0] + 𝑃[𝑍1 = 1]𝑠 + 𝑃[𝑍1 = 2]𝑠
2 +⋯ = 𝑝0𝑠 + 𝑝1𝑠

2 +⋯ 

⇒

𝑃[𝑍1 = 0] = 0

𝑃[𝑍1 = 1] = 𝑝0
𝑃[𝑍1 = 2] = 𝑝1

  }   

⇒ 𝑃[𝑍1 = 𝑗] = {
𝑝𝑗−1  ,       𝑗 = 1,2

0                    𝑗 = 0
 

Example 2.6.2.: Let 



 
 

𝑝𝑘 = {

1

4
          𝑖𝑓  𝑘 = 0

𝑘

4
       𝑖𝑓   𝑘 = 1,2

 

𝑔(𝑡) = ∑𝑝𝑘 𝑡
𝑘

∞

𝑘=0

 

= 𝑝0 + 𝑝1𝑡 + 𝑝2𝑡
2 

=
1

4
+
1

4
𝑡 +

1

2
𝑡2 

Consider, 

𝑠 𝑔(𝑡) = 𝑡 

⇒ 𝑠 {
1

4
+
1

4
𝑡 +

1

2
𝑡2} − 𝑡 = 0 

⇒ 𝑠 + 𝑠𝑡 + 2𝑠𝑡2 = 4𝑡 

⇒ 2𝑠𝑡2 + (𝑠 − 4)𝑡 + 𝑠 = 0 

⇒ 𝑡 =
−(𝑠 − 4) ± √(𝑠 − 4)2 − 4 × 2𝑠 × 𝑠

2 × 2𝑠
                           

⇒ 𝑡 =
(4 − 𝑠) ± √(𝑠 − 4)2 − 4 × 2𝑠 × 𝑠

2 × 2𝑠
                           

⇒ 𝑡 =
(4 − 𝑠) ± √−7𝑠2 − 8𝑠 + 16

4𝑠
                           

Hence the probability of extinction =

{
 
 

 
 (4 − 𝑠) + √−7𝑠2 − 8𝑠 + 16

4𝑠
(4 − 𝑠) − √−7𝑠2 − 8𝑠 + 16

4𝑠

 

 



 
 

2.7  Summary 

In this unit, we have discussed the following points: 

• The branching process is a Markov chain with a transition probability matrix ((𝑃𝑖𝑗)). 

• The probability generating function of the offspring distribution is given by  

𝑔(𝑠) = ∑𝑝𝑘 𝑠
𝑘;    0 ≤ 𝑠 ≤ 1

∞

𝑘=0

 

• The expectations and variance for the branching process are proved. 

• The extinction probability is given by 𝑞 = 𝑔(𝑞) 

• The fundamental theorem for the probability of extinction given byon is state and proved. 

2.8      Self-Assessment Exercise 

1. If 𝑋𝑛 denotes the number of individuals in the 𝑛𝑡ℎ generation of a simple branching 

process, then find the probability generating function of 𝑋𝑛. Using the probability 

generating function, obtain the mean and variance of 𝑋𝑛. 

2. State and prove the fundamental theorem of probability of extinction of a simple branching 

process. 

3. Let 𝑋 = (𝑋𝑛 𝑛 ∈ 𝑁) be the Galton-Watson branching process with U having the 

distribution {𝑝𝑛}𝑛 ∈ 𝑁. For the following {𝑝𝑛}𝑛 ∈ 𝑁 and the probability of ultimate 

extinction and the expected number of members of the 𝑛𝑡ℎ generation: 

i. 𝑝0 = 𝑝1 =
1

5
, 𝑝2 =

3

5
, 𝑝𝑘 = 0 ∀𝑘 = 3,4, … 

ii. 𝑝0 =
1

12
, 𝑝1 =

5

12
 𝑝2 =

1

2
, 𝑝𝑘 = 0 ∀𝑘 = 3,4, … 

iii. 𝑝0 =
1

2
, 𝑝1 = 0 𝑝2 = 0 𝑝3 =

1

2
, 𝑝𝑘 = 0 ∀𝑘 = 4,5… 



 
 

iv. 𝑝0 =
1

10
, 𝑝1 =

2

5
 𝑝2 =

1

2
, 𝑝𝑘 = 0 ∀𝑘 = 3,4, … 

v. 𝑝𝑘 = (
1

2
)
𝑘+1

; 𝑘 = 0,1, … 

vi. 𝑝𝑘 = 𝑝𝑞𝑘 ∀𝑘 = 0,1, … ; 𝑝 + 𝑞 = 1. 

4. Suppose that the family sizes 𝑋 have geometric distribution on {0, 1, 2, . . . } with parameter 

𝑝 ∈ (0, 1). Find the distribution of 𝑋𝑛, i.e., the probabilities 𝑃(𝑋𝑛 =  𝑗)∀ 𝑗 =  0, 1, 2, … 

5. Suppose in a branching process, the offspring distribution is as follows: 

              𝑝𝑘 = 𝐶⬚
𝑁

𝑘 𝑝
𝑘𝑞(𝑁−𝑘), 𝑞 = 1 − 𝑝, 0 < 𝑝 < 1, 𝑘 = 0,1,2, …. 

 Discuss the probability of extinction of this branching process. 
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3.1  Introduction 

The Wiener process can be considered a continuous version of the simple random walk. 

This continuous-time stochastic process is a highly studied and used object. It plays a key role in 

fields related to stochastic processes such as stochastic calculus and the theories of Markov 

processes, martingales, Gaussian processes etc. 

The Wiener process is named after mathematician Norbert Wiener. It is a specific kind of 

Brownian Motion used in finance and mathematics. It is characterized by a mean of zero and a 

variance that increases linearly with time (often standardized to one for each time interval), making 

it a standardized model for the random walk hypothesis. 

Brownian Motion was named after the botanist Robert Brown, who in the early 19th 

century, observed the erratic movement of pollen particles when suspended in water under a 

microscope. This random motion, known as “Brownian Motion,” became a fundamental concept 

in the world of physics and was later used to provide empirical evidence of the existence of atoms. 



 
 

While Brownian Motion was initially an observational phenomenon, the Wiener Process 

was its formal mathematical representation. 

3.2 Objectives 

After reading this unit, you should be able to: 

• Follow the concept of Wiener process 

• Understand the mean value function and covariance kernel of the Wiener process, 

• Explain Martingales with examples, 

• Define Stopping times and proposition. 

• State and prove the Optional sampling theorem. 

3.3 Wiener Process 

A real-valued stochastic process {𝑊(𝑡): 𝑡 ≥ 0} is said to be a Wiener process if 

(i)     {𝑊(𝑡): 𝑡 ≥ 0} has stationary independent increments, 

(ii)      𝑊(𝑡) ∀ 𝑡 > 0 is normally distributed, 

(iii) 𝐸[𝑊(𝑡)] = 0     for all 𝑡 > 0, 

(iv) 𝑊(0) = 0. 

Consider 𝑊(𝑡) −𝑊(𝑠) for any 𝑠, 𝑡. Since 𝑊(𝑡) −𝑊(𝑠) is normal, its probability law is 

determined by its mean and variance. 

We have,      𝐸[𝑊(𝑡) −𝑊(𝑠)] = 0. 

Therefore, the characteristic function of {𝑊(𝑡) −𝑊(𝑠)} is 

𝜙{𝑊(𝑡)−𝑊(𝑠)}(𝑈) = exp [−
1

2
𝑈2𝑉𝑎𝑟{𝑊(𝑡) −𝑊(𝑠)}]                                    (3.1) 

Using the conditions (i), there is some positive constant 𝜎2, such that for 𝑡 ≥ 𝑠 ≥ 0, 



 
 

𝑉𝑎𝑟{𝑊(𝑡) −𝑊(𝑠)} = 𝜎2|𝑡 − 𝑠|                                  (3.2) 

The probability law of a Wiener process is determined by the conditions (i)-(iv) up to a parameter 

𝜎2. 

Remark:  The conditional probability density function of 𝑊(𝑡), given that 𝑊(𝑡1) = 𝑤1 and 

𝑊(𝑡2) = 𝑤2, is normal with  

𝑚𝑒𝑎𝑛 = 𝑤1 +
𝑤2 − 𝑤1
𝑡2 − 𝑡1

(𝑡 − 𝑡1)                   𝑓𝑜𝑟    𝑡1 < 𝑡 < 𝑡2,               (3.3) 

and 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜎2
(𝑡2 − 𝑡)(𝑡 − 𝑡1)

𝑡2 − 𝑡1
                                  (3.4) 

3.3.1   Application of Wiener Process 

1. The Black-Scholes Model, a ground-breaking formula for option pricing, relies heavily on 

the principles of Brownian Motion. The future price of the stock is uncertain and can be 

thought of as moving randomly—much like a pollen particle suspended in water. 

2. The Wiener Process, with its mathematical rigor, provides the necessary foundation to 

model this randomness in a way that is suitable for financial calculations. 

3. The Wiener Process is instrumental in risk management by offering a structured approach 

to model asset price dynamics. By quantifying the stochastic behaviour of asset prices, risk 

managers can devise robust risk mitigation strategies and asset allocation frameworks, 

ensuring the resilience of financial portfolios against market volatility. 

4.  In fixed income, the Wiener Process is applied in modelling the evolution of interest rates 

over time. Through stochastic differential equations driven by the Wiener Process, analysts 

can better anticipate interest rate trends, which are critical for bond pricing, interest rate 

derivatives, and overall fixed-income portfolio management. 



 
 

5.  Underpinning the random walk hypothesis, the Wiener Process aids in modeling asset 

price dynamics. By recognizing the stochastic nature of asset prices, financial analysts can 

develop forecasting models, enhancing the accuracy and reliability of market predictions. 

6.  Incorporating the Wiener Process in portfolio optimization helps in understanding the 

probable price paths of constituent assets. This understanding is vital for optimizing asset 

allocation, managing portfolio risk, and ultimately enhancing portfolio performance over 

time. 

Example 3.3.1.: Suppose that liquid in a container is placed in a coordinate system, and at time 0, 

a pollen particle suspended in the liquid is at (0, 0, 0), the origin. Let 𝑊(𝑡) be the x-coordinate of 

the position of the pollen after 𝑡 minutes. Suppose that {𝑊(𝑡): 𝑡 ≥ 0} is a Brownian motion with 

variance parameter 4 and, after one minute, the x-coordinate of the pollen’s position is 2. 

(i) What is the probability that after 2 minutes it is between 0 and 1? 

(ii) What is the expected value and variance of the x-coordinate of the position of pollen after 30 

seconds? 

Solution: (i) The probability is 

𝑃[0 < 𝑊(2), 1|𝑊(1) = 2] 

= 𝑃[−2 < 𝑊(2) −𝑊(1) < −1|𝑊(1) = 2] 

 = 𝑃[−2 < 𝑊(2) −𝑊(1) < −1] 

The last step follows by the independent increments property of the Wiener process. Since 

{𝑊(2) −𝑊(1)} is normal with mean 0 and variance (𝑡 − 𝑠)𝜎2 = (2 − 1) × 4 = 4. 

Letting 𝑍~𝑁(0,1), we get 

𝑃[−2 < 𝑊(2) −𝑊(1) < −1] = 𝑃 [
−2 − 0

2
< 𝑍 <

−1 − 0

2
] 

                                                          = 𝑃[−1 < 𝑍 < −0.5] 

                                                          = Φ(−0.5) − Φ(−1) 



 
 

                                                          = 0.1523 

(ii) Using (3.3) and (3.4) and putting the 𝑡 =
1

2
, 𝑡1 = 0, 𝑡2 = 1,𝑤1 = 0,𝑤2 = 2, we get 

𝐸[𝑊(𝑡)|𝑊(𝑡1) = 𝑤1 𝑎𝑛𝑑 𝑊(𝑡2) = 𝑤2] 

= 𝑤1 +
𝑤2 − 𝑤1
𝑡2 − 𝑡1

(𝑡 − 𝑡1)          for    𝑡1 < 𝑡 < 𝑡2,   

𝐸 [𝑊 (
1
2) |𝑊

(0) = 0  𝑎𝑛𝑑 𝑊(1) = 2] = 0 +
2 − 0

1 − 0
(
1

2
− 0)  

                                                                       =
2

2
= 1 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒[𝑊(𝑡)|𝑊(𝑡1) = 𝑤1 𝑎𝑛𝑑 𝑊(𝑡2) = 𝑤2] 

= 𝜎2
(𝑡2 − 𝑡)(𝑡 − 𝑡1)

𝑡2 − 𝑡1
            

𝑉𝑎𝑟 [𝑊 (
1
2) |𝑊

(0) = 0  𝑎𝑛𝑑 𝑊(1) = 2] 

= 4 ×
(1 −

1
2) (

1
2 − 0)

1 − 0
  

 = 4 × (
1

2
×
1

2
) = 1 

3.4 Mean Value Function and Covariance Kernel of the Wiener Process 

Let {𝑊(𝑡): 𝑡 ≥ 0} be the Wiener process with parameter 𝜎2. Using (3.1) and (3.2) for all 

𝑡 ≥ 0, we have 

𝑚(𝑡) = 𝐸[𝑊(𝑡)] = 0, 

𝑉𝑎𝑟[𝑊(𝑡)] = 𝜎2𝑡 

The covariance kernel 𝐾(𝑠, 𝑡) for 𝑠 <  𝑡: 



 
 

𝐶𝑜𝑣[𝑊(𝑠),𝑊(𝑡)] = 𝐶𝑜𝑣[𝑊(𝑠),𝑊(𝑡) −𝑊(𝑠) +𝑊(𝑠)] 

     = 𝐶𝑜𝑣[𝑊(𝑠),𝑊(𝑡) −𝑊(𝑠)] + 𝐶𝑜𝑣[𝑊(𝑠),𝑊(𝑠)] 

     = 𝑉𝑎𝑟[𝑊(𝑠)] 

= 𝜎2 𝑠 

We have utilized the result that 𝑊(𝑠) and {𝑊(𝑡) −𝑊(𝑠)} are independent, and therefore 

have zero co-variance.  

The covariance kernel of the Wiener process with parameter 𝜎2 is given by 

𝐾(𝑠, 𝑡) = 𝜎2min(𝑠, 𝑡)         𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠, 𝑡 ≥ 0 

3.5   Martingales 

A stochastic process {𝑀𝑡: 𝑡 ∈ 𝑇} is said to be Martingales if 

(i) 𝐸(|𝑀𝑡|) < ∞, ∀ 𝑡 ∈ 𝑇 

(ii) 𝐸(𝑀𝑛+1|𝑀𝑡1 = 𝑎1,𝑀𝑡2 = 𝑎2, … ,𝑀𝑡𝑛 = 𝑎𝑛) = 𝑎𝑛 

For all values of 𝑎𝑖′𝑠 and 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 < 𝑡𝑛+1. 

Example 3.5.1.: Assume that a player plays against an infinitely rich opponent. He takes to one 

unit of money with probability 𝑝 and loses one unit of money with probability 𝑞 = (1 − 𝑝). Let 

𝑍𝑛 be player gain in the 𝑛𝑡ℎ game and 𝑀𝑛 = 𝑍1 + 𝑍2 +⋯+ 𝑍𝑛 be a player cumulative gain in the 

first 𝑛 games. Show that {𝑀𝑛} is a Martingale iff 𝑝 = 𝑞 =
1

2
. 

Proof: We have  

𝐸(𝑀𝑛+1|𝑀1, 𝑀2, … ,𝑀𝑛) = 𝐸(𝑀𝑛 + 𝑍𝑛+1|𝑀1, 𝑀2, … ,𝑀𝑛) 

(∵ 𝑀𝑛+1 = 𝑍1 + 𝑍2 +⋯+ 𝑍𝑛 + 𝑍𝑛+1 = 𝑀𝑛 + 𝑍𝑛+1) 

⇒ 𝐸(𝑀𝑛+1|𝑀1, 𝑀2, … ,𝑀𝑛) 



 
 

= 𝐸(𝑀𝑛|𝑀1, 𝑀2, … ,𝑀𝑛) + 𝐸(𝑍𝑛+1|𝑀1, 𝑀2, … ,𝑀𝑛) 

⇒ 𝐸(𝑀𝑛+1|𝑀1, 𝑀2, … ,𝑀𝑛) 

= 𝑀𝑛 + 𝐸(𝑍𝑛+1) 

= 𝑀𝑛 + {1 × 𝑝 + (−1) × 𝑞} 

= 𝑀𝑛 + 𝑝 − 𝑞 

Hence {𝑀𝑛: 𝑛 ≥ 1} is martingale iff 𝑝 = 𝑞 =
1

2
. 

Example3.5.2.: Let {𝑍𝑖: 𝑖 = 1,2, … } be iid random variables with mean 1 i.e. 𝐸[𝑍𝑖] = 1 , 𝑖 =

1,2, … and let  

𝑀𝑛 =∏𝑍𝑖

𝑛

𝑖=1

 

Then {𝑀𝑛: 𝑛 ≥ 1} is a martingale.  

Proof: We have 

𝐸(𝑀𝑛+1|𝑀1, 𝑀2, … ,𝑀𝑛) 

= 𝐸(𝑀𝑛 × 𝑍𝑛+1|𝑀1, 𝑀2, … ,𝑀𝑛) 

(∵ 𝑀𝑛+1 = ∏ 𝑍𝑖
𝑛+1
𝑖=1 = (∏ 𝑍𝑖

𝑛
𝑖=1 )𝑍𝑛+1 = 𝑀𝑛 × 𝑍𝑛+1) 

⇒ 𝐸(𝑀𝑛+1|𝑀1, 𝑀2, … ,𝑀𝑛) 

= 𝐸(𝑀𝑛|𝑀1, 𝑀2, … ,𝑀𝑛) × 𝐸(𝑍𝑛+1|𝑀1, 𝑀2, … ,𝑀𝑛) 

(∵ 𝑍𝑛+1 𝑖𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑀𝑛 = ∏ 𝑍𝑖
𝑛
𝑖=1  ) 

⇒ 𝐸(𝑀𝑛+1|𝑀1, 𝑀2, … ,𝑀𝑛) 

= 𝑀𝑛 × 𝐸(𝑍𝑛+1) 



 
 

 = 𝑀𝑛 × 1 

= 𝑀𝑛 

Hence {𝑀𝑛: 𝑛 ≥ 1} is martingale. 

Example 3.5.3.: Consider an urn with a red ball and a blue ball. Suppose initially the urn contains 

one ball of each color. At each time step, a ball is chosen at random from the urn. If a red ball is 

chosen put back and another red ball is added to the urn. Similarly, if a green ball is chosen, return 

it to the urn along with another green ball. Let 𝑋𝑛 be the number of red balls in the urn after 𝑛 

draws. Then 𝑋0 = 1 and 𝑋𝑛 is a Markov chain with transitions 

𝑃[𝑋𝑛+1 = 𝑘 + 1|𝑋𝑛 = 𝑘] =
𝑘

𝑛 + 2
 

𝑃[𝑋𝑛+1 = 𝑘|𝑋𝑛 = 𝑘] =
𝑛 + 2 − 𝑘

𝑛 + 2
. 

Proof: Let, 𝑀𝑛 =
𝑋𝑛

𝑛+2
 

be the fraction of red balls after 𝑛 draws. Then 𝑀𝑛 is a Martingale. 

Notice that, 𝑃[𝑋𝑛+1|𝑋𝑛] = 𝑋𝑛 +
𝑋𝑛

𝑛+2
 

Let ℱ𝑛 is the information obtained from 𝑀0, 𝑀1, … ,𝑀𝑛. i.e. 

𝐸[𝑀𝑛+1|ℱ𝑛] = 𝑀𝑛 

Using conditional expectation 

𝐸[𝑀𝑛+2|ℱ𝑛] = 𝐸[𝐸{𝑀𝑛+2|ℱ𝑛+1}|ℱ𝑛] 

                       = 𝐸[𝑀𝑛+1|ℱ𝑛] 

                       = 𝑀𝑛 

Therefore 



 
 

𝐸[𝑀𝑛+1|ℱ𝑛] = 𝐸[(𝑛 + 3)
−1𝑋𝑛+1|𝑋𝑛] 

                         =
1

𝑛 + 3
[𝑋𝑛 +

𝑋𝑛
𝑛 + 2

] 

                          =
𝑋𝑛
𝑛 + 2

 

                          = 𝑀𝑛 

1. A process 𝑀𝑛 with 𝐸(|𝑀𝑛|) < ∞ is called a sub-martingale with respect to 

𝑋0, 𝑋1, …   if ∀𝑚 < 𝑛, 𝐸(𝑀𝑛|ℱ𝑛) ≥ 𝑀𝑛. 

2. A process 𝑀𝑛 with 𝐸(|𝑀𝑛|) < ∞ is called a super martingale with respect to 

𝑋0, 𝑋1, …   if ∀𝑚 < 𝑛, 𝐸(𝑀𝑛|ℱ𝑛) ≤ 𝑀𝑛. 

3.6  Stopping Times 

A positive integer-valued, random variable 𝑇 is said to be a random time for the process  

{𝑀𝑛 , 𝑛 ≥ 1} if the event {𝑇 = 𝑛} is determined by the random variables 𝑀1, 𝑀2, … ,𝑀𝑛. If 

𝑃[𝑇 < ∞] = 1, then the random time 𝑇 is said to be a stopping time. 

Let 𝑇 be a random time for the process {𝑀𝑛 , 𝑛 ≥ 1} and let 

�̅�𝑛 = {
𝑀𝑛       𝑖𝑓 𝑛 ≤ 𝑇
𝑀𝑇       𝑖𝑓 𝑛 > 𝑇

 

{�̅�𝑛 , 𝑛 ≥ 1} is called the stopped process. 

Let 𝑇 be a stopping time and 𝐹𝑇 be the class of sets, i.e., 

𝐹𝑇 = {𝐴 ∈ 𝐹∞: 𝐴 ∩ (𝑇 ≤ 𝑡) ∈ 𝐹𝑡 ∀ 𝑡 ∈ 𝑅} 

Proposition: If 𝑇 is a stopping time for the martingale {𝑀𝑛}, then the stopped process {�̅�𝑛} is a 

martingale. 

Proof: Let 



 
 

𝛿𝑛 = {
1        𝑖𝑓 𝑇 ≥ 𝑛
0        𝑖𝑓 𝑇 < 𝑛

 

If we have not yet stopped after observing 𝑀1, 𝑀2, … ,𝑀𝑛−1. Insist that 

�̅�𝑛 = �̅�𝑛−1 + 𝛿𝑛(𝑀𝑛 −𝑀𝑛−1) 

Case I:   If 𝑇 ≥ 𝑛, then �̅�𝑛 = 𝑀𝑛 and �̅�𝑛−1 = 𝑀𝑛−1. 

Case I:  If 𝑇 < 𝑛, then �̅�𝑛 = �̅�𝑛−1. 

Consider 

𝐸[�̅�𝑛|𝑀1, 𝑀2, … ,𝑀𝑛−1] = 𝐸[�̅�𝑛−1 + 𝛿𝑛(𝑀𝑛 −𝑀𝑛−1)|𝑀1, 𝑀2, … ,𝑀𝑛−1] 

                                             = �̅�𝑛−1 + 𝛿𝑛𝐸[(𝑀𝑛 −𝑀𝑛−1)|𝑀1,𝑀2, … ,𝑀𝑛−1] 

                                             = �̅�𝑛−1. 

where {𝑀𝑛} is a martingale. 

Since the stopped process is a martingale, and since �̅�1 = 𝑀1, then 

𝐸[�̅�𝑛] = 𝐸[𝑀1]      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 

Suppose that 𝑇 is a stopping time, i.e., 𝑃[𝑇 < ∞] = 1. 

We have 

�̅�𝑛 = {
𝑀𝑛       𝑖𝑓 𝑛 ≤ 𝑇
𝑀𝑇       𝑖𝑓 𝑛 > 𝑇

 

It follows that �̅�𝑛 equals 𝑀𝑇 when 𝑛 is sufficiently large i.e., 

�̅�𝑛 → 𝑀𝑇        as 𝑛 → ∞,with probability 1. 

or 

𝐸[�̅�𝑛] → 𝐸[𝑀𝑇]       as 𝑛 → ∞                                         (3.5) 



 
 

Further, 𝐸[�̅�𝑛] = 𝐸[𝑀1] for all 𝑛, then 𝐸[𝑀𝑇] = 𝐸[𝑀1] for all 𝑛. 

Remark: If either: 

(i) �̅�𝑛 are uniformly bounded, or 

(ii) 𝑇 is bounded, or, 

(iii) 𝐸[𝑇] < ∞, and there is an 𝑀 < ∞ such that 

𝐸[|𝑀𝑛+1 −𝑀𝑛||𝑀1, 𝑀2, … ,𝑀𝑛] < 𝑀, 

Then (3.5) is valid. Thus 𝐸[𝑀𝑛] = 𝐸[𝑀1]. 

Theorem 3.6.1.: Suppose 𝑇 is a stopping time. If 𝐴 ∈ ℱ𝑇 then  

𝐴 ∩ (𝑇 ≤ 𝑡) ∈ ℱ𝑛𝑡 ∀ 𝑡 ∈ 𝑅                                   (3.6) 

Conversely, if 𝐴 ∈ ℱ𝑛∞ and (8.6) is valid, then 𝐴 ∈ ℱ𝑇. 

Proof: Let 𝐴 ∈ ℱ𝑇 , 𝑡 ∈ 𝑅, then 

𝐴 ∩ (𝑇 < 𝑡) =⋃{𝐴 ∩ (𝑇 < 𝑡 − 1/𝑘)}

∞

𝑘=1

∈ ℱ𝑡 

Conversely, if 𝐴 ∈ 𝐹∞ and (8.5) is valid, then for any 𝑡 ∈ 𝑅 and for any natural 𝑚. 

𝐴 ∩ (𝑇 ≤ 𝑡) = ⋂{𝐴 ∩ (𝑇 < 𝑡 + 1/𝑘)}

∞

𝑘=𝑚

∈ ℱ𝑡+1/𝑚 

Therefore 

𝐴 ∩ (𝑇 ≤ 𝑡) ∈ ⋂ ℱ
𝑡+

1
𝑚

∞

𝑚=1

= ℱ𝑡 

3.7 Optional Sampling Theorem 



 
 

Theorem 3.7.1.: Suppose 𝑀0, 𝑀1, ⋯ is a martingale with respect to 𝑋0, 𝑋1,⋯ and 𝑇 is a stopping 

time satisfying 𝑃(𝑇 < ∞) = 1,  

𝐸(|𝑀𝑛| < ∞)                                                                                   (3.7) 

and 

lim
𝑛→∞

𝐸 (|𝑀𝑛|𝐼(𝑇 > 𝑛)) = 0                                                                (3.8) 

Then, 𝐸(𝑀𝑇) = 𝐸(𝑀0). Here 𝐼(∙) is an indicator function. 

Proof: Let ℱ𝑛 be the information contained in 𝑋0, 𝑋1,⋯ , 𝑋𝑛 and 𝐼(𝑇 > 𝑛) be the indicator function 

of event {𝑇 > 𝑛}, which is measurable with respect to ℱ𝑛 (Since we need only the information up 

to time 𝑛 to determine if we have stopped by time 𝑛). 𝑀𝑇 is the random variable which equals 𝑀𝑗 

if 𝑇 = 𝑗. We can write 

𝑀𝑇 =∑𝑀𝑗𝐼(𝑇 = 𝑗)

𝐾

𝑗=0

 

𝐸(𝑀𝑇|ℱ𝐾−1) = 𝐸(𝑀𝐾𝐼(𝑇 = 𝐾)|ℱ𝐾−1) +∑𝐸(𝑀𝑗𝐼(𝑇 = 𝑗)|ℱ𝐾−1)

𝐾

𝑗=0

 

For 𝑗 ≤ (𝐾 − 1),𝑀𝑗𝐼(𝑇 = 𝑗) ℱ𝐾−1 is measurable. Hence 

𝐸(𝑀𝑗𝐼(𝑇 = 𝑗)|ℱ𝐾−1) = 𝑀𝑗𝐼(𝑇 = 𝑗) 

Since 𝑇 is known to be no more than 𝐾, then event {𝑇 = 𝐾} is the same as the event {𝑇 > 𝐾 − 1}. 

The latter event is measurable with respect to ℱ𝐾−1. Hence 

𝐸(𝑀𝐾𝐼(𝑇 = 𝐾)|ℱ𝐾−1) 

= 𝐸(𝑀𝐾𝐼(𝑇 > 𝐾 − 1)|ℱ𝐾−1) 

= 𝐼(𝑇 > 𝐾 − 1)𝐸(𝑀𝐾|ℱ𝐾−1) 

= 𝐼(𝑇 > 𝐾 − 1)𝐸(𝑀𝐾−1) 



 
 

Therefore 

𝐸(𝑀𝑇|ℱ𝐾−1) 

= 𝐼(𝑇 > 𝐾 − 1)𝐸(𝑀𝐾−1) +∑𝐸 (𝑀𝑗𝐼(𝑇 = 𝑗))

𝐾−1

𝑗=0

 

= 𝐼(𝑇 > 𝐾 − 2)𝐸(𝑀𝐾−2) +∑𝐸 (𝑀𝑗𝐼(𝑇 = 𝑗))

𝐾−2

𝑗=0

 

𝐸(𝑀𝑇|ℱ𝐾−2) 

= 𝐸(𝐸(𝑀𝐾|ℱ𝐾−1)|ℱ𝐾−2) 

= 𝐼(𝑇 > 𝐾 − 3)𝐸(𝑀𝐾−1) +∑𝐸 (𝑀𝑗𝐼(𝑇 = 𝑗))

𝐾−3

𝑗=0

 

We continue this process until we get 𝐸(𝑀𝑇|ℱ0) = 𝑀0. Now, consider the stopping time 𝑇𝑛 =

𝑚𝑖𝑛(𝑇, 𝑛). Then 

𝑀𝑇 = 𝑀𝑇𝑛 +𝑀𝑇𝐼(𝑇 > 𝑛) − 𝑀𝑛𝐼(𝑇 > 𝑛) 

𝐸(𝑀𝑇) = 𝐸(𝑀𝑇𝑛) + 𝐸(𝑀𝑇𝐼(𝑇 > 𝑛)) − 𝐸(𝑀𝑛𝐼(𝑇 > 𝑛)) 

Since 𝑇𝑛 is a bounded stopping time, hence 𝐸(𝑀𝑇𝑛) = 𝑀0. Then 𝑃(𝑇 > 𝑛) → 0 as 𝑛 → ∞. If 

𝐸|𝑀𝑇| < ∞ then 𝐸(|𝑀𝑇|𝐼(𝑇 > 𝑛)) → 0. If 𝑀𝑛 and 𝑇 are given so that  

lim
𝑛→∞

𝐸 (|𝑀𝑇|𝐼(𝑇 > 𝑛)) = 0, then, 𝐸(𝑀𝑇) = 𝐸(𝑀0). Hence the theorem follows■ 

The third term 𝐸(𝑀𝑇𝐼(𝑇 > 𝑛)) in 𝐸(𝑀𝑇) is troublesome. There are many examples of interest 

where the stopping time 𝑇 is not bounded. 

Consider the Example. Let {𝑇 > 𝑛} be the event that the first 𝑛 tosses are tails and has probability 

2−𝑛. If this event occurs, the bettor has lost a total (2𝑛 − 1) rupees, i.e., 𝑀𝑛 = 1 − 2𝑛. Hence 

𝐸(𝑀𝑇𝐼(𝑇 > 𝑛)) = 2−𝑛(1 − 2𝑛) 



 
 

which does not go to 0 as 𝑛 → ∞. 

Example 3.7.1.: (Gambler’s Ruin Problem Revisited) 

Let 𝑋𝑛 be a simple random walk 𝑝 =
1

2
 on {0,1,2, … } with absorbing barriers. Suppose 

𝑋0  =  𝑎 and 𝑀𝑛 ≡ 𝑋𝑛. Then, 𝑋𝑛 is a martingale. Let stopping time 𝑇 =  𝑚𝑖𝑛{𝑗 ∶  𝑋𝑗 = 0 or 𝑁} 

and since 𝑋𝑛 is bounded, we have 

𝐸(𝑀𝑇) = 𝐸(𝑀0) = 𝑎. 

But in this case 

𝐸(𝑀𝑇) 

= 0𝑃(𝑋𝑇 = 0) + 𝑁𝑃(𝑋𝑇  = 𝑁) 

= 𝑁𝑃(𝑋𝑇 = 𝑁) 

Therefore, 

𝑃(𝑋𝑇 = 𝑁) =
𝑎

𝑁
 

This gives another derivation of gambler’s ruin result for simple random walk. 

Example 3.7.2.: Let 𝑋𝑛 be as in Example 8 and 𝑀𝑛 = 𝑋𝑛
2 − 𝑛. Then, 𝑀𝑛  is a martingale with 

respect to 𝑋𝑛. 

𝐸(𝑀𝑛+1|ℱ𝑛) = 𝐸(𝑋𝑛+1
2 − (𝑛 + 1)|ℱ𝑛) 

= 𝑋𝑛
2 + 1 − (𝑛 + 1) 

= 𝑀𝑛. 

Let stopping time 𝑇 = 𝑚𝑖𝑛{𝑗: 𝑋𝑗 = 0 or 𝑁} and since 𝑀𝑛  is not a bounded martingale so it 

is not immediate that (3.7) and (3.8) hold. However there exists 𝐶 <  ∞ and 𝜌 < 1 such that 

𝑃(𝑇 > 𝑛)  ≤ 𝐶𝜌𝑛. 

Since |𝑀𝑛| ≤ 𝑁2 + 𝑛, 



 
 

𝐸(|𝑀𝑛|) < ∞  

and 

𝐸(|𝑀𝑛|𝐼(𝑇 > 𝑛)) 

≤ 𝐶𝜌𝑛(𝑁2 + 𝑛) → 0 

Hence, optional sampling theorem holds and 𝐸(𝑀𝑇) = 𝐸(𝑀0) = 𝑎2. 

𝐸(𝑀𝑇) = 𝐸(𝑋𝑇
2) − 𝐸(𝑇) 

= 𝑁2𝑃(𝑋𝑇 = 𝑁) − 𝐸(𝑇) 

= 𝑎𝑁 − 𝐸(𝑇) 

Hence 

𝐸(𝑇)  = 𝑎𝑁 − 𝑎2 = 𝑎(𝑁 − 𝑎). 

3.8 Summary 

In this unit, we have covered the following points: 

• We have explained Wiener process with examples. 

• We have discussed the Mean value function and covariance kernel of Wiener process. 

• We have explained Martingales. 

• We have explained Stopping times with example. 

• We have stated and proved the Optional sampling theorem. 

3.9  Self-Assessment Exercise 

1. State and prove Optional Sampling Theorem. 

2. Consider the Polya urn problem. Let 𝑀𝑛 be the proportion of red balls after 𝑛 draws 

(starting with one red and one green ball). Prove by induction on 𝑛 that 



 
 

       𝑃 (𝑀𝑛 =
𝑘

𝑛 + 2
) =

1

𝑛 + 1
  ,     𝑘 = 1,2, …, 

3. Consider a biased random walk on the integers with probability 𝑝 <
1

2
 of moving to the 

right and probability (1 − 𝑝) of moving to the left. Let 𝑍𝑛 be the value at time 𝑛 and assume 

that 𝑍0 = 𝑎, where 0 < 𝑎 < 𝑁. Show that 

        𝑀𝑛 = {
1−𝑝

𝑝
}
𝑍𝑛

 is a martingale. 

4. Let 𝑋𝑛 be the number of individuals in the 𝑛𝑡ℎ generation of a branching process in which 

each individual produces offspring from a distribution with mean 𝜇 and variance 𝜎2. We 

have seen 𝑀 − 𝑛 = 𝜇−𝑛𝑋𝑛 is a martingale. Let ℱ𝑛 denote the information contained in 

𝑋0, 𝑋1, … , 𝑋𝑛. Show that 

              𝐸(𝑋𝑛+1
2 |ℱ𝑛) = 𝜇2𝑋𝑛

2 + 𝜎2𝑋𝑛. 

5. Let {𝑊(𝑡): 𝑡 > 0} be the Wiener process with parameter 𝜎2. 𝑋(𝑡) = 𝐴𝑡 +𝑊(𝑡), in which 

𝐴 is a positive constant. Compute: 

(i) The mean value function 𝑚(𝑡) = 𝐸[𝑋(𝑡)] 

(ii) The covariance kernel 𝐾(𝑠, 𝑡) = 𝐶𝑜𝑣[𝑋(𝑠), 𝑋(𝑡)]. 
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UNIT– 4      RENEWAL PROCESS 
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4.8 References 

4.9 Further Readings 

4.1 Introduction 

Renewal processes are a fundamental tool in stochastic modeling, providing a way to 

analyze and predict the behavior of systems that experience recurring events over time.  

A renewal process describes the times at which a certain event, such as a system reset or 

renewal, occurs. This process is widely used in fields like operations research, queuing theory, and 

reliability engineering to model events that occur randomly over time. This process is a special 

case of a counting process, which tracks the number of events that have occurred by a certain time. 

Specifically, in a renewal process, the times between successive events (also called interarrival 

times or interrenewal times) are independent and identically distributed (i.i.d.) random variables. 

The process "renews" itself every time an event occurs, meaning that the statistical properties of 

the process reset after each event. 

The renewal process has been used in many areas, such as physics, biology, engineering, 

reliability, queueing, finance, and others. For example, in reliability modelling, a renewal process 

models the failure process of a system that either, at failure, is replaced with a new one, or, after 

repair, is “as good as new”. 

https://www.sciencedirect.com/topics/physics-and-astronomy/physics


 
 

4.2 Objectives 

After studying this unit, you should be able to: 

• Identify Renewal process and define Distribution of renewal process with example. 

• Explain asymptotic distribution of renewal process. 

• State and prove Elementary renewal theorem with example. 

• Describe equilibrium renewal process. 

4.3 Distribution and Asymptotic Distribution of Renewal Process 

Let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of non-negative i.i.d. random variables with  

𝑃[𝑋1 = 0] < 1, 𝜇 = 𝐸[𝑋1] and  𝐹(𝑥) = 𝑃[𝑋1 ≤ 𝑥]. 

Suppose that 𝑆𝑛 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛 for 𝑛 ≥ 1 with distribution function  

𝐹𝑛(𝑥) = 𝑃[𝑆𝑛 ≤ 𝑥]. 

Let 𝑁(𝑡) = max {𝑛: 𝑆𝑛 ≤ 𝑡} be the number of occurrences in the interval (0, 𝑡). Here 𝑆𝑛 is 

the time epoch of 𝑛𝑡ℎ renewal. 

Then the process {𝑁(𝑡): 𝑡 ≥ 0} is called a renewal process. 𝑁(𝑡) gives the number of 

renewals in (0, 𝑡). 

𝑋1 is called the inter renewal time or inter arrival time. 

𝑋𝑛 is called the inter renewal time between the (𝑛 − 1)𝑡ℎ and 𝑛𝑡ℎ renewal. 

We know that 𝑆𝑛 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛, where 𝑋𝑛′𝑠 are i.i.d. random variables. 

𝑆𝑛 − 𝐸(𝑆𝑛)

𝑛
→ 0 

⇒
𝑆𝑛
𝑛
→
𝐸(𝑆𝑛)

𝑛
 



 
 

            =
𝑛𝐸(𝑋1)

𝑛
 

            = 𝜇                         as  𝑛 → ∞ 

Since 𝜇 > 0 , it implies that 𝑆𝑛 → ∞ as 𝑛 → ∞. 

Thus 𝑆𝑛 can be less than 𝑡 for almost a finite number of values of 𝑛. Thus, 

𝑁(𝑡) = max{𝑛: 𝑆𝑛 ≤ 𝑡} 

Example: Consider the Poisson process with rate parameter 𝜆. The waiting times are independent, 

exponential random variables with parameter 𝜆 and 𝑁(𝑡) is the Poisson process. In this case 𝜇 =

1/𝜆 . 

Example: Let 𝑌𝑛 be an irreducible, positive recurrent, discrete-time Markov chain staring in state 

𝑥. Let 

𝑋1 = min{𝑛 > 0: 𝑌𝑛 = 𝑥} 

And 

𝑆𝑛 = min{𝑛 > 0 ∶ 𝑌𝑋1+𝑋2+⋯+𝑋𝑛 = 𝑥}. 

Example: Let 𝑌𝑡 be an irreducible, positive recurrent, continuous time Markov chain staring in 

state 𝑥. Define 

𝑅1 = inf {𝑡 > 0: 𝑌𝑡 ≠ 𝑥} 

𝑄1 = inf {𝑡 > 𝑅1: 𝑌𝑡 = 𝑥} 

Then 𝑋1 = 𝑅1 + 𝑄1 and in general 

𝑅𝑖 = inf {𝑡 > 0: 𝑌𝑋1+𝑋2+⋯+𝑋𝑖−1+𝑡 ≠ 𝑥} 

𝑄𝑖 = inf {𝑡 > 0: 𝑌𝑋1+𝑋2+⋯+𝑋𝑖−1+𝑅𝑖+𝑡 = 𝑥} 



 
 

Then 𝑇𝑖 = 𝑅𝑖 +𝑄𝑖 

The random variables 𝑅𝑖 are exponential with parameter 𝜆(𝑥), the rate at which the chain is 

changing from state 𝑥. 

Example:  Distribution of Renewal Process 

We have 

𝑁(𝑡) ≥ 𝑛   ⇔ 𝑆𝑛 ≤ 𝑡 

Hence 

𝑃[𝑁(𝑡) = 𝑛] = 𝑃[𝑁(𝑡) ≥ 𝑛] − 𝑃[𝑁(𝑡) ≥ 𝑛 + 1] 

                         = 𝑃[𝑆𝑛 ≤ 𝑡] − 𝑃[𝑆𝑛+1 ≤ 𝑡] 

                         = 𝑃 [∑𝑋𝑖

𝑛

𝑖=1

≤ 𝑡] − 𝑃 [∑𝑋𝑖

𝑛+1

𝑖=1

≤ 𝑡] 

                         = 𝐹𝑛(𝑡) − 𝐹𝑛+1(𝑡) 

{Since 𝐹𝑛(𝑥) = 𝑃(𝑋1 + 𝑋2 +⋯+ 𝑋𝑛 ≤ 𝑥)} 

Let 𝑚(𝑡) = 𝐸[𝑁(𝑡)] be the renewal function. 

Renewal Equation: 

The renewal equation is a fundamental concept in renewal theory. It is used to describe and 

analyze systems that reset or renew themselves at random points in time, such as machinery that 

undergoes repair or replacement, populations that reproduce, or events that recur at random 

intervals. 

Theorem 4.3.1: (Renewal Equation) 

The renewal function 𝑚(𝑡) is given by 



 
 

𝑚(𝑡) = ∑𝐹𝑛(𝑡)

∞

𝑛=1

 

Proof: We know that 

𝑚(𝑡) = 𝐸[𝑁(𝑡)]  

           = ∑𝑛

∞

𝑛=0

𝑃[𝑁(𝑡) = 𝑛]  

           = ∑𝑛

∞

𝑛=1

𝑃[𝐹𝑛(𝑡) − 𝐹𝑛+1(𝑡)]  

           = 𝐹1(𝑡) − 𝐹2(𝑡) + 2𝐹2(𝑡) − 2𝐹3(𝑡) + 3𝐹3(𝑡) − 3𝐹4(𝑡) + ⋯ 

           = ∑𝐹𝑛

∞

𝑛=1

(𝑡)  

⇒ 𝑚(𝑡) = ∑ 𝐹𝑛
∞
𝑛=1  (t) 

Laplace Transformation of 𝒎(𝒕) 

Let 𝑓(𝑥) = 𝐹′(𝑥) be the pdf of 𝑋1 and 𝑔∗(𝑠) be the Laplace transformation of 𝑔(𝑡), i.e.  

𝑔∗(𝑠) = ∫ exp(−𝑠𝑡)  𝑔(𝑡)𝑑𝑡

∞

0

 

So, 

𝑚∗(𝑠) = ∫ exp(−𝑠𝑡)  𝑚(𝑡)𝑑𝑡

∞

0

 

            = ∫ exp(−𝑠𝑡) ∑𝐹𝑛

∞

𝑛=1

(𝑡)𝑑𝑡

∞

0

 



 
 

            = ∑∫ exp(−𝑠𝑡) 𝐹𝑛(𝑡)𝑑𝑡

∞

0

∞

𝑛=1

 

            = ∑𝐹𝑛
∗(𝑠)

∞

𝑛=1

                                             

{𝐹𝑛
∗(𝑠) is the Laplace transformation of the distribution function 𝐹𝑛(𝑡) of 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛.  

𝑓𝑛
∗(𝑠) is the Laplace transformation of density function of 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛. i.e.  

𝑓𝑛
∗(𝑠) = 𝑠 𝐹𝑛

∗(𝑠)} 

⇒ 𝑚∗(𝑠) =
1

𝑠
∑𝑓𝑛

∗(𝑠)

∞

𝑛=1

 

                 =
1

𝑠
∑{𝑓∗(𝑠)}𝑛
∞

𝑛=1

=
1

𝑠
{

𝑓∗(𝑠)

1 − 𝑓∗(𝑠)
} 

Example 4.3.1.: If 𝑋1~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽), the pdf is 

𝑓(𝑥) =
𝛽𝛼

Γ𝛼
exp(−𝛽𝑥) 𝑥(𝛼−1) 

The Laplace transformation of 𝑓(𝑡) is 

𝑓∗(𝑠) = ∫ exp(−𝑠𝑡)  𝑓(𝑡)𝑑𝑡

∞

0

 

           = ∫ exp(−𝑠𝑡) 
𝛽𝛼

Γ𝛼
exp(−𝛽𝑡) 𝑡(𝛼−1)𝑑𝑡

∞

0

 

           =
𝛽𝛼

Γ𝛼
∫ exp{−(𝑠 + 𝛽)𝑡} 𝑡(𝛼−1)𝑑𝑡

∞

0

 



 
 

   Since       ∫
𝛽𝛼

Γ𝛼
exp{−𝛽𝑡} 𝑡(𝛼−1)𝑑𝑡

∞

0

= 1 

  we have       ∫
(𝑠 + 𝛽)𝛼

Γ𝛼
exp{−(𝑠 + 𝛽)𝑡} 𝑡(𝛼−1)𝑑𝑡

∞

0

= 1 

 Hence 

    ∫ exp{−(𝑠 + 𝛽)𝑡} 𝑡(𝛼−1)𝑑𝑡

∞

0

=
Γ𝛼

(𝑠 + 𝛽)𝛼
 

Therefore 

𝑓∗(𝑠) =
𝛽𝛼

Γ𝛼
{

Γ𝛼

(𝑠 + 𝛽)𝛼
} 

= (
𝛽

𝑠 + 𝛽
)
𝛼

 

If 𝛼 = 1, we get 

𝑓∗(𝑠) =
𝛽

𝑠 + 𝛽
 

We know that 

𝑚∗(𝑠) 

=
1

𝑠
{
𝑓∗(𝑠)

1 − 𝑓∗(𝑠)
} 

=
1

𝑠
{

𝛽
𝑠 + 𝛽

1 −
𝛽

𝑠 + 𝛽

} 

Thus 



 
 

𝑚∗(𝑠) =
1

𝑠
{
𝛽

𝑠
} 

=
𝛽

𝑠2
 

If 𝛼 = 2, then  

𝑓∗(𝑠) = (
𝛽

𝑠 + 𝛽
)
2

 

We know that 

𝑚∗(𝑠) 

=
1

𝑠
{
𝑓∗(𝑠)

1 − 𝑓∗(𝑠)
} 

=
1

𝑠
{
 

 (
𝛽

𝑠 + 𝛽
)
2

1 − (
𝛽

𝑠 + 𝛽
)
2

}
 

 
 

Therefore 

𝑚∗(𝑠) 

=
1

𝑠
(
𝛽

𝑠
)
2

 

=
𝛽2

𝑠3
. 

Theorem 4.3.2.: Every renewal function 𝑚(𝑡) satisfies the renewal equation 

m(t) = F(t) + ∫m(t − x)dF(x)

t

0

 

Proof: m(t) = E[N(t)] 

 



 
 

                       = ∫ E[N(t)|X1 = x] f(x)dx

∞

0

 

Consider 

E[N(t)|X1 = x] = {
0                                 if x > t
1 + E[N(t − x)]     if  x ≤ t 

 

Hence 

m(t) = ∫[1 + E{N(t − x)}]

t

0

f(x)dx 

          = ∫ f(x)dx

t

0

+∫[E{N(t − x)}]

t

0

f(x)dx 

⇒ m(t) = F(t) + ∫m(t − x)dF(x)

t

0

 

Example 4.3.2.: If X1~Exp(θ) 

The pdf is 

f(x) = {
θ exp(−θx)                        0 ≤ x < ∞
0                                           otherwise

 

The distribution function is 

F(x) = 1 − exp(−θx)   ;     0 < x < ∞ 

The renewal function is 

m(t) = 1 − exp(−θt) + ∫m(t − x)θ exp(−θx) dx

t

0

 



 
 

         = 1 − exp(−θt) + θ exp(−θt)∫m(t − x) exp(−θx) dx

t

0

 

Let y = t − x, then x = t − y and Jacobian is dx = dy.  

We get 

m(t) = 1 − exp(−θt) + θ exp(−θt)∫m(y) exp(θy) dy

t

0

 

Differentiating with respect to t, we get 

d

dt
{m(t)} =

d

dt
{1 − exp(−θt) + θ exp(−θt)∫m(y) exp(θy) dy

t

0

} 

                = θ exp(−θt) − θ2 exp(−θt)∫m(y) exp(θy) dy

t

0

+ θexp(−θt) {m(t) exp(θt)} 

                = θ exp(−θt) − θ2 exp(−θt)∫m(y) exp(θy) dy

t

0

+ θ m(t) 

                = θ m(t) + θ exp(−θt) − θ{m(t) − 1 + exp(−θt) 

                = θ m(t) + θ exp(−θt) − θm(t) + θ − θexp(−θt) 

                = θ  

Therefore 

m′(t) = θ 

m(t) = θt + C 

At t = 0,m(0) = 0 = C 



 
 

Hence 

m(t) = θt 

Example 4.3.3.: Let X1~U(0,1) 

The pdf is 

f(x) = {
1                                            0 ≤ x < 1
0                                           otherwise

 

The distribution function is 

F(x) = x   ;     0 ≤ x ≤ 1 

The renewal function is 

m(t) = F(t) + ∫m(t − x)dF(x)

t

0

 

           = t + ∫m(t − x)dx

t

0

 

Let y = t − x, then x = t − y and Jacobian is dx = dy, we get 

m(t) = t + ∫m(y)dy

t

0

 

Differentiating with respect to t, we get 

d

dt
{m(t)} =

d

dt
{t + ∫m(y)dy

t

0

} 

                    = 1 +m(t) 

⇒ m′(t) = 1 +m(t) 



 
 

⇒ m′(t) − m(t) = 1 

Multiplying exp (−t) on both sides, we get 

{m′(t) − m(t)}exp (−t) = exp(−t) 

⇒
d

dt
[m(t) exp(−t)] 

= exp(−t) 

=
d

dt
[C − exp(−t)] 

Therefore 

m(t) exp(−t) = C − exp(−t) 

At t = 0, 

 m(t) = 0 

⇒ C = 1 

Hence 

m(t) = C exp(t) − 1 

= exp(t) − 1 

Theorem 4.3.3.: Show that N(t) has finite expectation. i.e. 

m(t) < ∞                  for all 0 ≤ t < ∞ 

Proof: We have P[Xn = 0] < 1. 

By the continuity property of probabilities ∃ α > 0 such that P[Xn ≥ α] > 0. 

Define a related renewal process {X̅n: n ≥ 1} by 



 
 

X̅n = {
0                  if Xn < α
α                  if Xn ≥ α

 

Let,  N̅(t) = max{n: X̅1 + X̅2 +⋯+ X̅n ≤ t} 

Related renewal process can only take place at times t = nα , n = 0,1,2, … Also the number of 

renewals at each of these times are independent geometric random variables with mean 

1

P{Xn ≥ α}
 

Thus,  

E[N̅(t)] 

≤

t
α + 1

P{Xn ≥ α}
 

< ∞ 

Since X̅n ≤ Xn    ⇒  N̅(t) ≥ N(t). 

Some Limit Theorems 

Claim: Let N(∞) = lim
t→∞

N(t) be the total number of renewals that occurs, then N(∞) = ∞ with 

probability 1. 

Proof: Suppose, if possible, N(∞) < ∞. This implies that 

N(∞) = n0 < ∞ 

Therefore 

P[N(∞) < ∞] 

= P[Xn = ∞ for some n] 

= P [⋃{Xn = ∞}

∞

n=1

] 



 
 

≤∑P{Xn = ∞}

∞

n=1

 

= 0 

⇒ P[N(∞) < ∞] ≤ 0 

⇒ P[N(∞) < ∞] = 0 

⇒ P[N(∞) = ∞] = 1 

Theorem 4.3.4.: Show that  

lim
t→∞

N(t)

t
=
1

μ
   with probability 1. 

Proof: Suppose SN(t) is the time of the last renewal prior to or at time t and SN(t)+1 is the time of 

the first renewal after time t. Then 

SN(t) ≤ t ≤ SN(t)+1 

⇒
SN(t)

N(t)
≤

t

N(t)
≤
SN(t)+1
N(t)

 

Using the Strong law of large numbers, then 

SN(t)

N(t)
→ μ  as N(t) → ∞ 

But N(t) → ∞  as t → ∞ 

Therefore 

SN(t)

N(t)
→ μ  as t → ∞ 

Consider 



 
 

SN(t)+1
N(t)

=
SN(t)+1
N(t) + 1

×
N(t) + 1

N(t)
 

 = μ × 1                                            {∵
N(t) + 1

N(t)
= 1 +

1

N(t)
→ 1 + 0     as N(t) → ∞}  

By Squeeze Theorem 

t

N(t)
→ μ                as N(t) → ∞ 

But t → ∞ ⇒ N(t) → ∞. Thus, 

t

N(t)
→ μ                as   t → ∞ 

⇔
N(t)

t
→
1

μ
                as t → ∞ 

Here 1/μ is the rate of the renewal process. 

Note: Sandwich Theorem or Squeeze Theorem: 

Let f, g and h be real functions such that f(x) ≤ g(x) ≤ h(x) for all x in the common 

domain of definition. For some real number a, if 

lim
x→a

f(x) = lim
x→a

h(x) = L 

Then 

lim
x→a

g(x) = L 

Example 4.3.5.: A container contains an infinite collection of coins. Each coin has its own 

probability of landing heads and these probabilities are the values of independent random variables 

that are uniformly distributed over (0,1). i.e. P[H] = p  , p~U(0,1). 



 
 

(For different coins, p is different). Suppose we are to flip coins sequentially, at any time either 

flipping a new coin or one that had previously been used. Our objective is to maximize the long-

run proportion of flips that lands on heads. How should we proceed? 

Solution: Let N(n) be the number of tails in the first n flips and so the long-run proportion of 

heads, called Ph, is given by 

Ph = lim
n→∞

n − N(n)

n
= 1 − lim

n→∞

N(n)

n
 

Using the proportion, 

lim
n→∞

N(n)

n
=

1

E(number of flips between successive tails)
 

The number of flips of a coin until it lands tails is geometric with mean 
1

1−p
. Hence conditioning 

gives 

E(number of flips between successive tails) = ∫(
1

1 − p
)  dp

1

0

= ∞ 

⇒ lim
n→∞

N(n)

n
=
1

∞
= 0 

⇒ Ph = 1 

4.4  Elementary Renewal Theorem 

For a renewal process, 

m(t)

t
→
1

μ
                           as t → ∞ 

Proof: Clearly, t < SN(t)+1 

Taking expectation on both sides, we get 



 
 

t < E[SN(t)+1] 

= E [ ∑ Xi

N(t)+1

i=1

] 

= E(X1)E{N(t) + 1}                           by Wald
′s equation 

= μ{m(t) + 1} 

⇒
m(t)

t
>
1

μ
−
1

t
                                        (4.1) 

Define 

Xi̅ = {
Xi      Xi ≤ a    for a > 0
a                               Xi > a

 

      = min{Xi, a} 

Let {N̅(t), t ≥ 0} be the corresponding renewal process with S̅n = X̅1 + X̅2 +⋯+ X̅n. 

If μ̅ = E(X̅1) then μ̅ ≤ μ and m̅(t) ≥ m(t). 

Consider 

μ̅{m(t) + 1} ≤ μ̅{m̅(t) + 1} 

                         = E[S̅N̅(t)+1] 

                         = E [ ∑ X̅i

N̅(t)+1

i=1

] 

                         ≤ (t + a) 

Since 



 
 

  E[S̅N̅(t)+1] = E[S̅N̅(t) + X̅N̅(t)+1] 

⇒
m(t)

t
≤
1

t μ̅
(t + a) −

1

t
  

⇒
m(t)

t
=
1

μ̅
+
a

t μ̅
−
1

t
                                           (4.2) 

Combining (4.1) and (4.2), we have 

1

μ
−
1

t
<
m(t)

t
≤
1

μ̅
+
a

t μ̅
−
1

t
 

Now putting a = √t, we get 

1

μ
−
1

t
<
m(t)

t
≤
1

μ̅
+

1

μ̅√t
−
1

t
 

⇒ 
1

μ
<
m(t)

t
≤
1

μ̅
                               as t → ∞ 

Hence 

lim
t→∞

m(t)

t
= 1/μ 

Example 4.4.1.: Suppose that potential customers arrive at a single-server bank in accordance with 

P(λ). However, the potential customer enters the bank only if the server is free. If we assume that 

the amount of time spent in the bank by an entering customer is a random variable having 

distribution G, then 

(i) Find the rate at which customers enter the bank. 

(ii) What is the proportion of potential customers that cannot join the bank? 

(iii) What is the utilization of the bank? 

Proof: (i) We know that  



 
 

Mean service time= μG 

Rate of customer arriving= λ. 

Mean inter arrival time(μ) =
1

λ
+ μG 

Therefore,  

Rate of entering customer =
1

μ
 

                                                   =
1

1
λ
+ μG

 

                                                   =
λ

1 + λμG
 

(ii) Proportion of last customer= 1 −Proportion of entering customers 

                                                             = 1 −

1
μ

λ
 

                                                            = 1 −

λ
1 + λμG

λ
 

                                                             =
λ(1 + λμG) − λ

λ(1 + λμG)
 

                                                             =
λμG

(1 + λμG)
 

(iii) Utilization =
Mean Service time

Mean inter arrival time
 

                              =
μG

1
λ
+ μG

 



 
 

                             =
λμG

1 + λμG
 

4.5  Equilibrium Renewal Process 

Let {Ne(t): t ≥ 0} be a delayed renewal process with cumulative distribution function G 

given as 

G(x) = lim
t→∞

P[γ1 ≤ x] 

           =
1

μ
∫{1 − F(s)}

x

0

ds 

Then {Ne(t): t ≥ 0} is called an equilibrium renewal process. As before we define the 

renewal function as the mean number of renewals, i.e. 

me(t) = E[Ne(t)]                     t ≥ 0 

Theorem 4.5.1.: The renewal function me(t) satisfies 

me(t) =
t

μ
     for all t ≥ 0 

Proof: we know that 

G(x) =
1

μ
∫{1 − F(s)}

x

0

ds 

Taking Laplace transform on both sides of above equation, we get 

G̅(t) = ∫ exp(−ts)

∞

0

 dG(s) 

         =
1

μ
∫ exp(−ts) {1 − F(s)}

∞

0

ds 



 
 

         =
1

μ
∫ exp(−ts)

∞

0

∫ dF(r)

∞

s

ds 

         =
1

μ
∫ ∫exp(−ts) dF(r)

r

0

∞

0

ds 

         =
1

μ
∫
{1 − exp(−tr)}

t

∞

0

dF(r) 

         =
1

μ
{
1 − F̅(t)

t
} 

Then the renewal function is 

m̅e(t) =
G̅(t)

1 − F̅(t)
 

             =
1

μt
 

4.6  Summary 

In this unit, we have discussed the following points: 

• We have identified Renewal process and defined Distribution of renewal process 

• We have explained asymptotic distribution of renewal process 

• We have state and proved Elementary renewal theorem 

• We have discussed equilibrium renewal process 

4.7 Self-Assessment Exercise 

1. Let {Xn: n ≥ 1} be an i.i.d, sequence of interoccurrence times with common probability density 

function given by 



 
 

f(x) = {
exp{−(x − 1)}           if x > 1 
0                                      otherwise

 

Let {N(t), t ≥ 0} be the corresponding renewal process. Find the Laplace transform m∗(s), of the 

renewal function m(s). 

2. Let {Xn: n ≥ 1} be an i.i.d. sequence of interoccurrence times with common probability mass 

function given by 

P(Xn = 0) = 0.2, 

P(Xn = 1) = 0.3, 

P(Xn = 2) = 0.5 

Let {N(t), t ≥ 0} be the corresponding renewal process. Find the Laplace transform m∗(s), of the 

renewal function m(s). 

3. Show that the equilibrium renewal process {Ne(t): t ≥ 0} has stationary increments. 

4. State and prove elementary renewal theorem. 

5. Consider a system with two components which are arranged in series. The system fails if either 

of the two components fail. On failure, a component is replaced instantaneously. Suppose each 

component works independently and has life and exponential life time distribution with parameter 

λ. Let N(t) denotes the number of failures for the system in the time interval [0, t). Find the 

distribution of N(t), and also the renewal function. 
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Block & Units Introduction 
 

The present SLM on Stochastic Process consists of sixteen Units with four Blocks. 

The Block – 2 - Markov Chains and Markov Process is the second block of said SLM, 

which is divided into four units. 

In Unit-5 - Markov Dependent Trials, discuss Two state Markov sequences and Markov 

chains. Also explain chain recurrent events and delayed recurrent event. 

The Unit-6 - Transition Probabilities, Deal with determination of n-step transition 

probabilities, Chapman-Kolmogorov equations, first return and first passage probabilities, 

fundamental theorem of probability of extinction, higher transition probabilities in Markov 

classification of states and chain.  

The Unit-7 - Classification of States, explain Classification of states, communication 

states, periodicity, stationary probability distributions, limit theorems, Ergodic chains and 

Irreducible Ergodic chains. 

The Unit-8 - Continuous Time Markov Processes, Markov processes in Continuous time. 

Interval arrival time, stopping time, optional stopping theorem, wald’s equation, forward and 

backward equations for homogeneous case, random variable technique. 

At the end of every block/unit the summary, self-assessment questions are given. 

  



 
 

UNIT–5      MARKOV DEPENDENT TRIALS 
 

Structure 

5.1 Introduction 

5.2 Objectives 

5.3 Two State Markov Chain 

5.4 Chain Recurrent Events 

5.5 Delayed Recurrent Events 

5.6 Application to the Theory of Success Runs 

5.7 Expected Number of Visits to a Specified State in a Time Period 

5.8 Summary  

5.9 Self-Assessment Exercise 

5.10 References  

5.11 Further Reading 

5.1   Introduction 

The Markov Chain is named after Andrey Markov (1856-1922), a Russian mathematician. 

Andrey Markov produced the first results in 1906 for this process having finite space. 

A stochastic process is a family of random variables, which varies with inspect to time (the 

parameter) and take specific values in a state space. Real time space may be either discrete or 

continuous. In the ensuring section, we elucidate the concept of Markov Chain and its transition 

matrix. We also discuss the order of the MC. Higher order transition probabilities are also 

computed from Kolmogorov equation as well as transition probability matrix. 

5.2 Objectives 

After studying this unit, you should be able to: 



 
 

• Explain the concept of a Two state Markov chain, 

• Discuss the chain recurrent events, 

• Explain the delayed recurrent events and application to the theory of success runs 

5.3 Two State Markov Sequences 

Example 5.3.1.: Consider a sequence of mutually independent Bernoulli trails with   

Ω =  {𝑆, 𝐹} and 𝑃(𝑆) =  𝑝, 𝑃(𝐹) = 𝑞(= 1 − 𝑝) in each trail. Define 

𝑋𝑛 = {
1 𝑖𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑛 𝑡ℎ 𝑡𝑟𝑎𝑖𝑙 𝑖𝑠 𝑆
2 𝑖𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑡ℎ 𝑡𝑟𝑎𝑖𝑙 𝑖𝑠 𝐹

                                                       (5.1) 

Then {𝑋𝑛, 𝑛 = 1,2, … } is a stochastic process. 

Further 

𝑃{𝑋𝑛+1 = 𝑗𝑛+1|𝑋1 = 𝑗1, … , 𝑋𝑛 = 𝑗𝑛} 

= 𝑃{𝑋𝑛+1 = 𝑗𝑛+1}, (because differnt trails are independent). 

𝑗𝑟 =  1,2;   𝑟 =  1, … . , 𝑛. The trials are independent and the outcome of the (𝑛 + 1) trials 

does not depend on the outcomes of the previous 𝑛 trials. 

Now we assume some kind of dependence between different Bernoulli trials. 

Definition: Consider a sequence of Bernoulli random variable’s {𝑋𝑛, 𝑛 = 0,1,2, … }, such that 

𝑃 (𝑋𝑛 = 1) =  𝑝 𝑎𝑛𝑑  𝑃(𝑋𝑛  = 0) = 𝑞 (= 1 − 𝑝), ∀ 𝑛 =  0,1,2, … Further 𝑛 =  0,1,2… and for 

each possible value of 𝑗0, 𝑗1, … 𝑗𝑛, 𝑗𝑛+1, we have  

𝑃(𝑋𝑛+1 = 𝑗𝑛+1|𝑋0 = 𝑗0, 𝑋1 = 𝑗1, ……… , 𝑋𝑛 = 𝑗𝑛, ) 

= 𝑃(𝑋𝑛+1 = 𝑗𝑛+1|𝑋𝑛 = 𝑗𝑛)                                                            (5.2) 

Then {𝑋𝑛, 𝑛 = 0,1,2,… } is called a two-state Market Chain or Markov development trails.  

In Markov dependent trails, the outcome of the (𝑛 + 1)𝑡ℎ trail depends on the outcome of 

the 𝑛𝑡ℎ trial and, given the outcome of the 𝑛𝑡ℎ trial, it does not depend on the outcomes of the first 

(𝑛 − 1) trials.  



 
 

If we call outcome of the 𝑛𝑡ℎ trial as “PRESENT”, outcome of the (𝑛 + 1)𝑡ℎtrial as 

“FUTURE”, outcomes of the first (𝑛 − 1) trials as “PAST”, then the property (5.1) implies that 

the “FUTURE” depends only on “PRESENT” and not on the PAST.  

This is called the Markov property, memoryless property, forgetfulness property or loss of 

memory property.  

The Russian mathematician Markov considered such trials for the first time. 

The sequence of independent Bernoulli trials (see Example 5.3.1.) is a trivial example of 

Markov dependent trials. 

Let 

𝑝𝑖𝑗 = 𝑃(𝑋𝑛+1 =  𝑗|𝑋𝑛 = 𝑖); 𝑖 = 1,2, 𝑗 = 1,2. ; 𝑛 = 0,1,2, … 

The independent of 𝑝𝑖𝑗  from 𝑛 is referred as the Markov sequence is (time or temporally) 

homogeneous. 

If 𝑋𝑛  = 𝑖, we say that the state of the process or the system at time 𝑛 is 𝑖. 

If 𝑋𝑛  = 𝑖 and 𝑋𝑛+1  = 𝑗, we say that there is a transition from the state 𝑖 to the state 𝑗 at time n+1, 

(𝑖, 𝑗 =  1,2). Symbolically 𝑖 →  𝑗 at time (n+1); its probability is 𝑝𝑖𝑗. 

The four probabilities 𝑝11, 𝑝12, 𝑝21 and p22 are called the transition probabilities. However, 

𝑝12 =  1 − 𝑝11 and 𝑝21 =  1 − 𝑝22. Hence only two of the four probabilities are the independent 

parameters. We may write these transition probabilities in matrix from as 

𝑃 = [
𝑝11 𝑝12
𝑝21 𝑝22

] = [
𝑝11 1 − 𝑝11

1 − 𝑝22 𝑝22
] 

P is called the matrix of transition probabilities or Transition Probability Matrix (TPM). 

The (𝑖, 𝑗)𝑡ℎ element of P denotes the conditional probability of a transition to state 𝑗 at time (𝑛 + 1) 

given that the system is in state 𝑖 at time 𝑛. Note that we are assuming that the transition 

probabilities are independent of time (𝑛). 

Given 𝑃 we should be able to study the behavior of the process over a passage of time 

provided that the initial condition is given, i.e., how the process started.  



 
 

Let 

𝑝1
(0)  =  prob of 𝑆 at the initial trial =  𝑃(𝑋0 = 1) 

𝑝2
(0)  =  prob of 𝐹 at the initial trial =  𝑃(𝑋0 = 2) 

=  1 − 𝑝1
(0) 

Thus, the initial probabilities vector is given by  

𝑝(0) = (𝑝1
(0)
, 𝑝2
(0)
) 

The probability of S at the 𝑛𝑡ℎ trial is 

𝑝𝑛(𝑆) = 𝑝1
(𝑛)  = 𝑃(𝑋𝑛 = 1)  

The probability of F at the 𝑛𝑡ℎ trial is 

𝑝𝑛(𝐹) = 𝑝2
(𝑛)  = 𝑃(𝑋𝑛 = 2) = 1 − 𝑝1

(𝑛). 

𝑝1
(𝑛) and 𝑝2

(𝑛)
 are the state occupancy probabilities at the 𝑛𝑡ℎ trial. 

The state occupancy probabilities vector at the 𝑛𝑡ℎ trial is 

𝑝(𝑛) = (𝑝1
(𝑛), 𝑝2

(𝑛) ). 

Suppose 

𝑝11
(𝑛)  = 𝑃(𝑋𝑛 = 1|𝑋0 = 1) 

𝑝12
(𝑛)  = 𝑃(𝑋𝑛 = 2|𝑋0 = 1) 

= 1 − 𝑝11
(𝑛) 

𝑝22
(𝑛)  = 𝑃(𝑋𝑛 = 2|𝑋0 = 2) 



 
 

𝑝21
(𝑛)  = 𝑃(𝑋𝑛 = 2|𝑋0 = 1) 

= 1 − 𝑝22
(𝑛) 

Then 𝑝11
(𝑛), 𝑝12

(𝑛), 𝑝21
(𝑛), 𝑝22

(𝑛)
 are the transition probabilities at time the 𝑛𝑡ℎ trial. Then, the n-step 

transition probability matrix is 

𝑃(𝑛) = (
𝑝11
(𝑛) 𝑝12

(𝑛)

𝑝21
(𝑛) 𝑝22

(𝑛)
). 

Example 5.3.2.: Suppose that the probability of a dry day (state 1) following a rainy day  

(State 2) is 
1

4
 and that the probability of a rainy day following a dry day is 

1

2
. We have a  

two–state Markov chain such that 𝑝21 =
1

4
 and 𝑝12 =

1

2
 and transition probabilities matrix 

𝑃 = [

1

2

1

2
1

4

3

4

] 

We have 

𝑃2 = [

3

8

5

8
5

16

11

16

] 

And  

𝑃4 = [

43

128

85

128
85

256

171

256

] 

Given that 1 denote a dry day, the probability that May 3 is a dry day is 
3

8
 , and that May 5  

is a dry is 
43

128
. 



 
 

The following theorem derives the n-step transition probabilities of a two-state Markov 

Chain when the initial probability vector is given. 

Theorem 5.3.1.: Given a two state Markov chain with transition probability matrix (TPM) 

𝑃 = [
𝑝11 1 − 𝑝12

1 − 𝑝21 𝑝22
] , 0 ≤ 𝑝11, 𝑝22 ≤ 1, |𝑝11 + 𝑝22 − 1| < |  

and initial provability vector  𝑝(0) = (𝑝1
(0), 𝑝2

(0) ), we have  

𝑝𝑛(𝑆) = 𝑝1
(𝑛) 

= (𝑝11 + 𝑝22 − 1)
𝑛 {𝑝1

(0) −
1 − 𝑝22

2 − 𝑝11 − 𝑝22
} +

1 − 𝑝22
2 − 𝑝11 − 𝑝22

 

and 𝑝𝑛(𝐹) = 1 − 𝑝𝑛(𝑆), 𝑖. 𝑒., 𝑝2
(𝑛) = 1 − 𝑝1

(𝑛).  

Proof: For n ≥1, we have 

𝑝𝑛(𝑆) = 𝑃(𝑋𝑛 = 1) 

= P(Xn = 1, Xn−1 = 1) + P(Xn = 1, Xn−1 = 2) 

= 𝑃(𝑋𝑛 = 1|𝑋𝑛−1 = 1)𝑃 (𝑋𝑛−1 = 1) + 𝑃 (𝑋𝑛 = 1|𝑋𝑛−1 = 2)𝑃(𝑋𝑛−1 = 2) 

= 𝑝11 𝑝𝑛−1(𝑆) + 𝑝21   𝑝𝑛−1(𝐹) 

= 𝑝11 𝑝𝑛−1(𝑆) + 𝑝21 [1 − 𝑝𝑛−1(𝑆)] 

= 𝑝11 𝑝𝑛−1(𝑆) + (1 − 𝑝22)[1 − 𝑝𝑛−1(𝑆)] 

= 𝑎 𝑝𝑛−1(𝑆) + 𝑏 

where 𝑎 =  𝑝11 + 𝑝22 − 1,   𝑏 = 1 − 𝑝22. 

Writing 𝑝𝑛 = 𝑝𝑛(𝑆) , we get the difference equation 

𝑝𝑛 = 𝑎𝑝𝑛−1 + 𝑏 , 𝑛 ≥ 1                                                                (5.3) 



 
 

For obtaining 𝑝𝑛 we solve this difference equation under the restriction |a|<1, (|a|=1, if p11 

= 1= p22 or if p11 = 0= p22. If p11=1 we get 1 1… or 2 2 … with probability 1 and if p11 = 0= p22 we 

get 12 12… or 2 1 2 1…With probability 1.)  

Let us define 

𝑝𝑛 = 𝑢𝑛 +
𝑏

1 − 𝑎
, 𝑛 = 0,1,2…                                                      (5.4) 

Hence from (5.3) and (5.4), we get 

𝑢𝑛 +
𝑏

1 − 𝑎
 

= 𝑎 (𝑢𝑛−1 +
𝑏

1 − 𝑏
) + 𝑏 

= 𝑎𝑢𝑛−1 +
𝑏

1 − 𝑎
 

or  

𝑢𝑛 = 𝑎  𝑢𝑛−1 

= 𝑎2 𝑢𝑛−2 

= ⋯ 

= 𝑎𝑛  𝑢0 

Hence  

𝑝𝑛 = 𝑝𝑛(𝑆) 

= 𝑢𝑛 +
𝑏

1 − 𝑎
 

= 𝑎𝑛 𝑢0 +
𝑏

1 − 𝑎
 

= 𝑎𝑛  [𝑝0(𝑆) −
𝑏

1 − 𝑎
] +

𝑏

1 − 𝑎
 

= (𝑝11 + 𝑝22 − 1)
𝑛 {𝑝0

(𝑆) −
1 − 𝑝22

2 − 𝑝11 − 𝑝22
} +

1 − 𝑝22
2 − 𝑝11 − 𝑝22

 



 
 

Interchanging the roles of S and F, we obtain 

𝑝𝑛(𝐹) 

= (𝑝11 + 𝑝22 − 1)
𝑛 {𝑝0

(𝐹) −
1 − 𝑝11

2 − 𝑝11 − 𝑝22
} +

1 − 𝑝11
2 − 𝑝11 − 𝑝22

 

= 1 − 𝑝𝑛(𝑆). 

Hence the theorem follows. 

If the initial probabilities 𝑝0(𝑆)and 𝑝0(𝐹)are not given then we can compute the transition 

probabilities 𝑝𝑖𝑗
(𝑛)  = 𝑃{𝑋𝑛 = 𝑗|𝑋0 = 𝑖}; 𝑖, 𝑗 = 1,2. 

Theorem 5.3.2.: For a two state Markov chain with the transition probability matrix (TPM) 

𝑃 = [
𝑝11 1 − 𝑝11

1 − 𝑝22 𝑝22
] , 0 ≤ 𝑝11, 𝑝22, ≤ |𝑝11 + 𝑝22 − 1| < 1  

the n- step TPM is given by  

𝑃(𝑛) = 𝐴 + (𝑝11 + 𝑝22 − 1)
𝑛 𝐵, 

where, 

𝐴 =
1

2 − 𝑝11 − 𝑝22
 [
1 − 𝑝22 1 − 𝑝11
1 − 𝑝22 1 − 𝑝11

] 

𝐵 =
1

2 − 𝑝11 − 𝑝22
 [

1 − 𝑝11 −(1 − 𝑝11)

−(1 − 𝑝22) 1 − 𝑝22
] 

Proof: For n ≥ 2 

𝑝11
(𝑛) = 𝑃(𝑋𝑛 = 1|𝑋0 = 1) 

= 𝑃(𝑋𝑛 = 1, 𝑋𝑛−1 = 1|𝑋0 = 1) + 𝑃(𝑋𝑛 = 1, 𝑋𝑛−1 = 2|𝑋0 = 1) 

= 𝑃{𝑋𝑛 = 1|𝑋𝑛−1 = 1}𝑃{𝑋𝑛−1 = 1|𝑋0 = 1} + 𝑃{𝑋 = 1|𝑋𝑛−1 = 2}𝑃{𝑋𝑛−1 = 2|𝑋0 = 1} 

= 𝑝11 𝑝11
(𝑛−1) + 𝑝21 𝑝12

(𝑛−1) 



 
 

= 𝑝11 𝑝11
(𝑛−1) + (1 − 𝑝21)[1 − 𝑝11

(𝑛−1)] 

= 𝑎 𝑝11
(𝑛−1) + 𝑏                                                                         (5.5) 

where 𝑎 =  𝑝11 + 𝑝22 − 1,   𝑏 = 1 − 𝑝22    

For solving this difference equation (5.5), we write 

𝑝11
(𝑛) = 𝑢(𝑛) +

𝑏

1 − 𝑎
, 𝑛 ≥ 1 

so that (5.5) reduces to 

𝑢(𝑛) = 𝑎𝑢(𝑛−1) 

         = 𝑎2𝑢(𝑛−2) 

         … 

         = 𝑎𝑛−1𝑢(1) 

          =  𝑎𝑛−1 [𝑝11
(1) −

𝑏

1 − 𝑎
] 

Hence 

𝑝11
(𝑛) 

= 𝑎𝑛−1 [𝑝11
(1) −

𝑏

1 − 𝑎
] +

𝑏

1 − 𝑎
 

= (𝑝11 + 𝑝22 − 1)
𝑛−1 [𝑝11 −

1 − 𝑝22
2 − 𝑝11 − 𝑝22

] +
1 − 𝑝22

2 − 𝑝11 − 𝑝22
, (𝑝11

(1) = 𝑝11) 

= 
(𝑝11 + 𝑝22 − 1)

𝑛(1 − 𝑝11)

2 − 𝑝11 − 𝑝22
+

1 − 𝑝11
2 − 𝑝11 − 𝑝22

                               (5.6) 

Interchanging the roles of S and F, we obtain 

𝑝22
(𝑛) = 

(𝑝11 + 𝑝22 − 1)
𝑛(1 − 𝑝22)

2 − 𝑝11 − 𝑝22
+

1 − 𝑝11
2 − 𝑝11 − 𝑝22

         (5.7) 

Further 



 
 

𝑝12
(𝑛) 

= 1 − 𝑝11
(𝑛) 

= −
(𝑝11 + 𝑝22 − 1)

𝑛(1 − 𝑝22)

2 − 𝑝11 − 𝑝22
+

1 − 𝑝11
2 − 𝑝11 − 𝑝22

           (5.8) 

𝑝21
(𝑛) 

= 1 − 𝑝22
(𝑛) 

= −
(𝑝11 + 𝑝22 − 1)

𝑛(1 − 𝑝22)

2 − 𝑝11 − 𝑝22
+

1 − 𝑝22
2 − 𝑝11 − 𝑝22

          (5.9) 

Combining (5.6), (5.7) (5.8) and (5.9) we get 

𝑃(𝑛) 

= [
𝑝11
(𝑛) 𝑝12

(𝑛)

𝑝21
(𝑛) 𝑝22

(𝑛)
] 

= 𝐴 + (𝑝11 + 𝑝22 − 1)
𝑛 𝐵, 

Here A and B are as defined in the theorem. Hence, we follow the theorem. 

5.4  Chain Recurrent Event 

In many research fields, it is common to observe processes that generate events repeatedly 

over the follow-up time for a given subject. Such processes are called recurrent event processes 

and the generated data are referred to as recurrent event data. For example, in bone marrow 

transplantation, different types of recurrent infections (e.g., bacterial, fungal, and viral infections) 

can occur after the surgery. 

The attributes 𝐴 defines a recurrent event if: 

(i) 𝐴 occurs at the 𝑛𝑡ℎ and (𝑛 + 𝑚)𝑡ℎ of the sequence of event, it is necessary and 

sufficient that 𝐴 occurs at the last place in each of the two sub sequences i.e., 

(𝐸𝑖1 , 𝐸𝑖2 , … , 𝐸𝑖𝑛) and (𝐸𝑖𝑛+1 , 𝐸𝑖𝑛+2 , … , 𝐸𝑖𝑛+𝑚). 

(ii) If 𝐴 occurs at the 𝑛𝑡ℎ place then identically 



 
 

𝑃(𝐸𝑖1 , 𝐸𝑖2 , … , 𝐸𝑖𝑛+𝑚) 

= 𝑃(𝐸𝑖1 , 𝐸𝑖2 , … , 𝐸𝑖𝑛) × 𝑃(𝐸𝑖𝑛+1 , 𝐸𝑖𝑛+2 , … , 𝐸𝑖𝑛+𝑚) 

Suppose that 𝐴 occurs in the sequence (𝐸𝑖1 , 𝐸𝑖2 , … ) for the first time at the 𝑛𝑡ℎ place, etc. 

It is also clear that with each recurrent event 𝐴 there are associated the two sequences of numbers 

defined for 𝑛 = 1,2, … as  

𝑣𝑛 = 𝑃[ 𝐴 𝑜𝑐𝑐𝑢𝑟𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑛
𝑡ℎ 𝑡𝑟𝑖𝑎𝑙]                                    

𝑓𝑛 = 𝑃[𝐴 𝑜𝑐𝑐𝑢𝑟𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑡𝑖𝑚𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑛
𝑡ℎ 𝑡𝑟𝑎𝑖𝑙]

}               (5.10) 

 Define 𝑓0 = 0, 𝑣0 = 1                                           (5.11) 

5.5  Delayed Recurrent Events 

Assumed that the probability distributions of the waiting time random variable till the first 

occurrence of the event and the inter-event time random variables are identical. However, this may 

not be the situation always and in general waiting time up to the first occurrence of the event has 

a different distribution than the later inter- recurrence time random variables. Once the event has 

occurred then the successive waiting time random variables are distributed identically. Such a 

recurrent event is called a delayed recurrent event where there is a delay in recurrence of the event, 

which is of same magnitude as the time interval when the event is occurring for the first time. 

Consider a recurrent event 𝐸 and let 

𝜐𝑛 = 𝑃[𝐸 occurs at the 𝑛
𝑡ℎ 𝑡𝑟𝑖𝑎𝑙] 

Now 𝐸 occurs for the 1𝑠𝑡 time at the 𝑘𝑡ℎ trial with probability 𝑃[𝑋𝑛 = 𝑘] = 𝑎𝑘 and then 

recurs in subsequent (𝑛 − 𝑘) trials according to probability distribution {𝑝𝑛−𝑘}, i.e., 

𝜐𝑛 = 𝑎𝑛 + 𝑎𝑛−1𝑝1 + 𝑎𝑛−2𝑝2 +⋯+ 𝑎0𝑝𝑛                         (5.12) 

i.e., {𝜐𝑛} is convolution of {𝑎𝑛} and {𝑝𝑛}. 

Let 



 
 

𝑉(𝑠) = ∑𝜈𝑛

∞

𝑛=0

𝑠𝑛  ;  

𝐴(𝑠) = ∑𝑎𝑛

∞

𝑛=0

𝑠𝑛  

𝑃(𝑠) = ∑𝑃𝑛

∞

𝑛=0

𝑠𝑛 

be the generating functions of {𝜐𝑛}, {𝑎𝑛} and {𝑝𝑛} respectively. 

Then 

𝑉(𝑠) 

= 𝐴(𝑠)𝑃(𝑠) =
𝐴(𝑠)

1 − 𝐹(𝑠)
 

The following theorem gives the probability {𝜐𝑛} of a delayed recurrent event and specifies 

the condition when this will be a proper probability distribution. 

Theorem 5.5.1.: If 𝑝𝑛 → 𝑏,  then 𝜐𝑛 → 𝑏𝑎,  

where 𝑎 = 𝐴(1) = ∑ 𝑎𝑛𝑛  

If ∑ 𝑝𝑛𝑛 → 𝛿 , then ∑ 𝜐𝑛𝑛 → 𝛿𝑎. 

Proof: 𝛾𝑘 = 𝑃(first renewal period is larger than 𝑘) 

𝛾𝑘 = 𝑎𝑘+1 + 𝑎𝑘+2 +⋯ 

Let 𝑘 is sufficiently large so that for a pre assigned number 𝜀, 𝛾 < 𝜀. 

From (5.12), we have 

𝑎0𝑝𝑛 + 𝑎1𝑝𝑛−1 +⋯+ 𝑎𝑘𝑝𝑛−𝑘 

≤ 𝜐𝑛 



 
 

= 𝑎0𝑝𝑛 + 𝑎1𝑝𝑛−1 +⋯+ 𝑎𝑘𝑝𝑛−𝑘 + {𝑎𝑘+1𝑝𝑛−(𝑘+1) +⋯+ 𝑎𝑛−1𝑝1 + 𝑎𝑛} 

≤ 𝑎0𝑝𝑛 + 𝑎1𝑝𝑛−1 +⋯+ 𝑎𝑘𝑝𝑛−𝑘 + {𝑎𝑘+1 +⋯+ 𝑎𝑛−1 + 𝑎𝑛} 

≤ 𝑎0𝑝𝑛 + 𝑎1𝑝𝑛−1 +⋯+ 𝑎𝑘𝑝𝑛−𝑘 + 𝛾𝑘 

𝑎0𝑝𝑛 + 𝑎1𝑝𝑛−1 +⋯+ 𝑎𝑘𝑝𝑛−𝑘 → {𝑎0 + 𝑎1 +⋯+ 𝑎𝑘}𝑏                                  since 𝑝𝑛 → 𝑏 

= (𝑎 − 𝛾𝑘)𝑏 

 > 𝑎𝑏 − 𝜀𝑏 

> 𝑎𝑏 − 2𝜀                               as 𝑏 < 2 

Now 

𝑎0𝑝𝑛 + 𝑎1𝑝𝑛−1 +⋯+ 𝑎𝑘𝑝𝑛−𝑘 + 𝛾𝑘 

→ (𝑎 − 𝛾𝑘)𝑏 + 𝛾𝑘 

= 𝑎𝑏 + 𝛾𝑘(1 − 𝑏) 

< 𝑎𝑏 + 𝜀(1 − 𝑏) 

< 𝑎𝑏 + 2𝜀 

Consider 

⇒ 𝑎𝑏 − 2𝜀 < 𝜐𝑘 < 𝑎𝑏 + 2𝜀 

Then 

lim
𝑛→∞

𝜐𝑘 → 𝑎𝑏 

Again 

∑𝜐𝑛
𝑛

= 𝑉(1) 

= 𝐴(1)𝑃(1) 



 
 

→ 𝑎𝑏      

as 𝑃(1) =∑𝑝𝑛
𝑛

→ 𝑏 

5.6 Application of the Theory of Success Runs 

Let 𝑅 be a fixed positive integer and 𝐴 be the occurrence of a success run of length 𝑅 in a 

sequence of Bernoulli trials. In the classical literature a success run of length 𝑅 meant an 

uninterrupted sequence of either exactly 𝑅, or of at least 𝑅, successes. Neither convention leads to 

a recurrent pattern, for otherwise runs are not recurrent events. 

Using (5.10), 𝜐 is the probability of 𝐴 at the 𝑛𝑡ℎ trial and 𝑓𝑛 is the probability that the first 

run of length 𝑅 occurs at the 𝑛𝑡ℎ trial. 

The probability that the 𝑅 trials number 𝑛, (𝑛 − 1), (𝑛 − 2),… , (𝑛 − 𝑟 + 1) result in 

success is 𝑝𝑅. In this case 𝐴 occurs at one among these 𝑅 trials; the probability that 𝐴 occurs at the 

trial number (𝑛 − 𝑘), 𝑘 = 0,1, … , 𝑅 − 1, and the 𝑘 successes, is equal to 𝜐𝑛−𝑘𝑝
𝑘. Since these 𝑅 

possibilities are mutually exclusive, we get the recurrence relation is 

𝜐𝑛 + 𝜐𝑛−1𝑝 +⋯+ 𝜐𝑛−𝑅+1𝑝
𝑅−1 = 𝑝𝑅                 𝑛 ≥ 𝑅                                   (5.13) 

Then 

𝜐1 = 𝜐2 = ⋯ = 𝜐𝑅−1 = 0 , 𝜐0 = 1 

Multiplying 𝑠𝑛 in (5.13), we get 

{𝜐𝑛 + 𝜐𝑛−1𝑝 +⋯+ 𝜐𝑛−𝑅+1𝑝
𝑅−1}𝑠𝑛 = 𝑝𝑅𝑠𝑛 

Summing over 𝑛 = 𝑅, 𝑅 + 1, 𝑅 + 2, …, we get 

{𝜐(𝑠) − 1}{1 + 𝑝𝑠 + ⋯+ 𝑝𝑅−1𝑠𝑅−1} = 𝑝𝑅(𝑠𝑅 + 𝑠𝑅+1 +⋯) 

The two series are geometric and we find that 

{𝜐(𝑠) − 1}
1 − (𝑝𝑠)𝑅

1 − 𝑝𝑠
=
𝑝𝑅𝑠𝑅

1 − 𝑠
 



 
 

or 

𝜐(𝑠) =
1 − 𝑠 + 𝑞𝑝𝑅𝑠𝑅+1

(1 − 𝑠)(1 − 𝑝𝑅𝑠𝑅)
                   (5.14) 

We know that the generating function 𝜐(𝑠) and 𝐹(𝑠) are related by 

𝜐(𝑠) =
1

1 − 𝐹(𝑠)
 

Then the generating function of the recurrence times is 

𝐹(𝑠) 

=
𝑝𝑅𝑠𝑅(1 − 𝑝𝑠)

1 − 𝑠 + 𝑞𝑝𝑅𝑠𝑅+1
 

=
𝑝𝑅𝑠𝑅

1 − 𝑞𝑠(1 + 𝑝𝑠 +⋯+ 𝑝𝑅−1𝑠𝑅−1)
                                                      (5.15) 

We know that 𝐹(1) = 1. This shows that in a prolonged sequence of trials the number of 

runs of any length is certain to increase overall bounds. 

After differentiation (5.15) and a little algebraic manipulation, the mean and variance of 

the recurrence times of runs of length 𝑅 are obtained as 

𝜇 =
1 − 𝑝𝑅

𝑞𝑝𝑅
 , 

𝜎2 =
1

(𝑞𝑝𝑅)2
−
2𝑅 + 1

𝑞𝑝𝑅
−
𝑝

𝑞2
 

5.7 Expected Number of Visits to a Specified State in a Time Period 

Let 𝑁𝑖𝑗
(𝑛) (𝑖, 𝑗 = 1,2) be a random variable denoting the number of visits the Markov Chain 

makes to state j starting initially in state i, in the first n transitions. 

Let  

𝜇𝑖𝑗
(𝑛) = 𝐸(𝑁𝑖𝑗

(𝑛)). 



 
 

Theorem 5.7.1.: For a two state Markov Chain. with TPM 𝑃 = ((𝑝𝑖𝑗)), 𝑖, 𝑗 = 1,2;  0 ≤ 𝑝11, 𝑝22, ≤

1, |𝑝11 + 𝑝22 − 1| < 1, the matrix ((𝜇𝑖𝑗
(𝑛))), where 𝜇𝑖𝑗

(𝑛)
denotes the expected number of visits to 

state 𝑗 in the first 𝑛 transition starting initially from state 𝑖, is given by  

((𝜇𝑖𝑗
(𝑛))) = [

𝑛𝜋1 +
𝑎(1 − 𝑎𝑛)𝜋2

1 − 𝑎
       𝑛𝜋2 +

𝑎(1 − 𝑎𝑛)𝜋2
1 − 𝑎

𝑛𝜋1 +
𝑎(1 − 𝑎𝑛)𝜋1

1 − 𝑎
       𝑛𝜋2 +

𝑎(1 − 𝑎𝑛)𝜋1
1 − 𝑎

]  

where  

𝜋1 =
(1 − 𝑝22)

(2 − 𝑝11 − 𝑝22)
, 

𝜋2 = 1 − 𝜋1, 

𝑎 = 𝑝11 + 𝑝22 − 1. 

Proof: Let {𝑋0, 𝑋1, … . . } be a two state Markov Chain. Define a random variable 

𝑦𝑖𝑗
(𝑚) = {

1   𝑖𝑓 𝑋𝑚 = 𝑗, 𝑋0 = 𝑖
0   𝑖𝑓 𝑋𝑚 ≠ 𝑗, 𝑋0 = 𝑖

 ;  𝑚 = 1,2, … 

For given m 

𝑃[𝑦𝑖𝑗
(𝑚) = 0] = 1 − 𝑝𝑖𝑗

(𝑚)
 

𝑃[𝑦𝑖𝑗
(𝑛) = 1] = 𝑝𝑖𝑗

(𝑚)
 

Hence  

𝐸[𝑦𝑖𝑗
(𝑚)] = 𝑝𝑖𝑗

(𝑚)
 

Now 

𝑁𝑖𝑗
(𝑛) = 𝑦𝑖𝑗

(1) + 𝑦𝑖𝑗
(2) +⋯… . . 𝑦𝑖𝑗

(𝑛) 



 
 

         =  ∑ 𝑦𝑖𝑗
(𝑚)

𝑛

𝑚−1

 

Therefore  

𝜇𝑖𝑗
(𝑛) 

= 𝐸[𝑁𝑖𝑗
(𝑛)] 

= ∑ 𝐸[ 𝑦𝑖𝑗
(𝑚)]

𝑛

𝑚−1

 

= ∑ 𝑝𝑖𝑗
(𝑚)

𝑛

𝑚−1

 

Hence 

𝜇𝑖𝑗
(𝑛) = ∑ 𝑝𝑖𝑗

(𝑚)

𝑛

𝑚=1

 

= ∑ [
(𝑝11 + 𝑝22 − 1)

𝑚(1 − 𝑝11)

2 − 𝑝11 − 𝑝22
+

1 − 𝑝22
2 − 𝑝11 − 𝑝22

]

𝑛

𝑚=1

 

= 𝜋2 ∑ 𝑎𝑚 + 𝑛𝜋1

𝑛

𝑚=1

 

= 𝑛𝜋1 + 𝜋2
𝑎(1 − 𝑎𝑛)

1 − 𝑎
 

which is the (1,1)𝑡ℎ element of ((𝜇𝑖𝑗
(𝑛))). Similarly, we can find other elements of the matrix 

((𝜇𝑖𝑗
(𝑛))). Hence the theorem follows. 

Notice that lim
𝑛→∞

𝜇𝑖𝑗
(𝑛)

𝑛
= 𝜋1 and lim

𝑛→∞

𝜇22
(𝑛)

𝑛
= 𝜋2.  



 
 

Therefore 𝜋2 may be interpreted as the average fraction of time the process occupies the state 𝑖(𝑖 =

1,2) in the long run. Hence 𝜋2 has two interpretations:  

(i) At a single point of time, as 𝑛 → ∞, 𝜋𝑖 is the probability that the system is in state 𝑖.  

(ii) Over a long passage of time 𝜋𝑖 is the average fraction of time the system is in state 𝑖. 

5.8  Summary 

In this unit, we have discussed the following points: 

• We have discussed Two state Markov chain, 

• Discuss the chain recurrent events, 

• Explain the delayed recurrent events and application to the theory of success runs 

5.9  Self-Assessment Exercise 

1. Define Two state Markov Chain with example. 

2. The transition probability matrix of a Markov Chain is  

𝑃 = [
0.1 0.5 0.4
0.6 0.2 0.2
0.3 0.4 0.3

] 

Find 𝑃(3). 

3. Using above transition probability matrix if the initial probability distribution is  

𝑝(0) = [0.7 0.2 0.1] then find out 𝑃(𝑋2 = 3) and 𝑃(𝑋3 = 2, 𝑋2 = 3, 𝑋1 = 3, 𝑋0 = 2) 

4. Let 𝑅 coins be tossed repeatedly and let 𝐴 be the recurrent event that for each of the 𝑅 

coins the accumulated number of heads and tails are equal. Is 𝐴 persistent or transient. 

5. Show that 𝑃(𝑛) = 𝐴 + (𝑝11 + 𝑝22 − 1)
𝑛 𝐵, 

where, 



 
 

𝐴 =
1

2 − 𝑝11 − 𝑝22
 [
1 − 𝑝22 1 − 𝑝11
1 − 𝑝22 1 − 𝑝11

] 

𝐵 =
1

2 − 𝑝11 − 𝑝22
 [

1 − 𝑝11 −(1 − 𝑝11)

−(1 − 𝑝22) 1 − 𝑝22
] 
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UNIT–6      TRANSITION PROBABILITIES  

Structure 

6.1 Introduction 

6.2 Objectives 

6.3 Determination of n-Step Transition Probabilities 

6.4 Chapman-Kolmogorov Equations 

6.5 First Return and First Passage Probabilities 

 6.5.1 Generating Function 

 6.5.2 Generating Functions of {pjk
(n); n ≥ 0} and  {fjk

(n); n ≥ 1} 

6.6 Summary  

6.7 Self-Assessment Exercise 

6.8 References  

6.9 Further Readings 

6.1  Introduction 

Transition probabilities in a stochastic process are the probabilities of a process 

transitioning from one state to another in a single time unit. They are often represented in a 

transition probability matrix, which is doubly stochastic if the rows and columns each sum to one. 

6.2  Objectives 

After studying this unit, you should be able to: 

• Determination the n-step transition probabilities of a Markov process 

• State and prove Chapman-Kolmogorov equations 

• Define and compute first return and first passage probabilities 

6.3 Determination of n-Step Transition Probabilities 

So far, we have considered Markov chains with two possible outcomes in each trial. It can 

be extended to trials with more than two possible outcomes in each trial. 



 
 

Example: consider a component, such as a valve, which is subject to failure. Let the component 

be inspected each day and classified as being in one of three states: 

State 1: satisfactory 

State 2: unsatisfactory 

State 3: failed. 

Suppose that at time n, the process is at state 1 let the probabilities of being at time n + 1, 

in states 1,2,3 be p11, p12, p13;  p11 + p12 + p13; = 1 and let these probabilities do not depend on 

n. Next, if the process is in state 2 at time n let the probabilities of being at time n + 1 in states 

1,2,3, be 0, p22, p23, with p22 + p23 = 1. That is once the valve is unsatisfactory, it can never 

return to the satisfactory state. p22, p23 are independent of n and of the history of the process before 

n. Finally, we suppose that if the process is in state 3 at time n, it is certain to be in state 3 at time 

n + 1. Thus, the transition probabilities for transition from time n to time n + 1 depend on the 

state given to be occupied at time n and the final state at time n + 1, but not on what happened 

before time n. The transition probability matrix is given by  

P = [

p11 p12 p13
0 p22 p23
0 0 1

] 

In general, the state space S may consist of k states or even a countably infinite number of 

states. 

Let {Xn; n = 0,1,2, … } be a stochastic process with Xn taking discrete values 1,2, …. 

Definition: The stochastic process {Xn; n = 0,1,2, … } is called a Markov chain if for n =

1,2, … ; i0 , i1, i2, … in−1, j ∈ S, 

P{Xn = j| Xn−1 = in−1, … , X0 = i0} 

= P{Xn = j| Xn−1 = in−1}. 

If Xn−1 = i and Xn = j, we say that the system has made a transition from state i to the state 

j at time n.  



 
 

The probability pij = p {Xn = j|Xn−1 = i}, i, j ∈ S is called the (one-step) transition 

probability i → j at time n. the transition probabilities may or may not be independent of n. if the 

transition probability pij is independent of n, the Markov chain is said to be (time) homogeneous 

otherwise it is called non-homogeneous. We shall confine to homogeneous Markov chains.  

Let the state space S =  {1,2,3, … }. Then pij ≥ 0 ∀ i, j ∈ S and ∑ pij = 1∀i ∈ Sj∈S . The 

matrix 

P = [
p11 p12 p13         …
p21 p22 p23       ⋯
⋮ ⋮ ⋮         ⋯

] 

is called the (one-step) transition probability matrix. The sum of elements in each row of P 

is unity and each element is non-negative. 

Definition: A square matrix satisfying, (i) each element is non-negative (ii) sum of elements in 

each row in unity, is called a stochastic matrix. If in addition to (i) and (ii), the sum of elements in 

each column is also unity, then the matrix is called a doubly stochastic matrix. 

Here P is a stochastic matrix. 

Let 

pj
(n) = P (Xn = j); n = 0,1,2, … j ∈ S = {1,2, … . } 

pj
(0) = p (X0 = j); j ∈ S: initial probability distribution 

The conditional probability P {Xn = j|X0 = i} = pij
(n)

is called the n −step transition 

probability, i, j ∈ S. The matrix 

P(n) = [
p11
(n) p12

(n) ⋯

p21
(n) p22

(n) ⋯
⋮ ⋮ ⋯

] 

is called the n −step Transition Probability Matrix of the Markov Chain. 

6.4 Chapman–Kolmogorov Equation 



 
 

Let the transition probability pij
(n)

 gives the probability of n step transition from the state i 

at a trial to the state j at the next following trial. For obtaining the n −step transition probabilities, 

we have 

pij
(n) = P {Xn = j|X0 = i} 

= ∑P [Xn = j, Xn−1 = r| X0 = i] 

r∈S

;                    (S = {1,2,3, … }) 

= ∑P [Xn = j|Xn−1 = r, X0 = i] P[Xn−1 = r| X0 = i]

∞

r=1

 

= ∑P [Xn = j|Xn−1 = r] P[Xn−1 = r| X0 = i]

∞

r=1

 

= ∑pir
(n−1) prj

∞

r=1

                                                                  (6.1) 

Since  prj ≤ 1, we have 

∑pir
(n−1) prj

∞

r=1

≤ ∑pir
(n−1) 

∞

r=1

= 1 < ∞ 

Therefore ∑ prjpir
(n−1)

r  is convergent. We can write (6.1) in matrix notation as  

[
p11
(n) p12

(n) ⋯

p21
(n) p22

(n) ⋯
⋮ ⋮ ⋯

] = [
p11
(n−1) p12

(n−1) ⋯

p21
(n−1) p22

(n−1) ⋯
⋮ ⋮ ⋯

] [
p11 p12 p13         …
p21 p22 p23       ⋯
⋮ ⋮ ⋮         ⋯

] 

or 

P(n) = P(n−1)P 

= P(n−2)P2 



 
 

⋮ 

= Pn 

Thus 

P(n) = Pn                                                                         (6.2) 

Eq. (6.2) can be used for the computation of Pij
(n)

. 

Again 

P(m+n) = Pm+n 

= PmPn 

= P(m) P(n) 

= P(n) P(m) 

or 

pij
(m+n) = ∑pir

(m)

r

 prj
(n) 

= ∑pir
(n)

r

 prj
(m),    (i, j) ∈ S.                                                           (6.3) 

The set of equations (6.3) is known as the Chapman Kolmogorov (C-K) equations. The 

transition probabilities of a Markov Chain satisfy the Chapman- Kolmogorov equations. However, 

its converse is not always true, i.e., there exit non- Markovian Chains whose transition probabilities 

satisfy C-K equations.  

Counter Example: Consider the sample space 

{(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1), (1,1,1), (2,2,2), (3,3,3)} 



 
 

with a probability mass  
1

9
  attached to each triplet. Define the triplet (X1, X2, X3) of random 

variables such that Xi is the number at the ith place (i =  1,2,3). The possible values of Xi are 1,2 

and 3. The probability distribution of Xi is  

P(Xi = r) =
1

3
    r = 1,2,3 

Further 

P(Xi = r, Xj = s ) =
1

9
    r, s = 1,2,3 

P(X1 = r, X2 = s, X3 = t ) = {
1

9
,    r, s, t = 1,2,3;   r = s = t or r ≠ s ≠ t

0 if r = s ≠ t or r = t ≠ s or  r ≠ t = s

 

Hence 

P (Xi = r, Xj = s) 

= P(Xi = r)P (Xj = s) 

=
1

9
 

but 

P (X1 = r, X2 = s, X3 = t) ≠ P(X1 = r)P (X2 = s), P(X3 = t). 

Therefore (X1, X2, X3) are pair wise independent but not mutually independent. 

Now start with the triplet (X1, X2, X3). Then define another triplet (X4, X5, X6) of random 

variable’s exactly as we have defined (X1, X2, X3) but independent of it. Then define another triplet 

(X7, X8, X9) in the same manner as above but independent of the first two triplets and so on. 

Continuing in this manner we obtain a sequence (or family) of random variable’s 

{X1, X2, X3 , … Xn, … }, i.e., a stochastic process. The sequence involves values 1,2 and 3 each with 

probability 
1

3
 . We thus have a stochastic process with state space S = {1,2,3} and 



 
 

pij
(1) = pij 

= P [Xm+1 = j|Xm = i] 

= P [Xm+1 = j] 

=
1

3
(since Xm, Xm+1 are pairwise independent) 

Similarly, 

pij
(2) = P[Xm+2 = j|Xm = i] =

1

3
  

For n ≥ 3 

pij
(n) = P[Xm+n = j|Xm = i] 

= P[Xm+n = j] 

=
1

3
 

Thus ∀ m, n ≥ 1 and (i, j)  ∈  S 

pij
(m+n) =

1

3
  

and 

∑pir
(m) prj

(n) =∑
1

3
× 
1

3
=
1

3
=  pij

(m+n)

3

r=1

3

r=1

 

So that the C.K. equation holds for the stochastic process. 

However, the stochastic process under consideration in non-Markovian. For verifying this, 

let the first transition takes the system to state 2. Then a transition to state 3 at the next step is 

possible if and only if the initial state was 1. Thus, the transition following the first step depend 

not only on the present state but also on the initial state, i.e., the process is non-Markovian. 



 
 

We can find the n-step transition probability matrix through matrix multiplication. If n is 

large, it may be more convenient to compute P(n) = Pn using eigen decomposition. The matrix P 

can be expanded as 

P =  UΛU−1 

where Λ is the diagonal matrix of eigenvalues and U is the matrix, whose columns are the 

corresponding eigen-vectors. Then, 

P(n) = Pn =  UΛnU−1 

Since Λ is a diagonal matrix, one can easily obtain Λn. 

For obtaining the vector of State occupation probabilities at time n,  

p(n) = (p1
(n), p2

(n), … . ) 

we have 

pj
(n) = P(xn = j)   (n = 0,1, … . , j = 1,2… ) 

=∑P(xn = j, xn−1 = r)

r

 

=∑P(xn = j|xn−1 = r)P(xn−1 = r)

r

 

= ∑prj pr
(n−1)

r

 

= ∑ pr
(n−1) prj                                                             (6.4)

r

 

There is no convergent difficulty as 

∑ pr
(n−1) prj ≤ ∑ pr

(n−1) = 1

rr

< ∞ 

In matrix notation we can express (6.4) as  



 
 

p(n) = p(n−1)P                                                  (6.5) 

On iteration, we obtain  

p(n) = p(n−1)P 

= p(n−2)P2 

= ⋯ 

= p(0)Pn;  n = 1,2, ….    

Hence the initial probability vector p(0) and the TPM P suffice to determine the marginal 

distribution p(n). 

Again, Pn can be obtained using the matrix eigen decomposition. 

Example: Let state space of a Markov Chain be S = (1,2), and its transition probability matrix is 

P = [
7/10 3/10
4/10 6/10

] 

Obtain P2. 

Solution: Hence 

P(2) = P2 

= [
7/10 3/10
4/10 6/10

] × [
7/10 3/10
4/10 6/10

] 

= [
61/100 39/100
13/25 12/25

] 

Example: Consider a communication system which transmits the digits 1 and 2 through several 

stages. Let, Xn, n ≥ 1 be the digit leaving the nth stage of system and X1 be the digit entering the 

first stage (leaving the 1st stage). At each stage there is a constant probability q that the digit which 

enters will be transmitted unchanged (i. e. the digit will remain unchanged when it leaves), and 

probability p otherwise (i. e. the digit changes when it leaves), p + q = 1. 



 
 

Here {Xn, n ≥ 0} is a homogeneous two–state Markov chain with transition probability 

matrix  

P = [
q p
p q] 

It can be shown (by mathematical induction or otherwise) that 

Pm  = [
{
1

2
+
1

2
(q − p)m} {

1

2
−
1

2
(q − p)m}

{
1

2
−
1

2
(q − p)m} {

1

2
+
1

2
(q − p)m}

] 

Here 

p11
(m) = p22

(m) = {
1

2
+
1

2
(q − p)m} 

And 

p21
(m) = p12

(m) = {
1

2
−
1

2
(q − p)m}. 

Also as m → ∞, 

lim p11
(m) = limp12

(m) = limp21
(m) = lim p22

(m) →
1

2
  

Suppose that the initial distribution is given by 

P{X1 = 0} = a and P{X1 = 0} = b = 1 − a. Then 

P{Xm = 0, X1 = 0} = P{Xm = 0, |X1 = 1}P{ X1 = 0} = a p11
(m)

 

P{Xm = 0, X1 = 1} = P{Xm = 0, |X1 = 1}P{ X1 = 1} = b p21
(m)

 

The probability that the digit entering the first stage is 1 given that the digit leaving the 

mth stage is 1 can be evaluated by applying Bayes’ rule. We have 



 
 

P{X1 = 0, |Xm = 1} =
P{Xm = 0, |X1 = 0}P{ X1 = 0}

P{Xm = 0, |X1 = 0}P{ X1 = 0} + P{Xm = 0, |X1 = 1}P{ X1 = 1}
 

                                       =
a p11

(m)

a p11
(m) + b p12

(m)
 

                                       =
a {
1
2 +

1
2
(q − p)m} 

a {
1
2 +

1
2
(q − p)m}  + b {

1
2 −

1
2
(q − p)m} 

 

                                       =
a {1 + (q − p)m} 

a {1 + (q − p)m}  + b {1 − (q − p)m} 
 

6.5 First Return and First Passage Probabilities 

Suppose that the chain is initially in state j and fjj
(n)

 denotes the probability that next 

occurrence of state j is at time n, i.e. fjj
(1) = pjj and for n =  2,3… 

fjj
(n) = P[Xr ≠ j, r = 1,2, … , n − 1; Xn = j| X0 = j] 

fjj
(n) is called the first return probabilities to state j at time n or recurrence probabilities.  

Similarly, we define the first passage probability from state j to state k for time n as fjk
(1) =

pjk and for n = 2,3… 

fjk
(n) = P [Xr ≠ k, r = 1,2, …n − 1; Xn = k|X0 = j]. 

Now for n ≥ 2 

pjj
(n) = P [ Xn = j|X0 = j] 

= ∑P[X1 ≠ j,…Xr−1 ≠ j, Xr = j|X0 = j]P[Xn = j|Xr = j]

n

r=1

 



 
 

=∑fjj
(r) pjj

(n−r)

n

r=1

     (pjj
(0) = P [X0 = j|X0 = j] = 1)   

= fjj
(n) pjj

(0) +∑fjj
(r) pjj

(n−r)

n−1

r=1

 

= fjj
(n)  +∑ fjj

(r) pjj
(n−r)

n−1

r=1

 

or  

fjj
(n)  =  pjj

(n) −∑fjj
(r) pjj

(n−r)

n−1

r=1

; n = 2,3, …                                             (6.6) 

From (6.6), fjj
(2)

 fjj
(3)

… can be calculated recursively.  

Similarly 

pjk
(n) =∑fjk

(r) pkk
(n−r)

n−1

r=1

   (verify  it) 

So that 

fjk
(n)  =  pjk

(n) −∑fjk
(r) pkk

(n−r)

n−1

r=1

;    n = 2,3… .. 

Notice that for n = 1, fjk
(1)  = pjk. Given that the chain stats at state j, the sum 

fjj
(n) =∑fjj

(n)

∞

n=1

 

is the probability That the process returns to state j at least once. 

Definition: Suppose the chain is initially at state j. if the ultimate return to this state is a certain 

event, the state is called recurrent; in this case the time of first return will be a random variable 

and called the recurrence time. 



 
 

Definition: If the ultimate return to a state has probability less than unity the state is called transient 

(or non-recurrent). 

For a recurrent state j, fjj = 1 and for a transient state j, fjj < 1. 1 − fjj gives the probability 

that the initial state j is never visited again. 

In the case of a recurrent state {fjj
(n);  n =  1,2, … }  is a probability distribution. Thus, for a 

recurrent state, the expected number of steps required for the first return to state j is given by 

μjj = ∑n fjj
(n)

∞

n=1

 

μjj is called the mean recurrence time for the state j.  

If the mean recurrence time μjj  is finite, the state is called positive recurrent. 

If μjj = ∞ , the state is called null recurrent. Similarly 

fjk =∑fjk
(n)

∞

n=1

 

is the probability of ever entering in state k given that the chain starts in state j. we may 

call fjk the first passage probability from state j to state k. If fjk=1, then  

∑n fjk
(n)

∞

n=1

 

is the mean first passage time from state j to state k.  

6.5.1     Generating Function 

 For a sequence of real numbers {an, n ≥ 0} , let 

A(s) =  ∑aj s
j

∞

j=0

 



 
 

converges in some internal −s0 < s < s0. Then A(s) is called the generating function of 

the sequence {an}. If {an} is bounded, i.e., ∑aj < ∞, we have for |s| < 1 A(s) ≤ ∑ aj < ∞. 

So that A(s) converges at least for |s| < 1.  

Let {pn, n ≥ 0} be a probability distribution so that {pn, n ≥ 0} and ∑ aj = 1. Then 

P(s) = ∑pn s
n

∞

n=0

 

is called the probability generating function (p g f) of the probability distribution {pn}. 

Obviously, for |s|<1 

|P(s)| = |∑pns
n| 

≤∑pn|s|
n 

≤∑pn 

= 1 < ∞ 

Therefore P(s) converges absolutely for at least |s|<1.  

Let X be a discrete random variable with p.d. {pn}, then P(s), the p g f of X, is given by  

P(s) = E[sX].  

Now the moment generating function of X is 

Ψ (s) =  E [esX] 

=  E [{es}X] 

= P[es] 

Therefore 



 
 

 {
Ψ(s) = P[es]

P(s) = Ψ[log (s)].
 

Results: 

(i) pk =
1

k!
 
dk

dsk
P(s)|s=0            k = 0,1,2, … 

(ii) E(X) =
d

ds
P(s)|s=1 = P

′(1) 

E[X(X − 1)] = P′′(1) 

In general, for r = 1,2, … 

E[X(X − 1)…… . (X − r + 1)] = P(r)(1) 

(iii) If X and Y are independently distributed random variables with p g f’s P1(s) and P2(s) 

respectively then the p g f of X + Y is  

P(s) = P1(s). P2(s) 

(iv) lim
s→1.−

P(s) = P(1) = 1 

(v) Let {Xn} be a sequence of i.i.d. discrete random variables with common p g f  

g(s) = E(sXi),             i = 1,2, … 

Let N be a positive integer valued random variable with p g f 

h(s) = E(sN) 

Define YN = ∑ Xi
N
i=1 . Then the p g f of YN is given by  

G(s) = h[g(s)] 

Solution:  

(i) We have 



 
 

P(s) = ∑pn s
n

∞

n=0

= p0 + p1s + p2s
2 +⋯+ pks

k +⋯ 

Now, differentiating sk with respect to s, k times we obtain 

dk

dsk
sk 

= k(k − 1)(k − 2)…1 

= k! 

For r < k,  

dk

dsk
sr = 0 

For r > k,  

dk

dsk
sr = r(r − 1)… (r − k + 1)sr−k, 

Which tends to 0 as s → 0. Hence  

dk

dsk
P(s)|

s=0

= pkk! 

or pk =
1

k!

dk

dsk
P(s)|

s=0

 

(ii) We observe that 

dr

dsr
P(s) =∑pn n(n − 1)… (n − r + 1)s

n−r

∞

n=r

 

Taking limit s → 1, we obtain 

dr

dsr
P(s)|

s=1
= P(r)(1) 



 
 

=∑pn n(n − 1)… (n − r + 1)

∞

n=r

 

= E[X(X − 1)…… . (X − r + 1)]  

(iii) Since X and Y are independently distributed random variables with p g f’s P1(s) 

and P2(s) respectively, the p g f of X+Y is  

P(s) = E(s(X+Y)) 

= E(sXsY) 

= E(sX)E(sY)  (since X and Y are independently distributed) 

= P1(s). P2(s) 

(iv) We can easily verify that 

lim
s→1.−

P(s) = P(1) 

=∑pn 

∞

n=0

= 1 

(v) We have 

G(s) = E[sYN] 

= E[E(sYN|N)] 

= E[E{sXi ……sXN|N}] 

= E[E(sX1)… . . E(sXN)|N] 

= E[g(s)N] 

= h[g(s)]. 

6.5.2       Generating Functions of {𝐩𝐣𝐤
(𝐧)
; 𝐧 ≥ 𝟎} and  {𝐟𝐣𝐤

(𝐧)
; 𝐧 ≥ 𝟏} 



 
 

We have 

pjk
(n) = P[xn = k|x0 = j] 

pjk
(n) = P[xn = k|x0 = j, x1 ≠ k,… . , xn−1 ≠ k] 

For |s|<1. the p.g.f. of {pjk
(n); n = 0,1, … } is 

Pjk(s) = ∑pjk
(n) sn

∞

n=0

 

Similarly, the p.g.f. of {fjk
(n); n = 0,1, … } is 

Fjk(s) = ∑fjk
(n) sn

∞

n=0

. 

Theorem 6.5.1.: We have  

Pjk(s) = Fjk(s)  Pkk(s); (j ≠ k)                          (6.7) 

Pjj(s) =
1

1 − Fjj(s)
.                                                (6.8) 

Proof: Let us define 

δjk = {
1 if j = k
0  if j ≠ k

 

We observe that 

Pjk(s) = ∑pjk
(n)

∞

n=0

  sn 

= pjk
(0) +∑pjk

(n)

∞

n=0

  s(n)     (pjk
(0) = 1 if j = k and 0 if j ≠ k or pjk

(0) = δjk) 



 
 

= δjk +∑{∑ fjk
(m)pkk

(n−m) 

n

m=1

} sn−m+m
∞

n=0

 

= δjk + ∑ fjk
(m) sm ∑ sn−m  pkk

(n−m) 

∞

n=m

∞

m=1

 

= δjk + ∑ fjk
(m) sm∑su  pkk

(u) 

∞

u=0

∞

m=1

 

= δjk + ∑ fjk
(m) sm   pjj  (s)

∞

m=1

 

= δjk + Fjk(s) Pkk(s) 

If j ≠ k, δjk = 0 so that  

Pjk(s) = Fjk(s) Pkk(s)  

If  j = k, δjk = 1 and 

Pjj(s) = 1 + Fjj(s) Pjj (s)  

or  Pjj(s) =
1

1 − Fjj(s)
 . 

Hence the theorem follows. 

Theorem 6.5.2.: The jth state is recurrent, i.e., fjj = 1, iff ∑ pjj
(n) = ∞∞

n=0  . If jth state is transient, 

i.e., fjj < 1, we have  

∑pjj
(n) =

1

1 − fjj

∞

n=0

. 

Proof: For s = 1, we have 



 
 

Pjj (1) = ∑pjj
(n),      

∞

n=0

 

Fjj(1) = ∑fjj
(n)

∞

n=1

 

= fjj 

Since 

Pjj (1) =
1

1 − Fjj (1)
 , 

we get 

 ∑pjj
(n) 

∞

n=0

=
1

1 − fjj 
  

Therefore 

∑pjj
(n) <  ∞ ⟺ fjj < 1     

∞

n=0

 

and  

∑pjj
(n) =  ∞ ⟺ fjj = 1    

∞

n=0

 

Hence, we get the result. 

Theorem 6.5.3.: If the kth state is transient, i.e., fkk < 1 then ∑ pjk
(n) <  ∞. ∀ j ∈ S ∞

n=0 . 

Proof: For j = k, the proof is obvious from the previous theorem. If j ≠ k, we have 

∑pjk
(n) = Pjk(1) 

∞

n=0

 



 
 

= Fjk(1) Pkk(1)  

= fjkPkk(1) ≤  Pkk(1)      (since fjk ≤ 1) 

= ∑pkk
(n)  <  ∞, since the kth state

∞

n=0

 is transient. 

Hence the theorem follows. 

Corollary: if k is transient then lim
n→∞

pjk
(n) = 0 for every j.  

Proof: The proof follows from the convergence of ∑ pjk
(n) ∞

n=0 . 

Example: Determine the probability of ultimate return to the states of the Markov chain having 

S = {1,2,3,4} and transition matrix. 

P = [

1/3 2/3 0 0
1 0 0 0
1/2 0 1/2 0
0 0 1/2 1/2

] 

Solution: The probability of ultimate return of the states is 

For state 1 

f11
(1) = p11 =

1

3
 

f11
(2) = f12f21 =

2

3
× 1 =

2

3
 

f11
(3) = 0 

⋮ 

f11 =∑f11
(n)

∞

n=1

 



 
 

=
1

3
+
2

3
+ 0 + 0 +⋯ = 1 

Hence the state 1 is persistent. 

For state 2 

f22
(1) = p22 = 0 

f22
(2) = f21f12 

= 1 ×
2

3
=
2

3
 

f22
(3) = f21f11f12 

= 1 ×
1

3
×
2

3
=
2

9
 

f22
(4) = f21f11

(2)f12 

= 1 × (
1

3
)
2

×
2

3
= (

1

3
)
2 2

3
 

f22
(5) = f21f11

(3)f12 

= 1 × (
1

3
)
3

×
2

3
= (

1

3
)
3 2

3
 

⋮ 

f22
(n) = f21f11

(n−2)f12 

= 1 × (
1

3
)
(n−2)

×
2

3
= (

1

3
)
(n−2) 2

3
 

f22 =∑f22
(n)

∞

n=1

 



 
 

= 0 +
2

3
+ (

1

3
)
2

3
+ (

1

3
)
2 2

3
+⋯+ (

1

3
)
(n−2) 2

3
 

=∑(
1

3
)
(r−2) 2

3

∞

r=2

= 1 

Hence the state 2 is persistent. 

For state 3 

f33
(1) = p33 =

1

2
 

f33
(2) = f32f23 

= 0 × 0 = 0 

f33
(3) = f32f22f23 = 0 

⋮ 

f33 =∑f33
(n)

∞

n=1

 

=
1

2
+ 0 + 0 + 0 +⋯ =

1

2
< 1 

Hence the state 3 is transient. 

For state 4 

f44
(1) = p44 =

1

2
 

f44
(2) = f43f34 



 
 

=
1

2
× 0 = 0 

f44
(3) = 0 

⋮ 

f44 =∑f44
(n)

∞

n=1

 

=
1

2
+ 0 + 0 +⋯ =

1

2
< 1 

Hence the state 4 is transient.  

6.8  Summary 

In this unit, we have covered the following points: 

• We have Defined n-step transition probabilities and calculating n-step transition 

probabilities. 

• We have proved Chapman-Kolmogorov equations. 

• We have explained the two valued Process and model for system reliability 

• We have described First return and first passage probabilities and finding them. 

6.9 Self-Assessment Exercise 

1. Show that state j is persistent iff ∑ pjj
(n)∞

n=0 = ∞ 

2. Consider Markov chain with transition probability matrix 

     P = [
0 1 0
1/2 0 1/2
0 1 0

] 

     Calculate P3 and P4. 



 
 

3. Let the Markov chain consisting of the states S = {0,1,2,3} have the transition 

probability matrix  

     P = [

0 1 0 0
1/2 0 1/2 0
0 3/4 0 1/4
0 0 1 0

] 

     Determine which states are transient and which are recurrent. 

4. Show that if state k is persistent null, then for every j lim
n→∞

pjk
(n) → 0 

And if state k is aperiodic, persistent non null, then 

      lim
n→∞

pjk
(n) →

Fjk

μkk
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UNIT–7     CLASSIFICATION OF STATES 
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7.1  Introduction 

One of the key aspects of studying Markov chains is understanding the nature of the states 

within the chain. States can be classified based on their properties, such as whether they can be 

revisited, the time intervals between visits, and the likelihood of staying in or leaving a state. These 

classifications provide valuable insights into the long-term behaviour of the system, such as 

whether the system will stabilize in a steady state, keep fluctuating, or eventually reach an 

absorbing state from which it cannot escape. 

Understanding these classifications is crucial for analysing the properties of the system 

modelled by the Markov chain, predicting future states, and making informed decisions based on 

probabilistic outcomes. This unit sets the stage for exploring the detailed classifications of states 

in Markov chains and their implications for the study of stochastic processes. 

7.2  Objectives 

After studying this unit, you should be able to: 

• Classify the state of the Markov chain into communicating classes and closed sets, 



 
 

• Explain the periodicity and stationary probability distributions, 

• Explain the limit theorem, 

• Understand the concept of Ergodic chains and Irreducible Ergodic chains 

7.3  Classification of States 

The states j, j = 0,1,2, … of a Markov chain {Xn, n ≥ 0} can often be classified according 

to some fundamental properties of the system. Using such a classification it becomes possible to 

understand the properties of the Markov chain, predicting future states, and making informed 

decisions based on probabilistic outcomes. 

Definition: A state j is called accessible from the state i  iff  ∃ a positive m such that 

pij
(m) > 0. We write symbolically i → j. Conversely, if for all m, pij

(m) = 0, then j is not accessible 

from i; i.e., i ↛ j. 

Definition: Two states i and j are called communicative if j is accessible from i and i is accessible 

from j. Thus, we say that the states i and j communicate if for some m, n > 0, pij
(m) > 0, pji

(n) >

0. Symbolically we write i ↔ j. Obviously, the communication is symmetric. 

Theorem 7.3.1: The communication is transitive, i.e., if i ↔ j, j ↔ k, then i ↔ k. 

Proof: Let i ↔ j and j ↔ k. Suppose m and n are two integers such that 

pij
(m) > 0, pjk

(n) > 0, then by Chapman Kolmogorov equations 

pik
(m+n)

= ∑pil
(m)
 plk
(n)

l∈s

 

≥ pij
(m)pjk

(n) 

> 0 

so that i → k. Similarly, we can show that if k → j, and  j → i, then k → i. Hence i ↔ k■ 



 
 

Definition: For a given state j of a Markov Chain, the set of all states k, which communicate with 

j, denoted by C(j), is called the communication class of state j. Hence k ∈ C(j)  iff   k ↔ j. 

Theorem 7.3.2: Let C1 and C2 be any two communicating classes of a Markov Chain. Then either 

C1 = C2 or C1 ∩ C2 =  ∅. 

Proof: If C1 ∩ C2 ≠  ∅ then ∃ a state k of the Markov Chain belonging to both C1 and C2. Let 

i, j ∈  S such that C1  =  C(i) and C2 = C(j). Consider any state g ∈  C (i). Then g ↔  i. Since g ↔

i, i ↔  k by transitivity we have g ↔  k. But k ↔ j, so that g ↔ j, i.e., g ∈  C(j). Hence C(i) ⊂

C(j). Similarly, we can show that C(j) ⊂ C(i). Therefore C(i) = C(j), or C1 = C2. This proves the 

theorem. 

Definition: If C is a set of states such that no state outside C can be reached from any state in C, 

then C is said to be closed. If C is closed and j ∈ C while k ∉ C, then pjk
(n) = 0 ∀ n. 

C is closed iff ∑ pijj∈C = 1 for every i ∈ C. Then the sub-matrix P1 = (pij);   i, j, ∈  C, is also 

stochastic and P can be expressed in the canonical form as: 

P = [
P1 0
R1 Q

] 

A closed set may contain one or more states.  

Definition: If a closed set contains only one state j then state j is said to be absorbing. Thus j is 

absorbing iff pjj = 1, pjk = 0 , k ≠ j. 

Example 7.3.1.: Consider the Markov Chain shown in the following figure. It is assumed that 

when there is an arrow from state i to state j, then pij > 0. Find the Equivalence Classes for this 

Markov Chain. 



 
 

 

Solution: The State 1 and 2 communicate with each other, but they do not communicate with any 

other nodes in the graph. State 3 and 4 communicate with each other, but they do not communicate 

with any other nodes in the graph. State 5 does not communicate with any other states, so it by 

itself is a class. Finally, State 6, 7 and 8 construct another class. Thus, here are the classes: 

Class 1= {state1, state 2}, Class 2= {state3, state 4}, Class 3={state5},  

Class 4= {state6, state 7, state 8} 

 

Example 7.3.2.: Consider a Markov Chain with transition Probability Matrix: 



 
 

P =

[
 
 
 
 
0 2/7 0 5/7 0
5/6 0 1/6 0 0
0 0 0 2/5 3/5
0 0 1/2 0 1/2
0 0 0 0 1 ]

 
 
 
 

 

Draw the transition graph and find the accessible state and commutative class. 

Solution:  

 

Above figure shows state 0 and state 1 communicate so they belong to the same class. State 

2 is accessible from state 1, but not vice versa. So, state 2 does not belong to the class of state 0 

and state 1. State 3 and state 2 communicate. Therefore, state 3 does not belong to the class of state 

0 and state 1 either. State 2 and State 3 belong to the same class. State 4 is accessible from states 

0, 1, 2, and 3, but no state is accessible from State 4. So, State 4 belongs to a class by itself. Thus, 

this Markov chain consists of three classes: {0, 1}, {2, 3}, and {4}. Note that, for state 4, p44 = 1. 

That is, once the process enters 4, it will stay there forever. Such states are called absorbing. In 

general, state i of a Markov chain is absorbing if pii = 1. 

Example 7.3.3.: Consider the following simple model for an epidemic. We have three states: 

healthy (H), sick (S), and dead (D). This transition matrix is 

P = [
pHH pHS 0
pSH pSS pSD
0 0 1

] 

Draw the transition diagram and find state space and communicating classes. 

Solution: The transition diagram is  



 
 

 

State H and S communicate with each other, while state D only communicates with itself. 

Hence, the state space S = {H, S, D} partitions into two communicating classes: {H, S} and {D}. 

7.4   Periodicity 

Definition: A state j of a Markov Chain is said to be periodic with period dj if its return to the state 

is possible only at dj, 2dj, 3dj, … steps, where dj is the greatest integer with this property. In other 

words, if dj is the greatest common divisor of all integers n (≥ 1) for which pjj
(n) > 0, then j is said 

to be periodic with period dj. If pjj
(n) = 0 ∀ n then we take dj = 0. The state j is said to be aperiodic 

if no such dj(> 1)) exists. Thus, dj = 1 will correspond to the aperiodic case. 

If j is not a recurrent state we do not define its period. 

A state j is called ephemeral if pij = 0 ∀ i ∈ S. A chain can only be in an ephemeral state 

initially and pass out of it in the first transition. An ephemeral state can never be reached from any 

other state. The column of P corresponding to an ephemeral state is composed entirely of zeros.  

Let us exclude the ephemeral states from consideration. 

Example 7.4.1.: Consider a Markov chain having S = {1,2,3,4} and transition matrix 

P = [

0 0 1 0
0 0 0 1
0 1 0 0
1/4 1/8 1/8 1/2

] 

Is this chain (i) irreducible, (ii) aperiodic? 

Solution: For this example, start in any state and can still reach any other state, although not 

necessarily in one step. It means the chain is irreducible. Further 

d(1) = 0, d(2) = 0, d(3) = 0, d(4) = 1 



 
 

This implies that the state 4 is aperiodic. 

Example 7.4.2.: Consider Markov chain having S = {1,2,3,4} and transition matrix 

P =

[
 
 
 
 
0 1 0 0 0
1 0 0 0 0
1/4 0 1/4 1/2 0
0 0 0 1/4 3/4
0 0 0 1 0 ]

 
 
 
 

 

Is the chain (i) irreducible, (ii) aperiodic? 

Solution: The given Markov chain is reducible. 

For state 1 

d(1) = G. C. D. {m: f11
(m) > 0} 

= G. C. D. (2) = 2 

For state 2 

d(2) = G. C. D. {m: f22
(m) > 0} = G. C. D. (2) = 2 

For state 3 

d(3) = G. C. D. {m: f33
(m) > 0} = G. C. D. (0) = 0 

For state 4 

d(4) = G. C. D. {m: f44
(m) > 0} = G. C. D. (1) = 1 

For state 5 

d(5) = G. C. D. {m: f55
(m) > 0} = G. C. D. (1) = 1 

Thus, state 1, state 2, and state 3 are periodic states and state 4 and state 5 are aperiodic. 



 
 

Example 7.4.3.: Markov chain having S = {1,2,3,4} and transition matrix. Is the chain 

irreducible? Which states are aperiodic? 

P = [

1/3 2/3 0 0
1 0 0 0
1/2 0 1/2 0
0 0 1/2 1/2

] 

Solution: The given Markov chain is reducible. 

For State 1 

d(1) = G. C. D. {m: f11
(m) > 0} 

= G. C. D. (1) = 1 

For State 2 

d(2) = G. C. D. {m: f22
(m) > 0} = G. C. D. (1) = 1 

For State 3 

d(3) = G. C. D. {m: f33
(m) > 0} 

= G. C. D. (0) = 0 

For State 4 

d(4) = G. C. D. {m: f44
(m) > 0} 

= G. C. D. (0) = 0 

That means, state 1 and state 2 are aperiodic states and state 3 and state 4 have periodic 0. 

7.5  Stationary Probability Distributions 

Definition: Suppose a1 and a2 are real numbers such that  0 < a1, a2 < 1, a1 + a2 = 1. Then, the 

probability Distribution a = (a1, a2) is said to be Stationary with respect to a given two-state 

Markov Chain with the TPM  



 
 

P = (
p11 p12
p21 p22

)  

if the following condition holds:  

a1 = a1p11 + a2p21
a2 = a1p12 + a2p22

}                                                          (7.1) 

Suppose P (X0 = 1) = a1, P (X0 = 2) = a2, where a1, a2 satisfy (7.1), then  

P(X1 = 1) 

= P(X1 = 1|X0 = 1)P(X0 = 1) + P(X1 = 1|X0 = 2)P(X0 = 2) 

= p11a1 + p21a2 

= a1 

Similarly  

P(X1 = 2) 

= p12a1 + p22a2 

= a2 

P(X2 = 1) 

= P(X1 = 1)p11 + P(X1 = 2)p21 

= a1p11 + a2p21 

= a1 

P(X2 = 2) = a2 

In general, ∀n ≥ 0 

P(Xn = 1) = a1, 

 P(Xn = 2) = a2. 



 
 

First, we derive the limiting n-step transition probability distribution as n → ∞. 

Theorem 7.5.1.: Let |p11 + p22 − 1| < 1 and  

lim
n→∞

P(n) = A 

Then 

A = [
π1 π2
π1 π2

]                                            

where 

π1 =
(1 − p22)

(2 − p11 − p22)
, 

π2 =
(1 − p11)

(2 − p11 − p22)
.          

Proof: Since |p11  + p22 − 1| < 1,we have 

 lim
n→∞

(1 − p11 − p22)
n = 0. 

Hence  

lim
n→∞

P(n) = lim
n→∞

[A + (1 − p11 − p22)
nB] = A. 

This proves the required result. 

Notice that π1 + π2 = 1. 

From the above theorem 7.5.1., we see that  

lim
n→∞

p11
(n) = lim

n→∞
p21
(n) = π1, 

and 

lim
n→∞

p22
(n) = lim

n→∞
p12
(n) = π2 



 
 

Therefore, for large n, the probability that system occupies the state i is πi = (i = 1,2) 

irrespective of whether we started initially in state 1 or state 2. Thus, for large n, there is a state of 

“Statistical equilibrium” or “Steady State”. The steady state probabilities are independent of the 

initial state of the process. π̃ = (π1, π2) Gives the limiting probability distribution of the process 

when the steady state arrives. The smaller the factor |p11 + p22 − 1|, the faster the approach to the 

steady state.  

Notice that if p11 = p22 

(π1 =) lim
n→∞

pn(S) =
1

2
= lim

n→∞
pn(F) =

1

2
(= π2)  

Theorem 7.5.2: The limiting probability distribution π = (π1, π2) of a two state Markov Chain is 

stationary. 

Proof: We have 

π1p11 + π2p21 

=
(1 − p22)

(2 − p11 − p22)
p11 +

(1 − p11)

(2 − p11 − p22)
 p21  

=
p11(1 − p22) + (1 − p11)(1 − p22)

(2 − p11 − p22)
 

= 1 −
p22

2 − p11 − p22
 

= π1 

Further 

π1p12 + π2p22 

=
(1 − p22)(1 − p11)

(2 − p11 − p22)
p12 +

(1 − p11)p22
(2 − p11 − p22)

   

=
1 − p11

2 − p11 − p22
 



 
 

= π2 

Thus, the stationarity condition (7.1) holds for the probability distribution π, so that π = (π1, π2) 

is a stationary probability distribution for the Markov Chain. 

Theorem 7.5.3: The stationary distribution of a two state Markov Chain is unique. 

Proof: Suppose π = (π1, π2) is stationary with respect to the given two state Markov Chain with 

π1 =
(1 − p22)

(2 − p11 − p22)
, 

π2 =
(1 − p11)

(2 − p11 − p22)
      

Then  

π1p11 + π2p21 = π1,
 π2p12 + π2p22 = π2

π1 + π2 = π1

 

Let π′ = (π1
′ , π2

′ ) be any other stationary probability distribution. Then by the definition of 

stationarity  

π1
′ p11 + π2

′ p21 = π1
′ , 

π1
′ p12 + π2

′ p22 = π2
′  

Which implies that 

 π1
′ =

1 − p22
2 − p11 − p22

= π1, π2
′ = 1 − π1

′ = π2 

This proves the theorem. 

For a Markov Chain with transition probability {pjk; j, k ∈ S}, a probability distribution {uj} is 

called stationary (or invariant) if 



 
 

uk =∑uj pjk.

j

   (uj ≥ 0,∑uj
j

= 1) 

Further, we obtain 

uk =∑uj
j

pjk 

∑{∑uipij
i

}

j

pjk 

=∑uj
j

 {∑pij pjk
i

} 

=∑uj
j

 pik
(z)

 

In general, we can easily verify that 

uk =∑uj
j

pik
(n), n ≥ 1. 

Example: A Markov Chain {Xt, t = 0,1,2,⋯ } on the state space S = {1,2,3,4} has the transition 

probability matrix 

P =

[
 
 
 
 
 
1

2

1

4

1

4
1

3
0

2

3
1

2

1

2
0]
 
 
 
 
 

, 

Find out the stationary distribution. 

Solution: 



 
 

a1 =
1

2
a1 +

1

3
a2 +

1

2
a3 

⇒ a1 =
2

3
a2 + a3 

a2 =
1

4
a1 +

1

2
a3 

a3 =
1

4
a1 +

2

3
a2 

a2 =
9

10
a3 

a1 =
8

5
a3 

a1 + a2 + a3 = 1 

Putting this value in above equation, we get 

a1 =
8

175
, a2 =

9

350
, a3 =

1

35
. 

A Markov Chain {Xt, t = 0,1,2,⋯ } on the state space S = {1,2,3} has the transition probability 

matrix 

P = [

1/2 1/2 0
1/3 1/3 1/3
0 1/3 2/3

], 

Find out the stationary distribution. 

Solution: 

a1 =
1

2
a1 +

1

3
a2 



 
 

⇒ a1 =
2

3
a2 

a2 =
1

2
a1 +

1

3
a2 +

1

3
a3 

a3 =
1

3
a2 +

2

3
a3 

⇒ a3 = a2 

We know that a1 + a2 + a3 = 1 

Putting a1 and a3 in above equation, we get 

a2 =
3

8
, 

Then 

a1 =
2

3
×
3

8
=
1

4
, 

a2 =
3

8
, 

a3 =
3

8
. 

7.6  Limit Theorems 

Show that if state j is transient, then ∑ pij
(n)  <  ∞,    for all i∞

n=1 . As a consequence, it 

follows that for j transient Pij
(n)
⟶ 0 as n ⟶ ∞. 

Let μjj denote the expected number of transition needed to return to state j,  i.e., 

μjj = {

∞         if j is transient

∑n fjj
n

∞

n=1

        if j is recurrent
 



 
 

7.7  Ergodic Chains and Irreducible Ergodic Chains 

Definition: A recurrent, non-null and aperiodic state of a Markov Chain is said to be ergodic. A 

Markov Chain, all of whose states are ergodic, is called an ergodic chain. 

Theorem 7.7.1.: If i ↔ j then di = dj. 

Proof: Let i ↔ j. Then ∃ integers m, n > 0 such that 

 pij
(m) > 0, pji

(n) > 0. 

Let pji
(n) > 0, then by Chapman Kolmogorov equations 

pji
(n+s+m) =∑∑pjl

(n)piu
(s)puj

(m) 

u∈Sl∈S

 

≥ pji
(n)pil

(s)pij
(m) > 0. 

Again, if pii
(s) > 0,we have 

pii
(2s) =∑piu

(s) pui
(s)

u∈S

 

≥ [pii
(s)]

2

> 0. 

Further pii
(2s) > 0 implies that 

pji
(n+2s+m) > 0. 

It follows that dj divides (n + 2s + m) − (n + s + m) = s. 



 
 

This is true ∀ s for which pii
(s) > 0 . Thus, dj divides di. Interchanging the roles of i and j 

in the above proof, we also conclude that di divides dj. Hence di = dj. This leads to the required 

result. 

Theorem 7.7.2.: From a recurrent state a recurrent state can only be obtained. 

Proof: Let i be a given recurrent state of the Markov Chain. Let j be any other state which can be 

obtained from i. Let k be the smallest positive path (length) from i to j such that pij
(k) = α > 0. 

Obviously, the transition from i to j in k steps can not be through i. thus, the probability of a return 

from j to i must be greater than 0, otherwise the probability of the process not returning to state i 

must be at least α so that the probability of eventual return to state i is less than 1 − α (< 1)  which 

contradicts the fact that the ith state is recurrent. Hence ∃ a least integer m such that 

pjj
(m) = β (say) > 0. 

Now for any integer n 

pii
(k+n+m)

≥ pij
(k)
  pjj

(n)
 pji
(m)

  ≥  α β pjj
(n)

 

pjj
(m+n+k) ≥ pji

(m)  pii
(n) pij

(k)   ≥  α β pii
(n)

 

Thus lim
n→∞

pii
(n) = 0 iff lim

n→∞
pjj
(n) = 0, so that ∑ pii

(n) and ∑pjj
(n) coverage or diverge together. 

Since i is recurrent ∑pii
(n) diverges so that ∑pjj

(n)
also diverges. Hence state j is also recurrent. This 

leads to the required result. 

Example 7.7.1.: Consider Markov chain having S = {1,2,3,4} and transition probability matrix 

P = [

0 0 1 0
0 0 0 1
0 1 0 0
1/4 1/8 1/8 1/2

] 



 
 

Show that all states of the above Markov Chain are ergodic. 

Solution: The chain is irreducible. 

The probability of ultimate return of the states is 

For State 1: 

f11
(1) = p11 = 0 

f11
(2) = f12f21 = 0 

f11
(3) = 0 

⋮ 

f11 =∑f11
(n)

∞

n=1

= 0 + 0 +⋯ = 0 < 1 

Hence the state 1 is transient. 

The Mean Recurrence Time is 

μ11 =  1 × f11
(1) + 2 × f11

(2) + 3 × f11
(3) +⋯ 

        =  1 × 0 + 2 × 0 + 3 × 0 +⋯ 

        = 0 

For State 2: 

f22
(1) = p22 = 0 

f22
(2) = f21f12 = 0 

f22
(3) = f21f11f12 = 0 

⋮ 



 
 

f22 =∑f22
(n)

∞

n=1

 

= 0 + 0 +⋯ = 0 < 1 

Hence the state 2 is transient. 

The Mean Recurrence Time is 

μ22 =  1 × f22
(1) + 2 × f22

(2) + 3 × f22
(3) +⋯ 

        =  1 × 0 + 2 × 0 + 3 × 0 +⋯ = 0 

For State 3: 

f33
(1) = p33 = 0 

f33
(2) = f32f23 = 0 

f33
(3)
= f32f22f23 = 0 

⋮ 

f33 =∑f33
(n)

∞

n=1

 

= 0 + 0 + 0 +⋯ = 0 < 1 

Hence the state 3 is transient. 

The Mean Recurrence Time is 

μ33 =  1 × f33
(1) + 2 × f33

(2) + 3 × f33
(3) +⋯ 

        =  1 × 0 + 2 × 0 + 3 × 0 +⋯ = 0 

For State 4: 



 
 

f44
(1) = p44 =

1

2
 

f44
(2) =

1

8
 

f44
(3) =

1

8
 

f44
(4) =

1

4
 

⋮ 

f44
(n) = 0, n > 0 

f44 =∑f44
(n)

∞

n=1

 

=
1

2
+
1

8
+
1

8
+
1

4
+ 0 + 0 +⋯ 

=
8

8
= 1 

Hence the state 4 is persistent. 

The Mean Recurrence Time is 

μ44 =  1 × f44
(1) + 2 × f44

(2) + 3 × f44
(3) + 4 × f44

(4) +⋯ 

        =  1 ×
1

2
+ 2 ×

1

8
+ 3 ×

1

8
+ 4 ×

1

4
+⋯ 

        =
1

2
+
1

4
+
3

8
+ 1 

        =
17

8
< ∞ 

State 4 is aperiodic. 



 
 

Thus, State 4 is ergodic. 

Example 7.7.2.: Consider Markov chain having S = {1,2,3} and transition matrix 

P = [
1/2 1/2 0
3/4 0 1/4
0 1 0

] 

Show that all states of the above Markov Chain are ergodic? 

Solution: The chain is irreducible. 

The probability of ultimate return of the states is 

For State 1 

f11
(1) = p11 =

1

2
 

f11
(2) = f12f21 

=
1

2
×
3

4
=
3

8
 

f11
(3) = f12f22f21 = 0 

f11
(4) = f12f23f32f21 

=
1

2
×
1

4
× 1 ×

3

4
=
3

32
 

f11
(5) = f12f23

(2)f32
(2)f21 

=
1

2
×
1

4
× 1 ×

1

4
× 1 ×

3

4
=

3

128
 

⋮ 



 
 

f11 =∑f11
(n)

∞

n=1

 

=
1

2
+

3

2 × 4
+

3

2 × 42
+

3

2 × 43
+⋯ 

=
7

2 × 4
+

3

2 × 42
+

3

2 × 42
+⋯ = 1 

Hence the state 1 is persistent. 

The Mean Recurrence Time is 

𝜇11 =  1 × 𝑓11
(1) + 2 × 𝑓11

(2) + 3 × 𝑓11
(3) +⋯ 

        =  1 ×
1

2
+ 2 ×

1

2
×
3

4
+ 3 × 0 + 4 ×

1

2
×
1

4
× 1 ×

3

4
+⋯ 

        =
11

6
 

Thus State 1 is a non-null persistent. 

For State 2 

𝑓22
(1) = 𝑝22 = 0 

𝑓22
(2) = 𝑓21𝑓12 + 𝑓23𝑓32 

=
3

4
×
1

2
+
1

4
× 1 =

5

8
 

𝑓22
(3) = 𝑓21𝑓11𝑓12 

=
3

4
×
1

2
×
1

2
=
3

16
 

⋮ 



 
 

𝑓22 = ∑𝑓22
(𝑛)

∞

𝑛=1

 

= 0 +
5

8
+
3

16
+
3

32
+⋯ 

=
1

4
+
3

4
= 1 

Hence the state 2 is persistent. 

The Mean Recurrence Time is 

𝜇22 =  1 × 0 + 2 × 𝑓22
(2) + 3 × 𝑓22

(3) +⋯ 

        =  1 × 0 + 2 ×
5

8
+ 3 ×

3

16
+ 3 ×

3

16
+⋯ 

         =
1

2
+
9

4
=
11

4
 

Thus State 2 is a non-null persistent. 

For State 3 

𝑓33
(1) = 𝑝33 = 0 

𝑓33
(2) = 𝑓32𝑓23 = 1 ×

3

4
=
3

4
 

𝑓33
(3) = 1 ×

1

4
×
1

2
=
1

8
 

⋮ 

𝑓33 = ∑𝑓33
(𝑛)

∞

𝑛=1

= 0 +
3

4
+
1

8
+⋯ = 1 

Hence the state 3 is persistent. 



 
 

The Mean Recurrence Time is 

𝜇33 =  1 × 𝑓33
(1) + 2 × 𝑓33

(2) + 3 × 𝑓33
(3) +⋯ 

        =  1 × 0 + 2 ×
3

4
+ 3 ×

1

8
+⋯ =

15

8
 

Thus State 2 is a non-null persistent. 

7.9   Summary 

We are furnishing, in the following, a summary of the discussions in this unit: 

• Introduced the concept of communicating classes and closed sets. 

• Defined the irreducible Markov Chain. 

• Discuss periodic and aperiodic Markov chains. 

• Defined stationary probability distribution. 

7.10  Self-Assessment Exercise 

1. Consider a Transition Probability Matrix: 

𝑃 = [
𝑝 1 − 𝑝

1 − 𝑝 𝑝
] 

Where 𝑝 ∈ (0,1) 

Is State 2 accessible from state 1? 

2. Consider a Markov Chain with TPM 

𝑃 = [

0 1 0 0
0 0 1 0
0 0 0 1
1/8 0 7/8 0

] 

Draw the transition graph and find the accessible state and commutative class. 

3. Using the Markov chain in example 7.3.1. Are Class 1, Class 2 and Class 4 aperiodic? 



 
 

4.The transition probability matrix of a Markov Chain is  

𝑃 = [
0.1 0.5 0.4
0.6 0.2 0.2
0.3 0.4 0.3

] 

Which states are irreducible? 

5. Define (i) An Ergodic Markov Chain, (ii) Stationary Markov Chain. 

6. Let C1 and C2 be two communicative classes of a Markov chain and “s” be a state, which belongs 

to C1 but not C2. Prove that C1 and C2 are disjoint. 

7. A Markov Chain {𝑋𝑡, 𝑡 = 0,1,2,⋯ } on the state space 𝑆 = {1,2,3,4} has the transition 

probability matrix 

𝑃 =

[
 
 
 
 
 
0 1 0 0
1

2
0

1

2
0

0
1

2
0

1

2
0 0 1 0]

 
 
 
 
 

, 

From this transition probability matrix, find out the stationary distribution. 

8. A Markov Chain {𝑋𝑡, 𝑡 = 0,1,2,⋯ } on the state space 𝑆 = {1,2,3,4} has the transition 

probability matrix 

𝑃 = [

0 0 1 0
1 0 0 0
3/4 1/4 0 0
1/3 1/3 1/3 0

], 

Find out the stationary distribution. 

9. Show that the limiting probability distribution 𝜋 = (𝜋1, 𝜋2)  of a two state Markov chain is 

stationary. 



 
 

10. For a two state Markov chain, under suitable assumptions, derive the expression for n-step 

transition probabilities. Also obtain the limiting probability distribution 𝑙𝑖𝑚
𝑛→∞

𝑝𝑖𝑗 and show that this 

limiting probability distribution is stationary. 
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8.1 Introduction 

A continuous-time Markov process is a type of stochastic process that models the evolution 

of systems where changes occur at random points in time. Unlike discrete-time Markov chains, 

which are indexed by discrete steps, continuous-time Markov processes are indexed by continuous 

time. This means the system can transition between states at any moment, making it more suited 

to modelling real-world phenomena where events happen unpredictably and continuously. 

One of the defining features of a continuous-time Markov process is the Markov property. 

This property ensures that the future evolution of the process depends only on its current state, not 

on the history of how it arrived there. Essentially, the process has no "memory" of its past beyond 

the present moment, simplifying the analysis of such systems. 

Continuous-time Markov processes are widely used in various fields, including physics, 

biology, economics, and queuing theory. They can model a range of phenomena, such as the decay 



 
 

of radioactive particles, the spread of diseases, or the arrival of customers at a service centre. The 

behaviour of these processes is typically described using a rate matrix, which specifies the rate at 

which transitions between states occur, rather than the probabilities of such transitions over a fixed 

period. 

Understanding continuous-time Markov processes is crucial for analysing systems where 

changes occur continuously over time, allowing for the prediction and control of complex dynamic 

systems in a variety of applications. 

8.2 Objectives 

After studying this unit, you should be able to: 

• Understand the basic concepts of the continuous time Markov chain and also discuss about 

the inter-arrival time. 

• Define stopping time and explain Wald’s equation. 

• Describe Doob’s optional stopping theorem. 

• Discuss forward and backward equations for Kolmogorov differential equation. 

8.3 Markov Processes in Continuous-Time 

The discrete-time Markov chains {Xn, n = 0,1,2, . . . } make transitions at integer times with 

transition probabilities P(Xn+1 = j|Xn = i). Thus, the chain can only stay in each state for an 

integer amount of time before making the next transition. 

If we change the integer duration to continuous transition times according to an exponential 

distribution, then we can obtain a continuous-time Markov chain. 

Definition: Let {X(t), t ≥  0} be a continuous time stochastic process taking on values in the set 

of nonnegative integers. Let Ti denotes the amount of time it spends in the state i before making a 

transition into a different state. Then, it is called a continuous-time Markov chain, if each time it 

enters state i: 

➢ Ti has an exponential distribution with mean, say, 1/vi i.e., Ti~Exp(vi). 

➢ When the process leaves the state i, it enters state j with some probability pij satisfying 



 
 

pij ≥ 0,∑pij
j

= 1. 

Example 8.3.1.: Poisson processes are continuous-time Markov chains having states 0,1,2, … The 

process always proceeds from state i to state i + 1, i.e., pii+1 = 1, where i ≥ 0. The transition rate 

vector is v =  (vi) with vi = λ. This process is known as a pure birth process since. Whenever a 

transition occurs, the state of the system is always increased by one. 

Definition: The process {X(t), t ≥ 0} is called a continuous-time Markov chain if ∀ s, t ≥  0 and 

∀ non negative integers i, j, X(u), 0 ≤ u < s,  

P(X (t + s) = j|X(s) = i, X(u) = x(u), 0 ≤ u < s) 

= P(X (t + s) = j|X(s) = i) 

Thus, the probability that the chain will be in the state j after time t depends only on the 

current state i and is independent of the states the chain has visited in past, and how long the chain 

has been in the state i. 

The continuous-time Markov chain is said to have stationary (or homogeneous) transition 

probabilities, if P(X(t + s) = j|X(s) = i) is independent of s. Then  

pij(t) = P(X(t + s) = j|X(s) = i). 

8.3.1  Birth and Death Processes 

Consider a continuous time stochastic process {X(t), t ≥ 0} with the state at time t 

representing the number of people in the system at time t. Thus, the state space of the process is 

{0,1,2, . . . }. If there are i people in the system, then we assume that: 

(i) The new arrivals enter the system at an exponential rate λi, and 

(ii) people leave the system at an exponential rate μi. 

The process is called a birth and death process, with arrival (or birth) rates (λi )i=0
∞  and 

departure (or death) rates (μi )i=0
∞  (with μ0 = 0). 

 



 
 

Theorem 8.3.1.: For any birth and death process, the transition rates are  

v0 = λ0,   vi = λi + μi;  i > 0 

and the transition probabilities are 

p0,1 = 1,       pi,i+1 =
λi

λi + μi
, i > 0. 

Proof: Let the process be in the state i at present and the waiting time for the next arrival be 

Ti
(a)
~Exp(λi). Further, the waiting time for the next departure Ti

(d)
~Exp(μi). Thus, the waiting 

time for the next transition is 

Ti = min (Ti
(a)
, Ti

(d)
). 

Then Ti~Exp(vi), vi = λi + μi. The transition probabilities are 

      pi,i+1 = P(Ti
(a) < Ti

(d)) 

=
λi

λi + μi
 

pi,i−1 = 1 − pi,i+1 

=
μi

λi + μi
, i ≥ 1. 

In particular,  

p01 =
λ0

λ0 + 0
= 1 (μ0 = 0). 

Example: The Poisson process is a birth process with λi = λ and μi = 0 ∀i. 

Example: Yule Process 

A birth process with a linear birth rate, λi = iλ, μi = 0 is called a Yule process.  

Example: A model with 



 
 

λi = iλ + θ,         μi = iμ. 

is called a linear growth process with immigration. Such processes occur in the study of biological 

reproduction and population growth. Each individual in the population is assumed to give birth at 

the rate λ. In addition, there is a constant rate of increase θ due to an external source such as 

immigration. Hence, the total birth rate, where there are i persons in the system, is iλ +  θ. Deaths 

are assumed to occur at an exponential rate µ for each member of the population, and hence iµ. 

Example: The Queuing System M/M/1: Suppose that the customers arrive at a single server station 

following a Poisson process having rate λ. The customer goes directly into service if the server is 

free and, if not, the customer joins the queue. The customer leaves the system after he gets the 

service and the next customer in the queue, if any, enters service. The service times are assumed 

to be independent exponential random variables having mean 1/μ. 

The first M denotes that the interarrival process is Markovian (since it is a Poisson process). 

The second M denotes that the service distribution is exponential (and, hence, Markovian). The 1 

refers to a single server. 

If X denote the number in the system (queuing time+service time) at time t, then {X(t), t ≥

0} is a birth and death process with λi = λ, i ≥ 0, and μi = μ; i ≥ 1. 

Example (The Queuing System M/M/s): Consider an exponential queuing system in which there 

are s servers available, each serving at rate μ. An entering customer first waits in line and then 

goes to the first free server. Assuming customers arrive according to a Poisson process with rate 

λ, then the process is a birth-death process with parameters arrival rates: λi = λ, for each i ≥

0, and departure rates μi = min(i, s). μ for each i ≥ 1. 

Consider now a general birth and death process with birth rates {λi} and death rates {μi} 

with μ0 = 0. 

Let Ui be the time, starting from the state i, it takes for the process to enter the state i + 1, 

for any i ≥ 0. 

Theorem 8.3.2.: We have 

E(U0) =
1

λ0
,    E(Ui) =

1

λi
+
μi
λi
E(Ui−1), i ≥ 1. 



 
 

Proof: We recursively compute E(Ui), i ≥ 1 by starting with i = 0. Since U0 = T0 is exponential 

with the rate λ0, we have E(U0) =
1

λ0
. 

For i ≥ 1, we condition on the first transition which takes the process into state i − 1 or i + 1: 

E(Ui) =
1

λi + μi
+

λi
λi + μi

. 0
μi

λi + μi
. [E(Ui−1) + E(Ui)] 

Hence 

E(Ui) =
1

λi
+
μi
λi
E(Ui−1), i ≥ 1. 

We state the following recursive relation for the variance of Ui without proof: 

Var (U0) =
1

λ0
2 

Var (Ui) =
1

λi(λi + μi)
+
μi
λi
Var(Ui−1) +

μi
λi + μi

[E(Ui−1) + E(Ui)]
2, i ≥ 1 

Corollary: If λi = λ and μi = μ ∀i, then 

E(Ui) =

{
 
 

 
 1 − (

μ
λ
)
i+1

λ − μ
,          λ ≠ μ

i + 1

λ
,                  λ = μ

 

Proof: This is a direct application of the following result: 

If ai+1 = c + d. ai, i = 0,1,2…, then 

ai = {

ci + a0,                                 d = 1

c
1 − di

1 − d
+ dia0,               d ≠ 1

 

The expected time for the process to transition from i to j > i is 



 
 

E(Ui) + ⋯+ E(Uj−1) 

and the variance of the overall transition time from i to j is 

Var(Ui) + ⋯+ Var(Uj−1). 

The transition probability function 𝐩𝐢𝐣(𝐭) 

Let 

pij(t) = P(X(t + s) = j|X(s) = i) 

= P(X(t) = j|X(0) = i) 

We consider two different cases for the Markov chain and find formulas for pij(t): 

(i) Pure birth process with distinct birth rates, 

(ii) General continuous-time Markov chains. 

Pure-Birth Process with Distinct Birth Rates 

Now we derive the explicit formula for the transition probability function in the case of a 

pure birth process (μi = 0, vi = λi) having distinct birth rates (λi ≠ λj). Before proving the main 

result, first we determine the distribution of a sum of independent exponential random variable 

with distinct rates in the following proposition. 

Proposition: If Xi~Exp(λi), i = 1,2  are independent random variables having distinct rates 

(λ1 ≠ λ2), then  

fX1+⋯+Xn(T) =  ∑Ck,1,nλke
−λkt

n

k=1

 , 

Ck,i,j = ∏
λl

λl − λk
i≤l ≤n,l≠k 

 

Proof: We prove only the special case of n = 2. We have 

fX1+X2(t) 



 
 

= ∫ fX1(s)fX2(t − s)ds
t

0

 

= ∫ λ1e
−λ1s.

t

0

 λ2e
−λ2(t−s)ds 

= λ1λ2e
−λ2t∫ e−(λ1−λ2)sds

t

0

 

= λ1λ2e
−λ2t

1

λ1 − λ2
(1 − e−(λ1−λ2)t) 

= 
λ1

λ1 − λ2
λ2e

−λ2t +
λ2

λ2 − λ1
λ1e

−λ1t 

The survival function of the hyper exponential random variable S = X1 +⋯Xn is  

P(S > t) =∑Ck,1,ne
−λkt

n

k=1

. 

Theorem 8.3.3.: For a pure birth process having distinct rates, 

pii(t) = P(Ti > t) 

= e−λt 

pij(t) =∑Ck,i,je
−λkt,

j

k=1

     i < j 

where 

Ck,i,j = ∏
λl

λl − λk
i≤l ≤j,l≠k 

. 

Proof: First, we write 

pij(t) = P(X(t) < j + 1|X(0) = i) − P(X(t) < j|X(0) = i). 

Next, letting Tk represent the duration of the chain in the state k, we have 



 
 

P(X(t) < j + 1|X(0) = i) = P(Ti +⋯+ Tj+1 > t) 

and similarly, 

P(X(t) < j|X(0) = i) = P(Ti +⋯+ Tj > t). 

Hence, utilizing the above proposition, the theorem follows. 

Note: For j = i + 1 

pij(t) =
λi+1

λi+1 − λi
e−λi t +

λi
λi − λi+1

e−λi+1t − e−λi t 

=
λi

λi+1 − λi
(e−λi+1t − e−λi t) 

For λk = kλ  ∀ k ≥ 1 (Yule process); λi ≠ λj  if i ≠ j. Suppose X0=1. Then 

p1j(t) = e−λt(1 − e−λt)
j−1

 

Hence the conditional distribution of X(t) given X(0) = 1 is 

X(t)|(X(0) = 1) ~ Geometric distribution with (p = e−λt). 

That is, starting with a single individual, the population size at time t has a geometric 

distribution with mean e−λt. If initially there are i individuals, then the population size at time t 

has a negative binomial distribution with parameters (i, p = e−λt). 

General Continuous-Time Markov Chains 

We prove the Chapman-Kolmogorov equations for continuous Markov Chains. 

Chapman-Kolmogorov Equations 

Theorem 8.3.4.: For all s, t ≥  0 



 
 

pij(t + s) =∑pik(t)pkj(s)

k

                                    (8.1) 

Proof: We have 

pij(t + s) = P(X(t + s) = j|X(0) = i) 

=∑P(X(t + s) = j, X(t) = k|X(0) = i)

k

 

=∑P(X(t + s) = j|X(t) = k, X(0) = i )

k

P(X(t) = k|X(0) = i) 

=∑P(X(t + s) = j|X(t) = k )

k

P(X(t) = k|X(0) = i)    (Using Markovian property) 

=∑pkj(s)pik(t).

k

 

Hence the result follows. 

Note: Chapman–Kolmogorov equation in matrix form is P(t + s) = P(t)P(s). 

From the Chapman-Kolmogorov equations we can obtain the following differential equations for 

all pij(t). 

8.4  Backward and Forward Equations for Homogeneous Case 

Kolmogorov's Backward Equations 

Theorem 8.4.1.: In any continuous-time Markov chain, 

pij
′ (t) =∑qikpkj(t) − vipij(t)

k≠i

 

where qik = vipik are called the instantaneous transition rates from state i to state k. 



 
 

Proof: For any h > 0 

pij(t + h) − pij(t)

h
 

=
1

h
(∑pik(h)pkj(t) − pij(t)

k

) 

=∑
pik(h)

h
pkj(t)

k≠i

− 
1 − pii(h)

h
pij(t) 

It remains to show that 

lim
h→0

pik(h)

h
= qik,       k ≠ i 

lim
h→0

pii(h)

h
= vi  

Since 

pii(h) = P(X(h) = i|X(0) = i) 

= P(Ti > h) = e
−hvi, 

we have 

lim
h→0

1 − pii(h)

h
 

= lim
h→0

1 − e−hvi

h
vi. 

Further 

pik(h) = P(X(h) = k|X(0) = i) 

= P(Ti < h)pik 

= (1 − e−hvi)pik. 



 
 

Thus 

lim
h→0

pik(h)

h
= lim

h→0

(1 − e−hvi)pik
h

 

= vipik. 

Note: We have 

∑qik
k

= vi∑pik
k

= vi,  

so that 

pik =
qik
vi
=

qik
∑ qikk

. 

Note: In a birth and death process, the instantaneous transition rates are just birth and death rates 

qi,i+1 = vipi,i+1 

= (λi + μi)
λi

λi + μi
= λi 

qi,i−1 = vipi,i−1 

= (λi + μi)
μi

λi + μi
= μi 

Example 8.4.1.: A continuous-time Markov chain consisting of two states: 

Consider a machine that works for an exponential amount of time having the mean 1/λ 

before breaking down. Suppose it takes an exponential amount of time having mean 1/μ  to repair 

the machine. If the machine is in working condition at time 0, what is the probability that it will 

be working at time t=10? 

Solution: The process is a birth and death process with state 0 meaning that the machine is working 

and state 1 it is being repaired. The parameters are 



 
 

λ0 =  λ, λ 1 = 0, μ1 = μ,  μ0 = 0, and p01 = 1 = p10 

The Chapman-Kolmogorov backward equations are 

p00
′ (t) = λ(p10(t) − p00(t)) 

p10
′ (t) = μ(p00(t) − p10(t)) 

In matrix form 

(
p00(t)
p10(t)

)
′

= (
−λ λ
μ −μ

) (
p00(t)
p10(t)

) 

The initial conditions are 

p00(0) = 1, p10(0) = 0 

We decompose the matrix as 

(
−λ λ
μ −μ

) = (
−1 λ
1 −μ

) (
0 0
 0 −λ − μ

) (
−1 λ
1 −μ

)
−1

 

Thus, the solution is given by 

(
p00(t)

p10(t)
) 

= (
−1 λ
1 −μ

) (
1 0
0 e−(λ+μ)t

) (
−1 λ
1 −μ

)
−1

(
1
0
) 

=

(

 
 

μ

λ + μ
+

λ

λ + μ
e−(λ+μ)t

μ

λ + μ
−

λ

λ + μ
e−(λ+μ)t

)

 
 

 

Similarly, we can obtain the following Kolmogorov's forward equations (proof is not given here). 

Kolmogorov's Forward Equations 



 
 

Theorem 8.4.2.: Under suitable regularity conditions,  

pij
′ (t) =∑qikpkj(t) − vipij(t)

k≠i

 

Note: For a pure birth process, Kolmogorov's forward equations become 

pij
′ (t) = λ j−1pij−1(t) − λ jpij(t) 

which leads to 

pij(t) = 0      j < i 

pii(t) = e−λit, 

pij(t) = λ j−1e
−λjt∫eλjspi,j−1(s)

t

0

ds,      j ≥ i + 1. 

Limiting Probabilities 

For each state j of a continuous time Markov-chain, let 

Pj = lim
t→∞

pij(t) 

The limit exists and is independent of the initial state i if all states communicate and chain 

is positive recurrent. 

The {Pj} are called the stationary probabilities. Here, Pj′s also have the interpretation of 

being the long run proportion of time that the process is in state j. 

We have the following result: 

Theorem 8.4.3.: We have  

vjPj =∑qkjpk
k≠j

        (∑Pj = 1) 



 
 

Proof: Let t → ∞ in the forward equations and use lim
t→∞

pij
′ (t) = 0. 

Example 8.4.2.: For a birth and death process, a necessary and sufficient condition for the limiting 

probabilities to exist is 

∑
λ0λ1…λi−1
μ1μ2…μi

< ∞

∞

i=1

 

In this case, it can be shown that 

P0 =
1

1 + ∑
λ0λ1⋯λi−1
μ1μ2⋯μi

∞
i=1

, 

 Pi = 
λ0λ1…λi−1
μ1μ2…μi

P0,     n ≥ 1 

For the M/M/1 queue (λi = λ, μi = μ), 

Pi =
(λ/μ)′

1 + ∑ (λ/μ)i∞
i=1

= (λ/μ)i(1 − λ/μ) 

provided  
λ

μ
< 1. 

Solution: For the given birth and death process, 

For j = 0:                λ0P1 = μ1P1    

For j ≥ 1:    (λjμj)Pj = λj−1Pj−1 + μj+1Pj+1    

By induction 

λjμj = μj+1Pj+1,   j ≥ 0 

or equivalently, 



 
 

Pj+1

Pj
=

λj

μj+1
,   j ≥ 0 

Multiplying such equations from j = 0 to j = i − 1 gives that 

Pi =
λ0λ1…λi−1
μ1μ2…μi

P0,      i ≥ 1. 

Using P0 + ∑ Pi = 1
∞
i=1  we can find 

P0 =
1

1 + ∑
λ0λ1⋯λi−1
μ1μ2⋯μi

∞
i=1

. 

8.5  Interval Arrival Time 

Consider a Poisson process {X(t), t ≥ 0}. Let Wn denote the time of nth event, n = 1,2, … 

The arrival time of the nth event, Wn, is also called the waiting time until the nth event. The process 

starts in state X(0) = 0 and stays in state 0 for a random amount of time W1 until it jumps to state 

X(W1) = 1. Then it stays in state 1 for a random amount of time until it jumps to state 2 at time 

W2, and so on. 

Let W0 = 0 and let Tn = Wn+1 −Wn ; n = 0,1,2, …. The random variables Tn are known 

as the interevent times or interarrival times or holding times. 

Example 8.5.1.: Let X1, X2, … be the interarrival times and N(t) be the Poisson process with 

intensity λ = 4. 

(i) Calculate the probability that the first arrival occurs after t = 0.5, i.e.  

              P[X1 > 0.5]. 

(ii) Find P[X1 > 3] when no arrivals before t = 1. 

(iii) Given that the 3rd arrival occurred at time t = 2, find the probability that the 4th arrival 

occurs after t = 4. 



 
 

(iv) Let T be the time of the 1st arrival after t = 10. Find the E(T) and Var (T). 

(v) Find the conditional expectation and conditional variance of 

[T|event that the last arrival occurred at t = 9]. 

Solution: 

(i) Since X1~Exp(4), we have 

P[X1 > 0.5] = exp(−4 × 0.5) 

= exp(−2) 

≈ 0.13534 

(ii) P[X1 > 3|X1 > 1] = P[X1 > 2] 

= exp(−2 × 4) 

= exp(−8) 

= 0.00034 

(iii) Time between the 3rd and the 4th arrival is X4~Exp(4). Thus, the conditional 

probability is 

P[X4 > 4|X1 + X2 + X3 = 4] = P[X4 > 4] (Independence of the Xi
′s) 

= exp(−4 × 4) 

= exp(−16) 

≈ 0.00000 

(iv) Watching the process at time t = 10, the time of the first arrival from t = 10 is Exp(4) 

i.e. T = 10 + X 

Thus,  



 
 

E(T) = E(10) + E(X) 

= 10 +
1

4
 

=
41

4
= 10.25 

Var(T) = Var(X) =
1

4
 

(v) E[T|event that the last arrival occurred at t = 9] = E[T] =
41

4
 

Var [T|event that the last arrival occurred at t = 9] = Var [T] =
1

4
 

8.6  Stopping Time 

Let 𝑋1, 𝑋2, … denote a sequence of independent random variables. 

Definition: An integer-valued random variable 𝑁 is said to be a Stopping Time for the sequence 

𝑋1, 𝑋2, …, if the event {𝑁 = 𝑛} is independent of 𝑋𝑛+1, 𝑋𝑛+2, … for all 𝑛 = 1,2, …. 

𝑃(𝑋𝑛 = 0) = 𝑃(𝑋𝑛 + 1) =
1

2
  ,   𝑛 = 1,2, … 

Example 8.6.1.: Let 𝑋𝑛 , 𝑛 = 1,2, … be independent and such that 

Let us take 𝑁 = min {𝑛: 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛 = 10}. Then 𝑁 is a stopping time (Since 𝑁 is 

depending upon 𝑋1, 𝑋2, … , 𝑋𝑛 and 𝑋𝑖′𝑠 are independent, therefore 𝑁 is independent of 

𝑋𝑛+1, 𝑋𝑛+2, …). 

Example 8.6.2.: Consider the Renewal Process {𝑁(𝑡), 𝑡 ≥ 0} induced by {𝑋𝑛, 𝑛 ≥ 1}. Also 

consider the integer-valued random variable 𝑁(𝑡) for any 𝑡. If 𝑁(𝑡) a stopping time for {𝑋𝑛, 𝑛 ≥

1} look at the event {𝑁(𝑡) = 𝑛}. See that 

{𝑁(𝑡) = 𝑛} ⇔ {𝑆𝑛 ≤ 𝑡 ≤ 𝑆𝑛+1} 

{𝑆𝑛 ≤ 𝑡 𝑎𝑛𝑑 𝑆𝑛 + 𝑆𝑛+1 > 𝑡} depends on 𝑋𝑛+1. 



 
 

Hence 𝑁(𝑡) is not a stopping time for {𝑋𝑛, 𝑛 ≥ 1}. 

Consider the event {𝑁(𝑡) + 1 = 𝑛} 

{𝑁(𝑡) = 𝑛 − 1} ⇔ {𝑆𝑛−1 ≤ 𝑡  𝑎𝑛𝑑   𝑆𝑛 > 𝑡} 

Since {𝑆𝑛−1 ≤ 𝑡 , 𝑆𝑛−1 + 𝑋𝑛 > 𝑡} does not depend on 𝑋𝑛+1, 𝑋𝑛+2, …. 

So, {𝑁(𝑡) + 1} is a stopping time for {𝑋𝑛, 𝑛 ≥ 1}. 

8.7  Wald’s Equation 

Theorem 8.7.1.: Let 𝑋1, 𝑋2, … be independent and identically distributed random variables with 

the finite mean 𝐸(𝑋). Let 𝑁 > 0 be an integer-valued random variable, independent of {𝑋1, 𝑋2, … }, 

with 𝐸(𝑁) < ∞. Then 

𝐸 (∑𝑋𝑛

𝑁

𝑛=1

) = 𝐸(𝑁)𝐸(𝑋) 

Proof: We know that, 

∑𝑋𝑛

𝑁

𝑛=1

=∑𝑋𝑛

𝑁

𝑛=1

× 1 + ∑ 𝑋𝑛

∞

𝑛=𝑁+1

× 0 

Let 

𝐼𝑛 = {
1               𝑖𝑓 𝑛 ≤ 𝑁
0               𝑖𝑓 𝑛 > 𝑁

 

Then 

∑𝑋𝑛

𝑁

𝑛=1

=∑𝑋𝑛

𝑁

𝑛=1

× 𝐼𝑛 + ∑ 𝑋𝑛

∞

𝑛=𝑁+1

× 𝐼𝑛 



 
 

⇒∑𝑋𝑛

𝑁

𝑛=1

=∑𝑋𝑛

∞

𝑛=1

× 𝐼𝑛 

⇒ 𝐸 (∑𝑋𝑛

𝑁

𝑛=1

) = 𝐸 (∑𝑋𝑛

∞

𝑛=1

× 𝐼𝑛) 

                            = ∑𝐸

∞

𝑛=1

(𝑋𝑛 × 𝐼𝑛) 

If 𝐼𝑛 = 1, then we have not stopped after successively observing 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛−1. 

Therefore 𝐼𝑛is determined by 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛−1 and it is independent of 𝑋𝑛. 

Thus, 

𝐸 (∑𝑋𝑛

𝑁

𝑛=1

) = ∑𝐸

∞

𝑛=1

(𝑋𝑛) 𝐸(𝐼𝑛) 

                       = 𝐸(𝑋)∑𝐸

∞

𝑛=1

(𝐼𝑛)                                        (𝑋𝑛
′ 𝑠  𝑎𝑟𝑒 𝑖𝑖𝑑) 

                       = 𝐸(𝑋)∑𝑃[𝑁 ≥ 𝑛]

∞

𝑛=1

 

⇒ 𝐸 (∑𝑋𝑛

𝑁

𝑛=1

)  = 𝐸(𝑋)𝐸(𝑁) 

8.7.1  Applications of Wald’s Equation 

1. Suppose {𝑋𝑛} is a discrete distribution that is uniform over the integers {1, 2, , … , 10}; 𝑃(𝑋 =

𝑖) =
1

10
 , 1 ≤ 𝑖 ≤ 10. Thus 𝐸(𝑋) = 5.5. Imagine that these are bonuses (in units of Rs.10, 000) 



 
 

that are given to you by your employer each year. Let 𝑁 = min{𝑛 ≥ 1 ∶ 𝑋𝑛 = 6}, the 1𝑠𝑡 time that 

you receive a bonus of size 6. What is the expected total (cumulative) amount of bonus received 

up to time 𝑁? 

𝐸 (∑𝑋𝑛

𝑁

𝑛=1

)  = 𝐸(𝑋)𝐸(𝑁) = 5.5 𝐸(𝑁)               (8.2) 

In (8.2), we have used Wald’s equation. Here, 𝑁 is a stopping time with finite mean. 

Now {𝑁 = 1} = {𝑋1 = 6} and in general {𝑁 = 𝑛} = {𝑋1 ≠ 6, 𝑋2 ≠ 6,… , 𝑋𝑛−1 ≠ 6, 𝑋𝑛 = 6} only 

depends on {𝑋1, 𝑋2, … , 𝑋𝑛}. 

Again 

𝑃[𝑁 = 1} = 𝑃[𝑋1 = 6] = 0.1 and in general, from the i.i.d. assumption placed on {𝑋𝑛}, 

𝑃[𝑁 = 𝑛] = 𝑃[𝑋1 ≠ 6, 𝑋2 ≠ 6,… , 𝑋𝑛−1 ≠ 6, 𝑋𝑛 = 6] 

                   = 𝑃[𝑋1 ≠ 6]𝑃[𝑋2 ≠ 6]…𝑃[𝑋𝑛 = 6] 

                   = (0.9)(𝑛−1)0.1 ,    𝑛 ≥ 1 

We conclude that 𝑁 has a geometric distribution with “success” probability 𝑝 = 0.1, and hence 

𝐸(𝑁) =
1

𝑝
= 10 

Putting this value in (8.2), we get 

𝐸 (∑𝑋𝑛

𝑁

𝑛=1

)  = 5.5 ×
1

10
= 55         

Notice that before time 𝑁 = 𝑛 the random variables {𝑋1, 𝑋2, … , 𝑋𝑛−1} no longer have the 

original uniform distribution; they are biased as none of them takes on the value 6.  



 
 

Then each have the conditional distribution (𝑋|𝑋 ≠ 6) and thus an expected value different 

from 5.5. The random variable at time 𝑁 = 𝑛 has value 6; 𝑋𝑛 = 6 and hence is not random at all. 

All these random variables are biased, in the end, on average, Wald’s equation lets the sum be 

unbiased and independent of 𝑁. 

We would get the same answer 55 by using the stopping times 𝑁 = min{𝑛 ≥ 1 ∶ 𝑋𝑛 = 𝑘} 

for any 1 ≤ 𝑘 ≤ 10. 

1.   Null Recurrence of the Simple Symmetric Random Walk 

Let 

𝑅𝑛 = Δ1 + Δ2 +⋯+Δ𝑛 , 𝑋0 = 0 

where {∆𝑛: 𝑛 ≥ 1} are i.i.d. with 𝑃(∆= ±1) = 0.5, 𝐸(∆) = 0. 

We know that this Markov Chain is recurrent (proved via the gambler’s ruin problem). i.e., 

the random time 𝑁0,0 = min{𝑛 ≥ 1 :𝑅𝑛 = 0|𝑅0 = 0} is proper. 

Show that the chain is null recurrent, i.e., 𝐸(𝑁0,0) = ∞. The chain will, with certainty, 

return back to state 0, but the expected number of steps required is infinite. 

We do so by proving that 𝐸(𝑁1,1) = ∞, where we define the stopping times 𝑁𝑖,𝑗 =

min{𝑛 ≥ 1 :𝑅𝑛 = 𝑗|𝑅0 = 𝑖}. (Since the chain is irreducible, all states are null recurrent together or 

positive recurrent together; so, if 𝐸(𝑁1,1) = ∞ then in fact  

𝐸(𝑁𝑗,𝑗) = ∞ for all 𝑗.) By symmetry, 𝑁𝑗,𝑗 has the same distribution (hence mean) for all j.  

The first step Δ1 = ±1, 

𝐸(𝑁1,1) =
{1 + 𝐸(𝑁2,1)}

2
+
{1 + 𝐸(𝑁0,1)}

2
 

                = 1 + (0.5)𝐸(𝑁2,1) + (0.5)𝐸(𝑁0,1) 



 
 

Showing that 𝐸(𝑁0,1) = ∞, thus proves that 𝐸(𝑁1,1) = ∞. 

By definition, the chain at time 𝑁 = 𝑁0,1 has value 1; 

1 = 𝑅𝑁 =∑Δ𝑛

𝑁

𝑛=1

 

We use Wald’s equation. Since 𝐸(𝑁) < ∞ then we conclude that  

1 = 𝐸(𝑅𝑁) 

= 𝐸 (∑Δ𝑛

𝑁

𝑛=1

) 

= 𝐸(𝑁)𝐸(Δ) = 0 

yielding the contradiction 1 = 0. Thus 𝐸(𝑁) = ∞. 

8.8  Doob’s Optional-Stopping Theorem (Statement without Proof) 

Let 𝑀 = {𝑀𝑛} be a martingale with respect to 𝑋0, 𝑋1, ⋯ and 𝑁 be a stopping time satisfying 

any one of the following conditions: 

(i) There is a positive integer 𝑅 such that 𝑁(𝑡) ≤ 𝑅  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ Ω. 

(ii) There is a positive real number 𝐾 such that |𝑋𝑛(𝑡)| < 𝐾 for all 𝑛 and all 𝑡 ∈ Ω, and N 

is almost surely finite. 

(iii) 𝐸(𝑁) < ∞, and there is a positive real number K such that 

|𝑋𝑛(𝑡) − 𝑋𝑛−1(𝑡)| < 𝐾 ∀ 𝑛 𝑎𝑛𝑑 𝑎𝑙𝑙 𝑡 ∈ Ω 

Then 𝑋𝑁 is integrable, and  

𝐸(𝑋𝑁) = 𝐸(𝑋0). 



 
 

8.9   Summary 

In this unit, we have discussed the following points: 

• We have discussed Markov processes in Continuous time 

• We have state and proved Backward and Forward equations for homogeneous case. 

• We have explained Interval arrival time with example. 

• We defined Stopping Time and Wald’s equation 

• We have stated Doob’s Optional Stopping theorem 

8.10  Self-Assessment Exercise 

1.  Explain continuous time Markov process with example. 

2.  A salesman flies between New Delhi, Mumbai, and Kolkata as the following rates: 

𝑃 = [
−5 3 2
2 −4 2
6 1 −7

] 

(i) If the salesman takes a trip out of New Delhi, what is the probability of it being a trip to 

Kolkata? 

(i)  If the salesman takes a trip out of New Delhi, what is the probability of it being a trip to 

Kolkata? 

(ii)  What is the expected time spent in New Delhi? 

3.  Derive the forward equation for a time-homogeneous process. 

4.  State and prove the backward equation for a homogeneous case. 

5.  Define Wald’s equations and prove it. 
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Block & Units Introduction 
 

The Block – 3 - Random Walk and Queuing Process is the third block of said SLM, which 

is divided into four units. 

The Unit – 9 - Random Walk and Gambler’s Ruin Problem deals with the Random walk, 

Brownian motion as a random walk, one-dimensional, two-dimensional and three-dimensional 

random walks, duality in random walk and gambler’s ruin problem. 

The Unit – 10 - Queuing Process deals with the Birth and death processes, renewal 

process, Queuing models- Specification & Effectiveness, Measures, the Ek/M/1, M/Ek/1; M/M/1; 

M/M/k & M/G/1 queuing process. 

The Unit – 11- Distributions deals with the Compound distribution, Machine Interference 

Problem, Waiting Time Distribution for M/M/1 and M/M/k models,  

The last unit of this Block is Unit – 12 – Martingales discussed about the Martingales, 

Boob – Decomposition, Martingale convergence theorems.  

At the end of every block/unit the summary, self-assessment questions are given. 

 



 
 

UNIT-9:  RANDOM WALK AND GAMBLER’S RUIN PROBLEM 

Structure 

9.1 Introduction 

9.2 Objectives 

9.3 Random Walk 

9.4 Brownian motion as a random walk 

9.5 Duality in random walk  

9.6 Gambler’s ruin problem. 

9.7  Summary 

9.8        Reference 

9.9        Self-Assessment Questions  

9.10 Further Reading 

9.1 Introduction 

The concept of the random walk has played a significant role in the development of modern 

probability theory and has broad applications in various scientific fields. The formal study of 

random walks began with Karl Pearson's inquiry in 1905, where he posed a seemingly simple 

question about the distance a person would cover after taking a series of steps in random directions. 

This laid the groundwork for understanding random processes. Random Walk or Drunkard’s Walk 

is a stochastic process that represents a path consisting of a sequence of random steps on a 

mathematical space.  

Albert Einstein's seminal work in 1906 on Brownian motion further established the 

importance of random walks by explaining the erratic movement of pollen particles in water, first 

observed by Robert Brown in 1827. Einstein's model, which treated these movements as 

continuous-time random walks, provided a crucial link between theoretical mathematics and 

physical phenomena. 

Norbert Wiener’s development of the mathematical foundation for Brownian motion in the 

1920s, known as the Wiener process, and Paul Lévy’s work on extending the theory to include 

Lévy flights in the mid-20th century, contributed significantly to the field. Lévy flights generalize 



 
 

random walks to include steps of varying lengths, making the model applicable to more complex 

systems. 

Recent Developments 

In recent years, the study and application of random walks have seen substantial 

advancements: 

Complex Networks: Random walk theory has been instrumental in analyzing complex networks, 

such as social networks, biological networks, and the internet. This has led to insights into network 

structure and dynamics, influencing algorithms like Google's PageRank. 

Anomalous Diffusion and Lévy Flights: Real-world processes often exhibit anomalous diffusion, 

characterized by non-Gaussian distributions. Models incorporating Lévy flights, which include 

both short and long steps, have been developed to better represent these processes, with 

applications in ecology, finance, and optimization algorithms. 

Quantum Random Walks: Extending random walks to the quantum realm has introduced new 

properties and potential applications in quantum computing. Quantum random walks offer possible 

speed-ups for computational tasks and algorithms, representing a significant frontier in computing 

research. 

Machine Learning: In machine learning, random walk techniques have been integrated into 

graph-based learning algorithms. Methods like Node2Vec use random walks to learn 

representations of nodes in large graphs, aiding tasks such as link prediction and node 

classification. 

Financial Models: Random walk theory underpins many financial models, including those based 

on the Efficient Market Hypothesis (EMH). Recent developments continue to refine these models 

by incorporating factors like stochastic volatility and jump processes, providing deeper insights 

into market behavior. 

Biological and Medical Applications: Random walks model various biological processes, such as 

animal movement, disease spread, and cell behavior. Advancements in imaging and tracking 



 
 

technologies have enabled more detailed studies, leading to improved models, and understanding 

of these phenomena. 

The study of random walks has evolved from a mathematical curiosity to a cornerstone of 

probability theory with extensive applications. Historical contributions from Pearson, Einstein, 

Wiener, and Lévy established a robust foundation, while recent advancements continue to expand 

the theory’s applicability. This unit will explore the fundamentals of random walks, their 

properties, and their applications, providing a comprehensive understanding of this essential 

concept. 

9.2 Objectives 

By the end of this unit, you should be able to: 

Understand What Random Walks Are: 

• Learn what a random walk is and why it is important. 

• Know how to describe a random walk using simple mathematics. 

Learn About Brownian Motion: 

• Find out how Brownian motion relates to random walks. 

• Understand the history and key figures like Einstein who studied it. 

• See the difference between continuous and step-by-step random walks. 

Explore Random Walks in Different Dimensions: 

• Discover how random walks work in one, two, and three dimensions. 

• Understand how these walks can model different complex systems. 

Understand Duality in Random Walks: 

• Learn what duality means in the context of random walks. 

• Look at examples and see how dual processes can simplify problems. 

Study the Gambler’s Ruin Problem: 

• Understand the gambler’s ruin problem and its significance. 

• Develop skills to solve this problem. 



 
 

• Discuss how this problem applies to real-world scenarios like finance. 

Solve Problems Using Random Walk Concepts: 

• Use your knowledge of random walks to solve practical problems. 

• Apply random walk models to areas like physics, biology, finance, and computer science. 

• Use computer simulations to study random walks. 

Learn About Recent Developments in Random Walks: 

• Stay updated on new research and applications of random walks. 

• Understand the impact of quantum random walks, complex networks, and unusual 

diffusion patterns. 

• See how these new ideas affect science and technology today. 

Test and Reflect on Your Knowledge: 

• Check your understanding with self-assessment questions. 

• Reflect on how random walk theory applies to different fields. 

• Identify areas where you can learn more and improve. 

By achieving these objectives, you will have a solid understanding of random walk theory 

and how it applies to various fields, preparing you for further study or practical use in your work. 

9.3 Random Walk 

A random walk is a mathematical model that describes a path consisting of a sequence of 

random steps. This model is used to represent various phenomena in physics, economics, biology, 

and many other fields. The simplicity and versatility of random walks make them a fundamental 

concept in probability theory and stochastic processes. 

Mathematical Definition 

A random walk can be formally defined as follows: 

i. One-Dimensional Random Walk: 

• Consider a particle starting at position 𝑆0 = 0 on a number line. 



 
 

• At each step 𝑛, the particle moves to a new position 𝑆𝑛 by taking a step 𝑋𝑛, where 𝑋𝑛 is a 

random variable representing the step size and direction. 

• The position after 𝑛 steps is given by: 

𝑆𝑛 = 𝑆𝑛−1 + 𝑋𝑛 

• Typically, 𝑋𝑛 are independent and identically distributed (i.i.d.) random variables. For a 

simple symmetric random walk, 𝑋𝑛 takes values +1 or −1 with equal probabilities 0.5. 

One-dimensional random walk can also be defined as: 

𝑛 ∈ {0,1, … , 𝑎}: 𝑎 + 1 positions on a straight line. 

A person starts at 𝑘, (0 < 𝑘 < 𝑎). 

• The walk starts at stage 𝑘 at step 0 and moves to either stage 𝑘 —  1 or stage 𝑘 +  1 after 

one step. The walk continues until either 0 or 𝑎 is reached. 

• 𝑝:  P(Walker goes forward one place to k + 1)  

• 𝑞 =  1 —  𝑝: P(Walker goes back one place to 𝑘 —  1) 

Position of a walker after having moved 𝑛 times is known as the state of the walk after 𝑛 steps. 

• A random walk is said to be symmetric if 𝑝 =  𝑞 = 1 2⁄ . 

• If walk is bounded, then ends are known as barriers 

• If walk ends once a barrier is reached, then barriers are called “absorbing”. 

Examples: 

1. Brownian Motion  Path traced by a molecule as it moves through a liquid or gas 

exhibits characteristics of a random walk, known as Brownian motion. This is a 

continuous random walk and is essential in the study of diffusion processes. 

2. Animal Foraging  Search pattern of a foraging animal can be modeled as a random 

walk, helping ecologists understand animal behavior and movement patterns in nature. 

3. Stock Prices  Fluctuating price of a stock is often modeled as a random walk. 



 
 

4. Gambling  Gain/losses status of a gambler can be described by a random walk. Each 

bet is a step that either increases or decreases his total money based on the outcome. 

Higher-Dimensional Random Walks: A random walk can also be defined in higher dimension. 

• In two dimensions, the particle moves on a plane. Each step is represented by a vector  

𝑿𝑛 = (𝑋𝑛, 𝑌𝑛) where 𝑋𝑛 𝑎𝑛𝑑 𝑌𝑛 are i.i.d. random variables. 

• The position after 𝑛 steps is given by: 

𝑆𝑛 = 𝑆𝑛−1 + 𝑿𝑛 

Where 𝑆𝑛 = (𝑆𝑛
𝑥, 𝑆𝑛

𝑦
) and  

𝑆𝑛
𝑥 = 𝑆𝑛−1

𝑥 + 𝑋𝑛 

𝑆𝑛
𝑦
= 𝑆𝑛−1

𝑦
+ 𝑌𝑛 

• Similarly, in three dimensions Each step is represented by a vector 𝑿𝑛 = (𝑋𝑛, 𝑌𝑛, 𝑍𝑛) 

• The position after 𝑛 steps is given by: 

𝑆𝑛 = 𝑆𝑛−1 + 𝑿𝑛 

Where 𝑆𝑛 = (𝑆𝑛
𝑥, 𝑆𝑛

𝑦
, 𝑆𝑛

𝑧) and  

𝑆𝑛
𝑥 = 𝑆𝑛−1

𝑥 + 𝑋𝑛 

𝑆𝑛
𝑦
= 𝑆𝑛−1

𝑦
+ 𝑌𝑛 

𝑆𝑛
𝑧 = 𝑆𝑛−1

𝑧 + 𝑍𝑛 

ii. Unrestricted random walks 



 
 

Simple random walk on a line  A step forward (+1) has probability 𝑝 and a step back (−1) has 

probability 𝑞(=  1 —  𝑝). At the 𝑖𝑡ℎ step a Bernoulli random variable 𝑋𝑖 is observed, and the 

position of the walk at the 𝑛𝑡ℎ step is the random variable: 

𝑆𝑛 = 𝑆0 +∑ 𝑋𝑖
𝑛

𝑖=1
= 𝑆𝑛−1 + 𝑋𝑛 

𝑆0: Initial state or origin of the random walk 

𝐸(𝑋𝑖) = 𝑝 − 𝑞,  𝐸(𝑋𝑖
2) = 𝑝 + 𝑞 = 1 

𝑉(𝑋𝑖) = 1 − (𝑝 − 𝑞)2 = (1 − 𝑝 + 𝑞)(1 + 𝑝 − 𝑞) = 4𝑝𝑞 

Consider random walks without barriers or unrestricted random walks 

State 𝑆 can take any of the values {… ,−2,−1,0,1,2,… } 

We are interested in (i) the position of the walk after 𝑎 number of steps, (ii) probability of 

a return to the origin. 

Position of the walk at step 𝑛 simply depends on the position at the (𝑛 − 1)𝑡ℎ step and has 

Markov property.  

One-step Transition Probabilities: 

𝑃(𝑆𝑛 = 𝑗|𝑆𝑛−1 = 𝑗 − 1) = 𝑝 

𝑃(𝑆𝑛 = 𝑗|𝑆𝑛−1 = 𝑗 + 1) = 𝑞 = 1 − 𝑝 

If 𝑆0 = 0,  

𝐸(𝑆𝑛) =∑ 𝐸(𝑋𝑖)
𝑛

𝑖=1
= 𝑛(𝑝 − 𝑞) 

𝑉(𝑆𝑛) = 4𝑛𝑝𝑞 

𝑉(𝑆𝑛) grows with increasing 𝑛. 

max
𝑝
𝑉(𝑆𝑛) = 𝑛 (for 𝑝 = 1 2⁄ )  



 
 

If 𝑝 > 1 2⁄ , expect a drift in the positive direction,  

If 𝑝 < 1 2⁄ , expect a drift in the negative direction. 

For symmetric random walk, 𝑝 = 𝑞 = 1 2⁄ ,  

𝐸(𝑆𝑛) = 0 

𝑉(𝑆𝑛) = 𝑛 

Since 𝐸(𝑆𝑛) = 𝑛(𝑝 − 𝑞),  𝑉(𝑋𝑛) = 4𝑛𝑝𝑞, using the central limit theorem, as 𝑛 → ∞,  the 

asymptotic distribution of  

𝑍𝑛 =
𝑆𝑛 − 𝑛(𝑝 − 𝑞)

4𝑛𝑝𝑞
≈ 𝑁(0,1) 

or 𝑆𝑛 ≈ 𝑁(𝑛(𝑝 − 𝑞), 4𝑛𝑝𝑞) 

Exact Probability Distribution 

We assume that 𝑋0 = 0 and 𝑋𝑛 is position at the 𝑛𝑡ℎ step. 

𝑅𝑛 is the number of right steps (+1), 

 𝐿𝑛:  Number of left steps (-1) 

𝑁: Number of steps 

Then  

𝑆𝑛 = 𝑅𝑛 − 𝐿𝑛 

𝑁 = 𝑅𝑛 + 𝐿𝑛 

⇒ 𝑅𝑛 =
1

2
(𝑁 + 𝑆𝑛),  𝐿𝑛 =

1

2
(𝑁 − 𝑆𝑛) 

𝑣𝑛 = 𝑃(𝑆𝑛 = 𝑥) =  𝑃(Walk is at position 𝑥 after 𝑛 steps) 



 
 

For reaching 𝑆𝑛 = 𝑥 after 𝑛 > |𝑥| steps require 𝑟 =
1

2
(𝑛 + 𝑥)  (+1) steps and 𝑙 =

1

2
(𝑛 −

𝑥) (-1) steps. If 𝑥 is an odd (even) integer then 𝑛 is also odd (even).  

Number of ways can 𝑟 =
1

2
(𝑛 + 𝑥) steps be chosen from 𝑛 is 

ℎ𝑛,𝑥 =
𝑛!

𝑟! (𝑛 − 𝑟)!
= (

𝑛
𝑟
) 

Then 

𝑣𝑛,𝑥 = (
𝑛
𝑟
)𝑝

1
2
(𝑛+𝑥)𝑞

1
2
(𝑛−𝑥)

 

Remark: A one-dimensional random walk is recurrent, meaning it will return to the origin 

infinitely often with probability 1. In two dimensions, the random walk is also recurrent. In three 

dimensions and higher, the random walk is transient, meaning there is a non-zero probability that 

the particle will never return to the origin. 

Examples and Applications 

Brownian Motion:   Brownian motion is a continuous-time random walk. It describes the random 

movement of particles suspended in a fluid and can be modeled as the limit of a discrete random 

walk where the step size and time interval tend to zero. 

Stock Prices:   In finance, the random walk hypothesis suggests that stock prices follow a random 

walk. This implies that price changes are independent of each other and have the same probability 

distribution, making it difficult to predict future prices based on past trends. 

Biological Processes:   Random walks model various biological processes, such as the movement 

of animals searching for food, the spread of diseases, and the diffusion of molecules within cells. 

Search Algorithms:   Random walks are used in search algorithms and optimization techniques. 

For example, the PageRank algorithm used by Google to rank web pages is based on a random 

walk through the web graph. 



 
 

One-Dimensional Random Walk:   Imagine a person standing at the center of a straight path. At 

each time step, they flip a coin. If it lands heads, they take a step forward; if it lands tails, they take 

a step backward. Over time, their position forms a zigzag pattern on the path. 

Two-Dimensional Random Walk:  Picture a drunkard walking in a park. At each step, they choose 

a random direction and move a fixed distance in that direction. Their path forms a series of random 

turns and steps, creating a scattered trail over the park. 

To better understand random walks, one can simulate them using computational tools. A 

simple simulation involves generating a sequence of random steps and plotting the resulting path. 

This can help visualize the behavior and properties of random walks in different dimensions. 

By studying random walks, we gain insights into various stochastic processes and their 

applications across different fields. The concepts and properties of random walks provide a 

foundational understanding for more complex models and theories in probability and statistics. 

9.4 Brownian Motion as a Random Walk 

Brownian motion is a continuous-time stochastic process that serves as a mathematical 

model for the random motion observed in particles suspended in a fluid. This concept can be seen 

as a natural extension of the discrete random walk to continuous time and space. Brownian motion, 

also known as a Wiener process, has profound applications in various fields such as physics, 

finance, and biology. 

The phenomenon of Brownian motion was first observed by the botanist Robert Brown in 

1827, who noticed the erratic movement of pollen grains in water. It was not until 1905 that Albert 

Einstein provided a theoretical explanation for this motion, linking it to the random collisions of 

the pollen particles with molecules in the fluid. This work was pivotal in validating the atomic 

theory of matter. 

Mathematical Definition 

Brownian motion can be defined as a limit of discrete random walks, with the step size and 

time interval tending to zero. Formally, a Brownian motion B(t) is a continuous-time stochastic 

process that satisfies the following properties: 

• 𝐵(0) = 0. 𝐵(𝑡) has independent increments. 



 
 

• The increments 𝐵(𝑡) − 𝐵(𝑠) are normally distributed with mean zero and variance 𝑡 − 𝑠 

for 0 ≤ 𝑠 < 𝑡.  

• 𝐵(𝑡) has continuous paths. 

One-Dimensional Brownian Motion 

In one-dimensional Brownian motion, a particle moves along a line where its position at 

time 𝑡, denoted by 𝐵(𝑡), evolves as a continuous limit of a discrete random walk. The particle’s 

movement can be described by the following stochastic differential equation: 

𝑑𝐵(𝑡) = 𝜎𝑑𝑊(𝑡) 

where 𝑊(𝑡) is a standard Wiener process and 𝜎 is the volatility parameter. 

Key Properties include: 

Mean and Variance: The expected value 𝐸[𝐵(𝑡)] = 0, and the variance 𝑉𝑎𝑟(𝐵(𝑡)) = 𝑡. 

Path Continuity: The paths of 𝐵(𝑡) are continuous but nowhere differentiable. 

Two-Dimensional Brownian Motion 

In two dimensions, Brownian motion can be represented as a vector  

𝐵(𝑡) = (𝐵𝑥(𝑡), 𝐵𝑦(𝑡)), 

 where 𝐵𝑥(𝑡) and 𝐵𝑦(𝑡) are independent one-dimensional Brownian motions. The movement of a 

particle in the plane can be visualized as a random walk with infinitesimally small steps in random 

directions. 

Properties Include: 

Isotropy: The motion is isotropic, meaning it has no preferred direction, and the distribution of 

particle positions is radially symmetric. 

Distribution: After time 𝑡, the particle’s position is normally distributed with mean (0,0) and 

covariance matrix 𝑡𝐼, where 𝐼 is the identity matrix. 



 
 

Three-Dimensional Brownian Motion 

In three dimensions, Brownian motion extends to a vector  

𝐵(𝑡) = (𝐵𝑥(𝑡), 𝐵𝑦(𝑡), 𝐵𝑧(𝑡)), 

with 𝐵𝑥(𝑡), 𝐵𝑦(𝑡), and 𝐵𝑧(𝑡) being independent one-dimensional Brownian motions. This models 

the random movement of a particle in space. 

Properties include: 

Radial Symmetry: The particle's motion is radially symmetric around the origin. 

Distribution: The particle’s position after time 𝑡 is normally distributed with mean vector (0,0,0) 

and covariance matrix 𝑡𝐼. 

Applications and Examples 

Physics: Brownian motion models the random movement of particles in fluids. It is used to 

describe diffusion processes and to study molecular dynamics. 

Finance: The Geometric Brownian Motion model is used to describe the evolution of stock prices. 

The Black-Scholes option pricing model relies on this concept. 

Biology: Brownian motion models the movement of microorganisms and the diffusion of 

molecules within cells. 

Visualization 

One-Dimensional: Imagine a particle moving along a straight line, where its position changes 

continuously but unpredictably over time. This results in a jagged, non-smooth path. 

Two-Dimensional: Picture a particle drifting randomly on a flat surface, changing direction at 

every instant. The path forms a complex, erratic pattern. 

Three-Dimensional: Envision a particle moving randomly in all directions in space, creating a 

tangled, chaotic trajectory. 



 
 

Simulation 

To simulate Brownian motion, one can generate a series of random steps in continuous 

time. For a one-dimensional Brownian motion, the position B(t) at time 𝑡 can be approximated by 

summing small, normally distributed increments over small time intervals. This method can be 

extended to higher dimensions by generating independent random steps for each coordinate. 

Brownian motion extends the concept of a random walk to continuous time and space, 

providing a powerful tool for modeling random processes. Understanding its properties in one, 

two, and three dimensions allows us to apply this model to a wide range of phenomena in science 

and engineering. Through mathematical rigor and simulation, Brownian motion helps us gain 

insights into the inherent randomness of various systems. 

Theorems on Brownian Motion 

1. Mean and Variance of Brownian Motion 

Theorem: For a one-dimensional Brownian motion B(t): 

𝐸[𝐵(𝑡)] = 0 

𝑉𝑎𝑟(𝐵(𝑡)) = 𝑡 

Proof: Mean: By definition, 𝐵(𝑡) has independent increments, and  

𝐵(𝑡) − 𝐵(𝑠) ∼ 𝑁(0, 𝑡 − 𝑠) for 0 ≤ 𝑠 < 𝑡. 

Since 𝐵(𝑡) − 𝐵(𝑠) is normally distributed with mean 0, we have  

𝐸[𝐵(𝑡) − 𝐵(𝑠)] = 0. 

Setting 𝑠 = 0, gives 𝐸[𝐵(𝑡) − 𝐵(0)] = 𝐸[𝐵(𝑡)] = 0, as 𝐵(0) = 0. This gives, 𝐸[𝐵(𝑡)] = 0. 

Variance: Since 𝐵(𝑡) − 𝐵(𝑠) ∼ 𝑁(0, 𝑡 − 𝑠), the variance of 𝐵(𝑡) − 𝐵(𝑠) is t−s. 

Setting 𝑠 = 0, we get 𝑉𝑎𝑟(𝐵(𝑡)) = 𝑡 − 0 = 𝑡. 

2. Brownian Motion Has Continuous Paths 



 
 

Theorem: Brownian motion 𝐵(𝑡) almost surely has continuous paths. 

Proof: By definition, a Brownian motion 𝐵(𝑡) is a continuous-time stochastic process. 

The Wiener process, which defines Brownian motion, has the property that for any 

sequence of times 𝑡1, 𝑡2, …, the paths 𝐵(𝑡) are continuous with probability 1.This property follows 

from the fact that 𝐵(𝑡) is a limit of sums of independent, normally distributed random variables 

with smaller and smaller time steps, leading to continuous paths in the limit. 

3. Self-Similarity of Brownian Motion 

Theorem: Brownian motion 𝐵(𝑡) is self-similar. For any 𝑐 > 0, the process {𝐵(𝑐𝑡)}𝑡≥0 has the 

same distribution as {√𝑐𝐵(𝑡)}
𝑡≥0

. 

Proof: Consider {𝐵(𝑐𝑡)}𝑡≥0. By definition, 𝐵(𝑐𝑡)~𝑁(0, 𝑐𝑡). The scaled process {√𝑐𝐵(𝑡)}
𝑡≥0

 has 

√𝑐𝐵(𝑡)~𝑁(0, 𝑐𝑡). Both the processes have the same distribution since their increments are 

normally distributed with mean 0 and variance 𝑐𝑡. Therefore {𝐵(𝑐𝑡)}𝑡≥0 and {√𝑐𝐵(𝑡)}
𝑡≥0

 are 

identically distributed, proving the self-similarity. 

4. Markov Property of Brownian Motion 

Theorem: Brownian motion 𝐵(𝑡) has the Markov property. Thus, the future evolution of the 

process depends only on the current state, not on the past history. 

Proof: By definition, Brownian motion has independent increments. 

Given the current state 𝐵(𝑡) = 𝑥, the future increment 𝐵(𝑡 + 𝑠) − 𝐵(𝑡) ∼ 𝑁(0, 𝑠) is 

independent of the past values 𝐵(𝑢) for 𝑢 ≤ 𝑡. Therefore, the distribution of 𝐵(𝑡 + 𝑠), given 

𝐵(𝑡) = 𝑥, is the same as the distribution of 𝐵(𝑠) + 𝑥. This independence and distribution imply 

the Markov property. 

1. Scaling property of Brownian Motion 

Theorem: Brownian motion 𝐵(𝑡) satisfies the scaling property, i.e., for any 𝑎>0, the 

process{𝑎𝐵 (𝑡
𝑎2⁄ )}

𝑡≥0
is also a Brownian motion. 



 
 

Proof: Let 𝑌(𝑡) = 𝑎𝐵 (𝑡 𝑎2⁄ ). The process 𝑌(𝑡) has increments 𝑌(𝑡 + 𝑠) − 𝑌(𝑡) =

𝑎𝐵 (
(𝑡 + 𝑠)

𝑎2
⁄ ) − 𝑎𝐵 (𝑡 𝑎2⁄ ). 

The increment 𝐵 (
(𝑡 + 𝑠)

𝑎2
⁄ ) − 𝐵 (𝑡 𝑎2⁄ )~𝑁(0, 𝑠/𝑎2). Scaled by 𝑎, gives 𝑎𝑁 (0,

𝑠

𝑎2
) =

𝑁(0, 𝑠). Thus, 𝑌(𝑡 + 𝑠) − 𝑌(𝑡)~𝑁(0, 𝑠) implying that 𝑌(𝑡) has the same distribution as 𝐵(𝑡). 

Therefore, the process{𝑎𝐵 (𝑡
𝑎2⁄ )}

𝑡≥0
is a Brownian motion. 

2. Distribution of Maximum of Brownian Motion 

Theorem: For a Brownian motion 𝐵(𝑡), the maximum value up to t is distributed as follows: 

𝑃(𝑚𝑎𝑥0≤𝑠≤𝑡𝐵(𝑠) ≥ 𝑎) = 2 𝑃 (𝐵(𝑡) ≥ 𝑎); 𝑓𝑜𝑟 𝑎 > 0 

Proof: Consider 𝑀(𝑡) = 𝑚𝑎𝑥0≤𝑠≤𝑡𝐵(𝑠). By the reflection principle, if 𝐵(𝑡) hits 𝑎 at some point 

and ends below 𝑎 are equal. Therefore, 𝑃(𝑀(𝑡) ≥ 𝑎) = 2𝑃(𝐵(𝑡) ≥ 𝑎). 

Simulating Brownian motion involves generating a sequence of random steps. For a one-

dimensional Brownian motion, we approximate B(t) by summing small, normally distributed 

increments over small time intervals. This method can be extended to higher dimensions by 

generating independent random steps for each coordinate. 

Brownian motion provides a robust framework for modeling random phenomena in 

continuous time and space. Understanding its properties and proofs allow for a deeper grasp of its 

applications in various scientific and engineering fields. 

Examples of Brownian Motion as a Random Walk 

1. Brownian Motion in Physics: Particle Suspended in a Fluid 

Example: Consider a pollen particle suspended in water. The particle undergoes Brownian motion 

due to collisions with water molecules. This random movement can be modeled as a random walk 

in continuous time. 



 
 

Model: Suppose the particle starts at the origin. 

Each collision with a water molecule causes the particle to take a small random step in a 

random direction. Over time, these small steps accumulate to form a continuous path. 

Simulation: To simulate this, one can generate a sequence of small, normally distributed random 

steps. For simplicity, assume steps are taken every small-time interval Δ𝑡. Let 𝑋𝑖~𝑁(0, 𝜎
2∆𝑡) be 

the step in the 𝑥-direction and 𝑌𝑖~𝑁(0, 𝜎
2∆𝑡) be the step in the 𝑦-direction. 

The position of the particle after 𝑛 step is:  

𝑋𝑛 = ∑ 𝑋𝑖
𝑛
𝑖=1 ,  

𝑌𝑛 = ∑ 𝑌𝑖
𝑛
𝑖=1 . 

2. Brownian Motion in Finance: Stock Prices 

Example: The price of a stock is often modeled using a geometric Brownian motion, which 

incorporates the concept of random walk. 

Model: Let 𝑆(𝑡) be the price of the stock at time 𝑡. The stock price follows the stochastic 

differential equation: 

𝑑𝑆(𝑡) =  𝜇𝑆(𝑡) +  𝜎𝑆(𝑡)𝑑𝐵(𝑡) 

Here 𝜇 is the drift term, 𝜎 is the volatility and 𝐵(𝑡) is a standard Brownian motion. 

To simulate this, discretize time into small intervals ∆𝑡. The price change over each interval 

can be approximated as: 

∆𝑆 = 𝜇𝑆∆𝑡 + 𝜎𝑆∆𝐵 

where ∆𝐵 ~𝑁(0, ∆𝑡). 

3. Brownian Motion in Biology: Movement of Microorganisms 



 
 

Example: The movement of microorganisms, such as bacteria, in a fluid can be modeled as a 

random walk. 

Model: Assume a microorganism moves in small random steps due to interactions with the fluid. 

Each step is influenced by random collisions with molecules in the fluid. 

Simulation: The position of the microorganism at time 𝑡 is modeled as: 

𝑋(𝑡) = 𝑋(0) + ∑ 𝑋𝑖
𝑛
𝑖=1 ,  

𝑌(𝑡) = 𝑌(0) + ∑ 𝑌𝑖
𝑛
𝑖=1 . 

Where 𝑋𝑖 𝑎𝑛𝑑 𝑌𝑖 are small, normally distributed steps. 

4. Brownian Motion in Chemistry: Diffusion of Molecules 

Example: The diffusion of molecules in a liquid or gas can be modeled using Brownian motion. 

Model: Consider a molecule diffusing through a liquid. 

The molecule undergoes random collisions with other molecules, causing it to move in a 

random walk pattern. 

Simulation: The position of the molecule after 𝑛 steps is given by: 

𝑋𝑛 = ∑ 𝑋𝑖
𝑛
𝑖=1 , 𝑌𝑛 = ∑ 𝑌𝑖

𝑛
𝑖=1  and 𝑍𝑛 = ∑ 𝑍𝑖

𝑛
𝑖=1  

Where 𝑋𝑖, 𝑌𝑖 and 𝑍𝑖 are normally distributed random variables representing the steps in the 

𝑥, 𝑦 and 𝑧 directions.  

9.5 Duality in Random Walk 

Duality in the context of random walks is a powerful concept that allows us to relate one 

stochastic process to another, often simplifying the analysis and understanding of complex 

systems. The dual process can provide insights into the behavior of the original process, especially 

when the dual process is easier to analyze or has well-known properties. 



 
 

Key Concepts and Definitions 

Dual Process: A dual process of a random walk is another process that can be used to describe the 

same system from a different perspective. The relationship between the original process and its 

dual is characterized by certain symmetries or transformations. 

Duality Function: A function 𝐷(𝑥, 𝑦) that establishes a connection between the states of the 

original process and the dual process. Typically, if 𝑋(𝑡) is the original process and 𝑌(𝑡) is the dual 

process, the duality function 𝐷 satisfies 𝐸[𝐷(𝑋(𝑡), 𝑦)] = 𝐸[𝐷(𝑥, 𝑌(𝑡))]. 

Important Results  

1. Duality in Symmetric Random Walks 

For a symmetric random walk on the integer lattice 𝑍, the dual process is also a symmetric 

random walk. 

Proof: Let 𝑋(𝑡) be a symmetric random walk on 𝑍 with transition probabilities 

𝑃(𝑋(𝑡 + 1) = 𝑥 + 1| 𝑋(𝑡) = 𝑥) = 𝑃(𝑋(𝑡 + 1) = 𝑥 − 1|𝑋(𝑡) = 𝑥) = 1/2 

Define the dual process 𝑌(𝑡), as a symmetric random walk on 𝑍 with the same transition 

probabilities. 

Duality Function: Consider the duality function 𝐷(𝑥, 𝑦) = 𝛿𝑥,𝑦 is Kronecker delta function. We 

need to show 𝐸[𝛿𝑋(𝑡),𝑦] = 𝐸[𝛿𝑥,𝑌(𝑡)]. 

For 𝑋(𝑡) starting at 𝑥 and 𝑌(𝑡) starting at 𝑦, the probability that 𝑋(𝑡) = 𝑦 and 𝑌(𝑡) = 𝑥 

are the same due to the symmetry of the transition probabilities. 

Therefore, 𝐸[𝛿𝑋(𝑡),𝑦] = 𝑃(𝑋(𝑡) = 𝑦) and 𝐸[𝛿𝑥,𝑌(𝑡)] = 𝑃(𝑌(𝑡) = 𝑥).  

Since both the probabilities are equal for all 𝑥 and 𝑦, the symmetric random walk is self-dual. 

2. Duality in Birth-Death Processes 



 
 

Consider a birth-death process with birth rate 𝜆 and death rate 𝜇. The dual process is another birth-

death process with swapped rates. 

Proof: Original Process: Let X(t) be a birth-death process with birth rate 𝜆 and death rate 𝜇. 

Dual Process: Define the dual process 𝑌(𝑡) with birth rate 𝜇 and death rate 𝜆. 

Duality Function: Consider the duality function 𝐷(𝑥, 𝑦) = 𝑥𝑦 

For the original process 𝑋(𝑡):  

𝐸[𝐷(𝑋(𝑡 + 𝑑𝑡), 𝑦)|𝑋(𝑡) = 𝑥] 

= 𝐸[(𝑥 + 1)𝑦]. 𝜆𝑑𝑡 + 𝐸[(𝑥 − 1)𝑦]. 𝜇𝑑𝑡 + 𝐸[𝑥𝑦]. (1 − (𝜆 + 𝜇)𝑑𝑡) 

For the dual process 𝑌(𝑡):  

𝐸[𝐷(𝑥, 𝑌(𝑡 + 𝑑𝑡))|𝑌(𝑡) = 𝑦] 

= 𝐸[𝑥𝑦+1]. 𝜇𝑑𝑡 + 𝐸[𝑥𝑦−1]. 𝜆𝑑𝑡 + 𝐸[𝑥𝑦]. (1 − (𝜆 + 𝜇)𝑑𝑡) 

Using the binomial theorem and the linearity of expectation, we can show that both 

expectations are equal, confirming the duality. 

Duality in random walks provide a valuable tool for analyzing complex stochastic 

processes by relating them to simpler or better-understood processes.  

Important results, such as the self-duality of symmetric random walks, the duality in birth-

death processes, and the duality in the voter model, demonstrate the utility of this concept. 

Understanding and proving these dualities allows for deeper insights into the behavior and 

properties of random walks and related stochastic processes. 

9.6  Gambler’s Ruin Problem 

The gambler's ruin problem is a classic problem in probability theory that illustrates the 

potential outcomes of a gambler who bets repeatedly in a fair game. It examines the likelihood that 

a gambler, starting with a finite amount of money, will either go broke or reach a target amount. 

This problem is fundamental in the study of stochastic processes and has applications in finance, 

economics, and risk management. 



 
 

The gambler's ruin problem dates back to the 17th century and is often attributed to Blaise 

Pascal and Pierre de Fermat, who corresponded about probability problems related to gambling. 

Their work laid the groundwork for modern probability theory. Later, in the 18th century, the 

problem was further developed by mathematicians such as Abraham de Moivre and Christiaan 

Huygens, who provided more formal analyses and solutions. The term "gambler's ruin" itself was 

popularized in the 19th century and has since been a staple example in probability textbooks. The 

problem is closely related to the concept of random walks, as it can be modeled as a one-

dimensional random walk with absorbing barriers. 

Consider a gambler I who has an initial capital of 𝑘 rupees and plays against an opponent, 

gambler II, whose initial capital is Rs 𝑎 − 𝑘. They are playing a game which proceeds by stages. 

At each step the probability that gambler I wins Re 1 from his opponent is 𝑝 and the probability 

that he losses Re 1 to his opponent is 𝑞 (= 1 − 𝑝). The game continuous until the capital of one 

of the players reduced to zero (i.e., the capital of player I either reduced to zero or increased to 

“𝑎”). The capital possessed by, say, the player I, performs a random walk on non-negative integers 

{0,1,2, … , 𝑎} with absorbing barriers at 0 and 𝑎. The absorptions being interpreted as the ruin of 

the one, or the other player. Given the initial capital 𝑘, it is of player I, it is either 𝑘 − 1 or 𝑘 + 1 

according as whether player I losses or wins the first game. Let 𝜇𝑘 be the probability that the 

gambler I, starting with the initial capital 𝑘 ultimately ruins. Then  

𝜇𝑘 = 𝑝 𝜇𝑘+1 + 𝑞𝜇𝑘−1;   𝑘 = 2,3, … , 𝑎 − 2           (1) 

𝜇1 = 𝑞 + 𝑝 𝜇2                                                              (2) 

𝜇𝑎−1 = 𝑞 𝜇𝑎−2   (𝜇𝑎 = 0)                                         (3) 

We can write equations (1), (2) and (3) jointly as  

𝜇0 = 1, 𝜇𝑎 = 0 (boundary conditions) 

𝜇𝑘 = 𝑝 𝜇𝑘+1 + 𝑞 𝜇𝑘−1; 1 ≤ 𝑘 ≤ 𝑎 − 1                        (4) 

Now we solve (4) under the boundary conditions. 

Case I: Let 𝑝 ≠  𝑞 (random walk is asymmetric) 



 
 

Let 𝜇𝑘 = 𝜆
𝑘   be a particular solution of (4). Then auxiliary equations are 

𝑝 𝜆2 − 𝜆 + 𝑞 = 0                                                                      (5) 

or 

(𝜆 − 1)(𝑝 𝜆 − 𝑞) = 0                                                          (6) 

Equation (6) leads to the roots 𝜆 = 1, 𝜆 =
𝑞

𝑝
. Hence, two particular-solutions for 𝜇𝑘 are 

𝜇𝑘 = 1
𝑘 = 1, 𝜇𝑘 = (

𝑞

𝑝
)
𝑘

. 

Then a general solution is 

𝜇𝑘 = 𝐴 + 𝐵 (
𝑞

𝑝
)
𝑘

                                                 (7) 

Utilizing the boundary conditions 𝜇0 = 1, 𝜇𝑎 = 0 in (7), we have 

1 = 𝐴 + 𝐵

0 = 𝐴 + 𝐵 (
𝑞

𝑝
)
𝑎
} 

⟹ 𝐵 = −
1

(
𝑞
𝑝)

𝑎

− 1
 

𝐴 =
(
𝑞
𝑝)

𝑎

(
𝑞
𝑝)

𝑎

− 1
 . 

Substituting the values of 𝐴 and 𝐵 in (7) leads to 

𝜇𝑘 =
(
𝑞
𝑝)

𝑎

− (
𝑞
𝑝)

𝑘

(
𝑞
𝑝)

𝑎

− 1
.                                (8) 

Similarly, we can obtain the following expression for the probability of ruin of player II: 



 
 

𝜈𝑘 = 
(
𝑞
𝑝)

𝑘

− 1

(
𝑞
𝑝)

𝑎

− 1
      (9) 

We can easily obtain 𝜈𝑘 by replacing 𝑞 by 𝑝, 𝑝 by 𝑞 and 𝑘 by 𝑎 − 𝑘 in (8). 

Since 𝜇𝑘 + 𝜈𝑘 = 1, the probability of an unending game is 0, i.e.,  

𝑃(𝑢𝑛𝑒𝑛𝑑𝑖𝑛𝑔 𝑔𝑎𝑚𝑒) = 0 

Case II: Let 𝑝 = 𝑞 =
1

2
, then (5) reduces to 

𝜆2 − 2𝜆 + 1 = 0,                  (10) 

which has two equal roots 𝜆 = 1. Further when 𝑝 = 𝑞 = 1/2, if we substitute 𝜇𝑘 = 𝑘 in (4), we 

obtain 

𝑘 =
1

2
(𝑘 + 1) +

1

2
(𝑘 − 1) 

Hence 𝜇𝑘 = 𝑘 is a second solution of (4). Hence a general solution is 

𝜇𝑘 = 𝐶 + 𝐷𝑘. 

Using boundary conditions, we have 

𝐹𝑜𝑟 𝑘 = 0, 𝜇0 = 1 = 𝐶
𝐹𝑜𝑟 𝑘 = 𝑎, 𝜇𝑎 = 0 = 𝐶 + 𝐷𝑎

}  

Hence 

𝐶 = 1,𝐷 = −
1

𝑎
 

This leads to 

𝜇𝑘 = 1 −
𝑘

𝑎
  

Similarly, we obtain 



 
 

𝜈𝑘 =
𝑘

𝑎
 

Again P (unending game) = 0.  

Suppose player II has infinite capital, i.e., 𝑎 → ∞. An example of player II with infinite 

capital is Casino. Then, for 𝑝 > 𝑞, lim
𝑎→∞

(
𝑞

𝑝
)
𝑎

= 0 and the probability that player I with initial 

capital 𝜇𝑘 ultimately ruins, is 

𝜇𝑘 = (
𝑞

𝑝
)
𝑘

 

The probability of an unending game is 

1 − (
𝑞

𝑝
)
𝑘

. 

If 𝑝 < 𝑞, lim
𝑎→∞

(
𝑝

𝑞
)
𝑎

= 0 and 𝜇𝑘 = 1. 

Further for 𝑝 = 𝑞, as 𝑎 → ∞. 𝜇𝑘 → 1. 

Hence for 𝑝 ≤ 𝑞, the probability of an unending game is 0 and the probability of ultimate ruin of 

player I is 1. 

Examples and Applications of the Gambler's Ruin Problem 

Example 1: Simple Betting Game 

A gambler starts with 10 units of currency and bets 1 unit on a fair game (50% chance of 

winning, 50% chance of losing) until either going broke or reaching 20 units. Determine the 

probability of the gambler going broke. 

Solution: For a fair game, the probability of ruin 𝑃𝑖 when starting with 𝑖 units and aiming to reach 

𝑁 units is given by: 

𝑃𝑖 = 1 −
𝑖

𝑁
 



 
 

Here 𝑖 = 10 and 𝑁 = 20 

𝑃10 = 1 − (
10

20
) = 0.5 

So, the probability of the gambler going broke is 0.5 or 50%. 

Example 2: Biased Betting Game 

A gambler starts with 5 units and bets 1 unit on a game where they have a 40% chance of 

winning and a 60% chance of losing, until they either go broke or reach 10 units. Determine the 

probability of the gambler going broke. 

Solution: For an unfair game, the probability of ruin 𝑃𝑖 is given by 

𝑃𝑖 =
1 − (

𝑞
𝑝)

𝑖

1 − (
𝑞
𝑝)

𝑁 

Here 𝑝 = 0.4, 𝑞 = 0.6, 𝑖 = 5 𝑎𝑛𝑑 𝑁 = 10. Substituting all the values and on simplification we get, 

𝑃5 ≈ 0.116 

So, the probability of the gambler going broke is approximately 11.6%. 

Applications 

1. Finance and Investment:   In the stock market, investors often face the risk of losing their initial 

investment. The gambler's ruin problem helps in understanding the likelihood of an investor losing 

all their capital versus reaching a certain profit target. 

An investor starts with $10,000 and aims to either double their investment or lose it all, 

making investments that either increase or decrease their capital by $1,000 with equal probability. 

The gambler's ruin model can predict the chances of going bankrupt or doubling the investment. 

2. Insurance:  Insurance companies must manage their reserves to avoid insolvency. The 

gambler's ruin problem can model the risk of an insurance company depleting its reserves due to 

excessive claims. 



 
 

An insurance company starts with a reserve of $1,000,000 and receives claims of $10,000 

each. The probability of the company going bankrupt before replenishing its reserves can be 

calculated using the gambler's ruin framework. 

3. Genetics:  In population genetics, the frequency of alleles (gene variants) can change over 

generations due to random sampling. The gambler's ruin problem models the probability that an 

allele will become fixed (reach 100% frequency) or lost (reach 0% frequency) in a population. 

A rare allele starts with a frequency of 0.1 in a population of 100 individuals. The model 

can predict the probability of the allele becoming fixed or lost over time. 

4. Queueing Theory:  In queueing systems, such as customer service lines or network packets, the 

gambler's ruin problem can model the likelihood of a system becoming overwhelmed or 

stabilizing. 

A server processes requests with a probability of success or failure. The probability that 

the server queue will overflow (ruin) versus clearing all requests can be analyzed using the 

gambler's ruin model. 

5. Gambling and Games of Chance:  The original application of the gambler's ruin problem was 

in gambling, where it models the likelihood of a gambler going broke versus reaching a target 

profit. 

A gambler with $50 bets $5 per game on a fair coin toss. The model can predict the 

probability of the gambler losing all their money before doubling it. 

The gambler's ruin problem is a versatile tool in probability theory, offering insights into 

the dynamics of stochastic processes where there is a risk of "ruin" or bankruptcy. Through various 

examples and applications in finance, insurance, genetics, queueing theory, and gambling, we see 

how this problem helps in understanding and managing risk in different domains. The 

mathematical formulations provide a structured approach to calculating the probabilities of 

different outcomes, making it a valuable model for analyzing scenarios involving repeated risks 

and rewards. 

9.7  Summary 



 
 

This unit provided a comprehensive exploration of random walks and their various 

applications. We began with an introduction to the concept of random walks, tracing its historical 

development from early studies by Karl Pearson, Albert Einstein, and Norbert Wiener. These 

foundational works laid the groundwork for understanding Brownian motion, which describes the 

random movement of particles suspended in a fluid. We then extended this concept to one-

dimensional, two-dimensional, and three-dimensional random walks, emphasizing the differences 

and applications of each. 

In addition to Brownian motion, we explored the notion of duality in random walks, which 

offers a powerful method for simplifying complex stochastic processes by relating them to more 

straightforward or better-understood processes. This section included important results such as the 

duality of symmetric random walks and birth-death processes, highlighting how duality functions 

can provide significant insights. 

The gambler's ruin problem was another key topic covered in this unit. We examined the 

problem's historical context, mathematical formulation, and solutions for both fair and unfair 

games. This problem illustrates the risk of a gambler going broke or reaching a target fortune and 

has important applications in finance, genetics, and risk management. 

Throughout the unit, we emphasized the relevance and utility of these concepts in various 

fields. Brownian motion, for instance, is crucial in physics for modelling diffusion processes, in 

finance for stock price modelling, and in biology for the movement of microorganisms. The 

gambler's ruin problem, with its insights into risk and probability, finds applications in financial 

modelling and genetic drift. 

By understanding these fundamental concepts and their applications, students gain 

valuable insights into stochastic processes and their implications in different scientific and 

practical domains. This knowledge equips them with the tools to analyse and model random 

phenomena, providing a solid foundation for further study and research in probability theory and 

related fields. 

9.8 Self-Assessment Questions 

1) Define a random walk and provide an example. 

2) Explain how Brownian motion can be modeled as a random walk. 



 
 

3) What are the key differences between one-dimensional, two-dimensional, and three-

dimensional random walks? 

4) Describe the concept of duality in random walks and provide an example. 

5) Solve the gambler’s ruin problem for a gambler starting with 5 units and aiming to reach 

10 units, with a win probability of 0.4 on each bet. 

6) What is the significance of the Markov property in Brownian motion? 

7) How does the self-similarity property of Brownian motion simplify its analysis? 

8) Describe the applications of the gambler’s ruin problem in finance and genetics. 
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10.1   Introduction 

Queuing theory, the mathematical study of waiting lines or queues, has its origins in the 

early 20th century. The foundations of this theory were laid by Danish mathematician Agner 

Krarup Erlang, who, while working for the Copenhagen Telephone Company, developed the first 

analytical models to describe telephone traffic. Erlang's work, beginning in 1909, focused on 

understanding the probability of call congestion and determining the number of telephone lines 

required to handle call volumes without excessive delays. His seminal papers, including "The 

Theory of Probabilities and Telephone Conversations" (1909) and "Solution of Some Problems in 

the Theory of Probabilities of Significance in Automatic Telephone Exchanges" (1917), are 

considered landmark contributions to queuing theory. 

The field expanded significantly during and after World War II, driven by the needs of 

military logistics and operations research. David George Kendall's work in the 1950s further 

advanced the theory by introducing Kendall's notation, which succinctly describes the 

characteristics of different queuing systems. This period also saw the development of key models 

such as the M/M/1 queue, which considers a single server with exponential inter-arrival and service 

times. 



 
 

In the 1960s, Leonard Kleinrock's work on the application of queuing theory to computer 

networks significantly impacted the field, particularly in the development of ARPANET, the 

precursor to the modern Internet. Kleinrock's contributions helped establishing queuing theory as 

a fundamental tool in the design and analysis of telecommunications and computer networks. 

In recent decades, the advancement of technology and the increasing complexity of systems 

have driven significant developments in queuing theory. Modern queuing theory incorporates 

more sophisticated and versatile models to address contemporary challenges in 

telecommunications, computing, and service systems. 

One major area of advancement is the application of queuing theory to network queues and 

Internet traffic. With the rise of the Internet, queuing theory has become crucial in managing data 

traffic, ensuring quality of service (QoS), and optimizing network performance. Researchers have 

developed models to understand and mitigate congestion in packet-switched networks, allowing 

for more efficient and reliable data transmission. 

Healthcare systems have also benefited from advancements in queuing theory. Queuing 

models are now extensively used to improve patient flow, reduce waiting times, and optimize 

resource allocation in hospitals and clinics. These models help healthcare providers manage patient 

admissions, scheduling, and treatment processes more effectively, leading to better patient 

outcomes and more efficient use of medical resources. 

In manufacturing and supply chain management, queuing theory helps design efficient 

production lines, reduce bottlenecks, and improve inventory management. Queuing models aid in 

optimizing logistics and distribution networks, ensuring that goods are produced and delivered in 

a timely and cost-effective manner. 

The proliferation of cloud computing services has led to the application of queuing models 

to manage virtualized resources, optimize load balancing, and ensure service level agreements 

(SLAs) are met. These models help cloud service providers allocate resources dynamically based 

on demand, ensuring that users receive consistent and reliable service. 

Recent advances in queuing theory also include the use of advanced mathematical and 

computational techniques such as stochastic processes, simulation, and machine learning. These 

techniques allow for more accurate and predictive queuing models capable of handling complex 

and dynamic systems. Methods like Markov chains, Monte Carlo simulations, and reinforcement 



 
 

learning are increasingly integrated into queuing theory, providing more sophisticated tools for 

analyzing and optimizing queuing systems. 

The advent of big data analytics has enabled the collection and analysis of vast amounts of 

data on queuing systems. This data-driven approach allows for more precise modelling, real-time 

monitoring, and adaptive management of queues. By leveraging big data, researchers and 

practitioners can develop more accurate forecasts and tailor queuing models to specific scenarios, 

improving system performance and customer satisfaction. 

New models that consider multiple servers and different classes of customers have been 

developed to better reflect real-world scenarios. These models, such as multi-server and multi-

class queues, help in understanding and optimizing systems with diverse service requirements and 

customer profiles. They provide insights into the behavior of queues under various conditions, 

allowing for more effective resource allocation and service management. 

Queuing theory's applications are vast and diverse, encompassing various industries and 

domains. In telecommunications, it helps to manage call centers, network traffic, and bandwidth 

allocation. In transportation, queuing models optimize traffic flow, public transport schedules, and 

airport operations. In retail, they improve checkout processes, customer service, and inventory 

management. In computing, queuing theory enhances the performance of computer systems, cloud 

services, and data centers. 

The future of queuing theory is promising, with ongoing research focusing on addressing 

the challenges posed by emerging technologies and complex systems. Potential directions include 

the integration of artificial intelligence (AI) and machine learning to develop intelligent queuing 

systems that can learn and adapt to changing conditions in real-time. Sustainable and green 

queuing models are being explored to consider energy efficiency and sustainability in system 

design and operation. Additionally, incorporating human factors and behavioral aspects into 

queuing models aims to better understand and improve user experiences. 

A queue is formed when units (or customers, clients) needing some kind of service arrive 

at a service channel (or counter) which provides such service. Each customer on arrival goes 

directly into service if the server is free and if not, joins the queue and leaves the system after being 

served. The basic features characterizing a system are: 

(i) The inputs,  

(ii) The service mechanism  



 
 

(iii) The queue discipline and 

(iv) The number of service channels. 

The input describes the manner in which customers arrive and join the system. The system 

may have either a limited or an unlimited capacity of holding units. The source from which the 

customer come may be finite or infinite. The customers may arrive either singly or in group. The 

interval between two consecutive arrivals is called the interarrival time. 

The service mechanism describes the way the customers are being served. The customers 

may be served either singly or in batches. The time required for serving a unit is called the service 

time. 

The queue discipline indicates the way customers form a queue and are served. If the 

customer at the counter leaves the counter after being served and the next customer at the head of 

the queue enters the service system, the discipline is called the “First come First Service” (FCFS) 

or “First in First out (FIFO) queue discipline. Some other rules may be adopted, such as last come 

first served or random ordering before service. 

The system may have one channel or 𝑠-parallel channels for service. The interarrival and 

service times may be deterministic or random. Usually, we are concerned with random interarrival 

and service time. 

The following random variables or families of random variables provide important measures 

of performance of stochastic queueing system: 

(i) The number of customers waiting in the queue including the one being served at time 

𝑡, say 𝑁(𝑡). 

(ii) The busy period which means the duration of the interval from the moment the service 

starts with arrival of a customer at any empty counter to the moment the server becomes 

free for the first time. 

(iii) The waiting time 𝑊𝑛 for the 𝑛𝑡ℎ arrival. 

(iv) The waiting time 𝑊(𝑡) of a customer in the queue which arrived at the instant t. 

{𝑁(𝑡); 𝑡 ≥ 0} and {𝑊(𝑡); 𝑡 ≥ 0} are stochastic processes with continuous time 



 
 

{𝑊𝑛 ; 𝑛 = 0,1,2, … } is a stochastic process with discrete time. 

Notation: A queueing system is denoted by a three-part description A/B/C, where the first two 

symbols denote the interarrival and service time distributions respectively, and the third symbol 

denotes the number of channels or servers. 

Queuing theory has evolved significantly since its inception, driven by the need to address 

increasingly complex and dynamic systems. Its applications continue to expand, offering valuable 

insights and solutions across various fields. As technology advances, queuing theory will remain 

a crucial tool in optimizing system performance and improving efficiency in both traditional and 

emerging domains. 

10.2   Objectives 

By the end of this unit, you should be able to: 

Understand Fundamental Concepts of Queuing Theory:  Grasp the basic principles and 

terminology of queuing theory, including arrival rates, service rates, and queue disciplines. 

Comprehend the significance of queuing theory in analyzing and optimizing systems where 

waiting lines are a critical component. 

Differentiate Between Various Types of Queuing Models:  Identify and distinguish between 

different types of queuing models such as M/M/1, M/M/k, M/G/1, Ek/M/1, and M/Ek/1. 

Understand the specific assumptions and characteristics of each model and how they apply to real-

world situations. 

Apply Birth and Death Processes in Queuing Theory:  Explain the birth and death processes and 

their relevance to queuing systems. Use birth and death processes to model the arrival and 

departure of customers in queuing systems, and calculate key performance measures. 

Analyze and Solve Problems Involving Renewal Processes:   Understand the concept of renewal 

processes and their application in queuing theory. Solve problems involving renewal intervals and 

renewal functions to determine system performance and reliability. 



 
 

Evaluate the Effectiveness of Various Queuing Models:   Assess the suitability and effectiveness 

of different queuing models for specific applications. Compare and contrast the performance of 

various queuing models under different conditions and constraints. 

Calculate Performance Measures for Different Queuing Systems: Determine key performance 

measures such as utilization (ρ), average number in the system (L), average time in the system 

(W), average number in the queue (𝐿𝑞), and average time in the queue (𝑊𝑞) for different queuing 

models. Apply these measures to analyse the efficiency and effectiveness of queuing systems and 

make informed decisions for improvement. 

Use Queuing Theory to Optimize System Performance:  Apply queuing theory principles to 

optimize the design and operation of systems involving waiting lines. Develop strategies to reduce 

wait times, improve service efficiency, and enhance overall system performance. 

Integrate Advanced Mathematical Techniques in Queuing Analysis: Utilize advanced 

mathematical techniques such as stochastic processes, Markov chains, and simulation to model 

and analyze complex queuing systems. Leverage these techniques to develop more accurate and 

predictive models for real-world applications. 

Incorporate Real-World Applications and Case Studies: Examine real-world applications of 

queuing theory in various fields such as telecommunications, healthcare, manufacturing, 

transportation, retail, and computing. Analyze case studies to understand how queuing theory has 

been applied to solve practical problems and improve system performance. 

Develop Critical Thinking and Problem-Solving Skills:  Enhance your ability to think critically 

and solve complex problems related to queuing systems. Apply theoretical knowledge to practical 

scenarios, making informed decisions based on analytical insights. 

Prepare for Advanced Study and Research in Queuing Theory:  Build a strong foundation for 

advanced study and research in queuing theory and related fields. Develop the skills and 

knowledge necessary to pursue further academic or professional opportunities in operations 

research, systems engineering, and applied mathematics. 

 



 
 

10.3   Birth and Death Processes 

The birth and death processes are fundamental concepts in queuing theory, representing a 

special type of Markov process where transitions can only occur between adjacent states. This 

model is widely used to describe systems where entities (customers, jobs, etc.) arrive, wait for 

service, receive service, and then depart. 

Definition:   The birth and death processes are type of Markov process where changes in state 

occur through "births" (arrivals) and "deaths" (departures). This process is characterized by its 

simplicity, where transitions can only occur between adjacent states, typically in the context of 

queuing systems. These models are fundamental in understanding and analyzing systems where 

entities arrive, wait for service, receive service, and then leave. 

Birth Rate (λ):   The birth rate, denoted by λ, is the rate at which new entities (e.g., customers) 

arrive at the system. It represents the frequency of arrivals per unit time. In a queuing system, the 

birth rate is crucial for determining how quickly the queue forms. 

Death Rate (μ):  The death rate, denoted by μ, is the rate at which entities are served and leave the 

system. It signifies the frequency of departures per unit time. The death rate depends on the service 

mechanism and the efficiency of the server. 

State Transitions:  In a birth and death process, the system transitions between states based on the 

arrival and departure of entities. The state of the system is usually represented by the number of 

entities in the system (𝑛). The transitions occur as follows: 

• Birth Transition (n to n+1): When a new entity arrives, the system moves from state n to 

state n+1, denoted by a rate 𝜆𝑛. 

• Death Transition (n to n-1): When an entity is served and leaves, the system moves from 

state n to state n-1, denoted by a rate 𝜇𝑛. 

Poisson Process: Birth and death processes often assume arrivals and services follow a Poisson 

process, meaning the inter-arrival and service times are exponentially distributed. This assumption 

simplifies the mathematical analysis and is a good approximation for many real-world systems. 



 
 

 

Mathematical Representation 

The birth and death process can be described using differential equations that model the 

probability of being in a particular state at a given time. Let 𝑃𝑛(𝑡) be the probability that the system 

is in state 𝑛 at time 𝑡. The change in 𝑃𝑛(𝑡) over a small-time interval 𝛥𝑡 can be expressed as: 

𝑃𝑛(𝑡 + ∆𝑡) − 𝑃𝑛(𝑡) = 𝜆𝑛−1𝑃𝑛−1(𝑡)∆𝑡 + 𝜇𝑛+1𝑃𝑛+1(𝑡)∆𝑡 − (𝜆𝑛 + 𝜇𝑛)𝑃𝑛(𝑡)Δ𝑡 

Dividing through by Δ𝑡 and taking the limit as Δ𝑡 approaches zero gives the differential equation: 

𝑑𝑃𝑛(𝑡)

𝑑𝑡
=  𝜆𝑛−1𝑃𝑛−1(𝑡) + 𝜇𝑛+1𝑃𝑛+1(𝑡) − (𝜆𝑛 + 𝜇𝑛)𝑃𝑛(𝑡) 

For steady state conditions (where the probabilities do not change over time), we put 
𝑑𝑃𝑛(𝑡)

𝑑𝑡
= 0, 

leading to: 

𝜆𝑛−1𝑃𝑛−1 + 𝜇𝑛+1𝑃𝑛+1 = (𝜆𝑛 + 𝜇𝑛)𝑃𝑛 

Stationary Distribution 

To find the stationary distribution, we need to solve the balance equations. These equations 

describe the flow of probability into and out of each state at equilibrium. For a simple M/M/1 

queue (where arrivals and departures follow exponential distributions), the stationary probabilities 

can be derived as follows: 

1. Balance Equations: 

𝜆𝑃0 = 𝜇𝑃1 

𝜆𝑃1 = 𝜇𝑃2 

𝜆𝑃2 = 𝜇𝑃3 

⋮ 

2. Recurrence Relation: 

Using the balance equations, we can express 𝑃𝑛 in terms of 𝑃0: 



 
 

𝑃𝑛 = (
𝜆

𝜇
)
𝑛

𝑃0 

3. Normalization Condition: The sum of all probabilities must equal 1. 

∑𝑃𝑛

∞

𝑛=0

= 1 

or 𝑃0∑(
𝜆

𝜇
)
𝑛

= 1

∞

𝑛=0

 

or 𝑃0.
1

1 −
𝜆
𝜇

= 1 

Thus 

𝑃0 = 1 −
𝜆

𝜇
 

4. Stationary Probabilities: 

The stationary probability distribution is:  

𝑃𝑛 = (1 −
𝜆

𝜇
) . (

𝜆

𝜇
)
𝑛

 

Performance Measures 

Average Number in the System (L): The average number of entities in the system can be found 

using Little’s Law, which states  

𝐿 = 𝜆𝑊,  

where 𝑊 is the average time, an entity spends in the system. 

For an M/M/1 queue: 



 
 

𝐿 = ∑𝑛𝑃𝑛 

∞

𝑛=0

= 
𝜌

1 − 𝜌
 

where 𝜌 = 𝜆/𝜇 is the utilization factor. 

Average Time in the system (W): 

The average time an entity spends in the system is: 

𝑊 =
1

𝜇 − 𝜆
 

Average Number in the Queue (𝑳𝒒): 

The average number of entities in the queue can be found as: 

𝑳𝒒 = 𝑳 − 𝝆 =
𝜌2

1 − 𝜌
 

Average Time in the Queue (𝑾𝒒): 

The average time an entity spends waiting in the queue is: 

𝑾𝒒 = 𝑾−
𝟏

𝝁
=

𝝀

𝝁(𝝁 − 𝝀)
 

Applications:   Birth and death processes have broad applications in various fields: 

Telecommunications: 

• Modelling call arrivals and departures in telephone networks. 

• Managing data packet flows in computer networks. 

Healthcare: 

• Analyzing patient arrival and service times in hospitals. 

• Optimizing staffing levels in emergency departments. 



 
 

Manufacturing: 

• Managing job arrivals and processing times on production lines. 

• Balancing workloads across multiple machines. 

Service Industries: 

• Reducing wait times in customer service centers. 

• Improving efficiency in retail checkout lines. 

Transportation: 

• Modelling vehicle arrivals and departures at toll booths. 

• Optimizing scheduling and dispatching of public transport. 

By understanding the fundamental principles and mathematical representations of birth and 

death process, we can derive key performance measures and apply these insights to optimize real-

world systems. 

10.4   Renewal Process 

The concept of renewal processes was developed to generalize the Poisson process, which 

was limited to modelling events occurring at constant rates (i.e., exponentially distributed inter-

arrival times). Early work in this area was driven by the need to model and analyse systems in 

which events occur at irregular intervals. 

In the 1940s and 1950s, mathematician William Feller made significant contributions to 

the theory of stochastic processes, including renewal theory. Feller's work helped establish the 

foundational principles of renewal processes, including the renewal equation and the renewal 

reward theorem. His contributions were crucial in providing a formal mathematical framework for 

understanding renewal processes. 

In the 1960s, statistician David Cox further advanced the field of renewal theory, 

particularly in the context of reliability engineering and life testing. Cox's book "Renewal Theory" 

(1962) is considered a seminal text in the field, offering a comprehensive treatment of the subject. 



 
 

His work extended the application of renewal theory to practical problems in various domains, 

making the theory more accessible and useful for practitioners. 

Definition: 

A renewal process is a type of stochastic process that generalizes the Poisson process by 

allowing the inter-arrival times between events to follow any probability distribution, not just the 

exponential distribution. This process models the times at which events, such as arrivals or 

services, occur. Each event "renews" the process, resetting the system's state. Renewal processes 

are particularly useful for modelling and analyzing systems where events happen at intervals that 

are not necessarily memoryless. 

In a renewal process, the time between successive events, known as inter-arrival times, are 

independent and identically distributed random variables. The renewal function, denoted as 𝑀(𝑡), 

represents the expected number of renewals (events) that occur by time 𝑡. Mathematically, this is 

expressed as  

𝑀(𝑡) = 𝐸[𝑁(𝑡)], 

where 𝑁(𝑡) is the number of renewals by time 𝑡. The renewal equation, which is integral to renewal 

theory, relates the renewal function to the distribution of inter-arrival times. For a renewal process 

with inter-arrival time distribution 𝐹, the renewal function 𝑀(𝑡) satisfies the integral equation: 

𝑀(𝑡) = 𝐹(𝑡) + ∫ 𝑀(𝑡 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑡

0

 

where 𝑓(𝑢) is the probability density function of the inter-arrival times. 

Applications of Renewal Processes: 

Renewal processes have broad applications across many fields. In reliability engineering, 

they are used to model the failure and repair of systems. For example, the times between failures 

of a machine and the subsequent repairs can be modelled using a renewal process. In queuing 

theory, renewal processes model arrival and service processes in queuing systems where inter-

arrival or service times are not exponentially distributed. This is useful for analyzing systems with 

more complex service requirements and arrival patterns. 



 
 

In inventory control, renewal processes are used to model the times between 

replenishments of stock and the demand for products. This helps in optimizing inventory levels 

and ensuring timely replenishments. In economics and finance, renewal processes model events 

such as market transactions, arrivals of orders, and occurrences of financial risks. This aids in 

understanding and managing economic activities and financial uncertainties. 

The renewal function 𝑀(𝑡) is central to the analysis of renewal processes. It can be 

computed for specific distributions of inter-arrival times. For example, if the inter-arrival times are 

exponentially distributed with rate 𝜆, the renewal function is 𝑀(𝑡) = 𝜆𝑡, consistent with the 

Poisson process. 

The renewal process is a versatile and powerful tool in the study of stochastic processes, 

extending the concepts of the Poisson process to more general inter-arrival time distributions. Its 

development was motivated by the need to model systems with irregular event timings, leading to 

broad applications across engineering, economics, and operational research. Key contributions 

from mathematicians like William Feller and David Cox have solidified its theoretical foundation, 

providing valuable insights and methods for analyzing and optimizing various real-world systems. 

The renewal process continues to be an essential component in the toolkit of applied probability 

and stochastic modelling. 

Key Theorems of Renewal Processes  

Theorem: Elementary Renewal Theorem 

Let {𝑋𝑖} be a sequence of independent identically distributed (i.i.d.) non negative random 

variables with a finite mean 𝐸[𝑋𝑖] = 𝜇 . let 𝑁(𝑡) denote the number of renewals (or events) that 

have occurred by time 𝑡. The Elementary Renewal Theorem states: 

lim
𝑡→∞

𝑁(𝑡)

𝑡
=
1

𝜇
, almost surely (a.s.) and in expectation. 

Proof: The theorem can be proved using the strong law of large numbers (SLLN). 

Let 𝑆𝑛 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛 denote the time of the 𝑛𝑡ℎ  renewal. We need to show that: 

lim
𝑡→∞

𝑁(𝑡)

𝑡
=
1

𝜇
 



 
 

Define 𝑁(𝑡) as the largest integer 𝑛 such that 𝑆𝑛 ≤ 𝑡. Mathematically  

𝑁(𝑡) = max{𝑛: 𝑆𝑛 ≤ 𝑡} 

According to the SLLN for i.i.d. random variables 𝑋𝑖 with finite mean 𝜇; 

𝑆𝑛
𝑛
→ 𝜇  a.s. as 𝑛 tends to infinity. 

This implies that  

lim
𝑛→∞

𝑆𝑛
𝑛
= 𝜇 (𝑎. 𝑠. ) 

Taking reciprocal, we get 

lim
𝑛→∞

𝑛

𝑆𝑛
=
1

𝜇
 (𝑎. 𝑠. ) 

Since, 𝑆𝑁(𝑡) ≤ 𝑡 ≤ 𝑆𝑁(𝑡)+1 

we can write it as: 

𝑁(𝑡)

𝑆𝑁(𝑡)+1
≤
𝑁(𝑡)

𝑡
≤
𝑁(𝑡)

𝑆𝑁(𝑡)
 

As 𝑡 → ∞,𝑁(𝑡) → ∞ because the process continues indefinitely. Thus, by the SLLN: 

lim
𝑡→∞

𝑆𝑁(𝑡)

𝑁(𝑡)
= 𝜇 and lim

𝑡→∞

𝑆𝑁(𝑡)+1
𝑁(𝑡)

= 𝜇 

Therefore,  

lim
𝑡→∞

𝑁(𝑡)

𝑆𝑁(𝑡)+1
=
1

𝜇
 and lim

𝑡→∞

𝑁(𝑡)

𝑆𝑁(𝑡)
=
1

𝜇
 

Combining these results, we get  



 
 

1

𝜇
≤ lim

𝑡→∞

𝑁(𝑡)

𝑡
≤
1

𝜇
 

Hence  

lim
𝑡→∞

𝑁(𝑡)

𝑡
=
1

𝜇
, 𝑎. 𝑠. 

Theorem: Renewal Reward Theorem 

Let {𝑋𝑖} be the inter renewal times and {𝑅𝑖} be the corresponding rewards, where {𝑋𝑖} and 

{𝑅𝑖} are i.i.d. sequences with 𝐸[𝑋𝑖] = 𝜇 𝑎𝑛𝑑 𝐸[𝑅𝑖] = 𝑣. Let 𝑆𝑛 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛 denote the 

time of the 𝑛𝑡ℎ renewal and 𝑊(𝑡) = 𝑅1 + 𝑅2 +⋯+ 𝑅𝑁(𝑡) denote the total reward received by 

time 𝑡. the Renewal Reward Theorem states that 

lim
𝑡→∞

𝑊(𝑡)

𝑡
=
𝑣

𝜇
,  a.s. and in expectation. 

Proof: Let 𝑁(𝑡) be the number of rewards by time t, and 𝑊(𝑡) is the total reward by time t. then 

𝑊(𝑡) is given by: 

𝑊(𝑡) = ∑ 𝑅𝑖

𝑁(𝑡)

𝑖=1

 

By SLLN, we have  

𝑊(𝑡)

𝑁(𝑡)
→ 𝐸[𝑅] = 𝑣 (𝑎. 𝑠. ) 

From the Elementary Renewal Theorem, we know that 

𝑁(𝑡)

𝑡
→

1

𝐸[𝑋]
=
1

𝜇
 (𝑎. 𝑠. ) 

We express 𝑊(𝑡) as 

𝑊(𝑡)

𝑡
=
𝑊(𝑡)

𝑁(𝑡)

𝑁(𝑡)

𝑡
 



 
 

Taking limits as t tends to infinity, we get 

log𝑡→∞
𝑊(𝑡)

𝑡
= log𝑡→∞ (

𝑊(𝑡)

𝑁(𝑡)

𝑁(𝑡)

𝑡
) = 𝑣.

1

𝜇
=
𝑣

𝜇
 

Thus, the Renewal Reward Theorem is proven, establishing that the long-run average 

reward per unit time is the expected reward per renewal divided by the expected inter-renewal 

time. 

These theorems provide fundamental insights into the behavior of renewal processes and 

are widely used in applications across various fields, including reliability engineering, queuing 

theory, and inventory control. 

10.5   Queuing Models: Specification & Effectiveness 

Queuing models are mathematical representations that help analyse and predict the 

behaviour and performance of queuing systems, which are ubiquitous in various domains such as 

telecommunications, transportation, healthcare, manufacturing, and service industries. These 

models are essential for understanding system performance, optimizing resource utilization, 

reducing waiting times, and improving service efficiency. By using queuing models, organizations 

can make informed decisions to enhance their operations and customer satisfaction. 

Specification of Queuing Models:  To specify a queuing model, several key elements must be 

defined. These elements describe the structure and behaviour of the queuing system. A widely 

used method for specifying queuing models is Kendall's notation, which is of the form 

A/B/c/K/N/D. This notation helps succinctly describe the different characteristics of a queuing 

system. 

The arrival process (A) describes the statistical distribution of time between successive 

arrivals of entities (such as customers, jobs, or packets) into the system. Common arrival 

distributions include Markovian (denoted as M), which assumes exponential inter-arrival times, 

deterministic (D) for constant inter-arrival times, and general (G) for arbitrary inter-arrival time 

distributions. The Erlang-k distribution (Ek) represents k-stage exponential inter-arrival times. 

The service process (B) characterizes the statistical distribution of service times. Like the 

arrival process, it can follow various distributions, including Markovian (M) for exponential 



 
 

service times, deterministic (D) for constant service times, general (G) for arbitrary service time 

distributions, and Erlang-k (Ek) for k-stage exponential service times. 

The number of servers (c) specifies the number of parallel servers providing service in 

the system. For example, a single-server system is denoted as c=1, while a system with multiple 

servers is denoted by the number of servers present, such as c=3. 

The system capacity (K) indicates the maximum number of entities that can be in the 

system, including those in service and those waiting. If not explicitly stated, the system capacity 

is typically assumed to be infinite. 

The population size (N) denotes the size of the population from which entities arrive. Like 

system capacity, if not explicitly stated, the population size is usually assumed to be infinite. 

The queue discipline (D) describes the order in which entities are served. Common queue 

disciplines include “First In, First Out (FIFO)”, “Last In, First Out (LIFO)”, “Service In Random 

Order (SIRO)”, and “Priority-based Schemes (PR)”. 

Common Queuing Models:  One of the most basic and widely used queuing models is the M/M/1 

model, which represents a single server with exponential inter-arrival and service times. This 

model is suitable for systems with a single service point, such as a single teller in a bank. The 

M/M/k model generalizes this to multiple servers, making it applicable to systems with several 

parallel service points, like multiple checkout counters in a supermarket. 

Another important model is the M/G/1, which describes a single server with exponential 

inter-arrival times and a general service time distribution. This model is useful for systems where 

service times do not follow an exponential distribution. The Ek/M/1 model represents a single 

server with Erlang-k inter-arrival times and exponential service times, suitable for systems where 

arrivals occur in stages. Conversely, the M/Ek/1 model describes a single server with exponential 

inter-arrival times and Erlang-k service times, appropriate for systems where services are 

completed in stages. 

Effectiveness of Queuing Models:  The effectiveness of a queuing model is determined by its 

ability to accurately represent the real-world system it is modelling and provide useful insights for 

improving system performance. Several key performance measures are used to evaluate the 

effectiveness of queuing models. Utilization (𝜌) is a crucial measure that indicates the fraction of 



 
 

time the server is busy. It is calculated as 𝜌 = 𝜆 /(𝑐𝜇) for an M/M/c queue, where λ is the arrival 

rate and μ is the service rate. 

The average number of entities in the system (L) is another important measure, 

representing the average number of entities both in the queue and being served. For an M/M/1 

queue, this is calculated as 𝐿 = 𝜆/(𝜇 − 𝜆). The average time an entity spends in the system (W) is 

calculated similarly and is given by 𝑊 = 1/(𝜇 − 𝜆) for an M/M/1 queue. 

Other significant performance measures include the average number of entities waiting in 

the queue (Lq) and the average time an entity spends waiting in the queue (Wq). For an M/M/1 

queue, 𝐿𝑞 = 
𝜆2

𝜇(𝜇−𝜆)
 and 𝑊𝑞 = 

𝜆

𝜇(𝜇−𝜆)
. The probability of having n entities in the system (𝑃𝑛 ) is 

also critical, calculated as 𝑃𝑛 = (1 − 𝜌)𝜌
𝑛   for an M/M/1 queue. 

Applications of Queuing Models:  Queuing models have a wide range of applications across 

different industries. In telecommunications, they are used to manage call centres and network 

traffic, ensuring efficient use of resources, and minimizing call drops. In healthcare, queuing 

models optimize patient flow in hospitals, reduce waiting times, and improve resource allocation. 

In manufacturing, they help design production lines to minimize bottlenecks and enhance 

throughput. 

In transportation, queuing models are used to manage traffic flow, optimize public 

transport schedules, and reduce congestion. In retail, they enhance customer service by reducing 

checkout times and optimizing staffing levels. 

Optimizing Queuing Systems:  To optimize a queuing system, it is essential to balance the trade-

offs between service quality and resource utilization. This can involve adjusting service rates by 

improving efficiency or adding more servers, managing arrival rates through demand management 

or scheduling, implementing priority schemes to serve critical customers faster, and redesigning 

the queue layout to enhance flow and reduce wait times. 

By accurately specifying and effectively utilizing queuing models, organizations can 

significantly enhance their operational efficiency, improve customer satisfaction, and achieve 

better resource management. Understanding and applying these models allows for the optimization 

of various systems, ensuring they operate smoothly and meet the demands placed on them. 

10.6   Measures and Specific Queuing Models 



 
 

In queuing theory, various measures are used to evaluate the performance of queuing 

systems. These measures include utilization, average number of entities in the system, average 

time in the system, average number in the queue, and average time in the queue. Different queuing 

models are specified based on the distributions of inter-arrival and service times, as well as the 

number of servers. Here, we discuss the measures and characteristics of the Ek/M/1, M/Ek/1, 

M/M/1, M/M/k, and M/G/1 queuing processes in detail. 

Common Performance Measures: 

i. Utilization (ρ): Utilization represents the fraction of time the server(s) is busy. It is a 

crucial measure as it indicates the load on the system. High utilization (close to 1) 

implies the server is busy most of the time, which can lead to long queues and delays. 

Low utilization indicates underutilization of resources. For a system with 𝑐 servers, the 

fraction of time the server is busy can be defined as 𝜌 =
𝜆

𝑐𝜇
, where 𝜆 is the arrival rate 

and 𝜇 is the service rate. 

ii. Average number in the system (𝑳): This measure gives the expected number of entities 

present in the system (both in service and waiting) at any given time. It helps in 

understanding the overall load on the system. The average number of entities in the 

system, including those in service and those waiting. Formula: 𝐿 = 𝜆𝑊, where 𝑊 is 

the average time, an entity spends in the system. 

iii. Average Time in the System (W): This measure represents the total time an entity 

spends in the system, from arrival to departure. It includes both waiting time and 

service time. It is a critical performance metric for evaluating the efficiency of the 

system. The average time an entity spends in the system, including both waiting time 

and service time. Formula: 𝑊 = 𝑊𝑞 +
1

𝜇
, where 𝑊𝑞 is the average time spent waiting 

in the queue. 

iv. Average Number in the Queue (𝑳𝒒): This measure indicates the expected number of 

entities waiting in the queue. It helps in understanding the congestion in the system. 

The average number of entities waiting in the queue can be defined as 𝐿𝑞 = 𝜆𝑊𝑞 . 



 
 

v. Average Time in the Queue (𝑾𝒒): This measure represents the expected waiting time 

for an entity before it starts receiving service. It is a key indicator of the service quality 

perceived by the entities. The average time an entity spends waiting in the queue can 

be given as: 𝑊𝑞 = 𝑊 −
1

𝜇
. 

By using these measures, one can evaluate and compare different queuing models to choose 

the most appropriate one for a given system. Proper understanding and application of these models 

and measures enable organizations to optimize their operations, improve resource utilization, and 

enhance customer satisfaction. 

1. Ek/M/1 Queue Process:  The Ek/M/1 queuing process is characterized by Erlang-k inter-

arrival times and Markovian (exponential) service times with a single server. Erlang-k 

distribution is a special case of the gamma distribution, representing the sum of k 

exponential phases, making it suitable for systems where arrivals occur in stages. In this 

model- 

i. Erlang-k Inter-Arrival Times (Ek): Inter-arrival times follow an Erlang-k 

distribution, which is the sum of 𝑘 exponential phases. 

ii. Markovian Service Times (M): Service times follow an exponential distribution. 

iii. Single Server (1): There is one server. 

Measures: 

i. Utilization (𝝆):  𝜌 =
𝜆

𝜇
. 

ii. Average number in the system (L): 𝐿 =
𝜌+𝜌2

2(1−𝜌)
. 

iii. The Average time in the system (𝑊): 𝑊 =
𝐿

𝜆
. 

iv. Average number in the Queue (𝐿𝑞): 𝐿𝑞 = 𝐿 − 𝜌. 

v. Average Time in the Queue (𝑊𝑞): 𝑊𝑞 = 𝑊 −
1

𝜇
. 



 
 

Applications:  The Ek/M/1 queuing model, with Erlang-k inter-arrival times and exponential 

service times, is particularly useful in scenarios where arrivals happen in stages, making the arrival 

process more deterministic. 

Examples: 

i. Telecommunication Networks: In telecommunication systems, call arrivals can 

often be modelled using Erlang-k distributions because the call setup process 

involves several stages. The Ek/M/1 model helps in determining the optimal 

capacity needed to handle the call traffic without excessive delays. 

ii. Manufacturing Systems: In manufacturing, components may arrive in batches after 

passing through several stages of processing. The Ek/M/1 model can optimize the 

flow of components through a single machine or workstation, ensuring that the 

system is neither underutilized nor overly congested. 

2. M/Ek/1 Queuing Process:  The M/Ek/1 queuing process features Markovian 

(exponential) inter-arrival times and Erlang-k service times with a single server. This 

model is suitable for systems where services are completed in stages. In this model, 

i. Markovian Inter-Arrival Times (M): Inter-arrival times follow an exponential 

distribution. 

ii. Erlang-k Service Times (Ek): Service times follow an Erlang-k distribution, which is 

the sum of 𝑘 exponential phases. 

iii. Single Server (1): There is one server. 

Measures:  

i. Utilization (𝝆):  𝜌 =
𝜆

𝜇
. 

ii. Average number in the system (L): 𝐿 =
𝜌+𝜌2(2𝑘−1)

2(1−𝜌)
. 

iii. The Average time in the system (𝑊): 𝑊 =
𝐿

𝜆
. 

iv. Average number in the Queue (𝐿𝑞): 𝐿𝑞 = 𝐿 − 𝜌. 

v. Average Time in the Queue (𝑊𝑞): 𝑊𝑞 = 𝑊 −
1

𝜇
. 



 
 

Applications:  The M/Ek/1 model, with exponential inter-arrival times and Erlang-k service times, 

is suitable for systems where services are completed in stages, providing a more detailed 

representation of service processes. 

Examples: 

i. Healthcare: In hospitals, certain diagnostic tests or treatment procedures may occur in 

multiple stages (e.g., initial consultation, testing, and follow-up). The M/Ek/1 model 

helps in scheduling these stages to minimize patient wait times and improve the 

utilization of healthcare resources. 

ii. Banking Services: In banks, loan approval processes often involve several steps, 

including initial screening, detailed evaluation, and final approval. The M/Ek/1 model 

can help manage the workflow to ensure timely processing of loan applications. 

3. M/M/1 Queuing Process:  The M/M/1 queuing process is one of the simplest and most 

widely used models, characterized by Markovian (exponential) inter-arrival and service 

times with a single server. This model is applicable to systems with a single service point, 

such as a single teller in a bank. In this model, 

i. Markovian Inter-Arrival Times (M): Inter-arrival times follow an exponential 

distribution. 

ii. Markovian Service Times (M): Service times follow an exponential distribution. 

iii. Single Server (1): There is one server. 

Measures: 

i. Utilization (𝝆):  𝜌 =
𝜆

𝜇
. 

ii. Average number in the system (L): 𝐿 =
𝜆

𝜇−𝜆
. 

iii. The Average time in the system (𝑊): 𝑊 =
1

𝜇−𝜆
. 

iv. Average number in the Queue (𝐿𝑞): 𝐿𝑞 =
𝜆2

𝜇(𝜇−𝜆)
. 

v. Average Time in the Queue (𝑊𝑞): 𝑊𝑞 =
𝜆

𝜇(𝜇−𝜆)
. 



 
 

Suppose the customers arrive at a single server service system in according with a Poisson 

process having rate 𝜆 with FIFO discipline. Thus, the time between successive arrivals has 

exponential distribution with mean 1/𝜆. The successive service times are assumed to be iid 

exponential random variables with mean 1/𝜇. The service does not stop as long as there are 

customers to be served. The population of customers and the systems capacity are assumed to be 

infinite. We also assume that the customer does not leave before getting the service and the arrivals 

and service are independent. This is the simple queueing model denoted as  

 

Steady State Analysis of the M/M/1 (∞,FIFO) 

Consider the M/M/1 queueing model with the assumptions stated before: 

Let 𝑋𝑡 be the number of customers in the queue including the one being served. 

Let  

𝑃(𝑋𝑡 = 𝑛) =  𝑝𝑛(𝑡). 

{𝑋𝑡; 𝑡 ≥ 0}is a stochastic process with continuous time parameter and dicrete state space. 

In many practical situations one needs to know the limiting distribution as 𝑡 → ∞ , i.e. 

𝑝𝑛 = lim
𝑡→∞

𝑝𝑛(𝑡) 

which is referred to as the Steady state probability exactly 𝑛 customers in the system. 

Since the “arrival process” and the “completion process” are both Poisson with rates λ and 𝜇 

respectively, we have the following:  

(i) In the time interval (𝑡, 𝑡 + ∆𝑡), the probability of one arrival is 𝜆∆𝑡 + 𝑜(∆𝑡).  

(ii) In the time interval (𝑡, 𝑡 + ∆𝑡), the probability of more than one arrival 𝑜(∆𝑡).  

(iii) In the time interval (𝑡, 𝑡 + ∆𝑡), the probability of no arrival 1 − 𝜆∆𝑡 + 𝑜(∆𝑡). 



 
 

(iv) In the time interval (𝑡, 𝑡 + ∆𝑡),the probability of one departure is 𝜇∆(𝑡) + 𝑜(∆𝑡).  

(v) In the time interval (t, t+∆t), the probability of more than one departure is 𝑜(∆𝑡).  

(vi) In the time interval (𝑡, 𝑡 + ∆𝑡)), the probability of no departure is 1 − 𝜇∆𝑡 + 𝑜(∆𝑡).  

(vii) In the time interval (𝑡, 𝑡 + ∆𝑡), the probability of no arrival and no departure is 

(1 − 𝜆∆𝑡 + 𝑜(∆𝑡))(1 − 𝜇∆𝑡 + 𝑜(∆𝑡)) = 1 − 𝜆∆𝑡 − 𝜇∆𝑡 + 𝑜(∆𝑡).  

(viii) In the time interval (𝑡, 𝑡 + ∆𝑡), the probability of one arrival and one departure is 

(𝜆∆𝑡 + 𝑜(Δ𝑡))(𝜇∆𝑡 + 𝑜(Δ𝑡)) = 𝑜(𝑡). 

(ix) In the time interval (𝑡, 𝑡 + ∆𝑡), the probability of one arrival and no departure is  

(𝜆∆𝑡 + 𝑜(∆𝑡))(1 − 𝜇∆𝑡 + 𝑜(∆𝑡)) = 𝜇 ∆ (𝑡) + 𝑜(Δ𝑡).  

(x) In the time interval (𝑡, 𝑡 + ∆𝑡), the probability of no arrival and one departure is 

(1 − 𝜆∆𝑡 + 𝑜(∆𝑡))(𝜇∆(𝑡) + 𝑜(∆𝑡)) = 𝜇 ∆ (𝑡) + 𝑜(Δ𝑡).   

(xi) In the time interval (𝑡, 𝑡 + ∆𝑡), the probability of 𝑟 arrival and 𝑠 departure is 𝑜(Δ𝑡) , 

where at least one of 𝑟 and 𝑠 is ≥ 2. 

Equation for 𝒑𝒏(𝒕): 

For 𝑛 = 0 

𝑝0(𝑡 + ∆𝑡) 

= 𝑝0(𝑡)𝑃 (no arrival in (𝑡, 𝑡 + ∆𝑡)) + 𝑝1(𝑡)𝑃 (1 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑖𝑛 (𝑡, 𝑡 + ∆𝑡)) 

     + ∑𝑝𝑘(𝑡)𝑃(𝑘 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝑠 𝑖𝑛 (𝑡, 𝑡 + ∆𝑡)

∞

𝑘=2

 

= 𝑝0(𝑡)[1 − 𝜆∆𝑡 + 𝑜(Δ𝑡)] + 𝑝1(𝑡)[𝜇∆𝑡 + 𝑜(∆𝑡)] + 𝑜(Δ𝑡) 

Then  



 
 

𝑝0(𝑡 + ∆𝑡) − 𝑝0(𝑡)

∆𝑡
= 𝜇𝑝1(𝑡) − 𝜆𝑝0(𝑡) +

𝑜(Δ𝑡)

∆𝑡
 

Let ∆(𝑡) → 0, then 

𝑑

𝑑𝑡
𝑝0(𝑡) = 𝜇𝑝1(𝑡) − 𝜆𝑝0(𝑡)                                                   (1) 

For 𝑛 ≥ 1 

𝑝𝑛(𝑡 + ∆𝑡) 

= 𝑝𝑛−1(𝑡)𝑃 [one arrival, no departure 𝑖𝑛  (𝑡 + 𝑡 + ∆𝑡)] 

+𝑝𝑛(𝑡)𝑃 [no arrival, no departure in (𝑡, 𝑡 + ∆𝑡)] 

+𝑝𝑛+1(𝑡)𝑃[no arival, one departure in (𝑡, 𝑡 + ∆𝑡)] + 𝑜(∆𝑡) 

= 𝑝𝑛−1(𝑡)[𝜆∆(𝑡) + 𝑜(∆𝑡)] + 𝑝𝑛(𝑡)[1 − 𝜆∆(𝑡) − 𝜇∆(𝑡) + 𝑜(∆𝑡)] 

+𝑝𝑛+1(𝑡)[𝜇∆(𝑡) + 𝑜(∆𝑡)] + 𝑜(∆𝑡)  

Hence 

𝑝𝑛(𝑡 + ∆𝑡) − 𝑝𝑛(𝑡)

∆𝑡
=  𝜆𝑝𝑛−1(𝑡) − (𝜆 + 𝜇)𝑝𝑛(𝑡) + 𝜇𝑝𝑛+1(𝑡) +

𝑜(∆𝑡)

Δ𝑡
 

Letting ∆𝑡 → 0, we obtain 

𝑑

𝑑𝑡
𝑝𝑛(𝑡) = 𝜆𝑝𝑛−1(𝑡) − (𝜆 + 𝜇)𝑝𝑛(𝑡) + 𝜇𝑝𝑛+1(𝑡)                               (2) 

The system of differential difference equations represented by (1) and (2) govern the 

stochastic behavior of the M/M/1 queueing process over a passage of time. 

Let us assume the existence of a “steady state”. Then, as 𝑡 → ∞, 𝑝𝑛(𝑡)) tends to a limit 𝑝𝑛, 

independent of 𝑡. The equations of steady-state probabilities 𝑝𝑛 can be obtained by putting 𝑝𝑛
′ (𝑡) =

0  and 𝑝𝑛(𝑡) = 𝑝𝑛 in (1) and (2) we get 



 
 

0 = 𝜇 𝑝1 − 𝜆 𝑝0
0 =  𝜆 𝑝𝑛−1 − (𝜆 + 𝜇)𝑝𝑛 + 𝜇𝑝𝑛+1;  (𝑛 ≥ 1)

}                                        (3) 

or   

𝑝1 = 𝜌 𝑝0   

𝑝𝑛+1 = 𝜌𝑝𝑛 + (𝑝𝑛 − 𝜌 𝑝𝑛−1);  (𝑛 ≥ 1)}                                               
(4) 

where  

𝜌 =
𝜆

𝜇
=  

1
𝜇
1
𝜆

=
mean service time

mean interarrival time
                                                (5) 

𝜌 is called the “traffic intensity”.  

𝜌 can be interpreted as the expected number of arrivals in the mean service time. (𝜆 ×
1

𝜇
). Notice 

that 𝜆 is expected number of arrivals per unit time and 1/𝜇 is mean service time. Thus 𝜆 ×
1

𝜇
 is 

expected number of arrivals in the mean service time. 

From (4), we obtain 

𝑝0 = 𝑝0 

𝑝1 = 𝜌 𝑝0 

𝑝2 = 𝜌 𝑝1 + (𝑝1 − 𝜌 𝑝0) 

=  𝜌 𝑝1 

= 𝜌2 𝑝0 

𝑝3 = 𝜌 𝑝2 + (𝑝2 − 𝜌 𝑝1) 

=  𝜌 𝑝2 = 𝜌
3 𝑝0 

⋮ 

𝑝𝑛 = 𝜌𝑛 𝑝0 

Hence  



 
 

1 = ∑ 𝑝𝑛 = 𝑝0(1 − 𝜌)
−1∞

𝑛=0 ; assuming 𝜌 < 1. 

Therefore, if  𝜌 < 1, 

𝑝0 = 1 − 𝜌, 

𝑝𝑛 = 𝜌𝑛(1 − 𝜌), 𝑛 ≥ 1. 

Notice that for the existence of a steady state solution 𝜌 must be less than 1. The steady state 

distribution is geometric. Further, as 𝑡 → ∞, let 𝐿𝑠 be the expected number of units in the system. 

Then 

𝐿𝑠 =∑𝑛𝜌𝑛(1 − 𝜌)

∞

𝑛=0

 

=
𝜌

1 − 𝜌
=  

𝜆

𝜇 − 𝜆
.                                                             (6) 

The probability that the server is free = 1 − 𝜌. 

Applications:  The M/M/1 queuing model, characterized by exponential inter-arrival and service 

times with a single server, is one of the simplest and most widely used models. It is applicable in 

scenarios where there is a single point of service and both arrivals and service times follow a 

memoryless (exponential) distribution. 

Examples: 

i. Customer Service: A single customer service representative handling queries can be 

modelled using the M/M/1 queuing system. This helps in estimating the average wait 

time for customers and determining the representative’s workload. 

ii. Single Teller Bank: A bank with a single teller where customers arrive randomly can 

use the M/M/1 model to predict queue lengths and waiting times, allowing the bank to 

adjust staffing as needed. 

4. M/M/k Queuing Process:  The M/M/k queuing process extends the M/M/1 model to 

multiple servers, characterized by Markovian (exponential) inter-arrival and service times 



 
 

with k servers. This model is suitable for systems with several parallel service points, like 

multiple checkout counters in a supermarket. In this model, 

i. Markovian Inter-Arrival Times (M): Inter-arrival times follow an exponential 

distribution. 

ii. Markovian Service Times (M): Service times follow an exponential distribution. 

iii. Multiple Servers (k): There are 𝑘 servers. 

Measures: 

i. Utilization (𝝆): 𝜌 =
𝜆

𝑘𝜇
. 

ii. Average number in the system (L): Derived using the Erlang B and C formulas, 

which account for the probabilities of all servers being busy and at least one server 

being free. 

iii. The Average time in the system (𝑊): 𝑊 =
𝐿

𝜆
. 

iv. Average number in the Queue (𝐿𝑞): Calculate using the probability of having to 

wait and the average number of entities waiting.. 

v. Average Time in the Queue (𝑊𝑞): 𝑊𝑞 = 𝑊 −
1

𝜇
. 

Applications:  The M/M/k model extends the M/M/1 model to multiple servers, making it suitable 

for systems with several parallel service points. This model is useful in environments where 

services are provided simultaneously by multiple servers, and both arrival and service processes 

are memoryless. 

Examples: 

i. Call Centers: A call center with multiple operators receiving calls can be modelled 

using the M/M/k system. This helps in determining the number of operators required 

to handle call volumes while minimizing customer wait times. 



 
 

ii. Supermarket Checkouts: A supermarket with several checkout counters can use the 

M/M/k model to manage queues and optimize the number of open counters, balancing 

customer service speed and staffing costs. 

5. M/G/1 Queuing Process:  The M/G/1 queuing process is characterized by Markovian 

(exponential) inter-arrival times and a general service time distribution with a single server. 

This model is useful for systems where service times do not follow an exponential 

distribution. In this model, 

i. Markovian Inter-Arrival Times (M): Inter-arrival times follow an exponential 

distribution. 

ii. General Service Time Distribution (G): Service times follow a general distribution. 

iii. Single Server (1): There is one server. 

Measures: 

i. Utilization (𝝆):  𝜌 = 𝜆𝐸[𝑆]. 

ii. Average number in the system (L): Using the Pollaczek-Khinchine formula: 

𝐿 = 𝜆𝐸[𝑊] = 𝜆 (
1

𝜇
+

𝜆𝐸[𝑆2]

2(1 − 𝜆𝐸[𝑆])
) 

iii. The Average time in the system (𝑊): 𝑊 = 𝐸[𝑆] +
𝜆𝐸[𝑆2]

2(1−𝜆𝐸[𝑆])
 

iv. Average number in the Queue (𝐿𝑞): 𝐿𝑞 =
𝜆2𝐸[𝑆2]

2(1−𝜆𝐸[𝑆])
 

v. Average Time in the Queue (𝑊𝑞): 𝑊𝑞 =
𝜆𝐸[𝑆2]

2(1−𝜆𝐸[𝑆])
. 

Applications:  The M/G/1 model, with exponential inter-arrival times and a general service time 

distribution, is suitable for systems where service times do not follow an exponential distribution. 

This model provides a more flexible framework for analysing queues with varied service 

processes. 



 
 

Examples: 

i. Computer Systems: In computing, tasks processed by a single server (such as a printer 

or a database server) often have service times that follow a distribution other than 

exponential. The M/G/1 model helps in evaluating the performance of these systems, 

predicting delays, and optimizing resource allocation. 

ii. Repair Services: A repair shop with a single technician where repair times vary 

significantly depending on the complexity of the problem can use the M/G/1 model. 

This helps in understanding the expected wait times for customers and optimizing 

scheduling. 

10.7   Summary 

Queuing theory is a crucial mathematical study focusing on the analysis of waiting lines or 

queues. Originating from the work of Agner Krarup Erlang in the early 20th century, the field has 

expanded to incorporate a wide range of models and applications. Queuing models like M/M/1, 

M/M/k, M/G/1, Ek/M/1, and M/Ek/1 are fundamental tools used to evaluate and optimize systems 

in telecommunications, healthcare, manufacturing, transportation, and service industries. Each 

model has specific characteristics and applications, making it suitable for different types of 

queuing systems. 

The M/M/1 model, with its single server and exponential inter-arrival and service times, 

provides a straightforward yet powerful tool for analysing simple systems. The M/M/k model 

extends this to multiple servers, making it ideal for systems with parallel service points. The M/G/1 

model allows for a more general service time distribution, offering flexibility in analysing systems 

with varied service processes. The Ek/M/1 and M/Ek/1 models cater to scenarios where arrivals 

or services occur in stages, providing a more detailed representation of such processes. 

Performance measures such as utilization, average number in the system, average time in 

the system, average number in the queue, and average time in the queue are critical in evaluating 

the effectiveness of queuing models. These measures help in understanding system performance, 

identifying bottlenecks, and making informed decisions to optimize resource utilization and reduce 

waiting times. 



 
 

Queuing theory's applications are vast and diverse. In telecommunications, it helps manage 

call traffic and optimize network resources. In healthcare, it improves patient flow and resource 

allocation. In manufacturing, it optimizes production lines and reduces bottlenecks. In retail and 

banking, it enhances customer service by managing queues and optimizing staffing levels. 

Advanced mathematical techniques, such as Markov chains and simulation, further enhance the 

analysis of complex queuing systems, providing deeper insights and more accurate predictions. 

Overall, queuing theory remains a vital tool for improving operational efficiency and 

service quality across various industries. By understanding and applying the appropriate queuing 

models, organizations can achieve significant improvements in their systems, leading to better 

customer satisfaction and resource management. 

10.8    Self-Assessment Questions 

1. Define queuing theory and explain its importance in various fields. 

2. What are the key elements specified in Kendall's notation for queuing models? Explain 

each element. 

3. Compare and contrast the M/M/1 and M/M/k queuing models. Under what 

circumstances would you use each? 

4. Explain the significance of the utilization factor (ρ) in queuing models. How is it 

calculated for an M/M/1 system? 

5. Describe the Erlang-k distribution. In what scenarios would an Ek/M/1 queuing model 

be more appropriate than an M/M/1 model? 

6. What are the primary performance measures used in queuing theory? How do they help 

in analysing the performance of queuing systems? 

7. Discuss the differences between M/G/1 and M/M/1 queuing models. Provide examples 

of systems that would be best modelled by M/G/1. 

8. Explain the Renewal Reward Theorem and its significance in the context of queuing 

theory. Provide a detailed proof of the theorem. 

9. How can queuing models be used to optimize the performance of a call center? 

Illustrate with an example using an M/M/k model. 



 
 

10. Discuss the role of advanced mathematical techniques, such as Markov chains and 

simulation, in queuing theory. How do they enhance the analysis of complex queuing 

systems? 
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11.1   Introduction 

Distributions are fundamental to the field of probability and statistics, playing a crucial role 

in modelling and analyzing random phenomena. The study of distributions allows us to understand 

and predict the behavior of systems under uncertainty, which is essential in various domains such 

as finance, engineering, operations research, and the natural sciences. This unit delves into specific 

types of distributions that are particularly useful for complex modelling scenarios, including 

compound distributions and queuing models. 

The concept of probability distribution has evolved over centuries, starting with early work 

on gambling and games of chance. In the 17th century, the formal study of probability began with 

mathematicians such as Blaise Pascal and Pierre de Fermat, who laid the groundwork for 

probability theory through their correspondence on gambling problems. The 18th century saw 

further development with contributions from Jakob Bernoulli and Abraham de Moivre. U 

Bernoulli's Law of Large Numbers and de Moivre's Normal Distribution were significant 

milestones in the understanding of probability distributions. 

During the 19th century, Carl Friedrich Gauss's work on the normal distribution and Pierre-

Simon Laplace's development of the central limit theorem were pivotal. This period also saw the 

emergence of statistical inference with contributions from Ronald A. Fisher and Karl Pearson, who 



 
 

developed techniques for estimating population parameters and hypothesis testing. The 20th 

century marked a significant expansion in the field, with the introduction of new distributions and 

models to address more complex problems. The Poisson distribution, introduced by Siméon-Denis 

Poisson, became a cornerstone for modelling rare events. Queuing theory, developed by Agner 

Krarup Erlang, provided the basis for modern telecommunications and service systems analysis. 

In recent decades, the study of distributions has seen significant advancements due to the 

advent of modern computing and the development of sophisticated mathematical tools. 

Computational statistics has revolutionized the field, enabling the simulation and analysis of 

complex distributions that are intractable by analytical methods alone. Techniques such as Monte 

Carlo simulations and Markov Chain Monte Carlo (MCMC) methods are widely used for 

approximating distributions and solving complex probabilistic models. 

The rise of machine learning has further transformed the landscape, with probabilistic 

models at the heart of many algorithms. Bayesian networks, Gaussian processes, and hidden 

Markov models rely heavily on understanding and manipulating probability distributions to make 

predictions and infer hidden states. The explosion of data in various fields has led to the 

development of new distributions and models to handle large-scale and high-dimensional data. 

Techniques for dealing with overdispersion, heavy tails, and multimodality have become 

increasingly important in the era of big data. 

Advances in queuing theory have addressed more complex systems, including networks of 

queues, priority queues, and queues with time-varying arrival and service rates. These 

developments are critical for optimizing performance in computer networks, telecommunications, 

and manufacturing systems. Queuing models are essential for analyzing and designing systems 

where resources are shared among competing demands, ensuring efficient and effective operations. 

Understanding distributions is essential for making informed decisions in the presence of 

uncertainty. They are used to model various phenomena, from the number of customers arriving 

at a service center to the time between failures of mechanical systems. Applications of probability 

distributions are vast and varied, including finance, engineering, operations research, and health 

sciences. In finance, distributions are used for modelling stock prices, assessing risk, and 

optimizing portfolios. In engineering, they are critical for reliability analysis, quality control, and 

risk management. Operations research relies on distributions for inventory management, logistics, 



 
 

and production planning. In the health sciences, distributions are used in epidemiology, survival 

analysis, and clinical trials. 

The study of distributions is a cornerstone of probability and statistics, with a rich historical 

background and significant modern advancements. This unit will provide a comprehensive 

overview of compound distributions, machine interference problems, and waiting time 

distributions for M/M/1 and M/M/k models, equipping you with the tools to model and analyze 

various stochastic systems effectively. 

11.2   Objectives 

The objectives of this unit are to equip you with a comprehensive understanding of specific 

types of distributions that are vital in the analysis and modelling of stochastic systems. By delving 

into compound distributions, you will learn how to combine multiple distributions to model 

complex random phenomena, such as the total claim size in insurance or aggregated risks in 

finance. This knowledge will enable you to handle scenarios where outcomes depend on a random 

number of underlying events, enhancing your ability to analyze and predict system behavior under 

uncertainty. 

Furthermore, the unit aims to provide you with the skills to tackle the machine interference 

problem, which involves optimizing the allocation of repairmen in systems with multiple machines 

that may fail and require repair. Understanding this problem will help you minimize downtime and 

improve operational efficiency in manufacturing, telecommunications, and other service-oriented 

industries. 

A critical part of this unit is the study of waiting time distributions for M/M/1 and M/M/k 

queuing models. You will learn to calculate and interpret these distributions, which are essential 

for analyzing and optimizing queuing systems with single or multiple servers. This knowledge is 

crucial for managing customer wait times, improving service levels, and enhancing overall system 

performance in various applications, including customer service centers, healthcare, and computer 

networks. 

By achieving these objectives, you will be well-prepared to apply these concepts and 

techniques to real-world scenarios, making informed decisions based on probabilistic models and 

improving the efficiency and reliability of complex systems. 



 
 

 

11.3   Compound Distribution 

Compound distributions are a powerful tool in probability and statistics, particularly useful 

in scenarios where the total outcome depends on a random number of events. These distributions 

arise when one or more parameters of a distribution are themselves random variables following 

another distribution. This section will explore the definition, mathematical formulation, important 

results, and examples of compound distributions. 

A compound distribution combines two or more distributions to model complex stochastic 

processes. The key idea is that the parameter of one distribution (e.g., the number of events) is 

governed by another distribution, which adds an additional layer of randomness. This concept is 

crucial in various fields such as actuarial science, finance, and risk management, where outcomes 

are influenced by a multitude of uncertain factors. 

Mathematical Formulation 

Consider a random variable 𝑁 that follows a distribution 𝑃(𝑁 = 𝑛), and let 𝑋𝑖 be 

independent and identically distributed (i.i.d) random variables with distribution 𝐹(𝑥). The 

compound distribution 𝑆 is the sum of 𝑁 such random variables:  

𝑆 =  𝑋1 + 𝑋2 +⋯+ 𝑋𝑁 

Here, 𝑁 can be thought of as the number of claims, events, or occurrences, and 𝑋𝑖 

represents the size, cost, or magnitude of each event. 

Important Results 

Theorem: Expectation of Compound Distribution 

The expected value of the compound distribution 𝑆 is the product of the expected values 

of the number of events 𝑁 and size of each event 𝑋. 

𝐸[𝑆] = 𝐸[𝑁]. 𝐸[𝑋] 

where 𝐸[𝑁] is the expected value of 𝑁 and 𝐸[𝑋] is the expected value of 𝑋𝑖. 



 
 

Proof: Let 𝑆 = ∑ 𝑋𝑖
𝑁
𝑖=1  where 𝑁 is a random variable representing the number of events, and 𝑋𝑖 

are 𝑖. 𝑖. 𝑑.  random variables representing the size of each event. 

Using the law of total expectation:  

𝐸[𝑆] = 𝐸 [∑𝑋𝑖

𝑁

𝑖=1

] 

= 𝐸 [𝐸 [∑𝑋𝑖

𝑁

𝑖=1

|𝑁]] 

Given 𝑁 = 𝑛, the inner expectation becomes: 

𝐸 [∑𝑋𝑖

𝑁

𝑖=1

|𝑁 = 𝑛] 

=∑𝐸[𝑋𝑖]

𝑛

𝑖=1

 

= 𝑛𝐸[𝑋] 

Therefore,  

𝐸[𝑆] 

= 𝐸[𝑁. 𝐸[𝑋]] 

= 𝐸[𝑁]. 𝐸[𝑋] 

Thus, the expected value of the compound distribution 𝑆 is 𝐸[𝑁]. 𝐸[𝑋]. 

Theorem: Variance of Compound Distribution 

 The variance of 𝑆 is given by 

𝑉𝑎𝑟 (𝑆) = 𝐸[𝑁]. 𝑉𝑎𝑟(𝑋) + (𝐸[𝑋])2. 𝑉𝑎𝑟(𝑁) 



 
 

This result highlights the contribution of both the variability in the number of events and 

the variability in the size of each event to the overall variance. 

Proof:  Let 𝑆 = ∑ 𝑋𝑖
𝑁
𝑖=1 . To find the variance, we use the law of total variance: 

𝑉𝑎𝑟(𝑆) = 𝐸[𝑉𝑎𝑟(𝑆|𝑁)] + 𝑉𝑎𝑟(𝐸[𝑆|𝑁]) 

First consider, 𝑉𝑎𝑟(𝑆|𝑁 = 𝑛) 

𝑉𝑎𝑟(𝑆|𝑁 = 𝑛) 

= 𝑉𝑎𝑟 (∑𝑋𝑖

𝑛

𝑖=1

) 

= 𝑛. 𝑉𝑎𝑟(𝑋) 

Taking the expectation of this with respect to 𝑁 

𝑉𝑎𝑟(𝑆|𝑁 = 𝑛) 

= 𝐸[𝑁. 𝑉𝑎𝑟(𝑋)] 

= 𝐸[𝑁]. 𝑉𝑎𝑟(𝑋) 

Next consider 𝑉𝑎𝑟(𝐸[𝑆|𝑁]) 

𝑉𝑎𝑟(𝐸[𝑆|𝑁]) 

= 𝑉𝑎𝑟(𝑁. 𝐸[𝑋]) 

= (𝐸[𝑋])2𝑉𝑎𝑟 (𝑁) 

Combining these results, 

𝑉𝑎𝑟 (𝑆) = 𝐸[𝑁]. 𝑉𝑎𝑟(𝑋) + (𝐸[𝑋])2. 𝑉𝑎𝑟(𝑁) 

Theorem: Probability Generating Function 

The probability generating function (PGF) of 𝑆 can be derived using the PGFs of 𝑁 and 𝑋. 

If 𝐺𝑁 (𝑡) and 𝐺𝑋(𝑡) are the PGFs of 𝑁 and 𝑋 respectively, the PGF of 𝑆 is: 



 
 

𝐺𝑆(𝑡) = 𝐺𝑁(𝐺𝑋(𝑡)) 

This property is particularly useful for deriving the distribution of 𝑆 in closed form when 

the PGFs are known. 

Proof: Let 𝑆 = ∑ 𝑋𝑖
𝑁
𝑖=1 . The PGF of S is defined as 

𝐺𝑆(𝑡) = 𝐸[𝑡
𝑆] 

Given the law of total expectation, we have 

𝐺𝑆(𝑡) = 𝐸[𝑡
𝑆] 

= 𝐸[𝐸[𝑡2|𝑁]] 

Given 𝑁 = 𝑛, the inner expectation becomes: 

𝐸[𝑡𝑆|𝑁 = 𝑛] 

= 𝐸[𝑡∑ 𝑋𝑖
𝑛
𝑖=1 ] 

= (𝐸[𝑡𝑋])𝑛 

= (𝐺𝑋(𝑡))
𝑛 

Therefore,  

𝐺𝑆(𝑡) = 𝐸 [(𝐺𝑋(𝑡))
𝑁
] 

= 𝐺𝑁(𝐺𝑋(𝑡)). 

Examples:  

Poisson-Exponential Distribution: Suppose the number of claims 𝑁 follows a Poisson distribution 

with parameter 𝜆, and the size of each claim 𝑋𝑖 follows an exponential distribution with rate 𝜇. 

The total claim size S then follows a compound Poisson-exponential distribution. 

Expectation: 𝐸[𝑆] = 𝜆/𝜇 



 
 

Variance: 𝑉𝑎𝑟(𝑆) = 𝜆/𝜇2 

This model is commonly used in insurance and risk management to assess the total risk 

from multiple claims. 

Negative Binomial-Gamma Distribution: Consider a scenario where the number of events 𝑁 

follows a negative binomial distribution with parameters 𝑟 and 𝑝, and each event magnitude 𝑋𝑖 

follows a gamma distribution with shape parameter 𝛼 and rate parameter 𝛽. The resulting 

distribution 𝑆 is a compound negative binomial-gamma distribution. 

Expectation:  𝐸[𝑆] = 𝑟.
𝛼

𝛽
.
1 − 𝑝

𝑝
  

Variance: 𝑉𝑎𝑟 (𝑆) = 𝑟.
𝛼

𝛽2
. (
1 − 𝑝

𝑝
+
1 − 𝑝

𝑝2
)  

This model is useful in modelling aggregated loss distributions where both the frequency 

and severity of losses are random. 

Binomial-Normal Distribution: Suppose the number of trials 𝑁 follows a binomial distribution 

with parameters 𝑛 and 𝑝, and the outcome of each trial 𝑋𝑖 follows a normal distribution with mean 

𝜇 and variance 𝜎2. The total outcome 𝑆 is a compound binomial-normal distribution. 

Expectation: 𝐸[𝑆] = 𝑛. 𝑝. 𝜇 

Variance: 𝑉𝑎𝑟(𝑆) = 𝑛. 𝑝. (𝜎2 + 𝜇2)(1 − 𝑝) 

This model can be applied in quality control and reliability testing where the number of 

successful trials and their outcomes are of interest. 

Daily Life Examples of Compound Distributions: 

Insurance Claims:  Imagine you have an insurance company. Each day, the number of claims you 

receive is random. For example, on some days, you might receive many claims, while on other 

days, you might receive only a few. Additionally, the amount of money each claim requires to be 

paid out is also random. One day, you might have a few small claims, and another day, you might 

have a few large claims. The total amount of money you pay out in a day is a compound distribution 



 
 

because it depends on both the number of claims (a random number) and the size of each claim 

(also random). 

Grocery Store Checkout: At a grocery store, the number of customers who come to a checkout 

counter in an hour is random. Some hours, many customers might come, while in other hours, 

fewer customers might come. The amount of money each customer spends is also random, as some 

customers buy a lot, and others buy only a few items. The total sales at the checkout counter in an 

hour is a compound distribution because it depends on both the number of customers (random) 

and the amount each customer spends (random). 

Counting Daily Steps: Suppose you track the number of steps you take each day. The number of 

times you go for a walk or move around is random each day. Additionally, the number of steps 

you take each time you walk is also random. The total number of steps you take in a day is a 

compound distribution because it depends on both the number of walking sessions (random) and 

the number of steps in each session (random). 

Weather and Rainfall: Imagine you are interested in how much rain falls in your city each month. 

The number of rainy days in a month is random. Some months have many rainy days, and others 

have only a few. Additionally, the amount of rain that falls on each rainy day is also random. The 

total rainfall in a month is a compound distribution because it depends on both the number of rainy 

days (random) and the amount of rain on each day (random). 

Car Repairs: If you own a car repair shop, the number of cars that need repairs each week is 

random. Some weeks, many cars might come in, while in other weeks, only a few cars might come 

in. The cost to repair each car is also random because some cars need minor repairs, and others 

need major repairs. The total revenue from car repairs in a week is a compound distribution 

because it depends on both the number of cars (random) and the cost of repairing each car 

(random). 

These examples illustrate how compound distributions are present in everyday situations, 

where outcomes depend on a combination of multiple random factors. 

Compound distributions offer a versatile framework for modelling complex stochastic 

processes where outcomes depend on a random number of underlying events. By combining 

different distributions, we can capture the intricacies of real-world phenomena, making compound 



 
 

distributions invaluable in various applications such as insurance, finance, and risk management. 

Understanding the mathematical properties and key results of compound distributions enables us 

to analyse and interpret these models effectively, providing deeper insights into the behavior of 

complex systems under uncertainty. 

11.4   Machine Interference Problem 

The machine interference problem, also known as the repairman problem, is a significant 

topic in operations research and industrial engineering, dealing with scenarios where multiple 

machines operate and occasionally require repair. This problem's study is crucial for optimizing 

system performance and minimizing downtime in manufacturing, telecommunications, and other 

service-oriented industries. 

The origins of the machine interference problem can be traced back to the early 20th 

century with the advent of queuing theory, developed by Agner Krarup Erlang. Erlang's work on 

telephone exchange systems laid the groundwork for understanding how to manage resources in 

systems with random demands. Over the decades, this initial work was extended to more complex 

systems involving multiple machines and repairmen, leading to the formulation of the machine 

interference problem. During the mid-20th century, researchers like D.G. Kendall and J.R. Jackson 

made significant contributions by developing the mathematical frameworks for analysing such 

systems. Kendall introduced the notation for queuing models, and Jackson developed network 

queuing theory, both of which are fundamental to understanding and solving the machine 

interference problem. 

In recent years, the field has seen advancements driven by increased computational power 

and the development of more sophisticated mathematical techniques. Modern approaches leverage 

simulation methods and advanced algorithms to handle more complex and realistic scenarios. 

Techniques such as Monte Carlo simulations, Markov Chain Monte Carlo (MCMC), and 

stochastic optimization have enhanced our ability to model and solve machine interference 

problems effectively. 

Additionally, advancements in data analytics and machine learning have provided new 

tools for predictive maintenance and real-time optimization of repair schedules. These 

technologies enable more precise and efficient management of machine failures and repairs, 

significantly reducing downtime and improving overall system performance. 



 
 

Problem Setup: Consider a system with 𝑚 machines and 𝑟 repairmen. Each machine operates 

independently and can fail according to a Poisson process with rate 𝜆. When a machine fails, it 

requires repair, which takes an exponentially distributed amount of time with rate 𝜇. The objective 

is to analyse the system's performance, focusing on metrics such as the average number of 

machines in operation, the average number of machines under repair, and the average waiting time 

for repair. 

Important Results: 

1. Probability of 𝒌 Machines Operating:  The steady-state probability 𝑃𝑘 that 𝑘 machines 

are operating can be derived using a birth-death process. Let 𝑛 be the number of machines 

operating, where 0 ≤ 𝑛 ≤ 𝑚. 

The birth rate (repair completion) is 𝜇(𝑚 − 𝑛), and the death rate (failure) is 𝜆. 𝑛. The 

steady state probability 𝑃𝑛 is given by: 

𝑃𝑛 =
(
𝜆
𝜇)

𝑛

∑ (
𝑚
𝑘
) (
𝜆
𝜇)

𝑘
𝑚
𝑘=0

. 

Proof: To derive the steady-state probabilities, we use the balance equations of the birth-death 

process. For 𝑛 machines in operation, the rate at which the system moves from 𝑛 to 𝑛 − 1 (due to 

a machine failure) is 𝜆𝑛, and the rate at which it moves from 𝑛 to 𝑛 + 1 (due to a repair completion) 

is 𝜇(𝑚 − 𝑛). 

At steady state, the rate of flow into state 𝑛 equals the rate of flow out of state 𝑛: 

𝜆(𝑛 − 1)𝑃𝑛−1 = 𝜇(𝑚 − 𝑛 + 1)𝑃𝑛 

Rearranging and solving for 𝑃𝑛 

𝑃𝑛 =
𝜆(𝑛 − 1)𝑃𝑛−1
𝜇(𝑚 − 𝑛 + 1)

 

Using the boundary condition 𝑃0 (when all machines are operating): 



 
 

𝑃𝑛 = 𝑃0

(
𝜆
𝜇)

𝑛

∏ (𝑚 − 𝑘 + 1)𝑛
𝑘=1

 

To find 𝑃0, we use the normalisation condition ∑ 𝑃𝑛
𝑚
𝑛=0 = 1 

𝑃0.∑
(
𝜆
𝜇)

𝑛

∏ (𝑚 − 𝑘 + 1)𝑛
𝑘=1

= 1

𝑚

𝑛=0

 

𝑃0 = 
1

∑ (
𝑚
𝑘
) (
𝜆
𝜇)

𝑘
𝑚
𝑘=0

 

And  

𝑃𝑛 =
(
𝜆
𝜇)

𝑛

∑ (
𝑚
𝑘
) (
𝜆
𝜇)

𝑘
𝑚
𝑘=0

. 

2. Expected number of Machines in Operation:  The expected number of machines in 

operation 𝐸[𝑁] can be calculated using the steady state probabilities: 

𝐸[𝑁] = ∑𝑛. 𝑃𝑛

𝑚

𝑛=0

 

Since the distribution is Binomial, we have 

𝐸[𝑁] = 𝑚.
𝜇

𝜆 + 𝜇
 

3. Expected number of Machines Under Repairmen:  The expected number of machines 

under repair 𝐸[𝑅] is obtained as 

𝐸[𝑅] = 𝑚 − 𝐸[𝑁] 

= 𝑚.
𝜆

𝜆 + 𝜇
 



 
 

 

4. Utilization of Repairmen:  The utilization 𝜌 of repairmen is given by  

𝜌 =
𝜆𝑚

𝑟𝜇
 

For a system to be stable, 𝜌 < 1. Ensuring 𝜌<1 guarantees system stability, meaning the repairmen 

can handle the incoming repairs without an infinite backlog. 

The machine interference problem highlights the critical need for efficient resource 

allocation in systems with multiple operational and repairable components. From its early roots in 

queuing theory to recent advancements driven by computational power and data analytics, 

understanding and solving this problem remain essential for optimizing performance and 

minimizing downtime in complex systems. By applying principles from birth-death processes and 

leveraging modern techniques, we can effectively manage and improve the operational efficiency 

of such systems. 

Examples of the Machine Interference Problem 

Home Appliances:  In a household with multiple appliances such as a refrigerator, washing 

machine, dishwasher, and oven, each appliance operates independently but can occasionally break 

down. When an appliance breaks down, it needs to be repaired by a technician. If the household 

has a maintenance contract with a company that sends repairmen, the machine interference 

problem arises. The company needs to allocate its limited number of repairmen to multiple 

households to ensure that appliances are repaired promptly, minimizing the inconvenience to the 

residents. 

IT Support in a Company:  In a large company with hundreds of computers and network devices, 

IT support staff must handle hardware failures, software issues, and network problems. Each 

device or software can fail at random times, requiring the attention of IT personnel. The IT 

department has a limited number of support staff who must prioritize and attend to these issues. 

Efficiently managing the IT support team to minimize downtime for employees' devices and 

systems is an example of solving the machine interference problem. 



 
 

Elevators in a High-Rise Building:  In a high-rise building with multiple elevators, each elevator 

can occasionally break down and require maintenance. The building management has a team of 

technicians responsible for repairing the elevators. Since the elevators break down randomly and 

need to be repaired quickly to ensure smooth operation for residents and employees, the 

management must allocate the repair team efficiently. This situation reflects the machine 

interference problem, where the goal is to minimize the waiting time for elevator repairs and ensure 

the availability of elevators. 

Agricultural Equipment on a Farm:  A large farm uses various machines like tractors, harvesters, 

and irrigation systems, which can break down randomly. The farm employs a limited number of 

mechanics to repair these machines. To keep the farming operations running smoothly, the farm 

must manage the mechanics' workload effectively, ensuring that broken machines are repaired 

quickly and downtime is minimized. This is another instance of the machine interference problem, 

where efficient allocation of repair resources is crucial. 

Hospital Equipment Maintenance:  In a hospital, critical medical equipment such as MRI 

machines, X-ray machines, and ventilators can fail and require repair. The hospital's maintenance 

department has a limited number of technicians who must ensure that the equipment is repaired 

promptly to avoid disruptions in patient care. Managing the repair schedule and prioritizing 

equipment based on urgency and impact on patient care involves solving the machine interference 

problem. 

Manufacturing Plant Operations:  A manufacturing plant operates several machines on the 

production line. These machines can fail randomly and need repair to keep the production process 

running smoothly. The plant has a team of maintenance workers who must attend to the broken 

machines. Efficiently managing the maintenance workers to minimize production downtime and 

maintain a steady flow of operations is a classic example of the machine interference problem. 

These examples illustrate how the machine interference problem is present in various 

aspects of daily life, where multiple operational units can fail randomly and require repair by a 

limited number of maintenance personnel. Efficiently managing these resources ensures minimal 

downtime and smooth operation of the systems involved. 

11.5   Waiting Time Distribution for M/M/1 and M/M/k Models 



 
 

In queuing theory, the M/M/1 and M/M/k models are fundamental for understanding how 

customers (or jobs) are processed in a system with single or multiple servers. These models help 

analyze the waiting time distributions, which are crucial for optimizing service efficiency and 

managing customer satisfaction. 

M/M/1 Model: The M/M/1 model represents a single-server queue with Poisson arrivals and 

exponential service times. Here, "M" stands for "memoryless" (exponential interarrival and service 

time distributions), and "1" indicates a single server. 

Parameters: 

λ: Arrival rate (customers per unit time) 

μ: Service rate (customers served per unit time) 

Queueing time for a customer is the time that lapses between his arrival and the departure on 

completion of his service. 

Theorem 1: For 𝑀/𝑀/1 (∞ , 𝐹𝐼𝐹𝑂) queueing model with 𝜌 < 1, the steady state probability 

distribution of the queueing time is exponential with mean 

1

𝜇(1 − 𝜌)
=

1

𝜇 − 𝜆
. 

Proof: Let 𝑇 be the queueing the for a customer and 𝑔(𝑡) be the pdf of 𝑇. Let 𝑔(𝑡/𝑚) be the 

conditional pdf of 𝑇, given that there are 𝑛 customers on his arrival. Then, we have  

𝑔(𝑡) =  ∑𝑔 (
𝑡

𝑛
) 𝑝𝑛 

∞

𝑛=0

                                                                (7) 

𝑔 (
𝑡

𝑛
) is the pdf of the sum of 𝑛, iid. exponential random variables with mean 1/𝜆 plus the 

remaining service time of the customer being served, which is also exponential (by the memoryless 

property) with mean 1/𝜆. Hence  

𝑔 (
𝑡

𝑛
) =  

𝜇 𝑒−𝜇𝑡 (𝜇𝑡)𝑛

𝑛!
  (0 < 𝑡 < ∞)                                  (8) 



 
 

From (7) and (8), we have 

𝑔(𝑡) 

= 𝜇 𝑒−𝜇𝑡  ∑
(𝜇𝑡)𝑛

𝑛!
𝑝𝑛

∞

𝑛=0

 

= 𝜇 𝑒−𝜇𝑡  ∑
(𝜇𝑡)𝑛

𝑛!
 (1 − 𝜌)𝜌𝑛

∞

𝑛=0

 

=  𝜇 (1 − 𝜌)𝑒−𝜇𝑡 (1−𝑒),     0 < 𝑡 < ∞ 

Hence the theorem follows. 

Waiting Time in the Queue is the time from the arrival of the customer to the beginning of his 

service. Let W be the waiting time in the queue. Then 𝑃(𝑊 = 0) is the probability of no customer 

on his arrival. Obviously 

𝑃(𝑊 = 0) = 1 − 𝜌 

If there is at least one customer on his arrival than he has to wait and the waiting time has the pdf 

𝑔(𝑤) = ∑ℎ(𝑤|𝑛)𝑝𝑛

∞

𝑛=1

 

Here ℎ(𝑤|𝑛)) is the conditional pdf of the waiting time given that there are n customers on his 

arrival. Hence 

𝑔(𝑤) = ∑
𝜇 𝑒−𝜇𝑤 (𝜇𝑤)𝑛−1

(𝑛 − 1)!
 (1 − 𝜌)𝜌𝑛 

∞

𝑛=1

 

= 𝜌(1 − 𝜌)𝜇𝑒−𝜇(1−𝜌)𝑤;    0 < 𝑤 < ∞ 

Therefore, the waiting time 𝑊 has the pdf  



 
 

𝑔(𝑤) = {

0,                                                                         𝑖𝑓 𝑤 < 0 

1 − 𝜌 + ∫ 𝜌(1 − 𝜌)𝜇𝑒−𝜇(1−𝜌)𝑥𝑑𝑥
𝑤

0

, 𝑖𝑓 𝑤 ≥ 0.
                

or 

𝑔(𝑤) = {
0   𝑖𝑓 𝑤 < 0

1 − 𝜌 𝑒−𝜇(1−𝜌)𝑤
               𝑖𝑓 𝑤 ≥ 0. 

Remark: The waiting time distribution for the M/M/k queue is more complex and involves the 

Erlang distribution. The probability that the waiting time 𝑊𝑞 is less than or equal to t is given by 

the cumulative distribution function (CDF) of the Erlang distribution. 

For k servers, the CDF of the waiting time distribution is: 

𝑃(𝑊𝑞 ≤ 𝑡) = 1 − ∑
(𝜇𝑡)𝑛𝑒−𝜇𝑡

𝑛!

𝑘−1

𝑛=0

 

The M/M/1 and M/M/k models are essential tools in queuing theory, providing insights into the 

performance and efficiency of queuing systems. The M/M/1 model is simpler and serves as a 

foundational model, while the M/M/k model addresses more complex scenarios with multiple 

servers. Understanding the waiting time distributions in these models helps in optimizing resource 

allocation, minimizing customer wait times, and improving overall system performance. 

11.6  Summary 

In this unit, we explored the concept of distributions, with a particular focus on compound 

distributions and their applications in real-world scenarios. Compound distributions are essential 

in modelling situations where outcomes depend on a random number of events, such as insurance 

claims or total rainfall in a month. We discussed the mathematical formulation of compound 

distributions, highlighting key results like the expectation and variance, and provided practical 

examples to illustrate these concepts. 

The machine interference problem, a vital topic in operations research, was examined next. 

This problem involves managing multiple machines that can fail and require repair, with a limited 



 
 

number of repairmen available. Historical developments in queuing theory laid the groundwork 

for understanding this problem, while recent advancements have leveraged computational power 

and data analytics to optimize resource allocation and minimize downtime. We derived important 

results such as the expected number of machines in operation and under repair, and the utilization 

of repairmen, providing proofs to solidify understanding. 

The unit also covered the M/M/1 and M/M/k queuing models, and fundamental 

frameworks for analysing systems with single and multiple servers, respectively. For the M/M/1 

model, we discussed key metrics like the average number of customers in the system and queue, 

as well as the waiting time distribution, which follows an exponential pattern. The M/M/k model 

extends these concepts to multiple servers, introducing more complexity but also greater 

applicability to real-world systems. The waiting time distribution in the M/M/k model involves the 

Erlang distribution, reflecting the increased complexity of multi-server systems. 

Throughout the unit, we emphasized the practical applications of these models in various 

industries, from manufacturing and telecommunications to healthcare and IT support. The self-

assessment questions provided aim to reinforce the concepts covered, encouraging further 

exploration and application of these important probabilistic models. 

11.7   Self-Assessment Questions 

1. Define a compound distribution and provide a real-world example. 

2. Explain the machine interference problem and discuss its practical applications. 

3. Derive the expected number of machines in operation in the machine interference problem. 

4. What are the key metrics for the M/M/1 queuing model, and how do they relate to each 

other? 

5. Explain the waiting time distribution for the M/M/1 model and derive the probability that 

the waiting time is less than or equal to a given value. 

6. Compare and contrast the M/M/1 and M/M/k queuing models, highlighting their 

differences in terms of system stability and performance metrics. 

7. Describe the utilization factor in the M/M/k model and its significance for system stability. 

8. Provide a detailed derivation of the average waiting time in the queue for the M/M/k model. 

9. Discuss how advancements in computational methods have impacted the study and 

application of machine interference problems and queuing theory. 



 
 

10. Give examples of modern techniques used to manage and optimize queuing systems in 

real-world applications. 
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12.1   Introduction 

Martingales are a fundamental concept in probability theory and have widespread 

applications in various fields, including finance, stochastic processes, and statistical inference. 

Originating from the study of fair games, the martingale theory has evolved into a powerful 

mathematical framework for analysing and predicting the behaviour of stochastic processes. The 

concept was first formalized in the mid-20th century by the French mathematician Paul Lévy, and 

it was further developed by Joseph Doob, whose work laid the groundwork for modern probability 

theory. 

The history of martingales begins with the study of gambling systems in the 18th and 19th 

centuries. Gamblers were interested in strategies that could maximize their winnings, leading to 

the development of various betting systems. The term "martingale" itself originated from a 

particular betting strategy where the gambler doubles the bet after each loss, aiming to recover all 

previous losses with a single win. However, it was Paul Lévy who, in the early 20th century, 

formalized the idea of martingales within the framework of probability theory. 

Joseph Doob's contributions in the 1940s and 1950s were pivotal. He extended the concept 

of martingales and developed a comprehensive theory that connected them to other areas of 

mathematics, such as measure theory and stochastic processes. Doob's work provided the rigorous 



 
 

mathematical foundation needed to study martingales in a broader context, beyond just gambling 

and betting. 

Martingales are essentially sequences of random variables that represent fair games, where 

the expected future value, given all past information, is equal to the current value. This memoryless 

property makes martingales particularly useful in modelling situations where future predictions 

are based solely on present conditions without any bias from past events. This property also aligns 

well with the concept of "no arbitrage" in financial markets, where the current price of an asset 

should reflect all available information, preventing guaranteed profit without risk. 

In the mid-20th century, martingale theory found significant applications in the field of 

finance. The concept of risk-neutral pricing emerged, where the prices of financial derivatives are 

modelled using martingales. The groundbreaking work of Black, Scholes, and Merton in the 1970s 

on option pricing leveraged martingale theory, leading to the development of the Black-Scholes 

model. This model revolutionized financial engineering by providing a method to price options 

and other derivatives accurately. 

Beyond finance, martingales are used in various other domains. In the realm of gambling 

and betting, martingales model the fairness of games of chance. In the study of stochastic 

processes, martingales are used to describe phenomena ranging from random walks to Brownian 

motion. In statistical inference, martingales provide tools for sequential analysis and hypothesis 

testing. 

Recent developments in martingale theory have been driven by advances in computational 

power and the increasing complexity of applications. Modern financial markets, with their high-

frequency trading and complex derivative products, require sophisticated models that can capture 

intricate dependencies and risks. Computational techniques such as Monte Carlo simulations and 

algorithmic trading strategies often rely on martingale properties to ensure fair and accurate 

pricing. 

In machine learning and data science, martingales have found applications in online 

learning algorithms and adaptive data analysis. The ability to model and predict outcomes in real-

time, updating predictions as new data arrives, aligns well with the principles of martingales. 

Techniques such as the martingale method of sequential hypothesis testing are used to control error 

rates and ensure robust decision-making in dynamic environments. 



 
 

This unit will delve into the theory of martingales, starting with their definition and basic 

properties. We will explore significant theorems, such as Doob's Decomposition Theorem, which 

allows us to break down a sub-martingale into a martingale and a predictable increasing process. 

This decomposition is crucial for understanding the structure and behaviour of more complex 

stochastic processes. 

We will also examine martingale convergence theorems, which provide conditions under 

which martingales converge. These theorems are essential for ensuring the stability and 

predictability of processes modelled by martingales, with implications for long-term predictions 

and assessments. 

Understanding martingales and their properties equips us with powerful tools for analysing 

and modelling uncertainty. Whether in financial markets, where predicting asset prices is critical, 

or in statistical methods, where we make inferences based on sequential data, martingales offer a 

robust framework for dealing with randomness and uncertainty. 

The study of martingales bridges theoretical mathematics and practical applications, 

providing a comprehensive approach to understanding and managing stochastic processes. This 

unit aims to equip you with the knowledge and skills to apply martingale theory to various real-

world problems, enhancing your ability to analyse and make decisions in uncertain environments. 

12.2   Objectives 

The primary objective of this unit is to provide a comprehensive understanding of 

martingales, their properties, and their applications in various fields. By delving into the theory of 

martingales, you will gain a robust foundation in one of the most critical areas of modern 

probability theory. This unit aims to equip you with the ability to define and identify martingales 

in different contexts, understand their underlying properties, and apply these concepts to solve 

complex problems involving stochastic processes. 

A significant focus will be on Doob's Decomposition Theorem, which is fundamental in 

breaking down sub martingales into simpler components. Understanding this theorem will enable 

you to analyse more complex stochastic processes by decomposing them into martingales and 

predictable increasing processes. This decomposition is crucial for many applications, particularly 

in financial modelling and risk management, where it helps in understanding the dynamics of asset 

prices and their behaviour over time. 



 
 

Furthermore, the unit will explore martingale convergence theorems, which are essential 

for determining the long-term behaviour of martingales. By studying these theorems, you will 

learn the conditions under which martingales converge almost surely or in L^(1 )providing a 

framework for making reliable predictions in uncertain environments. This knowledge is 

particularly valuable in fields such as finance, where the convergence of martingales is used to 

model the stability of investment returns and the pricing of derivatives. 

Another objective is to illustrate the practical applications of martingales in various 

domains. In finance, for example, martingales are used to model fair games and the absence of 

arbitrage opportunities, which are foundational concepts in the pricing of options and other 

derivatives. By understanding these applications, you will be able to apply martingale theory to 

real-world financial problems, enhancing your ability to develop effective trading strategies and 

manage financial risks. 

Additionally, the unit aims to provide insights into recent developments and advanced 

topics in martingale theory. This includes exploring how martingales are used in modern 

computational techniques, such as Monte Carlo simulations and algorithmic trading, as well as 

their applications in machine learning and data science. By staying abreast of these advancements, 

you will be well-prepared to leverage martingale theory in cutting-edge research and practical 

applications. 

Ultimately, this unit seeks to foster a deep understanding of martingales and their 

significance in probability theory and beyond. By achieving these objectives, you will be equipped 

with powerful analytical tools for modelling and managing uncertainty, enabling you to make 

informed decisions and solve complex problems in various fields, from finance and economics to 

engineering and data science. 

12.3   Martingales 

Martingales are a fundamental concept in probability theory that describe a specific type 

of stochastic process. The concept originated in the context of gambling and fair games, but it has 

since evolved into a powerful mathematical framework with applications in various fields, 

including finance, economics, and the study of stochastic processes. 

 



 
 

 

Conditional Expectation: Let 𝑋1, 𝑋2, …  be a sequence of random variables and ℱ𝑛 denotes the 

information contained   in 𝑋1, 𝑋2, … , 𝑋𝑛. If Y is a function of 𝑋1, 𝑋2, … , 𝑋𝑛  then 

𝐸(𝑌 | ℱ𝑛) = 𝑌; ∀  𝑌                                                              (1) 

𝐸(𝐸(𝑌 |ℱ𝑛)| ℱ𝑚) =  𝐸(𝑌 |ℱ𝑚)   ∀𝑚 < 𝑛                       (2) 

If 𝑌 is independent of 𝑋1, 𝑋2, … , 𝑋𝑛, then information about 𝑋1, 𝑋2, … , 𝑋𝑛. should not be useful in 

determining 𝑌 

𝐸(𝑌 | ℱ𝑛)  =  𝐸(𝑌)                                                                 (3) 

If 𝑌 is a random variable and 𝑍 is a random variable that is measurable with respect to 

𝑋1, 𝑋2, … , 𝑋𝑛, then 

𝐸(𝑌𝑍|ℱ𝑛) =  𝑍𝐸(𝑌)                                                              (4) 

Example 1: Suppose 𝑋1, 𝑋2, …,  are iid random variables with mean µ and 𝑆𝑛 denote the partial 

sum 

𝑆𝑛 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛.  

Then, for 𝑚 < 𝑛 

𝐸(𝑆𝑛 | ℱ𝑚)  =  𝐸(𝑋1 + 𝑋2+ . . . +𝑋𝑚|ℱ𝑚) + 𝐸(𝑋𝑚+1+ . . . +𝑋𝑛 | ℱ𝑚) 

Since, 𝑋1 + 𝑋2+ . . . +𝑋𝑚  is measurable with respect to 𝑋1, 𝑋2, … , 𝑋𝑚, we obtain 

𝐸(𝑋1 + 𝑋2 + … + 𝑋𝑚|ℱ𝑚) 

= 𝑋1 + 𝑋2 +⋯+ 𝑋𝑚 

= 𝑆𝑚 

Since 𝑋𝑚+1+ . . . +𝑋𝑛 is independent of 𝑋1, 𝑋2, … , 𝑋𝑚, we get 

𝐸(𝑋𝑚+1 + … + 𝑋𝑛 | ℱ𝑚) 

= 𝐸(𝑋𝑚+1 + … + 𝑋𝑛 ) 



 
 

= (𝑛 −𝑚)𝜇 

Therefore,  

𝐸(𝑆𝑛 | ℱ𝑚) = 𝑆𝑚 + (𝑛 −𝑚)𝜇. 

Example 2: Suppose 𝑋1, 𝑋2, …,  and 𝑆𝑛 are as defined in Example 1. Suppose µ = 0 and 

𝑉𝑎𝑟(𝑋𝑖) = 𝐸(𝑋𝑖
2) = 𝜎2. For 𝑚 < 𝑛 we shall have  

𝐸(𝑆𝑛
2|ℱ𝑚) 

= 𝐸[{𝑆𝑚 + (𝑆𝑛 − 𝑆𝑚)}
2|ℱ𝑚] 

= 𝐸(𝑆𝑚
2 |ℱ𝑚) + 2𝐸(𝑆𝑚(𝑆𝑛 − 𝑆𝑚)|ℱ𝑚) + 𝐸((𝑆𝑛 − 𝑆𝑚)

2|ℱ𝑚) 

Since ℱ𝑚 depends only on 𝑋1, 𝑋2, … , 𝑋𝑚  and 𝑆𝑛 − 𝑆𝑚  is independent of 𝑋1, 𝑋2, … , 𝑋𝑚  we have 

𝐸(𝑆𝑚
2 |ℱ𝑚) = 𝑆𝑚

2
 

𝐸((𝑆𝑛 − 𝑆𝑚)
2|ℱ𝑚) 

= 𝐸(𝑆𝑛 − 𝑆𝑚)
2

 

= 𝑉𝑎𝑟(𝑆𝑛 − 𝑆𝑚) 

= (𝑛 −𝑚)𝜎2 

𝐸(𝑆𝑚(𝑆𝑛 − 𝑆𝑚)| ℱ𝑚) 

= 𝐸(𝑆𝑚(𝑆𝑛 − 𝑆𝑚)) 

= 𝑆𝑚𝐸(𝑆𝑛 − 𝑆𝑚) 

= 0  

Therefore, 

𝐸(𝑆𝑛
2|ℱ𝑚) = 𝑆𝑚

2 + (𝑛 −𝑚)𝜎2 

Example 3: Consider a special case of Example 1 where the random variable 𝑋𝑖 has a Bernoulli 

distribution 

𝑃(𝑋𝑖 = 1) = 𝑝, 

 𝑃(𝑋𝑖 = 0) = 1 − 𝑝 



 
 

Again, assume that 𝑚 < 𝑛. For any 𝑖 ≤ 𝑚, consider 𝐸(𝑋𝑖|𝑆𝑛). If 𝑆𝑛 = 𝑘, then there are 𝑘 1’s in 

first 𝑛 trial. Given 𝑆𝑛 = 𝑘, we can show that  

𝑃(𝑋𝑖 = 1|𝑆𝑛 = 𝑘) =
𝑘

𝑛
 

Hence 

𝐸(𝑋𝑖 = 1|𝑆𝑛) =
𝑆𝑛
𝑛

 

and 

𝐸(𝑆𝑚|𝑆𝑛) = 𝐸(𝑋1|𝑆𝑛) + ⋯+ 𝐸(𝑋𝑚|𝑆𝑛) = 𝑆𝑛
𝑚

𝑛
 

Definition: Let 𝑋0, 𝑋1, … be a sequence of random variables and ℱ𝑛 denote the information 

contained in 𝑋1, 𝑋2, … , 𝑋𝑛. We say that a sequence of random variables 𝑀0, 𝑀1, 𝑀2, … with 

𝐸(|𝑀𝑖|) <  ∞ is a martingale with respect to ℱ𝑛 if 

• Each 𝑀𝑛 is measurable with respect to 𝑋0, 𝑋1, … , 𝑋𝑛; 

and 

𝐸(𝑀𝑛|ℱ𝑚) =  𝑀𝑚, ∀ 𝑚 <  𝑛                                   (5) 

• The condition 𝐸(|𝑀𝑖|) < ∞ is needed to guarantee that the conditional expectations are 

well defined. 

• Sometimes we say that 𝑀0, 𝑀1, … is a martingale without referring to the random variables 

𝑋0, 𝑋1, …. It will mean that the sequence {𝑀𝑛} is a martingale with respect to itself where ℱ𝑛 

is the information contained in 𝑀0, 𝑀1, … ,𝑀𝑛. 

Theorem 1: If 𝐸(𝑀𝑛+1 | ℱ𝑛) = 𝑀𝑛  ∀ 𝑛 then 𝑀0, 𝑀1, . .. is a martingale. 

Proof: We have 

𝐸(𝑀𝑛+2|ℱ𝑛) 



 
 

= 𝐸(𝐸(𝑀𝑛+2|ℱ𝑛+1) | ℱ𝑛)  

=  𝐸(𝑀𝑛+1|ℱ𝑛) = 𝑀𝑛 

and so on. Hence in general, 

𝐸(𝑀𝑛 | ℱ𝑚) = 𝑀𝑛, ∀ 𝑚 < 𝑛 

Example 4 : Suppose 𝑋1, 𝑋2, . . ., be independent random variables each with mean µ. Let 𝑆0 = 0 

and for 𝑛 > 0, 𝑆𝑛 be the partial sum 𝑆𝑛 = 𝑋1+. . . +𝑋𝑛, then 𝑀𝑛 = 𝑆𝑛 − 𝑛µ is a martingale with 

respect to ℱ𝑛 (information in 𝑋1, 𝑋2, . . . , 𝑋𝑛). By using Example 1, 

𝐸(𝑀𝑛+1|ℱ𝑛) 

= 𝐸(𝑆𝑛+1 − (𝑛 + 1)µ|ℱ𝑛) 

= 𝐸(𝑆𝑛+1|ℱ𝑛) − (𝑛 + 1)µ  

= (𝑆𝑛 + µ) − (𝑛 + 1)µ 

= 𝑀𝑛 

Example 5:  Suppose 𝑋1, 𝑋2, . . ., are independent random variables with 𝑃(𝑋𝑖 = 1) =

𝑃(𝑋𝑖 = −1) = 1/2. For example, 𝑋𝑖 is a result of a game where one tosses a fair coin and wins 

Rs.1 if the outcome is head and loses Rs.1 otherwise. One way to beat the game is to keep doubling 

our bet until we eventually win. At this point we stop. Let 𝑊0 = 0 and 𝑊𝑛 denote the winning (or 

loses) up to 𝑛 tosses of the coin using this strategy. Whenever we win, we stop playing. Thus, our 

winnings stop changing and 

𝑃(𝑊𝑛+1 = 1|𝑊𝑛 = 1) = 1. 

Suppose tails turned up the first 𝑛 tosses of the coin. After each toss we have doubled our bet, so 

we have lost rupees 1 + 2+. . . +2𝑛−1 = 2𝑛  −1 and 𝑊𝑛 = −(2
𝑛  − 1). At this time we double our 

bet again and wager 2𝑛  on the next toss. This gives 

𝑃(𝑊𝑛+1 = 2
𝑛 − (2𝑛 − 1)|𝑊𝑛 = −(2

𝑛 − 1)) 

= 𝑃(𝑊𝑛+1 = 1|𝑊𝑛 = −(2𝑛 − 1)) 

=
1

2
 



 
 

𝑃(𝑊𝑛+1 = −(2
𝑛+1  − 1)|𝑊𝑛 = −(2

𝑛 − 1)) 

=
1

2
 

𝐸[𝑊𝑛+1|ℱ𝑛] 

=
1

2
× 1 +

1

2
× (−(2𝑛+1 − 1)) 

= −(2𝑛 − 1) 

= 𝑊𝑛.  

Therefore 𝑊𝑛  is a martingale with respect to ℱ𝑛. 

Example 6:  Suppose 𝑋1, 𝑋2, . . ., are as in previous example 5 and on the 𝑛𝑡ℎ toss we make a bet 

equal to 𝐵𝑛. In determining the amount of bet, we may look at the results of the first (𝑛 −  1) 

tosses but cannot look beyond that. Thus, 𝐵𝑛 is a random variable measurable with respect to ℱ𝑛−1. 

We assume that 𝐵1 is a constant. the winning after 𝑛 flips, 𝑊𝑛, are given by 𝑊0 = 0 and 

𝑊𝑛 =∑𝐵𝑗𝑋𝑗

𝑛

𝑗=1

  

For ensuring that the bet at time 𝑛 always less than some constant 𝐶𝑛 assume that 𝐸(|𝐵𝑛|)  <  ∞. 

Then 𝑊𝑛 is a martingale with respect to ℱ𝑛. Now 𝐸(𝐵𝑛) < ∞ ∀𝑛 implies that 𝐸(|𝑊𝑛|)  <  ∞. 

Further, 𝑊𝑛 is ℱ𝑛measurable and 

𝐸(𝑊𝑛+1|ℱ𝑛) 

= 𝐸(∑𝐵𝑗𝑋𝑗|ℱ𝑛

𝑛+1

𝑗=1

) 

= 𝐸(∑𝐵𝑗𝑋𝑗|ℱ𝑛

𝑛

𝑗=1

) + 𝐸(𝐵𝑛+1𝑋𝑛+1|ℱ𝑛) 

Using result (1) of conditional expectations 



 
 

𝐸 (∑𝐵𝑗𝑋𝑗|ℱ𝑛

𝑛

𝑗=1

) =∑𝐵𝑗𝑋𝑗

𝑛

𝑗=1

= 𝑊𝑛 

Again, 𝐵𝑛+1 is ℱ𝑛 measurable. Hence using (3) and (4), we obtain 

𝐸(𝐵𝑛+1𝑋𝑛+1| ℱ𝑛) 

= 𝐵𝑛+1𝐸(𝑋𝑛+1 | ℱ𝑛)  

=  0 

Therefore, 

𝐸(𝑊𝑛+1|ℱ𝑛)  = 𝑊𝑛. 

Example 7 (Pyola’s Urn): Consider an urn with balls of two colors, red and green. Assume that 

there is one ball of each color in the urn. We proceed as follows: 

At each time step, a ball is chosen at random from the urn. If a red ball is chosen, it is 

returned and in addition another red ball is added to the urn. Similarly, if a green ball is chosen, it 

is returned together with another green ball.  

Let 𝑋𝑛 denote the number of red balls in the urn after 𝑛 draws. Then 𝑋0 = 1 and 𝑋𝑛 is a 

(time homogeneous) Markov chain with transitions 

𝑃(𝑋𝑛+1 = 𝑘 + 1|𝑋𝑛 = 𝑘) =
𝑘

𝑛 + 2
 

𝑃(𝑋𝑛+1 = 𝑘|𝑋𝑛 = 𝑘) =
𝑛 + 2 − 𝑘

𝑛 + 2
 

Notice that at time n+1 there are n+2 balls in the urn. Let 

𝑀𝑛 =
𝑋𝑛
𝑛 + 2

 

Then 𝑀𝑛 is the fraction of red balls after 𝑛 draws. Then 𝑀𝑛  is a martingale. We have 

𝐸(𝑋𝑛+1|𝑋𝑛) 



 
 

= 𝑋𝑛
(𝑛 + 2 − 𝑋𝑛)

𝑛 + 2
+ 𝑋𝑛+1

𝑋𝑛
𝑛 + 2

 

=
1

𝑛 + 2
[(𝑛 + 2)𝑋𝑛 + 𝑋𝑛] 

= 𝑋𝑛 +
𝑋𝑛
𝑛 + 2

 

Since this is a Markov chain, all the relevant information in ℱ𝑛 for determining 𝑋𝑛+1 is contained 

in 𝑋𝑛. Therefore, 

𝐸(𝑀𝑛+1|ℱ𝑛) 

= 𝐸((𝑛 + 3)−1𝑋𝑛+1|𝑋𝑛) 

=
1

𝑛 + 3
[𝑋𝑛 +

𝑋𝑛
𝑛 + 2

] 

=
𝑋𝑛
𝑛 + 2

 

= 𝑀𝑛 

Sub-Martingale and Super-Martingale 

Definition: A process 𝑀𝑛  with 𝐸(|𝑀𝑛| < ∞) is called a submartingale (supermartingale) with 

respect to 𝑋0, 𝑋1, …  if ∀ 𝑚 <  𝑛, 

𝐸(𝑀𝑛| ℱ𝑛) ≥ (≤) 𝑀𝑚. 

➢ A sub martingale is a game in one’s favor and a super martingale is an unfair game. 

➢ A martingale is a model of fair game. 

➢ 𝑀𝑛  is a martingale if and only if it is both a sub martingale and a super martingale. 

Optimal Sampling Theorem: 

Theorem 1: (Optional sampling Theorem): Suppose 𝑀0, 𝑀1, ⋯ is a martingale with respect to 

𝑋0, 𝑋1, ⋯ and 𝑇 is a stopping time satisfying 𝑃(𝑇 < ∞) = 1,  



 
 

𝐸(|𝑀𝑛| < ∞)                                                                                    (6) 

lim
𝑛→∞

𝐸 (|𝑀𝑛|𝐼(𝑇 > 𝑛)) = 0                                                            (7) 

Then, 𝐸(𝑀𝑇) = 𝐸(𝑀0). Here 𝐼(∙) is an indicator function. 

Proof: Let 𝐹𝑛 be the information contained in 𝑋0, 𝑋1, ⋯ , 𝑋𝑛 and 𝐼(𝑇 > 𝑛), the indicator function 

of event {𝑇 > 𝑛}, is measurable with respect to ℱ𝑛 (Since we need only the information up to time 

𝑛 to determine if we have stopped by time 𝑛). 𝑀𝑇 is the random variable which equals 𝑀𝑗 if 𝑇 = 𝑗 

we can write 

𝑀𝑇 =∑𝑀𝑗𝐼(𝑇 = 𝑗)

𝐾

𝑗=0

 

𝐸(𝑀𝑇|ℱ𝐾−1) = 𝐸(𝑀𝐾𝐼(𝑇 = 𝐾)|ℱ𝐾−1) +∑𝐸(𝑀𝑗𝐼(𝑇 = 𝑗)|ℱ𝐾−1)

𝐾

𝑗=0

 

For 𝑗 ≤ (𝐾 − 1),𝑀𝑗𝐼(𝑇 = 𝑗) is ℱ𝐾−1 measurable; hence 

𝐸(𝑀𝑗𝐼(𝑇 = 𝑗)|ℱ𝐾−1) 

= 𝑀𝑗𝐼(𝑇 = 𝑗) 

Since 𝑇 is known to be no more than 𝐾, then event {𝑇 = 𝐾} is the same as the event {𝑇 > 𝐾 − 1}. 

The latter event is measurable with respect to ℱ𝐾−1. Hence using eq. (4) 

𝐸(𝑀𝐾𝐼(𝑇 = 𝐾)|ℱ𝐾−1) 

= 𝐸(𝑀𝐾𝐼(𝑇 > 𝐾 − 1)|ℱ𝐾−1) 

= 𝐼(𝑇 > 𝐾 − 1)𝐸(𝑀𝐾|ℱ𝐾−1) 

= 𝐼(𝑇 > 𝐾 − 1)𝐸(𝑀𝐾−1) 

Therefore 

𝐸(𝑀𝑇|ℱ𝐾−1) 



 
 

= 𝐼(𝑇 > 𝐾 − 1)𝐸(𝑀𝐾−1) +∑𝐸 (𝑀𝑗𝐼(𝑇 = 𝑗))

𝐾−1

𝑗=0

 

= 𝐼(𝑇 > 𝐾 − 2)𝐸(𝑀𝐾−2) +∑𝐸 (𝑀𝑗𝐼(𝑇 = 𝑗))

𝐾−2

𝑗=0

 

𝐸(𝑀𝑇|ℱ𝐾−2) 

= 𝐸(𝐸(𝑀𝐾|ℱ𝐾−1)|ℱ𝐾−2) 

= 𝐼(𝑇 > 𝐾 − 3)𝐸(𝑀𝐾−1) +∑𝐸 (𝑀𝑗𝐼(𝑇 = 𝑗))

𝐾−3

𝑗=0

 

We continue this process until we get 𝐸(𝑀𝑇|ℱ0) = 𝑀0. Now, consider the stopping time 𝑇𝑛 =

𝑚𝑖𝑛(𝑇, 𝑛). Then 

𝑀𝑇 = 𝑀𝑇𝑛 +𝑀𝑇𝐼(𝑇 > 𝑛) − 𝑀𝑛𝐼(𝑇 > 𝑛) 

𝐸(𝑀𝑇) = 𝐸(𝑀𝑇𝑛) + 𝐸(𝑀𝑇𝐼(𝑇 > 𝑛)) − 𝐸(𝑀𝑛𝐼(𝑇 > 𝑛)) 

Since 𝑇𝑛 is a bounded stopping time, we have 𝐸(𝑀𝑇𝑛) = 𝑀0, and 𝑃(𝑇 > 𝑛) → 0 as 𝑛 → ∞. If 

𝐸|𝑀𝑇| < ∞ then 𝐸(|𝑀𝑇|𝐼(𝑇 > 𝑛)) → 0.  

If 𝑀𝑛 and 𝑇 are given so that 

lim
𝑛→∞

𝐸 (|𝑀𝑇|𝐼(𝑇 > 𝑛)) = 0 

then, 𝐸(𝑀𝑇) = 𝐸(𝑀0). Hence the theorem follows. 

The third term 𝐸(𝑀𝑇𝐼(𝑇 > 𝑛)) in 𝐸(𝑀𝑇) is troublesome. There are many examples of 

interest where the stopping time 𝑇 is not bounded. 

Consider the Example 5 again. {𝑇 > 𝑛} is the event that the first 𝑛 tosses are tails and has 

probability 2−𝑛. If this event occurs, the bettor has lost a total (2𝑛 − 1) rupees, i.e., 𝑀𝑛 = 1 − 2
𝑛. 

Hence 



 
 

𝐸(𝑀𝑇𝐼(𝑇 > 𝑛)) = 2−𝑛(1 − 2𝑛) 

which does not go to 0 as 𝑛 → ∞. 

Example 8: (Gambler’s ruin problem revisited): Let 𝑋𝑛 be a simple random walk 𝑝 =
1

2
 on 

{0,1,2, … } with absorbing barriers. Suppose 𝑋0  =  𝑎 and 𝑀𝑛 ≡ 𝑋𝑛. Then, 𝑋𝑛 is a martingale. Let 

stopping time 𝑇 =  𝑚𝑖𝑛{𝑗 ∶  𝑋𝑗 = 0 or 𝑁} and since 𝑋𝑛 is bounded, we have, 

𝐸(𝑀𝑇) 

= 𝐸(𝑀0) 

= 𝑎. 

But in this case 

𝐸(𝑀𝑇) 

= 0𝑃(𝑋𝑇 = 0) + 𝑁𝑃(𝑋𝑇  = 𝑁) 

= 𝑁𝑃(𝑋𝑇 = 𝑁) 

Therefore, 

𝑃(𝑋𝑇 = 𝑁) =
𝑎

𝑁
 

This gives another derivation of gambler’s ruin result for simple random walk. 

Example 9:  Let 𝑋𝑛 be as in Example 8 and 𝑀𝑛 = 𝑋𝑛
2 − 𝑛. Then, 𝑀𝑛  is a martingale with respect 

to 𝑋𝑛. By using Example 2 

𝐸(𝑀𝑛+1|ℱ𝑛) 

= 𝐸(𝑋𝑛+1
2 − (𝑛 + 1)|ℱ𝑛) 

= 𝑋𝑛
2 + 1 − (𝑛 + 1) 

= 𝑀𝑛. 



 
 

Consider the stopping time 𝑇 = 𝑚𝑖𝑛{𝑗: 𝑋𝑗 = 0 or 𝑁}. Since 𝑀𝑛  is not a bounded martingale so it 

is not immediate that (6) and (7) hold. However there exists 𝐶 <  ∞ and 𝜌 < 1 such that 

𝑃(𝑇 > 𝑛)  ≤ 𝐶𝜌𝑛. 

Since |𝑀𝑛| ≤ 𝑁2 + 𝑛, 

𝐸(|𝑀𝑛|) < ∞  

and 

𝐸(|𝑀𝑛|𝐼(𝑇 > 𝑛)) 

≤ 𝐶𝜌𝑛(𝑁2 + 𝑛) → 0 

Hence, optional sampling theorem holds and 𝐸(𝑀𝑇) = 𝐸(𝑀0) = 𝑎2. 

𝐸(𝑀𝑇) 

= 𝐸(𝑋𝑇
2) − 𝐸(𝑇) 

= 𝑁2𝑃(𝑋𝑇 = 𝑁) − 𝐸(𝑇) 

= 𝑎𝑁 − 𝐸(𝑇) 

Hence, 𝐸(𝑇)  = 𝑎𝑁 − 𝑎2 = 𝑎(𝑁 − 𝑎). 

12.4   Doob's Decomposition Theorem 

Doob's Decomposition Theorem is a fundamental result in the theory of stochastic 

processes, particularly in the study of sub martingales. It states that any sub martingale can be 

decomposed uniquely into the sum of a martingale and a predictable, increasing process. This 

decomposition is crucial for understanding the structure and behaviour of sub martingales, as it 

allows us to separate the "fair game" component from the trend component. 



 
 

Theorem (Doob's Decomposition): Let {𝑋𝑛} be a sub martingale with respect to a filtration {ℱ𝑛}. 

Then there exists a martingale {𝑀𝑛} and a predictable, increasing process {𝐴𝑛} such that: 𝑋𝑛 =

𝑀𝑛  + 𝐴𝑛 

where {𝐴𝑛} is adapted to {ℱ𝑛}, non-decreasing, and 𝐴0 = 0. 

Proof: Let us construct the processes {𝑀𝑛}  and {𝐴𝑛}  explicitly. 

Constructing the Martingale 𝑀𝑛: Define the martingale {𝑀𝑛}  as follows: 

𝑀𝑛 = 𝑋0 +∑(𝑋𝑘 − 𝐸[𝑋𝑘|ℱ𝑘−1])

𝑛

𝑘=1

 

The term 𝐸[𝑋𝑘|ℱ𝑘−1] is the conditional expectation of 𝑋𝑘 given the information up to time 𝑘 − 1. 

Define the predictable, increasing process {𝐴𝑛} as follows: 

𝐴𝑛 =∑(𝐸[𝑋𝑘|ℱ𝑘−1] − 𝑋𝑘−1)

𝑛

𝑘=1

 

The process 𝐴𝑛 is non-decreasing because each term in the summation is non negative (since {𝑋𝑘} 

is a sub martingale, we have 𝐸[𝑋𝑘|ℱ𝑘−1] ≥ 𝑋𝑘−1). 

We need to verify that 𝑋𝑛 = 𝑀𝑛  + 𝐴𝑛. Substituting the definitions of 𝑀𝑛 𝑎𝑛𝑑 𝐴𝑛, 

We get,  

𝑀𝑛  + 𝐴𝑛 

= (𝑋0 +∑(𝑋𝑘 − 𝐸[𝑋𝑘|ℱ𝑘−1])

𝑛

𝑘=1

) + (∑(𝐸[𝑋𝑘|ℱ𝑘−1] − 𝑋𝑘−1)

𝑛

𝑘=1

) 

= 𝑋0 +∑(𝑋𝑘 − 𝑋𝑘−1)

𝑛

𝑘=1

 

= 𝑋𝑛 



 
 

This leads to 

𝑋𝑛 = 𝑀𝑛  + 𝐴𝑛. 

Thus, we have decomposed the sub martingale {𝑋𝑛} into a martingale {𝑀𝑛} and a 

predictable, increasing process {𝐴𝑛}. This decomposition is unique, given the initial conditions. 

Doob's Decomposition Theorem is crucial in the study of stochastic processes because it 

allows for the separation of the "fair game" component from the trend component in a sub 

martingale. This separation simplifies the analysis and understanding of complex stochastic 

processes. The theorem is widely used in financial mathematics, particularly in the modelling and 

pricing of derivative securities, where understanding the martingale component is essential for 

arbitrage-free pricing. It also finds applications in various fields such as economics, biology, and 

engineering, wherever stochastic modelling is employed. 

Simple Applications Based on Doob's Decomposition Theorem 

Doob's Decomposition Theorem allows us to decompose a sub martingale into a martingale 

and a predictable, increasing process. This decomposition is very useful in various practical 

scenarios where it is important to separate the "fair game" component from the trend or systematic 

component. Here are a few simple applications of Doob's Decomposition Theorem: 

Gambling Strategies: In a gambling context, suppose a player’s total winnings over time can be 

modelled as a sub martingale (indicating that, on average, the player’s winnings tend to increase, 

perhaps due to a favorable betting system). Doob's Decomposition Theorem allows us to separate 

the player's winnings into a part that represents the fair game aspect (martingale) and a part that 

represents the systematic gains (predictable increasing process). 

Application: Let 𝑋𝑛 be the total winnings after 𝑛 rounds. 

Decompose 𝑋𝑛 into 𝑀𝑛 + 𝐴𝑛, where 𝑀𝑛 is the martingale (fair game component) and 𝐴𝑛 

is the predictable, increasing process (systematic gains). By understanding this decomposition, the 

player can evaluate how much of their winnings come from genuine luck (martingale) versus a 

systematic advantage (predictable process). 



 
 

Stock Market Analysis: In financial markets, suppose the value of a stock or portfolio is modelled 

as a sub martingale (indicating a general upward trend). Doob's Decomposition Theorem helps in 

separating the actual investment returns (martingale) from the overall market trend or systematic 

growth (predictable increasing process). 

Application: Let 𝑋𝑛 represent the value of a portfolio at time 𝑛. 

Decompose 𝑋𝑛 into 𝑀𝑛 + 𝐴𝑛, where 𝑀𝑛 is the martingale part representing the fair returns 

and 𝐴𝑛 is the predictable part representing market growth or systematic investment strategy. 

This decomposition helps investors to understand how much of their portfolio's 

performance is due to market trends versus active management. 

Insurance Risk Management:  In an insurance company, the total amount of claims over time can 

be modelled as a sub martingale if the expected claims tend to increase due to factors like inflation 

or increasing risk exposure. Doob's Decomposition Theorem can be used to separate the random 

fluctuation of claims (martingale) from the predictable increase in claims (predictable increasing 

process). 

Application: Let 𝑋𝑛 be the total claims by the end of year 𝑛. 

Decompose 𝑋𝑛 into 𝑀𝑛 + 𝐴𝑛, where 𝑀𝑛 is the martingale representing the random 

component of claims and 𝐴𝑛 is the predictable increasing process representing the systematic 

growth in claims. This helps the insurance company to better predict future claims and manage 

risk by distinguishing between random variations and systematic trends. 

Project Management: In project management, the cumulative cost of a project can sometimes be 

modelled as a sub martingale if costs tend to increase due to unforeseen events or systematic cost 

overruns. Doob's Decomposition Theorem can separate the fair component of cost (martingale) 

from the predictable cost increases (predictable increasing process). 

Application: Let 𝑋𝑛  be the cumulative cost of the project after 𝑛 months. 

Decompose 𝑋𝑛 into 𝑀𝑛 + 𝐴𝑛, where 𝑀𝑛 is the martingale part representing unpredictable 

cost changes and 𝐴𝑛 is the predictable increasing part representing expected cost overruns. 

This decomposition allows project managers to differentiate between unexpected costs and 

systematic budget increases, aiding in better financial planning and control. 



 
 

Quality Control in Manufacturing: In a manufacturing process, the number of defective items 

produced over time can be modelled as a sub martingale if defects tend to increase due to 

machinery wear or other factors. Doob's Decomposition Theorem helps separate the random defect 

occurrences (martingale) from the predictable increase in defects (predictable increasing process). 

Application: Let 𝑋𝑛  be the total number of defects detected by the end of day 𝑛. Decompose 𝑋𝑛  

into 𝑀𝑛 + 𝐴𝑛, where 𝑀𝑛 is the martingale part representing random defects and 𝐴𝑛 is the 

predictable increasing process representing systematic increases in defects. 

This helps the quality control team to identify and address underlying issues causing 

systematic increases in defects, improving overall product quality. 

These simple applications illustrate how Doob's Decomposition Theorem can be used in 

practical scenarios to separate random fluctuations from systematic trends, providing valuable 

insights for decision-making and strategy development. 

12.5   Martingale Convergence Theorems 

Martingale convergence theorems are fundamental results in probability theory that 

provide conditions under which martingales converge. These theorems have significant 

implications for the analysis and long-term behaviour of stochastic processes. We will discuss two 

primary convergence theorems: the Martingale Convergence Theorem and the 𝐿𝑝 Convergence 

Theorem. 

Martingale Convergence Theorem: The Martingale Convergence Theorem states that if a 

martingale is bounded in 𝐿1, it converges almost surely. 

Theorem: Let {𝑋𝑛} be a martingale with respect to a filtration {ℱ𝑛}. If {𝑋𝑛} is bounded in 𝐿1 i.e. 

sup𝑛 𝐸‖𝑋𝑛‖ < ∞, then there exists a random variable 𝑋 such that 𝑋𝑛 → 𝑋 almost surely as 𝑛 →

∞. 

Proof: Since, {𝑋𝑛} is bounded in 𝐿1 it is uniformly integrable. Uniform integrability ensures that 

the sequence does not lose mass at infinity, which is a necessary condition for convergence. 

Construct a non-negative sub martingale {𝑌𝑛} 𝑓𝑟𝑜𝑚 {𝑋𝑛} such that 𝑌𝑛 = |𝑋𝑛| +

∑ 𝐸[|𝑋𝑘+1 − 𝑋𝑘||ℱ𝑛|]
𝑛−1
𝑘=0 . The term ∑ 𝐸[|𝑋𝑘+1 − 𝑋𝑘||ℱ𝑛|]

𝑛−1
𝑘=0  ensures that {𝑌𝑛} is increasing. 



 
 

By the Sub martingale Convergence Theorem, since {𝑌𝑛} is non-negative and increasing, 

it converges almost surely to a limit 𝑌.  

Using the fact that {𝑋𝑛} is uniformly integrable and {𝑌𝑛} converges, it follows that {𝑋𝑛} 

almost surely to a random variable 𝑋. 

𝑳𝟐  Martingale Convergence Theorem:  The 𝐿2 Martingale Convergence Theorem provides a 

convergence result under the assumption that the martingale is bounded in 𝐿2. 

Theorem: Let {𝑋𝑛} be a martingale with respect to a filtration {ℱ𝑛}. If {𝑋𝑛} is bounded in 𝐿2 , i.e., 

sup𝑛 𝐸[𝑋𝑛
2] < ∞, then there exists a random variable 𝑋 in 𝐿2  such that 𝑋𝑛 → 𝑋 almost surely and 

in 𝐿2 as 𝑛→∞. 

Proof: Since {𝑋𝑛} is bounded in 𝐿2, it is also bounded in 𝐿1. This implies uniform integrability, 

which is necessary for almost sure convergence.  

Show that {𝑋𝑛} is a Cauchy sequence in 𝐿2 for 𝑚 ≥ 𝑛. 

E[(Xm − Xn)
2] 

= E [∑(Xk+1 − Xk)
2|

m−1

k=n

ℱn}. ] 

≤ supnE[Xn
2] < ∞ 

Since convergence in 𝐿2 implies convergence in probability, and uniform integrability ensures 

almost sure convergence, {𝑋𝑛} converges almost surely to 𝑋. 

12.6   Summary 

In this unit, we explored the fundamental concepts and theorems related to martingales, an 

essential topic in probability theory. Martingales represent a sequence of random variables 

modelling fair games, where the future expected value, given the present, is equal to the current 

value. This property has made martingales a powerful tool in various fields, including finance, 

where they are used to model stock prices and derivative pricing under the assumption of no 

arbitrage. 



 
 

We began by defining martingales, sub martingales, and super martingales, highlighting 

their key properties and providing simple examples such as gambling games and stock prices. The 

Doob's Decomposition Theorem was introduced, which allows us to decompose a sub martingale 

into a martingale and a predictable, increasing process. This theorem is instrumental in 

understanding the behaviour of stochastic processes and separating systematic trends from random 

fluctuations. 

The unit also covered the Martingale Convergence Theorem and the 𝐿2 Martingale 

Convergence Theorem. These theorems provide conditions under which martingales converge 

almost surely or in 𝐿2, respectively. The convergence theorems are crucial for predicting the long-

term behaviour of processes modelled by martingales, with significant implications for financial 

modelling, risk management, and other applications. 

Examples were provided to illustrate the practical applications of these theorems, such as 

in gambling strategies, stock market analysis, insurance risk management, project management, 

and quality control in manufacturing. These examples demonstrate how martingale theory can be 

applied to real-world problems, providing a robust framework for analysing and managing 

uncertainty. 

Understanding martingales and their convergence properties equips us with essential tools 

for modelling stochastic processes, making informed decisions, and solving complex problems in 

various domains. The insights gained from this unit are foundational for further studies and 

applications in probability theory and related fields. 

12.7   Self-Assessment Questions 

1. Define a martingale and provide an example from a real-world application. 

2. Explain Doob's Decomposition Theorem and its significance in the theory of 

martingales. 

3. State and prove the Martingale Convergence Theorem. 

4. What is the difference between a sub martingale and a super martingale? 

5. Provide a simple application of Doob's Decomposition Theorem. 

6. Describe the 𝐿2 Martingale Convergence Theorem and its implications. 

7. Give an example of a stochastic process that can be modeled as a martingale. 

8. Discuss how martingales are used in financial modeling. 



 
 

9. How does uniform integrability relate to martingale convergence? 

10. Explain the importance of martingale theory in the context of risk management. 
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Block & Units Introduction 
 

The Block – 4 - Applied Stochastic Process is the last fourth block of said SLM, which is 

divided into three units. 

The Unit – 13 - Homogeneous Process deals with the random variable technique, 

homogeneous birth and death process, divergent birth process, the general birth and death process, 

multiplicative process, effect of immigration for homogeneous process. 

The Unit – 14 - Non-Homogeneous Process is discussed about Simple non homogeneous 

process, Polya process, effect of immigration for non-homogeneous process, Diffusion, Backward 

Kolmogorov diffusion equation, Fokker-Planck equation. 

The unit of this SLM is Unit – 15 – Non-Markovian Process is discussed about Some 

multi-dimensional prey and predator, Non-Markovian Process, Embedded Markov Process, 

Application to population growth, epidemic and counter models. 

At the end of every block/unit the summary, self-assessment questions are given. 

 

 

  



 
 

UNIT -13:   HOMOGENEOUS PROCESS 

Structure 

13.1 Introduction 

13.2 Objectives 

13.3 Forward and Backward equations for homogeneous case 

13.4 Random Variable Technique 

13.5 Homogeneous Birth and Death Process 

13.6 Divergent Birth Process 

13.7 General Birth and Death Process 

13.8 Multiplicative Process 

13.9 Effect of immigration for Homogeneous Process 

13.10 Summary 

13.11 Self-Assessment Questions 

13.12 References 

13.13 Further Reading 

13.1   Introduction 

In the realm of stochastic processes, the concept of homogeneity plays a crucial role in 

simplifying and understanding complex systems that evolve over time. Unit 13, titled 

"Homogeneous Process," is dedicated to exploring this pivotal concept and its applications in 

various fields. This unit will delve into the mathematical and theoretical aspects of homogeneous 

stochastic processes, providing a solid foundation for understanding how these processes are 

characterized and analysed. 

A homogeneous process, by definition, is a type of stochastic process where the probability 

distribution governing the process is time-invariant. This means that the statistical properties of 

the process do not change over time, making it easier to model and predict. Such processes are 

ubiquitous, finding applications in diverse fields such as physics, biology, finance, and 

engineering, where they help in modelling everything from particle movements in a fluid to 

population dynamics and financial market fluctuations. 



 
 

The unit begins by laying a foundation with an overview of homogeneous processes, followed 

by specific objectives aimed at building a deep understanding of the topic. We will explore the 

fundamental equations governing these processes, namely the forward and backward equations, 

which are essential for modelling and analysing time-evolution in these systems. 

A significant portion of the unit is devoted to understanding various types of homogeneous 

processes, such as birth and death processes, which are models for systems where events occur at 

random times. We will also delve into the divergent birth process, a complex variant where the 

birth rate diverges, and the general birth and death process, which provides a more comprehensive 

model. 

The unit will also cover the multiplicative process, another crucial type of homogeneous 

process, and the impact of external factors like immigration on these systems. This is particularly 

relevant in real-world scenarios where external influences play a significant role in the dynamics 

of the system. 

As we progress, the unit will employ the random variable technique, a powerful tool in the 

analysis of stochastic processes. This approach helps in simplifying complex processes into 

manageable mathematical models, enabling us to derive meaningful conclusions and predictions. 

Towards the end, the unit includes self-assessment questions to test your understanding and 

comprehension of the concepts. We also provide an extensive list of references for further reading 

and exploration, and a summary to reinforce the key points covered. 

By the end of this unit, learners will have gained a comprehensive understanding of 

homogeneous processes, equipped with the knowledge to apply these concepts to real-world 

scenarios and further academic study. Whether you are a student, a researcher, or a professional, 

this unit will provide valuable insights into the fascinating world of stochastic processes. 

13.2  Objectives 

Objective 1: Understanding the Basic Concepts of Homogeneous Processes 

Defining Homogeneous Processes: Clarifying the definition of a homogeneous process in the 

context of stochastic processes, emphasizing its time-invariance characteristic. 

Understanding Time-Invariance: Exploring the concept of time invariance in more depth, 

explaining how the statistical properties of the process remain constant over time. 



 
 

Differentiating Homogeneous from Non-Homogeneous Processes: Highlighting the differences 

between homogeneous and non-homogeneous processes, with examples to illustrate these 

distinctions. 

Basic Mathematical Formulation: Introducing the fundamental mathematical formulations used 

in modelling homogeneous processes, including probability distributions and expected values. 

Objective 2: Learning About Various Types of Homogeneous Processes and Their 

Characteristics 

Birth and Death Processes: Delving into one of the most common types of homogeneous 

processes. Discussing how these processes model systems where events, such as births and deaths, 

occur randomly over time. 

Divergent Birth Processes: Exploring a more complex variant of birth processes where the birth 

rate can diverge, analysing its characteristics and implications. 

General Birth and Death Processes: Expanding the concept of birth and death processes to more 

general and diverse scenarios, including variable rates and multiple states. 

Multiplicative Processes: Introducing and defining multiplicative processes, common in finance 

and economics, and discussing their unique characteristics and applications. 

Homogeneous Processes with Immigration: Investigating how external factors like immigration 

affect homogeneous processes, and understanding the resulting changes in the system's dynamics. 

Real-World Applications: Providing examples from various fields such as biology, finance, 

physics, and engineering to illustrate the practical applications and relevance of homogeneous 

processes. 

Objective 3: Supporting Learning Objectives 

Developing Analytical Skills: Enhancing the ability to analyse and interpret the behaviour of 

homogeneous processes through mathematical and statistical methods. 



 
 

Problem-Solving and Modelling: Fostering skills in developing and solving models of 

homogeneous processes relevant to real-world scenarios. 

Critical Thinking and Application: Encouraging learners to apply theoretical knowledge to 

practical situations, enhancing critical thinking skills. 

These objectives are designed to provide a comprehensive understanding of homogeneous 

processes, ensuring that learners not only grasp the theoretical aspects but also develop the ability 

to apply this knowledge practically. By the end of this section, students should be able to recognize, 

model, and analyse various types of homogeneous processes, and appreciate their significance in 

both academic studies and real-world applications. 

13.3   Forward and Backward Equations for Homogeneous Case 

This section of the unit deals with the mathematical backbone of homogeneous stochastic 

processes, focusing on the derivation and understanding of both forward and backward equations. 

These equations are pivotal in describing the evolution of probabilities in a stochastic process over 

time. 

Forward Equations in Homogeneous Processes 

Concept and Relevance: The forward equations, also known as the Kolmogorov forward 

equations, are fundamental in the study of homogeneous processes. They describe how the 

probability distribution of a process evolves forward in time. 

Derivation of Forward Equations: Deriving the forward equations, also known as the 

Kolmogorov forward equations, for a continuous-time stochastic process involves several steps. 

These equations describe how the probability distribution of the process evolves over time. Let's 

focus on a continuous-time Markov chain as an example to derive these equations. 

Preliminaries 

Markov Property: A process X(t) is Markovian if the future state depends only on the current state, 

not on the past states. 

State Space: Assume the process has a countable state space S. 



 
 

Transition Probabilities: Define 𝑃𝑖𝑖(𝑡)=P(X(t+s) = j ∣X(s)=i), the probability that the process 

moves from state i to state j in time t. 

Chapman-Kolmogorov Equation 

The Chapman-Kolmogorov equation relates the probabilities over different time intervals: 

𝑃𝑖𝑗(𝑡 + 𝑢) =∑𝑃𝑖𝑘(𝑡)𝑃𝑘𝑗(𝑡)

𝑘∈𝑆

 

This equation is a consequence of the Markov property, integrating over all possible 

intermediate states k. 

Derivation of Forward Equations 

1. Infinitesimal Transition Probabilities: Consider the probabilities of transitions over a very 

small-time interval  

         Δt: 𝑃𝑖𝑘(∆𝑡) = 1 − 𝜆𝑖  

       Δt+o(Δt), where λi is the rate of leaving state i, and o(Δt) denotes higher-order small terms. 

𝑃𝑖𝑗(∆𝑡)=𝑞𝑖𝑗(∆𝑡)+o(Δt) for i not equal to j,  

where 𝑞𝑖𝑗  is the rate of transitioning from i to j. 

2. Applying Chapman-Kolmogorov Equation 

𝑃𝑖𝑗(∆𝑡) =∑𝑃𝑖𝑘(∆𝑡)𝑃𝑘𝑗(∆𝑡)

𝑘∈𝑆

 

Expand and rearrange terms to get 

𝑃𝑖𝑗(𝑡 + ∆𝑡) − 𝑃𝑖𝑗(𝑡) =∑𝑃𝑖𝑘(𝑡)𝑞𝑘𝑗(∆𝑡) − 𝜆𝑖𝑃𝑖𝑗(𝑡)∆𝑡 + 𝑜(∆𝑡)

𝑘≠𝑖

 

 



 
 

3. Taking the limit: To form the differential equation, take the limit as ∆𝑡 → 0 

log∆𝑡→0
𝑃𝑖𝑗(𝑡 + ∆𝑡) − 𝑃𝑖𝑗(𝑡)

∆𝑡
= log∆𝑡→0 (∑𝑃𝑖𝑘(𝑡)𝑞𝑘𝑗 − 𝜆𝑖𝑃𝑖𝑗(𝑡) +

𝑜(∆𝑡)

∆𝑡
𝑘≠𝑖

) 

4. Kolmogorov Forward Equation: Simplifying, we get the forward equation 

𝑑𝑃𝑖𝑗(𝑡)

𝑑𝑡
=∑𝑃𝑖𝑘(𝑡)𝑞𝑘𝑗 − 𝜆𝑖𝑃𝑖𝑗(𝑡)

𝑘≠𝑖

 

The Kolmogorov forward equation describes how the probability of transitioning from 

state i to state j changes over time. The term ∑ 𝑃𝑖𝑘(𝑡)𝑞𝑘𝑗𝑘≠𝑖  represents the rate of entering state j 

from all other states, and 𝜆𝑖𝑃𝑖𝑗(𝑡) represents the rate of leaving state j. 

This derivation assumes a basic understanding of calculus and probability theory, and it 

provides the foundation for analysing continuous-time Markov chains and other types of stochastic 

processes. 

Examples and Application: Illustrate the application of forward equations with practical 

examples, such as simple birth and death processes or Markov chains. 

Backward Equations: Concept and Mathematical Formulation 

Introduction to Backward Equations: While forward equations provide a future view of 

probabilities, backward equations, or Kolmogorov backward equations, offer a way to look 

backward in time. They are particularly useful in scenarios where conditioning on the present state 

is essential. 

Mathematical Formulation of Backward Equations:   

• Describe the process of conditioning on the current state and its implications for probability 

calculations.  

• Present the mathematical derivation of backward equations, starting with the basic 

principles and leading to the formal expression. 



 
 

• Explain the relationship between forward and backward equations and how they 

complement each other in the analysis of stochastic processes. 

Real-World Examples: Use real-world scenarios to demonstrate how backward equations are 

applied in practice, such as in financial modelling or in computing the probability of certain events 

in a time-reversed manner. 

Comparative Analysis 

Comparing Forward and Backward Equations: Discuss the differences in application and 

interpretation between the two types of equations, providing a comprehensive understanding of 

when and why each type is used. 

Practical Implications: Emphasize the practical implications of understanding both types of 

equations in modelling and predicting the behaviour of homogeneous stochastic processes. 

This section is designed to equip learners with a thorough understanding of both forward and 

backward equations in homogeneous processes. By understanding these fundamental tools, 

students can better analyse and model various stochastic processes, an essential skill in many 

scientific and engineering fields. 

EXAMPLES 

Example 1: Simple Birth Process: Imagine a population where individuals reproduce at a 

constant rate, and there are no deaths. Let us denote λ as the constant birth rate. 

Forward Equation: The forward equation for this process is derived from the Kolmogorov 

forward equations. If 𝑃𝑛(𝑡) is the probability of having n individuals at time 𝑡, the forward equation 

is: 

𝑑𝑃𝑛(𝑡)

𝑑𝑡
 =λ𝑃𝑛−1(𝑡))−λ𝑃𝑛(𝑡) 

This equation reflects that the rate of change in the probability of having n individuals is 

influenced by the birth rate from the previous state n−1 and the rate leaving the current state 𝑛. 



 
 

Backward Equation:  The backward equation, however, is not typically used in this scenario as 

there are no transitions backward (i.e., no deaths). 

Example 2: Queueing System with Arrivals and Services:  Consider a queue where customers 

arrive at a rate of λ and are served at a rate of μ. This is a birth-death process where arrivals are 

'births' and services are 'deaths'. 

Forward Equation: The forward equation in this scenario is: 

𝑑𝑃𝑛(𝑡)

𝑑𝑡
=λ𝑃𝑛−1(𝑡) −(λ+μ) 𝑃𝑛(𝑡) +μ𝑃𝑛+1(𝑡) 

This equation represents the balance between the rate of customers arriving and being served. 

It incorporates the probabilities of moving to state n from n−1 (arrival) and moving away from 

state n to n+1 (service) or n−1 (next customer served). 

Backward Equation: The backward equation for this system would provide insights into how the 

probability of being in a certain state at a specific time depends on the initial state of the system. 

However, in most practical queueing models, the forward equation is more commonly used for 

analysis. 

These examples demonstrate the practical application of forward equations in different 

homogeneous processes. Forward equations are especially useful in scenarios where 

understanding the evolution of a system over time is crucial, such as in population dynamics or 

queueing theory. The backward equations, while less commonly used in these specific examples, 

are invaluable in other contexts where understanding how past states influence current 

probabilities is necessary. 

13.4   Random Variable Technique 

This section covers the application of random variable techniques in the study of 

homogeneous processes. Random variables are fundamental in probabilistic modelling and 

provide a powerful tool for describing and analysing the behaviour of stochastic systems. 

Introduction to Random Variables in Homogeneous Processes 



 
 

Definition of Random Variables: A random variable is a function that assigns a real number to 

each outcome in a sample space of a random experiment. In the context of stochastic processes, 

random variables are used to represent the state of the process at different points in time. 

Homogeneous Processes: In a homogeneous process, the statistical properties (like the mean, 

variance, etc.) of the process do not change over time. This time-invariance property simplifies the 

use of random variables in analysis and prediction. 

Role of Random Variables: Random variables are used to model various aspects of homogeneous 

processes, such as waiting times, the number of occurrences of an event, or the state of a system 

at a particular time. 

Probability Distributions: Discussing how different probability distributions (like Poisson, 

exponential, or normal distributions) can be used to model different types of homogeneous 

processes. 

Examples of Random Variable Techniques in Real-World Scenarios 

Queueing Theory: 

Example: Modelling customer arrival and service times in a queue. 

Application: Using exponential random variables to model the time between arrivals (inter-arrival 

times) and service times in a queueing system, which is often a Poisson process. 

Reliability Engineering: 

Example: Assessing the reliability of a system over time. 

Application: Employing exponential random variables to model the lifetime of components in a 

system. This can help in predicting the time until failure of a component or the entire system. 

Population Dynamics: 

Example: Modelling the growth of a biological population. 



 
 

Application: Using birth and death processes (which are specific types of Markov processes) to 

model population dynamics. Here, random variables can represent the number of individuals in a 

population at a given time. 

Finance and Risk Management: 

Example: Modelling stock prices or interest rates over time. 

Application: Implementing geometric Brownian motion, a continuous-time stochastic process, 

where the logarithm of the price follows a Brownian motion (or Wiener process). This involves 

using random variables to represent the price of a stock at different times. 

Epidemiology: 

Example: Spread of infectious diseases. 

Application: Utilizing random variables to model the number of infected individuals over time in 

a population. The spread of disease can often be modelled as a branching process, which is a type 

of Markov process. 

In each of these examples, the random variable technique simplifies complex real-world 

phenomena into a mathematical framework that can be analysed and used for prediction. This 

section aims to provide learners with a clear understanding of how random variables are applied 

in various fields to model and analyse homogeneous processes. 

13.5  Homogeneous Birth and Death Process 

This section focuses on the homogeneous birth and death process, a fundamental concept in 

stochastic processes. We shall explore the definition, characteristics, and practical applications of 

these processes. 

Definition and Characteristics of Birth and Death Processes 

Birth and Death Processes Defined: In stochastic modelling, a birth and death process is a type 

of continuous-time Markov chain that models two types of transitions: "births", which increase the 

state by one, and "deaths", which decrease the state by one. 



 
 

Homogeneity in Birth and Death Processes: In homogeneous birth and death processes, the rates 

of births and deaths are constant over time, making the process time-invariant. This means the 

probability of a birth or death occurring in a small interval of time is proportional to the length of 

the interval, independent of when the interval occurs. 

State Space: Typically, the state space for these processes is the set of non-negative integers, 

where each state represents the number of entities (such as individuals in a population or customers 

in a queue). 

Analysis of Homogeneous Birth and Death Processes 

Transition Rates: The transition rates in a homogeneous birth and death process are denoted as 

𝜆𝑛 for births (transition from state n to n+1) and 𝜇𝑛 for deaths (transition from state n to (n−1). 

Differential Equations: The Kolmogorov forward and backward equations can be applied to 

derive the differential equations governing the probabilities of being in each state over time. 

Steady-State Analysis: In some cases, these processes reach a steady state where the state 

probabilities remain constant over time. Calculating the steady-state probabilities involves solving 

a system of linear equations derived from the transition rates. 

In other words, it can write as 

State Space: Let us denote the state of the process at time t by X(t), where X(t)∈{0,1,2,3,...}. Each 

state represents the number of entities (like individuals in a population). 

Transition Rates: Birth Rates (𝜆𝑛): The rate at which the process transitions from state n to n+1. 

It's the rate of adding an entity. 

Death Rates (𝝁𝒏): The rate at which the process transitions from state n to n−1. It's the rate of 

losing an entity. 

Homogeneity: In a homogeneous process, these rates (𝜆𝑛 and 𝜇𝑛) are constant over time, though 

they may depend on the state n. 



 
 

Kolmogorov Forward Equations: For the probability  𝑃𝑛 (t)= 𝑃(𝑋(𝑡) = 𝑛) of being in state n at 

time t, the forward equations are given by: 

𝑑𝑃𝑛 (t)

𝑑𝑡
= 𝜆𝑛−1𝑃𝑛−1 − (𝜆𝑛 + 𝜇𝑛)𝑃𝑛 + 𝜇𝑛+1𝑃𝑛+1  

This equation says that the rate of change of the probability of being in state n is the sum of: 

• The rate of entering state n from n−1 (births). 

• The rate of leaving state n to either n+1 (births) or n−1 (deaths). 

Initial Conditions: Typically, 𝑃𝑛 (0) is given for all n, which represents the probability distribution 

of the states at time t=0. 

Steady-State Analysis: If a steady-state exists, the probabilities 𝑃𝑛  become time-independent, and 

the system of equations simplifies to a balance equation: 

𝜆𝑛−1𝑃𝑛−1 = (𝜆𝑛 + 𝜇𝑛)𝑃𝑛 − 𝜇𝑛+1𝑃𝑛+1  

This set of equations can be solved to find the steady-state probabilities 𝑃𝑛 . 

Example Application: consider a queue where customers arrive at a rate 𝜆 and are served at a rate 

𝜇. If there is only one server, then 𝜆𝑛 = 𝜆 𝑎𝑛𝑑 𝜇𝑛 = 𝜇 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛. 

the forward equations for this system becomes: 

𝑑𝑃𝑛 (t)

𝑑𝑡
= 𝜆𝑛−1𝑃𝑛−1 − (𝜆𝑛 + 𝜇𝑛)𝑃𝑛 + 𝜇𝑛+1𝑃𝑛+1  

By solving these equations with appropriate initial conditions, one can determine the 

probability of having n customers in the queue at any time t. 

This mathematical formulation provides a powerful tool for analysing systems where events 

occur randomly but with constant rates, as in the case of homogeneous birth and death processes. 

Examples of Homogeneous Birth and Death Processes 



 
 

Population Dynamics: Modelling animal populations where individuals are born and die at 

constant rates. For example, a simple model might assume everyone in the population has the same 

birth and death rate, irrespective of the population size. 

Queueing Systems: In a customer service scenario, new customers arrive (births) at a service 

centre, and customers are served and leave the queue (deaths). If the arrival and service rates are 

constant, this can be modelled as a homogeneous birth and death process. 

Epidemiology: Modelling the spread of a disease, where an infection is considered a birth and 

recovery or death as a death. This application becomes more complex if the rates of infection and 

recovery are influenced by external factors or if they vary over time. 

Homogeneous birth and death processes are widely used in various fields to model systems 

where entities are born and die at constant rates. Here are a couple of examples to illustrate the 

application of homogeneous birth and death processes: 

Example 1: Population Dynamics 

Consider a simple ecological model where a species in an isolated environment reproduces 

and dies at constant rates. Let us denote λ as the constant birth rate per individual and μ as the 

constant death rate per individual. 

Modelling:  In this model, the rate of change in the population depends solely on the current 

population size. 

If n represents the number of individuals in the population at a given time, the transition 

rate from state n to n+1 (birth) is nλ, and from n to n−1 (death) is nμ. 

The system can be described by a set of differential equations based on these rates, which 

will govern the probability of the population being at a certain size over time. 

Example 2: Queueing Theory:  Imagine a customer service centre where customers arrive 

randomly to be served by clerks. Assume customers arrive at a rate λ (a 'birth') and are served at a 

rate μ (a 'death'). 

Modelling: Here, the 'state' of the system can be represented by the number of customers in the 

queue. 



 
 

The arrival of a new customer increases the number in the queue, while the completion of 

service decreases it. 

The transition rates are λ for arrivals (regardless of the current state, as each arrival is 

independent) and nμ for services (assuming each clerk serves at rate μ and there are n clerks, each 

serving one customer). 

This queue can be modelled as a birth and death process, and the steady-state probabilities 

(if they exist) can tell us useful information like the average number of people in the queue or the 

average waiting time. 

These examples showcase how homogeneous birth and death processes are used to model real-

world systems where the events (births and deaths) occur randomly but at constant rates. In the 

population dynamics model, it helps in understanding species growth under ideal conditions, while 

in queueing theory, it aids in optimizing customer service operations. 

13.6  Divergent Birth Process 

The concept of a divergent birth process is an intriguing area within stochastic processes, 

particularly in the study of birth processes where the birth rate is not constant and can increase 

without bound under certain conditions. 

Explanation of Divergent Birth Processes 

Basic Concept: Unlike a traditional birth process where the birth rate remains constant or changes 

in a controlled manner, in a divergent birth process, the birth rate increases as the number of entities 

in the system increases, and it can potentially grow to infinity. 

Characteristics: 

Self-Accelerating: The process is self-accelerating; the more entities present, the higher the birth 

rate. 

Non-Linear Growth: The growth of the number of entities in the system can be non-linear and 

may exhibit exponential or even faster growth. 



 
 

Unbounded Growth: There is no upper limit to the growth rate, leading to scenarios where the 

population size can grow indefinitely in a finite time. 

Mathematical Modelling 

Rate Equations: Let X(t) denote the number of entities at time t. The birth rate, denoted as λ(X(t)), 

is a function of X(t) itself. 

Differential Equations: The change in the number of entities can be modelled by the differential 

equation: 

𝑑𝑋(t)

𝑑𝑡
=λ(X(t))⋅X(t) 

Here,  λ(X(t)) increases with X(t), indicating a divergent birth rate. 

Growth Models: Various models can be used for λ(X(t)), such as: 

Linear Growth:   λ(X(t)) = a⋅X(t)+b, where a,b>0. 

Exponential Growth:   λ(X(t)) = exp (a.X(t)), where a>0. 

Implications in Various Fields 

Biology: In ecological models, divergent birth processes can represent scenarios of uncontrolled 

population growth under certain environmental conditions, leading to phenomena like algal 

blooms or invasive species outbreaks. 

Epidemiology: In disease modelling, especially for highly contagious diseases, the rate of new 

infections can accelerate as more individuals become infected, resembling a divergent birth 

process. 

Economics: In financial markets, certain asset bubbles can be modelled as divergent birth 

processes, where the rate of investment or asset value increase accelerates as more capital enters 

the market. 

Physics: In nuclear chain reactions, the rate of neutron production can increase rapidly, leading to 

a divergent process under uncontrolled conditions. 



 
 

Mathematical Implications: Divergent birth processes challenge traditional modelling 

approaches due to their potential for infinite growth in finite time, requiring careful mathematical 

treatment and consideration of boundary conditions and constraints. 

Divergent birth processes represent a significant departure from traditional homogeneous 

processes, introducing complexity and challenges in both modelling and interpretation. 

Understanding these processes is crucial in fields where exponential or faster-than-exponential 

growth patterns are observed, necessitating careful analysis and control mechanisms. 

Divergent birth processes are characterized by a birth rate that increases rapidly, often 

exponentially, with the number of entities in the system. Let's explore a couple of examples to 

illustrate this concept: 

Example 1: Epidemiological Model of a Highly Contagious Disease 

Imagine a scenario where a highly contagious disease spreads through a population. 

Initially, the number of infected individuals is low, but as they interact with others, the rate of new 

infections increases rapidly. 

Modelling: In this model, the "birth" rate, representing new infections, increases with the number 

of currently infected individuals. 

If I(t) represent the number of infected individuals at time t, the rate of new infections 

might be proportional to 𝐼(𝑡)2, assuming each infected individual has a chance of infecting any 

other individual. 

The differential equation representing this divergent birth process could be something like:  

𝑑𝐼(t)

𝑑𝑡
 =𝐼(𝑡)2where α is a constant representing the infection rate. 

Such a model leads to exponential or even faster growth in the number of infected 

individuals, characteristic of a divergent birth process. 

Example 2: Chain Reactions in Nuclear Physics 

Consider a nuclear chain reaction, such as in a nuclear reactor or an atomic bomb, where 

each fission event causes the release of additional neutrons that can induce further fissions. 



 
 

Modelling:  In this process, the rate of fission events (the "birth" rate of new fissions) increases 

with the number of free neutrons available. 

If N(t) represents the number of free neutrons at time t, the rate of increase in neutrons can 

be proportional to the current number of neutrons. 

The differential equation might look like,  
𝑑𝑁(t)

𝑑𝑡
 =βN(t), where β is a constant representing 

the probability of a neutron inducing another fission. 

As the reaction proceeds, it can lead to a rapid, exponential increase in the number of 

neutrons, characteristic of a divergent process. 

These examples demonstrate the concept of divergent birth processes in very different 

contexts: epidemiology and nuclear physics. In both cases, the key feature is that the rate of the 

"birth" event (new infections or fissions) increases rapidly with the number of entities already 

present, leading to exponential or super-exponential growth. 

13.7  General Birth and Death Process 

The general birth and death process is a more comprehensive model in the study of stochastic 

processes, encompassing a wider range of scenarios than the simpler homogeneous birth and death 

processes. 

Definition and Characteristics: 

Basic Concept: A general birth and death process is a type of continuous-time Markov chain 

where the transition rates (both birth and death) may vary depending on the current state of the 

system. 

State Space: Like the homogeneous case, the state space is typically the set of non-negative 

integers, where each integer represents the number of entities in the system. 

Transition Rates: 

Birth Rates (𝝀𝒏): The rate of transition from state n to n+1 (an addition to the population). Unlike 

the homogeneous case, 𝜆𝑛 can vary with n. 



 
 

Death Rates (𝝁𝒏): The rate of transition from state n to n−1 (a subtraction from the population). 

Similarly, 𝜇𝑛 can also vary with n. 

Mathematical Modelling: 

Kolmogorov Forward and Backward Equations: The forward and backward equations still form 

the basis of analysis, but they now incorporate the state-dependent rates: 

• Forward Equation: 

𝑑𝑃𝑛 (t)

𝑑𝑡
= 𝜆𝑛−1𝑃𝑛−1(𝑡) − (𝜆𝑛 + 𝜇𝑛)𝑃𝑛 (𝑡) + 𝜇𝑛+1𝑃𝑛+1 (𝑡) 

• Backward Equation: 

𝑑𝑃𝑛 (t)

𝑑𝑡
= 𝜆𝑛𝑃𝑛(𝑡 − 𝑠) − (𝜆𝑛+1 + 𝜇𝑛+1)𝑃𝑛 (𝑡 − 𝑠) + 𝜇𝑛𝑃𝑛 (𝑡 − 𝑠) 

Probability Distribution Over Time: The solution to these equations gives the probability 

distribution 𝑃𝑛 (t), the probability of being in state n at time t. 

Implications and Applications 

Biology and Ecology: Modelling populations with varying birth and death rates due to factors like 

food availability, predation, or disease. 

Queueing Theory: Handling systems where the arrival and service rates change over time, such 

as in a call centre where arrival rates may vary by hour. 

Healthcare and Medicine: Studying the spread of diseases with varying infection and recovery 

rates, or modelling patient flow in hospitals. 

Finance and Insurance: Analysing risk processes where the rate of claims or defaults can change 

over time depending on various economic factors. 

Engineering: Modelling systems with components that have failure rates depending on their age 

or usage, such as in reliability engineering. 



 
 

The general birth and death process provides a more realistic model for many real-world 

scenarios where the assumption of constant rates (as in homogeneous processes) is not valid. This 

complexity allows for a richer and more accurate representation of systems, but it also requires 

more sophisticated mathematical and computational tools for analysis and prediction. 

13.8   Multiplicative Process 

Definition and Significance in Stochastic Modelling 

Basic Definition: A multiplicative process is a type of stochastic process where the change in the 

process's value is proportional to its current value. Mathematically, it can be expressed as 𝑋𝑡+1 =

𝑋𝑡(1 + 𝜀𝑡), where 𝑋𝑡 is the value at time 𝑡 and 𝜀𝑡 is a random variable representing the proportional 

change. 

Characteristics: 

Proportional Growth/Decay: Unlike additive processes where increments are constant or 

independent of the state, in a multiplicative process, the increments are proportional to the current 

state. 

Log-Normal Distribution: Often, the values in a multiplicative process follow a log-normal 

distribution, especially when the proportional changes are small and occur frequently. 

Path Dependency: The future value of the process depends on its history, making it path-

dependent. 

Significance:  Multiplicative processes are crucial in modelling phenomena where growth or 

decay is proportional to the current size or value, a common occurrence in many natural and social 

systems. 

Applications and Examples 

Economic Growth: In macroeconomics, the growth of an economy or a company's revenue over 

time can often be modelled as a multiplicative process, where growth in one period builds upon 

the previous. 



 
 

Population Dynamics: The growth of biological populations under certain conditions can be 

modelled as a multiplicative process, particularly when resources are abundant, and growth rate is 

proportional to the current population. 

Finance and Investments: Stock prices and investment portfolios are classic examples. The return 

in each period is often a percentage (positive or negative) of the current value, leading to a 

multiplicative dynamic. 

Compound interest is another example where the interest added to an account is 

proportional to the current account balance. 

Physics and Chemistry: Certain phenomena in physics and chemistry, like chain reactions in 

nuclear physics or the growth of crystal structures, can be modelled using multiplicative processes. 

Environmental Science: The spread of pollutants or the growth of certain types of algae in an 

ecosystem can follow a multiplicative pattern, where the rate of increase is dependent on the 

current concentration. 

Mathematical Modelling: Multiplicative processes are often modelled using stochastic 

differential equations in continuous time. In discrete time, the process can be modelled using a 

geometric Brownian motion, especially in financial applications. 

The mathematical treatment typically involves understanding the log-transformed version 

of the process, which often simplifies the analysis and helps in deriving meaningful insights and 

predictions. 

Understanding multiplicative processes is crucial in fields where proportional change is a 

fundamental characteristic of the system's dynamics. These processes provide a more accurate and 

realistic modelling framework compared to additive processes in such scenarios. 

Supporting Results/ Theorems: When discussing multiplicative processes in stochastic 

modelling, there are several key results and important theorems that provide a foundational 

understanding and support the analysis of these processes. Here are some of the most significant 

ones: 

1. Law of Large Numbers (LLN) for Multiplicative Processes 



 
 

Statement: The LLN in the context of multiplicative processes states that, under certain 

conditions, the average of the logarithms of the process converges to the expected value of the 

logarithm of the process as the number of observations goes to infinity. 

Significance: This theorem is crucial in understanding the long-term behaviour of multiplicative 

processes, particularly in ensuring that predictions based on these processes are robust over time. 

2. Central Limit Theorem (CLT) for Log-Transformed Variables 

Statement: For a multiplicative process, when considering the logarithm of the process values, 

the CLT states that the distribution of the sum (or average) of these log-transformed values 

approaches a normal distribution as the number of observations increases. 

Significance: This result is essential for statistical modelling and hypothesis testing in scenarios 

where multiplicative processes are involved, such as in finance or population dynamics. 

3. Geometric Brownian Motion (GBM) 

Statement: GBM is a continuous-time stochastic process in which the logarithm of the variable 

follows a Brownian motion (or Wiener process). It is defined by the stochastic differential equation  

𝑑𝑋𝑡 =  𝜇𝑋𝑡𝑑𝑡 +  𝜎𝑋𝑡𝑑𝑊𝑡, where 𝑊𝑡 is a Wiener process. 

Significance: GBM is a fundamental model in financial mathematics, especially for modelling 

stock prices, as it incorporates both the drift and the volatility of the process in a multiplicative 

fashion. 

4. Gibrat's Law of Proportional Growth 

Statement: This law states that the growth rate of a variable is independent of its size, which is a 

key characteristic of multiplicative processes. 

Significance: Gibrat's Law is particularly important in economics and business studies, where it 

is used to model the growth of companies or economies. 

5. Exponential Growth and Decay 



 
 

Statement: In a purely multiplicative process, the size of the variable grows (or decays) 

exponentially, which can be represented by equations like 𝑋(𝑡) = 𝑋(0)𝑒𝑟𝑡, where 𝑟 is the growth 

rate. 

Significance: Understanding exponential growth and decay is crucial in fields like biology 

(population dynamics), physics (radioactive decay), and finance (compound interest). 

6. Martingale Property 

Statement: In some special cases, a transformed multiplicative process can exhibit a martingale 

property, meaning that its expected future value, given all past information, is equal to its current 

value. 

Significance: The martingale property is a powerful tool in probability theory and financial 

mathematics, often used in the pricing of derivatives and in risk management. 

These theorems and results are cornerstones in the analysis of multiplicative processes, 

providing a mathematical and probabilistic foundation for understanding and predicting the 

behaviour of such processes in various fields. 

13.9   Effect of Immigration for Homogeneous Process 

In stochastic modelling, the concept of immigration introduces an additional layer of 

complexity and realism into the analysis of homogeneous processes. This section explores how 

the incorporation of immigration affects the dynamics of these processes. 

Understanding the Role of Immigration 

Definition of Immigration in Stochastic Processes: Immigration refers to the external 

introduction of new entities (individuals, particles, etc.) into the system at a certain rate. This is 

distinct from 'births' within the system. 

Homogeneous Process with Immigration: In a homogeneous process, the system's internal 

dynamics (like birth or death rates) are time-independent. When immigration is introduced, it adds 

an external, time-independent rate of new entities entering the system. 



 
 

Mathematical Modelling 

Modified Rate Equations: If X(t) represents the state of the system at time t, and β is the constant 

immigration rate, the evolution of X(t) can be modelled by the differential equation: dX(t) = 

[Internal Dynamics] +β 

Here, "Internal Dynamics" could represent birth-death processes, with the addition of the 

constant term β to account for immigration. 

Impact on Probability Distributions: The introduction of a constant immigration rate changes the 

probability distribution of the states over time. This can lead to a shift in the mean, variance, and 

other moments of the distribution. 

Impact and Implications 

Population Dynamics:  In biological models, immigration can significantly affect population 

stability and growth patterns. It can prevent extinction in models where the population might 

otherwise die out. 

Queueing Systems: In queueing theory, modelling customer arrivals with an additional 

immigration term can represent scenarios where customers from external sources join the queue, 

affecting the total workload and waiting times. 

Epidemiological Models:  In disease spread modelling, immigration can represent the introduction 

of infected individuals from outside regions, which can alter the dynamics of disease transmission 

and control measures. 

Economic Models:  In macroeconomic models, immigration can influence labor market dynamics, 

population growth, and overall economic performance. 

Challenges in Analysis: The addition of immigration introduces new challenges in the analysis 

and prediction of homogeneous processes. It requires the re-evaluation of existing models and the 

development of new methods to accurately capture the impact of external entries into the system. 

Incorporating immigration into the analysis of homogeneous processes is crucial for a more 

realistic and comprehensive understanding of various phenomena in fields such as ecology, 



 
 

economics, and social sciences. It highlights the importance of external factors and their significant 

roles in shaping the dynamics of systems modelled by stochastic processes. 

13.10   Summary 

This unit delves into the intricate world of Homogeneous Processes within the realm of 

stochastic modelling, offering a comprehensive exploration of their theoretical underpinnings and 

practical applications. The unit begins by defining homogeneous processes as time-invariant 

stochastic models and underscores their significance in various fields like biology, finance, and 

physics. 

A pivotal part of the unit is the detailed examination of the forward and backward equations 

- essential tools for understanding how probabilities evolve in these processes. The forward 

equations, known as the Kolmogorov forward equations, track the probability distribution’s 

evolution over time. In contrast, the backward equations offer a retrospective view, essential for 

understanding past states' influences. 

The unit then navigates through the concept of random variables in homogeneous 

processes, highlighting their role in simplifying complex stochastic models into manageable 

mathematical forms. This segment underscores the practicality of random variable techniques 

through real-world examples across various domains. 

Birth and death processes, a cornerstone of stochastic modelling, are dissected to showcase 

how they model systems where events occur at random times. This is expanded upon in the 

discussion of divergent birth processes, where the birth rate increases exponentially, and general 

birth and death processes, which accommodate more variable and realistic scenarios. 

The concept of multiplicative processes is introduced, demonstrating their importance in 

modelling phenomena where growth or decay is proportional to the current state. This is 

particularly relevant in financial modelling, where it captures the essence of market dynamics. 

A unique aspect of homogeneous processes covered in this unit is the effect of immigration 

- the introduction of new entities into the system from an external source. This addition alters the 

dynamics of these processes, as illustrated through examples in ecology and economics. 

The unit concludes with a set of self-assessment questions designed to test the learner's 

understanding of the concepts covered, ranging from theoretical aspects to practical problem-

solving scenarios. This comprehensive approach ensures a deep and nuanced understanding of 



 
 

homogeneous processes, preparing learners for advanced studies or professional applications in 

fields that rely on stochastic modelling. 

13.11   Self-Assessment Questions 

1. What are the key characteristics that differentiate a homogeneous process from a non-

homogeneous process in stochastic modelling? 

2. Explain the significance of forward and backward equations in the analysis of 

homogeneous processes. How do they differ in terms of their application? 

3. Describe the role of random variables in modelling homogeneous processes. Why are they 

crucial in stochastic analysis? 

4. What distinguishes a birth and death process from other types of stochastic processes? Give 

an example of a real-world scenario that can be modelled as a birth and death process. 

5. Discuss the potential implications of a divergent birth process in a biological system. How 

does it differ from a standard birth process? 

6. How do general birth and death processes extend the concept of homogeneous birth and 

death processes? What kind of real-world phenomena might require the use of a general 

birth and death model? 

7. Explain how a multiplicative process is used in financial modelling. What key aspect of 

financial markets does it capture? 

8. Describe the impact of immigration on the dynamics of a homogeneous process. Provide 

an example from either ecology or economics. 

9. Given a simple homogeneous birth and death process with birth rate λ and death rate μ, 

calculate the steady-state probabilities for the first three states (0, 1, and 2). 

10. Suppose a stock price follows a multiplicative process where the daily return is normally 

distributed with a mean of 0.5% and a standard deviation of 1%. What is the probability 

that the stock price will increase by at least 10% over 20 trading days? 

11. A queueing system with a single server has an arrival rate of 2 customers per hour and a 

service rate of 3 customers per hour. If there is an additional external arrival (immigration) 

of 1 customer every 2 hours, calculate the average number of customers in the system. 



 
 

12. Consider a divergent birth process where the birth rate λn is proportional to the square of 

the current population size n. Write down the differential equation governing the 

population size over time and discuss its implications. 
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 14.1   Introduction 

In Unit 14, we delve into the complex and dynamic world of Non-Homogeneous Processes, 

a critical area of study in stochastic modelling. Unlike their homogeneous counterparts, non-

homogeneous processes are characterized by probability distributions and parameters that change 

over time. This dynamic nature makes them more aligned with real-world scenarios, where 

conditions are seldom constant and evolve in response to various factors. 

The study of non-homogeneous processes opens-up a vast array of applications across 

different fields such as finance, where market conditions fluctuate over time; biology, where 

population dynamics change due to evolving environmental factors; and physics, where systems 

are subject to time-dependent forces. The versatility of these processes lies in their ability to model 

complex phenomena that cannot be adequately represented by time-invariant models. 

At the heart of this unit is the exploration of simple non-homogeneous processes. These 

are the foundational models from which more complex systems are developed. Understanding 

these simple models paves the way for grasping more intricate processes like the Polya process, 

an urn model with significant implications in probability and statistics, and reflecting real-world 

scenarios of contagion and popularity dynamics. 



 
 

Another focal point of this unit is the examination of how external factors, particularly 

immigration, impact non-homogeneous processes. In many real-world systems, the introduction 

of new entities from outside significantly alters the dynamics, and understanding this influence is 

crucial for accurate modelling. 

The unit also delves into advanced mathematical concepts such as the Backward 

Kolmogorov Diffusion Equation and the Fokker-Planck Equation. These equations are 

fundamental in the study of stochastic processes, enabling the modelling and analysis of diffusion 

phenomena and providing insights into the behaviour of complex systems under varying 

conditions. 

By the end of this unit, learners will have a thorough understanding of non-homogeneous 

processes, equipped with both the theoretical knowledge and practical skills to apply these 

concepts in various domains. Whether in academic research, professional practice, or practical 

applications, the insights gained from this unit are invaluable in navigating and modelling the ever-

changing dynamics of real-world systems. 

14.2   Objectives 

1. Understanding the Fundamental Concept of Non-Homogeneous Processes: Grasp the 

definition and key characteristics that distinguish non-homogeneous processes from homogeneous 

ones. Comprehend why non-homogeneous processes are crucial in modelling real-world scenarios 

where conditions change over time. 

2. Exploring Various Types of Non-Homogeneous Processes: Gain familiarity with different 

types of non-homogeneous processes, including simple non-homogeneous processes and more 

complex models like the Polya process. Understand the specific features and applications of each 

type of process. 

3. Analysing the Impact of External Factors such as Immigration: Investigate how external 

factors, particularly immigration, influence the dynamics of non-homogeneous processes. Learn 

to model the effects of immigration in the context of non-homogeneous stochastic processes and 

understand their implications in real-world scenarios. 



 
 

4. Mastering the Backward Kolmogorov Diffusion Equation: Delve into the derivation and 

significance of the Backward Kolmogorov Diffusion Equation in the context of non-homogeneous 

processes. Understand how this equation is used to analyse diffusion processes in various fields. 

5. Understanding the Fokker-Planck Equation: Study the derivation and applications of the 

Fokker-Planck Equation. Comprehend how this equation models the probability density function 

of the velocity of particles in a fluid and its broader applications in stochastic processes. 

6. Developing Problem-Solving Skills: Enhance the ability to apply theoretical knowledge to solve 

practical problems related to non-homogeneous processes. Improve skills in mathematical 

modelling and analysis of complex systems that evolve over time. 

7. Critical Thinking and Real-World Application: Encourage critical thinking about how non-

homogeneous processes can be applied to model and solve real-world problems in various domains 

such as finance, biology, and physics. Foster the ability to identify and analyse situations where 

non-homogeneous stochastic models are applicable. 

These objectives are designed to provide learners with a comprehensive understanding of 

non-homogeneous processes, their mathematical underpinnings, and practical applications. The 

unit aims to equip students, researchers, and professionals with the necessary tools to analyse and 

interpret systems where conditions change over time, preparing them for challenges in diverse 

fields of study and work. 

14.3   Simple Non-Homogeneous Process 

A Simple Non-Homogeneous Process is a type of stochastic process where the probability 

laws governing the process change over time. Unlike homogeneous processes, where these laws 

are time-invariant, simple non-homogeneous processes adapt to evolving conditions, making them 

more reflective of many real-world scenarios. 

Characteristics of Simple Non-Homogeneous Processes 

Time-Dependent Transition Rates: The most defining feature is that the transition rates (or 

probabilities) are functions of time. This means that the likelihood of transitioning from one state 

to another is not constant but varies as time progresses. 



 
 

Lack of Stationarity: Unlike homogeneous processes, simple non-homogeneous processes do not 

exhibit stationarity. Stationarity implies that statistical properties such as mean, variance, and 

autocorrelation remain constant over time, which is not the case for non-homogeneous processes. 

Flexible Modelling: These processes can adapt to a wide range of scenarios where the system's 

behaviour changes over time, due to external factors, internal dynamics, or evolving conditions. 

Mathematical Formulation: In mathematical terms, a simple non-homogeneous process can often 

be described by time-dependent differential equations or difference equations. For example, 

consider a non-homogeneous Poisson process, where the rate parameter λ(t) is a function of time. 

The probability of observing k events in a time interval [0, t] is given by: 

P(N(t)=k)= e−Λ(t) (Λ(t))k / k! 

where  

Λ(t)=∫ 𝜆(𝑠)𝑑𝑠
𝑡

0
 is the cumulative rate function. 

Examples 

Non-Homogeneous Poisson Process: A classic example of a simple non-homogeneous process is 

a Poisson process with a time-dependent rate λ(t). For instance, this can model customer arrivals 

at a store where the arrival rate varies depending on the time of day. 

Variable Interest Rate Models in Finance: In financial modelling, the interest rate might change 

over time, reflecting economic conditions. A non-homogeneous stochastic model can represent 

such a variable interest rate, with the rate at any time t being a function of time. 

Seasonal Variations in Population Dynamics: In ecological models, the birth and death rates of 

a population might vary seasonally. A simple non-homogeneous process can model these rates as 

time-dependent, reflecting changes in environmental conditions. 

Applications: Simple non-homogeneous processes are widely applicable in areas where it is 

crucial to model the dynamics of a system that changes over time. This includes fields like 

telecommunications (for modelling varying network traffic), finance (for modelling time-varying 



 
 

market risks), epidemiology (for disease spread with time-varying infection rates), and many 

others. 

In summary, simple non-homogeneous processes offer a flexible and realistic framework 

for modelling stochastic systems that change over time, providing an essential tool for 

understanding and predicting behaviour in various dynamic environments. 

Simple non-homogeneous processes are prevalent in various fields, reflecting systems 

where probabilities or rates change over time. Here are some examples to illustrate this concept: 

Example 1: Non-Homogeneous Poisson Process for Customer Arrivals 

Imagine a retail store where the rate of customer arrivals varies throughout the day. It's 

busier during the morning and evening but quieter in the afternoon. 

Modelling:  This scenario can be modelled using a non-homogeneous Poisson process where 

the arrival rate λ(t) is a function of time. 

For instance, λ(t) could be higher during peak hours (morning and evening) and lower 

during off-peak hours (afternoon). 

The number of customer arrivals in a time interval can then be predicted using the time-

dependent rate function. 

Example 2: Variable Interest Rate in Financial Modelling 

Consider a financial model where the interest rate on investments or loans changes over 

time, influenced by economic factors. 

Modelling: The interest rate can be represented as a non-homogeneous process where r(t), the rate 

at time t, is not constant but varies based on market conditions. 

Such a model allows for more realistic financial planning and risk assessment, reflecting 

the actual fluctuations in the economic environment. 

Example 3: Seasonal Disease Spread in Epidemiology 

In epidemiology, the rate of disease transmission can vary with seasons, influenced by 

factors like weather conditions and human behaviour. 



 
 

 Modelling: A non-homogeneous model can be used to represent the disease transmission rate, 

which varies over time. For example, a higher transmission rate in winter due to indoor crowding 

and lower in summer. 

This time-dependent model helps in understanding the seasonal dynamics of disease spread 

and planning public health interventions accordingly. 

Example 4: Varying Traffic Flow in Telecommunications 

In a telecommunications network, data traffic can vary significantly throughout the day, 

with peak usage during certain hours. 

Modelling: The data traffic can be modelled as a non-homogeneous process, where the rate of 

data packet arrivals varies with time. 

Such a model is crucial for network planning and ensuring adequate bandwidth during peak 

usage times. 

These examples demonstrate the versatility of simple non-homogeneous processes in 

modelling real-world scenarios where the system's behaviour is not constant but varies over time. 

They provide a more realistic framework for analysis and prediction in various dynamic 

environments. 

14.4   Polya Process 

The Polya process, named after the Hungarian mathematician George Polya, is a classic 

example of a non-homogeneous stochastic process. It is particularly known for exhibiting the "rich 

get richer" phenomenon and has applications in areas ranging from epidemiology to social network 

analysis. 

Definition of the Polya Process: The Polya process is a type of urn model. It begins with an urn 

containing balls of different colours. At each step, a ball is drawn at random, its colour is noted, 

and then it is returned to the urn along with an additional ball of the same colour. This process 

results in an increasing probability of drawing balls of a colour that is already frequent in the urn, 

encapsulating a positive feedback loop or reinforcement mechanism. 



 
 

Mathematical Formulation:  Let us denote: 𝑛𝑖(𝑡): Number of balls of color   in the urn at time 

N(t): Total number of balls in the urn at time t. The probability of drawing a ball of color i at time 

t and then adding one more of the same colour is given by: Drawing colour at time P(Drawing 

color i at time t)= 𝑁(𝑡)𝑛𝑖(𝑡) 

Supporting Results and Proofs 

Probability Distribution Over Time:  As the process evolves, the probability distribution of each 

colour's presence in the urn converges to a limiting distribution. 

Proof: The update rule of the process implies that the fractions 𝑁(𝑡)𝑛𝑖(𝑡) evolve according to a 

path-dependent random walk. By the Law of Large Numbers, as t→∞, these fractions converge 

almost surely to a limit. The specific distribution depends on the initial conditions of the urn. 

Rich Get Richer Phenomenon:  A colour that initially has more balls is more likely to be drawn 

and thus to have even more balls added, leading to a self-reinforcing mechanism. 

Proof: Consider two colours, A and B, with A(0)> nB(0) initially. The probability of drawing 

colour A at any step is higher than that of drawing B due to the greater initial number. As more 

A’s are added, this probability disparity grows, reinforcing A's dominance. 

Applications 

Epidemiology:  Modelling the spread of disease, where the "balls" represent infected individuals 

and "colours" represent different strains of the pathogen. 

Social Network Analysis: Explaining how popular individuals or nodes in a network become 

increasingly popular, akin to the concept of preferential attachment. 

Economics: Understanding market dynamics where successful products gain increasing market 

share due to positive customer feedback loops. 

The Polya process is a compelling model for systems where success breeds success, and 

its mathematical properties offer insights into the behaviour of complex, evolving systems. 

However, the detailed proofs of its properties require advanced knowledge of probability theory 

and stochastic processes and can be quite complex, often involving limit theorems and martingale 



 
 

theory. For in-depth mathematical proofs, reference to specialized texts in stochastic processes is 

recommended. 

The Polya process, as a reinforcement model, is governed by several important theorems 

that help in understanding its behaviour and long-term dynamics.  

The key theorems related to the Polya process: 

1. Convergence Theorem 

Statement: The proportion of balls of a given colour in the urn converges almost surely to a limit 

as the number of draws goes to infinity. 

Implication: This theorem ensures that the relative frequency of each colour stabilizes over time, 

even though the exact composition of the urn continues to change with each draw. 

2. Martingale Convergence Theorem 

Statement: The sequence of proportions of a given colour in the Polya urn forms a martingale 

sequence, and by the Martingale Convergence Theorem, this sequence converges almost surely. 

Implication: This provides a strong mathematical foundation for the convergence behavior 

observed in the Polya process, grounding it in well-established principles of probability theory. 

3. Theorem of Exchangeability 

Statement: The sequence of draws in a Polya urn process is exchangeable, meaning that the joint 

probability distribution is invariant under permutations of the sequence. 

Implication: This property of exchangeability implies that the order of draws does not affect the 

overall probability distribution of the colours, which is a key characteristic of the Polya process. 

4. Central Limit Theorem for Polya Urn 

Statement: Under certain conditions, the number of balls of a particular colour in the urn, after 

normalization, converges in distribution to a normal distribution as the number of draws increases. 



 
 

Implication: This theorem provides insight into the variability and distribution of the number of 

balls of each colour as the process evolves over a long period. 

5. Pólya-Eggenberger Urn Model Theorem 

Statement: In a generalized version of the Polya urn model, known as the Pólya-Eggenberger urn 

model, the probability distribution of the composition of the urn converges to a Dirichlet 

distribution. 

Implication: This generalization allows for more complex interactions and dependencies between 

different types of balls, providing a broader applicability of the model. 

These theorems collectively offer a comprehensive understanding of the behaviour of the 

Polya process. They demonstrate how initial advantages or disadvantages can get amplified over 

time, leading to a "rich-get-richer" phenomenon. The mathematical treatment of these theorems 

typically involves advanced concepts in probability theory, such as martingales and limit theorems, 

and is central to the study of reinforcement processes and their applications in various fields. 

Example 1: Disease Spread in Epidemiology:  Consider the spread of a contagious disease where 

each infected individual increases the likelihood of infecting others, akin to adding more balls of 

the same colour to an urn in the Polya process. 

Application:  The Polya process can model the spread of infection, especially in situations where 

each new case increases the probability of further infections. This is often seen in tightly-knit 

communities or regions with high population density. 

Example 2: Online Social Networks and Viral Content:  On social media platforms, content 

that gains initial popularity is more likely to be recommended to other users, thereby increasing its 

chances of being shared further. 

Application:  The Polya process can model the dynamics of content virality, where initial likes or 

shares (akin to the initial balls in the urn) increase the content's visibility, leading to a self-

reinforcing loop of popularity. 

Example 3: Financial Markets and Stock Trading:  In the stock market, a stock that performs 

well initially may attract more investors, increasing its demand and potentially its price further. 



 
 

Application:  The stock market dynamics, particularly the behaviour of investors who are 

influenced by past performance, can be modelled using the Polya process. A stock that gains early 

investors (more balls of its colour in the urn) is more likely to attract additional investors. 

Example 4: Preferential Attachment in Network Science:  In network science, particularly in 

the study of the internet and citation networks, new nodes tend to connect to already well-

connected nodes. 

Application:  The concept of preferential attachment, where new nodes in a network are more 

likely to connect to nodes with higher degrees, can be modelled by the Polya process. It's akin to 

adding more connections (balls) to nodes (colours) that are already popular. 

Example 5: Consumer Behaviour in Marketing:  A product that gains early popularity in the 

market might receive more attention and thus have higher subsequent sales. 

Application:  In marketing, the Polya process can model consumer behaviour where early adoption 

of a product increases its visibility and appeal, leading to a positive feedback loop in sales. 

These examples demonstrate the versatility of the Polya process in modelling scenarios 

where the probability of an event increases with the occurrence of that event. This self-reinforcing 

property makes it a valuable tool in understanding and predicting dynamics in fields ranging from 

epidemiology and social media to financial markets and network theory. 

14.5   Effect of Immigration for Non-Homogeneous Process 

The concept of immigration in the context of non-homogeneous processes refers to the 

introduction of new entities into a system from an external source. This addition can significantly 

alter the dynamics of the system, particularly in processes where the inherent properties are time-

dependent. In non-homogeneous processes, the rates of change or transition probabilities are not 

constant over time, and the introduction of immigration adds another layer of complexity to this 

time-variant behaviour. 

Characteristics and Implications of Immigration in Non-Homogeneous Processes 



 
 

External Additions: Immigration represents an external influx of entities (like individuals, 

particles, etc.) into the system, which is independent of the internal generation (birth) process of 

the system. 

Altering System Dynamics: The continuous introduction of new entities can significantly affect 

the system's state and its evolution over time. It can prevent extinction in population models, 

increase the workload in queueing systems, or accelerate the spread of a disease in epidemiological 

models. 

Time-Variant Nature: In non-homogeneous processes, the impact of immigration may vary with 

time, adding to the complexity of modelling and analysis. For instance, the rate or effect of 

immigration could be higher during certain periods due to external factors. 

Mathematical Modelling:   Incorporating immigration into a non-homogeneous process typically 

involves adding a time-dependent term to the existing model. For example, in a non-homogeneous 

birth-death process, the differential equations describing the system would include an additional 

term representing the immigration rate. 

If X(t) represents the state of the system at time t, and β(t) represents the time-dependent 

immigration rate, the evolution of X(t) could be modelled by:  
𝑑𝑋(𝑡)

𝑑𝑡
=[Internal Dynamics]+β(t) 

Here, "Internal Dynamics" could include time-variant birth and death rates, and β(t) adds 

the external influx at each time point. 

Real-World Scenarios and Applications 

Population Dynamics: In ecological models, immigration can introduce new species or 

individuals into an ecosystem, affecting the existing population dynamics, especially if the 

ecosystem is changing over time due to environmental factors. 

Epidemiology: The model of disease spread can be significantly impacted by the immigration of 

infected individuals, especially in a non-homogeneous scenario where the infection rate changes 

over time due to factors like seasonal variations or changing public health policies. 



 
 

Queueing Theory: In a service system like a call centre, immigration can represent an additional 

influx of calls or customers from an external source, such as a marketing campaign, which can 

vary over time. 

Economic Models: In macroeconomic studies, the immigration of individuals can impact labour 

markets, consumption patterns, and overall economic dynamics, particularly in models where 

these factors are time-dependent. 

In summary, the effect of immigration on non-homogeneous processes introduces 

additional complexity and realism into models, making them more representative of real-world 

systems where external influxes play a significant role in the dynamics over time. This aspect is 

crucial for accurately understanding and predicting the behaviour of various systems in fields like 

ecology, epidemiology, economics, and operations research. 

The effect of immigration on non-homogeneous processes can be observed in various real-

world scenarios, where the introduction of new entities into a system significantly alters its 

dynamics. Here are some examples to illustrate this concept: 

Example 1: Immigration in Population Dynamics:  In an ecological model, consider a wildlife 

reserve where animals of a particular species are periodically introduced from outside to boost the 

population. 

Application:  This scenario can be modelled as a non-homogeneous process where the natural 

birth and death rates of the species vary due to seasonal changes or environmental factors. 

The periodic introduction of new animals represents immigration, altering the population 

dynamics, potentially preventing extinction, or altering the competition dynamics within the 

reserve. 

Example 2: Disease Spread with Immigration of Infected Individuals:   In an area experiencing 

an infectious disease outbreak, consider the impact of individuals traveling into the area from 

regions with higher infection rates. 

Application: The disease spread can be modelled as a non-homogeneous process, where the 

infection rate changes over time due to factors like public health interventions or seasonal 

variations. 



 
 

The arrival of infected individuals from outside adds an immigration component to the 

model, potentially increasing the disease's spread or introducing new strains into the population. 

Example 3: Queueing Systems with External Customer Influx:  Imagine a customer service 

centre experiencing varying call volumes throughout the day, with additional calls directed from 

other branches or as a result of promotional campaigns. 

Application:  The call arrival rate is non-homogeneous, varying with business hours, customer 

behaviour, and other factors. 

The additional calls from other branches or campaigns represent immigration, impacting 

the queue length, waiting times, and required service capacity. 

Example 4: Labor Market Dynamics with Immigration:   In an economic model, consider the 

effect of skilled workers immigrating into a country and joining the workforce. 

Application:  The labour market can be modelled as a non-homogeneous process, where demand 

and supply for labour change due to economic policies, technological advancements, or market 

trends. 

The influx of skilled workers adds an immigration element, potentially affecting wage 

levels, employment rates, and economic growth. 

Example 5: Online Platforms with New User Registration:   An online social media platform 

or a content streaming service experiences variable user engagement over time and sees an influx 

of new users due to marketing efforts. 

Application: User engagement (such as content consumption or social interactions) can be 

modelled as a non-homogeneous process, influenced by factors like trending topics, seasonal 

content, or algorithm changes. 

The influx of new users due to marketing or promotional activities represents immigration, 

impacting overall platform engagement, content virality, and network dynamics. 

These examples demonstrate how immigration can significantly impact the behaviour of 

various non-homogeneous processes, making modelling and analysis more complex but also more 

reflective of real-world situations. 



 
 

14.6  Diffusion: Backward Kolmogorov Diffusion Equation 

The Backward Kolmogorov Diffusion Equation is a fundamental concept in the study of 

stochastic processes, particularly in the context of diffusion processes. It is part of a family of 

equations known as the Kolmogorov equations, which also include the Forward Kolmogorov (or 

Fokker-Planck) Equation. These equations are central to the theory of continuous-time stochastic 

processes. 

Definition and Background:  

In the realm of stochastic processes, diffusion refers to a process that models the random 

movement of particles or entities. This movement is typically described using Brownian motion 

or a Wiener process, which are foundational models for random, continuous paths. 

The Backward Kolmogorov Diffusion Equation focuses on the evolution of the conditional 

expectation of a function of the stochastic process backward in time, given its future state. This 

contrasts with the forward equation, which describes the forward-in-time evolution of the 

probability density function of the process. 

Mathematical Formulation:  Consider a stochastic process X(t) that follows a diffusion process. 

Let f(x,t) be a function of this process, where x is a state and t is time. The Backward Kolmogorov 

Diffusion Equation is given by:  

𝜕

𝜕𝑡
𝑢(𝑥, 𝑡) =  

1

2
𝜎2(𝑥, 𝑡)

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑡) +  𝑏(𝑥, 𝑡)

𝜕

𝜕𝑥
𝑢(𝑥, 𝑡) 

Where, 𝑢(𝑥, 𝑡) is the conditional expectation of some function 𝑓 of the process, given its state at 

a later time. 

𝜎2(𝑥, 𝑡) is the diffusion coefficient, representing the variance of the process’s increments. 

 𝑏(𝑥, 𝑡) is the drift coefficient, representing the mean of the process’s increments. 

Physical Interpretation:   The Backward Kolmogorov Equation can be interpreted in the context 

of physical diffusion processes, such as the diffusion of particles in a fluid. In this setting, 𝜎2(𝑥, 𝑡) 



 
 

represents the random scattering of particles, while 𝑏(𝑥, 𝑡) represents a systematic drift, such as 

movement due to an external force or flow. 

Applications 

Finance: In mathematical finance, this equation is used to model the evolution of various financial 

instruments' prices, particularly in option pricing. 

Physics and Chemistry: It is used to model the diffusion of particles, heat, or chemicals in a 

medium. 

Biology: Applied in modelling population dynamics and the spread of biological species. 

Environmental Science: Used in modelling the spread of pollutants in the environment. 

Importance in Stochastic Processes 

The Backward Kolmogorov Diffusion Equation is important because it provides a way to 

calculate the expected value of a function of the stochastic process at a previous time, given its 

future state. This is particularly useful in scenarios where predicting the past behavior of a system 

based on its current or future state is necessary, such as in backward analysis or smoothing 

problems in statistics and data analysis. 

Understanding and applying this equation requires a solid foundation in stochastic calculus 

and differential equations, as it involves complex concepts like Brownian motion and Ito's 

calculus. 

The Backward Kolmogorov Diffusion Equation is applied in various fields to model and 

understand systems where diffusion processes are significant.  

Here are some examples to illustrate its application: 

Example 1: Option Pricing in Financial Markets:    Consider the pricing of a financial 

derivative, like a stock option, where the future price of the underlying asset follows a stochastic 

process. 

Application: The Backward Kolmogorov Equation is used in the Black-Scholes model to 

determine the option's price based on the expected future price of the underlying asset. 



 
 

The equation models how the value of the option evolves backwards in time, given its 

payoff at maturity. 

Example 2: Heat Distribution in a Solid:  In physics, consider the problem of determining the 

temperature distribution within a solid object at a previous time, given the current temperature 

distribution. 

Application:  The equation can be used to model the diffusion of heat within the solid. 

By knowing the current temperature distribution, the equation helps in estimating how the 

heat was distributed at an earlier time. 

Example 3: Pollution Spread in an Ecosystem:  In environmental science, understanding how a 

pollutant, like an oil spill, spread in the past based on its current distribution in water. 

Application: The Backward Kolmogorov Equation can model the diffusion of the pollutant in 

the water. 

It helps in tracing back the spread, which is crucial for identifying the source and 

understanding the spread pattern. 

Example 4: Population Dynamics in Ecology:  In biology, consider a situation where we need 

to understand the past distribution of a species in an ecosystem based on current population data. 

Application:  The equation can model the spread (dispersion) of the species in the ecosystem. 

By applying the equation, biologists can estimate past population distributions, which is 

vital for conservation and study of migration patterns. 

Example 5: Data Smoothing in Time Series Analysis:  In statistics, smoothing a time series 

data to understand past trends based on current and future observations. 

Application:  The Backward Kolmogorov Equation can be applied in the context of stochastic 

processes to smooth data, providing estimates of past states of a time series. This is particularly 

useful in financial time series where past trends are inferred for analysis and forecasting. 

These examples demonstrate the versatility of the Backward Kolmogorov Diffusion 

Equation in various fields, providing a means to retrospectively analyse and understand the 

behaviour of systems modelled by diffusion processes. 



 
 

14.7   Fokker-Planck Equation 

The Fokker-Planck Equation, also known as the Forward Kolmogorov Equation, is a 

fundamental equation in the study of stochastic processes, particularly in the context of diffusion 

and continuous-time processes. It describes the time evolution of the probability density function 

of the velocity of a particle under the influence of forces and random fluctuations. 

Statement of the Fokker-Planck Equation 

Consider a stochastic process X(t) that represents the state of a system. The Fokker-Planck 

Equation describes the evolution of the probability density function p(x,t) of this process over time. 

Mathematically, it is expressed as:  

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡
= −

𝜕

𝜕𝑥
[𝛼(𝑥, 𝑡)𝑝(𝑥, 𝑡)] +

1

2

𝜕2

𝜕𝑥2
[𝑏2(𝑥, 𝑡)𝑝(𝑥, 𝑡)] 

where: 𝑝(𝑥, 𝑡)is the probability density function of finding the system in state x at time t. 

𝛼(𝑥, 𝑡) is the drift coefficient, representing the deterministic part of the process. 𝑏(𝑥, 𝑡)is the 

diffusion coefficient, representing the random fluctuations. 

Proof of the Fokker-Planck Equation 

The proof of the Fokker-Planck Equation is derived from the Chapman-Kolmogorov 

Equation and involves applying Itô's calculus for stochastic differential equations. The detailed 

proof is quite technical and beyond the scope of a basic explanation, as it requires a deep 

understanding of stochastic calculus. However, the key idea is to start with the differential form of 

a stochastic process (usually expressed in terms of a Wiener process or Brownian motion) and then 

derive the partial differential equation governing the evolution of its probability density function. 

Applications in Various Fields 

Physics: In the study of thermodynamics and statistical mechanics, the Fokker-Planck Equation is 

used to describe the behaviour of particles in a fluid, accounting for random Brownian motion and 

external forces. 



 
 

Finance: In financial mathematics, it is used to model the evolution of stock prices and interest 

rates, where the random component represents market volatility, and the drift represents the overall 

trend. 

Biology: The equation is applied in modelling the spread of genes in a population or the movement 

of organisms in response to environmental factors. 

Chemistry: In chemical kinetics, the Fokker-Planck Equation models the stochastic behaviour of 

molecules in reaction-diffusion systems. 

Meteorology: It is used to model the distribution and movement of particles in the atmosphere, 

such as pollutants or water droplets. 

Social Sciences: In economics and social sciences, the equation can model various diffusion 

processes, like the spread of information or the adoption of new technologies. 

The Fokker-Planck Equation provides a powerful framework for understanding and 

predicting the behaviour of systems characterized by both deterministic trends and random 

fluctuations. It is an essential tool in fields where modelling the time evolution of probability 

distributions is crucial. 

The Fokker-Planck Equation, with its ability to describe the evolution of probability 

distributions in systems influenced by random fluctuations, finds diverse applications across 

multiple fields.  

Here are examples illustrating its use: 

Example 1: Financial Markets - Stock Price Modelling: Modelling the price of a stock in a 

financial market, which fluctuates due to both systematic market trends and random market 

volatilities. 

Application:  The Fokker-Planck Equation is used to model the evolution of the probability 

distribution of stock prices over time. 

The drift term represents the overall market trend or expected return, while the diffusion 

term models the random volatility of the market. 



 
 

Example 2: Physics - Brownian Motion of Particles:  Describing the behaviour of microscopic 

particles suspended in a fluid, where their movement is influenced by collisions with fluid 

molecules. 

Application:  The equation models the probability distribution of particle positions, accounting for 

both systematic forces (like gravity) and random Brownian motion.The drift term can represent 

external forces acting on the particles, and the diffusion term encapsulates the random thermal 

motion. 

Example 3: Ecology - Spread of a Biological Species:  Understanding the spread of a biological 

species in an ecosystem, influenced by factors like migration and environmental conditions. 

Application:  The Fokker-Planck Equation is used to describe the distribution of the species over 

a geographical area. 

The drift term can model directed movement (like migration towards favourable 

conditions), while the diffusion term represents random dispersal. 

Example 4: Chemistry - Reaction-Diffusion Systems:  In chemical kinetics, modelling how the 

concentration of reactants changes over time and space in a reaction-diffusion system. 

Application:  The equation models the concentration profile of reactants and products. 

The drift term can represent the reaction kinetics, while the diffusion term models the 

random molecular motion leading to diffusion. 

Example 5: Neuroscience - Neuron Firing Rates : Modelling the firing rates of neurons, which 

are influenced by both the neuron's inherent properties and random synaptic inputs. 

Application: The Fokker-Planck Equation is used to model the probability distribution of the 

neuron's membrane potential. 

The drift term represents the deterministic dynamics of the membrane potential, and the 

diffusion term accounts for the random input fluctuations. 

These examples demonstrate the broad applicability of the Fokker-Planck Equation in 

modelling systems where outcomes are influenced by a combination of deterministic trends and 



 
 

random fluctuations. It provides a crucial tool for understanding the behaviour and evolution of 

complex systems across various scientific disciplines. 

14.8   Summary 

This unit delves into the complex yet fascinating world of Non-Homogeneous Processes, 

expanding the understanding of stochastic processes beyond the realm of time-invariant systems. 

This unit begins by defining non-homogeneous processes, emphasizing their key feature: the 

changing probability distributions and parameters over time, which set them apart from 

homogeneous processes. These changes make them particularly suitable for modelling real-world 

scenarios where conditions are dynamic and evolve. 

A significant portion of the unit is dedicated to exploring various types of non-

homogeneous processes, starting with simple non-homogeneous processes that lay the 

groundwork for understanding more complex models. The Polya process is examined in detail, a 

quintessential example of a non-homogeneous process known for its "rich get richer" dynamic. 

This urn model, where the probability of drawing a particular colour increases with the frequency 

of that colour in the urn, illustrates the reinforcement mechanisms often seen in social, economic, 

and biological systems. 

The unit then shifts focus to the impact of immigration on non-homogeneous processes. 

This aspect is crucial in understanding how the introduction of new entities from outside sources 

can significantly alter the dynamics of a system, such as in population dynamics, disease spread, 

and queueing theory. 

Advanced mathematical concepts form the core of later sections, with detailed discussions 

on the Backward Kolmogorov Diffusion Equation and the Fokker-Planck Equation. These 

equations are instrumental in modelling diffusion processes and provide a mathematical 

framework for understanding how probability distributions evolve over time in systems influenced 

by random fluctuations and external forces. 

The unit concludes with self-assessment questions designed to test the learner's 

understanding of the concepts, followed by a comprehensive list of references for further study. 

The summary encapsulates the key points covered, highlighting the importance of non-

homogeneous processes in stochastic modelling and their relevance in various fields such as 

finance, biology, environmental science, and more. 



 
 

Overall, this unit offers a deep dive into the intricacies of non-homogeneous stochastic 

processes, equipping learners with the knowledge and tools to analyse complex systems that 

change over time, and preparing them for advanced studies or professional applications in diverse 

fields. 

14.9  Self-Assessment Questions 

Theoretical Questions 

1. Define a Non-Homogeneous Process: Explain what distinguishes a non-homogeneous 

process from a homogeneous one. Provide an example from real life that illustrates this 

difference. 

2. Explain the Polya Process: Describe the Polya process in detail. What makes it an example 

of a non-homogeneous process, and how does it exemplify the "rich get richer" 

phenomenon? 

3. Immigration in Non-Homogeneous Processes: Discuss the impact of immigration on non-

homogeneous processes. How does the introduction of new entities from an external source 

affect the dynamics of these processes? 

4. Backward Kolmogorov Diffusion Equation: Explain the significance of the Backward 

Kolmogorov Diffusion Equation in the context of non-homogeneous processes. How does 

it differ from the Fokker-Planck Equation? 

5. Applications of the Fokker-Planck Equation: List at least three fields where the Fokker-

Planck Equation is applied and explain its role in each field. 

Problem-Solving Questions 

1. Applying the Polya Process: Assume an urn initially contains 3 red balls and 2 blue balls. 

If a ball is drawn at random and then returned to the urn along with another ball of the same 

colour, what is the probability that the third ball drawn is red? 



 
 

2. Modelling with Immigration: A certain species of fish is introduced into a lake at a rate of 

50 fish per year. The birth and death rates of the fish are known to change seasonally. 

Sketch a basic model that represents the fish population over time. 

3. Using the Backward Kolmogorov Equation: Suppose the stock price of a company follows 

a diffusion process with a drift coefficient μ and a diffusion coefficient σ^2. Write down 

the Backward Kolmogorov Equation for this process. 

4. Fokker-Planck Equation Problem: Given a particle undergoing Brownian motion in a fluid 

with a drift coefficient αx and a constant diffusion coefficient β, write down the Fokker-

Planck Equation for the probability density function of the particle's position. 

5. Real-World Scenario Analysis: Consider a scenario where a new technology is being 

adopted in a market. The rate of adoption is influenced by the number of current users 

(network effect) and random market factors. How would you model this scenario using a 

non-homogeneous process? 
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For extended learning and deeper insights into the topics covered in Unit 14: Non-

Homogeneous Process, the following suggestions for further reading are provided, along with the 

names of their publishers in standard format: 

• Gardiner, C. W. (2009). Handbook of Stochastic Methods: for Physics, Chemistry and the 

Natural Sciences (4th ed.). Springer-Verlag. 

• Risken, H. (1996). The Fokker-Planck Equation: Methods of Solution and Applications 

(2nd ed.). Springer-Verlag. 

• Oksendal, B. (2003). Stochastic Differential Equations: An Introduction with Applications 

(6th ed.). Springer-Verlag. 

• Pavliotis, G. A. (2014). Stochastic Processes and Applications: Diffusion Processes, the 

Fokker-Planck and Langevin Equations. Springer-Verlag. 

• Durrett, R. (2019). Probability: Theory and Examples (5th ed.). Cambridge University 

Press. 

• Mahmudov, N. M. (2019). Stochastic Differential Equations: An Introduction with 

Applications in Population Dynamics Modelling. Wiley. 

These resources provide a comprehensive understanding of stochastic processes, 

particularly non-homogeneous processes, and their applications in various scientific and 

engineering fields. The books range from introductory to advanced levels, catering to a wide 

spectrum of readers from students to professionals in the field. 
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15.1  Introduction 

The study of dynamic systems and processes forms the cornerstone of understanding 

complex behaviours in various disciplines such as physics, biology, economics, and beyond. 

Within this broad spectrum, non-Markovian processes represent a fascinating and intricate 

class of stochastic processes that are pivotal in modelling systems where the future state does 

not solely depend on the present state but also on the history of the system. This unit, "Non-

Markovian Process," delves into the core of these processes, offering a comprehensive 

exploration of their theoretical foundations, mathematical formulations, and applications 

across different fields. 

Non-Markovian processes contrast sharply with their Markovian counterparts, which are 

characterized by the memoryless property, meaning the future is independent of the past given 

the present. Non-Markovian processes, on the other hand, incorporate memory effects, making 

the analysis and prediction of future states more complex and nuanced. This memory aspect 

allows for a more accurate modelling of real-world phenomena where the history significantly 

influences the evolution of the system. 



 
 

 

The unit begins by introducing some multi-dimensional prey and predator models, 

illustrating the application of non-Markovian dynamics in ecological systems. These models 

provide insight into how historical interactions between species can influence current and 

future population dynamics, offering a richer understanding than traditional Markovian 

models. 

Following this, we delve into the theoretical underpinnings of non-Markovian processes, 

discussing their properties, classifications, and the mathematical challenges they pose. This 

section lays the groundwork for understanding the depth and breadth of non-Markovian 

processes and prepares the learner for more complex applications and analyses. 

Embedded Markov Processes are introduced as a bridge between Markovian and Non-

Markovian processes, showcasing how certain non-Markovian processes can be approximated 

or transformed into a Markovian framework under specific conditions. This concept is crucial 

for developing practical solutions and analytical methods in systems that are inherently non-

Markovian. 

The application sections focus on population growth and epidemic models, illustrating the 

power of non-Markovian processes in capturing the complexities of real-world phenomena. 

From predicting the spread of diseases to understanding the nuances of population dynamics 

in response to environmental changes, these applications highlight the importance of 

considering historical data and memory effects. 

This unit aims to equip learners with a solid understanding of Non-Markovian processes, 

from their theoretical foundations to practical applications. Through detailed explanations, 

mathematical modelling, and real-world examples, learners will gain insights into the critical 

role these processes play in advancing our understanding of complex systems. Whether you're 

a student, researcher, or enthusiast, this exploration of Non-Markovian processes offers 

valuable knowledge and perspectives that bridge the gap between theory and application in the 

study of dynamic systems. 

15.2  Objectives 

The unit on Non-Markovian Processes is designed to deepen the understanding of these 

complex stochastic processes, highlighting their theoretical underpinnings, mathematical 



 
 

frameworks, and practical applications. The detailed objectives are structured to guide learners 

through a comprehensive exploration, ensuring a robust grasp of the concepts, techniques, and 

significance of non-Markovian processes in various scientific and mathematical contexts. Here 

are the detailed objectives of this unit: 

1. Understand the Fundamental Concepts of Non-Markovian Processes 

• To introduce the concept of non-Markovian processes and differentiate them from 

Markovian processes. 

• To elucidate the significance of memory and history in determining the future evolution of 

a system described by non-Markovian dynamics. 

• To understand the conditions under which a process is considered non-Markovian. 

2. Explore the Mathematical Formulation of Non-Markovian Processes 

• To learn about the mathematical models and formulations used to describe non-Markovian 

processes. 

• To understand the role of probability distributions, correlation functions, and other 

mathematical tools in analysing non-Markovian processes. 

• To grasp the complexities involved in solving and interpreting non-Markovian models. 

3. Examine Specific Examples and Applications 

• To study multi-dimensional prey and predator models as examples of non-Markovian 

processes in ecological systems. 

• To explore the application of non-Markovian processes in population dynamics, including 

the effects of historical events and environmental changes. 

• To analyse the use of non-Markovian processes in modelling epidemic spread and 

understanding disease dynamics over time. 

4. Understand Embedded Markov Processes within Non-Markovian Frameworks 

• To learn how Embedded Markov Processes can be utilized to approximate or simplify the 

analysis of non-Markovian processes. 



 
 

• To understand the conditions and methodologies for embedding Markov processes within 

non-Markovian frameworks. 

5. Apply Mathematical Techniques to Non-Markovian Processes 

• To acquire skills in applying mathematical and computational methods to solve non-

Markovian process models. 

• To understand the challenges and strategies in numerical simulation and analytical 

solutions of non-Markovian processes. 

6. Critically Analyse Real-world Systems Using Non-Markovian Models 

• To develop the ability to identify and model real-world phenomena where non-Markovian 

processes provide a more accurate or insightful description than Markovian models. 

• To enhance problem-solving skills by applying non-Markovian process models to complex 

systems in biology, finance, physics, and other areas. 

7. Engage with Advanced Topics and Current Research 

• To familiarize learners with current research trends and advanced topics in the study of 

non-Markovian processes. 

• To encourage further exploration and research in non-Markovian processes and their 

applications. 

By achieving these objectives, learners will be equipped with a deep understanding of non 

Markovian processes, enabling them to apply these concepts to analyse and model complex 

systems with historical dependencies. This unit aims to foster analytical thinking, problem-solving 

skills, and a comprehensive understanding of how non-Markovian dynamics can be applied across 

various disciplines to address real-world challenges. 

15.3  Some Multi-Dimensional Prey and Predator Models 

Multi-dimensional prey and predator models extend the classic Lotka-Volterra equations 

to more complex ecosystems involving multiple species interactions. These models capture the 

dynamics of multiple prey and predator species, allowing for a richer understanding of ecological 



 
 

and evolutionary dynamics. They can incorporate various factors such as competition, mutualism, 

and the spatial structure of habitats. 

Definition and Mathematical Formulation: A simple multi-dimensional prey-predator model 

can be represented by a system of differential equations. Consider an ecosystem with n prey species 

(xi) and m predator species (yj), the dynamics can be described by: 

𝑑𝑥𝑖
𝑑𝑡

=  𝑥𝑖 (𝑟𝑖 −∑𝑎𝑖𝑗𝑦𝑖 −∑𝑏𝑖𝑘𝑥𝑘

𝑛

𝑘=1

𝑚

𝑗=1

) 

𝑑𝑦𝑖
𝑑𝑡

=  𝑦𝑖 (−𝑏𝑗 +∑𝑐𝑖𝑗𝑥𝑖

𝑛

𝑖=1

) 

where:  ri is the intrinsic growth rate of prey species i, dj is the death rate of predator species j, aij 

represents the predation rate of predator j on prey i, bik represents the competition coefficient 

among prey species, cij represents the efficiency of converting consumed prey i into predator j 

biomass. 

Examples 

Example 1: Two Prey-One Predator Model:  Consider a model with two prey species (x1 and 

x2) and one predator species (y). This model can represent a scenario where the predator feeds on 

both prey species, but the prey species also compete for resources. 

The equations could look something like this: 

𝑑𝑥1
𝑑𝑡

=  𝑥1(𝑟1 − 𝑎11𝑦 − 𝑏12𝑥2) 

𝑑𝑥2
𝑑𝑡

=  𝑥2(𝑟2 − 𝑎21𝑦 − 𝑏21𝑥1) 

𝑑𝑦

𝑑𝑡
=  𝑦(−𝑑 + 𝑐11𝑥1 + 𝑐21𝑥2) 

 



 
 

This model can demonstrate how a predator can indirectly facilitate the coexistence of 

competing prey species by preferentially preying on the more abundant species. 

Example 2: One Prey-Two Predator Model: This model represents an ecosystem with one prey 

and two competing predators. It can be used to study the conditions under which multiple predators 

can coexist. 

𝑑𝑥

𝑑𝑡
=  𝑥(𝑟 − 𝑎11𝑦1 − 𝑎12𝑦2) 

𝑑𝑦1
𝑑𝑡

=  𝑦1(−𝑑1 + 𝑐11𝑥) 

𝑑𝑦2
𝑑𝑡

=  𝑦2(−𝑑2 + 𝑐12𝑥) 

Supporting Results and Theorems 

Theorem (Existence of Equilibria): For a given multi-dimensional prey-predator model, there 

exists a non-trivial equilibrium point if the interaction terms allow for a balance between the 

species' growth and death rates. 

Proof Sketch:   The existence of equilibria can be proven by setting the right-hand side of each 

differential equation to zero and solving the resulting system of algebraic equations. The 

solution(s) to this system represent the equilibrium points where the population sizes remain 

constant over time. 

Theorem (Stability of Equilibria): An equilibrium point of a multi-dimensional prey-predator 

model is locally stable if the Jacobian matrix of the system at that point has eigenvalues with 

negative real parts. 

Proof Sketch: the major steps involved in the proof: 

• Calculate the Jacobian matrix of the system at the equilibrium point. 

• Determine the eigenvalues of the Jacobian matrix. 

• The equilibrium is locally stable if all eigenvalues have negative real parts, indicating that 

small deviations from the equilibrium will decay over time. 



 
 

    Multi-dimensional prey and predator models offer a nuanced view of ecological dynamics, 

allowing for the exploration of complex interactions among multiple species. Through 

mathematical analysis and simulation, these models can provide insights into the conditions that 

promote biodiversity, stability, and resilience in ecosystems. The examples and theorems 

mentioned serve as a foundation for understanding these complex interactions, providing a 

gateway to more detailed and specific studies within this fascinating area of mathematical biology. 

15.4  Non-Markovian Process 

Non-Markovian processes represent a class of stochastic processes that are fundamental in 

modelling systems where the future state depends not only on the current state but also on the 

history of the system. This dependency on past events makes non-Markovian processes inherently 

more complex and nuanced compared to their Markovian counterparts. 

Mathematical Properties of Non-Markovian Processes 

Memory: Unlike Markov processes, non-Markovian processes possess memory. The probability 

distribution of future states depends on the history of states, not just the present state. 

Time-Dependent Transition Probabilities: The transition probabilities in non-Markovian 

processes can change over time, reflecting the influence of past states on future probabilities. 

Long-Range Correlations: Non-Markovian processes often exhibit long-range correlations 

between events, where events far apart in time can still be statistically dependent. 

Comparison with Markov Processes: Markov processes are characterized by the Markov 

property, where the future state depends only on the current state, making these processes 

"memoryless." In contrast, non-Markovian processes do not adhere to this property. The 

dependency on past events allows non-Markovian processes to model systems where history plays 

a crucial role in the evolution of the system. 

Predictability: In Markov processes, predictability is solely based on the current state. For non-

Markovian processes, predictability requires more information about past states, making them 

inherently more complex to analyse and predict. 



 
 

Transition Probabilities: In Markov processes, transition probabilities are fixed and do not 

change over time. In non-Markovian processes, these probabilities can vary, reflecting the 

influence of the system's history. 

Applications: Markov processes find applications in areas where the memoryless property is a 

reasonable approximation of the system's dynamics. Non-Markovian processes are applied in 

situations where history or memory effects are significant, such as in complex physical systems, 

financial markets, and certain biological processes. 

Examples and Case Studies 

Example 1: Financial Markets: In financial markets, asset prices often exhibit non-Markovian 

dynamics. The price of an asset may depend not only on its current state but also on its history of 

prices, reflecting the collective memory and reactions of the market participants to past events. 

Case Study: The Flash Crash 

The 2010 Flash Crash, where stock prices plummeted and partially recovered within 

minutes, is an example where non-Markovian dynamics can be considered. The rapid decline and 

recovery in prices were influenced by the interplay of automated trading algorithms, which were 

responding to both current and past market conditions. 

Example 2: Polymer Physics 

The dynamics of polymers and complex fluids often exhibit non-Markovian behaviour. 

The motion of a polymer chain in a solvent depends not only on its current configuration but also 

on its past configurations, due to the memory effects introduced by the viscosity of the solvent and 

the elasticity of the polymer chain. 

Case Study: Viscoelastic Behaviour of Polymers 

The viscoelastic behaviour of polymers, where they exhibit both viscous and elastic 

characteristics depending on the timescale of observation, is a manifestation of non-Markovian 

dynamics. The stress response of a polymer to strain depends on the entire history of its 

deformation, not just its current state. 

Non-Markovian processes provide a rich framework for modelling and understanding 

systems where history and memory effects play a significant role. The mathematical complexity 



 
 

of these processes allows for a more nuanced description of real-world phenomena, offering 

insights that Markovian models cannot capture. Through examples and case studies across various 

disciplines, the significance and applicability of non-Markovian dynamics are evident, 

highlighting their importance in both theoretical and applied contexts. 

15.5  Embedded Markov Process 

Embedded Markov processes provide a powerful framework for analysing and simplifying 

non-Markovian processes by identifying discrete events or states within a continuous-time process, 

where the memoryless property holds. This approach allows the conversion of complex non-

Markovian dynamics into a more tractable form, leveraging the well-established theory of Markov 

processes. 

Introduction to Embedded Markov Processes 

An embedded Markov process focuses on a sequence of discrete events or states in a system 

that evolves over continuous time. By considering only these discrete points, one effectively 

"embeds" a Markov chain within a non-Markovian process. This technique is particularly useful 

in systems where state transitions at specific points in time are determined by probabilities that do 

not depend on the history prior to those points. 

Simplifying Non-Markovian Processes 

The key advantage of identifying an embedded Markov process within a non-Markovian 

system lies in simplification. Non-Markovian processes are characterized by memory effects, 

where future states depend on the entire history of the system. By contrast, an embedded Markov 

process focuses on transitions between states at particular instances, ignoring the path taken 

between these instances. This reduction to memoryless transitions at discrete times allows for the 

application of Markovian analysis techniques, including the calculation of steady-state 

probabilities and transition matrices. 

How Embedding Works 

The embedding process involves identifying specific events or criteria that define the 

transitions between states. For example, in a queueing system, one might consider the system state 

only at arrival or departure times of customers, ignoring the details of the waiting time. These 



 
 

discrete events, where customers arrive or depart, form the embedded Markov chain, with the state 

transitions at these times following the Markov property. 

Examples and Practical Applications 

Queueing Theory:   A classic application of embedded Markov processes is in queueing theory. 

In many queueing models, the system can be analysed as an embedded Markov chain at customer 

arrival or service completion times. The system's state can be described by the number of 

customers in the queue, and the transitions occur only when a customer arrives or leaves. This 

approach simplifies the analysis of complex service systems, allowing for the calculation of 

performance metrics such as average queue length or waiting time. 

  Inventory Management:  In inventory management, an embedded Markov process can model 

the system state at discrete ordering or review times. For instance, the decision to reorder stock 

can be made at regular intervals based on the current inventory level, ignoring the detailed demand 

history between these intervals. This simplifies the analysis of inventory policies and helps in 

optimizing ordering strategies. 

 Reliability Engineering: Embedded Markov processes are also used in reliability engineering to 

analyse systems with repair and failure modes. By considering the system state only at transition 

events, such as failures and repairs, one can model the reliability and availability of complex 

systems more simply. This approach is useful for designing maintenance schedules and improving 

system design. 

   Embedded Markov processes offer a valuable tool for simplifying the analysis of non-

Markovian systems by focusing on discrete transition events where the memoryless property holds. 

This approach enables the application of Markovian techniques to a broader range of problems, 

providing insights and solutions that would be difficult to obtain directly from the underlying non-

Markovian dynamics. Through practical examples in queueing theory, inventory management, and 

reliability engineering, the utility and versatility of embedded Markov processes are clearly 

demonstrated, highlighting their importance in operational research and systems analysis. 

15.6  Application to Population Growth 



 
 

Non-Markovian processes offer a nuanced approach for modelling population growth, 

capturing the complexity of biological systems where the future state depends not only on the 

current population but also on its history. This section explores the application of non-Markovian 

models to population dynamics, illustrating their potential through analysis and real-world case 

studies. 

Exploration of Non-Markovian Processes in Population Growth:   In traditional population 

models, such as the logistic model, the growth rate is a function of the current population size, 

ignoring the historical context. Non-Markovian processes extend this by incorporating memory 

effects, where the growth rate can depend on past population sizes, environmental conditions, or 

other historical factors. This approach is particularly relevant for populations that experience 

delayed effects of predation, resource depletion, or environmental changes. 

Analysis of Complex Population Dynamics:  Non-Markovian models allow for the inclusion of 

time-dependent factors and memory effects in population growth equations. For instance, a non-

Markovian model might incorporate the effect of a past disease outbreak on the current growth 

rate, reflecting the lasting impact on the population's health or genetic diversity. Similarly, the 

model could account for the delayed response of a population to environmental changes, such as 

gradual habitat degradation or climate shifts. 

The mathematical formulation of such models typically involves integra-differential equations 

or differential equations with time-delayed terms. These equations account for the influence of 

past states on the current rate of population change, providing a more accurate representation of 

growth dynamics in complex ecosystems. 

Case Studies 

Case Study 1: Forest Recovery After Wildfires 

Following a significant wildfire, the recovery of a forest ecosystem can be modelled using 

non-Markovian dynamics. The growth rate of the new vegetation depends not just on the current 

conditions but also on the history of the soil, the presence of surviving root systems, and the past 

availability of nutrients. A non-Markovian model can capture the delayed effects of fire on soil 

fertility and the gradual return of flora and fauna, providing insights into the long-term recovery 

processes and the resilience of the ecosystem. 



 
 

Case Study 2: Fisheries Management 

Fisheries management often deals with the challenge of predicting fish stock recovery after 

overfishing. A non-Markovian approach can model the population dynamics by incorporating the 

history of fishing pressure and its cumulative effect on the genetic diversity and reproductive 

capacity of the fish population. This model can help in designing sustainable fishing quotas that 

consider not only the current stock levels but also the historical exploitation rates and their long-

term effects on the population. 

Case Study 3: Disease Impact on Wildlife Populations 

    The impact of a disease outbreak on wildlife populations can have long-lasting effects that 

are well captured by non-Markovian models. For instance, the spread of a disease like white-nose 

syndrome in bat populations affects not only the current population size but also the future growth 

potential by reducing the breeding population and altering social behaviours. A non-Markovian 

model can incorporate these delayed effects, providing a framework for predicting long-term 

population trends and assessing the effectiveness of conservation strategies. 

Non-Markovian processes provide a powerful framework for modelling population growth 

in complex biological systems, where the effects of past events play a significant role in shaping 

future dynamics. By incorporating memory effects and time-dependent factors, these models offer 

a deeper understanding of population dynamics, enabling more accurate predictions and effective 

management strategies. The case studies in forest recovery, fisheries management, and disease 

impact demonstrate the practical application of Non-Markovian models in addressing real-world 

ecological and conservation challenges. 

Use of non-Markovian processes in modelling the spread of diseases (epidemics). 

The use of non-Markovian processes in modelling the spread of diseases offers a 

sophisticated framework to capture the complexities and intricacies of epidemic dynamics. 

Traditional epidemiological models often assume memoryless processes, where the future state of 

an individual’s health status (susceptible, infected, or recovered) depends only on the current state, 

not taking into account the history of the disease spread or individual contact patterns. However, 

many infectious diseases and their spread through populations exhibit dependencies on past 

interactions and events, making non-Markovian processes an essential tool for more accurate and 

realistic modelling. 



 
 

Incorporating Memory in Disease Spread Models: Non-Markovian processes allow for the 

inclusion of various memory effects in disease modelling, such as: 

Duration of Infection: The time an individual remains infectious can vary significantly, 

depending on factors such as the individual’s immune response and the nature of the pathogen. 

Non-Markovian models can incorporate a distribution of infectious periods rather than assuming 

a constant rate of recovery. 

Contact Patterns: The frequency and nature of contacts between individuals can have memory, 

influenced by social structures, movement patterns, and changes in behaviour over time. Non-

Markovian models can account for these dynamic contact networks, improving the modelling of 

disease transmission. 

Latency Periods: Many diseases have an incubation period during which an infected individual 

is not yet infectious. The duration of this period can depend on the individual’s health history and 

the disease characteristics, which can be modelled using non-Markovian processes. 

Advantages of Non-Markovian Models in Epidemic Modelling: 

Realistic Representation of Disease Dynamics: By incorporating the history of individual states 

and interactions, non-Markovian models offer a more realistic representation of how diseases 

spread through populations. 

Improved Predictive Power: These models can provide more accurate predictions of outbreak 

dynamics, including the timing and magnitude of epidemic peaks, by accounting for the variability 

in individual behaviours and disease characteristics. 

Flexible Framework: Non-Markovian processes offer a flexible framework that can be tailored 

to include specific features of disease spread, such as super-spreader events or the impact of public 

health interventions over time. 

Practical Applications and Case Studies 

Modelling COVID-19 Pandemic:  The COVID-19 pandemic is a prime example where non-

Markovian processes have been applied to model the spread of the disease. The varying infectious 



 
 

periods, asymptomatic transmission, and changes in social behaviour over time (due to lockdowns 

and social distancing measures) necessitated the use of models that could account for these 

complexities. Non-Markovian models were used to simulate the effects of intervention strategies, 

predict hospitalization needs, and understand the potential impact of vaccination rollouts. 

HIV Transmission Dynamics:  The spread of HIV within populations is significantly influenced 

by long-term relationships and behaviour change over time. Non-Markovian models have been 

employed to capture the dynamics of transmission within networks, considering the duration of 

relationships and the changing rates of partner acquisition and loss. These models have helped in 

understanding the long-term trends in HIV prevalence and the effects of interventions such as 

antiretroviral therapy and education campaigns. 

      The use of non-Markovian processes in modelling the spread of diseases provides a 

nuanced and detailed approach that captures the complexities of real-world epidemics. By 

incorporating memory effects and time-dependent behaviours, these models offer enhanced 

predictive capabilities and insights, aiding public health officials and researchers in the effective 

management and control of infectious diseases. As epidemic modelling continues to evolve, the 

role of non-Markovian processes will remain crucial in addressing the challenges of emerging and 

re-emerging infectious diseases. 

Introduction to counter models and their significance in studying epidemics.  

 Counter models, in the context of epidemiology, are analytical or computational 

frameworks designed to track the progression of diseases within populations by quantifying 

specific events or interactions that contribute to the spread of an infection. These models are 

particularly significant for studying epidemics because they allow researchers to dissect complex 

disease transmission dynamics into quantifiable and observable units. By focusing on counters, 

such as the number of contacts, infections, recoveries, or vaccinations, these models offer a 

structured approach to understanding and predicting the behaviour of infectious diseases. 

Significance of Counter Models in Studying Epidemics 

Counter models serve several crucial roles in the study of epidemics: 



 
 

Quantification of Transmission Events: They enable the precise quantification of transmission 

events, allowing for a detailed analysis of how, when, and where infections occur. 

Identification of Key Parameters: Counter models help identify key epidemiological parameters, 

such as the basic reproduction number (R0), which is essential for understanding the potential 

spread of an epidemic. 

Assessment of Intervention Strategies: By simulating the effects of public health interventions 

(e.g., vaccination, social distancing, contact tracing) on the counters, these models can assess the 

potential impact of such strategies on controlling the epidemic. 

Enhanced Predictive Capabilities: They provide enhanced predictive capabilities by allowing for 

the simulation of various scenarios under different parameters and interventions, aiding in 

decision-making and planning. 

Detailed Examination of Disease Dynamics Through Counter Models 

Modelling Contact Networks: Counter models can explicitly model contact networks within a 

population, tracking the number of contacts each individual has with others. This approach is 

invaluable for understanding the role of super-spreaders (individuals who infect disproportionately 

more secondary cases) and identifying potential hotspots for targeted interventions. 

Transmission Chains: By counting and analysing transmission chains, counter models can reveal 

the pathways through which a disease spreads through a population. This insight is crucial for 

identifying vulnerable groups and designing targeted containment strategies to break chains of 

transmission. 

Impact of Public Health Interventions: Counter models quantify the impact of public health 

interventions by simulating changes in counter metrics, such as reduced contacts due to social 

distancing or increased immunity due to vaccination campaigns. This quantification helps in 

evaluating the effectiveness of interventions and optimizing resource allocation. 

Temporal Dynamics: These models are adept at capturing the temporal dynamics of an epidemic, 

including the incubation period, the infectious period, and time-dependent changes in population 



 
 

behaviour or immunity. Counters tracking new infections over time can help in identifying peaks, 

estimating the duration of the epidemic, and understanding the effects of seasonality. 

Practical Applications 

COVID-19 Pandemic: During the COVID-19 pandemic, counter models were used extensively 

to project the course of the epidemic under various scenarios, including lockdown measures, mask 

mandates, and vaccination rollouts. These models provided critical insights into the timing of 

intervention strategies and their potential to flatten the curve. 

HIV/AIDS Epidemic: In the context of the HIV/AIDS epidemic, counter models have been used 

to track the number of new infections, the impact of antiretroviral therapy (ART) on reducing viral 

load and transmission, and the effectiveness of preventive measures like pre-exposure prophylaxis 

(PrEP). These models have informed policy and contributed to the global response aimed at ending 

the HIV epidemic. 

  Counter models represent a powerful tool in the epidemiologist’s toolkit, offering a 

structured and quantifiable approach to understanding the dynamics of disease spread. By breaking 

down complex transmission networks into countable events and interactions, these models provide 

invaluable insights into the mechanisms driving epidemics and the potential impact of public 

health interventions. Their application in recent and ongoing epidemics underscores their 

significance in aiding epidemiological understanding, guiding public health policy, and ultimately 

controlling the spread of infectious diseases. 

15.9  Summary 

This unit delved into the intricate world of non-Markovian processes, contrasting them 

significantly with Markovian processes by highlighting the dependency of future states on the 

history of a system, rather than solely on its present state. This distinction is crucial for modelling 

complex systems across various disciplines, from physics to finance, where memory effects and 

historical dependencies play a pivotal role in the system's evolution. 

         The exploration began with an introduction to simple multi-dimensional prey and 

predator models, demonstrating how non-Markovian dynamics could capture interactions within 

ecosystems more accurately than traditional approaches. This was followed by an in-depth 



 
 

discussion of non-Markovian processes themselves, including their mathematical properties and 

how they contrast with Markov processes, particularly in terms of predictability and the handling 

of past information. 

       Embedded Markov processes were introduced as a method to simplify or approximate 

non-Markovian systems. By isolating specific events where the Markov property holds, these 

embedded processes allow for easier analysis and application of Markovian techniques, offering a 

bridge between the complexity of non-Markovian dynamics and the simplicity of Markovian 

models. 

        The application of non-Markovian processes to population growth provided a practical 

look at how these models can account for delayed effects and historical dependencies, offering 

insights into complex population dynamics. This was further illustrated through case studies, 

including the modelling of disease spread, where non-Markovian processes prove particularly 

valuable. By incorporating factors like latency periods and variable infectious periods, these 

models offer a nuanced understanding of epidemic dynamics, surpassing simpler models in 

predictive power and realism. 

       Counter models in epidemiology highlighted the utility of non-Markovian processes in 

quantifying and analysing the spread of diseases. By tracking specific events or interactions, such 

as the number of infections or recoveries, these models provide detailed insights into epidemic 

spread and the effectiveness of public health interventions. 

      Self-assessment questions encouraged reflection and deeper engagement with the content, 

challenging learners to apply concepts to various scenarios and explore the implications of non-

Markovian dynamics in real-world contexts. 

      The unit concluded with a comprehensive set of references, providing learners with 

resources to deepen their understanding of non-Markovian processes and explore their applications 

across different fields further. 

       Overall, this unit offered a thorough examination of non-Markovian processes, 

emphasizing their importance in accurately modelling systems where history cannot be ignored. 

Through theoretical discussions, practical applications, and case studies, learners were equipped 

with a solid foundation in understanding and applying non-Markovian models to complex real-

world problems. 

 



 
 

15.9   Self-Assessment Questions 

Question 1: Definitions 

Q1: Explain the difference between Markovian and Non-Markovian processes. Provide an 

example of a scenario that could be modelled as a non-Markovian process. 

Question 2: Understanding Concepts 

Q2: Describe how memory effects in non-Markovian processes can influence the modelling of 

population dynamics. Why is this significant in the context of ecological modelling? 

Q3: Given a system where the future state depends on the cumulative history of past states, 

how would you determine if the system is better modelled by a non-Markovian process rather 

than a Markovian process? Illustrate your answer with an example. 

Q4: What is an embedded Markov process, and how can it simplify the analysis of non-

Markovian systems? Provide an example from queueing theory or inventory management. 

Q5: Explain how non-Markovian processes can be used to model the spread of diseases, 

specifically addressing the incorporation of latency periods and variable infectious periods. 

How does this approach improve upon simpler models? 

Q6: Describe the role of counter models in studying the dynamics of epidemics. What kind of 

information can these models provide that traditional models might not? 

Q7: Consider a non-Markovian process where the rate of change of a population P(t) at time t 

depends on its size at time t and also on its average size over the past year. Write a differential 

equation that could represent this scenario. 

Q8: How might non-Markovian models be applied to financial markets? Discuss the 

significance of historical price data and trading volume in modelling asset prices. 

Q9: Reflect on the limitations of non-Markovian processes in modelling real-world 

phenomena. What challenges might researchers face when using these models? 



 
 

Q10: Identify a recent study or application of non-Markovian processes in any field of your 

interest. Summarize the objectives and findings of the study. 
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