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UNIT-01 UNDAMPED OSCILLATOR 

Structure  
1.1 Introduction 

Objectives 

1.2 Simple Harmonic Motion : Basic characteristics 

1.2.1 Oscillations of a spring-mass system 

1.3 Differential  Equation of Simple Harmonic Motion 

1.4 Solution of the differential equation for SHM 

1.4.1 Phase and Amplitude 

1.4.2 Time Period and Frequency 

1.4.3 Velocity and Acceleration 

1.5 Transformation of energy in oscillating systems: 
Potential and Kinetic energies 

1.6 Calculation of average valves of quantities associated 
with SHM 

1.7 An L-C Circuit 

1.8 Examples of Physical Systems executing SHM 

1.8.1 Simple Pendulum 

1.8.2 Compound Pendulum 

1.8.3 Vertical Oscillations of a Floting Cylinder 

1.8.4 Up and down Oscillation of liquid contained in a 
vertical U-tube 

1.9 Summary 

1.10 Terminal Questions 

1.1 INTRODUCTION 
In your school science courses you must have learnt about different 

types of motions. You are familiar with the motion of falling bodies, 
planets and satellites. A body released from rest and falling freely (under 
the action of gravity) moves along a straight line. But an object dropped 
from an aeroplane or a ball thrown up in the air follows a curved path UGPHS-102/5

O
R

A
C

LE
-0

01



(except when it is thrown exactly vertically). You must have also observed 
the motion of the pendulum of a wall clock and vibrating string of a violin 
or some other string instrument. These arc examples of oscillatory motion. 
The simplest kind of oscillatory motion which can be analysed 
mathematically is the Simple Harmonic Motion (SHM). We can analyse 
oscillatory motions of systems of entirely different physical nature in 
terms of SHM. For example, the equation of motion that we derive for a 
pendulum will be similar to the equation of motion of a charge in a circuit 
containing an inductor and a capacitor. The form of solutions of these 
equations and the time variation of energy in these systems show 
remarkable similarities. However, there are many important phenomena 
which arise due to superposition of two or more harmonic oscillations. For 
example, our ear drum vibrates under a complex combination of harmonic 
vibrations. But we shall discuss this aspect in the next unit. In this unit we 
will study oscillatory systems using simple mathematical techniques. Our 
emphasis would be on highlighting the similarities between different 
systems. 

Any motion which repeats itself after regular interval is called 
periodic or harmonic motion and the time interval after which the motion 
is repeated is called its time period. Some examples of periodic motion 
include (see Fig. 1) 

• motion of planets around the sun,

• motion of a piston inside a cylinder, used in automobile engines, or

• motion of a ball in a bowl.

Fig. 1 : Some examples of periodic motion: (a) motion of the earth 
around the sun, or moon around the earth; (b) motion of a piston in a 
cylinder which is used in automobile engines; (c) motion of a ball in a 
bowl. 

If in case of periodic motion, the body moves back and forth repeatedly 
about a fixed position (called equilibrium or mean position), the motion is 
said to be oscillatory or vibratory. For instance, the motion of the earth 
around the sun and the motion of the hands of the clock, are examples of 
periodic motion, but they are not oscillatory in nature. The motion of 
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piston in an automobile engine, motion of a ball in a bowl, motion of 
needle of sewing machine or the bob of a pendulum clock are all examples 
of oscillatory motion. 

An oscillating body is said to execute simple harmonic motion (SHM) if 
the magnitude of the forces acting on it is directly proportional to the 
magnitude of its displacement from the mean position and the force 
(called restoring force) is always directed towards the mean position. 
Thus, we can see that simple harmonic motion or SHM is actually a 
special case of oscillatory or 

vibratory motion. We will study SHM in detail in this unit. Some 
examples of simple harmonic motion include (see Fig. 2) 

• motion of a simple pendulum,
• a vibrating tuning fork, or
• a spring-mass system.

Fig. 2: Some examples of SHM: (a) A simple pendulum; (b) a 
vibrating tuning fork; (c) an oscillating spring-mass system. 

OBJECTIVES : 

After studying this unit, you should be able to 

• Understand the concept simple harmonic motion

• Define Phase, amplitude, Time Period and Frequency

• Write down the general equation of simple harmonic motion

• Explain the concept of simple pendulum and compound pendulum

1.2 SIMPLE HARMONlC MOTION: BASIC 
CHARACTERISTICS 

You know that each hand of a clock comes buck to a given 
position after the lapse of certain time. This is familiar example of 
periodic. motion. When a body in periodic motion moves to-and-fro (or 
hack and forth) about its position, the motion is vibratory or oscillatory UGPHS-102/7
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motion is a common phenomenon. Well known examples of oscillatory 
motion are: oscillating bob of a pendulum clock, piston of' an engine. 
vibrating strings of a musical instrument, oscillating uranium nucleus 
before its fissions. Even large-scale buildings and bridges may at times 
undergo oscillatory motion. Many stars exhibit periodic variations in 
brightness, you must have observed that normally such oscillations, left to 
themselves, do not continue indefinitely i.e. they gradually die down to 
various damping factors like friction and air resistance etc. Thus, in actual 
practice, the oscillatory motion may be quite complex, as for instance 
vibrations of a violin string. We begin our study with the discussion of 
essential features of SHM. For this we consider an idealized model of a 
spring- mass system as an example of a simple harmonic oscillator. 

1.2.1 OSCILLATIONS OF A SPRING-MASS SYSTEM 

A spring-mass system consists of a spring of negligible mass 
whose one end is fixed to a rigid support S and other end carries a block of 
mass m which lies flat on a horizontal frictionless table: (Fig. I. 1). Let us 
take the x-axis to be along the length of the spring. When the mass is at 
rest, we mark a point on it and we define the origin of the axis by this 
point. That is at equilibrium the mark lies at x = 0.  

Fig. 1.1 A Spring-mass System as an ideal oscillator (a) A equilibrium 
configuration, (b) An extended configuration, (c) A compressed 
configuration. 

UGPHS-102/8
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If the spring is stretched by pulling the mass longitudinally, due to 
elasticity a restoring force comes into play which tends to bring the mass 
back towards the equilibrium position (Fig 1. lb). If the spring were 
compressed the restoring force would tend to extend the spring and restore 
the mass to its equilibrium position (Fig.l.1c). More you stretch/compress 
the spring, more will be the restoring force. So the direction of the 
restoring force is always opposite to the displacement. If total change in 
the length is small compared to the original length, then the magnitude of 
restoring force is linearly proportional to the displacement. 
Mathematically, we can write 

1.1 

The negative sign signifies that the restoring force opposes the 
displacement. The quantity k is called the spring constant or the force 
constant of the spring. It is numerically equal to the magnitude of restoring 
force exerted by the spring for unit extention. Its SI unit is Nm-1

Let us now study the effect of gravity on oscillations of spring-mass 
system. Consider a spring of negligible mass suspended from a rigid 
support with mass m attached to its lower end (Fig.l.2) 

Fig. 1.2 A vertically hanging spring-mass system. (a) The spring with 
no object suspended from it (b) The spring in equilibrium with mass 
m suspended, (c) Spring-mass system displaced from equilibrium 
position. 

Let us choose the X-axis along the length of the spring. We take the 
bottom of the spring as our reference point, X = 0, when no weight is 
attached to it (Fig. 1.2a). When a mass m is suspended from the spring, let 
the reference point move to x=Xo (Fig. 1.2b). At equilibrium, the weight, 
mg, balances the spring force, kXo Since the net force is zero, we have  

1.2 UGPHS-102/9
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Now if the mass is pulled downwards so that the reference mark shifts to 
XI (Fig 1.2c), then the total restoring force will be kXI and point in the 
upward direction. The net downward force will therefore be (using Eq. 
(1.2)) 

mg - XI = k(Xo - XI) = -kx 

where x =XI - Xo. Thus, the resulting restoring force on the mass is 

F=-kx 

where x is its displacement from the equilibrium position, XO. This result 
is of the same form as Eq. (1.1) for the horizontal arrangement. It is thus 
clear that gravity has no effect on the frequency of oscillations of a mass 
hanging vertically from a spring, i.e., only displaces the equilibrium. 

1.3  DIFFERENTIAL EQUATION OF SIMPLE 
HARMONIC MOTION 

Let us now find the differential equation which describes the 
oscillatory motion of a spring-mass system. The equation of motion of 
such a system is given by equating the two forces acting on the mass: 
mass X acceleration = restoring force 
or 

where d2x/dt2 is the acceleration of the body, 
It is important to note that in this equation, the equilibrium position of the 
body is taken as the origin, x = 0. 
You will note that the quantity k/m has units of Nm-1kg -1 = (kg.ms-2) kg-

1m-1 = s-2 

Hence, we can replace k/m by 𝜔𝜔0
2where 𝜔𝜔0 is called angular frequency, 

then the above equation takes the form, 

1.3 
It may be remarked here that Eq. (1.3) is the differential form of Eq. (1.1) 
and describes simple harmonic motion in one dimension. 
A differential equation having terms involving only the first power of the 
variable and its derivatives is known as a linear differential equation. If 
such an equation contains no term independent of the variable, it is said to 
be homogeneous. We may, therefore, say that Eq. (1.3) is a second order 
linear homogeneous equation. Its solution will contain two arbitrary 
constants. 

UGPHS-102/10
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1.4  SOLUTION OF THE DIFFERENTIAL 
EQUATION FOR SHM 

To find the displacement of the mass at any time t, we have to 
solve Eq. (1.3) subject to given initial conditions. A close inspection of 
Eq. (1.3) shows that x should be such a function that its second derivative 
with respect to time is the negative of the function itself, except for a 
multiplying factor 𝜔𝜔0

2 . From elementary calculus, we know that sine and 
cosine functions have this property. You can check that this property does 
not change even if sine and cosine functions have a constant multiplying 
factor.  

A general solution for x (t) can thus be expressed as a linear combination 
of both sine and cosine terms, i.e.  

x (t) = A1 cos αt + A2 sin αt                ( 1.4) 

Putting A1= A cos φ  and A2 = - A sin φ , we get 

x (t) = Acos (αt + φ ) 

Differentiating this equation twice with respect to time and comparing, the 
resultant expression with Eq. (1.3), we obtain α = ± ω0 . The negative sign 
is dropped as it gives negative frequency which is a physically absurd 
quantity.  

Substituting α =  ω0  in the above equation, we get 

x (t) = Acos(ω0 t+ φ )        (1. 5) 

Let us assume that the mass is held steady at some distance a from the 
equilibrium position and then released at t = 0. Thus the initial conditions 
are: at t = 0, x = a and  𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
  = 0 . Then from Eq. (1.5) we would have, at t = 

0. 

Acosφ  = a 

And - A ω0 Sinφ    =  0

These conditions are sufficient to fix A and φ . The second condition tells 
us that φ  is either zero or n π (n = 1,2, ...). We reject the second option 
because the first condition requires cosφ  to be positive. Thus with the 
above initial conditions, Eq. (1.5) has the simple form 

x = A cosω0 t (1.6) 

1.4.1  PHASE AND AMPLITUDE 

The quantity (ω0 t + φ ) occurring in Eq. (15) is called the phase 
angle or the phase of vibration of the system at time t. At t = 0, the phase 
is φ  and is called the initial phase or the phase constant. This gives us UGPHS-102/11
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information about the initial position from where we start measuring the 
displacement. If at t = 0, the body is at x = xo, then from Eq. (1.5) it 
follows that 

xo=Acosφ  

Fig. 1-.3 Displacement-time graph of simple harmonic motion with an 
initial phase φ . 

We know that the value of the sine and cosine  functions lie between 1 and 
-1. When cos(ω0 t + φ ) = 1 or -1, the displacement has the maximum 
value. Let us denote it by a or -a. The quantity a is called the amplitude of 
oscillation. 

We can, therefore, rewrite Eq. (1.5) as  

x (t) = a cos(ω0 t + φ )     (1.7) 

The displacement-time graphs for φ  = 0, π/2 and π are shown in Fig.l.4. In 
all the cases, the graphs have exactly the same shape if we shift the origin 
along the time axis. When the phase difference is π two oscillations are 
said to be in opposite phase or out of phase by π. 

φ  =π 

Fig. 1.4 Plot of Eq. (1.7) for φ = 0, π /2 and π. 
UGPHS-102/12
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1.4.2  TIME PERIOD AND FREQUENCY 

If we put  t = t + ( 2π/ω0 )    in Eq. 1.7, we obtain 

       𝒙𝒙(𝒕𝒕) = 𝒂𝒂 𝒄𝒄𝒄𝒄𝒄𝒄 [𝝎𝝎𝟎𝟎(𝒕𝒕 + 𝟐𝟐𝟐𝟐/𝝎𝝎𝟎𝟎)𝝓𝝓] 

   = 𝒂𝒂 𝐜𝐜𝐜𝐜𝐜𝐜[𝝎𝝎𝟎𝟎𝒕𝒕 + 𝟐𝟐𝟐𝟐 + 𝝓𝝓] 

   = 𝒂𝒂 𝐜𝐜𝐜𝐜𝐜𝐜(𝝎𝝎𝟎𝟎𝒕𝒕 + 𝝓𝝓) 

i.e., the displacement of the particle repeats itself after an interval of time

In other words, the oscillating particle complete one vibration in time 

This time is called the period of vibration or the time period denoted by T. 

1.8 

For a spring-mass system 𝜔𝜔0
2 = 𝐾𝐾

𝑚𝑚
  , so that 

1.9 

The number of vibrations executed by the oscillator per second is 
called frequency. The unit of frequency is Hertz (Hz) denoting by ν0

therefore  for a spring-mass system, 

1.10 

This means  that stiffer the spring, higher will be the frequency of 
vibration . 

1.4.3 VELOCITY  AND ACCLERATION 

We know that the displacement of a mass executing a simple harmonic 
motion is given as 

Therefore, the instantaneous velocity, which is the first time derivative of 
the 

displacement, is given by 

1.11 

We can rewrite it as UGPHS-102/13
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1.12a 

You may also like to know the value of  ν at any point x . To this end, we 
rewrite 

Eq. 1.11 as 

      1.12b 

We also know that acceleration is the first-time derivative of velocity. 
From Eq. 1.11 it readily follows that 

            1.13a 

Obviously, in terms of displacement 

 1.13b 

If you compare Eqs. 1.7, 1.12 a and 1.13 a;  you will note that (i) ω0a is 
velocity amplitude and ω02a is acceleration amplitude and (ii) velocity is 
ahead of, displacement by π/2 and acceleration's ahead of velocity by π/2. 

If you plot displacement, velocity, and acceleration as functions of time 
you will get graphs as shown in Fig.l.5. 

UGPHS-102/14
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Fig. 1.5 Time variation of displacement, velocity and acceleration of a 
body executing SHM. 

1.5 TRANSFORMATION OF ENERGY IN 
OSCILLATING SYSTEMS : POTENTIAL 
AND KINETIC ENERGIES 

Consider the spring-mass system shown in Fig .1.1 when the mass is 
pulled, the 

spring is elongated. The amount of energy required to elongate the spring 
through a distance dx is equal to the work done in bringing about this 
change. It is given by dW = dU = –FO dx, where FO is the applied force 
(such as by hand). This force is balanced by the restoring force. That is, its 
magnitude is same as that of F and we can write F0 = –kx. Therefore, the 
energy required to elongate the spring through a distance x is 

1.14 

This energy is stored in the spring in the form of potential energy and is 
responsible for oscillations of the spring-mass system. 

On substituting for the displacement from Eq. (1.7) in Eq. (1.14), we get 

1.15 

Note that at t = 0, the potential energy is 

1.16 

As the mass is released, it moves towards the equilibrium position and the 
potential energy starts changing into kinetic energy (K.E). The kinetic 
energy at any time t is given by K.E = 1/2 mv2. Using Eq. (1. 1), we get 

         1.17 
UGPHS-102/15
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One can also express K.E in terms of the displacement by writing   

   

  1.18 

This shows that when an oscillating body passes through the equilibrium 
position (x = 0), its kinetic energy is maximum and equal to 1 /2 ka2.           

1.6 CALCULATION  OF AVERAGE VALUES  
OF QUANTITIES ASSOCIATED  WITH 
SHM 

In Fig. 1.5 we have plotted displacement, velocity and acceleration 
as a function of time. You will note that for any complete cycle in each 
case, the area under the curve for the first half is exactly equal to the area 
under the curve in the second half and the two are opposite in sign. Thus 
over one complete cycle the algebraic sum of these areas is zero. This 
means that average values of displacement, velocity and acceleration over 
one complete cycle are zero. If we plot x2 (or v2) versus t, the curves 
would lie in the upper half only so that the total area will be positive 
during one complete cycle. This suggests that we can talk about average 
values of kinetic and potential energies. 

The time average of kinetic energy over one complete cycle is defined as 

                                   1.19a 

On substituting for K.E from Eq. (1.17), we get 

< 𝑲𝑲.𝑬𝑬. > =  𝒌𝒌𝒌𝒌
𝟐𝟐

𝟐𝟐𝟐𝟐 ∫ 𝒄𝒄𝒔𝒔𝒔𝒔𝟐𝟐(𝝎𝝎𝒌𝒌𝒕𝒕 + 𝝓𝝓)𝒅𝒅𝒕𝒕𝟐𝟐
𝟎𝟎                 1.19b 

On solving the integral in Eq. (1.19b) you will find that its value is T/2. 
So, the 

expression for average kinetic energy reduces to 

UGPHS-102/16
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                                          1.20 

Similarly, one can show that the average value of potential energy over 
one cycle is 

     < 𝑼𝑼 ≥ 𝑲𝑲𝒂𝒂𝟐𝟐

𝟒𝟒
                                                                1.21 

That is, the average kinetic energy of a harmonic oscillator is equal to the 
average 

potential energy over one complete period. 

Thus the sum of average kinetic and average potential energies is equal to 
the total energy: 

 

1.7 AN L-C CIRCUIT 

We will now discuss harmonic oscillations of charge in an ideal (R 
= 0) L-C circuit depicted in Fig. 1.6. As we know that  the electric and 
magnetic energies in such a circuit play roles analogous to potential and 
kinetic energies respectively for a spring-mass system. For simplicity, we 
assume that the inductor no resistance. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.6 . An ideal L-C circuit. UGPHS-102/17
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In a pendulum, the mean position is taken as the equilibrium state. What is 
the equilibrium state in an L-C circuit? It corresponds to the state when 
there is no current in the circuit. It may be disturbed by charging or 
discharging the capacitor. 

Let the capacitor be given a charge Qo coulomb. Then the voltage across 
the capacitor plates will be Qo/ C. Now if the circuit is disconnected, the 
capacitor discharges through the inductor. As a result current starts 
building up in the circuit gradually and the charge on the plates of the 
capacitor decreases. At any time t, let the current in the circuit be I and the 
charge on capacttor plates be q. Then the voltage drop across the inductor 
will be 

 
This must be equal to the voltage VC = q/C across the capacitor plates at 
that time. Thus, we can write 

                                      1.22 

Since   

 
Eq. (1.22) takes the form 

                                                1.23 

 
This means that one can have a wide range of frequencies by changing the 
values of  L and C. That is how you tune different stations in your radio 
sets. 

Eq. (1.23) represents SHM and has the solution 

                                  1.24 
UGPHS-102/18
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This shows that charge oscillates harmonically with the period  

                                               1.25 

Differentiating Eq.(1.24) with respect to time, we get the instantaneous 
current 

 

 
Thus the current leads the charge in phase by π/2. 

Let us now calculate the energy stored in the inductor L and the capacitor 
C at any 

instant t. As the current rises from zero to I in time t, the energy stored in 
the 

inductor, EL , is obtained by integrating the instantaneous power with 
respect to time, 

 
The negative sign implies that work is done against, rather than by the 
emf. On 

substituting for VL , we get 

 
The energy stored in the capacitor at time t is 

 
Thus the total energy 

                1.26 

This expression for total energy is similar to the one for mechanical 
oscillator (E= 1/2 mv2 +1/2 kx2). As q and I vary with time, the inductor 

UGPHS-102/19
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and capacitor exchange energy periodically. This is similar to the energy 
exchange in the spring mass system. Further, the mass and inductor play 
analogous roles in mechanical and electrical systems, respectively. 

1.8 EXAMPLES OF PHYSICAL SYSTEMS 
EXECUTING SHM  

We have seen that for a system, to execute simple harmonic 
motion, it must have two parts: one which can store potential energy (like 
spring) and the other capable of', storing kinetic energy (such as mass). 
We will now study physical system executing SHM using techniques 
developed for our model spring-mass system.  

1.8.1 SIMPLE PENDULUM 

A simple pendulum is an idealized system consisting of a point 
mass (bob) suspended by an inextensible, weightless string. As the bob of 
mass m is displaced by an angle θ from its equilibrium position the 
restoring force is provided by the tangential component of the weight mg 
along the arc (Fig. 1.7). It is given by 

 

 

 

 

 

 

 

        l  

 

 

 

 

 

Fig. 1.7 A simple pendulum 

The equation of motion of the bob is, therefore, 

                               1.27 UGPHS-102/20
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The bob is moving along the arc whose length at any instant is given by x. 
1f the corresponding angular displacement from the equilibrium position 
is θ, then the length of arc is 

                                                    1.28 

where l is length of the string by which the bob is suspended. 

Differentiating Eq. (1.28) twice with respect to t, and substituting the 
result in Eq. (1.27), we get 

                           1.29 

For small angular displacements, sinθ may be approximated to θ. In this 

approximation, Eq. (1.29) takes the form 

                                     1.30 

 
Eq. (1.30) is exactly of the standard form (1.3.) showing that pendulum 
executes simple harmonic motion. The time period of oscillation is given 
by 

                                  1.31 

By analogy, we can write the general solution of the Eq. (1.30) as 

                              1.32 

where θm , is the maximum angular displacement. 

From Eq. (1.31) we will note that for small angular displacements, the 
frequency of oscillation of a simple pendulum depends on g and l  but not 
on the mass of the bob. The appearance of the factor g in Eq. (1.31) 
implies that a pendulum clock will move slower near the equator than at 
the poles. Do you know why? This is because the value of g varies with 
latitude. For the same reason, the period of a pendulum will be different 
on moons and planets. UGPHS-102/21
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When the amplitude of oscillation is not small, we are required to solve 
the general Eq. (1.29). The time period, which can be expressed in the 
form of a series involving the maximum angular displacement θm , is 
given by 

    1.33 

we can check the accuracy of Eq. (1.31) by comparing the value of T 
obtained from Eq. (1.33). For example, you will find that when θm , is 15O 
(corresponding to a total to and fro-angular displacement of 30°), the 
actual value of time period differs from that given by Eq. (1.31) by less 
than 0.5%. 

1.8.2 COMPOUND PENDULUM 

A compound pendulum is a rigid body capable of oscillating freely 
about a horizontal axis passing through it (Fig 1.8). At equilibrium 
position, the centre of gravity G lies vertically below the point of 
suspension S. Let the distance SG be l . If the pendulum is given a small 
angular displacement θ at any instant, it oscillates over the same path. Is 
its motion simple harmonic? To answer this question we note that the 
restoring torque about S is -mglsinθ and it tends to bring the pendulum 
towards the equilibrium position. 

If I is the moment of inertia of the body about the horizontal axis passing 
through S, the restoring torque equals Id2θ/dt2. Hence the equation of 
motion can be written as 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.8 A rigiri body oscillating about a horizontal axis: Compound 
pendulum 
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                     1.34 

For small angular displacement, and Eq. (1.34) takes the form 

                     1.35 

This equation shows that a compound pendulum executes SHM and the 
time period is given by 

                  1.36 

There is a very useful and important theorem of parallel axes in the study 
of moment of inertia. According to this theorem, the moment of inertia I 
of a body about any axis and its inertia I, about a parallel axis passing 
through its centre of gravity are connected by the relation 

                                 1.37 

where l is the distance between the two axes and Ig = mk2r The quantity kr 
is theradius of gyration of the body about the axis passing through G. It is 
the radial distance at which the whole mass of the body could be placed 
without any change in the moment of inertia of the body about that axis. 

On substituting the expression for I from Eq. (1.37) in Eq. (1.36), we 
obtain 

                   1.38 

On comparing this expression for T with that given by Eq. (1.31) for a 
simple pendulum we will note that two periods become equal if  l  in Eq. 
(1.31) is replaced by .This is called the length of an equivalent 
simple pendulum. If we produce the line SG and take a point O on it such 

that      then  O is called the centre of oscillation. 
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1.8.3 VERTICAL OSCILLATIONS OF A FLOTING 
CYLINDER 

When a partially submerged floating body is slightly depressed and 
released, the body executes vertical simple harmonic oscillation. Consider 
a solid cylinder of length l and area of cross section A, floating in a liquid 
of density σ with height h inside the liquid. Let ρ be the density of 
material of solid cylinder. At equilibrium, the up thrust of the liquid 
displaced balances. The weight of the cylinder. i.e. 

 

 

 

 

 

 

 

 

 

 

Fig. 1.9 Floting Cylinder 

 Ah σ g= A l ρ g 

Now from this equilibrium position if it is depressed by x and then 
released, it oscillates up and down, the immersed length of cylinder will be 
( h+x ) so that the upthrust is A (h+x) σ g. Therefore the resultant force 
acting upwards on the cylinder is  A (h+x) σ g - A l ρ g  i.e. A (h+x) σ g-
A h σ g  or A x σ g. 

Therefore restoring force = -A σ g x 

Since mass of solid cylinder is A l ρ, Therefore its acceleration is 

f = 𝑹𝑹𝑹𝑹𝒄𝒄𝒕𝒕𝒄𝒄𝑹𝑹𝒔𝒔𝒔𝒔𝑹𝑹 𝒇𝒇𝒄𝒄𝑹𝑹𝒄𝒄𝑹𝑹
𝒎𝒎𝒂𝒂𝒄𝒄𝒄𝒄

=  −𝑨𝑨 𝝈𝝈 𝐠𝐠 𝐱𝐱
𝑨𝑨 𝒍𝒍 𝝆𝝆

 

or  f= −𝝈𝝈 𝐠𝐠
𝒍𝒍 𝝆𝝆
𝒙𝒙 = −𝝎𝝎𝟎𝟎

𝟐𝟐𝒙𝒙 

where  𝝎𝝎𝟎𝟎
𝟐𝟐 = 𝝈𝝈 𝐠𝐠

𝒍𝒍 𝝆𝝆
 

So that time period   𝟐𝟐 = 𝟐𝟐𝟐𝟐
𝝎𝝎𝟎𝟎

= 𝟐𝟐𝟐𝟐�𝒍𝒍 𝝆𝝆
𝝈𝝈 𝐠𝐠

 

If mass and radius of the solid cylinder have been given but length l and 
density ρ, not given then  UGPHS-102/24
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M = π r2 l.ρ   or   l ρ = 𝑴𝑴
𝟐𝟐𝑹𝑹𝟐𝟐

 

Therefore  𝟐𝟐 = 𝟐𝟐𝟐𝟐� 𝑴𝑴
𝟐𝟐 𝑹𝑹𝟐𝟐𝝈𝝈 𝐠𝐠

 

From this expression it is clear that if density of liquid decreases time 
period will increase and vice versa. 

And also A h σ g= A l ρ g=Mg 

or   M=A h σ= π r2 h σ 

Therefore 𝟐𝟐 = 𝟐𝟐𝟐𝟐�𝒉𝒉
 𝐠𝐠

   where h is the height of the solid cylinder inside 

the liquid. 

1.8.4 UP AND DOWN OSCILLATION OF LIQUID 
CONTAINED IN A VERTICAL U- TUBE 

If the liquid on one side in a verticle U-tube is depressed and then 
released, its motion up and down the two sides of the tube is simple 
harmonic. 

Let us calculate its time period. 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 2.0 Vertical U- tube 

Let AB be the initial level of liquid in the U-tube and let the column on the 
left be depressed through distance  x to A', then the column on the right 
will rise up through the same distance  x to the level B', so that the 
difference in levels between the two columns in A'B' = 2x.  

If A is internal cross sectional area of the tube, then restoring force UGPHS-102/25
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 = - Excess pressure × Area 

 =−𝟐𝟐𝒙𝒙 𝝆𝝆 𝐠𝐠 𝑨𝑨 

This is the force acting on total mass of liquid m= 2 h A 𝝆𝝆 due to which 
the liquid acceleration is 

 𝒅𝒅𝟐𝟐𝒙𝒙
𝒅𝒅𝒕𝒕𝟐𝟐

= 𝑭𝑭𝒄𝒄𝑹𝑹𝒄𝒄𝑹𝑹
𝒎𝒎𝒂𝒂𝒄𝒄𝒄𝒄

= −𝟐𝟐 𝒙𝒙 𝝆𝝆 𝐠𝐠 𝑨𝑨
𝟐𝟐 𝒉𝒉 𝑨𝑨 𝝆𝝆

= − 𝐠𝐠
𝒉𝒉

.𝒙𝒙 

or 𝒅𝒅𝟐𝟐𝒙𝒙
𝒅𝒅𝒕𝒕𝟐𝟐

=-𝝎𝝎𝟎𝟎
𝟐𝟐𝒙𝒙    𝒘𝒘𝒉𝒉𝑹𝑹𝑹𝑹𝑹𝑹 𝝎𝝎𝟎𝟎

𝟐𝟐 = 𝐠𝐠
𝒉𝒉
 

Thus the acceleration is propotional to the displacement x from initial 
level AB and is directed towards it. Hence the motion of the liquid is 
harmonic. 
Therefore time period is given by        

𝟐𝟐 =
𝟐𝟐𝟐𝟐
𝝎𝝎𝟎𝟎

= 𝟐𝟐𝟐𝟐�
𝒉𝒉
𝐠𝐠

 

1.9 SUMMARY 

In this unit, we have studied about simple harmonic motion, and 
what are the conditions and basic characteristics of SHM. Thereafter, we 
learned how to calculate the velocity and acceleration of a particle 
executing SHM. Now, after having understood the different characteristics 
of SHM, we are in a position to the forward and discuss some other 
physical systems executing SHM. In the present unit, we also studied 
about the concept of Simple Pendulum and Compound Pendulum. 

1.10 TERMINAL QUESTIONS 

1. What are the characteristics of simple harmonic motion? 
2. Explain the concept of simple harmonic motion. 
3. Discuss SHM as a oscillations of a Spring mass system. 
4. Write down the differential equation of SHM. 
5. Write short notes on : 
 (a) Phase and amplitude 
 (b) Time Period and Frequency 
 (c) Simple Pendulum 
 (d) Compound Pendulum 
6. Explain the concept of Vertical Oscillations of a Floting cylinder. 
7. Discuss up and down oscillation of Liquid contained in a vertical 

U-tube. 
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UNIT-02 DAMPED OSCILLATOR 

Structure 
2.1 Introduction 

 Objectives 

2.2 Differential equation of a damped oscillator  

2.3 Solution of differential equation 

 2.3.1 Heavy Damping 

 2.3.2  Critical Damping 

 2.3.3 Weak or Light Damping 

2.4 Average energy of a weakly damped oscillator 

 2.4.1 Average power dissipated over one cycle 

2.5 Methods of characterizing damped systems 

 2.5.1 Logarithmic Decrement 

 2.5.2 Relaxation Time 

 2.5.3 The Quality Factor 

2.6 Examples of Damped Systems 

 2.6.1 An LCR circuit 

 2.6.2 A Suspension Type Galvanometer 

2.7 Summary 

2.8 Terminal Questions 

2.1 INTRODUCTION 

In Unit 1 you learnt that SHM is a universal phenomenon. Now 
you also know that in the ideal case the total energy of a harmonic 
oscillator remains constant in time and the displacement follows a sine 
curve. This implies that once such a system is set in motion it will 
continue to oscillate forever. Such oscillations are said to be free or 
undamped. Do you know of any physical system in the real world which 
experiences no damping? Probably there is none. You must have observed 
that oscillations of a swing, a simple or torsional pendulum and a spring-
mass system when left to themselves, die down gradually. Similarly, the UGPHS-102/27
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amplitude of oscillation of charge in an LCR circuit or of the coil in a 
suspended type galvanometer becomes smaller and smaller. This implies 
that every oscillating system loses some energy as time elapses. The 
question now arises: Where does this energy go? To answer this, we note 
that when a body oscillates in a medium it experiences resistance to its 
motion. This means that damping force comes into play. Damping force 
can arise within the body itself, as well as due to the surrounding medium 
(air or liquid). The work done by the oscillating system against the 
damping forces leads to dissipation of energy of the system. That is, the 
energy of an oscillating body is used up in overcoming damping. But in 
some engineering systems we knowingly introduce damping. A familiar 
example is that of brakes - we increase friction to reduce the speed of a 
vehicle in a short time. In general, damping causes wasteful loss of 
energy. Therefore, we invariably try to minimize it. 

Many a time it is desirable to maintain the oscillations of a system. For 
this we have to feed energy from an outside agency to make up for the 
energy losses due to damping. Such oscillations are called forced 
oscillations. You will learn various aspects of such oscillations in the next 
unit. 

In this unit you will learn to establish and solve the equation of motion of 
a damped harmonic oscillator. Damping may be quantified in terms of 
logarithmic decrement, relaxation time and quality factor. You will also 
learn to compute expressions for the logarithmic decrement, power 
dissipated in one cycle and the quality factor. 

OBJECTIVES 

After studying this unit, you should be able to 

• Understand the concept of differential equation of clamped 
oscillator 

• Understand the various types of damping effects 

• Define average energy of a weakly damped oscillator 

• Explain various parameters of weak damping 

• Explain the concept of ‘damping in LCR circuit. 

2.2 DIFFERENTIAL EQUATION OF A 
DAMPED OSCILLATOR 

While considering the motion of a damped oscillator, some of the 
questions that come to our mind are : Will Eq.(1.2) still hold? If not, what 
modification is necessary? How to describe damped motion 
quantitatively? To answer these questions we again consider the spring-
mass system of Unit 1. Let us imagine that the mass moves  horizontally 
in a viscous medium, say inside a lubricated cylinder, as shown in Fig.2.1. 
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As the mass moves, it will experience a drag, which we denote by Fd. The 
question now arises : How to predict the magnitude of this damping force? 
Usually, it is difficult to quantify it exactly. However, we can make a 
reasonable estimate based on our experience. For oscillations of 
sufficiently small amplitude, it is fairly reasonable to model the damping 
force after Stokes' law. That is, we take Fd to be proportional  to velocity 
and write 

 

 

 

 

 

 

 

 

Fig. 2.1 A damped spring-mass system. 

                                                           2.1 

The negative sign signifies that the damping force opposes motion. The 
constant of 

proportionality γ is called the damping coefficient, Numerically, it is equal 
to force 

per unit velocity and is measured in  

 
We will now, establish the differential equation which describes the 
oscillatory motion of a damped harmonic oscillator. Let us take the x-axis 
to be along the length of the spring. We define the origin of the axis (X = 
0) as the equilibrium position of  the mass. Imagine that the mass (in the 
spring-mass system) is pulled longitudinally and then released. It gets 
displaced from its equilibrium position. At any instant, the forces acting 
on the spring-mass system are : 

(i) a restoring force :  is the spring factor, and 

(ii) a damping force :   is the 
instantaneous velocity of  the dt oscillator. This means that for a 
damped harmonic oscillator, the equation of motion must include UGPHS-102/29
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the restoring force as well as the damping force. Hence, in this case 
Eq.(1 .2) is modified to 

    2.2 

After rearranging terms and dividing throughout by m, the 
equation of motion of a damped oscillator takes the form 

2.3 

 
(You will note that a factor of 2 has been introduced in the 
damping term as it helps us to obtain a neat expression for the 
solution of this equation.) The constant b has the dimension of 

 
Hence, its unit is s-1 which is the same as that of ω0 . 

We will note that like Eq. (1.3), Eq. (2.3) is a linear second order 
homogeneous 

differential equation with constant coefficients. If there were no damping, 
the second term in Eq. (2.3) will be zero and the general solution of the 
resulting equation will be given by Eq. (1.5), i.e. 

. On the other hand, if there is damping of no 
restoring force, the third term in Eq.(2.3) .will be zero. Then the general 

solution of the resulting equation is given by  
where C and D are constants. This means that the displacement will 
decrease exponentially in the absence of any restoring force. Thus, we 
expect that the general solution of Eq. (2.3), Will represent an oscillatory 
motion whose amplitude decreases with time. 

2.3 SOLUTIONS OF THE DIFFERENTIAL 
EQUATION 

How does damping influence the amplitude of oscillation? To 
discover this we have to solve Eq. (2.3) when both the restoring force and 
the damping force are present. The general solution, as discussed above, 
should involve both exponential and harmonic terms. Let us therefore take 
a solution of the form 
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x(t) = a exp (αt)                                                                  2.4 

when a and α are unknown constants. 

Differentiating Eq.(2.4) twice with respect to time, we get 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 = a α exp (αt) 

and 

 
Substituting these expressions in Eq. (2.3), we get 

                        2.5 

For this equation to hold at all times, we should either have 

a = 0 

Which is trivial, or 

                                                     2.6 

This equation is quadratic in 𝒌𝒌. Let us call the two roots α1 and α2 

                                                 2.7a 

                                         2.7b 

These roots determine the motion of the oscillator. Obviously α has 
dimensions of inverse time. Did you not expect it from the form of exp 
(𝛼𝛼t)? 

Thus, the two possible solutions of Eq. (2.3) are 

𝒙𝒙𝟏𝟏(𝒕𝒕) = 𝒌𝒌𝟏𝟏 𝐞𝐞𝐱𝐱𝐞𝐞{−{𝒃𝒃 + (𝒃𝒃𝟐𝟐 − 𝝎𝝎𝟎𝟎
𝟐𝟐)

𝟏𝟏
𝟐𝟐}𝒕𝒕]                   

𝒙𝒙𝟏𝟏(𝒕𝒕) = 𝒌𝒌𝟏𝟏 𝐞𝐞𝐱𝐱𝐞𝐞{−{𝒃𝒃– (𝒃𝒃𝟐𝟐 + 𝝎𝝎𝟎𝟎
𝟐𝟐)

𝟏𝟏
𝟐𝟐}𝒕𝒕]                        2.8 

Since Eq.(2.3) is linear, the principle ,of superposition is applicable. 
Hence, the general solution is obtained by the superposition of x1 and x2  

    2.9 
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We will note the quantity (b2-ω20) can be negative, zero or positive 
respectively depending on whether b is less than, equal. to or greater than 
ωo respectively. We, therefore, have three possibilities : 

(i) If b > ωo , we say that the system is over damped, 

(ii) If b = ωo  , we have a critically damped system, 

(iii) If b < ωo  , we have an under-damped system. 

Each of these conditions gives a different solution, which describes a 
particular behaviour. 

We will now discuss these solutions in order of their increasing 
importance. 

2.3.1 HEAVY DAMPING 

When resistance to motion is very strong, the system is said to be 
heavily damped. 

Can you name a heavily damped system of practical interest? Springs 
joining wagons of a train constitute the most important heavily damped 
system. In your physics laboratory, vibrations of a pendulum in a viscous 
medium such as thick oil and motion of the coil of a dead beat 
galvanometer are heavily damped systems. 

Mathematically, a system is said to be heavily damped if b > ωo . Then the 
quantity (b2-ω20) is positive definite. If we put 

 the general solution for damped oscillator given 
by Eq. (2.9) reduces to 

    2.10 

This represents non-oscillatory behaviour. Such a motion is called dead-
beat. The actual displacement will, however, be determined by the initial 
conditions. Let us suppose that to begin with the oscillator is at its 
equilibrium position, i.e x = 0 at t = 0. Then we give it a sudden kick so 
that it acquires a velocity vo, i.e v = vo at t = 0. Then from Eq. (2.10) we 
have 

    𝒂𝒂𝟏𝟏 + 𝒂𝒂𝟐𝟐 = 𝟎𝟎 

 
These equations may be solved to give 
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On substituting these results in Eq. (2.10), we can write the sblution in 
compact form: 

 2.11 

Where sinℎ 𝛽𝛽𝛽𝛽 = [exp(𝛽𝛽𝛽𝛽) − exp(−𝛽𝛽𝛽𝛽)]/2 is hyperbolic sine function. 
From Eq. (2.11) it is clear that x (t) will be determined by the interplay of 
an increasing hyperbolic function and a decaying exponential. These are 
plotted separately in Fig. 2.2(a). Fig. 2.2(b) shows the plot of Eq. (2.11) 
for a heavily damped system when it is suddenly disturbed from its 
equilibrium position. We will note that initially the displacement increases 
with time. But soon the exponential term becomes important and 
displacement begins to decrease gradually. 

 

 

 

 

 

 

 

 

Fig. 2.2(a) Plot of sinh x and exp (- x) 

 

 

 

 

 

 

 

 

 
 

Fig. 2.2(b) Plot of Eq. (2.1I) for a heavily damped system UGPHS-102/33
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2.3.2 CRITICAL DAMPING 

We may have observed that on hitting an isolated road bump, a car 
bounces up and down and the occupants feel uncomfortable. To minimize 
this discomfort, the bouncing caused by the road bumps must be damped 
very rapidly and the automobile is restored to equilibrium quickly. For this 
we use critically damped shock absorbers. Critical damping is also useful 
in recording instruments such as a galvanometer (pointer type as well as 
suspended coil type) which experience sudden impulses. We require the 
pointer to move to the correct position in minimum time and stay there 
without executing oscillations. Similarly, a ballistic galvanometer coil is 
required to return to zero displacement immediately. 

Mathematically, we say that a system is critically damped if b is equal to 
the natural frequency. ω0 , of the system. This means that b2 - ω 2

0  = 0 , so 
that Eq (2.9) reduces to 

                 2.12 

 
Let us pause for a minute and recall that the solution of the differential 
equation for SHM involves two arbitrary constants which are fixed by 
giving the initial conditions. But Eq. (2.12) has only one constant. Does 
this mean that it is not a complete solution? It is important to understand 
how this happens. The reason is simple : the quadratic  equation  for α  
(Eq. 2.6) has equal roots. So, the two terms in Eq. (2.9) give the same time 
dependence and reduce to one term. It can be easily verified that in this 
case the general solution Eq. (2.3) is             

x(t) = (p+qt) exp (–bt)                        2.13a 

Where p and q are constants. p has the dimensions of length and q that of 
velocity. These can be determined easily from the initial conditions. 

Let us assume that the system is disturbed from its mean equilibrium 
position by a sudden impulse. (The coil of a suspended type galvanometer 
receives some electric 

charge at t = 0 ). That is, at  t = 0, x(0) = 0  and  

This gives p = 0 and q = ν0   so that the complete solution is 

                                2.13b 
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Fig. 2.3 illustrates the displacement time graph of a critically damped 
system described by Eq. (2.13b). At maximum displacement  

 
This occurs at time t = 1/ b 

 
 

 

 

 

 

 

 

 

 

 
 

Fig. 2.3 Displacement-time graph for a critically damped system 
described by Eq. (2.13b). 

2.3.3 WEAK OR LIGHT DAMPING 

When b < ωo  we refer to it as a case of weak damping. This implies that         
(b2-ω20) is a negative quantity, i.e (b2-ω20)1/2  is imaginary. Let us rewrite 
it as 

                   2.14 

is a real positive quantity. We will note that for no damping (b = 0), ωd 
reduces to 

ωo , the natural frequency of the oscillator. 
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On combining Eqs. (2.9) and (2.14) we find that the displacement now has 
the form 

 2.15 

To compare the behaviour of a damped oscillator with that of a free 
oscillator, we 

should recast Eq.(2.15) so that the displacement varies sinusoidally. To do 
this, we 

write the complex exponential in terms of sine and cosine functions. This 
gives 

 
On collecting coefficients of cos ωdt and sin ωdt , we obtain 

    2.16 

Let us now put 

             2.17 

where ao and ϕ are arbitrary constants. These are given by 

2.18 

From the second of these results we note that tan φ  is a complex quantity. 
Does this 

mean that φ   is also complex? How can we interpret a complex angle? To 
know this, we use the identity 

 
and calculate cosφ .  The result  is  
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This means that cosφ , and hence φ , is real. 

Substituting Eq. (2.17) into Eq. (2.16) we find that the expression within 
the parentheses is cosine of the sum of two angles. Hence, the general 
solution of Eq. (2.3) for a weakly damped oscillator  b < ωo  is 

                  2.19 

with ωd  given by Eq. (2.14) . We will note that the solution given by Eq. 
(2.19) 

describes sinusoidal motion with frequency ωd which remains the same 
throughout the motion. This property is crucial for the use of oscillators in 
accurate time -pieces. How is the amplitude modified vis-a-vis an ideal 
SHM? We will note that the amplitude decreases exponentially with time 
at a rate governed by b. So we can say that motion of a weakly damped 
system is not  simple harmonic. 

The damped oscillatory behaviour described by Eq. (2.19) is plotted in 
Fig.2.4 for the particular case of φ  = 0. Since the cosine function varies 
between + 1 and - 1, we observe that the displacement-time curve lies 

between Thus, we may 
conclude that damping results in decrease of amplitude and angular 
frequency. 

 

 

 

 

 

 

                                                                                                            t  

 

 

 

 

 

Fig. 2.4 Displacement-time graph for weakly damped harmonic 
oscillator 

How does damping influence the period of oscillation? We can discover 
this effect by noting that the period of oscillation is given by 
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If  b > 0, ωd < ωO  . This means that the period of vibration of a damped 
oscillator is more than that of an ideal oscillator. Did you not expect it 
since damping forces resist motion? 

2.4 AVERAGE ENERGY OF A WEAKLY 
DAMPED OSCILLATOR 

In Unit 1 we calculated the average energy of an undamped 
oscillator. The question now arises: How does damping influence the 
average energy of a weakly damped oscillator? To answer this we note 
that in the presence of damping the amplitude of oscillation decreases with 
the passage of time. This means that energy is dissipated in overcoming 
resistance to motion. From Unit 1 we recall that at any time, the total 
energy of a harmonic oscillator is made up of  kinetic and potential 
components. We can still use the same definition and write 

                               2.20 

where (dx/dt) denotes instantaneous velocity. 

For a weakly damped harmonic oscillator, the instantaneous displacement 
is given by Eq. (2.19): 

 

By differentiating it with respect to time, we get instantaneous velocity: 

   2.21 

Hence, kinetic energy of the oscillator is 
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   2.22a 

Similarly, the potential energy of the oscillator is 

 

On substituting for x, we get 

              2.22b 

Hence, the total energy of  the oscillator at any time t is given by 

  2.23 

When damping is small, the amplitude of oscillation does not change 
much over one oscillation. So we may take the factor  as 
essentially constant. Further, since 

 

 

energy of a weakly damped oscillator when averaged-over one cycle is 
given by 

2.24a 

From Unit 1 we recall that  is the total energy of an 
undamped 

UGPHS-102/39

O
R

A
C

LE
-0

01



oscillator. Hence, we can write 

                                                2.24b 

This shows that the average energy of a weakly damped oscillator 
decreases 

exponentially with time. This is illustrated in Fig. 2.5. From Eq, (2.24 b) 
we will also observe that the rate of decay of energy depends on the value 
of  b; larger the value of  b, faster will be the decay. 

 

 

 

 

 

 

 

 

 

            t                                                                                                       

 

 

Fig. 2.5 Time variation of average energy for a weakly damped 
system. 

2.4.1 AVERAGE POWER DISSIPATED OVER ONE 
CYCLE 

Since energy of a damped oscillator does not remain constant in time 

 not zero. In fact, it is negative. The rate of loss of energy at any 
time gives instantaneous power dissipated. From Eq. (2.20) we can write 

 
On combining this result with Eq. (2.2) we find that power dissipated by a 
damped 

oscillator is given by  
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This relation shows that the rate of doing work against the frictional force 
is directly proportional to the square of instantaneous velocity. On 
substituting for 

 from Eq. (2.21), we obtain 

 

 

 

Hence, the average power dissipated over one cycle is given by 

 

 

 

                             2.25 

 

 

The negative sign here signifies that power is dissipated. 

2.5 METHODS OF CHARACTERISING 
DAMPED SYSTEMS 

We now know that in the viscous damping model, a damped 
oscillator is characterized by γ and ωo. We also know that this model 
applies to vastly different physical systems. Therefore, you may ask: Are 
there other ways of characterizing damped oscillations? Experience tells 
us that in certain cases it is more convenient to use other parameters to 
characterize damped motion. In all cases we can relate these to γ and ωo . 
We will now discuss these briefly. 

2.5.1. LOGARITHMIC DECREMENT 

The most convenient way to determine the amount of damping 
present in a system is to measure the rate at which amplitude of oscillation 
dies away. Let us consider the damped vibration shown graphically in Fig. 
2.6. Let a0 and a1 be the first two successive amplitudes of oscillation 
separated by one period. 
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Fig. 2.6 A damped oscillation the first two amplitudes arc ao and a1. 

We will note that these amplitudes lie in the same direction/quadrant. If T 
is the 

period of oscillation, then using Eq. (2.19) for a weakly damped oscillator, 
we can 

write 

        2.26 

We  will note that in the ratio ao  / a1 the larger amplitude is in the 
numerator. That is why this ratio is called the decrement. It is denoted by 
the symbol d. You may now ask: Is the decrement same for any two 
consecutive amplitudes? The answer is: yes, it is. To show this let us 
consider the ratio of the second and the third amplitudes. These are 
observed for t = T and t = 2T, respectively in Eq. (2.19). Then, we can 
write 

 
So, we may conclude that for any two consecutive amplitudes separated 
by one period, we have 

                                                2.27 
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That is, decrement is the same for two successive amplitudes and we can 
write 

      2.28  

The logarithm of  the ratio of successive amplitudes of oscillation 
separated by one  period is called the logarithmic decrement. It is usually 
dcnoted by the symbol  λ: 

                         2.29a 

This equation shows that we can measure λ  by knowing two successive 
amplitudes. But from an experimental point of view it is more convenient 
and accurate to compare amplitudes of oscillations separated by n periods. 
That is, we measure  ao /an. To compute this ratio, we first invert Eq. (2.29 
a) to write 

                                                            2.29b 

The ratio ao /an can now be written as 

 

 

 

    2.30 

 

Since the ratio of any two consecutive amplitudes is the same, 

taking log of  both sides, we get the required result:. 

                                                        2.31 

This shows that if we plot In (ao /an) versus n for different values of n, we 
will obtain a straight line. The slope of the line gives us λ. 

2.5.2 RELAXATION TIME 

In Physics we often measure decay of a quantity in terms of the 
fraction e-1 of the initial value. This gives us another way of expressing the 
damping effect by means of the time taken by the amplitude to decay to e-1 UGPHS-102/43
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= 0.368 of its original value. This time is called the relaxation time. To 
understand this, we recall that the amplitude of a damped oscillation is 
given by 

 
If we denote the amplitude of oscillation after an interval of time τ by a (t 
+ τ ) 

We can write 

0( ) exp[– ( )]a t T a b t τ+ = +  

By taking the ratio a (t + τ )/a(t) we obtain 

                
= 0.368 for b τ = 1                                 2.32 

This shows that for b = τ-1 the amplitude drops to 1/e = 0.368 of its initial 
value. 

Using this result in Eq. (2.25), we get 

 

            τ 

The relaxation time τ, is therefore a measure of the rapidity with which 
motion is  

damped. 

2.5.3 THE QUALITY FACTOR 

Yet another way of expressing the damping effect is by means of 
the rate of decay of energy. From Eq. (2.24b) we note that the average 
energy of  a weakly damped 

oscillator decays to  If ωd is its 
angular 

frequency, then in this time the oscillator will vibrate through ωd m/ γ 
radians. The 

number of  radians through which a weakly damped system ostillates as its 
average energy decays to Eoe-1 is a measure of the quality factor, Q : 

                                                   2.33 
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We  will note that Q is only a number and has no dimensions. In general, γ 
is small so that Q is very large. A tuning fork has Q of a thousand or so, 
where as a rubber band exhibits a much lower (-10) Q. This is due to the 
internal friction generated by the coiling of the long chain of molecules in 
a rubber band. An undamped oscillator  (γ = 0) has an infinite quality 
factor. 

For a weakly damped mechanical oscillator, the quality factor can be 
expressed 

in terms  of  the spring factor and damping constant. For weak damping, 

 𝜔𝜔𝑑𝑑 ≅ �𝐾𝐾
𝑚𝑚

 

Hence 𝑄𝑄 = �𝑘𝑘𝑚𝑚
𝛾𝛾

 

That is, the quality factor of a weakly damped oscillator is directly 
proportional to the square root of  k and inversely proportional to γ. 

We can rewrite Eq. (2.33) in a more physically meaningful form using Eq. 
(2.25) 

        

  2.34 

 
 

The quality factor is related to the fractional change in the frequency of an 
undamped oscillator. To establish this relation, we note that  

 

  

 

 

  ≅ 𝟏𝟏 − 𝟏𝟏
𝟒𝟒𝑸𝑸𝟐𝟐

 

where we have used Eq. (2.33). This result can be rewritten as 

 
where in the binomial expansion we have retained terms upto first order in 
Q2 
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Hence, the fractional change in ωo is 1/(8 Q2). 

2.6 EXAMPLES OF DAMPED SYSTEMS 

We know that all harmonic oscillators in nature have some 
damping, which in general, is quite small. To enable you to appreciate the 
effect of damping, we will consider two specific cases: (i) Oscillations of 
charge in an LCR circuit, and (ii) motion of the coil in a suspension type 
galvanometer. These are of particular interest to us as the former has wide 
applications in radio engineering and the latter is used in the Physics 
laboratory. 

2.6.1 AN LCR CIRCUIT 

In Unit 1 we observed that in an ideal LC circuit, charge executes 
SHM. Do you expect any change in this behaviour when a resistor is 
added? To answer this question, we consider Fig. 2.7. If a current I flows 
through the circuit due to discharging/charging of the capacitor, the 
voltage drop across the resistor is RI. Thus Eq. (1.36) 

now modifies to 

                                         2.35 

Eq. (2.35) may be rewritten as 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2.7 An LCR circuit 
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                                      2.36 

Comparing it with Eq. (2.2) we find that L, R and 1/ C are respectively 
analogous to m, 𝜸𝜸 and k. This means that a resistor in an electric circuit 
has an exactly analogous effect as that of the viscous force in a mechanical 
system. 

To proceed further, we divide Eq. (2.36) throughout by L obtaining 

𝒅𝒅𝟐𝟐𝒒𝒒
𝒅𝒅𝒕𝒕𝟐𝟐

+ 𝑹𝑹
𝑳𝑳

 𝒅𝒅𝒒𝒒
𝒅𝒅𝒕𝒕

+ 𝟏𝟏
𝑳𝑳𝑳𝑳

 𝒒𝒒 = 𝟎𝟎                                  2.37 

In this form, Eq. (2.37) is analogous to Eq. (2.3) and the two may be 
compared 

directly. This gives 

                                        2.38 

We know that b has dimensions of time inverse. This means that R / L has 
the unit of s-1, same as that of ωo . That is why ωo L is measured in ohm. 

With these analogles all the results of  Section 2.3 apply to Eq. (2.37). For 
a weakly damped circuit, the charge on the capacitor plates at time t is 

            2.39a 

with angular frequency 

                                      2.39b 

Eq. 2.39a shows that the charge amplitude  will decay at 
a rate 

which depends on the resistance. Thus in an LCR circuit, resistance is the 
only 
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dissipative element; an increase in R increases the rate of decay of the 
charge and 

decreases the frequency of oscillations. 

 

Since ω0L, is measured in ohms, 1/ ω0 C is also measured in ohms. These 
are respectively referred to as inductive reactance and capacitive 
reactance. 

For R = 0, Eq. (2.39a) reduces to Eq. (1.38) and ωd = ωo . The Q value of 
a 

weakly damped LCR circuit is 

                        2.40 

This equation shows that for a purely inductive circuit (R = 0) , quality 
factor will be infinite. 

2.6.2 A SUSPENSION TYPE GALVANOMETER 

A suspension type galvanometer consists of a current carrying coil 
suspended in a magnetic field. The field is produced by a horse-shoe 
magnet. The magnet is shaped so that the coil is aligned always along the 
magnetic lines of force. To ensure uniform strength, an iron cylinder is 
suspended between the poles of the magnet, as shown in Fig. (2.8). When 
we pass charge through the galvanometer coil, it rotates through some 
angle θ. Since the coil is mechanically a torsional pendulum, it 
experiences a restoring couple - ktθ and a damping couple – γ 𝒅𝒅𝒅𝒅

𝒅𝒅𝒕𝒕
 . Do you 

know how damping creeps in, in this case? It has origin in air friction and 
electromagnetic induction. 
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Fig. 2.8 A schematic representation of a suspension type galvanometer 

Hence, for the motion of the coil, Eq. (1.35) modifies to 

                           2.41 

where I is moment of inertia of the coil about the axis of suspension. 
Comparing it 

with Eq. (3.2) we find that I and kt are analogous to m and k respectively. 

Dividing throughout by I and defining 

                                     2.42 
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This equation is of the same form as Eq. (2.3). Hence, all results deduced 
earlier will apply to the motion of the coil described by Eq. (2.43). 

For low damping, the solution of Eq. (2.43) is 

                                 2.44 

where θ0 exp (- bt) is the amplitude of oscillation. Eq. (2.44) describes 
oscillatory 

motion with the period of oscillation T given by 

  2.45 

This explains why a weakly damped suspension type galvanometer is 
called a ballistic galvanometer. We will note that for damping to be small, 
we must decrease γ and increase I. The question now arises: How can we 
reduce γ? As mentioned earlier, air damping is usually small. 
Nevertheless, it will always be present. To reduce electromagnetic 
damping, we must minimise induced emf. To ensure this, we wind the coil 
over a nonconducting bamboo or ivory frame. If the frame is metallic, it is 
cut at one place, so that no current can flow through it. 

The quality factor of a ballistic galvanometer is 

                           2.46a 

                          2.46b 

This relation shows that a lightly damped suspension type galvanometer 
will have 

high quality factor. 

2.7 SUMMARY 

In the present unit, we have studied about different effect of 
damping, and also discuss the differential equation of a damped harmonic 
oscillator. We have also discuss relaxation time Logarithmic decrement 
and quality factor. 
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2.8 TERMINAL QUESTIONS 

1. Obtain differtial equation of a damped oscillator. 

2. Explain the concept of Heavy damping and critical damping 

3. Discuss average energy of a weakly damped oscillator. 

4. Define Light damping. 

5. What is Relaxation time? 
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UNIT-03 FORCED OSCILLATOR 

Structure 
3.1 Introduction 

Objectives 

3.2 Forced oscillator 

3.2.1 Differential equation for a weekly damped forced 
oscillator 

3.3 Solution of the differential equation 

 3.3.1 Transient Solution 

 3.3.2 Steady State 

 3.3.3 Steady – State Solution 

3.4 Effect of the frequency of the driving force on the 
amplitude and phase of steady-state forced oscillations 

 3.4.1 Low driving frequency 

 3.4.2 Resonance frequency 

3.5 Power absorbed by a forced oscillator  

3.6 Quality Factor 

3.6.1 Q in Terms of Band Width: Sharpness of 
Resonance 

3.7 An LCR Circuit 

3.8 Summary 

3.9 Terminal Questions 

3.1 INTRODUCTION 

In the previous unit we studied how the presence of damping 
affects the amplitude and the frequency of oscillation of a system. 
However, in systems, such as a wall clock or an ideal LC circuit, 
oscillations do not seem to die out. To maintain oscillations we have to 
feed energy to the system from an external agent called a driver. In 
general, the frequencies of the  driver and the driven system may not 
match. But in Steady State, irrespective of  its natural frequency, the 
system oscillates with the frequency of the applied periodic force. Such UGPHS-102/53
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oscillations are called forced oscillations. When the frequency of the 
driving force exactly matches the natural frequency of the vibrating 
system a spectacular effect is observed, the amplitude of forced 
oscillations becomes very large and we say that resonance occurs. Do you 
know that Galileo was the first physicist who understood how and why 
resonance occurs? 

Resonances are desirable in many mechanical and molecular phenomena. 
Butresonance can be disastrous also; it can literally break an oscillating 
system apart. For instance, fast blowing wind may set a suspension bridge 
in oscillation. If the frequency of the fluctuating force produced by the 
wind matches the natural frequency of the bridge, it gains in amplitude 
and may ultimately collapse. In 1940, the Tacoma Narrows bridge in 
Washington State collapsed within 4 months of its being opened. 
Similarly, when the army marches on a suspension bridge, soldiers are 
instructed to / break step to avoid resonant vibrations. In practice, isolated 
systems are rare. In solid state and molecular physics, two or more 
systems are coupled through interatomic forces. In an electric circuit we 
have inductive and capacitive couplings. The oscillations of such systems 
will be studied in the next unit. 

 In this unit we shall study, in detail, the response of a system when it is 
driven by an external harmonic force. 

OBJECTIVES : 

After studying this unit, you should be able to – 

• Define Forced oscillator 

• Write down differential equation for a weekly damped forced 
oscillator 

• Understand the concept of Transient solution steady state solution 

• Explain resonance frequency, low driving frequency 

• Define Quality factor 

3.2 DIFFERENTIAL EQUATION FOR A 
WEAKLY DAMPED FORCED 
OSCILLATOR 

To establish the differential equation of a forced weakly damped 
harmonic oscillator, let us again consider the spring-mass system. It is 
now also subjected to an external driving force, F(t). That is, instead of 
allowing the model oscillator to oscillate at its natural frequency, we push 
it back and forth periodically at a frequency ω (Fig. 3.1). We can write the 
driving force as 

                                                              3.1 UGPHS-102/54
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where FO is a constant 

 

 

 

 

Fig. 3.1 A weakly damped forced spring-mass system. 

 
So for a forced oscillator Eq. (2.2) is modified to 

                        3.2 

Dividing by m and rearranging terms, the equation of motion of a forced 
oscillator 

takes the form 

                                         3.3 

 
This equation can be apply to any oscillator whose natural frequency is ωo 
and is subject to a harmonic driving force. You will note that Eq. (3.3) is 
an inhomogeneous second order linear differential equation with constant 
coefficients. We will now solve this equation to learn about the motion of 
a forced oscillator. 

3.3 SOLUTIONS OF THE DIFFERENTIAL 
EQUATION 

Before we solve Eq. (3.3), let us analyses the situation physically. 
From the previous unit, i.e. under damped oscillation, when there is no 
applied force, a weakly damed system ( b < ω0 ) oscillates harmonically 

with angular frequency  But when a driving force of 
angular frequency ω is applied, it imposes its own frequency on the  
oscillator. Thus, we expect that the actual motion will be the result of 
superposition of  two oscillations; one of frequency ωd (of damped 
oscillations) and the other of  frequency ω (of the driving force). Thus, 
when ω ≠ ωo the general solution of Eq. (3.3) can be written as, UGPHS-102/55
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 𝒙𝒙(𝒕𝒕) = 𝒙𝒙𝟏𝟏(𝒕𝒕) + 𝒙𝒙𝒛𝒛(𝒕𝒕) 

where x1 ( t ) is a solution of  the equation  obtained by replacing the RHS 
of Eq. (3.3)  by zero. 

On substituting this result in Eq. (3.3), we will find that x2 ( t ) satisfies the 
equation 

 
It is thus clear that (x1+ x2) is the complete solution of  Eq. (3.3). In your 
course on differential equations you must have learnt that x1 is called the 
complementary function and x2 is called the particular integral. 

You may recall that when there is no driving force, the displacement of a 
weakly damped ( b<ωo ) system at any instant is given by Eq. (2.19) 

                                            (A) 

3.3.1 TRANSIENT SOLUTION  

Equation (A) this complementary function decays exponentially and after 
some time it will disappear. That is why it is also referred to as the 
transient solution. In the transient state, the system oscillates with some 
frequency which is other than its natural frequency or the frequency of the 
driving force. 

3.3.2 STEADY STATE 

After a sufficiently long time (t >>τ), natural oscillations of the spring 
mass system will disappear due to damping. However, we know that the 
general solution of Eq. (3.3) will not decay with time. That is, the system 
wiil oscillate with the frequency of the driving force. The system is then 
said to be in the steady-state. We will now obtain the steady-state solution 
of Eq. (3.3). 

3.3.3 STEADY-STATE SOLUTION 

To obtain the steady state solution of Eq. (3.3), let us suppose that the 
displacement of the forced oscillator is given by 

                                  3.4 

where a and θ are unknown constants. By comparing Eqs. (3.1) and (3.4) 
you will 

note that the driving force leads the displacement in phase by an angle θ. 
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To determine a and θ we differentiate Eq. (3.4) twice with respect to time. 
This gives, 

          𝑑𝑑𝑑𝑑2 = 𝑎𝑎𝜔𝜔 sin(𝜔𝜔𝛽𝛽 − 𝜃𝜃) 

and 𝑑𝑑2𝑑𝑑2
𝑑𝑑𝑑𝑑2

= 𝑎𝑎𝜔𝜔2 cos(𝜔𝜔𝛽𝛽 − 𝜃𝜃) 

Substituting these results back in Eq. (3.3), we get 

 �(𝝎𝝎𝟎𝟎
𝟐𝟐 − 𝝎𝝎𝟐𝟐)𝒂𝒂 𝒄𝒄𝒄𝒄𝒄𝒄 𝒅𝒅 + 𝟐𝟐𝒂𝒂𝒃𝒃𝝎𝝎 𝒄𝒄𝒔𝒔𝒔𝒔 𝒅𝒅 − 𝒇𝒇𝟎𝟎�𝒄𝒄𝒄𝒄𝒄𝒄 𝝎𝝎𝒕𝒕 

 +�𝝎𝝎𝟎𝟎
𝟐𝟐 − 𝝎𝝎𝟐𝟐 𝒂𝒂 𝒄𝒄𝒔𝒔𝒔𝒔 𝒅𝒅 − 𝟐𝟐 𝒂𝒂𝒃𝒃𝝎𝝎 𝒄𝒄𝒄𝒄𝒄𝒄 𝒅𝒅�𝒄𝒄𝒔𝒔𝒔𝒔 𝝎𝝎𝒕𝒕 = 𝟎𝟎   3.5 

We know, that both cosωt and sinωt never simultaneously become zero. 
When one vanishes, the other takes a maximum value. Therefore, Eq. (3.5) 
can be satisfied only when both terms within the square brackets become 
zero separately, i.e. 

�𝝎𝝎𝟎𝟎
𝟐𝟐 − 𝝎𝝎𝟐𝟐�𝒂𝒂 𝐜𝐜𝐜𝐜𝐜𝐜𝒅𝒅 + 𝟐𝟐𝒂𝒂𝒃𝒃𝝎𝝎𝐜𝐜𝐬𝐬𝐬𝐬𝒅𝒅 = 𝒇𝒇𝟎𝟎                           3.6a 

and   �𝝎𝝎𝟎𝟎
𝟐𝟐 − 𝝎𝝎𝟐𝟐 𝒂𝒂 𝐜𝐜𝐬𝐬𝐬𝐬𝒅𝒅 − 𝟐𝟐 𝒂𝒂𝒃𝒃𝝎𝝎𝐜𝐜𝐜𝐜𝐜𝐜𝒅𝒅 = 𝟎𝟎�      3.6b 

Eq. (3.6 b) readily gives the phase by which the driving force leads the 
displacement: 

                                               3.7a 

The amplitude of steady-state displacement can be determined from Eq. 
(3.6a) once we know the values of sinθ and cos θ. To get these values we 
construct the so-called caustic impedance triangle, as shown in Fig. 3.2. 
We can write 

 

 

 

 

 

 

 

 

 

Fig. 3.2 An acoustic impedance triangle 
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𝒄𝒄𝒔𝒔𝒔𝒔 𝒅𝒅 =
𝟐𝟐𝒃𝒃𝝎𝝎

��𝝎𝝎𝟎𝟎
𝟐𝟐 − 𝝎𝝎𝟐𝟐�𝟐𝟐 + 𝟒𝟒𝒃𝒃𝟐𝟐𝝎𝝎𝟐𝟐�

𝟏𝟏/𝟐𝟐 

 
Using these values of  sin θ and cos θ in Eq. (3.6 a) and rearranging terms, 
we get 

    3.7b 

Thus, we find that the steady-state amplitude of forced oscillations 
depends on (i) amplitude and angular frequency of the driving force, (ii) 
mass and the natural angular frequency of the oscillating system and (iii) 
the damping constant. Putting this value of  a in Eq. (3.4) we can write the 
steady-state solution of Eq.(3.3) as 

         3.8 

The important point to note here is that the steady-state solution has the 
frequency of the driving force and its amplitude is constant. Moreover, its 
phase is also defined completely with respect to the driving force. 
Therefore, it does not depend on the initial conditions. In other words, the 
motion of a driven system in steady-state is independent of the way we 
start the oscillation. 

The transient solution, steady-state solution and their sum, 

 
i.e. the complete general solution of Eq. (3.3) are shown in Fig. 3.3. The 
contribution, of the transient part diminishes with time and ultimately 
disappears completely. The time for which transients persist is determined 
by b and hence by the damping factor γ. The greater the value of b, more 
quickly do the transients die out. 

For an undamped system, the steady-state solution is obtained by putting b 
= 0 

in Eqs (3.7a) and (3.8). This gives 
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                  3.9 

That is, the driving force and the displacement are in the same phase (θ = 
0). From this we may conclude that phase lag is essentially a consequence 
of damping. We further note that if the frequency of the driving force 
equals the frequency of the undamped oscillator, its amplitude will 
become infinitely large. Then resonance is said to occur. You may now 
ask: Do we observe infinitely large amplitude in practice? No, the 
amplitude is finite since some damping is always present in every system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3.3 Time variation of  the transient solution, steady-state solution 
and the general solution of Eq. (3.3) for a weakly damped system. 

3.4 EFFECT OF THE FREQUENCY OF THE 
DRIVING FORCE ON THE AMPLITUDE 
AND PHASE OF STEADY-STATE 
FORCED OSCILLATIONS 

We know that the variation with the frequency of the driving force 
of the steady-state amplitude a (ω) of a forced system is given by Eq. UGPHS-102/59
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(3.7b). Depending on the relative magnitudes of the natural and the 
driving frequencies, three cases arise. We will now discuss these 
separately in detail. 

3.4.1 LOW DRIVING FREQUENCY (Ω << ΩO ) 

To know the behaviour of a (ω)  at low driving frequencies, we first 
rewrite 

Eq. (3.7b) as 

 

 3.10a 

Thus, at  very lo; driving frequencies, the steady-state amplitude of the 
oscillation is controlled by the stiffness constant and the magnitude of the 
driving force. 

Under this condition Eq. (3.7a) yields 

          3.10b 

That is, the driving force and the steady-state displacement are in the same 
phase. 

3.4.2 RESONANCE FREQUENCY (Ω =ΩO ) 

To calculate the value of a (ω)  at resonance, we set ω =ωo in Eq. 
(3.7b). The first 

term in the denominator vanishes and the amplitude is given by 

                                                                      3.11a 

From this we note that at resonance the amplitude depends upon the 
damping; it is inversely proportional to b. That is why in actual practice 
the amplitude never become infinite. UGPHS-102/60

O
R

A
C

LE
-0

01



Similarly by setting ω =ωo in Eq. (3.7a) we find that 

                                                          3.11b 

This means that the driving force and the displacement are out of phase by 
π/2. You may be thinking that the value of a (ω0) given by Eq. (3.11a) is 
maximum. This however is not true. Why? To answer this, let us 
maximize a (ω). That is, differentiate Eq. (3.7 b) with respect to ω and set 
the resulting expression equal to zero. The frequency at which the first 
derivative becomes zero and the second derivative is negative gives the 
correct answer : 

 
This equality will hold only when the numerator vanishes identically, i.e. 

 
We ignore the root ωr = 0, which is trivial. Then we must have 

 
This equation is quadratic in ωr , and the acceptable root is 

                                                           3.12 

The root corresponding to the negative sign is physically meaningless and 
is ignored. For a (ω) to be maximum, its second derivative with respect to 
ω should be negative. 

You can easily verify that at 

 
Thus, we can conclude that the peak value of amplitude is attained at a 
frequency slightly below ωo . The shift is caused due to damping. We can 
visualize it as follows: When the driver imparts maximum push, the driven 
system does not accept it instantly due to a finite phase difference between 
x(t) and F(t). 

On substituting for ωo from Eq. (3.12)  in Eq. (3.7b) and simplifying the 
resulting expression, we get the peak value of steady-state amplitude: 

UGPHS-102/61

O
R

A
C

LE
-0

01



                             3.13 

When at a particular frequency, the amplitude of the driven system 
becomes 

maximum, we say that amplitude resonance occurs. The frequency ωr is 
referred to as the resonance frequency. It is instructive to note that ωr is 

less than ωo as well as  

3.4.3 HIGH DRIVING FREQUENCY (Ω ≫ ΩO ) 

For ω ≫ ωo we rewrite Eq. (3.7b) as 

 

 
than unity. Then the amplitude of resulting vibration is given by 

                                                        3.14a 

That is, at high frequencies the amplitude decreases as 1/ω2 and ultimately 
becomes zero. 

Similarly from Eq. (3.7a), the phase is given by 

    3.14b 

This means that at high frequencies the driving force and displacement are 
out of  phase by π. 

We may thus conclude that 
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The frequency dependence of a(ω) and θ(ω) is shown in Fig. 3.4. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4 Frequency variation of (a) Steady state Amplitude, (b) Phase 
of a Forced oscillator. 

3.5 POWER ABSORBED BY A FORCED  
OSCILLATOR 

You now know that every oscillating system loses energy in doing 
work against damping. But oscillations of a forced oscillator are 
maintained by the energy supplied by the driving force. It is, therefore, 
important to know the average rate at which energy must be supplied to 
the system to sustain steady-state oscillations. So, we now calculate the 
average power absorbed by the oscillating system. 

By definition, the instantaneous power is given by 

 
Differentiating Eq. (3.8) with respect to time, we get 

V                3.15 

3.15a 

is the velocity amplitude and 
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                                                                             3.15b 

is the phase difference between velocity and the applied force. On 
substituting for 

F(t) and ν from Eqs. (3.1) and (3.15), respectively and find that the 
instantaneous 

power absorbed by the oscillator is given by 

 

 

 

From this we can easily calculate  the average power absorbed over one 
cycle: 

          (3.16) 

From Unit 1 you may recall that <sin 2ωt> = 0 so that the first term on the 
RHS of 

Eq. (3.16) drops out. Also <cos2 ωt> = 1/ 2. Then Eq. (3.16) reduces to 

                             3.17 

On substituting for sin θ from Fig. 3.2 and vo from Eq. (3.15a) in Eq. 
(3.17), we get 

                           3.18 

From Eq. (3.17) we note that the average power absorbed by a forced 
oscillator will ,be maximum when sin θ = 1 = cos θ i.e. ϕ = π/2 (ϕ = 
0).This happens for     ω = ωo .Using this result in Eq. (3.18), we get  

                                               3.19 

That is, the peak value of average power absorbed by a maintained system 
is determined by damping, and the amplitude of the driving force. The 
frequency variation of <P> is shown. in Fig. 3.5 UGPHS-102/64
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Fig. 4.5 Frequency variation of average Power. ω1 and ω2  correspond 
to half-power points. 

It is important to note that unlike the case of amplitude resonance, 
maximum average power is transferred at the natural frequency of ,the 
system. This arises because velocity and driving force are in phase. 

3.6 QUALITY FACTOR 

We defined the quality factor of a damped oscillator as 

 
You can use the same definition to calculate Q of a forced oscillator once 
you know <E> and <P>. 

 

Now we show that the average energy of a forced oscillator is  

  
and the quality factor is given  by 
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Another equivalent and more useful interpretation of the quality factor is 
in terms of amplitudes. The Q factor is defined as the ratio of the 
amplitude at resonance to the amplitude at low frequencies ( 0)ω→ . 
Using this definition, the value of the quality factor can be calculated 
rather easily on dividing Eq. (3.13) by Eq. (3.10a). 

    3.20a 

If damping is small, b2 <<ω20  and  the expression for the quality factor 
reduces to 

                                                                     3.20b 

winch is the same as Eq. (2.33) with b = 0. 

Using Eq. (3.20b), we  show that the amplitude and phase of a weakly 
damped forced oscillator can be expressed as 
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From Eq. (3.7b) we recall that amplitude of a weakly damped forced 
oscillator is 

given by 

 

If we put                         and use Eq. (3.20), we get the required result  

 
Similarly, from Eq. (3.7 a) we recall that 
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For different values of Q, frequency variation of a (ω) and θ(ω) based on 
these equations is shown in Fig.3.6. We observe that as Q increases (i.e., 
damping  decreases), the value of  a (ω)  increases. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3.6 (a) Amplitude as a function of driving frequency for different 
values of Q, (b) Phase difference θ as a function of driving frequency 
for different values of Q. 

Now we show that   

 
From Eq. (3.18) 

 
At ω = ωo  the denominator in the parentheses will become minimum and 
the I average power absorbed by the oscillator becomes maximum 
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3.6.1 Q IN TERMS OF BAND WIDTH: SHARPNESS OF 
A RESONANCE 

The Q of a system can also be defined as 

3.21 
To calculate the frequency at which average power drops to half its 
maximum value we can write  

 
On simplification we can write 

 
so that  

 
This equation has 4 roots. Of these two roots correspond to negative 
frequencies and are physically unacceptable. The other two acceptable 
roots are 

 

                                    3.22 
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Obviously, the second of these roots is greater than ωo and the other root 
is smaller than ωo This is illustrated in Fig. 3.5. 
The frequency interval between two half-power points is 

                                                               3.23 
From Eq. (3.23) it is clear that a high Q system has small band width and 
the resonance is said to be sharp. On the other hand, a low Q system has a 
large band width and the resonance is said to be flat. This is illustrated in 
Fig.3.6. Thus, the sharpness of resonance refers to the  rapid  rate of the 
fali of power with frequency on either side of resonance. We measure it in 
terms of the Q-value of the system. The Q factor has its greatest 
importance in reference to electrical circuits which we will discuss now. 

3.7 AN LCR CIRCUIT 

We have so far discussed the resonant behaviour of a simple 
mechanical system subject to a periodic force. Another physical system 
which also exhibits resonant behaviour is a series LCR circuit containing 
a source of alternating e.m.f. We will discuss the behaviour of this system 
by drawing similarities with a mechanical system. 

From Unit 2 we  know that in an  LCR circuit charge  oscillations die out 
because of power losses in the resistance. What changes do you expect in 
this behaviour when a source of alternating e.m.f. of frequency ω is 
introduced? To answer this question, let us consider Fig. 3.7. Let I be the 
current in the circuit at a given time. Then, the applied EMF is  equal to 
the sum of the potential differences across the capacitor, resistor and the 
inductor, Then Eq. (2.35) modifies to 

                                            3.24 

 

 

 

 

 

 

 
 

Fig. 3.7 A harmonically driven LCR circuit 
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                                 3.25 

Dividing throughout by L, we get 

                                  3.26 

In this form Eq. (3.26) is similar to Eq. (3.3). Hence its steady-state 
solution can be 

written  by analogy. For a weakly damped system, the charge on capacitor 
plates at 

any instant of  time is given by 

               3.27 

3.28 

defines the phase with respect to the applied EMF. 

The current in the circuit is obtained by differentiating Eq. (3.27) with 
respect to t. 

The result is 

                  3.29         
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we find that  

                                                    3.30 

From Eq.(3.29) we note that current in a LCR circuit is a function of the 
frequency. 

When ωL =1/ωC , the Circuit is capacitive in nature and we can write 

 

Thus, if we are working at low frequencies and R is also small, the current 
amplitude will be small. What will be its magnitude for ω - 0? In this limit 
I - 0 and leads the applied  EMF by π/ 2. 

As the driving frequency increases, the reactance                    decreases 
and currentamplitude increases. When 

                                                                                   3.31 

the term under the radical sign in Eq. (3.29) becomes  minimum; equal to 
R. Then the current attains its peak value I0 = E0 / R and the circuit is said 
to resonate with 

frequency 

                                                                        3.32 

At resonance, the current and applied e.m.f. are in phase. When the 
driving frequency is high, the circuit will be inductive and the current lags 
behind EMF by π/2. 
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For different values of  R, the frequency variation of peak current and 
phase is shown in Fig. 3.8. You will observe that lower the resistance, 
higher is the peak value of the current and sharper is the resonance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8 Frequency variation of peak current and phase for different 
values of R in a driven LCR circuit. 

The power in an electric circuit is defined as the product of current and 
EMF. For an LCR circuit, we can write 

 

 

 

 
Power averaged over one complete cycle is obtained by noting that 

 

UGPHS-102/73

O
R

A
C

LE
-0

01



                                                            3.33 

 

                                                                3.34 

 
You can verify that the band width of power resonance curve for an LCR 
circuit is 

given by 

                                     3.35 

so that 

 
The Q of a circuit determines its ability to select a narrow band of 
frequencies from a wide range of input frequencies. This, therefore, 
acquires particular importance in relation to radio receivers. Signals of 
various frequencies from all stations are present around the antenna. But 
the receiver selects just one particular station to which we wish to tune and 
discard others. Normally radio receivers operating in MHz region have Q 
values of the order of 102 to 103. Microwave cavities have Q values of the 
order of 105. 

3.8 SUMMARY 
Free Oscillation 

The free oscillation possesses constant amplitude and period without any 
external force to set the oscillation. Ideally, free oscillation does not 
undergo damping. But in all-natural systems damping is observed unless 
and until any constant external force is supplied to overcome damping. In 
such a system, the amplitude, frequency, and energy all remain constant. 
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Damped Oscillation 

The damping is a resistance offered to the oscillation. The oscillation that 
fades with time is called damped oscillation. Due to damping, the 
amplitude of oscillation reduces with time. Reduction in amplitude is a 
result of energy loss from the system in overcoming external forces like 
friction or air resistance and other resistive forces. Thus, with the decrease 
in amplitude, the energy of the system also keeps decreasing. There are 
two types of damping 

• Natural Damping 

• Artificial Damping 

Forced Oscillation 

When a body oscillates by being influenced by an external periodic force, 
it is called forced oscillation. Here, the amplitude of oscillation, 
experiences damping but remains constant due to the external energy 
supplied to the system. 

The Q factor (quality factor) of a resonator is a measure of the strength of 
the damping of its oscillations, or for the relative linewidth. The term was 
originally developed for electronic circuits, e.g. LC circuits, and for 
microwave cavities, but later also became common in the context 
of optical resonators. 

The  Q factor is 2π times the ratio of the stored energy to the energy 
dissipated per oscillation cycle, or equivalently the ratio of the stored 
energy to the energy dissipated per radian of the oscillation. For a 
microwave or optical resonator, one oscillation cycle is understood as 
corresponding to the field oscillation period, not the round-trip period 

Q Factor of an Oscillator 

The term Q factor is sometimes also applied to continuously 
operating oscillators, such as active optical frequency standards. In that 
case, only the definition via the bandwidth can be used; the bandwidth is 
then the linewidth of the output signal. 

If the oscillator is based on some resonator (which is virtually always the 
case), the effective Q factor of the oscillator may deviate substantially 
from the intrinsic Q value of the resonator. Particularly measurements on 
atomic transitions (such as in a cesium atomic clock) have a limited 
measurement time, so that the effective linewidth of the reference 
transition is increased. (This problem can be severe for cesium clocks; 
cesium fountain clocks represent a significant advance towards longer 
measurement times.) On the other hand, a carefully stabilized oscillator 
can have a linewidth which is a tiny fraction of the linewidth of the 
underlying frequency standard; for cesium atom clocks, the quartz 
oscillator is often stabilized e.g. to a millionth of the linewidth of the 
signal from the cesium beam apparatus. Effectively, the good short-term 
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stability of the quartz oscillator is combined with the high accuracy and 
low long-term drift of the cesium apparatus. 

3.9 TERMINAL QUESTIONS 

1. Define  Forced oscillator 

2. Discuss Deferential equation for a weekly damped forced 
oscillator. 

3. Write short notes on: 

 (a) Steady – State Solution 

 (b) Resonance frequency 

4. What is quality factor? 

5. If x = a conwt + b sinwt, show that it represents SHM. Also find 
the amplitude of SHM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
UGPHS-102/76

O
R

A
C

LE
-0

01



UNIT-04 COUPLED OSCILLATOR 

Structure 
4.1 Introduction 

Objectives 

4.2 Define oscillation in two waves 

4.2.1 Superposition of two mutually Perpendicular 
harmonic oscillations of the same frequency 

4.2.2 Superposition of two rectangular harmonic 
oscillations of nearly equal frequencies: Lissajous 
figures 

4.3 Oscillations of two coupled masses  

4.3.1 The differential Equation of coupled masses 

4.3.2 Normal Co-ordinates and Normal modes 

4.3.3 Energy of Two coupled masses 

4.3.4 General Procedure for calculating normal mode 
frequencies 

4.4 Summary 

4.5 Terminal Questions 

4.1 INTRODUCTION 

In this unit  you have studied isolated (single) oscillating systems 
such as a spring-mass system, a pendulum or a torsional oscillator. In 
nature we aiso come across many examples of coupled oscillators. We 
know that atoms in a solid are coupled by interatomic forces. In 
molecules, say the water molecule, two hydrogen? toms are coupled to an 
oxygen atom while in a carbon dioxide molecule oxygen atoms are 
coupled to one carbon atom. In all these cases, oscillators of one atom are 
affected by the presence of other atom(s). In radio and TV transmission, 
we use electrical circuits with inductive capacitive couplings. Therefore, it 
is important to extend our study of preceding units to cases where such 
simple systems are coupled. 

OBJECTIVES 

After studying this unit, you should be able to – 
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• Understand the concept of oscillation in two waves 

• Explain about Lissajous figures 

• Define energy of two coupled masses 

• Write down the differential equation of coupled massses 

4.2 DEFINE OSCILLATIONS IN TWO 
DIMENSIONS  

We  have confined our discussion to harmonic oscillations in one 
dimension. But oscillatory motion in two dimensions is also possible. 
Most familiar example is the motion of a simple pendulum whose bob is 
free to swing in any direction in the x - y plane. (We call this arrangement 
a spherical pendulum.) We displace the pendulum in the x-direction and as 
we release it, we give it an impulse in the y-direction. What happens when 
such a pendulum oscillates? The result is a composite motion whose 
maximum x-displacement occurs when y-displacement is zero and y-
velocity is maximum and vice versa. Remember that since the time period 
of the pendulum depends only on acceleration due to gravity and the 
length of the cord, the frequency of the superposed SHM's will be the 
same. The result is a curved path, in general, an ellipse. We now apply the 
principle of superposition to the case where two harmonic oscillations are 
perpendicular to each other. 

4.2.1 SUPERPOSITION OF TWO MUTUALLY 
PERPENDICULAR HARMONIC OSCILLATIONS 
OF THE SAME FREQUENCY 

Consider two mutually perpendicular oscillations having amplitudes a1 
and a2 such 

that a1 > a2 and angular frequency ωo. These are described by equations 

                                                       4.1 

                              4.2 

Here we have taken the initial phase of the vibrations along the x and the 
y-axes to 

be zero and φ  respectively. That is, φ  is the phase difference between the 
two vibrations. 

We shall first find out the resultant oscillation for a few particular values 
of phase difference φ  . 
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                      4.3         

                            4.4     

Eqs. 4.3  and 4.4 describe straight lines passing through the origin. This 
means . 

that the resultant motion of the particle is along a straight line. However, 
for φ  = 0 

the motion is along one diagonal (PR in Fig. 4.1a) but when φ  = π the 
motion is 

along the other diagonal (QS in Fig. 4.1b). 

  
In this case the two vibrations are given by 

 
On squaring these expressions and adding the resultant expressions, we 
get 

𝒙𝒙𝟐𝟐

𝒂𝒂𝟏𝟏
𝟐𝟐 + 𝒚𝒚𝟐𝟐

𝒂𝒂𝟐𝟐
𝟐𝟐 = 𝒄𝒄𝒄𝒄𝒄𝒄𝟐𝟐𝝓𝝓 + 𝒄𝒄𝒔𝒔𝒔𝒔𝟐𝟐𝝓𝝓 = 𝟏𝟏                     4.5 

This is the equation of an ellipse. Thus the resultant motion of the, particle 
is along an ellipse whose principal axes lie along the x- and the y-axes. 
The semi-major and semi-minor axes of  the ellipse are  a1 and a2. Note 
that as time increases x decreases from its maximum positive value but y 
becomes more and more negative. Thus the ellipse is described in the 
clockwise direction as shown in  Fig. 4.1c. We analyse the case when φ  = 
3π/ 2 or  φ  = - π /2, we will obtain the same ellipse. But the motion will 
be in anticlockwise direction (Fig. 4.1d). 
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Fig. 4.1 Superposition of two mutually perpendicular harmonic 
oscillations having the same frequency different phases. 

When amplitudes a1 and a2 are equal, i.e, a1 = a2 = a, Eq. (4.5) reduces to 

 
This equation  represents a circle of radius a. This means that the ellipse 
reduces to a circle. 

4.2.2 SUPERPOSITION OF TWO RECTANGULAR 
HARMONIC OSCILLATIONS OF NEARLY 
EQUAL FREQUENCIES : LISSAJOUS FIGURES 

We now know that when two orthonormal vibrations have exactly the 
same frequency, the shape of the curve traced out by the resultant 
oscillation depends on the phase difference between component 
vibrations. For a few values of the phase difference φ  in the range 0 to 2π 
radian, these curves are shown in Fig. 4.1. When the two individual 
rectangular vibrations are of slightly different frequencies, the resulting 
motion is more complex. This is because the relative phase 

 of the two vibrations 
gradually changes with time. This makes the shape of the figure to 
undergo a slow change. If the amplitudes of vibrations are a1 and a2 , 
respectively, then the resulting figure always lies in a rectangle of sides 
2a1 and 2a2. The patterns which are traced out are called Lissajous figures. 
When the two vibrations are in the same phase, i.e. φ  = 0, the Lissajous 
figure reduces to a straight line and coincides with the diagonal y = (a2/a1) 
x of the rectangle. As φ  changes from 0 to π/2 the Lissajous figure is an 
ellipse and passes through oblique positions in the rectangle. When ϕ UGPHS-102/80
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increases from π/2 to π, the ellipse closes into a straight line which 
coincides with the (other) diagonal y = (a2/a1) x of the rectangle. Further, 
as φ  changes from π to 2 π, the series of changes mentioned above take 
place in the reverse order. In general, the shape of curve depends on the 
amplitudes, frequencies and the phase difference. All these changes are 
shown in Fig 4.2.  

The phase φ  changes by 2π in the time intervial 2π/( ω2 −ω1). Therefore, 
the period of the complete cycle of changes is 2π/( ω2 −ω1)  and its  

frequency is                                   i.e., equal to the difference of the  

frequencies of individual vibrations. 

Lissajous figures can be illustrated easily by means of a cathode ray 
oscilloscope (CRO). Different alternating sinusoidal voltages are applied 
at XX and YY deflection plates of the CRO. The electron beam traces the 
resultant effect on the flourescent screen. When the applied voltages have 
the same frequency, we can obtain various curves of Fig. 4.2 by adjusting 
the phases and amplitudes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2 Superposition of two mutually perpendicular harmonic 
oscillations or same frequency and having values of φ  lying between 0 
and 2π. 

If the frequenqies of individual perpendicular vibrations are in the ratio 2: 
1, the UGPHS-102/81
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Lissajous figures are relatively complex. It has the shape of parabola for φ  
= 0 or π 

and for φ  = π/2   its shape is that of figure '8'. To clarify this let us study 
the following example . 

Two rectangular harmonic vibrations having frequencies in the ratio 2: 1 
are 

represented as follows : 

𝒙𝒙 = 𝒂𝒂𝟏𝟏 𝐜𝐜𝐜𝐜𝐜𝐜(𝟐𝟐𝝎𝝎𝟎𝟎𝒕𝒕 + 𝟒𝟒)                                         4.6 

𝒚𝒚 = 𝒂𝒂𝟐𝟐 𝐜𝐜𝐜𝐜𝐜𝐜𝝎𝝎𝟎𝟎𝒕𝒕                                                      4.7 

We will calculate the resultant motion for φ  = 0, π/2 and π 

 

 

Since  𝛾𝛾
𝑎𝑎2

= cos𝜔𝜔0𝛽𝛽 , we can rewrite the above equation as 

 𝒙𝒙
𝒂𝒂𝟏𝟏

= 𝟐𝟐𝒚𝒚𝟐𝟐

𝒂𝒂𝟐𝟐
𝟐𝟐 − 𝟏𝟏 

On rearranging term, we get 

                                     4.8 

This equation represents a parabola (Fig. 4.3 a) 

 

 

 

 
Since we can write 

 𝐜𝐜𝐜𝐜𝐜𝐜𝝎𝝎𝟎𝟎𝒕𝒕 = 𝜸𝜸
𝒂𝒂𝟐𝟐
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the first of these equations reduces to 

 
On squaring and rearranging teems, we get 

 
which represents figure '8' in shape (Fig. 4.3b), 

 

 

 

 
On combining these equations, we get 

 

 

 

 

 

 
 

 

           φ  = 𝟎𝟎                             φ  = 𝟐𝟐/𝟐𝟐                         φ  = 𝟐𝟐                                             

             (a)                                     (b)                                (c) 

Fig. 4.3 Superposition of two harmonic oscillations having frequencies 
in the ratio  2: 1 and phase difference (a) φ  = 𝟎𝟎  (b)   φ  = 𝟐𝟐/𝟐𝟐  (c)  φ  
= 𝟐𝟐 

 

 

UGPHS-102/83

O
R

A
C

LE
-0

01



This represents a parabola which is oppositely directed to the case when φ  
= 0. 

(Fig. 4.3c) 

4.3 OSCILLATIONS OF TWO COUPLED 
MASSES 

To analyse the effect of coupling we start again with the model 
spring-mass system. We consider two such identical systems connected 
(coupled) by a spring, as shown in Fig. (4.4a).  In this system we have two 
equal masses attached to springs of stiffness constant k' and coupled to 
each other by a spring of stiffness constant k. In the equilibrium position, 
springs do not exert any force on either mass. The motion of this system 
will depend on the initial conditions. That is, the motion may be transverse 
or longitudinal depending on how the masses are disturbed. For simplicity, 
we first consider longitudinal motion of these two coupled masses. 

We pull one of the masses longitudinally and then release it. The restoring 
force will tend to bring it back to its equilibrium position. As it overshoots 
the equilibrium mark, the coupling spring will pull the other mass. As a 
result both masses start oscillating longitudinally. This means that motion 
imparted to one of the two coupled masses is not confined to it only; it is 
transmitted to the other mass as well. We now establish the equation of 
motion of these masses. 

4.3.1 THE DIFFERENTIAL EQUATION OF COUPLED 
MASSES 

We choose x-axis along the length of the spring with O as the origin (Fig. 
4.4a). 

 

 

 

 

 

 

 

 
Fig. 4.4  Longitudinal oscillations of two coupled masses. (a) 
Equilibrium configuration (b) Configuration at time t 
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Let XA and XB be the coordinates of  the centre of the masses A and B 
respectively. 

When mass B is displaced towards the right and then released, mass A will 
also get 

pulled towards the right due to the coupling spring. The coupled system 
would then start oscillating. Suppose XA and XB  are the instantaneous 
positions of masses A and B respectively. Then their displacements from 
their respective equilibrium positions are given by 

 
Now at any instant of  time during oscillation, the forces acting on mass A 
are 

 
We are here assuming that the masses are moving on a frictionless surface. 
By Newton's second law, the equation of motion of mass A is thus given 
by 

 

      4.9 

Dividing throughout by m and rearranging terms, we get 

                                        4.10 

 
Similarly the equation of motion of the mass B is 

                                         4.11 

This can also be rewritten as 

                                          4.12 
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Let us pause for a minute and ask, Do Eqs. (4.10) and (4.12) represent 
simple harmonic motion? No, we cannot, in general, identify the motion 
described by these equations as simple harmonic because of the presence 
of the coupling term ωt

2 (x2 – x1). This means that the analysis of previous 
units will not work since these equations are coupled in x1 and x2. The 
question now arises: How to solve these equations? These equations will 
have to be solved simultaneously. For this purpose we first add Eqs. (4.10) 
and (4.12) to obtain 

                                   4.13a 

Next we subtract Eq. (4.12) from Eq. (4.10) and rearrange terms: This 
gives 

                         4.13b 

By looking at Eqs. (4.13a) and (4.13b) you will recognise that these are 
standard 

equations for SHM. This suggests that if we.introduce two new variables 
defined as 

                                                      4.14a 

                                                         4.14b 

the motion of a coupled system can be described in terms of  two 
uncoupled and 

independent equations: 

                                          4.15 

                                          4.16 

where we have put 

                                              4.17 

                      4.18 

We therefore find that new co-ordinates ξ1 and ξ 2 have decoupled Eqs, 
(4.10) and (4.12) into two independent equations which describe simple UGPHS-102/86
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harmonic motions of frequencies ω1 and ω2 and ω2 > ωl . The new 
coordinates are referred to as normal coordinates and simple harmonic 
motion associated with each coordinate is called a normal mode . Each 
normal mode has its own characteristic frequency called the normal mode 
frequency. 

4.3.2 NORMAL COORDINATES AND NORMAL 
MODES 

The normal coordinates ξ1 and ξ 2  are not a measure of displacement like 
ordinary co-ordinates x1 and x2 .e t they specify the configuration of a 
coupled system at any instant of time. Using the analysis of Unit 1, you 
can readily write the general solution of Eqs. (4.15) and (4.16) as 

                                                    4.19 

                                                        4.20 

where a1 and a2 are the amplitudes of normal modes and, ϕ1 and ϕ2 are 
their initial 

phases. 

 we can write the displacement of mass A as 

               4.21 

Similarly, we can write the displacement of the mass B as 

               4.22 

The constants a1 , a2, φ  1 , φ  2  are fixed by the initial conditions. Once we 
know these, we can completely determine the motion of the coupled 
masses. Now we 

solve Eqs. (4.21) and (4.22) subject to the following initial conditions: 

 

     4.23 

UGPHS-102/87

O
R

A
C

LE
-0

01



and               4.24 

     4.25 

        4.26 

(A)   Using the initial conditions, we get 

 
and  

 
Hence 

 

 

 

 
(B) Substitution of the initial conditions in Eqs. (4.23) to (4.26) gives 

 

4.3.3 ENERGY OF TWO COUPLED MASSES 

If the coupling between two masses is weak, ω2 will be only 
slightly different from ω1 ,so that ωmod will be very small. Consequently 
amod and bmod will take quite some time to show an observable change. 
That is, amod and bmod will be practically constant over a cycle of angular 
frequency ωav .Then Eqs. (4.27) and (4.28) can be regarded as 
characterjsing almost simple harmonic motion. Let us now calculate the 
energies of masses A and B using these equations. 

                                              4.27 

and 
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                                                4.28 

where 

                                                    4.29 

and  

                                                     4.30      

are modulated amplitude.     

We know that the energy of an oscillator executing SHM is given by 

             4.31a 

                4.31b     

The total energy of two masses coupled through a spring which stores 
almost no 

energy is given by 

                                            4.32 

which remains constant with time. 

Using Eq. (4.32), we can.rewrite Eqs. (4.31a) and (4.31b) as 

                                    4.33a 

                                       4.33b 

These equations show that at t = 0, El = E  and E2 = 0. That is, to begin 
with mass at A possesses all energy. As time passes, energy of mass at A 
starts decreasing. But mass at B begins to gain energy such that the total 
energy of the system remains constant.   

When (ω2 – ω1) r = π/2, two masses share energy equally. When (ω2 – 
ω1) r = π, 

E1  = 0 and  E2 = E, i.e: mass B possesses all the energy. As time passes, 
the energy 

exchange process continues. That is, the total energy flows back and forth  
twice  

between two masses in time T, given by 
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T= 2 π /(ω2 – ω1) 

4.3.4 GENERAL PROCEDURE FOR CALCULATEDLY 
NORMAL MODE FREQUENCIES 

In most physical situations of interest, coupled masses may not be 
equal. Then the above analysis is not of much use; it has to be modified. 
To calculate normal mode frequencies in such cases, we follow the 
procedure outlined below (i) Write down the equation of motion of 
coupled masses (ii) Assume a normal made solution (iii) Substitute it in 
the equation of motion and compare the ratios of' normal mode amplitudes 
(iv) Solve the resultant equation. We now illustrate this procedure for two 
unequal masses m1 and m2 coupled through a spring of force constant k. 
The equation of motion of two coupled masses are 

                             4.34a 

and 

                                     4.34b 

Let us assume solutions of the form 

      

and 

 

where ω is angular frequency and ϕ is initial phase. 

Then 

 

and 

 

equation of motion of a simple pendulum is 
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                   (a)                                                                 (b) 

 Fig. 4.5 Two identical pendulums simple together (a) Equilibrium 
configuration (b) Instantaneous configuration 

In the present case, the equations of motion of bobs,A and B are 

 
and  

   
The term ± k (xl - x2) arises due to the presence of coupling. Dividing 
throughout by m and rearranging terms, we get 

                   4.35a 

and 

                       4.35b 

where we have substituted 

 
You will recognize that these equations are respectively identical to Eqs. 
(4.10) and (4.12). Thus the entire analysis of preceding sections applies UGPHS-102/91
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and we can describe the motion of coupled pendulums by drawing 
analogies. The normal modes of this system are shown in Fig. 4.6. In 
mode 1(x1= x2), the bobs are in phase and oscillate with frequency 

 
But in mode 2(x1 = - x2 or x2 = -x1) , the bobs are in opposite phase and 
oscillate with frequency 

 
 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 
(b) 

Fig. 4.6  Normal modes of a coupled pendulum (a) In-phase normal 
mode (b) Out-of-phase normal mode 
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4.4. SUMMARY 

An oscillator is a type of circuit that controls the repetitive 
discharge of a signal, and there are two main types of oscillator; a 
relaxation, or an harmonic oscillator. This signal is often used in devices 
that require a measured, continual motion that can be used for some other 
purpose. 

Lissajous figure is the pattern which is displayed on the screen, when 
sinusoidal signals are applied to both horizontal & vertical deflection 
plates of CRO. These patterns will vary based on the amplitudes, 
frequencies and phase differences of the sinusoidal signals, which are 
applied to both horizontal & vertical deflection plates of CRO. 

The following figure shows an example of Lissajous figure. 

 

 

 

 

 

 

 

 

 

 

The above Lissajous figure is in elliptical shape and its major axis has 
some inclination angle with positive x-axis. 

Measurements using Lissajous Figures 

We can do the following two measurements from a Lissajous figure. 

• Frequency of the sinusoidal signal 

• Phase difference between two sinusoidal signals 

Now, let us discuss about these two measurements one by one. 

Measurement of Frequency 

Lissajous figure will be displayed on the screen, when the sinusoidal 
signals are applied to both horizontal & vertical deflection plates of CRO. 
Hence, apply the sinusoidal signal, which has standard known 
frequency to the horizontal deflection plates of CRO. Similarly, apply the 
sinusoidal signal, whose frequency is unknown to the vertical deflection 
plates of CRO UGPHS-102/93
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4.5 TERMINAL QUESTIONS 

1. What are Lissajous figure used for? 

2. How do you get Lissajous figures? 

3. Explain the concept of Lissajous figures. 

4. Find the differential equation of coupled masses. 

5. Write short notes on: 

 (a) Normal Co-ordinates and Normal Modes 

 (b) Energy of two coupled masses 

 (c) Normal modes frequencies  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

UGPHS-102/94

O
R

A
C

LE
-0

01



UGPHS-102
Oscillation, Waves and 
Electrical Circuits

 

BLOCK 

2 
UNIT-5 

Wave Motion 

UNIT-6 

Waves at Boundaries of two Media 

UNIT-7 

Superposition of Waves 

Uttar Pradesh Rajarshi Tandon 
Open University 

UGPHS-102/95

O
R

A
C

LE
-0

01

97

121

137



Course Design Committee 
Prof. Ashutosh Gupta Chairman 
Director, School of Science, UPRTOU, Prayagraj 
Prof. A. K. Rai  Member 
Professor, Dept. of Physics, University of Allahabad, Prayagraj 
Prof. Ramkrapal  Member 
Professor, Dept. of Physics, University of Allahabad, Prayagraj 
Dr. Anjani Kumar Singh  Member 
Associate Professor (Rtd), E.C.C University of Allahabad, Prayagraj 
Dr. Dinesh Gupta  Member 
Academic Consultant 
School of Science, UPRTOU, Prayagraj 

Course Preparation Committee 
Dr. Vivesk Agrahari Author 
Asst. Professor , Dept. of Physics   Block 1(Unit 1, 2, 3,4) 
ISDC, Prayagraj 
Dr. Rakesh Kumar, Yasmin Begawadi Author 
Asst. Professor,  Dept. of Physics   Block 2( Unit 5, 6, 7) 
CMPPG College, Prayagraj 
 Mr. Ashish Shnakwar Author 
Dept. of electrical Engg, Asst. Professor Block 3( Unit 8, 9, 10) 
MJPRU, Bareilly 
Dr. Pankaj Kumar Editor 
Associate Professor, Dept. of Physics,  Block 1, 2 and 3 
BMM, Bharwari, Kaushambi 
Mr. Arvind Kumar Mishra  SLM Coordinator 
Academic Consultant (Physics), UPRTOU, Prayagraj 
Prof. Ashutosh Gupta 
Director, School of Computer and Information Science, 
UPRTOU, Prayagraj 

Faculty Members, School of Sciences 

Prof. Ashutosh Gupta, Director, School of Science, UPRTOU, Prayagraj  
Dr. Shruti, Asst. Prof., (Statistics), School of Science, UPRTOU, Prayagraj  
Dr. Marisha Asst. Prof., (Computer Science), School of Science, UPRTOU, Prayagraj  
Mr. Manoj K Balwant Asst. Prof., (Computer Science), School of Science, UPRTOU, Prayagraj  
Dr. Dinesh K Gupta Academic Consultant (Chemistry), School of Science, UPRTOU, Prayagraj  
Dr. S. S. Tripathi, Academic Consultant (Maths), Scool of Science, UPRTOU, Prayagraj  
Dr. Dharamveer Singh, Academic Consultant (Bio-Chemistry), School of Science, UPRTOU, 
Prayagraj  
Dr. R. P. Singh, Academic Consultant (Bio-Chemistry), School of Science, UPRTOU, Prayagraj  
Dr. Susma Chuhan, Academic Consultant (Botany), School of Science, UPRTOU, Prayagraj  
Dr. Deepa Chubey, Academic Consultant (Zoology), School of Science, UPRTOU, Prayagraj 
Dr. Arvind Kumar Mishra, Academic Consultant (Physics), School of Science, UPRTOU, 
Prayagraj. 
 

©UPRTOU, Prayagraj-2020 
ISBN :  

©All Rights are reserved. No part of this work may be reproduced in any 
form, by mimeograph or any other means, without permission in writing 
from the Uttar Pradesh Rajarshi Tondon Open University, Prayagraj. 
Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar Pradesh 
Rajarshi Tandon Open University, 2020.  
Printed By : K.C.Printing & Allied Works, Panchwati, Mathura -281003.

UGPHS-102/96

O
R

A
C

LE
-0

01



UNIT-05 WAVE MOTION 

Structure 
5.1 Introduction 

5.2 Objectives 

5.3 What is Wave Motion? 

5.3.1 Types of Mechanical Waves 

5.3.2 Difference between Transverse and Longitudinal 
Wave 

5.4 General Equation of Wave Motion 

5.5 Wave Terminology 

5.6 Equation of a Plane Progressive Wave 

5.6.1 Phase Difference 

5.7 Phase Velocity or Wave Velocity of a Plane Progressive 
Wave 

5.8 Particle Velocity of Wave 

5.9 Differential Equation of Wave Motions 

5.10 Energy and Intensity in a Plane Progressive Wave 

5.10.1 Intensity of Wave 

5.11 Plane Progressive Wave in Fluid 

5.11.1 Velocity of Wave in a Fluid 

5.12 Longitudinal Wave as a Pressure Wave 

5.12.1 Intensity and Pressure Amplitude  

5.12.2 Effect of Various Factors on Velocity of Fluid 
(Gas) 

5.13 Summary 

5.14 Terminal Questions 
UGPHS-102/97

O
R

A
C

LE
-0

01



5.1 INTRODUCTION  

The term wave means propagation of some kind of disturbance in 
a medium and hence, wave motion is nothing but the transmission of 
disturbance from one point to another without the actual physical transfer 
or flow of matter as a whole. In physics, we come across different types of 
waves, viz., heat waves, sound waves, light waves, electromagnetic waves, 
matter waves (de Broglie waves), etc. The waves which require a material 
medium either for their production or for their propagation or both, are 
known as mechanical waves. In this unit, we shall study expression and 
properties of plane progressive wave and also study general equation of 
wave motion. 

5.2 OBJECTIVES 

After studying this unit, you should be able to – 

• Define Wave Motion 

• Compare Transverse wave and Longitudinal wave 

• Apply General equation of wave motion 

• Compute Numerical based on equation of a Plane Progressive 
Wave 

• Explain the Concept of Phase Velocity 

5.3 WHAT IS WAVE MOTION? 

A wave is a disturbance which propagates with a definite speed 
from the point it is created. In other words, wave motion is the process of 
energy transfer, in which energy is transmitted in the form of disturbance 
from one place to another without migration of particles of the medium. If 
the medium is infinite in extent, the travelling disturbance is called 
progressive or traveling wave. If the medium is limited in extent, the 
progressive wave suffers reflection at the boundary of the medium, the 
incident and the reflected waves superpose giving rise to a standing or 
stationary wave. 

Wave which require medium for propagation are called mechanical 
waves, e.g., Sound Waves, Water Waves, Waves in stretched strings. 
There is another kind of wave, the electromagnetic wave which requires 
no medium for propagation. e.g., radio wave, light wave, x-rays, r-rays 
etc. 

5.3.1 TYPES OF MECHANICAL WAVES 

Mechanical waves are of two types:- 
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(a) Transverse Waves : - If on propagation of mechanical wave in a 
medium, the particles of medium vibrate perpendicularly to the 
direction of propagation of the wave, then the wave is said to be 
transverse wave. Examples of such waves are waves produced in 
the stretched string, waves on the surface of water. 

 

 

 

 

 

 

 

 

 
 

 

Figure – 1(a) 

 

 

 

 

 

 

 

 

 

 

 

Figure – 1(b) 

(b) Longitudinal Waves : - If on propagation of mechanical wave in a 
medium, the particles of the medium vibrate along the direction of 
propagation of wave, then the wave is said to be longitudinal 
wave. Examples of the waves are sound waves in air, waves 
produced in spiral spring etc. 
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Figure – 2(a) 

 

 

 

 

 

 

 

 

 

 

Figure – 2(b) 

5.3.2 Difference between transverse and longitudinal wave :- 
 

S. No. Transverse Wave Longitudinal Wave 

1. In these waves the particles 
of the medium vibrate 
perpendicularly to the 
direction of propagation of 
wave. 

In these waves the particles 
of the medium vibrate along 
the direction of propagation 
of wave. 

2. These waves propagates in 
the form of crests and 
troughs.  

These waves propagates in 
the form of compression and 
rarefaction. 
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3. These waves can be 
produced in the interior of 
solids and on the surface of 
liquids, also in light. 

These wave can be produced 
in all types of media, solid, 
liquid, gas. 

4. In these waves there are no 
variation of pressure and 
density along the direction of 
propagation of wave. 

In these waves the pressure 
and density vary along the 
direction of propagation of 
wave. 

 

 

 

 

 

 

 

 

 

Figure – 2(c) 

 

 

 

 

 

 

 

 

 

Figure – 2(d) 

5.4 GENERAL EQUATION OF WAVE MOTION 

Consider a wave is moving with a velocity v along x-axis. The 
displacement of the particle at any instant ‘t’ can be represented as 
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Figure - 3 

𝑦𝑦 = 𝑓𝑓(𝑑𝑑, 𝛽𝛽)     ………………… (1) 

from figure, the displacement of wave at point 𝑑𝑑1 & at time 𝛽𝛽1 is 

𝑦𝑦 = 𝑓𝑓(𝑑𝑑1, 𝛽𝛽1)    ………………… (2) 

The wave moves without change of shape i.e. its displacement, to 
point 𝑑𝑑2 at time 𝛽𝛽2 then, 

𝑦𝑦 = 𝑓𝑓(𝑑𝑑2, 𝛽𝛽2)    ………………… (3) 

∵ 𝑑𝑑2 − 𝑑𝑑1 = 𝑣𝑣(𝑑𝑑2 − 𝛽𝛽1)   (where v is the velocity) 

or  𝑑𝑑1 − 𝑣𝑣𝛽𝛽1 = 𝑑𝑑2 − 𝑣𝑣𝛽𝛽2   ………………… (4) 

from equation (2) & (3) 

𝑓𝑓(𝑑𝑑1, 𝛽𝛽1) = 𝑓𝑓(𝑑𝑑2, 𝛽𝛽2)   ………………… (5) 

 Hence the function which satisfies both equation (4) & (5) is, 

𝑓𝑓(𝑑𝑑 − 𝑣𝑣𝛽𝛽) or 𝑓𝑓(𝑣𝑣𝛽𝛽 − 𝑑𝑑)   ………………… (6) 

 So, the equation of a wave travelling along +ve x direction is 

𝑦𝑦 = 𝑓𝑓(𝑑𝑑 − 𝑣𝑣𝛽𝛽)   𝑜𝑜𝑜𝑜 𝑦𝑦 = 𝑓𝑓(𝑣𝑣𝛽𝛽 − 𝑑𝑑)  ………………… (7) 

Similarly the equation of a wave travelling in –x direction is, 

𝑦𝑦 = 𝑓𝑓(𝑑𝑑 + 𝑣𝑣𝛽𝛽)         𝑜𝑜𝑜𝑜            𝑦𝑦 = 𝑓𝑓(𝑣𝑣𝛽𝛽 + 𝑑𝑑)        ………………… (8) 

Equation (7) and (8) are general equation of one dimensional wave of 
all types. 
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5.5 WAVE TERMINOLOGY 

Some terms that is used in connection with wave motion. 

(a) Amplitude:- The maximum displacement of any particle vibrating 
on either side of its equilibrium position is called the amplitude. 
Generally it is dented by ‘a’. 

(b) Time Period:- The time taken by a particle of medium in 
completing one vibration is called the time period. It is dented by 
‘T’. 

(c) Frequency:- The number of vibrations completed by a vibrating 
particle of the medium  is called frequency. It is denoted by ‘n’ or 
‘f’. 

𝑛𝑛 = 𝑓𝑓 = 𝐼𝐼
𝑇𝑇
. 

(d) Speed of Wave:- The distance transverse by the wave per second 
is called speed of wave or wave speed. It is denoted by ‘v’. 

(e) Wave Length:- The distance traversed by a wave in one time-
period is called the wave length. In other words, the distance 
between two nearest particles of medium vibrating in the same 
phase is called the ‘wave length’. It is denoted by ‘λ’. 

(f) Phase:- The phase of a vibrating particle at any instant represents 
the position and direction of motion of the vibrating particle at that 
instant. It is denoted by ‘ϕ’. 

5.6 EQUATION OF A PLANE PROGRESSIVE 
WAVE 

Consider a plane progressive wave is propagating in a medium 
along +ve (positive) x-axis. When wave propagates, the particles of 
medium starts to vibrate about their mean position. Let the particle begin 
to vibrate from origin at time t = 0. If y is the displacement of the particle 
at time t, then equation of the particle executes simple Harmonic motion 
about mean position is 

𝑦𝑦 = 𝐴𝐴 sin𝜔𝜔𝛽𝛽          ………………… (1) 

Where A is amplitude and 𝜔𝜔 is angular velocity. 𝜔𝜔t is called the 
phase of the oscillation. This disturbance or wave reaches the point x after 
a time 𝑑𝑑

𝑣𝑣
, where v is velocity of the wave. The phase of the point x will be 

less than that at the point x = 0 and which is equal to 𝜔𝜔 �𝛽𝛽 − 𝑑𝑑
𝑣𝑣
�. Hence the 

displacement of the particle at point x at time t is, 

𝑦𝑦 = 𝐴𝐴 sin𝜔𝜔 �𝛽𝛽 − 𝑑𝑑
𝑣𝑣
�         ………………… (2) 
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 If T is time period and λ is the wave length then 𝜔𝜔 = 2𝜋𝜋
𝑇𝑇

 

 ∴ 𝑦𝑦 = 𝐴𝐴 sin 2𝜋𝜋
𝑇𝑇
�𝛽𝛽 − 𝑑𝑑

𝑣𝑣
� 

  = 𝐴𝐴 sin 2𝜋𝜋 �𝑑𝑑
𝑇𝑇
− 𝑑𝑑

𝑣𝑣𝑇𝑇
� 

 𝑣𝑣𝑣𝑣 = 𝜆𝜆 �∵ 𝑣𝑣 = 𝑛𝑛𝜆𝜆;   𝑛𝑛 = 1
𝑇𝑇
� 

 ∴ 𝑦𝑦 = 𝐴𝐴 sin 2𝜋𝜋 �𝑑𝑑
𝑇𝑇
− 𝑑𝑑

𝜆𝜆
�          ………………… (3) 

 It can also be expressed as 

 𝑦𝑦 = 𝐴𝐴 sin 2𝜋𝜋
𝜆𝜆

(𝑣𝑣𝛽𝛽 − 𝑑𝑑)    ……………… (4) 

 Equation (4) may also be expressed as, 

𝑦𝑦 = 𝐴𝐴 sin(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑)           ………………… (5) 

When, 𝜔𝜔 = 2𝜋𝜋𝑛𝑛 and 𝐾𝐾 = 𝜔𝜔
𝑣𝑣

= 2𝜋𝜋
𝜆𝜆

= 𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝𝑎𝑎𝑝𝑝𝑎𝑎𝛽𝛽𝑝𝑝𝑜𝑜𝑛𝑛 𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐𝛽𝛽𝑎𝑎𝑛𝑛𝛽𝛽. 

We can also write the equation of plane progressive wave travelling in 
+ve x-direction. In exponential from as 

𝑦𝑦 = 𝐴𝐴 𝑒𝑒𝑖𝑖(𝜔𝜔𝑑𝑑−𝑘𝑘𝑑𝑑); 𝑝𝑝 = √−1   ……………… (6) 

The equation of plane progressive wave travelling in –x-direction can 
be written as, 

𝑦𝑦 = 𝐴𝐴 sin(𝜔𝜔𝛽𝛽 + 𝑘𝑘𝑑𝑑)    ……………… (7) 

and in exponential form, 

𝑦𝑦 = 𝐴𝐴 𝑒𝑒𝑖𝑖(𝜔𝜔𝑑𝑑+𝑘𝑘𝑑𝑑)     ……………… (8) 

5.6.1 PHASE DIFFERENCE 

The phases of different particles at the same instant are different or 
the phase of the same particle at different instants is different. The 
difference of the two phases is called the phase difference. 

When a wave is propagating along the direction of +ve (positive) x-axis 
then the displacement of a particle at a distance x from the origin is given 
by, 

𝑦𝑦 = 𝑎𝑎 sin(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑)    ………………(1) 

 𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑 represents the phase of the wave, 

 i.e. ϕ = 𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑    ………………(2) 

Let ϕ1 & ϕ2 be the phases of the two particles at distances x1 and x2 from 
origin, respectively then, 
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𝜙𝜙1 = 2𝜋𝜋 �𝑑𝑑
𝑇𝑇
− 𝑑𝑑1

𝜆𝜆
� ,    𝜙𝜙2 = 2𝜋𝜋 �𝑑𝑑

𝑇𝑇
− 𝑑𝑑2

𝜆𝜆
�  �∵ 𝜔𝜔 = 2𝜋𝜋

𝑇𝑇
&𝐾𝐾 = 2𝜋𝜋

𝜆𝜆
� 

𝜙𝜙1 − 𝜙𝜙2 =
2𝜋𝜋
𝜆𝜆

(𝑑𝑑2 − 𝑑𝑑1) 

∆𝜙𝜙 =
2𝜋𝜋
𝜆𝜆

× ∆𝑑𝑑 

𝑃𝑃ℎ𝑎𝑎𝑐𝑐𝑒𝑒 𝑑𝑑𝑝𝑝𝑓𝑓𝑓𝑓𝑒𝑒𝑜𝑜𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒 =  
2𝜋𝜋
𝜆𝜆

× 𝑝𝑝𝑎𝑎𝛽𝛽ℎ 𝑑𝑑𝑝𝑝𝑓𝑓𝑓𝑓𝑒𝑒𝑜𝑜𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒 

If ∆𝑑𝑑 = 𝜆𝜆 then  ∆𝜙𝜙 = 2𝜋𝜋, i.e., the two particles of medium at sparation λ 
are always in the same phase and then λ is called wavelength. 

Example: 1 

The equation for displacement of a wave is given by, 

𝒚𝒚 = 𝟖𝟖 𝐜𝐜𝐬𝐬𝐬𝐬𝟐𝟐𝟐𝟐�
𝒕𝒕

𝟎𝟎.𝟎𝟎𝟐𝟐
−

𝒙𝒙
𝟏𝟏𝟎𝟎𝟎𝟎�

 

where y and x are in cm and t in seconds. 

(a) Is the wave is progressive or stationary? 

(b) What is the amplitude of the wave? 

(c) What is the wavelength?  

(d) What is the velocity of propagation? 

(e) What is the frequency? 

Solution: 

We know that, equation of plane progressive is, 

𝒚𝒚 = 𝑨𝑨𝐜𝐜𝐬𝐬𝐬𝐬𝟐𝟐𝟐𝟐�𝒕𝒕
𝟐𝟐
− 𝒙𝒙

𝝀𝝀
�; on comparison we get, 

(a) The wave is progressive 

(b) Amplitude = 8 cm 

(c) Propagation constant, 𝑘𝑘 = 2𝜋𝜋
𝜆𝜆

   

 2𝜋𝜋
𝜆𝜆

= 2𝜋𝜋
100

 ⇒  𝜆𝜆 = 100 𝑐𝑐𝑐𝑐 

(d) Velocity of propagation. 

 𝑣𝑣 = 𝜔𝜔
𝑘𝑘

  , 𝜔𝜔 = 2𝜋𝜋
0.02

= 100𝜋𝜋 

 𝜔𝜔 = 100𝜋𝜋,  𝑘𝑘 = 2𝜋𝜋
100

 

 ∴ 𝑣𝑣 = 100𝜋𝜋
2𝜋𝜋

× 100 = 5 × 103𝑐𝑐𝑐𝑐/𝑐𝑐 

(e) Frequency, UGPHS-102/105
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 𝜔𝜔 = 100𝜋𝜋, 

 2𝜋𝜋𝑛𝑛 = 100𝜋𝜋 

 𝑛𝑛 = 50 𝐻𝐻𝐻𝐻. 

Example; 2 

The propagation constant of the wave is 1.5 × 104/m and velocity is 
380 m/sec. calculate 

(a) Wave length,   

(b) Wave number and   

(c) Frequency of wave 

Solution : 

(a) 𝑘𝑘 = 1.5 × 104/𝑐𝑐 

 𝑘𝑘 = 2𝜋𝜋
𝜆𝜆

  ∴ 𝜆𝜆 = 2𝜋𝜋
𝑘𝑘

 

 𝜆𝜆 = 2𝜋𝜋
1.5×104

𝑐𝑐 = 4.19 × 10−4𝑐𝑐 

(b) Wave number = 1
𝜆𝜆

= 1
4.19×10−4

= 2387 /𝑐𝑐 

(c) Frequency, 𝑣𝑣 = 𝑣𝑣
𝜆𝜆

= 380
4.19×10−4

= 9.07 × 105 𝑐𝑐𝑦𝑦𝑐𝑐𝑐𝑐𝑒𝑒/𝑐𝑐𝑒𝑒𝑐𝑐𝑜𝑜𝑛𝑛𝑑𝑑 

Example: 3 

A wave has a frequency 400 Hz and velocity 320 m/s. Find the 
distance between the points which are 45o out of phase. 

Solution : 

 Given, n = 400 Hz ; v = 320 m/s 

∆𝜙𝜙 = 45𝑜𝑜 =
𝜋𝜋
4

 

∆𝑑𝑑 =? 

𝑣𝑣 = 𝑛𝑛𝜆𝜆 

𝜆𝜆 =
𝑣𝑣
𝑛𝑛

=
3200
400

=
4
5
𝑐𝑐 

∆𝜙𝜙 =
2𝜋𝜋
𝜆𝜆

× ∆𝑑𝑑 

∆𝑑𝑑 = ∆𝜙𝜙 ×
𝜆𝜆

2𝜋𝜋
 

∆𝑑𝑑 =
𝜋𝜋
4

×
4

5 × 2𝜋𝜋
=

1
10

𝑐𝑐 = 0.1 𝑐𝑐 
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5.7 PHASE VELOCITY OR WAVE VELOCITY 
OF A PLANE PROGRESSIVE WAVE 

The equation of progressive wave is, 

𝑦𝑦 = 𝐴𝐴 sin(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑) 

The phase at a point x at the time t is given by, 

𝜙𝜙 = 𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑 

At a fixed point, ϕ increases with time & at a fixed time, ϕ 
decreases with distance x. Now we have chosen a point on the 
wave whose phase ϕ has a fixed value, say ϕo. Then the position of 
this point is given by, 

𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑 = 𝜙𝜙𝑜𝑜 

𝑑𝑑 =
𝜔𝜔
𝑘𝑘
𝛽𝛽 −

𝜙𝜙𝑜𝑜
𝑘𝑘

 

The velocity with which a point of constant phase moves on the 
wave is called the phase velocity and is given by, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝛽𝛽

=
𝜔𝜔
𝑘𝑘

= 𝑣𝑣𝑝𝑝 = 𝑣𝑣 

Which is same as the velocity of the wave. 

5.8 PARTICLE VELOCITY OF WAVE 

Let us consider a progressive wave travelling in tx-direction. Its equation 
is of the form, be, 

𝑦𝑦 = 𝐴𝐴 sin(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑)    ………………. (1) 

The velocity of a particle located at point x is given by  𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

 . This 
velocity is called the particle velocity 

𝑢𝑢 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

= 𝐴𝐴 𝜔𝜔 𝑐𝑐𝑜𝑜𝑐𝑐 (𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑)   ………………. (2) 

𝑢𝑢𝑚𝑚𝑎𝑎𝑑𝑑 = 𝐴𝐴𝜔𝜔     ………………. (3) 

𝑢𝑢𝑚𝑚𝑎𝑎𝑑𝑑 is the maximum velocity. 

5.9 DIFFERENTIAL EQUATION OF WAVE 
MOTIONS 

Let us consider a plane progressive wave travelling through a 
medium along x-axis. The equation of wave is, 

𝑦𝑦 = 𝑎𝑎 sin(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑)    ………………. (1) UGPHS-102/107
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The instantaneous velocity u at point x is  𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

 . Then, 

Particle velocity, 𝑢𝑢 =  𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

= 𝑎𝑎 𝜔𝜔 𝑐𝑐𝑜𝑜𝑐𝑐(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑) …….…. (2) 

 Now, differentiating equation (1) with r.t. ‘x’, we get, 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

= −𝑎𝑎𝑘𝑘 𝑐𝑐𝑜𝑜𝑐𝑐(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑)   ………………. (3) 

Divide equation (2) by (3), we get, 
𝑢𝑢

�𝜕𝜕𝑦𝑦𝜕𝜕𝑑𝑑�
=
−𝜔𝜔
𝑘𝑘

 

𝜔𝜔
𝑘𝑘

= 𝑣𝑣 = 𝑤𝑤𝑎𝑎𝑣𝑣𝑒𝑒 𝑣𝑣𝑒𝑒𝑐𝑐𝑜𝑜𝑐𝑐𝑝𝑝𝛽𝛽𝑦𝑦 

   𝑢𝑢 = −𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

  ………………. (4) 

Thus, the particle velocity at point x is equal to the wave velocity 
and multiplied by the slope of the medium at point x. This is true 
for transverse as well as longitudinal waves. 
Differentiating equation (2) w.r.t. ‘t’, we get, 
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑑𝑑2

= −𝑎𝑎 𝜔𝜔2𝑐𝑐𝑝𝑝𝑛𝑛(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑)   ………………. (5) 

Again differentiating equation (3) w.r.t. ‘x’ we get, 
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑑𝑑2

= −𝑎𝑎𝑘𝑘2 𝑐𝑐𝑝𝑝𝑛𝑛(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑)   ………………. (6) 

Dividing (5) by (6) 

𝜕𝜕2𝑦𝑦
𝜕𝜕𝛽𝛽2
𝜕𝜕2𝑦𝑦
𝜕𝜕𝑑𝑑2

=
−𝑎𝑎𝜔𝜔2

−𝑎𝑎𝑘𝑘2
=
𝜔𝜔2

𝑘𝑘2
= 𝑣𝑣2 

𝝏𝝏𝟐𝟐𝒚𝒚
𝝏𝝏𝒕𝒕𝟐𝟐

= 𝒗𝒗𝟐𝟐 𝝏𝝏
𝟐𝟐𝒚𝒚
𝝏𝝏𝒙𝒙𝟐𝟐

   ………………. (7) 

This is differential equation of wave motion and this equation is 
also known as classical wave equation.  

Example: 4 
Which of the following are the solution of one dimensional wave 
equation? 

 (a) 𝒚𝒚 = 𝒙𝒙𝟐𝟐 + 𝒗𝒗𝟐𝟐𝒕𝒕𝟐𝟐  (b) 𝒚𝒚 = 𝟓𝟓 𝐜𝐜𝐬𝐬𝐬𝐬 𝒙𝒙 𝐜𝐜𝐜𝐜𝐜𝐜𝒗𝒗𝒕𝒕 

 (c) 𝒚𝒚 = 𝟑𝟑 𝐜𝐜𝐬𝐬𝐬𝐬𝟐𝟐𝒙𝒙 𝐜𝐜𝐜𝐜𝐜𝐜𝒗𝒗𝒕𝒕  (d) 𝒚𝒚 = 𝟐𝟐𝒙𝒙 − 𝟓𝟓𝒕𝒕 
Solution: 
 The general differential equation for a progressive wave is 

 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑑𝑑2

= 𝑣𝑣2 𝜕𝜕
2𝜕𝜕

𝜕𝜕𝑑𝑑2
     ………………. (1) 
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The equation of the problem, which satisfies the condition (1) will 
be the solution of one dimensional wave equation. 

(a) 𝑦𝑦 = 𝑑𝑑2 + 𝑣𝑣2𝛽𝛽2  
𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

= 2𝑣𝑣2𝛽𝛽;     𝜕𝜕
2𝜕𝜕
𝜕𝜕𝑑𝑑2

= 2𝑣𝑣2  ………………. (a) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

= 2𝑑𝑑;       𝜕𝜕
2𝜕𝜕

𝜕𝜕𝑑𝑑2
= 2   ………………. (b) 

from (a) and (b) we get, 

𝜕𝜕2𝑦𝑦
𝜕𝜕𝛽𝛽2

= 𝑣𝑣2
𝜕𝜕2𝑦𝑦
𝜕𝜕𝑑𝑑2

 

Hence the equation (1) is the solution of the one 
dimensional wave equation. 

(b) 𝑦𝑦 = 5 sin 𝑑𝑑 cos 𝑣𝑣𝛽𝛽 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

= −5𝑣𝑣 sin 𝑑𝑑 sin𝑣𝑣𝛽𝛽 

 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑑𝑑2

= −5𝑣𝑣2 sin 𝑑𝑑 cos 𝑣𝑣𝛽𝛽  ………………. (a) 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

= 5 cos 𝑑𝑑 cos 𝑣𝑣𝛽𝛽 

 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑑𝑑2

= −5 sin 𝑑𝑑 cos 𝑣𝑣𝛽𝛽   ………………. (b) 

from (a) and (b) we get, 
Hence the equation (b) is the solution of one dimensional 
wave equation. 

(c) 𝑦𝑦 = 3 sin 2𝑑𝑑 cos 𝑣𝑣𝛽𝛽 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

= −3𝑣𝑣 sin 2𝑑𝑑 sin 𝑣𝑣𝛽𝛽 

 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑑𝑑2

= −3𝑣𝑣2 sin 2𝑑𝑑 cos 𝑣𝑣𝛽𝛽  ………………. (a) 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

= 6 cos 2𝑑𝑑 cos 𝑣𝑣𝛽𝛽 

 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑑𝑑2

= −12 sin 2𝑑𝑑 cos 𝑣𝑣𝛽𝛽  ………………. (b) 

from (a) and (b) we get, 

𝜕𝜕2𝑦𝑦
𝜕𝜕𝛽𝛽2

= 𝑣𝑣2
𝜕𝜕2𝑦𝑦
𝜕𝜕𝑑𝑑2

 

Hence the equation (c) is not the solution of one 
dimensional wave equation. 

(d) 𝑦𝑦 = 2𝑑𝑑 − 5𝛽𝛽 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

= −5 

 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑑𝑑2

= 0    ………………. (a) UGPHS-102/109
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 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

= 2 

 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑑𝑑2

0     ………………. (b) 

from (a) and (b) we get, 
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑑𝑑2

= 𝑣𝑣2 𝜕𝜕
2𝜕𝜕

𝜕𝜕𝑑𝑑2
  does not exist 

So, 𝑦𝑦 = 2𝑑𝑑 − 5𝛽𝛽  is not the solution of classical wave equation. 

5.10 ENERGY AND INTENSITY IN A PLANE 
PROGRESSIVE WAVE 

Let us consider a wave is propagating along the (+ve x)-direction 
and the displacement of the particle from mean position is y. The equation 
of wave is 

𝑦𝑦 = 𝑎𝑎 sin (𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑)    ……………… (1) 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

= 𝑎𝑎𝜔𝜔 cos(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑)   ……………… (2) 

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑑𝑑2

= −𝑎𝑎𝜔𝜔2 sin(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑)   ……………… (3) 

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑑𝑑2

= −𝜔𝜔2𝑦𝑦     ……………… (4) 

Consider a medium whose density is 𝜌𝜌 and cross sectional area is 
unity. Then the mass of thickness (layer)dx = 𝜌𝜌𝑑𝑑𝑑𝑑. 

The Kinetic energy of layer = 1
2
𝜌𝜌𝑑𝑑𝑑𝑑. �𝜕𝜕𝜕𝜕

𝜕𝜕𝑑𝑑
�
2
 

Using equation (1),  

𝐾𝐾.𝐸𝐸. = 𝑣𝑣 =
1
2
𝜌𝜌𝑑𝑑𝑑𝑑�𝑎𝑎𝜔𝜔 (𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑)�2 

= 1
2
𝜌𝜌𝑑𝑑𝑑𝑑 𝑎𝑎2𝜔𝜔2  𝑐𝑐𝑜𝑜𝑐𝑐2(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑)           ……………… (5) 

 The force acting on this layer, 

 𝐹𝐹 = (𝜌𝜌𝑑𝑑𝑑𝑑) 𝜕𝜕
2𝜕𝜕
𝜕𝜕𝑑𝑑2

= 𝜌𝜌𝑑𝑑𝑑𝑑�−𝑎𝑎𝜔𝜔2 𝑐𝑐𝑝𝑝𝑛𝑛(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑)� 

 = −𝜌𝜌𝑑𝑑𝑑𝑑 𝜔𝜔2𝑦𝑦  (using (4)) 

 ∴ Potential energy of layer, 𝑈𝑈 = −∫ 𝐹𝐹𝑑𝑑𝑦𝑦𝜕𝜕
𝑜𝑜  

   = −∫ (−𝜌𝜌 𝑑𝑑𝑑𝑑𝜔𝜔2𝑦𝑦)𝑑𝑑𝑦𝑦𝜕𝜕
𝑜𝑜  

   = 𝜔𝜔2𝜌𝜌 𝑑𝑑𝑑𝑑 ∫ 𝑦𝑦 𝑑𝑑𝑦𝑦𝜕𝜕
𝑜𝑜  

   = 𝜔𝜔2𝜌𝜌 𝑑𝑑𝑑𝑑. 𝜕𝜕
2

2
 

= 1
2
𝜔𝜔2𝜌𝜌 𝑑𝑑𝑑𝑑.𝑎𝑎2 𝑐𝑐𝑝𝑝𝑛𝑛2(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑) ……………… (6) 
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 ∴ Total energy of layer = K.E. + P.E. = T + U 

𝐸𝐸 = 1
2
𝜌𝜌 𝑑𝑑𝑑𝑑.  𝜔𝜔2𝑎𝑎2    ……………… (7) 

  Which is the energy of wave. 
  Volume of the layer = area × thickness 
    = unity × dx = 1 × dx = dx 

 ∴ Energy of wave per unit volume or energy density is, 

𝑢𝑢 =
1
2
𝜔𝜔2 𝜌𝜌𝑎𝑎2 

Thus, the energy density of the wave does not depend on x and t.  

5.10.1 INTENSITY OF WAVE 

The intensity of wave is defined as the total energy of the wave 
passing per unit cross-sectional area per second. 

If the distance traversed by wave in one second = 𝜌𝜌 

 ∴ Intensity of wave = u. 𝜌𝜌 

𝑰𝑰 =
𝟏𝟏
𝟐𝟐
𝝎𝝎𝟐𝟐 𝝆𝝆 𝒂𝒂𝟐𝟐.𝝆𝝆  

5.11 PLANE PROGRESSIVE WAVE IN FLUID 

 Suppose a long cylindrical tube of uniform cross section 
containing a fluid. 

 

 

 

 

 

 

 

 
 

Figure - 4 

After supplying sinusoidal wave through position in the fluid of rod, the 
compressions and rarefaction occurs in the fluid & they travel along the 
axis of the tube. These compressions and rarefactions travelling wave are 
called the longitudinal wave. At places where there is a compression, the UGPHS-102/111
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pressure and density of the fluid are above the equilibrium value and at 
those places where rarefaction occurs, the pressure and density of the fluid 
below the equilibrium value. 

The displacement of the fluid particle in +ve (positive) x direction is given 
by, 

𝑦𝑦 = 𝑎𝑎 cos(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑)      𝑜𝑜𝑜𝑜   𝑎𝑎 sin(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑) 

= 𝑎𝑎𝑒𝑒𝑖𝑖(𝜔𝜔𝑑𝑑−𝑘𝑘𝑑𝑑)) 

Condensation 

It is defined as the ratio of the change in density to the original density. 

𝑆𝑆 =
𝜌𝜌 − 𝜌𝜌𝑜𝑜
𝜌𝜌𝑜𝑜

 

Volume Strain or Dilation 

 It is the ratio of change in volume to original volume. 

𝑆𝑆 =
𝑣𝑣 − 𝑣𝑣𝑜𝑜
𝑣𝑣𝑜𝑜

 

5.11.1 VELOCITY OF WAVE IN A FLUID 

 

 

 

 

 

 

 

 

Figure - 5 

Consider a small volume element of fluid in cylindrical tube layer 
A and B which are located at x & x + dx respectively. After 
applying wave, this volume element is subjected to pressure and 
volume change. If p is excess pressure and v is volume change in 
original volume vo of the element, then Bulk modulus is, 

𝐵𝐵 =
𝑒𝑒𝑑𝑑𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 𝑝𝑝𝑜𝑜𝑒𝑒𝑐𝑐𝑐𝑐𝑣𝑣𝑒𝑒

− 𝑢𝑢
𝑣𝑣𝑜𝑜

=
𝑝𝑝
𝛿𝛿

=
𝑝𝑝
𝑆𝑆

 

 ∴ 𝑝𝑝 = 𝐵𝐵. 𝑐𝑐    ……………… (1) 
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 Let initial positions of layer A and B be 

𝑑𝑑𝐴𝐴 = 𝑑𝑑 

𝑑𝑑𝐵𝐵 = 𝑑𝑑 + 𝑑𝑑𝑑𝑑 

After propagation of wave, layer A shifted to new position A’ and 
layer B shifted to B’, consider 𝐴𝐴𝐴𝐴′ = 𝑑𝑑 & 𝐵𝐵𝐵𝐵′ = 𝑦𝑦 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑑𝑑
.𝑑𝑑𝑑𝑑, then 

new positions of the layer A’ and B’ are, 

𝑑𝑑𝐴𝐴′ = 𝑑𝑑 + 𝑦𝑦 

𝑑𝑑𝐵𝐵′ = 𝑑𝑑 + 𝑑𝑑𝑑𝑑 + 𝑦𝑦 +
𝜕𝜕𝑦𝑦
𝜕𝜕𝑑𝑑

.𝑑𝑑𝑑𝑑 

If area of cross-section of tube be 𝛼𝛼 then volume between two 
layers A and B is 𝛼𝛼.dx, and between new layers A’ & B’ is 
𝛼𝛼. �𝑑𝑑𝑑𝑑 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑑𝑑
.𝑑𝑑𝑑𝑑�. Therefore change in volume of the fluid element 

be 

     = 𝛼𝛼. �𝑑𝑑𝑑𝑑 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

.𝑑𝑑𝑑𝑑� − 𝛼𝛼𝑑𝑑𝑑𝑑 

     = +𝛼𝛼 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

.𝑑𝑑𝑑𝑑 

∴  Volume strain or Dilation is given by, 

𝛿𝛿 =
𝛼𝛼 𝜕𝜕𝑦𝑦𝜕𝜕𝑑𝑑 .𝑑𝑑𝑑𝑑
𝛼𝛼.𝑑𝑑𝑑𝑑

=
𝜕𝜕𝑦𝑦
𝜕𝜕𝑑𝑑

. 

Hence from (1) excess pressure, (∵ 𝛿𝛿 = −𝑆𝑆) 

𝑝𝑝 = −𝐵𝐵. 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

   ……………… (2) 

Let the pressure acting on the layer A be P. then the pressure acting 
on the layer B would be 𝑃𝑃 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑑𝑑
.𝑑𝑑𝑑𝑑. 

Thus, the net pressure acting on the element in +ve x direction is 
given by, 

𝑃𝑃 − �𝑃𝑃 +
𝜕𝜕𝑃𝑃
𝜕𝜕𝑑𝑑

.𝑑𝑑𝑑𝑑� = −
𝜕𝜕𝑃𝑃
𝜕𝜕𝑑𝑑

.𝑑𝑑𝑑𝑑 

If Po is the equilibrium value of pressure, then P = Po + 𝑝𝑝. 

Hence net pressure = − 𝜕𝜕
𝜕𝜕𝑑𝑑

(𝑃𝑃𝑜𝑜 + 𝑝𝑝)𝑑𝑑𝑑𝑑 

= −
𝜕𝜕𝑝𝑝
𝜕𝜕𝑑𝑑

.𝑑𝑑𝑑𝑑 

The force acting on the element is, 

𝐹𝐹𝑑𝑑 = �−
𝜕𝜕𝑝𝑝
𝜕𝜕𝑑𝑑

.𝑑𝑑𝑑𝑑� .𝛼𝛼 UGPHS-102/113
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∵ 𝑝𝑝 = −𝐵𝐵 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

  (Using equation (2)) 

 ∴ 𝐹𝐹𝑑𝑑 = 𝛼𝛼𝐵𝐵 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑑𝑑2

.𝑑𝑑𝑑𝑑   ……………… (3) 

 The mass of the element = 𝛼𝛼 𝑑𝑑𝑑𝑑 𝜌𝜌𝑜𝑜 ; 𝜌𝜌𝑜𝑜 →
𝑑𝑑𝑒𝑒𝑛𝑛𝑐𝑐𝑝𝑝𝛽𝛽𝑦𝑦 𝑜𝑜𝑓𝑓 𝑓𝑓𝑐𝑐𝑢𝑢𝑝𝑝𝑑𝑑 

 Hence, 

(𝛼𝛼 𝑑𝑑𝑑𝑑 𝜌𝜌𝑜𝑜)
𝜕𝜕2𝑦𝑦
𝜕𝜕𝛽𝛽2

= 𝛼𝛼𝐵𝐵
𝜕𝜕2𝑦𝑦
𝜕𝜕𝑑𝑑2

𝑑𝑑𝑑𝑑 

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑑𝑑2

= 𝐵𝐵
𝜌𝜌𝑜𝑜

  𝜕𝜕
2𝜕𝜕

𝜕𝜕𝑑𝑑2
𝑑𝑑𝑑𝑑  

 ……………… (4) 

Which is similar to wave equation,  
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑑𝑑2

= 𝑣𝑣2 𝜕𝜕
2𝜕𝜕

𝜕𝜕𝑑𝑑2
     ……………… (5) 

 Comparing (4) & (5) we get, 

𝑣𝑣 = �𝐵𝐵
𝜌𝜌𝑜𝑜

   ……………… (6) 

 Which gives the velocity of longitudinal waves produce in fluid. 

5.12 LONGITUDINAL WAVE AS A PRESSURE 
WAVE 

Let the equation of wave travelling in +ve x-direction is 

𝑦𝑦 = 𝑎𝑎 sin  (𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑)                   ……………… (1) 

 The excess pressure at a point x is given by, 

𝑝𝑝 = +𝐵𝐵
𝜕𝜕𝑦𝑦
𝜕𝜕𝑑𝑑

 

= +𝐵𝐵𝑘𝑘 𝑎𝑎 cos  (𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑) 

∵ 𝑣𝑣 = �𝐵𝐵
𝜌𝜌𝑜𝑜
⇒ 𝐵𝐵 = 𝑣𝑣2𝜌𝜌𝑜𝑜 

∴ 𝑝𝑝 = 𝑣𝑣2𝜌𝜌𝑜𝑜𝑘𝑘 𝑎𝑎 cos(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑) 

  𝑣𝑣 = 𝜔𝜔
𝑘𝑘
⇒ 𝜔𝜔 = 𝑣𝑣𝑘𝑘 

  𝑝𝑝 = 𝑎𝑎 𝑣𝑣𝜔𝜔𝜌𝜌𝑜𝑜 cos (𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑) 

𝑝𝑝 = 𝑝𝑝𝑜𝑜 cos(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑)        ……………… (2) 

  𝑝𝑝𝑜𝑜 = 𝑎𝑎 𝑣𝑣𝜔𝜔 𝜌𝜌𝑜𝑜 → 𝑝𝑝𝑜𝑜𝑒𝑒𝑐𝑐𝑐𝑐𝑢𝑢𝑜𝑜𝑒𝑒 𝑎𝑎𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝𝛽𝛽𝑢𝑢𝑑𝑑𝑒𝑒  
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This is the pressure equation of a longitudinal wave. It is also convenient 
to discuss the behaviour of wave in terms of pressure variations instead of 
displacement of fluid particles. The equation (1) and (2) shows that the 
displacement wave is 90o out of phase with pressure wave. 

5.12.1 INTENSITY AND PRESSURE AMPLITUDE 

The Intensity of a wave is given by, 

𝐼𝐼 = 1
2
𝜔𝜔2𝜌𝜌0𝑎𝑎2. 𝑐𝑐  ……………… (1) 

The equation (1) can be written as, 

𝐼𝐼 =
1
2
𝜔𝜔2𝜌𝜌02𝑐𝑐2𝑎𝑎2

𝜌𝜌0𝑐𝑐
 

Since pressure amplitude 𝑝𝑝0 = 𝜔𝜔𝑣𝑣𝑎𝑎𝜌𝜌0 

 ∴                          𝑰𝑰 = 𝒑𝒑𝟎𝟎
𝟐𝟐

𝟐𝟐𝝆𝝆𝟎𝟎𝒗𝒗
 

 Which is relation between Intensity and pressure amplitude. 

5.12.2 EFFECT OF VARIOUS FACTORS ON 
VELOCITY OF FLUID (GAS) 

(a) Effect of Pressure :- 

The velocity of longitudinal wave in fluid is 

𝑣𝑣 = �
𝐵𝐵
𝜌𝜌0

= �
𝑜𝑜𝑝𝑝
𝜌𝜌0

 

Due to change in pressure, the density of the medium also changes 
in such a way that - 𝜕𝜕

𝜌𝜌0
 remain constant for a given temperature. 

Thus there is no effect of pressure change on the speed of wave if 
the temperature remains constant. 

(b) Effect of Temperature:- 

 𝑉𝑉 = 𝑣𝑣𝑜𝑜𝑐𝑐𝑢𝑢𝑐𝑐𝑒𝑒 = 𝑀𝑀
𝜌𝜌

 

∴ for Gas equation 

  PV = RT 

  𝜕𝜕𝑀𝑀
𝜌𝜌

= 𝑅𝑅𝑣𝑣         ⇒       𝜕𝜕
𝜌𝜌

= 𝑅𝑅𝑇𝑇
𝑀𝑀

 

∴ 𝑉𝑉 = �𝑑𝑑𝑅𝑅𝑇𝑇
𝑀𝑀
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𝒗𝒗 𝒌𝒌√𝟐𝟐  

(c) Effect of Frequency and Amplitude:- 

Then is no effect of frequency and amplitude and velocity of the 
wave in fluid.  

5.13 SUMMARY 

• A wave is a kind of disturbance created in an elastic medium. 

• A wave motion is a process of transmission of energy and 
momentum from one point of a medium to another without any 
actual transfer of the particles of the medium. 

• The essential requirements for producing a wave motion are: 

(a) a vibrating body, called the source of wave, that may create a 
disturbance; 

(b) an elastic medium through which the wave will propagate, 
and 

(c) the particles of the medium for participating in the process of 
transmission of disturbance. 

• Two distinct types of mechanical waves are: 

(a) Transverse waves in which the particles of the medium 
execute simple harmonic motion about their respective mean 
positions at right angles to the direction of wave propagation. 
The electromagnetic waves are transverse in nature. Waves 
spreading over the surface of water are transverse. 

(b) Longitudinal waves in which the particles of the medium 
execute simple harmonic motion about their respective mean 
positions along the direction of wave propagation. Sound 
waves are longitudinal. 

5.14 TERMINAL QUESTIONS 

1. Fill in the blanks. 

 (a) A wave is a ……………… 

 Ans.- disturbance  

 (b) A mechanical wave requires a …………….. for its 
propagation. 

 Ans.- material medium 

 (c) Waves formed on the water surface in a lake are …………. 
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 Ans.- transverse 

 (d) An electromagnetic wave …………….. a material medium 
for its propagation. 

 Ans.- does not require 

 (e) Sound waves are …………….. 

 Ans.- longitudinal  

 (f) Light waves are ………………  

 Ans.- transverse 

(g) In a longitudinal wave, particles of the medium vibrate 
………… the direction of wave propagation. 

Ans.- along 

(h) In a liquid, longitudinal waves propagate only 
…………….. of the liquid. 

Ans.- in the interior 

(i) In a liquid, transverse waves propagate only …………….. of 
the liquid. 

Ans.- on the surface 

(j) Transverse waves cannot be produced in a ……………… 
medium. 

Ans.-  gaseous 

(k) In a transverse wave, particles of the medium vibrate 
…………… the direction of wave propagation. 

 Ans.- in a direction perpendicular to 

(l) In a progressive wave, …………. Are transferred from one 
point of the medium to the other. 

 Ans.- energy and momentum 

(m) For transverse waves to propagate in a medium, the medium 
must possess …………. 

 Ans.- rigidity 

 (n) Sound waves propagate in a gaseous medium by 
……………… and ………. 

 Ans.- compressions, rarefactions 

 (o) Phase difference and path difference are related by 
…………… 

 Ans.- 𝜙𝜙 = 2𝜋𝜋
𝜆𝜆
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2. Write down the equation of Phase velocity of a plane progressive 
wave. 

3. Define a wave. 

4. What do you mean by wave motion? 

5. Distinguish between longitudinal and transverse waves. 

6. Given below are some examples of wave-motion. State in each 
case, if the wave-motion is transverse, longitudinal or a 
combination of both: 

(a) Motion of a kink in a long coil-spring produced by displacing 
one end of the spring sideways. 

(b) Waves produced in a cylinder containing a liquid by moving 
its piston back and forth. 

(c) Waves produced by a motor boat sailing in water. 

(d) Light waves travelling from the sun to the earth. 

(e) Ultrasonic waves in air produces by a vibrating quartz 
crystal. 

(f) Radio waves broadcasted from a radio station. 

Ans.-  

(a) When the spring is pulled sideways, motion of the kink will 
be a transverse wave. (If the spring is pulled parallel to its 
length, the motion of the kink will be a longitudinal wave). 

(b) The liquid molecules oscillate along the direction of motion 
of the piston, that is, along the direction of propagation of the 
wave. Hence it is example of longitudinal wave. 

(c) The propeller of a motor boat cuts the water surface laterally 
and pushes it backward. Hence the wave-motion is a 
combination of both longitudinal ana transverse waves. 

(d) Light waves are electromagnetic waves which are transverse 
in nature. 

(e) Ultrasonic waves are longitudinal sound waves of high 
frequency. 

(f) Radio waves are electromagnetic waves of large wavelength 
which are transverse in nature. 

7. Write down the Equation of a Plane Progressive Wave. 

8. Explain differential Equation of Wave Motions. 

9. Write short notes on: - 
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(a) Plane Progressive Wave in Fluid 

(b) Velocity of Wave in a Fluid 

(c) Longitudinal Wave as a Pressure Wave. 
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UNIT-06 WAVES AT BOUNDARIES OF 
TWO MEDIA 

Structure 
6.1 Introduction 

6.2 Objectives 

6.3 Free and Bounded Medium 

6.4 Acoustic Impedance 

6.5 Characteristic Impedance 

6.6    String 

6.7 Plane Progressive Wave in Stretched String 

6.8 Reflection and Transmission Coefficient of Amplitude of 
Waves on String at Joints of two Media Boundary 

6.9 Reflection and Transmission of Energy Waves at Joint of 
two Media 

6.10 Summary 

6.11 Terminal Questions 

6.1 INTRODUCTION 

In the Previous unit 5, was concerned with waves that could be 
imagined as travelling uninterrupted in a specified medium. You have also 
studied about the expression and properties of Plane Progressive Wave. 
This unit is chiefly about some of the effects that take place when a 
travelling wave encounters a barrier/boundaries or a different medium or 
small obstacles .  In this unit we will study about bounded medium, 
acoustic impedance and characteristic impedance. In this unit, we shall 
also study some important examples and expression for reflection and 
transmission of Energy Waves at joint of two media. 

6.2 OBJECTIVES 

After studying this unit, you should be able to – 

 Concept of Bounded Medium 

 Define acoustic impedance, characteristic impedance 
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 Solve problems based on acoustic impedance and characteristic 
impedance 

 Understand concept of reflection and transmission of Energy 
Waves at joint of two media. 

6.3 FREE AND BOUNDED MEDIUM 

A “bounded medium” is one which has a definite boundary 
and whose boundaries are separated from other media by distinct 
surfaces. Such a medium can vibrate with only certain definite 
frequencies and these frequencies are the characteristic frequencies of that 
medium. 

The boundary of a bounded medium may be of two types: rigid (or closed) 
and free (or open). For example, both the ends of a sitar string are rigid, 
the closed end of the tube of an air column is rigid while its open end is 
free. When a wave travels in a medium having no boundary, then the wave 
continues to travel as such. If the medium has a boundary (rigid or free), 
then the wave is reflected from the boundary. 

The physical channels (the media) that carry data are of two types: 
bounded and unbounded. In a bounded medium, the signals are confined 
to the medium and do not leave it (except for smaller leakage amounts). A 
pair of wires, coaxial cable, waveguide, and optical-fiber cable are 
examples of bounded media. 

6.4 ACOUSTIC IMPEDANCE 

Impedance 

One of the important physical characteristics relating to the propagation of 
sound is the acoustic impedance of the medium in which the sound wave 
travels.. Acoustic impedance (Z) is given by the ratio of the wave’s 
acoustic pressure (p) to its volume velocity (U): 

𝑍𝑍 =
𝑝𝑝
𝑈𝑈

 

Like its analogue electrical impedance (or electrical resistance), acoustic 
impedance is a measure of the ease with which a sound wave propagates 
through a particular medium. Also, like electrical impedance, acoustic 
impedance involves several different effects applying to different 
situations. For example, specific acoustic impedance (Z), the ratio of 
acoustic pressure to particle speed, is an inherent property of the medium 
and of the nature of the wave. Acoustic impedance, the ratio of pressure to 
volume velocity, is equal to the specific acoustic impedance per unit area. 
Specific acoustic impedance is useful in discussing waves in confined 
mediums, such as tubes and horns. For the simplest case of a plane wave, 
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specific acoustic impedance is the product of the equilibrium density (𝜌𝜌) 
of the medium and the Velocity of Wave (v) 

𝑍𝑍 = 𝜌𝜌𝑣𝑣  

The unit of specific acoustic impedance is the pascal second per metre, 
often called the rayl, after Lord Rayleigh. The unit of acoustic impedance 
is the pascal second per cubic metre, called an acoustic ohm, by analogy to 
electrical impedance. 

Impedance Mismatch 

Mediums in which the speed of sound is different generally have differing 
acoustic impedances, so that, when a sound wave strikes an interface 
between the two, it encounters and impedance mismatch. As a result, some 
of the wave reflects while some is transmitted into the second medium. In 
the case of the well-known bell-in-vacuum experiment, the impedance 
mismatches between the bell and the air and between the air and the jar 
result in very little transmission of sound when the air is at low pressure. 

Acoustic Filtration 

Filtration of sound plays an important part in the design of air-handling 
systems. In order to attenuate the level of sound from blower motors and 
other sources of vibration, regions of larger or smaller cross-sectional area 
are inserted into air ducts. The impedance mismatch introduced into a duct 
by a change in the area of the duct or by the addition of a side branch 
reflects undesirable frequencies, as determined by the size and shape of 
the variation. A region of either larger or smaller area will function as a 
low-pass filter, reflecting high frequencies; an opening or series of 
openings will function as a high-pass filter, removing low frequencies. 
Some automobile mufflers make use of this type of filter. 

 

 

 

 

 

 

 
Figure - 1 

Acoustic Filters Typically used in Air-handing System 

Acoustic filters typically used in air-handing system. (A) and (B) Low-
pass filters;  (C) a high-pass filter; (D) a band-pass filter, which 
actually filters out vibrations within a narrow frequency range (see 
text). UGPHS-102/123
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Figure - 2 

A connected spherical cavity, forming what is called a band-pass 
filter, actually functions as a type of band absorber or notch filter, 
removing a band of frequencies around the resonant frequency of 
the cavity (see below, standing waves: The Helmholtz resonator). 

Sound travels through materials under the influence of sound 
pressure. Because molecules or atoms of a solid are bound 
elastically to one another, the excess pressure results in a wave 
propagating through the solid. 

The acoustic impedance (Z) of a material is defined as the 
product of its density (𝜌𝜌) and acoustic velocity (𝑣𝑣). 

𝑍𝑍 = 𝜌𝜌𝑣𝑣 

Acoustic impedance is important in 

1. the determination of acoustic transmission and reflection at the boundary 
of two materials having different acoustic impedances. 

2. the design of ultrasonic transducers. 

3. assessing absorption of sound in a medium. 

The following applet can be used to calculate the acoustic 
impedance for any material, so long as its density (𝜌𝜌) and acoustic 
velocity (𝑣𝑣) are known.  The applet also shows how a change in 
the impedance affects the amount of acoustic energy that is 
reflected and transmitted.  The values of the reflected and 
transmitted energy are the fractional amounts of the total energy 
incident on the interface. 

Now, the acoustic impedance on a medium is defined as the ratio of 
excess pressure to the particle velocity of the medium, 
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𝑍𝑍 =
𝑒𝑒𝑑𝑑𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 𝑝𝑝𝑜𝑜𝑒𝑒𝑐𝑐𝑐𝑐𝑢𝑢𝑜𝑜𝑒𝑒
𝑝𝑝𝑎𝑎𝑜𝑜𝛽𝛽𝑝𝑝𝑐𝑐𝑐𝑐𝑒𝑒 𝑣𝑣𝑒𝑒𝑐𝑐𝑜𝑜𝑐𝑐𝑝𝑝𝛽𝛽𝑦𝑦

=
𝑝𝑝
𝜕𝜕𝑦𝑦
𝜕𝜕𝛽𝛽

 

𝑝𝑝 = −𝐵𝐵
𝜕𝜕𝑦𝑦
𝜕𝜕𝑑𝑑

 

If 𝑦𝑦 = 𝑎𝑎 sin(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑) 

𝜕𝜕𝑦𝑦
𝜕𝜕𝛽𝛽

= 𝑎𝑎 𝜔𝜔 𝑐𝑐𝑜𝑜𝑐𝑐(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑) 

𝜕𝜕𝑦𝑦
𝜕𝜕𝑑𝑑

= 𝑎𝑎 𝑘𝑘 𝑐𝑐𝑜𝑜𝑐𝑐(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑) 

∴ 𝑍𝑍 = −𝐵𝐵 𝑎𝑎.𝑘𝑘 cos(𝜔𝜔𝑑𝑑−𝑘𝑘𝑑𝑑)
𝑎𝑎 𝜔𝜔cos(𝜔𝜔𝑑𝑑−𝑘𝑘𝑑𝑑)

= 𝐵𝐵𝑘𝑘
𝜔𝜔

= 𝜌𝜌 𝑣𝑣2. 𝑘𝑘
𝜔𝜔

 

  = 𝜌𝜌 𝑣𝑣2

𝑣𝑣
 

  = 𝜌𝜌𝑣𝑣 

𝑍𝑍 = 𝜌𝜌𝑣𝑣  

 Which is impedance of medium and known as ohm’s law. 

6.5 CHARACTERISTIC IMPEDANCE 

 Any medium through which waves propagate will present an 
impedance to those waves. 

 If the medium is lossless, and possesses no resistive or dissipation 
mechanism, for a string the impedance is determined by inertia and 
elasticity. 

 The presence of a loss mechanism will introduce a complex term 
into the impedance. 

Suppose a string lying along x-axis. The equilibrium tension of the string 
is To. At any instant, the displacement of the string at x = 0 is y. 

 

 

 

 

 

 

 
Figure - 3 UGPHS-102/125
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The string exerts a transverse force (i.e. along y-axis) 𝑣𝑣0 𝑐𝑐𝑝𝑝𝑛𝑛𝜃𝜃 on 
the output terminal. 

i.e. 𝐹𝐹𝜕𝜕(𝑜𝑜𝑛𝑛 𝑜𝑜𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑎𝑎𝛽𝛽𝑜𝑜𝑜𝑜) = 𝑣𝑣0 𝑐𝑐𝑝𝑝𝑛𝑛𝜃𝜃 = 𝑣𝑣0𝛽𝛽𝑎𝑎𝑛𝑛𝜃𝜃 (𝜃𝜃 is small 
𝑐𝑐𝑝𝑝𝑛𝑛𝜃𝜃 = 𝛽𝛽𝑎𝑎𝑛𝑛𝜃𝜃) 

 = 𝑣𝑣0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

∵ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

= −𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

 

∴ 𝐹𝐹𝜕𝜕 = −𝑇𝑇0
𝑣𝑣

𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

when the string emits a travelling wave, it experiences a drag force 
which is negatively proportional to the velocity it imposes the 
medium. Therefore, force on the string equal to Fy but in opposite 
direction. 

𝐹𝐹𝑆𝑆𝑑𝑑𝑑𝑑𝑖𝑖𝑆𝑆𝑆𝑆 = −𝐹𝐹𝜕𝜕 =
𝑣𝑣0
𝑣𝑣

 
𝜕𝜕𝑦𝑦
𝜕𝜕𝑑𝑑

the characteristic impedance Z is defined as, 

𝑍𝑍 =
𝑣𝑣𝑜𝑜𝑎𝑎𝑛𝑛𝑐𝑐𝑣𝑣𝑒𝑒𝑜𝑜𝑐𝑐𝑒𝑒 𝑎𝑎𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑒𝑒𝑑𝑑 𝑓𝑓𝑜𝑜𝑜𝑜𝑐𝑐𝑒𝑒

𝑣𝑣𝑜𝑜𝑎𝑎𝑛𝑛𝑐𝑐𝑣𝑣𝑒𝑒𝑜𝑜𝑐𝑐𝑒𝑒 𝑣𝑣𝑒𝑒𝑐𝑐𝑜𝑜𝑐𝑐𝑝𝑝𝛽𝛽𝑦𝑦

=
𝑣𝑣0
𝑣𝑣

But  𝑣𝑣 = �𝑇𝑇0
𝜌𝜌0

⇒ 𝑣𝑣0 = 𝑣𝑣2𝜌𝜌0

Hence 𝑍𝑍 = 𝑣𝑣2𝜌𝜌0
𝑣𝑣

= 𝜌𝜌0𝑣𝑣 

𝑍𝑍 = 𝜌𝜌0𝑣𝑣

Example : 1 

A one-meter long string weighing one gram is stretched with a force of 
10N. Calculate the speed of transverse wave. 

Solution : 

Linear density Fy,  𝜌𝜌0 = 𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚
𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑑𝑑ℎ

mass = one gram = 0.001 kg 

length = 1 m 

∴ 𝜌𝜌0 = 0.001 𝑘𝑘𝑝𝑝/𝑐𝑐 given T = 10 N 

∴ 𝑣𝑣 = �𝑇𝑇
𝜌𝜌0

= � 10
0.001

= √104 = 102𝑐𝑐/𝑐𝑐𝑒𝑒𝑐𝑐. 
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6.6 STRING 

A string is a solid body which is extremely thin, perfectly elastic 
over its entire length and has no stiffness at all. A string can vibrate only 
when it is subjected to a certain amount of tension. Both longitudinal and 
transverse waves can be set up in a string. Longitudinal waves can be set 
up in a stretched string when it is rubbed by a small piece of chamois-
leather along the length. On the other hand, transverse waves can be se up 
in a stretched string by bowing or plucking. The quality of sound produced 
in a bowed or plucked string depends on the point of bowing or plucking. 
Transverse waves are more common than the longitudinal waves in a 
stretched string. 

 

 

 

 

 

 

 

 

 

 

Figure - 4 

 

 

 

 

 

 

 

 

 

 
 

Figure - 5 
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6.7 PLANE PROGRESSIVE WAVE IN 
STRETCHED STRING 

Consider a uniform stretched string along x-axis having mass per 
unit length 𝜌𝜌0. Under equilibrium conditions, it can be considered to be 
straight. Let us choose x-axis drop the length of the string in its 
equilibrium state. Suppose that we displace the string normal to its length 
by a small amount so that a small section of length dx is displaced through 
a distance y from its mean position. It results in wave motion. we shall 
assume that the string satisfies the following condition –  

(a) Its length is large compared with its diameter. 

(b) String is flexible, perfectly. 

(c) Tension remain constant at all time. 

 

 

 

 

 

 

 

 

 

 
 

Figure - 6 

Suppose that tension at each end of element AB is T. consider a small part 
of the string dx lying between x and x+dx. The displacement at pint x is y. 
Let 𝜃𝜃1 and 𝜃𝜃2 be the slope of the tangents at the ends of the segment AB. 
The net transverse force on the segment is, 

  𝐹𝐹 = 𝑣𝑣 𝑐𝑐𝑝𝑝𝑛𝑛𝜃𝜃2 − 𝑣𝑣 𝑐𝑐𝑝𝑝𝑛𝑛𝜃𝜃1 

  = 𝑣𝑣 𝛽𝛽𝑎𝑎𝑛𝑛𝜃𝜃2 − 𝑣𝑣 𝛽𝛽𝑎𝑎𝑛𝑛𝜃𝜃2 

(𝑐𝑐𝑝𝑝𝑛𝑛𝜃𝜃1 = 𝛽𝛽𝑎𝑎𝑛𝑛𝜃𝜃1   &   𝑐𝑐𝑝𝑝𝑛𝑛𝜃𝜃2 = 𝛽𝛽𝑎𝑎𝑛𝑛𝜃𝜃2 because if the 
curvature of string is not very large,  𝜃𝜃1  & 𝜃𝜃2 will be 
small) 

𝐹𝐹 = 𝑣𝑣 �
𝜕𝜕𝑦𝑦
𝜕𝜕𝑑𝑑�𝑑𝑑+𝑑𝑑𝑑𝑑

− 𝑣𝑣 �
𝜕𝜕𝑦𝑦
𝜕𝜕𝑑𝑑�𝑑𝑑
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= 𝑣𝑣 ��
𝜕𝜕𝑦𝑦
𝜕𝜕𝑑𝑑�𝑑𝑑

+
𝜕𝜕
𝜕𝜕𝑑𝑑 �

𝜕𝜕𝑦𝑦
𝜕𝜕𝑑𝑑�𝑑𝑑

.𝑑𝑑𝑑𝑑 + −−−−−−  −�
𝜕𝜕𝑦𝑦
𝜕𝜕𝑑𝑑�𝑑𝑑

� 

                   = 𝑣𝑣 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑑𝑑2

𝑑𝑑𝑑𝑑.        (use Taylor series expansion) 

 The equation of motion of the segment is, 

(𝜌𝜌0.𝑑𝑑𝑑𝑑).
𝜕𝜕2𝑦𝑦
𝜕𝜕𝛽𝛽2

= 𝑣𝑣
𝜕𝜕2𝑦𝑦
𝜕𝜕𝑑𝑑2

.𝑑𝑑𝑑𝑑 

 or 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑑𝑑2

= 𝑇𝑇
𝜌𝜌0

 𝜕𝜕
2𝜕𝜕

𝜕𝜕𝑑𝑑2
    ……………… (1) 

 Comparing this equation with general wave equation, 

  𝜕𝜕2𝜕𝜕
𝜕𝜕𝑑𝑑2

= 𝑣𝑣2 𝜕𝜕
2𝜕𝜕

𝜕𝜕𝑑𝑑2
    ……………… (2) 

 We get, 𝑣𝑣2 = 𝑇𝑇
𝜌𝜌0

 

 ⇒ 𝑣𝑣 = �𝑇𝑇
𝜌𝜌0

 

 which is the velocity of transverse wave in stretched string. 

6.8 REFLECTION AND TRANSMISSION 
COEFFICIENT OF AMPLITUDE OF 
WAVES ON STRING AT JOINTS OF TWO 
MEDIA/BOUNDARY 

 

 

 

 

 

 

 

 

 

   𝒁𝒁𝟏𝟏 = 𝝆𝝆𝟏𝟏 𝒗𝒗𝟏𝟏         𝒁𝒁𝟐𝟐 = 𝝆𝝆𝟐𝟐 𝒗𝒗𝟐𝟐  

Figure - 7 

Suppose string is under a tension To. 
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Let a plane progressive wave is travelling along +x-direction. If 𝜌𝜌1 and 
𝑣𝑣1 be the linear mass density and velocity of the wave in medium 1 
respectively then the characteristic impedance of the string is given by,  

𝑍𝑍1 = 𝜌𝜌1 𝑣𝑣1       
 …………… (1) 

Let the two medium 1 and 2 are joined at x = 0. If Z2 is the 
characteristic importance of medium 2 then 

𝑍𝑍2 = 𝜌𝜌2 𝑣𝑣2       
 …………… (2) 

where, 𝜌𝜌2 is the linear mass density and 𝑣𝑣2 is the velocity of wave in 
medium 2 respectively. 

When a travelling wave meets at boundary, a part of its amplitude 
reflected and rest is transmitted. Let the incident, reflected and 
transmitted wave be, 

𝑦𝑦𝑖𝑖 = 𝑎𝑎𝑖𝑖 sin �𝜔𝜔𝛽𝛽 − 𝜔𝜔𝑑𝑑
𝑣𝑣1
� =  𝑎𝑎𝑖𝑖 sin𝜔𝜔 �𝛽𝛽 − 𝑑𝑑

𝑣𝑣1
�   …………… 

(3) 

𝑦𝑦𝑑𝑑 = 𝑎𝑎𝑑𝑑 sin �𝜔𝜔𝛽𝛽 + 𝜔𝜔𝑑𝑑
𝑣𝑣1
� =  𝑎𝑎𝑑𝑑 sin𝜔𝜔 �𝛽𝛽 + 𝑑𝑑

𝑣𝑣1
�  

 …………… (4) 

𝑦𝑦𝑑𝑑 = 𝑎𝑎𝑑𝑑 sin �𝜔𝜔𝛽𝛽 − 𝜔𝜔𝑑𝑑
𝑣𝑣2
� =  𝑎𝑎𝑑𝑑 sin𝜔𝜔 �𝛽𝛽 − 𝑑𝑑

𝑣𝑣2
�  

 …………… (5) 

where, 𝑎𝑎𝑖𝑖 ,   𝑎𝑎𝑑𝑑 and 𝑎𝑎𝑑𝑑 are the incident, reflected and transmitted 
amplitude respectively. 

The following boundary condition must hold:- 

(a) The displacement is continuous at x = 0 

(b) The transverse force 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

 is continuous across the boundary. 

Applying first condition (1), we get, 

𝑦𝑦𝑖𝑖 + 𝑦𝑦𝑑𝑑 = 𝑦𝑦𝑑𝑑           𝑎𝑎𝛽𝛽    𝑑𝑑 = 0 

Using equation (3), (4) and (5)  

𝑎𝑎𝑖𝑖 𝑐𝑐𝑝𝑝𝑛𝑛𝜔𝜔𝛽𝛽 + 𝑎𝑎𝑑𝑑 𝑐𝑐𝑝𝑝𝑛𝑛𝜔𝜔𝛽𝛽 = 𝑎𝑎𝑑𝑑 𝑐𝑐𝑝𝑝𝑛𝑛𝜔𝜔𝛽𝛽 

Hence,         𝑎𝑎𝑖𝑖 + 𝑎𝑎𝑑𝑑 = 𝑎𝑎𝑑𝑑  …………… (6) 

Differentiating equation (3), (4), (5) w.r.t. ‘x’ we get, 

𝜕𝜕𝑦𝑦𝑖𝑖
𝜕𝜕𝑑𝑑

= −
𝑎𝑎𝑖𝑖
𝑣𝑣1

cos𝜔𝜔 �𝛽𝛽 −
𝑑𝑑
𝑣𝑣1
� 
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𝜕𝜕𝑦𝑦𝑑𝑑
𝜕𝜕𝑑𝑑

= +
𝑎𝑎𝑑𝑑
𝑣𝑣1

cos𝜔𝜔𝛽𝛽 �𝛽𝛽 +
𝑑𝑑
𝑣𝑣1
� 

𝜕𝜕𝑦𝑦𝑑𝑑
𝜕𝜕𝑑𝑑

= −
𝑎𝑎𝑑𝑑
𝑣𝑣2

cos𝜔𝜔 �𝛽𝛽 −
𝑑𝑑
𝑣𝑣2
� 

 Applying boundary condition (2) we get, 

𝑣𝑣
𝜕𝜕𝑦𝑦𝑖𝑖
𝜕𝜕𝑑𝑑

�
𝑑𝑑=0

+ 𝑣𝑣
𝜕𝜕𝑦𝑦𝑑𝑑
𝜕𝜕𝑑𝑑

�
𝑑𝑑=0

= 𝑣𝑣
𝜕𝜕𝑦𝑦𝑑𝑑
𝜕𝜕𝑑𝑑

�
𝑑𝑑=0

 

𝑣𝑣 �−
𝑎𝑎𝑖𝑖
𝑣𝑣1
� 𝑐𝑐𝑜𝑜𝑐𝑐𝜔𝜔𝛽𝛽 + �+𝑣𝑣

𝑎𝑎𝑑𝑑
𝑣𝑣1

 𝑐𝑐𝑜𝑜𝑐𝑐𝜔𝜔𝛽𝛽� = 𝑣𝑣 �−
𝑎𝑎𝑑𝑑
𝑣𝑣2

 𝑐𝑐𝑜𝑜𝑐𝑐𝜔𝜔𝛽𝛽� 

𝑣𝑣 �
𝑎𝑎𝑖𝑖
𝑣𝑣1
−
𝑎𝑎𝑑𝑑
𝑣𝑣1
� = −𝑣𝑣

𝑎𝑎𝑑𝑑
𝑣𝑣2

 

𝑣𝑣
𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑑𝑑
𝑣𝑣1

= +𝑣𝑣
𝑎𝑎𝑑𝑑
𝑣𝑣2

 

 Since 𝑣𝑣1 = �𝑇𝑇
𝜌𝜌1

 ∴ 𝑇𝑇
𝑣𝑣1

= 𝜌𝜌1 𝑣𝑣1 = 𝑍𝑍1 

 Similarly  𝑇𝑇
𝑣𝑣2

= 𝜌𝜌2 𝑣𝑣2 = 𝑍𝑍2 

 Hence  (𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑑𝑑)𝑍𝑍1 = 𝑍𝑍2.𝑎𝑎𝑑𝑑        𝑜𝑜𝑜𝑜           𝑎𝑎𝑡𝑡
𝑎𝑎𝑟𝑟

 

𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑑𝑑 = 𝑍𝑍2
𝑍𝑍1

.𝑎𝑎𝑑𝑑                  …………… (7) 

 Add equation (6) and (7) we get, 

2𝑎𝑎𝑖𝑖 = �1 +
𝑍𝑍2
𝑍𝑍1
� 𝑎𝑎𝑑𝑑 

 ⇒ 𝑎𝑎𝑡𝑡
𝑎𝑎𝑖𝑖

= 2

1+𝑍𝑍2𝑍𝑍1
= 2𝑍𝑍1

𝑍𝑍2+𝑍𝑍1
   …………… (8) 

𝑎𝑎𝑡𝑡
𝑎𝑎𝑖𝑖

 is known as transmission amplitude coefficient and is 
represented by T, as 

𝑣𝑣 = 2𝑍𝑍1
𝑍𝑍2+𝑍𝑍1

     …………… (9) 

 Multiplying equation (7) by 𝑍𝑍1
𝑍𝑍2

 we get, 

  𝑍𝑍1
𝑍𝑍2

(𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑑𝑑) = 𝑎𝑎𝑑𝑑    …………… (10) 

 Subtracting equation (10) from (4) we get, 

 (𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑑𝑑) −  𝑍𝑍1
𝑍𝑍2

(𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑑𝑑) = 0 
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 𝑎𝑎𝑖𝑖 �1 − 𝑍𝑍1
𝑍𝑍2
� + 𝑎𝑎𝑑𝑑 �1 + 𝑍𝑍1

𝑍𝑍2
� = 0 

𝑎𝑎𝑟𝑟
𝑎𝑎𝑖𝑖

=
−�1−𝑍𝑍1𝑍𝑍2

�

�1+𝑍𝑍1𝑍𝑍2
�

= −(𝑍𝑍2−𝑍𝑍1)
𝑍𝑍1+𝑍𝑍1

= 𝑍𝑍1−𝑍𝑍2
𝑍𝑍1+𝑍𝑍2

  …………… (11) 

 𝑎𝑎𝑟𝑟
𝑎𝑎𝑖𝑖

 is known as reflection amplitude coefficient and is represented 
as. 

 𝑅𝑅 = 𝑍𝑍1−𝑍𝑍2
𝑍𝑍1+𝑍𝑍2

    …………… (12) 

 ⇒ T = 1+R ⇒ R lies between -1 and +1 and T 
between 0 & 2. 

Conclusions:- 

(a) If 𝑍𝑍2 > 𝑍𝑍1, then from equation (12) 

𝑅𝑅 =
𝑍𝑍1 − 𝑍𝑍2
𝑍𝑍1 + 𝑍𝑍2

→ −𝑣𝑣𝑒𝑒 

It means that reflected amplitude is opposite in sign; which means 
that reflected wave suffers phase change of Π. Example is, sound 
waves are incident from air to water. 

(b) If 𝑍𝑍2 < 𝑍𝑍1, then R is positive, the reflected wave has no change of 
phase. 

(c) If 𝑍𝑍2 = 0, then, 

   R = 1 

   T = 2 

Reflected wave has the same amplitude as the incident wave and 
there is no phase change. 

(d) If 𝑍𝑍1 = 𝑍𝑍2 (In absence of discontinuity) i.e. two strings are 
identical 

   R = 0 

   T = 1 

Which means that incident wave is transmitted as such without any 
reflection. This is called impedance matching. This phenomenon is 
important in transfer of energy. 

(e) 𝑍𝑍2 = ∞ then R = -1 and T = 0. The incident wave is totally 
reflected with a phase change of Π. 
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6.9 REFLECTION AND TRANSMISSION OF 
ENERGY WAVES AT JOINT OF TWO 
MEDIA 

Let us consider two strings of linear mass density 𝜌𝜌1 & 𝜌𝜌2 joined at x = 0. 
Suppose a plane harmonic wave of amplitude 𝑎𝑎𝑖𝑖 and angular frequency 𝜔𝜔 
is travelling along the first string at a velocity 𝑣𝑣1. The energy flow in the 
string is,  

1
2

 𝜔𝜔2𝑎𝑎𝑖𝑖2𝜌𝜌1𝑣𝑣1 = 1
2
𝜔𝜔2𝑎𝑎𝑖𝑖2𝑍𝑍1    …………… (1) 

Where 𝑍𝑍1 = 𝜌𝜌1𝑣𝑣1 is the impedance of first string. This is the energy 
arrives at x = 0. 

The partial reflection and transmission of energy of the wave which 
incident on the boundary at x = 0. Let 𝑎𝑎𝑑𝑑 and 𝑎𝑎𝑑𝑑 be the reflected and 
transmitted amplitudes and 𝑍𝑍2 be the impedance of second string, then 
energy at boundary is, 

1
2

 𝜔𝜔2𝑎𝑎𝑑𝑑2𝑍𝑍1 + 1
2
𝜔𝜔2𝑎𝑎𝑑𝑑2𝑍𝑍2    …………… (2) 

we can write the equation (2) as, 

=
1
2
𝜔𝜔2𝑎𝑎𝑖𝑖2 �

𝑎𝑎𝑑𝑑
𝑎𝑎𝑖𝑖
�
2
𝑍𝑍1 +

1
2
𝜔𝜔2𝑎𝑎𝑖𝑖2 �

𝑎𝑎𝑑𝑑
𝑎𝑎𝑖𝑖
�
2
𝑍𝑍2 

       = 1
2
𝜔𝜔2𝑎𝑎𝑖𝑖2 ��

𝑍𝑍1−𝑍𝑍2
𝑍𝑍1+𝑍𝑍2

�
2
𝑍𝑍1 + � 2𝑍𝑍1

𝑍𝑍1+𝑍𝑍2
�
2
𝑍𝑍2� 

       =  
1
2
𝜔𝜔2 𝑎𝑎𝑖𝑖2 𝑍𝑍1 ��

𝑍𝑍1 − 𝑍𝑍2
𝑍𝑍1 + 𝑍𝑍2

�
2

+
4𝑍𝑍12

(𝑍𝑍1 + 𝑍𝑍2)2
𝑍𝑍2
𝑍𝑍1
� 

         =
1
2
𝜔𝜔2 𝑎𝑎𝑖𝑖2 𝑍𝑍1 �

(𝑍𝑍1 + 𝑍𝑍2)2

(𝑍𝑍1 + 𝑍𝑍2)2� =
1
2
𝜔𝜔2 𝑎𝑎𝑖𝑖2 𝑍𝑍1 

Which is same as the energy incident at boundary x = 0. Hence the total 
energy is conserved. 

The Reflection energy coefficient is given by, 

𝑅𝑅𝑒𝑒𝑓𝑓𝑐𝑐𝑒𝑒𝑐𝑐𝛽𝛽𝑒𝑒𝑑𝑑 𝑒𝑒𝑛𝑛𝑒𝑒𝑜𝑜𝑝𝑝𝑦𝑦
𝐼𝐼𝑛𝑛𝑐𝑐𝑝𝑝𝑑𝑑𝑒𝑒𝑛𝑛𝛽𝛽 𝑒𝑒𝑛𝑛𝑒𝑒𝑜𝑜𝑝𝑝𝑦𝑦

=
1
2𝜔𝜔

2 𝑎𝑎𝑑𝑑2 𝑍𝑍1
1
2𝜔𝜔

2 𝑎𝑎𝑖𝑖2 𝑍𝑍1
= �

𝑎𝑎𝑑𝑑
𝑎𝑎𝑖𝑖
�
2

= �
𝑍𝑍1 − 𝑍𝑍2
𝑍𝑍1 + 𝑍𝑍2

�
2

 

Similarly transmission energy coefficient is given by, 

𝑣𝑣𝑜𝑜𝑎𝑎𝑛𝑛𝑐𝑐𝑐𝑐𝑝𝑝𝛽𝛽𝑒𝑒𝑑𝑑 𝑒𝑒𝑛𝑛𝑒𝑒𝑜𝑜𝑝𝑝𝑦𝑦
𝐼𝐼𝑛𝑛𝑐𝑐𝑝𝑝𝑑𝑑𝑒𝑒𝑛𝑛𝛽𝛽 𝑒𝑒𝑛𝑛𝑒𝑒𝑜𝑜𝑝𝑝𝑦𝑦

=
1
2𝜔𝜔

2 𝑎𝑎𝑑𝑑2 𝑍𝑍1
1
2𝜔𝜔

2 𝑎𝑎𝑖𝑖2 𝑍𝑍1
= �

𝑎𝑎𝑑𝑑
𝑎𝑎𝑖𝑖
�
2

.
𝑍𝑍2
𝑍𝑍1
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=
4𝑍𝑍12

(𝑍𝑍1 + 𝑍𝑍2)2 .
𝑍𝑍2
𝑍𝑍1

 

=
4𝑍𝑍1 𝑍𝑍2

(𝑍𝑍1 + 𝑍𝑍2)2 

If the wave is incident from second string or medium, then reflection 

coefficient would be �𝑍𝑍1−𝑍𝑍2
𝑍𝑍1+𝑍𝑍2

�
2

. Thus the boundary reflects the same 
fraction of incident energy in either direction. 

Example: 2 

A travelling wave in SI unit is given by, 

𝒚𝒚 = 𝟎𝟎.𝟎𝟎𝟒𝟒 𝑹𝑹−�
𝒕𝒕
𝟐𝟐−

𝒙𝒙
𝟎𝟎.𝟑𝟑�

𝟐𝟐

 

Find (a) the speed of wave (b) initial shape of string. 

Solution: 

The equation is, 

𝑦𝑦 = 0.04 𝑒𝑒−�
𝑡𝑡
2−

𝑥𝑥
0.3�

2

   …………… (1) 

(a) equation (1) can be written as, 

𝑦𝑦 = 0.04 𝑒𝑒−�
𝑑𝑑
0.3 − 𝑑𝑑2�

2

 

𝑦𝑦 = 0.04 𝑒𝑒
−� 1

(0.3)2   �𝑑𝑑−0.3𝑑𝑑
2 �

2
�
 

 Comparing it with the general equation, 𝑦𝑦 = 𝑓𝑓(𝑑𝑑 − 𝑣𝑣𝛽𝛽) 

𝑣𝑣 =
0.3
2

= 0.15 𝑐𝑐/𝑐𝑐 

(b) at t = 0. 

 𝑦𝑦 = 0.04 𝑒𝑒−
𝑥𝑥2

0.09 

Example: 3 

A simple harmonic wave of frequency 75 Hz and amplitude 2 cm is 
travelling along the axis with a velocity of 45 m/s. Find the velocity of 
particle at a distance of 15 m from the origin after and interval of  𝟏𝟏

𝟑𝟑
  

seconds. 

Solution: 

The equation of wave travelling along the +ve x axis is, 

𝑦𝑦 = 𝑎𝑎 sin(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑) 
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 𝑎𝑎 = 2𝑐𝑐𝑐𝑐 = 2 × 10−2𝑐𝑐, 𝜔𝜔 = 2𝛱𝛱𝑣𝑣 = 2𝛱𝛱 × 75 = 150𝛱𝛱 

 𝑣𝑣 = 45 𝑐𝑐/𝑐𝑐, 

𝑣𝑣 =
𝜔𝜔
𝑘𝑘

  ⇒ 𝑘𝑘 =
𝜔𝜔
𝑣𝑣

=
150𝛱𝛱

45
=

10
3
𝛱𝛱 𝑐𝑐−1 

 velocity of particle is given by, 

𝑣𝑣 =
𝜕𝜕𝑦𝑦
𝜕𝜕𝛽𝛽

= 𝑎𝑎 𝜔𝜔 cos(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑) 

 at  𝑑𝑑 = 15𝑐𝑐,             𝛽𝛽 = 1
3

  𝑐𝑐𝑒𝑒𝑐𝑐𝑜𝑜𝑛𝑛𝑑𝑑. 

𝑣𝑣 = 2 × 10−2 × 150𝛱𝛱 cos �150𝛱𝛱 ×
1
3
−

10𝛱𝛱
3

× 15� 

= 2 × 10−2 × 150𝛱𝛱 = 3𝛱𝛱 

6.10 SUMMARY 

• The acoustic impedance (Z) of a material is defined as the 
product of its density (𝜌𝜌) and acoustic velocity (𝑣𝑣). 

𝑍𝑍 = 𝜌𝜌𝑣𝑣 

• A string is a solid body, which is infinitely thin, perfectly elastic 
over its entire length and has no stiffness at all. It can vibrate only 
if it is subjected to a tension. 

• Longitudinal waves can be se up in a stretched string when it is 
rubbed by a small piece of chamois leather along it length. 

• Transverse waves can be set up in a stretched string by bowing or 
plucking. 

• The velocity of transverse vibration in a string is given by 𝑣𝑣 =

𝑛𝑛𝜆𝜆�𝐹𝐹
𝜇𝜇

. 

• When a string is fixed between two rigid supports and transverse 
waves are set up in it, the waves travel along the string and get 
reflected from the fixed end. Hence, there is superposition of two 
identical progressive waves travelling in opposite directions, the 
result of which is the formation of stationary waves with definite 
nodes and antinodes. Tat the two fixed ends, there are nodes and in 
between these two nodes, there may be any number of antinodes 
and nodes. 

6.11 TERMINAL QUESTIONS 

1. A transverse wave on a string with a mass per unit length of 0.04 
kg/m is given by UGPHS-102/135
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𝑦𝑦(𝑑𝑑, 𝛽𝛽) = 0.02 sin(30𝛱𝛱 𝛽𝛽 − 5𝛱𝛱 𝑑𝑑). 

 Find the frequency, wavelength and amplitude of the wave? 

2. A plane progressives wave travelling along -ve x-axis is 
characterized by frequency 500 Hz, amplitude 0.02 m and phase 
velocity 400 ms-1. Write down its equation. 

3. Calculate the characteristic impedance offered by a sonometer wire 
stretched by a force of 20N. It weighs 2g per meter. 

4. Calculate acoustic impedance of air and water at NTP. Use 𝜌𝜌𝑎𝑎𝑖𝑖𝑑𝑑 =
1.29 𝑘𝑘𝑝𝑝𝑐𝑐−3, 𝑣𝑣𝑎𝑎𝑖𝑖𝑑𝑑 = 332 𝑐𝑐𝑐𝑐−1, 𝜌𝜌𝑤𝑤𝑎𝑎𝑑𝑑𝑙𝑙𝑑𝑑 = 103𝑘𝑘𝑝𝑝 𝑐𝑐−3 and 
𝑣𝑣𝑤𝑤𝑎𝑎𝑑𝑑𝑙𝑙𝑑𝑑 = 1500 𝑐𝑐5−1. 

5. Two strings are joined together and stretched under the same 
tension. For transverse wave, calculate the reflection and 
transmission amplitude coefficients when the ratio of their linear 
densities 1:9. 

6. Define Impedance. 

7. What is Acoustic Impedance? 

8. Write down the expression of Acoustic Impedance? 

9. Obtain expression for Plane Progressive Wave in Stretched String. 

10. Explain the concept of Characteristic Impedance. 

11. Obtain expression of reflection and transmission of energy waves 
at joint of two media. 
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UNIT-07 SUPERPOSITION OF WAVES 

Structure 
7.1 Introduction 

7.2 Objectives 

7.3 Superposition of Waves 

7.3.1 Principles of Superposition 

7.3.2 Limitations of Principles of Superposition 

7.4 Standing or Stationary Waves 

7.4.1 Modes of Vibration  

7.4.2 Energy of Stationary Waves 

7.4.3 Characteristics of Stationary Waves 

75 Standing Waves Ratio (SWR) 

7.6    Distinction between Interference and Beats 

7.7 Summary 

7.8 Terminal Questions 

7.1 INTRODUCTION 
When two or more progressive waves travelling in a medium meet 

at a point, they are said to have superposed on one another, and the 
Phenomenon itself is known as Superposition. This leads to the 
phenomena of interference, beats and the formation of stationary waves in 
the medium. In this unit, we shall study about the Superposition of Waves 
and its Consequences. Moreover, we shall also study stationary waves, 
harmonics and overtones. 

7.2 OBJECTIVES 

After studying this unit, you should be able to – 

 Understand the concept of Principle of Superposition

 Define Standing Waves

 Solve Problems based on standing or stationary Waves

 Comparison between Interference and Beats

 Understand Concept of Energy of Stationary Waves. UGPHS-102/137
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7.3 SUPERPOSITION OF WAVES 

When two or more waves travel the same path & independent of 
one another, the resultant displacement of a particle at a given time is 
found to be equal to the algebraic sum of its displacements due to 
individual waves. In other words, the resultant displacement of a particle 
can be determined by algebraically sum of the displacements of individual 
waves. This is known as principle of superposition of waves. 

A wave is characterized by its amplitude, angular frequency, wave 
vector and phase. Therefore, depending on which of these components is 
same or different, superposition of waves give rise to significantly 
different but very interesting phenomena. We now discuss some of these:- 

What is Superposition of Waves? 

According to the principle of superposition. The resultant displacement of 
a number of waves in a medium at a particular point is the vector sum of 
the individual displacements produced by each of the waves at that point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.3.1 PRINCIPLE OF SUPERPOSITION 

Considering two waves, travelling simultaneously along the same 
stretched string in opposite directions as shown in the figure above. We 
can see images of waveforms in the string at each instant of time. It is 
observed that the net displacement of any element of the string at a given 
time is the algebraic sum of the displacements due to each wave. 
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Let us say two waves are travelling alone and the displacements of any 
element of these two waves can be represented by y1(x, t) and y2(x, t). 
When these two waves overlap, the resultant displacement can be given as 
y(x,t). 

Mathematically, y (x, t) = y1(x, t) + y2(x, t) 

What is Interference of Light? 

The phenomena of formation of maximum intensity at some points and 
minimum intensity at some other point when two (or) more waves of equal 
frequency having constant phase difference arrive at a point 
simultaneously, superimpose with each other is known as interference. 

Types of Superposition of Waves 

According to the phase difference in superimposing waves, interference is 
divided into two categories as follows. 

Constructive Interference 

If two waves superimpose with each other in the same phase, the 
amplitude of the resultant is equal to the sum of the amplitudes of 
individual waves resulting in the maximum intensity of light, this is 
known as constructive interference. 

Destructive Interference 

If two waves superimpose with each other in opposite phase, the 
amplitude of the resultant is equal to the difference in amplitude of 
individual waves, resulting in the minimum intensity of light, this is 
known as destructive interference. 
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Figure – 2 

7.3.2 LIMITATIONS OF PRINCIPLE OF 
SUPERPOSITION 

 Superposition theorem doesn’t work for power calculation. 

 Power calculations involve either the product of voltage and 
current, the square of current or the square of the voltage. 

 They are not linear operations. 

 This statement can be explained with a simple example. 

(a) Superposition of in Phase Wave of Different Amplitudes:- 

Consider two waves which are in phase having same 
frequency, wave vector and phase but have different 
amplitudes propagating along the x-axis. 

𝑦𝑦1(𝑑𝑑, 𝛽𝛽) = 𝑎𝑎1 sin(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑) 

𝑦𝑦2(𝑑𝑑, 𝛽𝛽) = 𝑎𝑎2 sin(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑), 

then Resultant wave is given by, 

𝑦𝑦 = 𝑦𝑦1 + 𝑦𝑦2 

= (𝑎𝑎1 + 𝑎𝑎2) sin(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑) 
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Figure - 3 

(b) Superposition of Identical Out of Phase Waves:- 

Let us consider that two identical but out of phase waves 
moving in the same direction the x-axis. 

              𝑦𝑦1(𝑑𝑑, 𝛽𝛽) = 𝑎𝑎 sin(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑) 

𝑦𝑦2(𝑑𝑑, 𝛽𝛽) = 𝑎𝑎 sin(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑 + 𝜙𝜙) 

when such waves superpose, the amplitude of resultant wave 
can very from 0 to 2a. This leads to phenomenon of 
interference. 

(c) Superposition of Identical Waves of Slightly Different 
Frequencies:- 

When two waves having slightly different frequencies but 
equal amplitudes more in the same direction, we can write, 

𝑦𝑦1(𝑑𝑑, 𝛽𝛽) = 𝑎𝑎𝑐𝑐𝑝𝑝𝑛𝑛 (𝜔𝜔1𝛽𝛽 − 𝑘𝑘𝑑𝑑) 

𝑦𝑦2(𝑑𝑑, 𝛽𝛽) = 𝑎𝑎 sin(𝜔𝜔2𝛽𝛽 − 𝑘𝑘𝑑𝑑) 

when such waves superpose, their superposition leads to 
beats. 

(d) Superposition of identical Waves Moving in Opposite 
Directions:- 

Let us consider superposition of two identical waves 
propagating in opposite directions in a medium. 

We can write, 

𝑦𝑦1(𝑑𝑑, 𝛽𝛽) = 𝑎𝑎 sin(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑) 

𝑦𝑦2(𝑑𝑑, 𝛽𝛽) = 𝑎𝑎 sin(𝜔𝜔𝛽𝛽 + 𝑘𝑘𝑑𝑑) 
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These waves are identical and superpose in a medium and they 
give rise to stationary or standing waves. 

7.4 STANDING OR STATIONARY WAVES 
When two identical waves (either longitudinal or transverse) 

travelling in opposite directions along the same line, superpose to each 
other they give rise to a new wave called stationary or standing waves. 

For example, when a wave is produced in string or air column in 
organ pipes, it is reflected at the other end and super impose upon the 
incident wave to produce stationary wave. 

The stationary waves can be formed only in a linear bounded medium. A 
medium, in which the wave is propagating linearly, must be finite in 
length, i.e. medium should have a boundary. This is an important 
condition for the formation of standing waves. 

Mathematical Analysis:- 

Case (a) Closed end pipe or string fixed at other end (one boundary is 
rigid and the other is free):- 

 

 

 

 

 

 

Figure - 2 

Let the displacement of wave at any point of the medium having 
amplitude ‘a’ and wavelength ‘λ’ moving in +ve x-direction is, 

𝑦𝑦1 = 𝑎𝑎 sin 2𝛱𝛱
𝜆𝜆

(𝑣𝑣𝛽𝛽 − 𝑑𝑑) = 𝑎𝑎 sin(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑) ……………… (1) 

this wave is incident normally on the fixed end at x = 0 and then reflected. 
The reflected wave moving along –x-direction will be given by, 

𝑦𝑦2 = 𝑎𝑎′ sin 2𝛱𝛱
𝜆𝜆

(𝑣𝑣𝛽𝛽 + 𝑑𝑑) = 𝑎𝑎 sin(𝜔𝜔𝛽𝛽 + 𝑘𝑘𝑑𝑑) ……………… (2) 

where 𝑎𝑎′ is the amplitude of reflected wave. 

The resultant displacement at point x is given by the principle of 
superposition, as, 

𝑦𝑦 = 𝑦𝑦1 + 𝑦𝑦2 

𝑦𝑦 = 𝑎𝑎 sin(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑) + 𝑎𝑎′ sin(𝜔𝜔𝛽𝛽 + 𝑘𝑘𝑑𝑑) ……………… (3) 
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 at the fixed boundary x = 0,  y = 0 

 ∴ 0 = 𝑎𝑎 sin𝜔𝜔𝛽𝛽 + 𝑎𝑎′ sin𝜔𝜔𝛽𝛽 

 ⇒ 𝑎𝑎 = −𝑎𝑎′ 

It simply means that phase change of Π occurs at fixed end (rigid 
boundary). Hence equation (3) becomes, 

𝑦𝑦 = 𝑎𝑎 sin(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑) − 𝑎𝑎 sin(𝜔𝜔𝛽𝛽 + 𝑘𝑘𝑑𝑑) 

= 𝑎𝑎[𝑐𝑐𝑝𝑝𝑛𝑛(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑) − 𝑐𝑐𝑝𝑝𝑛𝑛(𝜔𝜔𝛽𝛽 + 𝑘𝑘𝑑𝑑)] 

𝑦𝑦 = −2𝑎𝑎 sin 𝑘𝑘𝑑𝑑 cos𝜔𝜔𝛽𝛽   ……………… (4) 

𝑦𝑦 = 𝐴𝐴 cos𝜔𝜔𝛽𝛽  

where,  𝐴𝐴 = −2𝑎𝑎 sin𝑘𝑘𝑑𝑑 is the amplitude of resultant wave. The equation 
(4) is the equation of stationary or standing waves. 

The particle velocity of the standing wave is, 
𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑

= 2𝑎𝑎𝜔𝜔 𝑐𝑐𝑝𝑝𝑛𝑛𝑘𝑘𝑑𝑑 𝑐𝑐𝑝𝑝𝑛𝑛𝜔𝜔𝛽𝛽  ……………… (5) 

 The Acceleration of the particle is, 
𝑑𝑑2𝜕𝜕
𝑑𝑑𝑑𝑑2

= 2𝑎𝑎𝜔𝜔2 𝑐𝑐𝑝𝑝𝑛𝑛𝑘𝑘𝑑𝑑 𝑐𝑐𝑜𝑜𝑐𝑐𝜔𝜔𝛽𝛽  ……………… (6) 

 The pressure variation is, 

𝑝𝑝 = −𝑘𝑘
𝑑𝑑𝑦𝑦
𝑑𝑑𝛽𝛽

= 2𝑘𝑘.𝑘𝑘𝑎𝑎 cos 𝑘𝑘𝑑𝑑 𝑐𝑐𝑜𝑜𝑐𝑐 𝜔𝜔𝛽𝛽 

𝑝𝑝 = 2𝑘𝑘2 𝑎𝑎 cos 𝑘𝑘𝑑𝑑 𝑐𝑐𝑜𝑜𝑐𝑐 𝜔𝜔𝛽𝛽 ……………… (7) 

The displacement, amplitude, velocity, acceleration and pressure variation 
all depends position and time. 

CHANGES W.R.T. POSITION 

(a) At the position where,   sin kx = 0 (at x = 0, y = 0) 

𝑘𝑘𝑑𝑑 = 𝑛𝑛𝛱𝛱 

𝑑𝑑 =
𝑛𝑛𝛱𝛱
𝑘𝑘

=
𝑛𝑛𝛱𝛱𝜆𝜆
2𝛱𝛱

=
𝑛𝑛𝜆𝜆
2

 

𝑑𝑑 = 0, 𝜆𝜆
2

, 𝜆𝜆, 3𝜆𝜆
2

,−−−−−−   ; n = 0, 1, 2, ------ 

At this point, we find displacement y = 0 

Velocity, 𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑

= 0 

Acceleration, 𝑑𝑑2𝜕𝜕
𝑑𝑑𝑑𝑑2

= 0 

  Pressure variation, −𝑘𝑘 𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑

= maximum. UGPHS-102/143
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These points are called ‘notes’. Thus the modal points are 
separated by a distance 𝜆𝜆

2
. 

(b) At the position, where, 

sin𝑘𝑘𝑑𝑑 = ±1 

𝑘𝑘𝑑𝑑 = 𝑛𝑛
𝛱𝛱
2

 

𝑑𝑑 = 𝑛𝑛
𝛱𝛱
2

×
1
𝑘𝑘

=
𝑛𝑛𝛱𝛱
2

×
𝜆𝜆

2𝛱𝛱
=
𝑛𝑛𝜆𝜆
4

. 

𝑑𝑑 = 𝜆𝜆
4

, 3𝜆𝜆
4

, 5𝜆𝜆
4

,−−−−−   n = 1, 3, 5, ------ 

  At this point, we find displacement, y = maximum 

  Velocity,  𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑

= maximum. 

  Acceleration, 𝑑𝑑
2𝜕𝜕
𝑑𝑑𝑑𝑑2

= maximum 

  Presume variation, −𝑘𝑘 𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑

= 0 

 These points are called ‘Antinodes’. Thus antinodal points are 
separated by 𝜆𝜆

2
.  

7.4.1 MODES OF VIBRATION 

Suppose one end fixed at x = 0 and other end be free at 𝑑𝑑 = 𝑐𝑐. 

Boundary conditions are 

(a) at x = 0,  y = 0 

(b) and at 𝑑𝑑 = 𝑐𝑐,  𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑

= 0 

(at free boundary, which has no inertia, the pressure change 𝑝𝑝 =
−𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑

. K is always zero, Hence 𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑

= 0) 

 ∵ 𝑦𝑦 = −2𝑎𝑎 sin𝑘𝑘𝑑𝑑 cos𝜔𝜔𝛽𝛽   ………….. (1) 

 Applying condition (a), we get, 

 At  x = 0,  y = 0 using equation (1) 

 Applying condition (b) in equation (1) we get, 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑑𝑑

= −2𝑎𝑎𝑘𝑘 cos𝑘𝑘𝑐𝑐 cos𝜔𝜔𝛽𝛽 

0 = −2𝑎𝑎𝑘𝑘 cos𝑘𝑘𝑐𝑐 cos𝜔𝜔𝛽𝛽 

 This condition hold for all valves  of t hence. 
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cos𝑘𝑘𝑐𝑐 = 0 

𝑘𝑘𝑐𝑐 = (2𝑝𝑝 + 1) 𝛱𝛱
2
 ,  𝑝𝑝 = 0, 1, 2, ----- 

2𝛱𝛱
𝜆𝜆
𝑐𝑐 = (2𝑝𝑝 + 1)

𝛱𝛱
2

 

 or, 𝜆𝜆 = 4𝑙𝑙
2𝑝𝑝+1

,    𝑝𝑝 = 0, 1, 2, -----  

 Hence allowed frequencies are 

𝑛𝑛 =
𝑣𝑣
𝜆𝜆

=
𝑣𝑣
4𝑐𝑐

 ,
3𝑣𝑣
4𝑐𝑐

 ,
5𝑣𝑣
4𝑐𝑐

,
7𝑣𝑣
4𝑐𝑐

,−−−−− 

Hence fundamental frequency is 𝑣𝑣
4𝑙𝑙

 and higher harmonics are odd 
multiples of it. Thus only odd harmonies or overtones are present when 
one boundary is rigid. 

Case (b) Open end pipe or string free at the other end:- 

  (both the boundaries are free) 

e.g., Example of such a medium is a pipe open at both ends and a string 
clamped at the middle. 

Let the equation of incident simple harmonic wave moving along +x-
direction be 

𝑦𝑦1 = 𝑎𝑎 sin(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑) 

The equation of reflected wave be, 

𝑦𝑦2 = 𝑎𝑎′ sin(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑). 

The resultant displacement at any point x as time t is 

𝑦𝑦 = 𝑦𝑦1 + 𝑦𝑦2 

𝑦𝑦 = 𝑎𝑎 sin(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑) + 𝑎𝑎′ sin(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑)  ………………. (1) 

When reflection takes place at free boundary, the phase of displacement 
does not get reversed. Hence the boundary condition are, 

At  𝑑𝑑 = 0 ,   𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑

= 0 

& also at  𝑑𝑑 = 𝑐𝑐 ,   𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑

= 0  for all values of t 

Applying boundary condition, 𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑

= 0 at x = 0, we get, 

From equation (1) as, 

0 = −𝑘𝑘𝑎𝑎 cos𝜔𝜔𝛽𝛽 + 𝑎𝑎′𝑘𝑘 cos𝜔𝜔𝛽𝛽 

⇒ 𝑎𝑎 =  𝑎𝑎′ 
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It means that there is no phase reversal. Hence the resultant displacement 
is, 

𝑦𝑦 = 𝑎𝑎[𝑐𝑐𝑝𝑝𝑛𝑛(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑) + 𝑐𝑐𝑝𝑝𝑛𝑛(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑)] 

𝑦𝑦 = 2𝑎𝑎 cos𝑘𝑘𝑑𝑑 sin𝜔𝜔𝛽𝛽 

𝑦𝑦 = 𝐴𝐴 sin𝜔𝜔𝛽𝛽   ,  where, A = 2a cos kx 

This represents the resultant vibration of a particle whose amplitude is 
𝐴𝐴 = 2𝑎𝑎 cos𝑘𝑘𝑑𝑑. 

Then the particle velocity, 

𝑑𝑑𝑦𝑦
𝑑𝑑𝛽𝛽

= 2𝑎𝑎𝜔𝜔 cos 𝑘𝑘𝑑𝑑 cos𝜔𝜔𝛽𝛽 

the Acceleration, 

𝑑𝑑2𝑦𝑦
𝑑𝑑𝛽𝛽

= −2𝑎𝑎𝜔𝜔2 cos 𝑘𝑘𝑑𝑑 sin𝜔𝜔𝛽𝛽 

the pressure variation, 

𝑝𝑝 = −𝑘𝑘 𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑

= +2𝑎𝑎𝑘𝑘2 sin𝑘𝑘𝑑𝑑 sin𝜔𝜔𝛽𝛽. 

all these physical parameter change with respect to position and time. 

CHANGES W.R.T. POSITION 

(a) At the position where, 

sin𝑘𝑘𝑑𝑑 = 0     

(∵ 𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑

= 0 𝑎𝑎𝛽𝛽 𝑑𝑑 = 0) 

𝑘𝑘𝑑𝑑 = 𝑛𝑛𝛱𝛱   ; n = 0, 1, 2,------- 

 𝑑𝑑 = 𝑆𝑆𝛱𝛱
𝑘𝑘

= 𝑆𝑆𝛱𝛱
2𝛱𝛱
𝜆𝜆 = 𝑆𝑆𝜆𝜆

2
 

𝑑𝑑 = 𝑆𝑆𝜆𝜆
2

,     n = 0, 1, 2, --------- 

 or 𝑑𝑑 = 0, 𝜆𝜆
2

, 𝜆𝜆 3𝜆𝜆
2

,−−−−−−− 

 The displacement y = maximum 

 Velocity 𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑

= maximum 

 Acceleration  𝑑𝑑
2𝜕𝜕
𝑑𝑑𝑑𝑑2

= maximum 

 Pressure variation, 𝑝𝑝 = 0 

These points are called Nodes. The distance between two nodal 
points is 𝜆𝜆

2
. 
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(b) Positions where, 

sin𝑘𝑘𝑑𝑑 = ±1 

𝑘𝑘𝑑𝑑 =
𝛱𝛱
2

,
3𝛱𝛱
2

,
5𝛱𝛱
2

,−−−−−−− 

𝑑𝑑 =
𝜆𝜆
4

,
3𝜆𝜆
4

,
5𝜆𝜆
4

,−−−−− 

  the displacement, y = 0 

  velocity, 𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑

= 0 

  Acceleration 𝑑𝑑2𝜕𝜕
𝑑𝑑𝑑𝑑2

= 0 

  Pressure variation 𝑝𝑝 = maximum. 

These points are called Antinodes. Antinodes are separated by  𝜆𝜆
2
  distance 

from each other. 

MODES OF VIBRATION 

When both the boundaries are free, we have, 

𝑦𝑦 = 2𝑎𝑎 cos𝑘𝑘𝑑𝑑 sin𝜔𝜔𝛽𝛽 

Differentiating w.r.t. ‘x’ we get, 

 𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑

= −2𝑘𝑘𝑎𝑎 𝑐𝑐𝑝𝑝𝑛𝑛𝑘𝑘𝑑𝑑 𝑐𝑐𝑝𝑝𝑛𝑛𝜔𝜔𝛽𝛽 

 when both ends are free i.e.  at x = 0,      𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑

= 0  

&      at x = l, 𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑

= 0 

   −2𝑘𝑘𝑎𝑎 sin 𝑘𝑘𝑐𝑐 𝑐𝑐𝑝𝑝𝑛𝑛𝜔𝜔𝛽𝛽 = 0 

 it holds for values of ‘t’ then, 

     sin𝑘𝑘𝑐𝑐 = 0 

𝑘𝑘𝑐𝑐 = 𝑝𝑝𝛱𝛱,  þ = 0, 1, 2, ----- 

     𝑘𝑘 = 𝑝𝑝𝛱𝛱
𝑙𝑙

 

     2𝛱𝛱
𝜆𝜆

= 𝑝𝑝𝛱𝛱
𝑙𝑙

 

     𝜆𝜆 = 2𝑙𝑙
𝑝𝑝

 

 Thus allowed frequencies an, 

𝑣𝑣 = 𝑛𝑛𝜆𝜆 

 ⇒ 𝑛𝑛 = 𝑣𝑣
𝜆𝜆

= þ𝑣𝑣
2𝑙𝑙

= 𝑣𝑣
𝑙𝑙
 , 2𝑣𝑣
2𝑙𝑙

, 3𝑣𝑣
2𝑙𝑙

, 5𝑣𝑣
2𝑙𝑙
− − − − 
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The fundamental frequency is 𝑣𝑣
𝑙𝑙
- and higher frequencies are multiples of 

this fundamental frequency 𝑣𝑣
𝑙𝑙
. Thus all harmonics or overtones are present 

in this case. 

7.4.2 ENERGY OF STATIONARY WAVES 

The stationary waves are formed by superposition of two waves 
travelling in opposite directions. The energy carried by one wave is equal 
to that by the other wave but in opposite direction. Thus the resultant 
energy transfer to any direction is zero. We can see it mathematically as 
follows:- 

Let the equation for displacement be 

𝑦𝑦 = 2𝑎𝑎 cos 𝑘𝑘𝑑𝑑 sin𝜔𝜔𝛽𝛽  (when both the boundaries is free). 

The pressure variation is 𝑝𝑝 = −𝑘𝑘 𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑

 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑑𝑑

= −2𝑘𝑘𝑎𝑎 𝑐𝑐𝑝𝑝𝑛𝑛𝑘𝑘𝑑𝑑 𝑐𝑐𝑝𝑝𝑛𝑛𝜔𝜔𝛽𝛽 

𝑝𝑝 = −𝑘𝑘
𝑑𝑑𝑦𝑦
𝑑𝑑𝑑𝑑

 

𝑝𝑝 = 2𝑘𝑘2𝑎𝑎 𝑐𝑐𝑝𝑝𝑛𝑛𝑘𝑘𝑑𝑑 𝑐𝑐𝑝𝑝𝑛𝑛𝜔𝜔𝛽𝛽 

where,   𝑝𝑝0 = 2𝑘𝑘2𝑎𝑎 𝑐𝑐𝑝𝑝𝑛𝑛𝜔𝜔𝛽𝛽 

particle velocity, 𝑢𝑢 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

= 2𝑎𝑎𝜔𝜔 𝑐𝑐𝑜𝑜𝑐𝑐𝑘𝑘𝑑𝑑 𝑐𝑐𝑜𝑜𝑐𝑐𝜔𝜔𝛽𝛽 

𝑢𝑢 = 𝑢𝑢0 𝑐𝑐𝑜𝑜𝑐𝑐𝜔𝜔𝛽𝛽  

where,  𝑢𝑢0 = 2𝑎𝑎𝜔𝜔 𝑐𝑐𝑜𝑜𝑐𝑐𝑘𝑘𝑑𝑑 

Distance travelled by a particle in time dt = u.dt. Therefore energy transfer 
(work done per unit area) in small interval of time dt is, 

𝑝𝑝 = 𝑢𝑢.𝑑𝑑𝛽𝛽 

Hence energy transmitted in one complete time period is, 

� 𝑝𝑝.𝑢𝑢𝑑𝑑𝛽𝛽
𝑇𝑇

0
 

∴ Rate of flow of energy per unit area or power is, 

1
𝑣𝑣

 � 𝑝𝑝.𝑢𝑢𝑑𝑑𝛽𝛽
𝑇𝑇

0
 

=
1
𝑣𝑣

 � 𝑝𝑝0 𝑐𝑐𝑝𝑝𝑛𝑛𝜔𝜔𝛽𝛽 𝑢𝑢0 𝑐𝑐𝑜𝑜𝑐𝑐𝜔𝜔𝛽𝛽 𝑑𝑑𝛽𝛽
𝑇𝑇

0
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=
1
𝑣𝑣

 (𝑝𝑝0 𝑢𝑢0)� 𝑐𝑐𝑝𝑝𝑛𝑛𝜔𝜔𝛽𝛽 𝑐𝑐𝑜𝑜𝑐𝑐𝜔𝜔𝛽𝛽 𝑑𝑑𝛽𝛽
𝑇𝑇

0
 

=
𝑝𝑝0 𝑢𝑢0

2𝑣𝑣
 � 𝑐𝑐𝑝𝑝𝑛𝑛2𝜔𝜔𝛽𝛽 𝑑𝑑𝛽𝛽 = 0

𝑇𝑇

0
 

Thus, no energy is transferred from one section or loop to another section 
or loop in a stationary waves. 

7.4.3 CHARACTERISTICS OF STATIONARY WAVES 

1. Nodes and antinodes are formed alternately. 

2. Nodes are points where the particle are vibrate with zero amplitude 
and velocity but strain i.e. change in pressure is maximum. 

3. Antinodes are points where the particles are vibrate with maximum 
amplitude and velocity and having minimum strain. 

4. The distance between two adjacent nodes or two adjacent 
antinodes is 𝜆𝜆

2
 . 

5. All the particles have same frequency, vibrate simple 
harmonically. 

6. There is no net flow of energy in any direction. 

7.5 STANDING WAVE RATIO (SWR) 

When the incident wave and partially reflected wave having unequal 
amplitudes superposed they give rise to a standing wave in which there 
will not be zero displacement at nodes. The ratio of the maximum 
amplitude to the minimum amplitude is called the standing wave ratio 
(SWR).  
Let us consider the equation of the incident and reflected wave is, 

𝑦𝑦𝑖𝑖 = 𝐴𝐴 cos(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑) 

𝑦𝑦𝑑𝑑 = 𝑅𝑅𝐴𝐴 cos(𝜔𝜔𝛽𝛽 + 𝑘𝑘𝑑𝑑) 
where ‘R’ is reflection coefficient. 
The equation of standing wave is 

𝑦𝑦 = 𝑦𝑦𝑖𝑖 + 𝑦𝑦𝑑𝑑 

= 𝐴𝐴 cos(𝜔𝜔𝛽𝛽 − 𝑘𝑘𝑑𝑑) + 𝑅𝑅𝐴𝐴 cos(𝜔𝜔𝛽𝛽 + 𝑘𝑘𝑑𝑑) 

= 𝐴𝐴 (1 + 𝑅𝑅) cos𝜔𝜔𝛽𝛽 cos𝑘𝑘𝑑𝑑 + 𝐴𝐴 (1 − 𝑅𝑅)𝑐𝑐𝑝𝑝𝑛𝑛𝜔𝜔𝛽𝛽 𝑐𝑐𝑝𝑝𝑛𝑛𝑘𝑘𝑑𝑑. 

= 𝐴𝐴 cos𝜔𝜔𝛽𝛽 + 𝐴𝐴 𝑐𝑐 sin𝜔𝜔𝛽𝛽 𝑐𝑐𝑝𝑝𝑛𝑛𝜙𝜙 
Where, 

𝑐𝑐 𝑐𝑐𝑜𝑜𝑐𝑐𝜙𝜙 = (1 + 𝑅𝑅) cos 𝑘𝑘𝑑𝑑  & 𝑐𝑐 𝑐𝑐𝑝𝑝𝑛𝑛𝜙𝜙 = (1 − 𝑅𝑅) sin𝑘𝑘𝑑𝑑. 
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𝑦𝑦 = 𝐴𝐴 𝑐𝑐 cos(𝜔𝜔𝛽𝛽 − 𝜙𝜙)  

where,  𝑐𝑐 = (1 + 𝑅𝑅2 + 2𝑅𝑅 cos 2𝑘𝑘𝑑𝑑)
1
2 

standing wave Amplitude is 

𝐴𝐴𝑐𝑐 = 𝐴𝐴 (1 + 𝑅𝑅2 + 2𝑅𝑅 cos 2𝑘𝑘𝑑𝑑)
1
2 

The maximum amplitude accures at cos 2kx = 1 

∴ (𝐴𝐴𝑐𝑐)𝑚𝑚𝑎𝑎𝑑𝑑 = 𝐴𝐴(1 + 𝑅𝑅2 + 2𝑅𝑅)
1
2 = 𝐴𝐴(1 + 𝑅𝑅) 

The minimum amplitude occurs at cos2kx = - 1 

∴ (𝐴𝐴𝑐𝑐)𝑚𝑚𝑖𝑖𝑆𝑆 = 𝐴𝐴(1 + 𝑅𝑅2 − 2𝑅𝑅)
1
2 = 𝐴𝐴(1 − 𝑅𝑅) 

 Hence, 

𝑆𝑆𝑆𝑆𝑅𝑅 =
𝑀𝑀𝑎𝑎𝑑𝑑𝑝𝑝𝑐𝑐𝑢𝑢𝑐𝑐 𝑎𝑎𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝𝛽𝛽𝑢𝑢𝑑𝑑𝑒𝑒
𝑀𝑀𝑝𝑝𝑛𝑛𝑝𝑝𝑐𝑐𝑢𝑢𝑐𝑐 𝑎𝑎𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝𝛽𝛽𝑢𝑢𝑑𝑑𝑒𝑒

=
1 + 𝑅𝑅
1 − 𝑅𝑅

 

7.6 DISTINCTION BETWEEN INTERFERENCE 
AND BEATS 

S. 
No. 

Interference S. No. Beats 

1 It occurs when two waves 
travel in same or opposite 
directions. 

1 It occurs only when two 
waves travel in same 
direction. 

2 Frequency of two waves 
are exactly equal. 

2 Frequency of two waves 
are nearly equal. 

3 The position of maxima 
and minima are fixed in 
the interference pattern. 

3 Position of maxima and 
minima are not fixed in 
the beat pattern. 

4 The amplitude of 
resultant wave varies 
from point to point but 
remains fixed for a 
particular point. 

4 The amplitude of the 
resultant waves varies 
with time. 

5 It is case of interference 
in space. 

5 It is a case of interference 
in time. 
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Example : 8 

A note produces 4 beats/second with a tuning fork of frequency 512 
Hz and 6 beats/second with a tuning fork of frequency 514 Hz. Find 
the frequency of the note. 

Solution : 

Let n be the possible frequency of the note. Then in first case, 

𝑛𝑛 = 512 ± 4 = 516, 508 𝐻𝐻𝐻𝐻 

and in second case, 𝑛𝑛 = 514 ± 6 = 520, 508 𝐻𝐻𝐻𝐻 

Hence the frequency of the note is 508 Hz. 

Example: 9 

Show that in a stationary wave, all particles between any two 
consecutive nodes are in phase but they are in opposite phase with the 
particles between the next pair of nodes. 

Solution: 

The displacement of a standing wave is given by, 

𝑦𝑦 = 2𝑎𝑎 cos𝑘𝑘𝑑𝑑 sin𝜔𝜔𝛽𝛽 

for any two points say, 𝑑𝑑 = 𝑑𝑑1 and  𝑑𝑑 = 𝑑𝑑2 

𝑦𝑦 = 2𝑎𝑎 cos𝑘𝑘𝑑𝑑1 sin𝜔𝜔𝛽𝛽 

𝑦𝑦 = 2𝑎𝑎 cos 𝑘𝑘𝑑𝑑2 sin𝜔𝜔𝛽𝛽 

the phase 𝝎𝝎𝒕𝒕 is same. 

But if 𝑑𝑑2 = 𝑑𝑑1 + 𝜆𝜆
2
, i.e. the points belong to adjacent loops (they lie 

between consecutive pairs of nodes. The corresponding displacement are, 

𝑦𝑦1 = 2𝑎𝑎 cos𝑘𝑘𝑑𝑑1 sin𝜔𝜔𝛽𝛽 

 and  

𝑦𝑦2 = 2𝑎𝑎 cos 𝑘𝑘𝑑𝑑2 sin𝜔𝜔𝛽𝛽 = 2𝑎𝑎 𝑐𝑐𝑜𝑜𝑐𝑐𝑘𝑘 �𝑑𝑑1 +
𝜆𝜆
2�

sin𝜔𝜔𝛽𝛽 

   𝑦𝑦2 = 2𝑎𝑎 𝑐𝑐𝑜𝑜𝑐𝑐 �𝑘𝑘𝑑𝑑1 + 𝑘𝑘 𝜆𝜆
2
� sin𝜔𝜔𝛽𝛽 

   = 2𝑎𝑎 𝑐𝑐𝑜𝑜𝑐𝑐 �𝑘𝑘𝑑𝑑1 + 2𝛱𝛱
𝜆𝜆

. 𝜆𝜆
2
� sin𝜔𝜔𝛽𝛽 

   = 2𝑎𝑎 𝑐𝑐𝑜𝑜𝑐𝑐(𝑘𝑘𝑑𝑑1 + 𝛱𝛱) sin𝜔𝜔𝛽𝛽 

= −2𝑎𝑎 cos𝑘𝑘𝑑𝑑1 sin𝜔𝜔𝛽𝛽 = 2𝑎𝑎 cos𝑘𝑘𝑑𝑑1 𝑐𝑐𝑝𝑝𝑛𝑛(𝜔𝜔𝛽𝛽 + 𝛱𝛱) 

Which shows that the phases of 𝑦𝑦1 and 𝑦𝑦2 are differ by Π. 
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Example: 10 

The fundamental frequency of an organ pipe is 110 Hz. Other 
frequencies of tones produced by it are 220, 440, 550, 660 Hz. Is this 
pipe open at both ends or closed at one end and open at the other end? 
Find the length of pipe (speed of sound = 330 m/s). 

Solution: 

 The given frequencies are 220, 440, 550, 660, 

  = 110 × (2, 4, 5, 6) 

  = fundament frequency × (2, 4,, 5, 6) 

these are even and odd multiples of fundamental frequency 110 
Hz. Thus pipe is open at both ends. 

Fundament frequency = 110 Hz 

𝑛𝑛 =
𝑣𝑣
2𝑐𝑐

 

𝑐𝑐 =
𝑣𝑣

2𝑛𝑛
=

330
2 × 100

= 1.5𝑐𝑐 

7.7 SUMMARY 

• The principle of superposition of waves sates that if a number of 
progressive waves travelling through a medium meet 
simultaneously at a point, the resultant displacement of any 
particle at that point is equal to the vector sum of the 
displacements produced by the component waves at that point. 

• Interference effect can be observed only if the two interfering 
waves are coherent. Two waves are said to be coherent, if their 
phase difference at any point is independent of time. 

• There is one node between two successive antinodes and one 
antinode between two successive nodes. 

7.8 TERMINAL QUESTIONS 

1. What do you understand by stationary waves? State their two main 
characteristics. In what respects do they differ from progressive 
waves? 

2. State the main characteristics of stationary waves and compare 
them with progressive waves. 
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3. Explain the principle of superposition of sound waves. 

4. How does a stationary wave differ from a progressive wave? 

5. Write the characteristics of stationary waves. 

6. What do you mean by the term beat? 
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UNIT-8 ELECTRICAL CIRCUITS 

Structure 
8.1 Introduction 

8.2 Objectives 

8.3 Transient phenomenon and galvanometer 

8.4 Transient state and steady state, Time constant. 

8.5 Transient response LR, CR, LC and LCR circuits. 

8.6 Theory of moving coil galvanometer (dead beat and 
ballistic), critical resistance and damping. 

8.7 Sensitivity (current, charge and voltage) of moving coil 
galvanometer. 

8.8 Applications to measurement of high resistance by 
leakage method. 

8.9 Summary 

8.10 Terminal Questions 

8.1 INTRODUCTION 

The difference of analysis of circuits with energy storage elements 
(inductors or capacitors) & time-varying signals with resistive circuits is 
that the equations resulting from KVL (Kirchhoff Voltage Law) and KCL 
(Kirchhoff Voltage Law) are now differential equations rather than 
algebraic linear equations resulting from the resistive circuits.  

Transient region: the region where the signals are highly dependent on 
time.  Steady-state region: the region where the signals are not time 
dependent (time rate of change of signals is equal to zero) or periodic.  

A galvanometer is an electromechanical instrument used for detecting and 
indicating an electric current in the circuit. A galvanometer works as 
an actuator, by producing a rotary deflection (of a "pointer"), in response 
to electric current flowing through a coil in a constant magnetic field. 
Early galvanometers were not calibrated, but their later developments 
were used as measuring instruments, called ammeters, to measure the 
current flowing through an electric circuit. Resistance is one of the most 
basic elements encountered in electrical and electronics engineering. The 
value of resistance in engineering varies from very small value like, 
resistance of a transformer winding, to very high values like, insulation 
resistance of that same transformer winding. Although a multimeter works UGPHS-102/157
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quite well if we need a rough value of resistance, but for accurate values 
and that too at very low and very high values we need specific methods. In 
this article we will discuss various methods of resistance measurement 

8.2 OBJECTIVES 

• Study and identify Transient phenomenon and galvanometer 

• Explain and identify Transient state and steady state, Time 
constant. 

• Study and identify Transient response LR, CR, LC and LCR 
circuits. 

• Explain and identify Theory of moving coil galvanometer (dead 
beat and ballistic), critical resistance and damping. 

• Study and identify Sensitivity (current, charge and voltage) of 
moving coil galvanometer. 

• Explain and identify Applications to measurement of high 
resistance by leakage method. 

8.3 TRANSIENT PHENOMENON AND 
GALVNOMETER 

Transient phenomena is Rapidly changing actions occurring in a 
circuit during the interval between closing of a switch and settling to a 
steady-state condition, or any other temporary actions occurring after 
some change in a circuit. 

Galvanometer: - 

Definition: The galvanometer is the device used for detecting the presence 
of small current in the circuit. The galvanometer is mainly used in the 
bridges and potentiometer where they indicate the null deflection or zero 
current. 

Principle of Galvanometer: - 

The potentiometer is based on the premise that the current sustaining coil 
is kept between the magnetic field experiences a torque. 

Construction of the Galvanometer: - 

The construction of the potentiometer is shown in the figure below. 
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Fig 8.1 Moving Coil Galvanometer 

The moving coil, suspension, and permanent magnet are the main parts of 
the galvanometer. 

Moving Coil – The moving coil is the current carrying part of the 
galvanometer. It is rectangular or circular and has the number of turns of 
fine copper wire. The coil is freely moved about its vertical axis of 
symmetry between the poles of a permanent magnet. The iron core 
provides the low reluctance flux path and hence provides the strong 
magnetic field for the coil to move in. 

Suspension – The coil is suspended by a flat ribbon which carries the 
current to the coil. The other current carrying coil is the lower suspension 
whose torque effect is negligible. The upper suspension coil is made up of 
gold or copper or phosphor wire which is made in the form of a ribbon. 
The mechanical strength of the wire is not very strong, and hence the 
galvanometers handle carefully without any jerks. 

Mirror – The suspension carries a small mirror which casts the beam of 
light. The beam of light placed on the scale on which the deflection is 
measured. UGPHS-102/159
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Applications of Galvanometer 

The galvanometer has following applications. They are 

• It is used for detecting the direction of current flows in the circuit. 
It also determines the null point of the circuit. The null point 
means the situation in which no current flows through the circuit. 

• It is used for measuring the current. 

• The voltage between any two points of the circuit is also 
determined through galvanometer. 

Working of Galvanometer 

Let, l, d – the length of respective vertical and horizontal side of the coil in 
the meter. 
N - number of turns in the coil, 
B – Flux density in the air gap, wb/m2 
i – current through moving coil in Ampere 
K – spring constant of suspension, Nm/rad 
θf – final steady-state deflection of moving coil in radiance 
When the current flows through the coil, it experiences a torque which is 
expressed as 

𝝉𝝉𝒅𝒅 = 𝑭𝑭𝒄𝒄𝑹𝑹𝒄𝒄𝑹𝑹 × 𝑫𝑫𝒔𝒔𝒄𝒄𝒕𝒕𝒂𝒂𝒔𝒔𝒄𝒄𝑹𝑹 

The force on each side of the coil is given as, 

 
Hence deflecting torque becomes,   

𝝉𝝉𝒅𝒅 = 𝑵𝑵𝑵𝑵𝒔𝒔𝒍𝒍𝒅𝒅 

𝝉𝝉𝒅𝒅 = 𝑵𝑵𝑵𝑵𝑨𝑨𝒔𝒔 

Where,  

 
N, B, A  are the constant of the galvanometer. 

𝝉𝝉𝒅𝒅 = 𝑮𝑮𝒔𝒔 

The G is called the displacement constant of the galvanometer, and their 
value is equal NBA = NBld. 

The controlling torque exerted by the suspension at deflection θF is 

𝝉𝝉𝒅𝒅 = 𝑲𝑲𝒅𝒅𝑭𝑭 

For final steady deflection,  

𝝉𝝉𝒅𝒅 = 𝝉𝝉𝒄𝒄 
UGPHS-102/160
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Hence final steady deflection, 

 
For the small deflection angle, the deflection is expressed as the product of 
the radius and angle of the turned. By the reflected beam, it is expressed as 
1000 Χ 2θF = 2000 Gi / K in millimetre. 

The above equation shows that when the mirror turns through an angle 
θF the reflected beam turns through an angle 2θF shown in the figure 
below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8.2 Measurement of Deflection with lamp and scale Arrangement 

Conversion of Galvanometer into an Ammeter 

The galvanometer can be converted into an ammeter by connecting the 
low resistance wire in parallel with the galvanometer. The potential 
difference between the voltage and the shunt resistance are equal. 
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Fig 8.3 Conversion of Galvanometer into an Ammter 

 
Where, S = shunt resistance and Is = current across the shunt. 

Then current through shunt will be  

Is = I - Ig 

As the galvanometer and the shunt resistance are connected in potential 
with the circuit, their potentials are equal.  

 
𝑮𝑮𝑰𝑰𝑹𝑹 = 𝑺𝑺(𝑰𝑰 − 𝑰𝑰𝑹𝑹) 

Thus, the shunt resistance is given as,   

𝑺𝑺 =
𝑮𝑮𝑰𝑰𝑹𝑹

�𝑰𝑰 − 𝑰𝑰𝑹𝑹�
 

The value of the shunt current is very small as compared to the supply 
current. 

Conversion of Galvanometer into a voltmeter 

The galvanometer is used as a voltmeter by connecting the high resistance 
in series with the circuit. 
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Fig 8.4 Conversion of Galvanometer into an Voltmeter 

Let resistance of galvanometer be G and high resistance Rs is connected in 
series to it. Then total resistance equals to G + Rs. If potential between two 
points to be measured be V and the current passing through galvanometer 
be Ig. Then, 

 𝑣𝑣 = 𝐼𝐼𝑆𝑆(𝐺𝐺 + 𝑅𝑅𝑚𝑚) = 𝐼𝐼𝑆𝑆𝐺𝐺 + 𝐼𝐼𝑆𝑆.𝑅𝑅𝑚𝑚 

⇒ 𝐼𝐼𝑆𝑆𝑅𝑅𝑚𝑚 = 𝑣𝑣 − 𝐼𝐼𝑆𝑆𝐺𝐺 

⇒ 𝑅𝑅𝑚𝑚 = 𝑣𝑣
𝐼𝐼𝑔𝑔
− 𝐺𝐺  

The value of potential depends on the value of high resistance which are 
connected in series  with galvanometer. 

SAQ1: - 

a) What is transient phenomenon? 

b) Draw the symbol of Galvanometer? 

c) How Galvanometer works? 

d) Can we use Galvanometer as ammeter and voltmeter? 

8.4 TRANSIENT STATE AND STEADY STATE 

A system is said to be in a transient state when a process variable 
or variables have been changed and the system has not yet reached a state. 
The time taken for the circuit to change from one steady state to another 
steady state is called the transient time. 

Time constant : 

The time required for a changing quantity in a circuit, as voltage or 
current, to rise or fall approximately 0.632 of the difference between its 
old and new value after an impulse has been applied that induces such a 
change: equal in seconds to the inductance of the circuit in Henries 
divided by its resistance in ohms 

τ is found using the formula T = R x C in seconds UGPHS-102/163
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8.5 TRANSIENT RESPONSE OF RL CIRCUITS 

All coils, inductors, chokes and transformers create a magnetic 
field around themselves consist of an Inductance in series with a 
Resistance forming an LR Series Circuit 

We looked briefly at the time constant of an inductor stating that 
the current flowing through an inductor could not change instantaneously, 
but would increase at a constant rate determined by the self-induced emf 
in the inductor. 

In other words, an inductor in an electrical circuit opposes the flow 
of current, ( i ) through it. While this is perfectly correct, we made the 
assumption in the tutorial that it was an ideal inductor which had no 
resistance or capacitance associated with its coil windings. 

However, in the real world “ALL” coils whether they are chokes, 
solenoids, relays or any wound component will always have a certain 
amount of resistance no matter how small. This is because the actual coils 
turns of wire being used to make it uses copper wire which has a resistive 
value. 

Then for real world purposes we can consider our simple coil as 
being an “Inductance”, L in series with a “Resistance”, R. In other words 
forming an LR Series Circuit. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig 8.12 RL Series circuit UGPHS-102/164
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D.C Transients : 

 The behavior of the current and the voltage in the circuit switch is closed 
until it reaches its final value is called dc transient response of the 
concerned circuit. The response of a circuit (containing resistances, 
inductances, capacitors and switches) due to sudden application of voltage 
or current is called transient response. The most common instance of a 
transient response in a circuit occurs when a switch is turned on or off –a 
rather common event in an electric circuit. 

 Growth or Rise of current in R-L circuit : 

 To find the current expression (response) for the circuit shown in fig. 
10.6(a), we can write the KVL equation around the circuit 

 The table shows how the current i(t) builds up in a R-L circuit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig 8.13 Rise of current in R-L circuit 

LR Series Circuit :- 

The above LR series circuit is connected across a constant voltage source, 
(the battery) and a switch. Assume that the switch, S is open until it is 
closed at a time t = 0, and then remains permanently closed producing a 
“step response” type voltage input. The current, i begins to flow through UGPHS-102/165
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the circuit but does not rise rapidly to its maximum value of Imax as 
determined by the ratio of V / R (Ohms Law). 

This limiting factor is due to the presence of the self induced emf within 
the inductor as a result of the growth of magnetic flux, (Lenz’s Law). 
After a time the voltage source neutralizes the effect of the self induced 
emf, the current flow becomes constant and the induced current and field 
are reduced to zero. 

We can use Kirchhoff’s Voltage Law, (KVL) to define the individual 
voltage drops that exist around the circuit and then hopefully use it to give 
us an expression for the flow of current. 

Kirchhoff’s voltage law (KVL) gives us: 

 
 The voltage drop across the resistor, R is I*R (Ohms Law). 

 
 The voltage drop across the inductor, L is by now our familiar 
expression L(di/dt) 

 
 Then the final expression for the individual voltage drops around the LR 
series circuit can be given as: 

 
 We can see that the voltage drop across the resistor depends upon the 
current, i, while the voltage drop across the inductor depends upon the rate 
of change of the current, di/dt. When the current is equal to zero, ( i = 0 ) 
at time t = 0 the above expression, which is also a first order differential 
equation, can be rewritten to give the value of the current at any instant of 
time as: 

Expression for the Current in an LR Series Circuit 

 
Where: 

•     V is in Volts 

•     R is in Ohms 

•     L is in Henries 

•     t is in Seconds 

•     e is the base of the Natural Logarithm = 2.71828 
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The Time Constant, ( τ ) of the LR series circuit is given as L/R and in 
which V/R represents the final steady state current value after five time 
constant values. Once the current reaches this maximum steady state value 
at 5τ, the inductance of the coil has reduced to zero acting more like a 
short circuit and effectively removing it from the circuit. 

Therefore the current flowing through the coil is limited only by the 
resistive element in Ohms of the coils windings. A graphical 
representation of the current growth representing the voltage/time 
characteristics of the circuit can be presented as. 

 

 

 

 

 

 

 

 

 
Fig 8.14 Transient Curves for an LR Series Circuit 

 Since the voltage drop across the resistor, VR is equal to I*R (Ohms Law), 
it will have the same exponential growth and shape as the current. 
However, the voltage drop across the inductor, VL will have a value equal 
to:  Ve(-Rt/L). Then the voltage across the inductor, VL will have an initial 
value equal to the battery voltage at time t = 0 or when the switch is first 
closed and then decays exponentially to zero as represented in the above 
curves. 

The time required for the current flowing in the LR series circuit to reach 
its maximum steady state value is equivalent to about 5-time 
constants or 5τ. This time constant τ, is measured by τ = L/R, in seconds, 
where R is the value of the resistor in ohms and L is the value of the 
inductor in Henries. This then forms the basis of an RL charging circuit 
were 5τ can also be thought of as “5*(L/R)” or the transient time of the 
circuit. 

The transient time of any inductive circuit is determined by the 
relationship between the inductance and the resistance. For example, for a 
fixed value resistance the larger the inductance the slower will be the 
transient time and therefore a longer time constant for the LR series 
circuit. Likewise, for a fixed value inductance the smaller the resistance 
value the longer the transient time. 
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Power in an LR Series Circuit 

Then from above, the instantaneous rate at which the voltage source 
delivers power to the circuit is given as: 

 
 The instantaneous rate at which power is dissipated by the resistor in the 
form of heat is given as: 

 
 The rate at which energy is stored in the inductor in the form of magnetic 
potential energy is given as: 

 
Then we can find the total power in a RL series circuit by multiplying 
by i and is therefore: 

 
Where the first I2R term represents the power dissipated by the resistor in 
heat, and the second term represents the power absorbed by the inductor, 
its magnetic energy. 

Inductor Behavior : - 

Assume the switching action takes place at t = 0. Inductor current does 
not change instantaneously, when the switching action takes place. That 
means, the value of inductor current just after the switching action will be 
same as that of just before the switching action. 

Mathematically, it can be represented as 

iL(0+) =iL(0−)iL(0+)=iL(0−) 

Capacitor Behavior: - 

The capacitor voltage does not change instantaneously similar to the 
inductor current, when the switching action takes place. That means, the 
value of capacitor voltage just after the switching action will be same as 
that of just before the switching action. 

Mathematically, it can be represented as 

Vc(0+)=Vc(0−)Vc(0+)=Vc(0−) 

Steady state Response: - 

The part of the time response that remains even after the transient 
response has become zero value for large values of ‘t’ is known as steady 
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state response. This means, there won’t be any transient part in the 
response during steady state. 

RC Circuit: - 

The combination of a pure resistance R in ohms and pure capacitance C in 
Farads is called RC circuit. The capacitor stores energy and the resistor 
connected in series with the capacitor controls the charging and 
discharging of the capacitor. The RC circuit is used in camera flashes, 
pacemaker, timing circuit etc. 

 

 

 

 

 

 

 

 

 
Fig 8.15 RC circuit with DC 

RC Charging Circuit :- 

When a voltage source is applied to an RC circuit, the capacitor, C charges 
up through the resistance, R 

All Electrical or Electronic circuits or systems suffer from some form of 
“time-delay” between its input and output terminals when either a signal 
or voltage, continuous, ( DC ) or alternating ( AC ), is applied to it. 

This delay is generally known as the circuits time delay or Time 
Constant which represents the time response of the circuit when an input 
step voltage or signal is applied. The resultant time constant of any 
electronic circuit or system will mainly depend upon the reactive 
components either capacitive or inductive connected to it. Time constant 
has units of, Tau – τ 

When an increasing DC voltage is applied to a discharged Capacitor, the 
capacitor draws what is called a “charging current” and “charges up”. 
When this voltage is reduced, the capacitor begins to discharge in the 
opposite direction. Because capacitors can store electrical energy they act 
in many ways like small batteries, storing or releasing the energy on their 
plates as required. 

The electrical charge stored on the plates of the capacitor is given as: Q = 
CV. This charging (storage) and discharging (release) of a capacitors UGPHS-102/169
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energy is never instant but takes a certain amount of time to occur with the 
time taken for the capacitor to charge or discharge to within a certain 
percentage of its maximum supply value being known as its Time 
Constant ( τ ). 

If a resistor is connected in series with the capacitor forming an RC 
circuit, the capacitor will charge up gradually through the resistor until the 
voltage across it reaches that of the supply voltage. The time required for 
the capacitor to be fully charge is equivalent to about 5 time 
constants or 5T. Thus, the transient response or a series RC circuit is 
equivalent to 5 time constants. 

This transient response time T, is measured in terms of τ = R x C, in 
seconds, where R is the value of the resistor in ohms and C is the value of 
the capacitor in Farads. This then forms the basis of an RC charging 
circuit were 5T can also be thought of as “5 x RC”. 

RC Charging Circuit :-  

The figure below shows a capacitor, ( C ) in series with a resistor, ( R ) 
forming a RC Charging Circuit connected across a DC battery supply 
( Vs ) via a mechanical switch. at time zero, when the switch is first 
closed, the capacitor gradually charges up through the resistor until the 
voltage across it reaches the supply voltage of the battery. The manner in 
which the capacitor charges up is shown below. 

 

 

 

 

 

 

 

 

Fig 8.16 RC Charging Circuit 

Let us assume above, that the capacitor, C is fully “discharged” and the 
switch (S) is fully open. These are the initial conditions of the circuit, 
then t = 0, i = 0 and q = 0. When the switch is closed the time begins at t = 
0 and current begins to flow into the capacitor via the resistor. 

Since the initial voltage across the capacitor is zero, ( Vc = 0 ) at t = 0 the 
capacitor appears to be a short circuit to the external circuit and the 
maximum current flows through the circuit restricted only by the 
resistor R. Then by using Kirchhoff’s voltage law (KVL), the voltage 
drops around the circuit are given as: 
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The current now flowing around the circuit is called the Charging 
Current and is found by using Ohms law as: i = Vs/R. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 8.17 RC Charging Curves for voltage 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8.18 RC Charging Curves for current 

As the capacitor charges up as shown, the rise in the RC charging curve is 
steeper at the beginning because the charging rate is fastest at the start and 
then tapers off as the capacitor takes on additional charge at a slower rate. 
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RC Time Constant (τ):- 

As the capacitor charges up, the potential difference across its plates 
slowly increases with the actual time taken for the charge on the capacitor 
to reach 63% of its maximum possible voltage, in our curve 0.63Vs being 
known as one Time Constant, ( T ). 

This 0.63Vs voltage point is given the abbreviation of 1T, (one time 
constant). 

The capacitor continues charging up and the voltage difference 
between Vs and Vc reduces, so too does the circuit current, i. Then at its 
final condition greater than five time constants ( 5T ) when the capacitor is 
said to be fully charged, t = ∞, i = 0, q = Q = CV. At infinity the charging 
current finally diminishes to zero and the capacitor acts like an open 
circuit with the supply voltage value entirely across the capacitor as Vc = 
Vs. 

So mathematically we can say that the time required for a capacitor to 
charge up to one time constant, ( 1T ) is given as: 

 
This RC time constant only specifies a rate of charge where, R is 
in Ω and C in Farads. 

Since voltage V is related to charge on a capacitor given by the 
equation, Vc = Q/C, the voltage across the capacitor ( Vc ) at any instant 
in time during the charging period is given as: 

 
Where 

• Vc is the voltage across the capacitor 

• Vs is the supply voltage 

• t  is the elapsed time since the application of the supply voltage 

• RC is the time constant of the RC charging circuit 

After a period equivalent to 4 time constants, ( 4T ) the capacitor in this 
RC charging circuit is virtually fully charged and the voltage across the 
capacitor is now approx 98% of its maximum value, 0.98Vs. The time 
period taken for the capacitor to reach this 4T point is known as 
the Transient Period. 

After a time of 5T the capacitor is now said to be fully charged with the 
voltage across the capacitor, ( Vc ) being equal to the supply voltage, 
( Vs ). As the capacitor is fully charged no more current flows in the 
circuit. The time period after this 5T point is known as the Steady State 
Period. 
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Then we can show in the following table the percentage voltage and 
current values for the capacitor in a RC charging circuit for a given time 
constant. 

RC Charging Table :- 
 

Time 
Constant 

RC Value Percentage of 
Maximum 

Voltage Current 

0.5 time constant 0.5T = 0.5RC 39.3% 60.7% 

0.7 time constant 0.7T = 0.7RC 50.3% 49.7% 

1.0 time constant 1T = 1RC 63.2% 36.8% 

2.0 time constants 2T = 2RC 86.5% 13.5% 

3.0 time constants 3T = 3RC 95.0% 5.0% 

4.0 time constants 4T = 4RC 98.2% 1.8% 

5.0 time constants 5T = 5RC 99.3% 0.7% 

 

Notice that the charging curve for a RC charging circuit is exponential and 
not linear. This means that in reality the capacitor never reaches 100% 
fully charged. So for all practical purposes, after five time constants (5T) it 
reaches 99.3% charge, so at this point the capacitor is considered to be 
fully charged. 

As the voltage across the capacitor Vc changes with time, and is therefore 
a different value at each time constant up to 5T, we can calculate the value 
of capacitor voltage, Vc at any given point, for example. 

RC Discharging Circuit :- 

When a voltage source is removed from a fully charged RC circuit, the 
capacitor, C will discharge back through the resistance, R 

In the previous RC Charging Circuit tutorial, we saw how a Capacitor, C 
charges up through the resistor until it reaches an amount of time equal to 
5 time constants known as 5T, and then remains fully charged as long as a 
constant supply is applied to it. 

If this fully charged capacitor is now disconnected from its DC battery 
supply voltage, the stored energy built up during the charging process UGPHS-102/173
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would stay indefinitely on its plates, (assuming an ideal capacitor and 
ignoring any internal losses), keeping the voltage stored across its 
connecting terminals at a constant value. 

If the battery was replaced by a short circuit, when the switch is closed the 
capacitor would discharge itself back through the resistor, R as we now 
have a RC discharging circuit. As the capacitor discharges its current 
through the series resistor the stored energy inside the capacitor is 
extracted with the voltage Vc across the capacitor decaying to zero as 
shown below. 

 

 

 

 

 

 

 

 

 

 

Fig 8.19 RC Discharging Circuit 

As we saw in the previous tutorial, in a RC Discharging Circuit the time 
constant ( τ ) is still equal to the value of 63%. Then for a RC discharging 
circuit that is initially fully charged, the voltage across the capacitor after 
one time constant, 1T, has dropped by 63% of its initial value which is 1 – 
0.63 = 0.37 or 37% of its final value. 

Thus the time constant of the circuit is given as the time taken for the 
capacitor to discharge down to within 63% of its fully charged value. So 
one time constant for an RC discharge circuit is given as the voltage 
across the plates representing 37% of its final value, with its final value 
being zero volts (fully discharged), and in our curve this is given 
as 0.37Vs. 

As the capacitor discharges, it does not lose its charge at a constant rate. 
At the start of the discharging process, the initial conditions of the circuit 
are: t = 0, i = 0 and q = Q. The voltage across the capacitors plates is equal 
to the supply voltage and VC = VS. As the voltage at t = 0 across the 
capacitors plates is at its highest value, maximum discharge current 
therefore flows around the RC circuit. 
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Fig 8.20 RC Discharging Circuit Curves 

When the switch is first closed, the capacitor starts to discharge as shown. 
The rate of decay of the RC discharging curve is steeper at the beginning 
because the discharging rate is fastest at the start, but then tapers off 
exponentially as the capacitor looses charge at a slower rate. As the 
discharge continues, VC reduces resulting in less discharging current. 

We saw in the previous RC charging circuit that the voltage across the 
capacitor, C is equal to 0.5Vc at 0.7T with the steady state fully 
discharged value being finally reached at 5T. 

For a RC discharging circuit, the voltage across the capacitor ( VC ) as a 
function of time during the discharge period is defined as: 

 
Where: 

• VC is the voltage across the capacitor 

• VS is the supply voltage UGPHS-102/175
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• t  is the elapsed time since the removal of the supply voltage 

• RC is the time constant of the RC discharging circuit 

Just like the previous RC Charging circuit, we can say that in a RC 
Discharging Circuit the time required for a capacitor to discharge itself 
down to one-time constant is given as 

:  

Where, R is in Ω and C in Farads. 

Thus, we can show in the following table the percentage voltage and 
current values for the capacitor in a RC discharging circuit for a given 
time constant. 

RC Discharging Table : - 
 

Time 
Constant 

RC Value Percentage of 
Maximum 

Voltage Current 

0.5 time constant 0.5T = 0.5RC 60.7% 39.3% 

0.7 time constant 0.7T = 0.7RC 49.7% 50.3% 

1.0 time constant 1T = 1RC 36.6% 63.4% 

2.0 time constants 2T = 2RC 13.5% 86.5% 

3.0 time constants 3T = 3RC 5.0% 95.0% 

4.0 time constants 4T = 4RC 1.8% 98.2% 

5.0 time constants 5T = 5RC 0.7% 99.3% 

 

Note that as the discharging curve for a RC discharging circuit is 
exponential, for all practical purposes, after five-time constants the 
capacitor is considered to be fully discharged. 

So, an RC circuit’s time constant is a measure of how quickly it either 
charges or discharges. 

LC Circuit: - 

An LC circuit, also called a resonant circuit, tank circuit, or tuned circuit, 
is an electric circuit consisting of an inductor, represented by the letter L, 
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and a capacitor, represented by the letter C, connected together. The 
circuit can act as an electrical resonator, an electrical analogue of a tuning 
fork, storing energy oscillating at the circuit's resonant frequency. 

LC circuits are used either for generating signals at a particular frequency, 
or picking out a signal at a particular frequency from a more complex 
signal; this function is called a bandpass filter. They are key components 
in many electronic devices, particularly radio equipment, used in circuits 
such as oscillators, filters, tuners and frequency mixers. 

An LC circuit is an idealized model since it assumes there is no dissipation 
of energy due to resistance. Any practical implementation of an LC circuit 
will always include loss resulting from small but non-zero resistance 
within the components and connecting wires. The purpose of an LC circuit 
is usually to oscillate with minimal damping, so the resistance is made as 
low as possible. While no practical circuit is without losses, it is 
nonetheless instructive to study this ideal form of the circuit to gain 
understanding and physical intuition. For a circuit model incorporating 
resistance, see RLC circuit.  

Terminology: - 

The two-element LC circuit described above is the simplest type 
of inductor-capacitor network (or LC network). It is also referred to as 
a second order LC circuit to distinguish it from more complicated (higher 
order) LC networks with more inductors and capacitors. Such LC 
networks with more than two reactances may have more than one resonant 
frequency. 

The order of the network is the order of the rational function describing 
the network in the complex frequency variable s. Generally, the order is 
equal to the number of L and C elements in the circuit and in any event 
cannot exceed this number. 

Operation: - 

 

 

 

 

 

 

 
Fig 8.21 Tank circuit 

The above diagram showing the operation of a tuned circuit (LC circuit). 
The capacitor C stores energy in its electric field E and the inductor L 
stores energy in its magnetic field B (green). The animation shows the UGPHS-102/177
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circuit at progressive points in the oscillation. The oscillations are slowed 
down; in an actual tuned circuit the charge may oscillate back and forth 
thousands to billions of times per second. 

An LC circuit, oscillating at its natural resonant frequency, can 
store electrical energy. See the animation. A capacitor stores energy in 
the electric field (E) between its plates, depending on the voltage across it, 
and an inductor stores energy in its magnetic field (B), depending on 
the current through it. 

If an inductor is connected across a charged capacitor, the voltage across 
the capacitor will drive a current through the inductor, building up a 
magnetic field around it. The voltage across the capacitor falls to zero as 
the charge is used up by the current flow. At this point, the energy stored 
in the coil's magnetic field induces a voltage across the coil, because 
inductors oppose changes in current. This induced voltage causes a current 
to begin to recharge the capacitor with a voltage of opposite polarity to its 
original charge. Due to Faraday's law, the EMF which drives the current is 
caused by a decrease in the magnetic field, thus the energy required to 
charge the capacitor is extracted from the magnetic field. When the 
magnetic field is completely dissipated the current will stop and the charge 
will again be stored in the capacitor, with the opposite polarity as before. 
Then the cycle will begin again, with the current flowing in the opposite 
direction through the inductor. 

The charge flows back and forth between the plates of the capacitor, 
through the inductor. The energy oscillates back and forth between the 
capacitor and the inductor until (if not replenished from an external 
circuit) internal resistance makes the oscillations die out. The tuned 
circuit's action, known mathematically as a harmonic oscillator, is similar 
to a pendulum swinging back and forth, or water sloshing back and forth 
in a tank; for this reason the circuit is also called a tank circuit. The natural 
frequency (that is, the frequency at which it will oscillate when isolated 
from any other system, as described above) is determined by the 
capacitance and inductance values. In most applications the tuned circuit 
is part of a larger circuit which applies alternating current to it, driving 
continuous oscillations. If the frequency of the applied current is the 
circuit's natural resonant frequency (natural frequency  below 
), resonance will occur, and a small driving current can excite large 
amplitude oscillating voltages and currents. In typical tuned circuits in 
electronic equipment the oscillations are very fast, from thousands to 
billions of times per second. 

Resonance effect: - 

Resonance occurs when an LC circuit is driven from an external source at 
an angular frequency ω0 at which the inductive and 
capacitive reactances are equal in magnitude. The frequency at which this 
equality holds for the particular circuit is called the resonant frequency. 
The resonant frequency of the LC circuit where L is 
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the inductance in henrys, and C is the capacitance in farads. The angular 
frequency ω0 has units of radians per second.  

Applications 

• The most common application of tank circuits is tuning radio 
transmitters and receivers. For example, when we tune a radio to a 
particular station, the LC circuits are set at resonance for that 
particular carrier frequency. 

• A series resonant circuit provides voltage magnification. 

• A parallel resonant circuit provides current magnification. 

• A parallel resonant circuit can be used as load impedance in output 
circuits of RF amplifiers. Due to high impedance, the gain of 
amplifier is maximum at resonant frequency. 

• Both parallel and series resonant circuits are used in induction 
heating. 

LC circuits behave as electronic resonators, which are a key component in 
many applications: 

• Amplifiers 

• Oscillators 

• Filters 

• Tuners 

• Mixers 

• Foster-Seeley discriminator 

• Contactless cards 

• Graphics tablets 

• Electronic article surveillance (security tags) 

Time domain solution 

Kirchhoff's laws: - 

By Kirchhoff's voltage law, the voltage across the capacitor, VC, plus the 

voltage across the inductor, VL must equal zero:  

Likewise, by Kirchhoff's current law, the current through the capacitor 
equals the current through the inductor: 

LRC Ciruit :-  

An RLC circuit is an electrical circuit consisting of a resistor (R), 
an inductor (L), and a capacitor (C), connected in series or in parallel. The UGPHS-102/179
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name of the circuit is derived from the letters that are used to denote the 
constituent components of this circuit, where the sequence of the 
components may vary from RLC. 

The circuit forms a harmonic oscillator for current, and resonates in a 
similar way as an LC circuit. Introducing the resistor increases the decay 
of these oscillations, which is also known as damping. The resistor also 
reduces the peak resonant frequency. In ordinary conditions, some 
resistance is unavoidable even if a resistor is not specifically included as a 
component; an ideal, pure LC circuit exists only in the domain 
of superconductivity, a physical effect demonstrated to this point only at 
temperatures far below ambient temperatures found anywhere on the 
Earth's surface. 

RLC circuits have many applications as oscillator circuits. Radio 
receivers and television sets use them for tuning to select a narrow 
frequency range from ambient radio waves. In this role, the circuit is often 
referred to as a tuned circuit. An RLC circuit can be used as a band-pass 
filter, band-stop filter, low-pass filter or high-pass filter. The tuning 
application, for instance, is an example of band-pass filtering. The RLC 
filter is described as a second-order circuit, meaning that any voltage or 
current in the circuit can be described by a second-order differential 
equation in circuit analysis. 

The three circuit elements, R, L and C, can be combined in a number of 
different topologies. All three elements in series or all three elements in 
parallel are the simplest in concept and the most straightforward to 
analyse. There are, however, other arrangements, some with practical 
importance in real circuits. One issue often encountered is the need to take 
into account inductor resistance. Inductors are typically constructed from 
coils of wire, the resistance of which is not usually desirable, but it often 
has a significant effect on the circuit. 

 

 

 

 
 

 

Fig 8.22 LRC circuit 

In this circuit, the three components are all in series with the voltage 
source. The governing differential equation can be found by substituting 
into Kirchhoff's voltage law (KVL) the constitutive equation for each of 
the three elements. From the KVL, 

where VR, VL and VC are the voltages across R, L and C respectively 
and V(t) is the time-varying voltage from the source. UGPHS-102/180
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Substituting ,  and  into the equation above yields: 

For the case where the source is an unchanging voltage, taking the time 
derivative and dividing by L leads to the following second order 
differential equation: 

This can usefully be expressed in a more generally applicable form: 

α and ω0 are both in units of angular frequency. α is called the neper 
frequency, or attenuation, and is a measure of how fast the transient 
response of the circuit will die away after the stimulus has been removed. 
Neper occurs in the name because the units can also be considered to 
be nepers per second, neper being a unit of attenuation. ω0 is the angular 
resonance frequency.[3] 

For the case of the series RLC circuit these two parameters are given 
by:[4] 

A useful parameter is the damping factor, ζ, which is defined as the ratio 
of these two; although, sometimes α is referred to as the damping factor 
and ζ is not used.[5] 

In the case of the series RLC circuit, the damping factor is given by 

The value of the damping factor determines the type of transient that the 
circuit will exhibit.[6] 

Transient response :- 

 

 

 

 

 

 
 
 

Fig  8.23 Time response of RLC circuit 

Plot showing underdamped and overdamped responses of a series RLC 
circuit. The critical damping plot is the bold red curve. The plots are 
normalised for L = 1, C = 1 and ω0 = 1 

The differential equation has the characteristic equation, The roots of the 
equation in s-domain are, The general solution of the differential equation 
is an exponential in either root or a linear superposition of both, The 
coefficients A1 and A2 are determined by the boundary conditions of the UGPHS-102/181
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specific problem being analysed. That is, they are set by the values of the 
currents and voltages in the circuit at the onset of the transient and the 
presumed value they will settle to after infinite time.[8] The differential 
equation for the circuit solves in three different ways depending on the 
value of ζ. These are overdamped (ζ > 1), underdamped (ζ < 1), and 
critically damped (ζ = 1). 

Overdamped response :- 

The overdamped response (ζ > 1) is the overdamped response is a decay of 
the transient current without oscillation. 

Underdamped response :- 

The underdamped response (ζ < 1) is by applying standard trigonometric 
identities the two trigonometric functions may be expressed as a single 
sinusoid with phase shift,  

The underdamped response is a decaying oscillation at frequency ωd. The 
oscillation decays at a rate determined by the attenuation α. The 
exponential in α describes the envelope of the 
oscillation. B1 and B2 (or B3 and the phase shift φ in the second form) are 
arbitrary constants determined by boundary conditions. The 
frequency ωd is given by 

This is called the damped resonance frequency or the damped natural 
frequency. It is the frequency the circuit will naturally oscillate at if not 
driven by an external source. The resonance frequency, ω0, which is the 
frequency at which the circuit will resonate when driven by an external 
oscillation, may often be referred to as the undamped resonance frequency 
to distinguish it.  

Critically damped response :- 

The critically damped response (ζ = 1) is the critically damped response 
represents the circuit response that decays in the fastest possible time 
without going into oscillation. This consideration is important in control 
systems where it is required to reach the desired state as quickly as 
possible without overshooting. D1 and D2 are arbitrary constants 
determined by boundary conditions. 

8.6 THEORY OF MOVING COIL 
GALVANOMETER 

Ballistic galvanometers are the measuring instruments which are used for 
measuring the quantity of electric charges obtained from magnetic flux. 
Its construction is similar to the moving coil galvanometer and it consists 
of two additional properties. 

• It consists of extremely small electromagnetic damping. 

• It consists of undamped oscillations. 
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Working Principle of Ballistic Galvanometer :- 

 
 

 

 

 

 
 

Fig 8.5 Ballistic Galvanometer 

The working principle of ballistic galvanometer is that the charge 
measured by the ballistic galvanometer must be passed through the coil. 
So, the coil starts oscillating. When the charge flows through the coil, it 
gives rise to a current due to the torque produced in the coil. This torque 
acts for a short time. The product of the torque and the time period 
provides a force to the coil and the coil starts rotating. When the 
initial kinetic energy of the coil is completely used in doing work, the coil 
starts moving back to its original position. Thus, the coil oscillates in the 
magnetic field and the deflection is noted from which charge can be 
calculated. 

Construction of Ballistic Galvanometer :- 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 8.6 Construction of Ballistic Galvanometer UGPHS-102/183
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In the construction of ballistic galvanometer, a ballistic galvanometer 
consists of a circular or a rectangular coil of a copper wire of almost 10 to 
15 turns. This coil is suspended in a radial field between the concave pole 
pieces of a strong magnet. when the coil rotates in the magnetic field, 
an EMF is induced across the coil according to the lenz’s law it opposes 
the motion of the coil and this is known as electromagnetic damping. To 
minimize the electromagnetic damping the coil should be wound on a 
wooden frame and the whole suspension is enclosed in a metal case 
provided with glass faces. 

Theory of Ballistic Galvanometer :- 

 

 

 

 

 

 

 

 
 

Fig 8.7 Deflection of Ballistic Galvanometer 

The torque developed by the coil at any point of time is: 

𝜏𝜏𝑑𝑑 = 𝐵𝐵𝑝𝑝 × 2𝐿𝐿𝑛𝑛 𝜔𝜔
2

= 𝑝𝑝(𝐵𝐵𝐿𝐿𝑛𝑛𝜔𝜔) = 𝐾𝐾1𝑝𝑝   …………. (1) 

Where L is the length, W is the width, n is the number of turns of the coil 
and B is the air gap flux density. 

The torque of acceleration is: 

𝑣𝑣𝑎𝑎 = 𝐽𝐽 × 𝐴𝐴𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑒𝑒𝑜𝑜𝑎𝑎𝛽𝛽𝑝𝑝𝑜𝑜𝑛𝑛 = 𝐽𝐽 𝑑𝑑𝜔𝜔
𝑑𝑑𝑑𝑑

   …………. (2) 

Where J is the moment of inertia of the coil and 𝜔𝜔 is the angular velocity. 
If the coil is closed to its zero point then the discharge takes place and the 
torque of suspension is zero. The value of the driving torque is equal if the 
damping torque is neglected. During the short discharge period: 

𝐽𝐽 𝑑𝑑𝜔𝜔
𝑑𝑑𝑑𝑑

= 𝐾𝐾1𝑝𝑝      …………. (3) 

By integrating: 
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Where the subscript zero refers the conditions at the end of the discharge 
time. The integral form of the Eq. (4) is the amount of the charge that has 
passed through the coil. Therefore:  

𝝎𝝎𝟎𝟎 = 𝑲𝑲𝟏𝟏
𝑱𝑱
𝑸𝑸       …………. (5) 

The above equation indicates the velocity of the coil acquires from the 
pulse is proportional to the quantity of charge that passed through it. 

During the actual motion, the deflection torque is zero and the equation of 
motion is: 

 
Where D is the damping constant, S is the control constant and (H) is the 
deflection in radians. Thus, 

Where A and B are constant m1 and m2 are imaginary. The initial 
conditions are: 

𝛩𝛩 = 0 𝑎𝑎𝑛𝑛𝑑𝑑 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜔𝜔0𝑎𝑎𝛽𝛽 𝛽𝛽 = 0     …………. (8) 

Under this condition the solution may be written as: 

𝛩𝛩 = 𝑒𝑒
−𝐷𝐷𝑡𝑡
2𝐽𝐽 × 𝜔𝜔0 × 𝑚𝑚𝑖𝑖𝑆𝑆𝑠𝑠𝑑𝑑

𝑠𝑠
     …………. (9) 

Where  

 

 
The ratio of successive swings is found by exponential multiplier for time 
interval 

t = π/β. The ratio of successive swings is:  

 
The natural logarithm of this ratio is: 

UGPHS-102/185

O
R

A
C

LE
-0

01

https://1.bp.blogspot.com/-3IZfXVU73ts/XZLu3b3hw6I/AAAAAAAABWY/79mhcbMpkMocAhcab2jPj-GMesLlwQcYACLcBGAsYHQ/s1600/b6.PNG
https://1.bp.blogspot.com/-lX0GBWNOxdM/XZLvAaBYrHI/AAAAAAAABWg/8wkZF2l9lcQ1XJg9DyLAtN8HhXE_muGYACLcBGAsYHQ/s1600/b7.PNG
https://1.bp.blogspot.com/-QdsqLsUHdQ4/XZLvfHQwmII/AAAAAAAABW4/fbUCsFci8e4pT7G3QNr9r8t7bekwe6t2ACLcBGAsYHQ/s1600/booo.PNG
https://1.bp.blogspot.com/-TololUD30wE/XZL0SX6efTI/AAAAAAAABXg/ZM28oW0c6EMVp21EWe5RNMVVEfVGOCyQgCLcBGAsYHQ/s1600/b10.PNG
https://1.bp.blogspot.com/-rBEwH4QUUso/XZL0bS8URiI/AAAAAAAABXk/iJzOD-qIKvEvaZk2cZTiwUg2XfvU7FXWQCLcBGAsYHQ/s1600/b11.PNG


 

The third swing in the same manner is as follows: 

 

In general: 

 

In case of critical damping, Eq. (9) will be written as: 

𝛩𝛩 = 𝜔𝜔0𝑒𝑒−(𝐷𝐷/2𝐽𝐽)𝑑𝑑          …………. (15) 

and  

𝜔𝜔 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜔𝜔0𝑒𝑒
−�𝐷𝐷2𝐽𝐽�𝑑𝑑 �1 − 𝐷𝐷

2𝐽𝐽
𝛽𝛽�        …………. (16) 

Maximum deflection is found for  or t = 2J/D. Substitute this value in Eq. 
15 and call the deflection , then: 

 

or 

Summarizing the results in the following equation of the charge passing 
through the galvanometer: 

 

The working units of the Eq. (19) are: 

K2 = galvanometer sensitivity in millimeter deflection 

Θ = deflection in millimeters 

Q = charge in micro coulombs 
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Measurement of Electric Flux by Ballistic Galvanometer : - 

 

 

 

 

 

 

 

 

 
 

Fig 8.8 Measurement of Electric Flux by Ballistic Galvanometer 

To measure the magnetic flux of a bar magnet, the bar magnet is 
surrounded by a coil connected in series with a variable resistor and a 
galvanometer. The series resistor provides critical damping and it is used 
to control the sensitivity of the magnetic flux. This sensitivity is controlled 
by adjusting the number of turns in a coil. When the magnet is suddenly 
withdrawn from the coil, an impulse is produced in a coil for few seconds 
and the deflection of the galvanometer is taken as a measure of the flux. 
The induced voltage in the coil are: 

  

Where flux is measured in webers and N is the number of turns in a coil. If 
R is the total resistance of the circuit including series resistor and a 
galvanometer then the current flowing to the circuit is:

or 

 
The quantity of charge passed through the galvanometer is: 

 
Deflection of the galvanometer is: UGPHS-102/187
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or 

 
Where K2 is the sensitivity factor and it must be properly evaluated for the 
resistance used in the test measurements. 

Calibration of Ballistic Galvanometer: - 

The calibration of ballistic galvanometer can be done in so many different 
ways. Some methods of calibration are as follows: 

By Capacitor: - 

 

 

 

 

 

 

 

 

 

Fig 8.9 Calibration of a Ballistic Galvanometer by Capacitor 

In this method, a capacitor is charged through the voltage and is 
discharged by the galvanometer. The resistor and a switch S2 is used to 
bring the galvanometer to its zero position quickly after a deflection. The 
capacitor is charged through the upper position of the switch S1 and is 
discharged by the contacts of this switch S1 in the lower position. The 
discharged quantity of electricity and the capacitance of the capacitor is 
calculated so the constant K2 is divided by the observed deflection. This is 
the undamped sensitivity because of the infinite resistance of the 
galvanometer. A shunt is added in the parallel to the series resistor and a 
galvanometer. This shunt provides damping and if the shunt is in critical 
value then the action is sluggish and the damping conditions are improved 
with the combination of shunt and series resistances. 

This method is not used commonly because it is difficult to measure the 
exact amount of capacitance of the capacitor and the damping of the 
galvanometer is different during the operation of test. 
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By Standard Solenoid: - 

 

 

 

 

 

 

 
Fig 8.10 Calibration of Ballistic Galvanometer by Solenoid 

This method is mostly used for calibration purposes. In this method, 
a standard solenoid of a long coil is wound on a cylinder of a nonmagnetic 
material. The length of a solenoid is at least 1 meter and the diameter is of 
10cm.the winding should be uniform and its length must be that its field 
strength H is of 10000A/m or more when maximum current is applied on a 
coil. The calibration is done by means of a known flux. The flux linking to 
the coil is: 

 
Where N1 are the primary turns/meter, I1 is the primary current in 
amperes, A is the cross-section area of the coil m2. 

This arrangement creates a flux change twice, so by substitution: 

 
Where N2 are the turns of the coil, R is resistance of the coil and 
galvanometer circuit. 

The calibration for flux measurements is in convenient form, once 
sensitivity factor K2 is evaluated. If the galvanometer is used for the 
measurement of unknown flux, then it will be written as: 

 
where is the unknown flux change, is the deflection in millimeters and is 
the number of turns in the coil. 

By Mutual Inductance: 
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Fig 8.11 Calibration of Ballistic Galvanometer by Mutual Inductor 

This method is used to measure the large range of calibration. It consists 
of a mutual inductor and is very small in size as compared to a solenoid. In 
this method, if the mutual inductance is known in the circuit then a 
deflection φ1 is produced by the reversal of a known primary current I is 
observed. By changing primary current: 

 
Let R be the total resistance of the galvanometer circuit then the 
galvanometer current is: 

 
By integration 

 
So, 

and 

 
The different type of moving coil galvanometers is 

(a) Pivoted Galvanometer: It consists of a coil of fine insulated wire 
wound on a metallic frame. The coil is mounted on two jewelled 
pivots and is symmetrically placed between cylindrical pole pieces 
of a strong permanent horse-shoe magnet. 

(b) Dead beat Galvanometer: Here coil is wound over the metallic 
frame to make it dead beat. On passing current the galvanometer UGPHS-102/190
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shows a steady deflection without any oscillation. The damping is 
produced by eddy currents. 

(c) Ballistic Galvanometer: This is used for measurement of charge. 
Here coil is wound on an insulating frame and oscillates on passing 
current. 

The current sensitivity of a galvanometer is defined as the 
deflection produced when unit current passes through the 
galvanometer. A galvanometer is said to be sensitive if it produces 
large deflection for a small current. 

In a galvanometer, I = (C/nBA) x θ 

∴ Current sensitivity θ/I = nBA/C … (1) 

The current sensitivity of a galvanometer can be increased by 

(i) increasing the number of turns 

(ii) increasing the magnetic induction 

(iii) increasing the area of the coil 

(iv) decreasing the couple per unit twist of the suspension wire. 

This explains why phosphor-bronze wire is used as the suspension wire 
which has a small couple per unit twist. 

Current sensitivity of a galvanometer is defined as the deflection produced 
in the galvanometer when a unit current flow through it. 

IS = θ/I = nBA/c 

Where n is no of turns in the coil of the galvanometer, B is Magnetic field 
around the coil, A is Area of the coil and c is restoring torque per unit 
twist. 

8.7 THE SENSITIVITY OF MOVING COIL 
GALVANOMETER 

Moving coil galvanometer is an electromagnetic device that can 
measure small values of current. The sensitivity of a Moving Coil 
Galvanometer is defined as the ratio of the change in deflection of the 
galvanometer to the change in current. Therefore, we write, Sensitivity = 
dθ/di. If a galvanometer gives a bigger deflection for a little current it is 
said to be sensitive. The current in Moving Coil galvanometer is: I = 
(C/nBA) × θ 

• The sensitivity of Moving Coil Galvanometer increases by: 

(i) Increasing the no. of turns and the area of the coil, 

(ii) Increasing the magnetic induction and 

(iii) Decreasing the couple per unit twist of the suspension fiber. UGPHS-102/191
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Voltage sensitivity is the measure of the responsiveness of an 
appliance to the transform of applied voltage across it. 
A galvanometer is a type of ammeter. It is an appliance for 
detecting and measuring electric current 

So, the voltage sensitivity of a galvanometer is defined as the 
deflection per unit voltage across the galvanometer. 

So, Voltage sensitivity = θ/V = θ/IG = nBA/CG 

where G is the galvanometer resistance. 

Unit: rad V-1 or mm V-1 

High voltage sensitivity is desirable in circuits of relatively low 
resistance. 

An interesting point to note is that increasing the current sensitivity 
does not necessarily, increase the voltage sensitivity. When the 
number of turns (n) is doubled, current sensitivity is also doubled 
(equation). But increasing the number of turns correspondingly 
increases the resistance (G). Hence voltage sensitivity remains 
unchanged. 

So, we can say, Voltage Sensitivity = θ/V = (NAB/KR) 

where, 

• θ is the angular displacement, i.e. the reading you see on the 
galvanometer 

• V is, of course, the voltage across the galvanometer for which the 
reading is θ 

• N is the number of turns of the moving-coil in the galvanometer. 

• A is the length of the rectangular-coil, B is the breadth of the 
rectangular-coil, 

Therefore, AB represents the area of the 2D-coil. 

K is the torsion-constant of the galvanometer, i.e., the spring 
constant of the spring that’s used in the galvanometer. 

R is the resistance of the coil. 

Now, increasing the number of turns N of the coil will result in the 
same increase in the resistance of the coil R as R∝ l and surface-
area of the coil is kept stable. 

Therefore, the increasing number of turns N of the coil does not 
affect the voltage-sensitivity of the galvanometer. 

1. Therefore, in order to increase the voltage-sensitivity of the 
galvanometer, 
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2. You can increase the area of the coil 

3. You can decrease the torsion-constant of the galvanometer. 

Charge sensitivity: The charge sensitivity (the ballistic reduction 
factor) of a moving coil galvanometer is the charge (transient 
current) required to produce a deflection (throw or kick) of 1 mm 
on a scale kept at a distance of 1 m from the mirror. By eqn.7 and 
8, E K P Q R M G 66 Optics & Electricity Practical II Charge 
sensitivity, K = q θ = T 2π       C NAB       = T ×current 
sensitivity 

Advantages and Disadvantages of Moving Coil Galvanometer: - 

Advantages: - 

• Sensitivity increases as the value of n, B, A increases and value of 
k decreases. 

• The eddy currents produced in the frame bring the coil to rest 
quickly, due to the coil wound over the metallic frame. 

Disadvantages: - 

• We cannot change the sensitivity of the galvanometer at will. 

• Overloading can damage any type of galvanometer. 

SAQ 2 

a) Write the different types of Galvanometer? 

b) Draw the neat and clean schematic diagram of Ballistic 
galvanometer? 

c) What is critical resistance of ballistic galvanometer? 

d) Explain damping in ballistic galvanometer? 

e) Explain sensitivity of moving coil galvanometer? 

8.8 APPLICATIONS TO MEASUREMENT OF 
HIGH RESISTANCE (>100KΩ) 

Following are few methods used for measurement of high resistance 
values- 

• Loss of Charge Method 

• Megohm bridge Method 

• Measurement of High Resistance by Leakage Method 

We normally utilize very small amount of current for such measurement, 
but still owing to high resistance chances of production of high voltages is 
not surprising. Due to this we encounter several other problems such as- UGPHS-102/193
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1. Electrostatic charges can get accumulated on measuring 
instruments 

2. Leakage current becomes comparable to measuring current and can 
cause error 

3. Insulation resistance is one of the most common in this category; 
however a dielectric is always modeled as a resistor and capacitor 
in parallel. Hence while measuring the insulation resistance (I.R.) 
the current includes both the component and hence true value of 
resistance is not obtained. The capacitive component though falls 
exponentially but still takes very long time to decay. Hence 
different values of I.R. are obtained at different times. 

4. Protection of delicate instruments from high fields. 

Hence to solve the problem of leakage currents or capacitive currents we 
use a guard circuit. The concept of guard circuit is to bypass the leakage 
current from the ammeter so as to measure the true resistive current. 
Figure below shows two connections on voltmeter and micro ammeter to 
measure R, one without guard circuit and one with guard circuit. 

 

 

 

 

 

 

 

 

 

 

 
Fig 8.24 Measurement of High Resistance 

In the first circuit the micro ammeter measures both capacitive and the 
resistive current leading to error in value of R, while in the other circuit 
the micro ammeter reads only the resistive current. 

Loss of Charge Method 

In this method we utilize the equation of voltage across a discharging 
capacitor to find the value of unknown resistance R. Figure below shows 
the circuit diagram and the equations involved are- 
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Fig 8.25 Loss of Charge Method 

 
However the above case assumes no leakage resistance of the capacitor. 
Hence to account for it we use the circuit shown in the figure below. R1 is 
the leakage resistance of C and R is the unknown resistance. 
We follow the same procedure but first with switch S1 closed and next 
with switch S1 open. For the first case we get 

 

 
 
For second case with switch open we get 
 

 
 

Using R1 from above equation in equation for R’ we can find R. 

Megohm Bridge Method: - 

In this method we use the famous Wheatstone bridge philosophy but in a 
slightly modified way. A high resistance is represented as in the figure 
below. 
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Fig 8.26 High resistance material 

G is the guard terminal. Now we can also represent the resistor as shown 
in the adjoining figure, where RAG and RBG are the leakage resistances. 
The circuit for measurement is shown in the figure below. 

 

 

 

 

 

 

 

 

 
 

 

Fig 8.26 Megohm Bridge 
It can be observed that we actually obtain the resistance which is parallel 
combination of R and RAG. Although this causes very insignificant error. 

Measurement of High Resistance by Leakage Method 
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When a capacitor of capacitance C and initial charge Q0 is allowed to 
discharge through a resistance R for a time t, the charge remaining on the 
capacitor is given by 
            Q = Q0e-t/CR 
            Q0/Q = et/CR 
        loge Q0/Q = t/CR 
. :            R = t /C loge (Q0/Q) = t / 2.3026C log10 (Q0 /Q) 
 
If R is high, CR will be high and the rate of discharge of capacitor will be 
very slow. Thus if we determine Q0/Q from experiment, then R can be 
calculated. 
C is a capacitor of known capacitance, R is the high resistance to be 
measured, B.G. is a ballistic galvanometer, E is a cell, and K1, K2, K3 are 
tap keys. 
Keeping K2 and K3 open, the capacitor is charged by depressing the key 
K1. K1 is then opened and at once K3 is closed. The capacitor discharges 
through the galvanometer which records a throw θ0 is proportional to Q0. 
The capacitor is again charged to the maximum value keeping K2 and 
K3 open and closing K1. K1 is the open and K2 is closed for a known time 
t. Some of the charge leaks through R. K2 is opened and at once K3 is 
closed. The charge Q remaining on the capacitor then discharges through 
the galvanometer. The resulting throw θ is noted. Then Q ∞ θ 
 
    Now,     Q0/Q = θ0/θ 
    . :    R = t/ 2.3026 C log10 (θ0/θ) 
A series of values of t and θ are obtained. A graph is plotted between t and 
log10 (θ0/θ) which is a straight line. Its slope gives the mean value of t / 
log10 (θ0/θ). As C is known, the value of R can be calculated. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8.27 Leakage resistance method 
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SAQ 3: - 

a) What is Transient response? 

b) Differentiate between transient state and steady state? 

c) What is time constant also write the expression for time constant in 
RL and RC circuit? 

d) Explain LC transient circuit? 

e) Write the different method for measurement of high resistance? 

f) ) What is the characteristic time constant for a 7.50 mH inductor in 
series with a 3.00 Ω resistor? (b) Find the current 5.00 ms after the 
switch is moved to position 2 to disconnect the battery, if it is 
initially 10.0 A. 

g) In the below circuit, the switch closes at time t = 0, before which it 
had been open for a long time.  

(a) Find and plot iL(t).  

(b) Find and plot vout(t). 

 

 

 

 

 

 

 

Examples: - 

Q1. Consider a numerical example. The RL circuit in Fig. is fed by a d.c. 
current source, 0I = 5A. At instant t = 0 the switch is closed and the circuit 
is short-circuited. Find:1) the current after switching, by separating the 
variables and applying the definite integrals, 2) the voltage across the 
inductance. 

 

 

 

 

 

Solution :- 
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1) First, we shall write the differential equation: 

VL + VR = L (di/dt) +Ri =0 

or after separating the variables 

(di/i) = (R/L)dt 

Since the current changes from 0I at the instant of switching to i(t), 
at any instant of t, which means that the time changes from t = 0 to 
this instant, we may perform the integration of each side of the 
above equation between the corresponding limits 

 
Therefore, 

 
And 

Ini(t)-lnI0=(R/L)t 

Or 

 
Which result in 

 
Thus, 

i(t)=Io =5  

or 

i(t)= e  

Where 

 
which result in time constant 

τ = . 
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Note that by applying the definite integrals we avoid the step of 
evaluating the constant of the integration.  

2) The voltage across the inductance is 

) = -200    , V 

Note that the voltage across the resistance is 

  , 

i.e., it is equal in magnitude to the inductance voltage, but opposite 
in sign, so that the total voltage in the short-circuit is equal to zero 

Q 2: A 100 V de is applied to a circuit consisting of a resistance of 100 Ω 
in series with an inductance of 10 H through the switch. If the switch is 
closed at t = 0, fing out 

(i) the expressions for i(t), VR(t) and VL(t),  

(ii) the value of i(t) for t = 0.2 seconds and  

(iii) time at which VR(t) = VL(t). 

Solution :  

Resistance. R = 100 n 

Inductance, L = 10 H 

Voltage, V = 100 V 

Time constant τ =  

(i) The expression for the current i(t) is given as 

i(t) =  

= Ans 

The expression for the voltage drop across resistor R is given as 

VR(t) = R × i(t) = 100(1–  ) Volts Ans. 

The expression for voltage drop across inductor L is given as 

VL(t) = –L  

= –10 ×  VoltsAns. 

 (ii) When t = 0.2 Seconds. UGPHS-102/200

O
R

A
C

LE
-0

01



Current i(t) = (1-  ) =1 –  = 0.8647A Ans. 

(iii) Let the voltage drop across resistance and inductance be equal t 
seconds after closure of switch, then 

100(1- ) = 100  

t =  Seconds Ans. 

Q3 : The switch in fig A has been in position 1 for a long time, it is moved 
to 2 at t = 0 obtain 

the expression for i, for t > 0. 

 

 

 

 

 

 

 

 

Solution : With switch in position 1 

i( ) =  

∵ Because inductance of 20 H act as a short during steady state with 
switch in position 2 (circuit 

shown in fig B) 

i( ) = i( ) =1.25A 

.: Current in an inductor does not change instantaneously. Applying 
Kirchhoffs voltage law in closed 

loop of circuit diagram shown in fig (B) we have. 

10 = 40i(t) + 20  

Or 

 + 2i(t )=0.5 

i(t) =  +A  
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A = 1.00 

The equation for i is given by 

i(t) = (0.25 + )A  

Q 4 : In the circuit shown in fig A the switch S is initially in position 1. 
Find the voltage across 

the coil at the instant at which the switch is changed to position 2. 

 

 

 

 

 

 

 

 

Solution : With switch in position l 

I(o)=  

∵ Inductor Lc acts as a short during steady state 

At positions 2. 

Time constant of the circuit is 

τ =  

The equation for i becomes 

i(t) =i(o)  = 2  

Voltage across the coil 

V =  = 40 x 2  + 10 x 2 x (-56)  

 = -1040    

Q5 : A resistance Rand 5μ F Capacitor are connected in series across a 
200 V supply. Calculate 

the value of R such that the voltage across the capacitor becomes 100 V in 
5 seconds after the circuit is 
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switched on. 

Solution : Voltage across the capacitor is given as 

Vc(t) = V(1-et/CR) 

Given 𝛽𝛽 = 5, 𝑐𝑐 = 5 × 10−6𝐹𝐹, 𝑣𝑣 = 200𝑣𝑣, 𝑣𝑣𝑐𝑐(𝛽𝛽) = 100𝑣𝑣 

 100 = 200 �1 − 𝑒𝑒−
5

5×10−6×𝑅𝑅� = 200 �1 − 𝑒𝑒−
106

𝑅𝑅 � 

Q6 : In fig (A) the switch S is closed at t = 0 Determine the time when the 
current drawn from 

the battery attains the value of 0.5A. 

 

 

 

 

 

 

 

 

 

 

Solution: Let the current through 100 Ω resistor be I1 and through R–C 
branch be I2 after the switch S is closed. 

Now      

II =  = 0.2 A 

Current 

I2 =  

=  =  

and since 

I = I1 + I2 

So 

  = 0.5 -0.2 = 0.3 A 
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t = 5.2 ms  

8.9 SUMMARY 

 Transient phenomena are Rapidly changing actions occurring in a 
circuit during the interval between closing of a switch and settling 
to a steady-state condition, or any other temporary actions 
occurring after some change in a circuit. 

 The galvanometer is the device used for detecting the presence of 
small current and voltage or for measuring their magnitude. 

 The galvanometer is used as an ammeter by connecting the low 
resistance wire in parallel with the galvanometer. The potential 
difference between the voltage and the shunt resistance are equal. 

 Ballistic galvanometers are the measuring instruments which are 
used for measuring the quantity of electric charges obtained 
from magnetic flux. 

 The sensitivity of a Moving Coil Galvanometer is defined as the 
ratio of the change in deflection of the galvanometer to the change 
in current 

The current in Moving Coil galvanometer is: I = (C/nBA) × θ 

 The time required for a changing quantity in a circuit, as voltage or 
current, to rise or fall approximately 0.632 of the difference 
between its old and new value after an impulse has been applied 
that induces such a change: equal in seconds to the inductance of 
the circuit in henries divided by its resistance in ohms 

 The Time Constant, ( τ ) of the LR series circuit is given as L/R 

 As the capacitor charges up, the potential difference across its 
plates slowly increases with the actual time taken for the charge on 
the capacitor to reach 63% of its maximum possible voltage, in our 
curve 0.63Vs being known as one Time Constant, ( T ). 

 Mathematically we can say that the time required for a capacitor to 
charge up to one time constant, ( 1T ) is given as: 

 
 Resonance occurs when an LC circuit is driven from an external 

source at an angular frequency ω0 at which the inductive and 
capacitive reactances are equal in magnitude. The frequency at 
which this equality holds for the particular circuit is called the 
resonant frequency. 

 By Kirchhoff's voltage law, the voltage across the capacitor, VC, 
plus the voltage across the inductor, VL must equal zero: 
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 Likewise, by Kirchhoff's current law, the current through the 
capacitor equals the current through the inductor: 

 The overdamped response (ζ > 1) is the overdamped response is a 
decay of the transient current without oscillation. 

• The underdamped response is a decaying oscillation at 
frequency ωd. The oscillation decays at a rate determined by 
the attenuation α. 

• The critically damped response (ζ = 1) is the critically 
damped response represents the circuit response that decays 
in the fastest possible time without going into oscillation. 

• In Loss of charge method we utilize the equation of voltage 
across a discharging capacitor to find the value of unknown 
resistance R. 

 

8.10 TERMINAL QUESTION 

1. Explain the construction details and the principle of operation of 
galvanometer? 

2. Write the different types of galvanometer? 

3. Explain the principle of operation of deadbeat and Ballistic type 
galvanometer? 

4. Explain the critical resistance and damping in moving coil 
galvanometer? 

5. Explain the theory of moving coil galvanometer? 

6. What is sensitivity of moving coil galvanometer and write their 
types? 

7. Explain the transient response in RL series circuit? 

8. Explain the transient response in RC series circuit? 

9. What is time constant explain with the help of curve? 

10. Explain the theory of measurement of high resistance by leakage 
method? 

11. Write the application of measurement of high resistance? 

12. Fig. shows the plot of current i (t) through a series R − L circuit 
when a constant forcing function of magnitudes = 50 V is applied 
to it. Calculate the values of resistance R and inductance L. UGPHS-102/205
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13. For the circuit shown in Fig, the switch ‘S’ has been closed for a 
long time and then opens at. t = 0 
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UNIT-9 ALTERNATING CURRENT 

Structure 
9.1 Introduction  

9.2 Objective 

9.3 J-Operator and phasor notations, reactance, impedance, 
susceptance, admittance. 

9.4 Instaneous, Peak, RMS and Average value of alternating 
voltage and current,          Form factor. 

9.5 Angle of lag and lead, wattful and wattless current, 
average power consumed (active, reactive and apparent), 
power factor. 

9.6 Phasor and vector diagram of CR, LR, LCR series, LCR 
parallel, LR in series with C in parallel circuits. 

9.7 Parallel and series resonance, sharpness of resonance, 
Quality factor, Bandwidth Resonance frequency. 

9.8 Summary 

9.9 Terminal Questions 

9.1 INTRODUCTION 

In this topic, we will understand the basic properties of Alternating 
Current (AC) and cover topics such as Current through AC circuits, Power 
Factor, Wattless Current, and wattfull current  In electrical engineering 
this type of number is called an “imaginary number” and to distinguish an 
imaginary number from a real number the letter “ j ” known commonly in 
electrical engineering as the j-operator. We will study about resistance 
phasor notations, reactance, impedance, susceptance, admittance. We able 
to learn about Instaneous, Peak, RMS and Average value of alternating 
voltage and current, Form factor.In this chapter we learn about power used 
in electrical engineering like active power, reactive power and apparent 
power. We will study about series and parallel ac circuit like  CR, LR, 
LCR series, LCR parallel. We will also learn about resonance and their 
types. 

 9.2 OBJECTIVES 

After studying this unit you should be able to 
UGPHS-102/207

O
R

A
C

LE
-0

01



• Study and identify  J-Operator and phasor notations, reactance, 
impedance, susceptance, admittance. 

• Explain and identify Instaneous, Peak, RMS and Average value of 
alternating voltage and current, Form factor. 

• Study and identify  Angle of lag and lead, wattful and wattless 
current, average power consumed (active, reactive and apparent), 
power factor. 

• Study and identify  Phasor and vector diagram of CR, LR, LCR 
series, LCR parallel, LR in series with C in parallel circuits. 

• Explain and identify Parallel and series resonance, sharpness of 
resonance, Quality factor, Bandwidth Resonance frequency. 

9.3 THE J OPERATOR 

In electrical circuit this type of number is called an “imaginary 
number” and to distinguish an imaginary number from a real number the 
letter “ j ” known commonly in electrical engineering as the j-operator, is 
used. Thus the letter “j” is placed in front of a real number to signify its 
imaginary number operation. 

The j-operator has a value exactly equal to √-1, so successive 
multiplication of “ j “, ( j x j ) will result in j having the following values 
of, -1, -j and +1. As the j-operator is commonly used to indicate the 
anticlockwise rotation of a vector, each successive multiplication or power 
of “ j “, j2, j3 etc, will force the vector to rotate through a fixed angle of 
90o in an anticlockwise direction as shown below. Likewise, if the 
multiplication of the vector results in a  -j  operator then the phase shift 
will be -90o, i.e. a clockwise rotation. 

Vector Rotation of the j-operator 

 

 

 

 

 

 

 

 

Fig 9.1 Vector Rotation of the j-operator 
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So by multiplying an imaginary number by j2 will rotate the vector 
by  180o anticlockwise, multiplying by j3 rotates it  270o and by j4 rotates 
it  360o or back to its original position. Multiplication by j10 or by j30 will 
cause the vector to rotate anticlockwise by the appropriate amount. In each 
successive rotation, the magnitude of the vector always remains the same. 

In Electrical Engineering there are different ways to represent a complex 
number either graphically or mathematically. One such way that uses the 
cosine and sine rule is called the Cartesian or Rectangular Form. 

Phasor Notation : 

Phasor notation can be used to represent the phase relationship between 
two sinusoidal waveforms  

Reactance : 

“Reactance is a form of opposition that electronic components exhibit to 
the passage of AC (alternating current) because of capacitance or 
inductance” It is denoted by X. It is expressed in ohms. It is observed for 
AC (alternating current), but not for DC (direct current). 

Types of Reactance : 

      Inductive Reactance : 

When AC (alternating current) passes through a component that contains 
reactance, energy might be stored and released in the form of a magnetic 
field which is known as inductive reactance. It is denoted by +jXL 

Capacitive Reactance : 

When AC (alternating current) passes through a component that contains 
reactance, energy might be stored and released in the form of an electric 
field which is known as capacitive reactance.It is denoted by -jXC 

Reactance is conventionally multiplied by the positive square root of -1, 
which is the unit imaginary number called the j operator, to express Z as 
a complex number of the form R + jXL (when the net reactance is 
inductive) or R - jXC (when the net reactance is capacitive). 

Impedance : 

“Impedance is the total resistance/opposition offered by the circuit 
elements to the flow of alternating or direct current!” 

OR 

“The impedance of a circuit is the ratio of the phasor voltage (V) to the 
phasor current (I)” 

It is denoted by Z. 

Z=V/I 
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Fig 9.2 Impedance Circuit 

As complex quantity, we can write as: 

Z=R+jX 

Susceptance : 

”Susceptance is an expression of the readiness with which an electronic 
component, circuit, or system releases stored energy as the current and 
voltage fluctuate” 

OR 

“It is a reciprocal of reactance” .It is denoted by B. 

B=1/X 

Susceptance is expressed in imaginary number Siemens. Susceptance is 
observed with AC, but not for DC. 

Types of Susceptance :      

     Inuductive Susceptance : 

When AC (alternating current) passes through a component that contains 
susceptance, energy might be stored and released in the form of a 
magnetic field which is known is inductive susceptance..It is denoted by -
 jB L 

     Capacitive Susceptance: 

When AC (alternating current) passes through a component that contains 
susceptance, energy might be stored and released in the form of an electric 
field which is known is capacitive susceptance. It is denoted by + jB C 

Admittance : 

“Admittance is the allowance of circuit elements to the flow of alternating 
current or direct current “. 

OR 

“It is the inverse of impedance”. It is denoted by Y. 
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We can write as: 

Y=1/Z=I/V 

As complex quantity, we can write as: 

Y=G+jB 

Admittance is a vector quantity comprised of two Independent scalar 
phenomena : conductance and sustenance. 

9.4 INSTANTANEOUS, AVERAGE, AND RMS 
VALUES  

Instantaneous value : 

The instantaneous value is “the value of an alternating quantity (it may ac 
voltage or ac current or ac power) at a particular instant of time in the 
cycle”. There are uncountable number of instantaneous values that exist in 
a cycle. 

Average value : 

The average value is defined as “the average of all instantaneous values 
during one alternation”. That is, the ratio of the sum of all considered 
instantaneous values to the number of instantaneous values in one 
alternation period. 

Whereas the average value for the entire cycle of alternating quantity is 
zero. Because the average value obtained for one alteration is a positive 
value and for another alternation is a negative value. The average values 
of these two alternations (for entire cycle) cancel each other and the 
resultant average value is zero. 

Consider the single cycle alternating current wave in Figure. 

 

 

 

 

 

 

 

 

Fig 9.3 Average value 

The instantaneous value at t=2 is i2 

and so on at t = n,  i is in UGPHS-102/211
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The average value for one alternation (0 to π) is 

 
RMS (Root Mean Square) value: 

The Root Mean Square (RMS) value is “the square root of the sum of 
squares of means of an alternating quantity”. 

It can also express as “the effect that produced by a certain input of AC 
quantity which is equivalent to an effect produced by the equal input of 
DC quantity”. 

Consider one example, the heat produced by a resistor when one ampere 
direct current (DC) passed through it, is not an equal amount of heat 
produced when one ampere of alternating current (AC) passed through the 
same resistor. Since the AC current is not constant value rather than it is 
varying with the time. The heat produced by AC quantity (equal amount 
of DC quantity) is nothing but RMS value of an alternating parameter or 
quantity. 

 
Here, i1,i2,…in are mean values 

 
Peak Value : 

The maximum value attained by an alternating quantity during one cycle 
is called its Peak value. It is also known as the maximum value or 
amplitude or crest value. The sinusoidal alternating quantity obtains its 
peak value at 90 degrees as shown in the figure below. 

The peak values of alternating voltage and current is represented by 
Em and Im respectively. 

 

 

 

 

 

 

 

 

Fig 9.4 Peak Value 
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Form Factor : 

Form Factor is the ratio between the average value and the RMS value and 
is given as. 

 
SAQ 1 : 

a) What is j operator and where it used ? 

b) Derive the expression for rms and average value of alternating 
current ? 

c) Explain form factor and what is the ideal value of it for sinusoidal 
wave? 

d) Define the following : (i) Reactance (ii) Maximum Value (iii) 
Susceptance 

e) An AC circuit carries an rms current of 7.0 Amps. The current 
travels through a 12 Ohm resistor. Calculate the peak current? 

9.5 PHASE 

The phase is defined as the position of the waveform at a fraction of time 
period. Phase is expressed in angle or radian. Phase can also be an 
expression of relative displacement between two corresponding features 
(for example, peaks or zero crossings) of two waveforms having the same 
frequency. 

Phase Difference: 

 Phase difference is the difference, between two waves is having the same 
frequency and referenced to the same point in time. It is expressed in 
degrees or radians. Let’s consider two sinusoidal wave, both have same 
frequency, Example: R phase and B phase (in our three-phase circuit.) 

 

 

 

 

 

 

 
Fig 9.5 Phase difference UGPHS-102/213

O
R

A
C

LE
-0

01



phase difference = R phase starting point (angle) – B phase starting point 
(angle) 

 
Phase angle :  

What is phase angle refers to the angular component of the complex 
number representation of the function. The notation of the phase angle is 
defined as 

𝑃𝑃ℎ𝑎𝑎𝑐𝑐𝑒𝑒 𝑎𝑎𝑛𝑛𝑝𝑝𝑐𝑐𝑒𝑒 = 𝐴𝐴∠𝜃𝜃 

A is the magnitude and phase angle θ, is called angle notation. This 
notation is mostly used in electrical circuit to represent an electrical 
impedance (vector sum of resistance and reactance) and the apparent 
power (vector sum of real power and reactive power). Here the phase 
angle theta is the phase difference between the voltage applied to the 
impedance and the current flow through the impedance. 

In Phase: 

Here the sign indicates the leading or lagging nature of both waves. 
Generally – symbol indicates leading nature (the wave leads the angle 
from the reference wave) + symbol indicates lagging nature (the wave lags 
the angle from the reference wave) 

The two waveform said to be in phase where the two wave should reach 
maximum, minimum and zero values simultaneously at the same time. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 9.6 In Phase for Resistive circuit 
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Out Phase : 

Two sinusoidal signals are said to be out of phase when they do not reach 
maximum or zero values at the same time. 

 

 

 

 

 

 

 

 
 

Fig 9.7 Out of Phase 

Leading Power Factor 

The leading power factor in an ac electrical circuit is attained by the use of 
capacitive load in the circuit. As in the presence of purely capacitive load 
or combination of resistive-capacitive load, the current leads supplied 
voltage. This gives rise to power factor generally said to be leading in 
nature. 

As it is known that power factor is the ratio of true to the apparent power. 
And generally for sinusoidal waveform power factor is the cosine function 
of the phase angle existing between voltage and current. 

Consider the wave shapes of voltage supplied to the ac circuit and the 
current through the purely capacitive load: 

 

 

 

 

 

 

 

 

 

 

Fig 9.8 Leading Power Factor UGPHS-102/215
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As it is clear from the above figure that current, I encounters the 0 
crossings of the time axis some phase earlier than that of voltage, V. This 
is referred as leading power factor. 

The figure below represents the leading power factor triangle: 

 

 

 

 

 
 

 

Fig 9.9 Power factor triangle 

Where, S= Apparent Power 

P=Real Power 

Q=Reactive Power 

Lagging Power Factor : 

In ac circuits lagging power factor, is achieved when the load is capacitive 
in nature. This is so because when a purely capacitive or resistive 
capacitive load is present then there exists a phase difference between 
voltage and current in which the current lags the voltage.Thus the power 
factor of such circuits is of lagging nature. 

Let us consider the waveforms of supplied voltage to an ac circuit and the 
current through the purely capacitive load as: 

 
 

 

 

 

 

 

 

 

 

Fig 9.10 Lagging Power Factor 
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Here the current encounters the 0 crossings at some phase after the 
voltage. Thereby giving rise to lagging power factor. 

The lagging power factor triangle is given below: 

 

 

 

 

 

Fig 9.11 Power factor triangle for lagging 

Where, S= Apparent Power 

           P=Real Power 

           Q=Reactive Power 

Wattless and Wattful Current: 

The average power over a cycle of AC is given by, 

P = Vrms X Irms X Cos ϕ 

In pure inductor or an ideal capacitor  ϕ = 900. So average power 
consumed in a  pure inductor or ideal capacitor is, 

P = Vrms X Irms X Cos 90 = 0 

Therefore, Current through pure 'L' or pure 'C' which consumes no power 
for its maintenance in the circuit is called Wattless Current. 

At resonance XL = XC and ϕ = 00 

∴ Cos ϕ = Cos 0 = 1 

Therefore Maximum power is dissipated in a circuit at resonance. 

The Current through resistance (R), which consumes power for its 
maintenance in the circuit is called Wattful Current. 

Active Power 

The power which is actually consumed or utilised in an AC Circuit is 
called True power or Active power or Real power. It is measured in 
kilowatt (kW) or MW. It is the actual outcomes of the electrical system 
which runs the electric circuits or load. 

Active power P = V x I cosϕ = V I cosϕ 

Reactive Power 

 The power which flows back and forth that means it moves in both the 
directions in the circuit or reacts upon itself, is called Reactive Power. 
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The reactive power is measured in kilo volt-ampere reactive (kVAR) or 
MVAR. 

Reactive power Q = V x I sinϕ = V I sinϕ 

Apparent Power 

The product of root mean square (RMS) value of voltage and current is 
known as Apparent Power. This power is measured in kVA or MVA. 

Apparent power Pa or S = V x I = VI 

Power Triangle : 

 

 

 

 

 

 

 

Fig 9.11 Power triangle 

Taking voltage V as reference, the current I lags behind the voltage V by 
an angle ϕ. The current I is divided into two components: 

• I Cos ϕ in phase with the voltage V 

• I Sin ϕ which is 90 degrees out of phase with the voltage V 

Impedance Triangle : 

 

 

 

 

 

 

 

 

Power Factor : 

Power factor is a crucial property of AC electrical systems. It is 
dimensionless in nature. It is used for both single and three-phase AC 
circuits. It is the ratio of true or actual power to the apparent power in the UGPHS-102/218
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ac systems. More simply, the power factor is the cosine of phase 
difference existing between V and I. The power factor of ac circuits with 
linear loads lies between -1 to 1. Generally, it is considered that if a 
system exhibits power factor closer to 1, then such systems are said to be 
stable. 

9.6 RL SERIES CIRCUIT 
In actual practice, AC circuits contain two or more than two 

components connected in series. In a series circuit, each component carries 
the same current. An AC series circuit may be classified as under: 

 

 

 

 

 

 

 

 

 

In an RL series circuit, a pure resistance (R) is connected in series with a 
coil having the pure inductance (L). To draw the phasor diagram of RL 
series circuit, the current I (RMS value) is taken as reference vector 
because it is common to both elements.  
Voltage drop VR is in phase with current vector, whereas, the voltage drop 
in inductive reactance VL leads the current vector by 90o since current lags 
behind the voltage by 90o in the purely inductive circuit. The vector sum 
of these two voltage drops is equal to the applied voltage V (RMS value). 

 

 

 

 

 

 

 

 

 

Fig 9.12 Wave form of RL circuit UGPHS-102/219
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The power waveform for RL series circuit is shown in the figure. In this 
figure, voltage wave is considered as a reference. The points for the power 
waveform are obtained from the product of the corresponding 
instantaneous values of voltage and current.  
It is clear from the power waveform that power is negative between 0 and 
φ and between 180o and (180o + φ). The power is positive during rest of 
the cycle.  
Since the area under the positive loops is greater than that under the 
negative loops, the net power over a complete cycle is positive. Hence a 
definite quantity of power is consumed by the RL series circuit. But power 
is consumed in resistance only; inductance does not consume any power. 

RC Series Circuit 

 

 

 

 

 

 

 

In an RC series circuit, a pure resistance (R) is connected in series with a 
pure capacitor (C). To draw the phasor diagram of RC series circuit, the 
current I (RMS value) is taken as reference vector. Voltage drop VR is in 
phase with current vector, whereas, the voltage drop in capacitive 
reactance VC lags behind the current vector by 90o, since current leads the 
voltage by 90o in the pure capacitive circuit. The vector sum of these two 
voltage drops is equal to the applied voltage V (RMS value). 

 

 

 

 

 

 

 

 

 
 

Fig 9.13 Wave form for RC circuit 
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The power waveform for RC series circuit is shown in the figure. In this 
figure, voltage wave is considered as a reference. The points for the power 
waveform are obtained from the product of the corresponding 
instantaneous values of voltage and current. It is clear from the power 
waveform that power is negative between (180o – φ) and 180o and 
between (360o – φ) and 360o. The power is positive during rest of the 
cycle. 

Since the area under the positive loops is greater than that under the 
negative loops, the net power over a complete cycle is positive. Hence a 
definite quantity of power is consumed by the RC series circuit. But power 
is consumed in resistance only; capacitor does not consume any power. 
 RLC Series Circuit : 

  

 

 

 

 

 

 

 

 

 

 

 

In an RLC series circuit a pure resistance (R), pure inductance (L) and a 
pure capacitor (C) are connected in series. To draw the phasor diagram of 
RLC series circuit, the current I (RMS value) is taken as the reference 
vector. The voltages across three components are represented in the phasor 
diagram by three phasors VR, VL and VC respectively. 

The voltage drop VL is in phase opposition to VC. It shows that the circuit 
can either be effectively inductive or capacitive. In the figure, phasor 
diagram is drawn for the inductive circuit. There can be three cases of 
RLC series circuit. 

• When XL > XC, the phase angle φ is positive. In this case, RLC 
series circuit behaves as an RL series circuit. The circuit current 
lags behind the applied voltage and power factor is lagging. In this 
case, 

if the applied voltage is represented by the equation; 

v = Vm sin ωt UGPHS-102/221
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then, the circuit current will be represented by the equation; 

i = Im sin (ωt – φ). 

 When XL < XC, the phase angle φ is negative. In this case, the 
RLC series circuit behaves as an RC series circuit. The circuit 
current leads the applied voltage and power factor is leading. In 
this case, the circuit current will be represented by the equation: 

 i = Im sin (ωt + φ). 

When XL = XC, the phase angle φ is zero. In this case, the RLC 
series circuit behaves like a purely resistive circuit. The circuit 
current is in phase with the applied voltage and power factor is 
unity. In this case, the circuit current will be represented by the 
equation: 

i = Im sin (ωt). 

Parallel RLC Circuit Analysis : 

The Parallel RLC Circuit is the exact opposite to the series circuit we 
looked at in the previous tutorial although some of the previous concepts 
and equations still apply. 

 

 

 

 

 

 

 

 

Fig 9.14 Parallel circuit 

The applied voltage is now common to all so we need to find the 
individual branch currents through each element. The total impedance, Z 
of a parallel RLC circuit is calculated using the current of the circuit 
similar to that for a DC parallel circuit, the difference this time is that 
admittance is used instead of impedance. Consider the parallel RLC circuit 
below. 

In the above parallel RLC circuit, we can see that the supply voltage, VS is 
common to all three components whilst the supply current IS consists of 
three parts. The current flowing through the resistor, IR, the current 
flowing through the inductor, IL and the current through the capacitor, IC. 
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But the current flowing through each branch and therefore each 
component will be different to each other and also to the supply current, 
IS. The total current drawn from the supply will not be the mathematical 
sum of the three individual branch currents but their vector sum. 

Like the series RLC circuit, we can solve this circuit using the phasor or 
vector method but this time the vector diagram will have the voltage as its 
reference with the three current vectors plotted with respect to the voltage. 
The phasor diagram for a parallel RLC circuit is produced by combining 
together the three individual phasors for each component and adding the 
currents vectorially. 

Since the voltage across the circuit is common to all three circuit elements 
we can use this as the reference vector with the three current vectors 
drawn relative to this at their corresponding angles. The resulting vector 
current IS is obtained by adding together two of the vectors, IL and IC and 
then adding this sum to the remaining vector IR. The resulting angle 
obtained between V and IS will be the circuits phase angle as shown 
below. 

Phasor Diagram for a Parallel RLC Circuit : 

 

 

 

 

 

 

 

 

 

Fig 9.16 Phasor Diagram for a Parallel RLC Circuit 

We can see from the phasor diagram on the right hand side above that the 
current vectors produce a rectangular triangle, comprising of 
hypotenuse IS, horizontal axis IR and vertical axis IL – IC  Hopefully you 
will notice then, that this forms a Current Triangle. We can therefore use 
Pythagoras’s theorem on this current triangle to mathematically obtain the 
individual magnitudes of the branch currents along the x-axis and y-axis 
which will determine the total supply current IS of these components as 
shown. 

Current Triangle for a Parallel RLC Circuit 
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Since the voltage across the circuit is common to all three circuit elements, 
the current through each branch can be found using Kirchhoff’s Current 
Law, (KCL). Rember that Kirchhoff’s current law or junction law states 
that “the total current entering a junction or node is exactly equal to the 
current leaving that node”. Thus the currents entering and leaving node 
“A” above are given as: 

 
Taking the derivative, dividing through the above equation by C and then 
re-arranging gives us the following Second-order equation for the circuit 
current. It becomes a second-order equation because there are two reactive 
elements in the circuit, the inductor and the capacitor. 

 
The opposition to current flow in this type of AC circuit is made up of 
three components:  XL XC and R with the combination of these three 
values giving the circuits impedance, Z. We know from above that the 
voltage has the same amplitude and phase in all the components of a 
parallel RLC circuit.  

SAQ 2 

a) Explain Power in Electrical Engineering and write their types? 

b) Differentiate between Wattless and Wattfull power? 

c) What is power factor? 

d) Explain with diagram about legging and leading power factor? 
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e) In a series RLC, circuit R = 30 Ω, L = 15 mH, and C = 51 μF. If the 
source voltage and frequency are 12 V and 60 Hz, respectively, 
what is the current in the circuit?   

9.7 SERIES RESONANCE 

The basic series-resonant circuit is shown in fig. Of interest here in 
how the steady state amplitude and the phase angle of the current vary 
with the frequency of the sinusoidal voltage source. As the frequency of 
the source changes, the maximum amplitude of the source voltage (Vm) is 
held constant. 

 

 

 

 

 

 

 

Fig 9.17 series-resonant circuit 

The frequency at which the reactances of the inductance and the 
capacitance cancel each other is the resonant frequency (or the unity 
power factor frequency) of this circuit. This occurs at 

 
Since i = VR /R, then the current i can be studied by studying the voltage 
across the resistor. The current i has the expression 

 
where 

 
and 
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The bandwidth of the series circuit is defined as the range of frequencies 
in which the amplitude of the current is equal to or greater than its 
maximum amplitude, as shown in fig. This yields the bandwidth B = R/L 

Where 

 
 are called the half power frequencies or the 3 dB frequencies, i.e the 
frequencies at which the value of Im equals the maximum possible value 
divided by 2 equal to 1.414 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Fig 9.18 Frequency Response of a Series - Resonant Circuit 
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Parallel Resonance: 

The basic parallel-resonant circuit is shown in fig. Amplitude and the 
phase angle of the output voltage V0 vary with the frequency of the 
sinusoidal voltage source in study state also 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 9.19 Frequency Response of the Parallel - Resonant Circuit UGPHS-102/227
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Quality Factor : 

The Q, or quality, factor of a resonant circuit is a measure of the 
“goodness” or quality of a resonant circuit. A higher value for this figure 
of merit corresponds to a more narrow bandwidth, which is desirable in 
many applications. More formally, Q is the ratio of power stored to power 
dissipated in the circuit reactance and resistance. 

Sharpness of resonance : 

Sharpness of resonance in a series resonant circuit is defined by the  Q 
factor . This can be defined as how quickly the energy of the oscillating 
system decays. 

Sharpness of  resonance  depend upon two factors -Damping and 
Amplitude .Thus, we can say that when damping increase the sharpness 
also increase and  when damping decrease sharpness of resonance also 
decrease.Also, the sharpness increase when amplitude decreases . 

Quality factor is defined as ratio of the flowing branch currents to the 
supply current .Thus,  q-factor of circuit = R/(2π * f * L) 

where, R = resistance, L = inductor,  f = frequency of resonance circuit = 
1/2π√LC,  

           C = capacitance 

q-factor of circuit = R/(2π * f * L) 

= 2π *f * C * R 

                                       = 2π*(1/2π√1/CL)*C*R 

                                      = R * (√C/L) 

SAQ 3 

a) What is resonance in electrical engineering? 

b) Drive the formula of for resonant frequency in series resonance 
circuit? 

c) What is quality factor and derive its expression? 

d) Draw resonance curve and show the bandwidth and resonance 
frequency in the curve? 

e)  A circuit tuned to a frequency of 1.5 MHz and having an effective 
capacitance of 150 pF. In this circuit, the current falls to 70.7 % of 
its resonant value. The frequency deviates from the resonant 
frequency by 5 kHz. Q factor is? 

Examples : 

Q1.A sinusoidal voltage supply defined as: V(t) = 100  cos(ωt + 30o) is 
connected to a pure resistance of 50 Ohms. Determine its 
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impedance and the peak value of the current flowing through the 
circuit. Draw the corresponding phasor diagram. 

Solution 

The sinusoidal voltage across the resistance will be the same as for the 
supply in a purely resistive circuit. Converting this voltage from the time-
domain expression into the phasor-domain expression gives us: 

 
Applying Ohms Law gives us: 

 
The corresponding phasor diagram will therefore be: 

 

 

 

 

 

 

 

Q2. An ac generator produces an emf of amplitude 10 V at a 
frequency f=60Hz. Determine the voltages across and the currents 
through the circuit elements when the generator is connected to (a) 
a 100Ω resistor, (b) a 10μF capacitor, and (c) a 15-mH inductor. 

Solution 

The voltage across the terminals of the source is 

v(t)=V0sinωt=(10V)sin120πt, 

where ω=2πf=120πrad/s 

is the angular frequency. Since v(t) is also the voltage across each of the 
elements, we have 

v(t)=vR(t)=vC(t)=vL(t)=(10V)sin120πt. 

a. When R=100Ω the amplitude of the current through the resistor is 

I0=V0/R=10V/100Ω=0.10A, 

so 

iR(t)=(0.10A)sin120πt. UGPHS-102/229
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b. From Equation the capacitive reactance is 

XC=1/ωC=1/(120πrad/s)(10×10−6F)=265Ω, 

so the maximum value of the current is 

I0=V0/XC=10/265=3.8×10−2A 

and the instantaneous current is given by 

iC(t)=(3.8×10−2A)sin(120πt+π2). 

c. From Equation the inductive reactance is 

XL=ωL=(120πrad/s)(15×10−3H)=5.7Ω 

The maximum current is therefore 

I0=10/5.7=1.8A 

and the instantaneous current is 

iL(t)=(1.8A)sin(120πt−π/2). 

Q3. The equation for an alternating current is given by i = 77 sin 314t. 
Find the  peak value, frequency, time period and instantaneous 
value at t = 2 ms. 

Solution 

Given, 

i = 77 sin 314t ; t = 2 ms = 2×10-3 s 

The general equation of an alternating current is i = Im sin ωt . On 
comparsion, 

(i) Peak value, Im = 77 A 

(ii) Frequency, f = ω/2π = 314 / 2 ×3.14 = 50 Hz 

Time period, T = 1/f = 150 = 0 .02 s 

(iii) At t = 2 m s, 

Instantaneous value, 

i = 77sin(314×2×10−3 ) 

i = 45.24 A 

Q4. Find the impedance of a series RLC circuit if the inductive 
reactance, capacitive reactance and resistance are 184 Ω, 144 Ω 
and 30 Ω respectively. Also calculate the phase angle between 
voltage and current. 

Solution 

XL = 184 Ω; XC = 144 Ω R = 30 Ω 
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(i) The impedance is 

 
Impedance, Z = 50 Ω 

(ii) Phase angle is 

 
Q5. The current in an inductive circuit is given by 0.3 sin (200t – 40°) 

A. Write the equation for the voltage across it if the inductance is 
40 mH. 

Solution 

Given, 

L = 40 × 10-3 H; i = 0.3 sin (200t – 40º) 

XL = ωL = 200 × 40 × 10-3 = 8 Ω 

Vm = Im XL = 0.3 × 8 = 2.4 V 

In an inductive circuit, the voltage leads the current by 90o Therefore, 

V = Vm sin ( ωt +90º) 

V = 2 . 4 sin(200t −40 + 90 º) 

V = 2 . 4 sin(200t +50 º)volt 

Q6. A wound coil that has an inductance of 180mH and a resistance of 
35Ω is connected to a 100V and 50Hz supply. Calculate: a) the 
impedance of the coil, b) the current, c) the power factor, and d) 
the apparent power consumed. 

Also draw the resulting power triangle for the above coil. 

Solution: 

Data given: R = 35Ω, L = 180mH, V = 100V and ƒ = 50Hz. 
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(a) Impedance (Z) of the coil: 

 

 

 

 

 

 
 

 

(b) Current (I) consumed by the coil: 

 

 

 

 

 

 

(c) The power factor and phase angle, Φ: 
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(d) Apparent power (S) consumed by the coil: 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(e) Power triangle for the coil: 

 

 

 

 

 

 

 

 

 

 

 

 

Q8. If an AC power supply of 100V, 50Hz is connected across a load 
of impedance, 20 + j15 Ohms. Then calculate the current flowing 
through the circuit, active power, apparent power, reactive power 
and power factor. 
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Solution 

Given that, Z = R + jXL = 20 + j 15 Ω 

Converting the impedance to polar form, we get 

Z = 25 ∠36.87 Ω 

Current flowing through the circuit, 

I = V/Z = 100∠00 /25 ∠36.87 

I = 4 ∠–36.87 

Active power, P = I2R = 42 × 20 = 320 watts 

Or P = VI cos ϕ = 100 × 4 × cos (36.87) = 320.04 ≈ 320 W 

 Apparent power, S = VI = 100 × 4 = 400 VA 

Reactive power, Q = √ (S2 – P2) 

= √ (4002 – 3202) = 240 VAr 

Power factor, PF = cos ϕ = cos 36.87 = 0.80 lagging. 

Q9. A pure inductance of 150 mH is connected in parallel with a 40 μF 
capacitor across a 50 V, variable frequency supply. Determine (a) 
the resonant frequency of the circuit and (b) the current circulating 
in the capacitor and inductance at resonance. 
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The circuit diagram is shown in Figure  

(a)  Parallel   resonant-R/L frequency,   

However, resistance R = 0. Hence, 

f   =   1/2π√1/LC 

 = 1/2𝜋𝜋�(1/15 × 10−3(40 × 10−6) 

 = 1/2𝜋𝜋√15 × 4 × 10−7 

 = 1
2𝜋𝜋.10−3√6

= 103

2𝜋𝜋√6
 

= 64.97 Hz 

 (b) Current circulating in L and C at resonance,  = V/XC 

                       =           V   /1/2πfC 

                       =           2π f C.V 

Hence = 2𝜋𝜋 × 64.97 × 40 × 10-6 × 50 = 0.816 A 

Alternatively, ICIRC = V/XL  

 = 𝑉𝑉
2𝜋𝜋𝜋𝜋𝜋𝜋

 

 = 50
2𝜋𝜋×64.97×0.15

   

 = 0.817 A 

Q10. For the resonant circuit given below, find the value of the quality 
factor of the circuit? 
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Solution 

Given 𝐿𝐿 = 10 × 10−6𝐻𝐻,𝐶𝐶 = 200 × 10−12𝐹𝐹,𝑅𝑅 = 10𝛺𝛺 

Explanation: f = 1/2π√LC 
= 16.28√ (10×10−6) (200×10−12) 
= 16.282×10−15 
= 1888×10−9 = 1.13 MHz 
Inductive Reactance, XL = 2πfL = (6.28) (1.13 × 106)(10 × 10-6) 
= 70.96 Ω 
∴ 𝑄𝑄 = 𝑋𝑋𝜋𝜋

𝑅𝑅
= 70.96

10
= 7.096 ≅ 7.1 

9.8 SUMMARY 
1. The letter “ j ” known commonly in electrical engineering as the j-

operator 

2. Phasor notation can be used to represent the phase relationship 
between two sinusoidal waveforms.  

3. “Reactance is a form of opposition that electronic components 
exhibit to the passage of AC (alternating current) because of 
capacitance or inductance” 

4. When AC (alternating current) passes through a component that 
contains reactance, energy might be stored and released in the form 
of a magnetic field which is known as inductive reactance. It is 
denoted by +jXL 

5. When AC (alternating current) passes through a component that 
contains reactance, energy might be stored and released in the form 
of an electric field which is known as capacitive reactance.It is 
denoted by -jXC 

6. “Impedance is the total resistance/opposition offered by the circuit 
elements to the flow of alternating or direct current 

7. ”Susceptance is an expression of the readiness with which an 
electronic component, circuit, or system releases stored energy as 
the current and voltage fluctuate” 

8. The instantaneous value is “the value of an alternating quantity (it 
may ac voltage or ac current or ac power) at a particular instant of 
time in the cycle”. 

9. Average  value is the ratio of the sum of all considered 
instantaneous values to the number of instantaneous values in one 
alternation period. 

10. The Root Mean Square (RMS) value is “the square root of the sum 
of squares of means of an alternating quantity”. 
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11. The maximum value attained by an alternating quantity during one 
cycle is called its Peak value.  

12. Form Factor is the ratio between the average value and the RMS 
value 

13. Phase difference is the difference, between two waves is having 
the same frequency and referenced to the same point in time 

14. The power which is actually consumed or utilised in an AC Circuit 
is called True power or Active power or Real power. It is 
measured in kilowatt (kW) or MW 

15. The power which flows back and forth that means it moves in both 
the directions in the circuit or reacts upon itself, is called Reactive 
Power. The reactive power is measured in kilo volt-ampere 
reactive (kVAR) or MVAR 

16. The product of root mean square (RMS) value of voltage and 
current is known as Apparent Power. This power is measured in 
kVA or MVA. 

17. Power  factor  is the ratio of true or actual power to the apparent 
power in the ac systems.  

18. The frequency at which the reactances of the inductance and the 
capacitance cancel each other is the resonant frequency (or the 
unity power factor frequency) of this circuit. 

19. Quality factor  is the ratio of power stored to power dissipated in 
the circuit reactance and resistance 

9.9 TERMINAL QUESTION 

1. Derive the expression for RMS value and average value of 
alternating voltage and current? 

2. Define the active, reactive and apparent power in ac circuit and 
also draw the power triangle? 

3. Draw the figure diagram of RC,RL and RLC series ac circuit? 

4. Explain series and parallel resonance and drive the expression for 
resonant frequency for both type of resonance? 

5. Write sort notes on  

i) Phasor notation  

ii) Reactance, suspectance 

iii) From Factor 

iv) Power Factor 

v) Quality factor UGPHS-102/237
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6.  A circuit tuned to a frequency of 1.5 MHz and having an effective 
capacitance of 150 pF. In this circuit, the current falls to 70.7 % of 
its resonant value. The frequency deviates from the resonant 
frequency by 5 kHz. Effective resistance of the circuit is? 

7. A sinusoidal voltage v = 50sinωt is applied to a series RL circuit. 
The current in the circuit is given by I = 25sin (ωt-53⁰). Determine 
the apparent power (VA) 

8. Calculate the quality factor of the coil for a series circuit having R 
= 10Ω, L = 0.1H, C = 10µF ? 
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UNIT-10 NETWORK ANALYSIS (FOR 
BOTH AC AND DC) 

Structure 
10.1 Introduction  

10.2 Objective 

10.3 Circuit elements and various networks circuits. 

10.4 T and 𝜋𝜋 networks and their equivalence. 

10.5 Kirchhoff’s current and voltage laws. Mesh and nodal 
analysis of electrical circuits.   (Matrices and determinant 
methods). 

10.6 Concept of constant current and constant voltage source. 
Thevenin and Norton’s theorem. 

10.7 Maximum power transfer theorem, superposition 
theorem, reciprocity theorem. 

10.8 Summary 

10.9 Terminal Questions 

10.1 INTRODUCTION 
Generally speaking, network analysis is any structured technique 

used to mathematically analyze a circuit (a “network” of interconnected 
components). Quite often the technician or engineer will encounter circuits 
containing multiple sources of power or component configurations that 
defy simplification by series/parallel analysis techniques. In those cases, 
he or she will be forced to use other means. This chapter presents a few 
techniques useful in analyzing such complex circuits. Network theory is 
the study of solving the problems of electric circuits or electric networks. 
In this introductory chapter, let us first discuss the basic terminology of 
electric circuits and the types of network elements The types of active 
circuit elements that are most important to us are those that supply 
electrical energy to the circuits or network connected to them. These are 
called “electrical sources” with the two types of electrical sources being 
the voltage source and the current source. The current source is usually 
less common in circuits than the voltage source, but both are used and can 
be regarded as complements of each other. 

one of the interesting characteristic of an electrical source, is that they are 
also capable of converting non-electrical energy into electrical energy and 
vice versa. For example, a battery converts chemical energy into electrical UGPHS-102/239

O
R

A
C

LE
-0

01



energy, while an electrical machine such as a DC generator or an AC 
alternator converts mechanical energy into electrical energy. 

10.2 OBJECTIVES 

 After studying this unit you should be able to 

• Study and identify  Circuit elements and various networks circuits. 

•  Explain and identify T and 𝜋𝜋 networks and their equivalence. 

• Study and identify Kirchoff’s current and voltage laws. Mesh and 
nodal analysis of electrical circuits.  (Matrics and determinant 
methods). 

• Explain and identify Concept of constant current and constant 
voltage source. Thevenin and Norton’s theorem. 

• Study and identify Maximum power transfer theorem, 
superposition theorem, reciprocity theorem. 

10.3 CIRCUIT ELEMENTS 

A  circuit  element  is  an  idealised  mathematical  model  of  a  tw
o-terminal electrical device that is completely characterised by its voltage-
current relationship. Although ideal circuit elements are not “off-the-
shelf” circuit components, their importance lies in the fact that they can be 
interconnected to approximate actual circuits that are composed of 
nonideal elements and assorted electrical components – thus allowing for 
the analysis of such circuits. 

Circuit elements can be categorized as either active or passive. 

Active Circuit Elements : 

Active circuit elements can deliver a non-zero average power indefinitely. 
There are four types of active circuit element, and all of them are termed 
an ideal source. They are: 

• Independent voltage source 

• Independent current source 

• Dependent voltage source 

• Dependent current source 

Passive Circuit Elements : 

Passive circuit elements cannot deliver a non-zero average power 
indefinitely. Some passive elements are capable of storing energy, and 
therefore delivering power back into a circuit at some later time, but they 
cannot do so indefinitely. 
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There are three types of passive circuit element. They are: 

• Resistor 

• Inductor 

• Capacitor 

Network circuits : 

Types of Circuits : 

The interconnection of two or more circuit elements  forms an 
electrical network. If the network contains at least one closed path, it is 
also an electrical circuit. A network that contains at least one active 
element, i.e. an independent or dependent source, is an active network. A 
network that does not contain any active elements is a passive network. 

Independent Sources: 

Independent sources are ideal circuit elements that possess a voltage or 
current value that is independent of the behaviour of the circuits to which 
they belong. 

The Independent Voltage Source: 

An independent voltage source is characterised by a terminal voltage 
which is completely independent of the current through it. The 
representation of an independent voltage source is shown below: 

 
 

 

 

 

 

 
 

If the value of the voltage source is constant, that is, does not change with 
time, then we can also represent it as an ideal battery : 
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Although a “real” battery is not ideal, there are many circumstances under 
which an ideal battery is a very good approximation. 

In general, however, the voltage produced by an ideal voltage source will 
be a function of time. In this case we represent the voltage symbolically 
as v(t ) . 

Since the voltage produced by a source is in general a function of time, 
then the most general representation of an ideal voltage source is as shown 
below: 

 

 

 

 

 

 

 

 

The Independent Current Source: 

An independent current source establishes a current which is independent 
of the voltage across it. The representation of an independent current 
source is shown below: 

 

 

 

 

 

 

 

 

In other words, an ideal current source is a device that, when connected 
to anything, will always push current ( is) out of terminal 1 and pull is into 
terminal 2 

Since the current produced by a source is in general a function of time, 
then the most general representation of an ideal current source is as shown 
below: 
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Types of Electrical Circuits : 

DC Circuits: 

In DC Circuits, the excitation applied is a constant source. Based on the 
type of connection of active and passive components with the source, a 
circuit can be classified into Series and Parallel circuits. 

Series Circuits: 

When several passive elements are connected in series with an energy 
source, such a circuit is known as a series circuit. For a series circuit, same 
amount of current flows through each element and voltage is divided. In 
series circuit, as the elements are connected in a line,if there is faulty 
element among them ,complete circuit acts as open circuit. 

 

 

 

 

 

 

 

 

Fig 10.1 Series circuit 

• For a resistor connected in DC circuits, the voltage across its 
terminals is directly proportional to the current passing through it, 
thus maintaining a linear relationship between the voltage and 
current. For resistors connected in series, the total resistance is 
equal to the sum of all resistance values. 

• For capacitors connected in series, the total capacitance is equal to 
the sum of reciprocals of all capacitance values. 
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• For inductors connected in series, total inductance is equal to the 
sum of all inductance values. 

Parallel Circuits: 

In a parallel circuit, one terminal of all the elements is connected to the 
one terminal of the source and the other terminal of all elements is 
connected to the other terminal of the source. 

In parallel circuits, the voltage remains the same in the parallel elements 
while the current changes. If there is any faulty element among parallel 
elements there is no effect on the circuit. 

 

 

 

 

 

 

 

 

 

Fig 10.2 Parallel circuit 

• For resistors connected in parallel, the total resistance is equal to 
the sum of reciprocals of all resistance values. 

• For capacitors connected in series, the total capacitance is equal to 
the sum of all capacitance values. 

• For inductors connected in series, total inductance is equal to the 
sum of all reciprocals of inductance values. 

AC circuits : 

Ac circuits are those circuits, Whose excitation element is an AC source. 
Unlike DC source which is constant AC source has variable current and 
voltage at regular intervals of time. Generally, for high power 
applications, AC circuits are used. 

Simple AC Circuit using resistance : 

For alternating current passing through the resistor, the ratio of current and 
voltage depends upon the phase and frequency of the supply. The applied 
voltage will change constantly with time and Ohm’s law can be used to 
calculate current passing through the resistor at any instant of time. 
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In other words, if at time t seconds, the value of voltage is v volts, current 
will be: 

i = v/R 

where the value of R is always constant. 

Above equation shows that polarity of current depends upon that of the 
voltage. Also, both current and voltage reach their maximum and zero 
points at the same time. Thus, for a resistor, voltage is in phase with the 
applied current. 

Consider the below circuit diagram 

 

 

 

 

 

 

 

 

 

 

 

Fig 10.3 Simple AC Circuit 

When the switch is closed, current passes through the resistor and is given 
by the below equation 

i=Im cos(ωt+Φ) 

Voltage,V=IR=RIm cos(ωt+Φ) 

For a resistor, both voltage and current values will rise and fall at the same 
time. Hence, the phase difference between voltage and current is zero. 

AC Circuit using pure inductance: 

A coil of thin wire wrapped on a cylindrical core is known as an Inductor. 
The core can be an air core (hollow laminated) or an iron core. As 
alternating current flows through the inductor, the magnetic field also 
changes. This change in magnetic field results in an induced voltage 
across the inductor. As per Lenz law, the induced voltage is such that it 
opposes the flow of current through it. 

During the first half cycle of the source voltage, the inductor stores energy 
in form of magnetic field and in the next half, it releases energy. UGPHS-102/245
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The induced EMF is given as below 

e=Ldi/dt 

Here, L is the self-inductance. 

Now, Input AC voltage applied is given as  

v(t)=Vm Sinωt 

Current through the inductor is: 

I(t)=Im Sinωt 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 10.4 AC Circuit using pure inductance 

So, the voltage across the inductor would be 

e=L di/dt= ωLIm cos ωt  

= ωLIm sin(ωt+90) 

Thus, for an inductor, voltage leads the current by 90 degrees. 

Now, resistance by an inductor is termed as Reactance and given by 

Thus, impedance or resistance is proportional to rate of change of current 
for an inductor. 

AC Circuit with a capacitor: 

For a constant DC supply, the capacitor plates charge up to the applied 
voltage, stores this charge temporarily and then starts discharging. Once a 
capacitor is fully charged, it blocks the flow of current as the plates get 
saturated. 
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Fig 10.5 AC Circuit with a capacitor 

When AC supply voltage is applied to a capacitor, the rate of charging and 
discharging depends upon the supply frequency. Voltage across the 
capacitor lags the current flowing through it by 90 degrees. 

Current through the capacitor is given as 

e = Ldi/dt 

The capacitive reactance is given as: 

e = Ld/idt 

Thus, impedance or reactance to AC supply is inversely proportional to 
the frequency of supply. 

T-connected and Equivalent Star Network : 

 

 

 

 

 

 

 

 
 

Fig 10.6 

 As we have already seen, we can redraw the T resistor network above to 
produce an electrically equivalent Star or Υ type network. But we can 
also convert a Pi or π type resistor network into an electrically 
equivalent Delta or Δ type network as shown below. UGPHS-102/247
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Pi-connected and Equivalent Delta Network: 

 

 

 

 

 

 
 
 

Fig 10.7 

 Having now defined exactly what is a Star and Delta connected network it 
is possible to transform the Υ into an equivalent Δ circuit and also to 
convert a Δ into an equivalent Υ circuit using a the transformation process. 

This process allows us to produce a mathematical relationship between the 
various resistors giving us a Star Delta Transformation as well as 
a Delta Star Transformation. 

These circuit transformations allow us to change the three connected 
resistances (or impedances) by their equivalents measured between the 
terminals 1-2, 1-3 or 2-3 for either a star or delta connected circuit. 
However, the resulting networks are only equivalent for voltages and 
currents external to the star or delta networks, as internally the voltages 
and currents are different but each network will consume the same amount 
of power and have the same power factor to each other. 

Delta to Star Transformation: 

To convert a delta network to an equivalent star network we need to derive 
a transformation formula for equating the various resistors to each other 
between the various terminals. Consider the circuit below. 

Delta to Star Network: 

 

 

 

 

 

 
 

 

Fig 10.8 Delta to Star Network 
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Compare the resistances between terminals 1 and 2. 

 

Resistance between the terminals 2 and 3. 

 

Resistance between the terminals 1 and 3. 

 

This now gives us three equations and taking equation 3 from equation 2 
gives: 

 

Then, re-writing Equation 1 will give us: 

 

Adding together equation 1 and the result above of equation 3 minus 
equation 2 gives: 

UGPHS-102/249

O
R

A
C

LE
-0

01



 

From which gives us the final equation for resistor P as: 

 

 Then to summarize a little about the above maths, we can now say that 
resistor P in a Star network can be found as Equation 1 plus (Equation 3 
minus Equation 2) or  Eq1 + (Eq3 – Eq2). 

Similarly, to find resistor Q in a star network, is equation 2 plus the result 
of equation 1 minus equation 3 or  Eq2 + (Eq1 – Eq3) and this gives us the 
transformation of Q as: 

 

and again, to find resistor R in a Star network, is equation 3 plus the result 
of equation 2 minus equation 1 or  Eq3 + (Eq2 – Eq1) and this gives us the 
transformation of R as: 

 

When converting a delta network into a star network the denominators of 
all of the transformation formulas are the same: A + B + C, and which is 
the sum of ALL the delta resistances. Then to convert any delta connected 
network to an equivalent star network we can summarized the above 
transformation equations as 

Delta to Star Transformations Equations: 
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 If the three resistors in the delta network are all equal in value then the 
resultant resistors in the equivalent star network will be equal to one third 
the value of the delta resistors. This gives each resistive branch in the star 
network a value of: RSTAR = 1/3*RDELTA which is the same as saying:   

Star to Delta Transformation: 

Star Delta transformation is simply the reverse of above. We have seen 
that when converting from a delta network to an equivalent star network 
that the resistor connected to one terminal is the product of the two delta 
resistances connected to the same terminal, for example resistor P is the 
product of resistors A and B connected to terminal 1. 

By rewriting the previous formulas a little we can also find the 
transformation formulas for converting a resistive star network to an 
equivalent delta network giving us a way of producing a star delta 
transformation as shown below. 

Star to Delta Network : 

 

 

 

 

 

 

 

Fig 10.9 Star to Delta Transformation 

The value of the resistor on any one side of the delta, Δ network is the sum 
of all the two-product combinations of resistors in the star network divide 
by the star resistor located “directly opposite” the delta resistor being 
found. For example, resistor A is given as: 

 

with respect to terminal 3 and resistor B is given as: 

UGPHS-102/251

O
R

A
C

LE
-0

01



 

with respect to terminal 2 with resistor C given as: 

 

with respect to terminal 1. 

By dividing out each equation by the value of the denominator we end up 
with three separate transformation formulas that can be used to convert 
any Delta resistive network into an equivalent star network as given 
below. 

Star to Delta Transformation Equations : 

 

 

 

 One final point about converting a star resistive network to an equivalent 
delta network. If all the resistors in the star network are all equal in value 
then the resultant resistors in the equivalent delta network will be three 
times the value of the star resistors and equal, giving:  

RDELTA = 3*RSTAR 

SAQ 1 

a) Explain the various circuit element which are used in Electrical 
Circuit? 

b) Explain and draw the symbol of various sources of voltage and 
current? 

c)  Campare the dependent and independent sources? 

d) Define the constant current source and constant voltage source? 

e) Calculate potential difference between x and y 
UGPHS-102/252

O
R

A
C

LE
-0

01



 

 

 

 

 

 

 

f) The value of the 3 resistances when connected in star connection 
is? 
 

 

 

 

 

 

 

 

10.5 KIRCHHOFF’S CURRENT LAW 

Kirchhoff’s Current Law states that” the algebraic sum of all the 
currents at any node point or a junction of a circuit is zero”. 

Σ I = 0 

 

 
 

 

 

 

 
 

 

 

 

Fig 10.10. Kirchhoff’s Current Law 

Considering the above figure as per the Kirchhoff’s Current Law: 
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i1 + i2 – i3 – i4 – i5 + i6 = 0 ……… (1) 

The direction of incoming currents to a node is taken as positive while the 
outgoing currents are taken as negative. The reverse of this can also be 
taken, i.e. incoming current as negative or outgoing as positive. It depends 
upon your choice. 

The equation (1) can also be written as: 

i1 + i2 + i6 = i3 + i4 + i5 

Sum of incoming currents = Sum of outgoing currents 

According to the Kirchhoff’s Current Law, The algebraic sum of the 
currents entering a node must be equal to the algebraic sum of the currents 
leaving the node in an electrical network. 
Kirchhoff’s Voltage Law: 

Kirchhoff’s Voltage Law states that the algebraic sum of the voltages (or 
voltage drops) in any closed path of a network that is transverse in a single 
direction is zero. In other words, in a closed circuit, the algebraic sum of 
all the EMFs and the algebraic sum of all the voltage drops (product of 
current (I) and resistance (R)) is zero. 

Σ E + Σ V = 0 

 

 

 

 

 

 

 

 

 

Fig 10.11 Kirchhoff’s Voltage Law 

The above figure shows closed-circuit also termed as a mesh. As per the 
Kirchhoff’s Voltage Law: 

 
Here, the assumed current I causes a positive voltage drop when flowing 
from the positive to negative potential while negative potential drop when 
the current flowing from negative to the positive potential. 
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Considering the other figure shown below and assuming the direction of 
the current i 

 

 

 

 

 

 

 

 

 

Fig 10.12 Kirchhoff’s Voltage Law 

Therefore, 

 
In figure 10.11 the current in both the source V1 and V2 flows from 
negative to positive polarity while in figure 10.12  the current in the source 
V1 is negative to positive but for V2 is positive to negative polarity. 

For the dependent sources in the circuit, KVL can also be applied. In case 
of the calculation of the power of any source, when the current enters the 
source, the power is absorbed by the sources while the source delivers the 
power if the current is coming out of the source. 

It is important to know some of the terms used in the circuit while 
applying KCL and KVL like node, Junction, branch, loop, mesh. They are 
explained with the help of a circuit shown below: 
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Fig 10.13 Kirchhoff’s Voltage Law 

Node : 

A node is a point in the network or circuit where two or more circuit 
elements are joined. For example, in the above circuit diagram, A and B is 
the node points. 

Junction : 

A junction is a point in the network where three or more circuit elements 
are joined. It is a point where the current is divided. In the above circuit, B 
and D are the junctions. 

Branch: 

The part of a network, which lies between the two junction points is called 
a Branch. In the above circuit DAB, BCD and BD are the branches of the 
circuit. 

Loop: 

A closed path of a network is called a loop. ABDA, BCDB are loops in 
the above circuit diagram shown. 

Mesh : 

The most elementary form of a loop which cannot be further divided is 
called a mesh. 

Nodal Voltage Analysis Method : 

The Nodal Voltage Analysis is a method to solve the electrical network. 
It is used where it is essential to compute all branch currents.The nodal 
voltage analysis method determines the voltage and current by using the 
nodes of the circuit. 

A node is a terminal or connection of more than two elements. The nodal 
voltage analysis is commonly used for networks having many parallel 
circuits with a common terminal ground. 

This method requires less number of the equation for solving the circuit. UGPHS-102/256
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In Nodal Voltage Analysis, Kirchhoff’s Current Law (KCL) is used, 
which states that the algebraic sum of all incoming currents at a node must 
be equal to the algebraic sum of all outgoing currents at that node. 

It is the method of finding the potential difference between the elements or 
branches in an electric circuit. This method defines the voltage at each 
node of the circuit. This method has two types of nodes. These are the 
non-reference node and the reference node. 

The non-reference nodes have a fixed voltage, and the reference node is 
the reference points for all other nodes. 

In the nodal method, the number of independent node pair equations 
needed is one less than the number of junctions in the network. That is if n 
denotes the number of independent node equations and j is the number of 
junctions. 

n = j – 1 

In writing the current expression, the assumptions are made that the node 
potentials are always higher than the other voltages appearing in the 
equations. 

Let us understand the Nodal Voltage Analysis Method with the help of an 
example shown below: 

 

 

 

 

 

 

 

 

Fig 10.14 Circuit for nodal analysis 

Steps for Solving Network by Nodal Voltage Analysis Method: 

Considering the above circuit diagram, the following steps are explained 
below 

Step 1 – Identify various nodes in the given circuit and mark them in the 
given circuit, we have marked the nodes as A and B. 

Step 2 – Select one of the nodes as the reference or zero potential nodes at 
which a maximum number of elements are connected, is taken as 
reference. In the above figure, node D is taken as the reference node. Let 
the voltages at nodes A and B be VA and VB respectively. 
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Step 3 – Now apply KCL at the different nodes. 

Applying KCL at node A, we have 

 

Where, 

 

Applying KCL at the node B, we have 

 

After simulating circuits for some time, I began to ask myself - how does 
this SPICE program work? What mathematical tricks does the code 
execute to simulate complex electrical circuits described by non-linear 
differential equations? After some searching and digging, some answers 
were uncovered. At the core of the SPICE engine is a basic technique 
called Nodal Analysis. It calculates the voltage at any node given all 
resistances (conductances) and current sources of the circuit. Whether the 
program is performing DC, AC, or Transient Analysis, SPICE ultimately 
casts its components (linear, non-linear and energy-storage elements) into 
a form where the innermost calculation is Nodal Analysis. 

Kirchoff discovered this: the total current entering a node equals the total 
current leaving a node! And, these currents can be described by an 
equation of voltages and conductances. If you have more than one node, 
then you get more than one equation describing the same system 
(simultaneous equations). The trick now is finding the voltage at each 
node that satisfies all of the equations simultaneously. 
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Mesh Current Analysis Method: 

Mesh Current Analysis Method is used to analyze and solve the 
electrical network having various sources or the circuit consisting of 
several meshes or loop with a voltage or current sources. It is also known 
as the Loop Current Method. 

In the Mesh Current method, a distinct current is assumed in the loop and 
the polarities of drops in each element in the loop are determined by the 
assumed direction of loop current for that loop. 

The unknown in mesh current analysis is the current in different meshes, 
and the law which is applicable to solve the circuit by the mesh current 
method is known as Kirchhoff’s Voltage Law (KVL) which states that . 

In any closed circuit, the net voltage applied is equal to the sum of the 
product of current and resistance or in another word in any closed circuit, 
the sum of the voltage rise is equal to the sum of voltage drop, in the 
direction of current flow. 

Contents: 

• Steps for Solving Network by Mesh Current Method 

• Matrix Form 

KVL is already discussed in the topic ALSO SEE: Kirchhoff’s Current 
Law and Kirchhoff’s Voltage Law 

Let us understand the Mesh Current method with the help of the circuit 
shown below 
 

 

 

 

 

 

 

 

Fig 10.15 Mesh Current Analysis CircuitIn the above network 

• R1, R2, R3, R4 and R5 are the various resistances 

• V1 and V2 are the voltage source 

• I1 is the current flowing in the mesh ABFEA 

• I2 is the current flowing in the mesh BCGFB 

• I3 is the current flowing in the mesh CDHGC UGPHS-102/259
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The direction of the current is assumed in the clockwise for simplicity in 
solving the network. 

Steps for Solving Network by Mesh Current Method : 

Considering the above circuit diagram, the following steps are given 
below to solve the circuit by the Mesh Current method. 

Step 1 – First of all, identify the independent circuit meshes or loop.As 
there is three mesh in the circuit diagram shown above which are 
considering. 

Step 2 – Assign a circulating current to each mesh as shown in circuit 
diagram where I1, I2 and I3 are flowing in each mesh. 

It is preferable to assign the same direction of all the currents and in a 
clockwise direction for making the calculation easier. 

Step 3 – Now, write the KVL equation for each mesh.As there are three 
meshes in the circuit, there will be three KVL equations as shown below 

Applying KVL in the mesh ABFEA 

 
By rearranging the equation, we will get an equation (1) 

 
Applying KVL in the mesh BCGFB 

Applying KVL in the mesh CDHGC 

 
Step 4 – Now solve equations simultaneously to get the value of current 
I1, I2 and I3. 

By knowing the mesh currents, we can determine the various voltages and 
currents in the circuit. 

Matrix Form: 

The above circuit can be solved by the Matrix method also, as shown 
below. 

The above equations (1), (2) and (3) in matrix form can be expressed as 
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Thus, the equation  can be solved to get the values it the various currents. 

It is seen from the equation that the resistance matrix [R] is symmetric, i.e. 

 
Equation (5) can be written as: 

 
Where, 

[R] is the mesh resistance 

[I] is the column vector of mesh currents and 

[V] is the column vector of the algebraic sum of all the source voltages 
around the mesh. 

This is all about the mesh current analysis method. 

Constant Voltage Source : 

 
 

 

 

 

 

 

 

Fig 10.16 Constant Voltage Source symbol 

A constant voltage source is a power source which provides a constant 
voltage to a load, even despite changes and variance in load resistance. In 
other words, the voltage which a constant voltage source provides is 
steady, even if the resistance of the load varies. 
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A constant voltage source is, thus, a very valuable component because it 
can supply steady  voltage even if there are changes in resistance, even a 
wide variance in the resistance. This comes in use when a circuit needs a 
steady voltage supply, without fluctuations. 

 
 

 

 

 

 

 

 

Fig 10.17 Constant voltage 

You can see that the voltage is constant all throughout despite changes in 
current or resistance. 

A Constant Voltage Source Work : 

A constant voltage source is a power generator whose internal resistance is 
very low compared with the load resistance it is giving power to. Because 
its internal resistance is so low, it dumps most of its voltage across the 
higher resistance load. Remember that according to ohm's law, voltage is 
equal to current x resistance (V=IR). So voltage is dropped across the 
higher resistance component. If the resistance of the voltage source is 
practically zero, then instead of dropping its voltage across itself, it will 
drop it across the load entirely instead. 

Thus, a constant voltage source follows the rules of voltage division. 
Being that it has very low internal resistance and the load resistance is 
much higher, the voltage will practically drop entirely across the load. 

Look at the following voltage divider circuit below: 

 

 

 

 

 

 
 

Fig 10.18 
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Notice how this voltage source, shown above, supplies 1.5V, in total, from 
out of it. The majority of this 1.5 volts drops across the resistor of greater 
resistance, which is 8Ω; 1.33V of the 1.5V drops across the load. The 
remaining 0.17V drops across the battery which has a resistance of 1Ω. 

Now let's decrease the resistance of the voltage source so that now it has a 
resistance of 0Ω. The below voltage source represents a voltage source 
which has zero internal resistance. 

 

 

 

 

 

 

 

 

 

 

Fig 10.19 

Because the resistance is 0Ω and the load is 8Ω, all of the voltage drops 
across the 8Ω load resistor. Greater voltage will always drop across the 
component with the higher resistance. 

This is how constant voltage sources work. 

Constant Voltage Source Circuit: 

A constant voltage source circuit is just a constant voltage source 
connected to the load which it powers. 

 

 

 

 

 

 

 

 

Fig 10.20 Constant Voltage Source Circuit 
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This load above will have a constant voltage of 10V supplied to it 
regardless of whether the load resistance varies. 

Constant Current Source : 

 
 

 

 

 

 
 

 

Fig 10.21 Constant Current Source symbol 

A constant current source is a power source which provides a constant 
current to a load, even despite changes and variance in load resistance. 

In other words, the current which a constant current source provides is 
steady, even if the resistance of the load varies. 

A constant current source is, thus, a very valuable component because it 
can supply steady current even if there are changes in resistance, even a 
wide variance in the resistance. This comes in use when a circuit needs a 
steady current supply, without fluctuations. 

 

 

 

 

 

 

 

 

Fig 10.22 Constant current 

You can see that the current is constant all throughout despite changes in 
voltage or resistance. 

A Constant Current Source Work: 

A constant current source is a power generator whose internal resistance is 
very high compared with the load resistance it is giving power to. Because 
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its internal resistance is so high, it can supply a constant current to a load 
whose resistance value varies, even over a wide range. 

Thus, a constant current source follows the rules of current division. Being 
that it has very high internal resistance and the load resistance is much 
lower, current takes the path of least resistance, flowing out of the (high 
internal resistance) current source and into the load resistance, since it is 
of much lower resistance. 

If you know current division, current takes the path of least resistance. 
Look at the following current divider circuit below: 

 

 

 

 

 

 

 

 

Fig 10.23 Constant Current Source circuit 

Notice how this current source, shown above, supplies 40mA of total 
current from out of it. The majority of this 40mA of current takes the path 
of least resistance, the 5KΩ resistor, and the other 10mA of current goes 
through the larger resistance, 15KΩ. 

Now let's increase the resistance again. The below current source 
represents a current source which has infinite internal resistance. 

 

 

 

 

 

 

 

 

 

 

Fig 10.24 UGPHS-102/265
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Because the resistance is infinite and the load is only 8Ω, most of the 
current goes through the 8Ω resistor, which is the path of least resistance. 
Again, current always take the path of least resistance. Since the load has 
infinite internal resistance, current will always seek to escape from it to a 
lower resistance path. 

This is how constant current sources work. 

Constant Current Source Circuit : 

A constant current source circuit is just a constant current source 
connected to the load which it powers. 

 

 

 

 

 

 

 

 

Fig 10.25 Constant Current Source Circuit 

This load above will have a constant current of 50mA supplied to it 
regardless of whether the load resistance varies. 

SAQ 2: 

a) Define Kirchoff’s current and voltage laws? 

b) Define the following: (i) Mesh (ii) Loop (iii)Active and Passive 
circuit 

c) Differencetiate  between mesh and Nodal analysis? 

d) Relation between currents according to KCL is 
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e) Determine currents I1 , I2 and I3. 

 

 

 

 

 

 

 

 

 

10.6 THEVENIN’S THEOREM 

Thevenin’s Theorem states that any complicated network across its load 
terminals can be substituted by a voltage source with one resistance in 
series. This theorem helps in the study of the variation of current in a 
particular branch when the resistance of the branch is varied while the 
remaining network remains the same. 

For example in designing electrical and electronics circuits. 

A more general statement of Thevenin’s Theorem is that any linear active 
network consisting of independent or dependent voltage and current 
source and the network elements can be replaced by an equivalent circuit 
having a voltage source in series with a resistance. 

Where the voltage source being the open-circuited voltage across the 
open-circuited load terminals and the resistance being the internal 
resistance of the source. 

In other words, the current flowing through a resistor connected across any 
two terminals of a network by an equivalent circuit having a 
voltage source Eth in series with a resistor Rth. Where Eth is the open-
circuit voltage between the required two terminals called the Thevenin 
voltage and the Rth is the equivalent resistance of the network as seen from 
the two-terminal with all other sources replaced by their internal 
resistances called Thevenin resistance.  

Explanation of Thevenin’s Theorem: 

The Thevenin’s statement is explained with the help of a circuit shown 
below: 
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Fig 10.26 Thevenin’s Theorem circuit 

Let us consider a simple DC circuit as shown in the figure above, where 
we have to find the load current IL by the Thevenin’s theorem. 

In order to find the equivalent voltage source, rL is removed from the 
circuit as shown in the figure below and Voc or VTH is calculated. 

 

 

 

 

 

 

 

 

 

Fig 10.27 Thevenin’s Theorem circuit for Voc 

 

 
Now, to find the internal resistance of the network (Thevenin’s resistance 
or equivalent resistance) in series with the open-circuit voltage VOC , also 
known as Thevenin’s voltage VTH, the voltage source is removed or we 
can say it is deactivated by a short circuit (as the source does not have any 
internal resistance) as shown in the figure below: 
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Fig 10.28 Thevenin’s Theorem circuit for Rth 
 

 

Therefore,            

So, 

 

 

 

 

 

 

Fig 10.29 Equivalent Circuit of Thevenin’s Theorem 

Equivalent Circuit of Thevenin’s Theorem: 

As per Thevenin’s Statement, the load current is determined by the circuit 
shown above and the equivalent Thevenin’s circuit is obtained. 

The load current IL is given as: 

 

Where, 

VTH is the Thevenin’s equivalent voltage. It is an open circuit voltage 
across the terminal AB known as load terminal RTH is the Thevenin’s 
equivalent resistance, as seen from the load terminals where all the sources 
are replaced by their internal impedance rL is the load resistance. 

Steps for Solving Thevenin’s Theorem 

Step 1 – First of all remove the load resistance rL of the given circuit. UGPHS-102/269
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Step 2 – Replace all the sources by their internal resistance. 

Step 3 – If sources are ideal then short circuit the voltage source and open 
circuit the current source. 

Step 4 – Now find the equivalent resistance at the load terminals, known 
as Thevenin’s Resistance (RTH). 

Step 5 – Draw the Thevenin’s equivalent circuit by connecting the load 
resistance and after that determine the desired response. 

This theorem is possibly the most extensively used networks theorem. It is 
applicable where it is desired to determine the current through or voltage 
across any one element in a network.  

Norton’s Theorem : 

Norton’s Theorem states that – A linear active network consisting of the 
independent or dependent voltage source and current sources and the 
various circuit elements can be substituted by an equivalent circuit 
consisting of a current source in parallel with a resistance. The current 
source being the short-circuited current across the load terminal and the 
resistance being the internal resistance of the source network.  

The Norton’s theorems reduce the networks equivalent to the circuit 
having one current source, parallel resistance and load. Norton’s 
theorem is the converse of Thevenin’s Theorem. It consists of the 
equivalent current source instead of an equivalent voltage source as in 
Thevenin’s theorem. 

The determination of internal resistance of the source network is identical 
in both the theorems. 

In the final stage that is in the equivalent circuit, the current is placed in 
parallel to the internal resistance in Norton’s Theorem whereas in 
Thevenin’s Theorem the equivalent voltage source is placed in series with 
the internal resistance. 

Explanation of Norton’s Theorem:To understand Norton’s Theorem in 
detail, let us consider a circuit diagram given below 

 

 

 

 
 

 

 

 

Fig 10.30 Norton’s Theorem circuit 
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In order to find the current through the load resistance IL as shown in the 
circuit diagram above, the load resistance has to be short-circuited as 
shown in the diagram below: 

 

 

 

 

 

 

 

 

 

Fig 10.31 Fig 10.32 Circuit for calculating Isc 

Now, the value of current I flowing in the circuit is found out by the 
equation 

 
And the short-circuit current ISC is given by the equation shown below: 

 
Now the short circuit is removed, and the independent source is 
deactivated as shown in the      circuit diagram below and the value of the 
internal resistance is calculated by: 

 

 

 

 

 

 

 
 

Fig 10.32 Circuit for calculating Rint UGPHS-102/271
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As per Norton’s Theorem, the equivalent source circuit would contain a 
current source in parallel to the internal resistance, the current source 
being the short-circuited current across the shorted terminals of the load 
resistor. The Norton’s Equivalent circuit is represented as 

Fig 10.33 Norton’s Equivalent circuit 

Finally, the load current IL calculated by the equation shown below 

Where, 

• IL is the load current

• Isc is the short circuit current

• Rint is the internal resistance of the circuit

• RL is the load resistance of the circuit

Steps for Solving a Network Utilizing Norton’s Theorem 

Step 1 – Remove the load resistance of the circuit. 

Step 2 – Find the internal resistance Rint of the source network by 
deactivating the constant sources. 

Step 3 – Now short the load terminals and find the short circuit current 
ISC flowing through the shorted load terminals using conventional network 
analysis methods. 
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Step 4 – Norton’s equivalent circuit is drawn by keeping the internal 
resistance Rint in parallel with the short circuit current ISC. 

Step 5 – Reconnect the load resistance RL of the circuit across the load 
terminals and find the current through it known as load current IL. 

This is all about Norton’s Theorem. 

Maximum Power Transfer Theorem : 

Maximum Power Transfer Theorem states that – A resistive load, being 
connected to a DC network, receives maximum power when the load 
resistance is equal to the internal resistance known as (Thevenin’s 
equivalent resistance) of the source network as seen from the load 
terminals. The Maximum Power Transfer theorem is used to find the load 
resistance for which there would be the maximum amount of power 
transfer from the source to the load. 

The maximum power transfer theorem is applied to both the DC and AC 
circuit. The only difference is that in the AC circuit the resistance is 
substituted by the impedance. 

The maximum power transfer theorem finds their applications in 
communication systems which receive low strength signal. It is also used 
in speaker for transferring the maximum power from an amplifier to the 
speaker.  

Explanation of Maximum Power Transfer Theorem: 

A variable resistance RL is connected to a DC source network as shown in 
the circuit diagram in figure A below and the figure B represents the 
Thevenin’s voltage VTH and Thevenin’s resistance RTH of the source 
network. 

The aim of the Maximum Power Transfer theorem is to determine the 
value of load resistance RL, such that it receives maximum power from the 
DC source. 

Fig 10.34 (A) Circuit diagram (B) Thevenin’s voltage VTH and 
Thevenin’s resistance RTH   
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Considering figure B the value of current will be calculated by the 
equation shown below 

While the power delivered to the resistive load is given by the equation 

Putting the value of I from the equation (1) in the equation (2) we will get 

PL can be maximized by varying RL and hence, maximum power can be 
delivered when (dPL/dRL) = 0 

However, 

But as we know, (dPL/dRL) = 0 

Therefore, 

Which gives 
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Hence, it is proved that power transfer from a DC source network to a 
resistive network is maximum when the internal resistance of the DC 
source network is equal to the load resistance. 

Again, with RTH = RL, the system is perfectly matched to the load and the 
source, thus, the power transfer becomes maximum, and this amount of 
power Pmax can be obtained by the equation shown below: 

Equation above gives the power which is consumed by the load. The 
power transfer by the source will also be the same as the power consumed 
by the load, i.e. above equation as the load power and the source power 
being the same. 

Thus, the total power supplied is given by the equation 

During Maximum Power Transfer the efficiency ƞ becomes: 

The concept of Maximum Power Transfer theorem is that by making the 
source resistance equal to the load resistance, which has wide application 
in communication circuits where the magnitude of power transfer is 
sufficiently small. To achieve maximum power transfer, the source and the 
load resistance are matched and with this, efficiency becomes 50% with 
the flow of maximum power from the source to the load. 

In the Electrical Power Transmission system, the load resistance being 
sufficiently greater than the source resistance, it is difficult to achieve the 
condition of maximum power transfer. 

In power system emphasis is given to keep the voltage drops and the line 
losses to a minimum value and hence the operation of the power system, 
operating with bulk power transmission capability, becomes uneconomical UGPHS-102/275
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if it is operating with only 50% efficiency just for achieving maximum 
power transfer. 

Hence, in the electrical power transmission system, the criterion of 
maximum power transfer is very rarely used. 

Steps for Solving Network Using Maximum Power Transfer Theorem 

Following steps are used to solve the problem by Maximum Power 
Transfer theorem 

Step 1 – Remove the load resistance of the circuit. 

Step 2 – Find the Thevenin’s resistance (RTH) of the source network 
looking through the open-circuited load terminals. 

Step 3 – As per the maximum power transfer theorem, this RTH is the load 
resistance of the network, i.e., RL = RTH that allows maximum power 
transfer. 

Step 4 – Maximum Power Transfer is calculated by the equation shown 
below 

This is all about Maximum Power Transfer Theorem. 

Superposition Theorem: 

Superposition theorem states that in any linear, active, bilateral network 
having more than one source, the response across any element is the sum 
of the responses obtained from each source considered separately and all 
other sources are replaced by their internal resistance. The superposition 
theorem is used to solve the network where two or more sources are 
present and connected  

In other words, it can be stated as if a number of voltage or current sources 
are acting in a linear network, the resulting current in any branch is the 
algebraic sum of all the currents that would be produced in it when each 
source acts alone while all the other independent sources are replaced by 
their internal resistances. 

It is only applicable to the circuit which is valid for the ohm’s law (i.e., for 
the linear circuit). 

Explanation of Superposition Theorem: 

Let us understand the superposition theorem with the help of an example. 
The circuit diagram is shown below consists of two voltage sources V1 and 
V2. 
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Fig 10.35 Circuit for Superposition theorem 

First, take the source V1 alone and short circuit the V2 source as shown in 
the circuit diagram below: 

Fig 10.36 Circuit for Superposition theorem with source V1

Here, the value of current flowing in each branch, i.e. i1, i2 and i3 is 
calculated by the following equations. 

The difference between the above two equations gives the value of the 
current i3’ 
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Now, activating the voltage source V2 and deactivating the voltage source 
V1 by short-circuiting it, find the various currents, i.e. i1, i2, i3 flowing in 
the circuit diagram shown below: 

Fig 10.37 Circuit for Superposition theorem with source V2

Here, 

And the value of the current i3 will be calculated by the equation shown 
below: 

As per the superposition theorem, the value of current i1, i2, i3 is now 
calculated as: 

The direction of the current should be taken care of while finding the 
current in the various branches. 

Steps for Solving network by Superposition Theorem : 

Considering the circuit diagram A, let us see the various steps to solve the 
superposition theorem: 
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Fig 10.38 (A) Circuit diagram with both source (B) with E1 (C) with E2

Step 1 – Take only one independent source of voltage or current and 
deactivate the other sources. 

Step 2 – In the circuit diagram B shown above, consider the source E1 and 
replace the other source E2 by its internal resistance. If its internal 
resistance is not given, then it is taken as zero and the source is short-
circuited. 

Step 3 – If there is a voltage source than short circuit it and if there is a 
current source then just open circuit it. 

Step 4 – Thus, by activating one source and deactivating the other source 
find the current in each branch of the network. Taking the above example 
find the current I1, I2 and I3. 

Step 5 – Now consider the other source E2 and replace the source E1 by its 
internal resistance r1 as shown in the circuit diagram C. 

Step 6 – Determine the current in various sections, I1, I2 and I3. 

Step 7 – Now to determine the net branch current utilizing the 
superposition theorem, add the currents obtained from each individual 
source for each branch. 

Step 8 – If the current obtained by each branch is in the same direction 
then add them and if it is in the opposite direction, subtract them to obtain 
the net current in each branch. 

The actual flow of current in the circuit C will be given by the equations 
shown below: 
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Thus, in this way, we can solve superposition theorem. 

Reciprocity Theorem: 

Reciprocity Theorem states that – In any branch of a network or circuit, 
the current due to a single source of voltage (V) in the network is equal to 
the current through that branch in which the source was originally placed 
when the source is again put in the branch in which the current was 
originally obtained. This theorem is used in the bilateral linear network 
which consists of bilateral components.  

In simple words, we can state the reciprocity theorem as when the places 
of voltage and current source in any network are interchanged the amount 
or magnitude of current and voltage flowing in the circuit remains the 
same. 

This theorem is used for solving many DC and AC network which have 
many applications in electromagnetism electronics. These circuits do not 
have any time-varying element. 

Explanation of Reciprocity Theorem 

The location of the voltage source and the current source may be 
interchanged without a change in current. However, the polarity of the 
voltage source should be identical with the direction of the branch current 
in each position. 

The Reciprocity Theorem is explained with the help of the circuit diagram 
shown below 

Fig 10.39 Circuit diagram for Reciprocity Theorem 

The various resistances R1, R2, R3 is connected in the circuit diagram 
above with a voltage source (V) and a current source (I). It is clear from 
the figure above that the voltage source and current sources are 
interchanged for solving the network with the help of Reciprocity 
Theorem. 
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The limitation of this theorem is that it is applicable only to single-source 
networks and not in the multi-source network. The network where 
reciprocity theorem is applied should be linear and consist of resistors, 
inductors, capacitors and coupled circuits. The circuit should not have any 
time-varying elements. 

Steps for Solving a Network Utilizing Reciprocity Theorem 

Step 1 – Firstly, select the branches between which reciprocity has to be 
established. 

Step 2 – The current in the branch is obtained using any conventional 
network analysis method. 

Step 3 – The voltage source is interchanged between the branch which is 
selected. 

Step 4 – The current in the branch where the voltage source was existing 
earlier is calculated. 

Step 5 – Now, it is seen that the current obtained in the previous 
connection, i.e., in step 2 and the current which is calculated when the 
source is interchanged, i.e., in step 4 are identical to each other. 

SAQ 3: 

a) State the Thevenin theorum and Nortan theorem?

b) Write the duality between Thevenin theorum and Nortan
theorem?

c) State the maximum power transfer theorem and write where
its used?

d) State the Superposition and Recipeocity theorem?

e) In the circuit given below the maximum power that can be
transferred from the source voltage is
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Examples: 

Q1 Consider the below circuit in which determine the value of the load 
resistance that receives the maximum power from the supply source and 
the maximum power under the maximum power transfer condition. 

Solution: 

Disconnect the load resistance from the load terminals a and b. To 
represent the given circuit as Thevenin’s equivalent, we are to determine 
the Thevenin’s voltage VTH and Thevenin’s equivalent resistance RTH. 

The Thevenin’s voltage or voltage across the terminals ab is Vab = Va – Vb 

Va = V × R2 / (R1 + R2) 

= 30 × 20 /×(20 + 15) 

= 17.14 V 

Vb = V × R4/ (R3 + R4) 

= 30 × 5 /(10 + 5) 

= 10 V 

Vab = 17.14 – 10 

= 7.14 V 

VTH = Vab = 7.14 Volts 
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Calculate the Thevenin’s equivalent resistance RTH by replacing sources 
with their internal resistances (here assume that voltage source has zero 
internal resistance so it becomes a short circuited). 

Thevenin’s equivalent resistance or resistance across the terminals ab is 

RTH = Rab = [R1R2 / (R1 + R2)] + [R3R4 /(R3 + R4)] 

= [(15 × 20) / (15 + 20)] + [(10 × 5) / (10+ 5)] 

= 8.57 + 3.33 

RTH = 11.90 Ohms 

The Thevenin’s equivalent circuit with above calculated values by 
reconnecting the load resistance is shown below. 

From the maximum power transfer theorem, RL value must equal to the 
RTH to deliver the maximum power to the load. 

Therefore, RL = RTH= 11.90 Ohms 

And the maximum power transferred under this condition is, 

Pmax = V2TH / 4 RTH 

= (7.14)2 / (4 × 11.90) 

= 50.97 / 47.6 

= 1.07 Watts UGPHS-102/283
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Q2 Using the superposition theorem, determine the voltage drop and 
current across the resistor 3.3K as shown in figure below. 

Solution: 

Step 1: Remove the 8V power supply from the original circuit, such that 
the new circuit becomes as the following and then measure voltage across 
resistor. 

Here 3.3K and 2K are in parallel, therefore resultant resistance will be 
1.245K.  

Using voltage divider rule voltage across 1.245K will be 

V1= [1.245/(1.245+4.7)]*5 = 1.047V 

Step 2: Remove the 5V power supply from the original circuit such that 
the new circuit becomes as the following and then measure voltage across 
resistor. 
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Here 3.3K and 4.7K are in parallel, therefore resultant resistance will be 
1.938K. 

Using voltage divider rule voltage across 1.938K will be 

V2= [1.938/(1.938+2)]*8 = 3.9377V 

Therefore voltage drop across 3.3K resistor is V1+V2 = 
1.047+3.9377=4.9847V. 

Q3 For the circuit shown in fig.8.4 (a), find the current IL through 6 Ω 
resistor using Thevenin’s theorem.  

Solution: 

Step-1: Disconnect 6 Ω from the terminals ‘a’ and ‘b’ and the 
corresponding circuit diagram. Consider point ‘g’ as ground potential and 
other voltages are measured with respect to this point. 

Step-2: Apply any suitable method to find the Thevenin’s voltage (VTh ) 
(or potential between the terminals ‘a’ and ‘b’). KVL is applied around the 
closed path ‘gcag’ to compute Thevenin’s voltage. 
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Step-3: Thevenin’s resistance RTh can be found by replacing all sources 
by their internal resistances ( all voltage sources are short-circuited and 
current sources are just removed or open circuited) 

Step-4: Thevenin’s equivalent circuit is now equivalently represents the 
original circuit 

Q4. For the given circuit, calculate the current flows through the 5Ω 
resistor using Norton’s theorem. 

Step 1 

To simplify the difficulty of the problem, replace the given current source 
into its equivalent voltage source. So, redraw the circuit with the 
equivalent voltage source and consider it for the analysis. 
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While converting the source, perform addition of 2Ω resistor with 8Ω 
(they are in series) and get 10Ω resistor for the circuit. 

The circuit after the transformation of the current source to a voltage 
source is shown below. 

We know that current select a path with low resistance and a short circuit 
path is considered as zero resistance. 

Since a short circuit appears before the 6Ω and 4Ω resistors, all the current 
will flow to the short circuit only and no current will flow to the 6Ω and 
4Ω resistors. So Norton’s current can be calculated as follows. 

Hence, the norton’s current for the given circuit is 8 Amperes. 

Step 3 

 The next step is to find the Norton’s or thevenin’s equivalent resistance of 
the circuit. 

To find the thevenin’s resistance of the network, remove the load resistor 
and replace the 80V source by a short circuit. Now apply network 
reduction techniques and find the network resistance. 

Simply, you can add the 6Ω and 4Ω resistors to have a 10Ω resistor in the 
circuit. 
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The norton’s resistance of the network is given as 

Step 4 

 Now draw Norton’s equivalent circuit with norton’s current source in 
parallel with thevenin’s resistance. Add the load resistor in parallel with 
the above circuit and apply current division rule to find the load current. 

The load current is calculated as 

Q5.Resistors of R1= 10Ω, R2 = 4Ω and  R3 = 8Ω are connected up to two 
batteries (of negligible resistance) as shown. Find the current through each 
resistor. 

Solution: 
Assume currents to flow in directions indicated by arrows. Apply KCL on 
Junctions C and A. 
Therefore, current in mesh ABC = i1

Current in Mesh CA = i2 
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Then current in Mesh CDA = i1 – i2 

Now, Apply KVL on Mesh ABC, 20V are acting in clockwise direction. 
Equating the sum of IR products, we get; 

10i1 + 4i2 = 20 ……………. (1) 

In mesh ACD, 12 volts are acting in clockwise direction, then: 

8(i1–i2) – 4i2= 12 

8i1 – 8i2 – 4i2= 12 

8i1 – 12i2 = 12 ……………. (2) 

Multiplying equation (1) by 3; 

30i1 + 12i2 = 60 

Solving for i1

30i1 + 12i2 = 60 

8i1 – 12i2 = 12 

______________ 
38i1 = 72 

The above equation can be also simplified by Elimination or Cramer’s 
Rule. 

i1 = 72/38 = 1.895 Amperes = Current in 10 Ohms resistor 

Substituting this value in (1), we get: 

10(1.895) + 4i2 = 20 

4i2 = 20 – 18.95 

i2 = 0.263 Amperes = Current in 4 Ohms Resistors. 

Now, 
i1 – i2 = 1.895 – 0.263 = 1.632 Amperes 

Q6. Find v1 and v2 in the following circuit (note: the arrows are signifying 
the positive position of the box and the negative is at the end of the box) 
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Loop 2 

Q7. Find the current i and voltage v over the each resistor. 

Solution: 

KVL equations for voltages 

Using Ohm’s Law 

Substituting into KVL equation 

10.8 SUMMARY 

1. Ac circuits are those circuits, Whose excitation element is an AC
source. Unlike DC source which is constant AC source has
variable current and voltage at regular intervals of time.
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2. For alternating current passing through the resistor, the ratio of
current and voltage depends upon the phase and frequency of the
supply

3. A coil of thin wire wrapped on a cylindrical core is known as an
Inductor. The core can be an air core (hollow laminated) or an iron
core.

4. When AC supply voltage is applied to a capacitor, the rate of
charging and discharging depends upon the supply frequency.
Voltage across the capacitor lags the current flowing through it by
90 degrees.

5. Kirchhoff’s Current Law states that” the algebraic sum of all the
currents at any node point or a junction of a circuit is zero”.

Σ I = 0

6. Kirchhoff’s Voltage Law states that the algebraic sum of the
voltages (or voltage drops) in any closed path of a network that is
transverse in a single direction is zero

Σ E + Σ V = 0

7. A closed path of a network is called a loop, The most elementary
form of a loop which cannot be further divided is called a mesh.

8. The Nodal Voltage Analysis is a method to solve the electrical
network. It is used where it is essential to compute all branch
currents.The nodal voltage analysis method determines the voltage
and current by using the nodes of the circuit.

9. Mesh Current Analysis Method is used to analyze and solve the
electrical network having various sources or the circuit consisting
of several meshes or loop with a voltage or current sources. It is
also known as the Loop Current Method.

10. A constant voltage source is a power source which provides a
constant voltage to a load, even despite changes and variance in
load resistance. In other words, the voltage which a constant
voltage source provides is steady, even if the resistance of the load
varies.

11. A constant current source is a power generator whose internal
resistance is very high compared with the load resistance it is
giving power to. Because its internal resistance is so high, it can
supply a constant current to a load whose resistance value varies,
even over a wide range.

12. statement of Thevenin’s Theorem is that any linear active network
consisting of independent or dependent voltage and current source UGPHS-102/291
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and the network elements can be replaced by an equivalent circuit 
having a voltage source in series with a resistance. 

13. Norton’s Theorem states that – A linear active network consisting
of the independent or dependent voltage source and current sources
and the various circuit elements can be substituted by an equivalent
circuit consisting of a current source in parallel with a resistance.

14. Maximum Power Transfer Theorem states that – A resistive
load, being connected to a DC network, receives maximum power
when the load resistance is equal to the internal resistance known
as (Thevenin’s equivalent resistance) of the source network as seen
from the load terminals.

15. Superposition theorem states that in any linear, active, bilateral
network having more than one source, the response across any
element is the sum of the responses obtained from each source
considered separately and all other sources are replaced by their
internal resistance.

16. Reciprocity Theorem states that – In any branch of a network or
circuit, the current due to a single source of voltage (V) in the
network is equal to the current through that branch in which the
source was originally placed when the source is again put in the
branch in which the current was originally obtained.

10.9 TERMINAL QUESTION 

1. Explain various type of electrical network?

2. Explain T and Pi network and their network equivalent?

3. Explain Kirchoff’s voltage and current laws and explain with
suitable diagram?

4. Explain the concept of constant current and constant voltage
source?

5. Write and state Thevenin theorem and draw Thevenin equivalent
circuit also write the steps to calculate Thevenin’s voltage and
Thevenin’s resistance?

6. Write and state Norton theorem and draw Norton equivalent
circuit also write the steps to calculate sort circuit current and 
Norton’s resistance? 

7. State the maximum power transfer theorem and drive the expersion
for maximum power?
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8. Explain why the efficiency of maximum power transfer theorem is
50%?

9. State super position Theorem and Reciprocity theorem?

10. Find the equivalent star network.

11. Find the current in the circuit.

12. In the circuit given below, the value of RL for maximum power
transfer is...
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13. Use Thévenin's theorem to determine VO.

14. Find Ix using superposition theorem

UGPHS-102/294

O
R

A
C

LE
-0

01



UGPHS-102/295

O
R

A
C

LE
-0

01



O
R

A
C

LE
-0

01

UGPHS-102/296


	8.3 TRANSIENT PHENOMENON AND GALVNOMETER
	Transient phenomena is Rapidly changing actions occurring in a circuit during the interval between closing of a switch and settling to a steady-state condition, or any other temporary actions occurring after some change in a circuit.
	Galvanometer: -
	RC Circuit: -
	Transient response :-
	Fig  8.23 Time response of RLC circuit
	Overdamped response :-
	Underdamped response :-
	Critically damped response :-


	8.6 Theory of Moving Coil Galvanometer
	 Transient phenomena are Rapidly changing actions occurring in a circuit during the interval between closing of a switch and settling to a steady-state condition, or any other temporary actions occurring after some change in a circuit.
	 The galvanometer is the device used for detecting the presence of small current and voltage or for measuring their magnitude.
	 The overdamped response (ζ > 1) is the overdamped response is a decay of the transient current without oscillation.
	Vector Rotation of the j-operator
	Fig 9.1 Vector Rotation of the j-operator
	Peak Value :
	Form Factor :
	Lagging Power Factor :
	Active Power
	Reactive Power
	Apparent Power


	9.6 RL Series Circuit
	Parallel RLC Circuit Analysis :
	Phasor Diagram for a Parallel RLC Circuit :
	Types of Electrical Circuits :
	DC Circuits:
	Series Circuits:
	Parallel Circuits:

	AC circuits :
	Simple AC Circuit using resistance :
	AC Circuit using pure inductance:
	AC Circuit with a capacitor:

	T-connected and Equivalent Star Network :
	Pi-connected and Equivalent Delta Network:

	Delta to Star Transformation:
	Delta to Star Network:
	Fig 10.8 Delta to Star Network
	Delta to Star Transformations Equations:
	Star to Delta Network :
	Star to Delta Transformation Equations :

	10.5 Kirchhoff’s Current Law
	Node :
	Junction :
	Loop:
	A closed path of a network is called a loop. ABDA, BCDB are loops in the above circuit diagram shown.
	Mesh :


	Nodal Voltage Analysis Method :
	Steps for Solving Network by Nodal Voltage Analysis Method:

	Mesh Current Analysis Method:
	Steps for Solving Network by Mesh Current Method :
	Matrix Form:


	Constant Voltage Source :
	A Constant Voltage Source Work :
	Constant Voltage Source Circuit:

	Constant Current Source :
	Fig 10.21 Constant Current Source symbol
	A Constant Current Source Work:
	Constant Current Source Circuit :

	10.6 Thevenin’s Theorem
	Explanation of Thevenin’s Theorem:

	Norton’s Theorem :
	Steps for Solving a Network Utilizing Norton’s Theorem

	Maximum Power Transfer Theorem :
	Explanation of Maximum Power Transfer Theorem:

	Superposition Theorem:
	Explanation of Superposition Theorem:
	Steps for Solving network by Superposition Theorem :

	Reciprocity Theorem:
	Explanation of Reciprocity Theorem
	7. A closed path of a network is called a loop, The most elementary form of a loop which cannot be further divided is called a mesh.


	Blank Page
	Blank Page



