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Unit 1 Electric charge, force and fields 

 

Structure 

1.1 Introduction 

1.2 Objective 

1.3 Concept of charge, Coulomb’s law, electric field, electric flux. 

1.4 Gauss law (statement and derivation, integral and differential 

form). 

1.5 Application of Gauss law for charge distribution (linear, 

cylindrical, spherical). 

1.6 Coulomb’s law from Gauss law. 

1.7 Electric field due to charged ring, charged infinite rod and 

charged disc from Coulomb’s law. 

1.8 Laws of electrostatics 

1.9 Summary 

1.10 Terminal Questions 

1.1 Introduction: 

The process of supplying the electric charge (electrons) to an object or 

losing the electric charge (electrons) from an object is called charging. An 



uncharged object can be charged in different ways: charging by friction, 

charging by conduction, charging by induction.  

Electric charge, basic property of matter carried by some elementary 

particles that governs how the particles are affected by an electric or 

magnetic field. Electric charge, which can be positive or negative, occurs 

in discrete natural units and is neither created nor destroyed. 

Coulomb's law states that the electrical force between two charged objects 

is directly proportional to the product of the quantity of charge on the 

objects and inversely proportional to the square of the separation distance 

between the two objects. 

Electric field, an electric property associated with each point in space 

when charge is present in any form. The magnitude and direction of 

the electric field are expressed by the value of E, called electric 

field strength or electric field intensity or simply the electric field. 

Electric flux, property of an electric field that may be thought of as the 

number of electric lines of force (or electric field lines) that intersect a 

given area. Electric field lines are considered to originate on 

positive electric charges and to terminate on negative charges. 

Gauss Law states that the total electric flux out of a closed surface is equal 

to the charge enclosed divided by the permittivity. The electric flux in an 

area is defined as the electric field multiplied by the area of the surface 

projected in a plane and perpendicular to the field. 

The law relates the flux through any closed surface and the net charge 

enclosed within the surface. The law states that the total flux of the electric 



field E over any closed surface is equal to 1/?o times the net charge 

enclosed by the surface. 

Differential form of Gauss law states that the divergence of electric field E 

at any point in space is equal to 1/ε0 times the volume charge density ρ, at 

that point. Del.E=ρ/ε0. Where ρ is the volume charge density (charge per 

unit volume) and ε0 the permittivity of free space. It is one of the 

Maxwell's equations. 

The area integral of the electric field over any closed surface is equal to 

the net charge enclosed in the surface divided by the permittivity of space. 

The first two of Maxwell's equations let us calculate the electric 

field (magnitude and direction) due to any static charge distribution. ... If 

a charge distribution has a high degree of symmetry, 

then Gauss' law alone can be used to determine the magnitude of 

the electric field. 

Gauss's law can be used to derive Coulomb's law, and vice versa. Gauss's 

law states that: The net outward normal electric flux through any closed 

surface is proportional to the total electric charge enclosed within that 

closed surface. 

The electric field of a ring of charge on the axis of the ring can be found 

by superposing the point charge fields of infinitesimal charge elements. 

The ring field can then be used as an element to calculate the electric 

field of a charged disc. 

When you rub the plastic rod (polyethylene terephthalate, glycol modified, 

or PETG) with the wool cloth, the rod charges negative. When you rub the 

glass rod with the silk, the rod charges positive. If the charge present on 



the rod is positive, the electric field at P would point away from the rod. If 

the rod is negatively charged, the electric field at P would point towards 

the rod. 

Coulomb's law states that: 'The magnitude of the electrostatic force of 

attraction or repulsion between two point charges is directly proportional 

to the product of the magnitudes of charges and inversely proportional to 

the square of the distance between them. The force is along the straight 

line joining them. 

Electrostatics, the study of electromagnetic phenomena that occur when 

there are no moving charges—i.e., after a static equilibrium has been 

established. Charges reach their equilibrium positions rapidly, because the 

electric force is extremely strong. 

Based on the same types of experiments like the one you performed, 

scientists were able to establish three laws of electrical charges: Opposite 

charges attract each other. Like charges repel each other. Charged objects 

attract neutral objects. 

 

 

1.2 Objective: 

After studying this unit you should be able to 

 Explain and identify Concept of charge, Coulomb’s law, electric 

field, electric flux. 

 Study and identify Gauss law (statement and derivation, integral and 

differential form). 



 Explain and identify Application of Gauss law for charge 

distribution (linear, cylindrical and spherical). 

 Study and identify Coulomb’s law from Gauss law. 

 Explain Electric field due to charged ring, charged infinite rod and 

charged disc from Coulomb’s law. 

 Study and identify Laws of electrostatics. 

 

1.3 Concept of charge, Coulomb’s law, Electric field, Electric flux: 

Concept of charge: 

 There are two kinds of charge, positive and negative 

 Like charges repel, unlike charges attract 

 Positive charge comes from having more protons than electrons; 

negative charge comes from having more electrons than protons 

 Charge is quantized, meaning that charge comes in integer multiples 

of the elementary charge e 

 Charge is conserved 

Probably everyone is familiar with the first three concepts, but what does it 

mean for charge to be quantized? Charge comes in multiples of an 

indivisible unit of charge, represented by the letter e. In other words, 

charge comes in multiples of the charge on the electron or the proton. 

These things have the same size charge, but the sign is different. A proton 

has a charge of +e, while an electron has a charge of -e. 



Electrons and protons are not the only things that carry charge. Other 

particles (positrons, for example) also carry charge in multiples of the 

electronic charge. Those are not going to be discussed, for the most part, in 

this course, however. 

Putting "charge is quantized" in terms of an equation, we say: 

q = n e 

q is the symbol used to represent charge, while n is a positive or negative 

integer, and e is the charge of electrons, 1.60 x 10
-19

 Coulombs. 

The Law of Conservation of Charge: 

The Law of conservation of charge states that the net charge of an isolated 

system remains constant. 

If a system starts out with an equal number of positive and negative 

charges, there is nothing we can do to create an excess of one kind of 

charge in that system unless we bring in charge from outside the system 

(or remove some charge from the system). Likewise, if something starts 

out with a certain net charge, say +100 e, it will always have +100 e unless 

it is allowed to interact with something external to it. 

Charge can be created and destroyed, but only in positive-negative pairs. 

Table of elementary particle masses and charges: 

 



Coulomb’s law: 

If two eclectically charge bodies are placed nearby each other there will be 

an attraction or a repulsion force acting on them depending upon the 

nature of the charge of the bodies. The formula for the force acting 

between two electrically charge bodies was first developed by Charles-

Augustin de Coulomb and the formula he established for determining the 

value of force acting to nearby charge objects in known as Coulomb’s law. 

In his law, he stated that to similarly charged (either positive or negative) 

bodies will repeal each other and two dissimilarly charged bodies (one is 

positively charged and other is negatively charged) will attract each other. 

He had also stated that the force acting between the electrically charged 

bodies is proportional to the product of the charge of the charged bodies 

and inversely proportional to the square of the distance between the center 

of the charged bodies. 

Coulomb’s Law Formula: 

Let us imagine, Q1 and Q2 are the electrical charges of two objects. d is the 

distance between the center of the objects. 

 

Fig 1.1 Coulomb’s Law 



The charged objects are placed in a medium of permittivity        

Then we can write the force ‘F’ as: 

 

First Law: 

 

Fig 1.2 Coulomb’s First Law 

Like charged objects (bodies or particles) repel each other and unlike 

charged objects (bodies or particles) attract each other. 

Second Law: 

The force of attraction or repulsion between two electrically charged 

objects is directly proportional to the magnitude of their charge and 

inversely proportional to the square of the distance between them. Hence, 

according to the Coulomb’s second law, 

 

Where, 

1. ‘F’ is the repulsion or attraction force between two charged objects. 



2. ‘Q1’ and ‘Q2’ are the electrical charged of the objects. 

3. ‘d’ is distance between center of the two charged objects. 

4. ‘k’ is a constant that depends on the medium in which charged 

objects are placed. In S.I. system, as well as in M.K.S. system 

k=1/4πεoεr. Hence, the above equation becomes. 

 

The value of εo = 8.854 × 10
-12

 C
2
/Nm

2
. 

 

Hence, Coulomb’s law can be written for medium as, 

 

Then, in air or vacuum εr = 1. Hence, Coulomb’s law can be written for air 

medium as, 

 

The value of εr would change depends on the medium. The expression for 

relative permittivity εr is as follows; 



 

Principle of Coulomb’s Law: 

Suppose if we have two charged bodies one is positively charged and one 

is negatively charged, then they will attract each other if they are kept at a 

certain distance from each other. Now if we increase the charge of one 

body keeping other unchanged, the attraction force is obviously increased. 

Similarly, if we increase the charge of the second body keeping the first 

one unchanged, the attraction force between them is again increased. 

Hence, the force between the charge bodies is proportional to the charge of 

either bodies or both. 

 

Now, by keeping their charge fixed at Q1 and Q2 if you bring them nearer 

to each other the force between them increases and if you take them away 

from each other the force acting between them decreases. If the distance 

between the two charge bodies is d, it can be proved that the force acting 

on them is inversely proportional to d
2
. 

 

This development of force between two same charged bodies is not the 

same in all mediums. As we discussed in the above formulas, εr would 

change for various medium. So, depends on the medium, creation of force 

can be varied. 



 

Limitation of Coulomb’s Law: 

1. Coulomb’s law is valid, if the average number of solvent molecules 

between the two interesting charge particles should be large. 

2. Coulomb’s law is valid, if the point charges are at rest. 

3. It is difficult to apply the Coulomb’s law when the charges are in 

arbitrary shape. Hence, we cannot determine the value of distance‘d’ 

between the charges when they are in arbitrary shape. 

Electric Field: 

An electric field is afield or space around an electrically charge object 

where any other electrically charged object will experience a force. 

An electric field is measured by a term known as electric field intensity. If 

we place a positive unit charge near a positively charged object, the 

positive unit charge will experience a repulsive force. Due to this force, 

the positive unit charge will move away from the said charged object. The 

imaginary line through which the unit positive charge moves, is known as 

line of force. 

 

https://www.electrical4u.com/electric-field-strength-or-electric-field-intensity/
https://www.electrical4u.com/electric-lines-of-force/


 

Fig 1.3 Electric Field due to positive charge 

 

Similarly, if we place a positive unit in the field of a negatively charged 

object, the unit positive charge will experience an attractive force. Due to 

this force, the unit positive charge will come closer to the said negatively 

charged object. In that case, line through which the positive unit charge 

moves, is called line of force. 

 

 

Fig 1.4 Electric Field due to negative charge 

 

We can place a unit positive anywhere surround the positively charged 

object and each position where we place it, the unit positive charge follows 

a separate line force to move. Hence, we can say, the lines of force get 

radiated or come out from this charged object. 

https://www.electrical4u.com/electric-lines-of-force/
https://www.electrical4u.com/electric-lines-of-force/


 

 

Fig 1.5 Positive Charges 

But for a negatively charged object, these lines of force come into this 

negatively charged object. 

 

 

Fig 1.6 Negative Charges 

 

Electric Flux: 

https://www.electrical4u.com/electric-lines-of-force/


Electric flux is the rate of flow of the electric field through a given area. 

Electric flux is proportional to the number of electric field lines going 

through a virtual surface. 

 

Fig 1.7 Electric Flux 

Electric Flux: Electric flux visualized. The ring shows the surface 

boundaries. The red arrows for the electric field lines 

If the electric field is uniform, the electric flux passing through a surface 

of vector area S 



Is 

              

 where E is the magnitude of the electric field (having units of V/m), S is 

the area of the surface, and θ is the angle between the electric field lines 

and the normal ( perpendicular ) to S. 

For a non-uniform electric field, the electric flux dΦE through small 

surface area dS is given by 

                 

(the electric field, E, multiplied by the component of area perpendicular to 

the field). Gauss’  Law describes the electric flux over a surface S as the 

surface integral:  

  =∬SE⋅dSΦE=∬SE⋅dS 

 where E is the electric field and dS is a differential area on the closed 

surface S with an outward facing surface normal defining its direction. 

It is important to note that while the electric flux is not affected by charges 

that are not within the closed surface, the net electric field, E, in the Gauss’ 

Law equation, can be affected by charges that lie outside the closed 

surface. While Gauss’ Law holds for all situations, it is only useful for “by 

hand” calculations when high degrees of symmetry exist in the electric 

field. Examples include spherical and cylindrical symmetry. Electric flux 

has SI units of volt meters (V m), or, equivalently, Newton meters squared 

per coulomb (N m
2
 C

−1
). Thus, the SI base units of electric flux are 

kg·m
3
·s

−3
·A

−1
. 



1.4 Gauss law (statement and derivation, integral and differential 

form): 

 

Gauss Law: 

“The total electric flux over a closed surface in an electric field is equal 1/ 

εo  times the total charge enclosed by that surface” 

Mathematically it may be expressed as 

 

Where q is the net charge enclosed by the surface and εo is the permittivity 

(of free space) of the medium 

 

Proof of Gauss law of electrostatics (Integral Form): 

Consider a source producing the electric field E is a point charge +q 

situated at a point O inside a volume enclosed by an arbitrary closed 

surface S. let us consider a small area element dS around a point P on the 

surface where the electric field produced by the charge +q is E. if E is 

along OP and area vector dS is along the outward drawn normal to the area 

element dS. 

 



 

Fig 1.8 Gauss law of electrostatics (Integral Form) 

The electric field strength E at the point P is given by 

 

Then the electric flux over the surface, therefore 

 

Equation (3) becomes 

 



Or 

 

Equation (4) represents Gauss law (in integral form) for electrostatics for a 

single point charge (in integral form). 

 

Gauss law in Differential Form: 

Using divergence Theorem (Relates volume integral of divergence of a 

vector field to surface integral of the vector field)  

 

Using Equation (4) 

 

and Let a charge q be distributed over a volume V of the closed surface S 

and p be the charge density;  

then 



 

Substituting the value of net charge in terms of charge density, equation 

(6) becomes 

 

Or 

 

Or 

 

Equation (7) and (8) represent Gauss Law in differential form Differential 

form of Gauss law states that "the divergence of electric field E at any 

point in space is equal to 1/ε0 times the volume charge density,ρ, at that 

point". 

SAQ 1 

a) Explain. i) Concept of charge  ii) Electric field  iii) Electric flux 

b) Explain the Coulomb’s law? 



c) Write the equation of Gauss law for integral and differential form? 

d) Two point charges, QA = +8 μC and QB = -5 μC, are separated by a 

distance r = 10 cm. What is the magnitude of the electric force. The 

constant k = 8.988 x 109 Nm2C 

e) Two charged particles as shown in figure below. QP = +10 μC and 

Qq = +20 μC are separated by a distance r = 10 cm. What is the 

magnitude of the electrostatic force. 

 

 

1.5   Application of Gauss law for charge distribution (linear, 

cylindrical, spherical): 

 

Gaussian Surface of infinite wire (linear): 

Consider an infinitely long line of charge with the charge per unit length 

being λ. We can take advantage of the cylindrical symmetry of this 

situation. By symmetry, The electric fields all point radially away from the 

line of charge, there is no component parallel to the line of charge We can 

use a cylinder (with an arbitrary radius (r) and length (l)) centred on the 

line of charge as our Gaussian surface. 

https://physics.gurumuda.net/electric-force-problems-and-solutions.htm
https://byjus.com/physics/gaussian-surface/


 

Fig 1.9 Gaussian Surface of infinite wire (linear) 

As you can see in the above diagram, the electric field is perpendicular to 

the curved surface of the cylinder. Thus, the angle between the electric 

field and area vector is zero and cos θ = 1 

The top and bottom surfaces of the cylinder lie parallel to the electric field. 

Thus the angle between area vector and the electric field is 90 degrees and 

cos θ = 0. 

Thus, the electric flux is only due to the curved surface 

According to Gauss Law, 

Φ = → E.d → A 

Φ = Φcurved + Φtop + Φbottom 

Φ = → E . d → A = ∫E . dA cos 0 + ∫E . dA cos 90° + ∫E . dA cos 90° 

Φ = ∫E . dA × 1 

Due to radial symmetry, the curved surface is equidistant from the line of 

charge and the electric field in the surface has a constant magnitude 

throughout. 

https://byjus.com/physics/electric-field-of-point-charge/


Φ = ∫E . dA = E ∫dA = E . 2πrl 

The net charge enclosed by the surface is: 

qnet = λ.l 

Using Gauss theorem, 

Φ = E × 2πrl = qnet/ε0 = λl/ε0 

E × 2πrl = λl/ε0 

E = λ/2πrε0 

Gaussian Surface of Cylinder: 

When a flux or electric field is produced on the surface of a cylindrical 

Gaussian surface due to any of the following: 

 Uniform distribution of charge in an infinitely long line 

 Uniform distribution of charge in an infinite plane 

 Uniform distribution of charge on an infinitely long cylinder 

Consider a point charge P at a distance r having charge density λ of an 

infinite line charge. The axis of rotation for the cylinder of length h is the 

line charge, following is the charge q enclosed in the cylinder: 

q=λh 

Following is the flux out of the cylindrical surface with the differential 

vector area dA on surfaces a, b and c are given as: 

 



 

Fig 1.10 Gaussian Surface of Cylinder 

 

 

 

  =∬aEdAcos90∘+∬bEdAcos90∘+∬cEdAcos0∘ =E∬cdA ∬cdA=2πrh 

(which is the surface area of the cylinder) 

  =E2πrh   ==qϵ0 (by Gauss law) 

E2πrh=λhϵ0⇒E=λ2πϵ0r 

The above equation shows the cylindrical Gaussian surface with a uniform 

distribution of charges. 



Electric field due to uniformly charged spherical shell: 

 

Fig 1.11 Field at a point outside the shell 

 

Case (i) At a point outside the shell: 

Consider a charged shell of radius R (Fig 1.20a). Let P be a point outside 

the shell, at a distance r from the centre O. 

Let us construct a Gaussian surface with r as radius. The electric field E is 

normal to the surface. 

The flux crossing the Gaussian sphere normally in an outward direction is, 

 



It can be seen from the equation that, the electric field at a point outside 

the shell will be the same as if the total charge on the shell is concentrated 

at its centre. 

 Case (ii) At a point on the surface: 

The electric field E for the points on the surface of charged spherical shell 

is, 

 

Case (iii) At a point inside the shell: 

Consider a point P' inside the shell at a distance r' from the centre of the 

shell. Let us construct a Gaussian surface with radius r'. 

 

Fig 1.12 At a point inside the shell 

 

 

The total flux crossing the Gaussian sphere normally in an outward 

direction is 



 

since there is no charge enclosed by the gaussian surface, according to 

Gauss's Law 

 

(i.e) the field due to a uniformly charged thin shell is zero at all points 

inside the shell. 

1.6 Coulomb’s law from Gauss law: 

To derive Coulomb’s Law from gauss law or to find the intensity of 

electric field due to a point charge +q at any point in space using Gauss’s 

law, draw a Gaussian sphere of radius r at the centre of which charge +q is 

located. 

 

Fig 1.13 Coulomb’s law from Gauss law 

All the points on this surface are equivalent and according to the 

symmetric consideration the electric field E has the same magnitude at 

every point on the surface of the sphere and it is radially outward in 



direction. Therefore, for a area element dS around any point P on the 

Gaussian surface both E and dS are directed radially outward, that is ,the 

angle between E and dS is zero.  

Therefore, the flux passing through the area element dS ,that is, 

d φ =E.dS= EdS cos 0
0
=EdS 

Hence, the total flux through the entire Gaussian sphere is obtained as, 

Φ=∫EdS 

Or 

φ=E∫dS 

But ∫dS is the total surface area of the sphere and is equal to 4πr
2
, that is, 

Φ=E(4πr
2
)  ………………..(1) 

But according to Gauss’s law for electrostatics 

Φ=q/ε0 ……………………………(2) 

Where q is the charge enclosed within the closed surface 

By comparing equation (1) and (2) ,we get 

E(4πr
2
)=q/ε0 

Or 

E=q/4πε0r
2
 ………………..(3) 

The equation (3) is the expression for the magnitude of the intensity of 

electric field E at a point, distant r from the point charge +q. 

https://winnerscience.com/electromagnetic-field-theory/gauss-law-electrostatics-derivation/


In vector form,                       E=1/4πε0 q/r
2
 =1/4πε0qr/r

3
 

In a second point charge q0be placed at the point at which the magnitude of 

E is computed, then the magnitude of the force acting on the second 

charge q0would be 

F=q0E 

By substituting value of E from equation (3),we get 

F=qoq/4πε0r
2
 ……………..(4) 

The equation (4) represents the Coulomb’s Law and it is derived from 

gauss law. 

SAQ 2: 

a) What is Gaussian Surface of Cylinder 

b) What is Coulomb’s law from Gauss law. 

c) Write the equation Coulomb’s law from Gauss law. 

d) Determine the electric flux for a Gaussian surface that contains 100 

million electrons. 

e) A uniformly charged solid spherical insulator has a radius of 0.23 m. 

The total charge in the Volume is 3.2 pC. Find the E-field at a 

position of 0.14 m from the center of the sphere. 

 

1.7 Electric field due to charged ring, charged infinite rod and 

charged disc    from Coulomb’s law: 

Electric Field on the Axis of a Ring of Charge: 



 

Fig.1.14. Electric Field on the Axis of a Ring of Charge 

We determine the field at point P on the axis of the ring. It should be 

apparent from symmetry that the field is along the axis. The field dE due 

to a charge element dq is shown, and the total field is just the superposition 

of all such fields due to all charge elements around the ring. The 

perpendicular fields sum to zero, while the differential x-component of the 

field is 

 

Where, 

 

We now integrate, noting that r and x are constant for all points on the 

ring: 

 

 



This gives the predicted result. Note that for x much larger than a (the 

radius of the ring), this reduces to a simple Coulomb field. This must 

happen since the ring looks like a point as we go far away from it. Also, as 

was the case for the gravitational field, this field has extreme at x=+/-a. 

Electric field due to charged infinite rod: 

We will calculate the electric field of a line of charge distribution by 

superposing the point charge field of several infinitesimal charge elements. 

Let us consider a straight charged wire of length L. The line charge density 

of this charged wire is . We have to calculate the electric field at point P 

which is Z distance apart from the line charge distribution. The situation is 

shown in the figure below 

.  

Fig.1.15. Electric field due to charged infinite rod 

 

Let us consider an charge element of length dx at a distance x as shown in 

the figure. Charge contained within this element is λdx. The electric field 

at point P due to this charge element is 

 

and the radial part of the electric field from this charge element is, 



 

 

 

We will integrate over the whole charged wire to get the total radial 

electric field at point P due to this line charge distribution. 

 

 

Please be careful about the limit of integration. It runs from -a to b. 

Similarly, we can calculate the axial component of the electric field. 

 

 

In a symmetric case of a=b, this axial component vanishes and we are left 

with the radial component only. 



Electric field due to an infinitely long line charge distribution can be 

considered as a limiting case of the above solution. In this case a and b 

approach to the infinity. The axial component of the electric field vanishes 

again. Thus the electric field due to an infinitely long line charge 

distribution is 

 

and it does not have any axial component. This becomes obvious if we 

look at the axial symmetry of the problem. In the next section, we will 

exploit this symmetry to calculate the electric due to an infinitely long 

charged wire. 

Electric Field due to Infinitely Long Line Charge (Gauss’s Law 

Application): 

We have to calculate the electric field at point P due to an infinitely long 

charged wire of charge density. The situation is shown in the diagram 

below. As already mentioned, the system has a cylindrical symmetry. This 

has significantly simplified the problem and we can use Gauss’s law to 

calculate the electric field. Let us imagine a hypothetical cylindrical 

Gaussian surface as shown in the figure. Since the field is pointing radially 

outwards, the flux through the two ends of the cylinder is zero. Also, at 

every point on the cylindrical surface, the electric field is constant and is 

pointing normal to the surface. The surface area of the curved surface of 

length l is 2πrl . Thus total flux crossing through the cylindrical Gaussian 

surface is 2πrl. 



 

Fig.1.16. Electric Field due to Infinitely Long Line Charge 

Total charge enclosed within this Gaussian surface is λl. Now according to 

Gauss’s law 

 

 

Points to Remember: 

 For an infinitely long charged wire electric field is proportional to 

line charge density and inversely proportional to the radial distance. 

 In this case electric field is radial in nature and does not have any 

axial component. 

 For a finitely long charged wire electric field is complicated and has 

both axial and radial component. 

 However, in a symmetric case axial component vanishes and we are 

left with the radial component only. 



 

Charged Disk: 

Consider an insulated circular disk of radius R with a positive surface 

charge density of σ (charge per unit area). We will now calculate E at a 

point P, which is at a distance z from the disk along its central axis. 

Similar to the previous line of charge calculation, we will divide the disk 

into concentric rings and calculate the E by integrating. Let one of 

concentric rings have a radius of r and radial width of dr. 

 

Fig 1.17 electric field due to Charged Disk 

If σ is the charge per unit area and dA is the differential area of the ring, 

then the charge of the ring is 

dq = σ dA = σ (2πr dr) 

From the previous ring of charge calculation, dE due to flat ring is given 

by 

 



Integrating this over the surface of the disk and rearranging, we get E of a 

charged disk as follows: 

 

1.8      Laws of electrostatics: 

In physics, electrostatics deals with the phenomena and properties of 

stationary or slow-moving electric charges. Electrostatic phenomena arise 

from the forces that electric charges exert on each other and are described 

by Coulomb’s law. Even though electro statically induced forces seem to 

be rather weak. 

 

Fig 1.18 Electric field  

Coulomb’s Law of Electrostatics: 

We begin with the magnitude of the electrostatic force between two point 

charges q  and Q . It is convenient to label one of these charges, q , as a 

test charge, and call Q a source charge. As we develop the theory, more 

source charges will be added. If r  is the distance between two charges, 

then the force of electrostatic formula is: 

https://byjus.com/jee/coulombs-law/


 

Electric field: 

Electric field lines are useful for visualizing the electric field. Field lines 

begin on positive charge and terminate on negative charge. Electric field 

lines are parallel to the direction of the electric field, and the density of 

these field lines is a measure of the magnitude of the electric field at any 

given point. 

We show charge with “q” or “Q” and smallest unit charge is 1.6021 x 10-

19 Coulomb (C). One electron and a proton have same amount of charge. 

Positively Charged Particles: 

 In this, numbers of positive ions are larger than the numbers of negative 

ions. Means, the numbers of protons are larger than the number of 

electrons. To neutralize positively charged particles, electrons from the 

surroundings come to this particle until the number of protons and 

electrons become equal. 

Negatively Charged Particles: 

Similarly numbers of electrons are larger than the number of protons. To 

neutralize negatively charged particles, since protons cannot move and 

cannot come to negatively charged particles, electrons moves to the 

ground or any other particle around 

Neutral Particles:  

https://byjus.com/physics/electrons-and-photons/


Include equal numbers of protons and electrons. They have both protons, 

neutrons and electrons however, numbers of positive ions are equal to the 

numbers of negative ions. 

Electrostatics Examples: 

There are many examples of electrostatic phenomena: 

 The attraction of the plastic wrap to your hand after you removes it 

from a package. 

 The attraction of paper to a charged scale. 

 The apparently spontaneous explosion of grain silos 

 The damage of electronic components during manufacturing 

 Photocopier & laser printer operation 

 

SAQ 3: 

a) What is Electric field? 

b) What is Coulomb’s Law of Electrostatics? 

c) What is Positively Charged Particles? 

d) What is Negatively Charged Particles? 

 

 

Example: 



Q.1. The force between two identical charges separated by 1 cm is equal to 

90 N. What is the magnitude of the two charges? 

Solution: 

First, draw a force diagram of the problem 

 

Define the variables: 

F = 90 N 

q = charge of first body 

q = charge of second body 

r = 1 cm 

Use the Coulomb’s Law equation 

 

The problem says the two charges are identical, so 

q = q = q 

Substitute this into the equation 

 



Since we want the charges, solve for q 

 

 

Enter the values for the variables. Remember to convert 1 cm to 0.01 

meters to keep the units consistent. 

 

q = ±1.00×10 Coulombs 

Since the charges are identical, they are either both positive or both 

negative. This force will be repulsive. 

Two identical charges of ±1.00×10 Coulombs separated by 1 cm produce a 

repulsive force of 90 N. 

 

Q.2. Two neutrally charged bodies are separated by 1 cm. Electrons are 

removed from one body and placed on the second body until a force of 

1×10 N is generated between them. How many electrons were transferred 

between the bodies? 

Solution: 

First, draw a diagram of the problem 



 

Define the variables: 

F = coulomb force = 1×10
-6

 N 

q = charge on first body 

q = charge on second body 

e = charge of a single electron = 1.60×10
-19

 C 

k = 8.99×10 N•m
2
 /C

2 

r = distance between two bodies = 1 cm = 0.01 m 

Start with the Coulomb’s Law equation. 

 



As an electron is transferred from body 1 to body 2, body 1 becomes 

positive and body two becomes negative by the charge of one electron. 

Once the final desired force is reached, n electrons have been transferred. 

q = +ne 

q = -ne 

 

The signs of the charges give the direction of the force, we are more 

interested in the magnitude of the force. The magnitude of the charges are 

identical, so we can ignore the negative sign on q . This simplifies the 

above equation to: 

 

We want the number of electrons, so solve the equation for n. 

 

n = 6.59×10
8 

6.59×10 electrons were transferred between the two bodies to produce an 

attractive force of 1×10
-6

 Newtons. 

 

Q.3. A particle having surface charge density 4 x 10
-6

 c/m
2
, is held at some 

distance from a very large uniformly charged plane. Calculate the electric 

field intensity at any point lying on uniformly charged plane. Here ε0 = 

8.85 x 10
-12

 C
2
N

-1
m

-2
. 



Solution: 

ε0 = 8.85 x 10
-12

 C
2
N

-1
m

-2 

σ = 4 x 10
-6

 c/m
2 

E = σ / (2 ε0) 

E = 4 × 10
-6

 / (2 × 8.85 × 10
-12

) 

E = 2.26 × 10
5
 NC

-1 

 

Q.4. A uniform electric field of magnitude E = 100 N/C exists in the space 

in X-direction. Using the Gauss theorem calculate the flux of this field 

through a plane square area of edge 10 cm placed in the Y-Z plane. Take 

the normal along the positive X-axis to be positive. 

Solution: 

The flux Φ = ∫ E.cosθ ds. 

As the normal to the area points along the electric field, θ = 0. 

Also, E is uniform so, Φ = E.ΔS = (100 N/C) (0.10m)
2
 = 1 N-m

2
. 

 

Q.5. A particle of mass 5 × 10
-6

g is kept over a large horizontal sheet 

of charge of density 4.0 × 10
-6 

C/m
2
 (figure). What charge should be given 

to this particle so that if released, it does not fall down? How many 

electrons are to be removed to give this charge? How much mass is 

decreased due to the removal of these electrons? 

https://byjus.com/charge-density-formula/


 

Solution: 

The electric field in front of the sheet is, 

E = σ/2ε0 = (4.0 × 10
-6

)/(2 × 8.85 × 10
-12

) = 2.26 × 10
5
 N/C 

If a charge q is given to the particle, the electric force qE acts in the 

upward direction. It will balance the weight of the particle if 

q × 2.26 × 10
5
 N/C = 5 × 10

-9
 kg × 9.8 m/s

2
 

or, q = [4.9 × 10
-8

]/[2.26 × 10
5
]C = 2.21 × 10

-13 
C 

The charge on one electron is 1.6 × 10
-19

C. The number of electrons to be 

removed; 

= [2.21 × 10
-13

]/[1.6 × 10
-19

] = 1.4 × 10
6
 

Mass decreased due to the removal of these electrons = 1.4 × 10
6
 × 9.1 × 

10
-31

 kg = 1.3 × 10
-24

 kg. 

 

Q.6. Two conducting plates A and B are placed parallel to each other. A is 

given a charge Q1 and B a charge and Find the distribution of charges on 

the four surfaces. 

Solution: 

https://byjus.com/physics/mass-and-weight/


 

Consider a Gaussian surface as shown in figure (a). Two faces of this 

closed surface lie completely inside the conductor where the electric field 

is zero. 

The flux through these faces is, therefore, zero. The other parts of the 

closed surface which are outside the conductor are parallel to the electric 

field and hence the flux on these parts is also zero. 

The total flux of the electric field through the closed surface is, therefore, 

zero. From Gauss law, the total charge inside the closed surface should be 

zero. The charge on the inner surface of A should be equal and opposite to 

that on the inner surface of B. 

 

The distribution should be like the one shown in figure (b). To find the 

value of q, consider the field at a point P inside the plate A. Suppose, the 

surface area of the plate (one side) is A. 

Using the equation E = σ/2ε0, the electric field at P; 



 Due to the charge Q1 – q = (Q1 – q)/2Aε0 (downward), 

 Due to the charge +q = q/2Aε0 (upward), 

 Due to the charge -q = q/2Aε0 (downward), 

 Due to the charge Q2 + q = (Q2 + q)/2Aε0 (upward). 

The net electric field at P due to all the four charged surfaces is (in the 

downward direction) 

(Q1 – q)/2Aε0 – q/2Aε0 + q/2Aε0 – (Q2 + q)/2Aε0 

As the point P is inside the conductor, this field is should be zero. 

Hence, Q1 – q – Q2 – q = 0 

or q = (Q1 – Q2)/2 . . . . . (i) 

Thus, Q1 – q = (Q1 + Q2)/2 . . . . . . (ii) 

and Q2 + q = [Q1 + Q]2/2 

Using these equations, the distribution shown in the figure (a, b) can be 

redrawn as in the figure. 

 

This result is a special case of the following result. When charged 

conducting plates are placed parallel to each other, the two outermost 



surfaces get equal charges and the facing surfaces get equal and opposite 

charges. 

 

Q.7.  A solid conducting sphere having a charge Q is surrounded by an 

uncharged concentric conducting hollow spherical shell. Let the potential 

difference between the surface of the solid sphere and that of the outer 

surface of hollow shell be V. What will be the new potential difference 

between the same two surfaces if the shell is given a charge -3Q? 

Solution: 

In case of a charged conducting sphere 

 

Vin = Vc = Vs = 1/4πε0 

and Vout = 1/4πε0 

So if a and b are the radii of a sphere and spherical shell respectively, 

the potential at their surfaces will be; 

Vsphere = 1/4πε0 [Q/a] and Vshell = 1/4πε0 [Q/b] and so according to the 

given problem; 

https://byjus.com/maths/volume-of-sphere/
https://byjus.com/sphere-formula/


V = V’sphere – V’shell = Q/4πε0 [1/a – 1/b] = V . . . . . . . (1) 

Now when the shell is given a charge (-3Q) the potential at its surface and 

also inside will change by; 

V0 = 1/4πε0 [ -3Q/b] 

So that now, 

V’sphere = 1/4πε0 [Q/a + V0] and V’shell = 1/4πε0 [Q/b + V0] 

Hence, V’sphere – V’shell = Q/4πε0 [1/a – 1/b] = V [from Eqn. (1)] 

i.e., if any charge is given to external shell the potential difference between 

sphere and shell will not change. 

This is because by the presence of charge on the outer shell, potential 

everywhere inside and on the surface of the shell will change by the same 

amount and hence the potential difference between sphere and shell will 

remain unchanged. 

 

Q.8. A very small sphere of mass 80 g having a charge q is held at height 9 

m vertically above the centre of a fixed non conducting sphere of radius 1 

m, carrying an equal charge q. When released it falls until it is repelled just 

before it comes in contact with the sphere. Calculate the charge q. [g = 9.8 

m/s
2
] 

Solution: 



Keeping in mind that here both electric and gravitational potential 

energy is changing and for an external point, a charged sphere behaves as 

the whole of its charge were concentrated at its centre. 

Applying the law of conservation of energy between initial and final 

position, we have 

 

1/4πε0 × (q.q/9) + mg × 9 = 1/4πε0 × (q
2
/1) + mg × 1 

or, q2 = (80 × 10
-3 

× 9.8)/10
9
 = 28μ 

 

Q.9. A soccer goal, found is a city park, is made of tubing that supports an 

oddshaped hanging net behind the goal, but has a rectangular opening in 

front. The height of the opening is 2.5 m and the width is 3.2 m. If a 

uniform E-field, with a mangnitude of 0.1 N/C, passes through the goal 

from the front to the back, entering at 90º to the plane of the goal opening, 

what is the flux  through the net? Also, find the flux through the net if the 

E-field enters the goal at a 60° angle to the plane of the front of the goal. 

In both cases, assume that there is no charge found inside the goal itself.  

Solution: 

https://byjus.com/jee/gravitational-potential-energy/
https://byjus.com/jee/gravitational-potential-energy/
https://byjus.com/physics/law-of-conservation-of-energy/


No charge inside implies no total flux. 

Φtotal = 0 = Φnet + Φfront 

0 = Φnet + EAcos180 

Φnet= - 0.1(2.5)(3.2)cos180 = 0.8 Nm2/C 

For part 2, the angle between the E-Field and the Area vector would be 

30°. 

Φnet = -EAcos150 = -0.1(2.5)(3.2)cos150 = 0.7 Nm2/C 

 

Q.10. A cubic space (1.5 m on each side) contains positively charged 

particles. Imagine that the space is surrounded by a Gaussian surface of the 

exact same dimension as the cube and that the E-Field caused by the 

charges is normal to the faces of the Gaussian cube. If the E-field at each 

surface has a magnitude of 760 N/C, determine the number of charges per 

unit volume in the space described (i.e., find the charge density, ρ). 

Solution: 

Φnet = EAcos0 = q/εo 

760(6)(1.5)2 = q/8.85x10-12 

q = 9.1x10-8C 

Now find the volume of the cube: 

V = (1.5)3 = 3.375 m3 

Finally, determine the charge density: 



ρ = q/V = 9.1x10-8/3.375 = 2.7x10-8C/m3 

 

Q.11. A small charge (q = 6.0 mC) is found in a uniform E-field (E = 2.9 

N/C). Determine the force on the charge. 

Solution: 

F = qE 

F = (6x10-3)(2.9) = 0.02 N 

Q.12.Charge q1 (positive) is located at position (0, 0.5m) and has a 

magnitude of 2.9x10-6 C. Charge q2 (same charge as q1) is located at the 

origin. Assume that these charges are unable to move. A third charge (q3 = 

+1.0x10-9 C and m = 4.0x10-25 kg) is located at (1.0 m, 0.25 m). 

Determine the force on and the acceleration of charge q3 at this position, 

and describe the trajectory the third charge would take when released in 

the field caused by the other two charges. 

Solution: 

The distance, r, from either q1 or q2 to q3: 

r2 = 12 + (0.25)2 

r = 1.03 m 

The E-field from q1 and q2 can be calculated separately, then 

superpositioned: 



E1 = kq1/r2 = k(2.9x10-6)/(1.03)2 = 2.46x104 N/C (pointing along the 

line that connects q3 and q1, away from q3, into the 4th quadrant, at 

346⁰ ) 

E2 = kq2/r2 = k(2.9x10-6)/(1.03)2 = 2.46x104 N/C (pointing along the 

line that connects q2 and q3, away from q3, into the 1st quadrant, at 14⁰ ) 

The y-components of the E-fields cancel out. 

The x-components add together to point in the +x direction. 

Ex = (2.46x104cos346) + (2.46x104cos14) = 4.8x104 N/C 

F = ma 

qE = ma 

1.0x10-9(4.8x104) = (4.0x10-25)a 

a = 1.2x1020 m/s2 

Once q3 begins to move it will get further from both q1 and q2, but it will 

stay equidistant from both, 

ensuring that the net force is oriented at 0°. As it moves, the force (and the 

acceleration) will decrease. 

Thus, it will continue to speed up, but at a lower rate at time goes on. 

 

Summary: 

 



1) Charge is quantized, meaning that charge comes in integer multiples 

of the elementary charge e 

2) Putting "charge is quantized" in terms of an equation, we say: 

q = n e 

3) The Law of conservation of charge states that the net charge of an 

isolated system remains constant. 

4) Charge can be created and destroyed, but only in positive-negative 

pairs 

5) If two eclectically charge bodies are placed nearby each other there 

will be an attraction or a repulsion force acting on them depending 

upon the nature of the charge of the bodies 

6) Like charged objects (bodies or particles) repel each other and unlike 

charged objects (bodies or particles) attract each other. 

7) The force of attraction or repulsion between two electrically charged 

objects is directly proportional to the magnitude of their charge and 

inversely proportional to the square of the distance between them 

8) An electric field is afield or space around an electrically charge 

object where any other electrically charged object will experience a 

force. 

9) Electric flux is the rate of flow of the electric field through a area 

10) “The total electric flux over a closed surface in an electric field 

is equal 1/ εo  times the total charge enclosed by that surface”. 

11) For an infinitely long charged wire electric field is 

proportional to line charge density and inversely proportional to the 

radial distance. 



12) Electric field lines are useful for visualizing the electric field 

 

 

 

 

Terminal Question: 

1. Explain the Concept of charge, Coulomb’s law, electric field, 

 

2. What is electric flux 

 

3. Explain the Gauss law in detail? 

 

4. Explain the Concept of charge, Coulomb’s law, electric field, 

electric flux 

 

5. Drive the equation of Coulomb’s law from Gauss law? 

 

6. Explain the Application of Gauss law for charge distribution? 

 

7. Explain the Laws of electrostatics 

 

8. Explain the Electric field due to charged ring and charged infinite 

rod and charged disc from Coulomb’s law. 

 



9. An infinitely long line of charge carries 0.4 C along each meter of 

length. Find the E-field 0.3m from the line of charge 

 

10. Four charges are arranged in a square with sides of length 2.5 

cm. The two charges in the top right and bottom left corners are +3.0 

x 10
-6

 C. The charges in the other two corners are -3.0 x 10
-6

 C. 

What is the net force exerted on the charge in the top right corner by 

the other three charges? 

 

11. A cubic space (1.5 m on each side) contains positively charged 

particles. Imagine that the space is surrounded by a Gaussian surface 

of the exact same dimension as the cube and that the EField caused 

by the charges is normal to the faces of the Gaussian cube. If the E-

field at each surface has a magnitude of 760 N/C, determine the 

number of charges per unit volume in the space described(ie., find 

the charge density,ρ). 

 

12.  A point charge (q1) has a magnitude of 3x10-6C. A second 

charge (q2) has a magnitude of -1.5x10-6C and is located 0.12m 

from the first charge. Determine the electrostatic force each charge 

exerts on the other 

 

13.  Find the electric field acting on a 2.0 C charge if an 

electrostatic force of 10500 N acts on the particle. 

 



Unit 02- Electric potential and dipole 

 

        Structure: 

2.1 Introduction 

2.2 Objective 

2.3 Electric potential and electrostatic potential energy. 

2.4 Electric fields, potential gradient and their relationship. 

2.5 Electrostatic self energy (conducting and dielectric sphere). 

2.6 Electric potential due to spherical charge distribution (hollow 

and solid), graphical representation. 

2.7 Electric dipole and its behavior in uniform and non uniform 

electric field. 

2.8 Electric field and potential due to electric dipole at a point in 

Cartesian and polar coordinates. 

2.9 Force between two electric dipoles. 

2.10 Summary 

2.11 Terminal Questions 

 

2.1 Introduction: 

Electric potential energy is the energy that is needed to move a charge 

against an electric field. You need more energy to move a charge further in 

the electric field, but also more energy to move it through a 

stronger electric field. 

Electrostatic potential energy is a potential energy (measured in joules) 

that results from conservative Coulomb forces and is associated with the 

configuration of a particular set of point charges within a defined system. 



Electric field, an electric property associated with each point in space 

when charge is present in any form. The magnitude and direction of 

the electric field are expressed by the value of E, called electric 

field strength or electric field intensity or simply the electric field. 

In physics, chemistry and biology, a potential gradient is the local rate of 

change of the potential with respect to displacement, i.e. spatial derivative, 

or gradient. This quantity frequently occurs in equations of physical 

processes because it leads to some form of flux. 

The change of electric potential with respect to distance is called potential 

gradient. It is denoted by dv/dx. Hence, the negative of potential 

gradient is equal with electric field intensity. 

In electrostatics, self energy of a particular charge distribution is 

the energy of required to assemble the charges from infinity to that 

particular configuration, without accelerating the charges. It is simply 

called the electrostatic potential energy stored in the system of charges. 

Gauss' Law tells us that the electric field outside the sphere is the same as 

that from a point charge. This implies that outside 

the sphere the potential also looks like the potential from a point charge. 

What about inside the sphere? If the sphere is a conductor we know the 

field inside the sphere is zero. 

The electric potential inside a charged spherical conductor of radius R is 

given by V = ke Q/R, and the potential outside is given by V = ke Q/r. 

Using Er = -dv/dr, derive the electric field inside and outside this charge 

distribution. 



The electric field inside the hollow metallic sphere is zero, then work done 

by the charge is zero, suppose that Va is the potential on the inside and Vb 

is the potential on the surface then Vb-Va= zero or VB . Hence 

the potential is the same as on the surface. Due to the solid sphere, the 

gravitational potential is the same within the sphere. 

The electric dipole moment is a measure of the separation of positive and 

negative electrical charges within a system, that is, a measure of the 

system's overall polarity. The dipole is represented by a vector from the 

negative charge towards the positive charge. 

Dipole moments occur when there is a separation of charge. They can 

occur between two ions in an ionic bond or between atoms in a covalent 

bond; dipole moments arise from differences in electro negativity.  

The dipole moment is a measure of the polarity of the molecule. 

When a dipole is placed in a uniform electric field and dipole vector 

direction is not parallel to field direction, each charge 

of dipole experiences a force. Once the dipole is aligned to electric field, 

the net force will be zero because they are in opposite direction. 

If an electric dipole is placed in a non-uniform electric field, then the 

positive and the negative charges of the dipole will experience a net force. 

And as one end of the dipole is experiencing a force in one direction and 

the other end in the opposite direction, so the dipole will have a net torque 

also. 

An electric dipole consists of two equal and opposite charges +q and -q 

separated by a small distance a. The Electric Dipole Moment P is defined 

as a vector of magnitude qa with a direction from the negative charge to 



the positive charge. In many molecules, though the net charge is zero, the 

nature of chemical bonds is such that the positive and negative charges do 

not cancel at every point. 

Two perfect (infinitesimal) dipoles    and    are perpendicular and lie a 

distance r apart what is the torque on    (about its center) due to   ? 

The forces the dipole exerts on each other are equal and opposite. Why 

isn’t the torques? Because we calculated the torques about different 

centers. If we refer both torques to the coordinate origin (i.e. the position 

of dipole 1). 

2.2 Objective: 

After studying this unit you should be able to 

a) Explain and identify Electric potential and electrostatic potential 

energy. 

b) Study and identify Electric fields, potential gradient and their 

relationship. 

c) Explain and identify Electrostatic self energy (conducting and 

dielectric sphere). 

d) Explain and identify Electric potential due to spherical charge 

distribution (hollow and solid), graphical representation. 

e) Study and identify Electric dipole and its behavior in uniform and 

non uniform electric field. 

f) Explain and identify Electric field and potential due to electric 

dipole at a point in Cartesian and polar coordinates. 

g) Study and identify Force between two electric dipoles. 

 



2.3 Electric potential and electrostatic potential energy: 

 

Electric potential: 

Electric potential at a point in an electric field is define as the amount of 

work to be done to bring a unit positive electric charge from infinity to that 

point. 

Similarly, the potential difference between two points is defined as the 

work required to be done for bringing a unit positive charge from one 

point to other point. When a body is charged, it can attract an oppositely 

charged body and can repulse a similar charged body. That means, the 

charged body has ability of doing work. That ability of doing work of a 

charged body is defined as electrical potential of that body. 

If two electrically charged bodies are connected by a conductor, the 

electrons starts flowing from lower potential body to higher potential 

body, that means current starts flowing from higher potential body to 

lower potential body depending upon the potential difference of the bodies 

and resistance of the connecting conductor. 

 

 

Fig.2.1 Current starts flowing from higher potential body to lower 

potential body 

https://www.electrical4u.com/voltage-or-electric-potential-difference/
https://www.electrical4u.com/electrical-conductor/
https://www.electrical4u.com/voltage-or-electric-potential-difference/


 

So, electric potential of a body in its charged condition determines 

whether it will take from or give up electric charge to other body. 

Electric potential is graded as electrical level, and difference of two such 

levels, causes current to flow between them. This level must be measured 

from a reference zero level. The earth potential is taken as zero level. 

Electric potential above the earth potential is taken as positive potential 

and the electric potential below the earth potential is negative 

The unit of electric potential is volt. To bring a unit charge from one point 

to another, if one joule work is done, then the potential difference between 

the points is said to be one volt. So, this can be represented as, 

 

 

 

If one point has electric potential 5 volt, then we can say to bring one 

coulomb charge from infinity to that point, 5 joule work has to be done. 

If one point has potential 5 volt and another point has potential 8 volt, then 

8 – 5 or 3 joules work to be done to move one coulomb from first point to 

second. 

Potential at a Point due to Point Charge: 

Let us take a positive charge + Q in the space. Let us imagine a point at a 

distance x from the said charge + Q. Now we place a unit positive charge 

at that point. As per Coulomb’s law, the unit positive charge will 

experience a force, 

https://www.electrical4u.com/voltage-or-electric-potential-difference/


 

 

Now, let us move this unit positive charge, by a small distance dx towards 

charge Q. 

 

 

Fig.2.2 Potential at a Point due to Point Charge 

During this movement the work done against the field is, 

 

So, total work to be done for bringing the positive unit charge from 

infinity to distance x, is given by, 

 

As per definition, this is the electric potential of the point due to charge + 

Q. So, we can write, 

 

Potential Difference between Two Points: 



 

Fig.2.3 Potential Difference between Two Points 

Let us consider two points at distance d1meter and d2 meter from a charge 

+Q. 

We can express the electric potential at the point d1 meter away from +Q, 

as, 

 

We can express the electric potential at the point d2 meter away from +Q, 

as, 

 

Thus, the potential difference between these two points is 

 

Electrostatic Potential Energy: 

One way to measure the effects of these types of interactions between 

charges is to calculate the electrostatic potential energy of a system of 

charges. In general, potential energy is any kind of energy that is stored 

within a system. As this stored energy turns into kinetic energy, the object 

https://www.electrical4u.com/voltage-or-electric-potential-difference/


will start to move and will keep speeding up until all the potential energy 

has become kinetic energy. 

A pair of charges will always have some potential energy because if they 

are released from rest, they will either start moving towards (if the charges 

are different) or away (if the charges are the same) from each 

other. Electrostatic potential energy is specifically the energy associated 

with a set of charges arranged in a certain configuration. 

The potential energy (Ue) depends on the amount of charge that each 

object contains (q), how far apart the charges are (r), and Coulomb's 

constant (k): 

 

 

 

2.4   Electric fields, potential gradient and their relationship: 

 

Electric Fields: 

Definition: The region around the electric charge in which the stress or 

electric force exerted is called an electric field or electrostatic field. If the 

magnitude of charge is large, then it may create a huge stress around the 



region. The electric field is represented by the symbol E. The SI unit of the 

electric field is Newton per coulomb which is equal to volts per meter. 

 

Fig.2.4 Electric Lines 

 

The electric field is represented by the imaginary lines of force. For the 

positive charge, the line of force come out of the charge and for negative 

charge the line of force will move towards the charge. The electric field 

for positive and negative charges are shown below: 

 

 

Fig.2.5 Electric field for positive and negative charges 

 



Consider a unit charge Q placed in a vacuum. If another charge q is placed 

near the Q then according to Coulomb law, the charge Q applies a force on 

it. The charge Q produce an electric field around it, and when any other 

charge is placed near it, then the electric field of Q apply force on it. 

 

Fig.2.6 Charge Q produces an electric field 

 

 

 

The electric field produced  by the charge Q at a point r is given by 

  

Where, Q – unit charge 

r – Distance between the charges 

A charge Q applies the force on a charge q is expressed by 

 

   

https://circuitglobe.com/wp-content/uploads/2017/01/formula-equation-2.jpg
https://circuitglobe.com/wp-content/uploads/2017/01/formula-equation-2.jpg


The charge q also apply an equal and opposite force on the charge Q. 

Types of an Electric Field 

The electric field is mainly classified into two types. They are the uniform 

electric field and the non-uniform electric field. 

1. Uniform Electric Field: 

When the electric field is constant at every point, then the field is called 

the uniform electric field. The constant field is obtained by placing the two 

conductors parallel to each other, and the potential difference between 

them remains same at every point. 

 

Fig.2.7 Uniform Electric Field 

 

2. Non-Uniform Electric Field: 

 The field which is irregular at every point is called the non-uniform 

electric field. The non-uniform field has a different magnitude and 

directions. 

 



Fig.2.8 Non-Uniform Electric Field 

 

Properties of an Electric Field: 

The following are the properties of an electric field: 

   Field lines never intersect each other. 

1. They are perpendicular to the surface charge. 

2. The field is strong when the lines are close together, and it is weak 

when the field lines move apart from each other. 

3. The number of field lines is directly proportional to the magnitude of 

the charge. 

4. The electric field line starts from the positive charge and ends from 

negative charge. 

5. If the charge is single, then they start or end at infinity. 

6. The line curves are continuous in a charge-free region. 

When the electric and magnetic field combines, they form the 

electromagnetic field. 

Potential Gradient: 

The potential gradient in a power system is defined as the rate of change of 

electric potential with respect to the distance from the base of the electrical 

structure. The resistance of the earth electrode is not concentrated at one 

point, but it is distributed over the soil around the electrode. When a fault 



current flows to ground, it results in a potential gradient around the 

electrode. This may be explained analytically as below 

Consider that the base of the structure through which fault current is 

flowing to ground is a hemisphere of radius b as shown in fig below, 

 

Fig 2.9 Fault current is flowing to ground is a hemisphere of radius b 

 

 

ex – electrical field strength at a distance x in V/m 

ρ – Resistivity in ohm-meters 

If – fault current in amperes 

x – Distance from the surface of the hemisphere in meters 

https://circuitglobe.com/wp-content/uploads/2016/06/potential-gradient-equation-1-compressor.jpg


 

Fig.2.10 Curve between Distance and Potential 

 

If a curve between the falls of potential with distance from the base of the 

structure is plotted, it is observed that the potential difference is quite 

definite near the electrode and the fault. The magnitude of potential 

gradient depends on the resistivity and fault current. If the magnitude of 

the potential gradient is high then it may affect the person by step and 

touch potential. 

For safety purpose, the earthling system should be provided such that the 

potential difference due to the fault may not prove to be dangerous to the 

person approaching that electrode or while touching that structure 

 

Establish the relation between electric field and potential gradient: 

Let us consider two closely spaced equi-potential surfaces A and B as shown 

in figure. 

https://circuitglobe.com/step-and-touch-potential.html
https://circuitglobe.com/step-and-touch-potential.html


 

 

Fig.2.11 Two closely spaced equi-potential surfaces A and B 

 

Let the potential of A be VA = V and potential of B be VB= V−dV is 

decrease in potential in the direction of electric field E normal to A and B. 

Let dr be the perpendicular distance between the two equi-potential surfaces. 

When a unit positive charge is moved along this perpendicular from the 

surface B to surface A against the electric field, the work done in this process 

is  

 

 

This work done equals the potential difference VA−VB                                                          

∴   WBA=VA−VB 

                   =V−(V−dV) 

   =dV  



 

 

or, 

    

SAQ.1 

a) What do you mean by Electric potential energy? 

b) Define the electrostatic potential energy. 

c) What do you mean by Electric fields and potential gradient? 

d) An electron is accelerated from rest through a potential difference 24 

V. What is the change in electric potential energy of the electron? 

e) Two charges qA = 5 μC and qB = 8 μC are separated by a distance of 

10 cm (k = 9 x 10
9
 N m

2
 C

−2
). What is the magnitude of the electric 

field at the center between qA and qB? 

 

2.5    Electrostatic self energy (conducting and dielectric 

sphere): 

Electrostatic self energy (conducting sphere): 

We know what the electric field and potential from a point charge look 

like: 

 

https://physics.gurumuda.net/electric-potential-energy-problems-and-solutions.htm


Consider a charged sphere with a symmetrical distribution of charge. 

Gauss' Law tells us that the electric field outside the sphere is the same as 

that from a point charge. This implies that outside the sphere the potential 

also looks like the potential from a point charge. 

What about inside the sphere? If the sphere is a conductor we know the 

field inside the sphere is zero. What about the potential? 

Moving from a point on the surface of the sphere to a point inside, the 

potential changes by an amount: 

ΔV = -∫ E • ds 

Because E = 0, we can only conclude that ΔV is also zero, so V is constant 

and equal to the value of the potential at the outer surface of the sphere. 

 

 

Fig.2.12 Potential near an Insulating Sphere 

Now consider a solid insulating sphere of radius R with charge uniformly 

distributed throughout its volume. Once again, outside the sphere both the 



electric field and the electric potential are identical to the field and 

potential from a point charge. 

What happens inside the sphere? Now the potential is not constant because 

there is a field inside the sphere. Using Gauss' Law we showed that the 

field inside a uniformly charged insulator is: 

 

Use this to calculate the potential inside the sphere. Starting from some 

point a distance r from the center and moving out to the edge of the sphere, 

the potential changes by an amount: 

 

Integrating gives: 

 

V(R) is simply kQ/R, which can be written as 2kQ/2R, so: 

 

Therefore, for r < R, 

 



 

Electrostatic self energy using dielectric sphere: 

Self energy is equal to interaction energy of charges constituting the thick 

spherical shell. 

 

 

Fig.2.13 Dielectric Sphere 

 

Consider core of outer radius r having charge q, layer of infinite small 

thickness dr with charge dq. 

Since core can be assumed to be a point charge at the centre with  

 

∴ Electrostatic interaction energy of point charge and the layer is given by 

 



 

 

 

 

Fig 2.14  

 

2.6 Electric potential due to spherical charge distribution (hollow 

and solid), graphical representation: 

 

Electric Potential due to Solid spherical charge distribution and 

graphical representation: 

Let us consider a uniform solid non-conducting sphere having total charge 

Q and radius a. The center of the sphere is located at point O. We have to 

calculate the electric potential due to this charged solid sphere at a test 

point P, either inside or outside of the sphere. This is shown in the diagram 

below. We denote the distance between O and P as . By definition, the 



potential is the work done to bring a unit charge from infinity to the test 

point P. The charge density is  

 

We will first draw two concentric spherical shells of radius +x and x+dx. 

The volume enclosed by this thick shell of interest is 4πx
2
dx .Charge 

enclosed within this thick spherical shell is volume multiplied by the 

charge density. Thus 

 

 

Now we can use the expression we have derived for the Electric Potential 

due to a Charged Spherical Shell to calculate the Electric Potential due to 

a Charged Solid Sphere at point P, either outside or inside of the sphere. 

 

Electric Potential at a Point Outside of the Charged Sphere: 

The most trivial situation is that the test point P is outside of the sphere. 

We use our ready-made equation from earlier exercise to calculate the 

potential at this point. 

 

Thus the potential due to the solid sphere will be 

https://sciphy.in/electric-potential-charged-spherical-shell/


 

 

Again we note that the electric potential due to solid sphere at an external 

point is identical to the electric potential due to a point charge Q situated at 

the center of the sphere. 

 

Electric Potential at a Point Inside of the Charged Sphere: 

Here the situation is more complex than the earlier one, however, we can 

divide the sphere into two parts and use superposition principle to get the 

final potential. The first sphere has radius r and the second one is a thick 

spherical shell with an inner radius r and outer radius a. Let us assume that 

the charge of the inner sphere is Q’, then 

 

 

 

https://sciphy.in/electrostatic-potential-due-to-a-point-charge/


Fig.2.15 The spherical shell of the inner radius r and outer radius a 

and the potential at a test point, P due to this sphere is 

 

 

Now we have to calculate the potential at point P due to the spherical shell 

of the inner radius r and outer radius a. For that, we will divide the shell 

into several concentric shells. Let us consider one such shell with an inner 

radius of x and thickness dx. The charge contained in the shell is 

 

The potential at an internal point P due to this thick shell is 

 

Thus the potential due to this part of the sphere is 

 

 



and the total electric potential due to the charged solid sphere at an 

internal point P is 

 

 

 

Fig.2.16 Plotted electrostatic potential due to a charged sphere 

In the diagram above, we have plotted electrostatic potential due to a 

charged sphere as a function of distance from the center of the sphere. 

Electric Potential due to Hallow spherical charge distribution and 

graphical representation: 

We know what the electric field and potential from a point charge look 

like: 



E = 

kQ 

 

r
2
 

 

 

    and     V = 

kQ 

 

R 
 

Consider a charged sphere with a symmetrical distribution of charge. 

Gauss' Law tells us that the electric field outside the sphere is the same as 

that from a point charge. This implies that outside the sphere the potential 

also looks like the potential from a point charge. 

What about inside the sphere? If the sphere is a conductor we know the 

field inside the sphere is zero. What about the potential? 

Moving from a point on the surface of the sphere to a point inside, the 

potential changes by an amount: 

ΔV = -∫ E • ds 

Because E = 0, we can only conclude that ΔV is also zero, so V is constant 

and equal to the value of the potential at the outer surface of the sphere. 

Potential near an Insulating Sphere: 

 

Fig.2.17 A solid insulating sphere of radius R with charge uniformly 

distributed 



Now consider a solid insulating sphere of radius R with charge uniformly 

distributed throughout its volume. Once again, outside the sphere both the 

electric field and the electric potential are identical to the field and 

potential from a point charge. 

What happens inside the sphere? Now the potential is not constant because 

there is a field inside the sphere. Using Gauss' Law we showed that the 

field inside a uniformly charged insulator is: 

E = 

k Q r 

 

R
3
 

 

 

Use this to calculate the potential inside the sphere. Starting from some 

point a distance r from the center and moving out to the edge of the sphere, 

the potential changes by an amount: 

ΔV = V(R) - V(r)   = – ∫ 

  R 

    E • ds 

R 
 

  =   – ∫ 

  R 

    E dr 

r 
 

  =   

–kQ 

 

R
3
 

 

∫ 

  R 

    r dr 

r 
 

Integrating gives: 

V(R) – V(r) = 

– kQ 

 

2R
3
 

 

(R
2
 – r

2
) 



V(R) – V(r) = 

– kQ 

 

2R 
 

( 1 – 

r
2
 

 

R
2
 

 

) 

V(R) is simply kQ/R, which can be written as 2kQ/2R, so: 

V(r) = 

2kQ 

 

2R 
 

+ 

kQ 

 

2R 
 

( 1 – 

r
2
 

 

R
2
 

 

) 

Therefore, for r < R, 

V(r) = 

kQ 

 

2R 
 

( 3 – 

r
2
 

 

R
2
 

 

) 

 

 

Electric Potential due to Hallow spherical charge graphical 

representation: 

 



Fig.2.18 Hallow spherical charge graphical representation 

 

SAQ.2 

a) What do you mean by the Electrostatic self energy using conducting 

sphere? 

b) Define the Electrostatic self energy using dielectric sphere. 

c) What do you mean by Electric potential due to spherical charge 

distribution for hollow?  

d) Define the Electric potential due to spherical charge distribution for 

solid. 

e)  A charge of 4×10
-8 

C is distributed uniformly on the surface of a 

sphere of radius 2 cm. It is covered by a concentric, hollow 

conducting sphere of radius 7 cm.  

(i) Find the electric field at a point 4 cm away from the centre. 

(ii) A charge of 6 × 10
-8

C is placed on the hollow sphere. Find the 

surface charge density on the outer surface of the hollow 

sphere. 

 

2.7    Electric dipole and its behavior in uniform and non uniform 

electric field: 

 

Before we understand the properties of the torque acting on an electric 

dipole in a uniform electric field, let us brush up our understanding of 

electric dipole and torque clearly. 

https://byjus.com/maths/surface-area-of-a-sphere/
https://byjus.com/maths/surface-area-of-a-sphere/


Electric dipole: 

A pair of electric charges with an equal magnitude but opposite charges 

separated by a distance d is known as an electric dipole. The electric 

dipole moment for this is defined as the product of the magnitude of these 

charges and the distance between them. The electric dipole moment is a 

vector having a defined direction from the negative charge to the positive 

charge.   

 

Torque: 

The measure of force that causes an object to rotate about an axis is known 

as torque. Torque is a vector quantity and its direction depends on the 

direction of the force on the axis. The magnitude of the torque vector is 

calculated as follows: 

τ=FrsinΘ 

Where r is the length of the moment arm, and θ is the angle between the 

moment arm and the force vector. 

Introduction to Dipole in Uniform External Field 

If a dipole is kept in an external electric field, it experiences a rotating 

effect. By external electric field, we mean electric field that is not 

induced by dipole itself. The rotating effect is also called torque on the 

dipole. How we can calculate the torque on a dipole and what are its 

applications? This can be done by calculating the net torque on 

opposite charges of the dipole. 



 

Dipole in Uniform External Field 

To find torque on a dipole from an external field, consider there is 

electric dipole placed in an uniform external field .The uniform 

external electric field is produced externally and is not induced by 

dipole. 

 

 

Fig.2.19 An electric dipole placed in non-uniform external electric 

field 

The external electric field  will produce electric force of magnitude 

qE on positive charge in upward direction and on negative charge in 

downward direction. We can see that the dipole is in transitional 

equilibrium as net force on the dipole is zero. What about the 

rotational equilibrium? Is it also zero? If that was the case, then the 

dipole would have been stationary in position, but experimentally it is 

found that the dipole rotates with some angular velocity. 



This is because, both the electrostatic force that is, qE acts a torque in 

a clockwise direction, thereby making the dipole to rotate in a uniform 

external electric field.  

 

 

 

Fig.2.20 Uniform and Non-uniform electric field 

 

Torque always acts in a couple, and its magnitude equals to the 

product of force and its arm. Arm is the distance between the point 

where the force acts and the point which rotates the dipole. In the 

dipole placed in the uniform external electric field, we take origin as 

the point. Torque is denoted by the symbol τ and as it has a direction, 

it is a vector quantity. 

Mathematically, 

Magnitude of torque = q E × 2a sin θ 

τ = 2 q a E sin θ 

τ = p E sin θ (Since p = 2 q a) 



The vector form of torque is the cross product of dipole moment and 

electric field. 

 

Observations in net force and torque: 

Taking the nature of electric field and position of the dipole, following 

remarks will come out: 

 If the dipole  and external electric field are parallel, that is, angle 

between them is zero, then the dipole will feel zero torque 

 If the external electric field  is non-uniform, then net force on the 

dipole will not be zero, and torque will still act on it 

 If the dipole external  electric field  are anti-parallel, that is, angle 

between them is non-zero, then the dipole will feel zero torque 

 When the electric dipole  and electric field  are parallel, the 

direction of net force will be in direction of increasing electric field. 

 



 

Fig.2.21 Direction of net force depends on orientation of electric dipole 

 When the electric dipole  and electric field  are anti-parallel, then 

the direction of net force will be in direction of decreasing electric field 

 Force and Torque on a dipole placed in a uniform external field 

 varies with the orientation of dipole in free space. 

Physical Significance: 

 



 

 

Fig.2.22 comb our dry hair and bring it near to some paper pieces, we 

find that the comb attracts the paper pieces 

 

When we comb our dry hair and bring it near to some paper pieces, we 

find that the comb attracts the paper pieces. The comb gains charge, 

from our hair by the process of rubbing and induce a charge in the 

uncharged paper. In another way, the comb polarizes the pieces of 

paper that is, generate a net dipole moment in the direction of electric 

field. Also since the electric field is non-uniform, the paper pieces 

move in the direction of the comb. 

 

1.8  Electric field and potential due to electric dipole at a point in 

Cartesian and Polar Coordinates: 



An electric dipole consists of two equal and opposite charges +q and -q 

separated by a small distance a. The Electric Dipole Moment P is defined 

as a vector of magnitude qa with a direction from the negative charge to 

the positive charge. In many molecules, though the net charge is zero, the 

nature of chemical bonds is such that the positive and negative charges do 

not cancel at every point. There is a small separation between the positive 

charge centers and negative charge centers. Such molecules are said to be 

polar molecules as they have a non-zero dipole moment. The figure below 

shows an asymmetric molecule like water which has a dipole moment 

6.2x10
-30

C-m. 

 

 

Fig.2.23 Polar r-θ coordinates 

In the polar r-θ coordinates shown in the figure, 

 

 Where  and  are unit vectors in the radial and tangential directions, 

taken respectively, in the direction of increasing r and increasing θ . 

 The electric potential at a point P with a position vector  is 



 

 

 

Fig.2.24 The electric potential at a point P with a position vector  

 

If the distance a  is small compared to r (i.e., if the point P is far away from 

the dipole), we may use  

 

Where θ is the angle between  and the dipole moment vector . This 

give 

 

 



 

Electric Field of a Dipole: 

A. CARTESIAN COORDINATES: 

It is convenient to define the Cartesian axes in the following way.  Let the 

dipole moment vector be taken along the z-axis and position vector  of P 

in the y-z plane (We have denoted the point where the electric field is 

calculated by the letter P and the electric dipole moment vector as ). We 

then have  with   

Thus  

         
     

     
 

 
  

          
 

Since ø is independent of x, Ex =0. The y and z components are 
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B. POLAR COORDINATES: 

In polar (r-θ) coordinates, the radial and tangent components of the field 

are as follows: 

    
  

  
 

      

     
 

 

    
   

   
 

     

     
 
 

 

GENERAL EXPRESSION: 

A representation independent from for the dipole field can be obtain from 

the above,  

We have 

              

  
 

     
 
                 

Using  

                   

We get 



    
 

     
 
                

This from does not depend on any particular coordinate system. Note that, 

at large distances, the dipole field decrease as 1/r
3
 where as monopole field 

(i.e. field due to a point charge) decreases as 1/r
2
. 

 

Dipole in a uniform Electric Field: 

The net force on the dipole is zero. There is net torque acting on the 

dipole. If a is the length of the dipole, the torque is 

 

 

Fig.2.25 Net torque acting on the dipole 

 

Expressing in vector form,  

 

If θ = 0
o
 or 180

o
, (i.e. when the dipole is aligned parallel or anti-parallel to 

the field) the torque vanishes and the dipole is in equilibrium is stable if θ 

= 0
o
 and unstable if θ =180

o
. 



 

2.9    Force between two electric dipoles: 

Two perfect (infinitesimal) dipoles p1 and p2 are perpendicular and lie a 

distance r apart what is the torque on p2 (about its center) due to p1? What 

are the forces on each? Why are the torque not equal and opposite? 

 

 

Fig.2.26 Dipoles p1 and p2 are perpendicular and lie a distance r 

 

The field of each, at each other’s position: 

      
       

  
   

      

  
   

  

  
    

  

  
    

  

  
   

      
        

  
    

       

  
    

   

  
     

   

  
    

   

  
   

The torque each: 

 



Force on 2 due to field of 1: 

 

   

 

  
  

  

  
        

     

  
   

By Newton’s thirds law, the force on 2 by 1 is  

 

The forces the dipole exerts on each other are equal and opposite. Why 

isn’t the torques? Because we calculated the torques about different 

centers. If we refer both torques to the coordinate origin (i.e. the position 

of dipole 1), then  

                
     

  
   

                     
    

  
       

     

  
   

  
    

  
   

     

  
   

     

  
           

SAQ.3 

a) What do you mean by Electric dipole and its behavior in uniform 

and non uniform electric field? 

b) Define the Electric field and potential due to electric dipole at a 

point in polar coordinates. 

c) Write the expression for Force between two electric dipoles. 



d) What is the dipole moment for a dipole having equal charges -4C and 

2C separated with a distance of 6cm? 

Examples: 

Q.1 An electron is accelerated from rest through a potential difference 12 

V. What is the change in electric potential energy of the electron? 

Solution: 

ΔPE = q V = 

 (-1.60 x 10
-19

 C) (12 V)  

= -19.2 x 10
-19

 Joule 

The minus sign indicates that the potential energy decreases. 

 

Q.2 An electron is accelerated from rest through a potential difference 12 

V. What is the change in electric potential energy of the electron? 

Solution: 

The charge on an electron (e) = -1.60 x 10
-19

 Coulomb 

Electric potential = voltage (V) = 12 Volt 

The change in electric potential energy of the electron (ΔPE) =? 

ΔPE = q V = (-1.60 x 10
-19

 C)(12 V) = -19.2 x 10
-19

 Joule 

The minus sign indicates that the potential energy decreases. 

 

https://physics.gurumuda.net/electric-potential-energy-problems-and-solutions.htm
https://physics.gurumuda.net/electric-potential-energy-problems-and-solutions.htm
https://physics.gurumuda.net/types-of-electric-charges.htm
https://physics.gurumuda.net/electric-potential.htm
https://physics.gurumuda.net/electric-voltage-problems-and-solutions.htm


Q.3 Two parallel plates are charged. The separation between the plates is 2 

cm and the magnitude of the electric field between the plates is 500 

Volt/meter. What is the change in potential energy of the proton when 

accelerated from the positively charged plate to the negatively charged 

plate? 

Solution: 

The magnitude of the electric field between the plates (E) = 500 

Volt/meter 

The distance between the plates (s) = 2 cm = 0.02 m 

The charge on an proton = +1.60 x 10
-19

 Coulomb 

The change in electric potential energy (ΔPE) =? 

Electric potential: 

V = E s 

V = (500 Volt/m) (0.02 m) 

V = 10 Volt 

The change in electric potential energy: 

ΔPE = q V 

ΔPE = (1.60 x 10
-19

 C) (10 V) 

ΔPE = 16 x 10
-19 

Joule 

ΔPE = 1.6 x 10
-18 Joule 

https://physics.gurumuda.net/electric-field.htm
https://physics.gurumuda.net/distance-and-displacement-problems-and-solutions.htm


 

Q.4 Two point charges are separated by a distance of 10 cm. Charge on 

point A =+9 μC and charge on point B = -4 μC. k = 9 x 10
9 
Nm

2
C
−2

, 1 μC 

= 10
−6

 C. What is the change in electric potential energy of charge on point 

B if accelerated to point A? 

 

Solution: 

Charge A (q1) = +9 μC = +9 x 10
−6

 C 

Charge B (q1) = -4 μC = -4 x 10
−6

 C 

k = 9 x 10
9
 Nm

2
C
−2 

The distance between charge A and B (r) = 10 cm = 0.1 m = 10
-1 

m 

The change in electric potential energy (ΔEP) =? 

 

 



Q.5 Two charges qA = 1 μC and qB = 4 μC are separated by a distance of 4 

cm (k=9x10
9
 Nm

2
C
−2

). What is the magnitude of the electric field at the 

center between qA and qB? 

Solution: 

Charge A (qA) = 1 μC = 1 x 10
−6

 C 

Charge B (qB) = 4 μC = 4 x 10
−6

 C 

k = 9 x 10
9
 N m

2
 C

−2 

Distance between charge A and B (rAB) = 4 cm = 0.04 meters 

Distance between charge A and the center point (rA) = 0.02 meters 

Distance between charge B and the center point (rB) = 0.02 meters 

The magnitude of the electric field 

The electric field produced by charge A at the center point: 

 

Test charge is positive and charges A is positive so that the direction of the 

electric field points to charge B. 

The electric field produced by charge B at the center point: 

 

Test charge is positive and charge B is positive so that the direction of the 

electric field points to charge A. 



The resultant of the electric field at the center point: 

EA and EB have the opposite direction. 

E = EB – EA = 9 x 10
7 –

 2.25 x 10
7 
= 6.75 x 10

7 
NC

-1 

 

Q.6 According to figure below, where the point P is located so that the 

magnitude of the electric field at point P = 0 ? (k = 9 x 10
9 
Nm

2
C
−2

, 1 μC = 

10
−6

 C) 

 

Solution: 

If point P located at the left of Q1; the electric field produced by Q1 on 

point P points to leftward (away from Q1) and the electric field produced 

by Q2 on point P points to rightward (point to Q1). The direction of the 

electric field is opposite so that the electric field at point P = 0. 

Known: 

Q1 = +9 μC = +9 x 10
−6

 C 

Q2 = -4 μC = -4 x 10
−6

 C 

k = 9 x 10
9 
Nm

2
C
−2 

Distance between charge 1 and charge 2 = 3 cm 

Distance between Q1 and point P (r1P) = a 

Distance between Q2 and point P (r2P) = 3 + a 



Position of point P=? 

Point P located at leftward of Q1. 

The electric field produced by Q1 at point P: 

 

Test charge is positive and Q1 is positive so that the direction of the 

electric field to leftward. 

The electric field produced by Q2 at point P: 

 

Test charge is positive and Q2 is negative so that the direction of the 

electric field to rightward. 

Resultant of the electric field at point A: 

 

Use quadratic formula to find a : 



 

Distance between Q2 and point P (r2P) = 3 + a = 3 – 1.8 = 1.2 cm or 3 + a 

= 3 – 9 = -6 cm. 

Distance between Q1 and point P (r1P) = a = -9 cm or -1.8 cm. 

Point P located at 1.2 cm rightward of Q2. 

 

 

Q.7 Two charges Q1 = -40 µC and Q2 = +5 µC as shown in figure below (k 

= 9 x 10
9
 Nm

2
C

2
 and 1 µC = 10

-6
 C).  What is the magnitude of the electric 

field at point P? 

 

 

Solution: 

Known: 



Charge q1 = -40 µC = -40 x 10
-6

 C 

Charge q2 = +5 µC = +5 x 10
-6

 C 

Distance between q1 and point P (r1) = 40 cm = 0.4 m = 4 x 10
-1

 m 

Distance between q2 and point P (r2) = 10 cm = 0.1 = 1 x 10
-1

 m 

k = 9 x 10
9
 N m

2 
C

-2 

the magnitude of the electric field at point P =? 

The electric field 1: 

E1 = k q1 / r1
2 

E1 = (9 x 10
9
)(40 x 10

-6
) / (4 x 10

-1
)

2 

E1 = (360 x 10
3
) / (16 x 10

-2
) 

E1 = 22.5 x 10
5 
N/C 

The electric field 2: 

E2 = k q2 / r2
2 

E2 = (9 x 10
9
)(5 x 10

-6
) / (1 x 10

-1
)

2 

E2 = (45 x 10
3
) / 1 x 10

-2 

E2 = 45 x 10
5 
N/C 

Resultant of the electric field: 

The resultant of the electric field at point P : 

E = E2 – E1 = (45 – 22.5) x 10
5 
= 22.5 x 10

5
 N/C 



E = 2.25 x 10
6
 N/C 

The direction of the electric field points to rightward (same direction as 

E2). 

 

Q.8. A potentiometer wire has a length of 2m and a resistance of 10 ohm. 

It is connected in series with a cell of e.m.f. 4V and internal resistance 6 

ohm. Find the potential gradient on the wire. Find also where a cell of 

e.m.f. 1V will balance on the wire. 

Solution: 

 

 

 

 

 

 



Q.9 A potentiometer wire has a length of 4m and a resistance of 10 ohm. It 

is connected in series with a cell of e.m.f. 4V and internal resistance 2 

ohm. Find the potential gradient on the wire. Find also where a cell of 

e.m.f. 1.5 V will balance on the wire. 

Solution: 

 

 

 

 

 

                                         =0.8333V m-1 

 

 

 



Q.10. A potentiometer wire has a length of 2m and a resistance of 10 ohm. 

It is connected in series with a cell of e.m.f. 2V and a resistance 990 ohm. 

Find the potential gradient on the wire.  

Solution: 

  

 

 

   

 

Q.11 A uniform electric field of magnitude E = 100 N/C exists in the 

space in X-direction. Using the Gauss theorem calculate the flux of this 

field through a plane square area of edge 10 cm placed in the Y-Z plane. 

Take the normal along the positive X-axis to be positive. 

Solution: 

The flux Φ = ∫ E.cosθ ds. 

As the normal to the area points along the electric field, θ = 0. 

Also, E is uniform so, Φ = E.ΔS = (100 N/C) (0.10m)
2
 = 1 N-m

2
. 



 

Q.12 The figure shows three concentric thin spherical shells A, B and C of 

radii a, b, and c respectively. The shells A and C are given charges q and -

q respectively and the shell B is earthed. Find the charges appearing on the 

surfaces of B and C. 

 

 

Solution: 

As shown in the previous worked out example, the inner surface of B must 

have a charge -q from the Gauss law. Suppose, the outer surface of B has a 

charge q. 

The inner surface of C must have a charge -q’ from Gauss law. As the net 

charge on C must be -q, its outer surface should have a charge q’ – q. 

The charge distribution is shown in the figure. 

 

 

https://byjus.com/physics/continuous-charge-distribution/


  

 

The potential at B, 

 Due to the charge q on: 

 

 Due to the charge –q on the inner surface of: 

 

 Due to the charge q’ on the outer surface of: 

 

 Due to the charge –q’, on the inner surface of: 

 

 Due to the charge q’ – q on the outer surface of: 

 

 

The net potential is,  



 

This should be zero as the shell B is earthed. Thus 

 

The charge on various surface are as shown in the figure: 

 

 

Q.13 A solid conducting sphere having a charge Q is surrounded by an 

uncharged concentric conducting hollow spherical shell. Let the potential 

difference between the surface of the solid sphere and that of the outer 

surface of hollow shell be V. What will be the new potential difference 

between the same two surfaces if the shell is given a charge -3Q? 

Solution: 

In case of a charged conducting sphere 

https://byjus.com/maths/volume-of-sphere/


 

 

And  

 

So if a and b are the radii of a sphere and spherical shell respectively, the 

potential at their surfaces will be; 

 

And 

 

And so according to the given problem; 

 

 

Now when the shell is given a charge (-3Q) the potential at its surface and 

also inside will change by; 



 

So that now, 

 

Hence  

……… [From eqn. (1)] 

i.e., if any change is given to external shell the potential difference 

between sphere and shell will not change. 

This is because by the presence of charge on the outer shell, potential 

everywhere inside and on the surface of the shell will change by the same 

amount and hence the potential difference between sphere and shell will 

remain unchanged.  

 

Q.14 What is the dipole moment for a dipole having equal charges -2C and 

2C separated with a distance of 2cm? 

Solution: The calculated dipole moment for this condition is, p = q x d.  

Thus, p = 2 x 0.02 = 0.04 C-m. 

 

Q.15 A sample of  HCl gas is placed in a uniform electric field of 

magnitude 3 × 10
4
 N C

-1
. The dipole moment of each HCl molecule is 3.4 

× 10
-30

 Cm. Calculate the maximum torque experienced by each HCl 

molecule. 

https://www.toppr.com/guides/chemistry/is-matter-around-us-pure/what-is-a-solution/


Solution: 

The maximum torque experienced by the dipole is when it is aligned 

perpendicular to the applied field. 

τmax = pE sin 90 = 3 .4×10
−30

 ×3 ×10
4
 N m 

τmax = 10.2 ×10
−26

 N m 

 

Q.16 Calculate the electric dipole moment for the following charge 

configurations. 

 

 

Solution: 

Case (a) The position vector for the +q on the positive x-axis is ai and 

position vector for the +q charge the negative x axis is -a i ^ . So the dipole 

moment is, 



 

Case (b) In this case one charge is placed at the origin, so its position 

vector is zero. Hence only the second charge +q with position vector ai 

contributes to the dipole moment, which is  = qa  . 

From both cases (a) and (b), we can infer that in general the electric dipole 

moment depends on the choice of the origin and charge configuration. But 

for one special case, the electric dipole moment is independent of the 

origin. If the total charge is zero, then the electric dipole moment will be 

the same irrespective of the choice of the origin. It is because of this 

reason that the electric dipole moment of an electric dipole (total charge is 

zero) is always directed from –q to +q, independent of the choice of the 

origin. 

Case (c) 

. 

 Note that in this case p is directed from -2q to +q. 

Case (d) 

 

The water molecule (H2O) has this charge configuration. The water 

molecule has three atoms (two H atom and one O atom). The centers of 

positive (H) and negative (O) charges of a water molecule lie at different 

points, hence it possess permanent dipole moment. The O-H bond length 

is 0.958 × 10
-10

 m due to which the electric dipole moment of water 



molecule has the magnitude p = 6.1 x 10
-30

 Cm. The electric dipole 

moment  is directed from center of negative charge to the center of 

positive charge, as shown in the figure. 

 

 

Q.17 (a) Calculate the electric potential at points P and Q as shown in the 

figure below. 

(b) Suppose the charge +9µC is replaced by -9µC find the electrostatic 

potentials at points P and Q. 

 

( c )  Calculate the work done to bring a test charge +2µC from infinity to 

the point P. Assume the charge +9µC is held fixed at origin and +2µC is 

brought from infinity to P. 

Solution: 



(a) Electric potential at point P is given by 

 

Electric potential at point Q is given by 

 

Note that the electric potential at point Q is less than the electric potential 

at point P. If we put a positive charge at P, it moves from P to Q. However 

if we place a negative charge at P it will move towards the charge +9µC. 

The potential difference between the points P and Q is given by 

∆V = VP −VQ = +3 .04 ×10
3
V 

(b) Suppose we replace the charge +9 µC by -9 µC, then the corresponding 

potentials at the points P and Q are, 

VP = −8 . 1×10
3
 V, 

VQ =− 5.06 ×10
3
V 

Note that in this case electric potential at the point Q is higher than at point 

P. 

The potential difference or voltage between the points P and Q is given by 

∆V = VP −VQ = −3 .04 ×10
3
V 

(c) The electric potential V at a point P due to some charge is defined as 

the work done by an external force to bring a unit positive charge from 



infinity to P. So to bring the q amount of charge from infinity to the point 

P, work done is given as follows. 

W = qV 

WQ = 2 ×10
− 6

 × 5. 06 ×10
3
 J = 10 .12 ×10

−3
 J. 

  

Q.18 Consider a point charge +q placed at the origin and another point 

charge -2q placed at a distance of 9 m from the charge +q. Determine the 

point between the two charges at which electric potential is zero. 

Solution: 

According to the superposition principle, the total electric potential at a 

point is equal to the sum of the potentials due to each charge at that point. 

Consider the point at which the total potential zero is located at a distance 

x from the charge +q as shown in the figure. 

 

 

 



 

 

Q.19 The following figure represents the electric potential as a function of 

x – coordinate. Plot the corresponding electric field as a function of x. 

 

 

Solution: 

In the given problem, since the potential depends only on x, we can use 

  

(the other two terms ∂V/∂y and ∂V/∂z are zero) 

From 0 to 1 cm, the slope is constant and so dV/dx = 25V cm
−1

. 

So  = −25V cm
−1

  



From 1 to 4 cm, the potential is constant, V = 25 V. It implies that dV/dx = 

0. So  = 0 

From 4 to 5 cm, the slope dV/dx = −25V cm
−1

. 

So  = +25V cm
−1

  

The plot of electric field for the various points along the x axis is given 

below. 

 

 

Q.20 Four charges are arranged at the corners of the square PQRS of side 

a as shown in the figure.(a) Find the work required to assemble these 

charges in the given configuration. (b) Suppose a charge q′ is brought to 

the center of the square, by keeping the four charges fixed at the corners, 

how much extra work is required for this? 



 

 

Solution: 

(a) The work done to arrange the charges in the corners of the square is 

independent of the way they are arranged. We can follow any order. 

(i) First, the charge +q is brought to the corner P. This requires no work 

since no charge is already present, WP = 0 

(ii) Work required to bring the charge –q to the corner Q = (-q) x potential 

at a point Q due to +q located at a point P. 

WQ = −q × (1/4πε). q/a 

      = −(1/4πε).  q
2
/a 

 



(iii) Work required to bring the charge +q to the corner R= q × potential at 

the point R due to charges at the point P and Q. 

 

(iv) Work required to bring the fourth charge –q at the position S = q × 

potential at the point S due the all the three charges at the point P, Q and R 

 

(b) Work required to bring the charge q′ to the center of the square = q′ × 

potential at the center point O due to all the four charges in the four 

corners 

The potential created by the two +q charges are canceled by the potential 

created by the -q charges which are located in the opposite corners. 

Therefore the net electric potential at the center O due to all the charges in 

the corners is zero. 

Hence no work is required to bring any charge to the point O. Physically 

this implies that if any charge q′ when brought close to O, then it moves to 

the point O without any external force. 

 



Q.21 A water molecule has an electric dipole moment of 6.3 × 10
-30

 Cm. 

A sample contains 10
22

 water molecules, with all the dipole moments 

aligned parallel to the external electric field of magnitude 3 × 10
5
 N C

-1
. 

How much work is required to rotate all the water molecules from θ = 0º 

to 90º? 

Solution: 

When the water molecules are aligned in the direction of the electric field, 

it has minimum potential energy. The work done to rotate the dipole from 

θ = 0º to 90º is equal to the potential energy difference between these two 

configurations. 

W= ∆U =U (90º) −U (0º) 

From the equation (1.51), we write U = − pE cosθ, Next we calculate the 

work done to rotate one water molecule from θ = 0º to 90º. 

For one water molecule 

W = −pE cos 90º + pE cos0º = pE 

W = 6 . 3×10
− 30

 × 3 ×10
5
 = 18 .9×10

−25
 J 

For 10
22

 water molecules, the total work done is 

Wtot = 18. 9 ×10
− 25

 ×10
22

 =18 .9×10
−3

 J 

 

 

Summary: 



 

1) Electric potential energy is the energy that is needed to move a 

charge against an electric field. You need more energy to move a 

charge further in the electric field, but also more energy to move it 

through a stronger electric field. 

2) Electric potential energy Ue is the potential energy stored when 

charges are out of equilibrium (like gravitational potential 

energy). Electric potential is the same, but per charge, Ueq. 

3) Electrostatic potential energy is a potential energy (measured in 

joules) that results from conservative Coulomb forces and is 

associated with the configuration of a particular set of point charges 

within a defined system. 

4) Electric field, an electric property associated with each point in 

space when charge is present in any form. The magnitude and 

direction of the electric field are expressed by the value of E, 

called electric field strength or electric field intensity or simply 

the electric field. 

5) The SI unit of the electric field is volts per meter (V/m). This unit is 

equivalent to Newton's per coulomb. These are derived units where 

Newton is a unit of force and Coulomb is the unit of charge. 

6) The potential gradient is the potential difference per unit length. The 

SI unit of the potential gradient can be determined by substituting 

the unit of potential difference or voltage and length. Therefore, the 

unit of potential difference is volt/meter. 

https://byjus.com/physics/relation-between-electric-field-and-electric-potential/


7) The relationship between potential and field (E) is a 

differential: electric field is the gradient of potential (V) in the x 

direction. This can be represented as: Ex=−dVdx. Thus, as the test 

charge is moved in the x direction, the rate of the change 

in potential is the value of the electric field. 

8) Gauss' Law tells us that the electric field outside the sphere is the 

same as that from a point charge. This implies that outside 

the sphere the potential also looks like the potential from a point 

charge. What about inside the sphere? If the sphere is 

a conductor we know the field inside the sphere is zero. 

9) The electric potential inside a charged spherical conductor of radius 

R is given by V = ke Q/R, and the potential outside is given by V = 

ke Q/r. Using Er = -dv/dr, derive the electric field inside and outside 

this charge distribution. 

10) The electric field inside a hollow metallic sphere is zero. So the 

work done is also zero. Suppose Va is the potential on the inside and 

Vb is the potential on the surface, then Vb - Va = 0 or Vb = Va. 

Hence the potential is the same inside as on the surface. Due to 

the solid sphere, the gravitational potential is the same within 

the sphere. 

11) The electric dipole moment is a measure of the separation of positive 

and negative electrical charges within a system, that is, a measure of 

the system's overall polarity. The dipole is represented by a vector 

from the negative charge towards the positive charge. 



12) Electric dipole moment is defined as the product of charge and the 

distance between the charges, and is directed from negative to 

positive charge. The SI unit of electric dipole moment is coulomb 

meter (Cm). 

13)  When a dipole is placed in a uniform electric field and dipole vector 

direction is not parallel to field direction, each charges 

of dipole experiences a force. ... Once the dipole is aligned 

to electric field, the net force will be zero because they are in 

opposite direction. 

14)  If an electric dipole is placed in a non-uniform electric field, then 

the positive and the negative charges of the dipole will experience a 

net force. And as one end of the dipole is experiencing a force in one 

direction and the other end in the opposite direction, so 

the dipole will have a net torque also. 

15)  An electric dipole consists of two equal and opposite charges +q 

and -q separated by a small distance a. The Electric Dipole Moment 

P is defined as a vector of magnitude qa with a direction from the 

negative charge to the positive charge. In many molecules, though 

the net charge is zero, the nature of chemical bonds is such that the 

positive and negative charges do not cancel at every point. 

16)  The forces the dipole exerts on each other are equal and opposite. 

Why isn’t the torques? Because we calculated the torques about 

different centers. If we refer both torques to the coordinate origin 

(i.e. the position of dipole 1). 

 



 

Terminal Question: 

1) Explain the Electric potential and electrostatic potential energy in 

detail. 

2) What do you mean by Electric fields and potential gradient? 

3) Derive the relationship between Electric fields and potential 

gradient. 

4) Explain the concept the Electrostatic self energy using conducting 

and dielectric sphere. 

5) Explain and derive the expression for Electric potential due to 

spherical charge distribution using hollow and also its graphical 

representation. 

6) Explain and derive the expression for Electric potential due to 

spherical charge distribution using solid and also its graphical 

representation. 

7) What do you mean by Electric dipole and also its behavior in 

uniform and non uniform electric field? 

8) Derive the expression for Electric field and potential due to electric 

dipole at a point in Cartesian and polar coordinates. 

9) Derive the expression in detail for Force between two electric 

dipoles. 

10)  An electron is accelerated from rest through a potential difference 

18 V. What is the change in electric potential energy of the electron? 

11) Two point charges are separated by a distance of 10 cm. Charge on 

point A =+14 μC and charge on point B = -6 μC. k = 9 x 

https://physics.gurumuda.net/electric-potential-energy-problems-and-solutions.htm


10
9 
Nm

2
C
−2

, 1 μC = 10
−6

 C. What is the change in electric potential 

energy of charge on point B if accelerated to point A? 

 

 

 

12) A potentiometer wire has a length of 4m and a resistance of 12 ohm. 

It is connected in series with a cell of e.m.f. 8V and internal 

resistance 10 ohm. Find the potential gradient on the wire. Find also 

where a cell of e.m.f. 2V will balance on the wire. 

13) Consider a point charge +q placed at the origin and another point 

charge -4q placed at a distance of 12 m from the charge +q. 

Determine the point between the two charges at which electric 

potential is zero. 

 

 



Unit 03- Dielectrics 
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3.1 Introduction: 

The capacitor is a component which has the ability or “capacity” to store 

energy in the form of an electrical charge producing a potential difference 

(Static Voltage) across its plates, much like a small rechargeable battery.  

  
  

 
 

A capacitor is a device that is used to store charges in an electrical circuit. 

A capacitor works on the principle that the capacitance of a conductor 



increases appreciably when an earthed conductor is brought near it. Hence, 

a capacitor has two plates separated by a distance having equal and 

opposite charges. 

Energy stored in a capacitor is electrical potential energy, and it is thus 

related to the charge Q and voltage V on the capacitor. Thus the energy 

stored in a capacitor, Ecap, is Ecap=QV2 E cap = Q V 2 , where Q is the 

charge on a capacitor with a voltage V applied. 

A capacitor is charged by connecting it to a power supply. Then the 

connections to the power supply are removed, and a piece of dielectric is 

inserted between the plates. ... The charge on the plates stays the 

same, while the potential difference decreases. 

If the wires to the battery are disconnected, the charge remains on the 

plates -- and the voltage across the plates remains the same. If the wires 

are connected to each other, current will flow and the capacitor will 

discharge. Then there will be no voltage across the capacitor nor any 

charge on the plates. 

A spherical capacitor consists of a hollow or a solid spherical conductor 

surrounded by another concentric hollow spherical conductor. 

The capacitance of a spherical capacitor is derived as : By Gauss law 

charge enclosed by gaussian sphere of radius r be. q=ϵoEA =ϵoE(4πr
2
). 

The capacitor is used to store large amounts of electric current in a small 

space. It is often used to store the electric charge. ... The Cylindrical 

capacitor is a type of capacitor that possess the shape of a cylinder having 

an inner radius as a and outer radius as b. 



The relationship among the three vectors D, E, P in the metre-kilogram-

second (mks) or SI system is: D = ε0E + P (ε0 is a constant, the permittivity 

of a vacuum). 

 

The dielectric constant is a measure of the amount of electric potential 

energy, in the form of induced polarization that is stored in a given volume 

of material under the action of an electric field. It is expressed as the ratio 

of the dielectric permittivity of the material to that of a vacuum or dry air. 

Dielectric constant, also called relative permittivity or specific inductive 

capacity, property of an electrical insulating material (a dielectric) equal to 

the ratio of the capacitance of a capacitor filled with the given material to 

the capacitance of an identical capacitor in a vacuum without the dielectric 

material. The insertion of a dielectric between the plates of, say, a parallel-

plate capacitor always increases its capacitance, or ability to store opposite 

charges on each plate, compared with this ability when the plates are 

separated by a vacuum.  

Electric susceptibility, quantitative measure of the extent to which 

an electric field applied to a dielectric material causes polarization, the 

slight displacement of positive and negative charge within the material. 

Polarization occurs when an electric field distorts the negative cloud of 

electrons around positive atomic nuclei in a direction opposite the field. 

This slight separation of charge makes one side of the atom somewhat 

positive and the opposite side somewhat negative. 

According to electromagnetism, charge density is defined as a measure of 

electric charge per unit volume of the space in one, two, or three 

https://www.britannica.com/science/electricity
https://www.britannica.com/science/insulator
https://www.britannica.com/science/dielectric
https://www.britannica.com/science/capacitance
https://www.britannica.com/technology/capacitor
https://www.britannica.com/science/vacuum-physics


dimensions. To be specific, the linear surface or volume charge density is 

the amount of electric charge per surface area or volume, respectively. 

Integral form (“big picture”) of Gauss's law: The flux of electric field out 

of a closed surface is proportional to the charge it encloses. The above 

is Gauss's law in free space (vacuum). For a dielectric, just replace ε 0. 

With ε = ε. 

we will describe microscopic picture of a dieiecnic in which We will 

define the local field (El,), arid the average macmscopip field inside the 

dielectric (Ei). Further, we will derive the relationship between the local 

field and the macroscopic field. 

The Clausius–Mossotti relation expresses the dielectric 

constant (relative permittivity, εr) of a material in terms of the 

atomic polarizability, α, of the material's constituent atoms and/or 

molecules, or a homogeneous mixture thereof. It is named after Ottaviano-

Fabrizio Mossotti and Rudolf Clausius. It is equivalent to the Lorentz–

Lorenz equation. 

3.2 Objective: 

After studying this unit you should be able to 

 Study and identify Capacitor and its capacity, principle of capacitor, 

energy stored in field of capacitor. 

 Explain and identify Capacity of partially filled parallel plate 

capacitor, expression for induced charge. 

 Study and identify Effect of dielectrics slab introduced inside plates 

of charged capacitor when its remains connected with battery and 

when it is disconnected from battery. 

https://en.wikipedia.org/wiki/Dielectric_constant
https://en.wikipedia.org/wiki/Dielectric_constant
https://en.wikipedia.org/wiki/Permittivity
https://en.wikipedia.org/wiki/Polarizability
https://en.wikipedia.org/wiki/Ottaviano-Fabrizio_Mossotti
https://en.wikipedia.org/wiki/Ottaviano-Fabrizio_Mossotti
https://en.wikipedia.org/wiki/Rudolf_Clausius
https://en.wikipedia.org/wiki/Lorentz%E2%80%93Lorenz_equation
https://en.wikipedia.org/wiki/Lorentz%E2%80%93Lorenz_equation


 Study and identify Spherical plates capacitor and cylindrical plates 

capacitor. 

 Explain and identify Change in electrical properties when N small 

charged drops coalesce to form a large drop. 

 Study and identify three electric vectors (D, E, P), dielectric 

constant, dielectric strength, electrical susceptibility. 

 Study and identify Polarization, surface and volume charge density, 

Gauss law in dielectrics. 

 Explain and identify Macroscopic and microscopic properties of 

dielectrics. Clausius – Mossotte formula. 

 

3.3 Capacitor and its capacity, principle of capacitor, energy stored 

in field of capacitor. 

 

Capacitor and its capacity: 

The capacitor is a component which has the ability or “capacity” to store 

energy in the form of an electrical charge producing a potential difference 

(Static Voltage) across its plates, much like a small rechargeable battery. 

There are many different kinds of capacitors available from very small 

capacitor beads used in resonance circuits to large power factor correction 

capacitors, but they all do the same thing, they store charge. 

In its basic form, a capacitor consists of two or more parallel conductive 

(metal) plates which are not connected or touching each other, but are 

electrically separated either by air or by some form of a good insulating 



material such as waxed paper, mica, ceramic, plastic or some form of a 

liquid gel as used in electrolytic capacitors. The insulating layer between a 

capacitors plates is commonly called the Dielectric. 

 

Fig.3.1 Capacitor 

Due to this insulating layer, DC current can not flow through the capacitor 

as it blocks it allowing instead a voltage to be present across the plates in 

the form of an electrical charge. 

The conductive metal plates of a capacitor can be either square, circular or 

rectangular, or they can be of a cylindrical or spherical shape with the 

general shape, size and construction of a parallel plate capacitor depending 

on its application and voltage rating. 

When used in a direct current or DC circuit, a capacitor charges up to its 

supply voltage but blocks the flow of current through it because the 

dielectric of a capacitor is non-conductive and basically an insulator. 

However, when a capacitor is connected to an alternating current or AC 

circuit, the flow of the current appears to pass straight through the 

capacitor with little or no resistance. 

There are two types of electrical charge, a positive charge in the form of 

Protons and a negative charge in the form of Electrons. When a DC 

voltage is placed across a capacitor, the positive (+ve) charge quickly 

accumulates on one plate while a corresponding and opposite negative (-

ve) charge accumulates on the other plate. For every particle of +ve charge 



that arrives at one plate a charge of the same sign will depart from the -ve 

plate. 

Then the plates remain charge neutral and a potential difference due to this 

charge is established between the two plates. Once the capacitor reaches 

its steady state condition an electrical current is unable to flow through the 

capacitor itself and around the circuit due to the insulating properties of 

the dielectric used to separate the plates. 

The flow of electrons onto the plates is known as the capacitors Charging 

Current which continues to flow until the voltage across both plates (and 

hence the capacitor) is equal to the applied voltage Vc. At this point the 

capacitor is said to be “fully charged” with electrons. 

The strength or rate of this charging current is at its maximum value when 

the plates are fully discharged (initial condition) and slowly reduces in 

value to zero as the plates charge up to a potential difference across the 

capacitors plates equal to the source voltage. 

The amount of potential difference present across the capacitor depends 

upon how much charge was deposited onto the plates by the work being 

done by the source voltage and also by how much capacitance the 

capacitor has and this is illustrated below. 



 

Fig.3.2 Parallel Plates Capacitor and symbol 

The parallel plate capacitor is the simplest form of capacitor. It can be 

constructed using two metal or metalized foil plates at a distance parallel 

to each other, with its capacitance value in Farads, being fixed by the 

surface area of the conductive plates and the distance of separation 

between them. Altering any two of these values alters the the value of its 

capacitance and this forms the basis of operation of the variable capacitors. 

Also, because capacitors store the energy of the electrons in the form of an 

electrical charge on the plates the larger the plates and/or smaller their 

separation the greater will be the charge that the capacitor holds for any 

given voltage across its plates. In other words, larger plates, smaller 

distance, more capacitance. 

By applying a voltage to a capacitor and measuring the charge on the 

plates, the ratio of the charge Q to the voltage V will give the capacitance 

value of the capacitor and is therefore given as: 

C = Q/V 



 this equation can also be re-arranged to give the familiar formula for the 

quantity of charge on the plates as:  

Q = C x V 

Although we have said that the charge is stored on the plates of a 

capacitor, it is more exact to say that the energy within the charge is stored 

in an “electrostatic field” between the two plates. When an electric current 

flows into the capacitor, it charges up, so the electrostatic field becomes 

much stronger as it stores more energy between the plates. 

Likewise, as the current flowing out of the capacitor, discharging it, the 

potential difference between the two plates decreases and the electrostatic 

field decreases as the energy moves out of the plates. 

The property of a capacitor to store charge on its plates in the form of an 

electrostatic field is called the Capacitance of the capacitor. Not only that, 

but capacitance is also the property of a capacitor which resists the change 

of voltage across it. 

The Capacitance of a Capacitor: 

Capacitance is the electrical property of a capacitor and is the measure of a 

capacitors ability to store an electrical charge onto its two plates with the 

unit of capacitance being the Farad (abbreviated to F) named after the 

British physicist Michael Faraday. 

Capacitance is defined as being that a capacitor has the capacitance of One 

Farad when a charge of One Coulomb is stored on the plates by a voltage 

of One volt. Note that capacitance, C is always positive in value and has 

no negative units. However, the Farad is a very large unit of measurement 



to use on its own so sub-multiples of the Farad are generally used such as 

micro-farads, nano-farads and pico-farads, for example. 

Standard Units of Capacitance: 

 Microfarad  (μF)   1μF = 1/1,000,000 = 0.000001 = 10
-6

 F 

 Nanofarad  (nF)   1nF = 1/1,000,000,000 = 0.000000001 = 10
-9

 F 

 Picofarad  (pF)   1pF = 1/1,000,000,000,000 = 0.000000000001 = 10
-

12
 F 

Then using the information above we can construct a simple table to help 

us convert between pico-Farad (pF), to nano-Farad (nF), to micro-Farad 

(μF) and to Farads (F) as shown. 

Pico-

Farad 

(pF) 

Nano-

Farad 

(nF) 

Micro-

Farad 

(μF) 

Farads 

(F) 

1,000 1.0 0.001   

10,000 10.0 0.01   

1,000,000 1,000 1.0   

  10,000 10.0   

  100,000 100   

  1,000,000 1,000 0.001 

    10,000 0.01 



    100,000 0.1 

    1,000,000 1.0 

 

 

 

 

Working Principle of a Capacitor: 

To demonstrate how a capacitor works, let us consider a most basic 

structure of a capacitor. It is made of two parallel conducting plates 

separated by a dielectric that is parallel plate capacitor. When we connect a 

battery (DC Voltage Source) across the capacitor, one plate (plate-I) gets 

attached to the positive end, and another plate (plate-II) to the negative end 

of the battery. Now, the potential of that battery is applied across that 

capacitor. At that situation, plate-I is in positive potency with respect to 

the plate-II. At steady state condition, the current from the battery tries to 

flow through this capacitor from its positive plate (plate-I) to negative 

plate (plate-II) but cannot flow due to the separation of these plates with an 

insulating material. 

https://www.electrical4u.com/parallel-plate-capacitor/
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https://www.electrical4u.com/electric-current-and-theory-of-electricity/


 

Fig.3.3 Parallel Plate Capacitor with dielectric 

An electric field appears across the capacitor. As time goes on, positive 

plate (plate I) will accumulate positive charge from the battery, and 

negative plate (plate II) will accumulate negative charge from the battery. 

After a certain time, the capacitor holds maximum amount of charge as per 

its capacitance with respect to this voltage. This time span is called 

charging time of this capacitor. 

After removing this battery from this capacitor, these two plates hold 

positive and negative charge for a certain time. Thus this capacitor acts as 

a source electrical energy. 

 

Fig.3.4 Capacitor acts as a source electrical energy 

https://www.electrical4u.com/what-is-electric-field/
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If two ends (plate I and plate II) are connected to a load, a current will 

flow through this load from plate-I to plate-II until all charges get vanished 

from both plates. This time span is known as discharging time of the 

capacitor. 

 

Fig.3.5 Discharging time of the capacitor. 

Capacitor in a DC Circuit: 

Suppose a capacitor is connected across a battery through a switch. 

 

Fig.3.6 Capacitor in a DC Circuit 

When the switch is ON, i.e., at t = 
+
0, a current will start flowing through 

this capacitor. After a certain time (i.e. charging time) capacitor never 

https://www.electrical4u.com/discharging-a-capacitor/
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allow current to flow through it further. It is because of the maximum 

charges is accumulated on both plates and capacitor acts as a source which 

has a positive end connected to the positive end of the battery and has a 

negative end connected to the negative end of the battery with the same 

potency. 

 

Fig.3.7 Capacitor connected battery with the same potency 

Due to zero potential difference between battery and capacitor, no current 

will flow through it. So, it can be said that initially a capacitor is short-

circuited and finally open circuited when it gets connected across a battery 

or DC source. 

Capacitor in an AC Circuit: 

Suppose a capacitor is connected across an AC source. Consider, at a 

certain moment of positive half of this alternating voltage, plate-I gets 

positive polarity and plate-II negative polarity. Just at that moment, plate-I 

accumulates positive charge and plate-II accumulates negative charge. 

https://www.electrical4u.com/electric-current-and-theory-of-electricity/
https://www.electrical4u.com/voltage-or-electric-potential-difference/
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Fig,3.8 Capacitor in an AC Circuit 

But at the negative half of this applied AC voltage, plate-I gets a negative 

charge and plate-II positive charge. There is no flow of electrons between 

these two plates due to dielectric placed between the plates but they 

change their polarity with the change of source polarity. The capacitor 

plates get charged and discharged alternatively by the AC. 

 

Fig.3.9 Capacitor plates get charged and discharged alternatively by the 

AC 

 

Energy Stored in Capacitor: 

While capacitor is connected across a battery, charges come from the 

battery and get stored in the capacitor plates. But this process of energy 

https://www.electrical4u.com/what-is-capacitor/
https://www.electrical4u.com/battery-working-principle-of-batteries/


storing is step by step only. At the very beginning, capacitor does not have 

any charge or potential. i.e. V = 0 volts and q = 0 C. 

 

 

Fig.3.10 Energy Stored in Capacitor 

 

Now at the time of switching, full battery voltage will fall across the 

capacitor. A positive charge (q) will come to the positive plate of the 

capacitor, but there is no work done for this first charge (q) to come to the 

positive plate of the capacitor from the battery. It is because of the 

capacitor does not have own voltage across its plates, rather the initial 

voltage is due to the battery. First charge grows little amount of voltage 

across the capacitor plates, and then second positive charge will come to 

the positive plate of the capacitor, but gets repealed by the first charge. As 

the battery voltage is more than the capacitor voltage then this second 

charge will be stored in the positive plate. 

At that condition a little amount of work is to be done to store second 

charge in the capacitor. Again for the third charge, same phenomenon will 

https://www.electrical4u.com/voltage-or-electric-potential-difference/
https://www.electrical4u.com/what-is-capacitor/
https://www.electrical4u.com/battery-working-principle-of-batteries/
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appear. Gradually charges will come to be stored in the capacitor against 

pre-stored charges and their little amount of work done grows up. 

 

 

Fig.3.11 Capacitor against pre-stored charges 

 

It can’t be said that the capacitor voltage is fixed. It is because of the 

capacitor voltage is not fixed from the very beginning. It will be at its 

maximum limit when potency of capacitor will be equal to that of the 

battery. 

As storage of charges increases, the voltage of the capacitor increases and 

also energy of the capacitor increases. So at that point of discussion the 

energy equation for the capacitor can’t be written as energy  

(E) = V.q 

As the voltage increases the electric field (E) inside the capacitor dielectric 

increases gradually but in opposite direction i.e. from positive plate to 

negative plate. 

https://www.electrical4u.com/what-is-capacitor/
https://www.electrical4u.com/what-is-electric-field/


 

 

Here dx is the distance between two plates of the capacitor. 

 

Fig.3.12 Two Plate capacitor 

 

Charge will flow from battery to the capacitor plate until the capacitor 

gains as same potency as the battery. So, we have to calculate the energy 

of the capacitor from the very begging to the last moment of charge getting 

full. Suppose, a small charge q is stored in the positive plate of the 

capacitor with respect to the battery voltage V and a small work done is 

dW. Then considering the total charging time, we can write that, 

 

https://www.electrical4u.com/battery-working-principle-of-batteries/
https://www.electrical4u.com/what-is-capacitor/


Now we go for the energy loss during the charging time of a capacitor by a 

battery. 

As the battery is in the fixed voltage the energy loss by the battery always 

follows the equation, W = V.q, this equation is not applicable for the 

capacitor as it does not have the fixed voltage from the very beginning of 

charging by the battery. 

Now, the charge collected by the capacitor from the battery is 

 

Now charge lost by the battery is 

 

This half energy from total amount of energy goes to the capacitor and rest 

half of energy automatically gets lost from the battery and it should be 

kept in mind always. 

 

3.4 Capacity of partially filled parallel plate capacitor, expression 

for induced charge: 

 

Capacity of partially filled parallel plate capacitor: 

https://www.electrical4u.com/battery-working-principle-of-batteries/
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Capacity of a parallel plate condenser which is partially filled with a dielectric 

medium- By the distance between the plates is d and in between the plates 

there is a dielectric medium of thick-ness t and dielectric constant K. If each 

plate is given a charge +q then surface charge. 

σ=A/q 

 

Fig.3.13 Parallel plate capacitor 

Where A is the surface area of the plates. If the distance between the plates in 

negligible in Comparison to their area then the intensity of electric field in the 

area filled with air between the plates. 

 

Electric field intensity within the dielectric medium is 

 



By the definition of potential difference, the potential difference between the 

plates. 

V= Work done in moving a unit charge from one plate (negative) to another 

(positive) plate. 

= Work done in moving a unit charge a distance (d−t) in air and distance t in 

dielectric medium 

 

On substituting the values of Eo and E, 

 

 

 

Hence capacity of the condenser 

 

 

Expression for Induced Charge:  

E=
   

 
    (Q constant) 

Where: 



E = field with the dielectric between plates 

E0 = field with vacuum between the plates 

 

E is smaller when the dielectric is present → surface charge density 

smaller. The surface charge on conducting plates does not 

change, but an induced charge of opposite sign appears on each surface of 

the dielectric neutral(only charge distribution) 

 

 

 

Fig.3.14 Induced charges in plates 



 

 

Where E0 is electric field due to plate charge Ei is electric field due to 

induced charge on dielectric 

 

 

 

 

 

Where Qi is the induced charge and Q is charge of capacitor before 

insertion of dielectric 

 

3.5 Effect of dielectrics slab introduced inside plates of charged 

capacitor when its remains connected with battery and when it is 

disconnected from battery: 

Effect of dielectrics slab introduced inside plates of charged capacitor 

when its remains connected with battery: 

While a capacitor remains connected to a battery and dielectric slab is 

slipped between the plates, the potential difference between the plates 



remains uncharged. The introduction of dielectric slab increases the 

charge of capacitor which flows from the battery. 

Dielectrics with Battery:  

Consider a second case where a battery supplying a potential difference 

|ΔV0 | remains connected as the dielectric is inserted. Experimentally, it is 

found (first by Faraday) that the charge on the plates is increased by a 

factor Ke : 

 

where Q
0 
is the charge on the plates in the absence of any dielectric.  

 

Fig.3.15. Inserting a dielectric material between the capacitor plates 

 While maintaining a constant potential difference 0|ΔV0 | 

The capacitance becomes 

 

which is the same as the first case where the charge Q
0 
is kept constant, but 

now the charge has increased.   

 



Effect of dielectrics slab introduced inside plates of charged capacitor 

when it is disconnected from battery: 

If a dielectric slab of dielectric constant K is filled in between the plates of a 

capacitor after charging the capacitor (i.e., after removing the connection of 

battery with the plates of capacitor) the potential difference between the plates 

reduces to 1/Ktimes and the potential energy of capacitor reduces 

to 1/K. times but there is no change in the charge on the plates. 

 

Dielectrics without Battery: 

As shown in Figure, a battery with a potential difference |ΔV0 | across its 

terminals is first connected to a capacitor C
0
, which holds a charge Q0 =C0 | 

ΔV0 | . We then disconnect the battery, leaving Q0=const. 

 

Fig.3.16 Dielectrics without Battery 

Inserting a dielectric material between the capacitor plates while keeping 

the charge Q
0 
constant 

If we then insert a dielectric between the plates, while keeping the charge 

constant, experimentally it is found that the potential difference decreases 

by a factor of Ke : 



 

This implies that the capacitance is changed to 

 

Thus, we see that the capacitance has increased by a factor of Ke .The 

electric field within the dielectric is now 

 

We see that in the presence of a dielectric, the electric field decreases by a 

factor of Ke. 

 

SAQ 1: 

a) What do you mean by Capacitor and its capacity? 

b) Discuss the principle of capacitor. 

c) What do you mean energy stored in field of capacitor? 

d) What do you mean by induced charge? 

e) What is the charge stored when the voltage across a 30 

μF capacitor is 6 V? 

f) What is the capacitance of a capacitor that stores 18 μC of charge 

when connected to a 9V battery? 

 



 

3.6 Spherical plate’s capacitor and cylindrical plate’s capacitor: 

Spherical plate’s capacitor: 

A spherical capacitor consists of a solid or hollow spherical conductor of 

radius a, surrounded by another hollow concentric spherical of radius b 

shown below in figure 

 

Fig.3.17 Spherical plates capacitor 

 Let +Q be the charge given to the inner sphere and -Q be the charge 

given to the outer sphere. 

 The field at any point between conductors is same as that of point 

charge Q at the origin and charge on outer shell does not contribute 

to the field inside it. 

 Thus electric field between conductors is E=Q2πϵ0r2 

 

Potential difference between two conductors is 

 



Where limits of integration goes from a to b. 

On integrating we get potential difference between to conductors as 

 

Now , capacitance of spherical conductor is 

 

again if radius of outer conductor approaches to infinity then from 

equation 6 we have 

 

 Above equation 2 gives the capacitance of single isolated sphere of 

radius a. 

 Thus capacitance of isolated spherical conductor is proportional to 

its radius. 

Spherical capacitor when inner sphere is earthed: 

 If a positive charge of Q coulombs is given to the outer sphere B, it 

will distribute itself over both its inner and outer surfaces. 

 Let the charges of Q1 and Q2 coulombs be at the inner and outer 

surfaces respectively of sphere B where Q=Q1+Q2, 

 The charge + Q1 on the inner surface of outer sphere B will induce a 

charge of -Q1 coulombs on the outer surface of inner sphere A and 



+Q1 coulombs on the inner surface of sphere A, which will go to 

earth. 

 Now there are two capacitors connected in parallel. 

i.  One capacitor consists outer surface of sphere B and earth 

having capacitance C1=4πϵ0b farads 

ii. Second capacitor consisting of inner surface of outer sphere B 

and the outer surface of inner sphere A having capacitance 

 

Final Capacitance: 

 

Cylindrical plate’s capacitor: 

 A cylindrical capacitor is made up of a conducting cylinder or wire 

of radius a surrounded by another concentric cylindrical shell of 

radius b (b>a). 

 Let L be the length of both the cylinders and charge on inner 

cylinder is +Q and charge on outer cylinder is -Q. 

 For calculate electric field between the conductors using Gauss's law 

consider a Gaussian surface of radius r and length L
1
 as shown in 

below figure . 



 

Fig.3.18 Cylindrical plates capacitor 

 According to Gauss's law flux through this surface is q/ϵ0 where q is 

net charge inside this surface. 

 We know that electric flux is given by 

 

 

Since electric field is constant in magnitude on the Gaussian surface and is 

perpendicular to this surface. Thus, 

ϕ=E(2πrL) 

Since                ϕ=q/ϵ0 

 

Where λ=Q/L= charge per unit length 

So,  

E=λ/2πϵ0r 



If potential at inner cylinder is Va and Vb is potential of outer cylinder then 

potential difference between both the cylinders is 

V=Va and Vb=∫Edr 

Where limits of integration goes from a to b. 

Potential of inner conductor is greater than that of outer conductor because 

inner cylinder carries positive charge. Thus potential difference is 

 

Thus capacitance of cylindrical capacitor is 

 

 From the above equation it can easily be concluded that capacitance 

of a cylindrical capacitor depends on length of cylinders. 

 More is the length of cylinders , more charge could be stored on the 

capacitor for a given potential difference 

 

 

3.7 Change in electrical properties when N small charged drops 

coalesce to form a large drop:  

Let r, q and v be the radius, charge the potential of a small drop.   



The total charge on the bigger drop is the sum of all charge on small drop 

s  

Q = Nq  

The volume of N small drops = Nx 4/3 πr cube   

And for the bigger drop = 4/3 πR cube   

Hence,   

4/3 πR cube = N x 4/3 π r cube   

R = N raise to power 1/3 r   

So the potential on bigger drop   

V = 1/ 4π Ɛo Q/R  

    = 1/4πƐ0 Nq/N raise to power 1/3r  

    = N raise to power 2/3 x 1/ 4πƐo q/r  

V = N raise to power 2/3 x v  

And the capacitance C = 4πƐoR  

C = 4πƐoN raise to power 1/3 r  

    = N raise to power 1/3 (4πƐor)  

C = N raise to power 1/3c 

 

3.8 Three electric vectors (D, E, P), dielectric constant, dielectric 

strength, electrical 



Susceptibility: 

Three electric vectors (D, E, P) (Or) Relation between polarization 

vector (P), displacement (D) and electric field (E): 

Let us derive the relation between polarization vector (P), displacement 

(D) and electric field (E): 

In the last article of polarization, we have discussed about the effect on 

dielectric placed in an external electric field E0 and there will be electric 

field due to polarized charges, this field is called electric field due to 

polarization (Ep). (You can see the figure in that article). 

Rewrite equation (1) of that article, that is: 

E = E0 – Ep (1) 

Polarization vector, P = P is equal to the bound charge per unit area or 

equal to the surface density of bound charges (because surface charge 

density is charge per unit area), 

Thus P = qb/A = σp (2) 

Where qb is bound charge and σp is surface density of bound charges. P is 

also defined as the electric dipole moment of material per unit volume. 

P = np 

Where n is number of molecules per unit volume. 

Displacement vector, D= D is equal to the free charge per unit area or 

equal to the surface density of free charges, 

Thus D = q/A = σ  (3) 



Where q is free charge and σ  is surface density of free charges. 

As for parallel plate capacitor (already derived in earlier articles): 

E = σ /ε0 (4) 

Ep = σp /ε0 (5) 

By substituting equations 4 and 5 in equation 1, we get 

E = σ /ε0 –  σp /ε0 

Or ε0E =  σ  – σ0 

By putting equations 2 and 3 in above equation, we get 

ε0E  = D – P 

or D = ε0E  + P 

This is the relation between D, E and P. 

Dielectric Constant: 

The dielectric constant (Dk) of a plastic or dielectric or insulating material 

can be defined as the ratio of the charge stored in an insulating material 

placed between two metallic plates to the charge that can be stored when 

the insulating material is replaced by vacuum or air. It is also called 

as electric permittivity or simply permittivity. 

And, at times referred as relative permittivity, because it is measured 

relatively from the permittivity of free space (ε0). 

Dielectric constant characterizes the ability of plastics to store electrical 

energy. Typical values of ε for dielectrics are: 



 

Material Dielectric 

Constant (ε) 

Vacuum 1.000 

Dry Air 1.0059 

Foam 

Polyethylene  

1.6 

Fluoropolymers 2.0 

Polypropylene  2.1 

Butyl Rubber 2.3 

SBR 2.9 

Silicone Rubber 3.2 

Plexiglass 3.4 

PVC 4.0 

Glass 3.8-14.5 

Distilled Water ~80 

 

A dielectric constant of 2 means an insulator will absorb twice more 

electrical charge than vacuum. 

Applications include: 

https://omnexus.specialchem.com/404ErrorPage?item=web%3a%7bF96490CD-60A4-491E-8284-B012F6EB9D8A%7d%40en?src=omarticle
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 Use of materials in the production of capacitors used in radios and 

other electrical equipment. Commonly used by circuit designers to 

compare different printed-circuit-board (PCB) materials. 

 Development of materials for energy storage applications. 

 

For example, polymer-based dielectric composites are highly desirable for 

applications ranging from electronic packaging, embedded capacitors, to 

energy storage. These composites are highly flexible with a low process 

temperature and they exhibit a relatively high dielectric constant, low 

dielectric loss, high dielectric strength. 

Calculate Dielectric Constant: 

In other words, dielectric constant can also be defined as the ratio of the 

capacitance induced by two metallic plates with an insulator between 

them, to the capacitance of the same plates with air or a vacuum between 

them. 

An insulating material with higher dielectric constant is needed when it is 

to be used in E&E applications where high capacitance is needed. 

If a material were to be used for strictly insulating purposes, it would be 

better to have a lower dielectric constant. 

The dielectric constant formula is: 

   

Where: 
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 C = capacitance using the material as the dielectric capacitor 

 C0 = capacitance using vacuum as the dielectric 

 ε0 = Permittivity of free space (8.85 x 10
-12

 F/m i.e. Farad per metre) 

 A = Area of the plate/sample cross section area 

 T = Thickness of the sample 

 

Dielectric Constant Units:  

This electrical property is a dimension less measure. 

The most generally used standard tests to calculate dielectric constant for 

plastics are ASTM D2520, ASTM D150 or IEC 60250 (of course there 

exist several other methods as well, but they are not discussed here). 

The method includes: 

A sample is placed between two metallic plates and capacitance is 

measured. A second run is measured without the specimen between the 

two electrodes. The ratio of these two values is the dielectric constant. 

 The test can be conducted at different frequencies, often between the 

10Hz and 2MHz range 

 The sample must be flat and larger than the 50mm (2 in) circular 

electrodes used for the measurement. 

Polar Plastics Vs Non-polar Plastics: 



 Dielectric properties of a polymer largely depend upon their 

structure. The structure determines whether a polymer is polar or 

non-polar and this in turn decided the electrical properties of the 

polymer. 

 In polar polymers (PMMA, PVC, Nylon, PC etc.), dipoles are 

created due to imbalance in the distribution of electrons. These 

dipoles tend to align in the presence of electric field. Hence, this 

creates dipole polarization of the material making these materials 

only moderately good as insulators. 

 While non-polar polymers (PTFE, PP, PE, PS) have symmetrical 

molecules and are truly covalent. There are no polar dipoles present 

in them and hence in presence of electric field does not align the 

dipoles. However, slight electron polarization occurs due to the 

movement of electrons in the direction of electric field, which is 

effectively instantaneous. These polymers have high resistivities and 

low dielectric constant. 

 Polar plastics have a tendency to absorb moisture from the 

atmosphere. Presence of moisture raises the dielectric constant and 

lowers the resistivity. With rise in temperature, there is faster 

movement of polymer chains and fast alignment of dipoles. This 

invariably raises the dielectric constant values for polar plastics. 

 Non-polar plastics are not affected by moisture and rise in 

temperature. 

 

Factors Influencing Dielectric Constant: 



 Frequency - Dielectric constant decreases abruptly as frequency 

increases 

 Moisture &Temperature  

 Voltage 

 Structure & morphology (see polar plastics vs non-polar plastics) 

 Presence of other materials in the plastic 

 Weathering and Deterioration 

 

Dielectric Strength: 

Dielectric Strength reflects the electric strength of insulating materials at 

various power frequencies. Or it can be defined as the measure of 

dielectric breakdown resistance of a material under an applied voltage and 

is expressed as Volts per unit thickness. It is an indicator of how good an 

insulator a material is. 

In other words, it is the voltage per unit thickness at which a material will 

conduct electricity. The higher the value, the more electrically insulating a 

material is. 

It is an important property sought for materials used in applications where 

electrical field is present and is a vital parameter for electrical industry 

applications. 

 

Applications of Dielectric Strength: 



 Development of materials for energy storage applications 

 Dielectric materials for capacitors 

 Thin films in high speed digital circuitry 

 

The dielectric strength depends on: 

 The type of the plastic and electrodes 

 The shape of the plastic and electrodes 

 The rate with which the field is increased, and 

 The medium that surrounds the insulator 

 

Unit for Dielectric Strength is kV by mm of thickness (customary units 

sometimes refer to in V/mil) 

Measure Dielectric Strength: 

The most generally used standard tests to calculate dielectric strength are 

ASTM D149 or IEC 60243-1 (ofcourse there exist several other methods 

as well, but they are not discussed here). 

The measurement of dielectric strength is usually carried out either by the: 

  Short-time method 

  Slow rate-of-rise method 

  Step-by-Step method 

Short-time method 

In this method, the voltage is applied across the two electrodes and 

increased continuously at a uniform rate (500 V/sec) until the breakdown 



occurs. Breakdown is defined as when an electrical burn- through 

punctures the sample or decomposition occurs in the sample. 

 

Slow rate-of-rise method: 

In this test method, the voltage is applied to the test electrodes from the 

starting voltage 50% of the breakdown voltage until breakdown occurs. 

 

Step-by-Step method: 

The voltage is applied to the test electrodes at the preferred starting 

voltage in steps and duration until breakdown occurs. 

Specimen Size - The recommended specimen type is a 4 inch plaque or 

larger. Any specimen thickness can be used. 

Dielectric strength is calculated by dividing the breakdown voltage by the 

thickness of the sample. 

Most plastics have good dielectric strengths (in the order of 100 to 300 

kV/cm) 

Factors Affecting Dielectric Strength: 

 The dielectric strength of an insulation material usually 

decreases with increase in temperature:  

It is approximately inversely proportional to the absolute 

temperature. At the same time, it is equally important to note that 

below room temperature, dielectric strength is substantially 

independent of temperature change. 



 Mechanical loading has a pronounced effect on dielectric 

strength: 

Since, a mechanical stress may introduce internal flaws which serve 

as leakage paths, mechanical loaded insulators may show 

substantially reduced values of dielectric strength. 

 Dielectric Strength of an insulating material is influenced by the 

fabrication details: 

For example, flow lines in a compression molding or weld lines in 

an injection molding may serve as paths of least resistance of 

leakage currents, this reducing the dielectric strength. Even nearly 

invisible minute flaws in a plastics insulator may reduce the 

dielectric strength to one-third this normal value. 

Electric susceptibility: 

Is the quantitative measure of the extent to which an electric field applied 

to a dielectric material causes polarization, the slight displacement of 

positive and negative charge within the material. For most linear dielectric 

materials, the polarization P is directly proportional to the average electric 

field strength E so that the ratio of the two, P/E, is a constant that 

expresses an intrinsic property of the material. The electric 

susceptibility, χe, in the centimetre-gram-second (cgs) system, is defined 

by this ratio; that is, χe = P/E. In the metre-kilogram-second (mks) system, 

electric susceptibility is defined slightly differently by including the 

constant permittivity of a vacuum, ε0, in the expression; that 

is, χe = P/(ε0E). In both systems the electric susceptibility is always a 

dimensionless positive number. Because of the slight difference in 

definition, the value of the electric susceptibility of a given material in the 

mks system is 4π times its value in the cgs system. 

https://www.britannica.com/science/electric-field
https://www.britannica.com/science/dielectric
https://www.britannica.com/science/polarization-physics
https://www.britannica.com/science/electric-field-strength
https://www.britannica.com/science/electric-field-strength
https://www.merriam-webster.com/dictionary/intrinsic
https://www.britannica.com/science/permittivity


 

SAQ 2: 

a) What do you mean by spherical plate’s capacitor? 

b) Define the cylindrical plate’s capacitor. 

c) Write are the applications of Dielectric Constant? 

d) What do you mean by Dielectric Strength? 

e) What is the unit of Dielectric Strength? 

f) Define the Electric susceptibility. 

g) A Cylindrical capacitor having a length of 10 cm is made of two 

concentric rings with an inner radius as 4 cm and outer radius as 8 

cm. find the capacitance of the capacitor. 

 

3.9 Polarization, surface and volume charge density, Gauss law in 

dielectrics: 

Polarization:  

We have shown that dielectric materials consist of many permanent or 

induced electric dipoles. One of the concepts crucial to the understanding 

of dielectric materials is the average electric field produced by many little 

electric dipoles which are all aligned. Suppose we have a piece of material 

in the form of a cylinder with area A and height h, as shown in Figure 

5.5.3, and that it consists of N electric dipoles, each with electric dipole 

moment     spread uniformly throughout the volume of the cylinder. 



 

Fig.3.19 A cylinder with uniform dipole distribution 

We furthermore assume for the moment that all of the electric dipole 

moments    

dipole has its own electric field associated with it, in the absence of any 

external electric field, if we average over all the individual fields produced 

by the dipole, what is the average electric field just due to the presence of 

the aligned dipoles. 

To answer this question, let us define the polarization vector     to be the 

net electric dipole moment vector per unit volume: 

 

In the case of our cylinder, where all the dipoles are perfectly aligned, the 

magnitude of      is equal to 

 

and the direction of      is parallel to the aligned dipoles 



Now, what is the average electric field these dipoles produce? The key to 

figuring this out is realizing that the situation shown in Figure 5.5.4(a) is 

equivalent that shown in Figure (b), where all the little ± charges 

associated with the electric dipoles in the interior of the cylinder are 

replaced with two equivalent charges, ±Qp, on the top and bottom of the 

cylinder, respectively. 

 

Fig.3.20 (a) A cylinder with uniform dipole distribution. 

 (b) Equivalent charge distribution. 

The equivalence can be seen by noting that in the interior of the cylinder, 

positive charge at the top of any one of the electric dipoles is canceled on 

average by the negative charge of the dipole just above it. The only place 

where cancellation does not take place is for electric dipoles at the top of 

the cylinder, since there are no adjacent dipoles further up. Thus the 

interior of the cylinder appears uncharged in an average sense (averaging 

over many dipoles), whereas the top surface of the cylinder appears to 

carry a net positive charge. Similarly, the bottom surface of the cylinder 

will appear to carry a net negative charge 

How do we find an expression for the equivalent charge QP in terms of 

quantities we know? The simplest way is to require that the electric dipole 



moment QP produces, QPh, is equal to the total electric dipole moment of 

all the little electric dipoles. This gives QPh= Np , or  

 

To compute the electric field produced by QP, we note that the equivalent 

charge distribution resembles that of a parallel-plate capacitor, with an 

equivalent surface charge density σp  that is equal to the magnitude of the 

polarization: 

 

Note that the SI units of P (C.m)/m
3
 , are or C/m

2
 , which is the same as 

the surface charge density. In general if the polarization vector makes an 

angle θ with ˆn , the outward normal vector of the surface, the surface 

charge density would be   

 

Thus, our equivalent charge system will produce an average electric field 

of magnitude EP  =  P/ε0. Since the direction of this electric field is 

opposite to the direction of  ˆP, in vector notation, we have 

 

Thus, the average electric field of all these dipoles is opposite to the 

direction of the dipoles themselves. It is important to realize that this is 

just the average field due to all the dipoles. If we go close to any 

individual dipole, we will see a very different field. 



We have assumed here that all our electric dipoles are aligned. In general, 

if these dipoles are randomly oriented, then the polarization      given in Eq. 

will be zero, and there will be no average field due to their presence. If the 

dipoles have some tendency toward a preferred orientation, then      ≠    , 

leading to a non-vanishing average field      p 

Let us now examine the effects of introducing dielectric material into a 

system. We shall first assume that the atoms or molecules comprising the 

dielectric material have a permanent electric dipole moment. If left to 

themselves, these permanent electric dipoles in a dielectric material never 

line up spontaneously, so that in the absence of any applied external 

electric field ,      =    . due to the random alignment of dipoles, and the 

average electric field      p  is zero as well. However, when we place the 

dielectric material in an external field      0 the dipoles will experience a 

torque     =     X     0  that tends to align the dipole vectors     with     0   . The 

effect is a net polarization      parallel      0 to , and therefore an average 

electric field of the dipoles      p anti-parallel to      0, i.e., that will tend to 

reduce the total electric field strength below      0. The total electric field       

is the sum of these two fields: 

 

In most cases, the polarization       is not only in the same direction as       0, 

but also linearly proportional to       0 (and hence       .) This is reasonable 

because without the external field there       0 would be no alignment of 

dipoles and no polarization       . We write the linear relation between       and 

as      



 

where χe is called the electric susceptibility. Materials they obey this 

relation are linear dielectrics. Combing Equations  gives 

 

Where 

 

is the dielectric constant. The dielectric constant Ke  is always greater than 

one since χe >. This implies 

 

Thus, we see that the effect of dielectric materials is always to decrease the 

electric field below what it would otherwise be.  

In the case of dielectric material where there are no permanent electric 

dipoles, a similar effect is observed because the presence of an external 

field     0

induced electric dipoles are parallel to     0, again leading to a polarization  

      parallel to     0, and a reduction of the total electric field strength. 

Surface charge density: 

According to electromagnetism, charge density is defined as a measure of 

electric charge per unit volume of the space in one, two, or three 



dimensions. To be specific, the linear surface or volume charge density is 

the amount of electric charge per surface area or volume, respectively. 

Surface charge describes the electric potential difference between the inner 

and outer surface of different states like solid and liquid, liquid and gas, or 

gas and liquid. The surface charge density is present only in conducting 

surfaces and describes the whole amount of charge q per unit area A. 

Formula of Surface Charge Density: 

The surface charge density formula is given by, 

σ = q / A 

Where, 

 σ is surface charge density (C⋅m−2
) 

 q is charge {Coulomb(C)} 

 A is surface area (m
2
) 

 

Volume Charge Density: 

In electromagnetism, the charge density tells how much charge is present 

in a given length, area or volume. The Greek symbol Pho (ρ) denotes 

electric charge, and the subscript V indicates the volume charge density. 

Formula of Volume Charge Density: 

The charge in terms of volume charge density is expressed as, 

ρ=q/v 



Where, 

 is the charge density, 

q is the charge(C), 

v is the total volume in m
3
. 

Gauss’s Law for Dielectrics: 

Consider again a parallel-plate capacitor shown in Figure 

 

Fig.3.21 Gaussian surface in the absence of a dielectric 

When no dielectric is present, the electric field     0 in the region between 

the plates can be found by using Gauss’s law: 

 

We have see that when a dielectric is inserted (Figure), there is an induced 

charge Qp of opposite sign on the surface, and the net charge enclosed by 

the Gaussian surface is Q- Qp 



 

Fig3.22 Gaussian surface in the presence of a dielectric 

Gauss’s law becomes 

 

Or 

 

However, we have just seen that the effect of the dielectric is to weaken 

the original field E0 by a factor Ke . Therefore 

 

from which the induced charge Qp can be obtained as 

 

In terms of the surface charge density, we have 



 

Note that in the limit Ke = 1, Qp =0 which corresponds to the case of no 

dielectric material. Substituting the Equations we see that Gauss’s law 

with dielectric can be rewritten as 

 

Where  ε = Ke ε0  is called the dielectric permittivity. Alternatively, we 

may also write 

 

Where        = ε0K     is called the electric displacement vector E. 

 

3.10 Macroscopic and microscopic properties of dielectrics, Clausius 

– Mossotte formula: 

 

Macroscopic and microscopic properties of dielectrics: 

The average (macroscopic) behavior of dielectrics. In this section, we will 

study the microscopic picture of a dielectric in a uniform electric field. Let 

us consider a dielectric in a uniform electric field as shown in Fig 



 

Fig.3.23 Dielectric in a uniform electric field 

In an electric field, the electrons and atomic nuclei of the dielectric 

material experience forces in opposite directions. We know that the 

electrons in a dielectric cannot move freely as in a conductor. Hence each 

atom becomes a tiny dipole with the positive and' negative charge centers 

slightly separated. Taking the charge separation as a, the charge as q the 

dipole moment p in the direction of field associated with the atom or 

molecule 

p = qa 

Above EQ gives the dipole moment induced in the atom/molecule by the 

field. Hence we call it as induced dipole moment. If there are n such 

dipoles in an element of volume V of the material, we can define the 

polarization vector P as the (dielectric) dipole moment per unit volume as 

  
   

 
 

Within the dielectric the charges neutralized each other, the negative 

charge of one  Atom/molecule is neutralized  by the positive charge of its 

neighbor, Thus within the bulk of the material, the electric field produces 

on charge density but only a dipole moment density. However, at the 

surface this charge cancellation is not complete, and a polarization charge 



densities of apposite signs app at the two surfaces, perpendicular to the 

field. Now what is the consequence of the appearance of polarization 

charges? 

The consequence of this is that the electric field inside the dielectric is less 

than the! Electric field causing the polarization, The polarization charges 

give rise to an electric field in the opposite direction. This field opposes 

the electric field causing polarization, It is shown' in below Fig. 

 

Fig.3.24 Field inside dielectric 

Hence we conclude that inside the dielectric, the average electric field is 

less than the electric field causing polarization. However, the macroscopic 

or average field is not a satisfactory measure of the focal field responsible 

for the polarization of each atom. , Let us denote the field at the site or 

location of the atom or molecule as the local field. In next section, we will 

calculate the local field inside a dielectric 

Definition of Local field: 

In this section we will define the local field in a dielectric material. This is 

the field on a unit positive charge kept at a location or site from which an 

atom or molecule has been removed provided the other charges remain 



unaffected. Fig shows a site in a uniformly polarized medium from which 

a molecule/atom is removed when all other charges are kept intact at their 

positions. 

 

Fig.3.25 A site in a uniformly polarized medium 

The extent of the charge separation depends on the magnitude of the local 

field. Hence we conclude that the induced dipole moment, p, is directly 

proportional to the local field, EIoc, Thus we have,  

P = a EIoc 

Where a is the constant of proportionality and is known as 

atomic/molecular polarizability and EIoc, the local field. 

Clausius – Mossotte formula: 

In a liquid we would expect an individual atom to be polarized by a field 

obtained in a spherical cavity rather than by the average (macroscopic) 

field. Thus using Equations we have 

p = n 

 

 



This can be return as  

 

The susceptibility x was defined by the equation 

 

Hence 

 

Above Eq. gives the relation between susceptibility and atomic/molecular 

polarizability. This is one form of Clausius-Mossotti Equation 

 

SAQ 3: 

a) What do you mean by polarization? 

b) Define the Surface charge density. 

c) What is the Gauss’s Law for Dielectrics? 

d) Define the Clausius–Mossotte formula.  

e) Calculate the polarization produced in dielectric medium of 

dielectric constant 9 when it is subjected to an electric field of 200 

Vm–1. (e0  = 8.854 × 10–12 Fm–1) 

f) Calculate the surface charge density of a conductor whose charge is 

4 C in an area of 8 m
2. 

 



Example: 

Q.1. What is the charge stored when the voltage across a 50 

μF capacitor is 9 V? 

Solution: Q  =  VC  =  9 V  ×  50 μF  =  450 μF 

 

Q.2. What is the capacitance of a capacitor that stores 12 μC of charge 

when connected to a 6 V battery? 

Solution: 

C=Q/V =12 μC/ 6V =  2 μC 

 

Q.3. Work out the voltage across the plates of a 10 μF capacitor when 

it has a charge of 50 μC. 

Solution: 

V=Q/C = 50 μC/ 10 F = 5V 

 

Q.4. Calculate the energy stored in a capacitor with a charge of 200 

μC and 9 V across its plates. 

Solution: 

W  =  ½ QV  =  (200 μC  ×  9 V) / 2 

     = 0.9 mJ 



 

Q.5. Calculate the energy stored in a 1 μF capacitor charged to 50 V. 

Solution: 

W  =  ½ V
 2
C  =  (2500 V  ×  1 mF) / 2  

     = 1.25 mJ 

 

Q.6. What is the combined capacitance of: a) a 2.2 μF capacitor and 

a 4.7 μF capacitor in parallel? b) Two 100 μF capacitors in series? 

Solution : (a) CTOTAL  =  C1  +  C2  =  2.2 μF  +  4.7 μF  =  6.9 μF 

(b) CTOTAL  =   

C1  ×  C2 

  =   

10,000 μF 

  =  50 μF 

C1  +  C2     200 μF 

 

Q.7. What is the total combined capacitance of the network shown 

below? 

 

 

Solution: 

CTOTAL  =   C1  ×  (C2  +  C3)   =   5 μF  ×  25 μF   =  4.167 μF 



C1  +  (C2  +  C3) 30 μF 

 

Q.8. A parallel plate capacitor has square plates of side 5 cm and separated 

by a distance of 1 mm. (a) Calculate the capacitance of this capacitor. (b) 

If a 10 V battery is connected to the capacitor, what is the charge stored in 

any one of the plates? (The value of εo = 8.85 x 10
-12

 Nm2 C
-2

) 

Solution: 

(a) The capacitance of the capacitor is 

 

= 221.2 ×10
−13

 F 

C = 22 . 12 ×10
−12

 F = 22 .12 pF 

(b) The charge stored in any one of the plates is Q = CV, Then 

= 22.12 ×10
−12

 ×10 = 221.2 ×10
−12

 C = 221.2 pC 

 

Q.9. A parallel plate capacitor filled with mica having εr = 5 is connected 

to a 10 V battery. The area of the parallel plate is 6 m
2
 and separation 

distance is 6 mm. 

(a) Find the capacitance and stored charge. 



(b) After the capacitor is fully charged, the battery is disconnected and the 

dielectric is removed carefully. Calculate the new values of capacitance, 

stored energy and charge. 

Solution: 

(a) The capacitance of the capacitor in the presence of dielectric is 

 

(b) After the removal of the dielectric, since the battery is already 

disconnected the total charge will not change. But the potential difference 

between the plates increases. As a result, the capacitance is decreased. 

New capacitance is 

 

The stored charge remains same and 442.5 nC. Hence newly stored energy 

is 



 

The increased energy is 

∆U = 11.05µ J −2.21 µ J = 8.84 µ J 

When the dielectric is removed, it experiences an inward pulling force due 

to the plates. To remove the dielectric, an external agency has to do work 

on the dielectric which is stored as additional energy. This is the source for 

the extra energy 8.84 µJ. 

 

Q.10. Find the equivalent capacitance between P and Q for the 

configuration shown below in the figure (a). 

 

 

Solution: 

The capacitors 1 µF and 3µF are connected in parallel and 6µF and 2 µF 

are also separately connected in parallel. So these parallel combinations 



reduced to equivalent single capacitances in their respective positions, as 

shown in the figure (b). 

Ceq = 1µF + 3µF = 4µF 

Ceq = 6µF + 2µF = 8µF 

From the figure (b), we infer that the two 4 µF capacitors are connected in 

series and the two 8 µF capacitors are connected in series. By using 

formula for the series, we can reduce to their equivalent capacitances as 

shown in figure (c). 

 

From the figure (c), we infer that 2µF and 4µF are connected in parallel. 

So the equivalent capacitance is given in the figure (d). 

Ceq = 2µF + 4µF = 6µF 

Thus the combination of capacitances in figure (a) can be replaced by a 

single capacitance 6 µF. 

 

Q.11. A parallel plate capacitor is kept in the air has an area of 0.50m
2
 and 

separated from each other by distance 0.04m. Calculate the parallel plate 

capacitor. 

Solution: 



Given: 

Area A = 0.50 m
2
, 

Distance d = 0.04 m, 

relative permittivity k = 1, 

ϵo = 8.854 × 10
−12

 F/m 

The parallel plate capacitor formula is expressed by, 

 

        = 8.854×10
−12 

× 0.50 / 0.04 

        = 4.427 x 10
−12

 / 0.04 

Therefore, C = 110.67 x 10
−12

 F 

 

Q.12. Determine the area of parallel plate capacitor in the air if the 

capacitance is 25 nF and separation between the plates is 0.04m. 

Solution: 

Given: 

Capacitance = 25 nF, 

Distance d = 0.04 m, 

Relative permittivity k = 1, 

ϵo = 8.854 × 10
−12

 F/m 



The parallel plate capacitor formula is expressed by, 

 

 

       = 0.04 × 25×10
−9

 / 1×8.854×10
−12

 

   A = 1 x10
−9

 / 8.854 ×10
−12

 

Therefore, area of parallel plate capacitor is 112.94 m
2
. 

 

Q.13. Two conducting spheres of radius r1 = 8 cm and r2 = 2 cm are 

separated by a distance much larger than 8 cm and are connected by a thin 

conducting wire as shown in the figure. A total charge of Q = +100 nC is 

placed on one of the spheres. After a fraction of a second, the charge Q is 

redistributed and both the spheres attain electrostatic equilibrium. 

 

(a) Calculate the charge and surface charge density on each sphere. 

(b) Calculate the potential at the surface of each sphere. 

Solution 

(a) The electrostatic potential on the surface of the sphere A is 



  

The electrostatic potential on the surface of the sphere A is 

  

Since VA = VB. We have 

 

 

But from the conservation of total charge, Q = q1 + q2, we get q1 = Q – q2. 

By substituting this in the above equation, 

 



 

Note that the surface charge density is greater on the smaller sphere 

compared to the larger sphere (σ2 ≈ 4σ1) which confirms the result σ1 / σ1= 

r2 / r2. 

The potential on both spheres is the same. So we can calculate the 

potential on any one of the spheres. 

 

Q.14. Dielectric strength of air is 3 × 10
6 
V m

-1
. Suppose the radius of a 

hollow sphere in the Van de Graff generator is R = 0.5 m, calculate the 

maximum potential difference created by this Van de Graaff generator. 

Solution:  

The electric field on the surface of the sphere (by Gauss law) is given by 

 



The potential on the surface of the hollow metallic sphere is given by 

 

with Vmax = EmaxR 

Here, Emax = 3 ×10
6
 V/m.  

So the maximum potential difference created is given by 

Vmax = 3 × 10
6
 × 0.5 

= 1.5 × 10
6
 V (or) 1.5 M volt. 

Q.15. Find the capacitance of a conducting sphere of radius R. 

Solution: Let charge Q is given to sphere. The field outside the sphere at 

distance r is 

 

 

 

 

 

 



Q.16. A parallel plate air capacitor is made using two plates 0.2m square, 

spaced 1cm apart. It is connected to a 50V battery. (a) What is the 

capacitance? (b) What is the charge on each plate? (c) What is the electric 

field between two plates? (d)If the battery is disconnected and then the 

plates are pulled apart to a separation of 2cm, what are the answers to the 

above parts? 

Solution: 

 

 

 

If the battery is disconnected, the charge on the capacitor plates remains 

constant while the potential difference between plates can change. 

 

 

 

 

 



Q.17. A parallel plate conductor connected in the battery with a plate area 

of 3.0 cm
2
 and plate separation is of 3mm if the charge stored on the plate 

is 4.0pc. Calculate the voltage of the battery? 

Solution: 

Area A = 3.0 cm
2
 = 3.0 × 10

-4
 m

2
 

 

 

 

 

 

 

 

 

Q.18. A Cylindrical capacitor having a length of 8 cm is made of two 

concentric rings with an inner radius as 3 cm and outer radius as 6 cm. 

Find the capacitance of the capacitor. 

Solution:  

Given: 



Length L = 8 cm 

inner radius a = 3 cm 

outer radius b = 6 cm 

Formula for cylindrical capacitor is 

 

 

 

 

 

. 

 

Q.19. Determine the value of polarizing light angles when the refractive 

index of green color glass is 1.515 and that of violet color is 1.521. 

Solution: 

Given: 

n1 = 1.515 

n2 = 1.521 

The in1 = tan 
-1

 (1.515 ) 

       = 56
o
 57’ 



The in2 = tan 
-1

 (1.521) 

        = 56
o 
68’ 

 

Q.20. Consider a parallel plate capacitor which is maintained at potential 

of 200 V. If the separation distance between the plates of the capacitor and 

area of the plates are 1 and 20 cm
2
. Calculate the displacement current for 

the time in µs. 

Solution 

Potential difference between the plates of the capacitor, V = 200 V 

The distance between the plates, 

d = 1 mm = 1 × 10
-3

 m 

Area of the plates of the capacitor, 

A = 20 cm2 = 20 × 10
-4

 m
2
 

Time is given in micro-second, µs = 10
-6

 s 

Displacement current 

 

But electric field, E = V/d 

Therefore, 



 

 = 35400 ×10
−7

 = 3 .5 mA 

 

Q.21. The electric field due to charges q1=2μC and q2=32μC at 

distance 16cm from charge q2 is zero. What is the distance between the 

two charges? 

Solution: 

Since the two charges q1 and q2 are positive, somewhere between them the 

net electric force must be zero that is at the given point the magnitude of 

the fields are equal (remember that the electric field of a positive charge at 

field point is outward). Therefore, we get 

 

 

 

Now use the definition of electric field to evaluate the relation above: 

 

Taking square root of the both sides, we obtain 



 

As shown in the figure, the distance of the two charges 

is d=x+16=4+16=20cm.  

 

Q.22. A solid elemental dielectric with 3 × 10
28

 atoms/m
3
 shows an 

electronic polarizability of 10
−40

 F-m
2
. Assuming the internal electric field 

to be a Lorentz field, calculate the dielectric constant of the material. 

Solution: Number density of dielectric atoms, N = 3 × 10
28

/m
3
 

Electronic polarizability, αe = 10
−40

 F-m
2
 

Calculate the dielectric constant, ∈r = ? 

 

 

Q.23. Calculate the polarization produced in dielectric medium of 

dielectric constant 6 when it is subjected to an electric field of 100 Vm–1. 

(e0  = 8.854 × 10–12 Fm–1) 

Solution:  



 

P = 4.425 × 10
–9

 Vm
–2

 F 

 

Q.24. Calculate the electronic polarizability of neon. The radius of neon 

atom is 0.158 nm. ( e0 = 8.854 × 10
–12

 Fm
–1

) 

Solution: 

 

     

Q.25.The dielectric constant of a helium gas at NTP is 1.0000684. 

Calculate the electron polarizability of helium atoms if the gas contains 2.7 



× 10
26

 atoms/m
3
 and hence calculate the radius of helium atom (e0= 8.854 

× 10
–12

 Fm
–1

) 

Solution: 

 

 

 

  

Q.26. Calculate the surface charge density of a conductor whose charge is 

5 C in an area of 10 m
2
. 



Solution: 

Given: 

Charge q = 5 C, 

Area A = 10 m
2
 

Surface charge density formula is given by, 

σ = q / A 

= 5 / 10 

Therefore, σ = 0.5 C/m
2
 

 

Q.27. Calculate the surface charge density of the sphere whose charge is 

12 C and radius is 9 cm. 

Solution: 

Given: 

Charge q = 12 C, 

Radius r = 9 cm. 

The surface charge density formula is given by, 

σ = q / A 

For a sphere, area A = 4 π r
2
 

A = 4 π (0.09)
2
 



A = 0.1017 m
2
 

Surface charge density, σ = q / A 

σ = 12 / 0.1017 

  = 117.994 

Therefore, σ = 117.994 C⋅m−2
 

 

Q.28. Find the volume charge density if the charge of 10 C is applied 

across the area of 2m
3
. 

Solution: 

Given: 

Charge q = 10 C 

Volume v = 2m
3
. 

The volume charge density formula is 

 

Q.29 n charged drops, each of radius r and charge q, coalesce to from a big 

drop of radius R and charge Q. If V is the electric potential and E is the 

electric field at the surface of a drop, then. 

Solution: For each small drop 



 

When n small drops coalesce to from one big drop of radius R, then as 

 

 

Total charge Q = nq 

∴ Potential of big drop, 

 

 

 

 

Summary: 

 

1) The capacitor is a component which has the ability or “capacity” to 

store energy in the form of an electrical charge producing 

a potential difference (Static Voltage) across its plates, much like a 

small rechargeable battery. 

2) A capacitor is an electronic component that stores and releases 

electricity in a circuit. It also passes alternating current without 

passing direct current. A capacitor is an indispensible part of 



electronic equipment and is thus almost invariably used in an 

electronic circuit. 

3) Capacitance or electric capacity indicates the ability of a system to 

store charge. It is defined as the ratio of charge stored in the 

conductors to the potential difference across the conductors. Its SI 

unit is Farad (F). 

4) Energy stored in a capacitor is electrical potential energy, and it is 

thus related to the charge Q and voltage V on the capacitor. 

5) As the dielectric slab is introduced there is some charge distribution 

in the slab and because of this the electric field between the 

two plates is decreased, due to which the capacitor can hold more 

charge. Thus, the capacity to hold charge of the capacitor is 

increased. 

6) If the wires to the battery are disconnected, the charge remains on 

the plates -- and the voltage across the plates remains the same. If 

the wires are connected to each other, current will flow and 

the capacitor will discharge. Then there will be no voltage across 

the capacitor nor any charge on the plates. 

7) A spherical capacitor consists of a hollow or a 

solid spherical conductor surrounded by another concentric 

hollow spherical conductor. 

8) The capacitor is used to store large amounts of electric current in a 

small space. The cylindrical capacitor includes a hollow or a 

solid cylindrical conductor surrounded by the concentric hollow 

spherical cylinder.  



9) The relationship among the three vectors D, E, P in the metre-

kilogram-second (mks) or SI system is: D = ε0E + P (ε0 is a constant, 

the permittivity of a vacuum). 

10) Dielectric constant (ϵr) is defined as the ratio of the electric 

permeability of the material to the electric permeability of free space 

(i.e., vacuum) and its value can derived from a simplified capacitor 

model. 

11) Dielectric strength is defined as the electrical strength of an 

insulting material. In a sufficiently strong electric field the insulating 

properties of an insulator breaks down allowing flow of 

charge. Dielectric strength is measured as the maximum voltage 

required to produce a dielectric breakdown through a material. 

12) Electrical susceptibility (χ) of a dielectric material is defined 

as χ=∈r−1where ∈r is its relative permittivity. An isolated parallel 

plate capacitor carries some charge and the field in the dielectric 

present between its plates is E. Express the electric field due to 

induced charge on dielectric surface in terms of χ and E.  

13) Electric polarization refers to the separation of center of 

positive charge and the center of negative charge in a material. The 

separation can be caused by a sufficiently high-electric field. 

14) Surface charge density (σ) is the quantity of charge per unit 

area, measured in coulombs per square meter (C⋅m−2
), at any point 

on a surface charge distribution on a two dimensional surface. 

15) In electromagnetism, charge density is the amount of 

electric charge per unit length, surface area, or volume. Volume 

charge density (symbolized by the Greek letter ρ) is the quantity 



of charge per unit volume, measured in the SI system in coulombs 

per cubic meter (C⋅m−3
), at any point in a volume. 

16) Integral form (“big picture”) of Gauss's law: The flux of 

electric field out of a closed surface is proportional to the charge it 

encloses. The above is Gauss's law in free space (vacuum). For 

a dielectric, just replace ε 0 with ε = ε. 

17) A polarizable quantum mechanics and molecular mechanics 

model has been extended to account for the difference between the 

macroscopic electric field and the actual electric field felt by the 

solute molecule. This enables the calculation of effective 

microscopic properties which can be related to macroscopic 

susceptibilities directly comparable with experimental results. 

18) The Clausius-Mossotti equation relates the dielectric constant 

of a material to the polarisability of its atoms. It finds natural 

explanation in terms of the (often omitted) delta function in the 

electric field of an ideal dipole. This avoids the subtleties of the 

rather tricky conventional derivation. 

 

Terminal Question: 

1) What is the capacitor and explain in detail? 

2) Explain the Working Principle of a Capacitor. 

3) Explain the effect when Capacitor in a DC and Circuit Capacitor in 

an AC Circuit? 

4) Explain the Dielectrics with Battery and without Battery in detail. 

5) Explain and define Spherical capacitor in details. 



6) Explain the cylinder capacitor in details. 

7) Explain how to calculate Dielectric Constant? 

8) Write short notes on: (i) Dielectric constant, (ii) Dielectric strength, 

(iii) Electrical susceptibility. 

9) What is the Relation between polarization vector (P), displacement 

(D) and electric field (E)? 

10) What is the difference between Polar Plastics Vs Non-polar 

Plastics 

11) Explain the Dielectric Strength and also write the applications. 

12) Explain the method of measurement Dielectric Strength. 

13) Explain the surface and volume charge density. 

14) What do you mean by the Gauss law in dielectrics? 

15) Derive the expression of Clausius – Mossotte formula. 

16) Consider two plates separated by d=1.5 cm , where the electric 

field between them is 100 V/m, and the charge on the plates is 

30.0 . What is the capacitance? 

17) Consider a capacitor made of two 0.05 m2
 plates separated by 

0.5 mm. If the capacitance is 3.0 nf, what is the relative 

permeability, k, of the material between the plates? 

18)  What is the capacitance of the following segment of a circuit? 

When C1=C2=C3=3.0  

 



 

 

19) A capacitor has a charge of 3.0 nC when the voltage across the 

capacitor is 12 V. What is the energy stored in the capacitor? 

20) A cylindrical capacitor is constructed using two coaxial 

cylinders of the same length 10 cm of radii 5 mm and 10 mm. (a) 

calculate the capacitance, (b) another capacitor of the same length is 

constructed with cylinders of radii 8 mm and 16 mm. Calculate the 

capacitance . 

21)  A parallel plate capacitor has an area of 100 cm
2
, a plate 

separation of 1 cm and is charged to a potential of 100 V. Calculate 

the capacitance of the capacitor and the charge on the plates. 

22) What is the magnitude of the electric force acting on an 

electron located in an electric field with an intensity of 5.0×10
3
 N 

per coulomb (electrons have a charge of -1.6×10
-19

C)? 

23)  Glass has a dielectric constant of 4.1. If capacitor A originally 

has a capacitance of 1.5 F, what is its capacitance after glass, a 

dielectric material, is inserted to completely fill the space between 

the plates of capacitor A? 

24) Wood has a dielectric constant of 2.80. If capacitor A 

originally has a capacitance of 0.5 F, what is its capacitance after 

wood, a dielectric material, is inserted to completely fill the space 

between the plates of capacitor A? 

25) The electronic polarisability is 0.18x 10 
40

 fm
2
. Find the 

relative dielectric constant at 0C and 1 atmospheric pressure. 

26) A capacitor has capacitance of 0.019 F when uses wax 

paper r 1.85 between the electrodes of Aluminum foil. The wax 



paper is to be replaced by plastic film r 2.15 of same dimensions. 

Taking other factors being equal, obtain the change 

(increase/decrease) in capacitance. 

27) The radium of the Helium atom is about 0.55 AU. Calculate 

the polarisability of Helium and its relative permeability. The 

number of Helium atoms in a volume of 1 m is 2.7 × 10
25

 atoms.  

28)  A capacitor uses Aluminum oxide as the dielectric with 

relative permeability = 8. An effective surface area of 360 cm
2
 gives 

a capacitance of 6 F. Calculate the field strength and the total dipole 

moment induced in oxide layer if a potential difference of 15 volts 

exists across the capacitor. 

29) A long thin rod circular of length 50 cm and radius 7 cm has a 

total charge of 5 mC, which is uniformly distributed over it. Find the 

Surface charge density. 
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Unit 04 - Electric current and magnetic fields 

Structure 

4.1 Introduction 

4.2 Objective 

4.3 Electric current and current density. Ohm’s law and Joule’s law, 

drift velocity. 

4.4 Magnetic field around stationary charge, moving charge and current 

carrying conductor. 

4.5 Biot-Savart law and its application to straight conductor, circular 

loop, solenoid and toriod carrying current. 

4.6 Magnetic field due to moving charge, Lorentz force 

4.7 Force between two current carrying conductor and two moving 

charges. 

4.8 Cyclotron (principle, construction, working, limitations and 

modification), Betatron. 

4.9 Summary 

4.10 Terminal Questions 

4.1 Introduction: 

Electric current, is a movement of electric charge carriers, such as 

subatomic charged particles (e.g., electrons having negative charge, 

protons having positive charge), ions (atoms that have lost or gained one 



or more electrons), or holes (electron deficiencies that may be thought of 

as positive particles). 

In electromagnetism, current density is the amount of charge per unit time 

that flows through a unit area of a chosen cross section. ... In SI base units, 

the electric current density is measured in amperes per square meter. 

The magnitude of current density is also equivalent to the ratio 

of current (I) to area (A). In equation form, current density can be written 

as… The SI unit of current density is the ampere per square meter [A/m
2
]. 

Ohm's law states that the voltage or potential difference between two 

points is directly proportional to the current or electricity passing through 

the resistance, and directly proportional to the resistance of the circuit. The 

formula for Ohm's law is V=IR. 

Joule's law, when an electric current passes through a conductor, heat H is 

produced, which is directly proportional to the resistance R of the 

conductor, the time t for which the current flows, and to the square of the 

magnitude of current I. 

In physics a drift velocity is the average velocity attained by charged 

particles, such as electrons, in a material due to an electric field. In 

general, an electron in a conductor will propagate randomly at the 

Fermi velocity, resulting in an average velocity of zero. 

A stationary charge will produce only an electric field in 

the surrounding space. If the charge is moving, a magnetic field is also 

produced. 



Interaction of a magnetic field with a charge. How does the magnetic field 

interact with a charged object? If the charge is at rest, there is no 

interaction. If the charge moves, however, it is subjected to a force, the 

size of which increases in direct proportion with the velocity of the charge. 

Current is generally defined as the rate of flow of charge. Magnetic field 

due to a current-carrying conductor depends on the current in 

the conductor and distance of the point from the conductor. The direction 

of the magnetic field is perpendicular to the conductor. 

The Biot Savart Law states that it is a mathematical expression which 

illustrates the magnetic field produced by a stable electric current in the 

particular electromagnetism of physics. It tells the magnetic field toward 

the magnitude, length, direction, as well as closeness of the electric 

current. 

When an electric current flow through a solenoid magnetic field is set up 

around solenoid similar to that of a bar magnet. One end of a solenoid act 

as a north pole and other as south pole. Magnetic field is represented by 

straight magnetic field lines parallel and very close to each other.  

A Toroid is shaped like a solenoid bent into a circular shape such as to 

close itself into a loop-like structure. The magnetic field inside the Toroid, 

along with the circular turn, is constant in magnitude and its direction 

inside the Toroid is clockwise as per the right-hand thumb rule for circular 

loops. 

Magnetic force is always perpendicular to velocity, so that it does not 

work on the charged particle. The particle's kinetic energy and speed thus 

remain constant. The direction of motion is affected, but not the speed. 



Lorentz force, the force exerted on a charged particle q moving with 

velocity v through an electric field E and magnetic field B. The entire 

electromagnetic force F on the charged particle is called the Lorentz 

force (after the Dutch physicist Hendrik A. Lorentz) and is given by F = 

qE + qv × B. 

You might expect that there are significant forces between current-

carrying wires, since ordinary currents produce significant magnetic fields 

and these fields exert significant forces on ordinary currents. But you 

might not expect that the force between wires is used to define the ampere. 

It might also surprise you to learn that this force has something to do with 

why large circuit breakers burn up when they attempt to interrupt large 

currents. 

What is the mechanism by which one magnet exerts a force on another? 

The answer is related to the fact that all magnetism is caused by current, 

the flow of charge. Magnetic fields exert forces on moving charges, and so 

they exert forces on other magnets, all of which have moving charges. 

A Cyclotron is a machine that accelerates charged particles or ions to high 

energies. In a Cyclotron, charged particles accelerate outwards from the 

centre along a spiral path. These particles are held to a spiral trajectory by 

a static magnetic field and accelerated by a rapidly varying electric field. 

In a Betatron, the changing magnetic field from the primary coil 

accelerates electrons injected into the vacuum torus, causing them to circle 

around the torus in the same manner as current is induced in the secondary 

coil of a transformer (Faraday's Law). 

 



 

4.2 Objective: 

After studying this unit you should be able to 

 Study and identify Electric current and current density. Ohm’s law 

and Joule’s law, drift velocity. 

 Explain and identify Magnetic field around stationary charge, 

moving charge and current carrying conductor. 

 Explain Biot-Savart law and its application to straight conductor, 

circular loop, solenoid and toriod carrying current. 

 Study and identify Magnetic field due to moving charge, Lorentz 

force 

 Explain and identify Force between two current carrying conductor 

and two moving charges. 

 Explain Cyclotron (principle, construction, working, limitations and 

modification), Betatron. 

 

4.3 Electric current and current density: 

 

Electric Current Definition: 

Today at the flick of a switch or turn of a knob we are having instant power. 

This is possible due to the electric current. It is one of the important 

discoveries that helped us to revolutionize our way of living. From the time 

we wake up till night, our life is fully dependent on 

https://www.toppr.com/guides/physics/electricity/electric-current-and-circuit-diagrams/


electricity. Electricity represents the follow of electric current. Electric 

current is known as the rate of flow of negative charges of the conductor. It 

means the continuous flow of electrons in an electric circuit is called an 

electric current. 

 

What is the Electric Current? 

The conducting material consists of a large number of free electrons which 

is moving from one atom to the other at random. When the potential 

difference is applied across a wire, then loosely attached free electrons will 

start moving towards the positive terminal of the cell. 

This continuous flow of electrons makes the existence of the electrical 

current. Therefore the flow of currents in the wire is from the negative 

terminal to the positive terminal through the external circuit. 

This traditional flow of current is so firmly established that it is still in use. 

Thus, the conventional direction of the flow of the electric current is from 

the positive terminal of the cell to the negative terminal of the cell through 

the external circuit. 

On the basis of the flow of electric charge, the current can be classified into 

two types, which are alternating current and direct current. In direct current, 

the charges flow in one direction but in alternating current, the charges flow 

in both the direction. 

 

 

https://www.toppr.com/guides/physics/electricity/
https://www.toppr.com/guides/physics/electricity/electric-potential-and-potential-difference/
https://www.toppr.com/guides/physics/electricity/electric-potential-and-potential-difference/
https://www.toppr.com/guides/physics/alternating-current/


The Formula for Electric Current: 

The magnitude of the flow of current at any section of the conductor is 

defined as the rate of flow of electrons. 

Mathematically, this can be represented as: 

I = Q/t 

Where, 

I = Electric current, 

Q = Electric Charge 

T = Time 

Electric current is the rate of change of electric charge through a circuit. This 

electric current is related to the voltage and resistance of the circuit. Using 

Ohm’s law, we can represent as the formula:   

I= V/R 

Where, 

V = Electric Voltage, 

R = The resistance of the metallic wire, 

I = Electric current 

Since we measure the charge in coulombs and time in seconds, therefore the 

unit of electric current is coulomb/Sec or amperes. The ampere is the SI unit 

of the electric current. The symbol for electric current is I. Thus, an electric 



wire is said to carry a current of 1 ampere when charge flows through it with 

the rate of one coulomb per second. 

Current Density Definition: 

We can define current as the flow of electrically charged particles, mostly 

in those atoms which are electron-deficient. The standard symbol of 

current is capital I. The standard unit of current is ampere and it is denoted 

by A. Conversely, a current of one ampere is one coulomb of charge(6.24 

x 10
18

 charge carriers) going past a given point per second. According to 

Physicists, Current is considered to move from relatively positive to 

negative points, and this is known as conventional current. Electrons are 

known to be the common negatively charged carriers and circulate from 

relatively negative to positive points. In this article, we will learn about the 

concepts of Current Density in a detailed manner. 

 

 

Fig.4.1 Current density 

Types of Current: 

Current can be divided into two types. 



Direct Current: 

 Direct current travels towards the same direction at all points, 

although the instantaneous magnitude can differ. 

 An example of DC is the current generated by an electrochemical 

cell. 

Alternating Current: 

 The flow of charge carriers is towards opposite direction periodically 

in an alternating current. 

 The number of AC cycles per second is known as frequency and 

calculated in Hertz. 

What is Current Density? 

The amount of electric current travelling per unit cross-section area is 

called as current density and expressed in amperes per square meter. More 

the current in a conductor, higher will be the current density. However, the 

current density alters in different parts of an electrical conductor and the 

effect takes place with alternating currents at higher frequencies. 

Electric current always creates a magnetic field. Stronger the current, more 

intense is the magnetic field. Varying AC or DC creates an 

electromagnetic field and this is the principle based on which signal 

propagation takes place. 

Current density is a vector quantity having both a direction and a scalar 

magnitude. The electric current flowing through a solid having units of 

https://byjus.com/physics/electric-current/


charge per unit time is calculated towards the direction perpendicular to 

the flow of direction. 

It is all about the amount of current flowing across the given region. 

Current Density Formula: 

The formula for Current Density is given as, 

J = I / A 

Where, 

I = current flowing through the conductor in Amperes 

A = cross sectional area in m
2
. 

Current density is expressed in A/m
2
. 

Ohm’s law and Joule’s law: 

Ohm’s law: 

Ohm’s law states that the voltage or potential difference between two points 

is directly proportional to the current or electricity passing through the 

resistance, and directly proportional to the resistance of the circuit. The 

formula for Ohm’s law is V=IR. This relationship between current, voltage 

and relationship was discovered by German scientist Georg Simon Ohm.  

Ohm’s Law Definition: 

Most basic components of electricity are voltage, current, and resistance. 

Ohm’s law shows a simple relation between these three quantities. Ohm’s 

https://www.toppr.com/guides/physics/alternating-current/representation-of-ac-current-and-voltage-by-rotating-vectors-phasors/
https://www.toppr.com/guides/physics/electricity/
https://www.toppr.com/guides/physics/magnetic-effects-of-electric-current/domestic-electric-circuits/


law states that the current through a conductor between two points is 

directly proportional to the voltage across the two points. 

 

Fig.4.2. V-I Characteristics of Ohm’s Law 

Ohm’s Law Formula: 

Voltage= Current× Resistance 

V= I×R 

V= voltage, I= current and, R= resistance 

The SI unit of resistance is ohms and is denoted by Ω 

This law is one of the most basic laws of electricity. It helps to calculate 

the power, efficiency, current, voltage, and resistance of an element of an 

electrical circuit. 

 

Applications of Ohm’s Law: 

https://www.toppr.com/guides/physics/work-energy-and-power/power/


Ohm’s law helps us in determining voltage, current or impedance or 

resistance of a linear electric circuit when the other two quantities are known 

to us. It also makes power calculation simpler. 

 

How do we establish the current-voltage relationship? 

In order to establish the current-voltage relationship, the ratio V / I remains 

constant for a given resistance, therefore a graph between the potential 

difference (V) and the current (I) must be a straight line. 

How do we find the unknown values of resistance? 

It is the constant ratio that gives the unknown values of resistance, 

 

For a wire of uniform cross-section, the resistance depends on the length l 

and the area of cross-section A. It also depends on the temperature of 

the conductor. At a given temperature the resistance, 

 

where ρ is the specific resistance or resistivity and is characteristic of the 

material of wire. The specific resistance or resistivity of the material of the 

wire is, 

 

https://www.toppr.com/guides/physics/alternating-current/ac-voltage-applied-series-lcr-circuit/
https://www.toppr.com/guides/physics/thermal-properties-of-matter/temperature-and-heat/
https://www.toppr.com/guides/physics/electric-charges-and-fields/conductors-and-insulators/


If ‘r’ is the radius of the wire, then the cross-sectional area, A = πr². Then the 

specific resistance or resistivity of the material of the wire is, 

 

Limitations of ohms law: 

1. Ohm’s law is not applicable to unilateral networks. Unilateral networks 

allow the current to flow in one direction. Such types of network 

consist elements like a diode, transistor, etc. 

2. Ohm’s law is also not applicable to non – linear elements. Non-linear 

elements are those which do not have current exactly proportional to 

the applied voltage that means the resistance value of those elements 

changes for different values of voltage and current. Examples of non – 

linear elements are the thyristor. 

 

Joule’s law: 

When an electric current passes through wire heat energy is produced. It is 

due to the collision 

of electrons with the atoms. In order to continue steady current, work has 

to be done on electric 

charges. 

Statement: Amount of work done on electric charge on steady current is 

directly proportional to amount of heat. 

https://www.toppr.com/guides/physics/semiconductor-electronics-materials-device-and-simple-circuits/special-purpose-p-n-junction-diode/
https://www.toppr.com/guides/physics/semiconductor-electronics-materials-device-and-simple-circuits/junction-transistor-structure-and-action/


Work a Heat 

Proof: 

Consider a conductor through which electric current q is passing in time t 

let the potential 

difference between two ends of wire is V. 

We know that 

v = W/q 

or 

W = q x V_(i) 

According to Ohm’s law V = IR 

putting the value of V in equation 

W = q x IR 

But 

I = q/t 

Or 

Q = It 

putting the value of q in equation 

W = It . IR 

W = I
2
Rt 



Drift Velocity: 

Subatomic particles like electrons move in random directions all the time. 

When electrons are subjected to an electric field they do move randomly, 

but they slowly drift in one direction, in the direction of the electric 

field applied. The net velocity at which these electrons drift is known 

as drift velocity. 

Drift velocity can be defined as: 

The average velocity attained by charged particles, (eg. electrons) in a 

material due to an electric field. 

The SI unit of drift velocity is m/s. It is also measured in m
2
/(V.s). 

 

Fig.4.3. Average drift velocity and the direction of the electric field 

Net velocity of the electrons: 

Every material above absolute zero temperature which can conduct like 

metals will have some free electrons moving at random velocity. When a 

potential is applied around a conductor the electrons will tend to move 

towards the positive potential, but as they move, they will collide with 

https://byjus.com/physics/electric-field-lines/
https://byjus.com/physics/electric-field-lines/


atoms and will bounce back or lose some of their kinetic energy. However, 

due to the electric field, the electrons will accelerate back again, and these 

random collisions will keep happening but as the acceleration is always in 

the same direction due to the electric field the net velocity of the electrons 

will also be in the same direction. 

Formula To Calculate Drift Velocity: 

We can use the following formula in order to calculate drift velocity: 

I = nAvQ   
 

   
 

Where, 

 I is the current flowing through the conductor which is measured in 

amperes 

 n is the number of electrons 

 A is the area of the cross-section of the conductor which is measured 

in m
2
 

 v is the drift velocity of the electrons 

 Q is the charge of an electron which is measured in Coulombs 

Example: 

Let’s consider a current of 3A that is flowing in a copper conductor with a 

cross-section of 1mm
2
 (1×10

-6
m

2
) 

We know that for copper, n = 8.5 x 10
28

 per m
3
 

So according to the formula we have, 



3 = 8.5×10
28

×1×10
−6

×v×1.6×10
−19

 

Where, Q=1.6×10
−19

 C 

Therefore, 

v=2.205882×10
−4

  ms
−1

 
 
 

If the intensity of the electric field is increased then the electrons are 

accelerated more rapidly towards the positive direction, opposite to the 

direction of the electric field applied. 

Mobility of an electron: 

The drift velocity of an electron for a unit electric field is known 

as mobility of the electron. 

Mobility of an electron can be calculated by: 

μ= Vd / E or           where     =drift vilocity 

Relation between Drift Velocity and Electric Current: 

Mobility is always a positive quantity and depends on the nature of the 

charge carrier, the drift velocity of an electron is very small usually in 

terms of 10
-3

ms
-1

. Hence, at this velocity it will take approx. 17 mins for 

electrons to pass through a conductor of 1 meter, but it’s surprising that we 

can turn on electronic appliances in our home at lightning speeds with a 

flick of a switch this is because an electric current is not established with 

the drift velocity but with the speed of light. 

As soon as the electric field is established the current starts flowing inside 

the conductor at the speed of light and not at the speed at which the 



electrons are drifting, hence there is a negligible small delay between an 

input and an output in turning on of an electric bulb. 

Relation between Drift Velocity and Current Density: 

We can define current density as the total amount of current passing 

through a unit cross-sectional conductor in unit time. From drift velocity, 

we know the formula for drift velocity as: 

I = nAvQ 

J = I/A = nVQ 

Where, 

 J is the current density measured in Amperes per square meter 

 v is the drift velocity of the electrons 

Then, we can say that drift velocity of the electrons and its current density 

is directly proportional to each other. Also, when the electric field intensity 

increases, the drift velocity increases, and the current flowing through the 

conductor also increases. 

 

4.4 Magnetic field around stationary charge:  

A stationary charged particle does not interact with a static magnetic field. 

A charge placed in a magnetic field experiences a magnetic force. 

The charge must be moving, for no magnetic force acts on a stationary 

charge. 



A stationary charge will produce only an electric field in 

the surrounding space. If the charge is moving, a magnetic field is also 

produced. 

It is because magnetic force acts on moving charges . Since 

the charge is stationary , no magnetic force will act on it. F = q v B , 

Where F is magnetic force on charge q travelling with velocity v in 

a magnetic field of intensity B. 

There is no force on a stationary charge, or on a charge moving parallel to 

the field. The direction of the force experienced by a positive charge is 

opposite to that experienced by a negative charge if the charges are 

moving in the same direction. 

Since current is defined as the rate of flow of charge, what can you 

conclude about the magentic field produced by a stationary charge? What 

about moving charges? The magnetic field produced by a stationary 

charge is zero. A moving charge is a current so it will produce a magnetic 

field. 

Magnetic field around moving charge: 

What is the mechanism by which one magnet exerts a force on another? 

The answer is related to the fact that all magnetism is caused by current, 

the flow of charge. Magnetic fields exert forces on moving charges, and so 

they exert forces on other magnets, all of which have moving charges. 

Right Hand Rule 1 

The magnetic force on a moving charge is one of the most fundamental 

known. Magnetic force is as important as the electrostatic or Coulomb 



force. Yet the magnetic force is more complex, in both the number of 

factors that affects it and in its direction, than the relatively simple 

Coulomb force. The magnitude of the magnetic force F on a 

charge q moving at a speed v in a magnetic field of strength B is given by 

F = qvB sin θ, 

where θ is the angle between the directions of v and B. This force is often 

called the Lorentz force. In fact, this is how we define the magnetic field 

strength B—in terms of the force on a charged particle moving in a 

magnetic field. The SI unit for magnetic field strength B is called 

the tesla (T) after the eccentric but brilliant inventor Nikola Tesla (1856–

1943). To determine how the tesla relates to other SI units, we 

solve F = qvB sin θ for B. 

B=Fqvsinθ 

Because sin θ is unitless, the tesla is 

1 T=1 N C⋅ m/s=1 NA⋅ m1 T=1 N C⋅ m/s=1 NA⋅ m 

(note that C/s = A). Another smaller unit, called the gauss (G), where 1 

G = 10−4 T, is sometimes used. The strongest permanent magnets have 

fields near 2 T; superconducting electromagnets may attain 10 T or more. 

The Earth’s magnetic field on its surface is only about 5 × 10
−5 

T, or 0.5 G. 

The direction of the magnetic force F is perpendicular to the plane formed 

by v and B, as determined by the right hand rule 1 (or RHR-1), which is 

illustrated in Figure 1. RHR-1 states that, to determine the direction of the 

magnetic force on a positive moving charge, you point the thumb of the 

right hand in the direction of v, the fingers in the direction of B, and a 



perpendicular to the palm points in the direction of F. One way to 

remember this is that there is one velocity, and so the thumb represents it. 

There are many field lines, and so the fingers represent them. The force is 

in the direction you would push with your palm. The force on a negative 

charge is in exactly the opposite direction to that on a positive charge. 

 

 

Fig.4.4. Magnetic fields exert forces on moving charges. This force is one 

of the most basic known. The direction of the magnetic force on a moving 

charge is perpendicular to the plane formed by v and B and follows right 

hand rule–1 (RHR-1) as shown. The magnitude of the force is proportional 

to q, v, B, and the sine of the angle between v and B. 

  

Magnetic field around current carrying conductor: 

Because charges ordinarily cannot escape a conductor, the magnetic force 

on charges moving in a conductor is transmitted to the conductor itself. 



 

 

Fig.4.5. The magnetic field exerts a force on a current-carrying wire in a 

direction given by the right hand rule 1 (the same direction as that on the 

individual moving charges). This force can easily be large enough to move 

the wire, since typical currents consist of very large numbers of moving 

charges.  

We can derive an expression for the magnetic force on a current by taking 

a sum of the magnetic forces on individual charges. (The forces add 

because they are in the same direction.) The force on an individual charge 

moving at the drift velocity vd is given by F = qvdB sin θ.  

Taking B to be uniform over a length of wire l and zero elsewhere, the 

total magnetic force on the wire is then  

F = (qvdB sin θ)(N),  



Where N is the number of charge carriers in the section of wire of length l. 

Now, N = nV, where n is the number of charge carriers per unit volume 

and V is the volume of wire in the field.  

Noting that V = Al, where A is the cross-sectional area of the wire, then the 

force on the wire is F = (qvdB sin θ) (nAl). Gathering terms, 

F=(nqAvd)lBsinθF=(nqAvd)lBsinθ. 

Because nqAvd = I (see Current), 

F=IlBsinθF=IlBsinθ 

is the equation for magnetic force on a length l of wire carrying a 

current I in a uniform magnetic field B, as shown in Figure 2. If we divide 

both sides of this expression by l, we find that the magnetic force per unit 

length of wire in a uniform field is Fl=IBsinθ. The direction of this force is 

given by RHR-1, with the thumb in the direction of the current I. Then, 

with the fingers in the direction of B, a perpendicular to the palm points in 

the direction of F, as in Figure 2. 

 

https://courses.lumenlearning.com/physics/chapter/22-7-magnetic-force-on-a-current-carrying-conductor/chapter/20-1-current/


Fig.4.6. The force on a current-carrying wire in a magnetic field 

is F = IlB sin θ. Its direction is given by RHR-1.  

Magnetic force on current-carrying conductors is used to convert electric 

energy to work. (Motors are a prime example—they employ loops of wire 

and are considered in the next section.) Magneto-hydrodynamics (MHD) 

is the technical name given to a clever application where magnetic force 

pumps fluids without moving mechanical parts. (See Figure 4.7) 

 

 

Fig.4.7. Magneto-hydrodynamics. The magnetic force on the current 

passed through this fluid can be used as a non-mechanical pump.  

A strong magnetic field is applied across a tube and a current is passed 

through the fluid at right angles to the field, resulting in a force on the 

fluid parallel to the tube axis as shown. The absence of moving parts 

makes this attractive for moving a hot, chemically active substance, such 

as the liquid sodium employed in some nuclear reactors. Experimental 

artificial hearts are testing with this technique for pumping blood, perhaps 



circumventing the adverse effects of mechanical pumps. (Cell membranes, 

however, are affected by the large fields needed in MHD, delaying its 

practical application in humans.) MHD propulsion for nuclear submarines 

has been proposed, because it could be considerably quieter than 

conventional propeller drives. The deterrent value of nuclear submarines is 

based on their ability to hide and survive a first or second nuclear strike. 

As we slowly disassemble our nuclear weapons arsenals, the submarine 

branch will be the last to be decommissioned because of this ability 

Existing MHD drives are heavy and inefficient—much development work 

is needed. 

 

 

 

 

Fig.4.8. An MHD propulsion system in a nuclear submarine could produce 

significantly less turbulence than propellers and allow it to run more 

silently. The development of a silent drive submarine was dramatized. 

 



 

 

 

SAQ.1 

a) Define the Electric current and current density.  

b) What do you mean by Ohm’s law and Joule’s law? 

c) Define the drift velocity. 

d) What do you mean by Magnetic field around stationary charge? 

e) Calculate the electric current passing through the circuit in which the 

voltage and resistance be 15V and 10 Ω respectively? 

  

 

 

 

 

 

 

 

 

4.5 Biot-Savart law and its application to straight conductor: 



What is Biot-Savart Law? 

Biot-Savart’s law is an equation that gives the magnetic field produced due 

to a current carrying segment. This segment is taken as a vector 

quantity known as the current element. 

 

Fig.4.9 Magnetic field produced due to a current carrying segment 

What is the Formula of Biot-Savart’s Law? 

Consider a current carrying wire ‘i’ in a specific direction as shown in the 

above figure. Take a small element of the wire of length ds. The direction 

of this element is along that of the current so that it forms a vector i ds. 

To know the magnetic field produced at a point due to this small element, 

one can apply Biot-Savart’s Law. Let the position vector of the point in 

question drawn from the current element be r and the angle between the 

two be θ. Then, 

 

Where 

 μ0 is the permeability of free space and is equal to 4π × 10
-7

 TmA
-1

. 

https://byjus.com/physics/scalars-and-vectors/
https://byjus.com/physics/scalars-and-vectors/


The direction of the magnetic field is always in a plane perpendicular to 

the line of element and position vector. It is given by the right-hand thumb 

rule where the thumb points to the direction of conventional current and 

the other fingers show the magnetic field’s direction. 

 

 

 

 

 

 

 

Fig.4.10. A plane perpendicular to the line of element and position vector 

 

In the figure shown above, the direction of the magnetic field is pointing 

into the page. 

This can be expressed in terms of vectors as: 

https://byjus.com/physics/flemings-left-hand-rule-and-right-hand-rule/
https://byjus.com/physics/flemings-left-hand-rule-and-right-hand-rule/


d→B = μ04π i →ds ×^rr2 

Let us use this law in an example to calculate the Magnetic field due to a 

wire carrying current in a loop. 

Example of Biot-Savart’s Law: 

The magnetic field of Current Loop: 

Consider a current loop of radius R with a current ‘i’ flowing in it. If we 

wish to find the electric field at a distance l from the center of the loop due 

to small element ds, we can use the Biot-Savart Law as: 

d→B = μ04π i d→s ×^rr2 

Consider the current element ids at M which is coming out of a plane in 

the figure. Since r is in the plane of the page, the two of them are 

perpendicular to each other. Furthermore, the magnetic field produced db 

is also in the plane of the page. 

dB = μ04π i ds . 1. sin 90⁰r2 = μ04π i dsr2 

But from the figure, 

R2 + l2 = r2 

dB = μ04π i dsR2 + l2 

Now, if we consider the diametrically opposite element at N, it produces a 

field such that it’s component perpendicular to the axis of the loop is 

opposite to that of the field produced at M. Thus, only the axial 

components remain. We can divide the loop into diametrically opposite 

pairs and apply the same logic. 

https://byjus.com/physics/magnetic-field/


Also, note that from the figure that 

α = θ 

∴ cos θ = R√R2 + l2 

Thus, 

dB cos θ = μ04π i dsR2 + l2 × R√R2 + l2 

The total field will be thus, 

B = ∫ μ04π i ds R(R2 + l2)32 = μ04π i R(R2 + l2)32 ∫ ds 

B = μ04π i R(R2 + l2)32 × 2πR 

B = μ0 i R22(R2 + l2)32 

The right-hand thumb rule can be used to find the direction of magnetic 

field. 

Applications of Biot-Savart’s Law: 

Some of Biot-Savart’s Law applications are given below. 

 We can use Biot–Savart law to calculate magnetic responses even at 

the atomic or molecular level. 

 It is also used in aerodynamic theory to calculate the velocity 

induced by vortex lines. 

Importance of Biot-Savart Law 

Following are the importance of Biot-Savart law: 

 Biot-Savart law is similar to the Coulomb’s law in electrostatics. 



 The law is applicable for very small conductors too which carry 

current. 

 The law is applicable for symmetrical current distribution. 

Genetic Field Due to a Straight Current Carrying wire: 

 

Fig.4.11. Field Due to a Straight Current Carrying wire 

 

According to the Biot-Savart law, magnetic field dB at point P due to 

current element idl in the above diagram is given by: 

 

∴ B= ∫(μo/4π)idlcosθ/x
2 

      =(μo/4π)∫idlcosθ/x
2
……………….(i) 

dB = (μo/4π)idl sin(90°-θ) /x
2
  

      = (μo/4π)idlcosθ /x
2
 

o Considering triangle ABN:cosθ = AN/dl 



AN = dl cosθ 

o Considering triangle ANP: sin(dθ)˜dθ  = AN/x 

AN = x(dθ) 

o Using the value of AN from the above 2 equations: 

dlcosθ = xdθ……………………..(ii) 

o Considering triangle AOP  

cosθ = r/x 

∴x = r/cosθ…………………(iii) 

o Using the values of dlcosθ from eq.(ii) and x from eq.(iii) in eq.(i): 

B = ∫(μo/4π)ixdθ/x
2
  

    = ∫(μo/4π)idθ/x  

    = ∫(μo/4π)i(cosθ)dx/r 

∴ B = (μo/4π)(sinθ2 + sinθ1) 

o For infinitely long wire (θ1 = 90° θ2 = 90°):The above equation 

becomes 

∴ B = μoi/(2πr) 

Magnetic Field on the Axis of a Circular Current Loop: 



 

Fig.4.12. Magnetic Field on the Axis of a Circular Current Loop 

  

 

Magnetic field dB at point P due to current element idl, making right angle 

to the line joining point P and current element, will be given by Biot-

Savart law as: 

 

dB = (μo/4π)idl sin(90°)/r
2
 = (μo/4π)idl/r

2
 

o As we can see in the diagram, the magnetic field dB will have 2 

component, i) the vertical component dBcosθ, and ii) the horizontal 

component dBsinθ 

o It is also evident from the diagram that the vertical component dBcosθ 

will be cancelled by the equal and opposite component due to current 

element at the opposite of the above current element (due to symmetry). 

o So, the total magnetic field will only be due to the horizontal 

component (dBsinθ) along the positive x-axis 

dBsinθ = (μo/4π)idl(sinθ)/r
2
 

sinθ =R/r = R/√(x
2
 + R

2
) 



∴dBsinθ = (μo/4π)iRdl/(x
2
 + R

2
)

3/2
 

o So, the total magnetic field will be: 

 

o For magnetic field at the center of current loop(x = 0): 

 

 

 

Ampere’s Circuital Law: 

o Ampere’s circuital law states that line integral of magnetic field 

forming a closed loop around the current(i) carrying wire, in the plane 

normal to the current, is equal to the μo times the net current passing 

through the close loop. 

 

Here μo = permeability of free space = 4π×10
-15

N/A
2 
, I is net current. 



o This law is based on the assumption that the closed loop consists of 

small elemental parts of length dl, and the total magnetic field of the 

closed loop will be the integral of magnetic field and the length of these 

elements This closed loop is called Amperian loop 

o Further, this integral will be equal to the multiplication of net current 

passing through this closed loop and the permeability of free space(μoi) 

Proof-1(Regular coil): 

 

Fig.4.13. Ampere’s Circuital Law using Regular coil 

 

To prove:        ∫B.dl = μoi 

Starting from the left hand side, we can see in the diagram that angle 

between the element dl and magnetic field B is 0° 

 

 We know that magnetic field due to a long current carrying wire is: 



B = μoi/(2πr) 

Also, the integral of element will form the whole circle of circumference 

(2πr): 

∫ dl = 2πr 

Now putting the value of B and ∫ dl in the equation, we get: 

B∫ dl = μoi/(2πr) × 2πr = μoi 

∴∫B.dl = μoi 

  

Proof-2(Irregular coil): 

 

 

Fig.4.14. Ampere’s Circuital Law using Irregular coil 

 

To prove:        ∫B.dl = μoi 



Starting from the left hand side: 

∫B.dl1 = ∫μoi/(2πr1) × dl1 

We know that:  dθ1 = dl1/r1 

∴∫μoi/(2πr1) × dl1 =μoi/(2π)∫dθ1 = μoi 

∫B.dl = μoi 

The Solenoid: 

 

Fig.4.15. Current flowing through the solenoid 

 

The figure above shows a solenoid, which is actually a wire, twisted in 

many close circular turns, and when the length of solenoid is large 

compared to the radius of circular turns, then, that solenoid is known as 

long solenoid. We are going to discuss long solenoid in this section. 

Taking a small element dx from the solenoid of n number of turns per unit 

length, at a distance x from the point P inside the solenoid where magnetic 

field due to current i is to be calculated 

 



 

 

Fig.4.16. Vector diagram  

Number of turns inside the element dx will be n×dx 

We already know that magnetic field on the axis of circular loop is given 

by: 

dB = (μo/2) in(dx)R
2
/(x

2
 + R

2
)

3/2
 

From the above triangle, we can write: 

tanθ = R/x 

x = R cotθ 

On differentiating: dx = -R (cosec
2
θ) dθ 

Putting the value of x and dx in the equation of dB, we get: 

 



Putting the values of θ1 = 180°, and θ2 = 0°, we get: 

B = (μo/2) in(cos0° - cos180°) = (μo/2) 2in = μoni 

∴ B = μoni 

For magnetic field at the end (corner) of the solenoid (θ1 = 90°, θ2 = 0°) 

∴ B = μoni/2 

Note: In the above equations n = number of turns per unit length. 

For any point outside the solenoid, the magnetic field is 0(for ideal 

solenoid). 

Solenoids are used in electromagnets, transformers etc. 

 

The Toroid: 

A toroid is simply a solenoid bent into a closed circular loop. As toroid has 

no end points, magnetic flux leakage (loss) is minimized, and hence flux 

linkage is maximized as compared to a solenoid. 

 

Fig.4.17. Toroid in a closed circular loop 



 

Case-1: Magnetic field at a point in the empty space inside the toroid. We 

will take an Amperian loop (loop 1). By the Ampere’s circuital law: 

 

We can see in the diagram above that current passing through the inside of 

the loop 1 is 0 

∫B1.dl = μo×0 = 0 

∴ B1 = 0 

 

Case-2: Magnetic field at a point inside the toroid (between the turns). We 

will take another Amperian loop (loop2) of radius r2. By the Ampere’s 

circuital law: 

 

We can see in the diagram above that net current passing through the 

inside of the loop 2 is Ni, where N is the total number of turns in the toroid 

B2∫dl = μo×Ni 

B22πr2 = μoNi 

∴ B2 = μoNi/(2πr2) = μoni 

Here n = number of turns per unit length of toroid = N/(2πr2) 



Note: The equation of magnetic field due to toroid is same as that of 

magnetic field due to solenoid. 

 

Case-3: Magnetic field at a point outside the toroid. We will take another 

Amperian loop (loop3) of radius r3. By the Ampere’s circuital law: 

 

We can see in the diagram above that net current passing through the 

inside of the loop 2 is 0 (Ni current going out of the loop, and Ni current 

entering the loop, so net current is o) 

∫B3.dl = μo×0 = 0 

 ∴ B3 = 0 

o Toroid are used in toroidal transformers, toroidal inductors etc. 

 

4.6 Magnetic field due to moving charge: 

Experiments show that the magnetic field of moving charge can be 

expressed as: 

 

μo ≡ 4π × 10
-7

 N·s
2
/C

2
 is called the permeability of free space. The 

constant εo that is used in electric field calculations is called 

the permittivity of free space. Note that εoμo = 1/c
2
. 



Example: 

Two protons with a vertical displacement of r between them move in the 

x-y plane parallel to the x-axis at the same speed v (small compared to c). 

When they are both at x = 0, what is the ratio of the electric/magnetic 

forces between them? 

FE = kq
2
/r

2
 

To get FB acting on top charge, first find B caused by bottom charge: 

 

So, the force this field exerts on the top charge is: 

 

Comparing the ratio of FB to FE: 

 

Lorentz Force: 

Hendrik Antoon Lorentz was a Dutch physicist who explained the theories 

related to electromagnetic radiation. He mainly concentrated on the 

relationship between magnetism, light, and electricity. 

What is Lorentz Force? 

Lorentz force is defined as the combination of the magnetic and electric 

force on a point charge due to electromagnetic fields. It is used in 

https://byjus.com/physics/electromagnetic-field/


electromagnetism and is also known as the electromagnetic force. In the 

year 1895, Hendrik Lorentz derived the modern formula of Lorentz force. 

What is Lorentz Force Formula? 

Lorentz force formula for the charged particle is as follows: 

F=q(E+v∗B) 

Where, 

 F is the force acting on the particle 

 q is the electric charge of the particle 

 v is the velocity 

 E is the external electric field 

 B is the magnetic field 

Lorentz force formula for continuous charge distribution is as follows: 

dF=dq(E+v∗B) 

Where, 

 dF is a force on a small piece of the charge 

 dq is the charge of a small piece 

When a small piece of charge distribution is divided by the volume dV, the 

following is the formula: 

f = ρ (E+v*B) 

https://byjus.com/physics/continuous-charge-distribution/


Where, 

 f is the force per unit volume 

 ⍴ is the charge density 

With the help of the right-hand rule, it becomes easy to find the direction 

of the magnetic part of the force. 

What is the importance of Lorentz force? 

Lorentz force explains the mathematical equations along with the physical 

importance of forces acting on the charged particles that are traveling 

through the space containing electric as well as the magnetic field. This is 

the importance of the Lorentz force. 

Right-Hand Rule: 

The right-hand rule is useful to find the magnetic force as it becomes easy 

to visualize the direction as given in Lorentz force law. 

 

Fig.4.18. The right-hand rule 

https://byjus.com/physics/magnetic-force/


From the above figure, it is understood that the magnetic force is 

perpendicular to both the magnetic field and charge velocity. 

Applications of Lorentz Force 

The following are the applications of Lorentz force: 

 Cyclotrons and other particle accelerators use Lorentz force. 

 A bubble chamber uses Lorentz force to produce the graph for 

getting the trajectories of charged particles. 

 Cathode ray tube televisions use the concept of Lorentz force to 

deviate the electrons in a straight line so land on specific spots on 

the screen. 

SAQ.2 

a) What do you mean by Biot-Savart law? 

b) Define the solenoid and toriod carrying current. 

c) What do you mean by Magnetic field due to moving charge? 

d) Define the Lorentz force. 

e) A circular coil of radius 5.68 × 10
-2

 m and with 50 turns is carrying a 

current of 0.10 A. Determine the magnetic field of the circular coil at 

the center. 

 

4.7 Force between two current-carrying conductors: 

AB and CD are two straight very long parallel conductors placed in air at a 

distance a. They carry currents I1 and I2 respectively.(Fig) The magnetic 

induction due to current I1 in AB at a distance a is 



 

 

 

Fig4.19. Force between two long parallel current-carrying conductor 

This magnetic field acts perpendicular to the plane of the paper and 

inwards. The conductor CD with current I2 is situated in this magnetic 

field. Hence, force on a segment of length l of CD due to magnetic field 

B1 is 

 

Substituting equation  

 

By Fleming’s Left Hand Rule, F acts towards left. Similarly, the magnetic 

induction due to current I2 flowing in CD at a distance a is 

 

This magnetic field acts perpendicular to the plane of the paper and 

outwards. The conductor AB with current I1, is situated in this field. Hence 

force on a segment of length l of AB due to magnetic field B2 is 



 

Substituting equation 

 

By Fleming’s left hand rule, this force acts towards right. These two forces 

given in equations attract each other. Hence, two parallel wires carrying 

currents in the same direction attract each other and if they carry currents 

in the opposite direction, repel each other. 

Definition of ampere: 

The force between two parallel wires carrying currents on a segment of 

length l is 

 

The above conditions lead the following definition of ampere. 

Ampere is defined as that constant current which when flowing through 

two parallel infinitely long straight conductors of negligible cross section 

and placed in air or vacuum at a distance of one meter apart, experience a 

force of 2 × 10
-7

 Newton per unit length of the conductor. 

Force between two moving charges: 



What is the Force due to a Magnetic Field? 

Magnetic fields can exert a force on electric charge only if it is moving, 

just as a moving charge produces a magnetic field. This force increases 

with both an increase in charge and magnetic field strength. Moreover, the 

force is greater when charges have higher velocities. 

The magnetic force, however, always acts perpendicular to the velocity. 

Thus, this force can never produce work on the charge and cannot impart it 

any kinetic energy. The magnetic force is given by: 

 

 

Where q is the charge, v is the velocity and B is the magnetic field. Notice 

that the cross product implies that the force always acts perpendicular to 

both the velocity and magnetic field. Thus, it always acts out of the plane 

and does not contribute to any work done on the charge. It can merely 

change the direction of the velocity but cannot change its magnitude. The 

direction of the force can be easily determined using Fleming’s Right-hand 

Rule. 

What is the Force Due to Electric Field? 

The force due to the electric field on a charge is built into its definition. It 

always acts either parallel or anti-parallel to the electric field and is 

independent of the velocity of the charge. This means it has the ability to 

do work and impart energy to the charge. 

 



 

 

4.8 Cyclotron (principle, construction, working, limitations and 

modification): 

Cyclotron: 

Cyclotron can be defined as a type of particle accelerator in which charged 

particles accelerate outwards from the centre along a spiral path. These 

particles are held to a spiral trajectory by a static magnetic field and 

accelerated by a rapidly varying electric field 

Principle- 

A charged particle accelerates to very high speed when kept in a the 

moderate electric field and in uniform, perpendicular magnetic field. The 

frequency of revolution open charged particle a magnetic field is 

independent of speed and radius of the Earth. 

Construction: 

It consists of 2- D shapes dees made up of metals arrange parallel and 

enclosed under a steel chamber. 

To electromagnet with opposite polarity North and South are applied 

perpendicular to the dees and does are connected to a high frequency 

oscillator. 



 

Fig.4.20. Construction of Cyclotron 

 

It consists of a hollow metal cylinder divided into two sections D1 and 

D2 called Dees, enclosed in an evacuated chamber (Fig ). The Dees are 

kept separated and a source of ions is placed at the centre in the gap 

between the Dees. They are placed between the pole pieces of a strong 

electromagnet. The magnetic field acts perpendicular to the plane of the 

Dees. The Dees are connected to a high frequency oscillator. 

Working: 

When a positive ion of charge q and mass m is emitted from the source, it 

is accelerated towards the Dee having a negative potential at that instant of 

time. Due to the normal magnetic field, the ion experiences magnetic 

lorentz force and moves in a circular path. By the time the ion arrives at 

the gap between the Dees, the polarity of the Dees gets reversed. Hence 

the particle is once again accelerated and moves into the other Dee with a 

greater velocity along a circle of greater radius. Thus the particle moves in 

a spiral path of increasing radius and when it comes near the edge, it is 



taken out with the help of a deflector plate (D.P). The particle with high 

energy is now allowed to hit the target T. 

When the particle moves along a circle of radius r with a velocity v, the 

magnetic Lorentz force provides the necessary centripetal force. 

Bqv = (vm2 ) / r 

v /r = Bq / m = constant  

The time taken to describe a semi-circle 

t = π r / v   

Substituting equation 

t = π m/ Bq 

 It is clear from equation that the time taken by the ion to describe a semi-

circle is independent of 

 (i) the radius (r) of the path and (ii) the velocity (v) of the particle 

Hence, period of rotation  

T = 2t 

T = 2 π m / Bq = constant 

 So, in a uniform magnetic field, the ion traverses all the circles in exactly 

the same time. The frequency of rotation of the particle, 

v = 1 /T = Bq / 2 πm 



If the high frequency oscillator is adjusted to produce oscillations of 

frequency as given in equation, resonance occurs. 

Cyclotron is used to accelerate protons, deutrons and α - particles. 

 

Limitations of Cyclotron: 

 Cyclotron cannot accelerate electrons because electrons are of very 

small mass. 

 A cyclotron cannot be used to accelerate neutral particles. 

 It cannot accelerate positively charged particles with large mass due 

to the relativistic effect. 

Cyclotron Modifications: 

At first, improvements in cyclotron design were directed at the 

construction of larger machines that could accelerate particles to greater 



velocities. Soon, however, a new problem arose. Physical laws state that 

nothing can travel faster than the speed of light. Thus, adding more and 

more energy to a particle will not make that particle's speed increase 

indefinitely. Instead, as the particle's velocity approaches the speed of 

light, additional energy supplied to it appears in the form of 

increased mass. A particle whose mass is constantly increasing, however, 

begins to travel in a path different from that of a particle with constant 

mass. The practical significance of this fact is that, as the velocity of 

particles in a cyclotron begins to approach the speed of light, those 

particles start to fall "out of sync" with the current change that drives them 

back and forth between dees. 

Two different modifications-or a combination of the two-can be made in 

the basic cyclotron design to deal with this problem. One approach is to 

gradually change the rate at which the electrical field alternates between 

the dees. The goal here is to have the sign change occur at exactly the 

moment that particles have reached a certain point within the dees. As the 

particles speed up and gain weight, the rate at which electrical current 

alternates between the two dees slows down to "catch up" with the 

particles. 

In the 1950s, a number of machines containing this design element were 

built in various countries. Those machines were known 

as frequency modulated (FM) cyclotrons, synchrocyclotrons, or, in the 

Soviet Union, phasotrons. The maximum particle energy attained with 

machines of this design ranged from about 100 MeV to about 1 GeV. 

A second solution for the mass increase problem is to alter the magnetic 

field of the machine in such a way as to maintain precise control over the 

https://science.jrank.org/pages/4154/Mass.html
https://science.jrank.org/pages/5741/Rate.html
https://science.jrank.org/pages/2856/Frequency.html


particles' paths. This principle has been incorporated into the machines 

that are now the most powerful cyclotrons in the world, the synchrotrons. 

A synchrotron consists essentially of a hollow circular tube (the ring) 

through which particles are accelerated. The particles are actually 

accelerated to velocities close to the speed of light in smaller machines 

before they are injected into the main ring. Once they are within the main 

ring, particles receive additional jolts of energy from accelerating 

chambers placed at various locations around the ring. At other locations 

around the ring, very strong magnets control the path followed by the 

particles. As particles pick up energy and tend to spiral outward, the 

magnetic fields are increased, pushing particles back into a circular path. 

The most powerful synchrotrons now in operation can produce particles 

with energies of at least 400 GeV. 

In the 1970s, nuclear physicists proposed the design and construction of 

the most powerful synchrotron of all, the superconducting super collider 

(SSC). The SSC was expected to have an accelerating ring 51 mi (82.9 

km) in circumference with the ability to produce particles having an 

energy of 20 TeV. Estimated cost of the SSC was originally set at about $4 

billion. Shortly after construction of the machine at Waxahachie, Texas 

began, however, the United States congress decided to discontinue funding 

for the project. 

Betatron: 

A Betatron was developed by D W Kerst to accelerate the electrons to high 

energies. 

Principle: 



The principle of the Betatron is same as that of the transformer. In 

transformer, if an alternating current is passed through the primary coil an 

alternating magnetic field will appear in the coil. This field produces an 

induced e.m.f. in the secondary coil. Similarly the changing magnetic flux 

induces an e.m.f. tangentially along a circular path for the electron which 

accelerates the electrons to high energies. The electrons is kept 

accelerating in circular path of constant radius with the help of increasing 

magnetic field. 

Construction: 

The Betatron is consists of an evacuated doughnut chamber in which 

electrons are produced by indirectly heated cathode. The doughnut tube is 

placed between two strong electromagnet such that, when the a.c current is 

passed in the electromagnets the flux increases in the centre of doughnut 

(single coil). 

 

Fig.4.21 Construction of Betatron 

Working: 

When the electron appears at K (cathode) in doughnut tube and the 

electromagnets are energized the magnetic field increases, the increasing 

magnetic field has two effects  



(i)  Induced e.m.f. is produced in electron orbit by changing magnetic flux 

that gives an additional energy to electron. According to Faraday’s law 

induced e.m.f is 

 

(ii) A radial force (magnetic force) is produced by action of magnetic field 

whose direction 

is perpendicular to the electron velocity which keeps the electron 

moving in circular path. 

The force is balanced by 

Centripetal force, i.e., 

 

The particle acceleration occurs only with increasing flux (the duration 

when the flux increases from zero to a maximum value) i.e., the first 

quarter of the a.c. cycle (T/4 sec), after this the flux starts decreasing 

which result in decreasing velocity therefore the electron is kept in the 

tube only for T/4 sec. As the electrons get faster they need a larger 

magnetic field to keep moving at a constant radius, which is provided by 

the increasing field. 



 

Fig.4.22. Working of Betatron 

Betatron Condition: 

Induced e.m.f in the coil from Faraday’s law of electromagnetic induction 

 

Work done on an electron in one revolution 

 

Work done = tangential Force ‘F’ on electron x distance traveled in one 

revolution 

 

The electron moves in circular path. The magnetic force is balanced by 

centripetal force, 

i.e., 



 

From Newtons second law radial force 

 

In order to maintain path of constant radius (r is constt.) 

 

Equations are equal, equating both 

 

Integrating the above equation 

The relation is known as Betatron condition. 

 It shows that to ensure that the electron moves in circular path of constant 

radius, the magnetic flux within the orbit of radius R is always twice what 

it would have been if magnetic field were uniform throughout the orbit.  

Energy Gained by Electron: 

The particles have maximum energy when the magnetic field is at its 

strongest value but the formula used for the cyclotron will not work for 

Betatron because the electron motion is relativistic. However, if the total 

energy is much greater than the rest energy then 



 

 

As the centripetal force is again provided by the Lorentz force,The 

momentum of the electron will 

 

 

and hence Energy 

E = Berc 

Number of Revolutions Taken by Electron: 

In T/4 seconds if the electron takes N revolutions in circular path of 

constant radii then the total distance traveled by the electron in gaining the 

maximum energy E is 

 

 

N = c/4ωr 

Average Energy Gained per Revolution: 

Average energy gained per revolution (Eav) will be given as 

Eav = E/N 



 

where  

Eav =Total energy gained by electron and 

N = Number of Revolutions taken 

 

SAQ.3 

a) Define the Force between two current carrying conductor  

b) What do you mean by Cyclotron and its limitations? 

c) What do you mean by Betatron? 

d) A nonrelativistic particle with a charge twice that of an electron 

moves through a uniform magnetic field. The field has strength 

of π/4 tesla and is perpendicular to the velocity of the particle. What 

is the particle’s mass if it has a cyclotron frequency of 1,000 hertz? 

 

Examples: 

Q.1. Calculate the current through the circuit in which the voltage and 

resistance be 15V and 3Ω respectively? 

Solution: The given parameters are, 

V = 15V 

R = 3Ω 

The equation for current using Ohm’s law is, 



I=V/R 

I = 15/3 = 5A 

Q.2. The voltage and resistance of a circuit are given as 10V and 4Ω 

respectively. Calculate the current through the circuit? 

Solution: The given parameters are, 

V = 10V 

R = 4Ω 

The equation for current using Ohm’s law is, 

I=V/R 

I =10/4 = 2.5A 

Q.3. If the resistance of an electric iron is 50 Ω and a current of 3.2 A 

flows through the resistance. Find the voltage between two points. 

Solution: 

If we are asked to calculate the value of voltage with the value of current 

and resistance given to us, then cover V in the triangle. Now, we are left 

with I and R or more precisely I × R. 

Therefore, we use the following formula to calculate the value of V: 

V = I × R 

Substituting the values in the equation, we get 

V = 3.2 A × 50 = 160 V 



V = 160V 

Q.4. If an electric heater consumes electricity at the rate of 500W and the 

potential difference between the two terminals of electric circuit is 250V, 

calculate the electric current and resistance through the circuit. 

Solution: Given, power input (P) = 500 W 

Potential difference (V) = 250 V 

Electric current (I) =? 

Resistance (R) through the circuit =? 

We know that power (P)=VI(P)=VI 

Or, 500W=250V×I500W=250V×I 

Or, I=500W÷250V=2AI=500W÷250V=2A 

We know, resistance R=VIR=VI 

Or, R=250V÷2A=125Ω 

Q.5. Calculate the electric current passing through the circuit in which the 

voltage and resistance be 25V and 5 Ω respectively? 

Solution: V = 25 V  

R = 5Ω 

Here, we have to apply ohm’s law formula. 

The equation for the electric current using Ohm’s law is, 

I= V/R 



Putting the known values, we get 

I = 25/5 

I= 5 A 

Thus the value of electric current is 5 A. 

Q.6. Determine the current density when 40 Amperes of current is flowing 

through the battery in a given area of 10 m
2
. 

Solution: 

It is given that, 

I = 40 A, 

Area = 10 m
2
 

The current density formula is given by, 

J = I / A 

= 40 / 10 

J = 4 A/m
2
. 

Q.7. Find the resistance of an electrical circuit that has voltage supply of 10 

Volts and current of 5mA. 

Solution: 

V = 10 V, I = 5 mA = 0.005 A 

R = V / I 

= 10 V / 0.005 A 



= 2000 Ω = 2 kΩ 

Q.8. Calculate the force on the wire given B = 1.50 T, l = 5.00 cm, and I = 

20.0 A. 

Solution: 

The force can be found with the given information by using  

F=IlBsinθ 

 and noting that the angle θ between I and B is 90º, so that sin θ = 1. 

Entering the given values into F = IlB sin θ yields 

F = IlB sin θ = (20.0 A)(0.0500 m)(1.50 T)(1). 

The units for tesla are 1 T=N/A⋅m1 T=N/A⋅m; thus, 

F = 1.50 N. 

 

Q.9. A current of 1.0 A exists in a copper wire of cross section 1.0 mm
2
. 

Assuming one free electron per atom calculate drift speed of free electrons 

in wire. The density of copper is 9000 kg/m. 

Solution: 

Current I related to drift velocity vd is given by 

  

I = n×e×A×|vd|  

  



where n is the number density of atoms , e is the charge on electron, A is 

area of cross section. 

  

gram atomic weight of Copper atom 63.5 ; number density of atoms  is 

given by 

  

 

 

 

Q.10. Calculate the magnetic field at a point P which is perpendicular 

bisector to current carrying straight wire as shown in figure. 

 

Solution: 

Let the length MN = y and the point P is on its perpendicular bisector. Let 

O be the point on the conductor as shown in figure. 



 

Q.11. Show that for a straight conductor, the magnetic field 

 

Solution: 



In a right angle triangle OPN, let the angle ∠ OPN = θ1 which implies, 

ϕ1 = π /2  − θ1 and also in a right angle triangle OPM, ∠OPM = θ2 which 

implies, ϕ2 = π/2 + θ2 

Hence, 

 

Q.12. Two parallel straight wires A and B, of length 10cm are carrying 

currents of 8A and 5A respectively in the same direction. The distance 

between the wires is 4cm. Find the force acting on wire A due to wire B. 

Will the force acting on wire B due to wire A be the same as the above 

answer? 

Solution: Given, L = 0.1m, iA = 8A, iB = 5A, r = 0.04m 

Force between two straight, parallel current carrying wires is given by: 

F = μoiAiBL/(2πr) = 4π×10
-7
×8×5×0.1/(2π×0.04) = 2×10

-5
N 

∴F = 2×10
-5

N, directed towards wire B (ans) 

Yes, the force acting on wire A due to wire B will be equal to the force on 

wire B due to A. 

Q.13. Determine the magnitude of the magnetic field of a wire loop at the 

center of the circle with radius R and current I. 

Solution: 

The magnitude of the magnetic field of the wire loop is given as: 



 

 

Q.14. A circular coil of radius 5 × 10
-2

 m and with 40 turns is carrying a 

current of 0.25 A. Determine the magnetic field of the circular coil at the 

center. 

Solution: 

The radius of the circular coil = 5 × 10
-2

 m 

Number of turns of the circular coil = 40 

Current carried by the circular coil = 0.25 A 

Magnetic field is given as:   

 

    

 

Q.15. Determine the magnetic field at the center of the semicircular piece 

of wire with radius 0.20 m. The current carried by the semicircular piece 

of wire is 150 A. 

Solution: 

The radius of the semicircular piece of wire = 0.20 m 

Current carried by the semicircular piece of wire = 150 A 



Magnetic field is given as: 

 

The differential form of Biot-Savart law is given as:  

 

        

 

Q.16. The round coil is of 10 turns as well as radius 1m. If a flow of 

current through it is 5A, then determine the field in the coil from a 2m 

distance. 

Solution: 

Number of turns n= 10, Current 5A, Length= 2m, Radius = 1m 

The biot savart law statement is given by, B = (μo / 4π) × (2πnI / r) 

Then, substitute the above values in the above equation 

B = (μo / 4π) × (2 × π × 10 × 5 / 1) = 314.16 × 10-7 T 

 

Q.17. A long straight wire is carrying a current of 50A in the plane of 

paper in north-south direction. Find the magnitude and direction of 

magnetic field at a point 2.5meast of the wire. 

https://www.elprocus.com/kirchhoffs-laws-working-formula/


Solution: 

 

Given: i = 50A, r = 2.5m 

The magnetic field due to long wire is given by: 

B = μoi/(2πr) = 4π×10
-7
×50/(2π×2.5) = 4×10

-6
T = 0.04G  (ans) 

The direction will be given by cross product of current element and 

position vector of point from the current element (idl x r), which isgiven 

by Fleming’s right hand thumb rule, and it will be normal to the plane of 

paper coming outwards (). 

 

Q.18. A circular coil of wire has 100 turns of radius 8cm, and carrying a 

current of 0.4A in clockwise direction when viewed from the right side. 

Find the magnitude and direction of magnetic field: i) at the center of coil, 

and ii) at a distance of 20cm from the center of coil towards the right and 

normal to the coil. 

 

Solution: Given, N = 100, r = 0.08m, i = 0.4A, x = 

0.2m                                           0.2m 



i) Magnetic field at the center of circular coil is given by: 

B = μoNi/(2r) 

B = 4π×10
-7

×100×0.4/(2×0.08) = 3.14×10
-4

T = 3.14G  (ans) 

Direction of magnetic field will be normal to the plane of coil, and from 

right to leftt side of coil. 

ii) Magnetic field at an axial distance from center of coil is given by: 

B = μoNiR
2
/(x

2
 + R

2
)

(3/2)
 

B = 4π×10
-7

×100×0.4×0.0064/(0.0064 + 0.0400)
(3/2)

 = 3.22×10
-7

/0.00999 

∴ B = 3.22×10
-5

T = 0.322G (ans) 

 

Q.19.Using Ampere’s circuital law, derive the magnetic field inside the 

solenoid of length L, carrying current i and having N number of turns. 

Solution: 

 

Using Ampere’s circuital law: 

iL =  iNl/LConsidering the Amperian loop abcd of sides l each, current 

passing through the loop will be: 

b
a∫B.dl + 

c
b∫B.dl + 

d
c∫B.dl +

a
d∫B.dl = μoNil/L 



Blcos0 + Blcos90 + 0lcos180 + Blcos270 = μoNil/L 

Bl = μoNil/L 

∴ B = μoNi/L = μoni 

Q.20. A closely wound solenoid has length of 80cm, and radius of 0.9cm 

with 5 layers of windings of 400 turns each. The current flowing through 

the solenoid is 8A. Find the magnitude of magnetic field inside the 

solenoid: i) at the center, and ii) at an end of solenoid. 

Solution: Given, L = 0.8m, r = 0.009, N = 5×400 = 2000, i = 8A 

Number of turns per unit length (n) = 2000/0.8 = 2500/m 

i) Magnetic field at the center of solenoid is given by: 

B = μoni = 4π×10
-7

×2500×8 = 0.0251T = 251G  (ans) 

ii) Magnetic field at one end of the solenoid is given by: 

B = μoni/2 = 0.0251/2 = 0.01255T = 125.5G  (ans) 

Q.21. A toroid has inner radius 25cm and outer radius 26cm, with 3500 

turns and 11A current flowing through it. Find the magnetic field:i) inside 

the core of the toroid,ii) outside the toroid and iii) in the empty space 

surrounded by the toroid. 

Solution: Given, r1= 25cm, r2 = 26cm, N = 3500, i = 11A 



 

 

R = r1 + (r2 – r1)/2  

= 25 + (26-25)/2  

=25.5cm 

Number of turns per unit length (n) = N /(2πR) 

∴ n = 3500/(2π×0.255) = 2184.5/m 

i) Magnetic field inside the core of toroid is given by: 

B = μoni = 4π×10
-7

×2184.5×11 = 0.0302T = 302G (ans) 

ii) Magnetic field outside the toroid is zero because net current through the 

Amperian loop(1) is zero, hence, by ampere circuital law: 

B = 0 (ans) 

iii) Magnetic field inside the empty space surrounded by toroid is zero 

because net current through the Amperian loop(3) is zero, hence, by 

ampere circuital law: 

B = 0 (ans) 

Q.22. A non-relativistic particle with a charge twice that of an electron 

moves through a uniform magnetic field. The field has strength of π/4 tesla 



and is perpendicular to the velocity of the particle. What is the particle’s 

mass if it has a cyclotron frequency of 1,600 hertz? 

Solution: 

 

 

Q.23. An electron moving perpendicular to a uniform magnetic field 0.500 

T undergoes circular motion of radius 2.80 mm. What is the speed of 

electron? 

Solution 

Charge of an electron q = -1.60 × 10-19 C 

⟹ |q| = 1.60 ×10−19 C 

Magnitude of magnetic field B = 0.500 T 

Mass of the electron, m = 9.11 × 10-31 kg 

Radius of the orbit, r = 2.50 mm = 2.50 × 10-3 m 



Velocity of the electron, v = |q| rB/m 

 

v = 2.195 ×108 m s−1 

Q.24. A proton moves in a uniform magnetic field of strength 0.500 T 

magnetic field is directed along the x-axis. At initial time, t = 0 s, the 

proton has velocity  

. 

 Find 

(a) At initial time, what is the acceleration of the proton? 

(b) Is the path circular or helical?. If helical, calculate the radius of helical 

trajectory and also calculate the pitch of the helix (Note: Pitch of the helix 

is the distance travelled along the helix axis per revolution). 

Solution 



 

Pitch of the helix is the distance travelled along x-axis in a time T, which 

is P = vx T 

But time, 

 



The proton experiences appreciable acceleration in the magnetic field, 

hence the pitch of the helix is almost six times greater than the radius of 

the helix. 

 Q.25. Two singly ionized isotopes of uranium 23592U and 23892U 

(isotopes have same atomic number but different mass number) are sent 

with velocity 1.00 × 105 m s-1 into a magnetic field of strength 0.500 T 

normally. Compute the distance between the two isotopes after they 

complete a semi-circle. Also compute the time taken by each isotope to 

complete one semi-circular path. (Given: masses of the isotopes: m235 = 

3.90 x 10-25 kg and m238 = 3.95 x 10-25 kg) 

 

Solution 

Since isotopes are singly ionized, they have equal charge which is equal to 

the charge of an electron, q = - 1.6 × 10-19 C. Mass of uranium 23592U 

and 23892U are 3.90 × 10-25 kg and 3.95 × 10-25 kg respectively. 

Magnetic field applied, B = 0.500 T. Velocity of the electron is 1.00 × 

105 m s-1, then 

(a) the radius of the path of 23592U is r235 



 

The diameter of the semi-circle due to 23892U is d238 = 2r238 = 98.8 cm 

Therefore the separation distance between the isotopes is Δd = d238 − 

d235 = 1.2cm 

(b) The time taken by each isotope to complete one semi-circular path are 

  

Q.26. Let E be the electric field of magnitude 6.0 × 106 N C-1 and B be 

the magnetic field magnitude 0.83 T. Suppose an electron is accelerated 

with a potential of 200 V, will it show zero deflection?. If not, at what 

potential will it show zero deflection? 



Solution: 

Electric field, E = 6.0 × 106 N C-1 and magnetic field, B = 0.83 T. 

Then 

 

When an electron goes with this velocity, it shows null deflection. Since 

the accelerating potential is 200 V, the electron acquires kinetic energy 

because of this accelerating potential. Hence, 

 

Since the mass of the electron, m = 9 .1×10−31 kg and charge of an 

electron, |q| = e = 1.6 ×10−19 C. The velocity due to accelerating potential 

200 V 

 

Since the speed v200 > v, the electron is deflected towards direction of 

Lorentz force. So, in order to have null deflection, the potential, we have 

to supply is 

 

V =148 65 V 



Q.27. Suppose a cyclotron is operated to accelerate protons with a 

magnetic field of strength 1 T. Calculate the frequency in which the 

electric field between two Dees could be reversed. 

Solution 

Magnetic field B = 1 T 

Mass of the proton, mp = 1.67 ×10−27 kg 

Charge of the proton, q = 1.60 ×10−19 C 

 

Q.28. A cyclotron has an oscillator frequency of 10 MHz. What should be 

the operating magnetic field for accelerating protons? Also, calculate the 

kinetic energy (in MeV) of the proton beam produced by the accelerator. 

(e = 1.60 × 10
–19

 C, mp = 1.67 × 10
–27

 kg, 1 MeV = 1.6 × 10
–13

 J) 

Solution: 

The oscillator frequency should be equal to the proton’s cyclotron 

frequency. 

We use the following formula to find the strength of the magnetic field: 

 

Substituting the values in the above equation, we get 

 



The final velocity of the proton can be calculated using the following 

formula: 

 

Substituting the values in the above equation, we get 

 

To find the kinetic energy of the proton, we use the following formula: 

 

Substituting the values in the above equation, we get 

 

The kinetic energy of the proton beam produced by the accelerator is 7 

MeV 

 

Summary: 

1. An electric current is a flow of electric charge in a circuit. More 

specifically, the electric current is the rate of charge flow past a 

given point in an electric circuit. The charge can be negatively 

charged electrons or positive charge carriers including protons, 

positive ions or holes. 

2. Current density is a quantity related to electric current. As a 

vector, current density has magnitude and direction. By 

definition, current density is the product of charge density (ρ) and 



velocity (v). The magnitude of current density is also equivalent to 

the ratio of current (I) to area (A). 

3. Ohm's Law states that the current flowing in a circuit is directly 

proportional to the applied potential difference and inversely 

proportional to the resistance in the circuit. In other words by 

doubling the voltage across a circuit the current will also double. 

4. Joule's laws are two: first about heat produced by an electric current, 

and second about how the energy of a gas relates to pressure, 

volume. Joule's second law says that the internal energy of an ideal 

gas does not change if volume and pressure change, but does change 

if temperature changes. Joule's law is important. 

5. In physics a drift velocity is the average velocity attained by charged 

particles, such as electrons, in a material due to an electric field. In 

general, an electron in a conductor will propagate randomly at the 

Fermi velocity, resulting in an average velocity of zero. 

6. A stationary charge will produce only an electric field in 

the surrounding space. If the charge is moving, a magnetic field is 

also produced. An electric field can be produced also by a 

changing magnetic field. 

7. Magnetic fields exert forces on moving charges. ... The direction of 

the magnetic force on a moving charge is perpendicular to the plane 

formed by v and B and follows right hand rule–1. The magnitude of 

the force is proportional to q, v, B, and the sine of the angle between 

v and B. 



8. Current is generally defined as the rate of flow of charge. Magnetic 

field due to a current-carrying conductor depends on the current in 

the conductor and distance of the point from the conductor. The 

direction of the magnetic field is perpendicular to the wire. 

9. The Biot Savart Law states that it is a mathematical expression 

which illustrates the magnetic field produced by a stable electric 

current in the particular electromagnetism of physics. It tells the 

magnetic field toward the magnitude, length, direction, as well as 

closeness of the electric current. 

10. A solenoid is a coil of wire with electric current flowing 

through it, giving it north and south magnetic poles and a magnetic 

field. ... A solenoid converts electromagnetic energy into motion, 

providing a burst of power that can move a specific part of a device. 

11. If a solenoid is bent in a circular shape and the ends are joined, we 

get a toroid. Alternatively, one can start with a non-conducting ring and 

wind a conducting wire closely on it. The magnetic field in such a toroid 

can be obtained using Ampere's Law. 

12. Right Hand Rule: Magnetic fields exert forces on moving 

charges. This force is one of the most basic known. The direction of 

the magnetic force on a moving charge is perpendicular to the plane 

formed by v and B and follows right hand rule–1 (RHR-1) as shown. 

13. Lorentz force, the force exerted on a charged particle q 

moving with velocity v through an electric field E and magnetic field 

B. The entire electromagnetic force F on the charged particle is 



called the Lorentz force (after the Dutch physicist Hendrik 

A. Lorentz) and is given by F = qE + qv × B. 

14. Thus, when two parallel wires carry current in the same 

direction, they exert equal and opposite attractive forces on each 

other. Two wires that carry current in opposite directions. Two 

parallel wires carry current in opposite directions. 

15. Magnetic fields exert forces on moving charges, and so they 

exert forces on other magnets, all of which have moving charges. 

16. A cyclotron accelerates charged particles outwards from the 

center of a flat cylindrical vacuum chamber along a spiral path. The 

particles are held to a spiral trajectory by a static magnetic field and 

accelerated by a rapidly varying (radio frequency) electric field. 

17. Betatron, a type of particle accelerator that uses the electric 

field induced by a varying magnetic field to accelerate electrons 

(beta particles) to high speeds in a circular orbit. ... Modern 

compact betatron designs are used to produce high-energy X-ray 

beams for a variety of applications. 

 

Terminal Questions:  

1) Define and explain in detail of Electric current and current density.  

2) Write short notes on: (i) Ohm’s law, (ii) Joule’s law, (iii) Drift 

velocity. 

3) Explain the working of Magnetic field around stationary charge. 



4) What do you mean by Magnetic field around moving charge and 

current carrying conductor? 

5) Explain the working principle of Biot-Savart law and its application 

to straight conductor. 

6) Discuss the circular loop, solenoid and toriod carrying current using 

in Biot-Savart law 

7) Explain the working principle of Magnetic field due to moving 

charge. 

8) What do you mean by Lorentz force? 

9) Discuss the Force between two current carrying conductor and two 

moving charges. 

10) Explain the working principle, construction, limitations of 

Cyclotron. 

11) Explain the working principle of the Betatron. 

12) The voltage and resistance of a circuit are given as 

20V and 10Ω respectively. Calculate the current through the circuit? 

13) Determine the current density when 50 Amperes 

of current is flowing through the battery in a given area of 150 m
2
. 

14) An EMF source of 8.0 V is connected to a purely 

resistive electrical appliance (a light bulb). An electric current of 2.0 

A flows through it. Consider the conducting wires to be resistance-

free. Calculate the resistance offered by the electrical appliance. 

15) An electric geyser consumes electricity at the rate 

of 1000W. If the potential difference through the electric circuit is 

250 V, find the resistance offered by geyser and electric current 

through the circuit. 



16) A current of 2.0 A exists in a copper wire of cross 

section 4.0 mm
2
. Assuming one free electron per atom calculate drift 

speed of free electrons in wire. The density of copper is 12000 kg/m. 

17) Calculate the force on the wire given B = 2.50 

T, l = 10.00 cm, and I = 30.0 A. 

18) A circular coil of radius 15 × 10
-2

 m and with 600 

turns is carrying a current of 0.45A. Determine the magnetic field of 

the circular coil at the center. 

19) The round coil is of 10 turns as well as radius 1m. 

If a flow of current through it is 5A, then determine the field in the 

coil from a 2m distance. 

20) Calculate the magnetic field inside a solenoid, when (a) the 

length of the solenoid becomes twice and fixed number of turns, (b) 

both the length of the solenoid and number of turns are double, (c) 

the number of turns becomes twice for the fixed length of the 

solenoid, Compare the results. 

21) A closely wound solenoid has length of 80cm, and radius of 

0.15cm with 8 layers of windings of 600 turns each. The current 

flowing through the solenoid is 15A. Find the magnitude of 

magnetic field inside the solenoid: i) at the center, and ii) at an end 

of solenoid. 

22) A toroid has inner radius 35cm and outer radius 

36cm, with 4500 turns and 20A current flowing through it. Find the 

magnetic field:i) inside the core of the toroid,ii) outside the toroid 

and iii) in the empty space surrounded by the toroid. 



23) An electron moving perpendicular to a uniform 

magnetic field 0.800 T undergoes circular motion of radius 3.90 

mm. What is the speed of electron? 

24) A cyclotron has an oscillator frequency of 30 

MHz. What should be the operating magnetic field for accelerating 

protons? Also, calculate the kinetic energy (in MeV) of the proton 

beam produced by the accelerator. (e = 1.60 × 10
–19

 C, mp = 1.67 × 

10
–27

 kg, 1 MeV = 1.6 × 10
–13

 J) 



Unit 05- Laws of Magnetostatics 

 

Structure: 

5.1 Introduction 

5.2 Objective 

            5.3 Lines of forces, Gauss law in magnetostatics 

 5.4 Ampere circuital law (statement and derivation), its 

applications to current carrying rod (hollow and solid) 

 5.5 Inconsistency of Ampere circuital law with equation of 

continuity 

 5.6 Modification of Ampere circuital law by Maxwell with 

introducing concepts of displacement currents and its 

importance. Comparison of displacement current and 

conduction current 

 5.7 Vector potential and its expression due to straight conductor 

and circular loop 

 5.8 Derivation of magnetic flux density using vector potential for 

circular loop 

 5.9 Summary 

 5.10 Terminal Questions 

 

5.1 Introduction: 

The electric lines of force that represent the field of a 

positive electric charge in space consist of a family of 

straight lines radiating uniformly in all directions from the charge where 



they originate. A second positive charge placed in the field would travel 

radially away from the first charge. 

A fundamental feature of magnetic fields that distinguishes them from 

electric fields is that the field lines form closed loops. We cannot saw the 

magnet in half to isolate the north and the south poles 

Ampere's circuital law states that line integral of magnetic field forming a 

closed loop around the current(i) carrying wire, in the plane normal to the 

current, is equal to the μo times the net current passing through the close 

loop. 

Ampere's law gives another method to calculate the magnetic field due to a 

given current distribution. Ampere's law may be derived from the Biot-

Savart law and Biot-Savart law may be derived from the Ampere's 

law. Ampere's law is more useful under certain symmetrical conditions. 

According to Ampere circuital law the line integral of magnetic field B 

around any closed path is equal to times total current l enclosed by that 

closed path. Where l is the steady current. But this equation is 

logically inconsistent. Therefore, Ampere law is ambiguous as it does not 

provide continuity to current path. 

Maxwell found the shortcoming in Ampere's law and he modified 

Ampere's law to include time-varying electric fields. For Ampere's 

circuital law to be correct Maxwell assumed that there has to be some 

current existing between the plates of the capacitor. Outside the capacitor 

current was due to the flow of electrons. 



A Conduction current is due to the flow of electrons in a circuit. It exists 

even if electrons flow at a uniform rate. Displacement current is due to the 

time-varying electric field. 

In vector calculus, a vector potential is a vector field whose curl is a 

given vector field. This is analogous to a scalar potential, which is a scalar 

field whose gradient is a given vector field. 

Magnetic vector potential, A, is the vector quantity in classical 

electromagnetism defined so that its curl is equal to the magnetic field. 

Together with the electric potential φ, the magnetic vector potential can be 

used to specify the electric field E as well. 

The concept of the magnetic vector potential, which is field, but still we 

will have existence of magnetic field due to the current as shown in this. 

So, if we take a circular loop of radius R prime in a plane perpendicular to 

a so, we're going to now focus on a straight wire. 

Magnetic Flux Density is amount of magnetic flux through unit area taken 

perpendicular to direction of magnetic flux. Flux Density (B) is related 

to Magnetic Field (H) by B=μH. It is measured in Webers per square 

meter equivalent to Teslas [T] 

 

5.2    Objective: 

After studying this unit you should be able to 

a) Study and identify Lines of forces, Gauss law in magneto-statics. 



b) Explain and identify Ampere circuital law (statement and 

derivation), its applications to current carrying rod (hollow and 

solid). 

c) Study and identify Inconsistency of Ampere circuital law with 

equation of continuity. 

d) Explain and identify Modification of Ampere circuital law by 

Maxwell with introducing concepts of displacement currents and its 

importance. Comparison of displacement current and conduction 

current. 

e) Study and identify Vector potential and its expression due to straight 

conductor and circular loop. 

f) Explain and identify Derivation of magnetic flux density using 

vector potential for circular loop. 

 

5.3 Lines of forces, Gauss law in magneto-statics: 

 

Lines of Force (or) Magnetic Lines of Force: 

Firstly, we shall done Magnetic Lines of Force and understand what they 

are. As you know, magnets have a force field around them; this is the 

reason whenever we bring a magnet near a piece of metal, the latter either 

gets attracted to the magnet or is repelled away. Hence, the movement of 

the metal either towards the magnet or away from it is due to it being 

inside the magnetic field of the magnet. This magnetic field is represented 

by imaginary lines that originate from the North Pole of the magnet and 

travel in an elliptical fashion towards its south pole where they ‘merge’ 



back into the magnet; magnetic lines of force are simply drawn to 

visualize a magnet’s force field that exists around it. Check the diagram 

below for a clearer representation. 

 

Fig 5.1 Magnetic line of force 

Properties of Magnetic Lines of Force: 

1. Magnetic lines of force are essentially three-dimensional meaning 

their effects can be felt in 3D space (along the x, y, and z axes). 

2. Magnetic lines of force are typically focused or concentrated at the 

ends of a magnet; this is because those are the regions (poles) where 

the magnetic force exerted by the magnet on its surroundings is the 

highest. 

3. The strength of magnetic lines of force (or simply, the magnetic 

feld) is inversely proportional to their distance from the poles. 

4. No two magnetic lines of force cross each other, ever. If they did, a 

compass at that point would try to point at two directions (one for 

each field line) which is impossible. 



5. The direction of magnetic field lines as they move from the North 

pole to the South pole is dependent on their ability to track the path 

that presents the least resistance. 

6. Magnetic field lines form a closed elliptical loop (they are imaginary 

lines, but this explains the presence of the magnetic field around the 

magnet). The field lines travel inside the magnet from South to 

North pole and emerge from the North pole once more to travel 

towards the South. 

 

Magnetic Lines of Force Notes: 

1. Magnetic flux density is also known as flux density as well as 

magnetic induction. All three terms have the same unit which is 

Wb/m^2 or Tesla (T). 

2. Magnetic lines of force are a representation of the magnetic field 

which is the area surrounding the magnet where the magnetic force 

exerted by it is felt (by ferromagnetic substances, for example). 

3. The magnetic field is a vector quantity because from the North pole 

of the magnet to its South pole; finding the tangent of any point that 

lies on any of the magnetic lines of force gives us the direction of the 

magnetic force at that instance. 

4. The magnetic field is measured as Magnetic Flux Density (or simply 

flux density) and its SI unit is Tesla (T); 1 Tesla (T) = 1 Weber/m
2
 

(Wb/m
2
). 

5. Magnetic field lines contract longitudinally and expand transversely. 

6. Magnetic flux density is not the same as Magnetic flux; Magnetic 

flux density is a vector quantity while Magnetic flux is a scalar 



quantity. Additionally, magnetic flux is measured in Weber 

(measured in volt/seconds) while magnetic flux density is measured 

in Weber/sq. meters. 

Gauss’s Law for Magnetic Field: 

Gauss’s law for magnetism states that no magnetic monopoles exist and 

that the total flux through a closed surface must be zero. This page 

describes the Time-domain integral and differential forms of Gauss’s law 

for magnetism and how the law can be derived. The frequency-domain 

equation is also given. At the end of the page, a brief history of the 

Gauss’s law for magnetism is provided. 

 

 

Fig 5.2 When a bar magnet is cut in two, you get two bar magnets 

 

Integral equation: 

The Gauss’s law for magnetic fields in integral form is given by: 

 



Where, b is the magnetic flux. 

The equation states that there is no net magnetic flux b (which can be 

thought of as the number of magnetic field lines through an area) that 

passes through an arbitrary closed surface S. This means the number of 

magnetic field lines that enter and exit through this closed surface S is the 

same. This is explained by the concept of a magnet that has a north and a 

south pole, where the strength of the North Pole is equal to the strength of 

the South Pole Fig. This is equivalent to saying that a magnetic monopole, 

meaning a solitary north or south pole, does not exist because for every 

positive magnetic pole, there must be an equal amount of negative 

magnetic poles.   

 

Differential equation: 

Gauss’s law for magnetic fields in the differential form can be derived 

using the divergence theorem. The divergence theorem states: 

 

where f is a vector. The right-hand side looks very similar to above 

Equation. Using the divergence theorem, above Equation is rewritten as 

follows: 

 

Because the expression is set to zero, the integrand (∇⋅b) must be zero 

also. Thus the differential form of Gauss’s law becomes: 



 

 

Derivation using Biot-Savart law: 

Gauss’s law can be derived using the Biot-Savart law, which is defined as: 

 

Where: 

b(r) is the magnetic flux at the point r 

j(r′) is the current density at the point r′ 

μ0 is the magnetic permeability of free space. 

 

Taking the divergence of both sides of Equations yields: 

 

To carry through the divergence of the integrand in above Equation, the 

following vector identity is used: 

 

Thus, the integrand becomes: 

https://em.geosci.xyz/content/maxwell1_fundamentals/formative_laws/biot_savart.html
https://em.geosci.xyz/content/maxwell1_fundamentals/formative_laws/biot_savart.html


 

The first part of Equation is zero as the curl of  is zero. The second 

part of Equation  becomes zero because jj depends on r′ and ∇ depends 

only on r. Plugging this back into , the right-hand side of the expression 

becomes zero. Thus, we see that: 

 

This is Gauss’s law for magnetism in differential form. 

 

3.4 Ampere circuital law (statement and derivation), its applications to 

current carrying rod (hollow and solid). 

 

Statement of Ampere Circuital Law: 

Ampere’s Circuital Law states the relationship between the current and 

the magnetic field created by it. 

This law states that the integral of magnetic field density (B) along an 

imaginary closed path is equal to the product of current enclosed by the 

path and permeability of the medium. 

 

 

https://www.electrical4u.com/electric-current-and-theory-of-electricity/
https://www.electrical4u.com/magnetic-field/
https://www.electrical4u.com/magnetic-flux/
https://www.electrical4u.com/electric-current-and-theory-of-electricity/


 

 

Fig.5.3 Magnetic field B around the conductor  

 

Derivation of Ampere Circuital Law: 

Proof: 

Consider a straight conductor in which current i is flowing. The current 

produces the magnetic field B around the conductor. The magnetic field 

lines are in the form of concentric circles. 

Ampere showed that the flux density B at any point near the conductor is 

directly proportional to the current i and inversely proportional to the 

distance ‘r’ from the conductor, so: 

 

  



Combining the above two relations, we have 

  

Here μo /2π is the constant of proportionality.  

μo is called the permeability of free space having value = 4π x 10
-7

 WbA
-1

 

m
-1

 

 

Where the length of the path is called the circumference of the circle? 

Divide the circle representing the magnetic field line into a large number 

of small elements each of length dl. The quantity B.dl is calculated for 

each element as: 

B.dl = Bdlcos = Bdlcos0 = Bdl 

Foe complete circle: 

 

 

 

 

Applications of Ampere’s law: 

a) Current carrying hollow rod: 



Consider a conducting hollow cylinder with inner radius r1 and outer 

radius r2. And current I is following through it. 

 

Fig.5.4 Hollow cylinder with inner radius r1 and outer radius r2 

 

(I) For r < r1 

  = 0 and hence B=0 

(II) For r1 < r < r2 

Now current I is following through [πr2
2
 – πr1

2
] 

So, current per unit area = 
 

           
 

Current flowing through area is bet’’ r1 < r < r2 is I = 
 

           
 

(πr
2
 – πr1

2
 ) 

By using ampere’s law for circle of radius r           = μ0   

 



 

 

 

 

Fig.5.5 Curve for very thin or thin hollow cylinder 

 

(a) For r = r2 

 

(b) For r> r2 

 

 

 

b)    Current carrying rod Solid: 

Along straight rod of radius R carries a steady current I that is uniformly 

distributed through the cross-section of the wire. 



For finding the behavior of magnetic field due to this rod, let us divide the 

whole region into two parts. 

(i) r  ≥ R and 

(ii) r  < R 

                   r = distance from the center of the wire. 

For r ≥ R: For closed circular path denoted by (1) from symmetry     must 

be constant in magnitude and parallel to        at every point on this circle. 

Because the total current passing through the plane of the circle is I. 

 

 

Fig.5.6 Straight rod of radius R carries a steady current I 

 

From Ampere’s law  

 

Or 

 

and 



 

For r < R: The current I passing through the plane of circle 2 is less than 

the total current I. Because the current is uniform over the cross-section of 

the wire. 

Current through unit area  

= I/πR
2 

So current through area enclosed by circle 2 is  

                     r’ = Iπr
2
/πR

2 

 

Now we apply Ampere’s law for circle 2.  

 

Fig.5.7 Curve for Straight rod 

 

 

 

Or 

   (for r < R) 

 



The magnitude of the magnetic field versus r for this configuration is 

plotted in figure. Note the inside the wire B →0 as r→0. Note also that eq
n. 

(a) and eq
n
 (b) give the same value of the magnetic field at r =R, 

demonstrating that the magnetic field is continuous at the surface of the 

wire.  

 

SAQ.1 

a) What do you mean by the Lines of forces? 

b) Write the short note on Gauss law in magneto-statics. 

c) What do you mean by statement of Ampere circuital law? 

d) Discuss the current carrying rod using hollow in Ampere circuital 

law. 

e) The repulsive force between two magnetic poles in air is 9 x 10
-3

 N. 

If the two poles are equal in strength and are separated by a distance 

of 20 cm, calculate the pole strength of each pole. 

 

5.5     Inconsistency of Ampere circuital law with 

equation of continuity: 

 According to Maxwell there was some inconsistency in the 

Ampere’s circuital law. 

 This means Ampere’s circuital law was correct for some cases but 

not correct for some. 

 Maxwell took different scenarios i.e. he took a capacitor and tried to 

calculate magnetic field at a specific point in a piece of a capacitor. 



 Point P as shown in the figure is where he determined the value of 

B, assuming some current I is flowing through the circuit. 

 He considered 3 different amperial loops as shown in the figs. 

 Ampere’s circuital law should be same for all the 3 setups. 

 

Case 1: Considered a surface of radius r & dl is the circumference of the 

surface, then from      Ampere’s circuital law 

∫ B.dl = μ0 l 

or B(2πr) = μ0 l 

or B = μ0 l  / 2πr 

 

Fig.5.8 Surface of radius r & dl is the circumference of the surface 

Case 2: Considering a surface likes a box & its lid is open and applying 

the Ampere’s circuital law 

∫ B.dl = μ0 l 



 

Fig.5.9 Surface likes a box & its lid is open 

As there is no current flowing inside the capacitor, therefore I = 0 

Or ∫ B.dl = 0 

 Case 3: Considering the surface between 2 plates of the capacitor, in this 

case also I=0, so B=0 

 

Fig.5.10 Surface between 2 plates of the capacitor 

 At the same point but with different amperial surfaces the value of 

magnetic field is not same. They are different for the same point. 

 Maxwell suggested that there are some gaps in the Ampere’s 

circuital law. 

 He corrected the Ampere’s circuital law. And he made Ampere’s 

circuital law consistent in all the scenarios. 



 

5.6    Modification of Ampere circuital law by Maxwell with 

introducing concepts of displacement currents and its importance: 

 

Ampere’s law states that “the line integral of resultant magnetic field along 

a closed plane curve is equal to μ0 time the total current crossing the area 

bounded by the closed curve provided the electric field inside the loop 

remains constant". 

 Ampere’s law is true only for steady currents. 

 Maxwell found the shortcoming in Ampere’s law and he modified 

Ampere’s law to include time-varying electric fields. 

 For Ampere’s circuital law to be correct Maxwell assumed that 

there has to be some current existing between the plates of the 

capacitor. 

 Outside the capacitor current was due to the flow of electrons. 

 There was no conduction of charges between the plates of the 

capacitor. 

 According to Maxwell between the plates of the capacitor there is 

an electric field which is directed from positive plate to the negative 

plate. 

 Magnitude of the electric field E =(V/d) 



 Where V=potential difference between the plates, d = distance 

between the plates. 

 E = (Q/Cd) 

 where Q=charge on the plates of the capacitor, Capacitance of the 

capacitor=C 

 =>= (Q/ (Aε0d/d))where A =area of the capacitor. 

 E=Q/(Aε0) 

 Direction of the electric field will be perpendicular to the selected 

surface i.e. if considering plate of the capacitor as surface. 

 As E =0 outside the plates and E=(Q/(Aε0)) between the plates. 

 There may be some electric field between the plates because of 

which some current is present between the plates of the capacitor. 

 Electric Flux through the surface=ΦE= (EA) =(QA)/ (Aε0) =(Q/ ε0). 

 Assuming Q (charge on capacitor i.e. charging or discharging of 

the capacitor) changes with time current will be get generated. 

 Therefore current Id =(dQ/dt) 

 Where Id =displacement current 

 =>DifferentiatingΦE =(Q/ ε0) on both sides w.r.t time, 

 (dΦE/dt) =(1/ ε0) (dQ/dt) 

 where (dQ/dt) =current 



 Therefore (dQ/dt) = ε0 (d ΦE/dt) 

 =>Current was generated because of change of electric flux with 

time. 

 Electric flux arose because of presence of electric field in the plates 

of the capacitor. 

 Id = (dQ/dt) = Displacement current 

 Therefore Change in electric field gave rise to Displacement 

current. 

 Current won’t be 0 it will be Id. 

 There is some current between the plates of the capacitor and there 

is some current at the surface. 

 At certain points there is no displacement current there is only 

conduction current and vice-versa. 

 Maxwell corrected the Ampere’s circuital law by including 

displacement current. 

 He said that there is not only the current existed outside the 

capacitor but also current known as displacement current existed 

between the plates of the capacitor. 

 Displacement current exists due to the change in the electric field 

between the plates of the capacitor. Magnetic fields are produced 

both by conduction currents and by time varying fields. 



 

Fig.5.11. Displacement current exists due to the change in the electric field 

between the plates of the capacitor 

 

Comparison of displacement current and conduction current: 

1. Conduction current obeys ohm's law as i=(V/R) but displacement 

current does not obey ohm's law.  

2. Conduction current density is represented by 

   

Whereas displacement current density is given by  

 

3. Conduction current is the actual current whereas displacement current is 

the apparent current produced by time varying electric field. 

 

SAQ.2 



a) What do you mean by Inconsistency of Ampere circuital law with 

equation of continuity? 

b) Write the steps of Modification of Ampere circuital law by Maxwell 

with introducing concepts of displacement currents. 

c) Write the Comparison of displacement current and conduction 

current. 

d) Consider a parallel plate capacitor which is maintained at potential 

of 150 V. If the separation distance between the plates of the 

capacitor and area of the plates are 2 and 15 cm
2
. Calculate the 

displacement current for the time in µs. 

 

5.7 Vector potential and its expression due to straight conductor and 

circular loop: 

 

Vector Potential:   

We have seen that the vector potential is not unique and we have a choice 

of gauge in the matter. The most common gauge in which we work is the 

Coulomb gauge in which the divergence of the vector potential is chosen 

to be zero, i.e. 

 

 

We obtained an expression for the vector potential starting with Biot- 

Savart’s law and saw that there exists a much stronger relationship 



between the vector potential than which exists for the magnetic field itself. 

In many cases where the direction of the current is constant, the vector 

potential simply points in the direction of the current. We have the 

following expression for the vector potential, 

 

Vector Potential for a long straight wire carrying current: 

 Let the current be in the z direction. The vector potential also points the 

same way. 

 

Fig.5.12 Long straight wire carrying current 

The current being linear  , the vector potential becomes a simple one 

dimensional integral 

 

The expression diverges when the limits are evaluated. This is not a very 

serious issue because we have seen that the vector potential is arbitrary up 

to a constant which in this case is infinite. For instance, if instead of 

integrating from -  to +  , we realized that the integrand is even, we 



could integrate it from zero to infinity and double the result. In that case 

the integral diverges only in the upper limit 

Leaving us with a finite expression in the lower limit. Discarding the 

infinite constant, we would then have, 

 

In this simple case, we can start from our knowledge of the magnetic field 

and calculate back. We know that the magnetic field has cylindrical 

symmetry and is directed along the circumferential direction, 

 

Thus the curl of the vector potential only has ø component 

 

By symmetry, since the wire is infinite, the derivative with respect to z 

must be zero and we have 

 

Which gives 

 

Where we have explicitly added gradient of an arbitrary scalar field.  

There is another trick which is often used to calculate the vector potential 

which is to relate the line integral of vector potential to the flux. If we take 



the line integral of the vector potential along any closed loop, we get, 

using Stoke’s theorem, 

 

We can then use the symmetry of the problem to find the vector potential. 

 

Vector Potential for a long straight wire circular loop: 

 

Fig.5.13 Long straight wire circular loop 

 

We consider the problem of a circular loop of radius a, lying in the x-y 

plane, centered at the origin, and carrying a current I, as shown in Fig. Due 

to the cylindrical geometry, we may choose the observation point P in the 

x-z plane (ø = 0) without loss of generality. The expression for the vector 

potential may be applied to the current circuit by making the substitution: 

 



Thus  

……………. (1) 

Where 

 

Then, Eq. 1 becomes 

……………… (2) 

Since the azimuthal integration in Eq. 1 is symmetric about ø’ = 0, the x 

component vanishes. This leaves only the y component, which is Aø. 

Therefore 

……………….. (3) 

For a >> r, a << r, or θ << 1, 

 

Hence 

 

The integration results in 

…………….. (4) 



The components of magnetic induction, 

…………. (5) 

The fields far from the loop (for r >> a): 

………………. (6) 

Where m = πIa
2
ez is the magnetic dipole moment of the loop. Comparison 

with the electrostatic dipole fields shows that the magnetic fields are 

dipole in character. 

The fields on the z axis (for θ = 0, z =r): 

For θ = 0, z =r ≥0, hence  

…………….. (7) 

For θ = π, 

 

Therefore Eq.7 is valid on any points on the z axis. 

 

5.8 Derivation of magnetic flux density using vector potential for 

circular loop: 



 

 

Fig. 5.14 Vector potential for circular loop 

 

Magnetic flux density B of a single current loop I can be calculated after 

determining its vector potential as follows:  

For a loop of radius a on z = 0 plane, we can express the corresponding 

current density as  

…………….. (8) 

 

Where the ratio on the right is the unit vector  

Inserting this into the general solution for vector potential, and performing 

the integration over z', we obtain 



 

           …………….. 

(9) 

Given that Az = 0, it can be shown that B = ∇ × A leads to 

 

           …………….. 

(10) 

 

From the expected azimuthal symmetry of B about the z-axis, it is 

sufficient to evaluate these on, say, y = 0 plane — after some algebra, and 

dropping the primes, we find, on y = 0 plane, 

…………….. (11&12) 

And 

 



          …………….. (13) 

– We note that By = 0 since the By integrand above is odd in φ and the 

integration limits are centered about the origin. Hence, the field on y = 0 

plane is given as 

      …………….. (14) 

 

With Bx and Bz defined above in equation 11 and equation 13. 

There are no closed form expressions for the Bx and Bz integrals above for 

an arbitrary (x, z). 

However, it can be easily seen that if x = 0 (i.e., along the z-axis), Bx = 0 

(as symmetry would dictate) and 

 

For 

  

 

Which is positive and varies with the inverse third power of distance |z|.  

Also, Bx and Bz integrals can be performed numerically. Figure in the 

margin depicts the pattern of on y = 0 plane for a loop of radius a = 1 

computed using Mathematical. 



 

 

SAQ.3 

a) What do you mean by Vector potential? 

b) Write the expression for the Vector potential due to straight 

conductor and circular loop. 

c) Write the formula of vector potential for circular loop using 

magnetic flux density using. 

d) Calculate magnetic flux density of the magnetic field at the centre of a 

circular coil of 100 turns, having radius of 0.8m and carrying a current 

of 5A. 

 

Q.1 Compute the magnetic length of a uniform bar magnet if the 

geometrical length of the magnet is 12 cm. Mark the positions of magnetic 

pole points. 

 

Solution: 

Geometrical length of the bar magnet is 12 cm 

Magnetic length = 5/6 x (geometrical length) 

= 5/6 x 12 = 10cm 



In this figure, the dot implies the pole points. 

 

 

Q.2 The repulsive force between two magnetic poles in air is 9 x 10-3 N. 

If the two poles are equal in strength and are separated by a distance of 10 

cm, calculate the pole strength of each pole. 

Solution: 

The force between two poles are given by 

 

The magnitude of the force is 

 

 F = 9 x 10 Given :-3N, r = 10 cm = 10 x 10-2 m 

Therefore, 

 



Q.3 Consider a circular wire loop of radius R, mass m kept at rest on a 

rough surface. Let I be the current flowing through the loop and  be the 

magnetic field acting along horizontal as shown in Figure. Estimate the 

current I that should be applied so that one edge of the loop is lifted off the 

surface? 

 

Solution: 

 

 

When the current is passed through the loop, the torque is produced. If the 

torque acting on the loop is increased then the loop will start to rotate. The 

loop will start to lift if and only if the magnitude of magnetic torque due to 

current applied equals to the gravitational torque as shown in Figure. 

 



 

The current estimated using this equation should be applied so that one 

edge of loop is lifted of the surface. 

Q.4 A parallel plate capacitor shown in Fig made of circular plates each of 

radius R = 6.0 cm has a capacitance C = 100 pF. The capacitor is 

connected to a 230 V ac supply with a (angular) frequency of 300 rad s
–1

. 

(a) What is the r.m.s. value of the conduction current? 

(b) Is the conduction current equal to the displacement current? 

(c) Determine the amplitude of B at a point 3.0 cm from the axis between 

the plates. 

 

 

Solution: Radius of each circular plate, R = 6.0 cm = 0.06 m 

Capacitance of a parallel plate capacitor, C = 100 pF = 100 × 10
−12

 F 

Supply voltage, V = 230 V 



Angular frequency, ω = 300 rad s
−1

 

(a) R.m.s. value of conduction current, I 

Where, 

XC = Capacitive reactance 

=1/ (ωC) 

Therefore, I = V × ωC 

= 230 × 300 × 100 × 10
−12

 

= 6.9 × 10
−6

 A 

= 6.9 μA 

Hence, the r.m.s. value of conduction current is 6.9 μA. 

(b) Yes, conduction current is equal to displacement current. 

(c) Magnetic field is given as: 

B = (μ0r)/ (2 R
2
) I0 Where, 

μ0 = Free space permeability = 4x πx10
-7

NA
-2

 

I0 = Maximum value of current =√2 I 

r = Distance between the plates from the axis = 3.0 cm = 0.03 m 

Therefore B = (4xπ x10
-7
x0.03x√2x6.9x10

-6
)/ (2xπ x0.06)

2
 

= 1.63 × 10
−11

 T 

Hence, the magnetic field at that point is 1.63 × 10
−11

 T. 



 

Q.5 How would you establish an instantaneous displacement current of 2 

mA in the space between parallel plates having capacitance 2 μF? 

Solution:  

C = 2 × 10
-6

 F, 

 Id = 2 × 10
-3

 A 

 

 

 

(Since V = E d) 

 

 

 

 

           = 1000 V/s 



So, by applying a varying potential difference of 500 V/s, we would 

produce a displacement current of desired value. 

 

Q.6 The direction of the current in a copper wire carrying a current of 

6.00 A through a uniform magnetic field with magnitude 2.20T is from 

the left to right of the screen. The direction of the magnetic field is 

upward-left, at an angle of θ = 3π/4 radians from the current 

direction. Determine the magnitude and direction fo the magnetic 

force acting on a 0.100 m section of the wire? 

Solution: 

The magnitude of the magnetic force can be found using the formula: 

 

Where, 

 is the magnetic vector (N), 

I is the current magnitude (A), 

 is the length vector (m), 

L is the length of the wire (m), 

 is the magnetic field vector (T), 

B is the magnetic field magnitude (T), 

θ is the angle between length and magnetic field vectors (radians) 



 is the cross product direction vector (unit less) 

Substituting the values, we get 

 

 

 

 

 

 

 The magnitude of the force on the 0.100 m section of wire has a 

magnitude of 0.933 N. 

 

Q.7 Compute the magnitude of the magnetic field of a long, straight wire 

carrying a current of 1A at distance of 1m from it. Compare it with Earth’s 

magnetic field. 

Solution: 

Given that 1 = 1 A and radius r = 1 m 

 

But the Earth’s magnetic field is BEarth ≈ 10−5 T 



So, B straight wire is one hundred times smaller than BEarth.  

 

Q.8 Calculate the magnetic field inside a solenoid, when 

(a) The length of the solenoid becomes twice and fixed number of turns. 

(b) Both the length of the solenoid and number of turns are double. 

(c) The number of turns becomes twice for the fixed length of the 

solenoid. 

Compare the results. 

Solution: 

The magnetic field of a solenoid (inside) is 

 

(a) Length of the solenoid becomes twice and fixed number of turns 

L→2L (length becomes twice) 

N→N (number of turns are fixed) 

The magnetic field is 

B2L, N = µ NI/2L = 1/2 BL, N 

(b) Both the length of the solenoid and number of turns are double 

L→2L (length becomes twice) 



N→2N (number of turns becomes twice) 

The magnetic field is 

 

(c) The number of turns becomes twice but for the fixed length of the 

solenoid 

L→L (length is fixed) 

N→2N (number of turns becomes twice) 

The magnetic field is 

BL ,2 N = µ, 2NI/L = 2BL ,N 

From the above results, 

BL ,2 N > B2 L ,2 N > B2 L , N 

Thus, strength of the magnetic field is increased when we pack more loops 

into the same length for a given current. 

 

Q.9 Compute the magnetic field of a long straight wire that has a circular 

loop with a radius of 0.05m. 2amp is the reading of the current flowing 

through this closed loop. 

Solution: 

Given 

R = 0.05m 



I = 2amp 

μ0 = 4π×10
-7

N/A
2
 

Ampere’s law formula is 

 B  dl→=μ0I 

In the case of long straight wire 

 

 

 

 

 

Q.10 Consider a parallel plate capacitor which is maintained at potential of 

200 V. If the separation distance between the plates of the capacitor and 

area of the plates are 1 and 20 cm
2
. Calculate the displacement current for 

the time in µs. 

Solution: 

Potential difference between the plates of the capacitor, V = 200 V 

The distance between the plates, 

d = 1 mm = 1 × 10
-3

 m 



Area of the plates of the capacitor, 

A = 20 cm
2
 = 20 × 10

-4
 m

2
 

Time is given in micro-second, µs = 10
-6

 s 

Displacement current 

 

But electric field, E = V/d 

Therefore, 

 

 = 35400 ×10
−7

 = 3 .5 mA 

 

Q.11 A capacitor is made of circular plates, each of radius 12 cm, 

separated by 5.0 mm. This capacitor is charged with a constant current of 

0.15 A, using an external source. (a) Calculate the rate of change of 

potential difference across the plates. (b) Obtain the displacement current 

across the plates. 

Solution: 

 



 

 

 

                     

 

                                                          

Or  

 

 

 



Q.12 A parallel plate capacitor made of circular plates, each of radius 6.0 

cm, has a capacitor of C = 100 pF. This capacitor is connected to a 230 

volt a.c. supply with an angular frequency of =300 rad s
-1

. 

 

 

(a) What is the rms value of the conduction current? 

(b) Is the conduction current equal to the displacement current? 

(c) What is the amplitude of B at a point 3.0 cm from the axis between the 

plates? 

Solution: 

 



 

 

 

 

 

 

 

 

Q.13 Calculate magnetic flux density of the magnetic field at the centre of a 

circular coil of 50 turns, having radius of 0.5m and carrying a current of 5A. 

Solution: 



Given  

n = 50 turns, R = 0.5m, I = 5 A, 

According to Bio- Savart Law, Magnetic flux density is give by B   

 

 

 

 

 

 

 

 

Summary: 

 

1) Lines of force are the lines that depict the magnetic force that exists 

in the surrounding of the magnet. As the distance between the poles 

increases, the density of magnetic lines decreases. The direction 

of field lines inside the magnet is from the South Pole to the North 

Pole. 

2) A fundamental feature of magnetic fields that distinguishes them 

from electric fields is that the field lines form closed loops.  



3) Ampere's Circuital Law states the relationship between the current 

and the magnetic field created by it. This law states that the integral 

of magnetic field density (B) along an imaginary closed path is equal 

to the product of current enclosed by the path and permeability of 

the medium. 

4) Ampere's Law states that for any closed loop path, the sum of the 

length elements times the magnetic field in the direction of the 

length element is equal to the permeability times the electric current 

enclosed in the loop. 

5) According to Ampere circuital law the line integral of magnetic field 

B around any closed path is equal to times total current l enclosed by 

that closed path. Therefore, Ampere law is ambiguous as it does not 

provide continuity to current path. 

6) Modified Ampere's Law – This law states that the surface integral of 

the magnetic field around any closed circuit is equal to times the 

total current (the sum of conduction and displacement current) 

threading the closed circuit. 

7) During charging or discharging there is a displacement current 

but not conduction current between plates of capacitor. 

8) A vector potential is a vector field whose curl is a given vector field. 

This is analogous to a scalar potential, which is a scalar field whose 

gradient is a given vector field. 

9) The physical meaning of the electric scalar potential is usually 

considered to be potential energy per unit charge. The physical 

meaning of the magnetic vector potential is actually very similar: it's 

the potential energy per unit element of current. 



10) Obtain an expression for the vector potential at a point due to a 

long current carrying wire. Take the wire to be along the z-direction, 

perpendicular to the plane of the page with current flowing in a. 

Faraday and (Joseph) Henry, however, found that if a current loop. 

11) Magnetic flux density is defined as the amount of magnetic 

flux in an area taken perpendicular to the magnetic flux's direction. 

An example of magnetic flux density is a measurement taken in 

Tesla. 

12) The field intensity H = -Grad(V). Since the given potential is a 

position vector, the gradient will be 3 and H = -3. Thus the flux 

density B = μH = 4π x 10
-7

 x (-3) = -12π x 10
-7

 units. 

 

Terminal Questions: 

1) Explain the Lines of forces in detail. 

2) What do you mean by Gauss law in magneto-statics? 

3) Write the statement of Ampere circuital law and derive the 

expression. 

4) Explain and derive the expression for current carrying rod using 

hollow. 

5) Explain and derive the expression for current carrying rod using 

solid. 

6) What do you understand by Inconsistency of Ampere circuital law 

with equation of continuity? 

7) Explain the Modification of Ampere circuital law by Maxwell with 

introducing concepts of displacement currents and its importance. 



8) Write the Comparison between displacement current and conduction 

current. 

9) What do you mean by the Vector potential and its expression due to 

straight conductor? 

10) Derive the expression for Vector potential due to 

circular loop. 

11) Derive the expression of magnetic flux density using 

vector potential for circular loop.  

12) The repulsive force between two magnetic poles in air is 6 x 

10
-3

 N. If the two poles are equal in strength and are separated by a 

distance of 15 cm, calculate the pole strength of each pole. 

13) Compute the magnetic field of a long straight wire that has a 

circular loop with a radius of 0.15m. 5amp is the reading of the 

current flowing through this closed loop. 

14) A capacitor is made of circular plates, each of radius 10 cm, 

separated by 4.0 mm. This capacitor is charged with a constant 

current of 0.25A, using an external source. 

(a) Calculate the rate of change of potential difference across the 

plates. 

(b) Obtain the displacement current across the plates. 

15) A parallel plate capacitor made of circular plates, each of 

radius 4.0 cm, has a capacitor of C = 80 pF. This capacitor is 

connected to a 230 volt a.c. supply with an angular frequency of 

=200 rad s
-1

. 



 

(a) What is the rms value of the conduction current? 

(b) Is the conduction current equal to the displacement current? 

(c) What is the amplitude of B at a point 3.0 cm from the axis 

between the plates? 

16) Calculate magnetic flux density of the magnetic field at 

the centre of a circular coil of 200 turns, having radius of 1.5m and 

carrying a current of 10A. 
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6.2   Objectives 
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permeability). 
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residual magnetism. 

6.5 Three magnetic vectors (B, H, Im), three magnetic currents (free, 
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6.6 Curl of intensity of magnetization. 

6.7 Summary 

6.8 Terminal Questions 

  

 

 

 

6.1       Introduction: 

Magnetic Properties are the magnetic moment of a system measures the 

strength and the direction of its magnetism. There are many 



different magnetic behavior including magnetic flux density B, 

magnetizing field H, intensity of magnetization Im, susceptibility, relative 

and absolute permeability. 

In classical electromagnetism, magnetization or magnetic polarization is 

the vector field that expresses the density of permanent or induced 

magnetic dipole moments in a magnetic material. Physicists and engineers 

usually define magnetization as the quantity of magnetic moment per unit 

volume. 

The closed loop of B-H curve  is called the hysteresis loop and the 

whole cycle is called a cycle of magnetization. The changes 

in magnetization in a ferromagnetic material lag behind the variations of 

the magnetic field applied to it. Thus the intensity of magnetization at 

every phase lags behind the applied field. 

The magnetic flux density that remains in a material when the magnetizing 

force is zero. Note that residual magnetism and retentivity are the same 

when the material has been magnetized to the saturation point. 

The relation between the tree vectors B H and M points [B = μ0 (H + 

M) ] in the same direction as that of B or M and M. H points in the same 

direction as that of B or M. Its unit is Am
-1

. 

In terms of free current, the line integral of the magnetic H-

field (in amperes per metre, A·m
−1

) around closed curve C equals the free 

current If,enc through a surface S. 

As no work is done while moving a charge in a closed loop in an electric 

field, the closed line integral of that field must be zero and hence, curl of 

the field also must be zero. In other words, the field must be irrotational. 

https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Ampere
https://en.wikipedia.org/wiki/Metre


 

6.2       Objectives: 

After studying this unit you should be able to 

 Explain and identify Magnetic properties (Magnetic flux density B, 

Magnetizing field H, 

 Intensity of magnetization Im, Susceptibility, Relative and Absolute 

permeability). 

 Study and identify Magnetization, cycle of magnetization, hysteresis 

loop, Retentivity, residual magnetism. 

 Explain and identify three magnetic vectors (B, H, Im), three 

magnetic currents (free, bound and total). 

 Study and identify Curl of intensity of magnetization. 

6.3 Magnetic properties: 

The magnetic properties of a material are those which determine the ability 

of material to be suitable for a particular magnetic Application. Some of 

the typical magnetic properties of materials are listed below- 

 Magnetic flux density B, 

 Magnetizing field H, 

 Intensity of magnetization Im, 

 Susceptibility, 

 Relative permeability 

 Absolute permeability 

 

Magnetic Flux Density (B): 



When a substance is subjected to the magnetic field H, then the density of 

magnetic field lines that pass through the substance per square meter is 

known as Magnetic Flux Density.  

It is given by: 

B = μ X H (Tesla or Weber /m
2
) 

Where μ is called the Permeability and is defined as the degree to which a 

substance gets magnetized. The value of permeability in vacuum is given 

by: 

m = 4px 10
-7

(H/m) 

 

Magnetizing field H:  

Magnetic field strength, also called magnetic intensity or magnetic field 

intensity, the part of the magnetic field in a material that arises from an 

external current and is not intrinsic to the material itself. It is expressed as 

the vector H and is measured in units of amperes per meter.  

The definition of H is  

H = B/μ − M, and H=I/L, where L is diameter of coil 

Where B is the magnetic flux density, a measure of the actual magnetic 

field within a material considered as a concentration of magnetic field 

lines, or flux, per unit cross-sectional area;  

μ is the magnetic permeability; and M is the magnetization.  

https://www.britannica.com/science/magnetic-field
https://www.britannica.com/science/vector-mathematics
https://www.britannica.com/science/ampere
https://www.britannica.com/science/magnetic-permeability


The magnetic field H might be thought of as the magnetic field produced 

by the flow of current in wires and the magnetic field B as the total 

magnetic field including also the contribution M made by the magnetic 

properties of the materials in the field. When current flows in a wire 

wrapped on a soft-iron cylinder, the magnetizing field H is quite weak, but 

the actual average magnetic field (B) within the iron may be thousands of 

times stronger because B is greatly enhanced by the alignment of the 

iron’s myriad tiny natural atomic magnets in the direction of the field.  

Intensity of Magnetization (M or Im): 

When a material medium is placed in a magnetic field, it gets magnetized. 

The magnetic moment per unit volume of the material is called the 

intensity of magnetization M (or simply magnetization). 

 

S.I. unit of magnetization is (Am⁻¹). Lines representing intensity of 

magnetization are called lines of magnetization. For a uniformly 

magnetized material, each dipole will point in the same direction and M 

will be constant throughout. 

Susceptibility: 

Magnetic susceptibility, quantitative measure of the extent to which a 

material may be magnetized in relation to a given applied magnetic field.  

The magnetic susceptibility of a material, commonly symbolized by χm, is 

equal to the ratio of the magnetization M within the material to the 

applied magnetic field strength H,  

https://www.britannica.com/science/magnetic-field
https://www.britannica.com/science/magnetic-field-strength


or                                   χm = M/H.  

This ratio, strictly speaking, is the volume susceptibility, because 

magnetization essentially involves a certain measure of magnetism (dipole 

moment) per unit volume. 

Relative Permeability: 

To compare the permeability of any given material with the permeability 

of free space, it is necessary to use a ratio µr which is known as the relative 

permeability of the material. For air and other non-magnetic materials, 

µr has the value of unity (µr = 1). 

 

If the non-magnetic core of a solenoid is replaced with a magnetic 

material, the flux produced by the same number of ampere-turns may be 

greatly increased. The ratio of the flux produced by the magnetic core to 

that produced by the non-magnetic core is a direct result of the relative 

permeability of the magnetic material. For some magnetic materials µr can 

have a value in the thousands. 

For any one magnetic material, the relative permeability value can vary 

considerably, being dependent on the flux density in the material. Relative 

permeability is higher at low values of flux density. 

 

Absolute Permeability: 

https://www.britannica.com/science/magnetism
https://electricala2z.com/magnetism/magnetic-flux-density-b/


To find the absolute permeability of a material, the permeability of free 

space is multiplied by the relative permeability of the material: 

μ=μoμr 

Where: 

 µ = absolute permeability 

 µo = permeability of free space 

 µr = relative permeability 

 

6.4        Magnetization:  

Magnetization, also termed as magnetic polarization, is a vector quantity 

that gives the measure of the density of permanent or induced dipole 

moment in a given magnetic material. As we know, magnetization results 

from the magnetic moment, which results from the motion of electrons in 

the atoms or the spin of electrons or the nuclei. The net magnetization 

results from the response of a material to the external magnetic field, 

together with any unbalanced magnetic dipole moment that is inherent in 

the material due to the motion in its electrons as mentioned earlier. The 

concept of magnetization helps us in classifying the materials on the basis 

of their magnetic property. In this section, we will learn more about 

magnetization and the concept of magnetic intensity. 

 

What is Magnetization? 



The magnetization of a given sample material M can be defined as the net 

magnetic moment for that material per unit volume. 

Mathematically, 

 

Let us now consider the case of a solenoid. Let us take a solenoid with n 

turns per unit length and the current passing through it be given by I, then 

the magnetic field in the interior of the solenoid can be given as, 

 

Now, if we fill the interior with the solenoid with a material of non-zero 

magnetization, the field inside the solenoid must be greater than before. 

The net magnetic field B inside the solenoid can be given as, 

 

Where Bm gives the field contributed by the core material. Here, Bm is 

proportional to the magnetization of the material, M. Mathematically, 

 

Here, µ0 is the constant of permeability of a vacuum. 

 

Let us now discuss another concept here, the magnetic intensity of a 

material. The magnetic intensity of a material can be given as, 

https://byjus.com/physics/solenoid-toroid/


 

From this equation, we see that the total magnetic field can also be defined 

as, 

 

Here, the magnetic field due to the external factors such as the current in 

the solenoid is given as H and that due to the nature of the core is given by 

M. The latter quantity, that is M is dependent on external influences and is 

given by, 

 

Where χ is the magnetic susceptibility of the material. It gives the measure 

of the response of a material to an external field. The magnetic 

susceptibility of a material is small and positive for paramagnetic materials 

and is small and negative for diamagnetic materials. 

 

Here, the term µr is termed as the relative magnetic permeability of a 

material, which is analogous to the dielectric constants in the case 

of electrostatics. We define the magnetic permeability as, 

 

The cycle of Magnetization and Hysteresis Loop: 

https://byjus.com/physics/electrostatics/


A great deal of information can be learned about the magnetic properties 

of a material by studying its hysteresis loop. A hysteresis loop shows the 

relationship between the induced magnetic flux density (B) and the 

magnetizing force (H). It is often referred to as the B-H loop. An example 

hysteresis loop is shown below. 

 

Fig.6.1 Hysteresis loop 

The loop is generated by measuring the magnetic flux of a ferromagnetic 

material while the magnetizing force is changed. A ferromagnetic material 

that has never been previously magnetized or has been thoroughly 

demagnetized will follow the dashed line as H is increased. As the line 

demonstrates, the greater the amount of current applied (H+), the stronger 

the magnetic field in the component (B+). At point "a" almost all of the 

magnetic domains are aligned and an additional increase in the 

magnetizing force will produce very little increase in magnetic flux. The 

material has reached the point of magnetic saturation. When H is reduced 

to zero, the curve will move from point "a" to point "b." At this point, it 



can be seen that some magnetic flux remains in the material even though 

the magnetizing force is zero. This is referred to as the point of retentivity 

on the graph and indicates the remanence or level of residual magnetism in 

the material. (Some of the magnetic domains remain aligned but some 

have lost their alignment.) As the magnetizing force is reversed, the curve 

moves to point "c", where the flux has been reduced to zero. This is called 

the point of coercivity on the curve. (The reversed magnetizing force has 

flipped enough of the domains so that the net flux within the material is 

zero.) The force required to remove the residual magnetism from the 

material is called the coercive force or coercivity of the material. 

As the magnetizing force is increased in the negative direction, the 

material will again become magnetically saturated but in the opposite 

direction (point "d"). Reducing H to zero brings the curve to point "e." It 

will have a level of residual magnetism equal to that achieved in the other 

direction. Increasing H back in the positive direction will return B to zero. 

Notice that the curve did not return to the origin of the graph because some 

force is required to remove the residual magnetism. The curve will take a 

different path from point "f" back to the saturation point where it with 

complete the loop. 

The closed loop ‘abcdefa’ is called the hysteresis loop and the whole cycle 

is called a hysteresis cycle. 

The changes in magnetization in a ferromagnetic material lag behind the 

variations of the magnetic field applied to it. Thus the intensity of 

magnetization at every phase lags behind the applied field. This property is 

called magnetic hysteresis. The area of the hysteresis curve gives the 



hysteresis loss of energy while a ferromagnetic substance is taken over a 

complete cycle of magnetization 

Advantages of Hysteresis Loop: 

1. A smaller 

region of loop hysteresis is indicative of less loss of hysteresis.                 

2. Hysteresis loop provides a substance with the importance of retentivity 

and coercivity. 

Therefore the way to selectthe right material to make a permanent magnet 

is made simpler by the heart of machines. 

3. Residual magnetism can be calculated from the B, H graph and it is, 

therefore, simple to choose material for electromagnets. From the 

hysteresis loop, a number of primary magnetic properties of a material can 

be determined. 

Retentivity: A measure of the residual flux density corresponding to the 

saturation induction of a magnetic material. In other words, it is a 

material's ability to retain a certain amount of residual magnetic field when 

the magnetizing force is removed after achieving saturation (The value 

of B at point b on the hysteresis curve). 

Residual Magnetism or Residual Flux: The magnetic flux density that 

remains in a material when the magnetizing force is zero. Note that 

residual magnetism and retentivity are the same when the material has 

been magnetized to the saturation point. However, the level of residual 

magnetism may be lower than the retentivity value when the magnetizing 

force did not reach the saturation level. 



Coercive Force: The amount of reverse magnetic field which must be 

applied to a magnetic material to make the magnetic flux return to zero 

(The value of H at point c on the hysteresis curve). 

Permeability (m): A property of a material that describes the ease with 

which a magnetic flux is established in the component. 

Reluctance: Is the opposition that a ferromagnetic material shows to the 

establishment of a magnetic field. Reluctance is analogous to the 

resistance in an electrical circuit. 

SAQ.1 

a) What do you mean by Magnetic flux density (B) and Magnetizing 

field (H)? 

b) Define the Relative and Absolute permeability. 

c) Explain the cycle of magnetization with the help of hysteresis loop. 

d) The magnetic field strength in silicon is 1000 A/m. If the magnetic 

susceptibility is −0.25 × 10
−5

, calculate the magnetization and flux 

density in silicon. 

e) Wire carrying a current of 4A is in the form of a circle. It is 

necessary to have a magnetic field of induction 10
−6

 T at the center. 

Find the radius of the circle. 

f) Magnetic field and magnetic intensity are respectively 1.8 T and 

1000 A/m. Find relative permeability and susceptibility. 

 

 



 

 

6.5 Three magnetic vectors (B, H, Im or M): 

 

Consider a Rowland ring having a toroidal winding of winding of N turns 

around it. When a current i0 is sent through the winding, the ring is 

magnetized along its circumferential length. The current i0 is the real 

current which magnetizes the ring.  

This magnetization arises due to the alignment of the elementary current-

loops (magnetic dipoles) resulting from electronic motions in the 

materials. The small circles represent the current-loops. These internal tiny 

circular electron currents tend to cancel each other due to the fact that 

adjacent current are in opposite directions. As such there is no net current 

in the outer portions of the outer-most loops remain uncancelled. The 

numerous tiny localized surface currents can be replaced by a single closed 

current is along the surface. Such a current is called Amperian current. 

Let A = area of cross and section and, l = circumferential length of the 

ring.  

Then, volume of the ring = l A. 

The ring behaves like a large dipole of magnetic movements iS A. 

Magnetization = M = magnetic moment per unit volume = iNA/lA = iN/l. 

The magnetization M, therefore is the surface current per unit lengths of 

the ring. This is commonly called magnetization currents.  

Now, the magnetic induction B with in material of the ring arises due to 

the free current i0 in the winding, as well as due to the magnetization of 

the ring itself which can be described in terms of Amperian surface 

current.  



B = μ0 (Ni0/l + is/L) = μ0 (Ni0 /l +M)                     (.: is/L = M) 

Here Ni0/l is the free current per unit and is/l is the Amperian surface 

current per unit length  

B/ μ0 – M = Ni0 /l                             

The quantity B/ μ0 – M is called magnetizing field or magnetic field 

intensity H. i.e., 

H = B/μ0 – M 

Or                                                               B = μ0 (H + M 

This is relation between the tree vectors B H and M points in the same 

direction as that of B or 

M and M. H points in the same direction as that of B or M. Its unit is Am
-1

.  

 

Above equation can be written as  

H = Ni0/l = ni0 

Where n is the number of turns per unit length. Thus the value of H 

depends only on the free current and is independent of the core material.  

When no magnetic material is present in the core of the Rowland ring. i.e., 

there is vacuum in the core, M = 0. Therefore, above equation becomes 

B0 = μ0 H                         

In vacuum, the magnetic field strength H is related to the magnetic 

induction B0 by the above relation. 

When a magnetic material is placed in an external magnetic field, the 

specimen is magnetized by producing (or reorienting) magnetic dipoles in 

the specimen. This will produce additional field. Thus the resultant field B 

is greater than B0. In such a case, H is related to B by the relation, 

H = (B/μ0) – M. 



 

 

 

Fig.6.2 Rowland ring having a toroidal winding for Three magnetic 

vectors (B, H, M) 

 

Three magnetic currents (free, bound and total): 

In terms of total current, (which is the sum of both free current and bound 

current) the line integral of the magnetic B-field (in tesla, T) around closed 

curve C is proportional to the total current Ienc passing through a 

surface S (enclosed by C). In terms of free current, the line integral of 

the magnetic H-field (in amperes per metre, A·m
−1

) around closed curve C 

equals the free current If,enc through a surface S. 

 

Forms of the original circuital law written in SI units 

 Integral form Differential form 

Using B-field and 

total current  

 

https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Ampere
https://en.wikipedia.org/wiki/Metre
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Partial_differential_equation


Using H-field and 

free current  

 

 J is the total current density (in amperes per square metre, A·m
−2

), 

 Jf is the free current density only, 

  C is the closed line integral around the closed curve C, 

 ∬S denotes a 2-D surface integral over S enclosed by C, 

 · is the vector dot product, 

 dl is an infinitesimal element (a differential) of the curve C (i.e. a 

vector with magnitude equal to the length of the infinitesimal line 

element, and direction given by the tangent to the curve C) 

 dS is the vector area of an infinitesimal element of surface S (that is, 

a vector with magnitude equal to the area of the infinitesimal surface 

element, and direction normal to surface S. The direction of the 

normal must correspond with the orientation of C by the right hand 

rule), see below for further explanation of the curve C and surface S. 

 ∇ × is the curl operator. 

When a material is magnetized (for example, by placing it in an external 

magnetic field), the electrons remain bound to their respective atoms, but 

behave as if they were orbiting the nucleus in a particular direction, 

creating a microscopic current. When the currents from all these atoms are 

put together, they create the same effect as a macroscopic current, 

circulating perpetually around the magnetized object. This magnetization 

current JM is one contribution to "bound current". 

https://en.wikipedia.org/wiki/Current_density
https://en.wikipedia.org/wiki/Ampere
https://en.wikipedia.org/wiki/Metre
https://en.wikipedia.org/wiki/Line_integral
https://en.wikipedia.org/wiki/Surface_integral
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Infinitesimal
https://en.wikipedia.org/wiki/Differential_(infinitesimal)
https://en.wikipedia.org/wiki/Vector_area
https://en.wikipedia.org/wiki/Infinitesimal
https://en.wikipedia.org/wiki/Curl_(mathematics)
https://en.wikipedia.org/wiki/Magnetization_current#Magnetization_current
https://en.wikipedia.org/wiki/Magnetization_current#Magnetization_current


The other source of bound current is bound charge. When an electric field 

is applied, the positive and negative bound charges can separate over 

atomic distances in polarizable materials, and when the bound charges 

move, the polarization changes, creating another contribution to the 

"bound current", the polarization current JP. 

The total current density J due to free and bound charges is then: 

 

with Jf  the "free" or "conduction" current density. 

All current is fundamentally the same, microscopically. Nevertheless, 

there are often practical reasons for wanting to treat bound current 

differently from free current. For example, the bound current usually 

originates over atomic dimensions, and one may wish to take advantage of 

a simpler theory intended for larger dimensions. 

 

Curl of intensity: 

 

Let’s take the simplest electric field 

 

Fig.6.2 Vector diagram of simplest electric field for curl of intensity 

https://en.wikipedia.org/wiki/Bound_charge
https://en.wikipedia.org/wiki/Polarization_density


 

Electric field due to a single point charge   is 

 

We need to find the curl of it 

 

Take the area integral 

 

Use Stokes’s theorem 

 

 

Where 

 

 

 

Implies  

 

Curl of intensity an electric field is zero. We have shown this for the 

simplest field, which is the field of a point charge. But it can be shown to 

be true for any electric field, as long as the field is static.  



What if the field is dynamic, that is, what if the field changes as a function 

of time? 

Faraday’s Law in differential form: 

 

Integrate over a surface 

 

Apply Stokes’ theorem 

 

Faraday’s Law in integral form 

 

Where 

ε = EMF 

dΦ = Magnetic flux 

 

Curl of magnetization:  

Let       be the magnetic moment of the i-th atom inside a matter. We define 

magnetization as the net magnetic moment per unit volume 

 

The quantity is very similar to the polarization in dielectric material. 



We will calculate the effect due to the magnetization of the material by 

calculating the vector potential corresponding to the microscopic currents. 

We had seen earlier that the magnetic vector potential due to a magnetic 

moment is given by the expression 

 

Where    is the position vector of the point of observation with respect to 

the position of the magnetic moment.  

Using this we can write down the expression for the vector potential at a 

position    due to  magnetic moments  in a magnetized material having a 

magnetization      (  ), where, as before, we have used the primed quantities 

to indicate the variable to be integrated 

 

As we did the electrostatic case, we can convert this into two integrals, one 

over the volume and the other over the surface of the material, we can 

rewrite the vector potential as  

 

We now use the vector identity for the curl of a product of a scalar with a 

vector, 

 

Using which we can write, 



 

The first term can be converted to a surface integral in a manner very 

similar to the way we converted volume integral of a divergence to a 

surface integral, 

 

Thus   x       takes the role of a surface current. We now identify, as we 

did in the electrostatic case, a bound volume current and a bound surface 

current, define by  

 

 

SAQ.2 

a) What do you mean by magnetic vectors B, H and Im? 

b) Define the magnetic currents for free, bound and total. 

c) Explain the Curl of magnetization. 

d) A circular coil of wire consisting of 100 turns, each of 

radius 8.0 cm carries a current of 0.40 A. What is the magnitude of 

the magnetic field B at the centre of the coil? 

e) Find the magnetization of the bar magnet of length 5 cm and cross- 

sectional area 2 cm
2
. The magnetic moment of the magnet is 1 Am

2
. 

 



Examples: 

Q.1 The magnetic susceptibility of silicon is −0.4 × 10
−5

. Calculate the 

flux density and magnetic moment per unit volume when magnetic field of 

intensity 5 × 10
5
 A/m is applied. 

Solution: Given: χ = –0.4 × 10
‒5

 

H = 5 × 10
5
 A /m 

B = ? and M = ? 

B = μ0(H + M) = μ0 H(1 + χ) 

    = 4π × 10
‒7

 × 5 × 10
5
 [1 – 0.4 × 10

‒5
] = 4π × 5 × 10

‒2
 × 0.9996 = 0.62 

Wb/m
2
 

M = χH = –0.4 × 10
–5

 × 5 × 10
5
 = –2.0 A/m. 

Q.2 The Dimension of a rectangular loop is 0.50m and 0.60m. B and θ are 

0.02T and 45° respectively. Determine the magnetic flux through the 

surface. 

Solution: 

Given  

Dimensions of rectangular loop = 0.50m and 0.60m, 

B = 0.02T 

θ = 45° 

Magnetic flux formula is given by 



ΦB = B A Cosθ 

Area, A = 0.50 × 0.60 

      = 0.3 m
2
 

ΦB = 0.02 × 0.3 × Cos 45 

ΦB = 0.00312 Wb 

 

Q.3 Calculate magnetic flux density of the magnetic field at the centre of a 

circular coil of 50 turns, having radius of 0.5m and carrying a current 

of 5A. 

Solution: 

Given 

n=50turns, R=0.5m, I=5A, 

 According to Bio-sawart Law  

 

Q.4 Two circular coils made of similar wires but of radii 20 and 40 cm are 

connected in parallel. Find the ratio of the magnetic fields at their centers. 

Solution: 



As the coils are connected in parallel so voltage across them should be 

same. i.e. 

 

As they are made from same wire so cross section (A) and resistivity are 

same for both coil i.e.  

 

 

 

 

Q.5 A paramagnetic material has a magnetic field intensity of 10
4
 Am

–1
. If 

the susceptibility of the material at room temperature is 3.7 × 10
–5

. 

Calculate the magnetization and flux density in the material. 

Solution:  



 

 

Q.6 A magnetic material has a magnetization of 2300 A m
–1

 and produces 

a flux density of 0.00314 Wb m
–2

. Calculate the magnetizing force and 

the relative permeability of the material. 

Solution: 

Given data: 

 Magnetization M = 2300 A m
–1

 

 Flux density B = 0.00314 Web m
–2

. 



 

 

Q.7 A paramagnetic material has FCC structure with a cubic edge of 2.5 

A°. If the saturation value of magnetization is 1.8 × 10
6
 A m

–1
, Calculate 

the magnetization contributed per atom in Bohr magnetrons. 

Solution: 

 



 

 

 

 

 

 



Q.8 In a magnetic material the field strength is found to be 10
6
 A m

–1
. If 

the magnetic susceptibility of the material is 0.5 × 10
–5

, calculate the 

intensity of magnetization and flux density in the material. 

Solution: 

 

  Q.9 Prove that susceptibility of superconductor is -1 and relative 

permeability is zero. 

Solution:  

 



Q.10 A magnetic field of 2000 Amp m
–1

 is applied to a material which has 

a susceptibility of 1000. Calculate the (i) Intensity and (ii) Flux density. 

Solution:  

 

 Q.11 The magnetic field strength of Silicon is 1500 A m
–1

. If the magnetic 

susceptibility is (-0.3 × 10
–5

). Calculate the magnetization and flux density 

in Silicon. 

 

Solution:  

 



 

Q.12 Compute the intensity of magnetisation  of the bar magnet whose 

mass, magnetic  moment and density are 200 g, 2 A m2 and 8 g cm-3, 

respectively. 

Solution: 

Density of the magnet is 

 

 

Q.13 With the help of using the relation        =    (     +     ). Show that  χm = µr 

– 1. 

Solution: 



 

  

Q.14 Two materials X and Y are magnetised, whose intensity of 

magnetisation are 500 A m-1 and 2000 A m-1, respectively. If the 

magnetising field is 1000 A m-1, then which one among these materials 

can be easily magnetized?. 

Solution: 

The susceptibility of material X is 

 

The susceptibility of material Y is 

 

Since, susceptibility of material Y is greater than that of material X, 

material Y can be easily magnetized than X.  



Q.15 The following figure shows the variation of intensity of 

magnetization with the applied magnetic field intensity for three magnetic 

materials X, Y and Z. Identify the materials X,Y and Z. 

 

 

Solution: 

The slope of M-H graph measures the magnetic susceptibility, which is 

χm = M / H 

Material X: Slope is positive and larger value. So, it is a ferromagnetic 

material. 

Material Y: Slope is positive and lesser value than X. So, it could be a 

paramagnetic material. 

Material Z: Slope is negative and hence, it is a diamagnetic material. 

Q.16 Magnetic field and magnetic intensity are respectively 1.6 T and 

1000 A/m. Find relative permeability and susceptibility. 

Solution: 



Given: Magnetic field = B = 1.6 T, Magnetic Intensity = H = 1000 A/m, 

µo = 4π x 10
-7

 Wb/Am. 

Relative permeability = µr = ?, Susceptibility = χ =? 

µr = B/ (µo H) = 1.6/ (4π x 10
-7

 x 1000) = 1.6/ (4 x 3.142 x 10
-4

) = 1.273 x 

10
3
 = 1273 

we have  µr = 1 + χ 

.: χ = µr – 1 =  1273 – 1 = 1272 

Relative permeability = µr = 1273, Susceptibility = χ =1272 

Q.17 Find the magnetization of the bar magnet of length 10 cm and cross- 

sectional area 3 cm
2
. The magnetic moment of the magnet is 1 Am

2
. 

Solution: 

Given: Length of magnet = l = 10 cm,  

Cross- sectional area = A = 3 cm
2
,  

Magnetic moment = M = 1 Am
2
. 

To find: Magnetization = MZ =? 

Volume of bar magnet = V = length x cross- sectional area = 10 x 3 = 30 

cm
3
 = 30 x 10

-6
 m

3
. 

Mz = M/V = 1/(30 x 10
-6

) = 3.33 x 10
4
 A/m 

Magnetization = MZ = 3.33 x 10
4
 A/m 

 



Summary: 

 

1. Magnetism is a property of matter and it occurs in different forms 

and degrees in various Earth materials that act as conductors and 

insulators. The degree of magnetism is also called magnetization and 

it is defined as the net magnetic dipole moment of the substance per 

unit volume. 

2. Magnetic flux density (B) is defined as the force acting per unit 

current per unit length on a wire placed at right angles to the 

magnetic field. 

3. The definition of H is H = B/μ − M, where B is the magnetic flux 

density, a measure of the actual magnetic field within a material 

considered as a concentration of magnetic field lines, or flux, per 

unit cross-sectional area; μ is the magnetic permeability; and M is 

the magnetization. 

4. Intensity of magnetism is defined as the magnetic moment per unit 

volume of the magnetized material so, I=M/V. where M is the total 

magnetic moment within volume due to the magnetizing field. 

5. The definition of susceptibility χ connects the magnetization M of a 

material (its magnetic moment per unit volume) with the external 

field Hthat is magnetizing it. For any but ferromagnetic materials, 

that response is linear, and is described by M = χ H . 

6. The term Absolute Permeability ( ₐ) of a material is the product 

of permeability of free space  ₀ ( = 4  ⨯ 10⁻⁷ henry/meter) and 

the Relative Permeability  ᵣ .The Relative Permeability is a pure 

numerical number and therefore has no units. As mentioned above, 

for air and non-magnetic materials, its value is unity. 



7.  Magnetization or magnetic polarization is the vector field that 

expresses the density of permanent or induced magnetic dipole 

moments in a magnetic material. 

8. The area of the hysteresis curve gives the hysteresis loss of energy 

while a ferromagnetic substance is taken over a complete cycle of 

magnetization. 

9. The changes in magnetization in a ferromagnetic material lag behind 

the variations of the magnetic field applied to it. Thus the intensity 

of magnetization at every phase lags behind the applied field. This 

property is called magnetic hysteresis. 

10.  The ability of a substance to retain or resist magnetization, 

frequently measured as the strength of the magnetic field that 

remains in a sample after removal of an inducing field. ‘iron is easily 

magnetized but has low retentivity’. 

11.  Remanence or remanent magnetization or residual 

magnetism is the magnetization left behind in a ferromagnetic 

material (such as iron) after an external magnetic field is removed. 

12.  The relation between the tree vectors B H and M points [B = 

μ0 (H + M) ] in the same direction as that of B or M and M. H points 

in the same direction as that of B or M. Its unit is Am
-1

. 

13.  In terms of free current, the line integral of the magnetic H-

field (in amperes per metre, A·m
−1

) around closed curve C equals the 

free current If,enc through a surface S. 

14.  As no work is done while moving a charge in a closed loop in 

an electric field, the closed line integral of that field must be zero 

and hence, curl of the field also must be zero. In other words, 

the field must be irrotational. 

https://en.wikipedia.org/wiki/Vector_field
https://en.wikipedia.org/wiki/Density
https://en.wikipedia.org/wiki/Magnetic_dipole_moment
https://en.wikipedia.org/wiki/Magnetic_dipole_moment
https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Ampere
https://en.wikipedia.org/wiki/Metre


 

Terminal Questions: 

1) Explain the magnetic properties of magnetic flux density(B) and 

Magnetizing field(H). 

2) What do you understand by the intensity of magnetization (Im) and 

Susceptibility. 

3) Define the terms relative and absolute permeability. 

4) Explain the Magnetization of the magnetic materials. 

5) Explain the working of hysteresis loop and show the terms 

retentivity and residual magnetism in its curve. 

6) Explain the three magnetic vectors (B, H, Im). 

7) What do you understand by three magnetic currents (free, bound and 

total). 

8) Derive the expression for the Curl of intensity. 

9) A magnetic material has a magnetization of 3000 Am
–1

 and flux 

density of 0.044Wb m
–2

. Calculate the magnetic force and the 

relative permeability of the material.                  

10)  The magnetic field intensity of a ferric oxide piece is 10
6
 Am

–

1
. If the susceptibility of the material at room temperature is 10.5 × 

10
–3

, calculate the flux density and magnetization of the material. 

11)  Magnetic field and magnetic intensity are respectively 1.3 T 

and 900 A/m. Find the permeability, relative permeability and 

susceptibility. 
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Unit 07- Electromagnetic induction 

Structure 

7.1 Introduction 

7.2 Objectives 

7.3 Faraday’s law of electromagnetic induction (statement, integral 

form, differential form) 

 Analogy with Newton’s laws of motion in mechanics 

7.4 Condition for existence and depending factors of induced charge 

            Induced voltage induced current and induced power 

7.5  Dynamic induced EMF and derivation of its expression  

7.6  Self and mutual induction and inductance  

       Static induced EMF (self and mutual) 

7.7       Reciprocity theorem and Neuman’s relation 

7.8 Relation between self and mutual inductance of two coupled coils 

Energy of coupled circuits 

7.9 Transformer and its equivalent circuit,  

 Condition for ideal transformer (expression for efficiency and 

voltage gain) Transformer losses 

7.10 Summary 

7.11 Terminal Questions 



 

 

 

 

 

 

 

 

 

 

 

7.1 Introduction: 

Faraday's law states that a current will be induced in a conductor which is 

exposed to a changing magnetic field. This phenomenon is known 

as electromagnetic induction. The working principle of transformers, 

motors, generators, and inductors are being described by Faraday’s Law of 

Induction. 

Newton's laws of motion relate an object's motion to the forces acting on 

it. In the first law, an object will not change its motion unless a force acts 

on it. In the second law, the force on an object is equal to its mass times its 

acceleration. The third law of motion states that for every action, there is 



an equal and opposite reaction. This can be observed both in objects at rest 

and those that are accelerating. For example, a resting box pushes down on 

the ground due to a gravitational force. 

Induction charging is a method used to charge an object without actually 

touching the object to any other charged object. So that +ve charge which 

is outside the body (that separate the charges inside the body) is Inducing 

charge & the negative charge that gets attracted towards +ve 

charge is Induced Charge. 

Induced voltage is an electric potential created by an electric field, 

magnetic field, or a current. Voltage produced in generator because of 

moving magnetic field. Voltage generated in secondary of current 

transformer due to magnetic field of current injected in it's primary.  

A current can be induced in a conducting loop if it is exposed to a 

changing magnetic field. ... In other words, if the applied magnetic field is 

increasing, the current in the wire will flow in such a way that the 

magnetic field that it generates around the wire will decrease the applied 

magnetic field. 

Induced power is the power required to maintain enough lift to overcome 

the force of gravity. One can view this as the force required to accelerate 

enough air downwards (at speed vi) to push the bird upwards enough to 

counteract the force of gravity (mg). 

Dynamic Induced emf is generated when a current carrying conductor cuts 

the magnetic flux using relative motion. The name itself indicates 

the dynamic, it mean having rotating parts in it, inducing emf with respect 

to moving parts is known as Dynamic Induced emf. 



When this emf is induced in the same circuit in which the current is 

changing this effect is called Self-induction, ( L ). However, when the emf 

is induced into an adjacent coil situated within the same magnetic field, 

the emf is said to be induced magnetically, inductively or by Mutual 

induction, symbol ( M ). 

In simple words, faraday's law of electromagnetic induction says that if the 

magnetic field inside a coil is changing with time, then an emf will 

be induced across the coil. This emf is proportional to (1) the number of 

turns in the coil (2) rate of change magnetic flux with time. Hence the 

term statically induced emf. Self induced emf is that which is induced in a 

coil, due to the change in its own current or flux. Mutual emf is 

that induced in a coil due to the neighboring coil's varying current. If the 

coil is moving (or rotating) and the magnetic field value is constant, then 

dynamic emf is induced. 

Experiments and calculations that combine Ampere’s law and Biot-Savart 

law confirm that the two constants, M21 and M12 are equal in the absence 

of material medium between the two coils, M12 = M21.  This property is 

called reciprocity. 

When this emf is induced in the same circuit in which the current is 

changing this effect is called Self-induction, ( L ). However, when the emf 

is induced into an adjacent coil situated within the same magnetic field, 

the emf is said to be induced magnetically, inductively or by Mutual 

induction, symbol ( M ). 

A transformer is an electrical apparatus designed to convert alternating 

current from one voltage to another. It can be designed to "step up" or 

"step down" voltages and works on the magnetic induction principle. 

https://byjus.com/physics/amperes-law/


When voltage is introduced to one coil, called the primary, it magnetizes 

the iron core. Equivalent circuit diagram of a transformer is basically a 

diagram which can be resolved into an equivalent circuit in which 

the resistance and leakage reactance of the transformer are imagined to be 

external to the winding. The equivalent circuit of any electrical system is 

the circuit representation of a device using standard active and passive 

elements. It is used to analyze and predict the performance (quantitatively 

and qualitatively) of that system without actually loading the device. 

An ideal transformer is an imaginary transformer which does not have any 

loss in it, means no core losses, copper losses and any other losses 

in transformer. Efficiency of this transformer is considered as 100%. 

The Efficiency of the transformer is defined as the ratio of useful output 

power to the input power. The input and output power are measured in the 

same unit. Its unit is either in Watts (W) or KW. 

There are various types of losses in the transformer such as iron loss, 

copper loss, hysteresis loss, eddy current loss, stray loss, and 

dielectric loss. Although transformers are very efficient devices, small 

energy losses do occur in them due to four main causes: Resistance of 

windings – the low resistance copper wire used for the windings still has 

resistance and thereby contribute to heat loss. The eddy 

currents cause heat loss. 

 

7.2 Objectives: 

      After studying this unit you should be able to 



 Explain and identify Faraday’s law of electromagnetic induction 

(statement, integral form, differential form) and analogy with 

Newton’s laws of motion in mechanics. 

 Study and identify Condition for existence and depending factors of 

induced charge, induced voltage, induced current and induced 

power. 

 Explain and identify Dynamic induced EMF and derivation of its 

expression,  

 Explain Self and mutual induction and inductance, static induced 

EMF (self and mutual). 

 Study and identify Reciprocity theorem and Neuman’s relation. 

 Explain Relation between self and mutual inductance of two coupled 

coils, energy of coupled circuits. 

 Explain and identify Transformer and its equivalent circuit, 

condition for ideal transformer (expression for efficiency and 

voltage gain), transformer losses. 

 

7.3 Faraday’s law of electromagnetic induction: 

What is Faraday’s Law? 

Faraday’s law of electromagnetic induction (referred to as Faraday’s law) 

is a basic law of electromagnetism predicting how a magnetic field will 

interact with an electric circuit to produce an electromotive force (EMF). 

This phenomenon is known as electromagnetic induction. 

“Current carrying conductor placed in magnetic field an EMF is induced.”  

https://www.electrical4u.com/electromagnetic-theory/
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Fig.7.1 Electromagnetic induction 

Faraday’s law states that a current will be induced in a conductor which is 

exposed to a changing magnetic field. Lenz’s law of electromagnetic 

induction states that the direction of this induced current will be such that 

the magnetic field created by the induced current opposes the initial 

changing magnetic field which produced it. The direction of this current 

flow can be determined using Fleming’s right-hand rule. 

Faraday’s law of induction explains the working principle of transformers, 

motors, generators, and inductors. The law is named after Michael 

Faraday, who performed an experiment with a magnet and a coil. During 

Faraday’s experiment, he discovered how EMF is induced in a coil when 

the flux passing through the coil changes. 

 

Faraday’s Experiment: 

https://www.electrical4u.com/lenz-law-of-electromagnetic-induction/
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https://www.electrical4u.com/electric-generator/
https://www.electrical4u.com/what-is-inductor-and-inductance-theory-of-inductor/
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In this experiment, a magnet, and a coil are connected with a galvanometer 

across the coil. At starting, the magnet is at rest, so there is no deflection in 

the galvanometer i.e. the needle of the galvanometer is at the center or zero 

position. When the magnet is moved towards the coil, the needle of the 

galvanometer deflects in one direction. 

   

Fig.7.2 Faraday’s Experiment for direction 

 

When the magnet is held stationary at that position, the needle of 

galvanometer returns to zero position. Now when the magnet moves away 

from the coil, there is some deflection in the needle but opposite direction, 

and again when the magnet becomes stationary, at that point respect to the 

coil, the needle of the galvanometer returns to the zero position. Similarly, 

if the magnet is held stationary and the coil moves away, and towards the 

magnet, the galvanometer similarly shows deflection. It is also seen that 

the faster the change in the magnetic field, the greater will be the induced 

EMF or voltagein the coil. 

 

https://www.electrical4u.com/voltage-or-electric-potential-difference/


Position of magnet Deflection in galvanometer 

Magnet at rest No deflection in the galvanometer 

Magnet moves towards the coil Deflection in galvanometer in one 

direction 

Magnet is held stationary at same 

position (near the coil) 

No deflection in the galvanometer 

Magnet moves away from the coil Deflection in galvanometer but in 

the opposite direction 

Magnet is held stationary at the same 

position (away from the coil) 

No deflection in the galvanometer 

 

Conclusion: From this experiment, Faraday concluded that whenever 

there is relative motion between a conductor and a magnetic field, the flux 

linkage with a coil changes and this change in flux induces a voltage 

across a coil. 

Michael Faraday formulated two laws on the basis of the above 

experiments. These laws are called Faraday’s laws of electromagnetic 

induction. 

 

Faraday’s First Law: 

Any change in the magnetic field of a coil of wire will cause an emf to be 

induced in the coil. This emf induced is called induced emf and if the 



conductor circuit is closed, the current will also circulate through the 

circuit and this current is called induced current. 

Method to change the magnetic field: 

1. By moving a magnet towards or away from the coil 

2. By moving the coil into or out of the magnetic field 

3. By changing the area of a coil placed in the magnetic field 

4. By rotating the coil relative to the magnet 

 

Faraday’s Second Law: 

It states that the magnitude of emf induced in the coil is equal to the rate of 

change of flux that linkages with the coil. The flux linkage of the coil is 

the product of the number of turns in the coil and flux associated with the 

coil. 

 

 

 

 

 

Faraday Law Formula: 

https://www.electrical4u.com/electrical-conductor/
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Fig.7.3 EMF induced in the coil  

Consider, a magnet is approaching towards a coil. Here we consider two 

instants at time T1 and time T2. 

Flux linkage with the coil at time, 

 

Flux linkage with the coil at time, 

 

Change in flux linkage, 

 

Let this change in flux linkage be, 

 

So, the Change in flux linkage 

 



Now the rate of change of flux linkage 

 

Take derivative on right-hand side we will get 

 

The rate of change of flux linkage 

 

But according to Faraday’s law of electromagnetic induction, the rate of 

change of fluxlinkage is equal to induced emf. 

 

Considering Lenz’s Law 

Where: 

 Flux Φ in Wb = B.A 

 B = magnetic field strength 

 A = area of the coil 

 

How to increase EMF Induced in a Coil: 

https://www.electrical4u.com/what-is-flux-types-of-flux/


 By increasing the number of turns in the coil i.e N, from the 

formulae derived above it is easily seen that if the number of turns in 

a coil is increased, the induced emf also gets increased. 

 By increasing magnetic field strength i.e B surrounding the coil- 

Mathematically, if magnetic field increases, flux increases and if 

flux increases emf induced will also get increased. Theoretically, if 

the coil is passed through a stronger magnetic field, there will be 

more lines of force for the coil to cut and hence there will be more 

emf induced. 

 By increasing the speed of the relative motion between the coil and 

the magnet – If the relative speed between the coil and magnet is 

increased from its previous value, the coil will cut the lines of flux at 

a faster rate, so more induced emf would be produced. 

 

Applications of Faraday’s Law: 

Faraday law is one of the most basic and important laws of 

electromagnetism. This law finds its application in most of the electrical 

machines, industries, and the medical field, etc. 

 Power transformers function based on Faraday’s law 

 The basic working principle of the electrical generator is Faraday’s 

law of mutual induction. 

 The Induction cooker is the fastest way of cooking. It also works on 

the principle of mutual induction. When current flows through the 

coil of copper wire placed below a cooking container, it produces a 

https://www.electrical4u.com/electric-field-strength-or-electric-field-intensity/
https://www.electrical4u.com/electrical-power-transformer-definition-and-types-of-transformer/
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changing magnetic field. This alternating or changing magnetic field 

induces an emf and hence the current in the conductive container, 

and we know that the flow of current always produces heat in it. 

 Electromagnetic Flow Meter is used to measure the velocity of 

certain fluids. When a magnetic field is applied to an electrically 

insulated pipe in which conducting fluids are flowing, then 

according to Faraday’s law, an electromotive force is induced in it. 

This induced emf is proportional to the velocity of fluid flowing. 

 Form bases of Electromagnetic theory, Faraday’s idea of lines of 

force is used in well known Maxwell’s equations. According to 

Faraday’s law, change in magnetic field gives rise to change 

in electric field and the converse of this is used in Maxwell’s 

equations. 

 It is also used in musical instruments like an electric guitar, electric 

violin, etc. 

 

https://www.electrical4u.com/what-is-electric-field/


 

Integral Form of Faraday’s law: 

Faraday’s law in integral form can be expressed using the following 

equation: 

 

Where: 

 e is the electric field defined around a closed path C, 

 b is the magnetic flux density defined over a closed 

surface A contoured by C, 

  is an outward normal unit vector perpendicular to da, 

 dl is a vector element of length along contour C. 

Above equation states that the time-dependent rate of change in 

magnetic flux, through a surface bounded by a closed path, is 

negatively proportional to the line integral of the electric field it 

induces over that path. 

Differential form of Faraday’s law: 

The magnetic flux is 

 



where  is a vector area over a closed surface S. A device that can 

maintain a potential difference, despite the flow of current is a source of 

electromotive force. (EMF) The definition is mathematically 

 

Where the integral is evaluated over a closed loop C 

Faraday’s law now can be rewritten 

 

 Using the Stokes’ theorem in vector calculus, the left hand side is  

 

 Also, note that in the right hand side 

 

 Therefore, we get an alternative form of the Faraday’s law of induction: 

 

This is also called a differential form of the Faraday’s law.  

 

Analogy with Newton’s laws of motion in mechanics: 

Newton’s First Law of Motion: 



Newton’s first law states that a body remains in the state of rest or uniform 

motion in a straight line unless and until an external force acts on it. 

Putting Newton’s 1
st
 law of motion in simple words, a body will not start 

moving until and unless an external force acts on it. Once it is set in 

motion, it will not stop or change its velocity until and unless some force 

acts upon it once more. The first law of motion is sometimes also known 

as the law of inertia. 

There are two conditions on which the 1
st
 law of motion is dependent: 

 Objects at rest: When an object is at rest velocity (v= 0) and 

acceleration (a = 0) are zero. Therefore, the object continues to be at 

rest. 

 Objects in motion: When an object is in motion, velocity is not 

equal to zero (v ≠ 0) while acceleration (a = 0) is equal to zero. 

Therefore, the object will continue to be in motion with constant 

velocity and in the same direction. 

 

Derivation of the equation of motion: 

Derivation of the equation of motion is one of the most important topics in 

Physics. Several important concepts in Physics are based on the equation 

of motion. In this article, the equation of motion derivations by the 

graphical method and by the normal method are explained in an easily 

understandable way for the first, second and third equation of motion. 

https://byjus.com/physics/law-of-inertia/


Derivation: 

There are mainly three equations of motion which describe the relationship 

between velocity, time, acceleration and displacement. 

First, consider a body moving in a straight line with uniform acceleration. 

Then, let the initial velocity be u, acceleration be a, time period be t, 

velocity be v, and the distance travelled be S. 

The equation of motions derivation can be done in three ways which are: 

 Derivation of equations of motion by Simple Algebraic Method 

 Derivation of Motion by Graphical Method 

 Derivation of Motion by Calculus Method 

Below, the equations of motion are derived by all the three methods in a 

simple and easy to understand way. 

Derivation of First Equation of Motion 

The first equation of motion is: 

v = u + at 

Derivation of First Equation of Motion by Algebraic Method 

It is known that the acceleration (a) of the body is defined as the rate of 

change of velocity. 

So, the acceleration can be written as: 

a = v – ut 

https://byjus.com/physics/uniformly-accelerated-motion/


From this, rearranging the terms, the first equation of motion is obtained, 

which is: 

v = u + at 

Derivation of First Equation of Motion by Graphical Method: 

Consider the diagram of the velocity-time graph of a body below 

 

In this, the body is moving with an initial velocity of u at point A. The 

velocity of the body then changes from A to B in time t at a uniform rate. 

In the above diagram, BC is the final velocity i.e. v after the body travels 

from A to B at a uniform acceleration of a. In the graph, OC is the time t. 

Then, a perpendicular is drawn from B to OC, a parallel line is drawn from 

A to D, and another perpendicular is drawn from B to OE (represented by 

dotted lines). 

Following details are obtained from the graph above: 

The initial velocity of the body, u = OA 

The final velocity of the body, v = BC 

From the graph, BC = BD + DC 

So, v = BD + DC 

v = BD + OA (since DC = OA) 

Finally, v = BD + u (since OA = u) (Eq 1) 



Now, since the slope of a velocity-time graph is equal to acceleration a, 

So, 

a = slope of line AB 

a = BD/AD 

Since AD = AC = t, the above equation becomes: 

BD = at (Eq 2) 

Now, combining Equation 1 & 2, the following is obtained: 

v = at + u 

Derivation of First Equation of Motion by Calculus Method: 

It is known that, 

 

So, 

https://byjus.com/physics/vt-graphs/


 

Derivation of Second Equation of Motion: 

The second equation of motion is: 

S = ut + ½ a
2
 

Derivation of Second Equation of Motion by Algebraic Method: 

Consider the same notations for the derivation of the second equation of 

motion by simple algebraic method. 

 

Fig.7.4 Derivation of Second Equation of Motion by Algebraic Method 

Derivation of Second Equation of Motion by Graphical Method: 



Taking the same diagram used in first law derivation: 

 

In this diagram, the distance travelled (S) = Area of figure OABC = Area 

of rectangle OADC + Area of triangle ABD. 

Now, the area of the rectangle OADC = OA × OC = ut 

And, Area of triangle ABD = (1/2) × Area of rectangle AEBD = (1/2) 

at
2
 (Since, AD = t and BD = at) 

Thus, the total distance covered will be: 

S = ut + (1/2) at
2
 

Derivation of Second Equation of Motion by Calculus Method: 

Velocity is the rate of change of displacement. 

Mathematically, this is expressed as 

 

Rearranging the equation, we get 



 

Substituting the first equation of motion in the above equation, we get 

 

Derivation of Third Equation of Motion 

The third equation of motion is: 

v
2
 = u

2
 + 2aS 

Derivation of Third Equation of Motion by Algebraic Method: 

 

Fig.7.5 Derivation of Third Equation of Motion by Algebraic Method 

Derivation of Third Equation of Motion by Graphical Method: 



 

The total distance travelled, S = Area of trapezium OABC. 

So, S= 1/2(Sum of Parallel Sides)×Height 

S = (OA+CB)×OC 

Since, OA = u, CB = v, and OC = t 

The above equation becomes 

S= 1/2(u+v)×t 

Now, since t = (v – u)/ a 

The above equation can be written as: 

S= 1/2(u+v)×(v-u)/a 

Rearranging the equation, we get 

S= 1/2(v+u)×(v-u)/a 

S = (v
2
-u

2
)/2a 

Third equation of motion is obtained by solving the above equation: 



v
2 
= u

2
+2aS 

Derivation of Third Equation of Motion by Calculus Method: 

It is known that, 

 

These were the detailed derivations for equations of motion in the 

graphical method, algebraic method and calculus method. 

Equations of Motion Formula: 

Equations of motion Formula 

First equation of motion v=u+at 

Second equation of motion s=ut+1/2at2 

Third equation of motion v
2 
= u

2
+2as 

 

What is an External Force? 



An external force is defined as the change in the mechanical energy that is 

either the kinetic energy or the potential energy in an object. These forces 

are caused by external agents. Examples of external forces are friction, 

normal force and air resistance. 

Let us Understand First Law of Motion by an Example: 

Let us take a block on a smooth surface. By smooth, we mean that there is 

no friction acting on the surface. The block is at rest, that is, it is not 

moving. 

Now, let us examine the forces acting on the block. The only forces acting 

on the block are the force of gravity and the normal reaction by the 

surface. There is no force acting on it in the horizontal direction. Since the 

forces in the vertical direction are equal to each other in magnitude, they 

cancel each other out, and hence there is no external force on the block. 

Since this block is at rest, we can say that it confirms Newton’s first law of 

Motion. 

 

Fig.7.6 No external force on the block 

Now, if we apply a constant force F on the block in a horizontal direction, 

it will start moving with some constant acceleration, in the direction of the 

applied force. 



 

Fig.7.7 Apply a constant force F on the block 

Thus, the first law of motion is confirmed again. 

 

Newton’s First Law of Motion Examples in Daily Life: 

Wearing a seat belt in a car while driving is an example of Newton’s 

1
st
 law of motion. If an accident occurs, or if brakes are applied to the car 

suddenly, the body will tend to continue its inertia and move forward, 

probably proving fatal. To prevent such accidents seat belts are used which 

stops your body from moving forward in inertia avoiding danger. 

 

Newton’s Second Law of Motion:  

 

Force is equal to the rate of change of momentum. For a constant mass, 

force equals mass times acceleration. 

Newton’s second law of motion, unlike the first law of motion pertains to 

the behaviour of objects for which all existing forces are unbalanced. The 



second law of motion is more quantitative and is used extensively to 

calculate what happens in situations involving a force. 

 

 

Defining Newton’s Second Law of Motion: 

Newton’s second law states that the acceleration of an object depends 

upon two variables – the net force acting on the object and the mass of the 

object.  The acceleration of the body is directly proportional to the net 

force acting on the body and inversely proportional to the mass of the 

body. This means that as the force acting upon an object is increased, the 

acceleration of the object is increased. Likewise, as the mass of an object 

is increased, the acceleration of the object is decreased. 

Newton’s second law can be formally stated as, “The acceleration of an 

object as produced by a net force is directly proportional to the magnitude 

of the net force, in the same direction as the net force, and inversely 

proportional to the mass of the object”. 

This statement is expressed in equation form as, 

 

The above equation can be rearranged to a familiar form as 

 

Since force is a vector, Newton’s second law can be written as 



 

The equation shows that the direction of the total acceleration vector 

points in the same direction as the net force vector. 

Deriving Newton’s Second Law: 

 

Fig.7.8 Deriving Newton’s Second Law 

Force = Charge of momentum with change of time  

Difference form:  F = 
              

      
 

With constant mass:   F = m  
        

      
 

Force = mass x acceleration, 

t = time, m = mass, V = velocity, X = location 

For Changing Mass: 

Let us assume that we have a car at a point (0) defined by location X0 and 

time t0. The car has a mass m0 and travels with a velocity v0. After being 

subjected to a force F, the car moves to point 1 which is defined by 

location X1 and time t1. The mass and velocity of the car change during the 

travel to values m1 and v1. Newton’s second law helps us determine the 

new values of m1 and v1 if we know the value of the acting force. 



Taking the difference between point 1 and point 0, we get an equation for 

the force acting on the car as follows: 

 

Let us assume the mass to be constant. This assumption is good for a car 

because the only change in mass would be the fuel burned between point 

“1” and point “0”. The weight of the fuel is probably small relative to the 

weight of the rest of the car, especially if we only look at small changes in 

time. Meanwhile, if we were discussing the flight of a bottle rocket, then 

the mass does not remain constant and we can only look at changes in 

momentum. 

 

For Constant Mass: 

For a constant mass, Newton’s second law can be equated as follows: 

 

We know that acceleration is defined as the change in velocity divided by 

the change in time. 

The second law then reduces to a more familiar form as follows: 

 

The above equation tells us that an object will accelerate if it is subjected 

to an external force and the amount of force is directly proportional to the 

acceleration and inversely proportional to the mass of the object. 



Application of Second Law: 

The application of the second law of motion can be seen in identifying the 

amount of force needed to make an object move or to make it stop. 

Following are a few examples that we have listed to help you understand 

this point: 

1) Kicking a ball: When we kick a ball we exert force in a specific 

direction, which is the direction in which it will travel. In addition, 

the stronger the ball is kicked, the stronger the force we put on it and 

the further away it will travel. 

2) Pushing a cart: It is easier to push an empty cart in a supermarket 

than it is to push a loaded one. More mass requires more force to 

accelerate. 

3) Two people walking: Among the two people walking, if one is 

heavier than the other then the one weighing heavier will walk 

slower because the acceleration of the person weighing lighter is 

greater. 

 

Newton’s Third Law of Motion: 

Introduction: 

You probably know that when you throw a ball against a wall, the ball 

exerts a force on the wall. Likewise, the wall puts force on the ball as a 

result of which the ball bounces off the wall. Similarly, earth pulls you 

down with gravitational force. What you may not realise is you are also 



exerting an equal amount of force on the earth. This remarkable fact is a 

consequence of Newton’s third law. 

Newton’s 3rd Law: If an object A exerts a force on object B, then 

object B must exert a force of equal magnitude and opposite direction 

back on object A. 

This law signifies a particular symmetry in nature: forces always occur in 

pairs, and one body cannot exert a force on another without experiencing a 

force itself. 

In the next few sections, let us learn Newton’s third law in detail. 

Newton’s Third Law of Motion: 

Force is a push or pulls acting on an object resulting in its interaction with 

another object. Force is a result of an interaction. Force can be classified 

into two categories: contact force such as frictional force and non-contact 

force such as gravitational force. According to Newton, when two bodies 

interact, they exerted force on each other and these forces are known as 

action and reaction pair which is explained in Newton’s third law of 

motion. 

Newton’s third law of motion states that “When one body exerts a force on 

the other body, the first body experiences a force which is equal in 

magnitude in the opposite direction of the force which is exerted”. 

The above statement means that in every interaction, there is a pair of 

forces acting on the interacting objects. The magnitude of the forces are 

equal and the direction of the force on the first object is opposite to the 

direction of the force on the second object. 



The mathematical representation of Newton’s third law of motion is let A 

be the body exerting force     on the body B, then body B too exerts a 

force −    on body A, which is given as: 

 

Newton’s third law of motion is associated with conservation of 

momentum. According to the law, for every action there must be an equal 

and opposite reaction. 

Examples of Interaction Force Pairs: 

A variety of action-reaction pairs are evident in nature. We have listed a 

few below and they are as follows: 

 A propulsion of fish through water is an example of action-reaction 

pair. A fish makes use of its fins to push water backwards. This push 

serves to accelerate the fish forwards. The size of the force on the 

water equals the size of the force on the fish; the direction of the 

force on the water (backwards) is opposite the direction of the force 

on the fish (forwards). 

 The flight of the bird is an example of action-reaction pair. The 

wings of the bird push the air downwards. The air pushes the air 

upwards. 

 A swimmer pushes against the water, while the water pushes back 

on the swimmer. 

 Lift is created by helicopters by pushing the air down, thereby 

creating an upward reaction force. 

https://byjus.com/physics/conservation-of-momentum/
https://byjus.com/physics/conservation-of-momentum/


 Rock climbers pulling their vertical rope downwards so as to push 

themselves upwards. 

 

7.4 Condition for existence and depending factors of induced 

charge, induced voltage, induced current and induced power: 

Induced charge:  

Induced charges on the Surface in metal objects by a nearby charge. 

The electrostatic field (lines with arrows) of a nearby positive 

charge (+) causes the mobile charges in metal objects to separate. Negative 

charges (blue) are attracted and move to the surface of the object facing 

the external charge. Positive charges (red) are repelled and move to the 

surface facing away. These induced surface charges create an opposing 

electric field that exactly cancels the field of the external charge 

throughout the interior of the metal. Therefore electrostatic induction 

ensures that the electric field everywhere inside a conductive object is 

zero. 

 

Fig.7.9 Induced charges on the Surface in metal 

https://en.wikipedia.org/wiki/Electrostatic_field


 

Induced voltage: 

The induced voltage is produced as a product of electromagnetic 

induction. Electromagnetic induction is the procedure of 

producing emf (induced voltage) by exposing a conductor into a magnetic 

field. The induced voltage is described by making use of Faraday’s law of 

induction. The induced voltage of a closed-circuit is described as the rate 

of change of magnetic flux through that closed circuit. Induced voltage 

formula is articulated as, 

 

Where 

ε= Induced voltage 

N= Total number of turns of the loop 

ΦB = B.A (Magnetic flux) 

B = Magnetic field 

A = Area of the loop 

t = time 

 



Induced current:  

The current induced in a conducting loop that is exposed to a changing 

magnetic field is known as induced current. This change may be produced 

in several ways by: 

 change the strength of the magnetic field 

 moving the conductor in and out of the field 

 altering the distance between the magnet and the conductor, or 

change the area of a loop located in a stable magnetic field 

The strength of the current induced will depend on the changing magnetic 

flux. The direction of the current is determined by considering Lenz’s law, 

which says that an induced electric current will flow in such a way that it 

generates a magnetic field that opposes the change in the field that 

generated it. 

Induced Power: 

Induced power is the power required to maintain enough lift to overcome 

the force of gravity. One can view this as the force required to accelerate 

enough air downwards (at speed vi) to push the bird upwards enough to 

counteract the force of gravity (mg). This force must be balanced by a 

change in the momentum of the air passing through the bird's wing disc 

(area =    ρv, mass/time =    ρv), which gives an equation for the 

induced velocity,  

    
   

          
 



The actual power requirement is the product of the force necessary (mg) 

and the speed it is applied at (vi), 

     =               
     

          
 

In the above expression Ki is a correction coefficient to account for the 

difference between the size of the wing disc and the actual tube of air 

displaced by the bird's wings. 

 

 

 

SAQ.1 

a) What do you mean by Faraday’s law of electromagnetic induction? 

b) Define the Newton’s laws of motion in mechanics. 

c) What are the Condition for existence and depending factors of 

induced voltage and induced current? 

d) In the figure below, two forces, F1 and F2, pull a 50.0 kg crate. The 

magnitude of F1 is 215 N and it is applied at a 42.0
o
 angle. The 

magnitude of F2 is 55.0 N. If the crate is accelerating to the right at a 

rate of 0.500 m/s
2
, find the coefficient of kinetic friction between the 

crate and the floor. 



 

 

e) Consider a rectangular coil of 10 turns with a side length 0.8m. 

This coil reaches the magnetic field 0.4T within 20s. Compute 

the induced voltage? 

f) Suppose that a sled is accelerating at a rate of 2 m/s
2
. If the net force 

is tripled and the mass is halved, then what is the new acceleration of 

the sled? 

 

 

 

 

 

 

 

7.5 Dynamic induced EMF and derivation of its expression: 



 

Fig.7.10 (a) Uniform magnetic field, (b) Conductor moving in uniform 

magnetic field at angle θ 

We can see from the figure that a conductor A is lied within a uniform 

magnetic field whose flux density is a uniform magnetic field and the flux 

density is B wb 
3
. In this fig. the movement of the conductor is shown by 

arrow line. When the conductor A cuts across at right angles to the flux. 

Let, ‘l’= Length of the conductor lying within the field. And it moves a 

distance dx in time dt, So, the area swept by the conductor is =ldx. Hence, 

flux cut by the conductor = l.dx X B, Change in Flux = B.l.dx weber, 

Time= dt second 

According to Faraday’s laws. The e.m.f induced in the conductor . And 

this induced e.m.f is known as dynamically induced e.m.f. 

The rate of change of flux linkages = 
      

  
     

  

  
          

Where, 
  

  
 is velocity 

If the conductor (A) moves at an angle θ with the direction of flux which is 

shown in (b). 

Then the induced e.m.f. is e=B l v sin θ volts =l       x     



(i.e. as cross product vector         and     

An example, the generator works on the production of dynamically 

induced e.m.f in the conductors. 

 

7.6 Self Induction and Self Inductance: 

 

Definition of Self Induction: 

Self induction is a phenomenon by which a changing electric current 

produces an induced emf across the coil itself. 

Definition of Self Inductance: 

Self inductance is the ratio of induced electromotive force (EMF) across a 

coil to the rate of change of current through the coil. We denote self 

inductance or coefficient of with English letter L. Its unit is Henry (H). 

 

Since, the induced emf (E) is proportional to the current changing rate, we 

can write, 

 

 

 

https://www.electrical4u.com/electric-current-and-theory-of-electricity/


But the actual equation is 

 

 

 

Why there is Minus (-) sign? 

According to Lenz’s Law, the induced emf opposes the direction of the 

rate of change of current. So their value is same but sign differs. 

 

Derivation of Inductance: 

For the DC source, when the switch is ON, i.e. just at t = 0
+
, a current 

starts flowing from its zero value to a certain value and with respect to 

time, there will be a rate of change in current momentarily. This current 

produces changing flux (φ) through the coil. As current changes flux (φ) 

also changes and the rate of change with respect to the time is 

 

https://www.electrical4u.com/lenz-law-of-electromagnetic-induction/


 

 

Fig.7.11 Circuit of Self inductance  

 

Now by apply Faraday’s Law of Electromagnetic Induction, we get, 

 

 

 

Where, N is the number of turn of the coil and e is the induced EMF across 

this coil. 

Considering Lenz’s law we can write the above equation as, 

 

 

https://www.electrical4u.com/faraday-law-of-electromagnetic-induction/
https://www.electrical4u.com/lenz-law-of-electromagnetic-induction/


 

Now, we can modify this equation to calculate the value of inductance. 

 

 

So, 

 

 

[B is the flux density i.e. B =φ/A, A is area of the coil], 

[Nφ or Li is called magnetic flux Linkage and it is denoted by Ѱ] 

 

 

 

Where H is the magnetizing force due to which magnetic flux lines flow 

from south to north pole inside the coil, l (small L) is the effective length 

of the coil and 

 

https://www.electrical4u.com/what-is-inductor-and-inductance-theory-of-inductor/


 

 

 

 

r is the radius of the coil cross-sectional area. 

 

 

Fig. 7.12 Circuit for self-inductance 

 

Self inductance, L is a geometric quantity; it depends only on the 

dimensions of the solenoid, and the number of turns in the solenoid. 

Furthermore, in a DC current when the switch is just closed, then only 



momentarily effect of self-inductance occurs in the coil. After some time, 

no effect of self inductance remains in the coil because after certain time 

the current becomes steady. 

But in AC circuit, the alternating effect of current always causes the self-

induction in the coil, and a certain value of this self-inductance gives the 

inductive reactance (XL = 2πfL) depending on the value of supply 

frequency. 

 

 

 

 

Mutual Induction and Mutual Inductance: 

Definition of Mutual induction: 

Mutual induction is a phenomenon when a coil gets induced in EMF 

across it due to rate of change current in adjacent coil in such a way that 

the flux of one coil current gets linkage of another coil. 

 

Definition of Mutual Inductance 

Mutual Inductance is the ratio between induced emf across a coil to the 

rate of change of current of another adjacent coil in such a way that two 

coils are in possibility of flux linkage. 

 

https://www.electrical4u.com/what-is-flux-types-of-flux/


 

Mutual Induction: 

Whenever there is a time varying current in a coil, the time varying flux 

will link with the coil itself and will cause self induced emf across the coil. 

This emf is viewed as a voltage drop across the coil or inductor. But it is 

not practical that a coil gets linked only with its own changing flux. When 

a time varying current flows in another coil placed nearby the first one 

then the flux produced by the second coil may also link the first one. This 

varying flux linkage from the second coil will also induce emf across the 

first coil. This phenomenon is called mutual induction and the emf 

induced in one coil due to time varying current flowing in any other coil is 

called mutually induced emf. If the first coil is also connected to the time 

varying source, the net emf of the first coil is the resultant of self induced 

and mutually induced emf. 

 

 

 

 

 

Coefficient of Mutual Induction or Mutual Inductance: 

Consider two coils 1 and 2 placed near each other as shown below in the 

figure 



 

 

  

Fig. 7.13 Mutually coupled Two coils placed near each other 

 

Let coil 1 be the primary coil and coil 2 be secondary coil 

When current is primary coil changes w.r.t time then the magnetic field 

produced in the coil also changes with time which causes a change in 

magnetic flux associated with secondary coil 

Due to this change of flux linked with secondary coil an emf is induced in 

it and this phenomenon is known as mutual induction. 

Similarly change in current in secondary coil induces an emf in primary 

coil.This way as a result of mutual inductance emf is induced in both the 

coils. 

If I1 is the current in primary coil at any instant ,than the emf induced in 

secondary coil would be proportional to the rate of change of current in 

primary coil i.e. 

 

 



Or 

  

 

Where M is a constant known as coefficient of mutual induction and 

minus sign indicates that direction of induced emf is such that it opposes 

the change of current in primary coil 

Unit of mutual inductance is Henry 

We know that a magnetic flux is produced in primary coil due to the flow 

of current I1.If this is the magnetic flux associated with secondary coil then 

from faraday's law of EM induction ,emf induced in secondary coil would 

be 

 

 

 

comparing above two equation we get 

 

  

 

Thus coefficient of mutual induction of secondary coil w.r.t primary coil is 

equal to magnetic flux linked with secondary coil when 1 Ampere of 

current flows in primary coil and vice-versa. 



Similarly, if I2 is the current in secondary coil at any instant then flux 

linked with primary coil is 

 

  

 

where M12 is coefficient of mutual induction of primary coil with respect 

to secondary coil. 

EMF induced in primary coil due to change of this flux is 

 

 

For any two circuits 

M12=M21=M 

 

In general mutual inductance of two coil depends on geometry of the coils 

(shape ,size, number of turns etc),distance between the coils and nature of 

material on which the coil is wound 

 

 

Mutual Inductance of two co-axial solenoids: 

Consider a long solenoid of length l and area of cross-section A containing 

Np turns in its primary coil 



Let a shorter secondary coil having N2 number of turns be wounded 

closely over the central portion of primary coil as shown below in the 

figure.  

 

  

Fig.7.14 Two co-axial solenoid with secondary coil wounded closely over 

portion of primary coil of length l 

 

If Ip is the current in the primary coil then magnetic field due to primary 

coil would be  

 

So flux through each turn of secondary coil would be 

  

 

Where A is the area of cross-section of primary coil. 

Total magnetic flux through secondary coil is 

 

 



Emf induced in secondary coil is 

  

 

Thus from equation 24 

  

 

So  

 

 

Static Induced EMF: 

This type of EMF is generated by keeping the coil and the magnetic field 

system, stationary at the same time; that means the change in flux linking 

with the coil takes place without either moving the conductor (coil) or the 

field system. 

This change of flux produced by the field system linking with the coil is 

obtained by changing the electric current in the field system. 

It is further divided in two ways 

 Self-induced electromotive force (emf which is induced in the coil due to 

the change of flux produced by it linking with its own turns.) 



 Mutually induced electromotive force (emf which is induced in the coil 

due to the change of flux produced by another coil, linking with it.) 

Self-Induced EMF: 

When the current flowing through the coil is changed, the flux linking with 

its own winding changes and due to the change in linking flux with the 

coil, an emf, known as self-induced emf, is induced. 

Since according to Lenz’s law, an induced emf acts to oppose the change 

that produces it, a self-induced emf is always in such a direction as to 

oppose the change of current in the coil or circuit in which it is induced. 

This property of the coil or circuit due to which it opposes any change of 

the current in the coil or circuit, is known as self-inductance. 

 

Fig.7.15 Circuit of Statically Self Induced e.m.f. 

Consider a Solenoid of N turns, length l meters, area of X-section a square 

meters and of relative permeability . When the solenoid carries a current 

of i amperes, a magnetic field of flux 

 

Weber is set up around the solenoid and links with it. 



If the current flowing through the solenoid is changed, the flux produced 

by it will change and, therefore, an emf will be induced. 

self-induced emf, 

 

                   

                          

The quantity is a constant for any given coil or circuit and is 

called coefficient of self-inductance. It is represented by symbol L and is 

measured in henries. 

Hence self-induced e.m.f.   

 

Where 

 

Coefficient of Self Induction: 

The coefficient of self-induction (L) can be determined from any one of 

the following three relations. 

First Method:  In case the dimensions of the solenoid are given, the 

coefficient of self-induction may be determined from the relation 



 

Second Method: In case the magnitude of induced emf in a coil for a 

given rate of change of current in the coil is known, self-inductance of the 

coil may be determined from the following relation. 

 

 

Third Method: In case the number of turns of the coil and flux produced 

per ampere of current in the coil is known, the self-inductance of the coil 

may be determined from the following relation 

 

The above relation can be derived as follows: 

Magnetic flux produced in a coil of N turns, length l meters, area of x-

section a meters
2
 and relative permeability  when carrying a current of I 

amperes is given by 

 

and self-inductance of the coil 

 

From the above relation, it is obvious that the self-inductance of a coil or 

circuit is equal to weber-turns per ampere in the coil or circuit. 



In the above relation if =1Wb-turn and i = 1 A then L = 1 H. 

Hence a coil is said to have a self-inductance of one henry if a current of 1 

A, when flowing through it, produces flux linkage of I Wb-turn in it. 

Mutually Induced EMF: 

Consider two coils A and B placed closed together so that the flux created 

by one coil completely links with the other coil. Let coil A have a battery 

and switch S and coil B be connected to the galvanometer G. 

 

 

Fig.7.16 Circuit of Statically Mutually Induced e.m.f. 

 

When switch SW1 is opened, no current flows through coil A, so no flux 

is created in coil A, i.e. no flux links with coil B, therefore, no emf is 

induced across coil B, the fact is indicated by galvanometer zero 

deflection. Now when the switch S is closed current in coil. A starts rising 

from zero value to a finite value, the flux is produced during this period 

and increases with the increase in current of coil A, therefore, flux linking 

with the coil B increases and an emf, known as mutually induced emf is 

produced in coil B, the fact is indicated by galvanometer deflection. As 

soon as the current in coil A reaches its finite value, the flux produced or 



flux linking with coil B becomes constant, so no emf is induced in coil B, 

and galvanometer pointer returns back to zero position. Now if the switch 

S is opened, current will start decreasing, resulting in decrease influx 

linking with coil B, an emf will be again induced but in direction opposite 

to previous one, this fact will be shown by the galvanometer deflection in 

opposite direction. 

Hence whenever the current in coil A changes, the flux linking with coil B 

changes and an emf, known as mutually induced emf is induced in coil B. 

Consider coil A of turns N1 wound on a core of length l meters, area of 

cross-section a square meters and relative permeability . When the 

current of i1 amperes flows through it, a flux of 

 

is set up around the coil A. 

Mutually induced emf,  

em = -Rate of change of flux linkage of coil B 

                                               = -N2  rate of change of flux in coil A 

                                               

                                                    

 



The quantity  is called the coefficient of mutual induction of coil 

B with respect to coil A. It is represented by symbol M and is measured in 

henrys. 

Hence mutually induced emf, 

 

 Where 

 

Coefficient of Mutual Induction: 

Mutual inductance may be defined as the ability of one coil or circuit to 

induce an emf in a nearby coil by induction when the current flowing in 

the first coil is changed. The action is also reciprocal i.e. the change in 

current flowing through second coil will also induce an emf in the first 

coil. The ability of reciprocal induction is measured in terms of the 

coefficient of mutual induction M. 

The coefficient of mutual induction (M) can be determined from any one 

of the following three relations. 

First Method: In case the dimensions of the coils are given, the 

coefficient of mutual induction may be determined from the relation 

 

Second Method: In case the magnitude of induced emf in the second coil 

for a given rate of change of current in the first coil is known, mutual 



inductance between the coil may be determined from the following 

relation 

 

  

Or 

   

Third Method: 

In case the number of turns of the coil and flux linking with this coil per 

ampere of current in another coil is known, the mutual inductance of the 

coil may be determined from the following relation 

 

7.7 Reciprocity theorem and Neuman’s relation using Mutual 

Inductance: 

Experiments and calculations that combine Ampere’s law and Biot-Savart 

law confirm that the two constants, M21 and M12 are equal in the absence 

of material medium between the two coils. 

M12 = M21 

This property is called reciprocity and by using reciprocity theorem, we 

can simply write the mutual inductance between two coils as; 

https://byjus.com/physics/amperes-law/


M12 = M21 = M 

What Is Mutual Inductance? 

When two coils are brought in proximity with each other the magnetic 

field in one of the coils tend to link with the other. This further leads to the 

generation of voltage in the second coil. This property of a coil which 

affects or changes the current and voltage in a secondary coil is called 

mutual inductance. 

 

Fig.7.17 Changing I1 produces changing magnetic flux in coil 2. 

In the first coil of N1 turns, when a current I1 passes through it, magnetic 

field B is produced. As the two coils are closer to each other, few magnetic 

field lines will also pass through coil 2. 

ϕ21→ magnetic flux in one turn of coil 2 due to current I1. 

If we vary the current with respect to time, then there will be an induced 

emf in coil 2. 

According to Faraday’s law  

https://byjus.com/physics/magnetic-flux/


 

 

The induced emf is coil 2 directly proportional to the current passes 

through the coil 1. 

 

The constant of proportionality is called as mutual inductance. It can be 

written as 

 

The SI unit of inductance is henry (H) 

 

In a similar manner, the current in coil 2, I2 can produce an induced emf in 

coil 1 when I2 is varying with respect to time. Then, 

 

 

This constant of proportionality is another mutual inductance. 



 

Fig.7.18 Changing I2 produces changing magnetic flux in coil 1. 

EMF of Mutual Inductance: 

Considering the mutual inductance between two coil we just discussed, we 

defined mutual inductance M21 of coil 2 with respect to 1 as, 

 

If I1 changes with time, 

 

According to Faraday’s law of induction, 

 

Than above equation rewrite  

 

Thus induced emf in coil 2 due to current in coil 1 is given by 



 

Similarly, induced emf in coil 1 due to changing current in coil 2 can be 

given as, 

 

From experiments, 

M21 = M12 = M 

Therefore 

 

The coefficient of mutual induction – mutual inductance depends only on 

the geometrical factor of the two coils such as the number of turns, radii of 

two coils and on the properties of a material medium such as magnetic 

permeability of the medium surrounding the coils. 

Limitations of Reciprocity Theorem: 

1. Not applicable to the circuits consisting of any time varying element. 

2. Not applicable to the circuits consisting of the dependent source 

even it is linear. 

3. Not applicable to the circuits consisting of non-linear elements like 

diode, transistor etc. 

 

 

 



 

Application of Reciprocity Theorem: 

1. This theorem is applied to analyze Ultrasound Generated by High-

Intensity Surface Heating of Elastic Bodies. 

2. This theorem is applied to determine line-load-generated surface 

waves on an inhomogeneous transversely isotropic half-space. 

 

SAQ.2 

a) What do you mean by Dynamic induced EMF? 

b) Define the Self inductance and mutual inductance. 

c) What do mean by self and mutual induced EMF? 

d) Define the Reciprocity theorem in the mutual induction. 

e) Determine the self-inductance of 5000 turn air-core solenoid of 

length 2.5m and diameter 0.15 m. 

f) The self-inductance of an air-core solenoid is 3.8 mH. If its core is 

replaced by iron core, then its self-inductance becomes 0.8 H. Find 

out the relative permeability of iron. 

g) A 400 turn coil of radius 3 cm is placed co-axially within a long 

solenoid of 5 cm radius. If the turn density of the solenoid is 100 

turns per cm, then calculate mutual inductance of the coil. 

h) A circular wire loop with a radius of 8 cm lies in a plane 

perpendicular to a uniform magnetic field of magnitude 0.4 T. You 

reshape the loop into a square in 0.20 seconds. What is the emf 

induced in the loop? 

 



 

 

 

 

 

 

7.8 Relation between self and mutual inductance of two coupled 

coils: 

Consider two coils of same length l and same area of cross-section placed 

near each other as shown below in the figure 

 

  

Fig.7.19 Two coil placed near each other 

 

Let there are N1 number of turns in primary coil and N2 number of turns in 

secondary coil, 

A current I1 in the primary coil produces a magnetic field, 



 

  

 

which in turns gives rise to flux?  

  

 

in primary coil and 

 

in the secondary coil due to current in primary coil. 

 

By the definition of self induction 

  

 

and by definition of mutual induction 

 



Reversing the procedure if we first introduce the current I2 in secondary 

coil then we get 

 

 

So L1 is the self inductance of primary coil,L2 is the self induction of 

secondary coil and M21=M12=M is the mutual inductance between two 

coils. 

Product of L1 and L2 is  

 

In practice M is always less than eq due to leakage which gives 

  

Where K is called coefficient of coupling and K is always less than 1. 

 

 

 

 



 

 

 

 

Energy of coupled circuits: 

  

We saw that the energy stored in an inductor is given by 

 

We now want to determine the energy stored in magnetically coupled 

coils. 

Consider the circuit in fig. we assume that currents i1 and i2 are aero 

initially, so that stored in the coils is zero. If we let i1 increase from zero to 

I1 while maintaining i2 = 0, the power in coil 1 is 

 

 and the energy stored in the circuit is 

 



 

Fig.7.20 Circuit for deriving energy stored in a coupled circuit 

If we now maintain i1 = I1 and increase i2 from zero to I2, the mutual 

voltage induced in coil 1 is M12 di2/dt, while the mutual voltage induced in 

coil 2 is zero, since i1 does not change. The power in the coil is now  

 

and the energy stored in the circuit is  

 

 

The total energy in the coils both i1 and i2 have reached constant values is  

 



If we reverse the order by which the currents reach their final values, that 

is, if we first increase i2 from zero to I2 and later increase i1 from zero to I1 

the total energy stored in the coils is 

 

Since the total energy stored should br the same regardless of how we 

reach the final conditions, comparing the above two equation leads us to 

conclude that 

M12 = M21 = M 

and  

 

This equation was derived based on the assumption that the coil currents 

both entered the dotted terminals. If one current enters one dotted terminal 

while the other current leaves the other dotted terminal, the mutual voltage 

is negative, so that the mutual energy M I1 I2 is also negative. In that case  

 

Also sinceI1 and I2 are arbitrary values, they may be replaced by i1 and i2 

which gives the instantaneous energy stored in the circuit the general 

expression 



 

 

7.9 Transformer:  

What is a transformer? 

A transformer can be defined as a static device which helps in the 

transformation of electric power in one circuit to electric power of the 

same frequency in another circuit. The voltage can be raised or lowered in 

a circuit, but with a proportional increase or decrease in the current ratings. 

In this article we will be learning about Transformer basics and working 

principle.  

Transformer – Working Principle 

The main principle of operation of a transformer is mutual inductance 

between two circuits which is linked by a common magnetic flux. A basic 

transformer consists of two coils that are electrically separate and 

inductive, but are magnetically linked through a path of reluctance. The 

working principle of the transformer can be understood from the figure 

below. 



 

Fig.7.21 Transformer Working 

 As shown above the electrical transformer has primary and secondary 

windings. The core laminations are joined in the form of strips in between 

the strips you can see that there are some narrow gaps right through the 

cross-section of the core. These staggered joints are said to be 

‘imbricated’. Both the coils have high mutual inductance. A mutual 

electro-motive force is induced in the transformer from the alternating flux 

that is set up in the laminated core, due to the coil that is connected to a 

source of alternating voltage. Most of the alternating flux developed by 

this coil is linked with the other coil and thus produces the mutual induced 

electro-motive force. The so produced electro-motive force can be 

explained with the help of Faraday’s laws of Electromagnetic Induction as 

                                                       e = M 
  

  
 

If the second coil circuit is closed, a current flows in it and thus electrical 

energy is transferred magnetically from the first to the second coil. 



The alternating current supply is given to the first coil and hence it can be 

called as the primary winding. The energy is drawn out from the second 

coil and thus can be called as the secondary winding. 

In short, a transformer carries the operations shown below: 

1. Transfer of electric power from one circuit to another. 

2.  Transfer of electric power without any change in frequency. 

3. Transfer with the principle of electromagnetic induction. 

4. The two electrical circuits are linked by mutual induction. 

 Transformer Construction 

For the simple construction of a transformer, you must need two coils 

having mutual inductance and a laminated steel core. The two coils are 

insulated from each other and from the steel core. The device will also 

need some suitable container for the assembled core and windings, a 

medium with which the core and its windings from its container can be 

insulated. 

In order to insulate and to bring out the terminals of the winding from the 

tank, apt bushings that are made from either porcelain or capacitor type 

must be used. 

In all transformers that are used commercially, the core is made out of 

transformer sheet steel laminations assembled to provide a continuous 

magnetic path with minimum of air-gap included. The steel should have 

high permeability and low hysteresis loss. For this to happen, the steel 

should be made of high silicon content and must also be heat treated. By 



effectively laminating the core, the eddy-current losses can be reduced. 

The lamination can be done with the help of a light coat of core plate 

varnish or lay an oxide layer on the surface. For a frequency of 50 Hertz, 

the thickness of the lamination varies from 0.35mm to 0.5mm for a 

frequency of 25 Hertz. 

Types of Transformers: 

Types by Design: 

The types of transformers differ in the manner in which the primary and 

secondary coils are provided around the laminated steel core. According to 

the design, transformers can be classified into two: 

1. Core- Type Transformer: 

In core-type transformer, the windings are given to a considerable part of 

the core. The coils used for this transformer are form-wound and are of 

cylindrical type. Such a type of transformer can be applicable for small 

sized and large sized transformers. In the small sized type, the core will be 

rectangular in shape and the coils used are cylindrical. The figure below 

shows the large sized type. You can see that the round or cylindrical coils 

are wound in such a way as to fit over a cruciform core section. In the case 

of circular cylindrical coils, they have a fair advantage of having good 

mechanical strength. The cylindrical coils will have different layers and 

each layer will be insulated from the other with the help of materials like 

paper, cloth, micarta board and so on. The general arrangement of the 

core-type transformer with respect to the core is shown below. Both low-

voltage (LV) and high voltage (HV) windings are shown. 



 

Fig.7.22 Core Type Transformer Cruciform Section 

 

 Fig.7.23 Core Type Transformers 

 

The low voltage windings are placed nearer to the core as it is the easiest 

to insulate. The effective core area of the transformer can be reduced with 

the use of laminations and insulation. 

2. Shell-Type Transformer: 

In shell-type transformers, the core surrounds a considerable portion of the 

windings. The comparison is shown in the figure below. 



Fig.7.24 Core Type and Shell Type Transformer Winding 

 

The coils are form-wound but are multi layer disc type usually wound in 

the form of pancakes. Paper is used to insulate the different layers of the 

multi-layer discs. The whole winding consists of discs stacked with 

insulation spaces between the coils. These insulation spaces form the 

horizontal cooling and insulating ducts. Such a transformer may have the 

shape of a simple rectangle or may also have a distributed form. Both 

designs are shown in the figure below: 

 

Fig.7.25 Shell Type Transformers Rectangular Form 



Fig.7.26 Shell Type Transformers Distributed Form 

  

A strong rigid mechanical bracing must be given to the cores and coils of 

the transformers. This will help in minimizing the movement of the device 

and also prevents the device from getting any insulation damage. A 

transformer with good bracing will not produce any humming noise during 

its working and will also reduce vibration. 

A special housing platform must be provided for transformers. Usually, 

the device is placed in tightly-fitted sheet-metal tanks filled with special 

insulating oil. This oil is needed to circulate through the device and cool 

the coils. It is also responsible for providing the additional insulation for 

the device when it is left in the air. 

There may be cases when the smooth tank surface will not be able to 

provide the needed cooling area. In such cases, the sides of the tank are 

corrugated or assembled with radiators on the sides of the device. The oil 

used for cooling purpose must be absolutely free from alkalis, sulphur and 



most importantly moisture. Even a small amount of moistures in the oil 

will cause a significant change in the insulating property of the device, as 

it lessens the dielectric strength of the oil to a great extent. 

Mathematically speaking,  the presence of about 8 parts of water in 1 

million reduces the insulating quality of the oil to a value that is not 

considered standard for use. Thus, the tanks are protected by sealing them 

air-tight in smaller units. When large transformers are used, the airtight 

method is practically difficult to implement. In such cases, chambers are 

provided for the oil to expand and contract as its temperature increases and 

decreases. 

These breathers form a barrier and resist the atmospheric moisture from 

contact with oil. Special care must also be taken to avoid sledging. 

Sledging occurs when oil decomposes due to overexposure to oxygen 

during heating. It results in the formation of large deposits of dark and 

heavy matter that clogs the cooling ducts in the transformer. 

The quality, durability and handling of these insulating materials decide 

the life of the transformer. All the transformer leads are brought out of 

their cases through suitable bushings. There are many designs of these, 

their size and construction depending on the voltage of the leads. Porcelain 

bushings may be used to insulate the leads, for transformers that are used 

in moderate voltages. Oil-filled or capacitive-type bushings are used for 

high voltage transformers. 

The selection between the core and shell type is made by comparing the 

cost because similar characteristics can be obtained from both types. Most 

manufacturers prefer to use shell-type transformers for high-voltage 

applications or for multi-winding design. When compared to a core type, 



the shell type has a longer mean length of coil turn. Other parameters that 

are compared for the selection of transformer type are voltage rating, kilo-

volt ampere rating, weight, insulation stress, heat distribution and so on. 

Transformers can also be classified according to the type of cooling 

employed. The different types according to these classifications are: 

Types of Transformers based on cooling method: 

1. Oil Filled Self-Cooled Type: 

Oil filled self-cooled type uses small and medium-sized distribution 

transformers. The assembled windings and core of such transformers are 

mounted in a welded, oil-tight steel tanks provided with a steel cover. The 

tank is filled with purified, high quality insulating oil as soon as the core is 

put back at its proper place. The oil helps in transferring the heat from the 

core and the windings to the case from where it is radiated out to the 

surroundings. 

For smaller sized transformers the tanks are usually smooth surfaced, but 

for large size transformers a greater heat radiation area is needed, and that 

too without disturbing the cubical capacity of the tank. This is achieved by 

frequently corrugating the cases. Still larger sizes are provided with 

radiation or pipes. 

2. Oil Filled Water Cooled Type: 

This type is used for much more economic construction of large 

transformers, as the above-told self-cooled method is very expensive. The 

same method is used here as well- the windings and the core are immersed 

in the oil. The only difference is that a cooling coil is mounted near the 



surface of the oil, through which cold water keeps circulating. This water 

carries the heat from the device. This design is usually implemented on 

transformers that are used in high voltage transmission lines. The biggest 

advantage of such a design is that such transformers do not require 

housing other than their own. This reduces the costs by a huge amount. 

Another advantage is that the maintenance and inspection of this type is 

only needed once or twice in a year. 

3. Air Blast Type: 

This type is used for transformers that use voltages below 25,000 volts. 

The transformer is housed in a thin sheet metal box open at both ends 

through which air is blown from the bottom to the top. 

EMF equation of a transformer and Voltage Transformation Ratio: 

 

Fig.7.27 Sinusoidal waveform for e.m.f .equation of a transformer  

Suppose , N1 = No. of turns of primary coil & 

N2 = No. of turns of secondary coil of a transformer. 

Φm = Maximum flux in core ( webers) 



      = Bm x A 

f= frequency of alternating current in Hz 

From the figure , it has been seen that the flux Φ increases from its zero 

value to maximum value Φmin one quarter of the cycle i.e in 1/4 f second 

 

= 4 f Φm Wb/s or volt 

Now, rate of change of flux per turn means induced e.m.f in volts. 

∴ average e.m.f/ turn = 4 f Φm volt 

If the magnitude of flux Φ varies sinusoidally, then the r.m.s value of 

induced e.m.f is obtained by multiplying the average value with from 

factor. 

 

∴ r.m.s value of e.m.f./turn = 1.11 x 4 f Φm = 4.44 f Φm volt 

Now, r.m.s value of the induced e.m.f in the primary winding 

∴ E1 = (induced e.m.f/turn) x No. of primary turns 

∴ E1 = 4.44 f Φm N1 (As Φm = Bm x A ) 

∴ E1 = 4.44 f N1Bm A  

Similarly, r.m.s value of the e.m.f. induced in secondary is, 



∴ E2 = (induced e.m.f/turn) x No. of Secondary turns 

= 4.44 f Φm N2 (As Φm = Bm x A ) 

⇒ E2 = 4.44 f N2 Bm A  

It is seen from equation (i) and (ii) that E1 / N1 = E2 / N2 = 4.44 f Φm . 

from the above equation it is seen that the e.m.f/ turn is the same in both 

primary and secondary windings. 

 

Transformation Ratio of Transformer: 

The transformation ratio will be given by the equation shown below 

 

 

Constant K is known as voltage transformation ratio. 

i) If N2 > N1 i.e K > 1,then transformer is called step-up transformer. 

ii) If N2 < N1 i.e K < 1,then transformer is called step-down transformer. 

 

Voltage Ratio of Transformer: 

This above stated ratio is also known as voltage ratio of transformer if it 

is expressed as ratio of the primary and secondary voltages of transformer. 

https://circuitglobe.com/wp-content/uploads/2015/09/IDEAL-TRANSFORMER-EQ2-compressor.jpg


 

Turns Ratio of Transformer: 

As the voltage in primary and secondary of transformer is directly 

proportional to the number of turns in the respective winding, the 

transformation ratio of transformer is sometime expressed in ratio of turns 

and referred as turns ratio of transformer. 

Equivalent Circuit of Transformer Referred to Primary: 

For drawing equivalent circuit of transformer referred to primary, first we 

have to establish general equivalent circuit of transformer then, we will 

modify it for referring from primary side. For doing this, first we need to 

recall the complete vector diagram of a transformer which is shown in the 

figure below. 

https://www.electrical4u.com/vector-diagram-three-phase-vector-diagram/


 

 

Fig.7.28 Vector diagram of Transformer on load 

 

Let us consider the transformation ratio be, 

 

 

 

In the figure above, the applied voltage to the primary is V1 and voltage 

across the primary winding is E1. Total current supplied to primary is I1. 

https://www.electrical4u.com/voltage-or-electric-potential-difference/
https://www.electrical4u.com/electric-current-and-theory-of-electricity/


So the voltage V1 applied to the primary is partly dropped by I1Z1 or I1R1 + 

j.I1X1 before it appears across primary winding. 

The voltage appeared across winding is countered by primary induced emf 

E1. So voltage equation of this portion of the transformer can be written as, 

 

 

 

The equivalent circuit for that equation can be drawn as below, 

 

 

Fig.7.29 Equivalent Circuit 

 

From the vector diagram above, it is found that the total primary current I1 

has two components, one is no – load component Io and the other is load 

component I2′. As this primary current has two components or branches, so 

there must be a parallel path with primary winding of transformer. 

This parallel path of current is known as excitation branch of equivalent 

circuit of transformer. The resistive and reactive branches of the excitation 

circuit can be represented as 

 

https://www.electrical4u.com/what-is-transformer-definition-working-principle-of-transformer/
https://www.electrical4u.com/vector-diagram-three-phase-vector-diagram/


 

Fig.7.30 Equivalent Circuit of Primary side of Transformer 

 

The load component I2′ flows through the primary winding of transformer 

and induced voltage across the winding is E1 as shown in the figure right. 

This induced voltage E1transforms to secondary and it is E2 and load 

component of primary current I2′ is transformed to secondary as secondary 

current I2. Current of secondary is I2. So the voltage E2 across secondary 

winding is partly dropped by I2Z2 or I2R2 + j.I2X2 before it appears across 

load. The load voltage is V2. 

The complete equivalent circuit of transformer is shown below. 

 

 

Fig.7.31 Equivalent Circuit of Transformer referred to Primary 

Now if we see the voltage drop in secondary from primary side, then it 

would be ′K′ times greater and would be written as K.Z2.I2. 

https://www.electrical4u.com/voltage-drop-calculation/


 

Again I2′.N1 = I2.N2 

 

 

 

Therefore, 

 

 

 

From above equation, secondary impedance of transformer referred to 

primary is, 

 

 

 

So, the complete equivalent circuit of transformer referred to primary is 

shown in the figure below: 



 

 

Fig.7.32 Equivalent Circuit of Transformer referred to Primary 

 

Approximate Equivalent Circuit of Transformer: 

Since Io is very small compared to I1, it is less than 5% of full load primary 

current, Io changes the voltage drop insignificantly. Hence, it is good 

approximation to ignore the excitation circuit in approximate equivalent 

circuit of transformer. The winding resistance and reactance being in series 

can now be combined into equivalent resistance and reactance of 

transformer, referred to any particular side. In this case it is side 1 or 

primary side. 

 

 

https://www.electrical4u.com/electrical-resistance-and-laws-of-resistance/
https://www.electrical4u.com/electrical-reactance/
https://www.electrical4u.com/electrical-resistance-and-laws-of-resistance/


 

 

Fig.7.32 Approximate Equivalent Circuit of Transformer referred to 

Primary 

 

Equivalent Circuit of Transformer Referred to Secondary: 

In a similar way, the approximate equivalent circuit of transformer referred 

to secondary can be drawn. Where equivalent impedance of transformer 

referred to secondary, can be derived as 

 

 



 

 

Fig.7.33 Approximate Equivalent Circuit of Transformer referred to 

Secondary 

 

Condition for ideal transformer: 

The transformer which is free from all types of losses is known as an 

ideal transformer. It is an imaginary transformer that has no core loss, no 

ohmic resistance, and no leakage flux. The ideal transformer has the 

following important characteristic. 

 The resistance of their primary and secondary winding becomes 

zero. 

 The core of the ideal transformer has infinite permeability. The 

infinite permeable means less magnetizing current requires for 

magnetizing their core. 

 The leakage flux of the transformer becomes zero, i.e. the whole of 

the flux induces in the core of the transformer links with their 

primary and secondary winding. 

 The ideal transformer has 100 percent efficiency, i.e., the 

transformer is free from hysteresis and eddy current loss. 

https://circuitglobe.com/what-is-a-transformer.html
https://circuitglobe.com/what-is-eddy-current-loss.html


The above mention properties are not possible in the practical 

transformer. In an ideal transformer, there is no power loss. Therefore, the 

output power is equal to the input power. 

 

Behavior of Ideal Transformer: 

Consider the ideal transformer shown in the figure below: 

 

Fig.7.34 Ideal Transformer 

The voltage source V1 is applied across the primary winding of the 

transformer. Their secondary winding is kept open. The N1 and N2 are the 

numbers of turns of their primary and secondary winding. 

The current Im is the magnetizing current flows through the primary 

winding of the transformer. The magnetizing current produces the flux 

φm in the core of the transformer. 

As the permeability of the core is infinite the flux of the core link with 

both the primary and secondary winding of the transformer. 



The flux link with the primary winding induces the emf E1 because of self-

induction. The direction of the induced emf is inversely proportional to the 

applied voltage V1. The emf E2 induces in the secondary winding of the 

transformer because of mutual induction. 

 

 

 

Phasor Diagram of Ideal Transformer: 

The phasor diagram of the ideal transformer is shown in the figure below. 

As the coil of the primary transformer is purely inductive the magnetizing 

current induces in the transformer lag 90º by the input voltage V1. 

The E1 and E2 are the emf induced in the primary and secondary winding 

of the transformer. The direction of the induced emf inversely proportional 

to the applied voltage. 

 



Fig.7.35 Phasor Diagram of an Ideal Transformer 

Efficiency of Transformer: 

Just like any other electrical machine, efficiency of a transformer can be 

defined as the output power divided by the input power. That is efficiency 

= output / input. 

Transformers are the most highly efficient electrical devices. Most of the 

transformers have full load efficiency between 95% to 98.5% . As a 

transformer being highly efficient, output and input are having nearly same 

value, and hence it is impractical to measure the efficiency of transformer 

by using output / input. A better method to find efficiency of a transformer 

is using,  

           
              

     
   

       

     
 

 

Condition for maximum efficiency: 

Let, 

Copper loss = I1
2 
R1 

Iron loss = Wi 

 



 

Differentiating above equation with respect to I1 

 

η will be maximum at  

 

Hence efficiency η will be maximum at 

 

 

Hence, efficiency of a transformer will be maximum when copper loss and 

iron losses are equal. 

That is Copper loss = Iron loss. 

 

All day efficiency of transformer: 



As we have seen above, ordinary or commercial efficiency of a 

transformer can be given as 

 

But in some types of transformers, their performance cannot be judged by 

this efficiency. For example, distribution transformers have their primaries 

energized all the time. But, their secondary’s supply little load all no-load 

most of the time during day (as residential use of electricity is observed 

mostly during evening till midnight). 

That is, when secondary’s of transformer are not supplying any load (or 

supplying only little load), then only core losses of transformer are 

considerable and copper losses are absent (or very little). Copper losses are 

considerable only when transformers are loaded. Thus, for such 

transformers copper losses are relatively less important.  The performance 

of such transformers is compared on the basis of energy consumed in one 

day. 

 

All day efficiency of a transformer is always less than ordinary efficiency 

of it. 

Applications of Single Phase Transformer: 

The advantages of three single-phase units are transportation, 

maintenance, and spare unit availability. The single-phase transformers are 

widely used in commercial low voltage application as electronic devices. 



They operate as a step-down voltage transformer and decrease the home 

voltage value to the value suitable for electronics supplying. On the 

secondary side, rectifier is usually connected to convert a AC voltage to 

the DC voltage which is used in electronics application. 

 

Voltage gain in Transformer using Step-Up Transformer:  

 

What is Step-up Transformer? 

In a Step Up Transformer, there are more turns on the secondary coil 

compared to the primary coils. The current which flows across the Primary 

coil is much higher compared to secondary coil. It basically converts low 

voltage, high-current to high voltage-low current i.e. the voltage has been 

Stepped Up. Hence the name, Step-up Transformer. 

 

Fig.7.36 Step-up Transformer 



 

Construction of Step-up Transformers 

Construction of Step Up Transformers include the building up of the 

winding, the enclosures and other accessories along with the Core of the 

Transformer. Below is the detailed procedure of building of the Step Up 

Transformer. 

 Step Up Transformer Core  

 Winding(s) 

Step Up Transformer Core: 

 To build the core of the Transformer, a high penetrable material is 

used. To form the Core, thin Silicon Steel is assembled and tightly 

clamped which is laminated. The preamble material which is used in 

forming of the core is designed to let the magnetic flux to flow with 

less loss. 

 The characteristic of the Core restricts the magnetic field lines in the 

air which in turn increases the efficiency of the Transformer. 

 Less coercive materials are preferred such as Silicon Steel to build 

the Core. If the core is built with other Ferro-magnetic materials it 

might result in Hysteresis Loss and Eddy current Loss. 

Winding(s): 



 The Winding(s) help transfer the currents which are wound to the 

Transformers. The winding(s) are designed to cool the transformers 

and withstand the operational and test conditions. 

 The wire on the Primary winding is thick with less number of turns. 

While the wire on the Secondary winding is thinner and has large 

number of turns. This is mainly designed in such a way that the 

primary winding can carry low power voltage compared to the 

secondary winding which carry higher voltage power. 

 The material used in the winding is Copper and Aluminium. Copper 

being the expensive material increases the life of Step Up 

Transformer when compared to Aluminium which is less expensive. 

 Lamination of Core reduces Eddy Currents. They are of many types. 

Most common Laminations are E-E Type and E-I Type to which 

Primary and Secondary winding is fixed and they are stacked to 

minimize the air gaps as shown in the Fig. 3 (a) and (b). Primary and 

Secondary Winding on the Laminated Core is shown in the Fig. 3 (c) 

 

Fig.7.37 (a) E-I Core (b) E-E Core (c) Winding on Laminated Core 



 

How Does Step Up Transformer Work? 

A Step Up Transformer has been explained in a more detailed manner with 

a schematic diagram as shown in Fig. 4. Here V1 and V2 are the input and 

output Voltages respectively. T1 and T2 are the Turns on the Primary and 

the Secondary windings. Primary winding is the input winding to a 

Transformer and the Secondary winding is the output winding to a 

Transformer. If there are more turns of wire on the Secondary than on the 

Primary, the output voltage will be higher than the input voltage. 

 

 

 

Fig.7.38 Schematic diagram Step Up Transformer 

As the current flowing in a Transformer is Alternating Current, it flows in 

one direction, stops, then reverses and flows in the other direction. The 

flow of electricity creates a magnetic field around the wire or winding. The 

north and south poles of the magnetic field gets reversed when the flow of 

current reverses. 



The magnetic field induces voltage into the wire. Similarly voltage will be 

induced in the second coil when it is placed in a moving magnetic field. 

This phenomenon is called as Mutual Induction. Hence we can conclude 

that, Alternating current in Primary winding produces a moving magnetic 

field which induces voltage in Secondary winding. 

 

The relationship between the voltage and the number of Turns in each coil 

is given by the equation: 
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Applications of Step-up Transformer: 

Applications of Step-up Transformers include: 

https://electricalfundablog.com/electromagnetic-induction-theory/


 Step-up transformers are found in the electronic devices such 

as Inverters and Stabilizers where in the Transformers help in 

stabilizing the low voltage to the higher voltage. 

 It is also used in the Electrical Distribution of Power 

 

Advantages of Step up Transformers: 

Step Up Transformers are the need for the hour in most of the commercial 

and residential places. The advantages are mentioned below. 

Power Transmitter: 

The Step Up transformers are the ones which transmit the electricity at 

lower prices for a longer distance. The voltage of the currents is increased 

which has to be transmitted whereby the resistance is reduced on the line. 

This helps in decreasing the losses along the way and make efficient use of 

the power supplied across. 

Continuous Working: 

Step Up transformers has the capability and the capacity to work nonstop 

without any breaks unlike most of the electrical instruments. This creates a 

huge advantage which helps in the power distribution system. 

Maintenance: 

Apart from being a system to work without any break, Step Up 

Transformers also is a low maintenance device. The Step Up Transformer 

requires only a minimal maintenance such as the oil check, replacement or 

repair of damaged pieces etc. 

https://electricalfundablog.com/make-simple-inverter-home-circuit-step-by-step-method/
https://electricalfundablog.com/what-is-voltage-stabilizer-why-we-need-it-how-it-works-types-applications/


Quick Start: 

Once installed, the Transformer is fast to start up process without any 

delays or time consuming procedure. 

Efficiency: 

As the technologies have been upgraded along the years, the efficiency 

level of the Step Up Transformer has also increased. There is less wastage 

along the lines hence keeping the efficiency level above 95%. 

Disadvantages of Step-up Transformers: 

As previously stated, there is no 100% efficiency level. Hence there are 

some disadvantages along the way of Step-up Transformers. 

Cooling System: 

As the Step Up Transformer continuously performs its task without any 

break, it needs a cooling system. Since the Step Up Transformer cannot be 

shut down to cool, there has to be a provision to attach a round the clock 

cooling system to the Transformers. 

Huge in Size:  

As the voltage capacity increases bigger the transformer size which will 

also include a bigger cooling system. This creates a bulky and huge 

Transformer occupying a larger space. 

 

Works for AC (Alternate Current):  



The Transformers are used only for stepping up AC voltages or the 

Alternating Currents. They do not work on the DC or the Direct Current. 

The limitations are only for the applications related to the AC operations. 

Losses in transformer: 

There are various types of losses in the transformer such as iron loss, 

copper loss, hysteresis loss, eddy current loss, stray loss, and dielectric 

loss. The hysteresis losses occur because of the variation of the 

magnetization in the core of the transformer and the copper loss occurs 

because of the transformer winding resistance. 

 

 

Fig.7.39 Types of Losses in the Transformer 

 

1. Iron Losses: 

Iron losses are caused by the alternating flux in the core of the transformer 

as this loss occurs in the core it is also known as Core loss. Iron loss is 

further divided into hysteresis and eddy current loss. 



(a) Hysteresis Loss: 

The core of the transformer is subjected to an alternating magnetizing 

force, and for each cycle of emf, a hysteresis loop is traced out. Power is 

dissipated in the form of heat known as hysteresis loss and given by the 

equation shown below: 

 

 

Where 

 KȠ is a proportionality constant which depends upon the volume 

and quality of the material of the core used in the transformer, 

 f is the supply frequency, 

 Bmax is the maximum or peak value of the flux density. 

The iron or core losses can be minimized by using silicon steel 

material for the construction of the core of the transformer. 

 

(b) Eddy Current Loss: 

When the flux links with a closed circuit, an emf is induced in the circuit 

and the current flows, the value of the current depends upon the amount of 

emf around the circuit and the resistance of the circuit. 

Since the core is made of conducting material, these EMFs circulate 

currents within the body of the material. These circulating currents are 



called Eddy Currents. They will occur when the conductor experiences a 

changing magnetic field. As these currents are not responsible for doing 

any useful work, and it produces a loss (I
2
R loss) in the magnetic material 

known as an Eddy Current Loss. 

The eddy current loss is minimized by making the core with thin 

laminations. 

The equation of the eddy current loss is given as: 

 

 

Where, 

 Ke – coefficient of eddy current. Its value depends upon the nature of 

magnetic material like volume and resistivity of core material, the 

thickness of laminations 

 Bm – maximum value of flux density in wb/m
2
 

 T – thickness of lamination in meters 

 F – frequency of reversal of the magnetic field in Hz 

 V – the volume of magnetic material in m
3
 

2. Copper Loss Or Ohmic Loss: 

These losses occur due to ohmic resistance of the transformer windings. If 

I1and I2 are the primary and the secondary current. R1 and R2 are the 

resistance of primary and secondary winding then the copper losses 

https://circuitglobe.com/wp-content/uploads/2015/09/eddy-current-eq-compressor1.jpg


occurring in the primary and secondary winding will be I1
2
R1 and 

I2
2
R2 respectively. 

Therefore, the total copper losses will be 

 

These losses varied according to the load and known hence it is also 

known as variable losses. Copper losses vary as the square of the load 

current. 

3.  Stray Loss: 

The occurrence of these stray losses is due to the presence of leakage field. 

The percentages of these losses are very small as compared to the iron and 

copper losses so they can be neglected. 

 

4. Dielectric Loss: 

Dielectric loss occurs in the insulating material of the transformer that is in 

the oil of the transformer, or in the solid insulations. When the oil gets 

deteriorated or the solid insulation gets damaged, or its quality decreases, 

and because of this, the efficiency of the transformer gets affected. 

 

 

 

https://circuitglobe.com/wp-content/uploads/2015/09/transformer-losses-eq3-compressor.jpg


SAQ.3 

a) What are the Relation between self and mutual inductance of two 

coupled coils? 

b) Explain the working principal of 1- phase Transformer. 

c) What are the conditions for ideal transformer? 

d) What do you mean by voltage gain in transformer? 

e) A 200 turn coil of radius 2 cm is placed co-axially within a long 

solenoid of 3 cm radius. If the turn density of the solenoid is 90 turns 

per cm, then calculate mutual inductance of the coil. 

f) A 200/50V, 50 Hz single phase transformer is connected to a 200 V, 

50 Hz supply with secondary winding open. Primary winding has 

400 turns. 

(i) What is the value of maximum flux through the core, if the 

primary winding has 400 turns? 

(ii) What is the peak value of flux if the primary voltage is 200V, 25 

Hz? 

(iii) What happens to no-load current? 

g) The efficiency of a 1000 kVA, 110/220 V, 50 Hz, single phase 

transformer is 98.5 % at half full-load at 0.8 pf leading and 98.8 % at 

full-load upf. Determine (a) core loss, (b) full-load copper loss, (c) 

maximum efficiency at unity p.f. 

 

Examples: 

Q.1 How much horizontal net force is required to accelerate a 1000 kg car 

at 4 m/s
2
? 

Solution: 



Newton’s 2nd Law relates an object’s mass, the net force on it, and its 

acceleration: 

Therefore, we can find the force as follows: 

Fnet = ma 

Substituting the values, we get 

1000 kg × 4 m/s
2
 = 4000 N 

Therefore, the horizontal net force is required to accelerate a 1000 kg car 

at 4 m/s2 is 4000 N. 

Newton’s second law is applied in daily life to a great extent. For instance, 

in Formula One racing, the engineers try to keep the mass of cars as low as 

possible. Low mass will imply more acceleration, and the more the 

acceleration, the chances to win the race are higher. 

Q.2 If there is a block of mass 2kg, and a force of 5N is acting on it in the 

positive x-direction, and a force of 3N in the negative x-direction, then 

what would be its acceleration? 

 

Solution: To calculate its acceleration, we first have to calculate the net 

force acting on it. 

Fnet = 5N – 3N = 2N 

Mass = 2kg 

Fnet = ma 



a = Fnet / m 

∴ Acceleration = 2/2  = 1 m/s2 

 

Q.3 Consider a rectangular coil of 5 turns with a side length 0.5m. 

This coil reaches the magnetic field 0.3T within 10s. Compute the 

induced voltage? 

Solution: 

Known values are, 

N = 5 

l = 0.5m 

B = 0.3T 

dt = 10s 

The formula for induced voltage is articulated as, 

 

 

  

 

 



 

Q.4 A copper disc 20 cm in diameter rotates with an angular velocity of 60 

rev s
-1

 about its axis. The disc is placed in a magnetic field of induction 0.2 

T acting parallel to the axis of rotation of the disc. Calculate the magnitude 

of the e.m.f. induced between the axis of rotation and the rim of the disc. 

Solution: 

As the disc rotates, any of its radii cuts the lines of force of magnetic field. 

Area swept by radius vector during one revolution 

= πr
2
 

= π(10 cm)
2
 

= 100π cm
2
 

= π×10
-2

 m
2
 

Area swept in one second, 

A = (area swept in one revolution) × (Number of revolutions per second) 

   = π×10
-2

×60 

A = 0.6 πm
2
 

Rate of change of magnetic flux 

= dϕB/dt 

= BA 

= 0.2×0.6π 



= 0.12π Wb 

According to Faraday’s law, magnitude of induced e.m.f is, 

E = dϕB/dt 

Therefore, magnitude of e.m.f. is 

E = 0.12 πV 

Or, E = 0.377 V 

Thus from the above observation we conclude that, the magnitude of the 

e.m.f. induced between the axis of rotation and the rim of the disc would 

be 0.377 V. 

 

Q.5 A rectangular loop of N turns of area A and resistance R rotates at a 

uniform angular velocity ω about Y-axis. The loop lies in a uniform 

magnetic field B in the direction of X-axis. Assuming that at t = 0, the 

plane of the loop is normal to the lines of force, find an expression for the 

peak value of the emf and current Induced in the loop. What is the 

magnitude of torque required on the loop to keep it moving with 

constant ω? 

Solution: 

As ϕ is maximum at t = 0, 

ϕ(t) = BA cos ωt 

Magnitude of induced emf = N|dϕ/dt| 



= BAωN |sinωt| 

Magnitude of induced current = [BAωN/R] |sin ωt| 

So, peak value of emf = BAωN 

peak value of induced current = BAωN/R 

To obtain the magnitude of torque required on the loop to keep it moving 

with constant ω, we have to equate power input is equal to heat dissipation 

per second. 

So, power input = heat dissipation per second 

Or, ω = I
2
R 

Or,  = [(BAωN)
2
/R] |sin

2
ωt| 

From the above observation we conclude that,  the magnitude of torque 

required on the loop to keep it moving with constant ω would 

be [(BAωN)
2
/R] |sin

2
ωt|. 

  

Q.6 An alternating emf 200 virtual volts at 50 Hz is connected to a circuit 

of resistance 1W and inductance 0.01 H. What is the phase difference 

between the current and the emf in the circuit. Also find the virtual current 

in the circuit. 

Solution: 

In case of an ac, the voltage leads the current in phase by angle, 

ϕ = tan
-1

 (XL/R) 



Here, XL = ωL 

= (2πfL)   

= (2π) (50) (0.01) 

=  πΩ 

and 

R = 1Ω 

So, ϕ = tan
-1
(π) 

≈ 72.3° 

Further, irms = Vrms/|Z| 

= Vrms/√R
2
+XL

2
 

Substituting the values we have, 

 irms = 200/√(1)
2
+(π)

2
 

= 60.67 amp 

From the above observation we conclude that, the virtual current in the 

circuit would be 60.67 amp. 

 

Q.7 A long solenoid of length 1 m, cross sectional area 10 cm
2
, having 

1000 turns has wound about its centre a small coil of 20 turns. Compute 

the mutual inductance of the two circuits. What is the emf in the coil when 

the current in the solenoid changes at the rate of 10 Amp/s? 



Solution: 

Let N1 = number of turns in solenoid 

N2 = number of turns in coil 

A1 nad A2 be their respective areas of cross-section.  

(A1 = A2 in this problem) 

Flux ϕ2 through coil crated by current i1 in solenoid is ϕ2 = N2(B1A2) 

ϕ2 = N2 (µ0i1N1/l)A2 

Or, ϕ2 = (µ0N1N2A2/l) i2 

Comparing with  ϕ2 = Mi1, we get, 

Mutual inductance, M = µ0N1N2A2/l 

= [4π×10
-7

×1000×20×10×10
-4

]/1 

= 2.51×10
-5

 H 

So magnitude of induced emf = E2 = M|di1/dt| 

 

Q.8 The magnetic flux passing through a coil perpendicular to its plane is 

a function of time and is given by ΦB = ( 2t3 + 4t2 + 8t + 8) Wb. If the 

resistance of the coil is 5 Ω, determine the induced current through the coil 

at a time t = 3 second.  

Solution: 



 

 

Q.9 An induced current of 2.5 mA flows through a single conductor of 

resistance 100 Ω. Find out the rate at which the magnetic flux is cut by the 

conductor.  

Solution: 

 

 

 



Q.10 Determine the self-inductance of 4000 turn air-core solenoid of 

length 2m and diameter 0.04 m. (Ans: 12.62 mH) 

Solution:  

 

 

 

Q.11 A 50 cm long solenoid has 400 turns per cm. The diameter of the 

solenoid is 0.04 m. Find the magnetic flux of a turn when it carries a 

current of 1 A. 

Solution: 



 

 

 

Q.12 A coil of 200 turns carries a current of 0.4 A. If the magnetic flux of 

4 mWb is linked with the coil, find the inductance of the coil.  

Solution: 

 

 

Q.13 A long solenoid having 400 turns per cm carries a current 2A. A 100 

turn coil of cross-sectional area 4 cm2 is placed co-axially inside the 

solenoid so that the coil is in the field produced by the solenoid. Find the 



emf induced in the coil if the current through the solenoid reverses its 

direction in 0.04 sec. 

Solution: 

 

 

 

Q.14 Consider the circuit in Figure. Determine the coupling coefficient. 

Calculate the energy stored in the coupled inductors at time t = 1 s if v = 

60 cos (4 t + 30◦) V. 

 



Solution: 

The coupling coefficient is 

 

indicating that the inductors are tightly coupled. To find the energy stored, 

we need to obtain the frequency-domain equivalent of the circuit. 

 

The frequency-domain equivalent is shown in Figure. We now apply mesh 

analysis. For mesh 1, 

 

For mesh 2 

 

or 

 

Substituting this to Equation yields 

 

and 

https://i2.wp.com/1.bp.blogspot.com/-5w7wkJqLPZY/XoSWDbBxZCI/AAAAAAAAFyY/xkSFLr9XOrkHeZzboiZiNYMdXHfBIiZYQCLcBGAsYHQ/s1600/e6_energy_in_coupled_circuit.jpg?ssl=1


 

In the time-domain, 

 

At time t = 1 s, 4t = 4 rad = 229.2◦, and 

 

The total energy stored in the coupled inductors is 

 

 

Frequency-domain Equivalent circuit 

Q.15 It is desired to have a 4.13 mWb maximum core flux in a transformer 

at 110V and 50 Hz. Determine the required number of turns in the 

primary. 

Solution: EMF induced in primary, E1 = 110V 

Supply frequency, f = 50Hz 

Maximum core flux,  = 4.13 mWb 



= 4.13  10
-3

 Wb 

Required number of turns on primary, 

 

                                          

Q.16 The emf per turn of a single phase 10 kVA, 2200/220V, 50 Hz 

transformer is 10V. Calculate (i) the number of primary and secondary 

turns, (ii) the net cross-sectional area of core for a maximum flux density 

of 1.5T. 

Solution: EMF per turn = 10V 

Primary induced emf, E1 = V1 = 2,200 V 

Secondary induced emf, E2 = V2 = 220V 

Supply frequency, f = 50 Hz 

Maximum flux density, Bmax = 1.5 T 

For (i) 

Number of primary turns, 

 

Number of secondary turns, 

 

Maximum value of flux, 



 

For (ii) 

Net cross-sectional area of core, 

 

 

Q.17 A single phase transformer has 350 primary and 1,050 secondary 

turns. The net cross-sectional area of the core is 55 cm
2
. If the primary 

winding be connected to a 400 V, 50 Hz single phase supply, calculate (i) 

maximum value of the flux density in the core and (ii) the voltage induced 

in the secondary winding. 

Solution: Net cross-section area of core, 

 

Maximum value of flux, 

  

For (i) 

peak value of flux density in the core, 

 

For (ii) 

Voltage induced in the secondary winding, 



  

 

Q.18 A 25 kVA, single phase transformer has 250 turns on the primary 

and 40 turns on the secondary winding. The primary is connected to 1500 

V, 50 Hz mains calculate (i) secondary emf (ii) primary and secondary 

current on full load (iii) maximum flux in the core. 

Solution: 

Supply voltage Vi = 1500 V 

Primary induced emf, E1 = Vi = 1500 V 

For (i) 

Secondary emf, 

 

For (ii) 

Appropriate value of primary current on full load, 

 

Appropriate value of secondary current on full load, 

 

For (iii) 

Maximum value of flux in the core, 



 

 

Q.19 A 200/50V, 50 Hz single phase transformer is connected to a 200 V, 

50 Hz supply with secondary winding open. Primary winding has 400 

turns. 

a) What is the value of maximum flux through the core, if the primary 

winding has 400 turns? 

b) What is the peak value of flux if the primary voltage is 200V, 25 

Hz? 

c) What happens to no-load current? 

Solution: 

For (i) 

Maximum value of flux, 

 

For (ii) 

When primary voltage is 200 V and supply frequency is 25 Hz 

 

For (iii) 

The no-load primary current I0, called the exciting current, is very small in 

comparison to the full-load primary current (2-5% of full load primary 

current). This current is made up of a relatively larger quadrature or 



magnetizing component Im and a comparatively small in-phase or energy 

component Ie. 

When supply frequency is reduced, keeping supply voltage constant, 

maximum value of flux is increased in inverse ratio of supply frequencies, 

and therefore, the magnetizing component of no-load current and thus the 

no-load current. 

Q.20 A 400 kVA transformer has a primary winding resistance of 0.5 ohm 

and a secondary winding resistance of 0.001 ohm. The iron loss is 2.5 Kw 

and the primary and secondary voltages are 5 kV and 320 V respectively. 

If the power factor of the load is 0.85, determine the efficiency of the 

transformer (i) on full load and (ii) on half load. 

Solution 

Rated output = 400 kVA = 400x10
3
 kVA 

  

Full load secondary current, I2 = Rated output/V2 = 1250 A 

  

Total resistance referred to secondary, re2 = r2+r1(V2/V1)
2
 = 0.033 ohm Full 

load copper loss, Pc = I2
2
 re2 = 51.5625 Kw 

Iron loss, Pi = 2.5 x10
3
 watts 

(i) Transformer efficiency at full load and 0.85 pf 

 



= 86.2% 

  

(ii) Transformer efficiency at half load and 0.85 pf 

 

               = 91.69% 

 

Q.21 Find all day efficiency of a transformer having maximum efficiency 

of 98% at 15 KVA at unity power factor. Compare it’s all day efficiencies 

for the following load cycles: (a) Full load of 20 KVA, 12 hours per day 

and no load rest of the day. (b) Full load, 4 hours per day and 0.4 full load 

rest of the day. Assume the load to operate on unity power factor all day. 

Solution: 

 



  

Q.22 A 200 kVA single-phase transformer is in circuit throughout 24 

hours. For 8 hours in a day, the load is 150 kW at 0.8 power factor lagging 

and for 7 hours, the load is 90 kW at 0.9 power factor. Remaining time or 

the rest period, it is at no-load condition. Full-load Cu loss is 4 kW and the 

iron loss is 1.8 kW. Calculate the all-day efficiency of the transformer. 

Solution: 

Full-load output = 200 kVA, Full-load Cu loss = 4 kW, Iron loss = 1.8 

kW. 



 

 

 

Summary: 

1) Faraday's law of induction (briefly, Faraday's law) is a basic law of 

electromagnetism predicting how a magnetic field will interact with 

an electric circuit to produce an electromotive force (EMF)—a 

phenomenon known as electromagnetic induction. 

2) Faraday's Law. Now that we have a basic understanding of the 

magnetic field, we areready to define Faraday's Law of Induction. It 

states that the induced voltage in a circuit is proportional to the rate 

of change over time of the magnetic flux through that circuit. 

3) Faraday's First Law of Electromagnetic Induction- Whenever a 

conductor is placed in a varying magnetic field, an electromotive 

force is induced. If the conductor circuit is closed, a current 

is induced which is called induced current. 

4) Faraday's law of induction is one of the important concepts of 

electricity. It looks at the way changing magnetic fields can cause 

current to flow in wires. Basically, it is a formula/concept that 



describes how potential difference (voltage difference) is created and 

how much is created. 

5) Newton's first law is demonstrated by the act of exerting a force. 

The car remains at rest until the mass is expelled, producing a force. 

The car then moves. The action force exerted on the car produces an 

equal and opposite reaction force. 

6) Newton's first law of motion - sometimes referred to as thelaw of 

inertia. Newton's first law of motion is often stated as. An object at 

rest stays at rest and an object in motion stays in motion with the 

same speed and in the same direction unless acted upon by an 

unbalanced force. 

7) Newton's Second Law of Motion states that force is equal to the 

change in momentum per change in time. For a constant mass, force 

equals mass timesacceleration, i.e. F = m*a. Newton's Third Law of 

Motion states that for every action there is an equal and opposite 

reaction. 

8) Induced voltage is an electric potential created by an electric field, 

magnetic field, or a current. Voltage produced in generator because 

of moving magnetic field. Voltage generated in secondary 

of current transformer due to magnetic field ofcurrent injected in it's 

primary. 

9) Induction charging is a method used to charge an object without 

actually touching the object to any other charged object. An 

understanding of charging by inductionrequires an understanding of 

the nature of a conductor and an understanding of the polarization 

process. 



10)  Induced power is the power required to maintain enough lift 

to overcome the force of gravity. One can view this as the force 

required to accelerate enough air downwards (at speed vi) to push 

the bird upwards enough to counteract the force of gravity (mg). 

11)  In dynamically induced electromotive force the magnetic field 

system is kept stationary, and the conductor is moving, or the 

magnetic field system is moving, and the conductor is stationary. 

Thus by following either of the two process the conductor cuts 

across the magnetic field and the emf is induced in the coil. 

12)  The process in which a changing current in one coil induces 

emf in another coil, is called mutual induction. While the 

phenomenon in which a changing current in a coil induces an emf in 

itself is called self-induction. 

13)  In self inductance the change in the strength of current in 

the coil is opposed by the coil itself by inducing an e.m.f. whereas 

in mutual inductance out of the two coils one coil opposes change in 

the strength of the current flowing in the other coil. 

14)  This emf is proportional to (1) the number of turns in the coil 

(2) rate of change magnetic flux with time. Statically induced emf is 

that emf which is produced due to pulsation of flux inside a coil, 

without any relative movement between coil and magnetic field. 

Hence the term Statically induced emf. 

15)  Self induced emf is that which is induced in a coil, due to the 

change in its own current or flux. Mutual emf is that induced in a 

coil due to the neighbouring coil's varying current. 

16)  Experiments and calculations that combine Ampere’s law and 

Biot-Savart law confirm that the two constants, M21 and M12 are 

https://byjus.com/physics/amperes-law/


equal in the absence of material medium between the two coils, 

M12 = M21.  This property is called reciprocity. 

17)  When this emf is induced in the same circuit in which the 

current is changing this effect is called Self-induction, ( L ). 

However, when the emf is induced into an adjacent coil situated 

within the same magnetic field, the emf is said to be induced 

magnetically, inductively or by Mutual induction, symbol ( M ). 

18)  After learning what is the mutual inductance and dot 

convention, we will move on how to calculate the energy in a 

coupled electric circuit. We can call an electric circuit as a coupled 

circuit if the circuit has a mutual inductance from two coils or 

inductors. 

19)  A transformer is an electrical apparatus designed to convert 

alternating current from one voltage to another. It can be designed to 

"step up" or "step down" voltages and works on the magnetic 

induction principle. When voltage is introduced to one coil, called 

the primary, it magnetizes the iron core. 

20)  Transformers generally have one of two types of cores: 

Core Type and Shell Type. These two types are distinguished from 

each other by the manner in which the primary and secondary coils 

are place around the steel core. Core type - With this type, the 

windings surround the laminated core. 

21)  Equivalent Circuit diagram of single phase Transformer. 

Equivalent circuit diagram of a transformer is basically a diagram 

which can be resolved into an equivalent circuit in which 

the resistance and leakage reactance of the transformer are imagined 

to be external to the winding. 



22)  In an ideal transformer, it is assumed that entire amount of 

flux get linked with secondary winding (that is, no leakage flux). 

100% efficiency: An ideal transformer does not have any losses like 

hysteresis loss, eddy current loss etc. So, the outputpower of an ideal 

transformer is exactly equal to the input power. 

23)  The Efficiency of the transformer is defined as the ratio of 

useful output power to the input power. The input and output power 

are measured in the same unit. Its unit is either in Watts (W) or 

KW. Transformer efficiency is denoted by Ƞ. 

24)  There are various types of losses in the transformer such 

as iron loss, copper loss, hysteresis loss, eddy current loss, stray loss, 

and dielectric loss. 

 

Terminal Questions: 

1) Explain the working of Faraday’s law of electromagnetic induction 

in differential form. 

2) What do mean by analogy with Newton’s laws of motion in 

mechanics? 

3) Define all the terms for Condition for existence and depending 

factors of induced charge, induced voltage, induced current and 

induced power. 

4) Explain the working of Dynamic induced EMF and derivation of its 

expression. 

5) What do you mean by self and mutual induction and inductance? 

6) Define the static induced EMF with the help of self and mutual 

induced EMF. 



7) Explain the Reciprocity theorem and its Neuman’s relation. 

8) What do you mean by Relation between self and mutual inductance 

of two coupled coil. 

9) Explain and derive the expression for energy of coupled circuits. 

10)  Explain the working principal of 1-phase Transformer and 

draw its equivalent circuit. 

11)  Derive the expression for efficiency of 1-phase Transformer 

and voltage. 

12)  Explain the working principal of voltage gain in Transformer. 

13)  Explain the various types of transformer losses. 

14) A circular wire loop with a radius of 5 cm lies in a plane 

perpendicular to a uniform magnetic field of magnitude 0.2 T. You 

reshape the loop into a square in 0.10 seconds. What is the emf 

induced in the loop? 

15) In the figure below, a block of weight w1 = 100.0 N on a 

frictionless inclined plane of angle 15
o
 is connected by a cord over a 

massless, frictionless pulley to a second block of weight w2 = 30.0 

N. (a) What are the magnitude and direction of the acceleration of 

each block?  (b) What is the tension in the cord?  

 

16)  Determine the accelerations that result when a 12-N net force 

is applied to a 3-kg object and then to a 6-kg object. 



17)  A net force of 15 N is exerted on an encyclopedia to cause it 

to accelerate at a rate of 5 m/s
2
. Determine the mass of the 

encyclopedia. 

18) A straight metal wire crosses a magnetic field of flux 4 mWb 

in a time 0.4 s. Find the magnitude of the emf induced in  the wire. 

19) A closely wound coil of radius 0.02 m is placed perpendicular 

to the magnetic field. When the magnetic field is changed from 8000 

T to 2000 T in 6 s, an emf of 44 V is induced. Calculate the number 

of turns in the coil. 

20) A very small circular loop of area 5 × 10
-4

 m
2
, resistance 2 

ohm and negligible self inductance initially coplanar and 

concentric with a much larger fixed circular loop of radius 0.1 

m. A constant current of 1.0 A is passed through the bigger loop. 

The smaller loop is rotated with constant angular velocity ω 

rad/sec about it’s diameter. Calculate the (a) induced emf  and 

(b) the induced current through the smaller loop as a function of 

time. 

21) Consider two coplanar, co-axial circular coils A and B as 

shown in figure. The radius of coil A is 20 cm while that of coil B is 

2 cm. The number of turns is 200 and 1000 for coils A and B 

respectively. Calculate the mutual inductance of coil B with respect 

to coil A. If the current in coil A changes from 2 A to 6 A in 0.04 

sec, determine the induced emf in coil B and the rate of change of 

flux through the coil B at that instant. 



 

22)  A rectangular coil of area 6 cm2 having 3500 turns is kept in 

a uniform magnetic field of 0.4 T. Initially, the plane of the coil is 

perpendicular to the field and is then rotated through an angle of 

180º. If the resistance of the coil is 35 Ω, find the amount of charge 

flowing through the coil. 

23)  A fan of metal blades of length 0.4 m rotates normal to a 

magnetic field of 4 ×10−3T . If the induced emf between the centre 

and edge of the blade is 0.02 V, determine the rate of rotation of the 

blade. 

24)  A bicycle wheel with metal spokes of 1 m long rotates in 

Earth’s magnetic field. The plane of the wheel is perpendicular to 

the horizontal component of Earth’s field of 4 ×10
−5

 T. If the emf 

induced across the spokes is 31.4 mV, calculate the rate of 

revolution of the wheel. 

25)  A hollow air cored inductor coil consists of 500 turns of 

copper wire which produces a magnetic flux of 10mWb when 

passing a DC current of 10 amps. Calculate the self-inductance of 

the coil in milli-Henries. 



 

 

26)  Two air core solenoids have the same length of 80 cm and 

same cross–sectional area 5 cm2. Find the mutual inductance 

between them if the number of turns in the first coil is 1200 turns 

and that in the second coil is 400 turns. 

27)  A closed coil of 40 turns and of area 200 cm2, is rotated in a 

magnetic field of flux density 2 Wb m-2. It rotates from a position 

where its plane makes an angle of 30º with the field to a position 

perpendicular to the field in a time 0.2 sec. Find the magnitude of 

the emf induced in the coil due to its rotation. 

28)  The self-inductance of an air-core solenoid is 4.8 mH. If its 

core is replaced by iron core, then its self-inductance becomes 1.8 H. 

Find out the relative permeability of iron. 

29)  The current flowing in the first coil changes from 2 A to 10 A 

in 0.4 sec. Find the mutual inductance between two coils if an emf of 

60 mV is induced in the second coil. Also determine the induced 

emf in the second coil if the current in the first coil is changed from 

4 A to 16 A in 0.03 sec. Consider only the magnitude of induced 

emf. 

30)  A circular metal of area 0.03 m
2
 rotates in a uniform magnetic 

field of 0.4 T. The axis of rotation passes through the centre and 

perpendicular to its plane and is also parallel to the field. If the disc 

completes 20 revolutions in one second and the resistance of the disc 



is 4 Ω, calculate the induced emf between the axis and the rim and 

induced current flowing in the disc. 

31)  The emf per turn of a single phase 25 kVA, 2200/220V, 50 

Hz transformer is 20V. Calculate (i) the number of primary and 

secondary turns, (ii) the net cross-sectional area of core for a 

maximum flux density of 2.4T. 

32)  An ideal transformer has 460 and 40,000 turns in the primary 

and secondary coils respectively. Find the voltage developed per 

turn of the secondary if the transformer is connected to a 230 V AC 

mains. The secondary is given to a load of resistance 104Ω. 

Calculate the power delivered to the load. 

33)  A 460/2400V transformer has a series leakage reactance of 

37.2 Ω as referred to the high-voltage side. A load connected to the 

low-voltage side is observed to be absorbing 25 kW, unity power 

factor, and the voltage is measured to be 450 V. Calculate the 

corresponding voltage and power factor as measured at the high-

voltage terminals. 

34)  A single-phase 10 kVA, 2400/240 V, 50 Hz distribution 

transformer has the following characteristics: Core loss at full 

voltage = 100 W,   Copper loss at half load = 60 W  

(a) Determine the per-unit rating at which the transformer efficiency 

is maximum.  

(b) The transformer has the following load cycle: No load for 6 

hours, 70 % full load for 10 hours at 0.8 pf,  90 % full load for 8 

hours at 0.9 pf . 

Determine the all-day efficiency of the transformer. 
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Unit 08-Fundamental equations 

Structure 

8.1 Introduction 

8.2  Objectives 

8.3  Four Maxwell’s equations (statement and physical significance). 

8.4 Maxwell’s equations and features of their general plane wave 

solution in source free space. 

8.5 Maxwell’s equations and features of their general plane wave 

solution in simple dielectrics. 

8.6 Differential equation and velocity for electromagnetic waves in 

source free space and dielectric medium. 

8.7 Characteristics of electromagnetic waves, impedance, refractive 

index. 

8.8  Skin depth and its importance. 

8.9 Summary 

8.10 Terminal Questions 

8.1     Introduction: 

In this chapter we will discuss Four Maxwell’s equations statement and 

physical significance. Maxwell was the first person to calculate the speed 

of propagation of electromagnetic waves which was same as the speed of 



light and came to the conclusion that EM waves and visible light are 

similar. 

Maxwell’s equations are the basic equations of electromagnetism which 

are a collection of Gauss’s law for electricity, Gauss’s law for 

magnetism, Faraday’s law of electromagnetic induction and Ampere’s 

law for currents in conductors. 

We discuss Maxwell’s equations and features of their general plane wave 

solution in source free space and simple dielectrics. 

We also discuss Differential equation and velocity for electromagnetic 

waves in source free space and dielectric medium. 

Maxwell's derivation of the electromagnetic wave equation has been 

replaced in modern physics education by a much less cumbersome method 

involving combining the corrected version of Ampere’s circuital law 

with Faraday's law of induction. 

The inherent characteristic of electromagnetic waves is its frequency. 

According to Maxwell, varying the electric field gives rise to a magnetic 

field. An accelerated charge produces a time-varying magnetic field which 

in turn produces a time-varying electric field. 

The "opposition" to the wave or wave impedance or impedance of a 

medium to a wave is caused by characteristics of the medium analogous to 

the resistance, capacitance and inductance. While resistance is a pretty 

generic term, applicable to different types of waves, the energy storing 

characteristics, capacitance and inductance, could be generalized as 

compliance or stress and inertia or motion. 

Refractive index is defined as the speed of light in a medium depends on 

the properties of the medium. In electromagnetic waves, the speed is 

dependent on the optical density of the medium. 

https://byjus.com/physics/electromagnetic-waves/
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https://physicsabout.com/gausss-law/
https://physicsabout.com/faradays-law-of-induction/
https://physicsabout.com/amperes-circuital-law/
https://physicsabout.com/amperes-circuital-law/
https://en.wikipedia.org/wiki/Faraday%27s_law_of_induction
https://byjus.com/physics/optical-density/


When an AC current is applied to a conductor, the current concentrates 

near the surface of the conductor and its strength decreases as you go 

towards the center of the conductor. The depth till which current flows in a 

conductor is called as Skin Depth. 

 

8.2    Objectives: 

After studying this unit you should be able to 

 Explain and identify Four Maxwell’s equations (statement and 

physical significance). 

 Study and identify Maxwell’s equations and features of their 

general plane wave solution in source free space. 

 Explain and identify Maxwell’s equations and features of their 

general plane wave solution in simple dielectrics. 

 Study and identify Differential equation and velocity for 

electromagnetic waves in source free space and dielectric 

medium. 

 Explain and identify Characteristics of electromagnetic waves, 

impedance and refractive index. 

 Study and identify Skin depth and its importance. 

8.3     Four Maxwell’s equations (statement and physical 

significance): 

 

Four Maxwell’s equations statement: 



Maxwell was the first person to calculate the speed of propagation of 

electromagnetic waves which was same as the speed of light and came to 

the conclusion that EM waves and visible light are similar. 

These are the set of partial differential equations that form the foundation 

of classical electrodynamics, electric circuits and classical optics along 

with Lorentz force law. These fields highlight modern communication and 

electrical technologies. 

Maxwell’s equations integral form explains how the electric charges and 

electric currents produce magnetic and electric fields. The equations 

describe how the electric field can create a magnetic field and vice versa. 

 

We have discussed the equations of Maxwell individually up until now. 

1. Gauss' Law: 

 

Gauss' Law is equivalent to the Force Equation for Electric Charges: like 

charges repel each other and opposite charges (i.e. positive and negative 

charge) attract. 

Gauss' Law also says that Electric Field lines diverge away from Electric 

Charges. This means that positive charge acts as a source of Electric Fields 

https://byjus.com/physics/electromagnetic-waves/
http://www.maxwells-equations.com/gauss/law.php


(like the way a faucet is a source of water). Gauss' Law means that 

negative charges acts as a sink for Electric Fields (the way water drains or 

exits a region via a sink hole). This means Electric Field lines start and 

stop on Electric Charge. 

2. Gauss' Law for Magnetism: 

 

Maxwell's Second Equation says that magnetic monopoles do not exist. 

While we have Electric Charges (Electric Monopoles), we have never 

found the magnetic equivalent - magnetic charge or a magnetic 

monopoles. This equation states that the magnetic field tends to wrap 

around things - since the divergence is zero the fields tend to form closed 

loops. 

3. Faraday's Law: 

 

Faraday's Law tells us that a magnetic field that is changing in time will 

give rise to a circulating E-field. This means we have two ways of 

generating E-fields - from Electric Charges (or flowing electric charge, 

current) or from a magnetic field that is changing. 

4. Ampere's Law: 

 

http://www.maxwells-equations.com/gauss/magnetism.php
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Ampere's Law tells us that a flowing electric current gives rise to a 

magnetic field that circles the wire. In addition to this, it also says that an 

Electric Field that is changing in time gives rise to a magnetic field that 

encircles the E-field - this is the Displacement Current term that Maxwell 

himself introduced. 

This means there are 2 ways to generate a solenoidal (circulating) H-field - 

a flowing electric current or a changing Electric Field. Both give rise to the 

same phenomenon. 

Physical Significance of Maxwell’s Equations: 

By means of Gauss and Stoke’s theorem we can put the field equations in 

integral form of hence obtain their physical significance  

1.    Maxwell’s first equation is ∇. D = ρ. 

Integrating this over an arbitrary volume V we get 

        ∫v ∇.D dV = ∫v ρ dV. 

But from Gauss Theorem, we get 

        ∫s D.dS = ∫v ρ dV = q 

Here, q is the net charge contained in volume V. S is the surface bounding 

volume V. Therefore, Maxwell’s first equation signifies that: 

The total electric displacement through the surface enclosing a volume is 

equal to the total charge within the volume.  

 

2.    Maxwell’s second equations is ∇.B = 0 

Integrating this over an arbitrary volume V, we get 

        ∫v ∇.B = 0. 

Using Gauss divergence theorem to change volume integral into surface 

integral, we get 



        ∫s B.dS = 0. 

Maxwell’s second equation signifies that: 

The total outward flux of magnetic induction B through any closed surface 

S is equal to zero. 

 

3.    Maxwell’s third equation is ∇ x E = - ∂B/∂t . dS 

Converting the surface integral of left hand side into line integral by 

Stoke’s theorem, we get 

        Φc E. dI = - ∫s ∂B/∂t. dS. 

Maxwell’s third equation signifies that: 

The electromotive force (e.m.f. e = ∫C E.dI) around a closed path is equal 

to negative rate of change of magnetic flux linked with the path (since 

magnetic flux Φ = ∫s B.dS). 

 

4.    Maxwell’s fourth equation is 

∇ x H = J + ∂D/∂t 

Taking surface integral over surface S bounded by curve C, we obtain 

         ∫s ∇ x H. dS = ∫s (J + ∂D/∂t) dS 

  

Using Stoke’s theorem to convert surface integral on L.H.S. of above 

equation into line integral, we get 

        Φc H.dI = ∫s (J + ∂D/∂t).dS 

Maxwell’s fourth equation signifies that: 

The magneto motive force (m.m.f. = Φc H. dI) around a closed path is 

equal to the conduction current plus displacement current through any 

surface bounded by the path.  

 



8.4 Maxwell’s equations and features of their general plane wave 

solution in source free space: 

 

Maxwell’s equations are the basic equations of electromagnetism which 

are a collection of Gauss’s law for electricity, Gauss’s law for 

magnetism, Faraday’s law of electromagnetic induction and Ampere’s 

law for currents in conductors. Maxwell equations give a mathematical 

model for electric, optical, and radio technologies, like power 

generation, electric motors, wireless communication, radar, and, Lenses, 

etc. These Equations explain how magnetic and electric fields are 

produced from charges. 

These equations are part of the comprehensive and symmetrical theory 

of electromagnetism, which is essential to understand electromagnetic 

waves, optics, radio and TV transmission, microwave ovens and 

magnetically levitated trains. 

The four of Maxwell’s equations for free space are: 

The First Maxwell’s equation (Gauss’s law for electricity): 

The Gauss’s law states that flux passing through any closed surface is 

equal to 1/ε0 times the total charge enclosed by that surface. 

Integral form of Maxwell’s 1st equation 

………………….. (1) 

and  
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……………. (2) 

Comparing equation (1) and (2) we have 

…………….. (3) 

It is the integral form of Maxwell’s 1st equation. 

Maxwell’s first equation in differential form 

The value of total charge in terms of volume charge density is q=ʃ ρ dv. So 

equation (3) becomes 

 

Applying divergence theorem on left hand side of above equation we have 

 

 

It is called the differential form of Maxwell’s 1st equation. 

 

The Second Maxwell’s equation (Gauss’s law for magnetism): 



The Gauss’s law for magnetism states that net flux of the magnetic field 

through a closed surface is zero because monopoles of a magnet do not 

exist. 

……………. (4) 

It is the integral from of Maxwell’s second equation. 

Applying divergence theorem 

 

This implies that: 

 

It is called differential from of Maxwell’s second equation. 

 

The Third Maxwell’s equation (Faraday’s law of electromagnetic 

induction): 

 

According to Faraday’s law of electromagnetic induction 

…………… (5) 

Since emf is related to electric field by the relation 

 

Also  

https://physicsabout.com/gausss-law/
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Put these values in equation (5) we have 

 

For N=1, we have  

……………(6) 

 

It is the integral form of Maxwell’s 3
rd

 equation. 

Applying stokes theorem on L.H.S. of equation (6) we have  

 

 

It is the differential form of Maxwell’s third equation. 

 

The Fourth Maxwell’s equation (Ampere’s law): 

The magnitude of the magnetic field at any point is directly proportional to 

the strength of the current and inversely proportional to the distance of the 

point from the straight conductors is called Ampere’s law. 

https://physicsabout.com/amperes-circuital-law/


……………. (7) 

It is the integral from of Maxwell’s 4
th
 equation. 

The value of current density 

 

Now the equation (7) becomes 

 

Applying Stoke’s theorem on L.H.S. of above equation, we have 

 

 

Third Maxwell’s equation says that a changing magnetic field produces an 

electric field. But there is no clue in fourth Maxwell’s equation whether a 

changing electric field produces a magnetic field? To overcome this 

deficiency, Maxwell’s argued that if a changing magnetic flux can produce 

an electric field then by symmetry there must exist a relation in which a 

changing electric field must produce a changing magnetic flux. 

 

SAQ.1 

a) Define Four Maxwell’s equations with statement. 

https://en.wikipedia.org/wiki/Maxwell%27s_equations


b) What do you mean by physical significance for all four Maxwell’s 

equations? 

c) Explain the general plane wave solution in source free space for 

Maxwell’s equations. 

 

8.5 Maxwell’s equations and features of their general plane wave 

solution in simple dielectrics: 

 

Consider a region of space filled by “simple dielectrics” materials, that is: 

 Linear: µ and ε are constants; 

 Isotropic: These is full rotational symmetry (no preferred or special 

direction in space); 

 Homogeneous: There is translational symmetry in all directions (no 

space location in space); 

 Source free: The charge density ρ is zero; 

Non-conducting: The conductivity σ is zero, and hence the current density  

   =σ      is also zero; 

In our “simple Dielectric” material, Maxwell’s equations take the from: 

 

If we take the curl of equation (4) we find, using a vector density:  



 

Using equation (1), this becomes: 

 

Taking the time derivative of equation (3) gives: 

 

Then combining equation (6) and (7) we find: 

 

In a “simple Dielectric” Material, the electric field satisfies equation (8): 

 

Similarly, we find that the magnetic field satisfies: 

 

These are the equation for wave travelling with speed v, given by 

 

Experimentally, we find that v is the speed of light in the material. In a 

vacuum, the speed of the wave is c, given by: 

 

Light is an electromagnetic wave. The existence of such waves, and derive 

their properties (including their speed) from Maxwell’s equations. 

The operator:  



 

Is called the Hertzian operator. The wave equations (8) and (10) are: 

 

These equations are necessary, but not sufficient, constraints on the 

possible functions    (    ) and    (    ) we must always check that solution to 

the wave equations (8) and (10) also satisfy Maxwell’s equations.  

We find that the wave equation (8) is solved by:  

 

Where    O and     are constant vectors, and ω and Φ0 are constant scalars. 

Equation (15) is the equation of a plane wave of frequency ω. The fact that 

only a single frequency (i.e. a single value of ω) is present in the wave 

means that the wave is monochromatic. 

The field (15) is a valid solution of the wave equation (8) if     and ω 

satisfy:  

 

 Equation (16) is known as a dispersion relation: it relates the frequency of 

the wave ω to the wave vector    .  

Maxwell’s equations impose further constraints. 

By writing the vectors    O and        terms of components:  



 

We find that for the field given by equation (15): 

 

Maxwell’s equations (with zero charge density): 

 

Is only satisfied for all positions   and times t, if      and    O  

 

Consider our solution (15) to the wave equation: 

 

At fixed position    the field strength     varies sinusoidally, with angular 

frequency ω. 

 

At fixed time t, the field strength varies sinusoidally in the direction of  

with wavelength 2π/k. Along planes perpendicular to    , the field is at the 

same phase. (Consider   where  

Therefore, the electric field    (    ) takes the from of a plane wave 

advancing in the direction of    .  Since     .   O = 0 the field is perpendicular 

to the direction of motion: it is transverse wave.  



 

Fig.8.1 Transverse wave 

 

 

The wave equation (10) for the magnetic field     has a similar solution: 

 

Where there are the same constraints on    0,     and ω.  

Despite the fact that we derived independent wave equations for     and    , 

Maxwell’s equations tell us that the electric and magnetic field s are not 

independent . in particular, we must satisfy: 

 

Substituting in the solution (15) and (23), we find that    , ω and Φ0 must be 

the same foe both   furthermore we must have:   

 



Maxwell’s equations demand that the electric and magnetic fields satisfy 

(26) and (27): 

 

These constrains can be satisfied if the vectors    ,    O  and    0 are mutually 

perpendicular.  

 

 

 

Fig.8.2 Waveform for magnitudes of the electric and magnetic field 

 

 

The magnitudes of the electric and magnetic field satisfy: 

 

Where v is the phase velocity. 

 

 



 

8.6 Differential equation and velocity for electromagnetic waves in 

source free space: 

Maxwell's derivation of the electromagnetic wave equation has been 

replaced in modern physics education by a much less cumbersome method 

involving combining the corrected version of Ampère's circuital law 

with Faraday's law of induction. 

To obtain the electromagnetic wave equation in a vacuum using the 

modern method, we begin with the modern 'Heaviside' form of Maxwell's 

equations. In a vacuum- and charge-free space, these equations are: 

 

These are the general Maxwell's equations specialized to the case with 

charge and current both set to zero. Taking the curl of the curl equations 

gives: 

 

We can use the vector identity 

 

where V is any vector function of space. And 

https://en.wikipedia.org/wiki/Faraday%27s_law_of_induction
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where ∇V is a dyadic which when operated on by the divergence 

operator ∇ ⋅ yields a vector. Since 

 

Then the first term on the right in the identity vanishes and we obtain the 

wave equations: 

 

where 

 

is the speed (i.e. phase velocity) of light in free space. 

 

Differential equation and velocity for electromagnetic waves in 

dielectric medium: 

Consider a plane electromagnetic wave, linearly polarized in the x-

direction that propagates in the z-direction through a transparent dielectric 

medium, such as glass or water. As is well-known, the electric component 

of the wave causes the neutral molecules making up the medium to 

polarize: that is, it causes a small separation to develop between the mean 

positions of the positively and negatively charged constituents of the 

https://en.wikipedia.org/wiki/Dyadics


molecules (i.e., the atomic nuclei and the orbiting electrons). [Incidentally, 

it can be shown that the magnetic component of the wave has a negligible 

influence on the molecules, provided the wave amplitude is sufficiently 

small that the wave electric field does not cause the electrons and nuclei to 

move with relativistic velocities (ibid.).] If the mean position of the 

positively charged constituents of a given molecule, of net charge (+q), 

develops a vector displacement (d) with respect to the mean position of the 

negatively charged constituents, of net charge -q , in response to a wave 

electric field E , then the associated electric dipole moment is P = q d  , 

where d is generally parallel to E (ibid.). Furthermore, if there are N such 

molecules per unit volume then the electric dipole moment per unit 

volume is written P = N q d. In a linear, isotropic, dielectric medium 

(ibid.), 

 

Where ε > 1 is a dimensionless quantity, known as the relative dielectric 

constant, that is a property of the medium in question. In the presence of a 

dielectric medium, 

 

 Above Equations generalize to give 



 

 

When combined with Equation these expressions yield 

 

 

It can be seen that the previous equations are just like the corresponding 

vacuum equations except that εo has been replaced by ε εo . It immediately 

follows that the phase velocity of an electromagnetic wave propagating 

through a dielectric medium is 

 

 

Where c = 1 / (εo µo)
1/2

  is the velocity of light in vacuum, and the 

dimensionless quantity 

 

 

is known as the refractive index of the medium. Thus, an electromagnetic 

wave propagating through a transparent dielectric medium does so at a 



phase velocity that is less than the velocity of light in vacuum by a 

factor n (where n > 1). The dispersion relation of the wave is thus 

 

 

Furthermore, the impedance of a transparent dielectric medium becomes 

 

 

Where Z0 is the impedance of free space 

Incidentally, the signal that travels down a transmission line is a form of 

guided electromagnetic wave. It follows that if the space between the two 

conductors that constitute the line is filled with dielectric material of 

relative dielectric constant ε then the signal propagates down the line at the 

reduced phase velocity 

 

 

This occurs because the dielectric material increases the capacitance per 

unit length of the line by a factor ε, but leaves the inductance per unit 

length unchanged. For the same reason, the presence of the dielectric 

material decreases the impedance of the line by a factor  . Hence, the 

impedance of a dielectric filled co-axial cable is  



 

 

Here, “a” and “b” are the radii of the inner and outer conductors, 

respectively.  

 

SAQ.2 

a) What do you mean by general plane wave solution in simple 

dielectrics for Maxwell’s equations? 

b) Write the Differential equation and velocity for electromagnetic 

waves in source free. 

c) Write the Differential equation and velocity for electromagnetic 

waves in dielectric medium. 



 

 

8.7 Characteristics of electromagnetic waves: 

 

The inherent characteristic of electromagnetic waves is its frequency. 

According to Maxwell, varying the electric field gives rise to a 

magnetic field. An accelerated charge produces a time-varying 

magnetic field which in turn produces a time-varying electric field. 

Thus, an electromagnetic wave consists of sinusoidal time-varying 

electric and magnetic fields, and both the fields are perpendicular to 

each other. 

 

 

Fig.8.3 Waveform for characteristic of electromagnetic waves 

Listed below are some important characteristics and properties of 

electromagnetic waves. 

https://byjus.com/physics/electromagnetic-waves/


 Electromagnetic waves are transverse in nature as they propagate by 

varying the electric and magnetic fields such that the two fields are 

perpendicular to each other. 

 Accelerated charges are responsible to produce electromagnetic 

waves. 

 Electromagnetic waves have constant velocity in vacuum and it is 

nearly equal to 3×10
8
ms

−1
 which is denoted by C = 1/√μoϵo. 

 Electromagnetic wave propagation does not require any material 

medium to travel. 

 The inherent characteristic of an electromagnetic wave is its 

frequency. Their frequencies remain unchanged but its wavelength 

changes when the wave travels from one medium to another. 

 The refractive index of a material is given by: n = √μrϵr 

 Electromagnetic wave follows the principle of superposition. 

 The light vector (also known as the electric vector) is the reason for 

the optical effects due to an electromagnetic wave. 

 In an electromagnetic wave, the oscillating electric and magnetic 

fields are in the same phase and their magnitudes have a constant 

ratio. The ratio of the amplitudes of electric and magnetic fields is 

equal to the velocity of the electromagnetic wave. C = E0/B0 

 The energy is carried by the electric and magnetic fields of 

electromagnetic waves are equal, i.e. the electric energy (uE) and the 

magnetic energy (uM) are equal; uE = uM. 

https://byjus.com/physics/superposition-principle-and-continuous-charge-distribution/


 There is a vector quantity S, called the Poynting vector which 

represents the energy transferred by electromagnetic waves per 

second per unit area. 

 

 

 

Characteristics of impedance: 

The "opposition" to the wave or wave impedance or impedance of a 

medium to a wave is caused by characteristics of the medium analogous to 

the resistance, capacitance and inductance. While resistance is a pretty 

generic term, applicable to different types of waves, the energy storing 

characteristics, capacitance and inductance, could be generalized as 

compliance or stress and inertia or motion. 

When a wave is propagated, it energizes the medium and the speed of the 

propagation is reduced or opposed by the resistance of the medium and by 

its ability to store energy. So both high capacitance or compliance and 

high inductance or inertia of the medium act to slow down the wave or, we 

can say, it takes more time and energy to energize a medium with high 

capacitance and inductance. This for instance, is reflected in a formula for 

the wave propagation speed in an ideal transmission line, where 

both capacitance and inductance contribute symmetrically to oppose or 

slow down the wave. 

 



The impedance, on the other hand, characterizes the tendency of a medium 

to oppose the motion component of the wave at a given stress level or, in 

electrical domain, the tendency to oppose the current or the magnetic field 

at a given level of voltage or electric field. This is reflected in a formula 

for the characteristic impedance of an ideal transmission line, . 

Here, capacitance and inductance are not contributing symmetrically: high 

capacitance encourages the current flow, while high inductance impedes it. 

 

For EM wave in space, the formulas for the propagation speed and 

impedance,  and , have similar meaning and underling 

mechanisms. The propagation is opposed or slowed down by both greater 

magnetic permeability (inductance) and electric permittivity (capacitance) 

of the medium. On the other hand, the impedance (to the motion 

component of the wave) is increased with the magnetic permeability and 

decreased with its electrical permittivity. 

 

Characteristics of refractive index: 

Refractive index is defined as the speed of light in a medium depends on 

the properties of the medium. In electromagnetic waves, the speed is 

dependent on the optical density of the medium. Optical density is the 

tendency of the atoms in a material to restore the absorbed electromagnetic 

energy. The more optically dense material is, the slower the speed of light. 

One such indicator of the optical density of a medium is the refractive 

index. 

https://byjus.com/physics/optical-density/


 

Fig.8.4 Refractive index diagram of a light ray being refracted 

Refractive Index Formula: 

The refractive index is dimensionless. It is a number that indicates the 

number of times slower than a light wave would be in the material than it 

is in a vacuum. The refractive index, represented by symbol n, is the 

velocity of light in vacuum divided by the velocity of light in a medium. 

The formula of the refractive index is as follows: 

n = c/v 

Where, 

 n is the refractive index 

 c is the velocity of light in a vacuum ( 3 × 10
8
 m/s) 

 v is the velocity of light in a substance 



The vacuum has a refractive index of 1. The refractive index of other 

materials can be calculated from the above equation. Higher the refractive 

index, the higher the optical density and slower is the speed of light. The 

table below lists the refractive index of different media. 

Material Refractive Index 

Air 1.0003 

Water 1.333 

Diamond 2.417 

Ice 1.31 

Ethyl Alcohol 1.36 

 

Refractive Index Example: 

The refractive index of glass ng is 1.52 and that of water nw is 1.33. Since 

the refractive index of glass is higher than the water, the speed of light in 

water is faster than the speed of light through glass. If the refractive index 

of a medium is greater than that of another, then the first medium is said to 

be optically denser. Most of the substances we know have a positive 

refractive index having value more than zero. The material will have a 

negative refractive index when it has negative permittivity and 

permeability. 

The refractive index provides a measure of the relative speed of light in 

different media. Knowing the refractive indices of different media helps 

https://byjus.com/physics/permittivity-and-permeability/
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the student to identify the direction in which way the light would bend 

while passing from one medium to another. 

Why is high refractive index important for optical polymers? 

Optical polymers with high refractive index allow light rays to bend more 

within the material, which helps in lowering the profile of the lens. Also, 

as the refractive index increases, the thickness of the lens decreases, 

resulting in less weight. 

What is refractive index gradient? 

 The refractive index gradient is defined as the rate of change of 

refractive index with respect to distance in the material. Distance 

refers to the slope of the refractive index profile at any point. 

 The refractive index gradient is expressed in terms of reciprocal of a 

unit of distance. 

 An example of a refractive index gradient are the rate of change of 

refractive index at any point with respect to distance. 

 The refractive index gradient is a vector point function. 

How does the refractive index vary with wavelength? 

According to the definition of the refractive index, the speed of light is the 

product of frequency and wavelength. The frequency of the light wave 

remains unchanged irrespective of the medium. Whereas the wavelength 

of the light wave changes based on refraction. Hence, the refractive index 

varies with wavelength. 



 

8.8 Skin depth and its importance: 

 

 

Fig.8.5 Center of the conductor for Skin depth 

When an AC current is applied to a conductor, the current concentrates 

near the surface of the conductor and its strength decreases as you go 

towards the center of the conductor. The depth till which current flows in a 

conductor is called as Skin Depth. The figure shows the cross section of a 

cylindrical conductor, the intensity of the red color represents the intensity 

of the current in a cylindrical conductor. 

The Skin Depth is dependent on the frequency of the current/signal and the 

resistivity of the material. It inversely proportional to the frequency and 

directly proportional to the resistivity. 

The Skin Depth can be calculated using the following formula: 



 

Everything RF has created a calculator which enables you to easily 

calculate Skin Depth for a particular material at a particular frequency. 

Importance of skin depth: 

1) It conveys you that resistive element of line increases, in turn voltage 

drop, with decrease in depth. 

2) As skin depth reduces, it will have less power handling capacity. 

3) Skin depth conveys you how much material (inner) is not required in 

building transmission line. This will save material (in turn cost) and it 

reduces the weight (easy handling). 

4) Decrease in skin depth creates power concentration increase on surface 

and thus nearby area you need more space to avoid discharge and sparking 

as well as give rise to capacitive effect. 

5) It will increases loss tangent as leakage will increase  

SAQ.3 

a) What do you mean by Characteristics of electromagnetic waves. 



b) Define the impedance and refractive index. 

c) Define the Skin depth and its importance. 

d) The speed of light in an unknown medium is 1.52 × 10
8
 m/s. 

Calculate the refractive index of the medium. 

e) Find the refractive index of the medium whose critical angle is 25°. 

 

Examples:   

Q.1 (a) Show that Maxwell's equations are consistent with the 

conservation of electric charge. 

(b)  Show that the power P injected into a circuit by an electric field is 

given by ∫j∙E dV.  Verify that in steady state this reproduces the Ohmic 

heat loss in a "thin wire" approximation. 

Solution: 

 Concepts: 

Maxwell's equations 

 Reasoning: 

(a)  If we have a conserved quantity in a volume V, then the rate at 

which it flows out of the volume must equal the rate it decreases 

inside the volume.   

For charge this is expressed as ∫closed_Aj∙ndA = -(∂/∂t)∫VρdV for any 

volume V. 

Gauss' theorem then yields ∫V∇∙jdV = -(∂/∂t)∫VρdV for any volume 



V. 

Therefore ∇∙j = -∂ρ/∂t. 

 Details of the calculation: 

Maxwell's equations relate the sources and the fields. 

∇×B = μ0j + (1/c
2
)∂E/∂t (SI units), ∇∙(∇×B) = 0 --> μ0∇∙j + 

(1/c
2
)(∂/∂t)∇∙E = 0. 

∇∙E = ρ/ε0, μ0∇∙j + (1/(ε0c
2
))(∂ρ/∂ t) = 0. 

μ0ε0 = 1/c
2
, ∇∙j + (∂ρ/∂ t) = 0. 

Maxwell's equations are consistent with the conservation of electric 

charge. 

(b)  For a single charge, the rate of doing work by external 

fields B and E is qv∙E, in which v is the velocity of the charge.  Let 

ρdV = dq be the amount of charge in a volume element dV. 

dW/dt = dq v∙E = ρv∙E dV = j∙E dV = rate at which work is done by 

the field on the charges in dV.  The power P injected into a circuit is 

obtained by integration dW/dt over the volume of the circuit, P = 

∫j∙E dV.  If we consider a steady current to a thin wire, then for an 

element of length dl and cross section dA of the wire, dV = dl∙dA.  

In this approximation j is parallel to dl and E does not vary 

appreciably over the cross section of the wire.  Hence   ∫j∙E dV = 

 ∫j∙dA ∫E∙dl = IV = I
2
R  which is the Ohmic heat loss. 

Q.2 Do the fields E = i E0cos(ωt − kx ), B = 0  satisfy Maxwell's 

equations? If a special condition for ρ and  j is needed, what is it? 

Solution: 



 Concepts: 

Maxwell's equations 

∇∙E = ρ/ε0,  ∇×E = -∂B/∂t,  ∇∙B = 0,  ∇×B = μ0j + (1/c
2
)∂E/∂t 

 Reasoning 

We are supposed to check if E = i E0 cos (ωt − kx) is consistent with 

Maxwell's equations. 

 Details of the calculation: 

∇·E = ∂[E0cos (ωt − kx)]/∂x = kE0sin(ωt − kx) ≠ 0, ρ ≠ 0 .  

ρ = kε0E0sin(ωt − kx). 

Since B = 0, ∇·B = 0. 

∇×E = 0,  ∂B/∂t = 0,  B = 0 is a possible solution.  

The equation of continuity follows from Maxwell's equations. 

∇∙j = -(∂ρ/∂t) = -ωkε0E0cos(ωt − kx). 

Since B = 0, ∇×B = 0.  This requires j = (-1/μ0c
2
)∂E/∂t = 

(ω/μ0c
2
)E0sin(ωt − kx)i. 

∇∙j = ∂[(ω/μ0c
2
)E0sin(ωt − kx))]/∂x = (-kω/μ0c

2
)E0cos(ωt − kx) = -

ωkε0E0cos(ωt − kx). 

The fields E = i E0cos(ωt − kx ), B = 0  satisfy Maxwell's equations  

with ρ = kε0E0sin(ωt − kx) and j  = (ω/μ0c
2
)E0sin(ωt − kx)i. 

Q.3 (a)  Write down Maxwell's equations in vacuum for a charge density 

and current density free medium (ρ = 0 and j = 0). 

(b)  Show that the electric field and the magnetic field satisfy a wave 

equation. 

(c)  Write down plane-wave solutions of the wave equations for the 

electric field and magnetic field.  How are they related to each other?  Find 

the group velocity and phase velocity of the electromagnetic waves. 



Solution: 

 Concepts: 

Maxwell's equations 

 Reasoning: 

Maxwell's equations in free space yield the wave equation for 

both E and B. 

 Details of the calculation: 

(a) ∇∙E = 0, ∇×E = -∂B/∂t, ∇∙B = 0, ∇×B = (1/c
2
)∂E/∂t. 

(b) ∇×(∇×E) = ∇(∇·E) - ∇2
E = -(∂/∂t)(∇×B) = -μ0ε0∂

2
E/∂t

2
. 

∇2
E = μ0ε0∂

2
E/∂t

2
. 

∇×(∇×B) = ∇(∇·B) - ∇2
B = μ0ε0(∂/∂t)(∇×E) = -μ0ε0∂

2
B/∂t

2
. 

∇2
B = μ0ε0∂

2
B/∂t

2
. 

(c)  Plane wave solutions E = E((k/k)∙r - vt),  B = B((k/k)∙r - vt) 

exist.   

(v = (μ0ε0)
-½

 = c)  All plane wave solutions are linear superpositions 

of harmonic waves of the form sin(k∙r - ωt) and cos(k∙r - ωt), with 

ω/k = c. 

The phase velocity is ω/k = c, the group velocity is dω/dk = c.  There 

is no dispersion for EM waves in free space. 

Q.4 Consider an electromagnetic traveling wave with electric and 

magnetic fields given by 

Ex = E0cos(kz - ωt) + φ), and By = B0cos(kz - ωt) + φ). 

Using Maxwell's equations show that B0 can be written in terms of E0. 

Solution: 



 Concepts: 

Maxwell's equations 

 Reasoning: 

Maxwell's equations in free space  yield the wave equation for 

both E and B.   They can also be used to show 

that E ⊥ B,  E ⊥ k,  B ⊥ k,  B = (μ0ε0)
½
(k/k)×E. 

 Details of the calculation: 

From Maxwell's equations: 

∇×E = -∂B/∂t. 

∇×E = ∂Ex/∂z j = -kE0sin(kz - ωt + φ) j,  -∂B/∂t = -ωB0sin(kz - ωt + 

φ) j. 

Therefore kE = ωB0,  B0 = (k/ω)E0. 

In free space k/ω = 1/c. 

Q.5 Use Maxwell's equations to find the magnetic field of an EM wave in 

vacuum for which the electric field is given by  E = (E0xi + E0yj)sin(ωt - kz 

+ φ). 

 

Solution: 

 Concepts: 

Maxwell's equations 

 Reasoning: 

Maxwell's equation in vacuum are 

∇∙E = 0,  ∇×E = -∂B/∂t,  ∇∙B = 0, ∇×B = (1/c
2
)∂E/∂t. 

Using these equations we can derive the homogeneous wave 



equation for E and B and show that   

E ⊥ B,  E ⊥ k,  B ⊥ k,  B = (1/c
2
)∂(k/k)×E. 

 Details of the calculation: 

For the given plane wave:  

(∇×E)x = ∂Ez/∂y - ∂Ey/∂z = k E0ycos(ωt - kz + φ) = -∂Bx/∂t 

Therefore Bx = (k/ω)E0ysin(ωt - kz + φ) = -(E0y/c)sin(ωt - kz + φ) 

(∇×E)y = ∂Ex/∂z - ∂Ez/∂x = -k E0xcos(ωt - kz + φ) = -∂By/∂t 

Therefore By = (k/ω)E0xsin(ωt - kz + φ) = (E0x/c)sin(ωt - kz + φ) 

(∇×E)z = ∂Ey/∂x - ∂Ex/∂y = -∂Bz/∂t = 0, therefore Bz = 0. 

(We are not interested in constant fields.) 

B = (1/c)(E0xj - E0yi)sin(ωt - kz + φ). 

Q.6 Starting with Maxwell's equations: 

(a)  Derive the wave equations for a light wave in vacuum.  Write out 

solutions for these equations for E and B. 

(b)  Show that the electric and magnetic fields are in phase, perpendicular 

to each other and perpendicular to the direction of motion.  

(c)  Determine the relative magnitude of the E and B fields. 

Solution: 

 Concepts: 

Maxwell's equations 

 Reasoning: 

In regions where ρ and j are zero Maxwell's equations lead to the 

homogeneous wave equation for E and B.  All solutions can be 

viewed as linear superpositions of sinusoidal plane wave solutions.  



Inserting these solutions into Maxwell's equations we derive (b) and 

(c). 

 Details of the calculation: 

(a)  Maxwells equations in SI units are 

∇ ∙E = ρ/ε0,  ∇ ×E = -∂B/∂t,  ∇ ∙B = 0,  ∇ ×B = μ0j + (1/c
2
)∂E/∂t 

Assume ρ and j are zero in the medium. 

∇ ×(∇ ×E) = ∇ (∇ ∙E) - ∇ 2
E = -(∂/∂ t)(∇ ×B) = -μ0ε0∂

2
E/∂t

2
. 

∇ 2
E = μ0ε0∂

2
E/∂t

2
. 

∇ ×(∇ ×B) = ∇ (∇ ∙B) - ∇ 2
B = μ0ε0(∂/∂ t)(∇ ×E) = -μ0ε0∂

2
B/∂t

2
. 

∇ 2
B = μ0ε0∂

2
B/∂t

2
. 

μ0ε0 = 1/c
2
. 

(b)  Each Cartesian component of E and B satisfies the 3-

dimensional, homogeneous wave equation. 

Sinusoidal plane wave solutions E(r,t) = E0 exp(i(ki∙r - ωt)),  B(r,t) 

= B0 exp(i(ki∙r - ωt)) exist. 

∇ ∙E = ∂Ex/∂x + ∂Ey/∂y +∂Ez/∂z = ik∙E  = 0 

∇ ∙E = 0 requires that E∙k = 0 for radiation fields, i.e. that E is 

perpendicular to k. 

Similarly, ∇ ∙B = 0 requires that B∙k = 0 for radiation fields. 

∇ ×E = -∂B/∂t requires that ik×E = iωB,  i.e. B is perpendicular 

to E and k. 

(c) B = (k/ω)E = E/c. 

Q.7 A time-dependent, vacuum electromagnetic field in three dimensions 

(x, y, z) at time, t = 0, is shown in the figure. 



 

It has the following form: 

E(r, t = 0) = i  E0exp(-(z/a)
2
),  B(r, t = 0) = 0. 

(a) Evaluate ∂E/∂t at t = 0. 

(b) Evaluate ∂B/∂t at t = 0.  

(c) Evaluate ∂
2
E/∂t

2
 at t = 0 and show that E satisfies the wave equation at 

t = 0. 

(d) What are the values of the fields E(r, t ) and B(r, t ) for a general time t, 

satisfying the inequality ct/a >> 1. 

(e) Sketch in a single diagram the fields found in (d). 

Solution: 

 Concepts: 

Maxwell's equations 

 Reasoning: 

Maxwell's equations relate partial derivatives of E and B with 

respect to space and time and yield the wave equation 

 Details of the calculation: 

∇ ∙E = 0,  ∇ ∙B = 0, 

∇ ×E = -∂B/∂t,  ∇ ×B = (1/c
2
)∂E/∂t 

(a)  Here E(r, t = 0) = i  E0exp(-(z/a)
2
),  B(r, t = 0) = 0. 



At t = 0, ∇ ×B = (1/c
2
)∂E/∂t = 0, ∂E/∂t = 0. 

(b)  ∇ ×E = -∂B/∂t = j (∂Ex/∂z),  ∂B/∂t = j (2z/a
2
) E0exp(-(z/a)

2
). 

(c)  ∂
2
E/∂t

2
 = c

2
(∂/∂t)(∇ ×B)  = c

2∇ ×∂B/∂t. 

At t = 0, ∂
2
E/∂t

2
 = c

2∇ ×(j (2z/a
2
) E0exp(-(z/a)

2
)). 

∂
2
E/∂t

2
 = -c

2
i (∂/∂z)[(2z/a

2
) E0exp(-(z/a)

2
))] = c

2
i (∂

2
/∂z

2
)[E0exp(-

(z/a)
2
))] = c

2∇ 2
E. 

∇ 2
E -( 1/c2)∂

2
E/∂t

2
 = 0. 

E satisfies the wave equation at t = 0. 

(d)  The given E can only satisfy the wave equation if it is the sum of 

a function of z - ct and another function of c + zt.  The same holds 

for B. 

E(r, t) = i [(E0/2)(exp(-((z-  ct)/a)
2
) + exp(-((z + ct)/a)

2
)], 

B(r, t) = j [(E0/(2c))(exp(-((z - ct)/a)
2
) - exp(-((z + ct)/a)

2
)]. 

(e)  We have two Gaussian-shaped electromagnetic pulses one 

traveling into the positive and one in the negative z-direction. 

 



Q.8 In unbounded free space the electric and magnetic fields satisfy 

∇ ∙E = ∇ ∙B = 0, ∇ ×E = -∂B/∂t, ∇ ×B = (1/c
2
)∂E/∂t, and therefore  the 

homogeneous wave equation. 

Assume that at t = 0 E(r, t = 0) = j f(x) and B(r, t = 0) = 0. 

Find E(r,t) and B(r, t) for t > 0. 

Solution: 

 Concepts: 

Maxwell's equations 

 Reasoning: 

Maxwell's equations relate partial derivatives of E and B with 

respect to space and time and yield the wave equation 

 Details of the calculation: 

E and B must satisfy the homogeneous wave equation, ∇ 2
E = 

(1/c
2
)∂

2
E/∂t

2
. 

We have E ⊥  B,  E, B ⊥  direction of propagation, E×B pointing in 

the direction of propagation. 

E is perpendicular to the xz-plane.  ∇ ×E = k ∂Ey/∂x =  k ∂f(x)/∂x. 

B points in the ±z-direction.  The EM wave therefore propagates 

along the ±x-direction. 

The given E can only satisfy the wave equation if it is the sum of a 

function of x - ct and another function of x + ct.  The same holds 

for B. 

E(r, t) = j ½(f(x - ct) + f(x + ct)), 

B(r, t) = k ½(f(x +  ct) - f(x + ct)). 



We have two electromagnetic pulses, one traveling into the positive 

and one in the negative x-direction. 

 

Q.9 What is the refractive index of the medium in which the speed of light 

is 1.5 × 10
8
m/s? 

Solution: The refractive index of the medium can be calculated using the 

formula: 

n = c/v 

Substituting the values in the equation, we get 

n = 3 × 10
8
 m/s/1.5 × 10

8
 m/s = 2 

The refractive index of the medium is 2. 

Q.10 The speed of light in an unknown medium is 1.76 × 10
8
 m/s. 

Calculate the refractive index of the medium. 

Solution: The refractive index of a medium is calculated by the formula: 

n = c/v 

where c is the speed of light in vacuum 

v is the speed of light in the medium 

Substituting the values in the above equation, we get 

n = (3 × 10
8
)/(1.76 × 10

8
) = 1.7045 



Q.11 An optical fibre made up the glass with refractive index n1 = 1.5 

which is surrounded by another glass of glass with refractive index n2. 

Find the refractive index n2 of the cladding such that the critical angle 

between the two cladding is 80°. 

Solution:  

Critical angle, θ = 80° 

Refractive index, n1 = 1.5 

Refractive index n2 = ? 

Using the below formula, we can calculate n2: 

 

Q.12 Find the refractive index of the medium whose critical angle is 40°. 

Solution:  

Critical angle, θ = 40° 

Refractive index of the medium, μ = ? 

 

Summary: 

 

1) Maxwell was the first person to calculate the speed of propagation of 

electromagnetic waves which was same as the speed of light and 

came to the conclusion that EM waves and visible light are similar. 

https://byjus.com/physics/electromagnetic-waves/


2) Maxwell’s equations integral form explains how the electric charges 

and electric currents produce magnetic and electric fields. 

3) Maxwell’s equations are the basic equations 

of electromagnetism which are a collection of Gauss’s law for 

electricity, Gauss’s law for magnetism, Faraday’s law of 

electromagnetic induction and Ampere’s law for currents in 

conductors. 

4) To obtain the electromagnetic wave equation in a vacuum using the 

modern method, we begin with the modern 'Heaviside' form of 

Maxwell's equations. 

5) Consider a region of space filled by “simple dielectrics” materials, 

that is: Linear, Isotropic, Homogeneous, Source free and Non-

conducting. 

6) If the mean position of the positively charged constituents of a given 

molecule, of net charge (+q), develops a vector 

displacement (d) with respect to the mean position of the negatively 

charged constituents, of net charge -q , in response to a wave electric 

field E , then the associated electric dipole moment is P = q d  , 

where d is generally parallel to E (ibid.). Furthermore, if there 

are N such molecules per unit volume then the electric dipole 

moment per unit volume is written P = N q d. In a linear, isotropic, 

dielectric medium (ibid). 

7) The inherent characteristic of electromagnetic waves is its 

frequency. According to Maxwell, varying the electric field gives 

rise to a magnetic field. An accelerated charge produces a time-

varying magnetic field which in turn produces a time-varying 

electric field. 

https://physicsabout.com/electromagnetism/
https://physicsabout.com/gausss-law/
https://physicsabout.com/faradays-law-of-induction/
https://physicsabout.com/faradays-law-of-induction/
https://physicsabout.com/amperes-circuital-law/


8) The "opposition" to the wave or wave impedance or impedance of a 

medium to a wave is caused by characteristics of the medium 

analogous to the resistance, capacitance and inductance. 

9) Refractive index is defined as the speed of light in a medium 

depends on the properties of the medium. In electromagnetic waves, 

the speed is dependent on the optical density of the medium. 

10)  When an AC current is applied to a conductor, the current 

concentrates near the surface of the conductor and its strength 

decreases as you go towards the center of the conductor. The depth 

till which current flows in a conductor is called as Skin Depth. 

 

Terminal Questions: 

1) Explain the Four Maxwell’s equations with statement and physical 

significance. 

2) Explain the Maxwell’s equations for general plane wave solution in 

source free space. 

3) Explain the Maxwell’s equations for general plane wave solution in 

simple dielectrics. 

4) What do you mean by Differential equation and velocity for 

electromagnetic waves in source free space? 

5) Define the Differential equation and velocity for electromagnetic 

waves in dielectric medium. 

6) Write short notes on: (i) Characteristics of electromagnetic 

waves,(ii) Impedance, (iii) Refractive index. 

https://byjus.com/physics/optical-density/


7) Explain the Skin depth and its importance. 

8) The speed of light in an unknown medium is 1.87 × 10
8
 m/s. 

Calculate the refractive index of the medium. 

9)  Find the refractive index of the medium whose critical angle is 60°. 

10)  An optical fibre made up the glass with refractive index n1 = 

2.5 which is surrounded by another glass of glass with refractive 

index n2. Find the refractive index n2 of the cladding such that the 

critical angle between the two cladding is 60°. 
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9.1 Introduction: 

A plane wave is a constant-frequency wave, whose value at any moment is 

constant over any plain that is perpendicular to fixed directs of spouse. The 

speed of any periodic wave is the product of its wavelength and frequency. 



v = λf. The speed of any electromagnetic waves in free space is the speed 

of light c = 3*10
8
 m/s. Electromagnetic waves can have any wavelength λ 

or frequency f as long as λf = c. 

Electromagnetic waves are ubiquitous in nature (i.e., light) and used in 

modern technology—AM and FM radio, cordless and cellular phones, 

garage door openers, wireless networks, radar, microwave ovens, etc. 

These and many more such devices use electromagnetic waves to transmit 

data and signals. 

Every form of electromagnetic radiation, including visible light, oscillates 

in a periodic fashion with peaks and valleys, and displaying a 

characteristic amplitude, wavelength, and frequency that defines the 

direction, energy, and intensity of the radiation. 

Electromagnetic waves are transverse waves, similar to water waves in the 

ocean or the waves seen on a guitar string. This is as opposed to the 

compression waves of sound. As you learned in Wave Motion, all waves 

have amplitude, wavelength, velocity and frequency. 

The Poynting theorem should read rate of change of energy in the fields = 

negative of work done by the fields on the charged particles minus 

the Poynting vector term. The compensating change in momentum and 

energy would occur in the bodies holding the electric and magnetic fields. 

The vector obtained in the direction of a right-hand screw from the cross-

product (vector product) of the electric field vector rotated into the 

magnetic field vector of an electromagnetic wave. 



The energy stored in a magnetic field is equal to the work needed to 

produce a current through the inductor. Energy is stored in 

a magnetic field. 

Momentum is a vector quantity; i.e., it has both magnitude and direction. 

Isaac Newton's second law of motion states that the time rate of change 

of momentum is equal to the force acting on the particle. 

The Maxwell stress tensor (named after James Clerk Maxwell) is a 

symmetric second-order tensor used in classical electromagnetism to 

represent the interaction between electromagnetic forces and mechanical 

momentum. ... The latter describes the density and flux of energy and 

momentum in space time. 

9.2 Objectives: 

After studying this unit you should be able to 

 Explain and identify Differential equation of plane electromagnetic 

waves in conducting media and its solution. 

 Study and identify Behavior and property of electromagnetic waves 

for good dielectric and good conductors. 

 Explain and identify Poynting theorem (statement and derivation). 

 Study and identify Expression for electromagnetic energy density. 

 Explain and identify Momentum density vector and its importance 

 Study and identify Maxwell’s stress tensor (statement and 

derivation). 

 

9.3 Differential equation of plane electromagnetic waves in 

conducting media and its solution: 



In a “simple” dielectric material, we derived the wave equations:  

 

To derive these equations, we used Maxwell’s equations with the 

assumptions that the charge density ρ and current density J were zero, and 

that the permeability μ and permittivity ε were constants. We found that 

the above equations had plane- wave solutions, with phase velocity: 

 

Maxwell’s equations imposed additional of the electric and magnetic 

fields. How are the equations (and their solutions) modified for the case of 

electrically conducting media? We shall restrict our analysis to the case 

ohmic conductors, which are defined by 

 

where σ is a constant, the conducting of the material. 

All we need to do is substitute from equation (4) into Maxwell’s equations, 

then proceed as for the case of a dielectric. 

In our “simple” conductor, Mexwell’s equation take the from: 

 

Where  is the current density. Assuming an ohmic conductor, 

We can write: 

 

So equation (8) becomes: 

 



Taking the curl of equation (7) and making appropriate substitutions as 

before, we arrive at the wave equation: 

 

The wave equation for the electric field in a conducting material is (11): 

 

Let us try a solution of the same form as before: 

 

Remember that to find the physical field; we have to take the real part. 

Substituting (13) into the wave equation (11) gives the dispersion relation: 

 

Compared to the dispersion relation for a dielectric, the new feature is the 

presence of an imaginary term in σ. This means the relationship between 

the wave vector  and the frequency ω is a little more complicated than 

before.   

From the dispersion relation (14), we can expect the wave vector  to 

have real and imaginary parts. Let us write: 

 

For parallel real vectors and  . 

Substituting (15) into the dispersion relation (14) and taking real and 

imaginary parts, we find: 

 

and 

 



Equations (16) and (17) give the real and imaginary parts of the vector

in the frequency ω, and the material properties μ, ε and σ. 

Using equation (15) the solution (13) to the wave equation in a conducting 

material can be written: 

 

 

The first exponential factor,  given the usual plane-wave 

variation of the field with position and time t; note the conductivity of 

the material affects the wavelength for a given frequency. 

The second exponential factor, given an exponential decay in the 

amplitude of the wave. 

 

 

Fig.9.1 Plane monochromatic wave in a conducting Material 

 

In a “simple” non-conducting material there is no exponential decay of the 

amplitude: electromagnetic waves can travel for ever, without any loss of 

energy. 

If the wave enters an electrical conductor, however, we can expect very 

different behavior. The electrical field in the wave will cause currents to 

flow in the conductor. When a current flows in a conductor (assuming it is 



not a superconductor) there will be some energy changed into heat. This 

energy must come from the wave. Therefore, we expect the wave 

gradually to decay. 

The varying electric field must have a magnetic field associated with it. 

Presumably, the magnetic field has the same wave vector and frequency as 

the electric field: this is the only way we can satisfy Maxwell’s equations 

for all positions and times. 

Therefore, we try a solution of the from: 

 

Now we use Maxwell’s equation (7): 

 

which gives: 

 

or: 

 

The magnetic field in a wave in a conducting material is related to the 

electric field by (22) 

 



As in a non-conducting material, the electric and magnetic fields are 

perpendicular to the direction of motion (the wave is a transverse wave) 

and are perpendicular to each other. 

But there is a new feature, because the wave vector is complex. 

In a non-conducting material, the electrical and magnetic fields were in 

phase: the expressions for the fields both had the same phase angle ϕ0. In 

complex notation, the complex phase angles of field amplitudes  and 

were the same. 

In a conductor, the complex phases of gives a phase difference between 

the electric and magnetic fields. 

In a conducting material, there is a difference between the phase angles of 

 and , given by the phase angle ϕ of . 

This is: 

 

 

 

Fig.9.2 Difference between the phase angles 



 

Plane monochromatic wave in a poor conductor: 

Let us consider the special case of a good insulator. In this case: 

 

From equation (16), we then have: 

 

and from equation (17) we have: 

 

It follows that β << α. We recover the same situation as in the case of a 

non-conducting material. The decay of the wave is very slow (in terms of 

the number of wavelengths); the magnetic and electric components of the 

wave are approximately in phase (ϕ ≈ 0), and are related by: 

 

where the phase velocity vp is, as before, given by   

 

9.4 Behavior and property of electromagnetic waves for good 

dielectric and good conductors: 

(i) Behavior and property of Plane monochromatic electromagnetic 

wave in a good conductor: 



Let us consider the special case of a very good conductor. In this case:  

 

From equation (16), we then have: 

 

And from equation (17) we have: 

 

In the case of a very good conductor, the real and imaginary parts of the 

wave vector  become equal. This means that the decay of the wave is 

very fast in terms of the number of wavelengths. Note that the vectors  

and  have the same units as , i.e. meters
-1

. 

 

Phase velocity in a good conductor:  

The electric field in the wave varies as (18): 

            
                         

      ………………….. (32) 

The phase velocity is the velocity of a point that stays in phase with the 

wave. Consider a wave moving in the +z direction: 

            
                   

………………….. (33) 



For a point staying at a fixed phase, we must have: 

 

So the phase velocity is given by: 

   
  

  
 

 

 
 

………………….. (35) 

But note that in a good conductor, α is itself a function of ω.  

For a poor conductor (σ << ωε), we have: 

       

………………….. (36) 

So the phase velocity in a poor conductor is: 

 

If μ and ε are constants (i.e. are independent of ω) then the phase velocity 

is independent of the frequency: there is no dispersion. 

However, in a good conductor (σ >> ωε), we have: 

 

Then the phase velocity is given by: 

 

The phase velocity depends on the frequency: there is dispersion! 



The presence of dispersion means that the group velocity vg (the velocity 

of a wave pulse) can differ from the phase velocity vp (the velocity of a 

point staying at a fixed phase of the wave).  

To understand what this means, consider the superposition of two waves 

with equal amplitudes, both moving in the +z direction, and with similar 

wave numbers: 

 

Using a trigonometric identity: 

 

The electric field can be written: 

 

where : 

 

We have written the total electric field in our superposed waves as (42): 

 

Assuming that Δk << k0, the first trigonomatric factor represents a wave of 

(short) wavelength 2ᴨ/ k0 and phase velocity: 

 



While the second trigonometric factor represents a modulation of (long) 

wavelength 2ᴨ/ Δk, which travels with velocity:  

 

vg is called the group velocity. Since Δω represents the change in 

frequency that corresponds to a change Δk in wave number, we can write:  

 

 

Fig.9.3 Waveform representation of phase velocity with group velocity 

The red wave moves with the phase velocity vp; the modulation 

(represented by the blue line) moves with group velocity vg. 

Since the energy in a wave depends on the local amplitude of the wave, the 

energy in the wave is carried at the group velocity vg. 

If ther is no dispertion, then the phase velocity is independent of 

frequency: 

 

and the group velocity is equal to the phase velocity: 

 



in the absence of dispersion, a modulation resulting from the superposition 

of two waves with similar frequencies will travel at the same speed as the 

waves themselves. 

However, if there is dispersion, then the group velocity can differ from the 

phase velocity. 

Group velocity of an EM wave in a good conductor: 

The dispersion relation for an electromagnetic wave in a good conductor 

is, from (38): 

 

Where α is the real part of the wave vector. The group velocity is then: 

 

Comparing with equation (39) for the phase velocity of an electromagnetic 

wave in a good conductor, we find that: 

 

In other words, the group velocity is approximately twice the phase 

velocity.  

The skin depth of a good conductor: 

Skin depth is inversely proportional to square root of frequency. 



  
 

 
  

 

    
 

The real part, α, of the wave vector k in a conductor gives the wavelength 

of the wave. Β measures the distance that the wave travels before its 

amplitude falls to 1/e of its original value. Let, the direction in a good 

conductor as: 

                                     

………………….. (53) 

where: 

                 
               

………………….. (54) 

The amplitude of the wave falls by a factor 1/e in a distance 1/β. We 

define the skin depth δ: 

 

From equation (31), we see that for a good conductor (σ >> ωε), the skin 

depth is given by: 

 

For example, consider silver, which has conductivity σ ≈ 6.30 x 10
7
 Ω

-1
 m

-

1
,  



and permittivity ε ≈ ε0 ≈ 8.85 x 10
-12

 Fm
-1

. 

For radiation of frequency 10
10

 Hz, the “good conductor” condition is 

satisfied, and the skin depth of the radiation is approximately 0.6 micron 

(0.6 x 10
-6

 m). 

Note that in vacuum, the wavelength of radiation of frequency 10
10

 Hz is 

about 3 cm; but in silver, the wavelength is: 

 

The phase difference between the electric and magnetic fields in a good 

conductor is given by: 

 

So the phase difference is approximately 45
o
. 

 

Fig.9.4 Phase difference between the plane 

 

EM wave impedance in a good conductor:  

Using the plane wave solutions: 



 

in Maxwell’s equation:  

 

and using also the relation , we find the relation between the 

electric field and magnetic intensity: 

 

The vector  ,  and   are mutually perpendicular. Therefore, we can 

write for the wave impedance: 

 

 

EM wave impedance in a good conductor: 

In a good conductor (σ >> ωε), we have (31): 

 

It the follows that the wave impedance (63) in a good conductor is given 

by:  

 



Note that the impedance is now a complex number. As we shall see later, 

the behavior of waves on a boundary depends on the impedances of the 

media on either side of the boundary.  

The complex phase of the impedance will tell us about the phases of the 

waves reflected from and transmitted across the boundary. 

Energy densities in an EM wave in a good conductor: 

The time averaged energy densities in the electric and magnetic fields are: 

 

The ratio is: 

 

In a good conductor, the square of the square of the magnitude of the 

impedance is: 

 

Hence, in a good conductor, most of the energy is in the magnetic field: 

 

(ii) Behavior and property of electromagnetic waves for good 

dielectric (Propagation of EM Waves in Different Mediums): 

In electromagnetic fields, the materials are classified as conductors, 

dielectrics and lossy dielectric. The electrical parameters such as µ, є and 



σ are the variable parameters that decide the type of medium. Different 

materials affect the materials differently. 

Suppose if we pass through a tunnel or under the bridge, our radio ceases 

to receive the signals and also compared to the day, during the night time, 

we will experience a better reception of radio signals. Thus the waves are 

affected by the materials or environmental conditions. 

So it is necessary to know the propagation of electromagnetic waves in 

order to choose the appropriate values of frequency, power, type of wave 

and other parameters needed for the design of applications include 

transmission lines, antennas, waveguides, etc. 

Consider the waves obtained for a medium from the above equations 

∇2
 E   = µ σ × ∂ E   / ∂t + µ є (∂

2
 E   / ∂t

2
) 

∇2
H   = µ σ (∂ H   / ∂t) + µ є (∂

2
H   / ∂t

2
) 

Both electric and magnetic fields are varying with time for a uniform plane 

wave. Then, the partial derivative with respective time can be replaced by 

jw. Thus, the electric and magnetic fields can be written as 

∇2
E   = µ σ × (jω E  ) + µ є (jω)

2
 E   

∇2
E   = [jωµ (σ + jω є)] E   

Similarly 

∇2
 H   = [jωµ (σ + jω є)] H   

The above two equations are called as wave equation in a waveform. In 

the above equations the terms inside the bracket is same and properties of 



the medium through which the wave is propagating is represented by this 

term. This term is equal to the square of a propagation constant ɣ. Then the 

wave equations becomes 

∇2
 E   = ɣ

2
 E   

∇2
 H   = ɣ

2
 H   

In terms of the properties of the medium, the propagation constant is given 

as 

ɣ = √[jωµ (σ + jω є)] = α + j β 

In general, the wave gets attenuated when it travels through a medium, 

hence the amplitude of the wave get attenuated. This is represented by the 

real part of the propagation constant and it is given by 

α = ω √ ((µ є / 2) √ (1 + (σ / ω є) 2)) – 1) 

Similarly, the phase change occurs in a wave when it propagates through a 

medium. This phase change is represented as imaginary part of the 

propagation constant and is given as 

β = ω √ ((µ є / 2) √ (1 + (σ / ω є) 2)) + 1 

And also the intrinsic impedance of a medium can be expressed as 

η = √[(jωµ) / (σ + jω є)] 

Uniform Plane Wave in Free Space 

For free space J = 0, σ = 0, є = єo and µ = µo then the properties of the 

propagation constant are 



α = 0 and 

β = ω √ (µo єo) 

Therefore the propagation constant is purely imaginary for free space. 

 

Uniform Plane Wave in Lossless Dielectric: 

For a perfect or lossless dielectric the properties are given as, σ = 0, є = єo 

єr and µ = µo µr. In both free space medium and lossless dielectric medium 

σ = 0, so the analysis of the wave propagation is much similar in both 

cases. But as the permeability and permittivity values are different then 

expression in both cases gets varied. 

The Velocity of propagation,  

                     v = (1/√(µ є)) 

= (1/√( µo µr єo єr)) = 1/(√( µo єo) √ (µr єr))) = 1/(√( µo єo)/ √ (µr єr))) 

Therefore 

v = c/ √ (µr єr) m/s 

The propagation constant, 

ɣ = √[jωµ (σ + jω є)] m-1 

By substituting σ = 0, є = єo єr and µ = µo µr in the above equation for a 

perfect or lossless dielectric, we get 

ɣ = +/- jω √(µє) m-1 



And also attenuation constant, α = 0 

The phase constant, 

β = ω √ (µ є) rad/m 

Intrinsic Impedance, 

η = √[(jωµ) / (σ + jω є)] ohms 

= √(µo/ єo) √(µr/ єr) 

= ηo√(µr/ єr) 

η = 377√(µr/ єr) ohms 

Uniform Plane Wave in Lossy Dielectric: 

A lossy dielectric is a poor insulator, in which free charges conducts up to 

some extent in partial conducting medium. It is an imperfect conductor 

and imperfect dielectric (which is a partial conducting medium) with σ ≠ 

0. 

The propagation constant is given as 

ɣ = √[jωµ (σ + jω є)] 

Rearranging the terms, we get 

ɣ = √[jω є (1 + (σ/ jω є)) jωµ] 

Therefore,  

ɣ = α + j β= jω √µє √ (1 – j (σ/ ω є)) 



The above equation gives the propagation constant for lossy dielectric 

medium which is different from lossless dielectric medium due to the 

presence of radical factor. The attenuation constant α and phase constant 

are calculated by substituting the values of ω, µ, є, and σ in the above 

equation. 

The attenuation constant α indicates the certain loss of the wave signal in 

the medium and hence this type of medium is called as lossy dielectric. 

And also due to σ ≠ 0, the intrinsic impedance becomes a complex 

quantity and is given as 

η = √[(jωµ) / (σ + jω є)] 

η = |η| ∠ Өn Ohms. 

Because of the complex quantity, η is represented in polar form as shown 

in the above equation where Өn is the phase angle difference between 

electric and magnetic fields. Thus, in lossy dielectric medium there exist a 

phase difference between the electric and magnetic fields. 

The intrinsic impedance can be expressed as 

η = √[(jωµ) / (σ + jω є)] 

= √[(jωµ) / jωє (1 + (σ/ jω є)] 

η = (√ (µ/ є)) (1 / √ (1 – j (σ/ ω є)) ohms 

And the angle Өn is given as 

Өn = ½ [(π/2) – tan
-1

 (ω є/ σ)] 



This angle depends on the frequency of the signal as well as properties of 

the lossy dielectric medium. Then, w becomes very small for a low 

frequency signal. Thus, the phase angle is given as 

Өn = (π/4) 

For very high frequency signal, w becomes very large then, 

Өn = 0 

So the range of Өn of a lossy dielectric for complete frequency range is 0 

[Өn =(π/4)]. 

Applications of Electromagnetic Waves: 

In general, a wave phenomenon constitutes both time varying electric and 

magnetic fields. Some of the applications where the electromagnetic 

waves can be encountered are given below. In addition to the below 

application areas there are many other applications where the knowledge 

of the electromagnetic waves is profoundly used. 

Transmission Lines: 

In case of power transmission at low frequencies, electrical parameters like 

resistance, capacitance, inductance, etc are enough to characterize the 

complete electric circuit. In such circuit analysis, the physical size of 

electrical components is not considered and simple Kirchoff’s laws are 

enough to analyze the circuit. 

However, if the frequency is increased, the size of the physical parameters 

must be considered and also space starts playing a role in the analysis of 

the circuit. 



In such transmission the voltages and currents are exists in the form of 

waves. This type of approach for analysing the circuit with inclusion of 

space consideration is called as a transmission line approach. 

Antennas: 

An antenna is one of most important devices in the communication 

system, although it appears as a passive looking device. It can efficiently 

launch and receive electromagnetic waves. Several types of antennas have 

been in use for serving different applications. 

With the advancements in the mobile communications, compact, multi-

frequency and efficient antennas are developed during recent years. By 

using the power ranging from a few watts to Mega watts, the 

communication is established by these antennas. 

Mobile Communications: 

The understanding of radio environment requires the knowledge of 

electromagnetic wave propagation. In a cellular system, different 

frequency reuse schemes are employed depends on the signal strength 

variation as a function of distance. One of the major important aspects of 

the mobile communication is fading. Thus, for correctly predicting the 

behavior of the fading, signal processing algorithms need the knowledge 

of the radio environment. Hence the electromagnetic waves and its 

analysis plays key role in mobile communication systems. 

Fiber Optic Communication: 

A high speed and efficient long haul communication use a variety of fiber 

optic devices which are developed by employing the complex phenomena 



of electromagnetic waves. This communication is the modern form of 

guided wave communication. 

For the investigation light propagation in the optical fibers electromagnetic 

theory is used. Due to the direct consequence of the direct consequence of 

the wave nature of light results a modal propagation inside an optical fiber. 

Also for analysing the photo and laser detectors, the electromagnetic wave 

theory is very important. 

Electromagnetic Interference (EMI) and Compatibility: 

In general, an electric circuit tends to give electromagnetic radiation, 

especially when they are switching heavy currents. This radiation may 

interfere with other parts or elements in the network, thereby affect the 

overall circuit performance. 

Example case is SMPS and high speed digital circuits produce a 

considerable electromagnetic interference. Mostly shielding circuits are 

used for protecting the circuits from EMI. Thus the proper design of such 

EMI shields requires the knowledge of electromagnetic waves. 

Radio Astronomy: 

The radio astronomy is a combination of physics and electronics 

engineering. It is one of the major important areas where understanding of 

the electromagnetic waves is necessary. In astronomy, the observations of 

the sky are carried out at radio frequencies. 

These RF signals are very weak in nature and thus sate of art 

communication receivers and antennas are used to detect such signals. 



Therefore, in radio astronomy all aspects of electromagnetic waves are 

employed. 

 

9.5 Poynting theorem (statement and derivation): 

The Poynting Theorem is in the nature of a statement of the conservation 

of energy for a configuration consisting of electric and magnetic fields 

acting on charges. Consider a volume V with a surface S. Then the time 

rate of change of electromagnetic energy within V plus 

the net energy flowing out of V through S per unit time is equal 

to the negative of the total work done on the charges within V. 

Consider first a single particle of charge q traveling with a velocity vector 

v. Let E and B be electric and magnetic fields external to the particle; i.e., 

E and B do not include the electric and magnetic fields generated by the 

moving charged particle. The force on the particle is given by the Lorentz 

formula 

F = q(E + v×B) 

The work done by the electric field on that particle is equal to qv·E. The 

work done by the magnetic field on the particle is zero because the force 

due to the magnetic field is perpendicular to the velocity vector v. 

For a vector field of current density J the work done on the charges within 

a volume V is 

∫VJ·EdV 



For a single particle of charge q traveling with velocity v the above 

quantity reduces to qv·E. 

One form of the Ampere-Maxwell's Law says that 

J = (c/4π)∇×H − (1/4π)(∂D/∂t) 

When the RHS of the above is substituted for J the work done by the 

external fields on the charges within a volume V is 

(1/4π)∫V[cE·(∇×H) − E·(∂D/∂t)]dV 

There is a vector identity 

∇·(A×B)=B·(∇×A)−A·(∇×B) 

which can be rewritten as 

A·(∇×B) = −[∇·(A×B)] + B·(∇×A) 

This means that 

E·(∇×H) = − ∇·(E×H) + H·(∇×E) 

 When this expression is substituted into the expression for the rate at 

which work is being done the result is 

∫VJ·EdV = (1/4π)∫V[−c∇·(E×H) − E·(∂D/∂t) + cH·(∇×E)]dV 

Faraday's law states that 

∇×E = −(1/c)(∂B/∂t) 

When Faraday's law is taken into account the previous equation can be 

expressed as: 



∫VJ·EdV = (−1/4π)∫V[c∇·(E×H) + E·(∂D/∂t) + H·(∂B/∂t)]dV 

The total energy density U of the fields at a point is 

U = (1/8π)(E·D + B·H) 

where D=εE and H=(1/μ)B and ε and μ, called the dielectric and 

permabiity, respectively, are properties of the material in which the fields 

are located. The dielectric and permability are independent of the location. 

This means that 

U=(1/8π)(εE·E+(1/μ)B·B) 

and thus 

(∂U/∂t) = (1/4π)(εE·(∂E/∂t) + (1/μ)B·(∂B/∂t)) 

which is equivalent to 

(∂U/∂t) = (1/4π)(E·(∂D/∂t) + B·(∂H/∂t)) 

The RHS of this latter expression occurs in a previous expression so that 

−∫VJ·EdV = ∫V[(∂U/∂t) + (c/4π)∇·(E×H)]dV 

It is convenient to define a vector P, known as the Poynting vector for the 

electrical and magnetic fields, such that 

P = (c/4π)(E×H) 

The previous equation then becomes 

−∫VJ·EdV = ∫V[(∂U/∂t) + ∇·P]dV 

By Gauss' Divergence Theorem 



∫V(∇·P)dV = ∫Sn·PdS 

where S is the surface of the volume V and n is the unit normal to the 

surface element dS. The vector P has the dimensions of energy×time per 

unit area. Thus ∫Sn·PdS is the net flow of energy out of the volume V. 

The above means that work done by the electric and magnetic fields on the 

charges within a volume must match the rate of decrease of the energy of 

the fields within that volume and the net flow of energy into the volume. 

The big question is what does the net flow of energy into the volume 

correspond to physically. One possibility is that it might correspond to 

electromagnetic radiation. The above equation can also be stated as the 

negative of the work done on the charges within a volume must be equal to 

the increase in the energy of the electric and magnetic fields within the 

volume plus the net flow of energy out of the volume. 

There is a major problem with the Poynting vector P; it is independent of 

the charges involved. It is the same whether there is one charge or one 

hundred million charges, or for that matter, zero charges. It can change 

with time but only as a result of the changes in the electric and magnetic 

fields. 

Usually any difference between the change in energy and the work done is 

the energy of radiation. This is what is universally presumed in the case of 

the Poynting theorem, but the empirical evidence is that this cannot be so. 

If the Poynting vector corresponded to radiation then if a permanent 

magnet was placed in the vicinity of a body charged with static electricity 

the combination should glow and is that is not the case. 



The Poynting vector is completely independent of the charges and their 

velocities in the volume being considered. In a word it is exogenous. The 

charges and their velocities are also exogenous. It is the rate of change of 

the energy stored in the fields that is endogenous. The Poynting theorem 

should read rate of change of energy in the fields = negative of work done 

by the fields on the charged particles minus the Poynting vector term. 

However in the case of a permanent magnet and static electric charge the 

fields cannot change. Charged particles impinging upon an electric and 

magnetic field would experience work of them. The compensating change 

in momentum and energy would occur in the bodies holding the electric 

and magnetic fields. The charged particles hitting the electric and magnetic 

fields would induce a reaction as though they hit the magnet and charged 

body which creates the fields. 

The dimensions of the Poynting vector term are energy per unit area per 

unit time. This is what would be expected if there were radiation generated 

in the volume. But the fact that the Poynting vector is exogenous means 

that without any charged particles at all being involved there would be 

radiation generated. The amount of radiation generated is fixed and no 

matter how many charged particles are injected into the volume at 

whatever velocities the same amount of radiation would be generated. 

So the Poynting vector term apparently does not correspond to radiation. It 

is a puzzle as to what it does correspond to but there is no possibility that it 

corresponds to radiation. 

The Differential Form of the Poynting Theorem 

Since the volume element is arbitrary the above equation implies that 



(∂U/∂t) + ∇·P = −E·J 

The interpretation of the term ∇·P is also problematical. It has a sign but it 

does not have a direction. It also is independent of the charge distribution, 

in this case J. In another study the case will be made that ∇·P is the time 

rate of change of the energy resulting from the interaction of the electrical 

and magnet field. 

SAQ.1 

a) What do you mean by Differential equation of plane electromagnetic 

waves in conducting media? 

b) Discuss the property of electromagnetic waves for good dielectric. 

c) What is the statement of Poynting theorem? 

d) In a wave if E0 = 1000 V m
-1

.
 
Then find the magnitude of Poynting 

vector. 

 

9.6 Expression for electromagnetic energy density: 

Energy density refers to the total amount of energy in a system per unit 

volume. (Even though generally energy per unit mass is also mentioned as 

energy density, the proper term for the same is specific energy. The term 

density usually measures the amount per unit spatial extension). 

Energy density is denoted by letter U.  

Magnetic and electric field can also store the energy. 

In the case of electric field or capacitor, the energy density is given by 

 

https://www.sjsu.edu/faculty/watkins/poyntingth2.htm


The energy density in the case of magnetic field or inductor is given by, 

 

For electromagnetic wave, both magnetic and electric field are equally 

involved in contributing to energy density. Therefore, the energy density is 

the sum of the energy density of electric and magnetic fields.  

i.e., 

 

9.7 Momentum density vector and its importance: 

We have seen that electromagnetic waves carry energy. It turns out that 

they also carry momentum. Consider the following argument, due to 

Einstein. Suppose that we have a railroad car of mass M and 

length L which is free to move in one dimension. Suppose that 

electromagnetic radiation of total energy E is emitted from one end of the 

car, propagates along the length of the car, and is then absorbed at the 

other end. The effective mass of this radiation is m = E / c
2
 (from 

Einstein's famous relation E = m c
2
). At first sight, the process described 

above appears to cause the centre of mass of the system to spontaneously 

shift. This violates the law of momentum conservation (assuming the 

railway car is subject to no external forces). The only way in which the 

centre of mass of the system can remain stationary is if the railway 

car moves in the opposite direction to the direction of propagation of the 

radiation. In fact, if the car moves by a distance x then the centre of mass 

of the system is the same before and after the radiation pulse provided that 

 



M x = m L = (E / c
2
)L 

 

It is assumed that  m << M in this derivation. 

But, what actually causes the car to move? If the radiation possesses 

momentum P then the car will recoil with the same momentum as the 

radiation is emitted. When the radiation hits the other end of the car then 

the car acquires momentum P in the opposite direction, which stops the 

motion. The time of flight of the radiation is L/c. So, the distance traveled 

by a mass M with momentum P in this time is 

x = v t = (P/M)(L/c) 

giving 

 

P = M x (c / L) = E / c 

 

Thus, the momentum carried by electromagnetic radiation equals its 

energy divided by the speed of light. The same result can be obtained from 

the well-known relativistic formula 

 

E
2
 = P

2
c

2
 + m

2
c

4
 

 



relating the energy E, momentum P, and mass m of a particle. According 

to quantum theory, electromagnetic radiation is made up of massless 

particles called photons. Thus, 

 

P = E/c 

 

For individual photons, so the same must be true of electromagnetic 

radiation as a whole. If follows from Eq. (that the momentum density g of 

electromagnetic radiation equals its energy density over c, so 

                                                                 g = U/c 

 

 

It is reasonable to suppose that the momentum points along the direction 

of the energy flow (this is obviously the case for photons), so the vector 

momentum density (which gives the direction, as well as the magnitude, 

of the momentum per unit volume) of electromagnetic radiation is 

G = u/c
2
 

Thus, the momentum density equals the energy flux over c
2
. 

Importance:- 

 The momentum density equals the energy flux over. Of course, the 

electric field associated with an electromagnetic wave oscillates 

rapidly, which implies that the previous expressions for the 



energy density, energy flux, and momentum density of 

electromagnetic radiation are also rapidly oscillating. 

 Thus Momentum is a vector quantity. A vector quantity possesses 

both a magnitude and direction. A scalar quantity possesses only a 

magnitude and no direction. Mass is an example of a scalar quantity 

(mass doesn't point in any direction!) whereas velocity is 

a vector quantity. 

 Thomson, who speculated as to electro- magnetic mass/momentum, 

and continued with a concept of momentum stored in 

the electromagnetic field, with the field-momentum density being 

the Poynting vector divided by c
2
, pEM = S/c

2
, where c is the speed 

of light in vacuum. 

9.8 Maxwell’s stress tensor (statement and derivation): 

Here we’ll look at a purely classical, non-relativistic form of the tensor in 

electromagnetism. In doing so, we’ll look only at the spatial components 

of the tensor, so it becomes a 3×3 matrix. The derivation starts with a 

calculation of the total force due to electromagnetic fields on the charges 

and currents within some volume V. From the Lorentz force law, we have 

 

We can think of the integrand as a force density, or force per unit volume 

f: 



 

We can express this entirely in terms of fields by using Maxwell’s 

equations: 

 

So we get 

 

We now need to do a bit of vector calculus gymnastics. From the product 

rule 

 

and from Faraday’s law 

 

Combining these two we get 



 

We can insert this into 6 and while we’re at it, we can add on a term 1 µ0 

(∇·B)B. This is always zero because ∇·B = 0, but it gives the equation a 

symmetry that will be useful in a minute. We get for the force density: 

 

Now another identity from vector calculus says 

 

If A = B = E, we get 

 

So 

 

Putting this into above we 



 

It might not seem that we’re making any progress, since the equations just 

get longer with each alteration. However, we can now introduce the 

Maxwell stress tensor ←→T which is a 3×3 matrix with components 

defined by 

 

Note that the tensor is symmetric: Tij = Tji. If we define the scalar product 

of the tensor with an ordinary vector to be another vector: 

 

where the subscript j indicates the jth component of the resulting vector, 

then the divergence is 



 

Comparing this with above equation, we see that we can write f in terms of 

←→T and the Poynting vector as 

 

The total force on the volume is then 

 

From the formula in above equation for the divergence, we can see that the 

vector resulting from the divergence has as its components the divergences 

of each column of ←→T . Therefore we can apply the divergence theorem 

to the first term in the integrand to get 

 

where S is any surface that encloses only the charges and currents within 

V. 



Example. We can revisit the problem of finding the magnetic force 

between the two halves of a spherical shell of surface charge density σ 

rotating with angular velocity ω = ωzˆ. In our earlier solution we used the 

Biot-Savart law and integrated over each differential ring in the rotating 

sphere. Using the stress tensor, we can integrate over any volume that 

encloses the upper half of the sphere, so we can choose the half space 

consisting of all space  

above the xy plane (we’re assuming that the centre of the sphere is at the 

origin, so the xy plane contains the sphere’s equator). Since the 

distribution of charges and currents is finite, all fields will go to zero at 

infinity, so we need to integrate only over the xy plane. We saw earlier 

that the magnetic field inside and outside the sphere is 

   

      

 
                

      

 
      

   
   

 

 

  
                    

  

In the xy plane, θ = π/2 so the field is 

 

Since we’re interested only in the magnetic field, we can ignore E here, 

although there is a repulsive force between the two hemispheres due to the 

electric field as well. Also, as the currents are steady, ∂S/∂t = 0. From the 

symmetry of the problem, the force is in the z direction, so we need to 

work out only h←→T · da i z . We get Txz = Tyz = 0 because Bx = By = 

0 on the xy plane, so we’re left with just Tzz: 



 

The total force is then (the minus sign is because Tzz > 0 and da points 

towards −z): 

 

This agrees with the result we got earlier using the Biot-Savart law. 

SAQ.2 

a) Define the expression for electromagnetic energy density. 

b) What do you mean by Momentum density vector? 

c) Write the short note on Maxwell’s stress tensor. 

d) In a certain region of space, the magnetic field was a value of 2.0 X 

10
-2

 T, and the electric field has a value of 4.0 X 10
6
 Vm

-1
. Find the 

combined energy density of the electric and magnetic fields. 

e) Calculate the momentum of a bullet having mass of 25g thrown 

using hand with a velecity of 10 m/s. 

Examples: 



Q.1. In a wave if E0 = 100 V m
-1

.
 
Then find the magnitude of Poynting 

vector. 

Solution: 

 

Q.2. In a certain region of space, the magnetic field was a value of 1.0 X 

10
-2

 T, and the electric field has a value of 2.0 X 10
6
 Vm

-1
. Find the 

combined energy density of the electric and magnetic fields. 

Solution: 

E = 2.0 X 10
6
 Vm

-1; 
B = 1.0 X 10

-2
 T 

For the electric field, the energy density is:  

UE = ½(εoE
2
) =(½)  X 8.85 X 10

-12
(2.0 X 10

6
)

2
 = 18 Jm

-3 

For the magnetic field, the energy density is: 

UB = ½ (B
2
/ μO) = (1/2) X ((1.0 X 10

-2
) / (4ᴨ X 10

-7
)) = 40 Jm

-3
 

The net energy density is the sum of the energy density due to the electric 

field and the energy density due to the magnetic field: 

U = UE + UB = 18 + 40 = 58 Jm
-3 

Q.3. A linearly polarized laser beam propagating in air has an intensity of 

10
6
 W/m

2
. Calculate the magnitude of the electric and magnetic fields 

within the electromagnetic wave. 

Solution: Given data 



Intensity of the laser beam I = 1 x 10
6 
W/m

2 

Speed of light in vacuum c = 3.00 x 10
8 
m/s 

Permittivity of free space εo = 8.854 x 10 
-12

 F/m 

Let E0, B0 be the electric field amplitude and magnetic field amplitude.  

The intensity of the electromagnetic wave can be expressed as  

 

Therefore the magnitude of the electric field  

 

The magnetic field 

 

Q.4. Microwave ovens emit microwave energy with a wavelength of 

12.0 cm. What is the energy of exactly one photon of this microwave 

radiation? 

Solution: Determine the energy, E, of one photon of the microwave 

radiation. We do this by applying the equation, 



 

Where h is Planck’s constant, c is the speed of light, and λ is the 

wavelength. We use the following values for the variables: 

 

We simply plug in the given values to determine the answer 

 

Q.5 Find the energy density of a capacitor if its electric field,  E = 5 V/m. 

Solution: Given, 

E = 5V/m 

We know that, 

ϵ0 = 8.8541× 10
−12

F/m 

The energy density formula of the capacitor is given by 

U = ½ (εO E
2
) 

    = (1 × 8.8541×10
−12

×5
2
 )/2 

U= 1.10×10
−10

 FV
2
/m

3
 



Q.6. What will be the momentum of a stone having mass of 10 kg when it 

is thrown with a velocity of 2m/s? 

Solution:  

Mass (m) = 10kg,  

Velocity (v) = 2m/s,  

Momentum (ρ) =? 

We know that, momentum (ρ) = Mass (m) x Velocity (v) 

Therefore, p = 10kg x 2m/s = 20kgm/s 

Thus the momentum of the stone = 20kgm/s 

Q.7 Calculate the momentum of a bullet of 25g when it is fired from a 

gum with a velocity of 100m/s. 

Solution:  

Given, velocity of the bullet (v) = 100m/s 

Mass of the bullet (m) = 25g = (25/1000) kg = 0.025kg 

Momentum (ρ) =? 

We know that, momentum (ρ) = Mass(m) x Velocity(v) 

Therefore p = 0.025kg x 100m/s 

Or, p = 2.5kg m/s 

Thus the momentum of the bullet = 2.5kg m/s 



Q.8 Calculate the momentum of a bullet having mass of 25g thrown using 

hand with a velecity of 0.1m/s. 

Solution: 

Given, velocity of the bullet (v) = 0.1m/s 

Mass of the bullet (m) = 25g = (25/1000) kg = 0.025kg 

Momentum (ρ) =? 

We know that, momentum (ρ) = Mass(m) x Velocity(v) 

Therefore p = 0.025kg x 0.1m/s 

Or, p = 0.0025kg m/s 

Thus the momentum of the bullet = 0.0025kg m/s 

 

Q.9 find all elements of the Maxwell stress tensor for a monochromatic 

plane wave travelling in the z direction and linearly polarized in the x 

direction, i.e.  

 

Common on the form of your answer (remember that  represents the 

momentum flux density) 

Solution:  

First, we recall that the components of Maxwell’s stress tensor are given 

by 



 

Since only Ex and By are nonzero, it is clear that all the off- diagonal 

components vanish. A quick calculation then shows: 

 

Where u is the energy density. That only the Tzz component is non- 

vanishing is consistent with the fact that the momentum of the field points 

in the z direction, and it is being transported in the z direction a well.  

Summary: 

1) In this chapter derive the Differential equation of plane 

electromagnetic waves in conducting media and find the solution. 

2) Discuss the Behavior and property of electromagnetic waves for 

good dielectric and good conductors and find the expression with 

proper solution. 

3) The Poynting vector, named after John Henry Poynting, is used in 

order to demonstrate the energy flux density of an EM field. 

Per definition, the Poynting vector is the result of the vector product 

of the field's electric and magnetic components. 

4) The energy density of an electromagnetic wave is proportional to the 

square of the amplitude of the electric (or magnetic) field. 

5) Thus, the momentum density equals the energy flux over . Of 

course, the electric field associated with an electromagnetic 

wave oscillates rapidly, which implies that the previous expressions 



for the energy density, energy flux, and momentum density of 

electromagnetic radiation are also rapidly oscillating. 

6) The Maxwell stress tensor is a symmetric second-order tensor used 

in classical electromagnetism to represent the interaction between 

electromagnetic forces and mechanical momentum.  

 

 

 

Terminal Questions: 

1) Explain and derive the Differential equation of plane 

electromagnetic waves in conducting media and its solution. 

2) Explain the Behavior and property of electromagnetic waves for 

good dielectric and good conductors. 

3) Explain the working of Poynting theorem with proper statement and 

derive the derivation. 

4) Discuss the expression for electromagnetic energy density. 

5) Explain the Momentum density vector and its importance 

6) Explain the statement of Maxwell’s stress tensor and derive the its 

derivation. 

7) In a wave if E0 = 10
6
 V m

-1
.
 
Then find the magnitude of Poynting 

vector. 

8) A linearly polarized laser beam propagating in air has an intensity of 

10x10
6
 W/m

2
. Calculate the magnitude of the electric and magnetic 

fields within the electromagnetic wave. 

9) Find the energy density of a capacitor if its electric field, E = 15V/m. 

10) Calculate the momentum of a bullet having mass of 25g thrown 

using hand with a velecity of 0.01m/s. 



 

Unit 10- Fresnel’s equation  

 

Structure 

10.1  Introduction 

10.2  Objectives 

10.3 Boundary conditions at discontinuity for D, E, B and H. 

10.4 Reflection and refraction at normal and oblique incidence of 

electric vectors perpendicular to boundary. 

10.5 Reflection and refraction at normal and oblique incidence of 

electric vectors parallel to boundary. 

10.6 Total internal reflection, Brewster’s law, degree of polarization. 

10.7 Plane wave propagation in plasma and its properties (qualitative), 

metallic reflection. 

10.8 Elementary theory of dispersion. 

10.9 Summary 

10.10 Terminal Questions 

 

10.1     Introduction: 

 

Displacement boundary conditions derived from symmetry of the 

specimen geometry and the applied load with respect to the planes x1 = 0 

and x2 = 0 were applied together with a uniform displacement condition at 

the boundary x2 = L/2, where L is the specimen length. 



In homogeneous media, electromagnetic quantities vary smoothly and 

continuously. At an interface between dissimilar media, however, it is 

possible for electromagnetic quantities to be discontinuous. These 

discontinuities can be described mathematically as boundary 

conditions and used to constrain solutions for the associated 

electromagnetic quantities. In this section, we derive boundary conditions 

on the electric field intensity E.  

In homogeneous media, electromagnetic quantities vary smoothly and 

continuously. At an interface between dissimilar media, however, it is 

possible for electromagnetic quantities to be discontinuous. Continuities 

and discontinuities in fields can be described mathematically by boundary 

conditions and used to constrain solutions for fields away from these 

interfaces. 

In this section, we derive the boundary condition on the magnetic flux 

density B at a smooth interface between two material regions. 

In homogeneous media, electromagnetic quantities vary smoothly and 

continuously. At a boundary between dissimilar media, however, it is 

possible for electromagnetic quantities to be discontinuous. Continuities 

and discontinuities in fields can be described mathematically by boundary 

conditions and used to constrain solutions for fields away from these 

boundaries. In this section, we derive boundary conditions on the magnetic 

field intensity H. 

Reflection is the abrupt change in the direction of propagation of a wave 

that strikes the boundary between two different media.  At least some part 

of the incoming wave remains in the same medium.  Assume the incoming 

light ray makes an angle θi with the normal of a plane tangent to the 



boundary.  Then the reflected ray makes an angle θr with this normal and 

lies in the same plane as the incident ray and the normal. 

Refraction is the change in direction of propagation of a wave when the 

wave passes from one medium into another, and changes its speed.  Light 

waves are refracted when crossing the boundary from one transparent 

medium into another because the speed of light is different in different 

media.  Assume that light waves encounter the plane surface of a piece of 

glass after traveling initially through air as shown in the figure to the right. 

A perpendicular polarized wave incident at anglei a dielectric medium 2.  

Snell’s Law states that a reflected wave will be at the same angle r i , 

and the transmitted wave in medium 2 at angle  t can be calculated using 

this law.  The amplitude of the reflected and transmitted waves can be 

determined by applying the continuity of the tangential components of E & 

H at the boundary.   

Plane waves are not normally incident, so now we must consider the 

general problem of a plane wave propagating along a specified axis that is 

arbitrarily relative to a rectangular coordinate system.  The most 

convenient way is in terms of the direction cosines of the uniform plane 

wave, the equi-phase surfaces are planes perpendicular to the direction of 

propagation. 

Determine the angle of reflection r and the amplitude of the reflected 

electric field m
r by using the boundary conditions at z = 0.  This also 

includes zero values of the tangential electrical field E and the normal 

component of the magnetic field H. 



The unknown amplitudes of the reflected and transmitted electric fields 

|| ||
r tand   can be determined by simply applying the boundary conditions at 

the dielectric interface.  The electric fields || ||
r tand   will now be used in the 

analysis to emphasize the case of parallel polarization, instead of using the 

electric fields m m
tr and  . 

An incident wave polarized with the E field in the plane of incidence and 

the power flow in the direction of i  at angle  i with respect to the 

normal to the surface of the perfect conductor. 

Total internal reflection, in physics, complete reflection of a ray of light 

within a medium such as water or glass from the surrounding surfaces 

back into the medium. The phenomenon occurs if the angle of incidence is 

greater than a certain limiting angle, called the critical angle. 

Brewster's law, relationship for light waves stating that the maximum 

polarization (vibration in one plane only) of a ray of light may be achieved 

by letting the ray fall on a surface of a transparent medium in such a way 

that the refracted ray makes an angle of 90° with the reflected ray. 

Degree of polarization (DOP) is a quantity used to describe the portion of 

an electromagnetic wave which is polarized. A perfectly polarized wave 

has a DOP of 100%, whereas an unpolarized wave has a DOP of 0%. A 

wave which is partially polarized, and therefore can be represented by a 

superposition of a polarized and unpolarized component, will have a DOP 

somewhere in between 0 and 100%. DOP is calculated as the fraction of 

the total power that is carried by the polarised component of the wave. 

Plasma waves the physical description of an electromagnetic wave 

propagating in a given medium necessitates a self-consistent handling of 

https://en.wikipedia.org/wiki/Electromagnetic_wave
https://en.wikipedia.org/wiki/Polarization_(waves)


the particles comprising the medium (and their mutual interactions) on one 

hand, and of the electromagnetic field on the other hand. 

Metals have high reflectivity, reflecting almost all wavelengths in the 

visible region of the spectrum. Therefore, the Reflectance (R) of a material 

can be defined as the efficiency of a material to reflect incident light. 

Dispersion occurs when pure plane waves of different wavelengths have 

different propagation velocities, so that a wave packet of mixed 

wavelengths tends to spread out in space. 

 

 

10.2     Objectives: 

After studying this unit you should be able to 

 Explain and identify Boundary conditions at discontinuity for D, E, 

B and H. 

 Study and identify Reflection and refraction at normal and oblique 

incidence of electric vectors perpendicular to boundary. 

 Explain and identify Reflection and refraction at normal and oblique 

incidence of electric vectors parallel to boundary. 

 Study and identify Total internal reflection, Brewster’s law, degree 

of polarization. 

 Explain and identify Plane wave propagation in plasma and its 

properties (qualitative), metallic reflection. 

 Study and identify Elementary theory of dispersion. 

 

https://en.wikipedia.org/wiki/Wave_packet


10.3 Boundary conditions at discontinuity for D, E, B and H: 

 

(i) Boundary conditions at discontinuity for D:  

We define the displacement vector as 

 

This description of the displacement vector as it includes permittivity of 

the medium is helpful while discussing the behavior of the electrostatic 

field within the medium. Here εo is the absolute permittivity of the free 

space and εr is the relative permittivity of the corresponding medium. 

Now we apply the integral form of the Curl theorem at the boundary of 

two dielectric mediums as shown in the diagram below 

 

Fig.10.1 Curl theorem at the boundary of two dielectric mediums 

 



To calculate the boundary condition we make the height of the loop to be 

infinitesimally small or   

 

where subscript t denotes the tangential component. Thus at the boundary 

of two medium, tangential component of the electric field is continuous. 

 

Thus at the boundary, the tangential component of      is discontinuous. 

Tangential component of the electric field is continuous across the 

boundary however the displacement vector is discontinuous. 

We will now use the integral form of the divergence theorem of the 

displacement vector at the boundary of two medium to figure out the fate 

of the normal component of fields. 



 

Fig.10.2 Displacement vector at the boundary of two medium 

 

Again at the boundary, we can reduce the height of the pillbox to be 

infinitesimally small. Here subscript n denotes the normal component of 

the field. If there is no free surface charge, we will have 

 

Thus the normal component of the displacement vector is continuous in 

absence of any free charge at the surface. 

 

Thus the normal component of the electric vector is discontinuous at the 

boundary. Normal component of the electric field is discontinuous across 

the boundary, however, the displacement vector is continuous in absence 

of any surface charge.  



(ii) Boundary conditions at discontinuity for E: 

In homogeneous media, electromagnetic quantities vary smoothly and 

continuously. At an interface between dissimilar media, however, it is 

possible for electromagnetic quantities to be discontinuous. These 

discontinuities can be described mathematically as boundary 

conditions and used to constrain solutions for the associated 

electromagnetic quantities. In this section, we derive boundary conditions 

on the electric field intensity E. 

To begin, consider a region consisting of only two media that meet at an 

interface defined by the mathematical surface S, as shown in Figure. 

 

Fig.10.3 At the surface of a perfectly-conducting region, E may be 

perpendicular to the surface (two leftmost possibilities), but may not 

exhibit a component that is tangent to the surface (two rightmost 

possibilities). 

If either one of the materials is a perfect electrical conductor (PEC), 

then SS is an equi-potential surface; i.e., the electric potential V is constant 

everywhere on S. Since E is proportional to the spatial rate of change of 

potential (recall E=−∇V we find: 

The component of E that is tangent to a perfectly- conducting surface is 

zero. 



This is sometimes expressed informally as follows: 

 ………………….1 

where “Etan” is understood to be the component of E that is tangent to S. 

Since the tangential component of E on the surface of a perfect conductor 

is zero, the electric field at the surface must be oriented entirely in the 

direction perpendicular to the surface, as shown in Figure  

The following equation expresses precisely the same idea, but includes the 

calculation of the tangential component as part of the statement: 

……………2 

where n^ is either normal (i.e., unit vector perpendicular to the surface) to 

each point on S. This expression works because the cross product of any 

two vectors is perpendicular to either vector or any vector which is 

perpendicular to n^ is tangent to SS. 

We now determine a more general boundary condition that applies even 

when neither of the media bordering SS is a perfect conductor. The desired 

boundary condition can be obtained directly from Kirchhoff’s Voltage 

Law  

 …………………..3 

Let the closed path of integration take the form of a rectangle centered 

on S, as shown in Figure  



 

Fig.10.4 Use of KVL to determine the boundary condition on EE 

Let the sides A, B, C, and D be perpendicular or parallel to the surface, 

respectively. Let the length of the perpendicular sides be w, and let the 

length of the parallel sides be l. From KVL we have 

 

Now, let us reduce w and ll together while (1) maintaining a constant 

ratio w/l≪1 and (2) keeping CC centered on S. In this process, the 

contributions from the B and D segments become equal in magnitude but 

opposite in sign; i.e., 

……………..4 

This leaves 



……………..5 

Let us define the unit vector t^ (“tangent”) as shown in Figure 2. When the 

lengths of sides A and C become sufficiently small, we can write the 

above expression as follows: 

……………..6 

where E1 and E2 are the fields evaluated on the two sides of the boundary 

and Δl→0 is the length of sides A and C while this is happening. Note that 

the only way Equation (6) can be true is if the tangential components 

of E1 and E2 are equal. In other words: 

The tangential component of E must be continuous across an interface 

between dissimilar media. 

Note that this is a generalization of the result we obtained earlier for the 

case in which one of the media was a PEC – in that case, the tangent 

component of E on the other side of the interface must be zero because it is 

zero in the PEC medium. 

As before, we can express this idea in compact mathematical notation. 

Using the same idea used to obtain Equation (2) we have found 

……………7 

or, as it is more commonly written: 

……………….8 



We conclude this section with a note about the broader applicability of this 

boundary condition: 

Above equation (8) is the boundary condition that applies to E for both the 

electrostatic and the general (time-varying) case. 

Although a complete explanation is not possible without the use of the 

Maxwell-Faraday Equation the reason why this boundary condition 

applies in the time-varying case can be disclosed here. In the presence of 

time-varying magnetic fields, the right-hand side of Equation (3) may 

become non-zero and is proportional to the area defined by the closed 

loop. However, the above derivation requires the area of this loop to 

approach zero, in which case the possible difference from Equation 

(3) also converges to zero. Therefore, the boundary condition expressed in 

Equation (8) applies generally. 

(iii) Boundary conditions at discontinuity for B: 

In homogeneous media, electromagnetic quantities vary smoothly and 

continuously. At an interface between dissimilar media, however, it is 

possible for electromagnetic quantities to be discontinuous. Continuities 

and discontinuities in fields can be described mathematically by boundary 

conditions and used to constrain solutions for fields away from these 

interfaces. 

In this section, we derive the boundary condition on the magnetic flux 

density B at a smooth interface between two material regions, as shown in 

Figure 1. The desired boundary condition may be obtained from Gauss’ 

Law for Magnetic Fields (GLM): 

https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Electro-Optics/Book%3A_Electromagnetics_I_(Ellingson)/07%3A_Magnetostatics/7.02%3A_Gauss%E2%80%99_Law_for_Magnetic_Fields_-_Integral_Form
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Electro-Optics/Book%3A_Electromagnetics_I_(Ellingson)/07%3A_Magnetostatics/7.02%3A_Gauss%E2%80%99_Law_for_Magnetic_Fields_-_Integral_Form


 

 ………………1 

where S is any closed surface. Let S take the form of cylinder centered at a 

point on the interface, and for which the flat ends are parallel to the surface 

and perpendicular to n^, as shown in Figure.1 Let the radius of this 

cylinder be a, and let the length of the cylinder be 2h. 

 

Fig.10.5 Determination of the boundary condition on B at the interface 

between material regions 

From GLM, we have 

 

Now let us reduce h and a together while (1) maintaining a constant 

ratio h/a≪1 and (2) keeping SS centered on the interface. Because h≪a, 



the area of the side can be made negligible relative to the area of the top 

and bottom. Then, as h→0, we are left with 

……………………….2 

As the area of the top and bottom sides become infinitesimal, the variation 

in B over these areas becomes negligible. Now we have simply: 

…………………..3 

where B1 and B2 are the magnetic flux densities at the interface but in 

regions 1 and 2, respectively, and ΔA is the area of the top and bottom 

sides. Note that the orientation of n^ is important – we have 

assumed n^ points into region 1, and we must now stick with this choice. 

Thus, we obtain 

……………4 

where, as noted above, n^ points into region 1. 

(iv) Boundary conditions at discontinuity for H: 

In homogeneous media, electromagnetic quantities vary smoothly and 

continuously. At a boundary between dissimilar media, however, it is 

possible for electromagnetic quantities to be discontinuous. Continuities 

and discontinuities in fields can be described mathematically by boundary 

conditions and used to constrain solutions for fields away from these 

boundaries. In this section, we derive boundary conditions on the magnetic 

field intensity H. 



 

To begin, consider a region consisting of only two media that meet at a 

smooth boundary as shown in Figure 1 The desired boundary condition 

can be obtained directly from Ampere’s Circuital Law (ACL): 

 

where C is any closed path and Iencl is the current that flows through the 

surface bounded by that path in the direction specified by the “right-hand 

rule” of Stokes’ theorem. 

 

Fig.10.6 Determining the boundary condition on H at the smooth boundary 

between two material regions. 

 

Let C take the form of a rectangle centered on a point on the boundary as 

shown in fig. perpendicular to the direction of current flow at that location. 

Let the sides A, B, C, and D be perpendicular and parallel to the boundary. 

Let the length of the parallel sides be l, and let the length of the 

perpendicular sides be w. Now we apply ACL. We must integrate in a 

https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Electro-Optics/Book%3A_Electromagnetics_I_(Ellingson)/07%3A_Magnetostatics/7.04%3A_Ampere%E2%80%99s_Circuital_Law_(Magnetostatics)_-_Integral_Form


counter-clockwise direction in order to be consistent with the indicated 

reference direction for Js.  

Thus: 

 

Now we let w and l become vanishingly small while (1) maintaining the 

ratio l/w and (2) keeping C centered on the boundary. In this process, the 

contributions from the B and D segments become equal in magnitude but 

opposite in sign; i.e., 

………………….2 

This leaves 

……………..3 

 

Let us define the unit vector t^ (“tangent”) as shown in Figure.1. Now we 

have simply: 

……………..4 



 

where H1 and H2 are the fields evaluated on the two sides of the boundary, 

and Δl→0 is the length of sides A and C. 

As always, Iencl (units of A) may be interpreted as the flux of the current 

density Js (units of A/m) flowing past a line on the surface having 

length Δl (units of m) perpendicular to t^×n^, where n^ is the normal to the 

surface, pointing into Region 1. Stated mathematically: 

 

…………….5 

Before proceeding, note this is true regardless of the particular direction 

we selected for t^; it is only necessary that t^ be tangent to the boundary. 

Thus, t^×n^ need not necessarily be in the same direction as Js. Now 

Equation.4 can be written: 

…………..6 

Eliminating the common factor of Δl and arranging terms on the left: 

……………7 

The right side may be transformed using a vector identity 

(A⋅(B×C)=B⋅(C×A)=C⋅(A×B)) to obtain: 

……………8 



Equation(8)  is the boundary condition we seek. We have found that the 

component of H2−H1 (the difference between the magnetic field intensities 

at the boundary) in any direction tangent to the boundary is equal to the 

component of the current density flowing in the perpendicular 

direction n^×Js. Said differently: 

A discontinuity in the tangential component of the magnetic field intensity 

at the boundary must be supported by surface current flowing in a 

direction perpendicular to this component of the field. 

An important consequence is that: 

If there is no surface current, then the tangential component of the 

magnetic field intensity is continuous across the boundary. 

It is possible to obtain a mathematical form of the boundary condition that 

is more concise and often more useful than Equation (8). This form may 

be obtained as follows. First, we note that the dot product with respect 

to t^ on both sides of Equation (8)means simply “any component that is 

tangent to the boundary.” We need merely to make sure we are comparing 

the same tangential component on each side of the equation. For 

example n^×(H2−H1) is tangential to the boundary, since n^ is 

perpendicular to the boundary and therefore any cross product 

involving n^ will be perpendicular to n^. The corresponding component of 

the current density is n^×(n^×Js) , so Equation (8) may be equivalently 

written as follows: 

……………..9 



Applying a vector identity (A×(B×C)=B(A⋅C)−C(A⋅B)) to the right side of 

Equation (9) we obtain: 

 

Therefore: 

……………10 

The minus sign on the right can be eliminated by swapping H2 and H1 on 

the left, yielding 

……………….11 

This is the form in which the boundary condition is most commonly 

expressed. 

It is worth noting what this means for the magnetic field intensity B. 

Since B=μH: 

In the absence of surface current, the tangential component of B across the 

boundary between two material regions is discontinuous if the 

permeabilities are unequal. 

10.4 Reflection and refraction at normal and oblique incidence of 

electric vectors perpendicular to boundary: 



Reflection 

Reflection is the abrupt change in the direction of propagation of a wave 

that strikes the boundary between two different media.  At least some part 

of the incoming wave remains in the same medium.  Assume the incoming 

light ray makes an angle θi with the normal of a plane tangent to the 

boundary.  Then the reflected ray makes an angle θr with this normal and 

lies in the same plane as the incident ray and the normal. 

Law of reflection: θi = θr 

 

Fig.10.7 Reflection wave that strikes the boundary between two different 

media 

Specular reflection occurs at smooth, plane boundaries.  Then the plane 

tangent to the boundary is the boundary itself.  Reflection at rough, 

irregular boundaries is diffuse reflection.  The smooth surface of a mirror 

reflects light specularly, while the rough surface of a wall reflects light 

diffusely.  The reflectivity or reflectance of a surface material is the 

fraction of energy of the oncoming wave that is reflected by it.  The 

reflectivity of a mirror is close to 1. 

  



 

Fig.10.8 

Refraction 

Refraction is the change in direction of propagation of a wave when the 

wave passes from one medium into another, and changes its speed.  Light 

waves are refracted when crossing the boundary from one transparent 

medium into another because the speed of light is different in different 

media.  Assume that light waves encounter the plane surface of a piece of 

glass after traveling initially through air as shown in the figure to the right. 

What happens to the waves as they pass into the glass and continue to 

travel through the glass?  The speed of light in glass or water is less than 

the speed of light in a vacuum or air.  The speed of light in a given 

substance is v = c/n, where n is the index of refraction of the substance.  

Typical values for the index of refraction of glass are between 1.5 and 1.6, 

so the speed of light in glass is approximately two-thirds the speed of light 

in air.  The distance between wave fronts will therefore be shorter in the 

glass than in air, since the waves travel a smaller distance per period T. 

If f is the frequency of the wave and T = 1/f is the period, i.e. the time 

interval between successive crests passing a fixed point in space, then λ1 = 

v1T = cT/n1 and λ2 = v2T = cT/n2, or λ1/λ2 = n2/n1. 



 

Fig.10.9 

Now consider wave fronts and their corresponding light rays approaching 

the surface at an angle. We can see that the rays will bend as the wave 

passes from air to glass.  The bending occurs because the wave fronts do 

not travel as far in one cycle in the glass as they do in air.  As the diagram 

shows, the wave front halfway into the glass travels a smaller distance in 

glass than it does in air, causing it to bend in the middle.  Thus, the ray, 

which is perpendicular to the wave front, also bends.  The situation is like 

a marching band marching onto a muddy field at an angle to the edge of 

the field.  The rows bend as the speed of the marchers is reduced by the 

mud.  The amount of bending depends on the angle of incidence and on 

the indices of refraction of glass and air, which determine the change in 

speed.  From the figure we can see that λ1/λ2 = sinθ1/sinθ2.  But λ1/λ2 = 

n2/n1. Therefore n2/n1 = sinθ1/sinθ2, or n1sinθ1 = n2sinθ2. 

This is Snell's law, or the law of refraction. 

nisinθi = ntsinθt. 



 

Fig.10.10 Law of refraction 

When light passes from one transparent medium to another, the rays are 

bent toward the surface normal if the speed of light is smaller in the 

second medium than in the first.  The rays are bent away from this normal 

if the speed of light in the second medium is greater than in the first.  The 

picture on the right shows a light wave incident on a slab of glass. 

One part of the wave is reflected, and another part is refracted as it passes 

into the glass. The rays are bent towards the normal. At the second 

interface from glass into air the light passing into the air is refracted again. 

The rays are now bent away from the normal. 

 



Fig.10.11 Second interface from glass into air the light passing into the air 

is refracted again 

Perpendicular Polarization case – E Normal to Plane of Incidence: 

As shown in figure is a perpendicular polarized wave incident at anglei a 

dielectric medium 2.  Snell’s Law states that a reflected wave will be at the 

same angle r i , and the transmitted wave in medium 2 at angle  t can be 

calculated using this law.  The amplitude of the reflected and transmitted 

waves can be determined by applying the continuity of the tangential 

components of E & H at the boundary.   

This is given by – 

 cos
i

i  
 cos r

i =  cos
t

t  

 

Fig.10.12 E Normal to Plane of Incidence 

Since E & H are related by ,  
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*Note:  The exponential factors were canceled after substituting z = 0 and 

using Snell’s Laws in the above two equations.   
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Oblique incidence of electric vectors perpendicular to boundary: 

Plane waves are not normally incident, so now we must consider the 

general problem of a plane wave propagating along a specified axis that is 

arbitrarily relative to a rectangular coordinate system.  The most 

convenient way is in terms of the direction cosines of the uniform plane 



wave, the equiphase surfaces are planes perpendicular to the direction of 

propagation.   

Definitions: 

Uniform planes wave generally have inform or constant properties in plane 

perpendicular to their direction of propagation. A free space plane wave at 

an infinite distance from the generator, having constant amplitude electric 

and magnetic field vectors over the equi-phase surfaces. 

Equi-phase surface – any surface in a wave over which the field vectors of 

a particular instant have either 0° or 180° phase difference.   

For a plane wave propagating along the +z axis 

 

   ( )  z e am
j z

x         (1) 

 

Equation (6.1) states that each z equal to a constant plane will represent an 

equi-phase surface with no spatial variation in the electric or magnetic 

fields.  In other words, 







x y

 0     for a uniform plane wave 

 

It will be necessary to replace z for a plane wave traveling in an arbitrary 

direction with an expression when put equal to a constant (βz = constant), 

that will result in equi-phase surfaces.   



The equation of an equi-phase plane is given by  

 

      r n r  

 

The radial vector (r) from the origin to any point on the plane, and β is the 

vector normal to the plane is shown in Figure. 

 

Fig.10.13 

As you can see from figure, the plane perpendicular to the vector β is seen 

from its side appearing as a line P-W.  The dot product nβ · r is the 

projection of the radial vector r along the normal to the plane and will have 

the constant value OM for all points on the plane.  The equation β · r = 

constant is the characteristic property of a plane perpendicular to the 

direction of propagation β. 

The equiphase equation is  

β · r = βxx + βyy + βzz 

        = β (cos θxx + cos θyy + cos θzz) 



        = constant 

r = x a y a z ax y z   

     x x y y z za a a          

θx, θy, θz, are the angles the β vector makes with x, y, and z axes, 

respectively.   

 

Definition: 

Transverse electromagnetic wave (TEM) – electromagnetic wave having 

electric field vectors and magnetic field vectors perpendicular to the 

direction of propagation.   

H is perpendicular to E, and both E and H are perpendicular to the 

direction of propagation β.  The expressions for  
 

and are 

    
m

j re                                                                    (2) 








n


 

The unit vector nβ along β and η is the wave impedance in the propagation 

medium. See Figure for the illustration of orthogonal relations between 

 
 

and and the direction of propagation.   



 

Fig.10.14 Orthogonal relations between  
 

and and the direction of 

propagation 

 

 

10.5 Reflection and refraction at normal and oblique incidence of 

electric vectors parallel to boundary:  

 

(i) Electric Field Normal to the Plane of Incidence: 

The entire electric field is (out of the paper) in the y direction and the 

magnetic field will have both x and z components.  See Figure. 

The incident electric and magnetic fields are  
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Fig.10.15 Electric Field Normal to the Plane of Incidence 

where     i i ir x z  sin cos . 

Assume that the reflected field is also in the y direction so the magnetic 

field must be perpendicular to both E and the Poynting Vector P = E ^ H, 
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Where      r r rr x z  sin cos .   Determine the angle of reflection r and 

the amplitude of the reflected electric field m
r by using the boundary 

conditions at z = 0.  This also includes zero values of the tangential 

electrical field E and the normal component of the magnetic field H.   
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Therefore, 
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Note:  These two conditions will provide the same results for the 

unknowns r m
rand  , and be true for every value of x along z = 0 plane, so 

the phase factors must be equal.   

 r i  

And 

  m
r

m
i   

Negative sign indicates the opposite direction of the reflected electric field 

(i.e. into the paper) 

The total E field is  
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The total H field is 
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And the substitution of   m
r

m
i has been made.  The direction vectors of 

the incident and reflective wave are 



  i r i x i zn a a, sin cos   

And 

  i r y i z i xn a a a, sin cos    

The components of the total magnetic field are 
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There is a standing-wave in the z direction because the reflected and 

incident waves travel in the opposite direction along the z-axis.  The fields 

traveling in the x direction and having the only nonzero power flow in the 

direction parallel to the interface.   

The concept can be illustrated by considering the average density flow 

associated with the wave.   
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This indicates that the power flow is in the x direction. 

 S z e
m
i

i i
j x i

 2 
cos cos cos sin


     ,   T z em

i
i

j x i  2  sin cos sin     , 



 W z em
i

i i
j x i

 
2 

sin sin cos sin


      

 

 

Parallel Polarization Case – E is in Plane of Incidence: 

 

Fig.10.16 E is in Plane of Incidence 

The unknown amplitudes of the reflected and transmitted electric fields 

|| ||
r tand   can be determined by simply applying the boundary conditions at 

the dielectric interface.  The electric fields || ||
r tand   will now be used in the 

analysis to emphasize the case of parallel polarization, instead of using the 

electric fields m m
tr and  . 

The tangential component of H should be continuous across the boundary.  

Therefore,  
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There is no need to carry the ay vector, because the magnetic fields only 

have one component in the y direction.  Recall that this relation is valid at 

z = 0, 
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are the magnitudes of  in regions 1 & 2, respectively.  In order for 

this to be valid at any value of x at any point on the interface, and knowing
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* This is the same relation that was determined earlier from Snell’s Law.  
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E and H are related by , so equation can be rewritten as  
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Tangential components of E must be continuous across the boundary, 

therefore 
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*Remember the exponential terms cancel out z = 0, (Snell’s Law). 

Equations 6.15 & 6.16 are solved by –  
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The total electric field in region 1 is  
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| | i  
| | r   (cos sin )m

i
i x i z

j i ra a e       +  ( cos sin )m
r

r x r z
j r r

a a e       

        


cos  sin
i m

i j x ie   (
cos j z ie

  


||
)

cos


j z ie a x
   



            



sin  sin
i m

i j x ie

Traveling wave
part

  
     e e aj z j z

z

S ding plus
travelingwaves

i i   cos cos

tan


| |

  
    

Substituted  i rr r , from expressions derived earlier, and   
| |  m

r
m
i  . 

Equation states that there is a traveling-wave field in the x direction, and a 

traveling and standing wave field in the z direction.  The difference is that


| |  1, but that  | |     m

r
m
i .  By rearranging the second term in ax 

component of the total field – 

       1 2   cos| | ||

cos j z i
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This expression indicates that a wave of amplitude  1  ||  is propagating in 

the z direction and another wave of amplitude  2  | | has the characteristics 

of a standing wave along the z axis.  The characteristic of the wave along 

the z axis is a combination of a traveling and standing wave.  If  | |  1 the 

amplitude of the traveling wave will be zero, and the wave characteristic 

along the z axis will be a totally standing wave.  If  | |  0 , the amplitude of 

the standing wave will be zero and the wave characteristic in the z 

direction would be a totally traveling wave.   

The magnetic field in region 1 is 
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The transmitted fields in medium 2 are 
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Where     t t tr x z  2 sin cos
 

And  
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t
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E Field Parallel to Plane of Incidence: 

 

Fig.10.17 E Field Parallel to Plane of Incidence 



The figure shows an incident wave polarized with the E field in the plane 

of incidence and the power flow in the direction of i  at angle  i with 

respect to the normal to the surface of the perfect conductor.   

The direction of propagation is given by the Poynting vector and the i , E, 

and H fields need to be arranged so that i  is in the same direction as 

 i i at any time.  The magnetic field is out of the plane of the paper, 

   y ya for the direction of the electric field shown. There is no 

transmitted field within the perfect conductor; however there will be a 

reflected field with power flow at the angle  r with respect to the normal 

to the interface.  To maintain the power density flow r r  will be in the 

same direction  r as. The expression for the total electric field in free 

space is   
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Equation shows the relationship between the incident and reflected 

amplitudes for a perfect conductor the total tangential E field at the surface 

must be zero which satisfies the boundary condition.  To be zero at all 

values of x along the surface of the conducting plane, the phase terms must 

be equal to each other – 

 i r   

Equation is known as Snell’s law of reflection. 

Definition: Snell’s Law is a rule of Physics that applies to visible light 

passing from air (or vacuum) to some medium with an index of refraction 

different from air.   

From above equations–  
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Therefore, the total electric field in free space is  
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Take equation and recover the time-domain form of the total electric field 

     r t r e j t, Re    

Observe the variation of the total field with the x variable indicating there 

is a traveling wave in the x direction with a phase constant 

  x i sin  

And in the z direction the field forms a standing wave. 

The total magnetic field is  
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Use the relation 
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for each of the incident and reflected fields to 

employ the expressions x and z components of the incident and reflected 

electric fields.   
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The solution of the determinant, the only nonzero component of  i is the 

ay component given by  
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The reflected magnetic fields is given by  
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The average power flow parallel to the conducting surface is 
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The cross product yields two components: 

 One in the x direction 

 One in the z direction 
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The expression of Pave will reduce to  
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Glancing Incident: 

 
 

i ave

m
i

xa


 











90

2
2

,







, the power flow is at maximum. 

Normal Incident: 

i x ave  0 0, ,   (Power flow in the x direction is zero) 

Average power flow perpendicular to the conducting surface is zero, 

because the average Poynting Vector is zero in that direction 

 z ave x yP , Re   1

2
0   

Why?  Because  x is multiplied by j, therefore   x yand are out of phase 

by 90°.  Therefore, a traveling-wave pattern occurs in the x direction, 

because the incident and reflected waves travel in the same direction, the 

standing-wave pattern will be observed in the z direction, because the 

incident and reflected waves travel in the opposite directions. 

The location of zeros (nodes) of the  x field can be found by letting sin

  z icos  = 0.  At a distance z from the conducting plane given by  

  z nicos   

Or   

z = n 


2
0 1 2

cos
, , , ...

i
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The zeros will occur at distances larger than integer multiples of  2 .  So, 

for normal incidence,i 0,  cosi 1, and the positions of the zeros will are 

the same as those discussed in chapter 5.  For the oblique incidence, the 

locations of the standing-wave nodes are 2  apart along the direction of 

propagation.  The wavelength measured along the z-axis is greater than the 

wavelength of the incident waves along the direction of propagation.  As 

shown in fig the relation between these wavelengths is z
i







cos
. 

 

Fig.10.18 Wavelength measured along the z-axis is greater than the 

wavelength of the incident waves along the direction of propagation 

The plane of the zero  x field occur at multiples of  2 along the direction 

of propagation, and they are located at integer multiples of z 2  along the 

z-axis which appear separated by larger distances.  Also note that the 

standing-wave pattern associated with the  z component may appear as if 

there is no zero value of the electric field at  



z = 0, but the  z component is normal to the reflecting surface, therefore 

the boundary condition is not in violation.   

 

SAQ.1 

a) Define the Boundary conditions at discontinuity for D and E. 

b) Define the Boundary conditions at discontinuity for B and H. 

c) What do you mean by Reflection and refraction at normal incidence 

of electric vectors perpendicular to boundary? 

d) Discuss the Reflection and refraction at oblique incidence of electric 

vectors parallel to boundary. 

10.6 Total internal reflection:  

A good-quality mirror may reflect more than 90% of the light that falls on 

it, absorbing the rest. But it would be useful to have a mirror that reflects 

all of the light that falls on it. Interestingly, we can produce total 

reflection using an aspect of refraction. 

Consider what happens when a ray of light strikes the surface between two 

materials, such as is shown in Figure 1a. Part of the light crosses the 

boundary and is refracted; the rest is reflected. If, as shown in the figure, 

the index of refraction for the second medium is less than for the first, the 

ray bends away from the perpendicular. (Since n1 > n2, the angle of 

refraction is greater than the angle of incidence—that is, θ1 > θ2.) Now 

imagine what happens as the incident angle is increased. This causes θ2 to 

increase also. The largest the angle of refraction θ2 can be is 90º, as shown 

in Figure 1b.The critical angle θc for a combination of materials is defined 

to be the incident angle θ1 that produces an angle of refraction of 90º. That 

is, θc is the incident angle for which θ2 = 90º. If the incident angle θ1is 



greater than the critical angle, as shown in Figure 1c, then all of the light is 

reflected back into medium 1, a condition called total internal reflection. 

Critical Angle: 

The incident angle θ1 that produces an angle of refraction of 90º is called 

the critical angle, θc. 

 

 

 

Fig.10.19 (a) A ray of light crosses a boundary where the speed of light 

increase and the index of refraction decreases. That is, n2 < n1. The ray 



bends away from the perpendicular. (b) The critical angle θc is the one for 

which the angle of refraction is. (c) Total internal reflection occurs when 

the incident angle is greater than the critical angle. 

 

Snell’s law states the relationship between angles and indices of refraction. 

It is given by 

n1 sin θ1 = n2 sin θ2. 

When the incident angle equals the critical angle (θ1 = θc), the angle of 

refraction is 90º (θ2 = 90º). Noting that sin 90º = 1, Snell’s law in this case 

becomes 

n1 sin θ1 = n2. 

The critical angle θc for a given combination of materials is thus 

θc=sin
−1

(n2/n1)   for n1 > n2. 

Total internal reflection occurs for any incident angle greater than the 

critical angle θc, and it can only occur when the second medium has an 

index of refraction less than the first. Note the above equation is written 

for a light ray that travels in medium 1 and reflects from medium 2, as 

shown in the figure. 

Brewster’s Law: 

Brewster’s law is a relationship of light waves at the 

maximum polarization angle of light. This law is named after Sir David 

Brewster, a Scottish physicist, who proposed the law in the year 1811. The 

https://byjus.com/physics/polarization-of-light/


law states that the p-polarized rays vanish completely on different glasses 

at a particular angle. 

Further, the polarization angle is also called as Brewster’s angle. It is an 

angle of incidence where the ray of light having a p-polarization 

transmitted through a dielectric surface that is transparent without any 

reflection. While, the un-polarized light at this angle is transmitted, the 

light is reflected from the surface. 

 

 

Fig.10.20 Relationship of light waves at the maximum polarization angle 

of light 

Brewster was able to determine that the refractive index of the medium is 

numerically equal to the tangent angle of polarization. Know more about 

the Brewster’s Law Formula.  

 

μ = tan i 

where,   

μ = Refractive index of the medium,  

https://byjus.com/physics/polarization-of-light/
https://byjus.com/physics/polarization-of-light/
https://byjus.com/brewsters-law-formula/


i = Polarization angle. 

From Snell’s Law: 

……………. (1) 

From Brewster’s Law: 

………….. (2) 

Comparing both formulas (1) and (2) 

 

As, i + r = (ᴨ/2) < ABC is also equal to the (ᴨ/2). 

Therefore, the reflected and the refracted rays are at right angles to each 

other. 

 

Degree of polarization: 

Degree of polarization (DOP) is a quantity used to describe the portion of 

an electromagnetic wave which is polarized. A perfectly polarized wave 

has a DOP of 100%, whereas an un-polarized wave has a DOP of 0%. A 

wave which is partially polarized, and therefore can be represented by a 

superposition of a polarized and un-polarized component, will have a DOP 

somewhere in between 0 and 100%. DOP is calculated as the fraction of 

the total power that is carried by the polarized component of the wave. 

https://en.wikipedia.org/wiki/Electromagnetic_wave
https://en.wikipedia.org/wiki/Polarization_(waves)


DOP can be used to map the strain field in materials when considering the 

DOP of the photoluminescence. The polarization of the 

photoluminescence is related to the strain in a material by way of the given 

material's photo elasticity tensor. 

DOP is also visualized using the Poincare sphere representation of a 

polarized beam. In this representation, DOP is equal to the length of 

the vector measured from the center of the sphere. 

 

10.7 Plane wave propagation in plasma and its properties 

(qualitative): 

Plasma waves the physical description of an electromagnetic wave 

propagating in a given medium necessitates a self-consistent handling of 

the particles comprising the medium (and their mutual interactions) on one 

hand, and of the electromagnetic field on the other hand. In the case of 

plasma, the problem is summarized on Fig. 1.1. 

 

Fig.10.21 Self-consistent description of the electromagnetic field in a 

plasma 

https://en.wikipedia.org/wiki/Strain_(materials_science)
https://en.wikipedia.org/wiki/Photoluminescence
https://en.wikipedia.org/wiki/Photoelasticity_tensor
https://en.wikipedia.org/wiki/Poincar%C3%A9_sphere_(optics)
https://en.wikipedia.org/wiki/Vector_(geometric)


The electromagnetic field, given by the Maxwell’s equations, influences 

the particles trajectories. Since the handling of all individual particles is 

largely beyond the computational capabilities of available computers in 

the present, but also in any foreseeable future, a plasma model is needed to 

derive statistical quantities, such as the charge and current density. In turn, 

these quantities enter as sources in the Maxwell’s equations, and influence 

the field. Depending on the problem under study, various approximations 

are introduced to close this loop. In the present lecture, we will be 

developing a linear theory of plasma waves, by introducing a clear 

separation between the “equilibrium” fields and the wave perturbation. 

Maxwell’s equations the electromagnetic field in the plasma is described 

by the Maxwell’s equations, which we write in the form: 

…………… (1) 

……………….. (2) 

…………… (3) 

……………….(4) 

 

In these relations, E is the electric field, D is the electric displacement, H 

is the magnetic intensity, B is the magnetic induction (which we shall refer 

to as the magnetic field). jfree is the current carried by the free charges 

flowing in the medium, and ρfree is the corresponding charge density. jext 

and ρext are the current and charge densities from external sources, such as 

antennas. It is important to notice that in this form, the polarization and 



magnetization currents are included in D. Formally, it is possible to solve 

these equations as long as we are able to describe the medium response to 

a given electromagnetic excitation. In other words, we need to establish 

the constitutive relations of the medium: 

……………….5 

And 

……………..6 

In a classical electromagnetism problem [1], it is usual to introduce a 

polarization vector P, and also a magnetization vector M to write 

…………7 

And  

……………..8 

with ε0 = 1/36π × 10
9
F/m the vacuum dielectric permittivity and µ0 = 4π × 

10
7
H/m the vacuum magnetic permeability. We can then manipulate Eq. 

1.4 to obtain the more familiar form 

…………….9 

with ∂tP ≡ jpol, and ∇ × M ≡ µ0jmag. jpol and jmag are respectively the 

polarization and magnetization currents. So far, we have followed the 

exact same method that is employed, e.g., in solid state physics. However, 

in plasma physics, it is impractical to separate the polarization, the 



magnetization and the free charges currents. Indeed, all charges are free (at 

least in a fully ionized plasma), yet all do contribute to the polarization of 

the medium. Therefore, we rewrite Eq. 1.9 in the form 

…………..10 

where j is the total current flowing in the plasma in response to the wave 

perturbation. It is now straightforward to deduce the wave equation from 

Eqs. 1.3 and 1.10 

…………11 

Despite its apparent simplicity, this relation is extremely complicated, 

because of its non-linear nature: j is a function of E and the properties of 

the plasma make this relation far from being trivial, as discussed in the 

next section. In this lecture, we will always assume that this relation is 

linear in essence, which restricts us to waves of moderate amplitude. This 

will allow us to retain the self-consistent nature of the problem. Moreover, 

it has been shown numerous times that the linear theory of waves was well 

suited to describe a large class of problems, such as high power heating 

and current drive in magnetic fusion devices. 

Properties of plasma: 

 In an isotropic “standard” medium, the fact that j is a linear function of E 

can be written as 

 



σ is the linear conductivity. Eq. 1.12 is local, both spatially (i.e., the 

response at location r only depends on the excitation at location r) and 

temporally (i.e., the response at instant t depends only on the excitation at 

instant t). Unfortunately, several properties of the plasma make the 

description more complicated than in this ideal dielectric medium. 

 Anisotropy: In many situations, plasmas are confined by strong magnetic 

fields (magnetic fusion plasmas, space plasmas). In this case, the response 

will obviously be different depending on the direction of the excitation 

(Fig. 1.2). The relation between j and E thus becomes tensorial in essence, 

as in a crystal, for instance. Hence, we write 

 

 

 

Fig.10.22 Anisotropy in a plasma confined by a magnetic field. 

Time dispersion: The plasma is comprised of an assembly of electrons and 

ions, with various weights. Depending on the wave frequency, due to their 

inertia, the heavy ions may respond to the excitation with a delay. 



 

Fig.10.23 Time dispersion in a plasma. The various species respond 

differently to the wave depending on its frequency and on their respective 

masses. 

In this case, the response of the plasma at instant t is determined by the 

excitation at all previous instants t’. Taking into account the causality 

principle which imposes to perform the integral only on times prior to t, 

we obtain a relation which is non local in time: 

 

Due to the non-local character of the relation between j and E, it is usual to 

refer as the conductivity kernel. 

Space dispersion: In a plasma, the finite temperature of the species induces 

a thermal agitation, and the particles have erratic motions superimposed to 

their integrable displacement (if any). This means that the particles at 

position r are influenced by the electromagnetic field in the domain they 

explore due to this non-deterministic part of their motion. Space dispersion 

is therefore a consequence of thermal effects (Fig. 1.4). We can thus 

expect a cold plasma to be non-dispersive in space (but not in time). We 

will find out later that this is indeed the case. 



 

Fig.10.24 Space dispersion in a plasma. The thermal agitation causes the 

particles located at position r to actually “experience” the field in a region 

around this position. 

The relation between j and E must thus be written in a spatially non local 

form: 

 

Gathering these three essential properties, it is clear that the functional j(E) 

must be written in the form 

 

This relation is linear (assuming is independent E) but retains the 

fundamental properties of the plasma medium. 

Metallic Reflection: 

When a light beam encounters a material, radiation can be absorbed or 

reflected by the surface. Metals are known for having high reflectivity, 

which explains their shiny appearance. Since the reflectance of light by 

metals is high, their absorption must also be high, because a high 

reflectance implies that light cannot penetrate the metal with considerable 



efficiency. The absorption of light can happen due to lattice vibrations and 

excitation of electrons to higher energy levels. Also, high reflectance of 

light in lower frequencies is associated to high conductivity of the metal, 

according to Hagens-Ruben relation. 

Absorption Phenomena: If a light beam of certain wavelength is focused 

on a metal, the radiation is attenuated due to energy loss from lattice 

vibrations (heat) and excitation of electrons from the valence band to 

conduction band. In metals, there is an overlap between valence band and 

conduction band or a partially-filled valence band, which leads to 

conduction of electrons to energy levels above the Fermi level. This 

phenomenon is shown in Figure 11. 

 

Fig.10.25 Scheme of the absorption of light by a metal, occurring lattice 

vibrations (a) and electron promotion to higher energy levels (b). 

 

When electromagnetic radiation encounters the metallic surface, the 

intensity of the incident light (I0) decreases exponentially while it travels 

through the metal, leading to a transmitted light (I) of lower intensity 

(Figure 2). This happens because metals can damp the initial intensity of 

https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Semiconductors/Fermi_level


light (I0), and the decrease of light intensity is related to thickness of the 

metal (z), the incident wavelength, and the damping constant (k), or 

extinction coefficient. Where k describes the efficacy of a metal for light 

damping. This relationship is shown in Equation 1. 

 

Fig.10.26 Scheme of the initial intensity of light (I0) changing to 

transmitted intensity (I) when the radiation passes through a metal with 

thickness (z) 

 

……………1 

The ratio between the transmitted intensity (I) and the initial intensity (I0) 

is defined as transmittance (T), shown in Equation 2. 

……………..2 

 



Also, the change in light intensity is related to the penetration depth (W), 

which is the distance required for the intensity of light (I0) to be 

diminished to 1/e or 37% of its initial value. The reciprocal of the 

penetration depth is defined as absorbance (α), which is the amount of 

energy absorbed by the metal when radiation passes through (Equation). 

……………3 

Metals have high reflectivity, reflecting almost all wavelengths in the 

visible region of the spectrum. This is related to their high damping 

constant, which leads to a short distance crossed by the light. In addition, 

some metals have low refractive index and, according to Snell's Law, 

when light passes through a medium of higher refractive index to a 

medium of low refractive index, the refracted ray will have a large 

deflection in relation to the normal. 

These features explain the behavior of some metals such as silver, gold 

and copper towards incidence of electromagnetic radiation. A schematic 

representation of this process is shown in Figure. 

 

 



Fig.10.27 Reflectance phenomena where the incidence of light in metal 

leads to metallic reflection (a) and light attenuation or absorption (b). 

Therefore, the Reflectance (R) of a material can be defined as the 

efficiency of a material to reflect incident light. This value depends only 

on the complex refractive index (n) and the damping constant (k), which is 

shown in Equation 4: 

………………4 

The study of metallic reflectance can be applied on metallic coatings, 

which is expected that the metal reflect light in a wide range of 

wavelengths. Also, it can explain the colors displayed by the metals. 

Silver, for instance, has high reflectivity over the visible range of the 

spectrum, which makes it colorless when white light is focused on the 

metal. Gold, however, absorbs the blue and violet regions of the spectrum, 

leading to a yellow color when illuminated with white light. The 

reflectance spectra of silver, gold, copper and aluminum is represented in 

Figure 4, where it can be observed that those metals have high reflectance 

in a wide range of wavelengths, specially in the visible region of the 

spectrum. However, if the frequency is large (lower wavelength values), 

silver, copper and gold have a drop in reflectance.  



 

Fig.10.28 Reflectance spectra of the metals: aluminum (black line), silver 

(red line), gold (blue line) and copper (green line). 

 

Reflectance and conductivity: 

The metallic reflectance can be related to the conductivity by the Hagens-

Ruben equation (Equation 5), where ν is the light frequency, ε0 is the 

vacuum permittivity (8.85 x 10
-12

 F/m), and σ is the conductivity. In the 

infrared region (small frequencies), this equation shows that metals with 

high reflectance also are good conductors. 

…………5 

This conclusion was derived by Drude and confirmed experimentally by 

Hagens-Ruben. It was observed that, at higher wavelengths (lower 

frequencies), the optical constants of metals are similar to the values of 

Drude`s function, where the complex refractive index is much smaller then 



the damping constant, or extinction coefficient. This leads to high 

reflectance. However, in higher frequencies, deviations of Drude`s 

approach start to appear, because bound electrons of the metal start to 

respond to the incidence of light, instead of just valence band electrons 

response. This leads to a decrease in reflectivity, which depends on the 

metal's characteristics. 

 

 

10.8 Elementary theory of dispersion: 

Dispersion occurs when pure plane waves of different wavelengths have 

different propagation velocities, so that a wave packet of mixed 

wavelengths tends to spread out in space. The speed of a plane wave, v, is 

a function of the wave's wavelength: 

 

The wave's speed, wavelength, and frequency, f, are related by the identity 

 

The function f(λ)  expresses the dispersion relation of the given medium. 

Dispersion relations are more commonly expressed in terms of the angular 

frequency  ω = 2πf and wave number k=2π/λ. 

Rewriting the relation above in these variables gives 

 

https://en.wikipedia.org/wiki/Wave_packet
https://en.wikipedia.org/wiki/Angular_frequency
https://en.wikipedia.org/wiki/Angular_frequency
https://en.wikipedia.org/wiki/Wavenumber


where we now view f as a function of k. The use of ω(k) to describe the 

dispersion relation has become standard because both the phase 

velocity ω/k and the group velocity dω/dk have convenient representations 

via this function. 

The plane waves being considered can be described by 

 

where 

A is the amplitude of the wave, 

A0 = A(0,0), 

x is a position along the wave's direction of travel, and 

t is the time at which the wave is described. 

 

SAQ.2 

a) Define the Total internal reflection, Brewster’s law and degree of 

polarization. 

b) What do you mean by Plane wave propagation in plasma and its 

properties? 

c) Define the working of Elementary theory of dispersion. 

 

Examples:- 

https://en.wikipedia.org/wiki/Phase_velocity
https://en.wikipedia.org/wiki/Phase_velocity
https://en.wikipedia.org/wiki/Group_velocity


Q.1. If the refractive index of a polarizer is 1.9218. What will be the 

polarization angle and angle of refraction? 

Solution: Looking at the above figures, we will see that we already know the 

refractive index of the polarizer that means μ is 1.9218. In order to find the 

polarization angle and angle of refraction, we will apply Brewster’s law: 

μ = tan ip 

Or, ip = tan−1tan−1 (1.9128) 

Or, ip = 62
o
 24’ 

Now we will see that our angle of refraction: 

It is specified that ip + ir = 90 degrees 

Thus, angle of refraction or ir = 90 – 62
o
 24’ 

Therefore, our angle of refraction comes as 27.6 
o
 

 

Q.2. Find out Brewster’s angle of light which travels from water (n = 1.33) 

into the air? 

Solution: Looking at the question, we see we have already got our n1n1 as 

1.33. Thus, by applying the formula we will get: 



 

Q.3. A certain polarizer has a refractive index of 1.33. Find the 

polarization angle and angle of refraction? 

Solution: Refractive index of the polarizer = 1.33 

The Brewster’s law is μ = tan ip 

ip = tan−1 (1.33) 

ip = 53.06 

Now, Angle of refraction 

It is given that ip + ir = 90 degrees 

Thus, angle of refraction or ir = 90 – 53.06 

Angle of refraction = 36.94 

 

Summary: 

1) In this chapter discuss the Boundary conditions at discontinuity for 

D, E, B and H. 



2) Define and explain the Reflection and refraction at normal and 

oblique incidence of electric vectors perpendicular to boundary. 

3) Define and explain the Reflection and refraction at normal and 

oblique incidence of electric vectors parallel to boundary. 

4) Total internal reflection, in physics, complete reflection of a ray of 

light within a medium such as water or glass from the surrounding 

surfaces back into the medium. The phenomenon occurs if the angle 

of incidence is greater than a certain limiting angle, called the 

critical angle. 

5) Brewster's law, relationship for light waves stating that the 

maximum polarization (vibration in one plane only) of a ray of light 

may be achieved by letting the ray fall on a surface of a transparent 

medium in such a way that the refracted ray makes an angle of 90° 

with the reflected ray. 

6) Degree of polarization (DOP) is a quantity used to describe the 

portion of an electromagnetic wave which is polarized. A perfectly 

polarized wave has a DOP of 100%, whereas an un-polarized wave 

has a DOP of 0%. 

7) Plasma waves the physical description of an electromagnetic wave 

propagating in a given medium necessitates a self-consistent 

handling of the particles comprising the medium (and their mutual 

interactions) on one hand, and of the electromagnetic field on the 

other hand. 

https://en.wikipedia.org/wiki/Electromagnetic_wave
https://en.wikipedia.org/wiki/Polarization_(waves)


8) When a light beam encounters a material, radiation can be absorbed 

or reflected by the surface. Metals are known for having high 

reflectivity, which explains their shiny appearance. 

9) Dispersion occurs when pure plane waves of different wavelengths 

have different propagation velocities, so that a wave packet of mixed 

wavelengths tends to spread out in space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Terminal Questions: 

 

1) Explain the Boundary conditions at discontinuity for D, E, B and H 

in details. 

2) Explain the working of the Reflection and refraction at normal and 

oblique incidence of electric vectors perpendicular to boundary. 

3) Explain the working of the Reflection and refraction at normal and 

oblique incidence of electric vectors parallel to boundary. 

https://en.wikipedia.org/wiki/Wave_packet


4) Write the short notes of the following: (i) Total internal reflection, 

(ii) Brewster’s law, (iii) Degree of polarization. 

5) Explain the working principle of the Plane wave propagation in 

plasma and its properties. 

6) What do you mean by Metallic reflection? 

7) Discuss and explain Elementary theory of dispersion. 

8) If the refractive index of a polarizer is 1.112. What will be the 

polarization angle and angle of refraction? 

9) A certain polarizer has a refractive index of 1.63. Find the 

polarization angle and angle of refraction? 

10)  A light of 632.8 nm is focused on a gold sample of damping 

constant (k) of 3.068. Calculate the penetration depth and 

absorbance of the sample. 

11)  Find out Brewster’s angle of light which travels from water (n = 1.33) 

into the air? 

 

 

 

 


