
Software Engineering

Er Pooja Yadav
[Email address]

1

Course Design Committee
Dr. Ashutosh Gupta Chairman
Director (In-charge)
School of Computer and Information Science, UPRTOU Allahabad

Prof. R. S. Yadav Member
Department of Computer Science and Engineering
MNNIT Allahabad

Ms. Marisha Member
Assistant Professor (Computer Science)
School of Science, UPRTOU Allahabad

Mr. Manoj Kumar Balwant Member
Assistant Professor (computer science)
School of Sciences, UPRTOU Allahabad

Course Preparation Committee
Dr. Pooja Yadav Author
Assistant Professor, Dept. of CS & IT
MJP Rohilkhand University, Bareilly (UP)

Dr. Ashutosh Gupta Editor
Associate Professor, Dept. of CS & IT
MJP Rohilkhand University, Bareilly (UP)

Mr. Manoj Kumar Balwant Coordinator
Assistant Professor (computer science)
School of Sciences, UPRTOU Allahabad

2

Software Engineering

FIRST - BLOCK

3

BLOCK

1
UNIT 1 SOFTWARE ENGINEERING FUNDAMENTALS

UNIT 2 SOFTWARE PROCESS

UNIT 3 PROJECT MANAGEMENT CONCEPT

4

BLOCK INTRODUCTION

In this section we discuss the overview of this block’s content. This block consists of the

following units:

Unit 1 Software Engineering Fundamentals

Software engineering is an engineering branch associated with development of software

product using well-defined scientific principles, methods and procedures. The outcome of

software engineering is an efficient and reliable software product.

Unit 2 Software Process

Software development life cycle (SDLC) models describe phases of the software cycle and the

order in which these phases are executed. Each phase produces deliverables required by

the next phase in the life cycle. The software development models are the various processes or

methodologies that are being selected for the development of the project depending on the

project’s aims and goals. There are many development life cycle models that have been

developed in order to achieve different required objectives. The models specify the various

stages of the process and the order in which they are carried out. The SDLC aims to produce

high quality software that meets or exceeds customer expectations, reaches completion within

times and cost estimates.

Unit 3 Project Management Concept

A Software Project is the complete procedure of software development from requirement

gathering to testing and maintenance, carried out according to the execution methodologies, in

a specified period of time to achieve intended software product.

5

UNIT-1 SOFTWARE ENGINEERING FUNDAMENTALS

1.0 Introduction

1.1 Objective

1.2 Definition Of Software Engineering

1.3 Components Of Computer

1.4 Software Characteristics

1.5 Software Applications

1.6 Summary

1.7 Exercise

6

1.0 INTRODUCTION
Software Engineering is the discipline that aims to provide methods and procedures for

developing software systems. Software engineering focuses on the process with the aim that

the quality of product developed using a process is influenced mainly by the process. It is the

application of science and mathematics by which the capabilities of computer equipment are

made useful to humans via computer programs, procedure and associated documentation

1.1 OBJECTIVE

Objectives of this unit are:

a) to apply knowledge of modules ,tools, procedure ,methods, paradigms.

b) to design and conduct experiments, as well as to analyse and interpret data.

c) to identify, formulate, and solve engineering problems.

d) to communicate effectively.

e) the broad education necessary to understand the impact of engineering solutions in a global,

economic, environmental, and societal context.

f) to use the techniques, skills, and modern engineering tools necessary for engineering

practice.

1.2 DEFINITION OF SOFTWARE ENGINEERING

Software engineering is essentially a set of steps that comprises of process, methods and tools.

It is defined not as a branch of engineering but rather a discipline whose aim is the production

of quality software that satisfies the user’s need and is delivered on time and within budget.

It can also be defined as –

“A systemization of the process of the software development in order to ensure the best

solution in the most economical way”.

1.2.1 Elements of Software Engineering: The following are the major elements of

software engineering:

a. Methods

b. Procedures

7

c. Tools

d. Paradigms

Methods: A method is a procedure for producing some result. It is sometimes also referred

to as a technique. Methods generally demand some formal notation and processes.

Procedure: A procedure is a mechanism that combines tools and/or methods to produce a

particular product. Algorithms are example of procedures.

Tools: Tools are the automated system that increases accuracy, efficiency, productivity, or

equality of the end product.

Paradigm: It refers to a particular approach for building software such as the object

oriented paradigm.

1.2.2 Evolution of software engineering
From its beginnings in the 1940s, writing software has evolved into a profession concerned

with how best to maximize the quality of software and of how to create it. Quality refers to its

stability, speed, usability, testability, readability, size, cost, security, and number of flaws or

"bugs", as well as to less measurable qualities like elegance, conciseness, and customer

satisfaction, among many other attributes. How best to create high quality software is a

separate and controversial problem covering software design principles, so-called "best

practices" for writing code, as well as broader management issues such as optimal team size,

process, how best to deliver software on time and as quickly as possible, work-place "culture,"

hiring practices, and so forth. All this falls under the broad rubric of software engineering.

1945 to 1965: The Origins

The term software engineering first appeared in the late 1950s and early 1960s.

Programmers have always known about civil, electrical, and computer engineering and

debated what engineering might mean for software.

The NATO Science Committee sponsored two conferences on software engineering in

1968 and 1969, which gave the field its initial boost. Many believe these conferences

marked the official start of the profession of software engineering.

1965 to 1985: The Software Crisis

Software engineering was spurred by the so-called software crisis of the 1960s, 1970s,

and 1980s, which identified many of the problems of software development. Many

software projects ran over budget and schedule. Some projects caused property damage.

8

A few projects caused loss of life. The software crisis was originally defined in terms

of productivity, but evolved to emphasize quality. Some used the term software crisis to

refer to their inability to hire enough qualified programmers.

 Cost and Budget Overruns: The OS/360 operating system was a classic

example. This decade-long project from the 1960s eventually produced one of

the most complex software systems at the time. OS/360 was one of the first

large (1000 programmer’s software projects). Fred Brooks claims in The

Mythical Man Month that he made a multi-million dollar mistake of not

developing a coherent architecture before starting development.

 Property Damage: Software defects can cause property damage. Poor software

security allows hackers to steal identities, costing time, money, and reputations.

 Life and Death: Software defects can kill. Some embedded systems used

in radiotherapy machines failed so catastrophically that they administered lethal

doses of radiation to patients. The most famous of these failures is the Therac-

25 incident.

Peter G. Neumann has kept a contemporary list of software problems and disasters. The

software crisis has been fading from view, because it is psychologically extremely

difficult to remain in crisis mode for a protracted period (more than 20 years).

Nevertheless, software - especially real-time embedded software - remains risky and is

pervasive, and it is crucial not to give in to complacency. Over the last 10–15

years Michael A. Jackson has written extensively about the nature of software

engineering, has identified the main source of its difficulties as lack of specialization,

and has suggested that his problem frames provide the basis for a "normal practice" of

software engineering, a prerequisite if software engineering is to become an

engineering science.

1985 to 1989: No Silver Bullet

For decades, solving the software crisis was paramount to researchers and companies

producing software tools. The cost of owning and maintaining software in the 1980s

was twice as expensive as developing the software.

• During the 1990s, the cost of ownership and maintenance increased by 30% over the

1980s.

• In 1995, statistics showed that half of surveyed development projects were

operational, but were not considered successful.

• The average software project overshoots its schedule by half.

9

• Three-quarters of all large software products delivered to the customer are failures

that are either not used at all, or do not meet the customer’s requirements.

1990 to 1999: Prominence of the Internet

The rise of the Internet led to very rapid growth in the demand for international

information display/e-mail systems on the World Wide Web.

Programmers were required to handle illustrations, maps, photographs, and other

images, plus simple animation, at a rate never before seen, with few well-known

methods to optimize image display/storage (such as the use of thumbnail images).

The growth of browser usage, running on the HTML language, changed the way in

which information-display and retrieval was organized. The widespread network

connections led to the growth and prevention of international computer viruses on MS

Windows computers, and the vast proliferation of spam e-mail became a major design

issue in e-mail systems, flooding communication channels and requiring semi-

automated pre-screening. Keyword-search systems evolved into web-based search

engines, and many software systems had to be re-designed, for international searching,

depending on search engine optimization (SEO) techniques. Human natural-language

translation systems were needed to attempt to translate the information flow in multiple

foreign languages, with many software systems being designed for multi-language

usage, based on design concepts from human translators. Typical computer-user bases

went from hundreds, or thousands of users, to, often, many-millions of international

users.

2000 to Present: Lightweight Methodologies

With the expanding demand for software in many smaller organizations, the need for

inexpensive software solutions led to the growth of simpler, faster methodologies that

developed running software, from requirements to deployment, quicker & easier. The

use of rapid-prototyping evolved to entire lightweight methodologies, such as Extreme

Programming (XP), which attempted to simplify many areas of software engineering,

including requirements gathering and reliability testing for the growing, vast number of

small software systems. Very large software systems still used heavily-documented

methodologies, with many volumes in the documentation set; however, smaller systems

had a simpler, faster alternative approach to managing the development and

maintenance of software calculations and algorithms, information storage/retrieval and

display.

10

1.2.3 Current Trends in Software Engineering
Software engineering is a young discipline, and is still developing. The directions in which

software engineering is developing include:

Aspects

Aspects help software engineer’s deal with quality attributes by providing tools to add or

remove boilerplate code [boilerplate code refers to sections of code that have to be included in many

places with little or no alteration.] from many areas in the source code. Aspects describe how all

objects or functions should behave in particular circumstances. For example, aspects can

add debugging, logging, or locking control into all objects of particular types. Researchers are

currently working to understand how to use aspects to design general-purpose code. Related

concepts include generative programming and templates.

Agile

Agile software development guides software development projects that evolve rapidly with

changing expectations and competitive markets. Ggroups of this method believe that heavy,

document-driven processes (like TickIT, CMM and ISO 9000) are fading in importance. Some

people believe that companies and agencies export many of the jobs that can be guided by

heavy-weight processes. Related concepts include extreme programming, scrum, and lean

software development.

Experimental

Experimental software engineering is a branch interested in devising experiments on software,

in collecting data from the experiments, and in devising laws and theories from this data.

Groups of this method advocate that the nature of software is such that we can advance the

knowledge on software through experiments only.

Model-driven

Model driven design develops textual and graphical models as primary design artifacts.

Development tools are available that use model transformation and code generation to generate

well-organized code fragments that serve as a basis for producing complete applications.

Software product lines

Software product lines are a systematic way to produce families of software systems, instead of

creating a succession of completely individual products. This method emphasizes extensive,

systematic, formal code reuse, to try to industrialize the software development process.

Check Your Progress 1:

When you know programming, what is the need to learn software engineering concepts?

11

1.3 COMPONENTS OF COMPUTER
There are three basic components of Computer System. These are hardware, software and user.

Figure 1.1 Components of computer

1.3.1 Hardware: Hardware is the tangible unit of the computer system. Hardware refers to

all the physical components of a computer. It includes all input devices, processing devices,

storage devices, and output devices. The keyboard, mouse, motherboard, monitor, hard disk,

cables, and printer are all examples of hardware. You use hardware to provide input to a

computer and also to get the desired output. Hardware needs software for the controlling itself.

There are several parts of the hardware.

1.3.2 Software: Software is

(1) Instructions (computer programs) that when executed provide desired function and

performance,

(2) Data structures that enable the programs to adequately manipulate information, and

(3) Documents that describe the operation and use of the programs.

It is the essential component of computer system. Software gives "intelligence" to the

computer. Software is a collection of program which drives the hardware in solving a problem.

Software is kept on a secondary storage. Software's are classified into 2 categories: -

Components of Computer

Hardware

CPU Peripherals

Input
Devices

Output
Devices

Software

Application
Software

System
Software

User

12

(a) System Software: - It includes the computer programs that run a computer

system itself or that assist the computer in running application program. They control

and support computer system. End user never uses system software directly.

(b) Application Software: - Application software is the main program for various

applications written by programmers under an organization to solve any particular

problem. All the software, which users actually use, is application software. For

example- MS Word, excel, PowerPoint, Tally etc. Application software can be product

based or project based:

a. Products: - These software are developed by software developers then

launched in the marked for the end users e.g. MS office, Tally, Photoshop etc.

b. Project: - (Custom software) these software are developed by software

development companies on the demand of any client. They cannot be purchased

from open market. They are the property of the specific organization e.g.

banking software of bank, railway reservation software, billing software of any

agency etc.

1.3.3 User: - User is the essential component of the computer. Anyone who is using the

computer is computer user. Computer user can be manager, student, teacher, administrator or

any lay person.

1.4 SOFTWARE CHARACTERISTICS
To gain an understanding of, it is important to examine the characteristics of software that

make it different from other things that human beings build. When hardware is built, the

human creative process is ultimately translated in to a physical form. If we build a new

computer, our initial sketches, formal design drawings, and bread boarded prototype evolve

into a physical product.

Software is a logical rather than a physical system element. Therefore, software has

characteristics that are considerably different than those of hardware:

Check Your Progress 2.

Can you differentiate computer software and computer program?

13

1. Software is developed or engineered; it is not manufactured in the classical sense.

Although some similarities exist between software development and hardware manufacture,

the two activities are fundamentally different. In both activities, high quality is achieved

through good design, but the manufacturing phase for hardware can introduce quality

problems that are non-existent for software. Both activities are dependent on people, but the

relationship between people applied and work accomplished is entirely different. Both

activities require the construction of a "product" but the approaches are different. Software

costs are concentrated in engineering. This means that software projects cannot be managed

as if they were manufacturing projects.

2. Software doesn't "wear out."

The relationship indicates that hardware exhibits relatively high failure rates early in its life;

defects are corrected and the failure rate drops to a steady-state level for some period of

time. As time passes, however, the failure rate rises again as hardware components suffer

from the cumulative effects of dust, vibration, abuse, temperature extremes, and many other

environmental maladies. Stated simply, the hardware begins to wear out.

Software is not susceptible to the environmental maladies that cause hardware to wear out.

Another aspect of wear illustrates the difference between hardware and software. When a

hardware component wears out, it is replaced by a spare part. There are no software spare

parts. Every software failure indicates an error in design or in the process through which

design was translated into machine executable code. Therefore, software maintenance

involves considerably more complexity than hardware maintenance.

3. Most software continues to be custom built.

In the software world, it is something that has only begun to be achieved on a broad scale.

A software component should be designed and implemented so that it can be reused in

many different programs. In the 1960s, we built scientific subroutine libraries that were

reusable in a broad array of engineering and scientific applications. Today, we have

extended our view of reuse to encompass not only algorithms but also data structure.

Modern reusable components encapsulate both data and the processing applied to the data,

enabling the software engineer to create new applications from reusable parts.

A software product can be judged by what it offers and how well it can be used. This software

must satisfy on the following grounds:

Operational

14

This tells us how well software works in operations. It can be measured on:

 Budget

 Usability

 Efficiency

 Correctness

 Functionality

 Dependability

 Security

 Safety

Transitional

This aspect is important when the software is moved from one platform to another:

 Portability

 Interoperability

 Reusability

 Adaptability

Maintenance

This aspect briefs about how well software has the capabilities to maintain itself in the ever-

changing environment:

 Modularity

 Maintainability

 Flexibility

 Scalability

1.5 SOFTWARE APPLICATION
Software engineering is the application of engineering to the design, development,

implementation and maintenance of software in a systematic method. Software’s are being

developed in almost every area of life for automation. Software may be applied in any situation

for which a pre-specified set of procedural steps has been defined.

The following software areas indicate the breadth of potential applications:

 System software.

System software is a collection of programs written to service other programs. Some

system software (e.g., compilers, editors, and file management utilities) process complex,

but determinate, information structures. Other systems applications (e.g., operating system

15

components, drivers, telecommunications processors) process largely indeterminate data. In

either case, the system software area is characterized by heavy interaction with computer

hardware; heavy usage by multiple users; concurrent operation that requires scheduling,

resource sharing, and sophisticated process management; complex data structures; and

multiple external interfaces.

 Real-time software.

Software that monitors/analyses/controls real-world events as they occur is called real time.

Elements of real-time software include a data gathering component that collects and

formats information from an external environment, an analysis component that transforms

information as required by the application, a control/output component that responds to the

external environment, and a monitoring component that coordinates all other components

so that real-time response (typically ranging from 1 millisecond to 1 second) can be

maintained.

 Business software.

Business information processing is the largest single software application area. Discrete

"systems" (e.g., payroll, accounts receivable/payable, inventory) have evolved into

management information system (MIS) software that accesses one or more large databases

containing business information. Applications in this area restructure existing data in a way

that facilitates business operations or management decision making. In addition to

conventional data processing application, business software applications also encompass

interactive computing (e.g., point-of-sale transaction processing).

 Engineering and scientific software.

Engineering and scientific software have been characterized by "number crunching"

algorithms. Applications range from astronomy to volcanology, from automotive stress

analysis to space shuttle orbital dynamics, and from molecular biology to automated

manufacturing. However, modern applications within the engineering/scientific area are

moving away from conventional numerical algorithms. Computer-aided design, system

simulation, and other interactive applications have begun to take on real-time and even

system software characteristics.

 Embedded software.

Intelligent products have become commonplace in nearly every consumer and industrial

market. Embedded software resides in read-only memory and is used to control products

and systems for the consumer and industrial markets. Embedded software can perform very

limited and esoteric functions (e.g., keypad control for a microwave oven) or provide

16

significant function and control capability (e.g., digital functions in an automobile such as

fuel control, dashboard displays, and braking systems).

 Personal computer software.

The personal computer software market has burgeoned over the past two decades. Word

processing, spread-sheets, computer graphics, multimedia, entertainment, database

management, personal and business financial applications, external network, and database

access are only a few of hundreds of applications.

 Web-based software.

The Web pages retrieved by a browser are software that incorporates executable

instructions (e.g., CGI, HTML, Perl, or Java), and data (e.g. hypertext and a variety of

visual and audio formats). In essence, the network becomes a massive computer providing

an almost unlimited software resource that can be accessed by anyone with a modem.

 Artificial intelligence software.

Artificial intelligence (AI) software makes use of non-numerical algorithms to solve

complex problems that are not amenable to computation or straightforward analysis. Expert

systems, also called knowledge based systems, pattern recognition (image and voice),

artificial neural networks, theorem proving, and game playing are representative of

applications within this category.

Here is the list of some application of software’s in some areas:

• Business Process Re-Engineering

• Communication Networks

• Computer Graphics

• Cooperative Work Support

• e-Commerce

• Education

• Training

• Embedded Systems Programming

• m-Commerce

• Medical Informatics

• Mobile and Wireless Computing

• Multimedia Systems

• Parallel and Distributed Systems

• Real Time Systems

• Web-based Simulation

17

• Workflow Modelling

• others

1.6 SUMMARY
This section covered about software, its types, characteristics and application area of software.

And also explain software engineering, its evaluation, and current trends of this field.

1.7 EXERCISE
1) Define the term software and software engineering. What are the objectives of software

engineering?

2) What is software engineering? How is it different from other traditional engineering

branches?

3) Define the types of software. What are the characteristics of software?

4) What are the attributes of good software?

5) Write some applications of software.

Check Your Progress 3.

What are the challenges in software?

18

UNIT-2 SOFTWARE PROCESS

2.0 Introduction

2.1 Objective

2.2 Definition of Software Process

2.3 Software Process Models

2.3.1 Waterfall Model

2.3.2 Prototype Model

2.3.3 Spiral Model

2.3.4 Incremental Model

2.4 Concurrent Development Model

2.5 Summary

2.6 Exercise

2.0 INTRODUCTION

19

The development lifecycle of software Comprises of four major stages namely

Requirement Elicitation, Designing, Coding and Testing. A software process model is the

basic framework which gives a workflow from one stage to the next. This workflow is a

guideline for successful planning, organization and final execution of the software

project. Generally we have many different techniques and methods used to software

development life cycle. Project and most real world models are customized adaptations

of the generic models while each is designed for a specific purpose or reason, most have

similar goals and share many common tasks.

Software processes performed during software Development and evolution are becoming

rather complex and resource intensive. They involve people who execute actions with the

primary goal to create quality software in accordance with the previously set user

requirements. Only structured, carefully guided and documented software processes can

lead to the stated goal. Constant monitoring and improvement of Software processes is

therefore of a significant interest for organizational performing software development

and maintenance. In order to improve the process an objective description and evolution

of the existing process is needed.

In contrast to software life cycle models, software process models often represent a

networked sequence of activities, objects, transformations, and events that embody

strategies for accomplishing software evolution. Such models can be used to develop

more precise and formalized descriptions of software life cycle activities. Their power

emerges from their utilization of a sufficiently rich notation, syntax, or semantics, often

suitable for computational processing. Software process networks can be viewed as

representing multiple interconnected task chains. Task chains represent a non-linear

sequence of actions that structure and transform available computational objects

(resources) into intermediate or finished products. Non-linearity implies that the

sequence of actions may be non-deterministic, iterative, accommodate multiple/parallel

alternatives, as well as partially ordered to account for incremental progress. Task actions

in turn can be viewed a non-linear sequences of primitive actions which denote atomic

units of computing work, such as a user's selection of a command or menu entry using a

mouse or keyboard.

2.1 OBJECTIVE

20

Objectives of this unit are:

a) To introduce the concept of software process and software process models.

b) To describe a number of different process models and when they may be used.

c) To describe outline process models for requirements engineering, software

development, testing and evolution.

d) To describe the pros and cons of each model

2.2 SOFTWARE DEVELOPMENT LIFECYCLE
SDLC, Software Development Life Cycle, is a process used by software industry to

design, develop and test high quality software. The SDLC aims to produce high quality

software that meets or exceeds customer expectations, reaches completion within times

and cost estimates. The software development life cycle (SDLC) is a framework defining

tasks performed at each step in the software development process. ISO/IEC 12207 is an

international standard for software life-cycle processes. It aims to be the standard that

defines all the tasks required for developing and maintaining software. SDLC is a process

followed for a software project, within a software organization. It consists of a detailed

plan describing how to develop, maintain, replace and alter or enhance specific software.

The life cycle defines a methodology for improving the quality of software and the

overall development process.

A typical Software Development life cycle consists of the following stages as shown in figure

2.1:

Stage 1: Planning and Requirement Analysis: Requirement analysis is the most important

and fundamental stage in SDLC. It is performed by the senior members of the team with inputs

from the customer, the sales department, market surveys and domain experts in the industry.

This information is then used to plan the basic project approach and to conduct product

feasibility study in the economical, operational, and technical areas.

Planning for the quality assurance requirements and identification of the risks associated with

the project is also done in the planning stage. The outcome of the technical feasibility study is

to define the various technical approaches that can be followed to implement the project

successfully with minimum risks.

21

Figure 2.1 : Stages of SDLC

Stage 2: Defining Requirements: Once the requirement analysis is done the next step is to

clearly define and document the product requirements and get them approved from the

customer or the market analysts. This is done through ‘SRS’ – Software Requirement

Specification document which consists of all the product requirements to be designed and

developed during the project life cycle.

Stage 3: Designing the product architecture: SRS is the reference for product architects to

come out with the best architecture for the product to be developed. Based on the requirements

specified in SRS, usually more than one design approach for the product architecture is

proposed and documented in a DDS - Design Document Specification. This DDS is reviewed

by all the important stakeholders and based on various parameters as risk assessment, product

robustness, design modularity , budget and time constraints , the best design approach is

selected for the product.

A design approach clearly defines all the architectural modules of the product along with its

communication and data flow representation with the external and third party modules (if any).

The internal design of all the modules of the proposed architecture should be clearly defined

with the minutes of the details in DDS.

Stage 4: Building or Developing the Product: In this stage of SDLC the actual development

starts and the product is built. The programming code is generated as per DDS during this

Planning

Defining

Designing

Building

Testing

Developme
nt

22

stage. If the design is performed in a detailed and organized manner, code generation can be

accomplished without much hassle.

Developers have to follow the coding guidelines defined by their organization and

programming tools like compilers, interpreters, debuggers etc. are used to generate the code.

Different high level programming languages such as C, C++, Pascal, Java, and PHP are used

for coding. The programming language is chosen with respect to the type of software being

developed.

Stage 5: Testing the Product: This stage is usually a subset of all the stages as in the

modern SDLC models, the testing activities are mostly involved in all the stages of

SDLC. However this stage refers to the testing only stage of the product where products

defects are reported, tracked, fixed and retested, until the product reaches the quality

standards defined in the SRS.

Stage 6: Deployment in the Market and Maintenance: Once the product is tested and ready

to be deployed it is released formally in the appropriate market. Sometime product deployment

happens in stages as per the organizations’ business strategy. The product may first be released

in a limited segment and tested in the real business environment (UAT- User acceptance

testing).

Then based on the feedback, the product may be released as it is or with suggested

enhancements in the targeting market segment. After the product is released in the market, its

maintenance is done for the existing customer base.

2.3 SOFTWARE PROCESS MODELS
There is various software process models defined and designed which are followed during

software development process. These models are also referred as "Software Development Life

Cycle Models". Each process model follows a Series of steps unique to its type, in order to

ensure success in process of software development.

Following are the most important and popular SDLC models followed in the industry:

i. Waterfall Process Model: The Classical Life Cycle or the Waterfall Process Model

was the first process model to present a sequential framework, describing basic stages

that are mandatory for a successful software development model. It formed the basis for

Check Your Progress 1.

What are the fundamental activities of a software process?

23

most software development standards and consists of the following phases:

Requirements elicitation, Designing, Implementation and Testing.

ii. Prototype Model: In Prototype Model, the user is given a “look and feel” of the system

using a prototype. The prototype for the system to be developed is built, tested and

reworked as necessary. Prototype process model is suitable for dynamic environment

where requirements change rapidly. The process begins with gathering main functional

requirements; this is followed by a quick design leading to the development of a

prototype. The prototype is then evaluated by users and customers. Developers rework

on the prototype until the customer and users are satisfied.

iii. Incremental Development Model: In incremental development process, customers

identify, in outlined the services to be provided by the system. They identify which of

the services are most important and which are least important to them. A number of

delivery increments are then defined which each increment providing a subset of

functional requirements. The highest priority functional requirements are delivered first.

iv. Spiral Model: In Spiral model, instead of presenting a sequence of activities with some

backtracking from one activity to the other, the process model followed a spiral

organization of activities. It combines characteristics of both prototype and waterfall

process model. The model is divided into some task regions, which are as follows:

Customer Communication, Planning, Risk Analysis, and Engineering, Construction and

release and Customer evaluation. The distinctive feature of this model is that each stage

is controlled by a specific risk management criteria ensuring decision making using

critical factors.

v. Rapid Application Development Model: The RAD model is an adaptation of the

classical model for achieving rapid development using component based construction.

If requirements are well understood with a well constrained project scope, the RAD

process enables delivery of the fully function system. The model is considered to be

incremental development model and that have emphasis on short development cycle.

vi. Rational Unified Process Model (RUP): The RUP provides dynamic, static and

practice perspectives of a product. The RUP provides each team member with the

guidelines, templates and tool mentors necessary for the entire team to take full

advantage of the best practices. The software lifecycle is broken into cycles, each cycle

working on a new generation of the product.

24

vii. The V-Model: The V-Model is an extension to the Waterfall Model in that it does not

follow a sequential mode of execution rather it bends upward after the coding phase to

form V shape.

viii. Concurrent Engineering Model: The concurrent development model sometimes

called concurrent engineering model can be represented schematically as a series of

frame work activities, software engineering action and task, and their associated status.

Provide a schematic representation of one software engineering task with in the

modelling activities for the concurrent process model. The activity-modelling may be in

any one of the states noted at any given time. Similarly, other activities or task can be

represented in an analogous manner. All activities exist concurrently but reside in

different states .its first iteration and exist in the waiting changes state. The modelling

activities which existed in none state while initial communication was completed, now

makes a transition into the under development state. If, however, the customer indicates

that changes in requirements must be made, the modeling activities moves from the

under development states into the awaiting changes states. The concurrent process

model defines a series of events that will trigger transition from state to state for each of

the software engineering activities, actions, or tasks.

ix. Confident Software Development Process Model: The Confident process model

which we have proposed has seven phases, namely; Feasibility study/Requirement,

Requirement Based Analysis, Logical Design, Confident Code, Logical Testing,

Implementation & Deployment, and Maintenance. It is a flexible model not restricting

the developers enabling them to move both Front and back from any given stage to any

other stage during its lifecycle. Each phase is further divided into sub phases, each

specifying a criterion which has to be met to move to the next phase.

x. The Formal model: The formal methods model encompasses a set of activities that

leads to formal mathematical specification of computer software formal methods enable

a software engineer to specify, develop, and verify a computer-based system by

applying a rigorous. When formal methods are used during development, they provide a

mechanism for eliminating many of the problem that are difficult to overcome using

other software engineering cardiogram

2.3.1 WATERFALL MODEL

25

The Waterfall Model was first Process Model to be introduced. It is also referred to as a linear-

sequential life cycle model. It is very simple to understand and use. In a waterfall model, each

phase must be completed before the next phase can begin and there is no overlapping in the

phases.

Waterfall model is the earliest SDLC approach that was used for software development .The

waterfall Model illustrates the software development process in a linear sequential flow; hence

it is also referred to as a linear-sequential life cycle model. This means that any phase in the

development process begins only if the previous phase is complete. In waterfall model phases

do not overlap.

Waterfall Model design

Waterfall approach was first SDLC Model to be used widely in Software Engineering to ensure

success of the project. In "The Waterfall" approach, the whole process of software

development is divided into separate phases. In Waterfall model, typically, the outcome of one

phase acts as the input for the next phase sequentially as shown in figure 2.2.

Figure 2.2: Stages of Waterfall Model

Requirement Analysis

System Design

Implementation

Integration & Testing

Deployment

Maintenance

26

The sequential phases in Waterfall model are:

 Requirement Gathering and analysis: All possible requirements of the system to be

developed are captured in this phase and documented in a requirement specification doc.

 System Design: The requirement specifications from first phase are studied in this phase

and system design is prepared. System Design helps in specifying hardware and system

requirements and also helps in defining overall system architecture.

 Implementation: With inputs from system design, the system is first developed in small

programs called units, which are integrated in the next phase. Each unit is developed and

tested for its functionality which is referred to as Unit Testing.

 Integration and Testing: All the units developed in the implementation phase are

integrated into a system after testing of each unit. Post integration the entire system is

tested for any faults and failures.

 Deployment of system: Once the functional and non-functional testing is done, the product

is deployed in the customer environment or released into the market.

 Maintenance: There are some issues which come up in the client environment. To fix

those issues patches are released. Also to enhance the product some better versions are

released. Maintenance is done to deliver these changes in the customer environment.

All these phases are cascaded to each other in which progress is seen as flowing steadily

downwards (like a waterfall) through the phases. The next phase is started only after the

defined set of goals are achieved for previous phase and it is signed off, so the name "Waterfall

Model". In this model phases do not overlap.

Waterfall Model Application

Every software developed is different and requires a suitable SDLC approach to be followed

based on the internal and external factors. Some situations where the use of Waterfall model is

most appropriate are:

 Requirements are very well documented, clear and fixed.

 Product definition is stable.

 Technology is understood and is not dynamic.

 There are no ambiguous requirements.

 Ample resources with required expertise are available to support the product.

 The project is short.

Advantage of Waterfall Model:

 Simple and easy to understand.

27

 Work well for smaller projects where requirements are very well understood.

 Easy to manage due to rigidity of model. Each phase has its specific deliverables and

review process.

 Easy to arrange task.

 Clearly defined stages.

 Phases are processed and completed one at a time.

 Process and results are well documented.

Disadvantage of Waterfall Model:

 High amount of risk and uncertainty.

 Poor model for long and on-going projects.

 Not a good model for object-oriented projects and complex projects.

 It is very difficult to measure progress within stages.

 Cannot accommodate changing requirements. i.e. it is very difficult to go back and

change something that was not well-documented or thought upon in the concept stage.

 No working software is produced until late in the life cycle.

 Not suitable for the projects where requirements are at a moderate to high risk of

changing.

2.3.2 PROTOTYPE MODEL
The Software Prototyping refers to building software application prototypes which display the

functionality of the product under development but may not actually hold the exact logic of the

original software.

Software prototyping is becoming very popular as a software development model, as it enables

to understand customer requirements at an early stage of development. It helps get valuable

feedback from the customer and helps software designers and developers understand about

what exactly is expected from the product under development.

What is Software Prototyping?

 Prototype is a working model of software with some limited functionality.

Check Your Progress 2.

Write out the reasons for the Failure of Water Fall Model?

28

 The prototype does not always hold the exact logic used in the actual software application

and is an extra effort to be considered under effort estimation.

 Prototyping is used to allow the users evaluate developer proposals and try them out before

implementation.

 It also helps understand the requirements which are user specific and may not have been

considered by the developer during product design.

Stepwise approach of Software prototype

Following is the stepwise approach to design a software prototype as depicted in figure 2.3:

 Basic Requirement Identification: This step involves understanding the very basics

product requirements especially in terms of user interface. The more intricate details of the

internal design and external aspects like performance and security can be ignored at this

stage.

 Developing the initial Prototype: The initial Prototype is developed in this stage, where

the very basic requirements are showcased and user interfaces are provided. These features

may not exactly work in the same manner internally in the actual software developed and

the workarounds are used to give the same look and feel to the customer in the prototype

developed.

 Review of the Prototype: The prototype developed is then presented to the customer and

the other important stakeholders in the project. The feedback is collected in an organized

manner and used for further enhancements in the product under development.

 Revise and enhance the Prototype: The feedback and the review comments are discussed

during this stage and some negotiations happen with the customer based on factors like,

time and budget constraints and technical feasibility of actual implementation. The changes

accepted are again incorporated in the new Prototype developed and the cycle repeats until

customer expectations are met.

Prototypes can have horizontal or vertical dimensions. Horizontal prototype displays the user

interface for the product and gives a broader view of the entire system, without concentrating

on internal functions. A vertical prototype on the other side is a detailed elaboration of a

specific function or a sub system in the product.

The purpose of both horizontal and vertical prototype is different. Horizontal prototypes are

used to get more information on the user interface level and the business requirements. It can

even be presented in the sales demos to get business in the market. Vertical prototypes are

29

technical in nature and are used to get details of the exact functioning of the sub systems. For

example, database requirements, interaction and data processing loads in a given sub system.

Software Prototyping Types

There are different types of software prototypes used in the industry. Following are the major

software prototyping types used widely:

 Throwaway/Rapid Prototyping: Throwaway prototyping is also called as rapid or close

ended prototyping. This type of prototyping uses very little efforts with minimum

requirement analysis to build a prototype. Once the actual requirements are understood, the

prototype is discarded and the actual system is developed with a much clear understanding

of user requirements.

 Evolutionary Prototyping: Evolutionary prototyping also called as breadboard

prototyping is based on building actual functional prototypes with minimal functionality in

the beginning. The prototype developed forms the heart of the future prototypes on top of

which the entire system is built. Using evolutionary prototyping only well understood

requirements are included in the prototype and the requirements are added as and when

they are understood.

 Incremental Prototyping: Incremental prototyping refers to building multiple functional

prototypes of the various sub systems and then integrating all the available prototypes to

form a complete system.

 Extreme Prototyping: Extreme prototyping is used in the web development domain. It

consists of three sequential phases. First, a basic prototype with all the existing pages is

presented in the html format. Then the data processing is simulated using a prototype

services layer. Finally the services are implemented and integrated to the final prototype.

This process is called Extreme Prototyping used to draw attention to the second phase of

the process, where a fully functional UI is developed with very little regard to the actual

services.

Software Prototyping Application

Software Prototyping is most useful in development of systems having high level of user

interactions such as online systems. Systems which need users to fill out forms or go through

various screens before data is processed can use prototyping very effectively to give the exact

look and feel even before the actual software is developed.

30

Software that involves too much of data processing and most of the functionality is internal

with very little user interface does not usually benefit from prototyping. Prototype development

could be an extra overhead in such projects and may need lot of extra efforts.

Figure 2.3: Prototype Model

Software prototyping is used in typical cases and the decision should be taken very carefully so

that the efforts spent in building the prototype add considerable value to the final software

developed. The model has its own pros and cons discussed as below.

Following table lists out the pros and cons of the Model:

Advantages of Prototype Model

 Increased user involvement in the product even before implementation

 Since a working model of the system is displayed, the users get a better understanding of

the system being developed.

 Reduces time and cost as the defects can be detected much earlier.

31

 Quicker user feedback is available leading to better solutions.

 Missing functionality can be identified easily. Confusing or difficult functions can be

identified

Disadvantages of Prototype Model

 Risk of insufficient requirement analysis owing to too much dependency on prototype

 Users may get confused in the prototypes and actual systems.

 Practically, this methodology may increase the complexity of the system as scope of the

system may expand beyond original plans.

 Developers may try to reuse the existing prototypes to build the actual system, even when

it’s not technically feasible

 The effort invested in building prototypes may be too much if not monitored properly

2.3.3 SPIRAL MODEL
The spiral model combines the idea of iterative development with the systematic, controlled

aspects of the waterfall model.

Spiral model is a combination of iterative development process model and sequential linear

development model i.e. waterfall model with very high emphasis on risk analysis. It allows for

incremental releases of the product, or incremental refinement through each iteration around

the spiral.

Spiral Model design

The spiral model has four phases. A software project repeatedly passes through these phases in

iterations called Spirals.

 Identification: This phase starts with gathering the business requirements in the baseline

spiral. In the subsequent spirals as the product matures, identification of system

requirements, subsystem requirements and unit requirements are all done in this phase.

 This also includes understanding the system requirements by continuous communication

between the customer and the system analyst. At the end of the spiral the product is

deployed in the identified market.

Check Your Progress 3.

What are the benefits of prototyping?

32

 Design: Design phase starts with the conceptual design in the baseline spiral and involves

architectural design, logical design of modules, physical product design and final design in

the subsequent spirals.

 Construct or Build: Construct phase refers to production of the actual software product at

every spiral. In the baseline spiral when the product is just thought of and the design is

being developed a POC (Proof of Concept) is developed in this phase to get customer

feedback.

Then in the subsequent spirals with higher clarity on requirements and design details a

working model of the software called build is produced with a version number. These

builds are sent to customer for feedback.

 Evaluation and Risk Analysis: Risk Analysis includes identifying, estimating, and

monitoring technical feasibility and management risks, such as schedule slippage and cost

overrun. After testing the build, at the end of first iteration, the customer evaluates the

software and provides feedback.

Based on the customer evaluation, software development process enters into the next

iteration and subsequently follows the linear approach to implement the feedback

suggested by the customer. The process of iterations along the spiral continues throughout

the life of the software.

Following, figure 2.4, is a diagrammatic representation of spiral model listing the activities in

each phase:

33

Figure 2.4: Stages of Spiral Model

Spiral Model Application

Spiral Model is very widely used in the software industry as it is in synch with the natural

development process of any product i.e. learning with maturity and also involves minimum risk

for the customer as well as the development firms. Following are the typical uses of Spiral

model:

 For medium to high-risk projects.

 Long-term project commitment because of potential changes to economic priorities as the

requirements change with time.

 Customer is not sure of their requirements.

 Requirements are complex and need evaluation to get clarity.

 New product line which should be released in phases to get enough customer feedback.

 Significant changes are expected in the product during the development cycle.

34

Advantages of Spiral Model

 Development can be divided into smaller parts and more risky parts can be developed

earlier which helps better risk management.

 Users see the system early.

 Requirement can be captured more accurately

 Allows for extensive use of prototypes.

 Changing requirements can be accommodated

Disadvantages of Spiral Model

 Management is more complex.

 End of projects may not be known early.

 Not suitable for small and low risk projects and could be extensive for small projects.

 Process is complex.

 Spiral may go indefinitely.

 Large number of intermediate stages requires excessive documentation.

2.3.4 INCREMENTAL MODEL
Incremental model are broken down into multiple standalone modules of software development

cycle. These cycles are further divided into smaller and more manageable iterations as depicted

in figure 2.5.

The incremental build model is a method of software development where the model is

designed, implemented and tested incrementally (a little more is added each time) until the

product is finished. It involves both development and maintenance. The product is defined as

finished when it satisfies all of its requirements. This model combines the elements of the

waterfall model with the iterative philosophy of prototyping.

The product is decomposed into a number of components, each of which are designed and built

separately (termed as builds). Each component is delivered to the client when it is complete.

This allows partial utilisation of product and avoids a long development time. It also creates a

large initial capital outlay with the subsequent long wait avoided. This model of development

also helps ease the traumatic effect of introducing completely new system all at once.

Check Your Progress 4.

 When to use Spiral model?

?

35

Figure 2.5: Basic Concept of Incremental model

Each iteration passes through the requirements, design, coding and testing phases as

depicted in figure 2.6.

. And each subsequent release of the system adds function to the previous release until all

designed functionality has been implemented.

Figure 2.6: Stages of Incremental Model

The system is put into production when the first increment is delivered. The first increment is

often a core product where the basic requirements are addressed, and supplementary features

are added in the next increments. Once the core product is analyzed by the client, there is plan

development for the next increment.

Characteristics of Incremental module includes

 System development is broken down into many mini development projects

 Partial systems are successively built to produce a final total system

 Highest priority requirement is tackled first

 Once the incremented portion id developed, requirements for that increment are frozen

Incremental Phases Activities performed in incremental phases

http://cdn.guru99.com/images/6-2015/052615_1049_WhatisIncre1.png
http://cdn.guru99.com/images/6-2015/052615_1049_WhatisIncre2.png

36

Requirement Analysis Requirement and specification of the software are collected

Design Some high-end function are designed during this stage

Code Coding of software is done during this stage

Test Once the system is deployed, it goes through the testing phase

When to use Incremental models?

 Requirements of the system are clearly understood

 When demand for early release of product arises

 When team resources are not very well skilled or trained

 When high-risk features and goals are involved

 Such model is more in use for web application and product based companies

Advantages of Incremental Model

 Software will be generated quickly during the software life cycle

 It is flexible and less expensive to change requirements and scope

Thought the development stages changes can be done

This model is less costly compared to others

Customer can respond to each built

Errors are easy to be identified

Disadvantages of Incremental Model

 It requires a good planning designing

 Problems might cause due to system architecture as such not all requirements collected up

front for the entire software life cycle

Each iteration phase is rigid and does not overlap each other

Rectifying a problem in one unit requires correction in all the units and consumes a lot of

time

2.4 CONCURRENT DEVELOPMENT MODEL

2.0 Concurrent Development Model

Check Your Progress 5.

Explain in your own words a distinction between the iterative and incremental life cycle

models.

37

2.4 CONCURRENT DEVELOPMENT MODEL
The concurrent development model is also called concurrent engineering. Project managers

who track project status in terms of the major phases have no idea of the status of their projects.

These are examples of trying to track extremely complex sets of activities using overly simple

models. Note that although project is in the coding phase, there are personnel on the project

involved in activities typically associated with many phases of development simultaneously.

For example, personnel are writing requirements, designing, coding, testing, and integration

testing. Software engineering process models by Humphrey and Kellner have shown the

concurrency that exists for activities occurring during any one phase. Kellner's more recent

work uses state charts to represent the concurrent relationship existent among activities

associated with a specific event (e.g., a requirements change during late development), but fails

to capture the richness of concurrency that exists across all software development and

management activities in the project. Most software development process models are driven by

time; the later it is, the later in the development process you are. A concurrent process model is

driven by user needs, management decisions, and review results.

The concurrent process model can be represented schematically as a series of major technical

activities, tasks, and their associated states. For example, the engineering activity defined for

the spiral model is accomplished by invoking the following tasks: prototyping and/or analysis

modelling, requirements specification, and design.

The activity—analysis—may be in any one of the states noted at any given time. Similarly,

other activities can be represented in an analogous manner. All activities exist concurrently but

reside in different states. For example, early in a project the customer communication activity

has completed its first iteration and exists in the awaiting changes state. The analysis activity

now makes a transition into the under development state. If, however, the customer indicates

that changes in requirements must be made, the analysis activity moves from the under

development state into the awaiting changes state.

38

Figure2.7: A Concurrent Process Model

As shown in figure 2.7, the concurrent process model defines a series of events that will trigger

transitions from state to state for each of the software engineering activities. For example,

during early stages of design, an inconsistency in the analysis model is uncovered. This

generates the event analysis model correction which will trigger the analysis activity from the

done state into the awaiting changes state.

The concurrent process model is often used as the paradigm for the development of

client/server applications. A client/server system is composed of a set of functional

components. When applied to client/server, the concurrent process model defines activities in

two dimensions: a system dimension and a component dimension. System level issues are

addressed using three activities: design, assembly, and use. The component dimension is

addressed with two activities: design and realization.

Concurrency is achieved in two ways:

1. System and component activities occur simultaneously and can be modelled using the state-

oriented approach described previously;

39

2. A typical client/server application is implemented with many components, each of which

can be designed and realized concurrently.

In reality, the concurrent process model is applicable to all types of software development and

provides an accurate picture of the current state of a project. Rather than confining software

engineering activities to a sequence of events, it defines a network of activities. Each activity

on the network exists simultaneously with other activities. Events generated within a given

activity or at some other place in the activity network trigger transitions among the states of an

activity.

2.5 SUMMARY
This was about the various SDLC models available and the scenarios in which these SDLC

models are used. We have discussed all the popular SDLC models is used in the industry,

Waterfall model is sequential type. Sequential means that the next phase can start only after the

completion of first phase. Such models are suitable for projects with very clear product

requirements and where the requirements will not change dynamically during the project

completion.

Spiral models are more accommodative in terms of change and are suitable for projects where
the requirements are not so well defined, or the market requirements change quite frequently.
Software Prototyping is most useful in development of systems having high level of user
interactions and Incremental model is more in use for web application.

2.6 EXERCISE
1) Explain the waterfall model. Explain its application area and drawback of waterfall model.

2) List four reasons why it is difficult to improve software process.

3) What is the advantage of using prototype software development model instead of waterfall

model?

4) How does the risk factor affect the spiral model of software development?

5) Write some application of spiral model.

6) What is incremental model? Write some characteristics and advantages of it.

7) What are the different phases of traditional system development life cycle?

Check Your Progress 6.

What is concurrency and how it is achieved in software?

40

UNIT-3 PROJECT MANAGEMENT CONCEPTS

3.0 Introduction

3.1 Objective

3.2 Need Of Project Management

3.3 The Management Spectrum

3.3.1 The People

3.3.2 The Product

3.3.3 The Process

3.3.4 The Project

3.4 Summary

3.5 Exercise

41

3.0 INTRODUCTION
Software development is a not a new stream in world business but there’s very little experience

in building software products. A project is well-defined task, which is a collection of several

operations done in order to achieve a goal. The most important is that the technology changes

and advances so frequently and rapidly that experience of one product may not be applied to

the other one. All such business and environmental constraints bring risk in software

development hence it is essential to manage software projects efficiently.

3.1 OBJECTIVE
The main objectives and principles behind good project management are as follows:

a) Agree exactly what a project is meant to do and what it is meant to deliver.

b) Agree the scope, timescales, cost and quality of a project.

c) Maintain a schedule and project plan.

d) Deliver the agreed outcomes of the project to the right scope, timescales, cost and

quality.

e) Provide communications, reports and progress updates throughout the lifecycle of the

project.

f) Manage risks, issues and dependencies.

g) Manage policies, processes, tools, frameworks, techniques, people and relationships to

a successful project outcome.

3.2 NEED OF PROJECT MANAGEMENT
Software project management is the important task of planning, directing, motivating, and

coordinating a group of professionals to accomplish software development. Software project

management uses many concepts from management in general, but it also has some concerns

unique to software development. One such concern is project visibility. The lack of visibility of

the software product during software development makes it hard to manage. In many other

fields, it is easy to see progress or lack of progress. Many software projects get stalled at 90

percent complete. Ask any programmer if that bug that he or she found is the last bug in the

software, and the answer will almost always be an emphatic yes. Many of the techniques in

software management are aimed at overcoming this lack of visibility.

42

Figure 3.1: Triple constraints for software projects

It is an essential part of software organization to deliver quality product, keeping the cost
within client’s budget constrain and deliver the project as per scheduled. There are several
factors, both internal and external, which may impact this triple constrain triangle as shown in
figure 3.1. Any of three factors can severely impact the other two.

Therefore, software project management is essential to incorporate user requirements along
with budget and time constraints.

Who does it? Everyone “manages” to some extent, but the scope of management activities

varies with the person doing it. A software engineer manages her day-to-day activities,

planning, monitoring, and controlling technical tasks. Project managers plan, monitor, and

control the work of a team of software engineers. Senior managers coordinate the interface

between the business and the software professionals.

Importance of Project Management: Building computer software is a complex undertaking,

particularly if it involves many people working over a relatively long time. That’s why

software projects need to be managed.

A project plan is produced as management activities commence. The plan defines the process

and tasks to be conducted, the people who will do the work, and the mechanisms for assessing

risks, controlling change, and evaluating quality.

Steps of Project Management: Understand the four P’s—people, product, process, and project.

People must be organized to perform software work effectively. Communication with the

customer must occur so that product scope and requirements are understood. A process must be

selected that is appropriate for the people and the product. The project must be planned by

estimating effort and calendar time to accomplish work tasks: defining work products,

43

establishing quality checkpoints, and establishing mechanisms to monitor and control work

defined by the plan.

3.3 THE MANAGEMENT SPECTRUM
There are four P's of project management as shown in figure 3.2.

 The People

 The Product

 The Process

 The Project

The point to emphasize is that each of the P's is important and it is the synergy of all four

working together that yields the successful management of software products. This also the

time to remind students that it is customer for whom the product is being developed. Process

framework activities are populated with tasks, milestones, work products, and quality

assurance checkpoints regardless of the project size. To avoid project failure developers need

react to warning signs and focus their attention on practices that are associated with good

project management.

Figure 3.2: Management Spectrum

PROJECT
MANAGEMENT

The
People

The
Produ

ct

The
Proce

ss

The
Projec

t

44

3.3.1 THE PEOPLE
Companies that manage their people wisely prosper in the long run. To be effective the project

team must be organized in a way that maximizes each person's skills and abilities. Effective

managers focus on problem solving and insist on high product quality. Software teams may be

organized in many different ways. Two factors in selecting a team organizational model are

desired level of communication among its members and difficulty level of the problems to be

solved. Hierarchically organized teams can develop routine software applications without much

communication among the team members. Teams having a more democratic style organization

often develop novel applications more efficiently. It is important for students to understand that

the larger the team, the greater the effort required to ensure effective communication and

coordination of team member efforts.

Five categories of The People:

i. Stakeholders / Players

The software process (and every software project) is populated by players who can be

categorized into one of five constituencies:

 Senior managers – define business issues that often have significant influence on the

project

 Project (technical) managers – plan, motivate, organize, and control the practitioners

who do the work

 Practitioners – deliver the technical skills that are necessary to engineer a product or

application

 Customers – specify the requirements for the software to be engineered and other

stakeholders who have a peripheral interest in the outcome

 End users – interact with the software once it is released for production use.

ii. Team Leaders

Project management is a people-intensive activity, and for this reason, competent

practitioners often make poor team leaders. They simply don’t have the right mix of

people skills.

There is a simple model of leadership which includes-

 Motivation. The ability to encourage (by “push or pull”) technical people to

produce to their best ability.

 Organization. The ability to mould existing processes (or invent new ones) that

will enable the initial concept to be translated into a final product.

45

 Ideas or innovation. The ability to encourage people to create and feel creative

even when they must work within bounds established for a particular software

product or application.

The characteristics that define an effective project manager emphasize four key traits:

 Problem solving

 Managerial identity

 Achievement

 Influence and team building

iii. The Software Team

There are almost as many human organizational structures for software development as

there are organizations that develop software. For better or worse, organizational structure

cannot be easily modified. However, the organization of the people directly involved in a

new software project is within the project manager's purview.

There are three types of generic team organizations:

a. Democratic decentralized (DD). This software engineering team has no permanent

leader. Rather, "task coordinators are appointed for short durations and then

replaced by others who may coordinate different tasks." Decisions on problems

and approach are made by group consensus. Communication among team members

is horizontal.

b. Controlled decentralized (CD). This software engineering team has a defined

leader who coordinates specific tasks and secondary leaders that have

responsibility for subtasks. Problem solving remains a group activity, but

implementation of solutions is partitioned among subgroups by the team leader.

Communication among subgroups and individuals is horizontal. Vertical

communication along the control hierarchy also occurs.

c. Controlled Centralized (CC). Top-level problem solving and internal team

coordination are managed by a team leader. Communication between the leader

and team members is vertical.

There are seven project factors that should be considered when planning the structure of

software engineering teams:

• The difficulty of the problem to be solved.

• The size of the resultant program(s) in lines of code or function points.

• The time that the team will stay together (team lifetime).

• The degree to which the problem can be modularized.

46

• The required quality and reliability of the system to be built.

• The rigidity of the delivery date.

• The degree of sociability (communication) required for the project.

iv. Coordination and Communication Issues

There are many reasons that software projects get into trouble. The scale of many

development efforts is large, leading to complexity, confusion, and significant difficulties

in coordinating team members. Uncertainty is common, resulting in a continuing stream of

changes that ratchets the project team. Interoperability has become a key characteristic of

many systems. New software must communicate with existing software and conform to

predefined constraints imposed by the system or product.

3.3.2 THE PRODUCT
The first project management activity is the determination of software scope. This is essential

to ensure the product developed is the product requested by the customer. It is sometimes

helpful to remind students that unless developers and customers agree on the scope of the

project there is no way to determine when it ends (or when they will get paid). Regardless of

the process model followed, a problem must be decomposed along functional lines into

smaller, more easily managed sub-problems.

The scope of the software development must be established and bounded:

 Context – How does the software to be built fit into a larger system, product, or

business context, and what constraints are imposed as a result of the context?

 Information objectives – What customer-visible data objects are produced as output

from the software? What data objects are required for input?

 Function and performance – What functions does the software perform to transform

input data into output? Are there any special performance characteristics to be

addressed?

Software project scope must be unambiguous and understandable at both the managerial and

technical levels.

Problem decomposition is also referred to as partitioning or problem elaboration. It sits at the

core of software requirements analysis.

Check Your Progress 1.

What does software project manager do?

47

There are two major areas of problem decomposition: first, the functionality that must be

delivered; second; the process that will be used to deliver it.

3.3.3 THE PROCESS
The generic phases that characterize the software process—definition, development, and

support—are applicable to all software. The problem is to select the process model that is

appropriate for the software to be engineered by a project team.

Once a process model is chosen, it needs to be populated with the minimum set of work tasks

and work products. Avoid process overkill. It is important to remind students that framework

activities are applied on every project, no matter how small. Work tasks may vary, but not the

common process framework. Process decomposition can occur simultaneously with product

decomposition as the project plan evolves.

The project manager must decide which process model is most appropriate for

i. The customers who have requested the product and the people who will do the work,

ii. The characteristics of the product itself, and

iii. The project environment in which the software team works.

When a process model has been selected, the team then defines a preliminary project plan

based on the set of common process framework activities. Once the preliminary plan is

established, process decomposition begins. That is, a complete plan, reflecting the work tasks

required to populate the framework activities must be created.The result is a complete plan

reflecting the work tasks required to populate the framework activities. Project planning begins

as a melding of the product and the process based on the various framework activities.

The Product and the Process

Project planning begins with the melding of the product and the process. Each function to be

engineered by the software team must pass through the set of framework activities that have

been defined for a software organization. Assume that the organization has adopted the

following set of framework activities:

i. Customer communication—tasks required to establish effective requirements elicitation

between developer and customer.

ii. Planning—tasks required to define resources, timelines, and other project related

information.

iii. Risk analysis—tasks required to assess both technical and management risks.

48

iv. Engineering—tasks required to build one or more representations of the application.

v. Construction and release—tasks required to construct, test, install, and provide user

support (e.g., documentation and training).

vi. Customer evaluation—tasks required to obtain customer feedback based on evaluation

of the software representations created during the engineering activity and implemented

during the construction activity.

If there is a more complex project, which has a broader scope and more significant business

impact, such a project might require the following work tasks for the customer communication

activity:

i. Review the customer request.

ii. Plan and schedule a formal, facilitated meeting with the customer.

iii. Conduct research to specify the proposed solution and existing approaches.

iv. Prepare a “working document” and an agenda for the formal meeting.

v. Conduct the meeting.

vi. Jointly develop mini-specs that reflect data, function, and behavioral features of the

software.

vii. Review each mini-spec for correctness, consistency, and lack of ambiguity.

viii. Assemble the mini-specs into a scoping document.

ix. Review the scoping document with all concerned.

x. Modify the scoping document as required.

3.3.4 THE PROJECT
In order to manage a successful software project, we must understand what can go wrong so

that problems can be avoided and how to do it right.

There are ten signs that indicate that an information systems project is in risk:

i. Software people don’t understand their customer’s needs.

ii. The product scope is poorly defined.

iii. Changes are managed poorly.

Check Your Progress 2.

List the criteria to evaluate a process.

49

iv. The chosen technology changes.

v. Business needs change [or ill-defined].

vi. Deadlines are unrealistic.

vii. Users are resistant.

viii. Sponsorship is lost [or was never properly obtained].

ix. The project team lacks people with appropriate skills.

x. Managers [and practitioners] avoid best practices and lessons learned.

There are few approaches to avoid the above problems:

i. Start on the right foot. This is accomplished by working hard (very hard)to understand

the problem that is to be solved and then setting realistic objects and expectations for

everyone who will be involved in the project. It is reinforced by building the right team

and giving the team the autonomy, authority, and technology needed to do the job.

ii. Maintain momentum. Many projects get off to a good start and then slowly disintegrate.

To maintain momentum, the project manager must provide incentives to keep turnover

of personnel to an absolute minimum, the team should emphasize quality in every task

it performs, and senior management should do everything possible to stay out of the

team’s way.

iii. Track progress. For a software project, progress is tracked as work products (e.g.,

specifications, source code, sets of test cases) are produced and approved (using formal

technical reviews) as part of a quality assurance activity. In addition, software process

and project measures can be collected and used to assess progress against averages

developed for the software development organization.

iv. Make smart decisions. In essence, the decisions of the project manager and the software

team should be to “keep it simple.” Whenever possible, decide to use commercial off-

the-shelf software or existing software components, decide to avoid custom interfaces

when standard approaches are available, decide to identify and then avoid obvious

risks, and decide to allocate more time than you think is needed to complex or risky

tasks.

v. Conduct a post-mortem analysis. Establish a consistent mechanism for extracting

lessons learned for each project. Evaluate the planned and actual schedules, collect and

analyse software project metrics, get feedback from team members and customers, and

record findings in written form.

50

3.4 SUMMARY
This chapter covers the basic concept of project management, its need and its spectrum. And

the role of people, process, product and project. And also explain the role of team, team leader

in any project, the organisation of a team and the characteristics of a leader.

3.5 EXERCISE
1) What is the need to manage the software project?

2) Define the concept of Project management and its spectrum.

3) How People play a vital role in the management of people?

4) Which type of risk encounter during information system project and also explain how they

can be overcome?

5) What is the role of team leader in a team? Which type of qualities a team leader hold?

6) What is the role of team and team work? How a team can be organised during the project?

Which type of points considered at the time of making team.

Check Your Progress 3.

What are project management objectives?

1

Software Engineering

SECOND - BLOCK

2

BLOCK

2
UNIT 1 Software Process and Project Metrics

UNIT 2 Software Project Planning

UNIT 3 Risk Analysis And Management

3

Overview

In this section we discuss the overview of this block’s content. This block consists of the

following units:

Unit 1 Software Process and Project Metrics

Measurement is fundamental to any engineering discipline, and software engineering is no

exception. Measurement enables us to gain insight by providing a mechanism for objective

evaluation. Measures are often collected by software engineers.

Metrics are also used to pinpoint problem areas so that remedies can be developed and the

software process can be improved. Software metrics are analysed and assessed by software

managers.

Unit 2 Software Project Planning

Software managers do the planning using information solicited from customers and software

engineers and software metrics data collected from past projects. Software project planning

actually encompasses all of the estimation activities like—your attempt to determine how

much money, how much effort, how many resources, and how much time it will take to build

a specific software-based system or product.

Unit 3 Risk Analysis And Management

Risk analysis and management are a series of steps that help a software team to understand

and manage uncertainty. Many problems can plague a software project. A risk is a potential

problem—it might happen, it might not. But, regardless of the outcome, it’s a really good

idea to identify it, assess its probability of occurrence, estimate its impact, and establish a

contingency plan should the problem actually occur.

4

UNIT-1 SOFTWARE PROCESS AND PROJECT
METRICS

1.0 Introduction

1.1 Objective

1.2 Reasons to Measure

1.3 Measures, Metric and Indicators

1.4 Software Measurement

1.5 Size-Oriented Metric

1.6 Function-Oriented Metric

1.7 Extended Function Point Metric

1.8 Summary

1.9 Exercise

5

1.0 INTRODUCTION
Software process and product metrics are quantitative measures that enable software people

to gain insight into the efficacy of the software process and the projects that are conducted

using the process as a framework. Basic quality and productivity data are collected. These

data are then analysed, compared against past averages, and assessed to determine whether

quality and productivity improvements have occurred.

If you don’t measure, judgement can be based only on subjective evaluation. With

measurement, trends (either good or bad) can be spotted, better estimates can be made, and

true improvement can be accomplished over time. Begin by defining a limited set of process,

project, and product measures that are easy to collect. These measures are often normalized

using either size- or function-oriented metrics. The result is analysed and compared to past

averages for similar projects performed within the organization. Trends are assessed and

conclusions are generated. A set of software metrics that provide insight into the process and

understanding of the project.

Within the context of software project management, we are concerned primarily with

productivity and quality metrics—measures of software development "output" as a function

of effort and time applied and measures of the "fitness for use" of the work products that are

produced. For planning and estimating purposes, our interest is historical.

1.1 OBJECTIVE
Objectives of this unit are:

a) to improve product quality and development-team productivity.

b) Concerned with productivity and quality measures

 measures of SW development output as function of effort and time

 measures of usability

c) Identify quantifiable questions and the related indicators that will use to help to achieve the

measurement goals.

d) to identify the data elements that will collect to construct the indicators that help answer to

the questions raise in the mind.

e) Define the measures to be used, and make these definitions operational.

f) to Identify the actions that will take to implement the measures.

g) to prepare a plan for implementing the measures.

6

1.2 REASONS TO MEASURE
There are four reasons for measuring software processes, products, and resources:

i. To characterize

ii. To evaluate

iii. To predict

iv. To improve

We characterize to gain understanding of processes, products, resources, and environments,

and to establish baselines for comparisons with future assessments. We evaluate to determine

status with respect to plans. Measures are the sensors that let us know when our projects and

processes are drifting off track, so that we can bring them back under control. We also

evaluate to assess achievement of quality goals and to assess the impacts of technology and

process improvements on products and processes.

We predict so that we can plan. Measuring for prediction involves gaining understandings of

relationships among processes and products and building models of these relationships, so

that the values we observe for some attributes can be used to predict others. We do this

because we want to establish achievable goals for cost, schedule, and quality-so that

appropriate resources can be applied. Predictive measures are also the basis for extrapolating

trends, so estimates for cost, time, and quality can be updated based on current evidence.

Projections and estimates based on historical data also help us analyse risks and make

design/cost trade-offs. We measure to improve when we gather quantitative information to

help us identify roadblocks, root causes, inefficiencies, and other opportunities for improving

product quality and process performance.

Software Process

In order for software to be consistently well engineered, its development must be conducted

in an orderly process. It is sometimes possible for a small software product to be developed

without a well-defined process. However, for a software project of any substantial size,

involving more than a few people, a good process are essential. The process can be viewed as

a road map by which the project participants understand where they are going and how they

are going to get there.

Thus, as depicted in figure 1.1, the software process is the set of activities and associated

results that produce a software project.

7

Figure 1.1: Software Process

The first two steps of the process are often referred to, respectively, as the "what and how" of

software development. The "Analyse and Specify" step defines what the problem is to be

solved; the "Design and Implement" step entails how the problem is solved.

Software Process Characteristics

The following are the software process characteristics:

a) Understand ability

b) Visibility

c) Robustness

d) Reliability

e) Acceptability

f) Maintainability

g) Rapidity

h) Supportability

Project Metrics

Software process metrics are used for strategic purposes. Software project measures are

tactical. That is, project metrics and the indicators derived from them are used by a project

manager and a software team to adapt project work flow and technical activities.

The first application of project metrics on most software projects occurs during estimation.

Metrics collected from past projects are used as a basis from which effort and time estimates

are made for current software work. As a project proceeds, measures of effort and calendar

time expended are compared to original estimates. The project manager uses these data to

monitor and control progress.

Analyse and specify software requirements

Design and Implement software product

Test that Product meets requirements

Deploy, Maintain And Enhance the product

8

As technical work commences, other project metrics begin to have significance. Production

rates represented in terms of pages of documentation, review hours, function points, and

delivered source lines are measured. In addition, errors uncovered during each software

engineering task are tracked. As the software evolves from specification into design,

technical metrics are collected to assess design quality and to provide indicators that will

influence the approach taken to code generation and testing.

The intent of project metrics is twofold.

First, these metrics are used to minimize the development schedule by making the

adjustments necessary to avoid delays and mitigate potential problems and risks.

Second, project metrics are used to assess product quality on an on-going basis and, when

necessary, modify the technical approach to improve quality.

As quality improves, defects are minimized, and as the defect count goes down, the amount

of rework required during the project is also reduced. This leads to a reduction in overall

project cost.

Another model of software project metrics suggests that every project should measure:

• Inputs- measures of the resources (e.g., people, environment) required to do the work.

• Outputs- measures of the deliverables or work products created during the software

engineering process.

• Results- measures that indicate the effectiveness of the deliverables.

In actuality, this model can be applied to both process and project. In the project context, the

model can be applied recursively as each framework activity occurs. Therefore the output

from one activity becomes input to the next. Results metrics can be used to provide an

indication of the usefulness of work products as they flow from one framework activity to the

next.

1.3 MEASURES, METRIC AND INDICATORS
Although the terms measure, measurement, and metrics are often used interchangeably, it is

important to note the subtle differences between them. Because measure can be used either

a noun or a verb, definitions of the term can become confusing.

Check Your Progress 1.

What is the difference between Process Metric and Product Metric?

9

Within the software engineering context, a measure provides a quantitative indication of the

extent, amount, dimension, capacity, or size of some attribute of a product or process.

Measurement is the act of determining a measure.

As per the IEEE Standard Glossary of Software Engineering Terms [IEE93]:

“A quantitative measure of the degree to which a system, component, or process possesses a

given attribute.”

When a single data point has been collected, a measure has been established. Measurement

occurs as the result of the collection of one or more data points.

Software metric relates the individual measures in some way e.g., the average number of

errors found per review or the average number of errors found per person-hour expended on

reviews.

A software engineer collects measures and develops metrics so that indicators will be

obtained. An indicator is a metric or combination of metrics that provide insight into the

software process, a software project, or the product itself. An indicator provides insight that

enables the project manager or software engineers to adjust the process, the project, or the

process to make things better. For example, four software teams are working on a large

software project.

Each team must conduct design reviews but is allowed to select the type of review that it will

use. Upon examination of the metric, errors found per person-hour expended, the project

manager notices that the two teams using more formal review methods exhibit an errors

found per person-hour expended that is 40 prevent higher than the other teams. Assuming all

other parameters equal, this provides the project manager with an indicator that formal review

methods may provide a higher return on time investment than another, less formal review

approaches. She may decide to suggest that all teams use the more formal approach. The

metric provides the manager with insight. And insight leads to informed decision making.

Metrics in the process and project domains:

Measurement is commonplace in the engineering world. We measure power consumption,

weight, physical dimensions, temperature, voltage, signal-to-noise ratio, etc. Unfortunately,

measurement is far less common in the software engineering world. We have trouble

agreeing on what to measure and trouble evaluating measures that are collected.

Metrics should be collected so that process and product indicators can be ascertained. Process

indicators enable a software engineering organization to gain insight into the efficacy of an

existing process. They enable managers and practitioners to assess what works and what

10

doesn’t. Process metrics are collected across all projects and over long periods of time. Their

intent is to provide indicators that lead to long-term software process improvement.

Project indicators enable a software project manager to

(1) Assess the status of an on-going project,

(2) Track potential risks,

(3) Uncover problem areas before they go “critical,”

(4) Adjust work flow or tasks, and

(5) Evaluate the project team’s ability to control quality of software work products.

Process Metrics and Software Process Improvement:

The only rational way to improve any process is to measure specific attributes of the process,

develop a set of meaningful metrics based on these attributes, and then use the metrics to

provide indicators that will lead to a strategy for improvement.

We measure the efficacy of a software process indirectly. That is, we derive a set of metrics

based on the outcomes that can be derived from the process. Outcomes include measures of

errors uncovered before release of the software, defects delivered to and reported by end-

users, work products delivered, human effort expended, calendar time expended, schedule

conformance, and other measures. We also derive process metrics by measuring the

characteristics of specifics software engineering tasks.

Grady argues that there are “private and public” uses for different types of process data.

Because it is natural that individual software engineers might be sensitive to the use of

metrics collected on an individual basis; these data should be private or the individual and

serve as an indicator for the individual only. Public metrics generally assimilate information

that originally was private to individuals and teams.

1.4 SOFTWARE MEASUREMENT
Measurements in the physical world can be categorized in two ways:

Direct measures (e.g., the length of a bolt) and

Indirect measures (e.g., the "quality" of bolts produced, measured by counting rejects).

Category: Software metrics can be categorized similarly

Check Your Progress 2.

What is the difference between a measure and an indicators?

11

Direct measures of the software engineering process include cost and effort applied. Direct

measures of the product include lines of code (LOC) produced, execution speed, memory

size, and defects reported over some set period of time.

Indirect measures of the product include functionality, quality, complexity, efficiency,

reliability, maintainability, and many other "–abilities".

The cost and effort required to build software, the number of lines of code produced, and

other direct measures are relatively easy to collect, as long as specific conventions for

measurement are established in advance. However, the quality and functionality of software

or its efficiency or maintainability are more difficult to assess and can be measured only

indirectly.

We have already partitioned the software metrics domain into process, project, and product

metrics. We have also noted that product metrics that are private to an individual are often

combined to develop project metrics that are public to a software team. Project metrics are

then consolidated to create process metrics that are public to the software organization as a

whole. But how does an organization combine metrics that come from different individuals or

projects?

To illustrate, we consider a simple example. Individuals on two different project teams record

and categorize all errors that they find during the software process. Individual measures are

then combined to develop team measures. Team A found 342errors during the software

process prior to release. Team B found 184 errors. All other things being equal, which team is

more effective in uncovering errors throughout the process? Because we do not know the size

or complexity of the projects, we cannot answer this question. However, if the measures are

normalized, it is possible to create software metrics that enable comparison to broader

organizational averages.

1.5 SIZE-ORIENTED METRICS
Size-oriented software metrics are derived by normalizing quality and/or productivity

measures by considering the size of the software that has been produced. If a software

organization maintains simple records, a table of size-oriented measures, such as the one

shown in figure 1.2, can be created. The table lists each software development project that

Check Your Progress 3.

What is meant by measurement and metrics?

12

has been completed over the past few years and corresponding measures for that project.

Referring to the table entry for project alpha: 12,100 lines of code were developed with 24

person-months of effort at a cost of $168,000. It should be noted that the effort and cost

recorded in the table represent all software engineering activities (analysis, design, code, and

test), not just coding. Further information for project alpha indicates that 365 pages of

documentation were developed, 134 errors were recorded before the software was released,

and 29 defects were encountered after release to the customer within the first year of

operation. Three people worked on the development of software for project alpha.

In order to develop metrics that can be assimilated with similar metrics from other projects,

we choose lines of code as our normalization value. From the rudimentary data contained in

the table, a set of simple size-oriented metrics can be developed for each project:

• Errors per KLOC (thousand lines of code).

• Defects per KLOC.

• $ per LOC.

• Page of documentation per KLOC.

Figure1.2: Size oriented Matrix

In addition, other interesting metrics can be computed:

• Errors per person-month.

• LOC per person-month.

• $ per page of documentation.

Size-oriented metrics are not universally accepted as the best way to measure the process of

software development. Most of the controversy swirls around the use of lines of code as a key

13

measure. Proponents of the LOC measure claim that LOC is an "artefact" of all software

development projects that can be easily counted, that many existing software estimation

models use LOC or KLOC as a key input, and that a large body of literature and data

predicated on LOC already exists. On the other hand, opponents argue that LOC measures are

programming language dependent, that they penalize well-designed but shorter programs,

that they cannot easily accommodate nonprocedural languages, and that their use in

estimation requires a level of detail that may be difficult to achieve.

1.6 FUNCTION-ORIENTED METRICS
Function-oriented software metrics use a measure of the functionality delivered by the

application as a normalization value. Since ‘functionality’ cannot be measured directly, it

must be derived indirectly using other direct measures. Function-oriented metrics were first

proposed by Albrecht, who suggested a measure called the function point. Function points are

derived using an empirical relationship based on countable measures of software's

information domain and assessments of software complexity.

Function points are computed by completing the table shown in figure 1.3.

Five information domain characteristics are determined and counts are provided in the

appropriate table location. Information domain values are defined in the following manner:

1. Number of user inputs. Each user input that provides distinct application oriented data to

the software is counted. Inputs should be distinguished from inquiries, which are counted

separately.

2. Number of user outputs. Each user output that provides application oriented information

to the user is counted. In this context output refers to reports, screens, error messages, etc.

Individual data items within a report are not counted separately.

3. Number of user inquiries. An inquiry is defined as an on-line input that results in the

generation of some immediate software response in the form of an on-line output. Each

distinct inquiry is counted.

4. Number of files. Each logical master file is counted.

5. Number of external interfaces. All machine readable interfaces (e.g., data files on storage

media) that are used to transmit information to another system are counted.

Check Your Progress 4.

Write the any two advantages of LOC.

14

Figure1.3: Computing Function Point

Once these data have been collected, a complexity value is associated with each count.

Organizations that use function point methods develop criteria for determining whether a

particular entry is simple, average, or complex. Nonetheless, the determination of complexity

is somewhat subjective.

To compute function points (FP), the following relationship is used:

FP = count total x [0.65 + 0.01 x Σ(Fi)] (4-1)

Where count total is the sum of all FP entries obtained from Figure

The Fi (i = 1 to 14) are "complexity adjustment values" based on responses to following

questions:

1. Does the system require reliable backup and recovery?

2. Are data communications required?

3. Are there distributed processing functions?

4. Is performance critical?

5. Will the system run in an existing, heavily utilized operational environment?

6. Does the system require on-line data entry?

7. Does the on-line data entry require the input transaction to be built over multiple screens

or operations?

8. Are the master files updated on-line?

9. Are the inputs, outputs, files, or inquiries complex?

10. Is the internal processing complex?

11. Is the code designed to be reusable?

15

12. Are conversion and installation included in the design?

13. Is the system designed for multiple installations in different organizations?

14. Is the application designed to facilitate change and ease of use by the user?

Each of these questions is answered using a scale that ranges from 0 (not important or

applicable) to 5 (absolutely essential). The constant values in Equation (4-1) and the

weighting factors that are applied to information domain counts are determined empirically.

Once function points have been calculated, they are used in a manner analogous to LOC as a

way to normalize measures for software productivity, quality, and other attributes:

• Errors per FP.

• Defects per FP.

• $ per FP.

• Pages of documentation per FP.

• FP per person-month.

1.7 EXTENDED FUNCTION POINT METRICS
The function point measure was originally designed to be applied to business information

systems applications. To accommodate these applications, the data dimension was

emphasized to the exclusion of the functional and behavioural dimensions. For this reason,

the function point measure was inadequate for many engineering and embedded systems. A

number of extensions to the basic function point measure have been proposed to remedy this

situation. A function point extension called feature points, is a superset of the function point

measure that can be applied to systems and engineering software applications.

The feature point measure accommodates applications in which algorithmic complexity is

high. Real-time, process control and embedded software applications tend to have high

algorithmic complexity and are therefore amenable to the feature point. To compute the

feature point, information domain values are again counted and weighted. In addition, the

feature point metric counts anew software characteristic—algorithms. An algorithm is

defined as "a bounded computational problem that is included within a specific computer

Check Your Progress 5.

What are the measuring parameters of function oriented metrics?

16

program”. Inverting a matrix, decoding a bit string, or handling an interrupt are all examples

of algorithms.

Another function point extension for real-time systems and engineered products has been

developed by Boeing. The Boeing approach integrates the data dimension of software with

the functional and control dimensions to provide a function-oriented measure amenable to

applications that emphasize function and control capabilities. Called the 3D function point,

characteristics of all three software dimensions are “counted, quantified, and transformed”

into a measure that provides an indication of the functionality delivered by the software. The

data dimension is evaluated in much the same way. Counts of retained data and external data

are used along with measures of complexity to derive a data dimension count. The functional

dimension is measured by considering “the number of internal operations required to

transform input to output data”. For the purposes of 3D function point computation, a

“transformation” is viewed as a series of processing steps that are constrained by a set of

semantic statements. The control dimension is measured by counting the number of

transitions between states. A state represents some externally observable mode of behaviour,

and a transition occurs as a result of some event that causes the software or system to change

its mode of behaviour. For example, a wireless phone contains software that supports auto

dial functions. To enter the auto-dial state from a resting state, the user presses an Auto key

on the keypad. This event causes an LCD display to prompt for a code that will indicate the

party to be called. Upon entry of the code and hitting the Dial key (another event), the

wireless phone software makes a transition to the dialling state. When computing 3D function

points, transitions are not assigned a complexity value.

To compute 3D function points, the following relationship is used:

index = I + O + Q + F + E + T + R

where I, O, Q, F, E, T, and R represent complexity weighted values for the elements

discussed already: inputs, outputs, inquiries, internal data structures, external files,

transformation, and transitions, respectively.

17

Figure1.4: Determining the complexity of a transformation for 3D function points

Each complexity weighted value is computed using the following relationship:

Complexity weighted value = NilWil + NiaWia + NihWih

Where Nil, Nia, and Nih represent the number of occurrences of element i (e.g., outputs)for

each level of complexity (low, medium, high); and Wil, Wia, and Wih are the corresponding

weights. The overall complexity of a transformation for 3D function points is shown in above

figure 1.4.

It should be noted that function points, feature points, and 3D function points represent the

same thing—"functionality" or "utility" delivered by software. In fact, each of these measures

results in the same value if only the data dimension of an application is considered. For more

complex real-time systems, the feature point count is often between 20 and 35 percent higher

than the count determined using function points alone.

The function point, like the LOC measure, is controversial. Proponents claim that FP is

programming language independent, making it ideal for applications using conventional and

nonprocedural languages; that it is based on data that are more likely to be known early in the

evolution of a project, making FP more attractive as an estimation approach. Opponents

claim that the method requires some "sleight of hand" in that computation is based on

subjective rather than objective data; that counts of the information domain can be difficult to

collect after the fact; and that FP has no direct physical meaning—it's just a number.

1.8 SUMMARY

18

This section covers the discussion about Software Process and Project Metrics, its

characteristics, and also discuss Measures, reasons behind software measure, its pros and

cons, Software Metric and Indicators, types of Metric like Size-Oriented Metric, Function-

Oriented Metric, Extended Function Point.

1.9 EXERCISE
1) Define the term metrics. What are the types of metrics?

2) What are the advantages and disadvantages of size measure?

3) What is LOC? How it is used for project estimation?

4) What is Software Process? Write the characteristics of software Process.

5) Define Software Measures in detail.

6) What is FP? How to compute Function Point? How it is used for project estimation?

19

UNIT-2 SOFTWARE PROJECT PLANNING

2.0 Introduction

2.1 Objective

2.2 Need of Software Project Planning

2.3 Project Planning Objectives

2.4 Software project Estimation

2.5 Decomposition techniques

2.6 Problem Based Estimation

2.7 Process Based Estimation

2.8 Empirical Estimation Models

2.9 The COCOMO Model

2.10 Summary

2.11 Exercise

20

2.0 INTRODUCTION
Process and project metrics can provide historical perspective and powerful input for the

generation of quantitative estimates. Past experience can aid immeasurably as estimates are

developed and reviewed. Because estimation lays a foundation for all other project planning

activities and project planning provides the road map for successful software engineering, we

would be ill-advised to embark without it.

2.1 OBJECTIVE
Objectives of this unit are:

a) to provide a framework for manager to make reasonable estimates of resources, costs and

schedules

b) to provide the knowledge to make products easier to use.

c) to reduce the time it takes to get a new product to market.

2.2 NEED OF SOFTWARE PROJECT PLANNING
Software project management begins with a set of activities that are collectively called

project planning. Before the project can begin, the manager and the software team must

estimate the work to be done, there sources that will be required, and the time that will elapse

from start to finish. Whenever estimates are made, we look into the future and accept some

degree of uncertainty as a matter of course.

To quote Frederick Brooks [BRO75]:“. . . our techniques of estimating are poorly developed.

More seriously, they reflect an unvoiced assumption that is quite untrue, i.e., that all will go

well. . . . because we are uncertain of our estimates, software managers often lack the

courteous stub bornnessto make people wait for a good product.”

Although estimating is as much art as it is science, this important activity need not be

conducted in a haphazard manner. Useful techniques for time and effort estimation do exist.

Important: Would you build a house without knowing how much you were about to spend?

Of course not, and since most computer-based systems and products cost considerably more

to build than a large house, it would seem reasonable to develop an estimate before you start

creating the software.

Steps: Estimation begins with a description of the scope of the product. Until the scope is

“bounded” it’s not possible to develop a meaningful estimate. The problem is then

21

decomposed into a set of smaller problems and each of these is estimated using historical data

and experience as guides. It is advisable to generate your estimates using at least two

different methods. Problem complexity and risk are considered before a final estimate is

made.

If we want to ensure that we have done it right? That’s hard, because you won’t really know

until the project has been completed. However, if you have experience and follow a

systematic approach, generate estimates using solid historical data, create estimation data

points using at least two different methods, and factor in complexity and risk, you can feel

confident that you’ve given it your best shot.

Observations on Estimating for Planning:

Estimation of resources, cost, and schedule for a software engineering effort requires

experience, access to good historical information, and the courage to commit to quantitative

predictions when qualitative information is all that exists. Estimation carries inherent risk and

this risk leads to uncertainty.

Project complexity has a strong effect on the uncertainty inherent in planning. Complexity,

however, is a relative measure that is affected by familiarity with past effort. The first-time

developer of a sophisticated e-commerce application might consider it to be exceedingly

complex. However, a software team developing its tenth e-commerce Web site would

consider such work run of the mill. A number of quantitative software complexity measures

have been proposed. Such measures are applied at the design or code level and are therefore

difficult to use during software planning. However, other, more subjective assessments of

complexity can be established early in the planning process.

Project size is another important factor that can affect the accuracy and efficacy of estimates.

As size increases, the interdependency among various elements of the software grows

rapidly. Problem decomposition, an important approach to estimating, becomes more difficult

because decomposed elements may still be formidable. To paraphrase Murphy's law: "What

can go wrong will go wrong”—and if there are more things that can fail, more things will

fail.

The degree of structural uncertainty also has an effect on estimation risk. In this context,

structure refers to the degree to which requirements have been solidified, the ease with which

functions can be compartmentalized, and the hierarchical nature of the information that must

be processed.

22

The availability of historical information has a strong influence on estimation risk. By

looking back, we can emulate things that worked and improve areas where problems arose.

When comprehensive software metrics are available for past projects, estimates can be made

with greater assurance, schedules can be established to avoid past difficulties, and overall risk

is reduced.

Risk is measured by the degree of uncertainty in the quantitative estimates established for

resources, cost, and schedule. If project scope is poorly understood or project requirements

are subject to change, uncertainty and risk become dangerously high. The software planner

should demand completeness of function, performance, and interface definitions (contained

in a System Specification). The planner, and more important, the customer should recognize

that variability in software requirements means instability in cost and schedule.

However, a project manager should not become obsessive about estimation. Modern software

engineering approaches take an iterative view of development. In such approaches, it is

possible to revisit the estimate and revise it when the customer makes changes to

requirements.

2.3 PROJECT PLANNING OBJECTIVES
Project planning is the very important activity. Its major objectives are:

(A) Provide a framework

The objective of software project planning is to provide a framework that enables the

manager to make reasonable estimates of resources, cost, and schedule. These estimates

are made within a limited time frame at the beginning of a software project and should

be updated regularly as the project progresses. In addition, estimates should attempt to

define best case and worst case scenarios so that project outcomes can be bounded.

(B) Determination of software scope

The first activity in software project planning is the determination of software scope.

Function and performance allocated to software during system engineering should be

assessed to establish a project scope that is unambiguous and understandable at the

management and technical levels. A statement of software scope must be bounded.

Software scope describes the data and control to be processed, function, performance,

Check Your Progress 1.

What is the difference between feasibility study and planning?

23

constraints, interfaces, and reliability. Functions described in the statement of scope are

evaluated and in some cases refined to provide more detail prior to the beginning of

estimation. Because both cost and schedule estimates are functionally oriented, some

degree of decomposition is often useful. Performance considerations encompass

processing and response time requirements. Constraints identify limits placed on the

software by external hardware, available memory, or other existing systems.

a) Obtaining information necessary for scope:

Things are always somewhat hazy at the beginning of a software project. A need has

been defined and basic goals and objectives have been enunciated, but the information

necessary to define scope has not yet been delineated.

b) Preliminary meeting or interview:

The most commonly used technique to bridge the communication gap between the

customer and developer and to get the communication process started is to conduct a

preliminary meeting or interview.

i. Set-1: The first set of context-free questions focuses on the customer, the overall

goals and benefits. For example, the analyst might ask:

• Who is behind the request for this work?

• Who will use the solution?

• What will be the economic benefit of a successful solution?

• Is there another source for the solution?

ii. Second Set: The next set of questions enables the analyst to gain a better

understanding of the problem and the customer to voice any perceptions about a

solution:

• How would you (the customer) characterize "good" output that would be

generated by a successful solution?

• What problem(s) will this solution address?

• Can you show me (or describe) the environment in which the solution will

be used?

• Will any special performance issues or constraints affect the way the

solution is approached?

iii. Third Set: The final set of questions focuses on the effectiveness of the meeting

with propose the following list:

• Are you the right person to answer these questions? Are answers "official"?

• Are my questions relevant to the problem that you have?

24

• Am I asking too many questions?

• Can anyone else provide additional information?

• Should I be asking you anything else?

2.4 SOFTWARE PROJECT ESTIMATION
Effective software project estimation is one of the most challenging and important activities

in software development. Proper project planning and control is not possible without a sound

and reliable estimate. As a whole, the software industry doesn’t estimate projects well and

doesn’t use estimates appropriately. We suffer far more than we should as a result and we

need to focus some effort on improving the situation. Under-estimating a project leads to

under-staffing it, under-scoping the quality assurance effort, and setting too short a schedule.

For those who figure on avoiding this situation by generously padding the estimate, over-

estimating a project can be just about as bad for the organization! If you give a project more

resources than it really needs without sufficient scope controls it will use them. The project is

then likely to cost more than it should, take longer to deliver than necessary, and delay the

use of your resources on the next project.

The four basic steps in software project estimation are:

a) Estimate the size of the development product.

i. By analogy

ii. By counting product features and using an algorithmic approach

b) Estimate the effort in person-months or person-hours.

i. Use your organization’s own historical data

ii. Use a mature and generally accepted algorithmic approach such as Barry

Boehm’s COCOMO model or the Putnam Methodology

c) Estimate the schedule in calendar months.

d) Estimate the project cost in dollars (or local currency)

To achieve reliable cost and effort estimates, a number of options arise:

Check Your Progress 2.

What are the steps involved in identification of project scope and objectives?

25

a) Delay estimation until late in the project (obviously, we can achieve100% accurate

estimates after the project is complete!).

b) Base estimates on similar projects that have already been completed.

c) Use relatively simple decomposition techniques to generate project cost and effort

estimates.

d) Use one or more empirical models for software cost and effort estimation.

The Trouble with Estimates

a) Estimating size is the most difficult (but not impossible)step intellectually, and is often

skipped in favour of going directly to estimating a schedule.

b) Customers and software developers often don’t really recognize that software

development is a process of gradual refinement.

c) Organizations often don’t collect and analyse historical data on their performance on

development projects.

d) It is often difficult to get a realistic schedule accepted by management and customers.

2.5 DECOMPOSITION TECHNIQUES
Software project estimation is a form of problem solving, and in most cases, the problem to

be solved is too complex to be considered in one piece. For this reason, we decompose the

problem, re-characterizing it as a set of smaller problems.

The decomposition approach is in two different points of view: decomposition of the problem

and decomposition of the process. Estimation uses one or both forms of partitioning. But

before an estimate can be made, the project planner must understand the scope of the

software to be built and generate an estimate of its “size.”

Software Sizing

The accuracy of a software project estimate is predicated on a number of things:

a. The degree to which the planner has properly estimated the size of the product to be

built;

Check Your Progress 3.

How do you estimate the effort for your project?

26

b. The ability to translate the size estimate into human effort, calendar time, and dollars

(a function of the availability of reliable software metrics from past projects);

c. The degree to which the project plan reflects the abilities of the software team; and

d. The stability of product requirements and the environment that supports the software

engineering effort.

There are four different approaches to the sizing problem:

a. “Fuzzy logic” sizing

b. Function point sizing

c. Standard component sizing

d. Change sizing

AUTOMATED ESTIMATION TOOLS

The decomposition techniques sections are available as part of a wide variety of software

tools. These automated estimation tools allow the planner to estimate cost and effort and to

perform "what-if" analyses for important project variables such as delivery date or staffing.

Although many automated estimation tools exist, all exhibit the same general characteristics

and all perform the following six generic functions:

a. Sizing of project deliverables. The “size” of one or more software work products is

estimated. Work products include the external representation of software (e.g., screen,

reports), the software itself (e.g., KLOC), functionality delivered (e.g., function

points), descriptive information (e.g. documents).

b. Selecting project activities. The appropriate process framework is selected and the

software engineering task set is specified.

c. Predicting staffing levels. The number of people who will be available to do the work

is specified. Because the relationship between people available and work (predicted

effort) is highly nonlinear, this is an important input.

d. Predicting software effort. Estimation tools use one or more models that relate the

size of the project deliverables to the effort required to produce them.

e. Predicting software cost. Given the results of step 4, costs can be computed by

allocating labour rates to the project activities noted in step 2.

f. Predicting software schedules. When effort, staffing level, and project activities are

known, a draft schedule can be produced by allocating labour across software

engineering activities based on recommended models for effort distribution

27

2.6 PROBLEM -BASED ESTIMATION
Lines of code and function points were described as measures from which productivity

metrics can be computed. LOC and FP data are used in two ways during software project

estimation:

(1) As an estimation variable to "size" each element of the software and

(2) As baseline metrics collected from past projects and used in conjunction with estimation

variables to develop cost and effort projections.

LOC and FP estimation are distinct estimation techniques. Yet both have a number of

characteristics in common. The project planner begins with a bounded statement of software

scope and from this statement attempts to decompose software into problem functions that

can each be estimated individually. LOC or FP is then estimated for each function.

Alternatively, the planner may choose another component for sizing such as classes or

objects, changes, or business processes affected.

Baseline productivity metrics (e.g., LOC/pm or FP/pm9) are then applied to the appropriate

estimation variable, and cost or effort for the function is derived. Function estimates are

combined to produce an overall estimate for the entire project. It is important to note,

however, that there is often substantial scatter in productivity metrics for an organization,

making the use of a single baseline productivity metric suspect. In general, LOC/pm or

FP/pm averages should be computed by project domain. That is, projects should be grouped

by team size, application area, complexity, and other relevant parameters. Local domain

averages should then be computed. When a new project is estimated, it should first be

allocated to a domain, and then the appropriate domain average for productivity should be

used in generating the estimate.

The LOC and FP estimation techniques differ in the level of detail required for

decomposition and the target of the partitioning. When LOC is used as the estimation

variable, decomposition is absolutely essential and is often taken to considerable levels of

detail value that can be tied to past data and used to generate an estimate. Regardless of the

estimation variable that is used, the project planner begins by estimating a range of values for

each function or information domain value. Using historical data or intuition, the planner

Check Your Progress 4.

Which software project sizing approach develop estimates of the information domain

characteristics?

28

estimates an optimistic, most likely and pessimistic size value for each function or count for

each information domain value. An implicit indication of the degree of uncertainty is

provided when a range of values is specified.

A three-point or expected value can then be computed. The expected value for the estimation

variable (size), S, can be computed as a weighted average of the optimistic, most likely (sm),

and pessimistic (spess) estimates.

For example, S = (sopt + 4sm + spess)/6 (5-1)

gives heaviest credence to the “most likely” estimate and follows a beta probability

distribution. We assume that there is a very small probability the actual size result will fall

outside the optimistic or pessimistic values.

Once the expected value for the estimation variable has been determined, historical LOC or

FP productivity data are applied. Are the estimates correct? The only reasonable answer to

this question is: "We can't be sure." Any estimation technique, no matter how sophisticated,

must be cross-checked with another approach. Even then, common sense and experience

must prevail.

2.7 PROCESS-BASED ESTIMATION
The most common technique for estimating a project is to base the estimate on the process

that will be used. That is, the process is decomposed into a relatively small set of tasks and

the effort required to accomplish each task is estimated. Like the problem-based techniques,

process-based estimation begins with a delineation of software functions obtained from the

project scope. A series of software process activities must be performed for each function.

Functions and related software process activities may be represented as part of a table similar

to the one presented in figure 2.1

Check Your Progress 5.

What is beta probability distribution?

29

Figure 2.1: Melding the Problem and the Process

Once problem functions and process activities are melded, the planner estimates the effort

(e.g., person-months) that will be required to accomplish each software process activity for

each software function. These data constitute the central matrix of the table in Figure 2.1.

Average labour rates (i.e., cost/unit effort) are then applied to the effort estimated for each

process activity. It is very likely the labour rate will vary for each task. Senior staff heavily

involved in early activities is generally more expensive than junior staff involved in later

design tasks, code generation, and early testing.

Costs and effort for each function and software process activity are computed as the last step.

If process-based estimation is performed independently of LOC or FP estimation, we now

have two or three estimates for cost and effort that may be compared and reconciled. If both

sets of estimates show reasonable agreement, there is good reason to believe that the

estimates are reliable. If, on the other hand, the results of these decomposition techniques

show little agreement, further investigation and analysis must be conducted.

Check Your Progress 6

On which base d Process-based estimation techniques require problem decomposition

30

2.8 EMPIRICAL ESTIMATION MODELS
An estimation model for computer software uses empirically derived formulas to predict

effort as a function of LOC or FP. Values for LOC or FP are estimated using the approach.

But instead of using the tables described in those sections, the resultant values for LOC or FP

are plugged into the estimation model.

The empirical data that support most estimation models are derived from a limited sample of

projects. For this reason, no estimation model is appropriate for all classes of software and in

all development environments. Therefore, the results obtained from such models must be

used judiciously.

The Structure of Estimation Models

A typical estimation model is derived using regression analysis on data collected from past

software projects. The overall structure of such models takes the form-

E = A + B x (ev)C

Where A, B, and C are empirically derived constants, E is effort in person-months, and ev is

the estimation variable (either LOC or FP). In addition to the relationship noted in Equation,

the majority of estimation models have some form of project adjustment component that

enables E to be adjusted by other project characteristics (e.g., problem complexity, staff

experience, development environment).

Among the many LOC-oriented estimation models proposed in the literature are

E = 5.2 x (KLOC)0.91Walston-Felix model

E = 5.5 + 0.73 x (KLOC)1.16 Bailey-Basili model

E = 3.2 x (KLOC)1.05 Boehm simple model

E = 5.288 x (KLOC)1.047 Doty model for KLOC > 9

FP-oriented models have also been proposed. These include

E = -13.39 + 0.0545 FP Albrecht and Gaffney model

E = 60.62 x 7.728 x 10-8 FP3Kemerer model

E = 585.7 + 15.12 FP Matson, Barnett, and Mellichamp model

A quick examination of these models indicates that each will yield a different result for the

same values of LOC or FP. The implication is clear. Estimation models must be calibrated for

local needs.

Check Your Progress 7

On Which, Empirical estimation models are typically based .

31

2.9 COCOMO MODEL
The Constructive Cost Model (COCOMO) is an algorithmic software cost estimation model

developed by Barry W. Boehm. The model uses a basic regression formula with parameters

that are derived from historical project data and current as well as future project

characteristics.

First published in Boehm's 1981 book Software Engineering Economics as a model for

estimating effort, cost, and schedule for software projects. It drew on a study of 63 projects at

TRW Aerospace where Boehm was Director of Software Research and Technology. The

study examined projects ranging in size from 2,000 to 100,000 lines of code, and

programming languages ranging from assembly to PL/I. These projects were based on the

waterfall model of software development which was the prevalent software development

process in 1981.

References to this model typically call it COCOMO 81. In 1995 COCOMO II was developed

and finally published in 2000 in the book Software Cost Estimation with COCOMO II.

COCOMO II is the successor of COCOMO 81 and is better suited for estimating modern

software development projects. It provides more support for modern software development

processes and an updated project database. The need for the new model came as software

development technology moved from mainframe and overnight batch processing to desktop

development, code reusability, and the use of off-the-shelf software components.

COCOMO consists of a hierarchy of three increasingly detailed and accurate forms.

The first level, Basic COCOMO is good for quick, early, rough order of magnitude

estimates of software costs, but its accuracy is limited due to its lack of factors to

account for difference in project attributes (Cost Drivers). Intermediate COCOMO

takes these Cost Drivers into account and Detailed COCOMO additionally accounts

for the influence of individual project phases.

Basic COCOMO

Basic COCOMO computes software development effort (and cost) as a function of program

size. Program size is expressed in estimated thousands of source lines of code (SLOC,

KLOC).

COCOMO applies to three classes of software projects:

a) Organic projects - "small" teams with "good" experience working with "less than

rigid" requirements

32

b) Semi-detached projects - "medium" teams with mixed experience working with a mix

of rigid and less than rigid requirements

c) Embedded projects - developed within a set of "tight" constraints. It is also

combination of organic and semi-detached projects. (Hardware, software,

operational,)

The basic COCOMO equations take the form

Effort Applied (E) = ab (KLOC) bb[person-months]

Development Time (D) = cb (Effort Applied) db [months]

People required (P) = Effort Applied / Development Time [count]

Where, KLOC is the estimated number of delivered lines (expressed in thousands) of code

for project. The coefficients ab, bb, cband db are given in the following table:

Software project ab bb cb db

Organic 2.4 1.05 2.5 0.38

Semi-detached 3.0 1.12 2.5 0.35

Embedded 3.6 1.20 2.5 0.32

Basic COCOMO is good for quick estimate of software costs. However it does not account

for differences in hardware constraints, personnel quality and experience, use of modern tools

and techniques, and so on.

Intermediate COCOMO

Intermediate COCOMO computes software development effort as function of program size

and a set of "cost drivers" that include subjective assessment of product, hardware, personnel

and project attributes. This extension considers a set of four "cost drivers”, each with a

number of subsidiary attributes:-

a) Product attributes

 Required software reliability

 Size of application database

 Complexity of the product

b) Hardware attributes

 Run-time performance constraints

 Memory constraints

 Volatility of the virtual machine environment

 Required turnabout time

33

c) Personnel attributes

 Analyst capability

 Software engineering capability

 Applications experience

 Virtual machine experience

 Programming language experience

d) Project attributes

 Use of software tools

 Application of software engineering methods

 Required development schedule

Each of the 15 attributes receives a rating on a six-point scale that ranges from "very low" to

"extra high" (in importance or value). An effort multiplier from the table below applies to the

rating. The product of all effort multipliers results in an effort adjustment factor (EAF).

Typical values for EAF range from 0.9 to 1.4.

The Intermediate COCOMO formula now takes the form:

E=ai (KLoC) (bi).EAF

Where E is the effort applied in person-months, KLoC is the estimated number of thousands

of delivered lines of code for the project, and EAF is the factor calculated above. The

coefficient ai and the exponent bi are given in the next table.

Software project ai bi

Organic 3.2 1.05

Semi-detached 3.0 1.12

Embedded 2.8 1.20

The Development time D calculation uses E in the same way as in the Basic COCOMO.

Detailed COCOMO

Detailed COCOMO incorporates all characteristics of the intermediate version with an

assessment of the cost driver's impact on each step (analysis, design, etc.) of the software

engineering process.

The detailed model uses different effort multipliers for each cost driver attribute. These Phase

Sensitive effort multipliers are each to determine the amount of effort required to complete

each phase. In detailed COCOMO, the whole software is divided in different modules and

then we apply COCOMO in different modules to estimate effort and then sum the effort.

34

In detailed COCOMO, the effort is calculated as function of program size and a set of cost

drivers given according to each phase of software life cycle. A Detailed project schedule is

never static. The five phases of detailed COCOMO are:-

 Plan and requirement.

 System design.

 Detailed design.

 Module code and test.

 Integration and test.

2.10 SUMMARY
This unit covers a small discussion about Software Project Planning, its objective, Basic steps

of Software project Estimation, Decomposition techniques, Automated Estimation tools,

Problem Based Estimation, Process Based Estimation, Empirical Estimation Models,

COCOMO I and II Model.

2.11 EXERCISE
1) What is Software Project Planning? What is the objective of Software Project Planning?

2) Explain the COCOMO for software cost estimation.

3) Discuss the techniques for estimating project duration and determining the staffing pattern.

4) Explain Software Project Estimation Techniques.

5) Write short note on the Decomposition techniques.

6) Define Empirical Estimation Models in detail.

7) Estimate the effort required to develop software for a simple module that produces 15

screens, 10 reports and will require around 100 software components. Assume average

complexity and average developer / environment maturity. Use the Application

Composition Model of COCOMO-II with Object Points. State any assumptions you make.

Check Your Progress 8.

Write the advantages of COCOMO.

35

UNIT-3 RISK ANALYSIS AND MANAGEMENT

3.0 Introduction

3.1 Objective

3.2 What Is Risk?

3.3 Software Risk

3.4 Risk Identification

3.5 Risk Reduction

3.6 Risk Projection

3.7 Risk Refinement

3.8 Risk Mitigation, Monitoring and Management

3.9 Summary

3.10 Exercise

36

3.0 INTRODUCTION
Software is a difficult undertaking. Lots of things can go wrong, and frankly, many often do.

It’s for this reason that being prepared— understanding the risks and taking proactive

measures to avoid or manage them—is a key element of good software project management.

Recognizing what can go wrong is the first step, called “risk identification.” Next, each risk is

analysed to determine the likelihood that it will occur and the damage that it will do if it does

occur. Once this information is established, risks are ranked, by probability and impact.

Finally, a plan is developed to manage those risks with high probability and high impact.

Risk mitigation, monitoring, and management (RMMM) plan or a set of risk information

sheets is produced. How do I ensure that I’ve done it right? The risks that are analysed and

managed should be derived from thorough study of the people, the product, the process, and

the project. The RMMM should be revisited as the project proceeds to ensure that risks are

kept up to date. Contingency plans for risk management should be realistic.

3.1 OBJECTIVE
Objectives of this unit are:

a) to identify the risks and determine if they may be avoided.

b) to achieve and maintain reduced cost of risk.

c) to evaluate and assess all risks of loss.

d) to develop and maintain risk management policies.

e) to Identify total assets and resources of organizations.

f) to Calculate values of assets and resources.

3.2 WHAT IS RISK?
In general Risk is:

 First, risk concerns future happenings. Today and yesterday are beyond active concern, as

we are already reaping what was previously sowed by our past actions. The question is,

can we, therefore, by changing our actions today, create an opportunity for a different and

hopefully better situation for ourselves tomorrow.

 Second, that risk involves change, such as in changes of mind, opinion, actions, or places.

 Third, risk involves choice, and the uncertainty that choice itself entails.

When risk is considered in the context of software engineering, Charette's three conceptual

underpinnings are always in evidence-

37

 The future is our concern— what risks might cause the software project to go awry?

 Change is our concern— how will changes in customer requirements, development

technologies, target computers, and all other entities connected to the project affect

timeliness and overall success?

 Last, we must grapple with choices—what methods and tools should we use, how many

people should be involved, how much emphasis on quality is "enough"?

Everyone involved in the software process—managers, software engineers, and customers—

participate in risk analysis and management.

As per Peter Drucker, "While it is futile to try to eliminate risk, and questionable to try to

minimize it, it is essential that the risks taken be the right risks”. Before we can identify the

"right risks" to be taken during a software project, it is important to identify all risks that are

obvious to both managers and practitioners.

There are two risk strategies- Reactive and Proactive. The majority of software teams rely

solely on reactive risk strategies. At best, a reactive strategy monitors the project for likely

risks. Resources are set aside to deal with them, should they become actual problems. More

commonly, the software team does nothing about risks until something goes wrong. Then, the

team flies into action in an attempt to correct the problem rapidly. This is often called a fire

fighting mode.

When this fails, “crisis management” takes over and the project is in real danger. A

considerably more intelligent strategy for risk management is to be proactive. A proactive

strategy begins long before technical work is initiated. Potential risks are identified, their

probability and impact are assessed, and they are ranked by importance. Then, the software

team establishes a plan for managing risk. The primary objective is to avoid risk, but because

not all risks can be avoided, the team works to develop a contingency plan that will enable it

to respond in a controlled and effective manner.

3.3 SOFTWARE RISK
Although there has been considerable debate about the proper definition for software risk,

there is general agreement that risk always involves two characteristics

• Uncertainty—the risk may or may not happen; that is, there are no 100% probable risks.

Check Your Progress 1.

Give the two important characteristics of the risk management?

38

• Loss—if the risk becomes a reality, unwanted consequences or losses will occur.

When risks are analysed, it is important to quantify the level of uncertainty and the degree of

loss associated with each risk. To accomplish this, different categories of risks are

considered.

Project risks threaten the project plan. That is, if project risks become real, it is likely that

project schedule will slip and that costs will increase. Project risks identify potential

budgetary, schedule, personnel (staffing and organization), resource, customer, and

requirements problems and their impact on a software project. Project complexity, size, and

the degree of structural uncertainty were also defined as project (and estimation) risk factors.

Technical risks threaten the quality and timeliness of the software to be produced.

If a technical risk becomes a reality, implementation may become difficult or impossible.

Technical risks identify potential design, implementation, interface, verification, and

maintenance problems. In addition, specification ambiguity, technical uncertainty, technical

obsolescence, and "leading-edge" technology are also risk factors.

Technical risks occur because the problem is harder to solve than we thought it would be.

Business risks threaten the viability of the software to be built. Business risks often

jeopardize the project or the product.

Candidates for the top five business risks are

i. Building an excellent product or system that no one really wants (market risk)

ii. Building a product that no longer fits into the overall business strategy for the

company (strategic risk)

iii. Building a product that the sales force doesn't understand how to sell

iv. Losing the support of senior management due to a change in focus or a change in

people (management risk)

v. Losing budgetary or personnel commitment (budget risks). It is extremely important

to note that simple categorization won't always work.

Some risks are simply unpredictable in advance.

Another general categorization of risks has been proposed by Charette-

Known risks are those that can be uncovered after careful evaluation of the project plan, the

business and technical environment in which the project is being developed, and other

reliable information sources (e.g., unrealistic delivery date, lack of documented requirements

or software scope, poor development environment).

39

Predictable risks are extrapolated from past project experience (e.g., staff turnover, poor

communication with the customer, dilution of staff effort as on-going maintenance requests

are serviced).

Unpredictable risks are the joker in the deck. They can and do occur, but they are extremely

difficult to identify in advance.

3.4 RISK IDENTIFICATION
Risk identification is a systematic attempt to specify threats to the project plan (estimates,

schedule, resource loading, etc.). By identifying known and predictable risks, the project

manager takes a first step toward avoiding them when possible and controlling them when

necessary.

There are two distinct types of risks for each of the categories: generic risks and product-

specific risks. Generic risks are a potential threat to every software project. Product-specific

risks can be identified only by those with a clear understanding of the technology, the people,

and the environment that is specific to the project at hand. To identify product-specific risks,

the project plan and the software statement of scope are examined and an answer to the

following question is developed: "What special characteristics of this product may threaten

our project plan?"

One method for identifying risks is to create a risk item checklist. The checklist can be used

for risk identification and focuses on some subset of known and predictable risks in the

following generic subcategories:

 Product size- risks associated with the overall size of the software to be built or modified.

 Business impact- risks associated with constraints imposed by management or the

marketplace.

 Customer characteristics- risks associated with the sophistication of the customer and the

developer's ability to communicate with the customer in a timely manner.

 Process definition- risks associated with the degree to which the software process has

been defined and is followed by the development organization.

 Development environment- risks associated with the availability and quality of the tools

to be used to build the product.

Check Your Progress 2.

What is the difference between the “Known Risks” and Predictable Risks” ?

40

 Technology to be built- risks associated with the complexity of the system to be built and

the "newness" of the technology that is packaged by the system.

 Staff size and experience- risks associated with the overall technical and project

experience of the software engineers who will do the work.

The risk item checklist can be organized in different ways. Questions relevant to each of the

topics can be answered for each software project. The answers to these questions allow the

planner to estimate the impact of risk. A different risk item checklist format simply lists

characteristics that are relevant to each generic subcategory.

Assessing Overall Project Risk

The following questions have derived from risk data obtained by surveying experienced

software project managers in different part of the world:

1. Have top software and customer managers formally committed to support the project?

2. Are end-users enthusiastically committed to the project and the system/product to be

built?

3. Are requirements fully understood by the software engineering team and their

customers?

4. Have customers been involved fully in the definition of requirements?

5. Do end-users have realistic expectations?

6. Is project scope stable?

7. Does the software engineering team have the right mix of skills?

8. Are project requirements stable?

9. Does the project team have experience with the technology to be implemented?

10. Is the number of people on the project team adequate to do the job?

11. Do all customer/user constituencies agree on the importance of the project and on the

requirements for the system/product to be built?

Risk Components and Drivers

The risk components are defined in the following manner:

• Performance risk- the degree of uncertainty that the product will meet its requirements

and be fit for its intended use.

• Cost risk- the degree of uncertainty that the project budget will be maintained.

• Support risk- the degree of uncertainty that the resultant software will be easy to correct,

adapt, and enhance.

41

• Schedule risk- the degree of uncertainty that the project schedule will be maintained and

that the product will be delivered on time.

The impact of each risk driver on the risk component is divided into one of four impact

categories-

a) Negligible

b) Marginal

c) Critical

d) Catastrophic

3.5 RISK REDUCTION
Generate reliability specifications, including quantitative requirements defining the

acceptable levels of failure. There are types of functional reliability requirements:

 Checking requirements identify checks to ensure that incorrect data is detected

before it leads to a failure.

 Recovery requirements are geared to help the system recover after a failure has

occurred.

 Redundancy requirements specify redundant features of the system to be included.

 Process requirements for reliability specify the development process to be used may

also be included.

3.6 RISK PROJECTION
Risk projection, also called risk estimation, attempts to rate each risk in two ways—the

likelihood or probability that the risk is real and the consequences of the problems associated

with the risk, should it occur.

The project planner, along with other managers and technical staff, performs four risk

projection activities:

a. Establish a scale that reflects the perceived likelihood of a risk,

b. Delineate the consequences of the risk,

c. Estimate the impact of the risk on the project and the product, and

d. Note the overall accuracy of the risk projection so that there will be no

misunderstandings.

Developing a Risk Table

A risk table provides a project manager with a simple technique for risk projection. A sample

risk table is illustrated in figure 3.1.

42

A project team begins by listing all risks in the first column of the table. This can be

accomplished with the help of the risk item checklists. Each risk is categorized in the second

column. The probability of occurrence of each risk is entered in the next column of the table.

The probability value for each risk can be estimated by team members individually.

Individual team members are polled in round-robin fashion until their assessment of risk

probability begins to converge.

Figure3.1: Sample risk table prior to sorting

Next, the impact of each risk is assessed. Each risk component is assessed using the

characterization, and an impact category is determined. The categories for each of the four

risk components—performance, support, cost, and schedule—are averaged to determine an

overall impact value.

43

Figure3.2: Risk and management concern

Once the first four columns of the risk table have been completed, the table is sorted by

probability and by impact. High-probability, high-impact risks percolate to the top of the

table, and low-probability risks drop to the bottom. This accomplishes first-order risk

prioritization. The project manager studies the resultant sorted table and defines a cut-off line.

The cut-off line (drawn horizontally at some point in the table) implies that only risks that lie

above the line will be given further attention. Risks that fall below the line are re-evaluated to

accomplish second-order prioritization. Risk impact and probability have a distinct influence

on management concern. A risk factor that has a high impact but a very low probability of

occurrence should not absorb a significant amount of management time, as shown in figure

3.2, However, high-impact risks with moderate to high probability and low-impact risks with

high probability should be carried forward into the risk analysis steps that follow.

All risks that lie above the cut-off line must be managed. The column labelled RMMM

contains a pointer into a Risk Mitigation, Monitoring and Management Plan or alternatively,

a collection of risk information sheets developed for all risks that lie above the cut-off.

Risk probability can be determined by making individual estimates and then developing a

single consensus value. Risk drivers can be assessed on a qualitative probability scale that has

the following values: impossible, improbable, probable, and frequent. Mathematical

probability can then be associated with each qualitative value

44

Assessing Risk Impact

Three factors affect the consequences that are likely if a risk does occur: its nature, its scope,

and its timing. The nature of the risk indicates the problems that are likely if it occurs. For

example, a poorly defined external interface to customer hardware (a technical risk) will

preclude early design and testing and will likely lead to system integration problems late in a

project. The scope of a risk combines the severity (just how serious is it?) with its overall

distribution (how much of the project will be affected or how many customers are harmed?).

Finally, the timing of a risk considers when and for how long the impact will be felt. In most

cases, a project manager might want the “bad news” to occur as soon as possible, but in some

cases, the longer the delay, the better.

The following steps are recommended to determine the overall consequences of a risk:

1. Determine the average probability of occurrence value for each risk component.

2. Determine the impact for each component based on the criteria shown.

3. Complete the risk table and analyse the results as described in the preceding sections.

The overall risk exposure, RE, is determined using the following relationship:

RE = P x C

where P is the probability of occurrence for a risk, and C is the cost to the project should the

risk occur.

The software team defines a project risk in the following manner:

Risk identification: Only 70 percent of the software components scheduled for re use will, in

fact, be integrated into the application. The remaining functionality will have to be custom

developed.

Risk probability: 80% (likely).

Risk impact: 60 reusable software components were planned. If only 70 percent can be used,

18 components would have to be developed from scratch (in addition to other custom

software that has been scheduled for development). Since the average component is100 LOC

and local data indicate that the software engineering cost for each LOC is $14.00,the overall

cost (impact) to develop the components would be 18 x 100 x 14 = $25,200.

Risk exposure: RE = 0.80 x 25,200 ~ $20,200.Risk exposure can be computed for each risk

in the risk table, once an estimate of the cost of the risk is made. The total risk exposure for

all risks (above the cut-off in the risk table) can provide a means for adjusting the final cost

estimate for a project.

45

It can also be used to predict the probable increase in staff resources required at various

points during the project schedule.

The risk projection and analysis techniques are applied iteratively as the software project

proceeds. The project team should re visit the risk table at regular intervals, re-evaluating

each risk to determine when new circumstances cause its probability and impact to change.

As a consequence of this activity, it may be necessary to add new risks to the table, remove

some risks that are no longer relevant, and change the relative positions of still others.

Risk Assessment

At this point in the risk management process, we have established a set of triplets of the form:

[ri, li, xi]

Where ri is risk, li is the likelihood (probability) of the risk, and xi is the impact of the risk.

During risk assessment, we further examine the accuracy of the estimates that were made

during risk projection, attempt to rank the risks that have been uncovered, and begin thinking

about ways to control and/or avert risks that are likely to occur.

Figure 3.3: Risk referent level

For assessment to be useful, a risk referent level must be defined. For most software projects,

the risk components discussed earlier—performance, cost, support, and schedule—also

represent risk referent levels. That is, there is a level for performance degradation, cost

46

overrun, support difficulty, or schedule slippage (or any combination of the four) that will

cause the project to be terminated. If a combination of risks create problems that cause one or

more of these referent levels to be exceeded, work will stop. In the context of software risk

analysis, a risk referent level has a single point, called the referent point or break point, as

shown in figure 3.3, at which the decision to proceed with the project or terminate it

(problems are just too great) are equally weighted. In reality, the referent level can rarely be

represented as a smooth line on a graph. In most cases it is a region in which there are areas

of uncertainty; that is, attempting to predict a management decision based on the combination

of referent values is often impossible.

Therefore, during risk assessment, we perform the following steps:

a. Define the risk referent levels for the project.

b. Attempt to develop a relationship between each (ri, li, xi) and each of the referent levels.

c. Predict the set of referent points that define a region of termination, bounded by a curve

or areas of uncertainty.

d. Try to predict how compound combinations of risks will affect a referent level.

3.7 RISK REFINEMENT
During early stages of project planning, a risk may be stated quite generally. As time passes

and more is learned about the project and the risk, it may be possible to refine the risk into a

set of more detailed risks, each somewhat easier to mitigate, monitor, and manage.

One way to do this is to represent the risk in condition-transition-consequence (CTC) format.

That is, the risk is stated in the following form:

Given that <condition> then there is concern that (possibly) <consequence>.

Using the CTC format for the reuse risk noted, we can write:

Given that all reusable software components must conform to specific design standards and

that some do not conform, then there is concern that (possibly) only 70 percent of the planned

reusable modules may actually be integrated into the as-built system, resulting in the need to

custom engineer the remaining 30 percent of components.

This general condition can be refined in the following manner:

Check Your Progress 3.

What is risk impact?

47

Sub-condition 1. Certain reusable components were developed by a third party with no

knowledge of internal design standards.

Sub-condition 2. The design standard for component interfaces has not been solidified and

may not conform to certain existing reusable components.

Sub-condition 3. Certain reusable components have been implemented in a language that is

not supported on the target environment.

The consequences associated with these refined sub-conditions remains the same (i.e.,30

percent of software components must be customer engineered), but the refinement helps to

isolate the underlying risks and might lead to easier analysis and response.

3.8 Risk Mitigation, Monitoring and Management
All of the risk analysis activities presented to this point have a single goal—to assist the

project team in developing a strategy for dealing with risk. An effective strategy must

consider three issues:

• Risk avoidance

• Risk monitoring

• Risk management and contingency planning

If a software team adopts a proactive approach to risk, avoidance is always the best strategy.

This is achieved by developing a plan for risk mitigation. For example, assume that high staff

turnover is noted as a project risk, r1. Based on past history and management intuition, the

likelihood, l1, of high turnover is estimated to be 0.70 (70 percent, rather high) and the

impact, x1, is projected at level 2. That is, high turnover will have a critical impact on project

cost and schedule.

To mitigate this risk, project management must develop a strategy for reducing turnover.

Among the possible steps to be taken are

• Meet with current staff to determine causes for turnover (e.g., poor working conditions,

low pay, and competitive job market).

• Mitigate those causes that are under our control before the project starts.

• Once the project commences, assume turnover will occur and develop techniques to

ensure continuity when people leave.

Check Your Progress 4.

What is CTC format?

48

• Organize project teams so that information about each development activity is widely

dispersed.

• Define documentation standards and establish mechanisms to be sure that documents are

developed in a timely manner.

• Conduct peer reviews of all work (so that more than one person is "up to speed”).

• Assign a backup staff member for every critical technologist.

As the project proceeds, risk monitoring activities commence. The project manager monitors

factors that may provide an indication of whether the risk is becoming more or less likely. In

the case of high staff turnover, the following factors can be monitored:

• General attitude of team members based on project pressures.

• The degree to which the team has jelled.

• Interpersonal relationships among team members.

• Potential problems with compensation and benefits.

• The availability of jobs within the company and outside it.

In addition to monitoring these factors, the project manager should monitor the effectiveness

of risk mitigation steps. For example, a risk mitigation step noted here called for the

definition of documentation standards and mechanisms to be sure that documents are

developed in a timely manner. This is one mechanism for ensuring continuity, should a

critical individual leave the project. The project manager should monitor documents carefully

to ensure that each can stand on its own and that each imparts information that would be

necessary if a newcomer were forced to join the software team somewhere in the middle of

the project.

Risk management and contingency planning assumes that mitigation efforts have failed and

that the risk has become a reality. Continuing the example, the project is well underway and a

number of people announce that they will be leaving. If the mitigation Strategy has been

followed, backup is available, information is documented, and knowledge has been dispersed

across the team. In addition, the project manager may temporarily refocus resources to those

functions that are fully staffed, enabling newcomers who must be added to the team to “get

up to speed.” Those individuals who are leaving are asked to stop all work and spend their

last weeks in “knowledge transfer mode.” This might include video-based knowledge

capture, the development of “commentary documents,” and/or meeting with other team

members who will remain on the project.

49

It is important to note that RMMM steps incur additional project cost. For example, spending

the time to "backup" every critical technologist costs money. Part of risk management,

therefore, is to evaluate when the benefits accrued by the RMMM steps are outweighed by

the costs associated with implementing them. In essence, the project planner performs a

classic cost/benefit analysis. If a risk aversion step for high turnover will increase both

project cost and duration by an estimated 15 percent but the predominant cost factor is

"backup," management may decide not to implement this step. On the other hand, if the risk

aversion steps are projected to increase costs by 5 percent and duration by only 3 percent

management will likely put all into place.

For a large project, 30 or 40 risks may identify. If between three and seven risk management

steps are identified for each, risk management may become a project in itself! For this reason,

we adapt the Pareto 80–20 rule to software risk. Experience indicates that 80 percent of the

overall project risk (i.e., 80 percent of the potential for project failure) can be accounted for

by only 20 percent of the identified risks. The work performed during earlier risk analysis

steps will help the planner to determine which of the risks reside in that 20 percent (e.g., risks

that lead to the highest risk exposure). For this reason, some of the risks identified, assessed,

and projected may not make it into the RMMM plan—they don't fall into the critical 20

percent (the risks with highest project priority).

3.9 SUMMARY
This section covers about risk, its analysis, and strategies to manage it. Although technical

issues are a primary concern both early on and throughout all project phases, risk

management must consider both internal and external sources for cost, schedule, and

technical risk. Early and aggressive detection of risk is important because it is typically

easier, less costly, and less disruptive to make changes and correct work efforts during the

earlier, rather than the later, phases of the project.

Risk management can be divided into three parts: defining a risk management strategy;

identifying and analyzing risks; and handling identified risks, including the implementation

of risk mitigation plans when needed. At last discuss about the RMMM.

Check Your Progress 5.

What are the three phases of Risk management?

50

3.10 EXERCISE
1) What Is Risk? What is Risk management mean? What are the factors that lead to Risk?

2) Explain elaborately the various strategies and steps involved in risk management

3) What are four impacts of the project risk?

4) Give the Important characteristics of the risk management?

5) What are the three phases of Risk management? Explain them.

6) What are the ways of identifying the potential risks?

7) Define the various steps under risk analysis.

8) What Is Risk mitigation, Monitoring and Management Plan?

1

Software Engineering

THIRD - BLOCK

2

BLOCK

3
UNIT 1 Software Quality Assurance

UNIT 2 Software Configuration Management

UNIT 3 Analysis Concepts and Principles

3

Overview

In this section we discuss the overview of this block’s content. This block consists of the

following units:

Unit 1 Software Quality Assurance

Software Quality Assurance encompasses the entire software development life cycle and the

goal is to ensure that the development and/or maintenance processes are continuously

improved to produce products that meet specifications/requirements.

The process of Software Quality Control (SQC) is also governed by Software Quality

Assurance (SQA).

 Unit 2 Software Configuration Management

The purpose of Software Configuration Management is to establish and maintain the integrity

of the products of the software project throughout the project's software life cycle. Software

Configuration Management involves identifying configuration items for the software project,

controlling these configuration items and changes to them, and recording and reporting status

and change activity for these configuration items

Unit 3 Analysis Concepts and Principles

Requirements analysis allows the software engineer to refine the software allocation and

build models of the data, functional, and behavioural domains that will be treated by

software. And the software requirements specification provides the developer and the

customer with the means to assess quality once software is built.

http://softwaretestingfundamentals.com/software-quality-control/

4

UNIT-1 SOFTWARE QUALITY ASSURANCE

1.0 Introduction

1.1 Objective

1.2 Principle of Software Quality Assurance

1.3 Basic concept of Quality

1.4 Quality Control

1.5 Quality Assurance

1.6 Cost of Quality

1.7 Software Review

1.8 Formal Technique review

1.9 Software Reliability

1.10 Summary

1.11 Exercise

5

1.0 INTRODUCTION
It’s not enough to talk the talk by saying that software quality is important, we should:

i. Explicitly define what is meant when you say “software quality,”

ii. Create a set of activities that will help ensure that every software engineering work

product exhibits high quality,

iii. Perform quality assurance activities on every software project,

iv. Use metrics to develop strategies for improving your software process and, as a

consequence, the quality of the end product.

1.1 OBJECTIVE
The various objectives of SQA are as follows:

a) Quality management approach.

b) Measurement and reporting mechanisms.

c) Effective software-engineering technology.

d) A procedure to assure compliance with software-development standards where

applicable.

e) A multi-testing strategy is drawn.

f) Formal technical reviews that are applied throughout the software process.

1.2 PRINCICPLE OF SOFTWARE QUALITY ASSURANCE
For our purposes, software quality is defined as

“Conformance to explicitly stated functional and performance requirements, explicitly

documented development standards, and implicit characteristics that are expected of all

professionally developed software.”

There is little question that this definition could be modified or extended. In fact, a definitive

definition of software quality could be debated endlessly. The definition serves to emphasize

three important points:

1. Software requirements are the foundation from which quality is measured. Lack of

conformance to requirements is lack of quality.

2. Specified standards define a set of development criteria that guide the manner in which

software is engineered. If the criteria are not followed, lack of quality will almost surely

result.

6

3. A set of implicit requirements often goes unmentioned (e.g., the desire for ease of use and

good maintainability). If software conforms to its explicit requirements but fails to meet

implicit requirements, software quality is suspect.

A Software Quality Assurance Plan is created to define a software team’s SQA strategy.

During analysis, design, and code generation, the primary SQA work product is the formal

technical review summary report. During duplicate testing, test plans and procedures are

produced. Other work products associated with process improvement may also be generated.

SQA encompasses-

1. A quality management approach

2. Effective software engineering technology (methods and tools)

3. Formal technical reviews that are applied throughout the software process

4. A multi-tiered testing strategy

5. Control of software documentation and the changes made to it

6. A procedure to ensure compliance with software development standards

7. Measurement and reporting mechanisms.

Software quality is:

1. The degree to which a system, component, or process meets specified requirements.

2. The degree to which a system, component, or process meets customer or user needs or

expectations.

Software quality assurance is:

1. A planned and systematic pattern of all actions necessary to provide adequate

confidence that an item or product conforms to established technical requirements.

2. A set of activities designed to evaluate the process by which the products are

developed or manufactured. Contrast with quality control.

SQA Activities

Software quality assurance is composed of a variety of tasks associated with two different

constituencies—the software engineers who do technical work and an SQA group that has

responsibility for quality assurance planning, oversight, record keeping, analysis, and

reporting.

Software engineers address quality by applying solid technical methods and measures,

conducting formal technical reviews, and performing well-planned software testing.

7

i. Prepares an SQA plan for a project. The plan is developed during project planning

and is reviewed by all interested parties. Quality assurance activities performed by the

software engineering team and the SQA group are governed by the plan. The plan

identifies

• evaluations to be performed

• audits and reviews to be performed

• standards that are applicable to the project

• procedures for error reporting and tracking

• documents to be produced by the SQA group

• amount of feedback provided to the software project team

ii. Participates in the development of the project’s software process description. The

software team selects a process for the work to be performed. The SQA group reviews

the process description for compliance with organizational policy, internal software

standards, externally imposed standards (e.g., ISO-9001), and other parts of the

software project plan.

iii. Reviews software engineering activities to verify compliance with the defined

software process. The SQA group identifies, documents, and tracks deviations from

the process and verifies that corrections have been made.

iv. Audits designated software work products to verify compliance with those defined

as part of the software process. The SQA group reviews selected work products;

identifies, documents, and tracks deviations; verifies that corrections have been made;

and periodically reports the results of its work to the project manager.

v. Ensures that deviations in software work and work products are documented and

handled according to a documented procedure. Deviations may be encountered in

the project plan, process description, applicable standards, or technical work products.

vi. Records any noncompliance and reports to senior management. Noncompliance

items are tracked until they are resolved.

The objectives of SQA activities

Software development (process-oriented):

i. Assuring an acceptable level of confidence that the software will conform to

functional technical requirements.

ii. Assuring an acceptable level of confidence that the software will conform to

managerial scheduling and budgetary requirements.

8

iii. Initiating and managing of activities for the improvement and greater efficiency of

software development and SQA activities. This means improving the prospects that

the functional and managerial requirements will be achieved while reducing the costs

of carrying out the software development and SQA activities.

Software maintenance (product-oriented):

i. Assuring with an acceptable level of confidence that the software maintenance

activities will conform to the functional technical requirements.

ii. Assuring with an acceptable level of confidence that the software maintenance

activities will conform to managerial scheduling and budgetary requirements.

iii. Initiating and managing activities to improve and increase the efficiency of software

maintenance and SQA activities. This involves improving the prospects of achieving

functional and managerial requirements while reducing costs.

Elements of SQA

 Standards

 Reviews and Audits

 Testing

 Error/defect collection and analysis

 Change management

 Education

 Vendor management

 Security management

 Safety

 Risk management

SQA Goals

 Requirements quality. The correctness, completeness, and consistency of the

requirements model will have a strong influence on the quality of all work products

that follow.

 Design quality. Every element of the design model should be assessed by the software

team to ensure that it exhibits high quality and that the design itself conforms to

requirements.

9

 Code quality. Source code and related work products (e.g., other descriptive

information) must conform to local coding standards and exhibit characteristics that

will facilitate maintainability.

 Quality control effectiveness. A software team should apply limited resources in a

way that has the highest Likelihood of achieving a high quality result.

 ISO 9001:2000 Standard ISO 9001:2000 is the quality assurance standard that

applies to software engineering. The standard contains 20 requirements that must be

present for an effective quality assurance system. The requirements delineated by ISO

9001:2000 address topics such as management responsibility, quality system, contract

review, design control, document and data control, product identification and

traceability, process control, inspection and testing, corrective and preventive action,

control of quality records, internal quality audits, training, servicing, and statistical

techniques.

1.3 BASIC CONCEPT OF QUALITY
The American Heritage Dictionary defines quality as “a characteristic or attribute of

something.” As an attribute of an item, quality refers to measurable characteristics- things we

are able to compare to known standards such as length, colour, electrical properties, and

malleability. However, software, largely an intellectual entity, is more challenging to

characterize than physical objects.

Nevertheless, measures of a program’s characteristics do exist. These properties include

cyclomatic complexity, cohesion, number of function points, lines of code, and many others.

When we examine an item based on its measurable characteristics, two kinds of quality may

be encountered: quality of design and quality of conformance.

Quality of design refers to the characteristics that designers specify for an item. The grade of

materials, tolerances, and performance specifications all contribute to the quality of design.

As higher-grade materials are used, tighter tolerances and greater levels of performance are

specified, the design quality of a product increases, if the product is manufactured according

to specifications.

Check Your Progress 1.

What are the activities associated with SQA group?

10

Quality of conformance is the degree to which the design specifications are followed during

manufacturing. Again, the greater the degree of conformance, the higher is the level of

quality of conformance.

In software development, quality of design encompasses requirements, specifications, and the

design of the system. Quality of conformance is an issue focused primarily on

implementation. If the implementation follows the design and the resulting system meets its

requirements and performance goals, conformance quality is high.

But are quality of design and quality of conformance the only issues that software engineers

must consider? Robert Glass argues that a more “intuitive” relationship is in order:

User satisfaction = compliant product + good quality +

Delivery within budget and schedule

At the bottom line, Glass contends that quality is important, but if the user isn’t satisfied,

nothing else really matters. DeMarco reinforces this view when he states: “A product’s

quality is a function of how much it changes the world for the better.” This view of quality

contends that if a software product provides substantial benefit to its end-users, they may be

willing to tolerate occasional reliability or performance problems.

1.4 QUALITY CONTROL
Variation control may be equated to quality control. But how do we achieve quality control?

Quality control involves the series of inspections, reviews, and tests used throughout the

software process to ensure each work product meets the requirements placed upon it. Quality

control includes a feedback loop to the process that created the work product. The

combination of measurement and feedback allows us to tune the process when the work

products created fail to meet their specifications.

This approach views quality control as part of the manufacturing process. Quality control

activities may be fully automated, entirely manual, or a combination of automated tools and

human interaction. A key concept of quality control is that all work products have defined,

measurable specifications to which we may compare the output of each process. The

feedback loop is essential to minimize the defects produced.

Check Your Progress 2.

What are the measures of software quality?

11

1.5 QUALITY ASSURANCE
Quality assurance consists of the auditing and reporting functions of management. The goal

of quality assurance is to provide management with the data necessary to be informed about

product quality, thereby gaining insight and confidence that product quality is meeting its

goals. Of course, if the data provided through quality assurance identify problems, it is

management’s responsibility to address the problems and apply the necessary resources to

resolve quality issues.

1.6 COST OF QUALITY
The cost of quality includes all costs incurred in the pursuit of quality or in performing

quality-related activities. Cost of quality studies are conducted to provide a baseline for the

current cost of quality, identify opportunities for reducing the cost of quality, and provide a

normalized basis of comparison. The basis of normalization is almost always dollars. Once

we have normalized quality costs on a dollar basis, we have the necessary data to evaluate

where the opportunities lie to improve our processes. Furthermore, we can evaluate the effect

of changes in dollar-based terms. Quality costs may be divided into costs associated with

prevention, appraisal, and failure.

Prevention costs include

 quality planning

 formal technical reviews

 test equipment

 training

Appraisal costs include activities to gain insight into product condition the “first time

through” each process. Examples of appraisal costs include:

 in-process and inter-process inspection

Check Your Progress 3.

What is Software Quality Control?

Check Your Progress 4.

What is the need of quality assurance?

12

 equipment calibration and maintenance

 testing

Failure costs are those that would disappear if no defects appeared before shipping a product

to customers. Failure costs may be subdivided into internal failure costs and external failure

costs. Internal failure costs are incurred when we detect a defect in our product prior to

shipment. Internal failure costs include

 rework

 repair

 failure mode analysis

External failure costs are associated with defects found after the product has been shipped to

the customer. Examples of external failure costs are

 complaint resolution

 product return and replacement

 help line support

 warranty work

1.7 SOFTWARE REVIEW
Software reviews are a "filter" for the software engineering process. That is, reviews are

applied at various points during software development and serve to uncover errors and

defects that can then be removed. Software reviews "purify" the software engineering

activities that we have called analysis, design, and coding.

Freedman and Weinberg describe the need for reviews this way:

“Technical work needs reviewing for the same reason that pencils need erasers: To err is

human. The second reason we need technical reviews is that although people are good at

catching some of their own errors, large classes of errors escape the originator more easily

than they escape anyone else.”

A review - any review - is a way of using the diversity of a group of people to:

i. Point out needed improvements in the product of a single person or team;

Check Your Progress 5.

 What are the components of the Cost of Quality?

13

ii. Confirm those parts of a product in which improvement is either not desired or not

needed;

iii. Achieve technical work of more uniform, or at least more predictable, quality than

can be achieved without reviews, in order to make technical work more

manageable.

Many different types of reviews can be conducted as part of software engineering. Each has

its place. An informal meeting around the coffee machine is a form of review, if technical

problems are discussed. A formal presentation of software design to an audience of

customers, management, and technical staff is also a form of review. A formal technical

review is the most effective filter from a quality assurance standpoint; Conducted by software

engineers (and others) for software engineers.

1.8 FORMAL TECHNICAL REVIEWS
A formal technical review is a software quality assurance activity performed by software

engineers (and others). The objectives of the FTR are

i. To uncover errors in function, logic, or implementation for any representation of

the software

ii. To verify that the software under review meets its requirements

iii. To ensure that the software has been represented according to predefined

0standards

iv. To achieve software that is developed in a uniform manner

v. To make projects more manageable

In addition, the FTR serves as a training ground, enabling junior engineers to observe

different approaches to software analysis, design, and implementation. The FTR also serves

to promote backup and continuity because a number of people become familiar with parts of

the software that they may not have otherwise seen. The FTR is actually a class of reviews

that includes walkthroughs, inspections, round-robin reviews and other small group technical

assessments of software. Each FTR is conducted as a meeting and will be successful only if it

is properly planned, controlled, and attended. In the sections that follow, guidelines similar to

those for a walkthrough are presented as a representative formal technical review.

Check Your Progress 6.

What is the need to review software and when review is required?

14

The Review Meeting

Regardless of the FTR format that is chosen, every review meeting should abide by the

following constraints:

• Between three and five people (typically) should be involved in the review.

• Advance preparation should occur but should require no more than two hours of work

for each person.

• The duration of the review meeting should be less than two hours.

Given these constraints, it should be obvious that an FTR focuses on a specific (and small)

part of the overall software. For example, rather than attempting to review an entire design,

walkthroughs are conducted for each component or small group of components. By

narrowing focus, the FTR has a higher likelihood of uncovering errors.

Review Reporting and Record Keeping

During the FTR, a reviewer (the recorder) actively records all issues that have been raised.

These are summarized at the end of the review meeting and a review issues list is produced.

In addition, a formal technical review summary report is completed.

A review summary report answers three questions:

i. What was reviewed?

ii. Who reviewed it?

iii. What were the findings and conclusions?

The review summary report is a single page form. It becomes part of the project historical

record and may be distributed to the project leader and other interested parties.

Review Guidelines

Guidelines for the conduct of formal technical reviews must be established in advance,

distributed to all reviewers, agreed upon, and then followed. A review that is uncontrolled

can often be worse that no review at all. The following represents a minimum set of

guidelines for formal technical reviews:

i. Review the product, not the producer

ii. Set an agenda and maintain it

iii. Limit debate and rebuttal

iv. Enunciate problem areas

v. Take written notes

vi. Limit the number of participants and insist upon advance preparation

vii. Develop a checklist for each product that is likely to be reviewed

viii. Allocate resources and schedule time for FTRs

15

ix. Conduct meaningful training for all reviewers

x. Review your early reviews

1.9 SOFTWARE RELIABILITY
There is no doubt that the reliability of a computer program is an important element of its

overall quality. If a program repeatedly and frequently fails to perform, it matters little

whether other software quality factors are acceptable.

Software reliability, unlike many other quality factors, can be measured directed and

estimated using historical and developmental data. Software reliability is defined in statistical

terms as "the probability of failure-free operation of a computer program in a specified

environment for a specified time". To illustrate, program X is estimated to have a reliability

of 0.96 over eight elapsed processing hours. In other words, if program X were to be

executed 100 times and require eight hours of elapsed processing time, it is likely to operate

correctly (without failure) 96 times out of 100.

Whenever software reliability is discussed, a pivotal question arises: What is meant by the

term failure? In the context of any discussion of software quality and reliability, failure is

non-conformance to software requirements. Yet, even within this definition, there are

gradations. Failures can be only annoying or catastrophic. One failure can be corrected within

seconds while another requires weeks or even months to correct. Complicating the issue even

further, the correction of one failure may in fact result in the introduction of other errors that

ultimately result in other failures.

Measures of Reliability and Availability

Early work in software reliability attempted to extrapolate the mathematics of hardware

reliability theory to the prediction of software reliability. Most hardware-related reliability

models are predicated on failure due to wear rather than failure due to design defects. In

hardware, failures due to physical wear are more likely than a design-related failure.

Unfortunately, the opposite is true for software. In fact, all software failures can be traced to

design or implementation problems; wear does not enter into the picture.

Check Your Progress 7.

What are the differences between reviews and formal technical reviews?

16

There has been debate over the relationship between key concepts in hardware reliability and

their applicability to software. Although an irrefutable link has yet be established, it is

worthwhile to consider a few simple concepts that apply to both system elements. If we

consider a computer-based system, a simple measure of reliability is meantime-between-

failure (MTBF), where

MTBF = MTTF + MTTR

The acronyms MTTF and MTTR are mean-time-to-failure and mean-time-to-repair,

respectively. Many researchers argue that MTBF is a far more useful measure than

defects/KLOC or defects/FP. stated simply, an end-user is concerned with failures, not with

the total error count. Because each error contained within a program does not have the same

failure rate, the total error count provides little indication of the reliability of a system. For

example, consider a program that has been in operation for 14 months. Many errors in this

program may remain undetected for decades before they are discovered. The MTBF of such

obscure errors might be 50 or even 100 years. Other errors, as yet undiscovered, might have a

failure rate of 18 or 24 months. Even if every one of the first category of errors (those with

long MTBF) is removed, the impact on software reliability is negligible.

In addition to a reliability measure, we must develop a measure of availability. Software

availability is the probability that a program is operating according to requirement sat a given

point in time and is defined as

Availability = [MTTF / (MTTF + MTTR)] x 100%

The MTBF reliability measure is equally sensitive to MTTF and MTTR. The availability

measure is somewhat more sensitive to MTTR, an indirect measure of the maintainability of

software.

1.10 SUMMARY
This chapter covers a brief discussion about Software Quality, and its role, everyone involved

in the software engineering process is responsible for quality. If a software team stresses

quality in all software engineering activities, it reduces the amount of rework that it must do.

That results in lower costs, and more importantly, improved time-to-market. Before software

Check Your Progress 8.

How we can measure the reliability and availability of any software?

17

quality assurance activities can be initiated, it is important to define ‘software quality’ at a

number of different levels of abstraction. Once you understand what quality is, a software

team must identify a set of SQA activities that will filter errors out of work products before

they are passed on.

1.11 EXERCISE
1) How do we define Software Quality? What is Software Quality Control? What are the

components of the Cost of Quality?

2) What is Software Quality Assurance? What activities are required to perform SQA?

3) Define the terms:

(a) Quality of Design (b) Quality of Conformance

4) What are the factors of Software Quality? Define.

5) What is the role of Software Quality in software?

6) What is Software Reliability? How can we Measures Reliability and Availability?

7) Explain the objective of SQA activities.

8) Define the Software Reviews and Formal Technical Review. Are both term same or

different with each other? Explain.

18

UNIT-2 SOFTWARE CONFIGURATION

MANAGEMENT

2.0 Introduction

2.1 Objective

2.2 Principle of Software Configuration Management

2.3 Baseline of SCM

2.4 Software Configuration items

2.5 SCM process

2.6 Version Control

2.7 Change Control

2.8 Configuration Audit

2.9 Status Reporting

2.10 Summary

2.11 Exercise

2.0 INTRODUCTION

19

Software configuration management (SCM) is a set of activities designed to control change

by identifying the work products that are likely to change, establishing relationships among

them, defining mechanisms for managing different versions of these work products,

controlling the changes imposed, and auditing and reporting on the changes made.

Change is inevitable when computer software is built. And change increases the level of

confusion among software engineers who are working on a project. Confusion arises when

changes are not analysed before they are made, recorded before they are implemented,

reported to those with a need to know, or controlled in a manner that will improve quality and

reduce error.

2.1 OBJECTIVE
The objectives of this unit are:

a) Continuous control of product specifically built situations

b) Improvement of quality

c) Active monitoring of changes instead of being driven by changes

d) Cost-effective project management

e) Accurate definition of items affected by a change (i.e. design documents, contracts,

parts and tools)

f) Complete design requirements per end-product

g) Traceability between multi-level contract changes

h) Elimination of data duplication, allowing for segregated data responsibility

i) Continuous recording of the product specific design/build situation and deviation

reporting

2.2 PRINCIPLE OF SOFTWARE CONFIGURATION

MANAGEMENT
As per Babich:

“Configuration management is the art of identifying, organizing, and controlling

modifications to the software being built by a programming team. The goal is to maximize

productivity by minimizing mistakes.”

Software configuration management (SCM) is an umbrella activity that is applied throughout

the software process. Because change can occur at any time, SCM activities are developed to,

i. Identify change

20

ii. Control change,

iii. Ensure that change is being properly implemented, and

iv. Report changes to others who may have an interest.

It is important to make a clear distinction between software support and software

configuration management. Support is a set of software engineering activities that occur after

software has been delivered to the customer and put into operation. Software configuration

management is a set of tracking and control activities that begin when a software engineering

project begins and terminate only when the software is taken out of operation.

A primary goal of software engineering is to improve the ease with which changes can be

accommodated and reduce the amount of effort expended when changes must be made.

The output of the software process is information that may be divided into three broad

categories:

i. Computer programs (both source level and executable forms)

ii. Documents that describe the computer programs (targeted at both technical

practitioners and users)

iii. Data (contained within the program or external to it)

The items that comprise all information produced as part of the software process are

collectively called a software configuration.

As the software process progresses, the number of software configuration items (SCIs) grows

rapidly. A System Specification spawns a Software Project Plan and Software Requirements

Specification. These in turn spawn other documents to create a hierarchy of information. If

each SCI simply spawned other SCIs, little confusion would result. Unfortunately, another

variable enters the process—change. Change may occur at any time, for any reason.

What is the origin of these changes? The answer to this question is as varied as the changes

themselves. However, there are four fundamental sources of change:

• New business or market conditions dictate changes in product requirements or

business rules.

• New customer needs demand modification of data produced by information systems,

functionality delivered by products, or services delivered by a computer-based

system.

• Reorganization or business growth/downsizing causes changes in project priorities or

software engineering team structure.

• Budgetary or scheduling constraints cause a redefinition of the system or product.

Check Your Progress 1.

What is the Origin of changes that are requested for software?

21

2.3 BASELINE OF SCM
Change is a fact of life in software development. Customers want to modify requirements.

Developers want to modify the technical approach. Managers want to modify the project

strategy. Why all this modification? The answer is really quite simple. As time passes, all

constituencies know more (about what they need, which approach would be best, how to get

it done and still make money). This additional knowledge is the driving force behind most

changes and leads to a statement of fact that is difficult for many software engineering

practitioners to accept: Most changes are justified!

A baseline is a software configuration management concept that helps us to control change

without seriously impeding justifiable change.

The IEEE defines a baseline as:

“A specification or product that has been formally reviewed and agreed upon, that thereafter

serves as the basis for further development, and that can be changed only through formal

change control procedures.”

One way to describe a baseline is through analogy: Consider the doors to the kitchen in a

large restaurant. One door is marked OUT and the other is marked IN. The doors have stops

that allow them to be opened only in the appropriate direction.

If a waiter picks up an order in the kitchen, places it on a tray and then realizes he has

selected the wrong dish, he may change to the correct dish quickly and informally before he

leaves the kitchen.

If, however, he leaves the kitchen, gives the customer the dish and then is informed of his

error, he must follow a set procedure:

i. Look at the check to determine if an error has occurred

ii. Apologize profusely

iii. Return to the kitchen through the in-door

iv. Explain the problem, and so forth

A baseline is analogous to the kitchen doors in the restaurant. Before a software configuration

item becomes a baseline, change may be made quickly and informally. However, once a

22

baseline is established, we figuratively pass through a swinging one way door. Changes can

be made, but a specific, formal procedure must be applied to evaluate and verify each change.

In the context of software engineering, a baseline is a milestone in the development of

software that is marked by the delivery of one or more software configuration items and the

approval of these SCIs that is obtained through a formal technical review.

2.4 SOFTWARE CONFIGURATION ITEMS
We have already defined a software configuration item as information that is created as part

of the software engineering process. In the extreme, a SCI could be considered to be a single

section of a large specification or one test case in a large suite of tests. More realistically, an

SCI is a document, an entire suite of test cases, or a named program component (e.g., a C++

function or an Ada package).In addition to the SCIs that are derived from software work

products; many software engineering organizations also place software tools under

configuration control. That is, specific versions of editors, compilers, and other CASE tools

are "frozen" as part of the software configuration. Because these tools were used to produce

documentation, source code, and data, they must be available when changes to the software

configuration are to be made. Although problems are rare, it is possible that a new version of

a tool (e.g., a compiler) might produce different results than the original version. For this

reason, tools, like the software that they help to produce, can be base lined as part of a

comprehensive configuration management process.

In reality, SCIs are organized to form configuration objects that may be catalogued in the

project database with a single name. A configuration object has a name, attributes, and is

"connected" to other objects by relationships. Referring to figure 2.1, the configuration

objects, Design Specification, data model, component N, source code and Test Specification

are each defined separately. However, each of the objects is related to the others as shown by

the arrows. A curved arrow indicates a compositional relation. That is, data model and

component N are part of the object Design Specification. A double-headed straight arrow

indicates an interrelationship. If a change were made to the source code object, the

Check Your Progress 2.

What is the need for baseline?

23

interrelationships enable a software engineer to determine what other objects (and SCIs)

might be affected.

Figure 2.1: Configuration Objects

Check Your Progress 3.

What to identify as configuration items and how?

24

2.5 SCM PROCESS
Software configuration management is an important element of software quality assurance.

Its primary responsibility is the control of change. However, SCM is also responsible for the

identification of individual SCIs and various versions of the software, the auditing of the

software configuration to ensure that it has been properly developed, and the reporting of all

changes applied to the configuration.

Any description of SCM introduces a set of complex questions:

• How does an organization identify and manage the many existing versions of a

program in a manner that will enable change to be accommodated efficiently?

• How an organization control changes does before and after software is released to a

customer?

• Who has responsibility for approving and ranking changes?

• How can we ensure that changes have been made properly?

• What mechanism is used to apprise others of changes that are made?

These questions lead us to the definition of five SCM tasks: identification, version control,

and change control, configuration auditing, and reporting.

To control and manage software configuration items, each must be separately named and then

organized using an object-oriented approach.

Two types of objects can be identified: basic objects and aggregate objects. A basic object is

a "unit of text" that has been created by a software engineer during analysis, design, code, or

test. For example, a basic object might be a section of a requirements specification, a source

listing for a component, or a suite of test cases that are used to exercise the code. An

aggregate object is a collection of basic objects and other aggregate objects.

Conceptually, it can be viewed as a named (identified) list of pointers that specify basic

objects such as data model and component N. Each object has a set of distinct features that

identify it uniquely: a name, a description, a list of resources, and a "realization." The object

name is a character string that identifies the object unambiguously.

2.6 VERSION CONTROL

Check Your Progress 4.

What are the Objectives of SCM Process?

25

Version control combines procedures and tools to manage different versions of configuration

objects that are created during the software process.

Clemm describes version control in the context of SCM:

“Configuration management allows a user to specify alternative configurations of the

software system through the selection of appropriate versions. This is supported by

associating attributes with each software version, and then allowing a configuration to be

specified by describing the set of desired attributes.”

These "attributes" mentioned can be as simple as a specific version number that is attached to

each object or as complex as a string of Boolean variables (switches) that indicate specific

types of functional changes that have been applied to the system.

One representation of the different versions of a system is the evolution graph presented in

figure 2.2. Each node on the graph is an aggregate object, that is, a complete version of the

software. Each version of the software is a collection of SCIs (source code, documents, data),

and each version may be composed of different variants. To illustrate this concept, consider a

version of a simple program that is composed of entities 1, 2, 3, 4, and 5.Entity 4 is used only

when the software is implemented using colour displays. Entity 5 is implemented when

monochrome displays are available.

Figure 2.2: Object pool representation of components, variants, and versions

Therefore, two variants of the version can be defined:

26

(1) Entities 1, 2, 3, and 4;

(2) Entities 1, 2, 3, and 5.

To construct the appropriate variant of a given version of a program, each entity can be

assigned an "attribute-tuple"—a list of features that will define whether the entity should be

used when a particular variant of a software version is to be constructed. One or more

attributes is assigned for each variant. For example, a colour attribute could be used to define

which entity should be included when colour displays are to be supported.

Another way to conceptualize the relationship between entities, variants and versions

(revisions) is to represent them as an object pool. Referring to figure, the relationship

between configuration objects and entities, variants and versions can be represented in a

three-dimensional space. An entity is composed of a collection of objects at the same revision

level. A variant is a different collection of objects at the same revision level and therefore

coexists in parallel with other variants.

A new version is defined when major changes are made to one or more objects. A number of

different automated approaches to version control have been proposed over the past decade.

The primary difference in approaches is the sophistication of the attributes that are used to

construct specific versions and variants of a system and the mechanics of the process for

construction.

2.7 CHANGE CONTROL
The reality of change control in a modern software engineering context has been summed up

beautifully by James Bach:

“Change control is vital. But the forces that make it necessary also make it annoying. We

worry about change because a tiny perturbation in the code can create a big failure in the

product. But it can also fix a big failure or enable wonderful new capabilities. We worry

about change because a single rogue developer could sink the project; yet brilliant ideas

originate in the minds of those rogues, and a burdensome change control process could

effectively discourage them from doing creative work.”

Bach recognizes that we face a balancing act. Too much change control and we create

problems. Too little, and we create other problems.

For a large software engineering project, uncontrolled change rapidly leads to chaos. For such

projects, change control combines human procedures and automated tools to provide a

mechanism for the control of change. A change request is submitted and evaluated to assess

27

technical merit, potential side effects, overall impact on other configuration objects and

system functions, and the projected cost of the change. The results of the evaluation are

presented as a change report, which is used by a Change Control Authority (CCA) - a person

or group who makes a final decision on the status and priority of the change. An Engineering

Change Order (ECO) is generated for each approved change. The ECO describes the change

to be made, the constraints that must be respected, and the criteria for review and audit. The

object to be changed is "checked out" of the project database, the change is made, and

appropriate SQA activities are applied. The object is then "checked in" to the database and

appropriate version control mechanisms are used to create the next version of the software.

The "check-in" and "check-out" process implements two important elements of change

control - access control and synchronization control. Access control governs which software

engineers have the authority to access and modify a particular configuration object.

Synchronization control helps to ensure that parallel changes, performed by two different

people, don't overwrite one another. Access and synchronization control flow are illustrated

schematically in figure 2.3.

Based on an approved change request and ECO, software engineers check-out a configuration

object.

28

Figure 2.3: Access and synchronization control

An access control function ensures that the software engineer has authority to check out the

object, and synchronization control locks the object in the project database so that no updates

can be made to it until the currently checked-out version has been replaced. Note that other

copies can be checked-out, but other updates cannot be made. A copy of the base lined

object, called the extracted version, is modified by the software engineer. After appropriate

SQA and testing, the modified version of the object is checked in and the new baseline object

is unlocked.

Prior to an SCI becoming a baseline, only informal change control need be applied. The

developer of the configuration object (SCI) in question may make whatever changes are

justified by project and technical requirements. Once the object has undergone formal

technical review and has been approved, a baseline is created. Once an SCI becomes a

baseline, project level change control is implemented. Now, to make a change, the developer

must gain approval from the project manager or from the CCA if the change affects other

29

SCIs. In some cases, formal generation of change requests, change reports, and ECOs is

dispensed with. However, assessment of each change is conducted and all changes are

tracked and reviewed.

When the software product is released to customers, formal change control is instituted. The

formal change control procedure has been outlined in figure 2.4
Need for change is recognized

Change request from user

Developer evaluates

Change report is generated

Change control authority decides

Request is queued for action, ECO generated Change request is denied

Assign individuals to configuration objects User is informed

“Check out” configuration objects (items)

Make the change

Review (audit) the change

“Check in” the configuration items that have been changed

Establish a baseline for testing

Perform quality assurance and testing activities

“Promote” changes for inclusion in next release (revision)

Rebuild appropriate version of software

Review (audit) the change to all configuration items

Include changes in new version

Distribute the new version
Figure 2.4: The Change Process

The change control authority plays an active role in the second and third layers of control.

Depending on the size and character of a software project, the CCA may be composed of one

30

person—the project manager - or a number of people. The role of the CCA is to take a global

view, that is, to assess the impact of change beyond the SCI in question.

2.8 CONFIGURATION AUDIT
Identification, version control, and change control help the software developer to maintain

order in what would otherwise be a chaotic and fluid situation. However, even the most

successful control mechanisms track a change only until an ECO is generated. How can we

ensure that the change has been properly implemented? The answer is twofold: (1) formal

technical reviews and (2) the software configuration audit.

The formal technical review focuses on the technical correctness of the configuration object

that has been modified. The reviewers assess the SCI to determine consistency with other

SCIs, omissions, or potential side effects. A formal technical review should be conducted for

all but the most trivial changes. A software configuration audit complements the formal

technical review by assessing a configuration object for characteristics that are generally not

considered during review.

The audit asks and answers the following questions:

i. Has the change specified in the ECO been made? Have any additional modifications

been incorporated?

ii. Has a formal technical review been conducted to assess technical correctness?

iii. Has the software process been followed and have software engineering standards been

properly applied?

iv. Has the change been "highlighted" in the SCI? Have the change date and change

author been specified? Do the attributes of the configuration object reflect the change?

v. Have SCM procedures for noting the change, recording it, and reporting it been

followed?

vi. Have all related SCIs been properly updated?

In some cases, the audit questions are asked as part of a formal technical review. However,

when SCM is a formal activity, the SCM audit is conducted separately by the quality

assurance group.

Check Your Progress 5.

What is the difference between version control and change control?

Check Your Progress 6.

What are the requirements of internal auditing?

31

2.9 STATUS REPORTING
Configuration status reporting (sometimes called status accounting) is an SCM task that

answers the following questions:

i. What happened?

ii. Who did it?

iii. When did it happen?

iv. What else will be affected?

Each time an SCI is assigned new or updated identification, a CSR entry is made. Each time a

change is approved by the CCA, a CSR entry is made. Each time a configuration audit is

conducted, the results are reported as part of the CSR task. Output from CSR may be placed

in an on-line database, so that software developers or maintainers can access change

information by keyword category.

In addition, a CSR report is generated on a regular basis and is intended to keep management

and practitioners appraised of important changes.

Configuration status reporting plays a vital role in the success of a large software

development project. When many people are involved, it is likely that "the left hand not

knowing what the right hand is doing" syndrome will occur. Two developers may attempt to

modify the same SCI with different and conflicting intents. A software engineering team may

spend months of effort building software to an obsolete hardware specification. The person

who would recognize serious side effects for a proposed change is not aware that the change

is being made. CSR helps to eliminate these problems by improving communication among

all people involved.

2.10 SUMMARY
SCM is the process that defines how to control and manage change.

Software configuration management is a set of activities that have been developed to manage

change throughout the life cycle of computer software. SCM can be viewed as a software

quality assurance activity that is applied throughout the software process.

Check Your Progress 7.

How to write effective weekly status report?

32

The need for an SCM process is acutely felt when there are many developers and many

versions of the software. Suffice to say that in a complex scenario where bug fixing should

happen on multiple production systems and enhancements must be continued on the main

code base, SCM acts as the backbone which can make this happen.

This chapter covers about the SCM, its objectives, features, Baseline, SCM activities,

Software Configuration Items Configuration Audit and Status Report.

2.11 EXERCISE
1) What is SCM? What are the Features supported by SCM?

2) What is SCM Process? What are the Objectives of SCM Process?

3) List the SCM Activities.

4) Define distinction between SCM and Software Support.

5) Describe the various Software Configuration Management Tasks.

6) Explain Software Configuration Item

7) What Is Base line criteria in SCM? Also write its role in SCM.

8) Define configuration Audit and Status Reporting?

9) Define the Version Control and Change Control in detail.

33

UNIT-3 ANALYSIS CONCEPTS AND PRINCIPLES

3.0 Introduction

3.1 Objective

3.2 Analysis Concepts and Principles

3.3 Requirement Elicitation for Software analysis principles

3.4 The Information Domain

3.5 Modelling

3.6 Partitioning

3.7 Essential and Implementation Views

3.8 Specification

3.9 Specification Principles

3.10 Representation

3.11 The Software Requirement Specification

3.12 Summary

3.13 Exercise

34

3.0 INTRODUCTION
Requirements analysis provides the software designer with a representation of information,

function, and behaviour that can be translated to data, architectural, interface, and

component-level designs.

Initially, the analyst studies the System Specification and the Software Project Plan. It is

important to understand software in a system context and to review the software scope that

was used to generate planning estimates. Next, communication for analysis must be

established so that problem recognition is ensured. The goal is recognition of the basic

problem elements as perceived by the customer/users.

3.1 OBJECTIVE
The objectives of this unit are:

a) to understand the problem before beginning to create the analysis model

b) to develop prototypes to help user to understand how human-machine interactions

c) record the origin of and the reasons for every requirement

d) use multiple views of requirements

e) prioritize requirements

a) work to eliminate ambiguity

f) to explain about the User interface design.

g) to introduce the concept of data acquisition system.

h) to know about the monitoring and control system and defining to implement them.

3.2 ANALYSIS CONCEPTS AND PRINCIPLES
Requirements analysis is a software engineering task that bridges the gap between system

level requirements engineering and software design as shown in figure 3.1. Requirements

engineering activities result in the specification of software’s operational characteristics

(function, data, and behaviour), indicate software's interface with other system elements, and

establish constraints that software must meet.

Software requirements analysis may be divided into five areas of effort:

i. Problem recognition

ii. Evaluation and synthesis

iii. Modelling

iv. Specification

35

v. Review

Problem evaluation and solution synthesis is the next major area of effort for analysis. The

analyst must define all externally observable data objects, evaluate the flow and content of

information, define and elaborate all software functions, understand software behaviour in the

context of events that affect the system, establish system interface characteristics, and

uncover additional design constraints. Each of these tasks serves to describe the problem so

that an overall approach or solution may be synthesized.

Figure 3.1: Analysis as a bridge between system engineering and software design

Once problems have been identified, the analyst determines what information is to be

produced by the new system and what data will be provided to the system.

Upon evaluating current problems and desired information (input and output), the analyst

begins to synthesize one or more solutions. To begin, the data objects, processing functions,

and behaviour of the system are defined in detail. Once this information has been established,

basic architectures for implementation are considered.

The process of evaluation and synthesis continues until both analyst and customer feel

confident that software can be adequately specified for subsequent development steps.

Throughout evaluation and solution synthesis, the analyst's primary focus is on "what," not

"how." What data does the system produce and consume, what functions must the system

perform, what behaviours does the system exhibit, what interfaces are defined and what

constraints apply?

During the evaluation and solution synthesis activity, the analyst creates models of the system

in an effort to better understand data and control flow, functional processing, operational

behaviour, and information content. The model serves as a foundation for software design

and as the basis for the creation of specifications for the software.

Detailed specifications may not be possible at this stage. The customer may be unsure of

precisely what is required. The developer maybe unsure that a specific approach will properly

System
Engineering

Software
Requirement

Analysis
Software
Design

36

accomplish function and performance. For these, and many other reasons, an alternative

approach to requirements analysis, called prototyping, may be conducted.

3.3 REQUIREMENT ELICITATION FOR SOFTWARE ANALYSIS PRINCIPLES

3.3 REQUIREMENT ELICITATION FOR SOFTWARE

ANALYSIS PRINCIPLES
Before requirements can be analysed, modelled, or specified they must be gathered through

an elicitation process. A customer has a problem that may be amenable to a computer-based

solution. A developer responds to the customer's request for help.

 Initiating the Process

The most commonly used requirements elicitation technique is to conduct a meeting or

interview. The first meeting between a software engineer (the analyst) and the customer can

be likened to the awkwardness of a first date between two adolescents. Neither person knows

what to say or ask; both are worried that what they do say will be misinterpreted; both are

thinking about where it might lead; both want to get the thing over with, but at the same time,

both want it to be a success. Yet, communication must be initiated. The analyst may start by

asking context-free questions. That is, a set of questions that will lead to a basic

understanding of the problem, the people who want a solution, the nature of the solution that

is desired, and the effectiveness of the first encounter itself.

The first set of context-free questions focuses on the customer, the overall goals, and the

benefits. For example, the analyst might ask:

• Who is behind the request for this work?

• Who will use the solution?

• What will be the economic benefit of a successful solution?

• Is there another source for the solution that you need?

These questions help to identify all stakeholders who will have interest in the software to be

built. In addition, the questions identify the measurable benefit of a successful

implementation and possible alternatives to custom software development. The next set of

questions enables the analyst to gain a better understanding of the problem and the customer

to voice his or her perceptions about a solution:

Check Your Progress 1.

What are the Objectives of Requirement Analysis ?

37

• How would you characterize "good" output that would be generated by a successful

solution?

• What problem(s) will this solution address?

• Can you show me (or describe) the environment in which the solution will be used?

• Will special performance issues or constraints affect the way the solution is

approached?

The final set of questions focuses on the effectiveness of the meeting. Gause and Weinberg

call these meta-questions and propose the following (abbreviated) list:

• Are you the right person to answer these questions? Are your answers "official"?

• Are my questions relevant to the problem that you have?

• Am I asking too many questions?

• Can anyone else provide additional information?

• Should I be asking you anything else?

Facilitated Application Specification Techniques

Too often, customers and software engineers have an unconscious "us and them "mind-set.

Rather than working as a team to identify and refine requirements, each constituency defines

its own "territory" and communicates through a series of memos, formal position papers,

documents, and question and answer sessions. History has shown that this approach doesn't

work very well. Misunderstandings abound, important information is omitted, and a

successful working relationship is never established. It is with these problems in mind that a

number of independent investigators have developed a team-oriented approach to

requirements gathering that is applied during early stages of analysis and specification,

Called facilitated application specification techniques (FAST), this approach encourages the

creation of a joint team of customers and developers who work together to identify the

problem, propose elements of the solution, negotiate different approaches and specify a

preliminary set of solution requirements. FAST has been used predominantly by the

information systems community, but the technique offers potential for improved

communication in applications of all kinds.

Many different approaches to FAST have been proposed. Each makes use of a slightly

different scenario, but all apply some variation on the following basic guidelines:

• A meeting is conducted at a neutral site and attended by both software engineers and

customers.

• Rules for preparation and participation are established.

38

• An agenda is suggested that is formal enough to cover all important points but

informal enough to encourage the free flow of ideas.

• A "facilitator" (can be a customer, a developer, or an outsider) controls the meeting.

• A "definition mechanism" (can be work sheets, flip charts, or wall stickers or an

electronic bulletin board, chat room or virtual forum) is used.

• The goal is to identify the problem, propose elements of the solution, negotiate

different approaches, and specify a preliminary set of solution requirements in an

atmosphere that is conducive to the accomplishment of the goal.

To better understand the flow of events as they occur in a typical FAST meeting, we present a

brief scenario that outlines the sequence of events that lead-up to the meeting, occur during

the meeting, and follow the meeting.

Initial meetings between the developer and customer occur and basic questions and answers

help to establish the scope of the problem and the overall perception of a solution. Out of

these initial meetings, the developer and customer write a one- or two-page "product request."

A meeting place, time, and date for FAST are selected and a facilitator is chosen. Attendees

from both the development and customer/user organizations are invited to attend. The

product request is distributed to all attendees before the meeting date.

ANALYSIS PRINCIPLES

Over the past two decades, a large number of analysis modelling methods have been

developed. Investigators have identified analysis problems and their causes and have

developed a variety of modelling notations and corresponding sets of heuristics to overcome

them. Each analysis method has a unique point of view.

However, all analysis methods are related by a set of operational principles:

• The information domain of a problem must be represented and understood.

• The functions that the software is to perform must be defined.

• The behaviour of the software (as a consequence of external events) must be

represented.

• The models that depict information function and behaviour must be partitioned in a

manner that uncovers detail in a layered (or hierarchical) fashion.

• The analysis process should move from essential information toward implementation

detail.

By applying these principles, the analyst approaches a problem systematically. The

information domain is examined so that function may be understood more completely.

39

Models are used so that the characteristics of function and behaviour can be communicated in

a compact fashion. Partitioning is applied to reduce complexity. Essential and

implementation views of the software are necessary to accommodate the logical constraints

imposed by processing requirements and the physical constraints imposed by other system

elements.

In addition to these operational analysis principles, a set of guiding principles for

requirements engineering are:

• Understand the problem before you begin to create the analysis model. There is a

tendency to rush to a solution, even before the problem is understood. This often leads

to elegant software that solves the wrong problem!

• Develop prototypes that enable a user to understand how human/machine interaction

will occur. Since the perception of the quality of software is often based on the

perception of the “friendliness” of the interface, prototyping (and the iteration that

results) are highly recommended.

• Record the origin of and the reason for every requirement. This is the first step in

establishing traceability back to the customer.

• Use multiple views of requirements. Building data, functional, and behavioural

models provide the software engineer with three different views. This reduces the

likelihood that something will be missed and increases the likelihood that

inconsistency will be recognized.

• Rank requirements. Tight deadlines may preclude the implementation of every

software requirement. If an incremental process model is applied, those requirements

to be delivered in the first increment must be identified.

• Work to eliminate ambiguity. Because most requirements are described in a natural

language, the opportunity for ambiguity abounds. The use of formal technical reviews

is one way to uncover and eliminate ambiguity.

3.4 THE INFORMATION DOMAIN

Check Your Progress 2.

What are the Difficulties in Elicitations?

40

All software applications can be collectively called data processing. Interestingly, this term

contains a key to our understanding of software requirements. Software is built to process

data, to transform data from one form to another; that is, to accept input, manipulate it in

some way, and produce output. This fundamental statement of objective is true whether we

build batch software for a payroll system or real-time embedded software to control fuel flow

to an automobile engine.

It is important to note, however, that software also processes events. An event represents

some aspect of system control and is really nothing more than Boolean data—it is either on or

off, true or false, there or not there. For example, a pressure sensor detects that pressure

exceeds a safe value and sends an alarm signal to monitoring software. The alarm signal is an

event that controls the behaviour of the system.

Therefore, data (numbers, text, images, sounds, video, etc.) and control (events) both reside

within the information domain of a problem.

The first operational analysis principle requires an examination of the information domain

and the creation of a data model.

The information domain contains three different views of the data and control as each is

processed by a computer program:

a. Information content and relationships (the data model),

b. Information flow, and

c. Information structure.

To fully understand the information domain, each of these views should be considered.

Information content represents the individual data and control objects that constitute some

larger collection of information transformed by the software. For example, the data object,

pay check, is a composite of a number of important pieces of data: the payee's name, the net

amount to be paid, the gross pay, deductions, and so forth. Therefore, the content of pay

check is defined by the attributes that are needed to create it. Similarly, the content of a

control object called system status might be defined by a string of bits. Each bit represents a

separate item of information that indicates whether or not a particular device is on- or off-

line.

Data and control objects can be related to other data and control objects. For example, the

data object pay check has one or more relationships with the objects timecard, employee,

bank, and others. During the analysis of the information domain, these relationships should

be defined.

41

Information flow represents the manner in which data and control change as each move

through a system. Referring to figure 3.2, input objects are transformed to intermediate

information (data and/or control), which is further transformed to output.

Along this transformation path (or paths), additional information may be introduced from an

existing data store (e.g., a disk file or memory buffer). The transformations applied to the

data are functions or sub-functions that a program must perform. Data and control that move

between two transformations (functions) define the interface for each function.

Figure 3.2: Information flow and transformation

Information structure represents the internal organization of various data and control items.

Are data or control items to be organized as an n-dimensional table or as a hierarchical tree

structure? Within the context of the structure, what information is related to other

information? Is all information contained within a single structure or are distinct structures to

be used? How does information in one information structure relate to information in another

structure? These questions and others are answered by an assessment of information

structure. It should be noted that data structure, a related concept discussed later in this book,

refers to the design and implementation of information structure within the software.

3.5 MODELLING
We create functional models to gain a better understanding of the actual entity to be built.

When the entity is a physical thing (a building, a plane, a machine), we can build a model that

42

is identical in form and shape but smaller in scale. However, when the entity to be built is

software, our model must take a different form. It must be capable of representing the

information that software transforms, the functions (and sub-functions) that enable the

transformation to occur, and the behaviour of the system as the transformation is taking place.

The second and third operational analysis principles require that we build models of function

and behaviour.

Functional models -Software transforms information, and in order to accomplish this, it must

perform at least three generic functions: input, processing, and output. When functional

models of an application are created, the software engineer focuses on problem specific

functions. The functional model begins with a single context level model (i.e., the name of

the software to be built). Over a series of iterations, more and more functional detail is

provided, until a thorough delineation of all system functionality is represented. Behavioural

models. Most software responds to events from the outside world. This stimulus/response

characteristic forms the basis of the behavioural model. A computer program always exists in

some state—an externally observable mode of behaviour (e.g., waiting, computing, printing,

polling) that is changed only when some event occurs.

For example, software will remain in the wait state until

i. An internal clock indicates that some time interval has passed,

ii. An external event (e.g., a mouse movement) causes an interrupt, or

iii. An external system signals the software to act in some manner.

A behavioural model creates a representation of the states of the software and the events that

cause software to change state. Models created during requirements analysis serve a number

of important roles:

• The model aids the analyst in understanding the information, function, and behaviour

of a system, thereby making the requirements analysis task easier and more

systematic.

• The model becomes the focal point for review and, therefore, the key to a

determination of completeness, consistency, and accuracy of the specifications.

• The model becomes the foundation for design, providing the designer with an

essential representation of software that can be "mapped" into an implementation

context.

Although the modelling method that is used is often a matter of personal (or organizational)

preference, the modelling activity is fundamental to good analysis work..

43

3.6 PARTITIONING
Problems are often too large and complex to be understood as a whole. For this reason, we

tend to partition (divide) such problems into parts that can be easily understood and establish

interfaces between the parts so that overall function can be accomplished. The fourth

operational analysis principle suggests that the information, functional, and behavioural

domains of software can be partitioned. In essence, partitioning decomposes a problem into

its constituent parts.

Conceptually, we establish a hierarchical representation of function or information and then

partition the uppermost element by

a. Exposing increasing detail by moving vertically in the hierarchy or

b. Functionally decomposing the problem by moving horizontally in the

hierarchy.

The software allocation for Safe Home (derived as a consequence of system engineering and

FAST activities) can be stated in the following paragraphs:

Safe Home software enables the homeowner to configure the security system when it is

installed, monitors all sensors connected to the security system, and interacts with the

homeowner through a keypad and function keys contained in the Safe Home control panel

shown in figure 3.3:

Figure 3.3: Horizontal partitioning of Safe Home function

Check Your Progress 3.

What are the objectives of Analysis modelling?

44

During installation, the Safe Home control panel is used to "program" and configure the

system. Each sensor is assigned a number and type, a master password is programmed for

arming and disarming the system, and telephone number(s) are input for dialling when a

sensor event occurs. When a sensor event is recognized, the software invokes an audible

alarm attached to the system. After a delay time that is specified by the homeowner during

system configuration activities, the software dials a telephone number of a monitoring

service, provides information about the location, reporting the nature of the event that has

been detected. The telephone number will be redialled every 20 seconds until telephone

connection is obtained.

All interaction with Safe Home is managed by a user-interaction subsystem that reads input

provided through the keypad and function keys, displays prompting messages on the LCD

display, display system status information on the LCD display. Keyboard interaction takes

the following form.

The requirements for Safe Home software may be analysed by partitioning the information,

functional, and behavioural domains of the product. To illustrate, the functional domain of

the problem will be partitioned. Figure 3.3 illustrates a horizontal decomposition of Safe

Home software. The problem is partitioned by representing constituent Safe Home software

functions, moving horizontally in the functional hierarchy. Three major functions are noted

on the first level of the hierarchy. The sub functions associated with a major Safe Home

function may be examined by exposing detail vertically in the hierarchy, as illustrated in

figure 3.4.

Moving downward along a single path below the function monitor sensors, partitioning

occurs vertically to show increasing levels of functional detail. The partitioning approach that

we have applied to Safe Home functions can also be applied to the information domain and

behavioural domain as well. In fact, partitioning of information flow and system behaviour

will provide additional insight into software requirements. As the problem is partitioned,

interfaces between functions are derived. Data and control items that move across an

interface should be restricted to inputs required to perform the stated function and outputs

that are required by other functions or system elements.

45

Figure 3.4: Vertical partitioning of Safe Home function

3.7 ESSENTIAL AND IMPLEMENTATION VIEWS
An essential view of software requirements presents the functions to be accomplished and

information to be processed without regard to implementation details. For example, the

essential view of the Safe Home function read sensor status does not concern itself with the

physical form of the data or the type of sensor that is used. In fact, it could be argued that

read status would be a more appropriate name for this function, since it disregards details

about the input mechanism altogether. Similarly, an essential data model of the data item

phone number (implied by the function dial phone number) can be represented at this stage

without regard to the underlying data structure (if any) used to implement the data item. By

focusing attention on the essence of the problem at early stages of requirements engineering,

we leave our options open to specify implementation details during later stages of

requirements specification and software design.

Check Your Progress 4.

What is the difference between horizontal and vertical partitioning?

46

The implementation view of software requirements presents the real world manifestation of

processing functions and information structures. In some cases, a physical representation is

developed as the first step in software design. However, most computer-based systems are

specified in a manner that dictates accommodation of certain implementation details. A Safe

Home input device is a perimeter sensor (not a watch dog, a human guard, or a booby trap).

The sensor detects illegal entry by sensing a break in an electronic circuit. The general

characteristics of the sensor should be noted as part of a software requirements specification.

The analyst must recognize the constraints imposed by predefined system elements (the

sensor) and consider the implementation view of function and information when such a view

is appropriate.

We have already noted that software requirements engineering should focus on what the

software is to accomplish, rather than on how processing will be implemented. However, the

implementation view should not necessarily be interpreted as a representation of how. Rather,

an implementation model represents the current mode of operation; that is, the existing or

proposed allocation for all system elements. The essential model (of function or data) is

generic in the sense that realization of function is not explicitly indicated.

3.8 SPECIFICATION
There is no doubt that the mode of specification has much to do with the quality of solution.

Software engineers who have been forced to work with incomplete, in consistent or

misleading specifications have experienced the frustration and confusion that invariably

results. The quality, timeliness, and completeness of the software suffer as a consequence.

3.9 SPECIFICATION PRINCIPLES
Specification, regardless of the mode through which we accomplish it, may be viewed as a

representation process. Requirements are represented in a manner that ultimately leads to

Check Your Progress 6.

Who should be writing Software requirements specifications

Check Your Progress 5.

How SRS can prevent from risk.

47

successful software implementation. A number of specification principles, adapted from the

work of Balzer and Goodman, can be proposed:

1. Separate functionality from implementation.

2. Develop a model of the desired behaviour of a system that encompasses data and the

functional responses of a system to various stimuli from the environment.

3. Establish the context in which software operates by specifying the manner in which

other system components interact with software.

4. Define the environment in which the system operates and indicate how “a highly

intertwined collection of agents react to stimuli in the environment produced by those

agents”.

5. Create a cognitive model rather than a design or implementation model. The cognitive

model describes a system as perceived by its user community.

6. Recognize that “the specifications must be tolerant of incompleteness and

augmentable.” A specification is always a model—an abstraction—of some real (or

envisioned) situation that is normally quite complex. Hence, it will be incomplete and

will exist at many levels of detail.

7. Establish the content and structure of a specification in a way that will enable it to be

amenable to change.

This list of basic specification principles provides a basis for representing software

requirements. However, principles must be translated into realization.

3.10 REPRESENTATION
We have already seen that software requirements may be specified in a variety of ways.

However, if requirements are committed to paper or an electronic presentation medium (and

they almost always should be!) a simple set of guidelines is well worth following:

Representation format and content should be relevant to the problem. A general outline for

the contents of a Software Requirements Specification can be developed. However, the

representation forms contained within the specification are likely to vary with the application

area. For example, a specification for a manufacturing automation system might use different

symbology, diagrams and language than the specification for a programming language

compiler. Information contained within the specification should be nested. Representations

Check Your Progress 7.

Why is SRS also known as the black box specification of system ?

48

should reveal layers of information so that a reader can move to the level of detail required.

Paragraph and diagram numbering schemes should indicate the level of detail that is being

presented. It is sometimes worthwhile to present the same information at different levels of

abstraction to aid in understanding.

Diagrams and other notational forms should be restricted in number and consistent in use.

Confusing or inconsistent notation, whether graphical or symbolic, degrades understanding

and fosters errors. Representations should be revisable. The content of a specification will

change. Ideally, CASE tools should be available to update all representations that are affected

by each change.

Investigators have conducted numerous studies on human factors associated with

specification. There appears to be little doubt that symbology and arrangement affect

understanding. However, software engineers appear to have individual preferences for

specific symbolic and diagrammatic forms. Familiarity often lies at the root of a person's

preference, but other more tangible factors such as spatial arrangement, easily recognizable

patterns, and degree of formality often dictate an individual's choice.

3.11 THE SOFTWARE REQUIREMENT SPECIFICATION
The Software Requirements Specification is produced at the culmination of the analysis task.

The function and performance allocated to software as part of system engineering are refined

by establishing a complete information description, a detailed functional description, a

representation of system behaviour, an indication of performance requirements and design

constraints, appropriate validation criteria, and other information pertinent to requirements.

In addition it also contains non-functional requirements. Non-functional requirements impose

constraints on the design or implementation (such as performance engineering requirements,

quality standards, or design constraints).

Software requirements specification establishes the basis for agreement between customers

and contractors or suppliers (in market-driven projects, these roles may be played by the

marketing and development divisions) on what the software product is to do as well as what it

is not expected to do. Software requirements specification permits a rigorous assessment of

Check Your Progress 8.

Benefits to a well-written Software Requirement Specification

49

requirements before design can begin and reduces later redesign. It should also provide a

realistic basis for estimating product costs, risks, and schedules.

The software requirements specification document enlists enough and necessary requirements

that are required for the project development. To derive the requirements we need to have

clear and thorough understanding of the products to be developed or being developed. This is

achieved and refined with detailed and continuous communications with the project team and

customer till the completion of the software. The SRS may be one of a

contract deliverable Data Item Descriptions or have other forms of organizationally-mandated

content.

An example organization of an SRS is as follows:

 Introduction

 Purpose

 Definitions

 System overview

 References

 Overall description

 Product perspective

 System Interfaces

 User Interfaces

 Hardware interfaces

 Software interfaces

 Communication Interfaces

 Memory Constraints

 Operations

 Site Adaptation Requirements

 Product functions

 User characteristics

 Constraints, assumptions and dependencies

 Specific requirements

 External interface requirements

 Functional requirements

 Performance requirements

 Design constraints

 Standards Compliance

50

 Logical database requirement

 Software System attributes

 Reliability

 Availability

 Security

 Maintainability

 Portability

 Other requirements

Characteristics of SRS:

An SRS should be:

a. Correct: An SRS is correct if, and only if, every requirement stated therein is one that

the software shall meet. Traceability makes this procedure easier and less prone to

error.

b. Unambiguous: An SRS is unambiguous if, and only if, every requirement stated

therein has only one interpretation. As a minimum, this requires that each

characteristic of the final product be described using a single unique term.

c. Complete: An SRS is complete if, and only if, it includes the following elements:

i) All significant requirements, whether relating to functionality, performance,

design constraints, attributes, or external interfaces. In particular any external

requirements imposed by a system specification should be acknowledged and

treated.

ii) Definition of the responses of the software to all realizable classes of input

data in all realizable classes of situations. Note that it is important to specify

the responses to both valid and invalid input values.

iii) Full labels and references to all figures, tables, and diagrams in the SRS and

definition of all terms and units of measure.

d. Consistent: Consistency refers to internal consistency. If an SRS does not agree with

some higher-level document, such as a system requirements specification, then it is

not correct. An SRS is internally consistent if, and only if, no subset of individual

requirements described in it conflict.

Ranked for importance or stability

An SRS is ranked for importance and/or stability if each requirement in it has an identifier to

indicate either the importance or stability of that particular requirement. Typically, all of the

51

requirements that relate to a software product are not equally important. Some requirements

may be essential, especially for life-critical applications, while others may be desirable. Each

requirement in the SRS should be identified to make these differences clear and explicit-

a. Verifiable: An SRS is verifiable if, and only if, every requirement stated therein is

verifiable. A requirement is verifiable if, and only if, there exists some finite cost-

effective process with which a person or machine can check that the software product

meets the requirement. Non verifiable requirements include statements such as "works

well", "good human interface", and "shall usually happen". These requirements

cannot be verified because it is impossible to define the terms "good", "well", or

"usually".

b. Modifiable: An SRS is modifiable if, and only if, its structure and style are such that

any changes to the requirements can be made easily, completely, and consistently

while retaining the structure and style. Modifiability generally requires an SRS to

i. Have a coherent and easy-to-use organization with a table of contents, an

index, and explicit cross-referencing;

ii. Not be redundant (i.e., the same requirement should not appear in more than

one place in the SRS);

iii. Express each requirement separately, rather than intermixed with other

requirements.

c. Traceable: An SRS is traceable if the origin of each of its requirements is clear and if

it facilitates the referencing of each requirement in future development or

enhancement documentation. The following two types of traceability are

recommended:

i. Backward traceability (i.e., to previous stages of development). This depends

upon each requirement explicitly referencing its source in earlier documents.

ii. Forward traceability (i.e., to all documents spawned by the SRS). This

depends upon each requirement in the SRS having a unique name or reference

number.

3.12 SUMMARY

Check Your Progress 9.

What are the characteristics of SRS?

52

In this section we cover the topics software requirement analysis and specification, their

principle, objectives, goal, and characteristics, Modelling, Partitioning –vertical and

horizontal both, their benefits and about information domain. A software engineer who takes

these principles to heart is more likely to develop a software specification that will provide an

excellent foundation for design. A Software requirements specification (SRS), a requirements

specification for a software system, is a description of the behaviour of a system to be

developed and may include a set of use cases that describe interactions the users will have

with the software. We also cover the topics like objectives, goal, and characteristics of

Software requirement analysis and specification, Modelling, Partitioning –vertical and

horizontal both, their benefits and about information domain.

3.13 EXERCISE
1) What is requirement analysis? What is the role of requirement analysis?

2) Explain Analysis Modelling Approaches with example.

3) What is horizontal partitioning? What are the benefits of horizontal partitioning?

4) What is vertical partitioning? What are the advantages of vertical partitioning?

5) Explain software Requirement Specification. What are the Objectives of Requirement

Analysis ?

6) What are the characteristics of SRS?

7) What are the Difficulties in Elicitations?

8) What are the difference between requirements definition and requirement specification .

1

Software Engineering

FORTH - BLOCK

2

BLOCK

4
UNIT 1 DESIGN CONCEPT AND PRINCIPLE

UNIT 2 SOFTWARE TESTING

UNIT 3 TYPES OF SOFTWARE TESTING

UNIT 4 RE ENGINEERING

UNIT 5 CASE

3

Overview

In this section we discuss the overview of this block’s content. This block consists of the

following units:

Unit 1 Design Concept and Principle

Software design is the process of implementing software solution. One of the main input of

software design is the software requirements analysis (SRA).The design concepts provide the

software designer with a foundation from which methods can be applied. Furthermore, a

software design may be platform-independent or platform-specific, depending upon the

availability of the technology used for the design. If design is proper according to the need of

customer then the chances of error is reduce.

Unit 2 Software Testing

In software development, software testing play a vital role. After coding and before delivered

to the customer, software is tested according to the need or requirement of customer

In this unit several testing are defined which are used to test the software. And once software

is error free and maintains all the requirements of customer then delivered to the customer.

Unit 3 Types of Software Testing

Testing is necessary for successful execution of software before delivered to the customer. In

this section, we describe different types of software testing. These software testing are

applied to achieve different objectives when testing a software application.

Unit 4 Re Engineering

This section covers how old/existing software can be improved and performed effectively.

The objective of re-engineering is to improve the system structure to make it easier to

understand and maintain .Which type of activities involved in the software re-engineering

process and to explain the problems of re-engineering. Also describes reverse and forward

engineering and their need as well as benefits.

Unit 5 CASE

A CASE (Computer Aided Software Engineering) tool is a generic term used to denote any

form of automated support for software engineering. In a more restrictive sense, a CASE tool

means any tool used to automate some activity associated with software development. Many

CASE tools are available. Some of these CASE tools assist in phase related tasks such as

specification, structured analysis, design, coding, testing, etc. CASE plays an interesting role

in the software development life cycle.

4

UNIT-1 DESIGN CONCEPT AND PRINCIPLE

1.0 Introduction

1.1 Objectives

1.2 Design Principle

1.3 Abstraction

1.4 Refinement

1.5 Modularity

1.6 Software Architecture

1.7 Control Hierarchy

1.8 Structural Partitioning

1.9 Data Structure

1.10 Software Procedure

1.11 Information Hiding

1.12 Effective Modular design

1.13 Cohesion

1.14 Coupling

1.15 Summary

1.16 Exercise

5

1.0 INTRODUCTION
A software design creates meaningful engineering representation (or model) of some

software product that is to be built. Designers must strive to acquire a repertoire of alternative

design information and learn to choose the elements that best match the analysis model. A

design model can be traced to the customer's requirements and can be assessed for quality

against predefined criteria. During the design process the software requirements model (data,

function, and behaviour) is transformed into design models that describe the details of the

data structures, system architecture, interfaces, and components necessary to implement the

system. Each design product is reviewed for quality before moving to the next phase of

software development.

Software Design

• Encompasses the set of principles, concepts, and practices that lead to the

development of a high quality system or product

• Design principles establish and overriding philosophy that guides the designer as the

work is performed

• Design concepts must be understood before the mechanics of design practice are

applied

• Goal of design engineering is to produce a model or representation that is bug free

(firmness), suitable for its intended uses (commodity), and pleasurable to use (delight)

• Software design practices change continuously as new methods, better analysis, and

broader understanding evolve.

1.1 OBJECTIVE
The objectives of this unit are:

a) to introduce the process of software design

b) to describe the different stages in this design process

c) to show how object-oriented and functional design strategies are complementary

d) to discuss some design quality attributes

1.2 DESIGN PRINCIPLE

6

Developing design is a cumbersome process as most expansive errors are often introduced in

this phase. Moreover, if these errors get unnoticed till later phases, it becomes more difficult

to correct them. Therefore, a number of principles are followed while designing the software.

These principles act as a framework for the designers to follow a good design practice.

Figure 1.1: Principles of Design

Some of the commonly used design principles as mentioned in figure 1.1 are as following.

i. Software design should correspond to the analysis model: Often a design element

corresponds to many requirements, therefore, we must know how the design model

satisfies all the requirements represented by the analysis model.

ii. Choose the right programming paradigm: A programming paradigm describes the

structure of the software system. Depending on the nature and type of application,

different programming paradigms such as procedure oriented, object-oriented, and

prototyping paradigms can be used. The paradigm should be chosen keeping

constraints in mind such as time, availability of resources and nature of user's

requirements.

iii. Software design should be uniform and integrated: Software design is considered

uniform and integrated, if the interfaces are properly defined among the design

components. For this, rules, format, and styles are established before the design team

starts designing the software.

7

iv. Software design should be flexible: Software design should be flexible enough to

adapt changes easily. To achieve the flexibility, the basic design concepts such as

abstraction, refinement, and modularity should be applied effectively.

v. Software design should ensure minimal conceptual (semantic) errors: The design

team must ensure that major conceptual errors of design such as ambiguousness and

inconsistency are addressed in advance before dealing with the syntactical errors

present in the design model.

vi. Software design should be structured to degrade gently: Software should be

designed to handle unusual changes and circumstances, and if the need arises for

termination, it must do so in a proper manner so that functionality of the software is

not affected.

vii. Software design should represent correspondence between the software and real-

world problem: The software design should be structured in such a way that it always

relates with the real-world problem.

viii. Software reuse: Software engineers believe on the phrase: 'do not reinvent the wheel'.

Therefore, software components should be designed in such a way that they can be

effectively reused to increase the productivity.

ix. Designing for testability: A common practice that has been followed is to keep the

testing phase separate from the design and implementation phases. That is, first the

software is developed (designed and implemented) and then handed over to the testers

who subsequently determine whether the software is fit for distribution and

subsequent use by the customer. However, it has become apparent that the process of

separating testing is seriously flawed, as if any type of design or implementation

errors are found after implementation, then the entire or a substantial part of the

software requires to be redone. Thus, the test engineers should be involved from the

initial stages. For example, they should be involved with analysts to prepare tests for

determining whether the user requirements are being met.

x. Prototyping: Prototyping should be used when the requirements are not completely

defined in the beginning. The user interacts with the developer to expand and refine

the requirements as the development proceeds. Using prototyping, a quick 'mock-up'

of the system can be developed. This mock-up can be used as effective means to give

the users a feel of what the system will look like and demonstrate functions that will

be included in the developed system. Prototyping also helps in reducing risks of

designing software that is not in accordance with the customer's requirements.

8

 Design Concepts

 Abstraction – allows designers to focus on solving a problem without being

concerned about irrelevant lower level details (procedural abstraction - named

sequence of events and data abstraction – named collection of data objects)

 Software Architecture – overall structure of the software components and the ways in

which that structure provides conceptual integrity for a system

o Structural models – architecture as organized collection of components

o Framework models – attempt to identify repeatable architectural patterns

o Dynamic models – indicate how program structure changes as a function of

external events

o Process models – focus on the design of the business or technical process that

system must accommodate

o Functional models – used to represent system functional hierarchy

 Design Patterns – description of a design structure that solves a particular design

problem within a specific context and its impact when applied

 Separation of concerns – any complex problem is solvable by subdividing it into

pieces that can be solved independently

 Modularity - the degree to which software can be understood by examining its

components independently of one another

 Information Hiding – information (data and procedure) contained within a module is

inaccessible to modules that have no need for such information

 Functional Independence – achieved by developing modules with single-minded

purpose and an aversion to excessive interaction with other models

o Cohesion - qualitative indication of the degree to which a module focuses on

just one thing

o Coupling - qualitative indication of the degree to which a module is connected

to other modules and to the outside world

 Refinement – process of elaboration where the designer provides successively more

detail for each design component

 Aspects – a representation of a cross-cutting concern that must be accommodated as

refinement and modularization occur

 Refactoring – process of changing a software system in such a way internal structure

is improved without altering the external behaviour or code design.

9

Design considerations

There are many aspects to consider in the design of a piece of software. The importance of

each consideration should reflect the goals and expectations that the software is being created

to meet. Some of these aspects are:

• Compatibility - The software is able to operate with other products that are designed

for interoperability with another product. For example, a piece of software may be

backward-compatible with an older version of itself.

• Extensibility - New capabilities can be added to the software without major changes to

the underlying architecture.

• Modularity - the resulting software involves well defined, independent components

which indicate to better maintainability. The components could be then implemented

and tested in isolation before being integrated to form a desired software system. This

allows division of work in a software development project.

• Fault-tolerance - The software is resistant to and able to recover from component

failure.

• Maintainability - A measure of how easily bug fixes or functional modifications can

be accomplished. High maintainability can be the product of modularity and

extensibility.

• Reliability (Software durability) - The software is able to perform a required function

under stated conditions for a specified period of time.

• Reusability - The ability to use some or all the aspects of the pre-existing software in

other projects with little to no modification.

• Robustness - The software is able to operate under stress or tolerate unpredictable or

invalid input. For example, it can be designed with resilience to low memory

conditions.

• Security - The software is able to withstand and resist hostile acts and influences.

• Usability - The software user interface must be usable for its target user/audience.

Default values for the parameters must be chosen so that they are a good choice for

the majority of the users.

• Performance - The software performs its tasks within a time-frame that is acceptable

for the user, and does not require too much memory.

• Portability - The software should be usable across a number of different conditions

and environments.

10

• Scalability - The software adapts well to increasing data or number of users.

Top-down and bottom-up approaches of designing:

Top-down and bottom-up are both strategies of information processing and knowledge

ordering, used in a variety of fields including software, humanistic and scientific theories and

management and organization. In practice, they can be seen as a style of thinking and

teaching.

A top-down approach (also known as stepwise design and in some cases used as a synonym

of decomposition) is essentially the breaking down of a system to gain insight into its

compositional sub-systems. In a top-down approach an overview of the system is formulated,

specifying but not detailing any first-level subsystems. Each subsystem is then refined in yet

greater detail, sometimes in many additional subsystem levels, until the entire specification is

reduced to base elements. A top-down model is often specified with the assistance of "black

boxes", these make it easier to manipulate. However, black boxes may fail to elucidate

elementary mechanisms or be detailed enough to realistically validate the model. Top down

approach starts with the big picture. It breaks down from there into smaller segments.

A bottom-up approach is the piecing together of systems to give rise to more complex

systems, thus making the original systems sub-systems of the emergent system. Bottom-up

processing is a type of information processing based on incoming data from the environment

to form a perception. Information enters the eyes in one direction (input), and is then turned

into an image by the brain that can be interpreted and recognized as a perception (output). In

a bottom-up approach the individual base elements of the system are first specified in great

detail. These elements are then linked together to form larger subsystems, which then in turn

are linked, sometimes in many levels, until a complete top-level system is formed. This

strategy often resembles a "seed" model, whereby the beginnings are small but eventually

grow in complexity and completeness. However, "organic strategies" may result in a tangle of

elements and subsystems, developed in isolation and subject to local optimization as opposed

to meeting a global purpose. In the software development process, the top-down and bottom-

up approaches play a key role.

+-[poy968

1.3 ABSTRACTION

Check Your Progress 1.

List out the elements of design model.

11

Abstraction refers to a powerful design tool, which allows software designers to consider

components at an abstract level, while neglecting the implementation details of the

components. IEEE defines abstraction as 'a view of a problem that extracts the essential

information relevant to a particular purpose and ignores the remainder of the information.'

The concept of abstraction can be used in two ways: as a process and as an entity. As a

process, it refers to a mechanism of hiding irrelevant details and representing only the

essential features of an item so that one can focus on important things at a time. As an entity,

it refers to a model or view of an item.

Each step in the software process is accomplished through various levels of abstraction. At

the highest level, an outline of the solution to the problem is presented whereas at the lower

levels, the solution to the problem is presented in detail. For example, in the requirements

analysis phase, a solution to the problem is presented using the language of problem

environment and as we proceed through the software process, the abstraction level reduces

and at the lowest level, source code of the software is produced.

Figure 1.2: Types of abstraction

There are three commonly used abstraction mechanisms in software design, namely,

functional abstraction, data abstraction and control abstraction as shown in figure 1.2. All

these mechanisms allow us to control the complexity of the design process by proceeding

from the abstract design model to concrete design model in a systematic manner.

a. Functional abstraction: This involves the use of parameterized subprograms.

Functional abstraction can be generalized as collections of subprograms referred to as

'groups'. Within these groups there exist routines which may be visible or hidden.

Visible routines can be used within the containing groups as well as within other

groups, whereas hidden routines are hidden from other groups and can be used within

the containing group only.

b. Data abstraction: This involves specifying data that describes a data object. For

example, the data object window encompasses a set of attributes (window type,

Abstraction

Functional abstraction Data abstraction Control abstraction

12

window dimension) that describe the window object clearly. In this abstraction

mechanism, representation and manipulation details are ignored.

c. Control abstraction: This states the desired effect, without stating the exact

mechanism of control. For example, if and while statements in programming

languages (like C and C++) are abstractions of machine code implementations, which

involve conditional instructions. In the architectural design level, this abstraction

mechanism permits specifications of sequential subprogram and exception handlers

without the concern for exact details of implementation.

1.4 REFINEMENT
Stepwise refinement is a top-down design strategy used for decomposing a system from a

high level of abstraction into a more detailed level (lower level) of abstraction. At the highest

level of abstraction, function or information is defined conceptually without providing any

information about the internal workings of the function or internal structure of the data. As

we proceed towards the lower levels of abstraction, more and more details are available.

Software designers start the stepwise refinement process by creating a sequence of

compositions for the system being designed. Each composition is more detailed than the

previous one and contains more components and interactions. The earlier compositions

represent the significant interactions within the system, while the later compositions show in

detail how these interactions are achieved.

To have a clear understanding of the concept, let us consider an example of stepwise

refinement. Every computer program comprises input, process, and output.

1. INPUT

Get user's name (string) through a prompt.

Get user's grade (integer from 0 to 10) through a prompt and validate.

2. PROCESS

3. OUTPUT

This is the first step in refinement. The input phase can be refined further as given here.

1. INPUT Get user's name through a prompt.

Get user's grade through a prompt.

Check Your Progress 2.

What are different levels of abstraction?

13

While (invalid grade)

Ask again:

2. PROCESS

3. OUTPUT

Stepwise refinement can also be performed for PROCESS and OUTPUT phase.

1.5 MODULARITY
The real power of partitioning comes if a system is partitioned into modules so that the

modules are solvable and modifiable separately. It will be even better if the modules are also

separately compliable (then, changes in a module will not require recompilation of the whole

system). A system is considered modular if it consists of discreet components so that each

component can be implemented separately, and a change to one component has minimal

impact on other components.

Modularity is a clearly a desirable property in a system. Modularity helps in system

debugging. Isolating the system problem to a component is easier if the system is modular. In

system repair, hanging a part of the system is easy as it affects few other parts and in system

building, a modular system can be easily built by “putting its modules together.”

A software system cannot be made modular by simply chopping it into a set of modules. For

modularity, each module needs to support a well-defined abstraction and have a clear

interface through which it can interact with other modules. Modularity is where abstraction

and partitioning come together. For easily understandable and maintainable systems,

modularity is clearly the basic objective; partitioning and abstraction can be viewed as

concepts that help achieve modularity.

As figure 1.3 represents, Modularity is achieved by dividing the software into uniquely

named and addressable components, which are also known as modules. A complex system

(large program) is partitioned into a set of discrete modules in such a way that each module

can be developed independent of other modules. After developing the modules, they are

integrated together to meet the software requirements.

Check Your Progress 3.

What is stepwise refinement?

14

Figure 1.3: Modules in Software Programs

Larger the number of modules a system is divided into, greater will be the effort required to

integrate the modules. Modularizing a design helps to plan the development in a more

effective manner, accommodate changes easily, conduct testing and debugging effectively

and efficiently, and conducts maintenance work without adversely affecting the functioning

of the software.

1.6 SOFTWARE ARCHITECTURE
Software architecture refers to the structure of the system, which is composed of various

components of a program/ system, the attributes (properties) of those components and the

relationship amongst them. The software architecture enables the software engineers to

analyse the software design efficiently. In addition, it also helps them in decision-making and

handling risks. The software architecture does the following:

 Provides an insight to all the interested stakeholders that enable them to communicate

with each other

 Highlights early design decisions, which have great impact on the software

engineering activities (like coding and testing) that follow the design phase

 Creates intellectual models of how the system is organized into components and how

these components interact with each other.

Check Your Progress 4.

How can we evaluate a design method to determine if it will lead to efficient modularity?

15

Currently, software architecture is represented in an informal and unplanned manner. Though

the architectural concepts are often represented in the infrastructure (for supporting particular

architectural styles) and the initial stages of a system configuration, the lack of an explicit

independent characterization of architecture restricts the advantages of this design concept in

the present scenario.

Software architecture comprises two elements of design model, namely, data design and

architectural design.

1.7 CONTROL HIERARCHY
Control structure is a program structure that represents the organization of a program

component and implies a hierarchy of control. Hierarchy of modules represents the control

relationships. A super-ordinate module controls another module. A subordinate module is

controlled by another module.

Measures relevant to control hierarchy: depth, width, fan-in, fan-out as shown in figure 1.4.

Figure1.4: Structure of Hierarchy

Check Your Progress 5.

How are the architectural designs analysed? Explain.

16

1.8 STRUCTURAL PARTITIONING
Program structure is partitioned horizontally and vertically as figure 1.5 shown. Horizontal

partitioning defines separate branches for each major program function - input, process, and

output. Vertical partitioning (aka factoring) defines control (decision-making) at the top and

work at the bottom.

When the architectural style of a design follows a hierarchical nature, the structure of the

program can be partitioned either horizontally or vertically. In horizontal partitioning, the

control modules are used to communicate between functions and execute the functions.

Structural partitioning provides the following benefits.

 The testing and maintenance of software becomes easier.

 The negative impacts spread slowly.

 The software can be extended easily.

Figure1.5: Horizontal and Vertical Partitioning

Besides these advantages, horizontal partitioning has some disadvantage also. It requires

more data to permit across the module interface, which makes the control flow of the problem

Check Your Progress 6.

Explain width, depth, fan-in, fan-out in control hierarchy.

17

more complex. This usually happens in cases where data moves rapidly from one function to

another.

In vertical partitioning, the functionality is distributed among the modules--in a top-down

manner. The modules at the top level called control modules perform the decision-making

and do little processing whereas the modules at the low level called worker modules perform

all input, computation and output tasks.

1.9 DATA STRUCTURE
Data structure is a representation of the logical relationship among individual elements of

data. Because the structure of information will invariably affect the final procedural design,

data structure is as important as program structure to the representation of software

architecture.

Data structure dictates the organization, methods of access, degree of associativity, and

processing alternatives for information. Entire texts have been dedicated to these topics, and a

complete discussion is beyond the scope of this book. However, it is important to understand

the classic methods available for organizing information and the concepts that underlie

information hierarchies.

The organization and complexity of a data structure are limited only by the ingenuity of the

designer. There are, however, a limited number of classic data structures that form the

building blocks for more sophisticated structures.

A scalar item is the simplest of all data structures. As its name implies, a scalar item

represents a single element of information that may be addressed by an identifier; that is,

access may be achieved by specifying a single address in memory. The size and format of a

scalar item may vary within bounds that are dictated by a programming language. For

example, a scalar item may be a logical entity one bit long, an integer or floating point

number that is 8 to 64 bits long, or a character string that; is hundreds or thousands of bytes

long.

When scalar items are organized as a list or contiguous group, a sequential vector is formed.

Vectors are the most common of all data structures and open the door to variable indexing of

information. When the sequential vector is extended to two, three, and ultimately, an arbitrary

Check Your Progress 7.

What are the benefits of horizontal partitioning?

18

number of dimensions, an n-dimensional space is created. The most common n-dimensional

space is the two-dimensional matrix. In many programming languages, an n- dimensional

space is called an array.

Items, vectors, and spaces may be organized in a variety of formats. A linked list is a data

structure that organizes non-contiguous scalar items...vectors, or spaces in a manner (called

nodes) that enables them to be processed as a list. Each node contains the appropriate data

organization (e.g., a vector) and one or more pointers that indicate the address in storage of

the next node in the list. Nodes may be added at any point in the list by redefining pointers to

accommodate the new list entry.

Other data structures incorporate or are constructed using the fundamental data structures just

described. For example, a hierarchical data structure is implemented using multilinked lists

that contain scalar items, vectors, and possibly, n-dimensional spaces. A hierarchical

structure is commonly encountered in applications that require information categorization and

associativity.

It is important to note that data structures, like program structure, can be represented at

different levels of abstraction. For example, a stack is a conceptual model of a data structure

that can be implemented as a vector or a linked list. Depending on the level of design detail,

the internal workings of a stack may or may not be specified.

1.10 SOFTWARE PROCEDURE
Program structure defines control hierarchy without regard to the sequence of processing and

decisions. Software procedure focuses on the processing details of each module individually.

Procedure must provide a precise specification of processing, including sequence of events,

exact decision points, repetitive operations, and even data organization and structure.

There is, of course, a relationship between structure and procedure. The processing indicated

for each module must include a reference to all modules sub ordinate to the module being

described.

1.11 INFORMATION HIDING

Check Your Progress 8.

Application area of hierarchical data structure.

19

Modules should be specified and designed in such a way that the data structures and

processing details of one module are not accessible to other modules. They pass only that

much information to each other, which is required to accomplish the software functions. The

way of hiding unnecessary details is referred to as information hiding as shown in figure 1.6.

IEEE defines information hiding as 'the technique of encapsulating software design decisions

in modules in such a way that the module's interfaces reveal as little as possible about the

module's inner workings; thus each module is a 'black box' to the other modules in the

system.

Figure1.6: Information Hiding

Information hiding is of immense use when modifications are required during the testing and

maintenance phase. Some of the advantages associated with information hiding are listed

below:

i. Leads to low coupling

ii. Emphasizes communication through controlled interfaces

iii. Decreases the probability of adverse effects

iv. Restricts the effects of changes in one component on others

20

v. Results in higher quality software.

1.12 EFFECTIVE MODULAR DESIGN
Effective modular design is the direct outgrowth of:

 Modularity

 Information hiding

Effective modular design is measured by:

 Cohesion

 Coupling

Criteria to evaluate Efficiency:

There are five criteria that enable us to evaluate a design method with respect to its ability to

define an effective modular system:

i. Modular decomposability- If a design method provides a systematic mechanism for

decomposing the problem into sub-problems, it will reduce the complexity of the

overall problem, thereby achieving an effective modular solution.

ii. Modular composability- If a design method enables existing (reusable) design

components to be assembled into a new system, it will yield a modular solution that

does not reinvent the wheel.

iii. Modular understand ability- If a module can be understood as a standalone unit

(without reference to other modules), it will be easier to build and easier to change.

iv. Modular continuity- If small changes to the system requirements result in changes to

individual modules, rather than system wide changes, the impact of change-induced

side effects will be minimized.

v. Modular protection- If an aberrant condition occurs within a module and its effects

are constrained within that module, the impact of error-induced side effects will be

minimized.

Design heuristics for effective modularity

i. Evaluate the "first iteration" of the program structure to reduce coupling and improve

cohesion.

Check Your Progress 9.

Why information hiding is important?

21

ii. Attempt to minimize structures with high fan-out; strive for fan-in as depth increases.

iii. Keep the scope of effect of a module within the scope of control of that module.

iv. Evaluate module interfaces to reduce complexity and redundancy and improve

consistency.

v. Define modules whose function is predictable, but avoid modules that are overly

restrictive.

vi. Strive for “controlled entry” modules by avoiding "pathological connections.

1.13 COHESION
Cohesion is a measure that defines the degree of intra-dependability within elements of a

module. The greater the cohesion, the better is the program design. Measure of how well

module fits together. A component should implement a single logical function or single

logical entity. All the parts should contribute to the implementation.

There are many levels of cohesion as described below:

i. Coincidental cohesion: the parts of a component are not related but simply bundled

into a single component. Harder to understand and not reusable.

ii. Logical association: similar functions such as input, error handling, etc. put together.

Functions fall in same logical class. May pass a flag to determine which ones

executed. Interface difficult to understand. Code for more than one function may be

intertwined, leading to severe maintenance problems. Difficult to reuse.

iii. Temporal cohesion: all of statements activated at a single time, such as start up or

shut down, are brought together. Initialization, clean up. Functions weakly related to

one another, but more strongly related to functions in other modules so may need to

change lots of modules when do maintenance.

iv. Procedural cohesion: a single control sequence, e.g., a loop or sequence of decision

statements. Often cuts across functional lines. May contain only part of a complete

function or parts of several functions. Functions still weakly connected, and again

unlikely to be reusable in another product.

v. Communicational cohesion: operate on same input data or produce same output data.

May be performing more than one function. Generally acceptable if alternate

Check Your Progress 10.

What is the benefit of modular design?

22

structures with higher cohesion cannot be easily identified. Still problems with

reusability.

vi. Sequential cohesion: output from one part serves as input for another part. May

contain several functions or parts of different functions.

vii. Informational cohesion: performs a number of functions, each with its own entry

point, with independent code for each function, all performed on same data structure.

Different than logical cohesion because functions not intertwined.

viii. Functional cohesion: each part necessary for execution of a single function. e.g.,

compute square root or sort the array. Usually reusable in other contexts. Maintenance

easier.

ix. Type cohesion: modules that support a data abstraction. Not strictly a linear scale.

Functional much stronger than rest while first two much weaker than others. Often

many levels may be applicable when considering two elements of a module. Cohesion

of module considered as highest level of cohesion that is applicable to all elements in

the module.

1.14 COUPLING
Coupling is a measure that defines the level of inter-dependability among modules of a

program. It tells at what level the modules interfere and interact with each other. The lower

the coupling, the better the program. Coupling is an indication of the strength of

interconnections between program units. Highly coupled have program units dependent on

each other. Loosely coupled are made up of units that are independent or almost independent.

Modules are independent if they can function completely without the presence of the other.

Obviously, can't have modules completely independent of each other. Must interact so that

can produce desired outputs. The more connections between modules, the more dependent

they are in the sense that more info about one module is required to understand the other

module.

Three factors:

 Number of interfaces

 Complexity of interfaces

 Type of info flow along interfaces

Check Your Progress 11.

How should software be designed considering cohesion?

23

Want to minimize number of interfaces between modules, minimize the complexity of each

interface, and control the type of info flow. An interface of a module is used to pass

information to and from other modules.

In general, modules tightly coupled if they use shared variables or if they exchange control

info. Loose coupling if info held within a unit and interface with other units via parameter

lists. Tight coupling if shared global data. If need only one field of a record, don't pass entire

record. Keep interface as simple and small as possible.

Two types of information flow: data or control.

 Passing or receiving back control info means that the action of the module will

depend on this control info, which makes it difficult to understand the module.

 Interfaces with only data communication result in lowest degree of coupling, followed

by interfaces that only transfer control data. Highest if data is hybrid.

Types of Coupling, ranked highest to lowest:

i. Content coupling: if one directly references the contents of the other. When one

module modifies local data values or instructions in another module. (Can happen in

assembly language) if one refers to local data in another module. If one branches into

a local label of another.

ii. Common coupling: access to global data. Modules bound together by global data

structures.

iii. Control coupling: passing control flags (as parameters or global) so that one module

controls the sequence of processing steps in another module.

iv. Stamp coupling: similar to common coupling except that global variables are shared

selectively among routines that require the data. E.g., packages in Ada. More

desirable than common coupling because fewer modules will have to be modified if a

shared data structure is modified. Pass entire data structure but need only parts of it.

v. Data coupling: use of parameter lists to pass data items between routines.

How does one determine the cohesion level of a module? There is no mathematical formula

that can be used. We have to use our judgment for this. A useful technique for determining if

a module has functional cohesion is to write a sentence that describes, fully and accurately,

the function or purpose of the module. The following tests can, then, be made:

24

 If the sentence must be a compound sentence, if it contains a comma, or it has more

than one verb, the module is probably performing more than one function, and it

probably has sequential or communicational cohesion.

 If the sentence contains words relating to time, like “first,” “next,” “when,” and

“after”, the module, probably, has sequential or temporal cohesion.

 If the predicate of the sentence does not contain a single specific object following the

verb (such as “edit all data”), the module probably has logical cohesion.

 Words like “initialize,” and “clean up” imply temporal cohesion.

Modules with functional cohesion can always be described by a simple sentence. However, if

a description is a compound sentence, it does not mean that the module does not have

functional cohesion. Functionally cohesive modules can also be described by compound

sentences. If we cannot describe it using a simple sentence, the module is not likely to have

functional cohesion.

1.15 SUMMARY
In This section we discuss about the important role of designing in SDLC. and different type

of characteristics , concepts, aspects, approaches of designing may be used for better

programing . Which type of data structure, architecture is used in different stage. How

module can be correlate and tie with each other and how data can be flow among the entire

module. And for all purpose how can we improve the basic of designing of software.

1.16 EXERCISE
1) Define design process. List the principles of a software design.

2) What are the benefits of modular design?

3) What is a cohesive module? What are the different types of Cohesion?

4) What is coupling? What are the various types of coupling?

5) What are the common activities in design process?

6) What is horizontal partitioning and define the benefits of horizontal partitioning?

7) What is vertical partitioning? What are the advantages of vertical partitioning?

8) What is the difference between top-down design and bottom-up design?

Check Your Progress 12.

List the coupling factors.

25

UNIT-2 TESTING

2.0 Introduction

2.1 Objective

2.2 Role of Testing

2.3 Principles

2.4 Unit testing

2.5 Integration testing

2.6.1 Top down Integration

2.6.2 Bottom Up Integration

2.6 System testing

2.7 Summary

2.8 Exercise

26

2.0 INTRODUCTION
Testing begins at the component level and works outward toward the integration of the entire

computer-based system. Different testing techniques are appropriate at different points in

time. The developer of the software conducts testing and may be assisted by independent test

groups for large projects. Testing and debugging are different activities. Debugging must be

accommodated in any testing strategy.

2.1 OBJECTIVE
Software Testing has different goals and objectives. The major objectives of Software testing

are as follows:

• Finding defects which may get created by the programmer while developing the

software.

• Gaining confidence in and providing information about the level of quality.

• To prevent defects.

• To make sure that the end result meets the business and user requirements.

• To ensure that it satisfies the BRS that is Business Requirement Specification and

SRS that is System Requirement Specifications.

• To gain the confidence of the customers by providing them a quality product.

2.2 ROLE OF TESTING
 Organizing for Software Testing

 The role of the Independent Test Group (ITG) is to remove the conflict of interest

inherent when the builder is testing his or her own product.

 The developer should do no testing at all.

 Software is tossed "over the wall" to people to test it mercilessly.

 Testers are not involved with the project until it is time for it to be tested.

 The developer and ITGC must work together throughout the software project to

ensure that thorough tests will be conducted.

Software Testing Strategy for Traditional Software Architectures

• Unit Testing - makes heavy use of testing techniques that exercise specific control paths

to detect errors in each software component individually.

27

• Integration Testing - focuses on issues associated with verification and program

construction as components begin interacting with one another.

• Validation Testing - provides assurance that the software validation criteria (established

during requirements analysis) meets all functional, behavioural, and performance

requirements.

• System Testing - verifies that all system elements mesh properly and that overall system

function and performance has been achieved.

Software Testing Strategy for Object-Oriented Architectures

• Unit Testing - components being tested are classes not modules

• Integration Testing - as classes are integrated into the architecture regression tests are

run to uncover communication and collaboration errors between objects .

• Systems Testing - the system as a whole is tested to uncover requirement errors.

Strategic Testing Issues

• Specify product requirements in a quantifiable manner before testing starts.

• Specify testing objectives explicitly.

• Identify categories of users for the software and develop a profile for each.

• Develop a test plan that emphasizes rapid cycle testing.

• Build robust software that is designed to test itself.

• Use effective formal reviews as a filter prior to testing.

• Conduct formal technical reviews to assess the test strategy and test cases.

• Develop a continuous improvement approach for the testing process.

TEST PLAN: A test plan is a document detailing a systematic approach to testing a system

such as a machine or software. The plan typically contains a detailed understanding of the

eventual work flow. A test plan documents the strategy that will be used to verify and ensure

that a product or system meets its design specifications and other requirements. A test plan is

usually prepared by or with significant input from test engineers.

Elements of Test Plan: There are three major elements that should be described in the test

plan:

i. Test coverage: Test coverage in the test plan states what requirements will be verified

during what stages of the product life. Test Coverage is derived from design

28

specifications and other requirements, such as safety standards or regulatory codes,

where each requirement or specification of the design ideally will have one or more

corresponding means of verification. Test coverage for different product life stages

may overlap, but will not necessarily be exactly the same for all stages. For example,

some requirements may be verified during Design Verification test, but not repeated

during Acceptance test. Test coverage also feeds back into the design process, since

the product may have to be designed to allow test access.

ii. Test methods: Test methods in the test plan state how test coverage will be

implemented. Test methods may be determined by standards, regulatory agencies, or

contractual agreement, or may have to be created new. Test methods also specify test

equipment to be used in the performance of the tests and establish pass/fail criteria.

Test methods used to verify hardware design requirements can range from very

simple steps, such as visual inspection, to elaborate test procedures that are

documented separately.

iii. Test responsibilities: Test responsibilities include what organizations will perform the

test methods and at each stage of the product life. This allows test organizations to

plan, acquire or develop test equipment and other resources necessary to implement

the test methods for which they are responsible. Test responsibilities also includes,

what data will be collected, and how that data will be stored and reported (often

referred to as "deliverables"). One outcome of a successful test plan should be a

record or report of the verification of all design specifications and requirements as

agreed upon by all parties.

Testability

Software testability defines how easily a computer program can be tested. There are some

metric to measure the testability. The checklist that follows provides a set of characteristics

that lead to testable software.

• Operability

• Observability

• Controllability

• Decomposability

• Simplicity

• Stability

• Understandability

29

Attributes of a Good Test:

• High probability of finding an error

• Not redundant

• Should be best of breed

• Neither too simple nor too complex

Method of testing
Software testing methods are traditionally divided into white- and black-box testing.

In White-box testing or glass box testing tests internal structures or workings of a program,

as opposed to the functionality exposed to the end-user. In white-box testing an internal

perspective of the system, as well as programming skills, are used to design test cases. While

white-box testing can be applied at the unit, integration and system levels of the software

testing process, it is usually done at the unit level.

Black-box testing treats the software as a "black box", examining functionality without any

knowledge of internal implementation, without seeing the source code. The testers are only

aware of what the software is supposed to do, not how it does it.

One advantage of the black box technique is that no programming knowledge is required.

Because they do not examine the source code, there are situations when a tester writes many

test cases to check something that could have been tested by only one test case, or leaves

some parts of the program untested. This method of test can be applied to all levels of

software testing: unit, integration, system and acceptance.

There is one more box testing that is grey box testing. Grey-box testing involves having

knowledge of internal data structures and algorithms for purposes of designing tests, while

executing those tests at the user, or black-box level. The tester is not required to have full

access to the software's source code.

Levels of Testing

Different levels of testing are used in the testing process; each level of testing aims to test

different aspects of the system.

There are generally three recognized levels of testing:

 unit testing

 integration testing

30

 system testing

Figure 2.1: Levels of testing

These different levels (figure 2.1) of testing attempt to detect different types of faults.

Unit testing is, essentially, for verification of the code produced during the coding phase,

hence the goal is to test the internal logic of the modules.

In integration testing, many unit-tested modules are combined into subsystems, which are

then tested. The goal here is to see if the modules can be integrated properly.

In system testing and acceptance testing, the entire software system is tested. The reference

document for this process is the requirements document, and the goal is to see if the software

meets its requirements.

2.3 PRINCIPLES
Software testing is an extremely creative and intellectually challenging task. When testing

follows the principles given below, the creative element of test design and execution rivals

any of the preceding software development steps.

i. Testing shows the presence of bugs: Testing an application can only reveal that one or

more defects exist in the application, however, testing alone cannot prove that the

Client Acceptance
Needs Testing

Requirements System
Testing

Design Integration
Testing

Code Unit
Testing

Check Your Progress 1.

What are the reasons behind to perform white box testing?

31

application is error free. Therefore, it is important to design test cases which find as

many defects as possible.

ii. Exhaustive testing in impossible: Unless the application under test (UAT) has a very

simple logical structure and limited input, it is not possible to test all possible

combinations of data and scenarios. For this reason, risk and priorities are used to

concentrate on the most important aspects to test.

iii. Early testing: The sooner we start the testing activities the better we can utilize the

available time. As soon as the initial products, such the requirement or design

documents are available, we can start testing. It is common for the testing phase to get

squeezed at the end of the development lifecycle, i.e. when development has finished,

so by starting testing early, we can prepare testing for each level of the development

lifecycle. Another important point about early testing is that when defects are found

earlier in the lifecycle, they are much easier and cheaper to fix. It is much cheaper to

change an incorrect requirement than having to change functionality in a large system

that is not working as requested or as designed!

iv. Defect clustering: During testing, it can be observed that most of the reported defects

are related to small number of modules within a system. i.e. small number of modules

contain most of the defects in the system. This is the application of the Pareto Principle

to software testing: approximately 80% of the problems are found in 20% of the

modules.

v. The pesticide paradox: If you keep running the same set of tests over and over again,

chances are no more new defects will be discovered by those test cases. Because as the

system evolves, many of the previously reported defects will have been fixed and the

old test cases do not apply anymore. Anytime a fault is fixed or a new functionality

added, we need to do regression testing to make sure the new changed software has not

broken any other part of the software. However, those regression test cases also need to

change to reflect the changes made in the software to be applicable and hopefully fine

new defects.

vi. Testing is context dependent: Different methodologies, techniques and types of testing

is related to the type and nature of the application. For example, a software application

in a medical device needs more testing than games software. More importantly a

medical device software requires risk based testing, be compliant with medical industry

regulators and possibly specific test design techniques. By the same token, a very

popular website needs to go through rigorous performance testing as well as

32

functionality testing to make sure the performance is not affected by the load on the

servers.

vii. Absence of errors fallacy: Just because testing didn’t find any defects in the software, it

doesn’t mean that the software is ready to be shipped. Were the executed tests really

designed to catch the most defects? or where they designed to see if the software

matched the user’s requirements? There are many other factors to be considered before

making a decision to ship the software.

Other principles to note are:

• Testing must be done by an independent party.

• Assign best personnel to the task.

• Test for invalid and unexpected input conditions as well as valid conditions

• Keep software static during test.

• Provide expected test results if possible.

2.4 UNIT TESTING
Unit testing compromises the set of tests performed by an individual programmer prior to

integration of the unit into a larger system. The situation is illustrated as follows:

Coding and debugging Unit Testing Integration Testing

A program unit is usually small enough programmer who developed it can test it in great

detail, and certainly in greater detail the will be possible when the unit is integrated into an

evolving software product.

There are four categories of tests that a programmer will typically perform on a program unit:

i. Functional test cases involve exercising the code with nominal input values for which

the expected results are known, as well as boundary values (minimum values,

maximum values, and values on and just outside the functional boundaries) and special

values such as logically related inputs, 1x1 matrices, the identity matrix, files of

identical elements, and empty files.

ii. Performances testing determines the amount of execution time spend in various parts

of the unit, program throughout, response time, and device utilization by the program

unit. A certain amount of performance tuning may be done during unit testing.

Check Your Progress 2.

What are the Basic Principles of Software Testing?

33

However, caution must be exercised to avoid expending too much effort on fine-tuning

of a program unit that contributes little to the overall performance of the entire system.

Performance testing is most productive at the subsystem and system levels.

iii. Stress tests are those tests designed to intentionally break the unit. A great deal can be

learned about the strengths and limitations of a program by examining the manner in

which a program unit breaks.

iv. Structure tests are concerned with exercising the internal logic of a program and

traversing particular execution paths. Some authors refer collectively to functional,

performance, and stress testing as “black box” testing, while structure testing is referred

to as “white box” or “glass box”. The major activities in structural attesting are

deciding which path to exercise, deriving test data to exercise those and measuring the

test coverage achieved when the test case are exercised.

2.5 INTEGRATION TESTING
Integration testing is a software testing methodology used to test individual software

components or units of code to verify interaction between various software components and

detect interface defects. Components are tested as a single group or organized in an iterative

manner. After the integration testing has been performed on the components, they are readily

available for system testing.

Integration is a key software development life cycle (SDLC) strategy. Generally, small

software systems are integrated and tested in a single phase, whereas larger systems involve

several integration phases to build a complete system, such as integrating modules into low-

level subsystems for integration with larger subsystems. Integration testing encompasses all

aspects of a software system's performance, functionality and reliability.

Most unit-tested software systems are comprised of integrated components that are tested for

error isolation due to grouping. Module details are presumed accurate, but prior to integration

testing, each module is separately tested via partial component implementation, also known

as a stub.

The two main integration testing strategies are as follows:

Check Your Progress 3.

What errors are commonly found during Unit Testing?

34

• Bottom-Up: Involves low-level component testing, followed by high-level

components. Testing continues until all hierarchical components are tested. Bottom-

up testing facilitates efficient error detection.

• Top-Down: Involves testing the top integrated modules first. Subsystems are tested

individually. Top-down testing facilitates detection of lost module branch links.

The purpose of integration testing is to verify functional, performance, and reliability

requirements placed on major design items.

Bottom-up integration is the traditional strategy to integrate the components of a software

system into a functioning whole. Bottom-up integration consists of unit testing, followed by

subsystem testing, followed by testing of the entire system. Unit testing has the goal of

discovering errors in the individual modules of the system. Modules are tested in isolation

from one another in an artificial environment known as a “test harness,” which consists of the

driver programs and data necessary to exercise the modules. Unit testing should be as

exhaustive as possible to ensure that each representative handled by each module has been

tested. Unit testing is eased by a system structure that is composed of small, loosely coupled

modules.

A subsystem consists of several modules that communicate with each other through well-

defined interfaces. Normally, a subsystem implements a major segment operation of the

interfaces between modules in the subsystem. Both control and of subsystem testing: lower

level subsystems are successively combined to form higher-level subsystems. In most

software systems, exhaustive testing of subsystem capabilities is not feasible due to the

combinational complexity of the module interfaces; therefore, test cases must be carefully

chosen to exercise the interfaces in the desired manner.

System testing is concerned with subtleties in the interfaces, decision logic, control flow,

recovery procedures, throughput, capacity, and timing characteristics of the entire system.

Careful test planning is required to determine the extent and nature of system testing to be

performed and to establish criteria by which the results will be evaluated.

Disadvantages of bottom-up testing include the necessity to write and debug test harness for

the modules and subsystems, and the level of complexity that results from combining

modules and subsystems into larger and larger units. The extreme case of complexity results

when each module is unit tested in isolation and “big bang” approach to integration testing.

The main problem with big-bang integration is the difficulty of isolating the sources of error.

35

Test harnesses provide data environments and calling sequences for the routines and

subsystems that are being tested in isolation. Test harness preparation can amount to 50 per

cent or more of the coding and debugging effort for a software product.

Top-down integration starts with the main routine and one or two immediately subordinate

routines in the system structure. After this top-level, when “skeleton” has been thoroughly

tested, it becomes the test harness for its immediately subordinate routines. Top-down

integration requires the use of program stubs to simulate the effect of lower-level routines

that are called by those being tested.

2.5.1 TOP-DOWN INTEGRATION
Method

• The control module is implemented and tested first.

• Imported modules are represented by surrogate modules.

• Surrogates have the same interfaces as the imported modules and simulate their

input/output behaviour.

• After the test of the control module, all other modules of the software systems are

tested in the same way; i.e. their operations are represented by surrogate procedures

until the development has progressed enough to allow implementation and testing of

the operations.

• The test advances stepwise with the implementation. Implementation and phases

merge, and the integration test of subsystems becomes superfluous.

The advantages

• Design errors are detected as early as possible, saving development time and costs

because corrections in the module design and be made before their

implementation.

• The characteristics of a software system are evident from the start, which enables a

simple test of the development state and the acceptance by the user.

• The software system can be tested thoroughly from the start with test cases without

providing (expensive) test environments.

The drawbacks

• Strict top-down testing proves extremely difficult because designing usable

surrogate objects can prove very complicated, especially for complex operations.

• Errors in lower hierarchy levels are hard to localize.

36

2.5.2 BOTTOM-UP INTEGRATION
Method

• Bottom-up testing inverts the top-down approach.

• First those operations are tested that require no other program components; then

their integration to a module is tested.

• After the module test the integration of multiple (tested) modules to a subsystem is

tested, until finally the integration of the subsystems, i.e., the overall system, can

be tested.

The advantages

• The advantages of bottom-up testing prove to be the drawbacks of top-down

testing (and vice versa).

• The bottom-up test method is solid and proven. The objects to be tested are known

in full detail. It is often simpler to define relevant test cases and test data.

• The bottom-up approach is psychologically more satisfying because the tester can

be certain that the foundations for the test objects have been tested in full detail.

The drawbacks

• The characteristics of the finished product are only known after the completion of

all implementation and testing, which means that design errors in the upper levels

are detected very late.

• Testing individual levels also inflicts high costs for providing a suitable test

environment.

2.6 SYSTEM TESTING
System testing is the type of testing to check the behaviour of a complete and fully integrated

software product based on the software requirements specification (SRS) document. The

main focus of this testing is to evaluate Business / Functional / End-user requirements.

This is black box type of testing where external working of the software is evaluated with the

help of requirement documents & it is totally based on Users point of view. For this type of

testing do not required knowledge of internal design or structure or code.

Check Your Progress 4.

What are the approaches of integration testing?

37

This testing is to be carried out only after System Integration Testing is completed where

both Functional & Non-Functional requirements are verified.

In the integration testing testers are concentrated on finding bugs/defects on integrated

modules. But in the Software System Testing testers are concentrated on finding bugs/defects

based on software application behaviour, software design and expectation of end user.

Importance of system testing

• In Software Development Life Cycle the System Testing is perform as the first level

of testing where the System is tested as a whole.

• In this step of testing check if system meets functional requirement or not.

• System Testing enables you to test, validate and verify both the Application

Architecture and Business requirements.

• The application/System is tested in an environment that particularly resembles the

effective production environment where the application/software will be lastly

deployed.

Entry Criteria for System Testing:

• Unit testing should be finished.

• Integration of modules should be fully integrated.

• As per the specification document software development is completed.

• Testing environment is available for testing (similar to Staging environment)

Steps of System testing

Step 1) First & important step is preparation of System Test Plan

Step 2) Second step is to creation Test Cases

Step 3) Creation of test data which used for System testing.

Step 4) Automated test case execution.

Step 5) Execution of normal test case & update test case if using any test management tool.

Step 6) Bug Reporting, Bug verification & Regression testing.

Step 7) Repeat testing life cycle (if required).

Types of System Testing

There are more than 50 types of System Testing. Below are some types of system testing

used in any software development-

38

• Usability Testing - Usability testing mainly focuses on the user's ease to use the

application, flexibility in handling controls and ability of the system to meet its

objectives

• Load Testing - Load testing is necessary to know that a software solution will

perform under real life loads.

• Regression Testing - Regression testing involves testing done to make sure none of

the changes made over the course of the development process have caused new bugs.

It also makes sure no old bugs appear from the addition of new software modules over

time.

• Recovery Testing - Recovery testing is done to demonstrate a software solution is

reliable, trustworthy and can successfully recoup from possible crashes.

• Migration Testing - Migration testing is done to ensure that the software can be

moved from older system infrastructures to current system infrastructures without any

issues.

• Functional Testing - Also known as functional completeness testing, functional

testing involves trying to think of any possible missing functions. Testers might make

a list of additional functionalities that a product could have to improve it during

functional testing.

• Hardware/Software Testing - IBM refers to Hardware/Software testing as "HW/SW

Testing". This is when the tester focuses his/her attention on the interactions between

the hardware and software during system testing.

2.7 SUMMARY
In this section we discuss why we used testing the software, how we can we test, what type of

case, criteria and approaches are used to developed the software. Software testing helps in

finalizing the software application or product against business and user requirements. It is

very important to have good test coverage in order to test the software application completely

and make it sure that it’s performing well and as per the specifications.

Check Your Progress 5.

What do system testing do?

39

While determining the test coverage the test cases should be designed well with maximum

possibilities of finding the errors or bugs. The test cases should be very effective. This

objective can be measured by the number of defects reported per test cases. Higher the

number of the defects reported the more effective are the test cases.

Once the delivery is made to the end users or the customers they should be able to operate it

without any complaints. In order to make this happen the tester should know as how the

customers are going to use this product and accordingly they should write down the test

scenarios and design the test cases. This will help a lot in fulfilling all the customer’s

requirements.

Software testing makes sure that the testing is being done properly and hence the system is

ready for use. Good coverage means that the testing has been done to cover the various areas

like functionality of the application, compatibility of the application with the OS, hardware

and different types of browsers, performance testing to test the performance of the application

and load testing to make sure that the system is reliable and should not crash or there should

not be any blocking issues. It also determines that the application can be deployed easily to

the machine and without any resistance. Hence the application is easy to install, learn and

use.

2.8 EXERCISE
1) What is the difference between black-box testing and white-box testing?

2) Define the different type of system testing?

3) Write down the advantages and disadvantages of top down integration testing.

4) Write down the advantages and disadvantages of bottom up integration testing.

5) What are the testing principles the software engineer must apply while performing the

software testing?

40

UNIT-3 TYPES OF TESTING

3.0 Introduction

3.1 Objective

3.2 Types of Testing

3.2.1 Installation Testing

3.2.2 Compatibility Testing

3.2.3 Sanity and Smoke Testing

3.2.4 Regression Testing

3.2.5 Validation Testing

3.2.6 Alpha Testing

3.2.7 Beta Testing

3.2.8 Acceptance Testing

3.2.9 Recovery Testing

3.2.10 Security Testing

3.2.11 Stress Testing

3.2.12 Performance Testing

3.3 Summary

3.4 Exercise

41

3.0 INTRODUCTION
Testing should systematically uncover different classes of errors in a minimum amount of

time and with a minimum amount of effort. A secondary benefit of testing is that it

demonstrates that the software appears to be working as stated in the specifications. The data

collected through testing can also provide an indication of the software's reliability and

quality. But, testing cannot show the absence of defect -- it can only show that software

defects are present.

3.1 OBJECTIVE
The objectives of this unit are:

a) meets the requirements that guided its design and development.

b) works as expected.

c) can be implemented with the same characteristics.

d) satisfies the needs of stakeholders.

3.2 TYPES OF TESTING
There are several types of testing. Some are as follows:

 Installation Testing

 Compatibility Testing

 Sanity and Smoke Testing

 Regression Testing

 Validation Testing

 Alpha Testing

 Beta Testing

 Acceptance Testing

 Recovery Testing

 Security Testing

 Stress Testing

 Performance Testing

3.2 .1 INSTALLATION TESTING

42

This type of testing assures that the system is installed correctly and working at actual

customer's hardware.

3.2.2 COMPATIBILITY TESTING
A common cause of software failure is a lack of its compatibility with other application

software, operating systems , or target environments that differ from the original.

Compatibility testing is one of the test types performed by testing team. Compatibility testing

checks if the software can be run on different hardware, operating system, bandwidth,

databases, web servers, application servers, hardware peripherals, emulators, different

configuration, processor, different browsers and different versions of the browsers etc.,

3.2.3 SANITY AND SMOKE TESTING
Sanity testing determines whether it is reasonable to proceed with further testing.

Smoke testing consists of minimal attempts to operate the software, designed to determine

whether there are any basic problems that will prevent it from working at all.

3.2.4 REGRESSION TESTING
When some errors occur in a program then these are rectified. For rectification of these

errors, changes are made to the program. Due to these changes some other errors may be

incorporated in the program. Therefore, all the previous test cases are tested again. This type

of testing is called regression testing.

In a broader context, successful tests (of any kind) result in the discovery of errors, and errors

must be corrected. Whenever software is corrected, some aspect of the software configuration

(the program, its documentation, or the data that supports it) is changed. Regression testing is

the activity that helps to ensure that changes (due to testing or for other reasons) do not

introduce unintended behavior or additional errors.

Check Your Progress 1.

What are the steps carried out in installation testing?

Check Your Progress 2.

What are the benefits of Smoke Testing?

https://en.wikipedia.org/wiki/Computer_compatibility
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Sanity_testing
https://en.wikipedia.org/wiki/Smoke_testing_(software)

43

Regression testing may be conducted manually, by re-executing a subset of all test cases or

using automated capture/playback tools. Capture/playback tools enable the software engineer

to capture test cases and results for subsequent playback and comparison.

The regression test suite (the subset of tests to be executed) contains three different classes of

test cases:

•A representative sample of tests that will exercise all software functions.

•Additional tests that focus on software functions that are likely to be affected by the

change.

•Tests that focus on the software components that have been changed.

•As integration testing proceeds, the number of regression tests can grow quite large.

Therefore, the regression test suite should be designed to include only those tests that address

one or more classes of errors in each of the major program functions. It is impractical and

inefficient to re-execute every test for every program function once a change has occurred.

3.2.5 VALIDATION TESTING
Validation is the process of evaluating software during or at the end of the development

process to determine whether it satisfies specified requirements.

A product can pass while verification, as it is done on the paper and no running or functional

application is required. But, when same points which were verified on the paper is actually

developed then the running application or product can fail while validation. This may happen

because when a product or application is built as per the specification but these specifications

are not up to the mark hence they fail to address the user requirements.

Advantages of Validation:

• During verification if some defects are missed then during validation process it can be

caught as failures.

• If during verification some specification is misunderstood and development had

happened then during validation process while executing that functionality the

difference between the actual result and expected result can be understood.

Check Your Progress 3.

 List the steps for regression test.

44

• Validation is done during testing like feature testing, integration testing, system

testing, load testing, compatibility testing, stress testing, etc.

• Validation helps in building the right product as per the customer’s requirement and

helps in satisfying their needs.

Validation is basically done by the testers during the testing. While validating the product if

some deviation is found in the actual result from the expected result then a bug is reported or

an incident is raised.

If the validation tests are carried out by a third party, they are known as independent

validation and verification. The developer needs to provide the user manual to the third party

tester. This manual should clearly contain the standard working conditions of the software.

The user manual should have the various working conditions of the software, so that the

tester can simulate real-life conditions. These third party organizations submit a validation

report to the developer after the software is tested. The developer, upon receipt of this report,

makes the desired changes to the software, and again tests it to check whether the customer

needs are met or not.

Software validation testing is an important part of the software development life cycle

(SDLC), apart from verification, debugging, and certification. Validation testing ensures that

the software meets the quality standards set by the customer, and that the product meets

customer requirements.

3.2.6 ALPHA TESTING
Alpha testing is a type of acceptance testing; performed to identify all possible issues/bugs

before releasing the product to everyday users or public. The focus of this testing is to

simulate real users by using black box and white box techniques. The aim is to carry out the

tasks that a typical user might perform. Alpha testing is carried out in a lab environment and

usually the testers are internal employees of the organization. To put it as simple as possible,

this kind of testing is called alpha only because it is done early on, near the end of the

development of the software, and before beta testing as in figure 3.1.

Check Your Progress 4.

What are the conditions that exist

=-7

40 after performing validation testing?

45

Figure 3.1: Position of Alpha & Beta Testing

Entry Criteria for Alpha testing:

 Software requirements document or Business requirements specification

 Test Cases for all the requirements

 Testing Team with good knowledge about the software application

 Test Lab environment setup

 QA Build ready for execution

 Test Management tool for uploading test cases and logging defects

 Traceability Matrix to ensure that each design requirement has at least one test case

that verifies it

Exit Criteria for Alpha testing

 All the test cases have been executed and passed.

 All severity issues need to be fixed and closed

 Delivery of Test summary report

 Make sure that no more additional features can be included

 Sign off on Alpha testing

Advantages of Alpha Testing:

• Provides better view about the reliability of the software at an early stage

• Helps simulate real time user behaviour and environment.

• Detect many showstopper or serious errors

• Ability to provide early detection of errors with respect to design and functionality

Disadvantages of Alpha Testing:

46

• In depth functionality cannot be tested as software is still under development stage.

Sometimes developers and testers are dissatisfied with the results of alpha testing.

3.2.7 BETA TESTING
Beta Testing of a product is performed by "real users" of the software application in a "real

environment" and can be considered as a form of external user acceptance testing.

Beta version of the software is released to a limited number of end-users of the product to

obtain feedback on the product quality. Beta testing reduces product failure risks and

provides increased quality of the product through customer validation.

It is the final test before shipping a product to the customers. Direct feedback from customers

is a major advantage of Beta Testing. This testing helps to tests the product in real time

environment.

Types of Beta Testing

There are different types of Beta tests, and they are as follows:

• Traditional Beta testing: Product is distributed to the target market, and related data

is gathered in all aspects. This data can be used for Product improvement.

• Public Beta Testing: Product is publicly released to the outside world via online

channels and data can be gathered from anyone. Based on feedback, product

improvements can be done. For example, Microsoft conducted the largest of all Beta

Tests for its OS -- Windows 8 before officially releasing it.

• Technical Beta Testing: Product is released to the internal group of an organization

and gathers feedback/data from the employees of the organization.

• Focused Beta: Product is released to the market for gathering feedback on specific

features of the program. For example, important functionality of the software.

• Post release Beta: Product is released to the market and data is gathered to make

improvements for the future release of the product.

Entrance criteria for Beta Testing:

• Sign off document on Alpha testing

Check Your Progress 5.

 Which testing is performed for Virtual Environment?

47

• Beta version of the software should be ready

• Environment ready to release the software application to the public

• Tool to capture real time faults

Exit Criteria for Beta Testing:

• All major and minor issues are closed

• Feedback report should be prepared from public

• Delivery of Beta test summary report

Advantages Beta Testing

• Reduces product failure risk via customer validation.

• Beta Testing allows a company to test post-launch infrastructure.

• Improves product quality via customer feedback

• Cost effective compared to similar data gathering methods

• Creates goodwill with customers and increases customer satisfaction

Disadvantages Beta Testing

• Test Management is an issue. As compared to other testing types which are usually

executed inside a company in a controlled environment, beta testing is executed out in

the real world where you seldom have control.

• Finding the right beta users and maintaining their participation could be a challenge

Comparison of Alpha and Beta Testing

Alpha Testing Beta Testing

Alpha testing performed by Testers who
are usually internal employees of the
organization

Beta testing is performed by Clients or End
Users who are not employees of the organization

Alpha Testing performed at developer's
site

Beta testing is performed at client location or end
user of the product

Reliability and security testing are not
performed in-depth Alpha Testing

Reliability, Security, Robustness are checked
during Beta Testing

Alpha testing involves both the white box
and black box techniques Beta Testing typically uses black box testing

Alpha testing requires lab environment or Beta testing doesn't require any lab environment

48

testing environment or testing environment. Software is made
available to the public and is said to be real time
environment

Long execution cycle may be required
for Alpha testing

Only few weeks of execution are required for
Beta testing

Critical issues or fixes can be addressed
by developers immediately in Alpha
testing

Most of the issues or feedback is collected from
Beta testing will be implemented in future
versions of the product

Alpha testing is to ensure the quality of
the product before moving to Beta testing

Beta testing also concentrates on quality of the
product, but gathers users input on the product
and ensures that the product is ready for real time
users.

3.2.8 ACCEPTANCE TESTING
Acceptance testing is a formal type of software testing that is performed by end user when the

features have been delivered by developers. The aim of this testing is to check if the software

confirms to their business needs and to the requirements provided earlier.

Acceptance Criteria

Acceptance criteria are defined on the basis of the following attributes

 Functional Correctness and Completeness

 Data Integrity

 Data Conversion

 Usability

 Performance

 Timeliness

 Confidentiality and Availability

 Installability and Upgradability

 Scalability

 Documentation

Check Your Progress 6.

How beta testing improve product quality?

49

Acceptance Test Plan - Attributes

The acceptance test activities are carried out in phases. Firstly, the basic tests are executed,

and if the test results are satisfactory then the execution of more complex scenarios are

carried out.

The Acceptance test plan has the following attributes:

 Introduction

 Acceptance Test Category

 operation Environment

 Test case ID

 Test Title

 Test Objective

 Test Procedure

 Test Schedule

 Resources

The acceptance test activities are designed to reach at one of the conclusions:

1. Accept the system as delivered

2. Accept the system after the requested modifications have been made

3. Do not accept the system

Acceptance Test Report - Attributes

The Acceptance test Report has the following attributes:

 Report Identifier

 Summary of Results

 Variations

 Recommendations

 Summary of To-do List

 Approval Decision

3.2.9 RECOVERY TESTING
Many computer-based systems must recover from faults and resume operation within a pre-

specified time. In some cases, a system may be fault tolerant; that is, processing faults must

Check Your Progress 7.

List acceptance test plan attribute.

50

not cause overall system function to cease. In other cases, a system failure must be corrected

within a specified period or severe economic damage will occur.

Recovery testing is a system test that forces the software to fail in a variety of ways and

verifies that recovery is properly performed. It the recovery is automated (performed by

system itself), re-initialization mechanisms, data recovery, and restart are each evaluated for

correctness. If the recovery requires human intervention, the mean time to repair is evaluated

to determine whether it is within acceptable limits.

Recovery testing is a type of non-functional testing technique performed in order to

determine how quickly the system can recover after it has gone through system crash or

hardware failure. Recovery testing is the forced failure of the software to verify if the

recovery is successful.

Steps of Recovery Plan:

• Determining the feasibility of the recovery process.

• Verification of the backup facilities.

• Ensuring proper steps are documented to verify the compatibility of backup facilities.

• Providing Training within the team.

• Demonstrating the ability of the organization to recover from all critical failures.

• Maintaining and updating the recovery plan at regular intervals.

3.2.10 SECURITY TESTING
Any computer-based system that manages sensitive information or causes actions that can

harm or benefit individuals is a target for improper or illegal penetration.

Security testing attempts to verify that protection mechanism built into a system will protect

it from unauthorized penetration. During security testing, the tester plays the role of the

individual who desires to penetrate the system. The tester may attack the system with custom

software designed to break down any defences that have been constructed; may overwhelm

the system, thereby denying service to others; may purposely cause system errors, hoping to

find the key to system entry; and so on.

Check Your Progress 8.

What is non-functional testing?

51

Given enough time and resources, good security testing will ultimately penetrate a system.

The role of the system designer is to make penetration cost greater than the value of the

information that will be obtained in order to deter potential threats.

The prime objective of security testing is to find out how vulnerable a system may be and to

determine whether its data and resources are protected from potential intruders. Online

transactions have increased rapidly of late making security testing as one of the most critical

areas of testing for such web applications. Security testing is more effective in identifying

potential vulnerabilities when performed regularly.

Normally, security testing has the following attributes:

• Authentication

• Authorization

• Confidentiality

• Availability

• Integrity

• Non-repudiation

• Resilience

Why Security Testing

System testing, in the current scenario, is a must to identify and address web application

security vulnerabilities to avoid any of the following:

• Loss of customer trust.

• Disturbance to your online means of revenue generation/collection.

• Website downtime, time loss and expenditures in recovering from damage.

• Cost associated with securing web applications against future attacks.

• Related legal implications and fees for having lax security measures in place.

3.2.11 STRESS TESTING
Stress testing refers to the testing of software or hardware to determine whether its

performance is satisfactory under any extreme and unfavourable conditions, which may occur

as a result of heavy network traffic, process loading, under-clocking, overclocking and

maximum requests for resource utilization.

Check Your Progress 9.

What is the need of security testing?

52

Most systems are developed under the assumption of normal operating conditions. Thus, even

if a limit is crossed, errors are negligible if the system undergoes stress testing during

development.

Stress tests are designed to confront program functions with abnormal situations. Stress

testing executes a system in a manner that demands resources in abnormal quantity,

frequency, or volume. For example,

i. Special tests may be designed that generate 10 interrupts are seconds, when one or

two is the average rate;

ii. Input data rates may be increased by an order of magnitude to determine how input

functions will respond;

iii. Test cases that require maximum memory or other resources may be executed;

iv. Test cases that may cause excessive hunting for disk resident data may be created; or

v. Test cases that may cause thrashing in a virtual operating system may be designed.

The testers attempt to break the program.

Context of Stress testing:

• Software: Stress testing emphasizes availability and error handling under extremely

heavy loads to ensure software does not crash due to insufficient resources. Software

stress testing focuses on identified transactions to break transactions, which are

heavily stressed during testing, even when a database has no load. The stress testing

process loads concurrent users beyond normal system levels to find the system's

weakest link.

• Hardware: Stress testing ensures stability in normal computing environments.

• Websites: Stress testing determines the limitations of any of the site's functionalities.

• CPU: Modifications such as over volting, under volting, under locking and over

locking are verified to determine whether they can withstand heavy loads by running

a CPU-intensive program to test for system crashes or hangs. CPU stress testing is

also known as torture testing.

Benefits of Stress Testing

The most significant benefit of stress testing is that you can check the application to see

whether it works under any type of stress. Stress testing can uncover many loopholes or

weaknesses like memory leaks and even race conditions. Race conditions are the conflicts

you will sometimes see, when two tests run concurrently.

53

A memory leak usually occurs when the test uses the allocated memory and it does not return

the said memory space for the memory allocation. This will lead to system failure, as the

available memory is eaten up completely. Stress testing may not be a proper type of software

testing system. In many cases, many different tests are capable of knowing a software

application’s ability to perform well in a real-time ambiance.

Stress testing can provide you with the necessary data that is hard to find anywhere else.

3.2.12 PERFORMANCE TESTING
Performance testing, a non-functional testing technique performed to determine the system

parameters in terms of responsiveness and stability under various workload. Performance

testing measures the quality attributes of the system, such as scalability, reliability and

resource usage.

Performance Testing Goal:

The focus of Performance testing is checking a software program for

• Speed - Determines whether the application responds quickly

• Scalability - Determines maximum user load the software application can handle.

• Stability - Determines if the application is stable under varying loads

Performance Testing Techniques:

• Load testing - It is the simplest form of testing conducted to understand the behaviour

of the system under a specific load. Load testing will result in measuring important

business critical transactions and load on the database, application server, etc., are

also monitored.

• Soak testing - Soak Testing also known as endurance testing, is performed to

determine the system parameters under continuous expected load. During soak tests

the parameters such as memory utilization is monitored to detect memory leaks or

other performance issues. The main aim is to discover the system's performance under

sustained use.

Check Your Progress 10.

Write some benefits of stress testing.

54

• Spike testing - Spike testing is performed by increasing the number of users suddenly

by a very large amount and measuring the performance of the system. The main aim

is to determine whether the system will be able to sustain the workload.

Attributes of Performance Testing:

• Speed

• Scalability

• Stability

• Reliability

Common Performance Problems

• Long Load time

• Poor response time

• Poor scalability

• Bottlenecking

Performance Testing Process

i. Identify your testing environment

ii. Identify the performance acceptance criteria

iii. Plan & design performance tests

iv. Configuring the test environment

v. Implement test design

vi. Analyse, tune and retest

3.3 SUMMARY
In this unit lots of testing are defined. This is not necessary to use all the testing in single

software. Every testing has its own characteristics, requirement and limitations. These testing

are used according to the need and requirements of software as well as testing team.

3.4 EXERCISE
1) What is the need of security testing?

Check Your Progress 11.

Give any three types of performance test.

55

2) Explain the techniques of performance testing.

3) What is the difference between alpha testing and beta testing?

4) Distinguish between verification and validation.

56

UNIT-4 REENGINEERING

4.0 Introduction

4.1Objective

4.2 Concept of Re-Engineering

4.3 Concept of Reverse Engineering

4.4 Concept of Restructuring

4.5 Concept of Forward Engineering

4.6 Summary

4.7 Exercise

57

4.0 INTRODUCTION
The essence of software re-engineering is to improve or transform existing software so that it

can be understand, controlled, and used a new. The need for software re-engineering has

increased greatly, as heritage software systems have become obsolescent in terms of their

architecture, the platforms on which they run, and their suitability and stability to support

evolution to support changing needs. Software re-engineering is important for recovering and

reusing existing software assets, putting high software maintenance costs under control, and

establishing a base for future software evolution. Basically, re-engineering is taking existing

legacy software that has become expensive to maintain or whose system architecture or

implementation are obsolete, and redoing it with current software and/or hardware

technology. The difficulty lies in the understanding of the existing system. Usually

requirements, design and code documentation is no longer available, or is very out of date, so

it is unclear what functions are to be moved. Often the system contains functions that are no

longer needed, and those should not be moved to the new system.

4.1 OBJECTI VE
The objectives of this unit are:

a) to obtain quantum gains in the performance of the process in terms of time, cost,

output, quality to customers

b) to simplify and streamline the process

c) to obtain dramatic improvement in operational effectiveness.

4.2 CONCEPT OF RE-ENGINEERING
Re-engineering is the examination, analysis and alteration of an existing software system to

reconstitute it in a new form, and the subsequent implementation of the new form. The

process typically encompasses a combination of other processes such as reverse engineering,

re-documentation, restructuring, translation, and forward engineering. The goal is to

understand the existing software (specification, design, implementation) and then to re-

implement it to improve the system's functionality, performance or implementation.

 Abstraction level – ideally want to be able to derive design information at the highest

level possible

 Completeness – level of detail provided at a given abstraction level

 Interactivity – degree to which humans are integrated with automated reverse engineering

58

tools

 Directionality – one-way means the software engineer doing the maintenance activity is

given all information extracted from source code, two-way means the information is fed

+to a reengineering tool that attempts to regenerate the old program

 Extract abstractions – meaningful specification of processing performed is derived from

old source code

Re-engineering Objectives

The number of large systems being built from scratch is diminishing, while the number of

legacy systems in use is very high. While the functionality of existing systems remains

constant, the context of new systems, such as the application environment, system level

hardware and software, are different. Enhancements to the functionality of the existing

systems may also be needed, but although the re-engineering effort may configured for

enhancements, they should not be incorporated until after the re-engineering is complete.

This allows for comparison of functionality between the existing system and the new system.

The problem is that systems currently in use, "legacy" systems, have become lacking in good

design structure and code organization, making changes to the software difficult and costly.

Corporations do not want to "trash" these systems because there are many built in subtle

business application processes that have evolved over time that would be lost. Often the

developers of the legacy systems are not available to verify or explain this information; the

only source is the current software code. The original expense of developing the logic and

components of the software systems should not be wasted, so reuse through re-engineering is

desired. The challenge in software re-engineering is to take existing systems and instil good

software development methods and properties, generating a new target system that maintains

the required functionality while applying new technologies. Although specific objectives of a

re-engineering task are determined by the goals of the corporations, there are four general re-

engineering objectives:

 Preparation for functional enhancement

 Improve maintainability

 Migration

 Improve reliability

Goals of Reengineering

 Port to other Platform- when hardware or software support becomes obsolete

59

 Design extraction- to improve maintainability, portability, etc.

 Exploitation of New Technology- new language features, standards, libraries, etc. It is

used when tools to support restructuring are readily available

Software Reengineering Activities

 Inventory analysis – sorting active software applications by business criticality,

longevity, current maintainability, and other local criteria helps to identify reengineering

candidates

 Document restructuring– need to decide to live with weak documentation, update poor

documents if they are used, or fully rewrite the documentation for critical systems

focusing on the "essential minimum"

 Reverse engineering – process of design recovery - analyzing a program in an effort to

create a representation of the program at some abstraction level higher than source code

 Code restructuring – source code is analysed and violations of structured programming

practices are noted and repaired, the revised code also needs to be reviewed and tested

 Data restructuring – usually requires full reverse engineering, current data architecture is

dissected and data models are defined, existing data structures are reviewed for quality

 Forward engineering – also called reclamation or renovation, recovers design

information from existing source code and uses this information to reconstitute the

existing system to improve its overall quality and/or performance

The complete lifecycle of Software Re-Engineering includes:

 Product Management: Risks analysis, root cause analysis, business analysis, requirements

elicitation and management, product planning and scoping, competitive analysis

 Research and Innovation: Definition of a problem, data gathering and analysis,

identifying a solution and developing best-of-breed or innovative algorithms, verification

of quality for data and results, patent preparation

 Product Development: Technology analysis and selection, software architecture and

design, data architecture, deployment architecture, prototyping and production code

development, comprehensive software testing, data quality testing, and product packaging

and deployment preparation

 Product Delivery and Support: Hardware/Platform analysis and selection, deployment

and release procedures definition, installations and upgrades, tracking support issues,

organizing maintenance releases.

60

 Project Management: Brings efficiency and productivity to your software re-engineering

project by utilizing modern, practical software project management, software quality

assurance, data quality assurance, and advanced risk management techniques.

Software Development Levels of Abstraction in Re-engineering

Levels of Abstraction that underlie the software development process also underlie the re-

engineering process. Each level corresponds to a phase in the development life cycle and

defines the software system at a particular level of detail (or abstraction) is depicted in figure

4.1.

Figure 4.1: Levels of Abstraction

General Model for Software Re-engineering

61

Figure 4.2: General Model for Software Re-engineering

Re-engineering starts with the source code of an existing legacy system and concludes with

the source code of a target system as depicted in figure 4.2. This process may be as simple as

using a code translation tool to translate the code from one language to another (FORTRAN

to C) or from one operating system to another (UNIX to DOS). On the other hand, the re-

engineering task may be very complex, using the existing source code to recreate the design,

identify the requirements in the existing system then compare them to current requirements,

removing those no longer applicable, restructure and redesign the system (using object-

oriented design), and finally code the new target system.

Re-engineering advantages

 Reduced risk: There is a high risk in new software development. There may be

development problems, staffing problems and specification problems

 Reduced cost: The cost of re-engineering is often significantly less than the costs of

developing new software.

Generic Reengineering Process

As represented in figure 4.3, re-engineering process is defined as-

 Requirement analysis: analyse on which parts of your requirements have changed

62

 Model capture: reverse engineer from the source-code into a more abstract form,

typically some form of a design model

 Problem detection: identify design problems in that abstract model

 Problem resolution: propose an alternative design that will solve the identified

problem

 Program transformations: make the necessary changes to the code, so that it adheres

to the new design yet preserves all the required functionality

Figure 4.3: Re-engineering process

Re-engineering cost factors

 The quality of the software to be re-engineered

 The tool support available for re-engineering

 The extent of the data conversion which is required

 The availability of expert staff for re-engineering

Re-engineering Phases and Tasks

There is a core process that every organization should follow when re-engineering.

Reengineering poses its own technical challenges and without a comprehensive development

63

process will waste time and money. Automation and tools can only support this process, not

pre-empt it. The re-engineering process can be broken into five phases and associated tasks,

starting with the initial phase of determining the feasibility and cost effectiveness of

reengineering, and concluding with the transition to the new target system.

These five reengineering development phases are:

 Re-engineering Team Formation

 Project Feasibility Analysis

 Analysis and Planning

 Re-engineering Implementation

 Testing and Transition

4.3 CONCEPT OF REVERSE ENGINEERING
Reverse engineering is the process of analysing a subject system to identify the system's

components and their interrelationships and create representations of the system in another

form or at a higher level of abstraction. In reverse engineering, the requirements and the

essential design, structure and content of the legacy system must be recaptured as depicted in

figure 4.4 . In addition to capturing technical relationships and interactions, information and

rules about the business application and process that have proved useful in running the

business must also be retrieved. This involves extracting design artefacts and building or

synthesizing abstractions that are less implementation dependent. The key objectives in

reverse engineering are to generate alternative views, recover lost information, detect side

effects, synthesize higher abstractions, and facilitate reuse. The effectiveness of this process

will affect the success of the reengineering project. Reverse engineering does not involve

changes to the system or creating a new system, it is the process of examination without

changing its overall functionality.

Principles of reverse engineering

 Systematic process of acquiring important design factors and information regarding

engineering aspects from an existing product

Check Your Progress1.

When to Re-Engineer?

64

 A process which analyses a product/technology to find out the design aspects and its

functions

 A kind of analysis which engages an individual in a process of constructive learning

of design and its functionality of systems and products

Reverse Engineering Activities

 Understanding data

o internal data structures – program code is examined with the intention of grouping

related program variables

o database structure – often done prior to moving from one database paradigm to

another (e.g. flat file to relational)

 Understanding processing - source code is analysed to at varying levels of detail

(system, program, component, pattern, statement) to understand procedural

abstractions and overall functionality

Figure 4.4: Reverse Engineering Process

Objectives of reverse engineering:

 To recover lost information

 To facilitate migration between platforms

 To improve and/or provide new documentation

 To extract reusable components

 To reduce maintenance effort

65

 To cope with complexity

 To detect side effects

 To assist migration to a case environment

 To develop similar or competitive products

Goals of reverse engineering:

 Cope with complexity

 Need techniques to understand large, complex systems

 Recover lost information

 Extract what changes have been made and why

 Detect side effects

 Help understand ramifications of changes

 Synthesize higher abstractions

 Identify latent abstractions in software

 Facilitate reuse

 Detect candidate reusable artefacts and components

Uses of Reverse Engineering

 Interfacing. Reverse engineering can be used when a system is required to interface to

another system and how both systems would negotiate is to be established. Such

requirements typically exist for interoperability.

 Military or commercial espionage. Learning about an enemy's or competitor's latest

research by stealing or capturing a prototype and dismantling it. It may result in

development of similar product, or better countermeasures for it.

 Improve documentation shortcomings. Reverse engineering can be done when

documentation of a system for its design, production, operation or maintenance have

shortcomings and original designers are not available to improve it. Reverse engineering

of software can provide the most current documentation necessary for understanding the

most current state of a software system.

 Obsolescence. Integrated circuits often seem to have been designed on obsolete,

proprietary systems, which means that when those systems can no longer be maintained,

the only way to incorporate the functionality into new technology is to reverse-engineer

the existing chip and then re-design it using newer tools, and using the understanding

gained, as a guide. Another obsolescence originated problem which can be solved by

66

reverse engineering is the need to support existing, legacy devices which are no longer

supported by their OEM. This problem is particularly critical in military operations.

 Software modernization - often knowledge is lost over time, which can prevent updates

and improvements. Reverse engineering is generally needed in order to understand the 'as

is' state of existing or legacy software in order to properly estimate the effort required to

migrate system knowledge into a 'to be' state. Much of this may be driven by changing

functional, compliance or security requirements.

 Product security analysis. To examine how a product works, what are specifications of

its components, estimate costs and identify potential patent infringement. Acquiring

sensitive data by disassembling and analysing the design of a system component. Intent

may be to remove copy protection, circumvention of access restrictions.

 Bug fixing. To fix legacy software this is no longer supported by its creators.

 Creation of unlicensed/unapproved duplicates, such duplicates are called sometimes

clones in the computing domain.

 Academic/learning purposes. Reverse engineering for learning purposes may be

understand the key issues of an unsuccessful design and subsequently improve the design.

 Competitive technical intelligence. Understand what one's competitor is actually doing,

versus what they say they are doing.

 Saving money, when one finds out what a piece of electronics is capable of, it can spare a

user from purchase of a separate product.

 Repurposing, in which opportunities to repurpose stuff that is otherwise obsolete can be

incorporated into a bigger body of utility.

Reverse engineering of machines

As computer-aided design (CAD) has become more popular, reverse engineering has become

a viable method to create a 3D virtual model of an existing physical part for use in 3D CAD,

CAM, CAE or other software. The reverse-engineering process involves measuring an object

and then reconstructing it as a 3D model. The physical object can be measured using 3D

scanning technologies like CMMs, laser scanners, structured light digitizers, or Industrial CT

Scanning (computed tomography). The measured data alone, usually represented as a point

cloud, lacks topological information and is therefore often processed and modelled into a

more usable format such as a triangular-faced mesh, a set of NURBS surfaces, or a CAD

model.

67

Hybrid Modelling is commonly used term when NURBS and parametric modelling are

implemented together. Using a combination of geometric and freeform surfaces can provide a

powerful method of 3D modelling. Areas of freeform data can be combined with exact

geometric surfaces to create a hybrid model. A typical example of this would be the reverse

engineering of a cylinder head, which includes freeform cast features, such as water jackets

and high tolerance machined areas.

Reverse engineering is also used by businesses to bring existing physical geometry into

digital product development environments, to make a digital 3D record of their own products,

or to assess competitors' products. It is used to analyse, for instance, how a product works,

what it does, and what components it consists of, estimate costs, and identify potential patent

infringement, etc. Value engineering is a related activity also used by businesses. It involves

de-constructing and analysing products, but the objective is to find opportunities for cost

cutting.

Reverse engineering of software

The term reverse engineering as applied to software means different things to different

people. Reverse engineering is the process of analysing a subject system to create

representations of the system at a higher level of abstraction. It can also be seen as "going

backwards through the development cycle". In this model, the output of the implementation

phase (in source code form) is reverse-engineered back to the analysis phase, in an inversion

of the traditional waterfall model. Another term for this technique is program comprehension.

Reverse engineering is a process of examination only: the software system under

consideration is not modified (which would make it re-engineering). Software anti-tamper

technology like obfuscation is used to deter both reverse engineering and re-engineering of

proprietary software and software-powered systems.

In practice, two main types of reverse engineering emerge.

In the first case, source code is already available for the software, but higher-level aspects of

the program, perhaps poorly documented or documented but no longer valid, are discovered.

In the second case, there is no source code available for the software, and any efforts towards

discovering one possible source code for the software are regarded as reverse engineering.

This second usage of the term is the one most people are familiar with. Reverse engineering

of software can make use of the clean room design technique to avoid copyright

infringement.

68

On a related note, black box testing in software engineering has a lot in common with reverse

engineering. The tester usually has the API, but their goals are to find bugs and

undocumented features by bashing the product from outside.

Other purposes of reverse engineering include security auditing, removal of copy protection,

circumvention of access restrictions often present in consumer electronics, customization of

embedded systems (such as engine management systems), in-house repairs or retrofits,

enabling of additional features on low-cost "crippled" hardware (such as some graphics card

chip-sets), or even mere satisfaction of curiosity.

Reverse engineering of protocols

Protocols are sets of rules that describe message formats and how messages are exchanged

(i.e., the protocol state-machine). Accordingly, the problem of protocol reverse-engineering

can be partitioned into two sub problems; message format and state-machine reverse-

engineering.

The message formats have traditionally been reverse-engineered through a tedious manual

process, which involved analysis of how protocol implementations process messages, but

recent research proposed a number of automatic solutions. Typically, these automatic

approaches either group observed messages into clusters using various clustering analyses, or

emulate the protocol implementation tracing the message processing.

There has been less work on reverse-engineering of state-machines of protocols. In general,

the protocol state-machines can be learned either through a process of offline learning, which

passively observes communication and attempts to build the most general state-machine

accepting all observed sequences of messages, and online learning, which allows interactive

generation of probing sequences of messages and listening to responses to those probing

sequences. In general, offline learning of small state-machines is known to be NP-complete,

while online learning can be done in polynomial time.

Other components of typical protocols, like encryption and hash functions, can be reverse-

engineered automatically as well. Typically, the automatic approaches trace the execution of

protocol implementations and try to detect buffers in memory holding unencrypted packets.

Reverse engineering of Hardware

Hardware reverse engineering involves taking apart a device to see how it works. For

example, if a processor manufacturer wants to see how a competitor's processor works, they

can purchase a competitor's processor, disassemble it, and then make a processor similar to it.

69

However, this process is illegal in many countries. In general, hardware reverse engineering

requires a great deal of expertise and is quite expensive.

Benefits of Reverse Engineering for Software Maintenance

 Corrective change: abstraction of unnecessary detail gives greater insight into the

parts of the program to be corrected. And it is easier to identify defective program

components and the source of residual errors

 Adaptive/perfective change: Eases understanding of system’s components and their

interrelationships, showing where new requirements fit and how they relate to existing

components. It Extracted information when be used during enhancement of the

system or for the development of another product

 Preventive change: It brings benefit to future maintenance of a system

4.4 CONCEPT OF RESTRUCTURING
Software restructuring is recognized as a promising method to improve logical structure and

understand ability of a software system which is composed of modules with loosely-coupled

elements. There are several methods of restructuring an ill-structured module at the software

maintenance phase. The methods identify modules performing multiple functions and

restructure such modules. For identifying the multi-function modules, the notion of the

tightly-coupled module that performs a single specific function is formalized. This method

utilizes information on data and control dependence, and applies program slicing to carry out

the task of extracting the tightly-coupled modules from the multi-function module. The

identified multi-function module is restructured into a number of functional strength modules

or an informational strength module. The module strength is used as a criterion to decide how

to restructure. The methods can also be readily automated and incorporated in a software tool.

Restructuring involves examining the existing system and rewriting parts of it to improve its

overall structure. Restructuring may be particularly useful when changes are confined to part

of the system. Only this part need be restructured. Other parts need not be changed or

revalidated. If a program is written in a high-level language, it is possible to restructure that

program automatically although the computer time required to do so may be great.

Check Your Progress2.

What are the main objectives of reverse engineering?

70

A Theorem has been given on the basis for program restructuring. It says that, any program

may be rewritten in terms of simple IF-THEN-ELSE conditionals and WHILE loops and that

unconditional GOTO statements were not required.

Method

Step 1. Construct a program flow graph.

Step 2. Apply simplification and transformation techniques to the graph to construct while

loops and simple conditional statements.

It may well be that a combination of automatic and manual system restructuring is the best

approach. The control structure could be improved automatically and this makes the system

easier to understand. The abstraction and data structures of the program may then be

discovered, documented and improved using a manual approach. Decisions on whether to

restructure or rewrite a program can only be made on a case-by-case basis.

Some of the factors which must be taken into account are

 Is a significant proportion of the system stable and not subject to frequent change? If

so, this suggests restructuring rather than rewriting as it is only really necessary to

restructure that part of the program which is to be changed.

 Does the program rely on obsolete support software such as compilers, etc.? If so, this

suggests it should be rewritten in a modern language as the future availability of the

support software cannot be guaranteed.

 Are tools available to support the restructuring process? If not, manual restructuring

is the only option.

System restructuring offers an opportunity to control maintenance costs and I believe that it

will become increasingly important. The rate of change of hardware development means that

many embedded software systems which are still in use must be changed as the hardware on

which they execute cannot be supported.

Types of Restructuring

 Code restructuring

 Program logic modelled using Boolean algebra and series of transformation rules are

applied to yield restructured logic

 Create resource exchange diagram showing data types, procedure and variables

shared between modules, restructure program architecture to minimize module

coupling

 Data restructuring

71

 Analysis of source code

 Data redesign

 Data record standardization

 Data name rationalization

 File or database translation

4.5 CONCEPT OF FORWARD ENGINEERING
Forward engineering is the process of building from a high-level model or concept to build in

complexities and lower-level details. This type of engineering has different principles in

various software and database processes.

Generally, forward engineering is important in IT because it represents the 'normal’

development process. For example, building from a model into an implementation language.

This will often result in loss of semantics, if models are more semantically detailed, or levels

of abstraction.

Forward engineering is thus related to the term 'reverse engineering,’ where there is an effort

to build backward, from a coded set to a model, or to unravel the process of how something

was put together.

It's crucial to note, though, that reverse engineering is also a term widely used in IT to

describe attempts to take a software product or other technology apart and inspect how it

works. In this type of contrast, forward engineering would be a logical 'forward-moving’

design, where reverse engineering would be a form of creative deconstruction.

Some experts provide specific examples of forward engineering, including the use of abstract

database models or templates into physical database tables. Other examples include a

situation where developers or others make models or diagrams into concrete code classes, or

specific code modules.

4.6 SUMMARY

In this section we discuss Re-engineering involves adding effort to make them easier to

maintain. The system may be re-structured and re-documented. When system changes are

mostly confined to part of the system then re-engineer that part and how re-engineering

Check Your Progress4.

How forward engineering is related to reverse engineering?

Check Your Progress3.

How does restructuring help in maintaining a program?

72

reduced the cost and risk. Also define forward engineering as well as Reverse engineering

which is the process of deriving the system design and specification from its source code .

4.7 EXERCISE
1) What is Reengineering? And what are the objectives of reengineering. What are the

common mistakes made when beginning reengineering?

2) Why does reengineering take so long?

3) What is the main difficulty in reengineering in general?

4) Write the advantages of re-engineering.

5) Define the activities of Re-engineering.

6) How Reverse and Forward Engineering is related with Re-engineering. explain.

7) Write the goals of reverse engineering. Also write its advantages.

8) Write Short Notes on-

Forward Engineering, Restructuring

UNIT-5 CASE: Computer Aided Software Engineering

5.0 Introduction

73

5.1 Objective

5.2 Tools: What is CASE?

5.3 Building Blocks of CASE

5.4 A Taxonomy of CASE Tools

5.5 Integrated CASE Environments

5.6 The Integration Architecture

5.7 The CASE Repository

5.8 Summary

5.9 Exercise

74

5.0 INTRODUCTION
CASE tools are a class of software that automate many of the activities involved in various

life cycle phases. For example, when establishing the functional requirements of a proposed

application, prototyping tools can be used to develop graphic models of application screens to

assist end users to visualize how an application will look after development. Subsequently,

system designers can use automated design tools to transform the prototyped functional

requirements into detailed design documents. Programmers can then use automated code

generators to convert the design documents into code. Automated tools can be used

collectively, as mentioned, or individually. For example, prototyping tools could be used to

define application requirements that get passed to design technicians who convert the

requirements into detailed designs in a traditional manner using flowcharts and narrative

documents, without the assistance of automated design software.

5.1 OBJECTIVE
The objectives of this unit are:

a) to identify the role of CASE tools in the software development process.

b) to identify the criteria for selecting a CASE tool.

c) to identify the benefits and limitations of CASE tools.

5.2 Tools: What is CASE?
Computer-aided software engineering (CASE) is the application of a set of tools and methods

to a software system with the desired end result of high-quality, defect-free, and maintainable

software products. It also refers to methods for the development of information systems

together with automated tools that can be used in the software development process.

Reasons for using case tools:

The primary reasons for using a CASE tool are:

• To increase productivity

• To help produce better quality software at lower cost

Types of tools for CASE are:

• Business process engineering tools.

• Process modelling and management tool

75

• Project planning tools

• Risk analysis tools

• Project management tools

• Requirement tracing tools

• Metrics management tools

• Documentation tools

• System software tools

• Quality assurance tools

• Database management tools

• Software configuration management tools

• Analysis and design tools

• Interface design and development tools

• Prototyping tools

• Programming tools

• Web development tools

• Integration and testing tools

• Static analysis tools

• Dynamic analysis tools

• Test management tools

• Client/Server testing tools

• Re-engineering tools

Benefits of CASE

Every program you create using the Program Generator automatically includes such as:

 Data Dictionary

 User defined codes

 Vocabulary overrides

 Action code security

 Business unit security

 Standard function exits

 Function exit and option exit security

 Cursor sensitive help

 Program help

 DREAM Writer

76

 Processing options

Classification of CASE Tools:

Existing CASE tools can be classified along 4 different dimensions:

1. Life-cycle support

2. Integration dimension

3. Construction dimension

4. Knowledge-based CASE dimension

Applications

• A CASE repository is a system developers’ database. It is a place where developers can

store system models, detailed descriptions and specifications, and other products of

system development. Synonyms include dictionary and encyclopedia.

• Forward engineering requires the systems analyst to draw system models, either from

scratch or from templates. The resulting models are subsequently transformed into

program code.

• Reverse engineering allows a CASE tool to read existing program code and transform

that code into a representative system model that can be edited and refined by the systems

analyst.

However, tools that are concerned with analysis and design, and with using design

information to create parts (or all) of the software product, are most frequently thought of as

CASE tools. CASE applied, for instance, to a database software product, might normally

involve:

• Modelling business / real-world processes and data flow

• Development of data models in the form of entity-relationship diagrams

• Development of process and function descriptions

Major Risk Factors: Common CASE risks and associated controls include:

• Inadequate standardization: Linking CASE tools from different vendors (design tool

from Company X, programming tool from Company Y) may be difficult if the

products do not use standardized code structures and data classifications. File formats

can be converted, but usually not economically. Controls include using tools from the

same vendor, or using tools based on standard protocols and insisting on

77

demonstrated compatibility. Additionally, if organizations obtain tools for only a

portion of the development process, they should consider acquiring them from a

vendor that has a full line of products to ensure future compatibility if they add more

tools.

• Unrealistic expectations: Organizations often implement CASE technologies to

reduce development costs. Implementing CASE strategies usually involves high start-

up costs. Generally, management must be willing to accept a long-term payback

period. Controls include requiring senior managers to define their purpose and

strategies for implementing CASE technologies.

• Slow implementation: Implementing CASE technologies can involve a significant

change from traditional development environments. Typically, organizations should

not use CASE tools the first time on critical projects or projects with short deadlines

because of the lengthy training process. Additionally, organizations should consider

using the tools on smaller, less complex projects and gradually implementing the tools

to allow more training time.

• Weak repository controls: Failure to adequately control access to CASE repositories

may result in security breaches or damage to the work documents, system designs, or

code modules stored in the repository. Controls include protecting the repositories

with appropriate access, version, and backup controls.

Workbenches: Workbenches integrate two or more CASE tools and support specific

software-process activities. Hence they achieve:

 A homogeneous and consistent interface (presentation integration).

 Seamless integration of tools and tool chains (control and data integration).

An example workbench is Microsoft's Visual Basic programming environment. It

incorporates several development tools: a GUI builder, smart code editor, debugger, etc. Most

commercial CASE products tended to be such workbenches that seamlessly integrated two or

more tools. Workbenches also can be classified in the same manner as tools; as focusing on

Analysis, Development, Verification, etc. as well as being focused on upper case, lower case,

or processes such as configuration management that span the complete life-cycle.

Environments: An environment is a collection of CASE tools or workbenches that attempts

to support the complete software process. This contrasts with tools that focus on one specific

task or a specific part of the life-cycle.

78

CASE environments are classified as follows:

 Toolkits. Loosely coupled collections of tools. These typically build on operating

system workbenches such as the Unix Programmer's Workbench or the VMS VAX

set. They typically perform integration via piping or some other basic mechanism to

share data and pass control. The strength of easy integration is also one of the

drawbacks. Simple passing of parameters via technologies such as shell scripting can't

provide the kind of sophisticated integration that a common repository database can.

 Fourth generation. These environments are also known as 4GL standing for fourth

generation language environments due to the fact that the early environments were

designed around specific languages such as Visual Basic. They were the first

environments to provide deep integration of multiple tools. Typically these

environments were focused on specific types of applications. For example, user-

interface driven applications that did standard atomic transactions to a relational

database. Examples are Informix 4GL, and Focus.

 Language-centred. Environments based on a single often object-oriented language

such as the Symbolic Lisp Genera environment or Visual Works Smalltalk from

Parcplace. In these environments all the operating system resources were objects in

the object-oriented language. This provides powerful debugging and graphical

opportunities but the code developed is mostly limited to the specific language. For

this reason, these environments were mostly a niche within CASE. Their use was

mostly for prototyping and R&D projects. A common core idea for these

environments was the model-view-controller user interface that facilitated keeping

multiple presentations of the same design consistent with the underlying model. The

MVC architecture was adopted by the other types of CASE environments as well as

many of the applications that were built with them.

 Integrated. These environments are an example of what most IT people tend to think

of first when they think of CASE. Environments such as IBM's AD/Cycle, Andersen

Consulting's FOUNDATION, the ICL CADES system, and DEC Cohesion. These

environments attempt to cover the complete life-cycle from analysis to maintenance

and provide an integrated database repository for storing all artefacts of the software

process. The integrated software repository was the defining feature for these kinds of

tools. They provided multiple different design models as well as support for code in

heterogeneous languages. One of the main goals for these types of environments was

"round trip engineering": being able to make changes at the design level and have

79

those automatically be reflected in the code and vice versa. These environments were

also typically associated with a particular methodology for software development.

 Process-centred. This is the most ambitious type of integration. These environments

attempt to not just formally specify the analysis and design objects of the software

process but the actual process itself and to use that formal process to control and

guide software projects. Examples are East, Enterprise II, Process Wise, Process

Weaver, and Arcadia. These environments were by definition tied to some

methodology since the software process itself is part of the environment and can

control many aspects of tool invocation.

In practice, the distinction between workbenches and environments was flexible. Visual

Basic for example was a programming workbench but was also considered a 4GL

environment by many. The features that distinguished workbenches from environments were

deep integration via a shared repository or common language and some kind of methodology

(integrated and process-centred environments) or domain (4GL) specificity.

Components of CASE Tools

CASE tools can be broadly divided into the following parts based on their use at a particular

SDLC stage as depicted in figure 5.1:

 Central Repository - CASE tools require a central repository, which can serve as a

source of common, integrated and consistent information. Central repository is a

central place of storage where product specifications, requirement documents, related

reports and diagrams, other useful information regarding management are stored.

Central repository also serves as data dictionary.

 Upper Case Tools - Upper CASE tools are used in planning, analysis and design

stages of SDLC.

 Lower Case Tools - Lower CASE tools are used in implementation, testing and

maintenance.

 Integrated Case Tools - Integrated CASE tools are helpful in all the stages of SDLC,

from Requirement gathering to Testing and documentation.

CASE tools can be grouped together if they have similar functionality, process activities and

capability of getting integrated with other tools.

80

Figure 5.1: CASE Tool components

5.3 BUILDING BLOCKS OF CASE
Computer aided software engineering can be as simple as a single tool that supports a specific

software engineering activity or as complex as a complete "environment" that encompasses

tools, a database, people, hardware, a network, operating systems, standards, and myriad

other components. The building blocks for CASE are illustrated in figure. Each building

block forms a foundation for the next, with tools sitting at the top of the heap. It is interesting

to note that the foundation for effective CASE environments has relatively little to do with

software engineering tools themselves. Rather, successful environments for software

engineering are built on an environment architecture that encompasses appropriate hardware

and systems software. In addition, the environment architecture must consider the human

work patterns that are applied during the software engineering process.

Check Your Progress 1.

How CASE tools are useful?

81

Figure 5.2: Building blocks of CASE

The building blocks depicted in figure 5.2 represent a comprehensive foundation for the

integration of CASE tools. However, most CASE tools in use today have not been

constructed using all these building blocks. In fact, some CASE tools remain "point

solutions." That is, a tool is used to assist in a particular software engineering activity (e.g.,

analysis modelling) but does not directly communicate with other tools, is not tied into a

project database, is not part of an integrated CASE environment (ICASE). Although this

situation is not ideal, a CASE tool can be used quite effectively, even if it is a point solution.

Here are the Building blocks of CASE:

 Environment Architecture. The environment architecture, composed of the hardware

platform and operating system support including networking and database

management software, lays the groundwork for CASE but the CASE environment

itself demands other building blocks.

 Portability Services. A set of portability services provides a bridge between CASE

tools and their integration framework and the environment architecture. These

portability services allow the CASE tools and their integration framework to migrate

82

across different hardware platforms and operating systems without significant

adaptive maintenance.

 Integration Framework. It is a collection of specialized programs that enables

individual CASE tools to communicate with one another and to create a project

database.

 Case Tools. Case tools are used to assist software-engineering activities (such as

analysis modelling, code generation, etc.) by either communicating with other tools,

the project database (integrated CASE environment), or as point solutions.

 Operating system

 Hardware platform

There are relative levels of CASE integration as depicted in figure 5.3.

Figure 5.3: Integration options

At the low end of the integration spectrum is the individual tool. When individual tools

provide facilities for data exchange, the integration level is improved slightly. Such tools

produce output in a standard format that should be compatible with other tools that can read

the format. In some cases, the builders of complementary CASE tools work together to form

a bridge between the tools. Using this approach, the synergy between the tools can produce

end products that would be difficult to create using either tool separately. Single-source

83

integration occurs when a single CASE tools vendor integrates a number of different tools

and sells them as a package. Although this approach is quite effective, the closed architecture

of most single-source environments precludes easy addition of tools from other vendors.

At the high end of the integration spectrum is the integrated project support environment

(IPSE). Standards for each of the building blocks described previously have been created.

CASE tool vendors use IPSE standards to build tools that will be compatible with the IPSE

and therefore compatible with one another.

5.4 A TAXONOMY OF CASE TOOLS
A number of risks are inherent whenever we attempt to categorize CASE tools. There is a

subtle implication that to create an effective CASE environment, one must implement all

categories of tools—this is simply not true. Confusion can be created by placing a specific

tool within one category when others might believe it belongs in another category. In

addition, simple categorization tends to be flat—that is, we do not show the hierarchical

interaction of tools or the relationships among them. But even with these risks, it is necessary

to create taxonomy of CASE tools—to better understand the breadth of CASE and to better

appreciate where such tools can be applied in the software engineering process.

CASE tools can be classified by function, by their role as instruments for managers or

technical people, by their use in the various steps of the software engineering process, by the

environment architecture (hardware and software) that supports them, or even by their origin

or cost.

• Business process engineering tools- By modeling the strategic information

requirements of an organization, business process engineering tools provide a "meta-

model" from which specific information systems are derived. Rather than focusing on

the requirements of a specific application, business information is modeled as it

moves between various organizational entities within a company. The primary

objective for tools in this category is to represent business data objects, their

relationships, and how these data objects flow between different business areas within

a company.

Check Your Progress 2.

How portability services works?

84

• Process modeling and management tools- If an organization works to improve a

business (or software) process, it must first understand it. Process modeling tools (also

called process technology tools) are used to represent the key elements of a process so

that it can be better understood. Such tools can also provide links to process

descriptions that help those involved in the process to understand the work tasks that

are required to perform it. Process management tools provide links to other tools that

provide support to defined process activities.

• Project planning tools- Tools in this category focus on two primary areas: software

project effort and cost estimation and project scheduling. Estimation tools compute

estimated effort, project duration, and recommended number of people for a project.

Project scheduling tools enable the manager to define all project tasks (the work

breakdown structure), create a task network (usually using graphical input), represent

task interdependencies, and model the amount of parallelism possible for the project.

• Risk analysis tools- Identifying potential risks and developing a plan to mitigate,

monitor, and manage them is of paramount importance in large projects. Risk analysis

tools enable a project manager to build a risk table by providing detailed guidance in

the identification and analysis of risks.

• Project management tools- The project schedule and project plan must be tracked and

monitored on a continuing basis. In addition, a manager should use tools to collect

metrics that will ultimately provide an indication of software product quality. Tools in

the category are often extensions to project planning tools.

• Requirements tracing tools- When large systems are developed, things "fall into the

cracks." That is, the delivered system does not fully meet customer specified

requirements. The objective of requirements tracing tools is to provide a systematic

approach to the isolation of requirements, beginning with the customer request for

proposal or specification. The typical requirements tracing tool combines human

interactive text evaluation with a database management system that stores and

categorizes each system requirement that is "parsed" from the original RFP or

specification.

• Metrics and management tools- Software metrics improve a manager's ability to

control and coordinate the software engineering process and a practitioner's ability to

improve the quality of the software that is produced. Today's metrics or measurement

tools focus on process and product characteristics. Management-oriented tools capture

project specific metrics that provide an overall indication of productivity or quality.

85

Technically oriented tools determine technical metrics that provide greater insight into

the quality of design or code.

• Documentation tools- Document production and desktop publishing tools support

nearly every aspect of software engineering and represent a substantial "leverage"

opportunity for all software developers. Most software development organizations

spend a substantial amount of time developing documents, and in many cases the

documentation process itself is quite inefficient. It is not unusual for a software

development organization to spend as much as 20 or 30 percent of all software

development effort on documentation. For this reason, documentation tools provide

an important opportunity to improve productivity.

• System software tools- CASE is a workstation technology. Therefore, the CASE

environment must accommodate high-quality network system software, object

management services, distributed component support, electronic mail, bulletin boards,

and other communication capabilities.

• Quality assurance tools- The majority of CASE tools that claim to focus on quality

assurance are actually metrics tools that audit source code to determine compliance

with language standards. Other tools extract technical metrics in an effort to project

the quality of the software that is being built.

• Database management tools- Database management software serves as a foundation

for the establishment of a CASE database (repository) that we have called the project

database. Given the emphasis on configuration objects, database management tools

for CASE are evolving from relational database management systems to object

oriented database management systems.

• Software configuration management tools- Software configuration management lies

at the kernel of every CASE environment. Tools can assist in all five major SCM

tasks—identification, version control, change control, auditing, and status accounting.

The CASE database provides a mechanism for identifying each configuration item

and relating it to other items; the change control process can be implemented with the

aid of specialized tools; easy access to individual configuration items facilitates the

auditing process; and CASE communication tools can greatly improve status

accounting.

• Analysis and design tools- Analysis and design tools enable a software engineer to

create models of the system to be built. The models contain a representation of data,

function, and behavior and characterizations of data, architectural, component-level,

86

and interface design. One By performing consistency and validity checking on the

models, analysis and design tools provide a software engineer with some degree of

insight into the analysis representation and help to eliminate errors before they

propagate into the design, or worse, into implementation itself.

• PRO/SIM tools- PRO/SIM (prototyping and simulation) tools provide the software

engineer with the ability to predict the behavior of a real-time system prior to the time

that it is built. In addition, these tools enable the software engineer to develop mock-

ups of the real-time system, allowing the customer to gain insight into the function,

operation and response prior to actual implementation.

• Interface design and development tools- Interface design and development tools are

actually a tool kit of software components (classes) such as menus, buttons, window

structures, icons, scrolling mechanisms, device drivers, and so forth. However, these

tool kits are being replaced by interface prototyping tools that enable rapid onscreen

creation of sophisticated user interfaces that conform to the interfacing standard that

has been adopted for the software.

• Prototyping tools- A variety of different prototyping tools can be used. Screen

painters enable a software engineer to define screen layout rapidly for interactive

applications. More sophisticated CASE prototyping tools enable the creation of a data

design, coupled with both screen and report layouts. Many analysis and design tools

have extensions that provide a prototyping option. PRO/SIM tools generate skeleton

Ada and C source code for engineering (real-time) applications. Finally, a variety of

fourth generation tools have prototyping features.

• Programming tools- The programming tools category encompasses the compilers,

editors, and debuggers that are available to support most conventional programming

languages. In addition, object-oriented programming environments, fourth generation

languages, graphical programming environments, application generators, and database

query languages also reside within this category.

• Web development tools - The activities associated with Web engineering are

supported by a variety of tools for Web App development. These include tools that

assist in the generation of text, graphics, forms, scripts, applets, and other elements of

a Web page.

• Integration and testing tools- In their directory of software testing tools, Software

Quality Engineering defines the following testing tools categories:

o Data acquisition—tools that acquire data to be used during testing.

87

o Static measurement—tools that analyze source code without executing test cases.

o Dynamic measurement—tools that analyze source code during execution.

o Simulation—tools that simulate function of hardware or other externals.

o Test management—tools that assist in the planning, development, and control of

testing.

o Cross-functional tools—tools that cross the bounds of the preceding categories.

o It should be noted that many testing tools have features that span two or more of

the categories.

• Static analysis tools- Static testing tools assist the software engineer in deriving test

cases. Three different types of static testing tools are used in the industry: code based

testing tools, specialized testing languages, and requirements-based testing tools.

Code-based testing tools accept source code (or PDL) as input and perform a number

of analyses that result in the generation of test cases. Specialized testing languages

(e.g., ATLAS) enable a software engineer to write detailed test specifications that

describe each test case and the logistics for its execution. Requirements-based testing

tools isolate specific user requirements and suggest test cases (or classes of tests) that

will exercise the requirements.

• Dynamic analysis tools- Dynamic testing tools interact with an executing program,

checking path coverage, testing assertions about the value of specific variables, and

otherwise instrumenting the execution flow of the program. Dynamic tools can be

either intrusive or nonintrusive. An intrusive tool changes the software to be tested by

inserting probes (extra instructions) that perform the activities just mentioned.

Nonintrusive testing tools use a separate hardware processor that runs in parallel with

the processor containing the program that is being tested.

• Test management tools- Test management tools are used to control and coordinate

software testing for each of the major testing steps. Tools in this category manage and

coordinate regression testing, perform comparisons that ascertain differences between

actual and expected output, and conduct batch testing of programs with interactive

human/computer interfaces. In addition to the functions noted, many test management

tools also serve as generic test drivers. A test driver reads one or more test cases from

a testing file, formats the test data to conform to the needs of the software under test,

and then invokes the software to be tested.

88

• Client/server testing tools- The c/s environment demands specialized testing tools that

exercise the graphical user interface and the network communications requirements

for client and server.

• Reengineering tools- Tools for legacy software address a set of maintenance

activities that currently absorb a significant percentage of all software-related effort.

These tools are limited to specific programming languages and require some degree of

interaction with the software engineer.

5.5 INTEGRATED CASE ENVIRONMENTS
Although benefits can be derived from individual CASE tools that address separate software

engineering activities, the real power of CASE can be achieved only through integration. The

benefits of integrated CASE (I-CASE) include

• Smooth transfer of information (models, programs, documents, data) from one tool to

another and one software engineering step to the next;

• A reduction in the effort required to perform umbrella activities such as software

configuration management, quality assurance, and document production;

• An increase in project control that is achieved through better planning, monitoring,

and communication; and

• Improved coordination among staff members who are working on a large software

Project.

But I-CASE also poses significant challenges. Integration demands consistent representations

of software engineering information, standardized interfaces between tools, a homogeneous

mechanism for communication between the software engineer and each tool, and an effective

approach that will enable I-CASE to move among various hardware platforms and operating

systems. Comprehensive I-CASE environments have emerged more slowly than originally

expected. However, integrated environments do exist and are becoming more powerful as the

years pass.

The term integration implies both combination and closure. I-CASE combines a variety of

different tools and a spectrum of information in a way that enables closure of communication

among tools, between people, and across the software process. Tools are integrated so that

Check Your Progress 3.

Name some CASE tools useful during Testing.

89

software engineering information is available to each tool that needs it; usage is integrated so

that a common look and feel is provided for all tools; a development philosophy is integrated,

implying a standardized software engineering approach that applies modern practice and

proven methods.

To define integration in the context of the software engineering process, it is necessary to

establish a set of requirements for I-CASE: An integrated CASE environment should

• Provide a mechanism for sharing software engineering information among all tools

contained in the environment.

• Enable a change to one item of information to be tracked to other related information

items.

• Provide version control and overall configuration management for all software

engineering information.

• Allow direct, non-sequential access to any tool contained in the environment.

• Establish automated support for the software process model that has been chosen,

integrating CASE tools and software configuration items (SCIs) into a standard work

breakdown structure.

• Enable the users of each tool to experience a consistent look and feel at the

human/computer interface.

• Support communication among software engineers.

• Collect both management and technical metrics that can be used to improve the

process and the product.

To achieve these requirements, each of the building blocks of a CASE architecture must fit

together in a seamless fashion. The foundation building blocks—environment architecture,

hardware platform, and operating system—must be "joined" through a set of portability

services to an integration framework that achieves these requirements.

A CASE environment facilitates the automation of the step-by-step methodologies for software

development. In contrast to a CASE environment, a programming environment is an integrated

collection of tools to support only the coding phase of software development

5.6 THE INTEGRATION ARCHITECTURE

Check Your Progress 4.

Describe the importance of an integrated environment.

90

A software engineering team uses CASE tools, corresponding methods, and a process

framework to create a pool of software engineering information. The integration framework

facilitates transfer of information into and out of the pool. To accomplish this, the following

architectural components must exist: a database must be created; an object management

system must be built; a tools control mechanism must be constructed; a user interface must

provide a consistent pathway between actions made by the user and the tools contained in the

environment. Most models of the integration framework represent these components as layers

as depicted in figure 5.4.

The user interface layer incorporates a standardized interface tool kit with a common

presentation protocol. The interface tool kit contains software for human/computer interface

management and a library of display objects. Both provide consistent mechanisms for

communication between the interface and individual CASE tools. The presentation protocol

is the set of guidelines that gives all CASE tools the same look and feel. Screen layout

conventions, menu names and organization, icons, object names, the use of the keyboard and

mouse, and the mechanism for tools access are all defined as part of the presentation

protocol.

91

Figure 5.4: Architectural model for the integration framework

The tools layer incorporates a set of tools management services with the CASE tools

themselves. Tools management services (TMS) control the behaviour of tools with in the

environment. If multitasking is used during the execution of one or more tools, TMS

performs multitask synchronization and communication, coordinates the flow of information

92

from the repository and object management system into the tools, accomplishes security and

auditing functions, and collects metrics on tool usage.

In essence, software in this layer of the framework architecture provides the mechanism for

tools integration. Every CASE tool is "plugged in to" the object management layer. Working

in conjunction with the CASE repository, the OML provides integration services—a set of

standard modules that couple tools with the repository. In addition, the OML provides

configuration management services by enabling the identification of all configuration objects,

performing version control, and providing support for change control, audits, and status

accounting. The shared repository layer is the CASE database and the access control

functions that enable the object management layer to interact with the database.

5.7 THE CASE REPOSITORY
Webster's Dictionary defines the word repository as "anything or person thought of as a

centre of accumulation or storage." During the early history of software development, the

repository was indeed a person—the programmer who had to remember the location of all

information relevant to software project, who had to recall information that was never written

down and reconstruct information that had been lost. Sadly, using a person as "the centre for

accumulation and storage", does not work very well. Today, the repository is a "thing"-a

database that acts as the centre for both accumulation and storage of software engineering

information. The role of the software engineer is to interact with the repository using CASE

tools that are integrated with it.

The Role of the Repository in CASE

The repository for a CASE environment is the set of mechanisms and data structures that

achieve data/tool and data/data integration. It provides the obvious functions of a database

management system, but in addition, the repository performs or precipitates the following

functions:

• Data integrity includes functions to validate entries to the repository, ensure

consistency am

Check Your Progress 5.

How user interface layer works?

93

• ong related objects, and automatically perform "cascading" modifications when a

change to one object demands some change to objects related to it.

• Information sharing provides a mechanism for sharing information among multiple

developers and between multiple tools, manages and controls multiuser access to data

and locks or unlocks objects so that changes are not inadvertently overlaid on one

another.

• Data/tool integration establishes a data model that can be accessed by all tools in the

I-CASE environment, controls access to the data, and performs appropriate

configuration management functions.

• Data/data integration is the database management system that relates data objects so

that other functions can be achieved.

• Methodology enforcement defines an entity-relationship model stored in the

repository that implies a specific paradigm for software engineering; at a minimum,

the relationships and objects define a set of steps that must be conducted to build the

contents of the repository.

• Document standardization is the definition of objects in the database that leads

directly to a standard approach for the creation of software engineering documents.

Types of Things to be stored:

The types of things to be stored in the repository include:

• The problem to be solved.

• Information about the problem domain.

• The system solution as it emerges.

• Rules and instructions pertaining to the software process (methodology) being

followed.

• The project plan, resources, and history.

• Information about the organizational context.

Case Repository Contents:

• Enterprise information

o Organizational structure

o Business area analyses System

o Business functions

o Business rules

94

o Process models (scenarios)

o Information architecture

• Application design

o Methodology rules

o Graphical representations

o System diagrams

o Naming standards

o Referential integrity rules

o Data structures

o Process definitions

o Class definitions

o Menu trees Estimates;

o Performance criteria

o Timing constraints

o Screen definitions

o Report definitions

o Logic definitions

o Behavioural logic

o Algorithms

o Transformation rules

• Construction

o Source code; Object code

o build instructions

o Binary images

o Configuration dependencies

o Change information

• Validation and verification

o Test plan; Test data cases

o Regression test scripts

o Test results

o Statistical analyses

o Software quality metrics

• Project management information

o Project plans

95

o Work breakdown structure

o Schedules

o Resource loading; Problem reports

o Change requests; Status reports

o Audit information

• System documentation

o Requirements documents

o External/internal designs

o User manuals

The DBMS features in CASE:

• Non-redundant data storage

• High-level access

• Data independence

• Transaction control

• Security

• Ad hoc data queries and reports

• Openness

• Multiuser support

The special features of CASE:

• Storage of sophisticated data structures.

• Integrity enforcement.

• Semantics-rich tool interface.

• Process/project management.

5.8 SUMMARY
In this chapter we discuss about the CASE tools, uses and application area of CASE tools,

CASE environment, CASE Repository. All aspects of the software development life cycle

can be supported by software tools, and so the use of tools from across the spectrum can,

Check Your Progress 6.

What are the functions performed by repository in an integrated CASE environment.

96

arguably, be described as CASE; from project management software through tools for

business and functional analysis, system design, code storage, compilers, translation tools,

test software, and so on.

5.9 EXERCISE
1) What is CASE and CASE tools? Why we use CASE tool.

2) What is CASE environment? Differentiate CASE environment and a programming environment.

3) Explain the Benefits of CASE.

4) Write short notes on CASE Repository.

5) How the CASE tools are classified.

6) What are the advantages and drawbacks of CASE?

