APPENDIX-I

Academic Year 2023-24

Detailed Programme Structure & Syllabus

Year wise Structure of M.Sc. in Computer Science

Year	Semester	er Course Code		Paper Title	Type of Course	Max. Marks	Credits
		MCS-101N		Discrete Mathematics	Theory	100	1
		MCS 1011		C + c and Object oriented programming	Theory	100	4
	1			C++ and Object-oriented programming	Theory	100	4
		MCS-103N		Data Structures	Theory	100	4
Einst		MCS-104P		Practical Work (Based on 102 & 103)	Practical	100	4
FIISt		PGBR-01		Basics in Research	Research	100	4
		MCS-106N	[Computer Organization	Theory	100	4
	_	MCS-108N	ſ	Data Communication and Computer Networks	Theory	100	4
	2	MCS -109N	1	Database Management System	Theory	100	4
		MCS -110F)	Practical Work (Based on 109)	Practical	100	4
		PGMP-02		Mini Project	Mini Project	100	4
		MCS-111N		Design and Analysis of Algorithm	Theory	100	4
	3	MCS-112N		Java Programming	Theory	100	4
		MCS-113N		Operating System	Theory	100	4
		MCS-115P		Practical Work (Based on 111 & 112)	Practical	100	4
Second		PGRT-03		Basic Research Tools	Research	100	4
		Compulsory Core Paper					
		MCS-117N		Soft Computing	Theory	100	4
		MCS-121D)	Dissertation with viva voce	Research	100	4
		Select any	one group (G	ROUP A OR GROUP B)			
		Group A	MCS-116N	Computer Graphics	Theory	100	4
	4		MCS-114N	Multimedia Technology	Theory	100	4
			MCS-119N	Information and Network Security	Theory	100	4
				OR			
		Group B	MCS-104N	Software Engineering	Theory	100	4
			MCS-107N	Theory of Computation	Theory	100	4
			MCS-120N	System Software	Theory	100	4
	Total Credit/Max. Marks20080						

Syllabus for M.Sc. in Computer Science

Programme: M	laster of Science	Year: First	Semester: I	
Subject:Computer Science				
Course Code: I	MCS-101N	Course Title: Discrete Mathematics		
Course Objecti	Course Objectives: This course provide students understand discrete objects such as proofs, sets, graphs			
colorings, alge	colorings, algebraic structures and algorithms that arise naturally and frequently in many areas of			
mathematics an	nd computer science. It develops a sou	und understanding	of these discrete objects to solve	
problems arisin	ng in computer science.			
Course Outcon	nes:			
COI Apply ma	athematical logic to solve problems.	fundamental math	competized concepts such as sets	
relations and f	Sunctions		ematical concepts such as sets,	
CO3 Understa	nd and apply counting techniques to the	ne representation a	nd characterization of relational	
concepts.	na and apply counting teeninques to a	ie representation a		
CO4 Impart fo	oundations of probabilistic theory whic	h is mostly used ir	varied applications in engineering	
and science.	· ·	•		
Credits: 04		Type of Course:	Core	
Max. Marks: 1	00	Min. Passing Ma	rks: 36	
Block 1	Language of Mathematics and its	application		
Unit 1	Mathematical Logic: statements	parations truth val	use toutology and quantifiers	
	Arguments: Rule of Detachment V	alidity of a compo	und statement by using Truth Table	
Unit 2	Validity using Simplification Metho	ds Validity using	Rules of Inference Invalidity of an	
Clift 2	Argument, Indirect Method of proof	and Proof by Cou	nter-Example.	
	Boolean Algebra: Boolean Algebra, Principle of Duality, Isomorphic Boolean Algebras,			
Unit 3	Boolean Algebra as Lattices, Boolean Functions, Disjunctive Normal Form, Conjunctive			
	Normal Form, Minimization of Boolean Functions (Karnaugh Map)			
Unit 4	Switching circuits and logical Ci	rcuits: Switching	Circuits, Simplification of circuit,	
	Non-Series Parallel Circuits, Relay Circuits, Logic Circuits		cuits	
Block 2	Set theory and its application			
Unit 5	Set theory: sets, Subsets, Operations on Sets, Complementation, Intersection and Union,			
	Laws Relating Operations, Distribut	ive Laws and De N	lorgan's Laws.	
	number of Distinct Relations Rela	s III a Sel, Dollial	In and Range of a Relation, Total	
Unit 6	Composition of Relations, Equivalence relation in a set Partition of a Set Equivalence			
	Class and Ouotient set of a set.			
TT : 7	Partitions and Distributions: Equi	valence Relations,	Equivalence Classes, Properties of	
Unit /	Equivalence Classes, Quotient set and Partition.			
	Function: Functions Direct and	Inverse image	Inverse Eurotions Operations on	
Unit 8	Function: Functions, Direct and Inverse image, Inverse Functions, Operations on Euleristic Composite of functions, Types of Euleristics, and Connection between			
Unit 8	Functions, Composite of Function Equivalence relation and mapping	is, Types of Tu	ictions and connection between	
-day around to make with web.				
Block 3	Counting Process			
Unit 9	Mathematical Induction: Princip	le of Mathematica	al Induction, Second Principle of	
	Induction and Well ordering propert	y.	f Disimating counting Driveight 6	
Unit 10	Combinatorics: Basic counting print	d Unordered Dortit	i Disjunctive counting, Principle of	
Unit 11	Permutation		10115.	

Unit 12	Combination	
Block 4	Block – 04: Probability theory and application	
Unit 13	Binomial theorem: Binomial theorem, General term in a binomial expansion, Middle term	
01111 15	in a binomial expansion and Binomial expansion for rational exponents.	
Unit 14	Probability: Definition of Probability, Addition law for counting and Product law for	
	counting.	
Unit 15	General Counting methods: General Counting method is the extension part of counting	
	process. It discusses Sum and Product Rules and the Pigeonhole Principle.	
Unit 16	The Inclusion- Exclusion Principle: inclusion-exclusion principle, Alternative form of	
	the inclusion-exclusion principle and Onto Functions.	
Suggested Readings:		
1. C.L.Liu	and D.P.Mohapatra, " Elements of Discrete Mathematics: A Computer Oriented Approach",	
Mcgraw	Hill, Third Edition, 2012.	
2. Kenneth	H. Rosen, "Discrete Mathematics and Its Applications" Mcgraw Hill, Seventh Edition, 2012	
(Indian Adaptation by Kamala Krithivasan, Iit Madras).		
Suggested onli	ne courses (MOOCs)	
1. NOC:Di	screte Mathematics, IIT Ropar, Prof. Prabuchandran K.J, Prof. Sudarshan Iyengar;	
https://nj	ptel.ac.in/courses/106106183	
2. NOC:Discrete Mathematics, IIT Guwahati, Prof. Benny George K, Prof. Sajith Gopalan		
https://nptel.ac.in/courses/106103205		
This course can be opted as an elective by the students of following subjects: B.Sc. in Computer		
Science, B.Sc. in Physics, B.Sc. in Statistics, BCA		
Suggested equ	ivalent online courses (MOOCs) for credit transfer: N.A.	

Programme: M	Iaster of Science	Year: First	Semester: I	
Subject: Computer Science				
Course Code: MCS-102N		Course Title: C++ and programming	nd Object-oriented	
Course Objectives: This course aims to offer a practical mastery of object-oriented concepts such as				
classes, objects, data abstraction, methods, method overloading, inheritance and polymorphis			e and polymorphism.	
Course Outcomes:				
CO1 Develops	s a sound approach to problem solving	using a middle level p	programming language.	
CO2 Apply tec	chniques like recursion and iteration a	re learnt to solve a pro	blem.	
CO3 Build pro	ogramming concepts like pointers, stru	ctures.		
Credits: 04		Type of Course: Core		
Max. Marks: 1		Min. Passing Marks: 36		
Block 1	BLOCK - 1		· · · · ·	
TT 1 1	Principles of object-oriented prog	gramming: Object or	icnted programming paradigm,	
Unit I	Comparison with procedural pr	rogramming, Basic	concepts of object-oriented	
	programming, benefits of OOP, object	ct-oriented Languages	, advantage of C++.	
Unit 2	Object Orient Programming Syste	em: Class, inneritance	, abstraction, encapsulation and	
	Advensed concent: Dynamicm (Dyn	overioaunig.	a hinding late hinding dynamic	
Unit 3	Advanced concept: Dynamism (Dynamism)	ability organizing abi	c binding, fate binding, dynamic	
Block 2	Toading). Structuring programs, reus	BIOCK 2	ect-offented project,	
DIUCK 2	Overview of City Tekens keywe	rds identifiers and or	onstants basic data typos usor	
Unit 4	defined and derived Data types to	vne compatibility ref	arance variables type Casting	
Omt 4	operator precedence, control structures, structure, function			
	Classes and objects: Class specific	cation class objects	· accessing class members scope	
	resolution operator, data hiding, empty classes, Pointers within a class, passing objects as			
Unit 5	arguments, returning objects from functions, friend Functions and friend classes, constant			
	parameters and member functions, structures and Classes, static members.			
	Object initialization and cleanup: (Constructors destructor	r, constructor overloading. order	
	of construction and destruction, Constructors with default arguments, nameless objects,			
Unit 6	dynamic initialization through Constructors, constructors with dynamic operations,			
Unit 0	constant objects and constructor, static Data members with constructors and destructors,			
	nested classes.			
Block 3		BLOCK - 3		
TT 1. 7	Operator overloading and type co	nversion: Defining op	perator overloading, overloading	
Unit 7	unary operators, overloading binary operators, overloading binary operators using friends,			
	manipulation of strings using Operat	ors, rules for overload	ing operators, type conversions.	
	historia historia historia con	eriving derived class	es, single multilevel, multiple,	
Unit 8	nierarchical, hybrid inheritance, Constructors & destructors in derived classes, constructors			
	delegation	illanzation, viituai t	Jase classes, abstract classes,	
Block 4		BLOCK.4		
DIOCK 4	Pointers, virtual functions and pol	vmornhism: Pointers	to objects this pointer pointers	
Unit 9	to derived classes, virtual function	s. Implementation of	run-time polymorphism, pure	
	virtual functions.			
	Working with files: Classes for fi	le stream operations.	opening and closing a file, file	
Unit 10	pointers and their Manipulations, se	equential input and ou	atput operations, error handling	
	during file Operations, command lin	e arguments.	• • · · · · · · · · · · · · · · · · · ·	

Unit 11	Object Oriented Modeling: Need of object-oriented Modeling, Simulation of real-life
	problems using OOP concept: Example, Representation of problem using object and class
	diagrams at design level.

Suggested Readings:

- 1. The C++ Programming Language by Bjarne Stroustrup, 2013.
- 2. Programming: Principles and Practice Using C++ by Bjarne Stroustrup, 2014
- 3. The C Programming Language (Ansi C Version) by Brian W. Kernighan and Dennis M. Ritchie, 1990.
- 4. The C Programming Language by Brian W. Kernighan and Dennis M. Ritchie, 2015
- 5. Oriented Object-Oriented Programming with C++ by Balaguruswamy, TMH

Suggested online courses (MOOCs)

- 1. NOC: An Introduction To Programming Through C++, IIT Bombay by Prof. Abhiram G Ranade https://nptel.ac.in/courses/106101208
- 2. Programming in Modern C++, IIT Kharagpur By Prof. Partha Pratim Das https://onlinecourses.nptel.ac.in/noc23_cs50/preview

This course can be opted as an elective by the students of following subjects: **BCA** Suggested equivalent online courses (MOOCs) for credit transfer: N.A

Programme: N	laster of Science	Year: First	Semester: I		
Subject: Computer Science					
Course Code: MCS-103N Course Title: Data Structures					
Course Object	ives: The objective of the course is to	familiarize students	with basic data structures and		
their use in fur	damental algorithms.				
Course Outcomes:					
CO1: Underst	and basic data structures such as array	s, strings, and linke	1 lists.		
CO2: Study lin	near data structures such as stacks and	l queues and underst	and their difference.		
CO3: Describe	e the hash function and concepts of co	llision and its resolu	tion methods.		
CO4: Study tr	ee, heap and graphs along with their b	asic operations.			
CO5: Study different techniques for solving problems like sorting and searching			earching		
Credits: 04		Type of Course: C	Core		
Max. Marks: 1	00	Min. Passing Mar	ks: 36		
Block 1		BLOCK - 1			
	Introduction to data structure: Al	lgorithm, Basic crite	ria for algorithms, Data type, Data		
Unit 1	structure, Data representation, linear	r and nonlinear data	structure.		
Unit 2	Basics of algorithm: Algorithm, Ba	asics of complexity of	of algorithm		
11.4.2	Array: Definition, Representation	of array, Single and	multi-dimensional array, address		
Unit 3	calculation (one dimensional, two d	imensional, multidir	nensional), sparse matrices		
Block 2	BIOCK – 2				
	Stack: Definition, Operations on stacks, Array representation and implementation of stack;				
Unit 4	infix, prefix and postfix represent	ation of expression	and evaluation multiple stacks,		
	Application of stacks.				
Unit 5	Recursion: Recursive definition and processes, some named problems of recursion,				
01111 0	principle of recursion: designing recursive algorithm, how recursion works, tail recursion.				
Unit 6	Queue: Definition, operation on queues, circular queue, dequeue, priority queue,				
Application of queue.					
Block 3		BLOCK 3			
	Linked List: Representation and in	mplementation of si	ngle linked list, Operations in the		
Unit 7	singly linked list, stack and queue as a linked list, circularly linked list, doubly linked list,				
	circularly doubly linked list, Application of linked list: polynomial representation and addition garbage collection				
	Tree • Basic terminology binary to	ree hinary tree ren	resentation complete binary tree		
	extended binary tree array and link	ed list representation	is traversing binary tree, threaded		
Unit 8	binary tree, binary search tree, Operations on BST AVL tree Operations on AVL tree B-				
	tree Insertion and deletion in B tree.				
	Graph: Basic terminology Graph	representation Depth	first search, breadth first search,		
	topological sort, connected compo	onents, spanning tre	e, minimum cost spanning tree,		
Unit 9	Kruskal's and prim's algorithm, Shortest path algorithms: Bellman Ford Algorithm,				
	Dijkstra's algorithm, Floyd-Warsha	ll algorithm.	_		
Block 4		BLOCK-4			
	Searching and sorting: Sequenti	al search, binary s	earch, comparison and analysis,		
Unit 10	Selection sort, Bubble sort, Insertio	on sort, Heap sort, Q	Quick Sort, Merge sort, Shell sort,		
	radix sort.				
Unit 11	Hashing: Hash table, hash fur	nction, collision re	esolution strategies, hash table		
	implementation.				
Unit 12	File Structure: Terminology, File of	organization, Sequer	tial files, Direct File organization,		
	Indexed Sequential file organization	1.			

Suggested Readings:

- 1. E Horowitz and S. Sahni: Fundamentals of Data Structures in C, Second Edition, Universities Press, Hyderabad.
- 2. R.L. Kruse: Data Structures & Program Design in C, PHI.

Suggested online courses (MOOCs)

- 1. Programming and Data Structure, IIT Kharagpur by Dr. P.P.Chakraborty https://nptel.ac.in/courses/106105085
- 2. NOC:Programming and Data structures (PDS), IIT Madras by Dr. N S. Narayanaswamy https://nptel.ac.in/courses/106106130
- NOC:Programming, Data Structures and Algorithms, IIT Madras by Prof. Hema A Murthy, Dr. N S. Narayanaswamy, Prof. Shankar Balachandran <u>https://nptel.ac.in/courses/106106127</u>
- 4. Data Structures And Algorithms, IIT Delhi by Prof. Naveen Garg https://nptel.ac.in/courses/106102064

This course can be opted as an elective by the students of following subjects: **B.Sc. in computer science, B.Sc. in Statistics, BCA**

Suggested equivalent online courses (MOOCs) for credit transfer: N.A

Prog	ramme: Master of Science	Year: First	Semester: I		
Subj	ject: Computer Science	·			
Cou	rse Code: MCS-104P	Course Title: Data	Structures and C++ Lab		
Cou	rse Objectives: The aim of this cou	rse is to enhance pro	gramming skills while improving their practical knowledge of		
data	structures. It strengthens the pract	ical ability to apply s	uitable data structures for real-time applications.		
Cou	rse Outcomes:				
COI	I Implement the abstract data type	and reusability of a p	articular data structure.		
CO_2	Implement linear data structures	such as stacks, queue	s using array and linked list.		
CO_{1}	Implement various kinds of search	hing sorting and tray	such as frees, graphs.		
Cred	lits: 04	ning, sorting and trav	Type of Course: Practical Lab		
Max	Marks: 100		Min Passing Marks: 36		
List	of Practical in Data Structures I	Lab with C++:			
1.	Implementation of Stacks, Queue	s (using both arrays a	nd linked lists).		
2.	Implement a program to evaluate	a given postfix expre	ssion using stacks.		
3.	Implement the following operations on singly and circular linked list: i) Creation ii) Insertion iii) Deletion iv)				
	Traversal				
4.	Implementation of operations on binary tree (delete entire tree, copy entire tree, mirror image, level order, search for				
	a node etc.)				
5.	Implementation of the following operations on binary search tree (BST): (a) Minimum key (b) Maximum key (c)				
	Search for a given key (d) Delete a node with given key				
6.	Implementation of graph traversals by applying: (a) BFS (b) DFS				
7.	Implement the following algorithm	ms to find out a mini	num spanning tree of a simple connected undirected graph:		
	(a) Prim"s algorithm (b) Kruskal	's algorithm			
8.	Implement Dijkstra"s algorithm f	or solving single sour	ce shortest path problem.		
9.	Implementation of recursive and	non-recursive functio	ns to perform the following searching operations for a key		
	value in a given list of integers: i)	Linear search ii) Bir	ary search		
10.	Implement the following sorting	algorithms: a) Bubble	sort b) Selection sort c) Insertion sort (d) Merge sort (e)		
	Ouick sort (f) Heap sort	<i>8 , </i>			
11.	Write a C++ program to illustrate	the concept of class	with method overloading.		
12.	Write a C++ Program that reads a	line of integers, and	then displays each integer, and the sum of all the integers		
	(Use String Tokenizer class of jay	za util)			
13	Write a C_{++} program to illustrate	the concept of Single	e level and Multi level Inheritance		
14	Write a $C++$ program to demonst	rate the Interfaces &	Abstract Classes		
14.	while a $C + +$ program to implement the concept of execution handling				
1.J.		in the concept of exc			

Suggested Readings:

1. Virtual Lab on Data Structure: https://ds1-iiith.vlabs.ac.in/

Programme: Master	of Science	Year: First	Semester: I	
Subject: Computer S	cience			
Course Code: PGBR	-01	Course Title: Basics in Research		
Course Objectives:				
To discuss the	ne Sources of information			
To discuss a	To discuss about <i>journal abbreviations</i>			
To discuss the monographs, dictionaries, text books etc.				
Course Outcomes:				
CO1 Able to learn about how to get information of research.				
CO2 Learn about jou	irnal and article and research manua	als		
CO3 Able to know the	he role of primary, secondary and te	ertiary sources of in	nformation.	
CO4 Gain knowledg	e about abstract and citation index.			
CO5 Also know abo	out digital web resources			
Credits: 04		Type of Course: Co	ore	
Max. Marks: 100		Min. Passing Mark	as: 36	
(Syllabi sł	ould be framed block wise/unit wi	ise; No of blocks ar	nd units may change)	
	Literature Survey			
	Sources of information, need for revi	lewing literature, prin	nary-secondary and tertiary sources,	
TT '/ T	journals, journal abbreviations, abstra	acts, current titles, rev	views, monographs, dictionaries, text	
Unit I	Init I books, current contents, patents. subject index, substance index, author index, formula in		E index, author index, formula index	
	and other indices with examples. Digital: Web resources, E-journals, journal access, TOC			
	Google scholar Wiki-databases Science Direct SciFinder Scopus			
Unit II	Ethics and IPR			
	Regulatory bodies, practices and compliances, Good Laboratory Practices (GLP). Research			
	Ethics and Misconduct, Patents, Copyrights, Trademarks, Product and process of patenting,			
	Patent Treaties and Convention, process of filing patent. database of patent. search and			
	retrieval.			
	Suggested Text Book Deadings			
	1 Use different searching engi	s. ne to get relevant inf	formation (Google scholar, chemical	
	industry Wiki-databases ch	em Spider Science I	Direct SciFinder Scopus	
	2. Access to different online ro	esearch library and	research portal (Web resources E-	
	iournals iournal access TOC alerts)			
Note:- In this paper,	learner itself study the UNITS and p	repare a report.		
Instructions for submit	ting the reports			
1. 02 copies of Report	will be submitted by learner to the study (center.		
2. The evaluation will be in 100 marks.				
3. Internal assessment will be done by the counsellor of the study center under 30 percent marks and upload the marks to				
the university portal which is provided by examination department.				
4. The coordinator of s	tudy center will send a one copy of report	t along with the print o	opy of uploaded internal marks (30	
marks) to the concerned school for external evaluation. The external evaluation will be in 70 marks within the stipulated				
date.				
5. The concerned scho	ol will send the external marks of evaluate	ed reports to the exam	ination department and also upload it	
on university portal.				
0. The guideline for preparing report is available at link:				
nttp://14.139.237.19	http://14.139.237.190/vc_school_main_page.php?slm=1&contid=206			

Programme: M	Iaster of Science	Year: First	Semester: II		
Subject: Computer Science					
Course Code:	MCS-106N	Course Title: Computer	Organization		
Course Object	ives: The course aim to provide unders	tanding the basic structure	of a digital computer and		
to study the op	perations of internal components.	-			
Course Outcor	nes:				
CO1 Assess ba	asics components of computer hardwa	re.			
CO2 Understa	nd how Boolean algebra is related to de	esigning computer logic, the	rough simple combinational		
and sequential	logic circuits.				
CO3 Realize a	simple computer with hardware desig	n including data format, ins	struction format, instruction		
set, addressing	g modes, bus structure, input/output, n	nemory, Arithmetic/Logic	unit, control unit, and data,		
instruction and	l address flow.				
CO4 Design	combinational and sequential logic	circuits, flip-flops, counte	ers, shift registers, adders,		
substractor, m	ultiplexer, demultiplexer, Arithmetic/L	Logic unit.			
CO5 Develop	concept of memory unit and input/out	put architecture.			
CO6 Build bas	sics of Instruction Set Architecture (IS	A).			
Credits: 04	00	Type of Course: Core			
Max. Marks: 1		Min. Passing Marks: 36			
Block I	Introduction to Digital Electronics	5	1.00		
Unit 1	Introduction to number system: bi	inary, octal, hexadecimal, l	nter-conversion to different		
	number system.				
Unit 2	Boolean algebra and Logic Gates	: De Morgan's theorem, B	oolean Identity. OR, AND		
	NOT NAND, NOR and EX OR gate	s and their Truth Tables, Po	Solutive and Negative logic.		
Linit 2	Reduction Techniques: Standard f	epresentation of Boolean e	expressions, SOP and POS		
Unit 5	forms, Combinational and sequential circuits, Minterm and Maxterm expressions, Map				
	reduction techniques, K- tap. Code Conversions: Binary to Gray, BCD to decimal etc.				
Unit 4	Binary Arithmetic: Half and Full Adder, Substractor, Multiplexer, Demultiplxer,				
Unit 5	Sequential Circuit: Elip Elops: S/P	I/K D and T L atches Div	gital Counters Registers		
Block 2	Deguenual Orcuit: Flip Flops: S/K, J/K, D and I Latenes, Digital Counters, Registers.				
Unit 6	Dasic building blocks Ruilding blocks: I/O Momory ALU and its components. Control Unit and its functions				
	Instruction — word Instruction and	d Execution cycle branch	skin jump and shift		
Unit 7	instruction — word, instruction and Execution cycle, branch, skip, jump and shift instruction. Operation of control registers: Controlling of arithmetic operation				
	Addressing techniques — Direct Indirect Immediate Relative Indexed addressing and				
	naging Registers —Indexed Gene	ral purpose Special purp	ose overflow carry shift		
Unit 8	scratch. Memory Buffer register: accumulators: stack pointers: floating point: status				
	information and buffer registers.				
Block 3	k 3 Memory & I/O				
	Memory: Main memory, RAM, stat	ic and dynamic, ROM, EPI	ROM, EEPROM, EAROM,		
Unit 9	Cache and Virtual memory.	, , , , , , , , , , , , , , , , , , ,	- , - , - ,		
11 1 10	I/O System: Buses, Interfacing buse	es, Bus formats- address, da	ata and control, Interfacing		
Unit 10	keyboard, display, auxiliary storage	devices and printers.			
	Introduction to Microprocesso	rs and microcontroller	s; Introduction to 8085		
Unit 11	microprocessor, example of few	instructions to understan	nd addressing techniques,		
	differences between microprocesso	ors and microcontrollers.	Interlocution to different		
	processor families.				
Suggested Re	eadings:				
1. William	Stallings, "Computer Organization and	nd Architecture", 9th Editio	on, PHI,2012		

- 2. M. Morris Mano, Michael D. Ciletti, "Digital Design", 4th Edition, Pearson Education, 2011.
- 3. Hennessy J. and Patterson D., "Computer Architecture: A Quantitative Approach", 5th Edition, Morgan Kaufmann, 2011.

- 1. Digital Computer Organization, IIT Kharagpur by Prof. P.K. Biswas https://nptel.ac.in/courses/117105078
- NOC:Computer architecture and organization, IIT Kharagpur by Prof. Indranil Sengupta, Prof. Kamalika Datta

https://nptel.ac.in/courses/106105163

- 3. NOC:Computer Organization and Architecture, IIT Madrasby Prof. V. Kamakoti <u>https://nptel.ac.in/courses/106106166</u>
- 4. Computer Organisation and Architecture, IIT Kanpurby Prof. Bhaskaran Raman <u>https://nptel.ac.in/courses/106104073</u>

This course can be opted as an elective by the students of following subjects: **B.Sc. in computer science, BCA**

Suggested equivalent online courses (MOOCs) for credit transfer: N.A

Programme: M	laster of Science	Year: First	Semester: II	
Subject: Computer Science				
Course Code: I	MCS-108N	Course Title: Data Comm	nunication and	
	Computer Networks			
Course Objectives: This course offers students an understanding of how machines are connected in				
network and how data communication takes place between machines at various locations. I				
provides basic concepts of data communication, layered model, protocols and interworking between				
computer networks and switching components in telecommunication systems.				
Course Outcon	nes:			
CO1 Explain b	pasics of OSI Reference Model and TO	CP/IP Model.		
CO2 Understan	nd basics of computer networks and v	arious network topologies.		
CO3 Understa	nd various protocol of data link lay	er for flow and error contr	ol such as Stop and wait	
protocols, One	bit sliding window protocol, Using G	o-Back N.		
CO4 Describe	different types of network devices Hu	b, Bridges, Switch, Gateway	ys, and Routers along with	
CO5 Dealize h	our post of being transformed from a	owned to destination DC		
COS Kealize II	ow packet is being transferred from so ad the knowledge of network manager	mont and communication su	witching techniques	
Credits: 04	nd the knowledge of network manager	Type of Course: Core	vitening teeninques.	
Max Marks 1	00	Min Passing Marks: 36		
Block 1		Will. I dooling Wildiks. 50		
DIOCK I	Computer Networks Basics			
	Introduction: Layered network architecture, Review of ISO-OSI Model. Data			
	Communication techniques: Pulse code Modulation, (PCM), Data modems, Multiplexing			
	techniques Frequency-Division, Time-Division, Time-Division Transmission Media-			
	Wires, Cables, Radio, Links, Fiber-Optic Links.			
	Asynchronous Transfer Mode (ATM); Cell Format, Layovers in ATM, Class 1,2,3,4			
	Traffic Random Access Data Networks, Concept of Random Access, Pure ALOH		n Access, Pure ALOHA;	
	Throughput Characteristics Slotted ALOHA, Throughputs for Finite and Infin		for Finite and Infinite,	
	Population S- ALOHAS. MARKOV Chain Model for S- ALOHAS. Throughputs for Fir			
	and Infinite, Population S- ALOHA	S. MARKOV Chain Model	tor S-ALOHA.	
Block 2	Data Link layer			
	Local Area Networks (LANs): IEEE	E 802.4 and 802.5 Protocols	. Performance of Ethernet	
	and Token ring protocols, FDDI Pro	tocol, Distributed Queues D	ual Bus (DQDB) Protocol.	
	Data Link Protocols: Stop and	wall Protocols: Noise Fi	te and Noisy Channels	
	Data Link Protocol	ation of protocols using Fin	ne State Marching. HDLC	
Block 3	Network & Transport I aver			
DIOCK 5	Network Layer Protocols: Design is	sue: Virtual circuits and Dat	aoram	
	Integrated Services Digital Network	· Interfaces Devices Chan	nel Structure Dead Locks	
	and their avoidance Network Lav	er in ATM Internetworki	ng. Bridges Routers and	
	Gateways. Internet Architecture and	Addressing.	ig. Diagos, Roaters and	
	Transport Layer Protocols: Design	issues: Quality of Service	es, Primitives Connection	
	Management: Addressing, Connecti	on Establishment and Relea	ases, Use of Timers, Flow	
	Control and Buffering, Multiplexing	, Crash Recovery.		
Block 2	Upper Layer Protocols	<u>*</u>		

Routing Algorithms: Optimality Principle, Shortest Path Routing- Dijkstra, Bellman – Ford and Floyd- War shall Algorithm.
Elements of TCP/IP Protocol: User Datagram Protocol Connection Management, Finite State Machine.
Session Layer Protocols: Dialog Management, Synchronization, OSI Session Primitives Connection Establishment, Presentation and Application Layer Protocols: Presentation Concepts NMP- Abstract Syntax Notation-1 (ASN-1), Structure of Management, Management Information Base.

Suggested Readings:

- 1. HBehrouz A. Forouzan, Data Communications and Networking, McGraw Hill, 2006
- 2. A.S. Tanenbaum, Computer Networks, PHI, 2002

Suggested online courses (MOOCs)

- 1. Data Communication, IIT Kharagpur by Prof. Ajit Pal <u>https://nptel.ac.in/courses/106105082</u>
- 2. NOC:Computer Networks and Internet Protocol, IIT Kharagpur by Prof. Soumya Kanti Ghosh, Prof. Sandip Chakraborty
- https://nptel.ac.in/courses/106105183
- 3. NOC:Advanced Computer Networks, IIT Indore, IIT Gandhi nagar by Prof. Neminath Hubballi, Prof. Sameer Kulkarni

https://nptel.ac.in/courses/106106243

This course can be opted as an elective by the students of following subjects: **BCA**, **MCA** Suggested equivalent online courses (MOOCs) for credit transfer: N.A

II				
t System				
banking,				
ne basis for				
to provide				
•				
ost efficient				
pts, including				
ER diagrams				
C				
uple calculus,				
-				
iguage (SQL).				
ase anomalies				
and recovery.				
Credits: 04 Type of Course: Core				
Max. Marks: 100 Min. Passing Marks: 36				
f the Database				
concepts and				
Architecture. Data Models. Schemes and Instances. DBMS Architecture and Data				
independence, Database Languages, Procedural and Non-procedural languages and				
Management				
C				
nceptual Data				
s, Entity Sets,				
Attributes and keys, Relationships, Relationship types, roles and Structural Constraints.				
Week Entity types, Refining the ER Design for the Company Database, ER Diagrams,				
Databases and				
perations and				
L				
Query Language and Database Design Concepts				
nd Relational				
ns, Relational				
: cor a				
ges in SOL 2.				
ges in SQL 2, Statements in				
Statements in SQL 2, Statements in SQL 2.				

Unit 6	Functional Dependency Theory: Functional Dependencies and Normalization for			
Unit 0	Relational Database, Informal Design Guidelines for Schemes, Functional Dependencies.			
	Normalization: Normal Forms based on Primary keys, General Definitions of Second			
	and Third Normal forms, Boyce Codd Normal form, Relational Database Design			
Unit 7	Algorithms and Further Dependencies, Algorithms for Relational Database Schema			
	Design, Multi-valued Dependencies and Fourth Normal Form, Join Dependencies and			
	Fifth Normal Form, Inclusion Dependencies, Other Dependencies and Normal Forms.			
Block 3	Transaction Management & Emerging Databases			
	Transaction Processing Concepts: Introduction to Transaction Processing, Transaction			
	and System Concept, Desirable properties of Transactions, Scheduling and Recoverability,			
	Serializability of Scheduling, Transaction Support in SQL, Concurrency control			
Unit 8	techniques, Concurrency techniques for concurrency control, concurrency control based on			
	timestamp based protocol, validation based protocol, deadlock handling, Database			
	Recovery Techniques based on Immediate Update, Failure classification, Shadow Paging,			
	Log based recovery, failure with loss of Nonvolatile Storage.			
	Emerging Trends in DBMS: Emerging Trends in DBMS: Introduction to object-oriented			
Unit 9	Database Management System, Introduction to client/Server Database, Introduction to			
	Distributed Database, Introduction to Knowledge Databases.			
Suggested Readings:				
1. R Elmasri, S Navathe, Fundamentals of Database Systems, 6th edition, Addison-Wesley,				
2. R Ramakrishnan, J Gehrke, Database Management Systems, 3rd Ed., McGraw-Hill, 2002				
3. A Silbe	erschatz, H Korth and S Sudarshan, Database System Concepts, 6th Ed., McGraw-Hill, 2010.			
Suggested onli	ne courses (MOOCs)			
1. NOC: D	ata Base Management System, IIT Kharagpur by Prof. Partha Pratim Das Prof. Samiran			
Chattopa	ndhyay Prof. Kausik Datta			
https://n	ptel.ac.in/courses/106105175			
2. NOC:Int	roduction to Database Systems, IIT Madras by Prof. P.Sreenivasa Kumar			
https://n	ptel.ac.in/courses/106106220			
3. NOC: Fundamentals of Database Systems (Course sponsored by Aricent), IIT Kanpur By Dr. Arna				
Bhattach	arya			
https://n	ptel.ac.in/courses/106104135			
This course ca	n be opted as an elective by the students of following subjects: B.Sc. in Computer			
Science, BCA, MCA				
Suggested equ	ivalent online courses (MOOCs) for credit transfer: N.A			

Programme: Master of Science	Year: First		Semester: II
Subject: Computer Science			
Course Code: MCS-110P	Course Title: Database Management Systems Lab		
 Course Objectives: Provide working on existing analysis of table design 	database systems, d	lesigning of da	tabase, creating relational database,
 Practice various DDL comma Write simple and complex qu Familiarize PL/SQL 	ands in SQL ieries in SQL		
Course Outcomes:			
CO1 Design and implement a data	base schema for a g	given problem	
CO2 Populate and query a databas	se using SQL and Pl	L/SQL	
Credits: 04 Type of Course: Practical Lab			
Max. Marks: 100 Min. Passing Marks: 36			
List of Practical in Database Management Systems Lab:			

Creation of a database (exercising the commands for creation)

- 1. Simple to complex condition query creation using SQL Plus.
- 2. Implementation of DDL commands of SQL with suitable examples: Create table, Alter table and Drop Table
- 3. Implementation of DML commands of SQL with suitable examples: Insert, Update and Delete
- 4. Implementation of different types of function with suitable examples: Number function, Aggregate Function, Character Function, Conversion Function and Date Function
- 5. Implementation of different types of operators in SQL: Arithmetic Operators, Logical Operators, Comparison Operator, Special Operator and Set Operation.
- 6. Implementation of different types of Joins: Inner Join, Outer Join and Natural Join etc.
- 7. Study and Implementation of Group By, having clause, Order by clause and Indexing.
- 8. Implementation of Sub queries and Views.
- 9. Usage of triggers and stored procedures.

10. Writing PL/SQL procedures for data validation.

Suggested Readings:

- 1. https://www.cdlsiet.ac.in/wp-content/uploads/2022/03/DBMS-LAB-MANUAL.pdf
- 2. https://mrcet.com/pdf/Lab%20Manuals/CSE%20II-II%20SEM.pdf

Course prerequisites: To study this course, a stude	ent must have qua	alified graduation with Mathematics.	
Programme: M.Sc.	Year: I	Semester: II	
Subject: Computer Science			
Course Code: PGMP-02	Course Title:	: Mini Project	
Course Objectives: In the second semester of M	Course Objectives: In the second semester of Masters the main objectives of the exposure of students		
towards the project is to elevate their understand	ling into the app	plications areas of Mathematics. This	
course will develop their analytical ability, will p	provide them an	apt exposure to work in any research	
group, and will motivate them to execute rese	earch in the are	ea of their interest in Mathematical	
sciences.			
Course Outcomes:			
CO1: Students will be able to plan and strateg	ize a scientific	problem, and implement it within a	
reasonable time frame.			
CO2: It is expected that after completing this	s project disse	rtation, students will learn to work	
independently and how to keep accurate/readable	e record of assig	gned project.	
CO3: In addition, students will be able to know t	he library searc	h and handle the data in a meaningful	
way.			
CO4: Subsequently, the students should be able	to critically ex	amine research articles, and improve	
their scientific writing/communication skills and	power point pr	resentation.	
Credits: 4	Type of Cour	rse: Core	
Max. Marks: 100	Min. Passing	Marks: 36	
Note: Students shall make mini project on sele	ected topic of t	their own choice studied so far and	
prepare the report.			
Instructions			
1. 02 copies of Report will be submitted by learner to t	1. 02 copies of Report will be submitted by learner to the study center.		
2. The evaluation will be in 100 marks.			
3. Internal assessment will be done by the counsellor of	3. Internal assessment will be done by the counsellor of the study center under 30 percent marks and upload the		
marks to the university portal which is provided by examination department.			
4. The coordinator of study center will send a one copy	4. The coordinator of study center will send a one copy of report along with the print copy of uploaded internal		
marks (30 marks) to the concerned school for external evaluation. The external evaluation will be in 70 marks			
within the scipulated date.			
or the concerned school will send the external marks of evaluated reports to the examination department and also upload it on university portal.			
6. The guideline for preparing report is available at link			
http://14.139.237.190/vc school main page.php?s	Im=1&contid=206		
Suggested Text Book Readings:			
1. Use different searching engine to get relev	vant informatio	on (Google scholar, Wiki-databases,	

Science Direct, SciFinder, Scopus, and YouTube.
2. Access to different online research library and research portal (Web resources, E-journals, journal access, TOC alerts)

Programme: Master of Science Year: Second Semester: III		Semester: III	
Subject: Computer Science			
Course Code: I	MCS-111N	Course Title: Design And	d Analysis Of Algorithms
Course Objecti problem solvir write rigorous analysis; efficie	ves: This course provide the common ng. It gives an understanding of how correctness proofs for algorithms; im- ent algorithms in common engineering	paradigms to design efficient to analyze the asymptotic portant algorithmic design g design situations.	nt algorithms for real world performance of algorithm; paradigms and methods of
Course Outcon	nes:		
CO1 Understa	and that various problem solving me	ethods exist such as; iterat	tive technique, divide and
conquer, dynar	nic programming, greedy algorithms.		
CO2 Analyze	the strengths and weaknesses of an alg	gorithm theoretically as wel	ll as practically.
CO3 Identify a	and apply an appropriate technique to	design an efficient algorithi	m for simple problems.
CO4 Demonst	rate correctness and efficiency of the a	algorithm.	
COS Apply va	rious searching and sorting algorithms	S.	
Credits: 04	00	Type of Course: Core	
Max. Marks: I		Min. Passing Marks: 36	
Block I	Introduction and Design Strategie	<u>s-1</u>	
Unit 1	Introduction: Algorithm, Psuedo code for expressing algorithms, Performance Analysis- Space complexity, Time complexity, Growth of functions: Asymptotic Notation, Recurrences: substitution method, master method.		
Unit 2	Divide and Conquer: General method, applications-Binary search, Finding the maximum and minimum, Quick sort, Heapsort, Strassen's Matrix Multiplication.		
Unit 3	Sorting in Linear Time: Lower bounds for sorting, Counting sort, Radix sort, Bucket sort, Medians and Order Statistics, Minimum and maximum.		
Block 2	Algorithm Design Strategies-II		
Unit 4	Greedy method: General method, applications- Knapsack problem, Job sequencing with deadlines, optimal two way merge patterns, Huffman codes, Minimum cost spanning trees: Prims and Kruskal's algorithm, Single source shortest paths: The Bellman-Ford algorithm, Dijkstra's algorithm.		
	Dynamic Programming: General	method, applications, ca	apital budgeting problem,
Unit 5	Multistage graphs, Matrix chain mu path problem, Travelling sales perso	ltiplication, 0/1 knapsack j n problem.	problem, All pairs shortest
Block 3	Algorithm design strategies & Con	npleteness	
Unit 6	t 6 Graph Algorithms: Introduction, representation of graphs, Breadth first search, depth first search, topological sort, strongly connected component, flow networks, ford-fulkerson method.		
Unit 7	Unit 7 Backtracking: General method, applications, 8-queen problem, sum of subsets problem, graph coloring, Hamiltonian cycles.		
Unit 8 Branch-And-Bound: The method, travelling salesperson problem, 15 puzzle problem.			
Unit 9 NP-Hard and NP-Complete problems: Basic concepts, non-deterministic algorithms, NP - Hard and NP Complete classes, satisfiability problem, reducibility.			
Suggested Re	adings:		
1. Cormen	, Leiserson, Rivest, and Stein, "Introdu	ction to Algorithms", MIT	Press ,Third Edition, 2009.
2 Dasgunt	a Papadimitrou and Vazirani "Alo	orithms" McGraw-Hill Fo	ducation 2006 Horowitz
2. Dasgupta, Papadinitrou and Vazirani, Algorithms', McGraw-Hill Education, 2006. Horowitz, Sahni, and Rajasekaran, "Computer Algorithms" Silicon Press, 2007			

1. NOC:Design and Analysis of Algorithms, Chennai Mathematical Institute By Prof. Madhavan Mukund

https://nptel.ac.in/courses/106106131

- 2. NOC:Introduction to algorithms and analysis, IIT Kharagpur by Prof. Sourav Mukhopadhyay https://nptel.ac.in/courses/106105164
- 3. Design and Analysis of Algorithms, IIT Bombay By Prof. Abhiram Ranade https://archive.nptel.ac.in/courses/106/101/106101060/#

This course can be opted as an elective by the students of following subjects: MCA Suggested equivalent online courses (MOOCs) for credit transfer: N.A

Programme: Master of Science Year: Second Semester: III			Semester: III	
Subject: Com	puter Science			
Course Code: MCS-112N Course Title: Java Programming				
Course Objecti	ves: This course aims to cover the esse	ential topics of Java prog	ramming so that students can	
improve their s	kills to cope with the current demand	of IT industries and solve	e many problems in their field	
of study.				
Course Outcon	nes:			
CO1 Use the c	haracteristics of an object-oriented pro	ogramming language JA	VA in a program.	
CO2 Apply JA	VA features to program design and in	nplementation.		
CO3 Design a	nd implementation programs of Java S	Script, Applets, Event Ha	andling, AWT Programming,	
and Interface.				
CO4 Implement	ntation of Packages, Swing, and Servic	et.		
COS Design at	nd implementation programs of JSP.	TC		
Credits: 04	00	Type of Course: Core	6	
Max. Marks: 1	00 Object Oriented Methodology and	Min. Passing Marks: 3)	
BIOCK I	Object Oriented Methodology and	Java	ing languages. Evolution of	
	Object Oriented Programming: I	concents of OO App	reach Comparison of object	
Unit 1	oriented and procedure - oriented Au	normaches Benefits of O	OPS Applications of OOPS	
Onit 1	Classes and philots. Abstraction and Engangulation. Inharitance, Mathad associations of OOPS.			
	Polymorphism	a Encapsulation, inferia	ance, whether overhams and	
	rorymorphism. Iava Language Basics: Introduction to Iava Primitive Data Type and Variables Java			
Unit 2	Operators.		au Type and Vanabies, vava	
	Expressions Statements and Arrays: Expressions, Statements, Control Statements,			
Unit 3	Selection Statements, Iterative Statements, Jump statements, Arrays.			
Block 2	Object oriented concepts and Exce	eptions Handling	2	
Unit 1	Class and objects: Class Fundam	entals, Introducing Me	thods, this Keyword, Using	
Unit 4	objects as Parameters, Method overl	oading, Garbage collection	on, the ffinalize () Method.	
Unit 5	Inheritance and Polymorphism:	Inheritance Basics, Acc	ess, Multilevel, inheritance,	
Olin 5	Method overriding Abstract classes,	Polymorphism, Final Ke	eyword.	
	Packages and interfaces: Package,	, Accessibility of Packag	ges, using Package members,	
Unit 6	Interfaces, Implementing interfaces, interface and Abstract classes, Extends and			
	Implements together.			
Unit 7	Exceptions Handling: Exception, H	andling of Exception, Ty	pes of Exceptions, Throwing,	
	Exceptions, writing Exception subcl	asses.		
Block 3	Block 3 Multithreading, I/O, and Strings Handling			
Unit 8	Multithreaded Programming: Mu	Itithreading, The Main t	hread, JAVA Thread Model,	
	Inread Priorities, Synchronization in	1 JAVA, Inter thread Col	nmunication.	
I/U IN Java: I/U Basics, Streams and stream, Classes, the predefined streams, Real from and writing to console, reading and writing files, the transient and volatile Medi-			predefined streams, Reading	
Unit 9	using instance of Native Methods	and writing mes, the tra	insient and volathe Moumers,	
	Strings and Characters: Fundamer	ntal of Characters and St	rings the String class String	
Unit 10	operations Data Conversion using v	alue of () Methods Strin	as Buffer and Methods	
	Exploring Java I/O: Java I/O classe	es and interfaces Stream	classes Text streams Stream	
Unit 11	Tokenizer Serialization Buffered st	ream print stream Rand	om Access file	
Block 4	Graphics and user interfaces			
	Applets: The applet class. Applet	architecture. An applet	Skeleton: Initialization and	
Unit 12	Termination, Handling events, HTM	IL Applet TAG.		

Unit 13	Graphics a components and layout M	nd us , Build /Ianage	er interfa ling user i er, Contai	aces: G nterfac ner.	raphics contes e with AWT, S	ts and wing -	Graphics Based G	objects, us UI, Layouts	er interface and layouts
XX 1. 1.4	Networking	g Feat	tures: So	cket o	verview, reserv	ved pa	rts and	proxy serve	rs, Internet
Unit 14	Addressing:	Doma	ain Namin	ig Servi	ices (DNS), Jav	va and	The Net:	URL, TCP/	IP Sockets,
	Datagrams.								
Suggested Re	adings:								
1. Java: Th	e Complete R	eferen	ce Hebert	Schild	t, Mc Graw Hil	1			
2. Object-0	Driented Prog	rammi	ng with C	++ and	Java Debasis S	Samanta	a, Prentic	e Hall India.	
Suggested onl	ine courses (I	MOO (Cs)						
1. NOC:Pr	ogramming	in	Java,	IIT	Kharagpur	by	Prof.	Debasis	Samanta:
https://n	ptel.ac.in/cou	rses/10	<u>6105191</u>						
This course can be opted as an elective by the students of following subjects: MCA									
Suggested equ	ivalent onlin	e cour	ses (MOC	DCs) fo	or credit transfe	er: N.A			

Programme: M	Programme: Master of Science Year: Second Semester: III		
Subject: Computer Science			
Course Code: MCS-113N Course Title: Operating System			
Course Objecti	ves: The course will introduce Opera	ting Systems (OS), their	design and implementation.
We will discus	s the goals of an OS and some succe	ssful and not-so-successf	ful OS designs. We will also
discuss the fol	lowing OS services in detail: thread	scheduling, security, pro	ocess management, memory
management, v	irtual memory, and disk scheduling.		
Course Outcon	nes:		
CO1 Analyze	& classify different types of operating	system	
CO2 Understan	nd the working of Operating system		
CO3 Interpret	concepts of thread scheduling, process	management, memory m	nanagement, virtual memory,
and disk sched	uling.	— 10 0	
Credits: 04		Type of Course: Core	
Max. Marks: 1		Min. Passing Marks: 36	
Block 1	An Overview and Process Manage	ment	
Unit 1	Introduction: Basic definitions, B multiprocessing; Structure and Func	atch processing, Multi-p tions of Operating Systen	rogramming. Time sharing,
	Process and thread: Process, Proc	ess states, State Transiti	ons, Process Control Block,
Unit 2	Context Switching, concept of thre	ad, comparison between	process and thread, Thread
	model, thread usage, implementing t	hread in kernel and user s	space.
Unit 2	Process Scheduling: Scheduler, S	cheduling criteria, Preen	mptive and non-preemptive
Unit 5	scheduling, Process Scheduling, Pro-	cess scheduling algorithm	18.
	Concurrent Process: Process Inte	raction, Shared Data ar	nd Critical Section, Mutual
Unit 4	Exclusion, Synchronization, Class	sical Problems of Syr	nchronization, Semaphores,
Monitors.			
Block 2	Memory Management and Unix C	ase Study	
	UNIT 5: Deadlock: Concept of de	eadlock, necessary cond	ition for deadlock, resource
Unit 5 allocation graph, deadlock prevention, deadlock avoidance, Banker's algorithm, Deadlock			
	detection, deadlock recovery.		
	UNIT 6: Memory management:	Address Binding, Dyn	amic Loading and Linking
Unit 6	Concepts, Logical and Physical A	ddresses Contiguous ar	nd non-contiguous memory
	allocation, Paging, Segmentation,	Virtual Memory, Demai	nd Paging, Page fault,Page
replacement algorithms, thrashing.			
Unit 7	UNIT 7: Secondary memory mar	agement: Free Space n	hanagement, Disk Structure,
LL 4 Q	Disk Scheduling, Formatting, Swap	space Management.	
Unit 8	UNIT 8: Case Study of UNIX		
Suggested Ke	adings:		W1 2008
1. Silbersch	hatz, Galvin, Gagne, Operating System	n Concepts, 8th Edition,	wiley,2008
2. Andrew S. Tanenbaum, Albert S. Woodhull, Operating Systems, Design and Implementation, 3rd			
Edition, Prentice Hall,2006.			
3. william Stallings, Operating Systems: Internals and Design Principles, 6th Edition, Prentice Hall, 2013			
4 Charles Patrick Crowley Operating Systems-A Design-oriented Approach 1996			
Suggested onli	ine courses (MOOCs)	r Design onemed rippio	
1 NOC·Or	1 NOC Operating System Fundamentals IIT Kharagnur by Prof. Santany Chattonadhyay		
https://m	ptel.ac.in/courses/106105214	op al of 1101. Suntaila	
2. NOC:Int	roduction to Operating Systems, IIT N	Aadras by Prof. Chester F	Rebeiro
https://n	ptel.ac.in/courses/106106144	·	
3. Operatin	g Systems, IIT Delhi by Prof. Sorav E	Bansal	

https://nptel.ac.in/courses/106102132

This course can be opted as an elective by the students of following subjects: **B.Sc. (Computer Science), BCA and MCA**

Suggested equivalent online courses (MOOCs) for credit transfer: N.A.

Programme: Master of Science	Year: Second	Semester: III	
Subject: Computer Science			
Course Code: MCS-115P	Course Title: Java	Programming and Algorithm Lab	
Course Objectives:			
Provide the concept of classe	es, inheritance and a	bstract classes.	
Prepare students to excel in a	object oriented prog	ramming and to succeed as a Java developer.	
Provide students with a solid	foundation in OOP	fundamentals required to solve programming problems.	
> Inculcate multidisciplinary	approach and an a	bility to relate java programming issues to broader	
application context.	**		
Course Outcomes:			
CO1 Understand the necessity for	Object Oriented Pr	ogramming paradigm over structured programming.	
CO2 Develop java programs, ana	lyze, and interpret of	bject-oriented data and report results.	
CO3 Demonstrate an ability to de	sign an object-orien	ted system, AWT components.	
Credits: 04		Type of Course: Practical Lab	
Max. Marks: 100		Min. Passing Marks: 36	
List of Practical in Java Program	mming and Algorit	hm Lab:	
1. Write a java program for	Method overloading	and Constructor overloading.	
2. Write a java program to c	lisplay the employed	e details using Scanner class.	
3. a) Write a java program to	o represent Abstract	class with example.	
b) Write a java program to	o implement Interfac	ce using extends keyword.	
4. Write a java program to	o implement metho	od overloading, method overriding, dynamic method	
dispatch.			
5. Write a java program to implement single, multilevel, hierarchal, multiple, hybrid inheritances.			
6. Write java programs that	6. Write java programs that demonstrate the use of abstract, this, super, static, final keywords.		
7. a) Write a java program fo	7. a) Write a java program for creating a package and using a package.		
b) Write a java program to	b demonstrate the us	e of wrapper classes.	
8. a) Write a java program u	sing all five keywor	ds of exception handling mechanism.	
b) Write a java program fo	b) Write a java program for creating customized (user) exception		
9. a) Write a java program t	to create the following	ing AW1 components: Button, Checkbox, Choice, and	
List.	anasta AWT anglia	ation using containons and largents	
b) write Java programs to	 b) write java programs to create AWI application using containers and layouts. a) Write a java program to create a file, write the data and display the data. 		
10. a) Write a java program to create a file, write the data and display the data.			
b) white a Java program in Suggested Deadings:	hat reads a file fiame		
https://mroot.com/ndf/Lab% 20Ma	nuala/Lab% 20Man	1019/200 hight 200 right ad 20 Programming of 20th row	
https://incet.com/pdi/Lab%20Ma	inuais/Lau%201viant	an%2000ject%2001emed%20Programming%20thfou	
gn%20JAVA.pdf			

Programme: Master of Science		Year: II	Semester: III
Subject: Computer Science			
Course Code: PGRT-03		Course Title: Ba	sic Research Tools
Course Objectives:			
> To	discuss the <i>application of MS off</i>	ïce	
> To	discuss different research tools fo	or <i>research work</i> .	
To discuss application of softwares.			
> To	discuss about reference manager	ment tools	
Course Outcomes:			
CO1 Able to learn a	bout basic computer application	of research work.	
CO2 Learn about L	atex tools with MS-XL		
CO3 Able to know	the role of Chem-Draw, Origin, S	SPSS, R-software,	Octave, Matlab
CO4 Gain knowled	ge about application of Mendeley	-software.	
COS AISO KNOW abo	but Kerworks and Zotero, etc.	Type of Course	Come
Cleans. 04		Type of Course.	Core
Max. Marks: 100		Min. Passing Ma	arks: 36
	Application of MS Office/ Late	x in research	
Unit I	Uses and application of MS Of	fice/ Latex Tools v	with MS-XL, Power point
	Presentation.		-
Unit II	Application of Softwares		
	Uses and application of Softwa	res such as plagiar	ism software, Statistical softwares,
	R-software, Matlab.		
Unit III	Reference management tools		
	Uses and application of Mendeley-software, EndNote, RefWorks and Zotero.		
	Suggested Text Book Reading	ngs:	
	1. Microsoft office: Microso	ft Office Essential	s - IT Essentials: a Practical Guide -
	Subject Guides at Univers	ity of York	
	2. How to Convert an Excel	Table to a Latex ta	ble: How to Convert an Excel Table
	to a Latex table - YouTub	e	
	3. SPSS – What Is It: SPSS - Ouick Overview & Beginners Introduction (sn		
	tutorials.com)	-	C (I
	4 Video Processing in MA	TLAB Video P	rocessing in MATLAB - Video -
	MATLAB & Simulink (m	athworks com)	
Note:- In this name	r learner itself study the object	ives and prepare	a report
	i, learner itsen study the object		
Instructions			

- 1. 02 copies of Report will be submitted by learner to the study center.
- 2. The evaluation will be in 100 marks.
- 3. Internal assessment will be done by the counsellor of the study center under 30 percent marks and upload the marks to the university portal which is provided by examination department.
- 4. The coordinator of study center will send a one copy of report along with the print copy of uploaded internal marks (30 marks) to the concerned school for external evaluation. The external evaluation will be in 70 marks within the stipulated date.
- 5. The concerned school will send the external marks of evaluated reports to the examination department and also upload it on university portal.
- 6. The guideline for preparing report is available at link: <u>http://14.139.237.190/vc_school_main_page.php?slm=1&contid=206</u>

Programme	Master of Science	Year: Second	Semester: IV	
Subject: Co	Subject: Computer Science			
Course Cod	Course Code: MSCDS -117N Course Title: Soft Computing			
Course Obje	ectives: Expose students to Neural N	etwork, Fuzzy Logic and Genetic	Algorithms, which are the major	
building blo	ocks of Intelligent Systems.			
Course Out	comes:			
CO1–Discu	ss the ideas of fuzzy sets, fuzzy logic	and use of heuristics based on hum	an experience.	
CO2 –Unde	erstand how neural networks learn fr	om available examples and gener	alize to form appropriate rules for	
inference sy	stems.			
CO3 – Prov	de the mathematical background for c	carrying out the optimization associ	ated with neural network learning.	
CO4 – App	ly genetic algorithms and other rand	lom search procedures for finding	g global optimum of optimization	
problems.		T G G		
Credits: 04	100	Type of Course: Core		
Max. Marks		Min. Passing Marks: 36		
	Artificial Intelligence & Soft Com	puting: Introduction of Artificial Ir	itelligence, Problem domain of AI, AI	
Block 1	techniques, Rule based system, mo	notonic reasoning, non-monotonic	reasoning, Uncertainty reasoning α	
	Inference, Bayesian theory and dep	endency network, Limitation of A	i, son computing paradigms, pattern	
	Eugen Set Theory: Introduction to	Neuro Eugzy and Soft Computing	- Euzzy Sata Desig Definition and	
	Terminology Set theoretic Operation	ons Momber Function Formulation	g – Fuzzy Sets – Basic Definition and	
Block 2	and Euzzy Passoning Extension P	inciple and Euzzy Polations Euz	$r_{\rm and}$ randicenzation – $r_{\rm uzzy}$ Rules	
	Fuzzy Inference Systems	incipie and Puzzy Relations – Puzz	Ly II-Then Rules – Fuzzy Reasoning –	
	Neural Network: Structure and Fur	ection of a single neuron: Biologic	al neuron artificial neuron definition	
	incural inclusions: Structure and Function of a single neuron: Biological neuron, artificial neuron, definition			
	of ANN single layer network. Percentron training algorithm Linear separability. Widrow & Hebb's learning			
Block 3	rule/Delta rule. ADALINE. MADALINE. AI v/s ANN. Introduction of MLP. different activation functions.			
	Error back propagation algorithm de	erivation of BBPA momentum lim	itation characteristics and application	
	of EBPA. Deep Learning: Convoluti	on Neural Network. Recurrent Neu	ral Network.	
	Genetic Algorithm: Fundamenta	ls, basic concepts, working pri	nciple, encoding, fitness function,	
	reproduction, Genetic modeling: Inl	heritance operator, cross over, inv	ersion & deletion, mutation operator,	
Block 4	Bitwise operator, Generational Cycl	e, Convergence of GA, Application	ons & advances in GA, Differences &	
	similarities between GA & other trac	litional method.		
Suggested	Readings:			
1. J.S.R.Jang, C.T.Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI, 2004, Pearson Education				
200	2004.			
2. S. F	Rajasekaran and G.A.VijaylakshmiP	ai Neural Networks Fuzzy Logi	c, and Genetic Algorithms, Prentice	
Hal	l of India.			
3. Tin	3. Timothy J.Ross, "Fuzzy Logic with Engineering Applications", McGraw-Hill, 1997.			
4. Dav	4. Davis E.Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning", Addison			
Wesley,N.Y.,1989.				
5. S. F	5. S. Rajasekaran and G.A.V.Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithms", PHI, 2003.			
6. R.Eberhart, P.Simpson and R.Dobbins, "Computational Intelligence - PC Tools", AP Professional, Boston,				
1996.				
Suggeste	d online courses (MOOCs)		~	
I. N	OC:Introduction to Soft Computing	, IIT Kharagpur by Prof. Debasis	Samanta	
	ttps://nptel.ac.in/courses/106105173			
This course	can be opted as an elective by the s	tudents of following subjects: M.	Sc. (Statistics) and M.Sc.	
(Iviathema	ucs)	for andit transform NLA		
Suggested e	equivalent online courses (MOOCS)	for credit transfer: N.A.		

Programme: Master of Science	Year: Second	Semester: IV
Subject: Computer Science		

Course Code: MCS-121D	Course Title: Dissertation with viva voce

Course Objectives:

- > To facilitate the learner to independently formulate and solve a social, philosophical, commercial, or technological problem and present the results in written and oral form.
- > To render learners to real-life problems.
- > To provide opportunities for learners to interact with people and present them confidently.

Course Outcomes:

CO1 Investigate and evaluate a research topic relevant to environment and society.

CO2 Learn systematic discovery and critical review of appropriate and relevant information sources.

CO3 Apply qualitative and/or quantitative evaluation processes to original data.

CO4 Communicate research concepts and contexts clearly and effectively both in writing and orally

Credits: 04	Type of Course: Research
Max. Marks: 100	Min. Passing Marks:

Note: Students shall make dissertation on selected topic of their own choice studied so far and prepare the report.

Instructions

- $1. \quad {\rm 02\ copies\ of\ Report\ will\ be\ submitted\ by\ learner\ to\ the\ study\ center.}$
- 2. The evaluation will be in 100 marks.
- 3. Internal assessment will be done by the counsellor of the study center under 30 percent marks and upload the marks to the university portal which is provided by examination department.
- 4. The coordinator of study center will send a one copy of report along with the print copy of uploaded internal marks (30 marks) to the concerned school for external evaluation and viva voce.
- 5. The concerned school will send the external marks of evaluated reports to the examination department and also upload it on university portal.
- 6. The guideline for preparing report is available at link: <u>http://14.139.237.190/vc_school_main_page.php?slm=1&contid=206</u>

Programme: N	Aaster of Science	Year: Second	Semester: IV	
Subject: Computer Science				
Course Code: MCS-116N Course Title: Computer Graphics				
Course Object	Course Objectives: The primary role of computer graphics is to render the digital content (0's and 1's) in a			
human-compr	ehensible form on the computer screen	n. This course introduces	s various object representation	
techniques alo	ong with 2D and 3D transformation,	clipping, splines, object	s modeling, colour modeling,	
lighting, textu	res and visible surface detection.			
Course Outco	mes:			
CO1 Demons	trate an understanding of contemporar	y graphics hardware.		
CO2 Draw gr	aphics using line & polygon and abilit	y to perform operations	on computer graphics.	
CO3 Underst	and and demonstrate geometrical tr	ansformations, Segmen	t, Windowing and Clipping,	
Interaction.				
CO4 Demons	trate Hidden Surfaces & Lines; Light,	Colour & Shading; Curv	ves and Fractals	
Credits: 04		Type of Course: Core		
Max. Marks: 1	100	Min. Passing Marks: 3	36	
Block 1	Raster Graphics and Clipping			
Unit 1	Introduction to Computer Graphics: What is Computer Graphics?, Application of Computer Graphics, Presentation Graphics, Painting and Drawing, Photo Editing, Scientific Visualization, Image Processing, Digital Art, Education, training, Entertainment and CAD Simulation, Animation and Games, Graphics Hardware, Input and Output Devices, Touch Panel, Light Pens, Graphic Tablets, Plotters, Film Recorders, Display Devices, Refreshing Display Devices: Raster-Scan, Random-Scan, Plasma Panel and LCD panels			
Unit 2	Graphics Primitives: Points and Lines, Line-drawing Algorithms: DDA Algorithm, Bresenham's line Algorithm, Circle-generating Algorithm: Properties of Circles, Midpoint Circle of Algorithm, Polygon Filling Algorithm: Scan-Line			
Unit 3	2-D Viewing and Clipping: Point Clipping, Line Clipping: Cohen-Sutherland Line Clippings, Cyrus-Beck Line Clipping Algorithm, Polygon Clipping: Sutherland Hodgman Algorithm, Windowing Transformation			
Block 2	Transformations			
Unit 4	2-D and 3-D Transformations: Basic Transformations: Translation, Rotation, Scaling, Shear, Composite Transformations: Rotations about a point, Reflection about a line, Homogeneous Coordinate Systems, 3-D Transformations			
Unit 5	Viewing Transformation: Projections: Parallel Projection, Orthographic & Oblique Projections, Isometric Projections, Perspective Projections			
Block 3	Modeling & Rendering			
Unit 6	Curves and Surfaces: Polygon Representation Methods: Polygon Surfaces, Polygon Tables, Plane Equations, Polygon Meshes, Bezier Curves and Surfaces: Bezier Curves, Properties of Bezier Curves, Bezier Surfaces, Surface of Revolution			
Unit 7	Visible – Surface Detection: Depth Buffer Method, Scan-Line Method, Area-Subdivision Method			
Unit 8	Polygon Rendering and Ray Tracing Methods: Illumination Model: Ambient Reflection, Diffuse Reflection, Specular Reflection, Shading: Gouraud Shading, Phong Shading, Ray Tracing: Basic Ray-Tracing Algorithm			
Suggested R	Suggested Readings:			
2. J. D. Foley, A. Van Dam, S. K. Feiner and J. F. Hughes, Computer Graphics - Principles				
and Practice, Second Edition in C, Pearson Education, 2003.				
3. D. Hearn and M. Pauline Baker, Computer Graphics (C Version), Pearson Education,				
2nd Edition, 2004.				

- 4. Edward Angel, Interactive Computer Graphics A Top-Down Approach with OpenGL 5th Edition, Addison-Wesley, 2008.
- 5. Prabat K Andleigh and KiranThakrar, "Multimedia Systems and Design", PHI, 2003.

- 1. Computer Graphics, IIT Madras by Prof. Sukhendu Das <u>https://nptel.ac.in/courses/106106090</u>
- 2. Introduction to Computer Graphics, IIT Delhi by Prof. Prem K Kalra <u>https://nptel.ac.in/courses/106102065</u>
- 3. NOC:Computer Graphics, IIT Guwahati by Prof. Samit Bhattacharya https://nptel.ac.in/courses/106103224

This course can be opted as an elective by the students of following subjects: **B.Sc. (Computer Science) and BCA**

Suggested equivalent online courses (MOOCs) for credit transfer: N.A.

Programme: M	laster of Science	Year: Second	Semester: IV
Subject: Computer Science			
Course Code: N	Course Code: MCS-114N Course Title: Multimedia Technology		
Course Objecti	Course Objectives: Today, Multimedia and web design technology play an essential role in education		
agriculture, pr	oduct launch, science and technolo	gy, corporate developmen	t and enhanced business
opportunities.	opportunities. The increasing variety of hardware and software components in multimedia and website		
design has escalated the demand for human resources in these fields. This course is designed to inculcate			
required skills	for these activities.		
Course Outcom	nes:		
CO1 Visualize	scopes of multimedia and understand	steps in creation of multim	edia applications.
CO2 Understan	nd digital audio, Prepare audio require	ed for a multimedia system	and Speech synthesis and
recognition cor	ncept.		
CO3 Analyze representation of video, how video work and different video formats.			
CO4 Describe	different animation techniques and so	ftware used for animation.	
CO5 Understan	nd various multimedia development a	nd authoring tools.	
CO6 Know the	e different layers of network along wit	h video conferencing techni	que.
Credits: 04 Type of Course: Core			
Max. Marks: 100 Min. Passing Marks: 36			
Block 1	Introduction to Multimedia and It	s Components	
	Multimedia Technology: Meaning	g & scope of Multimedia;	Elements of Multimedia;
Unit 1	Creating multimedia applications;	Multimedia file & I/O fu	nctions; Multimedia data
	structures; Multimedia file formats;	Multimedia Protocols	
	Multimedia Audio: Digital sound;	Audio compression & deco	ompression; Companding:
	ADPCM compression; MPEG audio compression; True Speech; Special effects and Digital		
Unit 2	Signal Processing: Audio synthesis; FM synthesis: Sound blaster card; Special effect		
	processors on sound cards; Wave table synthesis; MIDI functions; Speech synthesis &		
Recognition			
	Multimedia Video: Representation	of Digital video; Video cap	ture: Frame grabbing; Full
Unit 3	motion video; Live video in a window; Video processor; Video compression &		
	decompression; Standards for video compression & decompression; Playback acceleration		
methods			
BLOCK-2	Multimedia Animation, Authoring	g Tools and Internet	

Unit 4	Creating Multimedia Animation: Icon animation; Bit-map animation; Real-time vs Frame by Frame animation; Object modeling in 3D animation; Motion control in 3D animation; Transparency; Texture. Shadows, Anti-aliasing; Human modeling & Animation; Automatic motion control		
Unit 5	Multimedia Authoring Tools: Project editor; Topic editor; Hot-spot editor; Developing a multimedia title; Multimedia text authoring systems; Usage of authoring tools		
	Multimedia on LANs & Internet: Multimedia on LAN; Fast modems & Digital networks		
Unit 6	for multimedia; High speed digital networks; Video conferencing techniques; Multimedia		
Suggested De	interactive applications on Internet: Future Directions.		
Suggested Rea	adings:		
I. "L1, Ze-I	1. "Li, Ze-Nian, Mark S. Drew, and Jiangchuan Liu. Fundamentals of multimedia. Upper Saddle		
River (NJ) Pearson Prentice Hall, 2004.			
2. Jeffcoate	2. Jeffcoate, Judith. Multimedia in practice: technology and applications. Prentice-Hall, Inc., 1995.		
3. Vaughan, Tay. Multimedia: Making it work. Tata McGraw-Hill Education, 2006.			
4. Melliar-Smith, Peter Michael, and Louise E. Moser. "Multimedia Networking: Technology,			
Management and Applications. Hershey, PA Idea Group, 2002.			
Suggested online courses (MOOCs)			
1. Multimedia processing. IIT Kharagpur by Prof. Somnath Sengupta			
https://nptel.ac.in/courses/117105083			
2. CIT-003: Web Based Technologies and Multimedia Applications			
By Prof. P. V. Suresh Indira Gandhi National Open University			
https://onlinecourses.swayam2.ac.in/nou20_cs05/preview			
This course can be opted as an elective by the students of following subjects: B.Sc. (Computer			
Science) and BCA			
Suggested equivalent online courses (MOOCs) for credit transfer: N.A.			

Programme: Maste	er of Science Year: Second Semester: IV		
Subject: Computer Science			
Course Code: MC	S-119N Course Title: Information and Network Security		
Course Objectives	: This course aims to provide a basic understanding of the existing algorithms used to protect users		
online and understa	and some of the design choices behind these algorithms. The course offers a workable knowledge of the		
mathematics used i	n cryptology. The course emphasizes giving a basic understanding of previous attacks on cryptosystems		
to prevent future at	tacks.		
Course Outcomes:			
CO1 Identify info	rmation security goals, classical encryption techniques and acquire fundamental knowledge on the		
concepts of finite f	ields and number theory.		
CO2 Understand,	compare and apply different encryption and decryption techniques to solve problems related to		
confidentiality and	authentication		
CO3 Apply the k	nowledge of cryptographic checksums and evaluate the performance of different message digest		
algorithms for veri	fying the integrity of varying message sizes		
CO4 Apply differe	nt digital signature algorithms to achieve authentication and create secure applications		
CO5 Apply networ	rk security basics, analyze different attacks on networks and evaluate the performance of firewalls and		
security protocols	ike SSL, IPSec, and PGP.		
CO6 Apply the kn	owledge of cryptographic utilities and authentication mechanisms to design secure applications.		
Credits: 04	Type of Course: Core		
Max. Marks: 100	Min. Passing Marks: 36		
Block I	Information security and Symmetric Ciphers		
TT '4 1	Introduction: History, what is Information Security; Characteristics of Information; Information		
Unit I	Security Model; Components of an Information Security; Aspects of Information security: Security		
	attacks, Security Mechanism, and Security Services (X.800), Model for Network Security.		
Unit 2	Classical Encryption Techniques: Historical background, symmetric cipner model, Substitution		
	Plack sinkers and DES. Plack sinker minimize Data energy to standard struggth of DES.		
Unit 3	block cipners and DES: Block cipner principles, Data encryption standard, strength of DES,		
	Confidentiality Using Symmetric Ciphers: Discompt. of energyption function traffic		
Unit 4	confidentiality to sing Symmetric Ciphers: Placement of encryption function, trainc		
Block 2	Public key Energention and Hash Functions		
Linit 5	r ubite Key Elicryption and mash r unchons Introduction to Number Theory, Drime numbers, Format's and Euler's theorem, discrete la souther		
Unit 5 Introduction to Number I neory: Prime numbers, Fermat's and Euler's theorem, discrete logar			
Unit 6	Hellman key exchange		
	Message Authentication and Hash Functions: Authentication requirements Authentication		
Unit 7	Functions Message Authentication codes Hash Functions SHA-1 MD5		
Int 8 Digital Signatures: Digital signatures: Authentication protocols: Digital Signature standard			
Block 3	Network Security Applications		
Unit 9	Authentication Applications: Kerberos Motivation X 509 authentication service		
Unit 10	Electronic Mail Security: PGP: PGP Notation PGP Operational Description S/MIME		
Unit 11	IP Security: IP Security Overview, IP Security Architecture. Authentication Header		
	Web Security: Web Security Threats, Web Traffic Security Approaches. Overview of Secure Socket		
Unit 12	Laver and Transport Laver Security. Overview of Secure Electronic Transaction		
Block 4	Intruders and Viruses		
	Intruders: Intruders, Intrusion Techniques, Password Protection, Password Selection Strategies,		
Unit 13	Intrusion Detection,		
XX 1.4	Malicious Programs: Malicious Programs, Nature of Viruses, Types of Viruses, Macro Viruses.		
Unit 14	Antivirus Approaches		
Unit 15	Firewall: Firewall Characteristics, Types of Firewalls, Firewall Configuration		
Suggested Readings:			

- 1. Douglas Stinson, "Cryptography Theory and Practice", 2nd Edition, Chapman & Hall/CRC.
- 2. B. A. Forouzan, "Cryptography & Network Security", Tata Mc Graw Hill.
- 3. W. Stallings, "Cryptography and Network Security", Pearson Education.

- 1. NOC:Cryptography And Network Security, IIT Kharagpur by Prof. Sourav Mukhopadhyay https://nptel.ac.in/courses/106105162
- 2. Cryptography and Network Security, IIT Kharagpur by Dr. Debdeep Mukhopadhyay https://nptel.ac.in/courses/106105031

This course can be opted as an elective by the students of following subjects: MCA Suggested equivalent online courses (MOOCs) for credit transfer: N.A.

Programme: Master of Science	Year: Second	Semester: VI
Subject: Computer Science		

Course Code: MCS-104N Course Title: Software Engineering

Course Objectives: Provide the current software engineering techniques and examine the software lifecycle, including software specification, design implementation, testing and maintenance. It presents software engineering methodologies for the development of Quality, cost-effective, schedule meeting software.

Course Outcomes:

CO1 Describe software engineering layered technology and process framework.

CO2 Introduces theories, models, and techniques that provide a basis for the software development life cycle.

CO3 Introduces software testing approaches including verification and validation, static analysis, reviews, inspections, and audits.

CO4 Understanding of the role of project management including planning, scheduling, risk management, etc.

CO5 Work as an individual and/or in team to develop and deliver quality software.

Credits: 04 Type of Course: Core		Type of Course: Core	
Max. Marks: 100 Min. Passing Marks: 36		Min. Passing Marks: 36	
Unit 1	Software Engineering Fundamentals: Definition of Software, Software characteristics, Software Applications. Software Process: Software Process Models - Waterfall model, prototyping model, spiral model, incremental model, concurrent development model. Project management Concepts: The Management Spectrum - The People, The Product, The Process, The Project.		
Unit 2	Software Process and Project Metrics : Measures , Metrics and Indicators , Software measurement Size -Oriented Metrics , Function - Oriented Metrics , Extended Function point metrics Software Project Planning : Project Planning Objectives , Software Project Estimation , Decomposition Techniques - Problem Based Estimation Process Based Estimation ,Empirical Estimation Models- The COCOMO Model Risk Analysis and Management: Software risks, Risk identification, Risk Projection, Risk Refinement, Risk Mitigation , Monitoring and Management.		
Unit 3	Software Quality Assurance: B Assurance, Cost of Quality, Software Software Configuration Managemen Process, Version Control, Change Analysis Concepts and Principles Principles. The Information Domain, Views, Specification: Specification I Specification (SRS)	asic concepts- Quality, Quality Control, Quality e Quality Assurance (SQA), Formal Technical Review t: Baselines, Software Configuration Items, The SCM e Control, Configuration Audit, Status Reporting. : Requirements Elicitation for Software, Analysis Modeling, Partitioning, Essential and Implementation Principles, Representation, The Software Requirement	
Unit 4	Design Concepts and Principles: Design Principles, Design Concepts — Abstraction, Refinement, Modularity, Software Architecture, Control Hierarchy, Structural Partitioning, Data Structure. Software Procedure, Structure, Information Hiding, Effective Modular Design- Cohesion, Coupling Software Testing: Testing Objectives & principles, Unit Testing, Integration Testing (Top-Down Integration, Bottom. Up Integration, Regression Testing, Smoke Testing), Validation Testing (Alpha and Beta Testing), System Testing (Recovery Testing, Security Testing, Stress Testing, Performance Testing).		
Unit 5	Reengineering: Software Reengine Engineering CASE Tools: What is CASE Tools, Integrated CASE Env Repository. adings:	cering, Reverse Engineering, Restructuring, Forward CASE, Building Blocks of CASE, A Taxonomy of vironments, The integration Architecture, The CASE	
Buggesteu Ke	aungs.		

- 1. Mall, Rajib. Fundamentals of software engineering. PHI Learning Pvt. Ltd., 2018.
- 2. R.S. Pressman, Software Engineering A Practitioner's Approach, 6th Edition, TMH, 2013.
- 3. Ian Sommerville, Software Engineering, 8th Edition, Addison Wesley, 2009.
- 4. Pankaj Jalote, An Integrated Approach to Software Engineering, Narosa Publishing, 2010.

- 1. NOC:Software Engineering, IIT Kharagpur by Prof. Rajib Mall https://nptel.ac.in/courses/106105182
- 2. Software Engineering, IIT Bombay by Prof. Rushikesh K Joshi, Prof. Umesh Bellur, Prof. N.L. Sarda https://nptel.ac.in/courses/106101061

This course can be opted as an elective by the students of following subjects: **BCA** Suggested equivalent online courses (MOOCs) for credit transfer: N.A

Programme: M	laster of Science	Year: Second	Semester: IV
Subject: Computer Science			
Course Code: I	MCS-107N	Course Title: Theory of Computation	
Course Objectives: The aim of this course is to introduce students with the mathematical model of			he mathematical model of
machines. The	course familiarize students with the	concept of formal languation	age, their relationships and
corresponding	automaton. It builds core concepts to d	esign grammars and reco	gnizers for different formal
languages; idei	ntify ambiguity in grammar.		0
Course Outcon	nes:		
CO1 Underst	and what automata is and what its	use are.	
CO2 Analyze	e regular grammar and design finite	automata for various	regular languages.
CO3 Analyze	e context free grammar and design	pushdown automata fo	or different types of context
free language	§.	1	51
CO4 Compar	e and analyze different languages	orammars and machin	es
CO5 Design	Turing machine for unrestricted gra	ammar (type 0)	-5.
CO6 Underst	and undecidable problems that can	not be solved using co	mouters
Crodita: 04	and undeerdable problems that can	Type of Course: Core	inputers.
Max Markey 1	00	Min Dessing Marks: 2	6
Plack 1	Degular Expression and Finite Au	tomata	0
DIOCK I	Alphabet Strings and Languages	Comata	at Strings Languages Finite
Unit 1	Paperssontation of Languages Chom	asky Hierarchy	et, Strings, Languages, Finite
	Einite Automate: Einite State St	ustoma Pagia Definitio	na Non Datarministia finita
Unit 2	Finite Automata: Finite State Systems, Basic Definitions Non-Deterministic finite automate (NDEA). Deterministic finite automate (DEA). Equivalence of DEA and NDEA		
Ont 2	Finite automata with ensilon transiti	ons Removal of ensilon	transitions
	Pagular Expressions: Pagular Ex	pressions Definition Al	gebraic Laws of RE Finite
Unit 3	Automate and Popular expressions. Conversion from PE to EA. Conversion from EA to		
Ont 5	RE Arden's Theorem		
	Introduction to Machines: Concep	t of basic Machine. Prop	erties and limitations of
Unit 4	FSM. Moore and mealy Machines. Equivalence of Moore and Mealy machines.		
	Minimization of DFA		
Unit 5	Block 2 Context Free Grammar		
Properties of Regular Language: The Pumping Lemma for Regular Sets, Applications or			
Block 2	the pumping lemma, Closure properties of regular sets.		
	Context Free Grammar: Context	Free Grammar (CFG)-	Formal definition, sentential
Unit 6	forms, leftmost and rightmost derivations, the language of CFG.		
Linit 7	Normal Forms: Simplifications of	CFG's- Removal of Usel	ess Symbols, Removal of
Unit /	epsilon and Unit Production, Normal Forms-CNF and GNF.		
I Init Q	Context Free Languages (CFL): C	losure Properties of CFL	, Decision Properties of CFL,
Unit 8	Application of CFG, Pumping Lemr	na for CFL.	_
Block 3	Block 3 Pushdown Automata and Turing Machine		
Unit 0	Push Down Automata: Formal De	finition of Pushdown Au	tomata, Pushdown Automata
Unit 9	accepted by final state and empty sta	ate, Equivalence betweer	CFG and PDA.
	Turing Machine: Turing Machine ((TM) –Formal Definition	and behavior, Transition
Unit 10	diagram, Instantaneous Description,	Language of a TM, Vari	iants of TM, Universal
Turing Machine, Halting Problem, Church Thesis.			
Undecidability: Recursive enumerable, Undecidable Problem			em About Turing Machines,
	Unsolvable Problems.		
Suggested Readings:			
1. Hopcroft and Ullman, "Introduction to Automata Theory, Languages and Computation", Pearson			
Education, 3rd edition, 2006			

2. Linz, Peter, and Susan H. Rodger. An introduction to formal languages and automata. Jones & Bartlett Learning, 2022.

Suggested online courses (MOOCs)

1. NOC:Introduction to Automata, Languages and Computation, IIT Kharagpur by Prof. Sourav Mukhopadhyay

https://nptel.ac.in/courses/106105196

- 2. Formal Languages and Automata Theory, IIT Guwahati by Dr. Diganta Goswami, Dr. K.V. Krishna <u>https://nptel.ac.in/courses/111103016</u>
- 3. Theory of Automata, Formal Languages and Computation, IIT Madras by Prof. Kamala Krithivasan https://nptel.ac.in/courses/106106049
- 4. NOC:Theory of Computation, IIT Kanpur by Prof. Raghunath Tewari https://nptel.ac.in/courses/106104148

This course can be opted as an elective by the students of following subjects: **BCA**, **MCA** Suggested equivalent online courses (MOOCs) for credit transfer: N.A

Programme: Maste	er of Science	Year: Second	Semester: IV	
Subject: Computer Science				
Course Code: MC	Course Code: MCS-120N Course Title: System Software			
Course Objectives:	: This course aims to illustrate the wo	rking of the various phas	es of a general-purpose compiler. It	
explains the princi	ples involved in compiler design. It w	vill cover all the basic co	mponents of a compiler, along with	
machine code gene	eration and optimizations.			
Course Outcomes:				
CO1: Understand	design issues of a lexical analyzer and	use of Lex tool		
CO2: Explain code	e generation and code optimization sch	nemes		
CO3: Understand	the working of linkers and loaders and	other development utiliti	es.	
CO4: Design struc	ture of Assembler and macro processo	or for a hypothetical simul	ated computer.	
Credits: 04		Type of Course: Core		
Max. Marks: 100		Min. Passing Marks: 36		
Block 1	Introduction to System Software a	nd software tools		
Unit 1	Language Processors: Introduction,	, Language Processing A	ctivities, Fundamentals of Language	
	Processing & Language Specification	n, Language Processor De	evelopment Tools.	
Unit 2	Data Structures for Language Pro	cessing: Search Data stru	ctures, Allocation Data Structures.	
Unit 3	Software Tools: Software Tools	for Program Develop	oment, Editors, Debug Monitors,	
	Programming Environments, and Us	er Interfaces.		
Unit 4	Assemblers: Elements of Assembly	Language Programming	, A Simple Assembly Scheme, Pass	
	Structure of Assemblers, Design of a	Two Pass Assembler, A	single pass Assembler for IBM PC.	
Unit 5	Macro Processors: Macros and Mac	cro Processors: Macro De	finition and Call, Macro Expansion,	
	Nested Macro Calls, Advanced Macro Facilities, Design of a Macro Preprocessor.			
Block 2	Block 2 Compilers and Interpreters			
**	Lexical Analysis: Introduction to N	IFA and DFA, Lexical A	nalysis: Role of a Lexical analyzer,	
Unit 6	input buffering, specification and recognition of tokens, Finite Automata, Designing a lexical			
	analyzer generator, Pattern matching	based on NFA's.	TT 1 1 1 1	
	compiler-Syntax Analysis: Syntax	Analysis: Role of Parser,	1 op-down parsing, recursive descent	
Unit 7	and predictive parsers (LL), Bottom-Up parsing, Operator precedence parsing, LR, SLR and LALR			
Unit /	parsers. (First and follow technique for generating a parse table is to be taught), Phases of the			
	structures	wemory anocation. Con	iphation of expressions and control	
	Compiler- Code Ceneration: Inter	rmediate languages: grar	bical representations DAGs three	
Unit 8	address code types of three address s	statements syntax directe	d translation into three address code	
Child 0	implementation of three address state	ements		
	Compiler- Optimization Code Opti	mization. Machine deper	dent and machine independent code	
Unit 9	generation: Sources of optimization-	Code Generation-Semant	ic stacks, evaluation of expressions.	
	control structures, and procedure call	ls.	·······, ·····························	
Unit 10	Interpreters: Use and overview of in	nterpreters, pure and imp	ure interpreters	
Block 3	Linker, Loaders and device Driver	'S		
	Loaders and Linkers: Basic loader f	functions: Design of an Al	osolute Loader – A Simple Bootstrap	
Unit 11	Loader, Machine dependent loader f	eatures Relocation – Prog	gram Linking – Algorithm and Data	
	Structures for Linking Loader. Mach	ine-independent loader fe	atures – Automatic Library Search –	
	Loader Options Loader design optior	ns – Linkage Editors – Dy	namic Linking – Bootstrap Loaders.	
	Implementation examples: MSDOS 1	linker.		
	Device drivers: Design and anatom	ny of UNIX device drive	er, Types of device driver, General	
Unit 12	design of UNIX character device driv	ver, General design of UN	IX block device driver, UNIX device	
	driver installation.			
Suggested Read	ings:			

- 1. Alfred V. Aho, Jeffrey D Ullman, "Compilers: Principles, Techniques and Tools", Pearson Education Asia, 2008
- 2. K.D. Cooper, and L. Torczon, Engineering a Compiler, Elsevier, 2004.

- 1. Compiler Design, IIT Madras by PROF. RUPESH NASRE https://nptel.ac.in/courses/106106237
- 2. Principles of Compiler Design, IISc Bangalore by Prof. Y.N. Srikanth https://nptel.ac.in/courses/106108113
- 3. NOC:Compiler Design, IIT Kharagpur by Prof. Santanu Chattopadhyay https://nptel.ac.in/courses/106105190

This course can be opted as an elective by the students of following subjects: MCA

Suggested equivalent online courses (MOOCs) for credit transfer: N.A.

APPENDIX-II

Guidelines for Research Project/Dissertation

Guidelines for preparing Research Project/Dissertation is available at link:

http://uprtou.ac.in/upload_pdf/01_02_2023_Guidelines_fo_Project_Lit_Survey_Dissertation.pdf