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Block-1 

Metric space: Continuity, Compactness and completeness  

In this we introduce the notion of metric spaces. The metric spaces arose 

from extending the notions of continuity and convergence on the real line 

to more abstract spaces. A metric space is just a set which is equipped 

with a function called metric which measures the distance between the 

elements of various pairs from the set. We shall study various properties 

of these spaces, open and closed sets. The structure on a metric space 

allows us to extend the notion of continuity of these spaces. We will see 

that the notion of continuity is one of the most important notions for 

further study of Analysis. Here we talk about two important results about 

continuous functions which are called Urysohn's lemma and glueing 

lemma. Then we explain the notion of uniform continuity through some 

examples. The definition of continuity and uniform continuity for metric 

spaces are similar for Euclidean spaces   
.  

In second unit we shall study about the concepts of a limit and Continuity 

for the functions of a single variable. we shall discuss the notion of 

compactness in a metric space.  

In the third unit we shall define compact sets and discuss the examples of 

these sets in different metric spaces. Firstly we give a characterization in 

terms of convergence of sequences and then in terms of completeness. In 

this connection, we introduce the concept of "totally bounded sets" which 

is a stronger version of bounded sets. We show that a set is compact if and 

only if it is complete and totally bounded. We also discuss the analogue of 

the famous "Heine Bore1 theorem" in   which characterises compact sets 

in terms of closed and bounded sets. Here we discuss relationship between 

continuity and compactness. 

In the fourth unit is to study one of the properties of metric space. The 

notion of distance between points of an abstract set leads naturally to the 

discussion of uniform continuity and Cauchy sequences in the set. Unlike 

the situation of real numbers, where each Cauchy sequence is convergent, 

there are metric spaces in which Cauchy sequences fail to converge. A 



metric space in which every Cauchy sequence converges is called a 

‘complete metric space’. This property plays a vital role in analysis when 

one wishes to make an existence statement. We shall see that a metric 

space need not be complete and hence we shall find conditions under 

which such a property can be ensured. 
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1.1 Introduction 

In this unit, we introduce the notion of metric spaces. As we already 

pointed out in the course introduction and block introduction, the 

metric spaces arose from extending the notions of continuity and 

convergence on the real line to more abstract spaces. A metric space 

is just a set which is equipped with a function called metric which 

measures the distance between the elements of various pairs from 

the set. We shall first give the definition of a metric and a metric 

space and consider various examples Then we shall study various 

properties of these spaces. we shall consider open and closed sets. 

The structure on a metric space allows us to extend the notion of 

continuity to functions in the context of these spaces. We shall 

define this notion and discuss several examples of continuous 

functions. Later you will see that the notion of continuity is one of 

the most important notions for further study of Analysis. Here we 

talk about two important results about continuous functions which 

are called Urysohn's lemma and glueing lemma. Then we explain the 

notion of uniform continuity through some examples. You will see 

that the definition of continuity and uniform continuity for metric 

spaces are similar to those for Euclidean spaces Rn. But extending 



these notions to metric spaces, provide not only a new perspective 

but also a deeper insight into their structure and properties. 

 

1.2       Objectives 

 

After studying this unit, we should be able to: 

▪ state the properties that define a metric and apply them. 

▪ give examples of different metrics on Rn ;     

▪ explain a discrete metric space and other metric spaces such as 

function spaces;  

▪ we try to check whether 

i) a subset of a metric space is open; 

ii) a subset of a metric space is closed;  

iii) a function defined on a metric space is continuous; 

iv) a function defined on a metric space is uniformly 

continuous. 

1.3 Metric Space 

A Metric Space is a set equipped with a distance function, also called 

a metric, which enables us to measure the distance between two 

elements in the set. 



Definition:A Metric Space is a non-empty set   together with a 

function 

             satisfying the following conditions: 

(i) d(x , y) ≥ 0 for all x , y εM 

(ii) d(x , y) = 0 if and only if x =y 

(iii) d(x , y) = d(y , x) for all x , y  M 

(iv) d(x , z) ≤ d(x , y) + d(y , z) for all            [Triangle 

Inequality] 

d is called a metric or distance function on M and d (x, y) is called 

the distance between x and y in M. The metric space M with the 

metric d is denoted by (M, d) or simply by M when the underlying 

metric is clear from the context. 

Example 1.Let R be the set of all real numbers. Define a function d : 

M × M → R by d(x , y) = | x – y |. Then d is a metric on R called the 

usual metric on R. 

Proof: Let x, y ε R. 

 

Clearly d(x, y) = | x – y | 

≥ 0. Moreover, 

d(x,y)=0⇔|x–y|=0. 

⇔ x – y =0. 

⇔ x = y 

 



d(x,y)=|x–y| 

 

=|y–x| 

= d(y,x). 

 

∴d(x , y) = d(y , x). 

Let x , y , z ε R. 

 

d(x , z) = |x – z | 

= |x – y + y - z | 

≤ | x – y |+| y – z | 

= d(x , y) + d(y , z). 

∴d(x , z) ≤ d(x , y) + d(y 

, z). Hence d is a metric 

onR. 

Note. When R is considered as a metric space without specifying its 

metric, it is the usual metric. 

Example 2. Let M be any non-empty set. Define a function d : M x M 

→R by d(x , y) = 0 if x=y and  
1 if x ≠ y

 

Then d is a metric on M called the discrete metric or trivial metric on 

M. 

Proof. 



 

Let x , y ε M. 

 

Clearly d(x , y) ≥ 0 and d(x , y ) = 0 ⇔ x = y . 

 

0 

if x =y Also, d(x 

, y) = 
1 if x≠y

 

= d(y , x) . 

Let x , y , z ε M. 

We shall prove that d(x , z) ≤ d(x , y) + d(y , z). 

Case (i) Suppose x = y = z. 

Then d(x , z) = 0 , d(x , y) = 0 , d(y , z) = 0 . 

 

∴d(x , z) ≤ d(x , y) + d(y , z). 

Case (ii) Suppose x = y and z distinct. 

Then d(x , z) = 1 , d(x , y) = 0 , d(y , z) = 1 . 

∴d(x , z) ≤ d(x , y) + d(y , z). 

Case (iii) Suppose x = z and y 

distinct. Then d(x , z) = 0 , d(x , 

y) = 1 , d(y ,z)=1 . 

∴d(x , z) ≤ d(x , y) + d(y , z). 



Case (iv) Suppose y = z and x 

distinct. Then d(x , z) = 1 , d(x , 

y) = 1 , d(y , z) = 0. 

∴d(x , z) ≤ d(x , y) + d(y , z). 

Case (v) Suppose x ≠ y ≠ z. 

Then d(x , z) = 1 , d(x , y) = 1 , d(y , z) = 1. 

 

∴d(x , z) ≤ d(x , y) + d(y , z). 

In all the cases, d(x , z) ≤ d(x ,y)+d(y,z). Hence d is a metric on 

M. 

1.4 Open and Closed Ball 

Definition: Let       be a metric space,     and 

   . The set                       is 

called the open ball with Centre   and radius  . 

The set                        is called the 

closed ball with Centre   and radius  .  

1.5OPEN SETS IN A METRICSPACE 

Definition:Let (M , d) be a metric space. Let a   M and r be a 

positive real number. The open ball or the open sphere with center a 

and radius r is denoted by     Bd (a , r) and is the subset of M defined 

by Bd (a , r) = {x   M ⁄d(a , x) < r}. We write B(a , r) for Bd (a , r) if 

the metric d under consideration isclear. 



Note. Since d(a, a) = 0 < r, a   Bd (a , r). 

Examples  

1. In R with usual metric B(a , r) = (a - r , a +r). 

2. In R2with usual metric B(a , r) is the interior of the circle 

with center aand radiusr. 

3. In a discrete metric space M, B(a , r) = 
M ifr>1

 

aif r≤1 

Definition:Let (M , d) be a metric space. A subset A of M is said to 

be open in M if for each x   A there exists a real number r > 0 such 

that B(x , r) ⊆ A. 

Note. By the definition of open set, it is clear that ∅ and M are open 

sets. 

 

Examples  

1. Any open interval (a , b) is an open set in R 

with usual metric. For, 

Let x   (a , b). 

Choose a real number r such that 0 < r ≤ min { 

x-a , b-x }. Then B(x , r) ⊆ (a , b). 

∴ (a , b) is open in R. 

2. Every subset of a discrete metric 

space M isopen. For, 

Let A be a 

subset of M. If 



A = ∅, then A is 

open. 

Otherwise, let x 

  A. 

Choose a real number r such that 0 

< r ≤ 1. Then B(x , r) = { x } ⊆ A 

and hence A is open. 

3. Set of all rational numbers Q is 

not open in R. For, 

Let x Q. 

For any real number r > 0, B(x , r) = (x - r , x + r) contains both 

rational and irrational numbers. 

∴B(x , r) ⊈Q and hence Q is not open. 

Theorem 1. Let (M , d) be a metric space. Then each open ball in M 

is an open set. 

 

Proof: Let B(a ,r) be an open ball in M. Let x  B(a , r). 

Then d(a , x) < r. 

Take r1= r – d(a , x). 

Then r1> 0. We claim 

that B( x , r1) ⊆B( a ,r). 

LetyϵB(x,r1).Thend(x,y)

<r1. Now, d(a , y) ≤ d(a , 

x) + d(x , y) 

<d(a , x) + r1 



= d(a , x) + r – d(a , x) 

= r. 

 

∴d(a , y) < r. 

∴y  B(a , r). 

∴B( x , r1) ⊆ B( a , r). 

Hence B(a , r) is an open ball. 

Theorem 3. In any metric space M, the union of open sets is open. 

Proof: LetAαbe a family of open sets in M. We have to prove A = ∪ 

Aα is open in M. Let x  A. 

Then x  Aα for some  . 

Since Aα is open, there exists an open ball B(x , r) such that B(x , r) ⊆ 

Aα. 

∴B(x , r) ⊆ A. 

Hence A is open in M. 

Theorem 4.In any metric space M, the intersection of a finite 

number of open sets is open. 

Proof: Let A1, A2, ….,An be open sets in M. 

We have to prove A = A1 ∩ A2 ∩ …. ∩ 

Anis open in M. Let x   A. 

Then x   Ai∀i = 1, 2, … , n. 



Since each Ai is open, there exists an open ball B(x , ri) such 

that B(x , ri) ⊆ Ai. Take r = min { r1 , r2 , … , rn }. 

Clearly r > 0 and B(x , r) ⊆ B(x , ri) ∀i = 

1, 2, … , n. Hence B(x , r) ⊆ Ai∀i = 1, 2, 

… , n. 

∴B(x , r) ⊆ A. 

 

∴ A is open in M. 

Theorem 2. Let (M , d) be a metric space and A ⊆ M. Then A is open 

in M if and only if A can be expressed as union of open balls. 

Proof: Suppose that A is open in M. 

 

Then for each x   A there exists an open ball B(x ,rx) such that B(x , 

rx) ⊆ A. 

∴ A =x AB(x , rx ). 

Thus A is expressed as union of open balls. 

Conversely, assume that A can be expressed as union 

of open balls. Since open balls are open and union of 

open sets is open, A is open. 

1.6 Interior of aset 

Definition:Let (M , d) be a metric space and A ⊆ M. A point x   A 

is said to be an interior point of A if there exists a real number r > 0 

such that B(x , r) ⊆ A. The set of all interior points is called as 



interior of A and is denoted by Int A. 

Note: Int A ⊆ A. 

Example: In R with usual metric, let A = [1 , 2]. 1 is not an interior 

points of A, since for any real number r >0 , B(1 , r) = (1 – r , 1 + r) 

contains real numbers less than 1. Similarly, 2 is also not an interior 

point of A.  

In fact every point of (1 , 2) is a limit point of A. Hence IntA = (1 

,2). 

Note: (1)Int∅= ∅and Int M = M. 

 

(2) A is open ⇔Int A =A. 

(3) A ⊆ B ⇒Int A⊆IntB 

Theorem5.Let (M , d) be a metric space and A ⊆ M. Then Int A = 

Union of all open sets contained in A. 

 

Proof: Let G = ∪{ B / B is an open set contained in A } We have to 

prove Int A = G. 

Let x  Int A . 

Then x is an interior point of A. 

∴ there exists a real number r > 0 such that B(x , r) ⊆ A. 

Since open balls are open, B(x , r) is an open set contained in A. 

 



∴B(x , r) ⊆ G. 

∴x  G . 

∴Int A⊆G ................................................... (1) 

 

Let x  G . 

Then there exists an open se B such that B ⊆ A and x   B. 

 

Since B is open and x   B, there exists a real number r > 0 such that 

B(x , r) ⊆ B ⊆ A. 

∴ x is an interior point of A. 

∴ x  Int A . 

 

∴ G ⊆IntA ................................................. (2) 

From (1) and (2), we get Int A = G. 

Note: Int A is an open set and it is the largest open set contained in A. 

Theorem7.Let M be a metric space and A , B ⊆ M. Then 

 

(1) Int (A ∩ B) = (Int A) ∩ (IntA) 

(2) Int (A ∪ B) ⊇ (Int A) ∪ (IntA) 

Proof: (1) A∩B⊆A⇒Int(A∩B)⊆IntA. Similarly, Int (A ∩ B) ⊆Int B. 

∴Int (A ∩ B) ⊆ (Int A)  ∩(IntA) .......................................... (a) 



IntA⊆ A and Int B ⊆B . 

∴ (Int A) ∩ (Int A) ⊆ A ∩ B 

 

Now, (Int A) ∩ (Int A) is an open set 

contained in A∩B . But, Int (A ∩ B) is the 

largest open set contained in A ∩B . 

∴(Int A)  ∩ (Int A) ⊆Int (A∩B) ........................................... (b) 

 

From (a) and (b) , we get Int (A ∩ B) = (Int A) ∩ (Int A) 

 

(2) A⊆A∪B⇒IntA⊆I

nt(A∪B) Similarly, 

Int B⊆Int (A ∪B) 

∴Int (A ∪ B) ⊇ (Int A) ∪ (Int A) 

Note: Int (A ∪B)need not be equal to(Int A) ∪ 

(Int A) For, 

In R with usual metric, let A = (0 , 

1]andB=(1,2).  

A ∪ B = (0 , 2). 

∴Int (A ∪ B) = (0 , 2) 

Now, Int A (0 , 1) and Int B = (1 , 2) and hence (Int A) ∪ (Int A) = 

(0 , 2) –{2}. 

 



∴Int (A ∪B)≠(Int A) ∪ (Int A) 

1.5 Subspace 

Definition:Let (M , d) be a metric space. Let M1 be a nonempty 

subset of M. Then M1 is also a metric space under the same metric d. 

We call (M1 , d) is a subspace of (M, d). 

Theorem 8.Let M be a metric space and M1 a subspace of M. Let A 

⊆ M1. Then A is open in M1 if and only if A = G ∩ M1 where G is 

open in M. 

Proof: Let B1(a , r) be the open ball in M1 with center a and radius r. 

Then B1(a , r) = B(a , r) ∩ M1where B(a , r) is the open ball in M with 

center a and radius r. 

Let A be an open 

set in M1. Then 

A=x AB1(x,r(x)) 

=x A[B(x , r(x)) ∩M1)] 

= [x AB(x , r(x))] ∩M1 

= G ∩ M1 where G =x AB(x , r(x)) which is 

open in M. Conversely, let A = G ∩ M1 where G is 

open in M. 

We shall prove that A is 

open in M1. Let x  A . 

Then x   G and x   M1. 



Since G is open in M, there exists an open ball B(x , r) such that B(x , 

r) ⊆ G. 

∴B(x , r) ∩ M1⊆ G ∩ M1. 

i.e. B1(a , r) ⊆ A. 

∴ A is open in M1. 

Example.Consider the subspace M1 = [0 , 1] ∪ [2 , 3] of R. 

 

A = [0 , 1] is open in M 

 

since A = (- 
1
 ,

3
 ) ⊆ M where (- 

1
 , 

3
 )is open in R. 

1 2 2 1 2 2 

 

Similarly, B = [2 , 3], C = [0 , 
1
], D = (

1
 , 1] are open in M. 

2 2 1 

 

Note that A, B, C, D are not open in R. 

 

1.6 ClosedSets. 

Definition: A subset A of a metric space M is said to be closed in M 

if its complement is open in M. 



� 

Examples  

1. In R with usual metric any closed interval 

[a , b] is closed. For, 

[a , b]
c
 = R – [a , b] = ( - ∞ , a) ∪ (b , ∞). 

( -∞ , a) and(b , ∞) are open sets in R and hence ( - ∞ , a) ∪ (b , ∞) is 

open in R. 

i.e. [a , b]
c
 is open in R. 

∴ [a , b] is open in R. 

2. Any subset A of a discrete metric space M is closed since 

Acis open as every subset of M isopen. 

Note. In any metric space M, ∅ and M are closed sets since ∅c
 = M 

and M
c
 = ∅ which are open in M. Thus ∅ and M are both open and 

closed in M. 

Theorem 9. In any metric space M, the union of a finite number of 

closed sets is closed. 

Proof: Let A1, A2, …. , An be closed sets in a metric space M. Let A = 

A1∪ A2∪ …. ∪ An. 

We have to prove A is open in M. 

Now, A
c
 = [ A1∪ A2∪ …. ∪ An]

c
 

= A
c
 ∩A

c
 ∩ …. ∩ A

c
 [ By De Morgan’s law.] 

1 2   

Since Aiis closed in M, A
c
is open in M. 

Since finite intersection of open sets is open, A
c
 ∩A

c
 ∩ …. ∩ A

c
 is 

open in M. 

1 2   

 



α 

α 

α 

i.e. A
c
 is open in M. 

∴ A is closed in M. 

Theorem 10.In any metric space M, the intersection of closed sets is 

closed. 

Proof: LetAαbe a family of closed sets in M. We have to prove A = ∩ 

Aα is open in M. Now, A
c
 = (∩ Aα)

c
 

= ∪A
c
  [ByDe Morgan’s 

law.] Since Aα is closed in M, A
c
 

is open in M. Since union of open 

sets is open, ∪A
c
 is open. i.e. A

c
 is 

open in M. ∴ A is closed in M.  



Theorem 11. Let M1 be a subspace of a metric space M. Let F1⊆ M1. 

Then F1 is closed in M1 if and only if F1 = F ∩ M1 where F is a closed 

set in M. 

Proof: Suppose that F1 is closed in M1. Then M1 – F1 is open in M1. 

∴ M1 – F1 = A ∩ M1 where A is 

open in M. Now, F1 = A
c
 ∩ M1. 

Since A is open in M, A
c
 is closed in M. 

Thus, F1 = F ∩ M1 where F = A
c
 is closed in M. 

Conversely, assume that F1 = F ∩ M1 where F is closed in M. 

Since F is closed in M, F
c
 is open in M. 

∴ F
c
 ∩ M1 is open in M1. 

Now, M1 – F1 = F
c
 ∩ M1 which is open in M1. 

∴ F1 is closed in M1. 

1.7 Closure 

Definition:Let A be a subset of a metric space (M , d). The closure of 

A, denoted by A, is defined as the intersection of all closed sets which 

contain A. 

i.e.A= ∩BB is closed in M and B ⊇ A 

Note : 

(1) Since intersection of closed sets is closed, Ais a closedset. 

(2) A⊇ A. 



(3) Ais the smallest closed set containingA. 

(4) Aisclosed⇔

A=A. (5) A=A. 

Theorem 12.Let (M , d) be a metric space. Let A , B ⊆ M. Then 

 

(1) A ⊆ B 

⇒A⊆B 

(2)A∪B= A∪B 

(3)A∩B⊆A∩B 

Proof: Let A ⊆B .B⊇ B ⊇A. 

ThusBis a closed set containing A. 

But Ais the smallest closed set containing A. 

∴A⊆B. 

(1) A ⊆ A ∪ B. 

∴by (1), 

A⊆A∪B.Similarly ,B⊆A∪B. 

∴A∪B⊆A∪B      ………(a) 

Ais a closed set containing A and Bis a closed set containing B. 

∴A∪Bis a closed set containing A ∪B . 

ButA∪Bis the smallest closed set containing A ∪B . 

∴A∪B⊆A∪B   ………..(b) 

From (a) and (b) we getA∪B= A∪B. 

 

(2) A ∩ B ⊆A. 

∴A∩B⊆A. 



Similarly,A∩B

⊆B. 

∴A∩B⊆A∩B 

Note:A∩Bneed not be equal to A∩ B. 

For example, in R with usual metric take A = (0 , 1) 

and B = (1 , 2) . A ∩ B = ∅⇒A∩B= ∅ . 

But A∩ B= [0 , 1] ∩ [1 , 2] = { 1 }. 

∴A∩B≠ A∩ B. 

1.8 Limit Point 

Definition:Let (M , d) be a metric space and A ⊆ M. A point x   M 

is said to be a limit point of A if every open ball with center x 

contains a point of A other than x. 

i.e. B(x , r) ∩ ( A – { x } ) ≠∅ for all r > 0. 

 

The set of all limit points of A is denoted by A . 

Example.In R with usual metric let A = (0 , 1). 

Every open ball with center 0, B(0 , r) = (-r , r) contains points of (0 , 

1) other than 0. 

 

∴ 0 is a limit point of A. 

Similarly, 1 is a limit point of A and in fact every point of A is also a 

limit Point of A. 

 



For each real number x < 0, if we choose r such that 0 < r ≤− 
x

 

2 

, then B(x , r) 

 

contains no point of ( 0 , 1) , and hence x is not a limit point of 

limit point of A. Similarly, every real number x > 0 is not a limit 

point of A. 

Hence A  = [0 , 1]. 

Example.In R with usual metric, Z has no limit 

point. For, 

Let x be any real number. 

 

If x is an integer, then B(x , 
1
) = (x - 

1
 , x + 

1
) has no integer other than 

x. 

2 2 2 

 

∴ x is not a limit point of Z . 

If x is not an integer, choose r such that 0 < r < x-n where n is the 

integer closest to x. Then B(x , r) = (x – r , x + r) contains no integer. 

Hence x is not a limit point of Z. 

Thus no real number x is a limit point of Z. 

 

∴Z  = ∅ . 



Example. In R with usual metric, every real number is a limit 

point of Q . For, 

Let x be any real number. 

Every open ball B(x , r) = (x – r , x + r) contains infinite number of 

rational numbers. 

 

∴ x is a limit point of Q. 

 

∴Q  = R. 

Theorem 13. Let (M , d) be a metric space and A ⊆ M. Then x is a 

limit point of A if and only if every open ball with center x contains 

infinite number of points of A. 

Proof: Let x be a limit point of A. 

We have to prove every open ball with center x contains infinite 

number of points of A. 

Suppose not. 

Then there exists an open ball B(x , r) contains only a finite 

number of points of A and hence of (A – { x }). 

Let B(x , r) ∩ ( A – { x } ) =x1, x2, …. , xn. 

Let r1 = min { d(x , xi) / i = 1 , 2 , ….. , n }. 

Since x ≠ xi , d(x , xi) > 0 ∀i = 1 , 2 , …… , n and hence 

r1> 0. Moreover, B(x , r1) ∩ ( A – { x } ) = ∅ . 



∴ x is not a limit 

point of A. This is a 

contradiction. 

∴ every open ball with center x contains infinite number of 

points of A. 

Conversely, assume that every open ball with center x contains 

infinite number of points of A. 

Then, every open ball with center x contains infinite 

number of points of A – { x }. 

Hence x is a limit point of A. 

Note:Any finite subset of a metric space has no limit 

points. Theorem 14. Let M be a metric space and A ⊆ 

M. Then  

A = A∪A  . 

Proof: Let x  A∪A  . 

 

We claim 

that x  A  

Suppose x ∉ 

A . Then, x   

M - A . 

  

Since A is closed , M - A is open. 

∴ there exists an open ball B(x , r) such that B(x , r) ⊆ M - A . 



 

∴B(x , r) ∩ A = ∅ . 

 

∴B(x , r) ∩ A = ∅ . [ ∵ A ⊆A ]. 

 

∴ x ∉ A ∪A  , which is a contradiction. 

 

∴ x  A . 

 

∴ A∪A ⊆A .................................................. (1) 

 

Let x  A . 

 

We have to prove x 

 A∪A  . If x   A, 

then x  A∪A  . 

Suppose x ∉ A. 

 

We claim that x  A . 

Suppose x ∉ A . 

Then there exists an open ball B(x , r) such that B(x , r) ∩ ( A – 

{ x } ) = ∅ . 

∴B(x , r) ∩ A = ∅ . [ ∵ x ∉A ] 

∴ A ⊆B(x , r)
c
 . 

Since B(x , r) is open, B(x , r)
c
 is 



closed.  Thus B(x , r)
c
 is a closed 

set containing A. But, A is the 

smallest closed set containingA. 

Hence A 

⊆B(x , r)
c
 . 

Now, x 

∉B(x , r)
c
 . 

 

∴ x ∉A , which is a contradiction. 

 

∴ x  A and hence x   A ∪A  . 

 

A ⊆ A∪A  ..................................................... (2) 

 

From (1) and (2), we get A = A∪A  . 

Corollary 3. A is closed if and only if A contains all its limit points. 

Proof: A is closed ⇔ A = A. 

⇔ A = A ∪A  . 

⇔A ⊆A  . 

 

Corollary 1. x   A ⇔B(x , r) ∩ A ≠ ∅∀ r > 0. 

Proof. 

 

x   A ⇒ x   A ∪A  . 



∴ x   A or x  A  . 

If x  A , then x   B(x , r) ∩ A . 

 

If x   A , then B(x , r) ∩ (A – { x }) 

≠ ∅∀ r > 0. Thus B(x , r) ∩ A ≠ ∅∀ r 

> 0. 

 

Conversely, let B(x , r) ∩ A ≠ 

∅∀ r > 0. We have to prove x 

 A . 

If x  A , then x   A . 

If x ∉ A, then A = A – { x } . 

 

∴B(x , r) ∩ (A – { x }) ≠ ∅∀ r > 0. 

∴ x is a limit point of A. 

 

∴ x  A . 

 

∴ x  A. 

 

Corollary 2. x   A ⇔ G ∩ A ≠∅ for all open set G containing x. 

Proof: Let x  A . 

We have to prove G ∩ A ≠∅ for all open set G 

containing x. Let G be an open set containing 

x. 



Then there exists an open ball B(x , r) such that 

B(x , r) ⊆ G. Since x  A , B(x , r) ∩ A ≠ ∅ and 

hence G ∩ A ≠ ∅. 

Conversely, assume that G ∩ A ≠ ∅ for every open set 

containing x. 

 

Then B(x , r) ∩ A ≠ ∅∀ r > 0. 

 

∴ x  A . 

 

 

1.9 Bounded Sets in a Metric space. 

Definition:Let (M , d) be a metric space. A subset A of M is said to 

be bounded if there exists a positive real number k such that d(x , y) 

≤ k ∀ x , y ∊ A. 

Example. Any finite subset A of a metric space (M , d) 

is bounded. For, 

Let A be any finite subset of M. 

 

If A = ⌀ then A is obviously bounded. 

Let A ≠ ⌀ .Then {d(x , y)/x , y ∊ A} is a finite set of 

real numbers. Let k = max {d(x , y)/x , y ∊ A}. 

Clearly d(x , y) ≤ k for all x , y ∊ A. 

∴ A is bounded. 



Example. [0,1] is a bounded subset of R with usual metric since d(x , 

y) ≤ 1 for all x , y ∊ [0,1]. 

 

Example 1.(0 , ∞) is an unbounded subset of R. 

 

Example 2. Any subset A of a discrete metric space M is 

bounded since d(x , y) ≤ 1 for all x , y ∊ A. 

Note:Every open ball B(x , r) in a metric space (M , d) is 

bounded. For, 

Let s , t ∊ B(x , r). 

d(s , t) ≤ d(s , x) + d(x , t) < r + r. 

 

∴d(s , t) < 2r. 

Hence B(x , r) is bounded. 



 

Definition :Let (M , d) be a metric space and A ⊆ M. The diameter 

of A,denoted by d(A), is defined by d(A)= l.u.b {d(x , y)/x , y ∊A}. 

Example.In R with usual metric the diameter of any interval is equal 

to the length of the interval. The diameter of [0 , 1] is 1. 

1.10 Complete Metric Spaces. 

Definition:Let (M , d) be a metric space. Let (xn) be a sequence in 

M. Let x  M. We say that (xn) converges to x if for every  > 0 there 

exists a positive integer N such that d(xn , x) < for all n ≥ N. If (xn) 

converges to x , then x is called a limit of (xn) and we write limn→∞xn 

= x or xn→ x . 

Note :(1) xn → x if and only if for every ε > 0 there exists a positive 

integer N such that xn  B(x , ε) ∀ n ≥ N. Thus, the open ball B(x , r) 

contains all but a finite number of terms of the sequence. 

(2) xn → x if and only if ( d(xn , x) ) →0. 

 

Theorem 15. The limit of a convergent sequence in a metric space is 

unique. 

 

Proof.Let (M , d) be a metric space and let (xn) be a sequence in M. 

Suppose that (xn) has two limits say x and y. 

Let ε > 0 be given. 

 

Sincexn→x,thereexistsapositiveintegerN1suchthatd(xn,x)<ε/2forall

n≥N1. 



Sincexn→y,thereexistsapositiveintegerN2suchthatd(xn,x)<ε/2forall

n≥N2. Let N = max { N1 , N2}. 

Then, d(x , y) ≤ d(x , xN) + d(xN , y) 

< ε/2 + ε/2 

 

∴d(x , y) < ε. 

Since ε > 0 is arbitrary , d(x , y) = 0. 

 

∴ x = y. 

Theorem16. Let (M, d) be a metric space and A ⊆ B. Then 

(i) X is a limit point of A ⇔ there exists a sequence (xn) of 

distinct points in A such that xn → x. 

(ii) X   A ⇔ there exists a sequence (xn) in A such that xn 

→ x. 

 

Proof. 

 

(i) Let x be a limit point ofA. 

(ii) Then every open ball B(x , r) contains infinite number of 

points of A. 

 

Thus, for each natural number n , we can choose xn 



xn ≠ x1, x2, x3, …. ,xn-1 .  B(x , 1) such that Now, (xn) is a 

sequence of distinct points in A and  

 

d(xn 

 

∴( d(xn , x) ) → 0. 

∴xn → x .  , x) <
1∀ n. n 

 

Conversely, assume that there exists a sequence (xn) of 

distinct points in A such that xn → x . 

We have to prove x is a limit point of A. 

Let it be given an open ball B(x , ε). 

Since xn → x , there exists a positive integer 

N such that d(xn , x) < ε ∀ n ≥ N. 

∴xn B(x , ε) ∀ n ≥ N. 

Since xn are distinct points of A, B(x , ε) contains infinite 

number of points of A. 

Thus, every open ball with center x contains infinite 

number of points of A. 

Hence x is a limit point of A. 

 

(iii) Let x  A. 

Then x  A ∪ A∣. 



If x   A then the constant sequence x, x, x, ….. is a 

sequence in A converges to x. 

If x ∉ A, then x  A∣. 

∴ x is a limit point of A. 

∴ by (i), there exists a sequence (xn) in A converges 

to x. Conversely, assume that there exists a sequence 

(xn) in A such that xn → x . 

Then every open ball B(x , ε) contains points in the 

sequence and hence points of A. 

∴ x  A . 

 

 

Definition:Let (M , d) be a metric space. Let (xn) be a sequence in 

M. Then (xn) is said to be a Cauchy sequence in M if for every ε > 0 

there exists a positive integer N such that d(xn , xm) < ε for all n , m ≥ 

N. 

Theorem 17.Every convergent sequence in a metric space (M , d) is a 

Cauchy sequence. 

Proof. Let (xn) be a convergent sequence in M 

converges to x   M. We have to prove (xn) is 

Cauchy. 

Let ε > 0 be given. 

 

Sincexn→x,thereexistsapositiveintegerNsuchthatd(xn,x)<ε/2fora

lln≥N. 

 



∴d(xn , xm) ≤ d(xn , x) + d(x , xm) 

 

<ε/2 + ε/2 for all n , m ≥ N. 

 

∴d(xn , xm) < ε for all n 

, m ≥ N. Hence (xn) is a 

Cauchy sequence. 



Definition:A metric space M is said to be complete if every Cauchy 

sequence in M converges to a point in M. 

Example. R with usual metric is complete. 

 

Theorem 18. A subset A of a complete metric space M is complete if and 

only if A is closed. 

Proof: Suppose that A is complete. We have to prove A is closed. 

For that it is enough to prove A contains all its 

limitpoints. Let x be a limit point ofA. 

Then there exists a sequence(xn) in A such that 

xn→x. Since A is complete x  A. 

∴ A contains all its limit 

points. Hence A is closed. 

Conversely, assume that A is a closed 

subset of M. Let (xn) be a Cauchy sequence 

in A. 

Then (xn) be a Cauchy sequence in M. 

 

Since M is complete, there exists x   M such that 

xn → x . Thus (xn) is a sequence in A such that xn 

→ x . 

∴ x  A . 

 



 

Since A is closed A = A and hence x   A. 

 

Thus every Cauchy sequence (xn) in A converges to a point in A. 

 

∴ A is complete. 

 

Note:Every closed interval [a, b] with usual metric is complete since it is a 

closed subset of the complete metric space R. 

Limit of a Sequence: if a sequence is convergent, the unique number to 

which it converges is the limit of the sequence. 

 

1.13 Cauchy Sequences: 

 

Definition: A sequence      is called Cauchy sequence if, given any      

there exists an     such that           for all        

Symbolically,  ∀           ∀                   

          . 

Equivalently      is a Cauchy sequence if                   

 

Example:Show that the sequence       where    
   

 
  is a Cauchy 

sequence. 

Solution: for all        

          
   

 
   

   

 
    

         

  
  



 
   

  
  

   

  
 

Therefore, if     then  

        
   

  
 

  

  
 

 

 
 

Let     be given then there is an      

Such that 
 

 
 

 

 
 thus for all      

We have           
   

 
   

   

 
   

 

 
 

 

 
   

Hence the sequence      is a Cauchy sequence. 

Example: Show that the sequence       where      
 

  
   

       

  
 is 

a Cauchy sequence. 

Solution:for all       with      we have that 

            
 

  
   

       

  
     

 

  
   

       

  
   

  
       

      
 

       

      
   

       

  
  

 
 

      
 

 

      
   

 

  
 

 
 

  
 

 

    
   

 

    
 

 

  
   

 

 
   

 

      
  

                      
 

      
 

 
 

   

  
 

   
 

     

Since 
 

               given any     there is an     Such that 

 

      
 

          for all      

Thus 



            
 

  
   

       

  
     

 

  
   

       

  
  

 
 

    
   

For all        That is      is Cauchy sequence. 

Theorem 19. Every Cauchy sequence      is bounded. 

Proof: Suppose that     then there exists an     such that  

          for all        

Choose      and observe that 

                             

        for all      

Let                                  

Then        for all     and therefore      is bounded. 

Theorem 20. Every Cauchy sequence      of real Numbers converges. 

Proof: We know that      is bounded, and therefore, by the Bolzono-

Weierstras theorem     has a subsequence     
  which converges to some 

real number  . We claim that the sequence      converges to   . 

Let     be given, then there exist natural numbers    and    such that  

        
 

 
 for all     . 

Let             .then for all     

We have               
      

    
 

 
 

 

 
  . 

Therefore           . 

Combining theorem, we get Cauchy’s Convergence Criterion for sequence. 

A sequence      of real numbers converges if and only if it is a Cauchy 



sequence. 

 

 

 

 

 

1.14 Summary 

Metric spaces provide a notion of distance and a framework with 

which to formally study mathematical concepts such as continuity and 

convergence, and other related ideas. Many metrics can be chosen for 

a given set, and our most common notions of distance satisfy the 

conditions to be a metric. Any norm on a vector space induces a 

metric on that vector space and it is in these types of metric spaces 

that we are often most interested for study of signals and systems. 

1.15 Terminal Questions 

 

1. Show that if      is a Cauchy sequence, then so is       . 

2. Let (X, d) be a metric space and let a E X and r > 0. Can B[a, r] be an 

open set? Justify your answer. 

3. Show that Int A is an open set. 

4. Show that any finite subset of a metric space is closed. 



5. If X is a metric space and A is a non-empty subset of X, then show that 

    = {x: d(x,A) = 0). 

 

6. Let (X, dl), (Y, d2) and (Z, d3) be three metric spaces. Let f : X + Y be . 

continuous at x   X and g. Y + Z be continuous at y = f(x). Then 

composite map gof: X + Z is continuous at x   X. 

7. Let (Xl, dl) and (X2, d2) be two discrete metric spaces. Then verify that 

the product metric on X1 x X2 is discrete. 

8. Check whether the function d: R
2
 x R

2   R given by d(P1,P2) =    

           where pl = (xl,y2) and p2 = (x2,y2) isa metric or not. 

9. Let (X, d) be a metric space. Show that the following functions give 

metrics on X.        
      

        
 

10. Which of the following functions d : R x R → R are metrics on 

R? 

i)               

ii)              
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2.1 Introduction 

In this unit we shall study about the concepts of a limit and Continuity for the 

functions of a single variable.The natural of a surface is defined by an 

equation between the coordinates of its points, which we represent by 

           generally speaking, on passing through the surface the value of 

change its sign, so that, as long as the continuity is not interreupted, the 

values are positive on one side and negative on the other, In the extend these 

concepts for the functions of two variables. 

2.2 Objectives 

After reading this unit, we should be able to 

▪ Define Bounded and Unbounded of a functions 

▪ Define Limit of a function 

▪Define Algebra of limits 

▪ Check Continuity of a Function 

▪ Use theCharacterization of Continuity 

▪ State and use theorems on Continuity of functions with the help of 

examples. 

2.3Domain and Range of a function: 



 A function consists of two non-empty sets X and Y and a rule which 

assigns to each element of the set X one and only one element of the set Y. 

 The set X is called the domain of the function. If x is an element of X, 

then the element of Y which corresponds to it is called the value of the 

function at x (or the image of x) and is denoted by f(x). 

 The range of a function is the set of all those elements of Y which are 

the values of the function. 

        Range of f(x) = {f(x) : x   X}, clearly range of     

2.4Bounded and Unbounded of a functions: 

 A function is said to be bounded if its range is bounded, otherwise it is 

unbounded. Thus, a function f(x) is bounded in the domain D. if there exist 

two real numbers k and K such that 

                    

Again, the bounds of the range of a bounded function are called the bounds of 

the function. 

Example 1. The function f defined by f(x) = sin x for all      is a bounded 

function, because its range is the closed interval [-1, 1] which is a bounded 

set. Clarly supremum or l.u.b. of f is 1 and infimum or g.l.b. of f is -1. 

Example 2. The function f(x) = log x for all        has its range        

which is not bounded. Thus the function f is unbounded in the domain (0,  ). 

Note: Let f : X → Y (i.e., f is a function whose domain is X and range 

    ⊆  , the co-domain) 



(i) f is called a monotonically increasing function if       

            ⇒             

(ii) f is called a monotonically decreasing function if       

            ⇒             

(iii) f is called a one-one function if                   ⇒       

     . 

(iv) f is called an onto function if to each       at least one   

            . 

2.5 Limit of a function: 

 A function f(x) is said to tend to a limit l as x tends to a if to each given 

   , there exists a positive number   (depending on  ) such that 

           whenever           

i.e.,                for all those values of x (except at x = a) which 

belong to          . This is denoted by             . 

Left hand and right hand limits 

f(x) is said to tend to l and x tends to a through values less than a, if to 

each          , such that 

                        

So that                whenever           

       The limit in this case is called the left hand limit (L.H.L.) and is denoted 

by f(a – 0). 

Thus  



          
     

     

        Similarly, if f(x) tends to l and x tends to a through values which are 

greater than a i.e., if given          such that 

                        

Then f(x) is said to tend to l from the right and the limit so obtained is called 

the right hand limit (R.H.L.) and is denoted by f(a + 0) 

We write                              

          
     

     

Existence of a limit at a point. F(x) is said to tend to a limit as x tends to ‘a’ if 

both the left and right hand limits exist and are equal, and their common 

value is called the limit of the function. 

Note. How to find the left hand and right-hand limits? 

(i) To find f(a – 0) or              , we first put x = a – h, h > 0 in 

f(x) and then take the limit as h → 0+. Thus 

   
     

        
    

       

(ii) To find f(a + 0) or              , we first put x = a + h, h > 0 in 

f(x) and then take the limit as h → 0+. Thus 

   
     

        
    

       

2.6 Limit at infinity and infinite limits: 

(i)              



        A function f(x) is said to tend to l as     if given     however 

small,       number k (depending on  ) s.t. 

           ∀                           ∀    

(ii)               

         A function f(x) is said to tend to l as      if given     however 

small,       number k (depending on  ) s.t. 

           ∀                            ∀     

(iii)              

A function f(x) is said to tend to   as x tend to a, if given k > 0, 

however large       number  . 

                     

(iv)               

A function f(x) is said to tend to    as x tend to a, if given k > 0, 

however large       number  . 

                      

(v)               

A function f(x) is said to tend to    as    , if given k > 0, 

however large    number     s.t.. 

         ∀     

(vi)               

A function f(x) is said to tend to   as     , if given k > 0, 

however large    number     s.t.. 

        ∀      



(vii)                

A function f(x) is said to tend to    as     , if given k > 0, 

however large    number      s.t.. 

         ∀      

2.7 The limit of a function at a point, when it exists, is unique 

Suppose            exists and is not unique. 

Let                   and              , where      

Now               ⇒         . 

If we take   
 

 
        , then 

            ⇒  given          s.t. 

           whenever                ………………….. (i) 

Again               ⇒  given          s.t. 

            whenever                ………………….. (ii) 

Let              , then from (i) and (ii), we have 

           and             whenever           

Now                          

                                       

        whenever           

Or                      whenever           



Which is absurd, therefore, our supposition is wrong. Hence      which 

proves that           , if it exists, is unique. 

2.8 Algebra of limits 

         Let f and g be two functions and a be a point of their common domain. 

         If              and              

(i)                              (ii)                     

    

    (iii)                                (iv)     
   

    

    
 

 

 
, provided     

Proof. (i)                 given          s.t. 

         
 

 
            for                    ………….(I) 

                given          s.t. 

         
 

 
            for                    ………….(II) 

Let              , then from (i) and (ii), we have 

         
 

 
 and          

 

 
 for           

Now                                            

         

 
 

 
 

 

 
       for            

   
   

                

(ii) Proceeding as in (I) above 



                                 

                   

                   
 

 
 

 

 
   for           

   
   

                

(iii)    
   

                given                 

                           …………….. (i) 

   
   

                given                 

                           …………….. (ii) 

Let              , then from (i) and (ii), we get 

            and             for           

Also                                     

                                              ⸪       

Now                                                    

              

                                                       

                 for           

Taking     
 

        
 and    

 

        
, we have 

                              

         
 

        
    

 

        
 

 
 

 
 

   

     
 
 

 
 

 

 
 

 

 
                                 ⸪  

   

     
   



    
   

            

(iv) Let us first prove that 

   
   

                  
   

 

    
 

 

 
 

   
   

                                     

                         

                                  

                                        

                           

Taking       
   

 
, we get         

   

 
 for           

 

      
 

 

   
  for            …………………..(i) 

Again                       
    

 
             

            for            …………………..(ii) 

⸪    
 

    
 

 

 
   

      

     
 

        

         
 

 
  

   
 

 

   
 for                 using (i) and (ii) 

 
 

    
 
    

 
          

 

    
 

 

 
    for           

⸪               
 

    
 

 

 
 

Now     
   

    

    
    

   
     

 

    
    

   
        

   

 

    
   

 

 
 

 

 
  

Example 1. Do the following limits exist? If yes, find them: 



(a)          
 

   
                       (b)           

 

 
   (c)        

 

    

(d)        
    

      
   (e)       

 

       

(f)            where        
             

               
  

Solution. (a)          
 

   
 

              L.H.L             
 

   
   [Put x = 1 – h, h > 0] 

          
 

     
    

   
    

 

 
. 

Now as h → 0,    
 

 
 is finite and oscillates between -1 and 1; so it does not 

tend to any unique and definite value as h → 0. Hence L.H.L. does not exist. 

 Similarly the right hand limit also does not exist as x →1. 

Thus           
 

   
 does not exist. 

(b)           
 

 
 

          L.H.L.              
 

 
   [Put x = 0 – h, h > 0] 

    
   

        
 

   
    

   
    

 

 
 

     finite quantity between -1 and 1 = 0 

Similarly,  R.H.L.             
 

 
           [Put x = 0 + h, h > 0] 

    
   

        
 

   
    

   
    

 

 
 

     finite quantity between -1 and 1 = 0 



Thus L.H.L and R.H.L. both exist and are equal and hence           
 

 
 

exists and is equal to zero. 

⸪                   
 

 
   

(c) Let            
 

    

L.H.L.                         
     

 
 

      [Put x = 1 – h, h > 

0] 

    
   

 
 

         
   

 
  

      
 

  
 

 

 
   

         R.H.L. =    
     

 
 

      [Put x = 1 + h, h > 0] 

    
   

 
 

         
   

 
 

       

Since,  L.H.L. ≠ R.H.L.     ⸪     
   

 
 

    does not exist. 

(d)       
    

      
 

L.H.L.          
    

      
   [Put x = 0 – h, h > 0] 

    
   

 
 

   

 
 

     
    

   

 
  

 

 
  

   
 

 

   
      

   
  

 

      
 

 
    

R.H.L.          
    

      
   [Put x = 0 + h, h > 0] 

       
 

 
   

 
 

     

       
 

 
 

 
 
   

      [divide the numerator and 

denominator by  
 

 ]   



    
   

 

   
  

 

 
 

     
 

 

   
   

Since, L.H.L ≠ R.H.L        ⸪       
    

      
 does not exist. 

(e) Please try yourself. 

(f) L.H.L.                  
     

         [Put x = 1 – h, h > 0] 

    
   

            
   

             

R.H.L.     
     

        
     

           [Put x = 1 + h, h > 0] 

    
   

                    
   

             

             L.H.L. = R.H.L.=1. 

Hence    
   

       

Example 2. Using the definition of limit, prove that 

(i)    
   

     

   
                        (ii)    

   
    

 

 
   

(iii)      
   

     
 

 
   

Solution. (i) Here       
     

   
,  x ≠ a 

We must show that for any              

                          

Now                        
     

   
      

             

   
  

  
         

   
   

      

   
        



                               

Choosing     

                               

Hence        
     

   
   . 

(ii) Here            
 

 
 

               
 

 
         

 

 
          

 

 
     

           whenever         

Choosing     

                            

Hence           
 

 
   

(iii) Here             
 

 
 

                
 

 
          

 

 
           

 

 
     

           whenever          i.e., whenever          

Choosing      

                            

Hence             
 

 
   

Example 3. If          where [x] denotes the greatest integer not greater 

than x, show that            does not exist. 



Solution. We have L.H.L =                 
     

      [Put x = 1 – h, h > 

0] 

    
   

         
   

      

        R.H.L. =    
     

        
     

      [Put x = 1+ h, h > 0] 

    
   

         
   

      

⸪               
     

        
     

     

⸪       
   

     does not exist. 

Example 4. Find            where      

 
 

 
  

 
           

        

  
  

         

  

Sol. L.H.L =    
     

        
     

 
  

 
      [Put x = a – h, h > 0] 

    
   

 
      

 
    

  

 
         

       R.H.L.     
     

        
     

   
  

      [Put x = a + h, h > 0] 

    
   

   
  

      
    

  

  
       

⸪     
     

     and    
     

     both exist and each is equal to 0. 

⸪        
   

       



Example 5. Let      
    

    
, then given    , find a real number     

such that 

                       

Solution.          
    

    
      

If                 
         

    
        or if    

   

    
    

Or if                     
  

    
              

Or if            
  

    
   

  

    
    

Or if                                         (      ) 

Or if                                 or if        
 

   
   (if       i.e.,    ) 

Or if                           
 

   
 

∴       Choosing    
 

   
      , we have  

                       

Example 6. Let      
 

 
    . Prove from definition (    method) that 

           
 

 
. 

Solution. To prove that            
 

 
, we have to show that for any   

 , we can find         s.t. 



      
 

 
                   

Now                 
 

 
   

 

 
 
 

 
   

   

  
  

     

    
                ………….(i) 

Choosing     and          , we have  

         ⇒        and         

⇒    and          ⇒    and       

⇒     and   
 

 
 

 

 
⇒    and 

 

 
 

 

 
   

⇒       and 
 

   
   ∵

 

 
 

 

 
   ∴

 

 
 

 

   
  

∴    From (i),       
 

 
  

     

 
 

 

   
 

 

 
   

Let us choose       
 

 
             

Also    ∴      Choosing  = min. (1, 2 ), we have 

      
 

 
  

 

 
   when           

∴           
 

 
 

Example 7. If            exists and            does not exist, can 

                  exist? Prove your assertion. 

Solution.∵           exists, let              

⇒                            

∵           does not exist, let                 and              

   where       



Now     
     

               
     

        
     

          

   
     

               
     

        
     

          

Since                  [∵     ] 

∴                  does not exist. 

Example 8. If            and                both exist, then does it 

follow that            exists? 

Solution. Let                         
   

 
      

      
       

  

           
   

 
     

             exists;                  exists 

But                             

   
     

        
     

    

⇒           does not exists. 

Thus            and                both exist does not necessarily 

imply that            also exists. 

Example 9. If               then show that                 . Is its 

converse true? 

Solution.We have            ⇒ for any given               

           when                            …………… (1) 

Since                        



∴                      

⇒                             when                              

using (i) 

⇒                 

The converse of this statement is not always true. 

For example, consider       
       
      

  

Then                                   

   
     

        
     

    

⇒           does not exists. 

But                  ∀ ⇒                         

Example 10. If                and    
   

          
   

    , then 

prove that    
   

     exists and is equal to l. 

Solution.We have    
   

          
   

     

⇒    Given                  

                             for            

And                                         for            

⇒                     for            

And                                for            

Let                        , then 



              and                 for           

……(i) 

Also                               given 

…………………………………………….. (ii) 

From (i) and (ii)                          for           

⇒             for           

⇒                         ⇒               

2.9 Characterization of Continuity: 

 Definitions: (i) Continuity at a point 

 A function f : A → R is said to be continuous at the point a   A if 

given    , however small,  a real number    , such that 

              whenever                 

i.e.,                                       whenever             

 . 

Equivalently, a function f is continuous at x = aiff                

i.e.,   iff                             

(ii) Continuity from the left at a point 

 A function f : A → R is said to be continuous from the left (or left 

continuous) at the point     given     however small,   a real number 

    such that 

              whenever                 



 Equivalently, a function f is continuous from the left (or left 

continuous) at x = a if                 

(iii) Continuity from the right at a point 

 A function f : A → R is said to be continuous from the right (or right 

continuous) at the point     if given     however small,   a real number 

    such that 

              whenever                . 

 Equivalently, a function f is continuous from the right (or right 

continuous) at x = a if                 

Note. Clearly, f is continuous at x = aiff f is left as well as right continuous at 

x = a. 

(iv)  A function f is said to be continuous in an open interval (a, b) if f is 

continuous at every point of (a, b). 

Thus, f is continuous in the open interval (a, b) iff for every   

                     . 

(v) Continuity in a closed interval 

A function f is said to be continuous in a closed interval [a, b] if it is 

(i) Right continuous at a   i.e.                  

(ii) Continuous in the open interval (a, b) i.e.                for 

every         

(iii) Left continuous at b              i.e.                 

(vi) Continuity in a semi closed interval 



I. A function f is said to be continuous in semi closed interval (a, b) if 

it is 

(i) Continuous in the open interval (a, b) i.e.,                 

for every         

(ii) Left continuous at b             i.e.,                  

II. A function f is said to be continuous in semi closed interval [a, b) if 

it is 

(i) Right continuous at a    i.e.                 

(ii) Continuous in the open interval (a, b) i.e.,                 

for every         

(vii) Continuity on a set 

A function f is said to be continuous on an arbitrary set       if for each 

    and for every       a real number     such that             

  whenever                . 

Equivalently, a function f is said to be continuous on a set S if it continuous 

at every point of  

S, i.e., if for every                    . 

(viii) Continuous Function 

 A function f : A → R is said to be continuous iff it is continuous on A. 

Thus f is continuous if it is continuous at every point of its domain. 

(ix) Discontinuity of a function 

 A function f which is not continuous at a point ‘a’ is said to be 

discontinuous at the point ‘a’. 



‘a’ is called a point of discontinuity of f or f is said to have a discontinuity at 

‘a’. 

A function which is discontinuous even at a single point of an interval is said 

to be discontinuous in the interval. 

A function f can be discontinuous at a point x = a because of any one of the 

following reasons: 

(i) f is not defined at ‘a’ 

(ii)            does not exist i.e.,                         

(iii)            and f(a) both exist but are not equal 

(x) Types of Discontinuity 

Let f be a function defined on an interval I. Let f be discontinuous at a point 

   . 

(1) Removable Discontinuity 

If            exists but is not equal to f(a), then f is said to have a 

removable discontinuity at ‘a’. 

This type of discontinuity can be removed by defining a new function g 

as 

      
          

   
   

          
  

Then g is continuous at ‘a’ 

Note. If            does not exist, then the function cannot be made 

continuous, no matter how we define f(a). 

(2) Discontinuity of First Kind (or Jump Discontinuity) 



If             and             both exist but are unequal then f is 

said to have a discontinuity of first kind at ‘a’ or jump discontinuity at 

‘a’. 

F is said to have a discontinuity of the first kind from the left at ‘a’ if 

            exists but is not equal to f(a). 

F is said to have a discontinuity of the first kind from the right at ‘a’ if 

            exists but is not equal to f(a). 

(3) Discontinuity of Second Kind 

If neither             nor             exist, then f is said to have a 

discontinuity of second kind at ‘a’. 

f is said to have a discontinuity of the second kind from the left at ‘a’ if 

            does not exist. 

f is said to have a discontinuity of the second kind from the right at ‘a’ 

if             does not exist. 

(4) Mixed Discontinuity 

If a function f has a discontinuity of the second kind on one side of a 

and on the other side, a discontinuity of the first kind or may be 

continuous, then f is said to have a mixed discontinuity at ‘a’. 

Thus f has a mixed discontinuity at ‘a’ if either 

(i)             does not exist and             exists, however 

            may or may not equal f(a). 

(ii)             does not exist and             exists, however 

            may or may not equal f(a). 

(xi) Piecewise Continuous Function 



 A function f : A → R is said to be piecewise continuous on A if A can 

be divided into a finite number of parts so that f is continuous on each part. 

 Clearly, in such a case f has a finite number of discontinuities and the 

set A is divided at the points of discontinuities. 

 For example, consider f : (0, 5) → R defined by f(x) =    , then f is 

discontinuous at 1, 2, 3 and 4. If the interval (0. 5) is divided at 1, 2, 3 and 4, 

then f is continuous in (0, 1), (1, 2), (2, 3), (3, 4) and (4, 5). 

∴ f is piecewise continuous. 

Example 1. Using     definition, prove that 

(i)           is continuous at x = 2. 

(ii)       
    

   
      

      

  is continuous at x = 2 

(iii)       
    

    
      

         

  is continuous at x = 1 

Solution. (i) Here              ,              

Let     be given 

Now                                       

          whenever          i.e.,       
 

 
 

∴  if we choose   
 

 
, then               whenever         

⇒ f is continuous at x = 2. 

(ii) Here              
    

   
        



f(2) = 4 

let     

Now                
    

   
     

          

   
    

                   whenever         

∴  if we choose    , then               whenever         

⇒ f is continuous at x = 2. 

(iii)   Here      
    

    
     

f(1) = 3/2 

Let     be given 

Now              
    

    
 

 

 
   

             

          
 

 

 
  

  
      

    
 

 

 
   

       

      
  

  
           

    
        

    

    
  

       ∵   
    

    
     

   whenever         

∴ If we choose    , then               whenever         

⇒ f is continuous at x = 1 

Example 2. Using     definition, prove that 



(i)       
     

 

 
      

       
  is continuous at x = 0 

(ii)       
     

 

 
      

       
  is continuous at x = 0 

Solution. (i) Here                      
 

 
     

       

Let       be given. 

Now                  
 

 
         

 

 
         

 

 
      ∵

     
 

 
     

   whenever       

∴ If we choose    , then               whenever         

⇒   f is continuous at x = 0 

(ii) Here                   
 

 
     

       

Let     be given 

Now                   
 

 
          

 

 
          

 

 
  

     ∵      
 

 
     

        whenever        i.e., whenever        

∴ If we choose     , then               whenever         



⇒ g is continuous at x = 0 

Example 3. Using     definition, prove that the following functions are 

continuous: 

(i)                               (ii)        (iii)      

(iv)              (v)       

Solution. A function f is said to be continuous if it is continuous at every 

point of its domain 

(i) Let          domain of f = R 

Let a be any real number so that          

Let     be given 

Now                             ∵            

       

   whenever         

∴   if we choose    , then                whenever 

        

⇒  f is continuous at x = 0 

⇒  f is continuous at ever     

⇒  f is continuous 

(ii) Let          . Domain of f = R 

Let a be any real number so that           

Let     be given 

Now                         



       
   

 
   

   

 
       

   

 
     

   

 
  

      
   

 
  ∵      

   

 
     

   
   

 
 ∵           

   
     

 
         whenever         

∴  if we choose    , then 

              whenever         

⇒ f       t  u u  at x      

⇒ f       t  u u  at ever     

⇒ f       t  u u  

(iii) Please try yourself. 

(iv) Let             domain of f = R 

Let a be any real number so that            

Let     be given 

Now                                         

        

                                                  

            ∵              

      ∵           

     whenever         

∴  if we choose    , then 

              whenever         

⇒ f       t  u u  at x      

⇒ f       t  u u  at ever     



⇒ f       t  u u  

Example 4. Examine the continuity of the following functions at the 

indicated point. Also point out the type of discontinuity, if any. 

(i)       
    

   
      

       

  at x = 2        (ii) 

      
    

   
      

      

  at x = 3 

(iii)      
    

   
 at x = 2                                     (iv) 

      
     

 
     

      
  at x = 0 

(v)        

      

  
      

 

 
     

  at x = 0 

Solution. (i) Here        

   
   

        
   

    

   
    

   

          

   
 

                                                           [Cancelling (x – 2), since x →2 ⇒ x ≠ 2] 

    
   

            

Since    
   

         , f is continuous at x = 2 

(ii) Here            

   
   

        
   

    

   
    

   

          

   
    

   
            



Thus    
   

     exists but    
   

         . 

∴ f has a removable discontinuity at x = 3 

f can be made continuous at x = 3 be redefining it as follows: 

      
    

   
      

      

  

(iii)      
    

   
 is not defined at x = 2, since f(2) assumes at form 0/0 

However              
   

    

   
    

   

              

   
 

    
   

                      

Thus    
   

     exists. Therefore, f has a removable discontinuity at x = 2 

 f can be made continuous at x = 2 by redefining it as follows: 

      
    

   
     

       

  

(iv) Here                

   
   

        
   

     

 
    

   
  

     

  
       

Thus    
   

     exists but    
   

          

⇒ f has a removable discontinuity at x = 2 

f can be made continuous at x = 0 by redefining it as follows: 



      

     

 
      

      

  

(v) Here          
 

 
 

   
   

        
   

      

  
 

              [Put          so that        As x → 0, θ → 0] 

   
   

 

     
 

 

 
   
   

 

    
 

 

 
   

 

 
 

Since    
   

         , f is continuous at x = 0 

Example 5. Examine the continuity of the following functions at the 

indicated point. Also point out the type of discontinuity, if any. 

(i)       
      

      
      

       

   at x = 0 

(ii)       
    

            

       

   at x = 0 

(iii)       
          

                

       

   at x = 0 

(iv)       
     

 
 

     

 
 

     

      

      

   at x = a 

(v)       
     

            

       

     at x = 0 



(vi) Show that the function f defined on R as 

       
          

                   and f(0) = 0 is continuous at x = 0. 

Solution.(i) Here        

   
    

        
    

      

      
 

   

   

            
 

 
      ∴    

 

      

And    
    

        
    

      

      
   (dividing the num, and denom by    ) 

    
    

       

       
 

   

   
   

         
 

 
     ∴   

 

          
 

      

Thus    
    

     and    
    

     both exist but are not equal. 

⇒   
   

     does not exist. 

Also none of the left and right limits is equal to f(0) 

∴ f has a discontinuity of the first kind at x = 0 

(ii) Here   f(0)=0 

   
    

        
    

    

      
 

 

   

           
 

 
    ∴          

    
    

 

       
 

 

   
   



         
 

 
   ∴                      

Thus    
    

     and    
    

     both exist but are not equal 

⇒   
   

     does not exist. 

Since    
    

             
    

     

Therefore, f is continuous from the left at x = 0 and has a 

discontinuity of the first kind from the right at x = 0. 

(iii) Here   f(0) = 1 

   
    

        
    

          

          
 

    
    

      

      
 

   

   

            
 

 
    ∴          

And    
    

        
    

          

           

    
    

       

       
 

   

   
   

         
 

 
   ∴                      

Thus    
    

     and    
    

     both exist but are not equal 

⇒   
   

     does not exist. 

Since    
    

             
    

     

Therefore, f is continuous from the right at x = 0 and has a 

discontinuity of the first kind from the left at x = 0. 

(iv) Here    f(a) = 0 



   
    

        
    

     
 

 
     

 
 

     

[Put x = a – h, h > 0 so that as x →a 

– h, h → 0+]  

    
    

  
  

 

   

  
 

   
      

   

   
   

          
 

 
    ∴                     

And    
    

        
    

      
 

 
     

 
 

     

 

                                [Put x = a + h, h > 0 so that as x → a + h, h → 

0+] 

    
    

  
      

      
    

    
  

       

       
   

   

   
   

Since    
    

          
    

     

∴   
   

      Also f(a) = 0 

Hence f is continuous at x = 0 

(v) Here f(0) = 0 

   
    

        
    

     

            [Put x = 0 – h, h > 0 so that as x →0-, h 

→ 0+] 

    
    

       

       
  

   

   
   

         
 

 
   ∴                      



And    
    

        
    

     

         (dividing the num. and denom by 

    ) 

    
    

 

       
 

 

   
   

Since    
    

          
    

     

∴   
   

      . Also f(0) = 0 

Hence f is continuous at x = 0 

(vi) Please try yourself. 

Example 6. Examine the continuity of the following functions at the 

indicated point. Also point out the type of discontinuity, if any. 

(i)        
           
         

  at x = 0      (ii) 

       
            
         

  at x = 0    

(iii)       
 

 

  

   
 

  

        

         

  at x = 0    (iv) 

      
 

              

         
  at x = 0         

(v)       
 

              

         

  at x = 0   

(vi)      

   

   
 
 
  

        

         

  at x = 1 

Solution. (i) Here f(0) = 0 



   
    

        
    

               
 

 
    ∴          

And          
    

        
    

      i.e.    
    

     does not exist. 

∴ f has a discontinuity of the second kind from the right at x = 0. 

(ii) Please try yourself.          [Ans. Discontinuity of the second kind 

from the left] 

(iii) Here   f(0)=0 

   
    

        
    

 
 

  

   
 

  

    [Put x = 0 – h, h > 0, so that as x → 0-, 

h→ 0+] 

    
    

 
 

  

   
 

  

         (dividing the num. and denom by  
 

  ) 

    
    

 

 
 

 

    
 

 

   
    

         
 

  
   ∴   

 

          
 

 

       

And    
    

        
    

 
 

  

   
 

  

    
    

 

 
 

 

    

 
 

   
    

Since     
    

           
    

     

∴   
   

        but f(0) = 0 so that    
   

          

Thus f has a removable discontinuity at x = 0 

(iv) Here   f(0) = 0 

   
    

        
    

 

      
 



                                   [Put x = 0 – h, h > 0, so that as x → 0-, h→ 

0+] 

    
    

  

       
 

 

   
   

         
 

 
   ∴   

 

          
 

      

And      
    

        
    

 

         (dividing the num. and denom by 

    ) 

    
    

      

       
 

   

   
   

Since    
    

          
    

     

∴   
   

      . Also f(0) = 0 

∴ f is continuous at x = 0 

(v) Here  f(0) = 0 

   
    

        
    

 

      
 

 

   
   

         
 

 
    ∴          

And    
    

        
    

 

          
    

     

       
 

 

   
    

         
 

 
   ∴   

 

          
 

      

Thus    
    

     and    
    

     both exist but are not equal. 

⇒   
   

     does not exist. 



Since    
    

             
    

     

 Therefore, f is continuous from the right at x = 0 and has a 

discontinuity of the first kind from the left at x = 0. 

(vi) Here f(1) = 0 

   
    

        
    

   

   
 

   

 

[Put x = 1 – h, h > 0, so that as x → 1-, h→ 0+] 

    
    

  

    
 

 

  
 

   
   

         
 

 
   ∴   

 

          
 

      

And     
    

        
    

   

   
 

   

 

                                  [Put x = 1 + h, h > 0, so that as x → 1+, h→ 

0+] 

    
    

 

   
 

 

    
    

      

       
 

   

   
   

Since    
    

        
    

          

∴ f is continuous at x = 0. 

Example 7. Examine the continuity of the following functions at the 

indicated point. Also point out the type of discontinuity, if any. 

(i)        
 

         
       

  at x = 2     (ii)        
 

 

            
       

  

at x = 2      



Solution. (i) Here f(2) = 0 

   
    

        
    

 
 

            [Put x = 2 - h, h > 0, so that as x → 2-, 

h→ 0+] 

    
    

        

And       
    

        
    

 
 

      [Put x = 2 + h, h > 0, so that as x → 

2+, h→ 0+] 

              i.e.    
    

     does not exist. 

∴   f has a discontinuity of the second kind from the right at x = 0. 

 

 

2.10 Open Set: 

 A subset G of a metric space       is said to be open set in   with respect to 

the metric    if G is a neighbourhood of each of its points.i.e., if for each 

     there is an     such that      ⊆    

Example: Prove that every set in a discrete space       is open. 

Solution:Let   be any non-empty subset of the discrete space      and   be 

any point of    Then the open sphere       with     is the singleton set 

    which is contained in   i.e., each point of   is the Centre of some open 

sphere contained in   It’s a particular, each singleton set is open. 

2.11 Closed Set: 



A Subset   of a metric space       is said to be closed if   contains all its 

limit points. 

Example:Every closed sphere is a closed set. 

Solution: Let       be any closed sphere in a metric space        

If         ∅  Then ∅ is open. 

Assume         ∅  Let          . Then  ∉       . 

This implies           Let              

The open sphere   
   ⊆           For if      

     Then            

So                 

                            by triangle inequality. 

Thus      
   ⊆         

This implies         is open. Hence       is closed. 

 

2.12 Closer of a Set: 

Let  be any subset of a metric space      The Closer of  denote by    is 

the set of all adherent points of                

Symbolically                  ∅  for all       

Properties:Let   and   be any two subsets of a metric space         Then 

(1)    is a closed set. 

(2)     ⊆   then   ⊆     



(3)    is the smallest closed superset of A. 

(4)      if and only if A is closed. 

(5)    is the intersection of all closed sets Containing A. 

(6)                . 

(7)          ⊆      . 

     : (1)We show that   is a closed. We shall show that its 

complement       is open. 

 f      ∅ then ∅ is open. Suppose that       ∅  

Let          then  ∉                                  such that 

   x    ∅, We let us a      x   then           

                 

Clearly      and       ⊆       

    
      ∅  for at least one     ∵        ⊆           

  ∉    

Since   is an arbitrary number of    
    therefore, 

   
   ⊆         

This implies       is open. Hence    is a closed. 

     : (2)Let      then   
      ∅             

this implies    
      ∅  ∵  ⊆              

Hence   ⊆     

     : (3)we know that    is a closed set, and  ⊆     To show that    is 

the smallest closed set containing A, we suppose that if F is any other 

closed set containing A, then ⊆     ⊆      ∵          e  . 

    e       ar  trar        is the smallest closed set containing A. 



     : (4)If       Then by (1)   is closed, and so A is closed. 

Conversely, let A be any closed set. 

Since  ⊆     So we need to show that   ⊆    

Let   be any element of     then either         ∉    

If      then the result is proved. 

If  ∉             Then for every      the open sphere   x  

contains a point of A other than    

   is a limit point of A. 

But A being closed, therefore   must belong to A. Hence   ⊆    

     : (5) Let F be the intersection of all closed sets containing A. 

Then F is closed. 

 ⊆     ⊆      

       ⊆   Thus every closed set which contains A, Contains     

But    is a closed set containing      being the intersection of all closed 

sets containing     is contained in     

Therefore       

     : (6) We know that ⊆     a    ⊆     

∴    ⊆  ∪            and   ⊆  ∪          

         ∪   ⊆  ∪            

                

 ∪         ⊆   ∪    

We proceed as follows: 

Let, if possible    ∪                 ∉   ∪     



The   is neither an adherent point of A nor that of B. Consequently, 

there exist open spheres    
           

    containing no point of A 

and B respectively. 

Let               then       containing no point of A as well as no 

point of B, and therefore of  ∪    

∴   is not an adherent point of  ∪    

i.e.,    ∪            thus, we arrive at a contradiction. 

Hence    ∪              ∪     

 

     : (7) Since    ⊆    and    ⊆   

∴           ⊆     and           ⊆     

The result can be extended to the intersection of an arbitrary family 

     of subsets of    

           
           ⊆      

     

Note: Let        be a metric space and  ⊆  ⊆    Then the closure of 

A in        is denoted by         It is very simple to verify              

 

 

Summary  

 

We end this unit by summarising what we have covered in it. 

▪ The limit of a function   at a point   of its domain is   is given 

           such that            Where ever          



▪            exists if and only if             and             

both exist and are equal. 

▪ A function   is Continuous at a point     if                 

▪ Let   and   be any two subsets of a metric space         Then 

   is a closed set. 

 

 

 

 

 

 

 

 

Terminal Questions 

 

1. Examine the continuity of the following function at the indicated point. 

Also point out the type of discontinuity if any 

      
   

 

 
        

         
  at x = 0   

2. Discuss the continuity of the following functions at x = 0. Specify the type 

of discontinuity, if any. 



(i)       
     

 

 
        

       
         (ii)   

      
       

 

 
      

       
  

 

3. Examine the discontinuity of the following functions at the indicated point. 

Also point out the type of discontinuity, if any. 

(i)       
   

 
         

          
    at x = 0 

(ii)                at x = 0 and x = 1 

 

4. Discuss the continuity of the function          at the point 
 

 
 and 1, 

where     denotes the largest integer ≤ x. 

 

5. Discuss the continuity of f at x = 1, where                  

6.Prove that              where          
 

 
      

7.Prove that               

8.Let f x  
     

 
  find the limit of f x   e  x     

9.Prove that       is continuous for every value of    

10. Show by example that a set which fails to be closed need not be 

open. 



Unit-3 Compactness 

 

Structure 

3.1  Introduction 

3.2      Objectives 

3.3     Compactness of Metric Space 

3.4     Bolzano Weierstrass property 

3.5    Heine Borel Theorem 

3.6 Compactness andContinuity 

3.7     Equivalent forms ofCompactness 

3.8     Total boundedness 

3.9    Sequentially Compact 

3.10 Summary 

3.11 Terminal Questions 

 

 

 

 



 

 

 

 

 

 

 

 

3.1  Introduction: 

In this unit, we shall discuss the notion of compactness in a metric space. we 

shall define compact sets and discuss the  examples of these sets in different 

metric spaces.We discuss certain theorems which characterise compact sets 

and give a complete description of compact sets in a metric space. Firstly we 

give a characterization in terms of convergence of sequences and then in 

terms of completeness. In this connection, we introduce the concept of 

"totally bounded sets" which is a stronger version of bounded sets. We show 

that a set is compact if and only if it is complete and totally bounded. We 

also discuss the analogue of the famous "Heine Bore1 theorem" in   which 

characterises compact sets in terms of closed and bounded sets. The deals 



with special properties of compact sets. Here we discuss relationship 

between continuity and compactness. 

One of the main reasons for studying the compact sets is that they are in 

some ways very similar to finite sets. In other words, there are many results 

which are easy to show for finite sets, the formulations as well as the proofs 

of which carry over with minimal changes to compact sets. It is often said 

that "compactness is the next best thing to finiteness". 

3.2      Objectives: 

After studying this unit, we should be able to  

▪ use the definition of compact sets to check whether a given set in a metric 

space is compact or not;  

▪ explain the connection between compactness and sequential convergence;  

▪ explain the relationship between compact sets and totally bounded sets; 

and that     between compact sets and sets having finite intersection 

property; 

▪ state and prove Heine-Burel theorem for   ;  

▪ explain the relationship between continuity and compactness. 

3.3 Compactness of Metric Space: 

Definition:  Let M be a metric space. A collection of open setsGαis said to be 

an open cover for M if ∪ Gα = M. A sub collection ofGαwhich itself is an 

open cover is called a subcover. 



A metric space M is said to be compact if every open cover for M has a finite 

sub- cover.i.e., for each collection of open setsGαsuch that     
   = M, 

there exists a finite sub-collection Gα1,Gα2,…..,Gαn such that      
 
   = M. 

Remark: 

1. Any closed interval with the usual metric is compact. 

2. The discrete space       when  is a finite set , is compact. 

3. The space       when   is the set of real and   is the usual metric is 

not compact, for the cover              is such that     
   

        which do not have a finite subcover. 

Example 1:Prove that the open interval       with the usual metric is not 

compact. 

Solution: we the family of open intervals   
 

 
            is such that  

  
 

 

 

   

           

therefore   
 

 
            is an open cover of        which has no 

finite subcover. 

Example 2:Let   be an infinite set with the discrete metric. Show that 

      is not compact. 

Solution: for each         is open in    Also           

Therefore           is an open cover of   and since   is infinite, this 

open cover has no finite subcover. 



Theorem 1: Let M be a metric space. Let A ⊆ M. Then A is compact if and 

only if for every collectionGαof open sets in M such that ∪ Gα⊇ A there exists 

a finite subcollection Gα1,Gα2,…..,Gαnsuch that     
 
   ⊇ A. i.e., A is 

compact if and only if every open cover for A by sets open in M has a finite 

subcover. 

Proof:Let A be a compact subset of M. 

LetGαbe a collection of open sets in M such that ∪ Gα⊇ A.  

Then (∪ Gα) ∩ A = A. ∴∪ (Gα∩ A) = A. 

Since Gα is open in M, Gα∩ A is open in A. ∴Gα∩ Ais an open cover for A. 

Since A is compact, this open cover has a finite subcover say 

     
        

            
   . 

∴       

 

   

      

∴       

 

   

      

 

Conversely, assume that for every collectionGαof open sets in M  

such that∪ Gα⊇ A there exists a finite sub collection Gα1 ,Gα2 , ….. , Gαn. 

such that    
 
   ⊇ A. 

We have to prove A is compact.  

 

 



LetHαbe an open cover for A. Then Hα is open inA ∀ �. 

∴ Hα = Gα∩ A where Gα is open in M ∀ �.  

Now ∪ Hα = A ⇒ ∪ (Gα∩ A) =A. ⇒(∪ Gα) ∩ A =A. ⇒ ∪ Gα⊇A. 

Hence by our assumption, there exists a finite sub collection 

{   
,    

,…..,   
  such that 

    

 
    ⊇ A. 

    
 
   ∩ A = A. 

    
 
   ∩ �) = A. 

    
 
   n I=1HαI= A. 

Thus {   
,    

,…..,   
  is a finite subcover of the given open cover{Hα}of A. 

∴ A is compact. 

Theorem 2: Any compact subset A of a metric space (M , d) is closed 

Proof: We shall prove that A
c
 is open. Let y  A

c
. 

Now, for each x   A, x ≠ y. 

∴ d(x , y) = r> 0 and B (x ,
  

 
) ∩ B(y ,

  

 
) = ∅  

Clearly the collection { B(x ,
  

 
) | x   A } is an open cover for A by setsopen 

in M. 

Since A is compact, there exists x1, x2 , …. , xn   A such that 

   x 
  

 
  

   ⊇A .............................................. (1) 

 

 

 

∴ 



Let        
   

 
  

    

 

Then Vy is an open set containing y.  

Since, B(x,
   

 
)     

   

 
  ∅ 

  ∩ B(x ,
   

 
) = ∅ ∀ i = 1, 2, …. , n . 

∴Vy     x  
   

 

 
    = ∅. 

∴ Vy∩ A =∅. [ By (1)] 

∴ Vy⊆ Ac
 . 

Thus, for each y   Ac
 there exists an open set Vy containing y such that 

Vy⊆A
c
 

∴ Ac
 =y Ac Vy . 

∴ Ac
 is open . Hence A is closed. 

Theorem 3: Any compact subset A of a metric space M is bounded. 

 Proof. Let x   A. Now, { B(x , n) / n  N } is an open cover for A by sets 

open in M. Since A iscompact, there exists natural numbers n1, n2, … ,nk, 

such that 

   x       
   ⊇ A.Let N = max { n1, n2, … , nk}. 

Then    x       
   = B(x , N) 

∴ B(x , N) ⊇ A. 

 



Since B (x, N) is bounded and subset of a bounded set is bounded, A 

isbounded. 

Theorem 4: A closed subset A of a compact metric space M is compact. 

Proof. Let{Gα}be a collection of open sets in M such that ∪ Gα⊇ A. 

∴ Ac∪ ∪ Gα = M. 

Since A is closed, A
c
 is open. ∴ Gα∪ { A

c
 } is an open cover for M. 

Since M is compact this open cover has a finite subcover say 

    
    

        
    

∴      

 
    ∪       ∴      

 
    ⊇    

Hence A is compact. 

3.4 Bolzano Weierstrass property: 

 

Definition:A non-empty subset     of a metric space       is said to be 

totally bounded if for any     there exists a finite       for A, i.e., if for 

every      there is a finite number of open spheres of radius   whose 

union is A. 

i.e.,             

where B is a finite       for A. Clearly total boundedness implies 

boundedness. Since a totally bounded set is the union of a finite number of 

bounded sets. But the converse is not always true.  



In the case of Euclidean spaces, the converse also holds. In general, this is 

not so can be seen by the following examples. 

 

Example:Infinite discrete space   is bounded but not totally bounded, for it 

has no finite 
 

 
      Since,   

 

            and   is infinite. 

A metric space M has Bolzano – Weierstrass property if every infinite subset 

of M has a limit point. 

Theorem 3.4.4 In a metric space M the following are equivalent. 

(i) M iscompact. 

(ii) M has Bolzano – Weierstrassproperty 

(iii) M is sequentiallycompact 

(iv) M is totally bounded andcomplete. 

Proof.  

(i) ⇒(ii). Let M be compact metric space. Let A be an infinite subset of M. 

Suppose that A has no limit point. Let x ∊ M. Since x is not a limit point if 

A, there exists an open ball B(x , rx) such that B(x , rx) ∩ (A – { x }) = ∅ . 

B(x , rx) contains at most one point of A (contains x if x ∊ A).  

Now, { B(x , rx) / x ∊ M } is an open cover for M. 

Since M is compact, there exists points x1 , x2 , ….. , xn∊ M  

such that M = B(x1 , rx1 ) ∪ B(x2 ,rx2 ) ∪ ……. ∪ B(xn , rxn) . 



∴ A ⊆ B(x1 , rx1 ) ∪ B(x2 ,rx2 ) ∪ ……. ∪ B(xn , rxn) . 

Since each B(x1 , rxi) has at most one point of A, A must be finite. This is a 

contradiction to A is infinite. Hence A has a limit point. 

(ii) ⇒ (iii) 

Suppose that M has Bolzano – Weierstrass property. We ve to prove M is 

sequentially compact.Let (xn) be a sequence in M. 

If the range of (xn) is finite, then a term of the sequence is repeated infinitely 

and hence (xn) has a constant subsequence which is convergent. 

Otherwise (xn) has infinite number of distinct terms. By hypothesis, this 

infinite set has a limit point say x. 

∴ for any r > 0, the open ball B(x , r) contains infinite number of terms of the 

sequence (xn). Choose a positive integer n1 such that xn1
∊ B(x , 1). Now, 

choose n2> n1such that xn2
  B(x ,

 

 
). In general, for each positive integer k we 

choose nk> nk-1such thatxnk∊B(x ,
 

 
) . Then (xnk) is a subsequence of (xn) and 

d(xnk
, x) <

 

 
∀ k . 

k∴ xnk → x.  

Thus (xnk
) is a convergent subsequence of (xn). Hence M is sequentially 

compact. 

(iii) ⇒ (iv) 

Suppose that M is sequentially compact. Then every sequence in M has a 

convergent subsequence. We have every Cauchy sequence is convergent. 



Thus, every sequence in M has a Cauchy subsequence. Hence M is totally 

bounded. 

Now, we prove that M is complete. Let (xn) be a Cauchy sequence in M. 

By hypothesis, (xn) contains a convergent subsequence (xnk). Let xnk → x . 

Then xn→ x . Thus  M is complete. 

 

(iv) ⇒ (i) 

Suppose that M is totally bounded and complete. We have to prove M is 

compact. Suppose it is not. Then there exists an open cover{Gα}for M which 

has no finite subcover. take    
 

    Since M is totally bounded, M can be 

covered by a finite number of open balls of radius r1 . 

Since M is not covered by a finite number of Gα’s, at least one of these open 

balls say B(x1 , r1) cannot be covered by finite number of Gα’s . 

Now, B(x1 , r1) is totally bounded. Hence as before we can find x2∊ B(x1 , r1) 

such that B(x2 , r2) cannot be covered by finite number of Gα’s. 

Proceeding like this we get a sequence (xn) in M such that B(xn , rn) cannot be 

covered by finite number of Gα’s and xn+1∊ B(xn , rn). 

let m and n be positive integers with n < m. 

Now, d(xn , xm) ≤ d(xn , xn+1) + d(xn+1 ,xn+2)+…… + d(xm-1 ,xm)<rn + rn+1+….+rm-1 

               . 

 
 

  
 

 

    
   

 

    
 

 



 
 

    
 
 

  
 

 

  
    

 

    
 

∴ (xn) is a Cauchy sequence in M. 

Since M is complete, there x∊ M such that xn→ x . Now, x ∊ Gα for some a. 

Since Gα is open, there exists � > 0 such that B(x , ε) ⊆ Gα .We have xn→ x 

and   
 

     

∴ there exists a positive integer N such that d(xn, x) < 
 

 
 and r  <

 

 
 

∀ n ≥ N. 

Fix n ≥ N. 

We claim that B(xn , rn) ⊆ B(x , ε) . 

y ∊ B(xn, rn) ⇒ d(xn, y) < r < 
 

 
  

⇒ d(xn , x) + d(xn ,y)< 
 

 
 

 

 
 

⇒ d(x , y) <ε  ⇒ y ∊ B(x , ε). 

∴B(xn,rn) ⊆ B(x,ε) ⊆ Gα. 

Thus, B(xn , rn) is covered by a single Gα , which is a contradiction. 

 Hence M iscompact. 

Example:Consider the space    consisting of sequences      of complex 

numbers such that           
    and the metric defined by        

           
    

 

   

Where                   

Solution:Let A be a subset of    consisting of sequences 



                                                ….   

                } 

Since             ∀      therefore A is bounded, we shall show that A is 

not totally bounded. Observe that A has no finite 
 

  
      for if it has, then 

there exists a finite set   of   such that  

        
 

  
  and         

 

  
                   

Clearly      for     implies by triangle inequality 

                             
 

  
 

 

  
    

So, for each    in   there is an   in   with the above property. 

Thus, there corresponds an infinite set    which is a contradiction to the fact 

that   is finite. 

3.5 Heine Borel Theorem: 

Theorem 5: Any closed interval [a , b] is a compact subset of R. 

Proof:LetGαbe a collection of open sets in R such that ∪ Gα⊇ R. 

Let S = { x∊ [a , b] / [a , x] can be covered by a finite number of Gα’s. } 

Clearly a ∊ S and hence S ≠ ⌀. 

Since S is bounded above by b ,l.u.b of S exists. Let c = l.u.b. of S. 

Clearly c ∊ [a , b]. ∴ c ∊ G�1 for some index �1. Since Gα1 is open, there 

exists ε > 0 such that B(x , ε) ⊆ Gα1 . 



i.e. (c – ε , c + ε) ⊆ G�1  

Choose x1∊ [a , b] such that x1< c and [x1 , c] ⊆ G�1 . Since x1<c , [a , x1] is  

covered by a finite number of Gα’s. These finite number of Gα’s together 

with G 1 covers [a , c]. 

∴ by the definition of S , c ∊ S. Now, we claim that c = b. 

Suppose c ≠ b. 

Then choose x2∊ [a , b] such that x2> c and [c , x2] ⊆ G�1 . 

Since [a , c] is covered by a finite number of Gα’s , these finite number of 

Gα’s together with G�1 covers [a , x2]. 

∴ x2∊ S , which is a contradiction to c is l.u.b of S [∵x2> c ]. Hence c = b. 

∴ [a , x] can be covered by a finite number of Gα’s. 

∴ [a , b] is a compact subset of R . 

Theorem 6: A subset A or R is compact if and only if A is closed and 

bounded. 

Proof: If A is compact, then A is closed and bounded.  

Conversely, assume that A is closed and bounded subset of R . 

Since A is bounded, A has a lower bound and an upper bound say a and b 

respectively. Then A ⊆ [a , b]. 

Since A is closed in R, A ∩ [a , b] is closed in [a , b]  



I.e. A is closed in [a , b]. Thus, A is a closed subset of the compact space [a , 

b].  

Hence A is compact. 

3.6Compactness andContinuity: 

Theorem 3.6.1: Let M1 be a compact metric space and M2 be any metric 

space.  

Let f : M1→ M2 be a continuous function. Then f( M1 ) is compact. 

i.e. Continuous image of a compact metric space is compact. 

Proof: Without loss of generality we assume that f( M1 ) = M2. 

LetGαbe a collection of open sets in M2 such that ∪ Gα = M2. 

∴∪ Gα = f( M2 ). 

∴ f-1(∪ Gα ) = M1 

∴∪ f-1
(Gα ) = M1. 

Since f is continuous, f-1(Gα ) is open in M1∀�  

∴{ f
-1

(Gα ) } is an open cover for M1. 

Since M1 is compact, this open cover has a finite subcover say 

f-1 Gα , f-1 Gα , …… , f-1 Gα . 

∴ f-1(nGαi) = M1. 

     

 
    = f( M1 ) = M2.  



Thus Gα1 ,Gα2 , ….. , Gαnis a finite subcover for the given open coverGαof 

M2. Hence M2 is compact. 

Corollary: Let f be a continuous map from a compact metric space M1 

intoany metric space M2. Then f( M1) is closed and bounded. 

Proof: Since f is continuous, f( M1 ) is compact and hence closed and 

bounded. 

Theorem 3.6.2Any continuous mapping f defined on a compact metric space  

(M1,d1) into any other metric space (M2 , d2) is uniformly continuous on M1. 

Proof: Let �> 0 be given Let x  M1. 

Since f is continuous at x, for ε/2 >0 , there exists δx> 0 such that 

d1(x ,y) <δx⇒ d2(f(x) , f(y))<ε/2 ......................................... (1) 

Clearly, { B(x ,
  

 
) / x   M1} is an open cover for M1. 

Since M1 is compact, there exists x1 , x2 , …. , xn  M1 such that 

      

   

 
 

 

   

    

Let       
   

 
 
   

 
    

   

 
     

 

Now, we shall prove that d1(p , q) <δ ⇒ d2(f(p) , f(q)) <ε ∀ p , q   M1. 

 Let p , q   M1 such that d1(p , q) <δ 



            
   

 
 

 

   

 

⇒         
   

 
  

    for some i such that        

         
   

 
    

 

∴ by (1), d2(f(p) ,f(xi))<ε/2 .................................................... (2) 

Similarly, d2(f(q) , f(xi)) <ε/2 ................................................ (3) 

Now, d2(f(p) , f(q)) ≤ d2(f(p) , f(xi)) + d2(f(xi) ,f(q)) 

<ε/2+ε/2 [ By (2) and (3)] 

∴ d2(f(p) , f(q)) <ε . 

Thus, d1(p,q) <δ ⇒ d2(f(p) , f(q)) <ε ∀ p , q   M1. Hence f is uniformly 

continuous. 

 

3.7Equivalent forms ofCompactness: 

Definition: A collection Ғ of subsets of a set M is said to have finite 

intersection property if the intersection of any finite number of elements of Ғ 

is nonempty. 

Theorem: A metric space M is compact if and only if every collection of 

losed sets in M with finite intersection property has nonempty intersection. 

Proof: Suppose that M is compact. 



LetFαbe a collection of closed subsets of M with finite intersection property.  

We have to proveFα ≠ ∅. SupposeFα = ∅ . Then (Fα)c = M. 

∴Fα
c = M. [ By De Morgan’s laws ] 

Since each Fα is closed, each Fα
c is open. Thus,{ Fα

c } is an open cover for M. 

Since M is compact, this open cover has a finite subcover say 

    

     

     

       

   

 ∴     

  
      ∴      

 
    

 
    ∴     

 
    ∅ 

This is a contradiction to the collectionFαhas finite intersection property. 

∴Fα ≠ ∅ . 

Conversely, assume that every collection of closed sets in M with finite 

intersection property has nonempty intersection. 

We have to prove M is compact. Let Gαbe an open cover for M. 

∴Gα = M. 

∴ (Gα )c= ∅ .∴Gα
c= ∅ . 

Since each Gα is open , each Gα
c
 is closed. 

Hence Ғ= { Gα
c } is a collection of closed sets whose intersection is empty. 

∴ by hypothesis, this collection does not have finite intersection property. 

Hence there exists a finite sub collection    

     

     

        
 such that 



 

    

  ∅ 
     ∴      

 
    

 
 ∅  ∴      

 
        

Thus the given open cover{Gα}of M has a finite subcover {Gα1,Gα2,... , Gαn }. 

Hence M is compact. 

3.8 Total boundedness: 

Definition:A metric space M is said to be totally bounded if for every ε>0, 

there exists a finite number of elements x1 , x2 , ….. , xn  M such that B(x1 , 

ε) ∪ B(x2 , ε) ∪ …….. B(xn , ε) =M. 

A nonempty subset A of a metric space M is said to be totally bounded ifthe 

subspace A is totally bounded metricspace. 

Theorem 3.8.1Any compact metric space is totally bounded. 

Proof: Let M be a compact metric space. 

We have to prove M is totally bounded. Let ε > 0 be given. 

Now, { B(x , ε) / x   M } is an open cover for M. 

Since M is compact, there exists points x1 , x2 , ….. , xn  M such that M = B(x1 

, ε)  

∪ B(x2 , ε) ∪ ……. ∪ B(xn , ε) . Hence M is totally bounded. 

Theorem 3.8.2Any totally bounded subset A of a metric space M is bounded. 

Proof: Let A be a totally bounded subset of a metric space M. 



Then for given ε>0 , there exists points x1 , x2 , ….. , xn  A such that 

A = B1(x1 ,ε) ∪ B1(x2 , ε) ∪ ……. ∪ B1(xn ,ε) where B1(xi , ε) are open balls in A. 

Since open balls are bounded sets and finite union of bounded sets is 

bounded, A is bounded. 

Note:The converse of the above theorem is not true. For, 

Let M be an infinite set with discrete metric. Then M is bounded. 

Also, B(x , 1) = { x } for all x ∊ M. Since M is infinite, M cannot be 

expressed as finite union of open balls of radius 1. Hence M is not totally 

bounded. 

Definition:Let (xn) be a sequence in a metric space M. If n1< n2< …. <nk< 

……. is a sequence of positive integers, then (xnk) is a subsequence of (xn). 

Theorem 3.8.3A metric space M is totally bounded if and only if every 

sequence in M contains a Cauchy subsequence. 

Proof: Suppose that every sequence in M contains a Cauchy subsequence.  

We have to prove M is totally bounded. Let ε> 0 be given. Choose x1∊ M. 

If B(x1 , ε) = M , then M is totally bounded. 

If B(x1 , ε) ≠ M , Then choose x2∊ B(x1 , ε) – M so that d(x1 , x2) ≥ ε .  

If B(x1 , ε) ∪ B(x2 , ε) = M , then M is totally bounded. 

Otherwise, choose x3∊ [B(x1 , �) ∪ B(x2 , �)] – M. 

 so that d(x3 , x1) ≥ ε and d(x3 , x2) ≥ ε. We proceed this process and if the 

process is terminated at a finite stage means M is totally bounded. 



Suppose not, then we get a sequence (xn) in M such that d(xn , xm) ≥ � if n ≠ 

m. 

∴ (xn) cannot be a Cauchy sequence, which is a contradiction. Conversely, 

suppose that M is totally bounded. 

Let S1 = { x11, x12 , ….., x1n , ….. } be a sequence in M. If one of the terms in 

the sequence is repeated infinitely, then S1 contains a constant subsequence 

which is in fact a Cauchy sequence. So, we assume that no terms of S1 is 

repeated infinitely so that the range of S1 is infinite. 

Since M is totally bounded, M can be covered by a finite number of open 

balls of radius 
  

 
. Hence one of these balls contains infinite number of terms 

of the sequence S1. 

∴ S1 contains a subsequence S2 = {x21 , x22 , ….., x2n , ….. } which lies within an 

open ball of radius 
  

 
. Similarly, S2 contains a subsequence S3 = {x31 , x32 , ….., 

x3n , ….. } which lies within an open ball of radius
 

 
. 

We repeat the process of forming successive subsequences and finally we 

take the diagonal sequence S = { x11 , x22 , ….., xnn , ….. }. 

We claim that S is a Cauchy subsequence of S1. If m > n 

thenboth           

∴ lie within an open ball of radius
 

 
. 

 

∴            
 

 
.  ∴              ∀     

 

 
 

Hence S is a Cauchy subsequence of S1. 



Thus, every sequence in M has a convergent subsequence. 

Corollary: A nonempty subset of a totally bounded set is totally bounded. 

Proof: Let A be a totally bounded subset of a metric space M.  

Let B be a nonempty subset of A. Let (xn) be a sequence in B. 

Since B ⊆ A, (xn) is a sequence in A. Since A is totally bounded, (xn) has a 

Cauchy subsequence. Thus, every sequence in B has a Cauchy subsequence. 

∴ B is totally bounded. 

3.9 Sequentially Compact: 

Definition: A metric space M is said to be sequentially compact if every 

sequence in M has a convergent subsequence. 

Theorem: Let (xn) be a Cauchy sequence in a metric space M. If (xn) has a 

subsequence (xnk) converges to x , then (xn) converges to x. 

Proof: Suppose that (xn) has a subsequence (xnk) which converges to x. We 

have to prove xn→ x . Let ε > 0 be given. 

Since (xn) is a Cauchy sequence, there exists a positive integer N  

such that(x, x )<
 

 
∀ n , m ≥ N1………………… (1) 

Since xnk → x , there exists a positive integer N2 such that d(xnk, x) <
   

 
 

∀ nk≥ N2……………………...(2) 

Let N = max { N1 , N2 }.  



Fix nk≥ N. Now. d(xn , x) ≤ d(xn , xnk) + d(xnk ,x) 

<
 

 
 

 

 
∀ n ≥ N 

∴ d(xn , x) <ε ∀ n ≥ N. ∴ xn→ x . 

Note: in the metric space, totally boundedness is the property that 

complements completeness to guarantee sequential compactness. 

Example: the subspace         of the real line is totally bounded but 

certainly not sequentially compact, for consider the sequence  
 

 
      which has 

no convergent subsequence. 

Note than   is not complete, since it is not closed.  

Example:A subset  of a metric space        is totally bounded if and only if  

    is totally bounded. 

Solution: Let A be totally bounded. To show that     is totally bounded, it is  

enough to show that every sequence in    contains a Cauchy subsequence. Let 

     be any sequence in     Let      be given. Then       implies  

  

 
       ∅ i.e.,       such that          

 

 
   (1) 

So we obtain a sequence      in A, and A being totally bounded implies      

contains a Cauchy subsequence say     
   Therefore for       appositive 

integer   such that   

     
    

  
 

 
 ∀                              (2) 

By using triangle inequality and from (1) and (2), we have  

 



     
    

       
    

       
    

       
    

  

 
 

 
 

 

 
 

 

 
   ∀       . Hence      

 is a Cauchy sequence of       

Therefore,     is totally bounded. 

The converse is obvious since A, being a subset of a totally bounded set     is 

itself totally bounded. 

.10 Summary: 

In this unit, we have covered the following points. 

1. We have introduced the notions of open cover, subcover and finite 

cover in a       metric space.  

2. We have defined compact sets in a metric and discussed the following 

properties:  

(i) Every compact set in a metric space is closed and bounded.  

(ii) Closed subsets of compact sets are compact.  

(iii) If A and B are compact sets in a metric space X, then A U B and 

A   B are compact. 

(iv) An infinite subset of a compact metric space has a limit point.  

3. We have shown that Heine-Bore1 theorem holds for Rn.  

4. We have obtained the following three characterizations of compact 

sets. 

(i) X is compact if and only if X is sequentially compact. 

(ii) X is compact if and only if X is complete and totally bounded.  

(iii) X is compact iff every family 3 of closed subsets of X with finite 



intersection property, has itself non-empty intersection, that is 

   ∅    

5. We have explained the relationship between continuity and 

compactness.  

6. We have shown that any continuous function from a compact metric 

space to any other metric space is uniformly continuous. 

3.11 Terminal Questions: 

1. If   and   are two compact subsets of a metric space        Prove 

that  ∪   and     are compact. 

2. Show that a subspace of    is bounded if and only if it is totally 

bounded. 

3. If   is a subspace of a complete metric space, show that    is 

compact if and only if   is totally bounded. 

4. Show that a closed subspace of a complete metric space is compact 

if and only if it is totally bounded. 

5. Prove that boundedness and total boundedness are equivalent in 

Euclidean spaces. 

6. Prove that from any infinite open cover of a separable metric space 

one can extract a countable open cover. 

7. Let                   and     , where          and   is 

usual metric.Show that   is closed and bounded, but not compact. 

Also show that   is not totally bounded. 
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Block -2 

Convergence of function of series and Improper Integral 

In the first unit we shall study about point wise convergence and uniform 

convergence of sequence and series of functions. Necessary and sufficient 

condition for a uniform convergence, Weierstrass test, Abel’s test and Dirichlet’s 

test for uniform convergence.Term by term integration and term by term 

differentiation. In this unit we shall study convergence of series of functions.  

In the second unit  we  also study about Riemann integrals as developed it 

requires that the range of integration is finite and the integrand remains bounded 

in that domain. If either or both of these assumptions is not satisfied it is 

necessary to attach a new interpretation to the integral. If the integrand of   

becomes infinite in the interval              has points of infinite 

discontinuity in       or the limits of integration        become infinite, the 

symbol      
 

 
 is called an improper integral. Thus 

 
  

  

 

 
  

  

    

 

  
   

  

      
 

 

 
 

  

  

 

  
 are examples of improper integrals. 

The integrals which are not improper are called proper integrals. Thus 

 
    

 
   

 

 
is a proper integral. It will be assumed throughout that the number of 

singular points in any interval is finite and therefore when the range of integration 

is infinite, that all the singular points can be included in a finite interval. Further, it 

is assumed once for all that in a finite interval which encloses no point of infinite 

discontinuity the integrand is bounded and Integrable. 



Unit-4 Complete Metric Spaces 

Structure 

4.1  Introduction 

4.2      Objectives 

4.3  Uniform Continuity 

4.4     Necessary Condition on Uniformly Continuous 

4.5    Lebesgue Number for cover 

4.6 Complete 

4.7 Complete Metric Space 

4.8 Lemma 

4.9    Cantor’s intersection Theorem 

4.10    Summary  

4.11    Terminal Questions 

 4.1 Introduction 

The aim of this unit is to study one of the properties of metric space. The notion 

of distance between points of an abstract set leads naturally to the discussion of 

uniform continuity and Cauchy sequences in the set. Unlike the situation of real 

numbers, where each Cauchy sequence is convergent, there are metric spaces in 

which Cauchy sequences fail to converge. A metric space in which every 



Cauchy sequence converges is called a ‘complete metric space’. This property 

plays a vital role in analysis when one wishes to make an existence statement. 

We shall see that a metric space need not be complete and hence we shall find 

conditions under which such a property can be ensured. 

 4.2 Objectives 

After studying this unit, you should be able to 

•Obtain the Uniformly Continuity; 

• Obtain a Cauchy sequences in the set. 

• Obtain the Necessary Condition on Uniformly Continuous 

• Learn the results of Lebesgue Number for cover. 

•Study the use of Complete and Complete Metric Space. 

4.3  Uniform Continuity 

A Function      defined on an interval   if and only if for every         

                       independent of the choice of any point in   such that 

                 where           where       are any arbitrary point in 

   



 

Example:1 f x  
 

 
  x        

Solution:  

 



⇒   is not dependent only on   but it is dependent on point. 

⇒
 

 
 is not Uniformly Continuous in       

Example: 2 Show that the function                  is uniformly Continuous 

on        

Solution:Let             then  

                        
       

       

 

⇒  
     

       

  

Let                  

⇒  
     

       

  
       

   

 
       

      

 

⇒          ⇒               

⇒ for every     ⇒                  whenever |          

⇒      ⇒    is uniformly Continuous on        

Example:3 Show that         ∀    is uniformly Continuous on        

Solution:we have 

                    

⇒                       



⇒       
 

 
   ⇒for every     

              whenever            

⇒   is uniformly Continuous on        

4.4     Necessary Condition on Uniformly Continuous 

1.If      is Continuous on (a,b) and limit exist finitely at both ends then    is 

uniformly Continuous on        

2.If     is Continuous in      then f(x) is uniformly Continuous on        

3.If     is Continuous in       and                  then f(x) is uniformly 

Continuous on        

Example: In which interval      
 

 
is uniformly Continuous. 

Solution: we have      
 

 
 

Then                  
 

 
   

Example:which of the following are uniformly Continuous on (0,1). 

(a)                (b)         

Solution:we have 

(a)                (b)         

 

Limit exist of    and                are uniformly Continuous on (0,1). 

 



4.5     Lebesgue Number for cover 

Let          be an open cover of a metric space       a real number     is 

said to be Lebesgue number for the open cover      if for each subset   of   with 

        there is at least one set    with Contains    

Note:Not Every open Cover of a metric space has a Lebesgue number. For 

example, let         be a subspace of the real line and   
 

 
              be 

an open cover of        For arbitrary  >0 the set           is such that       

  But   is not contained in any of the members of the cover, note that this space is 

not sequentially Compact. 

Lebesgue Covering lemma: 

Theorem: Every open cover of a sequentially compact metric space       has a Lebesgue 

number. 

Proof: Let         be any open cover of    Assume that it has no Lebesgue 

number. then for each natural number   there is a non-empty set   ⊆   With 

      
 

 
  Such that   ⊈   , for every     for each      choose a point 

     .Since   is sequentially compact, the sequence      contains a convergent 

subsequence, say        

Let             Now since            implies       

For some        being open, therefore there is an    ,  

such that      ⊆    



For the above            and                 Implies there exists a 

positive integer     such that       
    

 

 
  and       

  
 

 
……(a) 

Let  be any element of     
  then by using tringle inequality, and (a) we get  

               
       

    

       
       

    

 
 

 
 

 

 
    ∵     

     
  

This implies that        ⊆    Hence     
⊆   , which contradicts the fact that 

for each natural number        must have a Lebesgue Number. 

We are now in a position to prove the converse of the theorem, which will 

establish the equivalence of compactness and sequential compactness in metric 

spaces. 

Theorem: Every sequentially compact metric space       is Compact. 

Proof: Let     be any open cover of    Since       is sequentially compact 

therefore by above lemma      has a Lebesgue number say  >0. Also       

being sequentially compact is totally bounded and so it has a finite 
 

 
. Net say 

{             Then      

 

 
       , 

Then for each          We have     

 

     
  

 
    and so by definition of 

Lebesgue number there exists at least one    
 such that    

 

    ⊆    
,          

This implies    

 

 
        ⊆     

 
   , i.e.,   ⊆     

 
    



Hence {   
    

       
  is a finite subcover of      and so       is compact. 

Corollary: A metric space is compact if and only if it is Sequentially compact. 

Theorem: A closed subspace of a complete metric space is compact if and only if 

it is totally bounded. 

Proof: Since a closed subspace of a complete metric space is itself complete, result 

follows from the above theorem. 

We have seen that compactness is another name of Heine -Borel property. 

Our results so far establish the following equivalence in a metric space. 

1.Bolzano-weirstrass Property 

2.Compactness 

3.Sequential Compactness 

4.Completeness and totally boundedness. 

As a consequence of the Lebesgue Covering Lemma and the above corollary, we 

have the following useful result. 

Theorem: Let   be a Continuous Function from a compact metric space        

into a metric space        then   is Uniformly Continuous. 

Proof: Let     be given for each         ,       

 

       is an open subset of   

Containing    being an inverse image of an open sphere   

 

      in   under the 

Continuous Function       . 



Therefore, the collection       

 

       is an open cover of    Since   is compact, 

therefore by the Lebesgue covering Lemma and above corollary, this open cover 

has a Lebesgue number, say,      Let     be any two elements of   with 

           then the set {    is a set in   with diameter less than   and so by 

the definition of Lebesgue number           

 

      for some       

i.e.,             

 

         

⇒                
 

 
 and                

 

 
 By triangle inequality, 

             <                               
 

 
 

 

 
   

Hence   is Uniformly Continuous. 

4.6    Complete 

Let       be any metric space. the sequence      of points of   is said to 

   ver e t  a p   t ‘a’  f    if for each     there exists a positive integer  , 

such that           ∀      

i.e.,                  or equivalently, for each open sphere      

 e tere  at ‘a’ t ere ex  t a p   t ve   te er   such that    is in        for all 

     T e p   t ‘a’     a  e  t e     t  f t e  eque  e       and  

we write             i.e.,             

Cauchy Sequence: A Sequence      of points of       is said to be a Cauchy 

Sequence if for each     there exists a positive integer     such that  

           ∀        



i.e.,                    . 

Theorem: Every Convergent Sequence is a Cauchy Sequence. 

Proof: Let       be any metric space. Let the sequence      of points of   

Converge to a. For every given     there exists a positive integer    such 

that          
 

 
 ∀      

Then for        we have  

                         
 

 
 

 

 
   

This implies     is a Cauchy Sequence. 

Note:The following examples show that the converse of the statement need not be 

true. 

Example: Let   be the set of rational numbers in which the metric   is defined by 

             ∀       

      is a metric space. The Sequence  
 

    is a Cauchy Sequence which 

converges to the limit    But the Sequence     
 

 
 

 

  is also a Cauchy 

Sequence in it. Which does not converge to a point of    

4.7 Complete Metric Space: 

A metric space       is said to be complete if every Cauchy Sequence 

Converges to a point of    The spaces in the examples mentioned above are 

not complete. 



Note:Any metric space which is not already complete can be made so by 

adjoining additional points to it. 

Example:1 The discrete space       is a complete metric space. For in this 

space a Cauchy sequence must be a constant sequence (i.e., It must consist of a 

single point repeated from some place on) and so converges. 

Example:2 The space      is a complete metric space. The convergence in R is 

the ordinary convergence of numerical sequences. 

Example:3 The space    of all ordered n-tuples with the metric    

                
  

    
 

  is a complete metric space. The convergence in this 

space is Coordinate wise. This space        is called n-dimensional Euclidean 

space. 

Example:4The space C      of all bounded continuous real valued functions 

defined on the closed interval      with the metric   given by  

        ax                 is a complete metric space. 

Solution:Let      be a Cauchy sequence in C       

Let     be given. Then there exists a positive integer    such that           

 ∀       . 

i.e.,  ax                      ∀        

                ∀            ∀          

By Cauchy Criterion of uniform Convergence, the Sequence of Function      

Converges Uniformly on        let   be the limit of a uniformly Convergent 



Sequence of Continuous Functions so this itself is Continuous on        Hence the 

Cauchy Sequence      Converges to a point of C       

Example:5 Let    be the set of all bounded numerical Sequences      in which the 

metric   is defined by                   ∀                 . 

Solution:Let    be a Cauchy Sequence of elements of    and let       
   

   

Since        so        

   
   

                  

Therefore for      there exists an integer    . such that            ∀     

    

i.e., sup   
   

   
   

    ∀                             

Let   be fixed. Then (1) implies that the sequence    
   

   
   

     
   

    is 

Cauchy and so convergence. Taking limit in(1) as              

   
   

   
   

    ∀      

And this is true for all          

Hence         
   

        
   

      ∀  . 

This implies      is bounded. Let         Then       Hence        is a 

complete Space. 

Example:6 Let    be the set of all real numerical sequences for which 

     
    

     



Solution:we defined the metric   in    by  

                
 

 

   

 

   

 ∀                  

The space (      is a complete metric space, and is known as Hilbert Sequence 

Space. Consider a Cauchy sequence          
   

   in     

Therefore, for a given     there exists an integer     

Such that               
   

   
   

  
   

 

 
   

   ∀                (1) 

Hence    
   

   
   

    ∀                                               (2) 

Fixing   we see that the sequence    
   

   
   

     
   

    

Converges to a limit     i.e.,         
   

     

Let         then the inequality (1) implies 

    
   

   
   

  
   

 
     for every k, and for        

Taking limit as      we have  

    
   

   
   

 

 

   

 

             

Letting      we get 



    
   

    

 

   

 

             

This implies          and so                 

Also                 . Hence    is Complete. 

Example:7let   be the set of all Continuous real -valued functions defined on 

       and let                      
 

 
       

Show that       is not complete. 

Solution: let      be a sequence in X defined by  

      

 
 

          
 

  

 

  
         

 

  
     

  

For                                    
 

 
   

       

 

  

 

     
 

  
   

 

  

 

     
 

  
 

 

  
 

 

  

 

   

 
     

  
    

 

      

  

 

  

 

 
 

 
 

 

  
  

 

 
 

 

 
   

 

 
 

 

  
  

 
 

 
 

 

 
             



Hence      is a Cauchy Sequence in X. 

Now we shall show that this Cauchy sequence does not convergent in X. For every 

     

                      
 

 

   

         

 

  

 

     
 

  
      

 

 

  

   

Since integrals are, so is each integral on the right, and hence           as 

n    would imply that each integral approaches zero, and since x is in X, SO   

is Continuous. 

But         
 

 

            
            

Which is discontinuous at      Hence         does not tend to zero for each 

     i.e., the Sequence      does not converge to the point of the space. This 

implies that       is not Complete. 

4.8 Lemma: 

Let       be any metric space and A be any non-empty subset of X. Then      if 

and only if there exists a sequence      in A such that            . Let 

     Then every open sphere Centered at   intersects A. In particular   

 

    

  ∅  For all n. So, we get a sequence      in A such that  

        
 

 
 ∀   ⇒             



Again, let     be sequence in A which converges to x. to show that       We 

must show that every open sphere centered at   intersects A. 

Let       be any open sphere. Then for                implies that there 

exists a positive integer     such that           ∀       

In particular      
      ⇒    

       

⇒         ∅ ⇒      

Theorem:Let      be a complete metric space and  be a subspace of    Then   

is complete if and only if it is closed in        

Proof:Let   be a complete subspace of    In order to show that   is closed we need 

to show that      by definition       so we shall show that       

Let   be an element of    If      the result is proved. If  ∉   then   is a limit 

point of    By definition of limit point, every neighborhood   

 

    contains at least 

one member of   other limit than    Thus for each   we get a sequence     in   

such that  

        
 

 
  Thus              

Now the Sequence      being a Convergent sequence must be a Cauchy sequence. 

Since   is complete, this Cauchy sequence      must converge in Y, hence      

But   is an arbitrary point of     therefore       

Conversely, we assume that   is a closed subspace of    and establish that   is 

complete. Let      be a Cauchy Sequence in    and since X is given to be a 



Complete Space, therefore      must Converge to a point   in    But then    

   for all                    ⇒        ∵                

The following is a generalization of Nested Interval theorem. 

Next, we define certain sets in general metric spaces. We are discussing these sets 

here because of their connection with completeness. In fact, these sets arose as an 

extension of the property of R that the set of rationals   is dense in R and it is not 

Complete. 

Definition: A Subset A of a metric space       is said to be dense in   

if     .As we stated above, we have   is a dense in    

We will see that in the space        with sup metric, the set   consisting of all the 

real polynomials restricted to       is dense in         

Now, we discuss a theorem. 

4.9 Cantor’s intersection Theorem 

Let      be a sequence of non-empty closed subsets of a Complete metric space   

Such that   ⊇      for each positive integer   and          Let       
     

Then   is a Singleton, i.e., it Contains exactly one element of    

Proof: Let       
   , since let ⊆    we have  

Let             for each positive integer   As          we get         So 

  can not contain more than one element. 

Thus, the theorem is proved if we show that   ∅  



Since    is not empty, we can choose an element        We thus, get a sequence 

     in    Let     be given. Since          there exists a positive integer   

such that                 

Let        Then   ⊆                      

This show that       is a Cauchy sequence in    As   is a complete metric 

space,     converges to some      We shall now show that      for every 

   which in turn will give      Let, if possible, ∉    for some fixed positive 

integer positive integer   Then     
   Since    is a closed subset of     

  is an 

open subset of    so there exists     such that       ⊆   
           there 

exists a positive integer   such                            

               

Choose    ax                    ⊆   
            ⊆   . 

This is a Contradiction. 

This proves that       Since this is true for all     we get that 

                                          

Example:1 I  t    exa p e   e      t at t e  et      t e Ca t r’    ter e t    

theorem may be empty if the hypothesis         is dropped. 

Example:2 Let     and               Then   is a complete metric 

space and {    is a decreasing sequence of non- empty closed subsets of    

Also         for each    So that the condition         is not satisfied 

here. Also, we have       
    ∅  Hence the claim. 



Example:3 Here we give an example to show that the set      t e  a t r’  

intersection theorem may be empty if the hypothesis that each   is a closed 

subset of   is dropped. 

Let     and             
 

 
 

Then   is a complete metric space and {    is a decreasing sequence of non-

empty subsets such that of   such that       
 

 
    But    is not a closed 

subset of R. Now we have       
    ∅  Hence the claim. 

Baire’s Theorem: 

If   is a complete metric space, the intersection of a countable number of dense 

open subsets is dense in    

Proof: Let the closed ball cantered at   with radius   by         

                       

Note that any open set in a metric space contains a closed ball. indeed, if we shrink 

the radius of an open ball slightly, we obtain a closed ball contained in that open 

ball. 

Suppose that           are dense and open in   and let   be a nonempty open set 

in    We will show that     
 
       ∅  

Since    is dense in        is a nonempty open set. Hence, we can find     

and        such that         ⊆                                              (1) 

If     and             are chosen, the denseness of   show that  



   B (           is a nonempty open set, and therefore we can find      and 

     
 

 
 such that         ⊆                                          (2) 

By induction, this process produces the sequence      in    If        

Then          are in           and thus 

                              
 

 
  

Hence,     is a Cauchy Sequence. Since   is complete,  converges to some 

            then   lies in a closed set           thus            for all 

     By (1),          and by (2), we have                  

Hence       
 
        

We can conclude that the intersection of all    is dense in    

Note: the completeness assumption is necessary in this theorem as the following 

example. 

Let   be a complete metric space. Assume that      Write            and 

let           for each      Then    is open and dense in   for each    but 

   
 
    ∅  

Corollary: if a complete metric space is a union of countably many closed sets, 

then at least one of the closed sets has nonempty interior. 

Proof:Let   be a complete metric space. Assume that        
   where each 

   is closed. For each      let      
  then    

 
    ∅  



    a re’  t e re   t ere ex  t  a   pe   et    which is not dense in    Thus, 

  
       But then Int        

     and hence    has nonempty interior. 

4.10    Summary  

In this unit, we have covered the following points: 

1. We defined a sequence in a metric space (X, d) and discussed its convergence. 

 2. We defined subsequences of a sequence and have shown the relationship 

between convergence of a sequence and its subsequence’s.  

3. We have shown the connection between continuity and convergence. "f is 

continuous iff x, + x implies that f(x,) + f(x)".  

4. We defined Cauchy sequences and explained the connection between Cauchy 

sequences and convergence. A Cauchy sequence is convergent if and only if it has 

a convergent subsequence.  

5. We defined complete metric spaces. A metric space (X, d) is complete if every 

Cauchy sequence in X is convergent in X.  

6. We discussed two important theorems and explained the importance of them. 

(1). Cantor's Intersection Theorem (2).  Baire’s Theorem. 

4.11    Terminal Questions 

1. What are the dense subset? of a discrete metric space? 

2.Show that a closed set is nowhere dense if and only if it contains no open set. 

3.Give an example of a set which is neither dense nor nowhere dense. 



4.Show that a Cauchy sequence is convergent⇔ it has a convergent subsequence. 

5.Prove that if       is a complete space, and each     is a limit point of   then 

  is uncountable. 

6.Given an example of a complete metric space      and a sequence of non-

empty closed sets     in   with   ⊇   ⊇        ⊇      such that 

   
 
    ∅ 

7.Let   be the real line   with the usual metric, and let           

8. Let       be a metric space and  ⊆   Show that                    

9.Define Complete Metric Space. Given an example of a metric space which is not 

Complete. 

10.Let       be a metric space and let      be a decreasing sequence of non-empty 

closed subsets of  such that                 If       
   contains exactly 

one point, then show that   is complete. 

 

 



UNIT 5: Convergence of sequence and series of functions 

Structure: 

5.1 Introduction 

5.2 Objectives 

5.3 Pointwise convergence and Uniform convergence. 

5.4 Necessary and sufficient condition for a uniform convergence 

5.5 Test for uniform convergence 

 (i)  Weierstrass test for uniform convergence 

(ii)  Abel’s test for uniform convergence 

(iii)  Dirichlet’s test for uniform convergence 

5.6 Term by term integration and term by term differentiation 

5.7 Summary  

5.8 Terminal Questions 

 5.1 Introduction 

In this unit we shall study about point wise convergence and uniform 

convergence of sequence and series of functions. Necessary and sufficient 

condition for a uniform convergence, Weierstrass test, Abel’s test and 

Dirichlet’s test for uniform convergence. Term by term integration and term 



by term differentiation.The term uniform convergence was probably used 

first time by Christoph Gudermann in a paper on elliptic functions. 

Later Gudermann’s  pupil Karl Weierstrass who attended his course on 

elliptic functions, He used uniformly convergent in his paper in 1841, so 

Weierstrass’s discovery was the earliest, and he alone fully realized its far 

reaching importance. It was one of the fundamental ideas of analysis. In this 

unit we shall study convergence of series of functions. 

5.2 Objectives 

After reading this unit the learner should be able to deal with: 

 Necessary and sufficient condition for a uniform convergence 

 Weierstrass test for uniform convergence 

  Abel’s test for uniform convergence 

  Dirichlet’s test for uniform convergence. 

 Term by term integration and term by term differentiation 

Sequences: A sequence is a function from natural numbers to real numbers 

i.e.,      . Sequences are written in a few different ways like 

           Way 1:               

            Way 2:        
  

            Way 3:          
  

 Examples:     
 

   
      

 

   
      

 

           
  

 
. 



 Series:Series is the sum of a sequence. If        
  is a sequence then the 

associated series is  

    

 

   

                   

Meaning of      :       is the function in x and n where x is the real number 

or variable and n is natural  number. 

Examples:         

                                                      

  Hence            
  is called the sequence of functions. 

          
 is equivalent to                         . 

          
  is also denoted as {  } or {  (x)} or     . 

Here                              
 
       is known as series 

of functions. 

5.3 Pointwise convergence  

 Let D be a subset of Real numbers and let {     } be a sequence of 

functions define on D we say that {     } converges point wise on D if 

            exists for each point x in D i.e. 

          

                   for all x belongs to  . 



This means that             is a real number that depends only on x. 

If {  } is point wise convergent then the function defined by 

 f(x) =               for every x in D is called the pointwise limit of the 

sequence. 

Example 1: Consider the sequence {  } of functions defined by       

     

    for all x in Real numbers show that {  } converges pointwise. 

Solution: For every real number x , we have: 

     
   

           
   

 
     

  
     

   
  
 

 
 

  

  
   

      
   

 

 
      

   

 

  
       

   Thus {  } converges pointwise to the zero on real numbers. 

Example 2: : Consider the sequence {  } of functions defined by           

for all x in Real numbers show that {  } does not converge pointwise. 

Solution: For every real number x, we have 

                                    for any x more than zero. 

Hence {  } does not converge pointwise. 

Definition of uniform convergence: 



Let {  } be a sequence of functions defined on interval ‘D’ if for every    

 , there can be found a positive integer ‘m’ such that                 

 ∀     ∀       The f(x) is called the uniform limit of the sequence on D. 

Note: 

1 In point wise convergence: one m for each x. 

2. In uniform convergence: one m for all x. 

 Uniform convergence of a series of functions: 

Definition: Let     
 
       be a series of functions define on interval ‘D’. 

The series    
 
       converges uniformly if the sequence  {  (x)} or 

     is uniformly convergent. 

5.4 Necessary and sufficient condition for uniform convergence 

(Cauchy’s general principle of uniform convergence) 

Theorem:Let  {  (x)} or      be a sequence of real valued functions 

defined on ‘D’. Then  {  (x)} or      is uniformly convergent on ‘D’ if 

and only if for every       there exists a positive integer ‘m’ such that 

                 ∀       ∀       

Proof: Necessary condition: 

Let the sequence         is uniformly convergent on ‘D’. By the definition 

given     , there exists a positive integer ‘m’ such that                

   ∀      ∀       



Here, n, p belongs to natural numbers and      ∀      , we have  

                                       

=                             
 

 
 

 

 
 =    

                 ∀       ∀                    

Sufficient condition: Let       be any sequence of functions on ‘D’ and the 

condition 

                 ∀       ∀      is satisfied. 

According to the given condition,  we can say that       is a Cauchy 

sequence. Since every Cauchy sequence is convergent so       is 

convergent or we can say that 

    
      

                                  

If ‘p’ is fixed in the condition and let    , we can say that 

                ∀         ∀      

Therefore        converges uniformly on ‘D’. 

Note : A series    
 
       will converge uniformly on ‘D’ if and only if for 

every    >0 there exists a positive integer ‘m’ such that 

                                ∀         ∀        



Where            

Example 3 : Let {     } be the sequence of functions on       defined by 

      
  

        is converges pointwise to zero but does not converge 

uniformly. 

Solution:                       
  

               
 

 

 
    

    

   So given sequence is pointwise convergent to zero  

We know that  >0 but very near to zero 

Here when x=1/n then       
  

        equals to    
 

 
  

  
 

 
 

     
 

 
 
  

 

   
 

 

 
  

, x is taken a fixed real value i.e. 1/n. 

 Now by the condition               
 

 
    

 

 
   

So given sequence is not uniformly convergent. 

5.5 Test for uniform convergence 

Theorem 1.             Let      be a sequence of functions defined on 

‘D’. 

  Let                                            

Set                                    then      is uniformly 

convergent if and only if                



Theorem 2. ( Weierstrass’s M- test): A series    
 
       of functions will 

be uniformly convergent on D. If there exists convergent series    
 
   of 

positive constants such that            ∀         ∀      

Abel’s lemma: If the sequence        of positive terms is monotonic 

decreasing and numbers  

                             are such that          

                                       
 
        . 

Theorem 3. (Abel’s Test): The series       will be uniformly convergent 

on [a, b] if 

(i)               is uniformly convergent on [a, b]. 

(ii)                                                       . 

(iii)         is uniformly bounded in [a, b] i.e. there is a positive number k, 

independent of x and n, such that 

          ∀                                         . 

Proof: Let                              is uniformly 

convergent on [a, b]. 

Cauchy’s principle for given                            such that  

              
 

 
 ∀                  ∀          



       

 

     

  
 

 
 ∀           ∀         

∴
 

 
                            

 
        By hypothesis , the sequence 

        is monotonic in [a, b] 

 Hence by Abel’s lemma, we have  

             

 

     

  
 

 
        

 

 
     ∀          

       ∀         

Consequently, by Cauchy’s principle       is uniformly convergent on [a, 

b].   

Example 4: Prove that        is uniformly convergent on [0, 1] if     

converges uniformly on [0, 1]. 

Solution: Take            
 

                 

The sequence       is monotonic decreasing sequence on [0, 1]  

Therefore 
 

   
 

     ∀                   

∴                   ∀         ∀           

Thus            is uniformly bounded and monotonic decreasing 

sequence on [0, 1]. Also          is uniformly convergent on [0, 1]. 



Hence by Abel’s test                      is uniformly convergent on 

[0, 1]. 

Theorem 4:(Dirichlet’s Test) The series       is uniformly convergent on 

 [a, b] if (i)          is a positive monotonic  decreasing sequence 

converging uniformly to zero on [a, b].  

(ii)                   
    ∀                where k is a fixed 

number independent of x. 

Proof: We have             ∀             ∀      

∴                                            

q > p >  , we get 

                                    , 

i.e.          
           ∀             ∀        

Therefore, 2k is an upper bound of         
      

Also          is a positive monotonic decreasing so by Abel’s lemma.  

            
 
                  . -------------(1) 

Again         converges uniformly to zero on [a, b]. Given   >0 there 

exists       such that             
 

  
 ∀           ∀        ------------

(2) 



Let m = max{        }  then by (1) and (2) hold for all n > m. 

            
 
          

 

  
  . ∀             ∀        

Hence        is uniformly convergent on [ a, b]. 

Examples 5: Prove that if k is any positive number less than unity, the series 

 
  

   
is uniformly convergent in [-k, k]. 

Solution: Let                     
 

   
 

|x|    k < 1, we have                             

                                    

                                  

         
 

   
          sum of infinite GP) 

Also       
 

   
 is monotonic decreasing sequence converging to zero. 

Hence by the Dirichlet’s test  given series   
  

   
 is uniformly convergent. 

Example 6: When                   
     

  converges uniformly in any 

interval         ,    > 0. 

Solution: Take       
 

                   



        

 

   

                                      

       

 

   

   
    

      

 
    

  

 
 

   
 

 

       
 

 
 ∀               

Now by Dirichlet’s test the series  
     

  converges uniformly. 

Example 7:  Show that the series  
       

      converges uniformly for all 

values of x. 

Solution:                              
 

     

Since,                
                                

                           

Also       
 

     is a positive monotonic decreasing sequence, converging 

to zero for all value of x. 

Hence by Dirichlet’s test  series 
       

     is uniformly convergent. 

Example 8: Show that the series  
 

        

 
         is uniformly 

convergent.  

Solution: Here       
 

        
 



To find the maximum value of above function 

We differentiate the function( we will apply maxima minima concept) 

  
     

                  

          
 

  
     

            

          
 

Thus   
      , given  

               ⇒          

      
 

 
 or,  x =  

 

 
    here   

      is negative  so it will give maximum 

value. 

The maximum value will be    
 

  
  

 

  
 
 

 hence       
 

        

 since 
 

      is convergent.  So by Weierstrass M-test series 

 
 

        

 
        is uniformly convergent. 

Example 9: Show that the series  
     

 
              is uniformly 

convergent. 

Solution: Since      is positive, monotonic decreasing and bounded on [-1, 

1]. 



And series  
     

 
                          

Therefore, by using Abel’s test given series 
     

 
                converges 

uniformly. 

5.6 Term by term integration and term by term differentiation 

Theorem 1 Let <  > be a sequence of real valued functions defined on the 

closed and bounded interval [a, b] and  let   belongs to R [a, b] for n = 1, 2, 

3, …………… if <  > converges uniformly to the function f(x) on [a, b] then 

f belongs to R [a, b] and      
 

 
               

 

 
  . 

Theorem1’:(Term by term integration) Let                 

          is integrable on [a, b] and        
    converges uniformly on [a, 

b]. Then the sum             
    is integrable on [a, b] and         

 

 

       
 

 
   

   .   

Example 10: Show that   
  

     
   

 

 
  

 

       

 
   . 

Solution: By weierstrass’s M-test, the series  
  

     
    is uniformly 

convergent on [0, 1]. Therefore, it can be integrated term by term 

Hence   
  

     
   

 

 
   

  

     
 

 
 
      

    

       
  
  

    

  =   
    

       
 

    

       
   

    
 

       
 
   . 



Theorem 2:(Term by term differentiation) Let                 

         has continuous derivative on [a, b] and further suppose that 

(i) The series       
     converges at some point         and 

(ii) The series of derivatives         
    converges uniformly on [a, b], to 

f(x)=        
    say. Then  

(1) The series        
    converges at every         and the sum 

F(x)=       
                      with F’(x)= f(x) for each         ; 

(2) moreover, the convergence of F(x)=       
    is uniform on [a, b]. 

Example:  Show that        
   

       
 

    

 
   

 
   . 

Solution: First we shall show that the series   
   

     
 
    is uniformly 

convergent on [0, k] for any k > 0. 

Let       
 

                    

Then         
 

  ∀          

But  
 

  is a convergent series hence by Weierstrass’s M-test, the series 

      
 

      is uniformly convergent on [0, k] 

Also, for every        ,           is monotonically increasing. 

By Abel’s test the series  
   

     
 
   converges uniformly on [0, k]. 



Hence by the term-by-term differentiation 

       
   

     
 
           

   

     
 
     

 

    
 
   . 

5.7 Summary 

We conclude with summarizing what we learnt in this unit “point wise 

convergence and uniform convergence of sequence and series of functions. 

Necessary and sufficient condition for a uniform convergence, Weierstrass 

test, Abel’s test and Dirichlet’s test for uniform convergence. Term by term 

integration and term by term differentiation”. 

5.8 Terminal Questions 

1. prove that       
   

                is not uniformly convergent. 

2. prove that        
  

                is uniformly convergent. 

3. prove that       
 

              is uniformly convergent. 

4. Prove that                          is uniformly convergent. 

5. Prove that              
 is not uniformly convergent           . 

6. Prove that        
 

    
 is uniformly convergent. 

7. Prove that       
 

      is uniformly convergent. 

8. Show that the series           converges uniformly in          



9. Prove that the series  
 

       
     

    is uniformly convergent. 

10. Show that the series for which           
 

    
                

         

Can be integrated term by term in        although series are not 

convergent in this interval. 

11. Show that the function represented by  
     

  
 
    is differentiable for 

every x and its derivative is  
     

  
 
   .  
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6.1  Introduction 

In this unit we study about Riemann integrals as developed it requires that the 

range of integration is finite and the integrand remains bounded in that 

domain. If either or both of these assumptions is not satisfied it is necessary 

to attach a new interpretation to the integral. 

In the integrand of   becomes infinite in the interval              has 

points of infinite discontinuity in       or the limits of integration        

become infinite, the symbol      
 

 
 is called an improper integral. Thus 

 
  

  

 

 
  

  

    

 

  
   

  

      
 

 

 
 

  

  

 

  
 are examples of improper integrals. 

The integrals which are not improper are called proper integrals. Thus 

 
    

 
   

 

 
is a proper integral. It will be assumed throughout that the number 

of singular points in any interval is finite and therefore when the range of 

integration is infinite, that all the singular points can be included in a finite 

interval. Further, it is assumed once for all that in a finite interval which 

encloses no point of infinite discontinuity the integrand is bounded and 

integrable. 

6.2   Objectives 

After studying this unit, we should be able to  

▪ use the definition of finite and infinite intervals; 



▪ explain the bounded function; 

▪ explain the proper and improper integral; 

▪ state and prove convergence of        
 

 
 

▪ find the convergence the improper integrals. 

6.3 Finite and infinite intervals 

An interval is said to be finite or infinite according as its length is finite or 

infinite. Thus, the intervals [a, b], [a, b), (a, b], (a, b) each with length (b – a), 

are finite (or bounded) if both a and b are finite. The intervals [a,  ), (a,  ), 

(- , b], (- , b) and (- ,  ) are infinite (or unbounded) intervals. 

6.4 Bounded Function 

A function f is said to be bounded if its range is bounded. Thus, f:(a, b] → R 

is bounded, if there exist two real numbers m and M, (m ≤ M) such that  

         ∀        

f is also bounded if there exists a positive real number K such that 

         ∀        

6.5 Proper integral 

The definite integral        
 

 
 is called a proper integral if 

(i) The interval of integration [a, b] is finite (or bounded) 



(ii) The integrand f is bounded on [a, b] 

If f(x) is an indefinite integral of f(x), then                  
 

 
  

6.6 Improper Integral 

The definite integral      
 

 
   is an improper integral if either the 

interval of integration [a, b] is not finite or f is not bounded on [a, b] or 

neither the interval [a, b] is finite nor f is bounded over it. 

(i) In the definite integral      
 

 
  , if either a or b or both a and b are 

infinite so that the interval of integration is unbounded but f is bounded, 

then      
 

 
   is called an improper integral of the first kind. 

For example, 
  

  
       

 

  
  

  

       

 

  

 

 
 are improper integrals of the 

first kind. 

(ii) In the definite integral      
 

 
   if both a and b are finite so that the 

interval of integration is finite but f has one or more points of infinite 

discontinuity i.e. f is not bounded on [a, b], then      
 

 
   is called an 

improper integral of the second kind. 

For example,  
  

  

 

 
  

  

   

 

 
  

  

          

 

 
 are improper integrals of the 

second kind. 

(iii) In the definite integral      
 

 
  , if the interval of integration is 

unbounded (so that a or b or both are infinite) and f is also unbounded then 

     
 

 
   is called an improper integral of the third kind. 



For example, 
   

  

 

 
   is an improper integral of the third kind. 

6.7 Improper integral as the limit of a proper integral 

(a) when the improper integral is of the first kind, either a or b or both a and b 

are infinite but f is bounded. we define 

(i)        
 

 
              

 

 
         

The improper integral      
 

 
   is said to be convergent if the limit on the 

right hand side exists finitely and the integral is said to be divergent if the 

limit is        . 

 If the integral is neither convergent nor divergent, then it is said to be 

oscillating. 

(ii)        
 

  
               

 

 
         

The improper integral        
 

  
 is said to be convergent if the limit on the 

right hand side exists finitely and the integral is said to be divergent if the 

limit is        . 

(iii)        
 

  
      

 

  
          

 

 
 where c is any real number 

    
     

       
 

  

    
    

       
  

 

 



The improper integral        
 

  
 is said to be convergent if both the limits 

on the right hand side exist finitely and independent of each other, otherwise 

it is said to be divergent. 

Note        
 

  
               

 

  
      

 

 
    

(b) When the improper integral is of the second kind, both a and b are finite 

but f has one (or more) points of infinite discontinuity on [a, b]. 

(i) If f(x) becomes infinite at x = b only, we define        
 

 
 

             
   

 
 

The improper integral        
 

 
 is said to be convergent if the limit on the 

right hand side exists finitely and the integral is said to be divergent if the 

limit is        . 

(ii) If f(x) becomes infinite at x = a only, we define        
 

 
 

             
 

   
 

The improper integral        
 

 
 converges if the limit on the right hand side 

exists finitely, otherwise it is said to be divergent. 

(iii) If f(x) becomes infinite at x = c only where a < c < b, we define 



       
 

 

        
 

 

        
 

 

    
     

       
    

 

    
     

       
 

    

 

The improper integral        
 

 
 is said to be convergent if both the limit on 

the right hand side exist finitely and independent of each other, otherwise it is 

said to be divergent. 

Note 1. If f has infinite discontinuity at an end point of the interval of 

integration, then the point of discontinuity is approached from within the 

interval. 

Thus if the interval of integration is [a, b] and  

(i) f has infinite discontinuity at ‘a’, we consider                

(ii) f has infinite discontinuity at ‘b’, we consider                

Note 2. A proper integral is always convergent. 

Note 3. If        
 

 
 is convergent then 

(i)         
 

 
 is convergent    , 

(ii)        
 

 
        

 

 
        

 

 
 where a < c < b and each 

integral or right hand side is convergent. 

Note 4. For any c between a and b, i.e. a < c < b, we have 



       
 

 

        
 

 

        
 

 

 

If        
 

 
 is proper integral, then the two integrals        

 

 
 and 

       
 

 
 converge or disverge together. Thus while testing the integral 

       
 

 
 for convergence at α, it may be replaced by        

 

 
 for any 

convenient c such that a < c < b. 

6.8 Convergence of Improper integrals 

 If the limit of an improper integral, as defined above, is a definite finite 

number, we say that the given definite integral is convergent and the value of 

definite integral is equal to the value of that limit. 

If this limit is         the integral is said to be divergent. In this case , we 

say that the value of integral does not exist. 

In case, the limit is neither a definite finite number nor        the integral 

is said to be oscillatory. In this case also, the value of integral does not exist. 

Convergence of the integral        
 

 
 can be defined as follows: 

The integral        
 

 
 is said to converge to the value    if for any 

arbitrarily chosen positive number  , however small, there exists a 

corresponding positive integer    such that  

          
 

 
     for all values of       



Similarly, we can define the convergence of an integral when the lower limit 

is infinite or when the integrand becomes infinite at the lower or upper limit. 

Note:the sum and difference of two convergent integrals are evidently 

convergent. 

Example 1. Examine the convergence of the improper integrals: 

(i)  
 

 

 

 
          (ii)     

  

  

 

 
   (iii)      

  

    

 

 
                   (iv)       

  

    

 

 
 

Solution. (i) By definition    
  

 

 

 
        

  

 

 

 
              

  

            .  So,  
  

 

 

 
 is divergent. 

(ii) By definition  
  

  

 

 
         

  

  

 

 
 

    
   

        
 

 

    
   

     
 

 
    

   
          

⇒  
  

  

 

 
 is divergent 

(iii) By definition  
  

    

 

 
              

 
      

   
 
     

 
 

 

 
 

 

 

    
   

 
  

  
 
 

 

    
   

  
 

  
          which is finite 

⇒  
  

    

 

 
 is convergent and its value is 2. 

(iv) By definition  
  

    

 

 
    

   
 

  

    

 

 
    

   
         

  

    
   

                
 

 
 which is finite. 

 
  

    

 

 
 is convergent and its value is 

 

 
 



Example 2. Examine for convergence the improper integrals: 

(i)             
 

 
         (ii)  

 

      
 

 
   (iii)      

 

 
   

(iv)        
  

      

 

 
   (v)     

  

      

 

 
 

Solution. (i) By definition                      
 

 

 

 
 

       
    

  
 
 

 

 

    
   

 
 

 
           

 

 
      

 

 
 which is finite. 

⇒       
 

 
 is convergent and its value is 

 

 
 

(ii) By definition 

 
 

      
 

 
        

 

      
 

 
        

 

 
 

 

       
 

 
 

    
   

 
 

 
          

 

 

    
   

 

 
                        

⇒  
 

      
 

 
 is divergent 

(iii)      
 

 
      

   
     

 

 
      

   
        

     
   

         

Which does not exist uniquely since cos t oscillates between -1 and 

+1 when 1→ . ⇒     
 

 
   oscillates 

(iv)  
  

      

 

 
    

   
          

 

 
    

   
 
       

  
 
 

 

 

   
   

 
 

 
 

 

      
     

 

 
      

 

 
 which is finite 



⇒ 
  

      

 

 
 is convergent and its value is   

 

 
 

(v)  
  

      

 

 
    

   
 

  

        

 

 
   
   

 
 

  
      

  
 
 

 

 

   
   

 

  
       

  
         

 

  
 
 

 
  

 

  
 which is finite. 

⇒ 
  

      

 

 
 is convergent and its value is  

 

  
 

Example 3. Examine for convergence the improper integrals; 

(i)  
  

      

 

 
   (iii)  

  

      

 

  
 

(iv)  
   

    
  

 

 
   (v)  

 

       
  

 

 
 

Solution. (i)   
  

      

 

 
    

   
          

 

 
    

   
 
       

  
 
 

 

 

    
   

  
 

   
             which is finite. 

⇒ 
  

      

 

 
 is convergent and its value is 1. 

(iii)  
  

      

 

  
    

   
 

  

      

 

  
    

   
        

  
  

    
   

                 
 

 
 

 

 
 

 

 
 which is finite. 

⇒  
  

      

 

  
 is convergent and its value is 

 

 
 

(iv)  
   

    
  

 

 
    

   
 

             

            

 

 
   

    
   

  
 

    
 

 

    
 

 

 

      
   

 
 

 
   

   

   
        

 

 

 



 
 

 
   
   

   
  

 

 

  
 

 

 
 

 
 

 

 
            

 
 

 
     

 

 
 

 

 
             

 

 
 

 

 
            which is 

finite 

⇒ 
   

    
  

 

 
 is convergent and its value is 

 

 
 

 

 
            

(v)  
 

       
  

 

 
    

   
 

 

       
  

 

 
 

    
   

 

 

 
       

 

 

       

 

 

  

    
   

  
 

 
         

 

 
         

 

 

   

    
   

 
 

 
 
        

    
 

 

 
 
        

    
 
 

 

    
   

 
  

       
 

 

        
 
 

 

 

    
   

 
  

       
 

 

        
 

 

  
 

 

  
  

     
 

  
 

 

  
 

 

  
 which is finite 

⇒  
 

       
  

 

 
 is convergent and its value is 

 

  
. 

Example 4. Examine for convergence the integrals: 

(i)         
 

 
   (ii)         

 

 
               (iii)       

  
 

 
 



(iv)        
  

 

 
   (v)        

 

 
   

Solution. (i)        
 

 
    

   
       

 

 
   (Integrating by parts) 

    
   

            
     

   
                    

    
   

 
  

        
   

   
 

 
 (Applying L’Hospital’s Rule to first limit) 

    
   

 
  

      
 

 
   

 

 
 

 

 
 which is finite 

⇒       
 

 
 is convergent and its value is 

 

 
 

(ii)          
 

 
               

 

 
 

    
   

                    
     

   
                      

        
   

            
 

          (Applying L’Hospital rule) 

        
   

            
 

       

(Again Applying L’Hospital rule to first limit ) 

        
  

                which is finite 

⇒        
 

 
 is convergent and its value is 2. 

(iii)       
             

  
 

 

 

 
 Put      so that 



                  
 

 
   

When x = 0, z = 0; when x = t, z = t
2
. 

∴       
    

   
 

 

 
     

  

 

 

 

    
   

  
 

 
    

 

  

 

    
   

 
 

 
     

     
 

 
      

 

 
 which is finite 

⇒      
  

 

 
 is convergent and its value is 

 

 
 

(iv)        
  

 

 
          

 

 
      

   

Put      so that        . When x = 0, z = 0; when x = t, z = t
2
. 

       
  

 

 
        

 

 
      

  

 
          (integrating by parts) 

       
 

 
            

  
    

   

 

 
        

     
    

 
 

 
   
   

 
  

   
    

 

 
                                                        (Applying 

L’Hospital rule) 

  
 

 
   
   

 
  

     
  

 

 
  

 

 
   
   

  
 

   
  

 

 
   

 

 
 

 

 
  which is finite. 

⇒       
  

 

 
 is convergent and its value is 

 

 
 

(v)        
 

 
                

 

 
   

    
   

               
     

   
               



Which oscillates between          since cos t oscillates between -1 and 

+1 at t →   

⇒       
 

 
   is not convergent. (in fact, it oscillates infinitely) 

Example 5. Examine for convergence the integrals: 

(i)  
  

       

 

 
          (ii)  

  

      

 

 
   (iii)         

 

 
      (iv) 

          
 

 
   

Solution. (i)   
  

       

 

 
        

  

       

 

 
 

Put x = 1, z = 1; when x = t, z =     

∴ 
  

       

 

 
        

  

    

  

 
    

   
          

  
 

    
   

                    
 

 
 

 

 
  

 

 
 which is finite 

⇒ 
  

       

 

 
 is convergent and its value is 

 

 
 

(ii)  
  

      

 

 
    

   
 

   

    

 

 
   

    
   

            
     

   
                        

⇒ 
  

      

 

 
 is divergent 

(iii)         
 

 
      

   
          

 

 
 



    
   

 
   

        
               

 

 

 

             
   

     
                  

    
   

  
 

 
               

 

 

    
   

 
 

 
                   

  
 

 
                          

 

 
 which is finite 

⇒        
 

 
   is convergent and its value is 

 

 
 

(iv)           
 

 
      

   
          

 

 
   

    
   

 
    

        
  a              

 

 

 

             
   

     
                  

    
   

 

     
      a                  

 

      which is finite 

⇒          
 

 
   is convergent and its value is 

 

      

Example 6. Examine the convergence of the integrals; 

(i)  
  

      

 

 
         (ii)  

  

       

 

 
   (iii)  

      

    
 

 
       (iv)        

 

 
 

Solution. (i)  
  

      

 

 
        

  

      

 

 
         

 

 
 

 

   
   

 

 
   

[Partial Fractions] 



    
   

                
     

   
    

 

   
 
 

 

 

    
   

    
 

   
    

 

 
     

   
    

 

  
 

 

       

                which is finite. 

⇒ 
  

      

 

 
 is convergent and its value is log 2 

(ii)  
  

       

 

 
        

  

       

 

 
    

   
   

 

 
 

 

   
 

   
   

 

 
 

[Partial Fractions] 

    
   

       
 

 
          

 

 

    
   

    
   

 
 

 

 
 
 

 

 

    
   

       
 

 
  

 

 
         

                      which is finite 

⇒ 
  

       

 

 
 is convergent and its value is        

(iii)  
      

    
 

 
        

      

  

 

 
   

Put        so that            

 
      

  
    

 

     
                   

                      



                 
      

  
    

 

     
 

∴ 
      

    
 

 
         

      

      
 

     
 
 

 

 

    
   

  
      

  
    

 

     
           

 

  
  

      
   

   
 

 
 

    

 
 

 
 

 

 
     

      
 

 
 

 

 
     

 

 
 

 

 
     which is finite. 

⇒ 
      

    
 

 
 is convergent and its value is 

 

 
 

 

 
     

(iv)        
 

 
             

 
   

Put                                

When x = 0, z = 0 when x = t, z =    

∴       
 

 
               

  

 
   [Integrating by parts] 

    
   

             
      

   
                  

        
    

   
                   (Applying L’Hospital Rule) 

        
 

 

  

    
 

   

           
  

   
          which is finite 



⇒       
 

 
 is convergent and its value is 2. 

Example 7. Examine the convergence of the integrals: 

(i)      

  
             (ii)  

  

       

 

  
   (iii)      

  
   

(iv)            
 

  
   

Solution. (i)      

  
               

 
   

         
   

 
 
 

 

        
 

 
        

 

 
      

 

 
 which is finite. 

⇒      

  
   is convergent and its value is ½  

(ii)  
  

       

 

  
         

  

   
  

      

 

 
         

 

   
 

   
      

   
 
 

 
 

        
 

  
          

 
  

 

  
  

 

 
  

 

   
 which is finite. 

⇒ 
  

       

 

  
 is convergent and its value is 

 

   
 

(iii)      

  
                

 

 
               

  

                       

⇒     

  
   diverges to +  

(iv)       
 

  
          

      

 
   



    
    

 
 

 
         

 

 

    
    

   
 

 
            

 

 
     

    

⇒       
 

  
   diverges to    

Example 8. Examine the convergence of the integrals: 

(i)       
 

  
                (ii)  

  

    

 

  
   (iii)  

  

      

 

  
 

(iv)       
  

       

 

  
   (v)  

  

       

 

  
 

Solution. (i) 

      
 

  
       

 

  
       

 

 
              

  
    

             
 

   

    
     

        
     

     
       

   

    
     

             
     

                         

⇒      
 

  
 diverges to   

(ii)  
  

    

 

  
  

  

    

 

  
  

  

    

 

 
 

    
     

 
  

    

 

  

    
     

 
  

    

  

 

 

    
     

          
     

     
         

   



    
     

             
     

             
 

 
  

 

 
   which is 

finite. 

⇒ 
  

    

 

  
 is convergent and its value is π 

(iii)  
  

      

 

  
  

  

      

 

  
  

  

      

 

 
 

    
     

 
    

     

 

  

     
     

 
    

     

  

 

 

Now   
    

     
  

  

    
 where      

                

 
  

      

 

  

    
     

           
     

     
          

   

    
     

                     
     

                  

  
 

 
                 

 

 
  

 

 
 which is finite. 

⇒ 
  

      

 

  
 is convergent and its value is 

 

 
 

(iv)  
  

       

 

  
  

  

       

 

  
  

  

       

 

 
 

    
     

 
  

       

 

  

    
     

 
  

       

  

 

 

Now putting                          , we have 



 
  

       
  

       

          
  

       

     
       

  
       

 
   

 
 

 
   

     

 
  

 

 
             

 

 
        

 

    
  

∴ 
  

       

 

  
          

 

 
        

 

      
  

 

          
 

 
        

 

      
 

  
 

    
     

 

 
          

  
    

      
     

 

 
         

  
    

   

 
 

 
 
 

 
    

     

  
      

  
 

 

 
 
 

 
    

     

  
      

  
 

 
 

 
    

     

 

   
    

     

 

   
     (By L’Hospital rule) 

 
 

 
     

 

 
 which is finite. 

⇒ 
  

       

 

  
 is convergent and its value is 

 

 
 

(v)  
  

       

 

  
  

  

       

 

  
  

  

       

 

 
 

    
     

 
  

        

 

  

    
     

 
  

        

  

 

 

    
     

              
     

     
             

   



    
     

 
 

 
                 

     
             

 

 
  

 
 

 
                  

 

 
 

 

 
 

 

 
   which is finite. 

⇒ 
  

       

 

  
 is convergent and its value is x. 

Example 9. Test the convergence of the integrals: 

(i)  
  

  

 

 
              (ii)  

  

  

 

 
   (iii)  

 

    

 

 
   

Solution. (i) 0 is the only point of infinite discontinuity of the integrand on 

[0, 1] 

∴ 
  

  

 

 
                

 

   
 

    
    

     
 

 
    

    
          which is finite. 

⇒ 
  

  

 

 
 is convergent and its value is 2. 

(ii) 0 is only point of infinite discontinuity of the integrand on [0, 1] 

∴ 
  

  

 

 
    

    
      

 

   
    

    
  

 

 
 
 

 

    
    

    
 

 
    

⇒ 
  

  

 

 
 diverges to   

(iii) 1 is the only point of infinite discontinuity of the integrand on [1, 2] 

∴ 
 

    

 

 
      

    
 

       

    
  

 

   
 



    
    

       
 

    
   

 

   

    
    

 
 

 
               

   

 

 

    
    

 
 

 
   

 

 
 

 

       
 

 
 which is finite 

⇒  
 

    

 

 
   is convergent and its value is 

 

 
 

Example 10. Examine the convergence of the integrals: 

(i)      
 

 
             (ii)  

  

        

   

 
   (iii)  

  

        

 

 
       (iv)  

  

      

 

 
 

Solution. (i) 0 is the only point of infinte discontinuity of the integrand on [0, 

1] 

∴     
 

 
                      

 

   
   (integrating by parts) 

    
    

          
     

    
             

    which is finite.          ∵                      

⇒     
 

 
   is convergent and its value is -1. 

(ii) Since                     , therefore 0 is the only point of 

infinite discontinuity of the integrand on    
 

 
 . 

∴ 
  

        

 

 
                  

 

 
  

   

   
    

    
 
        

  
 
 

   

 



    
    

 
 

   
 

 

 
 

    
            which is finite. 

∴   
  

        

 

 
 is convergent and its value is 1. 

       Please try yourself.                        [Ans. Converges to -1/2 ] 

(iv)  1 is the only point of infinite discontinuity of the integrand on [1, 2] 

∴ 
  

      

 

 
    

    
 

   

    
  

 

   
 

    
    

              
     

    
                      

                             

⇒ 
  

      

 

 
 diverges to   

Example 11. Examine the convergence of the integrals: 

(i)  
  

    

 

 
        (ii)  

  

     

 

 
   (iii)  

  

   

 

 
          (iv)  

    

       
  

   

 
 

(v)  
  

       

 

 
   (vi)  

  

    

 

 
            (vii)  ta  

   

 
   

Solution. (i) a is the only point of infinite discontinuity of the integrand on 

[0, a] 

∴ 
  

    

 

 
    

    
             

 
   

    
    

        
 

   
    

    
              which is finite. 



∴ 
  

    

 

 
 is convergent and its value is     

(ii) 2 is the only point of infinite discontinuity of the integrand on [0, 2] 

∴ 
  

     

 

 
    

    
 

  

     

   

 
    

    
       

 
 
 

   

 

    
    

         

 
                  

 

 
 which is finite. 

⇒  
  

     

 

 
 converges to 

 

 
 

(iii) Please try yourself.                                           [Ans. Diverges to  ] 

(iv) 
 

 
 is the only point of infinite discontinuity of the integrand on    

 

 
  

∴ 
    

       
  

   

 
    

    
           

 

        
 

 
  

 
   

   
    

           
 

 

 
  

 

    
    

         
 

 
                

 

 
      

⇒  
    

       
  

   

 
 converges to 2. 

(v) 1 is the only point of infinite discontinuity of the integrand on [0, 1] 

∴ 
  

       

 

 
         

  

          

   

 
 



    
    

  
 

     
 

 

     
   

   

 

    
    

                     
    

    
    

    
   

   
 
 

   

    
    

    
   

 
       

    
    

      
 

 
                   

⇒  
  

       

 

 
 diverges to   

(vi) 
 

 
 is the only point of infinite discontinuity of the integrand on    

 

 
  

∴ ta  
   

 
                 

 

 
  

 
 

    
    

     e   
 

 

 
  

    
    

     e  
 

 
          

    
    

                             

⇒  ta  
   

 
   diverges to   

Example 12. Examine the convergence of the integrals: 

(i)  
  

  

 

  
                (ii)  

  

       

  

 
   (iii)  

  

      

  

 
 

Solution. (i) The integrand becomes infinite at x = 0 and -1 < 0 < 1 



∴ 
  

  

 

  
  

  

  

 

  
  

  

  

 

 
          

  

  

    

 
          

  

  

 

    
 

So that 0 enclosed within          is excluded 

    
     

  
 

 
 
  

   

    
     

  
 

 
 
  

 

 

    
     

 
 

  

       
     

    
 

  

                 

⇒ 
  

  

 

  
 diverges to +   

(ii) The integrand becomes infinite at x = 2a and a < 2a < 3a 

∴ 
  

       

  

 
  

  

       

  

 
  

  

       

  

  
 

    
     

 
  

       

     

 

    
     

 
  

       

  

     

 

    
     

 
  

    
 
 

     

    
     

 
  

    
 
     

  

 

    
     

 
 

  

 
 

 
     

     
  

 

 
 

 

  

     
 

 
    

 

 
      

⇒  
  

       

  

 
 diverges to   

(iii) Please try yourself.                          [Ans. Diverges to  ] 

Example 13. Examine the convergence of the integrals: 



(i)  
  

      

 

 
                       (ii)  

  

     

 

 
   (iii)  

 

      
  

 

  
 

(iv)  
  

    

 

 
                            (v)  

  

      

 

 
 

Solution. (i) Both the end points 0 and 4 are points of infinite discontinuity of 

the integrand on [0, 4] 

∴ 
  

      

 

 
  

  

      

 

 
  

  

      

 

 
 

    
     

 
 

 
 
 

 
 

 

   
   

 

    

    
     

 
 

 
 
 

 
 

 

   
 

    

 

   

    
     

 
 

 
   

 

   
 
  

 

    
     

 
 

 
   

 

   
 
 

    

 

    
     

 

 
    

 

 
    

  

    

     
     

 

 
    

    

  

    
 

 
  

 
 

 
    

 

 
       

 

 
      

 

 
    

⇒ 
  

      

 

 
 diverges to   

(ii) Please try yourself.                                            [Ans. Diverges  to ] 

(iii) Both the end point -a and a are point of infinite discontinuity of the 

integrand on [-a, a] 

∴ 
 

      
  

 

  
  

 

      

 

  
    

 

      

 

 
   



    
     

  
 

 
        

 

      
 

     

  

    
     

  
 

 

    

 

        
 

         

    
     

         
     

 

    
     

         
 

    
 

    
     

                   
     

                     

  ∴  
 

      
  

 

  
 converges to 0 

(iv) Both the end point 0 and π are point of infinite discontinuity of the 

integrand on [0, π] 

∴ 
  

    

 

 
            

   

 
            

 

   
 

    
     

           
   

    

    
     

          
    

   

 

    
     

    ta 
 

 
 
  

   

    
     

    ta 
 

 
 
   

    

 

    
     

    ta 
 

 
    ta 

  

 
     

     
    ta  

 

 
 

  

 
     ta 

 

 
  

              . ⇒  
  

    

 

 
 diverges to   

(v) π is the only point of infinite discontinuity of the integrand on [0, π] 



∴ 
  

      

 

 
        

  

        

   

 
         

 

 
     

 
  

   

 
 

    
    

 ta 
 

 
 
 

   

    
    

ta  
 

 
 

 

 
    

⇒ 
  

      

 

 
 diverges to   

 

Terminal Questions 

Examine for convergence the improper integrals: 

(i)      

 
   

(ii)  
  

        

 

 
 

(iii)  
 

      
  

 

 
 

(iv)       
 

  
   

(v)  
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Block -3 

Convergence test, Riemann integral 

In this unit we study the integrands which admit primitives in terms of 

elementary functions. In such cases it is easy to test the convergence of 

integrals. But every function does not possess a primitive in terms of 

elementary function. Improper integrals of such functions cannot be 

examined for convergence by the procedure discussed so far. Thus in such 

situation we need more advanced methods for testing the convergence of 

such integrals, which has been discussed here. 

In the second Unit we discuss about a step function which is defined as a 

piecewise constant function, that has only a finite number of pieces. In other 

words, a function on the real numbers can be described as a finite linear 

combination of indicator functions of given intervals. It is also called a floor 

function or greatest integer function. The step function is a discontinuous 

function.  

In the third Unit we discuss about mean value theorem of real numbers as 

well as for Riemann integral, we gave application of this theorem. We also 

discuss about Intermediate value theorem, fundamental theorem of integral 

calculus and its several applications, we discuss about Substitution method 

for integration and  

 Second mean value theorem and its applications. 

https://byjus.com/maths/greatest-integer-function/


 



Unit-7: Convergence Test 

Structure 

7.1  Introduction 

7.2     Objectives 

7.3  Tests for convergence 

7.4     Comparison Test 

7.5    Test 

7.6     Absolute Convergence 

7.7     Absolute Convergence of the integral of a Product 

7.8     Abel’s Test 

7.9     Dirichlet’s Test 

7.10   Summary 

7.11   Terminal Questions 

 

 

 

 



 

7.1 Introduction: 

  In this unit we study the integrands which admit primitives in terms of 

elementary functions. In such cases it is easy to test the convergence of 

integrals. But every function does not prosses a primitive in terms of 

elementary function. Improper integrals of such functions cannot be 

examined for convergence by the procedure discussed so far. Thus in such 

situation we need more advanced methods for testing the convergence of 

such integrals, which has been discussed here. 

7.2 Objectives 

After studying this unit, we should be able to:  

▪ Check the test of convergence of a series. 

▪ Find Comparison of test. 

▪Check the    Test 

▪ Check the Absolutely convergence of the series 

▪Check the Abel’s Test 

▪Check the Dirichlet’s Test 

7.3Tests for convergence of        
 

 
 at     



Let a be the only point of infinite discontinuity of f on [a, b], the case when b 

is the only point of infinite discontinuity can be dealt with in the same way. 

Without any loss of generality, we assume that f is positive (or non-negative) 

on [a, b] 

In case f is negative, we can replace it by (-f) for testing the convergence of 

       
 

 
 

Theorem 1: A necessary and sufficient condition for the convergence of the 

improper integral         
 

 
 at a, where f is positive on (a, b], is that there 

exists a positive number M, independent of            
 

   
 

 ∀             

Proof:  Since a is the only point of infinite discontinuity of f on [a, b]. 

Therefore, f is continuous on (a, b]. Also f is positive on (a, b] 

⇒   For                         , f is positive and continuous 

on [     ]. 

⇒       
 

   
      represents the area bounded by f on [     ] and the 

x-axis. 

⇒ As      i.e., as   decreases, A( ) increases since the length of the 

interval increases. 

⇒                          
 

   
 will exist finitely if and only if  A( ) 

is bounded above. 



⇒       
 

 
 will converge iff   a real number M > 0 and independent of   

such that 

 A( ) < M. 

⇒       
 

 
 converges if and only if        

 

   
    ∀∀             

Note: If for every M > 0 and some   in (0, b – a). A( ) > M, then 

       
 

   
 is not bounded above. 

∴       
 

   
 tends to +  as   + and, hence, the improper integral 

       
 

 
 diverges to + . 

7.4 Comparison Test  

Theorem 2. If f a     are t   p   t ve fu  t       t  f x      x  f r a   x 

in (a, b] and a is the only point of infinite discontinuity on [a, b], then 

(i)        
 

 
 is convergent   ⇒       

 

 
 is convergent 

(ii)        
 

 
 is divergent     ⇒       

 

 
 is divergent. 

Proof.  Since f and g are positive and          ∀        

∴       
 

   
        

 

   
             

(i) Let        
 

 
 be convergent, then there exists a positive number M 

such that  



       
 

   

               

∴ From (1),        
 

   
               

Hence        
 

 
 is convergent. 

(ii) Let        
 

 
 be divergent, then for every M > 0, there exists   in 

(0, b – a) such that        
 

   
   

∴  From (i),         
 

   
  . Hence        

 

 
 is divergent. 

Theorem 3:  Comparison Test II (Limit Form) 

If f and g be two positive functions on (a, b], a being the only point of infinite 

discontinuity, and        
    

    
   where l is non-zero finite number, then 

two integrals        
 

 
 and        

 

 
 converge or diverge together. 

Proof:  Since f and g are positive on (a, b] 

∴
    

    
   on (a, b]  ⇒       

    

    
     

But                   (given) 

∴    

Let   be a positive real number such that      . 



Since,         
    

    
  , therefore, there exists a neighbourhood (a, c), a < c 

< b, such that 

 
    

    
     ∀        

⇒    
    

    
    ∀        

⇒                                         [∵ g(x) > 0] 

⇒                 where k, K > 0 ……………….(1) 

Now,        
 

 
 converges at a ⇒       

 

 
 converges at a 

   ∵       
 

 
 is proper integral 

Since,            ∀                     [Form (1)] 

∴        
 

 
 converges at a            [by comparison test I] 

⇒       
 

 
 converges at a 

⇒       
 

 
 converges at a     ∵       

 

 
 is proper integral 

(i)        
 

 
 diverges at a    ⇒       

 

 
 diverges at a  

∵       
 

 
 is proper 

Since                       ∀                     [Form I] 



∴        
 

 
 diverges at a -       ⇒       

 

 
 diverges at a 

⇒       
 

 
 diverges at a     ∵       

 

 
 is proper intgral 

It can similarly be shown that 

       
 

 
 converges at a  ⇒       

 

 
 diverges at a. 

And         
 

 
 diverges at a  ⇒       

 

 
 diverges at a 

Theorem 4: Let f and g be two positive functions on (a, b], a being the only 

point of infinite discontinuity. Then 

(i)        
    

    
   and        

 

 
 converges  ⇒       

 

 
 converges  

(ii)        
    

    
   and        

 

 
 diverges  ⇒       

 

 
 diverges. 

Proof:        
    

    
   

⇒  Given any                         such that 

 
    

    
    ∀       ⇒   

    

    
   ∀        

⇒   
    

    
    ∀       ⇒          ∀        

Now         
 

 
 converges at a      ⇒       

 

 
 converges at a 

⇒        
 

 
 converges at a 

Since           ∀        



∴       
 

 
 converges at a  ⇒     

 

 
 converges at a 

(ii)        
    

    
   

⇒   ve  a rea   u  er K                         such that 

    

    
   ∀       ⇒          ∀        

Now         
 

 
 diverges at a  ⇒       

 

 
 diverges at a 

⇒        
 

 
 diverges at a  

Since,           ∀       ∴       
 

 
 diverges at a 

⇒       
 

 
 diverges at a 

Theorem 5:  Useful Comparison Integrals 

(i) The improper integral  
  

      

 

 
 is convergent if and only if n < 1. 

(ii) The improper integral  
  

      

 

 
 is convergent if and only if n < 1 

Proof: (i) If n ≤ 0, the integral  
  

      

 

 
 is proper 

If n > 0, the integral is improper and a is the only point of infinite 

discontinuity of the integrand on [a, b] 

Case I. When n = 1 



 
  

      
  

  

   

 

 

 

 

    
    

 
  

   

 

   

 

    
    

             
     

    
                

                 

⇒ 
  

      

 

 
 diverges if n = 1 

Case II. When n ≠ 1 

 
  

      
 

 

 

   
    

          
 

   

    
    

 
        

   
 
   

 

 

    
    

 

   
                

Sub-Case I. When n > 1 so that n – 1 > 0 

 
  

      
    

    

 

   

 

 

 
 

    
 

 

        
  

 

   
   

 

        
 

   

⇒ 
  

      

 

 
 diverges if n > 1 

Sub-Case 2. When 0 < n < 1 so that 1 – n > 0 

 
  

      
    

    

 

   

 

 
                

        

   
  which is finite 

⇒ 
  

      

 

 
 converges if n < 1 



Hence,  
  

      

 

 
 is convergent if and only if n < 1 

(ii)  If n ≤ 0, the integral  
  

      

 

 
 

If       the integral is improper and b is the only point of infinite 

discontinuity of the integrand on [a, b]. 

Case I. When n = 1 

 
  

      

 

 

  
  

   

 

 

    
    

 
  

   

   

 

    
    

 
        

  
 
 

   

 

    
    

                                  

⇒ 
  

      

 

 
 diverges if n = 1 

Case II. When n ≠ 1 

 
  

      

 

 

    
    

          
   

 

 

    
    

 
        

         
 
 

   

    
    

 

   
                

Sub-Case 1. When n > 1 so that n – 1 > 0 

⇒ 
  

      

 

 
    

    

 

   
 

 

     
 

          
 

   
   

 

            

⇒ 
  

      

 

 
 diverges if n > 1 



Sub-Case 2. When 0 < n < 1 so that 1 – n > 0 

 
  

      

 

 
    

    

 

   
                

        

   
 which is finite. 

⇒ 
  

      

 

 
 converges if n > 1 

Hence  
  

      

 

 
 is convergent if and only if n < 1 

Theorem 6:  (i) if a is the only point of infinite discontinuity of f on [a, b] 

and                   exists and is non-zero finite, then        
 

 
 

converges if and only if    . 

(ii) If b is the only point of infinite discontinuity of f on [a, b] and 

                  exists and is non-zero finite, then        
 

 
 

converges if and only if    . 

Proof: (i) Let         
 

      
  then         

    

    
                   

Which exists and is non-zero finite. (given) 

∴  By comparison test II, the two integrals        
 

 
 and        

 

 
 

converge or diverge together. 

But          
 

 
  

  

      

 

 
 converges iff    . 

∴       
 

 
 converges iff     



Example 1. Examine the convergence of the integrals: 

(i)  
  

     

 

 
           (ii)  

  

         

 

 
       (iii)  

  

     

 

 
          (iv) 

 
  

          

 

 
 

Solution: (i) Here       
 

     
 

 

      
 

0 is the only point of infinite discontinuity of f on [0, 1] 

Take      
 

  
, then        

    

    
    

    

 

     
   which is non-zero and 

finite. 

By comparison test        
 

 
 and        

 

 
 converge or diverge together. 

But           
 

 
  

  

  

 

 
  converges.   Form  

  

      

 

 
 which a = 0.                                                                             

         
 

 
    

∴       
 

 
  

 

     

 

 
   is convergent. 

(ii) Here       
 

          
 

2 is the only point of infinite discontinuity of f on [1, 2] 

Take      
 

    
, then        

    

    
        

 

   
 

 

 
 which is non-

zero and finite. 



∴    By comparison test,        
 

 
 and        

 

 
 converge or diverge 

together. 

But,          
 

 
  

  

    

 

 
 . Form  

  

      

 

 
 with b = 2  Converges                                                                              

   
 

 
    

∴       
 

 
  

  

         

 

 
 is convergent. 

(iii) Here       
 

     
 

 

           
 

1 is the only point of infinite discontinuity of f on [0, 1] 

Take      
 

    
, then        

    

    
    

    

 

       
 

 

  
 which is non-

zero and finite. 

∴   By comparison test        
 

 
 and        

 

 
 converge or diverge 

together 

But          
 

 
  

  

    

 

 
    Form  

  

      

 

 
 with b = 1 Converges                                                       

   
 

 
    

       
 

 
  

  

     

 

 
 is convergent 

Example 2. Examine the convergence of the integrals: 

(i)  
  

         

 

 
                          (ii)  

  

        

 

 
 



(iii)       
  

            

 

 
                      (iv)  

  

       

 

 
 

Solution. (i) Here       
 

         
 

0 is the only point of infinite discontinuity of f on [0, 1] 

Take       
 

  , then        
    

    
    

    

 

       
 

 

  
 which is non-zero 

and finite 

∴  By comparison test        
 

 
and        

 

 
 converge or diverge 

together. 

But          
 

 
  

  

  

 

 
    Form  

  

      

 

 
 with a = 0 diverges (∵ n = 3 > 1) 

∴       
 

 
  

  

         

 

 
 is divergent 

(ii) Please try yourself.                                     [Ans. Convergent] 

(iii) Here       
  

            
 

1 is the only point of infinite discontinuity of f on [0, 1] 

Take       
 

      
, then        

    

    
    

    

 

      
 

 

 
 which is non-

zero and finite. 

By comparison test,        
 

 
 and        

 

 
 converge or diverge 

together. 



But        
 

 
  

 

      

 

 
     Form 

  

      

 

 
 with b = 1 diverges (∵ n = 

3 > 1) 

∴       
 

 
  

  

            

 

 
 is divergent. 

(iv) Here      
 

       
 

Both the end points 0 and 1 are the points of infinite discontinuity of f on 

[0, 1] 

We may write   
  

       

 

 
  

  

       

 

 
  

  

       

 

 
    ………………(1) 

Where 0 < a < 1 

To examine the convergence at x = 0 

Let        
  

       

 

 
 

0 is the only point of infinite discontinuity of f on [0, a] 

Take         
 

  
, then        

    

    
    

    

 

      
   which is non-zero 

and finite. 

⸪  By comparison test I1 and        
 

 
 converge or diverge together 

But,           
  

  

 

 

 

 
 is convergent            

 

 
    

⸪      I1 is convergent. 



To examine the convergence at x = 1 

Let       
  

       

 

 
 

1 is the only point infinite discontinuity of f on [a, 1]. 

Take      
 

    
 then       

    

    
       

 

  
   which is non-zero and 

finite. 

⸪ By comparison text, I2 and        
 

 
 converge or diverge together. 

But           
  

    

 

 

 

 
 is convergent            

 

 
    

⸪   I2 is convergent. 

Since I1 or I2 are both convergent, therefore, from (1)  
  

       

 

 
 is 

convergent. 

Note. If    or    is divergent, then        
 

 
 is divergent 

Example 3. Examine the convergence of the integrals: 

(i)  
  

              

 

 
 

Solution. (i) Here        
  

              
 

2 and 3 are the only points of infinite discontinuity of f on [2, 3], we may 

write 



       
 

 
        

 

 
        

 

 
, where 2 < a < 3 ….. (1) 

To test the convergence of        
 

 
        

Take      
 

         

       
    

    
        

 

      
   which is non zero and finite. 

⸪ By comparison test, the integrals        
 

 
            

 

 
 converge or 

diverge together. 

But             
 

 
 

  

        

 

 
  form  

  

      

 

 
 is convergent      

 

 
    

⸪           
 

 
 is convergent. 

To test the convergence of              
 

 
 

Take            
 

      
 

       
    

    
        

 

           which is non zero and finite. 

⸪ By comparison test, the integrals              
 

 
       

 

 
 converge or 

diverge together. 

But               
 

 
  

  

      

 

 
 . Form  

  

      

 

 
 is divergent 

⸪         
 

 
 is divergent     (⸪ n = 2 > 1)                  



Hence from (1)        
 

 
 is divergent 

Example 4. Examine the convergence of 

(i)  
  

   
  

 

 
       (ii)  

  

   
  

 

 
             (iii)  

  

   
  

 

 
        (iv)  

    

    
  

 

 
 

Solution. (i) Here          
  

   
 

If      , then 1 is the only point of infinite discontinuity of f on [0, 1]. 

Take      
 

   
 

       
    

    
    

    
     which is non-zero and finite. 

⸪ By comparison test, the integrals        
 

 
             

 

 
 converge of 

diverge together. 

But            
 

 
  

  

   

 

 
 .   Form  

  

      

 

 
 is divergent (⸪ n = 1) 

⸪               
 

 
 is divergent 

If n < 0, let n = -m where m > 0 

Then        
 

       
 

0 and 1 both are the points of infinite discontinuity of f on [0, 1]. We may 

write 



       
 

 
        

 

 
        

 

 
 where 0 < a < 1 …… (1) 

To test the convergence of        
 

 
 at x = 0 

Take,         
 

   

       
    

    
        

 

   
    which is finite and non-zero. 

⸪   By comparison test, the integrals        
 

 
 and        

 

 
 converge or 

diverge together 

But          
 

 
  

  

  

 

 
    form  

  

      

 

 
 is convergent if 0 < m < 1 and 

divergent if m ≥ 1. 

⸪              
 

 
 is convergent if -1 < n < 0 and divergent if n ≤ -1  

Take       
 

   
 

       
    

    
        

 

     which is finite and non zero. 

⸪    By comparison test, the integrals        
 

 
 and        

 

 
 converge or 

diverge together 

But        
 

 
   

  

   

 

 
 , form  

  

      

 

 
 is divergent (⸪ n = 1) 

⸪           
 

 
 is divergent. 



From (1),        
 

 
 is divergent 

Hence        
 

 
 is divergent for all     

Note: After a little practice, there is no need testing the convergence of 

       
 

 
 at x = 0, since divergence of        

 

 
 is sufficient to imply 

divergence of        
 

 
. 

(ii) Here      
  

   
 

If n ≥ 0,        
 

 
 is proper and, hence convergent 

If n < 0, let n = -m where m > 0 

Then,      
 

       
 

0 is the only point of infinite discontinuity of on [0, 1] 

Take       
 

   

       
    

    
        

 

   
   which is non-zero and finite. 

⸪   By comparison test, the integrals        
 

 
 and        

 

 
 converge or 

diverge together. 

But         
 

 
  

  

  

 

 
    Form  

  

      

 

 
 is convergent if 0 < m < 1 i.e.  

-1 < n < 0 and divergent if m ≥ 1  i.e., n ≤ -1 



⸪             
 

 
 is convergent if -1 < n < 0 and divergent if n ≤ -1. 

Hence        
 

 
 is convergent if n > -1 and divergent if n ≤ -1 

(iii) Hint      
 

   
 

For all values of    , 1 is the only point of infinite discontinuity of f on [1, 

2] 

Take              
 

   
                                     [Ans. Divergent] 

(iv)  
    

    
    

        

    

 

 

 

 
 

     
 

    
   

 

 
     

    
  

    
     

  

    

 

 

 

 
   ………. (1) 

Let                
 

    
 

 

          
 

2 is the only point of infinite discontinuity of f on [2, 3] 

Take       
 

   
 

       
    

    
       

 

   
 which is non zero and finite, 

⸪ By comparison test        
 

 
 and        

 

 
 converge or diverge 

together. 

But           
 

 
  

  

   

 

 
             Form  

  

      

 

 
 is divergent (⸪ n = 1) 



⸪            
 

 
 is divergent. Hence, from (1)  

    

    
  

 

 
 is divergent. 

Example 5: Examine the convergence of 

(i)  
    

    
  

 

 
           (ii)  

    

  

 

 
                (iii)  

  

    

 

 
 

Solution: (i) Here        
    

    
 

Clearly both 0 and 2 are points of infinite discontinuity of f on [0, 2]. We 

may write 

 
    

    
  

 

 
        

 

 
        

 

 
              …………..(1) 

To test the convergence of               
 

 
 

Since f(x) is negative on (0, 1], we consider –f(x). 

Take      
 

   

   
    

     

    
    

    

      

    
             

    
                 

⸪   taking n between 0 and 1, the integral        
 

 
 is convergent. 

⸪ By comparison test,         
 

 
 is also convergent. 

To test the convergence of               
 

 
 

Take       
 

    
 



       
    

    
                  which is non zero and finite. 

⸪   By comparison test,        
 

 
 and        

 

 
 convergence or diverge 

together. 

But,         
 

 
  

  

    

 

 
       Form  

  

      

 

 
 is convergent    

 

 
    

⸪          
 

 
 is also convergent 

Hence, from (1)        
 

 
 is convergent. 

(ii) Since 
    

  
 is negative on (0, 1], we take       

    

  
 

Here 0 is the only point of infinite discontinuity of f on [0, 1] 

Take         
 

   

   
    

    

    
    

    
    

 

             
 

 
            

 
 

 
    
    

                

Taking n between ½ and 1, the integral        
 

 
 is convergent. 

⸪  By comparison test        
 

 
 is also convergent. 

Hence  
    

  
  

 

 
 is convergent. 

(iii) Here      
  

    
 



1 is the only point of infinite discontinuity of f on [1, 2] 

Take      
 

      
 

   
    

    

    
    

    

        

    
 

    
    

            
      

   

   
 

    
    

               
     

 
              

Taking  n = 1,                     
  

   

 

 

 

 
      Form  

  

       

 

 
 is divergent.   

(n = 1) 

Since        
    

    
   Which is non zero and finite. 

⸪   By comparison test        
 

 
 is also divergent. 

Example 6: Examine the convergence of 

(i)  
    

   
  

 

 
 

     
    

      
 

 
              (iii)  

    

     
  

 

 
 

Solution: (i) Since 
    

   
 is negative on (0, 1], we take       

    

   
 

Here 0 is the only point of infinite discontinuity of f on [o, 1] 



Take        
 

   

   
    

    

    
    

    
 

      

   
          

Taking n between 0 and 1, the integral      
 

 
 is convergent 

⸪ By comparison test      
 

 
 is convergent. 

Hence   
    

   
  

 

 
 is convergent 

(ii) Since 
    

     is negative on (0, 1], we take       
    

     

   
    

        
    

 
    

    
 

                   

⸪  0 is the only point of infinite discontinuity of f on [0, 1] 

Take                     
 

   

   
    

    

    
    

    
 

      

    
          

Taking n between 0 and 1, the integral        
 

 
 is convergent 

⸪    By comparison test        
 

 
 is convergent. 

Hence  
    

      
 

 
 is convergent. 



Example 7: Examine the convergence of  

(i)  
      

      

 

 
                                 (ii)        

                

 
  

 

 
             (iii) 

           
 

 
 

Solution. (i)        
      

      
          

⸪  
      

      

 

 
   is proper and , hence, convergent so long as n > 0 

If n = 0, let         
    

      
 

0 is the only point of infinite discontinuity  

Take                 
 

   

Taking p between 0 and 1,        
 

 
 is convergent. 

       
 

 
 is convergent         

      

      

 

 
   is convergent 

If n < 0, let n = -m where m > 0 

Let        
      

      
 

    

        
 

Take                    
 

   

   
    

    

    
    

    

        

      
            



Taking 0 < q < 1 and also q – m > 0 i.e., q > m 

       0 < m < q < 1    m < 1   n > -1 

       
 

 
 is convergent and hence        

 

 
 is convergent. 

⸪   
      

      
  

 

 
 is convergent for all n > -1 

Note. N > -1 also converges the cases n = 0 and n > 1 

(iii) Let p be positive and          
 

   
        

 
 

0 is the only point of infinite discontinuity. 

Take       
 

   

   
    

    

    
    

    
       

        

 
   

Since            
        

 
 

    
    

 

   

 
   

Since         
 

 
 converges if p < 1 

⸪          
 

 
 is convergent if 0 < p < 1 

If p = 0,        
         

 
 



Since,                      
         

 
 

    
    

 

   

 
   

       
 

 
 is proper and, hence convergent. 

If p < 0, let                   
 

    

   
    

    

    
    

    
   

 

   
 
        

 

    
    

   
 

   
     

    

        

 
    

  = 1 since p < 0 which is non-zero and finite. 

Since        
 

 
 is convergent if –p < 1, i.e., if p > -1, therefore,        

 

 
 

if p > -1  

 Hence,         
 

 
 is convergent if -1 < p < 1. 

(iv). We know that                when R > 0 

⸪  The given integral is a proper integral when n – 1 > 0 i.e., when n > 1. 

When n = 1, the given integral becomes 

                       
 

 

 

 
       [Integrating by parts] 

    
    

           
     

    
              



       
    

         

The given integral is convergent when n = 1 

When n < 1 let                                               

Taking        
 

  , we have        
    

    
                    

             

              

Taking       and also       so that               

         

  ⸪         
 

 
 is convergent and hence        

 

 
 is convergent. 

⸪              
 

 
 is convergent for all n > 0 

Also taking     and also       so that     

       
 

 
 is divergent and hence        

 

 
 is divergent 

⸪               
 

 
 is divergent for all n ≤ 0 

Example 8: Discuss the convergence of  

(i)  
    

  

   

 
          (ii)    

    

  

   

 
      (iii)   

       

 
  

 

 
     (iv)  

 
    

 
  

 

 
 



Solution: (i) If p is negative or zero, the given integral is a proper integral 

and hence convergent when p ≤ 0. When p > 0, the only point of infinite 

discontinuity is 0. 

Let        
    

   

Take       
 

   

   
    

    

    
    

    
            

    
       

    

 
  

             

              

             

By taking       and also       so that         i.e.,     

  

       
   

 
 is convergent and hence        

   

 
 is convergent 

Bt taking       and also       so that            i.e., 

      

       
   

 
 is convergent and hence        

   

 
 is convergent 

Hence  
    

    
   

 
 is convergent if p < 2 and divergent if p ≥ 2. 

Second Method 



When p > 0 the only point of infinite discontinue is 0. 

Also,     
    

   
 

     
    

 
 

 

     
    

 
    

But  
  

    

   

 
 is convergent if       i.e., if p < 2. 

⸪ By comparison test,  
    

    
   

 
 is convergent if p < 2 and divergent if p ≥ 

2. 

(ii) If n is negative or zero the given integral is a proper integral and 

hence convergent when n ≤ 0. 

When      , the only point of infinite discontinuity is 0. 

Let                   
    

   

Take                  
 

   

   
    

    

    
    

    
         

            

            

            

By taking       and also     so that       

       
   

 
 is convergent and hence        

   

 
 is convergent. 



From the above discussion, it follows that the given integral is convergent 

if n < 1 and divergent if n ≥ 1. 

(iii) Since             for all values of x, we have 

 
       

 
  

 

   
 

 

 
 for all x in (0, 1] 

But,  
 

 
  

 

 
 is divergent. Therefore,   

       

 
  

 

 
 is divergent  

Example 9:  Show that           
   

 
 exists if and only if n < m + 1. 

Solution: Here                
  

     
  

 

    
 

 

      

 
 

    
 

  

     

   
    

      

        
        
        

  

∴  The given integral is a proper integral if m – n ≥ 0 i.e. if m ≥ n and an 

improper integral if m – n < 0; 0 being the only point of infinite discontinuity 

of f on    
 

 
 . 

 When m – n < 0, i.e. n – m > 0. 

      
 

    
 

  

    
 

Take                  
 

     



       
    

    
    

    
 

 

    
 

 

   which is non-zero and finite. 

Also         
   

 
  

  

    

   

 
 is convergent iff n – m < 1 i.e. n < m + 1 

∴   By comparison test, the given integral is convergent iff n < m + 1, which 

also includes the case n ≤ m when the integral is proper. 

Example 10: Show that  
     

  

   

 
   exists if and only if n < m + 1. 

Solution; Here         
     

    
    

 
 

  

     

   
    

      

        
        
        

  

∴  The given integral is a proper integral if n – m ≤  0 i.e. if m ≥ n and an 

improper integral if n – m  > 0; 0 being the only point of infinite discontinuity 

of f on    
 

 
 . 

When  n – m  > 0, . 

Take        
 

     

       
    

    
    

    
 

    

 
 

 

   which is non-zero and finite. 

Also         
   

 
  

  

    

   

 
 is convergent iff n – m < 1 i.e. n < m + 1 

∴  By comparison test, the given integral is convergent iff n < m + 1. 



Example 11: Examine the convergence of  

(i)         
 

 
           (ii)  

 

     
  

   

 
         (iii)  

    

 
  

 

 
       (iv) 

     
 

 
 

 

  
 

 
 

Solution: (i) 0 is the only point of infinite discontinuity and log x is negative 

on (0, 1] 

     
 

 

      
    

            
    

           
 

 

   

 

   
    

                                   [    
    

       ] 

⇒   the integral is convergent 

Second method: 

Let                    

Take               
 

   

       
    

    
    

    
          if n > 0 

Taking n between 0 and 1,         
 

 
  

  

  

 

 
 is convergent 

∴   By comparison test,        
 

 
 is convergent. Hence         

 

 
 is 

convergent 

(ii) 0 is the only point of infinite discontinuity of the integrand on    
 

 
  



Let        
 

     
  

    

    
 

Take,      
 

  
 

       
    

    
    

    
 

 

    
         which is non-zero and finite. 

Since           
  

  

   

 

   

 
.    Form  

  

  

 

 
 is convergent     

 

 
    

∴       
   

 
 is convergent. 

(iii) Since        
    

 
   the integral is proper and hence convergent. 

(iv)      
 

 
 

 

  
 

 
      

 

 
 

 

  
 

 
      

 

 
 

 

  
 

 
               

…………..(1) 

Where            

0 and 1 are the points of infinite discontinuity of the integrals on the right. 

Let            
 

 
 

 

 

Convergence of      
 

 
 

 

  
 

 
 at 0 

           
 

 
 

 

   if n = 0 

∴      The integral is proper is n ≤ 0 

0 is the only point of infinite discontinuity if n > 0. 



For n > 0 take        
 

    0 < p < 1 

   
    

    

    
    

    
      

 

 
 

 

   

Also            
 

 
 converges since 0 < p < 1. 

∴       
 

 
      

 

 
 

 

  
 

 
 converges. 

Combining all cases      
 

 
 

 

  
 

 
 converges for all n. 

Convergence of      
 

 
 

 

  
 

 
 at 1. 

The integral is proper if n ≥ 0 and 1 is the only point of infinite 

discontinuity if n < 0. 

For n < 0 take              
 

        

       
    

    
    

    
 

   
 

 

   
 

 

   which is non-zero and finite. 

But             
  

       

 

 

 

 
 is convergent if -n < 1 i.e., if n > -1 

∴ By comparison test,        
 

 
      

 

 
 

 

  
 

 
 is convergent if -1 < n 

< 0. 

Hence, from (1),      
 

 
 

 

  
 

 
 is convergent if -1 < n < 0. 



7.5 The   Test 

Let      be bounded and integrable in the interval       where     if 

there is a number      Such that              exists, then        
 

 
 is 

convergent. 

If there is number     such that              exists and is not zero, then 

the integral        
 

 
 is divergent and the same is true if              is 

         

The value of   is usually select to be “the highest power of   in denominator 

the highest powers of   in numerator’’. so that the highest powers of   in 

numerator and denominator of        are same. 

Example: test the convergence of  
  

 
 
         

 

 
 

Solution: we have take   
 

 
   

 

 
, then  

   
   

          
   

    
 

 
 

         
 

⇒    
   

    

 
 

         
    

   

    

         
 

⇒    
   

 
 

      
   



Thus, is finite and non-zero and since   
 

 
    it follows form        

that an integral is divergent. 

Example: Test the convergence of           
 

 
 

Solution: When      the given integral is a proper integral and hence it is 

convergent. 

Again when      the integrand is unbounded at      

Now let               Then  

   
   

          
   

          

               if                   

 We have       when       

And     when     . 

Hence by   Test the given integral is convergent when       and 

divergent when      

Example:Test the convergence of  
   

       
 

 
, where         positive 

integers. 

Solution: we have  
   

       
 

 
  

   

         
   

                   
 

 

 

 
 



The first integral on the right-hand side is a proper integral, therefore, the 

integral will be convergent or divergent according as  
   

       
 

 
 is 

convergent or divergent. 

To test the convergent of  
   

       
 

 
 

Take              

   
   

          
   

         

     
    

   

   

     
   

Which is finite and non-zero. 

The given integral is convergent if                     which is 

possible if     since   and   are positive integers. 

And the given integral is divergent if     i.e., if      

7.6 Absolute Convergence  

If the integral        
 

 
   converges, then the infinite integral        

 

 
 

said to converge absolutely. 

Note: Absolute Convergenceof an infinite integral gives a sufficients not 

necessary condition for its convergence i.e., if the infinite integral Absolute 

Convergent, it is necessarily convergent, but conversely if an infinite 

integral is convergent, it is not necessarily Absolute Convergent. 

Example: Show that  
     

    
 

 
 is absolutely Convergent. 



Solution: we have   
     

             
       

    

 

 

 

 
   

    
   

 
  

  

 

 

 ∵            

    
   

  
 

   
 
 

 

    
   

 
 

 
 

 

   
  

 

 
 

The limit exists as a finite value and hence   
     

     
 

 
 is convergent. 

Therefore, it follows that the integral  
     

    
 

 
 is absolutely convergent. 

Example:2Test the absolute convergence of the integral        
 

 
 where 

     is defined by the following: 

     

 
 
 

 
 

                                                                          

                                                            
 

 

                         
 

 
                 

  

Example: Test the absolute convergence of         

 
          

Solution: we have         
                       

 
 

 

 

 
          

    
   

       
   

 

 

 ∵             

But        
   

 

 
 convergent. 



Hence         
        

 

 
 is convergent. 

It follows that         

 
          is absolute convergent. 

Example: Show that the integral  
    

 
  

 

 
divergent but not absolutely 

convergent. 

Solution: we know that  
    

 
  

 

 
  

    

 
  

 

 
  

    

 
  

 

 
 , where      

Therefore,        
      

 
    

  

 
 

When         
      

 
   

 

 
 

      

 
   

  

 
 

Therefore,        
      

 
    

 

 
 

So,  
      

 
    

 

 
 i.e.,  

      

 
  

 

 
 is divergent. 

Hence  
    

 
  

 

 
 convergent but not absolutely convergent. 

7.7Absolute Convergence of the integral of a Product 

The integral  ∅          
 

 
 is said to be absolutely convergent, when      

is needed for      and integral in the arbitrary       and  ∅     
 

 
 

convergence absolutely. 

Example: Show that the integral converges absolutely  
      

       
 

 
 



Solution: Let             ∅    
 

      

Clearly                is bounded and integrable in the interval       

when      

Also   ∅         
 

          
 

       
 

 

 

 

 

 
                  (1) 

Now to test convergence of  
 

       
 

 
  we shall apply         

Let      then         ∅          
  

        

Hence  
 

       
 

 
 is convergent since        

It follows from (1) that  ∅     
 

 
 is absolutely convergent. 

∴The given integral 
      

       
 

 
 is absolutely convergent. 

7.8Abel’s Test: 

If        
 

 
 convergences and ∅    is bounded and monotonic for      

then       ∅     
 

 
 is convergent. 

Example: Test the convergence of          

  

 

 
    

Solution: we have      
     

   and ∅        

Since  
     

    
 

   and  
  

  

 

 
 is convergent. 



Follows by comparison test the  
     

    
 

 
 is also convergent. 

Again     is monotonic decreasing and bounded function for the value 

     

Hence by Abel’s test          

  

 

 
    is convergent. 

Example: Test the convergence of        
     

  

 

 
   ,when      

Solution: we have     
     

   and ∅          

Since  
     

    
 

    as         Hence by comparison test  
    

    
 

 
 is 

convergent. 

Again       is monotonic increasing and bounded function for the value  

     Hence by Abel’s test         
     

  

 

 
    is convergent. 

7.9Dirichlet’s Test: 

If      is bounded and monotonic in the interval       and            

  then the integral       ∅     
 

 
 is convergent, 

Provided   ∅     
 

 
  is bounded as   takes all finite values. 

Abel’s Test and Dirichlet’s Test are applicable, whenever the integrand can 

be viewed upon suitably as a product of two functions. 



Example: Show that integral           

 
  

 

 
 is convergent when      

Solution: we have          

 
  

 

 
           

 
             

 
  

 

 

 

 
, 

when      

Since                

 
                                        

∴ The integral           

 
  

 

 
 is a proper integral and we need only to test 

convergence of           

 
  

 

 
  

Let      
    

 
 and ∅         

∴    
   

        
   

    

 
    

   

 

    
   

Clearly      is bounded and monotonic decreasing function of   for all value 

of   greater than zero. 

Also   ∅     
 

 
           

 

 
                

i.e.,   ∅     
 

 
  is bounded for all finite values of    Hence by Dirichlet’s 

Test          

 
  

 

 
 is convergent. Hence           

 
  

 

 
 is convergent. 

7.10 Summary  

In this unit, we have covered the following points:  

▪ We defined a Convergence. 



▪ We defined the Comparison test.  

▪We find the   test. 

▪ We defined the Abel’s Test. 

▪We defined a Dirichlet’s Test. 

7.11 Terminal Questions 

1. Test for convergence of  
  

      

 

 
 by use comparison test. 

2. Test for convergence of  
     

      
 

 
 by use comparison test. 

3. Discuss the convergence of the integral  
    

   
  

 

 
 

4. Test for convergence of  
  

      

 

 
 by use   test. 

5. Show that  
    

      
 

 
 converges absolutely when         integers. 

6. Use Abel’s Test prove that         

    
 

 
 is convergent, where      

7. Show that the integral      
  

 

 
 is convergent. 

8. Discuss the convergence of the integral            
 

 
 

9. Examine the convergence of  
  

          

 

 
 where      

10. Test for convergence of the integral   
     

  
  

 

 
 , where     by 

use Dirichlet’s test. 

 



Unit- 8 Step Functions 

 

Structure: 

8.1 Introduction 

8.2 Objectives 

8.3 Step Function 

8.4 Integration of a Step Function 

8.5 Properties of Integrals of step functions 

8.6 Upper integral and lower integral 

8.7 Riemann Integral of a bounded function 

8.8 Summary  

8.9 Terminal Questions 

 

 

 

 

 



 

8.1 Introduction 

 

In this Unit a step function is defined as a piecewise constant function, that 

has only a finite number of pieces. In other words, a function on the real 

numbers can be described as a finite linear combination of indicator functions 

of given intervals. It is also called a floor function or greatest integer 

function. The step function is a discontinuous function. However, a 

mathematical definition of a step function. 

8.2 Objectives 

After studying in this unit, therefore, you should be able to 

▪ Define Step Function 

▪ Discuss a Integration of a Step Function 

▪ Define a Properties of Integrals of step functions 

▪ Define the Upper integral and lower integral 

▪ Define the Riemann Integral of a bounded function. 

8.3 Step Function: 

 The Step Function            be defined as  

https://byjus.com/maths/greatest-integer-function/
https://byjus.com/maths/greatest-integer-function/


     

 
 
 

 
           

 

 
 

        
 

 
   

           

  

we see that here the partition      
 

 
      and         

                         

the step function                defined by           where     is the 

greatest integer less than or equal to    

We know that     has jump discontinuity at all integer points. So, we 

consider the partition   of  
 

 
 
  

 
  as    

 

 
             

  

 
   

Now             
 

 
      

                  

                  

                  

                  

                  

                
  

 
 



and   
 

 
                                        

         
  

 
    

8.4 Integration of a Step Function: 

 if            be a step function defined for the partition   

                             by        for 

                            Then the integral of step function      

from        defined by        
 

 
 and defined by  

       
 

 
               

                             . 

Remark: It should be noted that the letter ‘x’ used for the independent 

variable, which may be replaced by any other convenient letter without 

altering the definition of integral. That is 

       
 

 

        
 

 

        
 

 

         

Example 1. Define a step function h : [1, 5] → E’ as 

                 

       
 

 

    
 

 
    

        

               
 

 
      

Then        
 

 
   

 

 
           

 

 
         



                            
 

 
   

 

 
     

 

 
     

 

 
 

Example 2. Define a step function h : [1, 6] → E’ as 

                   

       
 

 

    
 

 
    

        

               
 

 
      then,  

                  
 

 
   

 

 
           

 

 
         

                              
 

 
   

 

 
             

Example 3. Define the step function h : [-7/2, 1] → E’ as 

                         
   

 
                

                   We consider the partition P =   
 

 
      

                   Now,      
   

 
  

        
 

 
   

           
  

⸪        
 

 
 

 

       —
 

 
             

 

 
    

 

 
 

Example 4. Define a step function h :   
 

 
       as 

                  
   

 
     and        



the integers of   
 

 
    are -1, 0, 1, 2 at which the bracket function [x] is 

discontinuous. 

Hence, we consider the partition of   
 

 
    as 

                   
 

 
          . Now, 

When     
 

 
            

   

 
    and hence, 

                                      
 

 
     

Similarly, when                              

          When                            

           When                         

Hence        
 

 
 

 

       
 

 
                          

   

                                             

Example 5 Define a step function h : [-1, 2] → E’ as 

                                       ∀         

for the required partition, we try to find those values of x which    is an 

integer in [-1, 2]. We see that    is an integer in [-1, 2] when x = -1, 0, 1, 

     , 2. Hence partition P={-1, 0, 1,      , 2}. 



Now,                                  

                                                           

                                                            

                                                           

                                                        

Hence         
 

  
                                

        

                                                                        

   

Example 6. Define a step function h : [0, 2] → E’ as 

                             ∀        

 we want to find those points of [0, 2] for which 3x + 4 is an integer. So, 

partition of [0, 2] is      
 

 
 
 

 
   

 

 
 
 

 
    

Also          
 

 
            (check it) 

Example 7. We define a step function            as 

     
                 

               
          and                     . 

Since         if                   



                  Or if                   

                 Or if    , or        

        if                    

             Or if                   

                 Or if      , or        

Hence Partition of [0, 6] is P = {0, 1, 3, 4, 6} 

⸪        

           
           
            
           

  

Hence        
 

 
                                 

                                           

Note: Geometrical meaning of        
 

 
, where            is a step 

function. 

Suppose that P = {x0 = a, x1, x2, x3, ……xb-1, x5-b} be a partition of [a, b] for 

h(x). Now, 

 

 

i.e.                    



                               

                                

                                

                                

⸪        
 

 
                                         

          

                      = sum of the areas of the rectangles over the sub intervals of [a, 

b]. 

Hence        
 

 
 represents the area bounded by the graph of h(x), x-axis 

and the ordinates x = a and x = b. In this we see that some portion of the area 

is above the x-axis and some portion may be below the x-axis. 

So,        
 

 
 will be the sum of all areas (above the x-axis or below the x-

axis) bounded by the graph of h(x). 

 

8.5 Properties of Integrals of step functions: 

Theorem 1: If            be a step function associated with a partition P 

and P’ be a refinement of P, then the value of        
 

 
 is not altered if P is 

replaced by P’. 



Note: P’ is a refinement of a partition P if P’ contains all the sub-division 

points of P together with some additional points. 

Proof: Let the partition P = {x0 = a, x1, x2, x3, ……xk-1, xk…xn-b} and let the 

refinement P’ of P. 

Here the refinement P’ contains additional points    and    between      

and   . 

Let          when            , r = 1, 2, 3, …..n with respect to the 

partition P. 

⸪        
 

 
                                   

   
 
   

                  
 
                                 ……………(1) 

Now with respect to the partition P’ 

       
 

 
                                       

   

                      
 
                     ……………. (2) 

By comparing equation (1) and (2) we find that the term             in (1) 

is replaced by                                . 

Hence the value        
 

 
 is the same for both partition P and P’ 

(refinement of P) 

Theorem 2: Let            be a step function if r is a real number such 

that a < r < b, then  



               
 

 

 

 

        
 

 

 

Proof: We consider a partition P of [a, b] associated with h(x) which contains 

r as a point of division P = {a = x0, x1, x2, …..xm,  xm+1,…..xm+n = b}                

Where xm = r then we have 

       
 

 
             

 
                

   
        …………..(1) 

Now, we take P1 = {a = x0, x1, x2, …., xm = r} be a partition of [a, r] and 

hence, 

       
 

 
             

 
                   ……………. (2) 

Again we take P2 = {r = xm, xm+1, ………xm+n = b}  be a partition of [r, b] and 

hence  

       
 

 
             

   
                 ……….. (3) 

From equation (1), (2) and (3) we get that  

       
 

 

        
 

 

        
 

 

 

Theorem 3: Let            and             be two step functions such 

that          ∀        then 

       
 

 

        
 

 

 



Proof: Suppose that P1 and P2 be two partitions of [a, b] associated with the 

step functions s(x) and t(x) respectively. 

Let     ∪   , then P is a refinement of P1 and P2 both. Hence,        
 

 
 

and        
 

 
 will not be altered if P1 and P2 are replaced by their refinement 

P. 

Let P = {a = x0, x1, x2, …., xm = b} 

Let          when                     

                when                     

⸪          ∀       , so 

                      for k = 1, 2, 3, ….n 

Hence,          
 

 
    

          
 

   
              

 

   
 

⸪         
 

 
        

 

 
 

Theorem 4: Let            be a step function and m, M be real numbers 

such that         ∀        then,               
 

 
     

  . 

Proof: We define step functions s and t on [a, b]  then           

    ∀       . Then we have        
 

 
        

 

 
        

 

 
.   

………. (1)  



Now,         
 

 
     

 

 
        and         

 

 
     

 

 
 

       

Then from equation (1) we have 

              
 

 

        

8.6 Upper integral and lower integral of a bounded function: 

Let f: [a, b] → E’ be a bounded function, so               is a bounded 

set, let m and M be the lower and upper bound of the set, so that   real 

numbers m and M such that         ∀       . Let    

                                   ∀        . Thus if        , 

then            ∀       . 

So             
 

 

 

 
       ∀        

Hence the set                 
 

 
  is bounded above by M(b – a). 

therefore 

l.u.b.                 
 

 
  exist (by completeness property) 

thus l.u.b. is defined as the lower integral of f from a to b, and it is denoted by 

       
 

 
. Thus 

                              

 

 

 
 

 

 



Again Let                                       ∀         

Thus if,         then            ∀       . 

So        
 

 
     

 

 
       ∀       . 

Hence the set                 
 

 
  is bounded below by m(b – a). 

Therefore g.l.b. of this set exists, which is defined as the upper integral of f 

from a to b. and it is written as        
  

 
. Thus  

       
  

 

                       

 

 

  

Example: Let the function            be defined by      

 
                 
                  

  

Then evaluate        
 

  
 and      

  

 
  . 

Solution: Here we see that clearly f is bounded on (1, 2). Suppose that P = {1 

= x0, x1, x2, ….xn = 2} be a partition of (1. 2). 

Now, open interval          , k = 1, 2, 3, …..n will contains both rational 

and irrational points. 

Hence if         then          ∀       . So       ∀       . 

Hence  

                ∀       
 

 
. 



Therefore, l.u.b.                  
 

 
    

Hence      
 

 
     

Again, if        , then          ∀       . 

⇒            ∀        

Hence,     
 

 
        

 

 
  or             

 

 
  ∀       . 

∴           
 

 
 

Therefore,       
 

 
               

Hence,       
 

 
    . 

Note: (i)      
 

 
        

 

 
         (ii)      

 

 
        

 

 
          

i.e.,                 
 

 
        

 

 
          

Lemma: If            be a bounded function and given for any real 

number       step function          and          such that 

(i)        
 

 
         

 

 
 

 

 
 

(ii)         
 

 
        

 

 
 

 

 
 



Proof: We know that        
 

 
               

 

 
          . Hence , 

       
 

 
 

 

 
 is not an upper bound of the set         

 

 
          , so 

there exists a step function          such that        
 

 
 

 

 
         

 

 
 

or        
 

 
         

 

 
 

 

 
. 

In similar manner,        
 

 
                        

 

 
 . Hence 

       
 

 
 

 

 
 is not a lower bound of the set                  

 

 
 . So 

there exists a step function          such that         
 

 
        

 

 
 

 

 
. Or         

 

 
        

 

 
 

 

 
. 

Theorem: If            be a bounded function, then        
 

 
 

       
 

 
. 

Proof: By using the above lemma (i) and (ii) we get         
 

 
 

        
 

            
 

 
        

 

 
  

 

 
 

 

 
  or         

 

 
 

        
 

            
 

 
        

 

 
   .  

Also                 ∀       . So         
 

 
         

 

 
   

Thus, we get that        
 

 
        

 

 
  ∀   . 



Hence        
 

 
        

 

 
  .     (∵     ∀   ⇒    ) 

Therefore        
 

 
        

 

 
 

8.7 Riemann Integral of a bounded function 

Definition: Let            be a bounded function. Then f is called 

Riemonn integrable on [a, b] iff        
 

 
        

 

 
 

Note: The common value of the lower and upper integrals will be denoted by 

       
 

 
 and called the Riemann integral of f from a to b. i.e.,        

 

 
 

exists. 

Example 1: Let the function            be defined by      

 
                 
                  

  then        
 

 
   (lower integral of f(x) on (1, 

2)) 

And        
 

 
   (upper integral of f(x) on (1, 2)) 

∵        
 

 
            

 

 
 i.e., lower integral of f(x) is not equal to 

upper integral of f(x) on (1. 2). Hence f is not Riemann integrable on (1, 2). 

Example 2: If            be a step function, then prove that f is Riemann 

integrable on [a, b]. 



Solution: ∵             be a step function, so it is bounded on [a, b]. Also 

                        ∀         

So, if         then          ∀        

Therefore,        
 

 
        

 

 
 ∀       . 

Hence,        
 

 
                      

 

 
  

                                       
 

 
                      ……………….. (1) 

Also,        . If         then          ∀       . 

⇒             
 

 
        

 

 
∀       . 

Hence        
 

 
               

 

 
                  

 

 
      

…………… (2) 

From (1) and (2) we get that 

       
 

 

        
 

 

        
 

 

⇒        
 

 

        
 

 

 

Thus the step function f is integrable on [a, b] means it is Riemann integrable 

on [a, b]. 



Example 3: If             and             be two step function then 

prove that                  be a step function and              
 

 
 

        
 

 
         

 

 
. 

Solution: Suppose that P1 and P2 be two partition associated with the step 

function              respectively. Suppose     ∪    be a refinement of 

P1 and P2. Let   P = {x0, x1, x2, …….xn = b} 

Let          ∀            and          ∀              

    

Then                               ∀            

Thus,         is constant on each           k = 1, 2 , 3, ….n 

Hence                  is a step function. 

Again         
 

 
                      

 

 
 

                                                              
 
    

                                   
 
                          

 
    

                                       
 

 
         

 

 
. 

Example 4: Let            be a bounded function and m and M are 

constants such that         ∀        then prove that 

              
 

 
 and        

 

 
       



Hence prove that               
 

 
        

Solution: We define step function             and             as 

        and     ∀       . 

∵                  ∀       . 

So,          and         . 

Now,        
 

 
                        

 

 
  

Hence,         
 

 
        

 

 
. 

Also,         
 

 
     

 

 
       . So we have        

       
 

 
. 

Similarly,        
 

 
               

 

 
           

Hence,        
 

 
         

 

 
 

Also,          
 

 
     

 

 
        

So, we have        
 

 
        

Theorem 1: Riemann integrability condition of f on [a, b] 



If            be a bounded function, then f is Riemann integrable on [a, b] 

if and only if ∀      step function          and          such that 

        
 

 
         

 

 
  . 

Proof: We know that ∀      step functions          and          

such that  

       
 

 
         

 

 
 

 

 
 and         

 

 
        

 

 
 

 

 
 by adding 

these two equation we have ∀           
 

 
         

 

 
 

 

 
 

∵ f is integrable on [a, b] i.e.        
 

 
        

 

 
        

 

 
 

Hence the above condition is necessary for the integrability of f on [a, b]. 

Sufficient condition: Suppose that ∀      step function          and 

         such that 

                             
 

 
         

 

 
 

 

 
            ……………. (1) 

  ∵          so,         
 

 
        

 

 
 (lower integral)      …. (2) 

Also, upper integral        
 

 
      ,          ………….. (3) 

From equation (2) and (3) we have 

       
 

 

        
 

 

         
 

 

         
 

 

   



Thus         
 

 
        

 

 
     ∀    ……………. (4) 

⇒        
 

 
        

 

 
   …………………. (5) 

But we know that        
 

 
        

 

 
      …………….. (6) 

From (5) and (6) we get that 

       
 

 

        
 

 

 

Therefore, f is integrable on [a, b], hence it is the sufficient condition for 

integrability of the function f on [a, b]. 

Theorem 2: if            be continuous then f is Riemann integrable on 

[a, b] i.e.        
 

 
 exists. 

Proof: Since            is continuous, so f is bounded on [a, b] hence f is 

imiformly continuous on [a, b]. 

We choose any     let    
  

     
   

Since f is imiformly continuous on [a, b] so, for any          depending 

on    only such that ∀  pair of points               . 

                               ⇒                   ……………. (1) 



We take P = {x0, x1, x2, …….xn = b} be a partition of [a, b] such that 

            for k = 1, 2, 3, ……n then if                 then   

         ⇒                                       ……(2) 

Since f is continuous on every closed subinterval           of P, so f is 

bounded on           for k = 1, 2, 3 , …..n. 

Hence                  such that 

                            ∀           , k = 1, 2, 3 …n           …….. 

(3) 

Now                 such that 

                                , k = 1, 2, 3, …n   …… (4) 

Now define step function            and            as follows  

                                
                     
               

  k = 1, 2, 3, …n 

And                        
                     
               

   k = 1, 2, 3, ….n 

We find that                 i.e.          ∀        and so, 

       . 

Now,  

       
 

 
        

 

 
        

                    
       

      



                                                                 
 
   

 
    

                                         
 
            

Put                ∴        
 

 
        

 

 
  , 

Thus for any choosen       step function         and         such 

that        
 

 
        

 

 
  . 

Hence f is Riemann integrable on [a, b]. 

Theorem 3: If            be integrable on [a, b] and m, M are real 

numbers such that         ∀       , then        

       
 

 
       . 

Proof: We define step function s and t on [a, b] such that        and 

      ∀        

⇒                ∀       ⇒                    

Hence        
 

 
        

 

 
  or   

 

 
          

 

 
 

Or               
 

 
        

 

 
 (f is integrable) …………. (1) 

Also            
 

 
        

 

 
        

 

 
 

So                       
 

 
 …………. (2) 

From equation (1) and (2) we get 



              
 

 
       . 

Theorem 4: Let            be a bounded function, Let r be a real number 

such that      . If        
 

 
 and        

 

 
 exists then        

 

 
 

exists, and  

       
 

 

        
 

 

        
 

 

 

Proof: Since        
 

 
 exists then for any given      step functions 

         and          defined on [a, r] st.  

                            
 

 
         

 

 
     …… (1)    ∵        

 

 
 

       
 

 
 

And                    
 

 
        

 

 
     ……….(2)  ∵         

 

 
 

       
 

 
 

Again        
 

 
 exists so,   step functions          and          

defined on [r, b] such that 

       
 

 
         

 

 
           ……….. (3)   and  

        
 

 
        

 

 
      …………… (4) 

Now we define step function and                on [a, b] such that. 



       
             

             
  

       
             

             
  

Now,         
 

 
         

 

 
         

 

 
         

 

 
         

 

 
 

…… (5) 

Similarly          
 

 
         

 

 
         

 

 
         

 

 
 

        
 

 
 …… (6) 

Now, we adding equation (1) and (3) we get  

       
 

 

        
 

 

         
 

 

         
 

 

   

                                      
 

 
          

 

 
   

Hence        
 

 
        

 

 
        

 

 
  ∀    

Therefore,        
 

 
        

 

 
        

 

 
   

Or                     
 

 
        

 

 
        

 

 
       ……….(7) 

Similarly we adding equation (2) and (4), we get 

          
 

 
         

 

 
          

 

 
        

 

 
    



Or             
 

 
         

 

 
        

 

 
    

Or           
 

 
        

 

 
         

 

 
          

 

 
   

Or          
 

 
         

 

 
        

 

 
   ∀    

Hence        
 

 
        

 

 
        

 

 
        ………….. (8) 

From equation (7) and (8) we have 

       
 

 

        
 

 

        
 

 

        
 

 

        
 

 

        
 

 

 

Consequently        
 

 
        

 

 
        

 

 
        

 

 
 

Hence        
 

 
 exists and        

 

 
        

 

 
        

 

 
 

8.7 Summary  

In this unit, we have covered the following points: 

▪ We defined a Step Function 

▪ We defined Integration of a Step Function 

▪ We have shown Properties of Integrals of step functions 



▪ We defined Riemann Integral of a bounded function. 

▪ We discussed two important theorems and explained the importance of 

them. 

8.9 Terminal Questions 

 Evaluate        
 

 
 where            be a step function. 

(1)       
 

 
     defined by 

     
          

       
             . 

       −1, h(4)=4       

(2)             defined by 

     
         

      
         . 

                 Ans. 2 

(3)             defined by 

      

         
         

        
         

      

(4)            defined by               .      
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Structure 

9.1.  Introduction 

9.2. Objectives 

9.3. Mean value theorem 

9.4. Intermediate value theorem 

9.5. Fundamental theorem of integral calculus 

9.6. Substitution method for integration 

9.7.  Second mean value theorem 

9.8.  Summary 

9.9.  Terminal Questions 

 

 

 

 

 

 



 

 9.1 Introduction 

In this Unit we discuss about mean value theorem of real numbers as well as 

for Riemann integral, we gave application of this theorem. We also discuss 

about Intermediate value theorem, fundamental theorem of integral calculus 

and its several applications, we discuss about Substitution method for 

integration and  

 Second mean value theorem and its applications. 

9.2 Objectives 

After studying in this unit, therefore, you should be able to 

▪ Define Mean value theorem 

▪ Discuss Intermediate value theorem 

▪ Define Fundamental theorem of integral calculus 

▪ Define Substitution method for integration 

 ▪ Second mean value theorem 

9.3 Mean value theorem (Application) 

Theorem: If            is integrable function (a < b) then there exists   

such that       then        
 

 
                . 



Theorem: If            is integrable (a < b) then 

(i)        
 

 
                  (ii)                 

 

 

 

 
 

Proof: (i) ∵       
 

 
                 

∴       
 

 
             

(ii)        
 

 
                              

 

 
 

Theorem: (i) if f is continuous on [a, b] then 

       
 

 
            where         

(ii) if f :         be continuous and                

Then                
  

  
        

  

  
        

  

  
 irrespective of the relative 

order of          

Proof: Let          then        
  

  
        

  

  
        

  

  
 

∵ f is continuous on [     ] and also continuous on [     ] 

And so        
  

  
 and        

  

  
 both exist. 

Hence        
  

  
         

  

  
        

  

  
 

Or         
  

  
        

  

  
        

  

  
 



Similarly the theorem can be proved for other cases of relative order of 

         

Example: if            and            are integrable on [a, b], prove 

that              is integrable and            
 

 
        

 

 
 

        
 

 
 

Proof: For choosen any    , f is integrable on [a, b] so,   step functions 

         and          such that 

       
 

 
         

 

 
            ……. (1) 

Again g is integrable on [a, b] so,   step functions          and          

such that 

      
 

 
         

 

 
            ……. (2) 

So                                      

Hence           , similarly                        

Now,       
 

 
         

 

 
                   

 

 
         

 

 

         

         
 

 

         
 

 

       
 

 

         
 

 

   

         
 

 

       
 

 

           
 

 

       
 

 

   
 

 
 

 

 
   



Thus, for given any      step functions            and            

such that          
 

 
       

 

 
     

Hence            
 

 
               

 

 
 exist 

Now,            and            so, 

      
 

 
                 

 

 
         

 

 
….(3) 

Again       
 

 
         

 

 
         

 

 
          

 

 
        

 

 
 

         
 

 

         
 

 

         
 

 

 

Thus, we get       
 

 
          

 

 
        

 

 
         

 

 
 ….. (4) 

From equation (3) and (4) we get that both 

              
 

 
 and        

 

 
        

 

 
 lie between       

 

 
   

and         
 

 
 

Hence                
 

 
         

 

 
        

 

 
            

 

 
 

      
 

 
      ∀    

Therefore,               
 

 
        

 

 
        

 

 
 

Since,         ∀    ⇒      



Theorem: if            and            are integrable on [a, b] and 

         ∀        then        
 

 
      

 

 
  . 

Corollary: if            is intergrable and       ∀        then 

       
 

 
  . 

Proof: Let the step function          then            .  

∴       
 

 
   ∀       .    ∀        

So,               
 

 
             

Or         
 

 
    or,        

 

 
        

 

 
   

∵       
 

 
        

 

 
 

Now, we prove the theorem 

We put               , so          ∀       . 

Now,        
 

 
        

 

 
        

 

 
 

∵       
 

 
    Hence,        

 

 
        

 

 
   

Therefore,        
 

 
        

 

 
 



Theorem: Let            be bounded and        
 

 
 exist prove that 

       
  

  
 exist for any sub interval         of [a, b] where         

 . 

Proof: since        
 

 
 exists, so for any given      step function 

           and            such that          
 

 
       

 

 
     

………. (1) 

Now, by property of integrals of step functions, we get  

        
 

 
         

  
 

         
  
  

         
 

  
 ………. (2) 

        
 

 
         

  
 

         
  
  

         
 

  
 ………. (3) 

∴        
 

 
         

 

 
          

  

 
         

  

 
           

  

  
 

        
  
  

           
 

  
         

 

  
       ……… (4) 

Now,         
  
  

         
  
  

          
  
 

         
  
 

  

         
  

  
         

  

  
           

 

  
         

 

  
  

From equation (4) we get that 

        
  

  
         

  

  
         

 

 
         

 

 
   from equation 1 

Hence,         
  

  
         

  

  
   



Hence,        
  

  
 exists on [a, b] . (         ) 

Example. Let           be R-integrable then     is also R-integrable and 

        
 

 
           

 

 
  

Proof: We define        
             

          
  

       
              

          
  

Case (i) when f(x) > 0 

Then                  and  

when f(x) < 0 

Then                   thus we get 

                   …………….. (1) 

                  ………. (2) if f(x) > 0 or f(x) < 0 

∵ f(x) is R-integrable in [a, b] ∴ By R-condition of integrability we have  

        
 

 
         

 

 
   ……………. (3) Now from (2) we can write 

  
       

           and    
       

           

From (3)     
       

            
       

       
 

 

 

 
   

Or,              
       

            
       

       
 

 

 

 
   



Now    
      

 

 
    

      
 

 
     

       
       

 

 
   

From (4) Also    
      

 

 
    

      
 

 
   

∴              are integrable 

∴             is integrable 

And hence        is integrable. 

Theorem: Let            be a bounded function then f is integrable on [a, 

b] iff for any       step function          and          such that 

      
 

 
         

 

 
    . 

(this theorem is called Reimann condition of integrability) 

Proof: Let f is integrable on [a, b] then we show that       
 

 
   

      
 

 
    . 

For f is integrable on [a, b]        
 

 
        

 

 
   ……… (1) 

Now for       step functions          and          such that 

       
 

 
         

 

 
       and         

 

 
        

 

 
     

∴        
 

 
         

 

 
   

Conversely,         
 

 
         

 

 
   



We suppose that                and         . By definition 

       
 

 

            
 

 

          

       
 

 
            

 

 
         . 

           and          st. 

        
 

 
        

 

 
  …………. (1) 

       
 

 
         

 

 
 ……………. (2) 

We can write        
 

 
         

 

 
 

We write (1) as          
 

 
         

 

 
…..(3) 

Now        
 

 
        

 

 
         

 

 
         

 

 
 

∵        
 

 
         

 

 
  ∀    

       
 

 

        
 

 

  ∀    

       
 

 
        

 

 
      ……… (4) 

But             
 

 
        

 

 
     ……….. (5) 



∴       
 

 
        

 

 
 

So   is integrable. 

Example. Let            be a bounded function and m and M are constant 

st.         ∀        then prove that               
 

 
 and 

              
 

 
 

Solution. We define step function            st.             

⇒    
 

 
        

 

 
∀        

⇒    
 

 
            

 

 
            

⇒              
 

 
 

Now we define step function           st.            ∀       . 

⇒    
 

 
        

 

 
 ∀         

⇒    
 

 
            

 

 
             

⇒              
 

 
  hence proved 

Theorem: Let            be integrable on [a, b] and m, M are real 

numbers st.         ∀        . then 



              
 

 

        

Proof: We shall show that               
 

 
     ……… (1) 

And                
 

 
  . ………(2) 

f(x) is integrable so,        
 

 
        

 

 
        

 

 
. 

From (1) and (2) we get 

              
 

 

        

Note: (1) A function is said to be continuous at x = a if for             

      

       ⇒              . 

(2) Uniform continuous in [a, b] if                    

         ⇒                 

Remark: 1. If the function f is uniformly continuous on [a, b] then f is cont. 

on [a, b]. 

(2) A continuous function need not be uniformly continuous ex. f(x) = 1/x   0 

< x < 1 then f is cont. in the (0, 1) but f is not uniform continuous. 



3. If a function is continuous on [a. b] then it is uniformly continuous on [a, 

b]. 

4. If a function is continuous on a [a, b] then st. attains its supremum and 

infimum in [a, b] i.e. if f is continuous on [a, b] then it attains its supremum 

and infimum value in [a, b]  i.e.  points u and v                    

    ∀       . 

Example:      
 

  
      

 

  
     

 

 
 

Theorem: Let            be a continuous function then        
 

 
 exists 

(f is integ.) 

Proof: Since f is continuous on [a, b] hence it is uniformly continuous on [a, 

b]. Let  P = {  ,   ,   ,   , …..  } where a = x0 < x1 < x2 < …… <   = b 

be the partition of [a, b] then for given       a number     such that 

         ⇒                 

∀             . 

We choose                  

∵ f is cont. on [a, b] and hence it is cont. on           and f will attain its 

supremum and infimum in                                   

                ∀             

                          



⇒         for            

∵ f is continuous and for                    

∴                …………(2) 

We define step function           ,               

      
                   

             

  

      
                   

             

  

Now consider        
 

 
        

 

 
 

                

 

   

       

 

   

          

                        

 

   

 

∴       
 

 
        

 

 
    

             

∵                                       

             

∴       
 

 
        

 

 
            (say) 

∴ By Riemann condition for integrability the function f is R-integrable. 



Note: The converse of this theorem need not be true. The function is R-

integrable for [a, b] then it need not be continuous on [a, b]. 

Example: Step functions are integrable but not continuous. 

9.4 Intermediate value theorem: 

 Let            be a continuous function. Let k be a number between f(a) 

and f(b) then   a number                 . 

Mean value theorem: (of integral calculus): Let            be a 

continuous function then   a number                     

       
 

 
. 

Proof: f is continuous in [a, b] and so z+ attains its supremum and infimum 

in [a, b] i.e.   and                          ∀       . 

                 
 

 
                 ….. (2) 

Case (i) Let                  
 

 
 but u >r ,                 

 

 
. 

Case (ii) Let                  
 

 
 we take x = v so we have    

              
 

 
. 

Case (iii)                  
 

 
           

⇒     
 

   
       

 

 
     . 



        Put   
 

   
       

 

 
. 

⇒            …………. (2) 

∴ f is continuous on [u, v] and k lies between f(u) and f(v) and therefore by 

intermediate value theorem          st. k = f(r). 
 

   
       

 

 
 

    ∴       
 

 
          . 

Geometrically the mean value theorem means that area of curve y = f(x) 

bounded by x-axis and between x = a and x = b is equal to area of the 

rectangle whose one side is (b – a) and other side is f(r). 

9.5 Fundamental theorem of integral calculus: 

Note: Generally, we say that integration is the reverse process of 

differentiation but it is only true when function is continuous in the range of 

integration. 

Theorem: If            is continuous on [a, b] and            
 

 
 .. 

(1) 

Then              .      
 

  
 

Proof: 
 

  
             

           

 
 

    
   

       
   

 
        

 

 

 
 



    
   

       
 

 
        

   

 
        

 

 

 
 

∴
 

  
             

       
   
 

 
 …………… (1) 

By mean value theorem we have        
 

 
           where a < r < b. 

∴       
   

 
             where x < r < x + h 

From (1) 
 

  
             

     

 
    x < r < x + h 

             x < r < x + h 

                = f(x) 

Note: If          
 

 
 then 

 

  
      

Primitive of a function: A function            is called a primitive of 

           such that 
 

  
            

And  
 

  
            i.e. primitive of cos x is sin x. also              

Note: 1. F and f are continuous function. 

          2. If f(x) is a primitive of F(x) then f(x) + c is also a primitive of F(x). 

∴
 

  
          

 

  
           . 



3. Let F(x) and G(x) be two primitive of a function f(x) then F(x) – G(x) = k 

(constant) 

Theorem: if            is any primitive of            and if F is 

continuous on [a, b] then        
 

 
          . 

Proof: F(x) is given to be a primitive of f(x) and by fundamental theorem of 

integral calculus             
 

 
             

 

 
   ………….. (1) 

Putting x = a then             
 

 
   

∴ k = F(a)    putting it in equation (1) 

∴            
 

 
      

∴                 
 

 
 

Putting x = b,                    
 

 
 

Note: if            is constant function then its primitive and integral are 

same. But if F is not continuous then 

(i) A function may have primitive but not integral. 

(ii) Function F may be integrable without having primitive. 

Example. 1. Consider       
    
    

  Then f is continuous at all points in 

except at x = 0. Then F is continuous on [a, b] not contain zero, and so F is 



integrable on [a, b] but   no f(x) st.  
 

  
         . ∴ F is integrable but F 

has no primitive. 

2.      
 

 
     

 

  ,           
 

   
 

 
   

 

        

Let          
 

   
 

 
   

 

                

Then its primitive is      
 

 
     

 

   

∵
 

  
         

 

 
 

 

 
    

 

    

But the function f(x) is not integrable in any interval containing the point 

zero.  

∵ f(x) is not bounded in an interval containing 0.  

Let            defined by       
                
                  

  

∵ P = {x0, x1, …..xn} be a partition of (1, 2) is         then      

    ∀       . 

⇒      ∀       ∴                
 

 
 

∴              
 

 
                    

 

 
 

Also                  ⇒       ∀        

∴       
 

 
         ∴              

 

 
             



∴         
 

 
∴               

 

 

 

 
. 

Give an example to show that a function            may be integrable, 

still if may not have any primitive function F. thus        
 

 
      

    , where F is a primitive of f, should not be regarded as on alternative 

definition of the integral        
 

 
. 

Solution. Define            as follows f(x) = 0, x ≠ 1 and f(1) = 2. 

Here f is a step function, partition for this function is P = {0, 1, 2}. 

Also f is Riemann integrable on [0, 2] and                
 

 

         

Now suppose that   a primitive F of f such that 
 

  
         , then 

F(x) = 2x when x = `1 and f(x) = λ (an arbitrary constant) x ≠ 1, thus F cannot 

be uniquely defined on [0, 2] 

Theorem: If            and            be two primitives of 

          , then F(x) – G(x) = k (constant) ∀       . 

Proof: Since, F and G are both primitives of f, so 
 

  
           and 

 

  
           

Or,  
 

  
             . Hence, F(x) – G(x) = k 



Theorem: if            and            be continuous on [a, b], then 

prove by the fundamental theorem on calculus. 

(i)                       
 

 

 

 
        

 

 
 

(ii)         
 

 
         

 

 
 

Proof: We have already proved that if f and g are integrable then (f ± g) is 

integrable on [a, b]. Now we prove this by using fundamental theorem on 

calculus: 

Since        
 

 
 and        

 

 
 exist. 

So, Let             
 

 
             

 

 
 

When         

 

  
           

 

  
                ……… (1) 

Since                
 

 
 exists. Since f(x) ± g(x) is continuous on [a, b]. 

S0 let                             
 

 
 

Then 
 

  
                 by fundamental theorem on calculus. 

……(2) 

From (i) we get 
 

  
                      

Thus      and           are both primitives of          . Hence  



                   ∀        Put x = a, we get  

                   

⸪                       

Now Put x = b we have                    

⸪                  

Or                                
 

 

 

 

 

 
 

Or                                
 

 

 

 

 

 
 

Similarly, we can prove part (ii). 

9.6 Substitution method for integration: 

Theorem: Let A be a subset of   . Let           be a function such that 

      exisrs and is continuous ∀       . Let        be a continuous 

map then                        
    

    

 

 
. 

Proof: Since           and        be two continuous maps then 

             is well defined and continuous map also, g is continuous on 

[a, b]. therefore,                 
 

 
 exists. Since,              is also 

continuous on [a, b]. Let     =                        
 

 
. Hence by 

fundamental theorem of calculus we have 
 

  
                    ∀   

       



Since, [g(a), g(b)]  is a subinterval of A and f is integrable on A. so, f is also 

integrable on [g(a), g(b)], hence         
    

    
 exists. Let      

       
 

    
                . Hence by fundamental theorem of calculus  

 

  
                  ………… (2) 

Put u = g(x) then                
    

    
 ………. (3) 

Now 
 

  
        

 

  
    

 

  
                

Or    
 

  
                     …………….. (4) 

We see that from equation (1) and (4)         and      are primitives of 

            . Hence                 ∀        Put x = a then 

                 

Or                          
 

 

    

    
 ⇒     

Hence,               ∀        

Now, we put x = b then              

Or        
    

    
                

 

 
 

Now, we change the variable t →u on L.H.S. and t → x on R.H.S.. we get  



       
    

    

                
 

 

 

9.7 Second mean value theorem: 

 If f is a monotonic function f, f’ and g are all continuous functions on [a, b] 

then there exists                         
 

 
            

 

 
 

           
 

 
. 

Proof: Let             
 

 
. Clearly G(a) = 0. Under given condition G(x) 

is differentiable and G’(x) = g(x).  

∴           
 

 
         

 

 
              

              
 

 
 (by 

integrating by parts). Since, G being continuous so it is integrable and f is 

monotonic and continuous on [a, b]. therefore, by First mean value theorem 

         such that            
 

 
                      

 

 
 

                          

                          

            
 

 
            

 

 
. 

9.8 Summary  

After studying of this unit, we should be able to define Mean value theorem 

and its applications, discuss Intermediate value theorem, define Fundamental 



theorem of integral calculus and its several applications, we can define 

Substitution method for integration and second mean value theorem. 

9.10    Terminal Questions 

1. State the Proof first mean value theorem. 

2. The function      is defined on [2,5] as follows:  

f x   
   f   x   
   f   x   

  

3. If is Continuous and positive on       then show that      
 

 
 is also 

positive. 

4. Show That the second mean value theorem does not hold good in 

                         

5. If          and              
 

 
for all    then show that F is of 

bounded variation on        

6. Use fundamental theorem of integration to compute      
 

 
. 

7. Verify the second mean value theorem for        and         in 

      . 

 

 


