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Block-1
Metric space: Continuity, Compactness and completeness

In this we introduce the notion of metric spaces. The metric spaces arose
from extending the notions of continuity and convergence on the real line
to more abstract spaces. A metric space is just a set which is equipped
with a function called metric which measures the distance between the
elements of various pairs from the set. We shall study various properties
of these spaces, open and closed sets. The structure on a metric space
allows us to extend the notion of continuity of these spaces. We will see
that the notion of continuity is one of the most important notions for
further study of Analysis. Here we talk about two important results about
continuous functions which are called Urysohn's lemma and glueing
lemma. Then we explain the notion of uniform continuity through some
examples. The definition of continuity and uniform continuity for metric
spaces are similar for Euclidean spaces R™

In second unit we shall study about the concepts of a limit and Continuity
for the functions of a single variable. we shall discuss the notion of
compactness in a metric space.

In the third unit we shall define compact sets and discuss the examples of
these sets in different metric spaces. Firstly we give a characterization in
terms of convergence of sequences and then in terms of completeness. In
this connection, we introduce the concept of "totally bounded sets" which
is a stronger version of bounded sets. We show that a set is compact if and
only if it is complete and totally bounded. We also discuss the analogue of
the famous "Heine Borel theorem" in R which characterises compact sets
in terms of closed and bounded sets. Here we discuss relationship between
continuity and compactness.

In the fourth unit is to study one of the properties of metric space. The
notion of distance between points of an abstract set leads naturally to the
discussion of uniform continuity and Cauchy sequences in the set. Unlike
the situation of real numbers, where each Cauchy sequence is convergent,
there are metric spaces in which Cauchy sequences fail to converge. A



metric space in which every Cauchy sequence converges is called a
‘complete metric space’. This property plays a vital role in analysis when
one wishes to make an existence statement. We shall see that a metric
space need not be complete and hence we shall find conditions under
which such a property can be ensured.
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1.1 Introduction

In this unit, we introduce the notion of metric spaces. As we already
pointed out in the course introduction and block introduction, the
metric spaces arose from extending the notions of continuity and
convergence on the real line to more abstract spaces. A metric space
is just a set which is equipped with a function called metric which
measures the distance between the elements of various pairs from
the set. We shall first give the definition of a metric and a metric
space and consider various examples Then we shall study various
properties of these spaces. we shall consider open and closed sets.
The structure on a metric space allows us to extend the notion of
continuity to functions in the context of these spaces. We shall
define this notion and discuss several examples of continuous
functions. Later you will see that the notion of continuity is one of
the most important notions for further study of Analysis. Here we
talk about two important results about continuous functions which
are called Urysohn's lemma and glueing lemma. Then we explain the
notion of uniform continuity through some examples. You will see
that the definition of continuity and uniform continuity for metric

spaces are similar to those for Euclidean spaces R,. But extending



these notions to metric spaces, provide not only a new perspective

but also a deeper insight into their structure and properties.

1.2 Objectives

After studying this unit, we should be able to:
» state the properties that define a metric and apply them.
= give examples of different metricsonR"; n > 1

» explain a discrete metric space and other metric spaces such as

function spaces;
» we try to check whether

i)  asubset of a metric space is open;

ii) asubset of a metric space is closed;

iii) a function defined on a metric space is continuous;
iv) afunction defined on a metric space is uniformly

continuous.

1.3 Metric Space

A Metric Space is a set equipped with a distance function, also called
a metric, which enables us to measure the distance between two

elements in the set.



Definition:A Metric Space is a non-empty set M together with a

function
d:M x M — R satisfying the following conditions:

(i) d(x,y)=z0forallx,yeM

(i) d(x,y)=0ifand onlyifx =y

(i) d(x,y)=d(y,x)forallx,y eEM

(iv) d(x,z)<d(x,y)+d(y,z)forallx,y,z € M[Triangle
Inequality]

d is called a metric or distance function on M and d (x, y) is called
the distance between x and y in M. The metric space M with the
metric d is denoted by (M, d) or simply by M when the underlying

metric is clear from the context.

Example 1.Let R be the set of all real numbers. Define a function d :
MxM— Rbyd(x,y)=|x-y|. Thend is ametric on R called the

usual metric on R.

Proof: Let x, y ¢ R.

Clearly d(x,y) = | x—Vy/|
> 0. Moreover,
d(x,y)=0<|x-y|=0.

& x—y =0.

S Xy



d(x,y)=[x-yl

=ly—X|

= d(y,x).

~d(x,y)=d(y, x).
Letx,y,zeR.

dx,z)=|x-z|
=x-y+y-z|
<|x-yl+y-z|
=d(x,y) +d(y,2).

~d(x,z)<dx,y) +d(y
, 2). Hence d is a metric
onR.
Note. When R is considered as a metric space without specifying its

metric, it is the usual metric.
Example 2. Let M be any non-empty set. Define a functiond : M x M

—R by d(x , y) =0 if x=y and lifx#y

Then d is a metric on M called the discrete metric or trivial metric on

M.

Proof.



Letx,yeM.
Clearlyd(x,y)>0and d(x,y ) =0 XxX=Yy.

0
if x =y Also, d(x

Y) = 1 if x#£y
=d(y, X) .
Letx,y,zeM.
We shall prove that d(x , z) < d(x,y) + d(y, 2).
Case (i) Suppose x =y = z.

Thend(x,z)=0,d(x,y)=0,d(y,z)=0.

~d(x,z)<d(x,y) +d(y, 2).
Case (ii) Suppose x =y and z distinct.
Thend(x,2)=1,d(x,y)=0,d(y,2)=1.

~d(x,z)<dx,y)+d(y, z).
Case (iii) Suppose x =z and y
distinct. Thend(x,z) =0, d(x,
y)=1,d(y,2)=1.
~d(x,z)<dx,y)+d(y, 2).



Case (iv) Suppose y =z and x
distinct. Thend(x,z) =1, d(x,

y)=1,d(y,z)=0.
~d(x,z)<dx,y)+d(y, 2).

Case (v) Suppose x £y # z.

Thend(x,z)=1,d(x,y)=1,d(y,2) =1.

d(X s Z) S d(X s Y) + d(y s Z)'

In all the cases, d(x , z) < d(x ,y)+d(y,z). Hence d is a metric on
M.

1.4 Open and Closed Ball

Definition: Let (X,d) be a metric space, x € X and
r>0. The set B(x,r) ={yeX [d(x,y) <r} is

called the open ball with Centre x and radius r.

The set B(x,r) ={y € X |[d(x,y) < r} is called the

closed ball with Centre x and radius r.

1.50PEN SETS IN A METRICSPACE

Definition:Let (M , d) be a metric space. Let a € M and r be a
positive real number. The open ball or the open sphere with center a
and radius r is denoted by  Bg (a, r) and is the subset of M defined
by Bg(a,r)={xeMa(a, x) <r}. We write B(a, r) for Bd (a, r) if

the metric d under consideration isclear.



Note. Sinced(a,a) =0<r,a€eBqy(a,r).
Examples

1. In R with usual metricB(a,r)=(a-r,a +r).
2. In R2with usual metric B(a, r) is the interior of the circle
with center aand radiusr.

3. In a discrete metric space M, B(a, r) = Mifr>1

aif r<lI
Definition:Let (M, d) be a metric space. A subset A of M is said to
be open in M if for each x € A there exists a real number r > 0 such
that B(x, r) € A.

Note. By the definition of open set, it is clear that @ and M are open

sets.

Examples

1. Any open interval (a, b) is an open set in R
with usual metric. For,
Letx € (a, b).
Choose a real number r such that 0 <r < min {
x-a,b-x}. ThenB(x,r) € (a, b).
=~ (a, b)isopeninR.
2. Every subset of a discrete metric
space M isopen. For,
Let Abea
subset of M. If



A =0, then Ais
open.
Otherwise, let x
€ A.
Choose a real number r such that 0
<r<1.ThenB(x,rN={x}cA
and hence A is open.
3. Setof all rational numbers Q is

not open in R. For,
Let xeQ.
For any real number r >0, B(x,r) = (X -r, X + ) contains both
rational and irrational numbers.
~B(x, r) €Q and hence Q is not open.
Theorem 1. Let (M, d) be a metric space. Then each open ball in M

IS an open set.

Proof: Let B(a,r) be an open ball in M. Let x €B(a, r).
Thend(a, x) <r.

Take ri=r—d(a, x).
Then r;> 0. We claim
that B( x, ry) €B(a r).
LetyeB(x,r1). Thend(X,y)
<r.. Now, d(a,y) <d(a,
x) +d(x,y)
<d(a,x)+r



=d(a,x)+r—d(a, x)

=r.

~d(a,y)<r.
~y €B(a,r).

~B(x,r)<cB(a,r).

Hence B(a, r) is an open ball.
Theorem 3. In any metric space M, the union of open sets is open.

Proof: LetA,be a family of open sets in M. We have to prove A = U
A, isopenin M. Let x €A.

Then x €A, for some «a.

Since A, is open, there exists an open ball B(x , r) such that B(x , r) S
A,.

~B(x,r) € A.
Hence A is open in M.

Theorem 4.1n any metric space M, the intersection of a finite

number of open sets is open.

Proof: Let A, A,, ....,A, be open sets in M.

We havetoprove A=A; N A, N ....N
Anis openin M. Let x € A.
Thenx € Aivi=1,2,...,n.



Since each A is open, there exists an open ball B(x, r;) such
that B(x, ) € A;. Taker=min{ry,rp, ..., }
Clearlyr>0and B(x,r) € B(x, ) Vi=

1,2, ...,n Hence B(x,r) € AVi=1, 2,

.., n.

~B(x,r) € A.

~ Alisopenin M,

Theorem 2. Let (M, d) be a metric space and A € M. Then A is open

in M if and only if A can be expressed as union of open balls.
Proof: Suppose that A is open in M.

Then for each x € A there exists an open ball B(x ,ry) such that B(x ,
Iy € A.

 AS,eaB(X , Tx).

Thus A is expressed as union of open balls.

Conversely, assume that A can be expressed as union
of open balls. Since open balls are open and union of

open sets is open, A is open.

1.6 Interior of aset

Definition:Let (M , d) be a metric space and A € M. A point x € A
Is said to be an interior point of A if there exists a real number r >0

such that B(x , r) € A. The set of all interior points is called as



interior of A and is denoted by Int A.

Note: Int A C A.

Example: In R with usual metric, let A =[1, 2]. 1 is not an interior
points of A, since for any real numberr>0,B(1,rnN=(Q1-r,1+7r)
contains real numbers less than 1. Similarly, 2 is also not an interior

point of A.

In fact every point of (1, 2) is a limit point of A. Hence IntA = (1
2).

Note: (1)Int@= @and Int M = M.

(2) Ais open <Int A =A.
(3) A€ B=Int ACIntB

Theorem5.Let (M, d) be a metric space and A € M. Then Int A =

Union of all open sets contained in A.

Proof: Let G = U{ B/ B is an open set contained in A } We have to
prove Int A =G.

Let x EInt A.

Then x is an interior point of A.

= there exists a real number r > 0 such that B(x , r) € A.

Since open balls are open, B(x , r) is an open set contained in A.



Letx €G .

Then there exists an open se B such that B € A and x € B.

Since B is open and x € B, there exists a real number r > 0 such that
B(x,r)SBCcCA.

~ X IS an interior point of A.

S~ XEIntA.

From (1) and (2), we get Int A =G.
Note: Int A is an open set and it is the largest open set contained in A.

Theorem7.Let M be a metric space and A, B € M. Then

(1) Int(ANnB)=(IntA) N (IntA)
(20 Int(AUB)2(IntA) U (IntA)

Proof: (1) ANBCA=Int(ANB)CSIntA. Similarly, Int (A N B) SInt B.
Snt (AN B) S (IntA) N(INTA) e, (a)



IntAC A and Int B CB.

~(IntA)n(IntA)SANB

Now, (Int A) N (Int A) is an open set
contained in ANB . But, Int (A N B) is the
largest open set contained in A NB .

~(Int A) N (Int A) SInt (ANB).eeeeiiiiiiiiiieeeeeeeeeeee, (b)

From (a) and (b) , we get Int (A Nn B) = (Int A) n (Int A)

(2) AcCAUB=IntACI
nt(AUB) Similarly,
Int BCInt (A UB)
~Int (AU B) 2 (Int A) U (Int A)

Note: Int (A UB)need not be equal to(Int A) U

(Int A) For,

In R with usual metric, let A= (0,
1]andB=(1,2).

AUB=(0,2).
~Int(AuB)=(0,2)

Now, Int A(0,1)and IntB = (1, 2) and hence (Int A) U (Int A) =
0,2) 2}



~Int (A UB)#(Int A) U (Int A)

1.5Subspace

Definition:Let (M , d) be a metric space. Let M; be a nonempty
subset of M. Then M; is also a metric space under the same metric d.
We call (M, d) is a subspace of (M, d).

Theorem 8.Let M be a metric space and M; a subspace of M. Let A
C M;. Then A is open in M; if and only if A =G N M; where G is

open in M.
Proof: Let By(a, r) be the open ball in M; with center a and radius r.

Then By(a, r)=B(a, r) N Mywhere B(a, r) is the open ball in M with

center a and radius r.

Let A be an open
set in M. Then
A=xeaB1(X,1(x))

ZxealB(x , 1(x)) NM3)]

= [xeaB(x , 1(x))] NM;

=G N M; where G =,eaB(X, r(x)) which is
open in M. Conversely, let A =G N M; where G is
open in M.
We shall prove that A is
openin M. Letx €A .
Then x € G and x € M;.



Since G is open in M, there exists an open ball B(x , r) such that B(x ,
N caG.
B(X ) I') N Mlg GnN Ml.

l.e.Bi(a,r) € A
~ A'is open in My.

Example.Consider the subspace M, = [0, 1] U [2, 3] of R.

A=[0,1]isopenin M

sinceA=(-'7)<S Mwhere (-, ?)is open in R.

1 2 2 1 2 2

Similarly, B=[2,3],C=[0,'], D= (", 1] are open in M.

2 2 1

Note that A, B, C, D are not open in R.

1.6ClosedSets.

Definition: A subset A of a metric space M is said to be closed in M

if its complement is open in M.



Examples

1. In R with usual metric any closed interval

[a, b] is closed. For,
[a,b]°=R-[a,b]=(-o,a)uU (b, x).

(-00, a)and(b , o) are open sets in R and hence (- ,a) U (b, «)is

open in R.
i.e. [a, b]®is openinR.
~ [a, b]isopeninR.

2. Any subset A of a discrete metric space M is closed since
Acis open as every subset of M isopen.
Note. In any metric space M, @ and M are closed sets since @° =M
and M° = @ which are open in M. Thus @ and M are both open and

closed in M.

Theorem 9. In any metric space M, the union of a finite number of

closed sets is closed.

Proof: Let A;, A, ...., A, be closed sets in a metric space M. Let A =
AU AU ... UA,.

We have to prove A is open in M.

Now, A°=[ A;U AU .... U A ]

=A°NA°N ....N A°[ By De Morgan’s law.]
1 2 n

Since Ajis closed in M, Afis open in M.

Since finite intersection of open sets is open, A° NA°N .... N A®is

open in M.



i.e. A®is openin M.

~ Ais closed in M.

Theorem 10.In any metric space M, the intersection of closed sets is

closed.

Proof: LetA,be a family of closed sets in M. We have to prove A =N
A, is openin M. Now, A°= (N A,)°
= UA® [ByDe Morgan’s
law.] Since A, is closed in M, A°
is open in M. Since union of open
sets is open, UA® is open. i.e. A®is

openin M. .. Alis closed in M.



Theorem 11. Let M; be a subspace of a metric space M. Let F,.€ M;.
Then Fy is closed in My if and only if F; = F N M; where F is a closed

set in M.

Proof: Suppose that F; is closed in M;. Then M; — F; is open in M.
& M;—Fi=A N M; where Ais
open in M. Now, F; = A° N M.

Since A is open in M, A®is closed in M.
Thus, F; = F N M; where F = A®is closed in M.

Conversely, assume that F; = F N M; where F is closed in M.

Since F is closed in M, F° is open in M.
~ F*N M, is open in M.
Now, M; — F; = F* N M; which is open in M.

~ Fyis closed in M;.

1.7Closure

Definition:Let A be a subset of a metric space (M , d). The closure of
A, denoted by Ais defined as the intersection of all closed sets which

contain A.

l.e.ANBBisclosedinMand B2 A
Note :

(1) Since intersection of closed sets is closed, # a closedset.

2) @ A.



(3) s the smallest closed set containingA.

(4) Aisclosed&
A=A(5) AA
Theorem 12.Let (M, d) be a metric space. Let A, B € M. Then

(1)AcB
=>AB
(2)AB: AB
(3)AB=AB
Proof: Let A €B .B B 2A.

Thusl a closed set containing A.

But As the smallest closed set containing A.

~AB

(JASAUB.
~by (1),
AABSImilarly ,BEAB
~ABEAB ......... (@)

As a closed set containing A and B a closed set containing B.
~AIB a closed set containing A UB .

ButABs the smallest closed set containing A UB .

From (a) and (b) we getAB- AB

2) AN BCA.
SAEEA



Similarly,AB
cB
~ABEAB

Note:AMheed not be equal to A B

For example, in R with usual metric take A= (0, 1)
andB=(1,2).ANB=0=AB0.
ButAB[0O,1]N[1,2]={1}.

BN B

1.8Limit Point

Definition:Let (M, d) be a metric space and A € M. A point x € M
Is said to be a limit point of A if every open ball with center x

contains a point of A other than x.

ie. Bx, )N (A—-{x})#@ forallr>0.

The set of all limit points of A is denoted by A '.

Example.In R with usual metriclet A=(0, 1).

Every open ball with center 0, B(0, r) = (-r, r) contains points of (0,
1) other than 0.

~ 0 is a limit point of A,

Similarly, 1 is a limit point of A and in fact every point of A is also a
limit Point of A.



For each real number x <0, if we choose r such that 0 <r <— X

, then B(x , )

contains no point of (0, 1) , and hence x is not a limit point of
limit point of A. Similarly, every real number x > 0 is not a limit

point of A.
Hence A'=[0, 1].

Example.In R with usual metric, Z has no limit

point. For,

Let x be any real number.

If X is an integer, then B(x ;1) = & - ', x + %) has no integer other than

X.

~ X Is not a limit point of Z .

If X is not an integer, choose r such that 0 < r < x-n where n is the
integer closest to x. Then B(x, r) = (x —r, X + r) contains no integer.

Hence x is not a limit point of Z.

Thus no real number x is a limit point of Z.

Z'=0.



Example. In R with usual metric, every real number is a limit

point of Q. For,

Let x be any real number.

Every open ball B(x, r) = (x —r, x + r) contains infinite number of

rational numbers.

~ X Is a limit point of Q.

~Q'=R.

Theorem 13. Let (M, d) be a metric space and A € M. Then x is a
limit point of A if and only if every open ball with center x contains

infinite number of points of A.

Proof: Let x be a limit point of A.

We have to prove every open ball with center x contains infinite

number of points of A.

Suppose not.

Then there exists an open ball B(x , r) contains only a finite

number of points of A and hence of (A —{ x }).
Let Bx,r) N (A—{X}) =Xy, Xo, ..., Xp.
Letrp=min{d(x,x)/i=1,2,.....,n}.

Since x #x;,d(X,X)>0Vvi=1,2, ...... , n and hence
r>0. Moreover, B(x,rn) N (A—-{x})=0.



~ X 1s not a limit

point of A. Thisis a

contradiction.

=~ every open ball with center x contains infinite number of

points of A.

Conversely, assume that every open ball with center x contains

infinite number of points of A.

Then, every open ball with center x contains infinite
number of points of A —{ x }.

Hence x is a limit point of A.

Note:Any finite subset of a metric space has no limit
points. Theorem 14. Let M be a metric space and A ©

M. Then
A=AUA'"'.

Proof: Let x EAUA '.

We claim
that x €A
Suppose x &
A . Then, x €
M-A.

Since Ais closed , M - A is open.
=~ there exists an open ball B(x, r) such that B(x ,r) c M- A.



~Bx,nNA=0.

sBx,DNA=0.[~ACA]

~ X & A UA', which is a contradiction.

~ X EA.

Let X €EA.

We have to prove x
EAUA' . IfX EA,
then x EAUA ',
Suppose x & A.

We claim that x €A .

Suppose x € A

Then there exists an open ball B(x , r) such that B(x, 1) N (A —
{x})=0.

SBXL,DNA=0.[+x¢A]
~ACB(X,n°.

Since B(x , r) is open, B(x, r)°is



closed. Thus B(x, r)®is a closed
set containing A. But, A is the
smallest closed set containingA.
Hence A

CB(x,r)°.

Now, X

¢B(x,r)°.

~ X €A, which is a contradiction.

~ X EA'and hence x € A UA'.

From (1) and (2), we get A = AUA ',

Corollary 3. A is closed if and only if A contains all its limit points.

Proof: Aisclosed & A=A

S A=AUA'.

SACA!T,

Corollary1.xEA SB(x,r) N AzQV r>0.

Proof.

XEA=>XEAUA'.



~XEAOXEA!,
Ifx €A, thenxeB(x,r)NA.
IfxeA, thenBx,r)N(A-{x})

Z0Vr>0.ThusBx,r)NA#QVr
> 0.

Conversely, let B(x, 1) N A #
@V r > 0. We have to prove x
EA.

If x €A, thenx € A.

Ifxeg A thenA=A-{x}.

SBELONA-{x)#OVT>0.

~ X is a limit point of A.

S~ X EA.

-~ X EA.

Corollary 2. x e A G n A 20 for all open set G containing x.
Proof: Let x €A .

We have to prove G N A #@ for all open set G
containing X. Let G be an open set containing

X.



Then there exists an open ball B(x , r) such that
B(x7T) € G. Sincex €A ,B(x,r) N A # @ and

hence G N A # @.

Conversely, assume that G N A # @ for every open set

containing X.

Then B(x,r) NA#@Vr>0.

~ X EA.

1.9Bounded Sets in a Metric space.

Definition:Let (M, d) be a metric space. A subset A of M is said to
be bounded if there exists a positive real number k such that d(x , y)

<kVx,yeA.

Example. Any finite subset A of a metric space (M , d)
is bounded. For,
Let A be any finite subset of M.

If A =@ then A is obviously bounded.

Let A # @ . Then {d(x, y)/x , y € A} is a finite set of
real numbers. Let k = max {d(x, y)/x,y € A}.
Clearly d(x,y) <k forall x ,y € A.

~ A'Is bounded.



Example. [0,1] is a bounded subset of R with usual metric since d(x,
y)<1 forallx,y € [0,1].

Example 1.(0, <) is an unbounded subset of R.

Example 2. Any subset A of a discrete metric space M is
bounded since d(x ,y) <1 forall x,y € A.

Note:Every open ball B(x , r) in a metric space (M, d) is
bounded. For,

Lets,te B(x,r).

d(s,t)<d(s,x)+d(x,t) <r+r.

~d(s, t) <2r.

Hence B(x, r) is bounded.



Definition :Let (M, d) be a metric space and A € M. The diameter
of A,denoted by d(A), is defined by d(A)= L.u.b {d(x, y)/x ,y €A}.

Example.In R with usual metric the diameter of any interval is equal
to the length of the interval. The diameter of [0, 1] is 1.

1.10 Complete Metric Spaces.

Definition:Let (M , d) be a metric space. Let (x,) be a sequence in
M. Let x eM. We say that (x,) converges to x if for every &> 0 there
exists a positive integer N such that d(x, , X) <efor all n > N. If (x,)
converges to x , then x is called a limit of (x,) and we write lim,_..X,

=X 0O Xp— X .

Note :(1) X, — x if and only if for every € > 0 there exists a positive
integer N such that x,€ B(x , €) ¥V n > N. Thus, the open ball B(x , r)

contains all but a finite number of terms of the sequence.

(2) xn—xifand only if ( d(xa, x) ) —0.

Theorem 15. The limit of a convergent sequence in a metric space is

unique.

Proof.Let (M, d) be a metric space and let (x,) be a sequence in M.
Suppose that (Xx,) has two limits say x and y.

Let € > 0 be given.

Sincex,—x,thereexistsapositiveintegerN;suchthatd(x,,x)<e/2forall

HZNl .



Sincex,—vy,thereexistsapositiveintegerN,suchthatd(x,,x)<e/2forall
n>N,. Let N = max { Ny, N,}.
Thena d(X > Y) < d(X > XN) + d(XN ) y)

<g/2+¢€/2

~d(x,y) <e.

Since € > 0 is arbitrary , d(x , y) = 0.

X =Y.
Theorem16. Let (M, d) be a metric space and A € B. Then

(i)  Xisalimit point of A & there exists a sequence (Xn) of

“distinct points in A such that xn = x.
(i) X € A © there exists a sequence (xn) in A such that x,

— X.

Proof.
(i) Letxbealimitpoint ofA.

(ii) Then every open ball B(x, r) contains infinite number of

points of A.

Thus, for each natural number n , we can choose X,



d(xn

(iii)

Xn # X1, X2, X3, ... ,Xn-1 -€ B(x, ') such that Now, (x,) is a

sequence of distinct points in A and

~(d(xn, x)) — 0.

“Xn— X . ,X) <V n.n

Conversely, assume that there exists a sequence (x,) of

distinct points in A such that x, — x .

We have to prove x is a limit point of A.

Let it be given an open ball B(x , €).

Since X, — x , there exists a positive integer
N such that d(x, , x) <e V¥V n>N.
~“Xn€B(x,€) Vn>N.

Since X, are distinct points of A, B(x , €) contains infinite

number of points of A.

Thus, every open ball with center x contains infinite

number of points of A.

Hence x is a limit point of A.

Let x EA.

Then x €A U Al.



If X € A then the constant sequence X, X, X, .....is a

sequence in A converges to X.

If x & A, then x €A,

=~ X 1s a limit point of A,

=~ by (i), there exists a sequence (x,) in A converges
to Xx. Conversely, assume that there exists a sequence

(Xn) In A such that x, — x .

Then every open ball B(x , €) contains points in the

sEquence and hence points of A.

X EA.

Definition:Let (M , d) be a metric space. Let (x,) be a sequence in
M. Then (x,) is said to be a Cauchy sequence in M if for every € > 0
there exists a positive integer N such that d(x, , X,) <€ for alln, m >
N.

Theorem 17.Every convergent sequence in a metric space (M, d) is a

Cauchy sequence.

Proof. Let (x,) be a convergent sequence in M
converges to x € M. We have to prove (X,) is
Cauchy.

Let € > 0 be given.

Sincex,—X,thereexistsapositiveintegerNsuchthatd(x,,x)<e/2fora
lIn>N.



~d(Xn , Xm) < d(xn , X) + d(X , Xm)

<g/2 +¢&/2 foralln, m>N.

~d(Xn , Xm) < e foralln

, m>N. Hence (x,) IS a

Cauchy sequence.



Definition:A metric space M is said to be complete if every Cauchy

sequence in M converges to a point in M.

Example. R with usual metric is complete.

Theorem 18. A subset A of a complete metric space M is complete if and

only if A is closed.

Proof: Suppose that A is complete. We have to prove A is closed.
For that it is enough to prove A contains all its

limitpoints. Let x be a limit point ofA.

Then there exists a sequence(X,) in A such that

Xp—X. Since A 1s complete x EA.

~ A contains all its limit

points. Hence A is closed.

Conversely, assume that A is a closed

subset of M. Let (x,) be a Cauchy sequence

in A.

Then (x,) be a Cauchy sequence in M.

Since M is complete, there exists X € M such that

X, — X . Thus (x,) is a sequence in A such that x,

— X.

~ X EA.



Since Ais closed A = A and hence x € A.

Thus every Cauchy sequence (x,) in A converges to a point in A.

~ A'is complete.

Note:Every closed interval [a, b] with usual metric is complete since it is a
closed subset of the complete metric space R.

Limit of a Sequence: if a sequence is convergent, the unigue number to

which it converges is the limit of the sequence.

1.13 Cauchy Sequences:

Definition: A sequence (S,,) is called Cauchy sequence if, given any €> 0,
there exists an N € N such that |S,, — S,,,| <€ foralln,m > N.
Symbolically, (ve> 0)(IN € N)(vn,m € N)[n = N)A(m = N) =

lx, — x| <€E].

Equivalently (S,,) is a Cauchy sequence if lim,, ;0[S — S| = 0

Example:Show that the sequence (S,,), where S,, = nTH Is a Cauchy

sequence.

Solution: forall n,m € N,

n+1) <m+1>|_|mn+m—nm—n

|Sn _Sml = |<

n m nm



m-—n m-+n
e

nm nm

Therefore, if m > n,then

B S|<m+n<2m_2
nTMT am T mn n

Let €> 0 be given thenthereisan N € N,

Such that% < g.thus foralln > N,

We have [S, — S = |(%) - (%) < 2 <

m

Y
N
Hence the sequence (S,,) is a Cauchy sequence.

(_1)n+1

n!

1 .
Example: Show that the sequence (Sy,), where S, =1 — =+ + is

a Cauchy sequence.

Solution:for all n,m € N,with m > n, we have that

B 1 (_1)n+1 1 (_1)m+1
|S,, — S| = 1_Z+W+T — 1—z+“'+T
—1 n+2 —1 n+3 —1 m+1
= ( ) -|—( ) +...+L
n+ 1! (n+2)! m!
< ! + ! + -+ .
" (n+1)! (n+2)! m!
1 1 1 1 1 1
Sontomm Tt omg = 2_"[1 toteet Zm—n—ll
2 1\ n 2 1
== -G =57
Since 2n1_1 — 0 asn — oo, givenany € > 0 thereisan N € N Such that
1_1— 1_1—0| <eforalln €N.
2n 2n

Thus



1 (-1t 1 (—1)m+1
=1 CO) (1L )

n! ! m!

1

2n—1

< <ég&

Forall m = n > N. That is (§,,) is Cauchy sequence.
Theorem 19. Every Cauchy sequence (S,,) is bounded.
Proof: Suppose that e = 1 then there exists an N € N such that
|S,, — S,,| <1foralln,m > N.
Choose a;, = N and observe that
1Sl = [Sn = Sic + Sl < 1S5 = Sicl + |kl
<14 |5 foralln > N.
Let M = Max{|S,[|S,] . e eee o ISN |, |Sk| + 13-
Then |S, | < M for alln € N, and therefore (S,,) is bounded.
Theorem 20. Every Cauchy sequence (S,,) of real Numbers converges.
Proof: We know that (S,,) is bounded, and therefore, by the Bolzono-
Weierstras theorem(S,,) has a subsequence (Snk) which converges to some
real number x. We claim that the sequence (S,,) converges to x .

Let € > 0 be given, then there exist natural numbers N; and N, such that
ISn — Sl < forall k = N,.
Let N = max{N,N,}.thenforalln > N
& &
We have |S,—+] < [Sp = Sp, | + [Sp—4| <S+- =
Therefore lim,,_,, S,, = .

Combining theorem, we get Cauchy’s Convergence Criterion for sequence.

A sequence (S,,) of real numbers converges if and only if it is a Cauchy



sequence.

1.14 Summary

Metric spaces provide a notion of distance and a framework with
which to formally study mathematical concepts such as continuity and
convergence, and other related ideas. Many metrics can be chosen for
a given set, and our most common notions of distance satisfy the
conditions to be a metric. Any norm on a vector space induces a
metric on that vector space and it is in these types of metric spaces

that we are often most interested for study of signals and systems.

1.15 Terminal Questions

1. Show that if (x,,) is a Cauchy sequence, then so is {|x,,|}.

2. Let (X, d) be a metric space and let a E X and r > 0. Can BJa, r] be an
open set? Justify your answer.

3. Show that Int A is an open set.

4. Show that any finite subset of a metric space is closed.



5. If X is a metric space and A is a non-empty subset of X, then show that
A ={x:d(x,A) = 0).

6. Let (X, d), (Y, dy) and (Z, d3) be three metric spaces. Let f: X +Y be.
continuous at X € X and g. Y + Z be continuous at y = f(x). Then
composite map gof: X + Z is continuous at x € X.

7. Let (X, d)) and (X, d,) be two discrete metric spaces. Then verify that
the product metric on X; X X, is discrete.

8. Check whether the function d: R* x R* - R given by d(P1,P,) =|x; —
X2 |ly1 — y2| where p; = (x,,y2) and p, = (Xz,y) isa metric or not.

9. Let (X, d) be a metric space. Show that the following functions give

a(x,y)

metrics on X. D(x,y) = rdCey)

10. Which of the following functions d : R x R — R are metrics on
R?
) dxy)=5lx—yl
i) d(x,y) =x?+y?
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2.1 Introduction

In this unit we shall study about the concepts of a limit and Continuity for the
functions of a single variable.The natural of a surface is defined by an
equation between the coordinates of its points, which we represent by
f(x,v,z) = 0 generally speaking, on passing through the surface the value of
change its sign, so that, as long as the continuity is not interreupted, the
values are positive on one side and negative on the other, In the extend these

concepts for the functions of two variables.

2.2 Objectives

After reading this unit, we should be able to

= Define Bounded and Unbounded of a functions
= Define Limit of a function

=Define Algebra of limits

= Check Continuity of a Function

= Use theCharacterization of Continuity

= State and use theorems on Continuity of functions with the help of

examples.

2.3Domain and Range of a function:




A function consists of two non-empty sets X and Y and a rule which

assigns to each element of the set X one and only one element of the set Y.

The set X is called the domain of the function. If x is an element of X,
then the element of Y which corresponds to it is called the value of the

function at x (or the image of x) and is denoted by f(x).

The range of a function is the set of all those elements of Y which are

the values of the function.

Range of f(x) = {f(x) : x € X}, clearlyrangeof f C Y

2.4Bounded and Unbounded of a functions:

A function is said to be bounded if its range is bounded, otherwise it is
unbounded. Thus, a function f(x) is bounded in the domain D. if there exist

two real numbers k and K such that
k<f(x)<Kforallx €D

Again, the bounds of the range of a bounded function are called the bounds of

the function.

Example 1. The function f defined by f(x) = sin x for all x € R is a bounded
function, because its range is the closed interval [-1, 1] which is a bounded

set. Clarly supremum or l.u.b. of fis 1 and infimum or g.l.b. of f is -1.

Example 2. The function f(x) = log x for all x € (0, oo)has its range (—oo, =)

which is not bounded. Thus the function f is unbounded in the domain (0, o).

Note: Let f: X — Y (i.e., fis a function whose domain is X and range

f(X) €Y, the co-domain)



(i) fiscalled a monotonically increasing function if x;, x, €
X withx; <x, = f(x;) < f(xy)

(i)  fis called a monotonically decreasing function if x;, x, €
X withx; <x, = f(x)) = f(x,)

(iii) fis called a one-one function if x;, x, € X with x; # x, = f(x;) #

f (x2).
(iv) fis called an onto function if to each y € Y, 3 at least one x €
Xs.t.f(x)=y.

2.5 Limit of a function:

A function f(x) is said to tend to a limit | as x tends to a if to each given

€ > 0, there exists a positive number é (depending on €) such that
|f(x) — 1] < ewhenever0 < [x —a| <§

i.e., f(x) € (I —¢ 1 + ¢) for all those values of x (except at X = a) which

belong to (a — §,a + &). This is denoted by lim,._,, f(x) = L.
Left hand and right hand limits

f(x) is said to tend to | and x tends to a through values less than a, if to

each e > 0,3 6 > 0, such that
|f(x) =l <ewhena—6<x<a
Sothat f(x) € (I —¢,1l + €) whenever x € (a — §,a)

The limit in this case is called the left hand limit (L.H.L.) and is denoted
by f(a—0).

Thus



fla=0)= lim f()

Similarly, if f(x) tends to | and x tends to a through values which are

greater than a i.e., if given € > 0,38 > 0 such that

|f(x) —1ll| <ewhena<x<a+§

Then f(x) is said to tend to | from the right and the limit so obtained is called
the right hand limit (R.H.L.) and is denoted by f(a + 0)

We write
fla+0)= lim f(x)
x—>a+0

Existence of a limit at a point. F(x) is said to tend to a limit as x tends to ‘a’ if
both the left and right hand limits exist and are equal, and their common

value is called the limit of the function.
Note. How to find the left hand and right-hand limits?

(i) Tofindf(a—0)or lim,_,_, f(x),wefirstputx=a—h,h>0in
f(x) and then take the limit as h — 0+. Thus
im, f6) = fim fa =1

x-a-—

(i) Tofind f(a+ 0) or lim,_ o f(x), wefirstputx=a+h,h>0in

f(x) and then take the limit as h — 0+. Thus
lim f(x) = I}g&f(a + h)

x-a+0

2.6 Limit at infinity and infinite limits:

(i) lim, o f(x) =1



A function f(x) is said to tend to | as x — oo if given € > 0 however

small, 3a + ve number k (depending on ¢) s.t.
f(x) —ll<eVx=k ie,l—e<f(x)<l+e Vx=k
(i) lim,,_o, f(x) =1

A function f(x) is said to tend to | as x — —oo if given € > 0 however

small, 3a + ve number k (depending on ¢) s.t.
f(x—D|<eVx>=—-k ie,l—e<f(x)<l+e Vx=—-k

(iii) lim,_, f(x) =
A function f(x) is said to tend to oo as x tend to a, if given k > 0,
however large 3a + ve number §.
f(x)>kfor0<|x—al<é
(iv) limyq f(x) = —o0
A function f(x) is said to tend to —oo as x tend to a, if given k > 0,
however large 3a + ve number §.
fx)>—-kforO0<|x—al<é
(V) limy,e f(x) = —c0
A function f(x) is said to tend to —oo as x — oo, if given k > 0,
however large 3a number k" > 0s.t..
fx)<—k Vx =k
(Vi) limy,_o f(x) = o0
A function f(x) is said to tend to o as x — —oo, if given k > 0,
however large 3a number k' > 0s.t..
f(x) >k Vx = —k'



(vii) lim,_,_, f(x) = —
A function f(x) is said to tend to —oo as x — —oo, if given k > 0,
however large 3a number k' > 0 s.t..
flx) < —k ¥Vx < —k'

2.7 The limit of a function at a point, when it exists, is unique

Suppose lim,._,, f (x) exists and is not unique.

Let lim,_, f(x) =landlim,_, f(x) =1, wherel # '
Now l+1U'=|l-1]>0.

If we take ¢ = %Il —1'| > 0, then

lim,_, f(x) =1= givene > 0,36; > 0s.t.
|f(x) —Il] <ewhenever0 < |[x —a| <8; .ooovriiiiiiiiiii. (1)
Again lim,_, f(x) =1' = givene > 0,35, > 0s.t.
|f(x) =U'| <ewhenever0 < |x —a| <8, ..ccooeviviiiiinini.l. (ii)
Let § = min (64, 8,), then from (i) and (ii), we have
If(x) =1l <eand |f(x) —l'| < ewhenever0 < |[x —a| < §
Now [l —1U"| = |l = f(x) + f(x) = Ul

SU=fI+I1fC) =V =1fC) = U+ 1f(x) -]
<e+e=2ewhenever0< |[x—al <é

Or |l =U| <|l—=1U|whenever0 < |x —al| < §



Which is absurd, therefore, our supposition is wrong. Hence [ = I’ which

proves that lim,._,, f (x), if it exists, is unique.

2.8 Algebra of limits

Let f and g be two functions and a be a point of their common domain.
If lim,_, f(x) =land lim,_, g(x) =m

() lime g f() +g@)l=1+m (i) limy,q|f(x) —g(x)| =

[—m

Q)

pret i provided m # 0

(iii) lim, L |f(x).g(x)| =1Lm (iv) chl_r)rcll
Proof. (i) lim,_, f(x) =1 — givene > 0,35, > 0s.t.
|f(x)—z|<§ for0<|x—al <68  .oovrirnnn.. )
lim,_,, g(x) =m — givene > 0,35, > 0s.t.
|lg(x) —m| <§ for0<|x—al<éd,  ............ 1))
Let § = min (6, 8,), then from (i) and (ii), we have

|f(x) — 1| <§and lg(x) — m| <§for0< lx —al <6

Now [f(x) + g(x) — (I +m)| = |f(x) =1+ g(x) —m| < [f(x) =] +
|lg(x) —m|

<§+§=£ for 0<|x—al <6
lim[f(x) + gx)]=1+m
xX—a

(if)  Proceeding as in (1) above



f0)—g)—(U-m)| =[f(x) —l+m—g(x)|
< |f(x) =1+ |m— g(x)
=1f) = U+1gl) —m|<-+-=¢efor0<|x—al <&
lim|f(x) —g@)l=1=m
(iii) chiirollf(x) =1[- given g; > 0,35, > 0 s.t.
If(x) =1l <& forO<|x—al| <& .cccovvvinnnn.l. (i)
)lci_r)lglg(x) =[- given &, > 0,36, > 0 s.t.
lglx) —m| <&, forO0<|x—a|l <8y .ccoonnn.. (ii)
Let § = min. (8,4, 6,), then from (i) and (ii), we get
If(x) -1l <egand|glx) —m|<e for0<|x—al <6
Also  [g()| =]g(x) —m+m| < [g(x) —m|+ |m|
<&+ ml <1+ |m| e, <1
Now |f(x)g(x) — Im| = |f(x)g(x) —1g(x) + 1g(x) — Im| = |g () (f (x) —
D+ 1(g(x) —m)|
< |gC)(f(x) = DI+ l(gCx) —m)| = gl f (x) = U] + |I]|g(x) — m|

<@+ mDe +|lle;for0< |x—al <

. & &
Taklng & = m and &y = m, we have
lf()g(x) —Im| < (1 + |m|)e; + |l]e;
= (1 + [m]). s+ [l s
C R a T 2
=£+£.5<5+52£f0r0<|x—a|<5 SELEp ]
2 1472 "2 2 1+l



= lim f(x)g(x) = Im

(iv) Letus first prove that

1 1
limg(x) =m(*0) -lim——=—
x—a x—»ag(x) m

limg(x) =m — given e > 0,36 > 0Os.t.
x—a
lglx) —m| <efor0<|x—al<é
Im| =|m—gx) + g(x)| < |m— g+ [g(x)]
=|gx) —m|+[glx)| <e+[g()| for0<|x—al <$§
lg(x)| > |m|—efor0<|x—al<$§

Taking &> lzﬂ we get |g(x)] >%for0 <lx—al<é

Ig( Y I S Tor0<fx—al <o ..o (1)
2
Again lim,,_,, g(x) = m - given ¢, = ug > 0,36 > 0s.t,
lglx) —m|<egforO<|x—al<8§ ..o, (i1)
L_i| _ |m=g9@)]| lgtx)—m|
gx) m mg(x) | |m|lg(x)|
< ﬁ ﬁfor 0<|x—al<& using (i) and (ii)
2
<L.M€_€l e., |———| <egforO<|x—al<é
Im|?
. 1 _ 1
] llmx_,aﬁ =
f(x) 1 gy r_ 1
Now llm 0 = Jlclrrcllf(x) }Clmf(x) 11m (x) L. — =

Example 1. Do the following limits exist? If yes, find them:



1
(@)lim,_,; sin ﬁ (b) lim,_,o x sini (c) lim,_,; 2x-1

. el/x . 1
(d) llmx_)o m (E) hmx_)O 1+e—1/x

3x—2 where x < 1
x?>—3x wherex >1

() lim,.; f(x) where f(x) = {4
Solution. (a) lim,,_,; siIn——

LH.L = lim,,_osin— [Putx=1-h,h>0]

. L1
= lim — sin-.
h

= lim sin
h=0>"" _h—1 ™ nlo

Now as h — 0, sin% is finite and oscillates between -1 and 1; so it does not

tend to any unique and definite value as h — 0. Hence L.H.L. does not exist.

Similarly the right hand limit also does not exist as x —1.

. . 1 .
Thus lim,._,, x sin — does not exist.

(b)lim,, o x sin%

LH.L. = lim,o_oxsin- [Putx=0-h,h>0]

= }ll_r)l(l)(o — h) sing—p = }ll_r)l(l)hSHlﬁ

= 0 X a finite quantity between-1and 1 =0

Similarly, R.H.L.= lim,_o_o x sin [Putx=0+h, h>0]
= }11_r>r(1)(0 + h) sin o Th }ll_r)r(l)hsmﬁ

= 0 X a finite quantity between-1and 1 =0



Thus L.H.L and R.H.L. both exist and are equal and hence lim,,_,, x sini

exists and is equal to zero.

: .1
] lim,_,,x sin— = 0

(c)Let f(x) = Zﬁ
LHL = f(1—0) = lim,_,_o f(x) = 1i£rlozﬁ [Putx=1—h, h>

0]
-1 1

1
—11m21h1—11m2h =2 =—=—=0
h—0 h—0 A 0

RH.L = lim 271 [Putx=1+h, h>0]

x—-1+0

1 1
= lim21+h+1 = |lim2h = 2%° = o
h—0 h—-0

1
Since, LH.L.#R.H.L. [ lim2x-1 does not exist.

x—1

1/x
e
(d)llmx_,o 1/T+1

L.H.L. =lim,_,_g 1/x [Putx 0—-h,h>0]

eﬁ e_Tl 0 _1 1

= lim——— = lim— =3 1=01ime h=e ®=—=0

"Oeomn+1 "len 41 U "0 %
RH.L =lim,_ g 0= 1/x [Put x=0+h,h>0]

1 1

. e0+h } eh ..

= limy,_,o——— = lim;_,,———  [divide the numerator and
e0+h+1 eh+1

1
denominator by er]



1 11

= lim -5 = = = =
h—>01+87 1+e 1+0

el/x

Since, LLH.L#R.H.L O limy g —— Y does not exist.

(e)Please try yourself.
(HLH.L =lim,_;_f(x) = ligno(Bx —2) [Putx=1-h,h>0]
x—-1-

=}111£r(1)(3—3h—2)=}11£r(1)(1—3h)=1—O=1
_ . _ . 2 —
RH.L. = hl_gr}rof(x) = hl_gr}ro(élx 3x) [Putx=1+h,h>0]
= }lirr(l)[4(1 +h)?-3(1+h)] = }lirrcl)(l +5h+4h?) =1
L.HL.=R.H.L=1.

Hence limf(x) =1
x—0

Example 2. Using the definition of limit, prove that

. . x%-a? - .1
(i) }Cl_rg — = 2a (i) }cl_r)rcl)x sin— = 0
(i) limx? sm— =0

x—0

. . x2_a2
Solution. (i) Here f(x) = —— X#a
We must show that for any € > 0,35 > Os. t.

If(x) —2a|l<eforO0<|x—al<éd

(x —a)?

X —a

x%2-a?-2ax+2a?

Now |f(x) — 2al| =

xX—a

x% —2ax + a?
= |x —al

X—a



|f(x) — 2a| < e whenever 0 < |x —a| < ¢
Choosing 6 = ¢

|f(x) — 2a| < e whenever 0 < |x —a| <&
Hence lim, o~
(i) Here f(x) = xsin i

[f(x) = 0] =

|f(x) — 0] < e whenever 0 < |x| < ¢

1
Sin—| < 1)
X

< 1! (

1
sin—
X

xsin —’ = |x]|
X

Choosing 6 = ¢
|f(x) — 0] < e whenever 0 < |x| <&
Hence f(x) = xsin% =0
(iii) Here f(x) = x2 sini

2] sin—

1
Sl)
X

< |x|2(

|f (x) — 0] < e whenever 0 < |x|? < i.e., whenever 0 < |x| < e
Choosing § = /¢
|f(x) — 0] < e whenever 0 < |x| < &

1
sin—
X

2. L
xsm—|=|x
b

lf () —0] =

. 1
Hence lim,_,q x? sin- =0

Example 3. If f(x) = [x] where [X] denotes the greatest integer not greater

than x, show that lim,._,; f(x) does not exist.



Solution. We have L.H.L =lim,_,;_, f(x) = lim [x] [Putx=1-h,h>

x—1-0
0]
= }li_rg[l —h] = }li_r)r(l)(O) =0
RH.L. = xl_i){r}rOf(x) = xggr}ro[x] [Put x =1+ h, h > 0]
= ;1115(1)[1 + h] = }liir(l)(l) =1
S L /W S

] lin} f(x) does not exist.
X—

22

——a for0<x<a

Example 4. Find lim,._,, f(x) where f(x) = i 0 forx=a

a
a-— forx >a

. T x_z_ .
Sal. L.H.L_xggof(x)_xggo(a a) [Putx=a—h, h>0]

= lim

(a — h)? a?
h—0 B ]

al=——-—-a=a—a=0
a a

| _ @ _
RHL. = lim f(x) = lim (a=%) [Putx=a+h h>0]

a’ a’
=}11_rg[a—m]=a—;=a—a=0

1 lim 0f(x) and lin}rof(x) both exist and each is equal to 0.
xX—a

X—>a—

0 limf(x) =0
xXx—a



x2

Example 5. Let f(x) = +i, then given € > 0, find a real number § > 0

x%+

such that

If(x) = 2| <efor0<|x|<é

. x%+2
Solution.|f(x) — 2| = el 2| <&
2 a2 —y2
If T e orif |5 <e
x“+1 X
. xz
Or if x2+1| < e(|—x| = |x])
. x? x?
Or if R (x2+1 = O)
Or if x2<e(x*+1) (x*2+1>0)
Or if (1—¢e)x2<e orif x2<1i_g (ifl—e>0ie,e<1)

Or if lx| < /i
1—-¢

Choosing § = /1%80 < & < 1, we have
If(x) —2|<efor0<|x| <6

Example 6. Let f(x) = % x # 0. Prove from definition (e, § method) that

lim,_, f(x) = %

Solution. To prove that lim,._,, f(x) = % we have to show that for any € >

0, we can find § = §(&) > 0s.t.



1
|f(x)—§| <ewhen0<|x—2|<§é

2—x| _ |2-x| .
=R e (1)

Now F -3 =

11
X

X 2Xx

Choosing d < 1and 0 < |x — 2] < §, we have
O0<|x—2|<1=|x—-2|>0and |x — 2| <1
S>x#F2ad2—-1<x<2+4+1=x#*2and1<x <3
Sx#2and1>->-=sx#2and;<-<1

>x # 2 andi<1[:~1>l>0 .-.l:i]
|x] x 3 x x|

x=2| 1 1)
| l.—<—.1
2 [x] 2

From (i), |£ () = 5| =
Let us choose § s. t.g <egli.e.,b<?2e¢
Also § < 1. Choosing §=min. (1, 2¢), we have

|f(x)—%|<§<ewhen0<|x—2|<6

1

"‘limx—>2 f(X) = 5

Example 7. If lim,._,, f(x) exists and lim,._,, g(x) does not exist, can

lim,_,,[f(x) + g(x)] exist? Prove your assertion.
Solution.~lim,_,, f (x) exists, let lim,,_, f(x) = [
=lim, Lo f(x) =1 =lim,_ o f(x)

~lim,,_,, g(x) does not exist, let lim,._,;,_q g(x) = m; and lim,,_,,,, g(x) =

m, where m; # m,



Now lim [f(x)+ g(x)] = lim f(x)+ lim g(x)=1+m,
x—>a—0 x—a—0 x—a—0

Jim [fG) +g(0)] = lim f(x)+ lim g(x) =1+m,
Since l4+my#l+m, [*m; #m,]
~lim, L, [f (x) + g(x)] does not exist.

Example 8. If lim,._,, f(x) and lim,._,, f (x) g(x) both exist, then does it

follow that lim,._,, g(x) exists?

1 if x>0

. _ _ I _
Solution. Let f(x)—x,g(x)—x,x;to {_1 if x<0

FG90) =% 0 = |

lim,_, f(x) = 0 exists; lim,._,, f(x) g(x) = 0 exists
But limx_)o_o g(X) = limx_,o_o -1=-1

lim g(x)= lim 1=1

x—-0+0 x—04+0

=lim,._,, g(x) does not exists.

Thus lim,._,, f(x) and lim,._,, f (x) g(x) both exist does not necessarily

imply that lim,._,, g(x) also exists.

Example 9. If lim,._, f(x) = [, then show that lim,._,|f (x)| = [I]. Is its

converse true?
Solution.We havelim,._,, f (x) = [= for any given ¢ > 0,36 > 0 s. .

f(x) =l <ewhen0<|x—al<dsd ... (1)

Since  |a—b| = |lal — |b||



Af) = Uz |If el = 1|

=>||f(x)| — |l|| <|f(x)—Ill<e when0<|x—al<§é
using (i)

=lim,olf ()| = I

The converse of this statement is not always true.

: (-1 if x<a
For example, consider f(x) = { 1 if x>a
Then lim, o f(x) =lim,,,_o—1=-1

lim f(x)= lim 1=1

x—->a+0 x—-a+0

=lim,._,, f (x) does not exists.

But |[f(x)] =1 Vx = lim,_,|f(x)| = 1 exists.

Example 10. If f(x) < g(x) < h(x) and limf (x) = | = limh(x), then
xX—a xX—a

prove that limg(x) exists and is equal to .
xX—a
Solution.We have limf(x) = [ = limh(x)
xX—a xX—a

= Givene > 0,38,,6, > Os.t.

If(x) -1l <e for0 <|x—al <§;

And lh(x) =1 <& for0<|x—al <§,
Sl-e<fx)<l+e for0 < |x—al <§

And l—e<h(x)<l+¢ for0<|x—al <§,

Let 5 = min.(8;, &,), then



[—e<f(x)<l+eandl—e<h(x)<l+e for0<|x—al<é

From(@and(ii) [ —e< f(x) <gx)<h(x)<l+efor0<|x—a|l<é
Sl—e<gx)<l+eforO<|x—al<§

=>lgx) -l <efor0<|x—a|<§ = lim,,,gx) =1

2.9 Characterization of Continuity:

Definitions: (i) Continuity at a point

A function f: A — R is said to be continuous at the point a € A if

given € > 0, however small, 3a real number § > 0, such that
|f(x) — f(a)| < ewheneverx € Aand |x —a| < §

i.e., f(x) e (f(a) —¢ f(a)+ &) wheneverx € (a—6,a+ )N
A.

Equivalently, a function f is continuous at x = aifflim,._,, f(x) = f(a)
e, ifflimy,q_ f(x) = limy,q, f(x) = f(a)
(if) Continuity from the left at a point

A function f: A — R is said to be continuous from the left (or left
continuous) at the point a € A given € > 0 however small, 3 a real number
& > 0 such that

|f(x) — f(a)] < ewheneverx e Aanda—6 <x<a



Equivalently, a function f is continuous from the left (or left

continuous) at x = a if lim,_,, f(x) = f(a)
(iif) Continuity from the right at a point

A function f: A — R is said to be continuous from the right (or right
continuous) at the point a € A if given € > 0 however small, 3 a real number
& > 0 such that

If(x) — f(a)] < ewheneverx € Aanda < x < a+ 6.

Equivalently, a function f is continuous from the right (or right
continuous) at x = a if lim,_,, f(x) = f(a)
Note. Clearly, f is continuous at x = aiff f is left as well as right continuous at
X =a.

(iv) A function f is said to be continuous in an open interval (a, b) if fis

continuous at every point of (a, b).

Thus, f is continuous in the open interval (a, b) iff for every c €
(a; b): lim,_,. f(X) = f(C)
(v) Continuity in a closed interval

A function f is said to be continuous in a closed interval [a, b] if it is

(i) Right continuousata i.e.lim,_,; f(x) = f(a)

(i)  Continuous in the open interval (a, b) i.e.lim,_,. f(x) = f(c) for
every ¢ € (a, b)

(iii) Left continuous at b Leldim,_,_ f(x) = f(b)

(vi) Continuity in a semi closed interval



l. A function f is said to be continuous in semi closed interval (a, b) if
itis
(i)  Continuous in the open interval (a, b) i.e., lim,_,. f(x) = f(c)

for every c € (a, b)

(i)  Left continuous at b e, lim,_,_ f(x) = f(b)

I1. A function f is said to be continuous in semi closed interval [a, b) if
itis
(i) Right continuousata i.elim,_,; f(x) = f(a)
(i)  Continuous in the open interval (a, b) i.e., lim,_,. f(x) = f(c)

for every ¢ € (a, b)
(vii) Continuity on a set

A function f is said to be continuous on an arbitrary set S(c R) if for each
e < 0 and for every a € S,3 areal number § > 0 such that [f(x) — f(a)| <

€ whenever x € S and |x — a| < 6.

Equivalently, a function f is said to be continuous on a set S if it continuous
at every point of

S,i.e.,ifforeverya €S, lim,_, f(x) = f(a).
(viii) Continuous Function
A function f: A — R is said to be continuous iff it is continuous on A.
Thus f is continuous if it is continuous at every point of its domain.
(ix) Discontinuity of a function

A function f which is not continuous at a point ‘a’ is said to be

discontinuous at the point ‘a’.



‘a’ is called a point of discontinuity of f or f'is said to have a discontinuity at

(P

a.

A function which is discontinuous even at a single point of an interval is said

to be discontinuous in the interval.

A function f can be discontinuous at a point x = a because of any one of the

following reasons:

(i)  fisnot defined at ‘a’
(i)  lim,_, f(x) does not exist i.e., lim,_,,_ f(x) # lim,_ 4, f(x)

(i) lim,_, f(x) and f(a) both exist but are not equal

(x) Types of Discontinuity

Let f be a function defined on an interval I. Let f be discontinuous at a point

a€l.

(1)Removable Discontinuity
If lim,._,, f(x) exists but is not equal to f(a), then f is said to have a
removable discontinuity at ‘a’.
This type of discontinuity can be removed by defining a new function g

as

f(x) if x#a
g(x) = {)lci_rgf(x) ifx=a

Then g is continuous at ‘a’

Note. If lim,._,, f(x) does not exist, then the function cannot be made

continuous, no matter how we define f(a).

(2)Discontinuity of First Kind (or Jump Discontinuity)



If lim,_,,_ f(x) and lim,._,,, f(x) both exist but are unequal then f is
said to have a discontinuity of first kind at ‘a’ or jump discontinuity at

[P

a.

F is said to have a discontinuity of the first kind from the left at ‘a’ if
lim,._,,_ f(x) exists but is not equal to f(a).
F is said to have a discontinuity of the first kind from the right at ‘a’ if
lim,_,,. f(x) exists but is not equal to f(a).
(3)Discontinuity of Second Kind
If neither lim,._,,_ f(x) nor lim,._,,, f(x) exist, then f is said to have a
discontinuity of second kind at ‘a’.
fis said to have a discontinuity of the second kind from the left at ‘a’ if
lim,._,,_ f(x) does not exist.
f is said to have a discontinuity of the second kind from the right at ‘a’
if lim,_,,, f(x) does not exist.
(4)Mixed Discontinuity
If a function f has a discontinuity of the second kind on one side of a
and on the other side, a discontinuity of the first kind or may be
continuous, then f is said to have a mixed discontinuity at ‘a’.
Thus f has a mixed discontinuity at ‘a’ if either
(i) lim,_,_ f(x) does not exist and lim,._, . f (x) exists, however
lim,_ .4 f(x) may or may not equal f(a).
(i) lim,_,4 f(x) does not exist and lim,._,,_ f (x) exists, however

lim,._,_ f(x) may or may not equal f(a).

(xi) Piecewise Continuous Function



A function f : A — R is said to be piecewise continuous on A if A can

be divided into a finite number of parts so that f is continuous on each part.

Clearly, in such a case f has a finite number of discontinuities and the

set A is divided at the points of discontinuities.

For example, consider f: (0, 5) — R defined by f(x) = | x|, then fis
discontinuous at 1, 2, 3 and 4. If the interval (0. 5) is divided at 1, 2, 3 and 4,
then f is continuous in (0, 1), (1, 2), (2, 3), (3, 4) and (4, 5).

=~ T Is piecewise continuous.
Example 1. Using € — § definition, prove that

(i) f(x) =3x+ 1iscontinuous at x = 2.

(i) f(x)=4{x-=2"’ if x#2 Is continuous at x = 2
4 if x=2
x3-1 .
iy Feo) = Y *# Lis continuous at x = 1
32, if x—1

Solution. (i) Here  f(x) =3x+1,f(2)=3%x2+1=7
Let € > 0 be given
Now  [f(x)—f(D)I=1Bx+1)—7]=3(x—2)]

= 3|x — 2| < e whenever 3|x — 2| < e ie, [x — 2| <
~ if we choose § = § then |f(x) — f(2)| < € whenever |[x — 2| < &

= f is continuous at x = 2.

(i) Here  fO0) =22F, x#2

X



f(2)=4
lete >0

(x+2)(x-2)
x=2

4

2
xX“—4
—4| =

xX—2

Now [f(x) = f(2)| =

=|(x+2) — 4| =[x — 2| < € whenever |x — 2| > ¢
~ if we choose § = ¢, then |f(x) — f(2)| < e whenever |x — 2| < §

= fis continuous at x = 2.

x3-1
(iii) Here f(x) = X F1
f(1) = 3/2
Let £ > 0 be given
~ 3 x3—1_§ . (x—1)(x2+x+1)_§
Now If(x) f(1)|— x2_1 2|_ (x—1)(x+1) 2|
| Hx+1 3] [2xP-x-—1
x2 41 2| 2(x+ 1)
_|(x—1)(2x+1) _ | 1||2x+1
- 2x+2 =X 2x+2
) 1|[“ 2x+1< l
=X " 2x + 2

< g whenever |x — 1| < ¢
=~ If we choose § = €, then |f(x) — f(1)] < € whenever |[x — 1] < &
= fiscontinuousatx =1

Example 2. Using € — 6 definition, prove that



xsin = if 0
x’ is continuous at x =0

(i) f(x)={ 0.," if x=0

2 1 .
(i) gx) = {x cosz, i x#0 is continuous at x =0
0, if x=0
Solution. (i) Here flx) = xsin%, x#+0
f(0)=0

Let &> 0 be given.

Now [£(x) = £(0)| = |xsin — 0| = |xsinZ| = |x||sinz| < |x| [~
nd]<1]

< & whenever |x| < &

=~ If we choose § = ¢, then |f(x) — f(0)| < € whenever |[x — 0| < §

= fiscontinuousatx =0
(ii) Here gx) = x? cos%,x +0

g(0)=0

Let € > 0 be given

Now lg(x) — g(0)| = [x? cosi— O| = |x2 cosﬂ = |x?| |cosi| <
B [ |cos§| < 1]

= |x|? < e whenever |x|? < ¢ i.e., whenever |x| < Ve

- 1f we choose § = /¢, then |g(x) — g(0)| < € whenever |x — 0] < §



= g is continuous at x =0

Example 3. Using € — § definition, prove that the following functions are

continuous:
i) x| (ii) cosx (iii) sinx
(iv)  cos?x (V) sin®x

Solution. A function f is said to be continuous if it is continuous at every

point of its domain

(i)

(if)

Let f(x) = |x| domain of f=R
Let a be any real number so that f(x) = |a|

Let € > 0 be given

Now F ) = f@)] = [lxl - lal| < |x = al |+ [lal - |b]| <

la — bl
< g whenever |x —a| < ¢
if we choose § =g, then |f(x)— f(a)| << e whenever
lx —al <6
= fiscontinuous atx =0
= fis continuous at ever a € R
= fis continuous
Let f(x) = cosx. Domain of f=R
Let a be any real number so that f(a) = cosa
Let € > 0 be given

Now |f(x) — f(a)| = |cosx — cos al



(iii)
(iv)

= |—2 sinx * asinx _ a| =2 sinx ra |sinx _ a|
2 2 2 2
<2 |sinx ; a| [ sinx ’ a| < 1]
<2 |%|':Isinx| < |x]
= 2. 'x;al = |x — a| < £ whenever |x —a| < ¢
~ if we choose § = ¢, then
|f(x) — f(a)| < € whenever |x —a| < §
= fis continuous at x = 0.
= fis continuous at ever a € R
= fis continuous
Please try yourself.
Let f(x) = cos?x domain of f=R
Let a be any real number so that f(a) = cos?a
Let € > 0 be given
Now If(x) — f(a)| = |cos?x — cos?a| = |(1 — sin®x) — (1 —
sin?a)|
= |sin?a — sin®x| = |sin’x — sin?a| = |sin(x + a) .sin (x — a)|

< |sin (x — a)|*~|sin (x + a) < 1]

< |x —al-[sinx]| < |x|

< & Wwhenever |x —a| <e¢

~ if we choose § = ¢, then

|f(x) — f(a)| < € whenever |x —a| < §
= fis continuous at x = 0.

= fis continuous at ever a € R



= f is continuous

Example 4. Examine the continuity of the following functions at the

indicated point. Also point out the type of discontinuity, if any.

(i) f(x)=<tc—_24’ if x#2 at x = 2 (i)
, If x=2
f(x)=<9;—_39’ i x#34x=3
[ 5 if x=3
(ii)) fO0) =" at x =2 (iv)
f(x)={sm% Jox#0 k=0
1 if x=0
W ro=1 7 T =0
E lf x=0
Solution. (i) Here f(2) = 4
_ Cox2—4 (x+2)(x-2)
}Cl_l’gf(X)=}Cl_rgx_2=}C1£I% x—2

[Cancelling (X — 2), since x —2 = x # 2]

=lim(x+2)=2+2=4

xX—2

Since lirr%f(x) = f(2), fis continuous at x = 2
X—

(i) Here f(3)=5

. o x*=9 . (x+3HEE-3)
lonf) = I = = = I 9) =3 +3 =6




Thus Lilré f (x) exists but }Ci_rg f(x) # f(3).

=~ f has a removable discontinuity at x = 3

f can be made continuous at x = 3 be redefining it as follows:
x?—9

f)={%=3" ¥ x#3
5 if x=3

(iii) f(x) = % is not defined at x = 2, since f(2) assumes at form 0/0

(x—2)(x2+2x+4)
Howeverlim,_,, f(x) = 11{}1 2 }61_)2 x—2

=ling(x2+2x+4)=22+2><2+4=12

X

Thus lirr%f(x) exists. Therefore, f has a removable discontinuity at x = 2
X—

f can be made continuous at x = 2 by redefining it as follows:

x3—8
f=1%=2 Y ¥*?
12 if x=2

(iv) Here f(0)=1

sin2x sin 2x

}clgcl)f(x) - }cl—r>r(1) X x—0 2Xx

Thus limf (x) exists but limf (x) # f (0)

= f has a removable discontinuity at x = 2

f can be made continuous at x = 0 by redefining it as follows:



sin2x
FO) =" if x#0

2 if x=0
(v) Here f(0)=-

sin~1x

iy ) = iy =5

[Put sin"1x = @ sothat x = sinf® Asx — 0, 0 — 0]

o6 1.6 1 1
6502sin  26m0sin8 2 2

Since lir%f(x) = f(0), fis continuous at x =0
X—

Example 5. Examine the continuity of the following functions at the

indicated point. Also point out the type of discontinuity, if any.

(e1/%_1 . 0
i) o) =lamn ¥ ¥#0 40
0, if x=0

el/x

(i)  f(x) = {1+er/x’ if x+0
L 0, if x=0

atx=0

el/x_e—l/x

(i) fQx) =lemrem U X#0 4y=0

\ 1, if x=0

1

x-S, if x#

(iv) flx) =4 aeleaﬂ, if x#a 4x=a
0 if x=a
1/x
i if x#+0

atx=0

(V)  f(x) =q1+et/x’ .
0, if x=0



(vi) Show that the function f defined on R as

el/x_g=1/x

flx) = X ok if x # 0and f(0) =0 is continuous at x = 0.

Solution.(i) Here f(0) = 0

*—1 0-1
el/x+1 0+1

llm flx) = hm

1 1
=—1<asx—>0—,;—>—oo Soex —>O>

And hm f(x) = hm el (d|V|d|ng the num, and denom bye/¥)

el/x4

1—e ¥/ 1-0

w0kl +e-Ux 140

1 1 1
(asx—>0—,——>oo s oex = oo and ex —>O>
X

Thus lirgl f(x) and lir(gl+ f(x) both exist but are not equal.
x—->0— X—
:>lirr(1) f (x) does not exist.
X

Also none of the left and right limits is equal to f(0)
= T has a discontinuity of the first kind at x =0

(i) Here f(0)=0

el/x 0
| = i —
Jim ) = lim e T T30
1
=0 <a5x - 0—,— > —00 . el/x O)
X
1 1
= lim =1

x—0te VX +1 0+1



(iii)

(iv)

1
(asx - 04,— > o0 ~ e* 5 wande /¥ > 0)
X

Thus li%q f(x) and 1ir(§l+ f (x) both exist but are not equal
x—->0— xX—

:>}Ci£r(1) f(x) does not exist.

Since lim £(x) = £(0) # lim f(x)

Therefore, f is continuous from the left at x = 0 and has a
discontinuity of the first kind from the right at x = 0.
Here f(0)=1

1/x _ ,—-1/x

e

. . e
Jim fO) = i e

e?*—1 0-1
S oxo0-e2*+ 1 0+1

2
=-1 <asx - 0—,—> -0 = e¥* > O)
x

/X _g—1/x
And lim f(x) = lim eie”

x-0+ x—0+ el/X+e~1/%

1—e™2* 1-0

— -1
xo0+ 1+ e2/% 1+ 0

2
(asx - 04,— > 0 ~ e?* 5 ooand e ?* - O)
X

Thus lirg f(x) and lir(r)l+ f (x) both exist but are not equal
x—->0— X
=>lirr(1) f(x) does not exist.
X—
Since lim f(x) # f(0) = lim f(x)
x—0— x—0+
Therefore, f is continuous from the right at x = 0 and has a

discontinuity of the first kind from the left at x = 0.
Here f(a)=0



lim f(x) = lim (x — @) Put x =a—h, h> 0 so that as x —a

ex— a+1
—h,h — 0+]
_1
e h—1 0—
:xlir(£1+_he ,11+1:_(0)x0+120

1
ash - O+’ﬁ — o0 .~ el/h

1
exal

And lim f(x) = 11m (x —a).

x—a+ ex— a+1

[Putx=a+h,h>0sothatasx —-a+h h—
0+]
- el/h —1 - 1—e" 1/ 0 1-0
= — = S — = X
ho0r Ceh 1 hbow 1+ e 1n 1+0

Since lim f(x) =0 = lim f(x)
x—a-— x—a+

=0

~limf(x) = 0Also f(a) =0

xX—a

Hence f is continuous at x =0

(v) Heref(0)=0

llm f(x) = 11m [Put X =0 —h, h >0 so that as x —0-, h

1/x
— 0+]

y —he~1/h 0x0 0
T lte R 140

1
(ash - 0+'E o0 o e/M 5 wande VM > 0)



xel/x
1+el/x

And lir51+f(x) = lil’gl_l_ (dividing the num. and denom by

el/x)

T e +1 0+1

Since Jlr(l)q_f(x) =0= ,}L%Lﬂx)

0

+limf (x) = 0. Also f(0) = 0

Hence f is continuous at x =0

(vi) Please try yourself.

Example 6. Examine the continuity of the following functions at the

indicated point. Also point out the type of discontinuity, if any.

: _{e* whenx#0 . _ .
0 f(x)—{ 0 Whenx=0atx_0 (i

-1
f(x)={e owhenx # 0,4, -
0 whenx =0
S
ex?
(i) f) =47 % whenx #0 5y =0 (iv)
—ex

0 whenx =0

X
Flx) = {—1+el/x whenx # 0 atx =0
whenx =0

; h + 0
V) f(x) = {1—e1/x wRenx = Yatx=0
0

whenx =0
x—1
whenx # 0
(vi)f (x) = {1+e%—1 atx=1
0 whenx =0

Solution. (i) Here f(0) =0



) , 1
lim f(x) = limeY* =0 lasx - 0—,— > —o0 =~ e/* 5 O]
x—0— x—>0— X

And  lim f(x) = Jim el/* = ooi.e. lim f(x) does not exist.
x—0+ x—-0+

=~ T has a discontinuity of the second kind from the right at x = 0.
(i)  Please try yourself. [Ans. Discontinuity of the second kind

from the left]
(iti) Here f(0)=0

1

x2
lim f(x) = lim —= [Putx=0-h, h>0, so that as x — 0-,
x—-0— x—-0— 1—exZ
h— 0+]

i 1
2
= lim -2 (dividing the num. and denom by enr?)
h-0+ 1—eh_2
li 1 1 1
= |lim = = —
h—>0+e—12_1 0—1

1 1
(ash—>0+,ﬁ—>oo eﬁ—>ooande_ﬁ—>0>

. 1
And lim f(x) = 11m = lim —/— = = -1
x—-0+ 0+ —2 x-0+ ——5 0-1
1-ex e x°-1

Since lim f(x) = —1 = lim f(x)
x—-0— x—-0+
.-.lir%f(x) = —1 but f(0) = 0 so that lin%f(x) * f(0)
x— X—
Thus f has a removable discontinuity at x =0

(iv) Here f(0)=0

HpLS00 = i e




[Putx =0—h, h>0, so that as x — 0-, h—
0+]

. —h 0
= lim

= =0
h-0—1 4+ e~ 1/h 1+0

1 1 1
<ash—>0+,ﬁ—>oo eﬁ—>ooande7—>0>

And lim f(x) = lim L (dividing the num. and denom by
x—

x—=0+ 1+el/x

el/x)

. xe V% 0x0
T astre A +1 041

Since xll)rgl_f(x) =0= xlir&f(x)
.°.lirr(1) f(x)=0.Also f(0)=0
X—

=~ fis continuous at x =0

(v) Here f(0)=0

_ _ 1 1
Jim fx) = lim T =75 =1

1
(asx - 0—,— > —00 ~ e/* 5 0)
X

-1/x
And lim f(x) = lim = lim — =L =1

x>0+ x>0+ 1-el/X — xLoye /-1 0-1

1 1 1
(asx—>0+,——>oo s ex > oo and e x—>0>
X

Thus lir51 f(x) and 1ir51+ f (x) both exist but are not equal.
x—>0— xX—

:>lir% f(x) does not exist.
X—



Since lim £(x) # £(0) = lim f(x)

Therefore, f is continuous from the right at x = 0 and has a

discontinuity of the first kind from the left at x = 0.

(vi) Heref(1)=0

_ _ x—1
lim f(x) = lim ———
x—>1-— xﬁl—l_FeE:I
[Putx=1-h,h>0, so that as x — 1-, h— 0+]
lim ——" 2 o
= |llm T = — =
1 1 _1
(ash—>0+,ﬁ—>oo . eh>ooande h—>0)
. RT x—1
And 0= I
[Putx=1+h,h>0,sothatas x — 1+, h—
0+]
. y he /" 0x0
= 11m = 11m — = =
h—>0+1+e% h-0+e¢ 1/h+1 0+1

Since lim f(x) = lim f(x) = f(0)
x—>0— x—-0+
-~ fis continuous at x = 0.

Example 7. Examine the continuity of the following functions at the
indicated point. Also point out the type of discontinuity, if any.

1 1

(i) f(x)={‘9ﬁ ifx#2ax=2 (ii)f(x):{e_m if x # 2
0 ifx=0 0 if x=0

atx=2



Solution. (i) Here f(2) =0

1

lirzn flx) = lirzn ex-z [Put x =2 -h, h>0, so that as x — 2-,
xX—2-— X—2—
h— 0+]

= lim e Yh =0
h—-0+

1
And lim f(x) = lim ex-2 [Putx=2+h, h>0, so that as x —
xX—2+ xX—2+

2+, h— 0+]

= lim;,_, o, e/ = oi.e. lir§1+f(x) does not exist.
X—

~ T has a discontinuity of the second kind from the right at x = 0.

2.10 Open Set:

A subset G of a metric space (X, d) is said to be open set in X with respect to
the metric d, if G is a neighbourhood of each of its points.i.e., if for each

a € G, thereisanr > 0 such that S,.(a) € G.
Example: Prove that every set in a discrete space (X, d) is open.

Solution:Let G be any non-empty subset of the discrete space (X, d)and x be
any point of G. Then the open sphere S,.(x) with r < 1 is the singleton set
{x} which is contained in G i.e., each point of G is the Centre of some open

sphere contained in G.It’s a particular, each singleton set is open.

2.11 Closed Set:




A Subset F of a metric space (X, d) is said to be closed if F contains all its

limit points.

Example:Every closed sphere is a closed set.

Solution: Let S,.[x] be any closed sphere in a metric space (X, d).

If X —S.[x] =@, Then @ is open.

Assume X — S, [x] # 0. Lety € X — S, [x]. Theny & S, [x] .

This implies d(y,x) > r.Letr; = d(y,x) — .

The open sphereS,. (y) € X — S.[x].Forifz € S, (y). Then d(z,y) <.
Sod(z,y) <d(y,x)—r

i.e.,v <d(y,x)—d(zy) = d(x,z) by triangle inequality.

Thusz € S, (y) € X — S, [x]

This implies X — S,.[x] is open. Hence S,.[x] is closed.

2.12 Closer of a Set:

Let Abe any subset of a metric space(X, d).The Closer of Adenote by A is
the set of all adherent points of A.i.e.,A = AUA’

Symbolically A = {x € X: S,.(x) N A # @, for all r > 0}.
Properties:Let A and B be any two subsets of a metric space (X, d). Then

(1)A is a closed set.

(2)if A € B,then A € B.



(3)A is the smallest closed superset of A.
(4)A = Aif and only if A is closed.
(5)A is the intersection of all closed sets Containing A.
(6)AUB = AUB.
(7)AUB € AN B.
Proof: (1)We show that4 is a closed. We shall show that its
complement (A)¢ is open.
if(A)¢ = @ then @ is open. Suppose that (A)° = @.
Let x € (A), then x € A = there exists at least one r > 0 such that
SSx)NA =0, Weletusay € S.(x), thend(y,x) <.
Letr; =r —d(y, x).
Clearly r; > 0 and S, (v) € S, (x)
=S, (y) N A = @, for atleast one r1.[+S, (y) N A € S, (x) N A]
=Yy & A
Since y is an arbitrary number of S,. (x),therefore,
Sy, (x) € (A)-.
This implies (A)€ is open. Hence A is a closed.
Proof: (2)Letx € AthenS, (x)NA # @, forallr >0
this implies S, (x)NB # @, (~ AS B)i.e.,x €B
Hence 4 € B.
Proof: (3)we know that A4 is a closed set, and A € A. To show that A is
the smallest closed set containing A, we suppose that if F is any other
closed set containing A, thenA € F = A € F = F[+ Fis closed].

Since F is arbitrary, so A is the smallest closed set containing A.



Proof: (4)If A = A, Then by (1)A is closed, and so A is closed.
Conversely, let A be any closed set.

Since A € A. So we need to show that A € A.

Let x be any element of 4, then either x € A or x & A.

If x € A, then the result is proved.

If x ¢ A,and x € A, Then for every r > 0, the open sphereS,.(x)
contains a point of A other than x.

=Xx is a limit point of A.

But A being closed, therefore x must belong to A. Hence A € A.
Proof: (5) Let F be the intersection of all closed sets containing A.
Then F is closed.

ACSFoACF=F

i.e.,A € F,Thus every closed set which contains A, Contains A.
But A4 is a closed set containing A. F, being the intersection of all closed
sets containing 4, is contained in A.

Therefore A = F.

Proof: (6) We know thatA € AUB,and B € AUB

~A CAUB,andB<S AUB

and so AUB € A UB.

Nowto show that

AUBCAUB

We proceed as follows:

Let, if possible x € AUB, but x ¢ AU B.



The x is neither an adherent point of A nor that of B. Consequently,
there exist open spheres S,. (x), and S, (x) containing no point of A
and B respectively.

Let r = min{r;, 1}, then S,.(x) containing no point of A as well as no
point of B, and therefore of A U B.

=~ x 1s not an adherent point of A U B.

i.e., x € AU B, thus, we arrive at a contradiction.

Hencex e AUB = x € AU B.

Proof: (7) SinceANB S A,andANB S B
~ANBCcAandANBCB,

The result can be extended to the intersection of an arbitrary family
{A,} of subsets of X,

i.e.,Ngep Ag SNaep Aa

Note: Let (X, d) be a metric space and A € Y € X. Then the closure of
A'in (Y,dy) is denoted by AY. It is very simple to verify AY = AnY.

Summary

We end this unit by summarising what we have covered in it.
= The limit of a function f at a point p of its domain is L is given
€> 0,36 > 0,suchthat |f(x) — L| <€ Where ever |x — p| < é.



= lim,_,, f(x) exists if and only if lim,_,,- f(x) and lim,_,,+ f(x)
both exist and are equal.

= A function f is Continuous at a point x = p if lim,._,,, f(x) = f(p)
= Let A and B be any two subsets of a metric space (X,d). Then

A is a closed set.

Terminal Questions

1. Examine the continuity of the following function at the indicated point.

Also point out the type of discontinuity if any

.1
in—, forx;th
0, forx=0

f(x)={s tx=0

2. Discuss the continuity of the following functions at x = 0. Specify the type

of discontinuity, if any.



: _ xsin = —1 if x#0 .
i flo)= { . Fx =0 (ii)
_ sinx cos= if x # 0
f(x)_{ 0 if x =0

3. Examine the discontinuity of the following functions at the indicated point.

Also point out the type of discontinuity, if any.
x|

() f(x>={? whenx #0 o g
1, whenx=0

(i) f(x)=|x|+|x—1]atx=0andx=1

4. Discuss the continuity of the function f(x) = |x| at the point % and 1,

where |x| denotes the largest integer < x.

5. Discuss the continuity of fat x = 1, where f(x) = [1 — x] + [x — 1]
6.Prove that lim,_,, f(x) = O,where f(x) = x sin%,x + 0.
7.Prove thatlim,_,|3x — 1| =5

sin x

8.Let f(x) = find the limit of f(x)when x - 0.

X )
9.Prove that sin x is continuous for every value of x.
10. Show by example that a set which fails to be closed need not be

open.
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3.1 Introduction:

In this unit, we shall discuss the notion of compactness in a metric space. we
shall define compact sets and discuss the examples of these sets in different
metric spaces.We discuss certain theorems which characterise compact sets
and give a complete description of compact sets in a metric space. Firstly we
give a characterization in terms of convergence of sequences and then in
terms of completeness. In this connection, we introduce the concept of
"totally bounded sets" which is a stronger version of bounded sets. We show
that a set is compact if and only if it is complete and totally bounded. We
also discuss the analogue of the famous "Heine Borel theorem" in R which

characterises compact sets in terms of closed and bounded sets. The deals



with special properties of compact sets. Here we discuss relationship

between continuity and compactness.

One of the main reasons for studying the compact sets is that they are in
some ways very similar to finite sets. In other words, there are many results
which are easy to show for finite sets, the formulations as well as the proofs
of which carry over with minimal changes to compact sets. It is often said

that "compactness is the next best thing to finiteness".

3.2 Objectives:

After studying this unit, we should be able to

» use the definition of compact sets to check whether a given set in a metric

space is compact or not;
» explain the connection between compactness and sequential convergence;

» explain the relationship between compact sets and totally bounded sets;

and that between compact sets and sets having finite intersection
property;
= state and prove Heine-Burel theorem for R™;

» explain the relationship between continuity and compactness.

3.3 Compactness of Metric Space:

Definition: Let M be a metric space. A collection of open setsG,is said to be
an open cover for M if U G, = M. A sub collection ofG,which itself is an

open cover is called a subcover.



A metric space M is said to be compact if every open cover for M has a finite
sub- cover.i.e., for each collection of open setsG,such that UL, Go= M,

there exists a finite sub-collection G1,Ga), .-, Gap such that UiL,; G aj= M.

Remark:
1. Any closed interval with the usual metric is compact.
2. The discrete space (X, d) when Xis a finite set , is compact.

3. The space (R, d) when R is the set of real and d is the usual metric is
not compact, for the cover {] — n,n[:n € N} is such that U;-,] —

n,n[= R, which do not have a finite subcover.

Example 1:Prove that the open interval ]0,1[ with the usual metric is not

compact.

Solution: we the family of open intervals {] ,1[in = 2,3 } IS such that

1
TL:JZ]E,l[:]o,l[.

therefore, {] % 1[:n =23 } Is an open cover of ]0,1[, which has no

S|e

finite subcover.

Example 2:Let X be an infinite set with the discrete metric. Show that

(X, d) is not compact.
Solution: for each x € X, {x} is open in X. Also U,cx{x} =X

Therefore {{x}: X € X} Is an open cover of X and since X is infinite, this

open cover has no finite subcover.



Theorem 1: Let M be a metric space. Let A € M. Then A is compact if and
only if for every collectionG,of open sets in M such that U G,2 A there exists

a finite subcollection Ga1,Gap,---Gapsuch thatUi-; G ;2 A. i.e., A is

compact if and only if every open cover for A by sets open in M has a finite

subcover.

Proof:Let A be a compact subset of M.
LetG,be a collection of open sets in M such that u G,2 A.
Then (UG,) NA=A. ~U(G,nA) =A.

Since G, is open in M, G,n A is open in A. ~.G,n Ais an open cover for A.

Since A is compact, this open cover has a finite subcover say
{Go(l nA,Go(Z nA,.....,Go(n nA}.

n

U(G aNA) = A

i=1

n
(UGO(i>ﬂA =A
i=1

Conversely, assume that for every collectionG,of open setsin M
such thatU G,2 A there exists a finite sub collection Ga1 ,Ga2 , ..., Gap-
such thatUj~; Gaj=2 A.

We have to prove A is compact.



LetH,be an open cover for A. Then H, is open inA V {.
~ H,=G,n Awhere G, isopenin MV [.
NowUH,=A=U(G,nA) =A.=(UG,) N A=A.=UG,2A.

Hence by our assumption, there exists a finite sub collection
{Gq,» GgprennGg, ySUCH that
121 Go, 2 A
UL, Gajn A=A.
* i Hojn @) = A,
™, Gajn 1=1Hy= A.
Thus {H, , Hy,,.....H,, }is @ finite subcover of the given open cover{H }of A.

~ A'iIs compact.

Theorem 2: Any compact subset A of a metric space (M, d) is closed

Proof: We shall prove that A® is open. Lety €A",

Now, foreach X € A, x £ y.

~d(x,y)=r>0and B (x &) n By 2) =@

Clearly the collection { B(x ,%) | X € A } is an open cover for A by setsopen
in M.
Since A is compact, there exists X, X, , ...., X, € A such that

U™, B(x, %);A .............................................. (1)



Tx;
Let , NI, B(y, 25

Then V, is an open set containing y.
. Txi i\ _
Since, B(x,Z")N B (y, 7) =0

BNBX )=@vi=12,..,n.

Vyn [, Bx, 2= 0.

=~ Vyn A =0. [ By (1)]

~V,C A",

Thus, for each y € A° there exists an open set V, containing y such that

V,CA°
o A° :yEAC Vy )

~ A" is open . Hence A is closed.
Theorem 3: Any compact subset A of a metric space M is bounded.
Proof. Let x € A. Now, { B(x, n)/n €N } is an open cover for A by sets
open in M. Since A iscompact, there exists natural numbers ny, n,, ... ny,
such that

*Bx,nk) 2 ALetN=max {ny, n, ..., nc}.
Then U, B(x,nk) = B(x , N)

~B(X,N)2A.



Since B (x, N) is bounded and subset of a bounded set is bounded, A

isbounded.

Theorem 4: A closed subset A of a compact metric space M is compact.

Proof. Let{G,}be a collection of open sets in M such that U G,2 A.
~ AU UG, =M.
Since A is closed, A® is open. -~ G,U { A® } is an open cover for M.

Since M is compact this open cover has a finite subcover say

(U?=1 Gai) VA =M - (U?=1 Gai) 2 4.

Hence A is compact.

3.4 Bolzano Weierstrass property:

Definition:A non-empty subset ‘A’ of a metric space (X, d) is said to be
totally bounded if for any € > 0 there exists a finite € — net for A, i.e., if for
every € > 0, there is a finite number of open spheres of radius € whose

union is A.

i.e.,, A = Uyep Sc(x)

where B is a finite € — net for A. Clearly total boundedness implies
boundedness. Since a totally bounded set is the union of a finite number of

bounded sets. But the converse is not always true.



(i)

In the case of Euclidean spaces, the converse also holds. In general, this is

not so can be seen by the following examples.

Example:Infinite discrete space X is bounded but not totally bounded, for it

has no finite % — net, Since, S1(x) = {x},x € X and X is infinite.
2

A metric space M has Bolzano — Weierstrass property if every infinite subset

of M has a limit point.

Theorem 3.4.4 In a metric space M the following are equivalent.

(i) M iscompact.

(ii) M has Bolzano - Weierstrassproperty
(iii) M is sequentiallycompact

(iv) Mis totally bounded andcomplete.

Proof.

=(ii). Let M be compact metric space. Let A be an infinite subset of M.
Suppose that A has no limit point. Let x € M. Since x is not a limit point if
A, there exists an open ball B(x, rx) suchthatB(x, rx) N (A-{x})=0.
B(x, ry) contains at most one point of A (contains X if X € A).

Now, { B(x, ry) / x € M } is an open cover for M.

Since M is compact, there exists points X; , Xo , ....., Xxp,€ M

suchthat M =B(X1, k1) UB(X2,Ix2 ) U ....... U B(Xn, ) -



SACSBX, k1)UBMX2,Ix2) U ... U B(Xn, ') -
Since each B(Xy , Ij) has at most one point of A, A must be finite. This is a
contradiction to A is infinite. Hence A has a limit point.
(i) = (iii)
Suppose that M has Bolzano — Weierstrass property. We ve to prove M is

sequentially compact.Let (x,) be a sequence in M.

If the range of (x,) is finite, then a term of the sequence is repeated infinitely

and hence (x,) has a constant subsequence which is convergent.

Otherwise (x,) has infinite number of distinct terms. By hypothesis, this
infinite set has a limit point say X.
=~ for any r > 0, the open ball B(x , r) contains infinite number of terms of the

sequence (x,). Choose a positive integer n; such that x, € B(x , 1). Now,
choose n,> nsuch that x,,€ B(X ,%). In general, for each positive integer k we
choose n> nk-1such thatx,keB(x ,i) . Then (Xqk) is a subsequence of (x,) and
A, X) <V K.

Ko Xnk = X.

Thus (xn,) is a convergent subsequence of (x,). Hence M is sequentially
compact.

(iii) = (iv)
Suppose that M is sequentially compact. Then every sequence in M has a

convergent subsequence. We have every Cauchy sequence is convergent.



Thus, every sequence in M has a Cauchy subsequence. Hence M is totally
bounded.
Now, we prove that M is complete. Let (x,) be a Cauchy sequence in M.

By hypothesis, (X,) contains a convergent subsequence (Xnk). Let Xnk — X .

Then x,— x . Thus M is complete.

(iv) = (i)
Suppose that M is totally bounded and complete. We have to prove M is
compact. Suppose it is not. Then there exists an open cover{G,}for M which
has no finite subcover. take 7, = zin Since M is totally bounded, M can be

covered by a finite number of open balls of radius r; .

Since M is not covered by a finite number of G,’s, at least one of these open

balls say B(x; , r1) cannot be covered by finite number of G,’s .

Now, B(X; , ry) is totally bounded. Hence as before we can find x,e B(xy , r1)

such that B(x; , r2) cannot be covered by finite number of G,’s.

Proceeding like this we get a sequence (X;) in M such that B(x, , r,) cannot be
covered by finite number of G,’s and xn.1€ B(X, , I'n).

let m and n be positive integers with n < m.
NOW’ d(Xn ) Xm) S d(Xn ) Xn+1) + d(Xn+1 ,Xn+2)+ ------ + d(Xm_l ,Xm)<rn + rn+1+-.--+rm_1

<1+ Tper T+ g

1 1 1

< Z_n + on+1 Tt om—1




1 1 1 1
(=+=—=+)<

< 2n—1 on on 2n—1

= (X,) is a Cauchy sequence in M.
Since M is complete, there xe M such that x,— x . Now, x € G, for some a.
Since G, is open, there exists B > 0 such that B(x , €) € G, .We have x,— X

1
andr,, = Py 0

= there exists a positive integer N such that d(x,, x) < § and r <§

VY n2=N.

Fix n>N.
We claim that B(x, , rn) € B(X, €) .
Y € B(Xn, n) = d(Xn, y) <1<~

= d(Xy, X) + d(xo,y)<- + -

= d(X,y) <e =>yeB(X, e).

~B(Xn,In) € B(x,€) € Gg.

Thus, B(x, , ) is covered by a single G, , which is a contradiction.
Hence M iscompact.

Example:Consider the space [, consisting of sequences {x,} of complex

numbers such that Y, |x,|?> < o, and the metric defined by d(x,y) =
1

(Z%o:llxn - yn|2)5’

Where x = {x,,},y = {y,,} € L,.

Solution:Let A be a subset of [, consisting of sequences



{e; = (1,0,0,..),e, = (0,1,0, ....0), e5 = (0,0,1,0,0, .....0)....e,, =
(0,0,0,0,0, .....1n)}

Since d(e;, ;) = V2,V i # j, therefore A is bounded, we shall show that A is
not totally bounded. Observe that A has no finite % — net, for if it has, then
there exists a finite set B of X such that

d(e;, x) <% and d( ,x) <% ,i # j,and x,y in B.

Clearly x # y, for x = y implies by triangle inequality

V2 = d(e;, ej) < d(e;,x) + d(ej,x) < — \/_ + F =2

So, for each e; in A there is an x in B with the above property.

Thus, there corresponds an infinite set B, which is a contradiction to the fact

that B is finite.

3.5 Heine Borel Theorem:

Theorem 5: Any closed interval [a, b] is a compact subset of R.
Proof:LetG,be a collection of open sets in R such that U G,2 R.

Let S={xe[a,b]/[a, x] can be covered by a finite number of G,’s. }
Clearly a € S and hence S # .

Since S is bounded above by b ,l.u.b of S exists. Let c = l.u.b. of S.

Clearly c € [a, b]. .- c € Gaq for some index @1. Since G IS open, there

exists € > 0 such that B(x , €) € Ga -



ie.(c—¢,c+¢) EGay
Choose x;€ [a, b] such that x;< cand [x;, c] € Gaq . Since x;<c, [a, X1] is

covered by a finite number of G,'s. These finite number of G,’s together

with Gqq covers [a, c].

= by the definition of S, ¢ € S. Now, we claim that c = b.
Suppose ¢ #b.

Then choose X;€ [a, b] such that x,> c and [c, X;] € Ga1 .

Since [a, c] is covered by a finite number of G,’s , these finite number of

G,’s together with Gaq covers [a, X].

~ Xo€ S, which is a contradiction to c is l.u.b of S [*x,> ¢ ]. Hence ¢ = b.

=~ [a, X] can be covered by a finite number of G,’s.
=~ [a, b] is a compact subset of R .

Theorem 6: A subset A or R is compact if and only if A is closed and
bounded.

Proof: If A is compact, then A is closed and bounded.
Conversely, assume that A is closed and bounded subset of R .

Since A is bounded, A has a lower bound and an upper bound say a and b
respectively. Then A € [a, b].

Since Ais closedin R, AN [a, b]is closedin [a, b]



l.e. Alis closed in [a, b]. Thus, A is a closed subset of the compact space [a,
b].

Hence A is compact.

3.6Compactness andContinuity:

Theorem 3.6.1: Let M, be a compact metric space and M, be any metric
space.

Let f : M;— M, be a continuous function. Then f( M1 ) is compact.
i.e. Continuous image of a compact metric space is compact.
Proof: Without loss of generality we assume that f( M; ) = M..

LetG,be a collection of open sets in M, such that U G, = M..

~U G, =f(M,).
FI(U Ga ) = Ml
~UfYG,) = M..

Since f is continuous, (G, ) is open in M,V
~{ f1(G,) } is an open cover for M;.

Since M1 is compact, this open cover has a finite subcover say
f1Gy, f' Gy, oo, T Gy

Fl(nGoti) = M.

(UL; Gg)=f(M;) = M,.



Thus Ga1,Gap, -, Gaplis a finite subcover for the given open coverG,of

M,. Hence M, is compact.
Corollary: Let f be a continuous map from a compact metric space M,

intoany metric space M,. Then f( M,) is closed and bounded.

Proof: Since f is continuous, f( M ) is compact and hence closed and
bounded.

Theorem 3.6.2Any continuous mapping f defined on a compact metric space

(M4,d,) into any other metric space (M, , d,) is uniformly continuous on M.

Proof: Let 1> 0 be given Let x EM,.

Since f is continuous at x, for /2 >0 , there exists 6,> 0 such that
di(X,y) <6x= da(f(X) , F(Y))<E/2 ceveiiieeieece e, (1)

Clearly, { B(x ,%) / x € M1} is an open cover for M;.

Since M, is compact, there exists X; , X, , ..., Xx,€ M; such that
" 5,
\ * 2
=1
— . [6x1 Oxq Sxn —
Let6—mm{ Ty }—Ml

Now, we shall prove that di(p, g) <6 = d,(f(p), f(q)) <e V p, q € M.

Let p, g € My such that d{(p, q) <6



n
Sy
PeEM=PEe UB(xi,T‘)

=1

s,
> PeU,B (xi,%) for someisuchthatl <i <n.

Oy
dl(p» xi) < 71 < (Sxi
= by (1), da(f(P) F(X))SE/2 e, (2)
Similarly, d>(f(Q) , T(Xi)) <E/2 oo, (3)

Now, dx(f(p) , f(a)) < do(f(p) , f(xi)) + d2(f(xi) ,f(@))

<e/2+e/2 [By (2) and (3)]

= do(f(p) , (q)) <e.
Thus, di(p,q) <6 = dy(f(p) , f(q)) <€ V p , g € M;. Hence f is uniformly

continuous.

3.7Equivalent forms ofCompactness:

Definition: A collection ¥ of subsets of a set M is said to have finite
intersection property if the intersection of any finite number of elements of ¥

IS nonempty.

Theorem: A metric space M is compact if and only if every collection of

losed sets in M with finite intersection property has nonempty intersection.

Proof: Suppose that M is compact.



LetF,be a collection of closed subsets of M with finite intersection property.
We have to proveF, # @. SupposeF, = @ . Then (F,) = M.

~F," =M. [ By De Morgan’s laws ]

Since each F, is closed, each F," is open. Thus,{ F," } is an open cover for M.

Since M is compact, this open cover has a finite subcover say

{Fo S By, By e Fy, €

C
i=1 FaicM (n?=1 Foci) =M N, Fp, =0
This is a contradiction to the collectionF has finite intersection property.
~Fez0.

Conversely, assume that every collection of closed sets in M with finite

Intersection property has nonempty intersection.

We have to prove M is compact. Let G,be an open cover for M.
~G, = M.

(Ga )C= )] ,.'.Gacz 0.
Since each G, is open , each G,° is closed.

Hence F= { G¢° } is a collection of closed sets whose intersection is empty.

=~ by hypothesis, this collection does not have finite intersection property.

Hence there exists a finite sub collection G, G,,°, Gg,°. ., .... G,“such that



Nz Go,* =0 - (U?=1 Gai)c =0 - (U?=1 Gai) = M.
Thus the given open cover{G,}of M has a finite subcover {Ga1,Ga2,- » Gap }-

Hence M is compact.

3.8 Total boundedness:

Definition: A metric space M is said to be totally bounded if for every £>0,
there exists a finite number of elements X; , X, , ....., x,€ M such that B(x; ,
A nonempty subset A of a metric space M is said to be totally bounded ifthe

subspace A is totally bounded metricspace.

Theorem 3.8.1Any compact metric space is totally bounded.
Proof: Let M be a compact metric space.

We have to prove M is totally bounded. Let € > 0 be given.
Now, { B(x, €) / x € M } is an open cover for M.

Since M is compact, there exists points X, , X5, ..... , X,€ M such that M = B(x;

, €)
UB(X2,e)U....... U B(Xn, €) . Hence M is totally bounded.
Theorem 3.8.2Any totally bounded subset A of a metric space M is bounded.

Proof: Let A be a totally bounded subset of a metric space M.



Then for given >0 , there exists points X; , Xz, ....., X,€ A such that

A =B(x1,€) UBy(x2, ) U ....... U B1(Xn ,€) where B,(x;, €) are open balls in A.

Since open balls are bounded sets and finite union of bounded sets is

bounded, A is bounded.

Note:The converse of the above theorem is not true. For,

Let M be an infinite set with discrete metric. Then M is bounded.

Also, B(x, 1) = { x } for all x € M. Since M is infinite, M cannot be
expressed as finite union of open balls of radius 1. Hence M is not totally
bounded.

Definition:Let (x,) be a sequence in a metric space M. If n;< n< .... <<

....... is a sequence of positive integers, then (X,k) is a subsequence of (X,).

Theorem 3.8.3A metric space M is totally bounded if and only if every

sequence in M contains a Cauchy subsequence.

Proof: Suppose that every sequence in M contains a Cauchy subsequence.

We have to prove M is totally bounded. Let > 0 be given. Choose x;€ M.
If B(X1, €) =M, then M is totally bounded.
If B(X1, €) # M, Then choose x,e B(x; , €) — M so that d(x; , X,) > €.

If B(X1, €) UB(Xz2, €) =M, then M is totally bounded.
Otherwise, choose xze [B(X; , @) U B(x,, B)] — M.
so that d(X3 , X;) > € and d(X3 , X2) > €. We proceed this process and if the

process is terminated at a finite stage means M is totally bounded.



Suppose not, then we get a sequence (X,) in M such that d(X, , Xm) > B if n #
m.

= (X,) cannot be a Cauchy sequence, which is a contradiction. Conversely,
suppose that M is totally bounded.

LetS; ={ X11, X412, ....0r, X1n » -.... } be a sequence in M. If one of the terms in
the sequence is repeated infinitely, then S; contains a constant subsequence
which is in fact a Cauchy sequence. So, we assume that no terms of S; is
repeated infinitely so that the range of S; is infinite.

Since M is totally bounded, M can be covered by a finite number of open
balls of radius ;1 Hence one of these balls contains infinite number of terms

of the sequence S;.

We repeat the process of forming successive subsequences and finally we

take the diagonal sequence S ={ X131, X22, ooty Xnn s +-ven }-

We claim that S is a Cauchy subsequence of S;. If m >n

thenbothx,,,,, andx,,,,

=~ lie within an open_ball of radius%.

s d (X Xm) < S S d (X X)) < EVM,N = %

Hence S is a Cauchy subsequence of S;.



Thus, every sequence in M has a convergent subsequence.

Corollary: A nonempty subset of a totally bounded set is totally bounded.

Proof: Let A be a totally bounded subset of a metric space M.

Let B be a nonempty subset of A. Let (x,) be a sequence in B.

Since B € A, (X,) is a sequence in A. Since A is totally bounded, (x,) has a
Cauchy subsequence. Thus, every sequence in B has a Cauchy subsequence.

=~ B is totally bounded.

3.9 Sequentially Compact:

Definition: A metric space M is said to be sequentially compact if every

sequence in M has a convergent subsequence.

Theorem: Let (x,) be a Cauchy sequence in a metric space M. If (x;) has a

subsequence (Xqk) converges to x , then (x,) converges to X.

Proof: Suppose that (x,) has a subsequence (Xnk) which converges to x. We

have to prove x,— X . Let € > 0 be given.

Since (x,) is a Cauchy sequence, there exists a positive integer N

such that(x, x )<§V N, M2 N, (1)

Since X,k — X, there exists a positive integer N, such that d(Xuk, X) <§

Let N=max { N;, N, }.



Fix = N. Now. d(Xn , X) < d(X, , Xnk) + d(Xnk ,X)

<+Sn=N
2 2

S d(Xn, X) <e VNN« X—>X.

Note: in the metric space, totally boundedness is the property that

complements completeness to guarantee sequential compactness.

Example: the subspace X =]0,1[ of the real line is totally bounded but
certainly not sequentially compact, for consider the sequence {%} which has
no convergent subsequence.

Note than X is not complete, since it is not closed.

Example:A subsetA of a metric space (X, d) is totally bounded if and only if
A is totally bounded.

Solution: Let A be totally bounded. To show that A is totally bounded, it is
enough to show that every sequence in A contains a Cauchy subsequence. Let

{x,,} be any sequence in A. Let £ > 0 be given. Then x,, € A implies

Se(xn) NA # @ ie., 3a, € Asuch that d(ay, x,) < (1)
3

So we obtain a sequence {a,} in A, and A being totally bounded implies {a,}
contains a Cauchy subsequence say {ank}. Therefore for € > 0,3 appositive

integer m such that
&
d (anj, ank) <3 Vn,mnezm (2)

By using triangle inequality and from (1) and (2), we have



d (anj, ank) <d (anj, anj) +d (anj, ank) + d(ank, ank)
<-4+ =¢gVn,n 2m Hence {ay,Jis a Cauchy sequence of {x,}.
Therefore, A is totally bounded.

The converse is obvious since A, being a subset of a totally bounded set 4, is

itself totally bounded.

.10 Summary:

In this unit, we have covered the following points.

1. We have introduced the notions of open cover, subcover and finite

coverina  metric space.

2. We have defined compact sets in a metric and discussed the following
properties:
(i) Every compact set in a metric space is closed and bounded.
(i) Closed subsets of compact sets are compact.
(iii) If A and B are compact sets in a metric space X, then A U B and
A N B are compact.
(iv) An infinite subset of a compact metric space has a limit point.
3. We have shown that Heine-Bore1l theorem holds for Rn,
4, We have obtained the following three characterizations of compact
sets.
(i) Xis compactif and only if X is sequentially compact.
(ii) X is compact if and only if X is complete and totally bounded.

(iii) X is compact iff every family 3 of closed subsets of X with finite



intersection property, has itself non-empty intersection, that is
NrefF # 0
5. We have explained the relationship between continuity and

compactness.

6. We have shown that any continuous function from a compact metric

space to any other metric space is uniformly continuous.

3.11 Terminal Questions:

1. If A and B are two compact subsets of a metric space (X, d). Prove

that AU B and A N B are compact.

2. Show that a subspace of R" is bounded if and only if it is totally
bounded.

3. If A is a subspace of a complete metric space, show that 4 is

compact if and only if A is totally bounded.

4. Show that a closed subspace of a complete metric space is compact

if and only if it is totally bounded.

5. Prove that boundedness and total boundedness are equivalent in

Euclidean spaces.

6. Prove that from any infinite open cover of a separable metric space
one can extract a countable open cover.

7. Let X = {x:0 < d(0,x) <1,}and x € R, where 0 = (0,0), and d is
usual metric.Show that X is closed and bounded, but not compact.

Also show that X is not totally bounded.
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Block -2

Convergence of function of series and Improper Integral

In the first unit we shall study about point wise convergence and uniform
convergence of sequence and series of functions. Necessary and sufficient
condition for a uniform convergence, Weierstrass test, Abel’s test and Dirichlet’s
test for uniform convergence.Term by term integration and term by term

differentiation. In this unit we shall study convergence of series of functions.

In the second unit we also study about Riemann integrals as developed it
requires that the range of integration is finite and the integrand remains bounded
in that domain. If either or both of these assumptions is not satisfied it is
necessary to attach a new interpretation to the integral. If the integrand of f
becomes infinite in the interval a < x < b,i.e.,f has points of infinite

discontinuity in [a, b] or the limits of integration a or b become infinite, the

symbol fab fdx is called an improper integral. Thus

fOde oo dx fl dx

oo dx . .
1 2wtz o x(l_x),f_lx—zare examples of improper integrals.

The integrals which are not improper are called proper integrals. Thus

1 si . . .
f 2 dxis a proper integral. It will be assumed throughout that the number of

0 x

singular points in any interval is finite and therefore when the range of integration
is infinite, that all the singular points can be included in a finite interval. Further, it
is assumed once for all that in a finite interval which encloses no point of infinite

discontinuity the integrand is bounded and Integrable.



Unit-4 Complete Metric Spaces

Structure

4.1 Introduction

4.2  Objectives

4.3 Uniform Continuity

4.4 Necessary Condition on Uniformly Continuous
4.5 Lebesgue Number for cover
4.6 Complete

4.7 Complete Metric Space

4.8 Lemma

4.9 Cantor’s intersection Theorem
4,10 Summary

4.11 Terminal Questions

4.1 Introduction

The aim of this unit is to study one of the properties of metric space. The notion
of distance between points of an abstract set leads naturally to the discussion of
uniform continuity and Cauchy sequences in the set. Unlike the situation of real
numbers, where each Cauchy sequence is convergent, there are metric spaces in

which Cauchy sequences fail to converge. A metric space in which every



Cauchy sequence converges is called a ‘complete metric space’. This property
plays a vital role in analysis when one wishes to make an existence statement.
We shall see that a metric space need not be complete and hence we shall find

conditions under which such a property can be ensured.

4.2 Objectives

After studying this unit, you should be able to

*Obtain the Uniformly Continuity;

® Obtain a Cauchy sequences in the set.

® Obtain the Necessary Condition on Uniformly Continuous

® |earn the results of Lebesgue Number for cover.

*Study the use of Complete and Complete Metric Space.

4.3 Uniform Continuity

A Function f(x) defined on an interval [ if and only if for every e > 0,3 6 >

0{i. e. depend only on e}independent of the choice of any point in [ such that
|f(x1) — f(x3)| <€, where |x; — x,| < & where x; — x, are any arbitrary point in
L.



f ()

Example:1f(x) = - ,x € (0,1)

{f(-’(l)
fxz) \

Solution: o

{f (xy)
Fle)




= ¢ Is not dependent only on € but it is dependent on point.

= % Is not Uniformly Continuous in (0,1)

Example: 2 Show that the function f(x) = v/x,x € [0,1] is uniformly Continuous
on [0,1].

Solution:Let x4, x, € [0,1] then

1+
) = £l = V5 - o] x Y
xl_xz
MV

Let x; > x,&\/x{,/x; = 0

N X1 — X3 <|x1—x2|<|x1—x2|
VX1 /%, NER VX1 — X3

S< X — Xy <ED VX, — x| <E*=§

= forevery e > 0= |f(x;) — f(x,)| <€, whenever |x; — x,| <€2

= § = €2 = +/x is uniformly Continuous on [0,1].

Example:3 Show that f(x) = x2,Vx € R is uniformly Continuous on [0,1].

Solution:;we have

IfG) = fO] = |x? = y?|

= |(x+y)(x -yl <2lx—y| <€



=[x —y]| <§=6:>foreverye>0

|f(x) — f(y)| <€ whenever [x —y| < §(€)

= x2is uniformly Continuous on [0,1].

4.4 Necessary Condition on Uniformly Continuous

1.If f(x) is Continuous on (a,b) and limit exist finitely at both ends thenf (x)is

uniformly Continuous on (a, b).
2.1ff (x) is Continuous in [a, b]then f(x) is uniformly Continuous on [a, b].

3.Iff (x) is Continuous in [a, o) and lim,._,,, f(x) exist then f(X) is uniformly

Continuous on [a, o).

Example: In which interval f(x) = iis uniformly Continuous.
Solution: we have f(x) = %
Then lim,._,, f(x) = 1imxﬁ0% —

Example:which of the following are uniformly Continuous on (0,1).

@f)=e* (b) fx) =x

Solution:;we have

@f)=e* (b)f(x) =x?

Limit exist of e* and x? at both end are uniformly Continuous on (0,1).



4.5 Lebesgue Number for cover

Let {G,: aeA} be an open cover of a metric space (X, d) a real number x> 0 is
said to be Lebesgue number for the open cover {G,} if for each subset A of X with

d(A) <, there is at least one set G, with Contains A.

Note:Not Every open Cover of a metric space has a Lebesgue number. For
example, let X =]0,1[ be a subspace of the real line and {] % 1[:n= 23,4 } be

an open cover of ]0,1[. For arbitrary x>0 the set A =]0,x/2[ is such that d(4) <x
. But A is not contained in any of the members of the cover, note that this space is

not sequentially Compact.

Lebesgue Covering lemma:

Theorem: Every open cover of a sequentially compact metric space (X, d) has a Lebesgue

number.

Proof: Let {G,: ae/\}be any open cover of X. Assume that it has no Lebesgue

number. then for each natural number n there is a non-empty set A,, € X With
d(4,) < % Such that A,, € G,, for every a € A for each n € N, choose a point

a, € A,.Since X is sequentially compact, the sequence {a, } contains a convergent

subsequence, say {a,}-
Let limy_o e = x Now since x € X = UgepG, implies x € G,,.
For some a € A. G, being open, therefore there is an € > 0,

such that S.(x) <€ G,



For the above € > 0, a,;, — x, and d(4,,;) = 0,as K — oo Implies there exists a

positive integer k,, such that d(a,,, x) < g and d(Apy,) < g ...... (a)

Lety be any element of A, then by using tringle inequality, and (a) we get
d(y,x) < d(y, ank,) + (Ank,, %)

< d(AnkO) + (anko,x)

<

+ =€ [.'. a’nko € Anko]

N m
N m

This implies that y € S.(x) < G,.Hence A, < G,, Which contradicts the fact that

for each natural number n, 4,, ¢ G,must have a Lebesgue Number.

We are now in a position to prove the converse of the theorem, which will
establish the equivalence of compactness and sequential compactness in metric

spaces.
Theorem: Every sequentially compact metric space (X, d) is Compact.

Proof: Let{G,} be any open cover of X. Since (X,d) is sequentially compact

therefore by above lemma {G,} has a Lebesgue number say x>0. Also (X,d)

being sequentially compact is totally bounded and so it has a finite % Net say

{x1, x5, ... xp}. Then X = UL, S» (x;),
3

Then for each i,1 < i <n. We have d(S»(x;) < Zf <X, and so by definition of
3
Lebesgue number there exists at least one G,, such that S»(x;) € G,,,i = 1,2....n.
3

This implies U?=1S§ (x;)) € UL Gy i, X S UL, Gy,



Hence {G,,, Gq,, -+ - , G, } 1s a finite subcover of {G,} and so (X, d) is compact.
Corollary: A metric space is compact if and only if it is Sequentially compact.

Theorem: A closed subspace of a complete metric space is compact if and only if

it is totally bounded.

Proof: Since a closed subspace of a complete metric space is itself complete, result

follows from the above theorem.

We have seen that compactness is another name of Heine -Borel property.
Our results so far establish the following equivalence in a metric space.
1.Bolzano-weirstrass Property

2.Compactness

3.Sequential Compactness

4.Completeness and totally boundedness.

As a consequence of the Lebesgue Covering Lemma and the above corollary, we

have the following useful result.

Theorem: Let f be a Continuous Function from a compact metric space (X, d;)

into a metric space (Y, d,) then f is Uniformly Continuous.

Proof: Let €> 0 be given for each x in X, f~1(Se(f(x)) is an open subset of X
Containing x, being an inverse image of an open sphere Se(f(x) in Y under the

Continuous Function f: X - Y .



Therefore, the collection f~1(Se(f(x)) is an open cover of X. Since X is compact,
2

therefore by the Lebesgue covering Lemma and above corollary, this open cover
has a Lebesgue number, say, § > 0. Let x,y be any two elements of X with

d,(x,y) < &, then the set {x, y}is a set in X with diameter less than § and so by

the definition of Lebesgue number x,y € f~1 (Sg(X’)) for some x' € X.
e f(0).£() € Se(f(x).
= d, (f(x).f(x’)) < %and d, (f(y).f(x’)) < % By triangle inequality,

dy(f (). F ) <o (f (x0)- F () + do(F (). f () <5+ =€

Hence f is Uniformly Continuous.

4.6 Complete

Let (X,d) be any metric space. the sequence {a,} of points of X is said to
converge to a point ‘a’ of X, if for each €> 0 there exists a positive integer m,

such thatd(a,,a) <€,V n = m.

ie, d(ay,a) —» 0,asn - o or equivalently, for each open sphereSc(a)
centered at ‘a’ there exist a positive integer m such that a,, is in Sc(a), for all

n = m. The point ‘a’ is called the limit of the sequence {a, }, and
we write a,, = a,as n = «i.e, lim,_, a, = a.

Cauchy Sequence: A Sequence {a,} of points of (X,d) is said to be a Cauchy

Sequence if for each €> 0 there exists a positive integer n,, such that

d(x,, xy) <E,Vn,m = n,



ie, d(x,, x,;) = 0,as n,m — oo,
Theorem: Every Convergent Sequence is a Cauchy Sequence.

Proof: Let (X,d) be any metric space. Let the sequence {a,} of points of X

Converge to a. For every given €> 0 there exists a positive integer n, such

that d(a,, a) < g,v n=n,

Then for n,m = n, we have

E €
d(ay, an) <d(aya) +d(a a,) < S+ =€

This implies {a, }is a Cauchy Sequence.

Note:The following examples show that the converse of the statement need not be

true.

Example: Let Q be the set of rational numbers in which the metric d is defined by

d(x,y) =[x —yl,Vx,y € Q.
(Q,d) is a metric space. The Sequence {3%} is a Cauchy Sequence which

n
converges to the limit 0. But the Sequence {(1 +%) } is also a Cauchy

Sequence in it. Which does not converge to a point of Q.

4.7 Complete Metric Space:

A metric space (X,d) is said to be complete if every Cauchy Sequence
Converges to a point of X. The spaces in the examples mentioned above are

not complete.



Note:Any metric space which is not already complete can be made so by

adjoining additional points to it.

Example:1 The discrete space (X,d) is a complete metric space. For in this
space a Cauchy sequence must be a constant sequence (i.e., It must consist of a

single point repeated from some place on) and so converges.

Example:2 The space(R, d) is a complete metric space. The convergence in R is

the ordinary convergence of numerical sequences.

Example:3 The space R" of all ordered n-tuples with the metric d,

1
d(x,y) = &Cr,(x; —y;)?)2 is a complete metric space. The convergence in this
space is Coordinate wise. This space (R™,d) is called n-dimensional Euclidean

space.

Example:4The space C[0,1] of all bounded continuous real valued functions

defined on the closed interval[0,1] with the metric d given by
d(f,g) = maxg<,<1|f(x) — g(x)| is a complete metric space.
Solution:Let {f;,,} be a Cauchy sequence in C[0,1].

Let €> 0 be given. Then there exists a positive integer n, such that d(f,, f,,) <€

,Vn,m = n,.
1.8, MaXgex<t [ fn(X) — frn(X)| <€, Vn,m =n,
|fo(x) = fin(x)| <E,¥n,m =nyand V xe[0,1].

By Cauchy Criterion of uniform Convergence, the Sequence of Function {f,}

Converges Uniformly on [0,1].let f be the limit of a uniformly Convergent



Sequence of Continuous Functions so this itself is Continuous on [0,1]. Hence the

Cauchy Sequence {f,,} Converges to a point of C[0,1].

Example:5 Let [, be the set of all bounded numerical Sequences {x,,} in which the

metric d is defined by d(x,y) = Sup|x,, — .|,V x = {x,},y = {y.} € L.

Solution:Let x,, be a Cauchy Sequence of elements of [, and let x,, = {a@}.

l

Since x,, € l,,503 M > 0.
|| <M fori=123..

Therefore for €> 0, there exists an integer n, . such that d(x,, x,,) <€,Vn,m =

no.

i.e., sup a™ — al(m) <€,V nm=ngand foralli =123 ...

i

Let i be fixed. Then (1) implies that the sequence {a(l) @ . ....al.(") } IS

i Q4

Cauchy and so convergence. Taking limit in(1) as m — oo, we have
|a§n) — al.(m)| <EVn=n,

And thisis true forall i = 1,2,3 ...

(n)

Hence |a;| < +

a; a§")| <E +M,Vi.

This implies {a;} is bounded. Let x = {a;}. Then x € l,. Hence (l,,d) is a

complete Space.

Example:6 Let [, be the set of all real numerical sequences for which

Yieqlx;|P < oo



Solution:we defined the metric d in L, by

o0 1/p
d(x,y) = (lei — yi|p> NVx={x}y=WUl€El
i=1

The space (l,,d) is a complete metric space, and is known as Hilbert Sequence

Space. Consider a Cauchy sequence {x,,} = {{xf")}} in i,
Therefore, for a given € > 0 there exists an integer n,
i

p\1/p
Such that d(xy, ) = (252, |2 = x™|") " <evnmzn, (1)

i

Hence [x™ — xi(m)| <€E,Vn,m=nyand foralli €N (2)

Fixingi, we see that the sequence {x(l) x® o x ™ }

i )

(n)

Converges to a limit x;, i.e., lim,, o x; ~ = x;.

Let x = {x;}, then the inequality (1) implies

p
x™ — xl.(m) <€P, for every k, and for n,m > n,

i

Yiz1

Taking limit as m — oo, we have

1) 4
(n) (m)
z |xi — X; <€P,forn = n,

=1

Letting k — oo, we get



co p

S,

i=1

<€P,forn =n,

This implies x, —x € L,,and so x = x, — (x, — x) € L,
Also d(xp,x) = 0 asn — c. Hence [, is Complete.

Example:7let X be the set of all Continuous real -valued functions defined on

[0,1], and let d(x,y) = f1x(8) = y(®)ldt, x,y € X
Show that (X, d) is not complete.

Solution: let {x,,} be a sequence in X defined by

1

xn(t) = 1 1
—, —<t<1

w U

Forn > m,we have d(x,, x,,) = follxn(t) — x,(t)] dt

j%zl | 711 = ]
= n—’mdt+J ——m|dt+j ———| t
0 o Wt o Wt Wt
1

n—m 1 oz
—( > )+|2t5—mt 12

n nZ

1 m 2 1 2 1
BB

n n2 m m n n2

1 1

=———->0,asmn — o
m n



Hence {x,,} is a Cauchy Sequence in X.

Now we shall show that this Cauchy sequence does not convergent in X. For every

x € X.

d(xp, ) = j X (8) — 2 (0)] dit
0

L 1
——x(t)|dt

jopln—x(t)ldt+ji \/1f

Since integrals are, so is each integral on the right, and henced(x,,, x) — 0, as
nn — oo would imply that each integral approaches zero, and since x is in X, SO x

is Continuous.

1

Butx(t)={ t7? ifo<t<l.
®) {0, ift=0 /

Which is discontinuous at t = 0. Hence d(x,,, x) does not tend to zero for each
x € X.i.e., the Sequence {x,,} does not converge to the point of the space. This

implies that (X, d) is not Complete.

4.8 Lemma:

Let (X, d) be any metric space and A be any non-empty subset of X. Then x € A if
and only if there exists a sequence {x,} in A such that x,, - x,as n — oo. Let

x € A Then every open sphere Centered at x intersects A. In particular S:(x) N

n

A + @, For all n. So, we get a sequence {x,,} in A such that

1 .
d(x,, x) < ;,V n = lim,_ . x, = x.



Again, let{x, } be sequence in A which converges to x. to show that x € A. We

must show that every open sphere centered at x intersects A.

Let S, (x) be any open sphere. Then for r > 0,lim,,_, x,, = x implies that there

exists a positive integer n,, such that d(x,, x) < r,Vn = n,.
In particular d(x,,x) <1 = x,, € S,(x)
>S5S (xX)NA+0=>x€A

Theorem:Let(X, d) be a complete metric space andY be a subspace of X. Then Y

is complete if and only if it is closed in (X, d).

Proof:Let Y be a complete subspace of x. In order to show that Y is closed we need

to show that Y = Y by definition Y c ¥, so we shall show that ¥ c Y.

Let x be an element of Y. If x € Y the result is proved. If x & Y then x is a limit

point of Y. By definition of limit point, every neighborhood S1(x) contains at least

n

one member of Y other limit than x. Thus for each n we get a sequence{y,} inY
such that

d(y, x) < % Thusy,, —» y,asn — oo.

Now the Sequence {y,} being a Convergent sequence must be a Cauchy sequence.
Since Y is complete, this Cauchy sequence {y,, } must converge in Y, hence x € Y.

But x is an arbitrary point of y, therefore Y c Y.

Conversely, we assume that Y is a closed subspace of X, and establish that Y is

complete. Let {y,,} be a Cauchy Sequence in Y, and since X is given to be a



Complete Space, therefore {y,,} must Converge to a point Y in X. But then y,, €

Y, foralln,andy,, > Y,asn > o.=>y €Y =Y(~ Y is closed).
The following is a generalization of Nested Interval theorem.

Next, we define certain sets in general metric spaces. We are discussing these sets
here because of their connection with completeness. In fact, these sets arose as an
extension of the property of R that the set of rationals Q is dense in R and it is not

Complete.
Definition: A Subset A of a metric space (X, d) is said to be dense in X
if A = X.As we stated above, we have Q is a dense in R.

We will see that in the space C[0,1] with sup metric, the set P consisting of all the

real polynomials restricted to [0,1] is dense in C[0,1].

Now, we discuss a theorem.

4.9 Cantor’s intersection Theorem

Let {E,} be a sequence of non-empty closed subsets of a Complete metric space X
Such that E, 2 F,,,; for each positive integer n and d(F,) = 0. Let F =n;_; E,.

Then F is a Singleton, i.e., it Contains exactly one element of X.
Proof: Let F =n;_, F,, since letF C FE, we have

Let d(F) < d(F,), for each positive integer n.As d(F,) - 0, we getd(F) < 0. So

F can not contain more than one element.

Thus, the theorem is proved if we show that F + @.



Since E, is not empty, we can choose an element x,, € F,,. We thus, get a sequence
{x,}In X. Let € > 0 be given. Since d(F,) — 0, there exists a positive integer m
suchthat d(E,) < €if n > m.

Letn >k >m.ThenF, € F, = d(x,,x;) < d(F;,) <E.

This show that {x,,} is a Cauchy sequence in X. As X is a complete metric
space,{x, } converges to some x € X. We shall now show that x € F, for every
n, which in turn will give x € F. Let, if possible,x & F;, for some fixed positive
integer positive integerk. Then x € F§. Since F, is a closed subset of X, F§ is an
open subset of X, so there exists r > 0 such that B(x,r) € F,?. As x,, = x, there
exists a positive integer p suchd (x,,x) < rif n = p,that is, x,, €

B(x,r) if n = p.
Choose m = max(p, k) .then x,, € B(x,r) € F§ and x, € E, C F,.
This is a Contradiction.

This proves that x € F;, Since this is true for all K, we get that

X €F, for all n.thus x € F, Hence the result.

Example:1 In this example, we show that the set F in the Cantor’s intersection

theorem may be empty if the hypothesis d(F,) — 0 is dropped.

Example:2 Let X = R and F,, = {x € R: x = n}. Then X is a complete metric

space and {F, } is a decreasing sequence of non- empty closed subsets of X.

Also d(F,) = oo for each n. So that the condition d(F,) — 0 is not satisfied

here. Also, we have F =N;_; F, = 0. Hence the claim.



Example:3 Here we give an example to show that the set F in the cantor’s
intersection theorem may be empty if the hypothesis that each F,is a closed

subset of X is dropped.
LetX =RandF, = {x ER:0<x <~

Then x is a complete metric space and {F, } is a decreasing sequence of non-

empty subsets such that of X such that d(E,) = 15 0.But E, isnot a closed
n

(0.0]

subset of R. Now we have F =n;_; F, = @. Hence the claim.
Baire’s Theorem:

If X is a complete metric space, the intersection of a countable number of dense

open subsets is dense in X.
Proof: Let the closed ball cantered at x with radius r by Blx, r]:
Blx,r] ={y € X|d(y,x) <r}.

Note that any open set in a metric space contains a closed ball. indeed, if we shrink
the radius of an open ball slightly, we obtain a closed ball contained in that open
ball.

Suppose that V3, V, ..... are dense and open in X and let W be a nonempty open set

in X. We will show that (N;=, V) N W +# @.

Since V; is dense in X, W n V; is a nonempty open set. Hence, we can findx; € X
and 0 <7, < 1suchthatB[x;, ]S W NV, (1)

If n > 2 and x,,_,and r,,_,are chosen, the denseness of V,,show that



V, NB (x,,_1,1,-1) IS @a nonempty open set, and therefore we can find x,, € X and
0<n< %such that [x,, 1] € V,, N B(Xp—1,70-1) (2)
By induction, this process produces the sequence {x,} in X. If m,n > N,

Then x,,, andx,, are in B(xy, ry), and thus

2
A, xp) < d(xm, xy) + (X, %) < 21y < N

Hence,{x,,} is a Cauchy Sequence. Since X is complete,x,,converges to some
x € X.If k = n, then x;lies in a closed set B[x,, 1;,]. thus x € B[x,, r,] for all
n>1.By (1), x € WnV,andby (2), we have x € I,for all n = 2.

Hence x € (N, =, V,) N W.
We can conclude that the intersection of all 1, is dense in X.

Note: the completeness assumption is necessary in this theorem as the following

example.

Let X be a complete metric space. Assume that X = Q. Write Q = {r;;|n € N} and
let G,, = Q — {n,} for each n € N. Then G,, is open and dense in Q for each n, but
n?lozl Gn = @.

Corollary: if a complete metric space is a union of countably many closed sets,

then at least one of the closed sets has nonempty interior.

Proof:Let X be a complete metric space. Assume that X = U, -, F,,where each

E, is closed. For eachn € N, let G,, = E,“.then N5_, G, = 0.



By Baire’s theorem, there exists an open set G,, which is not dense in X. Thus,

G,, # X.Butthen Int E, = X — G,,, and hence FE, has nonempty interior.

410 Summary

In this unit, we have covered the following points:
1. We defined a sequence in a metric space (X, d) and discussed its convergence.

2. We defined subsequences of a sequence and have shown the relationship

between convergence of a sequence and its subsequence’s.

3. We have shown the connection between continuity and convergence. "f is

continuous iff x, + x implies that f(x,) + f(x)".

4. We defined Cauchy sequences and explained the connection between Cauchy
sequences and convergence. A Cauchy sequence is convergent if and only if it has

a convergent subsequence.

5. We defined complete metric spaces. A metric space (X, d) is complete if every

Cauchy sequence in X is convergent in X.

6. We discussed two important theorems and explained the importance of them.

(1). Cantor's Intersection Theorem (2). Baire’s Theorem.

4.11 Terminal Questions

1. What are the dense subset? of a discrete metric space?
2.Show that a closed set is nowhere dense if and only if it contains no open set.

3.Give an example of a set which is neither dense nor nowhere dense.



4.Show that a Cauchy sequence is convergents it has a convergent subsequence.

5.Prove that if (X, d) is a complete space, and each x € X is a limit point of X,then

X is uncountable.

6.Given an example of a complete metric space(X, d) and a sequence of non-
empty closed sets {4,,}in X with A; 2 4, 2 A5 ...........2 A,, .....such that
n%ozlAn =0

7.Let X be the real line R with the usual metric, and let F,, = [n, oo].
8. Let (X, d) be a metric space and A € X.Show that A = {x € X:d(x,A) = 0}.

9.Define Complete Metric Space. Given an example of a metric space which is not

Complete.

10.Let (X, d) be a metric space and let (F,) be a decreasing sequence of non-empty
closed subsets ofX such that d(F,) = 0 asn — oo. If F =n;_; F,contains exactly

one point, then show that X is complete.



UNIT 5: Convergence of sequence and series of functions

Structure:

5.1 Introduction

5.2 Objectives

5.3 Pointwise convergence and Uniform convergence.

5.4 Necessary and sufficient condition for a uniform convergence
5.5 Test for uniform convergence

(i) Weierstrass test for uniform convergence

(ii) Abel’s test for uniform convergence

(iii) Dirichlet’s test for uniform convergence

5.6 Term by term integration and term by term differentiation
5.7 Summary

5.8 Terminal Questions

5.1 Introduction

In this unit we shall study about point wise convergence and uniform
convergence of sequence and series of functions. Necessary and sufficient
condition for a uniform convergence, Weierstrass test, Abel’s test and

Dirichlet’s test for uniform convergence. Term by term integration and term



by term differentiation.The term uniform convergence was probably used

first time by Christoph Gudermann in a paper on elliptic functions.

Later Gudermann’s pupil Karl Weierstrass who attended his course on
elliptic functions, He used uniformly convergent in his paper in 1841, so
Weierstrass’s discovery was the earliest, and he alone fully realized its far
reaching importance. It was one of the fundamental ideas of analysis. In this

unit we shall study convergence of series of functions.

5.2 Objectives

After reading this unit the learner should be able to deal with:

= Necessary and sufficient condition for a uniform convergence

Weierstrass test for uniform convergence

Abel’s test for uniform convergence

Dirichlet’s test for uniform convergence.

Term by term integration and term by term differentiation

Sequences: A sequence is a function from natural numbers to real numbers

I.e., f: N = R. Sequences are written in a few different ways like
Way 1: aq, a,, Az, e cev een o
Way 2: {a,}n-4
Way 3: {f (n)}n=1

Examples:f (i) = ——, f(n) = ==, f(n) = -, f(n) = sin"".

i+



Series:Series is the sum of a sequence. If {a, };—, is a sequence then the

associated series is

(o]

Zan=a1+a2+a3+

n=1

Meaning of f,,(x): f,,(x) is the function in x and n where x is the real number

or variable and n is natural number.

Examples: f,,(x) = nx

filx) =x, fr(x) = 2x, f3(x) =3x ... ... ... () =nx, fp 1 (x) = (n+ 1x
Hence {f,,(x)}- is called the sequence of functions.

{0 = qis equivalent to f; (x), fo(x), f5(x), e s escee e

{f,(x)}-; is also denoted as {f,,} or {f,,(X)} or < f,, >.

Here fi(x) + f,(x) + f5(0) + o e e e oo = Yoy fr (x) is known as series

of functions.
5.3 Pointwise convergence

Let D be a subset of Real numbers and let {f,,(x)} be a sequence of
functions define on D we say that {f,,(x)} converges point wise on D if

lim,,_, f,,(x) exists for each point x in D i.e.
fn(x):D - R

lim,,_, f,(x) = f(x) for all x belongs to D.



This means that lim,,_,, f,,(x) is a real number that depends only on x.
If {f,.} is point wise convergent then the function defined by

f(x) = lim,,_,. f,(x) for every x in D is called the pointwise limit of the

sequence.

Example 1: Consider the sequence {f,,} of functions defined by f,,(x) =

nx+x2

for all x in Real numbers show that {f;,} converges pointwise.

n2

Solution: For every real number x , we have:

I _ nx + x _ X
im f,(x) = lim( — )—nggo(;+;)
1 1
=x lim—+x*’lim—=0+0=0
n—-oon n—-oon

Thus {f,,} converges pointwise to the zero on real numbers.

Example 2: : Consider the sequence {f,,} of functions defined by f,,(x) = nx

for all x in Real numbers show that {f,,} does not converge pointwise.
Solution: For every real number x, we have

lim, o f,,(x) = lim,,, nx = xlim,,_,,, n = oo for any x more than zero.
Hence {f,,} does not converge pointwise.

Definition of uniform convergence:



Let {f,,} be a sequence of functions defined on interval ‘D’ if for every € >
0, there can be found a positive integer ‘m’ such that |f,,(x) — f(x)| < €

Vn=mVx € D.Thef(x) is called the uniform limit of the sequence on D.
Note:

1 In point wise convergence: one m for each x.

2. In uniform convergence: one m for all x.

Uniform convergence of a series of functions:

Definition: Let )., f,, (x) be a series of functions define on interval ‘D’.
The series Yo, f,, (x) converges uniformly if the sequence {f,,(x)} or

< f,, > is uniformly convergent.

5.4 Necessary and sufficient condition for uniform convergence

(Cauchy’s general principle of uniform convergence)

Theorem:Let {f,,(X)} or < f,, > be a sequence of real valued functions
defined on ‘D’. Then {f,,(X)} or < f,, > is uniformly convergent on ‘D’ if

and only if for every € > 0, there exists a positive integer ‘m’ such that

1f,(0) = f,(x)| <€ Vn, p=mVx €D.
Proof: Necessary condition:

Let the sequence {f,,(x)} is uniformly convergent on ‘D’. By the definition
given € > 0, there exists a positive integer ‘m’ such that |f,,(x) — f(x)| < €
/2¥Vn ZmVx €D.



Here, n, p belongs to natural numbers and, p = mV x € D , we have
) = (0| = [fa ) = F ) + £ () = f ()|

= <If@ - f@I+|f@ - fE)| <S+i=e

/() — f,(x)| <€ Yn,p =mVx €D is satisfied.

Sufficient condition: Let < f,, > be any sequence of functions on ‘D’ and the

condition
/n(x) — f,(x)| <€ Vn,p>=mVx €D is satisfied.

According to the given condition, we can say that < f,, > is a Cauchy
sequence. Since every Cauchy sequence is convergent so < f,, > is

convergent or we can say that

lim f,(x) = f(x) for all x belongs to D
n—->oo

If ‘p’ is fixed in the condition and let n — oo, we can say that
|f(x) —fp(x)| < eVp=mandV x € D.
Therefore < f,, > converges uniformly on ‘D’.

Note : A series Y.o—; f (x) will converge uniformly on ‘D’ if and only if for

every &>0 there exists a positive integer ‘m’ such that

|fn+1(x) + fri2(x) + - ....+fn+p(x)| <gVn=2mandV x € D.



Wherep = 1,2,3, ...

Example 3 : Let {f,,(x)} be the sequence of functions on (0, o) defined by

nx - . .
fn(x) = 2.z |Sconverges pointwise to zero but does not converge

uniformly.

Solution: lim,_, f,,(x) = hm,Hoo(lJr 22 =) = lim,, o, (#) =0

+nx?2

So given sequence is pointwise convergent to zero

We know that £>0 but very near to zero

"G 11

Here when x=1/n then f,,(x) =

> equals to fn( ) =

, X IS taken a fixed real value i.e. 1/n.
Now by the condition |f,,(x) — f(x)| = E — O| = % > €

So given sequence is not uniformly convergent.

5.5 Test for uniform convergence

Theorem 1. (M,, — test): Let < f,, > be a sequence of functions defined on
(.D’.

Let lim ,_ . f,,(x) = f(x) for all x belons to D

Set M,, = Sup{|f,,(x) — f(x)]| : x belons to D} then < f,, > is uniformly

convergent if and only if M,, - 0 when n — oo,



Theorem 2. ( Weierstrass’s M- test): A series ., f,, (x) of functions will
be uniformly convergent on D. If there exists convergent series }.,—; M,,of

positive constants such that |f,,(x)| < M,, Vn € N and V x € D.

Abel’s lemma: If the sequence < v,, > of positive terms is monotonic

decreasing and numbers

Ug, Uy, Uz, eee wee e e Uy and kq, k, aresuchthatk; < u, +u, +

Uy <k, for1<r <n then kv, <Y;2,u, v, < k,v;.

Theorem 3. (Abel’s Test): The series Y, u, v, will be uniformly convergent
on [a, b] if

(i) X u, (x) or Y u, is uniformly convergent on [a, b].
(ii) The sequence (v,(x))is monotonic for every x in [a, b].

(iii) (v, (x)) is uniformly bounded in [a, b] i.e. there is a positive number Kk,
independent of x and n, such that

lv,(x)| < kV x € [a,bland for every positive integer n.

Proof: Let f,,(x) = uy + uy + ug + oo v oo FUy , D Uy, IS uniformly

convergent on [a, b].

Cauchy’s principle for given € > 0,3 m (positive integer) such that

€
|fq(x)—fp(x)| <E Vqp EN,g>p>mandV x € [a,Db]



q

£
Z U, (x) <E,Vq>p>mand‘v’x€ [a, b]

n=p+1

i is an upper bound of ¥!_ ., u,(x) By hypothesis, the sequence

(v,,(x)) is monotonic in [a, b]
Hence by Abel’s lemma, we have

q
£ £
z U, (x). v, ()| < Evpﬂ(x) < E'k =& Vp,qEN,q>p

n=p+1

>mandV x € [a,b]

Consequently, by Cauchy’s principle ), u, v, is uniformly convergent on [a,
b].

Example 4: Prove that ), a,n™ is uniformly convergent on [0, 1] if )} a,,

converges uniformly on [0, 1].

Solution: Take Y}, v,(x) =n™* = n—lx and u,(x) = a,,.

The sequence < n™* > is monotonic decreasing sequence on [0, 1]
Thereforen—lx < % =1Vn € Nand x € [0,1].

s~ v, ) =In"*<1VvneNand VvV x €[0,1].

Thus): v,,(x) = n™* is uniformly bounded and monotonic decreasing

sequence on [0, 1]. Also u,(x) = a,, is uniformly convergent on [0, 1].



Hence by Abel’s test ), v, (x)u,(x) = Y a,n™* is uniformly convergent on
[0, 1].

Theorem 4:(Dirichlet’s Test) The series )’ u,, v, is uniformly convergent on

[a, b] if (i) < v, (x) > is a positive monotonic decreasing sequence

converging uniformly to zero on [a, b].

(D f ()] = | X~ u,.(x)| < k,V x € [a,bland n € N where k is a fixed

number independent of x.
Proof: We have |f,,(x)| <k Vx€la,blandVneN
forall xe|a,bland for all p,q € N,

q>p >m,, We get

£, = £, < || + |/, < k + k = 2k,

e |Xo 1 un ()| <2k Vx€l[a,blandV q>p>m,

Therefore, 2k is an upper bound of Y2 u, (x)

n=p+1

Also < v, (x) > is a positive monotonic decreasing so by Abel’s lemma.

|22=p+1 un(x)vn(x)| < Zk-vp+1(x) » TTTTTTTTTTTTT (1)

Again < v, (x) > converges uniformly to zero on [a, b]. Given e>0 there

exists m, € Nsuch that  |v,,(x)| < i Vn =m,andV x € [a,b]-----------

(2)



Let m = max{ m; m, } then by (1) and (2) hold for all n >m.

S s1 Un ()1 ()] < 2k.% =e.Vx€[ablandV q>p >m.

Hence ) u,v, is uniformly convergenton [ a, b].
Examples 5: Prove that if k is any positive number less than unity, the series

3 ;—;is uniformly convergent in [k, K].

Solution: Let u,,(x) = x™ and v, (x) = —

n+1
IX| <k<1,wehave |f,(x)]=|x+x2+x3+ ——— + x"|
| £ GO <l + |22+ 3] + ——— — — + x|
1) <k +k*+ K34+ k*+k°+ ———————— e
|fn (O] < ﬁ as n = oo (sum of infinite GP)

1 . : : :

Also v, (x) = — is monotonic decreasing sequence converging to zero.
n

Hence by the Dirichlet’s test given series ), ﬁ Is uniformly convergent.

Example 6: When 0 < p < 1 the series Zw;—;leconverges uniformly in any

interval [, 2 — a], a>0.

Solution: Take u,(x) = nip and v, (x) = cosnf



n
| Zur(x)|=|cosr0|=|c050+c0520+ ————— + cosnd |
r=1

n

> u )

r=1

(n+1)68 . nb
cos ———.sin— a
= 5 < cosec=V0Oe [a?2m—a]
sin; 2

- : 6 ,
Now by Dirichlet’s test the series ), %converges uniformly.

(_1)71—1
n+x2

Example 7: Show that the series ), converges uniformly for all

values of x.

1

Solution: Let u,,(x) = (-1D)" ! and v,(x) = —

Since, f,,(x) = X" ,(—=1)""1 = 00r — 1 asnis even or odd.

f,(x) is bounded for all x

1
n+x2

Also v, (x) = IS a positive monotonic decreasing sequence, converging

to zero for all value of x.

(_1)11,—1
n+x2

Hence by Dirichlet’s test series), is uniformly convergent.

Example 8: Show that the series Z;’{;l—n(lfnx

5 ,X € R is uniformly

convergent.

x
n(1+nx?)

Solution: Here f,,(x) =




To find the maximum value of above function
We differentiate the function( we will apply maxima minima concept)

n(l + nx?).1 —x.n.2nx

fr{(x) = le(l + an)Z

n+n?x? — 2n?x?
n?(1+ nx?)2

fu(x) =

Thus £, (x) = 0, given

n+n?x?2—2n?x2=0=>n—-n%x2=0

1 1 . . . . . .
or,x? = ~or, X= \/% here f,,'(x) is negative so it will give maximum

value.

. . 1
The maximum value will be f, (—

\/ﬁ) = —s hence f,,(x) <

3 /2
an 2n

since

Yin=1 T

—7z Is convergent. So by Weierstrass M-test series

=, x € Ris uniformly convergent.
n(1+nx )’

Example 9: Show that the series ), —— ( |x|" on [—1, 1]is uniformly

convergent.

Solution: Since |x|™ is positive, monotonic decreasing and bounded on [-1,
1].



Therefore, by using Abel’s test given series), —— ( |x|" on [—1,1] converges

uniformly.

5.6 Term by term integration and term by term differentiation

Theorem 1 Let <f,,> be a sequence of real valued functions defined on the
closed and bounded interval [a, b] and letf,, belongs to R [a, b] forn =1, 2,

3 if <f,,> converges uniformly to the function f(x) on [a, b] then

f belongs to R [a, b] and fff(x) dx = lim,_, f; f,(x) dx.

Theorem1’:(Term by term integration) Letu,: [a, b] - R forn =

1,2,3, ....... is integrable on [a, b] and X, u,, (x) converges uniformly on [a,

b]. Then the sum f(x) = Y-, u,(x) is integrable on [a, b] and ff f(x)dx =

S [ () dx.

1
n2(n+1) (n+1)’

Example 10: Show thatf I 2dx =Yy

n
Solution: By weierstrass’s M-test, the series Y.,—4 fl—z dx is uniformly

convergent on [0, 1]. Therefore, it can be integrated term by term

TL+1

1o xM w ol
Hence [ X, 5 dx = Xy [ fl =Yl Z—1Io

n2(n+1)

1Tl+1 07’l+1

= Zn:l {nz(n+1) - nZ(n+1)} Zn 1 n2(1’l+1)




Theorem 2:(Term by term differentiation) Letu,: [a,b] - R forn =

1,2,3, ....... has continuous derivative on [a, b] and further suppose that
(i) The series) -, u,(c) converges at some point ¢ € [a, b] and

(ii) The series of derivatives Y7, u,,'(x) converges uniformly on [a, b], to
f(X)=Y_, u,'(x) say. Then

(1) The series Y.o—, u,, (x) converges at every x € [a, b] and the sum

F(X)=Xp=1 U, (x) is dif ferentiable with F’(x)= f(x) for each x € [a, b] ;

(2) moreover, the convergence of F(X)=)7—; u,,(x) is uniform on [a, b].

Example: Show that lim,_,; Y4

=Y

n3+x3 n3+1’

Solution: First we shall show that the series Y- — - is uniformly

convergent on [0, k] for any k > 0.

Let u,(x) = n3+1-x3 and v, (x) = nx?

Then |, (x)| < =V x € [0,k].

But ), n—l?,is a convergent series hence by Weierstrass’s M-test, the series

1
Un(x) = n3+x3

Also, for every x € [0, k], v,,(x) = nx? is monotonically increasing.

By Abel’s test the series }n—4 = converges uniformly on [0, k].



Hence by the term-by-term differentiation

nx?2 x2 n

- m . n - w
n3+x3 anlhmx—>1 n3+x3 anl

lim > .

5.7 Summary

We conclude with summarizing what we learnt in this unit “point wise
convergence and uniform convergence of sequence and series of functions.
Necessary and sufficient condition for a uniform convergence, Weierstrass
test, Abel’s test and Dirichlet’s test for uniform convergence. Term by term

integration and term by term differentiation”.

5.8 Terminal Questions

2
1. prove that f,,(x) = 1:,129;2 on [0, 1] is not uniformly convergent.
2. prove that f,(x) = ——— on [0, 1] is uniformly convergent.

1
1+x™

3. prove that f,,(x) =

on [2, 00) is uniformly convergent.
4. Prove that f,(x) = x™on [0, k], k < 1 is uniformly convergent.

5. Prove that f,,(x) = nxe™™*" is not uniformly convergent on [0, 0) .

»

. Prove that f;,(x) = —— is uniformly convergent.

x
14+nx?

\l

. Prove that f,,(x) =

is uniformly convergent.

8. Show that the series Y,(—1)" 1x"converges uniformly in 0 < x < k < 1.



9. Prove that the series Z;‘{;lﬁ x € R is uniformly convergent.

x2)2 4

1
1+nx

10. Show that the series for which i) f,(x) =

”) fn(x) =

nx(l—x)"

Can be integrated term by term in 0 < x < 1, although series are not

convergent in this interval.

sinnx .

11. Show that the function represented by Y>>, —5 s differentiable for

cosnx

every x and its derivative is Yo —
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6.1 Introduction

In this unit we study about Riemann integrals as developed it requires that the
range of integration is finite and the integrand remains bounded in that
domain. If either or both of these assumptions is not satisfied it is necessary

to attach a new interpretation to the integral.

In the integrand of f becomes infinite in the interval a < x < b,i.e., f has

points of infinite discontinuity in [a, b] or the limits of integration a or b

become infinite, the symbol fabf dx is called an improper integral. Thus

foocix oo dx fl dx

f°° & are examples of improper integrals.
0 x(1-x)’ -1 x2

1 x2’J-0c0 1442’

The integrals which are not improper are called proper integrals. Thus

fl sinx

0 dx is a proper integral. It will be assumed throughout that the number

of singular points in any interval is finite and therefore when the range of
integration is infinite, that all the singular points can be included in a finite
interval. Further, it is assumed once for all that in a finite interval which
encloses no point of infinite discontinuity the integrand is bounded and

integrable.

6.2 Objectives

After studying this unit, we should be able to

= use the definition of finite and infinite intervals;



= explain the bounded function;
= explain the proper and improper integral;
= State and prove convergence of f: f(x)dx

= find the convergence the improper integrals.

6.3 Finite and infinite intervals

An interval is said to be finite or infinite according as its length is finite or
infinite. Thus, the intervals [a, b], [a, b), (a, b], (a, b) each with length (b — a),
are finite (or bounded) if both a and b are finite. The intervals [a, o), (a, ),

(-00, b], (-o0, b) and (-0, ) are infinite (or unbounded) intervals.

6.4 Bounded Function

A function f is said to be bounded if its range is bounded. Thus, fi(a, b] - R

is bounded, if there exist two real numbers m and M, (m < M) such that
m< f(x) <MVx € [a,b]
f is also bounded if there exists a positive real number K such that

|f(x)| < M Vx € [a, b]

6.5 Proper integral

The definite integral f: f(x)dx is called a proper integral if

(i)  The interval of integration [a, b] is finite (or bounded)



(i) The integrand f is bounded on [a, b]

If f(X) is an indefinite integral of f(x), then f; f(x)dx = F(b) — F(a).

6.6 Improper Integral

The definite integral f; f(x) dx is an improper integral if either the

interval of integration [a, b] is not finite or f is not bounded on [a, b] or

neither the interval [a, b] is finite nor f is bounded over it.

(i)  Inthe definite integral ff f(x)dx, if either a or b or both aand b are

infinite so that the interval of integration is unbounded but f is bounded,

then f; f(x) dx is called an improper integral of the first kind.

dx

For example,flooj—;,f_oooez"alx,foo

0 T2aga15 Ar€ IMproper integrals of the

first kind.
(i) In the definite integral f: f(x) dx if both a and b are finite so that the
interval of integration is finite but f has one or more points of infinite

discontinuity i.e. f is not bounded on [a, b], then fff(x) dx is called an

improper integral of the second kind.

ldx (2 dx (4
For example, fo ~2’ 1 2_x'f1 (x-1)(4-x)

are improper integrals of the

second kind.
(iti) In the definite integral fff(x) dx, if the interval of integration is
unbounded (so that a or b or both are infinite) and f is also unbounded then

fff(x) dx is called an improper integral of the third kind.



For example,fooo % dx is an improper integral of the third kind.

6.7 Improper integral as the limit of a proper integral

(a) when the improper integral is of the first kind, either a or b or both aand b

are infinite but f is bounded. we define
. [o's) . t
(i) [ f(x)dx=lim . [ f(x)dx, (t>a)

The improper integral faoof(x) dx is said to be convergent if the limit on the

right hand side exists finitely and the integral is said to be divergent if the

limit is +o0 or — oo.

If the integral is neither convergent nor divergent, then it is said to be

oscillating.
(i) 7 fO)dx=lime o [ f(x)dx, (t < b)

The improper integral f_boof(x)dx is said to be convergent if the limit on the

right hand side exists finitely and the integral is said to be divergent if the

limit is +c0 or — oo.

(iii) [° fCoydx = [°_f(x)dx + [ f(x)dx where ¢ is any real number

tl—)—m

= lim fcf(x)dx + tlim ftzf(x)dx
t1 27% J¢



The improper integral ffooo f (x)dx is said to be convergent if both the limits

on the right hand side exist finitely and independent of each other, otherwise

it is said to be divergent.

Note [* f()dx # lime_e | [, f(O)dx + [ f(x) dx|

(b) When the improper integral is of the second kind, both a and b are finite

but f has one (or more) points of infinite discontinuity on [a, b].

(i) If f(x) becomes infinite at x = b only, we define ff f(x)dx =

limeo f, £ (x)dx

The improper integral ff f(x)dx is said to be convergent if the limit on the

right hand side exists finitely and the integral is said to be divergent if the

limit is 400 or — oo,
(i) If f(x) becomes infinite at x = a only, we define f: f(x)dx =

lim,_o [, f(0)dx

The improper integral ff f (x)dx converges if the limit on the right hand side

exists finitely, otherwise it is said to be divergent.

(iii) If f(x) becomes infinite at x = ¢ only where a < ¢ < b, we define



jbf(x)dx = ch(x)dx + jbf(x)dx

c—&1 b
= lim j f(x)dx + lim f f(x)dx
a €20+ ct+ey

&£1—0+

The improper integral f: f(x)dx is said to be convergent if both the limit on

the right hand side exist finitely and independent of each other, otherwise it is

said to be divergent.

Note 1. If f has infinite discontinuity at an end point of the interval of
integration, then the point of discontinuity is approached from within the

interval.
Thus if the interval of integration is [a, b] and

(i)  fhas infinite discontinuity at ‘a’, we consider [a + &, blas € - 0 +

(ii)  fhas infinite discontinuity at ‘b’, we consider [a,b — €]las € = 0 +

Note 2. A proper integral is always convergent.

Note 3. If fff(x)dx Is convergent then

(i) f; kf (x)dx is convergent k € R,

(i) J) f)dx =[S f(x)dx + [ f(x)dx where a<c <b and each

integral or right hand side is convergent.

Note 4. For any ¢ between aand b, i.e. a <c <b, we have



jbf(x)dx = ch(x)dx + jbf(x)dx

If fcb f (x)dx is proper integral, then the two integrals f: f(x)dx and

fac f (x)dx converge or disverge together. Thus while testing the integral

Y £(x)dx for convergence at a, it may be replaced by “ f(x)dx for any
a a

convenient ¢ such thata < c <b.

6.8 Convergence of Improper integrals

If the limit of an improper integral, as defined above, is a definite finite
number, we say that the given definite integral is convergent and the value of

definite integral is equal to the value of that limit.

If this limit is co or — oo, the integral is said to be divergent. In this case , we

say that the value of integral does not exist.

In case, the limit is neither a definite finite number nor oo or — oo,the integral

Is said to be oscillatory. In this case also, the value of integral does not exist.

Convergence of the integral faoo f (x)dx can be defined as follows:

The integral faoo f(x)dx is said to converge to the value I, if for any

arbitrarily chosen positive number &, however small, there exists a

corresponding positive integer n, such that

|7 FG)dx — 1| < &, for all values of b > .



Similarly, we can define the convergence of an integral when the lower limit

is infinite or when the integrand becomes infinite at the lower or upper limit.

Note:the sum and difference of two convergent integrals are evidently

convergent.

Example 1. Examine the convergence of the improper integrals:

O fia @) TE G 7S RN

Solution. (i) By definition f t_mf = lim,,.[logx]{ =
lim,_,, logt = 0. So, [~ ?x is divergent.
(ii) By deflnltlonf t_mf f
= }im x‘l/zdx = gim [Zﬁ]i = L}im (2Vt—2) =
—00 1 — 00 — 00

oo dx - .
= [, 7 Is divergent

t—>oo

t
-1/
(iii) By deflnltlonf 3/2 = lim, fltx‘3/2 dx = lim [x 11 2]
1
= }erolo [\/_] = tll_)rg (——+ 2) = 0 4+ 2 = 2 which is finite

= f 3/2 is convergent and its value is 2.

t dx
t—>rg> fO 1+x2 t!gg[tan x]

(iv) By definition [~ 1de —

= lim (tan™'t — tan™10) = —WhICh is finite.

t—oo

oo dx
fO 1+x2

. T
IS =
2



Example 2. Examine for convergence the improper integrals:

(i) [ e™dx(m > 0) (i)

1+

. oo dx 0 dx
(IV) fO (14x)3 (V) fO x24+4q2

Solution. (i) By definition [* e™*dx = lim,_, [, e ™*dx =

—-mxqt
lim;_,q
o []
= Lllm — —(e‘mt -1) = ——(0 —-1) = —WhICh is finite.

co _ . - .1
= [~ e ™*dx is convergent and its value is —
0 m

(i) By definition

fooo X _dx = llmt_,oof T dx = llmt_)oof ( ad )dx

14x2 14x2

1 t
— lim [Elog(l + xz)l = llm [log(l +t?) —log(1+ a?)] =
a

t—oo

=[5

(iii) f sinx dx = llmf sinx dx = lim[— cos x]§ = lim (1 — cos t)

t—o0 t—o0 t—oo

Which does not exist uniquely since cos t oscillates between -1 and

+1 when 1—00. = [ ” sin x dx oscillates

.
(v) [ =2 = lim [{(1 +x)3dx = lim [£2]
0

0 (1+x)3 toow t—oo -2

lim — 1] = —2(0 — 1) = which is finite

t—oo (1+t)2



% ax Is convergent and its value is =
0 (1+x)3 2

(V) J-Ooo dx — lim ft

lim [— tan™! i]t

x%2+4a2  t-o00"0 x2+(2a)2t—xn 2a 2alg
; 1 _
lim — [tan~! = — tan 10] [ ] = —WhICh is finite.
t—oo 2a 2a

= [ =% js convergent and its value is —
0 x2+4q2 4a
Example 3. Examine for convergence the improper integrals;

W) ), oo i) [ =

. oo 2x? w0 X
(iv) [, 7 dx (V) J; RFEYE dx

BERT t . -2 R T (x_z)_l t
Solution. (i) f 2)2 tll_{glo f3 (x —2)"%dx = tlggo[ -1 ]3
= }im — —1[ = —(0 — 1) = 1 which is finite.

=>f3°°( 4 22 Is convergent and its value is 1.

lim

t d
(iii) f\/—x\/xz_ lim fﬁx\/xz— th_)rg[sec x5

— 14 -1 _n mw_ T . - -
= lim (sec t — sec \/—) i which is finite.

t—oo

. - - T
Is convergent and its value is "

© dx
> e
(iv) foo 2x2 dx — lim ft(x +1)+(x? —1)d

2 t—o0 2 (x2+1)(x%-1)

_1,'-“1 L\ 11x—1t_1t
=t |, (gt ) 4 = i oy + e

2



1
1 -2
ZtILr?ologl_F +2+§log3—tan 12

t

=%log1+§+%log3— tan~12 =§+%log3—tan‘12 which is

finite

2 2
=>f200 x4x_

isZ+Zlog3 — tan~12
2 2

(v) floo ad dx—llmf

(1+42x)3 t—oo 1l (142x )3

1 t~(1+2x) — =
= ]j d
toe . (1+2x)3 x

= lim Jt B (1+ 2x)72 —%(1 + 2x)‘3] dx

t—ooo 1

1 (14201 1 (1+2x0)72)

t1—>r£10[2 “1x2 2 —2x2

1

. -1 1 r
~he [4(1+ 2x) © 8(1 + 2002,
_1_ 1 11
~ela+ 2t) Tsa+202 12 72
= 0+ 0 + - — — = —which is finite

72

(o8]
= [, Trox )3 dx is convergent and its value | |s =

Example 4. Examine for convergence the integrals:

(i) [ xe~*dx (ii) J, x2e *dx (iii) [ xe " dx



(iv) fooox3e‘22dx (V) foooxsinxdx

Solution. (i) floo xe *dx = lim fltxe‘xdx (Integrating by parts)

t—oo

= lim[—xe™* —e*|{ = lim(—te ' —e t+e 1 +e 1)

t—oo t—oo

= lim (_t) —= L}im et + % (Applying L’Hospital’s Rule to first limit)

t—oo ?
. -1 2 2 2 . . ..
= lim (—t) -0 +;= 0 +;= ;Whlch is finite

t—ooo \ e

(%) _ . . . 2
=>f1 xe~*dx is convergent and its value is ;
i ®_2,-x — 1 t 2, —x
(i) J, x*e*dx = lim,, [, x*e *dx

= lim[—x2%e™* — 2xe™ — 2¢7*]} = lim(—t?e™t — 2te™t — 2e7t + 2)

t—oo t—oo

2

= lim;_, (%) — 21lim;_,q (ﬁ) — 0+ 2 (Applying L Hospital rule)
. -2t . t

= lim;_, (7) — 21lim;_, (;) + 2

(Again Applying L’Hospital rule to first limit )
: -2 e

= lim;_ (5) —2X04+2 =0+ 2 = 2 which is finite

=" x2e~*dx is convergent and its value is 2.

(iii) fooo xe ™ =lim,, e fotxe‘xzdx Put x? = z so that



2xdx = dx or xdx = %dz
When x=0,z=0; whenx=t, z =t
(o] t 1 tz
j xe ** = lim —e%dz = lim ——e‘zl
0 0

t—>oo t—oo

0

= lim —~(e™*" — 1) = —2(0 — 1) = > which is finite

t—>oo

0 a2 . . .1
:>f0 xe™* dx is convergent and its value Is -

(iv) fooox3e‘x2dx = lim,, e fotx.xze‘xzdx
Put x2 = z so0 that 2xdx = dz. When x =0, z=0: when x =t, z = t*.

(0] 2 - -
Jy x3e " dx = lim,_., fot %ze‘zdz (integrating by parts)

= limt_,oo%[—ze‘z —e7?]t" = lim z [—tze‘t2 —e 4 1] =

t—oo
1

—lim (tT) _041t (Applying

2 t—>oo 2

L Hospital rule)

- —llim( 2t )+§= —Yim (—e%)+§=o+§=§ which is finite.

2 t5o0 \2tet? t—oo
(0] 3 _x2 - - - 1
:>f0 x>e~* dx is convergent and its value is 3

\ * xsin x dx = lim oo " xsin x dx
0 t 0

= lim[—xcos x + sinx]§ = lim (—tcos t + sint)

t—oo t—oo



Which oscillates between —oo and + oo since cos t oscillates between -1 and

+] att — oo

= [” xsin x dx is not convergent. (in fact, it oscillates infinitely)

Example 5. Examine for convergence the integrals:

(lll)f e *sinxdx (iv)

xlog x

O N ame  F

m —
J, e"** cosbxdx

] t dx
Solution. (i) fl (1+ N— = limg_q [ )V

Putx=1,z=1: whenx=t,z= +t

Lo dx \/_ dz_ _ 1. -1Vt
~f) TV = limy, J — }1_)r£10[2tan z|y

= 11m2[tan L/t —tan™ 11] =2 (— — %) = %Which is finite

t—oo

00 dx
=>f1 LovE Is convergent and its value i |s =

(i) 7= = lim [, L dx

xlog x t—oo “2 logx

= }im [log(log x)] = tlim [log(logt) —log(log2)] = o

o dx . .
=
/, wiogx 19 divergent

(iii) foooe smxdx—llmf e ™ sinx dx

t—o0



t

= lim

e
[m lm (—1 sinx — 1 cos X)]

0
ax

a? + b2

U e sinbx dx = (asin bx — bcos bx)]

1
= lim l— Ee‘x(sinx + cos x)l

t—oo

1
= lim — E[e‘t(sint + cost) — 1]

t—oo

—%[(O X a finite quantity) — 1] = %Which is finite
=>f0oo e™* sin x dx is convergent and its value is %

(iv) fooo e~ cos bx dx = lim fot e~ cos bx dx

= lim

! [( D7+ bz( acosbx+bsmbx)l

eax
U e cosbx dx = PR (a cos bx — bsin bx)l

= lim
t—oo a2+b?

[e**(—acos bt + bsin bt) + a] = —

=7 e~ cos bx dx is convergent and its value is
0 a2 bz

Example 6. Examine the convergence of the integrals;

) o dx ..\ (00 dx ...y o0 tan"lx . © _/x
O a0 mp (D)), ——dx () [, edx
. t dx T 1 1
Solution. (|)f (1+ ) = lim_e |, el lim,,, ( —x+1) dx

[Partial Fractions]




t

x+1]1

= tlim [logx — log(x + 1)]¢ =lim [log

t—oo

= lim log

t—oo

1
— log 2] = lim log1 + log 2

t—oo + l
t

= log 1 + log 2 = log 2 which is finite.

© dx . . .
=
fl - Is convergent and its value is log 2

.- © dx 1 1
(i1) fl X2(x+1) hmt"""f xz(x+1) }ggf ( tat m) dx
[Partial Fractions]
1 x+1 17
= }im —logx —— + log(x + 1)] = 11m llog — ;]
—oo | 1

i 1y 1
= lim log(1+?)—?—log2+ 1]

t—oo |

=logl—0—-log2+1=1-—log2 which is finite

©o dx . ] -
=] ey convergent and its value is 1 — log 2

o tan~1 ttan™1
(i) [ = dx = lim e [, —5—dx

Put x = tan® so that dx = S€C29d9

tan"1x 2]
f dx =f sec?0do = j@coseczedé?
x2 tan?o

= 0(—cotf) — f 1(—cot6)do



tan~1x

X
= —fcotf + logsinf = — + lo
5 x? N

. foo tan~1x dx = lim _tan”'x 4 Jog—* ‘
U1 k2 S e x2 & [izxz 1

1 [ tan_1t+1 ' +tan~11 —1 1]

= lim |— 0 an™'1 —log—

t—o t? SEne “2

=0+ lim1 z 11 2
= 0+ lim log—=—==+- + 7 log
=+1

t2

= log +Z +~log 2 = =+ ~log 2 which is finite.

foo tan~1x

. —zdxisconvergentand its value is T +llog2
X 2 2

(iv) fooo e Vidx = lim,_, fote‘ﬁ dx
Put\x =z, i.e.,x = z% so that dx = 2zdz

Whenx=0,z=0whenx=t,z=+/t
“f 0°° e Vidx = lim,_ fo‘/E 2ze~?dz [Integrating by parts]

= lim 2[—ze % — e‘Z]z,/E = tlim —2[\/56_‘/E +eVt— 1]

t—oo

. -2t . , .
= lim;_, (ﬁ) —-0+2 (Applying L’Hospital Rule)

1
= limy ., (%) +2 =lim,_, (57) + 2 = 0+ 2 = 2 which is finite

NG



:>f0°° e V¥dx is convergent and its value is 2.

Example 7. Examine the convergence of the integrals:

0 dx

i) J° e¥dx (i) [y oz (i) [0 e~*dx

(iv) [° sinhxdx

Solution. (i) f_ooo e?* dx = lim,,_o, fto e?* dx
. 210 . 1 1 1 e e g
= lim,,_, [%]t = lim,,_, 5 (1 —e?*) = E 1-0)= EWh'Ch is finite.

0 . . .
= [__e* dx is convergent and its value is %2

0

.. 0 dx 0 dx 1 1 x

1 = lim,_,_ ———— = lim,,_ [——.———tC”T_l‘——

(W) o sz mo s a2(B+x2) Sl PER p/al,

q
. 1 _1qt 1 . . ..
= lim;_oo — [O —tan™t q—] == (— E) = — which is finite.
pq p prq 2 2pq

0 . . .
= is convergent and its value is —

—® p2+q2x? 2pq

(i) [ e dx =lim,, o, [, e ¥dx = lim,,_,[—e~*]? =

limt_>_oo(—1 + e_t) =—14+00 =0

:>f_ooo e ™ dx diverges to +co

eX—e—X
—dx

(iv) f_ooo sinhx dx = lim;, o, —



= lim lz(e +e"‘)] = lim [1—%(et+e‘t) =1—%(0+°°)

t—>—o0

= —00

= f_ooo sinh x dx diverges to —oo

Example 8. Examine the convergence of the integrals:

(i) [ e dx (i) %, =

i) [

iv) [0 w52

00 (1+x2)2 X24+2x+2

Solution. (i)
f_oooo e *dx = f_ooo e *dx + fooo e “dx =limg ,_o ft(i e rdx+=

. t2 —-X
limg, e fo e ™ dx

= lim [—e~ ]t1+ lim [—e"‘]g2

t1—>—0o0 tp,—>—00

= lim (-1+e™)+ llm( e24+1)=(-14+0)+(0+1) =

= [ e *dx diverges to oo

.. o dx 0 dx © dx
(i) f—OO 1422 f—OO 1+x2 + fO 1+x2

0 dx 4 2 dx
im

= lim

t1—>—00

= lim [tan™'x]2 + lim [tcm‘lx]g2

t1—>—00 ty—>—0



= lim [tan~t;] + lim [tan~1t,] = — (— E) + = = 7t which is
t1—o—o tp,—>—00 2 2
finite.

o X . . .
| 1s convergent and its value i1s ©
—00 14x2

o dx 0 dx © dx
(“I) f_oo ex+e—x = f—OO ex+e—x + fO ex+e—x

y O e*dx e jtz e*dx
= lim ———+= lim —
t1>—00 t1 e2x + 1 ty—=0 J, e?x +1

=tan~1z = tan"te*
@ d
X
. _ . _ t
——— = lim [tan"'e*]) + lim [tan"'e*]}?
o eX +e~X t1—>—00 1 ty,—>—00

= lim [tan™'1 —tan"te®1] + lim [tan~le'z — tan~11]

t1—>—00 to—>—00

- G - tan—lo) + (tan—loo — %) = Z which is finite.

[e'e] d . . .
=/ ~ is convergent and its value is %

0 egX4e™X

] o dx 0 dx © dx
(IV) f_oo (1+x2)2 f—oo (1+x2)2 + fO (14x2)2

I j 9 g [
= 1m P 1m _
t1>—© tq (1 + x2)2 tp—>—00 0 (1 + XZ)Z

Now putting x = tan6 so that dx = sec?6d0, we have



sec?6d6 sec?6d6 )
j—: :j = fcos 7]
(1 + x2?)? (1 + tan?0)? sec*6

1+ cos 26
deG

_1(9+sin20)_1(0+_ p 9)—1(t 1y g X )

=5 =3 sin @ cos 6) = - (tan™"x + ——
© d . 1 _ o 1 _

'..f—oom = lim; o [5 (tan 1x + 1fx2)]t1 +limg, o [E (tan 1x +
x t2

1+x2)]0

1 ) ty 1 4 ty
= lim = [—tan‘ t, + l + lim - [tan t, + 2]
t1—>—00 1 + tl tr—>—00 2 1 + tz

=27 a0ty T2z 20+ 59

=Z— lim —+ lim — (By L’Hospital rule)

t1—>—00 4tq ty,—>—co 4t;

zg_o+o=§wmmsﬁmm

dx
>[7 is convergent and its value is
—00 (1 2)2

(V) f_oo dx _ f_() dx + fooo dx

00 x2+2x+2 0 x2+2x+2 xX2+2x+2
] D m [
= llm 1m
tio-o ), (x+1)24+ 1 tpo-e )y (x+1)2+1

= lim [tan™'(x + D]g, + lim [tan™(x + 1]

t1—>—0o tp—>—o0



= lim E —tan"1(t; + 1)] + lim [tan'l(tz +1) — %]

t1—>—00 ty—>—

— % — tan™1(—) + tan"loo — % = E + 5 = 1 which is finite.

0 d . . -
=~ —=—is convergent and its value is x.
—0 x°+2x+2

Example 9. Test the convergence of the integrals:

ORI (i) J; 5 (i) [} ==

Solution. (i) 0 is the only point of infinite discontinuity of the integrand on
[0, 1]

1dx -
fo Vx llrn<£‘—>0+ f0+ 1/2dx

= lim [2\/—] lim 2(1 — /&) = 2 which is finite.

-0+ e-0+

=/, \/_ Z js convergent and its value is 2.

(i)  0isonly point of infinite discontinuity of the integrand on [0, 1]

tax lmf x"%dx = lim ——] lim (— l)=oo

0 XZ &£-0+ &£-0+ g0+
ldx .
=], — diverges to oo

(iti) 1 is the only point of infinite discontinuity of the integrand on [1, 2]

. 2 (x-1)+1
Vx-1 =0+ 1+e Vx-1

dx



)dxz lim [ (x—1)3/2+2F]

-0+ e-0+

1+¢

2
1
= lim (\/x+1+
1+¢ vx — 1

= lim ; + 2 — —gz — 2\/_] —WhICh is finite

e-0+

= [P 2_g tand its value is
1\/_ x 1S convergent and ItS value IS

Example 10. Examine the convergence of the integrals:

1/e dx
x(log x)?2

(I )J-Z dx

1 xlog x

(i) [ logxdx (ii) f] (iii) f

x(logx)3

Solution. (i) 0 is the only point of infinte discontinuity of the integrand on [0,
1]

fol log x dx = lim,_, f01+8(log x).1dx (integrating by parts)
gll,%lJr[x logx — x]} = ell)r&( 1—¢cloge +¢)
= —1 which is finite. [+ lim,_,x™logx = 0,n > 0]

=>f01 log x dx is convergent and its value is -1.

(i)  Since lim,,_ 4 x(logx)™ = 0,n > 0, therefore 0 is the only point of

infinite discontinuity of the integrand on [O, ﬂ

171/e

.-.foe Y = lim,,, foljz(logx) —Z, dx = lim [(logx) ]

x(logx)3 04



] = —[—1 — 0] = 1 which is finite.

. foe x(lggx)3 is convergent and its value is 1.
(tit) Please try yourself. [Ans. Converges to -1/2 ]

(iv) 1 is the only point of infinite discontinuity of the integrand on [1, 2]

fz dx li fz 1/x

1 xlog x T 50+ l+elogx

= lim [log(log x)]%,. = lim [loglog2 — loglog(1 + ¢)]
e-0+ £-0+

= loglog1 —log 0 = loglog2 — (—o0) =

2 dx .
= 0
J] og ¥ diverges to

Example 11. Examine the convergence of the integrals:

) s = @)% W=
W) f, e (i) f) o (vii) [7/* tan 6 d6

Solution. (i) a is the only point of infinite discontinuity of the integrand on
[0, a]

a dx _ _ _1/2
fO Va-x sllgl+f (a x) dx

= lim [-2Va — x] = lim — 2|e —+a] = 2+/a which is finite.

e—-0+ e-0+



N — \/T is convergent and its value is 2va

(i) 2 is the only point of infinite discontinuity of the integrand on [0, 2]

= lim [sin—l e _ sin—lo] = sin~11 — 0 = Z which is finite.
£-0+ 2 2

=

T
converges to )

2 dx
0 f4—x2
(ili) Please try yourself. [Ans. Diverges to oo]

(iv) g Is the only point of infinite discontinuity of the integrand on [0, g]

. (/2 cosx . Y 1 . _
N md"—gli%‘ fz (1 —sinx) 2(—cosx)dx =

lim [—2\/1 — sin x]g_s

e-0+
—limZ\/l—sin(z—e)—l =2 Jl—sinz—l =2
T 50+ 2 B 2 B

:>J<TL'/2 cosx
V1-sin

dx converges to 2.

(v) 1 isthe only point of infinite discontinuity of the integrand on [0, 1]

. fl dx _ hm fl—E dx
"Jo x2-3x+42 20+ Jo  (1-x)(2-x)



(1 1
N Sll)rg1+ 0 ((1 —X) B (2 - x)) dx
= lim [—log(1 — x) + log(2 — x)]3~

-0+

1-¢

—xl _ ll 1
= lim |log -

— X1y e—-0+

2
= lim llog — log 2]

e-0+

1
= lim log(1+ ) log2 =logoo —log2 = o

-0+

= fol = d3 diverges to oo
(vi) g Is the only point of infinite discontinuity of the integrand on [0, g]

.'.fon/z tan 0 do = lim._, fOTE tan6do

TL'

= lim [logsec8]; = lim [log sec (g — e) — log 1]

-0+ -0+

= h%L log cosec € = logcosec 0 = logoo =
E—

= f:/z tan 6 do diverges to o

Example 12. Examine the convergence of the integrals:

] 1 dx 2a dx
(i) f—1x_2 (ii) fa =2 )2 (i) J; (x—a)?

Solution. (i) The integrand becomes infiniteatx =0and -1<0<1



0—&q1 dx 0 dx

1 dx 0 dx 1dx
o == im0 [0 =

1 xz 1 xz i hm &£1—0+ f

So that 0 enclosed within (—¢&,, &,) is excluded

11 1
= lim ——l + lim ——l
X X

&£1—0+ E2—0+

= lim <1—1)+ lim (—1+é>=(00—1)+(—1+00)=oo

€120+ \& &£2,-0+
1 dx -
:>f_1x—2 diverges to + oo

(i)  The integrand becomes infinite at x =2aand a< 2a < 3a

3a dx 2a dx 3a dx
“fa (x-2a)2 fa (x—2a)? + fZa (x—2a)?2

. 2a—¢&1 dx . 3a dx
= lim ——— t lim —
£1-0+ J (x —2a)? " -0+ )y, (x —2a)?
2a—¢&q _ 3a
= lim l + lim l
e1-0+ lx — 2al, £2-0+ Lx — 2al344¢,

1 1 1 1 1 1
= lim (———)+ lim (——+—>=(oo——>+<——+00)=oo
£1-0+\& A/ &£-0+\ a & 2 a

3a dx
= | 20y diverges to oo

(ili) Please try yourself. [Ans. Diverges to oo]

Example 13. Examine the convergence of the integrals:



. 4 dx
M J =

(IV) fn dx

sinx

()f0

1+cosx

Solution. (i) Both the end points 0 and 4 are points of infinite discontinuity of
the integrand on [0, 4]

4 dx 1 dx 4 dx
“f0 x(4—x) B fO x(4—x) + fl x(4—x)

i [ e [T
—£1§B1+ o+, F\X 4 —x * 521—r>{)1+1 4\x 4—x x

1 1 4—¢&5

[+, [y
im |7log

—xlg,  &2o0+ —xly

= i [11
= lim |- log

&£1—0+

= lim —(log—— log )+ lim Z(log — log—)

e1-0+ 4\ ©3 4—g) &0+ & 3
1 [l 1 l N 1 [ | 1l
— — — (—o00 — |00 — —|] = 0O
31083~ (=) *3 083
0 x (
(i)  Please try yourself. [Ans. Diverges tooo]

(ili) Both the end point -a and a are point of infinite discontinuity of the

integrand on [-a, a]

famdx—f dx+f

a /az x2 /az xz



0 1 1
= lim ——(a%? —x?)72(—2x) dx

€120+ —a+e&q 2
a+82 1 1
+ lim ——(a? — x?)"2(—2x)dx
£,-0+ 2

0

atéey
= lim |—Va?— xz] + lim |—/a? — xz]
0

&£1—0+ —a+é&q g0+

= lim |—a+ & Qa - 81)] + Slgrg+[—J£2(2a — &)+ a] =—a+a=

&£1—0+

0 [

dx converges to 0

aa—x

(iv) Both the end point 0 and & are point of infinite discontinuity of the

integrand on [0, 7]

T dx /2 T
“Jo oz =1y cosecxdx + [, cosecx dx

/2 T—&y

= lim cosec x dx + lim cosecx dx

81—70+ 0+81 52_)0+ 7-[/2

x17/2 T—&y
= e}l_r>r01+ [log tan —] + ell—{rol+ [log tan —]
/[ &1 T & ([

= li — — — ' ———) —logtan—

sll—r}& [logtan4 log tan > + gll_r)l(‘)l_l_ [logtan (2 2) og tan 4]

=0—(0)+00—0=00 = fonsflTxxdivergesto 0

(v) = is the only point of infinite discontinuity of the integrand on [0, 7]



T dx . T—& dx . m—&1 X
= lim ——— = lim —sec®=dx
fO 1+cosx £-0 fO 2c0s2x/2 £-0+ fO 2 2

= i fing] = i an (G- 3) = oo

T dx .
= 00
Jy ——diverges to

Terminal Questions

Examine for convergence the improper integrals:
(i) [ e**dx
.- 00 dx
(in fo (1+x)2/3

(i) [ ——dx

(1+x)3
(iv) f_ooo cosh x dx
O

0 14x2
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Block -3
Convergence test, Riemann integral

In this unit we study the integrands which admit primitives in terms of
elementary functions. In such cases it is easy to test the convergence of
integrals. But every function does not possess a primitive in terms of
elementary function. Improper integrals of such functions cannot be
examined for convergence by the procedure discussed so far. Thus in such
situation we need more advanced methods for testing the convergence of

such integrals, which has been discussed here.

In the second Unit we discuss about a step function which is defined as a
piecewise constant function, that has only a finite number of pieces. In other
words, a function on the real numbers can be described as a finite linear
combination of indicator functions of given intervals. It is also called a floor

function or greatest integer function. The step function is a discontinuous

function.

In the third Unit we discuss about mean value theorem of real numbers as
well as for Riemann integral, we gave application of this theorem. We also
discuss about Intermediate value theorem, fundamental theorem of integral
calculus and its several applications, we discuss about Substitution method

for integration and

Second mean value theorem and its applications.


https://byjus.com/maths/greatest-integer-function/




Unit-7: Convergence Test

Structure

7.1 Introduction

7.2 Objectives

7.3 Tests for convergence

7.4 Comparison Test

7.5 p—Test

7.6  Absolute Convergence

7.7  Absolute Convergence of the integral of a Product
7.8 Abel’s Test

7.9 Dirichlet’s Test

7.10 Summary

7.11 Terminal Questions



7.1 Introduction:

In this unit we study the integrands which admit primitives in terms of
elementary functions. In such cases it is easy to test the convergence of
integrals. But every function does not prosses a primitive in terms of
elementary function. Improper integrals of such functions cannot be
examined for convergence by the procedure discussed so far. Thus in such
situation we need more advanced methods for testing the convergence of

such integrals, which has been discussed here.

7.2 Objectives

After studying this unit, we should be able to:

= Check the test of convergence of a series.

= Find Comparison of test.

=Check the u —Test

= Check the Absolutely convergence of the series
=Check the Abel’s Test

=Check the Dirichlet’s Test

7.3Tests for convergence of f: f(x)dxatx =a




Let a be the only point of infinite discontinuity of f on [a, b], the case when b

is the only point of infinite discontinuity can be dealt with in the same way.

Without any loss of generality, we assume that f is positive (or non-negative)
on [a, b]

In case f is negative, we can replace it by (-f) for testing the convergence of
J, fx)dx

Theorem 1: A necessary and sufficient condition for the convergence of the
improper integral fff(x)dx at a, where f is positive on (a, b], is that there
exists a positive number M, independent of € > 0 ffﬂf(x)dx <

MVein (0,b —a)

Proof: Since a is the only point of infinite discontinuity of f on [a, b].

Therefore, fis continuous on (a, b]. Also f is positive on (a, b]

= For0<a<e<bi.e., for0<e<b—a,fispositive and continuous

on [a + ¢, b].

= ffﬂ f(x)dx = A(¢) represents the area bounded by f on [a + &, b] and the

X-axis.

= As e — 0 + i.e., as € decreases, A(g) increases since the length of the

interval increases.

=lim,_ ;. A(e) = lim,_, ¢, ffﬂf(x)dx will exist finitely if and only if A(e)

is bounded above.



:>ff f (x)dx will converge iff 3 a real number M > 0 and independent of ¢

such that
A(e) <M.
= [ f(x)dx converges if and only if [ _f(x)dx <M VVein (0,b — a)

Note: If for every M > 0 and some ¢ in (0, b —a). A(e) > M, then

ff+£f(x)dx is not bounded above.

-'-f;+€f(x)dx tends to +¢ ase = 0+ and, hence, the improper integral

f; f(x)dx diverges to +¢.

7.4 Comparison Test

Theorem 2. If f and g are two positive functions with f(x) < g(x) for all x

in (a, b] and a is the only point of infinite discontinuity on [a, b], then

(i) f; g(x)dx is convergent = f: f (x)dx is convergent

(ii) fabf(x)dx is divergent =>f;J g(x)dx is divergent.
Proof. Since fand g are positive and f(x) < g(x)Vx € (a, b]
b b
af f@dx< [ g(x)dx for0O<e<b-—a

(i) Let ff g(x)dx be convergent, then there exists a positive number M

such that



b
j gx)dx <M for0<e<b-—a
ate

~From (1), [], _f(x)dx <M for0<e<b-a
Hence ff f(x)dx is convergent.

(i) Let fff(x)dx be divergent, then for every M > 0, there exists ¢ in
(0, b — a) such that f:+£f(x)dx > M
=~ From (i), ffﬂg(x)dx > M. Hence fabg(x)dx is divergent.
Theorem 3: Comparison Test Il (Limit Form)

If f and g be two positive functions on (a, b], a being the only point of infinite

discontinuity, and lim,,_, . % = 1 where | is non-zero finite number, then

two integrals ff f(x)dx and ff g(x)dx converge or diverge together.

Proof: Since fand g are positive on (a, b]

fx) : f(x)
REA a2 =]>
700 > 0on (a, b] =lim,_,; 700 [>0
But [ + 0 (given)
~1>0

Let € be a positive real number such that [ — & > 0.



Since, lim,_ % = [, therefore, there exists a neighbourhood (a, ¢c),a<c

< b, such that

f(x)

ﬁ_l| < eVx € (a,c)

=>l—e<%<l+e‘v’x€ (a,c)

= -e)glx) <flx) < +egX) [+ 9(x)>0]
=>kg(x) < f(x) < Kg(x) wherek, K>0 ................... (1)

Now, ff f(x)dx converges at a = f: f (x)dx converges at a
fcb f (x)dx is proper integral

Since, kg(x) < f(x)Vx € (a,c) [Form (1)]

~k f: g(x)dx converges at a [by comparison test I]

=" g(x)dx converges at a

= f; g(x)dx convergesata fcb g(x)dx is proper integral

(i) ff f(x)dx diverges at a :>facf(x)dx diverges at a
fcb f(x)dx is proper

Since Kg(x) > f(x)Vx € (a,c) [Form 1]



+K [T g(x)dx divergesata- =" g(x)dx diverges at a

= f: g(x)dx divergesata - fcb g(x)dx is proper intgral
It can similarly be shown that

ff g(x)dx converges ata = f; f(x)dx diverges at a.

And f: g(x)dx diverges ata = f; f (x)dx diverges at a

Theorem 4: Let f and g be two positive functions on (a, b], a being the only

point of infinite discontinuity. Then

fx)
gx)

(i)  lim,_ g, % = oo and f: g(x)dx diverges :f;f(x)dx diverges.

@ lim,,,.—=0and f: g(x)dx converges = ff f (x)dx converges

f&) _

Proof: lim,._, prot

= Givenany ¢ > 0,3anbd (a,c),a < ¢ < b such that

|f()

g()|<e\7’x€(ac):> < 8<£‘v’x€(a,c)

=0 < |%| <eVx € (a,c)=>f(x) <eg(x)Vx € (a,c)
Now ff g(x)dx convergesata = fac g(x)dx converges at a

:>fo £g(x)dx converges at a

Since f(x) < eg(x)Vx € (a,c)



fac f(x)dx converges ata = f; f (x) converges at a
(i) limyo gy 22 =
g
= Given a real number K> 03 a nbd (a,c),a < ¢ < b such that

fx)

0@ K Vx € (a,0)=f(x) <Kg(x)Vx € (a,c)

Now f; g(x)dx diverges at a :>f; g(x)dx diverges at a
= [ Kg(x)dx diverges at a
Since, f(x) < Kg(x)Vx € (a,c)- ], f(x)dx diverges ata

=>f;J f(x)dx diverges at a

Theorem 5: Useful Comparison Integrals

(i)  The improper integral f —is convergent if and only if n < 1.

(i)  The improper integral fa is convergentifand only ifn<1

( —x)"

Proof: (i) If n <0, the integral f

— is proper

If n > 0, the integral is improper and a is the only point of infinite

discontinuity of the integrand on [a, b]

Casel.Whenn=1



= lim [log(x — a)]2,. = hm [log(b —a) = log €]

-0+

= log(b —a) — (—») =

=>fa a )n divergesifn=1

Case Il. Whenn # 1

b dx . b (x — )t
J—=11mf (x —a)"dx = lim |[————
+é a+e

a (x._.a)n -0+ J, e-0+ 1—n

71[(b __a)l—n,__gl—n]

e-0+1 —

Sub-Case l.Whenn>1sothatn—1>0

f _ lim 1 1 1 l 1 ]
— — 0o —
(x—a)" a)" enotn— 1 et b—-—a)*1l n-1 (b—a)r1

:f(f ey diverges ifn > 1

Sub-Case 2. When0<n<1sothatl—-n>0

which is finite

b dax . 1 _ 1-n 1-n _(b_a)l—n
Jo G = Jim (b~ ) - e = 2R

b dx -
=] Gy Converges ifn <1



dx

(x—a)™

Hence, ff is convergentifand only ifn<1

dx

(ii) 1fn <0, the integral [ =

If n > 0 the integral is improper and b is the only point of infinite

discontinuity of the integrand on [a, b].

Case l.Whenn=1

fb dx _fb dx _ . (U7F dx [log(b—x)]b_g
a(b—x)”_ ab—x_sir&a b—x oot -1 a

= lim [—loge + log(b — a)] = —(—») + log(b — a) = «

e—-0+

b dx
=

M divergesifn=1

Case Il. Whenn # 1

b dx b—¢
SRS —— A\
L(b—x)" Jm | (b x)
b—¢
— 13 (b_x)l_n — 1i 1-n 1-n
- i = B

Sub-Case 1. Whenn>1sothatn—-1>0

b dx 1 [ 1 1 ] 1 [ 1 ]
f = lim — = 00 — = 00
a (b—x)*  gs0+n—1lem1 (b-a)n"1 n-1 (b—a)n—1

b dx . .
=] g diverges ifn>1



Sub-Case 2. When0<n<1sothatl—-n>0

which is finite.

b_dx __ jim L[(h— q)i-" — g1-n] = L=
fa (b-0)" ellgl+ 1-n [(b—a) e = 1-n

b dx .
=] 5o converges ifn > 1

dx
(b—x)"

Hence f: Is convergent ifand only ifn< 1

Theorem 6: (i) if a is the only point of infinite discontinuity of f on [a, b]
and lim,._,,. (x — a)*f(x) exists and is non-zero finite, then fao f(x)dx

converges if and only if u < 1.

(i) If b is the only point of infinite discontinuity of f on [a, b] and
lim,_,. (b — x)*f(x) exists and is non-zero finite, then f:f(x)dx

converges if and only if u < 1.

1
(x—a)¥

fe) _

Proof: (i) Let g(x) = then lim,._, e lim,_ . (x — a)*f(x)

Which exists and is non-zero finite. (given)

-~ By comparison test |1, the two integrals ff f(x)dx and f; g(x)dx

converge or diverge together.

But ff g(x)dx = ff (xilz) — converges iff u < 1.

f; f(x)dx converges iff u < 1



Example 1. Examine the convergence of the integrals:

0 = s T (W)

fl dx
0 x1/2(1+x2)

1

Solution: (i) Here f(x) = x;x = G

0 is the only point of infinite discontinuity of f on [0, 1]

Take g(x) = then lim, g, == L) — i

1
9g(x)  x-0++x%4x

= 1 which is non-zero and

finite.
By comparison test fol f(x)dx and fol g(x)dx converge or diverge together.

which a=0.

1
Jy g(x)dx = fo 7 converges. Formf “ o )n

) 1
(Slnce,n =3 < 2)

1 1 1 .
“fy f()dx = [ mdx is convergent.

.. 1
(ii) Here f(x) = PR

2 is the only point of infinite discontinuity of f on [1, 2]

__1 : F&® _ g 1 _ Ywhichi _
Take g(x) = N then lim,._,,_ 0 = lim,_,,_ =3 which is non

zero and finite.



By comparison test, [ 12 f(x)dx and [ 12 g(x)dx converge or diverge

together.

2 2
But, [ g(x)dx=f1 \/_
_1
(n—2<1)
dx

f f(x)dx = fl PN is convergent.

(iii) Here f(x) :\/ﬁzm\/;xﬁ

1 is the only point of infinite discontinuity of f on [0, 1]

_ f) _ 1 1 .
Take g(x) = \/_ then lim,._,,_ e xll)r{l_m \/_WhICh is non

zero and finite.

By comparison test f01 f(x)dx and fol g(x)dx converge or diverge
together

But folg(x)dx = f:% Formf (b_ )n with b = 1 Converges

(r=t<y)

1 1 dx .
Jy F)dx = [ 7= is convergent

Example 2. Examine the convergence of the integrals:

. 1 dx .yl dx
(1) fo X3(2+x2)5 (i) fo Txii0?



1 dx . 1 dx
(III) fO (1+x)2(1-x)3 (IV) fO Jx(1=x)

. . _ 1
Solution. (i) Here f(x) = TP
0 is the only point of infinite discontinuity of f on [0, 1]

Take g(x) = x% then lim,._,¢ % =

1 . .
= — which is non-zero
x—=0+ (2+x2)5 32

and finite

. By comparison test fol f (x)dxand fol g(x)dx converge or diverge

together.

But fg(x)dx—f —

f f(x)dx = |, ﬁ is divergent

(i) Please try yourself. [Ans. Convergent]
(iii) Here f(x) =

(1+x)2(1 x)3
1 is the only point of infinite discontinuity of f on [0, 1]

f(x) _ — 1 1
gx)  xo1- (1+x)2

Take g(x) =

1 . .
then lim,,_,,_ —= = which is non-

)3’
zero and finite.

By comparison test, fol f(x)dx and fol g(x)dx converge or diverge

together.



[]

dx Formf with b = 1 diverges (- n =

Butf g(x)dx = fo

3> 1)

(1 (—)"

% is divergent.

.-.folf(x)dx = fol R

1

(iv) Here f(x) = N

Both the end points 0 and 1 are the points of infinite discontinuity of f on
[0, 1]

1  dx 1  dx
We may write f m f0m+fam .................. (1)

Where0<ax<1l

To examine the convergence at x =0

dx
x(1—x)

Let I, =[

0 is the only point of infinite discontinuity of f on [0, a]

fOO b 1
1
9% xoor JO)

= 1 which is non-zero

Take g(x) = then lim, 5, ——

and finite.

By comparison test I, and |, Oa g (x)dx converge or diverge together

But, [, g(x)dx = [ is convergent (D n= % < 1)

[]

Vx

I, is convergent.



To examine the convergenceat x = 1

dx

Jx(1—x)

1 is the only point infinite discontinuity of f on [a, 1].

f) — i 1

Myy == 1 which is non-zero and

Take g(x) = Jl%—x then lim,_, s I

finite.
1 By comparison text, I, and fal g(x)dx converge or diverge together.

But f;g(x)dx = f:% is convergent (D n= % < 1)

1 1, is convergent.

dx

Jx(1—x)

IS

Since I, or I, are both convergent, therefore, from (1) fol

convergent.
Note. If I; or I, is divergent, then folf(x)dx is divergent

Example 3. Examine the convergence of the integrals:

. 3 dx
(I) fz (x—2)1/4(3—X)2

dx
(x—2)1/#(3-x)2

Solution. (i) Here f(x) =

2 and 3 are the only points of infinite discontinuity of f on [2, 3], we may

write



[, fOdx = [ f(x)dx + [ f(x)dx, where2 <a<3 ..... (1)
To test the convergence of fza f(x)dx at x =2

1
Take g(X) = —(x—2)1/4

. fx) _ 4. 1 _ . . ..
lim, ., prete lim, . oo 1 which is non zero and finite.

1 By comparison test, the integrals fza f(x)dx and fza g(x)dx converge or

diverge together.

form f

But [ g(x)dx = fza( T — is convergent ( =<< 1)

0 J. f(x)dx is convergent.

To test the convergence of f; f(x)dxat x = 3

Take g(x) =

(3- x)2

limx_>3_ ﬁ ==

1 . . ..
g = Myos o = 1 which is non zero and finite.

1 By comparison test, the integrals f; f(x)dx and f; g(x)dx converge or

diverge together.

. Form f — is divergent

But f g()dx = f; e

0 fogf(x)dx is divergent ([In=2>1)



Hence from (1) f; f(x)dx is divergent

Example 4. Examine the convergence of

x2+1

M [ —dx (ii) f;%dx (iii) flzxx—jldx ) [, 5

dx

Solution. (i) Here  f(x) = %

Ifn > 0, then 1 is the only point of infinite discontinuity of f on [0, 1].

1

Take g(.X') = T
lim, _,_——= L&) — lim x™ = 1 which is non-zero and finite.
gx)  x-1-

1 By comparison test, the integrals fol f(x)dx and fol g(x)dx converge of

diverge together.

But fg(x)d = 1%. Frmf

—is divergent (0 n=1)

0 fol f(x)dx is divergent

Ifn<O0,letn=-mwherem>0

Then f(x) =

x"%l x)

0 and 1 both are the points of infinite discontinuity of f on [0, 1]. We may

write



[} fedx = [ fx)dx + [, f(x)dx where 0<a<1 ...... (1)
To test the convergence of foa f(x)dxatx=0

Take, g(x) =—

1
M

: f) . 1 .
lim, o4 prote lim, o4 = 1 which is finite and non-zero.

(1 By comparison test, the integrals foa f(x)dx and foa g(x)dx converge or

diverge together

“ 2 form [P &
0 xm’ a (x-—a)*

But foag(x)dx =

is convergent if 0 <m < 1 and

divergent if m > 1.

O foaf(x)dx Is convergent if -1 <n <0 and divergent if n <-1

Take g(x) = i

lim, _;_ 1) lim, _,_ xim = 1 which is finite and non zero.

g(x)
(1 By comparison test, the integrals fal f(x)dx and f: g(x)dx converge or
diverge together

dx
(b—x)"

But falg(x)dx = ;i—xx , form ff is divergent (1 n=1)

0 falf(x)dx is divergent.



From (1), fol f(x)dx is divergent

Hence folf(x)dx is divergent for all n € R
Note: After a little practice, there is no need testing the convergence of
J,' f(x)dx at x = 0, since divergence of f; £ (x)dx is sufficient to imply

divergence of fol f(x)dx.

(ii) Here f(x) = *—

1+x
Ifn>0, fol f (x)dx is proper and, hence convergent

Ifn<O0, letn=-mwherem>0

1
xM(1+x)

Then, f(x) =

0 is the only point of infinite discontinuity of on [0, 1]

1
Take g(.X') = m
lim re _ lim L — 1 which is non-zero and finite
x—0+ g(x) X0+ 14 '

1 By comparison test, the integrals fol f(x)dx and fol g(x)dx converge or

diverge together.

dx

(x—a)™

But folg(x)dxz "2 Form f;

0 xm

is convergentifO<m<1li.e.

-1 <n <0 and divergentif m>1 1e,n<-1



N folf(x)dx Is convergent if -1 <n < 0 and divergent if n <-1.
Hence fol f(x)dx is convergent if n > -1 and divergent if n < -1

- X
(iii) Hint f(x) = —

For all values of A € R, 1 is the only point of infinite discontinuity of f on [1,
2]

Take gx) = ﬁ etc. [Ans. Divergent]
: 3x2+1 3 (x%2-4)+5
() ;55 dx = ;2
3 5 3 d 3 d
= (1+=)de=[xB+5) S =145 3~ ... (1)

Let f@) == -

-4 - (x+2)(x-2)

2 is the only point of infinite discontinuity of f on [2, 3]
Take g(x) = ﬁ

fx)

. 1 - . ..
-2+ g = lim_,,, — which is non zero and finite,

lim

1 By comparison test f: f(x)dx and f; g(x)dx converge or diverge

together.

But [ g(x)dx =[] = Form [’

2 x-2

dx
(x—a)™

is divergent ([1 n=1)



0, fdx

Example 5: Examine the convergence of

() J7E g (i J o2 (i) J7 —
Solution: (i) Here f(x) = \1/‘%

Clearly both 0 and 2 are points of infinite discontinuity of f on [0, 2]. We

may write

foz\l/%dx = [ fdx + [Df(0dx e (1)
To test the convergence of fol f(x)dxatx =0

Since f(x) is negative on (0, 1], we consider —f(x).

Take g(x) = xin

Y —f(x) I x"log x
xl)rgl+ g(x) xlgl+ 2 —x

—Olfn>0[11m x"logx=0ifn>0]

x—0+

1 taking n between 0 and 1, the integral fol g(x)dx is convergent.
1 By comparison test, f01 —f (x)dx is also convergent.

To test the convergence of [ 12 f)dx at x =2

Take g(x) =

1
V2—x



lim,_,_ % = lim,_,,_logx = log 2 which is non zero and finite.

] By comparison test, | 12 f(x)dx and [ 12 g(x)dx convergence or diverge

together.

But, fg(x)dx—fldd_ Formf

IS convergent { n ( = % < 1)

O flz f(x)dx is also convergent

Hence, from (1) foz f (x)dx is convergent.

.. . logx . . _ logx
(ii)  Since s negative on (0, 1], we take f(x) = 7

Here 0 is the only point of infinite discontinuity of f on [0, 1]
Take f(x) =

) -l . 1. .
lim —== lim —x" zlogx =0ifn—=>0i.e.,if n
x-0+ g(x) x-0+ 2

1
n
> — xll)r(r)1+x logx =0if n> 0]
Taking n between %2 and 1, the integral fol g(x)dx is convergent.

] By comparison test [ 01 f (x)dx is also convergent.

Hence f dx is convergent.

(i) Here f(x) = %



1 is the only point of infinite discontinuity of f on [1, 2]

Take g(x) =

1)"

IO NN G VL
im = lim
x-1+ g(x) x-1+ logx

n(x — 1) 1\/—+(x Dn
- xlirﬁ 1/x
x—1
= lim (x — )" ! [nx3/2 + u\/E =1lifn=1
x—1+ 2
. _ 2 _ 2d_x
Taking n=1, J; 9Cdx = [ — Formf (x o is divergent.
(n=1)
Since lim,._,; ;Ex; = 1 Which is non zero and finite.
) By comparison test [ 12 f (x)dx is also divergent.
Example 6: Examine the convergence of
: 11
) f,Todx
1 logx ng
(id) [} (i) f, 72
. e logx . . _ _logx
Solution: (i) Since . isnegative on (0, 1], we take f(x) = T

Here 0 is the only point of infinite discontinuity of f on [o, 1]



Take g(x) = xin

f(x) x"log x
lim —= = lim
x—0+ g(x) x—>0+ 1+x

=0ifn>0

Taking n between 0 and 1, the integral f01 g(x) is convergent
1 By comparison test fol f(x) is convergent.

Hence f dx IS convergent

logx
1«2

(if)

log x
1—x?

=limx > 1,1/x — 2x = 12

SRS = i -

1 0is the only point of infinite discontinuity of f on [0, 1]
Take glx) = xin

x"log x

x—0+ g(x) T o0+ 1—x2 =0ifn>0

Taking n between 0 and 1, the integral fol g(x)dx is convergent

1 By comparison test fol f (x)dx is convergent.




Example 7: Examine the convergence of

1x"logx - 1 (xP+x7P)log(1+x)
fo (1+x)2 (“) f() x dx

fol x™" 1log x dx

x™logx

Solution. (i) limx_)o+m =0ifn>0
n
0 fol ’21:3’; dx is proper and , hence, convergent so long as n > 0

Ifn=0let f(x) =2~

(14x)2

0 is the only point of infinite discontinuity

Take glx) = L

xP
Taking p between 0 and 1, fol g(x)dx is convergent.

fl x™logx

1 .
J, f(x)dx is convergent 0 (amt

dx is convergent

Ifn<O0,letn=-mwherem>0

__x™logx _ logx
Let f(x) T (140)2 xM(1+x)2
1
Take gx) = o
X x?™]ogx
lim&—lim 5 =0ifq—m>0

x-0+ g(x) x50+ (1 + x)?

(iii)



Taking0O<g<landalsog—m>0i.e.,g>m

0<m<g<l ->m<l-n>-1

fol g(x)dx is convergent and hence fol f(x)dx is convergent.

1x™logx .
> -
0, RESE dx is convergent for all n > -1

Note. N > -1 also converges the casesn=0andn>1

.. _ 1 log(1+x)
(iii) Let p be positive and f(x) = (xp + x_p) g

0 is the only point of infinite discontinuity.

Take g(x) = =

1
xP

NG
g0~ A )

log(1+x) 1
log(1+x)

Since  lim,_q, "

1

= lim &~ =1
x—0+ 1

Since folg(x)dx converges if p <1

0 folf(x)dx is convergentif0<p<1

2log(1+x)
x

Ifp=0, f(x)=



2log(1+x)
x

Since, lim,_q; f(x) = lim,_ ;4

2

= lim 1 =2
x-0+ 1

fol f (x)dx is proper and, hence convergent.

1

If p <0, let gx) ==

11\1 1+
lim @ = lim (1 + ) 08( *)
x—0+ g(x) x—0+ x~P X

_ 1 ~log(1 +x)
= lim <1+T)[11m — =1
x—0+ x P/ |x-0+ X

= 1 since p < 0 which is non-zero and finite.

Since fol g(x)dx is convergent if -p < 1, i.e., if p > -1, therefore, folf(x)dx
ifp>-1

Hence, folf(x)dx is convergent if -1<p <1,

(iv). We know that lim,,_,, x" logx = Owhen R >0

(1 The given integral is a proper integral whenn -1 >0 i.e., whenn > 1.
When n =1, the given integral becomes

fol logx dx = lim,_q, fgl logxdx  [Integrating by parts]

= lim [xlog x — x]} = lim (0 — 1 — clog s + ¢)

e—-0+ e—-0+



= -1 [lim eloge = 0]

e-0+

The given integral is convergent whenn =1

Whenn<1let f(x) = —x"1logx [x" 1logx is negative in (0,1)]

Takin (x) = =, we have lim L) i —x#t+ 1l ogx =
g g Xl x—0+ g(x) x—-0+ 8

Oif u+n—-1>0

=wifu+n—1<0

Taking0<u<landalsou>1—-nsothatl —n<u<lorl —n<

lorn>0
N fol g(x)dx is convergent and hence fol f(x)dx is convergent.
0 fol x™1logx dx is convergent for all n >0
Alsotakingu =1andalsou <1—nsothatn <0
fol g(x)dx is divergent and hence f01 f(x)dx is divergent
0 fol x™" 1log x dx is divergent for all n < 0

Example 8: Discuss the convergence of

(i) fn/Zsiﬂdx (ii) foﬂ/ZcZixdx (iii) folcosecxdx (iv)

0 xP X

fl secx dx

0 x




Solution: (i) If p is negative or zero, the given integral is a proper integral
and hence convergent when p < 0. When p > 0, the only point of infinite

discontinuity is 0.

sinx

Let f(x) = >
Take g(x) = xi“

X sinx
lim & = lim x*Psinx = lim x# P*! (—)
x-0+ g(x) x-0+ x—0+ X

=1lifu—p+1=0
=0ifu—-p+1>0
=ooif u—p+1<0

Bytaking0 <u<landalsou=p—1sothat0<p—-1<1lie,1<p<
2

fon/ 2 g(x)dx is convergent and hence fon/ ? f (x)dx is convergent

Bttaking0 < u <1landalsou>p—1sothat—1<p—-1<u<li.e,
O<p<?2

fon/ 2 g(x)dx is convergent and hence | O"/ ? f (x)dx is convergent

L
Hence f”/ SImX

o dx is convergent if p < 2 and divergent if p > 2.

Second Method




When p > 0 the only point of infinite discontinue is 0.

A|SO, sinx= 1 .sinx< 1 [sinx<1]

xP xP~1° x T xP~1l1| x T

But fon/z d’fl isconvergentifp—1<1ie,ifp<2

xP

" By comparison test, [™/? 32

o xpdxchwmgmﬁfp<2mﬁdhegmuﬁpz

2.

(i)  If nis negative or zero the given integral is a proper integral and

hence convergent when n < 0.

Whenn > 0, the only point of infinite discontinuity is 0.

Let flx) ===

X

=1lifu—m=20
=0ifu—n>0
=ooifu—m<2o0

Bytaking0 <u <1landalsog=nsothat0 <n <1

fon/ ? g(x)dx is convergent and hence fon/ ? £ (x)dx is convergent.



From the above discussion, it follows that the given integral is convergent

if n <1 and divergentifn>1.

(iii) Since |cosec x| = 1 for all values of x, we have

coseeXl > L = Lorall xin (0, 1]
X [x] X
But, i dx is divergent. Therefore, [ ——=dx is divergent

Example 9: Show that fon/z x™cosec™x exists if and only if n<m + 1.

m n
Solution: Here f(x) = x™cosec™x = —— = ( ad ) XM =

0 if m—n>0
lim f(x)=41 if m—n=0
xoo% o if m—n<o0

~ The given integral is a proper integral if m—n>01i.e. if m>n and an

improper integral if m —n < 0; 0 being the only point of infinite discontinuity

of fon [0, %]

Whenm—-n<0,i.e.n—m>0.




n
& _ ad ) = 1 which is non-zero and finite.

lim (
X0+ g(x) ~ x>0+ \sinx

Also [7% g(oydx = [[7* =

is convergentiffn—-m<1lie.n<m+1

By comparison test, the given integral is convergent iff n <m + 1, which

also includes the case n < m when the integral is proper.

n/25u1 x

Example 10: Show that |

dx exists ifand only if n<m + 1,

ﬂnx)n 1
xn—m

Solution: Here f(x) = 2% — (

X

0 if n—m<Q0
lim f(x) =41 if n—-m=0
xoot o if n—m>0

. The given integral is a proper integral if n —m < O i.e. if m>n and an

improper integral if n —m > 0; 0 being the only point of infinite discontinuity

of fon [0, %]

When n—m >0, .

Take g(x) = xnl_m

. fx) : sinx\™ C - ) ..
lim, o, —— e xll)r(l)l_l_( . ) = 1 which is non-zero and finite.

Also fon/zg(x)dx = fon/z ngm

. By comparison test, the given integral is convergent iff n <m + 1.



Example 11: Examine the convergence of

/4 1
Vtanx

(i) [ logx dx (i) i ==dx (i) [} 5 5dx (i)
1 1\"
Jy (log;) dx
Solution: (i) 0 is the only point of infinite discontinuity and log x is negative
on (0, 1]

1 1
J logx dx = lim logx dx = lim [xlog x — x]}
0

e-0+ O+¢ e-0+

lim [-1—¢loge +¢] = —1 [ lim elog e = 0]

e—-0+ e-0+

= the integral is convergent
Second method:

Let f(x) = —logx

Take glx) = xin

I9) — Jim —x"logx=0ifn>0

lim
=0t g T xS0+

Taking n between 0 and 1, folf(x)dx = folz—i is convergent

By comparison test, fol f(x)dx is convergent. Hence fol log x dx is

convergent

(i) 0 s the only point of infinite discontinuity of the integrand on [0, %]



1 CosSXx
Let f(X) - vtanx - sinx

Take, g(x) = \/—1}

. f&x) _ s x
limy 0+ ax) xl%l;, sinx

.Av/cos x = 1 which is non-zero and finite.

Since fon/4g(x)dx = fO”Mj—;. Form fObZ—: IS convergent (n = % < 1)

“f 0”/ * £(x)dx is convergent.

sinx

(iti) Since lim,_,( — = 1 the integral is proper and hence convergent.

(iv) f01 (log i)n dx = foa (1og i)n dx + fal (log i)n dx

Where0 < a < 1.

0 and 1 are the points of infinite discontinuity of the integrals on the right.
1 n
Let f(x) = (log;)

Convergence of |’ (log i)n dx at 0

1

n -
lim,_,4 (10g;) =1ifn=0
The integral is proper isn <0

0 is the only point of infinite discontinuity if n > 0.



For n > 0 take g(x)=xip O<p<l

n

X
lim M = lim x? <log—) =0
x-0+ g(x) x-0+ X

Also [ g(x)dx converges since 0 <p < 1.
n
2fy f)dx = [ (log i) dx converges.
. . a 1\"
Combining all cases fo (log;) dx converges for all n.

Convergence of fal (1og i)n dx at 1.

The integral is proper if n > 0 and 1 is the only point of infinite
discontinuity if n <0.

1
(1-x)~"

For n < 0 take glx) =

log2\" o .
lim,_, =2 = lim <h) = 1 which is non-zero and finite.
g(x) 1-x

But falg(x)dx = fol (1_dx’;_n is convergentif -n<1ie.,ifn>-1

n
- By comparison test, falf(x)dx = fal (log i) dx is convergent if -1 <n
<0.

n
Hence, from (1), fol (log%) dx is convergent if -1 <n <0.



7.5 The u —Test

Let f(x) be bounded and integrable in the interval (a, ) where a > 0.if
there is a number u > 1. Such that lim,._, ., x* f (x) exists, then faoof(x)dx is

convergent.

If there is number u < 1 such that lim,,_, ., x*f (x) exists and is not zero, then
the integral fa°° f(x)dx is divergent and the same is true if lim,_,,, x*f(x) is

+00 or — 0.

The value of u is usually select to be “the highest power of x in denominator
the highest powers of x in numerator’’. so that the highest powers of x in

numerator and denominator of x*f (x) are same.

Example: test the convergence of | 0°° 2

x3(1+x1/2)

Solution: we have take u = 2— 0= 2 then

1
lim x*f(x) = lim x>/ —
e O x3(1 4 x1/2)
»5/6 55/6
= lim = lim

- -
X—00 X§(1 n x1/2) X—>00 X1/3 + x5/6

=1

= lim —
Xm0 — 41

x1/2



Thus, is finite and non-zero and since u = 2 < 1, it follows form u — test

that an integral is divergent.

Example: Test the convergence of fol x"le~*dx

Solution: When n > 1, the given integral is a proper integral and hence it is

convergent.

Again when n < 1, the integrand is unbounded at x = 0.
Now let f(x) = x™ e *. Then

,ll_r,?o xHf(x) = ,ll_r,?o xH+n—1 p—x

lim, ,x*f(x)=1ifu+n—-1=0,i,epu=1—n
Wehave0 < u<1lwhen0<n<1

And u > 1when n <0.

Hence by u —Test the given integral is convergent when 0 < n < 1 and

divergent whenn < 0.

2m
Example:Test the convergence of f0°° 1ix2n dx, where m and n positive
integers.
) foe] x2m a x2m 0 me
Solution: we have [~ ———dx = [ ——_dx + [ ——.dx ,wherea > 0.



The first integral on the right-hand side is a proper integral, therefore, the

2m

integral will be convergent or divergent according as fO°° 1’_;2,1 dx IS
convergent or divergent.
0 me
To test the convergent of | oo dX
Take u = 2n — 2m, then
. . y 2n—2mx2m . xZn )
AR = I e TR T

Which is finite and non-zero.

The given integral is convergentif u > 1i.e.,if 2n — 2m > 1 which is

possible if n > m since m and n are positive integers.

And the given integral is divergentif u < 1i.e., ifn <m.

7.6 Absolute Convergence

If the integral fa°°| f (x)| dx converges, then the infinite integral faoo f(x)dx

said to converge absolutely.

Note: Absolute Convergenceof an infinite integral gives a sufficients not
necessary condition for its convergence i.e., if the infinite integral Absolute
Convergent, it is necessarily convergent, but conversely if an infinite

integral is convergent, it is not necessarily Absolute Convergent.

sinx

Example: Show that f1°° dx is absolutely Convergent.

x4



sinx x |sin x|

Solution: we have [~ |—==| dx = lim,_, [, a4
o [Tdx :
<lim [ — [ [sinx| <1]
X—00 X

1

. L RN £ S O D
= xoe _ﬁll _xllgol§_ﬁ 3

sin x

The limit exists as a finite value and hence [ 1°° | |dx is convergent.

x4

sinx

Therefore, it follows that the integral [ 1°° dx is absolutely convergent.

x4

Example:2Test the absolute convergence of the integral [ 0°° f(x)dx where

f(x) is defined by the following:

(1 0<x<1

1

; —1<x<n-—-—

f(x):<0 ) n 1_x_n n
1

\(—1)“1; n—E<xSpwhenn=2,3,4

Example: Test the absolute convergence of f0°° e~ %" cos bx dx

Solution: we have fooo|e‘az"2 cos bx|dx = lim,_,, fox|e‘a2x2| |cos bx|dx

X
< lim | e ** dx[+ |cosbx| < 1]

— 00
X 0

But [ e~*"*" dx convergent.



[e¢] — 242 -
Hence [ "|e~@"*" cos bx|dx is convergent.

It follows that [° e=%"*" cos bx dx is absolute convergent.

Example: Show that the integral fomSi%dxdivergent but not absolutely

convergent.

Solution: we know that Slrlxdx = Si;”Cclx + [ Slnxclx where a > 0.

nm |sin x|

dx = oo

Therefore, lim,_q, |

X

When x > n, fxlsmxld >fnrt|smx|d

X Ismxl

dx = oo

Therefore, lim,,_ f

So, foxlmle dx,ie., f0x|512x| dx is divergent.

Hence, | 0°° % dx convergent but not absolutely convergent.

7.7Absolute Convergence of the integral of a Product

The integral fooo @(x). f(x)dx is said to be absolutely convergent, when f(x)
is needed for x = a, and integral in the arbitrary (a, b) and faoo ?O(x)dx

convergence absolutely.

cos mx
+x2

dx

Example: Show that the integral converges absolutely f



1
a?+x?

Solution: Let f(x) = cosmx,@(x) =
Clearly f(x)i.e., cos mx is bounded and integrable in the interval (a, b)
when b > a.

1
a?+x?

Also [71@(x)|dx = [,

dxzfoOo L dx (1)

a?+x?

1
a’+x?

Now to test convergence of fO°° dx, we shall apply u — test.

. . x?
Let u = 2, then lim,, o, x* @(x) = lim,_, i 1
1

a2+x?

Hence fooo dx is convergent since u = 2 > 1.

It follows from (1) that faoo @(x)dx is absolutely convergent.

cos mx
az+x2

~The given integral [ 0°° dx is absolutely convergent.

7.8Abel’s Test:

If faoof(x)dx convergences and @(x) is bounded and monotonic for x > a,

then [ f (x). @ (x)dx is convergent.

Example: Test the convergence of [~ e~ Imx g

x2

Solution: we have f(x) = 2% and @(x) = e~*

x2

sin x

Since

1 oo dx .
—| < and [~ is convergent.



sinx

Follows by comparison test the f ——dx is also convergent.

Again e~* is monotonic decreasing and bounded function for the value

X > a.
Hence by Abel’s test [ 0 € 7 X dx is convergent.
Example: Test the convergence of /(1 — e )= % dx,when a > 0.

CoOS X

Solution: we havef (x) = and @(x) =1—e*

CoS X Cos X
d

Since x IS

< ascosx < 1. Hence by comparison test f

convergent.

Again 1 — e~ is monotonic increasing and bounded function for the value

cos

a > 0. Hence by Abel’s test fooo(l —e™) xzx

dx is convergent.

7.9Dirichlet’s Test:

If £ (x) is bounded and monotonic in the interval (a, o) and lim,_,., f(x) =

0,then the integral fa°° f(x).0(x)dx is convergent,

Provided | f” @(x)dx| is bounded as x takes all finite values.

Abel’s Test and Dirichlet’s Test are applicable, whenever the integrand can

be viewed upon suitably as a product of two functions.



Example: Show that integral f0°° e‘axﬂ%dx Is convergent when a > 0.

Solution: we have [~ e=%* *=Zdx = [ e~ _Sl;lx dc + [ ea¥ X gy

X X

when a > 0.

Since lim,._, e‘ax% = 1.[sinx lies between — 1 and 1 as x - oo |

=~ The integral f0°° e S’i%dx is a proper integral and we need only to test

convergence of [* e~ >== dx.

Let f(x) = e‘xj and @(x) = sinx

e~ ax . 1
= lim
X x—00 xeax

=0

~ lim f(x) = lim
X— 00 X—>00

Clearly f(x) is bounded and monotonic decreasing function of x for all value

of x greater than zero.
Also |f;®(x)dx| = |f§ sinx dx| = |[cosx — cosa| < 2

i.e., |7 @(x)dx| is bounded for all finite values of x. Hence by Dirichlet’s

—ax Sinx

00 ] . 0 .
Testf,” e%*=—dx is convergent. Hence [~ e dx is convergent.

X

7.10 Summary

In this unit, we have covered the following points:

= We defined a Convergence.



= We defined the Comparison test.
=\We find the u —test.
= We defined the Abel’s Test.

=\We defined a Dirichlet’s Test.

7.11 Terminal Questions

1. Test for convergence of fooo d—xﬂ by use comparison test.
X

Jx211

coS X
14+x2

2. Test for convergence of [ 0°° dx by use comparison test.

xa'—1

3. Discuss the convergence of the integral f0°° dx

x+1
dx
(1+x)3

4. Test for convergence of f0°° by use u —test.

sinx -
e dx converges absolutely when n and a integers.

5. Show that |~

6. Use Abel’s Test prove that faoo e Sinzx dx is convergent, where a > 0.

X

7. Show that the integral fome‘xzdx IS convergent.

8. Discuss the convergence of the integral fol x" 1logx dx

dx

W where a > 0.

9. Examine the convergence of faoo

Sin x

Vx

10. Test for convergence of the integral faoo dx , where a > 0,by

use Dirichlet’s test.
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8.1 Introduction

In this Unit a step function is defined as a piecewise constant function, that
has only a finite number of pieces. In other words, a function on the real
numbers can be described as a finite linear combination of indicator functions

of given intervals. It is also called a floor function or greatest integer

function. The step function is a discontinuous function. However, a

mathematical definition of a step function.

8.2 Objectives

After studying in this unit, therefore, you should be able to
= Define Step Function

= Discuss a Integration of a Step Function

= Define a Properties of Integrals of step functions

= Define the Upper integral and lower integral

= Define the Riemann Integral of a bounded function.

8.3 Step Function:

The Step Function h: [1,6] — E' be defined as


https://byjus.com/maths/greatest-integer-function/
https://byjus.com/maths/greatest-integer-function/

s 3
2 if,x € ll,zl

3
—Zif,x € lz,‘l-]
\ 4if,x € [4,6]

h(x) = <

we see that here the partition p = {1% 4,6} and h(1) = 2,

h(3/2) = =2,h(4) = =2,h(6) = 4

the step function h:[1/2,13/2] — E'defined by h(x) = [x], where [x] is the

greatest integer less than or equal to x.

We know that [x] has jump discontinuity at all integer points. So, we
. .y 1 13 1 13

consider the partition p of [5,7] asp = {5, 1,2,3,4,5,6, 7}.

Now h(x) = 0, when % <x<1

h(x) =1,when1 <x <2
h(x) =2,when2 <x <3
h(x) =3,when3<x <4
h(x) =4,when4 <x <5
h(x) =5 when5<x <6

13
h(x) = 6,when 6 < x < -



and h(%) —0,h(1) = 1,h(2) = 2,h(3) = 3,h(4) = 4,h(5) = 5,

h(6) = 6,h(12—3) — 6

8.4 Integration of a Step Function:

if h: [a, b] — E' be a step function defined for the partition p =
{x0 = @, %1, %3, X3, cer e . Xp_1 X = b} DY h(x) = ¢ for
x € (xg_1 %) for k = 1,2,3 ......n. Then the integral of step function h(x)

from a to b defined by f: h(x)dx and defined by

b
fa h(x)dx = Y=g (X — Xp—1) =101 — X0) + o e e F0p (X, — Xpq).

Remark: It should be noted that the letter ‘x’ used for the independent
variable, which may be replaced by any other convenient letter without

altering the definition of integral. That is

jbh(x)dx = fbh(t)dt = jbh(u)du etc.

Example 1. Define a step function h : [1, 5] — E’ as

3 if 1<x<:
3
h)=9-2 if Z<x<4 P=[1’5»4»5]
6 Iif 4<x<5

Then [T h(x)dx =3 (3 - 1)+ (-2) (4 -3) +6(5 - 4)



5

=3 _2x2t6x1=246+5=
2 2 2 2

Example 2. Define a step function h : [1, 6] —» E’ as

2 if 1sx<:2

hG)=9-2 if 2<x<4
4 if 4<x<6

p = [1,;,4, 6] then,

6 3 3
[Fheodx =2(3-1)+ (=2 (4=3) +4(6 -4
1 5
=2><5—2><5+4><2=1—5+8=4
Example 3. Define the step functionh : [-7/2, 1] - E’ as
h(x) =2 if x #0,h(0) = 0
We consider the partition P = {— % 0, 1}

-1 if xE[—%,O]
+1 if xe€][0,1]

X

Now, h(x) = X = {

1 7 7 5
Dj%h@ﬁ&-»%(O—c—g)+1ﬂ—0)——1x5+1——5
Example 4. Define a step function h : [—Z 2] — E'as

h@)=3uy-ﬂ§,x¢0wmhm)=o



the integers of [— % 2] are -1, 0, 1, 2 at which the bracket function [x] is

discontinuous.

Hence, we consider the partition of [— % 2] as
P={-2,-1,0,1,2}. Now,
When x € (—3,—1), [x] = —2,m = —1 and hence,
2 X

h(x) = 3(-2) — 2(-1) = —4,x € (—-3,-1)

Similarly, when x € (—1, 0); h(x) =3(—-1) —2(—-1) = -1

Whenx € (0, 1); h(x) =3.0—2(1) = -2

Whenx € (1,,2); h(x) =31-21=1
Hence f_zgh(x)dx =—4(-1+3)+ (-DO+ D+ (A -0) + 12—
1)

=-2-1-2+1=-4
Example 5 Define a step functionh : [-1,2] — E’ as
h(x) = [x?] Vx € [-1,2]

for the required partition, we try to find those values of x which x? is an
integer in [-1, 2]. We see that x? is an integer in [-1, 2] when x = -1, 0, 1,

V'2,4/3, 2. Hence partition P={-1, 0, 1, v/2,/3, 2}.



Now, h(x) = [x?] =0 when —1<x<0; x*<1

=1 when 0<x<1; x*?<1

=1 when 1<x<+2; 1<x%2<?2

=2 when V2<x<+3; 2<x?<4

=3 when V3<x<2; 3<x?2<4
Hence [° h(x)dx = 0(0 + 1) +0(1—0) + 1(vZ — 1) + 2(v3 —2) +
3(2 —/3)

=vV2+2V3-2V2+6—-3V3=5-+2—
V3

Example 6. Define a step function h : [0, 2] — E’ as
h(x) = [3x + 4]vx € [0, 2]
we want to find those points of [0, 2] for which 3x + 4 is an integer. So,
partition of [0, 2] is P = {Ogg 1,%,2,2}
Also [Fh(x)dx =13  (checkit)

Example 7. We define a step function h: [0, b] - E' as

(x—1)(x?=7x+12)|
(x—1)(x2-7x+12) ’

h(x) = x#1,3,4and h(1) = 2, h(3) = 2, h(4) = 2.

Sinceh(x) =1 if(x—1)x?>—-7x+12) >0



Orif(x—1)(x—-3)(x—4)>0
Orifx>4,0or 1<x<3
h(x) =—1if x—1D(x?-7x+12) <0
Orif(x—1)(x—-3)(x—4)<0
Orif0<x<1lor3<x<#4
Hence Partition of [0, 6] is P ={0, 1, 3, 4, 6}
-1 if x€(0,1)
+1 if x€(1,3)

—1 if x€(34)
+1 if x€(46)

1 h(x) =

Hence [ h(x)dx = —1(1 = 0) + 13 - 1) + (-1)(4 — 3) + 1(6 — 4)
=—1+2-1+2=2.

Note: Geometrical meaning of ff h(x)dx, where h:[a, b] — E' is a step

function.

Suppose that P = {x0 = a, X1, Xp, X3, ...... Xp-1, Xs.b} b€ a partition of [a, b] for
h(x). Now,



=Cif x, <x<x,

=C3 if x, <x<Xx3

=C, if x3<x<xy4

=Cs if x4 <x < x5
0 [ h@)dx = €y = Xo) + Colog = 1) + Calxs = 25) + Calxa = 23) +
Cs (x5 — X4)

= sum of the areas of the rectangles over the sub intervals of [a,
b].

Hence ff h(x)dx represents the area bounded by the graph of h(x), x-axis

and the ordinates x = a and x = b. In this we see that some portion of the area

Is above the x-axis and some portion may be below the x-axis.

So, ff h(x)dx will be the sum of all areas (above the x-axis or below the x-

axis) bounded by the graph of h(x).

8.5 Properties of Integrals of step functions:

Theorem 1: If h: [a, b] - E’ be a step function associated with a partition P

and P’ be a refinement of P, then the value of f; h(x)dx is not altered if P is

replaced by P’.



Note: P’ is a refinement of a partition P if P’ contains all the sub-division

points of P together with some additional points.

Proof: Let the partition P = {X, = a, X1, X2, X3, ...... Xk-1, Xk-..Xnpy and let the

refinement P’ of P.

Here the refinement P’ contains additional points y; and y, between x;_,

and xj.

Let h(x) = C, when x € (xj_1,x), r =1, 2,3, .....n with respect to the
partition P.

b _
N fa h(x)dx — :‘l=1 Cr(xr - xr—l) = 2115:% Cr(xr —Xp—1 T Ck(xk -
Xi-1) t Zrmks1 e —221)) (1)
Now with respect to the partition P’

b _
fa h(x)dx = 27@:% Cr(xr - xr—l) + Ck()’l - Xr—l) + Ck(:VZ - yl) +
Cro(xie —v2) + 27 i1 G Or — x021) (2)

By comparing equation (1) and (2) we find that the term C, (x;, — x4_1) in (1)
is replaced by Cy (y1 — x—1) + C(y2 — ¥1) + Ci O — ¥2).

Hence the value f; h(x)dx is the same for both partition P and P’

(refinement of P)

Theorem 2: Let h: [a, b] — E' be a step function if r is a real number such
that a <r <D, then



h(x)dx = | h(x)dx+ | h(x)dx
[ e = [[nrin+ |

Proof: We consider a partition P of [a, b] associated with h(x) which contains

r as a point of division P = {a = Xo, X1, X2, .....Xm; Xm+1,--...-Xm+n = D}

Where x,, = r then we have

b
fa h(.X)dx = Zl:l Ck(xk - xk_l) + ;cn=+£+1 Ck(xk - xk_l) .............. (1)
Now, we take P; = {a = Xq, X1, X2, ...., Xm = '} be a partition of [a, r] and
hence,
far h(xX)dx = YT Cr(X) — Xp—1) e, (2)
Again we take P, = {r = Xim, Xm+1y cvvennn.. Xm+n = D} Dbe a partition of [r, b] and
hence

b
| h()dx = X0 Ce(e — X1) e (3)

From equation (1), (2) and (3) we get that

fbh(x)dx = jrh(x)dx + jbh(x)dx

a

Theorem 3: Let s: [a,b] —» E"and t: [a, b] — E' be two step functions such

that s(x) < t(x)Vx € [a, b] then

jbs(x)dx < fbt(x)dx



Proof: Suppose that P1 and P2 be two partitions of [a, b] associated with the

step functions s(x) and t(x) respectively.

Let P = P, U P,, then P is a refinement of P, and P, both. Hence, f; s(x)dx

and f: t(x)dx will not be altered if P, and P, are replaced by their refinement

P.

Let P = {a =X, X1, X, ..., Xm = b}

Let s(x) = C',, when x € (xj,_1,xx);1 < k < n.
t(x) =C", when x € (x4_1,x);1 <k <n.

1 s(x) < t(x)Vx € [a, b], so

C’kSC"k fork=l,2, 3,....n
b / n
Hence, [ s()dx = [_ C'(xx—Xk-1) < f,_, C"(xy — Xp—1)
b b
0 s@)dx < [ t(x)dx

Theorem 4: Let h: [a, b] - E' be a step function and m, M be real numbers
such that m < h(x) < MVx € [a, b] then, m(b — @) < [ h(x)dx < M(b —
a).

Proof: We define step functions s and t on [a, b] then s(x) < h(x) <

t(x)Vx € [a, b]. Then we have [” s(x)dx < [ h(x)dx < [* t(x)dx.



Now, [ s(x)dx = [ mdx =m(b—a)and [ t(x)dx = [ Mdx =
M(b — a)

Then from equation (1) we have

b
m(b — a) Sf h(x)dx < M(b — a)

8.6 Upper integral and lower integral of a bounded function:

Let f: [a, b] — E’ be a bounded function, so {f (x)x € [a, b]} is a bounded
set, let m and M be the lower and upper bound of the set, so that 3 real

numbers m and M such that m < f(x) < MVx € [a,b]. Let S =
{step function s:[a,b] - E'IS(x) < f(x)Vx € [a,b]}. Thus if S(x) € S,
then S(x) < f(x) < MVx € [a, b].

So [, S(x)dx < [ Mdx = M(b — a)VS(x) € S

Hence the set {ff S(x)dx S(x) € Sf} is bounded above by M(b — a).

therefore
l.u.b. {ff S(x)dx S(x) € Sf} exist (by completeness property)

thus l.u.b. is defined as the lower integral of f from a to b, and it is denoted by

[} f(x)dx. Thus

b b
j fx)dx = l.u.b.{j S(x)dx S(x) € Sf}



Again Let T; = {step functiont:[a,b] - E'| f(x) < t(x)Vx € [a,b]}

Thus if, t(x) € Ty thenm = f(x) < t(x)Vx € [a, b].
So [ t(x)dx > [ mdx = m(b — a)Vt(x) € Ty.

Hence the set {ff t(x)dx t(x) € Tf} is bounded below by m(b — a).
Therefore g.l.b. of this set exists, which is defined as the upper integral of f

from a to b. and it is written as fff(x)dx. Thus

b b
j f(x)dx = g.l.b.{] t(x)dx| t(x) € Tf}

Example: Let the function f: (1,2) — E’ be defined by f(x) =

{3 if xis rational
1 ifxis irrational

Then evaluate f; f(x)dx and [ f f(x)dx.

Solution: Here we see that clearly f is bounded on (1, 2). Suppose that P = {1

= Xo, X1, Xp, ....Xn = 2} be a partition of (1. 2).

Now, open interval (x,_;, x), k=1, 2,3, .....n will contains both rational

and irrational points.

Hence if S(x) € S¢ then S(x) < f(x)Vx € (1,2). So S(x) < 1vx € (1, 2).

Hence

flz s(x)dx <1.(2—-1)VS(x) € Sf.



Therefore, l.u.b. {flzs(x)dx| S(x) € Sf} =1

Hence fff(x) dx =1

Again, if t(x) € T, then t(x) = f(x)Vx € (1, 2).

= 3=<tx)vVx € (1,2)

Hence, [ 3dx < [ t(x)dx or3(2 - 1) < [ t(x) dxvt(x) € Ty.
flz t(x)dx = 3

Therefore, {flz t(x)dx| t(x) € Tf} =3

Hence, fft(x) dx = 3.

Note: () [ f(x)dx # [2f(ydx (i) [ f(x) dx < [7 f(x) dx

ic. 12 F@) dx < [ f(x) dx

Lemma: If f:[a, b] —» E’ be a bounded function and given for any real

number ¢ > 0 3 step function s,(x) € Sf and t,(x) € T such that

(i) Jf, fGdx = [ so(x)dx <&

(i) [7toGdx — [ foodx <&



Proof: We know that [ f(x)dx = Lu.b.{[ S(x)dx | S(x) € S }. Hence,
f:f(x)dx — g is not an upper bound of the set {f: S(x)dx | S(x) € Sf}, SO
there exists a step function s,(x) € S, such that f; f(x)dx — g < f: So(x)dx

or fff(x)dx — ff So(x)dx < g

In similar manner, fff(x)dx =g.Lb. {ff t(x)dx| t(x) € Tf}. Hence
fff(x)dx + § is not a lower bound of the set {f; t(x)dx| t(x) € Tf}. So
there exists a step function ¢, (x) € T such that f;’ to(x)dx > ff f(x)dx +
2.0r [ to(x)dx > ff f)dx < =

Theorem: If f: [a, b] — E’ be a bounded function, then fgbf(x)dx <

17 f@oydx.

Proof: By using the above lemma (i) and (ii) we get (fgb f(x)dx —

ff So(x)dx) + (f; to(x)dx — fff(x)dx) < % + % or (fgbf(x)dx —

f; So(x)dx) + (f; to(x)dx — fff(x)dx) <e.

Also sy(x) < f(x) < ty(x)Vx € [a, b]. SO f: to(x)dx — f: So(x)dx =0

Thus, we get that fff(x)dx — fagf(x)dx < &eVe > 0.



Hence [ f(x)dx — [ F(x)dx < 0. (+A<eVe>0= A<0)

Therefore ff f(x)dx < ff f(x)dx

8.7 Riemann Integral of a bounded function

Definition: Let f: [a, b] — E' be a bounded function. Then f is called

Riemonn integrable on [a, b] iff fabf(x)dx = fff(x)dx

Note: The common value of the lower and upper integrals will be denoted by

fff(x)dx and called the Riemann integral of f froma to b. i.e., ff f(x)dx
exists.
Example 1: Let the function f: (1.2) — E’ be defined by f(x) =

{5 if xis  rational [ f (x)dx = 2 (lower integral of f(x) on (1,

2 if xis irrational

2))

And flzf(x)dx = 5 (upper integral of f(x) on (1, 2))

flzf(x)dx =2+#5= fff(x)dx i.e., lower integral of f(x) is not equal to
upper integral of f(x) on (1. 2). Hence f is not Riemann integrable on (1, 2).

Example 2: If f: (a,b) — E' be a step function, then prove that f is Riemann

integrable on [a, b].



Solution: = f:(a,b) — E' be a step function, so it is bounded on [a, b]. Also
f(x) €Sy ={S(x)| S(x) < f(x)Vx € [a,b]}

So, if S(x) € S; then S(x) < f(x)Vx € [a, b]
Therefore, [ S(x)dx < [, f(x)dx VS(x) € S;.
Hence, f f(x)dx = Lu.b.{[; S(x)| S(x) € S}
= fé’ FEOAX. e, (1)
Also, f(x) € Ty. If t(x) € Ty then f(x) < t(x)Vx € [a, b].

= fff(x)dx < f: t(x)dx vt(x) € Ty.

Hence [ f(odx = g.Lb.{[0 t(dx | t0) € Tp} = [ f(x)dx

From (1) and (2) we get that

fabf(x)dx = fabf(x)dx = jjf(x)dx = jbf(x)dx = jjf(x)dx

a

Thus the step function f is integrable on [a, b] means it is Riemann integrable
on [a, b].



Example 3: If hy: [a, b] = E' and h,: [a, b] - E’ be two step function then
prove that (h, + h,): [a, b] — E' be a step function and ff(h1 + h,)(x)dx =

[} h()dx + [ hy(x)dx.

Solution: Suppose that P, and P, be two partition associated with the step
function h, (x)& h,(x) respectively. Suppose P = P, U P, be a refinement of
P and P,. Let P= {Xo, X1y, X2y ennnn Xp = b}

Let hy(x) = C',,\Vx € (x)_1, X)) and hy(x) = C",Vx € (xy_q, xx), 1 <

k<n
Then (hy + hy)(x) = hy(x) + hy(x) = C') + C" Vx € (X1, Xi)
Thus, (hy + h,) is constant on each (x;_4, x) k=1,2,3,....n
Hence (h, + h,):[a, b] — E' is a step function.
Again [7(hy + hy) ()dx = [ (hy () + hy(x))dx
= Yk=1(C'x + C") O — xp_1)
= Dk=1C O — Xp—1) + Xitaq C" (g — xp—1)
= ff hy (x)dx + f: h,(x)dx.

Example 4: Let f:[a, b] — E' be a bounded function and m and M are

constants such that m < f(x) < MVx € [a, b] then prove that

m(b—a) < [ f(x)dx and 12 Fdx < (b - a)



Hence prove that m(b — a) < fff(x)dx < M(b — a)

Solution: We define step function s,: [a, b] —» E' and t,: [a, b] — E' as

so(x) =mand t, = MVx € [a,b].
¢ 5o(0) < F(x) < to(0)Vx € [a,b].

S0, so(x) € Sy and ty(x) € Ty.
Now, fff(x)dx = l.u.b.{f;s(x)dx| s(x) € Sf}
Hence, f; So(x)dx < fff(x)dx.

Also, f(f So(x)dx = fab mdx = m(b — a). So we have m(b — a) <

J, fx)dx.

similarly, [7 f(x)dx = g.Lb.{[” t(o)dx | t(x) € Ty}
Hence, J” F(x)dx < [ to(x)dx

Also, [ to(x)dx = [ Mdx = M(b — a)

So, we have [” f(x)dx < M(b — a)

Theorem 1: Riemann integrability condition of f on [a, b]



If f:[a, b] — E' be a bounded function, then f is Riemann integrable on [a, b]

if and only if Ve > 0, 3 step function so(x) € Sf and t,(x) € Ty such that

f; to(x)dx — f: So(x)dx < e.

Proof: We know that Ve > 0, 3 step functions s, (x) € S and to(x) € T
such that

[P fGdx — [7s(0)dx < Sand [ to(x)dx — [ f(0)dx < £ by adding
these two equation we have Ve > 0 f: to(x)dx — f;’ So(x)dx < g
 tis integrable on [a, b] i.e. [” f(x)dx = [ f(x)dx = [ F(x)dx

Hence the above condition is necessary for the integrability of f on [a, b].

Sufficient condition: Suppose that Ve > 0, 3 step function s,(x) € Sy and

to(x) € Tf such that

f; to(x)dx — ff So(X)dx < g ................ (1)
+ 50(%) € S; 50, [ so(x)dx < [ f(x)dx (lower integral) ... (2)
Also, upper integral fff(x)dx S to(x), to(x) ETp oevnnnnn, (3)

From equation (2) and (3) we have

Lbf(x)dx — Lbf(x)dx < tho(x)dx — fabso(x)dx <e€



Thus [” F(x)dx — [7 f(x)dx <. Ve>0 ... @)

> [P Fedx — [P FGIdX SO oo 5)

But we know that [” f(x)dx < [* f()dx  oovoorrn ©6)

From (5) and (6) we get that

fabf(x)dx = jjf(x)dx

Therefore, f is integrable on [a, b], hence it is the sufficient condition for

integrability of the function f on [a, b].

Theorem 2: if f:[a, b] — E' be continuous then f is Riemann integrable on

[a, b]i.e. fff(x)dx exists.

Proof: Since f:[a, b] - E'is continuous, so f is bounded on [a, b] hence f is

imiformly continuous on [a, b].

&
(b-a)

We chooseany € > 0 let &' = >0

Since f is imiformly continuous on [a, b] so, for any " > 038§ > 0 depending

on &' only such that v pair of points x'and x" € [a, b].

x' —x"|<6= |f(x)—fx <& (1)



We take P = {Xq, X1, X2, ....... Xn = b} be a partition of [a, b] such that
() —xp-q) <6 fork=1,2,3,...... n then if x’, x" € (x,_,, x;) then

x' —x"|<8= |fx)-f(x) < L 2)

Since f is continuous on every closed subinterval (x,_,, x;) of P, so fis

bounded on (xj_4,x;) fork=1,2,3,....n.

Hence Ju,, vy, € (xy_q, x3) such that

flup) < f(x) < fw)Vx € (xp_q, %), k=1,2,3..n ...
3)

Now uy, vy, € (x,_1, X)) such that

If (we) — F)l = (fw) — fve) < &, k=1,2,3,..n ...... (4)

Now define step function s: [a, b] —» E’ and t: [a, b] - E’ as follows

_ (f(u) whenx € (xXp_q, %), _
S(X)—{f(a) when x = x, = a k=1,2,3,...n
_(f(vp) whenx € (xp_q, %) |, _
And t(x)—{f(a) when x = x, = a k=1,2,3,....n

We find that s(x) = f(ug) < f(x) i.e. s(x) < f(x)Vx € [a, b] and so,
t(x) € Ty.

Now,
[ e(ydx — [ s()dx = TPy £ (W) Goi — Xrmy) — Tt £ () (=

Xk-1)



= k=1 (f (i) = f (W) O — xp-1) < X=q € O — x3-1)
=& Yk=1( —x1) = €'(b—a)
Pute’'=¢/(b—a) - f; t(x)dx — f;s(x)dx <&,

Thus for any choosen & > 0 3 step function s(x) € Sy and t(x) € T such

that f: t(x)dx — f;s(x)dx <e.
Hence f is Riemann integrable on [a, b].

Theorem 3: If f: [a, b] —» E’ be integrable on [a, b] and m, M are real

numbers such that m < f(x) < MVx € [a, b], thenm(b — a) <

[ fO)dx < M(b - a).

Proof: We define step function s and t on [a, b] such that s(x) = m and

t(x) = MVx € [a, b]

> s(x) < f(x) < t(x)Vx € [a,b] = s(x) € Syand t(x) € T

Hence [7 s(x)dx < [ f(x)dx or ['mdx < [’ f(x)dx

orm(b—a) < [ f(x)dx = fg” f(x)dx (fis integrable) ............. (1)
Also  [Pteodx = [P F(0dx = [7 F(0)dx

S0 M(b-a)= [ fx)dx .......... )

From equation (1) and (2) we get



m(b—a) < [ f(x)dx < M(b - a).

Theorem 4: Let f: [a, b] —» E' be a bounded function, Let r be a real number

suchthata < r < b. If ] f(x)dx and [ f(x)dx exists then [ f (x)dx

exists, and

jbf(x)dx = jrf(x)dx + jbf(x)dx

T

Proof: Since farf(x)dx exists then for any given € > 03 step functions

s;(x) € S¢ and t;(x) € T defined on [a, r] st.

farf(x)dx — far s;()dx <e/2 ... (1) = f(x)dx =
[, fx)dx

And f; t(x)dx — f;f(x)dx <ef2 .l @)~ [ f(x)dx =
[y f0dx

Again frb f (x)dx exists so, 3 step functions s,(x) € Sy and t,(x) € T

defined on [r, b] such that
frbf(x)dx - frb s,(x)dx<e/2 ... (3) and

frb ty(x)dx — frbf(x)dx <EI2 i, (4)

Now we define step function and s, (x)and t,(x) on [a, b] such that.



s;(x); x € [a,r]

So(x) = {sz(x); x € [r, b]

t;(x); x€la,r]
t

fo(x) = { ,(x); x €la,b]

Now, f; So(x)dx = far So(x)dx + frb So(x)dx = far s;(x)dx + frb sy (x)dx

Now, we adding equation (1) and (3) we get
r b r b
J f(x)dx +f f(x)dx <f s (x)dx +j Sy (x)dx + €
= ff So(x)dx + € < f(ff(x)dx + €
Hence [ f(x)dx + [ f(x)dx — [ f(x)dx < eVe > 0
Therefore, |7 f(x)dx + [ f(x)dx — [, f(x)dx < 0

or [ feoydx + [ f(0dx < [ f()dx e 7)
Similarly we adding equation (2) and (4), we get

|7 tidx + [ (x| = | [ F@ydx + [ f(x)dx| < e



or [7to()dx — |[] f(x)dx + f f(x)dx| < e

or [ fe)dx + [ f(x)dx > [ to(x)dx — € > ff F)dx — €
or [?feodx —[f] fGddx + J7 f(x)dx| < eve > 0

Hence [* f()dx < [T f)dx + [7 f)dx oo )

From equation (7) and (8) we have

fdx+ | f()dx < | f(x)dx < _f(x)dx
Lr frb f: fb

a

< Jrf(x)dx + jbf(x)dx

Consequently [ f(x)dx = [” FGdx = [ f()dx + [ FG)dx

Hence fff(x)dx exists and f:f(x)dx = [ f)dx + frbf(x)dx

8.7 Summary

In this unit, we have covered the following points:
= We defined a Step Function
= We defined Integration of a Step Function

= We have shown Properties of Integrals of step functions



= We defined Riemann Integral of a bounded function.

= We discussed two important theorems and explained the importance of

them.

8.9 Terminal Questions

Evaluate f: h(x)dx where h: [a, b] - E’' be a step function.

(1)h: [2,2] > E' defined by

3|x2-3x—4]
x%2-3x—-4

h(x) = + [x];x # —1,x = 4.

h(—1) =1, h(4)=4
(2)h:[—3,8] — E' defined by

M;x *+ =2, x # 3.

X“—x—6
h(-=2)=5=h(3) Ans.2

(3)h:[—2,7] — E' defined by

2 if —-2<x<1
-3 if 1<x<?2
4 if 2<x<5
—1 if 5<x<7

(4)h: [0, 2] = E' defined by h(x) = [2x + 3]

h(x) =

h(x) =
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9.1 Introduction

In this Unit we discuss about mean value theorem of real numbers as well as
for Riemann integral, we gave application of this theorem. We also discuss
about Intermediate value theorem, fundamental theorem of integral calculus
and its several applications, we discuss about Substitution method for

integration and

Second mean value theorem and its applications.

9.2 Objectives

After studying in this unit, therefore, you should be able to
= Define Mean value theorem

= Discuss Intermediate value theorem

= Define Fundamental theorem of integral calculus

= Define Substitution method for integration

= Second mean value theorem

9.3 Mean value theorem (Application)

Theorem: If f:[a, b] — E' is integrable function (a < b) then there exists r

such that a < r < b then fff(x)dx =MBb—-a)f(r),a<r<b.



Theorem: If f: [a, b] - E' is integrable (a < b) then

i) J, fO)dx =0 (ii) f) f@)dx = — [} f(x)dx
Proof: (i) [ f(x)dx = (b — Q)f(r),a <t <b
2 f()dx = (a—a)fer) =0

(i) J, fGdx = (a—b)fer) = —(b— a)fer) = — [, f(x)dx
Theorem: (i) if f is continuous on [a, b] then
J, f(x)dx = (a— b)fer) wherer € [a, b]
(ii) if f :[a, b] — E’ be continuous and 7,75, 75 € [a, b]

Then f:f f(x)dx = ff f(x)dx + fs £ (x)dx irrespective of the relative

order of ry, 1y, 13
Proof: Letr, < r, < r; then frr;’ f(x)dx = f:; f(x)dx + f[j f(x)dx
-+ fis continuous on [r,, r;] and also continuous on [ry, 73]

And so frrzl f(x)dx and f:f £ (x)dx both exist.
Hence f:; fx)dx = — f:f fx)dx + f:f f(x)dx

Or [i*f(x)dx = [[* f(x)dx + [ f(x)dx



Similarly the theorem can be proved for other cases of relative order of

N, T, T3

Example: if f:[a, b] - E' and g: [a, b] - E' are integrable on [a, b], prove
that f + g: [a, b] - E' is integrable and [ (f + g)(x)dx = [ f(x)dx +

f; g(x)dx.

Proof: For choosen any € > 0, f is integrable on [a, b] so, 3 step functions

s;(x) € S¢ and t;(x) € T such that

f(f ty(x) dx — ff s;i(x)dx <e/2 ... (1)

Again g is integrable on [a, b] so, 3 step functions s,(x) € S, and t,(x) € T,

such that
f,f ty(x) dx — ff s,(x)dx <e/2 ... (2)
S0 sp(x) = 5;(x) + 5,(x) < f(x) + g(x) = (f + 9)(x)

Hence so(x) € S¢. g, similarly to(x) = t;(x) + t5(x) € Ty

Now, f; to(x) dx — ff So(x) dx = f;(tl (x) + t,(x))dx — f;(sl (x) +
s,(x)) dx

= fbtl(x)dx+fbt2(x)dx—fb51(x) dx—bez(x) dx

a

b b b b e
- [w@ar- [ s@ar+ [ p@ar- [ s@ar<i+i=e
a a a a 2 2



Thus, for given any & > 03 step functions s, (x) € S¢, 4 and to(x) € Ty

such that [ to(x)dx — [ so(x) dx < &

Hence [ (f + g)(x)dx = [ (f (x) + g(x))dx exist
NOW, 5,(x) € Sy, and to(x) € Ty 4 SO,

[} s0(0) dx < [[(f(x) + g(x))dx < [ to(x)dx....(3)

Again ff So(x) dx = f: s, (x) dx + f; s,(x) dx < f;f(x)dx + f:g(x)dx
b b b
SJ tl(x)dx+j tz(x)dx=j to(x)dx

Thus, we get f; So(x) dx < f:f(x)dx + f:g(x)dx < f: to(x)dx ..... (4)
From equation (3) and (4) we get that both

[ (FO) + g(x))dx and [ f(x)dx + [ g(x)dx lie between [ s, (x) dx

and ff to(x)dx

Hence |ff(f(x) + g(x))dx — {f:f(x)dx + f: g(x)dx” < |fo9 to(x)dx —

f; So (%) dx| <egVe>0

Therefore, ['(f(x) + g(x))dx = [ f()dx + [, g(x)dx

Since,la—b|<evVe>0=a—-b=0



Theorem: if f:[a,b] —» E' and g:[a, b] — E' are integrable on [a, b] and

f(x) < g(x)Vx € [a,b] then [ f(x)dx < [* g(x) dx.

Corollary: if ¢: [a, b] — E' is intergrable and ¢(x) = 0Vx € [a, b] then
[ ¢(x)dx = 0.

Proof: Let the step function t(x) € Ty, then t(x) = ¢(x) = 0.
f] t()dx > 0.V¢(x) € Ty Vx € [a,b]

S0, g.1.b.{[} t@)dx | t(x) €Ty} 2 0
or [P p(x)dx =0 or, [ p(x)dx = [ p(x)dx = 0

[P pdx = [ p(x)dx

Now, we prove the theorem

We put g(x) — £ (x) = $(x), 50 p(x) = 0 Vx € [a,b].
Now, [/ ¢(x)dx = [ g()dx — [ f(x)dx

+f7 p(x)dx = 0 Hence, [ g(x)dx — [, f(x)dx > 0

Therefore, [ f(x)dx < [, g(x)dx



Theorem: Let f: [a, b] —» E' be bounded and f:f(x)dx exist prove that
f:lz f (x)dx exist for any sub interval [ry, r,] of [a, bjwherea <r, <1, <

b.

Proof: since f:f(x)dx exists, so for any given € > 03 step function

So(x) € Sgyg and ty(x) € Ty, g4 such that ff to(x)dx — ff so(x)dx < &

Now, by property of integrals of step functions, we get
[ to(e)dx = [ to(dx + [ to()dx + [ to(O)dx ......... )
f; So(x)dx = farl so(x)dx + f:lz So () dx + frbz So(X)dx .......... (3)

f; to(x)dx — f; So(x)dx = [farl to(x)dx — f;l so(x)dx] + [fr? to(x)dx —

[77 50 (x)dx] + [frz to(x)dx — frz so()dx| ... 4)

Now, f:lz to(x)dx — f:lz so()dx < | f;l to(x)dx — f;l so(x)dx| +

[f:lz to(x)dx — f:lz So (x)dx] + [frz to(x)dx — f:: So (x)dx]

From equation (4) we get that

f:f to(x)dx — f:f So(x)dx < ff to(x)dx — f; so(x)dx < & from equation 1

Hence, f:lz to(x)dx — f:lz so(X)dx < ¢



Hence, f:lz f(x)dx existson[a, b].(a <1, <1, <b)
Example. Let f: [a, b] —» E be R-integrable then |f] is also R-integrable and

|1, Fodx| < []1fGoldx.

fx) if f(x)=0

Proof: We define f*(x) = { 0 iff(x)<o0

L (~f@ i FO <0
f(x)_{ 0  if f(x)>0

Case (i) when f(x) > 0

Then f*(x) + f~(x) = f(x) and

when f(x) < 0

Then f*(x) + f~(x) = —f (x) thus we get

FCOI = FrG) + () oo (1)

=) — () = F(X) v, (2) if f(x) > 0 or f(x) < 0

~ f(x) is R-integrable in [a, b] - By R-condition of integrability we have

b to(x)dx — b So(X)dx <e................ (3) Now from (2) we can write
a a

5 () — t5 (x) = to(x) and sg (x) — 557 (x) = 50(x)
From (3) [ {t (x) — t5 ()}dx — [ {sq (x) — 55 ()}dx < &

or, [{td () = sg ()Y + [ {s5 () — tg ()}dx < &



Now [7 ¢ ()dx — [7 s (X)dx = [ {t5 (x) — 55 (x)}dx < e
From (4) Also [ t3 (x)dx — [7 ty (x)dx <

~f*(x) & £~ (x) are integrable

~f*(x) + f~(x) is integrable

And hence |f(x)| is integrable.

Theorem: Let f: [a, b] — E' be a bounded function then f is integrable on [a,

b] iff for any £ > 0 3 step function s, (x) € Sy and ty(x) € Tf such that

f: to(x) dx — f; So(x) dx < e.
(this theorem is called Reimann condition of integrability)

Proof: Let f is integrable on [a, b] then we show that ff to(x)dx —

ff So(x) dx < .

For f is integrable on [a, b] fgbf(x)dx = fff(x)dx ......... (1)
Now for ¢ > 0 3 step functions s, (x) € S; and t,(x) € T such that
fgbf(x)dx - f‘f So(x)dx < /2 and ff to(x)dx — fff(x)dx <eg/2
f: to(x)dx — f: So(x)dx < ¢

Conversely, f; to(x)dx — f: So(x)dx < ¢



We suppose that £ > 0 3 s4(x) € Sy and t,(x) € T. By definition
b b

j f(x)dx = lub {J s(x)dx:s(x) € Df}
a a

P fydx = glb {7 tGdzx: t(x) € Ty ).

3 50(x) € 5S¢ and ty(x) € Ty st.

[ so(x)dx < fg” FOOAX o, (1)
[ F@odx < [P toG)dx oo 2)
We can write [ £(x)dx < [” to(x)dx

We write (1) as — [ so(x)dx > — fé’ f()dx....(3)

Now fff(x)dx — f(ff(x)dx < ff to(x)dx — f: So(x)dx

f; to(x)dx — f; So(x)dx < eVe >0

b b
[ reax— [ reix < eve > o

17 Fdx < Pf@dx ... “)

But [ f(x)dx < ff FOOdX oo (5)



Lff Fedx = [7 f(x)dx
So f is integrable.

Example. Let f:[a, b] —» E’ be a bounded function and m and M are constant

st m < f(x) < MVx € [a, b] then prove that m(b — a) < fgb f(x)dx and
M(b—a) > [°F(x)dx

Solution. We define step function s: [a, b] - E'st. m < s(x) < f(x)

:f; mdx < f; s(x)dx Vs(x) € S¢

:f; mdx < lub {f:s(x)dx ; s(x) € Sf}

=s>m(b—a) < fgbf(x)dx

Now we define step function t: [a, b] - E'st. M > t(x) = f(x)Vx € [a, b].
=[7Mdx > [] t(x)dx ¥ t(x) € T}

:ff Mdx = glb {f: t(x)dx : t(x) € Tf}

=>M(b —a) = fff(x)dx hence proved

Theorem: Let f:[a, b] — E’ be integrable on [a, b] and m, M are real

numbers st. m < f(x) < MV x € [a.b]. then



b
m(b —a) < j f)dx <M(b —a)
Proof: We shall show that m(b — a) < f:f(x)dx ......... (1)

And M(b—a) = ff f)dx .......... (2)

f(x) is integrable so, [” f(x)dx = [* F()dx = [ f(x)dx.
From (1) and (2) we get

b

m(b —a) < f fx)dx < M(b— a)

a
Note: (1) A function is said to be continuous at x = a if for € > 0 3a no.§ >
0 st.
lx —al <§d=|f(x) - fla)| <e
(2) Uniform continuous in [a, b] if e > 0 3a no.§ > 0 st.

lx; — x| < 6= |f(x) — flx)l < e

Remark: 1. If the function f is uniformly continuous on [a, b] then f is cont.
on [a, b].

(2) A continuous function need not be uniformly continuous ex. f(x) = 1/x 0

< x < 1then fiscont. in the (0, 1) but f is not uniform continuous.



3. If a function is continuous on [a. b] then it is uniformly continuous on [a,
b].

4. If a function is continuous on a [a, b] then st. attains its supremum and
infimum in [a, b] i.e. if f is continuous on [a, b] then it attains its supremum
and infimum value in [a, b] i.e.3 pointsuand v € [a, b]st. f(u) < f(x) <
f(v)Vx € [a, b].

Example:f_sllxldx = f_Ol —xdx + fOS xdx
Theorem: Let f: [a, b] — E' be a continuous function then ff f (x)dx exists
(fis integ.)

Proof: Since f is continuous on [a, b] hence it is uniformly continuous on [a,
b]. Let P ={xq, x4, X5, X3, .....x,} Wherea=x0<x1<x2<...... <x,=Db
be the partition of [a, b] then for given € > 0 3 a number § > 0 such that

X1 = x| <6 = |f(x) — f(x2)| <&
V xi,x, € [a,b].
We choose § > 0 st.x;, — x4 <6

-+ fis cont. on [a, b] and hence it is cont. on [x;,_; — x;] and f will attain its

supremum and infimum in [x,_; — x;] 3 ug, v € [xp—1, Xkl St.

flup) < f(x) < f(vp)Vx € [xp-1, Xy ]

Uy, Vg € [Xk_1q, X |&xp — X1 < 6



Uy, — Vg < § for |uk, _vkl <6
- fis continuous and for € > 0|f (vy) — f(up)| < €

cfwe) —flup) <€ onenninn, (2)

We define step function s: [a, b] = E', t: [a, b] - E'st.

C(f@) fx€les %l
O o

_(fm) ifxelo . x]
t(x)‘{f(cf) frea=x,

Now consider ff t(x)dx — ff s(x)dx

= Z f(vk)(xk — xk—l) - z f(uk) (xk - xk—l)
k=1 k=1

= Z{f(vk) — f ()} Ok — Xp—1)
k=1

[ tedx — [T s(0)dx < Xioq & (o — Xg_1)

€ (g — xp_q) = (g — x9) + (g — 1) + . (X — Xp_1)
= x, —xo = (b —a)

+f) te)dx — [ s(x)dx < (b — ). = € (say)

-~ By Riemann condition for integrability the function f is R-integrable.



Note: The converse of this theorem need not be true. The function is R-

integrable for [a, b] then it need not be continuous on [a, b].

Example: Step functions are integrable but not continuous.

9.4 Intermediate value theorem:

Let f:[a, b] = E' be a continuous function. Let k be a number between f(a)
and f(b) then 3 a number r € (a, b)st.k = f(r).

Mean value theorem: (of integral calculus): Let f:[a,b] » E' be a

continuous function then 3 a number r € (a,b)st.(b—a)f(r) =

[ f ().

Proof: fis continuous in [a, b] and so z+ attains its supremum and infimum
in[a, bli.e3uand v € [a,b] st. f(u) < f(x) < f(v)Vx € [a, b].

(b-a)f@ < [ f)dx< (b -a)f®) ... (2)
Case (i) Let (b —a)f(u) = f;f(x)dx butu>r,(b—a)f(r) < fff(x)dx.

Case (ii) Let (b —a)f(v) = ff f(x)dx we take x = v so we have (b —

Qf@) = [ f(x)dx.
Case (iii) (b — @)f () < [, f(x)dx < (b — a)f (v)

>fW) < — [ f(x)dx < f ().



1 b
Put k = bTafa f(x)dx

SF) <k < W) oveonn, )

=~ fis continuous on [u, v] and k lies between f(u) and f(v) and therefore by

intermediate value theorem 3r € [u, v] st. k = f(r). ﬁf; f(x)dx =
f()=f, f(x)dx = (b — Q)f ().

Geometrically the mean value theorem means that area of curve y = f(x)
bounded by x-axis and between x = a and x = b is equal to area of the

rectangle whose one side is (b — a) and other side is f(r).

9.5 Fundamental theorem of integral calculus:

Note: Generally, we say that integration is the reverse process of
differentiation but it is only true when function is continuous in the range of

integration.

Theorem: If f: [a, b] - E'is continuous on [a, b] and (x) = fzf(u)du .
(1)

Then Dx(G(x)) = f(x). Dx= %
G(x+h)—G(x)

o d .
Proof: - (G(x)) = lim;,_,, -

[T faodu - [T f (w)du
= lim
h—-0 h




g fdu + 7 fadu — [T fwydu

h—0 h
p [ Fwau
e (G(x)) = limy,_, e (1)

By mean value theorem we have f;f(u)du = (b—a)f(r)wherea<r<hb.
A7 fdu = (x + k= x)f(r) where x <r < x +h
From (1) ;—x (G(x)) = limy_, %(T) X<r<x+h
= lim;_, f(r),x<r<x+h
= f(x)
Note: If G = fff(u)du then %(G) =0

Primitive of a function: A function F: [a, b] — E' is called a primitive of

/ d
f:[a,b] = E’ such thata(F(x)) = f(x)
And % (sinx) = cos x i.e. primitive of cos x is sin x. also [ cos x dx = sinx

Note: 1. F and f are continuous function.

2. If f(x) is a primitive of F(x) then f(x) + c is also a primitive of F(x).

.-.% (F(x)+cg) = :—x(F(x)) = f(x).



3. Let F(x) and G(x) be two primitive of a function f(x) then F(x) — G(x) = k

(constant)

Theorem: if F:[a, b] - E'is any primitive of f:[a,b] — E" and if Fis

continuous on [a, b] then f: F(x)dx = F(b) — F(a).

Proof: F(x) is given to be a primitive of f(x) and by fundamental theorem of

integral calculus G (x) = [ f(Wdu.F(x) — [ f@du=k .............. (1)
Putting x =athen F(a) — [ f(wdu =k

s+ k=F(a) putting it in equation (1)

2F(x) = [T f(w)du = F(a)

2F(x) = F(a) = [ fw)du

Putting x =b, F(b) — F(a) = [ f(u)du

Note: if F: [a, b] — E" is constant function then its primitive and integral are

same. But if F is not continuous then

(i) A function may have primitive but not integral.

(i)  Function F may be integrable without having primitive.

0 x#0
1 x=0

except at x = 0. Then F is continuous on [a, b] not contain zero, and so F is

Example. 1. Consider f(x) = { Then f is continuous at all points in



integrable on [a, b] but 3 no f(x) st. %F(x) = f(x). ~ Fis integrable but F

has no primitive.

2.F(x) = %xz sinxiz, F'(x) = xsinxi2 — %cosxi2 = f(x)
Letf(x)=xsinxiz—icosxi2 x#0

Then its primitive is F(x) = %xz sinxi2

':%F(x) =X sini — %cos(xiz)

But the function f(x) is not integrable in any interval containing the point

zero.
~+ f(x) is not bounded in an interval containing O.

3 if «xisrational

Let f:11,2] = E" defined by f(x) = {1 if xisirrational

P ={Xo, X1, .....Xn} be a partition of (1, 2) is s(x) € Sy then s(x) <
f)vx € (1,2).

=s(x) < 1Vx € (1,2)~f s()dx <1(2—1) = 1
-'-l.u.b.{flzs(x)dx | s(x) € Sf} =1= flzf(x)dx
Also t(x) € Ty, t(x) = f(x) = t(x) = 3Vx € (1.2)

.-.flz t(x)dx = 3(2—-1) =3-g. l.b.{fl2 t(x)dx | t(x) € Tf} =3



7 Fdx = 3af7 f()dx = [ f(x)dx.

Give an example to show that a function f: [a, b] — E' may be integrable,

still if may not have any primitive function F. thus ff f(x)dx = F(b) —
f(a), where F is a primitive of f, should not be regarded as on alternative

definition of the integral fff(x)dx.
Solution. Define f:[0,2] - E’ as follows f(x) =0, x # 1 and f(1) = 2.
Here f is a step function, partition for this function is P = {0, 1, 2}.

Also f is Riemann integrable on [0, 2] and fozf(x)dx =0(1-0)+
02-1)=0

Now suppose that 3 a primitive F of f such that %F(x) = f(x), then

F(X) = 2x when x =1 and f(x) = A (an arbitrary constant) x # 1, thus F cannot
be uniquely defined on [0, 2]

Theorem: If F:[a, b] - E' and G: [a, b] — E' be two primitives of
f:[a,b] = E', then F(x) — G(x) = k (constant) Vx € [a, b].

Proof: Since, F and G are both primitives of f, so ;—xF(x) = f(x); and

=60 =f@.

Or, %(F(x) — G(x)) = 0. Hence, F(x) - G(x) =k



Theorem: if f:[a, b] — E' and g: [a, b] - E’ be continuous on [a, b], then

prove by the fundamental theorem on calculus.

M) [(f)Fgt))dx = [) fFe)dx F [) g(x)dx
(i) [ cf)dx =c [ f(x)dx

Proof: We have already proved that if f and g are integrable then (f £ g) is
integrable on [a, b]. Now we prove this by using fundamental theorem on

calculus:
Since [ f(w)du and [ g(w)du exist.

So, Let F(x) = [ f(wdu, G(x) = [ g(u)du

When x € [a, b]

LF@) =f)Z(6() = g() ovveee. (1)

since [7(f(x) F g(x))dx exists. Since f(x) £ g(x) is continuous on [z, b].
SO let H(x) = [ (f(w) F g(w))du,x € [a, b]

Then % (H(x)) = f(x) F g(x) by fundamental theorem on calculus.

From (i) we get -~ {F (x) F G (1)} = f(x) F g(x)

Thus H(x) and F(x) + G(x) are both primitives of f(x) + g(x). Hence



[F(x) F G(x)] — H(x) = C Vx € [a,b] Putx = a, we get
[F(a) ¥ G(a)] —H(a) = C
1F@)=G@)=H@=0->C=0

Now Put x = b we have [F(b) F G(b)] — H(b) = 0

1 F(b) F G(b) = H(b)
or [7{fw) F gwldu = [ fFdu ¥ [ g(wdu

or [{f(x) F g()}dx = [ fF()dx F [, g(x)dx

Similarly, we can prove part (ii).

9.6 Substitution method for integration:

Theorem: Let A be a subset of E'. Let g: [a, b] — A be a function such that

g’ (x) exisrs and is continuous Vx € [a, b]. Let f: A - E’ be a continuous

map then fff(g(x))g’(x)dx = f;(g)f(u)du.

Proof: Since g: [a,b] - Aand f: A - E’ be two continuous maps then

fog:|[a,b] - E"is well defined and continuous map also, g is continuous on
[a, b]. therefore, fff(g(x))g’(x)dx exists. Since, f(g(x))g’(x) is also
continuous on [a, b]. Let p(x)= [ f(g(t))g’ (D)dt; x € [a, b]. Hence by
fundamental theorem of calculus we have :—x (Y(x) =f(g(x)g’ (x)Vxe

[a, b].



Since, [g(a), g(b)] is a subinterval of A and f is integrable on A. so, f is also

integrable on [g(a), g(b)], hence f;(f))f(u)du exists. Let p(u) =
fgu(a)f(t)dt; u € [g(a), g(b)]. Hence by fundamental theorem of calculus
oW =fu) e )

Put u = g(x) then ¢(g(x)) = fjg))f(t)dt .......... (3)

Now = ¢(g(x) = W -9 = fW.g'(x)

or Lp(g(0) = FGENGE) oo )

We see that from equation (1) and (4) ¢ (g(x)) and ¥ (x) are primitives of
f(g(x)g'(x). Hence qb(g(x)) —Y(x) = c Vx € [a,b] Putx =athen
$(g(a)) —y(a) =c

or f;(f)) f@dt— [ f(g®)g'®dt =c s c=0

Hence, qb(g(x)) = P(x) Vx € [a, b]

Now, we put X = b then ¢(g (b)) = y(b)

or [4% f(t)dt = [ f(g(8))g’ (t)dt

Now, we change the variable t —-u on L.H.S. and t — x on R.H.S.. we get



g(b) b
| aode= [ flg@)g

g(a)

9.7 Second mean value theorem:

If f is a monotonic function f, f* and g are all continuous functions on [a, b]

then there exists ¢ € [a, b] st. f:f(x)g(x)dx = f(a) facg(x)dx +

fb) [ g(x)dx.

Proof: Let G(x) = f(fg(t)dt. Clearly G(a) = 0. Under given condition G(X)
Is differentiable and G’(x) = g(x).

LJ) F0g@dx = [} f)G'x dx = [f()G@)1E = [} 6GOf (x)dx (by
integrating by parts). Since, G being continuous so it is integrable and f is

monotonic and continuous on [a, b]. therefore, by First mean value theorem

3c € [a,b] such that [ f(x)g(x)dx = f(B)G(b) — G(c) [, f'(x)dx
= f(b)G(b) — G(c){f(b) — f(a)}
= f(L{G(b) —G(c)} + f(b)G(c)

= f() [° g@)dx + f(a) [ g(x)dx.

9.8 Summary

After studying of this unit, we should be able to define Mean value theorem

and its applications, discuss Intermediate value theorem, define Fundamental



theorem of integral calculus and its several applications, we can define

Substitution method for integration and second mean value theorem.

9.10 Terminal Questions

1. State the Proof first mean value theorem.
2. The function f (x) is defined on [2,5] as follows:

1if2<x<3

f(X):{Bif3SxS5

3. If is Continuous and positive on [a, b],then show that fff dx is also
positive.

4. Show That the second mean value theorem does not hold good in

[—1,1], for f(x) = g(x) = x2.

5.1f f € R[a,b] and F(x) = [ f(t)dt,for all x €,then show that F is of

bounded variation on [a, b].

6. Use fundamental theorem of integration to compute | 12 x3dx.

7. Verify the second mean value theorem for f(x) = x and g(x) = e* in
[—1,1].



